diff options
Diffstat (limited to 'src')
35 files changed, 22741 insertions, 22725 deletions
diff --git a/src/ChangeLog b/src/ChangeLog index 0fad28d3..f026d6c8 100644 --- a/src/ChangeLog +++ b/src/ChangeLog @@ -1,5 +1,22 @@ -2009-08-14 Gabriel Dos Reis <gdr@cs.tamu.edu> +2009-08-16 Gabriel Dos Reis <gdr@cs.tamu.edu> + + * interp/i-map.boot (addMap): Fix typo from last commit. + * interp/compiler.boot (compElt): Fix thinko, one more time. + * interp/nruncomp.boot (optDeltaEntry): Don't overquote VM forms + for constants. + * algebra/algext.spad.pamphlet: Call niladic functions with empty + argument lists. + * algebra/ddfact.spad.pamphlet: Likewise. + * algebra/gpgcd.spad.pamphlet: Likewise. + * algebra/modmon.spad.pamphlet: Likewise. + * algebra/pf.spad.pamphlet: Likewise. + * algebra/polycat.spad.pamphlet: Likewise. + * algebra/twofact.spad.pamphlet: Likewise. + * algebra/list.spad.pamphlet: "nil" is now a ocnstant. + * algebra/string.spad.pamphlet: "space", "quote", "escape" are now + constants. +2009-08-14 Gabriel Dos Reis <gdr@cs.tamu.edu> * boot/tokens.boot: Retire "^=". Introduce "~=". * boot/ast.boot: Use "~=" instead of "^=". diff --git a/src/algebra/algext.spad.pamphlet b/src/algebra/algext.spad.pamphlet index 3488e7ba..b51f56ea 100644 --- a/src/algebra/algext.spad.pamphlet +++ b/src/algebra/algext.spad.pamphlet @@ -57,7 +57,7 @@ SimpleAlgebraicExtension(R:CommutativeRing, bsis := [monomial(1, i)$Rep for i in 0..d1]$Vector(Rep) if R has Finite then - size == size$R ** d + size == size()$R ** d random == represents([random()$R for i in 0..d1]) 0 == 0$Rep 1 == 1$Rep @@ -164,7 +164,7 @@ SimpleAlgebraicExtension(R:CommutativeRing, -- z = index lookup z, n = lookup index n -- the answer is merely the Horner evaluation of the -- representation with the size of R (as integers). - zero?(z) => size()$$ pretend PositiveInteger + zero?(z) => size()$% pretend PositiveInteger p : Integer := size()$R co : Integer := lookup(leadingCoefficient z)$R n : NonNegativeInteger := degree(z) diff --git a/src/algebra/ddfact.spad.pamphlet b/src/algebra/ddfact.spad.pamphlet index df499007..df0d0a05 100644 --- a/src/algebra/ddfact.spad.pamphlet +++ b/src/algebra/ddfact.spad.pamphlet @@ -144,7 +144,7 @@ DistinctDegreeFactorize(F,FP): C == T --terms of equal degree . -- if testirr=true the function returns the first factor found ddffact1(m:FP,testirr:Boolean):List(fact) == - p:=size$F + p:=size()$F dg:NNI :=0 ddfact:List(fact):=empty() --evaluation of x**p mod m diff --git a/src/algebra/gpgcd.spad.pamphlet b/src/algebra/gpgcd.spad.pamphlet index 7a5d282f..11ad1670 100644 --- a/src/algebra/gpgcd.spad.pamphlet +++ b/src/algebra/gpgcd.spad.pamphlet @@ -153,7 +153,7 @@ GeneralPolynomialGcdPackage(E,OV,R,P):C == T where randomCount:=init() randomCount else - randomR() == (random$Integer() rem 100)::R + randomR() == (random()$Integer rem 100)::R ---- JHD's local functions --- gcdSameVariables(p1:SUPP,p2:SUPP,lv:List OV) == -- two non-trivial primitive (or, at least, we don't care diff --git a/src/algebra/list.spad.pamphlet b/src/algebra/list.spad.pamphlet index eb4ab4d3..cc945bf8 100644 --- a/src/algebra/list.spad.pamphlet +++ b/src/algebra/list.spad.pamphlet @@ -234,8 +234,8 @@ List(S:Type): Exports == Implementation where LISTMININDEX ==> 1 -- this is the minimum list index Exports ==> ListAggregate S with - nil : () -> % - ++ nil() returns the empty list. + nil : % + ++ \spad{nil} is the empty list. null : % -> Boolean ++ null(u) tests if list \spad{u} is the ++ empty list. @@ -264,7 +264,7 @@ List(S:Type): Exports == Implementation where Implementation ==> IndexedList(S, LISTMININDEX) add - nil() == NIL$Lisp + nil == NIL$Lisp null l == NULL(l)$Lisp cons(s, l) == CONS(s, l)$Lisp append(l:%, t:%) == APPEND(l, t)$Lisp diff --git a/src/algebra/modmon.spad.pamphlet b/src/algebra/modmon.spad.pamphlet index 79ad7718..3b678cd8 100644 --- a/src/algebra/modmon.spad.pamphlet +++ b/src/algebra/modmon.spad.pamphlet @@ -92,7 +92,7 @@ ModMonic(R,Rep): C == T m modulus == m if R has Finite then - size == d * size$R + size == d * size()$R random == UnVectorise([random()$R for i in 0..d1]) 0 == 0$Rep 1 == 1$Rep @@ -132,7 +132,7 @@ ModMonic(R,Rep): C == T if frobenius? then computeFrobeniusPowers() == mat : PrimitiveArray(%):= new(d,1) - mat.1:= mult := monomial(1, size$R)$% + mat.1:= mult := monomial(1, size()$R)$% for i in 2..d1 repeat mat.i := mult * mat.(i-1) mat diff --git a/src/algebra/pf.spad.pamphlet b/src/algebra/pf.spad.pamphlet index ee7dbd24..ba8f657b 100644 --- a/src/algebra/pf.spad.pamphlet +++ b/src/algebra/pf.spad.pamphlet @@ -132,7 +132,6 @@ InnerPrimeField(p:PositiveInteger): Exports == Implementation where primitiveElt:=lookup(createPrimitiveElement()) -- set initialization flag initelt? := false - void$Void initializeLog() == if initelt? then initializeElt() @@ -160,7 +159,6 @@ InnerPrimeField(p:PositiveInteger): Exports == Implementation where -- print("discrete logarithm table initialized"::OUT) -- set initialization flag initlog? := false - void$Void degree(x):PI == 1::PositiveInteger extensionDegree():PI == 1::PositiveInteger diff --git a/src/algebra/polycat.spad.pamphlet b/src/algebra/polycat.spad.pamphlet index 46cd1e87..4a6c5f5c 100644 --- a/src/algebra/polycat.spad.pamphlet +++ b/src/algebra/polycat.spad.pamphlet @@ -362,7 +362,7 @@ PolynomialCategory(R:Ring, E:OrderedAbelianMonoidSup, VarSet:OrderedSet): -- zero? p => empty() -- concat(leadingMonomial p, monomials reductum p) -- replaced by sequential version for efficiency, by WMSIT, 7/30/90 - ml:= empty$List(%) + ml:= empty()$List(%) while p ~= 0 repeat ml:=concat(leadingMonomial p, ml) p:= reductum p diff --git a/src/algebra/strap/BOOLEAN.lsp b/src/algebra/strap/BOOLEAN.lsp index d672850f..61b9fc33 100644 --- a/src/algebra/strap/BOOLEAN.lsp +++ b/src/algebra/strap/BOOLEAN.lsp @@ -94,7 +94,7 @@ (DEFUN |BOOLEAN;not;2$;4| (|b| $) (DECLARE (IGNORE $)) (NOT |b|)) -(DEFUN |BOOLEAN;~;2$;5| (|b| $) (COND (|b| 'NIL) ('T 'T))) +(DEFUN |BOOLEAN;~;2$;5| (|b| $) (COND (|b| NIL) ('T T))) (DEFUN |BOOLEAN;and;3$;6| (|a| |b| $) (DECLARE (IGNORE $)) @@ -116,32 +116,31 @@ (COND (|a| (NOT |b|)) ('T |b|))) (DEFUN |BOOLEAN;nor;3$;11| (|a| |b| $) - (COND (|a| 'NIL) ('T (NOT |b|)))) + (COND (|a| NIL) ('T (NOT |b|)))) -(DEFUN |BOOLEAN;nand;3$;12| (|a| |b| $) - (COND (|a| (NOT |b|)) ('T 'T))) +(DEFUN |BOOLEAN;nand;3$;12| (|a| |b| $) (COND (|a| (NOT |b|)) ('T T))) (DEFUN |BOOLEAN;=;3$;13| (|a| |b| $) (DECLARE (IGNORE $)) (EQ |a| |b|)) -(DEFUN |BOOLEAN;implies;3$;14| (|a| |b| $) (COND (|a| |b|) ('T 'T))) +(DEFUN |BOOLEAN;implies;3$;14| (|a| |b| $) (COND (|a| |b|) ('T T))) (DEFUN |BOOLEAN;equiv;3$;15| (|a| |b| $) (DECLARE (IGNORE $)) (EQ |a| |b|)) -(DEFUN |BOOLEAN;<;3$;16| (|a| |b| $) (COND (|b| (NOT |a|)) ('T 'NIL))) +(DEFUN |BOOLEAN;<;3$;16| (|a| |b| $) (COND (|b| (NOT |a|)) ('T NIL))) (DEFUN |BOOLEAN;size;Nni;17| ($) (DECLARE (IGNORE $)) 2) (DEFUN |BOOLEAN;index;Pi$;18| (|i| $) - (COND ((SPADCALL |i| (|getShellEntry| $ 28)) 'NIL) ('T 'T))) + (COND ((SPADCALL |i| (|getShellEntry| $ 28)) NIL) ('T T))) (DEFUN |BOOLEAN;lookup;$Pi;19| (|a| $) (COND (|a| 1) ('T 2))) (DEFUN |BOOLEAN;random;$;20| ($) - (COND ((SPADCALL (|random|) (|getShellEntry| $ 28)) 'NIL) ('T 'T))) + (COND ((SPADCALL (|random|) (|getShellEntry| $ 28)) NIL) ('T T))) (DEFUN |BOOLEAN;convert;$If;21| (|x| $) (COND (|x| '|true|) ('T '|false|))) diff --git a/src/algebra/strap/CHAR.lsp b/src/algebra/strap/CHAR.lsp index 8f93519a..63b98540 100644 --- a/src/algebra/strap/CHAR.lsp +++ b/src/algebra/strap/CHAR.lsp @@ -227,17 +227,23 @@ (|PositiveInteger|) (0 . |One|) (4 . |One|) (|Integer|) (8 . -) |CHAR;char;Nni$;9| |CHAR;index;Pi$;7| |CHAR;ord;$Nni;10| (14 . +) |CHAR;lookup;$Pi;8| - (20 . |random|) |CHAR;random;$;11| |CHAR;space;$;12| - |CHAR;quote;$;13| |CHAR;escape;$;14| (|OutputForm|) - |CHAR;coerce;$Of;15| (|CharacterClass|) (25 . |digit|) - (|Character|) (29 . |member?|) |CHAR;digit?;$B;16| - (35 . |hexDigit|) |CHAR;hexDigit?;$B;17| - (39 . |upperCase|) |CHAR;upperCase?;$B;18| - (43 . |lowerCase|) |CHAR;lowerCase?;$B;19| - (47 . |alphabetic|) |CHAR;alphabetic?;$B;20| - (51 . |alphanumeric|) |CHAR;alphanumeric?;$B;21| - (|String|) (55 . |new|) (61 . |concat|) |CHAR;latex;$S;22| - (67 . |#|) (72 . |one?|) (77 . |minIndex|) (82 . |elt|) + (20 . |random|) |CHAR;random;$;11| + (CONS IDENTITY + (FUNCALL (|dispatchFunction| |CHAR;space;$;12|) $)) + (CONS IDENTITY + (FUNCALL (|dispatchFunction| |CHAR;quote;$;13|) $)) + (CONS IDENTITY + (FUNCALL (|dispatchFunction| |CHAR;escape;$;14|) $)) + (|OutputForm|) |CHAR;coerce;$Of;15| (|CharacterClass|) + (25 . |digit|) (|Character|) (29 . |member?|) + |CHAR;digit?;$B;16| (35 . |hexDigit|) + |CHAR;hexDigit?;$B;17| (39 . |upperCase|) + |CHAR;upperCase?;$B;18| (43 . |lowerCase|) + |CHAR;lowerCase?;$B;19| (47 . |alphabetic|) + |CHAR;alphabetic?;$B;20| (51 . |alphanumeric|) + |CHAR;alphanumeric?;$B;21| (|String|) (55 . |new|) + (61 . |concat|) |CHAR;latex;$S;22| (67 . |#|) + (72 . |one?|) (77 . |minIndex|) (82 . |elt|) |CHAR;char;S$;23| |CHAR;upperCase;2$;24| |CHAR;lowerCase;2$;25| (|SingleInteger|)) '#(~= 88 |upperCase?| 94 |upperCase| 99 |space| 104 |size| diff --git a/src/algebra/strap/CLAGG-.lsp b/src/algebra/strap/CLAGG-.lsp index 6dae1744..15cd3abb 100644 --- a/src/algebra/strap/CLAGG-.lsp +++ b/src/algebra/strap/CLAGG-.lsp @@ -92,7 +92,7 @@ (PROGN (LETT #1# (SPADCALL |x| |f|) |CLAGG-;any?;MAB;3|) (COND - (#3# (LETT #2# (COND (#2# 'T) ('T #1#)) + (#3# (LETT #2# (COND (#2# T) ('T #1#)) |CLAGG-;any?;MAB;3|)) ('T (PROGN @@ -100,7 +100,7 @@ (LETT #3# 'T |CLAGG-;any?;MAB;3|))))) (LETT #0# (CDR #0#) |CLAGG-;any?;MAB;3|) (GO G190) G191 (EXIT NIL)) - (COND (#3# #2#) ('T 'NIL))))))) + (COND (#3# #2#) ('T NIL))))))) (DEFUN |CLAGG-;every?;MAB;4| (|f| |c| $) (PROG (|x| #0=#:G1432 #1=#:G1413 #2=#:G1411 #3=#:G1412) @@ -120,7 +120,7 @@ (PROGN (LETT #1# (SPADCALL |x| |f|) |CLAGG-;every?;MAB;4|) (COND - (#3# (LETT #2# (COND (#2# #1#) ('T 'NIL)) + (#3# (LETT #2# (COND (#2# #1#) ('T NIL)) |CLAGG-;every?;MAB;4|)) ('T (PROGN @@ -128,7 +128,7 @@ (LETT #3# 'T |CLAGG-;every?;MAB;4|))))) (LETT #0# (CDR #0#) |CLAGG-;every?;MAB;4|) (GO G190) G191 (EXIT NIL)) - (COND (#3# #2#) ('T 'T))))))) + (COND (#3# #2#) ('T T))))))) (DEFUN |CLAGG-;find;MAU;5| (|f| |c| $) (SPADCALL |f| (SPADCALL |c| (|getShellEntry| $ 9)) diff --git a/src/algebra/strap/EUCDOM-.lsp b/src/algebra/strap/EUCDOM-.lsp index acd6d919..349e80b8 100644 --- a/src/algebra/strap/EUCDOM-.lsp +++ b/src/algebra/strap/EUCDOM-.lsp @@ -37,8 +37,8 @@ (DEFUN |EUCDOM-;sizeLess?;2SB;1| (|x| |y| $) (COND - ((SPADCALL |y| (|getShellEntry| $ 8)) 'NIL) - ((SPADCALL |x| (|getShellEntry| $ 8)) 'T) + ((SPADCALL |y| (|getShellEntry| $ 8)) NIL) + ((SPADCALL |x| (|getShellEntry| $ 8)) T) ('T (< (SPADCALL |x| (|getShellEntry| $ 12)) (SPADCALL |y| (|getShellEntry| $ 12)))))) diff --git a/src/algebra/strap/FFIELDC-.lsp b/src/algebra/strap/FFIELDC-.lsp index d2fcf373..33406123 100644 --- a/src/algebra/strap/FFIELDC-.lsp +++ b/src/algebra/strap/FFIELDC-.lsp @@ -102,7 +102,7 @@ (|spadConstant| $ 41)) ('T 1)) |FFIELDC-;createPrimitiveElement;S;8|) - (LETT |found| 'NIL |FFIELDC-;createPrimitiveElement;S;8|) + (LETT |found| NIL |FFIELDC-;createPrimitiveElement;S;8|) (SEQ (LETT |i| |start| |FFIELDC-;createPrimitiveElement;S;8|) G190 (COND ((NULL (NOT |found|)) (GO G191))) @@ -128,13 +128,13 @@ (PROG (|explist| |q| |exp| #0=#:G1514 |equalone|) (RETURN (SEQ (COND - ((SPADCALL |a| (|getShellEntry| $ 16)) 'NIL) + ((SPADCALL |a| (|getShellEntry| $ 16)) NIL) ('T (SEQ (LETT |explist| (SPADCALL (|getShellEntry| $ 56)) |FFIELDC-;primitive?;SB;9|) (LETT |q| (- (SPADCALL (|getShellEntry| $ 40)) 1) |FFIELDC-;primitive?;SB;9|) - (LETT |equalone| 'NIL |FFIELDC-;primitive?;SB;9|) + (LETT |equalone| NIL |FFIELDC-;primitive?;SB;9|) (SEQ (LETT |exp| NIL |FFIELDC-;primitive?;SB;9|) (LETT #0# |explist| |FFIELDC-;primitive?;SB;9|) G190 @@ -296,7 +296,7 @@ (LETT |end| (QUOTIENT2 (- |fac| 1) |n|) |FFIELDC-;discreteLog;SNni;11|) - (LETT |found| 'NIL + (LETT |found| NIL |FFIELDC-;discreteLog;SNni;11|) (LETT |disc1| 0 |FFIELDC-;discreteLog;SNni;11|) @@ -321,7 +321,7 @@ (COND ((QEQCAR |rho| 0) (SEQ - (LETT |found| 'T + (LETT |found| T |FFIELDC-;discreteLog;SNni;11|) (EXIT (LETT |disc1| @@ -515,7 +515,7 @@ (|spadConstant| $ 103)) ('T (SEQ (LETT |flist| - (SPADCALL |f| 'T (|getShellEntry| $ 107)) + (SPADCALL |f| T (|getShellEntry| $ 107)) |FFIELDC-;factorSquareFreePolynomial|) (EXIT (SPADCALL (SPADCALL (QCAR |flist|) diff --git a/src/algebra/strap/HOAGG-.lsp b/src/algebra/strap/HOAGG-.lsp index 0b0cd4b0..876ac7a3 100644 --- a/src/algebra/strap/HOAGG-.lsp +++ b/src/algebra/strap/HOAGG-.lsp @@ -62,7 +62,7 @@ (PROGN (LETT #1# (SPADCALL |x| |f|) |HOAGG-;any?;MAB;3|) (COND - (#3# (LETT #2# (COND (#2# 'T) ('T #1#)) + (#3# (LETT #2# (COND (#2# T) ('T #1#)) |HOAGG-;any?;MAB;3|)) ('T (PROGN @@ -70,7 +70,7 @@ (LETT #3# 'T |HOAGG-;any?;MAB;3|))))) (LETT #0# (CDR #0#) |HOAGG-;any?;MAB;3|) (GO G190) G191 (EXIT NIL)) - (COND (#3# #2#) ('T 'NIL))))))) + (COND (#3# #2#) ('T NIL))))))) (DEFUN |HOAGG-;every?;MAB;4| (|f| |c| $) (PROG (|x| #0=#:G1430 #1=#:G1412 #2=#:G1410 #3=#:G1411) @@ -90,7 +90,7 @@ (PROGN (LETT #1# (SPADCALL |x| |f|) |HOAGG-;every?;MAB;4|) (COND - (#3# (LETT #2# (COND (#2# #1#) ('T 'NIL)) + (#3# (LETT #2# (COND (#2# #1#) ('T NIL)) |HOAGG-;every?;MAB;4|)) ('T (PROGN @@ -98,7 +98,7 @@ (LETT #3# 'T |HOAGG-;every?;MAB;4|))))) (LETT #0# (CDR #0#) |HOAGG-;every?;MAB;4|) (GO G190) G191 (EXIT NIL)) - (COND (#3# #2#) ('T 'T))))))) + (COND (#3# #2#) ('T T))))))) (DEFUN |HOAGG-;count;MANni;5| (|f| |c| $) (PROG (|x| #0=#:G1431 #1=#:G1416 #2=#:G1414 #3=#:G1415) @@ -180,7 +180,7 @@ (SPADCALL |a| |b| (|getShellEntry| $ 30)) |HOAGG-;=;2AB;9|) (COND - (#4# (LETT #3# (COND (#3# #2#) ('T 'NIL)) + (#4# (LETT #3# (COND (#3# #2#) ('T NIL)) |HOAGG-;=;2AB;9|)) ('T (PROGN @@ -191,8 +191,8 @@ (LETT #0# (CDR #0#) |HOAGG-;=;2AB;9|)) |HOAGG-;=;2AB;9|) (GO G190) G191 (EXIT NIL)) - (COND (#4# #3#) ('T 'T)))) - ('T 'NIL)))))) + (COND (#4# #3#) ('T T)))) + ('T NIL)))))) (DEFUN |HOAGG-;coerce;AOf;10| (|x| $) (PROG (#0=#:G1434 |a| #1=#:G1435) diff --git a/src/algebra/strap/ILIST.lsp b/src/algebra/strap/ILIST.lsp index bdcde3bb..1d888979 100644 --- a/src/algebra/strap/ILIST.lsp +++ b/src/algebra/strap/ILIST.lsp @@ -261,12 +261,12 @@ (PROG (#0=#:G1470) (RETURN (SEQ (EXIT (COND - ((EQ |x| |y|) 'T) + ((EQ |x| |y|) T) ('T (SEQ (SEQ G190 (COND ((NULL (COND - ((NULL |x|) 'NIL) + ((NULL |x|) NIL) ('T (NOT (NULL |y|))))) (GO G191))) (SEQ (EXIT @@ -274,7 +274,7 @@ ((SPADCALL (QCAR |x|) (QCAR |y|) (|getShellEntry| $ 57)) (PROGN - (LETT #0# 'NIL + (LETT #0# NIL |ILIST;=;2$B;22|) (GO #0#))) ('T @@ -285,9 +285,7 @@ (LETT |y| (QCDR |y|) |ILIST;=;2$B;22|))))))) NIL (GO G190) G191 (EXIT NIL)) - (EXIT (COND - ((NULL |x|) (NULL |y|)) - ('T 'NIL))))))) + (EXIT (COND ((NULL |x|) (NULL |y|)) ('T NIL))))))) #0# (EXIT #0#))))) (DEFUN |ILIST;latex;$S;23| (|x| $) @@ -317,14 +315,14 @@ ((SPADCALL |s| (QCAR |x|) (|getShellEntry| $ 63)) (PROGN - (LETT #0# 'T + (LETT #0# T |ILIST;member?;S$B;24|) (GO #0#))) ('T (LETT |x| (QCDR |x|) |ILIST;member?;S$B;24|))))) NIL (GO G190) G191 (EXIT NIL)) - (EXIT 'NIL))) + (EXIT NIL))) #0# (EXIT #0#))))) (DEFUN |ILIST;concat!;3$;25| (|x| |y| $) @@ -403,7 +401,7 @@ (SEQ G190 (COND ((NULL (COND - ((NULL |p|) 'NIL) + ((NULL |p|) NIL) ('T (NOT (NULL |q|))))) (GO G191))) (COND diff --git a/src/algebra/strap/INS-.lsp b/src/algebra/strap/INS-.lsp index f0301013..17951fda 100644 --- a/src/algebra/strap/INS-.lsp +++ b/src/algebra/strap/INS-.lsp @@ -29,7 +29,7 @@ (DECLAIM (FTYPE (FUNCTION (|%Thing| |%Shell|) |%Boolean|) |INS-;rational?;SB;8|)) -(PUT '|INS-;rational?;SB;8| '|SPADreplace| '(XLAM (|x|) 'T)) +(PUT '|INS-;rational?;SB;8| '|SPADreplace| '(XLAM (|x|) T)) (DECLAIM (FTYPE (FUNCTION (|%Thing| |%Shell|) (|%IntegerSection| 0)) |INS-;euclideanSize;SNni;9|)) @@ -117,7 +117,7 @@ (SPADCALL (SPADCALL (|spadConstant| $ 22) |n| (|getShellEntry| $ 20)) (|getShellEntry| $ 23))) -(DEFUN |INS-;rational?;SB;8| (|x| $) (DECLARE (IGNORE $)) 'T) +(DEFUN |INS-;rational?;SB;8| (|x| $) (DECLARE (IGNORE $)) T) (DEFUN |INS-;euclideanSize;SNni;9| (|x| $) (PROG (#0=#:G1426 #1=#:G1427) diff --git a/src/algebra/strap/INTDOM-.lsp b/src/algebra/strap/INTDOM-.lsp index 9cdf7fb7..42b03119 100644 --- a/src/algebra/strap/INTDOM-.lsp +++ b/src/algebra/strap/INTDOM-.lsp @@ -31,9 +31,7 @@ ('T (SPADCALL (|spadConstant| $ 7) |x| (|getShellEntry| $ 15))))) (DEFUN |INTDOM-;unit?;SB;4| (|x| $) - (COND - ((QEQCAR (SPADCALL |x| (|getShellEntry| $ 17)) 1) 'NIL) - ('T 'T))) + (COND ((QEQCAR (SPADCALL |x| (|getShellEntry| $ 17)) 1) NIL) ('T T))) (DEFUN |INTDOM-;associates?;2SB;5| (|x| |y| $) (SPADCALL (QVELT (SPADCALL |x| (|getShellEntry| $ 10)) 1) @@ -47,8 +45,8 @@ ((OR (SPADCALL |y| (|getShellEntry| $ 13)) (OR (QEQCAR (SPADCALL |x| |y| (|getShellEntry| $ 15)) 1) (QEQCAR (SPADCALL |y| |x| (|getShellEntry| $ 15)) 1))) - 'NIL) - ('T 'T))) + NIL) + ('T T))) (DEFUN |IntegralDomain&| (|#1|) (PROG (|dv$1| |dv$| $ |pv$|) diff --git a/src/algebra/strap/ISTRING.lsp b/src/algebra/strap/ISTRING.lsp index 53fd9c9e..0e14d2ed 100644 --- a/src/algebra/strap/ISTRING.lsp +++ b/src/algebra/strap/ISTRING.lsp @@ -208,7 +208,7 @@ |ISTRING;replace;$Us2$;15|) (|check-subtype| (>= #0# 0) '(|NonNegativeInteger|) #0#)) - (SPADCALL (|getShellEntry| $ 53))) + (|spadConstant| $ 53)) |ISTRING;replace;$Us2$;15|) (SEQ (LETT |i| 0 |ISTRING;replace;$Us2$;15|) (LETT #1# (- |l| 1) |ISTRING;replace;$Us2$;15|) @@ -266,7 +266,7 @@ (EXIT (COND ((< |startpos| 0) (|error| "index out of bounds")) - ((> |np| (- |nw| |startpos|)) 'NIL) + ((> |np| (- |nw| |startpos|)) NIL) ('T (SEQ (SEQ (EXIT @@ -290,7 +290,7 @@ (PROGN (LETT #2# (PROGN - (LETT #1# 'NIL + (LETT #1# NIL |ISTRING;substring?;2$IB;17|) (GO #1#)) |ISTRING;substring?;2$IB;17|) @@ -302,7 +302,7 @@ |ISTRING;substring?;2$IB;17|) (GO G190) G191 (EXIT NIL))) #2# (EXIT #2#)) - (EXIT 'T))))))) + (EXIT T))))))) #1# (EXIT #1#))))) (DEFUN |ISTRING;position;2$2I;18| (|s| |t| |startpos| $) @@ -403,7 +403,7 @@ (LETT |n| (SPADCALL |t| (|getShellEntry| $ 47)) |ISTRING;suffix?;2$B;21|) (EXIT (COND - ((> |m| |n|) 'NIL) + ((> |m| |n|) NIL) ('T (|ISTRING;substring?;2$IB;17| |s| |t| (- (+ (|getShellEntry| $ 6) |n|) |m|) $)))))))) @@ -428,7 +428,7 @@ (SEQ G190 (COND ((NULL (COND - ((> |i| |n|) 'NIL) + ((> |i| |n|) NIL) ('T (>= (LETT |j| (|ISTRING;position;C$2I;19| |c| @@ -490,7 +490,7 @@ (SEQ G190 (COND ((NULL (COND - ((> |i| |n|) 'NIL) + ((> |i| |n|) NIL) ('T (>= (LETT |j| (|ISTRING;position;Cc$2I;20| |cc| @@ -644,7 +644,7 @@ (LETT #0# (CDR #0#) |ISTRING;concat;L$;28|) (GO G190) G191 (EXIT NIL)) (COND (#3# #2#) ('T 0))) - (SPADCALL (|getShellEntry| $ 53))) + (|spadConstant| $ 53)) |ISTRING;concat;L$;28|) (LETT |i| (|getShellEntry| $ 6) |ISTRING;concat;L$;28|) (SEQ (LETT |s| NIL |ISTRING;concat;L$;28|) @@ -770,7 +770,7 @@ $) |target| (|getShellEntry| $ 95))) - (EXIT 'NIL))))) + (EXIT NIL))))) (LETT |i| |p| |ISTRING;match?;2$CB;34|) (LETT |q| @@ -809,7 +809,7 @@ (COND ((EQL |i| (- |m| 1)) (PROGN - (LETT #3# 'NIL + (LETT #3# NIL |ISTRING;match?;2$CB;34|) (GO #3#))) ('T @@ -845,8 +845,8 @@ (|getShellEntry| $ 24)) $) |target| $)) - (EXIT 'NIL))))) - (EXIT 'T))))))) + (EXIT NIL))))) + (EXIT T))))))) #3# (EXIT #3#))))) (DEFUN |IndexedString| (#0=#:G1547) diff --git a/src/algebra/strap/LIST.lsp b/src/algebra/strap/LIST.lsp index 4e255fbb..544d88fe 100644 --- a/src/algebra/strap/LIST.lsp +++ b/src/algebra/strap/LIST.lsp @@ -64,7 +64,7 @@ (SEQ (SPADCALL |dev| (|getShellEntry| $ 16)) (SPADCALL |dev| "list1" "list" (|getShellEntry| $ 18)) (SEQ G190 (COND ((NULL (NOT (NULL |x|))) (GO G191))) - (SEQ (SPADCALL |dev| (|SPADfirst| |x|) 'NIL + (SEQ (SPADCALL |dev| (|SPADfirst| |x|) NIL (|getShellEntry| $ 22)) (EXIT (LETT |x| (CDR |x|) |LIST;writeOMList|))) NIL (GO G190) G191 (EXIT NIL)) @@ -273,7 +273,9 @@ (MAKEPROP '|List| '|infovec| (LIST '#(NIL NIL NIL NIL NIL (|IndexedList| 6 (NRTEVAL 1)) - (|local| |#1|) (|Integer|) (0 . |One|) |LIST;nil;$;1| + (|local| |#1|) (|Integer|) (0 . |One|) + (CONS IDENTITY + (FUNCALL (|dispatchFunction| |LIST;nil;$;1|) $)) (|Boolean|) |LIST;null;$B;2| |LIST;cons;S2$;3| |LIST;append;3$;4| (|Void|) (|OpenMathDevice|) (4 . |OMputApp|) (|String|) (9 . |OMputSymbol|) diff --git a/src/algebra/strap/LNAGG-.lsp b/src/algebra/strap/LNAGG-.lsp index 2d48d5c5..d91e5ede 100644 --- a/src/algebra/strap/LNAGG-.lsp +++ b/src/algebra/strap/LNAGG-.lsp @@ -38,7 +38,7 @@ (COND ((>= |i| (SPADCALL |a| (|getShellEntry| $ 9))) (NOT (> |i| (SPADCALL |a| (|getShellEntry| $ 10))))) - ('T 'NIL))) + ('T NIL))) (DEFUN |LNAGG-;concat;ASA;3| (|a| |x| $) (SPADCALL |a| (SPADCALL 1 |x| (|getShellEntry| $ 22)) diff --git a/src/algebra/strap/LSAGG-.lsp b/src/algebra/strap/LSAGG-.lsp index 91682b5f..c345ca12 100644 --- a/src/algebra/strap/LSAGG-.lsp +++ b/src/algebra/strap/LSAGG-.lsp @@ -113,7 +113,7 @@ (SEQ (SEQ G190 (COND ((NULL (COND - ((SPADCALL |x| (|getShellEntry| $ 16)) 'NIL) + ((SPADCALL |x| (|getShellEntry| $ 16)) NIL) ('T (NOT (SPADCALL (SPADCALL |x| @@ -195,7 +195,7 @@ ((NULL (COND ((SPADCALL |p| (|getShellEntry| $ 16)) - 'NIL) + NIL) ('T (NOT (SPADCALL |q| @@ -288,7 +288,7 @@ (SEQ (SEQ G190 (COND ((NULL (COND - ((SPADCALL |x| (|getShellEntry| $ 16)) 'NIL) + ((SPADCALL |x| (|getShellEntry| $ 16)) NIL) ('T (SPADCALL (SPADCALL |x| (|getShellEntry| $ 18)) @@ -413,7 +413,7 @@ (SEQ (SEQ G190 (COND ((NULL (COND - ((SPADCALL |x| (|getShellEntry| $ 16)) 'NIL) + ((SPADCALL |x| (|getShellEntry| $ 16)) NIL) ('T (NOT (SPADCALL (SPADCALL |x| (|getShellEntry| $ 18)) @@ -435,7 +435,7 @@ G190 (COND ((NULL (COND - ((SPADCALL |x| (|getShellEntry| $ 16)) 'NIL) + ((SPADCALL |x| (|getShellEntry| $ 16)) NIL) ('T (NOT (SPADCALL (SPADCALL |x| @@ -490,7 +490,7 @@ (PROG (#0=#:G1517 |p|) (RETURN (SEQ (EXIT (COND - ((SPADCALL |l| (|getShellEntry| $ 16)) 'T) + ((SPADCALL |l| (|getShellEntry| $ 16)) T) ('T (SEQ (LETT |p| (SPADCALL |l| (|getShellEntry| $ 17)) @@ -511,7 +511,7 @@ (|getShellEntry| $ 18)) |f|)) (PROGN - (LETT #0# 'NIL + (LETT #0# NIL |LSAGG-;sorted?;MAB;15|) (GO #0#))) ('T @@ -522,7 +522,7 @@ (|getShellEntry| $ 17)) |LSAGG-;sorted?;MAB;15|))))) NIL (GO G190) G191 (EXIT NIL)) - (EXIT 'T))))) + (EXIT T))))) #0# (EXIT #0#))))) (DEFUN |LSAGG-;reduce;MA2S;16| (|f| |x| |i| $) @@ -551,7 +551,7 @@ (SEQ G190 (COND ((NULL (COND - ((SPADCALL |x| (|getShellEntry| $ 16)) 'NIL) + ((SPADCALL |x| (|getShellEntry| $ 16)) NIL) ('T (SPADCALL |r| |a| (|getShellEntry| $ 63))))) (GO G191))) @@ -589,7 +589,7 @@ (SEQ G190 (COND ((NULL (COND - ((SPADCALL |x| (|getShellEntry| $ 16)) 'NIL) + ((SPADCALL |x| (|getShellEntry| $ 16)) NIL) ('T (NOT (SPADCALL |y| (|getShellEntry| $ 16)))))) (GO G191))) @@ -688,7 +688,7 @@ ((NULL (COND ((SPADCALL |z| (|getShellEntry| $ 16)) - 'NIL) + NIL) ('T (NOT (SPADCALL |x| @@ -733,7 +733,7 @@ ((NULL (COND ((SPADCALL |x| (|getShellEntry| $ 16)) - 'NIL) + NIL) ('T (SPADCALL |w| (SPADCALL |x| @@ -794,7 +794,7 @@ ((NULL (COND ((SPADCALL |x| (|getShellEntry| $ 16)) - 'NIL) + NIL) ('T (NOT (SPADCALL |y| @@ -833,7 +833,7 @@ ((SPADCALL |x| (|getShellEntry| $ 16)) (NOT (SPADCALL |y| (|getShellEntry| $ 16)))) - ('T 'NIL))))) + ('T NIL))))) #0# (EXIT #0#))))) (DEFUN |ListAggregate&| (|#1| |#2|) diff --git a/src/algebra/strap/OUTFORM.lsp b/src/algebra/strap/OUTFORM.lsp index 46aa1832..99e80e06 100644 --- a/src/algebra/strap/OUTFORM.lsp +++ b/src/algebra/strap/OUTFORM.lsp @@ -560,10 +560,9 @@ (FORMAT NIL (|getShellEntry| $ 6) |f|)) (DEFUN |OUTFORM;outputForm;S$;15| (|s| $) - (SPADCALL (SPADCALL (|getShellEntry| $ 27)) - (SPADCALL |s| (SPADCALL (|getShellEntry| $ 27)) - (|getShellEntry| $ 28)) - (|getShellEntry| $ 29))) + (SPADCALL (|spadConstant| $ 27) + (SPADCALL |s| (|spadConstant| $ 27) (|getShellEntry| $ 28)) + (|getShellEntry| $ 29))) (DEFUN |OUTFORM;width;$I;16| (|a| $) (DECLARE (IGNORE $)) @@ -850,10 +849,10 @@ ((STRINGP |a|) (INTERN |a|)) ('T (PROGN - (LETT #0# 'NIL |OUTFORM;infix?;$B;74|) + (LETT #0# NIL |OUTFORM;infix?;$B;74|) (GO #0#)))) |OUTFORM;infix?;$B;74|) - (EXIT (COND ((GET |e| 'INFIXOP) 'T) ('T 'NIL))))) + (EXIT (COND ((GET |e| 'INFIXOP) T) ('T NIL))))) #0# (EXIT #0#))))) (DEFUN |OUTFORM;elt;$L$;75| (|a| |l| $) diff --git a/src/algebra/strap/SYMBOL.lsp b/src/algebra/strap/SYMBOL.lsp index 1142c59e..3a333e20 100644 --- a/src/algebra/strap/SYMBOL.lsp +++ b/src/algebra/strap/SYMBOL.lsp @@ -220,7 +220,7 @@ ((NULL (COND ((>= (LENGTH |ns|) 2) (ZEROP (|SPADfirst| |ns|))) - ('T 'NIL))) + ('T NIL))) (GO G191))) (SEQ (EXIT (LETT |ns| (CDR |ns|) |SYMBOL;syprefix|))) NIL (GO G190) G191 (EXIT NIL)) diff --git a/src/algebra/strap/URAGG-.lsp b/src/algebra/strap/URAGG-.lsp index 8cb8d4dc..9528b39e 100644 --- a/src/algebra/strap/URAGG-.lsp +++ b/src/algebra/strap/URAGG-.lsp @@ -129,7 +129,7 @@ (DEFUN |URAGG-;cyclic?;AB;6| (|x| $) (COND - ((SPADCALL |x| (|getShellEntry| $ 20)) 'NIL) + ((SPADCALL |x| (|getShellEntry| $ 20)) NIL) ('T (NOT (SPADCALL (|URAGG-;findCycle| |x| $) (|getShellEntry| $ 20)))))) @@ -179,7 +179,7 @@ ((NULL (COND ((> |i| 0) (NOT (SPADCALL |l| (|getShellEntry| $ 20)))) - ('T 'NIL))) + ('T NIL))) (GO G191))) (SEQ (LETT |l| (SPADCALL |l| (|getShellEntry| $ 14)) |URAGG-;less?;ANniB;12|) @@ -196,7 +196,7 @@ ((NULL (COND ((> |i| 0) (NOT (SPADCALL |l| (|getShellEntry| $ 20)))) - ('T 'NIL))) + ('T NIL))) (GO G191))) (SEQ (LETT |l| (SPADCALL |l| (|getShellEntry| $ 14)) |URAGG-;more?;ANniB;13|) @@ -205,7 +205,7 @@ (EXIT (COND ((ZEROP |i|) (NOT (SPADCALL |l| (|getShellEntry| $ 20)))) - ('T 'NIL))))))) + ('T NIL))))))) (DEFUN |URAGG-;size?;ANniB;14| (|l| |n| $) (PROG (|i|) @@ -214,7 +214,7 @@ (SEQ G190 (COND ((NULL (COND - ((SPADCALL |l| (|getShellEntry| $ 20)) 'NIL) + ((SPADCALL |l| (|getShellEntry| $ 20)) NIL) ('T (> |i| 0)))) (GO G191))) (SEQ (LETT |l| (SPADCALL |l| (|getShellEntry| $ 14)) @@ -223,7 +223,7 @@ NIL (GO G190) G191 (EXIT NIL)) (EXIT (COND ((SPADCALL |l| (|getShellEntry| $ 20)) (ZEROP |i|)) - ('T 'NIL))))))) + ('T NIL))))))) (DEFUN |URAGG-;#;ANni;15| (|x| $) (PROG (|k|) @@ -455,14 +455,14 @@ (PROG (|k| #0=#:G1509) (RETURN (SEQ (EXIT (COND - ((SPADCALL |x| |y| (|getShellEntry| $ 53)) 'T) + ((SPADCALL |x| |y| (|getShellEntry| $ 53)) T) ('T (SEQ (SEQ (LETT |k| 0 |URAGG-;=;2AB;23|) G190 (COND ((NULL (COND ((SPADCALL |x| (|getShellEntry| $ 20)) - 'NIL) + NIL) ('T (NOT (SPADCALL |y| @@ -483,7 +483,7 @@ (|getShellEntry| $ 8)) (|getShellEntry| $ 66)) (PROGN - (LETT #0# 'NIL + (LETT #0# NIL |URAGG-;=;2AB;23|) (GO #0#))) ('T @@ -502,7 +502,7 @@ (EXIT (COND ((SPADCALL |x| (|getShellEntry| $ 20)) (SPADCALL |y| (|getShellEntry| $ 20))) - ('T 'NIL))))))) + ('T NIL))))))) #0# (EXIT #0#))))) (DEFUN |URAGG-;node?;2AB;24| (|u| |v| $) @@ -518,7 +518,7 @@ ((SPADCALL |u| |v| (|getShellEntry| $ 68)) (PROGN - (LETT #0# 'T + (LETT #0# T |URAGG-;node?;2AB;24|) (GO #0#))) ('T diff --git a/src/algebra/string.spad.pamphlet b/src/algebra/string.spad.pamphlet index 058da44a..f176ed9d 100644 --- a/src/algebra/string.spad.pamphlet +++ b/src/algebra/string.spad.pamphlet @@ -34,12 +34,12 @@ Character: OrderedFinite() with ++ code i. It is always true that \spad{ord char i = i}. char: String -> % ++ char(s) provides a character from a string s of length one. - space: () -> % - ++ space() provides the blank character. - quote: () -> % - ++ quote() provides the string quote character, \spad{"}. - escape: () -> % - ++ escape() provides the escape character, \spad{_}, which + space: % + ++ \spad{space} provides the blank character. + quote: % + ++ \spad{quote} provides the string quote character, \spad{"}. + escape: % + ++ \spad{escape} provides the escape character, \spad{_}, which ++ is used to allow quotes and other characters {\em within} ++ strings. upperCase: % -> % diff --git a/src/algebra/twofact.spad.pamphlet b/src/algebra/twofact.spad.pamphlet index 68f48bf9..bf9b9368 100644 --- a/src/algebra/twofact.spad.pamphlet +++ b/src/algebra/twofact.spad.pamphlet @@ -196,7 +196,7 @@ TwoFactorize(F) : C == T -- the polynomial is inseparable w.r.t. its main variable map(differentiate,fac) = 0 => p:=characteristic$F - PthRootPow:=(size$F exquo p)::NonNegativeInteger + PthRootPow:=(size()$F exquo p)::NonNegativeInteger m1:=divideExponents(map(pthRoot(#1,p,PthRootPow),fac),p) m1 case "failed" => error "consistency error in TwoFactor" res:=generalTwoFactor m1 diff --git a/src/algebra/vector.spad.pamphlet b/src/algebra/vector.spad.pamphlet index 70d7193d..370314f1 100644 --- a/src/algebra/vector.spad.pamphlet +++ b/src/algebra/vector.spad.pamphlet @@ -294,7 +294,7 @@ DirectProductCategory(dim:NonNegativeInteger, R:Type): Category == column(rh, minColIndex rh) [reducedSystem(m)@Matrix(R), vh] - if R has Finite then size == size$R ** dim + if R has Finite then size == size()$R ** dim if R has Field then x / b == x * inv b diff --git a/src/interp/compiler.boot b/src/interp/compiler.boot index 344463ad..0689649a 100644 --- a/src/interp/compiler.boot +++ b/src/interp/compiler.boot @@ -1164,9 +1164,9 @@ compElt(form,m,E) == [anOp,aDomain,mmList]) mmList.(0) [sig,[pred,val]]:= modemap - #sig~=2 and ^val is ["elt",:.] => nil --what does the second clause do ???? + #sig ~= 2 and val isnt ["CONST",:.] => nil val := genDeltaEntry [opOf anOp,:modemap] - convert([["call",val],first rest sig,E], m) --implies fn calls used to access constants + convert([["call",val],first rest sig,E], m) compForm(form,m,E) --% HAS diff --git a/src/interp/i-map.boot b/src/interp/i-map.boot index 74829990..1fdc5b8f 100644 --- a/src/interp/i-map.boot +++ b/src/interp/i-map.boot @@ -162,6 +162,7 @@ addDefMap(['DEF,lhs,mapsig,.,rhs],pred) == addMap(lhs,rhs,pred) == [op,:argl] := lhs $sl: local:= nil + predList := nil formalArgList:= [mkFormalArg(makeArgumentIntoNumber x,s) for x in argl for s in $FormalMapVariableList] argList:= @@ -173,7 +174,7 @@ addMap(lhs,rhs,pred) == argPredList:= NREVERSE predList finalPred := -- handle g(a,T)==a+T confusion between pred=T and T variable - MKPF((pred and (pred = 'T) => [:argPredList,SUBLISNQ($sl,pred)]; argPredList),"and") + MKPF((pred and (pred ~= 'T) => [:argPredList,SUBLISNQ($sl,pred)]; argPredList),"and") body:= SUBLISNQ($sl,rhs) oldMap := (obj := get(op,'value,$InteractiveFrame)) => objVal obj diff --git a/src/interp/nruncomp.boot b/src/interp/nruncomp.boot index c0a3398c..751bf073 100644 --- a/src/interp/nruncomp.boot +++ b/src/interp/nruncomp.boot @@ -180,7 +180,7 @@ optDeltaEntry(op,sig,dc,eltOrConst) == MKQ x fn := compiledLookup(op,nsig,dcval) if null fn then return nil - eltOrConst="CONST" => ['XLAM,'ignore,MKQ SPADCALL fn] + eltOrConst="CONST" => ['XLAM,'ignore, SPADCALL fn] GETL(compileTimeBindingOf first fn,'SPADreplace) genDeltaEntry opMmPair == diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index 32e96ba4..70be53ab 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,5 +1,5 @@ -(2285080 . 3454219022) +(2264361 . 3459379709) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL @@ -33,39 +33,39 @@ NIL NIL NIL (-26 S) -((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) +((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) NIL NIL (-27) -((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) +((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) ((-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) NIL (-28 S R) -((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) +((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) NIL NIL (-29 R) -((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) +((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) ((-4411 . T) (-4409 . T) (-4408 . T) ((-4416 "*") . T) (-4407 . T) (-4412 . T) (-4406 . T)) NIL (-30) -((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,{}x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,{}x,{}y,{}a..b,{}c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b,{} c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,{}x,{}y,{}xMin..xMax,{}yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted."))) +((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,x,y,a..b,c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b, c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,x,y,xMin..xMax,yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted."))) NIL NIL (-31) ((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression."))) NIL NIL -(-32 R -2371) -((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p,{} n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p,{} x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}."))) +(-32 R -2352) +((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p, n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p, x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}."))) NIL ((|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566))))) (-33 S) -((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects."))) +((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL ((|HasAttribute| |#1| (QUOTE -4414))) (-34) -((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects."))) +((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL NIL (-35) @@ -73,7 +73,7 @@ NIL NIL NIL (-36 |Key| |Entry|) -((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,{}u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}."))) +((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}."))) ((-4414 . T) (-4415 . T)) NIL (-37 S R) @@ -85,43 +85,43 @@ NIL ((-4408 . T) (-4409 . T) (-4411 . T)) NIL (-39 UP) -((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{} [a1,{}...,{}an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an."))) +((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an."))) NIL NIL -(-40 -2371 UP UPUP -3930) +(-40 -2352 UP UPUP -3206) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) ((-4407 |has| (-409 |#2|) (-365)) (-4412 |has| (-409 |#2|) (-365)) (-4406 |has| (-409 |#2|) (-365)) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) -((|HasCategory| (-409 |#2|) (QUOTE (-145))) (|HasCategory| (-409 |#2|) (QUOTE (-147))) (|HasCategory| (-409 |#2|) (QUOTE (-351))) (-2809 (|HasCategory| (-409 |#2|) (QUOTE (-365))) (|HasCategory| (-409 |#2|) (QUOTE (-351)))) (|HasCategory| (-409 |#2|) (QUOTE (-365))) (|HasCategory| (-409 |#2|) (QUOTE (-370))) (-2809 (-12 (|HasCategory| (-409 |#2|) (QUOTE (-233))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (|HasCategory| (-409 |#2|) (QUOTE (-351)))) (-2809 (-12 (|HasCategory| (-409 |#2|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (-12 (|HasCategory| (-409 |#2|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-409 |#2|) (QUOTE (-351))))) (|HasCategory| (-409 |#2|) (LIST (QUOTE -639) (QUOTE (-566)))) (-2809 (|HasCategory| (-409 |#2|) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (|HasCategory| (-409 |#2|) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-409 |#2|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-12 (|HasCategory| (-409 |#2|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (-12 (|HasCategory| (-409 |#2|) (QUOTE (-233))) (|HasCategory| (-409 |#2|) (QUOTE (-365))))) -(-41 R -2371) -((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,{}f,{}n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f,{} a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented"))) +((|HasCategory| (-409 |#2|) (QUOTE (-145))) (|HasCategory| (-409 |#2|) (QUOTE (-147))) (|HasCategory| (-409 |#2|) (QUOTE (-351))) (-2768 (|HasCategory| (-409 |#2|) (QUOTE (-365))) (|HasCategory| (-409 |#2|) (QUOTE (-351)))) (|HasCategory| (-409 |#2|) (QUOTE (-365))) (|HasCategory| (-409 |#2|) (QUOTE (-370))) (-2768 (-12 (|HasCategory| (-409 |#2|) (QUOTE (-233))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (|HasCategory| (-409 |#2|) (QUOTE (-351)))) (-2768 (-12 (|HasCategory| (-409 |#2|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (-12 (|HasCategory| (-409 |#2|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-409 |#2|) (QUOTE (-351))))) (|HasCategory| (-409 |#2|) (LIST (QUOTE -639) (QUOTE (-566)))) (-2768 (|HasCategory| (-409 |#2|) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (|HasCategory| (-409 |#2|) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-409 |#2|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-12 (|HasCategory| (-409 |#2|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (-12 (|HasCategory| (-409 |#2|) (QUOTE (-233))) (|HasCategory| (-409 |#2|) (QUOTE (-365))))) +(-41 R -2352) +((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,f,n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f, a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented"))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -432) (|devaluate| |#1|))))) (-42 OV E P) -((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}."))) +((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}."))) NIL NIL (-43 R A) -((|constructor| (NIL "AlgebraPackage assembles a variety of useful functions for general algebras.")) (|basis| (((|Vector| |#2|) (|Vector| |#2|)) "\\spad{basis(va)} selects a basis from the elements of \\spad{va}.")) (|radicalOfLeftTraceForm| (((|List| |#2|)) "\\spad{radicalOfLeftTraceForm()} returns basis for null space of \\spad{leftTraceMatrix()},{} if the algebra is associative,{} alternative or a Jordan algebra,{} then this space equals the radical (maximal nil ideal) of the algebra.")) (|basisOfCentroid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfCentroid()} returns a basis of the centroid,{} \\spadignore{i.e.} the endomorphism ring of \\spad{A} considered as \\spad{(A,{}A)}-bimodule.")) (|basisOfRightNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfRightNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as left module. Note: right nucloid coincides with right nucleus if \\spad{A} has a unit.")) (|basisOfLeftNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfLeftNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as right module. Note: left nucloid coincides with left nucleus if \\spad{A} has a unit.")) (|basisOfCenter| (((|List| |#2|)) "\\spad{basisOfCenter()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{commutator(x,{}a) = 0} and \\spad{associator(x,{}a,{}b) = associator(a,{}x,{}b) = associator(a,{}b,{}x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfNucleus| (((|List| |#2|)) "\\spad{basisOfNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{associator(x,{}a,{}b) = associator(a,{}x,{}b) = associator(a,{}b,{}x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfMiddleNucleus| (((|List| |#2|)) "\\spad{basisOfMiddleNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,{}x,{}b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightNucleus| (((|List| |#2|)) "\\spad{basisOfRightNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,{}b,{}x)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfLeftNucleus| (((|List| |#2|)) "\\spad{basisOfLeftNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(x,{}a,{}b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfRightAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = a*x}.")) (|basisOfLeftAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfLeftAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = x*a}.")) (|basisOfCommutingElements| (((|List| |#2|)) "\\spad{basisOfCommutingElements()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = commutator(x,{}a)} for all \\spad{a} in \\spad{A}.")) (|biRank| (((|NonNegativeInteger|) |#2|) "\\spad{biRank(x)} determines the number of linearly independent elements in \\spad{x},{} \\spad{x*bi},{} \\spad{bi*x},{} \\spad{bi*x*bj},{} \\spad{i,{}j=1,{}...,{}n},{} where \\spad{b=[b1,{}...,{}bn]} is a basis. Note: if \\spad{A} has a unit,{} then \\spadfunFrom{doubleRank}{AlgebraPackage},{} \\spadfunFrom{weakBiRank}{AlgebraPackage} and \\spadfunFrom{biRank}{AlgebraPackage} coincide.")) (|weakBiRank| (((|NonNegativeInteger|) |#2|) "\\spad{weakBiRank(x)} determines the number of linearly independent elements in the \\spad{bi*x*bj},{} \\spad{i,{}j=1,{}...,{}n},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|doubleRank| (((|NonNegativeInteger|) |#2|) "\\spad{doubleRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|rightRank| (((|NonNegativeInteger|) |#2|) "\\spad{rightRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{bn*x},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|leftRank| (((|NonNegativeInteger|) |#2|) "\\spad{leftRank(x)} determines the number of linearly independent elements in \\spad{x*b1},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,{}...,{}bn]} is a basis."))) +((|constructor| (NIL "AlgebraPackage assembles a variety of useful functions for general algebras.")) (|basis| (((|Vector| |#2|) (|Vector| |#2|)) "\\spad{basis(va)} selects a basis from the elements of \\spad{va}.")) (|radicalOfLeftTraceForm| (((|List| |#2|)) "\\spad{radicalOfLeftTraceForm()} returns basis for null space of \\spad{leftTraceMatrix()},{} if the algebra is associative,{} alternative or a Jordan algebra,{} then this space equals the radical (maximal nil ideal) of the algebra.")) (|basisOfCentroid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfCentroid()} returns a basis of the centroid,{} \\spadignore{i.e.} the endomorphism ring of \\spad{A} considered as \\spad{(A,A)}-bimodule.")) (|basisOfRightNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfRightNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as left module. Note: right nucloid coincides with right nucleus if \\spad{A} has a unit.")) (|basisOfLeftNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfLeftNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as right module. Note: left nucloid coincides with left nucleus if \\spad{A} has a unit.")) (|basisOfCenter| (((|List| |#2|)) "\\spad{basisOfCenter()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{commutator(x,a) = 0} and \\spad{associator(x,a,b) = associator(a,x,b) = associator(a,b,x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfNucleus| (((|List| |#2|)) "\\spad{basisOfNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{associator(x,a,b) = associator(a,x,b) = associator(a,b,x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfMiddleNucleus| (((|List| |#2|)) "\\spad{basisOfMiddleNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,x,b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightNucleus| (((|List| |#2|)) "\\spad{basisOfRightNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,b,x)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfLeftNucleus| (((|List| |#2|)) "\\spad{basisOfLeftNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(x,a,b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfRightAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = a*x}.")) (|basisOfLeftAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfLeftAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = x*a}.")) (|basisOfCommutingElements| (((|List| |#2|)) "\\spad{basisOfCommutingElements()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = commutator(x,a)} for all \\spad{a} in \\spad{A}.")) (|biRank| (((|NonNegativeInteger|) |#2|) "\\spad{biRank(x)} determines the number of linearly independent elements in \\spad{x},{} \\spad{x*bi},{} \\spad{bi*x},{} \\spad{bi*x*bj},{} \\spad{i,j=1,...,n},{} where \\spad{b=[b1,...,bn]} is a basis. Note: if \\spad{A} has a unit,{} then \\spadfunFrom{doubleRank}{AlgebraPackage},{} \\spadfunFrom{weakBiRank}{AlgebraPackage} and \\spadfunFrom{biRank}{AlgebraPackage} coincide.")) (|weakBiRank| (((|NonNegativeInteger|) |#2|) "\\spad{weakBiRank(x)} determines the number of linearly independent elements in the \\spad{bi*x*bj},{} \\spad{i,j=1,...,n},{} where \\spad{b=[b1,...,bn]} is a basis.")) (|doubleRank| (((|NonNegativeInteger|) |#2|) "\\spad{doubleRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,...,bn]} is a basis.")) (|rightRank| (((|NonNegativeInteger|) |#2|) "\\spad{rightRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{bn*x},{} where \\spad{b=[b1,...,bn]} is a basis.")) (|leftRank| (((|NonNegativeInteger|) |#2|) "\\spad{leftRank(x)} determines the number of linearly independent elements in \\spad{x*b1},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,...,bn]} is a basis."))) NIL ((|HasCategory| |#1| (QUOTE (-308)))) (-44 R |n| |ls| |gamma|) -((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,{}..,{}an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{ai} * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra."))) +((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,..,an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{ai * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra."))) ((-4411 |has| |#1| (-558)) (-4409 . T) (-4408 . T)) ((|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-45 |Key| |Entry|) ((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) ((-4414 . T) (-4415 . T)) -((-2809 (-12 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-850))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2004) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3867) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2004) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3867) (|devaluate| |#2|))))))) (-2809 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-850))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-2809 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-850))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))) (-2809 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (-2809 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2004) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3867) (|devaluate| |#2|))))))) +((-2768 (-12 (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (QUOTE (-850))) (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2674) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2636) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2674) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2636) (|devaluate| |#2|))))))) (-2768 (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (QUOTE (-850))) (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-2768 (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (QUOTE (-850))) (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (QUOTE (-1099))) (-2768 (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (-2768 (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2674) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2636) (|devaluate| |#2|))))))) (-46 S R E) -((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) +((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL ((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365)))) (-47 R E) -((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) +((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) (((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4408 . T) (-4409 . T) (-4411 . T)) NIL (-48) -((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) +((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) ((-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) ((|HasCategory| $ (QUOTE (-1049))) (|HasCategory| $ (LIST (QUOTE -1038) (QUOTE (-566))))) (-49) @@ -129,7 +129,7 @@ NIL NIL NIL (-50 R |lVar|) -((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,{}...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,{}u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}."))) +((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}."))) ((-4411 . T)) NIL (-51 S) @@ -137,15 +137,15 @@ NIL NIL NIL (-52) -((|constructor| (NIL "\\spadtype{Any} implements a type that packages up objects and their types in objects of \\spadtype{Any}. Roughly speaking that means that if \\spad{s : S} then when converted to \\spadtype{Any},{} the new object will include both the original object and its type. This is a way of converting arbitrary objects into a single type without losing any of the original information. Any object can be converted to one of \\spadtype{Any}. The original object can be recovered by `is-case' pattern matching as exemplified here and AnyFunctions1.")) (|obj| (((|None|) $) "\\spad{obj(a)} essentially returns the original object that was converted to \\spadtype{Any} except that the type is forced to be \\spadtype{None}.")) (|dom| (((|SExpression|) $) "\\spad{dom(a)} returns a \\spadgloss{LISP} form of the type of the original object that was converted to \\spadtype{Any}.")) (|any| (($ (|SExpression|) (|None|)) "\\spad{any(type,{}object)} is a technical function for creating an \\spad{object} of \\spadtype{Any}. Arugment \\spad{type} is a \\spadgloss{LISP} form for the \\spad{type} of \\spad{object}."))) +((|constructor| (NIL "\\spadtype{Any} implements a type that packages up objects and their types in objects of \\spadtype{Any}. Roughly speaking that means that if \\spad{s : S} then when converted to \\spadtype{Any},{} the new object will include both the original object and its type. This is a way of converting arbitrary objects into a single type without losing any of the original information. Any object can be converted to one of \\spadtype{Any}. The original object can be recovered by `is-case' pattern matching as exemplified here and AnyFunctions1.")) (|obj| (((|None|) $) "\\spad{obj(a)} essentially returns the original object that was converted to \\spadtype{Any} except that the type is forced to be \\spadtype{None}.")) (|dom| (((|SExpression|) $) "\\spad{dom(a)} returns a \\spadgloss{LISP} form of the type of the original object that was converted to \\spadtype{Any}.")) (|any| (($ (|SExpression|) (|None|)) "\\spad{any(type,object)} is a technical function for creating an \\spad{object} of \\spadtype{Any}. Arugment \\spad{type} is a \\spadgloss{LISP} form for the \\spad{type} of \\spad{object}."))) NIL NIL (-53 R M P) -((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p,{} f,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}."))) +((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p, f, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}."))) NIL NIL -(-54 |Base| R -2371) -((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,{}ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,{}...,{}rn],{} expr,{} n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,{}...,{}rn],{} expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression."))) +(-54 |Base| R -2352) +((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,...,rn], expr, n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,...,rn], expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression."))) NIL NIL (-55) @@ -153,78 +153,78 @@ NIL NIL NIL (-56 S R |Row| |Col|) -((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,{}a)} assign \\spad{a(i,{}j)} to \\spad{f(a(i,{}j))} for all \\spad{i,{} j}")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $ |#2|) "\\spad{map(f,{}a,{}b,{}r)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} when both \\spad{a(i,{}j)} and \\spad{b(i,{}j)} exist; else \\spad{c(i,{}j) = f(r,{} b(i,{}j))} when \\spad{a(i,{}j)} does not exist; else \\spad{c(i,{}j) = f(a(i,{}j),{}r)} when \\spad{b(i,{}j)} does not exist; otherwise \\spad{c(i,{}j) = f(r,{}r)}.") (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i,{} j}") (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = f(a(i,{}j))} for all \\spad{i,{} j}")) (|setColumn!| (($ $ (|Integer|) |#4|) "\\spad{setColumn!(m,{}j,{}v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#3|) "\\spad{setRow!(m,{}i,{}v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#2| $ (|Integer|) (|Integer|) |#2|) "\\spad{qsetelt!(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#2| $ (|Integer|) (|Integer|) |#2|) "\\spad{setelt(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#2|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#4| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#3| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#2| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#2| $ (|Integer|) (|Integer|) |#2|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#2| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#2|) "\\spad{fill!(m,{}r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#2|) "\\spad{new(m,{}n,{}r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays"))) +((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,a)} assign \\spad{a(i,j)} to \\spad{f(a(i,j))} for all \\spad{i, j}")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $ |#2|) "\\spad{map(f,a,b,r)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} when both \\spad{a(i,j)} and \\spad{b(i,j)} exist; else \\spad{c(i,j) = f(r, b(i,j))} when \\spad{a(i,j)} does not exist; else \\spad{c(i,j) = f(a(i,j),r)} when \\spad{b(i,j)} does not exist; otherwise \\spad{c(i,j) = f(r,r)}.") (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i, j}") (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = f(a(i,j))} for all \\spad{i, j}")) (|setColumn!| (($ $ (|Integer|) |#4|) "\\spad{setColumn!(m,j,v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#3|) "\\spad{setRow!(m,i,v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#2| $ (|Integer|) (|Integer|) |#2|) "\\spad{qsetelt!(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#2| $ (|Integer|) (|Integer|) |#2|) "\\spad{setelt(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#2|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#4| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#3| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#2| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#2| $ (|Integer|) (|Integer|) |#2|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#2| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#2|) "\\spad{fill!(m,r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#2|) "\\spad{new(m,n,r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays"))) NIL NIL (-57 R |Row| |Col|) -((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}a)} assign \\spad{a(i,{}j)} to \\spad{f(a(i,{}j))} for all \\spad{i,{} j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,{}a,{}b,{}r)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} when both \\spad{a(i,{}j)} and \\spad{b(i,{}j)} exist; else \\spad{c(i,{}j) = f(r,{} b(i,{}j))} when \\spad{a(i,{}j)} does not exist; else \\spad{c(i,{}j) = f(a(i,{}j),{}r)} when \\spad{b(i,{}j)} does not exist; otherwise \\spad{c(i,{}j) = f(r,{}r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i,{} j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = f(a(i,{}j))} for all \\spad{i,{} j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,{}j,{}v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,{}i,{}v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,{}r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,{}n,{}r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays"))) +((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,a)} assign \\spad{a(i,j)} to \\spad{f(a(i,j))} for all \\spad{i, j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,a,b,r)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} when both \\spad{a(i,j)} and \\spad{b(i,j)} exist; else \\spad{c(i,j) = f(r, b(i,j))} when \\spad{a(i,j)} does not exist; else \\spad{c(i,j) = f(a(i,j),r)} when \\spad{b(i,j)} does not exist; otherwise \\spad{c(i,j) = f(r,r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i, j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = f(a(i,j))} for all \\spad{i, j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,j,v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,i,v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,n,r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays"))) ((-4414 . T) (-4415 . T)) NIL (-58 A B) -((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}."))) +((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) NIL NIL (-59 S) -((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) +((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) ((-4415 . T) (-4414 . T)) -((-2809 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2809 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) +((-2768 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2768 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2768 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-60 R) ((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}."))) ((-4414 . T) (-4415 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) -(-61 -2640) +((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2768 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) +(-61 -1368) ((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-62 -2640) +(-62 -1368) ((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}."))) NIL NIL -(-63 -2640) +(-63 -1368) ((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-64 -2640) +(-64 -1368) ((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-65 -2640) +(-65 -1368) ((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}"))) NIL NIL -(-66 -2640) +(-66 -1368) ((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-67 -2640) +(-67 -1368) ((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-68 -2640) +(-68 -1368) ((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-69 -2640) +(-69 -1368) ((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}."))) NIL NIL -(-70 -2640) +(-70 -1368) ((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}"))) NIL NIL -(-71 -2640) +(-71 -1368) ((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-72 -2640) +(-72 -1368) ((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}."))) NIL NIL -(-73 -2640) +(-73 -1368) ((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}"))) NIL NIL -(-74 -2640) +(-74 -1368) ((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL @@ -236,66 +236,66 @@ NIL ((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-77 -2640) +(-77 -1368) ((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-78 -2640) +(-78 -1368) ((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-79 -2640) +(-79 -1368) ((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-80 -2640) +(-80 -1368) ((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-81 -2640) +(-81 -1368) ((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}"))) NIL NIL -(-82 -2640) +(-82 -1368) ((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-83 -2640) +(-83 -1368) ((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-84 -2640) +(-84 -1368) ((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-85 -2640) +(-85 -1368) ((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-86 -2640) +(-86 -1368) ((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-87 -2640) +(-87 -1368) ((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-88 -2640) +(-88 -1368) ((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}"))) NIL NIL -(-89 -2640) +(-89 -1368) ((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL (-90 R L) -((|constructor| (NIL "\\spadtype{AssociatedEquations} provides functions to compute the associated equations needed for factoring operators")) (|associatedEquations| (((|Record| (|:| |minor| (|List| (|PositiveInteger|))) (|:| |eq| |#2|) (|:| |minors| (|List| (|List| (|PositiveInteger|)))) (|:| |ops| (|List| |#2|))) |#2| (|PositiveInteger|)) "\\spad{associatedEquations(op,{} m)} returns \\spad{[w,{} eq,{} lw,{} lop]} such that \\spad{eq(w) = 0} where \\spad{w} is the given minor,{} and \\spad{lw_i = lop_i(w)} for all the other minors.")) (|uncouplingMatrices| (((|Vector| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{uncouplingMatrices(M)} returns \\spad{[A_1,{}...,{}A_n]} such that if \\spad{y = [y_1,{}...,{}y_n]} is a solution of \\spad{y' = M y},{} then \\spad{[\\$y_j',{}y_j'',{}...,{}y_j^{(n)}\\$] = \\$A_j y\\$} for all \\spad{j}\\spad{'s}.")) (|associatedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| (|List| (|PositiveInteger|))))) |#2| (|PositiveInteger|)) "\\spad{associatedSystem(op,{} m)} returns \\spad{[M,{}w]} such that the \\spad{m}-th associated equation system to \\spad{L} is \\spad{w' = M w}."))) +((|constructor| (NIL "\\spadtype{AssociatedEquations} provides functions to compute the associated equations needed for factoring operators")) (|associatedEquations| (((|Record| (|:| |minor| (|List| (|PositiveInteger|))) (|:| |eq| |#2|) (|:| |minors| (|List| (|List| (|PositiveInteger|)))) (|:| |ops| (|List| |#2|))) |#2| (|PositiveInteger|)) "\\spad{associatedEquations(op, m)} returns \\spad{[w, eq, lw, lop]} such that \\spad{eq(w) = 0} where \\spad{w} is the given minor,{} and \\spad{lw_i = lop_i(w)} for all the other minors.")) (|uncouplingMatrices| (((|Vector| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{uncouplingMatrices(M)} returns \\spad{[A_1,...,A_n]} such that if \\spad{y = [y_1,...,y_n]} is a solution of \\spad{y' = M y},{} then \\spad{[\\$y_j',y_j'',...,y_j^{(n)}\\$] = \\$A_j y\\$} for all \\spad{j}\\spad{'s}.")) (|associatedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| (|List| (|PositiveInteger|))))) |#2| (|PositiveInteger|)) "\\spad{associatedSystem(op, m)} returns \\spad{[M,w]} such that the \\spad{m}-th associated equation system to \\spad{L} is \\spad{w' = M w}."))) NIL ((|HasCategory| |#1| (QUOTE (-365)))) (-91 S) -((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,{}y,{}...,{}z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) +((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,y,...,z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) ((-4414 . T) (-4415 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) +((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2768 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (-92 S) ((|constructor| (NIL "This is the category of Spad abstract syntax trees."))) NIL @@ -321,15 +321,15 @@ NIL ((-4414 . T)) NIL (-98) -((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,{}b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements."))) +((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements."))) ((-4414 . T) ((-4416 "*") . T) (-4415 . T) (-4411 . T) (-4409 . T) (-4408 . T) (-4407 . T) (-4412 . T) (-4406 . T) (-4405 . T) (-4404 . T) (-4403 . T) (-4402 . T) (-4410 . T) (-4413 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4401 . T)) NIL (-99 R) -((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,{}n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f,{} g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}."))) +((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f, g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}."))) ((-4411 . T)) NIL (-100 R UP) -((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a,{} [b1,{}...,{}bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,{}...,{}bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a,{} b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{\\spad{pi}} is balanced with respect to \\spad{b}."))) +((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a, [b1,...,bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,...,bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a, b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{b}."))) NIL NIL (-101 S) @@ -341,11 +341,11 @@ NIL NIL NIL (-103 S) -((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,{}pl,{}f)} and \\spad{mapDown!(l,{}pr,{}f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}t1,{}f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t,{} ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n,{} s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) +((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,pl,f)} and \\spad{mapDown!(l,pr,f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,t1,f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t, ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n, s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) ((-4414 . T) (-4415 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) +((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2768 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (-104 R UP M |Row| |Col|) -((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,{}q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,{}q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,{}q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) +((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) NIL ((|HasAttribute| |#1| (QUOTE (-4416 "*")))) (-105) @@ -353,23 +353,23 @@ NIL ((-4414 . T)) NIL (-106 A S) -((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) +((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) NIL NIL (-107 S) -((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) +((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) ((-4415 . T)) NIL (-108) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion."))) ((-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) -((|HasCategory| (-566) (QUOTE (-909))) (|HasCategory| (-566) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| (-566) (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-147))) (|HasCategory| (-566) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-566) (QUOTE (-1022))) (|HasCategory| (-566) (QUOTE (-820))) (-2809 (|HasCategory| (-566) (QUOTE (-820))) (|HasCategory| (-566) (QUOTE (-850)))) (|HasCategory| (-566) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-566) (QUOTE (-1150))) (|HasCategory| (-566) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| (-566) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| (-566) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| (-566) (QUOTE (-233))) (|HasCategory| (-566) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-566) (LIST (QUOTE -516) (QUOTE (-1175)) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -310) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -287) (QUOTE (-566)) (QUOTE (-566)))) (|HasCategory| (-566) (QUOTE (-308))) (|HasCategory| (-566) (QUOTE (-547))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| (-566) (LIST (QUOTE -639) (QUOTE (-566)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-909)))) (|HasCategory| (-566) (QUOTE (-145))))) +((|HasCategory| (-566) (QUOTE (-909))) (|HasCategory| (-566) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| (-566) (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-147))) (|HasCategory| (-566) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-566) (QUOTE (-1022))) (|HasCategory| (-566) (QUOTE (-820))) (-2768 (|HasCategory| (-566) (QUOTE (-820))) (|HasCategory| (-566) (QUOTE (-850)))) (|HasCategory| (-566) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-566) (QUOTE (-1150))) (|HasCategory| (-566) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| (-566) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| (-566) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| (-566) (QUOTE (-233))) (|HasCategory| (-566) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-566) (LIST (QUOTE -516) (QUOTE (-1175)) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -310) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -287) (QUOTE (-566)) (QUOTE (-566)))) (|HasCategory| (-566) (QUOTE (-308))) (|HasCategory| (-566) (QUOTE (-547))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| (-566) (LIST (QUOTE -639) (QUOTE (-566)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-909)))) (-2768 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-909)))) (|HasCategory| (-566) (QUOTE (-145))))) (-109) -((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Identifier|) (|List| (|Property|))) "\\spad{binding(n,{}props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Identifier|) $) "\\spad{name(b)} returns the name of binding \\spad{b}"))) +((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Identifier|) (|List| (|Property|))) "\\spad{binding(n,props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Identifier|) $) "\\spad{name(b)} returns the name of binding \\spad{b}"))) NIL NIL (-110) -((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,{}b)} creates bits with \\spad{n} values of \\spad{b}"))) +((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,b)} creates bits with \\spad{n} values of \\spad{b}"))) ((-4415 . T) (-4414 . T)) ((-12 (|HasCategory| (-112) (QUOTE (-1099))) (|HasCategory| (-112) (LIST (QUOTE -310) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-112) (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| (-112) (QUOTE (-1099))) (|HasCategory| (-112) (LIST (QUOTE -613) (QUOTE (-862))))) (-111 R S) @@ -377,18 +377,18 @@ NIL ((-4409 . T) (-4408 . T)) NIL (-112) -((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}."))) +((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}."))) NIL NIL (-113 A) -((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op,{} foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op,{} [foo1,{}...,{}foon])} attaches [foo1,{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,{}...,{}fn]} then applying a derivation \\spad{D} to \\spad{op(a1,{}...,{}an)} returns \\spad{f1(a1,{}...,{}an) * D(a1) + ... + fn(a1,{}...,{}an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,{}...,{}an)} returns the result of \\spad{f(a1,{}...,{}an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op,{} [a1,{}...,{}an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,{}...,{}an)} is returned,{} and \"failed\" otherwise."))) +((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op, foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op, [foo1,...,foon])} attaches [foo1,{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,...,fn]} then applying a derivation \\spad{D} to \\spad{op(a1,...,an)} returns \\spad{f1(a1,...,an) * D(a1) + ... + fn(a1,...,an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,...,an)} returns the result of \\spad{f(a1,...,an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op, [a1,...,an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,...,an)} is returned,{} and \"failed\" otherwise."))) NIL NIL (-114) -((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op,{} l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|Identifier|) (|None|)) "\\spad{setProperty(op,{} p,{} v)} attaches property \\spad{p} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|) (|None|)) "\\spad{setProperty(op,{} s,{} v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Maybe| (|None|)) $ (|Identifier|)) "\\spad{property(op,{} p)} returns the value of property \\spad{p} if it is attached to \\spad{op},{} otherwise \\spad{nothing}.") (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op,{} s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|Identifier|)) "\\spad{deleteProperty!(op,{} p)} unattaches property \\spad{p} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|)) "\\spad{deleteProperty!(op,{} s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|Identifier|)) "\\spad{assert(op,{} p)} attaches property \\spad{p} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|Identifier|)) "\\spad{has?(op,{}p)} tests if property \\spad{s} is attached to \\spad{op}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op,{} foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to InputForm as \\spad{f(a1,{}...,{}an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to OutputForm as \\spad{f(a1,{}...,{}an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op,{} foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op,{} foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op,{} n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|operator| (($ (|Symbol|) (|Arity|)) "\\spad{operator(f,{} a)} makes \\spad{f} into an operator of arity \\spad{a}.") (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f,{} n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}."))) +((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op, l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|Identifier|) (|None|)) "\\spad{setProperty(op, p, v)} attaches property \\spad{p} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|) (|None|)) "\\spad{setProperty(op, s, v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Maybe| (|None|)) $ (|Identifier|)) "\\spad{property(op, p)} returns the value of property \\spad{p} if it is attached to \\spad{op},{} otherwise \\spad{nothing}.") (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op, s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|Identifier|)) "\\spad{deleteProperty!(op, p)} unattaches property \\spad{p} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|)) "\\spad{deleteProperty!(op, s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|Identifier|)) "\\spad{assert(op, p)} attaches property \\spad{p} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|Identifier|)) "\\spad{has?(op,p)} tests if property \\spad{s} is attached to \\spad{op}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op, foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to InputForm as \\spad{f(a1,...,an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to OutputForm as \\spad{f(a1,...,an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op, foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op, foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op, n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|operator| (($ (|Symbol|) (|Arity|)) "\\spad{operator(f, a)} makes \\spad{f} into an operator of arity \\spad{a}.") (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f, n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}."))) NIL NIL -(-115 -2371 UP) +(-115 -2352 UP) ((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots."))) NIL NIL @@ -399,53 +399,53 @@ NIL (-117 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) ((-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) -((|HasCategory| (-116 |#1|) (QUOTE (-909))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| (-116 |#1|) (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-147))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-116 |#1|) (QUOTE (-1022))) (|HasCategory| (-116 |#1|) (QUOTE (-820))) (-2809 (|HasCategory| (-116 |#1|) (QUOTE (-820))) (|HasCategory| (-116 |#1|) (QUOTE (-850)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-116 |#1|) (QUOTE (-1150))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| (-116 |#1|) (QUOTE (-233))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -310) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -287) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-308))) (|HasCategory| (-116 |#1|) (QUOTE (-547))) (|HasCategory| (-116 |#1|) (QUOTE (-850))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-909)))) (|HasCategory| (-116 |#1|) (QUOTE (-145))))) +((|HasCategory| (-116 |#1|) (QUOTE (-909))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| (-116 |#1|) (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-147))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-116 |#1|) (QUOTE (-1022))) (|HasCategory| (-116 |#1|) (QUOTE (-820))) (-2768 (|HasCategory| (-116 |#1|) (QUOTE (-820))) (|HasCategory| (-116 |#1|) (QUOTE (-850)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-116 |#1|) (QUOTE (-1150))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| (-116 |#1|) (QUOTE (-233))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -310) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -287) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-308))) (|HasCategory| (-116 |#1|) (QUOTE (-547))) (|HasCategory| (-116 |#1|) (QUOTE (-850))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-909)))) (-2768 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-909)))) (|HasCategory| (-116 |#1|) (QUOTE (-145))))) (-118 A S) -((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) +((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL ((|HasAttribute| |#1| (QUOTE -4415))) (-119 S) -((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) +((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL NIL (-120 UP) -((|constructor| (NIL "\\indented{1}{Author: Frederic Lehobey,{} James \\spad{H}. Davenport} Date Created: 28 June 1994 Date Last Updated: 11 July 1997 Basic Operations: brillhartIrreducible? Related Domains: Also See: AMS Classifications: Keywords: factorization Examples: References: [1] John Brillhart,{} Note on Irreducibility Testing,{} Mathematics of Computation,{} vol. 35,{} num. 35,{} Oct. 1980,{} 1379-1381 [2] James Davenport,{} On Brillhart Irreducibility. To appear. [3] John Brillhart,{} On the Euler and Bernoulli polynomials,{} \\spad{J}. Reine Angew. Math.,{} \\spad{v}. 234,{} (1969),{} \\spad{pp}. 45-64")) (|noLinearFactor?| (((|Boolean|) |#1|) "\\spad{noLinearFactor?(p)} returns \\spad{true} if \\spad{p} can be shown to have no linear factor by a theorem of Lehmer,{} \\spad{false} else. \\spad{I} insist on the fact that \\spad{false} does not mean that \\spad{p} has a linear factor.")) (|brillhartTrials| (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{brillhartTrials(n)} sets to \\spad{n} the number of tests in \\spadfun{brillhartIrreducible?} and returns the previous value.") (((|NonNegativeInteger|)) "\\spad{brillhartTrials()} returns the number of tests in \\spadfun{brillhartIrreducible?}.")) (|brillhartIrreducible?| (((|Boolean|) |#1| (|Boolean|)) "\\spad{brillhartIrreducible?(p,{}noLinears)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} else. If \\spad{noLinears} is \\spad{true},{} we are being told \\spad{p} has no linear factors \\spad{false} does not mean that \\spad{p} is reducible.") (((|Boolean|) |#1|) "\\spad{brillhartIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} is inconclusive."))) +((|constructor| (NIL "\\indented{1}{Author: Frederic Lehobey,{} James \\spad{H}. Davenport} Date Created: 28 June 1994 Date Last Updated: 11 July 1997 Basic Operations: brillhartIrreducible? Related Domains: Also See: AMS Classifications: Keywords: factorization Examples: References: [1] John Brillhart,{} Note on Irreducibility Testing,{} Mathematics of Computation,{} vol. 35,{} num. 35,{} Oct. 1980,{} 1379-1381 [2] James Davenport,{} On Brillhart Irreducibility. To appear. [3] John Brillhart,{} On the Euler and Bernoulli polynomials,{} \\spad{J}. Reine Angew. Math.,{} \\spad{v}. 234,{} (1969),{} \\spad{pp}. 45-64")) (|noLinearFactor?| (((|Boolean|) |#1|) "\\spad{noLinearFactor?(p)} returns \\spad{true} if \\spad{p} can be shown to have no linear factor by a theorem of Lehmer,{} \\spad{false} else. \\spad{I} insist on the fact that \\spad{false} does not mean that \\spad{p} has a linear factor.")) (|brillhartTrials| (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{brillhartTrials(n)} sets to \\spad{n} the number of tests in \\spadfun{brillhartIrreducible?} and returns the previous value.") (((|NonNegativeInteger|)) "\\spad{brillhartTrials()} returns the number of tests in \\spadfun{brillhartIrreducible?}.")) (|brillhartIrreducible?| (((|Boolean|) |#1| (|Boolean|)) "\\spad{brillhartIrreducible?(p,noLinears)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} else. If \\spad{noLinears} is \\spad{true},{} we are being told \\spad{p} has no linear factors \\spad{false} does not mean that \\spad{p} is reducible.") (((|Boolean|) |#1|) "\\spad{brillhartIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} is inconclusive."))) NIL NIL (-121 S) -((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,{}b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,{}b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) +((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) ((-4414 . T) (-4415 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) +((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2768 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (-122 S) -((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) +((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) NIL NIL (-123) -((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) +((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) ((-4415 . T) (-4414 . T)) NIL (-124 A S) -((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) +((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) NIL NIL (-125 S) -((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) +((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) ((-4414 . T) (-4415 . T)) NIL (-126 S) -((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) +((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) ((-4414 . T) (-4415 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) +((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2768 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (-127 S) -((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,{}v,{}r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) +((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,v,r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) ((-4414 . T) (-4415 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) +((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2768 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (-128) -((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`n'}. The array can then store up to \\spad{`n'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,{}n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0."))) +((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`n'}. The array can then store up to \\spad{`n'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0."))) ((-4415 . T) (-4414 . T)) -((-2809 (-12 (|HasCategory| (-129) (QUOTE (-850))) (|HasCategory| (-129) (LIST (QUOTE -310) (QUOTE (-129))))) (-12 (|HasCategory| (-129) (QUOTE (-1099))) (|HasCategory| (-129) (LIST (QUOTE -310) (QUOTE (-129)))))) (-2809 (-12 (|HasCategory| (-129) (QUOTE (-1099))) (|HasCategory| (-129) (LIST (QUOTE -310) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-129) (LIST (QUOTE -614) (QUOTE (-538)))) (-2809 (|HasCategory| (-129) (QUOTE (-850))) (|HasCategory| (-129) (QUOTE (-1099)))) (|HasCategory| (-129) (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| (-129) (QUOTE (-1099))) (|HasCategory| (-129) (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| (-129) (QUOTE (-1099))) (|HasCategory| (-129) (LIST (QUOTE -310) (QUOTE (-129)))))) +((-2768 (-12 (|HasCategory| (-129) (QUOTE (-850))) (|HasCategory| (-129) (LIST (QUOTE -310) (QUOTE (-129))))) (-12 (|HasCategory| (-129) (QUOTE (-1099))) (|HasCategory| (-129) (LIST (QUOTE -310) (QUOTE (-129)))))) (-2768 (-12 (|HasCategory| (-129) (QUOTE (-1099))) (|HasCategory| (-129) (LIST (QUOTE -310) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-129) (LIST (QUOTE -614) (QUOTE (-538)))) (-2768 (|HasCategory| (-129) (QUOTE (-850))) (|HasCategory| (-129) (QUOTE (-1099)))) (|HasCategory| (-129) (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| (-129) (QUOTE (-1099))) (|HasCategory| (-129) (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| (-129) (QUOTE (-1099))) (|HasCategory| (-129) (LIST (QUOTE -310) (QUOTE (-129)))))) (-129) -((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,{}y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256."))) +((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256."))) NIL NIL (-130) @@ -453,11 +453,11 @@ NIL NIL NIL (-131) -((|constructor| (NIL "This is an \\spadtype{AbelianMonoid} with the cancellation property,{} \\spadignore{i.e.} \\spad{ a+b = a+c => b=c }. This is formalised by the partial subtraction operator,{} which satisfies the axioms listed below: \\blankline")) (|subtractIfCan| (((|Union| $ "failed") $ $) "\\spad{subtractIfCan(x,{} y)} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists."))) +((|constructor| (NIL "This is an \\spadtype{AbelianMonoid} with the cancellation property,{} \\spadignore{i.e.} \\spad{ a+b = a+c => b=c }. This is formalised by the partial subtraction operator,{} which satisfies the axioms listed below: \\blankline")) (|subtractIfCan| (((|Union| $ "failed") $ $) "\\spad{subtractIfCan(x, y)} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists."))) NIL NIL (-132) -((|constructor| (NIL "A cachable set is a set whose elements keep an integer as part of their structure.")) (|setPosition| (((|Void|) $ (|NonNegativeInteger|)) "\\spad{setPosition(x,{} n)} associates the integer \\spad{n} to \\spad{x}.")) (|position| (((|NonNegativeInteger|) $) "\\spad{position(x)} returns the integer \\spad{n} associated to \\spad{x}."))) +((|constructor| (NIL "A cachable set is a set whose elements keep an integer as part of their structure.")) (|setPosition| (((|Void|) $ (|NonNegativeInteger|)) "\\spad{setPosition(x, n)} associates the integer \\spad{n} to \\spad{x}.")) (|position| (((|NonNegativeInteger|) $) "\\spad{position(x)} returns the integer \\spad{n} associated to \\spad{x}."))) NIL NIL (-133) @@ -465,15 +465,15 @@ NIL NIL NIL (-134) -((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0,{} 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,{}1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative."))) +((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0, 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative."))) (((-4416 "*") . T)) NIL -(-135 |minix| -2420 S T$) -((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) +(-135 |minix| -3382 S T$) +((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) NIL NIL -(-136 |minix| -2420 R) -((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor."))) +(-136 |minix| -3382 R) +((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,...,t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,...,r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor."))) NIL NIL (-137) @@ -495,17 +495,17 @@ NIL (-141) ((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) ((-4414 . T) (-4404 . T) (-4415 . T)) -((-2809 (-12 (|HasCategory| (-144) (QUOTE (-370))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-144) (QUOTE (-370))) (|HasCategory| (-144) (QUOTE (-850))) (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) +((-2768 (-12 (|HasCategory| (-144) (QUOTE (-370))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-144) (QUOTE (-370))) (|HasCategory| (-144) (QUOTE (-850))) (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (-142 R Q A) -((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) +((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL NIL (-143) -((|constructor| (NIL "Category for the usual combinatorial functions.")) (|permutation| (($ $ $) "\\spad{permutation(n,{} m)} returns the number of permutations of \\spad{n} objects taken \\spad{m} at a time. Note: \\spad{permutation(n,{}m) = n!/(n-m)!}.")) (|factorial| (($ $) "\\spad{factorial(n)} computes the factorial of \\spad{n} (denoted in the literature by \\spad{n!}) Note: \\spad{n! = n (n-1)! when n > 0}; also,{} \\spad{0! = 1}.")) (|binomial| (($ $ $) "\\spad{binomial(n,{}r)} returns the \\spad{(n,{}r)} binomial coefficient (often denoted in the literature by \\spad{C(n,{}r)}). Note: \\spad{C(n,{}r) = n!/(r!(n-r)!)} where \\spad{n >= r >= 0}."))) +((|constructor| (NIL "Category for the usual combinatorial functions.")) (|permutation| (($ $ $) "\\spad{permutation(n, m)} returns the number of permutations of \\spad{n} objects taken \\spad{m} at a time. Note: \\spad{permutation(n,m) = n!/(n-m)!}.")) (|factorial| (($ $) "\\spad{factorial(n)} computes the factorial of \\spad{n} (denoted in the literature by \\spad{n!}) Note: \\spad{n! = n (n-1)! when n > 0}; also,{} \\spad{0! = 1}.")) (|binomial| (($ $ $) "\\spad{binomial(n,r)} returns the \\spad{(n,r)} binomial coefficient (often denoted in the literature by \\spad{C(n,r)}). Note: \\spad{C(n,r) = n!/(r!(n-r)!)} where \\spad{n >= r >= 0}."))) NIL NIL (-144) -((|constructor| (NIL "This domain provides the basic character data type.")) (|alphanumeric?| (((|Boolean|) $) "\\spad{alphanumeric?(c)} tests if \\spad{c} is either a letter or number,{} \\spadignore{i.e.} one of 0..9,{} a..\\spad{z} or A..\\spad{Z}.")) (|lowerCase?| (((|Boolean|) $) "\\spad{lowerCase?(c)} tests if \\spad{c} is an lower case letter,{} \\spadignore{i.e.} one of a..\\spad{z}.")) (|upperCase?| (((|Boolean|) $) "\\spad{upperCase?(c)} tests if \\spad{c} is an upper case letter,{} \\spadignore{i.e.} one of A..\\spad{Z}.")) (|alphabetic?| (((|Boolean|) $) "\\spad{alphabetic?(c)} tests if \\spad{c} is a letter,{} \\spadignore{i.e.} one of a..\\spad{z} or A..\\spad{Z}.")) (|hexDigit?| (((|Boolean|) $) "\\spad{hexDigit?(c)} tests if \\spad{c} is a hexadecimal numeral,{} \\spadignore{i.e.} one of 0..9,{} a..\\spad{f} or A..\\spad{F}.")) (|digit?| (((|Boolean|) $) "\\spad{digit?(c)} tests if \\spad{c} is a digit character,{} \\spadignore{i.e.} one of 0..9.")) (|lowerCase| (($ $) "\\spad{lowerCase(c)} converts an upper case letter to the corresponding lower case letter. If \\spad{c} is not an upper case letter,{} then it is returned unchanged.")) (|upperCase| (($ $) "\\spad{upperCase(c)} converts a lower case letter to the corresponding upper case letter. If \\spad{c} is not a lower case letter,{} then it is returned unchanged.")) (|escape| (($) "\\spad{escape()} provides the escape character,{} \\spad{_},{} which is used to allow quotes and other characters {\\em within} strings.")) (|quote| (($) "\\spad{quote()} provides the string quote character,{} \\spad{\"}.")) (|space| (($) "\\spad{space()} provides the blank character.")) (|char| (($ (|String|)) "\\spad{char(s)} provides a character from a string \\spad{s} of length one.") (($ (|NonNegativeInteger|)) "\\spad{char(i)} provides a character corresponding to the integer code \\spad{i}. It is always \\spad{true} that \\spad{ord char i = i}.")) (|ord| (((|NonNegativeInteger|) $) "\\spad{ord(c)} provides an integral code corresponding to the character \\spad{c}. It is always \\spad{true} that \\spad{char ord c = c}."))) +((|constructor| (NIL "This domain provides the basic character data type.")) (|alphanumeric?| (((|Boolean|) $) "\\spad{alphanumeric?(c)} tests if \\spad{c} is either a letter or number,{} \\spadignore{i.e.} one of 0..9,{} a..\\spad{z} or A..\\spad{Z}.")) (|lowerCase?| (((|Boolean|) $) "\\spad{lowerCase?(c)} tests if \\spad{c} is an lower case letter,{} \\spadignore{i.e.} one of a..\\spad{z}.")) (|upperCase?| (((|Boolean|) $) "\\spad{upperCase?(c)} tests if \\spad{c} is an upper case letter,{} \\spadignore{i.e.} one of A..\\spad{Z}.")) (|alphabetic?| (((|Boolean|) $) "\\spad{alphabetic?(c)} tests if \\spad{c} is a letter,{} \\spadignore{i.e.} one of a..\\spad{z} or A..\\spad{Z}.")) (|hexDigit?| (((|Boolean|) $) "\\spad{hexDigit?(c)} tests if \\spad{c} is a hexadecimal numeral,{} \\spadignore{i.e.} one of 0..9,{} a..\\spad{f} or A..\\spad{F}.")) (|digit?| (((|Boolean|) $) "\\spad{digit?(c)} tests if \\spad{c} is a digit character,{} \\spadignore{i.e.} one of 0..9.")) (|lowerCase| (($ $) "\\spad{lowerCase(c)} converts an upper case letter to the corresponding lower case letter. If \\spad{c} is not an upper case letter,{} then it is returned unchanged.")) (|upperCase| (($ $) "\\spad{upperCase(c)} converts a lower case letter to the corresponding upper case letter. If \\spad{c} is not a lower case letter,{} then it is returned unchanged.")) (|escape| (($) "\\spad{escape} provides the escape character,{} \\spad{_},{} which is used to allow quotes and other characters {\\em within} strings.")) (|quote| (($) "\\spad{quote} provides the string quote character,{} \\spad{\"}.")) (|space| (($) "\\spad{space} provides the blank character.")) (|char| (($ (|String|)) "\\spad{char(s)} provides a character from a string \\spad{s} of length one.") (($ (|NonNegativeInteger|)) "\\spad{char(i)} provides a character corresponding to the integer code \\spad{i}. It is always \\spad{true} that \\spad{ord char i = i}.")) (|ord| (((|NonNegativeInteger|) $) "\\spad{ord(c)} provides an integral code corresponding to the character \\spad{c}. It is always \\spad{true} that \\spad{char ord c = c}."))) NIL NIL (-145) @@ -513,35 +513,35 @@ NIL ((-4411 . T)) NIL (-146 R) -((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,{}r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}."))) +((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}."))) NIL NIL (-147) ((|constructor| (NIL "Rings of Characteristic Zero."))) ((-4411 . T)) NIL -(-148 -2371 UP UPUP) -((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,{}y),{} p(x,{}y))} returns \\spad{[g(z,{}t),{} q(z,{}t),{} c1(z),{} c2(z),{} n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,{}y) = g(z,{}t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z,{} t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,{}y),{} f(x),{} g(x))} returns \\spad{p(f(x),{} y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p,{} q)} returns an integer a such that a is neither a pole of \\spad{p(x,{}y)} nor a branch point of \\spad{q(x,{}y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g,{} n)} returns \\spad{[m,{} c,{} P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x,{} y))} returns \\spad{[c(x),{} n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,{}y))} returns \\spad{[c(x),{} q(x,{}z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x,{} z) = 0}."))) +(-148 -2352 UP UPUP) +((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,y), p(x,y))} returns \\spad{[g(z,t), q(z,t), c1(z), c2(z), n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,y) = g(z,t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z, t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,y), f(x), g(x))} returns \\spad{p(f(x), y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p, q)} returns an integer a such that a is neither a pole of \\spad{p(x,y)} nor a branch point of \\spad{q(x,y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g, n)} returns \\spad{[m, c, P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x, y))} returns \\spad{[c(x), n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,y))} returns \\spad{[c(x), q(x,z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x, z) = 0}."))) NIL NIL (-149 R CR) -((|constructor| (NIL "This package provides the generalized euclidean algorithm which is needed as the basic step for factoring polynomials.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} where (\\spad{fi} relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g} = sum \\spad{ai} prod \\spad{fj} (\\spad{j} \\spad{\\=} \\spad{i}) or equivalently g/prod \\spad{fj} = sum (ai/fi) or returns \"failed\" if no such list exists"))) +((|constructor| (NIL "This package provides the generalized euclidean algorithm which is needed as the basic step for factoring polynomials.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} where (\\spad{fi} relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g} = sum \\spad{ai} prod \\spad{fj} (\\spad{j} \\spad{\\=} \\spad{i}) or equivalently g/prod \\spad{fj} = sum (ai/fi) or returns \"failed\" if no such list exists"))) NIL NIL (-150 A S) -((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) +((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL ((|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasAttribute| |#1| (QUOTE -4414))) (-151 S) -((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) +((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL NIL (-152 |n| K Q) -((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,{}[i1,{}i2,{}...,{}iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,{}[i1,{}i2,{}...,{}iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element."))) +((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,[i1,i2,...,iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,[i1,i2,...,iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element."))) ((-4409 . T) (-4408 . T) (-4411 . T)) NIL (-153) -((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,{}xMin,{}xMax,{}yMin,{}yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function."))) +((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,xMin,xMax,yMin,yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function."))) NIL NIL (-154) @@ -549,7 +549,7 @@ NIL NIL NIL (-155 UP |Par|) -((|complexZeros| (((|List| (|Complex| |#2|)) |#1| |#2|) "\\spad{complexZeros(poly,{} eps)} finds the complex zeros of the univariate polynomial \\spad{poly} to precision eps with solutions returned as complex floats or rationals depending on the type of eps."))) +((|complexZeros| (((|List| (|Complex| |#2|)) |#1| |#2|) "\\spad{complexZeros(poly, eps)} finds the complex zeros of the univariate polynomial \\spad{poly} to precision eps with solutions returned as complex floats or rationals depending on the type of eps."))) NIL NIL (-156) @@ -560,16 +560,16 @@ NIL ((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}."))) NIL NIL -(-158 R -2371) -((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n),{} n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n),{} n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n),{} n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n),{} n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f,{} x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n,{} r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n,{} r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator."))) +(-158 R -2352) +((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n), n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n), n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n), n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n), n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f, x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n, r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n, r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator."))) NIL NIL (-159 I) -((|stirling2| ((|#1| |#1| |#1|) "\\spad{stirling2(n,{}m)} returns the Stirling number of the second kind denoted \\spad{SS[n,{}m]}.")) (|stirling1| ((|#1| |#1| |#1|) "\\spad{stirling1(n,{}m)} returns the Stirling number of the first kind denoted \\spad{S[n,{}m]}.")) (|permutation| ((|#1| |#1| |#1|) "\\spad{permutation(n)} returns \\spad{!P(n,{}r) = n!/(n-r)!}. This is the number of permutations of \\spad{n} objects taken \\spad{r} at a time.")) (|partition| ((|#1| |#1|) "\\spad{partition(n)} returns the number of partitions of the integer \\spad{n}. This is the number of distinct ways that \\spad{n} can be written as a sum of positive integers.")) (|multinomial| ((|#1| |#1| (|List| |#1|)) "\\spad{multinomial(n,{}[m1,{}m2,{}...,{}mk])} returns the multinomial coefficient \\spad{n!/(m1! m2! ... mk!)}.")) (|factorial| ((|#1| |#1|) "\\spad{factorial(n)} returns \\spad{n!}. this is the product of all integers between 1 and \\spad{n} (inclusive). Note: \\spad{0!} is defined to be 1.")) (|binomial| ((|#1| |#1| |#1|) "\\spad{binomial(n,{}r)} returns the binomial coefficient \\spad{C(n,{}r) = n!/(r! (n-r)!)},{} where \\spad{n >= r >= 0}. This is the number of combinations of \\spad{n} objects taken \\spad{r} at a time."))) +((|stirling2| ((|#1| |#1| |#1|) "\\spad{stirling2(n,m)} returns the Stirling number of the second kind denoted \\spad{SS[n,m]}.")) (|stirling1| ((|#1| |#1| |#1|) "\\spad{stirling1(n,m)} returns the Stirling number of the first kind denoted \\spad{S[n,m]}.")) (|permutation| ((|#1| |#1| |#1|) "\\spad{permutation(n)} returns \\spad{!P(n,r) = n!/(n-r)!}. This is the number of permutations of \\spad{n} objects taken \\spad{r} at a time.")) (|partition| ((|#1| |#1|) "\\spad{partition(n)} returns the number of partitions of the integer \\spad{n}. This is the number of distinct ways that \\spad{n} can be written as a sum of positive integers.")) (|multinomial| ((|#1| |#1| (|List| |#1|)) "\\spad{multinomial(n,[m1,m2,...,mk])} returns the multinomial coefficient \\spad{n!/(m1! m2! ... mk!)}.")) (|factorial| ((|#1| |#1|) "\\spad{factorial(n)} returns \\spad{n!}. this is the product of all integers between 1 and \\spad{n} (inclusive). Note: \\spad{0!} is defined to be 1.")) (|binomial| ((|#1| |#1| |#1|) "\\spad{binomial(n,r)} returns the binomial coefficient \\spad{C(n,r) = n!/(r! (n-r)!)},{} where \\spad{n >= r >= 0}. This is the number of combinations of \\spad{n} objects taken \\spad{r} at a time."))) NIL NIL (-160) -((|constructor| (NIL "CombinatorialOpsCategory is the category obtaining by adjoining summations and products to the usual combinatorial operations.")) (|product| (($ $ (|SegmentBinding| $)) "\\spad{product(f(n),{} n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") (($ $ (|Symbol|)) "\\spad{product(f(n),{} n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| (($ $ (|SegmentBinding| $)) "\\spad{summation(f(n),{} n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") (($ $ (|Symbol|)) "\\spad{summation(f(n),{} n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| (($ $ (|Symbol|)) "\\spad{factorials(f,{} x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") (($ $) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials."))) +((|constructor| (NIL "CombinatorialOpsCategory is the category obtaining by adjoining summations and products to the usual combinatorial operations.")) (|product| (($ $ (|SegmentBinding| $)) "\\spad{product(f(n), n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") (($ $ (|Symbol|)) "\\spad{product(f(n), n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| (($ $ (|SegmentBinding| $)) "\\spad{summation(f(n), n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") (($ $ (|Symbol|)) "\\spad{summation(f(n), n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| (($ $ (|Symbol|)) "\\spad{factorials(f, x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") (($ $) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials."))) NIL NIL (-161) @@ -577,7 +577,7 @@ NIL NIL NIL (-162) -((|constructor| (NIL "A type for basic commutators")) (|mkcomm| (($ $ $) "\\spad{mkcomm(i,{}j)} \\undocumented{}") (($ (|Integer|)) "\\spad{mkcomm(i)} \\undocumented{}"))) +((|constructor| (NIL "A type for basic commutators")) (|mkcomm| (($ $ $) "\\spad{mkcomm(i,j)} \\undocumented{}") (($ (|Integer|)) "\\spad{mkcomm(i)} \\undocumented{}"))) NIL NIL (-163) @@ -585,35 +585,35 @@ NIL NIL NIL (-164 R UP UPUP) -((|constructor| (NIL "A package for swapping the order of two variables in a tower of two UnivariatePolynomialCategory extensions.")) (|swap| ((|#3| |#3|) "\\spad{swap(p(x,{}y))} returns \\spad{p}(\\spad{y},{}\\spad{x})."))) +((|constructor| (NIL "A package for swapping the order of two variables in a tower of two UnivariatePolynomialCategory extensions.")) (|swap| ((|#3| |#3|) "\\spad{swap(p(x,y))} returns \\spad{p}(\\spad{y},{}\\spad{x})."))) NIL NIL (-165 S R) -((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) +((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) NIL ((|HasCategory| |#2| (QUOTE (-909))) (|HasCategory| |#2| (QUOTE (-547))) (|HasCategory| |#2| (QUOTE (-1002))) (|HasCategory| |#2| (QUOTE (-1199))) (|HasCategory| |#2| (QUOTE (-1059))) (|HasCategory| |#2| (QUOTE (-1022))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4410)) (|HasAttribute| |#2| (QUOTE -4413)) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-558)))) (-166 R) -((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) -((-4407 -2809 (|has| |#1| (-558)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))) (-4412 |has| |#1| (-365)) (-4406 |has| |#1| (-365)) (-4410 |has| |#1| (-6 -4410)) (-4413 |has| |#1| (-6 -4413)) (-3638 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) +((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) +((-4407 -2768 (|has| |#1| (-558)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))) (-4412 |has| |#1| (-365)) (-4406 |has| |#1| (-365)) (-4410 |has| |#1| (-6 -4410)) (-4413 |has| |#1| (-6 -4413)) (-3608 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) NIL (-167 RR PR) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients."))) NIL NIL (-168 R S) -((|constructor| (NIL "This package extends maps from underlying rings to maps between complex over those rings.")) (|map| (((|Complex| |#2|) (|Mapping| |#2| |#1|) (|Complex| |#1|)) "\\spad{map(f,{}u)} maps \\spad{f} onto real and imaginary parts of \\spad{u}."))) +((|constructor| (NIL "This package extends maps from underlying rings to maps between complex over those rings.")) (|map| (((|Complex| |#2|) (|Mapping| |#2| |#1|) (|Complex| |#1|)) "\\spad{map(f,u)} maps \\spad{f} onto real and imaginary parts of \\spad{u}."))) NIL NIL (-169 R) ((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) -((-4407 -2809 (|has| |#1| (-558)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))) (-4412 |has| |#1| (-365)) (-4406 |has| |#1| (-365)) (-4410 |has| |#1| (-6 -4410)) (-4413 |has| |#1| (-6 -4413)) (-3638 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) -((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-351))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-351)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-828)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-1022)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-1199)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-909))))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-909)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-909))))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (QUOTE (-1002))) (|HasCategory| |#1| (QUOTE (-1199)))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (QUOTE (-1022))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2809 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-558)))) (-2809 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351)))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-828))) (|HasCategory| |#1| (QUOTE (-1059))) (-12 (|HasCategory| |#1| (QUOTE (-1059))) (|HasCategory| |#1| (QUOTE (-1199)))) (|HasCategory| |#1| (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-365)))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasAttribute| |#1| (QUOTE -4410)) (|HasAttribute| |#1| (QUOTE -4413)) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175))))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-351))))) +((-4407 -2768 (|has| |#1| (-558)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))) (-4412 |has| |#1| (-365)) (-4406 |has| |#1| (-365)) (-4410 |has| |#1| (-6 -4410)) (-4413 |has| |#1| (-6 -4413)) (-3608 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) +((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-351))) (-2768 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-2768 (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-351)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-828)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-1022)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-1199)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (-2768 (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2768 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-909))))) (-2768 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-909)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-909))))) (-2768 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (QUOTE (-1002))) (|HasCategory| |#1| (QUOTE (-1199)))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (QUOTE (-1022))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2768 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-558)))) (-2768 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351)))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-828))) (|HasCategory| |#1| (QUOTE (-1059))) (-12 (|HasCategory| |#1| (QUOTE (-1059))) (|HasCategory| |#1| (QUOTE (-1199)))) (|HasCategory| |#1| (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909))) (-2768 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-365)))) (-2768 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasAttribute| |#1| (QUOTE -4410)) (|HasAttribute| |#1| (QUOTE -4413)) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175))))) (-2768 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2768 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-351))))) (-170 R S CS) ((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern"))) NIL NIL (-171) -((|constructor| (NIL "This domain implements some global properties of subspaces.")) (|copy| (($ $) "\\spad{copy(x)} \\undocumented")) (|solid| (((|Boolean|) $ (|Boolean|)) "\\spad{solid(x,{}b)} \\undocumented")) (|close| (((|Boolean|) $ (|Boolean|)) "\\spad{close(x,{}b)} \\undocumented")) (|solid?| (((|Boolean|) $) "\\spad{solid?(x)} \\undocumented")) (|closed?| (((|Boolean|) $) "\\spad{closed?(x)} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented"))) +((|constructor| (NIL "This domain implements some global properties of subspaces.")) (|copy| (($ $) "\\spad{copy(x)} \\undocumented")) (|solid| (((|Boolean|) $ (|Boolean|)) "\\spad{solid(x,b)} \\undocumented")) (|close| (((|Boolean|) $ (|Boolean|)) "\\spad{close(x,b)} \\undocumented")) (|solid?| (((|Boolean|) $) "\\spad{solid?(x)} \\undocumented")) (|closed?| (((|Boolean|) $) "\\spad{closed?(x)} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented"))) NIL NIL (-172) @@ -625,15 +625,15 @@ NIL NIL NIL (-174 R) -((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0,{} x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialQuotients(x) = [b0,{}b1,{}b2,{}b3,{}...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialDenominators(x) = [b1,{}b2,{}b3,{}...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialNumerators(x) = [a1,{}a2,{}a3,{}...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,{}b)} constructs a continued fraction in the following way: if \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,{}a,{}b)} constructs a continued fraction in the following way: if \\spad{a = [a1,{}a2,{}...]} and \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}."))) +((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0, x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialQuotients(x) = [b0,b1,b2,b3,...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialDenominators(x) = [b1,b2,b3,...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialNumerators(x) = [a1,a2,a3,...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,b)} constructs a continued fraction in the following way: if \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,a,b)} constructs a continued fraction in the following way: if \\spad{a = [a1,a2,...]} and \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}."))) (((-4416 "*") . T) (-4407 . T) (-4412 . T) (-4406 . T) (-4408 . T) (-4409 . T) (-4411 . T)) NIL (-175) -((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(c,{}n)} returns the first binding associated with \\spad{`n'}. Otherwise `nothing.")) (|push| (($ (|Binding|) $) "\\spad{push(c,{}b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}."))) +((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(c,n)} returns the first binding associated with \\spad{`n'}. Otherwise `nothing.")) (|push| (($ (|Binding|) $) "\\spad{push(c,b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}."))) NIL NIL (-176 R) -((|constructor| (NIL "CoordinateSystems provides coordinate transformation functions for plotting. Functions in this package return conversion functions which take points expressed in other coordinate systems and return points with the corresponding Cartesian coordinates.")) (|conical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1| |#1|) "\\spad{conical(a,{}b)} transforms from conical coordinates to Cartesian coordinates: \\spad{conical(a,{}b)} is a function which will map the point \\spad{(lambda,{}mu,{}nu)} to \\spad{x = lambda*mu*nu/(a*b)},{} \\spad{y = lambda/a*sqrt((mu**2-a**2)*(nu**2-a**2)/(a**2-b**2))},{} \\spad{z = lambda/b*sqrt((mu**2-b**2)*(nu**2-b**2)/(b**2-a**2))}.")) (|toroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{toroidal(a)} transforms from toroidal coordinates to Cartesian coordinates: \\spad{toroidal(a)} is a function which will map the point \\spad{(u,{}v,{}phi)} to \\spad{x = a*sinh(v)*cos(phi)/(cosh(v)-cos(u))},{} \\spad{y = a*sinh(v)*sin(phi)/(cosh(v)-cos(u))},{} \\spad{z = a*sin(u)/(cosh(v)-cos(u))}.")) (|bipolarCylindrical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{bipolarCylindrical(a)} transforms from bipolar cylindrical coordinates to Cartesian coordinates: \\spad{bipolarCylindrical(a)} is a function which will map the point \\spad{(u,{}v,{}z)} to \\spad{x = a*sinh(v)/(cosh(v)-cos(u))},{} \\spad{y = a*sin(u)/(cosh(v)-cos(u))},{} \\spad{z}.")) (|bipolar| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{bipolar(a)} transforms from bipolar coordinates to Cartesian coordinates: \\spad{bipolar(a)} is a function which will map the point \\spad{(u,{}v)} to \\spad{x = a*sinh(v)/(cosh(v)-cos(u))},{} \\spad{y = a*sin(u)/(cosh(v)-cos(u))}.")) (|oblateSpheroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{oblateSpheroidal(a)} transforms from oblate spheroidal coordinates to Cartesian coordinates: \\spad{oblateSpheroidal(a)} is a function which will map the point \\spad{(\\spad{xi},{}eta,{}phi)} to \\spad{x = a*sinh(\\spad{xi})*sin(eta)*cos(phi)},{} \\spad{y = a*sinh(\\spad{xi})*sin(eta)*sin(phi)},{} \\spad{z = a*cosh(\\spad{xi})*cos(eta)}.")) (|prolateSpheroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{prolateSpheroidal(a)} transforms from prolate spheroidal coordinates to Cartesian coordinates: \\spad{prolateSpheroidal(a)} is a function which will map the point \\spad{(\\spad{xi},{}eta,{}phi)} to \\spad{x = a*sinh(\\spad{xi})*sin(eta)*cos(phi)},{} \\spad{y = a*sinh(\\spad{xi})*sin(eta)*sin(phi)},{} \\spad{z = a*cosh(\\spad{xi})*cos(eta)}.")) (|ellipticCylindrical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{ellipticCylindrical(a)} transforms from elliptic cylindrical coordinates to Cartesian coordinates: \\spad{ellipticCylindrical(a)} is a function which will map the point \\spad{(u,{}v,{}z)} to \\spad{x = a*cosh(u)*cos(v)},{} \\spad{y = a*sinh(u)*sin(v)},{} \\spad{z}.")) (|elliptic| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{elliptic(a)} transforms from elliptic coordinates to Cartesian coordinates: \\spad{elliptic(a)} is a function which will map the point \\spad{(u,{}v)} to \\spad{x = a*cosh(u)*cos(v)},{} \\spad{y = a*sinh(u)*sin(v)}.")) (|paraboloidal| (((|Point| |#1|) (|Point| |#1|)) "\\spad{paraboloidal(pt)} transforms \\spad{pt} from paraboloidal coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,{}v,{}phi)} to \\spad{x = u*v*cos(phi)},{} \\spad{y = u*v*sin(phi)},{} \\spad{z = 1/2 * (u**2 - v**2)}.")) (|parabolicCylindrical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{parabolicCylindrical(pt)} transforms \\spad{pt} from parabolic cylindrical coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,{}v,{}z)} to \\spad{x = 1/2*(u**2 - v**2)},{} \\spad{y = u*v},{} \\spad{z}.")) (|parabolic| (((|Point| |#1|) (|Point| |#1|)) "\\spad{parabolic(pt)} transforms \\spad{pt} from parabolic coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,{}v)} to \\spad{x = 1/2*(u**2 - v**2)},{} \\spad{y = u*v}.")) (|spherical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{spherical(pt)} transforms \\spad{pt} from spherical coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,{}theta,{}phi)} to \\spad{x = r*sin(phi)*cos(theta)},{} \\spad{y = r*sin(phi)*sin(theta)},{} \\spad{z = r*cos(phi)}.")) (|cylindrical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{cylindrical(pt)} transforms \\spad{pt} from polar coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,{}theta,{}z)} to \\spad{x = r * cos(theta)},{} \\spad{y = r * sin(theta)},{} \\spad{z}.")) (|polar| (((|Point| |#1|) (|Point| |#1|)) "\\spad{polar(pt)} transforms \\spad{pt} from polar coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,{}theta)} to \\spad{x = r * cos(theta)} ,{} \\spad{y = r * sin(theta)}.")) (|cartesian| (((|Point| |#1|) (|Point| |#1|)) "\\spad{cartesian(pt)} returns the Cartesian coordinates of point \\spad{pt}."))) +((|constructor| (NIL "CoordinateSystems provides coordinate transformation functions for plotting. Functions in this package return conversion functions which take points expressed in other coordinate systems and return points with the corresponding Cartesian coordinates.")) (|conical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1| |#1|) "\\spad{conical(a,b)} transforms from conical coordinates to Cartesian coordinates: \\spad{conical(a,b)} is a function which will map the point \\spad{(lambda,mu,nu)} to \\spad{x = lambda*mu*nu/(a*b)},{} \\spad{y = lambda/a*sqrt((mu**2-a**2)*(nu**2-a**2)/(a**2-b**2))},{} \\spad{z = lambda/b*sqrt((mu**2-b**2)*(nu**2-b**2)/(b**2-a**2))}.")) (|toroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{toroidal(a)} transforms from toroidal coordinates to Cartesian coordinates: \\spad{toroidal(a)} is a function which will map the point \\spad{(u,v,phi)} to \\spad{x = a*sinh(v)*cos(phi)/(cosh(v)-cos(u))},{} \\spad{y = a*sinh(v)*sin(phi)/(cosh(v)-cos(u))},{} \\spad{z = a*sin(u)/(cosh(v)-cos(u))}.")) (|bipolarCylindrical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{bipolarCylindrical(a)} transforms from bipolar cylindrical coordinates to Cartesian coordinates: \\spad{bipolarCylindrical(a)} is a function which will map the point \\spad{(u,v,z)} to \\spad{x = a*sinh(v)/(cosh(v)-cos(u))},{} \\spad{y = a*sin(u)/(cosh(v)-cos(u))},{} \\spad{z}.")) (|bipolar| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{bipolar(a)} transforms from bipolar coordinates to Cartesian coordinates: \\spad{bipolar(a)} is a function which will map the point \\spad{(u,v)} to \\spad{x = a*sinh(v)/(cosh(v)-cos(u))},{} \\spad{y = a*sin(u)/(cosh(v)-cos(u))}.")) (|oblateSpheroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{oblateSpheroidal(a)} transforms from oblate spheroidal coordinates to Cartesian coordinates: \\spad{oblateSpheroidal(a)} is a function which will map the point \\spad{(xi,eta,phi)} to \\spad{x = a*sinh(xi)*sin(eta)*cos(phi)},{} \\spad{y = a*sinh(xi)*sin(eta)*sin(phi)},{} \\spad{z = a*cosh(xi)*cos(eta)}.")) (|prolateSpheroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{prolateSpheroidal(a)} transforms from prolate spheroidal coordinates to Cartesian coordinates: \\spad{prolateSpheroidal(a)} is a function which will map the point \\spad{(xi,eta,phi)} to \\spad{x = a*sinh(xi)*sin(eta)*cos(phi)},{} \\spad{y = a*sinh(xi)*sin(eta)*sin(phi)},{} \\spad{z = a*cosh(xi)*cos(eta)}.")) (|ellipticCylindrical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{ellipticCylindrical(a)} transforms from elliptic cylindrical coordinates to Cartesian coordinates: \\spad{ellipticCylindrical(a)} is a function which will map the point \\spad{(u,v,z)} to \\spad{x = a*cosh(u)*cos(v)},{} \\spad{y = a*sinh(u)*sin(v)},{} \\spad{z}.")) (|elliptic| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{elliptic(a)} transforms from elliptic coordinates to Cartesian coordinates: \\spad{elliptic(a)} is a function which will map the point \\spad{(u,v)} to \\spad{x = a*cosh(u)*cos(v)},{} \\spad{y = a*sinh(u)*sin(v)}.")) (|paraboloidal| (((|Point| |#1|) (|Point| |#1|)) "\\spad{paraboloidal(pt)} transforms \\spad{pt} from paraboloidal coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,v,phi)} to \\spad{x = u*v*cos(phi)},{} \\spad{y = u*v*sin(phi)},{} \\spad{z = 1/2 * (u**2 - v**2)}.")) (|parabolicCylindrical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{parabolicCylindrical(pt)} transforms \\spad{pt} from parabolic cylindrical coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,v,z)} to \\spad{x = 1/2*(u**2 - v**2)},{} \\spad{y = u*v},{} \\spad{z}.")) (|parabolic| (((|Point| |#1|) (|Point| |#1|)) "\\spad{parabolic(pt)} transforms \\spad{pt} from parabolic coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,v)} to \\spad{x = 1/2*(u**2 - v**2)},{} \\spad{y = u*v}.")) (|spherical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{spherical(pt)} transforms \\spad{pt} from spherical coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,theta,phi)} to \\spad{x = r*sin(phi)*cos(theta)},{} \\spad{y = r*sin(phi)*sin(theta)},{} \\spad{z = r*cos(phi)}.")) (|cylindrical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{cylindrical(pt)} transforms \\spad{pt} from polar coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,theta,z)} to \\spad{x = r * cos(theta)},{} \\spad{y = r * sin(theta)},{} \\spad{z}.")) (|polar| (((|Point| |#1|) (|Point| |#1|)) "\\spad{polar(pt)} transforms \\spad{pt} from polar coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,theta)} to \\spad{x = r * cos(theta)} ,{} \\spad{y = r * sin(theta)}.")) (|cartesian| (((|Point| |#1|) (|Point| |#1|)) "\\spad{cartesian(pt)} returns the Cartesian coordinates of point \\spad{pt}."))) NIL NIL (-177 R |PolR| E) @@ -641,11 +641,11 @@ NIL NIL NIL (-178 R S CS) -((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr,{} pat,{} res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches."))) +((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr, pat, res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL ((|HasCategory| (-952 |#2|) (LIST (QUOTE -886) (|devaluate| |#1|)))) (-179 R) -((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,{}r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,{}lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,{}lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)\\spad{*lm}(2)*...\\spad{*lm}(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,{}l)} \\undocumented{}"))) +((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)\\spad{*lm}(2)*...\\spad{*lm}(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,l)} \\undocumented{}"))) NIL NIL (-180) @@ -653,11 +653,11 @@ NIL NIL NIL (-181 R UP) -((|constructor| (NIL "\\spadtype{ComplexRootFindingPackage} provides functions to find all roots of a polynomial \\spad{p} over the complex number by using Plesken\\spad{'s} idea to calculate in the polynomial ring modulo \\spad{f} and employing the Chinese Remainder Theorem. In this first version,{} the precision (see \\spadfunFrom{digits}{Float}) is not increased when this is necessary to avoid rounding errors. Hence it is the user\\spad{'s} responsibility to increase the precision if necessary. Note also,{} if this package is called with \\spadignore{e.g.} \\spadtype{Fraction Integer},{} the precise calculations could require a lot of time. Also note that evaluating the zeros is not necessarily a good check whether the result is correct: already evaluation can cause rounding errors.")) (|startPolynomial| (((|Record| (|:| |start| |#2|) (|:| |factors| (|Factored| |#2|))) |#2|) "\\spad{startPolynomial(p)} uses the ideas of Schoenhage\\spad{'s} variant of Graeffe\\spad{'s} method to construct circles which separate roots to get a good start polynomial,{} \\spadignore{i.e.} one whose image under the Chinese Remainder Isomorphism has both entries of norm smaller and greater or equal to 1. In case the roots are found during internal calculations. The corresponding factors are in {\\em factors} which are otherwise 1.")) (|setErrorBound| ((|#1| |#1|) "\\spad{setErrorBound(eps)} changes the internal error bound,{} by default being {\\em 10 ** (-3)} to \\spad{eps},{} if \\spad{R} is a member in the category \\spadtype{QuotientFieldCategory Integer}. The internal {\\em globalDigits} is set to {\\em ceiling(1/r)**2*10} being {\\em 10**7} by default.")) (|schwerpunkt| (((|Complex| |#1|) |#2|) "\\spad{schwerpunkt(p)} determines the 'Schwerpunkt' of the roots of the polynomial \\spad{p} of degree \\spad{n},{} \\spadignore{i.e.} the center of gravity,{} which is {\\em coeffient of \\spad{x**(n-1)}} divided by {\\em n times coefficient of \\spad{x**n}}.")) (|rootRadius| ((|#1| |#2|) "\\spad{rootRadius(p)} calculates the root radius of \\spad{p} with a maximal error quotient of {\\em 1+globalEps},{} where {\\em globalEps} is the internal error bound,{} which can be set by {\\em setErrorBound}.") ((|#1| |#2| |#1|) "\\spad{rootRadius(p,{}errQuot)} calculates the root radius of \\spad{p} with a maximal error quotient of {\\em errQuot}.")) (|reciprocalPolynomial| ((|#2| |#2|) "\\spad{reciprocalPolynomial(p)} calulates a polynomial which has exactly the inverses of the non-zero roots of \\spad{p} as roots,{} and the same number of 0-roots.")) (|pleskenSplit| (((|Factored| |#2|) |#2| |#1|) "\\spad{pleskenSplit(poly,{} eps)} determines a start polynomial {\\em start}\\\\ by using \"startPolynomial then it increases the exponent \\spad{n} of {\\em start ** n mod poly} to get an approximate factor of {\\em poly},{} in general of degree \"degree \\spad{poly} \\spad{-1\"}. Then a divisor cascade is calculated and the best splitting is chosen,{} as soon as the error is small enough.") (((|Factored| |#2|) |#2| |#1| (|Boolean|)) "\\spad{pleskenSplit(poly,{}eps,{}info)} determines a start polynomial {\\em start} by using \"startPolynomial then it increases the exponent \\spad{n} of {\\em start ** n mod poly} to get an approximate factor of {\\em poly},{} in general of degree \"degree \\spad{poly} \\spad{-1\"}. Then a divisor cascade is calculated and the best splitting is chosen,{} as soon as the error is small enough. If {\\em info} is {\\em true},{} then information messages are issued.")) (|norm| ((|#1| |#2|) "\\spad{norm(p)} determines sum of absolute values of coefficients Note: this function depends on \\spadfunFrom{abs}{Complex}.")) (|graeffe| ((|#2| |#2|) "\\spad{graeffe p} determines \\spad{q} such that \\spad{q(-z**2) = p(z)*p(-z)}. Note that the roots of \\spad{q} are the squares of the roots of \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} tries to factor \\spad{p} into linear factors with error atmost {\\em globalEps},{} the internal error bound,{} which can be set by {\\em setErrorBound}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization.") (((|Factored| |#2|) |#2| |#1|) "\\spad{factor(p,{} eps)} tries to factor \\spad{p} into linear factors with error atmost {\\em eps}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization.") (((|Factored| |#2|) |#2| |#1| (|Boolean|)) "\\spad{factor(p,{} eps,{} info)} tries to factor \\spad{p} into linear factors with error atmost {\\em eps}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization. If {\\em info} is {\\em true},{} then information messages are given.")) (|divisorCascade| (((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2|) "\\spad{divisorCascade(p,{}tp)} assumes that degree of polynomial {\\em tp} is smaller than degree of polynomial \\spad{p},{} both monic. A sequence of divisions is calculated using the remainder,{} made monic,{} as divisor for the the next division. The result contains also the error of the factorizations,{} \\spadignore{i.e.} the norm of the remainder polynomial.") (((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2| (|Boolean|)) "\\spad{divisorCascade(p,{}tp)} assumes that degree of polynomial {\\em tp} is smaller than degree of polynomial \\spad{p},{} both monic. A sequence of divisions are calculated using the remainder,{} made monic,{} as divisor for the the next division. The result contains also the error of the factorizations,{} \\spadignore{i.e.} the norm of the remainder polynomial. If {\\em info} is {\\em true},{} then information messages are issued.")) (|complexZeros| (((|List| (|Complex| |#1|)) |#2| |#1|) "\\spad{complexZeros(p,{} eps)} tries to determine all complex zeros of the polynomial \\spad{p} with accuracy given by {\\em eps}.") (((|List| (|Complex| |#1|)) |#2|) "\\spad{complexZeros(p)} tries to determine all complex zeros of the polynomial \\spad{p} with accuracy given by the package constant {\\em globalEps} which you may change by {\\em setErrorBound}."))) +((|constructor| (NIL "\\spadtype{ComplexRootFindingPackage} provides functions to find all roots of a polynomial \\spad{p} over the complex number by using Plesken\\spad{'s} idea to calculate in the polynomial ring modulo \\spad{f} and employing the Chinese Remainder Theorem. In this first version,{} the precision (see \\spadfunFrom{digits}{Float}) is not increased when this is necessary to avoid rounding errors. Hence it is the user\\spad{'s} responsibility to increase the precision if necessary. Note also,{} if this package is called with \\spadignore{e.g.} \\spadtype{Fraction Integer},{} the precise calculations could require a lot of time. Also note that evaluating the zeros is not necessarily a good check whether the result is correct: already evaluation can cause rounding errors.")) (|startPolynomial| (((|Record| (|:| |start| |#2|) (|:| |factors| (|Factored| |#2|))) |#2|) "\\spad{startPolynomial(p)} uses the ideas of Schoenhage\\spad{'s} variant of Graeffe\\spad{'s} method to construct circles which separate roots to get a good start polynomial,{} \\spadignore{i.e.} one whose image under the Chinese Remainder Isomorphism has both entries of norm smaller and greater or equal to 1. In case the roots are found during internal calculations. The corresponding factors are in {\\em factors} which are otherwise 1.")) (|setErrorBound| ((|#1| |#1|) "\\spad{setErrorBound(eps)} changes the internal error bound,{} by default being {\\em 10 ** (-3)} to \\spad{eps},{} if \\spad{R} is a member in the category \\spadtype{QuotientFieldCategory Integer}. The internal {\\em globalDigits} is set to {\\em ceiling(1/r)**2*10} being {\\em 10**7} by default.")) (|schwerpunkt| (((|Complex| |#1|) |#2|) "\\spad{schwerpunkt(p)} determines the 'Schwerpunkt' of the roots of the polynomial \\spad{p} of degree \\spad{n},{} \\spadignore{i.e.} the center of gravity,{} which is {\\em coeffient of \\spad{x**(n-1)}} divided by {\\em n times coefficient of \\spad{x**n}}.")) (|rootRadius| ((|#1| |#2|) "\\spad{rootRadius(p)} calculates the root radius of \\spad{p} with a maximal error quotient of {\\em 1+globalEps},{} where {\\em globalEps} is the internal error bound,{} which can be set by {\\em setErrorBound}.") ((|#1| |#2| |#1|) "\\spad{rootRadius(p,errQuot)} calculates the root radius of \\spad{p} with a maximal error quotient of {\\em errQuot}.")) (|reciprocalPolynomial| ((|#2| |#2|) "\\spad{reciprocalPolynomial(p)} calulates a polynomial which has exactly the inverses of the non-zero roots of \\spad{p} as roots,{} and the same number of 0-roots.")) (|pleskenSplit| (((|Factored| |#2|) |#2| |#1|) "\\spad{pleskenSplit(poly, eps)} determines a start polynomial {\\em start}\\\\ by using \"startPolynomial then it increases the exponent \\spad{n} of {\\em start ** n mod poly} to get an approximate factor of {\\em poly},{} in general of degree \"degree \\spad{poly} \\spad{-1\"}. Then a divisor cascade is calculated and the best splitting is chosen,{} as soon as the error is small enough.") (((|Factored| |#2|) |#2| |#1| (|Boolean|)) "\\spad{pleskenSplit(poly,eps,info)} determines a start polynomial {\\em start} by using \"startPolynomial then it increases the exponent \\spad{n} of {\\em start ** n mod poly} to get an approximate factor of {\\em poly},{} in general of degree \"degree \\spad{poly} \\spad{-1\"}. Then a divisor cascade is calculated and the best splitting is chosen,{} as soon as the error is small enough. If {\\em info} is {\\em true},{} then information messages are issued.")) (|norm| ((|#1| |#2|) "\\spad{norm(p)} determines sum of absolute values of coefficients Note: this function depends on \\spadfunFrom{abs}{Complex}.")) (|graeffe| ((|#2| |#2|) "\\spad{graeffe p} determines \\spad{q} such that \\spad{q(-z**2) = p(z)*p(-z)}. Note that the roots of \\spad{q} are the squares of the roots of \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} tries to factor \\spad{p} into linear factors with error atmost {\\em globalEps},{} the internal error bound,{} which can be set by {\\em setErrorBound}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization.") (((|Factored| |#2|) |#2| |#1|) "\\spad{factor(p, eps)} tries to factor \\spad{p} into linear factors with error atmost {\\em eps}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization.") (((|Factored| |#2|) |#2| |#1| (|Boolean|)) "\\spad{factor(p, eps, info)} tries to factor \\spad{p} into linear factors with error atmost {\\em eps}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization. If {\\em info} is {\\em true},{} then information messages are given.")) (|divisorCascade| (((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2|) "\\spad{divisorCascade(p,tp)} assumes that degree of polynomial {\\em tp} is smaller than degree of polynomial \\spad{p},{} both monic. A sequence of divisions is calculated using the remainder,{} made monic,{} as divisor for the the next division. The result contains also the error of the factorizations,{} \\spadignore{i.e.} the norm of the remainder polynomial.") (((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2| (|Boolean|)) "\\spad{divisorCascade(p,tp)} assumes that degree of polynomial {\\em tp} is smaller than degree of polynomial \\spad{p},{} both monic. A sequence of divisions are calculated using the remainder,{} made monic,{} as divisor for the the next division. The result contains also the error of the factorizations,{} \\spadignore{i.e.} the norm of the remainder polynomial. If {\\em info} is {\\em true},{} then information messages are issued.")) (|complexZeros| (((|List| (|Complex| |#1|)) |#2| |#1|) "\\spad{complexZeros(p, eps)} tries to determine all complex zeros of the polynomial \\spad{p} with accuracy given by {\\em eps}.") (((|List| (|Complex| |#1|)) |#2|) "\\spad{complexZeros(p)} tries to determine all complex zeros of the polynomial \\spad{p} with accuracy given by the package constant {\\em globalEps} which you may change by {\\em setErrorBound}."))) NIL NIL (-182 S ST) -((|constructor| (NIL "This package provides tools for working with cyclic streams.")) (|computeCycleEntry| ((|#2| |#2| |#2|) "\\spad{computeCycleEntry(x,{}cycElt)},{} where \\spad{cycElt} is a pointer to a node in the cyclic part of the cyclic stream \\spad{x},{} returns a pointer to the first node in the cycle")) (|computeCycleLength| (((|NonNegativeInteger|) |#2|) "\\spad{computeCycleLength(s)} returns the length of the cycle of a cyclic stream \\spad{t},{} where \\spad{s} is a pointer to a node in the cyclic part of \\spad{t}.")) (|cycleElt| (((|Union| |#2| "failed") |#2|) "\\spad{cycleElt(s)} returns a pointer to a node in the cycle if the stream \\spad{s} is cyclic and returns \"failed\" if \\spad{s} is not cyclic"))) +((|constructor| (NIL "This package provides tools for working with cyclic streams.")) (|computeCycleEntry| ((|#2| |#2| |#2|) "\\spad{computeCycleEntry(x,cycElt)},{} where \\spad{cycElt} is a pointer to a node in the cyclic part of the cyclic stream \\spad{x},{} returns a pointer to the first node in the cycle")) (|computeCycleLength| (((|NonNegativeInteger|) |#2|) "\\spad{computeCycleLength(s)} returns the length of the cycle of a cyclic stream \\spad{t},{} where \\spad{s} is a pointer to a node in the cyclic part of \\spad{t}.")) (|cycleElt| (((|Union| |#2| "failed") |#2|) "\\spad{cycleElt(s)} returns a pointer to a node in the cycle if the stream \\spad{s} is cyclic and returns \"failed\" if \\spad{s} is not cyclic"))) NIL NIL (-183 C) @@ -680,8 +680,8 @@ NIL ((|constructor| (NIL "This domain provides implementations for constructors.")) (|findConstructor| (((|Maybe| $) (|Identifier|)) "\\spad{findConstructor(s)} attempts to find a constructor named \\spad{s}. If successful,{} returns that constructor; otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-188 R -2371) -((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) +(-188 R -2352) +((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL (-189 R) @@ -689,7 +689,7 @@ NIL NIL NIL (-190) -((|constructor| (NIL "Enumeration by cycle indices.")) (|skewSFunction| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{skewSFunction(li1,{}li2)} is the \\spad{S}-function \\indented{1}{of the partition difference \\spad{li1 - li2}} \\indented{1}{expressed in terms of power sum symmetric functions.}")) (|SFunction| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|List| (|Integer|))) "\\spad{SFunction(\\spad{li})} is the \\spad{S}-function of the partition \\spad{\\spad{li}} \\indented{1}{expressed in terms of power sum symmetric functions.}")) (|wreath| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{wreath(s1,{}s2)} is the cycle index of the wreath product \\indented{1}{of the two groups whose cycle indices are \\spad{s1} and} \\indented{1}{\\spad{s2}.}")) (|eval| (((|Fraction| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval s} is the sum of the coefficients of a cycle index.")) (|cup| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{cup(s1,{}s2)},{} introduced by Redfield,{} \\indented{1}{is the scalar product of two cycle indices,{} in which the} \\indented{1}{power sums are retained to produce a cycle index.}")) (|cap| (((|Fraction| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{cap(s1,{}s2)},{} introduced by Redfield,{} \\indented{1}{is the scalar product of two cycle indices.}")) (|graphs| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{graphs n} is the cycle index of the group induced on \\indented{1}{the edges of a graph by applying the symmetric function to the} \\indented{1}{\\spad{n} nodes.}")) (|dihedral| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{dihedral n} is the cycle index of the \\indented{1}{dihedral group of degree \\spad{n}.}")) (|cyclic| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{cyclic n} is the cycle index of the \\indented{1}{cyclic group of degree \\spad{n}.}")) (|alternating| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{alternating n} is the cycle index of the \\indented{1}{alternating group of degree \\spad{n}.}")) (|elementary| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{elementary n} is the \\spad{n} th elementary symmetric \\indented{1}{function expressed in terms of power sums.}")) (|powerSum| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{powerSum n} is the \\spad{n} th power sum symmetric \\indented{1}{function.}")) (|complete| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{complete n} is the \\spad{n} th complete homogeneous \\indented{1}{symmetric function expressed in terms of power sums.} \\indented{1}{Alternatively it is the cycle index of the symmetric} \\indented{1}{group of degree \\spad{n}.}"))) +((|constructor| (NIL "Enumeration by cycle indices.")) (|skewSFunction| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{skewSFunction(li1,li2)} is the \\spad{S}-function \\indented{1}{of the partition difference \\spad{li1 - li2}} \\indented{1}{expressed in terms of power sum symmetric functions.}")) (|SFunction| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|List| (|Integer|))) "\\spad{SFunction(li)} is the \\spad{S}-function of the partition \\spad{li} \\indented{1}{expressed in terms of power sum symmetric functions.}")) (|wreath| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{wreath(s1,s2)} is the cycle index of the wreath product \\indented{1}{of the two groups whose cycle indices are \\spad{s1} and} \\indented{1}{\\spad{s2}.}")) (|eval| (((|Fraction| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval s} is the sum of the coefficients of a cycle index.")) (|cup| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{cup(s1,s2)},{} introduced by Redfield,{} \\indented{1}{is the scalar product of two cycle indices,{} in which the} \\indented{1}{power sums are retained to produce a cycle index.}")) (|cap| (((|Fraction| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{cap(s1,s2)},{} introduced by Redfield,{} \\indented{1}{is the scalar product of two cycle indices.}")) (|graphs| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{graphs n} is the cycle index of the group induced on \\indented{1}{the edges of a graph by applying the symmetric function to the} \\indented{1}{\\spad{n} nodes.}")) (|dihedral| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{dihedral n} is the cycle index of the \\indented{1}{dihedral group of degree \\spad{n}.}")) (|cyclic| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{cyclic n} is the cycle index of the \\indented{1}{cyclic group of degree \\spad{n}.}")) (|alternating| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{alternating n} is the cycle index of the \\indented{1}{alternating group of degree \\spad{n}.}")) (|elementary| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{elementary n} is the \\spad{n} th elementary symmetric \\indented{1}{function expressed in terms of power sums.}")) (|powerSum| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{powerSum n} is the \\spad{n} th power sum symmetric \\indented{1}{function.}")) (|complete| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{complete n} is the \\spad{n} th complete homogeneous \\indented{1}{symmetric function expressed in terms of power sums.} \\indented{1}{Alternatively it is the cycle index of the symmetric} \\indented{1}{group of degree \\spad{n}.}"))) NIL NIL (-191) @@ -697,7 +697,7 @@ NIL NIL NIL (-192) -((|constructor| (NIL "\\axiomType{d01AgentsPackage} is a package of numerical agents to be used to investigate attributes of an input function so as to decide the \\axiomFun{measure} of an appropriate numerical integration routine. It contains functions \\axiomFun{rangeIsFinite} to test the input range and \\axiomFun{functionIsContinuousAtEndPoints} to check for continuity at the end points of the range.")) (|changeName| (((|Result|) (|Symbol|) (|Symbol|) (|Result|)) "\\spad{changeName(s,{}t,{}r)} changes the name of item \\axiom{\\spad{s}} in \\axiom{\\spad{r}} to \\axiom{\\spad{t}}.")) (|commaSeparate| (((|String|) (|List| (|String|))) "\\spad{commaSeparate(l)} produces a comma separated string from a list of strings.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{singularitiesOf(args)} returns a list of potential singularities of the function within the given range")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,{}var,{}range)} returns a list of possible problem points by looking at the zeros of the denominator of the function if it can be retracted to \\axiomType{Polynomial DoubleFloat}.")) (|functionIsOscillatory| (((|Float|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsOscillatory(a)} tests whether the function \\spad{a.fn} has many zeros of its derivative.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(x)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{x}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(x)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{x}}")) (|functionIsContinuousAtEndPoints| (((|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsContinuousAtEndPoints(args)} uses power series limits to check for problems at the end points of the range of \\spad{args}.")) (|rangeIsFinite| (((|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{rangeIsFinite(args)} tests the endpoints of \\spad{args.range} for infinite end points."))) +((|constructor| (NIL "\\axiomType{d01AgentsPackage} is a package of numerical agents to be used to investigate attributes of an input function so as to decide the \\axiomFun{measure} of an appropriate numerical integration routine. It contains functions \\axiomFun{rangeIsFinite} to test the input range and \\axiomFun{functionIsContinuousAtEndPoints} to check for continuity at the end points of the range.")) (|changeName| (((|Result|) (|Symbol|) (|Symbol|) (|Result|)) "\\spad{changeName(s,t,r)} changes the name of item \\axiom{\\spad{s}} in \\axiom{\\spad{r}} to \\axiom{\\spad{t}}.")) (|commaSeparate| (((|String|) (|List| (|String|))) "\\spad{commaSeparate(l)} produces a comma separated string from a list of strings.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{singularitiesOf(args)} returns a list of potential singularities of the function within the given range")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,var,range)} returns a list of possible problem points by looking at the zeros of the denominator of the function if it can be retracted to \\axiomType{Polynomial DoubleFloat}.")) (|functionIsOscillatory| (((|Float|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsOscillatory(a)} tests whether the function \\spad{a.fn} has many zeros of its derivative.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(x)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{x}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(x)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{x}}")) (|functionIsContinuousAtEndPoints| (((|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsContinuousAtEndPoints(args)} uses power series limits to check for problems at the end points of the range of \\spad{args}.")) (|rangeIsFinite| (((|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{rangeIsFinite(args)} tests the endpoints of \\spad{args.range} for infinite end points."))) NIL NIL (-193) @@ -749,7 +749,7 @@ NIL NIL NIL (-205) -((|constructor| (NIL "\\axiom{d02AgentsPackage} contains a set of computational agents for use with Ordinary Differential Equation solvers.")) (|intermediateResultsIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{intermediateResultsIF(o)} returns a value corresponding to the required number of intermediate results required and,{} therefore,{} an indication of how much this would affect the step-length of the calculation. It returns a value in the range [0,{}1].")) (|accuracyIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{accuracyIF(o)} returns the intensity value of the accuracy requirements of the input ODE. A request of accuracy of 10^-6 corresponds to the neutral intensity. It returns a value in the range [0,{}1].")) (|expenseOfEvaluationIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{expenseOfEvaluationIF(o)} returns the intensity value of the cost of evaluating the input ODE. This is in terms of the number of ``operational units\\spad{''}. It returns a value in the range [0,{}1].\\newline\\indent{20} 400 ``operation units\\spad{''} \\spad{->} 0.75 \\newline 200 ``operation units\\spad{''} \\spad{->} 0.5 \\newline 83 ``operation units\\spad{''} \\spad{->} 0.25 \\newline\\indent{15} exponentiation = 4 units ,{} function calls = 10 units.")) (|systemSizeIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{systemSizeIF(ode)} returns the intensity value of the size of the system of ODEs. 20 equations corresponds to the neutral value. It returns a value in the range [0,{}1].")) (|stiffnessAndStabilityOfODEIF| (((|Record| (|:| |stiffnessFactor| (|Float|)) (|:| |stabilityFactor| (|Float|))) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{stiffnessAndStabilityOfODEIF(ode)} calculates the intensity values of stiffness of a system of first-order differential equations (by evaluating the maximum difference in the real parts of the negative eigenvalues of the jacobian of the system for which \\spad{O}(10) equates to mildly stiff wheras stiffness ratios of \\spad{O}(10^6) are not uncommon) and whether the system is likely to show any oscillations (identified by the closeness to the imaginary axis of the complex eigenvalues of the jacobian). \\blankline It returns two values in the range [0,{}1].")) (|stiffnessAndStabilityFactor| (((|Record| (|:| |stiffnessFactor| (|Float|)) (|:| |stabilityFactor| (|Float|))) (|Matrix| (|Expression| (|DoubleFloat|)))) "\\spad{stiffnessAndStabilityFactor(me)} calculates the stability and stiffness factor of a system of first-order differential equations (by evaluating the maximum difference in the real parts of the negative eigenvalues of the jacobian of the system for which \\spad{O}(10) equates to mildly stiff wheras stiffness ratios of \\spad{O}(10^6) are not uncommon) and whether the system is likely to show any oscillations (identified by the closeness to the imaginary axis of the complex eigenvalues of the jacobian).")) (|eval| (((|Matrix| (|Expression| (|DoubleFloat|))) (|Matrix| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{eval(mat,{}symbols,{}values)} evaluates a multivariable matrix at given \\spad{values} for each of a list of variables")) (|jacobian| (((|Matrix| (|Expression| (|DoubleFloat|))) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|))) "\\spad{jacobian(v,{}w)} is a local function to make a jacobian matrix")) (|sparsityIF| (((|Float|) (|Matrix| (|Expression| (|DoubleFloat|)))) "\\spad{sparsityIF(m)} calculates the sparsity of a jacobian matrix")) (|combineFeatureCompatibility| (((|Float|) (|Float|) (|List| (|Float|))) "\\spad{combineFeatureCompatibility(C1,{}L)} is for interacting attributes") (((|Float|) (|Float|) (|Float|)) "\\spad{combineFeatureCompatibility(C1,{}C2)} is for interacting attributes"))) +((|constructor| (NIL "\\axiom{d02AgentsPackage} contains a set of computational agents for use with Ordinary Differential Equation solvers.")) (|intermediateResultsIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{intermediateResultsIF(o)} returns a value corresponding to the required number of intermediate results required and,{} therefore,{} an indication of how much this would affect the step-length of the calculation. It returns a value in the range [0,{}1].")) (|accuracyIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{accuracyIF(o)} returns the intensity value of the accuracy requirements of the input ODE. A request of accuracy of 10^-6 corresponds to the neutral intensity. It returns a value in the range [0,{}1].")) (|expenseOfEvaluationIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{expenseOfEvaluationIF(o)} returns the intensity value of the cost of evaluating the input ODE. This is in terms of the number of ``operational units\\spad{''}. It returns a value in the range [0,{}1].\\newline\\indent{20} 400 ``operation units\\spad{''} \\spad{->} 0.75 \\newline 200 ``operation units\\spad{''} \\spad{->} 0.5 \\newline 83 ``operation units\\spad{''} \\spad{->} 0.25 \\newline\\indent{15} exponentiation = 4 units ,{} function calls = 10 units.")) (|systemSizeIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{systemSizeIF(ode)} returns the intensity value of the size of the system of ODEs. 20 equations corresponds to the neutral value. It returns a value in the range [0,{}1].")) (|stiffnessAndStabilityOfODEIF| (((|Record| (|:| |stiffnessFactor| (|Float|)) (|:| |stabilityFactor| (|Float|))) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{stiffnessAndStabilityOfODEIF(ode)} calculates the intensity values of stiffness of a system of first-order differential equations (by evaluating the maximum difference in the real parts of the negative eigenvalues of the jacobian of the system for which \\spad{O}(10) equates to mildly stiff wheras stiffness ratios of \\spad{O}(10^6) are not uncommon) and whether the system is likely to show any oscillations (identified by the closeness to the imaginary axis of the complex eigenvalues of the jacobian). \\blankline It returns two values in the range [0,{}1].")) (|stiffnessAndStabilityFactor| (((|Record| (|:| |stiffnessFactor| (|Float|)) (|:| |stabilityFactor| (|Float|))) (|Matrix| (|Expression| (|DoubleFloat|)))) "\\spad{stiffnessAndStabilityFactor(me)} calculates the stability and stiffness factor of a system of first-order differential equations (by evaluating the maximum difference in the real parts of the negative eigenvalues of the jacobian of the system for which \\spad{O}(10) equates to mildly stiff wheras stiffness ratios of \\spad{O}(10^6) are not uncommon) and whether the system is likely to show any oscillations (identified by the closeness to the imaginary axis of the complex eigenvalues of the jacobian).")) (|eval| (((|Matrix| (|Expression| (|DoubleFloat|))) (|Matrix| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{eval(mat,symbols,values)} evaluates a multivariable matrix at given \\spad{values} for each of a list of variables")) (|jacobian| (((|Matrix| (|Expression| (|DoubleFloat|))) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|))) "\\spad{jacobian(v,w)} is a local function to make a jacobian matrix")) (|sparsityIF| (((|Float|) (|Matrix| (|Expression| (|DoubleFloat|)))) "\\spad{sparsityIF(m)} calculates the sparsity of a jacobian matrix")) (|combineFeatureCompatibility| (((|Float|) (|Float|) (|List| (|Float|))) "\\spad{combineFeatureCompatibility(C1,L)} is for interacting attributes") (((|Float|) (|Float|) (|Float|)) "\\spad{combineFeatureCompatibility(C1,C2)} is for interacting attributes"))) NIL NIL (-206) @@ -769,7 +769,7 @@ NIL NIL NIL (-210) -((|elliptic?| (((|Boolean|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{elliptic?(r)} \\undocumented{}")) (|central?| (((|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{central?(f,{}g,{}l)} \\undocumented{}")) (|subscriptedVariables| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{subscriptedVariables(e)} \\undocumented{}")) (|varList| (((|List| (|Symbol|)) (|Symbol|) (|NonNegativeInteger|)) "\\spad{varList(s,{}n)} \\undocumented{}"))) +((|elliptic?| (((|Boolean|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{elliptic?(r)} \\undocumented{}")) (|central?| (((|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{central?(f,g,l)} \\undocumented{}")) (|subscriptedVariables| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{subscriptedVariables(e)} \\undocumented{}")) (|varList| (((|List| (|Symbol|)) (|Symbol|) (|NonNegativeInteger|)) "\\spad{varList(s,n)} \\undocumented{}"))) NIL NIL (-211) @@ -785,61 +785,61 @@ NIL NIL NIL (-214 S) -((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,{}start,{}end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,{}s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,{}q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,{}s)} returns an element of \\spad{x} indexed by \\spad{s}"))) +((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,start,end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,s)} returns an element of \\spad{x} indexed by \\spad{s}"))) NIL NIL -(-215 -2371 UP UPUP R) -((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f,{} ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use."))) +(-215 -2352 UP UPUP R) +((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f, ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use."))) NIL NIL -(-216 -2371 FP) -((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,{}k,{}v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,{}k,{}v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,{}k,{}v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,{}sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}."))) +(-216 -2352 FP) +((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,k,v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,k,v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,k,v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}."))) NIL NIL (-217) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion."))) ((-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) -((|HasCategory| (-566) (QUOTE (-909))) (|HasCategory| (-566) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| (-566) (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-147))) (|HasCategory| (-566) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-566) (QUOTE (-1022))) (|HasCategory| (-566) (QUOTE (-820))) (-2809 (|HasCategory| (-566) (QUOTE (-820))) (|HasCategory| (-566) (QUOTE (-850)))) (|HasCategory| (-566) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-566) (QUOTE (-1150))) (|HasCategory| (-566) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| (-566) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| (-566) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| (-566) (QUOTE (-233))) (|HasCategory| (-566) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-566) (LIST (QUOTE -516) (QUOTE (-1175)) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -310) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -287) (QUOTE (-566)) (QUOTE (-566)))) (|HasCategory| (-566) (QUOTE (-308))) (|HasCategory| (-566) (QUOTE (-547))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| (-566) (LIST (QUOTE -639) (QUOTE (-566)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-909)))) (|HasCategory| (-566) (QUOTE (-145))))) +((|HasCategory| (-566) (QUOTE (-909))) (|HasCategory| (-566) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| (-566) (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-147))) (|HasCategory| (-566) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-566) (QUOTE (-1022))) (|HasCategory| (-566) (QUOTE (-820))) (-2768 (|HasCategory| (-566) (QUOTE (-820))) (|HasCategory| (-566) (QUOTE (-850)))) (|HasCategory| (-566) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-566) (QUOTE (-1150))) (|HasCategory| (-566) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| (-566) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| (-566) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| (-566) (QUOTE (-233))) (|HasCategory| (-566) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-566) (LIST (QUOTE -516) (QUOTE (-1175)) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -310) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -287) (QUOTE (-566)) (QUOTE (-566)))) (|HasCategory| (-566) (QUOTE (-308))) (|HasCategory| (-566) (QUOTE (-547))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| (-566) (LIST (QUOTE -639) (QUOTE (-566)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-909)))) (-2768 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-909)))) (|HasCategory| (-566) (QUOTE (-145))))) (-218) ((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition \\spad{`d'}.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition \\spad{`d'}. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any."))) NIL NIL -(-219 R -2371) -((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) +(-219 R -2352) +((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f, x, a, b, ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL (-220 R) -((|constructor| (NIL "\\spadtype{RationalFunctionDefiniteIntegration} provides functions to compute definite integrals of rational functions.")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|)))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) +((|constructor| (NIL "\\spadtype{RationalFunctionDefiniteIntegration} provides functions to compute definite integrals of rational functions.")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|))) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|)))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL (-221 R1 R2) -((|constructor| (NIL "This package \\undocumented{}")) (|expand| (((|List| (|Expression| |#2|)) (|Expression| |#2|) (|PositiveInteger|)) "\\spad{expand(f,{}n)} \\undocumented{}")) (|reduce| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#1|)) (|:| |deg| (|PositiveInteger|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reduce(p)} \\undocumented{}"))) +((|constructor| (NIL "This package \\undocumented{}")) (|expand| (((|List| (|Expression| |#2|)) (|Expression| |#2|) (|PositiveInteger|)) "\\spad{expand(f,n)} \\undocumented{}")) (|reduce| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#1|)) (|:| |deg| (|PositiveInteger|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reduce(p)} \\undocumented{}"))) NIL NIL (-222 S) -((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}."))) +((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}."))) ((-4414 . T) (-4415 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) +((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2768 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (-223 |CoefRing| |listIndVar|) -((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,{}df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,{}u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}."))) +((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}."))) ((-4411 . T)) NIL -(-224 R -2371) -((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} x,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x,{} g,{} a,{} b,{} eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval."))) +(-224 R -2352) +((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, x, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x, g, a, b, eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval."))) NIL NIL (-225) -((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-3628 . T) (-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) +((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) +((-3603 . T) (-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) NIL (-226) -((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}"))) +((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}"))) NIL NIL (-227 R) -((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,{}Y,{}Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,{}sy,{}sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}"))) +((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,Y,Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,sy,sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}"))) ((-4414 . T) (-4415 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-558))) (|HasAttribute| |#1| (QUOTE (-4416 "*"))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) +((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2768 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-558))) (|HasAttribute| |#1| (QUOTE (-4416 "*"))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (-228 A S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) NIL @@ -849,51 +849,51 @@ NIL ((-4415 . T)) NIL (-230 S R) -((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) +((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) NIL ((|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-233)))) (-231 R) -((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) +((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) ((-4411 . T)) NIL (-232 S) -((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified."))) +((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x, n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified."))) NIL NIL (-233) -((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified."))) +((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x, n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified."))) ((-4411 . T)) NIL (-234 A S) -((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) +((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) NIL ((|HasAttribute| |#1| (QUOTE -4414))) (-235 S) -((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) +((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) ((-4415 . T)) NIL (-236) ((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation"))) NIL NIL -(-237 S -2420 R) -((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) +(-237 S -3382 R) +((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) NIL ((|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (QUOTE (-848))) (|HasAttribute| |#3| (QUOTE -4411)) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (QUOTE (-726))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (QUOTE (-1099)))) -(-238 -2420 R) -((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) +(-238 -3382 R) +((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) ((-4408 |has| |#2| (-1049)) (-4409 |has| |#2| (-1049)) (-4411 |has| |#2| (-6 -4411)) ((-4416 "*") |has| |#2| (-172)) (-4414 . T)) NIL -(-239 -2420 A B) -((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) +(-239 -3382 A B) +((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-240 -2420 R) +(-240 -3382 R) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) ((-4408 |has| |#2| (-1049)) (-4409 |has| |#2| (-1049)) (-4411 |has| |#2| (-6 -4411)) ((-4416 "*") |has| |#2| (-172)) (-4414 . T)) -((-2809 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))))) (-2809 (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1099)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#2| (QUOTE (-365))) (-2809 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2809 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365)))) (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-793))) (-2809 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-848)))) (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-726))) (-2809 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1049)))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1049)))) (|HasCategory| |#2| (QUOTE (-233))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-365)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-726)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-793)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-848)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1099))))) (-2809 (-12 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1049))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-2809 (-12 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))))) (|HasCategory| (-566) (QUOTE (-850))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175))))) (-2809 (|HasCategory| |#2| (QUOTE (-1049))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1099)))) (|HasAttribute| |#2| (QUOTE -4411)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))))) +((-2768 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))))) (-2768 (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1099)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#2| (QUOTE (-365))) (-2768 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2768 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365)))) (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-793))) (-2768 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-848)))) (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-726))) (-2768 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1049)))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (-2768 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2768 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2768 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2768 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1049)))) (|HasCategory| |#2| (QUOTE (-233))) (-2768 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-1099))) (-2768 (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-365)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-726)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-793)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-848)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1099))))) (-2768 (-12 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1049))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-2768 (-12 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))))) (|HasCategory| (-566) (QUOTE (-850))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175))))) (-2768 (|HasCategory| |#2| (QUOTE (-1049))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1099)))) (|HasAttribute| |#2| (QUOTE -4411)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))))) (-241) -((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,{}i,{}s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,{}i,{}s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,{}s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type."))) +((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,i,s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,i,s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type."))) NIL NIL (-242 S) @@ -905,21 +905,21 @@ NIL ((-4407 . T) (-4408 . T) (-4409 . T) (-4411 . T)) NIL (-244 S) -((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,{}v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,{}v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty."))) +((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty."))) NIL NIL (-245 S) ((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}"))) ((-4415 . T) (-4414 . T)) -((-2809 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2809 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) +((-2768 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2768 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2768 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-246 M) -((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,{}a,{}p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}"))) +((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,a,p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}"))) NIL NIL (-247 |vl| R) -((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) +((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) (((-4416 "*") |has| |#2| (-172)) (-4407 |has| |#2| (-558)) (-4412 |has| |#2| (-6 -4412)) (-4409 . T) (-4408 . T) (-4411 . T)) -((|HasCategory| |#2| (QUOTE (-909))) (-2809 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2809 (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2809 (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-172))) (-2809 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-558)))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4412)) (|HasCategory| |#2| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-145))))) +((|HasCategory| |#2| (QUOTE (-909))) (-2768 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2768 (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2768 (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-172))) (-2768 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-558)))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2768 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4412)) (|HasCategory| |#2| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (-2768 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-145))))) (-248) ((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall| (|DomainConstructor|))) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall| (|DomainConstructor|)) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object \\spad{`d'}."))) NIL @@ -934,34 +934,34 @@ NIL NIL (-251 |n| R M S) ((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) -((-4411 -2809 (-2432 (|has| |#4| (-1049)) (|has| |#4| (-233))) (-2432 (|has| |#4| (-1049)) (|has| |#4| (-900 (-1175)))) (|has| |#4| (-6 -4411)) (-2432 (|has| |#4| (-1049)) (|has| |#4| (-639 (-566))))) (-4408 |has| |#4| (-1049)) (-4409 |has| |#4| (-1049)) ((-4416 "*") |has| |#4| (-172)) (-4414 . T)) -((-2809 (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-726))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-793))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-848))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1049))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -900) (QUOTE (-1175)))))) (|HasCategory| |#4| (QUOTE (-365))) (-2809 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (QUOTE (-1049)))) (-2809 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-365)))) (|HasCategory| |#4| (QUOTE (-1049))) (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-793))) (-2809 (|HasCategory| |#4| (QUOTE (-793))) (|HasCategory| |#4| (QUOTE (-848)))) (|HasCategory| |#4| (QUOTE (-848))) (|HasCategory| |#4| (QUOTE (-726))) (-2809 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-1049)))) (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#4| (LIST (QUOTE -900) (QUOTE (-1175)))) (-2809 (|HasCategory| |#4| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#4| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1049)))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-172)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-233)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-365)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-370)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-726)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-793)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-848)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-1049)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-1099))))) (-2809 (-12 (|HasCategory| |#4| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-726))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-793))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-848))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-1049))) (-12 (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-2809 (-12 (|HasCategory| |#4| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-726))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-793))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-848))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-1049))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566)))))) (|HasCategory| (-566) (QUOTE (-850))) (-12 (|HasCategory| |#4| (QUOTE (-1049))) (|HasCategory| |#4| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-1049))) (|HasCategory| |#4| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1049)))) (-2809 (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1049)))) (|HasCategory| |#4| (QUOTE (-726))) (-12 (|HasCategory| |#4| (QUOTE (-1049))) (|HasCategory| |#4| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-1049))) (|HasCategory| |#4| (LIST (QUOTE -900) (QUOTE (-1175)))))) (-12 (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-2809 (|HasCategory| |#4| (QUOTE (-1049))) (-12 (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-1099)))) (-2809 (|HasAttribute| |#4| (QUOTE -4411)) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1049)))) (-12 (|HasCategory| |#4| (QUOTE (-1049))) (|HasCategory| |#4| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-1049))) (|HasCategory| |#4| (LIST (QUOTE -900) (QUOTE (-1175)))))) (|HasCategory| |#4| (QUOTE (-131))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|))))) +((-4411 -2768 (-2415 (|has| |#4| (-1049)) (|has| |#4| (-233))) (-2415 (|has| |#4| (-1049)) (|has| |#4| (-900 (-1175)))) (|has| |#4| (-6 -4411)) (-2415 (|has| |#4| (-1049)) (|has| |#4| (-639 (-566))))) (-4408 |has| |#4| (-1049)) (-4409 |has| |#4| (-1049)) ((-4416 "*") |has| |#4| (-172)) (-4414 . T)) +((-2768 (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-726))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-793))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-848))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1049))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -900) (QUOTE (-1175)))))) (|HasCategory| |#4| (QUOTE (-365))) (-2768 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (QUOTE (-1049)))) (-2768 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-365)))) (|HasCategory| |#4| (QUOTE (-1049))) (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-793))) (-2768 (|HasCategory| |#4| (QUOTE (-793))) (|HasCategory| |#4| (QUOTE (-848)))) (|HasCategory| |#4| (QUOTE (-848))) (|HasCategory| |#4| (QUOTE (-726))) (-2768 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-1049)))) (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#4| (LIST (QUOTE -900) (QUOTE (-1175)))) (-2768 (|HasCategory| |#4| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#4| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1049)))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1099))) (-2768 (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-172)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-233)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-365)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-370)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-726)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-793)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-848)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-1049)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-1099))))) (-2768 (-12 (|HasCategory| |#4| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-726))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-793))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-848))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-1049))) (-12 (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-2768 (-12 (|HasCategory| |#4| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-726))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-793))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-848))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-1049))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566)))))) (|HasCategory| (-566) (QUOTE (-850))) (-12 (|HasCategory| |#4| (QUOTE (-1049))) (|HasCategory| |#4| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-1049))) (|HasCategory| |#4| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1049)))) (-2768 (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1049)))) (|HasCategory| |#4| (QUOTE (-726))) (-12 (|HasCategory| |#4| (QUOTE (-1049))) (|HasCategory| |#4| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-1049))) (|HasCategory| |#4| (LIST (QUOTE -900) (QUOTE (-1175)))))) (-12 (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-2768 (|HasCategory| |#4| (QUOTE (-1049))) (-12 (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-1099)))) (-2768 (|HasAttribute| |#4| (QUOTE -4411)) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1049)))) (-12 (|HasCategory| |#4| (QUOTE (-1049))) (|HasCategory| |#4| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-1049))) (|HasCategory| |#4| (LIST (QUOTE -900) (QUOTE (-1175)))))) (|HasCategory| |#4| (QUOTE (-131))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|))))) (-252 |n| R S) ((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) -((-4411 -2809 (-2432 (|has| |#3| (-1049)) (|has| |#3| (-233))) (-2432 (|has| |#3| (-1049)) (|has| |#3| (-900 (-1175)))) (|has| |#3| (-6 -4411)) (-2432 (|has| |#3| (-1049)) (|has| |#3| (-639 (-566))))) (-4408 |has| |#3| (-1049)) (-4409 |has| |#3| (-1049)) ((-4416 "*") |has| |#3| (-172)) (-4414 . T)) -((-2809 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-726))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-848))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))))) (|HasCategory| |#3| (QUOTE (-365))) (-2809 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1049)))) (-2809 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365)))) (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-793))) (-2809 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (QUOTE (-848)))) (|HasCategory| |#3| (QUOTE (-848))) (|HasCategory| |#3| (QUOTE (-726))) (-2809 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1049)))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (-2809 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1049)))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-233)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-365)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-370)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-726)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-793)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-848)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-1049)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-1099))))) (-2809 (-12 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-726))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-848))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-1049))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-2809 (-12 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-726))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-848))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566)))))) (|HasCategory| (-566) (QUOTE (-850))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1049)))) (-2809 (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1049)))) (|HasCategory| |#3| (QUOTE (-726))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-2809 (|HasCategory| |#3| (QUOTE (-1049))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-1099)))) (-2809 (|HasAttribute| |#3| (QUOTE -4411)) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1049)))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))))) +((-4411 -2768 (-2415 (|has| |#3| (-1049)) (|has| |#3| (-233))) (-2415 (|has| |#3| (-1049)) (|has| |#3| (-900 (-1175)))) (|has| |#3| (-6 -4411)) (-2415 (|has| |#3| (-1049)) (|has| |#3| (-639 (-566))))) (-4408 |has| |#3| (-1049)) (-4409 |has| |#3| (-1049)) ((-4416 "*") |has| |#3| (-172)) (-4414 . T)) +((-2768 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-726))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-848))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))))) (|HasCategory| |#3| (QUOTE (-365))) (-2768 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1049)))) (-2768 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365)))) (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-793))) (-2768 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (QUOTE (-848)))) (|HasCategory| |#3| (QUOTE (-848))) (|HasCategory| |#3| (QUOTE (-726))) (-2768 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1049)))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (-2768 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1049)))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1099))) (-2768 (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-233)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-365)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-370)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-726)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-793)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-848)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-1049)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-1099))))) (-2768 (-12 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-726))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-848))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-1049))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-2768 (-12 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-726))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-848))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566)))))) (|HasCategory| (-566) (QUOTE (-850))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1049)))) (-2768 (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1049)))) (|HasCategory| |#3| (QUOTE (-726))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-2768 (|HasCategory| |#3| (QUOTE (-1049))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-1099)))) (-2768 (|HasAttribute| |#3| (QUOTE -4411)) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1049)))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))))) (-253 A R S V E) -((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) +((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) NIL ((|HasCategory| |#2| (QUOTE (-233)))) (-254 R S V E) -((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) +((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) (((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4412 |has| |#1| (-6 -4412)) (-4409 . T) (-4408 . T) (-4411 . T)) NIL (-255 S) -((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}."))) +((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}."))) ((-4414 . T) (-4415 . T)) NIL (-256) -((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g),{}a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) +((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g),a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) NIL NIL (-257 R |Ex|) -((|constructor| (NIL "TopLevelDrawFunctionsForAlgebraicCurves provides top level functions for drawing non-singular algebraic curves.")) (|draw| (((|TwoDimensionalViewport|) (|Equation| |#2|) (|Symbol|) (|Symbol|) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y) = g(x,{}y),{}x,{}y,{}l)} draws the graph of a polynomial equation. The list \\spad{l} of draw options must specify a region in the plane in which the curve is to sketched."))) +((|constructor| (NIL "TopLevelDrawFunctionsForAlgebraicCurves provides top level functions for drawing non-singular algebraic curves.")) (|draw| (((|TwoDimensionalViewport|) (|Equation| |#2|) (|Symbol|) (|Symbol|) (|List| (|DrawOption|))) "\\spad{draw(f(x,y) = g(x,y),x,y,l)} draws the graph of a polynomial equation. The list \\spad{l} of draw options must specify a region in the plane in which the curve is to sketched."))) NIL NIL (-258) -((|setClipValue| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{setClipValue(x)} sets to \\spad{x} the maximum value to plot when drawing complex functions. Returns \\spad{x}.")) (|setImagSteps| (((|Integer|) (|Integer|)) "\\spad{setImagSteps(i)} sets to \\spad{i} the number of steps to use in the imaginary direction when drawing complex functions. Returns \\spad{i}.")) (|setRealSteps| (((|Integer|) (|Integer|)) "\\spad{setRealSteps(i)} sets to \\spad{i} the number of steps to use in the real direction when drawing complex functions. Returns \\spad{i}.")) (|drawComplexVectorField| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{drawComplexVectorField(f,{}rRange,{}iRange)} draws a complex vector field using arrows on the \\spad{x--y} plane. These vector fields should be viewed from the top by pressing the \"XY\" translate button on the 3-\\spad{d} viewport control panel.\\newline Sample call: \\indented{3}{\\spad{f z == sin z}} \\indented{3}{\\spad{drawComplexVectorField(f,{} -2..2,{} -2..2)}} Parameter descriptions: \\indented{2}{\\spad{f} : the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of the imaginary values} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")) (|drawComplex| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Boolean|)) "\\spad{drawComplex(f,{}rRange,{}iRange,{}arrows?)} draws a complex function as a height field. It uses the complex norm as the height and the complex argument as the color. It will optionally draw arrows on the surface indicating the direction of the complex value.\\newline Sample call: \\indented{2}{\\spad{f z == exp(1/z)}} \\indented{2}{\\spad{drawComplex(f,{} 0.3..3,{} 0..2*\\%\\spad{pi},{} false)}} Parameter descriptions: \\indented{2}{\\spad{f:}\\space{2}the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of imaginary values} \\indented{2}{\\spad{arrows?} : a flag indicating whether to draw the phase arrows for \\spad{f}} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction."))) +((|setClipValue| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{setClipValue(x)} sets to \\spad{x} the maximum value to plot when drawing complex functions. Returns \\spad{x}.")) (|setImagSteps| (((|Integer|) (|Integer|)) "\\spad{setImagSteps(i)} sets to \\spad{i} the number of steps to use in the imaginary direction when drawing complex functions. Returns \\spad{i}.")) (|setRealSteps| (((|Integer|) (|Integer|)) "\\spad{setRealSteps(i)} sets to \\spad{i} the number of steps to use in the real direction when drawing complex functions. Returns \\spad{i}.")) (|drawComplexVectorField| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{drawComplexVectorField(f,rRange,iRange)} draws a complex vector field using arrows on the \\spad{x--y} plane. These vector fields should be viewed from the top by pressing the \"XY\" translate button on the 3-\\spad{d} viewport control panel.\\newline Sample call: \\indented{3}{\\spad{f z == sin z}} \\indented{3}{\\spad{drawComplexVectorField(f, -2..2, -2..2)}} Parameter descriptions: \\indented{2}{\\spad{f} : the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of the imaginary values} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")) (|drawComplex| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Boolean|)) "\\spad{drawComplex(f,rRange,iRange,arrows?)} draws a complex function as a height field. It uses the complex norm as the height and the complex argument as the color. It will optionally draw arrows on the surface indicating the direction of the complex value.\\newline Sample call: \\indented{2}{\\spad{f z == exp(1/z)}} \\indented{2}{\\spad{drawComplex(f, 0.3..3, 0..2*\\%pi, false)}} Parameter descriptions: \\indented{2}{\\spad{f:}\\space{2}the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of imaginary values} \\indented{2}{\\spad{arrows?} : a flag indicating whether to draw the phase arrows for \\spad{f}} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction."))) NIL NIL (-259 R) @@ -969,39 +969,39 @@ NIL NIL NIL (-260 |Ex|) -((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),{}x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),{}x = a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) +((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,y),x = a..b,y = c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,y),x = a..b,y = c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),x = a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) NIL NIL (-261) -((|constructor| (NIL "TopLevelDrawFunctionsForPoints provides top level functions for drawing curves and surfaces described by sets of points.")) (|draw| (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}lz,{}l)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly,{}lz)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the \\axiom{\\spad{lx} \\spad{X} \\spad{ly}}.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|))) (|List| (|DrawOption|))) "\\spad{draw(lp,{}l)} plots the curve constructed from the list of points \\spad{lp}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|)))) "\\spad{draw(lp)} plots the curve constructed from the list of points \\spad{lp}.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}l)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}."))) +((|constructor| (NIL "TopLevelDrawFunctionsForPoints provides top level functions for drawing curves and surfaces described by sets of points.")) (|draw| (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,ly,lz,l)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,ly,lz)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the \\axiom{\\spad{lx} \\spad{X} \\spad{ly}}.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|))) (|List| (|DrawOption|))) "\\spad{draw(lp,l)} plots the curve constructed from the list of points \\spad{lp}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|)))) "\\spad{draw(lp)} plots the curve constructed from the list of points \\spad{lp}.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,ly,l)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,ly)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}."))) NIL NIL (-262) -((|constructor| (NIL "This package \\undocumented{}")) (|units| (((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|))) "\\spad{units(l,{}u)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{unit}. If the option does not exist the value,{} \\spad{u} is returned.")) (|coord| (((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{coord}. If the option does not exist the value,{} \\spad{p} is returned.")) (|tubeRadius| (((|Float|) (|List| (|DrawOption|)) (|Float|)) "\\spad{tubeRadius(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubeRadius}. If the option does not exist the value,{} \\spad{n} is returned.")) (|tubePoints| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{tubePoints(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubePoints}. If the option does not exist the value,{} \\spad{n} is returned.")) (|space| (((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{space(l)} takes a list of draw options,{} \\spad{l},{} and checks to see if it contains the option \\spad{space}. If the the option doesn\\spad{'t} exist,{} then an empty space is returned.")) (|var2Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var2Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var2Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|var1Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var1Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var1Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|ranges| (((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|)))) "\\spad{ranges(l,{}r)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{ranges}. If the option does not exist the value,{} \\spad{r} is returned.")) (|curveColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{curveColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{curveColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|pointColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{pointColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{pointColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|toScale| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{toScale(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{toScale}. If the option does not exist the value,{} \\spad{b} is returned.")) (|style| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{style(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{style}. If the option does not exist the value,{} \\spad{s} is returned.")) (|title| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{title(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{title}. If the option does not exist the value,{} \\spad{s} is returned.")) (|viewpoint| (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(l,{}ls)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{viewpoint}. IF the option does not exist,{} the value \\spad{ls} is returned.")) (|clipBoolean| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{clipBoolean(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{clipBoolean}. If the option does not exist the value,{} \\spad{b} is returned.")) (|adaptive| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{adaptive(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{adaptive}. If the option does not exist the value,{} \\spad{b} is returned."))) +((|constructor| (NIL "This package \\undocumented{}")) (|units| (((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|))) "\\spad{units(l,u)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{unit}. If the option does not exist the value,{} \\spad{u} is returned.")) (|coord| (((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{coord}. If the option does not exist the value,{} \\spad{p} is returned.")) (|tubeRadius| (((|Float|) (|List| (|DrawOption|)) (|Float|)) "\\spad{tubeRadius(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubeRadius}. If the option does not exist the value,{} \\spad{n} is returned.")) (|tubePoints| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{tubePoints(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubePoints}. If the option does not exist the value,{} \\spad{n} is returned.")) (|space| (((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{space(l)} takes a list of draw options,{} \\spad{l},{} and checks to see if it contains the option \\spad{space}. If the the option doesn\\spad{'t} exist,{} then an empty space is returned.")) (|var2Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var2Steps(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var2Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|var1Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var1Steps(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var1Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|ranges| (((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|)))) "\\spad{ranges(l,r)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{ranges}. If the option does not exist the value,{} \\spad{r} is returned.")) (|curveColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{curveColorPalette(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{curveColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|pointColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{pointColorPalette(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{pointColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|toScale| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{toScale(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{toScale}. If the option does not exist the value,{} \\spad{b} is returned.")) (|style| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{style(l,s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{style}. If the option does not exist the value,{} \\spad{s} is returned.")) (|title| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{title(l,s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{title}. If the option does not exist the value,{} \\spad{s} is returned.")) (|viewpoint| (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(l,ls)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{viewpoint}. IF the option does not exist,{} the value \\spad{ls} is returned.")) (|clipBoolean| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{clipBoolean(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{clipBoolean}. If the option does not exist the value,{} \\spad{b} is returned.")) (|adaptive| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{adaptive(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{adaptive}. If the option does not exist the value,{} \\spad{b} is returned."))) NIL NIL (-263 S) -((|constructor| (NIL "This package \\undocumented{}")) (|option| (((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)) "\\spad{option(l,{}s)} determines whether the indicated drawing option,{} \\spad{s},{} is contained in the list of drawing options,{} \\spad{l},{} which is defined by the draw command."))) +((|constructor| (NIL "This package \\undocumented{}")) (|option| (((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)) "\\spad{option(l,s)} determines whether the indicated drawing option,{} \\spad{s},{} is contained in the list of drawing options,{} \\spad{l},{} which is defined by the draw command."))) NIL NIL (-264) -((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,{}f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,{}y,{}z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,{}y,{}z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,{}v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,{}v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}."))) +((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,y,z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,y,z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}."))) NIL NIL (-265 R S V) ((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline"))) (((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4412 |has| |#1| (-6 -4412)) (-4409 . T) (-4408 . T) (-4411 . T)) -((|HasCategory| |#1| (QUOTE (-909))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#3| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#3| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#3| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#3| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4412)) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145))))) +((|HasCategory| |#1| (QUOTE (-909))) (-2768 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2768 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2768 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2768 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#3| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#3| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#3| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#3| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2768 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4412)) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2768 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145))))) (-266 A S) -((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) +((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v, n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL NIL (-267 S) -((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#1| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#1| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) +((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v, n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#1| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#1| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL NIL (-268) -((|optAttributes| (((|List| (|String|)) (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{optAttributes(o)} is a function for supplying a list of attributes of an optimization problem.")) (|expenseOfEvaluation| (((|Float|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{expenseOfEvaluation(o)} returns the intensity value of the cost of evaluating the input set of functions. This is in terms of the number of ``operational units\\spad{''}. It returns a value in the range [0,{}1].")) (|changeNameToObjf| (((|Result|) (|Symbol|) (|Result|)) "\\spad{changeNameToObjf(s,{}r)} changes the name of item \\axiom{\\spad{s}} in \\axiom{\\spad{r}} to objf.")) (|varList| (((|List| (|Symbol|)) (|Expression| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{varList(e,{}n)} returns a list of \\axiom{\\spad{n}} indexed variables with name as in \\axiom{\\spad{e}}.")) (|variables| (((|List| (|Symbol|)) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{variables(args)} returns the list of variables in \\axiom{\\spad{args}.\\spad{lfn}}")) (|quadratic?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{quadratic?(e)} tests if \\axiom{\\spad{e}} is a quadratic function.")) (|nonLinearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{nonLinearPart(l)} returns the list of non-linear functions of \\axiom{\\spad{l}}.")) (|linearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linearPart(l)} returns the list of linear functions of \\axiom{\\spad{l}}.")) (|linearMatrix| (((|Matrix| (|DoubleFloat|)) (|List| (|Expression| (|DoubleFloat|))) (|NonNegativeInteger|)) "\\spad{linearMatrix(l,{}n)} returns a matrix of coefficients of the linear functions in \\axiom{\\spad{l}}. If \\spad{l} is empty,{} the matrix has at least one row.")) (|linear?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{linear?(e)} tests if \\axiom{\\spad{e}} is a linear function.") (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linear?(l)} returns \\spad{true} if all the bounds \\spad{l} are either linear or simple.")) (|simpleBounds?| (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{simpleBounds?(l)} returns \\spad{true} if the list of expressions \\spad{l} are simple.")) (|splitLinear| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{splitLinear(f)} splits the linear part from an expression which it returns.")) (|sumOfSquares| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{sumOfSquares(f)} returns either an expression for which the square is the original function of \"failed\".")) (|sortConstraints| (((|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|))))) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{sortConstraints(args)} uses a simple bubblesort on the list of constraints using the degree of the expression on which to sort. Of course,{} it must match the bounds to the constraints.")) (|finiteBound| (((|List| (|DoubleFloat|)) (|List| (|OrderedCompletion| (|DoubleFloat|))) (|DoubleFloat|)) "\\spad{finiteBound(l,{}b)} repaces all instances of an infinite entry in \\axiom{\\spad{l}} by a finite entry \\axiom{\\spad{b}} or \\axiom{\\spad{-b}}."))) +((|optAttributes| (((|List| (|String|)) (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{optAttributes(o)} is a function for supplying a list of attributes of an optimization problem.")) (|expenseOfEvaluation| (((|Float|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{expenseOfEvaluation(o)} returns the intensity value of the cost of evaluating the input set of functions. This is in terms of the number of ``operational units\\spad{''}. It returns a value in the range [0,{}1].")) (|changeNameToObjf| (((|Result|) (|Symbol|) (|Result|)) "\\spad{changeNameToObjf(s,r)} changes the name of item \\axiom{\\spad{s}} in \\axiom{\\spad{r}} to objf.")) (|varList| (((|List| (|Symbol|)) (|Expression| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{varList(e,n)} returns a list of \\axiom{\\spad{n}} indexed variables with name as in \\axiom{\\spad{e}}.")) (|variables| (((|List| (|Symbol|)) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{variables(args)} returns the list of variables in \\axiom{\\spad{args}.\\spad{lfn}}")) (|quadratic?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{quadratic?(e)} tests if \\axiom{\\spad{e}} is a quadratic function.")) (|nonLinearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{nonLinearPart(l)} returns the list of non-linear functions of \\axiom{\\spad{l}}.")) (|linearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linearPart(l)} returns the list of linear functions of \\axiom{\\spad{l}}.")) (|linearMatrix| (((|Matrix| (|DoubleFloat|)) (|List| (|Expression| (|DoubleFloat|))) (|NonNegativeInteger|)) "\\spad{linearMatrix(l,n)} returns a matrix of coefficients of the linear functions in \\axiom{\\spad{l}}. If \\spad{l} is empty,{} the matrix has at least one row.")) (|linear?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{linear?(e)} tests if \\axiom{\\spad{e}} is a linear function.") (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linear?(l)} returns \\spad{true} if all the bounds \\spad{l} are either linear or simple.")) (|simpleBounds?| (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{simpleBounds?(l)} returns \\spad{true} if the list of expressions \\spad{l} are simple.")) (|splitLinear| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{splitLinear(f)} splits the linear part from an expression which it returns.")) (|sumOfSquares| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{sumOfSquares(f)} returns either an expression for which the square is the original function of \"failed\".")) (|sortConstraints| (((|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|))))) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{sortConstraints(args)} uses a simple bubblesort on the list of constraints using the degree of the expression on which to sort. Of course,{} it must match the bounds to the constraints.")) (|finiteBound| (((|List| (|DoubleFloat|)) (|List| (|OrderedCompletion| (|DoubleFloat|))) (|DoubleFloat|)) "\\spad{finiteBound(l,b)} repaces all instances of an infinite entry in \\axiom{\\spad{l}} by a finite entry \\axiom{\\spad{b}} or \\axiom{\\spad{-b}}."))) NIL NIL (-269) @@ -1036,12 +1036,12 @@ NIL ((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1."))) NIL NIL -(-277 R -2371) -((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,{}l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{\\spad{pi}()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}"))) +(-277 R -2352) +((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{pi()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}"))) NIL NIL -(-278 R -2371) -((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,{}a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f,{} k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,{}...,{}kn],{}f,{}x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,{}x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f,{} x)} returns \\spad{[g,{} [k1,{}...,{}kn],{} [h1,{}...,{}hn]]} such that \\spad{g = normalize(f,{} x)} and each \\spad{\\spad{ki}} was rewritten as \\spad{\\spad{hi}} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f,{} x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels."))) +(-278 R -2352) +((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f, k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,...,kn],f,x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f, x)} returns \\spad{[g, [k1,...,kn], [h1,...,hn]]} such that \\spad{g = normalize(f, x)} and each \\spad{ki} was rewritten as \\spad{hi} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f, x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels."))) NIL NIL (-279 |Coef| UTS ULS) @@ -1057,11 +1057,11 @@ NIL NIL NIL (-282 A S) -((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) +((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) NIL ((|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-1099)))) (-283 S) -((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) +((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) ((-4415 . T)) NIL (-284 S) @@ -1073,23 +1073,23 @@ NIL NIL NIL (-286 |Coef| UTS) -((|constructor| (NIL "The elliptic functions \\spad{sn},{} \\spad{sc} and \\spad{dn} are expanded as Taylor series.")) (|sncndn| (((|List| (|Stream| |#1|)) (|Stream| |#1|) |#1|) "\\spad{sncndn(s,{}c)} is used internally.")) (|dn| ((|#2| |#2| |#1|) "\\spad{dn(x,{}k)} expands the elliptic function \\spad{dn} as a Taylor \\indented{1}{series.}")) (|cn| ((|#2| |#2| |#1|) "\\spad{cn(x,{}k)} expands the elliptic function \\spad{cn} as a Taylor \\indented{1}{series.}")) (|sn| ((|#2| |#2| |#1|) "\\spad{sn(x,{}k)} expands the elliptic function \\spad{sn} as a Taylor \\indented{1}{series.}"))) +((|constructor| (NIL "The elliptic functions \\spad{sn},{} \\spad{sc} and \\spad{dn} are expanded as Taylor series.")) (|sncndn| (((|List| (|Stream| |#1|)) (|Stream| |#1|) |#1|) "\\spad{sncndn(s,c)} is used internally.")) (|dn| ((|#2| |#2| |#1|) "\\spad{dn(x,k)} expands the elliptic function \\spad{dn} as a Taylor \\indented{1}{series.}")) (|cn| ((|#2| |#2| |#1|) "\\spad{cn(x,k)} expands the elliptic function \\spad{cn} as a Taylor \\indented{1}{series.}")) (|sn| ((|#2| |#2| |#1|) "\\spad{sn(x,k)} expands the elliptic function \\spad{sn} as a Taylor \\indented{1}{series.}"))) NIL NIL (-287 S |Index|) -((|constructor| (NIL "An eltable over domains \\spad{D} and \\spad{I} is a structure which can be viewed as a function from \\spad{D} to \\spad{I}. Examples of eltable structures range from data structures,{} \\spadignore{e.g.} those of type \\spadtype{List},{} to algebraic structures,{} \\spadignore{e.g.} \\spadtype{Polynomial}.")) (|elt| ((|#2| $ |#1|) "\\spad{elt(u,{}i)} (also written: \\spad{u} . \\spad{i}) returns the element of \\spad{u} indexed by \\spad{i}. Error: if \\spad{i} is not an index of \\spad{u}."))) +((|constructor| (NIL "An eltable over domains \\spad{D} and \\spad{I} is a structure which can be viewed as a function from \\spad{D} to \\spad{I}. Examples of eltable structures range from data structures,{} \\spadignore{e.g.} those of type \\spadtype{List},{} to algebraic structures,{} \\spadignore{e.g.} \\spadtype{Polynomial}.")) (|elt| ((|#2| $ |#1|) "\\spad{elt(u,i)} (also written: \\spad{u} . \\spad{i}) returns the element of \\spad{u} indexed by \\spad{i}. Error: if \\spad{i} is not an index of \\spad{u}."))) NIL NIL (-288 S |Dom| |Im|) -((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) +((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL ((|HasAttribute| |#1| (QUOTE -4415))) (-289 |Dom| |Im|) -((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) +((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL NIL -(-290 S R |Mod| -3646 -3298 |exactQuo|) -((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,{}r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) +(-290 S R |Mod| -1736 -2696 |exactQuo|) +((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) ((-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) NIL (-291) @@ -1097,35 +1097,35 @@ NIL ((-4407 . T) (-4408 . T) (-4409 . T) (-4411 . T)) NIL (-292) -((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 19,{} 2008. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|interactiveEnv| (($) "the current interactive environment in effect.")) (|currentEnv| (($) "the current normal environment in effect.")) (|setProperties!| (($ (|Identifier|) (|List| (|Property|)) $) "setBinding!(\\spad{n},{}props,{}\\spad{e}) set the list of properties of \\spad{`n'} to `props' in `e'.")) (|getProperties| (((|List| (|Property|)) (|Identifier|) $) "getBinding(\\spad{n},{}\\spad{e}) returns the list of properties of \\spad{`n'} in \\spad{e}.")) (|setProperty!| (($ (|Identifier|) (|Identifier|) (|SExpression|) $) "\\spad{setProperty!(n,{}p,{}v,{}e)} binds the property `(\\spad{p},{}\\spad{v})' to \\spad{`n'} in the topmost scope of `e'.")) (|getProperty| (((|Maybe| (|SExpression|)) (|Identifier|) (|Identifier|) $) "\\spad{getProperty(n,{}p,{}e)} returns the value of property with name \\spad{`p'} for the symbol \\spad{`n'} in environment `e'. Otherwise,{} `nothing.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment"))) +((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 19,{} 2008. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|interactiveEnv| (($) "the current interactive environment in effect.")) (|currentEnv| (($) "the current normal environment in effect.")) (|setProperties!| (($ (|Identifier|) (|List| (|Property|)) $) "setBinding!(\\spad{n},{}props,{}\\spad{e}) set the list of properties of \\spad{`n'} to `props' in `e'.")) (|getProperties| (((|List| (|Property|)) (|Identifier|) $) "getBinding(\\spad{n},{}\\spad{e}) returns the list of properties of \\spad{`n'} in \\spad{e}.")) (|setProperty!| (($ (|Identifier|) (|Identifier|) (|SExpression|) $) "\\spad{setProperty!(n,p,v,e)} binds the property `(\\spad{p},{}\\spad{v})' to \\spad{`n'} in the topmost scope of `e'.")) (|getProperty| (((|Maybe| (|SExpression|)) (|Identifier|) (|Identifier|) $) "\\spad{getProperty(n,p,e)} returns the value of property with name \\spad{`p'} for the symbol \\spad{`n'} in environment `e'. Otherwise,{} `nothing.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment"))) NIL NIL (-293 R) -((|constructor| (NIL "This is a package for the exact computation of eigenvalues and eigenvectors. This package can be made to work for matrices with coefficients which are rational functions over a ring where we can factor polynomials. Rational eigenvalues are always explicitly computed while the non-rational ones are expressed in terms of their minimal polynomial.")) (|eigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvectors(m)} returns the eigenvalues and eigenvectors for the matrix \\spad{m}. The rational eigenvalues and the correspondent eigenvectors are explicitely computed,{} while the non rational ones are given via their minimal polynomial and the corresponding eigenvectors are expressed in terms of a \"generic\" root of such a polynomial.")) (|generalizedEigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |geneigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvectors(m)} returns the generalized eigenvectors of the matrix \\spad{m}.")) (|generalizedEigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvector(eigen,{}m)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{eigen},{} as returned by the function eigenvectors.") (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalizedEigenvector(alpha,{}m,{}k,{}g)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{alpha}. The integers \\spad{k} and \\spad{g} are respectively the algebraic and the geometric multiplicity of tye eigenvalue \\spad{alpha}. \\spad{alpha} can be either rational or not. In the seconda case apha is the minimal polynomial of the eigenvalue.")) (|eigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvector(eigval,{}m)} returns the eigenvectors belonging to the eigenvalue \\spad{eigval} for the matrix \\spad{m}.")) (|eigenvalues| (((|List| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvalues(m)} returns the eigenvalues of the matrix \\spad{m} which are expressible as rational functions over the rational numbers.")) (|characteristicPolynomial| (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{characteristicPolynomial(m)} returns the characteristicPolynomial of the matrix \\spad{m} using a new generated symbol symbol as the main variable.") (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}var)} returns the characteristicPolynomial of the matrix \\spad{m} using the symbol \\spad{var} as the main variable."))) +((|constructor| (NIL "This is a package for the exact computation of eigenvalues and eigenvectors. This package can be made to work for matrices with coefficients which are rational functions over a ring where we can factor polynomials. Rational eigenvalues are always explicitly computed while the non-rational ones are expressed in terms of their minimal polynomial.")) (|eigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvectors(m)} returns the eigenvalues and eigenvectors for the matrix \\spad{m}. The rational eigenvalues and the correspondent eigenvectors are explicitely computed,{} while the non rational ones are given via their minimal polynomial and the corresponding eigenvectors are expressed in terms of a \"generic\" root of such a polynomial.")) (|generalizedEigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |geneigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvectors(m)} returns the generalized eigenvectors of the matrix \\spad{m}.")) (|generalizedEigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvector(eigen,m)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{eigen},{} as returned by the function eigenvectors.") (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalizedEigenvector(alpha,m,k,g)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{alpha}. The integers \\spad{k} and \\spad{g} are respectively the algebraic and the geometric multiplicity of tye eigenvalue \\spad{alpha}. \\spad{alpha} can be either rational or not. In the seconda case apha is the minimal polynomial of the eigenvalue.")) (|eigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvector(eigval,m)} returns the eigenvectors belonging to the eigenvalue \\spad{eigval} for the matrix \\spad{m}.")) (|eigenvalues| (((|List| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvalues(m)} returns the eigenvalues of the matrix \\spad{m} which are expressible as rational functions over the rational numbers.")) (|characteristicPolynomial| (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{characteristicPolynomial(m)} returns the characteristicPolynomial of the matrix \\spad{m} using a new generated symbol symbol as the main variable.") (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,var)} returns the characteristicPolynomial of the matrix \\spad{m} using the symbol \\spad{var} as the main variable."))) NIL NIL (-294 S R) -((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,{}eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}"))) +((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}"))) NIL NIL (-295 S) -((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) -((-4411 -2809 (|has| |#1| (-1049)) (|has| |#1| (-475))) (-4408 |has| |#1| (-1049)) (-4409 |has| |#1| (-1049))) -((|HasCategory| |#1| (QUOTE (-365))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1049)))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-1049)))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1049)))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1049)))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-1049)))) (-2809 (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#1| (QUOTE (-726)))) (|HasCategory| |#1| (QUOTE (-475))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#1| (QUOTE (-726))) (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-1099)))) (-2809 (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#1| (QUOTE (-726))) (|HasCategory| |#1| (QUOTE (-1111)))) (|HasCategory| |#1| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-303))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-475)))) (-2809 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-726)))) (-2809 (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#1| (QUOTE (-1049)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-726)))) +((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn, [x1=v1, ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn, x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) +((-4411 -2768 (|has| |#1| (-1049)) (|has| |#1| (-475))) (-4408 |has| |#1| (-1049)) (-4409 |has| |#1| (-1049))) +((|HasCategory| |#1| (QUOTE (-365))) (-2768 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1049)))) (-2768 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (-2768 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-1049)))) (-2768 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1049)))) (-2768 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1049)))) (-2768 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-1049)))) (-2768 (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#1| (QUOTE (-726)))) (|HasCategory| |#1| (QUOTE (-475))) (-2768 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#1| (QUOTE (-726))) (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-1099)))) (-2768 (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#1| (QUOTE (-726))) (|HasCategory| |#1| (QUOTE (-1111)))) (|HasCategory| |#1| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-303))) (-2768 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-475)))) (-2768 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-726)))) (-2768 (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#1| (QUOTE (-1049)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-726)))) (-296 |Key| |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) ((-4414 . T) (-4415 . T)) -((-12 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2004) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3867) (|devaluate| |#2|)))))) (-2809 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (-2809 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-1099))) (-2809 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -613) (QUOTE (-862))))) +((-12 (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2674) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2636) (|devaluate| |#2|)))))) (-2768 (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (-2768 (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-1099))) (-2768 (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (LIST (QUOTE -613) (QUOTE (-862))))) (-297) -((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",{}\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,{}lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,{}msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) +((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) NIL NIL -(-298 -2371 S) -((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f,{} p,{} k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}."))) +(-298 -2352 S) +((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f, p, k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}."))) NIL NIL -(-299 E -2371) -((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f,{} k)} returns \\spad{g = op(f(a1),{}...,{}f(an))} where \\spad{k = op(a1,{}...,{}an)}."))) +(-299 E -2352) +((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f, k)} returns \\spad{g = op(f(a1),...,f(an))} where \\spad{k = op(a1,...,an)}."))) NIL NIL (-300 A B) @@ -1133,15 +1133,15 @@ NIL NIL NIL (-301) -((|constructor| (NIL "ExpertSystemContinuityPackage is a package of functions for the use of domains belonging to the category \\axiomType{NumericalIntegration}.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|polynomialZeros| (((|List| (|DoubleFloat|)) (|Polynomial| (|Fraction| (|Integer|))) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{polynomialZeros(fn,{}var,{}range)} calculates the real zeros of the polynomial which are contained in the given interval. It returns a list of points (\\axiomType{Doublefloat}) for which the univariate polynomial \\spad{fn} is zero.")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(v,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{v} will most likely produce an error. This includes those points which evaluate to 0/0.") (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error. This includes those points which evaluate to 0/0.")) (|zerosOf| (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{zerosOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error.")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,{}var,{}range)} returns a list of possible problem points by looking at the zeros of the denominator of the function \\spad{f} if it can be retracted to \\axiomType{Polynomial(DoubleFloat)}.")) (|functionIsFracPolynomial?| (((|Boolean|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsFracPolynomial?(args)} tests whether the function can be retracted to \\axiomType{Fraction(Polynomial(DoubleFloat))}")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{u}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{u}}"))) +((|constructor| (NIL "ExpertSystemContinuityPackage is a package of functions for the use of domains belonging to the category \\axiomType{NumericalIntegration}.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|polynomialZeros| (((|List| (|DoubleFloat|)) (|Polynomial| (|Fraction| (|Integer|))) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{polynomialZeros(fn,var,range)} calculates the real zeros of the polynomial which are contained in the given interval. It returns a list of points (\\axiomType{Doublefloat}) for which the univariate polynomial \\spad{fn} is zero.")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(v,vars,range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{v} will most likely produce an error. This includes those points which evaluate to 0/0.") (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(e,vars,range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error. This includes those points which evaluate to 0/0.")) (|zerosOf| (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{zerosOf(e,vars,range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error.")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,var,range)} returns a list of possible problem points by looking at the zeros of the denominator of the function \\spad{f} if it can be retracted to \\axiomType{Polynomial(DoubleFloat)}.")) (|functionIsFracPolynomial?| (((|Boolean|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsFracPolynomial?(args)} tests whether the function can be retracted to \\axiomType{Fraction(Polynomial(DoubleFloat))}")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{u}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{u}}"))) NIL NIL (-302 S) -((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) +((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL ((|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-1049)))) (-303) -((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) +((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL NIL (-304 R1) @@ -1149,31 +1149,31 @@ NIL NIL NIL (-305 R1 R2) -((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage2} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|map| (((|Matrix| |#2|) (|Mapping| |#2| |#1|) (|Matrix| |#1|)) "\\spad{map(f,{}m)} applies a mapping f:R1 \\spad{->} \\spad{R2} onto a matrix \\spad{m} in \\spad{R1} returning a matrix in \\spad{R2}"))) +((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage2} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|map| (((|Matrix| |#2|) (|Mapping| |#2| |#1|) (|Matrix| |#1|)) "\\spad{map(f,m)} applies a mapping f:R1 \\spad{->} \\spad{R2} onto a matrix \\spad{m} in \\spad{R1} returning a matrix in \\spad{R2}"))) NIL NIL (-306) -((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,{}n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,{}b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,{}range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}"))) +((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}"))) NIL NIL (-307 S) -((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) +((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) NIL NIL (-308) -((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) +((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) ((-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) NIL (-309 S R) -((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) +((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL (-310 R) -((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) +((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-311 -2371) -((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,{}s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}"))) +(-311 -2352) +((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}"))) NIL NIL (-312) @@ -1185,75 +1185,75 @@ NIL NIL NIL (-314 R FE |var| |cen|) -((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,{}f(var))}."))) +((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,f(var))}."))) ((-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) -((|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-909))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-1022))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-820))) (-2809 (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-820))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-850)))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-1150))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-233))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -1250) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -310) (LIST (QUOTE -1250) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -287) (LIST (QUOTE -1250) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1250) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-308))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-547))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-850))) (-12 (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-909))) (|HasCategory| $ (QUOTE (-145)))) (-2809 (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (-12 (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-909))) (|HasCategory| $ (QUOTE (-145)))))) +((|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-909))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-1022))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-820))) (-2768 (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-820))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-850)))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-1150))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-233))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -1250) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -310) (LIST (QUOTE -1250) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -287) (LIST (QUOTE -1250) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1250) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-308))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-547))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-850))) (-12 (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-909))) (|HasCategory| $ (QUOTE (-145)))) (-2768 (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (-12 (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-909))) (|HasCategory| $ (QUOTE (-145)))))) (-315 R S) -((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f,{} e)} applies \\spad{f} to all the constants appearing in \\spad{e}."))) +((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f, e)} applies \\spad{f} to all the constants appearing in \\spad{e}."))) NIL NIL (-316 R FE) -((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,{}x = a,{}n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,{}x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,{}n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,{}x = a,{}n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,{}x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,{}n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,{}x = a,{}n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,{}x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,{}n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,{}x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,{}x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,{}n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series."))) +((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,x = a,n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,x = a,n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,x = a,n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series."))) NIL NIL (-317 R) ((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) -((-4411 -2809 (-2432 (|has| |#1| (-1049)) (|has| |#1| (-639 (-566)))) (-12 (|has| |#1| (-558)) (-2809 (-2432 (|has| |#1| (-1049)) (|has| |#1| (-639 (-566)))) (|has| |#1| (-1049)) (|has| |#1| (-475)))) (|has| |#1| (-1049)) (|has| |#1| (-475))) (-4409 |has| |#1| (-172)) (-4408 |has| |#1| (-172)) ((-4416 "*") |has| |#1| (-558)) (-4407 |has| |#1| (-558)) (-4412 |has| |#1| (-558)) (-4406 |has| |#1| (-558))) -((-2809 (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))))) (|HasCategory| |#1| (QUOTE (-558))) (-2809 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-1049)))) (|HasCategory| |#1| (QUOTE (-21))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (-2809 (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#1| (QUOTE (-1111)))) (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2809 (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566))))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-1049)))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-1049)))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-1049)))) (-12 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558)))) (-2809 (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566))))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-1111)))) (-2809 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))))) (-2809 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-1111)))) (-2809 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))))) (-2809 (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#1| (QUOTE (-1049)))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| $ (QUOTE (-1049))) (|HasCategory| $ (LIST (QUOTE -1038) (QUOTE (-566))))) -(-318 R -2371) -((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} [b0,{}...,{}bn])} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} [b0,{}...,{}b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} y a = b)} is equivalent to \\spad{seriesSolve(eq=0,{} y,{} x=a,{} y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{} y,{} x = a,{} b)} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{}y,{} x=a,{} b)} is equivalent to \\spad{seriesSolve(eq,{} y,{} x=a,{} y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{}[y1 a = b1,{}...,{} yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{}[y1,{}...,{}yn],{}x = a,{}[y1 a = b1,{}...,{}yn a = bn])} returns a taylor series solution of \\spad{[eq1,{}...,{}eqn]} around \\spad{x = a} with initial conditions \\spad{\\spad{yi}(a) = \\spad{bi}}. Note: eqi must be of the form \\spad{\\spad{fi}(x,{} y1 x,{} y2 x,{}...,{} yn x) y1'(x) + \\spad{gi}(x,{} y1 x,{} y2 x,{}...,{} yn x) = h(x,{} y1 x,{} y2 x,{}...,{} yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{}[b0,{}...,{}b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x,{} y x,{} y'(x),{}...,{} y(n-1)(x)) y(n)(x) + g(x,{}y x,{}y'(x),{}...,{}y(n-1)(x)) = h(x,{}y x,{} y'(x),{}...,{} y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{} y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x,{} y x) y'(x) + g(x,{} y x) = h(x,{} y x)}."))) +((-4411 -2768 (-2415 (|has| |#1| (-1049)) (|has| |#1| (-639 (-566)))) (-12 (|has| |#1| (-558)) (-2768 (-2415 (|has| |#1| (-1049)) (|has| |#1| (-639 (-566)))) (|has| |#1| (-1049)) (|has| |#1| (-475)))) (|has| |#1| (-1049)) (|has| |#1| (-475))) (-4409 |has| |#1| (-172)) (-4408 |has| |#1| (-172)) ((-4416 "*") |has| |#1| (-558)) (-4407 |has| |#1| (-558)) (-4412 |has| |#1| (-558)) (-4406 |has| |#1| (-558))) +((-2768 (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))))) (|HasCategory| |#1| (QUOTE (-558))) (-2768 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-1049)))) (|HasCategory| |#1| (QUOTE (-21))) (-2768 (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (-2768 (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#1| (QUOTE (-1111)))) (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2768 (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566))))) (-2768 (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-1049)))) (-2768 (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-1049)))) (-2768 (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-1049)))) (-12 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558)))) (-2768 (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566))))) (-2768 (-12 (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-1111)))) (-2768 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))))) (-2768 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-1111)))) (-2768 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))))) (-2768 (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#1| (QUOTE (-1049)))) (-2768 (-12 (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| $ (QUOTE (-1049))) (|HasCategory| $ (LIST (QUOTE -1038) (QUOTE (-566))))) +(-318 R -2352) +((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq, y, x = a, [b0,...,bn])} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, [b0,...,b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq, y, x = a, y a = b)} is equivalent to \\spad{seriesSolve(eq=0, y, x=a, y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq, y, x = a, b)} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,y, x=a, b)} is equivalent to \\spad{seriesSolve(eq, y, x=a, y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a,[y1 a = b1,..., yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x=a, [b1,...,bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn],[y1,...,yn],x = a,[y1 a = b1,...,yn a = bn])} returns a taylor series solution of \\spad{[eq1,...,eqn]} around \\spad{x = a} with initial conditions \\spad{yi(a) = bi}. Note: eqi must be of the form \\spad{fi(x, y1 x, y2 x,..., yn x) y1'(x) + gi(x, y1 x, y2 x,..., yn x) = h(x, y1 x, y2 x,..., yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,y,x=a,[b0,...,b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x, y x, y'(x),..., y(n-1)(x)) y(n)(x) + g(x,y x,y'(x),...,y(n-1)(x)) = h(x,y x, y'(x),..., y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,y,x=a, y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x, y x) y'(x) + g(x, y x) = h(x, y x)}."))) NIL NIL (-319) -((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tubePlot| (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|String|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n,{}s)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. The tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|) (|String|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n,{}s)} puts a tube of radius \\spad{r(t)} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n)} puts a tube of radius \\spad{r}(\\spad{t}) with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. The tube is considered to be open.")) (|constantToUnaryFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|DoubleFloat|)) "\\spad{constantToUnaryFunction(s)} is a local function which takes the value of \\spad{s},{} which may be a function of a constant,{} and returns a function which always returns the value \\spadtype{DoubleFloat} \\spad{s}."))) +((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tubePlot| (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|String|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n,s)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. The tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|) (|String|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n,s)} puts a tube of radius \\spad{r(t)} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n)} puts a tube of radius \\spad{r}(\\spad{t}) with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. The tube is considered to be open.")) (|constantToUnaryFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|DoubleFloat|)) "\\spad{constantToUnaryFunction(s)} is a local function which takes the value of \\spad{s},{} which may be a function of a constant,{} and returns a function which always returns the value \\spadtype{DoubleFloat} \\spad{s}."))) NIL NIL (-320 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) (((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4412 |has| |#1| (-365)) (-4406 |has| |#1| (-365)) (-4408 . T) (-4409 . T) (-4411 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|)))) (|HasCategory| (-409 (-566)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-365))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasSignature| |#1| (LIST (QUOTE -3783) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -1941) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -3863) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2768 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|)))) (|HasCategory| (-409 (-566)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-365))) (-2768 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-2768 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasSignature| |#1| (LIST (QUOTE -3152) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2768 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -3313) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -1771) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|))))))) (-321 M) -((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,{}b1),{}...,{}(am,{}bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f,{} n)} returns \\spad{(p,{} r,{} [r1,{}...,{}rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) +((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL NIL (-322 E OV R P) -((|constructor| (NIL "This package provides utilities used by the factorizers which operate on polynomials represented as univariate polynomials with multivariate coefficients.")) (|ran| ((|#3| (|Integer|)) "\\spad{ran(k)} computes a random integer between \\spad{-k} and \\spad{k} as a member of \\spad{R}.")) (|normalDeriv| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|Integer|)) "\\spad{normalDeriv(poly,{}i)} computes the \\spad{i}th derivative of \\spad{poly} divided by i!.")) (|raisePolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|)) "\\spad{raisePolynomial(rpoly)} converts \\spad{rpoly} from a univariate polynomial over \\spad{r} to be a univariate polynomial with polynomial coefficients.")) (|lowerPolynomial| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{lowerPolynomial(upoly)} converts \\spad{upoly} to be a univariate polynomial over \\spad{R}. An error if the coefficients contain variables.")) (|variables| (((|List| |#2|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{variables(upoly)} returns the list of variables for the coefficients of \\spad{upoly}.")) (|degree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|)) "\\spad{degree(upoly,{} lvar)} returns a list containing the maximum degree for each variable in lvar.")) (|completeEval| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|)) "\\spad{completeEval(upoly,{} lvar,{} lval)} evaluates the polynomial \\spad{upoly} with each variable in \\spad{lvar} replaced by the corresponding value in lval. Substitutions are done for all variables in \\spad{upoly} producing a univariate polynomial over \\spad{R}."))) +((|constructor| (NIL "This package provides utilities used by the factorizers which operate on polynomials represented as univariate polynomials with multivariate coefficients.")) (|ran| ((|#3| (|Integer|)) "\\spad{ran(k)} computes a random integer between \\spad{-k} and \\spad{k} as a member of \\spad{R}.")) (|normalDeriv| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|Integer|)) "\\spad{normalDeriv(poly,i)} computes the \\spad{i}th derivative of \\spad{poly} divided by i!.")) (|raisePolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|)) "\\spad{raisePolynomial(rpoly)} converts \\spad{rpoly} from a univariate polynomial over \\spad{r} to be a univariate polynomial with polynomial coefficients.")) (|lowerPolynomial| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{lowerPolynomial(upoly)} converts \\spad{upoly} to be a univariate polynomial over \\spad{R}. An error if the coefficients contain variables.")) (|variables| (((|List| |#2|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{variables(upoly)} returns the list of variables for the coefficients of \\spad{upoly}.")) (|degree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|)) "\\spad{degree(upoly, lvar)} returns a list containing the maximum degree for each variable in lvar.")) (|completeEval| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|)) "\\spad{completeEval(upoly, lvar, lval)} evaluates the polynomial \\spad{upoly} with each variable in \\spad{lvar} replaced by the corresponding value in lval. Substitutions are done for all variables in \\spad{upoly} producing a univariate polynomial over \\spad{R}."))) NIL NIL (-323 S) -((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative."))) +((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative."))) ((-4409 . T) (-4408 . T)) ((|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-792)))) (-324 S E) -((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an,{} f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,{}[max(\\spad{ei},{} \\spad{fi}) \\spad{ci}])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,{}...,{}an}} and \\spad{{b1,{}...,{}bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f,{} e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s,{} e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x,{} n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}."))) +((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an, f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,[max(ei, fi) ci])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,...,an}} and \\spad{{b1,...,bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f, e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s, e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x, n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}."))) NIL NIL (-325 S) -((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The operation is commutative."))) +((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The operation is commutative."))) NIL ((|HasCategory| (-771) (QUOTE (-792)))) (-326 S R E) -((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) +((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) NIL ((|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-172)))) (-327 R E) -((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) +((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) (((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4408 . T) (-4409 . T) (-4411 . T)) NIL (-328 S) -((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) +((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) ((-4415 . T) (-4414 . T)) -((-2809 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2809 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) -(-329 S -2371) -((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) +((-2768 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2768 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2768 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) +(-329 S -2352) +((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) NIL ((|HasCategory| |#2| (QUOTE (-370)))) -(-330 -2371) -((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) +(-330 -2352) +((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) ((-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) NIL (-331) -((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,{}contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,{}e,{}f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,{}e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,{}c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,{}c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,{}n,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10."))) +((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,e,f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,n,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10."))) NIL NIL (-332 E) @@ -1261,7 +1261,7 @@ NIL NIL NIL (-333) -((|constructor| (NIL "\\spadtype{FortranCodePackage1} provides some utilities for producing useful objects in FortranCode domain. The Package may be used with the FortranCode domain and its \\spad{printCode} or possibly via an outputAsFortran. (The package provides items of use in connection with ASPs in the AXIOM-NAG link and,{} where appropriate,{} naming accords with that in IRENA.) The easy-to-use functions use Fortran loop variables I1,{} I2,{} and it is users' responsibility to check that this is sensible. The advanced functions use SegmentBinding to allow users control over Fortran loop variable names.")) (|identitySquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{identitySquareMatrix(s,{}p)} \\undocumented{}")) (|zeroSquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroSquareMatrix(s,{}p)} \\undocumented{}")) (|zeroMatrix| (((|FortranCode|) (|Symbol|) (|SegmentBinding| (|Polynomial| (|Integer|))) (|SegmentBinding| (|Polynomial| (|Integer|)))) "\\spad{zeroMatrix(s,{}b,{}d)} in this version gives the user control over names of Fortran variables used in loops.") (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|)) (|Polynomial| (|Integer|))) "\\spad{zeroMatrix(s,{}p,{}q)} uses loop variables in the Fortran,{} I1 and I2")) (|zeroVector| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroVector(s,{}p)} \\undocumented{}"))) +((|constructor| (NIL "\\spadtype{FortranCodePackage1} provides some utilities for producing useful objects in FortranCode domain. The Package may be used with the FortranCode domain and its \\spad{printCode} or possibly via an outputAsFortran. (The package provides items of use in connection with ASPs in the AXIOM-NAG link and,{} where appropriate,{} naming accords with that in IRENA.) The easy-to-use functions use Fortran loop variables I1,{} I2,{} and it is users' responsibility to check that this is sensible. The advanced functions use SegmentBinding to allow users control over Fortran loop variable names.")) (|identitySquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{identitySquareMatrix(s,p)} \\undocumented{}")) (|zeroSquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroSquareMatrix(s,p)} \\undocumented{}")) (|zeroMatrix| (((|FortranCode|) (|Symbol|) (|SegmentBinding| (|Polynomial| (|Integer|))) (|SegmentBinding| (|Polynomial| (|Integer|)))) "\\spad{zeroMatrix(s,b,d)} in this version gives the user control over names of Fortran variables used in loops.") (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|)) (|Polynomial| (|Integer|))) "\\spad{zeroMatrix(s,p,q)} uses loop variables in the Fortran,{} I1 and I2")) (|zeroVector| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroVector(s,p)} \\undocumented{}"))) NIL NIL (-334) @@ -1269,57 +1269,57 @@ NIL NIL NIL (-335 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) -((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}d)} \\undocumented{}"))) +((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,d)} \\undocumented{}"))) NIL NIL -(-336 S -2371 UP UPUP R) -((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) +(-336 S -2352 UP UPUP R) +((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-337 -2371 UP UPUP R) -((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) +(-337 -2352 UP UPUP R) +((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-338 -2371 UP UPUP R) +(-338 -2352 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) NIL NIL (-339 S R) -((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) +((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL ((|HasCategory| |#2| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) (-340 R) -((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) +((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL NIL (-341 |basicSymbols| |subscriptedSymbols| R) -((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{\\spad{pi}(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}"))) +((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{pi(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}"))) ((-4408 . T) (-4409 . T) (-4411 . T)) ((|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-381)))) (|HasCategory| $ (QUOTE (-1049))) (|HasCategory| $ (LIST (QUOTE -1038) (QUOTE (-566))))) (-342 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) -((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) +((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f, p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) NIL NIL -(-343 S -2371 UP UPUP) -((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) +(-343 S -2352 UP UPUP) +((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) NIL ((|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-365)))) -(-344 -2371 UP UPUP) -((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) +(-344 -2352 UP UPUP) +((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) ((-4407 |has| (-409 |#2|) (-365)) (-4412 |has| (-409 |#2|) (-365)) (-4406 |has| (-409 |#2|) (-365)) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) NIL (-345 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) ((-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) -((-2809 (|HasCategory| (-910 |#1|) (QUOTE (-145))) (|HasCategory| (-910 |#1|) (QUOTE (-370)))) (|HasCategory| (-910 |#1|) (QUOTE (-147))) (|HasCategory| (-910 |#1|) (QUOTE (-370))) (|HasCategory| (-910 |#1|) (QUOTE (-145)))) +((-2768 (|HasCategory| (-910 |#1|) (QUOTE (-145))) (|HasCategory| (-910 |#1|) (QUOTE (-370)))) (|HasCategory| (-910 |#1|) (QUOTE (-147))) (|HasCategory| (-910 |#1|) (QUOTE (-370))) (|HasCategory| (-910 |#1|) (QUOTE (-145)))) (-346 GF |defpol|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) ((-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) -((-2809 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145)))) +((-2768 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145)))) (-347 GF |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) ((-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) -((-2809 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145)))) +((-2768 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145)))) (-348 GF) ((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}."))) NIL @@ -1329,59 +1329,59 @@ NIL NIL NIL (-350 S) -((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) +((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) NIL NIL (-351) -((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) +((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) ((-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) NIL -(-352 R UP -2371) -((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) +(-352 R UP -2352) +((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL (-353 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) ((-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) -((-2809 (|HasCategory| (-910 |#1|) (QUOTE (-145))) (|HasCategory| (-910 |#1|) (QUOTE (-370)))) (|HasCategory| (-910 |#1|) (QUOTE (-147))) (|HasCategory| (-910 |#1|) (QUOTE (-370))) (|HasCategory| (-910 |#1|) (QUOTE (-145)))) +((-2768 (|HasCategory| (-910 |#1|) (QUOTE (-145))) (|HasCategory| (-910 |#1|) (QUOTE (-370)))) (|HasCategory| (-910 |#1|) (QUOTE (-147))) (|HasCategory| (-910 |#1|) (QUOTE (-370))) (|HasCategory| (-910 |#1|) (QUOTE (-145)))) (-354 GF |uni|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) ((-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) -((-2809 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145)))) +((-2768 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145)))) (-355 GF |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) ((-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) -((-2809 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145)))) +((-2768 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145)))) (-356 |p| |n|) ((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) ((-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) -((-2809 (|HasCategory| (-910 |#1|) (QUOTE (-145))) (|HasCategory| (-910 |#1|) (QUOTE (-370)))) (|HasCategory| (-910 |#1|) (QUOTE (-147))) (|HasCategory| (-910 |#1|) (QUOTE (-370))) (|HasCategory| (-910 |#1|) (QUOTE (-145)))) +((-2768 (|HasCategory| (-910 |#1|) (QUOTE (-145))) (|HasCategory| (-910 |#1|) (QUOTE (-370)))) (|HasCategory| (-910 |#1|) (QUOTE (-147))) (|HasCategory| (-910 |#1|) (QUOTE (-370))) (|HasCategory| (-910 |#1|) (QUOTE (-145)))) (-357 GF |defpol|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible."))) ((-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) -((-2809 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145)))) -(-358 -2371 GF) +((-2768 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145)))) +(-358 -2352 GF) ((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL (-359 GF) -((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) +((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,x**q,x**(q**2),...,x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) NIL NIL -(-360 -2371 FP FPP) -((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) +(-360 -2352 FP FPP) +((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL (-361 GF |n|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}."))) ((-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) -((-2809 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145)))) +((-2768 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145)))) (-362 R |ls|) ((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}."))) NIL NIL (-363 S) -((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) +((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) ((-4411 . T)) NIL (-364 S) @@ -1393,7 +1393,7 @@ NIL ((-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) NIL (-366 |Name| S) -((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,{}s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,{}mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,{}\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,{}mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input."))) +((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input."))) NIL NIL (-367 S) @@ -1401,11 +1401,11 @@ NIL NIL NIL (-368 S R) -((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) +((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) NIL ((|HasCategory| |#2| (QUOTE (-558)))) (-369 R) -((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) +((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) ((-4411 |has| |#1| (-558)) (-4409 . T) (-4408 . T)) NIL (-370) @@ -1413,23 +1413,23 @@ NIL NIL NIL (-371 S R UP) -((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#3| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#3| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#2| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#2| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#2| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) +((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#3| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#3| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#2| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#2| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#2| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) NIL ((|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-365)))) (-372 R UP) -((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) +((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) ((-4408 . T) (-4409 . T) (-4411 . T)) NIL (-373 S A R B) -((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) +((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) NIL NIL (-374 A S) -((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) +((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) NIL ((|HasAttribute| |#1| (QUOTE -4415)) (|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-1099)))) (-375 S) -((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) +((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) ((-4414 . T)) NIL (-376 |VarSet| R) @@ -1437,7 +1437,7 @@ NIL ((|JacobiIdentity| . T) (|NullSquare| . T) (-4409 . T) (-4408 . T)) NIL (-377 S V) -((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm."))) +((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm."))) NIL NIL (-378 S R) @@ -1449,15 +1449,15 @@ NIL ((-4411 . T)) NIL (-380 |Par|) -((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf,{} lv,{} eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf,{} eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,{}eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,{}eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}."))) +((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf, lv, eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf, eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}."))) NIL NIL (-381) -((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4397 . T) (-4405 . T) (-3628 . T) (-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) +((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,exponent,\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{pi},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) +((-4397 . T) (-4405 . T) (-3603 . T) (-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) NIL (-382 |Par|) -((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf,{} eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,{}lv,{}eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,{}eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,{}eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,{}eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,{}eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}."))) +((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf, eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,lv,eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}."))) NIL NIL (-383 R S) @@ -1465,7 +1465,7 @@ NIL ((-4409 . T) (-4408 . T)) ((|HasCategory| |#1| (QUOTE (-172)))) (-384 R |Basis|) -((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis,{} c: R)} such that \\spad{x} equals \\spad{reduce(+,{} map(x +-> monom(x.k,{} x.c),{} lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,{}r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,{}b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}."))) +((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis, c: R)} such that \\spad{x} equals \\spad{reduce(+, map(x +-> monom(x.k, x.c), lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}."))) ((-4409 . T) (-4408 . T)) NIL (-385) @@ -1481,7 +1481,7 @@ NIL ((-4409 . T) (-4408 . T)) ((|HasCategory| |#1| (QUOTE (-172)))) (-388 S) -((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x,{} y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l,{} r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) +((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x, y)} returns \\spad{[l, m, r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l, r) = [l, 1, r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x, y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l, r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x, y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x, y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x, y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x, y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) NIL ((|HasCategory| |#1| (QUOTE (-850)))) (-389) @@ -1493,7 +1493,7 @@ NIL NIL NIL (-391) -((|constructor| (NIL "This category provides an interface to names in the file system.")) (|new| (($ (|String|) (|String|) (|String|)) "\\spad{new(d,{}pref,{}e)} constructs the name of a new writable file with \\spad{d} as its directory,{} \\spad{pref} as a prefix of its name and \\spad{e} as its extension. When \\spad{d} or \\spad{t} is the empty string,{} a default is used. An error occurs if a new file cannot be written in the given directory.")) (|writable?| (((|Boolean|) $) "\\spad{writable?(f)} tests if the named file be opened for writing. The named file need not already exist.")) (|readable?| (((|Boolean|) $) "\\spad{readable?(f)} tests if the named file exist and can it be opened for reading.")) (|exists?| (((|Boolean|) $) "\\spad{exists?(f)} tests if the file exists in the file system.")) (|extension| (((|String|) $) "\\spad{extension(f)} returns the type part of the file name.")) (|name| (((|String|) $) "\\spad{name(f)} returns the name part of the file name.")) (|directory| (((|String|) $) "\\spad{directory(f)} returns the directory part of the file name.")) (|filename| (($ (|String|) (|String|) (|String|)) "\\spad{filename(d,{}n,{}e)} creates a file name with \\spad{d} as its directory,{} \\spad{n} as its name and \\spad{e} as its extension. This is a portable way to create file names. When \\spad{d} or \\spad{t} is the empty string,{} a default is used."))) +((|constructor| (NIL "This category provides an interface to names in the file system.")) (|new| (($ (|String|) (|String|) (|String|)) "\\spad{new(d,pref,e)} constructs the name of a new writable file with \\spad{d} as its directory,{} \\spad{pref} as a prefix of its name and \\spad{e} as its extension. When \\spad{d} or \\spad{t} is the empty string,{} a default is used. An error occurs if a new file cannot be written in the given directory.")) (|writable?| (((|Boolean|) $) "\\spad{writable?(f)} tests if the named file be opened for writing. The named file need not already exist.")) (|readable?| (((|Boolean|) $) "\\spad{readable?(f)} tests if the named file exist and can it be opened for reading.")) (|exists?| (((|Boolean|) $) "\\spad{exists?(f)} tests if the file exists in the file system.")) (|extension| (((|String|) $) "\\spad{extension(f)} returns the type part of the file name.")) (|name| (((|String|) $) "\\spad{name(f)} returns the name part of the file name.")) (|directory| (((|String|) $) "\\spad{directory(f)} returns the directory part of the file name.")) (|filename| (($ (|String|) (|String|) (|String|)) "\\spad{filename(d,n,e)} creates a file name with \\spad{d} as its directory,{} \\spad{n} as its name and \\spad{e} as its extension. This is a portable way to create file names. When \\spad{d} or \\spad{t} is the empty string,{} a default is used."))) NIL NIL (-392 |n| |class| R) @@ -1504,7 +1504,7 @@ NIL ((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack"))) NIL NIL -(-394 -2371 UP UPUP R) +(-394 -2352 UP UPUP R) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented"))) NIL NIL @@ -1513,7 +1513,7 @@ NIL NIL NIL (-396) -((|constructor| (NIL "\\spadtype{ScriptFormulaFormat} provides a coercion from \\spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. The basic SCRIPT formula format object consists of three parts: a prologue,{} a formula part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{formula} and \\spadfun{epilogue} extract these parts,{} respectively. The central parts of the expression go into the formula part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \":df.\" and \":edf.\" so that the formula section will be printed in display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a formatted object \\spad{t} to \\spad{strings}.")) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setFormula!(t,{}strings)} sets the formula section of a formatted object \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a formatted object \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a formatted object \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setFormula!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|formula| (((|List| (|String|)) $) "\\spad{formula(t)} extracts the formula section of a formatted object \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a formatted object \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to SCRIPT formula format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers."))) +((|constructor| (NIL "\\spadtype{ScriptFormulaFormat} provides a coercion from \\spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. The basic SCRIPT formula format object consists of three parts: a prologue,{} a formula part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{formula} and \\spadfun{epilogue} extract these parts,{} respectively. The central parts of the expression go into the formula part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \":df.\" and \":edf.\" so that the formula section will be printed in display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a formatted object \\spad{t} to \\spad{strings}.")) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setFormula!(t,strings)} sets the formula section of a formatted object \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a formatted object \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a formatted object \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setFormula!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|formula| (((|List| (|String|)) $) "\\spad{formula(t)} extracts the formula section of a formatted object \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a formatted object \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to SCRIPT formula format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers."))) NIL NIL (-397) @@ -1525,15 +1525,15 @@ NIL NIL NIL (-399) -((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}"))) +((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,t,lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,l,ll,lv,t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,ll,lv)} \\undocumented{}"))) NIL NIL -(-400 -2640 |returnType| -3218 |symbols|) +(-400 -1368 |returnType| -4368 |symbols|) ((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}"))) NIL NIL -(-401 -2371 UP) -((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p,{} [[j,{} Dj,{} Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,{}Dj,{}Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}"))) +(-401 -2352 UP) +((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f, n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f, n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p, [[j, Dj, Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,Dj,Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}"))) NIL NIL (-402 R) @@ -1541,39 +1541,39 @@ NIL NIL NIL (-403 S) -((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) +((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) NIL NIL (-404) -((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) +((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) ((-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) NIL (-405 S) -((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) +((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) NIL ((|HasAttribute| |#1| (QUOTE -4397)) (|HasAttribute| |#1| (QUOTE -4405))) (-406) -((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) -((-3628 . T) (-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) +((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) +((-3603 . T) (-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) NIL (-407 R S) -((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,{}u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type."))) +((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type."))) NIL NIL (-408 A B) -((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}."))) +((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}."))) NIL NIL (-409 S) ((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) ((-4401 -12 (|has| |#1| (-6 -4412)) (|has| |#1| (-454)) (|has| |#1| (-6 -4401))) (-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) -((|HasCategory| |#1| (QUOTE (-909))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-828)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (QUOTE (-1022))) (|HasCategory| |#1| (QUOTE (-820))) (-2809 (|HasCategory| |#1| (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-850)))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-828)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-1150))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381)))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-828)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-828))))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (-12 (|HasCategory| |#1| (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-828))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-828)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-547))) (-12 (|HasAttribute| |#1| (QUOTE -4412)) (|HasAttribute| |#1| (QUOTE -4401)) (|HasCategory| |#1| (QUOTE (-454)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145))))) +((|HasCategory| |#1| (QUOTE (-909))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2768 (-12 (|HasCategory| |#1| (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-828)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (QUOTE (-1022))) (|HasCategory| |#1| (QUOTE (-820))) (-2768 (|HasCategory| |#1| (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-850)))) (-2768 (-12 (|HasCategory| |#1| (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-828)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-1150))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381)))) (-2768 (-12 (|HasCategory| |#1| (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-828)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (-2768 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-828))))) (-2768 (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (-12 (|HasCategory| |#1| (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-828))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-828)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-547))) (-12 (|HasAttribute| |#1| (QUOTE -4412)) (|HasAttribute| |#1| (QUOTE -4401)) (|HasCategory| |#1| (QUOTE (-454)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2768 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145))))) (-410 S R UP) -((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) +((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL NIL (-411 R UP) -((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) +((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) ((-4408 . T) (-4409 . T) (-4411 . T)) NIL (-412 A S) @@ -1585,51 +1585,51 @@ NIL NIL NIL (-414 R1 F1 U1 A1 R2 F2 U2 A2) -((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}i)} \\undocumented{}"))) +((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,i)} \\undocumented{}"))) NIL NIL -(-415 R -2371 UP A) -((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}."))) +(-415 R -2352 UP A) +((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,...,fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} returns the vector \\spad{[f1,...,fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,...,fn])} returns the ideal \\spad{(f1,...,fn)}."))) ((-4411 . T)) NIL -(-416 R -2371 UP A |ibasis|) -((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,{}...,{}fn])} = the module generated by \\spad{(f1,{}...,{}fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}."))) +(-416 R -2352 UP A |ibasis|) +((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,...,fn])} = the module generated by \\spad{(f1,...,fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} = the vector \\spad{[f1,...,fn]}."))) NIL ((|HasCategory| |#4| (LIST (QUOTE -1038) (|devaluate| |#2|)))) (-417 AR R AS S) -((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}."))) +((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}."))) NIL NIL (-418 S R) -((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#2| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) +((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#2| $ (|Integer|)) "\\spad{elt(a,i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL ((|HasCategory| |#2| (QUOTE (-365)))) (-419 R) -((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) +((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt(a,i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) ((-4411 |has| |#1| (-558)) (-4409 . T) (-4408 . T)) NIL (-420 R) -((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) +((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) ((-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) -((|HasCategory| |#1| (LIST (QUOTE -516) (QUOTE (-1175)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -310) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -287) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-1218))) (-2809 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-1218)))) (|HasCategory| |#1| (QUOTE (-1022))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-454)))) +((|HasCategory| |#1| (LIST (QUOTE -516) (QUOTE (-1175)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -310) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -287) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-1218))) (-2768 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-1218)))) (|HasCategory| |#1| (QUOTE (-1022))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-454)))) (-421 R) -((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,{}v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,{}fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,{}2)} then \\spad{refine(u,{}factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,{}2) * primeFactor(5,{}2)}."))) +((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,2)} then \\spad{refine(u,factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,2) * primeFactor(5,2)}."))) NIL NIL (-422 R FE |x| |cen|) -((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,{}posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed."))) +((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed."))) NIL NIL (-423 R A S B) -((|constructor| (NIL "This package allows a mapping \\spad{R} \\spad{->} \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}."))) +((|constructor| (NIL "This package allows a mapping \\spad{R} \\spad{->} \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}."))) NIL NIL (-424 R FE |Expon| UPS TRAN |x|) -((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series"))) +((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series"))) NIL NIL (-425 S A R B) -((|constructor| (NIL "FiniteSetAggregateFunctions2 provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad {[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain."))) +((|constructor| (NIL "FiniteSetAggregateFunctions2 provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad {[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain."))) NIL NIL (-426 A S) @@ -1640,52 +1640,52 @@ NIL ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) ((-4414 . T) (-4404 . T) (-4415 . T)) NIL -(-428 R -2371) -((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable."))) +(-428 R -2352) +((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable."))) NIL NIL (-429 R E) -((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,{}r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,{}r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series"))) +((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series"))) ((-4401 -12 (|has| |#1| (-6 -4401)) (|has| |#2| (-6 -4401))) (-4408 . T) (-4409 . T) (-4411 . T)) ((-12 (|HasAttribute| |#1| (QUOTE -4401)) (|HasAttribute| |#2| (QUOTE -4401)))) -(-430 R -2371) -((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable."))) +(-430 R -2352) +((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable."))) NIL NIL (-431 S R) -((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) +((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) NIL ((|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-475))) (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (-432 R) -((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -((-4411 -2809 (|has| |#1| (-1049)) (|has| |#1| (-475))) (-4409 |has| |#1| (-172)) (-4408 |has| |#1| (-172)) ((-4416 "*") |has| |#1| (-558)) (-4407 |has| |#1| (-558)) (-4412 |has| |#1| (-558)) (-4406 |has| |#1| (-558))) +((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) +((-4411 -2768 (|has| |#1| (-1049)) (|has| |#1| (-475))) (-4409 |has| |#1| (-172)) (-4408 |has| |#1| (-172)) ((-4416 "*") |has| |#1| (-558)) (-4407 |has| |#1| (-558)) (-4412 |has| |#1| (-558)) (-4406 |has| |#1| (-558))) NIL -(-433 R -2371) -((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,{}y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,{}y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,{}y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,{}y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,{}y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,{}y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,{}x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator."))) +(-433 R -2352) +((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator."))) NIL NIL -(-434 R -2371) -((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1,{} a2)} returns \\spad{[a,{} q1,{} q2,{} q]} such that \\spad{k(a1,{} a2) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,{}...,{}an])} returns \\spad{[a,{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) +(-434 R -2352) +((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1, a2)} returns \\spad{[a, q1, q2, q]} such that \\spad{k(a1, a2) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,...,an])} returns \\spad{[a, [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) NIL ((|HasCategory| |#2| (QUOTE (-27)))) -(-435 R -2371) -((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,{}k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented"))) +(-435 R -2352) +((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented"))) NIL NIL (-436) ((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\""))) NIL NIL -(-437 R -2371 UP) +(-437 R -2352 UP) ((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}"))) NIL ((|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-48))))) (-438) -((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,{}fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}."))) +((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}."))) NIL NIL (-439) -((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type"))) +((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type"))) NIL NIL (-440 |f|) @@ -1705,31 +1705,31 @@ NIL NIL NIL (-444 UP) -((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,{}sqf,{}pd,{}r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,{}sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r,{}sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,{}p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object."))) +((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,sqf,pd,r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r,sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,p,listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object."))) NIL NIL -(-445 R UP -2371) -((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,{}p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,{}n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}."))) +(-445 R UP -2352) +((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}."))) NIL NIL (-446 R UP) -((|constructor| (NIL "\\spadtype{GaloisGroupPolynomialUtilities} provides useful functions for univariate polynomials which should be added to \\spadtype{UnivariatePolynomialCategory} or to \\spadtype{Factored} (July 1994).")) (|factorsOfDegree| (((|List| |#2|) (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorsOfDegree(d,{}f)} returns the factors of degree \\spad{d} of the factored polynomial \\spad{f}.")) (|factorOfDegree| ((|#2| (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorOfDegree(d,{}f)} returns a factor of degree \\spad{d} of the factored polynomial \\spad{f}. Such a factor shall exist.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|Factored| |#2|)) "\\spad{degreePartition(f)} returns the degree partition (\\spadignore{i.e.} the multiset of the degrees of the irreducible factors) of the polynomial \\spad{f}.")) (|shiftRoots| ((|#2| |#2| |#1|) "\\spad{shiftRoots(p,{}c)} returns the polynomial which has for roots \\spad{c} added to the roots of \\spad{p}.")) (|scaleRoots| ((|#2| |#2| |#1|) "\\spad{scaleRoots(p,{}c)} returns the polynomial which has \\spad{c} times the roots of \\spad{p}.")) (|reverse| ((|#2| |#2|) "\\spad{reverse(p)} returns the reverse polynomial of \\spad{p}.")) (|unvectorise| ((|#2| (|Vector| |#1|)) "\\spad{unvectorise(v)} returns the polynomial which has for coefficients the entries of \\spad{v} in the increasing order.")) (|monic?| (((|Boolean|) |#2|) "\\spad{monic?(p)} tests if \\spad{p} is monic (\\spadignore{i.e.} leading coefficient equal to 1)."))) +((|constructor| (NIL "\\spadtype{GaloisGroupPolynomialUtilities} provides useful functions for univariate polynomials which should be added to \\spadtype{UnivariatePolynomialCategory} or to \\spadtype{Factored} (July 1994).")) (|factorsOfDegree| (((|List| |#2|) (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorsOfDegree(d,f)} returns the factors of degree \\spad{d} of the factored polynomial \\spad{f}.")) (|factorOfDegree| ((|#2| (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorOfDegree(d,f)} returns a factor of degree \\spad{d} of the factored polynomial \\spad{f}. Such a factor shall exist.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|Factored| |#2|)) "\\spad{degreePartition(f)} returns the degree partition (\\spadignore{i.e.} the multiset of the degrees of the irreducible factors) of the polynomial \\spad{f}.")) (|shiftRoots| ((|#2| |#2| |#1|) "\\spad{shiftRoots(p,c)} returns the polynomial which has for roots \\spad{c} added to the roots of \\spad{p}.")) (|scaleRoots| ((|#2| |#2| |#1|) "\\spad{scaleRoots(p,c)} returns the polynomial which has \\spad{c} times the roots of \\spad{p}.")) (|reverse| ((|#2| |#2|) "\\spad{reverse(p)} returns the reverse polynomial of \\spad{p}.")) (|unvectorise| ((|#2| (|Vector| |#1|)) "\\spad{unvectorise(v)} returns the polynomial which has for coefficients the entries of \\spad{v} in the increasing order.")) (|monic?| (((|Boolean|) |#2|) "\\spad{monic?(p)} tests if \\spad{p} is monic (\\spadignore{i.e.} leading coefficient equal to 1)."))) NIL NIL (-447 R) -((|constructor| (NIL "\\spadtype{GaloisGroupUtilities} provides several useful functions.")) (|safetyMargin| (((|NonNegativeInteger|)) "\\spad{safetyMargin()} returns the number of low weight digits we do not trust in the floating point representation (used by \\spadfun{safeCeiling}).") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{safetyMargin(n)} sets to \\spad{n} the number of low weight digits we do not trust in the floating point representation and returns the previous value (for use by \\spadfun{safeCeiling}).")) (|safeFloor| (((|Integer|) |#1|) "\\spad{safeFloor(x)} returns the integer which is lower or equal to the largest integer which has the same floating point number representation.")) (|safeCeiling| (((|Integer|) |#1|) "\\spad{safeCeiling(x)} returns the integer which is greater than any integer with the same floating point number representation.")) (|fillPascalTriangle| (((|Void|)) "\\spad{fillPascalTriangle()} fills the stored table.")) (|sizePascalTriangle| (((|NonNegativeInteger|)) "\\spad{sizePascalTriangle()} returns the number of entries currently stored in the table.")) (|rangePascalTriangle| (((|NonNegativeInteger|)) "\\spad{rangePascalTriangle()} returns the maximal number of lines stored.") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rangePascalTriangle(n)} sets the maximal number of lines which are stored and returns the previous value.")) (|pascalTriangle| ((|#1| (|NonNegativeInteger|) (|Integer|)) "\\spad{pascalTriangle(n,{}r)} returns the binomial coefficient \\spad{C(n,{}r)=n!/(r! (n-r)!)} and stores it in a table to prevent recomputation."))) +((|constructor| (NIL "\\spadtype{GaloisGroupUtilities} provides several useful functions.")) (|safetyMargin| (((|NonNegativeInteger|)) "\\spad{safetyMargin()} returns the number of low weight digits we do not trust in the floating point representation (used by \\spadfun{safeCeiling}).") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{safetyMargin(n)} sets to \\spad{n} the number of low weight digits we do not trust in the floating point representation and returns the previous value (for use by \\spadfun{safeCeiling}).")) (|safeFloor| (((|Integer|) |#1|) "\\spad{safeFloor(x)} returns the integer which is lower or equal to the largest integer which has the same floating point number representation.")) (|safeCeiling| (((|Integer|) |#1|) "\\spad{safeCeiling(x)} returns the integer which is greater than any integer with the same floating point number representation.")) (|fillPascalTriangle| (((|Void|)) "\\spad{fillPascalTriangle()} fills the stored table.")) (|sizePascalTriangle| (((|NonNegativeInteger|)) "\\spad{sizePascalTriangle()} returns the number of entries currently stored in the table.")) (|rangePascalTriangle| (((|NonNegativeInteger|)) "\\spad{rangePascalTriangle()} returns the maximal number of lines stored.") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rangePascalTriangle(n)} sets the maximal number of lines which are stored and returns the previous value.")) (|pascalTriangle| ((|#1| (|NonNegativeInteger|) (|Integer|)) "\\spad{pascalTriangle(n,r)} returns the binomial coefficient \\spad{C(n,r)=n!/(r! (n-r)!)} and stores it in a table to prevent recomputation."))) NIL ((|HasCategory| |#1| (QUOTE (-406)))) (-448) -((|constructor| (NIL "Package for the factorization of complex or gaussian integers.")) (|prime?| (((|Boolean|) (|Complex| (|Integer|))) "\\spad{prime?(\\spad{zi})} tests if the complex integer \\spad{zi} is prime.")) (|sumSquares| (((|List| (|Integer|)) (|Integer|)) "\\spad{sumSquares(p)} construct \\spad{a} and \\spad{b} such that \\spad{a**2+b**2} is equal to the integer prime \\spad{p},{} and otherwise returns an error. It will succeed if the prime number \\spad{p} is 2 or congruent to 1 mod 4.")) (|factor| (((|Factored| (|Complex| (|Integer|))) (|Complex| (|Integer|))) "\\spad{factor(\\spad{zi})} produces the complete factorization of the complex integer \\spad{zi}."))) +((|constructor| (NIL "Package for the factorization of complex or gaussian integers.")) (|prime?| (((|Boolean|) (|Complex| (|Integer|))) "\\spad{prime?(zi)} tests if the complex integer \\spad{zi} is prime.")) (|sumSquares| (((|List| (|Integer|)) (|Integer|)) "\\spad{sumSquares(p)} construct \\spad{a} and \\spad{b} such that \\spad{a**2+b**2} is equal to the integer prime \\spad{p},{} and otherwise returns an error. It will succeed if the prime number \\spad{p} is 2 or congruent to 1 mod 4.")) (|factor| (((|Factored| (|Complex| (|Integer|))) (|Complex| (|Integer|))) "\\spad{factor(zi)} produces the complete factorization of the complex integer \\spad{zi}."))) NIL NIL (-449 |Dom| |Expon| |VarSet| |Dpol|) -((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} \\indented{1}{a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\"} is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. If the second argument is \\spad{\"info\"},{} a summary is given of the critical pairs. If the third argument is \"redcrit\",{} critical pairs are printed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}. During computation,{} additional information is printed out if infoflag is given as either \"info\" (for summary information) or \"redcrit\" (for reduced critical pairs)") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}.")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class."))) +((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} \\indented{1}{a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\"} is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp, \"info\", \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. If the second argument is \\spad{\"info\"},{} a summary is given of the critical pairs. If the third argument is \"redcrit\",{} critical pairs are printed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp, infoflag)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}. During computation,{} additional information is printed out if infoflag is given as either \"info\" (for summary information) or \"redcrit\" (for reduced critical pairs)") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}.")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class."))) NIL NIL (-450 |Dom| |Expon| |VarSet| |Dpol|) -((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions,{} info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,{}info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}."))) +((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions, info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}."))) NIL NIL (-451 |Dom| |Expon| |VarSet| |Dpol|) @@ -1737,27 +1737,27 @@ NIL NIL NIL (-452 |Dom| |Expon| |VarSet| |Dpol|) -((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}."))) +((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp, \"info\", \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp, infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}."))) NIL ((|HasCategory| |#1| (QUOTE (-365)))) (-453 S) -((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) +((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) NIL NIL (-454) -((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) +((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) ((-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) NIL (-455 R |n| |ls| |gamma|) -((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,{}b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,{}b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,{}ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,{}v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed"))) +((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,s2,..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,s2,..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed"))) ((-4411 |has| (-409 (-952 |#1|)) (-558)) (-4409 . T) (-4408 . T)) ((|HasCategory| (-409 (-952 |#1|)) (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| (-409 (-952 |#1|)) (QUOTE (-558)))) (-456 |vl| R E) -((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) +((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) (((-4416 "*") |has| |#2| (-172)) (-4407 |has| |#2| (-558)) (-4412 |has| |#2| (-6 -4412)) (-4409 . T) (-4408 . T) (-4411 . T)) -((|HasCategory| |#2| (QUOTE (-909))) (-2809 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2809 (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2809 (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-172))) (-2809 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-558)))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4412)) (|HasCategory| |#2| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-145))))) +((|HasCategory| |#2| (QUOTE (-909))) (-2768 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2768 (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2768 (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-172))) (-2768 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-558)))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2768 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4412)) (|HasCategory| |#2| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (-2768 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-145))))) (-457 R BP) -((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,{}lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,{}table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,{}prime,{}lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,{}lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,{}prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional."))) +((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,prime,lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional."))) NIL NIL (-458 OV E S R P) @@ -1765,7 +1765,7 @@ NIL NIL NIL (-459 E OV R P) -((|constructor| (NIL "This package provides operations for \\spad{GCD} computations on polynomials")) (|randomR| ((|#3|) "\\spad{randomR()} should be local but conditional")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{GCD} of \\spad{p} and \\spad{q}"))) +((|constructor| (NIL "This package provides operations for \\spad{GCD} computations on polynomials")) (|randomR| ((|#3|) "\\spad{randomR()} should be local but conditional")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{GCD} of \\spad{p} and \\spad{q}"))) NIL NIL (-460 R) @@ -1773,19 +1773,19 @@ NIL NIL NIL (-461 R FE) -((|constructor| (NIL "\\spadtype{GenerateUnivariatePowerSeries} provides functions that create power series from explicit formulas for their \\spad{n}th coefficient.")) (|series| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(a(n),{}n,{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{series(a(n),{}n,{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(n +-> a(n),{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(a(n),{}n,{}x=a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{series(a(n),{}n,{}x=a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{series(a(n),{}n,{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{series(n +-> a(n),{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.")) (|puiseux| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(a(n),{}n,{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{puiseux(a(n),{}n,{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(n +-> a(n),{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{puiseux(n +-> a(n),{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.")) (|laurent| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(a(n),{}n,{}x=a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{laurent(a(n),{}n,{}x=a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{laurent(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.")) (|taylor| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(a(n),{}n,{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}; \\spad{taylor(a(n),{}n,{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n=n0..,{}a(n)*(x-a)**n)}; \\spad{taylor(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{taylor(a(n),{}n,{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{taylor(n +-> a(n),{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}."))) +((|constructor| (NIL "\\spadtype{GenerateUnivariatePowerSeries} provides functions that create power series from explicit formulas for their \\spad{n}th coefficient.")) (|series| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(a(n),n,x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{series(a(n),n,x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(n +-> a(n),x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(a(n),n,x=a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{series(a(n),n,x=a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(n +-> a(n),x = a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{series(a(n),n,x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{series(n +-> a(n),x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.")) (|puiseux| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(a(n),n,x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{puiseux(a(n),n,x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(n +-> a(n),x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{puiseux(n +-> a(n),x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.")) (|laurent| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(a(n),n,x=a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{laurent(a(n),n,x=a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(n +-> a(n),x = a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{laurent(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.")) (|taylor| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(a(n),n,x = a,n0..)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}; \\spad{taylor(a(n),n,x = a,n0..n1)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(n +-> a(n),x = a,n0..)} returns \\spad{sum(n=n0..,a(n)*(x-a)**n)}; \\spad{taylor(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{taylor(a(n),n,x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{taylor(n +-> a(n),x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}."))) NIL NIL (-462 RP TP) -((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni} General Hensel Lifting Used for Factorization of bivariate polynomials over a finite field.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(u,{}pol)} computes the symmetric reduction of \\spad{u} mod \\spad{pol}")) (|completeHensel| (((|List| |#2|) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{completeHensel(pol,{}lfact,{}prime,{}bound)} lifts \\spad{lfact},{} the factorization mod \\spad{prime} of \\spad{pol},{} to the factorization mod prime**k>bound. Factors are recombined on the way.")) (|HenselLift| (((|Record| (|:| |plist| (|List| |#2|)) (|:| |modulo| |#1|)) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{HenselLift(pol,{}lfacts,{}prime,{}bound)} lifts \\spad{lfacts},{} that are the factors of \\spad{pol} mod \\spad{prime},{} to factors of \\spad{pol} mod prime**k > \\spad{bound}. No recombining is done ."))) +((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni} General Hensel Lifting Used for Factorization of bivariate polynomials over a finite field.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(u,pol)} computes the symmetric reduction of \\spad{u} mod \\spad{pol}")) (|completeHensel| (((|List| |#2|) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{completeHensel(pol,lfact,prime,bound)} lifts \\spad{lfact},{} the factorization mod \\spad{prime} of \\spad{pol},{} to the factorization mod prime**k>bound. Factors are recombined on the way.")) (|HenselLift| (((|Record| (|:| |plist| (|List| |#2|)) (|:| |modulo| |#1|)) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{HenselLift(pol,lfacts,prime,bound)} lifts \\spad{lfacts},{} that are the factors of \\spad{pol} mod \\spad{prime},{} to factors of \\spad{pol} mod prime**k > \\spad{bound}. No recombining is done ."))) NIL NIL (-463 |vl| R IS E |ff| P) -((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,{}e,{}x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,{}i,{}e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,{}x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented"))) +((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,e,x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,i,e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented"))) ((-4409 . T) (-4408 . T)) NIL (-464 E V R P Q) -((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b,{} n,{} new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}."))) +((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b, n, new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}."))) NIL NIL (-465 R E |VarSet| P) @@ -1793,15 +1793,15 @@ NIL ((-4415 . T) (-4414 . T)) ((-12 (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#4| (LIST (QUOTE -613) (QUOTE (-862))))) (-466 S R E) -((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) +((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL NIL (-467 R E) -((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) +((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL NIL (-468) -((|constructor| (NIL "GrayCode provides a function for efficiently running through all subsets of a finite set,{} only changing one element by another one.")) (|firstSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{firstSubsetGray(n)} creates the first vector {\\em ww} to start a loop using {\\em nextSubsetGray(ww,{}n)}")) (|nextSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{nextSubsetGray(ww,{}n)} returns a vector {\\em vv} whose components have the following meanings:\\begin{items} \\item {\\em vv.1}: a vector of length \\spad{n} whose entries are 0 or 1. This \\indented{3}{can be interpreted as a code for a subset of the set 1,{}...,{}\\spad{n};} \\indented{3}{{\\em vv.1} differs from {\\em ww.1} by exactly one entry;} \\item {\\em vv.2.1} is the number of the entry of {\\em vv.1} which \\indented{3}{will be changed next time;} \\item {\\em vv.2.1 = n+1} means that {\\em vv.1} is the last subset; \\indented{3}{trying to compute nextSubsetGray(\\spad{vv}) if {\\em vv.2.1 = n+1}} \\indented{3}{will produce an error!} \\end{items} The other components of {\\em vv.2} are needed to compute nextSubsetGray efficiently. Note: this is an implementation of [Williamson,{} Topic II,{} 3.54,{} \\spad{p}. 112] for the special case {\\em r1 = r2 = ... = rn = 2}; Note: nextSubsetGray produces a side-effect,{} \\spadignore{i.e.} {\\em nextSubsetGray(vv)} and {\\em vv := nextSubsetGray(vv)} will have the same effect."))) +((|constructor| (NIL "GrayCode provides a function for efficiently running through all subsets of a finite set,{} only changing one element by another one.")) (|firstSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{firstSubsetGray(n)} creates the first vector {\\em ww} to start a loop using {\\em nextSubsetGray(ww,n)}")) (|nextSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{nextSubsetGray(ww,n)} returns a vector {\\em vv} whose components have the following meanings:\\begin{items} \\item {\\em vv.1}: a vector of length \\spad{n} whose entries are 0 or 1. This \\indented{3}{can be interpreted as a code for a subset of the set 1,{}...,{}\\spad{n};} \\indented{3}{{\\em vv.1} differs from {\\em ww.1} by exactly one entry;} \\item {\\em vv.2.1} is the number of the entry of {\\em vv.1} which \\indented{3}{will be changed next time;} \\item {\\em vv.2.1 = n+1} means that {\\em vv.1} is the last subset; \\indented{3}{trying to compute nextSubsetGray(\\spad{vv}) if {\\em vv.2.1 = n+1}} \\indented{3}{will produce an error!} \\end{items} The other components of {\\em vv.2} are needed to compute nextSubsetGray efficiently. Note: this is an implementation of [Williamson,{} Topic II,{} 3.54,{} \\spad{p}. 112] for the special case {\\em r1 = r2 = ... = rn = 2}; Note: nextSubsetGray produces a side-effect,{} \\spadignore{i.e.} {\\em nextSubsetGray(vv)} and {\\em vv := nextSubsetGray(vv)} will have the same effect."))) NIL NIL (-469) @@ -1809,7 +1809,7 @@ NIL NIL NIL (-470) -((|constructor| (NIL "TwoDimensionalGraph creates virtual two dimensional graphs (to be displayed on TwoDimensionalViewports).")) (|putColorInfo| (((|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|))) "\\spad{putColorInfo(llp,{}lpal)} takes a list of list of points,{} \\spad{llp},{} and returns the points with their hue and shade components set according to the list of palette colors,{} \\spad{lpal}.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(\\spad{gi})} returns the indicated graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage} as output of the domain \\spadtype{OutputForm}.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{coerce(llp)} component(\\spad{gi},{}\\spad{pt}) creates and returns a graph of the domain \\spadtype{GraphImage} which is composed of the list of list of points given by \\spad{llp},{} and whose point colors,{} line colors and point sizes are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.")) (|point| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|)) "\\spad{point(\\spad{gi},{}pt,{}pal)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to be the palette color \\spad{pal},{} and whose line color and point size are determined by the default functions \\spadfun{lineColorDefault} and \\spadfun{pointSizeDefault}.")) (|appendPoint| (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{appendPoint(\\spad{gi},{}pt)} appends the point \\spad{pt} to the end of the list of points component for the graph,{} \\spad{\\spad{gi}},{} which is of the domain \\spadtype{GraphImage}.")) (|component| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(\\spad{gi},{}pt,{}pal1,{}pal2,{}ps)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to the palette color \\spad{pal1},{} line color is set to the palette color \\spad{pal2},{} and point size is set to the positive integer \\spad{ps}.") (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{component(\\spad{gi},{}pt)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color,{} line color and point size are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}.") (((|Void|) $ (|List| (|Point| (|DoubleFloat|))) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(\\spad{gi},{}lp,{}pal1,{}pal2,{}p)} sets the components of the graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to the values given. The point list for \\spad{\\spad{gi}} is set to the list \\spad{lp},{} the color of the points in \\spad{lp} is set to the palette color \\spad{pal1},{} the color of the lines which connect the points \\spad{lp} is set to the palette color \\spad{pal2},{} and the size of the points in \\spad{lp} is given by the integer \\spad{p}.")) (|units| (((|List| (|Float|)) $ (|List| (|Float|))) "\\spad{units(\\spad{gi},{}lu)} modifies the list of unit increments for the \\spad{x} and \\spad{y} axes of the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to be that of the list of unit increments,{} \\spad{lu},{} and returns the new list of units for \\spad{\\spad{gi}}.") (((|List| (|Float|)) $) "\\spad{units(\\spad{gi})} returns the list of unit increments for the \\spad{x} and \\spad{y} axes of the indicated graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|ranges| (((|List| (|Segment| (|Float|))) $ (|List| (|Segment| (|Float|)))) "\\spad{ranges(\\spad{gi},{}lr)} modifies the list of ranges for the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to be that of the list of range segments,{} \\spad{lr},{} and returns the new range list for \\spad{\\spad{gi}}.") (((|List| (|Segment| (|Float|))) $) "\\spad{ranges(\\spad{gi})} returns the list of ranges of the point components from the indicated graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|key| (((|Integer|) $) "\\spad{key(\\spad{gi})} returns the process ID of the given graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|pointLists| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{pointLists(\\spad{gi})} returns the list of lists of points which compose the given graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|makeGraphImage| (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|)) (|List| (|DrawOption|))) "\\spad{makeGraphImage(llp,{}lpal1,{}lpal2,{}lp,{}lopt)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points,{} and \\spad{lopt} is the list of draw command options. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|))) "\\spad{makeGraphImage(llp,{}lpal1,{}lpal2,{}lp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{makeGraphImage(llp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} with default point size and default point and line colours. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ $) "\\spad{makeGraphImage(\\spad{gi})} takes the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} and sends it\\spad{'s} data to the viewport manager where it waits to be included in a two-dimensional viewport window. \\spad{\\spad{gi}} cannot be an empty graph,{} and it\\spad{'s} elements must have been created using the \\spadfun{point} or \\spadfun{component} functions,{} not by a previous \\spadfun{makeGraphImage}.")) (|graphImage| (($) "\\spad{graphImage()} returns an empty graph with 0 point lists of the domain \\spadtype{GraphImage}. A graph image contains the graph data component of a two dimensional viewport."))) +((|constructor| (NIL "TwoDimensionalGraph creates virtual two dimensional graphs (to be displayed on TwoDimensionalViewports).")) (|putColorInfo| (((|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|))) "\\spad{putColorInfo(llp,lpal)} takes a list of list of points,{} \\spad{llp},{} and returns the points with their hue and shade components set according to the list of palette colors,{} \\spad{lpal}.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(gi)} returns the indicated graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage} as output of the domain \\spadtype{OutputForm}.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{coerce(llp)} component(\\spad{gi},{}\\spad{pt}) creates and returns a graph of the domain \\spadtype{GraphImage} which is composed of the list of list of points given by \\spad{llp},{} and whose point colors,{} line colors and point sizes are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.")) (|point| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|)) "\\spad{point(gi,pt,pal)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to be the palette color \\spad{pal},{} and whose line color and point size are determined by the default functions \\spadfun{lineColorDefault} and \\spadfun{pointSizeDefault}.")) (|appendPoint| (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{appendPoint(gi,pt)} appends the point \\spad{pt} to the end of the list of points component for the graph,{} \\spad{gi},{} which is of the domain \\spadtype{GraphImage}.")) (|component| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(gi,pt,pal1,pal2,ps)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to the palette color \\spad{pal1},{} line color is set to the palette color \\spad{pal2},{} and point size is set to the positive integer \\spad{ps}.") (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{component(gi,pt)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color,{} line color and point size are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}.") (((|Void|) $ (|List| (|Point| (|DoubleFloat|))) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(gi,lp,pal1,pal2,p)} sets the components of the graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to the values given. The point list for \\spad{gi} is set to the list \\spad{lp},{} the color of the points in \\spad{lp} is set to the palette color \\spad{pal1},{} the color of the lines which connect the points \\spad{lp} is set to the palette color \\spad{pal2},{} and the size of the points in \\spad{lp} is given by the integer \\spad{p}.")) (|units| (((|List| (|Float|)) $ (|List| (|Float|))) "\\spad{units(gi,lu)} modifies the list of unit increments for the \\spad{x} and \\spad{y} axes of the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to be that of the list of unit increments,{} \\spad{lu},{} and returns the new list of units for \\spad{gi}.") (((|List| (|Float|)) $) "\\spad{units(gi)} returns the list of unit increments for the \\spad{x} and \\spad{y} axes of the indicated graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|ranges| (((|List| (|Segment| (|Float|))) $ (|List| (|Segment| (|Float|)))) "\\spad{ranges(gi,lr)} modifies the list of ranges for the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to be that of the list of range segments,{} \\spad{lr},{} and returns the new range list for \\spad{gi}.") (((|List| (|Segment| (|Float|))) $) "\\spad{ranges(gi)} returns the list of ranges of the point components from the indicated graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|key| (((|Integer|) $) "\\spad{key(gi)} returns the process ID of the given graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|pointLists| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{pointLists(gi)} returns the list of lists of points which compose the given graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|makeGraphImage| (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|)) (|List| (|DrawOption|))) "\\spad{makeGraphImage(llp,lpal1,lpal2,lp,lopt)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points,{} and \\spad{lopt} is the list of draw command options. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|))) "\\spad{makeGraphImage(llp,lpal1,lpal2,lp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{makeGraphImage(llp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} with default point size and default point and line colours. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ $) "\\spad{makeGraphImage(gi)} takes the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} and sends it\\spad{'s} data to the viewport manager where it waits to be included in a two-dimensional viewport window. \\spad{gi} cannot be an empty graph,{} and it\\spad{'s} elements must have been created using the \\spadfun{point} or \\spadfun{component} functions,{} not by a previous \\spadfun{makeGraphImage}.")) (|graphImage| (($) "\\spad{graphImage()} returns an empty graph with 0 point lists of the domain \\spadtype{GraphImage}. A graph image contains the graph data component of a two dimensional viewport."))) NIL NIL (-471 S R E) @@ -1820,32 +1820,32 @@ NIL ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-473 |lv| -2371 R) -((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,{}lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,{}lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,{}lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}."))) +(-473 |lv| -2352 R) +((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}."))) NIL NIL (-474 S) -((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) +((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) NIL NIL (-475) -((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) +((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) ((-4411 . T)) NIL (-476 |Coef| |var| |cen|) -((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) +((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) (((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4412 |has| |#1| (-365)) (-4406 |has| |#1| (-365)) (-4408 . T) (-4409 . T) (-4411 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|)))) (|HasCategory| (-409 (-566)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-365))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasSignature| |#1| (LIST (QUOTE -3783) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -1941) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -3863) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2768 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|)))) (|HasCategory| (-409 (-566)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-365))) (-2768 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-2768 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasSignature| |#1| (LIST (QUOTE -3152) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2768 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -3313) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -1771) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|))))))) (-477 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) ((-4415 . T)) -((-12 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2004) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3867) (|devaluate| |#2|)))))) (-2809 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (-2809 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-850))) (-2809 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099)))) +((-12 (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2674) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2636) (|devaluate| |#2|)))))) (-2768 (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (-2768 (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-850))) (-2768 (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (QUOTE (-1099)))) (-478 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}"))) ((-4415 . T) (-4414 . T)) ((-12 (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -613) (QUOTE (-862))))) (-479) -((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{\\spad{pi}()} returns the symbolic \\%\\spad{pi}."))) +((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{pi()} returns the symbolic \\%\\spad{pi}."))) ((-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) NIL (-480) @@ -1855,45 +1855,45 @@ NIL (-481 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) ((-4414 . T) (-4415 . T)) -((-12 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2004) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3867) (|devaluate| |#2|)))))) (-2809 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (-2809 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-1099))) (-2809 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -613) (QUOTE (-862))))) +((-12 (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2674) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2636) (|devaluate| |#2|)))))) (-2768 (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (-2768 (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-1099))) (-2768 (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (LIST (QUOTE -613) (QUOTE (-862))))) (-482) -((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens,{} maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens,{} leftCandidate,{} rightCandidate,{} left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,{}wt,{}rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,{}n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) +((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) NIL NIL (-483 |vl| R) -((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) +((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) (((-4416 "*") |has| |#2| (-172)) (-4407 |has| |#2| (-558)) (-4412 |has| |#2| (-6 -4412)) (-4409 . T) (-4408 . T) (-4411 . T)) -((|HasCategory| |#2| (QUOTE (-909))) (-2809 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2809 (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2809 (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-172))) (-2809 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-558)))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4412)) (|HasCategory| |#2| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-145))))) -(-484 -2420 S) +((|HasCategory| |#2| (QUOTE (-909))) (-2768 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2768 (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2768 (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-172))) (-2768 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-558)))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2768 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4412)) (|HasCategory| |#2| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (-2768 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-145))))) +(-484 -3382 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) ((-4408 |has| |#2| (-1049)) (-4409 |has| |#2| (-1049)) (-4411 |has| |#2| (-6 -4411)) ((-4416 "*") |has| |#2| (-172)) (-4414 . T)) -((-2809 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))))) (-2809 (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1099)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#2| (QUOTE (-365))) (-2809 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2809 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365)))) (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-793))) (-2809 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-848)))) (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-726))) (-2809 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1049)))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1049)))) (|HasCategory| |#2| (QUOTE (-233))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-365)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-726)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-793)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-848)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1099))))) (-2809 (-12 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1049))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-2809 (-12 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))))) (|HasCategory| (-566) (QUOTE (-850))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175))))) (-2809 (|HasCategory| |#2| (QUOTE (-1049))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1099)))) (|HasAttribute| |#2| (QUOTE -4411)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))))) +((-2768 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))))) (-2768 (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1099)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#2| (QUOTE (-365))) (-2768 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2768 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365)))) (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-793))) (-2768 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-848)))) (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-726))) (-2768 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1049)))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (-2768 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2768 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2768 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2768 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1049)))) (|HasCategory| |#2| (QUOTE (-233))) (-2768 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-1099))) (-2768 (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-365)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-726)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-793)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-848)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1099))))) (-2768 (-12 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1049))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-2768 (-12 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))))) (|HasCategory| (-566) (QUOTE (-850))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175))))) (-2768 (|HasCategory| |#2| (QUOTE (-1049))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1099)))) (|HasAttribute| |#2| (QUOTE -4411)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))))) (-485) -((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|Identifier|))) "\\spad{headAst(f,{}[x1,{}..,{}xn])} constructs a function definition header."))) +((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|Identifier|))) "\\spad{headAst(f,[x1,..,xn])} constructs a function definition header."))) NIL NIL (-486 S) ((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}."))) ((-4414 . T) (-4415 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) -(-487 -2371 UP UPUP R) +((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2768 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) +(-487 -2352 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree."))) NIL NIL (-488 BP) -((|constructor| (NIL "This package provides the functions for the heuristic integer \\spad{gcd}. Geddes\\spad{'s} algorithm,{}for univariate polynomials with integer coefficients")) (|lintgcd| (((|Integer|) (|List| (|Integer|))) "\\spad{lintgcd([a1,{}..,{}ak])} = \\spad{gcd} of a list of integers")) (|content| (((|List| (|Integer|)) (|List| |#1|)) "\\spad{content([f1,{}..,{}fk])} = content of a list of univariate polynonials")) (|gcdcofactprim| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofactprim([f1,{}..fk])} = \\spad{gcd} and cofactors of \\spad{k} primitive polynomials.")) (|gcdcofact| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofact([f1,{}..fk])} = \\spad{gcd} and cofactors of \\spad{k} univariate polynomials.")) (|gcdprim| ((|#1| (|List| |#1|)) "\\spad{gcdprim([f1,{}..,{}fk])} = \\spad{gcd} of \\spad{k} PRIMITIVE univariate polynomials")) (|gcd| ((|#1| (|List| |#1|)) "\\spad{gcd([f1,{}..,{}fk])} = \\spad{gcd} of the polynomials \\spad{fi}."))) +((|constructor| (NIL "This package provides the functions for the heuristic integer \\spad{gcd}. Geddes\\spad{'s} algorithm,{}for univariate polynomials with integer coefficients")) (|lintgcd| (((|Integer|) (|List| (|Integer|))) "\\spad{lintgcd([a1,..,ak])} = \\spad{gcd} of a list of integers")) (|content| (((|List| (|Integer|)) (|List| |#1|)) "\\spad{content([f1,..,fk])} = content of a list of univariate polynonials")) (|gcdcofactprim| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofactprim([f1,..fk])} = \\spad{gcd} and cofactors of \\spad{k} primitive polynomials.")) (|gcdcofact| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofact([f1,..fk])} = \\spad{gcd} and cofactors of \\spad{k} univariate polynomials.")) (|gcdprim| ((|#1| (|List| |#1|)) "\\spad{gcdprim([f1,..,fk])} = \\spad{gcd} of \\spad{k} PRIMITIVE univariate polynomials")) (|gcd| ((|#1| (|List| |#1|)) "\\spad{gcd([f1,..,fk])} = \\spad{gcd} of the polynomials \\spad{fi}."))) NIL NIL (-489) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion."))) ((-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) -((|HasCategory| (-566) (QUOTE (-909))) (|HasCategory| (-566) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| (-566) (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-147))) (|HasCategory| (-566) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-566) (QUOTE (-1022))) (|HasCategory| (-566) (QUOTE (-820))) (-2809 (|HasCategory| (-566) (QUOTE (-820))) (|HasCategory| (-566) (QUOTE (-850)))) (|HasCategory| (-566) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-566) (QUOTE (-1150))) (|HasCategory| (-566) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| (-566) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| (-566) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| (-566) (QUOTE (-233))) (|HasCategory| (-566) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-566) (LIST (QUOTE -516) (QUOTE (-1175)) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -310) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -287) (QUOTE (-566)) (QUOTE (-566)))) (|HasCategory| (-566) (QUOTE (-308))) (|HasCategory| (-566) (QUOTE (-547))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| (-566) (LIST (QUOTE -639) (QUOTE (-566)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-909)))) (|HasCategory| (-566) (QUOTE (-145))))) +((|HasCategory| (-566) (QUOTE (-909))) (|HasCategory| (-566) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| (-566) (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-147))) (|HasCategory| (-566) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-566) (QUOTE (-1022))) (|HasCategory| (-566) (QUOTE (-820))) (-2768 (|HasCategory| (-566) (QUOTE (-820))) (|HasCategory| (-566) (QUOTE (-850)))) (|HasCategory| (-566) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-566) (QUOTE (-1150))) (|HasCategory| (-566) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| (-566) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| (-566) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| (-566) (QUOTE (-233))) (|HasCategory| (-566) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-566) (LIST (QUOTE -516) (QUOTE (-1175)) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -310) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -287) (QUOTE (-566)) (QUOTE (-566)))) (|HasCategory| (-566) (QUOTE (-308))) (|HasCategory| (-566) (QUOTE (-547))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| (-566) (LIST (QUOTE -639) (QUOTE (-566)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-909)))) (-2768 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-909)))) (|HasCategory| (-566) (QUOTE (-145))))) (-490 A S) -((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) +((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL ((|HasAttribute| |#1| (QUOTE -4414)) (|HasAttribute| |#1| (QUOTE -4415)) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (-491 S) -((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) +((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL NIL (-492 S) @@ -1912,52 +1912,52 @@ NIL ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-496 -2371 UP |AlExt| |AlPol|) -((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p,{} f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP."))) +(-496 -2352 UP |AlExt| |AlPol|) +((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p, f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP."))) NIL NIL (-497) -((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,{}y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) +((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) ((-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) ((|HasCategory| $ (QUOTE (-1049))) (|HasCategory| $ (LIST (QUOTE -1038) (QUOTE (-566))))) (-498 S |mn|) ((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type."))) ((-4415 . T) (-4414 . T)) -((-2809 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2809 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) +((-2768 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2768 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2768 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-499 R |mnRow| |mnCol|) ((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa."))) ((-4414 . T) (-4415 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) +((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2768 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (-500 K R UP) -((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,{}lr,{}n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,{}q,{}n)} returns the list \\spad{[bas,{}bas^Frob,{}bas^(Frob^2),{}...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,{}n,{}m,{}j)} \\undocumented"))) +((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,lr,n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,q,n)} returns the list \\spad{[bas,bas^Frob,bas^(Frob^2),...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,n,m,j)} \\undocumented"))) NIL NIL -(-501 R UP -2371) -((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,{}m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{\\spad{mi}} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn} and \\spad{\\spad{mi}} is a record \\spad{[basis,{}basisDen,{}basisInv]}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then a basis \\spad{v1,{}...,{}vn} for \\spad{\\spad{mi}} is given by \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1,{} m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,{}m2,{}d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,{}m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,{}n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,{}matrixOut,{}prime,{}n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,{}sing,{}n)} is \\spad{gcd(sing,{}g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) +(-501 R UP -2352) +((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{mi} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn} and \\spad{mi} is a record \\spad{[basis,basisDen,basisInv]}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then a basis \\spad{v1,...,vn} for \\spad{mi} is given by \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1, m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,m2,d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,matrixOut,prime,n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,sing,n)} is \\spad{gcd(sing,g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL (-502 |mn|) -((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}."))) +((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}."))) ((-4415 . T) (-4414 . T)) ((-12 (|HasCategory| (-112) (QUOTE (-1099))) (|HasCategory| (-112) (LIST (QUOTE -310) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-112) (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| (-112) (QUOTE (-1099))) (|HasCategory| (-112) (LIST (QUOTE -613) (QUOTE (-862))))) (-503 K R UP L) -((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,{}p(x,{}y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,{}y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,{}mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}."))) +((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,p(x,y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}."))) NIL NIL (-504) -((|constructor| (NIL "\\indented{1}{This domain implements a container of information} about the AXIOM library")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts \\axiom{\\spad{s}} into an \\axiom{IndexCard}. Warning: if \\axiom{\\spad{s}} is not of the right format then an error will occur when using it.")) (|fullDisplay| (((|Void|) $) "\\spad{fullDisplay(ic)} prints all of the information contained in \\axiom{\\spad{ic}}.")) (|display| (((|Void|) $) "\\spad{display(ic)} prints a summary of the information contained in \\axiom{\\spad{ic}}.")) (|elt| (((|String|) $ (|Symbol|)) "\\spad{elt(ic,{}s)} selects a particular field from \\axiom{\\spad{ic}}. Valid fields are \\axiom{name,{} nargs,{} exposed,{} type,{} abbreviation,{} kind,{} origin,{} params,{} condition,{} doc}."))) +((|constructor| (NIL "\\indented{1}{This domain implements a container of information} about the AXIOM library")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts \\axiom{\\spad{s}} into an \\axiom{IndexCard}. Warning: if \\axiom{\\spad{s}} is not of the right format then an error will occur when using it.")) (|fullDisplay| (((|Void|) $) "\\spad{fullDisplay(ic)} prints all of the information contained in \\axiom{\\spad{ic}}.")) (|display| (((|Void|) $) "\\spad{display(ic)} prints a summary of the information contained in \\axiom{\\spad{ic}}.")) (|elt| (((|String|) $ (|Symbol|)) "\\spad{elt(ic,s)} selects a particular field from \\axiom{\\spad{ic}}. Valid fields are \\axiom{name,{} nargs,{} exposed,{} type,{} abbreviation,{} kind,{} origin,{} params,{} condition,{} doc}."))) NIL NIL (-505 R Q A B) -((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) +((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL NIL -(-506 -2371 |Expon| |VarSet| |DPoly|) -((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,{}f,{}lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,{}f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,{}lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,{}listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,{}listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,{}f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,{}J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,{}J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,{}lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,{}I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,{}J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,{}I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}."))) +(-506 -2352 |Expon| |VarSet| |DPoly|) +((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,f,lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}."))) NIL ((|HasCategory| |#3| (LIST (QUOTE -614) (QUOTE (-1175))))) (-507 |vl| |nv|) -((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,{}lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime."))) +((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime."))) NIL NIL (-508) @@ -1973,7 +1973,7 @@ NIL NIL NIL (-511 A S) -((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,{}s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}z)} returns the new element created by applying the function \\spad{f} to each component of the direct product element \\spad{z}."))) +((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,z)} returns the new element created by applying the function \\spad{f} to each component of the direct product element \\spad{z}."))) NIL NIL (-512 A S) @@ -1989,11 +1989,11 @@ NIL NIL NIL (-515 S A B) -((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f,{} [x1,{}...,{}xn],{} [v1,{}...,{}vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#2| |#3|) "\\spad{eval(f,{} x,{} v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) +((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#2| |#3|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL (-516 A B) -((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#1|) (|List| |#2|)) "\\spad{eval(f,{} [x1,{}...,{}xn],{} [v1,{}...,{}vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#1| |#2|) "\\spad{eval(f,{} x,{} v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) +((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#1|) (|List| |#2|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#1| |#2|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL (-517 S E |un|) @@ -2001,9 +2001,9 @@ NIL NIL ((|HasCategory| |#2| (QUOTE (-792)))) (-518 S |mn|) -((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,{}n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) +((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) ((-4415 . T) (-4414 . T)) -((-2809 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2809 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) +((-2768 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2768 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2768 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-519) ((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'."))) NIL @@ -2011,15 +2011,15 @@ NIL (-520 |p| |n|) ((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}."))) ((-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) -((-2809 (|HasCategory| (-583 |#1|) (QUOTE (-145))) (|HasCategory| (-583 |#1|) (QUOTE (-370)))) (|HasCategory| (-583 |#1|) (QUOTE (-147))) (|HasCategory| (-583 |#1|) (QUOTE (-370))) (|HasCategory| (-583 |#1|) (QUOTE (-145)))) +((-2768 (|HasCategory| (-583 |#1|) (QUOTE (-145))) (|HasCategory| (-583 |#1|) (QUOTE (-370)))) (|HasCategory| (-583 |#1|) (QUOTE (-147))) (|HasCategory| (-583 |#1|) (QUOTE (-370))) (|HasCategory| (-583 |#1|) (QUOTE (-145)))) (-521 R |mnRow| |mnCol| |Row| |Col|) ((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}."))) ((-4414 . T) (-4415 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) +((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2768 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (-522 S |mn|) -((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,{}mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists."))) +((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists."))) ((-4415 . T) (-4414 . T)) -((-2809 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2809 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) +((-2768 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2768 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2768 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-523 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}."))) NIL @@ -2031,7 +2031,7 @@ NIL (-525 R |mnRow| |mnCol|) ((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa."))) ((-4414 . T) (-4415 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-558))) (|HasAttribute| |#1| (QUOTE (-4416 "*"))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) +((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2768 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-558))) (|HasAttribute| |#1| (QUOTE (-4416 "*"))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (-526) ((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'."))) NIL @@ -2041,15 +2041,15 @@ NIL NIL NIL (-528 S) -((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,{}b)} reads byte sequences from conduit \\spad{`c'} into the byte buffer \\spad{`b'}. The actual number of bytes written is returned,{} and the length of \\spad{`b'} is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a UInt32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an Int32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a UInt16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an Int16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a UInt8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an Int8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}."))) +((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit \\spad{`c'} into the byte buffer \\spad{`b'}. The actual number of bytes written is returned,{} and the length of \\spad{`b'} is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a UInt32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an Int32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a UInt16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an Int16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a UInt8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an Int8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}."))) NIL NIL (-529) -((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,{}b)} reads byte sequences from conduit \\spad{`c'} into the byte buffer \\spad{`b'}. The actual number of bytes written is returned,{} and the length of \\spad{`b'} is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a UInt32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an Int32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a UInt16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an Int16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a UInt8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an Int8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}."))) +((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit \\spad{`c'} into the byte buffer \\spad{`b'}. The actual number of bytes written is returned,{} and the length of \\spad{`b'} is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a UInt32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an Int32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a UInt16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an Int16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a UInt8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an Int8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}."))) NIL NIL (-530 GF) -((|constructor| (NIL "InnerNormalBasisFieldFunctions(\\spad{GF}) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,{}n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,{}n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{\\spad{**}}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,{}e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,{}e,{}d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in \\spad{GF}(2^m) using normal bases\",{} Information and Computation 78,{} \\spad{pp}.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,{}e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,{}n,{}k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in \\spad{GF}(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} \\spad{pp}.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,{}...,{}vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,{}m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,{}p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field \\spad{GF}."))) +((|constructor| (NIL "InnerNormalBasisFieldFunctions(\\spad{GF}) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{\\spad{**}}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,e,d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in \\spad{GF}(2^m) using normal bases\",{} Information and Computation 78,{} \\spad{pp}.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,n,k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in \\spad{GF}(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} \\spad{pp}.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,...,vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field \\spad{GF}."))) NIL NIL (-531) @@ -2064,8 +2064,8 @@ NIL ((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables"))) NIL NIL -(-534 K -2371 |Par|) -((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,{}eps,{}factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol,{} eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) +(-534 K -2352 |Par|) +((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,eps,factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol, eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) NIL NIL (-535) @@ -2081,43 +2081,43 @@ NIL NIL NIL (-538) -((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f,{} [t1,{}...,{}tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,{}...,{}tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}\\spad{'s} are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parseString| (($ (|String|)) "parseString is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code,{} [x1,{}...,{}xn])} returns the input form corresponding to \\spad{(x1,{}...,{}xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code,{} [x1,{}...,{}xn],{} f)} returns the input form corresponding to \\spad{f(x1,{}...,{}xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op,{} [a1,{}...,{}an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter."))) +((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f, [t1,...,tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,...,tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}\\spad{'s} are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parseString| (($ (|String|)) "parseString is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code, [x1,...,xn])} returns the input form corresponding to \\spad{(x1,...,xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code, [x1,...,xn], f)} returns the input form corresponding to \\spad{f(x1,...,xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op, [a1,...,an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter."))) NIL NIL (-539 |Coef| UTS) -((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) +((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-540 K -2371 |Par|) -((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,{}lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,{}lden,{}lvar,{}eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,{}eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,{}eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}."))) +(-540 K -2352 |Par|) +((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,lden,lvar,eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}."))) NIL NIL (-541 R BP |pMod| |nextMod|) -((|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(f,{}p)} reduces the coefficients of the polynomial \\spad{f} modulo the prime \\spad{p}.")) (|modularGcd| ((|#2| (|List| |#2|)) "\\spad{modularGcd(listf)} computes the \\spad{gcd} of the list of polynomials \\spad{listf} by modular methods.")) (|modularGcdPrimitive| ((|#2| (|List| |#2|)) "\\spad{modularGcdPrimitive(f1,{}f2)} computes the \\spad{gcd} of the two polynomials \\spad{f1} and \\spad{f2} by modular methods."))) +((|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(f,p)} reduces the coefficients of the polynomial \\spad{f} modulo the prime \\spad{p}.")) (|modularGcd| ((|#2| (|List| |#2|)) "\\spad{modularGcd(listf)} computes the \\spad{gcd} of the list of polynomials \\spad{listf} by modular methods.")) (|modularGcdPrimitive| ((|#2| (|List| |#2|)) "\\spad{modularGcdPrimitive(f1,f2)} computes the \\spad{gcd} of the two polynomials \\spad{f1} and \\spad{f2} by modular methods."))) NIL NIL (-542 OV E R P) -((|constructor| (NIL "\\indented{2}{This is an inner package for factoring multivariate polynomials} over various coefficient domains in characteristic 0. The univariate factor operation is passed as a parameter. Multivariate hensel lifting is used to lift the univariate factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,{}ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}. \\spad{p} is represented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,{}ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}."))) +((|constructor| (NIL "\\indented{2}{This is an inner package for factoring multivariate polynomials} over various coefficient domains in characteristic 0. The univariate factor operation is passed as a parameter. Multivariate hensel lifting is used to lift the univariate factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}. \\spad{p} is represented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}."))) NIL NIL (-543 K UP |Coef| UTS) -((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an arbitrary finite field.")) (|generalInfiniteProduct| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#4| |#4|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#4| |#4|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#4| |#4|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) +((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an arbitrary finite field.")) (|generalInfiniteProduct| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#4| |#4|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#4| |#4|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#4| |#4|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL (-544 |Coef| UTS) -((|constructor| (NIL "This package computes infinite products of univariate Taylor series over a field of prime order.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) +((|constructor| (NIL "This package computes infinite products of univariate Taylor series over a field of prime order.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL (-545 R UP) -((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) "failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}r,{}f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}r,{}i,{}f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}i,{}f)} \\undocumented"))) +((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) "failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,r,f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,r,i,f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,i,f)} \\undocumented"))) NIL NIL (-546 S) -((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) +((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) NIL NIL (-547) -((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) +((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) ((-4412 . T) (-4413 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) NIL (-548) @@ -2139,33 +2139,33 @@ NIL (-552 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) ((-4414 . T) (-4415 . T)) -((-12 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2004) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3867) (|devaluate| |#2|)))))) (-2809 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (-2809 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-1099))) (-2809 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -613) (QUOTE (-862))))) -(-553 R -2371) -((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f,{} x,{} y,{} d)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) +((-12 (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2674) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2636) (|devaluate| |#2|)))))) (-2768 (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (-2768 (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-1099))) (-2768 (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (LIST (QUOTE -613) (QUOTE (-862))))) +(-553 R -2352) +((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f, x, y, d)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) NIL NIL -(-554 R0 -2371 UP UPUP R) -((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f,{} d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}."))) +(-554 R0 -2352 UP UPUP R) +((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f, d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}."))) NIL NIL (-555) -((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,{}m)} returns \\spad{true} if coefficient of 2**m in abs(\\spad{n}) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,{}m)} returns the coefficient of 2**m in abs(\\spad{n})")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(\\spad{n})"))) +((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,m)} returns \\spad{true} if coefficient of 2**m in abs(\\spad{n}) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,m)} returns the coefficient of 2**m in abs(\\spad{n})")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(\\spad{n})"))) NIL NIL (-556 R) -((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,{}f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,{}sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,{}sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) -((-3628 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) +((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) +((-3603 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) NIL (-557 S) -((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) +((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) NIL NIL (-558) -((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) +((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) ((-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) NIL -(-559 R -2371) -((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) +(-559 R -2352) +((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,x,k,[k1,...,kn])} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f, x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f, x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,x,[g1,...,gn])} returns functions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} and \\spad{d(h+sum(ci log(gi)))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f, x, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) NIL NIL (-560 I) @@ -2176,20 +2176,20 @@ NIL ((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions."))) NIL NIL -(-562 R -2371 L) -((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) +(-562 R -2352 L) +((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x, y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,g,x,y,z,t,c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op, g, x, y, d, p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,k,f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,k,k,p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f, g, x, y, foo, t, c)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f, g, x, y, foo, d, p)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f, x, y, [u1,...,un], z, t, c)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f, x, y, [u1,...,un], d, p)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f, x, y, g, z, t, c)} returns functions \\spad{[h, d]} such that \\spad{dh/dx = f(x,y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f, x, y, g, d, p)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f, x, y, z, t, c)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f, x, y, d, p)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) NIL ((|HasCategory| |#3| (LIST (QUOTE -656) (|devaluate| |#2|)))) (-563) -((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,{}k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,{}p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,{}p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,{}b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,{}b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,{}k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,{}1/2)},{} where \\spad{E(n,{}x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,{}m1,{}x2,{}m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,{}0)},{} where \\spad{B(n,{}x)} is the \\spad{n}th Bernoulli polynomial."))) +((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,1/2)},{} where \\spad{E(n,x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,m1,x2,m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,0)},{} where \\spad{B(n,x)} is the \\spad{n}th Bernoulli polynomial."))) NIL NIL -(-564 -2371 UP UPUP R) -((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} ')} returns \\spad{[g,{}h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles."))) +(-564 -2352 UP UPUP R) +((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, ')} returns \\spad{[g,h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles."))) NIL NIL -(-565 -2371 UP) -((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} D)} returns \\spad{[g,{} h,{} s,{} p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}."))) +(-565 -2352 UP) +((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, D)} returns \\spad{[g, h, s, p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}."))) NIL NIL (-566) @@ -2197,47 +2197,47 @@ NIL ((-4396 . T) (-4402 . T) (-4406 . T) (-4401 . T) (-4412 . T) (-4413 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) NIL (-567) -((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp,{} x = a..b,{} numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp,{} x = a..b,{} \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel,{} routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp,{} a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsabs,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} a..b,{} epsrel,{} routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}."))) +((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp, x = a..b, numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp, x = a..b, \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel, routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp, [a..b,c..d,...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp, a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp, a..b, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp, a..b, epsabs, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, a..b, epsrel, routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}."))) NIL NIL -(-568 R -2371 L) -((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) +(-568 R -2352 L) +((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op, g, kx, y, x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp, f, g, x, y, foo)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a, b, x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f, x, y, [u1,...,un])} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f, x, y, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f, x, y)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) NIL ((|HasCategory| |#3| (LIST (QUOTE -656) (|devaluate| |#2|)))) -(-569 R -2371) -((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f,{} x)} returns \\spad{[c,{} g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}."))) +(-569 R -2352) +((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f, x)} returns \\spad{[c, g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}."))) NIL ((-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-1138)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-629))))) -(-570 -2371 UP) -((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(\\spad{ci} log(\\spad{gi})))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}."))) +(-570 -2352 UP) +((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f, [g1,...,gn])} returns fractions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(ci log(gi)))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f, g)} returns fractions \\spad{[h, c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}."))) NIL NIL (-571 S) ((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer."))) NIL NIL -(-572 -2371) -((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f,{} x,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f,{} x,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{} [[\\spad{ci},{}\\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(\\spad{ci} log(\\spad{gi})))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f,{} x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns \\spad{g} such that \\spad{dg/dx = f}."))) +(-572 -2352) +((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f, x, g)} returns fractions \\spad{[h, c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f, x, [g1,...,gn])} returns fractions \\spad{[h, [[ci,gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(ci log(gi)))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f, x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns \\spad{g} such that \\spad{dg/dx = f}."))) NIL NIL (-573 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals."))) -((-3628 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) +((-3603 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) NIL (-574) -((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) +((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-575 R -2371) -((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f,{} x,{} int,{} pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f,{} x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f,{} x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,{}...,{}fn],{}x)} returns the set-theoretic union of \\spad{(varselect(f1,{}x),{}...,{}varselect(fn,{}x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1,{} l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k,{} [k1,{}...,{}kn],{} x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,{}...,{}kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,{}...,{}kn],{} x)} returns the \\spad{ki} which involve \\spad{x}."))) +(-575 R -2352) +((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f, x, int, pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f, x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f, x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,...,fn],x)} returns the set-theoretic union of \\spad{(varselect(f1,x),...,varselect(fn,x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1, l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k, [k1,...,kn], x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,...,kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,...,kn], x)} returns the \\spad{ki} which involve \\spad{x}."))) NIL ((-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-285))) (|HasCategory| |#2| (QUOTE (-629))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175))))) (-12 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-285)))) (|HasCategory| |#1| (QUOTE (-558)))) -(-576 -2371 UP) -((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) +(-576 -2352 UP) +((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p, ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f, ')} returns \\spad{[ir, s, p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p, foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p, ', t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f, ', [u1,...,un])} returns \\spad{[v, [c1,...,cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[ci * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f, ', g)} returns \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) NIL NIL -(-577 R -2371) -((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f,{} s,{} t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form."))) +(-577 R -2352) +((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f, s, t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form."))) NIL NIL (-578) @@ -2268,20 +2268,20 @@ NIL ((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor."))) NIL NIL -(-585 R -2371) -((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) +(-585 R -2352) +((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL NIL -(-586 E -2371) -((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented"))) +(-586 E -2352) +((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,ire)} \\undocumented"))) NIL NIL -(-587 -2371) -((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) +(-587 -2352) +((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,l,ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) ((-4409 . T) (-4408 . T)) ((|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-1175))))) (-588 I) -((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,{}r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,{}r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,{}r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,{}r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise"))) +((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise"))) NIL NIL (-589 GF) @@ -2289,15 +2289,15 @@ NIL NIL NIL (-590 R) -((|constructor| (NIL "\\indented{2}{This package allows a sum of logs over the roots of a polynomial} \\indented{2}{to be expressed as explicit logarithms and arc tangents,{} provided} \\indented{2}{that the indexing polynomial can be factored into quadratics.} Date Created: 21 August 1988 Date Last Updated: 4 October 1993")) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable..")) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) +((|constructor| (NIL "\\indented{2}{This package allows a sum of logs over the roots of a polynomial} \\indented{2}{to be expressed as explicit logarithms and arc tangents,{} provided} \\indented{2}{that the indexing polynomial can be factored into quadratics.} Date Created: 21 August 1988 Date Last Updated: 4 October 1993")) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable..")) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL ((|HasCategory| |#1| (QUOTE (-147)))) (-591) -((|constructor| (NIL "IrrRepSymNatPackage contains functions for computing the ordinary irreducible representations of symmetric groups on \\spad{n} letters {\\em {1,{}2,{}...,{}n}} in Young\\spad{'s} natural form and their dimensions. These representations can be labelled by number partitions of \\spad{n},{} \\spadignore{i.e.} a weakly decreasing sequence of integers summing up to \\spad{n},{} \\spadignore{e.g.} {\\em [3,{}3,{}3,{}1]} labels an irreducible representation for \\spad{n} equals 10. Note: whenever a \\spadtype{List Integer} appears in a signature,{} a partition required.")) (|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|)) (|List| (|Permutation| (|Integer|)))) "\\spad{irreducibleRepresentation(lambda,{}listOfPerm)} is the list of the irreducible representations corresponding to {\\em lambda} in Young\\spad{'s} natural form for the list of permutations given by {\\em listOfPerm}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{irreducibleRepresentation(lambda)} is the list of the two irreducible representations corresponding to the partition {\\em lambda} in Young\\spad{'s} natural form for the following two generators of the symmetric group,{} whose elements permute {\\em {1,{}2,{}...,{}n}},{} namely {\\em (1 2)} (2-cycle) and {\\em (1 2 ... n)} (\\spad{n}-cycle).") (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|Permutation| (|Integer|))) "\\spad{irreducibleRepresentation(lambda,{}\\spad{pi})} is the irreducible representation corresponding to partition {\\em lambda} in Young\\spad{'s} natural form of the permutation {\\em \\spad{pi}} in the symmetric group,{} whose elements permute {\\em {1,{}2,{}...,{}n}}.")) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|Integer|))) "\\spad{dimensionOfIrreducibleRepresentation(lambda)} is the dimension of the ordinary irreducible representation of the symmetric group corresponding to {\\em lambda}. Note: the Robinson-Thrall hook formula is implemented."))) +((|constructor| (NIL "IrrRepSymNatPackage contains functions for computing the ordinary irreducible representations of symmetric groups on \\spad{n} letters {\\em {1,2,...,n}} in Young\\spad{'s} natural form and their dimensions. These representations can be labelled by number partitions of \\spad{n},{} \\spadignore{i.e.} a weakly decreasing sequence of integers summing up to \\spad{n},{} \\spadignore{e.g.} {\\em [3,3,3,1]} labels an irreducible representation for \\spad{n} equals 10. Note: whenever a \\spadtype{List Integer} appears in a signature,{} a partition required.")) (|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|)) (|List| (|Permutation| (|Integer|)))) "\\spad{irreducibleRepresentation(lambda,listOfPerm)} is the list of the irreducible representations corresponding to {\\em lambda} in Young\\spad{'s} natural form for the list of permutations given by {\\em listOfPerm}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{irreducibleRepresentation(lambda)} is the list of the two irreducible representations corresponding to the partition {\\em lambda} in Young\\spad{'s} natural form for the following two generators of the symmetric group,{} whose elements permute {\\em {1,2,...,n}},{} namely {\\em (1 2)} (2-cycle) and {\\em (1 2 ... n)} (\\spad{n}-cycle).") (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|Permutation| (|Integer|))) "\\spad{irreducibleRepresentation(lambda,pi)} is the irreducible representation corresponding to partition {\\em lambda} in Young\\spad{'s} natural form of the permutation {\\em pi} in the symmetric group,{} whose elements permute {\\em {1,2,...,n}}.")) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|Integer|))) "\\spad{dimensionOfIrreducibleRepresentation(lambda)} is the dimension of the ordinary irreducible representation of the symmetric group corresponding to {\\em lambda}. Note: the Robinson-Thrall hook formula is implemented."))) NIL NIL (-592 R E V P TS) -((|constructor| (NIL "\\indented{1}{An internal package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a square-free} \\indented{1}{triangular set.} \\indented{1}{The main operation is \\axiomOpFrom{rur}{InternalRationalUnivariateRepresentationPackage}.} \\indented{1}{It is based on the {\\em generic} algorithm description in [1]. \\newline References:} [1] \\spad{D}. LAZARD \"Solving Zero-dimensional Algebraic Systems\" \\indented{4}{Journal of Symbolic Computation,{} 1992,{} 13,{} 117-131}")) (|checkRur| (((|Boolean|) |#5| (|List| |#5|)) "\\spad{checkRur(ts,{}lus)} returns \\spad{true} if \\spad{lus} is a rational univariate representation of \\spad{ts}.")) (|rur| (((|List| |#5|) |#5| (|Boolean|)) "\\spad{rur(ts,{}univ?)} returns a rational univariate representation of \\spad{ts}. This assumes that the lowest polynomial in \\spad{ts} is a variable \\spad{v} which does not occur in the other polynomials of \\spad{ts}. This variable will be used to define the simple algebraic extension over which these other polynomials will be rewritten as univariate polynomials with degree one. If \\spad{univ?} is \\spad{true} then these polynomials will have a constant initial."))) +((|constructor| (NIL "\\indented{1}{An internal package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a square-free} \\indented{1}{triangular set.} \\indented{1}{The main operation is \\axiomOpFrom{rur}{InternalRationalUnivariateRepresentationPackage}.} \\indented{1}{It is based on the {\\em generic} algorithm description in [1]. \\newline References:} [1] \\spad{D}. LAZARD \"Solving Zero-dimensional Algebraic Systems\" \\indented{4}{Journal of Symbolic Computation,{} 1992,{} 13,{} 117-131}")) (|checkRur| (((|Boolean|) |#5| (|List| |#5|)) "\\spad{checkRur(ts,lus)} returns \\spad{true} if \\spad{lus} is a rational univariate representation of \\spad{ts}.")) (|rur| (((|List| |#5|) |#5| (|Boolean|)) "\\spad{rur(ts,univ?)} returns a rational univariate representation of \\spad{ts}. This assumes that the lowest polynomial in \\spad{ts} is a variable \\spad{v} which does not occur in the other polynomials of \\spad{ts}. This variable will be used to define the simple algebraic extension over which these other polynomials will be rewritten as univariate polynomials with degree one. If \\spad{univ?} is \\spad{true} then these polynomials will have a constant initial."))) NIL NIL (-593) @@ -2307,45 +2307,45 @@ NIL (-594 |mn|) ((|constructor| (NIL "This domain implements low-level strings")) (|hash| (((|Integer|) $) "\\spad{hash(x)} provides a hashing function for strings"))) ((-4415 . T) (-4414 . T)) -((-2809 (-12 (|HasCategory| (-144) (QUOTE (-850))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (-2809 (|HasCategory| (-144) (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -614) (QUOTE (-538)))) (-2809 (|HasCategory| (-144) (QUOTE (-850))) (|HasCategory| (-144) (QUOTE (-1099)))) (|HasCategory| (-144) (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) +((-2768 (-12 (|HasCategory| (-144) (QUOTE (-850))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (-2768 (|HasCategory| (-144) (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -614) (QUOTE (-538)))) (-2768 (|HasCategory| (-144) (QUOTE (-850))) (|HasCategory| (-144) (QUOTE (-1099)))) (|HasCategory| (-144) (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (-595 E V R P) -((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n),{} n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n),{} n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}."))) +((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n), n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n), n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}."))) NIL NIL (-596 |Coef|) -((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,{}r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,{}r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,{}refer,{}var,{}cen,{}r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,{}g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,{}g,{}taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,{}f)} returns the series \\spad{sum(fn(n) * an * x^n,{}n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,{}n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,{}str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) +((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) (((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4408 . T) (-4409 . T) (-4411 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|)))) (|HasCategory| (-566) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -3783) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566)))))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (-2768 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|)))) (|HasCategory| (-566) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -3152) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566)))))) (-597 |Coef|) -((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.") (($ $ |#1|) "\\spad{x*c} returns the product of \\spad{c} and the series \\spad{x}.") (($ |#1| $) "\\spad{c*x} returns the product of \\spad{c} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,{}n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) +((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.") (($ $ |#1|) "\\spad{x*c} returns the product of \\spad{c} and the series \\spad{x}.") (($ |#1| $) "\\spad{c*x} returns the product of \\spad{c} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) ((-4409 |has| |#1| (-558)) (-4408 |has| |#1| (-558)) ((-4416 "*") |has| |#1| (-558)) (-4407 |has| |#1| (-558)) (-4411 . T)) ((|HasCategory| |#1| (QUOTE (-558)))) (-598 A B) -((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[f(x0),{}f(x1),{}f(x2),{}..]}."))) +((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,[x0,x1,x2,...])} returns \\spad{[f(x0),f(x1),f(x2),..]}."))) NIL NIL (-599 A B C) -((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented"))) +((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented"))) NIL NIL -(-600 R -2371 FG) -((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f,{} [k1,{}...,{}kn],{} [x1,{}...,{}xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{\\spad{xi}'s} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{\\spad{ki}'s},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain."))) +(-600 R -2352 FG) +((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f, [k1,...,kn], [x1,...,xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{xi's} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{ki's},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain."))) NIL NIL (-601 S) -((|constructor| (NIL "\\indented{1}{This package implements 'infinite tuples' for the interpreter.} The representation is a stream.")) (|construct| (((|Stream| |#1|) $) "\\spad{construct(t)} converts an infinite tuple to a stream.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}s)} returns \\spad{[s,{}f(s),{}f(f(s)),{}...]}.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}t)} returns \\spad{[x for x in t | p(x)]}.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}t)} returns \\spad{[x for x in t while not p(x)]}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}t)} returns \\spad{[x for x in t while p(x)]}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}t)} replaces the tuple \\spad{t} by \\spad{[f(x) for x in t]}."))) +((|constructor| (NIL "\\indented{1}{This package implements 'infinite tuples' for the interpreter.} The representation is a stream.")) (|construct| (((|Stream| |#1|) $) "\\spad{construct(t)} converts an infinite tuple to a stream.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,s)} returns \\spad{[s,f(s),f(f(s)),...]}.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,t)} returns \\spad{[x for x in t | p(x)]}.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,t)} returns \\spad{[x for x in t while not p(x)]}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,t)} returns \\spad{[x for x in t while p(x)]}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,t)} replaces the tuple \\spad{t} by \\spad{[f(x) for x in t]}."))) NIL NIL (-602 R |mn|) ((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index."))) ((-4415 . T) (-4414 . T)) -((-2809 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2809 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-726))) (|HasCategory| |#1| (QUOTE (-1049))) (-12 (|HasCategory| |#1| (QUOTE (-1002))) (|HasCategory| |#1| (QUOTE (-1049)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) +((-2768 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2768 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2768 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-726))) (|HasCategory| |#1| (QUOTE (-1049))) (-12 (|HasCategory| |#1| (QUOTE (-1002))) (|HasCategory| |#1| (QUOTE (-1049)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-603 S |Index| |Entry|) -((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) +((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL ((|HasAttribute| |#1| (QUOTE -4415)) (|HasCategory| |#2| (QUOTE (-850))) (|HasAttribute| |#1| (QUOTE -4414)) (|HasCategory| |#3| (QUOTE (-1099)))) (-604 |Index| |Entry|) -((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) +((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL NIL (-605) @@ -2357,19 +2357,19 @@ NIL NIL NIL (-607 R A) -((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,{}b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-4411 -2809 (-2432 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))) (-4409 . T) (-4408 . T)) -((-2809 (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -419) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -419) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -419) (|devaluate| |#1|)))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#2| (LIST (QUOTE -419) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|)))) +((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) +((-4411 -2768 (-2415 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))) (-4409 . T) (-4408 . T)) +((-2768 (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -419) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -419) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -419) (|devaluate| |#1|)))) (-2768 (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#2| (LIST (QUOTE -419) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|)))) (-608 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) ((-4414 . T) (-4415 . T)) -((-12 (|HasCategory| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2004) (QUOTE (-1157))) (LIST (QUOTE |:|) (QUOTE -3867) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| (-1157) (QUOTE (-850))) (|HasCategory| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (LIST (QUOTE -613) (QUOTE (-862))))) +((-12 (|HasCategory| (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2674) (QUOTE (-1157))) (LIST (QUOTE |:|) (QUOTE -2636) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| (-1157) (QUOTE (-850))) (|HasCategory| (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (LIST (QUOTE -613) (QUOTE (-862))))) (-609 S |Key| |Entry|) -((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}."))) +((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL NIL (-610 |Key| |Entry|) -((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}."))) +((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) ((-4415 . T)) NIL (-611 R S) @@ -2377,7 +2377,7 @@ NIL NIL NIL (-612 S) -((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,{}...,{}an),{} s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,{}...,{}an),{} f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op,{} [a1,{}...,{}an],{} m)} returns the kernel \\spad{op(a1,{}...,{}an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,{}...,{}an))} returns \\spad{[a1,{}...,{}an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,{}...,{}an))} returns the operator op."))) +((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,...,an), s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,...,an), f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op, [a1,...,an], m)} returns the kernel \\spad{op(a1,...,an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,...,an))} returns \\spad{[a1,...,an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,...,an))} returns the operator op."))) NIL ((|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-613 S) @@ -2388,8 +2388,8 @@ NIL ((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-615 -2371 UP) -((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2,{}ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions."))) +(-615 -2352 UP) +((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,a_1,a_2,ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,a_1,a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions."))) NIL NIL (-616 S) @@ -2416,12 +2416,12 @@ NIL ((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) ((-4408 . T) (-4409 . T) (-4411 . T)) ((|HasCategory| |#1| (QUOTE (-848)))) -(-622 R -2371) -((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f,{} t,{} s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t),{} t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f,{} t,{} s)} if it cannot compute the transform."))) +(-622 R -2352) +((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f, t, s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t), t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f, t, s)} if it cannot compute the transform."))) NIL NIL (-623 R UP) -((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,{}n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,{}n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented"))) +((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented"))) ((-4409 . T) (-4408 . T) ((-4416 "*") . T) (-4407 . T) (-4411 . T)) ((|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566))))) (-624 R E V P TS ST) @@ -2429,7 +2429,7 @@ NIL NIL NIL (-625 OV E Z P) -((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \\spad{\"F\"}.")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,{}unilist,{}plead,{}vl,{}lvar,{}lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod,{} numFacts,{} evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation."))) +((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \\spad{\"F\"}.")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,unilist,plead,vl,lvar,lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod, numFacts, evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation."))) NIL NIL (-626) @@ -2445,21 +2445,21 @@ NIL NIL NIL (-629) -((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) +((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%pi)} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{li(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{Ci(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{Si(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{Ei(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) NIL NIL -(-630 R -2371) -((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) +(-630 R -2352) +((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{li(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{Ci(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{Si(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{Ei(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) NIL NIL -(-631 |lv| -2371) +(-631 |lv| -2352) ((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented"))) NIL NIL (-632) -((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,{}k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) +((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) ((-4415 . T)) -((-12 (|HasCategory| (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2004) (QUOTE (-1157))) (LIST (QUOTE |:|) (QUOTE -3867) (QUOTE (-52))))))) (-2809 (|HasCategory| (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) (QUOTE (-1099))) (|HasCategory| (-52) (QUOTE (-1099)))) (-2809 (|HasCategory| (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-52) (QUOTE (-1099))) (|HasCategory| (-52) (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| (-52) (QUOTE (-1099))) (|HasCategory| (-52) (LIST (QUOTE -310) (QUOTE (-52))))) (|HasCategory| (-1157) (QUOTE (-850))) (-2809 (|HasCategory| (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-52) (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-52) (QUOTE (-1099))) (|HasCategory| (-52) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) (QUOTE (-1099)))) +((-12 (|HasCategory| (-2 (|:| -2674 (-1157)) (|:| -2636 (-52))) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2674 (-1157)) (|:| -2636 (-52))) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2674) (QUOTE (-1157))) (LIST (QUOTE |:|) (QUOTE -2636) (QUOTE (-52))))))) (-2768 (|HasCategory| (-2 (|:| -2674 (-1157)) (|:| -2636 (-52))) (QUOTE (-1099))) (|HasCategory| (-52) (QUOTE (-1099)))) (-2768 (|HasCategory| (-2 (|:| -2674 (-1157)) (|:| -2636 (-52))) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2674 (-1157)) (|:| -2636 (-52))) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-52) (QUOTE (-1099))) (|HasCategory| (-52) (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -2674 (-1157)) (|:| -2636 (-52))) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| (-52) (QUOTE (-1099))) (|HasCategory| (-52) (LIST (QUOTE -310) (QUOTE (-52))))) (|HasCategory| (-1157) (QUOTE (-850))) (-2768 (|HasCategory| (-2 (|:| -2674 (-1157)) (|:| -2636 (-52))) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-52) (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-52) (QUOTE (-1099))) (|HasCategory| (-52) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2674 (-1157)) (|:| -2636 (-52))) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2674 (-1157)) (|:| -2636 (-52))) (QUOTE (-1099)))) (-633 S R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) NIL @@ -2469,23 +2469,23 @@ NIL ((|JacobiIdentity| . T) (|NullSquare| . T) (-4409 . T) (-4408 . T)) NIL (-635 R A) -((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-4411 -2809 (-2432 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))) (-4409 . T) (-4408 . T)) -((-2809 (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -419) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -419) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -419) (|devaluate| |#1|)))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#2| (LIST (QUOTE -419) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|)))) +((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) +((-4411 -2768 (-2415 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))) (-4409 . T) (-4408 . T)) +((-2768 (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -419) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -419) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -419) (|devaluate| |#1|)))) (-2768 (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#2| (LIST (QUOTE -419) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|)))) (-636 R FE) -((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}."))) +((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit \\spad{lim(x -> a,f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),x=a,\"left\")} computes the left hand real limit \\spad{lim(x -> a-,f(x))}; \\spad{limit(f(x),x=a,\"right\")} computes the right hand real limit \\spad{lim(x -> a+,f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),x = a)} computes the real limit \\spad{lim(x -> a,f(x))}."))) NIL NIL (-637 R) -((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),{}x,{}a,{}\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}."))) +((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),x,a,\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}."))) NIL NIL (-638 S R) -((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) +((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) NIL -((-2418 (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-365)))) +((-2404 (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-365)))) (-639 R) -((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A,{} v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}."))) +((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A, v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}."))) ((-4411 . T)) NIL (-640 R) @@ -2493,21 +2493,21 @@ NIL NIL NIL (-641 A B) -((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} a,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la,{} lb,{} a,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la,{} lb,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la,{} lb,{} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la,{} lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}."))) +((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, a, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la, lb, a, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la, lb, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la, lb, a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la, lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}."))) NIL NIL (-642 A B) -((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,{}u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,{}[1,{}2,{}3]) = [1,{}4,{}9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,{}[1,{}2,{}3],{}0) = fn(3,{}fn(2,{}fn(1,{}0)))} and \\spad{reduce(*,{}[2,{}3],{}1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,{}[1,{}2],{}0) = [fn(2,{}fn(1,{}0)),{}fn(1,{}0)]} and \\spad{scan(*,{}[2,{}3],{}1) = [2 * 1,{} 3 * (2 * 1)]}."))) +((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,[1,2,3]) = [1,4,9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,u,ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,[1,2,3],0) = fn(3,fn(2,fn(1,0)))} and \\spad{reduce(*,[2,3],1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,u,ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,[1,2],0) = [fn(2,fn(1,0)),fn(1,0)]} and \\spad{scan(*,[2,3],1) = [2 * 1, 3 * (2 * 1)]}."))) NIL NIL (-643 A B C) -((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,{}list1,{} u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,{}[1,{}2,{}3],{}[4,{}5,{}6]) = [1/4,{}2/4,{}1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}."))) +((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,list1, u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,[1,2,3],[4,5,6]) = [1/4,2/4,1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}."))) NIL NIL (-644 S) -((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list."))) +((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil} is the empty list."))) ((-4415 . T) (-4414 . T)) -((-2809 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2809 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-828))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) +((-2768 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2768 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2768 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-828))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-645 T$) ((|constructor| (NIL "This domain represents AST for Spad literals."))) NIL @@ -2517,27 +2517,27 @@ NIL NIL NIL (-647 S) -((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,{}y,{}d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) +((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,y,d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) ((-4414 . T) (-4415 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) +((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2768 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (-648 R) ((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline"))) NIL NIL (-649 S E |un|) -((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,{}y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x,{} y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s,{} e,{} x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s,{} a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a,{} s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l,{} n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l,{} n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s,{} e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l,{} fop,{} fexp,{} unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a,{} b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a,{} n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n})."))) +((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x, y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s, e, x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s, a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a, s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l, n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l, n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s, e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l, fop, fexp, unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a, b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a, n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n})."))) NIL NIL (-650 A S) -((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) +((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL ((|HasAttribute| |#1| (QUOTE -4415))) (-651 S) -((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) +((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL NIL -(-652 R -2371 L) -((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op,{} g,{} x,{} a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{op y = g,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op,{} g,{} x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable."))) +(-652 R -2352 L) +((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op, g, x, a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{op y = g, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op, g, x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable."))) NIL NIL (-653 A) @@ -2549,23 +2549,23 @@ NIL ((-4408 . T) (-4409 . T) (-4411 . T)) ((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-365)))) (-655 S A) -((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) +((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) NIL ((|HasCategory| |#2| (QUOTE (-365)))) (-656 A) -((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) +((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) ((-4408 . T) (-4409 . T) (-4411 . T)) NIL -(-657 -2371 UP) -((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a,{} zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) +(-657 -2352 UP) +((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-658 A -3056) +(-658 A -2195) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) ((-4408 . T) (-4409 . T) (-4411 . T)) ((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-365)))) (-659 A L) -((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,{}n,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use."))) +((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,n,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use."))) NIL NIL (-660 S) @@ -2581,7 +2581,7 @@ NIL ((-4409 . T) (-4408 . T)) ((|HasCategory| |#1| (QUOTE (-791)))) (-663 R) -((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such exists."))) +((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such exists."))) NIL NIL (-664 |VarSet| R) @@ -2596,22 +2596,22 @@ NIL ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) ((-4415 . T) (-4414 . T)) NIL -(-667 -2371) -((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) +(-667 -2352) +((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-668 -2371 |Row| |Col| M) -((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) +(-668 -2352 |Row| |Col| M) +((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL (-669 R E OV P) -((|constructor| (NIL "this package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,{}lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}."))) +((|constructor| (NIL "this package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}."))) NIL NIL (-670 |n| R) -((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,{}R) b - b *\\$SQMATRIX(n,{}R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) +((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,R) b - b *\\$SQMATRIX(n,R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) ((-4411 . T) (-4414 . T) (-4408 . T) (-4409 . T)) -((|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4416 "*"))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2809 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-558))) (-2809 (|HasAttribute| |#2| (QUOTE (-4416 "*"))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172)))) +((|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4416 "*"))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2768 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-558))) (-2768 (|HasAttribute| |#2| (QUOTE (-4416 "*"))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172)))) (-671) ((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'."))) NIL @@ -2621,17 +2621,17 @@ NIL NIL NIL (-673 A S) -((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}."))) +((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}."))) NIL NIL (-674 S) -((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}."))) +((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}."))) NIL NIL (-675 R) -((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,{}x,{}y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,{}i,{}j,{}k,{}s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,{}i,{}j,{}k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,{}y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,{}j,{}k)} create a matrix with all zero terms"))) +((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,x,y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,i,j,k,s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,i,j,k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,j,k)} create a matrix with all zero terms"))) NIL -((-2809 (-12 (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) +((-2768 (-12 (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1099))) (-2768 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-676) ((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition \\spad{`m'}.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition \\spad{`m'}. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any."))) NIL @@ -2641,95 +2641,95 @@ NIL NIL NIL (-678 A) -((|constructor| (NIL "various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,{}g,{}x)} is \\spad{g(n,{}g(n-1,{}..g(1,{}x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,{}n,{}x)} applies \\spad{f n} times to \\spad{x}."))) +((|constructor| (NIL "various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,g,x)} is \\spad{g(n,g(n-1,..g(1,x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,n,x)} applies \\spad{f n} times to \\spad{x}."))) NIL NIL (-679 A C) -((|constructor| (NIL "various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,{}c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,{}c)} selects its first argument."))) +((|constructor| (NIL "various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,c)} selects its first argument."))) NIL NIL (-680 A B C) -((|constructor| (NIL "various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,{}g,{}x)} is \\spad{f(g x)}."))) +((|constructor| (NIL "various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,g,x)} is \\spad{f(g x)}."))) NIL NIL (-681) -((|constructor| (NIL "This domain represents a mapping type AST. A mapping AST \\indented{2}{is a syntactic description of a function type,{} \\spadignore{e.g.} its result} \\indented{2}{type and the list of its argument types.}")) (|target| (((|TypeAst|) $) "\\spad{target(s)} returns the result type AST for \\spad{`s'}.")) (|source| (((|List| (|TypeAst|)) $) "\\spad{source(s)} returns the parameter type AST list of \\spad{`s'}.")) (|mappingAst| (($ (|List| (|TypeAst|)) (|TypeAst|)) "\\spad{mappingAst(s,{}t)} builds the mapping AST \\spad{s} \\spad{->} \\spad{t}")) (|coerce| (($ (|Signature|)) "sig::MappingAst builds a MappingAst from the Signature `sig'."))) +((|constructor| (NIL "This domain represents a mapping type AST. A mapping AST \\indented{2}{is a syntactic description of a function type,{} \\spadignore{e.g.} its result} \\indented{2}{type and the list of its argument types.}")) (|target| (((|TypeAst|) $) "\\spad{target(s)} returns the result type AST for \\spad{`s'}.")) (|source| (((|List| (|TypeAst|)) $) "\\spad{source(s)} returns the parameter type AST list of \\spad{`s'}.")) (|mappingAst| (($ (|List| (|TypeAst|)) (|TypeAst|)) "\\spad{mappingAst(s,t)} builds the mapping AST \\spad{s} \\spad{->} \\spad{t}")) (|coerce| (($ (|Signature|)) "sig::MappingAst builds a MappingAst from the Signature `sig'."))) NIL NIL (-682 A) -((|constructor| (NIL "various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,{}x)= g(n,{}g(n-1,{}..g(1,{}x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,{}n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}"))) +((|constructor| (NIL "various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,x)= g(n,g(n-1,..g(1,x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}"))) NIL NIL (-683 A C) -((|constructor| (NIL "various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,{}a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}"))) +((|constructor| (NIL "various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}"))) NIL NIL (-684 A B C) -((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f(b,{}a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,{}b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,{}b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,{}b)}.}"))) +((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f(b,a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,b)}.}"))) NIL NIL (-685 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) -((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) +((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL (-686 S R |Row| |Col|) -((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) +((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) NIL ((|HasAttribute| |#2| (QUOTE (-4416 "*"))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-558)))) (-687 R |Row| |Col|) -((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) +((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) ((-4414 . T) (-4415 . T)) NIL (-688 R |Row| |Col| M) -((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,{}a,{}i,{}j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,{}a,{}i,{}j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,{}i,{}j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square."))) +((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,a,i,j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,a,i,j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,i,j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square."))) NIL ((|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-558)))) (-689 R) ((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) ((-4414 . T) (-4415 . T)) -((-2809 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-558))) (|HasAttribute| |#1| (QUOTE (-4416 "*"))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) +((-2768 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1099))) (-2768 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-558))) (|HasAttribute| |#1| (QUOTE (-4416 "*"))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-690 R) -((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,{}b,{}c,{}m,{}n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,{}a,{}b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,{}a,{}r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,{}r,{}a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,{}a,{}b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,{}a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,{}a,{}b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,{}a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) +((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,b,c,m,n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,a,b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,a,r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,r,a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,a,b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,a,b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) NIL NIL (-691 T$) ((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that \\spad{`x'} really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value \\spad{`x'} into \\%."))) NIL NIL -(-692 S -2371 FLAF FLAS) -((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,{}xlist,{}kl,{}ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,{}xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,{}xlist,{}k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,{}xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,{}xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,{}xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,{}xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}."))) +(-692 S -2352 FLAF FLAS) +((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,xlist,kl,ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,xlist,k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}."))) NIL NIL (-693 R Q) -((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}."))) +((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}."))) NIL NIL (-694) ((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex"))) -((-4407 . T) (-4412 |has| (-699) (-365)) (-4406 |has| (-699) (-365)) (-3638 . T) (-4413 |has| (-699) (-6 -4413)) (-4410 |has| (-699) (-6 -4410)) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) -((|HasCategory| (-699) (QUOTE (-147))) (|HasCategory| (-699) (QUOTE (-145))) (|HasCategory| (-699) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-699) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| (-699) (QUOTE (-370))) (|HasCategory| (-699) (QUOTE (-365))) (-2809 (|HasCategory| (-699) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-699) (QUOTE (-365)))) (|HasCategory| (-699) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-699) (QUOTE (-233))) (-2809 (|HasCategory| (-699) (QUOTE (-365))) (|HasCategory| (-699) (QUOTE (-351)))) (|HasCategory| (-699) (QUOTE (-351))) (|HasCategory| (-699) (LIST (QUOTE -287) (QUOTE (-699)) (QUOTE (-699)))) (|HasCategory| (-699) (LIST (QUOTE -310) (QUOTE (-699)))) (|HasCategory| (-699) (LIST (QUOTE -516) (QUOTE (-1175)) (QUOTE (-699)))) (|HasCategory| (-699) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| (-699) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| (-699) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| (-699) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (-2809 (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-365))) (|HasCategory| (-699) (QUOTE (-351)))) (|HasCategory| (-699) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-699) (QUOTE (-1022))) (|HasCategory| (-699) (QUOTE (-1199))) (-12 (|HasCategory| (-699) (QUOTE (-1002))) (|HasCategory| (-699) (QUOTE (-1199)))) (-2809 (-12 (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909)))) (|HasCategory| (-699) (QUOTE (-365))) (-12 (|HasCategory| (-699) (QUOTE (-351))) (|HasCategory| (-699) (QUOTE (-909))))) (-2809 (-12 (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909)))) (-12 (|HasCategory| (-699) (QUOTE (-365))) (|HasCategory| (-699) (QUOTE (-909)))) (-12 (|HasCategory| (-699) (QUOTE (-351))) (|HasCategory| (-699) (QUOTE (-909))))) (|HasCategory| (-699) (QUOTE (-547))) (-12 (|HasCategory| (-699) (QUOTE (-1059))) (|HasCategory| (-699) (QUOTE (-1199)))) (|HasCategory| (-699) (QUOTE (-1059))) (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909))) (-2809 (-12 (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909)))) (|HasCategory| (-699) (QUOTE (-365)))) (-2809 (-12 (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909)))) (|HasCategory| (-699) (QUOTE (-558)))) (-12 (|HasCategory| (-699) (QUOTE (-233))) (|HasCategory| (-699) (QUOTE (-365)))) (-12 (|HasCategory| (-699) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-699) (QUOTE (-365)))) (|HasCategory| (-699) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-699) (QUOTE (-558))) (|HasAttribute| (-699) (QUOTE -4413)) (|HasAttribute| (-699) (QUOTE -4410)) (-12 (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909)))) (|HasCategory| (-699) (QUOTE (-145)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909)))) (|HasCategory| (-699) (QUOTE (-351))))) +((-4407 . T) (-4412 |has| (-699) (-365)) (-4406 |has| (-699) (-365)) (-3608 . T) (-4413 |has| (-699) (-6 -4413)) (-4410 |has| (-699) (-6 -4410)) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) +((|HasCategory| (-699) (QUOTE (-147))) (|HasCategory| (-699) (QUOTE (-145))) (|HasCategory| (-699) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-699) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| (-699) (QUOTE (-370))) (|HasCategory| (-699) (QUOTE (-365))) (-2768 (|HasCategory| (-699) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-699) (QUOTE (-365)))) (|HasCategory| (-699) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-699) (QUOTE (-233))) (-2768 (|HasCategory| (-699) (QUOTE (-365))) (|HasCategory| (-699) (QUOTE (-351)))) (|HasCategory| (-699) (QUOTE (-351))) (|HasCategory| (-699) (LIST (QUOTE -287) (QUOTE (-699)) (QUOTE (-699)))) (|HasCategory| (-699) (LIST (QUOTE -310) (QUOTE (-699)))) (|HasCategory| (-699) (LIST (QUOTE -516) (QUOTE (-1175)) (QUOTE (-699)))) (|HasCategory| (-699) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| (-699) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| (-699) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| (-699) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (-2768 (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-365))) (|HasCategory| (-699) (QUOTE (-351)))) (|HasCategory| (-699) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-699) (QUOTE (-1022))) (|HasCategory| (-699) (QUOTE (-1199))) (-12 (|HasCategory| (-699) (QUOTE (-1002))) (|HasCategory| (-699) (QUOTE (-1199)))) (-2768 (-12 (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909)))) (|HasCategory| (-699) (QUOTE (-365))) (-12 (|HasCategory| (-699) (QUOTE (-351))) (|HasCategory| (-699) (QUOTE (-909))))) (-2768 (-12 (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909)))) (-12 (|HasCategory| (-699) (QUOTE (-365))) (|HasCategory| (-699) (QUOTE (-909)))) (-12 (|HasCategory| (-699) (QUOTE (-351))) (|HasCategory| (-699) (QUOTE (-909))))) (|HasCategory| (-699) (QUOTE (-547))) (-12 (|HasCategory| (-699) (QUOTE (-1059))) (|HasCategory| (-699) (QUOTE (-1199)))) (|HasCategory| (-699) (QUOTE (-1059))) (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909))) (-2768 (-12 (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909)))) (|HasCategory| (-699) (QUOTE (-365)))) (-2768 (-12 (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909)))) (|HasCategory| (-699) (QUOTE (-558)))) (-12 (|HasCategory| (-699) (QUOTE (-233))) (|HasCategory| (-699) (QUOTE (-365)))) (-12 (|HasCategory| (-699) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-699) (QUOTE (-365)))) (|HasCategory| (-699) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-699) (QUOTE (-558))) (|HasAttribute| (-699) (QUOTE -4413)) (|HasAttribute| (-699) (QUOTE -4410)) (-12 (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909)))) (-2768 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909)))) (|HasCategory| (-699) (QUOTE (-145)))) (-2768 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909)))) (|HasCategory| (-699) (QUOTE (-351))))) (-695 S) -((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,{}d,{}n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) +((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,d,n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) ((-4415 . T)) NIL (-696 U) -((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,{}n,{}g,{}p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl,{} p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,{}p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,{}p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,{}p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,{}f2,{}p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}."))) +((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,n,g,p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl, p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,f2,p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}."))) NIL NIL (-697) -((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented"))) +((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,b,c,d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,t,u,f,s1,l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,g,s1,s2,l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,g,h,j,s1,s2,l)} \\undocumented"))) NIL NIL -(-698 OV E -2371 PG) +(-698 OV E -2352 PG) ((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field."))) NIL NIL (-699) -((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,{}man,{}base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}"))) -((-3628 . T) (-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) +((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,man,base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}"))) +((-3603 . T) (-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) NIL (-700 R) -((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m,{} d,{} p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,{}p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m,{} d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus."))) +((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m, d, p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m, d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus."))) NIL NIL (-701) @@ -2737,59 +2737,59 @@ NIL ((-4413 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) NIL (-702 S D1 D2 I) -((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,{}x,{}y)} returns a function \\spad{f: (D1,{} D2) -> I} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1,{} D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function"))) +((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,x,y)} returns a function \\spad{f: (D1, D2) -> I} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1, D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function"))) NIL NIL (-703 S) -((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr,{} x,{} y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat},{} \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat},{} \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr,{} x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}."))) +((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr, x, y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr, x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}."))) NIL NIL (-704 S) -((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e,{} foo,{} [x1,{}...,{}xn])} creates a function \\spad{foo(x1,{}...,{}xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e,{} foo,{} x,{} y)} creates a function \\spad{foo(x,{} y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e,{} foo,{} x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e,{} foo)} creates a function \\spad{foo() == e}."))) +((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e, foo, [x1,...,xn])} creates a function \\spad{foo(x1,...,xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x, y)} creates a function \\spad{foo(x, y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e, foo)} creates a function \\spad{foo() == e}."))) NIL NIL (-705 S T$) -((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,{}b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}."))) +((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}."))) NIL NIL -(-706 S -2875 I) -((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr,{} x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) +(-706 S -3497 I) +((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr, x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) NIL NIL (-707 E OV R P) -((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,{}lv,{}lu,{}lr,{}lp,{}lt,{}ln,{}t,{}r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,{}lv,{}lu,{}lr,{}lp,{}ln,{}r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,{}lv,{}lr,{}ln,{}lu,{}t,{}r)} \\undocumented"))) +((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,lv,lu,lr,lp,lt,ln,t,r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,lv,lu,lr,lp,ln,r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,lv,lr,ln,lu,t,r)} \\undocumented"))) NIL NIL (-708 R) -((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,{}1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i,{} i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) +((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i, i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) ((-4408 . T) (-4409 . T) (-4411 . T)) NIL (-709 R1 UP1 UPUP1 R2 UP2 UPUP2) -((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f,{} p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}."))) +((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f, p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}."))) NIL NIL (-710) ((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format."))) NIL NIL -(-711 R |Mod| -3646 -3298 |exactQuo|) -((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) +(-711 R |Mod| -1736 -2696 |exactQuo|) +((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) ((-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) NIL (-712 R |Rep|) ((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented"))) (((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4410 |has| |#1| (-365)) (-4412 |has| |#1| (-6 -4412)) (-4409 . T) (-4408 . T) (-4411 . T)) -((|HasCategory| |#1| (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1150))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4412)) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145))))) +((|HasCategory| |#1| (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2768 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2768 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (-2768 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2768 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2768 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1150))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4412)) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2768 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145))))) (-713 IS E |ff|) -((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,{}e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented"))) +((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented"))) NIL NIL (-714 R M) -((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,{}f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f,{} u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1,{} op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) +((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) ((-4409 |has| |#1| (-172)) (-4408 |has| |#1| (-172)) (-4411 . T)) ((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147)))) -(-715 R |Mod| -3646 -3298 |exactQuo|) -((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) +(-715 R |Mod| -1736 -2696 |exactQuo|) +((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) ((-4411 . T)) NIL (-716 S R) @@ -2800,32 +2800,32 @@ NIL ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) ((-4409 . T) (-4408 . T)) NIL -(-718 -2371) -((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,{}1],{}[1,{}0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,{}h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,{}0],{}[0,{}1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,{}h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,{}k],{}[0,{}1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,{}b,{}c,{}d)} returns \\spad{matrix [[a,{}b],{}[c,{}d]]}."))) +(-718 -2352) +((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,1],[1,0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,0],[0,1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,k],[0,1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,b,c,d)} returns \\spad{matrix [[a,b],[c,d]]}."))) ((-4411 . T)) NIL (-719 S) -((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) +((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL (-720) -((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) +((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL (-721 S) -((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) +((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL (-722) -((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) +((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL (-723 S R UP) -((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) +((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) NIL ((|HasCategory| |#2| (QUOTE (-351))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-370)))) (-724 R UP) -((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) +((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) ((-4407 |has| |#1| (-365)) (-4412 |has| |#1| (-365)) (-4406 |has| |#1| (-365)) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) NIL (-725 S) @@ -2836,16 +2836,16 @@ NIL ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-727 -2371 UP) -((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f,{} D)} returns \\spad{[p,{}n,{}s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f,{} D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p,{} D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m,{} s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p,{} D)} returns \\spad{[n,{}s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use."))) +(-727 -2352 UP) +((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f, D)} returns \\spad{[p,n,s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f, D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p, D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m, s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p, D)} returns \\spad{[n,s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use."))) NIL NIL (-728 |VarSet| E1 E2 R S PR PS) -((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (\\spad{PG})")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,{}p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,{}p)} \\undocumented"))) +((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (\\spad{PG})")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,p)} \\undocumented"))) NIL NIL (-729 |Vars1| |Vars2| E1 E2 R PR1 PR2) -((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,{}x)} \\undocumented"))) +((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,x)} \\undocumented"))) NIL NIL (-730 E OV R PPR) @@ -2855,9 +2855,9 @@ NIL (-731 |vl| R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute."))) (((-4416 "*") |has| |#2| (-172)) (-4407 |has| |#2| (-558)) (-4412 |has| |#2| (-6 -4412)) (-4409 . T) (-4408 . T) (-4411 . T)) -((|HasCategory| |#2| (QUOTE (-909))) (-2809 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2809 (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2809 (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-172))) (-2809 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-558)))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4412)) (|HasCategory| |#2| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-145))))) +((|HasCategory| |#2| (QUOTE (-909))) (-2768 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2768 (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2768 (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-172))) (-2768 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-558)))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2768 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4412)) (|HasCategory| |#2| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (-2768 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-145))))) (-732 E OV R PRF) -((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,{}var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,{}var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,{}var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) +((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL (-733 E OV R P) @@ -2865,11 +2865,11 @@ NIL NIL NIL (-734 R S M) -((|constructor| (NIL "MonoidRingFunctions2 implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,{}u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}."))) +((|constructor| (NIL "MonoidRingFunctions2 implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}."))) NIL NIL (-735 R M) -((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,{}m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}m)} creates a scalar multiple of the basis element \\spad{m}."))) +((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,m)} creates a scalar multiple of the basis element \\spad{m}."))) ((-4409 |has| |#1| (-172)) (-4408 |has| |#1| (-172)) (-4411 . T)) ((-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-850)))) (-736 S) @@ -2877,7 +2877,7 @@ NIL ((-4404 . T) (-4415 . T)) NIL (-737 S) -((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,{}ms,{}number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,{}ms,{}number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,{}ms,{}number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,{}ms,{}number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) +((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,ms,number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,ms,number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,ms,number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,ms,number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) ((-4414 . T) (-4404 . T) (-4415 . T)) ((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (-738) @@ -2885,11 +2885,11 @@ NIL NIL NIL (-739 S) -((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,{}l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}."))) +((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}."))) NIL NIL (-740 |Coef| |Var|) -((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,{}x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,{}x,{}n)} returns \\spad{min(n,{}order(f,{}x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,{}x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,{}x,{}n)} returns the coefficient of \\spad{x^n} in \\spad{f}."))) +((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,x,n)} returns \\spad{min(n,order(f,x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[x1,x2,...,xk],[n1,n2,...,nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,[x1,x2,...,xk],[n1,n2,...,nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,x,n)} returns the coefficient of \\spad{x^n} in \\spad{f}."))) (((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4409 . T) (-4408 . T) (-4411 . T)) NIL (-741 OV E R P) @@ -2901,79 +2901,79 @@ NIL NIL NIL (-743 S R) -((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) +((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) NIL NIL (-744 R) -((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) +((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) ((-4409 . T) (-4408 . T)) NIL (-745) -((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,{}n,{}scale,{}ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,{}n,{}scale,{}ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}."))) +((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,n,scale,ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,n,scale,ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}."))) NIL NIL (-746) -((|constructor| (NIL "This package uses the NAG Library to calculate real zeros of continuous real functions of one or more variables. (Complex equations must be expressed in terms of the equivalent larger system of real equations.) See \\downlink{Manual Page}{manpageXXc05}.")) (|c05pbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp35| FCN)))) "\\spad{c05pbf(n,{}ldfjac,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. The user must provide the Jacobian. See \\downlink{Manual Page}{manpageXXc05pbf}.")) (|c05nbf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp6| FCN)))) "\\spad{c05nbf(n,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. See \\downlink{Manual Page}{manpageXXc05nbf}.")) (|c05adf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{c05adf(a,{}b,{}eps,{}eta,{}ifail,{}f)} locates a zero of a continuous function in a given interval by a combination of the methods of linear interpolation,{} extrapolation and bisection. See \\downlink{Manual Page}{manpageXXc05adf}."))) +((|constructor| (NIL "This package uses the NAG Library to calculate real zeros of continuous real functions of one or more variables. (Complex equations must be expressed in terms of the equivalent larger system of real equations.) See \\downlink{Manual Page}{manpageXXc05}.")) (|c05pbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp35| FCN)))) "\\spad{c05pbf(n,ldfjac,lwa,x,xtol,ifail,fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. The user must provide the Jacobian. See \\downlink{Manual Page}{manpageXXc05pbf}.")) (|c05nbf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp6| FCN)))) "\\spad{c05nbf(n,lwa,x,xtol,ifail,fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. See \\downlink{Manual Page}{manpageXXc05nbf}.")) (|c05adf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{c05adf(a,b,eps,eta,ifail,f)} locates a zero of a continuous function in a given interval by a combination of the methods of linear interpolation,{} extrapolation and bisection. See \\downlink{Manual Page}{manpageXXc05adf}."))) NIL NIL (-747) -((|constructor| (NIL "This package uses the NAG Library to calculate the discrete Fourier transform of a sequence of real or complex data values,{} and applies it to calculate convolutions and correlations. See \\downlink{Manual Page}{manpageXXc06}.")) (|c06gsf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gsf(m,{}n,{}x,{}ifail)} takes \\spad{m} Hermitian sequences,{} each containing \\spad{n} data values,{} and forms the real and imaginary parts of the \\spad{m} corresponding complex sequences. See \\downlink{Manual Page}{manpageXXc06gsf}.")) (|c06gqf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gqf(m,{}n,{}x,{}ifail)} forms the complex conjugates,{} each containing \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gqf}.")) (|c06gcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gcf(n,{}y,{}ifail)} forms the complex conjugate of a sequence of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gcf}.")) (|c06gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gbf(n,{}x,{}ifail)} forms the complex conjugate of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gbf}.")) (|c06fuf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fuf(m,{}n,{}init,{}x,{}y,{}trigm,{}trign,{}ifail)} computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fuf}.")) (|c06frf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06frf(m,{}n,{}init,{}x,{}y,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06frf}.")) (|c06fqf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fqf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} Hermitian sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fqf}.")) (|c06fpf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fpf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} real data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fpf}.")) (|c06ekf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ekf(job,{}n,{}x,{}y,{}ifail)} calculates the circular convolution of two real vectors of period \\spad{n}. No extra workspace is required. See \\downlink{Manual Page}{manpageXXc06ekf}.")) (|c06ecf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ecf(n,{}x,{}y,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ecf}.")) (|c06ebf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ebf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a Hermitian sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ebf}.")) (|c06eaf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06eaf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} real data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06eaf}."))) +((|constructor| (NIL "This package uses the NAG Library to calculate the discrete Fourier transform of a sequence of real or complex data values,{} and applies it to calculate convolutions and correlations. See \\downlink{Manual Page}{manpageXXc06}.")) (|c06gsf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gsf(m,n,x,ifail)} takes \\spad{m} Hermitian sequences,{} each containing \\spad{n} data values,{} and forms the real and imaginary parts of the \\spad{m} corresponding complex sequences. See \\downlink{Manual Page}{manpageXXc06gsf}.")) (|c06gqf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gqf(m,n,x,ifail)} forms the complex conjugates,{} each containing \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gqf}.")) (|c06gcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gcf(n,y,ifail)} forms the complex conjugate of a sequence of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gcf}.")) (|c06gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gbf(n,x,ifail)} forms the complex conjugate of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gbf}.")) (|c06fuf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fuf(m,n,init,x,y,trigm,trign,ifail)} computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fuf}.")) (|c06frf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06frf(m,n,init,x,y,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06frf}.")) (|c06fqf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fqf(m,n,init,x,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} Hermitian sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fqf}.")) (|c06fpf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fpf(m,n,init,x,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} real data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fpf}.")) (|c06ekf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ekf(job,n,x,y,ifail)} calculates the circular convolution of two real vectors of period \\spad{n}. No extra workspace is required. See \\downlink{Manual Page}{manpageXXc06ekf}.")) (|c06ecf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ecf(n,x,y,ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ecf}.")) (|c06ebf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ebf(n,x,ifail)} calculates the discrete Fourier transform of a Hermitian sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ebf}.")) (|c06eaf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06eaf(n,x,ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} real data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06eaf}."))) NIL NIL (-748) -((|constructor| (NIL "This package uses the NAG Library to calculate the numerical value of definite integrals in one or more dimensions and to evaluate weights and abscissae of integration rules. See \\downlink{Manual Page}{manpageXXd01}.")) (|d01gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01gbf(ndim,{}a,{}b,{}maxcls,{}eps,{}lenwrk,{}mincls,{}wrkstr,{}ifail,{}functn)} returns an approximation to the integral of a function over a hyper-rectangular region,{} using a Monte Carlo method. An approximate relative error estimate is also returned. This routine is suitable for low accuracy work. See \\downlink{Manual Page}{manpageXXd01gbf}.")) (|d01gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|)) "\\spad{d01gaf(x,{}y,{}n,{}ifail)} integrates a function which is specified numerically at four or more points,{} over the whole of its specified range,{} using third-order finite-difference formulae with error estimates,{} according to a method due to Gill and Miller. See \\downlink{Manual Page}{manpageXXd01gaf}.")) (|d01fcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01fcf(ndim,{}a,{}b,{}maxpts,{}eps,{}lenwrk,{}minpts,{}ifail,{}functn)} attempts to evaluate a multi-dimensional integral (up to 15 dimensions),{} with constant and finite limits,{} to a specified relative accuracy,{} using an adaptive subdivision strategy. See \\downlink{Manual Page}{manpageXXd01fcf}.")) (|d01bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{d01bbf(a,{}b,{}itype,{}n,{}gtype,{}ifail)} returns the weight appropriate to a Gaussian quadrature. The formulae provided are Gauss-Legendre,{} Gauss-Rational,{} Gauss- Laguerre and Gauss-Hermite. See \\downlink{Manual Page}{manpageXXd01bbf}.")) (|d01asf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01asf(a,{}omega,{}key,{}epsabs,{}limlst,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}infty): See \\downlink{Manual Page}{manpageXXd01asf}.")) (|d01aqf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01aqf(a,{}b,{}c,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the Hilbert transform of a function \\spad{g}(\\spad{x}) over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01aqf}.")) (|d01apf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01apf(a,{}b,{}alfa,{}beta,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} is an adaptive integrator which calculates an approximation to the integral of a function \\spad{g}(\\spad{x})\\spad{w}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01apf}.")) (|d01anf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01anf(a,{}b,{}omega,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01anf}.")) (|d01amf| (((|Result|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01amf(bound,{}inf,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over an infinite or semi-infinite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01amf}.")) (|d01alf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01alf(a,{}b,{}npts,{}points,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01alf}.")) (|d01akf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01akf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is an adaptive integrator,{} especially suited to oscillating,{} non-singular integrands,{} which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01akf}.")) (|d01ajf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01ajf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general-purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01ajf}."))) +((|constructor| (NIL "This package uses the NAG Library to calculate the numerical value of definite integrals in one or more dimensions and to evaluate weights and abscissae of integration rules. See \\downlink{Manual Page}{manpageXXd01}.")) (|d01gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01gbf(ndim,a,b,maxcls,eps,lenwrk,mincls,wrkstr,ifail,functn)} returns an approximation to the integral of a function over a hyper-rectangular region,{} using a Monte Carlo method. An approximate relative error estimate is also returned. This routine is suitable for low accuracy work. See \\downlink{Manual Page}{manpageXXd01gbf}.")) (|d01gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|)) "\\spad{d01gaf(x,y,n,ifail)} integrates a function which is specified numerically at four or more points,{} over the whole of its specified range,{} using third-order finite-difference formulae with error estimates,{} according to a method due to Gill and Miller. See \\downlink{Manual Page}{manpageXXd01gaf}.")) (|d01fcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01fcf(ndim,a,b,maxpts,eps,lenwrk,minpts,ifail,functn)} attempts to evaluate a multi-dimensional integral (up to 15 dimensions),{} with constant and finite limits,{} to a specified relative accuracy,{} using an adaptive subdivision strategy. See \\downlink{Manual Page}{manpageXXd01fcf}.")) (|d01bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{d01bbf(a,b,itype,n,gtype,ifail)} returns the weight appropriate to a Gaussian quadrature. The formulae provided are Gauss-Legendre,{} Gauss-Rational,{} Gauss- Laguerre and Gauss-Hermite. See \\downlink{Manual Page}{manpageXXd01bbf}.")) (|d01asf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01asf(a,omega,key,epsabs,limlst,lw,liw,ifail,g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}infty): See \\downlink{Manual Page}{manpageXXd01asf}.")) (|d01aqf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01aqf(a,b,c,epsabs,epsrel,lw,liw,ifail,g)} calculates an approximation to the Hilbert transform of a function \\spad{g}(\\spad{x}) over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01aqf}.")) (|d01apf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01apf(a,b,alfa,beta,key,epsabs,epsrel,lw,liw,ifail,g)} is an adaptive integrator which calculates an approximation to the integral of a function \\spad{g}(\\spad{x})\\spad{w}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01apf}.")) (|d01anf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01anf(a,b,omega,key,epsabs,epsrel,lw,liw,ifail,g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01anf}.")) (|d01amf| (((|Result|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01amf(bound,inf,epsabs,epsrel,lw,liw,ifail,f)} calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over an infinite or semi-infinite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01amf}.")) (|d01alf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01alf(a,b,npts,points,epsabs,epsrel,lw,liw,ifail,f)} is a general purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01alf}.")) (|d01akf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01akf(a,b,epsabs,epsrel,lw,liw,ifail,f)} is an adaptive integrator,{} especially suited to oscillating,{} non-singular integrands,{} which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01akf}.")) (|d01ajf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01ajf(a,b,epsabs,epsrel,lw,liw,ifail,f)} is a general-purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01ajf}."))) NIL NIL (-749) -((|constructor| (NIL "This package uses the NAG Library to calculate the numerical solution of ordinary differential equations. There are two main types of problem,{} those in which all boundary conditions are specified at one point (initial-value problems),{} and those in which the boundary conditions are distributed between two or more points (boundary- value problems and eigenvalue problems). Routines are available for initial-value problems,{} two-point boundary-value problems and Sturm-Liouville eigenvalue problems. See \\downlink{Manual Page}{manpageXXd02}.")) (|d02raf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp41| FCN JACOBF JACEPS))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp42| G JACOBG JACGEP)))) "\\spad{d02raf(n,{}mnp,{}numbeg,{}nummix,{}tol,{}init,{}iy,{}ijac,{}lwork,{}liwork,{}np,{}x,{}y,{}deleps,{}ifail,{}fcn,{}g)} solves the two-point boundary-value problem with general boundary conditions for a system of ordinary differential equations,{} using a deferred correction technique and Newton iteration. See \\downlink{Manual Page}{manpageXXd02raf}.")) (|d02kef| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))) (|FileName|) (|FileName|)) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval,{}monit,{}report)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. Files \\spad{monit} and \\spad{report} will be used to define the subroutines for the MONIT and REPORT arguments. See \\downlink{Manual Page}{manpageXXd02gbf}.") (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL)))) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. ASP domains Asp12 and Asp33 are used to supply default subroutines for the MONIT and REPORT arguments via their \\axiomOp{outputAsFortran} operation.")) (|d02gbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp77| FCNF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp78| FCNG)))) "\\spad{d02gbf(a,{}b,{}n,{}tol,{}mnp,{}lw,{}liw,{}c,{}d,{}gam,{}x,{}np,{}ifail,{}fcnf,{}fcng)} solves a general linear two-point boundary value problem for a system of ordinary differential equations using a deferred correction technique. See \\downlink{Manual Page}{manpageXXd02gbf}.")) (|d02gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02gaf(u,{}v,{}n,{}a,{}b,{}tol,{}mnp,{}lw,{}liw,{}x,{}np,{}ifail,{}fcn)} solves the two-point boundary-value problem with assigned boundary values for a system of ordinary differential equations,{} using a deferred correction technique and a Newton iteration. See \\downlink{Manual Page}{manpageXXd02gaf}.")) (|d02ejf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp31| PEDERV))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02ejf(xend,{}m,{}n,{}relabs,{}iw,{}x,{}y,{}tol,{}ifail,{}g,{}fcn,{}pederv,{}output)} integrates a stiff system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a variable-order,{} variable-step method implementing the Backward Differentiation Formulae (\\spad{BDF}),{} until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02ejf}.")) (|d02cjf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|String|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02cjf(xend,{}m,{}n,{}tol,{}relabs,{}x,{}y,{}ifail,{}g,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over a range with suitable initial conditions,{} using a variable-order,{} variable-step Adams method until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02cjf}.")) (|d02bhf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02bhf(xend,{}n,{}irelab,{}hmax,{}x,{}y,{}tol,{}ifail,{}g,{}fcn)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} until a user-specified function of the solution is zero. See \\downlink{Manual Page}{manpageXXd02bhf}.")) (|d02bbf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02bbf(xend,{}m,{}n,{}irelab,{}x,{}y,{}tol,{}ifail,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} and returns the solution at points specified by the user. See \\downlink{Manual Page}{manpageXXd02bbf}."))) +((|constructor| (NIL "This package uses the NAG Library to calculate the numerical solution of ordinary differential equations. There are two main types of problem,{} those in which all boundary conditions are specified at one point (initial-value problems),{} and those in which the boundary conditions are distributed between two or more points (boundary- value problems and eigenvalue problems). Routines are available for initial-value problems,{} two-point boundary-value problems and Sturm-Liouville eigenvalue problems. See \\downlink{Manual Page}{manpageXXd02}.")) (|d02raf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp41| FCN JACOBF JACEPS))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp42| G JACOBG JACGEP)))) "\\spad{d02raf(n,mnp,numbeg,nummix,tol,init,iy,ijac,lwork,liwork,np,x,y,deleps,ifail,fcn,g)} solves the two-point boundary-value problem with general boundary conditions for a system of ordinary differential equations,{} using a deferred correction technique and Newton iteration. See \\downlink{Manual Page}{manpageXXd02raf}.")) (|d02kef| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))) (|FileName|) (|FileName|)) "\\spad{d02kef(xpoint,m,k,tol,maxfun,match,elam,delam,hmax,maxit,ifail,coeffn,bdyval,monit,report)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. Files \\spad{monit} and \\spad{report} will be used to define the subroutines for the MONIT and REPORT arguments. See \\downlink{Manual Page}{manpageXXd02gbf}.") (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL)))) "\\spad{d02kef(xpoint,m,k,tol,maxfun,match,elam,delam,hmax,maxit,ifail,coeffn,bdyval)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. ASP domains Asp12 and Asp33 are used to supply default subroutines for the MONIT and REPORT arguments via their \\axiomOp{outputAsFortran} operation.")) (|d02gbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp77| FCNF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp78| FCNG)))) "\\spad{d02gbf(a,b,n,tol,mnp,lw,liw,c,d,gam,x,np,ifail,fcnf,fcng)} solves a general linear two-point boundary value problem for a system of ordinary differential equations using a deferred correction technique. See \\downlink{Manual Page}{manpageXXd02gbf}.")) (|d02gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02gaf(u,v,n,a,b,tol,mnp,lw,liw,x,np,ifail,fcn)} solves the two-point boundary-value problem with assigned boundary values for a system of ordinary differential equations,{} using a deferred correction technique and a Newton iteration. See \\downlink{Manual Page}{manpageXXd02gaf}.")) (|d02ejf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp31| PEDERV))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02ejf(xend,m,n,relabs,iw,x,y,tol,ifail,g,fcn,pederv,output)} integrates a stiff system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a variable-order,{} variable-step method implementing the Backward Differentiation Formulae (\\spad{BDF}),{} until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02ejf}.")) (|d02cjf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|String|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02cjf(xend,m,n,tol,relabs,x,y,ifail,g,fcn,output)} integrates a system of first-order ordinary differential equations over a range with suitable initial conditions,{} using a variable-order,{} variable-step Adams method until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02cjf}.")) (|d02bhf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02bhf(xend,n,irelab,hmax,x,y,tol,ifail,g,fcn)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} until a user-specified function of the solution is zero. See \\downlink{Manual Page}{manpageXXd02bhf}.")) (|d02bbf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02bbf(xend,m,n,irelab,x,y,tol,ifail,fcn,output)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} and returns the solution at points specified by the user. See \\downlink{Manual Page}{manpageXXd02bbf}."))) NIL NIL (-750) -((|constructor| (NIL "This package uses the NAG Library to solve partial differential equations. See \\downlink{Manual Page}{manpageXXd03}.")) (|d03faf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|ThreeDimensionalMatrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03faf(xs,{}xf,{}l,{}lbdcnd,{}bdxs,{}bdxf,{}ys,{}yf,{}m,{}mbdcnd,{}bdys,{}bdyf,{}zs,{}zf,{}n,{}nbdcnd,{}bdzs,{}bdzf,{}lambda,{}ldimf,{}mdimf,{}lwrk,{}f,{}ifail)} solves the Helmholtz equation in Cartesian co-ordinates in three dimensions using the standard seven-point finite difference approximation. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXd03faf}.")) (|d03eef| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp73| PDEF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp74| BNDY)))) "\\spad{d03eef(xmin,{}xmax,{}ymin,{}ymax,{}ngx,{}ngy,{}lda,{}scheme,{}ifail,{}pdef,{}bndy)} discretizes a second order elliptic partial differential equation (PDE) on a rectangular region. See \\downlink{Manual Page}{manpageXXd03eef}.")) (|d03edf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03edf(ngx,{}ngy,{}lda,{}maxit,{}acc,{}iout,{}a,{}rhs,{}ub,{}ifail)} solves seven-diagonal systems of linear equations which arise from the discretization of an elliptic partial differential equation on a rectangular region. This routine uses a multigrid technique. See \\downlink{Manual Page}{manpageXXd03edf}."))) +((|constructor| (NIL "This package uses the NAG Library to solve partial differential equations. See \\downlink{Manual Page}{manpageXXd03}.")) (|d03faf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|ThreeDimensionalMatrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03faf(xs,xf,l,lbdcnd,bdxs,bdxf,ys,yf,m,mbdcnd,bdys,bdyf,zs,zf,n,nbdcnd,bdzs,bdzf,lambda,ldimf,mdimf,lwrk,f,ifail)} solves the Helmholtz equation in Cartesian co-ordinates in three dimensions using the standard seven-point finite difference approximation. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXd03faf}.")) (|d03eef| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp73| PDEF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp74| BNDY)))) "\\spad{d03eef(xmin,xmax,ymin,ymax,ngx,ngy,lda,scheme,ifail,pdef,bndy)} discretizes a second order elliptic partial differential equation (PDE) on a rectangular region. See \\downlink{Manual Page}{manpageXXd03eef}.")) (|d03edf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03edf(ngx,ngy,lda,maxit,acc,iout,a,rhs,ub,ifail)} solves seven-diagonal systems of linear equations which arise from the discretization of an elliptic partial differential equation on a rectangular region. This routine uses a multigrid technique. See \\downlink{Manual Page}{manpageXXd03edf}."))) NIL NIL (-751) -((|constructor| (NIL "This package uses the NAG Library to calculate the interpolation of a function of one or two variables. When provided with the value of the function (and possibly one or more of its lowest-order derivatives) at each of a number of values of the variable(\\spad{s}),{} the routines provide either an interpolating function or an interpolated value. For some of the interpolating functions,{} there are supporting routines to evaluate,{} differentiate or integrate them. See \\downlink{Manual Page}{manpageXXe01}.")) (|e01sff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sff(m,{}x,{}y,{}f,{}rnw,{}fnodes,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolating function computed by E01SEF. See \\downlink{Manual Page}{manpageXXe01sff}.")) (|e01sef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sef(m,{}x,{}y,{}f,{}nw,{}nq,{}rnw,{}rnq,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using a modified Shepard method. See \\downlink{Manual Page}{manpageXXe01sef}.")) (|e01sbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sbf(m,{}x,{}y,{}f,{}triang,{}grads,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolant function computed by E01SAF. See \\downlink{Manual Page}{manpageXXe01sbf}.")) (|e01saf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01saf(m,{}x,{}y,{}f,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using the method of Renka and Cline. See \\downlink{Manual Page}{manpageXXe01saf}.")) (|e01daf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01daf(mx,{}my,{}x,{}y,{}f,{}ifail)} computes a bicubic spline interpolating surface through a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. See \\downlink{Manual Page}{manpageXXe01daf}.")) (|e01bhf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01bhf(n,{}x,{}f,{}d,{}a,{}b,{}ifail)} evaluates the definite integral of a piecewise cubic Hermite interpolant over the interval [a,{}\\spad{b}]. See \\downlink{Manual Page}{manpageXXe01bhf}.")) (|e01bgf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bgf(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant and its first derivative at a set of points. See \\downlink{Manual Page}{manpageXXe01bgf}.")) (|e01bff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bff(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant at a set of points. See \\downlink{Manual Page}{manpageXXe01bff}.")) (|e01bef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bef(n,{}x,{}f,{}ifail)} computes a monotonicity-preserving piecewise cubic Hermite interpolant to a set of data points. See \\downlink{Manual Page}{manpageXXe01bef}.")) (|e01baf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e01baf(m,{}x,{}y,{}lck,{}lwrk,{}ifail)} determines a cubic spline to a given set of data. See \\downlink{Manual Page}{manpageXXe01baf}."))) +((|constructor| (NIL "This package uses the NAG Library to calculate the interpolation of a function of one or two variables. When provided with the value of the function (and possibly one or more of its lowest-order derivatives) at each of a number of values of the variable(\\spad{s}),{} the routines provide either an interpolating function or an interpolated value. For some of the interpolating functions,{} there are supporting routines to evaluate,{} differentiate or integrate them. See \\downlink{Manual Page}{manpageXXe01}.")) (|e01sff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sff(m,x,y,f,rnw,fnodes,px,py,ifail)} evaluates at a given point the two-dimensional interpolating function computed by E01SEF. See \\downlink{Manual Page}{manpageXXe01sff}.")) (|e01sef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sef(m,x,y,f,nw,nq,rnw,rnq,ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using a modified Shepard method. See \\downlink{Manual Page}{manpageXXe01sef}.")) (|e01sbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sbf(m,x,y,f,triang,grads,px,py,ifail)} evaluates at a given point the two-dimensional interpolant function computed by E01SAF. See \\downlink{Manual Page}{manpageXXe01sbf}.")) (|e01saf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01saf(m,x,y,f,ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using the method of Renka and Cline. See \\downlink{Manual Page}{manpageXXe01saf}.")) (|e01daf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01daf(mx,my,x,y,f,ifail)} computes a bicubic spline interpolating surface through a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. See \\downlink{Manual Page}{manpageXXe01daf}.")) (|e01bhf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01bhf(n,x,f,d,a,b,ifail)} evaluates the definite integral of a piecewise cubic Hermite interpolant over the interval [a,{}\\spad{b}]. See \\downlink{Manual Page}{manpageXXe01bhf}.")) (|e01bgf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bgf(n,x,f,d,m,px,ifail)} evaluates a piecewise cubic Hermite interpolant and its first derivative at a set of points. See \\downlink{Manual Page}{manpageXXe01bgf}.")) (|e01bff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bff(n,x,f,d,m,px,ifail)} evaluates a piecewise cubic Hermite interpolant at a set of points. See \\downlink{Manual Page}{manpageXXe01bff}.")) (|e01bef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bef(n,x,f,ifail)} computes a monotonicity-preserving piecewise cubic Hermite interpolant to a set of data points. See \\downlink{Manual Page}{manpageXXe01bef}.")) (|e01baf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e01baf(m,x,y,lck,lwrk,ifail)} determines a cubic spline to a given set of data. See \\downlink{Manual Page}{manpageXXe01baf}."))) NIL NIL (-752) -((|constructor| (NIL "This package uses the NAG Library to find a function which approximates a set of data points. Typically the data contain random errors,{} as of experimental measurement,{} which need to be smoothed out. To seek an approximation to the data,{} it is first necessary to specify for the approximating function a mathematical form (a polynomial,{} for example) which contains a number of unspecified coefficients: the appropriate fitting routine then derives for the coefficients the values which provide the best fit of that particular form. The package deals mainly with curve and surface fitting (\\spadignore{i.e.} fitting with functions of one and of two variables) when a polynomial or a cubic spline is used as the fitting function,{} since these cover the most common needs. However,{} fitting with other functions and/or more variables can be undertaken by means of general linear or nonlinear routines (some of which are contained in other packages) depending on whether the coefficients in the function occur linearly or nonlinearly. Cases where a graph rather than a set of data points is given can be treated simply by first reading a suitable set of points from the graph. The package also contains routines for evaluating,{} differentiating and integrating polynomial and spline curves and surfaces,{} once the numerical values of their coefficients have been determined. See \\downlink{Manual Page}{manpageXXe02}.")) (|e02zaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02zaf(px,{}py,{}lamda,{}mu,{}m,{}x,{}y,{}npoint,{}nadres,{}ifail)} sorts two-dimensional data into rectangular panels. See \\downlink{Manual Page}{manpageXXe02zaf}.")) (|e02gaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02gaf(m,{}la,{}nplus2,{}toler,{}a,{}b,{}ifail)} calculates an \\spad{l} solution to an over-determined system of \\indented{22}{1} linear equations. See \\downlink{Manual Page}{manpageXXe02gaf}.")) (|e02dff| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02dff(mx,{}my,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}lwrk,{}liwrk,{}ifail)} calculates values of a bicubic spline representation. The spline is evaluated at all points on a rectangular grid. See \\downlink{Manual Page}{manpageXXe02dff}.")) (|e02def| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02def(m,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}ifail)} calculates values of a bicubic spline representation. See \\downlink{Manual Page}{manpageXXe02def}.")) (|e02ddf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02ddf(start,{}m,{}x,{}y,{}f,{}w,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}ifail)} computes a bicubic spline approximation to a set of scattered data are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02ddf}.")) (|e02dcf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{e02dcf(start,{}mx,{}x,{}my,{}y,{}f,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}iwrk,{}ifail)} computes a bicubic spline approximation to a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. The knots of the spline are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02dcf}.")) (|e02daf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02daf(m,{}px,{}py,{}x,{}y,{}f,{}w,{}mu,{}point,{}npoint,{}nc,{}nws,{}eps,{}lamda,{}ifail)} forms a minimal,{} weighted least-squares bicubic spline surface fit with prescribed knots to a given set of data points. See \\downlink{Manual Page}{manpageXXe02daf}.")) (|e02bef| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|))) "\\spad{e02bef(start,{}m,{}x,{}y,{}w,{}s,{}nest,{}lwrk,{}n,{}lamda,{}ifail,{}wrk,{}iwrk)} computes a cubic spline approximation to an arbitrary set of data points. The knot are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02bef}.")) (|e02bdf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02bdf(ncap7,{}lamda,{}c,{}ifail)} computes the definite integral from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bdf}.")) (|e02bcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|)) "\\spad{e02bcf(ncap7,{}lamda,{}c,{}x,{}left,{}ifail)} evaluates a cubic spline and its first three derivatives from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bcf}.")) (|e02bbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02bbf(ncap7,{}lamda,{}c,{}x,{}ifail)} evaluates a cubic spline representation. See \\downlink{Manual Page}{manpageXXe02bbf}.")) (|e02baf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02baf(m,{}ncap7,{}x,{}y,{}w,{}lamda,{}ifail)} computes a weighted least-squares approximation to an arbitrary set of data points by a cubic splines prescribed by the user. Cubic spline can also be carried out. See \\downlink{Manual Page}{manpageXXe02baf}.")) (|e02akf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|)) "\\spad{e02akf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}x,{}ifail)} evaluates a polynomial from its Chebyshev-series representation,{} allowing an arbitrary index increment for accessing the array of coefficients. See \\downlink{Manual Page}{manpageXXe02akf}.")) (|e02ajf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ajf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}qatm1,{}iaint1,{}laint,{}ifail)} determines the coefficients in the Chebyshev-series representation of the indefinite integral of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ajf}.")) (|e02ahf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ahf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}iadif1,{}ladif,{}ifail)} determines the coefficients in the Chebyshev-series representation of the derivative of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ahf}.")) (|e02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02agf(m,{}kplus1,{}nrows,{}xmin,{}xmax,{}x,{}y,{}w,{}mf,{}xf,{}yf,{}lyf,{}ip,{}lwrk,{}liwrk,{}ifail)} computes constrained weighted least-squares polynomial approximations in Chebyshev-series form to an arbitrary set of data points. The values of the approximations and any number of their derivatives can be specified at selected points. See \\downlink{Manual Page}{manpageXXe02agf}.")) (|e02aef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02aef(nplus1,{}a,{}xcap,{}ifail)} evaluates a polynomial from its Chebyshev-series representation. See \\downlink{Manual Page}{manpageXXe02aef}.")) (|e02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02adf(m,{}kplus1,{}nrows,{}x,{}y,{}w,{}ifail)} computes weighted least-squares polynomial approximations to an arbitrary set of data points. See \\downlink{Manual Page}{manpageXXe02adf}."))) +((|constructor| (NIL "This package uses the NAG Library to find a function which approximates a set of data points. Typically the data contain random errors,{} as of experimental measurement,{} which need to be smoothed out. To seek an approximation to the data,{} it is first necessary to specify for the approximating function a mathematical form (a polynomial,{} for example) which contains a number of unspecified coefficients: the appropriate fitting routine then derives for the coefficients the values which provide the best fit of that particular form. The package deals mainly with curve and surface fitting (\\spadignore{i.e.} fitting with functions of one and of two variables) when a polynomial or a cubic spline is used as the fitting function,{} since these cover the most common needs. However,{} fitting with other functions and/or more variables can be undertaken by means of general linear or nonlinear routines (some of which are contained in other packages) depending on whether the coefficients in the function occur linearly or nonlinearly. Cases where a graph rather than a set of data points is given can be treated simply by first reading a suitable set of points from the graph. The package also contains routines for evaluating,{} differentiating and integrating polynomial and spline curves and surfaces,{} once the numerical values of their coefficients have been determined. See \\downlink{Manual Page}{manpageXXe02}.")) (|e02zaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02zaf(px,py,lamda,mu,m,x,y,npoint,nadres,ifail)} sorts two-dimensional data into rectangular panels. See \\downlink{Manual Page}{manpageXXe02zaf}.")) (|e02gaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02gaf(m,la,nplus2,toler,a,b,ifail)} calculates an \\spad{l} solution to an over-determined system of \\indented{22}{1} linear equations. See \\downlink{Manual Page}{manpageXXe02gaf}.")) (|e02dff| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02dff(mx,my,px,py,x,y,lamda,mu,c,lwrk,liwrk,ifail)} calculates values of a bicubic spline representation. The spline is evaluated at all points on a rectangular grid. See \\downlink{Manual Page}{manpageXXe02dff}.")) (|e02def| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02def(m,px,py,x,y,lamda,mu,c,ifail)} calculates values of a bicubic spline representation. See \\downlink{Manual Page}{manpageXXe02def}.")) (|e02ddf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02ddf(start,m,x,y,f,w,s,nxest,nyest,lwrk,liwrk,nx,lamda,ny,mu,wrk,ifail)} computes a bicubic spline approximation to a set of scattered data are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02ddf}.")) (|e02dcf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{e02dcf(start,mx,x,my,y,f,s,nxest,nyest,lwrk,liwrk,nx,lamda,ny,mu,wrk,iwrk,ifail)} computes a bicubic spline approximation to a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. The knots of the spline are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02dcf}.")) (|e02daf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02daf(m,px,py,x,y,f,w,mu,point,npoint,nc,nws,eps,lamda,ifail)} forms a minimal,{} weighted least-squares bicubic spline surface fit with prescribed knots to a given set of data points. See \\downlink{Manual Page}{manpageXXe02daf}.")) (|e02bef| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|))) "\\spad{e02bef(start,m,x,y,w,s,nest,lwrk,n,lamda,ifail,wrk,iwrk)} computes a cubic spline approximation to an arbitrary set of data points. The knot are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02bef}.")) (|e02bdf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02bdf(ncap7,lamda,c,ifail)} computes the definite integral from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bdf}.")) (|e02bcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|)) "\\spad{e02bcf(ncap7,lamda,c,x,left,ifail)} evaluates a cubic spline and its first three derivatives from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bcf}.")) (|e02bbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02bbf(ncap7,lamda,c,x,ifail)} evaluates a cubic spline representation. See \\downlink{Manual Page}{manpageXXe02bbf}.")) (|e02baf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02baf(m,ncap7,x,y,w,lamda,ifail)} computes a weighted least-squares approximation to an arbitrary set of data points by a cubic splines prescribed by the user. Cubic spline can also be carried out. See \\downlink{Manual Page}{manpageXXe02baf}.")) (|e02akf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|)) "\\spad{e02akf(np1,xmin,xmax,a,ia1,la,x,ifail)} evaluates a polynomial from its Chebyshev-series representation,{} allowing an arbitrary index increment for accessing the array of coefficients. See \\downlink{Manual Page}{manpageXXe02akf}.")) (|e02ajf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ajf(np1,xmin,xmax,a,ia1,la,qatm1,iaint1,laint,ifail)} determines the coefficients in the Chebyshev-series representation of the indefinite integral of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ajf}.")) (|e02ahf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ahf(np1,xmin,xmax,a,ia1,la,iadif1,ladif,ifail)} determines the coefficients in the Chebyshev-series representation of the derivative of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ahf}.")) (|e02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02agf(m,kplus1,nrows,xmin,xmax,x,y,w,mf,xf,yf,lyf,ip,lwrk,liwrk,ifail)} computes constrained weighted least-squares polynomial approximations in Chebyshev-series form to an arbitrary set of data points. The values of the approximations and any number of their derivatives can be specified at selected points. See \\downlink{Manual Page}{manpageXXe02agf}.")) (|e02aef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02aef(nplus1,a,xcap,ifail)} evaluates a polynomial from its Chebyshev-series representation. See \\downlink{Manual Page}{manpageXXe02aef}.")) (|e02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02adf(m,kplus1,nrows,x,y,w,ifail)} computes weighted least-squares polynomial approximations to an arbitrary set of data points. See \\downlink{Manual Page}{manpageXXe02adf}."))) NIL NIL (-753) -((|constructor| (NIL "This package uses the NAG Library to perform optimization. An optimization problem involves minimizing a function (called the objective function) of several variables,{} possibly subject to restrictions on the values of the variables defined by a set of constraint functions. The routines in the NAG Foundation Library are concerned with function minimization only,{} since the problem of maximizing a given function can be transformed into a minimization problem simply by multiplying the function by \\spad{-1}. See \\downlink{Manual Page}{manpageXXe04}.")) (|e04ycf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04ycf(job,{}m,{}n,{}fsumsq,{}s,{}lv,{}v,{}ifail)} returns estimates of elements of the variance matrix of the estimated regression coefficients for a nonlinear least squares problem. The estimates are derived from the Jacobian of the function \\spad{f}(\\spad{x}) at the solution. See \\downlink{Manual Page}{manpageXXe04ycf}.")) (|e04ucf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Boolean|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp55| CONFUN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04ucf(n,{}nclin,{}ncnln,{}nrowa,{}nrowj,{}nrowr,{}a,{}bl,{}bu,{}liwork,{}lwork,{}sta,{}cra,{}der,{}fea,{}fun,{}hes,{}infb,{}infs,{}linf,{}lint,{}list,{}maji,{}majp,{}mini,{}minp,{}mon,{}nonf,{}opt,{}ste,{}stao,{}stac,{}stoo,{}stoc,{}ve,{}istate,{}cjac,{}clamda,{}r,{}x,{}ifail,{}confun,{}objfun)} is designed to minimize an arbitrary smooth function subject to constraints on the variables,{} linear constraints. (E04UCF may be used for unconstrained,{} bound-constrained and linearly constrained optimization.) The user must provide subroutines that define the objective and constraint functions and as many of their first partial derivatives as possible. Unspecified derivatives are approximated by finite differences. All matrices are treated as dense,{} and hence E04UCF is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04ucf}.")) (|e04naf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Boolean|) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp20| QPHESS)))) "\\spad{e04naf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}nrowh,{}ncolh,{}bigbnd,{}a,{}bl,{}bu,{}cvec,{}featol,{}hess,{}cold,{}lpp,{}orthog,{}liwork,{}lwork,{}x,{}istate,{}ifail,{}qphess)} is a comprehensive programming (\\spad{QP}) or linear programming (\\spad{LP}) problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04naf}.")) (|e04mbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04mbf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}a,{}bl,{}bu,{}cvec,{}linobj,{}liwork,{}lwork,{}x,{}ifail)} is an easy-to-use routine for solving linear programming problems,{} or for finding a feasible point for such problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04mbf}.")) (|e04jaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp24| FUNCT1)))) "\\spad{e04jaf(n,{}ibound,{}liw,{}lw,{}bl,{}bu,{}x,{}ifail,{}funct1)} is an easy-to-use quasi-Newton algorithm for finding a minimum of a function \\spad{F}(\\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ),{} subject to fixed upper and \\indented{25}{1\\space{2}2\\space{6}\\spad{n}} lower bounds of the independent variables \\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ,{} using \\indented{43}{1\\space{2}2\\space{6}\\spad{n}} function values only. See \\downlink{Manual Page}{manpageXXe04jaf}.")) (|e04gcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp19| LSFUN2)))) "\\spad{e04gcf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun2)} is an easy-to-use quasi-Newton algorithm for finding an unconstrained minimum of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). First derivatives are required. See \\downlink{Manual Page}{manpageXXe04gcf}.")) (|e04fdf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp50| LSFUN1)))) "\\spad{e04fdf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun1)} is an easy-to-use algorithm for finding an unconstrained minimum of a sum of squares of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). No derivatives are required. See \\downlink{Manual Page}{manpageXXe04fdf}.")) (|e04dgf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04dgf(n,{}es,{}fu,{}it,{}lin,{}list,{}ma,{}op,{}pr,{}sta,{}sto,{}ve,{}x,{}ifail,{}objfun)} minimizes an unconstrained nonlinear function of several variables using a pre-conditioned,{} limited memory quasi-Newton conjugate gradient method. First derivatives are required. The routine is intended for use on large scale problems. See \\downlink{Manual Page}{manpageXXe04dgf}."))) +((|constructor| (NIL "This package uses the NAG Library to perform optimization. An optimization problem involves minimizing a function (called the objective function) of several variables,{} possibly subject to restrictions on the values of the variables defined by a set of constraint functions. The routines in the NAG Foundation Library are concerned with function minimization only,{} since the problem of maximizing a given function can be transformed into a minimization problem simply by multiplying the function by \\spad{-1}. See \\downlink{Manual Page}{manpageXXe04}.")) (|e04ycf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04ycf(job,m,n,fsumsq,s,lv,v,ifail)} returns estimates of elements of the variance matrix of the estimated regression coefficients for a nonlinear least squares problem. The estimates are derived from the Jacobian of the function \\spad{f}(\\spad{x}) at the solution. See \\downlink{Manual Page}{manpageXXe04ycf}.")) (|e04ucf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Boolean|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp55| CONFUN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04ucf(n,nclin,ncnln,nrowa,nrowj,nrowr,a,bl,bu,liwork,lwork,sta,cra,der,fea,fun,hes,infb,infs,linf,lint,list,maji,majp,mini,minp,mon,nonf,opt,ste,stao,stac,stoo,stoc,ve,istate,cjac,clamda,r,x,ifail,confun,objfun)} is designed to minimize an arbitrary smooth function subject to constraints on the variables,{} linear constraints. (E04UCF may be used for unconstrained,{} bound-constrained and linearly constrained optimization.) The user must provide subroutines that define the objective and constraint functions and as many of their first partial derivatives as possible. Unspecified derivatives are approximated by finite differences. All matrices are treated as dense,{} and hence E04UCF is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04ucf}.")) (|e04naf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Boolean|) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp20| QPHESS)))) "\\spad{e04naf(itmax,msglvl,n,nclin,nctotl,nrowa,nrowh,ncolh,bigbnd,a,bl,bu,cvec,featol,hess,cold,lpp,orthog,liwork,lwork,x,istate,ifail,qphess)} is a comprehensive programming (\\spad{QP}) or linear programming (\\spad{LP}) problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04naf}.")) (|e04mbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04mbf(itmax,msglvl,n,nclin,nctotl,nrowa,a,bl,bu,cvec,linobj,liwork,lwork,x,ifail)} is an easy-to-use routine for solving linear programming problems,{} or for finding a feasible point for such problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04mbf}.")) (|e04jaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp24| FUNCT1)))) "\\spad{e04jaf(n,ibound,liw,lw,bl,bu,x,ifail,funct1)} is an easy-to-use quasi-Newton algorithm for finding a minimum of a function \\spad{F}(\\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ),{} subject to fixed upper and \\indented{25}{1\\space{2}2\\space{6}\\spad{n}} lower bounds of the independent variables \\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ,{} using \\indented{43}{1\\space{2}2\\space{6}\\spad{n}} function values only. See \\downlink{Manual Page}{manpageXXe04jaf}.")) (|e04gcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp19| LSFUN2)))) "\\spad{e04gcf(m,n,liw,lw,x,ifail,lsfun2)} is an easy-to-use quasi-Newton algorithm for finding an unconstrained minimum of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). First derivatives are required. See \\downlink{Manual Page}{manpageXXe04gcf}.")) (|e04fdf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp50| LSFUN1)))) "\\spad{e04fdf(m,n,liw,lw,x,ifail,lsfun1)} is an easy-to-use algorithm for finding an unconstrained minimum of a sum of squares of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). No derivatives are required. See \\downlink{Manual Page}{manpageXXe04fdf}.")) (|e04dgf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04dgf(n,es,fu,it,lin,list,ma,op,pr,sta,sto,ve,x,ifail,objfun)} minimizes an unconstrained nonlinear function of several variables using a pre-conditioned,{} limited memory quasi-Newton conjugate gradient method. First derivatives are required. The routine is intended for use on large scale problems. See \\downlink{Manual Page}{manpageXXe04dgf}."))) NIL NIL (-754) -((|constructor| (NIL "This package uses the NAG Library to provide facilities for matrix factorizations and associated transformations. See \\downlink{Manual Page}{manpageXXf01}.")) (|f01ref| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01ref(wheret,{}m,{}n,{}ncolq,{}lda,{}theta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the complex \\spad{m} by \\spad{m} unitary matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01ref}.")) (|f01rdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}theta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01rdf}.")) (|f01rcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the complex \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01rcf}.")) (|f01qef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qef(wheret,{}m,{}n,{}ncolq,{}lda,{}zeta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the real \\spad{m} by \\spad{m} orthogonal matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01qef}.")) (|f01qdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}zeta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01qdf}.")) (|f01qcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the real \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01qcf}.")) (|f01mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01mcf(n,{}avals,{}lal,{}nrow,{}ifail)} computes the Cholesky factorization of a real symmetric positive-definite variable-bandwidth matrix. See \\downlink{Manual Page}{manpageXXf01mcf}.")) (|f01maf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{f01maf(n,{}nz,{}licn,{}lirn,{}abort,{}avals,{}irn,{}icn,{}droptl,{}densw,{}ifail)} computes an incomplete Cholesky factorization of a real sparse symmetric positive-definite matrix A. See \\downlink{Manual Page}{manpageXXf01maf}.")) (|f01bsf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Boolean|) (|DoubleFloat|) (|Boolean|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01bsf(n,{}nz,{}licn,{}ivect,{}jvect,{}icn,{}ikeep,{}grow,{}eta,{}abort,{}idisp,{}avals,{}ifail)} factorizes a real sparse matrix using the pivotal sequence previously obtained by F01BRF when a matrix of the same sparsity pattern was factorized. See \\downlink{Manual Page}{manpageXXf01bsf}.")) (|f01brf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Boolean|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01brf(n,{}nz,{}licn,{}lirn,{}pivot,{}lblock,{}grow,{}abort,{}a,{}irn,{}icn,{}ifail)} factorizes a real sparse matrix. The routine either forms the LU factorization of a permutation of the entire matrix,{} or,{} optionally,{} first permutes the matrix to block lower triangular form and then only factorizes the diagonal blocks. See \\downlink{Manual Page}{manpageXXf01brf}."))) +((|constructor| (NIL "This package uses the NAG Library to provide facilities for matrix factorizations and associated transformations. See \\downlink{Manual Page}{manpageXXf01}.")) (|f01ref| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01ref(wheret,m,n,ncolq,lda,theta,a,ifail)} returns the first \\spad{ncolq} columns of the complex \\spad{m} by \\spad{m} unitary matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01ref}.")) (|f01rdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rdf(trans,wheret,m,n,a,lda,theta,ncolb,ldb,b,ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01rdf}.")) (|f01rcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rcf(m,n,lda,a,ifail)} finds the \\spad{QR} factorization of the complex \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01rcf}.")) (|f01qef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qef(wheret,m,n,ncolq,lda,zeta,a,ifail)} returns the first \\spad{ncolq} columns of the real \\spad{m} by \\spad{m} orthogonal matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01qef}.")) (|f01qdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qdf(trans,wheret,m,n,a,lda,zeta,ncolb,ldb,b,ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01qdf}.")) (|f01qcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qcf(m,n,lda,a,ifail)} finds the \\spad{QR} factorization of the real \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01qcf}.")) (|f01mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01mcf(n,avals,lal,nrow,ifail)} computes the Cholesky factorization of a real symmetric positive-definite variable-bandwidth matrix. See \\downlink{Manual Page}{manpageXXf01mcf}.")) (|f01maf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{f01maf(n,nz,licn,lirn,abort,avals,irn,icn,droptl,densw,ifail)} computes an incomplete Cholesky factorization of a real sparse symmetric positive-definite matrix A. See \\downlink{Manual Page}{manpageXXf01maf}.")) (|f01bsf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Boolean|) (|DoubleFloat|) (|Boolean|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01bsf(n,nz,licn,ivect,jvect,icn,ikeep,grow,eta,abort,idisp,avals,ifail)} factorizes a real sparse matrix using the pivotal sequence previously obtained by F01BRF when a matrix of the same sparsity pattern was factorized. See \\downlink{Manual Page}{manpageXXf01bsf}.")) (|f01brf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Boolean|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01brf(n,nz,licn,lirn,pivot,lblock,grow,abort,a,irn,icn,ifail)} factorizes a real sparse matrix. The routine either forms the LU factorization of a permutation of the entire matrix,{} or,{} optionally,{} first permutes the matrix to block lower triangular form and then only factorizes the diagonal blocks. See \\downlink{Manual Page}{manpageXXf01brf}."))) NIL NIL (-755) -((|constructor| (NIL "This package uses the NAG Library to compute \\begin{items} \\item eigenvalues and eigenvectors of a matrix \\item eigenvalues and eigenvectors of generalized matrix eigenvalue problems \\item singular values and singular vectors of a matrix. \\end{items} See \\downlink{Manual Page}{manpageXXf02}.")) (|f02xef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f02xef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldph,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general complex matrix. See \\downlink{Manual Page}{manpageXXf02xef}.")) (|f02wef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02wef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldpt,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general real matrix. See \\downlink{Manual Page}{manpageXXf02wef}.")) (|f02fjf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))) (|FileName|)) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image,{}monit)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.") (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE)))) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.")) (|f02bjf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bjf(n,{}ia,{}ib,{}eps1,{}matv,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues and,{} if required,{} all the eigenvectors of the generalized eigenproblem Ax=(lambda)\\spad{Bx} where A and \\spad{B} are real,{} square matrices,{} using the \\spad{QZ} algorithm. See \\downlink{Manual Page}{manpageXXf02bjf}.")) (|f02bbf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bbf(ia,{}n,{}alb,{}ub,{}m,{}iv,{}a,{}ifail)} calculates selected eigenvalues of a real symmetric matrix by reduction to tridiagonal form,{} bisection and inverse iteration,{} where the selected eigenvalues lie within a given interval. See \\downlink{Manual Page}{manpageXXf02bbf}.")) (|f02axf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02axf(ar,{}iar,{}\\spad{ai},{}iai,{}n,{}ivr,{}ivi,{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02axf}.")) (|f02awf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02awf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02awf}.")) (|f02akf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02akf(iar,{}iai,{}n,{}ivr,{}ivi,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex matrix. See \\downlink{Manual Page}{manpageXXf02akf}.")) (|f02ajf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02ajf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02ajf}.")) (|f02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02agf(ia,{}n,{}ivr,{}ivi,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02agf}.")) (|f02aff| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aff(ia,{}n,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02aff}.")) (|f02aef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aef(ia,{}ib,{}n,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf02aef}.")) (|f02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02adf(ia,{}ib,{}n,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive- definite matrix. See \\downlink{Manual Page}{manpageXXf02adf}.")) (|f02abf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02abf(a,{}ia,{}n,{}iv,{}ifail)} calculates all the eigenvalues of a real symmetric matrix. See \\downlink{Manual Page}{manpageXXf02abf}.")) (|f02aaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aaf(ia,{}n,{}a,{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02aaf}."))) +((|constructor| (NIL "This package uses the NAG Library to compute \\begin{items} \\item eigenvalues and eigenvectors of a matrix \\item eigenvalues and eigenvectors of generalized matrix eigenvalue problems \\item singular values and singular vectors of a matrix. \\end{items} See \\downlink{Manual Page}{manpageXXf02}.")) (|f02xef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f02xef(m,n,lda,ncolb,ldb,wantq,ldq,wantp,ldph,a,b,ifail)} returns all,{} or part,{} of the singular value decomposition of a general complex matrix. See \\downlink{Manual Page}{manpageXXf02xef}.")) (|f02wef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02wef(m,n,lda,ncolb,ldb,wantq,ldq,wantp,ldpt,a,b,ifail)} returns all,{} or part,{} of the singular value decomposition of a general real matrix. See \\downlink{Manual Page}{manpageXXf02wef}.")) (|f02fjf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))) (|FileName|)) "\\spad{f02fjf(n,k,tol,novecs,nrx,lwork,lrwork,liwork,m,noits,x,ifail,dot,image,monit)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.") (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE)))) "\\spad{f02fjf(n,k,tol,novecs,nrx,lwork,lrwork,liwork,m,noits,x,ifail,dot,image)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.")) (|f02bjf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bjf(n,ia,ib,eps1,matv,iv,a,b,ifail)} calculates all the eigenvalues and,{} if required,{} all the eigenvectors of the generalized eigenproblem Ax=(lambda)\\spad{Bx} where A and \\spad{B} are real,{} square matrices,{} using the \\spad{QZ} algorithm. See \\downlink{Manual Page}{manpageXXf02bjf}.")) (|f02bbf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bbf(ia,n,alb,ub,m,iv,a,ifail)} calculates selected eigenvalues of a real symmetric matrix by reduction to tridiagonal form,{} bisection and inverse iteration,{} where the selected eigenvalues lie within a given interval. See \\downlink{Manual Page}{manpageXXf02bbf}.")) (|f02axf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02axf(ar,iar,ai,iai,n,ivr,ivi,ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02axf}.")) (|f02awf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02awf(iar,iai,n,ar,ai,ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02awf}.")) (|f02akf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02akf(iar,iai,n,ivr,ivi,ar,ai,ifail)} calculates all the eigenvalues of a complex matrix. See \\downlink{Manual Page}{manpageXXf02akf}.")) (|f02ajf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02ajf(iar,iai,n,ar,ai,ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02ajf}.")) (|f02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02agf(ia,n,ivr,ivi,a,ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02agf}.")) (|f02aff| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aff(ia,n,a,ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02aff}.")) (|f02aef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aef(ia,ib,n,iv,a,b,ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf02aef}.")) (|f02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02adf(ia,ib,n,a,b,ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive- definite matrix. See \\downlink{Manual Page}{manpageXXf02adf}.")) (|f02abf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02abf(a,ia,n,iv,ifail)} calculates all the eigenvalues of a real symmetric matrix. See \\downlink{Manual Page}{manpageXXf02abf}.")) (|f02aaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aaf(ia,n,a,ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02aaf}."))) NIL NIL (-756) -((|constructor| (NIL "This package uses the NAG Library to solve the matrix equation \\axiom{AX=B},{} where \\axiom{\\spad{B}} may be a single vector or a matrix of multiple right-hand sides. The matrix \\axiom{A} may be real,{} complex,{} symmetric,{} Hermitian positive- definite,{} or sparse. It may also be rectangular,{} in which case a least-squares solution is obtained. See \\downlink{Manual Page}{manpageXXf04}.")) (|f04qaf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp30| APROD)))) "\\spad{f04qaf(m,{}n,{}damp,{}atol,{}btol,{}conlim,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}b,{}ifail,{}aprod)} solves sparse unsymmetric equations,{} sparse linear least- squares problems and sparse damped linear least-squares problems,{} using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04qaf}.")) (|f04mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04mcf(n,{}al,{}lal,{}d,{}nrow,{}ir,{}b,{}nrb,{}iselct,{}nrx,{}ifail)} computes the approximate solution of a system of real linear equations with multiple right-hand sides,{} AX=B,{} where A is a symmetric positive-definite variable-bandwidth matrix,{} which has previously been factorized by F01MCF. Related systems may also be solved. See \\downlink{Manual Page}{manpageXXf04mcf}.")) (|f04mbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| APROD))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp34| MSOLVE)))) "\\spad{f04mbf(n,{}b,{}precon,{}shift,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}rtol,{}ifail,{}aprod,{}msolve)} solves a system of real sparse symmetric linear equations using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04mbf}.")) (|f04maf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f04maf(n,{}nz,{}avals,{}licn,{}irn,{}lirn,{}icn,{}wkeep,{}ikeep,{}inform,{}b,{}acc,{}noits,{}ifail)} \\spad{e} a sparse symmetric positive-definite system of linear equations,{} Ax=b,{} using a pre-conditioned conjugate gradient method,{} where A has been factorized by F01MAF. See \\downlink{Manual Page}{manpageXXf04maf}.")) (|f04jgf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04jgf(m,{}n,{}nra,{}tol,{}lwork,{}a,{}b,{}ifail)} finds the solution of a linear least-squares problem,{} Ax=b ,{} where A is a real \\spad{m} by \\spad{n} (m>=n) matrix and \\spad{b} is an \\spad{m} element vector. If the matrix of observations is not of full rank,{} then the minimal least-squares solution is returned. See \\downlink{Manual Page}{manpageXXf04jgf}.")) (|f04faf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04faf(job,{}n,{}d,{}e,{}b,{}ifail)} calculates the approximate solution of a set of real symmetric positive-definite tridiagonal linear equations. See \\downlink{Manual Page}{manpageXXf04faf}.")) (|f04axf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|))) "\\spad{f04axf(n,{}a,{}licn,{}icn,{}ikeep,{}mtype,{}idisp,{}rhs)} calculates the approximate solution of a set of real sparse linear equations with a single right-hand side,{} Ax=b or \\indented{1}{\\spad{T}} A \\spad{x=b},{} where A has been factorized by F01BRF or F01BSF. See \\downlink{Manual Page}{manpageXXf04axf}.")) (|f04atf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04atf(a,{}ia,{}b,{}n,{}iaa,{}ifail)} calculates the accurate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting,{} and iterative refinement. See \\downlink{Manual Page}{manpageXXf04atf}.")) (|f04asf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04asf(ia,{}b,{}n,{}a,{}ifail)} calculates the accurate solution of a set of real symmetric positive-definite linear equations with a single right- hand side,{} Ax=b,{} using a Cholesky factorization and iterative refinement. See \\downlink{Manual Page}{manpageXXf04asf}.")) (|f04arf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04arf(ia,{}b,{}n,{}a,{}ifail)} calculates the approximate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04arf}.")) (|f04adf| (((|Result|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f04adf(ia,{}b,{}ib,{}n,{}m,{}ic,{}a,{}ifail)} calculates the approximate solution of a set of complex linear equations with multiple right-hand sides,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04adf}."))) +((|constructor| (NIL "This package uses the NAG Library to solve the matrix equation \\axiom{AX=B},{} where \\axiom{\\spad{B}} may be a single vector or a matrix of multiple right-hand sides. The matrix \\axiom{A} may be real,{} complex,{} symmetric,{} Hermitian positive- definite,{} or sparse. It may also be rectangular,{} in which case a least-squares solution is obtained. See \\downlink{Manual Page}{manpageXXf04}.")) (|f04qaf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp30| APROD)))) "\\spad{f04qaf(m,n,damp,atol,btol,conlim,itnlim,msglvl,lrwork,liwork,b,ifail,aprod)} solves sparse unsymmetric equations,{} sparse linear least- squares problems and sparse damped linear least-squares problems,{} using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04qaf}.")) (|f04mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04mcf(n,al,lal,d,nrow,ir,b,nrb,iselct,nrx,ifail)} computes the approximate solution of a system of real linear equations with multiple right-hand sides,{} AX=B,{} where A is a symmetric positive-definite variable-bandwidth matrix,{} which has previously been factorized by F01MCF. Related systems may also be solved. See \\downlink{Manual Page}{manpageXXf04mcf}.")) (|f04mbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| APROD))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp34| MSOLVE)))) "\\spad{f04mbf(n,b,precon,shift,itnlim,msglvl,lrwork,liwork,rtol,ifail,aprod,msolve)} solves a system of real sparse symmetric linear equations using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04mbf}.")) (|f04maf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f04maf(n,nz,avals,licn,irn,lirn,icn,wkeep,ikeep,inform,b,acc,noits,ifail)} \\spad{e} a sparse symmetric positive-definite system of linear equations,{} Ax=b,{} using a pre-conditioned conjugate gradient method,{} where A has been factorized by F01MAF. See \\downlink{Manual Page}{manpageXXf04maf}.")) (|f04jgf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04jgf(m,n,nra,tol,lwork,a,b,ifail)} finds the solution of a linear least-squares problem,{} Ax=b ,{} where A is a real \\spad{m} by \\spad{n} (m>=n) matrix and \\spad{b} is an \\spad{m} element vector. If the matrix of observations is not of full rank,{} then the minimal least-squares solution is returned. See \\downlink{Manual Page}{manpageXXf04jgf}.")) (|f04faf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04faf(job,n,d,e,b,ifail)} calculates the approximate solution of a set of real symmetric positive-definite tridiagonal linear equations. See \\downlink{Manual Page}{manpageXXf04faf}.")) (|f04axf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|))) "\\spad{f04axf(n,a,licn,icn,ikeep,mtype,idisp,rhs)} calculates the approximate solution of a set of real sparse linear equations with a single right-hand side,{} Ax=b or \\indented{1}{\\spad{T}} A \\spad{x=b},{} where A has been factorized by F01BRF or F01BSF. See \\downlink{Manual Page}{manpageXXf04axf}.")) (|f04atf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04atf(a,ia,b,n,iaa,ifail)} calculates the accurate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting,{} and iterative refinement. See \\downlink{Manual Page}{manpageXXf04atf}.")) (|f04asf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04asf(ia,b,n,a,ifail)} calculates the accurate solution of a set of real symmetric positive-definite linear equations with a single right- hand side,{} Ax=b,{} using a Cholesky factorization and iterative refinement. See \\downlink{Manual Page}{manpageXXf04asf}.")) (|f04arf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04arf(ia,b,n,a,ifail)} calculates the approximate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04arf}.")) (|f04adf| (((|Result|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f04adf(ia,b,ib,n,m,ic,a,ifail)} calculates the approximate solution of a set of complex linear equations with multiple right-hand sides,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04adf}."))) NIL NIL (-757) -((|constructor| (NIL "This package uses the NAG Library to compute matrix factorizations,{} and to solve systems of linear equations following the matrix factorizations. See \\downlink{Manual Page}{manpageXXf07}.")) (|f07fef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fef(uplo,{}n,{}nrhs,{}a,{}lda,{}ldb,{}b)} (DPOTRS) solves a real symmetric positive-definite system of linear equations with multiple right-hand sides,{} AX=B,{} where A has been factorized by F07FDF (DPOTRF). See \\downlink{Manual Page}{manpageXXf07fef}.")) (|f07fdf| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fdf(uplo,{}n,{}lda,{}a)} (DPOTRF) computes the Cholesky factorization of a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf07fdf}.")) (|f07aef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07aef(trans,{}n,{}nrhs,{}a,{}lda,{}ipiv,{}ldb,{}b)} (DGETRS) solves a real system of linear equations with \\indented{36}{\\spad{T}} multiple right-hand sides,{} AX=B or A \\spad{X=B},{} where A has been factorized by F07ADF (DGETRF). See \\downlink{Manual Page}{manpageXXf07aef}.")) (|f07adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07adf(m,{}n,{}lda,{}a)} (DGETRF) computes the LU factorization of a real \\spad{m} by \\spad{n} matrix. See \\downlink{Manual Page}{manpageXXf07adf}."))) +((|constructor| (NIL "This package uses the NAG Library to compute matrix factorizations,{} and to solve systems of linear equations following the matrix factorizations. See \\downlink{Manual Page}{manpageXXf07}.")) (|f07fef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fef(uplo,n,nrhs,a,lda,ldb,b)} (DPOTRS) solves a real symmetric positive-definite system of linear equations with multiple right-hand sides,{} AX=B,{} where A has been factorized by F07FDF (DPOTRF). See \\downlink{Manual Page}{manpageXXf07fef}.")) (|f07fdf| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fdf(uplo,n,lda,a)} (DPOTRF) computes the Cholesky factorization of a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf07fdf}.")) (|f07aef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07aef(trans,n,nrhs,a,lda,ipiv,ldb,b)} (DGETRS) solves a real system of linear equations with \\indented{36}{\\spad{T}} multiple right-hand sides,{} AX=B or A \\spad{X=B},{} where A has been factorized by F07ADF (DGETRF). See \\downlink{Manual Page}{manpageXXf07aef}.")) (|f07adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07adf(m,n,lda,a)} (DGETRF) computes the LU factorization of a real \\spad{m} by \\spad{n} matrix. See \\downlink{Manual Page}{manpageXXf07adf}."))) NIL NIL (-758) -((|constructor| (NIL "This package uses the NAG Library to compute some commonly occurring physical and mathematical functions. See \\downlink{Manual Page}{manpageXXs}.")) (|s21bdf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bdf(x,{}y,{}z,{}r,{}ifail)} returns a value of the symmetrised elliptic integral of the third kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bdf}.")) (|s21bcf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bcf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the second kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bcf}.")) (|s21bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bbf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bbf}.")) (|s21baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21baf(x,{}y,{}ifail)} returns a value of an elementary integral,{} which occurs as a degenerate case of an elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21baf}.")) (|s20adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20adf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{C}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20adf}.")) (|s20acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20acf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{S}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20acf}.")) (|s19adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19adf(x,{}ifail)} returns a value for the Kelvin function kei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19adf}.")) (|s19acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19acf(x,{}ifail)} returns a value for the Kelvin function ker(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs19acf}.")) (|s19abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19abf(x,{}ifail)} returns a value for the Kelvin function bei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19abf}.")) (|s19aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19aaf(x,{}ifail)} returns a value for the Kelvin function ber(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19aaf}.")) (|s18def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{I}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18def}.")) (|s18dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{K}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18dcf}.")) (|s18aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aff(x,{}ifail)} returns a value for the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18aff}.")) (|s18aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aef(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18aef}.")) (|s18adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18adf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18adf}.")) (|s18acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18acf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18acf}.")) (|s17dlf| (((|Result|) (|Integer|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dlf(m,{}fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Hankel functions \\indented{2}{(1)\\space{11}(2)} \\indented{1}{\\spad{H}\\space{6}(\\spad{z}) or \\spad{H}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}\\space{8}(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dlf}.")) (|s17dhf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dhf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Bi}(\\spad{z}) or its derivative Bi'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dhf}.")) (|s17dgf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dgf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Ai}(\\spad{z}) or its derivative Ai'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dgf}.")) (|s17def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{J}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17def}.")) (|s17dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{Y}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dcf}.")) (|s17akf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17akf(x,{}ifail)} returns a value for the derivative of the Airy function \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17akf}.")) (|s17ajf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ajf(x,{}ifail)} returns a value of the derivative of the Airy function \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ajf}.")) (|s17ahf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ahf(x,{}ifail)} returns a value of the Airy function,{} \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ahf}.")) (|s17agf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17agf(x,{}ifail)} returns a value for the Airy function,{} \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17agf}.")) (|s17aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aff(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17aff}.")) (|s17aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aef(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17aef}.")) (|s17adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17adf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17adf}.")) (|s17acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17acf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17acf}.")) (|s15aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15aef(x,{}ifail)} returns the value of the error function erf(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15aef}.")) (|s15adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15adf(x,{}ifail)} returns the value of the complementary error function,{} erfc(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15adf}.")) (|s14baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s14baf(a,{}x,{}tol,{}ifail)} computes values for the incomplete gamma functions \\spad{P}(a,{}\\spad{x}) and \\spad{Q}(a,{}\\spad{x}). See \\downlink{Manual Page}{manpageXXs14baf}.")) (|s14abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14abf(x,{}ifail)} returns a value for the log,{} \\spad{ln}(Gamma(\\spad{x})),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14abf}.")) (|s14aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14aaf(x,{}ifail)} returns the value of the Gamma function (Gamma)(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14aaf}.")) (|s13adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13adf(x,{}ifail)} returns the value of the sine integral See \\downlink{Manual Page}{manpageXXs13adf}.")) (|s13acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13acf(x,{}ifail)} returns the value of the cosine integral See \\downlink{Manual Page}{manpageXXs13acf}.")) (|s13aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13aaf(x,{}ifail)} returns the value of the exponential integral \\indented{1}{\\spad{E} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs13aaf}.")) (|s01eaf| (((|Result|) (|Complex| (|DoubleFloat|)) (|Integer|)) "\\spad{s01eaf(z,{}ifail)} S01EAF evaluates the exponential function exp(\\spad{z}) ,{} for complex \\spad{z}. See \\downlink{Manual Page}{manpageXXs01eaf}."))) +((|constructor| (NIL "This package uses the NAG Library to compute some commonly occurring physical and mathematical functions. See \\downlink{Manual Page}{manpageXXs}.")) (|s21bdf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bdf(x,y,z,r,ifail)} returns a value of the symmetrised elliptic integral of the third kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bdf}.")) (|s21bcf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bcf(x,y,z,ifail)} returns a value of the symmetrised elliptic integral of the second kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bcf}.")) (|s21bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bbf(x,y,z,ifail)} returns a value of the symmetrised elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bbf}.")) (|s21baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21baf(x,y,ifail)} returns a value of an elementary integral,{} which occurs as a degenerate case of an elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21baf}.")) (|s20adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20adf(x,ifail)} returns a value for the Fresnel Integral \\spad{C}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20adf}.")) (|s20acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20acf(x,ifail)} returns a value for the Fresnel Integral \\spad{S}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20acf}.")) (|s19adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19adf(x,ifail)} returns a value for the Kelvin function kei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19adf}.")) (|s19acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19acf(x,ifail)} returns a value for the Kelvin function ker(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs19acf}.")) (|s19abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19abf(x,ifail)} returns a value for the Kelvin function bei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19abf}.")) (|s19aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19aaf(x,ifail)} returns a value for the Kelvin function ber(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19aaf}.")) (|s18def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18def(fnu,z,n,scale,ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{I}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18def}.")) (|s18dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18dcf(fnu,z,n,scale,ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{K}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18dcf}.")) (|s18aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aff(x,ifail)} returns a value for the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18aff}.")) (|s18aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aef(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18aef}.")) (|s18adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18adf(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18adf}.")) (|s18acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18acf(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18acf}.")) (|s17dlf| (((|Result|) (|Integer|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dlf(m,fnu,z,n,scale,ifail)} returns a sequence of values for the Hankel functions \\indented{2}{(1)\\space{11}(2)} \\indented{1}{\\spad{H}\\space{6}(\\spad{z}) or \\spad{H}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}\\space{8}(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dlf}.")) (|s17dhf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dhf(deriv,z,scale,ifail)} returns the value of the Airy function \\spad{Bi}(\\spad{z}) or its derivative Bi'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dhf}.")) (|s17dgf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dgf(deriv,z,scale,ifail)} returns the value of the Airy function \\spad{Ai}(\\spad{z}) or its derivative Ai'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dgf}.")) (|s17def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17def(fnu,z,n,scale,ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{J}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17def}.")) (|s17dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dcf(fnu,z,n,scale,ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{Y}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dcf}.")) (|s17akf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17akf(x,ifail)} returns a value for the derivative of the Airy function \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17akf}.")) (|s17ajf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ajf(x,ifail)} returns a value of the derivative of the Airy function \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ajf}.")) (|s17ahf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ahf(x,ifail)} returns a value of the Airy function,{} \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ahf}.")) (|s17agf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17agf(x,ifail)} returns a value for the Airy function,{} \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17agf}.")) (|s17aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aff(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17aff}.")) (|s17aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aef(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17aef}.")) (|s17adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17adf(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17adf}.")) (|s17acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17acf(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17acf}.")) (|s15aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15aef(x,ifail)} returns the value of the error function erf(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15aef}.")) (|s15adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15adf(x,ifail)} returns the value of the complementary error function,{} erfc(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15adf}.")) (|s14baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s14baf(a,x,tol,ifail)} computes values for the incomplete gamma functions \\spad{P}(a,{}\\spad{x}) and \\spad{Q}(a,{}\\spad{x}). See \\downlink{Manual Page}{manpageXXs14baf}.")) (|s14abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14abf(x,ifail)} returns a value for the log,{} \\spad{ln}(Gamma(\\spad{x})),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14abf}.")) (|s14aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14aaf(x,ifail)} returns the value of the Gamma function (Gamma)(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14aaf}.")) (|s13adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13adf(x,ifail)} returns the value of the sine integral See \\downlink{Manual Page}{manpageXXs13adf}.")) (|s13acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13acf(x,ifail)} returns the value of the cosine integral See \\downlink{Manual Page}{manpageXXs13acf}.")) (|s13aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13aaf(x,ifail)} returns the value of the exponential integral \\indented{1}{\\spad{E} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs13aaf}.")) (|s01eaf| (((|Result|) (|Complex| (|DoubleFloat|)) (|Integer|)) "\\spad{s01eaf(z,ifail)} S01EAF evaluates the exponential function exp(\\spad{z}) ,{} for complex \\spad{z}. See \\downlink{Manual Page}{manpageXXs01eaf}."))) NIL NIL (-759) -((|constructor| (NIL "Support functions for the NAG Library Link functions")) (|restorePrecision| (((|Void|)) "\\spad{restorePrecision()} \\undocumented{}")) (|checkPrecision| (((|Boolean|)) "\\spad{checkPrecision()} \\undocumented{}")) (|dimensionsOf| (((|SExpression|) (|Symbol|) (|Matrix| (|Integer|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|Matrix| (|DoubleFloat|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}")) (|aspFilename| (((|String|) (|String|)) "\\spad{aspFilename(\"f\")} returns a String consisting of \\spad{\"f\"} suffixed with \\indented{1}{an extension identifying the current AXIOM session.}")) (|fortranLinkerArgs| (((|String|)) "\\spad{fortranLinkerArgs()} returns the current linker arguments")) (|fortranCompilerName| (((|String|)) "\\spad{fortranCompilerName()} returns the name of the currently selected \\indented{1}{Fortran compiler}"))) +((|constructor| (NIL "Support functions for the NAG Library Link functions")) (|restorePrecision| (((|Void|)) "\\spad{restorePrecision()} \\undocumented{}")) (|checkPrecision| (((|Boolean|)) "\\spad{checkPrecision()} \\undocumented{}")) (|dimensionsOf| (((|SExpression|) (|Symbol|) (|Matrix| (|Integer|))) "\\spad{dimensionsOf(s,m)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|Matrix| (|DoubleFloat|))) "\\spad{dimensionsOf(s,m)} \\undocumented{}")) (|aspFilename| (((|String|) (|String|)) "\\spad{aspFilename(\"f\")} returns a String consisting of \\spad{\"f\"} suffixed with \\indented{1}{an extension identifying the current AXIOM session.}")) (|fortranLinkerArgs| (((|String|)) "\\spad{fortranLinkerArgs()} returns the current linker arguments")) (|fortranCompilerName| (((|String|)) "\\spad{fortranCompilerName()} returns the name of the currently selected \\indented{1}{Fortran compiler}"))) NIL NIL (-760 S) -((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}."))) +((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL (-761) -((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}."))) +((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL (-762 S) @@ -2985,23 +2985,23 @@ NIL NIL NIL (-764 |Par|) -((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,{}eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) +((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) NIL NIL -(-765 -2371) +(-765 -2352) ((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction."))) NIL NIL -(-766 P -2371) -((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}."))) +(-766 P -2352) +((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}."))) NIL NIL (-767 T$) NIL NIL NIL -(-768 UP -2371) -((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}."))) +(-768 UP -2352) +((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}."))) NIL NIL (-769) @@ -3009,15 +3009,15 @@ NIL NIL NIL (-770 R) -((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) +((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL (-771) -((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,{}b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder."))) +((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder."))) (((-4416 "*") . T)) NIL -(-772 R -2371) -((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,{}y),{} N(x,{}y),{} y,{} x)} returns \\spad{F(x,{}y)} such that \\spad{F(x,{}y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,{}y) dx + N(x,{}y) dy = 0},{} or \"failed\" if no first-integral can be found."))) +(-772 R -2352) +((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,y), N(x,y), y, x)} returns \\spad{F(x,y)} such that \\spad{F(x,y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,y) dx + N(x,y) dy = 0},{} or \"failed\" if no first-integral can be found."))) NIL NIL (-773 S) @@ -3036,7 +3036,7 @@ NIL ((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}."))) NIL NIL -(-777 -2371 |ExtF| |SUEx| |ExtP| |n|) +(-777 -2352 |ExtF| |SUEx| |ExtP| |n|) ((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented"))) NIL NIL @@ -3045,13 +3045,13 @@ NIL NIL NIL (-779 |Par|) -((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,{}eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with variable \\spad{x}. Fraction \\spad{P} \\spad{RN}.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with a new symbol as variable."))) +((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with variable \\spad{x}. Fraction \\spad{P} \\spad{RN}.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with a new symbol as variable."))) NIL NIL (-780 R |VarSet|) ((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) (((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4412 |has| |#1| (-6 -4412)) (-4409 . T) (-4408 . T) (-4411 . T)) -((|HasCategory| |#1| (QUOTE (-909))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-1175))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-1175))))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-1175)))) (-2418 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-1175)))))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-1175)))) (-2418 (|HasCategory| |#1| (QUOTE (-547)))) (-2418 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-1175)))) (-2418 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-566))))) (-2418 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-1175)))) (-2418 (|HasCategory| |#1| (LIST (QUOTE -992) (QUOTE (-566))))))) (|HasAttribute| |#1| (QUOTE -4412)) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145))))) +((|HasCategory| |#1| (QUOTE (-909))) (-2768 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2768 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2768 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2768 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2768 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-1175))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-1175))))) (-2768 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-1175)))) (-2404 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-1175)))))) (-2768 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-1175)))) (-2404 (|HasCategory| |#1| (QUOTE (-547)))) (-2404 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-1175)))) (-2404 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-566))))) (-2404 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-1175)))) (-2404 (|HasCategory| |#1| (LIST (QUOTE -992) (QUOTE (-566))))))) (|HasAttribute| |#1| (QUOTE -4412)) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2768 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145))))) (-781 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) NIL @@ -3059,17 +3059,17 @@ NIL (-782 R) ((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) (((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4410 |has| |#1| (-365)) (-4412 |has| |#1| (-6 -4412)) (-4409 . T) (-4408 . T) (-4411 . T)) -((|HasCategory| |#1| (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1150))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4412)) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145))))) +((|HasCategory| |#1| (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2768 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2768 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (-2768 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2768 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2768 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1150))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4412)) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2768 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145))))) (-783 R) -((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,{}r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,{}r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,{}r)} \\undocumented"))) +((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,r)} \\undocumented"))) NIL ((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-784 R E V P) -((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,{}v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,{}v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,{}mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}"))) +((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}"))) ((-4415 . T) (-4414 . T)) NIL (-785 S) -((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}."))) +((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}."))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (QUOTE (-172)))) (-786) @@ -3077,19 +3077,19 @@ NIL NIL NIL (-787) -((|numericalIntegration| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,{}hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,{}hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) +((|numericalIntegration| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL (-788) -((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,{}y,{}x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})\\spad{**}(-1/5)}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try ,{} did ,{} next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is the same as \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation\\spad{'s} right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}."))) +((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,y,x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,n,x1,h,derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,n,x1,x2,ns,derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})\\spad{**}(-1/5)}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try , did , next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is the same as \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation\\spad{'s} right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,n,x1,x2,ns,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,n,x1,h,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}."))) NIL NIL (-789) -((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details."))) +((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details."))) NIL NIL (-790 |Curve|) -((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,{}r,{}n)} creates a tube of radius \\spad{r} around the curve \\spad{c}."))) +((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,r,n)} creates a tube of radius \\spad{r} around the curve \\spad{c}."))) NIL NIL (-791) @@ -3101,7 +3101,7 @@ NIL NIL NIL (-793) -((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,{}y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted."))) +((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted."))) NIL NIL (-794) @@ -3113,89 +3113,89 @@ NIL NIL NIL (-796 S R) -((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) +((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) NIL ((|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-547))) (|HasCategory| |#2| (QUOTE (-1059))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-370)))) (-797 R) -((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) +((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) ((-4408 . T) (-4409 . T) (-4411 . T)) NIL -(-798 -2809 R OS S) -((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) +(-798 -2768 R OS S) +((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) NIL NIL (-799 R) -((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,{}qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) +((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) ((-4408 . T) (-4409 . T) (-4411 . T)) -((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (-2809 (|HasCategory| (-999 |#1|) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2809 (|HasCategory| (-999 |#1|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-1059))) (|HasCategory| |#1| (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-999 |#1|) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-999 |#1|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566))))) +((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (-2768 (|HasCategory| (-999 |#1|) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2768 (|HasCategory| (-999 |#1|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-1059))) (|HasCategory| |#1| (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-999 |#1|) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-999 |#1|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566))))) (-800) -((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) +((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-801 R -2371 L) -((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op,{} g,{} x)} returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{\\spad{yi}}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}."))) +(-801 R -2352 L) +((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op, g, x)} returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{yi}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}."))) NIL NIL -(-802 R -2371) -((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) +(-802 R -2352) +((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m, x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m, v, x)} returns \\spad{[v_p, [v_1,...,v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) NIL NIL (-803) ((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions."))) NIL NIL -(-804 R -2371) -((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f,{} x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f,{} x)} returns the integral of \\spad{f} with respect to \\spad{x}."))) +(-804 R -2352) +((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f, x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f, x)} returns the integral of \\spad{f} with respect to \\spad{x}."))) NIL NIL (-805) -((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}epsabs,{}epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,{}R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine."))) +((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,epsabs,epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,xStart,xEnd,yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine."))) NIL NIL -(-806 -2371 UP UPUP R) -((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation."))) +(-806 -2352 UP UPUP R) +((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation."))) NIL NIL -(-807 -2371 UP L LQ) -((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op,{} [g1,{}...,{}gm])} returns \\spad{op0,{} [h1,{}...,{}hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op,{} [g1,{}...,{}gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op,{} g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution."))) +(-807 -2352 UP L LQ) +((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op, [g1,...,gm])} returns \\spad{op0, [h1,...,hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op, [g1,...,gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op, g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution."))) NIL NIL (-808) ((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-809 -2371 UP L LQ) -((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} zeros,{} ezfactor)} returns \\spad{[[f1,{} L1],{} [f2,{} L2],{} ... ,{} [fk,{} Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z=0}. \\spad{zeros(C(x),{}H(x,{}y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,{}P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{} Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op,{} ric)} returns \\spad{[[a1,{} L1],{} [a2,{} L2],{} ... ,{} [ak,{} Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1,{} p1],{} [m2,{} p2],{} ... ,{} [mk,{} pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}."))) +(-809 -2352 UP L LQ) +((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, zeros, ezfactor)} returns \\spad{[[f1, L1], [f2, L2], ... , [fk, Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z=0}. \\spad{zeros(C(x),H(x,y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk, Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op, ric)} returns \\spad{[[a1, L1], [a2, L2], ... , [ak, Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1, p1], [m2, p2], ... , [mk, pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}."))) NIL NIL -(-810 -2371 UP) -((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation."))) +(-810 -2352 UP) +((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation."))) NIL NIL -(-811 -2371 L UP A LO) -((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op,{} g)} returns \\spad{[m,{} v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,{}...,{}z_m) . (b_1,{}...,{}b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}."))) +(-811 -2352 L UP A LO) +((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op, g)} returns \\spad{[m, v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,...,z_m) . (b_1,...,b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}."))) NIL NIL -(-812 -2371 UP) -((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{}Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{\\spad{Li} z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} ezfactor)} returns \\spad{[[f1,{}L1],{} [f2,{}L2],{}...,{} [fk,{}Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}."))) +(-812 -2352 UP) +((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk,Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{Li z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, ezfactor)} returns \\spad{[[f1,L1], [f2,L2],..., [fk,Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-813 -2371 LO) -((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m,{} v)} returns \\spad{[m_0,{} v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,{}v)} returns \\spad{A,{}[[C_1,{}g_1,{}L_1,{}h_1],{}...,{}[C_k,{}g_k,{}L_k,{}h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}."))) +(-813 -2352 LO) +((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m, v)} returns \\spad{[m_0, v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,v)} returns \\spad{A,[[C_1,g_1,L_1,h_1],...,[C_k,g_k,L_k,h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}."))) NIL NIL -(-814 -2371 LODO) -((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op,{} g,{} [f1,{}...,{}fm],{} I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op,{} g,{} [f1,{}...,{}fm])} returns \\spad{[u1,{}...,{}um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,{}...,{}fn],{} q,{} D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,{}...,{}fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}."))) +(-814 -2352 LODO) +((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op, g, [f1,...,fm], I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op, g, [f1,...,fm])} returns \\spad{[u1,...,um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,...,fn], q, D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,...,fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}."))) NIL NIL -(-815 -2420 S |f|) +(-815 -3382 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) ((-4408 |has| |#2| (-1049)) (-4409 |has| |#2| (-1049)) (-4411 |has| |#2| (-6 -4411)) ((-4416 "*") |has| |#2| (-172)) (-4414 . T)) -((-2809 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))))) (-2809 (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1099)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#2| (QUOTE (-365))) (-2809 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2809 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365)))) (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-793))) (-2809 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-848)))) (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-726))) (-2809 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1049)))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1049)))) (|HasCategory| |#2| (QUOTE (-233))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-365)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-726)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-793)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-848)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1099))))) (-2809 (-12 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1049))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-2809 (-12 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))))) (|HasCategory| (-566) (QUOTE (-850))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175))))) (-2809 (|HasCategory| |#2| (QUOTE (-1049))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1099)))) (|HasAttribute| |#2| (QUOTE -4411)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))))) +((-2768 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))))) (-2768 (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1099)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#2| (QUOTE (-365))) (-2768 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2768 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365)))) (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-793))) (-2768 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-848)))) (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-726))) (-2768 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1049)))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (-2768 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2768 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2768 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2768 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1049)))) (|HasCategory| |#2| (QUOTE (-233))) (-2768 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-1099))) (-2768 (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-365)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-726)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-793)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-848)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1099))))) (-2768 (-12 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1049))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-2768 (-12 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))))) (|HasCategory| (-566) (QUOTE (-850))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175))))) (-2768 (|HasCategory| |#2| (QUOTE (-1049))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1099)))) (|HasAttribute| |#2| (QUOTE -4411)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))))) (-816 R) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline"))) (((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4412 |has| |#1| (-6 -4412)) (-4409 . T) (-4408 . T) (-4411 . T)) -((|HasCategory| |#1| (QUOTE (-909))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-818 (-1175)) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-818 (-1175)) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-818 (-1175)) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-818 (-1175)) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-818 (-1175)) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4412)) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145))))) +((|HasCategory| |#1| (QUOTE (-909))) (-2768 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2768 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2768 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2768 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-818 (-1175)) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-818 (-1175)) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-818 (-1175)) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-818 (-1175)) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-818 (-1175)) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2768 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4412)) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2768 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145))))) (-817 |Kernels| R |var|) ((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable."))) (((-4416 "*") |has| |#2| (-365)) (-4407 |has| |#2| (-365)) (-4412 |has| |#2| (-365)) (-4406 |has| |#2| (-365)) (-4411 . T) (-4409 . T) (-4408 . T)) @@ -3205,7 +3205,7 @@ NIL NIL NIL (-819 S) -((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the \\spad{n-th} monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the \\spad{n-th} monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m} and \\spad{y = m * r} hold and such that \\spad{l} and \\spad{r} have no overlap,{} that is \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l,{} r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x,{} s)} returns the exact right quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} that is \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x,{} s)} returns the exact left quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} \\indented{1}{by \\spad{y} that is \\spad{q} such that \\spad{x = y * q},{}} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,{}y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) +((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the \\spad{n-th} monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the \\spad{n-th} monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x, y)} returns \\spad{[l, m, r]} such that \\spad{x = l * m} and \\spad{y = m * r} hold and such that \\spad{l} and \\spad{r} have no overlap,{} that is \\spad{overlap(l, r) = [l, 1, r]}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l, r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x, s)} returns the exact right quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{rquo(x, y)} returns the exact right quotient of \\spad{x} by \\spad{y} that is \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x, s)} returns the exact left quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{lquo(x, y)} returns the exact left quotient of \\spad{x} \\indented{1}{by \\spad{y} that is \\spad{q} such that \\spad{x = y * q},{}} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x, y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x, y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) NIL NIL (-820) @@ -3217,7 +3217,7 @@ NIL NIL NIL (-822) -((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,{}cd,{}s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,{}i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,{}i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,{}i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,{}i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,{}enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,{}mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,{}mode,{}enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}."))) +((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,cd,s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,mode,enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}."))) NIL NIL (-823) @@ -3229,7 +3229,7 @@ NIL NIL NIL (-825) -((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,{}l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents."))) +((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents."))) NIL NIL (-826 R) @@ -3241,11 +3241,11 @@ NIL ((-4408 . T) (-4409 . T) (-4411 . T)) ((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-233)))) (-828) -((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev,{} u,{} true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev,{} u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u,{} true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object."))) +((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev, u, true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev, u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u, true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object."))) NIL NIL (-829) -((|constructor| (NIL "\\spadtype{OpenMathPackage} provides some simple utilities to make reading OpenMath objects easier.")) (|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) "\\spad{OMunhandledSymbol(s,{}cd)} raises an error if AXIOM reads a symbol which it is unable to handle. Note that this is different from an unexpected symbol.")) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) "\\spad{OMsupportsSymbol?(s,{}cd)} returns \\spad{true} if AXIOM supports symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMsupportsCD?| (((|Boolean|) (|String|)) "\\spad{OMsupportsCD?(cd)} returns \\spad{true} if AXIOM supports \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMlistSymbols| (((|List| (|String|)) (|String|)) "\\spad{OMlistSymbols(cd)} lists all the symbols in \\axiom{\\spad{cd}}.")) (|OMlistCDs| (((|List| (|String|))) "\\spad{OMlistCDs()} lists all the \\spad{CDs} supported by AXIOM.")) (|OMreadStr| (((|Any|) (|String|)) "\\spad{OMreadStr(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMreadFile| (((|Any|) (|String|)) "\\spad{OMreadFile(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMread| (((|Any|) (|OpenMathDevice|)) "\\spad{OMread(dev)} reads an OpenMath object from \\axiom{\\spad{dev}} and passes it to AXIOM."))) +((|constructor| (NIL "\\spadtype{OpenMathPackage} provides some simple utilities to make reading OpenMath objects easier.")) (|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) "\\spad{OMunhandledSymbol(s,cd)} raises an error if AXIOM reads a symbol which it is unable to handle. Note that this is different from an unexpected symbol.")) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) "\\spad{OMsupportsSymbol?(s,cd)} returns \\spad{true} if AXIOM supports symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMsupportsCD?| (((|Boolean|) (|String|)) "\\spad{OMsupportsCD?(cd)} returns \\spad{true} if AXIOM supports \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMlistSymbols| (((|List| (|String|)) (|String|)) "\\spad{OMlistSymbols(cd)} lists all the symbols in \\axiom{\\spad{cd}}.")) (|OMlistCDs| (((|List| (|String|))) "\\spad{OMlistCDs()} lists all the \\spad{CDs} supported by AXIOM.")) (|OMreadStr| (((|Any|) (|String|)) "\\spad{OMreadStr(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMreadFile| (((|Any|) (|String|)) "\\spad{OMreadFile(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMread| (((|Any|) (|OpenMathDevice|)) "\\spad{OMread(dev)} reads an OpenMath object from \\axiom{\\spad{dev}} and passes it to AXIOM."))) NIL NIL (-830 S) @@ -3253,23 +3253,23 @@ NIL ((-4414 . T) (-4404 . T) (-4415 . T)) NIL (-831) -((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,{}timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,{}u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object."))) +((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object."))) NIL NIL (-832 R S) -((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f,{} r,{} i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity."))) +((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f, r, i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity."))) NIL NIL (-833 R) ((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) ((-4411 |has| |#1| (-848))) -((|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-21))) (-2809 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (-2809 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-547)))) +((|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-21))) (-2768 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (-2768 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-547)))) (-834 A S) -((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#2|) "\\spad{is?(op,{}n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of \\spad{op}."))) +((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#2|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of \\spad{op}."))) NIL NIL (-835 S) -((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#1|) "\\spad{is?(op,{}n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#1| $) "\\spad{name(op)} returns the externam name of \\spad{op}."))) +((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#1|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#1| $) "\\spad{name(op)} returns the externam name of \\spad{op}."))) NIL NIL (-836 R) @@ -3281,15 +3281,15 @@ NIL NIL NIL (-838) -((|constructor| (NIL "This the datatype for an operator-signature pair.")) (|construct| (($ (|Identifier|) (|Signature|)) "\\spad{construct(op,{}sig)} construct a signature-operator with operator name `op',{} and signature `sig'.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of \\spad{`x'}."))) +((|constructor| (NIL "This the datatype for an operator-signature pair.")) (|construct| (($ (|Identifier|) (|Signature|)) "\\spad{construct(op,sig)} construct a signature-operator with operator name `op',{} and signature `sig'.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of \\spad{`x'}."))) NIL NIL (-839) -((|numericalOptimization| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) +((|numericalOptimization| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL (-840) -((|goodnessOfFit| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{goodnessOfFit(lf,{}start)} is a top level ANNA function to check to goodness of fit of a least squares model \\spadignore{i.e.} the minimization of a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation. goodnessOfFit(\\spad{lf},{}\\spad{start}) is a top level function to iterate over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then checks the goodness of fit of the least squares model.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{goodnessOfFit(prob)} is a top level ANNA function to check to goodness of fit of a least squares model as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation.")) (|optimize| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{optimize(lf,{}start)} is a top level ANNA function to minimize a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints \\spadignore{i.e.} a least-squares problem. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|))) "\\spad{optimize(f,{}start)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,{}start,{}lower,{}upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with simple constraints. The bounds on the variables are defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|Expression| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,{}start,{}lower,{}cons,{}upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with the given constraints. \\blankline These constraints may be simple constraints on the variables in which case \\axiom{\\spad{cons}} would be an empty list and the bounds on those variables defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}},{} or a mixture of simple,{} linear and non-linear constraints,{} where \\axiom{\\spad{cons}} contains the linear and non-linear constraints and the bounds on these are added to \\axiom{\\spad{upper}} and \\axiom{\\spad{lower}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{optimize(prob)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{optimize(prob,{}routines)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} listed in \\axiom{\\spad{routines}} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information."))) +((|goodnessOfFit| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{goodnessOfFit(lf,start)} is a top level ANNA function to check to goodness of fit of a least squares model \\spadignore{i.e.} the minimization of a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation. goodnessOfFit(\\spad{lf},{}\\spad{start}) is a top level function to iterate over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then checks the goodness of fit of the least squares model.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{goodnessOfFit(prob)} is a top level ANNA function to check to goodness of fit of a least squares model as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation.")) (|optimize| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{optimize(lf,start)} is a top level ANNA function to minimize a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints \\spadignore{i.e.} a least-squares problem. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|))) "\\spad{optimize(f,start)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,start,lower,upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with simple constraints. The bounds on the variables are defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|Expression| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,start,lower,cons,upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with the given constraints. \\blankline These constraints may be simple constraints on the variables in which case \\axiom{\\spad{cons}} would be an empty list and the bounds on those variables defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}},{} or a mixture of simple,{} linear and non-linear constraints,{} where \\axiom{\\spad{cons}} contains the linear and non-linear constraints and the bounds on these are added to \\axiom{\\spad{upper}} and \\axiom{\\spad{lower}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{optimize(prob)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{optimize(prob,routines)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} listed in \\axiom{\\spad{routines}} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information."))) NIL NIL (-841) @@ -3297,19 +3297,19 @@ NIL NIL NIL (-842 R S) -((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f,{} r,{} p,{} m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity."))) +((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f, r, p, m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity."))) NIL NIL (-843 R) ((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) ((-4411 |has| |#1| (-848))) -((|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-21))) (-2809 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (-2809 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-547)))) +((|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-21))) (-2768 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (-2768 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-547)))) (-844) ((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%."))) NIL NIL -(-845 -2420 S) -((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) +(-845 -3382 S) +((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL (-846) @@ -3325,35 +3325,35 @@ NIL ((-4411 . T)) NIL (-849 S) -((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) +((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) NIL NIL (-850) -((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) +((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) NIL NIL (-851 S R) -((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) +((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) NIL ((|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-172)))) (-852 R) -((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) +((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) ((-4408 . T) (-4409 . T) (-4411 . T)) NIL (-853 R C) -((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p,{} c,{} m,{} sigma,{} delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p,{} q,{} sigma,{} delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) +((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p, c, m, sigma, delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p, q, sigma, delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL ((|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) -(-854 R |sigma| -1695) -((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{} x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) +(-854 R |sigma| -3832) +((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p, x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) ((-4408 . T) (-4409 . T) (-4411 . T)) ((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-365)))) -(-855 |x| R |sigma| -1695) +(-855 |x| R |sigma| -3832) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}."))) ((-4408 . T) (-4409 . T) (-4411 . T)) ((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-365)))) (-856 R) -((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,{}x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n,{} n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,{}n,{}x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,{}x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!,{} n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,{}x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}."))) +((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n, n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,n,x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!, n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}."))) NIL ((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-857) @@ -3365,11 +3365,11 @@ NIL NIL NIL (-859 S) -((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,{}b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,{}b)} attempts to write the unsigned 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,{}b)} attempts to write the 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,{}b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}."))) +((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}."))) NIL NIL (-860) -((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,{}b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,{}b)} attempts to write the unsigned 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,{}b)} attempts to write the 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,{}b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}."))) +((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}."))) NIL NIL (-861) @@ -3377,11 +3377,11 @@ NIL NIL NIL (-862) -((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,{}y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,{}g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,{}f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,{}n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,{}n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,{}[sub1,{}super1,{}sub2,{}super2,{}...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f,{} [sub,{} super,{} presuper,{} presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,{}n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,{}n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,{}n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,{}n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,{}m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{}n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,{}g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,{}g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,{}g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,{}g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,{}n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,{}g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,{}f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,{}l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op,{} a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op,{} a,{} b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,{}l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,{}l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,{}g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,{}g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,{}n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,{}n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,{}n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,{}m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}."))) +((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,[sub1,super1,sub2,super2,...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f, [sub, super, presuper, presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op, a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op, a, b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}."))) NIL NIL (-863) -((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,{}x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}."))) +((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}."))) NIL NIL (-864 |VariableList|) @@ -3397,15 +3397,15 @@ NIL ((-4409 |has| |#1| (-172)) (-4408 |has| |#1| (-172)) (-4411 . T)) ((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365)))) (-867 R PS UP) -((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,{}dd,{}ns,{}ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) +((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,dd,ns,ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL (-868 R |x| |pt|) -((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) +((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL (-869 |p|) -((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,{}a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,{}a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}."))) +((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}."))) ((-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) NIL (-870 |p|) @@ -3415,15 +3415,15 @@ NIL (-871 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) ((-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) -((|HasCategory| (-870 |#1|) (QUOTE (-909))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| (-870 |#1|) (QUOTE (-145))) (|HasCategory| (-870 |#1|) (QUOTE (-147))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-870 |#1|) (QUOTE (-1022))) (|HasCategory| (-870 |#1|) (QUOTE (-820))) (-2809 (|HasCategory| (-870 |#1|) (QUOTE (-820))) (|HasCategory| (-870 |#1|) (QUOTE (-850)))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-870 |#1|) (QUOTE (-1150))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| (-870 |#1|) (QUOTE (-233))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -870) (|devaluate| |#1|)))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -310) (LIST (QUOTE -870) (|devaluate| |#1|)))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -287) (LIST (QUOTE -870) (|devaluate| |#1|)) (LIST (QUOTE -870) (|devaluate| |#1|)))) (|HasCategory| (-870 |#1|) (QUOTE (-308))) (|HasCategory| (-870 |#1|) (QUOTE (-547))) (|HasCategory| (-870 |#1|) (QUOTE (-850))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-870 |#1|) (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-870 |#1|) (QUOTE (-909)))) (|HasCategory| (-870 |#1|) (QUOTE (-145))))) +((|HasCategory| (-870 |#1|) (QUOTE (-909))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| (-870 |#1|) (QUOTE (-145))) (|HasCategory| (-870 |#1|) (QUOTE (-147))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-870 |#1|) (QUOTE (-1022))) (|HasCategory| (-870 |#1|) (QUOTE (-820))) (-2768 (|HasCategory| (-870 |#1|) (QUOTE (-820))) (|HasCategory| (-870 |#1|) (QUOTE (-850)))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-870 |#1|) (QUOTE (-1150))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| (-870 |#1|) (QUOTE (-233))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -870) (|devaluate| |#1|)))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -310) (LIST (QUOTE -870) (|devaluate| |#1|)))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -287) (LIST (QUOTE -870) (|devaluate| |#1|)) (LIST (QUOTE -870) (|devaluate| |#1|)))) (|HasCategory| (-870 |#1|) (QUOTE (-308))) (|HasCategory| (-870 |#1|) (QUOTE (-547))) (|HasCategory| (-870 |#1|) (QUOTE (-850))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-870 |#1|) (QUOTE (-909)))) (-2768 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-870 |#1|) (QUOTE (-909)))) (|HasCategory| (-870 |#1|) (QUOTE (-145))))) (-872 |p| PADIC) -((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}."))) +((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}."))) ((-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) -((|HasCategory| |#2| (QUOTE (-909))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-1022))) (|HasCategory| |#2| (QUOTE (-820))) (-2809 (|HasCategory| |#2| (QUOTE (-820))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-1150))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-547))) (|HasCategory| |#2| (QUOTE (-850))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-145))))) +((|HasCategory| |#2| (QUOTE (-909))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-1022))) (|HasCategory| |#2| (QUOTE (-820))) (-2768 (|HasCategory| |#2| (QUOTE (-820))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-1150))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-547))) (|HasCategory| |#2| (QUOTE (-850))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (-2768 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-145))))) (-873 S T$) -((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,{}t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}."))) +((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))))) +((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (-2768 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))))) (-874) ((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value."))) NIL @@ -3433,19 +3433,19 @@ NIL NIL NIL (-876 CF1 CF2) -((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented"))) +((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL (-877 |ComponentFunction|) -((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,{}c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}."))) +((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}."))) NIL NIL (-878 CF1 CF2) -((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented"))) +((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL (-879 |ComponentFunction|) -((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,{}c2,{}c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) +((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,c2,c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL (-880) @@ -3453,15 +3453,15 @@ NIL NIL NIL (-881 CF1 CF2) -((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,{}x)} \\undocumented"))) +((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL (-882 |ComponentFunction|) -((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,{}i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,{}c2,{}c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) +((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,c2,c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL (-883) -((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,{}2,{}3,{}...,{}n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,{}l1,{}l2,{}..,{}ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0\\spad{'s},{}\\spad{l1} 1\\spad{'s},{}\\spad{l2} 2\\spad{'s},{}...,{}\\spad{ln} \\spad{n}\\spad{'s}.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,{}l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,{}2,{}4],{}[2,{}3,{}5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}\\spad{'s},{} and 4 \\spad{5}\\spad{'s}.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,{}st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,{}l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|Integer|))) (|Stream| (|List| (|Integer|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|Integer|)) (|List| (|Integer|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}.")) (|partitions| (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l)} is the stream of all \\indented{1}{partitions whose number of} \\indented{1}{parts and largest part are no greater than \\spad{p} and \\spad{l}.}") (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{partitions(n)} is the stream of all partitions of \\spad{n}.") (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l,{}n)} is the stream of partitions \\indented{1}{of \\spad{n} whose number of parts is no greater than \\spad{p}} \\indented{1}{and whose largest part is no greater than \\spad{l}.}"))) +((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,2,3,...,n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,l1,l2,..,ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0\\spad{'s},{}\\spad{l1} 1\\spad{'s},{}\\spad{l2} 2\\spad{'s},{}...,{}\\spad{ln} \\spad{n}\\spad{'s}.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,2,4],[2,3,5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}\\spad{'s},{} and 4 \\spad{5}\\spad{'s}.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|Integer|))) (|Stream| (|List| (|Integer|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|Integer|)) (|List| (|Integer|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}.")) (|partitions| (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{partitions(p,l)} is the stream of all \\indented{1}{partitions whose number of} \\indented{1}{parts and largest part are no greater than \\spad{p} and \\spad{l}.}") (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{partitions(n)} is the stream of all partitions of \\spad{n}.") (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|) (|Integer|)) "\\spad{partitions(p,l,n)} is the stream of partitions \\indented{1}{of \\spad{n} whose number of parts is no greater than \\spad{p}} \\indented{1}{and whose largest part is no greater than \\spad{l}.}"))) NIL NIL (-884 R) @@ -3469,55 +3469,55 @@ NIL NIL NIL (-885 R S L) -((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,{}r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) +((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL (-886 S) -((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches."))) +((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches."))) NIL NIL (-887 |Base| |Subject| |Pat|) -((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,{}...,{}en],{} pat)} matches the pattern pat on the list of expressions \\spad{[e1,{}...,{}en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,{}...,{}en],{} pat)} tests if the list of expressions \\spad{[e1,{}...,{}en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr,{} pat)} tests if the expression \\spad{expr} matches the pattern pat."))) +((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,...,vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,...,en], pat)} matches the pattern pat on the list of expressions \\spad{[e1,...,en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,...,en], pat)} tests if the list of expressions \\spad{[e1,...,en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr, pat)} tests if the expression \\spad{expr} matches the pattern pat."))) NIL -((-12 (-2418 (|HasCategory| |#2| (QUOTE (-1049)))) (-2418 (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175)))))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (-2418 (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175)))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175))))) +((-12 (-2404 (|HasCategory| |#2| (QUOTE (-1049)))) (-2404 (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175)))))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (-2404 (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175)))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175))))) (-888 R A B) -((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f,{} [(v1,{}a1),{}...,{}(vn,{}an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))]."))) +((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f, [(v1,a1),...,(vn,an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))]."))) NIL NIL (-889 R S) -((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) +((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, r, val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a, b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-890 R -2875) -((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,{}...,{}vn],{} p)} returns \\spad{f(v1,{}...,{}vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v,{} p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p,{} [a1,{}...,{}an],{} f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p,{} [f1,{}...,{}fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p,{} f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned."))) +(-890 R -3497) +((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,...,vn], p)} returns \\spad{f(v1,...,vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v, p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p, [a1,...,an], f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,...,an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p, [f1,...,fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p, f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned."))) NIL NIL (-891 R S) -((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f,{} p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}."))) +((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f, p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}."))) NIL NIL (-892 R) -((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a,{} b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,{}...,{}an],{} f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,{}...,{}an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x,{} [a1,{}...,{}an],{} f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x,{} c?,{} o?,{} m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p,{} [p1,{}...,{}pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p,{} [p1,{}...,{}pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,{}...,{}pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the pattern \\spad{[a1,{}...,{}an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{} [a1,{}...,{}an])} returns \\spad{op(a1,{}...,{}an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a,{} b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = [a1,{}...,{}an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a,{} b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q,{} n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op,{} [a1,{}...,{}an]]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p,{} op)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0"))) +((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a, b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,...,an], f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,...,an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x, [a1,...,an], f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,...,an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x, c?, o?, m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p, [p1,...,pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p, [p1,...,pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,...,pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,...,an])} returns the pattern \\spad{[a1,...,an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op, [a1,...,an])} returns \\spad{op(a1,...,an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a, b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,...,an]} if \\spad{p = [a1,...,an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a, b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q, n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op, [a1,...,an]]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p, op)} returns \\spad{[a1,...,an]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0"))) NIL NIL (-893 |VarSet|) -((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2,{} .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1,{} l2,{} .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list."))) +((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2, .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1, l2, .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list."))) NIL NIL (-894 UP R) -((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,{}q)} \\undocumented"))) +((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,q)} \\undocumented"))) NIL NIL (-895) -((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) +((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-896 UP -2371) -((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,{}n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,{}q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,{}m,{}n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented"))) +(-896 UP -2352) +((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,m,n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented"))) NIL NIL (-897) -((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}) and the boundary values (\\axiom{\\spad{bounds}}). A default value for tolerance is used. There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st,{}tol)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}),{} the boundary values (\\axiom{\\spad{bounds}}) and a tolerance requirement (\\axiom{\\spad{tol}}). There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{solve(PDEProblem,{}routines)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the \\spad{routines} contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|)) "\\spad{solve(PDEProblem)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}"))) +((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) "\\spad{solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}) and the boundary values (\\axiom{\\spad{bounds}}). A default value for tolerance is used. There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) "\\spad{solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st,tol)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}),{} the boundary values (\\axiom{\\spad{bounds}}) and a tolerance requirement (\\axiom{\\spad{tol}}). There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{solve(PDEProblem,routines)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the \\spad{routines} contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|)) "\\spad{solve(PDEProblem)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}"))) NIL NIL (-898) @@ -3525,54 +3525,54 @@ NIL NIL NIL (-899 A S) -((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) +((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x, s1, n1)..., sn, nn)}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x, s, n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{D(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x, s1)..., sn)}.") (($ $ |#2|) "\\spad{D(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x, s, n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}.") (($ $ |#2|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL (-900 S) -((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) +((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x, s1, n1)..., sn, nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x, s, n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{D(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x, s1)..., sn)}.") (($ $ |#1|) "\\spad{D(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x, s, n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}.") (($ $ |#1|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) ((-4411 . T)) NIL (-901 S) -((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|ptree| (($ $ $) "\\spad{ptree(x,{}y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree"))) +((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|ptree| (($ $ $) "\\spad{ptree(x,y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) +((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2768 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (-902 |n| R) ((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}"))) NIL NIL (-903 S) -((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p,{} el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur."))) +((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p, el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p, el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p, el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur."))) ((-4411 . T)) NIL (-904 S) -((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,{}m,{}n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,{}0,{}1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,{}gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,{}ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,{}els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,{}el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,{}20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,{}i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,{}i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}."))) +((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,m,n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,0,1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}."))) NIL NIL (-905 S) -((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) +((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,...,n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) ((-4411 . T)) -((-2809 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-850)))) +((-2768 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-850)))) (-906 R E |VarSet| S) -((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,{}p,{}v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) +((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,p,v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL (-907 R S) -((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) +((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL (-908 S) -((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) +((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) NIL ((|HasCategory| |#1| (QUOTE (-145)))) (-909) -((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) +((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) ((-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) NIL (-910 |p|) ((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) ((-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) ((|HasCategory| $ (QUOTE (-147))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-370)))) -(-911 R0 -2371 UP UPUP R) +(-911 R0 -2352 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented"))) NIL NIL @@ -3585,23 +3585,23 @@ NIL NIL NIL (-914 R) -((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,{}denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,{}x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,{}n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction."))) +((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction."))) ((-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) NIL (-915 R) -((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num,{} facdenom,{} var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf,{} var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var."))) +((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num, facdenom, var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf, var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var."))) NIL NIL (-916 E OV R P) -((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the \\spad{gcd} of the list of primitive polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}."))) +((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the \\spad{gcd} of the list of primitive polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}."))) NIL NIL (-917) -((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,{}...,{}nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(\\spad{li})} constructs the janko group acting on the 100 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(\\spad{li})} constructs the mathieu group acting on the 24 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(\\spad{li})} constructs the mathieu group acting on the 23 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(\\spad{li})} constructs the mathieu group acting on the 22 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(\\spad{li})} constructs the mathieu group acting on the 12 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed Error: if {\\em \\spad{li}} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(\\spad{li})} constructs the mathieu group acting on the 11 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. error,{} if {\\em \\spad{li}} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,{}...,{}ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,{}...,{}ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,{}...,{}nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em \\spad{ni}}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(\\spad{li})} constructs the alternating group acting on the integers in the list {\\em \\spad{li}},{} generators are in general the {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)} with {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,{}2)} with {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(\\spad{li})} constructs the symmetric group acting on the integers in the list {\\em \\spad{li}},{} generators are the cycle given by {\\em \\spad{li}} and the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,{}...,{}n)} and the 2-cycle {\\em (1,{}2)}."))) +((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,...,nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(li)} constructs the janko group acting on the 100 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(li)} constructs the mathieu group acting on the 24 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(li)} constructs the mathieu group acting on the 23 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(li)} constructs the mathieu group acting on the 22 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(li)} constructs the mathieu group acting on the 12 integers given in the list {\\em li}. Note: duplicates in the list will be removed Error: if {\\em li} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(li)} constructs the mathieu group acting on the 11 integers given in the list {\\em li}. Note: duplicates in the list will be removed. error,{} if {\\em li} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,...,ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,...,ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,...,nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em ni}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(li)} constructs the alternating group acting on the integers in the list {\\em li},{} generators are in general the {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (li.1,li.2)} with {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,2)} with {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(li)} constructs the symmetric group acting on the integers in the list {\\em li},{} generators are the cycle given by {\\em li} and the 2-cycle {\\em (li.1,li.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,...,n)} and the 2-cycle {\\em (1,2)}."))) NIL NIL -(-918 -2371) -((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}."))) +(-918 -2352) +((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}."))) NIL NIL (-919 R) @@ -3609,101 +3609,101 @@ NIL NIL NIL (-920) -((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,{}...,{}fn],{}h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,{}...,{}fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,{}...,{}fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}"))) +((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,...,fn],h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,...,fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,...,fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}"))) ((-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) NIL (-921) -((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) +((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) (((-4416 "*") . T)) NIL -(-922 -2371 P) -((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,{}l2)} \\undocumented"))) +(-922 -2352 P) +((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,l2)} \\undocumented"))) NIL NIL -(-923 |xx| -2371) -((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented"))) +(-923 |xx| -2352) +((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,lf,lg)} \\undocumented"))) NIL NIL (-924 R |Var| |Expon| GR) -((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,{}c,{} w,{} p,{} r,{} rm,{} m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,{}g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,{}k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,{}sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,{}k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,{}g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,{}r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g,{} l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{~=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c,{} w,{} r,{} s,{} m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,{}s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}k,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}"))) +((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,c, w, p, r, rm, m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g, l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{~=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c, w, r, s, m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,k,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}"))) NIL NIL (-925 S) -((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,{}theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}theta,{}seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}t,{}seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,{}x,{}seg)} plots the graph of \\spad{y = f(x)} on a interval"))) +((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,theta,seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,t,seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,x,seg)} plots the graph of \\spad{y = f(x)} on a interval"))) NIL NIL (-926) -((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s,{}t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,{}f2,{}f3,{}f4,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}."))) +((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s,t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,f2,f3,f4,x,y,z,w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,x,y,z,w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}."))) NIL NIL (-927) -((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,{}2*\\%\\spad{pi}]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,{}b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b,{}c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b,{}c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}."))) +((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,2*\\%pi]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b,c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b,c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}."))) NIL NIL (-928) ((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) NIL NIL -(-929 R -2371) -((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|Identifier|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) +(-929 R -2352) +((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) NIL NIL (-930) -((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|Identifier|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}."))) +((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}."))) NIL NIL (-931 S A B) -((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B)."))) +((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B)."))) NIL NIL -(-932 S R -2371) -((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches."))) +(-932 S R -2352) +((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL (-933 I) -((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n,{} pat,{} res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches."))) +((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n, pat, res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL (-934 S E) -((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,{}...,{}en),{} pat,{} res)} matches the pattern \\spad{pat} to \\spad{f(e1,{}...,{}en)}; res contains the variables of \\spad{pat} which are already matched and their matches."))) +((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,...,en), pat, res)} matches the pattern \\spad{pat} to \\spad{f(e1,...,en)}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL (-935 S R L) -((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l,{} pat,{} res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches."))) +((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l, pat, res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL (-936 S E V R P) -((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p,{} pat,{} res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p,{} pat,{} res,{} vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) +((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p, pat, res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p, pat, res, vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) NIL ((|HasCategory| |#3| (LIST (QUOTE -886) (|devaluate| |#1|)))) -(-937 R -2371 -2875) -((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) +(-937 R -2352 -3497) +((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) NIL NIL -(-938 -2875) -((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}."))) +(-938 -3497) +((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}."))) NIL NIL (-939 S R Q) -((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b,{} pat,{} res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches."))) +((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b, pat, res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL (-940 S) -((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion)."))) +((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion)."))) NIL NIL (-941 S R P) -((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj,{} lpat,{} res,{} match)} matches the product of patterns \\spad{reduce(*,{}lpat)} to the product of subjects \\spad{reduce(*,{}lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj,{} lpat,{} op,{} res,{} match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}."))) +((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj, lpat, res, match)} matches the product of patterns \\spad{reduce(*,lpat)} to the product of subjects \\spad{reduce(*,lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj, lpat, op, res, match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}."))) NIL NIL (-942) -((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n,{} n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!,{} n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,{}[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,{}x)} computed by solving the differential equation \\spad{differentiate(E(n,{}x),{}x) = n E(n-1,{}x)} where \\spad{E(0,{}x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,{}1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,{}x)} computed by solving the differential equation \\spad{differentiate(B(n,{}x),{}x) = n B(n-1,{}x)} where \\spad{B(0,{}x) = 1} and initial condition comes from \\spad{B(n) = B(n,{}0)}."))) +((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n, n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!, n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,x)} computed by solving the differential equation \\spad{differentiate(E(n,x),x) = n E(n-1,x)} where \\spad{E(0,x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,x)} computed by solving the differential equation \\spad{differentiate(B(n,x),x) = n B(n-1,x)} where \\spad{B(0,x) = 1} and initial condition comes from \\spad{B(n) = B(n,0)}."))) NIL NIL (-943 R) ((|constructor| (NIL "This domain implements points in coordinate space"))) ((-4415 . T) (-4414 . T)) -((-2809 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2809 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-726))) (|HasCategory| |#1| (QUOTE (-1049))) (-12 (|HasCategory| |#1| (QUOTE (-1002))) (|HasCategory| |#1| (QUOTE (-1049)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) +((-2768 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2768 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2768 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-726))) (|HasCategory| |#1| (QUOTE (-1049))) (-12 (|HasCategory| |#1| (QUOTE (-1002))) (|HasCategory| |#1| (QUOTE (-1049)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-944 |lv| R) ((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) NIL @@ -3713,35 +3713,35 @@ NIL NIL ((|HasCategory| |#1| (QUOTE (-848)))) (-946 R S) -((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f,{} p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}."))) +((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f, p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}."))) NIL NIL (-947 |x| R) -((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p,{} x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,{}Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}."))) +((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p, x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}."))) NIL NIL (-948 S R E |VarSet|) -((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) +((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) NIL ((|HasCategory| |#2| (QUOTE (-909))) (|HasAttribute| |#2| (QUOTE -4412)) (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#4| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#4| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#4| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#4| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (-949 R E |VarSet|) -((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) +((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) (((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4412 |has| |#1| (-6 -4412)) (-4409 . T) (-4408 . T) (-4411 . T)) NIL -(-950 E V R P -2371) -((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f,{} x,{} p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) +(-950 E V R P -2352) +((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f, x, p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL (-951 E |Vars| R P S) -((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap,{} coefmap,{} p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}"))) +((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap, coefmap, p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}"))) NIL NIL (-952 R) -((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) +((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) (((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4412 |has| |#1| (-6 -4412)) (-4409 . T) (-4408 . T) (-4411 . T)) -((|HasCategory| |#1| (QUOTE (-909))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1175) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-1175) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-1175) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-1175) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-1175) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4412)) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-953 E V R P -2371) -((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,{}n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented"))) +((|HasCategory| |#1| (QUOTE (-909))) (-2768 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2768 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2768 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2768 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1175) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-1175) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-1175) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-1175) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-1175) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2768 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4412)) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2768 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-953 E V R P -2352) +((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented"))) NIL ((|HasCategory| |#3| (QUOTE (-454)))) (-954) @@ -3753,27 +3753,27 @@ NIL NIL NIL (-956 R L) -((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op,{} m)} returns the matrix A such that \\spad{A w = (W',{}W'',{}...,{}W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L),{} m}."))) +((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op, m)} returns the matrix A such that \\spad{A w = (W',W'',...,W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L), m}."))) NIL NIL (-957 A B) -((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}."))) +((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) NIL NIL (-958 S) ((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed"))) ((-4415 . T) (-4414 . T)) -((-2809 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2809 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) +((-2768 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2768 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2768 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-959) -((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f,{} x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f,{} x)} returns the formal integral of \\spad{f} \\spad{dx}."))) +((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f, x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f, x)} returns the formal integral of \\spad{f} \\spad{dx}."))) NIL NIL -(-960 -2371) -((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an],{} a)} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an])} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1,{} a1,{} p2,{} a2)} returns \\spad{[c1,{} c2,{} q]} such that \\spad{k(a1,{} a2) = k(a)} where \\spad{a = c1 a1 + c2 a2,{} and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}."))) +(-960 -2352) +((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,...,pn], [a1,...,an], a)} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,...,pn], [a1,...,an])} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1, a1, p2, a2)} returns \\spad{[c1, c2, q]} such that \\spad{k(a1, a2) = k(a)} where \\spad{a = c1 a1 + c2 a2, and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}."))) NIL NIL (-961 I) -((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,{}b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for n<10**20. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime"))) +((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for n<10**20. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime"))) NIL NIL (-962) @@ -3781,27 +3781,27 @@ NIL NIL NIL (-963 R E) -((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) +((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) (((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4412 |has| |#1| (-6 -4412)) (-4408 . T) (-4409 . T) (-4411 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-131)))) (|HasAttribute| |#1| (QUOTE -4412))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (-2768 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2768 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-131)))) (|HasAttribute| |#1| (QUOTE -4412))) (-964 A B) -((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,{}b)} \\undocumented"))) +((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,b)} \\undocumented"))) ((-4411 -12 (|has| |#2| (-475)) (|has| |#1| (-475)))) -((-2809 (-12 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-793)))) (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-850))))) (-12 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-793)))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-793))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-793))))) (-12 (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#2| (QUOTE (-475)))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#2| (QUOTE (-475)))) (-12 (|HasCategory| |#1| (QUOTE (-726))) (|HasCategory| |#2| (QUOTE (-726))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-370)))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#2| (QUOTE (-475)))) (-12 (|HasCategory| |#1| (QUOTE (-726))) (|HasCategory| |#2| (QUOTE (-726)))) (-12 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-793))))) (-12 (|HasCategory| |#1| (QUOTE (-726))) (|HasCategory| |#2| (QUOTE (-726)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-850))))) +((-2768 (-12 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-793)))) (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-850))))) (-12 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-793)))) (-2768 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-793))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2768 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-793))))) (-12 (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#2| (QUOTE (-475)))) (-2768 (-12 (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#2| (QUOTE (-475)))) (-12 (|HasCategory| |#1| (QUOTE (-726))) (|HasCategory| |#2| (QUOTE (-726))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-370)))) (-2768 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#2| (QUOTE (-475)))) (-12 (|HasCategory| |#1| (QUOTE (-726))) (|HasCategory| |#2| (QUOTE (-726)))) (-12 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-793))))) (-12 (|HasCategory| |#1| (QUOTE (-726))) (|HasCategory| |#2| (QUOTE (-726)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-850))))) (-965) -((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Identifier|) (|SExpression|)) "\\spad{property(n,{}val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Identifier|) $) "\\spad{name(p)} returns the name of property \\spad{p}"))) +((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Identifier|) (|SExpression|)) "\\spad{property(n,val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Identifier|) $) "\\spad{name(p)} returns the name of property \\spad{p}"))) NIL NIL (-966 T$) -((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|isEquiv| (((|Maybe| (|Pair| $ $)) $) "\\spad{isEquiv f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,{}\\%)} holds if the formula \\spad{f} is an equivalence formula.")) (|isImplies| (((|Maybe| (|Pair| $ $)) $) "\\spad{isImplies f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,{}\\%)} holds if the formula \\spad{f} is an implication formula.")) (|isOr| (((|Maybe| (|Pair| $ $)) $) "\\spad{isOr f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,{}\\%)} holds if the formula \\spad{f} is a disjunction formula.")) (|isAnd| (((|Maybe| (|Pair| $ $)) $) "\\spad{isAnd f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,{}\\%)} holds if the formula \\spad{f} is a conjunction formula.")) (|isNot| (((|Maybe| $) $) "\\spad{isNot f} returns a value \\spad{v} such that \\spad{v case \\%} holds if the formula \\spad{f} is a negation.")) (|isTerm| (((|Maybe| |#1|) $) "\\spad{isTerm f} returns a value \\spad{v} such that \\spad{v case T} holds if the formula \\spad{f} is a term."))) +((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|isEquiv| (((|Maybe| (|Pair| $ $)) $) "\\spad{isEquiv f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an equivalence formula.")) (|isImplies| (((|Maybe| (|Pair| $ $)) $) "\\spad{isImplies f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an implication formula.")) (|isOr| (((|Maybe| (|Pair| $ $)) $) "\\spad{isOr f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a disjunction formula.")) (|isAnd| (((|Maybe| (|Pair| $ $)) $) "\\spad{isAnd f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a conjunction formula.")) (|isNot| (((|Maybe| $) $) "\\spad{isNot f} returns a value \\spad{v} such that \\spad{v case \\%} holds if the formula \\spad{f} is a negation.")) (|isTerm| (((|Maybe| |#1|) $) "\\spad{isTerm f} returns a value \\spad{v} such that \\spad{v case T} holds if the formula \\spad{f} is a term."))) NIL NIL (-967) -((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,{}q)} returns the logical equivalence of \\spad{`p'},{} \\spad{`q'}.")) (|implies| (($ $ $) "\\spad{implies(p,{}q)} returns the logical implication of \\spad{`q'} by \\spad{`p'}.")) (|or| (($ $ $) "\\spad{p or q} returns the logical disjunction of \\spad{`p'},{} \\spad{`q'}.")) (|and| (($ $ $) "\\spad{p and q} returns the logical conjunction of \\spad{`p'},{} \\spad{`q'}.")) (|not| (($ $) "\\spad{not p} returns the logical negation of \\spad{`p'}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant."))) +((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,q)} returns the logical equivalence of \\spad{`p'},{} \\spad{`q'}.")) (|implies| (($ $ $) "\\spad{implies(p,q)} returns the logical implication of \\spad{`q'} by \\spad{`p'}.")) (|or| (($ $ $) "\\spad{p or q} returns the logical disjunction of \\spad{`p'},{} \\spad{`q'}.")) (|and| (($ $ $) "\\spad{p and q} returns the logical conjunction of \\spad{`p'},{} \\spad{`q'}.")) (|not| (($ $) "\\spad{not p} returns the logical negation of \\spad{`p'}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant."))) NIL NIL (-968 S) -((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,{}q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,{}q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}."))) +((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}."))) ((-4414 . T) (-4415 . T)) NIL (-969 R |polR|) @@ -3813,15 +3813,15 @@ NIL NIL NIL (-971) -((|constructor| (NIL "\\indented{1}{Partition is an OrderedCancellationAbelianMonoid which is used} as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|Integer|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{powers(\\spad{li})} returns a list of 2-element lists. For each 2-element list,{} the first element is an entry of \\spad{li} and the second element is the multiplicity with which the first element occurs in \\spad{li}. There is a 2-element list for each value occurring in \\spad{l}.")) (|partition| (($ (|List| (|Integer|))) "\\spad{partition(\\spad{li})} converts a list of integers \\spad{li} to a partition"))) +((|constructor| (NIL "\\indented{1}{Partition is an OrderedCancellationAbelianMonoid which is used} as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|Integer|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{powers(li)} returns a list of 2-element lists. For each 2-element list,{} the first element is an entry of \\spad{li} and the second element is the multiplicity with which the first element occurs in \\spad{li}. There is a 2-element list for each value occurring in \\spad{l}.")) (|partition| (($ (|List| (|Integer|))) "\\spad{partition(li)} converts a list of integers \\spad{li} to a partition"))) NIL NIL (-972 S |Coef| |Expon| |Var|) -((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}."))) +((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}."))) NIL NIL (-973 |Coef| |Expon| |Var|) -((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}."))) +((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}."))) (((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4408 . T) (-4409 . T) (-4411 . T)) NIL (-974) @@ -3841,7 +3841,7 @@ NIL NIL ((-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-308)))) (|HasCategory| |#1| (QUOTE (-454)))) (-978 K) -((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m,{} v)} returns \\spad{[[C_1,{} g_1],{}...,{}[C_k,{} g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,{}...,{}C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M,{} A,{} sig,{} der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M,{} sig,{} der)} returns \\spad{[R,{} A,{} A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation."))) +((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m, v)} returns \\spad{[[C_1, g_1],...,[C_k, g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,...,C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M, A, sig, der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M, sig, der)} returns \\spad{[R, A, A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation."))) NIL NIL (-979 |VarSet| E RC P) @@ -3849,11 +3849,11 @@ NIL NIL NIL (-980 R) -((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,{}l,{}r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}."))) +((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,l,r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}."))) ((-4415 . T) (-4414 . T)) NIL (-981 R1 R2) -((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,{}p)} \\undocumented"))) +((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,p)} \\undocumented"))) NIL NIL (-982 R) @@ -3861,15 +3861,15 @@ NIL NIL NIL (-983 K) -((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns \\spad{csc}(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,{}n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise."))) +((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns \\spad{csc}(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise."))) NIL NIL (-984 R E OV PPR) -((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,{}p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,{}v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,{}v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) +((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-985 K R UP -2371) -((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,{}y]/(f(x,{}y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,{}y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}."))) +(-985 K R UP -2352) +((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,y]/(f(x,y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL (-986 |vl| |nv|) @@ -3877,7 +3877,7 @@ NIL NIL NIL (-987 R |Var| |Expon| |Dpoly|) -((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,{}t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,{}q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set"))) +((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set"))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-308))))) (-988 R E V P TS) @@ -3885,11 +3885,11 @@ NIL NIL NIL (-989) -((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,{}\"a\")} creates a new equation."))) +((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,\"a\")} creates a new equation."))) NIL NIL (-990 A B R S) -((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}."))) +((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}."))) NIL NIL (-991 A S) @@ -3901,7 +3901,7 @@ NIL ((-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) NIL (-993 |n| K) -((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,{}v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v},{} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}."))) +((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v},{} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}."))) NIL NIL (-994) @@ -3909,47 +3909,47 @@ NIL NIL NIL (-995 S) -((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,{}q)} inserts \\spad{x} into the queue \\spad{q} at the back end."))) +((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,q)} inserts \\spad{x} into the queue \\spad{q} at the back end."))) ((-4414 . T) (-4415 . T)) NIL (-996 S R) -((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) +((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) NIL ((|HasCategory| |#2| (QUOTE (-547))) (|HasCategory| |#2| (QUOTE (-1059))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-291)))) (-997 R) -((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) +((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) ((-4407 |has| |#1| (-291)) (-4408 . T) (-4409 . T) (-4411 . T)) NIL (-998 QR R QS S) -((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}."))) +((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}."))) NIL NIL (-999 R) ((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) ((-4407 |has| |#1| (-291)) (-4408 . T) (-4409 . T) (-4411 . T)) -((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-365))) (-2809 (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-1059))) (|HasCategory| |#1| (QUOTE (-547)))) +((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-365))) (-2768 (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (-2768 (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-1059))) (|HasCategory| |#1| (QUOTE (-547)))) (-1000 S) -((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,{}y,{}...,{}z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) +((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) ((-4414 . T) (-4415 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) +((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2768 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (-1001 S) -((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) +((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL (-1002) -((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) +((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-1003 -2371 UP UPUP |radicnd| |n|) +(-1003 -2352 UP UPUP |radicnd| |n|) ((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x})."))) ((-4407 |has| (-409 |#2|) (-365)) (-4412 |has| (-409 |#2|) (-365)) (-4406 |has| (-409 |#2|) (-365)) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) -((|HasCategory| (-409 |#2|) (QUOTE (-145))) (|HasCategory| (-409 |#2|) (QUOTE (-147))) (|HasCategory| (-409 |#2|) (QUOTE (-351))) (-2809 (|HasCategory| (-409 |#2|) (QUOTE (-365))) (|HasCategory| (-409 |#2|) (QUOTE (-351)))) (|HasCategory| (-409 |#2|) (QUOTE (-365))) (|HasCategory| (-409 |#2|) (QUOTE (-370))) (-2809 (-12 (|HasCategory| (-409 |#2|) (QUOTE (-233))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (|HasCategory| (-409 |#2|) (QUOTE (-351)))) (-2809 (-12 (|HasCategory| (-409 |#2|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (-12 (|HasCategory| (-409 |#2|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-409 |#2|) (QUOTE (-351))))) (|HasCategory| (-409 |#2|) (LIST (QUOTE -639) (QUOTE (-566)))) (-2809 (|HasCategory| (-409 |#2|) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (|HasCategory| (-409 |#2|) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-409 |#2|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-12 (|HasCategory| (-409 |#2|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (-12 (|HasCategory| (-409 |#2|) (QUOTE (-233))) (|HasCategory| (-409 |#2|) (QUOTE (-365))))) +((|HasCategory| (-409 |#2|) (QUOTE (-145))) (|HasCategory| (-409 |#2|) (QUOTE (-147))) (|HasCategory| (-409 |#2|) (QUOTE (-351))) (-2768 (|HasCategory| (-409 |#2|) (QUOTE (-365))) (|HasCategory| (-409 |#2|) (QUOTE (-351)))) (|HasCategory| (-409 |#2|) (QUOTE (-365))) (|HasCategory| (-409 |#2|) (QUOTE (-370))) (-2768 (-12 (|HasCategory| (-409 |#2|) (QUOTE (-233))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (|HasCategory| (-409 |#2|) (QUOTE (-351)))) (-2768 (-12 (|HasCategory| (-409 |#2|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (-12 (|HasCategory| (-409 |#2|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-409 |#2|) (QUOTE (-351))))) (|HasCategory| (-409 |#2|) (LIST (QUOTE -639) (QUOTE (-566)))) (-2768 (|HasCategory| (-409 |#2|) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (|HasCategory| (-409 |#2|) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-409 |#2|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-12 (|HasCategory| (-409 |#2|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (-12 (|HasCategory| (-409 |#2|) (QUOTE (-233))) (|HasCategory| (-409 |#2|) (QUOTE (-365))))) (-1004 |bb|) -((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,{}cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],{}[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,{}3,{}4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,{}1,{}4,{}2,{}8,{}5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,{}0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion."))) +((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,3,4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,1,4,2,8,5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion."))) ((-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) -((|HasCategory| (-566) (QUOTE (-909))) (|HasCategory| (-566) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| (-566) (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-147))) (|HasCategory| (-566) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-566) (QUOTE (-1022))) (|HasCategory| (-566) (QUOTE (-820))) (-2809 (|HasCategory| (-566) (QUOTE (-820))) (|HasCategory| (-566) (QUOTE (-850)))) (|HasCategory| (-566) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-566) (QUOTE (-1150))) (|HasCategory| (-566) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| (-566) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| (-566) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| (-566) (QUOTE (-233))) (|HasCategory| (-566) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-566) (LIST (QUOTE -516) (QUOTE (-1175)) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -310) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -287) (QUOTE (-566)) (QUOTE (-566)))) (|HasCategory| (-566) (QUOTE (-308))) (|HasCategory| (-566) (QUOTE (-547))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| (-566) (LIST (QUOTE -639) (QUOTE (-566)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-909)))) (|HasCategory| (-566) (QUOTE (-145))))) +((|HasCategory| (-566) (QUOTE (-909))) (|HasCategory| (-566) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| (-566) (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-147))) (|HasCategory| (-566) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-566) (QUOTE (-1022))) (|HasCategory| (-566) (QUOTE (-820))) (-2768 (|HasCategory| (-566) (QUOTE (-820))) (|HasCategory| (-566) (QUOTE (-850)))) (|HasCategory| (-566) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-566) (QUOTE (-1150))) (|HasCategory| (-566) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| (-566) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| (-566) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| (-566) (QUOTE (-233))) (|HasCategory| (-566) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-566) (LIST (QUOTE -516) (QUOTE (-1175)) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -310) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -287) (QUOTE (-566)) (QUOTE (-566)))) (|HasCategory| (-566) (QUOTE (-308))) (|HasCategory| (-566) (QUOTE (-547))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| (-566) (LIST (QUOTE -639) (QUOTE (-566)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-909)))) (-2768 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-909)))) (|HasCategory| (-566) (QUOTE (-145))))) (-1005) -((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,{}b)} converts \\spad{x} to a radix expansion in base \\spad{b}."))) +((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,b)} converts \\spad{x} to a radix expansion in base \\spad{b}."))) NIL NIL (-1006) @@ -3965,11 +3965,11 @@ NIL NIL NIL (-1009 A S) -((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) +((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL ((|HasAttribute| |#1| (QUOTE -4415)) (|HasCategory| |#2| (QUOTE (-1099)))) (-1010 S) -((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) +((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL NIL (-1011 S) @@ -3980,28 +3980,28 @@ NIL ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) ((-4407 . T) (-4412 . T) (-4406 . T) (-4409 . T) (-4408 . T) ((-4416 "*") . T) (-4411 . T)) NIL -(-1013 R -2371) -((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n,{} f,{} g,{} x,{} lim,{} ext)} returns \\spad{[y,{} h,{} b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function."))) +(-1013 R -2352) +((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n, f, g, x, lim, ext)} returns \\spad{[y, h, b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function."))) NIL NIL -(-1014 R -2371) -((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n,{} f,{} g_1,{} g_2,{} x,{}lim,{}ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,{}dy2/dx) + ((0,{} - n df/dx),{}(n df/dx,{}0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function."))) +(-1014 R -2352) +((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n, f, g_1, g_2, x,lim,ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,dy2/dx) + ((0, - n df/dx),(n df/dx,0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function."))) NIL NIL -(-1015 -2371 UP) -((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a,{} B,{} C,{} n,{} D)} returns either: 1. \\spad{[Q,{} b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1,{} C1,{} m,{} \\alpha,{} \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f,{} g)} returns a \\spad{[y,{} b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,{}g,{}D)} returns \\spad{[A,{} B,{} C,{} T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use."))) +(-1015 -2352 UP) +((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a, B, C, n, D)} returns either: 1. \\spad{[Q, b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1, C1, m, \\alpha, \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f, g)} returns a \\spad{[y, b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,g,D)} returns \\spad{[A, B, C, T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use."))) NIL NIL -(-1016 -2371 UP) -((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f,{} g1,{} g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,{}g1,{}g2,{}D)} returns \\spad{[A,{} B,{} H,{} C1,{} C2,{} T]} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} has a solution if and only if \\spad{y1 = Q1 / T,{} y2 = Q2 / T},{} where \\spad{B,{}C1,{}C2,{}Q1,{}Q2} have no normal poles and satisfy A \\spad{(Q1',{} Q2') + ((H,{} -B),{} (B,{} H)) (Q1,{}Q2) = (C1,{}C2)} \\spad{D} is the derivation to use."))) +(-1016 -2352 UP) +((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f, g1, g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,g1,g2,D)} returns \\spad{[A, B, H, C1, C2, T]} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} has a solution if and only if \\spad{y1 = Q1 / T, y2 = Q2 / T},{} where \\spad{B,C1,C2,Q1,Q2} have no normal poles and satisfy A \\spad{(Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2)} \\spad{D} is the derivation to use."))) NIL NIL (-1017 S) -((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,{}u,{}n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented"))) +((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,u,n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented"))) NIL NIL (-1018 F1 UP UPUP R F2) -((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,{}u,{}g)} \\undocumented"))) +((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,u,g)} \\undocumented"))) NIL NIL (-1019) @@ -4009,11 +4009,11 @@ NIL NIL NIL (-1020 |Pol|) -((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) +((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL (-1021 |Pol|) -((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) +((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL (-1022) @@ -4021,19 +4021,19 @@ NIL NIL NIL (-1023) -((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,{}lv,{}eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}."))) +((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,lv,eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}."))) NIL NIL (-1024 |TheField|) ((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) ((-4407 . T) (-4412 . T) (-4406 . T) (-4409 . T) (-4408 . T) ((-4416 "*") . T) (-4411 . T)) -((-2809 (|HasCategory| (-409 (-566)) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-409 (-566)) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-409 (-566)) (LIST (QUOTE -1038) (QUOTE (-566))))) -(-1025 -2371 L) -((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op,{} [f1,{}...,{}fk])} returns \\spad{[op1,{}[g1,{}...,{}gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{\\spad{fi}} must satisfy \\spad{op \\spad{fi} = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op,{} s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}."))) +((-2768 (|HasCategory| (-409 (-566)) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-409 (-566)) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-409 (-566)) (LIST (QUOTE -1038) (QUOTE (-566))))) +(-1025 -2352 L) +((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op, [f1,...,fk])} returns \\spad{[op1,[g1,...,gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{fi} must satisfy \\spad{op fi = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op, s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}."))) NIL NIL (-1026 S) -((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,{}m)} same as \\spad{setelt(n,{}m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,{}m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}."))) +((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,m)} same as \\spad{setelt(n,m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}."))) NIL ((|HasCategory| |#1| (QUOTE (-1099)))) (-1027 R E V P) @@ -4041,37 +4041,37 @@ NIL ((-4415 . T) (-4414 . T)) ((-12 (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -613) (QUOTE (-862))))) (-1028 R) -((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,{}4,{}3,{}2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,{}2,{}...,{}n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} (Kronecker delta) for the permutations {\\em pi1,{}...,{}pik} of {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) if the permutation {\\em \\spad{pi}} is in list notation and permutes {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) for a permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...ak])} calculates the list of Kronecker products of each matrix {\\em \\spad{ai}} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...,{}ak],{}[b1,{}...,{}bk])} calculates the list of Kronecker products of the matrices {\\em \\spad{ai}} and {\\em \\spad{bi}} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,{}b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,{}n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,{}j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,{}n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product."))) +((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,4,3,2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,2,...,n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} (Kronecker delta) for the permutations {\\em pi1,...,pik} of {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) if the permutation {\\em pi} is in list notation and permutes {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) for a permutation {\\em pi} of {\\em {1,2,...,n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...ak])} calculates the list of Kronecker products of each matrix {\\em ai} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...,ak],[b1,...,bk])} calculates the list of Kronecker products of the matrices {\\em ai} and {\\em bi} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product."))) NIL ((|HasAttribute| |#1| (QUOTE (-4416 "*")))) (-1029 R) -((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,{}n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,{}...,{}0,{}1,{}*,{}...,{}*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG,{} numberOfTries)} calls {\\em meatAxe(aG,{}true,{}numberOfTries,{}7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG,{} randomElements)} calls {\\em meatAxe(aG,{}false,{}6,{}7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,{}true,{}25,{}7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,{}false,{}25,{}7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,{}randomElements,{}numberOfTries,{} maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,{}submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG,{} vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG,{} numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}numberOfTries)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,{}aG1)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}randomelements,{}numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,{}v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,{}v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,{}x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis."))) +((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,...,0,1,*,...,*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG, numberOfTries)} calls {\\em meatAxe(aG,true,numberOfTries,7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG, randomElements)} calls {\\em meatAxe(aG,false,6,7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,true,25,7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,false,25,7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,randomElements,numberOfTries, maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG, vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG, numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,numberOfTries)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,aG1)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,randomelements,numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis."))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-308)))) (-1030 S) -((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i,{} r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}"))) +((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i, r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}"))) NIL NIL (-1031) -((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,{}m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals."))) +((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals."))) NIL NIL (-1032 S) -((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r,{} i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}"))) +((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r, i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}"))) NIL NIL (-1033 S) ((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used."))) NIL NIL -(-1034 -2371 |Expon| |VarSet| |FPol| |LFPol|) +(-1034 -2352 |Expon| |VarSet| |FPol| |LFPol|) ((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring"))) (((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) NIL (-1035) ((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) ((-4414 . T) (-4415 . T)) -((-12 (|HasCategory| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2004) (QUOTE (-1175))) (LIST (QUOTE |:|) (QUOTE -3867) (QUOTE (-52))))))) (-2809 (|HasCategory| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (QUOTE (-1099))) (|HasCategory| (-52) (QUOTE (-1099)))) (-2809 (|HasCategory| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-52) (QUOTE (-1099))) (|HasCategory| (-52) (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| (-52) (QUOTE (-1099))) (|HasCategory| (-52) (LIST (QUOTE -310) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (QUOTE (-1099))) (|HasCategory| (-1175) (QUOTE (-850))) (|HasCategory| (-52) (QUOTE (-1099))) (-2809 (|HasCategory| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-52) (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-52) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (LIST (QUOTE -613) (QUOTE (-862))))) +((-12 (|HasCategory| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2674) (QUOTE (-1175))) (LIST (QUOTE |:|) (QUOTE -2636) (QUOTE (-52))))))) (-2768 (|HasCategory| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (QUOTE (-1099))) (|HasCategory| (-52) (QUOTE (-1099)))) (-2768 (|HasCategory| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-52) (QUOTE (-1099))) (|HasCategory| (-52) (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| (-52) (QUOTE (-1099))) (|HasCategory| (-52) (LIST (QUOTE -310) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (QUOTE (-1099))) (|HasCategory| (-1175) (QUOTE (-850))) (|HasCategory| (-52) (QUOTE (-1099))) (-2768 (|HasCategory| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-52) (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-52) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (LIST (QUOTE -613) (QUOTE (-862))))) (-1036) ((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'."))) NIL @@ -4085,11 +4085,11 @@ NIL NIL NIL (-1039 Q R) -((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible."))) +((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible."))) NIL NIL (-1040) -((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,{}m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,{}m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,{}g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,{}g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented"))) +((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented"))) NIL NIL (-1041 UP) @@ -4101,7 +4101,7 @@ NIL NIL NIL (-1043 R) -((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f,{} [v1 = g1,{}...,{}vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} [v1,{}...,{}vn],{} [g1,{}...,{}gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f,{} v,{} g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) +((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f, [v1 = g1,...,vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, [v1,...,vn], [g1,...,gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f, v, g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL (-1044 T$) @@ -4113,11 +4113,11 @@ NIL NIL NIL (-1046 R |ls|) -((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?,{}info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}."))) +((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?,info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}."))) ((-4415 . T) (-4414 . T)) ((-12 (|HasCategory| (-780 |#1| (-864 |#2|)) (QUOTE (-1099))) (|HasCategory| (-780 |#1| (-864 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -780) (|devaluate| |#1|) (LIST (QUOTE -864) (|devaluate| |#2|)))))) (|HasCategory| (-780 |#1| (-864 |#2|)) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-780 |#1| (-864 |#2|)) (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| (-864 |#2|) (QUOTE (-370))) (|HasCategory| (-780 |#1| (-864 |#2|)) (LIST (QUOTE -613) (QUOTE (-862))))) (-1047) -((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,{}j,{}k,{}l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,{}f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented"))) +((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,j,k,l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented"))) NIL NIL (-1048 S) @@ -4128,7 +4128,7 @@ NIL ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) ((-4411 . T)) NIL -(-1050 |xx| -2371) +(-1050 |xx| -2352) ((|constructor| (NIL "This package exports rational interpolation algorithms"))) NIL NIL @@ -4137,19 +4137,19 @@ NIL NIL NIL (-1052 S |m| |n| R |Row| |Col|) -((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) +((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) NIL ((|HasCategory| |#4| (QUOTE (-308))) (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (QUOTE (-558))) (|HasCategory| |#4| (QUOTE (-172)))) (-1053 |m| |n| R |Row| |Col|) -((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) +((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) ((-4414 . T) (-4409 . T) (-4408 . T)) NIL (-1054 |m| |n| R) ((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) ((-4414 . T) (-4409 . T) (-4408 . T)) -((|HasCategory| |#3| (QUOTE (-172))) (-2809 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -614) (QUOTE (-538)))) (-2809 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365)))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-558))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -613) (QUOTE (-862))))) +((|HasCategory| |#3| (QUOTE (-172))) (-2768 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -614) (QUOTE (-538)))) (-2768 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365)))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-558))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -613) (QUOTE (-862))))) (-1055 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) -((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) +((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL (-1056 R) @@ -4177,9 +4177,9 @@ NIL ((-4402 . T) (-4406 . T) (-4401 . T) (-4412 . T) (-4413 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) NIL (-1062) -((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,{}routineName,{}ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,{}s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,{}s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,{}s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,{}s,{}newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,{}s,{}newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,{}y)} merges two tables \\spad{x} and \\spad{y}"))) +((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,routineName,ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,s,newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,s,newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,y)} merges two tables \\spad{x} and \\spad{y}"))) ((-4414 . T) (-4415 . T)) -((-12 (|HasCategory| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2004) (QUOTE (-1175))) (LIST (QUOTE |:|) (QUOTE -3867) (QUOTE (-52))))))) (-2809 (|HasCategory| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (QUOTE (-1099))) (|HasCategory| (-52) (QUOTE (-1099)))) (-2809 (|HasCategory| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-52) (QUOTE (-1099))) (|HasCategory| (-52) (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| (-52) (QUOTE (-1099))) (|HasCategory| (-52) (LIST (QUOTE -310) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (QUOTE (-1099))) (|HasCategory| (-1175) (QUOTE (-850))) (|HasCategory| (-52) (QUOTE (-1099))) (-2809 (|HasCategory| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-52) (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-52) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (LIST (QUOTE -613) (QUOTE (-862))))) +((-12 (|HasCategory| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2674) (QUOTE (-1175))) (LIST (QUOTE |:|) (QUOTE -2636) (QUOTE (-52))))))) (-2768 (|HasCategory| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (QUOTE (-1099))) (|HasCategory| (-52) (QUOTE (-1099)))) (-2768 (|HasCategory| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-52) (QUOTE (-1099))) (|HasCategory| (-52) (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| (-52) (QUOTE (-1099))) (|HasCategory| (-52) (LIST (QUOTE -310) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (QUOTE (-1099))) (|HasCategory| (-1175) (QUOTE (-850))) (|HasCategory| (-52) (QUOTE (-1099))) (-2768 (|HasCategory| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-52) (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-52) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (LIST (QUOTE -613) (QUOTE (-862))))) (-1063 S R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) NIL @@ -4205,11 +4205,11 @@ NIL NIL NIL (-1069 S R E V P) -((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#5| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) +((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#5| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) NIL NIL (-1070 R E V P) -((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#4| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) +((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#4| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) ((-4415 . T) (-4414 . T)) NIL (-1071 R E V P TS) @@ -4221,23 +4221,23 @@ NIL NIL NIL (-1073) -((|constructor| (NIL "This is the datatype of OpenAxiom runtime values. It exists solely for internal purposes.")) (|eq| (((|Boolean|) $ $) "\\spad{eq(x,{}y)} holds if both values \\spad{x} and \\spad{y} resides at the same address in memory."))) +((|constructor| (NIL "This is the datatype of OpenAxiom runtime values. It exists solely for internal purposes.")) (|eq| (((|Boolean|) $ $) "\\spad{eq(x,y)} holds if both values \\spad{x} and \\spad{y} resides at the same address in memory."))) NIL NIL (-1074 |f|) ((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-1075 |Base| R -2371) -((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) +(-1075 |Base| R -2352) +((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r, [a1,...,an], f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,...,an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f, g, [f1,...,fn])} creates the rewrite rule \\spad{f == eval(eval(g, g is f), [f1,...,fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f, g)} creates the rewrite rule: \\spad{f == eval(g, g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) NIL NIL -(-1076 |Base| R -2371) -((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,{}...,{}rn])} creates the rule set \\spad{{r1,{}...,{}rn}}."))) +(-1076 |Base| R -2352) +((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,...,rn])} creates the rule set \\spad{{r1,...,rn}}."))) NIL NIL (-1077 R |ls|) -((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,{}univ?,{}check?)} returns the same as \\spad{rur(lp,{}true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,{}true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,{}univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,{}univ?)} returns a list of items \\spad{[u,{}lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,{}lc]} in \\spad{rur(lp,{}univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor."))) +((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,univ?,check?)} returns the same as \\spad{rur(lp,true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,univ?)} returns a list of items \\spad{[u,lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,lc]} in \\spad{rur(lp,univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor."))) NIL NIL (-1078 UP SAE UPA) @@ -4247,7 +4247,7 @@ NIL (-1079 R UP M) ((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) ((-4407 |has| |#1| (-365)) (-4412 |has| |#1| (-365)) (-4406 |has| |#1| (-365)) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) -((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-351))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-351)))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365))))) +((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-351))) (-2768 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-2768 (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-351)))) (-2768 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (-2768 (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365))))) (-1080 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL @@ -4261,27 +4261,27 @@ NIL NIL NIL (-1083 S) -((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(x,{} y)} to determine whether \\spad{x < y (f(x,{}y) < 0),{} x = y (f(x,{}y) = 0)},{} or \\spad{x > y (f(x,{}y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache."))) +((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(x, y)} to determine whether \\spad{x < y (f(x,y) < 0), x = y (f(x,y) = 0)},{} or \\spad{x > y (f(x,y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache."))) NIL NIL (-1084) -((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,{}s)} pushs a new contour with sole binding \\spad{`b'}.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(n,{}s)} returns the first binding of \\spad{`n'} in \\spad{`s'}; otherwise `nothing'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope."))) +((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,s)} pushs a new contour with sole binding \\spad{`b'}.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(n,s)} returns the first binding of \\spad{`n'} in \\spad{`s'}; otherwise `nothing'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope."))) NIL NIL (-1085 R) -((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}"))) +((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}"))) NIL NIL (-1086 R) ((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline"))) (((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4412 |has| |#1| (-6 -4412)) (-4409 . T) (-4408 . T) (-4411 . T)) -((|HasCategory| |#1| (QUOTE (-909))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1087 (-1175)) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-1087 (-1175)) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-1087 (-1175)) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-1087 (-1175)) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-1087 (-1175)) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4412)) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145))))) +((|HasCategory| |#1| (QUOTE (-909))) (-2768 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2768 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2768 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2768 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1087 (-1175)) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-1087 (-1175)) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-1087 (-1175)) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-1087 (-1175)) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-1087 (-1175)) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2768 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4412)) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2768 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145))))) (-1087 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u}))."))) NIL NIL (-1088 R S) -((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l),{} f(l+k),{}...,{} f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}l..h)} returns a new segment \\spad{f(l)..f(h)}."))) +((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l), f(l+k),..., f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,l..h)} returns a new segment \\spad{f(l)..f(h)}."))) NIL ((|HasCategory| |#1| (QUOTE (-848)))) (-1089) @@ -4289,15 +4289,15 @@ NIL NIL NIL (-1090 R S) -((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,{}v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}."))) +((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}."))) NIL NIL (-1091 S) -((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions.")) (|segment| (((|Segment| |#1|) $) "\\spad{segment(segb)} returns the segment from the right hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{segment(segb)} returns \\spad{a..b}.")) (|variable| (((|Symbol|) $) "\\spad{variable(segb)} returns the variable from the left hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{variable(segb)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) (|Segment| |#1|)) "\\spad{equation(v,{}a..b)} creates a segment binding value with variable \\spad{v} and segment \\spad{a..b}. Note that the interpreter parses \\spad{v=a..b} to this form."))) +((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions.")) (|segment| (((|Segment| |#1|) $) "\\spad{segment(segb)} returns the segment from the right hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{segment(segb)} returns \\spad{a..b}.")) (|variable| (((|Symbol|) $) "\\spad{variable(segb)} returns the variable from the left hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{variable(segb)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) (|Segment| |#1|)) "\\spad{equation(v,a..b)} creates a segment binding value with variable \\spad{v} and segment \\spad{a..b}. Note that the interpreter parses \\spad{v=a..b} to this form."))) NIL ((|HasCategory| |#1| (QUOTE (-1099)))) (-1092 S) -((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,{}j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{\\spad{hi}(s)} returns the second endpoint of \\spad{s}. Note: \\spad{\\spad{hi}(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints."))) +((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{hi(s)} returns the second endpoint of \\spad{s}. Note: \\spad{hi(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints."))) NIL NIL (-1093 S) @@ -4305,7 +4305,7 @@ NIL NIL ((|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-1099)))) (-1094 S L) -((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l),{} f(l+k),{} ...,{} f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l,{} l+k,{} ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,{}3,{}5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l,{} l+k,{} ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4,{} 7..9] = [1,{}2,{}3,{}4,{}7,{}8,{}9]}."))) +((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l), f(l+k), ..., f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l, l+k, ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,3,5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l, l+k, ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4, 7..9] = [1,2,3,4,7,8,9]}."))) NIL NIL (-1095) @@ -4313,11 +4313,11 @@ NIL NIL NIL (-1096 A S) -((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) +((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) NIL NIL (-1097 S) -((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) +((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) ((-4404 . T)) NIL (-1098 S) @@ -4329,15 +4329,15 @@ NIL NIL NIL (-1100 |m| |n|) -((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,{}k,{}p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p,{} s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,{}...,{}a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,{}k,{}p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,{}k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more."))) +((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,k,p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p, s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,...,a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,k,p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more."))) NIL NIL (-1101 S) -((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}"))) +((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,b,c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{union(s,t)},{} \\spad{intersect(s,t)},{} \\spad{minus(s,t)},{} \\spad{symmetricDifference(s,t)} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{member(x,t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,t)} and \\spad{remove(x,t)} is \\spad{O(n)}}"))) ((-4414 . T) (-4404 . T) (-4415 . T)) -((-2809 (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) +((-2768 (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-1102 |Str| |Sym| |Int| |Flt| |Expr|) -((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns a1.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp."))) +((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,...,an), [i1,...,im])} returns \\spad{(a_i1,...,a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,...,an), i)} returns \\spad{ai}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,...,an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,...,an))} returns \\spad{(a2,...,an)}.")) (|car| (($ $) "\\spad{car((a1,...,an))} returns a1.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,...,an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s, t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp."))) NIL NIL (-1103) @@ -4349,7 +4349,7 @@ NIL NIL NIL (-1105 R FS) -((|constructor| (NIL "\\axiomType{SimpleFortranProgram(\\spad{f},{}type)} provides a simple model of some FORTRAN subprograms,{} making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{\\spad{f}}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,{}ftype,{}body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name,{} the type and the \\spad{body} of the program."))) +((|constructor| (NIL "\\axiomType{SimpleFortranProgram(\\spad{f},{}type)} provides a simple model of some FORTRAN subprograms,{} making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{\\spad{f}}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,ftype,body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name,{} the type and the \\spad{body} of the program."))) NIL NIL (-1106 R E V P TS) @@ -4361,11 +4361,11 @@ NIL NIL NIL (-1108 R E V P) -((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,{}mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) +((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) ((-4415 . T) (-4414 . T)) NIL (-1109) -((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,{}0,{}0] < [0,{}3,{}0] < [0,{}0,{}3] < [2,{}1,{}0] < [2,{}0,{}1] < [0,{}2,{}1] < [1,{}2,{}0] < [1,{}0,{}2] < [0,{}1,{}2] < [1,{}1,{}1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,{}0,{}3] < [0,{}1,{}2] < [0,{}2,{}1] < [0,{}3,{}0] < [1,{}0,{}2] < [1,{}1,{}1] < [1,{}2,{}0] < [2,{}0,{}1] < [2,{}1,{}0] < [3,{}0,{}0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,{}m,{}k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,{}1,{}...,{}(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,{}...,{}(m-1)} into {\\em 0,{}...,{}(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,{}m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,{}3)} is 10,{} since {\\em [0,{}0,{}3],{} [0,{}1,{}2],{} [0,{}2,{}1],{} [0,{}3,{}0],{} [1,{}0,{}2],{} [1,{}1,{}1],{} [1,{}2,{}0],{} [2,{}0,{}1],{} [2,{}1,{}0],{} [3,{}0,{}0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,{}lattP,{}constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,{}beta,{}C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,{}1,{}0)}. Also,{} {\\em new(1,{}1,{}0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,{}gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,{}...,{}n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,{}...,{}n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,{}beta,{}C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em \\spad{pi}} in the corresponding double coset. Note: the resulting permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,{}beta,{}\\spad{pi})}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em \\spad{pi}} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha,{} beta,{} \\spad{pi}}. Note: The permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em \\spad{pi}} is the lexicographical smallest permutation in the coset). For details see James/Kerber."))) +((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,0,0] < [0,3,0] < [0,0,3] < [2,1,0] < [2,0,1] < [0,2,1] < [1,2,0] < [1,0,2] < [0,1,2] < [1,1,1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,0,3] < [0,1,2] < [0,2,1] < [0,3,0] < [1,0,2] < [1,1,1] < [1,2,0] < [2,0,1] < [2,1,0] < [3,0,0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,m,k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,1,...,(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,...,(m-1)} into {\\em 0,...,(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,3)} is 10,{} since {\\em [0,0,3], [0,1,2], [0,2,1], [0,3,0], [1,0,2], [1,1,1], [1,2,0], [2,0,1], [2,1,0], [3,0,0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,lattP,constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,beta,C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,1,0)}. Also,{} {\\em new(1,1,0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,...,n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,...,n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,beta,C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em pi} in the corresponding double coset. Note: the resulting permutation {\\em pi} of {\\em {1,2,...,n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,beta,pi)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em pi} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha, beta, pi}. Note: The permutation {\\em pi} of {\\em {1,2,...,n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em pi} is the lexicographical smallest permutation in the coset). For details see James/Kerber."))) NIL NIL (-1110 S) @@ -4379,25 +4379,25 @@ NIL (-1112 |dimtot| |dim1| S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) ((-4408 |has| |#3| (-1049)) (-4409 |has| |#3| (-1049)) (-4411 |has| |#3| (-6 -4411)) ((-4416 "*") |has| |#3| (-172)) (-4414 . T)) -((-2809 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-726))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-848))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))))) (-2809 (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-1099)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1049)))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#3| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#3| (QUOTE (-365))) (-2809 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1049)))) (-2809 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365)))) (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-793))) (-2809 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (QUOTE (-848)))) (|HasCategory| |#3| (QUOTE (-848))) (|HasCategory| |#3| (QUOTE (-726))) (-2809 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1049)))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (-2809 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1049)))) (-2809 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1049)))) (-2809 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1049)))) (-2809 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1049)))) (|HasCategory| |#3| (QUOTE (-233))) (-2809 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (QUOTE (-726))) (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (QUOTE (-848))) (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (QUOTE (-1099)))) (|HasCategory| |#3| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-131)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-233)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-365)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-370)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-726)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-793)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-848)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-1049)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-1099))))) (-2809 (-12 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-726))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-848))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-1049))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-2809 (-12 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-726))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-848))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566)))))) (|HasCategory| (-566) (QUOTE (-850))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1049)))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175))))) (-2809 (|HasCategory| |#3| (QUOTE (-1049))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-1099)))) (|HasAttribute| |#3| (QUOTE -4411)) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))))) +((-2768 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-726))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-848))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))))) (-2768 (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-1099)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1049)))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#3| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#3| (QUOTE (-365))) (-2768 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1049)))) (-2768 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365)))) (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-793))) (-2768 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (QUOTE (-848)))) (|HasCategory| |#3| (QUOTE (-848))) (|HasCategory| |#3| (QUOTE (-726))) (-2768 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1049)))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (-2768 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1049)))) (-2768 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1049)))) (-2768 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1049)))) (-2768 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1049)))) (|HasCategory| |#3| (QUOTE (-233))) (-2768 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (QUOTE (-726))) (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (QUOTE (-848))) (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (QUOTE (-1099)))) (|HasCategory| |#3| (QUOTE (-1099))) (-2768 (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-131)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-233)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-365)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-370)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-726)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-793)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-848)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-1049)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-1099))))) (-2768 (-12 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-726))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-848))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-1049))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-2768 (-12 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-726))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-848))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566)))))) (|HasCategory| (-566) (QUOTE (-850))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1049)))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175))))) (-2768 (|HasCategory| |#3| (QUOTE (-1049))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-1099)))) (|HasAttribute| |#3| (QUOTE -4411)) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))))) (-1113 R |x|) -((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,{}p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,{}p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,{}p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) +((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) NIL ((|HasCategory| |#1| (QUOTE (-454)))) (-1114) -((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,{}s,{}t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}"))) +((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,s,t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}"))) NIL NIL -(-1115 R -2371) -((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) +(-1115 R -2352) +((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL (-1116 R) -((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere."))) +((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL (-1117) -((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,{}t)} constructs a Signature object with parameter types indicaded by \\spad{`s'},{} and return type indicated by \\spad{`t'}."))) +((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,t)} constructs a Signature object with parameter types indicaded by \\spad{`s'},{} and return type indicated by \\spad{`t'}."))) NIL NIL (-1118) @@ -4405,11 +4405,11 @@ NIL NIL NIL (-1119) -((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,{}m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|not| (($ $) "\\spad{not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality."))) +((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|not| (($ $) "\\spad{not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality."))) ((-4402 . T) (-4406 . T) (-4401 . T) (-4412 . T) (-4413 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) NIL (-1120 S) -((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,{}s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}."))) +((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}."))) ((-4414 . T) (-4415 . T)) NIL (-1121 S |ndim| R |Row| |Col|) @@ -4421,39 +4421,39 @@ NIL ((-4414 . T) (-4408 . T) (-4409 . T) (-4411 . T)) NIL (-1123 R |Row| |Col| M) -((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,{}B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}."))) +((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}."))) NIL NIL (-1124 R |VarSet|) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute."))) (((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4412 |has| |#1| (-6 -4412)) (-4409 . T) (-4408 . T) (-4411 . T)) -((|HasCategory| |#1| (QUOTE (-909))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4412)) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145))))) +((|HasCategory| |#1| (QUOTE (-909))) (-2768 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2768 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2768 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2768 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2768 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4412)) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2768 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145))))) (-1125 |Coef| |Var| SMP) -((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,{}b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}."))) +((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) (((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4409 . T) (-4408 . T) (-4411 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-365)))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-2768 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-365)))) (-1126 R E V P) ((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}"))) ((-4415 . T) (-4414 . T)) NIL -(-1127 UP -2371) -((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,{}g,{}h,{}i,{}k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,{}g,{}h,{}j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,{}g,{}h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,{}g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,{}g,{}h,{}i,{}j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,{}g,{}h,{}i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,{}g,{}h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,{}g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,{}f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) +(-1127 UP -2352) +((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,g,h,i,k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,g,h,j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,g,h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,g,h,i,j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,g,h,i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,g,h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) NIL NIL (-1128 R) -((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,{}lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,{}x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function."))) +((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function."))) NIL NIL (-1129 R) -((|constructor| (NIL "This package finds the function func3 where func1 and func2 \\indented{1}{are given and\\space{2}func1 = func3(func2) .\\space{2}If there is no solution then} \\indented{1}{function func1 will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect,{} var,{} n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1,{} func2,{} newvar)} returns a function func3 where \\spad{func1} = func3(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned."))) +((|constructor| (NIL "This package finds the function func3 where func1 and func2 \\indented{1}{are given and\\space{2}func1 = func3(func2) .\\space{2}If there is no solution then} \\indented{1}{function func1 will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect, var, n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1, func2, newvar)} returns a function func3 where \\spad{func1} = func3(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned."))) NIL NIL (-1130 R) -((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs,{} lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,{}x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,{}x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq."))) +((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs, lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq."))) NIL NIL (-1131 S A) -((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,{}f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,{}f)} \\undocumented"))) +((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,f)} \\undocumented"))) NIL ((|HasCategory| |#1| (QUOTE (-850)))) (-1132 R) @@ -4461,7 +4461,7 @@ NIL NIL NIL (-1133 R) -((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} creates a surface defined over a list of curves,{} \\spad{p0} through \\spad{pn},{} which are lists of points; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); close2 set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through \\spad{pn},{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if close2 is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and close2 indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument close2 equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} [props],{} prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{}[props],{}prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,{}p1,{}...,{}pn])} creates a polygon defined by a list of points,{} \\spad{p0} through \\spad{pn},{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,{}[[r0],{}[r1],{}...,{}[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,{}[p0,{}p1,{}...,{}pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,{}R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,{}[[lr0],{}[lr1],{}...,{}[lrn],{}[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,{}[p0,{}p1,{}...,{}pn,{}p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,{}p1,{}p2,{}...,{}pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,{}[[p0],{}[p1],{}...,{}[pn]])} adds a space curve which is a list of points \\spad{p0} through \\spad{pn} defined by lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,{}[p0,{}p1,{}...,{}pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,{}i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,{}[x,{}y,{}z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,{}p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,{}i,{}p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,{}[p0,{}p1,{}...,{}pn])} adds a list of points from \\spad{p0} through \\spad{pn} to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,{}s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination."))) +((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],[p1],...,[pn]], close1, close2)} creates a surface defined over a list of curves,{} \\spad{p0} through \\spad{pn},{} which are lists of points; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); close2 set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],[p1],...,[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through \\spad{pn},{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if close2 is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and close2 indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument close2 equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], [props], prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]],[props],prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,p1,...,pn])} creates a polygon defined by a list of points,{} \\spad{p0} through \\spad{pn},{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,[[r0],[r1],...,[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,[p0,p1,...,pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,[[lr0],[lr1],...,[lrn],[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,[p0,p1,...,pn,p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,p1,p2,...,pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,[[p0],[p1],...,[pn]])} adds a space curve which is a list of points \\spad{p0} through \\spad{pn} defined by lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,[p0,p1,...,pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,[x,y,z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,i,p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,[p0,p1,...,pn])} adds a list of points from \\spad{p0} through \\spad{pn} to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL (-1134) @@ -4477,11 +4477,11 @@ NIL NIL NIL (-1137) -((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,{}o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}."))) +((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}."))) NIL NIL (-1138) -((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,{}z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,{}z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,{}z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,{}z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,{}x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,{}x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,{}x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}."))) +((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}."))) NIL NIL (-1139 V C) @@ -4491,21 +4491,21 @@ NIL (-1140 V C) ((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned."))) ((-4414 . T) (-4415 . T)) -((-12 (|HasCategory| (-1139 |#1| |#2|) (LIST (QUOTE -310) (LIST (QUOTE -1139) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1139 |#1| |#2|) (QUOTE (-1099)))) (|HasCategory| (-1139 |#1| |#2|) (QUOTE (-1099))) (-2809 (|HasCategory| (-1139 |#1| |#2|) (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| (-1139 |#1| |#2|) (LIST (QUOTE -310) (LIST (QUOTE -1139) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1139 |#1| |#2|) (QUOTE (-1099))))) (|HasCategory| (-1139 |#1| |#2|) (LIST (QUOTE -613) (QUOTE (-862))))) +((-12 (|HasCategory| (-1139 |#1| |#2|) (LIST (QUOTE -310) (LIST (QUOTE -1139) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1139 |#1| |#2|) (QUOTE (-1099)))) (|HasCategory| (-1139 |#1| |#2|) (QUOTE (-1099))) (-2768 (|HasCategory| (-1139 |#1| |#2|) (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| (-1139 |#1| |#2|) (LIST (QUOTE -310) (LIST (QUOTE -1139) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1139 |#1| |#2|) (QUOTE (-1099))))) (|HasCategory| (-1139 |#1| |#2|) (LIST (QUOTE -613) (QUOTE (-862))))) (-1141 |ndim| R) ((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}."))) ((-4411 . T) (-4403 |has| |#2| (-6 (-4416 "*"))) (-4414 . T) (-4408 . T) (-4409 . T)) -((|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4416 "*"))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2809 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-365))) (-2809 (|HasAttribute| |#2| (QUOTE (-4416 "*"))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172)))) +((|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4416 "*"))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2768 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-365))) (-2768 (|HasAttribute| |#2| (QUOTE (-4416 "*"))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172)))) (-1142 S) -((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) +((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL NIL (-1143) -((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) +((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) ((-4415 . T) (-4414 . T)) NIL (-1144 R E V P TS) -((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,{}E,{}V,{}P,{}TS)} and \\spad{RSETGCD(R,{}E,{}V,{}P,{}TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) +((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,E,V,P,TS)} and \\spad{RSETGCD(R,E,V,P,TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL (-1145 R E V P) @@ -4513,9 +4513,9 @@ NIL ((-4415 . T) (-4414 . T)) ((-12 (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -613) (QUOTE (-862))))) (-1146 S) -((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,{}y,{}...,{}z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) +((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,y,...,z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) ((-4414 . T) (-4415 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) +((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2768 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (-1147 A S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL @@ -4527,31 +4527,31 @@ NIL (-1149 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) ((-4415 . T)) -((-12 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2004) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3867) (|devaluate| |#2|)))))) (-2809 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (-2809 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-850))) (-2809 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099)))) +((-12 (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2674) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2636) (|devaluate| |#2|)))))) (-2768 (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (-2768 (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-850))) (-2768 (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (QUOTE (-1099)))) (-1150) ((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping."))) NIL NIL (-1151 |Coef|) -((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) +((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL (-1152 S) -((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,{}u)}."))) +((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,u)}."))) NIL NIL (-1153 A B) -((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,{}f,{}u)},{} where \\spad{u} is a finite stream \\spad{[x0,{}x1,{}...,{}xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,{}b),{} r1 = f(x1,{}r0),{}...,{} r(n) = f(xn,{}r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,{}h,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[y0,{}y1,{}y2,{}...]},{} where \\spad{y0 = h(x0,{}b)},{} \\spad{y1 = h(x1,{}y0)},{}\\spad{...} \\spad{yn = h(xn,{}y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,{}s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}...]) = [f(x0),{}f(x1),{}f(x2),{}..]}."))) +((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,f,u)},{} where \\spad{u} is a finite stream \\spad{[x0,x1,...,xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,b), r1 = f(x1,r0),..., r(n) = f(xn,r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,h,[x0,x1,x2,...])} returns \\spad{[y0,y1,y2,...]},{} where \\spad{y0 = h(x0,b)},{} \\spad{y1 = h(x1,y0)},{}\\spad{...} \\spad{yn = h(xn,y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,[x0,x1,x2,...]) = [f(x0),f(x1),f(x2),..]}."))) NIL NIL (-1154 A B C) -((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}st1,{}st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}..],{}[y0,{}y1,{}y2,{}..]) = [f(x0,{}y0),{}f(x1,{}y1),{}..]}."))) +((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,st1,st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,[x0,x1,x2,..],[y0,y1,y2,..]) = [f(x0,y0),f(x1,y1),..]}."))) NIL NIL (-1155 S) -((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) +((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) ((-4415 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) +((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2768 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (-1156) ((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string"))) ((-4415 . T) (-4414 . T)) @@ -4559,13 +4559,13 @@ NIL (-1157) NIL ((-4415 . T) (-4414 . T)) -((-2809 (-12 (|HasCategory| (-144) (QUOTE (-850))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-144) (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) +((-2768 (-12 (|HasCategory| (-144) (QUOTE (-850))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-144) (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (-1158 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) ((-4414 . T) (-4415 . T)) -((-12 (|HasCategory| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2004) (QUOTE (-1157))) (LIST (QUOTE |:|) (QUOTE -3867) (|devaluate| |#1|)))))) (-2809 (|HasCategory| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-1099)))) (-2809 (|HasCategory| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (QUOTE (-1099))) (|HasCategory| (-1157) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (|HasCategory| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (LIST (QUOTE -613) (QUOTE (-862))))) +((-12 (|HasCategory| (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2674) (QUOTE (-1157))) (LIST (QUOTE |:|) (QUOTE -2636) (|devaluate| |#1|)))))) (-2768 (|HasCategory| (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-1099)))) (-2768 (|HasCategory| (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (QUOTE (-1099))) (|HasCategory| (-1157) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (-2768 (|HasCategory| (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (LIST (QUOTE -613) (QUOTE (-862))))) (-1159 A) -((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,{}f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,{}r,{}g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0/b0,{}a1/b1,{}..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,{}f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,{}0>,{}b<0,{}1>,{}...],{}[b<1,{}0>,{}b<1,{}1>,{}.],{}...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,{}j=0 to infinity,{}b<i,{}j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,{}f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,{}a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,{}[a0,{}a1,{}a2,{}...]) = [a,{}a0,{}a1/2,{}a2/3,{}...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,{}b,{}st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,{}b,{}st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),{}n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),{}n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),{}n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,{}0>,{}a<0,{}1>,{}..],{}[a<1,{}0>,{}a<1,{}1>,{}..],{}[a<2,{}0>,{}a<2,{}1>,{}..],{}..]} and \\spad{addiag(x) = [b<0,{}b<1>,{}...],{} then b<k> = sum(i+j=k,{}a<i,{}j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient 1.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,{}b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,{}r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,{}[a0,{}a1,{}a2,{}..])} returns \\spad{[f(0)*a0,{}f(1)*a1,{}f(2)*a2,{}..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,{}a1,{}a2,{}...])} returns \\spad{[a1,{}2 a2,{}3 a3,{}...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0*b0,{}a1*b1,{}..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,{}n+2,{}n+4,{}...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,{}n+1,{}n+2,{}...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,{}coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,{}b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,{}a1,{}...] * r = [a0 * r,{}a1 * r,{}...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,{}a1,{}...] = [r * a0,{}r * a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,{}a1,{}...] * [b0,{}b1,{}...] = [c0,{}c1,{}...]} where \\spad{ck = sum(i + j = k,{}\\spad{ai} * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,{}a1,{}...] = [- a0,{}- a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] - [b0,{}b1,{}..] = [a0 - b0,{}a1 - b1,{}..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] + [b0,{}b1,{}..] = [a0 + b0,{}a1 + b1,{}..]}"))) +((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,j=0 to infinity,b<i,j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b<k> = sum(i+j=k,a<i,j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient 1.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 a2,3 a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,a1,...] * r = [a0 * r,a1 * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = [r * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + j = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = [- a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = [a0 - b0,a1 - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = [a0 + b0,a1 + b1,..]}"))) NIL ((|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-1160 |Coef|) @@ -4577,15 +4577,15 @@ NIL NIL NIL (-1162 R UP) -((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p,{} q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p,{} q)} returns \\spad{[p0,{}...,{}pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p,{} q)}."))) +((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p, q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p, q)} returns \\spad{[p0,...,pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p, q)}."))) NIL ((|HasCategory| |#1| (QUOTE (-308)))) (-1163 |n| R) -((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,{}\\spad{li})} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,{}\\spad{li},{}p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,{}\\spad{li},{}b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,{}ind,{}p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,{}\\spad{li},{}i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,{}\\spad{li},{}p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,{}s2,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,{}p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,{}\\spad{li},{}i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,{}s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,{}n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented"))) +((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,li)} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,li,p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,li,b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,ind,p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,li,i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,li,p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,s2,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,li,i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented"))) NIL NIL (-1164 S1 S2) -((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} makes a form \\spad{s:t}"))) +((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} makes a form \\spad{s:t}"))) NIL NIL (-1165) @@ -4593,19 +4593,19 @@ NIL NIL NIL (-1166 |Coef| |var| |cen|) -((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4416 "*") -2809 (-2432 (|has| |#1| (-365)) (|has| (-1173 |#1| |#2| |#3|) (-820))) (|has| |#1| (-172)) (-2432 (|has| |#1| (-365)) (|has| (-1173 |#1| |#2| |#3|) (-909)))) (-4407 -2809 (-2432 (|has| |#1| (-365)) (|has| (-1173 |#1| |#2| |#3|) (-820))) (|has| |#1| (-558)) (-2432 (|has| |#1| (-365)) (|has| (-1173 |#1| |#2| |#3|) (-909)))) (-4412 |has| |#1| (-365)) (-4406 |has| |#1| (-365)) (-4408 . T) (-4409 . T) (-4411 . T)) -((-2809 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-1022))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-1150))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-2809 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2809 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2809 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|)))))) (-2809 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|))))) (|HasCategory| (-566) (QUOTE (-1111))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-1022))) (|HasCategory| |#1| (QUOTE (-365)))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-2809 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365))))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-1150))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -3783) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -1941) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -3863) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-2809 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-558)))) (-2809 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2809 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-1167 R -2371) -((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n),{} n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) +((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) +(((-4416 "*") -2768 (-2415 (|has| |#1| (-365)) (|has| (-1173 |#1| |#2| |#3|) (-820))) (|has| |#1| (-172)) (-2415 (|has| |#1| (-365)) (|has| (-1173 |#1| |#2| |#3|) (-909)))) (-4407 -2768 (-2415 (|has| |#1| (-365)) (|has| (-1173 |#1| |#2| |#3|) (-820))) (|has| |#1| (-558)) (-2415 (|has| |#1| (-365)) (|has| (-1173 |#1| |#2| |#3|) (-909)))) (-4412 |has| |#1| (-365)) (-4406 |has| |#1| (-365)) (-4408 . T) (-4409 . T) (-4411 . T)) +((-2768 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-1022))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-1150))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2768 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-2768 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2768 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2768 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|)))))) (-2768 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|))))) (|HasCategory| (-566) (QUOTE (-1111))) (-2768 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-1022))) (|HasCategory| |#1| (QUOTE (-365)))) (-2768 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-2768 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365))))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-1150))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -3152) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (-2768 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -3313) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -1771) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-2768 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-558)))) (-2768 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2768 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-2768 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-1167 R -2352) +((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL NIL (-1168 R) -((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}."))) +((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}."))) NIL NIL (-1169 R S) -((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) +((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL (-1170 E OV R P) @@ -4613,43 +4613,43 @@ NIL NIL NIL (-1171 R) -((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) +((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) (((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4410 |has| |#1| (-365)) (-4412 |has| |#1| (-6 -4412)) (-4409 . T) (-4408 . T) (-4411 . T)) -((|HasCategory| |#1| (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1150))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4412)) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145))))) +((|HasCategory| |#1| (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2768 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2768 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (-2768 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2768 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2768 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1150))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4412)) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2768 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145))))) (-1172 |Coef| |var| |cen|) -((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}."))) +((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}."))) (((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4412 |has| |#1| (-365)) (-4406 |has| |#1| (-365)) (-4408 . T) (-4409 . T) (-4411 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|)))) (|HasCategory| (-409 (-566)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-365))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasSignature| |#1| (LIST (QUOTE -3783) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -1941) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -3863) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2768 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|)))) (|HasCategory| (-409 (-566)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-365))) (-2768 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-2768 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasSignature| |#1| (LIST (QUOTE -3152) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2768 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -3313) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -1771) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|))))))) (-1173 |Coef| |var| |cen|) -((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) +((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) (((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4408 . T) (-4409 . T) (-4411 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-771)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-771)) (|devaluate| |#1|)))) (|HasCategory| (-771) (QUOTE (-1111))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-771))))) (|HasSignature| |#1| (LIST (QUOTE -3783) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-771))))) (|HasCategory| |#1| (QUOTE (-365))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -1941) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -3863) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (-2768 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-771)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-771)) (|devaluate| |#1|)))) (|HasCategory| (-771) (QUOTE (-1111))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-771))))) (|HasSignature| |#1| (LIST (QUOTE -3152) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-771))))) (|HasCategory| |#1| (QUOTE (-365))) (-2768 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -3313) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -1771) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|))))))) (-1174) -((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}"))) +((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}"))) NIL NIL (-1175) -((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,{}[a1,{}...,{}an])} or \\spad{s}([a1,{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s,{} [a1,{}...,{}an])} returns \\spad{s} arg-scripted by \\spad{[a1,{}...,{}an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s,{} [a1,{}...,{}an])} returns \\spad{s} superscripted by \\spad{[a1,{}...,{}an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s,{} [a1,{}...,{}an])} returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s,{} [a,{}b,{}c])} is equivalent to \\spad{script(s,{}[a,{}b,{}c,{}[],{}[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%."))) +((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,[a1,...,an])} or \\spad{s}([a1,{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s, [a1,...,an])} returns \\spad{s} arg-scripted by \\spad{[a1,...,an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s, [a1,...,an])} returns \\spad{s} superscripted by \\spad{[a1,...,an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s, [a1,...,an])} returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s, [a,b,c])} is equivalent to \\spad{script(s,[a,b,c,[],[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%."))) NIL NIL (-1176 R) -((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r,{} n)} returns the vector of the elementary symmetric functions in \\spad{[r,{}r,{}...,{}r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,{}...,{}rn])} returns the vector of the elementary symmetric functions in the \\spad{\\spad{ri}'s}: \\spad{[r1 + ... + rn,{} r1 r2 + ... + r(n-1) rn,{} ...,{} r1 r2 ... rn]}."))) +((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r, n)} returns the vector of the elementary symmetric functions in \\spad{[r,r,...,r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,...,rn])} returns the vector of the elementary symmetric functions in the \\spad{ri's}: \\spad{[r1 + ... + rn, r1 r2 + ... + r(n-1) rn, ..., r1 r2 ... rn]}."))) NIL NIL (-1177 R) ((|constructor| (NIL "This domain implements symmetric polynomial"))) (((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4412 |has| |#1| (-6 -4412)) (-4408 . T) (-4409 . T) (-4411 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| (-971) (QUOTE (-131))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasAttribute| |#1| (QUOTE -4412))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (-2768 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2768 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| (-971) (QUOTE (-131))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasAttribute| |#1| (QUOTE -4412))) (-1178) -((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,{}tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,{}tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,{}tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,{}tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,{}t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,{}t,{}tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,{}l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,{}l,{}tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,{}t,{}asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,{}t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table."))) +((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,t,tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,l,tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,t,asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table."))) NIL NIL (-1179) -((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,{}tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,{}tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,{}t,{}tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,{}t,{}tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}"))) +((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,t,tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,t,tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}"))) NIL NIL (-1180) -((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} \\indented{2}{building complete representation of Spad programs as objects} \\indented{2}{of a term algebra built from ground terms of type integers,{} foats,{}} \\indented{2}{identifiers,{} and strings.} \\indented{2}{This domain differs from InputForm in that it represents} \\indented{2}{any entity in a Spad program,{} not just expressions.\\space{2}Furthermore,{}} \\indented{2}{while InputForm may contain atoms like vectors and other Lisp} \\indented{2}{objects,{} the Syntax domain is supposed to contain only that} \\indented{2}{initial algebra build from the primitives listed above.} Related Constructors: \\indented{2}{Integer,{} DoubleFloat,{} Identifier,{} String,{} SExpression.} See Also: SExpression,{} InputForm. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if \\spad{`x'} really is a String") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} is \\spad{true} if \\spad{`x'} really is an Identifier") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if \\spad{`x'} really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if \\spad{`x'} really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when \\spad{`x'} is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in \\spad{`x'}.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Identifier|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax \\spad{`x'}. The value returned is itself a syntax if \\spad{`x'} really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when \\spad{`s'} is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).") (($ (|Identifier|) (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} forcibly extracts an identifier from the Syntax domain \\spad{`s'}; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax \\spad{`s'}.") (((|Identifier|) $) "\\spad{coerce(s)} extracts an identifier from the syntax \\spad{`s'}.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax \\spad{`s'}.") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax \\spad{`s'}")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when \\spad{`s'} is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax."))) +((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} \\indented{2}{building complete representation of Spad programs as objects} \\indented{2}{of a term algebra built from ground terms of type integers,{} foats,{}} \\indented{2}{identifiers,{} and strings.} \\indented{2}{This domain differs from InputForm in that it represents} \\indented{2}{any entity in a Spad program,{} not just expressions.\\space{2}Furthermore,{}} \\indented{2}{while InputForm may contain atoms like vectors and other Lisp} \\indented{2}{objects,{} the Syntax domain is supposed to contain only that} \\indented{2}{initial algebra build from the primitives listed above.} Related Constructors: \\indented{2}{Integer,{} DoubleFloat,{} Identifier,{} String,{} SExpression.} See Also: SExpression,{} InputForm. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if \\spad{`x'} really is a String") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} is \\spad{true} if \\spad{`x'} really is an Identifier") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if \\spad{`x'} really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if \\spad{`x'} really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when \\spad{`x'} is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in \\spad{`x'}.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Identifier|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax \\spad{`x'}. The value returned is itself a syntax if \\spad{`x'} really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when \\spad{`s'} is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).") (($ (|Identifier|) (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} forcibly extracts an identifier from the Syntax domain \\spad{`s'}; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax \\spad{`s'}.") (((|Identifier|) $) "\\spad{coerce(s)} extracts an identifier from the syntax \\spad{`s'}.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax \\spad{`s'}.") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax \\spad{`s'}")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when \\spad{`s'} is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax."))) NIL NIL (-1181 N) @@ -4657,11 +4657,11 @@ NIL NIL NIL (-1182 N) -((|constructor| (NIL "This domain implements sized (unsigned) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,{}y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}."))) +((|constructor| (NIL "This domain implements sized (unsigned) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}."))) NIL NIL (-1183 R) -((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,{}lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,{}v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,{}v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,{}lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) +((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL (-1184) @@ -4669,7 +4669,7 @@ NIL NIL NIL (-1185 S) -((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,{}b,{}c,{}d,{}e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,{}llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,{}pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,{}pr,{}r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record"))) +((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,b,c,d,e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,pr,r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record"))) NIL NIL (-1186 S) @@ -4679,17 +4679,17 @@ NIL (-1187 |Key| |Entry|) ((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}"))) ((-4414 . T) (-4415 . T)) -((-12 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2004) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3867) (|devaluate| |#2|)))))) (-2809 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (-2809 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-1099))) (-2809 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -613) (QUOTE (-862))))) +((-12 (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2674) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2636) (|devaluate| |#2|)))))) (-2768 (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (-2768 (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-1099))) (-2768 (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (LIST (QUOTE -613) (QUOTE (-862))))) (-1188 R) -((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a,{} n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a,{} n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,{}...,{}an])} returns \\spad{f(a1,{}...,{}an)} such that if \\spad{\\spad{ai} = tan(\\spad{ui})} then \\spad{f(a1,{}...,{}an) = tan(u1 + ... + un)}."))) +((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a, n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a, n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,...,an])} returns \\spad{f(a1,...,an)} such that if \\spad{ai = tan(ui)} then \\spad{f(a1,...,an) = tan(u1 + ... + un)}."))) NIL NIL (-1189 S |Key| |Entry|) -((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) +((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) NIL NIL (-1190 |Key| |Entry|) -((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) +((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) ((-4415 . T)) NIL (-1191 |Key| |Entry|) @@ -4705,11 +4705,11 @@ NIL NIL NIL (-1194) -((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,{}strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,{}step,{}type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers."))) +((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,step,type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers."))) NIL NIL (-1195) -((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,{}\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,{}s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned."))) +((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned."))) NIL NIL (-1196 R) @@ -4721,17 +4721,17 @@ NIL NIL NIL (-1198 S) -((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}."))) +((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}."))) NIL NIL (-1199) -((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}."))) +((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}."))) NIL NIL (-1200 S) -((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) +((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) ((-4415 . T) (-4414 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) +((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2768 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (-1201 S) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL @@ -4740,15 +4740,15 @@ NIL ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1203 R -2371) -((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) +(-1203 R -2352) +((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL (-1204 R |Row| |Col| M) -((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}."))) +((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}."))) NIL NIL -(-1205 R -2371) +(-1205 R -2352) ((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}"))) NIL ((-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -886) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -886) (|devaluate| |#1|))))) @@ -4761,23 +4761,23 @@ NIL ((-4415 . T) (-4414 . T)) NIL (-1208 |Coef|) -((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}."))) +((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) (((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4409 . T) (-4408 . T) (-4411 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-365)))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-2768 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-365)))) (-1209 |Curve|) -((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,{}ll,{}b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,{}b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}."))) +((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,ll,b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}."))) NIL NIL (-1210) -((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,{}n,{}b,{}r,{}lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,{}sin(n - 1) a],{}...,{}[cos 2 a,{}sin 2 a],{}[cos a,{}sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,{}q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,{}x2,{}x3,{}c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point."))) +((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,n,b,r,lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,sin(n - 1) a],...,[cos 2 a,sin 2 a],[cos a,sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,x2,x3,c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point."))) NIL NIL (-1211 S) -((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,{}n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based"))) +((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based"))) NIL ((|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) -(-1212 -2371) -((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,{}n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}."))) +(-1212 -2352) +((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}."))) NIL NIL (-1213) @@ -4789,11 +4789,11 @@ NIL NIL NIL (-1215 S) -((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l,{} fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a,{} b,{} fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a,{} b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,{}...,{}bm],{}[a1,{}...,{}an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < \\spad{ai}}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,{}d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < \\spad{ai}\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b,{} c)} if neither is among the \\spad{ai}\\spad{'s}.}"))) +((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l, fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a, b, fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a, b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,...,bm],[a1,...,an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,...,bm], [a1,...,an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < ai}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,...,an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < ai\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b, c)} if neither is among the \\spad{ai}\\spad{'s}.}"))) NIL ((|HasCategory| |#1| (QUOTE (-850)))) (-1216) -((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,{}...,{}an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}."))) +((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,...,bm], [a1,...,an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,...,bm], [a1,...,an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,...,an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}."))) NIL NIL (-1217 S) @@ -4821,35 +4821,35 @@ NIL NIL NIL (-1223 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) -((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}."))) +((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}."))) NIL NIL (-1224 |Coef|) -((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,{}k1,{}k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,{}k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = n0..infinity,{}a[n] * x**n)) = sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) +((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,k1,k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = n0..infinity,a[n] * x**n)) = sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) (((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4412 |has| |#1| (-365)) (-4406 |has| |#1| (-365)) (-4408 . T) (-4409 . T) (-4411 . T)) NIL (-1225 S |Coef| UTS) -((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}."))) +((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) NIL ((|HasCategory| |#2| (QUOTE (-365)))) (-1226 |Coef| UTS) -((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}."))) +((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) (((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4412 |has| |#1| (-365)) (-4406 |has| |#1| (-365)) (-4408 . T) (-4409 . T) (-4411 . T)) NIL (-1227 |Coef| UTS) -((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) +((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) (((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4412 |has| |#1| (-365)) (-4406 |has| |#1| (-365)) (-4408 . T) (-4409 . T) (-4411 . T)) -((-2809 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-820)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-850)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-909)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1022)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1150)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175)))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-2809 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-145))))) (-2809 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-147))))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|))))) (|HasCategory| (-566) (QUOTE (-1111))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-909)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1022)))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-820)))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-820)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-850))))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-820)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-850)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-909)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1022)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1150)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1150)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -3783) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -1941) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -3863) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#2| (QUOTE (-909))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-547)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-308)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-145)))))) +((-2768 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-820)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-850)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-909)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1022)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1150)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175)))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2768 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-2768 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-145))))) (-2768 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-147))))) (-2768 (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))))) (-2768 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|))))) (|HasCategory| (-566) (QUOTE (-1111))) (-2768 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-909)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1022)))) (-2768 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-820)))) (-2768 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-820)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-850))))) (-2768 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-820)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-850)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-909)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1022)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1150)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1150)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -3152) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (-2768 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -3313) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -1771) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#2| (QUOTE (-909))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-547)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-308)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-909)))) (-2768 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-145)))))) (-1228 |Coef| |var| |cen|) -((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4416 "*") -2809 (-2432 (|has| |#1| (-365)) (|has| (-1256 |#1| |#2| |#3|) (-820))) (|has| |#1| (-172)) (-2432 (|has| |#1| (-365)) (|has| (-1256 |#1| |#2| |#3|) (-909)))) (-4407 -2809 (-2432 (|has| |#1| (-365)) (|has| (-1256 |#1| |#2| |#3|) (-820))) (|has| |#1| (-558)) (-2432 (|has| |#1| (-365)) (|has| (-1256 |#1| |#2| |#3|) (-909)))) (-4412 |has| |#1| (-365)) (-4406 |has| |#1| (-365)) (-4408 . T) (-4409 . T) (-4411 . T)) -((-2809 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-1022))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-1150))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-2809 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2809 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2809 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|)))))) (-2809 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|))))) (|HasCategory| (-566) (QUOTE (-1111))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-1022))) (|HasCategory| |#1| (QUOTE (-365)))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-2809 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365))))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-1150))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -3783) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -1941) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -3863) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-2809 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-558)))) (-2809 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2809 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145))))) +((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) +(((-4416 "*") -2768 (-2415 (|has| |#1| (-365)) (|has| (-1256 |#1| |#2| |#3|) (-820))) (|has| |#1| (-172)) (-2415 (|has| |#1| (-365)) (|has| (-1256 |#1| |#2| |#3|) (-909)))) (-4407 -2768 (-2415 (|has| |#1| (-365)) (|has| (-1256 |#1| |#2| |#3|) (-820))) (|has| |#1| (-558)) (-2415 (|has| |#1| (-365)) (|has| (-1256 |#1| |#2| |#3|) (-909)))) (-4412 |has| |#1| (-365)) (-4406 |has| |#1| (-365)) (-4408 . T) (-4409 . T) (-4411 . T)) +((-2768 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-1022))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-1150))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2768 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-2768 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2768 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2768 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|)))))) (-2768 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|))))) (|HasCategory| (-566) (QUOTE (-1111))) (-2768 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-1022))) (|HasCategory| |#1| (QUOTE (-365)))) (-2768 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-2768 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365))))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-1150))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -3152) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (-2768 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -3313) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -1771) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-2768 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-558)))) (-2768 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2768 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-2768 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145))))) (-1229 ZP) -((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,{}flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) +((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) NIL NIL (-1230 R S) -((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}."))) +((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}."))) NIL ((|HasCategory| |#1| (QUOTE (-848)))) (-1231 S) @@ -4857,111 +4857,111 @@ NIL NIL ((|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-1099)))) (-1232 |x| R |y| S) -((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) +((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL (-1233 R Q UP) -((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}."))) +((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}."))) NIL NIL (-1234 R UP) -((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,{}h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,{}d,{}c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,{}d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate."))) +((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,d,c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate."))) NIL NIL (-1235 R UP) -((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,{}g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded."))) +((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded."))) NIL NIL (-1236 R U) -((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,{}b,{}l,{}k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,{}b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,{}b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all."))) +((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,b,l,k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all."))) NIL NIL (-1237 |x| R) -((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) +((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) (((-4416 "*") |has| |#2| (-172)) (-4407 |has| |#2| (-558)) (-4410 |has| |#2| (-365)) (-4412 |has| |#2| (-6 -4412)) (-4409 . T) (-4408 . T) (-4411 . T)) -((|HasCategory| |#2| (QUOTE (-909))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-172))) (-2809 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-558)))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (-2809 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2809 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2809 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1150))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE -4412)) (|HasCategory| |#2| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-145))))) +((|HasCategory| |#2| (QUOTE (-909))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-172))) (-2768 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-558)))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2768 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (-2768 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2768 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2768 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1150))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE -4412)) (|HasCategory| |#2| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (-2768 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-145))))) (-1238 R PR S PS) -((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero."))) +((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero."))) NIL NIL (-1239 S R) -((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) +((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) NIL ((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1150)))) (-1240 R) -((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) +((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) (((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4410 |has| |#1| (-365)) (-4412 |has| |#1| (-6 -4412)) (-4409 . T) (-4408 . T) (-4411 . T)) NIL (-1241 S |Coef| |Expon|) -((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) +((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1111))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -3783) (LIST (|devaluate| |#2|) (QUOTE (-1175)))))) +((|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1111))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -3152) (LIST (|devaluate| |#2|) (QUOTE (-1175)))))) (-1242 |Coef| |Expon|) -((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) +((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) (((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4408 . T) (-4409 . T) (-4411 . T)) NIL (-1243 RC P) -((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,{}q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}."))) +((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}."))) NIL NIL (-1244 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) -((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}."))) +((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}."))) NIL NIL (-1245 |Coef|) -((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,{}r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,{}st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms."))) +((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms."))) (((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4412 |has| |#1| (-365)) (-4406 |has| |#1| (-365)) (-4408 . T) (-4409 . T) (-4411 . T)) NIL (-1246 S |Coef| ULS) -((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}."))) +((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) NIL NIL (-1247 |Coef| ULS) -((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}."))) +((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) (((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4412 |has| |#1| (-365)) (-4406 |has| |#1| (-365)) (-4408 . T) (-4409 . T) (-4411 . T)) NIL (-1248 |Coef| ULS) -((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) +((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) (((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4412 |has| |#1| (-365)) (-4406 |has| |#1| (-365)) (-4408 . T) (-4409 . T) (-4411 . T)) -((|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|)))) (|HasCategory| (-409 (-566)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-365))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasSignature| |#1| (LIST (QUOTE -3783) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -1941) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -3863) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) +((|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2768 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|)))) (|HasCategory| (-409 (-566)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-365))) (-2768 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-2768 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasSignature| |#1| (LIST (QUOTE -3152) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2768 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -3313) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -1771) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-1249 |Coef| |var| |cen|) -((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}."))) +((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}."))) (((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4412 |has| |#1| (-365)) (-4406 |has| |#1| (-365)) (-4408 . T) (-4409 . T) (-4411 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|)))) (|HasCategory| (-409 (-566)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-365))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasSignature| |#1| (LIST (QUOTE -3783) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -1941) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -3863) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2768 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|)))) (|HasCategory| (-409 (-566)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-365))) (-2768 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-2768 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasSignature| |#1| (LIST (QUOTE -3152) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2768 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -3313) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -1771) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|))))))) (-1250 R FE |var| |cen|) -((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,{}f(var))}."))) +((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}."))) (((-4416 "*") |has| (-1249 |#2| |#3| |#4|) (-172)) (-4407 |has| (-1249 |#2| |#3| |#4|) (-558)) (-4408 . T) (-4409 . T) (-4411 . T)) -((|HasCategory| (-1249 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-1249 |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1249 |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1249 |#2| |#3| |#4|) (QUOTE (-172))) (-2809 (|HasCategory| (-1249 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-1249 |#2| |#3| |#4|) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| (-1249 |#2| |#3| |#4|) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-1249 |#2| |#3| |#4|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-1249 |#2| |#3| |#4|) (QUOTE (-365))) (|HasCategory| (-1249 |#2| |#3| |#4|) (QUOTE (-454))) (|HasCategory| (-1249 |#2| |#3| |#4|) (QUOTE (-558)))) +((|HasCategory| (-1249 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-1249 |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1249 |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1249 |#2| |#3| |#4|) (QUOTE (-172))) (-2768 (|HasCategory| (-1249 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-1249 |#2| |#3| |#4|) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| (-1249 |#2| |#3| |#4|) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-1249 |#2| |#3| |#4|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-1249 |#2| |#3| |#4|) (QUOTE (-365))) (|HasCategory| (-1249 |#2| |#3| |#4|) (QUOTE (-454))) (|HasCategory| (-1249 |#2| |#3| |#4|) (QUOTE (-558)))) (-1251 A S) -((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) +((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL ((|HasAttribute| |#1| (QUOTE -4415))) (-1252 S) -((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) +((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL NIL (-1253 |Coef1| |Coef2| UTS1 UTS2) -((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}"))) +((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}"))) NIL NIL (-1254 S |Coef|) -((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) +((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-959))) (|HasCategory| |#2| (QUOTE (-1199))) (|HasSignature| |#2| (LIST (QUOTE -3863) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -1941) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1175))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-365)))) +((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-959))) (|HasCategory| |#2| (QUOTE (-1199))) (|HasSignature| |#2| (LIST (QUOTE -1771) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -3313) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1175))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-365)))) (-1255 |Coef|) -((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) +((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) (((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4408 . T) (-4409 . T) (-4411 . T)) NIL (-1256 |Coef| |var| |cen|) -((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) +((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) (((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4408 . T) (-4409 . T) (-4411 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-771)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-771)) (|devaluate| |#1|)))) (|HasCategory| (-771) (QUOTE (-1111))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-771))))) (|HasSignature| |#1| (LIST (QUOTE -3783) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-771))))) (|HasCategory| |#1| (QUOTE (-365))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -1941) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -3863) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (-2768 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-771)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-771)) (|devaluate| |#1|)))) (|HasCategory| (-771) (QUOTE (-1111))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-771))))) (|HasSignature| |#1| (LIST (QUOTE -3152) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-771))))) (|HasCategory| |#1| (QUOTE (-365))) (-2768 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -3313) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -1771) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|))))))) (-1257 |Coef| UTS) -((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,{}f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,{}y[1],{}y[2],{}...,{}y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,{}cl)} is the solution to \\spad{y<n>=f(y,{}y',{}..,{}y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,{}c0,{}c1)} is the solution to \\spad{y'' = f(y,{}y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,{}c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,{}g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) +((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y<n>=f(y,y',..,y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) NIL NIL -(-1258 -2371 UP L UTS) -((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s,{} n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series."))) +(-1258 -2352 UP L UTS) +((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s, n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series."))) NIL ((|HasCategory| |#1| (QUOTE (-558)))) (-1259) @@ -4973,35 +4973,35 @@ NIL NIL NIL (-1261 S R) -((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) +((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) NIL ((|HasCategory| |#2| (QUOTE (-1002))) (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) (-1262 R) -((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) +((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) ((-4415 . T) (-4414 . T)) NIL (-1263 A B) -((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) +((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL (-1264 R) ((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) ((-4415 . T) (-4414 . T)) -((-2809 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2809 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-726))) (|HasCategory| |#1| (QUOTE (-1049))) (-12 (|HasCategory| |#1| (QUOTE (-1002))) (|HasCategory| |#1| (QUOTE (-1049)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) +((-2768 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2768 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2768 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-726))) (|HasCategory| |#1| (QUOTE (-1049))) (-12 (|HasCategory| |#1| (QUOTE (-1002))) (|HasCategory| |#1| (QUOTE (-1049)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-1265) -((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,{}gr,{}n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,{}n,{}s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,{}n,{}dx,{}dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,{}n,{}sx,{}sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,{}n,{}s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,{}n,{}s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,{}n,{}s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,{}n,{}c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,{}n,{}s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,{}n,{}c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,{}n,{}s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,{}n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,{}\\spad{gi},{}n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{\\spad{gi}} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{\\spad{gi}} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,{}num,{}sX,{}sY,{}dX,{}dY,{}pts,{}lns,{}box,{}axes,{}axesC,{}un,{}unC,{}cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(\\spad{gi},{}lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc."))) +((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,gr,n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,n,s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,n,dx,dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,n,sx,sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,n,s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,n,s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,n,s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,n,c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,n,s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,n,c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,n,s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,gi,n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{gi} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{gi} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,num,sX,sY,dX,dY,pts,lns,box,axes,axesC,un,unC,cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(gi,lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc."))) NIL NIL (-1266) -((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,{}c1,{}c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,{}i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,{}x,{}y,{}z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,{}s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,{}s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,{}s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,{}h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,{}d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,{}s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,{}dx,{}dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,{}sx,{}sy,{}sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,{}s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,{}s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,{}s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,{}s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,{}s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}rotx,{}roty,{}rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,{}viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,{}ind,{}pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,{}sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,{}lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,{}s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians."))) +((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,c1,c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,x,y,z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,dx,dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,sx,sy,sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,rotx,roty,rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,ind,pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians."))) NIL NIL (-1267) -((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,{}h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,{}y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport."))) +((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport."))) NIL NIL (-1268) -((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(\\spad{gi})} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}."))) +((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(gi)} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],[p1],...,[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}."))) NIL NIL (-1269) @@ -5017,11 +5017,11 @@ NIL ((-4409 . T) (-4408 . T)) NIL (-1272 R) -((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,{}s,{}st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,{}ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,{}s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally."))) +((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,s,st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally."))) NIL NIL -(-1273 K R UP -2371) -((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}."))) +(-1273 K R UP -2352) +((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL (-1274) @@ -5053,15 +5053,15 @@ NIL NIL NIL (-1281 |vl| R) -((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) +((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) ((-4407 |has| |#2| (-6 -4407)) (-4409 . T) (-4408 . T) (-4411 . T)) NIL -(-1282 S -2371) -((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) +(-1282 S -2352) +((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) NIL ((|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147)))) -(-1283 -2371) -((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) +(-1283 -2352) +((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) ((-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T)) NIL (-1284 |VarSet| R) @@ -5069,7 +5069,7 @@ NIL ((-4407 |has| |#2| (-6 -4407)) (-4409 . T) (-4408 . T) (-4411 . T)) ((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -717) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasAttribute| |#2| (QUOTE -4407))) (-1285 |vl| R) -((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,{}n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}."))) +((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}."))) ((-4407 |has| |#2| (-6 -4407)) (-4409 . T) (-4408 . T) (-4411 . T)) NIL (-1286 R) @@ -5077,7 +5077,7 @@ NIL ((-4407 |has| |#1| (-6 -4407)) (-4409 . T) (-4408 . T) (-4411 . T)) ((|HasCategory| |#1| (QUOTE (-172))) (|HasAttribute| |#1| (QUOTE -4407))) (-1287 R E) -((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,{}e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}."))) +((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}."))) ((-4411 . T) (-4412 |has| |#1| (-6 -4412)) (-4407 |has| |#1| (-6 -4407)) (-4409 . T) (-4408 . T)) ((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4411)) (|HasAttribute| |#1| (QUOTE -4412)) (|HasAttribute| |#1| (QUOTE -4407))) (-1288 |VarSet| R) @@ -5085,15 +5085,15 @@ NIL ((-4407 |has| |#2| (-6 -4407)) (-4409 . T) (-4408 . T) (-4411 . T)) ((|HasCategory| |#2| (QUOTE (-172))) (|HasAttribute| |#2| (QUOTE -4407))) (-1289 A) -((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,{}n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}."))) +((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}."))) NIL NIL (-1290 R |ls| |ls2|) -((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,{}s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}info?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,{}info?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,{}info?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,{}false,{}false,{}false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,{}info?)} returns the same as \\spad{realSolve(ts,{}info?,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?)} returns the same as \\spad{realSolve(ts,{}info?,{}check?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,{}false,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}check?,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?,{}lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,{}false,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,{}info?)} returns the same as \\spad{triangSolve(lp,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,{}info?,{}lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}."))) +((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,info?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,info?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,info?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,false,false,false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,info?)} returns the same as \\spad{realSolve(ts,info?,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?)} returns the same as \\spad{realSolve(ts,info?,check?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,info?,check?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,false,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,info?)} returns the same as \\spad{univariateSolve(lp,info?,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?)} returns the same as \\spad{univariateSolve(lp,info?,check?,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?,lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,false,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,info?)} returns the same as \\spad{triangSolve(lp,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,info?,lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}."))) NIL NIL (-1291 R) -((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}\\spad{'s} exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over the integers,{} \\spad{false} otherwise."))) +((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}\\spad{'s} exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over the integers,{} \\spad{false} otherwise."))) NIL NIL (-1292 |p|) @@ -5116,4 +5116,4 @@ NIL NIL NIL NIL -((-3 NIL 2285060 2285065 2285070 2285075) (-2 NIL 2285040 2285045 2285050 2285055) (-1 NIL 2285020 2285025 2285030 2285035) (0 NIL 2285000 2285005 2285010 2285015) (-1292 "ZMOD.spad" 2284809 2284822 2284938 2284995) (-1291 "ZLINDEP.spad" 2283853 2283864 2284799 2284804) (-1290 "ZDSOLVE.spad" 2273702 2273724 2283843 2283848) (-1289 "YSTREAM.spad" 2273195 2273206 2273692 2273697) (-1288 "XRPOLY.spad" 2272415 2272435 2273051 2273120) (-1287 "XPR.spad" 2270206 2270219 2272133 2272232) (-1286 "XPOLY.spad" 2269761 2269772 2270062 2270131) (-1285 "XPOLYC.spad" 2269078 2269094 2269687 2269756) (-1284 "XPBWPOLY.spad" 2267515 2267535 2268858 2268927) (-1283 "XF.spad" 2265976 2265991 2267417 2267510) (-1282 "XF.spad" 2264417 2264434 2265860 2265865) (-1281 "XFALG.spad" 2261441 2261457 2264343 2264412) (-1280 "XEXPPKG.spad" 2260692 2260718 2261431 2261436) (-1279 "XDPOLY.spad" 2260306 2260322 2260548 2260617) (-1278 "XALG.spad" 2259966 2259977 2260262 2260301) (-1277 "WUTSET.spad" 2255805 2255822 2259612 2259639) (-1276 "WP.spad" 2255004 2255048 2255663 2255730) (-1275 "WHILEAST.spad" 2254802 2254811 2254994 2254999) (-1274 "WHEREAST.spad" 2254473 2254482 2254792 2254797) (-1273 "WFFINTBS.spad" 2252036 2252058 2254463 2254468) (-1272 "WEIER.spad" 2250250 2250261 2252026 2252031) (-1271 "VSPACE.spad" 2249923 2249934 2250218 2250245) (-1270 "VSPACE.spad" 2249616 2249629 2249913 2249918) (-1269 "VOID.spad" 2249293 2249302 2249606 2249611) (-1268 "VIEW.spad" 2246915 2246924 2249283 2249288) (-1267 "VIEWDEF.spad" 2242112 2242121 2246905 2246910) (-1266 "VIEW3D.spad" 2225947 2225956 2242102 2242107) (-1265 "VIEW2D.spad" 2213684 2213693 2225937 2225942) (-1264 "VECTOR.spad" 2212358 2212369 2212609 2212636) (-1263 "VECTOR2.spad" 2210985 2210998 2212348 2212353) (-1262 "VECTCAT.spad" 2208885 2208896 2210953 2210980) (-1261 "VECTCAT.spad" 2206592 2206605 2208662 2208667) (-1260 "VARIABLE.spad" 2206372 2206387 2206582 2206587) (-1259 "UTYPE.spad" 2206016 2206025 2206362 2206367) (-1258 "UTSODETL.spad" 2205309 2205333 2205972 2205977) (-1257 "UTSODE.spad" 2203497 2203517 2205299 2205304) (-1256 "UTS.spad" 2198286 2198314 2201964 2202061) (-1255 "UTSCAT.spad" 2195737 2195753 2198184 2198281) (-1254 "UTSCAT.spad" 2192832 2192850 2195281 2195286) (-1253 "UTS2.spad" 2192425 2192460 2192822 2192827) (-1252 "URAGG.spad" 2187058 2187069 2192415 2192420) (-1251 "URAGG.spad" 2181655 2181668 2187014 2187019) (-1250 "UPXSSING.spad" 2179298 2179324 2180736 2180869) (-1249 "UPXS.spad" 2176446 2176474 2177430 2177579) (-1248 "UPXSCONS.spad" 2174203 2174223 2174578 2174727) (-1247 "UPXSCCA.spad" 2172768 2172788 2174049 2174198) (-1246 "UPXSCCA.spad" 2171475 2171497 2172758 2172763) (-1245 "UPXSCAT.spad" 2170056 2170072 2171321 2171470) (-1244 "UPXS2.spad" 2169597 2169650 2170046 2170051) (-1243 "UPSQFREE.spad" 2168009 2168023 2169587 2169592) (-1242 "UPSCAT.spad" 2165602 2165626 2167907 2168004) (-1241 "UPSCAT.spad" 2162901 2162927 2165208 2165213) (-1240 "UPOLYC.spad" 2157879 2157890 2162743 2162896) (-1239 "UPOLYC.spad" 2152749 2152762 2157615 2157620) (-1238 "UPOLYC2.spad" 2152218 2152237 2152739 2152744) (-1237 "UP.spad" 2149411 2149426 2149804 2149957) (-1236 "UPMP.spad" 2148301 2148314 2149401 2149406) (-1235 "UPDIVP.spad" 2147864 2147878 2148291 2148296) (-1234 "UPDECOMP.spad" 2146101 2146115 2147854 2147859) (-1233 "UPCDEN.spad" 2145308 2145324 2146091 2146096) (-1232 "UP2.spad" 2144670 2144691 2145298 2145303) (-1231 "UNISEG.spad" 2144023 2144034 2144589 2144594) (-1230 "UNISEG2.spad" 2143516 2143529 2143979 2143984) (-1229 "UNIFACT.spad" 2142617 2142629 2143506 2143511) (-1228 "ULS.spad" 2133169 2133197 2134262 2134691) (-1227 "ULSCONS.spad" 2125563 2125583 2125935 2126084) (-1226 "ULSCCAT.spad" 2123292 2123312 2125409 2125558) (-1225 "ULSCCAT.spad" 2121129 2121151 2123248 2123253) (-1224 "ULSCAT.spad" 2119345 2119361 2120975 2121124) (-1223 "ULS2.spad" 2118857 2118910 2119335 2119340) (-1222 "UINT8.spad" 2118734 2118743 2118847 2118852) (-1221 "UINT64.spad" 2118610 2118619 2118724 2118729) (-1220 "UINT32.spad" 2118486 2118495 2118600 2118605) (-1219 "UINT16.spad" 2118362 2118371 2118476 2118481) (-1218 "UFD.spad" 2117427 2117436 2118288 2118357) (-1217 "UFD.spad" 2116554 2116565 2117417 2117422) (-1216 "UDVO.spad" 2115401 2115410 2116544 2116549) (-1215 "UDPO.spad" 2112828 2112839 2115357 2115362) (-1214 "TYPE.spad" 2112760 2112769 2112818 2112823) (-1213 "TYPEAST.spad" 2112679 2112688 2112750 2112755) (-1212 "TWOFACT.spad" 2111329 2111344 2112669 2112674) (-1211 "TUPLE.spad" 2110813 2110824 2111228 2111233) (-1210 "TUBETOOL.spad" 2107650 2107659 2110803 2110808) (-1209 "TUBE.spad" 2106291 2106308 2107640 2107645) (-1208 "TS.spad" 2104880 2104896 2105856 2105953) (-1207 "TSETCAT.spad" 2092007 2092024 2104848 2104875) (-1206 "TSETCAT.spad" 2079120 2079139 2091963 2091968) (-1205 "TRMANIP.spad" 2073486 2073503 2078826 2078831) (-1204 "TRIMAT.spad" 2072445 2072470 2073476 2073481) (-1203 "TRIGMNIP.spad" 2070962 2070979 2072435 2072440) (-1202 "TRIGCAT.spad" 2070474 2070483 2070952 2070957) (-1201 "TRIGCAT.spad" 2069984 2069995 2070464 2070469) (-1200 "TREE.spad" 2068555 2068566 2069591 2069618) (-1199 "TRANFUN.spad" 2068386 2068395 2068545 2068550) (-1198 "TRANFUN.spad" 2068215 2068226 2068376 2068381) (-1197 "TOPSP.spad" 2067889 2067898 2068205 2068210) (-1196 "TOOLSIGN.spad" 2067552 2067563 2067879 2067884) (-1195 "TEXTFILE.spad" 2066109 2066118 2067542 2067547) (-1194 "TEX.spad" 2063241 2063250 2066099 2066104) (-1193 "TEX1.spad" 2062797 2062808 2063231 2063236) (-1192 "TEMUTL.spad" 2062352 2062361 2062787 2062792) (-1191 "TBCMPPK.spad" 2060445 2060468 2062342 2062347) (-1190 "TBAGG.spad" 2059481 2059504 2060425 2060440) (-1189 "TBAGG.spad" 2058525 2058550 2059471 2059476) (-1188 "TANEXP.spad" 2057901 2057912 2058515 2058520) (-1187 "TABLE.spad" 2056312 2056335 2056582 2056609) (-1186 "TABLEAU.spad" 2055793 2055804 2056302 2056307) (-1185 "TABLBUMP.spad" 2052576 2052587 2055783 2055788) (-1184 "SYSTEM.spad" 2051804 2051813 2052566 2052571) (-1183 "SYSSOLP.spad" 2049277 2049288 2051794 2051799) (-1182 "SYSNNI.spad" 2048457 2048468 2049267 2049272) (-1181 "SYSINT.spad" 2047861 2047872 2048447 2048452) (-1180 "SYNTAX.spad" 2044055 2044064 2047851 2047856) (-1179 "SYMTAB.spad" 2042111 2042120 2044045 2044050) (-1178 "SYMS.spad" 2038096 2038105 2042101 2042106) (-1177 "SYMPOLY.spad" 2037103 2037114 2037185 2037312) (-1176 "SYMFUNC.spad" 2036578 2036589 2037093 2037098) (-1175 "SYMBOL.spad" 2034005 2034014 2036568 2036573) (-1174 "SWITCH.spad" 2030762 2030771 2033995 2034000) (-1173 "SUTS.spad" 2027661 2027689 2029229 2029326) (-1172 "SUPXS.spad" 2024796 2024824 2025793 2025942) (-1171 "SUP.spad" 2021601 2021612 2022382 2022535) (-1170 "SUPFRACF.spad" 2020706 2020724 2021591 2021596) (-1169 "SUP2.spad" 2020096 2020109 2020696 2020701) (-1168 "SUMRF.spad" 2019062 2019073 2020086 2020091) (-1167 "SUMFS.spad" 2018695 2018712 2019052 2019057) (-1166 "SULS.spad" 2009234 2009262 2010340 2010769) (-1165 "SUCHTAST.spad" 2009003 2009012 2009224 2009229) (-1164 "SUCH.spad" 2008683 2008698 2008993 2008998) (-1163 "SUBSPACE.spad" 2000690 2000705 2008673 2008678) (-1162 "SUBRESP.spad" 1999850 1999864 2000646 2000651) (-1161 "STTF.spad" 1995949 1995965 1999840 1999845) (-1160 "STTFNC.spad" 1992417 1992433 1995939 1995944) (-1159 "STTAYLOR.spad" 1984815 1984826 1992298 1992303) (-1158 "STRTBL.spad" 1983320 1983337 1983469 1983496) (-1157 "STRING.spad" 1982729 1982738 1982743 1982770) (-1156 "STRICAT.spad" 1982517 1982526 1982697 1982724) (-1155 "STREAM.spad" 1979375 1979386 1982042 1982057) (-1154 "STREAM3.spad" 1978920 1978935 1979365 1979370) (-1153 "STREAM2.spad" 1977988 1978001 1978910 1978915) (-1152 "STREAM1.spad" 1977692 1977703 1977978 1977983) (-1151 "STINPROD.spad" 1976598 1976614 1977682 1977687) (-1150 "STEP.spad" 1975799 1975808 1976588 1976593) (-1149 "STBL.spad" 1974325 1974353 1974492 1974507) (-1148 "STAGG.spad" 1973400 1973411 1974315 1974320) (-1147 "STAGG.spad" 1972473 1972486 1973390 1973395) (-1146 "STACK.spad" 1971824 1971835 1972080 1972107) (-1145 "SREGSET.spad" 1969528 1969545 1971470 1971497) (-1144 "SRDCMPK.spad" 1968073 1968093 1969518 1969523) (-1143 "SRAGG.spad" 1963170 1963179 1968041 1968068) (-1142 "SRAGG.spad" 1958287 1958298 1963160 1963165) (-1141 "SQMATRIX.spad" 1955903 1955921 1956819 1956906) (-1140 "SPLTREE.spad" 1950455 1950468 1955339 1955366) (-1139 "SPLNODE.spad" 1947043 1947056 1950445 1950450) (-1138 "SPFCAT.spad" 1945820 1945829 1947033 1947038) (-1137 "SPECOUT.spad" 1944370 1944379 1945810 1945815) (-1136 "SPADXPT.spad" 1936509 1936518 1944360 1944365) (-1135 "spad-parser.spad" 1935974 1935983 1936499 1936504) (-1134 "SPADAST.spad" 1935675 1935684 1935964 1935969) (-1133 "SPACEC.spad" 1919688 1919699 1935665 1935670) (-1132 "SPACE3.spad" 1919464 1919475 1919678 1919683) (-1131 "SORTPAK.spad" 1919009 1919022 1919420 1919425) (-1130 "SOLVETRA.spad" 1916766 1916777 1918999 1919004) (-1129 "SOLVESER.spad" 1915286 1915297 1916756 1916761) (-1128 "SOLVERAD.spad" 1911296 1911307 1915276 1915281) (-1127 "SOLVEFOR.spad" 1909716 1909734 1911286 1911291) (-1126 "SNTSCAT.spad" 1909316 1909333 1909684 1909711) (-1125 "SMTS.spad" 1907576 1907602 1908881 1908978) (-1124 "SMP.spad" 1905051 1905071 1905441 1905568) (-1123 "SMITH.spad" 1903894 1903919 1905041 1905046) (-1122 "SMATCAT.spad" 1902004 1902034 1903838 1903889) (-1121 "SMATCAT.spad" 1900046 1900078 1901882 1901887) (-1120 "SKAGG.spad" 1899007 1899018 1900014 1900041) (-1119 "SINT.spad" 1897833 1897842 1898873 1899002) (-1118 "SIMPAN.spad" 1897561 1897570 1897823 1897828) (-1117 "SIG.spad" 1896889 1896898 1897551 1897556) (-1116 "SIGNRF.spad" 1895997 1896008 1896879 1896884) (-1115 "SIGNEF.spad" 1895266 1895283 1895987 1895992) (-1114 "SIGAST.spad" 1894647 1894656 1895256 1895261) (-1113 "SHP.spad" 1892565 1892580 1894603 1894608) (-1112 "SHDP.spad" 1882276 1882303 1882785 1882916) (-1111 "SGROUP.spad" 1881884 1881893 1882266 1882271) (-1110 "SGROUP.spad" 1881490 1881501 1881874 1881879) (-1109 "SGCF.spad" 1874371 1874380 1881480 1881485) (-1108 "SFRTCAT.spad" 1873299 1873316 1874339 1874366) (-1107 "SFRGCD.spad" 1872362 1872382 1873289 1873294) (-1106 "SFQCMPK.spad" 1866999 1867019 1872352 1872357) (-1105 "SFORT.spad" 1866434 1866448 1866989 1866994) (-1104 "SEXOF.spad" 1866277 1866317 1866424 1866429) (-1103 "SEX.spad" 1866169 1866178 1866267 1866272) (-1102 "SEXCAT.spad" 1863720 1863760 1866159 1866164) (-1101 "SET.spad" 1862020 1862031 1863141 1863180) (-1100 "SETMN.spad" 1860454 1860471 1862010 1862015) (-1099 "SETCAT.spad" 1859776 1859785 1860444 1860449) (-1098 "SETCAT.spad" 1859096 1859107 1859766 1859771) (-1097 "SETAGG.spad" 1855617 1855628 1859076 1859091) (-1096 "SETAGG.spad" 1852146 1852159 1855607 1855612) (-1095 "SEQAST.spad" 1851849 1851858 1852136 1852141) (-1094 "SEGXCAT.spad" 1850971 1850984 1851839 1851844) (-1093 "SEG.spad" 1850784 1850795 1850890 1850895) (-1092 "SEGCAT.spad" 1849691 1849702 1850774 1850779) (-1091 "SEGBIND.spad" 1848763 1848774 1849646 1849651) (-1090 "SEGBIND2.spad" 1848459 1848472 1848753 1848758) (-1089 "SEGAST.spad" 1848173 1848182 1848449 1848454) (-1088 "SEG2.spad" 1847598 1847611 1848129 1848134) (-1087 "SDVAR.spad" 1846874 1846885 1847588 1847593) (-1086 "SDPOL.spad" 1844300 1844311 1844591 1844718) (-1085 "SCPKG.spad" 1842379 1842390 1844290 1844295) (-1084 "SCOPE.spad" 1841528 1841537 1842369 1842374) (-1083 "SCACHE.spad" 1840210 1840221 1841518 1841523) (-1082 "SASTCAT.spad" 1840119 1840128 1840200 1840205) (-1081 "SAOS.spad" 1839991 1840000 1840109 1840114) (-1080 "SAERFFC.spad" 1839704 1839724 1839981 1839986) (-1079 "SAE.spad" 1837879 1837895 1838490 1838625) (-1078 "SAEFACT.spad" 1837580 1837600 1837869 1837874) (-1077 "RURPK.spad" 1835221 1835237 1837570 1837575) (-1076 "RULESET.spad" 1834662 1834686 1835211 1835216) (-1075 "RULE.spad" 1832866 1832890 1834652 1834657) (-1074 "RULECOLD.spad" 1832718 1832731 1832856 1832861) (-1073 "RTVALUE.spad" 1832451 1832460 1832708 1832713) (-1072 "RSTRCAST.spad" 1832168 1832177 1832441 1832446) (-1071 "RSETGCD.spad" 1828546 1828566 1832158 1832163) (-1070 "RSETCAT.spad" 1818330 1818347 1828514 1828541) (-1069 "RSETCAT.spad" 1808134 1808153 1818320 1818325) (-1068 "RSDCMPK.spad" 1806586 1806606 1808124 1808129) (-1067 "RRCC.spad" 1804970 1805000 1806576 1806581) (-1066 "RRCC.spad" 1803352 1803384 1804960 1804965) (-1065 "RPTAST.spad" 1803054 1803063 1803342 1803347) (-1064 "RPOLCAT.spad" 1782414 1782429 1802922 1803049) (-1063 "RPOLCAT.spad" 1761488 1761505 1781998 1782003) (-1062 "ROUTINE.spad" 1757351 1757360 1760135 1760162) (-1061 "ROMAN.spad" 1756679 1756688 1757217 1757346) (-1060 "ROIRC.spad" 1755759 1755791 1756669 1756674) (-1059 "RNS.spad" 1754662 1754671 1755661 1755754) (-1058 "RNS.spad" 1753651 1753662 1754652 1754657) (-1057 "RNG.spad" 1753386 1753395 1753641 1753646) (-1056 "RMODULE.spad" 1753151 1753162 1753376 1753381) (-1055 "RMCAT2.spad" 1752559 1752616 1753141 1753146) (-1054 "RMATRIX.spad" 1751383 1751402 1751726 1751765) (-1053 "RMATCAT.spad" 1746916 1746947 1751339 1751378) (-1052 "RMATCAT.spad" 1742339 1742372 1746764 1746769) (-1051 "RLINSET.spad" 1741733 1741744 1742329 1742334) (-1050 "RINTERP.spad" 1741621 1741641 1741723 1741728) (-1049 "RING.spad" 1741091 1741100 1741601 1741616) (-1048 "RING.spad" 1740569 1740580 1741081 1741086) (-1047 "RIDIST.spad" 1739953 1739962 1740559 1740564) (-1046 "RGCHAIN.spad" 1738532 1738548 1739438 1739465) (-1045 "RGBCSPC.spad" 1738313 1738325 1738522 1738527) (-1044 "RGBCMDL.spad" 1737843 1737855 1738303 1738308) (-1043 "RF.spad" 1735457 1735468 1737833 1737838) (-1042 "RFFACTOR.spad" 1734919 1734930 1735447 1735452) (-1041 "RFFACT.spad" 1734654 1734666 1734909 1734914) (-1040 "RFDIST.spad" 1733642 1733651 1734644 1734649) (-1039 "RETSOL.spad" 1733059 1733072 1733632 1733637) (-1038 "RETRACT.spad" 1732487 1732498 1733049 1733054) (-1037 "RETRACT.spad" 1731913 1731926 1732477 1732482) (-1036 "RETAST.spad" 1731725 1731734 1731903 1731908) (-1035 "RESULT.spad" 1729785 1729794 1730372 1730399) (-1034 "RESRING.spad" 1729132 1729179 1729723 1729780) (-1033 "RESLATC.spad" 1728456 1728467 1729122 1729127) (-1032 "REPSQ.spad" 1728185 1728196 1728446 1728451) (-1031 "REP.spad" 1725737 1725746 1728175 1728180) (-1030 "REPDB.spad" 1725442 1725453 1725727 1725732) (-1029 "REP2.spad" 1715014 1715025 1725284 1725289) (-1028 "REP1.spad" 1709004 1709015 1714964 1714969) (-1027 "REGSET.spad" 1706801 1706818 1708650 1708677) (-1026 "REF.spad" 1706130 1706141 1706756 1706761) (-1025 "REDORDER.spad" 1705306 1705323 1706120 1706125) (-1024 "RECLOS.spad" 1704089 1704109 1704793 1704886) (-1023 "REALSOLV.spad" 1703221 1703230 1704079 1704084) (-1022 "REAL.spad" 1703093 1703102 1703211 1703216) (-1021 "REAL0Q.spad" 1700375 1700390 1703083 1703088) (-1020 "REAL0.spad" 1697203 1697218 1700365 1700370) (-1019 "RDUCEAST.spad" 1696924 1696933 1697193 1697198) (-1018 "RDIV.spad" 1696575 1696600 1696914 1696919) (-1017 "RDIST.spad" 1696138 1696149 1696565 1696570) (-1016 "RDETRS.spad" 1694934 1694952 1696128 1696133) (-1015 "RDETR.spad" 1693041 1693059 1694924 1694929) (-1014 "RDEEFS.spad" 1692114 1692131 1693031 1693036) (-1013 "RDEEF.spad" 1691110 1691127 1692104 1692109) (-1012 "RCFIELD.spad" 1688296 1688305 1691012 1691105) (-1011 "RCFIELD.spad" 1685568 1685579 1688286 1688291) (-1010 "RCAGG.spad" 1683480 1683491 1685558 1685563) (-1009 "RCAGG.spad" 1681319 1681332 1683399 1683404) (-1008 "RATRET.spad" 1680679 1680690 1681309 1681314) (-1007 "RATFACT.spad" 1680371 1680383 1680669 1680674) (-1006 "RANDSRC.spad" 1679690 1679699 1680361 1680366) (-1005 "RADUTIL.spad" 1679444 1679453 1679680 1679685) (-1004 "RADIX.spad" 1676345 1676359 1677911 1678004) (-1003 "RADFF.spad" 1674758 1674795 1674877 1675033) (-1002 "RADCAT.spad" 1674351 1674360 1674748 1674753) (-1001 "RADCAT.spad" 1673942 1673953 1674341 1674346) (-1000 "QUEUE.spad" 1673284 1673295 1673549 1673576) (-999 "QUAT.spad" 1671866 1671876 1672208 1672273) (-998 "QUATCT2.spad" 1671485 1671503 1671856 1671861) (-997 "QUATCAT.spad" 1669650 1669660 1671415 1671480) (-996 "QUATCAT.spad" 1667566 1667578 1669333 1669338) (-995 "QUAGG.spad" 1666392 1666402 1667534 1667561) (-994 "QQUTAST.spad" 1666161 1666169 1666382 1666387) (-993 "QFORM.spad" 1665624 1665638 1666151 1666156) (-992 "QFCAT.spad" 1664327 1664337 1665526 1665619) (-991 "QFCAT.spad" 1662621 1662633 1663822 1663827) (-990 "QFCAT2.spad" 1662312 1662328 1662611 1662616) (-989 "QEQUAT.spad" 1661869 1661877 1662302 1662307) (-988 "QCMPACK.spad" 1656616 1656635 1661859 1661864) (-987 "QALGSET.spad" 1652691 1652723 1656530 1656535) (-986 "QALGSET2.spad" 1650687 1650705 1652681 1652686) (-985 "PWFFINTB.spad" 1647997 1648018 1650677 1650682) (-984 "PUSHVAR.spad" 1647326 1647345 1647987 1647992) (-983 "PTRANFN.spad" 1643452 1643462 1647316 1647321) (-982 "PTPACK.spad" 1640540 1640550 1643442 1643447) (-981 "PTFUNC2.spad" 1640361 1640375 1640530 1640535) (-980 "PTCAT.spad" 1639610 1639620 1640329 1640356) (-979 "PSQFR.spad" 1638917 1638941 1639600 1639605) (-978 "PSEUDLIN.spad" 1637775 1637785 1638907 1638912) (-977 "PSETPK.spad" 1623208 1623224 1637653 1637658) (-976 "PSETCAT.spad" 1617128 1617151 1623188 1623203) (-975 "PSETCAT.spad" 1611022 1611047 1617084 1617089) (-974 "PSCURVE.spad" 1610005 1610013 1611012 1611017) (-973 "PSCAT.spad" 1608772 1608801 1609903 1610000) (-972 "PSCAT.spad" 1607629 1607660 1608762 1608767) (-971 "PRTITION.spad" 1606574 1606582 1607619 1607624) (-970 "PRTDAST.spad" 1606293 1606301 1606564 1606569) (-969 "PRS.spad" 1595855 1595872 1606249 1606254) (-968 "PRQAGG.spad" 1595286 1595296 1595823 1595850) (-967 "PROPLOG.spad" 1594581 1594589 1595276 1595281) (-966 "PROPFRML.spad" 1593389 1593400 1594571 1594576) (-965 "PROPERTY.spad" 1592875 1592883 1593379 1593384) (-964 "PRODUCT.spad" 1590555 1590567 1590841 1590896) (-963 "PR.spad" 1588941 1588953 1589646 1589773) (-962 "PRINT.spad" 1588693 1588701 1588931 1588936) (-961 "PRIMES.spad" 1586944 1586954 1588683 1588688) (-960 "PRIMELT.spad" 1584925 1584939 1586934 1586939) (-959 "PRIMCAT.spad" 1584548 1584556 1584915 1584920) (-958 "PRIMARR.spad" 1583553 1583563 1583731 1583758) (-957 "PRIMARR2.spad" 1582276 1582288 1583543 1583548) (-956 "PREASSOC.spad" 1581648 1581660 1582266 1582271) (-955 "PPCURVE.spad" 1580785 1580793 1581638 1581643) (-954 "PORTNUM.spad" 1580560 1580568 1580775 1580780) (-953 "POLYROOT.spad" 1579389 1579411 1580516 1580521) (-952 "POLY.spad" 1576722 1576732 1577239 1577366) (-951 "POLYLIFT.spad" 1575983 1576006 1576712 1576717) (-950 "POLYCATQ.spad" 1574085 1574107 1575973 1575978) (-949 "POLYCAT.spad" 1567491 1567512 1573953 1574080) (-948 "POLYCAT.spad" 1560235 1560258 1566699 1566704) (-947 "POLY2UP.spad" 1559683 1559697 1560225 1560230) (-946 "POLY2.spad" 1559278 1559290 1559673 1559678) (-945 "POLUTIL.spad" 1558219 1558248 1559234 1559239) (-944 "POLTOPOL.spad" 1556967 1556982 1558209 1558214) (-943 "POINT.spad" 1555805 1555815 1555892 1555919) (-942 "PNTHEORY.spad" 1552471 1552479 1555795 1555800) (-941 "PMTOOLS.spad" 1551228 1551242 1552461 1552466) (-940 "PMSYM.spad" 1550773 1550783 1551218 1551223) (-939 "PMQFCAT.spad" 1550360 1550374 1550763 1550768) (-938 "PMPRED.spad" 1549829 1549843 1550350 1550355) (-937 "PMPREDFS.spad" 1549273 1549295 1549819 1549824) (-936 "PMPLCAT.spad" 1548343 1548361 1549205 1549210) (-935 "PMLSAGG.spad" 1547924 1547938 1548333 1548338) (-934 "PMKERNEL.spad" 1547491 1547503 1547914 1547919) (-933 "PMINS.spad" 1547067 1547077 1547481 1547486) (-932 "PMFS.spad" 1546640 1546658 1547057 1547062) (-931 "PMDOWN.spad" 1545926 1545940 1546630 1546635) (-930 "PMASS.spad" 1544934 1544942 1545916 1545921) (-929 "PMASSFS.spad" 1543899 1543915 1544924 1544929) (-928 "PLOTTOOL.spad" 1543679 1543687 1543889 1543894) (-927 "PLOT.spad" 1538510 1538518 1543669 1543674) (-926 "PLOT3D.spad" 1534930 1534938 1538500 1538505) (-925 "PLOT1.spad" 1534071 1534081 1534920 1534925) (-924 "PLEQN.spad" 1521287 1521314 1534061 1534066) (-923 "PINTERP.spad" 1520903 1520922 1521277 1521282) (-922 "PINTERPA.spad" 1520685 1520701 1520893 1520898) (-921 "PI.spad" 1520292 1520300 1520659 1520680) (-920 "PID.spad" 1519248 1519256 1520218 1520287) (-919 "PICOERCE.spad" 1518905 1518915 1519238 1519243) (-918 "PGROEB.spad" 1517502 1517516 1518895 1518900) (-917 "PGE.spad" 1508755 1508763 1517492 1517497) (-916 "PGCD.spad" 1507637 1507654 1508745 1508750) (-915 "PFRPAC.spad" 1506780 1506790 1507627 1507632) (-914 "PFR.spad" 1503437 1503447 1506682 1506775) (-913 "PFOTOOLS.spad" 1502695 1502711 1503427 1503432) (-912 "PFOQ.spad" 1502065 1502083 1502685 1502690) (-911 "PFO.spad" 1501484 1501511 1502055 1502060) (-910 "PF.spad" 1501058 1501070 1501289 1501382) (-909 "PFECAT.spad" 1498724 1498732 1500984 1501053) (-908 "PFECAT.spad" 1496418 1496428 1498680 1498685) (-907 "PFBRU.spad" 1494288 1494300 1496408 1496413) (-906 "PFBR.spad" 1491826 1491849 1494278 1494283) (-905 "PERM.spad" 1487507 1487517 1491656 1491671) (-904 "PERMGRP.spad" 1482243 1482253 1487497 1487502) (-903 "PERMCAT.spad" 1480795 1480805 1482223 1482238) (-902 "PERMAN.spad" 1479327 1479341 1480785 1480790) (-901 "PENDTREE.spad" 1478666 1478676 1478956 1478961) (-900 "PDRING.spad" 1477157 1477167 1478646 1478661) (-899 "PDRING.spad" 1475656 1475668 1477147 1477152) (-898 "PDEPROB.spad" 1474671 1474679 1475646 1475651) (-897 "PDEPACK.spad" 1468673 1468681 1474661 1474666) (-896 "PDECOMP.spad" 1468135 1468152 1468663 1468668) (-895 "PDECAT.spad" 1466489 1466497 1468125 1468130) (-894 "PCOMP.spad" 1466340 1466353 1466479 1466484) (-893 "PBWLB.spad" 1464922 1464939 1466330 1466335) (-892 "PATTERN.spad" 1459353 1459363 1464912 1464917) (-891 "PATTERN2.spad" 1459089 1459101 1459343 1459348) (-890 "PATTERN1.spad" 1457391 1457407 1459079 1459084) (-889 "PATRES.spad" 1454938 1454950 1457381 1457386) (-888 "PATRES2.spad" 1454600 1454614 1454928 1454933) (-887 "PATMATCH.spad" 1452757 1452788 1454308 1454313) (-886 "PATMAB.spad" 1452182 1452192 1452747 1452752) (-885 "PATLRES.spad" 1451266 1451280 1452172 1452177) (-884 "PATAB.spad" 1451030 1451040 1451256 1451261) (-883 "PARTPERM.spad" 1448392 1448400 1451020 1451025) (-882 "PARSURF.spad" 1447820 1447848 1448382 1448387) (-881 "PARSU2.spad" 1447615 1447631 1447810 1447815) (-880 "script-parser.spad" 1447135 1447143 1447605 1447610) (-879 "PARSCURV.spad" 1446563 1446591 1447125 1447130) (-878 "PARSC2.spad" 1446352 1446368 1446553 1446558) (-877 "PARPCURV.spad" 1445810 1445838 1446342 1446347) (-876 "PARPC2.spad" 1445599 1445615 1445800 1445805) (-875 "PAN2EXPR.spad" 1445011 1445019 1445589 1445594) (-874 "PALETTE.spad" 1443981 1443989 1445001 1445006) (-873 "PAIR.spad" 1442964 1442977 1443569 1443574) (-872 "PADICRC.spad" 1440294 1440312 1441469 1441562) (-871 "PADICRAT.spad" 1438309 1438321 1438530 1438623) (-870 "PADIC.spad" 1438004 1438016 1438235 1438304) (-869 "PADICCT.spad" 1436545 1436557 1437930 1437999) (-868 "PADEPAC.spad" 1435224 1435243 1436535 1436540) (-867 "PADE.spad" 1433964 1433980 1435214 1435219) (-866 "OWP.spad" 1433204 1433234 1433822 1433889) (-865 "OVERSET.spad" 1432777 1432785 1433194 1433199) (-864 "OVAR.spad" 1432558 1432581 1432767 1432772) (-863 "OUT.spad" 1431642 1431650 1432548 1432553) (-862 "OUTFORM.spad" 1420938 1420946 1431632 1431637) (-861 "OUTBFILE.spad" 1420356 1420364 1420928 1420933) (-860 "OUTBCON.spad" 1419354 1419362 1420346 1420351) (-859 "OUTBCON.spad" 1418350 1418360 1419344 1419349) (-858 "OSI.spad" 1417825 1417833 1418340 1418345) (-857 "OSGROUP.spad" 1417743 1417751 1417815 1417820) (-856 "ORTHPOL.spad" 1416204 1416214 1417660 1417665) (-855 "OREUP.spad" 1415657 1415685 1415884 1415923) (-854 "ORESUP.spad" 1414956 1414980 1415337 1415376) (-853 "OREPCTO.spad" 1412775 1412787 1414876 1414881) (-852 "OREPCAT.spad" 1406832 1406842 1412731 1412770) (-851 "OREPCAT.spad" 1400779 1400791 1406680 1406685) (-850 "ORDSET.spad" 1399945 1399953 1400769 1400774) (-849 "ORDSET.spad" 1399109 1399119 1399935 1399940) (-848 "ORDRING.spad" 1398499 1398507 1399089 1399104) (-847 "ORDRING.spad" 1397897 1397907 1398489 1398494) (-846 "ORDMON.spad" 1397752 1397760 1397887 1397892) (-845 "ORDFUNS.spad" 1396878 1396894 1397742 1397747) (-844 "ORDFIN.spad" 1396698 1396706 1396868 1396873) (-843 "ORDCOMP.spad" 1395163 1395173 1396245 1396274) (-842 "ORDCOMP2.spad" 1394448 1394460 1395153 1395158) (-841 "OPTPROB.spad" 1393086 1393094 1394438 1394443) (-840 "OPTPACK.spad" 1385471 1385479 1393076 1393081) (-839 "OPTCAT.spad" 1383146 1383154 1385461 1385466) (-838 "OPSIG.spad" 1382798 1382806 1383136 1383141) (-837 "OPQUERY.spad" 1382347 1382355 1382788 1382793) (-836 "OP.spad" 1382089 1382099 1382169 1382236) (-835 "OPERCAT.spad" 1381553 1381563 1382079 1382084) (-834 "OPERCAT.spad" 1381015 1381027 1381543 1381548) (-833 "ONECOMP.spad" 1379760 1379770 1380562 1380591) (-832 "ONECOMP2.spad" 1379178 1379190 1379750 1379755) (-831 "OMSERVER.spad" 1378180 1378188 1379168 1379173) (-830 "OMSAGG.spad" 1377968 1377978 1378136 1378175) (-829 "OMPKG.spad" 1376580 1376588 1377958 1377963) (-828 "OM.spad" 1375545 1375553 1376570 1376575) (-827 "OMLO.spad" 1374970 1374982 1375431 1375470) (-826 "OMEXPR.spad" 1374804 1374814 1374960 1374965) (-825 "OMERR.spad" 1374347 1374355 1374794 1374799) (-824 "OMERRK.spad" 1373381 1373389 1374337 1374342) (-823 "OMENC.spad" 1372725 1372733 1373371 1373376) (-822 "OMDEV.spad" 1367014 1367022 1372715 1372720) (-821 "OMCONN.spad" 1366423 1366431 1367004 1367009) (-820 "OINTDOM.spad" 1366186 1366194 1366349 1366418) (-819 "OFMONOID.spad" 1362373 1362383 1366176 1366181) (-818 "ODVAR.spad" 1361634 1361644 1362363 1362368) (-817 "ODR.spad" 1361278 1361304 1361446 1361595) (-816 "ODPOL.spad" 1358660 1358670 1359000 1359127) (-815 "ODP.spad" 1348507 1348527 1348880 1349011) (-814 "ODETOOLS.spad" 1347090 1347109 1348497 1348502) (-813 "ODESYS.spad" 1344740 1344757 1347080 1347085) (-812 "ODERTRIC.spad" 1340681 1340698 1344697 1344702) (-811 "ODERED.spad" 1340068 1340092 1340671 1340676) (-810 "ODERAT.spad" 1337619 1337636 1340058 1340063) (-809 "ODEPRRIC.spad" 1334510 1334532 1337609 1337614) (-808 "ODEPROB.spad" 1333767 1333775 1334500 1334505) (-807 "ODEPRIM.spad" 1331041 1331063 1333757 1333762) (-806 "ODEPAL.spad" 1330417 1330441 1331031 1331036) (-805 "ODEPACK.spad" 1317019 1317027 1330407 1330412) (-804 "ODEINT.spad" 1316450 1316466 1317009 1317014) (-803 "ODEIFTBL.spad" 1313845 1313853 1316440 1316445) (-802 "ODEEF.spad" 1309212 1309228 1313835 1313840) (-801 "ODECONST.spad" 1308731 1308749 1309202 1309207) (-800 "ODECAT.spad" 1307327 1307335 1308721 1308726) (-799 "OCT.spad" 1305465 1305475 1306181 1306220) (-798 "OCTCT2.spad" 1305109 1305130 1305455 1305460) (-797 "OC.spad" 1302883 1302893 1305065 1305104) (-796 "OC.spad" 1300382 1300394 1302566 1302571) (-795 "OCAMON.spad" 1300230 1300238 1300372 1300377) (-794 "OASGP.spad" 1300045 1300053 1300220 1300225) (-793 "OAMONS.spad" 1299565 1299573 1300035 1300040) (-792 "OAMON.spad" 1299426 1299434 1299555 1299560) (-791 "OAGROUP.spad" 1299288 1299296 1299416 1299421) (-790 "NUMTUBE.spad" 1298875 1298891 1299278 1299283) (-789 "NUMQUAD.spad" 1286737 1286745 1298865 1298870) (-788 "NUMODE.spad" 1277873 1277881 1286727 1286732) (-787 "NUMINT.spad" 1275431 1275439 1277863 1277868) (-786 "NUMFMT.spad" 1274271 1274279 1275421 1275426) (-785 "NUMERIC.spad" 1266343 1266353 1274076 1274081) (-784 "NTSCAT.spad" 1264845 1264861 1266311 1266338) (-783 "NTPOLFN.spad" 1264390 1264400 1264762 1264767) (-782 "NSUP.spad" 1257436 1257446 1261976 1262129) (-781 "NSUP2.spad" 1256828 1256840 1257426 1257431) (-780 "NSMP.spad" 1253059 1253078 1253367 1253494) (-779 "NREP.spad" 1251431 1251445 1253049 1253054) (-778 "NPCOEF.spad" 1250677 1250697 1251421 1251426) (-777 "NORMRETR.spad" 1250275 1250314 1250667 1250672) (-776 "NORMPK.spad" 1248177 1248196 1250265 1250270) (-775 "NORMMA.spad" 1247865 1247891 1248167 1248172) (-774 "NONE.spad" 1247606 1247614 1247855 1247860) (-773 "NONE1.spad" 1247282 1247292 1247596 1247601) (-772 "NODE1.spad" 1246751 1246767 1247272 1247277) (-771 "NNI.spad" 1245638 1245646 1246725 1246746) (-770 "NLINSOL.spad" 1244260 1244270 1245628 1245633) (-769 "NIPROB.spad" 1242801 1242809 1244250 1244255) (-768 "NFINTBAS.spad" 1240261 1240278 1242791 1242796) (-767 "NETCLT.spad" 1240235 1240246 1240251 1240256) (-766 "NCODIV.spad" 1238433 1238449 1240225 1240230) (-765 "NCNTFRAC.spad" 1238075 1238089 1238423 1238428) (-764 "NCEP.spad" 1236235 1236249 1238065 1238070) (-763 "NASRING.spad" 1235831 1235839 1236225 1236230) (-762 "NASRING.spad" 1235425 1235435 1235821 1235826) (-761 "NARNG.spad" 1234769 1234777 1235415 1235420) (-760 "NARNG.spad" 1234111 1234121 1234759 1234764) (-759 "NAGSP.spad" 1233184 1233192 1234101 1234106) (-758 "NAGS.spad" 1222709 1222717 1233174 1233179) (-757 "NAGF07.spad" 1221102 1221110 1222699 1222704) (-756 "NAGF04.spad" 1215334 1215342 1221092 1221097) (-755 "NAGF02.spad" 1209143 1209151 1215324 1215329) (-754 "NAGF01.spad" 1204746 1204754 1209133 1209138) (-753 "NAGE04.spad" 1198206 1198214 1204736 1204741) (-752 "NAGE02.spad" 1188548 1188556 1198196 1198201) (-751 "NAGE01.spad" 1184432 1184440 1188538 1188543) (-750 "NAGD03.spad" 1182352 1182360 1184422 1184427) (-749 "NAGD02.spad" 1174883 1174891 1182342 1182347) (-748 "NAGD01.spad" 1168996 1169004 1174873 1174878) (-747 "NAGC06.spad" 1164783 1164791 1168986 1168991) (-746 "NAGC05.spad" 1163252 1163260 1164773 1164778) (-745 "NAGC02.spad" 1162507 1162515 1163242 1163247) (-744 "NAALG.spad" 1162042 1162052 1162475 1162502) (-743 "NAALG.spad" 1161597 1161609 1162032 1162037) (-742 "MULTSQFR.spad" 1158555 1158572 1161587 1161592) (-741 "MULTFACT.spad" 1157938 1157955 1158545 1158550) (-740 "MTSCAT.spad" 1155972 1155993 1157836 1157933) (-739 "MTHING.spad" 1155629 1155639 1155962 1155967) (-738 "MSYSCMD.spad" 1155063 1155071 1155619 1155624) (-737 "MSET.spad" 1153005 1153015 1154769 1154808) (-736 "MSETAGG.spad" 1152850 1152860 1152973 1153000) (-735 "MRING.spad" 1149821 1149833 1152558 1152625) (-734 "MRF2.spad" 1149389 1149403 1149811 1149816) (-733 "MRATFAC.spad" 1148935 1148952 1149379 1149384) (-732 "MPRFF.spad" 1146965 1146984 1148925 1148930) (-731 "MPOLY.spad" 1144436 1144451 1144795 1144922) (-730 "MPCPF.spad" 1143700 1143719 1144426 1144431) (-729 "MPC3.spad" 1143515 1143555 1143690 1143695) (-728 "MPC2.spad" 1143157 1143190 1143505 1143510) (-727 "MONOTOOL.spad" 1141492 1141509 1143147 1143152) (-726 "MONOID.spad" 1140811 1140819 1141482 1141487) (-725 "MONOID.spad" 1140128 1140138 1140801 1140806) (-724 "MONOGEN.spad" 1138874 1138887 1139988 1140123) (-723 "MONOGEN.spad" 1137642 1137657 1138758 1138763) (-722 "MONADWU.spad" 1135656 1135664 1137632 1137637) (-721 "MONADWU.spad" 1133668 1133678 1135646 1135651) (-720 "MONAD.spad" 1132812 1132820 1133658 1133663) (-719 "MONAD.spad" 1131954 1131964 1132802 1132807) (-718 "MOEBIUS.spad" 1130640 1130654 1131934 1131949) (-717 "MODULE.spad" 1130510 1130520 1130608 1130635) (-716 "MODULE.spad" 1130400 1130412 1130500 1130505) (-715 "MODRING.spad" 1129731 1129770 1130380 1130395) (-714 "MODOP.spad" 1128390 1128402 1129553 1129620) (-713 "MODMONOM.spad" 1128119 1128137 1128380 1128385) (-712 "MODMON.spad" 1124914 1124930 1125633 1125786) (-711 "MODFIELD.spad" 1124272 1124311 1124816 1124909) (-710 "MMLFORM.spad" 1123132 1123140 1124262 1124267) (-709 "MMAP.spad" 1122872 1122906 1123122 1123127) (-708 "MLO.spad" 1121299 1121309 1122828 1122867) (-707 "MLIFT.spad" 1119871 1119888 1121289 1121294) (-706 "MKUCFUNC.spad" 1119404 1119422 1119861 1119866) (-705 "MKRECORD.spad" 1119006 1119019 1119394 1119399) (-704 "MKFUNC.spad" 1118387 1118397 1118996 1119001) (-703 "MKFLCFN.spad" 1117343 1117353 1118377 1118382) (-702 "MKBCFUNC.spad" 1116828 1116846 1117333 1117338) (-701 "MINT.spad" 1116267 1116275 1116730 1116823) (-700 "MHROWRED.spad" 1114768 1114778 1116257 1116262) (-699 "MFLOAT.spad" 1113284 1113292 1114658 1114763) (-698 "MFINFACT.spad" 1112684 1112706 1113274 1113279) (-697 "MESH.spad" 1110416 1110424 1112674 1112679) (-696 "MDDFACT.spad" 1108609 1108619 1110406 1110411) (-695 "MDAGG.spad" 1107896 1107906 1108589 1108604) (-694 "MCMPLX.spad" 1103907 1103915 1104521 1104722) (-693 "MCDEN.spad" 1103115 1103127 1103897 1103902) (-692 "MCALCFN.spad" 1100217 1100243 1103105 1103110) (-691 "MAYBE.spad" 1099501 1099512 1100207 1100212) (-690 "MATSTOR.spad" 1096777 1096787 1099491 1099496) (-689 "MATRIX.spad" 1095481 1095491 1095965 1095992) (-688 "MATLIN.spad" 1092807 1092831 1095365 1095370) (-687 "MATCAT.spad" 1084392 1084414 1092775 1092802) (-686 "MATCAT.spad" 1075849 1075873 1084234 1084239) (-685 "MATCAT2.spad" 1075117 1075165 1075839 1075844) (-684 "MAPPKG3.spad" 1074016 1074030 1075107 1075112) (-683 "MAPPKG2.spad" 1073350 1073362 1074006 1074011) (-682 "MAPPKG1.spad" 1072168 1072178 1073340 1073345) (-681 "MAPPAST.spad" 1071481 1071489 1072158 1072163) (-680 "MAPHACK3.spad" 1071289 1071303 1071471 1071476) (-679 "MAPHACK2.spad" 1071054 1071066 1071279 1071284) (-678 "MAPHACK1.spad" 1070684 1070694 1071044 1071049) (-677 "MAGMA.spad" 1068474 1068491 1070674 1070679) (-676 "MACROAST.spad" 1068053 1068061 1068464 1068469) (-675 "M3D.spad" 1065749 1065759 1067431 1067436) (-674 "LZSTAGG.spad" 1062977 1062987 1065739 1065744) (-673 "LZSTAGG.spad" 1060203 1060215 1062967 1062972) (-672 "LWORD.spad" 1056908 1056925 1060193 1060198) (-671 "LSTAST.spad" 1056692 1056700 1056898 1056903) (-670 "LSQM.spad" 1054918 1054932 1055316 1055367) (-669 "LSPP.spad" 1054451 1054468 1054908 1054913) (-668 "LSMP.spad" 1053291 1053319 1054441 1054446) (-667 "LSMP1.spad" 1051095 1051109 1053281 1053286) (-666 "LSAGG.spad" 1050764 1050774 1051063 1051090) (-665 "LSAGG.spad" 1050453 1050465 1050754 1050759) (-664 "LPOLY.spad" 1049407 1049426 1050309 1050378) (-663 "LPEFRAC.spad" 1048664 1048674 1049397 1049402) (-662 "LO.spad" 1048065 1048079 1048598 1048625) (-661 "LOGIC.spad" 1047667 1047675 1048055 1048060) (-660 "LOGIC.spad" 1047267 1047277 1047657 1047662) (-659 "LODOOPS.spad" 1046185 1046197 1047257 1047262) (-658 "LODO.spad" 1045569 1045585 1045865 1045904) (-657 "LODOF.spad" 1044613 1044630 1045526 1045531) (-656 "LODOCAT.spad" 1043271 1043281 1044569 1044608) (-655 "LODOCAT.spad" 1041927 1041939 1043227 1043232) (-654 "LODO2.spad" 1041200 1041212 1041607 1041646) (-653 "LODO1.spad" 1040600 1040610 1040880 1040919) (-652 "LODEEF.spad" 1039372 1039390 1040590 1040595) (-651 "LNAGG.spad" 1035174 1035184 1039362 1039367) (-650 "LNAGG.spad" 1030940 1030952 1035130 1035135) (-649 "LMOPS.spad" 1027676 1027693 1030930 1030935) (-648 "LMODULE.spad" 1027444 1027454 1027666 1027671) (-647 "LMDICT.spad" 1026727 1026737 1026995 1027022) (-646 "LLINSET.spad" 1026124 1026134 1026717 1026722) (-645 "LITERAL.spad" 1026030 1026041 1026114 1026119) (-644 "LIST.spad" 1023748 1023758 1025177 1025204) (-643 "LIST3.spad" 1023039 1023053 1023738 1023743) (-642 "LIST2.spad" 1021679 1021691 1023029 1023034) (-641 "LIST2MAP.spad" 1018556 1018568 1021669 1021674) (-640 "LINSET.spad" 1018178 1018188 1018546 1018551) (-639 "LINEXP.spad" 1017610 1017620 1018158 1018173) (-638 "LINDEP.spad" 1016387 1016399 1017522 1017527) (-637 "LIMITRF.spad" 1014301 1014311 1016377 1016382) (-636 "LIMITPS.spad" 1013184 1013197 1014291 1014296) (-635 "LIE.spad" 1011198 1011210 1012474 1012619) (-634 "LIECAT.spad" 1010674 1010684 1011124 1011193) (-633 "LIECAT.spad" 1010178 1010190 1010630 1010635) (-632 "LIB.spad" 1008226 1008234 1008837 1008852) (-631 "LGROBP.spad" 1005579 1005598 1008216 1008221) (-630 "LF.spad" 1004498 1004514 1005569 1005574) (-629 "LFCAT.spad" 1003517 1003525 1004488 1004493) (-628 "LEXTRIPK.spad" 999020 999035 1003507 1003512) (-627 "LEXP.spad" 997023 997050 999000 999015) (-626 "LETAST.spad" 996722 996730 997013 997018) (-625 "LEADCDET.spad" 995106 995123 996712 996717) (-624 "LAZM3PK.spad" 993810 993832 995096 995101) (-623 "LAUPOL.spad" 992499 992512 993403 993472) (-622 "LAPLACE.spad" 992072 992088 992489 992494) (-621 "LA.spad" 991512 991526 991994 992033) (-620 "LALG.spad" 991288 991298 991492 991507) (-619 "LALG.spad" 991072 991084 991278 991283) (-618 "KVTFROM.spad" 990807 990817 991062 991067) (-617 "KTVLOGIC.spad" 990319 990327 990797 990802) (-616 "KRCFROM.spad" 990057 990067 990309 990314) (-615 "KOVACIC.spad" 988770 988787 990047 990052) (-614 "KONVERT.spad" 988492 988502 988760 988765) (-613 "KOERCE.spad" 988229 988239 988482 988487) (-612 "KERNEL.spad" 986848 986858 988013 988018) (-611 "KERNEL2.spad" 986551 986563 986838 986843) (-610 "KDAGG.spad" 985654 985676 986531 986546) (-609 "KDAGG.spad" 984765 984789 985644 985649) (-608 "KAFILE.spad" 983728 983744 983963 983990) (-607 "JORDAN.spad" 981555 981567 983018 983163) (-606 "JOINAST.spad" 981249 981257 981545 981550) (-605 "JAVACODE.spad" 981115 981123 981239 981244) (-604 "IXAGG.spad" 979238 979262 981105 981110) (-603 "IXAGG.spad" 977216 977242 979085 979090) (-602 "IVECTOR.spad" 975986 976001 976141 976168) (-601 "ITUPLE.spad" 975131 975141 975976 975981) (-600 "ITRIGMNP.spad" 973942 973961 975121 975126) (-599 "ITFUN3.spad" 973436 973450 973932 973937) (-598 "ITFUN2.spad" 973166 973178 973426 973431) (-597 "ITAYLOR.spad" 970958 970973 973002 973127) (-596 "ISUPS.spad" 963369 963384 969932 970029) (-595 "ISUMP.spad" 962866 962882 963359 963364) (-594 "ISTRING.spad" 961869 961882 962035 962062) (-593 "ISAST.spad" 961588 961596 961859 961864) (-592 "IRURPK.spad" 960301 960320 961578 961583) (-591 "IRSN.spad" 958261 958269 960291 960296) (-590 "IRRF2F.spad" 956736 956746 958217 958222) (-589 "IRREDFFX.spad" 956337 956348 956726 956731) (-588 "IROOT.spad" 954668 954678 956327 956332) (-587 "IR.spad" 952457 952471 954523 954550) (-586 "IR2.spad" 951477 951493 952447 952452) (-585 "IR2F.spad" 950677 950693 951467 951472) (-584 "IPRNTPK.spad" 950437 950445 950667 950672) (-583 "IPF.spad" 950002 950014 950242 950335) (-582 "IPADIC.spad" 949763 949789 949928 949997) (-581 "IP4ADDR.spad" 949320 949328 949753 949758) (-580 "IOMODE.spad" 948941 948949 949310 949315) (-579 "IOBFILE.spad" 948302 948310 948931 948936) (-578 "IOBCON.spad" 948167 948175 948292 948297) (-577 "INVLAPLA.spad" 947812 947828 948157 948162) (-576 "INTTR.spad" 941058 941075 947802 947807) (-575 "INTTOOLS.spad" 938769 938785 940632 940637) (-574 "INTSLPE.spad" 938075 938083 938759 938764) (-573 "INTRVL.spad" 937641 937651 937989 938070) (-572 "INTRF.spad" 936005 936019 937631 937636) (-571 "INTRET.spad" 935437 935447 935995 936000) (-570 "INTRAT.spad" 934112 934129 935427 935432) (-569 "INTPM.spad" 932475 932491 933755 933760) (-568 "INTPAF.spad" 930243 930261 932407 932412) (-567 "INTPACK.spad" 920553 920561 930233 930238) (-566 "INT.spad" 919914 919922 920407 920548) (-565 "INTHERTR.spad" 919180 919197 919904 919909) (-564 "INTHERAL.spad" 918846 918870 919170 919175) (-563 "INTHEORY.spad" 915259 915267 918836 918841) (-562 "INTG0.spad" 908722 908740 915191 915196) (-561 "INTFTBL.spad" 902751 902759 908712 908717) (-560 "INTFACT.spad" 901810 901820 902741 902746) (-559 "INTEF.spad" 900125 900141 901800 901805) (-558 "INTDOM.spad" 898740 898748 900051 900120) (-557 "INTDOM.spad" 897417 897427 898730 898735) (-556 "INTCAT.spad" 895670 895680 897331 897412) (-555 "INTBIT.spad" 895173 895181 895660 895665) (-554 "INTALG.spad" 894355 894382 895163 895168) (-553 "INTAF.spad" 893847 893863 894345 894350) (-552 "INTABL.spad" 892365 892396 892528 892555) (-551 "INT8.spad" 892245 892253 892355 892360) (-550 "INT64.spad" 892124 892132 892235 892240) (-549 "INT32.spad" 892003 892011 892114 892119) (-548 "INT16.spad" 891882 891890 891993 891998) (-547 "INS.spad" 889349 889357 891784 891877) (-546 "INS.spad" 886902 886912 889339 889344) (-545 "INPSIGN.spad" 886336 886349 886892 886897) (-544 "INPRODPF.spad" 885402 885421 886326 886331) (-543 "INPRODFF.spad" 884460 884484 885392 885397) (-542 "INNMFACT.spad" 883431 883448 884450 884455) (-541 "INMODGCD.spad" 882915 882945 883421 883426) (-540 "INFSP.spad" 881200 881222 882905 882910) (-539 "INFPROD0.spad" 880250 880269 881190 881195) (-538 "INFORM.spad" 877411 877419 880240 880245) (-537 "INFORM1.spad" 877036 877046 877401 877406) (-536 "INFINITY.spad" 876588 876596 877026 877031) (-535 "INETCLTS.spad" 876565 876573 876578 876583) (-534 "INEP.spad" 875097 875119 876555 876560) (-533 "INDE.spad" 874826 874843 875087 875092) (-532 "INCRMAPS.spad" 874247 874257 874816 874821) (-531 "INBFILE.spad" 873319 873327 874237 874242) (-530 "INBFF.spad" 869089 869100 873309 873314) (-529 "INBCON.spad" 867377 867385 869079 869084) (-528 "INBCON.spad" 865663 865673 867367 867372) (-527 "INAST.spad" 865324 865332 865653 865658) (-526 "IMPTAST.spad" 865032 865040 865314 865319) (-525 "IMATRIX.spad" 863977 864003 864489 864516) (-524 "IMATQF.spad" 863071 863115 863933 863938) (-523 "IMATLIN.spad" 861676 861700 863027 863032) (-522 "ILIST.spad" 860332 860347 860859 860886) (-521 "IIARRAY2.spad" 859720 859758 859939 859966) (-520 "IFF.spad" 859130 859146 859401 859494) (-519 "IFAST.spad" 858744 858752 859120 859125) (-518 "IFARRAY.spad" 856231 856246 857927 857954) (-517 "IFAMON.spad" 856093 856110 856187 856192) (-516 "IEVALAB.spad" 855482 855494 856083 856088) (-515 "IEVALAB.spad" 854869 854883 855472 855477) (-514 "IDPO.spad" 854667 854679 854859 854864) (-513 "IDPOAMS.spad" 854423 854435 854657 854662) (-512 "IDPOAM.spad" 854143 854155 854413 854418) (-511 "IDPC.spad" 853077 853089 854133 854138) (-510 "IDPAM.spad" 852822 852834 853067 853072) (-509 "IDPAG.spad" 852569 852581 852812 852817) (-508 "IDENT.spad" 852219 852227 852559 852564) (-507 "IDECOMP.spad" 849456 849474 852209 852214) (-506 "IDEAL.spad" 844379 844418 849391 849396) (-505 "ICDEN.spad" 843530 843546 844369 844374) (-504 "ICARD.spad" 842719 842727 843520 843525) (-503 "IBPTOOLS.spad" 841312 841329 842709 842714) (-502 "IBITS.spad" 840511 840524 840948 840975) (-501 "IBATOOL.spad" 837386 837405 840501 840506) (-500 "IBACHIN.spad" 835873 835888 837376 837381) (-499 "IARRAY2.spad" 834861 834887 835480 835507) (-498 "IARRAY1.spad" 833906 833921 834044 834071) (-497 "IAN.spad" 832119 832127 833722 833815) (-496 "IALGFACT.spad" 831720 831753 832109 832114) (-495 "HYPCAT.spad" 831144 831152 831710 831715) (-494 "HYPCAT.spad" 830566 830576 831134 831139) (-493 "HOSTNAME.spad" 830374 830382 830556 830561) (-492 "HOMOTOP.spad" 830117 830127 830364 830369) (-491 "HOAGG.spad" 827385 827395 830107 830112) (-490 "HOAGG.spad" 824428 824440 827152 827157) (-489 "HEXADEC.spad" 822530 822538 822895 822988) (-488 "HEUGCD.spad" 821545 821556 822520 822525) (-487 "HELLFDIV.spad" 821135 821159 821535 821540) (-486 "HEAP.spad" 820527 820537 820742 820769) (-485 "HEADAST.spad" 820058 820066 820517 820522) (-484 "HDP.spad" 809901 809917 810278 810409) (-483 "HDMP.spad" 807113 807128 807731 807858) (-482 "HB.spad" 805350 805358 807103 807108) (-481 "HASHTBL.spad" 803820 803851 804031 804058) (-480 "HASAST.spad" 803536 803544 803810 803815) (-479 "HACKPI.spad" 803019 803027 803438 803531) (-478 "GTSET.spad" 801958 801974 802665 802692) (-477 "GSTBL.spad" 800477 800512 800651 800666) (-476 "GSERIES.spad" 797644 797671 798609 798758) (-475 "GROUP.spad" 796913 796921 797624 797639) (-474 "GROUP.spad" 796190 796200 796903 796908) (-473 "GROEBSOL.spad" 794678 794699 796180 796185) (-472 "GRMOD.spad" 793249 793261 794668 794673) (-471 "GRMOD.spad" 791818 791832 793239 793244) (-470 "GRIMAGE.spad" 784423 784431 791808 791813) (-469 "GRDEF.spad" 782802 782810 784413 784418) (-468 "GRAY.spad" 781261 781269 782792 782797) (-467 "GRALG.spad" 780308 780320 781251 781256) (-466 "GRALG.spad" 779353 779367 780298 780303) (-465 "GPOLSET.spad" 778807 778830 779035 779062) (-464 "GOSPER.spad" 778072 778090 778797 778802) (-463 "GMODPOL.spad" 777210 777237 778040 778067) (-462 "GHENSEL.spad" 776279 776293 777200 777205) (-461 "GENUPS.spad" 772380 772393 776269 776274) (-460 "GENUFACT.spad" 771957 771967 772370 772375) (-459 "GENPGCD.spad" 771541 771558 771947 771952) (-458 "GENMFACT.spad" 770993 771012 771531 771536) (-457 "GENEEZ.spad" 768932 768945 770983 770988) (-456 "GDMP.spad" 765986 766003 766762 766889) (-455 "GCNAALG.spad" 759881 759908 765780 765847) (-454 "GCDDOM.spad" 759053 759061 759807 759876) (-453 "GCDDOM.spad" 758287 758297 759043 759048) (-452 "GB.spad" 755805 755843 758243 758248) (-451 "GBINTERN.spad" 751825 751863 755795 755800) (-450 "GBF.spad" 747582 747620 751815 751820) (-449 "GBEUCLID.spad" 745456 745494 747572 747577) (-448 "GAUSSFAC.spad" 744753 744761 745446 745451) (-447 "GALUTIL.spad" 743075 743085 744709 744714) (-446 "GALPOLYU.spad" 741521 741534 743065 743070) (-445 "GALFACTU.spad" 739686 739705 741511 741516) (-444 "GALFACT.spad" 729819 729830 739676 739681) (-443 "FVFUN.spad" 726842 726850 729809 729814) (-442 "FVC.spad" 725894 725902 726832 726837) (-441 "FUNDESC.spad" 725572 725580 725884 725889) (-440 "FUNCTION.spad" 725421 725433 725562 725567) (-439 "FT.spad" 723714 723722 725411 725416) (-438 "FTEM.spad" 722877 722885 723704 723709) (-437 "FSUPFACT.spad" 721777 721796 722813 722818) (-436 "FST.spad" 719863 719871 721767 721772) (-435 "FSRED.spad" 719341 719357 719853 719858) (-434 "FSPRMELT.spad" 718165 718181 719298 719303) (-433 "FSPECF.spad" 716242 716258 718155 718160) (-432 "FS.spad" 710304 710314 716017 716237) (-431 "FS.spad" 704144 704156 709859 709864) (-430 "FSINT.spad" 703802 703818 704134 704139) (-429 "FSERIES.spad" 702989 703001 703622 703721) (-428 "FSCINT.spad" 702302 702318 702979 702984) (-427 "FSAGG.spad" 701419 701429 702258 702297) (-426 "FSAGG.spad" 700498 700510 701339 701344) (-425 "FSAGG2.spad" 699197 699213 700488 700493) (-424 "FS2UPS.spad" 693680 693714 699187 699192) (-423 "FS2.spad" 693325 693341 693670 693675) (-422 "FS2EXPXP.spad" 692448 692471 693315 693320) (-421 "FRUTIL.spad" 691390 691400 692438 692443) (-420 "FR.spad" 685084 685094 690414 690483) (-419 "FRNAALG.spad" 680171 680181 685026 685079) (-418 "FRNAALG.spad" 675270 675282 680127 680132) (-417 "FRNAAF2.spad" 674724 674742 675260 675265) (-416 "FRMOD.spad" 674118 674148 674655 674660) (-415 "FRIDEAL.spad" 673313 673334 674098 674113) (-414 "FRIDEAL2.spad" 672915 672947 673303 673308) (-413 "FRETRCT.spad" 672426 672436 672905 672910) (-412 "FRETRCT.spad" 671803 671815 672284 672289) (-411 "FRAMALG.spad" 670131 670144 671759 671798) (-410 "FRAMALG.spad" 668491 668506 670121 670126) (-409 "FRAC.spad" 665590 665600 665993 666166) (-408 "FRAC2.spad" 665193 665205 665580 665585) (-407 "FR2.spad" 664527 664539 665183 665188) (-406 "FPS.spad" 661336 661344 664417 664522) (-405 "FPS.spad" 658173 658183 661256 661261) (-404 "FPC.spad" 657215 657223 658075 658168) (-403 "FPC.spad" 656343 656353 657205 657210) (-402 "FPATMAB.spad" 656105 656115 656333 656338) (-401 "FPARFRAC.spad" 654578 654595 656095 656100) (-400 "FORTRAN.spad" 653084 653127 654568 654573) (-399 "FORT.spad" 652013 652021 653074 653079) (-398 "FORTFN.spad" 649183 649191 652003 652008) (-397 "FORTCAT.spad" 648867 648875 649173 649178) (-396 "FORMULA.spad" 646331 646339 648857 648862) (-395 "FORMULA1.spad" 645810 645820 646321 646326) (-394 "FORDER.spad" 645501 645525 645800 645805) (-393 "FOP.spad" 644702 644710 645491 645496) (-392 "FNLA.spad" 644126 644148 644670 644697) (-391 "FNCAT.spad" 642713 642721 644116 644121) (-390 "FNAME.spad" 642605 642613 642703 642708) (-389 "FMTC.spad" 642403 642411 642531 642600) (-388 "FMONOID.spad" 639458 639468 642359 642364) (-387 "FM.spad" 639153 639165 639392 639419) (-386 "FMFUN.spad" 636183 636191 639143 639148) (-385 "FMC.spad" 635235 635243 636173 636178) (-384 "FMCAT.spad" 632889 632907 635203 635230) (-383 "FM1.spad" 632246 632258 632823 632850) (-382 "FLOATRP.spad" 629967 629981 632236 632241) (-381 "FLOAT.spad" 623255 623263 629833 629962) (-380 "FLOATCP.spad" 620672 620686 623245 623250) (-379 "FLINEXP.spad" 620384 620394 620652 620667) (-378 "FLINEXP.spad" 620050 620062 620320 620325) (-377 "FLASORT.spad" 619370 619382 620040 620045) (-376 "FLALG.spad" 617016 617035 619296 619365) (-375 "FLAGG.spad" 614034 614044 616996 617011) (-374 "FLAGG.spad" 610953 610965 613917 613922) (-373 "FLAGG2.spad" 609634 609650 610943 610948) (-372 "FINRALG.spad" 607663 607676 609590 609629) (-371 "FINRALG.spad" 605618 605633 607547 607552) (-370 "FINITE.spad" 604770 604778 605608 605613) (-369 "FINAALG.spad" 593751 593761 604712 604765) (-368 "FINAALG.spad" 582744 582756 593707 593712) (-367 "FILE.spad" 582327 582337 582734 582739) (-366 "FILECAT.spad" 580845 580862 582317 582322) (-365 "FIELD.spad" 580251 580259 580747 580840) (-364 "FIELD.spad" 579743 579753 580241 580246) (-363 "FGROUP.spad" 578352 578362 579723 579738) (-362 "FGLMICPK.spad" 577139 577154 578342 578347) (-361 "FFX.spad" 576514 576529 576855 576948) (-360 "FFSLPE.spad" 576003 576024 576504 576509) (-359 "FFPOLY.spad" 567255 567266 575993 575998) (-358 "FFPOLY2.spad" 566315 566332 567245 567250) (-357 "FFP.spad" 565712 565732 566031 566124) (-356 "FF.spad" 565160 565176 565393 565486) (-355 "FFNBX.spad" 563672 563692 564876 564969) (-354 "FFNBP.spad" 562185 562202 563388 563481) (-353 "FFNB.spad" 560650 560671 561866 561959) (-352 "FFINTBAS.spad" 558064 558083 560640 560645) (-351 "FFIELDC.spad" 555639 555647 557966 558059) (-350 "FFIELDC.spad" 553300 553310 555629 555634) (-349 "FFHOM.spad" 552048 552065 553290 553295) (-348 "FFF.spad" 549483 549494 552038 552043) (-347 "FFCGX.spad" 548330 548350 549199 549292) (-346 "FFCGP.spad" 547219 547239 548046 548139) (-345 "FFCG.spad" 546011 546032 546900 546993) (-344 "FFCAT.spad" 539038 539060 545850 546006) (-343 "FFCAT.spad" 532144 532168 538958 538963) (-342 "FFCAT2.spad" 531889 531929 532134 532139) (-341 "FEXPR.spad" 523598 523644 531645 531684) (-340 "FEVALAB.spad" 523304 523314 523588 523593) (-339 "FEVALAB.spad" 522795 522807 523081 523086) (-338 "FDIV.spad" 522237 522261 522785 522790) (-337 "FDIVCAT.spad" 520279 520303 522227 522232) (-336 "FDIVCAT.spad" 518319 518345 520269 520274) (-335 "FDIV2.spad" 517973 518013 518309 518314) (-334 "FCTRDATA.spad" 516981 516989 517963 517968) (-333 "FCPAK1.spad" 515534 515542 516971 516976) (-332 "FCOMP.spad" 514913 514923 515524 515529) (-331 "FC.spad" 504828 504836 514903 514908) (-330 "FAXF.spad" 497763 497777 504730 504823) (-329 "FAXF.spad" 490750 490766 497719 497724) (-328 "FARRAY.spad" 488896 488906 489933 489960) (-327 "FAMR.spad" 487016 487028 488794 488891) (-326 "FAMR.spad" 485120 485134 486900 486905) (-325 "FAMONOID.spad" 484770 484780 485074 485079) (-324 "FAMONC.spad" 482992 483004 484760 484765) (-323 "FAGROUP.spad" 482598 482608 482888 482915) (-322 "FACUTIL.spad" 480794 480811 482588 482593) (-321 "FACTFUNC.spad" 479970 479980 480784 480789) (-320 "EXPUPXS.spad" 476803 476826 478102 478251) (-319 "EXPRTUBE.spad" 474031 474039 476793 476798) (-318 "EXPRODE.spad" 470903 470919 474021 474026) (-317 "EXPR.spad" 466178 466188 466892 467299) (-316 "EXPR2UPS.spad" 462270 462283 466168 466173) (-315 "EXPR2.spad" 461973 461985 462260 462265) (-314 "EXPEXPAN.spad" 458911 458936 459545 459638) (-313 "EXIT.spad" 458582 458590 458901 458906) (-312 "EXITAST.spad" 458318 458326 458572 458577) (-311 "EVALCYC.spad" 457776 457790 458308 458313) (-310 "EVALAB.spad" 457340 457350 457766 457771) (-309 "EVALAB.spad" 456902 456914 457330 457335) (-308 "EUCDOM.spad" 454444 454452 456828 456897) (-307 "EUCDOM.spad" 452048 452058 454434 454439) (-306 "ESTOOLS.spad" 443888 443896 452038 452043) (-305 "ESTOOLS2.spad" 443489 443503 443878 443883) (-304 "ESTOOLS1.spad" 443174 443185 443479 443484) (-303 "ES.spad" 435721 435729 443164 443169) (-302 "ES.spad" 428174 428184 435619 435624) (-301 "ESCONT.spad" 424947 424955 428164 428169) (-300 "ESCONT1.spad" 424696 424708 424937 424942) (-299 "ES2.spad" 424191 424207 424686 424691) (-298 "ES1.spad" 423757 423773 424181 424186) (-297 "ERROR.spad" 421078 421086 423747 423752) (-296 "EQTBL.spad" 419550 419572 419759 419786) (-295 "EQ.spad" 414343 414353 417142 417254) (-294 "EQ2.spad" 414059 414071 414333 414338) (-293 "EP.spad" 410373 410383 414049 414054) (-292 "ENV.spad" 409025 409033 410363 410368) (-291 "ENTIRER.spad" 408693 408701 408969 409020) (-290 "EMR.spad" 407894 407935 408619 408688) (-289 "ELTAGG.spad" 406134 406153 407884 407889) (-288 "ELTAGG.spad" 404338 404359 406090 406095) (-287 "ELTAB.spad" 403785 403803 404328 404333) (-286 "ELFUTS.spad" 403164 403183 403775 403780) (-285 "ELEMFUN.spad" 402853 402861 403154 403159) (-284 "ELEMFUN.spad" 402540 402550 402843 402848) (-283 "ELAGG.spad" 400483 400493 402520 402535) (-282 "ELAGG.spad" 398363 398375 400402 400407) (-281 "ELABEXPR.spad" 397295 397303 398353 398358) (-280 "EFUPXS.spad" 394071 394101 397251 397256) (-279 "EFULS.spad" 390907 390930 394027 394032) (-278 "EFSTRUC.spad" 388862 388878 390897 390902) (-277 "EF.spad" 383628 383644 388852 388857) (-276 "EAB.spad" 381904 381912 383618 383623) (-275 "E04UCFA.spad" 381440 381448 381894 381899) (-274 "E04NAFA.spad" 381017 381025 381430 381435) (-273 "E04MBFA.spad" 380597 380605 381007 381012) (-272 "E04JAFA.spad" 380133 380141 380587 380592) (-271 "E04GCFA.spad" 379669 379677 380123 380128) (-270 "E04FDFA.spad" 379205 379213 379659 379664) (-269 "E04DGFA.spad" 378741 378749 379195 379200) (-268 "E04AGNT.spad" 374583 374591 378731 378736) (-267 "DVARCAT.spad" 371268 371278 374573 374578) (-266 "DVARCAT.spad" 367951 367963 371258 371263) (-265 "DSMP.spad" 365418 365432 365723 365850) (-264 "DROPT.spad" 359363 359371 365408 365413) (-263 "DROPT1.spad" 359026 359036 359353 359358) (-262 "DROPT0.spad" 353853 353861 359016 359021) (-261 "DRAWPT.spad" 352008 352016 353843 353848) (-260 "DRAW.spad" 344608 344621 351998 352003) (-259 "DRAWHACK.spad" 343916 343926 344598 344603) (-258 "DRAWCX.spad" 341358 341366 343906 343911) (-257 "DRAWCURV.spad" 340895 340910 341348 341353) (-256 "DRAWCFUN.spad" 330067 330075 340885 340890) (-255 "DQAGG.spad" 328235 328245 330035 330062) (-254 "DPOLCAT.spad" 323576 323592 328103 328230) (-253 "DPOLCAT.spad" 319003 319021 323532 323537) (-252 "DPMO.spad" 311229 311245 311367 311668) (-251 "DPMM.spad" 303468 303486 303593 303894) (-250 "DOMTMPLT.spad" 303128 303136 303458 303463) (-249 "DOMCTOR.spad" 302883 302891 303118 303123) (-248 "DOMAIN.spad" 301970 301978 302873 302878) (-247 "DMP.spad" 299228 299243 299800 299927) (-246 "DLP.spad" 298576 298586 299218 299223) (-245 "DLIST.spad" 297155 297165 297759 297786) (-244 "DLAGG.spad" 295566 295576 297145 297150) (-243 "DIVRING.spad" 295108 295116 295510 295561) (-242 "DIVRING.spad" 294694 294704 295098 295103) (-241 "DISPLAY.spad" 292874 292882 294684 294689) (-240 "DIRPROD.spad" 282454 282470 283094 283225) (-239 "DIRPROD2.spad" 281262 281280 282444 282449) (-238 "DIRPCAT.spad" 280204 280220 281126 281257) (-237 "DIRPCAT.spad" 278875 278893 279799 279804) (-236 "DIOSP.spad" 277700 277708 278865 278870) (-235 "DIOPS.spad" 276684 276694 277680 277695) (-234 "DIOPS.spad" 275642 275654 276640 276645) (-233 "DIFRING.spad" 274934 274942 275622 275637) (-232 "DIFRING.spad" 274234 274244 274924 274929) (-231 "DIFEXT.spad" 273393 273403 274214 274229) (-230 "DIFEXT.spad" 272469 272481 273292 273297) (-229 "DIAGG.spad" 272099 272109 272449 272464) (-228 "DIAGG.spad" 271737 271749 272089 272094) (-227 "DHMATRIX.spad" 270041 270051 271194 271221) (-226 "DFSFUN.spad" 263449 263457 270031 270036) (-225 "DFLOAT.spad" 260170 260178 263339 263444) (-224 "DFINTTLS.spad" 258379 258395 260160 260165) (-223 "DERHAM.spad" 256289 256321 258359 258374) (-222 "DEQUEUE.spad" 255607 255617 255896 255923) (-221 "DEGRED.spad" 255222 255236 255597 255602) (-220 "DEFINTRF.spad" 252747 252757 255212 255217) (-219 "DEFINTEF.spad" 251243 251259 252737 252742) (-218 "DEFAST.spad" 250611 250619 251233 251238) (-217 "DECIMAL.spad" 248717 248725 249078 249171) (-216 "DDFACT.spad" 246516 246533 248707 248712) (-215 "DBLRESP.spad" 246114 246138 246506 246511) (-214 "DBASE.spad" 244768 244778 246104 246109) (-213 "DATAARY.spad" 244230 244243 244758 244763) (-212 "D03FAFA.spad" 244058 244066 244220 244225) (-211 "D03EEFA.spad" 243878 243886 244048 244053) (-210 "D03AGNT.spad" 242958 242966 243868 243873) (-209 "D02EJFA.spad" 242420 242428 242948 242953) (-208 "D02CJFA.spad" 241898 241906 242410 242415) (-207 "D02BHFA.spad" 241388 241396 241888 241893) (-206 "D02BBFA.spad" 240878 240886 241378 241383) (-205 "D02AGNT.spad" 235682 235690 240868 240873) (-204 "D01WGTS.spad" 234001 234009 235672 235677) (-203 "D01TRNS.spad" 233978 233986 233991 233996) (-202 "D01GBFA.spad" 233500 233508 233968 233973) (-201 "D01FCFA.spad" 233022 233030 233490 233495) (-200 "D01ASFA.spad" 232490 232498 233012 233017) (-199 "D01AQFA.spad" 231936 231944 232480 232485) (-198 "D01APFA.spad" 231360 231368 231926 231931) (-197 "D01ANFA.spad" 230854 230862 231350 231355) (-196 "D01AMFA.spad" 230364 230372 230844 230849) (-195 "D01ALFA.spad" 229904 229912 230354 230359) (-194 "D01AKFA.spad" 229430 229438 229894 229899) (-193 "D01AJFA.spad" 228953 228961 229420 229425) (-192 "D01AGNT.spad" 225012 225020 228943 228948) (-191 "CYCLOTOM.spad" 224518 224526 225002 225007) (-190 "CYCLES.spad" 221350 221358 224508 224513) (-189 "CVMP.spad" 220767 220777 221340 221345) (-188 "CTRIGMNP.spad" 219257 219273 220757 220762) (-187 "CTOR.spad" 218948 218956 219247 219252) (-186 "CTORKIND.spad" 218551 218559 218938 218943) (-185 "CTORCAT.spad" 217800 217808 218541 218546) (-184 "CTORCAT.spad" 217047 217057 217790 217795) (-183 "CTORCALL.spad" 216636 216646 217037 217042) (-182 "CSTTOOLS.spad" 215879 215892 216626 216631) (-181 "CRFP.spad" 209583 209596 215869 215874) (-180 "CRCEAST.spad" 209303 209311 209573 209578) (-179 "CRAPACK.spad" 208346 208356 209293 209298) (-178 "CPMATCH.spad" 207846 207861 208271 208276) (-177 "CPIMA.spad" 207551 207570 207836 207841) (-176 "COORDSYS.spad" 202444 202454 207541 207546) (-175 "CONTOUR.spad" 201851 201859 202434 202439) (-174 "CONTFRAC.spad" 197463 197473 201753 201846) (-173 "CONDUIT.spad" 197221 197229 197453 197458) (-172 "COMRING.spad" 196895 196903 197159 197216) (-171 "COMPPROP.spad" 196409 196417 196885 196890) (-170 "COMPLPAT.spad" 196176 196191 196399 196404) (-169 "COMPLEX.spad" 190313 190323 190557 190818) (-168 "COMPLEX2.spad" 190026 190038 190303 190308) (-167 "COMPFACT.spad" 189628 189642 190016 190021) (-166 "COMPCAT.spad" 187696 187706 189362 189623) (-165 "COMPCAT.spad" 185492 185504 187160 187165) (-164 "COMMUPC.spad" 185238 185256 185482 185487) (-163 "COMMONOP.spad" 184771 184779 185228 185233) (-162 "COMM.spad" 184580 184588 184761 184766) (-161 "COMMAAST.spad" 184343 184351 184570 184575) (-160 "COMBOPC.spad" 183248 183256 184333 184338) (-159 "COMBINAT.spad" 181993 182003 183238 183243) (-158 "COMBF.spad" 179361 179377 181983 181988) (-157 "COLOR.spad" 178198 178206 179351 179356) (-156 "COLONAST.spad" 177864 177872 178188 178193) (-155 "CMPLXRT.spad" 177573 177590 177854 177859) (-154 "CLLCTAST.spad" 177235 177243 177563 177568) (-153 "CLIP.spad" 173327 173335 177225 177230) (-152 "CLIF.spad" 171966 171982 173283 173322) (-151 "CLAGG.spad" 168451 168461 171956 171961) (-150 "CLAGG.spad" 164807 164819 168314 168319) (-149 "CINTSLPE.spad" 164132 164145 164797 164802) (-148 "CHVAR.spad" 162210 162232 164122 164127) (-147 "CHARZ.spad" 162125 162133 162190 162205) (-146 "CHARPOL.spad" 161633 161643 162115 162120) (-145 "CHARNZ.spad" 161386 161394 161613 161628) (-144 "CHAR.spad" 159254 159262 161376 161381) (-143 "CFCAT.spad" 158570 158578 159244 159249) (-142 "CDEN.spad" 157728 157742 158560 158565) (-141 "CCLASS.spad" 155877 155885 157139 157178) (-140 "CATEGORY.spad" 154919 154927 155867 155872) (-139 "CATCTOR.spad" 154810 154818 154909 154914) (-138 "CATAST.spad" 154428 154436 154800 154805) (-137 "CASEAST.spad" 154142 154150 154418 154423) (-136 "CARTEN.spad" 149245 149269 154132 154137) (-135 "CARTEN2.spad" 148631 148658 149235 149240) (-134 "CARD.spad" 145920 145928 148605 148626) (-133 "CAPSLAST.spad" 145694 145702 145910 145915) (-132 "CACHSET.spad" 145316 145324 145684 145689) (-131 "CABMON.spad" 144869 144877 145306 145311) (-130 "BYTEORD.spad" 144544 144552 144859 144864) (-129 "BYTE.spad" 143969 143977 144534 144539) (-128 "BYTEBUF.spad" 141826 141834 143138 143165) (-127 "BTREE.spad" 140895 140905 141433 141460) (-126 "BTOURN.spad" 139898 139908 140502 140529) (-125 "BTCAT.spad" 139286 139296 139866 139893) (-124 "BTCAT.spad" 138694 138706 139276 139281) (-123 "BTAGG.spad" 137816 137824 138662 138689) (-122 "BTAGG.spad" 136958 136968 137806 137811) (-121 "BSTREE.spad" 135693 135703 136565 136592) (-120 "BRILL.spad" 133888 133899 135683 135688) (-119 "BRAGG.spad" 132812 132822 133878 133883) (-118 "BRAGG.spad" 131700 131712 132768 132773) (-117 "BPADICRT.spad" 129681 129693 129936 130029) (-116 "BPADIC.spad" 129345 129357 129607 129676) (-115 "BOUNDZRO.spad" 129001 129018 129335 129340) (-114 "BOP.spad" 124125 124133 128991 128996) (-113 "BOP1.spad" 121545 121555 124115 124120) (-112 "BOOLEAN.spad" 120977 120985 121535 121540) (-111 "BMODULE.spad" 120689 120701 120945 120972) (-110 "BITS.spad" 120108 120116 120325 120352) (-109 "BINDING.spad" 119519 119527 120098 120103) (-108 "BINARY.spad" 117630 117638 117986 118079) (-107 "BGAGG.spad" 116827 116837 117610 117625) (-106 "BGAGG.spad" 116032 116044 116817 116822) (-105 "BFUNCT.spad" 115596 115604 116012 116027) (-104 "BEZOUT.spad" 114730 114757 115546 115551) (-103 "BBTREE.spad" 111549 111559 114337 114364) (-102 "BASTYPE.spad" 111221 111229 111539 111544) (-101 "BASTYPE.spad" 110891 110901 111211 111216) (-100 "BALFACT.spad" 110330 110343 110881 110886) (-99 "AUTOMOR.spad" 109777 109786 110310 110325) (-98 "ATTREG.spad" 106496 106503 109529 109772) (-97 "ATTRBUT.spad" 102519 102526 106476 106491) (-96 "ATTRAST.spad" 102236 102243 102509 102514) (-95 "ATRIG.spad" 101706 101713 102226 102231) (-94 "ATRIG.spad" 101174 101183 101696 101701) (-93 "ASTCAT.spad" 101078 101085 101164 101169) (-92 "ASTCAT.spad" 100980 100989 101068 101073) (-91 "ASTACK.spad" 100313 100322 100587 100614) (-90 "ASSOCEQ.spad" 99113 99124 100269 100274) (-89 "ASP9.spad" 98194 98207 99103 99108) (-88 "ASP8.spad" 97237 97250 98184 98189) (-87 "ASP80.spad" 96559 96572 97227 97232) (-86 "ASP7.spad" 95719 95732 96549 96554) (-85 "ASP78.spad" 95170 95183 95709 95714) (-84 "ASP77.spad" 94539 94552 95160 95165) (-83 "ASP74.spad" 93631 93644 94529 94534) (-82 "ASP73.spad" 92902 92915 93621 93626) (-81 "ASP6.spad" 91769 91782 92892 92897) (-80 "ASP55.spad" 90278 90291 91759 91764) (-79 "ASP50.spad" 88095 88108 90268 90273) (-78 "ASP4.spad" 87390 87403 88085 88090) (-77 "ASP49.spad" 86389 86402 87380 87385) (-76 "ASP42.spad" 84796 84835 86379 86384) (-75 "ASP41.spad" 83375 83414 84786 84791) (-74 "ASP35.spad" 82363 82376 83365 83370) (-73 "ASP34.spad" 81664 81677 82353 82358) (-72 "ASP33.spad" 81224 81237 81654 81659) (-71 "ASP31.spad" 80364 80377 81214 81219) (-70 "ASP30.spad" 79256 79269 80354 80359) (-69 "ASP29.spad" 78722 78735 79246 79251) (-68 "ASP28.spad" 69995 70008 78712 78717) (-67 "ASP27.spad" 68892 68905 69985 69990) (-66 "ASP24.spad" 67979 67992 68882 68887) (-65 "ASP20.spad" 67443 67456 67969 67974) (-64 "ASP1.spad" 66824 66837 67433 67438) (-63 "ASP19.spad" 61510 61523 66814 66819) (-62 "ASP12.spad" 60924 60937 61500 61505) (-61 "ASP10.spad" 60195 60208 60914 60919) (-60 "ARRAY2.spad" 59555 59564 59802 59829) (-59 "ARRAY1.spad" 58390 58399 58738 58765) (-58 "ARRAY12.spad" 57059 57070 58380 58385) (-57 "ARR2CAT.spad" 52721 52742 57027 57054) (-56 "ARR2CAT.spad" 48403 48426 52711 52716) (-55 "ARITY.spad" 47775 47782 48393 48398) (-54 "APPRULE.spad" 47019 47041 47765 47770) (-53 "APPLYORE.spad" 46634 46647 47009 47014) (-52 "ANY.spad" 45491 45498 46624 46629) (-51 "ANY1.spad" 44562 44571 45481 45486) (-50 "ANTISYM.spad" 43001 43017 44542 44557) (-49 "ANON.spad" 42694 42701 42991 42996) (-48 "AN.spad" 40995 41002 42510 42603) (-47 "AMR.spad" 39174 39185 40893 40990) (-46 "AMR.spad" 37190 37203 38911 38916) (-45 "ALIST.spad" 34602 34623 34952 34979) (-44 "ALGSC.spad" 33725 33751 34474 34527) (-43 "ALGPKG.spad" 29434 29445 33681 33686) (-42 "ALGMFACT.spad" 28623 28637 29424 29429) (-41 "ALGMANIP.spad" 26079 26094 28456 28461) (-40 "ALGFF.spad" 24394 24421 24611 24767) (-39 "ALGFACT.spad" 23515 23525 24384 24389) (-38 "ALGEBRA.spad" 23348 23357 23471 23510) (-37 "ALGEBRA.spad" 23213 23224 23338 23343) (-36 "ALAGG.spad" 22723 22744 23181 23208) (-35 "AHYP.spad" 22104 22111 22713 22718) (-34 "AGG.spad" 20413 20420 22094 22099) (-33 "AGG.spad" 18686 18695 20369 20374) (-32 "AF.spad" 17111 17126 18621 18626) (-31 "ADDAST.spad" 16789 16796 17101 17106) (-30 "ACPLOT.spad" 15360 15367 16779 16784) (-29 "ACFS.spad" 13111 13120 15262 15355) (-28 "ACFS.spad" 10948 10959 13101 13106) (-27 "ACF.spad" 7550 7557 10850 10943) (-26 "ACF.spad" 4238 4247 7540 7545) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file +((-3 NIL 2264341 2264346 2264351 2264356) (-2 NIL 2264321 2264326 2264331 2264336) (-1 NIL 2264301 2264306 2264311 2264316) (0 NIL 2264281 2264286 2264291 2264296) (-1292 "ZMOD.spad" 2264090 2264103 2264219 2264276) (-1291 "ZLINDEP.spad" 2263156 2263167 2264080 2264085) (-1290 "ZDSOLVE.spad" 2253101 2253123 2263146 2263151) (-1289 "YSTREAM.spad" 2252596 2252607 2253091 2253096) (-1288 "XRPOLY.spad" 2251816 2251836 2252452 2252521) (-1287 "XPR.spad" 2249611 2249624 2251534 2251633) (-1286 "XPOLY.spad" 2249166 2249177 2249467 2249536) (-1285 "XPOLYC.spad" 2248485 2248501 2249092 2249161) (-1284 "XPBWPOLY.spad" 2246922 2246942 2248265 2248334) (-1283 "XF.spad" 2245385 2245400 2246824 2246917) (-1282 "XF.spad" 2243828 2243845 2245269 2245274) (-1281 "XFALG.spad" 2240876 2240892 2243754 2243823) (-1280 "XEXPPKG.spad" 2240127 2240153 2240866 2240871) (-1279 "XDPOLY.spad" 2239741 2239757 2239983 2240052) (-1278 "XALG.spad" 2239401 2239412 2239697 2239736) (-1277 "WUTSET.spad" 2235240 2235257 2239047 2239074) (-1276 "WP.spad" 2234439 2234483 2235098 2235165) (-1275 "WHILEAST.spad" 2234237 2234246 2234429 2234434) (-1274 "WHEREAST.spad" 2233908 2233917 2234227 2234232) (-1273 "WFFINTBS.spad" 2231571 2231593 2233898 2233903) (-1272 "WEIER.spad" 2229793 2229804 2231561 2231566) (-1271 "VSPACE.spad" 2229466 2229477 2229761 2229788) (-1270 "VSPACE.spad" 2229159 2229172 2229456 2229461) (-1269 "VOID.spad" 2228836 2228845 2229149 2229154) (-1268 "VIEW.spad" 2226516 2226525 2228826 2228831) (-1267 "VIEWDEF.spad" 2221717 2221726 2226506 2226511) (-1266 "VIEW3D.spad" 2205678 2205687 2221707 2221712) (-1265 "VIEW2D.spad" 2193569 2193578 2205668 2205673) (-1264 "VECTOR.spad" 2192243 2192254 2192494 2192521) (-1263 "VECTOR2.spad" 2190882 2190895 2192233 2192238) (-1262 "VECTCAT.spad" 2188786 2188797 2190850 2190877) (-1261 "VECTCAT.spad" 2186497 2186510 2188563 2188568) (-1260 "VARIABLE.spad" 2186277 2186292 2186487 2186492) (-1259 "UTYPE.spad" 2185921 2185930 2186267 2186272) (-1258 "UTSODETL.spad" 2185216 2185240 2185877 2185882) (-1257 "UTSODE.spad" 2183432 2183452 2185206 2185211) (-1256 "UTS.spad" 2178245 2178273 2181899 2181996) (-1255 "UTSCAT.spad" 2175724 2175740 2178143 2178240) (-1254 "UTSCAT.spad" 2172847 2172865 2175268 2175273) (-1253 "UTS2.spad" 2172442 2172477 2172837 2172842) (-1252 "URAGG.spad" 2167115 2167126 2172432 2172437) (-1251 "URAGG.spad" 2161752 2161765 2167071 2167076) (-1250 "UPXSSING.spad" 2159397 2159423 2160833 2160966) (-1249 "UPXS.spad" 2156551 2156579 2157529 2157678) (-1248 "UPXSCONS.spad" 2154310 2154330 2154683 2154832) (-1247 "UPXSCCA.spad" 2152881 2152901 2154156 2154305) (-1246 "UPXSCCA.spad" 2151594 2151616 2152871 2152876) (-1245 "UPXSCAT.spad" 2150183 2150199 2151440 2151589) (-1244 "UPXS2.spad" 2149726 2149779 2150173 2150178) (-1243 "UPSQFREE.spad" 2148140 2148154 2149716 2149721) (-1242 "UPSCAT.spad" 2145751 2145775 2148038 2148135) (-1241 "UPSCAT.spad" 2143068 2143094 2145357 2145362) (-1240 "UPOLYC.spad" 2138108 2138119 2142910 2143063) (-1239 "UPOLYC.spad" 2133040 2133053 2137844 2137849) (-1238 "UPOLYC2.spad" 2132511 2132530 2133030 2133035) (-1237 "UP.spad" 2129710 2129725 2130097 2130250) (-1236 "UPMP.spad" 2128610 2128623 2129700 2129705) (-1235 "UPDIVP.spad" 2128175 2128189 2128600 2128605) (-1234 "UPDECOMP.spad" 2126420 2126434 2128165 2128170) (-1233 "UPCDEN.spad" 2125629 2125645 2126410 2126415) (-1232 "UP2.spad" 2124993 2125014 2125619 2125624) (-1231 "UNISEG.spad" 2124346 2124357 2124912 2124917) (-1230 "UNISEG2.spad" 2123843 2123856 2124302 2124307) (-1229 "UNIFACT.spad" 2122946 2122958 2123833 2123838) (-1228 "ULS.spad" 2113504 2113532 2114591 2115020) (-1227 "ULSCONS.spad" 2105900 2105920 2106270 2106419) (-1226 "ULSCCAT.spad" 2103637 2103657 2105746 2105895) (-1225 "ULSCCAT.spad" 2101482 2101504 2103593 2103598) (-1224 "ULSCAT.spad" 2099714 2099730 2101328 2101477) (-1223 "ULS2.spad" 2099228 2099281 2099704 2099709) (-1222 "UINT8.spad" 2099105 2099114 2099218 2099223) (-1221 "UINT64.spad" 2098981 2098990 2099095 2099100) (-1220 "UINT32.spad" 2098857 2098866 2098971 2098976) (-1219 "UINT16.spad" 2098733 2098742 2098847 2098852) (-1218 "UFD.spad" 2097798 2097807 2098659 2098728) (-1217 "UFD.spad" 2096925 2096936 2097788 2097793) (-1216 "UDVO.spad" 2095806 2095815 2096915 2096920) (-1215 "UDPO.spad" 2093299 2093310 2095762 2095767) (-1214 "TYPE.spad" 2093231 2093240 2093289 2093294) (-1213 "TYPEAST.spad" 2093150 2093159 2093221 2093226) (-1212 "TWOFACT.spad" 2091802 2091817 2093140 2093145) (-1211 "TUPLE.spad" 2091288 2091299 2091701 2091706) (-1210 "TUBETOOL.spad" 2088155 2088164 2091278 2091283) (-1209 "TUBE.spad" 2086802 2086819 2088145 2088150) (-1208 "TS.spad" 2085401 2085417 2086367 2086464) (-1207 "TSETCAT.spad" 2072528 2072545 2085369 2085396) (-1206 "TSETCAT.spad" 2059641 2059660 2072484 2072489) (-1205 "TRMANIP.spad" 2054007 2054024 2059347 2059352) (-1204 "TRIMAT.spad" 2052970 2052995 2053997 2054002) (-1203 "TRIGMNIP.spad" 2051497 2051514 2052960 2052965) (-1202 "TRIGCAT.spad" 2051009 2051018 2051487 2051492) (-1201 "TRIGCAT.spad" 2050519 2050530 2050999 2051004) (-1200 "TREE.spad" 2049094 2049105 2050126 2050153) (-1199 "TRANFUN.spad" 2048933 2048942 2049084 2049089) (-1198 "TRANFUN.spad" 2048770 2048781 2048923 2048928) (-1197 "TOPSP.spad" 2048444 2048453 2048760 2048765) (-1196 "TOOLSIGN.spad" 2048107 2048118 2048434 2048439) (-1195 "TEXTFILE.spad" 2046668 2046677 2048097 2048102) (-1194 "TEX.spad" 2043814 2043823 2046658 2046663) (-1193 "TEX1.spad" 2043370 2043381 2043804 2043809) (-1192 "TEMUTL.spad" 2042925 2042934 2043360 2043365) (-1191 "TBCMPPK.spad" 2041018 2041041 2042915 2042920) (-1190 "TBAGG.spad" 2040068 2040091 2040998 2041013) (-1189 "TBAGG.spad" 2039126 2039151 2040058 2040063) (-1188 "TANEXP.spad" 2038534 2038545 2039116 2039121) (-1187 "TABLE.spad" 2036945 2036968 2037215 2037242) (-1186 "TABLEAU.spad" 2036426 2036437 2036935 2036940) (-1185 "TABLBUMP.spad" 2033229 2033240 2036416 2036421) (-1184 "SYSTEM.spad" 2032457 2032466 2033219 2033224) (-1183 "SYSSOLP.spad" 2029940 2029951 2032447 2032452) (-1182 "SYSNNI.spad" 2029122 2029133 2029930 2029935) (-1181 "SYSINT.spad" 2028526 2028537 2029112 2029117) (-1180 "SYNTAX.spad" 2024732 2024741 2028516 2028521) (-1179 "SYMTAB.spad" 2022800 2022809 2024722 2024727) (-1178 "SYMS.spad" 2018823 2018832 2022790 2022795) (-1177 "SYMPOLY.spad" 2017830 2017841 2017912 2018039) (-1176 "SYMFUNC.spad" 2017331 2017342 2017820 2017825) (-1175 "SYMBOL.spad" 2014834 2014843 2017321 2017326) (-1174 "SWITCH.spad" 2011605 2011614 2014824 2014829) (-1173 "SUTS.spad" 2008510 2008538 2010072 2010169) (-1172 "SUPXS.spad" 2005651 2005679 2006642 2006791) (-1171 "SUP.spad" 2002464 2002475 2003237 2003390) (-1170 "SUPFRACF.spad" 2001569 2001587 2002454 2002459) (-1169 "SUP2.spad" 2000961 2000974 2001559 2001564) (-1168 "SUMRF.spad" 1999935 1999946 2000951 2000956) (-1167 "SUMFS.spad" 1999572 1999589 1999925 1999930) (-1166 "SULS.spad" 1990117 1990145 1991217 1991646) (-1165 "SUCHTAST.spad" 1989886 1989895 1990107 1990112) (-1164 "SUCH.spad" 1989568 1989583 1989876 1989881) (-1163 "SUBSPACE.spad" 1981683 1981698 1989558 1989563) (-1162 "SUBRESP.spad" 1980853 1980867 1981639 1981644) (-1161 "STTF.spad" 1976952 1976968 1980843 1980848) (-1160 "STTFNC.spad" 1973420 1973436 1976942 1976947) (-1159 "STTAYLOR.spad" 1966074 1966085 1973301 1973306) (-1158 "STRTBL.spad" 1964579 1964596 1964728 1964755) (-1157 "STRING.spad" 1963988 1963997 1964002 1964029) (-1156 "STRICAT.spad" 1963776 1963785 1963956 1963983) (-1155 "STREAM.spad" 1960694 1960705 1963301 1963316) (-1154 "STREAM3.spad" 1960267 1960282 1960684 1960689) (-1153 "STREAM2.spad" 1959395 1959408 1960257 1960262) (-1152 "STREAM1.spad" 1959101 1959112 1959385 1959390) (-1151 "STINPROD.spad" 1958037 1958053 1959091 1959096) (-1150 "STEP.spad" 1957238 1957247 1958027 1958032) (-1149 "STBL.spad" 1955764 1955792 1955931 1955946) (-1148 "STAGG.spad" 1954839 1954850 1955754 1955759) (-1147 "STAGG.spad" 1953912 1953925 1954829 1954834) (-1146 "STACK.spad" 1953269 1953280 1953519 1953546) (-1145 "SREGSET.spad" 1950973 1950990 1952915 1952942) (-1144 "SRDCMPK.spad" 1949534 1949554 1950963 1950968) (-1143 "SRAGG.spad" 1944677 1944686 1949502 1949529) (-1142 "SRAGG.spad" 1939840 1939851 1944667 1944672) (-1141 "SQMATRIX.spad" 1937456 1937474 1938372 1938459) (-1140 "SPLTREE.spad" 1932008 1932021 1936892 1936919) (-1139 "SPLNODE.spad" 1928596 1928609 1931998 1932003) (-1138 "SPFCAT.spad" 1927405 1927414 1928586 1928591) (-1137 "SPECOUT.spad" 1925957 1925966 1927395 1927400) (-1136 "SPADXPT.spad" 1918096 1918105 1925947 1925952) (-1135 "spad-parser.spad" 1917561 1917570 1918086 1918091) (-1134 "SPADAST.spad" 1917262 1917271 1917551 1917556) (-1133 "SPACEC.spad" 1901461 1901472 1917252 1917257) (-1132 "SPACE3.spad" 1901237 1901248 1901451 1901456) (-1131 "SORTPAK.spad" 1900786 1900799 1901193 1901198) (-1130 "SOLVETRA.spad" 1898549 1898560 1900776 1900781) (-1129 "SOLVESER.spad" 1897077 1897088 1898539 1898544) (-1128 "SOLVERAD.spad" 1893103 1893114 1897067 1897072) (-1127 "SOLVEFOR.spad" 1891565 1891583 1893093 1893098) (-1126 "SNTSCAT.spad" 1891165 1891182 1891533 1891560) (-1125 "SMTS.spad" 1889437 1889463 1890730 1890827) (-1124 "SMP.spad" 1886912 1886932 1887302 1887429) (-1123 "SMITH.spad" 1885757 1885782 1886902 1886907) (-1122 "SMATCAT.spad" 1883867 1883897 1885701 1885752) (-1121 "SMATCAT.spad" 1881909 1881941 1883745 1883750) (-1120 "SKAGG.spad" 1880872 1880883 1881877 1881904) (-1119 "SINT.spad" 1879704 1879713 1880738 1880867) (-1118 "SIMPAN.spad" 1879432 1879441 1879694 1879699) (-1117 "SIG.spad" 1878762 1878771 1879422 1879427) (-1116 "SIGNRF.spad" 1877880 1877891 1878752 1878757) (-1115 "SIGNEF.spad" 1877159 1877176 1877870 1877875) (-1114 "SIGAST.spad" 1876544 1876553 1877149 1877154) (-1113 "SHP.spad" 1874472 1874487 1876500 1876505) (-1112 "SHDP.spad" 1864183 1864210 1864692 1864823) (-1111 "SGROUP.spad" 1863791 1863800 1864173 1864178) (-1110 "SGROUP.spad" 1863397 1863408 1863781 1863786) (-1109 "SGCF.spad" 1856560 1856569 1863387 1863392) (-1108 "SFRTCAT.spad" 1855490 1855507 1856528 1856555) (-1107 "SFRGCD.spad" 1854553 1854573 1855480 1855485) (-1106 "SFQCMPK.spad" 1849190 1849210 1854543 1854548) (-1105 "SFORT.spad" 1848629 1848643 1849180 1849185) (-1104 "SEXOF.spad" 1848472 1848512 1848619 1848624) (-1103 "SEX.spad" 1848364 1848373 1848462 1848467) (-1102 "SEXCAT.spad" 1845965 1846005 1848354 1848359) (-1101 "SET.spad" 1844289 1844300 1845386 1845425) (-1100 "SETMN.spad" 1842739 1842756 1844279 1844284) (-1099 "SETCAT.spad" 1842061 1842070 1842729 1842734) (-1098 "SETCAT.spad" 1841381 1841392 1842051 1842056) (-1097 "SETAGG.spad" 1837930 1837941 1841361 1841376) (-1096 "SETAGG.spad" 1834487 1834500 1837920 1837925) (-1095 "SEQAST.spad" 1834190 1834199 1834477 1834482) (-1094 "SEGXCAT.spad" 1833346 1833359 1834180 1834185) (-1093 "SEG.spad" 1833159 1833170 1833265 1833270) (-1092 "SEGCAT.spad" 1832084 1832095 1833149 1833154) (-1091 "SEGBIND.spad" 1831158 1831169 1832039 1832044) (-1090 "SEGBIND2.spad" 1830856 1830869 1831148 1831153) (-1089 "SEGAST.spad" 1830570 1830579 1830846 1830851) (-1088 "SEG2.spad" 1830005 1830018 1830526 1830531) (-1087 "SDVAR.spad" 1829281 1829292 1829995 1830000) (-1086 "SDPOL.spad" 1826707 1826718 1826998 1827125) (-1085 "SCPKG.spad" 1824796 1824807 1826697 1826702) (-1084 "SCOPE.spad" 1823949 1823958 1824786 1824791) (-1083 "SCACHE.spad" 1822645 1822656 1823939 1823944) (-1082 "SASTCAT.spad" 1822554 1822563 1822635 1822640) (-1081 "SAOS.spad" 1822426 1822435 1822544 1822549) (-1080 "SAERFFC.spad" 1822139 1822159 1822416 1822421) (-1079 "SAE.spad" 1820314 1820330 1820925 1821060) (-1078 "SAEFACT.spad" 1820015 1820035 1820304 1820309) (-1077 "RURPK.spad" 1817674 1817690 1820005 1820010) (-1076 "RULESET.spad" 1817127 1817151 1817664 1817669) (-1075 "RULE.spad" 1815367 1815391 1817117 1817122) (-1074 "RULECOLD.spad" 1815219 1815232 1815357 1815362) (-1073 "RTVALUE.spad" 1814954 1814963 1815209 1815214) (-1072 "RSTRCAST.spad" 1814671 1814680 1814944 1814949) (-1071 "RSETGCD.spad" 1811049 1811069 1814661 1814666) (-1070 "RSETCAT.spad" 1800985 1801002 1811017 1811044) (-1069 "RSETCAT.spad" 1790941 1790960 1800975 1800980) (-1068 "RSDCMPK.spad" 1789393 1789413 1790931 1790936) (-1067 "RRCC.spad" 1787777 1787807 1789383 1789388) (-1066 "RRCC.spad" 1786159 1786191 1787767 1787772) (-1065 "RPTAST.spad" 1785861 1785870 1786149 1786154) (-1064 "RPOLCAT.spad" 1765221 1765236 1785729 1785856) (-1063 "RPOLCAT.spad" 1744295 1744312 1764805 1764810) (-1062 "ROUTINE.spad" 1740178 1740187 1742942 1742969) (-1061 "ROMAN.spad" 1739506 1739515 1740044 1740173) (-1060 "ROIRC.spad" 1738586 1738618 1739496 1739501) (-1059 "RNS.spad" 1737489 1737498 1738488 1738581) (-1058 "RNS.spad" 1736478 1736489 1737479 1737484) (-1057 "RNG.spad" 1736213 1736222 1736468 1736473) (-1056 "RMODULE.spad" 1735978 1735989 1736203 1736208) (-1055 "RMCAT2.spad" 1735398 1735455 1735968 1735973) (-1054 "RMATRIX.spad" 1734222 1734241 1734565 1734604) (-1053 "RMATCAT.spad" 1729801 1729832 1734178 1734217) (-1052 "RMATCAT.spad" 1725270 1725303 1729649 1729654) (-1051 "RLINSET.spad" 1724664 1724675 1725260 1725265) (-1050 "RINTERP.spad" 1724552 1724572 1724654 1724659) (-1049 "RING.spad" 1724022 1724031 1724532 1724547) (-1048 "RING.spad" 1723500 1723511 1724012 1724017) (-1047 "RIDIST.spad" 1722892 1722901 1723490 1723495) (-1046 "RGCHAIN.spad" 1721475 1721491 1722377 1722404) (-1045 "RGBCSPC.spad" 1721256 1721268 1721465 1721470) (-1044 "RGBCMDL.spad" 1720786 1720798 1721246 1721251) (-1043 "RF.spad" 1718428 1718439 1720776 1720781) (-1042 "RFFACTOR.spad" 1717890 1717901 1718418 1718423) (-1041 "RFFACT.spad" 1717625 1717637 1717880 1717885) (-1040 "RFDIST.spad" 1716621 1716630 1717615 1717620) (-1039 "RETSOL.spad" 1716040 1716053 1716611 1716616) (-1038 "RETRACT.spad" 1715468 1715479 1716030 1716035) (-1037 "RETRACT.spad" 1714894 1714907 1715458 1715463) (-1036 "RETAST.spad" 1714706 1714715 1714884 1714889) (-1035 "RESULT.spad" 1712766 1712775 1713353 1713380) (-1034 "RESRING.spad" 1712113 1712160 1712704 1712761) (-1033 "RESLATC.spad" 1711437 1711448 1712103 1712108) (-1032 "REPSQ.spad" 1711168 1711179 1711427 1711432) (-1031 "REP.spad" 1708722 1708731 1711158 1711163) (-1030 "REPDB.spad" 1708429 1708440 1708712 1708717) (-1029 "REP2.spad" 1698087 1698098 1708271 1708276) (-1028 "REP1.spad" 1692283 1692294 1698037 1698042) (-1027 "REGSET.spad" 1690080 1690097 1691929 1691956) (-1026 "REF.spad" 1689415 1689426 1690035 1690040) (-1025 "REDORDER.spad" 1688621 1688638 1689405 1689410) (-1024 "RECLOS.spad" 1687404 1687424 1688108 1688201) (-1023 "REALSOLV.spad" 1686544 1686553 1687394 1687399) (-1022 "REAL.spad" 1686416 1686425 1686534 1686539) (-1021 "REAL0Q.spad" 1683714 1683729 1686406 1686411) (-1020 "REAL0.spad" 1680558 1680573 1683704 1683709) (-1019 "RDUCEAST.spad" 1680279 1680288 1680548 1680553) (-1018 "RDIV.spad" 1679934 1679959 1680269 1680274) (-1017 "RDIST.spad" 1679501 1679512 1679924 1679929) (-1016 "RDETRS.spad" 1678365 1678383 1679491 1679496) (-1015 "RDETR.spad" 1676504 1676522 1678355 1678360) (-1014 "RDEEFS.spad" 1675603 1675620 1676494 1676499) (-1013 "RDEEF.spad" 1674613 1674630 1675593 1675598) (-1012 "RCFIELD.spad" 1671799 1671808 1674515 1674608) (-1011 "RCFIELD.spad" 1669071 1669082 1671789 1671794) (-1010 "RCAGG.spad" 1666999 1667010 1669061 1669066) (-1009 "RCAGG.spad" 1664854 1664867 1666918 1666923) (-1008 "RATRET.spad" 1664214 1664225 1664844 1664849) (-1007 "RATFACT.spad" 1663906 1663918 1664204 1664209) (-1006 "RANDSRC.spad" 1663225 1663234 1663896 1663901) (-1005 "RADUTIL.spad" 1662981 1662990 1663215 1663220) (-1004 "RADIX.spad" 1659902 1659916 1661448 1661541) (-1003 "RADFF.spad" 1658315 1658352 1658434 1658590) (-1002 "RADCAT.spad" 1657910 1657919 1658305 1658310) (-1001 "RADCAT.spad" 1657503 1657514 1657900 1657905) (-1000 "QUEUE.spad" 1656851 1656862 1657110 1657137) (-999 "QUAT.spad" 1655433 1655443 1655775 1655840) (-998 "QUATCT2.spad" 1655054 1655072 1655423 1655428) (-997 "QUATCAT.spad" 1653225 1653235 1654984 1655049) (-996 "QUATCAT.spad" 1651147 1651159 1652908 1652913) (-995 "QUAGG.spad" 1649975 1649985 1651115 1651142) (-994 "QQUTAST.spad" 1649744 1649752 1649965 1649970) (-993 "QFORM.spad" 1649209 1649223 1649734 1649739) (-992 "QFCAT.spad" 1647912 1647922 1649111 1649204) (-991 "QFCAT.spad" 1646206 1646218 1647407 1647412) (-990 "QFCAT2.spad" 1645899 1645915 1646196 1646201) (-989 "QEQUAT.spad" 1645458 1645466 1645889 1645894) (-988 "QCMPACK.spad" 1640205 1640224 1645448 1645453) (-987 "QALGSET.spad" 1636284 1636316 1640119 1640124) (-986 "QALGSET2.spad" 1634280 1634298 1636274 1636279) (-985 "PWFFINTB.spad" 1631696 1631717 1634270 1634275) (-984 "PUSHVAR.spad" 1631035 1631054 1631686 1631691) (-983 "PTRANFN.spad" 1627163 1627173 1631025 1631030) (-982 "PTPACK.spad" 1624251 1624261 1627153 1627158) (-981 "PTFUNC2.spad" 1624074 1624088 1624241 1624246) (-980 "PTCAT.spad" 1623329 1623339 1624042 1624069) (-979 "PSQFR.spad" 1622636 1622660 1623319 1623324) (-978 "PSEUDLIN.spad" 1621522 1621532 1622626 1622631) (-977 "PSETPK.spad" 1606955 1606971 1621400 1621405) (-976 "PSETCAT.spad" 1600875 1600898 1606935 1606950) (-975 "PSETCAT.spad" 1594769 1594794 1600831 1600836) (-974 "PSCURVE.spad" 1593752 1593760 1594759 1594764) (-973 "PSCAT.spad" 1592535 1592564 1593650 1593747) (-972 "PSCAT.spad" 1591408 1591439 1592525 1592530) (-971 "PRTITION.spad" 1590369 1590377 1591398 1591403) (-970 "PRTDAST.spad" 1590088 1590096 1590359 1590364) (-969 "PRS.spad" 1579650 1579667 1590044 1590049) (-968 "PRQAGG.spad" 1579085 1579095 1579618 1579645) (-967 "PROPLOG.spad" 1578384 1578392 1579075 1579080) (-966 "PROPFRML.spad" 1577200 1577211 1578374 1578379) (-965 "PROPERTY.spad" 1576688 1576696 1577190 1577195) (-964 "PRODUCT.spad" 1574370 1574382 1574654 1574709) (-963 "PR.spad" 1572762 1572774 1573461 1573588) (-962 "PRINT.spad" 1572514 1572522 1572752 1572757) (-961 "PRIMES.spad" 1570767 1570777 1572504 1572509) (-960 "PRIMELT.spad" 1568848 1568862 1570757 1570762) (-959 "PRIMCAT.spad" 1568475 1568483 1568838 1568843) (-958 "PRIMARR.spad" 1567480 1567490 1567658 1567685) (-957 "PRIMARR2.spad" 1566247 1566259 1567470 1567475) (-956 "PREASSOC.spad" 1565629 1565641 1566237 1566242) (-955 "PPCURVE.spad" 1564766 1564774 1565619 1565624) (-954 "PORTNUM.spad" 1564541 1564549 1564756 1564761) (-953 "POLYROOT.spad" 1563390 1563412 1564497 1564502) (-952 "POLY.spad" 1560725 1560735 1561240 1561367) (-951 "POLYLIFT.spad" 1559990 1560013 1560715 1560720) (-950 "POLYCATQ.spad" 1558108 1558130 1559980 1559985) (-949 "POLYCAT.spad" 1551578 1551599 1557976 1558103) (-948 "POLYCAT.spad" 1544386 1544409 1550786 1550791) (-947 "POLY2UP.spad" 1543838 1543852 1544376 1544381) (-946 "POLY2.spad" 1543435 1543447 1543828 1543833) (-945 "POLUTIL.spad" 1542376 1542405 1543391 1543396) (-944 "POLTOPOL.spad" 1541124 1541139 1542366 1542371) (-943 "POINT.spad" 1539962 1539972 1540049 1540076) (-942 "PNTHEORY.spad" 1536664 1536672 1539952 1539957) (-941 "PMTOOLS.spad" 1535439 1535453 1536654 1536659) (-940 "PMSYM.spad" 1534988 1534998 1535429 1535434) (-939 "PMQFCAT.spad" 1534579 1534593 1534978 1534983) (-938 "PMPRED.spad" 1534058 1534072 1534569 1534574) (-937 "PMPREDFS.spad" 1533512 1533534 1534048 1534053) (-936 "PMPLCAT.spad" 1532592 1532610 1533444 1533449) (-935 "PMLSAGG.spad" 1532177 1532191 1532582 1532587) (-934 "PMKERNEL.spad" 1531756 1531768 1532167 1532172) (-933 "PMINS.spad" 1531336 1531346 1531746 1531751) (-932 "PMFS.spad" 1530913 1530931 1531326 1531331) (-931 "PMDOWN.spad" 1530203 1530217 1530903 1530908) (-930 "PMASS.spad" 1529213 1529221 1530193 1530198) (-929 "PMASSFS.spad" 1528180 1528196 1529203 1529208) (-928 "PLOTTOOL.spad" 1527960 1527968 1528170 1528175) (-927 "PLOT.spad" 1522883 1522891 1527950 1527955) (-926 "PLOT3D.spad" 1519347 1519355 1522873 1522878) (-925 "PLOT1.spad" 1518504 1518514 1519337 1519342) (-924 "PLEQN.spad" 1505794 1505821 1518494 1518499) (-923 "PINTERP.spad" 1505416 1505435 1505784 1505789) (-922 "PINTERPA.spad" 1505200 1505216 1505406 1505411) (-921 "PI.spad" 1504809 1504817 1505174 1505195) (-920 "PID.spad" 1503779 1503787 1504735 1504804) (-919 "PICOERCE.spad" 1503436 1503446 1503769 1503774) (-918 "PGROEB.spad" 1502037 1502051 1503426 1503431) (-917 "PGE.spad" 1493654 1493662 1502027 1502032) (-916 "PGCD.spad" 1492544 1492561 1493644 1493649) (-915 "PFRPAC.spad" 1491693 1491703 1492534 1492539) (-914 "PFR.spad" 1488356 1488366 1491595 1491688) (-913 "PFOTOOLS.spad" 1487614 1487630 1488346 1488351) (-912 "PFOQ.spad" 1486984 1487002 1487604 1487609) (-911 "PFO.spad" 1486403 1486430 1486974 1486979) (-910 "PF.spad" 1485977 1485989 1486208 1486301) (-909 "PFECAT.spad" 1483659 1483667 1485903 1485972) (-908 "PFECAT.spad" 1481369 1481379 1483615 1483620) (-907 "PFBRU.spad" 1479257 1479269 1481359 1481364) (-906 "PFBR.spad" 1476817 1476840 1479247 1479252) (-905 "PERM.spad" 1472502 1472512 1476647 1476662) (-904 "PERMGRP.spad" 1467264 1467274 1472492 1472497) (-903 "PERMCAT.spad" 1465822 1465832 1467244 1467259) (-902 "PERMAN.spad" 1464354 1464368 1465812 1465817) (-901 "PENDTREE.spad" 1463695 1463705 1463983 1463988) (-900 "PDRING.spad" 1462246 1462256 1463675 1463690) (-899 "PDRING.spad" 1460805 1460817 1462236 1462241) (-898 "PDEPROB.spad" 1459820 1459828 1460795 1460800) (-897 "PDEPACK.spad" 1453860 1453868 1459810 1459815) (-896 "PDECOMP.spad" 1453330 1453347 1453850 1453855) (-895 "PDECAT.spad" 1451686 1451694 1453320 1453325) (-894 "PCOMP.spad" 1451539 1451552 1451676 1451681) (-893 "PBWLB.spad" 1450127 1450144 1451529 1451534) (-892 "PATTERN.spad" 1444666 1444676 1450117 1450122) (-891 "PATTERN2.spad" 1444404 1444416 1444656 1444661) (-890 "PATTERN1.spad" 1442740 1442756 1444394 1444399) (-889 "PATRES.spad" 1440315 1440327 1442730 1442735) (-888 "PATRES2.spad" 1439987 1440001 1440305 1440310) (-887 "PATMATCH.spad" 1438184 1438215 1439695 1439700) (-886 "PATMAB.spad" 1437613 1437623 1438174 1438179) (-885 "PATLRES.spad" 1436699 1436713 1437603 1437608) (-884 "PATAB.spad" 1436463 1436473 1436689 1436694) (-883 "PARTPERM.spad" 1433863 1433871 1436453 1436458) (-882 "PARSURF.spad" 1433297 1433325 1433853 1433858) (-881 "PARSU2.spad" 1433094 1433110 1433287 1433292) (-880 "script-parser.spad" 1432614 1432622 1433084 1433089) (-879 "PARSCURV.spad" 1432048 1432076 1432604 1432609) (-878 "PARSC2.spad" 1431839 1431855 1432038 1432043) (-877 "PARPCURV.spad" 1431301 1431329 1431829 1431834) (-876 "PARPC2.spad" 1431092 1431108 1431291 1431296) (-875 "PAN2EXPR.spad" 1430504 1430512 1431082 1431087) (-874 "PALETTE.spad" 1429474 1429482 1430494 1430499) (-873 "PAIR.spad" 1428461 1428474 1429062 1429067) (-872 "PADICRC.spad" 1425795 1425813 1426966 1427059) (-871 "PADICRAT.spad" 1423810 1423822 1424031 1424124) (-870 "PADIC.spad" 1423505 1423517 1423736 1423805) (-869 "PADICCT.spad" 1422054 1422066 1423431 1423500) (-868 "PADEPAC.spad" 1420743 1420762 1422044 1422049) (-867 "PADE.spad" 1419495 1419511 1420733 1420738) (-866 "OWP.spad" 1418735 1418765 1419353 1419420) (-865 "OVERSET.spad" 1418308 1418316 1418725 1418730) (-864 "OVAR.spad" 1418089 1418112 1418298 1418303) (-863 "OUT.spad" 1417175 1417183 1418079 1418084) (-862 "OUTFORM.spad" 1406567 1406575 1417165 1417170) (-861 "OUTBFILE.spad" 1405985 1405993 1406557 1406562) (-860 "OUTBCON.spad" 1404991 1404999 1405975 1405980) (-859 "OUTBCON.spad" 1403995 1404005 1404981 1404986) (-858 "OSI.spad" 1403470 1403478 1403985 1403990) (-857 "OSGROUP.spad" 1403388 1403396 1403460 1403465) (-856 "ORTHPOL.spad" 1401873 1401883 1403305 1403310) (-855 "OREUP.spad" 1401326 1401354 1401553 1401592) (-854 "ORESUP.spad" 1400627 1400651 1401006 1401045) (-853 "OREPCTO.spad" 1398484 1398496 1400547 1400552) (-852 "OREPCAT.spad" 1392631 1392641 1398440 1398479) (-851 "OREPCAT.spad" 1386668 1386680 1392479 1392484) (-850 "ORDSET.spad" 1385840 1385848 1386658 1386663) (-849 "ORDSET.spad" 1385010 1385020 1385830 1385835) (-848 "ORDRING.spad" 1384400 1384408 1384990 1385005) (-847 "ORDRING.spad" 1383798 1383808 1384390 1384395) (-846 "ORDMON.spad" 1383653 1383661 1383788 1383793) (-845 "ORDFUNS.spad" 1382785 1382801 1383643 1383648) (-844 "ORDFIN.spad" 1382605 1382613 1382775 1382780) (-843 "ORDCOMP.spad" 1381070 1381080 1382152 1382181) (-842 "ORDCOMP2.spad" 1380363 1380375 1381060 1381065) (-841 "OPTPROB.spad" 1379001 1379009 1380353 1380358) (-840 "OPTPACK.spad" 1371410 1371418 1378991 1378996) (-839 "OPTCAT.spad" 1369089 1369097 1371400 1371405) (-838 "OPSIG.spad" 1368743 1368751 1369079 1369084) (-837 "OPQUERY.spad" 1368292 1368300 1368733 1368738) (-836 "OP.spad" 1368034 1368044 1368114 1368181) (-835 "OPERCAT.spad" 1367500 1367510 1368024 1368029) (-834 "OPERCAT.spad" 1366964 1366976 1367490 1367495) (-833 "ONECOMP.spad" 1365709 1365719 1366511 1366540) (-832 "ONECOMP2.spad" 1365133 1365145 1365699 1365704) (-831 "OMSERVER.spad" 1364139 1364147 1365123 1365128) (-830 "OMSAGG.spad" 1363927 1363937 1364095 1364134) (-829 "OMPKG.spad" 1362543 1362551 1363917 1363922) (-828 "OM.spad" 1361516 1361524 1362533 1362538) (-827 "OMLO.spad" 1360941 1360953 1361402 1361441) (-826 "OMEXPR.spad" 1360775 1360785 1360931 1360936) (-825 "OMERR.spad" 1360320 1360328 1360765 1360770) (-824 "OMERRK.spad" 1359354 1359362 1360310 1360315) (-823 "OMENC.spad" 1358698 1358706 1359344 1359349) (-822 "OMDEV.spad" 1353007 1353015 1358688 1358693) (-821 "OMCONN.spad" 1352416 1352424 1352997 1353002) (-820 "OINTDOM.spad" 1352179 1352187 1352342 1352411) (-819 "OFMONOID.spad" 1348428 1348438 1352169 1352174) (-818 "ODVAR.spad" 1347689 1347699 1348418 1348423) (-817 "ODR.spad" 1347333 1347359 1347501 1347650) (-816 "ODPOL.spad" 1344715 1344725 1345055 1345182) (-815 "ODP.spad" 1334562 1334582 1334935 1335066) (-814 "ODETOOLS.spad" 1333211 1333230 1334552 1334557) (-813 "ODESYS.spad" 1330905 1330922 1333201 1333206) (-812 "ODERTRIC.spad" 1326914 1326931 1330862 1330867) (-811 "ODERED.spad" 1326313 1326337 1326904 1326909) (-810 "ODERAT.spad" 1323928 1323945 1326303 1326308) (-809 "ODEPRRIC.spad" 1320965 1320987 1323918 1323923) (-808 "ODEPROB.spad" 1320222 1320230 1320955 1320960) (-807 "ODEPRIM.spad" 1317556 1317578 1320212 1320217) (-806 "ODEPAL.spad" 1316942 1316966 1317546 1317551) (-805 "ODEPACK.spad" 1303608 1303616 1316932 1316937) (-804 "ODEINT.spad" 1303043 1303059 1303598 1303603) (-803 "ODEIFTBL.spad" 1300438 1300446 1303033 1303038) (-802 "ODEEF.spad" 1295929 1295945 1300428 1300433) (-801 "ODECONST.spad" 1295466 1295484 1295919 1295924) (-800 "ODECAT.spad" 1294064 1294072 1295456 1295461) (-799 "OCT.spad" 1292204 1292214 1292918 1292957) (-798 "OCTCT2.spad" 1291850 1291871 1292194 1292199) (-797 "OC.spad" 1289646 1289656 1291806 1291845) (-796 "OC.spad" 1287167 1287179 1289329 1289334) (-795 "OCAMON.spad" 1287015 1287023 1287157 1287162) (-794 "OASGP.spad" 1286830 1286838 1287005 1287010) (-793 "OAMONS.spad" 1286352 1286360 1286820 1286825) (-792 "OAMON.spad" 1286213 1286221 1286342 1286347) (-791 "OAGROUP.spad" 1286075 1286083 1286203 1286208) (-790 "NUMTUBE.spad" 1285666 1285682 1286065 1286070) (-789 "NUMQUAD.spad" 1273642 1273650 1285656 1285661) (-788 "NUMODE.spad" 1264996 1265004 1273632 1273637) (-787 "NUMINT.spad" 1262562 1262570 1264986 1264991) (-786 "NUMFMT.spad" 1261402 1261410 1262552 1262557) (-785 "NUMERIC.spad" 1253516 1253526 1261207 1261212) (-784 "NTSCAT.spad" 1252024 1252040 1253484 1253511) (-783 "NTPOLFN.spad" 1251575 1251585 1251941 1251946) (-782 "NSUP.spad" 1244621 1244631 1249161 1249314) (-781 "NSUP2.spad" 1244013 1244025 1244611 1244616) (-780 "NSMP.spad" 1240244 1240263 1240552 1240679) (-779 "NREP.spad" 1238622 1238636 1240234 1240239) (-778 "NPCOEF.spad" 1237868 1237888 1238612 1238617) (-777 "NORMRETR.spad" 1237466 1237505 1237858 1237863) (-776 "NORMPK.spad" 1235368 1235387 1237456 1237461) (-775 "NORMMA.spad" 1235056 1235082 1235358 1235363) (-774 "NONE.spad" 1234797 1234805 1235046 1235051) (-773 "NONE1.spad" 1234473 1234483 1234787 1234792) (-772 "NODE1.spad" 1233960 1233976 1234463 1234468) (-771 "NNI.spad" 1232855 1232863 1233934 1233955) (-770 "NLINSOL.spad" 1231481 1231491 1232845 1232850) (-769 "NIPROB.spad" 1230022 1230030 1231471 1231476) (-768 "NFINTBAS.spad" 1227582 1227599 1230012 1230017) (-767 "NETCLT.spad" 1227556 1227567 1227572 1227577) (-766 "NCODIV.spad" 1225772 1225788 1227546 1227551) (-765 "NCNTFRAC.spad" 1225414 1225428 1225762 1225767) (-764 "NCEP.spad" 1223580 1223594 1225404 1225409) (-763 "NASRING.spad" 1223176 1223184 1223570 1223575) (-762 "NASRING.spad" 1222770 1222780 1223166 1223171) (-761 "NARNG.spad" 1222122 1222130 1222760 1222765) (-760 "NARNG.spad" 1221472 1221482 1222112 1222117) (-759 "NAGSP.spad" 1220549 1220557 1221462 1221467) (-758 "NAGS.spad" 1210210 1210218 1220539 1220544) (-757 "NAGF07.spad" 1208641 1208649 1210200 1210205) (-756 "NAGF04.spad" 1203043 1203051 1208631 1208636) (-755 "NAGF02.spad" 1197112 1197120 1203033 1203038) (-754 "NAGF01.spad" 1192873 1192881 1197102 1197107) (-753 "NAGE04.spad" 1186573 1186581 1192863 1192868) (-752 "NAGE02.spad" 1177233 1177241 1186563 1186568) (-751 "NAGE01.spad" 1173235 1173243 1177223 1177228) (-750 "NAGD03.spad" 1171239 1171247 1173225 1173230) (-749 "NAGD02.spad" 1163986 1163994 1171229 1171234) (-748 "NAGD01.spad" 1158279 1158287 1163976 1163981) (-747 "NAGC06.spad" 1154154 1154162 1158269 1158274) (-746 "NAGC05.spad" 1152655 1152663 1154144 1154149) (-745 "NAGC02.spad" 1151922 1151930 1152645 1152650) (-744 "NAALG.spad" 1151463 1151473 1151890 1151917) (-743 "NAALG.spad" 1151024 1151036 1151453 1151458) (-742 "MULTSQFR.spad" 1147982 1147999 1151014 1151019) (-741 "MULTFACT.spad" 1147365 1147382 1147972 1147977) (-740 "MTSCAT.spad" 1145459 1145480 1147263 1147360) (-739 "MTHING.spad" 1145118 1145128 1145449 1145454) (-738 "MSYSCMD.spad" 1144552 1144560 1145108 1145113) (-737 "MSET.spad" 1142510 1142520 1144258 1144297) (-736 "MSETAGG.spad" 1142355 1142365 1142478 1142505) (-735 "MRING.spad" 1139332 1139344 1142063 1142130) (-734 "MRF2.spad" 1138902 1138916 1139322 1139327) (-733 "MRATFAC.spad" 1138448 1138465 1138892 1138897) (-732 "MPRFF.spad" 1136488 1136507 1138438 1138443) (-731 "MPOLY.spad" 1133959 1133974 1134318 1134445) (-730 "MPCPF.spad" 1133223 1133242 1133949 1133954) (-729 "MPC3.spad" 1133040 1133080 1133213 1133218) (-728 "MPC2.spad" 1132686 1132719 1133030 1133035) (-727 "MONOTOOL.spad" 1131037 1131054 1132676 1132681) (-726 "MONOID.spad" 1130356 1130364 1131027 1131032) (-725 "MONOID.spad" 1129673 1129683 1130346 1130351) (-724 "MONOGEN.spad" 1128421 1128434 1129533 1129668) (-723 "MONOGEN.spad" 1127191 1127206 1128305 1128310) (-722 "MONADWU.spad" 1125221 1125229 1127181 1127186) (-721 "MONADWU.spad" 1123249 1123259 1125211 1125216) (-720 "MONAD.spad" 1122409 1122417 1123239 1123244) (-719 "MONAD.spad" 1121567 1121577 1122399 1122404) (-718 "MOEBIUS.spad" 1120303 1120317 1121547 1121562) (-717 "MODULE.spad" 1120173 1120183 1120271 1120298) (-716 "MODULE.spad" 1120063 1120075 1120163 1120168) (-715 "MODRING.spad" 1119398 1119437 1120043 1120058) (-714 "MODOP.spad" 1118063 1118075 1119220 1119287) (-713 "MODMONOM.spad" 1117794 1117812 1118053 1118058) (-712 "MODMON.spad" 1114589 1114605 1115308 1115461) (-711 "MODFIELD.spad" 1113951 1113990 1114491 1114584) (-710 "MMLFORM.spad" 1112811 1112819 1113941 1113946) (-709 "MMAP.spad" 1112553 1112587 1112801 1112806) (-708 "MLO.spad" 1111012 1111022 1112509 1112548) (-707 "MLIFT.spad" 1109624 1109641 1111002 1111007) (-706 "MKUCFUNC.spad" 1109159 1109177 1109614 1109619) (-705 "MKRECORD.spad" 1108763 1108776 1109149 1109154) (-704 "MKFUNC.spad" 1108170 1108180 1108753 1108758) (-703 "MKFLCFN.spad" 1107138 1107148 1108160 1108165) (-702 "MKBCFUNC.spad" 1106633 1106651 1107128 1107133) (-701 "MINT.spad" 1106072 1106080 1106535 1106628) (-700 "MHROWRED.spad" 1104583 1104593 1106062 1106067) (-699 "MFLOAT.spad" 1103103 1103111 1104473 1104578) (-698 "MFINFACT.spad" 1102503 1102525 1103093 1103098) (-697 "MESH.spad" 1100285 1100293 1102493 1102498) (-696 "MDDFACT.spad" 1098496 1098506 1100275 1100280) (-695 "MDAGG.spad" 1097787 1097797 1098476 1098491) (-694 "MCMPLX.spad" 1093798 1093806 1094412 1094613) (-693 "MCDEN.spad" 1093008 1093020 1093788 1093793) (-692 "MCALCFN.spad" 1090130 1090156 1092998 1093003) (-691 "MAYBE.spad" 1089414 1089425 1090120 1090125) (-690 "MATSTOR.spad" 1086722 1086732 1089404 1089409) (-689 "MATRIX.spad" 1085426 1085436 1085910 1085937) (-688 "MATLIN.spad" 1082770 1082794 1085310 1085315) (-687 "MATCAT.spad" 1074499 1074521 1082738 1082765) (-686 "MATCAT.spad" 1066100 1066124 1074341 1074346) (-685 "MATCAT2.spad" 1065382 1065430 1066090 1066095) (-684 "MAPPKG3.spad" 1064297 1064311 1065372 1065377) (-683 "MAPPKG2.spad" 1063635 1063647 1064287 1064292) (-682 "MAPPKG1.spad" 1062463 1062473 1063625 1063630) (-681 "MAPPAST.spad" 1061778 1061786 1062453 1062458) (-680 "MAPHACK3.spad" 1061590 1061604 1061768 1061773) (-679 "MAPHACK2.spad" 1061359 1061371 1061580 1061585) (-678 "MAPHACK1.spad" 1061003 1061013 1061349 1061354) (-677 "MAGMA.spad" 1058793 1058810 1060993 1060998) (-676 "MACROAST.spad" 1058372 1058380 1058783 1058788) (-675 "M3D.spad" 1056092 1056102 1057750 1057755) (-674 "LZSTAGG.spad" 1053330 1053340 1056082 1056087) (-673 "LZSTAGG.spad" 1050566 1050578 1053320 1053325) (-672 "LWORD.spad" 1047271 1047288 1050556 1050561) (-671 "LSTAST.spad" 1047055 1047063 1047261 1047266) (-670 "LSQM.spad" 1045285 1045299 1045679 1045730) (-669 "LSPP.spad" 1044820 1044837 1045275 1045280) (-668 "LSMP.spad" 1043670 1043698 1044810 1044815) (-667 "LSMP1.spad" 1041488 1041502 1043660 1043665) (-666 "LSAGG.spad" 1041157 1041167 1041456 1041483) (-665 "LSAGG.spad" 1040846 1040858 1041147 1041152) (-664 "LPOLY.spad" 1039800 1039819 1040702 1040771) (-663 "LPEFRAC.spad" 1039071 1039081 1039790 1039795) (-662 "LO.spad" 1038472 1038486 1039005 1039032) (-661 "LOGIC.spad" 1038074 1038082 1038462 1038467) (-660 "LOGIC.spad" 1037674 1037684 1038064 1038069) (-659 "LODOOPS.spad" 1036604 1036616 1037664 1037669) (-658 "LODO.spad" 1035988 1036004 1036284 1036323) (-657 "LODOF.spad" 1035034 1035051 1035945 1035950) (-656 "LODOCAT.spad" 1033700 1033710 1034990 1035029) (-655 "LODOCAT.spad" 1032364 1032376 1033656 1033661) (-654 "LODO2.spad" 1031637 1031649 1032044 1032083) (-653 "LODO1.spad" 1031037 1031047 1031317 1031356) (-652 "LODEEF.spad" 1029839 1029857 1031027 1031032) (-651 "LNAGG.spad" 1025671 1025681 1029829 1029834) (-650 "LNAGG.spad" 1021467 1021479 1025627 1025632) (-649 "LMOPS.spad" 1018235 1018252 1021457 1021462) (-648 "LMODULE.spad" 1018003 1018013 1018225 1018230) (-647 "LMDICT.spad" 1017290 1017300 1017554 1017581) (-646 "LLINSET.spad" 1016687 1016697 1017280 1017285) (-645 "LITERAL.spad" 1016593 1016604 1016677 1016682) (-644 "LIST.spad" 1014328 1014338 1015740 1015767) (-643 "LIST3.spad" 1013639 1013653 1014318 1014323) (-642 "LIST2.spad" 1012341 1012353 1013629 1013634) (-641 "LIST2MAP.spad" 1009244 1009256 1012331 1012336) (-640 "LINSET.spad" 1008866 1008876 1009234 1009239) (-639 "LINEXP.spad" 1008300 1008310 1008846 1008861) (-638 "LINDEP.spad" 1007109 1007121 1008212 1008217) (-637 "LIMITRF.spad" 1005037 1005047 1007099 1007104) (-636 "LIMITPS.spad" 1003940 1003953 1005027 1005032) (-635 "LIE.spad" 1001956 1001968 1003230 1003375) (-634 "LIECAT.spad" 1001432 1001442 1001882 1001951) (-633 "LIECAT.spad" 1000936 1000948 1001388 1001393) (-632 "LIB.spad" 998986 998994 999595 999610) (-631 "LGROBP.spad" 996339 996358 998976 998981) (-630 "LF.spad" 995294 995310 996329 996334) (-629 "LFCAT.spad" 994353 994361 995284 995289) (-628 "LEXTRIPK.spad" 989856 989871 994343 994348) (-627 "LEXP.spad" 987859 987886 989836 989851) (-626 "LETAST.spad" 987558 987566 987849 987854) (-625 "LEADCDET.spad" 985956 985973 987548 987553) (-624 "LAZM3PK.spad" 984660 984682 985946 985951) (-623 "LAUPOL.spad" 983353 983366 984253 984322) (-622 "LAPLACE.spad" 982936 982952 983343 983348) (-621 "LA.spad" 982376 982390 982858 982897) (-620 "LALG.spad" 982152 982162 982356 982371) (-619 "LALG.spad" 981936 981948 982142 982147) (-618 "KVTFROM.spad" 981671 981681 981926 981931) (-617 "KTVLOGIC.spad" 981183 981191 981661 981666) (-616 "KRCFROM.spad" 980921 980931 981173 981178) (-615 "KOVACIC.spad" 979644 979661 980911 980916) (-614 "KONVERT.spad" 979366 979376 979634 979639) (-613 "KOERCE.spad" 979103 979113 979356 979361) (-612 "KERNEL.spad" 977758 977768 978887 978892) (-611 "KERNEL2.spad" 977461 977473 977748 977753) (-610 "KDAGG.spad" 976570 976592 977441 977456) (-609 "KDAGG.spad" 975687 975711 976560 976565) (-608 "KAFILE.spad" 974650 974666 974885 974912) (-607 "JORDAN.spad" 972479 972491 973940 974085) (-606 "JOINAST.spad" 972173 972181 972469 972474) (-605 "JAVACODE.spad" 972039 972047 972163 972168) (-604 "IXAGG.spad" 970172 970196 972029 972034) (-603 "IXAGG.spad" 968160 968186 970019 970024) (-602 "IVECTOR.spad" 966930 966945 967085 967112) (-601 "ITUPLE.spad" 966091 966101 966920 966925) (-600 "ITRIGMNP.spad" 964930 964949 966081 966086) (-599 "ITFUN3.spad" 964436 964450 964920 964925) (-598 "ITFUN2.spad" 964180 964192 964426 964431) (-597 "ITAYLOR.spad" 961974 961989 964016 964141) (-596 "ISUPS.spad" 954411 954426 960948 961045) (-595 "ISUMP.spad" 953912 953928 954401 954406) (-594 "ISTRING.spad" 952915 952928 953081 953108) (-593 "ISAST.spad" 952634 952642 952905 952910) (-592 "IRURPK.spad" 951351 951370 952624 952629) (-591 "IRSN.spad" 949355 949363 951341 951346) (-590 "IRRF2F.spad" 947840 947850 949311 949316) (-589 "IRREDFFX.spad" 947441 947452 947830 947835) (-588 "IROOT.spad" 945780 945790 947431 947436) (-587 "IR.spad" 943581 943595 945635 945662) (-586 "IR2.spad" 942609 942625 943571 943576) (-585 "IR2F.spad" 941815 941831 942599 942604) (-584 "IPRNTPK.spad" 941575 941583 941805 941810) (-583 "IPF.spad" 941140 941152 941380 941473) (-582 "IPADIC.spad" 940901 940927 941066 941135) (-581 "IP4ADDR.spad" 940458 940466 940891 940896) (-580 "IOMODE.spad" 940079 940087 940448 940453) (-579 "IOBFILE.spad" 939440 939448 940069 940074) (-578 "IOBCON.spad" 939305 939313 939430 939435) (-577 "INVLAPLA.spad" 938954 938970 939295 939300) (-576 "INTTR.spad" 932336 932353 938944 938949) (-575 "INTTOOLS.spad" 930091 930107 931910 931915) (-574 "INTSLPE.spad" 929411 929419 930081 930086) (-573 "INTRVL.spad" 928977 928987 929325 929406) (-572 "INTRF.spad" 927401 927415 928967 928972) (-571 "INTRET.spad" 926833 926843 927391 927396) (-570 "INTRAT.spad" 925560 925577 926823 926828) (-569 "INTPM.spad" 923945 923961 925203 925208) (-568 "INTPAF.spad" 921809 921827 923877 923882) (-567 "INTPACK.spad" 912183 912191 921799 921804) (-566 "INT.spad" 911544 911552 912037 912178) (-565 "INTHERTR.spad" 910818 910835 911534 911539) (-564 "INTHERAL.spad" 910488 910512 910808 910813) (-563 "INTHEORY.spad" 906927 906935 910478 910483) (-562 "INTG0.spad" 900660 900678 906859 906864) (-561 "INTFTBL.spad" 894689 894697 900650 900655) (-560 "INTFACT.spad" 893748 893758 894679 894684) (-559 "INTEF.spad" 892133 892149 893738 893743) (-558 "INTDOM.spad" 890756 890764 892059 892128) (-557 "INTDOM.spad" 889441 889451 890746 890751) (-556 "INTCAT.spad" 887700 887710 889355 889436) (-555 "INTBIT.spad" 887207 887215 887690 887695) (-554 "INTALG.spad" 886395 886422 887197 887202) (-553 "INTAF.spad" 885895 885911 886385 886390) (-552 "INTABL.spad" 884413 884444 884576 884603) (-551 "INT8.spad" 884293 884301 884403 884408) (-550 "INT64.spad" 884172 884180 884283 884288) (-549 "INT32.spad" 884051 884059 884162 884167) (-548 "INT16.spad" 883930 883938 884041 884046) (-547 "INS.spad" 881433 881441 883832 883925) (-546 "INS.spad" 879022 879032 881423 881428) (-545 "INPSIGN.spad" 878470 878483 879012 879017) (-544 "INPRODPF.spad" 877566 877585 878460 878465) (-543 "INPRODFF.spad" 876654 876678 877556 877561) (-542 "INNMFACT.spad" 875629 875646 876644 876649) (-541 "INMODGCD.spad" 875117 875147 875619 875624) (-540 "INFSP.spad" 873414 873436 875107 875112) (-539 "INFPROD0.spad" 872494 872513 873404 873409) (-538 "INFORM.spad" 869693 869701 872484 872489) (-537 "INFORM1.spad" 869318 869328 869683 869688) (-536 "INFINITY.spad" 868870 868878 869308 869313) (-535 "INETCLTS.spad" 868847 868855 868860 868865) (-534 "INEP.spad" 867385 867407 868837 868842) (-533 "INDE.spad" 867114 867131 867375 867380) (-532 "INCRMAPS.spad" 866535 866545 867104 867109) (-531 "INBFILE.spad" 865607 865615 866525 866530) (-530 "INBFF.spad" 861401 861412 865597 865602) (-529 "INBCON.spad" 859691 859699 861391 861396) (-528 "INBCON.spad" 857979 857989 859681 859686) (-527 "INAST.spad" 857640 857648 857969 857974) (-526 "IMPTAST.spad" 857348 857356 857630 857635) (-525 "IMATRIX.spad" 856293 856319 856805 856832) (-524 "IMATQF.spad" 855387 855431 856249 856254) (-523 "IMATLIN.spad" 853992 854016 855343 855348) (-522 "ILIST.spad" 852650 852665 853175 853202) (-521 "IIARRAY2.spad" 852038 852076 852257 852284) (-520 "IFF.spad" 851448 851464 851719 851812) (-519 "IFAST.spad" 851062 851070 851438 851443) (-518 "IFARRAY.spad" 848555 848570 850245 850272) (-517 "IFAMON.spad" 848417 848434 848511 848516) (-516 "IEVALAB.spad" 847822 847834 848407 848412) (-515 "IEVALAB.spad" 847225 847239 847812 847817) (-514 "IDPO.spad" 847023 847035 847215 847220) (-513 "IDPOAMS.spad" 846779 846791 847013 847018) (-512 "IDPOAM.spad" 846499 846511 846769 846774) (-511 "IDPC.spad" 845437 845449 846489 846494) (-510 "IDPAM.spad" 845182 845194 845427 845432) (-509 "IDPAG.spad" 844929 844941 845172 845177) (-508 "IDENT.spad" 844579 844587 844919 844924) (-507 "IDECOMP.spad" 841818 841836 844569 844574) (-506 "IDEAL.spad" 836767 836806 841753 841758) (-505 "ICDEN.spad" 835956 835972 836757 836762) (-504 "ICARD.spad" 835147 835155 835946 835951) (-503 "IBPTOOLS.spad" 833754 833771 835137 835142) (-502 "IBITS.spad" 832957 832970 833390 833417) (-501 "IBATOOL.spad" 829934 829953 832947 832952) (-500 "IBACHIN.spad" 828441 828456 829924 829929) (-499 "IARRAY2.spad" 827429 827455 828048 828075) (-498 "IARRAY1.spad" 826474 826489 826612 826639) (-497 "IAN.spad" 824697 824705 826290 826383) (-496 "IALGFACT.spad" 824300 824333 824687 824692) (-495 "HYPCAT.spad" 823724 823732 824290 824295) (-494 "HYPCAT.spad" 823146 823156 823714 823719) (-493 "HOSTNAME.spad" 822954 822962 823136 823141) (-492 "HOMOTOP.spad" 822697 822707 822944 822949) (-491 "HOAGG.spad" 819979 819989 822687 822692) (-490 "HOAGG.spad" 817036 817048 819746 819751) (-489 "HEXADEC.spad" 815138 815146 815503 815596) (-488 "HEUGCD.spad" 814173 814184 815128 815133) (-487 "HELLFDIV.spad" 813763 813787 814163 814168) (-486 "HEAP.spad" 813155 813165 813370 813397) (-485 "HEADAST.spad" 812692 812700 813145 813150) (-484 "HDP.spad" 802535 802551 802912 803043) (-483 "HDMP.spad" 799749 799764 800365 800492) (-482 "HB.spad" 798000 798008 799739 799744) (-481 "HASHTBL.spad" 796470 796501 796681 796708) (-480 "HASAST.spad" 796186 796194 796460 796465) (-479 "HACKPI.spad" 795677 795685 796088 796181) (-478 "GTSET.spad" 794616 794632 795323 795350) (-477 "GSTBL.spad" 793135 793170 793309 793324) (-476 "GSERIES.spad" 790306 790333 791267 791416) (-475 "GROUP.spad" 789579 789587 790286 790301) (-474 "GROUP.spad" 788860 788870 789569 789574) (-473 "GROEBSOL.spad" 787354 787375 788850 788855) (-472 "GRMOD.spad" 785925 785937 787344 787349) (-471 "GRMOD.spad" 784494 784508 785915 785920) (-470 "GRIMAGE.spad" 777383 777391 784484 784489) (-469 "GRDEF.spad" 775762 775770 777373 777378) (-468 "GRAY.spad" 774225 774233 775752 775757) (-467 "GRALG.spad" 773302 773314 774215 774220) (-466 "GRALG.spad" 772377 772391 773292 773297) (-465 "GPOLSET.spad" 771831 771854 772059 772086) (-464 "GOSPER.spad" 771100 771118 771821 771826) (-463 "GMODPOL.spad" 770248 770275 771068 771095) (-462 "GHENSEL.spad" 769331 769345 770238 770243) (-461 "GENUPS.spad" 765624 765637 769321 769326) (-460 "GENUFACT.spad" 765201 765211 765614 765619) (-459 "GENPGCD.spad" 764787 764804 765191 765196) (-458 "GENMFACT.spad" 764239 764258 764777 764782) (-457 "GENEEZ.spad" 762190 762203 764229 764234) (-456 "GDMP.spad" 759246 759263 760020 760147) (-455 "GCNAALG.spad" 753169 753196 759040 759107) (-454 "GCDDOM.spad" 752345 752353 753095 753164) (-453 "GCDDOM.spad" 751583 751593 752335 752340) (-452 "GB.spad" 749109 749147 751539 751544) (-451 "GBINTERN.spad" 745129 745167 749099 749104) (-450 "GBF.spad" 740896 740934 745119 745124) (-449 "GBEUCLID.spad" 738778 738816 740886 740891) (-448 "GAUSSFAC.spad" 738091 738099 738768 738773) (-447 "GALUTIL.spad" 736417 736427 738047 738052) (-446 "GALPOLYU.spad" 734871 734884 736407 736412) (-445 "GALFACTU.spad" 733044 733063 734861 734866) (-444 "GALFACT.spad" 723233 723244 733034 733039) (-443 "FVFUN.spad" 720256 720264 723223 723228) (-442 "FVC.spad" 719308 719316 720246 720251) (-441 "FUNDESC.spad" 718986 718994 719298 719303) (-440 "FUNCTION.spad" 718835 718847 718976 718981) (-439 "FT.spad" 717132 717140 718825 718830) (-438 "FTEM.spad" 716297 716305 717122 717127) (-437 "FSUPFACT.spad" 715197 715216 716233 716238) (-436 "FST.spad" 713283 713291 715187 715192) (-435 "FSRED.spad" 712763 712779 713273 713278) (-434 "FSPRMELT.spad" 711645 711661 712720 712725) (-433 "FSPECF.spad" 709736 709752 711635 711640) (-432 "FS.spad" 704004 704014 709511 709731) (-431 "FS.spad" 698050 698062 703559 703564) (-430 "FSINT.spad" 697710 697726 698040 698045) (-429 "FSERIES.spad" 696901 696913 697530 697629) (-428 "FSCINT.spad" 696218 696234 696891 696896) (-427 "FSAGG.spad" 695335 695345 696174 696213) (-426 "FSAGG.spad" 694414 694426 695255 695260) (-425 "FSAGG2.spad" 693157 693173 694404 694409) (-424 "FS2UPS.spad" 687648 687682 693147 693152) (-423 "FS2.spad" 687295 687311 687638 687643) (-422 "FS2EXPXP.spad" 686420 686443 687285 687290) (-421 "FRUTIL.spad" 685374 685384 686410 686415) (-420 "FR.spad" 679090 679100 684398 684467) (-419 "FRNAALG.spad" 674209 674219 679032 679085) (-418 "FRNAALG.spad" 669340 669352 674165 674170) (-417 "FRNAAF2.spad" 668796 668814 669330 669335) (-416 "FRMOD.spad" 668206 668236 668727 668732) (-415 "FRIDEAL.spad" 667431 667452 668186 668201) (-414 "FRIDEAL2.spad" 667035 667067 667421 667426) (-413 "FRETRCT.spad" 666546 666556 667025 667030) (-412 "FRETRCT.spad" 665923 665935 666404 666409) (-411 "FRAMALG.spad" 664271 664284 665879 665918) (-410 "FRAMALG.spad" 662651 662666 664261 664266) (-409 "FRAC.spad" 659750 659760 660153 660326) (-408 "FRAC2.spad" 659355 659367 659740 659745) (-407 "FR2.spad" 658691 658703 659345 659350) (-406 "FPS.spad" 655506 655514 658581 658686) (-405 "FPS.spad" 652349 652359 655426 655431) (-404 "FPC.spad" 651395 651403 652251 652344) (-403 "FPC.spad" 650527 650537 651385 651390) (-402 "FPATMAB.spad" 650289 650299 650517 650522) (-401 "FPARFRAC.spad" 648776 648793 650279 650284) (-400 "FORTRAN.spad" 647282 647325 648766 648771) (-399 "FORT.spad" 646231 646239 647272 647277) (-398 "FORTFN.spad" 643401 643409 646221 646226) (-397 "FORTCAT.spad" 643085 643093 643391 643396) (-396 "FORMULA.spad" 640559 640567 643075 643080) (-395 "FORMULA1.spad" 640038 640048 640549 640554) (-394 "FORDER.spad" 639729 639753 640028 640033) (-393 "FOP.spad" 638930 638938 639719 639724) (-392 "FNLA.spad" 638354 638376 638898 638925) (-391 "FNCAT.spad" 636949 636957 638344 638349) (-390 "FNAME.spad" 636841 636849 636939 636944) (-389 "FMTC.spad" 636639 636647 636767 636836) (-388 "FMONOID.spad" 633756 633766 636595 636600) (-387 "FM.spad" 633451 633463 633690 633717) (-386 "FMFUN.spad" 630481 630489 633441 633446) (-385 "FMC.spad" 629533 629541 630471 630476) (-384 "FMCAT.spad" 627201 627219 629501 629528) (-383 "FM1.spad" 626558 626570 627135 627162) (-382 "FLOATRP.spad" 624293 624307 626548 626553) (-381 "FLOAT.spad" 617607 617615 624159 624288) (-380 "FLOATCP.spad" 615038 615052 617597 617602) (-379 "FLINEXP.spad" 614750 614760 615018 615033) (-378 "FLINEXP.spad" 614416 614428 614686 614691) (-377 "FLASORT.spad" 613742 613754 614406 614411) (-376 "FLALG.spad" 611388 611407 613668 613737) (-375 "FLAGG.spad" 608430 608440 611368 611383) (-374 "FLAGG.spad" 605373 605385 608313 608318) (-373 "FLAGG2.spad" 604098 604114 605363 605368) (-372 "FINRALG.spad" 602159 602172 604054 604093) (-371 "FINRALG.spad" 600146 600161 602043 602048) (-370 "FINITE.spad" 599298 599306 600136 600141) (-369 "FINAALG.spad" 588419 588429 599240 599293) (-368 "FINAALG.spad" 577552 577564 588375 588380) (-367 "FILE.spad" 577135 577145 577542 577547) (-366 "FILECAT.spad" 575661 575678 577125 577130) (-365 "FIELD.spad" 575067 575075 575563 575656) (-364 "FIELD.spad" 574559 574569 575057 575062) (-363 "FGROUP.spad" 573206 573216 574539 574554) (-362 "FGLMICPK.spad" 571993 572008 573196 573201) (-361 "FFX.spad" 571368 571383 571709 571802) (-360 "FFSLPE.spad" 570871 570892 571358 571363) (-359 "FFPOLY.spad" 562133 562144 570861 570866) (-358 "FFPOLY2.spad" 561193 561210 562123 562128) (-357 "FFP.spad" 560590 560610 560909 561002) (-356 "FF.spad" 560038 560054 560271 560364) (-355 "FFNBX.spad" 558550 558570 559754 559847) (-354 "FFNBP.spad" 557063 557080 558266 558359) (-353 "FFNB.spad" 555528 555549 556744 556837) (-352 "FFINTBAS.spad" 553042 553061 555518 555523) (-351 "FFIELDC.spad" 550619 550627 552944 553037) (-350 "FFIELDC.spad" 548282 548292 550609 550614) (-349 "FFHOM.spad" 547030 547047 548272 548277) (-348 "FFF.spad" 544465 544476 547020 547025) (-347 "FFCGX.spad" 543312 543332 544181 544274) (-346 "FFCGP.spad" 542201 542221 543028 543121) (-345 "FFCG.spad" 540993 541014 541882 541975) (-344 "FFCAT.spad" 534166 534188 540832 540988) (-343 "FFCAT.spad" 527418 527442 534086 534091) (-342 "FFCAT2.spad" 527165 527205 527408 527413) (-341 "FEXPR.spad" 518882 518928 526921 526960) (-340 "FEVALAB.spad" 518590 518600 518872 518877) (-339 "FEVALAB.spad" 518083 518095 518367 518372) (-338 "FDIV.spad" 517525 517549 518073 518078) (-337 "FDIVCAT.spad" 515589 515613 517515 517520) (-336 "FDIVCAT.spad" 513651 513677 515579 515584) (-335 "FDIV2.spad" 513307 513347 513641 513646) (-334 "FCTRDATA.spad" 512315 512323 513297 513302) (-333 "FCPAK1.spad" 510882 510890 512305 512310) (-332 "FCOMP.spad" 510261 510271 510872 510877) (-331 "FC.spad" 500268 500276 510251 510256) (-330 "FAXF.spad" 493239 493253 500170 500263) (-329 "FAXF.spad" 486262 486278 493195 493200) (-328 "FARRAY.spad" 484412 484422 485445 485472) (-327 "FAMR.spad" 482548 482560 484310 484407) (-326 "FAMR.spad" 480668 480682 482432 482437) (-325 "FAMONOID.spad" 480336 480346 480622 480627) (-324 "FAMONC.spad" 478632 478644 480326 480331) (-323 "FAGROUP.spad" 478256 478266 478528 478555) (-322 "FACUTIL.spad" 476460 476477 478246 478251) (-321 "FACTFUNC.spad" 475654 475664 476450 476455) (-320 "EXPUPXS.spad" 472487 472510 473786 473935) (-319 "EXPRTUBE.spad" 469775 469783 472477 472482) (-318 "EXPRODE.spad" 466935 466951 469765 469770) (-317 "EXPR.spad" 462210 462220 462924 463331) (-316 "EXPR2UPS.spad" 458332 458345 462200 462205) (-315 "EXPR2.spad" 458037 458049 458322 458327) (-314 "EXPEXPAN.spad" 454977 455002 455609 455702) (-313 "EXIT.spad" 454648 454656 454967 454972) (-312 "EXITAST.spad" 454384 454392 454638 454643) (-311 "EVALCYC.spad" 453844 453858 454374 454379) (-310 "EVALAB.spad" 453416 453426 453834 453839) (-309 "EVALAB.spad" 452986 452998 453406 453411) (-308 "EUCDOM.spad" 450560 450568 452912 452981) (-307 "EUCDOM.spad" 448196 448206 450550 450555) (-306 "ESTOOLS.spad" 440042 440050 448186 448191) (-305 "ESTOOLS2.spad" 439645 439659 440032 440037) (-304 "ESTOOLS1.spad" 439330 439341 439635 439640) (-303 "ES.spad" 432145 432153 439320 439325) (-302 "ES.spad" 424866 424876 432043 432048) (-301 "ESCONT.spad" 421659 421667 424856 424861) (-300 "ESCONT1.spad" 421408 421420 421649 421654) (-299 "ES2.spad" 420913 420929 421398 421403) (-298 "ES1.spad" 420483 420499 420903 420908) (-297 "ERROR.spad" 417810 417818 420473 420478) (-296 "EQTBL.spad" 416282 416304 416491 416518) (-295 "EQ.spad" 411087 411097 413874 413986) (-294 "EQ2.spad" 410805 410817 411077 411082) (-293 "EP.spad" 407131 407141 410795 410800) (-292 "ENV.spad" 405793 405801 407121 407126) (-291 "ENTIRER.spad" 405461 405469 405737 405788) (-290 "EMR.spad" 404668 404709 405387 405456) (-289 "ELTAGG.spad" 402922 402941 404658 404663) (-288 "ELTAGG.spad" 401140 401161 402878 402883) (-287 "ELTAB.spad" 400589 400607 401130 401135) (-286 "ELFUTS.spad" 399976 399995 400579 400584) (-285 "ELEMFUN.spad" 399665 399673 399966 399971) (-284 "ELEMFUN.spad" 399352 399362 399655 399660) (-283 "ELAGG.spad" 397323 397333 399332 399347) (-282 "ELAGG.spad" 395231 395243 397242 397247) (-281 "ELABEXPR.spad" 394163 394171 395221 395226) (-280 "EFUPXS.spad" 390939 390969 394119 394124) (-279 "EFULS.spad" 387775 387798 390895 390900) (-278 "EFSTRUC.spad" 385790 385806 387765 387770) (-277 "EF.spad" 380566 380582 385780 385785) (-276 "EAB.spad" 378842 378850 380556 380561) (-275 "E04UCFA.spad" 378378 378386 378832 378837) (-274 "E04NAFA.spad" 377955 377963 378368 378373) (-273 "E04MBFA.spad" 377535 377543 377945 377950) (-272 "E04JAFA.spad" 377071 377079 377525 377530) (-271 "E04GCFA.spad" 376607 376615 377061 377066) (-270 "E04FDFA.spad" 376143 376151 376597 376602) (-269 "E04DGFA.spad" 375679 375687 376133 376138) (-268 "E04AGNT.spad" 371529 371537 375669 375674) (-267 "DVARCAT.spad" 368218 368228 371519 371524) (-266 "DVARCAT.spad" 364905 364917 368208 368213) (-265 "DSMP.spad" 362372 362386 362677 362804) (-264 "DROPT.spad" 356331 356339 362362 362367) (-263 "DROPT1.spad" 355996 356006 356321 356326) (-262 "DROPT0.spad" 350853 350861 355986 355991) (-261 "DRAWPT.spad" 349026 349034 350843 350848) (-260 "DRAW.spad" 341902 341915 349016 349021) (-259 "DRAWHACK.spad" 341210 341220 341892 341897) (-258 "DRAWCX.spad" 338680 338688 341200 341205) (-257 "DRAWCURV.spad" 338227 338242 338670 338675) (-256 "DRAWCFUN.spad" 327759 327767 338217 338222) (-255 "DQAGG.spad" 325937 325947 327727 327754) (-254 "DPOLCAT.spad" 321286 321302 325805 325932) (-253 "DPOLCAT.spad" 316721 316739 321242 321247) (-252 "DPMO.spad" 308947 308963 309085 309386) (-251 "DPMM.spad" 301186 301204 301311 301612) (-250 "DOMTMPLT.spad" 300846 300854 301176 301181) (-249 "DOMCTOR.spad" 300601 300609 300836 300841) (-248 "DOMAIN.spad" 299688 299696 300591 300596) (-247 "DMP.spad" 296948 296963 297518 297645) (-246 "DLP.spad" 296300 296310 296938 296943) (-245 "DLIST.spad" 294879 294889 295483 295510) (-244 "DLAGG.spad" 293296 293306 294869 294874) (-243 "DIVRING.spad" 292838 292846 293240 293291) (-242 "DIVRING.spad" 292424 292434 292828 292833) (-241 "DISPLAY.spad" 290614 290622 292414 292419) (-240 "DIRPROD.spad" 280194 280210 280834 280965) (-239 "DIRPROD2.spad" 279012 279030 280184 280189) (-238 "DIRPCAT.spad" 277956 277972 278876 279007) (-237 "DIRPCAT.spad" 276629 276647 277551 277556) (-236 "DIOSP.spad" 275454 275462 276619 276624) (-235 "DIOPS.spad" 274450 274460 275434 275449) (-234 "DIOPS.spad" 273420 273432 274406 274411) (-233 "DIFRING.spad" 272716 272724 273400 273415) (-232 "DIFRING.spad" 272020 272030 272706 272711) (-231 "DIFEXT.spad" 271191 271201 272000 272015) (-230 "DIFEXT.spad" 270279 270291 271090 271095) (-229 "DIAGG.spad" 269909 269919 270259 270274) (-228 "DIAGG.spad" 269547 269559 269899 269904) (-227 "DHMATRIX.spad" 267859 267869 269004 269031) (-226 "DFSFUN.spad" 261499 261507 267849 267854) (-225 "DFLOAT.spad" 258230 258238 261389 261494) (-224 "DFINTTLS.spad" 256461 256477 258220 258225) (-223 "DERHAM.spad" 254375 254407 256441 256456) (-222 "DEQUEUE.spad" 253699 253709 253982 254009) (-221 "DEGRED.spad" 253316 253330 253689 253694) (-220 "DEFINTRF.spad" 250853 250863 253306 253311) (-219 "DEFINTEF.spad" 249363 249379 250843 250848) (-218 "DEFAST.spad" 248731 248739 249353 249358) (-217 "DECIMAL.spad" 246837 246845 247198 247291) (-216 "DDFACT.spad" 244650 244667 246827 246832) (-215 "DBLRESP.spad" 244250 244274 244640 244645) (-214 "DBASE.spad" 242914 242924 244240 244245) (-213 "DATAARY.spad" 242376 242389 242904 242909) (-212 "D03FAFA.spad" 242204 242212 242366 242371) (-211 "D03EEFA.spad" 242024 242032 242194 242199) (-210 "D03AGNT.spad" 241110 241118 242014 242019) (-209 "D02EJFA.spad" 240572 240580 241100 241105) (-208 "D02CJFA.spad" 240050 240058 240562 240567) (-207 "D02BHFA.spad" 239540 239548 240040 240045) (-206 "D02BBFA.spad" 239030 239038 239530 239535) (-205 "D02AGNT.spad" 233844 233852 239020 239025) (-204 "D01WGTS.spad" 232163 232171 233834 233839) (-203 "D01TRNS.spad" 232140 232148 232153 232158) (-202 "D01GBFA.spad" 231662 231670 232130 232135) (-201 "D01FCFA.spad" 231184 231192 231652 231657) (-200 "D01ASFA.spad" 230652 230660 231174 231179) (-199 "D01AQFA.spad" 230098 230106 230642 230647) (-198 "D01APFA.spad" 229522 229530 230088 230093) (-197 "D01ANFA.spad" 229016 229024 229512 229517) (-196 "D01AMFA.spad" 228526 228534 229006 229011) (-195 "D01ALFA.spad" 228066 228074 228516 228521) (-194 "D01AKFA.spad" 227592 227600 228056 228061) (-193 "D01AJFA.spad" 227115 227123 227582 227587) (-192 "D01AGNT.spad" 223182 223190 227105 227110) (-191 "CYCLOTOM.spad" 222688 222696 223172 223177) (-190 "CYCLES.spad" 219544 219552 222678 222683) (-189 "CVMP.spad" 218961 218971 219534 219539) (-188 "CTRIGMNP.spad" 217461 217477 218951 218956) (-187 "CTOR.spad" 217152 217160 217451 217456) (-186 "CTORKIND.spad" 216755 216763 217142 217147) (-185 "CTORCAT.spad" 216004 216012 216745 216750) (-184 "CTORCAT.spad" 215251 215261 215994 215999) (-183 "CTORCALL.spad" 214840 214850 215241 215246) (-182 "CSTTOOLS.spad" 214085 214098 214830 214835) (-181 "CRFP.spad" 207809 207822 214075 214080) (-180 "CRCEAST.spad" 207529 207537 207799 207804) (-179 "CRAPACK.spad" 206580 206590 207519 207524) (-178 "CPMATCH.spad" 206084 206099 206505 206510) (-177 "CPIMA.spad" 205789 205808 206074 206079) (-176 "COORDSYS.spad" 200798 200808 205779 205784) (-175 "CONTOUR.spad" 200209 200217 200788 200793) (-174 "CONTFRAC.spad" 195959 195969 200111 200204) (-173 "CONDUIT.spad" 195717 195725 195949 195954) (-172 "COMRING.spad" 195391 195399 195655 195712) (-171 "COMPPROP.spad" 194909 194917 195381 195386) (-170 "COMPLPAT.spad" 194676 194691 194899 194904) (-169 "COMPLEX.spad" 188813 188823 189057 189318) (-168 "COMPLEX2.spad" 188528 188540 188803 188808) (-167 "COMPFACT.spad" 188130 188144 188518 188523) (-166 "COMPCAT.spad" 186202 186212 187864 188125) (-165 "COMPCAT.spad" 184002 184014 185666 185671) (-164 "COMMUPC.spad" 183750 183768 183992 183997) (-163 "COMMONOP.spad" 183283 183291 183740 183745) (-162 "COMM.spad" 183094 183102 183273 183278) (-161 "COMMAAST.spad" 182857 182865 183084 183089) (-160 "COMBOPC.spad" 181772 181780 182847 182852) (-159 "COMBINAT.spad" 180539 180549 181762 181767) (-158 "COMBF.spad" 177921 177937 180529 180534) (-157 "COLOR.spad" 176758 176766 177911 177916) (-156 "COLONAST.spad" 176424 176432 176748 176753) (-155 "CMPLXRT.spad" 176135 176152 176414 176419) (-154 "CLLCTAST.spad" 175797 175805 176125 176130) (-153 "CLIP.spad" 171905 171913 175787 175792) (-152 "CLIF.spad" 170560 170576 171861 171900) (-151 "CLAGG.spad" 167065 167075 170550 170555) (-150 "CLAGG.spad" 163441 163453 166928 166933) (-149 "CINTSLPE.spad" 162772 162785 163431 163436) (-148 "CHVAR.spad" 160910 160932 162762 162767) (-147 "CHARZ.spad" 160825 160833 160890 160905) (-146 "CHARPOL.spad" 160335 160345 160815 160820) (-145 "CHARNZ.spad" 160088 160096 160315 160330) (-144 "CHAR.spad" 157962 157970 160078 160083) (-143 "CFCAT.spad" 157290 157298 157952 157957) (-142 "CDEN.spad" 156486 156500 157280 157285) (-141 "CCLASS.spad" 154635 154643 155897 155936) (-140 "CATEGORY.spad" 153677 153685 154625 154630) (-139 "CATCTOR.spad" 153568 153576 153667 153672) (-138 "CATAST.spad" 153186 153194 153558 153563) (-137 "CASEAST.spad" 152900 152908 153176 153181) (-136 "CARTEN.spad" 148187 148211 152890 152895) (-135 "CARTEN2.spad" 147577 147604 148177 148182) (-134 "CARD.spad" 144872 144880 147551 147572) (-133 "CAPSLAST.spad" 144646 144654 144862 144867) (-132 "CACHSET.spad" 144270 144278 144636 144641) (-131 "CABMON.spad" 143825 143833 144260 144265) (-130 "BYTEORD.spad" 143500 143508 143815 143820) (-129 "BYTE.spad" 142927 142935 143490 143495) (-128 "BYTEBUF.spad" 140786 140794 142096 142123) (-127 "BTREE.spad" 139859 139869 140393 140420) (-126 "BTOURN.spad" 138864 138874 139466 139493) (-125 "BTCAT.spad" 138256 138266 138832 138859) (-124 "BTCAT.spad" 137668 137680 138246 138251) (-123 "BTAGG.spad" 136796 136804 137636 137663) (-122 "BTAGG.spad" 135944 135954 136786 136791) (-121 "BSTREE.spad" 134685 134695 135551 135578) (-120 "BRILL.spad" 132882 132893 134675 134680) (-119 "BRAGG.spad" 131822 131832 132872 132877) (-118 "BRAGG.spad" 130726 130738 131778 131783) (-117 "BPADICRT.spad" 128707 128719 128962 129055) (-116 "BPADIC.spad" 128371 128383 128633 128702) (-115 "BOUNDZRO.spad" 128027 128044 128361 128366) (-114 "BOP.spad" 123209 123217 128017 128022) (-113 "BOP1.spad" 120675 120685 123199 123204) (-112 "BOOLEAN.spad" 120113 120121 120665 120670) (-111 "BMODULE.spad" 119825 119837 120081 120108) (-110 "BITS.spad" 119246 119254 119461 119488) (-109 "BINDING.spad" 118659 118667 119236 119241) (-108 "BINARY.spad" 116770 116778 117126 117219) (-107 "BGAGG.spad" 115975 115985 116750 116765) (-106 "BGAGG.spad" 115188 115200 115965 115970) (-105 "BFUNCT.spad" 114752 114760 115168 115183) (-104 "BEZOUT.spad" 113892 113919 114702 114707) (-103 "BBTREE.spad" 110737 110747 113499 113526) (-102 "BASTYPE.spad" 110409 110417 110727 110732) (-101 "BASTYPE.spad" 110079 110089 110399 110404) (-100 "BALFACT.spad" 109538 109551 110069 110074) (-99 "AUTOMOR.spad" 108989 108998 109518 109533) (-98 "ATTREG.spad" 105712 105719 108741 108984) (-97 "ATTRBUT.spad" 101735 101742 105692 105707) (-96 "ATTRAST.spad" 101452 101459 101725 101730) (-95 "ATRIG.spad" 100922 100929 101442 101447) (-94 "ATRIG.spad" 100390 100399 100912 100917) (-93 "ASTCAT.spad" 100294 100301 100380 100385) (-92 "ASTCAT.spad" 100196 100205 100284 100289) (-91 "ASTACK.spad" 99535 99544 99803 99830) (-90 "ASSOCEQ.spad" 98361 98372 99491 99496) (-89 "ASP9.spad" 97442 97455 98351 98356) (-88 "ASP8.spad" 96485 96498 97432 97437) (-87 "ASP80.spad" 95807 95820 96475 96480) (-86 "ASP7.spad" 94967 94980 95797 95802) (-85 "ASP78.spad" 94418 94431 94957 94962) (-84 "ASP77.spad" 93787 93800 94408 94413) (-83 "ASP74.spad" 92879 92892 93777 93782) (-82 "ASP73.spad" 92150 92163 92869 92874) (-81 "ASP6.spad" 91017 91030 92140 92145) (-80 "ASP55.spad" 89526 89539 91007 91012) (-79 "ASP50.spad" 87343 87356 89516 89521) (-78 "ASP4.spad" 86638 86651 87333 87338) (-77 "ASP49.spad" 85637 85650 86628 86633) (-76 "ASP42.spad" 84044 84083 85627 85632) (-75 "ASP41.spad" 82623 82662 84034 84039) (-74 "ASP35.spad" 81611 81624 82613 82618) (-73 "ASP34.spad" 80912 80925 81601 81606) (-72 "ASP33.spad" 80472 80485 80902 80907) (-71 "ASP31.spad" 79612 79625 80462 80467) (-70 "ASP30.spad" 78504 78517 79602 79607) (-69 "ASP29.spad" 77970 77983 78494 78499) (-68 "ASP28.spad" 69243 69256 77960 77965) (-67 "ASP27.spad" 68140 68153 69233 69238) (-66 "ASP24.spad" 67227 67240 68130 68135) (-65 "ASP20.spad" 66691 66704 67217 67222) (-64 "ASP1.spad" 66072 66085 66681 66686) (-63 "ASP19.spad" 60758 60771 66062 66067) (-62 "ASP12.spad" 60172 60185 60748 60753) (-61 "ASP10.spad" 59443 59456 60162 60167) (-60 "ARRAY2.spad" 58803 58812 59050 59077) (-59 "ARRAY1.spad" 57640 57649 57986 58013) (-58 "ARRAY12.spad" 56353 56364 57630 57635) (-57 "ARR2CAT.spad" 52127 52148 56321 56348) (-56 "ARR2CAT.spad" 47921 47944 52117 52122) (-55 "ARITY.spad" 47293 47300 47911 47916) (-54 "APPRULE.spad" 46553 46575 47283 47288) (-53 "APPLYORE.spad" 46172 46185 46543 46548) (-52 "ANY.spad" 45031 45038 46162 46167) (-51 "ANY1.spad" 44102 44111 45021 45026) (-50 "ANTISYM.spad" 42547 42563 44082 44097) (-49 "ANON.spad" 42240 42247 42537 42542) (-48 "AN.spad" 40549 40556 42056 42149) (-47 "AMR.spad" 38734 38745 40447 40544) (-46 "AMR.spad" 36756 36769 38471 38476) (-45 "ALIST.spad" 34168 34189 34518 34545) (-44 "ALGSC.spad" 33303 33329 34040 34093) (-43 "ALGPKG.spad" 29086 29097 33259 33264) (-42 "ALGMFACT.spad" 28279 28293 29076 29081) (-41 "ALGMANIP.spad" 25753 25768 28112 28117) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase index da63d67d..1d77b6b8 100644 --- a/src/share/algebra/category.daase +++ b/src/share/algebra/category.daase @@ -1,15 +1,15 @@ -(188029 . 3454219029) -(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((#0=(-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) #0#) |has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))))) -((((-566)) . T) (($) -2809 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-558))) (((-409 (-566))) -2809 (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-1038 (-409 (-566))))) ((|#1|) . T)) +(188029 . 3459379715) +(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((#0=(-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) #0#) |has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))))) +((((-566)) . T) (($) -2768 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-558))) (((-409 (-566))) -2768 (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-1038 (-409 (-566))))) ((|#1|) . T)) (((|#2| |#2|) . T)) ((((-566)) . T)) -((($ $) -2809 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) ((|#2| |#2|) . T) ((#0=(-409 (-566)) #0#) |has| |#2| (-38 (-409 (-566))))) +((($ $) -2768 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) ((|#2| |#2|) . T) ((#0=(-409 (-566)) #0#) |has| |#2| (-38 (-409 (-566))))) ((($) . T)) (((|#1|) . T)) ((($) . T) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) (((|#2|) . T)) -((($) -2809 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) ((|#2|) . T) (((-409 (-566))) |has| |#2| (-38 (-409 (-566))))) +((($) -2768 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) ((|#2|) . T) (((-409 (-566))) |has| |#2| (-38 (-409 (-566))))) (|has| |#1| (-909)) ((((-862)) . T)) ((((-862)) . T)) @@ -24,19 +24,19 @@ ((((-225)) . T) (((-862)) . T)) (((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (((|#1|) . T)) -(-2809 (|has| |#1| (-21)) (|has| |#1| (-848))) -((($ $) . T) ((#0=(-409 (-566)) #0#) -2809 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1| |#1|) . T)) -(-2809 (|has| |#1| (-820)) (|has| |#1| (-850))) +(-2768 (|has| |#1| (-21)) (|has| |#1| (-848))) +((($ $) . T) ((#0=(-409 (-566)) #0#) -2768 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1| |#1|) . T)) +(-2768 (|has| |#1| (-820)) (|has| |#1| (-850))) ((((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) (((-566)) |has| |#1| (-1038 (-566))) ((|#1|) . T)) ((((-862)) . T)) ((((-862)) . T)) -(-2809 (|has| |#1| (-365)) (|has| |#1| (-558))) +(-2768 (|has| |#1| (-365)) (|has| |#1| (-558))) (|has| |#1| (-848)) (((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) ((((-317 |#1|)) . T) (((-566)) . T) (($) . T)) (((|#1| |#2| |#3|) . T)) ((((-566)) . T) (((-870 |#1|)) . T) (($) . T) (((-409 (-566))) . T)) -((($) . T) (((-409 (-566))) -2809 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) +((($) . T) (((-409 (-566))) -2768 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) ((((-409 (-566))) . T) (((-699)) . T) (($) . T)) ((((-862)) . T)) ((((-1180)) . T)) @@ -49,14 +49,14 @@ (((|#1|) . T) ((|#2|) . T)) ((((-1180)) . T)) (((|#1|) . T) (((-566)) |has| |#1| (-1038 (-566))) (((-409 (-566))) |has| |#1| (-1038 (-409 (-566))))) -(-2809 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) -(-2809 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) -(((|#2| (-484 (-3018 |#1|) (-771))) . T)) +(-2768 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) +(-2768 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) +(((|#2| (-484 (-3000 |#1|) (-771))) . T)) (((|#1| (-533 (-1175))) . T)) (((#0=(-870 |#1|) #0#) . T) ((#1=(-409 (-566)) #1#) . T) (($ $) . T)) ((((-1157)) . T) (((-958 (-129))) . T) (((-862)) . T)) ((((-862)) . T)) -((((-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) . T)) +((((-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) . T)) (|has| |#4| (-370)) (|has| |#3| (-370)) (((|#1|) . T)) @@ -70,13 +70,13 @@ (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-558)) -((((-566)) . T) (((-409 (-566))) -2809 (|has| |#2| (-38 (-409 (-566)))) (|has| |#2| (-1038 (-409 (-566))))) ((|#2|) . T) (($) -2809 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) (((-864 |#1|)) . T)) -(-2809 (|has| |#1| (-365)) (|has| |#1| (-558))) -(-2809 (|has| |#1| (-365)) (|has| |#1| (-558))) -((((-2 (|:| -2178 |#1|) (|:| -2852 |#2|))) . T)) +((((-566)) . T) (((-409 (-566))) -2768 (|has| |#2| (-38 (-409 (-566)))) (|has| |#2| (-1038 (-409 (-566))))) ((|#2|) . T) (($) -2768 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) (((-864 |#1|)) . T)) +(-2768 (|has| |#1| (-365)) (|has| |#1| (-558))) +(-2768 (|has| |#1| (-365)) (|has| |#1| (-558))) +((((-2 (|:| -2835 |#1|) (|:| -2201 |#2|))) . T)) ((($) . T)) -((((-566)) . T) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))) ((|#1|) . T) (($) -2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) (((-1175)) . T)) -((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-850)) (|has| |#1| (-1099)))) +((((-566)) . T) (((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))) ((|#1|) . T) (($) -2768 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) (((-1175)) . T)) +((((-862)) -2768 (|has| |#1| (-613 (-862))) (|has| |#1| (-850)) (|has| |#1| (-1099)))) ((((-538)) |has| |#1| (-614 (-538)))) ((((-1175)) . T)) ((((-566)) . T) (($) . T)) @@ -96,12 +96,12 @@ (((|#1| |#2|) . T)) ((((-862)) . T)) (((|#1|) . T)) -(((#0=(-409 (-566)) #0#) |has| |#2| (-38 (-409 (-566)))) ((|#2| |#2|) . T) (($ $) -2809 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) +(((#0=(-409 (-566)) #0#) |has| |#2| (-38 (-409 (-566)))) ((|#2| |#2|) . T) (($ $) -2768 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) (((|#1|) . T)) ((((-116 |#1|)) . T) (($) . T) (((-409 (-566))) . T)) ((((-862)) . T)) -((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) |has| |#2| (-172)) (($) -2809 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) -((($) -2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) |has| |#2| (-172)) (($) -2768 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) +((($) -2768 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) (((|#1|) . T) (((-409 (-566))) . T) (($) . T)) ((((-116 |#1|)) . T) (((-409 (-566))) . T) (($) . T)) (((|#1|) . T) (((-409 (-566))) . T) (($) . T)) @@ -109,45 +109,45 @@ ((((-409 (-566))) . T) (($) . T) (((-566)) . T)) ((($) . T) (((-566)) . T) (((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) . T)) (((|#2|) . T) (((-566)) . T) ((|#6|) . T)) -((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) . T) (($) -2809 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) +((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) . T) (($) -2768 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) ((($) . T)) (((|#2|) . T)) ((($) . T)) (((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) (((-566)) . T) (($) . T)) ((((-566)) . T) (($) . T) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) -(((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566)))) ((|#1| |#1|) . T) (($ $) -2809 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))) -((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T) (($) -2809 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))) +(((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566)))) ((|#1| |#1|) . T) (($ $) -2768 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))) +((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T) (($) -2768 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))) ((($ $) . T)) ((($) . T)) ((((-566)) . T) (($) . T) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) -((((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (((-1256 |#1| |#2| |#3|)) |has| |#1| (-365)) (($) . T) ((|#1|) . T)) +((((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (((-1256 |#1| |#2| |#3|)) |has| |#1| (-365)) (($) . T) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (|has| |#1| (-370)) (((|#1|) . T)) -(((|#1|) . T) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) . T)) +(((|#1|) . T) (((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) . T)) (((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) (($) . T)) -(-2809 (|has| |#1| (-850)) (|has| |#1| (-1099))) +(-2768 (|has| |#1| (-850)) (|has| |#1| (-1099))) (((|#1|) . T)) -((((-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) . T)) +((((-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) . T)) ((((-566)) . T)) ((((-862)) . T)) (((|#1| |#2|) . T)) -(-2809 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049))) -(-2809 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049))) +(-2768 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049))) +(-2768 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049))) (((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (((|#1|) . T) (((-566)) . T) (($) . T)) (|has| |#1| (-558)) (((|#1| |#1|) . T)) ((((-409 |#2|)) . T) (((-409 (-566))) . T) (($) . T)) -(-2809 (|has| |#1| (-21)) (|has| |#1| (-848))) +(-2768 (|has| |#1| (-21)) (|has| |#1| (-848))) ((($ $) . T) ((#0=(-409 (-566)) #0#) . T)) -(-2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) -(-2809 (|has| |#1| (-850)) (|has| |#1| (-1099))) +(-2768 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) +(-2768 (|has| |#1| (-850)) (|has| |#1| (-1099))) (|has| |#1| (-1099)) -(-2809 (|has| |#1| (-850)) (|has| |#1| (-1099))) +(-2768 (|has| |#1| (-850)) (|has| |#1| (-1099))) (|has| |#1| (-1099)) -(-2809 (|has| |#1| (-850)) (|has| |#1| (-1099))) +(-2768 (|has| |#1| (-850)) (|has| |#1| (-1099))) (|has| |#1| (-848)) ((($) . T) (((-409 (-566))) . T)) ((((-862)) . T)) @@ -156,12 +156,12 @@ ((((-566) (-129)) . T)) ((($) . T) (((-409 (-566))) . T)) ((((-129)) . T)) -(-2809 (|has| |#4| (-793)) (|has| |#4| (-848))) -(-2809 (|has| |#4| (-793)) (|has| |#4| (-848))) -(-2809 (|has| |#3| (-793)) (|has| |#3| (-848))) -(-2809 (|has| |#3| (-793)) (|has| |#3| (-848))) +(-2768 (|has| |#4| (-793)) (|has| |#4| (-848))) +(-2768 (|has| |#4| (-793)) (|has| |#4| (-848))) +(-2768 (|has| |#3| (-793)) (|has| |#3| (-848))) +(-2768 (|has| |#3| (-793)) (|has| |#3| (-848))) (((|#1| |#2|) . T)) -(-2809 (|has| |#1| (-365)) (|has| |#1| (-351))) +(-2768 (|has| |#1| (-365)) (|has| |#1| (-351))) ((((-1180)) . T)) (((|#2| |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-310 |#2|))) (((-1175) |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-516 (-1175) |#2|)))) (((|#1| |#2|) . T)) @@ -177,39 +177,39 @@ ((((-566)) . T)) ((((-566)) . T)) (((|#1|) . T)) -(-2809 (|has| |#2| (-172)) (|has| |#2| (-726)) (|has| |#2| (-848)) (|has| |#2| (-1049))) +(-2768 (|has| |#2| (-172)) (|has| |#2| (-726)) (|has| |#2| (-848)) (|has| |#2| (-1049))) (((|#1| (-771)) . T)) (|has| |#2| (-793)) -(-2809 (|has| |#2| (-793)) (|has| |#2| (-848))) +(-2768 (|has| |#2| (-793)) (|has| |#2| (-848))) (|has| |#2| (-848)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) ((((-1157) |#1|) . T)) ((((-566) (-129)) . T)) (((|#1|) . T)) -((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) +((((-862)) -2768 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) (((|#3| (-771)) . T)) (|has| |#1| (-147)) (|has| |#1| (-145)) ((($) . T) (((-409 (-566))) . T)) ((($) . T)) ((($) . T)) -(-2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) -(-2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) +(-2768 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) +(-2768 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) ((((-409 (-566))) . T) (($) . T)) ((($) . T)) ((($) . T)) (|has| |#1| (-1099)) ((((-409 (-566))) . T) (((-566)) . T)) ((((-566)) . T) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-1038 (-409 (-566))))) -((((-566)) . T) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))) ((|#1|) . T) (($) -2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#2|) . T)) +((((-566)) . T) (((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))) ((|#1|) . T) (($) -2768 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#2|) . T)) ((((-1175) |#2|) |has| |#2| (-516 (-1175) |#2|)) ((|#2| |#2|) |has| |#2| (-310 |#2|))) ((((-409 (-566))) . T) (((-566)) . T)) -((((-566)) . T) (($) -2809 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) (((-1081)) . T) ((|#1|) . T) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566)))))) +((((-566)) . T) (($) -2768 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) (((-1081)) . T) ((|#1|) . T) (((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566)))))) (((|#1|) . T) (($) . T)) ((((-566)) . T)) ((((-566)) . T)) -((($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) +((($) -2768 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) ((((-566)) . T)) ((((-566)) . T)) ((((-409 (-566))) . T) (($) . T)) @@ -230,13 +230,13 @@ ((((-862)) . T)) ((((-862)) . T)) (((|#1| |#1|) . T)) -(((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566)))) ((|#1| |#1|) . T) (($ $) -2809 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))) -((($ $) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1| |#1|) . T) ((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566))))) +(((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566)))) ((|#1| |#1|) . T) (($ $) -2768 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))) +((($ $) -2768 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1| |#1|) . T) ((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566))))) (((|#1|) . T)) (((|#1|) . T)) -((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T) (($) -2809 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))) -((($) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) -((($) -2809 (|has| |#2| (-172)) (|has| |#2| (-848)) (|has| |#2| (-1049))) ((|#2|) -2809 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049)))) +((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T) (($) -2768 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))) +((($) -2768 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((($) -2768 (|has| |#2| (-172)) (|has| |#2| (-848)) (|has| |#2| (-1049))) ((|#2|) -2768 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049)))) ((((-862)) . T)) ((((-862)) . T)) ((((-862)) . T)) @@ -247,10 +247,10 @@ ((((-169 (-225))) |has| |#1| (-1022)) (((-169 (-381))) |has| |#1| (-1022)) (((-538)) |has| |#1| (-614 (-538))) (((-1171 |#1|)) . T) (((-892 (-566))) |has| |#1| (-614 (-892 (-566)))) (((-892 (-381))) |has| |#1| (-614 (-892 (-381))))) (((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (((|#1|) . T)) -(-2809 (|has| |#1| (-21)) (|has| |#1| (-848))) -(-2809 (|has| |#1| (-21)) (|has| |#1| (-848))) -((((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558))) ((|#2|) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172)) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558)))) +(-2768 (|has| |#1| (-21)) (|has| |#1| (-848))) +(-2768 (|has| |#1| (-21)) (|has| |#1| (-848))) +((((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2768 (|has| |#1| (-365)) (|has| |#1| (-558))) ((|#2|) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172)) (((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2768 (|has| |#1| (-365)) (|has| |#1| (-558)))) (|has| |#1| (-365)) ((((-862)) . T)) ((($) . T)) @@ -258,8 +258,8 @@ ((((-129)) . T)) (-12 (|has| |#4| (-233)) (|has| |#4| (-1049))) (-12 (|has| |#3| (-233)) (|has| |#3| (-1049))) -(-2809 (|has| |#4| (-172)) (|has| |#4| (-848)) (|has| |#4| (-1049))) -(-2809 (|has| |#3| (-172)) (|has| |#3| (-848)) (|has| |#3| (-1049))) +(-2768 (|has| |#4| (-172)) (|has| |#4| (-848)) (|has| |#4| (-1049))) +(-2768 (|has| |#3| (-172)) (|has| |#3| (-848)) (|has| |#3| (-1049))) ((((-862)) . T) (((-1180)) . T)) ((((-862)) . T) (((-1180)) . T)) ((((-1180)) . T)) @@ -268,14 +268,14 @@ (((|#1|) . T)) ((((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) (((-566)) |has| |#1| (-1038 (-566))) ((|#1|) . T)) (((|#1|) . T) (((-566)) |has| |#1| (-639 (-566)))) -(((|#2|) . T) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) . T)) -(((|#1|) . T) (((-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))) . T)) +(((|#2|) . T) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) . T)) +(((|#1|) . T) (((-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))) . T)) (|has| |#1| (-558)) -((((-566)) -2809 (|has| |#4| (-172)) (|has| |#4| (-848)) (-12 (|has| |#4| (-1038 (-566))) (|has| |#4| (-1099))) (|has| |#4| (-1049))) ((|#4|) -2809 (|has| |#4| (-172)) (|has| |#4| (-1099))) (((-409 (-566))) -12 (|has| |#4| (-1038 (-409 (-566)))) (|has| |#4| (-1099)))) -((((-566)) -2809 (|has| |#3| (-172)) (|has| |#3| (-848)) (-12 (|has| |#3| (-1038 (-566))) (|has| |#3| (-1099))) (|has| |#3| (-1049))) ((|#3|) -2809 (|has| |#3| (-172)) (|has| |#3| (-1099))) (((-409 (-566))) -12 (|has| |#3| (-1038 (-409 (-566)))) (|has| |#3| (-1099)))) +((((-566)) -2768 (|has| |#4| (-172)) (|has| |#4| (-848)) (-12 (|has| |#4| (-1038 (-566))) (|has| |#4| (-1099))) (|has| |#4| (-1049))) ((|#4|) -2768 (|has| |#4| (-172)) (|has| |#4| (-1099))) (((-409 (-566))) -12 (|has| |#4| (-1038 (-409 (-566)))) (|has| |#4| (-1099)))) +((((-566)) -2768 (|has| |#3| (-172)) (|has| |#3| (-848)) (-12 (|has| |#3| (-1038 (-566))) (|has| |#3| (-1099))) (|has| |#3| (-1049))) ((|#3|) -2768 (|has| |#3| (-172)) (|has| |#3| (-1099))) (((-409 (-566))) -12 (|has| |#3| (-1038 (-409 (-566)))) (|has| |#3| (-1099)))) (((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (|has| |#1| (-558)) -(-2809 (|has| |#1| (-850)) (|has| |#1| (-1099))) +(-2768 (|has| |#1| (-850)) (|has| |#1| (-1099))) (((|#1|) . T)) (|has| |#1| (-558)) (|has| |#1| (-558)) @@ -288,21 +288,21 @@ ((((-409 |#2|)) . T) (((-409 (-566))) . T) (($) . T)) (-12 (|has| |#1| (-1099)) (|has| |#2| (-1099))) ((($) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T)) -((((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (((-1173 |#1| |#2| |#3|)) |has| |#1| (-365)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) . T)) +((((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (((-1173 |#1| |#2| |#3|)) |has| |#1| (-365)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) . T)) (((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) (($) . T)) -(((|#4| |#4|) -2809 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1049))) (($ $) |has| |#4| (-172))) -(((|#3| |#3|) -2809 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1049))) (($ $) |has| |#3| (-172))) +(((|#4| |#4|) -2768 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1049))) (($ $) |has| |#4| (-172))) +(((|#3| |#3|) -2768 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1049))) (($ $) |has| |#3| (-172))) (((|#2|) . T)) (((|#1|) . T)) ((((-538)) |has| |#2| (-614 (-538))) (((-892 (-381))) |has| |#2| (-614 (-892 (-381)))) (((-892 (-566))) |has| |#2| (-614 (-892 (-566))))) ((((-862)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-2 (|:| -2178 |#1|) (|:| -2852 |#2|))) . T) (((-862)) . T)) +((((-2 (|:| -2835 |#1|) (|:| -2201 |#2|))) . T) (((-862)) . T)) ((((-538)) |has| |#1| (-614 (-538))) (((-892 (-381))) |has| |#1| (-614 (-892 (-381)))) (((-892 (-566))) |has| |#1| (-614 (-892 (-566))))) -(((|#4|) -2809 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1049))) (($) |has| |#4| (-172))) -(((|#3|) -2809 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1049))) (($) |has| |#3| (-172))) -((((-2 (|:| -2178 |#1|) (|:| -2852 |#2|))) . T)) +(((|#4|) -2768 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1049))) (($) |has| |#4| (-172))) +(((|#3|) -2768 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1049))) (($) |has| |#3| (-172))) +((((-2 (|:| -2835 |#1|) (|:| -2201 |#2|))) . T)) ((((-862)) . T)) ((((-862)) . T)) ((((-538)) . T) (((-566)) . T) (((-892 (-566))) . T) (((-381)) . T) (((-225)) . T)) @@ -310,14 +310,14 @@ (((|#1|) . T) (((-566)) |has| |#1| (-1038 (-566))) (((-409 (-566))) |has| |#1| (-1038 (-409 (-566))))) ((($) . T) (((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) . T)) ((((-409 $) (-409 $)) |has| |#2| (-558)) (($ $) . T) ((|#2| |#2|) . T)) -((((-2 (|:| -2004 (-1157)) (|:| -3867 (-52)))) . T)) +((((-2 (|:| -2674 (-1157)) (|:| -2636 (-52)))) . T)) (((|#1|) . T)) (|has| |#2| (-909)) ((((-1157) (-52)) . T)) ((((-566)) |has| #0=(-409 |#2|) (-639 (-566))) ((#0#) . T)) ((((-538)) . T) (((-225)) . T) (((-381)) . T) (((-892 (-381))) . T)) ((((-862)) . T)) -(-2809 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049))) +(-2768 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049))) (((|#1|) |has| |#1| (-172))) (((|#1| $) |has| |#1| (-287 |#1| |#1|))) ((((-862)) . T)) @@ -331,15 +331,15 @@ (|has| |#1| (-1099)) ((((-910 |#1|)) . T) (($) . T) (((-409 (-566))) . T)) (((|#1|) . T)) -((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-850)) (|has| |#1| (-1099)))) +((((-862)) -2768 (|has| |#1| (-613 (-862))) (|has| |#1| (-850)) (|has| |#1| (-1099)))) ((((-538)) |has| |#1| (-614 (-538)))) ((((-862)) . T) (((-1180)) . T)) -((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) |has| |#2| (-172)) (($) -2809 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) +((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) |has| |#2| (-172)) (($) -2768 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) ((((-1180)) . T)) -((($) -2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) -((($) -2809 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((($) -2768 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((($) -2768 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) (|has| |#1| (-233)) -((($) -2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((($) -2768 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) (((|#1| (-533 (-818 (-1175)))) . T)) (((|#1| (-971)) . T)) ((((-566)) . T) ((|#2|) . T)) @@ -349,7 +349,7 @@ (((|#1|) . T)) (((|#2| |#2|) . T)) (|has| |#1| (-1150)) -((((-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))) . T)) +((((-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))) . T)) (|has| (-1250 |#1| |#2| |#3| |#4|) (-145)) (|has| (-1250 |#1| |#2| |#3| |#4|) (-147)) (|has| |#1| (-145)) @@ -361,27 +361,27 @@ (((|#2|) . T)) (((|#1|) . T)) (((|#2|) . T) (((-566)) |has| |#2| (-639 (-566)))) -((((-1124 |#1| (-1175))) . T) (((-566)) . T) (((-818 (-1175))) . T) (($) -2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))) (((-1175)) . T)) +((((-1124 |#1| (-1175))) . T) (((-566)) . T) (((-818 (-1175))) . T) (($) -2768 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))) (((-1175)) . T)) (|has| |#2| (-370)) (((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) ((($) . T) ((|#1|) . T)) (((|#2|) |has| |#2| (-1049))) ((((-862)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((#0=(-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) #0#) |has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))))) +(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((#0=(-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) #0#) |has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))))) (((|#1|) . T)) -((((-1264 (-341 (-3796) (-3796 (QUOTE X)) (-699)))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((#0=(-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) #0#) |has| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-310 (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))))) +((((-1264 (-341 (-1340) (-1340 (QUOTE X)) (-699)))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((#0=(-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) #0#) |has| (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-310 (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))))) ((((-862)) . T)) ((((-566) |#1|) . T)) ((((-538)) -12 (|has| |#1| (-614 (-538))) (|has| |#2| (-614 (-538)))) (((-892 (-381))) -12 (|has| |#1| (-614 (-892 (-381)))) (|has| |#2| (-614 (-892 (-381))))) (((-892 (-566))) -12 (|has| |#1| (-614 (-892 (-566)))) (|has| |#2| (-614 (-892 (-566)))))) ((($) . T)) ((((-862)) . T)) -((($ $) -2809 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1| |#1|) . T) ((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566))))) +((($ $) -2768 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1| |#1|) . T) ((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566))))) ((((-862)) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((($) -2809 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((($) -2768 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) ((((-862)) . T)) ((((-862)) . T)) (|has| (-1249 |#2| |#3| |#4|) (-147)) @@ -392,16 +392,16 @@ ((((-862)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-2809 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049))) +(-2768 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049))) (((|#1|) . T)) ((((-566) |#1|) . T)) (((|#2|) |has| |#2| (-172))) (((|#1|) |has| |#1| (-172))) (((|#1|) . T)) -(-2809 (|has| |#1| (-21)) (|has| |#1| (-848))) +(-2768 (|has| |#1| (-21)) (|has| |#1| (-848))) ((((-862)) |has| |#1| (-1099))) -(-2809 (|has| |#1| (-475)) (|has| |#1| (-726)) (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049)) (|has| |#1| (-1111))) -(-2809 (|has| |#1| (-365)) (|has| |#1| (-351))) +(-2768 (|has| |#1| (-475)) (|has| |#1| (-726)) (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049)) (|has| |#1| (-1111))) +(-2768 (|has| |#1| (-365)) (|has| |#1| (-351))) ((((-910 |#1|)) . T)) ((((-409 |#2|) |#3|) . T)) (|has| |#1| (-15 * (|#1| (-566) |#1|))) @@ -412,7 +412,7 @@ ((((-862)) . T)) ((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-558))) (|has| |#1| (-365)) -(-2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|)))) +(-2768 (-12 (|has| (-1256 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|)))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-365)) (|has| |#1| (-15 * (|#1| (-771) |#1|))) @@ -426,20 +426,20 @@ ((((-566) |#1|) . T)) ((((-862)) . T)) (((|#2|) . T)) -(-2809 (|has| |#2| (-365)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) +(-2768 (|has| |#2| (-365)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) ((((-566)) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-558))) ((($) |has| |#1| (-558)) (((-566)) . T)) -(-2809 (|has| |#2| (-793)) (|has| |#2| (-848))) -(-2809 (|has| |#2| (-793)) (|has| |#2| (-848))) -((((-1256 |#1| |#2| |#3|)) . T) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-566)) . T) ((|#1|) |has| |#1| (-172))) -((((-1260 |#2|)) . T) (((-1256 |#1| |#2| |#3|)) . T) (((-1228 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (((-566)) . T) (($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558)))) +(-2768 (|has| |#2| (-793)) (|has| |#2| (-848))) +(-2768 (|has| |#2| (-793)) (|has| |#2| (-848))) +((((-1256 |#1| |#2| |#3|)) . T) (((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2768 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-566)) . T) ((|#1|) |has| |#1| (-172))) +((((-1260 |#2|)) . T) (((-1256 |#1| |#2| |#3|)) . T) (((-1228 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (((-566)) . T) (($) -2768 (|has| |#1| (-365)) (|has| |#1| (-558)))) ((($) |has| |#1| (-558)) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) (((-566)) . T)) (((|#1|) . T)) ((((-1175)) -12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (-12 (|has| |#1| (-365)) (|has| |#2| (-820))) -(-2809 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-558))) -(((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566)))) ((|#1| |#1|) . T) (($ $) -2809 (|has| |#1| (-172)) (|has| |#1| (-558)))) +(-2768 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-558))) +(((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566)))) ((|#1| |#1|) . T) (($ $) -2768 (|has| |#1| (-172)) (|has| |#1| (-558)))) ((($ $) |has| |#1| (-558))) (((#0=(-699) (-1171 #0#)) . T)) ((((-583 |#1|)) . T) (((-409 (-566))) . T) (($) . T)) @@ -448,18 +448,18 @@ ((((-862)) . T) (((-1264 |#3|)) . T)) ((((-583 |#1|)) . T) (($) . T) (((-409 (-566))) . T)) ((($) . T) (((-409 (-566))) . T)) -((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T) (($) -2809 (|has| |#1| (-172)) (|has| |#1| (-558)))) +((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T) (($) -2768 (|has| |#1| (-172)) (|has| |#1| (-558)))) ((($) |has| |#1| (-558))) ((((-862)) . T)) ((($) . T) (((-566)) . T) (((-409 (-566))) . T)) ((($) . T)) -((($ $) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) ((#0=(-409 (-566)) #0#) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((#1=(-1256 |#1| |#2| |#3|) #1#) |has| |#1| (-365)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) ((#0=(-409 (-566)) #0#) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365)))) -((($) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (((-1256 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) . T)) -(((|#1|) . T) (($) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365)))) +((($ $) -2768 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) ((#0=(-409 (-566)) #0#) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((#1=(-1256 |#1| |#2| |#3|) #1#) |has| |#1| (-365)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -2768 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) ((#0=(-409 (-566)) #0#) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365)))) +((($) -2768 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (((-1256 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) . T)) +(((|#1|) . T) (($) -2768 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365)))) (((|#3|) |has| |#3| (-1049))) -((($) -2809 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) -((($ $) -2809 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1| |#1|) . T) ((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566))))) +((($) -2768 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((($ $) -2768 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1| |#1|) . T) ((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566))))) (|has| |#1| (-1099)) (((|#2| (-819 |#1|)) . T)) ((($) . T) (((-566)) . T) (((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) . T)) @@ -467,20 +467,20 @@ (((|#1|) . T) (((-409 (-566))) . T) (((-566)) . T) (($) . T)) (((|#1|) . T) (((-409 (-566))) . T) (((-566)) . T) (($) . T)) (((|#1|) . T) (((-409 (-566))) . T) (((-566)) . T) (($) . T)) -((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) |has| |#2| (-172)) (($) -2809 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) +((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) |has| |#2| (-172)) (($) -2768 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) (((|#2|) . T) ((|#6|) . T)) (|has| |#1| (-365)) ((((-566)) . T) ((|#2|) . T)) -((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) . T) (($) -2809 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) +((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) . T) (($) -2768 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) (((|#2|) . T) ((|#6|) . T)) -((($) -2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) -((($) -2809 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) -((($) -2809 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) -((($) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((($) -2768 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((($) -2768 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((($) -2768 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((($) -2768 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) (((|#1|) . T)) -((($) -2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((($) -2768 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) ((((-409 $) (-409 $)) |has| |#1| (-558)) (($ $) . T) ((|#1| |#1|) . T)) -((($) -2809 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((($) -2768 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) (((#0=(-1081) |#2|) . T) ((#0# $) . T) (($ $) . T)) ((((-862)) . T)) ((((-910 |#1|)) . T)) @@ -488,43 +488,43 @@ ((((-144)) . T)) (((|#3|) |has| |#3| (-1099)) (((-566)) -12 (|has| |#3| (-1038 (-566))) (|has| |#3| (-1099))) (((-409 (-566))) -12 (|has| |#3| (-1038 (-409 (-566)))) (|has| |#3| (-1099)))) ((((-862)) . T)) -((((-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) . T)) +((((-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) . T)) (((|#1|) . T)) -((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-850)) (|has| |#1| (-1099)))) +((((-862)) -2768 (|has| |#1| (-613 (-862))) (|has| |#1| (-850)) (|has| |#1| (-1099)))) ((((-538)) |has| |#1| (-614 (-538)))) (((|#1|) |has| |#1| (-172))) -((((-2 (|:| -2004 (-1175)) (|:| -3867 (-52)))) . T)) +((((-2 (|:| -2674 (-1175)) (|:| -2636 (-52)))) . T)) (|has| |#1| (-365)) ((((-1180)) . T)) (((|#1|) . T)) -(-2809 (|has| |#1| (-21)) (|has| |#1| (-848))) +(-2768 (|has| |#1| (-21)) (|has| |#1| (-848))) ((((-1175) |#1|) |has| |#1| (-516 (-1175) |#1|)) ((|#1| |#1|) |has| |#1| (-310 |#1|))) (|has| |#2| (-820)) (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-848)) -(-2809 (|has| |#1| (-850)) (|has| |#1| (-1099))) +(-2768 (|has| |#1| (-850)) (|has| |#1| (-1099))) ((((-862)) . T)) -((((-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) . T)) +((((-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) . T)) ((((-538)) |has| |#1| (-614 (-538)))) (((|#1| |#2|) . T)) ((((-1175)) -12 (|has| |#1| (-365)) (|has| |#1| (-900 (-1175))))) ((((-1157) |#1|) . T)) (((|#1| |#2| |#3| (-533 |#3|)) . T)) -((((-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) . T)) +((((-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) . T)) (|has| |#1| (-370)) (|has| |#1| (-370)) (|has| |#1| (-370)) ((((-862)) . T)) ((((-409 (-566))) . T)) (((|#1|) . T)) -(-2809 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) +(-2768 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) ((((-409 (-566))) . T)) (|has| |#1| (-370)) -(-2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) +(-2768 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((((-566)) . T)) ((((-566)) . T)) (((|#1|) . T) (((-566)) . T)) -(-2809 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) +(-2768 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) ((((-862)) . T)) ((((-862)) . T)) (((|#1|) . T) (((-409 (-566))) . T) (((-566)) . T) (($) . T)) @@ -535,10 +535,10 @@ ((((-566) |#4|) . T)) ((((-566) |#3|) . T)) (((|#1|) . T) (((-566)) |has| |#1| (-639 (-566)))) -(-2809 (|has| |#2| (-172)) (|has| |#2| (-848)) (|has| |#2| (-1049))) +(-2768 (|has| |#2| (-172)) (|has| |#2| (-848)) (|has| |#2| (-1049))) ((((-1250 |#1| |#2| |#3| |#4|)) . T)) ((((-409 (-566))) . T) (((-566)) . T)) -((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) +((((-862)) -2768 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) @@ -547,9 +547,9 @@ ((($) . T) (((-566)) . T) (((-409 (-566))) . T)) ((((-566)) . T)) ((((-566)) . T)) -((($) . T) (((-566)) . T) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#1|) . T)) +((($) . T) (((-566)) . T) (((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#1|) . T)) ((($) . T) (((-566)) . T) (((-409 (-566))) . T)) -((((-566)) -2809 (|has| |#2| (-172)) (|has| |#2| (-848)) (-12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099))) (|has| |#2| (-1049))) ((|#2|) -2809 (|has| |#2| (-172)) (|has| |#2| (-1099))) (((-409 (-566))) -12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) +((((-566)) -2768 (|has| |#2| (-172)) (|has| |#2| (-848)) (-12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099))) (|has| |#2| (-1049))) ((|#2|) -2768 (|has| |#2| (-172)) (|has| |#2| (-1099))) (((-409 (-566))) -12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) (((|#1|) . T)) (((|#1|) . T)) ((((-409 (-566))) . T) (($) . T)) @@ -565,7 +565,7 @@ ((((-566) |#3|) . T)) ((((-862)) . T)) ((((-566)) . T) (((-409 (-566))) . T) (($) . T)) -((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T) (($) -2809 (|has| |#1| (-172)) (|has| |#1| (-558)))) +((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T) (($) -2768 (|has| |#1| (-172)) (|has| |#1| (-558)))) ((((-862)) . T)) ((((-566) |#1|) . T)) (((|#1|) . T)) @@ -573,47 +573,47 @@ ((($) . T)) ((($ $) . T) ((#0=(-1175) $) . T) ((#0# |#1|) . T)) (((|#2|) |has| |#2| (-172))) -((($) -2809 (|has| |#2| (-365)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) ((|#2|) |has| |#2| (-172)) (((-409 (-566))) |has| |#2| (-38 (-409 (-566))))) -(((|#2| |#2|) -2809 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049))) (($ $) |has| |#2| (-172))) +((($) -2768 (|has| |#2| (-365)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) ((|#2|) |has| |#2| (-172)) (((-409 (-566))) |has| |#2| (-38 (-409 (-566))))) +(((|#2| |#2|) -2768 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049))) (($ $) |has| |#2| (-172))) ((((-144)) . T)) (((|#1|) . T)) (-12 (|has| |#1| (-370)) (|has| |#2| (-370))) ((((-862)) . T)) -(((|#2|) -2809 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049))) (($) |has| |#2| (-172))) +(((|#2|) -2768 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049))) (($) |has| |#2| (-172))) (((|#1|) . T)) ((((-862)) . T)) (|has| |#1| (-1099)) (|has| $ (-147)) ((((-1180)) . T)) -((((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#2|) |has| |#1| (-365)) (((-566)) . T) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (((-566)) . T) (($) . T)) +((((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#2|) |has| |#1| (-365)) (((-566)) . T) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (((-566)) . T) (($) . T)) ((((-566) |#1|) . T)) -((($) -2809 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-558))) (((-409 (-566))) -2809 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) +((($) -2768 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-558))) (((-409 (-566))) -2768 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) ((((-1175)) -12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (|has| |#1| (-365)) -(-2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|)))) +(-2768 (-12 (|has| (-1173 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|)))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-365)) (|has| |#1| (-15 * (|#1| (-771) |#1|))) (((|#1|) . T)) -(-2809 (|has| |#1| (-850)) (|has| |#1| (-1099))) +(-2768 (|has| |#1| (-850)) (|has| |#1| (-1099))) ((((-862)) . T)) (((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) -(-2809 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) +(-2768 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) (((|#2| (-533 (-864 |#1|))) . T)) ((((-862)) . T)) (((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (((|#1|) . T)) -(-2809 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) -(-2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) -(-2809 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) +(-2768 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) +(-2768 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) +(-2768 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((((-583 |#1|)) . T)) ((($) . T)) ((((-566)) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-558))) (((|#1|) . T) (($) . T)) ((((-566)) |has| |#1| (-639 (-566))) ((|#1|) . T)) -((((-1173 |#1| |#2| |#3|)) . T) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-566)) . T) ((|#1|) |has| |#1| (-172))) -((((-1260 |#2|)) . T) (((-1173 |#1| |#2| |#3|)) . T) (((-1166 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (((-566)) . T) (($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558)))) +((((-1173 |#1| |#2| |#3|)) . T) (((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2768 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-566)) . T) ((|#1|) |has| |#1| (-172))) +((((-1260 |#2|)) . T) (((-1173 |#1| |#2| |#3|)) . T) (((-1166 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (((-566)) . T) (($) -2768 (|has| |#1| (-365)) (|has| |#1| (-558)))) (((|#4|) . T)) (((|#3|) . T)) ((((-870 |#1|)) . T) (($) . T) (((-409 (-566))) . T)) @@ -622,36 +622,36 @@ (((|#1|) . T)) ((((-862)) . T)) ((((-862)) . T)) -((((-566)) . T) (((-409 (-566))) -2809 (|has| |#2| (-38 (-409 (-566)))) (|has| |#2| (-1038 (-409 (-566))))) ((|#2|) . T) (($) -2809 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) (((-864 |#1|)) . T)) +((((-566)) . T) (((-409 (-566))) -2768 (|has| |#2| (-38 (-409 (-566)))) (|has| |#2| (-1038 (-409 (-566))))) ((|#2|) . T) (($) -2768 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) (((-864 |#1|)) . T)) ((((-566) |#2|) . T)) ((((-862)) . T)) ((($) . T) (((-566)) . T) ((|#2|) . T) (((-409 (-566))) . T)) ((((-862)) . T)) ((((-862)) . T)) (((|#1| |#2| |#3| |#4| |#5|) . T)) -(((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566)))) ((|#1| |#1|) . T) (($ $) -2809 (|has| |#1| (-172)) (|has| |#1| (-558)))) -((($ $) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) ((#0=(-409 (-566)) #0#) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((#1=(-1173 |#1| |#2| |#3|) #1#) |has| |#1| (-365)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) ((#0=(-409 (-566)) #0#) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365)))) -((($ $) -2809 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1| |#1|) . T) ((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566))))) +(((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566)))) ((|#1| |#1|) . T) (($ $) -2768 (|has| |#1| (-172)) (|has| |#1| (-558)))) +((($ $) -2768 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) ((#0=(-409 (-566)) #0#) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((#1=(-1173 |#1| |#2| |#3|) #1#) |has| |#1| (-365)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -2768 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) ((#0=(-409 (-566)) #0#) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365)))) +((($ $) -2768 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1| |#1|) . T) ((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566))))) ((((-862)) . T)) (((|#2|) |has| |#2| (-1049))) (|has| |#1| (-1099)) -((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T) (($) -2809 (|has| |#1| (-172)) (|has| |#1| (-558)))) -((($) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (((-1173 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) . T)) -(((|#1|) . T) (($) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365)))) -((($) -2809 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T) (($) -2768 (|has| |#1| (-172)) (|has| |#1| (-558)))) +((($) -2768 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (((-1173 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) . T)) +(((|#1|) . T) (($) -2768 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365)))) +((($) -2768 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) (((|#1|) |has| |#1| (-172)) (($) . T)) (((|#1|) . T)) -(((#0=(-409 (-566)) #0#) |has| |#2| (-38 (-409 (-566)))) ((|#2| |#2|) . T) (($ $) -2809 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) +(((#0=(-409 (-566)) #0#) |has| |#2| (-38 (-409 (-566)))) ((|#2| |#2|) . T) (($ $) -2768 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) ((((-862)) . T)) -((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) |has| |#2| (-172)) (($) -2809 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) +((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) |has| |#2| (-172)) (($) -2768 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) ((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T)) -((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) |has| |#1| (-172)) (($) -2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))) +((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) |has| |#1| (-172)) (($) -2768 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))) (((#0=(-1081) |#1|) . T) ((#0# $) . T) (($ $) . T)) -((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) . T) (($) -2809 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) +((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) . T) (($) -2768 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) ((($) . T)) (((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) (($) . T)) -(-2809 (|has| |#1| (-850)) (|has| |#1| (-1099))) +(-2768 (|has| |#1| (-850)) (|has| |#1| (-1099))) (((|#1|) . T)) (((|#2|) |has| |#2| (-1099)) (((-566)) -12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099))) (((-409 (-566))) -12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) (((|#2|) |has| |#1| (-365))) @@ -675,8 +675,8 @@ (|has| |#1| (-145)) (|has| |#1| (-147)) ((((-1180)) . T)) -((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) |has| |#2| (-172)) (($) -2809 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) -((($) -2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) |has| |#2| (-172)) (($) -2768 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) +((($) -2768 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) ((((-409 (-566))) . T) (($) . T)) ((((-409 (-566))) . T) (($) . T)) ((((-409 (-566))) . T) (($) . T)) @@ -687,15 +687,15 @@ (((|#1| (-771) (-1081)) . T)) ((((-409 (-566))) |has| |#2| (-365)) (($) . T)) (((|#1| (-533 (-1087 (-1175))) (-1087 (-1175))) . T)) -(-2809 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) -(-2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) +(-2768 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) +(-2768 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) (((|#2|) . T)) (((|#1|) . T)) (((|#2|) . T)) -((((-999 |#1|)) . T) (((-566)) . T) ((|#1|) . T) (((-409 (-566))) -2809 (|has| (-999 |#1|) (-1038 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566)))))) -(-2809 (|has| |#2| (-172)) (|has| |#2| (-726)) (|has| |#2| (-848)) (|has| |#2| (-1049))) +((((-999 |#1|)) . T) (((-566)) . T) ((|#1|) . T) (((-409 (-566))) -2768 (|has| (-999 |#1|) (-1038 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566)))))) +(-2768 (|has| |#2| (-172)) (|has| |#2| (-726)) (|has| |#2| (-848)) (|has| |#2| (-1049))) (|has| |#2| (-793)) -(-2809 (|has| |#2| (-793)) (|has| |#2| (-848))) +(-2768 (|has| |#2| (-793)) (|has| |#2| (-848))) (|has| |#1| (-370)) (|has| |#1| (-370)) (|has| |#1| (-370)) @@ -726,7 +726,7 @@ ((((-1139 |#1| |#2|)) |has| (-1139 |#1| |#2|) (-310 (-1139 |#1| |#2|)))) (((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (((|#3| |#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) -(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) |has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))))) +(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) |has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))))) (((|#2|) . T) (((-566)) |has| |#2| (-1038 (-566))) (((-409 (-566))) |has| |#2| (-1038 (-409 (-566))))) (((|#1|) . T)) (((|#1| |#2|) . T)) @@ -734,29 +734,29 @@ ((($) . T)) (((|#2|) . T)) (((|#3|) . T)) -(-2809 (|has| |#1| (-850)) (|has| |#1| (-1099))) -(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) |has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))))) +(-2768 (|has| |#1| (-850)) (|has| |#1| (-1099))) +(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) |has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))))) (((|#2|) . T)) -((((-862)) -2809 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-613 (-862))) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-726)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049)) (|has| |#2| (-1099))) (((-1264 |#2|)) . T)) +((((-862)) -2768 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-613 (-862))) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-726)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049)) (|has| |#2| (-1099))) (((-1264 |#2|)) . T)) ((((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((|#1|) . T) (((-566)) . T) (($) . T)) (((|#1|) |has| |#1| (-172))) ((((-566)) . T)) -((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) |has| |#1| (-172)) (($) -2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))) -((($) -2809 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) |has| |#1| (-172)) (($) -2768 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))) +((($) -2768 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) ((((-566) (-144)) . T)) -((($) -2809 (|has| |#2| (-172)) (|has| |#2| (-848)) (|has| |#2| (-1049))) ((|#2|) -2809 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049)))) +((($) -2768 (|has| |#2| (-172)) (|has| |#2| (-848)) (|has| |#2| (-1049))) ((|#2|) -2768 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049)))) ((((-566)) . T)) (((|#1|) . T) ((|#2|) . T) (((-566)) . T)) -((($) |has| |#1| (-558)) ((|#1|) . T) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))) (((-566)) . T)) -(-2809 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-558)) (|has| |#1| (-1049))) +((($) |has| |#1| (-558)) ((|#1|) . T) (((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))) (((-566)) . T)) +(-2768 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-558)) (|has| |#1| (-1049))) (((|#1|) . T)) -(-2809 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-558)) (|has| |#1| (-1049))) +(-2768 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-558)) (|has| |#1| (-1049))) ((($) . T) (((-566)) . T) ((|#2|) . T)) (((|#1|) |has| |#1| (-172)) (($) . T) (((-566)) . T)) (((|#2|) |has| |#1| (-365))) (((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (((|#1| |#1|) . T) (($ $) . T)) -((($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) +((($) -2768 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) (((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) ((((-1180)) . T)) ((((-409 (-566))) . T) (((-566)) . T) (($) . T)) @@ -766,35 +766,35 @@ (|has| |#4| (-172)) (|has| |#3| (-172)) (((#0=(-409 (-952 |#1|)) #0#) . T)) -(-2809 (|has| |#1| (-850)) (|has| |#1| (-1099))) +(-2768 (|has| |#1| (-850)) (|has| |#1| (-1099))) (|has| |#1| (-1099)) -(-2809 (|has| |#1| (-850)) (|has| |#1| (-1099))) +(-2768 (|has| |#1| (-850)) (|has| |#1| (-1099))) (|has| |#1| (-1099)) -((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-850)) (|has| |#1| (-1099)))) +((((-862)) -2768 (|has| |#1| (-613 (-862))) (|has| |#1| (-850)) (|has| |#1| (-1099)))) ((((-538)) |has| |#1| (-614 (-538)))) -(-2809 (|has| |#1| (-850)) (|has| |#1| (-1099))) +(-2768 (|has| |#1| (-850)) (|has| |#1| (-1099))) ((((-862)) . T) (((-1180)) . T)) ((((-1180)) . T)) (((|#1| |#1|) |has| |#1| (-172))) -((($ $) -2809 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1| |#1|) . T) ((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566))))) +((($ $) -2768 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1| |#1|) . T) ((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566))))) (((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (((|#1|) . T)) ((((-409 (-952 |#1|))) . T)) (((|#1|) . T) (((-566)) . T) (($) . T)) (((|#1|) |has| |#1| (-172))) -((($) -2809 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) -(-2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) +((($) -2768 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +(-2768 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((((-862)) . T)) ((((-862)) . T)) ((((-1250 |#1| |#2| |#3| |#4|)) . T)) (((|#1|) |has| |#1| (-1049)) (((-566)) -12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049)))) (((|#1| |#2|) . T)) -(-2809 (|has| |#3| (-172)) (|has| |#3| (-726)) (|has| |#3| (-848)) (|has| |#3| (-1049))) +(-2768 (|has| |#3| (-172)) (|has| |#3| (-726)) (|has| |#3| (-848)) (|has| |#3| (-1049))) (|has| |#3| (-793)) -(-2809 (|has| |#3| (-793)) (|has| |#3| (-848))) +(-2768 (|has| |#3| (-793)) (|has| |#3| (-848))) (|has| |#3| (-848)) -((((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558))) ((|#2|) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172)) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558)))) +((((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2768 (|has| |#1| (-365)) (|has| |#1| (-558))) ((|#2|) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172)) (((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2768 (|has| |#1| (-365)) (|has| |#1| (-558)))) (((|#2|) . T)) ((((-862)) . T)) ((((-862)) . T)) @@ -811,34 +811,34 @@ (|has| |#1| (-1099)) (((|#2|) . T)) ((((-538)) |has| |#2| (-614 (-538))) (((-892 (-381))) |has| |#2| (-614 (-892 (-381)))) (((-892 (-566))) |has| |#2| (-614 (-892 (-566))))) -(((|#4|) -2809 (|has| |#4| (-172)) (|has| |#4| (-365)))) -(((|#3|) -2809 (|has| |#3| (-172)) (|has| |#3| (-365)))) +(((|#4|) -2768 (|has| |#4| (-172)) (|has| |#4| (-365)))) +(((|#3|) -2768 (|has| |#3| (-172)) (|has| |#3| (-365)))) ((((-862)) . T)) (((|#1|) . T)) -(-2809 (|has| |#2| (-454)) (|has| |#2| (-909))) -((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) |has| |#2| (-172)) (($) -2809 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) -((($) -2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +(-2768 (|has| |#2| (-454)) (|has| |#2| (-909))) +((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) |has| |#2| (-172)) (($) -2768 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) +((($) -2768 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) (((|#1|) . T) (((-409 (-566))) . T) (($) . T)) (((|#1|) . T) (((-409 (-566))) . T) (($) . T)) (((|#1|) . T) (((-409 (-566))) . T) (($) . T)) -(-2809 (|has| |#1| (-454)) (|has| |#1| (-909))) -((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) . T) (($) -2809 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) -((($) -2809 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +(-2768 (|has| |#1| (-454)) (|has| |#1| (-909))) +((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) . T) (($) -2768 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) +((($) -2768 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) (((|#1|) . T) (($) . T) (((-409 (-566))) . T)) (((|#1|) . T) (($) . T) (((-409 (-566))) . T)) (((|#1|) . T) (($) . T) (((-409 (-566))) . T)) (((|#2|) . T)) -(-2809 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-909))) +(-2768 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-909))) (((|#2|) . T)) ((($ $) . T) ((#0=(-1175) $) |has| |#1| (-233)) ((#0# |#1|) |has| |#1| (-233)) ((#1=(-818 (-1175)) |#1|) . T) ((#1# $) . T)) -(-2809 (|has| |#1| (-454)) (|has| |#1| (-909))) +(-2768 (|has| |#1| (-454)) (|has| |#1| (-909))) ((((-566) |#2|) . T)) ((((-862)) . T)) -((((-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) . T)) -((((-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) . T)) -((((-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) . T)) +((((-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) . T)) +((((-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) . T)) +((((-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) . T)) (((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) -((($) -2809 (|has| |#3| (-172)) (|has| |#3| (-848)) (|has| |#3| (-1049))) ((|#3|) -2809 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1049)))) +((($) -2768 (|has| |#3| (-172)) (|has| |#3| (-848)) (|has| |#3| (-1049))) ((|#3|) -2768 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1049)))) ((((-566) |#1|) . T)) (|has| (-409 |#2|) (-147)) (|has| (-409 |#2|) (-145)) @@ -851,15 +851,15 @@ (|has| |#1| (-558)) (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-38 (-409 (-566)))) -((((-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) . T)) +((((-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) . T)) ((((-862)) . T)) -((((-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))) . T)) +((((-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))) . T)) (|has| |#1| (-38 (-409 (-566)))) -((((-390) (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))) . T)) +((((-390) (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))) . T)) (|has| |#1| (-38 (-409 (-566)))) (|has| |#2| (-1150)) -(-2809 (|has| |#1| (-365)) (|has| |#1| (-558))) -(-2809 (|has| |#1| (-365)) (|has| |#1| (-558))) +(-2768 (|has| |#1| (-365)) (|has| |#1| (-558))) +(-2768 (|has| |#1| (-365)) (|has| |#1| (-558))) ((((-862)) . T) (((-1180)) . T)) ((((-862)) . T) (((-1180)) . T)) ((((-862)) . T) (((-1180)) . T)) @@ -877,7 +877,7 @@ ((((-390) (-1157)) . T)) (|has| |#1| (-558)) ((((-566) |#1|) . T)) -(-2809 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) +(-2768 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((((-566)) . T) (($) . T) (((-409 (-566))) . T)) ((((-566)) . T) (($) . T) (((-409 (-566))) . T)) (((|#2|) . T)) @@ -893,7 +893,7 @@ ((((-644 |#1|)) . T)) ((((-862)) . T)) ((((-538)) |has| |#1| (-614 (-538)))) -(-2809 (|has| |#1| (-850)) (|has| |#1| (-1099))) +(-2768 (|has| |#1| (-850)) (|has| |#1| (-1099))) (((|#2|) |has| |#2| (-310 |#2|))) (((#0=(-566) #0#) . T) ((#1=(-409 (-566)) #1#) . T) (($ $) . T)) (((|#1|) . T)) @@ -903,14 +903,14 @@ (((#0=(-566) #0#) . T) ((#1=(-409 (-566)) #1#) . T) (($ $) . T)) ((($) . T) (((-566)) . T) (((-409 (-566))) . T)) (|has| |#2| (-370)) -(-2809 (|has| |#1| (-850)) (|has| |#1| (-1099))) +(-2768 (|has| |#1| (-850)) (|has| |#1| (-1099))) (((|#1|) . T) (((-409 (-566))) . T) (($) . T)) (((|#1|) . T) (((-409 (-566))) . T) (($) . T)) (((|#1|) . T) (((-409 (-566))) . T) (($) . T)) ((((-566)) . T) (((-409 (-566))) . T) (($) . T)) -((($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) +((($) -2768 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) (((|#1| |#2|) . T)) -((((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) ((|#1|) . T)) +((((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2768 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) ((|#1|) . T)) ((((-566)) . T) (((-409 (-566))) . T) (($) . T)) (((|#1| |#2|) . T)) ((((-862)) . T)) @@ -918,8 +918,8 @@ ((((-862)) . T)) ((((-862)) . T)) ((((-538)) |has| |#1| (-614 (-538)))) -((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) -((($) . T) (((-409 (-566))) -2809 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) +((((-862)) -2768 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) +((($) . T) (((-409 (-566))) -2768 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) ((((-862)) . T)) ((((-1173 |#1| |#2| |#3|) $) -12 (|has| (-1173 |#1| |#2| |#3|) (-287 (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|))) (|has| |#1| (-365))) (($ $) . T)) ((($ $) . T)) @@ -931,14 +931,14 @@ (((|#1|) . T)) (((|#1|) . T)) ((((-566)) . T) (($) . T)) -((($) -2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((($) -2768 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) ((($) . T) (((-566)) . T) ((|#2|) . T)) ((((-566)) . T) (($) . T) ((|#2|) . T) (((-409 (-566))) |has| |#2| (-38 (-409 (-566))))) ((((-409 (-566))) . T) (((-566)) . T)) ((((-566) (-144)) . T)) ((((-144)) . T)) (((|#1|) . T)) -(-2809 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-558)) (|has| |#1| (-1049))) +(-2768 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-558)) (|has| |#1| (-1049))) ((((-112)) . T)) (((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) ((((-112)) . T)) @@ -947,31 +947,31 @@ ((((-862)) . T)) ((((-1180)) . T)) (|has| |#1| (-820)) -(-2809 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) -((($) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#2|) |has| |#1| (-365)) ((|#1|) . T)) -((((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558))) ((|#2|) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) -(((|#1|) . T) (($) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365)))) -(((|#1|) |has| |#1| (-172)) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558)))) -(-2809 (|has| |#1| (-172)) (|has| |#1| (-558))) +(-2768 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) +((($) -2768 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#2|) |has| |#1| (-365)) ((|#1|) . T)) +((((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2768 (|has| |#1| (-365)) (|has| |#1| (-558))) ((|#2|) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) +(((|#1|) . T) (($) -2768 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365)))) +(((|#1|) |has| |#1| (-172)) (((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2768 (|has| |#1| (-365)) (|has| |#1| (-558)))) +(-2768 (|has| |#1| (-172)) (|has| |#1| (-558))) (|has| |#1| (-558)) (|has| |#1| (-850)) -((($) . T) (((-566)) . T) (((-409 (-566))) -2809 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) +((($) . T) (((-566)) . T) (((-409 (-566))) -2768 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) ((((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((|#1|) . T) (((-566)) . T)) (|has| |#1| (-909)) (((|#1|) . T)) (|has| |#1| (-1099)) ((((-862)) . T)) -(-2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) -(-2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) -(-2809 (|has| |#1| (-172)) (|has| |#1| (-558))) +(-2768 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) +(-2768 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) +(-2768 (|has| |#1| (-172)) (|has| |#1| (-558))) ((((-862)) . T)) ((((-862)) . T)) ((((-862)) . T)) (((|#1| (-1264 |#1|) (-1264 |#1|)) . T)) ((((-566) (-144)) . T)) ((($) . T)) -(-2809 (|has| |#4| (-172)) (|has| |#4| (-848)) (|has| |#4| (-1049))) -(-2809 (|has| |#3| (-172)) (|has| |#3| (-848)) (|has| |#3| (-1049))) +(-2768 (|has| |#4| (-172)) (|has| |#4| (-848)) (|has| |#4| (-1049))) +(-2768 (|has| |#3| (-172)) (|has| |#3| (-848)) (|has| |#3| (-1049))) ((((-1180)) . T) (((-862)) . T)) ((((-1180)) . T)) ((((-862)) . T)) @@ -979,20 +979,20 @@ (((|#1| (-971)) . T)) (((|#1| |#1|) . T)) ((($) . T)) -(-2809 (|has| |#2| (-793)) (|has| |#2| (-848))) -(-2809 (|has| |#2| (-793)) (|has| |#2| (-848))) +(-2768 (|has| |#2| (-793)) (|has| |#2| (-848))) +(-2768 (|has| |#2| (-793)) (|has| |#2| (-848))) (-12 (|has| |#1| (-475)) (|has| |#2| (-475))) -(-2809 (|has| |#2| (-172)) (|has| |#2| (-726)) (|has| |#2| (-848)) (|has| |#2| (-1049))) +(-2768 (|has| |#2| (-172)) (|has| |#2| (-726)) (|has| |#2| (-848)) (|has| |#2| (-1049))) ((($) . T) (((-566)) . T) (((-870 |#1|)) . T) (((-409 (-566))) . T)) (((|#1|) . T)) (|has| |#2| (-793)) -(-2809 (|has| |#2| (-793)) (|has| |#2| (-848))) +(-2768 (|has| |#2| (-793)) (|has| |#2| (-848))) (((|#1| |#2|) . T)) (((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (|has| |#2| (-848)) (-12 (|has| |#1| (-793)) (|has| |#2| (-793))) (-12 (|has| |#1| (-793)) (|has| |#2| (-793))) -(-2809 (-12 (|has| |#1| (-475)) (|has| |#2| (-475))) (-12 (|has| |#1| (-726)) (|has| |#2| (-726)))) +(-2768 (-12 (|has| |#1| (-475)) (|has| |#2| (-475))) (-12 (|has| |#1| (-726)) (|has| |#2| (-726)))) (((|#1| |#2|) . T)) (((|#1|) |has| |#1| (-172)) ((|#4|) . T) (((-566)) . T)) (((|#2|) |has| |#2| (-172))) @@ -1004,7 +1004,7 @@ (((|#1|) . T)) ((((-409 (-566))) . T) (($) . T)) (((|#2|) . T) (($) . T) (((-409 (-566))) . T)) -((($) . T) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#1|) . T)) +((($) . T) (((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#1|) . T)) (|has| |#1| (-828)) ((((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) (((-566)) |has| |#1| (-1038 (-566))) ((|#1|) . T)) (|has| |#1| (-1099)) @@ -1015,13 +1015,13 @@ (((|#4|) |has| |#4| (-1099))) (((|#3|) |has| |#3| (-1099))) (|has| |#3| (-370)) -((($) |has| |#1| (-558)) ((|#1|) . T) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))) (((-566)) . T)) -((((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-1256 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) +((($) |has| |#1| (-558)) ((|#1|) . T) (((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))) (((-566)) . T)) +((((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2768 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-1256 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) ((((-862)) . T)) ((((-862)) . T)) (((|#2|) . T)) (((|#1| |#2|) . T)) -(((|#1|) |has| |#1| (-172)) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558)))) +(((|#1|) |has| |#1| (-172)) (((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2768 (|has| |#1| (-365)) (|has| |#1| (-558)))) ((($) |has| |#1| (-558)) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) (((|#1| |#1|) |has| |#1| (-172))) (|has| |#2| (-365)) @@ -1029,19 +1029,19 @@ (((|#1|) |has| |#1| (-172))) ((((-409 (-566))) . T) (((-566)) . T)) ((($) . T) (((-566)) . T) (((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) . T)) -((($ $) -2809 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1| |#1|) . T) ((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566))))) +((($ $) -2768 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1| |#1|) . T) ((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566))))) ((($) . T) (((-566)) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T)) ((($) . T) (((-566)) . T)) -((($) -2809 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((($) -2768 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) (((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) ((((-144)) . T)) (((|#1|) . T)) -((($) -2809 (|has| |#2| (-172)) (|has| |#2| (-848)) (|has| |#2| (-1049))) ((|#2|) -2809 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049)))) +((($) -2768 (|has| |#2| (-172)) (|has| |#2| (-848)) (|has| |#2| (-1049))) ((|#2|) -2768 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049)))) ((((-144)) . T)) ((((-144)) . T)) ((((-409 (-566))) . #0=(|has| |#2| (-365))) (($) . #0#) ((|#2|) . T) (((-566)) . T)) (((|#1| |#2| |#3|) . T)) -(-2809 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-558)) (|has| |#1| (-1049))) +(-2768 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-558)) (|has| |#1| (-1049))) (((|#1|) |has| |#1| (-172))) (|has| $ (-147)) (|has| $ (-147)) @@ -1051,15 +1051,15 @@ ((((-862)) . T)) (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-38 (-409 (-566)))) -(-2809 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-475)) (|has| |#1| (-558)) (|has| |#1| (-1049)) (|has| |#1| (-1111))) +(-2768 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-475)) (|has| |#1| (-558)) (|has| |#1| (-1049)) (|has| |#1| (-1111))) ((($ $) |has| |#1| (-287 $ $)) ((|#1| $) |has| |#1| (-287 |#1| |#1|))) (((|#1| (-409 (-566))) . T)) (((|#1|) . T)) ((((-409 (-566))) . T) (((-566)) . T) (($) . T)) ((((-1175)) . T)) (|has| |#1| (-558)) -(-2809 (|has| |#1| (-365)) (|has| |#1| (-558))) -(-2809 (|has| |#1| (-365)) (|has| |#1| (-558))) +(-2768 (|has| |#1| (-365)) (|has| |#1| (-558))) +(-2768 (|has| |#1| (-365)) (|has| |#1| (-558))) (|has| |#1| (-558)) (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-38 (-409 (-566)))) @@ -1070,7 +1070,7 @@ (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#4| (-848)) -(((|#2| (-240 (-3018 |#1|) (-771)) (-864 |#1|)) . T)) +(((|#2| (-240 (-3000 |#1|) (-771)) (-864 |#1|)) . T)) (|has| |#3| (-848)) (((|#1| (-533 |#3|) |#3|) . T)) (|has| |#1| (-147)) @@ -1085,20 +1085,20 @@ (|has| |#1| (-145)) ((((-409 (-566))) |has| |#2| (-365)) (($) . T)) (((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) -(-2809 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) -(-2809 (|has| |#1| (-351)) (|has| |#1| (-370))) +(-2768 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) +(-2768 (|has| |#1| (-351)) (|has| |#1| (-370))) ((((-1141 |#2| |#1|)) . T) ((|#1|) . T)) (|has| |#2| (-172)) (((|#1| |#2|) . T)) (-12 (|has| |#2| (-233)) (|has| |#2| (-1049))) -(((|#2|) . T) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) . T)) -(-2809 (|has| |#3| (-793)) (|has| |#3| (-848))) -(-2809 (|has| |#3| (-793)) (|has| |#3| (-848))) +(((|#2|) . T) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) . T)) +(-2768 (|has| |#3| (-793)) (|has| |#3| (-848))) +(-2768 (|has| |#3| (-793)) (|has| |#3| (-848))) ((((-862)) . T)) (((|#1|) . T)) (((|#2|) . T) (($) . T)) ((((-699)) . T)) -(-2809 (|has| |#2| (-172)) (|has| |#2| (-848)) (|has| |#2| (-1049))) +(-2768 (|has| |#2| (-172)) (|has| |#2| (-848)) (|has| |#2| (-1049))) (|has| |#1| (-558)) (((|#1|) . T)) (((|#1|) . T)) @@ -1122,11 +1122,11 @@ (((|#1| (-409 (-566))) . T)) (((|#3|) . T) (((-612 $)) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) . T)) +((((-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) . T)) (((|#1|) . T)) (((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) -((((-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) . T)) -((((-566)) -2809 (|has| |#2| (-172)) (|has| |#2| (-848)) (-12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099))) (|has| |#2| (-1049))) ((|#2|) -2809 (|has| |#2| (-172)) (|has| |#2| (-1099))) (((-409 (-566))) -12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) +((((-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) . T)) +((((-566)) -2768 (|has| |#2| (-172)) (|has| |#2| (-848)) (-12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099))) (|has| |#2| (-1049))) ((|#2|) -2768 (|has| |#2| (-172)) (|has| |#2| (-1099))) (((-409 (-566))) -12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) (((|#1|) . T) (((-409 (-566))) . T) (($) . T)) ((($ $) . T) ((|#2| $) . T)) ((((-566)) . T) (($) . T) (((-409 (-566))) . T)) @@ -1134,8 +1134,8 @@ ((((-862)) . T)) ((((-862)) . T)) (((|#1| |#1|) . T)) -(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) |has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))))) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) (((-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))) |has| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-310 (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))))) +(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) |has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) (((-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))) |has| (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-310 (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))))) ((((-862)) . T)) (((|#1|) . T)) (((|#3| |#3|) . T)) @@ -1149,10 +1149,10 @@ ((($) . T) (((-566)) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T)) ((((-566)) . T) (($) . T) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) (|has| |#1| (-1099)) -(((|#2| |#2|) -2809 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049))) (($ $) |has| |#2| (-172))) -(((|#2|) -2809 (|has| |#2| (-172)) (|has| |#2| (-365)))) -((((-566) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) . T) ((|#1| |#2|) . T)) -(((|#2|) -2809 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049))) (($) |has| |#2| (-172))) +(((|#2| |#2|) -2768 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049))) (($ $) |has| |#2| (-172))) +(((|#2|) -2768 (|has| |#2| (-172)) (|has| |#2| (-365)))) +((((-566) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) . T) ((|#1| |#2|) . T)) +(((|#2|) -2768 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049))) (($) |has| |#2| (-172))) ((((-566)) . T)) ((((-1180)) . T)) ((((-771)) . T)) @@ -1170,38 +1170,38 @@ ((((-116 |#1|)) . T)) (((|#1|) . T)) ((((-409 (-566))) . T) (($) . T)) -(-2809 (|has| |#1| (-172)) (|has| |#1| (-558))) -(-2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) +(-2768 (|has| |#1| (-172)) (|has| |#1| (-558))) +(-2768 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) ((($) . T) (((-409 (-566))) . T)) -(-2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) -(-2809 (|has| |#1| (-172)) (|has| |#1| (-558))) +(-2768 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) +(-2768 (|has| |#1| (-172)) (|has| |#1| (-558))) (|has| |#1| (-145)) (|has| |#1| (-147)) ((((-566)) . T)) ((((-566)) . T)) ((((-892 (-566))) . T) (((-892 (-381))) . T) (((-538)) . T) (((-1175)) . T)) ((((-862)) . T)) -(-2809 (|has| |#1| (-850)) (|has| |#1| (-1099))) +(-2768 (|has| |#1| (-850)) (|has| |#1| (-1099))) ((((-862)) . T) (((-1180)) . T)) ((((-1180)) . T)) ((($) . T)) (((|#1|) . T)) ((((-862)) . T)) -(-2809 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) +(-2768 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) (((|#1|) . T) (($) . T)) (((|#2|) |has| |#2| (-172))) -((($) -2809 (|has| |#2| (-365)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) ((|#2|) |has| |#2| (-172)) (((-409 (-566))) |has| |#2| (-38 (-409 (-566))))) +((($) -2768 (|has| |#2| (-365)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) ((|#2|) |has| |#2| (-172)) (((-409 (-566))) |has| |#2| (-38 (-409 (-566))))) ((((-870 |#1|)) . T)) -(-2809 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-726)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049)) (|has| |#2| (-1099))) +(-2768 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-726)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049)) (|has| |#2| (-1099))) (-12 (|has| |#3| (-233)) (|has| |#3| (-1049))) (|has| |#2| (-1150)) -(((#0=(-52)) . T) (((-2 (|:| -2004 (-1175)) (|:| -3867 #0#))) . T)) +(((#0=(-52)) . T) (((-2 (|:| -2674 (-1175)) (|:| -2636 #0#))) . T)) (((|#1| |#2|) . T)) -(-2809 (|has| |#3| (-172)) (|has| |#3| (-848)) (|has| |#3| (-1049))) +(-2768 (|has| |#3| (-172)) (|has| |#3| (-848)) (|has| |#3| (-1049))) (((|#1| (-566) (-1081)) . T)) (((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (((|#1| (-409 (-566)) (-1081)) . T)) -((($) -2809 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-558))) (((-409 (-566))) -2809 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) +((($) -2768 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-558))) (((-409 (-566))) -2768 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) ((((-566) |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) @@ -1209,41 +1209,41 @@ (-12 (|has| |#1| (-370)) (|has| |#2| (-370))) ((((-862)) . T)) ((((-1175) |#1|) |has| |#1| (-516 (-1175) |#1|)) ((|#1| |#1|) |has| |#1| (-310 |#1|))) -(-2809 (|has| |#1| (-145)) (|has| |#1| (-370))) -(-2809 (|has| |#1| (-145)) (|has| |#1| (-370))) -(-2809 (|has| |#1| (-145)) (|has| |#1| (-370))) +(-2768 (|has| |#1| (-145)) (|has| |#1| (-370))) +(-2768 (|has| |#1| (-145)) (|has| |#1| (-370))) +(-2768 (|has| |#1| (-145)) (|has| |#1| (-370))) (((|#1|) . T)) ((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-558))) -((((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-1173 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172)) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558)))) +((((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2768 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-1173 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172)) (((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2768 (|has| |#1| (-365)) (|has| |#1| (-558)))) ((($) |has| |#1| (-558)) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) (((|#4|) . T)) (|has| |#1| (-351)) -((((-566)) -2809 (|has| |#3| (-172)) (|has| |#3| (-848)) (-12 (|has| |#3| (-1038 (-566))) (|has| |#3| (-1099))) (|has| |#3| (-1049))) ((|#3|) -2809 (|has| |#3| (-172)) (|has| |#3| (-1099))) (((-409 (-566))) -12 (|has| |#3| (-1038 (-409 (-566)))) (|has| |#3| (-1099)))) +((((-566)) -2768 (|has| |#3| (-172)) (|has| |#3| (-848)) (-12 (|has| |#3| (-1038 (-566))) (|has| |#3| (-1099))) (|has| |#3| (-1049))) ((|#3|) -2768 (|has| |#3| (-172)) (|has| |#3| (-1099))) (((-409 (-566))) -12 (|has| |#3| (-1038 (-409 (-566)))) (|has| |#3| (-1099)))) (((|#1|) . T)) (((|#4|) . T) (((-862)) . T)) -(((|#3|) . T) ((|#2|) . T) (($) -2809 (|has| |#4| (-172)) (|has| |#4| (-848)) (|has| |#4| (-1049))) (((-566)) . T) ((|#4|) -2809 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1049)))) -(((|#2|) . T) (($) -2809 (|has| |#3| (-172)) (|has| |#3| (-848)) (|has| |#3| (-1049))) (((-566)) . T) ((|#3|) -2809 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1049)))) -(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((#0=(-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) #0#) |has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))))) +(((|#3|) . T) ((|#2|) . T) (($) -2768 (|has| |#4| (-172)) (|has| |#4| (-848)) (|has| |#4| (-1049))) (((-566)) . T) ((|#4|) -2768 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1049)))) +(((|#2|) . T) (($) -2768 (|has| |#3| (-172)) (|has| |#3| (-848)) (|has| |#3| (-1049))) (((-566)) . T) ((|#3|) -2768 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1049)))) +(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((#0=(-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) #0#) |has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))))) (|has| |#1| (-558)) (((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) ((((-862)) . T)) (((|#1| |#2|) . T)) -(-2809 (|has| |#2| (-454)) (|has| |#2| (-909))) -(-2809 (|has| |#1| (-850)) (|has| |#1| (-1099))) -(-2809 (|has| |#1| (-454)) (|has| |#1| (-909))) +(-2768 (|has| |#2| (-454)) (|has| |#2| (-909))) +(-2768 (|has| |#1| (-850)) (|has| |#1| (-1099))) +(-2768 (|has| |#1| (-454)) (|has| |#1| (-909))) ((((-409 (-566))) . T) (((-566)) . T)) ((((-566)) . T)) -((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) |has| |#2| (-172)) (($) -2809 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) +((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) |has| |#2| (-172)) (($) -2768 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) ((($) . T)) ((((-862)) . T)) (((|#1|) . T)) ((((-870 |#1|)) . T) (($) . T) (((-409 (-566))) . T)) ((((-862)) . T)) -(((|#3| |#3|) -2809 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1049))) (($ $) |has| |#3| (-172))) +(((|#3| |#3|) -2768 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1049))) (($ $) |has| |#3| (-172))) (|has| |#1| (-1022)) ((((-862)) . T)) -(((|#3|) -2809 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1049))) (($) |has| |#3| (-172))) +(((|#3|) -2768 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1049))) (($) |has| |#3| (-172))) ((((-566) (-112)) . T)) ((((-1180)) . T)) (((|#1|) |has| |#1| (-310 |#1|))) @@ -1253,11 +1253,11 @@ (|has| |#1| (-370)) ((((-1175) $) |has| |#1| (-516 (-1175) $)) (($ $) |has| |#1| (-310 $)) ((|#1| |#1|) |has| |#1| (-310 |#1|)) (((-1175) |#1|) |has| |#1| (-516 (-1175) |#1|))) ((((-1175)) |has| |#1| (-900 (-1175)))) -(-2809 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351))) +(-2768 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351))) (((|#1| |#4|) . T)) (((|#1| |#3|) . T)) ((((-390) |#1|) . T)) -(-2809 (|has| |#1| (-365)) (|has| |#1| (-351))) +(-2768 (|has| |#1| (-365)) (|has| |#1| (-351))) (|has| |#1| (-1099)) (((|#2|) . T) (((-862)) . T)) ((((-862)) . T)) @@ -1265,8 +1265,8 @@ ((((-910 |#1|)) . T)) ((((-862)) . T) (((-1180)) . T)) ((((-1180)) . T)) -((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) |has| |#2| (-172)) (($) -2809 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) -((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) |has| |#1| (-172)) (($) -2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))) +((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) |has| |#2| (-172)) (($) -2768 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) +((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) |has| |#1| (-172)) (($) -2768 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))) (((|#1| |#2|) . T)) ((($) . T)) ((((-566)) . T) (($) . T) (((-409 (-566))) . T)) @@ -1275,16 +1275,16 @@ (((|#1|) . T) (((-409 (-566))) . T) (($) . T) (((-566)) . T)) (((|#1| |#1|) . T)) (((#0=(-870 |#1|)) |has| #0# (-310 #0#))) -((((-566)) . T) (($) -2809 (|has| |#1| (-365)) (|has| |#1| (-351))) (((-409 (-566))) -2809 (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-1038 (-409 (-566))))) ((|#1|) . T)) +((((-566)) . T) (($) -2768 (|has| |#1| (-365)) (|has| |#1| (-351))) (((-409 (-566))) -2768 (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-1038 (-409 (-566))))) ((|#1|) . T)) (((|#1| |#2|) . T)) -(-2809 (|has| |#2| (-793)) (|has| |#2| (-848))) -(-2809 (|has| |#2| (-793)) (|has| |#2| (-848))) +(-2768 (|has| |#2| (-793)) (|has| |#2| (-848))) +(-2768 (|has| |#2| (-793)) (|has| |#2| (-848))) (((|#1|) . T)) (-12 (|has| |#1| (-793)) (|has| |#2| (-793))) (-12 (|has| |#1| (-793)) (|has| |#2| (-793))) -(-2809 (|has| |#2| (-172)) (|has| |#2| (-848)) (|has| |#2| (-1049))) +(-2768 (|has| |#2| (-172)) (|has| |#2| (-848)) (|has| |#2| (-1049))) ((($) . T) (((-566)) . T) ((|#2|) . T)) -(((|#2|) . T) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) . T)) (((|#2|) . T) (($) . T)) (|has| |#1| (-1199)) (((#0=(-566) #0#) . T) ((#1=(-409 (-566)) #1#) . T) (($ $) . T)) @@ -1296,8 +1296,8 @@ (((|#1| |#1|) . T) (($ $) . T) ((#0=(-409 (-566)) #0#) . T)) (|has| |#1| (-365)) ((((-566)) . T) (((-409 (-566))) . T) (($) . T)) -((($ $) . T) ((#0=(-409 (-566)) #0#) -2809 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1| |#1|) . T)) -((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) +((($ $) . T) ((#0=(-409 (-566)) #0#) -2768 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1| |#1|) . T)) +((((-862)) -2768 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) (((|#1|) . T) (($) . T) (((-409 (-566))) . T)) ((((-862)) . T)) ((((-862)) . T)) @@ -1312,29 +1312,29 @@ (((|#1| |#2|) . T)) (|has| |#1| (-848)) (|has| |#1| (-848)) -((($) . T) (((-409 (-566))) -2809 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) -(-2809 (|has| |#1| (-172)) (|has| |#1| (-558))) +((($) . T) (((-409 (-566))) -2768 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) +(-2768 (|has| |#1| (-172)) (|has| |#1| (-558))) ((($) . T)) -(((#0=(-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) #0#) |has| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-310 (-2 (|:| -2004 (-1175)) (|:| -3867 (-52)))))) +(((#0=(-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) #0#) |has| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-310 (-2 (|:| -2674 (-1175)) (|:| -2636 (-52)))))) ((($) . T)) ((($) . T)) (((|#2|) |has| |#2| (-1099))) -((((-862)) -2809 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-613 (-862))) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-726)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049)) (|has| |#2| (-1099))) (((-1264 |#2|)) . T)) +((((-862)) -2768 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-613 (-862))) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-726)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049)) (|has| |#2| (-1099))) (((-1264 |#2|)) . T)) ((($) . T)) ((((-566)) . T) (($) . T) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) ((((-1157) (-52)) . T)) (((|#2|) |has| |#2| (-172))) -((($) -2809 (|has| |#2| (-365)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) ((|#2|) |has| |#2| (-172)) (((-409 (-566))) |has| |#2| (-38 (-409 (-566))))) +((($) -2768 (|has| |#2| (-365)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) ((|#2|) |has| |#2| (-172)) (((-409 (-566))) |has| |#2| (-38 (-409 (-566))))) ((((-862)) . T)) (((|#2|) . T)) -((($) -2809 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) ((|#2|) . T) (((-409 (-566))) |has| |#2| (-38 (-409 (-566))))) +((($) -2768 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) ((|#2|) . T) (((-409 (-566))) |has| |#2| (-38 (-409 (-566))))) ((((-566)) |has| #0=(-409 |#2|) (-639 (-566))) ((#0#) . T)) ((($) . T) (((-566)) . T)) ((((-566) (-144)) . T)) -((((-566) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) . T) ((|#1| |#2|) . T)) +((((-566) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) . T) ((|#1| |#2|) . T)) ((((-409 (-566))) . T) (($) . T)) (((|#1|) . T)) -((((-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) . T)) +((((-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) . T)) ((((-862)) . T)) ((((-910 |#1|)) . T)) (|has| |#1| (-365)) @@ -1342,11 +1342,11 @@ (|has| |#1| (-365)) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-848)) -((($) -2809 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-558))) (((-409 (-566))) -2809 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) +((($) -2768 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-558))) (((-409 (-566))) -2768 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) (|has| |#1| (-365)) (((|#1|) . T) (($) . T)) (|has| |#1| (-848)) -((($) . T) (((-409 (-566))) -2809 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) +((($) . T) (((-409 (-566))) -2768 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) ((((-1175)) |has| |#1| (-900 (-1175)))) (|has| |#1| (-848)) ((((-508)) . T)) @@ -1363,22 +1363,22 @@ ((((-862)) . T)) ((($) . T)) (((|#2|) . T) (($) . T)) -((((-566) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) . T) ((|#1| |#2|) . T)) +((((-566) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) . T) ((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-172))) ((($) |has| |#1| (-558)) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) (((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (((|#3|) . T)) (((|#1|) |has| |#1| (-172))) -((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) |has| |#1| (-172)) (($) -2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))) -((($) -2809 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) -((($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-566)) . T) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) +((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) |has| |#1| (-172)) (($) -2768 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))) +((($) -2768 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((($) -2768 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-566)) . T) (((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) (((|#1|) . T)) (((|#1|) . T)) ((((-538)) |has| |#1| (-614 (-538))) (((-892 (-381))) |has| |#1| (-614 (-892 (-381)))) (((-892 (-566))) |has| |#1| (-614 (-892 (-566))))) ((((-862)) . T)) ((((-870 |#1|)) . T) (($) . T) (((-409 (-566))) . T)) -(((|#2|) . T) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) . T)) ((((-508)) . T)) (|has| |#2| (-848)) ((((-508)) . T)) @@ -1387,15 +1387,15 @@ ((((-870 |#1|)) . T) (((-409 (-566))) . T) (($) . T)) ((((-1157) |#1|) . T)) (|has| |#1| (-1150)) -(-2809 (|has| |#2| (-172)) (|has| |#2| (-848)) (|has| |#2| (-1049))) +(-2768 (|has| |#2| (-172)) (|has| |#2| (-848)) (|has| |#2| (-1049))) ((((-958 |#1|)) . T)) -(((#0=(-409 (-566)) #0#) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($ $) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) ((|#1| |#1|) . T)) +(((#0=(-409 (-566)) #0#) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($ $) -2768 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) ((|#1| |#1|) . T)) ((((-409 (-566))) |has| |#1| (-1038 (-566))) (((-566)) |has| |#1| (-1038 (-566))) (((-1175)) |has| |#1| (-1038 (-1175))) ((|#1|) . T)) ((((-566) |#2|) . T)) ((((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) (((-566)) |has| |#1| (-1038 (-566))) ((|#1|) . T)) ((($) . T) (((-566)) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T)) ((((-566)) |has| |#1| (-886 (-566))) (((-381)) |has| |#1| (-886 (-381)))) -((((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) ((|#1|) . T)) +((((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2768 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) ((|#1|) . T)) (((|#1|) . T)) ((($) . T) (((-566)) . T)) ((((-644 |#4|)) . T) (((-862)) . T)) @@ -1403,34 +1403,34 @@ ((((-538)) |has| |#4| (-614 (-538)))) ((((-862)) . T) (((-644 |#4|)) . T)) ((($) |has| |#1| (-848))) -((((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (((-1256 |#1| |#2| |#3|)) |has| |#1| (-365)) (((-566)) . T) (($) . T) ((|#1|) . T)) -((((-566)) -2809 (|has| |#2| (-172)) (|has| |#2| (-848)) (-12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099))) (|has| |#2| (-1049))) ((|#2|) -2809 (|has| |#2| (-172)) (|has| |#2| (-1099))) (((-409 (-566))) -12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) +((((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (((-1256 |#1| |#2| |#3|)) |has| |#1| (-365)) (((-566)) . T) (($) . T) ((|#1|) . T)) +((((-566)) -2768 (|has| |#2| (-172)) (|has| |#2| (-848)) (-12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099))) (|has| |#2| (-1049))) ((|#2|) -2768 (|has| |#2| (-172)) (|has| |#2| (-1099))) (((-409 (-566))) -12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) (((|#1|) . T)) -(((|#1|) . T) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (((-566)) . T) (($) . T)) +(((|#1|) . T) (((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (((-566)) . T) (($) . T)) ((((-644 |#4|)) . T) (((-862)) . T)) ((((-538)) |has| |#4| (-614 (-538)))) (((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) (((-566)) . T) (($) . T)) (((|#1|) . T)) ((((-1175)) |has| (-409 |#2|) (-900 (-1175)))) (((|#2|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((#0=(-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) #0#) |has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))))) -((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) |has| |#2| (-172)) (($) -2809 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) -((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) . T) (($) -2809 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) -((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) |has| |#1| (-172)) (($) -2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))) +(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((#0=(-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) #0#) |has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))))) +((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) |has| |#2| (-172)) (($) -2768 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) +((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) . T) (($) -2768 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) +((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) |has| |#1| (-172)) (($) -2768 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))) ((($) . T)) ((($) . T)) -((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T) (($) -2809 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))) +((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T) (($) -2768 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))) ((($) . T)) ((($) . T)) (((|#2|) . T)) -((((-862)) -2809 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-613 (-862))) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-370)) (|has| |#3| (-726)) (|has| |#3| (-793)) (|has| |#3| (-848)) (|has| |#3| (-1049)) (|has| |#3| (-1099))) (((-1264 |#3|)) . T)) +((((-862)) -2768 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-613 (-862))) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-370)) (|has| |#3| (-726)) (|has| |#3| (-793)) (|has| |#3| (-848)) (|has| |#3| (-1049)) (|has| |#3| (-1099))) (((-1264 |#3|)) . T)) ((((-566) |#2|) . T)) -(-2809 (|has| |#1| (-850)) (|has| |#1| (-1099))) -(((|#2| |#2|) -2809 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049))) (($ $) |has| |#2| (-172))) +(-2768 (|has| |#1| (-850)) (|has| |#1| (-1099))) +(((|#2| |#2|) -2768 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049))) (($ $) |has| |#2| (-172))) (((|#2|) . T) (((-566)) . T)) ((((-862)) . T)) ((((-862)) . T)) -((((-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) . T) ((|#2|) . T)) +((((-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) . T) ((|#2|) . T)) ((((-862)) . T)) ((((-862)) . T)) ((((-1157) (-1175) (-566) (-225) (-862)) . T)) @@ -1466,9 +1466,9 @@ ((((-409 (-566))) . T) (($) . T)) ((((-862)) . T)) ((((-538)) |has| |#1| (-614 (-538)))) -((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) +((((-862)) -2768 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) ((($) . T) (((-409 (-566))) . T)) -(((|#2|) -2809 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049))) (($) |has| |#2| (-172))) +(((|#2|) -2768 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049))) (($) |has| |#2| (-172))) (|has| $ (-147)) ((((-409 |#2|)) . T)) ((((-409 (-566))) |has| #0=(-409 |#2|) (-1038 (-409 (-566)))) (((-566)) |has| #0# (-1038 (-566))) ((#0#) . T)) @@ -1479,11 +1479,11 @@ (((|#3|) |has| |#3| (-172))) (|has| |#1| (-147)) (|has| |#1| (-145)) -(-2809 (|has| |#1| (-145)) (|has| |#1| (-370))) +(-2768 (|has| |#1| (-145)) (|has| |#1| (-370))) (|has| |#1| (-147)) -(-2809 (|has| |#1| (-145)) (|has| |#1| (-370))) +(-2768 (|has| |#1| (-145)) (|has| |#1| (-370))) (|has| |#1| (-147)) -(-2809 (|has| |#1| (-145)) (|has| |#1| (-370))) +(-2768 (|has| |#1| (-145)) (|has| |#1| (-370))) (|has| |#1| (-147)) (((|#1|) . T)) (|has| |#2| (-233)) @@ -1521,7 +1521,7 @@ ((((-999 |#1|)) . T) ((|#1|) . T)) ((((-862)) . T)) ((((-862)) . T)) -((((-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) . T)) +((((-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) . T)) ((((-409 (-566))) . T) (((-409 |#1|)) . T) ((|#1|) . T) (($) . T)) (((|#1| (-1171 |#1|)) . T)) ((((-566)) . T) (($) . T) (((-409 (-566))) . T)) @@ -1530,8 +1530,8 @@ (((|#1|) . T) (((-566)) . T) (($) . T)) (((|#2|) . T)) ((((-566)) . T) (($) . T) (((-409 (-566))) . T)) -((((-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))) . T)) -((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) +((((-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))) . T)) +((((-862)) -2768 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) ((((-566) |#2|) . T)) (((|#1|) . T) (((-409 (-566))) . T) (((-566)) . T) (($) . T)) ((($) . T) (((-566)) . T) (((-409 (-566))) . T)) @@ -1544,7 +1544,7 @@ (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-38 (-409 (-566)))) ((((-1256 |#1| |#2| |#3|)) |has| |#1| (-365))) -(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((#0=(-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) #0#) |has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))))) +(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((#0=(-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) #0#) |has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))))) (((|#2| |#2|) . T)) (|has| |#1| (-1099)) (|has| |#1| (-38 (-409 (-566)))) @@ -1556,14 +1556,14 @@ (((|#2|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-172))) -((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) |has| |#1| (-172)) (($) -2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))) -((($) -2809 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) |has| |#1| (-172)) (($) -2768 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))) +((($) -2768 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) ((((-1157) (-52)) . T)) (((|#1|) . T)) -((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T) (($) -2809 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))) -((($) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T) (($) -2768 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))) +((($) -2768 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) (((|#2|) |has| |#2| (-172))) -((($) -2809 (|has| |#2| (-172)) (|has| |#2| (-848)) (|has| |#2| (-1049))) (((-566)) -2809 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-848)) (|has| |#2| (-1049))) ((|#2|) -2809 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049)))) +((($) -2768 (|has| |#2| (-172)) (|has| |#2| (-848)) (|has| |#2| (-1049))) (((-566)) -2768 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-848)) (|has| |#2| (-1049))) ((|#2|) -2768 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049)))) ((((-566) |#3|) . T)) ((((-566) (-144)) . T)) ((((-144)) . T)) @@ -1589,19 +1589,19 @@ (((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (((|#1| |#2|) . T)) ((((-566) (-144)) . T)) -(((#0=(-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) #0#) |has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) -((($) -2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +(((#0=(-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) #0#) |has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) +((($) -2768 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) (|has| |#1| (-850)) (((|#2| (-771) (-1081)) . T)) (((|#1| |#2|) . T)) -(-2809 (|has| |#1| (-172)) (|has| |#1| (-558))) +(-2768 (|has| |#1| (-172)) (|has| |#1| (-558))) (|has| |#1| (-791)) (((|#1|) |has| |#1| (-172))) (((|#4|) . T)) (((|#4|) . T)) (((|#1| |#2|) . T)) -(-2809 (|has| |#1| (-147)) (-12 (|has| |#1| (-365)) (|has| |#2| (-147)))) -(-2809 (|has| |#1| (-145)) (-12 (|has| |#1| (-365)) (|has| |#2| (-145)))) +(-2768 (|has| |#1| (-147)) (-12 (|has| |#1| (-365)) (|has| |#2| (-147)))) +(-2768 (|has| |#1| (-145)) (-12 (|has| |#1| (-365)) (|has| |#2| (-145)))) (((|#4|) . T)) (|has| |#1| (-145)) ((((-1157) |#1|) . T)) @@ -1615,24 +1615,24 @@ (((|#3|) . T)) ((((-1256 |#1| |#2| |#3|)) |has| |#1| (-365))) ((($) . T) (((-566)) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T)) -((((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (((-1173 |#1| |#2| |#3|)) |has| |#1| (-365)) (((-566)) . T) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (((-566)) . T) (($) . T)) +((((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (((-1173 |#1| |#2| |#3|)) |has| |#1| (-365)) (((-566)) . T) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (((-566)) . T) (($) . T)) ((((-862)) . T)) -(-2809 (|has| |#1| (-850)) (|has| |#1| (-1099))) +(-2768 (|has| |#1| (-850)) (|has| |#1| (-1099))) (((|#1|) . T)) (((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) (((-566)) . T) (($) . T)) -((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) -((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099))) (((-958 |#1|)) . T)) +((((-862)) -2768 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) +((((-862)) -2768 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099))) (((-958 |#1|)) . T)) (|has| |#1| (-848)) (|has| |#1| (-848)) (((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) ((((-958 |#1|)) . T)) -(((|#4|) -2809 (|has| |#4| (-172)) (|has| |#4| (-365)))) -(((|#3|) -2809 (|has| |#3| (-172)) (|has| |#3| (-365)))) +(((|#4|) -2768 (|has| |#4| (-172)) (|has| |#4| (-365)))) +(((|#3|) -2768 (|has| |#3| (-172)) (|has| |#3| (-365)))) (|has| |#2| (-365)) (((|#1|) |has| |#1| (-172))) -(((|#4|) -2809 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1049))) (($) |has| |#4| (-172))) -(((|#3|) -2809 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1049))) (($) |has| |#3| (-172))) +(((|#4|) -2768 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1049))) (($) |has| |#4| (-172))) +(((|#3|) -2768 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1049))) (($) |has| |#3| (-172))) (((|#2|) |has| |#2| (-1049))) ((((-1157) |#1|) . T)) (((|#3| |#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) @@ -1641,8 +1641,8 @@ ((($) . T) (((-566)) . T) (((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) . T)) ((((-390) (-1157)) . T)) ((($) |has| |#1| (-558)) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) -((((-862)) -2809 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-613 (-862))) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-726)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049)) (|has| |#2| (-1099))) (((-1264 |#2|)) . T)) -(((#0=(-52)) . T) (((-2 (|:| -2004 (-1157)) (|:| -3867 #0#))) . T)) +((((-862)) -2768 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-613 (-862))) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-726)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049)) (|has| |#2| (-1099))) (((-1264 |#2|)) . T)) +(((#0=(-52)) . T) (((-2 (|:| -2674 (-1157)) (|:| -2636 #0#))) . T)) (((|#1|) . T)) ((((-862)) . T)) (((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) @@ -1651,7 +1651,7 @@ ((((-566)) . T)) (|has| |#2| (-147)) (|has| |#1| (-475)) -(-2809 (|has| |#1| (-475)) (|has| |#1| (-726)) (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049))) +(-2768 (|has| |#1| (-475)) (|has| |#1| (-726)) (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049))) (|has| |#1| (-365)) ((((-862)) . T)) (|has| |#1| (-38 (-409 (-566)))) @@ -1662,8 +1662,8 @@ (|has| |#1| (-848)) ((((-862)) . T)) (((|#2|) . T)) -((((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-1256 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172)) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558)))) +((((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2768 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-1256 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172)) (((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2768 (|has| |#1| (-365)) (|has| |#1| (-558)))) ((($) |has| |#1| (-558)) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) (((|#2|) . T) (((-566)) . T) (((-819 |#1|)) . T)) (((|#1| |#2|) . T)) @@ -1672,7 +1672,7 @@ ((((-862)) . T)) ((((-862)) . T)) (|has| |#1| (-1099)) -(((|#2| (-484 (-3018 |#1|) (-771)) (-864 |#1|)) . T)) +(((|#2| (-484 (-3000 |#1|) (-771)) (-864 |#1|)) . T)) ((((-409 (-566))) . #0=(|has| |#2| (-365))) (($) . #0#)) (((|#1| (-533 (-1175)) (-1175)) . T)) (((|#1|) . T)) @@ -1693,17 +1693,17 @@ (((|#2|) |has| |#2| (-172))) (((|#1|) . T)) (((|#2|) . T)) -(((|#1|) . T) (((-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))) . T)) -((((-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) . T)) +(((|#1|) . T) (((-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))) . T)) +((((-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) . T)) (((|#2|) . T)) -((((-2 (|:| -2004 (-1175)) (|:| -3867 (-52)))) . T)) +((((-2 (|:| -2674 (-1175)) (|:| -2636 (-52)))) . T)) ((((-1173 |#1| |#2| |#3|)) |has| |#1| (-365))) -((((-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) . T)) +((((-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) . T)) ((((-1175) (-52)) . T)) ((($ $) . T)) (((|#1| (-566)) . T)) ((((-910 |#1|)) . T)) -(((|#1|) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1049))) (($) -2809 (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049)))) +(((|#1|) -2768 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1049))) (($) -2768 (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049)))) (((|#1|) . T) (((-566)) |has| |#1| (-1038 (-566))) (((-409 (-566))) |has| |#1| (-1038 (-409 (-566))))) (|has| |#1| (-850)) (|has| |#1| (-850)) @@ -1721,13 +1721,13 @@ (((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (((|#1|) |has| |#1| (-172))) (((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) -(((|#3|) -2809 (|has| |#3| (-172)) (|has| |#3| (-365)))) -((($) -2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) -(-2809 (|has| |#2| (-365)) (|has| |#2| (-454)) (|has| |#2| (-909))) -((($) -2809 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +(((|#3|) -2768 (|has| |#3| (-172)) (|has| |#3| (-365)))) +((($) -2768 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +(-2768 (|has| |#2| (-365)) (|has| |#2| (-454)) (|has| |#2| (-909))) +((($) -2768 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) ((($ $) . T) ((#0=(-409 (-566)) #0#) . T)) ((((-566) |#2|) . T)) -(((|#2|) -2809 (|has| |#2| (-172)) (|has| |#2| (-365)))) +(((|#2|) -2768 (|has| |#2| (-172)) (|has| |#2| (-365)))) (|has| |#1| (-351)) (((|#3| |#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) (((|#2|) . T) (((-566)) . T)) @@ -1736,7 +1736,7 @@ (|has| |#1| (-820)) (|has| |#1| (-820)) (((|#1|) . T)) -(-2809 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351))) +(-2768 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351))) (|has| |#1| (-848)) (|has| |#1| (-848)) (|has| |#1| (-848)) @@ -1745,14 +1745,14 @@ ((((-566)) . T) (($) . T) (((-409 (-566))) . T)) (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-38 (-409 (-566)))) -(-2809 (|has| |#1| (-365)) (|has| |#1| (-351))) +(-2768 (|has| |#1| (-365)) (|has| |#1| (-351))) (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-38 (-409 (-566)))) -((((-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) . T)) +((((-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) . T)) ((((-1175)) |has| |#1| (-900 (-1175))) (((-1081)) . T)) (((|#1|) . T)) (|has| |#1| (-848)) -(((#0=(-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) #0#) |has| (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) (-310 (-2 (|:| -2004 (-1157)) (|:| -3867 (-52)))))) +(((#0=(-2 (|:| -2674 (-1157)) (|:| -2636 (-52))) #0#) |has| (-2 (|:| -2674 (-1157)) (|:| -2636 (-52))) (-310 (-2 (|:| -2674 (-1157)) (|:| -2636 (-52)))))) (((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (|has| |#1| (-1099)) ((((-862)) . T) (((-1180)) . T)) @@ -1775,11 +1775,11 @@ (((|#1| (-771) (-1081)) . T)) (((|#3|) . T)) ((((-144)) . T)) -((((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) (((-566)) -2809 (|has| |#1| (-848)) (|has| |#1| (-1038 (-566)))) ((|#1|) . T)) +((((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) (((-566)) -2768 (|has| |#1| (-848)) (|has| |#1| (-1038 (-566)))) ((|#1|) . T)) (((|#1|) . T)) ((((-144)) . T)) (((|#2|) |has| |#2| (-172))) -(-2809 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-726)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049)) (|has| |#2| (-1099))) +(-2768 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-726)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049)) (|has| |#2| (-1099))) (((|#1|) . T)) (|has| |#1| (-145)) (|has| |#1| (-147)) @@ -1797,47 +1797,47 @@ ((($) |has| |#1| (-558))) (((|#2|) . T)) ((((-1173 |#1| |#2| |#3|)) |has| |#1| (-365))) -((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T) (($) -2809 (|has| |#1| (-172)) (|has| |#1| (-558)))) +((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T) (($) -2768 (|has| |#1| (-172)) (|has| |#1| (-558)))) ((($) |has| |#1| (-558))) ((($) |has| |#1| (-848))) -((((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-1256 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) +((((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2768 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-1256 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) (|has| |#1| (-909)) ((((-1175)) . T)) ((((-862)) . T)) -((($) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (((-1256 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) . T)) -(((|#1|) . T) (($) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365)))) -(((|#1|) |has| |#1| (-172)) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558)))) +((($) -2768 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (((-1256 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) . T)) +(((|#1|) . T) (($) -2768 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365)))) +(((|#1|) |has| |#1| (-172)) (((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2768 (|has| |#1| (-365)) (|has| |#1| (-558)))) ((($) |has| |#1| (-558)) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) -((($) -2809 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((($) -2768 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) (((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (((|#1|) . T)) (((|#1| |#2|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((#0=(-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) #0#) |has| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-310 (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))))) -(-2809 (|has| |#2| (-454)) (|has| |#2| (-909))) -(-2809 (|has| |#1| (-454)) (|has| |#1| (-909))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((#0=(-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) #0#) |has| (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-310 (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))))) +(-2768 (|has| |#2| (-454)) (|has| |#2| (-909))) +(-2768 (|has| |#1| (-454)) (|has| |#1| (-909))) (((|#1|) . T) (($) . T)) (((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#3|) -2809 (|has| |#3| (-172)) (|has| |#3| (-365)))) +(((|#3|) -2768 (|has| |#3| (-172)) (|has| |#3| (-365)))) (|has| |#1| (-850)) (|has| |#1| (-558)) ((((-583 |#1|)) . T)) ((($) . T)) (((|#2|) . T)) -(-2809 (-12 (|has| |#1| (-365)) (|has| |#2| (-820))) (-12 (|has| |#1| (-365)) (|has| |#2| (-850)))) -(-2809 (|has| |#1| (-365)) (|has| |#1| (-558))) +(-2768 (-12 (|has| |#1| (-365)) (|has| |#2| (-820))) (-12 (|has| |#1| (-365)) (|has| |#2| (-850)))) +(-2768 (|has| |#1| (-365)) (|has| |#1| (-558))) ((((-910 |#1|)) . T)) (((|#1| (-498 |#1| |#3|) (-498 |#1| |#2|)) . T)) (((|#1| |#4| |#5|) . T)) (((|#1| (-771)) . T)) ((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-558))) -((((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-1173 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172)) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558)))) +((((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2768 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-1173 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172)) (((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2768 (|has| |#1| (-365)) (|has| |#1| (-558)))) ((($) |has| |#1| (-558)) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) -((((-2 (|:| -2004 (-1175)) (|:| -3867 (-52)))) . T)) +((((-2 (|:| -2674 (-1175)) (|:| -2636 (-52)))) . T)) ((((-409 |#2|)) . T) (((-409 (-566))) . T) (($) . T)) ((((-672 |#1|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) @@ -1846,7 +1846,7 @@ ((((-862)) . T)) (((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) ((((-862)) . T)) -((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) |has| |#2| (-172)) (($) -2809 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) +((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) |has| |#2| (-172)) (($) -2768 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) ((((-1180)) . T)) ((((-409 (-566))) . T) (($) . T) (((-409 |#1|)) . T) ((|#1|) . T) (((-566)) . T)) (((|#3|) . T) (((-566)) . T) (((-612 $)) . T)) @@ -1854,12 +1854,12 @@ ((((-862)) . T)) ((((-862)) . T)) (((|#2|) . T)) -(-2809 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-370)) (|has| |#3| (-726)) (|has| |#3| (-793)) (|has| |#3| (-848)) (|has| |#3| (-1049)) (|has| |#3| (-1099))) -(-2809 (|has| |#2| (-172)) (|has| |#2| (-848)) (|has| |#2| (-1049))) +(-2768 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-370)) (|has| |#3| (-726)) (|has| |#3| (-793)) (|has| |#3| (-848)) (|has| |#3| (-1049)) (|has| |#3| (-1099))) +(-2768 (|has| |#2| (-172)) (|has| |#2| (-848)) (|has| |#2| (-1049))) ((((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) (((-566)) |has| |#1| (-1038 (-566))) ((|#1|) . T)) (|has| |#1| (-1199)) (|has| |#1| (-1199)) -(-2809 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-726)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049)) (|has| |#2| (-1099))) +(-2768 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-726)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049)) (|has| |#2| (-1099))) (|has| |#1| (-1199)) (|has| |#1| (-1199)) ((((-566)) . T) (($) . T) (((-409 (-566))) . T)) @@ -1877,16 +1877,16 @@ ((((-1157) (-52)) . T)) (|has| |#1| (-1099)) (((|#1|) |has| |#1| (-172)) (($) . T)) -(-2809 (|has| |#2| (-820)) (|has| |#2| (-850))) +(-2768 (|has| |#2| (-820)) (|has| |#2| (-850))) (((|#1|) . T) (($) . T) (((-409 (-566))) . T)) (((|#1|) . T) (((-409 (-566))) . T) (($) . T)) (((|#1|) . T)) ((((-566)) . T) (($) . T) (((-409 (-566))) . T)) ((((-566)) . T) (((-409 (-566))) . T) (($) . T)) -((($) -2809 (|has| |#1| (-365)) (|has| |#1| (-351))) (((-409 (-566))) -2809 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) +((($) -2768 (|has| |#1| (-365)) (|has| |#1| (-351))) (((-409 (-566))) -2768 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) ((((-566)) . T) (($) . T)) ((((-771)) . T)) -(-2809 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) +(-2768 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) (((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) ((((-862)) . T)) ((($) . T) (((-566)) . T)) @@ -1894,35 +1894,35 @@ (|has| |#2| (-909)) (|has| |#1| (-365)) (((|#2|) |has| |#2| (-1099))) -(-2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) -(-2809 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) -(-2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) +(-2768 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) +(-2768 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) +(-2768 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((((-538)) . T) (((-409 (-1171 (-566)))) . T) (((-225)) . T) (((-381)) . T)) ((((-381)) . T) (((-225)) . T) (((-862)) . T)) (|has| |#1| (-909)) (|has| |#1| (-909)) (|has| |#1| (-909)) -(-2809 (|has| |#1| (-454)) (|has| |#1| (-909))) +(-2768 (|has| |#1| (-454)) (|has| |#1| (-909))) ((($) . T)) -(-2809 (|has| |#1| (-850)) (|has| |#1| (-1099))) +(-2768 (|has| |#1| (-850)) (|has| |#1| (-1099))) ((($) . T) ((|#2|) . T)) -(((|#2|) -2809 (|has| |#2| (-172)) (|has| |#2| (-365)))) +(((|#2|) -2768 (|has| |#2| (-172)) (|has| |#2| (-365)))) ((((-1173 |#1| |#2| |#3|)) -12 (|has| (-1173 |#1| |#2| |#3|) (-310 (-1173 |#1| |#2| |#3|))) (|has| |#1| (-365)))) -(-2809 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-909))) +(-2768 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-909))) (((|#1|) . T)) -(((|#2|) -2809 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049))) (($) |has| |#2| (-172))) +(((|#2|) -2768 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049))) (($) |has| |#2| (-172))) (((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) ((((-862)) . T)) ((((-862)) . T)) ((($ $) . T)) -((((-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) . T)) +((((-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) . T)) ((($ $) . T)) ((((-566) (-112)) . T)) ((($) . T)) (((|#1|) . T)) ((((-566)) . T)) ((((-112)) . T)) -(-2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) +(-2768 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (|has| |#1| (-38 (-409 (-566)))) (((|#1| (-566)) . T)) ((($) . T)) @@ -1944,7 +1944,7 @@ (((|#1| (-1228 |#1| |#2| |#3|)) . T)) (((|#1| (-771)) . T)) (((|#1|) . T)) -((((-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) . T)) +((((-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) . T)) ((((-862)) . T)) (|has| |#1| (-1099)) ((((-1157) |#1|) . T)) @@ -1965,18 +1965,18 @@ (((|#1|) . T)) ((((-566)) . T)) ((((-862)) . T)) -(-2809 (|has| |#1| (-145)) (|has| |#1| (-351))) +(-2768 (|has| |#1| (-145)) (|has| |#1| (-351))) ((((-862)) . T)) (|has| |#1| (-147)) (((|#3|) . T)) -(-2809 (|has| |#3| (-172)) (|has| |#3| (-848)) (|has| |#3| (-1049))) +(-2768 (|has| |#3| (-172)) (|has| |#3| (-848)) (|has| |#3| (-1049))) ((((-862)) . T)) ((((-1249 |#2| |#3| |#4|)) . T) (((-1250 |#1| |#2| |#3| |#4|)) . T)) ((((-862)) . T)) -((((-48)) -12 (|has| |#1| (-558)) (|has| |#1| (-1038 (-566)))) (((-612 $)) . T) ((|#1|) . T) (((-566)) |has| |#1| (-1038 (-566))) (((-409 (-566))) -2809 (-12 (|has| |#1| (-558)) (|has| |#1| (-1038 (-566)))) (|has| |#1| (-1038 (-409 (-566))))) (((-409 (-952 |#1|))) |has| |#1| (-558)) (((-952 |#1|)) |has| |#1| (-1049)) (((-1175)) . T)) +((((-48)) -12 (|has| |#1| (-558)) (|has| |#1| (-1038 (-566)))) (((-612 $)) . T) ((|#1|) . T) (((-566)) |has| |#1| (-1038 (-566))) (((-409 (-566))) -2768 (-12 (|has| |#1| (-558)) (|has| |#1| (-1038 (-566)))) (|has| |#1| (-1038 (-409 (-566))))) (((-409 (-952 |#1|))) |has| |#1| (-558)) (((-952 |#1|)) |has| |#1| (-1049)) (((-1175)) . T)) (((|#1|) . T) (($) . T)) (((|#1| (-771)) . T)) -((($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) +((($) -2768 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) (((|#1|) |has| |#1| (-310 |#1|))) ((((-1250 |#1| |#2| |#3| |#4|)) . T)) ((((-566)) |has| |#1| (-886 (-566))) (((-381)) |has| |#1| (-886 (-381)))) @@ -1984,14 +1984,14 @@ (|has| |#1| (-558)) ((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-558))) (((|#1|) . T)) -((((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-1173 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172)) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558)))) +((((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2768 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-1173 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172)) (((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2768 (|has| |#1| (-365)) (|has| |#1| (-558)))) ((($) |has| |#1| (-558)) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) -((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T) (($) -2809 (|has| |#1| (-172)) (|has| |#1| (-558)))) -((($) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (((-1173 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) . T)) -(((|#1|) . T) (($) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365)))) -((($) -2809 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) -(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) |has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))))) +((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T) (($) -2768 (|has| |#1| (-172)) (|has| |#1| (-558)))) +((($) -2768 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (((-1173 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) . T)) +(((|#1|) . T) (($) -2768 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365)))) +((($) -2768 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) |has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))))) (((|#1|) |has| |#1| (-172))) ((((-862)) . T)) ((($) |has| |#1| (-558)) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) @@ -1999,12 +1999,12 @@ (((|#1|) |has| |#1| (-172)) (($) . T) (((-566)) . T)) (((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (((|#1|) . T)) -((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) |has| |#2| (-172)) (($) -2809 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) -((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) . T) (($) -2809 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) +((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) |has| |#2| (-172)) (($) -2768 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) +((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) . T) (($) -2768 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) (((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) (((-566)) . T) (($) . T)) (((|#3|) |has| |#3| (-1099))) ((((-910 |#1|)) . T) (((-409 (-566))) . T) (($) . T) (((-566)) . T)) -(((|#2|) -2809 (|has| |#2| (-172)) (|has| |#2| (-365)))) +(((|#2|) -2768 (|has| |#2| (-172)) (|has| |#2| (-365)))) ((((-1249 |#2| |#3| |#4|)) . T)) ((((-112)) . T)) (|has| |#1| (-820)) @@ -2014,8 +2014,8 @@ (|has| |#1| (-848)) (|has| |#1| (-848)) (((|#1| (-566) (-1081)) . T)) -(-2809 (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049))) -((((-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) . T)) +(-2768 (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049))) +((((-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) . T)) (((|#1| (-409 (-566)) (-1081)) . T)) (((|#1| (-771) (-1081)) . T)) (|has| |#1| (-850)) @@ -2029,41 +2029,41 @@ ((((-910 |#1|)) . T) (($) . T) (((-409 (-566))) . T)) (|has| |#1| (-1099)) ((((-409 (-566))) |has| |#2| (-365)) (($) . T) (((-566)) . T)) -((((-566)) -2809 (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049)))) +((((-566)) -2768 (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049)))) (((|#1|) . T)) (|has| |#1| (-1099)) ((((-566)) -12 (|has| |#1| (-365)) (|has| |#2| (-639 (-566)))) ((|#2|) |has| |#1| (-365))) -(-2809 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-726)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049)) (|has| |#2| (-1099))) -((((-689 (-341 (-3796) (-3796 (QUOTE X) (QUOTE HESS)) (-699)))) . T)) +(-2768 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-726)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049)) (|has| |#2| (-1099))) +((((-689 (-341 (-1340) (-1340 (QUOTE X) (QUOTE HESS)) (-699)))) . T)) (((|#2|) |has| |#2| (-172))) (((|#1|) |has| |#1| (-172))) -((((-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) . T)) -((((-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))) . T)) +((((-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) . T)) +((((-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))) . T)) ((((-862)) . T)) (|has| |#3| (-848)) ((((-862)) . T)) ((((-1249 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) . T)) ((((-862)) . T)) -(((|#1| |#1|) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1049)))) +(((|#1| |#1|) -2768 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1049)))) (((|#1|) . T)) ((((-566)) . T)) ((((-566)) . T)) -(((|#1|) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1049)))) +(((|#1|) -2768 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1049)))) (((|#2|) |has| |#2| (-365))) (((|#1|) . T)) ((($) . T) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-365))) (|has| |#1| (-850)) (((|#1|) . T)) -((((-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) . T)) +((((-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) . T)) (((|#1|) . T) (((-566)) . T)) (((|#2|) . T)) ((((-566)) . T) ((|#3|) . T)) -((((-2 (|:| -2004 (-1175)) (|:| -3867 (-52)))) |has| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-310 (-2 (|:| -2004 (-1175)) (|:| -3867 (-52)))))) -(-2809 (|has| |#1| (-454)) (|has| |#1| (-909))) +((((-2 (|:| -2674 (-1175)) (|:| -2636 (-52)))) |has| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-310 (-2 (|:| -2674 (-1175)) (|:| -2636 (-52)))))) +(-2768 (|has| |#1| (-454)) (|has| |#1| (-909))) (((|#2|) . T) (((-566)) |has| |#2| (-639 (-566)))) ((((-862)) . T)) ((((-862)) . T)) -((($) -2809 (|has| |#2| (-172)) (|has| |#2| (-848)) (|has| |#2| (-1049))) (((-566)) -2809 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-848)) (|has| |#2| (-1049))) ((|#2|) -2809 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049)))) +((($) -2768 (|has| |#2| (-172)) (|has| |#2| (-848)) (|has| |#2| (-1049))) (((-566)) -2768 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-848)) (|has| |#2| (-1049))) ((|#2|) -2768 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049)))) ((((-538)) . T) (((-566)) . T) (((-892 (-566))) . T) (((-381)) . T) (((-225)) . T)) ((((-862)) . T)) (|has| |#1| (-38 (-409 (-566)))) @@ -2096,28 +2096,28 @@ (|has| |#1| (-145)) ((($) |has| |#1| (-558)) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) (((|#1|) |has| |#1| (-172))) -((($) -2809 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((($) -2768 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) ((((-566)) . T) ((|#1|) . T) (($) . T) (((-409 (-566))) . T) (((-1175)) |has| |#1| (-1038 (-1175)))) (((|#1| |#2|) . T)) -((((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) (((-566)) -2809 (|has| |#1| (-848)) (|has| |#1| (-1038 (-566)))) ((|#1|) . T)) +((((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) (((-566)) -2768 (|has| |#1| (-848)) (|has| |#1| (-1038 (-566)))) ((|#1|) . T)) ((((-144)) . T)) (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-38 (-409 (-566)))) (((|#1|) . T)) -(-2809 (|has| |#2| (-172)) (|has| |#2| (-848)) (|has| |#2| (-1049))) +(-2768 (|has| |#2| (-172)) (|has| |#2| (-848)) (|has| |#2| (-1049))) (((|#1| |#1|) . T) ((#0=(-409 (-566)) #0#) . T) (($ $) . T)) (((|#2|) . T) ((|#1|) . T) (((-566)) . T)) ((((-862)) . T)) (((|#1|) . T) (((-409 (-566))) . T) (($) . T)) ((($) . T) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) -((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) +((((-862)) -2768 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) (|has| |#1| (-365)) (|has| |#1| (-365)) (|has| (-409 |#2|) (-233)) ((((-644 |#1|)) . T)) (|has| |#1| (-909)) (((|#2|) |has| |#2| (-1049))) -(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) |has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))))) +(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) |has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))))) (|has| |#1| (-365)) (((|#1|) |has| |#1| (-172))) (((|#1| |#1|) . T)) @@ -2128,7 +2128,7 @@ (((|#1|) . T)) ((((-409 |#2|)) . T) (((-409 (-566))) . T) (($) . T) (((-566)) . T)) ((((-644 $)) . T) (((-1157)) . T) (((-1175)) . T) (((-566)) . T) (((-225)) . T) (((-862)) . T)) -((($) -2809 (|has| |#3| (-172)) (|has| |#3| (-848)) (|has| |#3| (-1049))) (((-566)) -2809 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-848)) (|has| |#3| (-1049))) ((|#3|) -2809 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1049)))) +((($) -2768 (|has| |#3| (-172)) (|has| |#3| (-848)) (|has| |#3| (-1049))) (((-566)) -2768 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-848)) (|has| |#3| (-1049))) ((|#3|) -2768 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1049)))) ((((-409 (-566))) . T) (((-566)) . T) (((-612 $)) . T)) (((|#1|) . T)) ((((-862)) . T)) @@ -2143,7 +2143,7 @@ (((|#1|) . T)) (((|#1| (-771) (-1081)) . T)) (((#0=(-409 |#2|) #0#) . T) ((#1=(-409 (-566)) #1#) . T) (($ $) . T)) -(((|#1|) . T) (((-566)) -2809 (|has| (-409 (-566)) (-1038 (-566))) (|has| |#1| (-1038 (-566)))) (((-409 (-566))) . T)) +(((|#1|) . T) (((-566)) -2768 (|has| (-409 (-566)) (-1038 (-566))) (|has| |#1| (-1038 (-566)))) (((-409 (-566))) . T)) (((|#1| (-602 |#1| |#3|) (-602 |#1| |#2|)) . T)) (((|#1|) |has| |#1| (-172))) (((|#1|) . T)) @@ -2164,12 +2164,12 @@ (((|#2|) |has| |#2| (-172))) (|has| |#2| (-848)) ((((-566)) . T) ((|#2|) . T) (((-409 (-566))) |has| |#2| (-1038 (-409 (-566))))) -((((-112)) |has| |#1| (-1099)) (((-862)) -2809 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-475)) (|has| |#1| (-726)) (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049)) (|has| |#1| (-1111)) (|has| |#1| (-1099)))) +((((-112)) |has| |#1| (-1099)) (((-862)) -2768 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-475)) (|has| |#1| (-726)) (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049)) (|has| |#1| (-1111)) (|has| |#1| (-1099)))) (((|#1|) . T) (($) . T)) (((|#1| |#2|) . T)) ((($) . T) (((-566)) . T) (((-409 (-566))) . T)) ((((-566)) . T) (($) . T) (((-409 (-566))) . T)) -((((-2 (|:| -2004 (-1157)) (|:| -3867 (-52)))) . T)) +((((-2 (|:| -2674 (-1157)) (|:| -2636 (-52)))) . T)) (((|#1|) . T) (((-409 (-566))) . T) (((-566)) . T) (($) . T)) (((|#1|) . T) (((-409 (-566))) . T) (((-566)) . T) (($) . T)) (((|#1|) . T) (((-409 (-566))) . T) (((-566)) . T) (($) . T)) @@ -2181,17 +2181,17 @@ ((((-699)) . T) (((-409 (-566))) . T) (((-566)) . T)) (((|#1| |#1|) |has| |#1| (-172))) (((|#2|) . T)) -((($) . T) (((-566)) . T) (((-409 (-566))) -2809 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) +((($) . T) (((-566)) . T) (((-409 (-566))) -2768 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) ((((-566) |#1|) . T)) -(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) |has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))))) +(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) |has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))))) ((((-381)) . T)) ((((-699)) . T)) ((((-409 (-566))) . #0=(|has| |#2| (-365))) (($) . #0#)) (((|#1|) |has| |#1| (-172))) ((((-409 (-952 |#1|))) . T)) (((|#2| |#2|) . T)) -(-2809 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) -(-2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) +(-2768 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) +(-2768 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) (((|#1|) . T)) (((|#2|) . T)) (((|#3|) |has| |#3| (-1049))) @@ -2200,14 +2200,14 @@ (|has| |#1| (-365)) ((((-1175)) |has| |#2| (-900 (-1175)))) ((((-862)) . T)) -((((-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) . T)) +((((-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) . T)) ((((-409 (-566))) . T) (($) . T)) (|has| |#1| (-475)) (|has| |#1| (-370)) (|has| |#1| (-370)) (|has| |#1| (-370)) (|has| |#1| (-365)) -(-2809 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-475)) (|has| |#1| (-558)) (|has| |#1| (-1049)) (|has| |#1| (-1111))) +(-2768 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-475)) (|has| |#1| (-558)) (|has| |#1| (-1049)) (|has| |#1| (-1111))) (|has| |#1| (-38 (-409 (-566)))) ((((-116 |#1|)) . T)) ((((-116 |#1|)) . T)) @@ -2228,12 +2228,12 @@ (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-850)) -((((-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))) . T)) +((((-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))) . T)) (((|#1| |#2|) . T)) ((($) . T) (((-566)) . T)) (|has| |#1| (-147)) (|has| |#1| (-145)) -((((-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) |has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) ((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) +((((-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) |has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) ((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (((|#2|) . T)) (((|#3|) . T)) ((((-116 |#1|)) . T)) @@ -2253,12 +2253,12 @@ ((((-538)) |has| |#1| (-614 (-538))) (((-892 (-566))) |has| |#1| (-614 (-892 (-566)))) (((-892 (-381))) |has| |#1| (-614 (-892 (-381)))) (((-381)) . #0=(|has| |#1| (-1022))) (((-225)) . #0#)) (((|#1|) |has| |#1| (-365))) ((((-862)) . T)) -((((-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) . T)) +((((-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) . T)) ((($ $) . T) (((-612 $) $) . T)) -(-2809 (|has| |#1| (-365)) (|has| |#1| (-558))) +(-2768 (|has| |#1| (-365)) (|has| |#1| (-558))) ((($) . T) (((-1250 |#1| |#2| |#3| |#4|)) . T) (((-409 (-566))) . T)) -((($) -2809 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-558)) (|has| |#1| (-1049))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-558))) -((($) . T) (((-566)) . T) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#1|) . T)) +((($) -2768 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-558)) (|has| |#1| (-1049))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-558))) +((($) . T) (((-566)) . T) (((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#1|) . T)) (|has| |#1| (-365)) (|has| |#1| (-365)) (|has| |#1| (-365)) @@ -2271,16 +2271,16 @@ (((|#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) (((|#1|) |has| |#1| (-172))) ((((-862)) . T)) -(-2809 (|has| |#2| (-454)) (|has| |#2| (-909))) +(-2768 (|has| |#2| (-454)) (|has| |#2| (-909))) (((|#1|) . T)) ((($) |has| |#1| (-558)) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) -((($) -2809 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) -((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) +((($) -2768 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((((-862)) -2768 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) ((((-538)) |has| |#1| (-614 (-538)))) (((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) ((((-771)) . T)) (|has| |#1| (-1099)) -((($) -2809 (|has| |#2| (-172)) (|has| |#2| (-848)) (|has| |#2| (-1049))) (((-566)) -2809 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-848)) (|has| |#2| (-1049))) ((|#2|) -2809 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049)))) +((($) -2768 (|has| |#2| (-172)) (|has| |#2| (-848)) (|has| |#2| (-1049))) (((-566)) -2768 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-848)) (|has| |#2| (-1049))) ((|#2|) -2768 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049)))) ((((-862)) . T)) ((((-1175)) . T) (((-862)) . T)) ((((-566)) -12 (|has| |#1| (-21)) (|has| |#2| (-21)))) @@ -2288,13 +2288,13 @@ (|has| |#1| (-145)) (|has| |#1| (-147)) ((((-566)) . T)) -(-2809 (|has| |#1| (-365)) (|has| |#1| (-558))) -(-2809 (|has| |#1| (-365)) (|has| |#1| (-558))) +(-2768 (|has| |#1| (-365)) (|has| |#1| (-558))) +(-2768 (|has| |#1| (-365)) (|has| |#1| (-558))) (((#0=(-1249 |#2| |#3| |#4|)) . T) (((-409 (-566))) |has| #0# (-38 (-409 (-566)))) (($) . T)) ((((-566)) . T)) (|has| |#1| (-365)) -(-2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-147)) (|has| |#1| (-365))) (|has| |#1| (-147))) -(-2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-145)) (|has| |#1| (-365))) (|has| |#1| (-145))) +(-2768 (-12 (|has| (-1256 |#1| |#2| |#3|) (-147)) (|has| |#1| (-365))) (|has| |#1| (-147))) +(-2768 (-12 (|has| (-1256 |#1| |#2| |#3|) (-145)) (|has| |#1| (-365))) (|has| |#1| (-145))) (|has| |#1| (-365)) (|has| |#1| (-145)) (|has| |#1| (-147)) @@ -2313,25 +2313,25 @@ (|has| |#1| (-1099)) ((((-1141 |#2| |#1|)) . T) ((|#1|) . T) (((-566)) . T)) (((|#1| |#2|) . T)) -((((-566)) . T) ((|#1|) . T) (((-409 (-566))) -2809 (|has| |#1| (-365)) (|has| |#1| (-1038 (-409 (-566)))))) +((((-566)) . T) ((|#1|) . T) (((-409 (-566))) -2768 (|has| |#1| (-365)) (|has| |#1| (-1038 (-409 (-566)))))) (((|#1|) . T) (((-566)) |has| |#1| (-639 (-566)))) (((|#3|) |has| |#3| (-172))) (((|#2|) . T) (($) . T) (((-566)) . T)) (((|#1|) . T) (($) . T) (((-566)) . T)) -(-2809 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-726)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049)) (|has| |#2| (-1099))) +(-2768 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-726)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049)) (|has| |#2| (-1099))) ((((-862)) . T)) ((((-566)) . T)) (((|#1| $) |has| |#1| (-287 |#1| |#1|))) ((((-409 (-566))) . T) (($) . T) (((-409 |#1|)) . T) ((|#1|) . T)) ((((-952 |#1|)) . T) (((-862)) . T)) (((|#3|) . T)) -(((|#1| |#1|) . T) (($ $) -2809 (|has| |#1| (-291)) (|has| |#1| (-365))) ((#0=(-409 (-566)) #0#) |has| |#1| (-365))) -((((-2 (|:| -2004 (-1175)) (|:| -3867 (-52)))) . T)) +(((|#1| |#1|) . T) (($ $) -2768 (|has| |#1| (-291)) (|has| |#1| (-365))) ((#0=(-409 (-566)) #0#) |has| |#1| (-365))) +((((-2 (|:| -2674 (-1175)) (|:| -2636 (-52)))) . T)) ((((-952 |#1|)) . T)) ((($) . T)) ((((-566) |#1|) . T)) ((((-1175)) |has| (-409 |#2|) (-900 (-1175)))) -(((|#1|) . T) (($) -2809 (|has| |#1| (-291)) (|has| |#1| (-365))) (((-409 (-566))) |has| |#1| (-365))) +(((|#1|) . T) (($) -2768 (|has| |#1| (-291)) (|has| |#1| (-365))) (((-409 (-566))) |has| |#1| (-365))) ((((-538)) |has| |#2| (-614 (-538)))) ((((-689 |#2|)) . T) (((-862)) . T)) (((|#1|) . T)) @@ -2339,22 +2339,22 @@ (((|#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) ((((-870 |#1|)) . T)) (((|#1|) |has| |#1| (-172))) -(-2809 (|has| |#4| (-793)) (|has| |#4| (-848))) -(-2809 (|has| |#3| (-793)) (|has| |#3| (-848))) +(-2768 (|has| |#4| (-793)) (|has| |#4| (-848))) +(-2768 (|has| |#3| (-793)) (|has| |#3| (-848))) (((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) ((((-862)) . T)) ((((-862)) . T)) (((|#1|) . T)) ((($) . T) (((-566)) . T) ((|#2|) . T)) (((|#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) -(((|#3|) -2809 (|has| |#3| (-172)) (|has| |#3| (-365)))) +(((|#3|) -2768 (|has| |#3| (-172)) (|has| |#3| (-365)))) (((|#2|) |has| |#2| (-1049))) (((|#3|) . T)) (((|#1|) . T)) ((((-409 |#2|)) . T)) -(((|#2|) -2809 (|has| |#2| (-172)) (|has| |#2| (-365)))) +(((|#2|) -2768 (|has| |#2| (-172)) (|has| |#2| (-365)))) (((|#1|) . T)) -(((|#2|) -2809 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049))) (($) |has| |#2| (-172))) +(((|#2|) -2768 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049))) (($) |has| |#2| (-172))) (((|#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) ((((-566) |#1|) . T)) (((|#1|) . T)) @@ -2363,17 +2363,17 @@ ((((-409 (-566))) . T) (($) . T)) ((((-409 (-566))) . T) (($) . T)) ((((-409 (-566))) . T) (($) . T)) -(-2809 (|has| |#1| (-454)) (|has| |#1| (-1218))) +(-2768 (|has| |#1| (-454)) (|has| |#1| (-1218))) ((($) . T)) ((((-409 (-566))) |has| #0=(-409 |#2|) (-1038 (-409 (-566)))) (((-566)) |has| #0# (-1038 (-566))) ((#0#) . T)) (((|#2|) . T) (((-566)) |has| |#2| (-639 (-566)))) (((|#1| (-771)) . T)) (|has| |#1| (-850)) (((|#1|) . T) (((-566)) |has| |#1| (-639 (-566)))) -((($) -2809 (|has| |#1| (-365)) (|has| |#1| (-351))) (((-409 (-566))) -2809 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) +((($) -2768 (|has| |#1| (-365)) (|has| |#1| (-351))) (((-409 (-566))) -2768 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) ((((-566)) . T)) (|has| |#1| (-38 (-409 (-566)))) -((((-2 (|:| -2004 (-1157)) (|:| -3867 (-52)))) |has| (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) (-310 (-2 (|:| -2004 (-1157)) (|:| -3867 (-52)))))) +((((-2 (|:| -2674 (-1157)) (|:| -2636 (-52)))) |has| (-2 (|:| -2674 (-1157)) (|:| -2636 (-52))) (-310 (-2 (|:| -2674 (-1157)) (|:| -2636 (-52)))))) (((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (|has| |#1| (-848)) (|has| |#1| (-38 (-409 (-566)))) @@ -2397,48 +2397,48 @@ (|has| |#1| (-38 (-409 (-566)))) ((((-1157)) . T) (((-508)) . T) (((-225)) . T) (((-566)) . T)) ((((-862)) . T)) -(((|#2|) . T) (((-566)) . T) (($) -2809 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) (((-1081)) . T) ((|#1|) . T) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566)))))) +(((|#2|) . T) (((-566)) . T) (($) -2768 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) (((-1081)) . T) ((|#1|) . T) (((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566)))))) (((|#1| |#2|) . T)) ((((-144)) . T)) ((((-780 |#1| (-864 |#2|))) . T)) -((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) +((((-862)) -2768 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) (|has| |#1| (-1199)) ((((-862)) . T)) (((|#1|) . T)) -(-2809 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-370)) (|has| |#3| (-726)) (|has| |#3| (-793)) (|has| |#3| (-848)) (|has| |#3| (-1049)) (|has| |#3| (-1099))) +(-2768 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-370)) (|has| |#3| (-726)) (|has| |#3| (-793)) (|has| |#3| (-848)) (|has| |#3| (-1049)) (|has| |#3| (-1099))) ((((-1175) |#1|) |has| |#1| (-516 (-1175) |#1|))) (((|#2|) . T)) -((($ $) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1| |#1|) . T) ((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566))))) +((($ $) -2768 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1| |#1|) . T) ((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566))))) ((((-910 |#1|)) . T)) ((($) . T)) ((((-409 (-952 |#1|))) . T)) (((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) -((($) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((($) -2768 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) ((((-538)) |has| |#4| (-614 (-538)))) ((((-862)) . T) (((-644 |#4|)) . T)) -((((-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) . T)) +((((-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) . T)) (((|#1|) . T)) (|has| |#1| (-848)) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) (((-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))) |has| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-310 (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) (((-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))) |has| (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-310 (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))))) (|has| |#1| (-1099)) (|has| |#1| (-365)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#3|) -2809 (|has| |#3| (-172)) (|has| |#3| (-365)))) +(((|#3|) -2768 (|has| |#3| (-172)) (|has| |#3| (-365)))) ((((-672 |#1|)) . T)) -(((|#3|) -2809 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1049))) (($) |has| |#3| (-172))) +(((|#3|) -2768 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1049))) (($) |has| |#3| (-172))) ((($) . T) (((-409 (-566))) . T)) -((($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) +((($) -2768 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) (|has| |#1| (-145)) (|has| |#1| (-147)) -(-2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-147)) (|has| |#1| (-365))) (|has| |#1| (-147))) -(-2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-145)) (|has| |#1| (-365))) (|has| |#1| (-145))) +(-2768 (-12 (|has| (-1173 |#1| |#2| |#3|) (-147)) (|has| |#1| (-365))) (|has| |#1| (-147))) +(-2768 (-12 (|has| (-1173 |#1| |#2| |#3|) (-145)) (|has| |#1| (-365))) (|has| |#1| (-145))) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-147)) (|has| |#1| (-145)) -((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) +((((-862)) -2768 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) ((((-1256 |#1| |#2| |#3|)) |has| |#1| (-365))) (|has| |#1| (-848)) (((|#1| |#2|) . T)) @@ -2464,10 +2464,10 @@ ((((-862)) . T)) ((((-862)) . T)) ((((-538)) |has| |#1| (-614 (-538)))) -((((-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) . T)) +((((-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) . T)) ((((-566)) . T) (($) . T) (((-409 (-566))) . T)) ((((-1175) |#1|) |has| |#1| (-516 (-1175) |#1|)) ((|#1| |#1|) |has| |#1| (-310 |#1|))) -(((|#1|) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)))) +(((|#1|) -2768 (|has| |#1| (-172)) (|has| |#1| (-365)))) (((|#1|) . T) (((-409 (-566))) . T) (($) . T)) ((((-566)) . T) (((-409 (-566))) . T) (($) . T)) (((|#1|) . T) (((-409 (-566))) . T) (($) . T)) @@ -2477,10 +2477,10 @@ (((|#1|) . T) (($) . T) (((-409 (-566))) . T)) (((|#1|) . T) (($) . T) (((-409 (-566))) . T)) (((|#2|) |has| |#2| (-365))) -((($) -2809 (|has| |#1| (-365)) (|has| |#1| (-351))) (((-409 (-566))) -2809 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) +((($) -2768 (|has| |#1| (-365)) (|has| |#1| (-351))) (((-409 (-566))) -2768 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) (((|#2|) . T)) ((((-409 (-566))) . T) (((-699)) . T) (($) . T)) -((($) . T) (((-409 (-566))) -2809 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) +((($) . T) (((-409 (-566))) -2768 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) (((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (((#0=(-780 |#1| (-864 |#2|)) #0#) |has| (-780 |#1| (-864 |#2|)) (-310 (-780 |#1| (-864 |#2|))))) ((((-566)) . T) (($) . T)) @@ -2499,13 +2499,13 @@ (|has| |#1| (-145)) (|has| |#1| (-147)) ((($ $) . T)) -(-2809 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-475)) (|has| |#1| (-726)) (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049)) (|has| |#1| (-1111)) (|has| |#1| (-1099))) +(-2768 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-475)) (|has| |#1| (-726)) (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049)) (|has| |#1| (-1111)) (|has| |#1| (-1099))) (|has| |#1| (-558)) (((|#2|) . T)) ((((-566)) . T)) -((((-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) . T)) +((((-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) . T)) (((|#1|) . T)) -(-2809 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-558)) (|has| |#1| (-1049))) +(-2768 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-558)) (|has| |#1| (-1049))) (((|#1| (-59 |#1|) (-59 |#1|)) . T)) ((((-583 |#1|)) . T)) ((($) . T)) @@ -2525,7 +2525,7 @@ (((|#1|) . T)) (((|#3|) . T) (((-566)) . T)) ((((-1249 |#2| |#3| |#4|)) . T) (((-566)) . T) (((-1250 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-409 (-566))) . T)) -((((-48)) -12 (|has| |#1| (-558)) (|has| |#1| (-1038 (-566)))) (((-566)) -2809 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-558)) (|has| |#1| (-1038 (-566))) (|has| |#1| (-1049))) ((|#1|) . T) (((-612 $)) . T) (($) |has| |#1| (-558)) (((-409 (-566))) -2809 (|has| |#1| (-558)) (|has| |#1| (-1038 (-409 (-566))))) (((-409 (-952 |#1|))) |has| |#1| (-558)) (((-952 |#1|)) |has| |#1| (-1049)) (((-1175)) . T)) +((((-48)) -12 (|has| |#1| (-558)) (|has| |#1| (-1038 (-566)))) (((-566)) -2768 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-558)) (|has| |#1| (-1038 (-566))) (|has| |#1| (-1049))) ((|#1|) . T) (((-612 $)) . T) (($) |has| |#1| (-558)) (((-409 (-566))) -2768 (|has| |#1| (-558)) (|has| |#1| (-1038 (-409 (-566))))) (((-409 (-952 |#1|))) |has| |#1| (-558)) (((-952 |#1|)) |has| |#1| (-1049)) (((-1175)) . T)) ((((-409 (-566))) |has| |#2| (-1038 (-409 (-566)))) (((-566)) |has| |#2| (-1038 (-566))) ((|#2|) . T) (((-864 |#1|)) . T)) ((($) . T) (((-116 |#1|)) . T) (((-409 (-566))) . T)) ((((-1124 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-566)) |has| |#1| (-1038 (-566))) (((-409 (-566))) |has| |#1| (-1038 (-409 (-566))))) @@ -2538,22 +2538,22 @@ (((|#1| |#2|) . T)) ((((-1175) |#1|) . T)) (((|#4|) . T)) -(-2809 (|has| |#1| (-365)) (|has| |#1| (-351))) +(-2768 (|has| |#1| (-365)) (|has| |#1| (-351))) ((((-1175) (-52)) . T)) ((((-1249 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) . T)) ((((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) (((-566)) |has| |#1| (-1038 (-566))) ((|#1|) . T)) ((((-862)) . T)) -(-2809 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-726)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049)) (|has| |#2| (-1099))) +(-2768 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-726)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049)) (|has| |#2| (-1099))) (((#0=(-1250 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-409 (-566)) #1#) . T) (($ $) . T)) (((|#1| |#1|) |has| |#1| (-172)) ((#0=(-409 (-566)) #0#) |has| |#1| (-558)) (($ $) |has| |#1| (-558))) -((($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) +((($) -2768 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) (((|#1|) . T) (($) . T) (((-409 (-566))) . T)) (((|#1| $) |has| |#1| (-287 |#1| |#1|))) ((((-1250 |#1| |#2| |#3| |#4|)) . T) (((-409 (-566))) . T) (($) . T)) (((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-558)) (($) |has| |#1| (-558))) -((((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) ((|#1|) . T)) +((((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2768 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) ((|#1|) . T)) (|has| |#1| (-365)) -((($) |has| |#1| (-848)) (((-566)) -2809 (|has| |#1| (-21)) (|has| |#1| (-848)))) +((($) |has| |#1| (-848)) (((-566)) -2768 (|has| |#1| (-21)) (|has| |#1| (-848)))) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-147)) @@ -2566,17 +2566,17 @@ (((|#1|) . T)) (((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (((|#2| |#3|) . T)) -(-2809 (|has| |#2| (-365)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) +(-2768 (|has| |#2| (-365)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) (((|#1| (-533 |#2|)) . T)) (((|#1| (-771)) . T)) (((|#1| (-533 (-1087 (-1175)))) . T)) (((|#1|) |has| |#1| (-172))) (((|#1|) . T)) (|has| |#2| (-909)) -(-2809 (|has| |#2| (-793)) (|has| |#2| (-848))) +(-2768 (|has| |#2| (-793)) (|has| |#2| (-848))) ((((-862)) . T)) -(((|#2|) -2809 (|has| |#2| (-172)) (|has| |#2| (-365)))) -(((|#2|) -2809 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049))) (($) |has| |#2| (-172))) +(((|#2|) -2768 (|has| |#2| (-172)) (|has| |#2| (-365)))) +(((|#2|) -2768 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049))) (($) |has| |#2| (-172))) ((($ $) . T) ((#0=(-1249 |#2| |#3| |#4|) #0#) . T) ((#1=(-409 (-566)) #1#) |has| #0# (-38 (-409 (-566))))) ((((-910 |#1|)) . T)) (-12 (|has| |#1| (-365)) (|has| |#2| (-820))) @@ -2584,14 +2584,14 @@ ((((-862)) . T)) ((($) . T)) ((($) . T)) -(-2809 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-558))) +(-2768 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-558))) (|has| |#1| (-365)) (|has| |#1| (-365)) (((|#1| |#2|) . T)) ((($) . T) ((#0=(-1249 |#2| |#3| |#4|)) . T) (((-409 (-566))) |has| #0# (-38 (-409 (-566))))) ((((-1173 |#1| |#2| |#3|)) |has| |#1| (-365))) -(-2809 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-365)) (|has| |#1| (-351))) -(-2809 (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049))) +(-2768 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-365)) (|has| |#1| (-351))) +(-2768 (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049))) ((((-566)) |has| |#1| (-639 (-566))) ((|#1|) . T)) (((|#1| |#2|) . T)) ((((-862)) . T)) @@ -2636,28 +2636,28 @@ (((|#2|) . T)) (((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (((|#2|) . T)) -(((|#2|) -2809 (|has| |#2| (-6 (-4416 "*"))) (|has| |#2| (-172)))) -(-2809 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) -(-2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) +(((|#2|) -2768 (|has| |#2| (-6 (-4416 "*"))) (|has| |#2| (-172)))) +(-2768 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) +(-2768 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) (|has| |#2| (-909)) (|has| |#1| (-909)) (((|#2|) |has| |#2| (-172))) -((((-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) . T)) +((((-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) . T)) ((((-1256 |#1| |#2| |#3|)) |has| |#1| (-365))) ((((-862)) . T)) ((((-862)) . T)) ((((-538)) . T) (((-566)) . T) (((-892 (-566))) . T) (((-381)) . T) (((-225)) . T)) (((|#1| |#2|) . T)) ((($) . T) (((-566)) . T)) -((((-2 (|:| -2004 (-1157)) (|:| -3867 (-52)))) . T)) +((((-2 (|:| -2674 (-1157)) (|:| -2636 (-52)))) . T)) (((|#1|) . T)) -((((-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) . T)) +((((-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) . T)) ((((-862)) . T)) (((|#1| |#2|) . T)) ((($) . T) (((-566)) . T)) (((|#1| (-409 (-566))) . T)) (((|#1|) . T)) -(-2809 (|has| |#1| (-291)) (|has| |#1| (-365))) +(-2768 (|has| |#1| (-291)) (|has| |#1| (-365))) ((((-144)) . T)) ((((-409 |#2|)) . T) (((-409 (-566))) . T) (($) . T)) (|has| |#1| (-848)) @@ -2673,7 +2673,7 @@ ((((-862)) . T)) ((((-862)) . T)) ((((-187)) . T) (((-862)) . T)) -((((-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) . T)) +((((-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) . T)) (((|#2| |#2|) . T) ((|#1| |#1|) . T)) ((((-862)) . T)) ((((-862)) . T)) @@ -2686,7 +2686,7 @@ ((((-862)) . T)) ((((-1157)) . T)) ((((-1175) |#1|) |has| |#1| (-516 (-1175) |#1|)) ((|#1| |#1|) |has| |#1| (-310 |#1|))) -((((-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))) . T)) +((((-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))) . T)) (|has| |#1| (-850)) ((((-862)) . T)) ((((-538)) |has| |#1| (-614 (-538)))) @@ -2698,16 +2698,16 @@ (((|#2|) . T)) ((((-910 |#1|)) . T) (((-409 (-566))) . T) (($) . T)) ((($) . T) (((-566)) . T) (((-409 (-566))) . T) (((-612 $)) . T)) -(-2809 (|has| |#4| (-172)) (|has| |#4| (-726)) (|has| |#4| (-848)) (|has| |#4| (-1049))) -(-2809 (|has| |#3| (-172)) (|has| |#3| (-726)) (|has| |#3| (-848)) (|has| |#3| (-1049))) +(-2768 (|has| |#4| (-172)) (|has| |#4| (-726)) (|has| |#4| (-848)) (|has| |#4| (-1049))) +(-2768 (|has| |#3| (-172)) (|has| |#3| (-726)) (|has| |#3| (-848)) (|has| |#3| (-1049))) ((((-1175) (-52)) . T)) -(-2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) -(-2809 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) +(-2768 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) +(-2768 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-2809 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049))) -(-2809 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-848)) (|has| |#2| (-1049))) +(-2768 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049))) +(-2768 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-848)) (|has| |#2| (-1049))) (|has| |#1| (-909)) ((((-910 |#1|)) . T) (((-409 (-566))) . T) (($) . T) (((-566)) . T)) (|has| |#1| (-909)) @@ -2724,12 +2724,12 @@ (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-38 (-409 (-566)))) -(-2809 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) +(-2768 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) (|has| |#1| (-820)) (((#0=(-910 |#1|) #0#) . T) (($ $) . T) ((#1=(-409 (-566)) #1#) . T)) ((((-409 |#2|)) . T)) (|has| |#1| (-848)) -((((-1200 |#1|)) . T) (((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) +((((-1200 |#1|)) . T) (((-862)) -2768 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) (((|#1| |#1|) . T) ((#0=(-409 (-566)) #0#) . T) ((#1=(-566) #1#) . T) (($ $) . T)) ((((-910 |#1|)) . T) (($) . T) (((-409 (-566))) . T)) (((|#2|) |has| |#2| (-1049)) (((-566)) -12 (|has| |#2| (-639 (-566))) (|has| |#2| (-1049)))) @@ -2745,28 +2745,28 @@ (((|#2|) |has| |#2| (-172))) (((|#1|) . T)) (((|#2|) . T)) -(-2809 (|has| |#1| (-145)) (|has| |#1| (-370))) -(-2809 (|has| |#1| (-145)) (|has| |#1| (-370))) -(-2809 (|has| |#1| (-145)) (|has| |#1| (-370))) -((((-2 (|:| -2004 (-1175)) (|:| -3867 (-52)))) . T)) -(((#0=(-52)) . T) (((-2 (|:| -2004 (-1175)) (|:| -3867 #0#))) . T)) +(-2768 (|has| |#1| (-145)) (|has| |#1| (-370))) +(-2768 (|has| |#1| (-145)) (|has| |#1| (-370))) +(-2768 (|has| |#1| (-145)) (|has| |#1| (-370))) +((((-2 (|:| -2674 (-1175)) (|:| -2636 (-52)))) . T)) +(((#0=(-52)) . T) (((-2 (|:| -2674 (-1175)) (|:| -2636 #0#))) . T)) (|has| |#1| (-351)) ((((-566)) . T)) ((((-862)) . T)) (((|#1|) . T)) (((#0=(-1250 |#1| |#2| |#3| |#4|) $) |has| #0# (-287 #0# #0#))) (|has| |#1| (-365)) -(((|#1|) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1049))) (($) -2809 (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049))) (((-566)) -2809 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049)))) +(((|#1|) -2768 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1049))) (($) -2768 (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049))) (((-566)) -2768 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049)))) (((#0=(-1081) |#1|) . T) ((#0# $) . T) (($ $) . T)) -(-2809 (|has| |#1| (-365)) (|has| |#1| (-351))) +(-2768 (|has| |#1| (-365)) (|has| |#1| (-351))) (((#0=(-409 (-566)) #0#) . T) ((#1=(-699) #1#) . T) (($ $) . T)) ((((-317 |#1|)) . T) (($) . T)) (((|#1|) . T) (((-409 (-566))) |has| |#1| (-365))) ((((-862)) . T)) (|has| |#1| (-1099)) (((|#1|) . T)) -(((|#1|) -2809 (|has| |#2| (-369 |#1|)) (|has| |#2| (-419 |#1|)))) -(((|#1|) -2809 (|has| |#2| (-369 |#1|)) (|has| |#2| (-419 |#1|)))) +(((|#1|) -2768 (|has| |#2| (-369 |#1|)) (|has| |#2| (-419 |#1|)))) +(((|#1|) -2768 (|has| |#2| (-369 |#1|)) (|has| |#2| (-419 |#1|)))) (((|#2|) . T)) ((((-409 (-566))) . T) (((-699)) . T) (($) . T)) ((((-581)) . T)) @@ -2791,7 +2791,7 @@ (((|#1|) . T)) ((((-566)) . T)) (((|#2|) . T) (((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((|#1|) . T) (($) . T) (((-566)) . T)) -(-2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) +(-2768 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) (((|#2|) . T) (((-566)) |has| |#2| (-639 (-566)))) (((|#1| |#2|) . T)) ((($) . T)) @@ -2835,7 +2835,7 @@ (|has| |#2| (-1022)) ((($) . T)) (|has| |#1| (-909)) -((((-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) . T)) +((((-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) . T)) ((($) . T)) (((|#2|) . T)) (((|#1|) . T)) @@ -2844,10 +2844,10 @@ (|has| |#1| (-365)) ((((-910 |#1|)) . T)) ((($) . T) (((-566)) . T) ((|#1|) . T) (((-409 (-566))) . T)) -((($) -2809 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) -((($) |has| |#1| (-848)) (((-566)) -2809 (|has| |#1| (-21)) (|has| |#1| (-848)))) +((($) -2768 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((($) |has| |#1| (-848)) (((-566)) -2768 (|has| |#1| (-21)) (|has| |#1| (-848)))) ((($ $) . T) ((#0=(-409 (-566)) #0#) . T)) -(-2809 (|has| |#1| (-370)) (|has| |#1| (-850))) +(-2768 (|has| |#1| (-370)) (|has| |#1| (-850))) (((|#1|) . T)) ((((-771)) . T)) ((((-862)) . T)) @@ -2858,17 +2858,17 @@ ((((-566)) . T) (($) . T)) ((((-566)) . T) (($) . T)) ((((-771) |#1|) . T)) -(((|#2| (-240 (-3018 |#1|) (-771))) . T)) +(((|#2| (-240 (-3000 |#1|) (-771))) . T)) (((|#1| (-533 |#3|)) . T)) ((((-409 (-566))) . T)) -(-2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) +(-2768 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((((-1157)) . T) (((-862)) . T)) -(((#0=(-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) #0#) |has| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-310 (-2 (|:| -2004 (-1175)) (|:| -3867 (-52)))))) +(((#0=(-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) #0#) |has| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-310 (-2 (|:| -2674 (-1175)) (|:| -2636 (-52)))))) ((((-1157)) . T)) (|has| |#1| (-909)) (|has| |#2| (-365)) (((|#1|) . T) (($) . T) (((-566)) . T)) -(-2809 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049))) +(-2768 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049))) ((((-169 (-381))) . T) (((-225)) . T) (((-381)) . T)) ((((-862)) . T)) (((|#1|) . T)) @@ -2885,11 +2885,11 @@ (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-38 (-409 (-566)))) -(-2809 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351))) +(-2768 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351))) (|has| |#1| (-38 (-409 (-566)))) (-12 (|has| |#1| (-547)) (|has| |#1| (-828))) ((((-862)) . T)) -((((-1175)) -2809 (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))) (-12 (|has| |#1| (-365)) (|has| |#2| (-900 (-1175)))))) +((((-1175)) -2768 (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))) (-12 (|has| |#1| (-365)) (|has| |#2| (-900 (-1175)))))) (|has| |#1| (-365)) ((((-1175)) -12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (|has| |#1| (-365)) @@ -2901,7 +2901,7 @@ (((|#2|) |has| |#1| (-365))) (((|#2|) |has| |#1| (-365))) ((((-566)) . T) (($) . T)) -((((-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) . T)) +((((-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-172))) (((|#1|) . T)) @@ -2931,11 +2931,11 @@ (((|#2|) |has| |#1| (-365))) ((((-381)) -12 (|has| |#1| (-365)) (|has| |#2| (-886 (-381)))) (((-566)) -12 (|has| |#1| (-365)) (|has| |#2| (-886 (-566))))) (|has| |#1| (-365)) -(-2809 (|has| |#1| (-365)) (|has| |#1| (-558))) +(-2768 (|has| |#1| (-365)) (|has| |#1| (-558))) (|has| |#1| (-365)) (((|#1|) . T)) ((($) . T) (((-566)) . T) ((|#2|) . T)) -(-2809 (|has| |#1| (-365)) (|has| |#1| (-558))) +(-2768 (|has| |#1| (-365)) (|has| |#1| (-558))) (|has| |#1| (-365)) (((|#3|) . T)) ((((-1157)) . T) (((-508)) . T) (((-225)) . T) (((-566)) . T)) @@ -2943,23 +2943,23 @@ (|has| |#1| (-558)) (((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) ((((-409 |#2|)) . T) (((-409 (-566))) . T) (($) . T) (((-566)) . T)) -(-2809 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049))) +(-2768 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049))) (((|#2|) . T)) (((|#2|) . T)) -(-2809 (|has| |#2| (-172)) (|has| |#2| (-726)) (|has| |#2| (-848)) (|has| |#2| (-1049))) -((((-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) . T)) -((((-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))) . T)) -((((-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) . T)) +(-2768 (|has| |#2| (-172)) (|has| |#2| (-726)) (|has| |#2| (-848)) (|has| |#2| (-1049))) +((((-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) . T)) +((((-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))) . T)) +((((-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) . T)) (|has| |#1| (-38 (-409 (-566)))) (((|#1| |#2|) . T)) (|has| |#1| (-38 (-409 (-566)))) -(-2809 (|has| |#1| (-145)) (|has| |#1| (-370))) +(-2768 (|has| |#1| (-145)) (|has| |#1| (-370))) ((($) . T)) ((((-1157) |#1|) . T)) (|has| |#1| (-147)) -(-2809 (|has| |#1| (-145)) (|has| |#1| (-370))) +(-2768 (|has| |#1| (-145)) (|has| |#1| (-370))) (|has| |#1| (-147)) -(-2809 (|has| |#1| (-145)) (|has| |#1| (-370))) +(-2768 (|has| |#1| (-145)) (|has| |#1| (-370))) ((($) . T)) (|has| |#1| (-147)) ((((-583 |#1|)) . T)) @@ -2973,7 +2973,7 @@ ((((-409 (-566))) |has| |#2| (-1038 (-566))) (((-566)) |has| |#2| (-1038 (-566))) (((-1175)) |has| |#2| (-1038 (-1175))) ((|#2|) . T)) (((#0=(-409 |#2|) #0#) . T) ((#1=(-409 (-566)) #1#) . T) (($ $) . T)) (((|#1|) . T)) -(-2809 (|has| |#1| (-145)) (|has| |#1| (-351))) +(-2768 (|has| |#1| (-145)) (|has| |#1| (-351))) (|has| |#1| (-147)) ((((-862)) . T)) ((($) . T)) @@ -2998,7 +2998,7 @@ ((((-862)) . T)) ((((-910 |#1|)) . T) (((-409 (-566))) . T) (($) . T) (((-566)) . T)) ((((-538)) |has| |#1| (-614 (-538)))) -((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-850)) (|has| |#1| (-1099)))) +((((-862)) -2768 (|has| |#1| (-613 (-862))) (|has| |#1| (-850)) (|has| |#1| (-1099)))) ((((-114)) . T) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) @@ -3020,7 +3020,7 @@ ((((-566)) . T)) ((((-862)) . T)) ((((-566)) . T)) -(-2809 (|has| |#2| (-793)) (|has| |#2| (-848))) +(-2768 (|has| |#2| (-793)) (|has| |#2| (-848))) ((((-169 (-381))) . T) (((-225)) . T) (((-381)) . T)) ((((-862)) . T)) ((((-862)) . T)) @@ -3032,9 +3032,9 @@ (((|#1|) . T) (($) . T) (((-409 (-566))) . T)) (|has| |#1| (-365)) (|has| |#1| (-365)) -((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) -((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) -(-2809 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-475)) (|has| |#1| (-726)) (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049)) (|has| |#1| (-1111)) (|has| |#1| (-1099))) +((((-862)) -2768 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) +((((-862)) -2768 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) +(-2768 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-475)) (|has| |#1| (-726)) (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049)) (|has| |#1| (-1111)) (|has| |#1| (-1099))) (|has| |#1| (-1150)) ((((-910 |#1|)) . T) (((-409 (-566))) . T) (($) . T)) ((((-910 |#1|)) . T) (($) . T) (((-409 (-566))) . T)) @@ -3051,25 +3051,25 @@ (((|#1|) |has| |#1| (-310 |#1|))) ((((-566) |#1|) . T)) ((((-1175) |#1|) . T)) -(((|#1|) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)))) +(((|#1|) -2768 (|has| |#1| (-172)) (|has| |#1| (-365)))) (((|#1|) . T)) -(((|#1|) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1049)))) +(((|#1|) -2768 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1049)))) ((((-566)) . T) (((-409 (-566))) . T)) (((|#1|) . T)) (|has| |#1| (-558)) ((($) . T) (((-566)) . T) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-365))) ((((-409 |#2|)) . T) (((-409 (-566))) . T) (($) . T)) -(-2809 (|has| |#1| (-365)) (|has| |#1| (-558))) +(-2768 (|has| |#1| (-365)) (|has| |#1| (-558))) ((((-381)) . T)) (((|#1|) . T)) (((|#1|) . T)) (|has| |#1| (-365)) -(-2809 (|has| |#1| (-365)) (|has| |#1| (-558))) +(-2768 (|has| |#1| (-365)) (|has| |#1| (-558))) (|has| |#1| (-365)) (|has| |#1| (-558)) (|has| |#1| (-1099)) ((((-780 |#1| (-864 |#2|))) |has| (-780 |#1| (-864 |#2|)) (-310 (-780 |#1| (-864 |#2|))))) -(-2809 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) +(-2768 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) (((|#1|) . T)) (((|#2| |#3|) . T)) (((|#1|) . T)) @@ -3081,13 +3081,13 @@ (|has| |#2| (-365)) ((((-583 |#1|)) . T) (((-409 (-566))) . T) (($) . T) (((-566)) . T)) ((((-566)) . T) (((-409 (-566))) . T) (($) . T)) -((((-2 (|:| -2004 (-1157)) (|:| -3867 (-52)))) . T)) +((((-2 (|:| -2674 (-1157)) (|:| -2636 (-52)))) . T)) (((|#1|) . T)) (((|#1|) . T) (((-566)) . T)) (((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) ((((-862)) . T)) ((((-862)) . T)) -(-2809 (|has| |#3| (-793)) (|has| |#3| (-848))) +(-2768 (|has| |#3| (-793)) (|has| |#3| (-848))) ((((-862)) . T)) ((((-1119)) . T) (((-862)) . T)) ((((-538)) . T) (((-862)) . T)) @@ -3098,12 +3098,12 @@ ((((-566)) . T)) (((|#3|) . T)) ((((-862)) . T)) -(-2809 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351))) -((((-566)) . T) (((-409 (-566))) -2809 (|has| |#2| (-38 (-409 (-566)))) (|has| |#2| (-1038 (-409 (-566))))) ((|#2|) . T) (($) -2809 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) (((-864 |#1|)) . T)) -((((-1124 |#1| |#2|)) . T) ((|#2|) . T) (($) -2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))) (((-566)) . T)) -((((-1171 |#1|)) . T) (((-566)) . T) (($) -2809 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) (((-1081)) . T) ((|#1|) . T) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566)))))) -(-2809 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-558)) (|has| |#1| (-1049))) -((((-1124 |#1| (-1175))) . T) (((-566)) . T) (((-1087 (-1175))) . T) (($) -2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))) (((-1175)) . T)) +(-2768 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351))) +((((-566)) . T) (((-409 (-566))) -2768 (|has| |#2| (-38 (-409 (-566)))) (|has| |#2| (-1038 (-409 (-566))))) ((|#2|) . T) (($) -2768 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) (((-864 |#1|)) . T)) +((((-1124 |#1| |#2|)) . T) ((|#2|) . T) (($) -2768 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))) (((-566)) . T)) +((((-1171 |#1|)) . T) (((-566)) . T) (($) -2768 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) (((-1081)) . T) ((|#1|) . T) (((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566)))))) +(-2768 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-558)) (|has| |#1| (-1049))) +((((-1124 |#1| (-1175))) . T) (((-566)) . T) (((-1087 (-1175))) . T) (($) -2768 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))) (((-1175)) . T)) (((#0=(-583 |#1|) #0#) . T) (($ $) . T) ((#1=(-409 (-566)) #1#) . T)) ((($ $) . T) ((#0=(-409 (-566)) #0#) . T)) (((|#1|) |has| |#1| (-172))) @@ -3121,7 +3121,7 @@ (((|#1|) . T)) ((((-862)) . T)) ((((-295 |#3|)) . T)) -(((#0=(-409 (-566)) #0#) |has| |#2| (-38 (-409 (-566)))) ((|#2| |#2|) . T) (($ $) -2809 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) +(((#0=(-409 (-566)) #0#) |has| |#2| (-38 (-409 (-566)))) ((|#2| |#2|) . T) (($ $) -2768 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) (((|#2| |#2|) . T) ((|#6| |#6|) . T)) (((|#1|) . T)) ((($) . T) (((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) . T)) @@ -3129,21 +3129,21 @@ (((|#1|) . T) (((-409 (-566))) . T) (($) . T)) (((|#1|) . T) (((-409 (-566))) . T) (($) . T)) (((|#1|) . T) (((-409 (-566))) . T) (($) . T)) -((($ $) -2809 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1| |#1|) . T) ((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566))))) -((($ $) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1| |#1|) . T) ((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566))))) +((($ $) -2768 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1| |#1|) . T) ((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566))))) +((($ $) -2768 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1| |#1|) . T) ((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566))))) (((|#2|) . T)) -((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) . T) (($) -2809 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) +((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) . T) (($) -2768 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) (((|#2|) . T) ((|#6|) . T)) -((($ $) -2809 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1| |#1|) . T) ((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566))))) +((($ $) -2768 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1| |#1|) . T) ((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566))))) ((((-862)) . T)) -((($) -2809 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) -((($) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((($) -2768 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((($) -2768 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) (|has| |#2| (-909)) (|has| |#1| (-909)) -((($) -2809 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((($) -2768 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) ((((-862)) . T)) (((|#1|) . T)) -((((-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))) . T)) +((((-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) @@ -3162,10 +3162,10 @@ (((#0=(-409 (-566)) #0#) . T)) ((((-409 (-566))) . T)) (((|#1|) |has| |#1| (-172))) -(-2809 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049))) +(-2768 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049))) (((|#1|) . T)) (((|#1|) . T)) -(-2809 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-848)) (|has| |#2| (-1049))) +(-2768 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-848)) (|has| |#2| (-1049))) (((|#1|) . T)) ((((-409 (-566))) . T) (((-566)) . T) (($) . T)) ((((-538)) . T)) @@ -3184,14 +3184,14 @@ ((($ $) . T) ((#0=(-409 (-566)) #0#) . T)) ((((-1175)) |has| |#1| (-900 (-1175)))) ((((-910 |#1|)) . T) (((-409 (-566))) . T) (($) . T)) -((($) . T) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#1|) . T)) -(((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566)))) ((|#1| |#1|) . T) (($ $) -2809 (|has| |#1| (-172)) (|has| |#1| (-558)))) +((($) . T) (((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#1|) . T)) +(((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566)))) ((|#1| |#1|) . T) (($ $) -2768 (|has| |#1| (-172)) (|has| |#1| (-558)))) ((((-409 |#2|)) . T) (((-409 (-566))) . T) (($) . T)) ((($) . T) (((-409 (-566))) . T)) (((|#1|) . T) (((-409 (-566))) . T) (((-566)) . T) (($) . T)) (((|#2|) |has| |#2| (-1049)) (((-566)) -12 (|has| |#2| (-639 (-566))) (|has| |#2| (-1049)))) ((((-409 |#2|)) . T) (((-409 (-566))) . T) (($) . T)) -((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T) (($) -2809 (|has| |#1| (-172)) (|has| |#1| (-558)))) +((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T) (($) -2768 (|has| |#1| (-172)) (|has| |#1| (-558)))) (|has| |#1| (-558)) (((|#1|) |has| |#1| (-365))) ((((-566)) . T)) @@ -3211,8 +3211,8 @@ ((((-862)) . T)) (|has| |#2| (-820)) (|has| |#2| (-820)) -((((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#2|) |has| |#1| (-365)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) . T)) +((((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#2|) |has| |#1| (-365)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) . T)) (((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (((|#1|) . T) (((-566)) |has| |#1| (-1038 (-566))) (((-409 (-566))) |has| |#1| (-1038 (-409 (-566))))) ((((-566)) |has| |#1| (-886 (-566))) (((-381)) |has| |#1| (-886 (-381)))) @@ -3228,7 +3228,7 @@ (((|#1|) . T)) (((|#1|) |has| |#1| (-172))) (((|#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) -(((|#2|) -2809 (|has| |#2| (-6 (-4416 "*"))) (|has| |#2| (-172)))) +(((|#2|) -2768 (|has| |#2| (-6 (-4416 "*"))) (|has| |#2| (-172)))) (((|#2|) . T)) (|has| |#1| (-365)) (((|#2|) . T)) @@ -3242,12 +3242,12 @@ (((|#2| (-771)) . T)) ((((-1175)) . T)) ((((-870 |#1|)) . T)) -(-2809 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-793)) (|has| |#3| (-848)) (|has| |#3| (-1049))) -(-2809 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-848)) (|has| |#3| (-1049))) +(-2768 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-793)) (|has| |#3| (-848)) (|has| |#3| (-1049))) +(-2768 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-848)) (|has| |#3| (-1049))) ((((-862)) . T)) (((|#1|) . T)) -(-2809 (|has| |#2| (-793)) (|has| |#2| (-848))) -(-2809 (-12 (|has| |#1| (-793)) (|has| |#2| (-793))) (-12 (|has| |#1| (-850)) (|has| |#2| (-850)))) +(-2768 (|has| |#2| (-793)) (|has| |#2| (-848))) +(-2768 (-12 (|has| |#1| (-793)) (|has| |#2| (-793))) (-12 (|has| |#1| (-850)) (|has| |#2| (-850)))) ((((-870 |#1|)) . T)) (((|#1|) . T)) (|has| |#1| (-370)) @@ -3274,7 +3274,7 @@ (((|#1|) . T)) ((((-862)) . T)) (|has| |#2| (-909)) -((((-2 (|:| -2004 (-1175)) (|:| -3867 (-52)))) . T)) +((((-2 (|:| -2674 (-1175)) (|:| -2636 (-52)))) . T)) ((((-538)) |has| |#2| (-614 (-538))) (((-892 (-381))) |has| |#2| (-614 (-892 (-381)))) (((-892 (-566))) |has| |#2| (-614 (-892 (-566))))) ((((-862)) . T)) ((((-862)) . T)) @@ -3301,7 +3301,7 @@ ((((-1180)) . T)) ((((-644 |#1|)) . T)) ((($) . T) (((-566)) . T) (((-1250 |#1| |#2| |#3| |#4|)) . T) (((-409 (-566))) . T)) -((((-566)) -2809 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-558)) (|has| |#1| (-1049))) (($) -2809 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-558)) (|has| |#1| (-1049))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-558))) +((((-566)) -2768 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-558)) (|has| |#1| (-1049))) (($) -2768 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-558)) (|has| |#1| (-1049))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-558))) ((((-1180)) . T)) ((((-1180)) . T)) ((((-566)) . T) (((-409 (-566))) . T)) @@ -3317,12 +3317,12 @@ ((((-409 |#2|) |#3|) . T)) (((|#1|) . T)) (|has| |#1| (-1099)) -(((|#2| (-484 (-3018 |#1|) (-771))) . T)) +(((|#2| (-484 (-3000 |#1|) (-771))) . T)) ((((-566) |#1|) . T)) ((((-1157)) . T) (((-862)) . T)) (((|#2| |#2|) . T)) (((|#1| (-533 (-1175))) . T)) -(-2809 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049))) +(-2768 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049))) ((((-566)) . T)) (((|#2|) . T)) (((|#2|) . T)) @@ -3333,9 +3333,9 @@ ((($) . T) (((-409 (-566))) . T)) ((($) . T)) ((($) . T)) -(-2809 (|has| |#1| (-850)) (|has| |#1| (-1099))) +(-2768 (|has| |#1| (-850)) (|has| |#1| (-1099))) (((|#1|) . T)) -((($) -2809 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((($) -2768 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) ((((-862)) . T)) ((((-144)) . T)) (((|#1|) . T) (((-409 (-566))) . T)) @@ -3367,7 +3367,7 @@ (|has| |#1| (-1099)) (|has| |#1| (-1099)) (|has| |#2| (-365)) -(((|#1|) . T) (($) -2809 (|has| |#1| (-291)) (|has| |#1| (-365))) (((-409 (-566))) |has| |#1| (-365))) +(((|#1|) . T) (($) -2768 (|has| |#1| (-291)) (|has| |#1| (-365))) (((-409 (-566))) |has| |#1| (-365))) (|has| |#1| (-365)) (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566)))) @@ -3376,32 +3376,32 @@ ((((-1175)) -12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (((|#1|) . T)) (|has| |#1| (-233)) -(((|#2| (-240 (-3018 |#1|) (-771))) . T)) +(((|#2| (-240 (-3000 |#1|) (-771))) . T)) (((|#1| (-533 |#3|)) . T)) (|has| |#1| (-370)) (|has| |#1| (-370)) (|has| |#1| (-370)) (((|#1|) . T) (($) . T)) (((|#1| (-533 |#2|)) . T)) -(-2809 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049))) +(-2768 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049))) (((|#1| (-771)) . T)) (|has| |#1| (-558)) -(-2809 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049))) -(-2809 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-848)) (|has| |#2| (-1049))) +(-2768 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049))) +(-2768 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-848)) (|has| |#2| (-1049))) (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ((((-862)) . T)) ((((-566)) . T) (((-409 (-566))) . T) (($) . T)) -(-2809 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-793)) (|has| |#2| (-793)))) -(-2809 (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-793)) (|has| |#3| (-848)) (|has| |#3| (-1049))) -(-2809 (|has| |#2| (-172)) (|has| |#2| (-726)) (|has| |#2| (-848)) (|has| |#2| (-1049))) +(-2768 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-793)) (|has| |#2| (-793)))) +(-2768 (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-793)) (|has| |#3| (-848)) (|has| |#3| (-1049))) +(-2768 (|has| |#2| (-172)) (|has| |#2| (-726)) (|has| |#2| (-848)) (|has| |#2| (-1049))) (((|#1|) |has| |#1| (-172))) (((|#4|) |has| |#4| (-1049))) (((|#3|) |has| |#3| (-1049))) (-12 (|has| |#1| (-365)) (|has| |#2| (-820))) (-12 (|has| |#1| (-365)) (|has| |#2| (-820))) -((((-566)) . T) (((-409 (-566))) -2809 (|has| |#2| (-38 (-409 (-566)))) (|has| |#2| (-1038 (-409 (-566))))) ((|#2|) . T) (($) -2809 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) (((-864 |#1|)) . T)) -((((-1124 |#1| |#2|)) . T) (((-566)) . T) ((|#3|) . T) (($) -2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))) ((|#2|) . T)) -((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-850)) (|has| |#1| (-1099)))) +((((-566)) . T) (((-409 (-566))) -2768 (|has| |#2| (-38 (-409 (-566)))) (|has| |#2| (-1038 (-409 (-566))))) ((|#2|) . T) (($) -2768 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) (((-864 |#1|)) . T)) +((((-1124 |#1| |#2|)) . T) (((-566)) . T) ((|#3|) . T) (($) -2768 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))) ((|#2|) . T)) +((((-862)) -2768 (|has| |#1| (-613 (-862))) (|has| |#1| (-850)) (|has| |#1| (-1099)))) ((((-538)) |has| |#1| (-614 (-538)))) (((|#1|) . T) (((-409 (-566))) . T) (($) . T) (((-566)) . T)) (((|#1|) . T) (((-409 (-566))) . T) (($) . T) (((-566)) . T)) @@ -3420,14 +3420,14 @@ (((|#2|) |has| |#2| (-1049)) (((-566)) -12 (|has| |#2| (-639 (-566))) (|has| |#2| (-1049)))) (((|#1|) . T)) (|has| |#2| (-365)) -(((#0=(-409 (-566)) #0#) |has| |#2| (-38 (-409 (-566)))) ((|#2| |#2|) . T) (($ $) -2809 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) -((($ $) -2809 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1| |#1|) . T) ((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566))))) +(((#0=(-409 (-566)) #0#) |has| |#2| (-38 (-409 (-566)))) ((|#2| |#2|) . T) (($ $) -2768 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) +((($ $) -2768 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1| |#1|) . T) ((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566))))) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-409 (-566)) #0#) . T)) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-409 (-566)) #0#) . T)) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-409 (-566)) #0#) . T)) (((|#2| |#2|) . T)) -((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) . T) (($) -2809 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) -((($) -2809 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) . T) (($) -2768 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) +((($) -2768 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) (((|#1|) . T) (($) . T) (((-409 (-566))) . T)) (((|#1|) . T) (($) . T) (((-409 (-566))) . T)) (((|#1|) . T) (($) . T) (((-409 (-566))) . T)) @@ -3439,12 +3439,12 @@ (((|#1|) . T)) (|has| |#2| (-820)) (|has| |#2| (-820)) -((($) -2809 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((($) -2768 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) (|has| |#1| (-365)) (|has| |#1| (-365)) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-365)) -((($) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((($) -2768 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) (((|#1|) |has| |#2| (-419 |#1|))) (((|#1|) |has| |#2| (-419 |#1|))) ((((-1157)) . T)) @@ -3452,7 +3452,7 @@ ((((-862)) . T) (((-1180)) . T)) ((((-862)) . T) (((-1180)) . T)) ((((-862)) . T) (((-1180)) . T)) -((((-644 |#1|)) . T) (((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-850)) (|has| |#1| (-1099)))) +((((-644 |#1|)) . T) (((-862)) -2768 (|has| |#1| (-613 (-862))) (|has| |#1| (-850)) (|has| |#1| (-1099)))) ((((-1180)) . T)) ((((-1180)) . T)) ((((-1180)) . T)) @@ -3465,23 +3465,23 @@ ((((-1213)) . T) (((-862)) . T) (((-1180)) . T)) ((((-1180)) . T)) ((((-1180)) . T)) -((((-2 (|:| -2004 (-1175)) (|:| -3867 (-52)))) |has| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-310 (-2 (|:| -2004 (-1175)) (|:| -3867 (-52)))))) -(-2809 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) +((((-2 (|:| -2674 (-1175)) (|:| -2636 (-52)))) |has| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-310 (-2 (|:| -2674 (-1175)) (|:| -2636 (-52)))))) +(-2768 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) ((((-566) |#1|) . T)) ((((-566) |#1|) . T)) ((((-566) |#1|) . T)) -(-2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) +(-2768 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((((-566) |#1|) . T)) (((|#1|) . T)) -(-2809 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) -(-2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) -((($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-566)) . T) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) +(-2768 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) +(-2768 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) +((($) -2768 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-566)) . T) (((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) ((((-1175)) |has| |#1| (-900 (-1175))) (((-818 (-1175))) . T)) -(-2809 (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-793)) (|has| |#3| (-848)) (|has| |#3| (-1049))) +(-2768 (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-793)) (|has| |#3| (-848)) (|has| |#3| (-1049))) ((((-819 |#1|)) . T)) (((|#1| |#2|) . T)) ((((-862)) . T)) -(-2809 (|has| |#3| (-172)) (|has| |#3| (-726)) (|has| |#3| (-848)) (|has| |#3| (-1049))) +(-2768 (|has| |#3| (-172)) (|has| |#3| (-726)) (|has| |#3| (-848)) (|has| |#3| (-1049))) (((|#1| |#2|) . T)) ((($) . T) (((-566)) . T) (((-409 (-566))) . T)) (|has| |#1| (-38 (-409 (-566)))) @@ -3490,21 +3490,21 @@ (((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-558)) (((-409 (-566))) |has| |#1| (-558))) (((|#2|) . T) (((-566)) |has| |#2| (-639 (-566)))) (|has| |#1| (-365)) -(-2809 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (-12 (|has| |#1| (-365)) (|has| |#2| (-233)))) +(-2768 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (-12 (|has| |#1| (-365)) (|has| |#2| (-233)))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-365)) (((|#1|) . T)) -(((#0=(-409 (-566)) #0#) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($ $) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) ((|#1| |#1|) . T)) +(((#0=(-409 (-566)) #0#) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($ $) -2768 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) ((|#1| |#1|) . T)) ((((-566) |#1|) . T)) ((((-317 |#1|)) . T)) ((((-910 |#1|)) . T) (((-409 (-566))) . T) (((-566)) . T) (($) . T)) (((#0=(-699) (-1171 #0#)) . T)) -((((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) ((|#1|) . T)) +((((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2768 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) ((|#1|) . T)) (((|#1|) . T) (($) . T) (((-566)) . T) (((-409 (-566))) . T)) (((|#1| |#2| |#3| |#4|) . T)) (|has| |#1| (-848)) -(((|#2|) . T) (((-1175)) -12 (|has| |#1| (-365)) (|has| |#2| (-1038 (-1175)))) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-566)) . T) ((|#1|) |has| |#1| (-172))) -(((|#2|) . T) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (((-566)) . T) (($) -2809 (|has| |#1| (-365)) (|has| |#1| (-558)))) +(((|#2|) . T) (((-1175)) -12 (|has| |#1| (-365)) (|has| |#2| (-1038 (-1175)))) (((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2768 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-566)) . T) ((|#1|) |has| |#1| (-172))) +(((|#2|) . T) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (((-566)) . T) (($) -2768 (|has| |#1| (-365)) (|has| |#1| (-558)))) ((($ $) . T) ((#0=(-864 |#1|) $) . T) ((#0# |#2|) . T)) ((((-1124 |#1| (-1175))) . T) (((-818 (-1175))) . T) ((|#1|) . T) (((-566)) |has| |#1| (-1038 (-566))) (((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) (((-1175)) . T)) ((($) . T)) @@ -3522,12 +3522,12 @@ (((#0=(-1250 |#1| |#2| |#3| |#4|)) |has| #0# (-310 #0#))) ((($) . T)) (((|#1|) . T)) -((($ $) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) ((#0=(-409 (-566)) #0#) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#2| |#2|) |has| |#1| (-365)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) ((#0=(-409 (-566)) #0#) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365)))) +((($ $) -2768 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) ((#0=(-409 (-566)) #0#) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#2| |#2|) |has| |#1| (-365)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -2768 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) ((#0=(-409 (-566)) #0#) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365)))) (|has| |#2| (-233)) (|has| $ (-147)) ((((-862)) . T)) -((($) . T) (((-409 (-566))) -2809 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) +((($) . T) (((-409 (-566))) -2768 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) ((((-862)) . T)) (|has| |#1| (-848)) ((((-129)) . T)) @@ -3542,24 +3542,24 @@ (((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (((|#4|) . T)) (|has| |#1| (-558)) -((($) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#2|) |has| |#1| (-365)) ((|#1|) . T)) -((((-1175)) -2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) -(((|#1|) . T) (($) -2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365)))) +((($) -2768 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#2|) |has| |#1| (-365)) ((|#1|) . T)) +((((-1175)) -2768 (-12 (|has| (-1256 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) +(((|#1|) . T) (($) -2768 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365)))) ((((-1175)) -12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) ((((-1175)) -12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (((|#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) ((((-566) |#1|) . T)) -(-2809 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) +(-2768 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) (((|#1|) . T)) (((|#1| (-533 (-818 (-1175)))) . T)) -(-2809 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) -(-2809 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) +(-2768 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) +(-2768 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((((-566)) . T) ((|#2|) . T) (($) . T) (((-409 (-566))) . T) (((-1175)) |has| |#2| (-1038 (-1175)))) (((|#1|) . T)) -(-2809 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) +(-2768 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) (((|#1|) . T)) -(-2809 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049))) -(-2809 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-793)) (|has| |#2| (-793)))) +(-2768 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049))) +(-2768 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-793)) (|has| |#2| (-793)))) ((((-1256 |#1| |#2| |#3|)) |has| |#1| (-365))) ((($) . T) (((-870 |#1|)) . T) (((-409 (-566))) . T)) ((((-1256 |#1| |#2| |#3|)) |has| |#1| (-365))) @@ -3568,15 +3568,15 @@ (((|#1|) . T)) (((|#1|) . T)) ((((-409 |#2|)) . T)) -(-2809 (|has| |#1| (-365)) (|has| |#1| (-351))) -((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-850)) (|has| |#1| (-1099)))) +(-2768 (|has| |#1| (-365)) (|has| |#1| (-351))) +((((-862)) -2768 (|has| |#1| (-613 (-862))) (|has| |#1| (-850)) (|has| |#1| (-1099)))) ((((-538)) |has| |#1| (-614 (-538)))) -((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) -((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-850)) (|has| |#1| (-1099)))) +((((-862)) -2768 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) +((((-862)) -2768 (|has| |#1| (-613 (-862))) (|has| |#1| (-850)) (|has| |#1| (-1099)))) ((((-538)) |has| |#1| (-614 (-538)))) -((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-850)) (|has| |#1| (-1099)))) +((((-862)) -2768 (|has| |#1| (-613 (-862))) (|has| |#1| (-850)) (|has| |#1| (-1099)))) ((((-538)) |has| |#1| (-614 (-538)))) -((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) +((((-862)) -2768 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) (((|#1|) . T)) (((|#2| |#2|) . T) ((#0=(-409 (-566)) #0#) . T) (($ $) . T)) ((((-566)) . T)) @@ -3608,17 +3608,17 @@ ((($) . T) (((-566)) . T) (((-116 |#1|)) . T) (((-409 (-566))) . T)) ((((-862)) . T)) ((((-1256 |#1| |#2| |#3|)) . T)) -((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) |has| |#2| (-172)) (($) -2809 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) +((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) |has| |#2| (-172)) (($) -2768 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))) (((|#2|) . T) ((|#6|) . T)) ((($) . T) (((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) . T)) ((($) . T) (((-566)) . T)) -((($) -2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((($) -2768 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) ((((-1103)) . T)) ((((-862)) . T)) -((($) -2809 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((($) -2768 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) ((($) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T)) ((($) . T)) -((($) -2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) +((($) -2768 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566))))) ((((-1256 |#1| |#2| |#3|)) |has| |#1| (-365))) (|has| |#1| (-365)) ((((-1256 |#1| |#2| |#3|)) . T) (((-1228 |#1| |#2| |#3|)) . T)) @@ -3630,7 +3630,7 @@ (((|#1|) . T)) (((|#1| |#1|) |has| |#1| (-172))) ((((-699)) . T)) -((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) +((((-862)) -2768 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) ((((-1180)) . T)) (((|#1|) |has| |#1| (-172))) ((((-1180)) . T)) @@ -3647,13 +3647,13 @@ ((((-1180)) . T)) ((((-1180)) . T)) ((((-1180)) . T)) -(-2809 (|has| |#1| (-365)) (|has| |#1| (-351))) -(-2809 (|has| |#1| (-365)) (|has| |#1| (-351))) +(-2768 (|has| |#1| (-365)) (|has| |#1| (-351))) +(-2768 (|has| |#1| (-365)) (|has| |#1| (-351))) ((((-1180)) . T)) ((((-1180)) . T)) (|has| |#1| (-365)) (|has| |#1| (-365)) -(-2809 (|has| |#1| (-172)) (|has| |#1| (-558))) +(-2768 (|has| |#1| (-172)) (|has| |#1| (-558))) (((|#1| (-566)) . T)) (((|#1| (-409 (-566))) . T)) (((|#1| (-771)) . T)) @@ -3668,16 +3668,16 @@ ((((-892 (-381))) . T) (((-892 (-566))) . T) (((-1175)) . T) (((-538)) . T)) (((|#1|) . T)) ((((-862)) . T)) -(-2809 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049))) -(-2809 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-793)) (|has| |#2| (-793)))) +(-2768 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049))) +(-2768 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-793)) (|has| |#2| (-793)))) ((((-566)) . T)) ((((-566)) . T)) -((((-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) . T)) +((((-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(-2809 (|has| |#2| (-172)) (|has| |#2| (-726)) (|has| |#2| (-848)) (|has| |#2| (-1049))) +(-2768 (|has| |#2| (-172)) (|has| |#2| (-726)) (|has| |#2| (-848)) (|has| |#2| (-1049))) ((((-1175)) -12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) -(-2809 (-12 (|has| |#1| (-475)) (|has| |#2| (-475))) (-12 (|has| |#1| (-726)) (|has| |#2| (-726)))) +(-2768 (-12 (|has| |#1| (-475)) (|has| |#2| (-475))) (-12 (|has| |#1| (-726)) (|has| |#2| (-726)))) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-365)) @@ -3708,7 +3708,7 @@ (((|#1| |#2|) . T)) ((((-566)) . T) ((|#2|) |has| |#2| (-172))) ((((-114)) . T) ((|#1|) . T) (((-566)) . T)) -(-2809 (|has| |#1| (-351)) (|has| |#1| (-370))) +(-2768 (|has| |#1| (-351)) (|has| |#1| (-370))) (((|#1| |#2|) . T)) ((((-225)) . T)) ((((-409 (-566))) . T) (($) . T) (((-566)) . T)) @@ -3720,7 +3720,7 @@ (((|#1|) . T)) (((|#1|) . T)) ((((-538)) |has| |#1| (-614 (-538)))) -((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-850)) (|has| |#1| (-1099)))) +((((-862)) -2768 (|has| |#1| (-613 (-862))) (|has| |#1| (-850)) (|has| |#1| (-1099)))) ((($) . T) (((-409 (-566))) . T)) (|has| |#1| (-909)) (|has| |#1| (-909)) @@ -3731,14 +3731,14 @@ (((|#1| |#1|) |has| |#1| (-172))) (((|#1|) . T) (((-566)) . T)) ((((-1180)) . T)) -(-2809 (|has| |#1| (-365)) (|has| |#1| (-558))) -(-2809 (|has| |#1| (-21)) (|has| |#1| (-848))) +(-2768 (|has| |#1| (-365)) (|has| |#1| (-558))) +(-2768 (|has| |#1| (-21)) (|has| |#1| (-848))) (((|#2|) . T)) -(-2809 (|has| |#1| (-21)) (|has| |#1| (-848))) +(-2768 (|has| |#1| (-21)) (|has| |#1| (-848))) (((|#1|) |has| |#1| (-172))) (((|#1|) . T)) (((|#1|) . T)) -((((-862)) -2809 (-12 (|has| |#1| (-613 (-862))) (|has| |#2| (-613 (-862)))) (-12 (|has| |#1| (-1099)) (|has| |#2| (-1099))))) +((((-862)) -2768 (-12 (|has| |#1| (-613 (-862))) (|has| |#2| (-613 (-862)))) (-12 (|has| |#1| (-1099)) (|has| |#2| (-1099))))) ((((-409 |#2|) |#3|) . T)) ((((-409 (-566))) . T) (($) . T)) (|has| |#1| (-38 (-409 (-566)))) @@ -3752,19 +3752,19 @@ (((|#1|) . T) (((-409 (-566))) . T) (((-566)) . T) (($) . T)) (((#0=(-566) #0#) . T)) ((($) . T) (((-409 (-566))) . T)) -(-2809 (|has| |#4| (-172)) (|has| |#4| (-726)) (|has| |#4| (-848)) (|has| |#4| (-1049))) -(-2809 (|has| |#3| (-172)) (|has| |#3| (-726)) (|has| |#3| (-848)) (|has| |#3| (-1049))) +(-2768 (|has| |#4| (-172)) (|has| |#4| (-726)) (|has| |#4| (-848)) (|has| |#4| (-1049))) +(-2768 (|has| |#3| (-172)) (|has| |#3| (-726)) (|has| |#3| (-848)) (|has| |#3| (-1049))) ((((-862)) . T) (((-1180)) . T)) (|has| |#4| (-793)) -(-2809 (|has| |#4| (-793)) (|has| |#4| (-848))) +(-2768 (|has| |#4| (-793)) (|has| |#4| (-848))) (|has| |#4| (-848)) (|has| |#3| (-793)) ((((-1180)) . T)) -(-2809 (|has| |#3| (-793)) (|has| |#3| (-848))) +(-2768 (|has| |#3| (-793)) (|has| |#3| (-848))) (|has| |#3| (-848)) ((((-566)) . T)) (((|#2|) . T)) -((((-1175)) -2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) +((((-1175)) -2768 (-12 (|has| (-1173 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) ((((-1175)) -12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) ((((-1175)) -12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (((|#1| |#1|) . T) (($ $) . T)) @@ -3779,11 +3779,11 @@ ((((-1173 |#1| |#2| |#3|)) |has| |#1| (-365))) ((((-1139 |#1| |#2|)) . T)) ((((-1173 |#1| |#2| |#3|)) |has| |#1| (-365))) -(((|#2|) . T) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) . T)) -((((-2 (|:| -2004 (-1175)) (|:| -3867 (-52)))) . T)) +(((|#2|) . T) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) . T)) +((((-2 (|:| -2674 (-1175)) (|:| -2636 (-52)))) . T)) ((($) . T)) (|has| |#1| (-1022)) -(((|#2|) . T) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) . T)) ((((-862)) . T)) ((((-538)) |has| |#2| (-614 (-538))) (((-892 (-566))) |has| |#2| (-614 (-892 (-566)))) (((-892 (-381))) |has| |#2| (-614 (-892 (-381)))) (((-381)) . #0=(|has| |#2| (-1022))) (((-225)) . #0#)) ((((-295 |#3|)) . T)) @@ -3800,15 +3800,15 @@ ((((-1173 |#1| |#2| |#3|)) . T)) ((((-1173 |#1| |#2| |#3|)) . T) (((-1166 |#1| |#2| |#3|)) . T)) ((((-862)) . T)) -((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) +((((-862)) -2768 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) ((((-566) |#1|) . T)) ((((-1173 |#1| |#2| |#3|)) |has| |#1| (-365))) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) (((|#2|) . T)) (|has| |#2| (-365)) -(((|#3|) . T) ((|#2|) . T) (($) -2809 (|has| |#4| (-172)) (|has| |#4| (-848)) (|has| |#4| (-1049))) ((|#4|) -2809 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1049)))) -(((|#2|) . T) (($) -2809 (|has| |#3| (-172)) (|has| |#3| (-848)) (|has| |#3| (-1049))) ((|#3|) -2809 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1049)))) +(((|#3|) . T) ((|#2|) . T) (($) -2768 (|has| |#4| (-172)) (|has| |#4| (-848)) (|has| |#4| (-1049))) ((|#4|) -2768 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1049)))) +(((|#2|) . T) (($) -2768 (|has| |#3| (-172)) (|has| |#3| (-848)) (|has| |#3| (-1049))) ((|#3|) -2768 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1049)))) (((|#1|) . T)) (((|#1|) . T)) (|has| |#1| (-365)) @@ -3823,7 +3823,7 @@ ((((-187)) . T) (((-862)) . T)) ((((-862)) . T)) (((|#1|) . T)) -((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) +((((-862)) -2768 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) ((((-129)) . T) (((-862)) . T)) ((((-566) |#1|) . T)) ((((-129)) . T)) @@ -3832,13 +3832,13 @@ (((|#1|) . T)) (((|#2| $) -12 (|has| |#1| (-365)) (|has| |#2| (-287 |#2| |#2|))) (($ $) . T)) ((($ $) . T)) -(-2809 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-909))) -(-2809 (|has| |#1| (-850)) (|has| |#1| (-1099))) +(-2768 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-909))) +(-2768 (|has| |#1| (-850)) (|has| |#1| (-1099))) ((((-862)) . T)) ((((-862)) . T)) ((((-862)) . T)) (((|#1| (-533 |#2|)) . T)) -((((-2 (|:| -2004 (-1175)) (|:| -3867 (-52)))) . T)) +((((-2 (|:| -2674 (-1175)) (|:| -2636 (-52)))) . T)) ((((-566) (-129)) . T)) (((|#1| (-566)) . T)) (((|#1| (-409 (-566))) . T)) @@ -3853,8 +3853,8 @@ ((((-1180)) . T)) ((((-862)) . T) (((-1180)) . T)) ((((-862)) . T) (((-1180)) . T)) -(-2809 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) -(-2809 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) +(-2768 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) +(-2768 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((($) . T)) (((|#2| (-533 (-864 |#1|))) . T)) ((((-1180)) . T)) @@ -3869,13 +3869,13 @@ ((((-1180)) . T)) ((((-862)) . T) (((-1180)) . T)) ((((-1180)) . T)) -((((-862)) -2809 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) +((((-862)) -2768 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099)))) (((|#1|) . T)) (((|#2| (-771)) . T)) (((|#1| |#2|) . T)) ((((-1157) |#1|) . T)) ((((-409 |#2|)) . T)) -((((-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) . T)) +((((-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) . T)) (|has| |#1| (-558)) (|has| |#1| (-558)) ((($) . T) ((|#2|) . T)) @@ -3886,14 +3886,14 @@ ((((-566)) . T) (($) . T)) (((|#2| $) |has| |#2| (-287 |#2| |#2|))) (((|#1| (-644 |#1|)) |has| |#1| (-848))) -(-2809 (|has| |#1| (-233)) (|has| |#1| (-351))) -(-2809 (|has| |#1| (-365)) (|has| |#1| (-351))) +(-2768 (|has| |#1| (-233)) (|has| |#1| (-351))) +(-2768 (|has| |#1| (-365)) (|has| |#1| (-351))) ((((-1260 |#1|)) . T) (((-566)) . T) ((|#2|) . T) (((-409 (-566))) |has| |#2| (-1038 (-409 (-566))))) (|has| |#1| (-1099)) (((|#1|) . T)) -((((-1260 |#1|)) . T) (((-566)) . T) (($) -2809 (|has| |#2| (-365)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) (((-1081)) . T) ((|#2|) . T) (((-409 (-566))) -2809 (|has| |#2| (-38 (-409 (-566)))) (|has| |#2| (-1038 (-409 (-566)))))) +((((-1260 |#1|)) . T) (((-566)) . T) (($) -2768 (|has| |#2| (-365)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) (((-1081)) . T) ((|#2|) . T) (((-409 (-566))) -2768 (|has| |#2| (-38 (-409 (-566)))) (|has| |#2| (-1038 (-409 (-566)))))) ((((-409 (-566))) . T) (($) . T)) -((((-999 |#1|)) . T) ((|#1|) . T) (((-566)) -2809 (|has| (-999 |#1|) (-1038 (-566))) (|has| |#1| (-1038 (-566)))) (((-409 (-566))) -2809 (|has| (-999 |#1|) (-1038 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566)))))) +((((-999 |#1|)) . T) ((|#1|) . T) (((-566)) -2768 (|has| (-999 |#1|) (-1038 (-566))) (|has| |#1| (-1038 (-566)))) (((-409 (-566))) -2768 (|has| (-999 |#1|) (-1038 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566)))))) ((((-910 |#1|)) . T) (((-409 (-566))) . T) (($) . T)) (((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) @@ -3909,10 +3909,10 @@ (((|#1| |#2| |#3| |#4|) . T)) (((#0=(-1139 |#1| |#2|) #0#) |has| (-1139 |#1| |#2|) (-310 (-1139 |#1| |#2|)))) (((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((#0=(-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) #0#) |has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))))) +(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((#0=(-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) #0#) |has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))))) (((#0=(-116 |#1|)) |has| #0# (-310 #0#))) ((($ $) . T)) -(-2809 (|has| |#1| (-850)) (|has| |#1| (-1099))) +(-2768 (|has| |#1| (-850)) (|has| |#1| (-1099))) ((($ $) . T) ((#0=(-864 |#1|) $) . T) ((#0# |#2|) . T)) ((($ $) . T) ((|#2| $) |has| |#1| (-233)) ((|#2| |#1|) |has| |#1| (-233)) ((|#3| |#1|) . T) ((|#3| $) . T)) (((-480 . -1099) T) ((-265 . -516) 187920) ((-247 . -516) 187863) ((-245 . -1099) 187813) ((-573 . -111) 187798) ((-533 . -23) T) ((-137 . -1099) T) ((-133 . -1099) T) ((-117 . -310) 187755) ((-138 . -1099) T) ((-481 . -516) 187547) ((-677 . -616) 187531) ((-694 . -102) T) ((-1140 . -516) 187450) ((-392 . -131) T) ((-1277 . -976) 187419) ((-1024 . -1051) 187356) ((-31 . -93) T) ((-602 . -491) 187340) ((-1024 . -640) 187277) ((-621 . -131) T) ((-819 . -846) T) ((-525 . -57) 187227) ((-521 . -516) 187160) ((-356 . -1051) 187105) ((-59 . -516) 187038) ((-518 . -516) 186971) ((-420 . -900) 186930) ((-169 . -1049) T) ((-499 . -516) 186863) ((-498 . -516) 186796) ((-356 . -640) 186741) ((-799 . -1038) 186524) ((-699 . -38) 186489) ((-1237 . -616) 186237) ((-345 . -351) T) ((-1093 . -1092) 186221) ((-1093 . -1099) 186199) ((-855 . -616) 186096) ((-169 . -243) 186047) ((-169 . -233) 185998) ((-1093 . -1094) 185956) ((-872 . -287) 185914) ((-225 . -795) T) ((-225 . -792) T) ((-694 . -285) NIL) ((-573 . -616) 185886) ((-1149 . -1190) 185865) ((-409 . -992) 185849) ((-48 . -1051) 185814) ((-701 . -21) T) ((-701 . -25) T) ((-48 . -640) 185779) ((-1279 . -648) 185753) ((-317 . -160) 185732) ((-317 . -143) 185711) ((-1149 . -107) 185661) ((-116 . -21) T) ((-40 . -231) 185638) ((-134 . -25) T) ((-116 . -25) T) ((-608 . -289) 185614) ((-477 . -289) 185593) ((-1237 . -327) 185570) ((-1237 . -1049) T) ((-855 . -1049) T) ((-799 . -340) 185554) ((-139 . -185) T) ((-117 . -1150) NIL) ((-91 . -613) 185486) ((-479 . -131) T) ((-1237 . -233) T) ((-1095 . -492) 185467) ((-1095 . -613) 185433) ((-1089 . -492) 185414) ((-1089 . -613) 185380) ((-594 . -1214) T) ((-1072 . -492) 185361) ((-573 . -1049) T) ((-1072 . -613) 185327) ((-662 . -717) 185311) ((-1065 . -492) 185292) ((-1065 . -613) 185258) ((-958 . -289) 185235) ((-60 . -34) T) ((-1061 . -795) T) ((-1061 . -792) T) ((-1036 . -492) 185216) ((-1019 . -492) 185197) ((-816 . -726) T) ((-731 . -47) 185162) ((-623 . -38) 185149) ((-357 . -291) T) ((-354 . -291) T) ((-346 . -291) T) ((-265 . -291) 185080) ((-247 . -291) 185011) ((-1036 . -613) 184977) ((-1024 . -102) T) ((-1019 . -613) 184943) ((-626 . -492) 184924) ((-415 . -726) T) ((-117 . -38) 184869) ((-485 . -492) 184850) ((-626 . -613) 184816) ((-415 . -475) T) ((-218 . -492) 184797) ((-485 . -613) 184763) ((-356 . -102) T) ((-218 . -613) 184729) ((-1208 . -1057) T) ((-345 . -646) 184659) ((-711 . -1057) T) ((-1173 . -47) 184636) ((-1172 . -47) 184606) ((-1166 . -47) 184583) ((-128 . -289) 184558) ((-1035 . -151) 184504) ((-910 . -291) T) ((-1125 . -47) 184476) ((-694 . -310) NIL) ((-517 . -613) 184458) ((-512 . -613) 184440) ((-510 . -613) 184422) ((-328 . -1099) 184372) ((-712 . -454) 184303) ((-48 . -102) T) ((-1248 . -287) 184288) ((-1227 . -287) 184208) ((-644 . -666) 184192) ((-644 . -651) 184176) ((-341 . -21) T) ((-341 . -25) T) ((-40 . -351) NIL) ((-174 . -21) T) ((-174 . -25) T) ((-644 . -375) 184160) ((-605 . -492) 184142) ((-602 . -287) 184119) ((-605 . -613) 184086) ((-390 . -102) T) ((-1119 . -143) T) ((-126 . -613) 184018) ((-874 . -1099) T) ((-658 . -413) 184002) ((-714 . -613) 183984) ((-249 . -613) 183951) ((-187 . -613) 183933) ((-162 . -613) 183915) ((-157 . -613) 183897) ((-1279 . -726) T) ((-1101 . -34) T) ((-871 . -795) NIL) ((-871 . -792) NIL) ((-858 . -850) T) ((-731 . -886) NIL) ((-1288 . -131) T) ((-383 . -131) T) ((-892 . -616) 183865) ((-904 . -102) T) ((-731 . -1038) 183741) ((-533 . -131) T) ((-1086 . -413) 183725) ((-1000 . -491) 183709) ((-117 . -402) 183686) ((-1166 . -1214) 183665) ((-782 . -413) 183649) ((-780 . -413) 183633) ((-943 . -34) T) ((-694 . -1150) NIL) ((-252 . -648) 183468) ((-251 . -648) 183290) ((-817 . -920) 183269) ((-456 . -413) 183253) ((-602 . -19) 183237) ((-1145 . -1207) 183206) ((-1166 . -886) NIL) ((-1166 . -884) 183158) ((-602 . -604) 183135) ((-1200 . -613) 183067) ((-1174 . -613) 183049) ((-62 . -397) T) ((-1172 . -1038) 182984) ((-1166 . -1038) 182950) ((-694 . -38) 182900) ((-40 . -646) 182830) ((-476 . -287) 182815) ((-1220 . -613) 182797) ((-731 . -379) 182781) ((-838 . -613) 182763) ((-658 . -1057) T) ((-1248 . -1002) 182729) ((-1227 . -1002) 182695) ((-1087 . -616) 182679) ((-1062 . -1190) 182654) ((-1075 . -616) 182631) ((-872 . -614) 182438) ((-872 . -613) 182420) ((-1187 . -491) 182357) ((-420 . -1022) 182335) ((-48 . -310) 182322) ((-1062 . -107) 182268) ((-481 . -491) 182205) ((-522 . -1214) T) ((-1166 . -340) 182157) ((-1140 . -491) 182128) ((-1166 . -379) 182080) ((-1086 . -1057) T) ((-439 . -102) T) ((-183 . -1099) T) ((-252 . -34) T) ((-251 . -34) T) ((-782 . -1057) T) ((-780 . -1057) T) ((-731 . -900) 182057) ((-456 . -1057) T) ((-59 . -491) 182041) ((-1034 . -1056) 182015) ((-521 . -491) 181999) ((-518 . -491) 181983) ((-499 . -491) 181967) ((-498 . -491) 181951) ((-245 . -516) 181884) ((-1034 . -111) 181851) ((-1173 . -900) 181764) ((-1172 . -900) 181670) ((-1166 . -900) 181503) ((-1125 . -900) 181487) ((-670 . -1111) T) ((-356 . -1150) T) ((-645 . -93) T) ((-323 . -1056) 181469) ((-252 . -791) 181448) ((-252 . -794) 181399) ((-31 . -492) 181380) ((-252 . -793) 181359) ((-251 . -791) 181338) ((-251 . -794) 181289) ((-251 . -793) 181268) ((-31 . -613) 181234) ((-50 . -1057) T) ((-252 . -726) 181144) ((-251 . -726) 181054) ((-1208 . -1099) T) ((-670 . -23) T) ((-583 . -1057) T) ((-520 . -1057) T) ((-381 . -1056) 181019) ((-323 . -111) 180994) ((-73 . -385) T) ((-73 . -397) T) ((-1024 . -38) 180931) ((-694 . -402) 180913) ((-99 . -102) T) ((-711 . -1099) T) ((-1292 . -1051) 180900) ((-1003 . -145) 180872) ((-1003 . -147) 180844) ((-870 . -646) 180816) ((-381 . -111) 180772) ((-320 . -1218) 180751) ((-476 . -1002) 180717) ((-356 . -38) 180682) ((-40 . -372) 180654) ((-873 . -613) 180526) ((-127 . -125) 180510) ((-121 . -125) 180494) ((-836 . -1056) 180464) ((-833 . -21) 180416) ((-827 . -1056) 180400) ((-833 . -25) 180352) ((-320 . -558) 180303) ((-519 . -616) 180284) ((-566 . -828) T) ((-240 . -1214) T) ((-1034 . -616) 180253) ((-836 . -111) 180218) ((-827 . -111) 180197) ((-1248 . -613) 180179) ((-1227 . -613) 180161) ((-1227 . -614) 179832) ((-1171 . -909) 179811) ((-1124 . -909) 179790) ((-48 . -38) 179755) ((-1286 . -1111) T) ((-602 . -613) 179667) ((-602 . -614) 179628) ((-1284 . -1111) T) ((-363 . -616) 179612) ((-323 . -616) 179596) ((-240 . -1038) 179423) ((-1171 . -648) 179348) ((-1124 . -648) 179273) ((-854 . -648) 179247) ((-718 . -613) 179229) ((-548 . -370) T) ((-1286 . -23) T) ((-1284 . -23) T) ((-493 . -1099) T) ((-381 . -616) 179179) ((-381 . -618) 179161) ((-1034 . -1049) T) ((-865 . -102) T) ((-1187 . -287) 179140) ((-169 . -370) 179091) ((-1004 . -1214) T) ((-836 . -616) 179045) ((-827 . -616) 179000) ((-44 . -23) T) ((-481 . -287) 178979) ((-587 . -1099) T) ((-1145 . -1108) 178948) ((-1103 . -1102) 178900) ((-392 . -21) T) ((-392 . -25) T) ((-152 . -1111) T) ((-1292 . -102) T) ((-1004 . -884) 178882) ((-1004 . -886) 178864) ((-1208 . -717) 178761) ((-623 . -231) 178745) ((-621 . -21) T) ((-290 . -558) T) ((-621 . -25) T) ((-1194 . -1099) T) ((-711 . -717) 178710) ((-240 . -379) 178679) ((-1004 . -1038) 178639) ((-381 . -1049) T) ((-223 . -1057) T) ((-117 . -231) 178616) ((-59 . -287) 178593) ((-152 . -23) T) ((-518 . -287) 178570) ((-328 . -516) 178503) ((-498 . -287) 178480) ((-381 . -243) T) ((-381 . -233) T) ((-836 . -1049) T) ((-827 . -1049) T) ((-712 . -949) 178449) ((-701 . -850) T) ((-476 . -613) 178431) ((-1250 . -1051) 178336) ((-582 . -646) 178308) ((-566 . -646) 178280) ((-497 . -646) 178230) ((-827 . -233) 178209) ((-134 . -850) T) ((-1250 . -640) 178101) ((-658 . -1099) T) ((-1187 . -604) 178080) ((-552 . -1190) 178059) ((-338 . -1099) T) ((-320 . -365) 178038) ((-409 . -147) 178017) ((-409 . -145) 177996) ((-964 . -1111) 177895) ((-240 . -900) 177827) ((-815 . -1111) 177737) ((-654 . -852) 177721) ((-481 . -604) 177700) ((-552 . -107) 177650) ((-1004 . -379) 177632) ((-1004 . -340) 177614) ((-97 . -1099) T) ((-964 . -23) 177425) ((-479 . -21) T) ((-479 . -25) T) ((-815 . -23) 177295) ((-1175 . -613) 177277) ((-59 . -19) 177261) ((-1175 . -614) 177183) ((-1171 . -726) T) ((-1124 . -726) T) ((-518 . -19) 177167) ((-498 . -19) 177151) ((-59 . -604) 177128) ((-1086 . -1099) T) ((-901 . -102) 177106) ((-854 . -726) T) ((-782 . -1099) T) ((-518 . -604) 177083) ((-498 . -604) 177060) ((-780 . -1099) T) ((-780 . -1064) 177027) ((-463 . -1099) T) ((-456 . -1099) T) ((-587 . -717) 177002) ((-649 . -1099) T) ((-1256 . -47) 176979) ((-1250 . -102) T) ((-1249 . -47) 176949) ((-1228 . -47) 176926) ((-1208 . -172) 176877) ((-1172 . -308) 176856) ((-1166 . -308) 176835) ((-1095 . -616) 176816) ((-1089 . -616) 176797) ((-1079 . -558) 176748) ((-1004 . -900) NIL) ((-1079 . -1218) 176699) ((-670 . -131) T) ((-627 . -1111) T) ((-1072 . -616) 176680) ((-1065 . -616) 176661) ((-1036 . -616) 176642) ((-1019 . -616) 176623) ((-699 . -646) 176573) ((-276 . -1099) T) ((-85 . -443) T) ((-85 . -397) T) ((-714 . -1056) 176543) ((-711 . -172) T) ((-50 . -1099) T) ((-596 . -47) 176520) ((-225 . -648) 176485) ((-583 . -1099) T) ((-520 . -1099) T) ((-489 . -820) T) ((-489 . -920) T) ((-361 . -1218) T) ((-355 . -1218) T) ((-347 . -1218) T) ((-320 . -1111) T) ((-317 . -1051) 176395) ((-314 . -1051) 176324) ((-108 . -1218) T) ((-626 . -616) 176305) ((-361 . -558) T) ((-217 . -920) T) ((-217 . -820) T) ((-317 . -640) 176215) ((-314 . -640) 176144) ((-355 . -558) T) ((-347 . -558) T) ((-485 . -616) 176125) ((-108 . -558) T) ((-658 . -717) 176095) ((-1166 . -1022) NIL) ((-218 . -616) 176076) ((-320 . -23) T) ((-67 . -1214) T) ((-1000 . -613) 176008) ((-694 . -231) 175990) ((-714 . -111) 175955) ((-644 . -34) T) ((-245 . -491) 175939) ((-1101 . -1097) 175923) ((-171 . -1099) T) ((-952 . -909) 175902) ((-1292 . -1150) T) ((-1288 . -21) T) ((-517 . -616) 175886) ((-1288 . -25) T) ((-1286 . -131) T) ((-1284 . -131) T) ((-483 . -909) 175865) ((-1277 . -102) T) ((-1260 . -613) 175831) ((-1249 . -1038) 175766) ((-1228 . -1214) 175745) ((-1228 . -886) NIL) ((-1228 . -884) 175697) ((-1086 . -717) 175546) ((-1061 . -648) 175533) ((-952 . -648) 175458) ((-782 . -717) 175287) ((-538 . -613) 175269) ((-538 . -614) 175250) ((-780 . -717) 175099) ((-1076 . -102) T) ((-383 . -25) T) ((-623 . -646) 175071) ((-383 . -21) T) ((-483 . -648) 174996) ((-463 . -717) 174967) ((-456 . -717) 174816) ((-987 . -102) T) ((-1228 . -1038) 174782) ((-1187 . -614) NIL) ((-1187 . -613) 174764) ((-737 . -102) T) ((-117 . -646) 174694) ((-605 . -616) 174676) ((-1141 . -1122) 174621) ((-1046 . -1207) 174550) ((-533 . -25) T) ((-901 . -310) 174488) ((-714 . -616) 174442) ((-681 . -93) T) ((-645 . -492) 174423) ((-141 . -102) T) ((-44 . -131) T) ((-676 . -93) T) ((-664 . -613) 174405) ((-345 . -1057) T) ((-290 . -1111) T) ((-645 . -613) 174358) ((-480 . -93) T) ((-357 . -613) 174340) ((-354 . -613) 174322) ((-346 . -613) 174304) ((-265 . -614) 174052) ((-265 . -613) 174034) ((-247 . -613) 174016) ((-247 . -614) 173877) ((-133 . -93) T) ((-138 . -93) T) ((-137 . -93) T) ((-1208 . -516) 173844) ((-1140 . -613) 173826) ((-1119 . -640) 173813) ((-819 . -857) T) ((-819 . -726) T) ((-602 . -289) 173790) ((-583 . -717) 173755) ((-481 . -614) NIL) ((-481 . -613) 173737) ((-520 . -717) 173682) ((-317 . -102) T) ((-314 . -102) T) ((-290 . -23) T) ((-152 . -131) T) ((-1119 . -1051) 173669) ((-910 . -613) 173651) ((-388 . -726) T) ((-872 . -1056) 173603) ((-910 . -614) 173585) ((-872 . -111) 173523) ((-714 . -1049) T) ((-712 . -1240) 173507) ((-694 . -351) NIL) ((-136 . -102) T) ((-114 . -102) T) ((-139 . -102) T) ((-521 . -613) 173439) ((-381 . -795) T) ((-223 . -1099) T) ((-381 . -792) T) ((-225 . -794) T) ((-225 . -791) T) ((-59 . -614) 173400) ((-59 . -613) 173312) ((-225 . -726) T) ((-518 . -614) 173273) ((-518 . -613) 173185) ((-499 . -613) 173117) ((-498 . -614) 173078) ((-498 . -613) 172990) ((-1079 . -365) 172941) ((-40 . -413) 172918) ((-77 . -1214) T) ((-871 . -909) NIL) ((-361 . -330) 172902) ((-361 . -365) T) ((-355 . -330) 172886) ((-355 . -365) T) ((-347 . -330) 172870) ((-347 . -365) T) ((-317 . -285) 172849) ((-108 . -365) T) ((-70 . -1214) T) ((-1228 . -340) 172801) ((-871 . -648) 172746) ((-1228 . -379) 172698) ((-964 . -131) 172553) ((-815 . -131) 172423) ((-958 . -651) 172407) ((-1086 . -172) 172318) ((-958 . -375) 172302) ((-1061 . -794) T) ((-1061 . -791) T) ((-872 . -616) 172200) ((-782 . -172) 172091) ((-780 . -172) 172002) ((-816 . -47) 171964) ((-1061 . -726) T) ((-328 . -491) 171948) ((-952 . -726) T) ((-456 . -172) 171859) ((-245 . -287) 171836) ((-1277 . -310) 171774) ((-1256 . -900) 171687) ((-1249 . -900) 171593) ((-483 . -726) T) ((-1248 . -1056) 171428) ((-1228 . -900) 171261) ((-1227 . -1056) 171069) ((-1208 . -291) 171048) ((-1184 . -1214) T) ((-1182 . -370) T) ((-1181 . -370) T) ((-1145 . -151) 171032) ((-1119 . -102) T) ((-1117 . -1099) T) ((-1079 . -23) T) ((-1079 . -1111) T) ((-1074 . -102) T) ((-927 . -955) T) ((-737 . -310) 170970) ((-75 . -1214) T) ((-664 . -384) 170942) ((-169 . -909) 170895) ((-30 . -955) T) ((-112 . -844) T) ((-1 . -613) 170877) ((-1003 . -411) 170849) ((-128 . -651) 170831) ((-50 . -620) 170815) ((-694 . -646) 170750) ((-596 . -900) 170663) ((-440 . -102) T) ((-128 . -375) 170645) ((-141 . -310) NIL) ((-872 . -1049) T) ((-833 . -850) 170624) ((-81 . -1214) T) ((-711 . -291) T) ((-40 . -1057) T) ((-583 . -172) T) ((-520 . -172) T) ((-513 . -613) 170606) ((-169 . -648) 170516) ((-509 . -613) 170498) ((-353 . -147) 170480) ((-353 . -145) T) ((-361 . -1111) T) ((-355 . -1111) T) ((-347 . -1111) T) ((-1004 . -308) T) ((-914 . -308) T) ((-872 . -243) T) ((-108 . -1111) T) ((-872 . -233) 170459) ((-1248 . -111) 170280) ((-1227 . -111) 170069) ((-245 . -1252) 170053) ((-566 . -848) T) ((-361 . -23) T) ((-356 . -351) T) ((-317 . -310) 170040) ((-314 . -310) 169981) ((-355 . -23) T) ((-320 . -131) T) ((-347 . -23) T) ((-1004 . -1022) T) ((-31 . -616) 169962) ((-108 . -23) T) ((-654 . -1051) 169946) ((-245 . -604) 169923) ((-334 . -1099) T) ((-654 . -640) 169893) ((-1250 . -38) 169785) ((-1237 . -909) 169764) ((-112 . -1099) T) ((-1035 . -102) T) ((-1237 . -648) 169689) ((-871 . -794) NIL) ((-855 . -648) 169663) ((-871 . -791) NIL) ((-816 . -886) NIL) ((-871 . -726) T) ((-1086 . -516) 169536) ((-782 . -516) 169483) ((-780 . -516) 169435) ((-573 . -648) 169422) ((-816 . -1038) 169250) ((-456 . -516) 169193) ((-390 . -391) T) ((-1248 . -616) 169006) ((-1227 . -616) 168754) ((-60 . -1214) T) ((-621 . -850) 168733) ((-502 . -661) T) ((-1145 . -976) 168702) ((-1024 . -646) 168639) ((-1003 . -454) T) ((-699 . -848) T) ((-512 . -792) T) ((-476 . -1056) 168474) ((-345 . -1099) T) ((-314 . -1150) NIL) ((-290 . -131) T) ((-396 . -1099) T) ((-870 . -1057) T) ((-694 . -372) 168441) ((-356 . -646) 168371) ((-223 . -620) 168348) ((-328 . -287) 168325) ((-476 . -111) 168146) ((-1248 . -1049) T) ((-1227 . -1049) T) ((-816 . -379) 168130) ((-169 . -726) T) ((-654 . -102) T) ((-1248 . -243) 168109) ((-1248 . -233) 168061) ((-1227 . -233) 167966) ((-1227 . -243) 167945) ((-1003 . -404) NIL) ((-670 . -639) 167893) ((-317 . -38) 167803) ((-314 . -38) 167732) ((-69 . -613) 167714) ((-320 . -495) 167680) ((-48 . -646) 167630) ((-1187 . -289) 167609) ((-1222 . -850) T) ((-1112 . -1111) 167519) ((-83 . -1214) T) ((-61 . -613) 167501) ((-481 . -289) 167480) ((-1279 . -1038) 167457) ((-1163 . -1099) T) ((-1112 . -23) 167327) ((-816 . -900) 167263) ((-1237 . -726) T) ((-1101 . -1214) T) ((-476 . -616) 167089) ((-1086 . -291) 167020) ((-966 . -1099) T) ((-893 . -102) T) ((-782 . -291) 166931) ((-328 . -19) 166915) ((-59 . -289) 166892) ((-780 . -291) 166823) ((-855 . -726) T) ((-117 . -848) NIL) ((-518 . -289) 166800) ((-328 . -604) 166777) ((-498 . -289) 166754) ((-456 . -291) 166685) ((-1035 . -310) 166536) ((-681 . -492) 166517) ((-573 . -726) T) ((-676 . -492) 166498) ((-681 . -613) 166448) ((-676 . -613) 166414) ((-662 . -613) 166396) ((-480 . -492) 166377) ((-480 . -613) 166343) ((-245 . -614) 166304) ((-245 . -492) 166281) ((-138 . -492) 166262) ((-137 . -492) 166243) ((-133 . -492) 166224) ((-245 . -613) 166116) ((-213 . -102) T) ((-138 . -613) 166082) ((-137 . -613) 166048) ((-133 . -613) 166014) ((-1146 . -34) T) ((-943 . -1214) T) ((-345 . -717) 165959) ((-670 . -25) T) ((-670 . -21) T) ((-1175 . -616) 165940) ((-476 . -1049) T) ((-635 . -419) 165905) ((-607 . -419) 165870) ((-1119 . -1150) T) ((-712 . -1051) 165693) ((-583 . -291) T) ((-520 . -291) T) ((-1249 . -308) 165672) ((-476 . -233) 165624) ((-476 . -243) 165603) ((-1228 . -308) 165582) ((-712 . -640) 165411) ((-1228 . -1022) NIL) ((-1079 . -131) T) ((-872 . -795) 165390) ((-144 . -102) T) ((-40 . -1099) T) ((-872 . -792) 165369) ((-644 . -1010) 165353) ((-582 . -1057) T) ((-566 . -1057) T) ((-497 . -1057) T) ((-409 . -454) T) ((-361 . -131) T) ((-317 . -402) 165337) ((-314 . -402) 165298) ((-355 . -131) T) ((-347 . -131) T) ((-1180 . -1099) T) ((-1119 . -38) 165285) ((-1093 . -613) 165252) ((-108 . -131) T) ((-954 . -1099) T) ((-921 . -1099) T) ((-771 . -1099) T) ((-672 . -1099) T) ((-701 . -147) T) ((-116 . -147) T) ((-1286 . -21) T) ((-1286 . -25) T) ((-1284 . -21) T) ((-1284 . -25) T) ((-664 . -1056) 165236) ((-533 . -850) T) ((-502 . -850) T) ((-357 . -1056) 165188) ((-354 . -1056) 165140) ((-346 . -1056) 165092) ((-252 . -1214) T) ((-251 . -1214) T) ((-265 . -1056) 164935) ((-247 . -1056) 164778) ((-664 . -111) 164757) ((-549 . -844) T) ((-357 . -111) 164695) ((-354 . -111) 164633) ((-346 . -111) 164571) ((-265 . -111) 164400) ((-247 . -111) 164229) ((-817 . -1218) 164208) ((-623 . -413) 164192) ((-44 . -21) T) ((-44 . -25) T) ((-815 . -639) 164098) ((-817 . -558) 164077) ((-252 . -1038) 163904) ((-251 . -1038) 163731) ((-126 . -119) 163715) ((-910 . -1056) 163680) ((-712 . -102) T) ((-699 . -1057) T) ((-538 . -618) 163583) ((-345 . -172) T) ((-88 . -613) 163565) ((-152 . -21) T) ((-152 . -25) T) ((-910 . -111) 163521) ((-40 . -717) 163466) ((-870 . -1099) T) ((-664 . -616) 163443) ((-645 . -616) 163424) ((-357 . -616) 163361) ((-354 . -616) 163298) ((-549 . -1099) T) ((-346 . -616) 163235) ((-328 . -614) 163196) ((-328 . -613) 163108) ((-265 . -616) 162861) ((-247 . -616) 162646) ((-1227 . -792) 162599) ((-1227 . -795) 162552) ((-252 . -379) 162521) ((-251 . -379) 162490) ((-654 . -38) 162460) ((-608 . -34) T) ((-484 . -1111) 162370) ((-477 . -34) T) ((-1112 . -131) 162240) ((-964 . -25) 162051) ((-910 . -616) 162001) ((-874 . -613) 161983) ((-964 . -21) 161938) ((-815 . -21) 161848) ((-815 . -25) 161699) ((-1220 . -370) T) ((-623 . -1057) T) ((-1177 . -558) 161678) ((-1171 . -47) 161655) ((-357 . -1049) T) ((-354 . -1049) T) ((-484 . -23) 161525) ((-346 . -1049) T) ((-265 . -1049) T) ((-247 . -1049) T) ((-1124 . -47) 161497) ((-117 . -1057) T) ((-1034 . -648) 161471) ((-958 . -34) T) ((-357 . -233) 161450) ((-357 . -243) T) ((-354 . -233) 161429) ((-354 . -243) T) ((-346 . -233) 161408) ((-346 . -243) T) ((-265 . -327) 161380) ((-247 . -327) 161337) ((-265 . -233) 161316) ((-1155 . -151) 161300) ((-252 . -900) 161232) ((-251 . -900) 161164) ((-1081 . -850) T) ((-416 . -1111) T) ((-1054 . -23) T) ((-910 . -1049) T) ((-323 . -648) 161146) ((-1024 . -848) T) ((-1208 . -1002) 161112) ((-1172 . -920) 161091) ((-1166 . -920) 161070) ((-1166 . -820) NIL) ((-999 . -1051) 160966) ((-910 . -243) T) ((-817 . -365) 160945) ((-387 . -23) T) ((-127 . -1099) 160923) ((-121 . -1099) 160901) ((-910 . -233) T) ((-128 . -34) T) ((-381 . -648) 160866) ((-999 . -640) 160814) ((-870 . -717) 160801) ((-1292 . -646) 160773) ((-1046 . -151) 160738) ((-40 . -172) T) ((-694 . -413) 160720) ((-712 . -310) 160707) ((-836 . -648) 160667) ((-827 . -648) 160641) ((-320 . -25) T) ((-320 . -21) T) ((-658 . -287) 160620) ((-582 . -1099) T) ((-566 . -1099) T) ((-497 . -1099) T) ((-245 . -289) 160597) ((-314 . -231) 160558) ((-1171 . -886) NIL) ((-55 . -1099) T) ((-1124 . -886) 160417) ((-129 . -850) T) ((-1171 . -1038) 160297) ((-1124 . -1038) 160180) ((-183 . -613) 160162) ((-854 . -1038) 160058) ((-782 . -287) 159985) ((-817 . -1111) T) ((-1034 . -726) T) ((-602 . -651) 159969) ((-1046 . -976) 159898) ((-999 . -102) T) ((-817 . -23) T) ((-712 . -1150) 159876) ((-694 . -1057) T) ((-602 . -375) 159860) ((-353 . -454) T) ((-345 . -291) T) ((-1265 . -1099) T) ((-248 . -1099) T) ((-401 . -102) T) ((-290 . -21) T) ((-290 . -25) T) ((-363 . -726) T) ((-710 . -1099) T) ((-699 . -1099) T) ((-363 . -475) T) ((-1208 . -613) 159842) ((-1171 . -379) 159826) ((-1124 . -379) 159810) ((-1024 . -413) 159772) ((-141 . -229) 159754) ((-381 . -794) T) ((-381 . -791) T) ((-870 . -172) T) ((-381 . -726) T) ((-711 . -613) 159736) ((-712 . -38) 159565) ((-1264 . -1262) 159549) ((-353 . -404) T) ((-1264 . -1099) 159499) ((-582 . -717) 159486) ((-566 . -717) 159473) ((-497 . -717) 159438) ((-1250 . -646) 159328) ((-317 . -629) 159307) ((-836 . -726) T) ((-827 . -726) T) ((-644 . -1214) T) ((-1079 . -639) 159255) ((-1171 . -900) 159198) ((-1124 . -900) 159182) ((-662 . -1056) 159166) ((-108 . -639) 159148) ((-484 . -131) 159018) ((-1177 . -1111) T) ((-952 . -47) 158987) ((-623 . -1099) T) ((-662 . -111) 158966) ((-493 . -613) 158932) ((-328 . -289) 158909) ((-483 . -47) 158866) ((-1177 . -23) T) ((-117 . -1099) T) ((-103 . -102) 158844) ((-1276 . -1111) T) ((-550 . -850) T) ((-1054 . -131) T) ((-1024 . -1057) T) ((-819 . -1038) 158828) ((-1003 . -724) 158800) ((-1276 . -23) T) ((-699 . -717) 158765) ((-587 . -613) 158747) ((-388 . -1038) 158731) ((-356 . -1057) T) ((-387 . -131) T) ((-325 . -1038) 158715) ((-1194 . -613) 158697) ((-1119 . -828) T) ((-225 . -886) 158679) ((-1004 . -920) T) ((-91 . -34) T) ((-1004 . -820) T) ((-914 . -920) T) ((-1104 . -1099) T) ((-1079 . -21) T) ((-489 . -1218) T) ((-1079 . -25) T) ((-999 . -310) 158644) ((-714 . -648) 158604) ((-217 . -1218) T) ((-681 . -616) 158585) ((-225 . -1038) 158545) ((-40 . -291) T) ((-676 . -616) 158526) ((-489 . -558) T) ((-480 . -616) 158507) ((-317 . -646) 158191) ((-314 . -646) 158105) ((-361 . -25) T) ((-361 . -21) T) ((-355 . -25) T) ((-217 . -558) T) ((-355 . -21) T) ((-347 . -25) T) ((-347 . -21) T) ((-245 . -616) 158082) ((-138 . -616) 158063) ((-137 . -616) 158044) ((-133 . -616) 158025) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1057) T) ((-582 . -172) T) ((-566 . -172) T) ((-497 . -172) T) ((-658 . -613) 158007) ((-737 . -736) 157991) ((-338 . -613) 157973) ((-68 . -385) T) ((-68 . -397) T) ((-1101 . -107) 157957) ((-1061 . -886) 157939) ((-952 . -886) 157864) ((-653 . -1111) T) ((-623 . -717) 157851) ((-483 . -886) NIL) ((-1145 . -102) T) ((-1093 . -618) 157835) ((-1061 . -1038) 157817) ((-97 . -613) 157799) ((-479 . -147) T) ((-952 . -1038) 157679) ((-117 . -717) 157624) ((-653 . -23) T) ((-483 . -1038) 157500) ((-1086 . -614) NIL) ((-1086 . -613) 157482) ((-782 . -614) NIL) ((-782 . -613) 157443) ((-780 . -614) 157077) ((-780 . -613) 156991) ((-1112 . -639) 156897) ((-463 . -613) 156879) ((-456 . -613) 156861) ((-456 . -614) 156722) ((-1035 . -229) 156668) ((-872 . -909) 156647) ((-126 . -34) T) ((-817 . -131) T) ((-649 . -613) 156629) ((-580 . -102) T) ((-357 . -1283) 156613) ((-354 . -1283) 156597) ((-346 . -1283) 156581) ((-127 . -516) 156514) ((-121 . -516) 156447) ((-513 . -792) T) ((-513 . -795) T) ((-512 . -794) T) ((-103 . -310) 156385) ((-222 . -102) 156363) ((-699 . -172) T) ((-694 . -1099) T) ((-872 . -648) 156315) ((-65 . -386) T) ((-276 . -613) 156297) ((-65 . -397) T) ((-952 . -379) 156281) ((-870 . -291) T) ((-50 . -613) 156263) ((-999 . -38) 156211) ((-1119 . -646) 156183) ((-583 . -613) 156165) ((-483 . -379) 156149) ((-583 . -614) 156131) ((-520 . -613) 156113) ((-910 . -1283) 156100) ((-871 . -1214) T) ((-701 . -454) T) ((-497 . -516) 156066) ((-489 . -365) T) ((-357 . -370) 156045) ((-354 . -370) 156024) ((-346 . -370) 156003) ((-714 . -726) T) ((-217 . -365) T) ((-116 . -454) T) ((-1287 . -1278) 155987) ((-871 . -884) 155964) ((-871 . -886) NIL) ((-964 . -850) 155863) ((-815 . -850) 155814) ((-1221 . -102) T) ((-654 . -656) 155798) ((-1200 . -34) T) ((-171 . -613) 155780) ((-1112 . -21) 155690) ((-1112 . -25) 155541) ((-871 . -1038) 155518) ((-952 . -900) 155499) ((-1237 . -47) 155476) ((-910 . -370) T) ((-59 . -651) 155460) ((-518 . -651) 155444) ((-483 . -900) 155421) ((-71 . -443) T) ((-71 . -397) T) ((-498 . -651) 155405) ((-59 . -375) 155389) ((-623 . -172) T) ((-518 . -375) 155373) ((-498 . -375) 155357) ((-827 . -708) 155341) ((-1171 . -308) 155320) ((-1177 . -131) T) ((-1141 . -1051) 155304) ((-117 . -172) T) ((-1141 . -640) 155236) ((-1145 . -310) 155174) ((-169 . -1214) T) ((-1276 . -131) T) ((-866 . -1051) 155144) ((-635 . -744) 155128) ((-607 . -744) 155112) ((-1249 . -920) 155091) ((-1228 . -920) 155070) ((-1228 . -820) NIL) ((-866 . -640) 155040) ((-694 . -717) 154990) ((-1227 . -909) 154943) ((-1024 . -1099) T) ((-871 . -379) 154920) ((-871 . -340) 154897) ((-905 . -1111) T) ((-169 . -884) 154881) ((-169 . -886) 154806) ((-489 . -1111) T) ((-356 . -1099) T) ((-217 . -1111) T) ((-76 . -443) T) ((-76 . -397) T) ((-169 . -1038) 154702) ((-320 . -850) T) ((-1264 . -516) 154635) ((-1248 . -648) 154532) ((-1227 . -648) 154402) ((-872 . -794) 154381) ((-872 . -791) 154360) ((-872 . -726) T) ((-489 . -23) T) ((-223 . -613) 154342) ((-174 . -454) T) ((-222 . -310) 154280) ((-86 . -443) T) ((-86 . -397) T) ((-217 . -23) T) ((-1288 . -1281) 154259) ((-677 . -1038) 154243) ((-582 . -291) T) ((-566 . -291) T) ((-497 . -291) T) ((-136 . -472) 154198) ((-654 . -646) 154157) ((-48 . -1099) T) ((-712 . -231) 154141) ((-871 . -900) NIL) ((-1237 . -886) NIL) ((-889 . -102) T) ((-885 . -102) T) ((-390 . -1099) T) ((-169 . -379) 154125) ((-169 . -340) 154109) ((-1237 . -1038) 153989) ((-855 . -1038) 153885) ((-1141 . -102) T) ((-653 . -131) T) ((-117 . -516) 153793) ((-662 . -792) 153772) ((-662 . -795) 153751) ((-573 . -1038) 153733) ((-295 . -1271) 153703) ((-866 . -102) T) ((-963 . -558) 153682) ((-1208 . -1056) 153565) ((-1003 . -1051) 153510) ((-484 . -639) 153416) ((-904 . -1099) T) ((-1024 . -717) 153353) ((-711 . -1056) 153318) ((-1003 . -640) 153263) ((-617 . -102) T) ((-602 . -34) T) ((-1146 . -1214) T) ((-1208 . -111) 153132) ((-476 . -648) 153029) ((-356 . -717) 152974) ((-169 . -900) 152933) ((-699 . -291) T) ((-694 . -172) T) ((-711 . -111) 152889) ((-1292 . -1057) T) ((-1237 . -379) 152873) ((-420 . -1218) 152851) ((-1117 . -613) 152833) ((-314 . -848) NIL) ((-420 . -558) T) ((-225 . -308) T) ((-1227 . -791) 152786) ((-1227 . -794) 152739) ((-1248 . -726) T) ((-1227 . -726) T) ((-48 . -717) 152704) ((-225 . -1022) T) ((-353 . -1271) 152681) ((-1250 . -413) 152647) ((-718 . -726) T) ((-334 . -613) 152629) ((-1237 . -900) 152572) ((-1208 . -616) 152454) ((-112 . -613) 152436) ((-112 . -614) 152418) ((-718 . -475) T) ((-711 . -616) 152368) ((-1287 . -1051) 152352) ((-484 . -21) 152262) ((-127 . -491) 152246) ((-121 . -491) 152230) ((-484 . -25) 152081) ((-1287 . -640) 152051) ((-623 . -291) T) ((-587 . -1056) 152026) ((-439 . -1099) T) ((-1061 . -308) T) ((-117 . -291) T) ((-1103 . -102) T) ((-1003 . -102) T) ((-587 . -111) 151994) ((-1141 . -310) 151932) ((-1208 . -1049) T) ((-1061 . -1022) T) ((-66 . -1214) T) ((-1054 . -25) T) ((-1054 . -21) T) ((-711 . -1049) T) ((-387 . -21) T) ((-387 . -25) T) ((-694 . -516) NIL) ((-1024 . -172) T) ((-711 . -243) T) ((-1061 . -547) T) ((-712 . -646) 151842) ((-508 . -102) T) ((-504 . -102) T) ((-356 . -172) T) ((-345 . -613) 151824) ((-409 . -1051) 151776) ((-396 . -613) 151758) ((-1119 . -848) T) ((-476 . -726) T) ((-892 . -1038) 151726) ((-409 . -640) 151678) ((-108 . -850) T) ((-658 . -1056) 151662) ((-489 . -131) T) ((-1250 . -1057) T) ((-217 . -131) T) ((-1155 . -102) 151640) ((-99 . -1099) T) ((-245 . -666) 151624) ((-245 . -651) 151608) ((-658 . -111) 151587) ((-587 . -616) 151571) ((-317 . -413) 151555) ((-245 . -375) 151539) ((-1158 . -235) 151486) ((-999 . -231) 151470) ((-74 . -1214) T) ((-48 . -172) T) ((-701 . -389) T) ((-701 . -143) T) ((-1287 . -102) T) ((-1194 . -616) 151452) ((-1086 . -1056) 151295) ((-265 . -909) 151274) ((-247 . -909) 151253) ((-782 . -1056) 151076) ((-780 . -1056) 150919) ((-608 . -1214) T) ((-1163 . -613) 150901) ((-1086 . -111) 150730) ((-1046 . -102) T) ((-477 . -1214) T) ((-463 . -1056) 150701) ((-456 . -1056) 150544) ((-664 . -648) 150528) ((-871 . -308) T) ((-782 . -111) 150337) ((-780 . -111) 150166) ((-357 . -648) 150118) ((-354 . -648) 150070) ((-346 . -648) 150022) ((-265 . -648) 149947) ((-247 . -648) 149872) ((-1157 . -850) T) ((-1087 . -1038) 149856) ((-463 . -111) 149817) ((-456 . -111) 149646) ((-1075 . -1038) 149623) ((-1000 . -34) T) ((-966 . -613) 149605) ((-958 . -1214) T) ((-126 . -1010) 149589) ((-963 . -1111) T) ((-871 . -1022) NIL) ((-735 . -1111) T) ((-715 . -1111) T) ((-658 . -616) 149507) ((-1264 . -491) 149491) ((-1141 . -38) 149451) ((-963 . -23) T) ((-910 . -648) 149416) ((-865 . -1099) T) ((-843 . -102) T) ((-817 . -21) T) ((-635 . -1051) 149400) ((-607 . -1051) 149384) ((-817 . -25) T) ((-735 . -23) T) ((-715 . -23) T) ((-635 . -640) 149368) ((-110 . -661) T) ((-607 . -640) 149352) ((-583 . -1056) 149317) ((-520 . -1056) 149262) ((-227 . -57) 149220) ((-455 . -23) T) ((-409 . -102) T) ((-264 . -102) T) ((-694 . -291) T) ((-866 . -38) 149190) ((-583 . -111) 149146) ((-520 . -111) 149075) ((-1086 . -616) 148811) ((-420 . -1111) T) ((-317 . -1057) 148701) ((-314 . -1057) T) ((-128 . -1214) T) ((-782 . -616) 148449) ((-780 . -616) 148215) ((-658 . -1049) T) ((-1292 . -1099) T) ((-456 . -616) 148000) ((-169 . -308) 147931) ((-420 . -23) T) ((-40 . -613) 147913) ((-40 . -614) 147897) ((-108 . -992) 147879) ((-116 . -869) 147863) ((-649 . -616) 147847) ((-48 . -516) 147813) ((-1200 . -1010) 147797) ((-1180 . -613) 147764) ((-1187 . -34) T) ((-954 . -613) 147730) ((-921 . -613) 147712) ((-1112 . -850) 147663) ((-771 . -613) 147645) ((-672 . -613) 147627) ((-1155 . -310) 147565) ((-481 . -34) T) ((-1091 . -1214) T) ((-479 . -454) T) ((-1140 . -34) T) ((-1086 . -1049) T) ((-50 . -616) 147534) ((-782 . -1049) T) ((-780 . -1049) T) ((-647 . -235) 147518) ((-632 . -235) 147464) ((-583 . -616) 147414) ((-520 . -616) 147344) ((-1237 . -308) 147323) ((-1086 . -327) 147284) ((-456 . -1049) T) ((-1177 . -21) T) ((-1086 . -233) 147263) ((-782 . -327) 147240) ((-782 . -233) T) ((-780 . -327) 147212) ((-731 . -1218) 147191) ((-328 . -651) 147175) ((-1177 . -25) T) ((-59 . -34) T) ((-521 . -34) T) ((-518 . -34) T) ((-456 . -327) 147154) ((-328 . -375) 147138) ((-499 . -34) T) ((-498 . -34) T) ((-1003 . -1150) NIL) ((-731 . -558) 147069) ((-635 . -102) T) ((-607 . -102) T) ((-357 . -726) T) ((-354 . -726) T) ((-346 . -726) T) ((-265 . -726) T) ((-247 . -726) T) ((-1046 . -310) 146977) ((-901 . -1099) 146955) ((-50 . -1049) T) ((-1276 . -21) T) ((-1276 . -25) T) ((-1173 . -558) 146934) ((-1172 . -1218) 146913) ((-1172 . -558) 146864) ((-583 . -1049) T) ((-520 . -1049) T) ((-1166 . -1218) 146843) ((-363 . -1038) 146827) ((-323 . -1038) 146811) ((-1024 . -291) T) ((-381 . -886) 146793) ((-1166 . -558) 146744) ((-1003 . -38) 146689) ((-999 . -646) 146612) ((-799 . -1111) T) ((-910 . -726) T) ((-583 . -243) T) ((-583 . -233) T) ((-520 . -233) T) ((-520 . -243) T) ((-1125 . -558) 146591) ((-356 . -291) T) ((-647 . -695) 146575) ((-381 . -1038) 146535) ((-295 . -1051) 146456) ((-1119 . -1057) T) ((-103 . -125) 146440) ((-295 . -640) 146382) ((-799 . -23) T) ((-1286 . -1281) 146358) ((-1264 . -287) 146335) ((-409 . -310) 146300) ((-1284 . -1281) 146279) ((-1250 . -1099) T) ((-870 . -613) 146261) ((-836 . -1038) 146230) ((-203 . -787) T) ((-202 . -787) T) ((-201 . -787) T) ((-200 . -787) T) ((-199 . -787) T) ((-198 . -787) T) ((-197 . -787) T) ((-196 . -787) T) ((-195 . -787) T) ((-194 . -787) T) ((-549 . -613) 146212) ((-497 . -1002) T) ((-275 . -839) T) ((-274 . -839) T) ((-273 . -839) T) ((-272 . -839) T) ((-48 . -291) T) ((-271 . -839) T) ((-270 . -839) T) ((-269 . -839) T) ((-193 . -787) T) ((-612 . -850) T) ((-654 . -413) 146196) ((-223 . -616) 146158) ((-110 . -850) T) ((-653 . -21) T) ((-653 . -25) T) ((-1287 . -38) 146128) ((-117 . -287) 146079) ((-1264 . -19) 146063) ((-1264 . -604) 146040) ((-1277 . -1099) T) ((-353 . -1051) 145985) ((-1076 . -1099) T) ((-987 . -1099) T) ((-963 . -131) T) ((-737 . -1099) T) ((-353 . -640) 145930) ((-735 . -131) T) ((-715 . -131) T) ((-513 . -793) T) ((-513 . -794) T) ((-455 . -131) T) ((-409 . -1150) 145908) ((-223 . -1049) T) ((-295 . -102) 145690) ((-141 . -1099) T) ((-699 . -1002) T) ((-91 . -1214) T) ((-127 . -613) 145622) ((-121 . -613) 145554) ((-1292 . -172) T) ((-1172 . -365) 145533) ((-1166 . -365) 145512) ((-317 . -1099) T) ((-420 . -131) T) ((-314 . -1099) T) ((-409 . -38) 145464) ((-1132 . -102) T) ((-1250 . -717) 145356) ((-654 . -1057) T) ((-1134 . -1259) T) ((-320 . -145) 145335) ((-320 . -147) 145314) ((-136 . -1099) T) ((-139 . -1099) T) ((-114 . -1099) T) ((-858 . -102) T) ((-582 . -613) 145296) ((-566 . -614) 145195) ((-566 . -613) 145177) ((-497 . -613) 145159) ((-497 . -614) 145104) ((-487 . -23) T) ((-484 . -850) 145055) ((-489 . -639) 145037) ((-965 . -613) 145019) ((-217 . -639) 145001) ((-225 . -406) T) ((-662 . -648) 144985) ((-55 . -613) 144967) ((-1171 . -920) 144946) ((-731 . -1111) T) ((-353 . -102) T) ((-1213 . -1082) T) ((-1119 . -844) T) ((-818 . -850) T) ((-731 . -23) T) ((-345 . -1056) 144891) ((-1157 . -1156) T) ((-1146 . -107) 144875) ((-1173 . -1111) T) ((-1172 . -1111) T) ((-517 . -1038) 144859) ((-1166 . -1111) T) ((-1125 . -1111) T) ((-345 . -111) 144788) ((-1004 . -1218) T) ((-126 . -1214) T) ((-914 . -1218) T) ((-694 . -287) NIL) ((-1265 . -613) 144770) ((-1173 . -23) T) ((-1172 . -23) T) ((-1166 . -23) T) ((-1004 . -558) T) ((-1141 . -231) 144754) ((-914 . -558) T) ((-1125 . -23) T) ((-248 . -613) 144736) ((-1074 . -1099) T) ((-799 . -131) T) ((-710 . -613) 144718) ((-317 . -717) 144628) ((-314 . -717) 144557) ((-699 . -613) 144539) ((-699 . -614) 144484) ((-409 . -402) 144468) ((-440 . -1099) T) ((-489 . -25) T) ((-489 . -21) T) ((-1119 . -1099) T) ((-217 . -25) T) ((-217 . -21) T) ((-712 . -413) 144452) ((-714 . -1038) 144421) ((-1264 . -613) 144333) ((-1264 . -614) 144294) ((-1250 . -172) T) ((-245 . -34) T) ((-345 . -616) 144224) ((-396 . -616) 144206) ((-926 . -974) T) ((-1200 . -1214) T) ((-662 . -791) 144185) ((-662 . -794) 144164) ((-400 . -397) T) ((-525 . -102) 144142) ((-1035 . -1099) T) ((-222 . -995) 144126) ((-506 . -102) T) ((-623 . -613) 144108) ((-45 . -850) NIL) ((-623 . -614) 144085) ((-1035 . -610) 144060) ((-901 . -516) 143993) ((-345 . -1049) T) ((-117 . -614) NIL) ((-117 . -613) 143975) ((-872 . -1214) T) ((-670 . -419) 143959) ((-670 . -1122) 143904) ((-502 . -151) 143886) ((-345 . -233) T) ((-345 . -243) T) ((-40 . -1056) 143831) ((-872 . -884) 143815) ((-872 . -886) 143740) ((-712 . -1057) T) ((-694 . -1002) NIL) ((-1248 . -47) 143710) ((-1227 . -47) 143687) ((-1140 . -1010) 143658) ((-3 . |UnionCategory|) T) ((-1119 . -717) 143645) ((-1104 . -613) 143627) ((-1079 . -147) 143606) ((-1079 . -145) 143557) ((-966 . -616) 143541) ((-225 . -920) T) ((-40 . -111) 143470) ((-872 . -1038) 143334) ((-1004 . -365) T) ((-1003 . -231) 143311) ((-701 . -1051) 143298) ((-914 . -365) T) ((-701 . -640) 143285) ((-320 . -1202) 143251) ((-381 . -308) T) ((-320 . -1199) 143217) ((-317 . -172) 143196) ((-314 . -172) T) ((-583 . -1283) 143183) ((-520 . -1283) 143160) ((-361 . -147) 143139) ((-116 . -1051) 143126) ((-361 . -145) 143077) ((-355 . -147) 143056) ((-355 . -145) 143007) ((-347 . -147) 142986) ((-608 . -1190) 142962) ((-116 . -640) 142949) ((-347 . -145) 142900) ((-320 . -35) 142866) ((-477 . -1190) 142845) ((0 . |EnumerationCategory|) T) ((-320 . -95) 142811) ((-381 . -1022) T) ((-108 . -147) T) ((-108 . -145) NIL) ((-45 . -235) 142761) ((-654 . -1099) T) ((-608 . -107) 142708) ((-487 . -131) T) ((-477 . -107) 142658) ((-240 . -1111) 142568) ((-872 . -379) 142552) ((-872 . -340) 142536) ((-240 . -23) 142406) ((-40 . -616) 142336) ((-1061 . -920) T) ((-1061 . -820) T) ((-583 . -370) T) ((-520 . -370) T) ((-1277 . -516) 142269) ((-1256 . -558) 142248) ((-353 . -1150) T) ((-328 . -34) T) ((-44 . -419) 142232) ((-1180 . -616) 142168) ((-873 . -1214) T) ((-392 . -744) 142152) ((-1249 . -1218) 142131) ((-1249 . -558) 142082) ((-1141 . -646) 142041) ((-731 . -131) T) ((-672 . -616) 142025) ((-1228 . -1218) 142004) ((-1228 . -558) 141955) ((-1227 . -1214) 141934) ((-1227 . -886) 141807) ((-1227 . -884) 141777) ((-1173 . -131) T) ((-312 . -1082) T) ((-1172 . -131) T) ((-737 . -516) 141710) ((-1166 . -131) T) ((-1125 . -131) T) ((-893 . -1099) T) ((-144 . -844) T) ((-1024 . -1002) T) ((-691 . -613) 141692) ((-1004 . -23) T) ((-525 . -310) 141630) ((-1004 . -1111) T) ((-141 . -516) NIL) ((-866 . -646) 141575) ((-1003 . -351) NIL) ((-971 . -23) T) ((-914 . -1111) T) ((-353 . -38) 141540) ((-914 . -23) T) ((-872 . -900) 141499) ((-82 . -613) 141481) ((-40 . -1049) T) ((-870 . -1056) 141468) ((-870 . -111) 141453) ((-701 . -102) T) ((-694 . -613) 141435) ((-602 . -1214) T) ((-597 . -558) 141414) ((-429 . -1111) T) ((-341 . -1051) 141398) ((-213 . -1099) T) ((-174 . -1051) 141330) ((-476 . -47) 141300) ((-134 . -102) T) ((-40 . -233) 141272) ((-40 . -243) T) ((-116 . -102) T) ((-596 . -558) 141251) ((-341 . -640) 141235) ((-694 . -614) 141143) ((-317 . -516) 141109) ((-174 . -640) 141041) ((-314 . -516) 140933) ((-1248 . -1038) 140917) ((-1227 . -1038) 140703) ((-999 . -413) 140687) ((-429 . -23) T) ((-1119 . -172) T) ((-1250 . -291) T) ((-654 . -717) 140657) ((-144 . -1099) T) ((-48 . -1002) T) ((-409 . -231) 140641) ((-296 . -235) 140591) ((-871 . -920) T) ((-871 . -820) NIL) ((-870 . -616) 140563) ((-864 . -850) T) ((-1227 . -340) 140533) ((-1227 . -379) 140503) ((-222 . -1120) 140487) ((-1264 . -289) 140464) ((-1208 . -648) 140389) ((-1003 . -646) 140319) ((-963 . -21) T) ((-963 . -25) T) ((-735 . -21) T) ((-735 . -25) T) ((-715 . -21) T) ((-715 . -25) T) ((-711 . -648) 140284) ((-455 . -21) T) ((-455 . -25) T) ((-341 . -102) T) ((-174 . -102) T) ((-999 . -1057) T) ((-870 . -1049) T) ((-774 . -102) T) ((-1249 . -365) 140263) ((-1248 . -900) 140169) ((-1228 . -365) 140148) ((-1227 . -900) 139999) ((-1024 . -613) 139981) ((-409 . -828) 139934) ((-1173 . -495) 139900) ((-169 . -920) 139831) ((-1172 . -495) 139797) ((-1166 . -495) 139763) ((-712 . -1099) T) ((-1125 . -495) 139729) ((-582 . -1056) 139716) ((-566 . -1056) 139703) ((-497 . -1056) 139668) ((-317 . -291) 139647) ((-314 . -291) T) ((-356 . -613) 139629) ((-420 . -25) T) ((-420 . -21) T) ((-99 . -287) 139608) ((-582 . -111) 139593) ((-566 . -111) 139578) ((-497 . -111) 139534) ((-1175 . -886) 139501) ((-901 . -491) 139485) ((-48 . -613) 139467) ((-48 . -614) 139412) ((-240 . -131) 139282) ((-1287 . -646) 139241) ((-1237 . -920) 139220) ((-816 . -1218) 139199) ((-390 . -492) 139180) ((-1035 . -516) 139024) ((-390 . -613) 138990) ((-816 . -558) 138921) ((-587 . -648) 138896) ((-265 . -47) 138868) ((-247 . -47) 138825) ((-533 . -511) 138802) ((-582 . -616) 138774) ((-566 . -616) 138746) ((-497 . -616) 138679) ((-1073 . -1214) T) ((-1000 . -1214) T) ((-1256 . -23) T) ((-699 . -1056) 138644) ((-1256 . -1111) T) ((-1249 . -1111) T) ((-1249 . -23) T) ((-1228 . -1111) T) ((-1228 . -23) T) ((-1003 . -372) 138616) ((-112 . -370) T) ((-476 . -900) 138522) ((-1208 . -726) T) ((-904 . -613) 138504) ((-55 . -616) 138486) ((-91 . -107) 138470) ((-1119 . -291) T) ((-905 . -850) 138421) ((-701 . -1150) T) ((-699 . -111) 138377) ((-843 . -646) 138294) ((-597 . -1111) T) ((-596 . -1111) T) ((-712 . -717) 138123) ((-711 . -726) T) ((-1004 . -131) T) ((-971 . -131) T) ((-489 . -850) T) ((-914 . -131) T) ((-799 . -25) T) ((-799 . -21) T) ((-217 . -850) T) ((-409 . -646) 138060) ((-582 . -1049) T) ((-566 . -1049) T) ((-497 . -1049) T) ((-597 . -23) T) ((-345 . -1283) 138037) ((-320 . -454) 138016) ((-341 . -310) 138003) ((-596 . -23) T) ((-429 . -131) T) ((-658 . -648) 137977) ((-245 . -1010) 137961) ((-872 . -308) T) ((-1288 . -1278) 137945) ((-771 . -792) T) ((-771 . -795) T) ((-701 . -38) 137932) ((-566 . -233) T) ((-497 . -243) T) ((-497 . -233) T) ((-1149 . -235) 137882) ((-1086 . -909) 137861) ((-116 . -38) 137848) ((-209 . -800) T) ((-208 . -800) T) ((-207 . -800) T) ((-206 . -800) T) ((-872 . -1022) 137826) ((-1277 . -491) 137810) ((-782 . -909) 137789) ((-780 . -909) 137768) ((-1187 . -1214) T) ((-456 . -909) 137747) ((-737 . -491) 137731) ((-1086 . -648) 137656) ((-699 . -616) 137591) ((-782 . -648) 137516) ((-623 . -1056) 137503) ((-481 . -1214) T) ((-345 . -370) T) ((-141 . -491) 137485) ((-780 . -648) 137410) ((-1140 . -1214) T) ((-551 . -850) T) ((-463 . -648) 137381) ((-265 . -886) 137240) ((-247 . -886) NIL) ((-117 . -1056) 137185) ((-456 . -648) 137110) ((-664 . -1038) 137087) ((-623 . -111) 137072) ((-392 . -1051) 137056) ((-357 . -1038) 137040) ((-354 . -1038) 137024) ((-346 . -1038) 137008) ((-265 . -1038) 136852) ((-247 . -1038) 136728) ((-117 . -111) 136657) ((-59 . -1214) T) ((-392 . -640) 136641) ((-621 . -1051) 136625) ((-521 . -1214) T) ((-518 . -1214) T) ((-499 . -1214) T) ((-498 . -1214) T) ((-439 . -613) 136607) ((-436 . -613) 136589) ((-621 . -640) 136573) ((-3 . -102) T) ((-1027 . -1207) 136542) ((-833 . -102) T) ((-689 . -57) 136500) ((-699 . -1049) T) ((-635 . -646) 136469) ((-607 . -646) 136438) ((-50 . -648) 136412) ((-290 . -454) T) ((-478 . -1207) 136381) ((0 . -102) T) ((-583 . -648) 136346) ((-520 . -648) 136291) ((-49 . -102) T) ((-910 . -1038) 136278) ((-699 . -243) T) ((-1079 . -411) 136257) ((-731 . -639) 136205) ((-999 . -1099) T) ((-712 . -172) 136096) ((-623 . -616) 135991) ((-489 . -992) 135973) ((-265 . -379) 135957) ((-247 . -379) 135941) ((-401 . -1099) T) ((-1026 . -102) 135919) ((-341 . -38) 135903) ((-217 . -992) 135885) ((-117 . -616) 135815) ((-174 . -38) 135747) ((-1248 . -308) 135726) ((-1227 . -308) 135705) ((-658 . -726) T) ((-99 . -613) 135687) ((-479 . -1051) 135652) ((-1166 . -639) 135604) ((-479 . -640) 135569) ((-487 . -25) T) ((-487 . -21) T) ((-1227 . -1022) 135521) ((-623 . -1049) T) ((-381 . -406) T) ((-392 . -102) T) ((-1104 . -618) 135436) ((-265 . -900) 135382) ((-247 . -900) 135359) ((-117 . -1049) T) ((-816 . -1111) T) ((-1086 . -726) T) ((-623 . -233) 135338) ((-621 . -102) T) ((-782 . -726) T) ((-780 . -726) T) ((-415 . -1111) T) ((-117 . -243) T) ((-40 . -370) NIL) ((-117 . -233) NIL) ((-1219 . -850) T) ((-456 . -726) T) ((-816 . -23) T) ((-731 . -25) T) ((-731 . -21) T) ((-1076 . -287) 135317) ((-78 . -398) T) ((-78 . -397) T) ((-535 . -767) 135299) ((-694 . -1056) 135249) ((-1256 . -131) T) ((-1249 . -131) T) ((-1228 . -131) T) ((-1173 . -25) T) ((-1141 . -413) 135233) ((-635 . -369) 135165) ((-607 . -369) 135097) ((-1155 . -1148) 135081) ((-103 . -1099) 135059) ((-1173 . -21) T) ((-1172 . -21) T) ((-865 . -613) 135041) ((-999 . -717) 134989) ((-223 . -648) 134956) ((-694 . -111) 134890) ((-50 . -726) T) ((-1172 . -25) T) ((-353 . -351) T) ((-1166 . -21) T) ((-1079 . -454) 134841) ((-1166 . -25) T) ((-712 . -516) 134788) ((-583 . -726) T) ((-520 . -726) T) ((-1125 . -21) T) ((-1125 . -25) T) ((-597 . -131) T) ((-295 . -646) 134523) ((-596 . -131) T) ((-361 . -454) T) ((-355 . -454) T) ((-347 . -454) T) ((-476 . -308) 134502) ((-1222 . -102) T) ((-314 . -287) 134437) ((-108 . -454) T) ((-79 . -443) T) ((-79 . -397) T) ((-479 . -102) T) ((-691 . -616) 134421) ((-1292 . -613) 134403) ((-1292 . -614) 134385) ((-1079 . -404) 134364) ((-1035 . -491) 134295) ((-566 . -795) T) ((-566 . -792) T) ((-1062 . -235) 134241) ((-361 . -404) 134192) ((-355 . -404) 134143) ((-347 . -404) 134094) ((-1279 . -1111) T) ((-1288 . -1051) 134078) ((-383 . -1051) 134062) ((-1288 . -640) 134032) ((-383 . -640) 134002) ((-694 . -616) 133937) ((-1279 . -23) T) ((-1266 . -102) T) ((-175 . -613) 133919) ((-1141 . -1057) T) ((-549 . -370) T) ((-670 . -744) 133903) ((-1177 . -145) 133882) ((-1177 . -147) 133861) ((-1145 . -1099) T) ((-1145 . -1070) 133830) ((-69 . -1214) T) ((-1024 . -1056) 133767) ((-353 . -646) 133697) ((-866 . -1057) T) ((-240 . -639) 133603) ((-694 . -1049) T) ((-356 . -1056) 133548) ((-61 . -1214) T) ((-1024 . -111) 133464) ((-901 . -613) 133375) ((-694 . -243) T) ((-694 . -233) NIL) ((-843 . -848) 133354) ((-699 . -795) T) ((-699 . -792) T) ((-1003 . -413) 133331) ((-356 . -111) 133260) ((-381 . -920) T) ((-409 . -848) 133239) ((-712 . -291) 133150) ((-223 . -726) T) ((-1256 . -495) 133116) ((-1249 . -495) 133082) ((-1228 . -495) 133048) ((-580 . -1099) T) ((-317 . -1002) 133027) ((-222 . -1099) 133005) ((-1221 . -844) T) ((-320 . -973) 132967) ((-105 . -102) T) ((-48 . -1056) 132932) ((-1288 . -102) T) ((-383 . -102) T) ((-48 . -111) 132888) ((-1004 . -639) 132870) ((-1250 . -613) 132852) ((-533 . -102) T) ((-502 . -102) T) ((-1132 . -1133) 132836) ((-152 . -1271) 132820) ((-245 . -1214) T) ((-1213 . -102) T) ((-1024 . -616) 132757) ((-1171 . -1218) 132736) ((-356 . -616) 132666) ((-1124 . -1218) 132645) ((-240 . -21) 132555) ((-240 . -25) 132406) ((-127 . -119) 132390) ((-121 . -119) 132374) ((-44 . -744) 132358) ((-1171 . -558) 132269) ((-1124 . -558) 132200) ((-1221 . -1099) T) ((-1035 . -287) 132175) ((-1165 . -1082) T) ((-994 . -1082) T) ((-816 . -131) T) ((-117 . -795) NIL) ((-117 . -792) NIL) ((-357 . -308) T) ((-354 . -308) T) ((-346 . -308) T) ((-252 . -1111) 132085) ((-251 . -1111) 131995) ((-1024 . -1049) T) ((-1003 . -1057) T) ((-48 . -616) 131928) ((-345 . -648) 131873) ((-621 . -38) 131857) ((-1277 . -613) 131819) ((-1277 . -614) 131780) ((-1076 . -613) 131762) ((-1024 . -243) T) ((-356 . -1049) T) ((-815 . -1271) 131732) ((-252 . -23) T) ((-251 . -23) T) ((-987 . -613) 131714) ((-737 . -614) 131675) ((-737 . -613) 131657) ((-799 . -850) 131636) ((-1158 . -151) 131583) ((-999 . -516) 131495) ((-356 . -233) T) ((-356 . -243) T) ((-390 . -616) 131476) ((-1004 . -25) T) ((-141 . -613) 131458) ((-141 . -614) 131417) ((-910 . -308) T) ((-1004 . -21) T) ((-971 . -25) T) ((-914 . -21) T) ((-914 . -25) T) ((-429 . -21) T) ((-429 . -25) T) ((-843 . -413) 131401) ((-48 . -1049) T) ((-1286 . -1278) 131385) ((-1284 . -1278) 131369) ((-1035 . -604) 131344) ((-317 . -614) 131205) ((-317 . -613) 131187) ((-314 . -614) NIL) ((-314 . -613) 131169) ((-48 . -243) T) ((-48 . -233) T) ((-654 . -287) 131130) ((-552 . -235) 131080) ((-139 . -613) 131047) ((-136 . -613) 131029) ((-114 . -613) 131011) ((-479 . -38) 130976) ((-1288 . -1285) 130955) ((-1279 . -131) T) ((-1287 . -1057) T) ((-1081 . -102) T) ((-88 . -1214) T) ((-502 . -310) NIL) ((-1000 . -107) 130939) ((-889 . -1099) T) ((-885 . -1099) T) ((-1264 . -651) 130923) ((-1264 . -375) 130907) ((-328 . -1214) T) ((-594 . -850) T) ((-1141 . -1099) T) ((-1141 . -1053) 130847) ((-103 . -516) 130780) ((-927 . -613) 130762) ((-345 . -726) T) ((-30 . -613) 130744) ((-866 . -1099) T) ((-843 . -1057) 130723) ((-40 . -648) 130668) ((-225 . -1218) T) ((-409 . -1057) T) ((-1157 . -151) 130650) ((-999 . -291) 130601) ((-617 . -1099) T) ((-225 . -558) T) ((-320 . -1245) 130585) ((-320 . -1242) 130555) ((-701 . -646) 130527) ((-1187 . -1190) 130506) ((-1074 . -613) 130488) ((-1187 . -107) 130438) ((-647 . -151) 130422) ((-632 . -151) 130368) ((-116 . -646) 130340) ((-481 . -1190) 130319) ((-489 . -147) T) ((-489 . -145) NIL) ((-1119 . -614) 130234) ((-440 . -613) 130216) ((-217 . -147) T) ((-217 . -145) NIL) ((-1119 . -613) 130198) ((-129 . -102) T) ((-52 . -102) T) ((-1228 . -639) 130150) ((-481 . -107) 130100) ((-993 . -23) T) ((-1288 . -38) 130070) ((-1171 . -1111) T) ((-1124 . -1111) T) ((-1061 . -1218) T) ((-312 . -102) T) ((-854 . -1111) T) ((-952 . -1218) 130049) ((-483 . -1218) 130028) ((-1061 . -558) T) ((-952 . -558) 129959) ((-1171 . -23) T) ((-1124 . -23) T) ((-854 . -23) T) ((-483 . -558) 129890) ((-1141 . -717) 129822) ((-670 . -1051) 129806) ((-1145 . -516) 129739) ((-670 . -640) 129723) ((-1035 . -614) NIL) ((-1035 . -613) 129705) ((-96 . -1082) T) ((-866 . -717) 129675) ((-1208 . -47) 129644) ((-252 . -131) T) ((-251 . -131) T) ((-1103 . -1099) T) ((-1003 . -1099) T) ((-62 . -613) 129626) ((-1166 . -850) NIL) ((-1024 . -792) T) ((-1024 . -795) T) ((-1292 . -1056) 129613) ((-1292 . -111) 129598) ((-1256 . -25) T) ((-1256 . -21) T) ((-870 . -648) 129585) ((-1249 . -21) T) ((-1249 . -25) T) ((-1228 . -21) T) ((-1228 . -25) T) ((-1027 . -151) 129569) ((-872 . -820) 129548) ((-872 . -920) T) ((-712 . -287) 129475) ((-597 . -21) T) ((-341 . -646) 129434) ((-597 . -25) T) ((-596 . -21) T) ((-174 . -646) 129351) ((-40 . -726) T) ((-222 . -516) 129284) ((-596 . -25) T) ((-478 . -151) 129268) ((-465 . -151) 129252) ((-921 . -794) T) ((-921 . -726) T) ((-771 . -793) T) ((-771 . -794) T) ((-508 . -1099) T) ((-504 . -1099) T) ((-771 . -726) T) ((-225 . -365) T) ((-1286 . -1051) 129236) ((-1284 . -1051) 129220) ((-1286 . -640) 129190) ((-1155 . -1099) 129168) ((-871 . -1218) T) ((-1284 . -640) 129138) ((-654 . -613) 129120) ((-871 . -558) T) ((-694 . -370) NIL) ((-44 . -1051) 129104) ((-1292 . -616) 129086) ((-1287 . -1099) T) ((-670 . -102) T) ((-361 . -1271) 129070) ((-355 . -1271) 129054) ((-44 . -640) 129038) ((-347 . -1271) 129022) ((-550 . -102) T) ((-522 . -850) 129001) ((-1046 . -1099) T) ((-817 . -454) 128980) ((-152 . -1051) 128964) ((-1046 . -1070) 128893) ((-1027 . -976) 128862) ((-819 . -1111) T) ((-1003 . -717) 128807) ((-152 . -640) 128791) ((-388 . -1111) T) ((-478 . -976) 128760) ((-465 . -976) 128729) ((-110 . -151) 128711) ((-73 . -613) 128693) ((-893 . -613) 128675) ((-1079 . -724) 128654) ((-1292 . -1049) T) ((-816 . -639) 128602) ((-295 . -1057) 128544) ((-169 . -1218) 128449) ((-225 . -1111) T) ((-325 . -23) T) ((-1166 . -992) 128401) ((-843 . -1099) T) ((-1250 . -1056) 128306) ((-1125 . -740) 128285) ((-1248 . -920) 128264) ((-1227 . -920) 128243) ((-870 . -726) T) ((-169 . -558) 128154) ((-582 . -648) 128141) ((-566 . -648) 128128) ((-409 . -1099) T) ((-264 . -1099) T) ((-213 . -613) 128110) ((-497 . -648) 128075) ((-225 . -23) T) ((-1227 . -820) 128028) ((-1286 . -102) T) ((-356 . -1283) 128005) ((-1284 . -102) T) ((-1250 . -111) 127897) ((-815 . -1051) 127794) ((-815 . -640) 127736) ((-144 . -613) 127718) ((-993 . -131) T) ((-44 . -102) T) ((-240 . -850) 127669) ((-1237 . -1218) 127648) ((-103 . -491) 127632) ((-1287 . -717) 127602) ((-1086 . -47) 127563) ((-1061 . -1111) T) ((-952 . -1111) T) ((-127 . -34) T) ((-121 . -34) T) ((-782 . -47) 127540) ((-780 . -47) 127512) ((-1237 . -558) 127423) ((-356 . -370) T) ((-483 . -1111) T) ((-1171 . -131) T) ((-1124 . -131) T) ((-456 . -47) 127402) ((-871 . -365) T) ((-854 . -131) T) ((-152 . -102) T) ((-1061 . -23) T) ((-952 . -23) T) ((-573 . -558) T) ((-816 . -25) T) ((-816 . -21) T) ((-1141 . -516) 127335) ((-593 . -1082) T) ((-587 . -1038) 127319) ((-1250 . -616) 127193) ((-483 . -23) T) ((-353 . -1057) T) ((-1208 . -900) 127174) ((-670 . -310) 127112) ((-1112 . -1271) 127082) ((-699 . -648) 127047) ((-1003 . -172) T) ((-963 . -145) 127026) ((-635 . -1099) T) ((-607 . -1099) T) ((-963 . -147) 127005) ((-1004 . -850) T) ((-735 . -147) 126984) ((-735 . -145) 126963) ((-971 . -850) T) ((-833 . -646) 126880) ((-476 . -920) 126859) ((-320 . -1051) 126694) ((-317 . -1056) 126604) ((-314 . -1056) 126533) ((-999 . -287) 126491) ((-409 . -717) 126443) ((-320 . -640) 126284) ((-701 . -848) T) ((-1250 . -1049) T) ((-317 . -111) 126180) ((-314 . -111) 126093) ((-964 . -102) T) ((-815 . -102) 125883) ((-712 . -614) NIL) ((-712 . -613) 125865) ((-658 . -1038) 125761) ((-1250 . -327) 125705) ((-1035 . -289) 125680) ((-582 . -726) T) ((-566 . -794) T) ((-169 . -365) 125631) ((-566 . -791) T) ((-566 . -726) T) ((-497 . -726) T) ((-1145 . -491) 125615) ((-1086 . -886) NIL) ((-871 . -1111) T) ((-117 . -909) NIL) ((-1286 . -1285) 125591) ((-1284 . -1285) 125570) ((-782 . -886) NIL) ((-780 . -886) 125429) ((-1279 . -25) T) ((-1279 . -21) T) ((-1211 . -102) 125407) ((-1105 . -397) T) ((-623 . -648) 125394) ((-456 . -886) NIL) ((-675 . -102) 125372) ((-1086 . -1038) 125199) ((-871 . -23) T) ((-782 . -1038) 125058) ((-780 . -1038) 124915) ((-117 . -648) 124860) ((-456 . -1038) 124736) ((-317 . -616) 124300) ((-314 . -616) 124183) ((-392 . -646) 124152) ((-649 . -1038) 124136) ((-627 . -102) T) ((-222 . -491) 124120) ((-1264 . -34) T) ((-621 . -646) 124079) ((-290 . -1051) 124066) ((-136 . -616) 124050) ((-290 . -640) 124037) ((-635 . -717) 124021) ((-607 . -717) 124005) ((-670 . -38) 123965) ((-320 . -102) T) ((-85 . -613) 123947) ((-50 . -1038) 123931) ((-1119 . -1056) 123918) ((-1086 . -379) 123902) ((-782 . -379) 123886) ((-699 . -726) T) ((-699 . -794) T) ((-699 . -791) T) ((-583 . -1038) 123873) ((-520 . -1038) 123850) ((-60 . -57) 123812) ((-325 . -131) T) ((-317 . -1049) 123702) ((-314 . -1049) T) ((-169 . -1111) T) ((-780 . -379) 123686) ((-45 . -151) 123636) ((-1004 . -992) 123618) ((-456 . -379) 123602) ((-409 . -172) T) ((-317 . -243) 123581) ((-314 . -243) T) ((-314 . -233) NIL) ((-295 . -1099) 123363) ((-225 . -131) T) ((-1119 . -111) 123348) ((-169 . -23) T) ((-799 . -147) 123327) ((-799 . -145) 123306) ((-252 . -639) 123212) ((-251 . -639) 123118) ((-320 . -285) 123084) ((-1155 . -516) 123017) ((-479 . -646) 122967) ((-1132 . -1099) T) ((-225 . -1059) T) ((-815 . -310) 122905) ((-1086 . -900) 122840) ((-782 . -900) 122783) ((-780 . -900) 122767) ((-1286 . -38) 122737) ((-1284 . -38) 122707) ((-1237 . -1111) T) ((-855 . -1111) T) ((-456 . -900) 122684) ((-858 . -1099) T) ((-1237 . -23) T) ((-1119 . -616) 122656) ((-573 . -1111) T) ((-855 . -23) T) ((-623 . -726) T) ((-357 . -920) T) ((-354 . -920) T) ((-290 . -102) T) ((-346 . -920) T) ((-1061 . -131) T) ((-970 . -1082) T) ((-952 . -131) T) ((-117 . -794) NIL) ((-117 . -791) NIL) ((-117 . -726) T) ((-694 . -909) NIL) ((-1046 . -516) 122557) ((-483 . -131) T) ((-573 . -23) T) ((-675 . -310) 122495) ((-635 . -761) T) ((-607 . -761) T) ((-1228 . -850) NIL) ((-1079 . -1051) 122405) ((-1003 . -291) T) ((-694 . -648) 122355) ((-252 . -21) T) ((-353 . -1099) T) ((-252 . -25) T) ((-251 . -21) T) ((-251 . -25) T) ((-152 . -38) 122339) ((-2 . -102) T) ((-910 . -920) T) ((-1079 . -640) 122207) ((-484 . -1271) 122177) ((-1119 . -1049) T) ((-711 . -308) T) ((-361 . -1051) 122129) ((-355 . -1051) 122081) ((-347 . -1051) 122033) ((-361 . -640) 121985) ((-223 . -1038) 121962) ((-355 . -640) 121914) ((-108 . -1051) 121864) ((-347 . -640) 121816) ((-295 . -717) 121758) ((-701 . -1057) T) ((-489 . -454) T) ((-409 . -516) 121670) ((-108 . -640) 121620) ((-217 . -454) T) ((-1119 . -233) T) ((-296 . -151) 121570) ((-999 . -614) 121531) ((-999 . -613) 121513) ((-989 . -613) 121495) ((-116 . -1057) T) ((-654 . -1056) 121479) ((-225 . -495) T) ((-401 . -613) 121461) ((-401 . -614) 121438) ((-1054 . -1271) 121408) ((-654 . -111) 121387) ((-1141 . -491) 121371) ((-1288 . -646) 121330) ((-383 . -646) 121299) ((-815 . -38) 121269) ((-63 . -443) T) ((-63 . -397) T) ((-1158 . -102) T) ((-871 . -131) T) ((-486 . -102) 121247) ((-1292 . -370) T) ((-1079 . -102) T) ((-1060 . -102) T) ((-353 . -717) 121192) ((-731 . -147) 121171) ((-731 . -145) 121150) ((-654 . -616) 121068) ((-1024 . -648) 121005) ((-525 . -1099) 120983) ((-361 . -102) T) ((-355 . -102) T) ((-347 . -102) T) ((-108 . -102) T) ((-506 . -1099) T) ((-356 . -648) 120928) ((-1171 . -639) 120876) ((-1124 . -639) 120824) ((-387 . -511) 120803) ((-833 . -848) 120782) ((-381 . -1218) T) ((-694 . -726) T) ((-341 . -1057) T) ((-1228 . -992) 120734) ((-174 . -1057) T) ((-103 . -613) 120666) ((-1173 . -145) 120645) ((-1173 . -147) 120624) ((-381 . -558) T) ((-1172 . -147) 120603) ((-1172 . -145) 120582) ((-1166 . -145) 120489) ((-409 . -291) T) ((-1166 . -147) 120396) ((-1125 . -147) 120375) ((-1125 . -145) 120354) ((-320 . -38) 120195) ((-169 . -131) T) ((-314 . -795) NIL) ((-314 . -792) NIL) ((-654 . -1049) T) ((-48 . -648) 120160) ((-1112 . -1051) 120057) ((-893 . -616) 120034) ((-1112 . -640) 119976) ((-1165 . -102) T) ((-994 . -102) T) ((-993 . -21) T) ((-127 . -1010) 119960) ((-121 . -1010) 119944) ((-993 . -25) T) ((-901 . -119) 119928) ((-1157 . -102) T) ((-1237 . -131) T) ((-1171 . -25) T) ((-1171 . -21) T) ((-855 . -131) T) ((-1124 . -25) T) ((-1124 . -21) T) ((-854 . -25) T) ((-854 . -21) T) ((-782 . -308) 119907) ((-647 . -102) 119885) ((-632 . -102) T) ((-1158 . -310) 119680) ((-573 . -131) T) ((-621 . -848) 119659) ((-1155 . -491) 119643) ((-1149 . -151) 119593) ((-1145 . -613) 119555) ((-1145 . -614) 119516) ((-1024 . -791) T) ((-1024 . -794) T) ((-1024 . -726) T) ((-712 . -1056) 119339) ((-486 . -310) 119277) ((-455 . -419) 119247) ((-353 . -172) T) ((-290 . -38) 119234) ((-275 . -102) T) ((-274 . -102) T) ((-273 . -102) T) ((-272 . -102) T) ((-271 . -102) T) ((-270 . -102) T) ((-345 . -1038) 119211) ((-269 . -102) T) ((-212 . -102) T) ((-211 . -102) T) ((-209 . -102) T) ((-208 . -102) T) ((-207 . -102) T) ((-206 . -102) T) ((-203 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-194 . -102) T) ((-193 . -102) T) ((-356 . -726) T) ((-712 . -111) 119020) ((-670 . -231) 119004) ((-583 . -308) T) ((-520 . -308) T) ((-295 . -516) 118953) ((-108 . -310) NIL) ((-72 . -397) T) ((-1112 . -102) 118743) ((-833 . -413) 118727) ((-1119 . -795) T) ((-1119 . -792) T) ((-701 . -1099) T) ((-580 . -613) 118709) ((-381 . -365) T) ((-169 . -495) 118687) ((-222 . -613) 118619) ((-134 . -1099) T) ((-116 . -1099) T) ((-48 . -726) T) ((-1046 . -491) 118584) ((-141 . -427) 118566) ((-141 . -370) T) ((-1027 . -102) T) ((-514 . -511) 118545) ((-712 . -616) 118301) ((-478 . -102) T) ((-465 . -102) T) ((-1034 . -1111) T) ((-1221 . -613) 118283) ((-1180 . -1038) 118219) ((-1173 . -35) 118185) ((-1173 . -95) 118151) ((-1173 . -1202) 118117) ((-1173 . -1199) 118083) ((-1157 . -310) NIL) ((-89 . -398) T) ((-89 . -397) T) ((-1079 . -1150) 118062) ((-1172 . -1199) 118028) ((-1172 . -1202) 117994) ((-1034 . -23) T) ((-1172 . -95) 117960) ((-573 . -495) T) ((-1172 . -35) 117926) ((-1166 . -1199) 117892) ((-1166 . -1202) 117858) ((-1166 . -95) 117824) ((-363 . -1111) T) ((-361 . -1150) 117803) ((-355 . -1150) 117782) ((-347 . -1150) 117761) ((-1166 . -35) 117727) ((-1125 . -35) 117693) ((-1125 . -95) 117659) ((-108 . -1150) T) ((-1125 . -1202) 117625) ((-833 . -1057) 117604) ((-647 . -310) 117542) ((-632 . -310) 117393) ((-1125 . -1199) 117359) ((-712 . -1049) T) ((-1061 . -639) 117341) ((-1079 . -38) 117209) ((-952 . -639) 117157) ((-1004 . -147) T) ((-1004 . -145) NIL) ((-381 . -1111) T) ((-325 . -25) T) ((-323 . -23) T) ((-943 . -850) 117136) ((-712 . -327) 117113) ((-483 . -639) 117061) ((-40 . -1038) 116949) ((-712 . -233) T) ((-701 . -717) 116936) ((-341 . -1099) T) ((-174 . -1099) T) ((-332 . -850) T) ((-420 . -454) 116886) ((-381 . -23) T) ((-361 . -38) 116851) ((-355 . -38) 116816) ((-347 . -38) 116781) ((-80 . -443) T) ((-80 . -397) T) ((-225 . -25) T) ((-225 . -21) T) ((-836 . -1111) T) ((-108 . -38) 116731) ((-827 . -1111) T) ((-774 . -1099) T) ((-116 . -717) 116718) ((-672 . -1038) 116702) ((-612 . -102) T) ((-836 . -23) T) ((-827 . -23) T) ((-1155 . -287) 116679) ((-1112 . -310) 116617) ((-484 . -1051) 116514) ((-1101 . -235) 116498) ((-64 . -398) T) ((-64 . -397) T) ((-110 . -102) T) ((-484 . -640) 116440) ((-40 . -379) 116417) ((-96 . -102) T) ((-653 . -852) 116401) ((-1134 . -1082) T) ((-1061 . -21) T) ((-1061 . -25) T) ((-1054 . -1051) 116385) ((-815 . -231) 116354) ((-952 . -25) T) ((-952 . -21) T) ((-1054 . -640) 116296) ((-621 . -1057) T) ((-1119 . -370) T) ((-1027 . -310) 116234) ((-670 . -646) 116193) ((-483 . -25) T) ((-483 . -21) T) ((-387 . -1051) 116177) ((-889 . -613) 116159) ((-885 . -613) 116141) ((-525 . -516) 116074) ((-252 . -850) 116025) ((-251 . -850) 115976) ((-387 . -640) 115946) ((-871 . -639) 115923) ((-478 . -310) 115861) ((-465 . -310) 115799) ((-353 . -291) T) ((-1155 . -1252) 115783) ((-1141 . -613) 115745) ((-1141 . -614) 115706) ((-1139 . -102) T) ((-999 . -1056) 115602) ((-40 . -900) 115554) ((-1155 . -604) 115531) ((-1292 . -648) 115518) ((-866 . -492) 115495) ((-1062 . -151) 115441) ((-872 . -1218) T) ((-999 . -111) 115323) ((-341 . -717) 115307) ((-866 . -613) 115269) ((-174 . -717) 115201) ((-409 . -287) 115159) ((-872 . -558) T) ((-108 . -402) 115141) ((-84 . -386) T) ((-84 . -397) T) ((-701 . -172) T) ((-617 . -613) 115123) ((-99 . -726) T) ((-484 . -102) 114913) ((-99 . -475) T) ((-116 . -172) T) ((-1286 . -646) 114872) ((-1284 . -646) 114831) ((-1112 . -38) 114801) ((-169 . -639) 114749) ((-1054 . -102) T) ((-999 . -616) 114639) ((-871 . -25) T) ((-815 . -238) 114618) ((-871 . -21) T) ((-818 . -102) T) ((-44 . -646) 114561) ((-416 . -102) T) ((-387 . -102) T) ((-110 . -310) NIL) ((-227 . -102) 114539) ((-127 . -1214) T) ((-121 . -1214) T) ((-817 . -1051) 114490) ((-817 . -640) 114432) ((-1034 . -131) T) ((-670 . -369) 114416) ((-152 . -646) 114375) ((-999 . -1049) T) ((-1237 . -639) 114323) ((-1103 . -613) 114305) ((-1003 . -613) 114287) ((-517 . -23) T) ((-512 . -23) T) ((-345 . -308) T) ((-510 . -23) T) ((-323 . -131) T) ((-3 . -1099) T) ((-1003 . -614) 114271) ((-999 . -243) 114250) ((-999 . -233) 114229) ((-1292 . -726) T) ((-1256 . -145) 114208) ((-833 . -1099) T) ((-1256 . -147) 114187) ((-1249 . -147) 114166) ((-1249 . -145) 114145) ((-1248 . -1218) 114124) ((-1228 . -145) 114031) ((-1228 . -147) 113938) ((-1227 . -1218) 113917) ((-381 . -131) T) ((-566 . -886) 113899) ((0 . -1099) T) ((-174 . -172) T) ((-169 . -21) T) ((-169 . -25) T) ((-49 . -1099) T) ((-1250 . -648) 113804) ((-1248 . -558) 113755) ((-714 . -1111) T) ((-1227 . -558) 113706) ((-566 . -1038) 113688) ((-596 . -147) 113667) ((-596 . -145) 113646) ((-497 . -1038) 113589) ((-1134 . -1136) T) ((-87 . -386) T) ((-87 . -397) T) ((-872 . -365) T) ((-836 . -131) T) ((-827 . -131) T) ((-964 . -646) 113533) ((-714 . -23) T) ((-508 . -613) 113499) ((-504 . -613) 113481) ((-815 . -646) 113231) ((-1288 . -1057) T) ((-381 . -1059) T) ((-1026 . -1099) 113209) ((-55 . -1038) 113191) ((-901 . -34) T) ((-484 . -310) 113129) ((-593 . -102) T) ((-1155 . -614) 113090) ((-1155 . -613) 113022) ((-1177 . -1051) 112905) ((-45 . -102) T) ((-817 . -102) T) ((-1177 . -640) 112802) ((-1237 . -25) T) ((-1237 . -21) T) ((-855 . -25) T) ((-44 . -369) 112786) ((-855 . -21) T) ((-731 . -454) 112737) ((-1287 . -613) 112719) ((-1276 . -1051) 112689) ((-1054 . -310) 112627) ((-671 . -1082) T) ((-606 . -1082) T) ((-392 . -1099) T) ((-573 . -25) T) ((-573 . -21) T) ((-180 . -1082) T) ((-161 . -1082) T) ((-156 . -1082) T) ((-154 . -1082) T) ((-1276 . -640) 112597) ((-621 . -1099) T) ((-699 . -886) 112579) ((-1264 . -1214) T) ((-227 . -310) 112517) ((-144 . -370) T) ((-1046 . -614) 112459) ((-1046 . -613) 112402) ((-314 . -909) NIL) ((-1222 . -844) T) ((-699 . -1038) 112347) ((-711 . -920) T) ((-476 . -1218) 112326) ((-1172 . -454) 112305) ((-1166 . -454) 112284) ((-331 . -102) T) ((-872 . -1111) T) ((-320 . -646) 112166) ((-317 . -648) 111987) ((-314 . -648) 111916) ((-476 . -558) 111867) ((-341 . -516) 111833) ((-552 . -151) 111783) ((-40 . -308) T) ((-843 . -613) 111765) ((-701 . -291) T) ((-872 . -23) T) ((-381 . -495) T) ((-1079 . -231) 111735) ((-514 . -102) T) ((-409 . -614) 111542) ((-409 . -613) 111524) ((-264 . -613) 111506) ((-116 . -291) T) ((-1250 . -726) T) ((-1248 . -365) 111485) ((-1227 . -365) 111464) ((-1277 . -34) T) ((-1222 . -1099) T) ((-117 . -1214) T) ((-108 . -231) 111446) ((-1177 . -102) T) ((-479 . -1099) T) ((-525 . -491) 111430) ((-737 . -34) T) ((-653 . -1051) 111414) ((-484 . -38) 111384) ((-653 . -640) 111354) ((-141 . -34) T) ((-117 . -884) 111331) ((-117 . -886) NIL) ((-623 . -1038) 111214) ((-644 . -850) 111193) ((-1276 . -102) T) ((-296 . -102) T) ((-712 . -370) 111172) ((-117 . -1038) 111149) ((-392 . -717) 111133) ((-621 . -717) 111117) ((-45 . -310) 110921) ((-816 . -145) 110900) ((-816 . -147) 110879) ((-290 . -646) 110851) ((-1287 . -384) 110830) ((-819 . -850) T) ((-1266 . -1099) T) ((-1158 . -229) 110777) ((-388 . -850) 110756) ((-1256 . -1202) 110722) ((-1256 . -1199) 110688) ((-1249 . -1199) 110654) ((-517 . -131) T) ((-1249 . -1202) 110620) ((-1228 . -1199) 110586) ((-1228 . -1202) 110552) ((-1256 . -35) 110518) ((-1256 . -95) 110484) ((-635 . -613) 110453) ((-607 . -613) 110422) ((-225 . -850) T) ((-1249 . -95) 110388) ((-1249 . -35) 110354) ((-1248 . -1111) T) ((-1119 . -648) 110341) ((-1228 . -95) 110307) ((-1227 . -1111) T) ((-594 . -151) 110289) ((-1079 . -351) 110268) ((-174 . -291) T) ((-117 . -379) 110245) ((-117 . -340) 110222) ((-1228 . -35) 110188) ((-870 . -308) T) ((-314 . -794) NIL) ((-314 . -791) NIL) ((-317 . -726) 110037) ((-314 . -726) T) ((-476 . -365) 110016) ((-361 . -351) 109995) ((-355 . -351) 109974) ((-347 . -351) 109953) ((-317 . -475) 109932) ((-1248 . -23) T) ((-1227 . -23) T) ((-718 . -1111) T) ((-714 . -131) T) ((-653 . -102) T) ((-479 . -717) 109897) ((-45 . -283) 109847) ((-105 . -1099) T) ((-68 . -613) 109829) ((-970 . -102) T) ((-864 . -102) T) ((-623 . -900) 109788) ((-1288 . -1099) T) ((-383 . -1099) T) ((-82 . -1214) T) ((-1213 . -1099) T) ((-1061 . -850) T) ((-117 . -900) NIL) ((-782 . -920) 109767) ((-713 . -850) T) ((-533 . -1099) T) ((-502 . -1099) T) ((-357 . -1218) T) ((-354 . -1218) T) ((-346 . -1218) T) ((-265 . -1218) 109746) ((-247 . -1218) 109725) ((-535 . -860) T) ((-1112 . -231) 109694) ((-1157 . -828) T) ((-1141 . -1056) 109678) ((-392 . -761) T) ((-694 . -1214) T) ((-691 . -1038) 109662) ((-357 . -558) T) ((-354 . -558) T) ((-346 . -558) T) ((-265 . -558) 109593) ((-247 . -558) 109524) ((-527 . -1082) T) ((-1141 . -111) 109503) ((-455 . -744) 109473) ((-866 . -1056) 109443) ((-817 . -38) 109385) ((-694 . -884) 109367) ((-694 . -886) 109349) ((-296 . -310) 109153) ((-910 . -1218) T) ((-1155 . -289) 109130) ((-1079 . -646) 109025) ((-670 . -413) 109009) ((-866 . -111) 108974) ((-1004 . -454) T) ((-694 . -1038) 108919) ((-910 . -558) T) ((-535 . -613) 108901) ((-583 . -920) T) ((-489 . -1051) 108851) ((-476 . -1111) T) ((-520 . -920) T) ((-914 . -454) T) ((-65 . -613) 108833) ((-217 . -1051) 108783) ((-489 . -640) 108733) ((-361 . -646) 108670) ((-355 . -646) 108607) ((-347 . -646) 108544) ((-632 . -229) 108490) ((-217 . -640) 108440) ((-108 . -646) 108390) ((-476 . -23) T) ((-1119 . -794) T) ((-872 . -131) T) ((-1119 . -791) T) ((-1279 . -1281) 108369) ((-1119 . -726) T) ((-654 . -648) 108343) ((-295 . -613) 108084) ((-1141 . -616) 108002) ((-1035 . -34) T) ((-815 . -848) 107981) ((-582 . -308) T) ((-566 . -308) T) ((-497 . -308) T) ((-1288 . -717) 107951) ((-694 . -379) 107933) ((-694 . -340) 107915) ((-479 . -172) T) ((-383 . -717) 107885) ((-866 . -616) 107820) ((-871 . -850) NIL) ((-566 . -1022) T) ((-497 . -1022) T) ((-1132 . -613) 107802) ((-1112 . -238) 107781) ((-214 . -102) T) ((-1149 . -102) T) ((-71 . -613) 107763) ((-1141 . -1049) T) ((-1177 . -38) 107660) ((-858 . -613) 107642) ((-566 . -547) T) ((-670 . -1057) T) ((-731 . -949) 107595) ((-1141 . -233) 107574) ((-1081 . -1099) T) ((-1034 . -25) T) ((-1034 . -21) T) ((-1003 . -1056) 107519) ((-905 . -102) T) ((-866 . -1049) T) ((-694 . -900) NIL) ((-357 . -330) 107503) ((-357 . -365) T) ((-354 . -330) 107487) ((-354 . -365) T) ((-346 . -330) 107471) ((-346 . -365) T) ((-489 . -102) T) ((-1276 . -38) 107441) ((-548 . -850) T) ((-525 . -687) 107391) ((-217 . -102) T) ((-1024 . -1038) 107271) ((-1003 . -111) 107200) ((-1173 . -973) 107169) ((-522 . -151) 107153) ((-1079 . -372) 107132) ((-353 . -613) 107114) ((-323 . -21) T) ((-356 . -1038) 107091) ((-323 . -25) T) ((-1172 . -973) 107053) ((-1166 . -973) 107022) ((-76 . -613) 107004) ((-1125 . -973) 106971) ((-699 . -308) T) ((-129 . -844) T) ((-910 . -365) T) ((-381 . -25) T) ((-381 . -21) T) ((-910 . -330) 106958) ((-86 . -613) 106940) ((-699 . -1022) T) ((-677 . -850) T) ((-1248 . -131) T) ((-1227 . -131) T) ((-901 . -1010) 106924) ((-836 . -21) T) ((-48 . -1038) 106867) ((-836 . -25) T) ((-827 . -25) T) ((-827 . -21) T) ((-1112 . -646) 106617) ((-1286 . -1057) T) ((-551 . -102) T) ((-1284 . -1057) T) ((-654 . -726) T) ((-1103 . -618) 106520) ((-1003 . -616) 106450) ((-1287 . -1056) 106434) ((-815 . -413) 106403) ((-103 . -119) 106387) ((-129 . -1099) T) ((-52 . -1099) T) ((-926 . -613) 106369) ((-871 . -992) 106346) ((-823 . -102) T) ((-1287 . -111) 106325) ((-653 . -38) 106295) ((-573 . -850) T) ((-357 . -1111) T) ((-354 . -1111) T) ((-346 . -1111) T) ((-265 . -1111) T) ((-247 . -1111) T) ((-623 . -308) 106274) ((-1149 . -310) 106078) ((-664 . -23) T) ((-526 . -1082) T) ((-312 . -1099) T) ((-484 . -231) 106047) ((-152 . -1057) T) ((-357 . -23) T) ((-354 . -23) T) ((-346 . -23) T) ((-117 . -308) T) ((-265 . -23) T) ((-247 . -23) T) ((-1003 . -1049) T) ((-712 . -909) 106026) ((-1155 . -616) 106003) ((-1003 . -233) 105975) ((-1003 . -243) T) ((-117 . -1022) NIL) ((-910 . -1111) T) ((-1249 . -454) 105954) ((-1228 . -454) 105933) ((-525 . -613) 105865) ((-712 . -648) 105790) ((-409 . -1056) 105742) ((-506 . -613) 105724) ((-910 . -23) T) ((-489 . -310) NIL) ((-1287 . -616) 105680) ((-476 . -131) T) ((-217 . -310) NIL) ((-409 . -111) 105618) ((-815 . -1057) 105548) ((-737 . -1097) 105532) ((-1248 . -495) 105498) ((-1227 . -495) 105464) ((-550 . -844) T) ((-141 . -1097) 105446) ((-479 . -291) T) ((-1287 . -1049) T) ((-1219 . -102) T) ((-1062 . -102) T) ((-843 . -616) 105314) ((-502 . -516) NIL) ((-484 . -238) 105293) ((-409 . -616) 105191) ((-963 . -1051) 105074) ((-735 . -1051) 105044) ((-963 . -640) 104941) ((-1171 . -145) 104920) ((-735 . -640) 104890) ((-455 . -1051) 104860) ((-1171 . -147) 104839) ((-1124 . -147) 104818) ((-1124 . -145) 104797) ((-635 . -1056) 104781) ((-607 . -1056) 104765) ((-455 . -640) 104735) ((-1173 . -1255) 104719) ((-1173 . -1242) 104696) ((-670 . -1099) T) ((-670 . -1053) 104636) ((-1172 . -1247) 104597) ((-550 . -1099) T) ((-489 . -1150) T) ((-1172 . -1242) 104567) ((-1172 . -1245) 104551) ((-1166 . -1226) 104512) ((-217 . -1150) T) ((-345 . -920) T) ((-818 . -267) 104496) ((-635 . -111) 104475) ((-607 . -111) 104454) ((-1166 . -1242) 104431) ((-843 . -1049) 104410) ((-1166 . -1224) 104394) ((-517 . -25) T) ((-497 . -303) T) ((-513 . -23) T) ((-512 . -25) T) ((-510 . -25) T) ((-509 . -23) T) ((-420 . -1051) 104368) ((-409 . -1049) T) ((-320 . -1057) T) ((-694 . -308) T) ((-420 . -640) 104342) ((-108 . -848) T) ((-712 . -726) T) ((-409 . -243) T) ((-409 . -233) 104321) ((-489 . -38) 104271) ((-217 . -38) 104221) ((-476 . -495) 104187) ((-1221 . -370) T) ((-1157 . -1143) T) ((-1100 . -102) T) ((-701 . -613) 104169) ((-701 . -614) 104084) ((-714 . -21) T) ((-714 . -25) T) ((-1134 . -102) T) ((-484 . -646) 103834) ((-134 . -613) 103816) ((-116 . -613) 103798) ((-157 . -25) T) ((-1286 . -1099) T) ((-872 . -639) 103746) ((-1284 . -1099) T) ((-963 . -102) T) ((-735 . -102) T) ((-715 . -102) T) ((-455 . -102) T) ((-816 . -454) 103697) ((-44 . -1099) T) ((-1087 . -850) T) ((-1062 . -310) 103548) ((-664 . -131) T) ((-1054 . -646) 103517) ((-670 . -717) 103501) ((-290 . -1057) T) ((-357 . -131) T) ((-354 . -131) T) ((-346 . -131) T) ((-265 . -131) T) ((-247 . -131) T) ((-387 . -646) 103470) ((-420 . -102) T) ((-152 . -1099) T) ((-45 . -229) 103420) ((-799 . -1051) 103404) ((-958 . -850) 103383) ((-999 . -648) 103321) ((-799 . -640) 103305) ((-240 . -1271) 103275) ((-1024 . -308) T) ((-295 . -1056) 103196) ((-910 . -131) T) ((-40 . -920) T) ((-489 . -402) 103178) ((-356 . -308) T) ((-217 . -402) 103160) ((-1079 . -413) 103144) ((-295 . -111) 103060) ((-1182 . -850) T) ((-1181 . -850) T) ((-872 . -25) T) ((-872 . -21) T) ((-341 . -613) 103042) ((-1250 . -47) 102986) ((-225 . -147) T) ((-174 . -613) 102968) ((-1112 . -848) 102947) ((-774 . -613) 102929) ((-128 . -850) T) ((-608 . -235) 102876) ((-477 . -235) 102826) ((-1286 . -717) 102796) ((-48 . -308) T) ((-1284 . -717) 102766) ((-65 . -616) 102695) ((-964 . -1099) T) ((-815 . -1099) 102485) ((-313 . -102) T) ((-901 . -1214) T) ((-48 . -1022) T) ((-1227 . -639) 102393) ((-689 . -102) 102371) ((-44 . -717) 102355) ((-552 . -102) T) ((-295 . -616) 102286) ((-67 . -385) T) ((-67 . -397) T) ((-662 . -23) T) ((-817 . -646) 102222) ((-670 . -761) T) ((-1211 . -1099) 102200) ((-353 . -1056) 102145) ((-675 . -1099) 102123) ((-1061 . -147) T) ((-952 . -147) 102102) ((-952 . -145) 102081) ((-799 . -102) T) ((-152 . -717) 102065) ((-483 . -147) 102044) ((-483 . -145) 102023) ((-353 . -111) 101952) ((-1079 . -1057) T) ((-323 . -850) 101931) ((-1256 . -973) 101900) ((-627 . -1099) T) ((-1249 . -973) 101862) ((-513 . -131) T) ((-509 . -131) T) ((-296 . -229) 101812) ((-361 . -1057) T) ((-355 . -1057) T) ((-347 . -1057) T) ((-295 . -1049) 101754) ((-1228 . -973) 101723) ((-381 . -850) T) ((-108 . -1057) T) ((-999 . -726) T) ((-870 . -920) T) ((-843 . -795) 101702) ((-843 . -792) 101681) ((-420 . -310) 101620) ((-470 . -102) T) ((-596 . -973) 101589) ((-320 . -1099) T) ((-409 . -795) 101568) ((-409 . -792) 101547) ((-502 . -491) 101529) ((-1250 . -1038) 101495) ((-1248 . -21) T) ((-1248 . -25) T) ((-1227 . -21) T) ((-1227 . -25) T) ((-815 . -717) 101437) ((-353 . -616) 101367) ((-699 . -406) T) ((-1277 . -1214) T) ((-606 . -102) T) ((-1112 . -413) 101336) ((-1003 . -370) NIL) ((-671 . -102) T) ((-180 . -102) T) ((-161 . -102) T) ((-156 . -102) T) ((-154 . -102) T) ((-103 . -34) T) ((-1177 . -646) 101246) ((-737 . -1214) T) ((-731 . -1051) 101089) ((-44 . -761) T) ((-731 . -640) 100938) ((-594 . -102) T) ((-77 . -398) T) ((-77 . -397) T) ((-653 . -656) 100922) ((-141 . -1214) T) ((-871 . -147) T) ((-871 . -145) NIL) ((-1213 . -93) T) ((-353 . -1049) T) ((-70 . -385) T) ((-70 . -397) T) ((-1164 . -102) T) ((-670 . -516) 100855) ((-1276 . -646) 100800) ((-689 . -310) 100738) ((-963 . -38) 100635) ((-1179 . -613) 100617) ((-735 . -38) 100587) ((-552 . -310) 100391) ((-1173 . -1051) 100274) ((-317 . -1214) T) ((-353 . -233) T) ((-353 . -243) T) ((-314 . -1214) T) ((-290 . -1099) T) ((-1172 . -1051) 100109) ((-1166 . -1051) 99899) ((-1125 . -1051) 99782) ((-1173 . -640) 99679) ((-1172 . -640) 99520) ((-711 . -1218) T) ((-1166 . -640) 99316) ((-1155 . -651) 99300) ((-1125 . -640) 99197) ((-1208 . -558) 99176) ((-711 . -558) T) ((-317 . -884) 99160) ((-317 . -886) 99085) ((-314 . -884) 99046) ((-314 . -886) NIL) ((-799 . -310) 99011) ((-320 . -717) 98852) ((-325 . -324) 98829) ((-487 . -102) T) ((-476 . -25) T) ((-476 . -21) T) ((-420 . -38) 98803) ((-317 . -1038) 98466) ((-225 . -1199) T) ((-225 . -1202) T) ((-3 . -613) 98448) ((-314 . -1038) 98378) ((-2 . -1099) T) ((-2 . |RecordCategory|) T) ((-833 . -613) 98360) ((-1112 . -1057) 98290) ((-582 . -920) T) ((-566 . -820) T) ((-566 . -920) T) ((-497 . -920) T) ((-136 . -1038) 98274) ((-225 . -95) T) ((-169 . -147) 98253) ((-75 . -443) T) ((0 . -613) 98235) ((-75 . -397) T) ((-169 . -145) 98186) ((-225 . -35) T) ((-49 . -613) 98168) ((-479 . -1057) T) ((-489 . -231) 98150) ((-486 . -968) 98134) ((-484 . -848) 98113) ((-217 . -231) 98095) ((-81 . -443) T) ((-81 . -397) T) ((-1145 . -34) T) ((-815 . -172) 98074) ((-731 . -102) T) ((-653 . -646) 98033) ((-1026 . -613) 98000) ((-502 . -287) 97975) ((-317 . -379) 97944) ((-314 . -379) 97905) ((-314 . -340) 97866) ((-1084 . -613) 97848) ((-816 . -949) 97795) ((-662 . -131) T) ((-1237 . -145) 97774) ((-1237 . -147) 97753) ((-1173 . -102) T) ((-1172 . -102) T) ((-1166 . -102) T) ((-1158 . -1099) T) ((-1125 . -102) T) ((-222 . -34) T) ((-290 . -717) 97740) ((-1158 . -610) 97716) ((-594 . -310) NIL) ((-486 . -1099) 97694) ((-392 . -613) 97676) ((-512 . -850) T) ((-1149 . -229) 97626) ((-1256 . -1255) 97610) ((-1256 . -1242) 97587) ((-1249 . -1247) 97548) ((-1249 . -1242) 97518) ((-1249 . -1245) 97502) ((-1228 . -1226) 97463) ((-1228 . -1242) 97440) ((-621 . -613) 97422) ((-1228 . -1224) 97406) ((-699 . -920) T) ((-1173 . -285) 97372) ((-1172 . -285) 97338) ((-1166 . -285) 97304) ((-1079 . -1099) T) ((-1060 . -1099) T) ((-48 . -303) T) ((-317 . -900) 97270) ((-314 . -900) NIL) ((-1060 . -1067) 97249) ((-1119 . -886) 97231) ((-799 . -38) 97215) ((-265 . -639) 97163) ((-247 . -639) 97111) ((-701 . -1056) 97098) ((-596 . -1242) 97075) ((-1125 . -285) 97041) ((-320 . -172) 96972) ((-361 . -1099) T) ((-355 . -1099) T) ((-347 . -1099) T) ((-502 . -19) 96954) ((-1119 . -1038) 96936) ((-1101 . -151) 96920) ((-108 . -1099) T) ((-116 . -1056) 96907) ((-711 . -365) T) ((-502 . -604) 96882) ((-701 . -111) 96867) ((-438 . -102) T) ((-250 . -102) T) ((-45 . -1148) 96817) ((-116 . -111) 96802) ((-635 . -720) T) ((-607 . -720) T) ((-1266 . -613) 96784) ((-1222 . -613) 96766) ((-1220 . -850) T) ((-815 . -516) 96699) ((-1035 . -1214) T) ((-240 . -1051) 96596) ((-1208 . -1111) T) ((-1208 . -23) T) ((-943 . -151) 96580) ((-1171 . -454) 96511) ((-1166 . -310) 96396) ((-240 . -640) 96338) ((-1165 . -1099) T) ((-1157 . -1099) T) ((-1141 . -648) 96312) ((-527 . -102) T) ((-522 . -102) 96262) ((-1125 . -310) 96249) ((-1124 . -454) 96200) ((-1086 . -1218) 96179) ((-782 . -1218) 96158) ((-780 . -1218) 96137) ((-62 . -1214) T) ((-479 . -613) 96089) ((-479 . -614) 96011) ((-1086 . -558) 95942) ((-994 . -1099) T) ((-782 . -558) 95853) ((-780 . -558) 95784) ((-484 . -413) 95753) ((-623 . -920) 95732) ((-456 . -1218) 95711) ((-731 . -310) 95698) ((-701 . -616) 95670) ((-400 . -613) 95652) ((-675 . -516) 95585) ((-664 . -25) T) ((-664 . -21) T) ((-456 . -558) 95516) ((-357 . -25) T) ((-357 . -21) T) ((-117 . -920) T) ((-117 . -820) NIL) ((-354 . -25) T) ((-354 . -21) T) ((-346 . -25) T) ((-346 . -21) T) ((-265 . -25) T) ((-265 . -21) T) ((-247 . -25) T) ((-247 . -21) T) ((-83 . -386) T) ((-83 . -397) T) ((-134 . -616) 95498) ((-116 . -616) 95470) ((-1079 . -717) 95338) ((-1004 . -1051) 95288) ((-1004 . -640) 95238) ((-943 . -980) 95222) ((-914 . -640) 95174) ((-914 . -1051) 95126) ((-910 . -21) T) ((-910 . -25) T) ((-872 . -850) 95077) ((-866 . -648) 95037) ((-711 . -1111) T) ((-711 . -23) T) ((-290 . -172) T) ((-701 . -1049) T) ((-312 . -93) T) ((-701 . -233) T) ((-647 . -1099) 95015) ((-632 . -610) 94990) ((-632 . -1099) T) ((-583 . -1218) T) ((-583 . -558) T) ((-520 . -1218) T) ((-520 . -558) T) ((-489 . -646) 94940) ((-429 . -1051) 94924) ((-429 . -640) 94908) ((-361 . -717) 94860) ((-355 . -717) 94812) ((-341 . -1056) 94796) ((-347 . -717) 94748) ((-341 . -111) 94727) ((-174 . -1056) 94659) ((-217 . -646) 94609) ((-174 . -111) 94520) ((-108 . -717) 94470) ((-275 . -1099) T) ((-274 . -1099) T) ((-273 . -1099) T) ((-272 . -1099) T) ((-271 . -1099) T) ((-270 . -1099) T) ((-269 . -1099) T) ((-212 . -1099) T) ((-211 . -1099) T) ((-169 . -1202) 94448) ((-169 . -1199) 94426) ((-209 . -1099) T) ((-208 . -1099) T) ((-116 . -1049) T) ((-207 . -1099) T) ((-206 . -1099) T) ((-203 . -1099) T) ((-202 . -1099) T) ((-201 . -1099) T) ((-200 . -1099) T) ((-199 . -1099) T) ((-198 . -1099) T) ((-197 . -1099) T) ((-196 . -1099) T) ((-195 . -1099) T) ((-194 . -1099) T) ((-193 . -1099) T) ((-240 . -102) 94216) ((-169 . -35) 94194) ((-169 . -95) 94172) ((-654 . -1038) 94068) ((-484 . -1057) 93998) ((-1112 . -1099) 93788) ((-1141 . -34) T) ((-670 . -491) 93772) ((-73 . -1214) T) ((-105 . -613) 93754) ((-1288 . -613) 93736) ((-383 . -613) 93718) ((-341 . -616) 93670) ((-174 . -616) 93587) ((-1213 . -492) 93568) ((-731 . -38) 93417) ((-573 . -1202) T) ((-573 . -1199) T) ((-533 . -613) 93399) ((-522 . -310) 93337) ((-502 . -613) 93319) ((-502 . -614) 93301) ((-1213 . -613) 93267) ((-1166 . -1150) NIL) ((-1027 . -1070) 93236) ((-1027 . -1099) T) ((-1004 . -102) T) ((-971 . -102) T) ((-914 . -102) T) ((-893 . -1038) 93213) ((-1141 . -726) T) ((-1003 . -648) 93158) ((-478 . -1099) T) ((-465 . -1099) T) ((-587 . -23) T) ((-573 . -35) T) ((-573 . -95) T) ((-429 . -102) T) ((-1062 . -229) 93104) ((-1173 . -38) 93001) ((-866 . -726) T) ((-694 . -920) T) ((-513 . -25) T) ((-509 . -21) T) ((-509 . -25) T) ((-1172 . -38) 92842) ((-341 . -1049) T) ((-1166 . -38) 92638) ((-1079 . -172) T) ((-174 . -1049) T) ((-1125 . -38) 92535) ((-712 . -47) 92512) ((-361 . -172) T) ((-355 . -172) T) ((-521 . -57) 92486) ((-499 . -57) 92436) ((-353 . -1283) 92413) ((-225 . -454) T) ((-320 . -291) 92364) ((-347 . -172) T) ((-174 . -243) T) ((-1227 . -850) 92263) ((-108 . -172) T) ((-872 . -992) 92247) ((-658 . -1111) T) ((-583 . -365) T) ((-583 . -330) 92234) ((-520 . -330) 92211) ((-520 . -365) T) ((-317 . -308) 92190) ((-314 . -308) T) ((-602 . -850) 92169) ((-1112 . -717) 92111) ((-522 . -283) 92095) ((-658 . -23) T) ((-420 . -231) 92079) ((-314 . -1022) NIL) ((-338 . -23) T) ((-103 . -1010) 92063) ((-45 . -36) 92042) ((-612 . -1099) T) ((-353 . -370) T) ((-526 . -102) T) ((-497 . -27) T) ((-240 . -310) 91980) ((-1086 . -1111) T) ((-1287 . -648) 91954) ((-782 . -1111) T) ((-780 . -1111) T) ((-456 . -1111) T) ((-1061 . -454) T) ((-952 . -454) 91905) ((-1114 . -1082) T) ((-110 . -1099) T) ((-1086 . -23) T) ((-817 . -1057) T) ((-782 . -23) T) ((-780 . -23) T) ((-483 . -454) 91856) ((-1158 . -516) 91639) ((-383 . -384) 91618) ((-1177 . -413) 91602) ((-463 . -23) T) ((-456 . -23) T) ((-96 . -1099) T) ((-486 . -516) 91535) ((-1256 . -1051) 91418) ((-1256 . -640) 91315) ((-1249 . -640) 91156) ((-1249 . -1051) 90991) ((-290 . -291) T) ((-1228 . -1051) 90781) ((-1081 . -613) 90763) ((-1081 . -614) 90744) ((-409 . -909) 90723) ((-1228 . -640) 90519) ((-50 . -1111) T) ((-1208 . -131) T) ((-1024 . -920) T) ((-1003 . -726) T) ((-843 . -648) 90492) ((-712 . -886) NIL) ((-597 . -1051) 90465) ((-583 . -1111) T) ((-520 . -1111) T) ((-596 . -1051) 90348) ((-1166 . -402) 90300) ((-1004 . -310) NIL) ((-815 . -491) 90284) ((-597 . -640) 90257) ((-356 . -920) T) ((-596 . -640) 90154) ((-1155 . -34) T) ((-409 . -648) 90106) ((-50 . -23) T) ((-711 . -131) T) ((-712 . -1038) 89986) ((-583 . -23) T) ((-108 . -516) NIL) ((-520 . -23) T) ((-169 . -411) 89957) ((-1139 . -1099) T) ((-1279 . -1278) 89941) ((-701 . -795) T) ((-701 . -792) T) ((-1119 . -308) T) ((-381 . -147) T) ((-281 . -613) 89923) ((-1227 . -992) 89893) ((-48 . -920) T) ((-675 . -491) 89877) ((-252 . -1271) 89847) ((-251 . -1271) 89817) ((-1175 . -850) T) ((-1112 . -172) 89796) ((-1119 . -1022) T) ((-1046 . -34) T) ((-836 . -147) 89775) ((-836 . -145) 89754) ((-737 . -107) 89738) ((-612 . -132) T) ((-484 . -1099) 89528) ((-1177 . -1057) T) ((-871 . -454) T) ((-85 . -1214) T) ((-240 . -38) 89498) ((-141 . -107) 89480) ((-712 . -379) 89464) ((-833 . -616) 89332) ((-1287 . -726) T) ((-1276 . -1057) T) ((-1119 . -547) T) ((-581 . -102) T) ((-129 . -492) 89314) ((-1256 . -102) T) ((-392 . -1056) 89298) ((-1249 . -102) T) ((-1171 . -949) 89267) ((-129 . -613) 89234) ((-52 . -613) 89216) ((-1124 . -949) 89183) ((-653 . -413) 89167) ((-1228 . -102) T) ((-1157 . -516) NIL) ((-621 . -1056) 89151) ((-662 . -25) T) ((-662 . -21) T) ((-963 . -646) 89061) ((-735 . -646) 89006) ((-715 . -646) 88978) ((-392 . -111) 88957) ((-222 . -255) 88941) ((-1054 . -1053) 88881) ((-1054 . -1099) T) ((-1004 . -1150) T) ((-818 . -1099) T) ((-455 . -646) 88796) ((-345 . -1218) T) ((-635 . -648) 88780) ((-621 . -111) 88759) ((-607 . -648) 88743) ((-597 . -102) T) ((-312 . -492) 88724) ((-587 . -131) T) ((-596 . -102) T) ((-416 . -1099) T) ((-387 . -1099) T) ((-312 . -613) 88690) ((-227 . -1099) 88668) ((-647 . -516) 88601) ((-632 . -516) 88445) ((-833 . -1049) 88424) ((-644 . -151) 88408) ((-345 . -558) T) ((-712 . -900) 88351) ((-552 . -229) 88301) ((-1256 . -285) 88267) ((-1249 . -285) 88233) ((-1079 . -291) 88184) ((-489 . -848) T) ((-223 . -1111) T) ((-1228 . -285) 88150) ((-1208 . -495) 88116) ((-1004 . -38) 88066) ((-217 . -848) T) ((-420 . -646) 88025) ((-914 . -38) 87977) ((-843 . -794) 87956) ((-843 . -791) 87935) ((-843 . -726) 87914) ((-361 . -291) T) ((-355 . -291) T) ((-347 . -291) T) ((-169 . -454) 87845) ((-429 . -38) 87829) ((-108 . -291) T) ((-223 . -23) T) ((-409 . -794) 87808) ((-409 . -791) 87787) ((-409 . -726) T) ((-502 . -289) 87762) ((-479 . -1056) 87727) ((-658 . -131) T) ((-621 . -616) 87696) ((-1112 . -516) 87629) ((-338 . -131) T) ((-169 . -404) 87608) ((-484 . -717) 87550) ((-815 . -287) 87527) ((-479 . -111) 87483) ((-653 . -1057) T) ((-816 . -1051) 87326) ((-1275 . -1082) T) ((-1237 . -454) 87257) ((-816 . -640) 87106) ((-1274 . -1082) T) ((-1086 . -131) T) ((-1054 . -717) 87048) ((-782 . -131) T) ((-780 . -131) T) ((-573 . -454) T) ((-1027 . -516) 86981) ((-621 . -1049) T) ((-593 . -1099) T) ((-535 . -173) T) ((-463 . -131) T) ((-456 . -131) T) ((-45 . -1099) T) ((-387 . -717) 86951) ((-817 . -1099) T) ((-478 . -516) 86884) ((-465 . -516) 86817) ((-455 . -369) 86787) ((-45 . -610) 86766) ((-317 . -303) T) ((-479 . -616) 86716) ((-1228 . -310) 86601) ((-670 . -613) 86563) ((-59 . -850) 86542) ((-1004 . -402) 86524) ((-550 . -613) 86506) ((-799 . -646) 86465) ((-815 . -604) 86442) ((-518 . -850) 86421) ((-498 . -850) 86400) ((-40 . -1218) T) ((-999 . -1038) 86296) ((-50 . -131) T) ((-583 . -131) T) ((-520 . -131) T) ((-295 . -648) 86156) ((-345 . -330) 86133) ((-345 . -365) T) ((-323 . -324) 86110) ((-320 . -287) 86095) ((-40 . -558) T) ((-381 . -1199) T) ((-381 . -1202) T) ((-1035 . -1190) 86070) ((-1187 . -235) 86020) ((-1166 . -231) 85972) ((-331 . -1099) T) ((-381 . -95) T) ((-381 . -35) T) ((-1035 . -107) 85918) ((-479 . -1049) T) ((-1288 . -1056) 85902) ((-481 . -235) 85852) ((-1158 . -491) 85786) ((-1279 . -1051) 85770) ((-383 . -1056) 85754) ((-1279 . -640) 85724) ((-479 . -243) T) ((-816 . -102) T) ((-714 . -147) 85703) ((-714 . -145) 85682) ((-486 . -491) 85666) ((-487 . -337) 85635) ((-1288 . -111) 85614) ((-514 . -1099) T) ((-484 . -172) 85593) ((-999 . -379) 85577) ((-415 . -102) T) ((-383 . -111) 85556) ((-999 . -340) 85540) ((-280 . -983) 85524) ((-279 . -983) 85508) ((-1286 . -613) 85490) ((-1284 . -613) 85472) ((-110 . -516) NIL) ((-1171 . -1240) 85456) ((-854 . -852) 85440) ((-1177 . -1099) T) ((-103 . -1214) T) ((-952 . -949) 85401) ((-817 . -717) 85343) ((-1228 . -1150) NIL) ((-483 . -949) 85288) ((-1061 . -143) T) ((-60 . -102) 85266) ((-44 . -613) 85248) ((-78 . -613) 85230) ((-353 . -648) 85175) ((-1276 . -1099) T) ((-513 . -850) T) ((-345 . -1111) T) ((-296 . -1099) T) ((-999 . -900) 85134) ((-296 . -610) 85113) ((-1288 . -616) 85062) ((-1256 . -38) 84959) ((-1249 . -38) 84800) ((-1228 . -38) 84596) ((-489 . -1057) T) ((-383 . -616) 84580) ((-217 . -1057) T) ((-345 . -23) T) ((-152 . -613) 84562) ((-833 . -795) 84541) ((-833 . -792) 84520) ((-1213 . -616) 84501) ((-597 . -38) 84474) ((-596 . -38) 84371) ((-870 . -558) T) ((-223 . -131) T) ((-320 . -1002) 84337) ((-79 . -613) 84319) ((-712 . -308) 84298) ((-295 . -726) 84200) ((-824 . -102) T) ((-864 . -844) T) ((-295 . -475) 84179) ((-1279 . -102) T) ((-40 . -365) T) ((-872 . -147) 84158) ((-487 . -646) 84140) ((-872 . -145) 84119) ((-1157 . -491) 84101) ((-1288 . -1049) T) ((-484 . -516) 84034) ((-1145 . -1214) T) ((-964 . -613) 84016) ((-647 . -491) 84000) ((-632 . -491) 83931) ((-815 . -613) 83662) ((-48 . -27) T) ((-1177 . -717) 83559) ((-653 . -1099) T) ((-861 . -860) T) ((-438 . -366) 83533) ((-731 . -646) 83443) ((-1101 . -102) T) ((-970 . -1099) T) ((-864 . -1099) T) ((-816 . -310) 83430) ((-535 . -529) T) ((-535 . -578) T) ((-1284 . -384) 83402) ((-1054 . -516) 83335) ((-1158 . -287) 83311) ((-240 . -231) 83280) ((-252 . -1051) 83177) ((-251 . -1051) 83074) ((-1276 . -717) 83044) ((-1165 . -93) T) ((-994 . -93) T) ((-817 . -172) 83023) ((-252 . -640) 82965) ((-251 . -640) 82907) ((-1211 . -492) 82884) ((-227 . -516) 82817) ((-621 . -795) 82796) ((-621 . -792) 82775) ((-1211 . -613) 82687) ((-222 . -1214) T) ((-675 . -613) 82619) ((-1173 . -646) 82529) ((-1155 . -1010) 82513) ((-943 . -102) 82463) ((-353 . -726) T) ((-861 . -613) 82445) ((-1172 . -646) 82327) ((-1166 . -646) 82164) ((-1125 . -646) 82074) ((-1228 . -402) 82026) ((-1112 . -491) 82010) ((-60 . -310) 81948) ((-332 . -102) T) ((-1208 . -21) T) ((-1208 . -25) T) ((-40 . -1111) T) ((-711 . -21) T) ((-627 . -613) 81930) ((-517 . -324) 81909) ((-711 . -25) T) ((-441 . -102) T) ((-108 . -287) NIL) ((-921 . -1111) T) ((-40 . -23) T) ((-771 . -1111) T) ((-566 . -1218) T) ((-497 . -1218) T) ((-320 . -613) 81891) ((-1004 . -231) 81873) ((-169 . -166) 81857) ((-582 . -558) T) ((-566 . -558) T) ((-497 . -558) T) ((-771 . -23) T) ((-1248 . -147) 81836) ((-1158 . -604) 81812) ((-1248 . -145) 81791) ((-1027 . -491) 81775) ((-1227 . -145) 81700) ((-1227 . -147) 81625) ((-1279 . -1285) 81604) ((-478 . -491) 81588) ((-465 . -491) 81572) ((-525 . -34) T) ((-653 . -717) 81542) ((-112 . -967) T) ((-662 . -850) 81521) ((-1177 . -172) 81472) ((-367 . -102) T) ((-240 . -238) 81451) ((-252 . -102) T) ((-251 . -102) T) ((-1237 . -949) 81420) ((-245 . -850) 81399) ((-816 . -38) 81248) ((-45 . -516) 81040) ((-1157 . -287) 81015) ((-214 . -1099) T) ((-1149 . -1099) T) ((-1149 . -610) 80994) ((-587 . -25) T) ((-587 . -21) T) ((-1101 . -310) 80932) ((-963 . -413) 80916) ((-699 . -1218) T) ((-632 . -287) 80891) ((-1086 . -639) 80839) ((-782 . -639) 80787) ((-780 . -639) 80735) ((-345 . -131) T) ((-290 . -613) 80717) ((-905 . -1099) T) ((-699 . -558) T) ((-129 . -616) 80699) ((-870 . -1111) T) ((-456 . -639) 80647) ((-905 . -903) 80631) ((-381 . -454) T) ((-489 . -1099) T) ((-943 . -310) 80569) ((-701 . -648) 80556) ((-551 . -844) T) ((-217 . -1099) T) ((-317 . -920) 80535) ((-314 . -920) T) ((-314 . -820) NIL) ((-392 . -720) T) ((-870 . -23) T) ((-116 . -648) 80522) ((-476 . -145) 80501) ((-420 . -413) 80485) ((-476 . -147) 80464) ((-110 . -491) 80446) ((-312 . -616) 80427) ((-2 . -613) 80409) ((-186 . -102) T) ((-1157 . -19) 80391) ((-1157 . -604) 80366) ((-658 . -21) T) ((-658 . -25) T) ((-594 . -1143) T) ((-1112 . -287) 80343) ((-338 . -25) T) ((-338 . -21) T) ((-240 . -646) 80093) ((-497 . -365) T) ((-1279 . -38) 80063) ((-1171 . -1051) 79886) ((-1141 . -1214) T) ((-1124 . -1051) 79729) ((-854 . -1051) 79713) ((-632 . -604) 79688) ((-1171 . -640) 79517) ((-1124 . -640) 79366) ((-854 . -640) 79336) ((-1286 . -1056) 79320) ((-1284 . -1056) 79304) ((-551 . -1099) T) ((-1086 . -25) T) ((-1086 . -21) T) ((-533 . -792) T) ((-533 . -795) T) ((-117 . -1218) T) ((-963 . -1057) T) ((-623 . -558) T) ((-782 . -25) T) ((-782 . -21) T) ((-780 . -21) T) ((-780 . -25) T) ((-735 . -1057) T) ((-715 . -1057) T) ((-670 . -1056) 79288) ((-519 . -1082) T) ((-463 . -25) T) ((-117 . -558) T) ((-463 . -21) T) ((-456 . -25) T) ((-456 . -21) T) ((-1248 . -1199) 79254) ((-1248 . -1202) 79220) ((-1141 . -1038) 79116) ((-817 . -291) 79095) ((-1248 . -95) 79061) ((-823 . -1099) T) ((-1231 . -102) 79039) ((-966 . -967) T) ((-670 . -111) 79018) ((-296 . -516) 78810) ((-1228 . -231) 78762) ((-1227 . -1199) 78728) ((-1227 . -1202) 78694) ((-252 . -310) 78632) ((-251 . -310) 78570) ((-1222 . -370) T) ((-1158 . -614) NIL) ((-1158 . -613) 78552) ((-1219 . -844) T) ((-1141 . -379) 78536) ((-1119 . -820) T) ((-96 . -93) T) ((-1119 . -920) T) ((-1112 . -604) 78513) ((-1079 . -614) 78497) ((-1004 . -646) 78447) ((-914 . -646) 78384) ((-815 . -289) 78361) ((-486 . -613) 78293) ((-608 . -151) 78240) ((-489 . -717) 78190) ((-420 . -1057) T) ((-484 . -491) 78174) ((-429 . -646) 78133) ((-328 . -850) 78112) ((-341 . -648) 78086) ((-50 . -21) T) ((-50 . -25) T) ((-217 . -717) 78036) ((-169 . -724) 78007) ((-174 . -648) 77939) ((-583 . -21) T) ((-583 . -25) T) ((-520 . -25) T) ((-520 . -21) T) ((-477 . -151) 77889) ((-1079 . -613) 77871) ((-1060 . -613) 77853) ((-993 . -102) T) ((-862 . -102) T) ((-799 . -413) 77817) ((-40 . -131) T) ((-699 . -365) T) ((-701 . -726) T) ((-701 . -794) T) ((-701 . -791) T) ((-212 . -895) T) ((-582 . -1111) T) ((-566 . -1111) T) ((-497 . -1111) T) ((-361 . -613) 77799) ((-355 . -613) 77781) ((-347 . -613) 77763) ((-66 . -398) T) ((-66 . -397) T) ((-108 . -614) 77693) ((-108 . -613) 77635) ((-211 . -895) T) ((-958 . -151) 77619) ((-771 . -131) T) ((-670 . -616) 77537) ((-134 . -726) T) ((-116 . -726) T) ((-1248 . -35) 77503) ((-1054 . -491) 77487) ((-582 . -23) T) ((-566 . -23) T) ((-497 . -23) T) ((-1227 . -95) 77453) ((-1227 . -35) 77419) ((-1171 . -102) T) ((-1124 . -102) T) ((-854 . -102) T) ((-227 . -491) 77403) ((-1286 . -111) 77382) ((-1284 . -111) 77361) ((-44 . -1056) 77345) ((-1286 . -616) 77291) ((-1237 . -1240) 77275) ((-855 . -852) 77259) ((-1286 . -1049) T) ((-1177 . -291) 77238) ((-110 . -287) 77213) ((-1284 . -616) 77142) ((-128 . -151) 77124) ((-1141 . -900) 77083) ((-44 . -111) 77062) ((-1219 . -1099) T) ((-1180 . -1259) T) ((-1165 . -492) 77043) ((-1165 . -613) 77009) ((-670 . -1049) T) ((-1157 . -614) NIL) ((-1157 . -613) 76991) ((-1062 . -610) 76966) ((-1062 . -1099) T) ((-994 . -492) 76947) ((-74 . -443) T) ((-74 . -397) T) ((-994 . -613) 76913) ((-152 . -1056) 76897) ((-670 . -233) 76876) ((-573 . -556) 76860) ((-357 . -147) 76839) ((-357 . -145) 76790) ((-354 . -147) 76769) ((-354 . -145) 76720) ((-346 . -147) 76699) ((-346 . -145) 76650) ((-265 . -145) 76629) ((-265 . -147) 76608) ((-252 . -38) 76578) ((-247 . -147) 76557) ((-117 . -365) T) ((-247 . -145) 76536) ((-251 . -38) 76506) ((-152 . -111) 76485) ((-1003 . -1038) 76373) ((-1166 . -848) NIL) ((-694 . -1218) T) ((-799 . -1057) T) ((-699 . -1111) T) ((-1284 . -1049) T) ((-1155 . -1214) T) ((-1003 . -379) 76350) ((-910 . -145) T) ((-910 . -147) 76332) ((-870 . -131) T) ((-815 . -1056) 76229) ((-699 . -23) T) ((-694 . -558) T) ((-225 . -1051) 76194) ((-647 . -613) 76126) ((-647 . -614) 76087) ((-632 . -614) NIL) ((-632 . -613) 76069) ((-489 . -172) T) ((-225 . -640) 76034) ((-223 . -21) T) ((-217 . -172) T) ((-223 . -25) T) ((-476 . -1202) 76000) ((-476 . -1199) 75966) ((-275 . -613) 75948) ((-274 . -613) 75930) ((-273 . -613) 75912) ((-272 . -613) 75894) ((-271 . -613) 75876) ((-502 . -651) 75858) ((-270 . -613) 75840) ((-341 . -726) T) ((-269 . -613) 75822) ((-110 . -19) 75804) ((-174 . -726) T) ((-502 . -375) 75786) ((-212 . -613) 75768) ((-522 . -1148) 75752) ((-502 . -123) T) ((-110 . -604) 75727) ((-211 . -613) 75709) ((-476 . -35) 75675) ((-476 . -95) 75641) ((-209 . -613) 75623) ((-208 . -613) 75605) ((-207 . -613) 75587) ((-206 . -613) 75569) ((-203 . -613) 75551) ((-202 . -613) 75533) ((-201 . -613) 75515) ((-200 . -613) 75497) ((-199 . -613) 75479) ((-198 . -613) 75461) ((-197 . -613) 75443) ((-538 . -1102) 75395) ((-196 . -613) 75377) ((-195 . -613) 75359) ((-45 . -491) 75296) ((-194 . -613) 75278) ((-193 . -613) 75260) ((-152 . -616) 75229) ((-1114 . -102) T) ((-815 . -111) 75119) ((-644 . -102) 75069) ((-484 . -287) 75046) ((-1112 . -613) 74777) ((-1100 . -1099) T) ((-1046 . -1214) T) ((-1287 . -1038) 74761) ((-1061 . -1051) 74748) ((-1171 . -310) 74735) ((-952 . -1051) 74578) ((-1134 . -1099) T) ((-1124 . -310) 74565) ((-623 . -1111) T) ((-1061 . -640) 74552) ((-1095 . -1082) T) ((-952 . -640) 74401) ((-1089 . -1082) T) ((-483 . -1051) 74244) ((-1072 . -1082) T) ((-1065 . -1082) T) ((-1036 . -1082) T) ((-1019 . -1082) T) ((-117 . -1111) T) ((-483 . -640) 74093) ((-819 . -102) T) ((-626 . -1082) T) ((-623 . -23) T) ((-1149 . -516) 73885) ((-485 . -1082) T) ((-388 . -102) T) ((-325 . -102) T) ((-218 . -1082) T) ((-963 . -1099) T) ((-152 . -1049) T) ((-731 . -413) 73869) ((-117 . -23) T) ((-1003 . -900) 73821) ((-735 . -1099) T) ((-715 . -1099) T) ((-455 . -1099) T) ((-409 . -1214) T) ((-317 . -432) 73805) ((-593 . -93) T) ((-1256 . -646) 73715) ((-1027 . -614) 73676) ((-1024 . -1218) T) ((-225 . -102) T) ((-1027 . -613) 73638) ((-1249 . -646) 73520) ((-816 . -231) 73504) ((-815 . -616) 73234) ((-1228 . -646) 73071) ((-1024 . -558) T) ((-833 . -648) 73044) ((-356 . -1218) T) ((-478 . -613) 73006) ((-478 . -614) 72967) ((-465 . -614) 72928) ((-465 . -613) 72890) ((-597 . -646) 72862) ((-409 . -884) 72846) ((-320 . -1056) 72681) ((-409 . -886) 72606) ((-596 . -646) 72516) ((-843 . -1038) 72412) ((-489 . -516) NIL) ((-484 . -604) 72389) ((-356 . -558) T) ((-217 . -516) NIL) ((-872 . -454) T) ((-420 . -1099) T) ((-409 . -1038) 72253) ((-320 . -111) 72074) ((-694 . -365) T) ((-225 . -285) T) ((-1211 . -616) 72051) ((-48 . -1218) T) ((-815 . -1049) 71981) ((-1171 . -1150) 71959) ((-582 . -131) T) ((-566 . -131) T) ((-497 . -131) T) ((-1158 . -289) 71935) ((-48 . -558) T) ((-1061 . -102) T) ((-952 . -102) T) ((-871 . -1051) 71880) ((-317 . -27) 71859) ((-815 . -233) 71811) ((-249 . -835) 71793) ((-240 . -848) 71772) ((-187 . -835) 71754) ((-713 . -102) T) ((-296 . -491) 71691) ((-871 . -640) 71636) ((-483 . -102) T) ((-731 . -1057) T) ((-612 . -613) 71618) ((-612 . -614) 71479) ((-409 . -379) 71463) ((-409 . -340) 71447) ((-320 . -616) 71273) ((-1171 . -38) 71102) ((-1124 . -38) 70951) ((-854 . -38) 70921) ((-392 . -648) 70905) ((-644 . -310) 70843) ((-963 . -717) 70740) ((-735 . -717) 70710) ((-222 . -107) 70694) ((-45 . -287) 70619) ((-621 . -648) 70593) ((-313 . -1099) T) ((-290 . -1056) 70580) ((-110 . -613) 70562) ((-110 . -614) 70544) ((-455 . -717) 70514) ((-816 . -254) 70453) ((-689 . -1099) 70431) ((-552 . -1099) T) ((-1173 . -1057) T) ((-1172 . -1057) T) ((-96 . -492) 70412) ((-1166 . -1057) T) ((-290 . -111) 70397) ((-1125 . -1057) T) ((-552 . -610) 70376) ((-96 . -613) 70342) ((-1004 . -848) T) ((-227 . -687) 70300) ((-694 . -1111) T) ((-1208 . -740) 70276) ((-1024 . -365) T) ((-838 . -835) 70258) ((-833 . -794) 70237) ((-409 . -900) 70196) ((-320 . -1049) T) ((-345 . -25) T) ((-345 . -21) T) ((-169 . -1051) 70106) ((-68 . -1214) T) ((-833 . -791) 70085) ((-420 . -717) 70059) ((-799 . -1099) T) ((-712 . -920) 70038) ((-699 . -131) T) ((-169 . -640) 69866) ((-694 . -23) T) ((-489 . -291) T) ((-833 . -726) 69845) ((-320 . -233) 69797) ((-320 . -243) 69776) ((-217 . -291) T) ((-129 . -370) T) ((-1248 . -454) 69755) ((-1227 . -454) 69734) ((-356 . -330) 69711) ((-356 . -365) T) ((-1139 . -613) 69693) ((-45 . -1252) 69643) ((-871 . -102) T) ((-644 . -283) 69627) ((-699 . -1059) T) ((-1275 . -102) T) ((-1274 . -102) T) ((-479 . -648) 69592) ((-470 . -1099) T) ((-45 . -604) 69517) ((-1157 . -289) 69492) ((-290 . -616) 69464) ((-40 . -639) 69403) ((-1237 . -1051) 69226) ((-855 . -1051) 69210) ((-48 . -365) T) ((-1105 . -613) 69192) ((-1237 . -640) 69021) ((-855 . -640) 68991) ((-632 . -289) 68966) ((-816 . -646) 68876) ((-573 . -1051) 68863) ((-484 . -613) 68594) ((-240 . -413) 68563) ((-952 . -310) 68550) ((-573 . -640) 68537) ((-65 . -1214) T) ((-1062 . -516) 68381) ((-671 . -1099) T) ((-623 . -131) T) ((-483 . -310) 68368) ((-606 . -1099) T) ((-548 . -102) T) ((-117 . -131) T) ((-290 . -1049) T) ((-180 . -1099) T) ((-161 . -1099) T) ((-156 . -1099) T) ((-154 . -1099) T) ((-455 . -761) T) ((-31 . -1082) T) ((-963 . -172) 68319) ((-970 . -93) T) ((-1079 . -1056) 68229) ((-621 . -794) 68208) ((-594 . -1099) T) ((-621 . -791) 68187) ((-621 . -726) T) ((-296 . -287) 68166) ((-295 . -1214) T) ((-1054 . -613) 68128) ((-1054 . -614) 68089) ((-1024 . -1111) T) ((-169 . -102) T) ((-276 . -850) T) ((-1164 . -1099) T) ((-818 . -613) 68071) ((-1112 . -289) 68048) ((-1101 . -229) 68032) ((-1003 . -308) T) ((-799 . -717) 68016) ((-361 . -1056) 67968) ((-356 . -1111) T) ((-355 . -1056) 67920) ((-416 . -613) 67902) ((-387 . -613) 67884) ((-347 . -1056) 67836) ((-227 . -613) 67768) ((-1079 . -111) 67664) ((-1024 . -23) T) ((-108 . -1056) 67614) ((-898 . -102) T) ((-841 . -102) T) ((-808 . -102) T) ((-769 . -102) T) ((-677 . -102) T) ((-476 . -454) 67593) ((-420 . -172) T) ((-361 . -111) 67531) ((-355 . -111) 67469) ((-347 . -111) 67407) ((-252 . -231) 67376) ((-251 . -231) 67345) ((-356 . -23) T) ((-71 . -1214) T) ((-225 . -38) 67310) ((-108 . -111) 67244) ((-40 . -25) T) ((-40 . -21) T) ((-670 . -720) T) ((-169 . -285) 67222) ((-48 . -1111) T) ((-921 . -25) T) ((-771 . -25) T) ((-1288 . -648) 67196) ((-1149 . -491) 67133) ((-487 . -1099) T) ((-1279 . -646) 67092) ((-1237 . -102) T) ((-1061 . -1150) T) ((-855 . -102) T) ((-240 . -1057) 67022) ((-964 . -792) 66975) ((-964 . -795) 66928) ((-383 . -648) 66912) ((-48 . -23) T) ((-815 . -795) 66863) ((-815 . -792) 66814) ((-550 . -370) T) ((-296 . -604) 66793) ((-479 . -726) T) ((-573 . -102) T) ((-1079 . -616) 66611) ((-249 . -185) T) ((-187 . -185) T) ((-871 . -310) 66568) ((-653 . -287) 66547) ((-112 . -661) T) ((-361 . -616) 66484) ((-355 . -616) 66421) ((-347 . -616) 66358) ((-76 . -1214) T) ((-108 . -616) 66308) ((-1061 . -38) 66295) ((-664 . -376) 66274) ((-952 . -38) 66123) ((-731 . -1099) T) ((-483 . -38) 65972) ((-86 . -1214) T) ((-593 . -492) 65953) ((-573 . -285) T) ((-1228 . -848) NIL) ((-593 . -613) 65919) ((-1173 . -1099) T) ((-1172 . -1099) T) ((-1079 . -1049) T) ((-353 . -1038) 65896) ((-817 . -492) 65880) ((-1004 . -1057) T) ((-45 . -613) 65862) ((-45 . -614) NIL) ((-914 . -1057) T) ((-817 . -613) 65831) ((-1166 . -1099) T) ((-1146 . -102) 65809) ((-1079 . -243) 65760) ((-429 . -1057) T) ((-361 . -1049) T) ((-367 . -366) 65737) ((-355 . -1049) T) ((-347 . -1049) T) ((-252 . -238) 65716) ((-251 . -238) 65695) ((-1079 . -233) 65620) ((-1125 . -1099) T) ((-295 . -900) 65579) ((-108 . -1049) T) ((-694 . -131) T) ((-420 . -516) 65421) ((-361 . -233) 65400) ((-361 . -243) T) ((-44 . -720) T) ((-355 . -233) 65379) ((-355 . -243) T) ((-347 . -233) 65358) ((-347 . -243) T) ((-1165 . -616) 65339) ((-169 . -310) 65304) ((-108 . -243) T) ((-108 . -233) T) ((-994 . -616) 65285) ((-320 . -792) T) ((-870 . -21) T) ((-870 . -25) T) ((-409 . -308) T) ((-502 . -34) T) ((-110 . -289) 65260) ((-1112 . -1056) 65157) ((-871 . -1150) NIL) ((-331 . -613) 65139) ((-409 . -1022) 65117) ((-1112 . -111) 65007) ((-691 . -1259) T) ((-438 . -1099) T) ((-250 . -1099) T) ((-1288 . -726) T) ((-63 . -613) 64989) ((-871 . -38) 64934) ((-525 . -1214) T) ((-602 . -151) 64918) ((-514 . -613) 64900) ((-1237 . -310) 64887) ((-731 . -717) 64736) ((-533 . -793) T) ((-533 . -794) T) ((-566 . -639) 64718) ((-497 . -639) 64678) ((-357 . -454) T) ((-354 . -454) T) ((-346 . -454) T) ((-265 . -454) 64629) ((-527 . -1099) T) ((-522 . -1099) 64579) ((-247 . -454) 64530) ((-1149 . -287) 64509) ((-1177 . -613) 64491) ((-689 . -516) 64424) ((-963 . -291) 64403) ((-552 . -516) 64195) ((-252 . -646) 64015) ((-251 . -646) 63822) ((-1276 . -613) 63791) ((-1171 . -231) 63775) ((-1112 . -616) 63505) ((-169 . -1150) 63484) ((-1276 . -492) 63468) ((-1173 . -717) 63365) ((-1172 . -717) 63206) ((-892 . -102) T) ((-1166 . -717) 63002) ((-1125 . -717) 62899) ((-1155 . -674) 62883) ((-357 . -404) 62834) ((-354 . -404) 62785) ((-346 . -404) 62736) ((-1024 . -131) T) ((-799 . -516) 62648) ((-296 . -614) NIL) ((-296 . -613) 62630) ((-910 . -454) T) ((-964 . -370) 62583) ((-815 . -370) 62562) ((-512 . -511) 62541) ((-510 . -511) 62520) ((-489 . -287) NIL) ((-484 . -289) 62497) ((-420 . -291) T) ((-356 . -131) T) ((-217 . -287) NIL) ((-694 . -495) NIL) ((-99 . -1111) T) ((-169 . -38) 62325) ((-1248 . -973) 62287) ((-1146 . -310) 62225) ((-1227 . -973) 62194) ((-910 . -404) T) ((-1112 . -1049) 62124) ((-1250 . -558) T) ((-1149 . -604) 62103) ((-112 . -850) T) ((-1062 . -491) 62034) ((-582 . -21) T) ((-582 . -25) T) ((-566 . -21) T) ((-566 . -25) T) ((-497 . -25) T) ((-497 . -21) T) ((-1237 . -1150) 62012) ((-1112 . -233) 61964) ((-48 . -131) T) ((-1195 . -102) T) ((-240 . -1099) 61754) ((-871 . -402) 61731) ((-1087 . -102) T) ((-1075 . -102) T) ((-608 . -102) T) ((-477 . -102) T) ((-1237 . -38) 61560) ((-855 . -38) 61530) ((-1034 . -1051) 61504) ((-731 . -172) 61415) ((-653 . -613) 61397) ((-645 . -1082) T) ((-1034 . -640) 61381) ((-573 . -38) 61368) ((-970 . -492) 61349) ((-970 . -613) 61315) ((-958 . -102) 61265) ((-864 . -613) 61247) ((-864 . -614) 61169) ((-594 . -516) NIL) ((-1256 . -1057) T) ((-1249 . -1057) T) ((-323 . -1051) 61151) ((-1228 . -1057) T) ((-323 . -640) 61133) ((-1292 . -1111) T) ((-1208 . -147) 61112) ((-1208 . -145) 61091) ((-1182 . -102) T) ((-1181 . -102) T) ((-597 . -1057) T) ((-596 . -1057) T) ((-1173 . -172) 61042) ((-1172 . -172) 60973) ((-381 . -1051) 60938) ((-1166 . -172) 60869) ((-1125 . -172) 60820) ((-1004 . -1099) T) ((-971 . -1099) T) ((-914 . -1099) T) ((-381 . -640) 60785) ((-799 . -797) 60769) ((-699 . -25) T) ((-699 . -21) T) ((-117 . -639) 60746) ((-701 . -886) 60728) ((-429 . -1099) T) ((-317 . -1218) 60707) ((-314 . -1218) T) ((-169 . -402) 60691) ((-836 . -1051) 60661) ((-476 . -973) 60623) ((-130 . -102) T) ((-128 . -102) T) ((-72 . -613) 60605) ((-827 . -1051) 60589) ((-108 . -795) T) ((-108 . -792) T) ((-701 . -1038) 60571) ((-317 . -558) 60550) ((-314 . -558) T) ((-836 . -640) 60520) ((-827 . -640) 60490) ((-1292 . -23) T) ((-134 . -1038) 60472) ((-96 . -616) 60453) ((-993 . -646) 60435) ((-484 . -1056) 60332) ((-45 . -289) 60257) ((-240 . -717) 60199) ((-519 . -102) T) ((-484 . -111) 60089) ((-1091 . -102) 60067) ((-1034 . -102) T) ((-1171 . -646) 59977) ((-1124 . -646) 59887) ((-854 . -646) 59846) ((-644 . -828) 59825) ((-731 . -516) 59768) ((-1054 . -1056) 59752) ((-1134 . -93) T) ((-1062 . -287) 59727) ((-623 . -21) T) ((-623 . -25) T) ((-526 . -1099) T) ((-670 . -648) 59701) ((-363 . -102) T) ((-323 . -102) T) ((-387 . -1056) 59685) ((-1054 . -111) 59664) ((-816 . -413) 59648) ((-117 . -25) T) ((-89 . -613) 59630) ((-117 . -21) T) ((-608 . -310) 59425) ((-477 . -310) 59229) ((-1149 . -614) NIL) ((-387 . -111) 59208) ((-381 . -102) T) ((-214 . -613) 59190) ((-1149 . -613) 59172) ((-1166 . -516) 58941) ((-1004 . -717) 58891) ((-1125 . -516) 58861) ((-914 . -717) 58813) ((-484 . -616) 58543) ((-353 . -308) T) ((-1187 . -151) 58493) ((-958 . -310) 58431) ((-836 . -102) T) ((-429 . -717) 58415) ((-225 . -828) T) ((-827 . -102) T) ((-825 . -102) T) ((-481 . -151) 58365) ((-1248 . -1247) 58344) ((-1119 . -1218) T) ((-341 . -1038) 58311) ((-1248 . -1242) 58281) ((-1248 . -1245) 58265) ((-1227 . -1226) 58244) ((-80 . -613) 58226) ((-905 . -613) 58208) ((-1227 . -1242) 58185) ((-1119 . -558) T) ((-921 . -850) T) ((-771 . -850) T) ((-672 . -850) T) ((-489 . -614) 58115) ((-489 . -613) 58056) ((-381 . -285) T) ((-1227 . -1224) 58040) ((-1250 . -1111) T) ((-217 . -614) 57970) ((-217 . -613) 57911) ((-1286 . -648) 57885) ((-1062 . -604) 57860) ((-818 . -616) 57844) ((-59 . -151) 57828) ((-518 . -151) 57812) ((-498 . -151) 57796) ((-361 . -1283) 57780) ((-355 . -1283) 57764) ((-347 . -1283) 57748) ((-317 . -365) 57727) ((-314 . -365) T) ((-484 . -1049) 57657) ((-694 . -639) 57639) ((-1284 . -648) 57613) ((-128 . -310) NIL) ((-1250 . -23) T) ((-689 . -491) 57597) ((-64 . -613) 57579) ((-1112 . -795) 57530) ((-1112 . -792) 57481) ((-552 . -491) 57418) ((-670 . -34) T) ((-484 . -233) 57370) ((-296 . -289) 57349) ((-240 . -172) 57328) ((-816 . -1057) T) ((-44 . -648) 57286) ((-1079 . -370) 57237) ((-731 . -291) 57168) ((-522 . -516) 57101) ((-817 . -1056) 57052) ((-1086 . -145) 57031) ((-551 . -613) 57013) ((-361 . -370) 56992) ((-355 . -370) 56971) ((-347 . -370) 56950) ((-1086 . -147) 56929) ((-871 . -231) 56906) ((-817 . -111) 56848) ((-782 . -145) 56827) ((-782 . -147) 56806) ((-265 . -949) 56773) ((-252 . -848) 56752) ((-247 . -949) 56697) ((-251 . -848) 56676) ((-780 . -145) 56655) ((-780 . -147) 56634) ((-152 . -648) 56608) ((-581 . -1099) T) ((-456 . -147) 56587) ((-456 . -145) 56566) ((-670 . -726) T) ((-823 . -613) 56548) ((-1256 . -1099) T) ((-1249 . -1099) T) ((-1228 . -1099) T) ((-1208 . -1202) 56514) ((-1208 . -1199) 56480) ((-1173 . -291) 56459) ((-1172 . -291) 56410) ((-1166 . -291) 56361) ((-1125 . -291) 56340) ((-341 . -900) 56321) ((-1004 . -172) T) ((-914 . -172) T) ((-694 . -21) T) ((-694 . -25) T) ((-225 . -646) 56271) ((-597 . -1099) T) ((-596 . -1099) T) ((-476 . -1245) 56255) ((-476 . -1242) 56225) ((-420 . -287) 56153) ((-549 . -850) T) ((-317 . -1111) 56002) ((-314 . -1111) T) ((-1208 . -35) 55968) ((-1208 . -95) 55934) ((-84 . -613) 55916) ((-91 . -102) 55894) ((-1292 . -131) T) ((-714 . -1051) 55864) ((-593 . -616) 55845) ((-583 . -145) T) ((-583 . -147) 55827) ((-520 . -147) 55809) ((-520 . -145) T) ((-714 . -640) 55779) ((-317 . -23) 55631) ((-40 . -344) 55605) ((-314 . -23) T) ((-817 . -616) 55519) ((-1157 . -651) 55501) ((-1279 . -1057) T) ((-1157 . -375) 55483) ((-815 . -648) 55331) ((-1095 . -102) T) ((-1089 . -102) T) ((-1072 . -102) T) ((-169 . -231) 55315) ((-1065 . -102) T) ((-1036 . -102) T) ((-1019 . -102) T) ((-594 . -491) 55297) ((-626 . -102) T) ((-240 . -516) 55230) ((-485 . -102) T) ((-1286 . -726) T) ((-1284 . -726) T) ((-218 . -102) T) ((-1177 . -1056) 55113) ((-1061 . -646) 55085) ((-952 . -646) 54995) ((-1177 . -111) 54864) ((-483 . -646) 54774) ((-861 . -173) T) ((-817 . -1049) T) ((-681 . -1082) T) ((-676 . -1082) T) ((-517 . -102) T) ((-512 . -102) T) ((-48 . -639) 54734) ((-510 . -102) T) ((-480 . -1082) T) ((-1276 . -1056) 54704) ((-138 . -1082) T) ((-137 . -1082) T) ((-133 . -1082) T) ((-1034 . -38) 54688) ((-817 . -233) T) ((-817 . -243) 54667) ((-1276 . -111) 54632) ((-1256 . -717) 54529) ((-1249 . -717) 54370) ((-552 . -287) 54349) ((-1237 . -231) 54333) ((-1219 . -613) 54315) ((-606 . -93) T) ((-1062 . -614) NIL) ((-1062 . -613) 54297) ((-671 . -93) T) ((-180 . -93) T) ((-161 . -93) T) ((-156 . -93) T) ((-154 . -93) T) ((-1228 . -717) 54093) ((-1003 . -920) T) ((-152 . -726) T) ((-1177 . -616) 53946) ((-1112 . -370) 53925) ((-1024 . -25) T) ((-1004 . -516) NIL) ((-252 . -413) 53894) ((-251 . -413) 53863) ((-1024 . -21) T) ((-872 . -1051) 53815) ((-597 . -717) 53788) ((-596 . -717) 53685) ((-799 . -287) 53643) ((-126 . -102) 53621) ((-833 . -1038) 53517) ((-169 . -828) 53496) ((-320 . -648) 53393) ((-815 . -34) T) ((-714 . -102) T) ((-1119 . -1111) T) ((-1026 . -1214) T) ((-872 . -640) 53345) ((-381 . -38) 53310) ((-356 . -25) T) ((-356 . -21) T) ((-187 . -102) T) ((-162 . -102) T) ((-249 . -102) T) ((-157 . -102) T) ((-357 . -1271) 53294) ((-354 . -1271) 53278) ((-346 . -1271) 53262) ((-169 . -351) 53241) ((-566 . -850) T) ((-1119 . -23) T) ((-87 . -613) 53223) ((-701 . -308) T) ((-836 . -38) 53193) ((-827 . -38) 53163) ((-1276 . -616) 53105) ((-1250 . -131) T) ((-1149 . -289) 53084) ((-964 . -726) 52983) ((-964 . -793) 52936) ((-964 . -794) 52889) ((-815 . -791) 52868) ((-116 . -308) T) ((-91 . -310) 52806) ((-675 . -34) T) ((-552 . -604) 52785) ((-48 . -25) T) ((-48 . -21) T) ((-815 . -794) 52736) ((-815 . -793) 52715) ((-701 . -1022) T) ((-653 . -1056) 52699) ((-871 . -646) 52629) ((-815 . -726) 52539) ((-964 . -475) 52492) ((-484 . -795) 52443) ((-484 . -792) 52394) ((-910 . -1271) 52381) ((-1177 . -1049) T) ((-653 . -111) 52360) ((-1177 . -327) 52337) ((-1200 . -102) 52315) ((-1100 . -613) 52297) ((-701 . -547) T) ((-816 . -1099) T) ((-1276 . -1049) T) ((-1134 . -492) 52278) ((-1220 . -102) T) ((-415 . -1099) T) ((-1134 . -613) 52244) ((-252 . -1057) 52174) ((-251 . -1057) 52104) ((-838 . -102) T) ((-290 . -648) 52091) ((-594 . -287) 52066) ((-689 . -687) 52024) ((-963 . -613) 52006) ((-872 . -102) T) ((-735 . -613) 51988) ((-715 . -613) 51970) ((-1256 . -172) 51921) ((-1249 . -172) 51852) ((-1228 . -172) 51783) ((-699 . -850) T) ((-1004 . -291) T) ((-455 . -613) 51765) ((-627 . -726) T) ((-60 . -1099) 51743) ((-245 . -151) 51727) ((-914 . -291) T) ((-1024 . -1012) T) ((-627 . -475) T) ((-712 . -1218) 51706) ((-653 . -616) 51624) ((-169 . -646) 51519) ((-1264 . -850) 51498) ((-597 . -172) 51477) ((-596 . -172) 51428) ((-1248 . -640) 51269) ((-1248 . -1051) 51104) ((-1227 . -640) 50918) ((-1227 . -1051) 50726) ((-712 . -558) 50637) ((-409 . -920) T) ((-409 . -820) 50616) ((-320 . -794) T) ((-970 . -616) 50597) ((-320 . -726) T) ((-420 . -613) 50579) ((-420 . -614) 50486) ((-644 . -1148) 50470) ((-110 . -651) 50452) ((-174 . -308) T) ((-126 . -310) 50390) ((-110 . -375) 50372) ((-400 . -1214) T) ((-317 . -131) 50243) ((-314 . -131) T) ((-69 . -397) T) ((-110 . -123) T) ((-522 . -491) 50227) ((-654 . -1111) T) ((-594 . -19) 50209) ((-61 . -443) T) ((-61 . -397) T) ((-824 . -1099) T) ((-594 . -604) 50184) ((-479 . -1038) 50144) ((-653 . -1049) T) ((-654 . -23) T) ((-1279 . -1099) T) ((-31 . -102) T) ((-1237 . -646) 50054) ((-855 . -646) 50013) ((-816 . -717) 49862) ((-579 . -860) T) ((-573 . -646) 49834) ((-117 . -850) NIL) ((-1171 . -413) 49818) ((-1124 . -413) 49802) ((-854 . -413) 49786) ((-873 . -102) 49737) ((-1248 . -102) T) ((-1228 . -516) 49506) ((-1227 . -102) T) ((-1200 . -310) 49444) ((-1173 . -287) 49429) ((-1172 . -287) 49414) ((-527 . -93) T) ((-1166 . -287) 49262) ((-313 . -613) 49244) ((-1101 . -1099) T) ((-1079 . -648) 49154) ((-711 . -454) T) ((-689 . -613) 49086) ((-290 . -726) T) ((-108 . -909) NIL) ((-689 . -614) 49047) ((-601 . -613) 49029) ((-579 . -613) 49011) ((-552 . -614) NIL) ((-552 . -613) 48993) ((-531 . -613) 48975) ((-513 . -511) 48954) ((-489 . -1056) 48904) ((-476 . -1051) 48739) ((-509 . -511) 48718) ((-476 . -640) 48559) ((-217 . -1056) 48509) ((-361 . -648) 48461) ((-355 . -648) 48413) ((-225 . -848) T) ((-347 . -648) 48365) ((-602 . -102) 48315) ((-484 . -370) 48294) ((-108 . -648) 48244) ((-489 . -111) 48178) ((-240 . -491) 48162) ((-345 . -147) 48144) ((-345 . -145) T) ((-169 . -372) 48115) ((-943 . -1262) 48099) ((-217 . -111) 48033) ((-872 . -310) 47998) ((-943 . -1099) 47948) ((-799 . -614) 47909) ((-799 . -613) 47891) ((-718 . -102) T) ((-332 . -1099) T) ((-214 . -616) 47868) ((-1119 . -131) T) ((-714 . -38) 47838) ((-317 . -495) 47817) ((-502 . -1214) T) ((-1248 . -285) 47783) ((-1227 . -285) 47749) ((-328 . -151) 47733) ((-441 . -1099) T) ((-1062 . -289) 47708) ((-1279 . -717) 47678) ((-1158 . -34) T) ((-1288 . -1038) 47655) ((-470 . -613) 47637) ((-486 . -34) T) ((-383 . -1038) 47621) ((-1171 . -1057) T) ((-1124 . -1057) T) ((-854 . -1057) T) ((-1061 . -848) T) ((-489 . -616) 47571) ((-217 . -616) 47521) ((-816 . -172) 47432) ((-522 . -287) 47409) ((-1256 . -291) 47388) ((-1195 . -366) 47362) ((-1087 . -267) 47346) ((-671 . -492) 47327) ((-671 . -613) 47293) ((-606 . -492) 47274) ((-117 . -992) 47251) ((-606 . -613) 47201) ((-476 . -102) T) ((-180 . -492) 47182) ((-180 . -613) 47148) ((-161 . -492) 47129) ((-156 . -492) 47110) ((-154 . -492) 47091) ((-161 . -613) 47057) ((-156 . -613) 47023) ((-367 . -1099) T) ((-252 . -1099) T) ((-251 . -1099) T) ((-154 . -613) 46989) ((-1249 . -291) 46940) ((-1228 . -291) 46891) ((-872 . -1150) 46869) ((-1173 . -1002) 46835) ((-608 . -366) 46775) ((-1172 . -1002) 46741) ((-608 . -229) 46688) ((-694 . -850) T) ((-594 . -613) 46670) ((-594 . -614) NIL) ((-477 . -229) 46620) ((-489 . -1049) T) ((-1166 . -1002) 46586) ((-88 . -442) T) ((-88 . -397) T) ((-217 . -1049) T) ((-1125 . -1002) 46552) ((-1079 . -726) T) ((-712 . -1111) T) ((-597 . -291) 46531) ((-596 . -291) 46510) ((-489 . -243) T) ((-489 . -233) T) ((-217 . -243) T) ((-217 . -233) T) ((-1164 . -613) 46492) ((-872 . -38) 46444) ((-361 . -726) T) ((-355 . -726) T) ((-347 . -726) T) ((-108 . -794) T) ((-108 . -791) T) ((-712 . -23) T) ((-108 . -726) T) ((-522 . -1252) 46428) ((-1292 . -25) T) ((-476 . -285) 46394) ((-1292 . -21) T) ((-1227 . -310) 46333) ((-1175 . -102) T) ((-40 . -145) 46305) ((-40 . -147) 46277) ((-522 . -604) 46254) ((-1112 . -648) 46102) ((-602 . -310) 46040) ((-45 . -651) 45990) ((-45 . -666) 45940) ((-45 . -375) 45890) ((-1157 . -34) T) ((-871 . -848) NIL) ((-654 . -131) T) ((-487 . -613) 45872) ((-240 . -287) 45849) ((-186 . -1099) T) ((-1086 . -454) 45800) ((-816 . -516) 45674) ((-664 . -1051) 45658) ((-647 . -34) T) ((-632 . -34) T) ((-782 . -454) 45589) ((-664 . -640) 45573) ((-357 . -1051) 45525) ((-354 . -1051) 45477) ((-346 . -1051) 45429) ((-265 . -1051) 45272) ((-247 . -1051) 45115) ((-780 . -454) 45066) ((-357 . -640) 45018) ((-354 . -640) 44970) ((-346 . -640) 44922) ((-265 . -640) 44771) ((-247 . -640) 44620) ((-456 . -454) 44571) ((-952 . -413) 44555) ((-731 . -613) 44537) ((-252 . -717) 44479) ((-251 . -717) 44421) ((-731 . -614) 44282) ((-483 . -413) 44266) ((-341 . -303) T) ((-526 . -93) T) ((-353 . -920) T) ((-1000 . -102) 44244) ((-910 . -1051) 44209) ((-1024 . -850) T) ((-60 . -516) 44142) ((-910 . -640) 44107) ((-1227 . -1150) 44059) ((-1004 . -287) NIL) ((-225 . -1057) T) ((-381 . -828) T) ((-1112 . -34) T) ((-583 . -454) T) ((-520 . -454) T) ((-1231 . -1092) 44043) ((-1231 . -1099) 44021) ((-240 . -604) 43998) ((-1231 . -1094) 43955) ((-1173 . -613) 43937) ((-1172 . -613) 43919) ((-1166 . -613) 43901) ((-1166 . -614) NIL) ((-1125 . -613) 43883) ((-872 . -402) 43867) ((-538 . -102) T) ((-1248 . -38) 43708) ((-1227 . -38) 43522) ((-870 . -147) T) ((-583 . -404) T) ((-520 . -404) T) ((-1260 . -102) T) ((-1250 . -21) T) ((-1250 . -25) T) ((-1112 . -791) 43501) ((-1112 . -794) 43452) ((-1112 . -793) 43431) ((-993 . -1099) T) ((-1027 . -34) T) ((-862 . -1099) T) ((-1112 . -726) 43341) ((-664 . -102) T) ((-645 . -102) T) ((-552 . -289) 43320) ((-1187 . -102) T) ((-478 . -34) T) ((-465 . -34) T) ((-357 . -102) T) ((-354 . -102) T) ((-346 . -102) T) ((-265 . -102) T) ((-247 . -102) T) ((-479 . -308) T) ((-1061 . -1057) T) ((-952 . -1057) T) ((-317 . -639) 43226) ((-314 . -639) 43187) ((-1171 . -1099) T) ((-483 . -1057) T) ((-481 . -102) T) ((-438 . -613) 43169) ((-1124 . -1099) T) ((-250 . -613) 43151) ((-854 . -1099) T) ((-1140 . -102) T) ((-816 . -291) 43082) ((-963 . -1056) 42965) ((-479 . -1022) T) ((-735 . -1056) 42935) ((-1034 . -646) 42894) ((-455 . -1056) 42864) ((-1146 . -1120) 42848) ((-1101 . -516) 42781) ((-963 . -111) 42650) ((-910 . -102) T) ((-735 . -111) 42615) ((-527 . -492) 42596) ((-527 . -613) 42562) ((-59 . -102) 42512) ((-522 . -614) 42473) ((-522 . -613) 42385) ((-521 . -102) 42363) ((-518 . -102) 42313) ((-499 . -102) 42291) ((-498 . -102) 42241) ((-455 . -111) 42204) ((-252 . -172) 42183) ((-251 . -172) 42162) ((-323 . -646) 42144) ((-420 . -1056) 42118) ((-1208 . -973) 42080) ((-999 . -1111) T) ((-381 . -646) 42030) ((-1134 . -616) 42011) ((-943 . -516) 41944) ((-489 . -795) T) ((-476 . -38) 41785) ((-420 . -111) 41752) ((-489 . -792) T) ((-1000 . -310) 41690) ((-217 . -795) T) ((-217 . -792) T) ((-999 . -23) T) ((-712 . -131) T) ((-1227 . -402) 41660) ((-836 . -646) 41605) ((-827 . -646) 41564) ((-317 . -25) 41416) ((-169 . -413) 41400) ((-317 . -21) 41271) ((-314 . -25) T) ((-314 . -21) T) ((-864 . -370) T) ((-963 . -616) 41124) ((-110 . -34) T) ((-735 . -616) 41080) ((-715 . -616) 41062) ((-484 . -648) 40910) ((-871 . -1057) T) ((-594 . -289) 40885) ((-582 . -147) T) ((-566 . -147) T) ((-497 . -147) T) ((-1171 . -717) 40714) ((-1124 . -717) 40563) ((-1119 . -639) 40545) ((-854 . -717) 40515) ((-670 . -1214) T) ((-1 . -102) T) ((-420 . -616) 40423) ((-240 . -613) 40154) ((-1114 . -1099) T) ((-1237 . -413) 40138) ((-1187 . -310) 39942) ((-963 . -1049) T) ((-735 . -1049) T) ((-715 . -1049) T) ((-644 . -1099) 39892) ((-1054 . -648) 39876) ((-855 . -413) 39860) ((-513 . -102) T) ((-509 . -102) T) ((-265 . -310) 39847) ((-247 . -310) 39834) ((-963 . -327) 39813) ((-387 . -648) 39797) ((-670 . -1038) 39693) ((-481 . -310) 39497) ((-252 . -516) 39430) ((-251 . -516) 39363) ((-1140 . -310) 39289) ((-819 . -1099) T) ((-799 . -1056) 39273) ((-1256 . -287) 39258) ((-1249 . -287) 39243) ((-1228 . -287) 39091) ((-388 . -1099) T) ((-325 . -1099) T) ((-420 . -1049) T) ((-169 . -1057) T) ((-59 . -310) 39029) ((-799 . -111) 39008) ((-596 . -287) 38993) ((-521 . -310) 38931) ((-518 . -310) 38869) ((-499 . -310) 38807) ((-498 . -310) 38745) ((-420 . -233) 38724) ((-484 . -34) T) ((-1004 . -614) 38654) ((-225 . -1099) T) ((-1004 . -613) 38614) ((-971 . -613) 38574) ((-971 . -614) 38549) ((-914 . -613) 38531) ((-699 . -147) T) ((-701 . -920) T) ((-701 . -820) T) ((-429 . -613) 38513) ((-1119 . -21) T) ((-1119 . -25) T) ((-670 . -379) 38497) ((-116 . -920) T) ((-872 . -231) 38481) ((-78 . -1214) T) ((-126 . -125) 38465) ((-1054 . -34) T) ((-1286 . -1038) 38439) ((-1284 . -1038) 38396) ((-1237 . -1057) T) ((-855 . -1057) T) ((-484 . -791) 38375) ((-357 . -1150) 38354) ((-354 . -1150) 38333) ((-346 . -1150) 38312) ((-484 . -794) 38263) ((-484 . -793) 38242) ((-227 . -34) T) ((-484 . -726) 38152) ((-799 . -616) 38000) ((-662 . -1051) 37984) ((-60 . -491) 37968) ((-573 . -1057) T) ((-662 . -640) 37952) ((-1171 . -172) 37843) ((-1124 . -172) 37754) ((-1061 . -1099) T) ((-1086 . -949) 37699) ((-952 . -1099) T) ((-817 . -648) 37650) ((-782 . -949) 37619) ((-713 . -1099) T) ((-780 . -949) 37586) ((-518 . -283) 37570) ((-670 . -900) 37529) ((-483 . -1099) T) ((-456 . -949) 37496) ((-79 . -1214) T) ((-357 . -38) 37461) ((-354 . -38) 37426) ((-346 . -38) 37391) ((-265 . -38) 37240) ((-247 . -38) 37089) ((-910 . -1150) T) ((-526 . -492) 37070) ((-623 . -147) 37049) ((-623 . -145) 37028) ((-526 . -613) 36994) ((-117 . -147) T) ((-117 . -145) NIL) ((-416 . -726) T) ((-799 . -1049) T) ((-345 . -454) T) ((-1256 . -1002) 36960) ((-1249 . -1002) 36926) ((-1228 . -1002) 36892) ((-910 . -38) 36857) ((-225 . -717) 36822) ((-320 . -47) 36792) ((-40 . -411) 36764) ((-140 . -613) 36746) ((-999 . -131) T) ((-815 . -1214) T) ((-174 . -920) T) ((-551 . -370) T) ((-606 . -616) 36727) ((-345 . -404) T) ((-714 . -646) 36672) ((-671 . -616) 36653) ((-180 . -616) 36634) ((-161 . -616) 36615) ((-156 . -616) 36596) ((-154 . -616) 36577) ((-522 . -289) 36554) ((-1227 . -231) 36524) ((-815 . -1038) 36351) ((-45 . -34) T) ((-681 . -102) T) ((-676 . -102) T) ((-662 . -102) T) ((-654 . -21) T) ((-654 . -25) T) ((-1101 . -491) 36335) ((-675 . -1214) T) ((-480 . -102) T) ((-245 . -102) 36285) ((-548 . -844) T) ((-137 . -102) T) ((-133 . -102) T) ((-138 . -102) T) ((-871 . -1099) T) ((-1177 . -648) 36210) ((-1061 . -717) 36197) ((-731 . -1056) 36040) ((-1171 . -516) 35987) ((-952 . -717) 35836) ((-1124 . -516) 35788) ((-1275 . -1099) T) ((-1274 . -1099) T) ((-483 . -717) 35637) ((-67 . -613) 35619) ((-731 . -111) 35448) ((-943 . -491) 35432) ((-1276 . -648) 35392) ((-817 . -726) T) ((-1173 . -1056) 35275) ((-1172 . -1056) 35110) ((-1166 . -1056) 34900) ((-1125 . -1056) 34783) ((-1003 . -1218) T) ((-1093 . -102) 34761) ((-815 . -379) 34730) ((-581 . -613) 34712) ((-548 . -1099) T) ((-1003 . -558) T) ((-1173 . -111) 34581) ((-1172 . -111) 34402) ((-1166 . -111) 34171) ((-1125 . -111) 34040) ((-1104 . -1102) 34004) ((-381 . -848) T) ((-1256 . -613) 33986) ((-1249 . -613) 33968) ((-872 . -646) 33905) ((-1228 . -613) 33887) ((-1228 . -614) NIL) ((-240 . -289) 33864) ((-40 . -454) T) ((-225 . -172) T) ((-169 . -1099) T) ((-731 . -616) 33649) ((-694 . -147) T) ((-694 . -145) NIL) ((-597 . -613) 33631) ((-596 . -613) 33613) ((-898 . -1099) T) ((-841 . -1099) T) ((-808 . -1099) T) ((-769 . -1099) T) ((-658 . -852) 33597) ((-677 . -1099) T) ((-815 . -900) 33529) ((-1219 . -370) T) ((-40 . -404) NIL) ((-1173 . -616) 33411) ((-1119 . -661) T) ((-871 . -717) 33356) ((-252 . -491) 33340) ((-251 . -491) 33324) ((-1172 . -616) 33067) ((-1166 . -616) 32862) ((-712 . -639) 32810) ((-653 . -648) 32784) ((-1125 . -616) 32666) ((-296 . -34) T) ((-731 . -1049) T) ((-583 . -1271) 32653) ((-520 . -1271) 32630) ((-1237 . -1099) T) ((-1171 . -291) 32541) ((-1124 . -291) 32472) ((-1061 . -172) T) ((-855 . -1099) T) ((-952 . -172) 32383) ((-782 . -1240) 32367) ((-644 . -516) 32300) ((-77 . -613) 32282) ((-731 . -327) 32247) ((-1177 . -726) T) ((-573 . -1099) T) ((-483 . -172) 32158) ((-245 . -310) 32096) ((-1141 . -1111) T) ((-70 . -613) 32078) ((-1276 . -726) T) ((-1173 . -1049) T) ((-1172 . -1049) T) ((-328 . -102) 32028) ((-1166 . -1049) T) ((-1141 . -23) T) ((-1125 . -1049) T) ((-91 . -1120) 32012) ((-866 . -1111) T) ((-1173 . -233) 31971) ((-1172 . -243) 31950) ((-1172 . -233) 31902) ((-1166 . -233) 31789) ((-1166 . -243) 31768) ((-320 . -900) 31674) ((-866 . -23) T) ((-169 . -717) 31502) ((-409 . -1218) T) ((-1100 . -370) T) ((-1003 . -365) T) ((-870 . -454) T) ((-1024 . -147) T) ((-943 . -287) 31479) ((-314 . -850) NIL) ((-1248 . -646) 31361) ((-874 . -102) T) ((-1227 . -646) 31216) ((-712 . -25) T) ((-409 . -558) T) ((-712 . -21) T) ((-527 . -616) 31197) ((-356 . -147) 31179) ((-356 . -145) T) ((-1146 . -1099) 31157) ((-455 . -720) T) ((-75 . -613) 31139) ((-114 . -850) T) ((-245 . -283) 31123) ((-240 . -1056) 31020) ((-81 . -613) 31002) ((-735 . -370) 30955) ((-1175 . -828) T) ((-737 . -235) 30939) ((-1158 . -1214) T) ((-141 . -235) 30921) ((-240 . -111) 30811) ((-1237 . -717) 30640) ((-48 . -147) T) ((-871 . -172) T) ((-855 . -717) 30610) ((-486 . -1214) T) ((-952 . -516) 30557) ((-653 . -726) T) ((-573 . -717) 30544) ((-1034 . -1057) T) ((-483 . -516) 30487) ((-943 . -19) 30471) ((-943 . -604) 30448) ((-816 . -614) NIL) ((-816 . -613) 30430) ((-1208 . -1051) 30313) ((-1004 . -1056) 30263) ((-415 . -613) 30245) ((-252 . -287) 30222) ((-251 . -287) 30199) ((-489 . -909) NIL) ((-317 . -29) 30169) ((-108 . -1214) T) ((-1003 . -1111) T) ((-217 . -909) NIL) ((-1208 . -640) 30066) ((-914 . -1056) 30018) ((-1079 . -1038) 29914) ((-1004 . -111) 29848) ((-711 . -1051) 29813) ((-1003 . -23) T) ((-914 . -111) 29751) ((-737 . -695) 29735) ((-711 . -640) 29700) ((-265 . -231) 29684) ((-429 . -1056) 29668) ((-381 . -1057) T) ((-240 . -616) 29398) ((-694 . -1202) NIL) ((-489 . -648) 29348) ((-476 . -646) 29230) ((-108 . -884) 29212) ((-108 . -886) 29194) ((-694 . -1199) NIL) ((-217 . -648) 29144) ((-361 . -1038) 29128) ((-355 . -1038) 29112) ((-328 . -310) 29050) ((-347 . -1038) 29034) ((-225 . -291) T) ((-429 . -111) 29013) ((-60 . -613) 28945) ((-169 . -172) T) ((-1119 . -850) T) ((-108 . -1038) 28905) ((-892 . -1099) T) ((-836 . -1057) T) ((-827 . -1057) T) ((-694 . -35) NIL) ((-694 . -95) NIL) ((-314 . -992) 28866) ((-183 . -102) T) ((-582 . -454) T) ((-566 . -454) T) ((-497 . -454) T) ((-409 . -365) T) ((-240 . -1049) 28796) ((-1149 . -34) T) ((-479 . -920) T) ((-999 . -639) 28744) ((-252 . -604) 28721) ((-251 . -604) 28698) ((-1079 . -379) 28682) ((-871 . -516) 28590) ((-240 . -233) 28542) ((-1157 . -1214) T) ((-1004 . -616) 28492) ((-914 . -616) 28429) ((-824 . -613) 28411) ((-1287 . -1111) T) ((-1279 . -613) 28393) ((-1237 . -172) 28284) ((-429 . -616) 28253) ((-108 . -379) 28235) ((-108 . -340) 28217) ((-1061 . -291) T) ((-952 . -291) 28148) ((-799 . -370) 28127) ((-647 . -1214) T) ((-632 . -1214) T) ((-587 . -1051) 28102) ((-483 . -291) 28033) ((-573 . -172) T) ((-328 . -283) 28017) ((-1287 . -23) T) ((-1208 . -102) T) ((-1195 . -1099) T) ((-1087 . -1099) T) ((-1075 . -1099) T) ((-587 . -640) 27992) ((-83 . -613) 27974) ((-1182 . -844) T) ((-1181 . -844) T) ((-711 . -102) T) ((-357 . -351) 27953) ((-608 . -1099) T) ((-354 . -351) 27932) ((-346 . -351) 27911) ((-477 . -1099) T) ((-1187 . -229) 27861) ((-265 . -254) 27823) ((-1141 . -131) T) ((-608 . -610) 27799) ((-1079 . -900) 27732) ((-1004 . -1049) T) ((-914 . -1049) T) ((-477 . -610) 27711) ((-1166 . -792) NIL) ((-1166 . -795) NIL) ((-1101 . -614) 27672) ((-481 . -229) 27622) ((-1101 . -613) 27604) ((-1004 . -243) T) ((-1004 . -233) T) ((-429 . -1049) T) ((-958 . -1099) 27554) ((-914 . -243) T) ((-866 . -131) T) ((-699 . -454) T) ((-843 . -1111) 27533) ((-108 . -900) NIL) ((-1208 . -285) 27499) ((-872 . -848) 27478) ((-1112 . -1214) T) ((-905 . -726) T) ((-169 . -516) 27390) ((-999 . -25) T) ((-905 . -475) T) ((-409 . -1111) T) ((-489 . -794) T) ((-489 . -791) T) ((-910 . -351) T) ((-489 . -726) T) ((-217 . -794) T) ((-217 . -791) T) ((-999 . -21) T) ((-217 . -726) T) ((-843 . -23) 27342) ((-658 . -1051) 27326) ((-1182 . -1099) T) ((-526 . -616) 27307) ((-1181 . -1099) T) ((-320 . -308) 27286) ((-1035 . -235) 27232) ((-658 . -640) 27202) ((-409 . -23) T) ((-943 . -614) 27163) ((-943 . -613) 27075) ((-644 . -491) 27059) ((-45 . -1010) 27009) ((-617 . -967) T) ((-493 . -102) T) ((-332 . -613) 26991) ((-1112 . -1038) 26818) ((-594 . -651) 26800) ((-130 . -1099) T) ((-128 . -1099) T) ((-594 . -375) 26782) ((-345 . -1271) 26759) ((-441 . -613) 26741) ((-1237 . -516) 26688) ((-1086 . -1051) 26531) ((-1027 . -1214) T) ((-871 . -291) T) ((-1171 . -287) 26458) ((-1086 . -640) 26307) ((-1000 . -995) 26291) ((-782 . -1051) 26114) ((-780 . -1051) 25957) ((-782 . -640) 25786) ((-780 . -640) 25635) ((-478 . -1214) T) ((-465 . -1214) T) ((-587 . -102) T) ((-463 . -1051) 25606) ((-456 . -1051) 25449) ((-664 . -646) 25418) ((-623 . -454) 25397) ((-463 . -640) 25368) ((-456 . -640) 25217) ((-357 . -646) 25154) ((-354 . -646) 25091) ((-346 . -646) 25028) ((-265 . -646) 24938) ((-247 . -646) 24848) ((-1279 . -384) 24820) ((-519 . -1099) T) ((-117 . -454) T) ((-1194 . -102) T) ((-1091 . -1099) 24798) ((-1034 . -1099) T) ((-1114 . -93) T) ((-893 . -850) T) ((-1256 . -111) 24667) ((-353 . -1218) T) ((-1256 . -1056) 24550) ((-1112 . -379) 24519) ((-1249 . -1056) 24354) ((-1228 . -1056) 24144) ((-1249 . -111) 23965) ((-1228 . -111) 23734) ((-1208 . -310) 23721) ((-1003 . -131) T) ((-910 . -646) 23671) ((-367 . -613) 23653) ((-353 . -558) T) ((-290 . -308) T) ((-597 . -1056) 23626) ((-596 . -1056) 23509) ((-583 . -1051) 23474) ((-520 . -1051) 23419) ((-363 . -1099) T) ((-323 . -1099) T) ((-252 . -613) 23380) ((-251 . -613) 23341) ((-583 . -640) 23306) ((-520 . -640) 23251) ((-694 . -411) 23218) ((-635 . -23) T) ((-607 . -23) T) ((-658 . -102) T) ((-597 . -111) 23189) ((-596 . -111) 23058) ((-381 . -1099) T) ((-338 . -102) T) ((-169 . -291) 22969) ((-1227 . -848) 22922) ((-714 . -1057) T) ((-1146 . -516) 22855) ((-1112 . -900) 22787) ((-836 . -1099) T) ((-827 . -1099) T) ((-825 . -1099) T) ((-97 . -102) T) ((-144 . -850) T) ((-612 . -884) 22771) ((-110 . -1214) T) ((-1086 . -102) T) ((-1062 . -34) T) ((-782 . -102) T) ((-780 . -102) T) ((-1256 . -616) 22653) ((-1249 . -616) 22396) ((-463 . -102) T) ((-456 . -102) T) ((-1228 . -616) 22191) ((-240 . -795) 22142) ((-240 . -792) 22093) ((-649 . -102) T) ((-597 . -616) 22051) ((-596 . -616) 21933) ((-1237 . -291) 21844) ((-664 . -634) 21828) ((-186 . -613) 21810) ((-644 . -287) 21787) ((-1034 . -717) 21771) ((-573 . -291) T) ((-963 . -648) 21696) ((-1287 . -131) T) ((-735 . -648) 21656) ((-715 . -648) 21643) ((-276 . -102) T) ((-455 . -648) 21573) ((-50 . -102) T) ((-583 . -102) T) ((-520 . -102) T) ((-1256 . -1049) T) ((-1249 . -1049) T) ((-1228 . -1049) T) ((-509 . -646) 21555) ((-323 . -717) 21537) ((-1256 . -233) 21496) ((-1249 . -243) 21475) ((-1249 . -233) 21427) ((-1228 . -233) 21314) ((-1228 . -243) 21293) ((-1208 . -38) 21190) ((-597 . -1049) T) ((-596 . -1049) T) ((-1004 . -795) T) ((-1004 . -792) T) ((-971 . -795) T) ((-971 . -792) T) ((-872 . -1057) T) ((-109 . -613) 21172) ((-694 . -454) T) ((-381 . -717) 21137) ((-420 . -648) 21111) ((-870 . -869) 21095) ((-711 . -38) 21060) ((-596 . -233) 21019) ((-40 . -724) 20991) ((-353 . -330) 20968) ((-353 . -365) T) ((-1079 . -308) 20919) ((-295 . -1111) 20800) ((-1105 . -1214) T) ((-171 . -102) T) ((-1231 . -613) 20767) ((-843 . -131) 20719) ((-644 . -1252) 20703) ((-836 . -717) 20673) ((-827 . -717) 20643) ((-484 . -1214) T) ((-361 . -308) T) ((-355 . -308) T) ((-347 . -308) T) ((-644 . -604) 20620) ((-409 . -131) T) ((-522 . -666) 20604) ((-108 . -308) T) ((-295 . -23) 20487) ((-522 . -651) 20471) ((-694 . -404) NIL) ((-522 . -375) 20455) ((-292 . -613) 20437) ((-91 . -1099) 20415) ((-108 . -1022) T) ((-566 . -143) T) ((-1264 . -151) 20399) ((-484 . -1038) 20226) ((-1250 . -145) 20187) ((-1250 . -147) 20148) ((-1054 . -1214) T) ((-993 . -613) 20130) ((-862 . -613) 20112) ((-816 . -1056) 19955) ((-1275 . -93) T) ((-1274 . -93) T) ((-1171 . -614) NIL) ((-1095 . -1099) T) ((-1089 . -1099) T) ((-1086 . -310) 19942) ((-1072 . -1099) T) ((-227 . -1214) T) ((-1065 . -1099) T) ((-1036 . -1099) T) ((-1019 . -1099) T) ((-782 . -310) 19929) ((-780 . -310) 19916) ((-1171 . -613) 19898) ((-816 . -111) 19727) ((-1124 . -613) 19709) ((-626 . -1099) T) ((-579 . -173) T) ((-531 . -173) T) ((-456 . -310) 19696) ((-485 . -1099) T) ((-1124 . -614) 19444) ((-1034 . -172) T) ((-943 . -289) 19421) ((-218 . -1099) T) ((-854 . -613) 19403) ((-608 . -516) 19186) ((-81 . -616) 19127) ((-818 . -1038) 19111) ((-477 . -516) 18903) ((-963 . -726) T) ((-735 . -726) T) ((-715 . -726) T) ((-353 . -1111) T) ((-1178 . -613) 18885) ((-223 . -102) T) ((-484 . -379) 18854) ((-517 . -1099) T) ((-512 . -1099) T) ((-510 . -1099) T) ((-799 . -648) 18828) ((-1024 . -454) T) ((-958 . -516) 18761) ((-353 . -23) T) ((-635 . -131) T) ((-607 . -131) T) ((-356 . -454) T) ((-240 . -370) 18740) ((-381 . -172) T) ((-1248 . -1057) T) ((-1227 . -1057) T) ((-225 . -1002) T) ((-816 . -616) 18477) ((-699 . -389) T) ((-420 . -726) T) ((-701 . -1218) T) ((-1141 . -639) 18425) ((-582 . -869) 18409) ((-1279 . -1056) 18393) ((-1158 . -1190) 18369) ((-701 . -558) T) ((-126 . -1099) 18347) ((-714 . -1099) T) ((-484 . -900) 18279) ((-249 . -1099) T) ((-187 . -1099) T) ((-658 . -38) 18249) ((-356 . -404) T) ((-317 . -147) 18228) ((-317 . -145) 18207) ((-128 . -516) NIL) ((-116 . -558) T) ((-314 . -147) 18163) ((-314 . -145) 18119) ((-48 . -454) T) ((-162 . -1099) T) ((-157 . -1099) T) ((-1158 . -107) 18066) ((-782 . -1150) 18044) ((-689 . -34) T) ((-1279 . -111) 18023) ((-552 . -34) T) ((-486 . -107) 18007) ((-252 . -289) 17984) ((-251 . -289) 17961) ((-871 . -287) 17912) ((-45 . -1214) T) ((-1220 . -844) T) ((-816 . -1049) T) ((-662 . -646) 17881) ((-1177 . -47) 17858) ((-816 . -327) 17820) ((-1086 . -38) 17669) ((-816 . -233) 17648) ((-782 . -38) 17477) ((-780 . -38) 17326) ((-1114 . -492) 17307) ((-456 . -38) 17156) ((-1114 . -613) 17122) ((-1117 . -102) T) ((-644 . -614) 17083) ((-644 . -613) 16995) ((-583 . -1150) T) ((-520 . -1150) T) ((-1146 . -491) 16979) ((-345 . -1051) 16924) ((-1200 . -1099) 16902) ((-1141 . -25) T) ((-1141 . -21) T) ((-345 . -640) 16847) ((-1279 . -616) 16796) ((-476 . -1057) T) ((-1220 . -1099) T) ((-1228 . -792) NIL) ((-1228 . -795) NIL) ((-999 . -850) 16775) ((-838 . -1099) T) ((-819 . -613) 16757) ((-866 . -21) T) ((-866 . -25) T) ((-799 . -726) T) ((-174 . -1218) T) ((-583 . -38) 16722) ((-520 . -38) 16687) ((-388 . -613) 16669) ((-334 . -102) T) ((-325 . -613) 16651) ((-169 . -287) 16609) ((-63 . -1214) T) ((-112 . -102) T) ((-872 . -1099) T) ((-174 . -558) T) ((-714 . -717) 16579) ((-295 . -131) 16462) ((-225 . -613) 16444) ((-225 . -614) 16374) ((-1003 . -639) 16313) ((-1279 . -1049) T) ((-1119 . -147) T) ((-632 . -1190) 16288) ((-731 . -909) 16267) ((-594 . -34) T) ((-647 . -107) 16251) ((-632 . -107) 16197) ((-1237 . -287) 16124) ((-731 . -648) 16049) ((-296 . -1214) T) ((-1177 . -1038) 15945) ((-943 . -618) 15922) ((-579 . -578) T) ((-579 . -529) T) ((-531 . -529) T) ((-1166 . -909) NIL) ((-1061 . -614) 15837) ((-1061 . -613) 15819) ((-952 . -613) 15801) ((-713 . -492) 15751) ((-345 . -102) T) ((-252 . -1056) 15648) ((-251 . -1056) 15545) ((-396 . -102) T) ((-31 . -1099) T) ((-952 . -614) 15406) ((-713 . -613) 15341) ((-1277 . -1207) 15310) ((-483 . -613) 15292) ((-483 . -614) 15153) ((-265 . -413) 15137) ((-247 . -413) 15121) ((-252 . -111) 15011) ((-251 . -111) 14901) ((-1173 . -648) 14826) ((-1172 . -648) 14723) ((-1166 . -648) 14575) ((-1125 . -648) 14500) ((-353 . -131) T) ((-82 . -443) T) ((-82 . -397) T) ((-1003 . -25) T) ((-1003 . -21) T) ((-873 . -1099) 14451) ((-40 . -1051) 14396) ((-872 . -717) 14348) ((-40 . -640) 14293) ((-381 . -291) T) ((-169 . -1002) 14244) ((-694 . -389) T) ((-999 . -997) 14228) ((-701 . -1111) T) ((-694 . -166) 14210) ((-1248 . -1099) T) ((-1227 . -1099) T) ((-317 . -1199) 14189) ((-317 . -1202) 14168) ((-1163 . -102) T) ((-317 . -959) 14147) ((-134 . -1111) T) ((-116 . -1111) T) ((-602 . -1262) 14131) ((-701 . -23) T) ((-602 . -1099) 14081) ((-317 . -95) 14060) ((-91 . -516) 13993) ((-174 . -365) T) ((-252 . -616) 13723) ((-251 . -616) 13453) ((-317 . -35) 13432) ((-608 . -491) 13366) ((-134 . -23) T) ((-116 . -23) T) ((-966 . -102) T) ((-718 . -1099) T) ((-477 . -491) 13303) ((-409 . -639) 13251) ((-653 . -1038) 13147) ((-958 . -491) 13131) ((-357 . -1057) T) ((-354 . -1057) T) ((-346 . -1057) T) ((-265 . -1057) T) ((-247 . -1057) T) ((-871 . -614) NIL) ((-871 . -613) 13113) ((-1275 . -492) 13094) ((-1274 . -492) 13075) ((-1287 . -21) T) ((-1275 . -613) 13041) ((-1274 . -613) 13007) ((-573 . -1002) T) ((-731 . -726) T) ((-1287 . -25) T) ((-252 . -1049) 12937) ((-251 . -1049) 12867) ((-72 . -1214) T) ((-252 . -233) 12819) ((-251 . -233) 12771) ((-40 . -102) T) ((-910 . -1057) T) ((-1180 . -102) T) ((-128 . -491) 12753) ((-1173 . -726) T) ((-1172 . -726) T) ((-1166 . -726) T) ((-1166 . -791) NIL) ((-1166 . -794) NIL) ((-954 . -102) T) ((-921 . -102) T) ((-870 . -1051) 12740) ((-1125 . -726) T) ((-771 . -102) T) ((-672 . -102) T) ((-870 . -640) 12727) ((-548 . -613) 12709) ((-476 . -1099) T) ((-341 . -1111) T) ((-174 . -1111) T) ((-320 . -920) 12688) ((-1248 . -717) 12529) ((-872 . -172) T) ((-1227 . -717) 12343) ((-843 . -21) 12295) ((-843 . -25) 12247) ((-245 . -1148) 12231) ((-126 . -516) 12164) ((-409 . -25) T) ((-409 . -21) T) ((-341 . -23) T) ((-169 . -614) 11930) ((-169 . -613) 11912) ((-174 . -23) T) ((-644 . -289) 11889) ((-522 . -34) T) ((-898 . -613) 11871) ((-89 . -1214) T) ((-841 . -613) 11853) ((-808 . -613) 11835) ((-769 . -613) 11817) ((-677 . -613) 11799) ((-240 . -648) 11647) ((-1175 . -1099) T) ((-1171 . -1056) 11470) ((-1149 . -1214) T) ((-1124 . -1056) 11313) ((-854 . -1056) 11297) ((-1231 . -618) 11281) ((-1171 . -111) 11090) ((-1124 . -111) 10919) ((-854 . -111) 10898) ((-1221 . -850) T) ((-1237 . -614) NIL) ((-1237 . -613) 10880) ((-345 . -1150) T) ((-855 . -613) 10862) ((-1075 . -287) 10841) ((-80 . -1214) T) ((-1004 . -909) NIL) ((-608 . -287) 10817) ((-1200 . -516) 10750) ((-489 . -1214) T) ((-573 . -613) 10732) ((-477 . -287) 10711) ((-1208 . -646) 10621) ((-519 . -93) T) ((-1086 . -231) 10605) ((-217 . -1214) T) ((-1004 . -648) 10555) ((-958 . -287) 10532) ((-290 . -920) T) ((-817 . -308) 10511) ((-870 . -102) T) ((-782 . -231) 10495) ((-914 . -648) 10447) ((-711 . -646) 10397) ((-694 . -724) 10364) ((-635 . -21) T) ((-635 . -25) T) ((-607 . -21) T) ((-549 . -102) T) ((-345 . -38) 10329) ((-489 . -884) 10311) ((-489 . -886) 10293) ((-476 . -717) 10134) ((-217 . -884) 10116) ((-64 . -1214) T) ((-217 . -886) 10098) ((-607 . -25) T) ((-429 . -648) 10072) ((-1171 . -616) 9841) ((-489 . -1038) 9801) ((-872 . -516) 9713) ((-1124 . -616) 9505) ((-854 . -616) 9423) ((-217 . -1038) 9383) ((-240 . -34) T) ((-1000 . -1099) 9361) ((-582 . -1051) 9348) ((-566 . -1051) 9335) ((-497 . -1051) 9300) ((-1248 . -172) 9231) ((-1227 . -172) 9162) ((-582 . -640) 9149) ((-566 . -640) 9136) ((-497 . -640) 9101) ((-712 . -145) 9080) ((-712 . -147) 9059) ((-701 . -131) T) ((-136 . -467) 9036) ((-1146 . -613) 8968) ((-658 . -656) 8952) ((-128 . -287) 8927) ((-116 . -131) T) ((-479 . -1218) T) ((-608 . -604) 8903) ((-477 . -604) 8882) ((-338 . -337) 8851) ((-538 . -1099) T) ((-479 . -558) T) ((-1171 . -1049) T) ((-1124 . -1049) T) ((-854 . -1049) T) ((-240 . -791) 8830) ((-240 . -794) 8781) ((-240 . -793) 8760) ((-1171 . -327) 8737) ((-240 . -726) 8647) ((-958 . -19) 8631) ((-489 . -379) 8613) ((-489 . -340) 8595) ((-1124 . -327) 8567) ((-356 . -1271) 8544) ((-217 . -379) 8526) ((-217 . -340) 8508) ((-958 . -604) 8485) ((-1171 . -233) T) ((-1260 . -1099) T) ((-664 . -1099) T) ((-645 . -1099) T) ((-1187 . -1099) T) ((-1086 . -254) 8422) ((-587 . -646) 8382) ((-357 . -1099) T) ((-354 . -1099) T) ((-346 . -1099) T) ((-265 . -1099) T) ((-247 . -1099) T) ((-84 . -1214) T) ((-127 . -102) 8360) ((-121 . -102) 8338) ((-1187 . -610) 8317) ((-1227 . -516) 8177) ((-1140 . -1099) T) ((-1114 . -616) 8158) ((-481 . -1099) T) ((-1079 . -920) 8109) ((-1004 . -794) T) ((-481 . -610) 8088) ((-252 . -795) 8039) ((-252 . -792) 7990) ((-251 . -795) 7941) ((-40 . -1150) NIL) ((-251 . -792) 7892) ((-1004 . -791) T) ((-128 . -19) 7874) ((-1004 . -726) T) ((-699 . -1051) 7839) ((-971 . -794) T) ((-914 . -726) T) ((-910 . -1099) T) ((-128 . -604) 7814) ((-699 . -640) 7779) ((-91 . -491) 7763) ((-489 . -900) NIL) ((-892 . -613) 7745) ((-225 . -1056) 7710) ((-872 . -291) T) ((-217 . -900) NIL) ((-833 . -1111) 7689) ((-59 . -1099) 7639) ((-521 . -1099) 7617) ((-518 . -1099) 7567) ((-499 . -1099) 7545) ((-498 . -1099) 7495) ((-582 . -102) T) ((-566 . -102) T) ((-497 . -102) T) ((-476 . -172) 7426) ((-361 . -920) T) ((-355 . -920) T) ((-347 . -920) T) ((-225 . -111) 7382) ((-833 . -23) 7334) ((-429 . -726) T) ((-108 . -920) T) ((-40 . -38) 7279) ((-108 . -820) T) ((-583 . -351) T) ((-520 . -351) T) ((-836 . -287) 7258) ((-317 . -454) 7237) ((-314 . -454) T) ((-658 . -646) 7196) ((-602 . -516) 7129) ((-341 . -131) T) ((-174 . -131) T) ((-295 . -25) 6993) ((-295 . -21) 6876) ((-45 . -1190) 6855) ((-66 . -613) 6837) ((-55 . -102) T) ((-338 . -646) 6819) ((-45 . -107) 6769) ((-819 . -616) 6753) ((-1265 . -102) T) ((-1264 . -102) 6703) ((-1256 . -648) 6628) ((-1249 . -648) 6525) ((-1101 . -427) 6509) ((-1101 . -370) 6488) ((-388 . -616) 6472) ((-325 . -616) 6456) ((-1228 . -648) 6308) ((-1228 . -909) NIL) ((-1062 . -1214) T) ((-1086 . -646) 6218) ((-1061 . -1056) 6205) ((-1061 . -111) 6190) ((-952 . -1056) 6033) ((-952 . -111) 5862) ((-782 . -646) 5772) ((-780 . -646) 5682) ((-623 . -1051) 5669) ((-664 . -717) 5653) ((-623 . -640) 5640) ((-483 . -1056) 5483) ((-479 . -365) T) ((-463 . -646) 5439) ((-456 . -646) 5349) ((-225 . -616) 5299) ((-357 . -717) 5251) ((-354 . -717) 5203) ((-117 . -1051) 5148) ((-346 . -717) 5100) ((-265 . -717) 4949) ((-247 . -717) 4798) ((-1195 . -613) 4780) ((-1095 . -93) T) ((-117 . -640) 4725) ((-1089 . -93) T) ((-943 . -651) 4709) ((-1072 . -93) T) ((-483 . -111) 4538) ((-1065 . -93) T) ((-1036 . -93) T) ((-943 . -375) 4522) ((-248 . -102) T) ((-1019 . -93) T) ((-74 . -613) 4504) ((-963 . -47) 4483) ((-710 . -102) T) ((-699 . -102) T) ((-1 . -1099) T) ((-621 . -1111) T) ((-1087 . -613) 4465) ((-626 . -93) T) ((-1075 . -613) 4447) ((-910 . -717) 4412) ((-126 . -491) 4396) ((-485 . -93) T) ((-621 . -23) T) ((-392 . -23) T) ((-87 . -1214) T) ((-218 . -93) T) ((-608 . -613) 4378) ((-608 . -614) NIL) ((-477 . -614) NIL) ((-477 . -613) 4360) ((-353 . -25) T) ((-353 . -21) T) ((-50 . -646) 4319) ((-513 . -1099) T) ((-509 . -1099) T) ((-127 . -310) 4257) ((-121 . -310) 4195) ((-597 . -648) 4182) ((-596 . -648) 4107) ((-583 . -646) 4057) ((-225 . -1049) T) ((-520 . -646) 3987) ((-381 . -1002) T) ((-225 . -243) T) ((-225 . -233) T) ((-1061 . -616) 3959) ((-1061 . -618) 3940) ((-958 . -614) 3901) ((-958 . -613) 3813) ((-952 . -616) 3602) ((-870 . -38) 3589) ((-713 . -616) 3539) ((-1248 . -291) 3490) ((-1227 . -291) 3441) ((-483 . -616) 3226) ((-1119 . -454) T) ((-504 . -850) T) ((-317 . -1138) 3205) ((-999 . -147) 3184) ((-999 . -145) 3163) ((-497 . -310) 3150) ((-296 . -1190) 3129) ((-1182 . -613) 3111) ((-1181 . -613) 3093) ((-871 . -1056) 3038) ((-479 . -1111) T) ((-139 . -835) 3020) ((-114 . -835) 3001) ((-623 . -102) T) ((-1200 . -491) 2985) ((-252 . -370) 2964) ((-251 . -370) 2943) ((-1061 . -1049) T) ((-296 . -107) 2893) ((-130 . -613) 2875) ((-128 . -614) NIL) ((-128 . -613) 2819) ((-117 . -102) T) ((-952 . -1049) T) ((-871 . -111) 2748) ((-479 . -23) T) ((-483 . -1049) T) ((-1061 . -233) T) ((-952 . -327) 2717) ((-483 . -327) 2674) ((-357 . -172) T) ((-354 . -172) T) ((-346 . -172) T) ((-265 . -172) 2585) ((-247 . -172) 2496) ((-963 . -1038) 2392) ((-519 . -492) 2373) ((-735 . -1038) 2344) ((-519 . -613) 2310) ((-1104 . -102) T) ((-1091 . -613) 2277) ((-1034 . -613) 2259) ((-694 . -1051) 2209) ((-1277 . -151) 2193) ((-1275 . -616) 2174) ((-1274 . -616) 2155) ((-1269 . -613) 2137) ((-1256 . -726) T) ((-694 . -640) 2087) ((-1249 . -726) T) ((-1228 . -791) NIL) ((-1228 . -794) NIL) ((-169 . -1056) 1997) ((-910 . -172) T) ((-871 . -616) 1927) ((-1228 . -726) T) ((-1003 . -344) 1901) ((-223 . -646) 1853) ((-1000 . -516) 1786) ((-843 . -850) 1765) ((-566 . -1150) T) ((-476 . -291) 1716) ((-597 . -726) T) ((-363 . -613) 1698) ((-323 . -613) 1680) ((-420 . -1038) 1576) ((-596 . -726) T) ((-409 . -850) 1527) ((-169 . -111) 1423) ((-833 . -131) 1375) ((-737 . -151) 1359) ((-1264 . -310) 1297) ((-489 . -308) T) ((-381 . -613) 1264) ((-522 . -1010) 1248) ((-381 . -614) 1162) ((-217 . -308) T) ((-141 . -151) 1144) ((-714 . -287) 1123) ((-489 . -1022) T) ((-582 . -38) 1110) ((-566 . -38) 1097) ((-497 . -38) 1062) ((-217 . -1022) T) ((-871 . -1049) T) ((-836 . -613) 1044) ((-827 . -613) 1026) ((-825 . -613) 1008) ((-816 . -909) 987) ((-1288 . -1111) T) ((-1237 . -1056) 810) ((-855 . -1056) 794) ((-871 . -243) T) ((-871 . -233) NIL) ((-689 . -1214) T) ((-1288 . -23) T) ((-816 . -648) 719) ((-552 . -1214) T) ((-420 . -340) 703) ((-573 . -1056) 690) ((-1237 . -111) 499) ((-701 . -639) 481) ((-855 . -111) 460) ((-383 . -23) T) ((-169 . -616) 238) ((-1187 . -516) 30) ((-681 . -1099) T) ((-676 . -1099) T) ((-662 . -1099) T))
\ No newline at end of file diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase index a003788e..9f4942b3 100644 --- a/src/share/algebra/compress.daase +++ b/src/share/algebra/compress.daase @@ -1,5 +1,5 @@ -(30 . 3454219020) +(30 . 3459379707) (4417 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join| |ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&| @@ -478,662 +478,660 @@ |XPolynomial| |XPolynomialRing| |XRecursivePolynomial| |ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage| |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping| - |Record| |Union| |copyInto!| |dominantTerm| |sumOfSquares| |prod| - |map| |imagj| |ellipticCylindrical| |tableau| |makeCos| - |beauzamyBound| |kernel| |lllip| |createPrimitivePoly| - |removeRoughlyRedundantFactorsInPol| |chiSquare| |ldf2lst| - |divideExponents| |monic?| |draw| |iitan| |prevPrime| |enumerate| - |f01rdf| |center| |eigenvectors| |shufflein| - |resultantReduitEuclidean| |pseudoQuotient| |presub| |simpsono| - |mpsode| |rootOfIrreduciblePoly| |e02daf| |e02bdf| |rdHack1| - |countRealRoots| |viewPhiDefault| |resetBadValues| |elliptic?| - |mathieu11| |binaryFunction| |measure| |basisOfRightAnnihilator| - |increment| |c02aff| |formula| |assign| |OMreadFile| |newTypeLists| - |expr| |nlde| |convert| |qroot| |e01bgf| |optpair| |setImagSteps| - |makeObject| |stopMusserTrials| |swapColumns!| |optAttributes| - |besselY| |asechIfCan| |cyclic| |OMsupportsSymbol?| - |ramifiedAtInfinity?| |sqfrFactor| |build| |coef| |dmpToP| |seed| - |predicate| |minRowIndex| |Vectorise| |symmetricGroup| - |leftTraceMatrix| |numberOfOperations| |fractionFreeGauss!| - |stronglyReduce| |skewSFunction| |e04ucf| |reverse| |laurentRep| - |d01ajf| |nrows| |sechIfCan| |body| |ran| |modularGcd| |variable| - |call| |viewport2D| |traverse| |scale| |component| |ncols| |symbol| - |indicialEquationAtInfinity| |realZeros| |status| |OMgetEndObject| - |iterators| |monicRightFactorIfCan| |overlap| |OMgetVariable| - |reduceByQuasiMonic| |OMgetEndAttr| |expression| |alphabetic| |pair?| - |definingInequation| |subresultantVector| |partialQuotients| - |scalarTypeOf| |integer| |exists?| |csch2sinh| |cCosh| |stFunc1| - |janko2| |distance| |exponential| |OMgetEndError| ** |qinterval| - |s01eaf| |rootsOf| |algebraic?| |changeName| |insertTop!| |factorList| - |dimensionOfIrreducibleRepresentation| |characteristicSerie| - |dualSignature| |e04gcf| |rationalPoints| |mergeDifference| - |normalizeAtInfinity| |cAtan| |child| |colorDef| |discreteLog| |port| - |isImplies| |semiResultantEuclidean2| |eof?| |numeric| |countable?| - |selectOptimizationRoutines| |invertIfCan| |rightUnit| |OMconnectTCP| - |lo| |iiacos| |OMputEndAttr| |parameters| |radical| |primextendedint| - |separate| |graphCurves| |torsionIfCan| |shellSort| |vertConcat| - |s15adf| |t| |fprindINFO| |GospersMethod| |insertBottom!| |reduced?| - |error| |constant?| UP2UTS |intensity| |removeSuperfluousCases| - |signatureAst| |middle| |htrigs| |FormatArabic| |schema| |assert| - |removeRedundantFactorsInContents| |squareFreePolynomial| - |companionBlocks| |numberOfNormalPoly| |s17aef| |label| |reify| - |simplifyExp| |mappingAst| |closeComponent| |normal| - |removeSuperfluousQuasiComponents| |calcRanges| |mvar| |knownInfBasis| - |repSq| |readUInt16!| |numerator| |empty| |UP2ifCan| - |univariatePolynomials| |nand| |multiset| |jacobian| |rubiksGroup| - |boundOfCauchy| |bipolar| |cyclePartition| |constantToUnaryFunction| - |e02agf| |e02zaf| |pade| |clearTable!| |chebyshevT| |sort| |xCoord| - |nextsousResultant2| |imagK| |redmat| |wholePart| |makeUnit| - |compiledFunction| |isExpt| |imagJ| |over| |rationalIfCan| |has?| - |internalIntegrate| |iiatanh| |totolex| |linearAssociatedLog| - |leadingExponent| |palgint| |unknown| |purelyAlgebraic?| |polyRDE| - |lastSubResultantElseSplit| |createNormalPoly| |expintegrate| - |bombieriNorm| |asinIfCan| |hMonic| |f01bsf| |brillhartIrreducible?| - |point?| |minimumExponent| GF2FG |lieAlgebra?| |inf| - |fullPartialFraction| |errorInfo| |constructor| - |factorsOfCyclicGroupSize| |innerEigenvectors| |squareFreePart| - |univariate?| |random| |padicallyExpand| |leadingCoefficientRicDE| - |constantKernel| |zeroMatrix| |fibonacci| |lastSubResultant| - |numFunEvals3D| |transpose| |denomLODE| |radicalEigenvalues| |option| - |llprop| |OMReadError?| |noLinearFactor?| |stoseInvertibleSetsqfreg| - FG2F |makeTerm| |basisOfCommutingElements| |algebraicCoefficients?| - |gensym| |symmetricRemainder| |bitTruth| |userOrdered?| |mainForm| - |norm| |tubeRadius| |graphStates| |iisin| |c06fuf| |normalizedDivide| - |stopTable!| |OMgetInteger| |limitedIntegrate| |stFunc2| - |approxNthRoot| |outputList| |overlabel| |cotIfCan| |makeSin| - |changeWeightLevel| |hypergeometric0F1| |meshPar1Var| |previous| - |close!| |exprex| |decimal| |clip| |rightGcd| |nullSpace| |rightTrim| - |deleteProperty!| |updatF| |semiResultantReduitEuclidean| - |nthRootIfCan| |iiacot| |iitanh| |simplifyPower| |currentEnv| |c06gbf| - |interval| |invertibleElseSplit?| |leftTrim| |e02bbf| - |definingPolynomial| |weight| |iisqrt2| |palgRDE| |deepestTail| - |halfExtendedSubResultantGcd2| |tanSum| |firstNumer| |rename| - |HenselLift| |integerIfCan| |minimalPolynomial| |monicLeftDivide| - |c05adf| |box| |scopes| |genericRightDiscriminant| |removeCoshSq| - |s17adf| |printHeader| |universe| |rangePascalTriangle| |ef2edf| - |singularAtInfinity?| |explogs2trigs| |digamma| |basisOfLeftNucloid| - |setFieldInfo| |separant| |bivariate?| |genericLeftTraceForm| |cAcos| - |getOperator| |cos2sec| |flagFactor| |close| - |noncommutativeJordanAlgebra?| |functorData| |stoseLastSubResultant| - |OMconnInDevice| |conditionP| |mapGen| |isNot| |viewWriteAvailable| - |constDsolve| |certainlySubVariety?| |lift| |uniform| |e04jaf| - |perfectSqrt| |complexIntegrate| |imagE| |cot2tan| |kind| |rightNorm| - |redPo| |viewport3D| |complexForm| |evenlambert| |display| |reduce| - |approxSqrt| |laurent| |commutativeEquality| |setOfMinN| - |replaceKthElement| |subCase?| |primaryDecomp| |op| |divide| - |removeIrreducibleRedundantFactors| |infLex?| |critpOrder| - |viewWriteDefault| |puiseux| |normFactors| |mathieu23| |divergence| - |initiallyReduced?| |delta| |fTable| |squareTop| |rootNormalize| - |newSubProgram| |lazyIntegrate| |numberOfDivisors| |zerosOf| - |quoByVar| |gcdcofactprim| |mainSquareFreePart| |outputMeasure| - |getOperands| |setRow!| |elColumn2!| |leftUnit| |pattern| |iicsch| - |inv| |invertible?| |viewDefaults| |OMputEndError| |RemainderList| - |equality| |dAndcExp| |iiacoth| |internalLastSubResultant| |cSech| - |ground?| |btwFact| |linSolve| |leftDivide| |interactiveEnv| - |repeating?| |mantissa| |setAttributeButtonStep| |fortranLinkerArgs| - |s17ahf| |s17def| |input| |e02aef| |ground| |argumentList!| - |lowerCase?| |standardBasisOfCyclicSubmodule| |messagePrint| - |listRepresentation| |twist| |square?| |color| |smith| |library| - |dequeue!| |bag| |leadingMonomial| |normalizeIfCan| |root| - |combineFeatureCompatibility| |indicialEquation| |setButtonValue| - |rischDEsys| |union| |lowerPolynomial| |removeRedundantFactors| - |startPolynomial| |message| |init| |laplace| |leadingCoefficient| - |createThreeSpace| |putGraph| |complexNumericIfCan| |simplifyLog| - |rootPower| |palginfieldint| |element?| |xn| |delete!| - |fortranLiteralLine| |primitiveMonomials| |lifting| |d01bbf| - |polarCoordinates| |inGroundField?| |lambda| |factorsOfDegree| - |tValues| |rombergo| |semiDegreeSubResultantEuclidean| |normal?| - |listYoungTableaus| |reductum| |d02gbf| |zero?| |trueEqual| |bytes| - |listOfMonoms| |setEpilogue!| |groebner| |rightDivide| |push| - |lookupFunction| |gcdcofact| |mr| |satisfy?| |rules| |power!| |c06gcf| - |functionIsOscillatory| |stoseSquareFreePart| |cAtanh| - |extendedResultant| |radicalEigenvector| |numberOfFractionalTerms| - |maxColIndex| |hcrf| |zCoord| |integralCoordinates| |s19abf| - |pushdterm| |split| |lepol| |commaSeparate| |mainCharacterization| - |randomLC| |characteristicPolynomial| |maxRowIndex| |f02fjf| |s13aaf| - |ricDsolve| |top| |irreducibleRepresentation| |cons| - |intermediateResultsIF| |comp| |OMencodingBinary| |exponentialOrder| - |imagi| |cyclicGroup| |s17ajf| |OMgetAttr| - |degreeSubResultantEuclidean| |charClass| |sortConstraints| - |identification| |flatten| |radicalRoots| |unvectorise| - |antiAssociative?| |cycleSplit!| |subHeight| |cartesian| |schwerpunkt| - |pushucoef| |homogeneous?| |leftLcm| |tanh2trigh| |quasiRegular| - |ksec| |pToDmp| |selectFiniteRoutines| |linearMatrix| |charpol| - |continue| |mix| |unitNormal| |totalfract| |module| |high| - |solveLinearPolynomialEquationByRecursion| |setref| |groebner?| - |csubst| |ocf2ocdf| |npcoef| |nonQsign| |initiallyReduce| - |traceMatrix| |csc2sin| |normalDeriv| |cyclicParents| - |seriesToOutputForm| |f02aff| |recip| |coerceImages| |integral| |list| - |graphs| |iFTable| |antisymmetricTensors| |setleaves!| - |balancedBinaryTree| |partition| |useEisensteinCriterion| |signAround| - |isConnected?| |showArrayValues| |withPredicates| |car| |any?| |cCos| - |zeroDimensional?| |positive?| |rk4a| |mapDown!| |crushedSet| - |intcompBasis| |possiblyInfinite?| |ScanFloatIgnoreSpaces| |cdr| - |asecIfCan| |purelyAlgebraicLeadingMonomial?| - |exprHasLogarithmicWeights| |matrixDimensions| |parametric?| - |representationType| |e04ycf| |checkRur| |setDifference| |dmp2rfi| - |supDimElseRittWu?| |member?| |addiag| |createMultiplicationTable| - |compose| |mapBivariate| |changeNameToObjf| |addMatch| - |showFortranOutputStack| |s21bbf| |setIntersection| |curve| - |decreasePrecision| |normDeriv2| |explicitlyEmpty?| |gramschmidt| - |linearlyDependentOverZ?| |eq?| |setUnion| |s18def| |listBranches| - |numericalIntegration| |pointData| |alternative?| |outerProduct| - |simpson| |integrate| |rational?| |null?| |sort!| |pascalTriangle| - |even?| |completeHermite| |apply| |airyBi| |leftDiscriminant| - |precision| |monicRightDivide| |lazyPseudoDivide| - |identitySquareMatrix| |irreducibleFactor| |shrinkable| |solve| - |multiEuclideanTree| |moebius| |pseudoDivide| |setRealSteps| - |expandPower| |ignore?| |intChoose| |leftOne| |minGbasis| |getMatch| - |compactFraction| |minset| |size| |explimitedint| |f02agf| |elements| - |leftCharacteristicPolynomial| |complexSolve| |flexible?| |iiperm| - |summation| |subMatrix| |laplacian| |ptree| |roughBasicSet| - |evenInfiniteProduct| |acothIfCan| |tanAn| |c06gqf| |modifyPoint| - |makeSUP| |ord| |allRootsOf| |createMultiplicationMatrix| |readByte!| - |rootSimp| |arbitrary| |lflimitedint| |randomR| |finite?| |first| - |cSec| |myDegree| |s20acf| |iidsum| |f2df| |key| |splitConstant| - |find| |lfextendedint| |pop!| |number?| |rest| |sin?| - |realEigenvalues| |topPredicate| |algSplitSimple| |times!| - |integralDerivationMatrix| |point| |setLegalFortranSourceExtensions| - |algint| |cSinh| |isQuotient| |substitute| |denominator| |extendedint| - |numberOfCycles| |rewriteIdealWithRemainder| |omError| |coHeight| - |filename| |consnewpol| |removeDuplicates| |cCot| |superscript| - |totalDifferential| |critB| |OMencodingSGML| |cschIfCan| |shallowCopy| - |Aleph| |erf| |cAsech| |cAcosh| |cyclotomicDecomposition| - |monicDivide| |goodnessOfFit| |laguerreL| |solveLinearlyOverQ| - |bezoutMatrix| |cAcsch| |headAst| |parse| |series| |prefixRagits| - |root?| |eval| |doubleResultant| |returnTypeOf| - |shanksDiscLogAlgorithm| |trapezoidalo| |extendIfCan| |edf2df| - |patternMatch| |restorePrecision| |testModulus| |makeGraphImage| - |iisinh| |rischNormalize| |nextPrimitiveNormalPoly| |saturate| - |lyndon?| EQ |rightDiscriminant| |dilog| |cyclicSubmodule| - |selectODEIVPRoutines| |height| |infinityNorm| |inconsistent?| |df2fi| - |d02raf| |powern| |elementary| |ODESolve| |doubleComplex?| |sin| |abs| - |laurentIfCan| |seriesSolve| |wholeRagits| |any| |alternating| - |someBasis| |cardinality| |checkForZero| |distFact| |internalAugment| - |min| |cos| |setLabelValue| |removeZero| |iibinom| |sinh2csch| - |rootSplit| |bezoutDiscriminant| |toseSquareFreePart| - |fortranCharacter| |characteristic| |tanIfCan| |tan| |untab| - |normalized?| |critBonD| |maximumExponent| |isPower| - |discriminantEuclidean| |contractSolve| |negative?| |cot| |shuffle| - |getBadValues| |OMlistCDs| |whatInfinity| - |genericRightMinimalPolynomial| |printInfo!| |LiePolyIfCan| |getCurve| - |monicDecomposeIfCan| |factorSFBRlcUnit| |sec| |usingTable?| - |transcendent?| |bezoutResultant| |strongGenerators| |f01qdf| - |rightQuotient| |numberOfChildren| |zeroDimPrime?| |packageCall| - |arg1| |nthRoot| |csc| |realElementary| |symmetric?| |pleskenSplit| - |safeCeiling| |doublyTransitive?| |moebiusMu| |OMputEndBind| |zero| - |pointPlot| |scanOneDimSubspaces| |balancedFactorisation| |asin| - |coordinates| |drawStyle| |setprevious!| |maxrank| |pole?| - |showScalarValues| |cfirst| |perfectSquare?| |linearDependenceOverZ| - |outlineRender| |clearFortranOutputStack| |computePowers| |acos| |lcm| - |OMsetEncoding| |edf2fi| |leftMult| |nonLinearPart| - |PollardSmallFactor| |cSin| |And| |constantOperator| |df2ef| |low| - |index| |OMputEndAtp| |atan| |trailingCoefficient| |cot2trig| - |modTree| |cyclotomic| |solveid| |monomialIntPoly| |delete| - |setPredicates| |mainVariables| |Or| |BasicMethod| |permanent| |pile| - |append| |orbit| |acot| |gcdPolynomial| |lagrange| |edf2ef| |weighted| - |fillPascalTriangle| |declare| |cCoth| |symmetricDifference| |inR?| - |Not| |computeCycleLength| |extractClosed| |pushdown| |getIdentifier| - |f02bjf| |asec| |psolve| |gcd| |leadingBasisTerm| - |extendedSubResultantGcd| |pdf2ef| |overset?| |plot| |contract| - |OMgetEndBind| |showIntensityFunctions| |tail| |getProperty| |pair| - |OMputEndApp| |acsc| |paren| |false| |vconcat| |toseLastSubResultant| - |e02dcf| |value| |blankSeparate| |product| |quadratic?| |setAdaptive| - |normalizedAssociate| |isTerm| |sinh| |badNum| |decomposeFunc| - |printingInfo?| |tanh2coth| |isEquiv| |controlPanel| |incr| |unary?| - |updatD| |degreePartition| |removeSinSq| |f2st| |fortranDouble| - |bandedJacobian| |viewDeltaXDefault| |size?| |nsqfree| - |complementaryBasis| |s18dcf| |bfEntry| |push!| |infieldint| |f02wef| - |recur| |polygon?| |depth| |explicitEntries?| |taylorRep| |hi| - |innerSolve| |selectNonFiniteRoutines| |gradient| |double| |lquo| - |quotient| |deriv| |normalDenom| |components| |adjoint| |hermiteH| - |algebraicSort| |clipSurface| |removeRedundantFactorsInPols| - |att2Result| |insertRoot!| |subResultantGcdEuclidean| |wrregime| - |monomials| |prinpolINFO| |rationalPower| |oddInfiniteProduct| - |rotate| |vectorise| |completeEval| |iicoth| |internal?| - |tanintegrate| |selectfirst| |plus!| |failed?| |hclf| |updateStatus!| - |front| |coordinate| |leftRecip| |column| |tracePowMod| |d02ejf| - |binaryTree| |OMgetObject| |computeInt| |extendedIntegrate| |rootPoly| - |fintegrate| |generalizedContinuumHypothesisAssumed| - |initializeGroupForWordProblem| |logGamma| |opeval| |clipParametric| - |associator| |semiSubResultantGcdEuclidean2| |plenaryPower| - |triangSolve| |li| |collectUpper| |nextSublist| |primitivePart!| - |pointSizeDefault| |members| |magnitude| |aromberg| |redpps| - |zeroSetSplit| |iiabs| |algebraicOf| |resize| |normal01| |inRadical?| - |OMParseError?| |lfintegrate| |axesColorDefault| |log10| |mesh| - |setTex!| |zeroDim?| |ratpart| |arity| |partialDenominators| - |declare!| |postfix| |hasPredicate?| |realEigenvectors| |isPlus| - |makeFloatFunction| |semiSubResultantGcdEuclidean1| |bitand| - |principalIdeal| |conjugate| |droot| |revert| |partialFraction| - |ParCond| |d01gaf| |enqueue!| |basis| |pastel| |bitior| - |trivialIdeal?| |cycleEntry| |factorSquareFreeByRecursion| F - |linearAssociatedOrder| |explicitlyFinite?| |rquo| |alternatingGroup| - |part?| |sylvesterMatrix| |outputAsScript| |branchPointAtInfinity?| - |tube| |chvar| |tryFunctionalDecomposition| |bigEndian| - |pushNewContour| |block| |open?| |iicsc| |unit?| - |rationalApproximation| |interpolate| |measure2Result| |represents| - |rotatey| |makeprod| |genericLeftMinimalPolynomial| |cAcoth| - |bothWays| |s21bdf| |socf2socdf| |adaptive| |palglimint0| - |sturmSequence| |getCode| |more?| |redPol| |asinhIfCan| |null| - |position!| |leftFactor| |rightCharacteristicPolynomial| |Gamma| - |c06frf| |rewriteSetByReducingWithParticularGenerators| |mkPrim| - |mapSolve| |nextSubsetGray| |wholeRadix| |not| |writable?| |dim| - |addPoint2| |nthExponent| |clearTheFTable| |OMputAtp| |test| - |byteBuffer| |segment| |argument| |e01sef| |weights| |buildSyntax| - |and| |sn| |search| |topFortranOutputStack| |trim| |leftPower| - |partitions| |radicalEigenvectors| |doubleFloatFormat| - |useNagFunctions| |addPointLast| |resultantEuclidean| |integralBasis| - |or| |range| |printStats!| |solveLinear| |d01alf| |resultantnaif| - |generalLambert| |OMwrite| |oddintegers| |alphabetic?| - |integralAtInfinity?| |xor| |splitNodeOf!| |showRegion| |supRittWu?| - |inverseColeman| |reducedQPowers| |children| |univcase| |readLine!| - |const| |tan2cot| |case| |rightTrace| |halfExtendedSubResultantGcd1| - |eq| |harmonic| |real?| |hex| |printTypes| |setPoly| - |numberOfImproperPartitions| |lazyGintegrate| |showClipRegion| |Zero| - |iter| |curryRight| |linears| |content| |completeEchelonBasis| - |s17aff| |prefix| |showTheFTable| |f04qaf| |selectAndPolynomials| - |zeroSquareMatrix| |tablePow| |curveColorPalette| |linearDependence| - |getProperties| |pol| |newReduc| |HermiteIntegrate| - |exprHasAlgebraicWeight| |rotate!| |sizeMultiplication| |s18adf| - |var2Steps| |mainExpression| |getStream| |getVariableOrder| - |rewriteSetWithReduction| |bitLength| |youngGroup| Y |closedCurve| - |ode| |prolateSpheroidal| |remainder| |round| |SturmHabichtMultiple| - |f01qef| |readLineIfCan!| |rootRadius| |legendre| |definingEquations| - |setColumn!| |e02dff| |basisOfNucleus| |patternMatchTimes| |sayLength| - |generalSqFr| |raisePolynomial| |minPol| |permutation| |central?| - |halfExtendedResultant1| |monicModulo| |output| |iiasec| |operators| - |checkPrecision| |leftRankPolynomial| |idealiserMatrix| |extract!| - |roughSubIdeal?| |swap| |moduloP| |musserTrials| |OMputInteger| - |OMgetBind| |cscIfCan| |bat1| |invmod| |polyRicDE| |UnVectorise| - |sincos| |groebSolve| |symmetricPower| |generic?| |getExplanations| - |points| |hasSolution?| |removeRoughlyRedundantFactorsInPols| - |drawComplex| |LagrangeInterpolation| |exp| |OMopenFile| |conjug| - |createGenericMatrix| |coth2tanh| |cCsch| |choosemon| |readInt16!| - |compound?| |linearPart| |inverseIntegralMatrixAtInfinity| |is?| - |nativeModuleExtension| |phiCoord| |pdf2df| |lexico| - |semicolonSeparate| F2FG |probablyZeroDim?| |upperCase?| |f04maf| - |second| |palgLODE0| |zeroSetSplitIntoTriangularSystems| - |factorSquareFree| |showSummary| |truncate| |iCompose| - |selectIntegrationRoutines| |printStatement| |elRow1!| - |zeroDimPrimary?| |third| |rename!| |divideIfCan| RF2UTS - |mightHaveRoots| |obj| |iiacsch| |indicialEquations| - |triangularSystems| |s17dgf| |less?| |e02ddf| |internalDecompose| - |factorOfDegree| |deref| |LazardQuotient| |iiasech| |dfRange| - |wordsForStrongGenerators| |cache| |showAttributes| - |numberOfMonomials| |logpart| |adaptive3D?| |baseRDEsys| |c05pbf| - |imagk| |sturmVariationsOf| |aQuartic| |rightZero| |subspace| - |tubePoints| |iterationVar| |perfectNthPower?| |linGenPos| - |primPartElseUnitCanonical!| |printInfo| |trace2PowMod| |aCubic| - |iflist2Result| |sncndn| |uncouplingMatrices| |critMTonD1| |setleft!| - |scaleRoots| |commutative?| |factorset| |name| |mkcomm| - |setScreenResolution3D| |s18aff| |sorted?| |subst| |sPol| - |prepareDecompose| |OMputObject| |coefficient| |binarySearchTree| - |irreducibleFactors| |diagonal?| |antiCommutative?| |operation| - |iiacosh| |viewZoomDefault| |lSpaceBasis| |powerAssociative?| - |incrementBy| |sup| |e01daf| |acotIfCan| |LowTriBddDenomInv| |lprop| - |remove| |generic| |stFuncN| |pureLex| |gcdPrimitive| |pdct| |expand| - |light| |getMeasure| |parabolicCylindrical| |dequeue| |OMserve| - |polyred| |baseRDE| |stoseIntegralLastSubResultant| |polygamma| - |filterWhile| |completeHensel| |addBadValue| |OMgetSymbol| |coleman| - |last| |rightRank| |OMgetAtp| |filterUntil| |fortranTypeOf| |reflect| - |every?| |makeSeries| |assoc| |associates?| |e01bff| |OMsupportsCD?| - |f02adf| |Frobenius| |realRoots| |select| |style| |leadingSupport| - |polynomialZeros| |tubeRadiusDefault| |genericLeftDiscriminant| - |constantIfCan| |readInt8!| |numFunEvals| |objects| |randnum| - |maxIndex| |curry| |numberOfIrreduciblePoly| |rightRecip| - |squareFreePrim| |OMUnknownCD?| |encodingDirectory| |base| |connect| - |fortranLogical| |binding| |argscript| |iidprod| - |unprotectedRemoveRedundantFactors| |associatedEquations| - |rightRankPolynomial| |systemCommand| |typeList| |iicosh| |cExp| - |parents| |numerators| |genericLeftNorm| |maxPoints3D| |radix| BY - |resultant| |var2StepsDefault| |OMgetString| |factorGroebnerBasis| - |secIfCan| |e04mbf| |sum| |back| |freeOf?| |deleteRoutine!| - |prinshINFO| |orbits| |pquo| |inverseLaplace| |OMputVariable| - |hasTopPredicate?| |transcendentalDecompose| - |functionIsFracPolynomial?| |replace| |makeRecord| |exponential1| - |unparse| |d02gaf| |complexRoots| |multiple?| |lieAdmissible?| - |karatsubaDivide| |exteriorDifferential| |expextendedint| - |lazyPremWithDefault| |rst| |f07fef| |complete| |readUInt8!| |solid| - |f02xef| |B1solve| |terms| |PDESolve| |wreath| |fortranDoubleComplex| - |typeLists| |initial| |primitiveElement| |Is| |taylorIfCan| - |RittWuCompare| |nextLatticePermutation| |lp| |noKaratsuba| |f01ref| - |OMcloseConn| |isOpen?| |OMread| |hostByteOrder| |leftRank| - |squareMatrix| |factorAndSplit| |cAcsc| |cross| |bottom!| NOT - |outputAsTex| |findConstructor| |ScanArabic| |applyRules| |cycles| - |meshPar2Var| |d03edf| |split!| |chainSubResultants| OR |compdegd| - |acscIfCan| |diagonalProduct| |fortranLiteral| |d01asf| |pToHdmp| - |rootBound| |e02def| |tanNa| AND |overbar| |fracPart| |upDateBranches| - |wordInGenerators| |odd?| |belong?| |removeSinhSq| - |semiDiscriminantEuclidean| |rule| |jacobiIdentity?| |ipow| |cn| - |hasHi| |cycleLength| |rischDE| |stoseInvertible?| |e04fdf| - |sizeLess?| |shiftRight| |limitPlus| |readIfCan!| |fixedDivisor| - |semiLastSubResultantEuclidean| |sin2csc| |medialSet| |linear?| - |primintegrate| |f01rcf| |setValue!| |shallowExpand| - |stopTableInvSet!| |initials| |exponent| |complexElementary| |iipow| - |qelt| |localAbs| |quasiMonic?| |whitePoint| |uniform01| |duplicates?| - |hdmpToDmp| |setright!| |f01qcf| |debug| |qsetelt| |iisqrt3| - |lfextlimint| |conjugates| |callForm?| |domainTemplate| - |resultantReduit| |fmecg| |singular?| |dimensions| D |key?| |xRange| - |s17akf| |move| |Beta| |quadraticForm| |critT| |laguerre| |complex?| - |primlimitedint| |leader| |linearlyDependent?| |yRange| |cycleElt| - |c06fqf| |setMaxPoints3D| |returns| |composites| - |permutationRepresentation| |void| |matrixGcd| |infRittWu?| |zRange| - |stoseInvertible?sqfreg| |s14abf| |chiSquare1| |karatsuba| |diagonals| - |subset?| |setfirst!| |leftUnits| |d03faf| |map!| |listOfLists| - |copy!| |just| |sec2cos| * |exportedOperators| |rotatex| |char| - |mathieu24| |integralRepresents| |LyndonWordsList| |qsetelt!| |critM| - |e02baf| |rdregime| |reverseLex| |polCase| |wronskianMatrix| - |OMunhandledSymbol| |unitNormalize| |symFunc| |say| |plusInfinity| - |semiIndiceSubResultantEuclidean| |neglist| |monomRDE| |ListOfTerms| - |transform| |sizePascalTriangle| |fractionPart| |rootKerSimp| - |lazyPquo| |cCsc| |minusInfinity| |highCommonTerms| |bsolve| |An| - |rem| = |ceiling| |rowEchelonLocal| |symbol?| |oneDimensionalArray| - |lyndonIfCan| |crest| |d01apf| |multiplyExponents| |remove!| |quo| - |resetAttributeButtons| |primintfldpoly| |result| |endSubProgram| - |aspFilename| |unrankImproperPartitions1| |iiasinh| |slash| - |quasiAlgebraicSet| |sumOfKthPowerDivisors| |fixedPoint| < - |backOldPos| |OMbindTCP| |read!| |reorder| |print| |hexDigit?| |acsch| - |fractRadix| |complexNormalize| |ramified?| |setVariableOrder| - |parseString| |div| |s17acf| > |float| |rk4qc| |numberOfVariables| - |reset| |resolve| |logical?| |top!| |d01akf| |entries| |exquo| <= - |defineProperty| |binary| |presuper| |cPower| |mirror| |type| |unit| - |f02bbf| |lazyPseudoRemainder| |e04dgf| |minPoly| ~= |evaluateInverse| - >= |ode2| |quasiMonicPolynomials| |sample| |write| |duplicates| - |unravel| |nextIrreduciblePoly| |internalIntegrate0| |#| |exponents| - |regime| |save| |s17dcf| |associatorDependence| |evaluate| |swapRows!| - |f04adf| |antiCommutator| |nary?| ~ |signature| |abelianGroup| - |retractable?| |setOrder| |debug3D| |firstUncouplingMatrix| - |rightAlternative?| |generalPosition| |cAsinh| |euclideanSize| - |internalInfRittWu?| + |createRandomElement| |gderiv| |implies| - |getPickedPoints| |atoms| |lastSubResultantEuclidean| |OMputBind| - |rCoord| |makeFR| |node| |var1Steps| - |iicot| |solveRetract| |diff| - |initTable!| |rightTraceMatrix| |SturmHabichtCoefficients| |multMonom| - |fixedPointExquo| |pointColor| |/\\| |s18acf| / - |basisOfLeftAnnihilator| |expandLog| |countRealRootsMultiple| - |polygon| |symmetricSquare| |OMgetType| |divisorCascade| |firstDenom| - |enterInCache| |\\/| |leftZero| |c06ecf| |setScreenResolution| GE - |collect| |graphState| |generate| |primlimintfrac| |f02aef| - |createLowComplexityTable| |bringDown| |viewpoint| |forLoop| |augment| - |recoverAfterFail| GT |genericRightTraceForm| |setPrologue!| - |setProperties!| |varList| |OMopenString| |inHallBasis?| - |antisymmetric?| |ReduceOrder| |createLowComplexityNormalBasis| - |makeEq| |bernoulliB| LE |cAcot| |e02ahf| |LyndonBasis| - |OMconnOutDevice| |useSingleFactorBound?| |reducedDiscriminant| - |startTable!| |safeFloor| |headRemainder| |infiniteProduct| LT - |OMputFloat| |subNodeOf?| |before?| |level| |leftExtendedGcd| |yCoord| - |bindings| |var1StepsDefault| |f04asf| |directory| |changeVar| - |outputSpacing| |linkToFortran| - |removeRoughlyRedundantFactorsInContents| |extensionDegree| - |internalSubPolSet?| |leftRegularRepresentation| |particularSolution| - |mainKernel| |lazyPseudoQuotient| |d02cjf| |shift| |maxdeg| - |internalZeroSetSplit| |zoom| |nilFactor| |perspective| |birth| - |maxrow| |charthRoot| |lllp| |cosSinInfo| |mkIntegral| - |extendedEuclidean| |pow| |euclideanNormalForm| |SturmHabichtSequence| - |anfactor| |closed?| |recolor| |primeFactor| |solid?| |eigenvalues| - |linearAssociatedExp| |positiveSolve| |singleFactorBound| - |expressIdealMember| |bit?| |matrix| |dimension| |mainPrimitivePart| - |makeYoungTableau| |getGraph| |cond| |mainVariable| |jordanAlgebra?| - |commutator| |c06ebf| |showTheIFTable| |property| |d02kef| - |BumInSepFFE| |option?| |setlast!| |separateFactors| |besselI| - |extractBottom!| |physicalLength| |limit| |squareFree| |logIfCan| - |extractIndex| |log2| |completeSmith| |cyclicEqual?| |putColorInfo| - |equation| |screenResolution| |transcendenceDegree| |contains?| - |removeCosSq| |trigs2explogs| |rootDirectory| |exprToUPS| |OMclose| - |sinIfCan| |constantCoefficientRicDE| |symbolIfCan| |writeUInt8!| - |elliptic| |ScanFloatIgnoreSpacesIfCan| |units| |innerint| - |numberOfFactors| |coerceS| |OMsend| |setCondition!| |printCode| - |derivationCoordinates| |categories| |c06eaf| |symmetricProduct| - |stripCommentsAndBlanks| |arguments| |rightOne| |expenseOfEvaluation| - |edf2efi| |routines| |bat| |conical| |f02abf| - |tryFunctionalDecomposition?| |characteristicSet| |binomial| - |nextsubResultant2| |setLength!| |getConstant| |associative?| - |primPartElseUnitCanonical| |makeResult| |equiv| |iExquo| |OMputApp| - |dec| |plus| |factorPolynomial| |enterPointData| |algintegrate| - |quoted?| |queue| |s19acf| |toroidal| |OMgetFloat| - |degreeSubResultant| |stoseInvertible?reg| |finiteBound| |bright| - |maxPoints| |ratPoly| |order| |rightFactorIfCan| - |semiResultantEuclidean1| |euclideanGroebner| |mathieu12| |subPolSet?| - |check| |code| |generalizedEigenvector| |integralLastSubResultant| - |monomial?| |rangeIsFinite| |fortran| |increasePrecision| |prime?| - |mapCoef| |modularFactor| |constantOpIfCan| |goto| |failed| - |generalInfiniteProduct| |f02akf| |deepestInitial| - |numberOfPrimitivePoly| |e02bcf| |curveColor| |subresultantSequence| - |palgint0| |times| |extractTop!| |lambert| |numberOfComponents| - |squareFreeLexTriangular| |parabolic| |hyperelliptic| |function| - |palgLODE| |OMgetApp| |getButtonValue| |frobenius| |leftExactQuotient| - |expenseOfEvaluationIF| |c06gsf| |addPoint| |merge| |systemSizeIF| - |getDatabase| |wordInStrongGenerators| - |rewriteIdealWithQuasiMonicGenerators| |f02aaf| |imports| - |setMinPoints| |drawComplexVectorField| |leftTrace| |mapUnivariate| - |reduceLODE| |minordet| |double?| |resetNew| |addmod| |mapdiv| - |makeSketch| |vark| |dom| |f04faf| |monom| |processTemplate| - |splitSquarefree| |currentCategoryFrame| |e01baf| |mulmod| |notelem| - |jordanAdmissible?| |iprint| |iiatan| |bumptab| |weakBiRank| - |OMputBVar| |stopTableGcd!| |bipolarCylindrical| - |univariatePolynomial| |readUInt32!| |basisOfMiddleNucleus| |epilogue| - |pmComplexintegrate| |gcdprim| |inrootof| |physicalLength!| - |infieldIntegrate| |d01anf| |common| |changeMeasure| |deepExpand| - |elseBranch| |green| |write!| |basisOfCenter| |headReduced?| - |mapExpon| |halfExtendedResultant2| |integer?| |powerSum| |qfactor| - |expandTrigProducts| |s13acf| |patternVariable| |hostPlatform| |title| - |binomThmExpt| |principal?| |clikeUniv| |possiblyNewVariety?| - |listLoops| |totalDegree| |meatAxe| |primeFrobenius| |karatsubaOnce| - |getRef| |f07fdf| |areEquivalent?| |specialTrigs| |bubbleSort!| - |character?| |script| |rur| |tree| |prime| |imagI| |branchPoint?| - |unknownEndian| |sylvesterSequence| |bounds| |iilog| |LiePoly| - |s17dhf| |true| |leftAlternative?| |ParCondList| |e| |f04arf| - |symbolTable| |totalLex| |setvalue!| |rotatez| |atrapezoidal| - |univariatePolynomialsGcds| |quickSort| |tRange| |insertionSort!| - |localUnquote| |OMputEndObject| |identityMatrix| |insert!| |tex| - |LyndonCoordinates| |stoseInternalLastSubResultant| |exp1| - |nextPartition| |pushFortranOutputStack| |reverse!| |primes| |roman| - |outputForm| |midpoints| |getlo| |OMreceive| |useEisensteinCriterion?| - |deepCopy| |nothing| |popFortranOutputStack| |hermite| |setErrorBound| - |nthFlag| |torsion?| |stoseInvertibleSet| |prinb| |tab| |setClipValue| - |semiResultantEuclideannaif| |comparison| |chineseRemainder| - |outputAsFortran| |outputArgs| |blue| |leaf?| |kroneckerDelta| - |generalizedInverse| |generator| |numericIfCan| |complement| |zag| - |c06fpf| |s19aaf| |dioSolve| |virtualDegree| |f07adf| - |complexEigenvectors| |genericRightTrace| |cothIfCan| - |conditionsForIdempotents| |sumOfDivisors| |solve1| |bitCoef| - |currentSubProgram| |createNormalElement| |limitedint| - |rightFactorCandidate| |coerceListOfPairs| |partialNumerators| - |merge!| |numberOfComposites| |lazy?| |rightScalarTimes!| |empty?| - |pack!| |createPrimitiveNormalPoly| |floor| |tanhIfCan| - |startTableInvSet!| |leftNorm| |OMencodingXML| |decompose| - |FormatRoman| |width| |mainDefiningPolynomial| |idealiser| |concat!| - |dictionary| |mdeg| |e02ajf| |lazyVariations| |create3Space| - |getMultiplicationTable| |sequence| |radicalOfLeftTraceForm| |iifact| - |orthonormalBasis| |resetVariableOrder| |listConjugateBases| - |idealSimplify| |cyclic?| |plotPolar| |selectOrPolynomials| - |distdfact| |cRationalPower| |genericLeftTrace| |fixedPoints| |open| - |paraboloidal| |continuedFraction| |subscript| UTS2UP |primitive?| - |categoryFrame| |c06ekf| |lifting1| LODO2FUN |midpoint| |expPot| - |makeViewport3D| |f01brf| |unaryFunction| |fortranCarriageReturn| - |hitherPlane| |groebnerFactorize| |nil?| |monicCompleteDecompose| - |figureUnits| |direction| |chebyshevU| |coefChoose| |cAsec| |Lazard2| - |hdmpToP| |unexpand| |distribute| |upperCase!| |getOrder| - |viewPosDefault| |f02axf| |reopen!| |showAllElements| |imaginary| - |expintfldpoly| |operations| |invmultisect| |moduleSum| |weierstrass| - |isMult| |optional| |headReduce| |nonSingularModel| |symbolTableOf| - |dihedral| |problemPoints| |squareFreeFactors| |vector| |df2st| - |moreAlgebraic?| |findBinding| |substring?| |indiceSubResultant| - |mesh?| |multisect| |head| |setStatus!| |rightLcm| |differentiate| - |vedf2vef| |nthFractionalTerm| |simplify| |prem| |iroot| - |lazyEvaluate| |leastMonomial| |removeZeroes| |tower| |permutations| - |supersub| |extractIfCan| |ffactor| |suffix?| |OMgetBVar| - |reducedSystem| |diophantineSystem| |exprToXXP| |leastPower| - |sech2cosh| |setnext!| |selectMultiDimensionalRoutines| |relerror| - |quatern| |identity| |setMinPoints3D| |escape| |quadratic| |iiasin| - |OMputSymbol| |fixPredicate| |atom?| |nil| |prefix?| |maxint| - |badValues| |normalForm| |exprToGenUPS| |adaptive?| - |toseInvertibleSet| |stiffnessAndStabilityFactor| |nextPrimitivePoly| - |integerBound| |optimize| |string?| |iisec| |reduceBasisAtInfinity| - |ScanRoman| |selectPDERoutines| |normalElement| |s15aef| |cTanh| - |OMgetEndAtp| |radicalSimplify| |OMencodingUnknown| |Ci| |listexp| - |readBytes!| |realSolve| |goodPoint| SEGMENT |splitLinear| - |stronglyReduced?| |complexNumeric| |unrankImproperPartitions0| - |variable?| |approximate| |isOr| |dihedralGroup| |clearTheSymbolTable| - |qPot| |isList| |createIrreduciblePoly| |pomopo!| |degree| |cup| - |complex| |errorKind| |eulerPhi| |oddlambert| |kovacic| |f04mcf| - |sinhIfCan| |basisOfRightNucleus| |reduction| |kernels| |expIfCan| - |optional?| |biRank| |log| |discriminant| |quasiRegular?| |isOp| - |drawCurves| |normInvertible?| |removeDuplicates!| |acosIfCan| - |operator| |SturmHabicht| |generateIrredPoly| |infix?| |datalist| - |e01sff| |basisOfCentroid| |makeViewport2D| |ranges| |axes| |credPol| - |OMputError| |hexDigit| |pseudoRemainder| |eisensteinIrreducible?| - |mask| |cyclicCopy| |leastAffineMultiple| |diag| |basisOfRightNucloid| - |OMputString| |positiveRemainder| |lookup| |linearPolynomials| - |univariate| |trunc| |Ei| |genus| |e02akf| |rk4f| |padecf| - |stosePrepareSubResAlgo| |condition| |quasiComponent| |OMputAttr| - |approximants| |prologue| |setTopPredicate| |multinomial| |toScale| - |f02ajf| |set| |leaves| |addMatchRestricted| |lexGroebner| |constant| - |leftGcd| |basicSet| |integralMatrix| |subQuasiComponent?| - |viewThetaDefault| |zeroOf| |primextintfrac| |nthExpon| |minrank| - |isTimes| |insertMatch| |s21bcf| |solveLinearPolynomialEquation| - |nextPrime| |factor| |showTheSymbolTable| |concat| |s18aef| - |leviCivitaSymbol| |directSum| |newLine| |legendreP| |factorial| - |groebgen| |nextColeman| |resultantEuclideannaif| |sqrt| - |setMaxPoints| |diagonal| |swap!| |hconcat| |rowEchLocal| - |mainMonomial| |clearDenominator| |binaryTournament| - |absolutelyIrreducible?| |roughBase?| |real| |d01gbf| |cubic| |hue| - |symmetricTensors| |singRicDE| |contours| |curve?| |clipWithRanges| - |minPoints| |prindINFO| |imag| |connectTo| |fortranReal| |doubleDisc| - |rightMinimalPolynomial| |invertibleSet| |anticoord| |minimumDegree| - |upperCase| |setProperties| |graphImage| |directProduct| |rightMult| - |prepareSubResAlgo| |numberOfComputedEntries| |rightExtendedGcd| - |elRow2!| |getGoodPrime| |writeBytes!| |autoReduced?| |category| - |unitsColorDefault| |multiEuclidean| |nextNormalPrimitivePoly| - |lfinfieldint| |tableForDiscreteLogarithm| |roughUnitIdeal?| - |subNode?| |meshFun2Var| |relativeApprox| |coerce| |mapUp!| |domain| - |iicos| |ideal| |brace| |outputFloating| |subResultantsChain| - |largest| |index?| |nullary| |s21baf| |scan| |construct| |package| - |mapMatrixIfCan| |interReduce| |setchildren!| |destruct| |source| - |mainCoefficients| |padicFraction| |makeMulti| |mindeg| - |complexExpand| |scalarMatrix| |comment| |integral?| |rationalPoint?| - |subSet| |d01aqf| |SFunction| |integralBasisAtInfinity| |monomRDEsys| - |show| |trapezoidal| |parent| |functionIsContinuousAtEndPoints| - |powers| |d02bbf| |selectsecond| |bandedHessian| |currentScope| - |factorials| |shiftLeft| |s20adf| |inverseIntegralMatrix| - |splitDenominator| |rootProduct| |minColIndex| |cylindrical| - |flexibleArray| |mapmult| |taylorQuoByVar| |trace| |tab1| |infix| - |monomial| |unmakeSUP| |poisson| |isobaric?| |leadingIndex| |compile| - |makingStats?| |po| |airyAi| |leadingTerm| |readable?| |multivariate| - |target| |sinhcosh| |minIndex| |e01sbf| |subResultantChain| |exQuo| - |lowerCase!| |next| |mkAnswer| |changeBase| |OMgetEndApp| |variables| - |nullity| |increase| |minus!| |entry| |predicates| |parametersOf| - |rspace| |sh| |byte| |genericRightNorm| |extend| |quadraticNorm| - |perfectNthRoot| |lintgcd| |simpleBounds?| |groebnerIdeal| - |dimensionsOf| |stack| |copies| |coshIfCan| |subscriptedVariables| - |OMreadStr| |se2rfi| |OMgetEndBVar| |expint| |fortranComplex| - |twoFactor| |node?| |inc| |iiexp| |list?| |lowerCase| |derivative| - |ravel| |littleEndian| |stoseInvertibleSetreg| |clearTheIFTable| - |writeInt8!| |stirling1| |int| |submod| |factorByRecursion| - |monomialIntegrate| |reshape| |setStatus| |radPoly| - |getMultiplicationMatrix| |rightExactQuotient| |rootOf| |factor1| - |s14baf| |returnType!| |taylor| |rk4| |externalList| |localReal?| - |external?| |frst| |thetaCoord| |setelt| |complexZeros| - |modularGcdPrimitive| |yCoordinates| |varselect| |f01mcf| - |solveInField| |modulus| |mathieu22| |constantRight| - |componentUpperBound| |one?| |jacobi| |getZechTable| |matrixConcat3D| - |permutationGroup| |atanIfCan| |copy| |capacity| |rightPower| - |totalGroebner| |OMUnknownSymbol?| |ptFunc| |nthFactor| |KrullNumber| - |rectangularMatrix| |radicalSolve| |palgextint0| |zeroVector| - |extractSplittingLeaf| |mainVariable?| |variationOfParameters| - |update| |spherical| |coerceP| |f04axf| |basisOfLeftNucleus| - |lazyIrreducibleFactors| |infinite?| |max| |bumptab1| |endOfFile?| - |lighting| |host| |showAll?| |autoCoerce| |selectPolynomials| |tanQ| - |branchIfCan| |OMlistSymbols| |collectQuasiMonic| - |createPrimitiveElement| |fortranInteger| |outputFixed| - |rationalFunction| |colorFunction| |parts| |digit| - |internalSubQuasiComponent?| |rightRemainder| |algDsolve| |octon| - |repeating| |genericPosition| |purelyTranscendental?| |exptMod| - |reciprocalPolynomial| |nthCoef| |unitCanonical| |findCycle| - |lineColorDefault| |powmod| |subTriSet?| |normalise| |fullDisplay| - |screenResolution3D| |triangulate| |position| |pointColorDefault| - |stirling2| |sumSquares| |lyndon| |eulerE| |henselFact| |s14aaf| - |aLinear| |nodes| |bernoulli| |hessian| |d01fcf| |Nul| - |startTableGcd!| |dmpToHdmp| |select!| |normalize| |intersect| - |match?| |leftFactorIfCan| |bracket| |refine| |curryLeft| |ddFact| - |mainMonomials| |quotientByP| |isAbsolutelyIrreducible?| - |algebraicDecompose| |s13adf| |fill!| |acoshIfCan| - |removeSquaresIfCan| |setEmpty!| |arg2| |hash| |decrease| - |nextNormalPoly| |ip4Address| |inspect| |tensorProduct| - |argumentListOf| |multiplyCoefficients| |d01amf| |exactQuotient| - |count| |setProperty| |digit?| |denominators| |sequences| |rroot| - |UpTriBddDenomInv| |generalizedEigenvectors| |writeLine!| - |brillhartTrials| |ratDsolve| |conditions| |reducedContinuedFraction| - |readInt32!| |coord| |factorFraction| |isAnd| |pointColorPalette| - |extension| |dn| |iiGamma| |match| |univariateSolve| |e04naf| - |fractRagits| |triangular?| |getSyntaxFormsFromFile| |closedCurve?| - |qualifier| |indices| |primitivePart| |oblateSpheroidal| |setPosition| - |gethi| |expt| |OMmakeConn| |associatedSystem| |numericalOptimization| - |surface| |region| |structuralConstants| |coerceL| |viewSizeDefault| - |clipPointsDefault| |bivariateSLPEBR| |stiffnessAndStabilityOfODEIF| - |f07aef| |Si| |roughEqualIdeals?| |elem?| |fglmIfCan| |rarrow| - |firstSubsetGray| |diagonalMatrix| |bits| |e01saf| |extractPoint| - |sts2stst| |keys| |cosh| |dark| |collectUnder| |setrest!| - |leftMinimalPolynomial| |sparsityIF| |differentialVariables| |ref| - |shiftRoots| |vspace| |tanh| |bfKeys| |ratDenom| |latex| |ode1| - |rightUnits| |f01maf| |LazardQuotient2| |cosIfCan| |reseed| |coth| - |pushup| |OMgetError| |bumprow| |computeBasis| |doubleRank| - |startStats!| |mindegTerm| |d03eef| |leftRemainder| |sech| |cAsin| - |validExponential| |rowEchelon| |factors| |create| |horizConcat| - |eyeDistance| |indiceSubResultantEuclidean| |cycleRagits| |csch| - |eigenvector| |coercePreimagesImages| |nthr| |repeatUntilLoop| - |length| |composite| |makeVariable| |complexEigenvalues| |e02gaf| - |fortranCompilerName| |asinh| |entry?| |ldf2vmf| |Hausdorff| - |createNormalPrimitivePoly| |scripts| |palgRDE0| |e01bef| |digits| - |exactQuotient!| |tan2trig| |acosh| |mainContent| |setsubMatrix!| - |hasoln| |coefficients| |properties| |outputBinaryFile| |OMputEndBVar| - |cyclicEntries| |subtractIfCan| |iomode| |atanh| |leftScalarTimes!| - |safetyMargin| |algebraicVariables| |irreducible?| |tubePlot| |delay| - |removeConstantTerm| |toseInvertible?| |changeThreshhold| |translate| - |acoth| |atanhIfCan| |solveLinearPolynomialEquationByFractions| - |bivariatePolynomials| |romberg| |divideIfCan!| |geometric| - |incrementKthElement| |minimize| |testDim| |asech| |polyPart| - |heapSort| |trigs| |iiacsc| |movedPoints| |rational| |retract| - |subResultantGcd| |lexTriangular| |denomRicDE| |cosh2sech| |e02bef| - |tubePointsDefault| |relationsIdeal| |Lazard| |kmax| |intPatternMatch| - |hspace| |euler| |multiple| |nor| - |generalizedContinuumHypothesisAssumed?| |setProperty!| |sub| - |loadNativeModule| |space| |ridHack1| |besselK| |mat| |lfunc| - |applyQuote| |reducedForm| |c05nbf| |e01bhf| |acschIfCan| |id| - |morphism| |critMonD1| |stop| |asimpson| |sdf2lst| |float?| |graeffe| - |inputBinaryFile| |superHeight| |slex| |quote| |alphanumeric| - |mainValue| |arrayStack| |numberOfHues| |fi2df| |minPoints3D| - |lazyResidueClass| |iteratedInitials| |table| |makeop| - |createZechTable| |rowEch| |innerSolve1| |divisors| |ruleset| - |compBound| |makeCrit| |in?| |inverse| |new| |localIntegralBasis| - |selectSumOfSquaresRoutines| |quartic| |convergents| |red| |interpret| - |cycleTail| |pushuconst| |setAdaptive3D| |cTan| |insert| |s17agf| - |LyndonWordsList1| |reindex| |dot| |preprocess| |setClosed| - |exprHasWeightCosWXorSinWX| |leadingIdeal| |quotedOperators| |sqfree| - |integers| |child?| |setFormula!| |cycle| |heap| |froot| |suchThat| - |clearCache| |appendPoint| |cyclotomicFactorization| - |commonDenominator| |rightRegularRepresentation| |options| - |thenBranch| |mapExponents| |nodeOf?| |factorSquareFreePolynomial| - |interpretString| |super| |rewriteIdealWithHeadRemainder| - |retractIfCan| |generators| |setelt!| |shade| |e02adf| |s17dlf| |rank| - |coth2trigh| |qqq| |c02agf| |aQuadratic| |lhs| |showTheRoutinesTable| - |finiteBasis| |f04atf| |palgextint| |nullary?| |clipBoolean| - |separateDegrees| |numer| |cap| |attributeData| |mapUnivariateIfCan| - |rhs| |singularitiesOf| |mergeFactors| |d02bhf| |One| |besselJ| - |string| |yellow| |cLog| |denom| |difference| |alphanumeric?| - |viewDeltaYDefault| |generalTwoFactor| |palgintegrate| |dflist| - |loopPoints| |constantLeft| |unitVector| |useSingleFactorBound| - |outputGeneral| |drawToScale| |df2mf| |pointLists| |lex| |palglimint| - |leftQuotient| |divisor| |whileLoop| |integralMatrixAtInfinity| - |regularRepresentation| |pi| |scripted?| |nextItem| |sign| |linear| - |pmintegrate| |polar| |pr2dmp| |power| |inputOutputBinaryFile| - |eigenMatrix| |f04mbf| |infinity| |computeCycleEntry| |corrPoly| - |iisech| |gbasis| |writeByte!| |row| |left| |accuracyIF| - |complexLimit| |determinant| |principalAncestors| |f04jgf| - |polynomial| |s19adf| |lazyPrem| |modifyPointData| |elt| - |extractProperty| |right| |f02awf| |lists| |nil| |infinite| - |arbitraryExponent| |approximate| |complex| |shallowMutable| - |canonical| |noetherian| |central| |partiallyOrderedSet| - |arbitraryPrecision| |canonicalsClosed| |noZeroDivisors| - |rightUnitary| |leftUnitary| |additiveValuation| |unitsKnown| - |canonicalUnitNormal| |multiplicativeValuation| |finiteAggregate| - |shallowlyMutable| |commutative|)
\ No newline at end of file + |Record| |Union| |f02aff| |argumentList!| |corrPoly| |toroidal| + |s17dgf| |padicFraction| |prolateSpheroidal| |relationsIdeal| + |outputMeasure| |rk4f| |scanOneDimSubspaces| |delete!| |elt| + |localAbs| |writeBytes!| |insertTop!| |OMputSymbol| |setClipValue| + |nullary?| |fortranDoubleComplex| |radicalOfLeftTraceForm| + |palgextint0| |coleman| |anfactor| |ridHack1| |mesh| + |stoseLastSubResultant| |sh| |palglimint0| |basisOfMiddleNucleus| + |checkRur| |headAst| |llprop| |reducedContinuedFraction| |bfKeys| + |c06gbf| |isOr| |rootOfIrreduciblePoly| |equation| |OMgetApp| + |optAttributes| |read!| |shade| |construct| |makeMulti| + |bandedJacobian| |cscIfCan| |source| |submod| |weighted| + |outputSpacing| |basisOfLeftNucloid| |chebyshevT| |s15adf| |makeCrit| + |duplicates| |compdegd| |rk4| |cSinh| |zeroDimPrime?| |totalDegree| + |abs| |decimal| |viewSizeDefault| |absolutelyIrreducible?| + |subResultantGcdEuclidean| |primPartElseUnitCanonical| |squareFree| + |nonLinearPart| |notelem| |f04adf| |name| |loopPoints| |diagonal?| + |exQuo| |subTriSet?| |squareFreePrim| |iitan| |decomposeFunc| |curve| + |body| |squareFreePart| |iisech| |lazyPremWithDefault| |setfirst!| + |fortranLiteralLine| |zeroVector| |fractionFreeGauss!| |target| + |numberOfPrimitivePoly| |twoFactor| |datalist| |getOperands| + |printStatement| |s13aaf| |interval| |quasiMonic?| |cyclotomic| + |cross| |semiResultantEuclideannaif| |point| |multMonom| + |splitNodeOf!| |subResultantsChain| |mainValue| ** |dmp2rfi| + |epilogue| |Vectorise| |quotientByP| |setTex!| |moebius| + |showAllElements| |getProperty| |stronglyReduce| |dihedralGroup| + |viewDeltaXDefault| |selectFiniteRoutines| |lazyPquo| |reorder| |diag| + |setsubMatrix!| |startPolynomial| |matrixConcat3D| |unravel| |bat1| + |zeroSquareMatrix| |groebner?| |error| |readInt32!| |series| |e02adf| + |besselY| |measure2Result| |stopTable!| |ravel| |sizeMultiplication| + |clipPointsDefault| |in?| |port| |leastMonomial| |elliptic| + |linkToFortran| |setFieldInfo| |packageCall| |assert| + |mainDefiningPolynomial| |minordet| |drawComplex| |clip| |leastPower| + |reshape| |trigs| |tanIfCan| |previous| |denominator| |sin2csc| + |wrregime| |xCoord| |setelt| |sts2stst| |leaves| |jordanAdmissible?| + |decreasePrecision| |constantLeft| |t| |stFunc1| |factorials| + |antiCommutative?| |rst| |meatAxe| |mapDown!| |rightUnit| |tower| + |antiCommutator| |printingInfo?| |bottom!| |univariate?| + |var2StepsDefault| |leftUnits| |roughBase?| |min| |makeResult| |copy| + |c02aff| |OMgetEndAtp| |f04mcf| |whitePoint| |increasePrecision| + |solveid| |push| |gbasis| |normalise| |lowerCase!| |showTheIFTable| + |monicModulo| |invertibleElseSplit?| |extractSplittingLeaf| + |PollardSmallFactor| |e02bcf| |lifting1| |basisOfRightNucloid| + |setRow!| |arrayStack| |ricDsolve| |commutativeEquality| + |cyclicSubmodule| |size?| |cCsc| |supDimElseRittWu?| |node?| |update| + |OMputAtp| |comparison| |imaginary| |double?| |autoCoerce| + |pseudoDivide| |OMopenString| |largest| |invmod| |pmComplexintegrate| + |prevPrime| |isAbsolutelyIrreducible?| |rowEchelon| |zeroDim?| + |OMgetInteger| |fixedPointExquo| |showRegion| |allRootsOf| + |tubeRadiusDefault| |leader| |complexNumeric| |nextIrreduciblePoly| + |clearTheSymbolTable| |linearMatrix| |csubst| |dominantTerm| + |hexDigit?| |elRow1!| |symbolTable| |hasoln| |skewSFunction| + |OMputEndApp| |bivariateSLPEBR| |inverse| |tablePow| |s18adf| + |makeVariable| |ScanFloatIgnoreSpacesIfCan| |coord| |s17dlf| + |nextsousResultant2| |laplace| |permutationGroup| |kernels| |nary?| + |iprint| |sech2cosh| |removeZeroes| |zeroOf| |untab| |separant| + |extendedint| |pushFortranOutputStack| |equiv| |represents| + |medialSet| |iiacsc| |operator| |normDeriv2| |tanh2coth| |position| + |unitVector| |OMgetString| |popFortranOutputStack| + |removeRoughlyRedundantFactorsInContents| |primeFrobenius| |nthRoot| + |idealiser| |crushedSet| |LagrangeInterpolation| |mainVariable?| + |match?| |curveColor| |janko2| |shiftLeft| |iiacosh| |mkAnswer| + |outputAsFortran| |monomials| |iiasec| |dark| |univariate| |sinhIfCan| + |uniform01| |iiexp| |padicallyExpand| |byteBuffer| |d01gbf| + |fullDisplay| |f07fef| |genericLeftDiscriminant| |radicalSimplify| + |e02bbf| |member?| |monomialIntPoly| |cSin| LODO2FUN |writeByte!| + |condition| |irreducibleRepresentation| |d03faf| |numberOfHues| + |OMconnectTCP| |gcdprim| |qPot| |highCommonTerms| |prime?| |factors| + |setRealSteps| |directory| |elColumn2!| |limitedIntegrate| + |expintfldpoly| |d02kef| |constant| |factor| |nsqfree| |polyRicDE| + |outputAsTex| |algebraicDecompose| |innerint| |chineseRemainder| + |pointColor| |supRittWu?| |paren| |selectODEIVPRoutines| |sqrt| + |stiffnessAndStabilityOfODEIF| |localIntegralBasis| |ocf2ocdf| + |enumerate| |normalized?| |ratpart| |zeroDimPrimary?| |coefficients| + |index?| |resetNew| |real| |numberOfNormalPoly| |internalIntegrate0| + |setnext!| |charpol| |factorGroebnerBasis| |fractRadix| + |realElementary| |OMputString| |assign| |linear?| |imag| |iiatan| + |explicitlyEmpty?| |curveColorPalette| |var2Steps| |s20adf| + |factorFraction| |imagK| |coth2trigh| |atanIfCan| |createThreeSpace| + |directProduct| |abelianGroup| |isEquiv| |useSingleFactorBound| + |permutations| |certainlySubVariety?| |numberOfCycles| |prinpolINFO| + |iExquo| |rotatey| |intcompBasis| |basisOfRightNucleus| |duplicates?| + |leadingCoefficientRicDE| |movedPoints| |parts| |argument| |close| + |extensionDegree| |complete| |bivariate?| |operators| |concat!| |kind| + |brace| |variationOfParameters| |OMopenFile| |setPredicates| + |distance| |midpoint| |cubic| |changeBase| |karatsubaOnce| + |OMencodingUnknown| |collectUnder| |constantOperator| |destruct| + |definingPolynomial| |addiag| |op| |subresultantSequence| |create| + |display| |viewZoomDefault| |intermediateResultsIF| + |screenResolution3D| |iiacos| |fi2df| |inrootof| |UnVectorise| + |findConstructor| |npcoef| |numberOfFactors| |row| |inverseColeman| + |listOfLists| |infinityNorm| |addmod| |complementaryBasis| |isList| + |mapCoef| |selectMultiDimensionalRoutines| |critBonD| |leftUnit| + |positiveRemainder| |invmultisect| |constantIfCan| |stFunc2| + |reduction| |selectSumOfSquaresRoutines| |f01rdf| |mainExpression| + |inverseIntegralMatrix| |outputArgs| |s18acf| |outputBinaryFile| + |nullary| |vconcat| |monomial| |s17aef| |retractable?| |outputGeneral| + |list?| |secIfCan| |arity| |readUInt8!| |expandPower| |capacity| + |BumInSepFFE| |multivariate| |gramschmidt| |bumptab| |palgint0| + |linearDependence| |uniform| |input| |compile| |isAnd| |redmat| + |rename!| |primintegrate| |OMreadFile| |constantKernel| |variables| + |conjug| |controlPanel| |supersub| |union| |expPot| |library| + |complexNormalize| |OMputApp| |qqq| |possiblyInfinite?| |putGraph| + |spherical| |weight| |mainVariables| |rational| |e01sef| |stack| + |rewriteIdealWithRemainder| |genericLeftTraceForm| |symmetric?| + |dictionary| |leftRankPolynomial| |tanQ| |hdmpToDmp| |fortranLiteral| + |exponential| |horizConcat| |internalSubPolSet?| |getRef| + |subresultantVector| |Ci| |makeprod| |createMultiplicationTable| + |physicalLength!| |eigenvectors| |setStatus| |maximumExponent| + |lSpaceBasis| |OMgetEndApp| |rationalPower| |minPoints3D| |setrest!| + |df2ef| |createIrreduciblePoly| |s18dcf| |e04jaf| |nonQsign| |coerceS| + |hue| |copy!| |OMencodingBinary| |option?| |approxNthRoot| |weights| + |key?| |taylor| |id| |sincos| |relerror| |modularFactor| |accuracyIF| + |reducedQPowers| |triangulate| |OMputEndAttr| |toseLastSubResultant| + |quartic| |setOrder| |getStream| |ScanArabic| |basisOfLeftAnnihilator| + |iicsch| |moduleSum| |readInt8!| |status| |mapdiv| |inc| |reify| + |table| |linearlyDependentOverZ?| |drawToScale| |lowerCase| + |partialDenominators| |ignore?| |OMputEndBVar| |rightPower| + |inconsistent?| |weakBiRank| |insert| |new| |expIfCan| |zeroMatrix| + |repeating?| |blue| |solid| |lookup| |f01rcf| |s21baf| |unary?| + |createGenericMatrix| |extractTop!| |getProperties| |wholePart| + |divideIfCan| |ScanFloatIgnoreSpaces| |newTypeLists| |bfEntry| + |setright!| |BasicMethod| |extractIfCan| |setErrorBound| + |pleskenSplit| |c02agf| |clearCache| |idealiserMatrix| + |complexNumericIfCan| |coerceP| |iisqrt2| |radPoly| |subResultantGcd| + |resize| |cAcos| |factorPolynomial| |genericLeftMinimalPolynomial| + |listexp| |pomopo!| |infieldIntegrate| |d01asf| |OMgetEndError| + |slash| |partialQuotients| |f07fdf| |lazyResidueClass| |mdeg| + |applyRules| |initiallyReduce| |rroot| |nullity| |oddInfiniteProduct| + |leftMinimalPolynomial| |overlabel| |bitCoef| |cotIfCan| + |constantOpIfCan| |quatern| |leftExtendedGcd| |exponentialOrder| + |just| |makeSketch| |df2fi| |blankSeparate| |cycleEntry| |low| + |getVariableOrder| |topPredicate| |children| |pointColorDefault| + |primextendedint| |e02dcf| |associatedSystem| |logGamma| + |shallowExpand| |derivative| |df2mf| |sPol| |totalGroebner| + |numFunEvals| |readByte!| |e04dgf| |OMUnknownSymbol?| |fibonacci| + |shufflein| |reciprocalPolynomial| |swap!| |arg2| |cyclePartition| + |setValue!| |setlast!| |exponents| |antisymmetric?| + |purelyAlgebraicLeadingMonomial?| |setAttributeButtonStep| |left| + |permanent| |initializeGroupForWordProblem| |power| + |stoseInvertible?sqfreg| |characteristicSet| |asecIfCan| |scan| |ord| + |iterationVar| |roughSubIdeal?| |compose| |ffactor| |right| + |insertionSort!| |lambert| |iicot| |numberOfDivisors| |conditions| + |transcendent?| |extract!| |nlde| |prepareSubResAlgo| |realSolve| + |setProperties!| |leadingTerm| |nthFlag| |lazyPseudoDivide| |match| + |readBytes!| |cAcoth| |neglist| |makeop| + |stoseIntegralLastSubResultant| |clearFortranOutputStack| |bright| + |normal01| |palgLODE0| |traverse| |iteratedInitials| |simplifyLog| + |makeSin| |expintegrate| |semiResultantReduitEuclidean| |intersect| + |linear| |quasiAlgebraicSet| |stopMusserTrials| |OMputError| |vark| + |e02ajf| |f04faf| |factorSquareFreeByRecursion| |mix| |subPolSet?| + |UpTriBddDenomInv| |commaSeparate| |factorSquareFreePolynomial| + |double| |build| |currentSubProgram| |product| + |removeRoughlyRedundantFactorsInPol| |polynomial| |sayLength| + |showSummary| |algSplitSimple| |distribute| |binomThmExpt| |block| + |eval| |minPoly| |ptFunc| |OMreadStr| |lexGroebner| |dec| |digit?| + |yCoord| |rangePascalTriangle| |resultantnaif| |iisec| |tanhIfCan| + |numericalOptimization| |stopTableInvSet!| |adaptive3D?| + |hostByteOrder| |showAttributes| |hconcat| |palgRDE0| |algebraicSort| + |graeffe| |rarrow| |goodPoint| |mapBivariate| |leftLcm| |difference| + |prepareDecompose| EQ |constantToUnaryFunction| |nthCoef| |iisinh| + |pdf2ef| |exprHasLogarithmicWeights| |regime| |lieAlgebra?| + |nthFractionalTerm| |doubleRank| |inputOutputBinaryFile| + |bezoutResultant| |s14abf| |isImplies| |norm| |binaryTree| |swap| + |numberOfComputedEntries| |completeEchelonBasis| |symbol| |schema| + |generalizedEigenvectors| |identitySquareMatrix| |binomial| |imports| + |f02adf| |createZechTable| |totalLex| |polygamma| + |incrementKthElement| |expression| |exprToUPS| |zerosOf| |readable?| + |solveRetract| |sizeLess?| |makeYoungTableau| |declare!| |leftRank| + |quadratic?| |nthRootIfCan| |monomRDE| |integer| |sinh2csch| + |inRadical?| |hexDigit| |multiple?| |mathieu22| |relativeApprox| + |linearAssociatedOrder| |processTemplate| |bombieriNorm| + |leftFactorIfCan| |functionIsContinuousAtEndPoints| |properties| + |torsion?| |swapColumns!| |zeroSetSplitIntoTriangularSystems| + |reduceBasisAtInfinity| |indicialEquation| |createNormalElement| + |changeWeightLevel| |unitNormal| |computePowers| |cExp| + |sumOfKthPowerDivisors| |translate| |mainCharacterization| + |interpretString| |withPredicates| |startTableInvSet!| |nthFactor| + |evaluateInverse| |leftGcd| |check| |nextSubsetGray| |bindings| + |ef2edf| |lcm| |upperCase!| |open?| |generalSqFr| |surface| |initials| + |baseRDEsys| |chiSquare| |trueEqual| |times!| |principal?| + |generalLambert| |firstSubsetGray| |inputBinaryFile| + |changeNameToObjf| |matrixDimensions| |alphanumeric?| |se2rfi| + |continuedFraction| |mapUp!| |rowEchLocal| |e01bef| |clipSurface| + |tubeRadius| |append| |splitLinear| |s17dcf| |minimize| |inf| + |startStats!| |lieAdmissible?| |OMputObject| |label| |unitCanonical| + |overset?| |semiResultantEuclidean2| |gcd| |segment| |delete| + |OMgetEndAttr| |moduloP| |bracket| |tanh2trigh| |rootSplit| + |rischNormalize| |eigenMatrix| |e02agf| |chiSquare1| |setMinPoints| + |false| |completeHensel| |rowEch| |s17aff| |OMgetObject| + |removeRedundantFactorsInContents| |quoByVar| |irreducibleFactor| + |strongGenerators| |constantRight| |getGraph| |hypergeometric0F1| + |numeric| |rightExtendedGcd| |setvalue!| |simplify| |OMclose| + |stoseInvertibleSet| |diff| |nextsubResultant2| |shiftRight| + |Frobenius| |iiacot| |radical| |exponent| |d01ajf| |ListOfTerms| + |realZeros| |interpret| |OMParseError?| |sinhcosh| |factorSquareFree| + |elliptic?| |any?| |splitSquarefree| |ode2| |generalizedEigenvector| + |totalfract| |numerators| |fixedPoint| |randomLC| |pseudoRemainder| + |setButtonValue| |raisePolynomial| |setAdaptive| |region| |c05pbf| + |asinIfCan| |powers| |OMwrite| |writeLine!| + |rewriteIdealWithHeadRemainder| |retractIfCan| |iicsc| |ScanRoman| + |alphabetic| |constructor| |KrullNumber| |ldf2lst| |basicSet| |bytes| + |integralDerivationMatrix| |singularAtInfinity?| |getOrder| |leftNorm| + |superHeight| |associatorDependence| |parametric?| |OMsetEncoding| + |viewDeltaYDefault| |wholeRadix| |numer| |option| |var1StepsDefault| + |digits| |removeRedundantFactorsInPols| |diagonalMatrix| |graphStates| + |musserTrials| |addMatch| |fullPartialFraction| |OMgetEndBVar| + |subscript| |denom| |mainMonomial| |e02zaf| |clikeUniv| + |drawComplexVectorField| |iicos| |elRow2!| |stronglyReduced?| + |transform| |squareMatrix| |mindegTerm| |coefficient| |setLength!| + |findCycle| |eof?| |plot| |innerSolve1| |addBadValue| |testDim| + |refine| |bezoutDiscriminant| |pi| |f04mbf| |f01qdf| |karatsuba| + |nextPrimitiveNormalPoly| |componentUpperBound| |iitanh| |module| + |meshPar1Var| |rightTrim| |quasiRegular| |squareFreePolynomial| + |infinity| |gcdcofactprim| |shrinkable| |minIndex| |mainVariable| + |limitPlus| |f2st| |integralMatrix| |normalizedAssociate| + |showTheFTable| |leftTrim| |OMgetEndObject| |prinb| |initTable!| + |karatsubaDivide| |realRoots| |cCos| |log10| |currentCategoryFrame| + |univariatePolynomial| |imagk| |prem| |sinIfCan| + |eisensteinIrreducible?| |lfintegrate| |characteristicPolynomial| + |map| |minPol| |mathieu11| |sechIfCan| |quasiMonicPolynomials| + |rectangularMatrix| |generalTwoFactor| |bitand| |genericLeftNorm| + |kernel| |brillhartTrials| |oddintegers| |truncate| |rischDEsys| + |selectPDERoutines| |factorAndSplit| |fortran| |structuralConstants| + |complexElementary| |errorInfo| |bitior| |d02bbf| |draw| |backOldPos| + |generators| |viewPosDefault| |unit?| |slex| |representationType| + |showFortranOutputStack| |hMonic| |trailingCoefficient| |listOfMonoms| + F |setLegalFortranSourceExtensions| |explogs2trigs| |exactQuotient!| + |iisin| |OMencodingXML| |OMputInteger| |evaluate| |edf2fi| + |generalInfiniteProduct| |writable?| |f04asf| |att2Result| |pade| + |leftTrace| |bits| |pair?| |unrankImproperPartitions0| + |sizePascalTriangle| |integralLastSubResultant| UTS2UP + |binarySearchTree| |getConstant| |possiblyNewVariety?| |convert| + |countable?| |contract| |divisors| |OMgetSymbol| |curryLeft| + |divideExponents| |d03eef| |makeObject| |style| |clearDenominator| + |rightQuotient| |diagonals| |one?| |super| |null| |iipow| + |getGoodPrime| |expint| |high| |companionBlocks| |coef| + |computeCycleEntry| |pattern| |exteriorDifferential| + |lineColorDefault| |jordanAlgebra?| |readIfCan!| |not| |close!| + |scale| |iroot| |sturmVariationsOf| |constantCoefficientRicDE| + |mainSquareFreePart| |rightTraceMatrix| |e01sbf| |permutation| + |saturate| |and| |simplifyPower| |e01baf| |ksec| |subQuasiComponent?| + |toseSquareFreePart| |tab| |maxRowIndex| |solve| |ideal| + |zeroDimensional?| |polyPart| |or| |fortranDouble| |isTerm| + |palgintegrate| |mantissa| |maxPoints3D| |axesColorDefault| + |alphabetic?| |iCompose| |lowerPolynomial| |normalElement| + |readUInt32!| |xor| |length| |radicalSolve| |factorsOfCyclicGroupSize| + |f04qaf| |selectsecond| |ratDsolve| |message| |f02axf| |cyclicCopy| + |rationalApproximation| |quote| |coerceL| |e04ycf| |scripts| |f02akf| + |imagj| |setEpilogue!| |OMbindTCP| |setelt!| |tan2trig| + |mapUnivariate| |decompose| |variable?| |sample| |fortranComplex| + |cot2trig| |primitive?| |algint| |associative?| |digamma| |c06fuf| + |e01saf| |numberOfOperations| |script| |OMgetBind| |ddFact| |f01bsf| + |addPoint2| |insertRoot!| |changeVar| |clearTable!| Y + |basisOfRightAnnihilator| |OMgetEndBind| |compBound| |swapRows!| + |leftMult| |fractionPart| |leftRemainder| |expextendedint| |listLoops| + |outputFloating| |jacobi| |mr| |exprex| |s21bbf| + |solveLinearPolynomialEquationByRecursion| |monomial?| + |fortranCharacter| |factorial| |subst| |powmod| |numberOfChildren| + |fixedDivisor| |selectOptimizationRoutines| |mulmod| |tex| + |definingInequation| |cons| |cAcsc| |aQuartic| |symbolIfCan| + |commutative?| |makeSUP| |subResultantChain| |subset?| |central?| + |lyndon?| |component| |badNum| |monic?| |viewThetaDefault| + |bandedHessian| |scripted?| |complexForm| |multiEuclideanTree| + |f02fjf| |commutator| |positive?| |composite| |dflist| |minRowIndex| + |radix| |getlo| |integralAtInfinity?| |SturmHabichtCoefficients| + |leadingSupport| |s15aef| |cAsech| |setPrologue!| |innerEigenvectors| + |pToDmp| |groebner| |initiallyReduced?| |leastAffineMultiple| + |reopen!| |alphanumeric| |removeRedundantFactors| |normal| |maxrow| + |modTree| |lazyEvaluate| |categoryFrame| |aromberg| |normalizedDivide| + |selectIntegrationRoutines| |mainContent| |FormatRoman| |predicate| + |byte| |light| |selectAndPolynomials| |deepestInitial| |nthExponent| + |primintfldpoly| |showIntensityFunctions| |interpolate| |objects| + |invertibleSet| |rootKerSimp| |ellipticCylindrical| |cAsin| |d01amf| + |leadingIdeal| |e01sff| |reduceLODE| |base| |extractPoint| + |leftDivide| |heapSort| |mainMonomials| |writeUInt8!| |lfextendedint| + |unknown| |nand| |lexico| |polynomialZeros| |getZechTable| |lp| + |complexEigenvectors| |int| |rangeIsFinite| |setref| |characteristic| + |headRemainder| |cyclotomicFactorization| |edf2efi| + |rightDiscriminant| |semiLastSubResultantEuclidean| |max| |ParCond| + |currentScope| |groebgen| |powerSum| |printInfo!| |invertIfCan| |rk4a| + |presuper| |LazardQuotient| |numberOfImproperPartitions| |resultant| + |factorset| |scopes| |poisson| |increment| |cTanh| |primitivePart| + |mesh?| |prologue| |rightDivide| |returns| |nextItem| |remove| + |transcendentalDecompose| |c06ebf| |halfExtendedResultant1| |cAcosh| + |singularitiesOf| |atanhIfCan| |clearTheFTable| |symmetricGroup| + |quotient| |zCoord| |charthRoot| |iilog| |groebnerIdeal| |entry| + |c06ekf| |fTable| |octon| |chebyshevU| |last| |adaptive?| + |fortranTypeOf| |parameters| |anticoord| |palgint| |constDsolve| + |validExponential| |assoc| |OMreceive| |basisOfCentroid| + |resultantEuclidean| |resetBadValues| |legendre| |cn| |currentEnv| + |operation| |getMeasure| |measure| |front| |copyInto!| |redpps| + |isobaric?| |even?| |color| |acschIfCan| |interactiveEnv| |Nul| + |showScalarValues| |multiset| |sort| |exactQuotient| + |lastSubResultantEuclidean| |key| |branchPointAtInfinity?| + |algebraicCoefficients?| |genericRightTrace| |wronskianMatrix| |order| + |cosIfCan| |endSubProgram| |semicolonSeparate| |routines| |lazy?| + |pushdown| BY |d01gaf| |iiperm| |tableau| |reduceByQuasiMonic| + |filename| |pop!| |commonDenominator| |LiePolyIfCan| |reflect| |merge| + |tubePoints| |oblateSpheroidal| |noKaratsuba| |graphState| |iidprod| + |infiniteProduct| |functionIsFracPolynomial?| |qfactor| |ipow| + |mergeDifference| |nthExpon| |cPower| |iiasech| |subHeight| + |intensity| |mkcomm| |integralCoordinates| |genericRightDiscriminant| + |random| |parse| |modularGcdPrimitive| |extendIfCan| |laurent| + |cyclotomicDecomposition| |setTopPredicate| |lazyGintegrate| + |checkForZero| |nextColeman| |coefChoose| |deriv| |balancedBinaryTree| + |positiveSolve| |puiseux| |lllp| |mergeFactors| |multisect| + |screenResolution| |leftTraceMatrix| |composites| |integralBasis| + |nextNormalPrimitivePoly| |definingEquations| |parabolicCylindrical| + |LiePoly| |solveLinearPolynomialEquationByFractions| |d01aqf| |sign| + |fortranCompilerName| |repeating| |toseInvertibleSet| |smith| |inv| + |minimumDegree| |e04ucf| |coordinate| |rombergo| |lo| |squareTop| + |rank| NOT |jacobian| |OMputBind| |morphism| |rightScalarTimes!| + |ground?| |cothIfCan| |makeCos| |OMunhandledSymbol| + |rightCharacteristicPolynomial| |depth| |useEisensteinCriterion?| OR + |completeHermite| |bat| |gensym| |tube| |ground| |enqueue!| + |purelyAlgebraic?| |startTableGcd!| |selectOrPolynomials| AND + |zeroSetSplit| F2FG |getCurve| |systemSizeIF| |f07aef| + |leadingMonomial| |setPosition| |summation| |rightFactorIfCan| + |reseed| |setProperty| |leadingIndex| |makeViewport2D| |getIdentifier| + |edf2df| |leadingCoefficient| |mirror| |primlimintfrac| |cfirst| + |removeSuperfluousCases| |aspFilename| |rightRegularRepresentation| + |replace| |yCoordinates| |normalizeAtInfinity| |primitiveMonomials| + |cosSinInfo| |multinomial| |f01ref| |distFact| |number?| |s19abf| + |removeCoshSq| |singleFactorBound| |hasHi| |reductum| |monicDivide| + |dfRange| |dimensionsOf| |transcendenceDegree| |zero| |OMputFloat| + |range| |normalDenom| |every?| |partition| |rootPoly| |rules| + |dequeue| |cartesian| |d02bhf| |SFunction| |signature| |cAsec| |lists| + |setScreenResolution3D| |index| |expandTrigProducts| |setColumn!| + |lfinfieldint| |univariatePolynomialsGcds| |upperCase| + |brillhartIrreducible?| |head| |unprotectedRemoveRedundantFactors| + |And| |resultantEuclideannaif| |genericPosition| |entry?| + |stiffnessAndStabilityFactor| |dequeue!| |rightGcd| |leftRecip| + |showClipRegion| |semiDegreeSubResultantEuclidean| |Or| |pmintegrate| + |rubiksGroup| |permutationRepresentation| |chvar| |critMonD1| |lift| + |conditionsForIdempotents| |s17dhf| |bivariatePolynomials| |distdfact| + |Not| |char| |conical| |rootNormalize| |ranges| |pair| + |symmetricRemainder| |empty?| |reduce| |unitNormalize| |basis| |value| + |laurentRep| |flatten| |Gamma| |iiabs| * |rCoord| + |monicDecomposeIfCan| |Si| |f02bjf| |stop| |gethi| |copies| + |dmpToHdmp| |pushup| |deepCopy| |exponential1| |airyBi| + |tableForDiscreteLogarithm| |getDatabase| |unit| |subMatrix| |polyRDE| + |checkPrecision| |signatureAst| |denominators| |probablyZeroDim?| + |makingStats?| |varselect| |cAtan| |mkIntegral| |perfectSquare?| + |f02aef| |plusInfinity| |contains?| |thenBranch| + |unrankImproperPartitions1| |pushdterm| = |expressIdealMember| + |cycleLength| |toScale| |goodnessOfFit| |minusInfinity| + |semiResultantEuclidean1| |internalAugment| |sin?| |s17adf| |Lazard2| + |OMsupportsSymbol?| |patternMatch| |setProperties| |beauzamyBound| + |wordsForStrongGenerators| |associatedEquations| + |useEisensteinCriterion| |s13acf| |rem| |subNodeOf?| < |printStats!| + |makeSeries| |float| |OMserve| |OMcloseConn| |besselJ| + |integralBasisAtInfinity| |ldf2vmf| |s18aff| |quo| > |components| + |bag| |nextPrimitivePoly| |nullSpace| |schwerpunkt| |dmpToP| |normal?| + |matrixGcd| |setMaxPoints| <= |boundOfCauchy| + |tryFunctionalDecomposition| |e02dff| |sumOfDivisors| |curryRight| + |point?| |cond| |cRationalPower| |polar| |f02abf| |div| >= + |purelyTranscendental?| |pack!| |asimpson| |type| |pastel| + |leftAlternative?| |setStatus!| |c06frf| |outerProduct| |exquo| + |newSubProgram| |upperCase?| |factorSFBRlcUnit| |bitTruth| + |roughEqualIdeals?| |f02bbf| |romberg| |column| |OMgetError| ~= + |algebraicOf| |leftDiscriminant| |unparse| |bit?| + |wordInStrongGenerators| |expt| |select!| |euclideanGroebner| |middle| + |makeFR| |hermite| |#| |po| + |psolve| |child| |extendedEuclidean| + |lastSubResultantElseSplit| |symFunc| |setLabelValue| |iiasinh| ~ + |split| - |axes| |associates?| |f01mcf| |createLowComplexityTable| + |laguerreL| |ptree| |linearDependenceOverZ| |removeCosSq| + |mapExponents| |solveLinear| |sequences| |restorePrecision| / + |rischDE| GE |graphImage| |laplacian| |lllip| |rightRankPolynomial| + |ramifiedAtInfinity?| |realEigenvalues| |hdmpToP| |printHeader| + |roughUnitIdeal?| GT |polyred| |numberOfMonomials| |isOpen?| + |monomRDEsys| |bigEndian| |/\\| |before?| |adjoint| |Hausdorff| + |signAround| LE |deleteProperty!| |f02ajf| |coshIfCan| + |listYoungTableaus| |basisOfNucleus| |sorted?| |\\/| |bipolar| + |patternVariable| |normalizeIfCan| LT |isQuotient| |solve1| |yellow| + |pushucoef| |genericLeftTrace| |diagonal| + |tryFunctionalDecomposition?| |exptMod| |integerBound| + |createPrimitiveNormalPoly| |search| |trivialIdeal?| |linears| + |minimumExponent| |rewriteSetByReducingWithParticularGenerators| + |pr2dmp| |d02gaf| |infRittWu?| |sdf2lst| |elem?| |lazyPseudoRemainder| + |rightLcm| |seed| |bumprow| |lazyIntegrate| |var1Steps| |usingTable?| + |testModulus| |userOrdered?| |OMmakeConn| |subscriptedVariables| + |tracePowMod| |htrigs| |monicRightDivide| |airyAi| |leadingBasisTerm| + |e01bff| |rightMult| |divideIfCan!| |ParCondList| |trigs2explogs| + |lyndonIfCan| |credPol| |viewport2D| + |rewriteIdealWithQuasiMonicGenerators| |colorDef| |height| |baseRDE| + |createNormalPoly| |normalize| |removeZero| |LyndonBasis| |lepol| + |f04maf| |lhs| |solveInField| |subNode?| |updatF| |mathieu12| + |semiIndiceSubResultantEuclidean| |trapezoidal| |myDegree| |d01alf| + |nodeOf?| |rhs| |stoseInvertible?| |dimension| |sqfrFactor| + |outlineRender| |typeList| |sncndn| |universe| |unexpand| + |isConnected?| |root| |lazyPrem| |createPrimitivePoly| |logpart| + |d02gbf| |s18aef| |createNormalPrimitivePoly| |hermiteH| + |patternMatchTimes| |floor| |dAndcExp| |OMread| |addMatchRestricted| + |mkPrim| |leftQuotient| |complexRoots| |arg1| |hostPlatform| |coerce| + |pushNewContour| |string?| |zag| |homogeneous?| |cLog| |fixedPoints| + |critpOrder| |fglmIfCan| |float?| |semiSubResultantGcdEuclidean1| + |vedf2vef| GF2FG |computeBasis| |reverse!| |write!| |contractSolve| + |discreteLog| |mainForm| |logical?| |d02ejf| |content| |iibinom| + |nextSublist| |explicitEntries?| |resultantReduit| |makeGraphImage| + |f02aaf| |fractRagits| |f04arf| |geometric| |FormatArabic| + |ip4Address| |complex?| |lighting| |meshFun2Var| + |extendedSubResultantGcd| |critB| |indicialEquationAtInfinity| |crest| + |stoseSquareFreePart| |rationalFunction| |e04fdf| |mainPrimitivePart| + |internalZeroSetSplit| |charClass| |tanintegrate| |declare| + |rootDirectory| |s20acf| |LyndonWordsList1| |simpson| |function| + |OMsupportsCD?| |modulus| |prindINFO| |problemPoints| |prime| |iicosh| + |repSq| |OMconnOutDevice| |internalInfRittWu?| |tail| + |combineFeatureCompatibility| |showArrayValues| |obj| |generic| + |LyndonWordsList| |halfExtendedSubResultantGcd1| |failed| |parent| + |uncouplingMatrices| |inverseIntegralMatrixAtInfinity| + |derivationCoordinates| |cache| |modifyPointData| |irreducible?| + |s14aaf| |zero?| |leviCivitaSymbol| |normInvertible?| |negative?| + |lowerCase?| |upDateBranches| |iiacoth| |has?| |explimitedint| + |paraboloidal| |divisor| |setFormula!| |host| |tree| |limitedint| + |recip| |c06fpf| |balancedFactorisation| |firstDenom| |mapSolve| + |viewWriteDefault| |HenselLift| |fmecg| |fixPredicate| + |explicitlyFinite?| |principalIdeal| |OMgetFloat| |padecf| + |basisOfCenter| |call| |primes| |cAtanh| |precision| |Lazard| + |remainder| |top!| |genericRightNorm| |less?| |iifact| + |primitivePart!| |leftPower| |taylorRep| |factorList| |besselK| + |triangular?| |clipBoolean| |typeLists| |sturmSequence| |inspect| + |colorFunction| |hitherPlane| |OMReadError?| |prefixRagits| + |OMencodingSGML| |sortConstraints| |OMconnInDevice| |ratDenom| + |getButtonValue| |d01apf| |init| |reindex| |primlimitedint| |open| + |closed?| |zoom| |harmonic| |selectfirst| |fprindINFO| |iidsum| + |fillPascalTriangle| |readUInt16!| |li| |generator| + |createRandomElement| |e02daf| |subspace| |connectTo| + |squareFreeFactors| |imagI| |logIfCan| |useSingleFactorBound?| + |approxSqrt| |c06eaf| |integrate| |wordInGenerators| + |factorByRecursion| |repeatUntilLoop| |stFuncN| |tubePlot| |critM| + |laurentIfCan| |critMTonD1| |removeDuplicates!| |shuffle| |acscIfCan| + |externalList| |parents| |genericRightTraceForm| |extractProperty| + |internalIntegrate| |aLinear| |OMUnknownCD?| |operations| |singular?| + |directSum| |is?| |rightFactorCandidate| |coerceImages| |true| + |internalLastSubResultant| |f02agf| |degreeSubResultant| |mindeg| + |whileLoop| |cycle| |showAll?| |standardBasisOfCyclicSubmodule| + |round| |s19aaf| |enterInCache| |coordinates| |lifting| |normFactors| + |integerIfCan| |extendedResultant| |atom?| |rquo| |conjugate| |e02ddf| + |primitiveElement| |getCode| |mat| |tensorProduct| |groebnerFactorize| + |innerSolve| |kmax| |substring?| |d01akf| |stosePrepareSubResAlgo| + |extend| |orthonormalBasis| |modifyPoint| |roman| |partitions| + |headReduced?| |noLinearFactor?| + |dimensionOfIrreducibleRepresentation| |getSyntaxFormsFromFile| + |separateDegrees| |identification| |latex| |inverseLaplace| |dim| + |digit| |pointSizeDefault| |recolor| |dot| |cCoth| |suffix?| + |sumOfSquares| |df2st| |conditionP| |GospersMethod| |any| + |multiplyExponents| |linearlyDependent?| |symmetricProduct| + |frobenius| |root?| |test| |nilFactor| |branchPoint?| |real?| + |seriesSolve| |localReal?| |OMgetVariable| |numerator| |rational?| + |monomialIntegrate| |prefix?| |cschIfCan| |plus!| |delay| + |extractIndex| |setleft!| |e02bdf| |getBadValues| |gderiv| |minrank| + |odd?| |fortranReal| |iiatanh| |e02baf| |encodingDirectory| |f2df| + |setOfMinN| |selectPolynomials| |acosIfCan| |integral| + |diagonalProduct| |pureLex| |nodes| |stoseInvertible?reg| + |complexExpand| |eq| |maxint| |reducedDiscriminant| + |nativeModuleExtension| |dimensions| |OMputEndObject| |messagePrint| + |f02awf| |leftZero| |drawStyle| |d01bbf| |newLine| |iter| |heap| + |opeval| |prefix| |radicalEigenvector| |coerceListOfPairs| + |SturmHabichtMultiple| |cSech| |quadraticNorm| |elements| |more?| + |cycleElt| |integralMatrixAtInfinity| |lfunc| |radicalEigenvectors| + |s13adf| |alternatingGroup| |droot| |Is| |internalDecompose| + |resetVariableOrder| |ran| |minimalPolynomial| |intPatternMatch| + |bsolve| |nil?| |infix?| |stoseInvertibleSetsqfreg| |dioSolve| + |radicalRoots| |quasiComponent| |ode1| |incr| |mask| |mapExpon| + |mathieu23| |preprocess| |leftExactQuotient| |printInfo| + |characteristicSerie| |entries| |debug| |cap| |hex| |insertBottom!| + |members| |selectNonFiniteRoutines| |empty| |doubleResultant| + |symmetricDifference| |output| D |closedCurve?| |mapGen| + |moreAlgebraic?| |log2| |hi| |outputForm| |OMlistCDs| + |internalSubQuasiComponent?| |primeFactor| |external?| |shallowCopy| + |unknownEndian| |removeConstantTerm| |wholeRagits| |remove!| |implies| + |stripCommentsAndBlanks| |belong?| |rdHack1| |perspective| |totolex| + |failed?| |scalarMatrix| |exp| |argumentListOf| + |numberOfFractionalTerms| |null?| |listRepresentation| |graphs| |prod| + |setprevious!| |rdregime| |connect| |second| |splitConstant| + |doubleFloatFormat| |phiCoord| |partialNumerators| |f01qef| + |doubleDisc| |finiteBound| |bernoulli| |polarCoordinates| |third| + |startTable!| |SturmHabicht| |monicCompleteDecompose| |badValues| + |part?| |gcdPrimitive| |leftCharacteristicPolynomial| |perfectNthRoot| + |redPol| |scaleRoots| |erf| |orbits| |froot| |setClosed| |rightRank| + |reducedForm| |btwFact| |c06ecf| |taylorIfCan| |listConjugateBases| + |rootProduct| |UP2ifCan| |nil| |legendreP| |mapmult| |monicLeftDivide| + FG2F |hspace| |virtualDegree| |factorOfDegree| |unvectorise| + |generalizedContinuumHypothesisAssumed| |rightUnits| |solid?| + |optimize| |expenseOfEvaluationIF| |regularRepresentation| |rightOne| + |gradient| |comment| |back| |revert| |OMputAttr| |findBinding| + |alternating| |tRange| |resetAttributeButtons| |dualSignature| |dilog| + |halfExtendedResultant2| |whatInfinity| |perfectSqrt| |inR?| |print| + |defineProperty| |attributeData| |printTypes| |reduced?| |frst| + |divergence| |sin| |approximate| |c06fqf| |OMputVariable| |f01brf| + |returnTypeOf| |complex| |resolve| |qualifier| |isNot| + |toseInvertible?| |vector| |completeSmith| |rightRemainder| |infix| + |midpoints| |cos| |log| |buildSyntax| |removeSinhSq| |autoReduced?| + |Aleph| |linearAssociatedLog| |hclf| |integral?| |incrementBy| |sort!| + |differentiate| |tan| |magnitude| |maxColIndex| + |indiceSubResultantEuclidean| |iFTable| |countRealRoots| |birth| + |maxrank| |sylvesterSequence| |fortranLogical| |expand| + |useNagFunctions| |modularGcd| |cot| |bringDown| |getPickedPoints| + |twist| |normalForm| |rightMinimalPolynomial| |hessian| + |complexEigenvalues| |maxPoints| |filterWhile| |inGroundField?| + |sylvesterMatrix| |next| |sec| |multiplyCoefficients| |pdf2df| + |figureUnits| |roughBasicSet| |readLineIfCan!| |lintgcd| |pdct| + |primextintfrac| |reverseLex| |filterUntil| |asinhIfCan| |find| + |exprHasWeightCosWXorSinWX| |csc| |freeOf?| |generateIrredPoly| + |c05nbf| |merge!| |complexSolve| |binary| |RittWuCompare| |select| + |makeViewport3D| |idealSimplify| |shanksDiscLogAlgorithm| |safeFloor| + |reverse| |asin| |expenseOfEvaluation| |appendPoint| |makeTerm| + |minColIndex| |quickSort| |set| |linSolve| |antiAssociative?| + |setScreenResolution| |f01maf| |eyeDistance| |computeCycleLength| + |c05adf| |univariatePolynomials| |complexIntegrate| |euler| + |fintegrate| |f07adf| |approximants| |setPoly| |constant?| |rootSimp| + |eigenvalues| |genericRightMinimalPolynomial| |integer?| + |topFortranOutputStack| |c06gsf| |top| |systemCommand| + |partialFraction| |indiceSubResultant| |deref| |someBasis| |comp| + |ReduceOrder| |unaryFunction| |hasTopPredicate?| |lquo| |e04gcf| + |semiDiscriminantEuclidean| |indices| |mapUnivariateIfCan| + |changeThreshhold| |cyclicEqual?| |perfectNthPower?| |OMgetAtp| + |algDsolve| |unmakeSUP| |thetaCoord| |cycleRagits| |ratPoly| + |viewWriteAvailable| |binding| |isTimes| |antisymmetricTensors| |hcrf| + |setMaxPoints3D| |unitsColorDefault| |evenInfiniteProduct| + |pointColorPalette| |continue| |leadingExponent| |bounds| + |rationalPoint?| |makeRecord| |replaceKthElement| |rootRadius| + |pascalTriangle| |addPointLast| |viewPhiDefault| |viewpoint| + |ramified?| |category| |binaryFunction| |updateStatus!| |formula| + |factorsOfDegree| |clipParametric| |cylindrical| |shift| |atoms| + |direction| |exprToGenUPS| |square?| |leftRegularRepresentation| + |list| |polCase| |pole?| |domain| |position!| |identityMatrix| + |e01bhf| |numberOfComposites| |deleteRoutine!| |initial| |car| + |omError| |options| |simpleBounds?| |d01fcf| |package| |cyclic?| + |fill!| |groebSolve| |s17akf| |basisOfCommutingElements| + |outputAsScript| |imagE| |powerAssociative?| |cdr| |flexible?| + |nextLatticePermutation| |LazardQuotient2| |An| |convergents| + |branchIfCan| |nor| |fortranCarriageReturn| |extractClosed| |tab1| + |show| |setDifference| |symmetricTensors| |property| |collect| + |cycleSplit!| |nrows| UP2UTS |arbitrary| |eq?| |simplifyExp| + |multiEuclidean| |addPoint| |trim| |viewport3D| |complexLimit| + |setIntersection| |string| |cardinality| |ncols| + |createLowComplexityNormalBasis| |updatD| |debug3D| |complexZeros| + |qelt| |eigenvector| |rationalPoints| |delta| |trace| |setUnion| + |invertible?| |intChoose| |weierstrass| |putColorInfo| |linGenPos| + |rule| |OMputBVar| |optional?| |qsetelt| |linearAssociatedExp| + |forLoop| |jacobiIdentity?| |apply| |cyclicEntries| |postfix| + |expandLog| |units| |subSet| |insertMatch| |f01qcf| |coth2tanh| + |setleaves!| |xRange| |trapezoidalo| |acothIfCan| |leaf?| |increase| + |linearPolynomials| |argscript| |subCase?| |palgRDE| |f04axf| |yRange| + |prinshINFO| |extension| |size| |makeUnit| RF2UTS |lookupFunction| + |tValues| |getMultiplicationMatrix| |associator| |pol| |d01anf| |acos| + |zRange| |flexibleArray| |setVariableOrder| |safeCeiling| |aQuadratic| + |map!| |leftFactor| |lexTriangular| |insert!| |symmetricPower| |push!| + |pToHdmp| |atan| |cot2tan| |particularSolution| |enterPointData| + |getOperator| |qsetelt!| |plotPolar| |traceMatrix| |acoshIfCan| + |OMlistSymbols| |degree| |qinterval| |acot| |coercePreimagesImages| + |code| |void| |first| |coHeight| |scalarTypeOf| |areEquivalent?| + |littleEndian| |ceiling| |red| |move| |identity| |asec| |lambda| + |rest| |sup| |f02xef| |rotate| |sparsityIF| |goto| |makeEq| + |mappingAst| |s18def| |box| |acsc| |rewriteSetWithReduction| + |substitute| |singRicDE| |stirling2| |imagi| |mapMatrixIfCan| + |degreePartition| |lflimitedint| |OMputEndAtp| |firstUncouplingMatrix| + |lastSubResultant| |sinh| |removeDuplicates| |determinant| |isMult| + |sec2cos| |separate| |biRank| |s21bcf| |pile| |stopTableGcd!| |cycles| + |cosh| |say| |viewDefaults| |leftOne| |univcase| |separateFactors| + |basisOfLeftNucleus| |cCsch| |primPartElseUnitCanonical!| + |resultantReduitEuclidean| |numberOfComponents| |tanh| |acsch| |dom| + |kroneckerDelta| |subtractIfCan| |countRealRootsMultiple| |d02raf| + |iisqrt3| |primaryDecomp| |outputList| |rootBound| |deepestTail| + |fortranLinkerArgs| |coth| |hasPredicate?| |doublyTransitive?| + |mightHaveRoots| |randnum| |newReduc| |LyndonCoordinates| |gcdcofact| + |infieldint| |rightExactQuotient| |sech| |result| |dn| |exists?| + |trunc| |qroot| |cup| |semiSubResultantGcdEuclidean2| |OMgetBVar| + |changeMeasure| |csch| |csc2sin| |augment| |parseString| + |compiledFunction| |showTheRoutinesTable| |rootPower| |bitLength| + |rowEchelonLocal| |generic?| |Beta| |denomRicDE| |asinh| |tanAn| + |mainKernel| |reset| |algintegrate| |cos2sec| |bothWays| |s01eaf| + |removeSquaresIfCan| |collectQuasiMonic| |cycleTail| |setMinPoints3D| + |acosh| |specialTrigs| |consnewpol| |minus!| |title| |lazyVariations| + |generalizedContinuumHypothesisAssumed?| |trace2PowMod| |computeInt| + |rightAlternative?| |closeComponent| |meshPar2Var| |atanh| |e01daf| + |write| |B1solve| |vectorise| |differentialVariables| + |bipolarCylindrical| |rightNorm| |bernoulliB| |numFunEvals3D| + |listBranches| |stoseInvertibleSetreg| |acoth| |rightZero| |save| + |contours| |exportedOperators| |cyclicGroup| |maxIndex| |rotatez| + |keys| |squareFreeLexTriangular| |randomR| |choosemon| |removeSinSq| + |asech| |pseudoQuotient| |evenlambert| |principalAncestors| |e| + |sumSquares| |readLine!| |e01bgf| |lfextlimint| + |solveLinearPolynomialEquation| |s17ahf| |discriminant| |orbit| |nthr| + |OMputEndError| |hash| |minGbasis| |headReduce| |graphCurves| + |pointLists| |HermiteIntegrate| |c06gqf| |lazyIrreducibleFactors| + |quotedOperators| |e02def| |multiple| |count| |generalizedInverse| + |iomode| |polygon| |besselI| |applyQuote| |reducedSystem| + |plenaryPower| |satisfy?| |halfExtendedSubResultantGcd2| |rootOf| + |recoverAfterFail| |realEigenvectors| |iiacsch| |moebiusMu| |powern| + |normalDeriv| |divide| |deepExpand| |errorKind| |taylorQuoByVar| + |cosh2sech| |iiGamma| |Ei| |nothing| |isExpt| |generate| |interReduce| + |varList| |rootsOf| |stoseInternalLastSubResultant| |f02wef| + |getExplanations| |escape| |pquo| |s17acf| |finiteBasis| |csch2sinh| + |palginfieldint| |createPrimitiveElement| |redPo| |symbol?| |pow| + |pushuconst| |youngGroup| |ruleset| |cCot| |completeEval| |quoted?| + |s21bdf| |setProperty!| |setEmpty!| |quadraticForm| + |removeSuperfluousQuasiComponents| |extendedIntegrate| + |solveLinearlyOverQ| |lazyPseudoQuotient| |flagFactor| |predicates| + |create3Space| |level| |parabolic| |cAcot| |generalPosition| + |infinite?| |d03edf| |atrapezoidal| |acotIfCan| |bubbleSort!| |terms| + |ref| |readInt16!| |clearTheIFTable| |finite?| |conjugates| |retract| + |suchThat| |transpose| |curve?| |rotatex| |s17ajf| |elementary| + |power!| |nextPrime| |numericalIntegration| |presub| |width| + |gcdPolynomial| |f04jgf| |nonSingularModel| |lyndon| |torsionIfCan| + |aCubic| |eulerPhi| |quasiRegular?| |factor1| |s17def| |RemainderList| + |symmetricSquare| |const| |extractBottom!| |matrix| |lex| |sqfree| + |points| |exprHasAlgebraicWeight| |tanNa| |numericIfCan| + |leftScalarTimes!| |getMatch| |curry| |oneDimensionalArray| + |setAdaptive3D| |tanSum| |diophantineSystem| |monicRightFactorIfCan| + |isPlus| |genus| |cCosh| |setchildren!| |decrease| |sn| |elseBranch| + |calcRanges| |e02bef| |cyclicParents| |rk4qc| |indicialEquations| + |OMputEndBind| |optpair| |exp1| |recur| |OMsend| |quadratic| + |algebraic?| |univariateSolve| |f04atf| |imagJ| |element?| + |removeIrreducibleRedundantFactors| |fortranInteger| |isPower| + |bezoutMatrix| |closedCurve| |categories| |clipWithRanges| |iicoth| + |queue| |localUnquote| |socf2socdf| |callForm?| |triangSolve| + |euclideanNormalForm| |critT| |sub| |optional| |d02cjf| + |noncommutativeJordanAlgebra?| |PDESolve| |getMultiplicationTable| + |plus| |iflist2Result| |cAsinh| |bumptab1| |denomLODE| |writeInt8!| + |superscript| |character?| |parametersOf| |shiftRoots| + |loadNativeModule| |cSec| |c06gcf| |isOp| |hyperelliptic| |split!| + |LowTriBddDenomInv| |eulerE| |OMgetAttr| |setImagSteps| |e02ahf| + |hasSolution?| |pointData| |simpsono| |lagrange| |s19adf| |mathieu24| + |symbolTableOf| |shellSort| |sum| |showTheSymbolTable| |compound?| + |oddlambert| |s14baf| |asechIfCan| |equality| |OMgetType| |tan2cot| + |physicalLength| |times| |palglimint| |cTan| |e02gaf| |integers| + |e02aef| |overbar| |complement| |center| |safetyMargin| + |compactFraction| |ODESolve| |infLex?| |firstNumer| |mvar| |exprToXXP| + |overlap| |wreath| |makeFloatFunction| |e02akf| SEGMENT + |numberOfIrreduciblePoly| |createMultiplicationMatrix| |collectUpper| + |discriminantEuclidean| |green| |expr| |seriesToOutputForm| |rotate!| + |e04naf| |over| |triangularSystems| |mainCoefficients| |inHallBasis?| + |nextPartition| |polygon?| |setCondition!| |iiasin| + |tubePointsDefault| |numberOfVariables| |palgextint| |s19acf| |xn| + |monom| |node| |nextNormalPoly| |domainTemplate| |outputFixed| + |changeName| |ode| |totalDifferential| |functorData| |pointPlot| + |adaptive| |laguerre| |endOfFile?| |space| |cAcsch| |maxdeg| |rspace| + |rur| |sequence| |case| |functionIsOscillatory| |linearPart| + |variable| |edf2ef| |SturmHabichtSequence| |minPoints| + |degreeSubResultantEuclidean| |internal?| |common| |vspace| |e04mbf| + |Zero| |euclideanSize| |kovacic| |iterators| |stirling1| |palgLODE| + |lprop| |dihedral| |integralRepresents| |doubleComplex?| |One| + |splitDenominator| |arguments| |alternative?| + |removeRoughlyRedundantFactorsInPols| |chainSubResultants| + |radicalEigenvalues| |rightTrace| |henselFact| |limit| |s17agf| + |drawCurves| |fracPart| |mpsode| |binaryTournament| |divisorCascade| + |algebraicVariables| |vertConcat| |knownInfBasis| |child?| |concat| + |cyclic| |returnType!| |irreducibleFactors| |minset| |rationalIfCan| + |rightRecip| |printCode| |rename| |nil| |infinite| |arbitraryExponent| + |approximate| |complex| |shallowMutable| |canonical| |noetherian| + |central| |partiallyOrderedSet| |arbitraryPrecision| + |canonicalsClosed| |noZeroDivisors| |rightUnitary| |leftUnitary| + |additiveValuation| |unitsKnown| |canonicalUnitNormal| + |multiplicativeValuation| |finiteAggregate| |shallowlyMutable| + |commutative|)
\ No newline at end of file diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase index fb3588b7..da9de60f 100644 --- a/src/share/algebra/interp.daase +++ b/src/share/algebra/interp.daase @@ -1,5319 +1,5319 @@ -(3221100 . 3454219043) -((-2644 (((-112) (-1 (-112) |#2| |#2|) $) 87) (((-112) $) NIL)) (-1944 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-3923 ((|#2| $ (-566) |#2|) NIL) ((|#2| $ (-1231 (-566)) |#2|) 44)) (-3413 (($ $) 81)) (-1676 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $) 49)) (-4000 (((-566) (-1 (-112) |#2|) $) 27) (((-566) |#2| $) NIL) (((-566) |#2| $ (-566)) 97)) (-3979 (((-644 |#2|) $) 13)) (-3298 (($ (-1 (-112) |#2| |#2|) $ $) 64) (($ $ $) NIL)) (-2908 (($ (-1 |#2| |#2|) $) 37)) (-1301 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 60)) (-4276 (($ |#2| $ (-566)) NIL) (($ $ $ (-566)) 67)) (-2006 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29)) (-2692 (((-112) (-1 (-112) |#2|) $) 23)) (-4390 ((|#2| $ (-566) |#2|) NIL) ((|#2| $ (-566)) NIL) (($ $ (-1231 (-566))) 66)) (-2187 (($ $ (-566)) 76) (($ $ (-1231 (-566))) 75)) (-4045 (((-771) (-1 (-112) |#2|) $) 34) (((-771) |#2| $) NIL)) (-1297 (($ $ $ (-566)) 69)) (-3940 (($ $) 68)) (-3796 (($ (-644 |#2|)) 73)) (-3721 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 88) (($ (-644 $)) 86)) (-3783 (((-862) $) 93)) (-1894 (((-112) (-1 (-112) |#2|) $) 22)) (-2947 (((-112) $ $) 96)) (-2969 (((-112) $ $) 100))) -(((-18 |#1| |#2|) (-10 -8 (-15 -2947 ((-112) |#1| |#1|)) (-15 -3783 ((-862) |#1|)) (-15 -2969 ((-112) |#1| |#1|)) (-15 -1944 (|#1| |#1|)) (-15 -1944 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3413 (|#1| |#1|)) (-15 -1297 (|#1| |#1| |#1| (-566))) (-15 -2644 ((-112) |#1|)) (-15 -3298 (|#1| |#1| |#1|)) (-15 -4000 ((-566) |#2| |#1| (-566))) (-15 -4000 ((-566) |#2| |#1|)) (-15 -4000 ((-566) (-1 (-112) |#2|) |#1|)) (-15 -2644 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3298 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3923 (|#2| |#1| (-1231 (-566)) |#2|)) (-15 -4276 (|#1| |#1| |#1| (-566))) (-15 -4276 (|#1| |#2| |#1| (-566))) (-15 -2187 (|#1| |#1| (-1231 (-566)))) (-15 -2187 (|#1| |#1| (-566))) (-15 -4390 (|#1| |#1| (-1231 (-566)))) (-15 -1301 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3721 (|#1| (-644 |#1|))) (-15 -3721 (|#1| |#1| |#1|)) (-15 -3721 (|#1| |#2| |#1|)) (-15 -3721 (|#1| |#1| |#2|)) (-15 -3796 (|#1| (-644 |#2|))) (-15 -2006 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1676 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1676 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1676 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4390 (|#2| |#1| (-566))) (-15 -4390 (|#2| |#1| (-566) |#2|)) (-15 -3923 (|#2| |#1| (-566) |#2|)) (-15 -4045 ((-771) |#2| |#1|)) (-15 -3979 ((-644 |#2|) |#1|)) (-15 -4045 ((-771) (-1 (-112) |#2|) |#1|)) (-15 -2692 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1894 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2908 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1301 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3940 (|#1| |#1|))) (-19 |#2|) (-1214)) (T -18)) +(3221178 . 3459379730) +((-3054 (((-112) (-1 (-112) |#2| |#2|) $) 87) (((-112) $) NIL)) (-3628 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-1456 ((|#2| $ (-566) |#2|) NIL) ((|#2| $ (-1231 (-566)) |#2|) 44)) (-3166 (($ $) 81)) (-2873 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $) 49)) (-1569 (((-566) (-1 (-112) |#2|) $) 27) (((-566) |#2| $) NIL) (((-566) |#2| $ (-566)) 97)) (-1683 (((-644 |#2|) $) 13)) (-2696 (($ (-1 (-112) |#2| |#2|) $ $) 64) (($ $ $) NIL)) (-3885 (($ (-1 |#2| |#2|) $) 37)) (-2319 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 60)) (-1859 (($ |#2| $ (-566)) NIL) (($ $ $ (-566)) 67)) (-3668 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29)) (-2823 (((-112) (-1 (-112) |#2|) $) 23)) (-1309 ((|#2| $ (-566) |#2|) NIL) ((|#2| $ (-566)) NIL) (($ $ (-1231 (-566))) 66)) (-2166 (($ $ (-566)) 76) (($ $ (-1231 (-566))) 75)) (-4083 (((-771) (-1 (-112) |#2|) $) 34) (((-771) |#2| $) NIL)) (-2661 (($ $ $ (-566)) 69)) (-1480 (($ $) 68)) (-1340 (($ (-644 |#2|)) 73)) (-4386 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 88) (($ (-644 $)) 86)) (-3152 (((-862) $) 93)) (-2210 (((-112) (-1 (-112) |#2|) $) 22)) (-2914 (((-112) $ $) 96)) (-2935 (((-112) $ $) 100))) +(((-18 |#1| |#2|) (-10 -8 (-15 -2914 ((-112) |#1| |#1|)) (-15 -3152 ((-862) |#1|)) (-15 -2935 ((-112) |#1| |#1|)) (-15 -3628 (|#1| |#1|)) (-15 -3628 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3166 (|#1| |#1|)) (-15 -2661 (|#1| |#1| |#1| (-566))) (-15 -3054 ((-112) |#1|)) (-15 -2696 (|#1| |#1| |#1|)) (-15 -1569 ((-566) |#2| |#1| (-566))) (-15 -1569 ((-566) |#2| |#1|)) (-15 -1569 ((-566) (-1 (-112) |#2|) |#1|)) (-15 -3054 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2696 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1456 (|#2| |#1| (-1231 (-566)) |#2|)) (-15 -1859 (|#1| |#1| |#1| (-566))) (-15 -1859 (|#1| |#2| |#1| (-566))) (-15 -2166 (|#1| |#1| (-1231 (-566)))) (-15 -2166 (|#1| |#1| (-566))) (-15 -1309 (|#1| |#1| (-1231 (-566)))) (-15 -2319 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4386 (|#1| (-644 |#1|))) (-15 -4386 (|#1| |#1| |#1|)) (-15 -4386 (|#1| |#2| |#1|)) (-15 -4386 (|#1| |#1| |#2|)) (-15 -1340 (|#1| (-644 |#2|))) (-15 -3668 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2873 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2873 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2873 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1309 (|#2| |#1| (-566))) (-15 -1309 (|#2| |#1| (-566) |#2|)) (-15 -1456 (|#2| |#1| (-566) |#2|)) (-15 -4083 ((-771) |#2| |#1|)) (-15 -1683 ((-644 |#2|) |#1|)) (-15 -4083 ((-771) (-1 (-112) |#2|) |#1|)) (-15 -2823 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2210 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3885 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2319 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1480 (|#1| |#1|))) (-19 |#2|) (-1214)) (T -18)) NIL -(-10 -8 (-15 -2947 ((-112) |#1| |#1|)) (-15 -3783 ((-862) |#1|)) (-15 -2969 ((-112) |#1| |#1|)) (-15 -1944 (|#1| |#1|)) (-15 -1944 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3413 (|#1| |#1|)) (-15 -1297 (|#1| |#1| |#1| (-566))) (-15 -2644 ((-112) |#1|)) (-15 -3298 (|#1| |#1| |#1|)) (-15 -4000 ((-566) |#2| |#1| (-566))) (-15 -4000 ((-566) |#2| |#1|)) (-15 -4000 ((-566) (-1 (-112) |#2|) |#1|)) (-15 -2644 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3298 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3923 (|#2| |#1| (-1231 (-566)) |#2|)) (-15 -4276 (|#1| |#1| |#1| (-566))) (-15 -4276 (|#1| |#2| |#1| (-566))) (-15 -2187 (|#1| |#1| (-1231 (-566)))) (-15 -2187 (|#1| |#1| (-566))) (-15 -4390 (|#1| |#1| (-1231 (-566)))) (-15 -1301 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3721 (|#1| (-644 |#1|))) (-15 -3721 (|#1| |#1| |#1|)) (-15 -3721 (|#1| |#2| |#1|)) (-15 -3721 (|#1| |#1| |#2|)) (-15 -3796 (|#1| (-644 |#2|))) (-15 -2006 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1676 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1676 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1676 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4390 (|#2| |#1| (-566))) (-15 -4390 (|#2| |#1| (-566) |#2|)) (-15 -3923 (|#2| |#1| (-566) |#2|)) (-15 -4045 ((-771) |#2| |#1|)) (-15 -3979 ((-644 |#2|) |#1|)) (-15 -4045 ((-771) (-1 (-112) |#2|) |#1|)) (-15 -2692 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1894 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2908 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1301 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3940 (|#1| |#1|))) -((-3007 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-3734 (((-1269) $ (-566) (-566)) 41 (|has| $ (-6 -4415)))) (-2644 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-850)))) (-1944 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4415))) (($ $) 89 (-12 (|has| |#1| (-850)) (|has| $ (-6 -4415))))) (-1510 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-850)))) (-2256 (((-112) $ (-771)) 8)) (-3923 ((|#1| $ (-566) |#1|) 53 (|has| $ (-6 -4415))) ((|#1| $ (-1231 (-566)) |#1|) 59 (|has| $ (-6 -4415)))) (-2701 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4414)))) (-3012 (($) 7 T CONST)) (-3413 (($ $) 91 (|has| $ (-6 -4415)))) (-1377 (($ $) 101)) (-2031 (($ $) 79 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2665 (($ |#1| $) 78 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4414)))) (-1676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4414)))) (-2920 ((|#1| $ (-566) |#1|) 54 (|has| $ (-6 -4415)))) (-2855 ((|#1| $ (-566)) 52)) (-4000 (((-566) (-1 (-112) |#1|) $) 98) (((-566) |#1| $) 97 (|has| |#1| (-1099))) (((-566) |#1| $ (-566)) 96 (|has| |#1| (-1099)))) (-3979 (((-644 |#1|) $) 31 (|has| $ (-6 -4414)))) (-4265 (($ (-771) |#1|) 70)) (-2404 (((-112) $ (-771)) 9)) (-3854 (((-566) $) 44 (|has| (-566) (-850)))) (-2097 (($ $ $) 88 (|has| |#1| (-850)))) (-3298 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-850)))) (-2329 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2712 (((-566) $) 45 (|has| (-566) (-850)))) (-3962 (($ $ $) 87 (|has| |#1| (-850)))) (-2908 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2603 (((-112) $ (-771)) 10)) (-4117 (((-1157) $) 22 (|has| |#1| (-1099)))) (-4276 (($ |#1| $ (-566)) 61) (($ $ $ (-566)) 60)) (-4074 (((-644 (-566)) $) 47)) (-3792 (((-112) (-566) $) 48)) (-4035 (((-1119) $) 21 (|has| |#1| (-1099)))) (-1998 ((|#1| $) 43 (|has| (-566) (-850)))) (-2006 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-4030 (($ $ |#1|) 42 (|has| $ (-6 -4415)))) (-2692 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) 14)) (-4156 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2993 (((-644 |#1|) $) 49)) (-3467 (((-112) $) 11)) (-1494 (($) 12)) (-4390 ((|#1| $ (-566) |#1|) 51) ((|#1| $ (-566)) 50) (($ $ (-1231 (-566))) 64)) (-2187 (($ $ (-566)) 63) (($ $ (-1231 (-566))) 62)) (-4045 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-1297 (($ $ $ (-566)) 92 (|has| $ (-6 -4415)))) (-3940 (($ $) 13)) (-1348 (((-538) $) 80 (|has| |#1| (-614 (-538))))) (-3796 (($ (-644 |#1|)) 71)) (-3721 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-644 $)) 66)) (-3783 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-3117 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-1894 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-3009 (((-112) $ $) 85 (|has| |#1| (-850)))) (-2984 (((-112) $ $) 84 (|has| |#1| (-850)))) (-2947 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-2995 (((-112) $ $) 86 (|has| |#1| (-850)))) (-2969 (((-112) $ $) 83 (|has| |#1| (-850)))) (-3018 (((-771) $) 6 (|has| $ (-6 -4414))))) +(-10 -8 (-15 -2914 ((-112) |#1| |#1|)) (-15 -3152 ((-862) |#1|)) (-15 -2935 ((-112) |#1| |#1|)) (-15 -3628 (|#1| |#1|)) (-15 -3628 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3166 (|#1| |#1|)) (-15 -2661 (|#1| |#1| |#1| (-566))) (-15 -3054 ((-112) |#1|)) (-15 -2696 (|#1| |#1| |#1|)) (-15 -1569 ((-566) |#2| |#1| (-566))) (-15 -1569 ((-566) |#2| |#1|)) (-15 -1569 ((-566) (-1 (-112) |#2|) |#1|)) (-15 -3054 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2696 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1456 (|#2| |#1| (-1231 (-566)) |#2|)) (-15 -1859 (|#1| |#1| |#1| (-566))) (-15 -1859 (|#1| |#2| |#1| (-566))) (-15 -2166 (|#1| |#1| (-1231 (-566)))) (-15 -2166 (|#1| |#1| (-566))) (-15 -1309 (|#1| |#1| (-1231 (-566)))) (-15 -2319 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4386 (|#1| (-644 |#1|))) (-15 -4386 (|#1| |#1| |#1|)) (-15 -4386 (|#1| |#2| |#1|)) (-15 -4386 (|#1| |#1| |#2|)) (-15 -1340 (|#1| (-644 |#2|))) (-15 -3668 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2873 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2873 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2873 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1309 (|#2| |#1| (-566))) (-15 -1309 (|#2| |#1| (-566) |#2|)) (-15 -1456 (|#2| |#1| (-566) |#2|)) (-15 -4083 ((-771) |#2| |#1|)) (-15 -1683 ((-644 |#2|) |#1|)) (-15 -4083 ((-771) (-1 (-112) |#2|) |#1|)) (-15 -2823 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2210 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3885 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2319 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1480 (|#1| |#1|))) +((-2988 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-1944 (((-1269) $ (-566) (-566)) 41 (|has| $ (-6 -4415)))) (-3054 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-850)))) (-3628 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4415))) (($ $) 89 (-12 (|has| |#1| (-850)) (|has| $ (-6 -4415))))) (-2671 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-850)))) (-1504 (((-112) $ (-771)) 8)) (-1456 ((|#1| $ (-566) |#1|) 53 (|has| $ (-6 -4415))) ((|#1| $ (-1231 (-566)) |#1|) 59 (|has| $ (-6 -4415)))) (-3678 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4414)))) (-2463 (($) 7 T CONST)) (-3166 (($ $) 91 (|has| $ (-6 -4415)))) (-3683 (($ $) 101)) (-3942 (($ $) 79 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2622 (($ |#1| $) 78 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4414)))) (-2873 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4414)))) (-3897 ((|#1| $ (-566) |#1|) 54 (|has| $ (-6 -4415)))) (-3829 ((|#1| $ (-566)) 52)) (-1569 (((-566) (-1 (-112) |#1|) $) 98) (((-566) |#1| $) 97 (|has| |#1| (-1099))) (((-566) |#1| $ (-566)) 96 (|has| |#1| (-1099)))) (-1683 (((-644 |#1|) $) 31 (|has| $ (-6 -4414)))) (-1860 (($ (-771) |#1|) 70)) (-3456 (((-112) $ (-771)) 9)) (-2296 (((-566) $) 44 (|has| (-566) (-850)))) (-1478 (($ $ $) 88 (|has| |#1| (-850)))) (-2696 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-850)))) (-3491 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-4050 (((-566) $) 45 (|has| (-566) (-850)))) (-2599 (($ $ $) 87 (|has| |#1| (-850)))) (-3885 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3267 (((-112) $ (-771)) 10)) (-3380 (((-1157) $) 22 (|has| |#1| (-1099)))) (-1859 (($ |#1| $ (-566)) 61) (($ $ $ (-566)) 60)) (-3725 (((-644 (-566)) $) 47)) (-1644 (((-112) (-566) $) 48)) (-4072 (((-1119) $) 21 (|has| |#1| (-1099)))) (-3908 ((|#1| $) 43 (|has| (-566) (-850)))) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-3787 (($ $ |#1|) 42 (|has| $ (-6 -4415)))) (-2823 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) 14)) (-2847 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3486 (((-644 |#1|) $) 49)) (-2872 (((-112) $) 11)) (-3493 (($) 12)) (-1309 ((|#1| $ (-566) |#1|) 51) ((|#1| $ (-566)) 50) (($ $ (-1231 (-566))) 64)) (-2166 (($ $ (-566)) 63) (($ $ (-1231 (-566))) 62)) (-4083 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2661 (($ $ $ (-566)) 92 (|has| $ (-6 -4415)))) (-1480 (($ $) 13)) (-2376 (((-538) $) 80 (|has| |#1| (-614 (-538))))) (-1340 (($ (-644 |#1|)) 71)) (-4386 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-644 $)) 66)) (-3152 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-3044 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-2210 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-2968 (((-112) $ $) 85 (|has| |#1| (-850)))) (-2946 (((-112) $ $) 84 (|has| |#1| (-850)))) (-2914 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-2956 (((-112) $ $) 86 (|has| |#1| (-850)))) (-2935 (((-112) $ $) 83 (|has| |#1| (-850)))) (-3000 (((-771) $) 6 (|has| $ (-6 -4414))))) (((-19 |#1|) (-140) (-1214)) (T -19)) NIL (-13 (-375 |t#1|) (-10 -7 (-6 -4415))) -(((-34) . T) ((-102) -2809 (|has| |#1| (-1099)) (|has| |#1| (-850))) ((-613 (-862)) -2809 (|has| |#1| (-1099)) (|has| |#1| (-850)) (|has| |#1| (-613 (-862)))) ((-151 |#1|) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-287 #0=(-566) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-375 |#1|) . T) ((-491 |#1|) . T) ((-604 #0# |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-651 |#1|) . T) ((-850) |has| |#1| (-850)) ((-1099) -2809 (|has| |#1| (-1099)) (|has| |#1| (-850))) ((-1214) . T)) -((-4175 (((-3 $ "failed") $ $) 12)) (-3053 (($ $) NIL) (($ $ $) 9)) (* (($ (-921) $) NIL) (($ (-771) $) 16) (($ (-566) $) 26))) -(((-20 |#1|) (-10 -8 (-15 -3053 (|#1| |#1| |#1|)) (-15 -3053 (|#1| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 -4175 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-921) |#1|))) (-21)) (T -20)) +(((-34) . T) ((-102) -2768 (|has| |#1| (-1099)) (|has| |#1| (-850))) ((-613 (-862)) -2768 (|has| |#1| (-1099)) (|has| |#1| (-850)) (|has| |#1| (-613 (-862)))) ((-151 |#1|) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-287 #0=(-566) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-375 |#1|) . T) ((-491 |#1|) . T) ((-604 #0# |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-651 |#1|) . T) ((-850) |has| |#1| (-850)) ((-1099) -2768 (|has| |#1| (-1099)) (|has| |#1| (-850))) ((-1214) . T)) +((-3967 (((-3 $ "failed") $ $) 12)) (-3012 (($ $) NIL) (($ $ $) 9)) (* (($ (-921) $) NIL) (($ (-771) $) 16) (($ (-566) $) 26))) +(((-20 |#1|) (-10 -8 (-15 -3012 (|#1| |#1| |#1|)) (-15 -3012 (|#1| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 -3967 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-921) |#1|))) (-21)) (T -20)) NIL -(-10 -8 (-15 -3053 (|#1| |#1| |#1|)) (-15 -3053 (|#1| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 -4175 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-921) |#1|))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-4175 (((-3 $ "failed") $ $) 20)) (-3012 (($) 18 T CONST)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3783 (((-862) $) 12)) (-3117 (((-112) $ $) 9)) (-2479 (($) 19 T CONST)) (-2947 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24))) +(-10 -8 (-15 -3012 (|#1| |#1| |#1|)) (-15 -3012 (|#1| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 -3967 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-921) |#1|))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-3967 (((-3 $ "failed") $ $) 20)) (-2463 (($) 18 T CONST)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3152 (((-862) $) 12)) (-3044 (((-112) $ $) 9)) (-4356 (($) 19 T CONST)) (-2914 (((-112) $ $) 6)) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24))) (((-21) (-140)) (T -21)) -((-3053 (*1 *1 *1) (-4 *1 (-21))) (-3053 (*1 *1 *1 *1) (-4 *1 (-21)))) -(-13 (-131) (-646 (-566)) (-10 -8 (-15 -3053 ($ $)) (-15 -3053 ($ $ $)))) +((-3012 (*1 *1 *1) (-4 *1 (-21))) (-3012 (*1 *1 *1 *1) (-4 *1 (-21)))) +(-13 (-131) (-646 (-566)) (-10 -8 (-15 -3012 ($ $)) (-15 -3012 ($ $ $)))) (((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-1099) . T)) -((-1788 (((-112) $) 10)) (-3012 (($) 15)) (* (($ (-921) $) 14) (($ (-771) $) 19))) -(((-22 |#1|) (-10 -8 (-15 * (|#1| (-771) |#1|)) (-15 -1788 ((-112) |#1|)) (-15 -3012 (|#1|)) (-15 * (|#1| (-921) |#1|))) (-23)) (T -22)) +((-3230 (((-112) $) 10)) (-2463 (($) 15)) (* (($ (-921) $) 14) (($ (-771) $) 19))) +(((-22 |#1|) (-10 -8 (-15 * (|#1| (-771) |#1|)) (-15 -3230 ((-112) |#1|)) (-15 -2463 (|#1|)) (-15 * (|#1| (-921) |#1|))) (-23)) (T -22)) NIL -(-10 -8 (-15 * (|#1| (-771) |#1|)) (-15 -1788 ((-112) |#1|)) (-15 -3012 (|#1|)) (-15 * (|#1| (-921) |#1|))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-3012 (($) 18 T CONST)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3783 (((-862) $) 12)) (-3117 (((-112) $ $) 9)) (-2479 (($) 19 T CONST)) (-2947 (((-112) $ $) 6)) (-3041 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16))) +(-10 -8 (-15 * (|#1| (-771) |#1|)) (-15 -3230 ((-112) |#1|)) (-15 -2463 (|#1|)) (-15 * (|#1| (-921) |#1|))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-2463 (($) 18 T CONST)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3152 (((-862) $) 12)) (-3044 (((-112) $ $) 9)) (-4356 (($) 19 T CONST)) (-2914 (((-112) $ $) 6)) (-3002 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16))) (((-23) (-140)) (T -23)) -((-2479 (*1 *1) (-4 *1 (-23))) (-3012 (*1 *1) (-4 *1 (-23))) (-1788 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-771))))) -(-13 (-25) (-10 -8 (-15 (-2479) ($) -3704) (-15 -3012 ($) -3704) (-15 -1788 ((-112) $)) (-15 * ($ (-771) $)))) +((-4356 (*1 *1) (-4 *1 (-23))) (-2463 (*1 *1) (-4 *1 (-23))) (-3230 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-771))))) +(-13 (-25) (-10 -8 (-15 (-4356) ($) -1623) (-15 -2463 ($) -1623) (-15 -3230 ((-112) $)) (-15 * ($ (-771) $)))) (((-25) . T) ((-102) . T) ((-613 (-862)) . T) ((-1099) . T)) ((* (($ (-921) $) 10))) (((-24 |#1|) (-10 -8 (-15 * (|#1| (-921) |#1|))) (-25)) (T -24)) NIL (-10 -8 (-15 * (|#1| (-921) |#1|))) -((-3007 (((-112) $ $) 7)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3783 (((-862) $) 12)) (-3117 (((-112) $ $) 9)) (-2947 (((-112) $ $) 6)) (-3041 (($ $ $) 15)) (* (($ (-921) $) 14))) +((-2988 (((-112) $ $) 7)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3152 (((-862) $) 12)) (-3044 (((-112) $ $) 9)) (-2914 (((-112) $ $) 6)) (-3002 (($ $ $) 15)) (* (($ (-921) $) 14))) (((-25) (-140)) (T -25)) -((-3041 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-921))))) -(-13 (-1099) (-10 -8 (-15 -3041 ($ $ $)) (-15 * ($ (-921) $)))) +((-3002 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-921))))) +(-13 (-1099) (-10 -8 (-15 -3002 ($ $ $)) (-15 * ($ (-921) $)))) (((-102) . T) ((-613 (-862)) . T) ((-1099) . T)) -((-1702 (((-644 $) (-952 $)) 32) (((-644 $) (-1171 $)) 16) (((-644 $) (-1171 $) (-1175)) 20)) (-3710 (($ (-952 $)) 30) (($ (-1171 $)) 11) (($ (-1171 $) (-1175)) 60)) (-1422 (((-644 $) (-952 $)) 33) (((-644 $) (-1171 $)) 18) (((-644 $) (-1171 $) (-1175)) 19)) (-3912 (($ (-952 $)) 31) (($ (-1171 $)) 13) (($ (-1171 $) (-1175)) NIL))) -(((-26 |#1|) (-10 -8 (-15 -1702 ((-644 |#1|) (-1171 |#1|) (-1175))) (-15 -1702 ((-644 |#1|) (-1171 |#1|))) (-15 -1702 ((-644 |#1|) (-952 |#1|))) (-15 -3710 (|#1| (-1171 |#1|) (-1175))) (-15 -3710 (|#1| (-1171 |#1|))) (-15 -3710 (|#1| (-952 |#1|))) (-15 -1422 ((-644 |#1|) (-1171 |#1|) (-1175))) (-15 -1422 ((-644 |#1|) (-1171 |#1|))) (-15 -1422 ((-644 |#1|) (-952 |#1|))) (-15 -3912 (|#1| (-1171 |#1|) (-1175))) (-15 -3912 (|#1| (-1171 |#1|))) (-15 -3912 (|#1| (-952 |#1|)))) (-27)) (T -26)) +((-2082 (((-644 $) (-952 $)) 32) (((-644 $) (-1171 $)) 16) (((-644 $) (-1171 $) (-1175)) 20)) (-1557 (($ (-952 $)) 30) (($ (-1171 $)) 11) (($ (-1171 $) (-1175)) 60)) (-4112 (((-644 $) (-952 $)) 33) (((-644 $) (-1171 $)) 18) (((-644 $) (-1171 $) (-1175)) 19)) (-4093 (($ (-952 $)) 31) (($ (-1171 $)) 13) (($ (-1171 $) (-1175)) NIL))) +(((-26 |#1|) (-10 -8 (-15 -2082 ((-644 |#1|) (-1171 |#1|) (-1175))) (-15 -2082 ((-644 |#1|) (-1171 |#1|))) (-15 -2082 ((-644 |#1|) (-952 |#1|))) (-15 -1557 (|#1| (-1171 |#1|) (-1175))) (-15 -1557 (|#1| (-1171 |#1|))) (-15 -1557 (|#1| (-952 |#1|))) (-15 -4112 ((-644 |#1|) (-1171 |#1|) (-1175))) (-15 -4112 ((-644 |#1|) (-1171 |#1|))) (-15 -4112 ((-644 |#1|) (-952 |#1|))) (-15 -4093 (|#1| (-1171 |#1|) (-1175))) (-15 -4093 (|#1| (-1171 |#1|))) (-15 -4093 (|#1| (-952 |#1|)))) (-27)) (T -26)) NIL -(-10 -8 (-15 -1702 ((-644 |#1|) (-1171 |#1|) (-1175))) (-15 -1702 ((-644 |#1|) (-1171 |#1|))) (-15 -1702 ((-644 |#1|) (-952 |#1|))) (-15 -3710 (|#1| (-1171 |#1|) (-1175))) (-15 -3710 (|#1| (-1171 |#1|))) (-15 -3710 (|#1| (-952 |#1|))) (-15 -1422 ((-644 |#1|) (-1171 |#1|) (-1175))) (-15 -1422 ((-644 |#1|) (-1171 |#1|))) (-15 -1422 ((-644 |#1|) (-952 |#1|))) (-15 -3912 (|#1| (-1171 |#1|) (-1175))) (-15 -3912 (|#1| (-1171 |#1|))) (-15 -3912 (|#1| (-952 |#1|)))) -((-3007 (((-112) $ $) 7)) (-1702 (((-644 $) (-952 $)) 88) (((-644 $) (-1171 $)) 87) (((-644 $) (-1171 $) (-1175)) 86)) (-3710 (($ (-952 $)) 91) (($ (-1171 $)) 90) (($ (-1171 $) (-1175)) 89)) (-1788 (((-112) $) 17)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) 47)) (-3991 (($ $) 46)) (-2388 (((-112) $) 44)) (-4175 (((-3 $ "failed") $ $) 20)) (-1550 (($ $) 81)) (-3184 (((-420 $) $) 80)) (-3731 (($ $) 100)) (-2837 (((-112) $ $) 65)) (-3012 (($) 18 T CONST)) (-1422 (((-644 $) (-952 $)) 94) (((-644 $) (-1171 $)) 93) (((-644 $) (-1171 $) (-1175)) 92)) (-3912 (($ (-952 $)) 97) (($ (-1171 $)) 96) (($ (-1171 $) (-1175)) 95)) (-2946 (($ $ $) 61)) (-1878 (((-3 $ "failed") $) 37)) (-2957 (($ $ $) 62)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) 57)) (-3268 (((-112) $) 79)) (-3934 (((-112) $) 35)) (-2140 (($ $ (-566)) 99)) (-3775 (((-3 (-644 $) "failed") (-644 $) $) 58)) (-2167 (($ $ $) 52) (($ (-644 $)) 51)) (-4117 (((-1157) $) 10)) (-1713 (($ $) 78)) (-4035 (((-1119) $) 11)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-2214 (($ $ $) 54) (($ (-644 $)) 53)) (-3719 (((-420 $) $) 82)) (-3148 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2994 (((-3 $ "failed") $ $) 48)) (-3161 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-3039 (((-771) $) 64)) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) 63)) (-3783 (((-862) $) 12) (($ (-566)) 33) (($ $) 49) (($ (-409 (-566))) 74)) (-2107 (((-771)) 32 T CONST)) (-3117 (((-112) $ $) 9)) (-2695 (((-112) $ $) 45)) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-2947 (((-112) $ $) 6)) (-3065 (($ $ $) 73)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 77) (($ $ (-409 (-566))) 98)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 76) (($ (-409 (-566)) $) 75))) +(-10 -8 (-15 -2082 ((-644 |#1|) (-1171 |#1|) (-1175))) (-15 -2082 ((-644 |#1|) (-1171 |#1|))) (-15 -2082 ((-644 |#1|) (-952 |#1|))) (-15 -1557 (|#1| (-1171 |#1|) (-1175))) (-15 -1557 (|#1| (-1171 |#1|))) (-15 -1557 (|#1| (-952 |#1|))) (-15 -4112 ((-644 |#1|) (-1171 |#1|) (-1175))) (-15 -4112 ((-644 |#1|) (-1171 |#1|))) (-15 -4112 ((-644 |#1|) (-952 |#1|))) (-15 -4093 (|#1| (-1171 |#1|) (-1175))) (-15 -4093 (|#1| (-1171 |#1|))) (-15 -4093 (|#1| (-952 |#1|)))) +((-2988 (((-112) $ $) 7)) (-2082 (((-644 $) (-952 $)) 88) (((-644 $) (-1171 $)) 87) (((-644 $) (-1171 $) (-1175)) 86)) (-1557 (($ (-952 $)) 91) (($ (-1171 $)) 90) (($ (-1171 $) (-1175)) 89)) (-3230 (((-112) $) 17)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) 47)) (-2161 (($ $) 46)) (-2345 (((-112) $) 44)) (-3967 (((-3 $ "failed") $ $) 20)) (-1378 (($ $) 81)) (-1364 (((-420 $) $) 80)) (-1635 (($ $) 100)) (-2085 (((-112) $ $) 65)) (-2463 (($) 18 T CONST)) (-4112 (((-644 $) (-952 $)) 94) (((-644 $) (-1171 $)) 93) (((-644 $) (-1171 $) (-1175)) 92)) (-4093 (($ (-952 $)) 97) (($ (-1171 $)) 96) (($ (-1171 $) (-1175)) 95)) (-2933 (($ $ $) 61)) (-3245 (((-3 $ "failed") $) 37)) (-2945 (($ $ $) 62)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) 57)) (-1615 (((-112) $) 79)) (-2389 (((-112) $) 35)) (-1575 (($ $ (-566)) 99)) (-3816 (((-3 (-644 $) "failed") (-644 $) $) 58)) (-2128 (($ $ $) 52) (($ (-644 $)) 51)) (-3380 (((-1157) $) 10)) (-2748 (($ $) 78)) (-4072 (((-1119) $) 11)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-2164 (($ $ $) 54) (($ (-644 $)) 53)) (-1624 (((-420 $) $) 82)) (-3005 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2978 (((-3 $ "failed") $ $) 48)) (-2915 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-4357 (((-771) $) 64)) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) 63)) (-3152 (((-862) $) 12) (($ (-566)) 33) (($ $) 49) (($ (-409 (-566))) 74)) (-2593 (((-771)) 32 T CONST)) (-3044 (((-112) $ $) 9)) (-3014 (((-112) $ $) 45)) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-2914 (((-112) $ $) 6)) (-3025 (($ $ $) 73)) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 77) (($ $ (-409 (-566))) 98)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 76) (($ (-409 (-566)) $) 75))) (((-27) (-140)) (T -27)) -((-3912 (*1 *1 *2) (-12 (-5 *2 (-952 *1)) (-4 *1 (-27)))) (-3912 (*1 *1 *2) (-12 (-5 *2 (-1171 *1)) (-4 *1 (-27)))) (-3912 (*1 *1 *2 *3) (-12 (-5 *2 (-1171 *1)) (-5 *3 (-1175)) (-4 *1 (-27)))) (-1422 (*1 *2 *3) (-12 (-5 *3 (-952 *1)) (-4 *1 (-27)) (-5 *2 (-644 *1)))) (-1422 (*1 *2 *3) (-12 (-5 *3 (-1171 *1)) (-4 *1 (-27)) (-5 *2 (-644 *1)))) (-1422 (*1 *2 *3 *4) (-12 (-5 *3 (-1171 *1)) (-5 *4 (-1175)) (-4 *1 (-27)) (-5 *2 (-644 *1)))) (-3710 (*1 *1 *2) (-12 (-5 *2 (-952 *1)) (-4 *1 (-27)))) (-3710 (*1 *1 *2) (-12 (-5 *2 (-1171 *1)) (-4 *1 (-27)))) (-3710 (*1 *1 *2 *3) (-12 (-5 *2 (-1171 *1)) (-5 *3 (-1175)) (-4 *1 (-27)))) (-1702 (*1 *2 *3) (-12 (-5 *3 (-952 *1)) (-4 *1 (-27)) (-5 *2 (-644 *1)))) (-1702 (*1 *2 *3) (-12 (-5 *3 (-1171 *1)) (-4 *1 (-27)) (-5 *2 (-644 *1)))) (-1702 (*1 *2 *3 *4) (-12 (-5 *3 (-1171 *1)) (-5 *4 (-1175)) (-4 *1 (-27)) (-5 *2 (-644 *1))))) -(-13 (-365) (-1002) (-10 -8 (-15 -3912 ($ (-952 $))) (-15 -3912 ($ (-1171 $))) (-15 -3912 ($ (-1171 $) (-1175))) (-15 -1422 ((-644 $) (-952 $))) (-15 -1422 ((-644 $) (-1171 $))) (-15 -1422 ((-644 $) (-1171 $) (-1175))) (-15 -3710 ($ (-952 $))) (-15 -3710 ($ (-1171 $))) (-15 -3710 ($ (-1171 $) (-1175))) (-15 -1702 ((-644 $) (-952 $))) (-15 -1702 ((-644 $) (-1171 $))) (-15 -1702 ((-644 $) (-1171 $) (-1175))))) +((-4093 (*1 *1 *2) (-12 (-5 *2 (-952 *1)) (-4 *1 (-27)))) (-4093 (*1 *1 *2) (-12 (-5 *2 (-1171 *1)) (-4 *1 (-27)))) (-4093 (*1 *1 *2 *3) (-12 (-5 *2 (-1171 *1)) (-5 *3 (-1175)) (-4 *1 (-27)))) (-4112 (*1 *2 *3) (-12 (-5 *3 (-952 *1)) (-4 *1 (-27)) (-5 *2 (-644 *1)))) (-4112 (*1 *2 *3) (-12 (-5 *3 (-1171 *1)) (-4 *1 (-27)) (-5 *2 (-644 *1)))) (-4112 (*1 *2 *3 *4) (-12 (-5 *3 (-1171 *1)) (-5 *4 (-1175)) (-4 *1 (-27)) (-5 *2 (-644 *1)))) (-1557 (*1 *1 *2) (-12 (-5 *2 (-952 *1)) (-4 *1 (-27)))) (-1557 (*1 *1 *2) (-12 (-5 *2 (-1171 *1)) (-4 *1 (-27)))) (-1557 (*1 *1 *2 *3) (-12 (-5 *2 (-1171 *1)) (-5 *3 (-1175)) (-4 *1 (-27)))) (-2082 (*1 *2 *3) (-12 (-5 *3 (-952 *1)) (-4 *1 (-27)) (-5 *2 (-644 *1)))) (-2082 (*1 *2 *3) (-12 (-5 *3 (-1171 *1)) (-4 *1 (-27)) (-5 *2 (-644 *1)))) (-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-1171 *1)) (-5 *4 (-1175)) (-4 *1 (-27)) (-5 *2 (-644 *1))))) +(-13 (-365) (-1002) (-10 -8 (-15 -4093 ($ (-952 $))) (-15 -4093 ($ (-1171 $))) (-15 -4093 ($ (-1171 $) (-1175))) (-15 -4112 ((-644 $) (-952 $))) (-15 -4112 ((-644 $) (-1171 $))) (-15 -4112 ((-644 $) (-1171 $) (-1175))) (-15 -1557 ($ (-952 $))) (-15 -1557 ($ (-1171 $))) (-15 -1557 ($ (-1171 $) (-1175))) (-15 -2082 ((-644 $) (-952 $))) (-15 -2082 ((-644 $) (-1171 $))) (-15 -2082 ((-644 $) (-1171 $) (-1175))))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-616 #0#) . T) ((-616 (-566)) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-454) . T) ((-558) . T) ((-646 #0#) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 #0#) . T) ((-648 $) . T) ((-640 #0#) . T) ((-640 $) . T) ((-717 #0#) . T) ((-717 $) . T) ((-726) . T) ((-920) . T) ((-1002) . T) ((-1051 #0#) . T) ((-1051 $) . T) ((-1056 #0#) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1218) . T)) -((-1702 (((-644 $) (-952 $)) NIL) (((-644 $) (-1171 $)) NIL) (((-644 $) (-1171 $) (-1175)) 55) (((-644 $) $) 22) (((-644 $) $ (-1175)) 46)) (-3710 (($ (-952 $)) NIL) (($ (-1171 $)) NIL) (($ (-1171 $) (-1175)) 57) (($ $) 20) (($ $ (-1175)) 40)) (-1422 (((-644 $) (-952 $)) NIL) (((-644 $) (-1171 $)) NIL) (((-644 $) (-1171 $) (-1175)) 53) (((-644 $) $) 18) (((-644 $) $ (-1175)) 48)) (-3912 (($ (-952 $)) NIL) (($ (-1171 $)) NIL) (($ (-1171 $) (-1175)) NIL) (($ $) 15) (($ $ (-1175)) 42))) -(((-28 |#1| |#2|) (-10 -8 (-15 -1702 ((-644 |#1|) |#1| (-1175))) (-15 -3710 (|#1| |#1| (-1175))) (-15 -1702 ((-644 |#1|) |#1|)) (-15 -3710 (|#1| |#1|)) (-15 -1422 ((-644 |#1|) |#1| (-1175))) (-15 -3912 (|#1| |#1| (-1175))) (-15 -1422 ((-644 |#1|) |#1|)) (-15 -3912 (|#1| |#1|)) (-15 -1702 ((-644 |#1|) (-1171 |#1|) (-1175))) (-15 -1702 ((-644 |#1|) (-1171 |#1|))) (-15 -1702 ((-644 |#1|) (-952 |#1|))) (-15 -3710 (|#1| (-1171 |#1|) (-1175))) (-15 -3710 (|#1| (-1171 |#1|))) (-15 -3710 (|#1| (-952 |#1|))) (-15 -1422 ((-644 |#1|) (-1171 |#1|) (-1175))) (-15 -1422 ((-644 |#1|) (-1171 |#1|))) (-15 -1422 ((-644 |#1|) (-952 |#1|))) (-15 -3912 (|#1| (-1171 |#1|) (-1175))) (-15 -3912 (|#1| (-1171 |#1|))) (-15 -3912 (|#1| (-952 |#1|)))) (-29 |#2|) (-558)) (T -28)) +((-2082 (((-644 $) (-952 $)) NIL) (((-644 $) (-1171 $)) NIL) (((-644 $) (-1171 $) (-1175)) 55) (((-644 $) $) 22) (((-644 $) $ (-1175)) 46)) (-1557 (($ (-952 $)) NIL) (($ (-1171 $)) NIL) (($ (-1171 $) (-1175)) 57) (($ $) 20) (($ $ (-1175)) 40)) (-4112 (((-644 $) (-952 $)) NIL) (((-644 $) (-1171 $)) NIL) (((-644 $) (-1171 $) (-1175)) 53) (((-644 $) $) 18) (((-644 $) $ (-1175)) 48)) (-4093 (($ (-952 $)) NIL) (($ (-1171 $)) NIL) (($ (-1171 $) (-1175)) NIL) (($ $) 15) (($ $ (-1175)) 42))) +(((-28 |#1| |#2|) (-10 -8 (-15 -2082 ((-644 |#1|) |#1| (-1175))) (-15 -1557 (|#1| |#1| (-1175))) (-15 -2082 ((-644 |#1|) |#1|)) (-15 -1557 (|#1| |#1|)) (-15 -4112 ((-644 |#1|) |#1| (-1175))) (-15 -4093 (|#1| |#1| (-1175))) (-15 -4112 ((-644 |#1|) |#1|)) (-15 -4093 (|#1| |#1|)) (-15 -2082 ((-644 |#1|) (-1171 |#1|) (-1175))) (-15 -2082 ((-644 |#1|) (-1171 |#1|))) (-15 -2082 ((-644 |#1|) (-952 |#1|))) (-15 -1557 (|#1| (-1171 |#1|) (-1175))) (-15 -1557 (|#1| (-1171 |#1|))) (-15 -1557 (|#1| (-952 |#1|))) (-15 -4112 ((-644 |#1|) (-1171 |#1|) (-1175))) (-15 -4112 ((-644 |#1|) (-1171 |#1|))) (-15 -4112 ((-644 |#1|) (-952 |#1|))) (-15 -4093 (|#1| (-1171 |#1|) (-1175))) (-15 -4093 (|#1| (-1171 |#1|))) (-15 -4093 (|#1| (-952 |#1|)))) (-29 |#2|) (-558)) (T -28)) NIL -(-10 -8 (-15 -1702 ((-644 |#1|) |#1| (-1175))) (-15 -3710 (|#1| |#1| (-1175))) (-15 -1702 ((-644 |#1|) |#1|)) (-15 -3710 (|#1| |#1|)) (-15 -1422 ((-644 |#1|) |#1| (-1175))) (-15 -3912 (|#1| |#1| (-1175))) (-15 -1422 ((-644 |#1|) |#1|)) (-15 -3912 (|#1| |#1|)) (-15 -1702 ((-644 |#1|) (-1171 |#1|) (-1175))) (-15 -1702 ((-644 |#1|) (-1171 |#1|))) (-15 -1702 ((-644 |#1|) (-952 |#1|))) (-15 -3710 (|#1| (-1171 |#1|) (-1175))) (-15 -3710 (|#1| (-1171 |#1|))) (-15 -3710 (|#1| (-952 |#1|))) (-15 -1422 ((-644 |#1|) (-1171 |#1|) (-1175))) (-15 -1422 ((-644 |#1|) (-1171 |#1|))) (-15 -1422 ((-644 |#1|) (-952 |#1|))) (-15 -3912 (|#1| (-1171 |#1|) (-1175))) (-15 -3912 (|#1| (-1171 |#1|))) (-15 -3912 (|#1| (-952 |#1|)))) -((-3007 (((-112) $ $) 7)) (-1702 (((-644 $) (-952 $)) 88) (((-644 $) (-1171 $)) 87) (((-644 $) (-1171 $) (-1175)) 86) (((-644 $) $) 134) (((-644 $) $ (-1175)) 132)) (-3710 (($ (-952 $)) 91) (($ (-1171 $)) 90) (($ (-1171 $) (-1175)) 89) (($ $) 135) (($ $ (-1175)) 133)) (-1788 (((-112) $) 17)) (-3863 (((-644 (-1175)) $) 203)) (-3683 (((-409 (-1171 $)) $ (-612 $)) 235 (|has| |#1| (-558)))) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) 47)) (-3991 (($ $) 46)) (-2388 (((-112) $) 44)) (-3570 (((-644 (-612 $)) $) 166)) (-4175 (((-3 $ "failed") $ $) 20)) (-2645 (($ $ (-644 (-612 $)) (-644 $)) 156) (($ $ (-644 (-295 $))) 155) (($ $ (-295 $)) 154)) (-1550 (($ $) 81)) (-3184 (((-420 $) $) 80)) (-3731 (($ $) 100)) (-2837 (((-112) $ $) 65)) (-3012 (($) 18 T CONST)) (-1422 (((-644 $) (-952 $)) 94) (((-644 $) (-1171 $)) 93) (((-644 $) (-1171 $) (-1175)) 92) (((-644 $) $) 138) (((-644 $) $ (-1175)) 136)) (-3912 (($ (-952 $)) 97) (($ (-1171 $)) 96) (($ (-1171 $) (-1175)) 95) (($ $) 139) (($ $ (-1175)) 137)) (-4307 (((-3 (-952 |#1|) "failed") $) 253 (|has| |#1| (-1049))) (((-3 (-409 (-952 |#1|)) "failed") $) 237 (|has| |#1| (-558))) (((-3 |#1| "failed") $) 199) (((-3 (-566) "failed") $) 196 (|has| |#1| (-1038 (-566)))) (((-3 (-1175) "failed") $) 190) (((-3 (-612 $) "failed") $) 141) (((-3 (-409 (-566)) "failed") $) 130 (-2809 (-12 (|has| |#1| (-1038 (-566))) (|has| |#1| (-558))) (|has| |#1| (-1038 (-409 (-566))))))) (-4205 (((-952 |#1|) $) 252 (|has| |#1| (-1049))) (((-409 (-952 |#1|)) $) 236 (|has| |#1| (-558))) ((|#1| $) 198) (((-566) $) 197 (|has| |#1| (-1038 (-566)))) (((-1175) $) 189) (((-612 $) $) 140) (((-409 (-566)) $) 131 (-2809 (-12 (|has| |#1| (-1038 (-566))) (|has| |#1| (-558))) (|has| |#1| (-1038 (-409 (-566))))))) (-2946 (($ $ $) 61)) (-3577 (((-689 |#1|) (-689 $)) 243 (|has| |#1| (-1049))) (((-2 (|:| -4227 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) 242 (|has| |#1| (-1049))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) 129 (-2809 (-2432 (|has| |#1| (-1049)) (|has| |#1| (-639 (-566)))) (-2432 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))))) (((-689 (-566)) (-689 $)) 128 (-2809 (-2432 (|has| |#1| (-1049)) (|has| |#1| (-639 (-566)))) (-2432 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049)))))) (-1878 (((-3 $ "failed") $) 37)) (-2957 (($ $ $) 62)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) 57)) (-3268 (((-112) $) 79)) (-2062 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 195 (|has| |#1| (-886 (-381)))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 194 (|has| |#1| (-886 (-566))))) (-2228 (($ (-644 $)) 160) (($ $) 159)) (-2535 (((-644 (-114)) $) 167)) (-3659 (((-114) (-114)) 168)) (-3934 (((-112) $) 35)) (-2824 (((-112) $) 188 (|has| $ (-1038 (-566))))) (-1493 (($ $) 220 (|has| |#1| (-1049)))) (-4326 (((-1124 |#1| (-612 $)) $) 219 (|has| |#1| (-1049)))) (-2140 (($ $ (-566)) 99)) (-3775 (((-3 (-644 $) "failed") (-644 $) $) 58)) (-3006 (((-1171 $) (-612 $)) 185 (|has| $ (-1049)))) (-1301 (($ (-1 $ $) (-612 $)) 174)) (-3133 (((-3 (-612 $) "failed") $) 164)) (-2167 (($ $ $) 52) (($ (-644 $)) 51)) (-4117 (((-1157) $) 10)) (-3647 (((-644 (-612 $)) $) 165)) (-1307 (($ (-114) (-644 $)) 173) (($ (-114) $) 172)) (-3714 (((-3 (-644 $) "failed") $) 214 (|has| |#1| (-1111)))) (-2114 (((-3 (-2 (|:| |val| $) (|:| -2852 (-566))) "failed") $) 223 (|has| |#1| (-1049)))) (-2353 (((-3 (-644 $) "failed") $) 216 (|has| |#1| (-25)))) (-3542 (((-3 (-2 (|:| -1364 (-566)) (|:| |var| (-612 $))) "failed") $) 217 (|has| |#1| (-25)))) (-1518 (((-3 (-2 (|:| |var| (-612 $)) (|:| -2852 (-566))) "failed") $ (-1175)) 222 (|has| |#1| (-1049))) (((-3 (-2 (|:| |var| (-612 $)) (|:| -2852 (-566))) "failed") $ (-114)) 221 (|has| |#1| (-1049))) (((-3 (-2 (|:| |var| (-612 $)) (|:| -2852 (-566))) "failed") $) 215 (|has| |#1| (-1111)))) (-2572 (((-112) $ (-1175)) 171) (((-112) $ (-114)) 170)) (-1713 (($ $) 78)) (-2076 (((-771) $) 163)) (-4035 (((-1119) $) 11)) (-1723 (((-112) $) 201)) (-1736 ((|#1| $) 202)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-2214 (($ $ $) 54) (($ (-644 $)) 53)) (-2746 (((-112) $ (-1175)) 176) (((-112) $ $) 175)) (-3719 (((-420 $) $) 82)) (-3148 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2994 (((-3 $ "failed") $ $) 48)) (-3161 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-1946 (((-112) $) 187 (|has| $ (-1038 (-566))))) (-2055 (($ $ (-1175) (-771) (-1 $ $)) 227 (|has| |#1| (-1049))) (($ $ (-1175) (-771) (-1 $ (-644 $))) 226 (|has| |#1| (-1049))) (($ $ (-644 (-1175)) (-644 (-771)) (-644 (-1 $ (-644 $)))) 225 (|has| |#1| (-1049))) (($ $ (-644 (-1175)) (-644 (-771)) (-644 (-1 $ $))) 224 (|has| |#1| (-1049))) (($ $ (-644 (-114)) (-644 $) (-1175)) 213 (|has| |#1| (-614 (-538)))) (($ $ (-114) $ (-1175)) 212 (|has| |#1| (-614 (-538)))) (($ $) 211 (|has| |#1| (-614 (-538)))) (($ $ (-644 (-1175))) 210 (|has| |#1| (-614 (-538)))) (($ $ (-1175)) 209 (|has| |#1| (-614 (-538)))) (($ $ (-114) (-1 $ $)) 184) (($ $ (-114) (-1 $ (-644 $))) 183) (($ $ (-644 (-114)) (-644 (-1 $ (-644 $)))) 182) (($ $ (-644 (-114)) (-644 (-1 $ $))) 181) (($ $ (-1175) (-1 $ $)) 180) (($ $ (-1175) (-1 $ (-644 $))) 179) (($ $ (-644 (-1175)) (-644 (-1 $ (-644 $)))) 178) (($ $ (-644 (-1175)) (-644 (-1 $ $))) 177) (($ $ (-644 $) (-644 $)) 148) (($ $ $ $) 147) (($ $ (-295 $)) 146) (($ $ (-644 (-295 $))) 145) (($ $ (-644 (-612 $)) (-644 $)) 144) (($ $ (-612 $) $) 143)) (-3039 (((-771) $) 64)) (-4390 (($ (-114) (-644 $)) 153) (($ (-114) $ $ $ $) 152) (($ (-114) $ $ $) 151) (($ (-114) $ $) 150) (($ (-114) $) 149)) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) 63)) (-3529 (($ $ $) 162) (($ $) 161)) (-3561 (($ $ (-1175)) 251 (|has| |#1| (-1049))) (($ $ (-644 (-1175))) 250 (|has| |#1| (-1049))) (($ $ (-1175) (-771)) 249 (|has| |#1| (-1049))) (($ $ (-644 (-1175)) (-644 (-771))) 248 (|has| |#1| (-1049)))) (-2023 (($ $) 230 (|has| |#1| (-558)))) (-4339 (((-1124 |#1| (-612 $)) $) 229 (|has| |#1| (-558)))) (-1616 (($ $) 186 (|has| $ (-1049)))) (-1348 (((-538) $) 257 (|has| |#1| (-614 (-538)))) (($ (-420 $)) 228 (|has| |#1| (-558))) (((-892 (-381)) $) 193 (|has| |#1| (-614 (-892 (-381))))) (((-892 (-566)) $) 192 (|has| |#1| (-614 (-892 (-566)))))) (-2358 (($ $ $) 256 (|has| |#1| (-475)))) (-3171 (($ $ $) 255 (|has| |#1| (-475)))) (-3783 (((-862) $) 12) (($ (-566)) 33) (($ $) 49) (($ (-409 (-566))) 74) (($ (-952 |#1|)) 254 (|has| |#1| (-1049))) (($ (-409 (-952 |#1|))) 238 (|has| |#1| (-558))) (($ (-409 (-952 (-409 |#1|)))) 234 (|has| |#1| (-558))) (($ (-952 (-409 |#1|))) 233 (|has| |#1| (-558))) (($ (-409 |#1|)) 232 (|has| |#1| (-558))) (($ (-1124 |#1| (-612 $))) 218 (|has| |#1| (-1049))) (($ |#1|) 200) (($ (-1175)) 191) (($ (-612 $)) 142)) (-3144 (((-3 $ "failed") $) 241 (|has| |#1| (-145)))) (-2107 (((-771)) 32 T CONST)) (-1630 (($ (-644 $)) 158) (($ $) 157)) (-2825 (((-112) (-114)) 169)) (-3117 (((-112) $ $) 9)) (-2695 (((-112) $ $) 45)) (-4229 (($ (-1175) (-644 $)) 208) (($ (-1175) $ $ $ $) 207) (($ (-1175) $ $ $) 206) (($ (-1175) $ $) 205) (($ (-1175) $) 204)) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-2875 (($ $ (-1175)) 247 (|has| |#1| (-1049))) (($ $ (-644 (-1175))) 246 (|has| |#1| (-1049))) (($ $ (-1175) (-771)) 245 (|has| |#1| (-1049))) (($ $ (-644 (-1175)) (-644 (-771))) 244 (|has| |#1| (-1049)))) (-2947 (((-112) $ $) 6)) (-3065 (($ $ $) 73) (($ (-1124 |#1| (-612 $)) (-1124 |#1| (-612 $))) 231 (|has| |#1| (-558)))) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 77) (($ $ (-409 (-566))) 98)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 76) (($ (-409 (-566)) $) 75) (($ $ |#1|) 240 (|has| |#1| (-172))) (($ |#1| $) 239 (|has| |#1| (-172))))) +(-10 -8 (-15 -2082 ((-644 |#1|) |#1| (-1175))) (-15 -1557 (|#1| |#1| (-1175))) (-15 -2082 ((-644 |#1|) |#1|)) (-15 -1557 (|#1| |#1|)) (-15 -4112 ((-644 |#1|) |#1| (-1175))) (-15 -4093 (|#1| |#1| (-1175))) (-15 -4112 ((-644 |#1|) |#1|)) (-15 -4093 (|#1| |#1|)) (-15 -2082 ((-644 |#1|) (-1171 |#1|) (-1175))) (-15 -2082 ((-644 |#1|) (-1171 |#1|))) (-15 -2082 ((-644 |#1|) (-952 |#1|))) (-15 -1557 (|#1| (-1171 |#1|) (-1175))) (-15 -1557 (|#1| (-1171 |#1|))) (-15 -1557 (|#1| (-952 |#1|))) (-15 -4112 ((-644 |#1|) (-1171 |#1|) (-1175))) (-15 -4112 ((-644 |#1|) (-1171 |#1|))) (-15 -4112 ((-644 |#1|) (-952 |#1|))) (-15 -4093 (|#1| (-1171 |#1|) (-1175))) (-15 -4093 (|#1| (-1171 |#1|))) (-15 -4093 (|#1| (-952 |#1|)))) +((-2988 (((-112) $ $) 7)) (-2082 (((-644 $) (-952 $)) 88) (((-644 $) (-1171 $)) 87) (((-644 $) (-1171 $) (-1175)) 86) (((-644 $) $) 134) (((-644 $) $ (-1175)) 132)) (-1557 (($ (-952 $)) 91) (($ (-1171 $)) 90) (($ (-1171 $) (-1175)) 89) (($ $) 135) (($ $ (-1175)) 133)) (-3230 (((-112) $) 17)) (-1771 (((-644 (-1175)) $) 203)) (-1590 (((-409 (-1171 $)) $ (-612 $)) 235 (|has| |#1| (-558)))) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) 47)) (-2161 (($ $) 46)) (-2345 (((-112) $) 44)) (-1470 (((-644 (-612 $)) $) 166)) (-3967 (((-3 $ "failed") $ $) 20)) (-2500 (($ $ (-644 (-612 $)) (-644 $)) 156) (($ $ (-644 (-295 $))) 155) (($ $ (-295 $)) 154)) (-1378 (($ $) 81)) (-1364 (((-420 $) $) 80)) (-1635 (($ $) 100)) (-2085 (((-112) $ $) 65)) (-2463 (($) 18 T CONST)) (-4112 (((-644 $) (-952 $)) 94) (((-644 $) (-1171 $)) 93) (((-644 $) (-1171 $) (-1175)) 92) (((-644 $) $) 138) (((-644 $) $ (-1175)) 136)) (-4093 (($ (-952 $)) 97) (($ (-1171 $)) 96) (($ (-1171 $) (-1175)) 95) (($ $) 139) (($ $ (-1175)) 137)) (-2229 (((-3 (-952 |#1|) "failed") $) 253 (|has| |#1| (-1049))) (((-3 (-409 (-952 |#1|)) "failed") $) 237 (|has| |#1| (-558))) (((-3 |#1| "failed") $) 199) (((-3 (-566) "failed") $) 196 (|has| |#1| (-1038 (-566)))) (((-3 (-1175) "failed") $) 190) (((-3 (-612 $) "failed") $) 141) (((-3 (-409 (-566)) "failed") $) 130 (-2768 (-12 (|has| |#1| (-1038 (-566))) (|has| |#1| (-558))) (|has| |#1| (-1038 (-409 (-566))))))) (-4158 (((-952 |#1|) $) 252 (|has| |#1| (-1049))) (((-409 (-952 |#1|)) $) 236 (|has| |#1| (-558))) ((|#1| $) 198) (((-566) $) 197 (|has| |#1| (-1038 (-566)))) (((-1175) $) 189) (((-612 $) $) 140) (((-409 (-566)) $) 131 (-2768 (-12 (|has| |#1| (-1038 (-566))) (|has| |#1| (-558))) (|has| |#1| (-1038 (-409 (-566))))))) (-2933 (($ $ $) 61)) (-4089 (((-689 |#1|) (-689 $)) 243 (|has| |#1| (-1049))) (((-2 (|:| -3361 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) 242 (|has| |#1| (-1049))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) 129 (-2768 (-2415 (|has| |#1| (-1049)) (|has| |#1| (-639 (-566)))) (-2415 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))))) (((-689 (-566)) (-689 $)) 128 (-2768 (-2415 (|has| |#1| (-1049)) (|has| |#1| (-639 (-566)))) (-2415 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049)))))) (-3245 (((-3 $ "failed") $) 37)) (-2945 (($ $ $) 62)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) 57)) (-1615 (((-112) $) 79)) (-2926 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 195 (|has| |#1| (-886 (-381)))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 194 (|has| |#1| (-886 (-566))))) (-1633 (($ (-644 $)) 160) (($ $) 159)) (-1689 (((-644 (-114)) $) 167)) (-1566 (((-114) (-114)) 168)) (-2389 (((-112) $) 35)) (-3419 (((-112) $) 188 (|has| $ (-1038 (-566))))) (-3406 (($ $) 220 (|has| |#1| (-1049)))) (-2248 (((-1124 |#1| (-612 $)) $) 219 (|has| |#1| (-1049)))) (-1575 (($ $ (-566)) 99)) (-3816 (((-3 (-644 $) "failed") (-644 $) $) 58)) (-2024 (((-1171 $) (-612 $)) 185 (|has| $ (-1049)))) (-2319 (($ (-1 $ $) (-612 $)) 174)) (-4010 (((-3 (-612 $) "failed") $) 164)) (-2128 (($ $ $) 52) (($ (-644 $)) 51)) (-3380 (((-1157) $) 10)) (-1552 (((-644 (-612 $)) $) 165)) (-2328 (($ (-114) (-644 $)) 173) (($ (-114) $) 172)) (-3738 (((-3 (-644 $) "failed") $) 214 (|has| |#1| (-1111)))) (-4224 (((-3 (-2 (|:| |val| $) (|:| -2201 (-566))) "failed") $) 223 (|has| |#1| (-1049)))) (-4199 (((-3 (-644 $) "failed") $) 216 (|has| |#1| (-25)))) (-3944 (((-3 (-2 (|:| -2397 (-566)) (|:| |var| (-612 $))) "failed") $) 217 (|has| |#1| (-25)))) (-4108 (((-3 (-2 (|:| |var| (-612 $)) (|:| -2201 (-566))) "failed") $ (-1175)) 222 (|has| |#1| (-1049))) (((-3 (-2 (|:| |var| (-612 $)) (|:| -2201 (-566))) "failed") $ (-114)) 221 (|has| |#1| (-1049))) (((-3 (-2 (|:| |var| (-612 $)) (|:| -2201 (-566))) "failed") $) 215 (|has| |#1| (-1111)))) (-3335 (((-112) $ (-1175)) 171) (((-112) $ (-114)) 170)) (-2748 (($ $) 78)) (-3106 (((-771) $) 163)) (-4072 (((-1119) $) 11)) (-2761 (((-112) $) 201)) (-2773 ((|#1| $) 202)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-2164 (($ $ $) 54) (($ (-644 $)) 53)) (-3671 (((-112) $ (-1175)) 176) (((-112) $ $) 175)) (-1624 (((-420 $) $) 82)) (-3005 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2978 (((-3 $ "failed") $ $) 48)) (-2915 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-2664 (((-112) $) 187 (|has| $ (-1038 (-566))))) (-2023 (($ $ (-1175) (-771) (-1 $ $)) 227 (|has| |#1| (-1049))) (($ $ (-1175) (-771) (-1 $ (-644 $))) 226 (|has| |#1| (-1049))) (($ $ (-644 (-1175)) (-644 (-771)) (-644 (-1 $ (-644 $)))) 225 (|has| |#1| (-1049))) (($ $ (-644 (-1175)) (-644 (-771)) (-644 (-1 $ $))) 224 (|has| |#1| (-1049))) (($ $ (-644 (-114)) (-644 $) (-1175)) 213 (|has| |#1| (-614 (-538)))) (($ $ (-114) $ (-1175)) 212 (|has| |#1| (-614 (-538)))) (($ $) 211 (|has| |#1| (-614 (-538)))) (($ $ (-644 (-1175))) 210 (|has| |#1| (-614 (-538)))) (($ $ (-1175)) 209 (|has| |#1| (-614 (-538)))) (($ $ (-114) (-1 $ $)) 184) (($ $ (-114) (-1 $ (-644 $))) 183) (($ $ (-644 (-114)) (-644 (-1 $ (-644 $)))) 182) (($ $ (-644 (-114)) (-644 (-1 $ $))) 181) (($ $ (-1175) (-1 $ $)) 180) (($ $ (-1175) (-1 $ (-644 $))) 179) (($ $ (-644 (-1175)) (-644 (-1 $ (-644 $)))) 178) (($ $ (-644 (-1175)) (-644 (-1 $ $))) 177) (($ $ (-644 $) (-644 $)) 148) (($ $ $ $) 147) (($ $ (-295 $)) 146) (($ $ (-644 (-295 $))) 145) (($ $ (-644 (-612 $)) (-644 $)) 144) (($ $ (-612 $) $) 143)) (-4357 (((-771) $) 64)) (-1309 (($ (-114) (-644 $)) 153) (($ (-114) $ $ $ $) 152) (($ (-114) $ $ $) 151) (($ (-114) $ $) 150) (($ (-114) $) 149)) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) 63)) (-2020 (($ $ $) 162) (($ $) 161)) (-3629 (($ $ (-1175)) 251 (|has| |#1| (-1049))) (($ $ (-644 (-1175))) 250 (|has| |#1| (-1049))) (($ $ (-1175) (-771)) 249 (|has| |#1| (-1049))) (($ $ (-644 (-1175)) (-644 (-771))) 248 (|has| |#1| (-1049)))) (-1452 (($ $) 230 (|has| |#1| (-558)))) (-2260 (((-1124 |#1| (-612 $)) $) 229 (|has| |#1| (-558)))) (-1705 (($ $) 186 (|has| $ (-1049)))) (-2376 (((-538) $) 257 (|has| |#1| (-614 (-538)))) (($ (-420 $)) 228 (|has| |#1| (-558))) (((-892 (-381)) $) 193 (|has| |#1| (-614 (-892 (-381))))) (((-892 (-566)) $) 192 (|has| |#1| (-614 (-892 (-566)))))) (-3357 (($ $ $) 256 (|has| |#1| (-475)))) (-2527 (($ $ $) 255 (|has| |#1| (-475)))) (-3152 (((-862) $) 12) (($ (-566)) 33) (($ $) 49) (($ (-409 (-566))) 74) (($ (-952 |#1|)) 254 (|has| |#1| (-1049))) (($ (-409 (-952 |#1|))) 238 (|has| |#1| (-558))) (($ (-409 (-952 (-409 |#1|)))) 234 (|has| |#1| (-558))) (($ (-952 (-409 |#1|))) 233 (|has| |#1| (-558))) (($ (-409 |#1|)) 232 (|has| |#1| (-558))) (($ (-1124 |#1| (-612 $))) 218 (|has| |#1| (-1049))) (($ |#1|) 200) (($ (-1175)) 191) (($ (-612 $)) 142)) (-2633 (((-3 $ "failed") $) 241 (|has| |#1| (-145)))) (-2593 (((-771)) 32 T CONST)) (-3928 (($ (-644 $)) 158) (($ $) 157)) (-3515 (((-112) (-114)) 169)) (-3044 (((-112) $ $) 9)) (-3014 (((-112) $ $) 45)) (-4088 (($ (-1175) (-644 $)) 208) (($ (-1175) $ $ $ $) 207) (($ (-1175) $ $ $) 206) (($ (-1175) $ $) 205) (($ (-1175) $) 204)) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-3497 (($ $ (-1175)) 247 (|has| |#1| (-1049))) (($ $ (-644 (-1175))) 246 (|has| |#1| (-1049))) (($ $ (-1175) (-771)) 245 (|has| |#1| (-1049))) (($ $ (-644 (-1175)) (-644 (-771))) 244 (|has| |#1| (-1049)))) (-2914 (((-112) $ $) 6)) (-3025 (($ $ $) 73) (($ (-1124 |#1| (-612 $)) (-1124 |#1| (-612 $))) 231 (|has| |#1| (-558)))) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 77) (($ $ (-409 (-566))) 98)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 76) (($ (-409 (-566)) $) 75) (($ $ |#1|) 240 (|has| |#1| (-172))) (($ |#1| $) 239 (|has| |#1| (-172))))) (((-29 |#1|) (-140) (-558)) (T -29)) -((-3912 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-558)))) (-1422 (*1 *2 *1) (-12 (-4 *3 (-558)) (-5 *2 (-644 *1)) (-4 *1 (-29 *3)))) (-3912 (*1 *1 *1 *2) (-12 (-5 *2 (-1175)) (-4 *1 (-29 *3)) (-4 *3 (-558)))) (-1422 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-558)) (-5 *2 (-644 *1)) (-4 *1 (-29 *4)))) (-3710 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-558)))) (-1702 (*1 *2 *1) (-12 (-4 *3 (-558)) (-5 *2 (-644 *1)) (-4 *1 (-29 *3)))) (-3710 (*1 *1 *1 *2) (-12 (-5 *2 (-1175)) (-4 *1 (-29 *3)) (-4 *3 (-558)))) (-1702 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-558)) (-5 *2 (-644 *1)) (-4 *1 (-29 *4))))) -(-13 (-27) (-432 |t#1|) (-10 -8 (-15 -3912 ($ $)) (-15 -1422 ((-644 $) $)) (-15 -3912 ($ $ (-1175))) (-15 -1422 ((-644 $) $ (-1175))) (-15 -3710 ($ $)) (-15 -1702 ((-644 $) $)) (-15 -3710 ($ $ (-1175))) (-15 -1702 ((-644 $) $ (-1175))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) . T) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-172)) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #0#) . T) ((-616 #1=(-409 (-952 |#1|))) |has| |#1| (-558)) ((-616 (-566)) . T) ((-616 #2=(-612 $)) . T) ((-616 #3=(-952 |#1|)) |has| |#1| (-1049)) ((-616 #4=(-1175)) . T) ((-616 |#1|) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-614 (-892 (-381))) |has| |#1| (-614 (-892 (-381)))) ((-614 (-892 (-566))) |has| |#1| (-614 (-892 (-566)))) ((-243) . T) ((-291) . T) ((-308) . T) ((-310 $) . T) ((-303) . T) ((-365) . T) ((-379 |#1|) |has| |#1| (-1049)) ((-402 |#1|) . T) ((-413 |#1|) . T) ((-432 |#1|) . T) ((-454) . T) ((-475) |has| |#1| (-475)) ((-516 (-612 $) $) . T) ((-516 $ $) . T) ((-558) . T) ((-646 #0#) . T) ((-646 (-566)) . T) ((-646 |#1|) |has| |#1| (-172)) ((-646 $) . T) ((-648 #0#) . T) ((-648 |#1|) |has| |#1| (-172)) ((-648 $) . T) ((-640 #0#) . T) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) . T) ((-639 (-566)) -12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))) ((-639 |#1|) |has| |#1| (-1049)) ((-717 #0#) . T) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) . T) ((-726) . T) ((-900 (-1175)) |has| |#1| (-1049)) ((-886 (-381)) |has| |#1| (-886 (-381))) ((-886 (-566)) |has| |#1| (-886 (-566))) ((-884 |#1|) . T) ((-920) . T) ((-1002) . T) ((-1038 (-409 (-566))) -2809 (|has| |#1| (-1038 (-409 (-566)))) (-12 (|has| |#1| (-558)) (|has| |#1| (-1038 (-566))))) ((-1038 #1#) |has| |#1| (-558)) ((-1038 (-566)) |has| |#1| (-1038 (-566))) ((-1038 #2#) . T) ((-1038 #3#) |has| |#1| (-1049)) ((-1038 #4#) . T) ((-1038 |#1|) . T) ((-1051 #0#) . T) ((-1051 |#1|) |has| |#1| (-172)) ((-1051 $) . T) ((-1056 #0#) . T) ((-1056 |#1|) |has| |#1| (-172)) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1214) . T) ((-1218) . T)) -((-2888 (((-1093 (-225)) $) NIL)) (-2877 (((-1093 (-225)) $) NIL)) (-4022 (($ $ (-225)) 166)) (-3315 (($ (-952 (-566)) (-1175) (-1175) (-1093 (-409 (-566))) (-1093 (-409 (-566)))) 104)) (-1935 (((-644 (-644 (-943 (-225)))) $) 182)) (-3783 (((-862) $) 196))) -(((-30) (-13 (-955) (-10 -8 (-15 -3315 ($ (-952 (-566)) (-1175) (-1175) (-1093 (-409 (-566))) (-1093 (-409 (-566))))) (-15 -4022 ($ $ (-225)))))) (T -30)) -((-3315 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-952 (-566))) (-5 *3 (-1175)) (-5 *4 (-1093 (-409 (-566)))) (-5 *1 (-30)))) (-4022 (*1 *1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-30))))) -(-13 (-955) (-10 -8 (-15 -3315 ($ (-952 (-566)) (-1175) (-1175) (-1093 (-409 (-566))) (-1093 (-409 (-566))))) (-15 -4022 ($ $ (-225))))) -((-3007 (((-112) $ $) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 17) (($ (-1180)) NIL) (((-1180) $) NIL)) (-1382 (((-1134) $) 11)) (-3117 (((-112) $ $) NIL)) (-2719 (((-1134) $) 9)) (-2947 (((-112) $ $) NIL))) -(((-31) (-13 (-1082) (-10 -8 (-15 -2719 ((-1134) $)) (-15 -1382 ((-1134) $))))) (T -31)) -((-2719 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-31)))) (-1382 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-31))))) -(-13 (-1082) (-10 -8 (-15 -2719 ((-1134) $)) (-15 -1382 ((-1134) $)))) -((-3912 ((|#2| (-1171 |#2|) (-1175)) 41)) (-3659 (((-114) (-114)) 55)) (-3006 (((-1171 |#2|) (-612 |#2|)) 149 (|has| |#1| (-1038 (-566))))) (-3566 ((|#2| |#1| (-566)) 137 (|has| |#1| (-1038 (-566))))) (-3340 ((|#2| (-1171 |#2|) |#2|) 29)) (-2359 (((-862) (-644 |#2|)) 86)) (-1616 ((|#2| |#2|) 144 (|has| |#1| (-1038 (-566))))) (-2825 (((-112) (-114)) 17)) (** ((|#2| |#2| (-409 (-566))) 103 (|has| |#1| (-1038 (-566)))))) -(((-32 |#1| |#2|) (-10 -7 (-15 -3912 (|#2| (-1171 |#2|) (-1175))) (-15 -3659 ((-114) (-114))) (-15 -2825 ((-112) (-114))) (-15 -3340 (|#2| (-1171 |#2|) |#2|)) (-15 -2359 ((-862) (-644 |#2|))) (IF (|has| |#1| (-1038 (-566))) (PROGN (-15 ** (|#2| |#2| (-409 (-566)))) (-15 -3006 ((-1171 |#2|) (-612 |#2|))) (-15 -1616 (|#2| |#2|)) (-15 -3566 (|#2| |#1| (-566)))) |%noBranch|)) (-558) (-432 |#1|)) (T -32)) -((-3566 (*1 *2 *3 *4) (-12 (-5 *4 (-566)) (-4 *2 (-432 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1038 *4)) (-4 *3 (-558)))) (-1616 (*1 *2 *2) (-12 (-4 *3 (-1038 (-566))) (-4 *3 (-558)) (-5 *1 (-32 *3 *2)) (-4 *2 (-432 *3)))) (-3006 (*1 *2 *3) (-12 (-5 *3 (-612 *5)) (-4 *5 (-432 *4)) (-4 *4 (-1038 (-566))) (-4 *4 (-558)) (-5 *2 (-1171 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-409 (-566))) (-4 *4 (-1038 (-566))) (-4 *4 (-558)) (-5 *1 (-32 *4 *2)) (-4 *2 (-432 *4)))) (-2359 (*1 *2 *3) (-12 (-5 *3 (-644 *5)) (-4 *5 (-432 *4)) (-4 *4 (-558)) (-5 *2 (-862)) (-5 *1 (-32 *4 *5)))) (-3340 (*1 *2 *3 *2) (-12 (-5 *3 (-1171 *2)) (-4 *2 (-432 *4)) (-4 *4 (-558)) (-5 *1 (-32 *4 *2)))) (-2825 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-558)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-432 *4)))) (-3659 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-558)) (-5 *1 (-32 *3 *4)) (-4 *4 (-432 *3)))) (-3912 (*1 *2 *3 *4) (-12 (-5 *3 (-1171 *2)) (-5 *4 (-1175)) (-4 *2 (-432 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-558))))) -(-10 -7 (-15 -3912 (|#2| (-1171 |#2|) (-1175))) (-15 -3659 ((-114) (-114))) (-15 -2825 ((-112) (-114))) (-15 -3340 (|#2| (-1171 |#2|) |#2|)) (-15 -2359 ((-862) (-644 |#2|))) (IF (|has| |#1| (-1038 (-566))) (PROGN (-15 ** (|#2| |#2| (-409 (-566)))) (-15 -3006 ((-1171 |#2|) (-612 |#2|))) (-15 -1616 (|#2| |#2|)) (-15 -3566 (|#2| |#1| (-566)))) |%noBranch|)) -((-2256 (((-112) $ (-771)) 20)) (-3012 (($) 10)) (-2404 (((-112) $ (-771)) 19)) (-2603 (((-112) $ (-771)) 17)) (-1932 (((-112) $ $) 8)) (-3467 (((-112) $) 15))) -(((-33 |#1|) (-10 -8 (-15 -3012 (|#1|)) (-15 -2256 ((-112) |#1| (-771))) (-15 -2404 ((-112) |#1| (-771))) (-15 -2603 ((-112) |#1| (-771))) (-15 -3467 ((-112) |#1|)) (-15 -1932 ((-112) |#1| |#1|))) (-34)) (T -33)) -NIL -(-10 -8 (-15 -3012 (|#1|)) (-15 -2256 ((-112) |#1| (-771))) (-15 -2404 ((-112) |#1| (-771))) (-15 -2603 ((-112) |#1| (-771))) (-15 -3467 ((-112) |#1|)) (-15 -1932 ((-112) |#1| |#1|))) -((-2256 (((-112) $ (-771)) 8)) (-3012 (($) 7 T CONST)) (-2404 (((-112) $ (-771)) 9)) (-2603 (((-112) $ (-771)) 10)) (-1932 (((-112) $ $) 14)) (-3467 (((-112) $) 11)) (-1494 (($) 12)) (-3940 (($ $) 13)) (-3018 (((-771) $) 6 (|has| $ (-6 -4414))))) +((-4093 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-558)))) (-4112 (*1 *2 *1) (-12 (-4 *3 (-558)) (-5 *2 (-644 *1)) (-4 *1 (-29 *3)))) (-4093 (*1 *1 *1 *2) (-12 (-5 *2 (-1175)) (-4 *1 (-29 *3)) (-4 *3 (-558)))) (-4112 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-558)) (-5 *2 (-644 *1)) (-4 *1 (-29 *4)))) (-1557 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-558)))) (-2082 (*1 *2 *1) (-12 (-4 *3 (-558)) (-5 *2 (-644 *1)) (-4 *1 (-29 *3)))) (-1557 (*1 *1 *1 *2) (-12 (-5 *2 (-1175)) (-4 *1 (-29 *3)) (-4 *3 (-558)))) (-2082 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-558)) (-5 *2 (-644 *1)) (-4 *1 (-29 *4))))) +(-13 (-27) (-432 |t#1|) (-10 -8 (-15 -4093 ($ $)) (-15 -4112 ((-644 $) $)) (-15 -4093 ($ $ (-1175))) (-15 -4112 ((-644 $) $ (-1175))) (-15 -1557 ($ $)) (-15 -2082 ((-644 $) $)) (-15 -1557 ($ $ (-1175))) (-15 -2082 ((-644 $) $ (-1175))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) . T) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-172)) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #0#) . T) ((-616 #1=(-409 (-952 |#1|))) |has| |#1| (-558)) ((-616 (-566)) . T) ((-616 #2=(-612 $)) . T) ((-616 #3=(-952 |#1|)) |has| |#1| (-1049)) ((-616 #4=(-1175)) . T) ((-616 |#1|) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-614 (-892 (-381))) |has| |#1| (-614 (-892 (-381)))) ((-614 (-892 (-566))) |has| |#1| (-614 (-892 (-566)))) ((-243) . T) ((-291) . T) ((-308) . T) ((-310 $) . T) ((-303) . T) ((-365) . T) ((-379 |#1|) |has| |#1| (-1049)) ((-402 |#1|) . T) ((-413 |#1|) . T) ((-432 |#1|) . T) ((-454) . T) ((-475) |has| |#1| (-475)) ((-516 (-612 $) $) . T) ((-516 $ $) . T) ((-558) . T) ((-646 #0#) . T) ((-646 (-566)) . T) ((-646 |#1|) |has| |#1| (-172)) ((-646 $) . T) ((-648 #0#) . T) ((-648 |#1|) |has| |#1| (-172)) ((-648 $) . T) ((-640 #0#) . T) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) . T) ((-639 (-566)) -12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))) ((-639 |#1|) |has| |#1| (-1049)) ((-717 #0#) . T) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) . T) ((-726) . T) ((-900 (-1175)) |has| |#1| (-1049)) ((-886 (-381)) |has| |#1| (-886 (-381))) ((-886 (-566)) |has| |#1| (-886 (-566))) ((-884 |#1|) . T) ((-920) . T) ((-1002) . T) ((-1038 (-409 (-566))) -2768 (|has| |#1| (-1038 (-409 (-566)))) (-12 (|has| |#1| (-558)) (|has| |#1| (-1038 (-566))))) ((-1038 #1#) |has| |#1| (-558)) ((-1038 (-566)) |has| |#1| (-1038 (-566))) ((-1038 #2#) . T) ((-1038 #3#) |has| |#1| (-1049)) ((-1038 #4#) . T) ((-1038 |#1|) . T) ((-1051 #0#) . T) ((-1051 |#1|) |has| |#1| (-172)) ((-1051 $) . T) ((-1056 #0#) . T) ((-1056 |#1|) |has| |#1| (-172)) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1214) . T) ((-1218) . T)) +((-3867 (((-1093 (-225)) $) NIL)) (-3857 (((-1093 (-225)) $) NIL)) (-2279 (($ $ (-225)) 166)) (-1919 (($ (-952 (-566)) (-1175) (-1175) (-1093 (-409 (-566))) (-1093 (-409 (-566)))) 104)) (-4042 (((-644 (-644 (-943 (-225)))) $) 182)) (-3152 (((-862) $) 196))) +(((-30) (-13 (-955) (-10 -8 (-15 -1919 ($ (-952 (-566)) (-1175) (-1175) (-1093 (-409 (-566))) (-1093 (-409 (-566))))) (-15 -2279 ($ $ (-225)))))) (T -30)) +((-1919 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-952 (-566))) (-5 *3 (-1175)) (-5 *4 (-1093 (-409 (-566)))) (-5 *1 (-30)))) (-2279 (*1 *1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-30))))) +(-13 (-955) (-10 -8 (-15 -1919 ($ (-952 (-566)) (-1175) (-1175) (-1093 (-409 (-566))) (-1093 (-409 (-566))))) (-15 -2279 ($ $ (-225))))) +((-2988 (((-112) $ $) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 17) (($ (-1180)) NIL) (((-1180) $) NIL)) (-1377 (((-1134) $) 11)) (-3044 (((-112) $ $) NIL)) (-2576 (((-1134) $) 9)) (-2914 (((-112) $ $) NIL))) +(((-31) (-13 (-1082) (-10 -8 (-15 -2576 ((-1134) $)) (-15 -1377 ((-1134) $))))) (T -31)) +((-2576 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-31)))) (-1377 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-31))))) +(-13 (-1082) (-10 -8 (-15 -2576 ((-1134) $)) (-15 -1377 ((-1134) $)))) +((-4093 ((|#2| (-1171 |#2|) (-1175)) 41)) (-1566 (((-114) (-114)) 55)) (-2024 (((-1171 |#2|) (-612 |#2|)) 149 (|has| |#1| (-1038 (-566))))) (-2407 ((|#2| |#1| (-566)) 137 (|has| |#1| (-1038 (-566))))) (-1716 ((|#2| (-1171 |#2|) |#2|) 29)) (-3463 (((-862) (-644 |#2|)) 86)) (-1705 ((|#2| |#2|) 144 (|has| |#1| (-1038 (-566))))) (-3515 (((-112) (-114)) 17)) (** ((|#2| |#2| (-409 (-566))) 103 (|has| |#1| (-1038 (-566)))))) +(((-32 |#1| |#2|) (-10 -7 (-15 -4093 (|#2| (-1171 |#2|) (-1175))) (-15 -1566 ((-114) (-114))) (-15 -3515 ((-112) (-114))) (-15 -1716 (|#2| (-1171 |#2|) |#2|)) (-15 -3463 ((-862) (-644 |#2|))) (IF (|has| |#1| (-1038 (-566))) (PROGN (-15 ** (|#2| |#2| (-409 (-566)))) (-15 -2024 ((-1171 |#2|) (-612 |#2|))) (-15 -1705 (|#2| |#2|)) (-15 -2407 (|#2| |#1| (-566)))) |%noBranch|)) (-558) (-432 |#1|)) (T -32)) +((-2407 (*1 *2 *3 *4) (-12 (-5 *4 (-566)) (-4 *2 (-432 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1038 *4)) (-4 *3 (-558)))) (-1705 (*1 *2 *2) (-12 (-4 *3 (-1038 (-566))) (-4 *3 (-558)) (-5 *1 (-32 *3 *2)) (-4 *2 (-432 *3)))) (-2024 (*1 *2 *3) (-12 (-5 *3 (-612 *5)) (-4 *5 (-432 *4)) (-4 *4 (-1038 (-566))) (-4 *4 (-558)) (-5 *2 (-1171 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-409 (-566))) (-4 *4 (-1038 (-566))) (-4 *4 (-558)) (-5 *1 (-32 *4 *2)) (-4 *2 (-432 *4)))) (-3463 (*1 *2 *3) (-12 (-5 *3 (-644 *5)) (-4 *5 (-432 *4)) (-4 *4 (-558)) (-5 *2 (-862)) (-5 *1 (-32 *4 *5)))) (-1716 (*1 *2 *3 *2) (-12 (-5 *3 (-1171 *2)) (-4 *2 (-432 *4)) (-4 *4 (-558)) (-5 *1 (-32 *4 *2)))) (-3515 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-558)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-432 *4)))) (-1566 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-558)) (-5 *1 (-32 *3 *4)) (-4 *4 (-432 *3)))) (-4093 (*1 *2 *3 *4) (-12 (-5 *3 (-1171 *2)) (-5 *4 (-1175)) (-4 *2 (-432 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-558))))) +(-10 -7 (-15 -4093 (|#2| (-1171 |#2|) (-1175))) (-15 -1566 ((-114) (-114))) (-15 -3515 ((-112) (-114))) (-15 -1716 (|#2| (-1171 |#2|) |#2|)) (-15 -3463 ((-862) (-644 |#2|))) (IF (|has| |#1| (-1038 (-566))) (PROGN (-15 ** (|#2| |#2| (-409 (-566)))) (-15 -2024 ((-1171 |#2|) (-612 |#2|))) (-15 -1705 (|#2| |#2|)) (-15 -2407 (|#2| |#1| (-566)))) |%noBranch|)) +((-1504 (((-112) $ (-771)) 20)) (-2463 (($) 10)) (-3456 (((-112) $ (-771)) 19)) (-3267 (((-112) $ (-771)) 17)) (-3814 (((-112) $ $) 8)) (-2872 (((-112) $) 15))) +(((-33 |#1|) (-10 -8 (-15 -2463 (|#1|)) (-15 -1504 ((-112) |#1| (-771))) (-15 -3456 ((-112) |#1| (-771))) (-15 -3267 ((-112) |#1| (-771))) (-15 -2872 ((-112) |#1|)) (-15 -3814 ((-112) |#1| |#1|))) (-34)) (T -33)) +NIL +(-10 -8 (-15 -2463 (|#1|)) (-15 -1504 ((-112) |#1| (-771))) (-15 -3456 ((-112) |#1| (-771))) (-15 -3267 ((-112) |#1| (-771))) (-15 -2872 ((-112) |#1|)) (-15 -3814 ((-112) |#1| |#1|))) +((-1504 (((-112) $ (-771)) 8)) (-2463 (($) 7 T CONST)) (-3456 (((-112) $ (-771)) 9)) (-3267 (((-112) $ (-771)) 10)) (-3814 (((-112) $ $) 14)) (-2872 (((-112) $) 11)) (-3493 (($) 12)) (-1480 (($ $) 13)) (-3000 (((-771) $) 6 (|has| $ (-6 -4414))))) (((-34) (-140)) (T -34)) -((-1932 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3940 (*1 *1 *1) (-4 *1 (-34))) (-1494 (*1 *1) (-4 *1 (-34))) (-3467 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-2603 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-771)) (-5 *2 (-112)))) (-2404 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-771)) (-5 *2 (-112)))) (-2256 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-771)) (-5 *2 (-112)))) (-3012 (*1 *1) (-4 *1 (-34))) (-3018 (*1 *2 *1) (-12 (|has| *1 (-6 -4414)) (-4 *1 (-34)) (-5 *2 (-771))))) -(-13 (-1214) (-10 -8 (-15 -1932 ((-112) $ $)) (-15 -3940 ($ $)) (-15 -1494 ($)) (-15 -3467 ((-112) $)) (-15 -2603 ((-112) $ (-771))) (-15 -2404 ((-112) $ (-771))) (-15 -2256 ((-112) $ (-771))) (-15 -3012 ($) -3704) (IF (|has| $ (-6 -4414)) (-15 -3018 ((-771) $)) |%noBranch|))) +((-3814 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-1480 (*1 *1 *1) (-4 *1 (-34))) (-3493 (*1 *1) (-4 *1 (-34))) (-2872 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3267 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-771)) (-5 *2 (-112)))) (-3456 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-771)) (-5 *2 (-112)))) (-1504 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-771)) (-5 *2 (-112)))) (-2463 (*1 *1) (-4 *1 (-34))) (-3000 (*1 *2 *1) (-12 (|has| *1 (-6 -4414)) (-4 *1 (-34)) (-5 *2 (-771))))) +(-13 (-1214) (-10 -8 (-15 -3814 ((-112) $ $)) (-15 -1480 ($ $)) (-15 -3493 ($)) (-15 -2872 ((-112) $)) (-15 -3267 ((-112) $ (-771))) (-15 -3456 ((-112) $ (-771))) (-15 -1504 ((-112) $ (-771))) (-15 -2463 ($) -1623) (IF (|has| $ (-6 -4414)) (-15 -3000 ((-771) $)) |%noBranch|))) (((-1214) . T)) -((-4177 (($ $) 11)) (-4155 (($ $) 10)) (-4198 (($ $) 9)) (-2976 (($ $) 8)) (-4188 (($ $) 7)) (-4166 (($ $) 6))) +((-4032 (($ $) 11)) (-4008 (($ $) 10)) (-4057 (($ $) 9)) (-3964 (($ $) 8)) (-4044 (($ $) 7)) (-4020 (($ $) 6))) (((-35) (-140)) (T -35)) -((-4177 (*1 *1 *1) (-4 *1 (-35))) (-4155 (*1 *1 *1) (-4 *1 (-35))) (-4198 (*1 *1 *1) (-4 *1 (-35))) (-2976 (*1 *1 *1) (-4 *1 (-35))) (-4188 (*1 *1 *1) (-4 *1 (-35))) (-4166 (*1 *1 *1) (-4 *1 (-35)))) -(-13 (-10 -8 (-15 -4166 ($ $)) (-15 -4188 ($ $)) (-15 -2976 ($ $)) (-15 -4198 ($ $)) (-15 -4155 ($ $)) (-15 -4177 ($ $)))) -((-3007 (((-112) $ $) 19 (-2809 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| |#2| (-1099)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099))))) (-2233 (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) 126)) (-2593 (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) 149)) (-2223 (($ $) 147)) (-4254 (($) 73) (($ (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) 72)) (-3734 (((-1269) $ |#1| |#1|) 100 (|has| $ (-6 -4415))) (((-1269) $ (-566) (-566)) 179 (|has| $ (-6 -4415)))) (-2807 (($ $ (-566)) 160 (|has| $ (-6 -4415)))) (-2644 (((-112) (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 210) (((-112) $) 204 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-850)))) (-1944 (($ (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 201 (|has| $ (-6 -4415))) (($ $) 200 (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-850)) (|has| $ (-6 -4415))))) (-1510 (($ (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 211) (($ $) 205 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-850)))) (-2256 (((-112) $ (-771)) 8)) (-3396 (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) 135 (|has| $ (-6 -4415)))) (-4107 (($ $ $) 156 (|has| $ (-6 -4415)))) (-3178 (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) 158 (|has| $ (-6 -4415)))) (-2905 (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) 154 (|has| $ (-6 -4415)))) (-3923 ((|#2| $ |#1| |#2|) 74) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $ (-566) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) 190 (|has| $ (-6 -4415))) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $ (-1231 (-566)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) 161 (|has| $ (-6 -4415))) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $ "last" (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) 159 (|has| $ (-6 -4415))) (($ $ "rest" $) 157 (|has| $ (-6 -4415))) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $ "first" (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) 155 (|has| $ (-6 -4415))) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $ "value" (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) 134 (|has| $ (-6 -4415)))) (-3800 (($ $ (-644 $)) 133 (|has| $ (-6 -4415)))) (-4016 (($ (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 46 (|has| $ (-6 -4414))) (($ (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 217)) (-2701 (($ (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 56 (|has| $ (-6 -4414))) (($ (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 176 (|has| $ (-6 -4414)))) (-2582 (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) 148)) (-2434 (((-3 |#2| "failed") |#1| $) 62)) (-3012 (($) 7 T CONST)) (-3413 (($ $) 202 (|has| $ (-6 -4415)))) (-1377 (($ $) 212)) (-2010 (($ $ (-771)) 143) (($ $) 141)) (-3657 (($ $) 215 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (-2031 (($ $) 59 (-2809 (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| $ (-6 -4414))) (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| $ (-6 -4414)))))) (-2956 (($ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) 48 (|has| $ (-6 -4414))) (($ (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 47 (|has| $ (-6 -4414))) (((-3 |#2| "failed") |#1| $) 63) (($ (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 221) (($ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) 216 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (-2665 (($ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) 58 (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| $ (-6 -4414)))) (($ (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 55 (|has| $ (-6 -4414))) (($ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) 178 (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| $ (-6 -4414)))) (($ (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 175 (|has| $ (-6 -4414)))) (-1676 (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) 57 (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| $ (-6 -4414)))) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) 54 (|has| $ (-6 -4414))) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 53 (|has| $ (-6 -4414))) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) 177 (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| $ (-6 -4414)))) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) 174 (|has| $ (-6 -4414))) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 173 (|has| $ (-6 -4414)))) (-2920 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4415))) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $ (-566) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) 191 (|has| $ (-6 -4415)))) (-2855 ((|#2| $ |#1|) 89) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $ (-566)) 189)) (-1902 (((-112) $) 193)) (-4000 (((-566) (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 209) (((-566) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) 208 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099))) (((-566) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $ (-566)) 207 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (-3979 (((-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 31 (|has| $ (-6 -4414))) (((-644 |#2|) $) 80 (|has| $ (-6 -4414))) (((-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 115 (|has| $ (-6 -4414)))) (-4009 (((-644 $) $) 124)) (-3891 (((-112) $ $) 132 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (-4265 (($ (-771) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) 170)) (-2404 (((-112) $ (-771)) 9)) (-3854 ((|#1| $) 97 (|has| |#1| (-850))) (((-566) $) 181 (|has| (-566) (-850)))) (-2097 (($ $ $) 199 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-850)))) (-3463 (($ (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $ $) 218) (($ $ $) 214 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-850)))) (-3298 (($ (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $ $) 213) (($ $ $) 206 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-850)))) (-2329 (((-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 30 (|has| $ (-6 -4414))) (((-644 |#2|) $) 81 (|has| $ (-6 -4414))) (((-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 116 (|has| $ (-6 -4414)))) (-1916 (((-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| $ (-6 -4414)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1099)) (|has| $ (-6 -4414)))) (((-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) 118 (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| $ (-6 -4414))))) (-2712 ((|#1| $) 96 (|has| |#1| (-850))) (((-566) $) 182 (|has| (-566) (-850)))) (-3962 (($ $ $) 198 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-850)))) (-2908 (($ (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 35 (|has| $ (-6 -4415))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4415))) (($ (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 111 (|has| $ (-6 -4415)))) (-1301 (($ (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71) (($ (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $ $) 167) (($ (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 110)) (-1881 (($ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) 226)) (-2603 (((-112) $ (-771)) 10)) (-3701 (((-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 129)) (-3438 (((-112) $) 125)) (-4117 (((-1157) $) 22 (-2809 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| |#2| (-1099)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099))))) (-2686 (($ $ (-771)) 146) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) 144)) (-4103 (((-644 |#1|) $) 64)) (-2876 (((-112) |#1| $) 65)) (-4039 (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) 40)) (-3406 (($ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) 41) (($ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $ (-566)) 220) (($ $ $ (-566)) 219)) (-4276 (($ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $ (-566)) 163) (($ $ $ (-566)) 162)) (-4074 (((-644 |#1|) $) 94) (((-644 (-566)) $) 184)) (-3792 (((-112) |#1| $) 93) (((-112) (-566) $) 185)) (-4035 (((-1119) $) 21 (-2809 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| |#2| (-1099)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099))))) (-1998 ((|#2| $) 98 (|has| |#1| (-850))) (($ $ (-771)) 140) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) 138)) (-2006 (((-3 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) "failed") (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 52) (((-3 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) "failed") (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 172)) (-4030 (($ $ |#2|) 99 (|has| $ (-6 -4415))) (($ $ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) 180 (|has| $ (-6 -4415)))) (-2539 (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) 42)) (-2373 (((-112) $) 192)) (-2692 (((-112) (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 33 (|has| $ (-6 -4414))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4414))) (((-112) (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 113 (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))))) 27 (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (($ $ (-295 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) 26 (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (($ $ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) 25 (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (($ $ (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) 24 (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) 87 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) 85 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 (-295 |#2|))) 84 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) 122 (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (($ $ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) 121 (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (($ $ (-295 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) 120 (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (($ $ (-644 (-295 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))))) 119 (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099))))) (-1932 (((-112) $ $) 14)) (-4156 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099)))) (((-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) 183 (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099))))) (-2993 (((-644 |#2|) $) 92) (((-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 186)) (-3467 (((-112) $) 11)) (-1494 (($) 12)) (-4390 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $ (-566) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) 188) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $ (-566)) 187) (($ $ (-1231 (-566))) 166) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $ "last") 145) (($ $ "rest") 142) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $ "first") 139) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $ "value") 127)) (-1416 (((-566) $ $) 130)) (-3481 (($) 50) (($ (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) 49)) (-1772 (($ $ (-566)) 223) (($ $ (-1231 (-566))) 222)) (-2187 (($ $ (-566)) 165) (($ $ (-1231 (-566))) 164)) (-3494 (((-112) $) 128)) (-4272 (($ $) 152)) (-1844 (($ $) 153 (|has| $ (-6 -4415)))) (-2833 (((-771) $) 151)) (-2369 (($ $) 150)) (-4045 (((-771) (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 32 (|has| $ (-6 -4414))) (((-771) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) 29 (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| $ (-6 -4414)))) (((-771) |#2| $) 82 (-12 (|has| |#2| (-1099)) (|has| $ (-6 -4414)))) (((-771) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4414))) (((-771) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) 117 (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| $ (-6 -4414)))) (((-771) (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 114 (|has| $ (-6 -4414)))) (-1297 (($ $ $ (-566)) 203 (|has| $ (-6 -4415)))) (-3940 (($ $) 13)) (-1348 (((-538) $) 60 (-2809 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-614 (-538))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-614 (-538)))))) (-3796 (($ (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) 51) (($ (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) 171)) (-3480 (($ $ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) 225) (($ $ $) 224)) (-3721 (($ $ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) 169) (($ (-644 $)) 168) (($ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) 137) (($ $ $) 136)) (-3783 (((-862) $) 18 (-2809 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-613 (-862))) (|has| |#2| (-613 (-862))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-613 (-862)))))) (-2462 (((-644 $) $) 123)) (-4288 (((-112) $ $) 131 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (-3117 (((-112) $ $) 23 (-2809 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| |#2| (-1099)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099))))) (-1748 (($ (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) 43)) (-2694 (((-3 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) "failed") |#1| $) 109)) (-1894 (((-112) (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 34 (|has| $ (-6 -4414))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4414))) (((-112) (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 112 (|has| $ (-6 -4414)))) (-3009 (((-112) $ $) 196 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-850)))) (-2984 (((-112) $ $) 195 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-850)))) (-2947 (((-112) $ $) 20 (-2809 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| |#2| (-1099)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099))))) (-2995 (((-112) $ $) 197 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-850)))) (-2969 (((-112) $ $) 194 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-850)))) (-3018 (((-771) $) 6 (|has| $ (-6 -4414))))) +((-4032 (*1 *1 *1) (-4 *1 (-35))) (-4008 (*1 *1 *1) (-4 *1 (-35))) (-4057 (*1 *1 *1) (-4 *1 (-35))) (-3964 (*1 *1 *1) (-4 *1 (-35))) (-4044 (*1 *1 *1) (-4 *1 (-35))) (-4020 (*1 *1 *1) (-4 *1 (-35)))) +(-13 (-10 -8 (-15 -4020 ($ $)) (-15 -4044 ($ $)) (-15 -3964 ($ $)) (-15 -4057 ($ $)) (-15 -4008 ($ $)) (-15 -4032 ($ $)))) +((-2988 (((-112) $ $) 19 (-2768 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| |#2| (-1099)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099))))) (-2876 (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) 126)) (-3541 (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) 149)) (-3214 (($ $) 147)) (-1849 (($) 73) (($ (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) 72)) (-1944 (((-1269) $ |#1| |#1|) 100 (|has| $ (-6 -4415))) (((-1269) $ (-566) (-566)) 179 (|has| $ (-6 -4415)))) (-4258 (($ $ (-566)) 160 (|has| $ (-6 -4415)))) (-3054 (((-112) (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 210) (((-112) $) 204 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-850)))) (-3628 (($ (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 201 (|has| $ (-6 -4415))) (($ $) 200 (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-850)) (|has| $ (-6 -4415))))) (-2671 (($ (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 211) (($ $) 205 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-850)))) (-1504 (((-112) $ (-771)) 8)) (-2191 (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) 135 (|has| $ (-6 -4415)))) (-1813 (($ $ $) 156 (|has| $ (-6 -4415)))) (-1948 (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) 158 (|has| $ (-6 -4415)))) (-1381 (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) 154 (|has| $ (-6 -4415)))) (-1456 ((|#2| $ |#1| |#2|) 74) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $ (-566) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) 190 (|has| $ (-6 -4415))) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $ (-1231 (-566)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) 161 (|has| $ (-6 -4415))) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $ "last" (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) 159 (|has| $ (-6 -4415))) (($ $ "rest" $) 157 (|has| $ (-6 -4415))) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $ "first" (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) 155 (|has| $ (-6 -4415))) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $ "value" (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) 134 (|has| $ (-6 -4415)))) (-4202 (($ $ (-644 $)) 133 (|has| $ (-6 -4415)))) (-2995 (($ (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 46 (|has| $ (-6 -4414))) (($ (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 217)) (-3678 (($ (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 56 (|has| $ (-6 -4414))) (($ (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 176 (|has| $ (-6 -4414)))) (-3531 (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) 148)) (-3070 (((-3 |#2| "failed") |#1| $) 62)) (-2463 (($) 7 T CONST)) (-3166 (($ $) 202 (|has| $ (-6 -4415)))) (-3683 (($ $) 212)) (-3919 (($ $ (-771)) 143) (($ $) 141)) (-3322 (($ $) 215 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (-3942 (($ $) 59 (-2768 (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| $ (-6 -4414))) (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| $ (-6 -4414)))))) (-3512 (($ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) 48 (|has| $ (-6 -4414))) (($ (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 47 (|has| $ (-6 -4414))) (((-3 |#2| "failed") |#1| $) 63) (($ (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 221) (($ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) 216 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (-2622 (($ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) 58 (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| $ (-6 -4414)))) (($ (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 55 (|has| $ (-6 -4414))) (($ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) 178 (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| $ (-6 -4414)))) (($ (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 175 (|has| $ (-6 -4414)))) (-2873 (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) 57 (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| $ (-6 -4414)))) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) 54 (|has| $ (-6 -4414))) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 53 (|has| $ (-6 -4414))) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) 177 (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| $ (-6 -4414)))) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) 174 (|has| $ (-6 -4414))) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 173 (|has| $ (-6 -4414)))) (-3897 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4415))) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $ (-566) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) 191 (|has| $ (-6 -4415)))) (-3829 ((|#2| $ |#1|) 89) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $ (-566)) 189)) (-1781 (((-112) $) 193)) (-1569 (((-566) (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 209) (((-566) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) 208 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099))) (((-566) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $ (-566)) 207 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (-1683 (((-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 31 (|has| $ (-6 -4414))) (((-644 |#2|) $) 80 (|has| $ (-6 -4414))) (((-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 115 (|has| $ (-6 -4414)))) (-3431 (((-644 $) $) 124)) (-1507 (((-112) $ $) 132 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (-1860 (($ (-771) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) 170)) (-3456 (((-112) $ (-771)) 9)) (-2296 ((|#1| $) 97 (|has| |#1| (-850))) (((-566) $) 181 (|has| (-566) (-850)))) (-1478 (($ $ $) 199 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-850)))) (-3674 (($ (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $ $) 218) (($ $ $) 214 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-850)))) (-2696 (($ (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $ $) 213) (($ $ $) 206 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-850)))) (-3491 (((-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 30 (|has| $ (-6 -4414))) (((-644 |#2|) $) 81 (|has| $ (-6 -4414))) (((-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 116 (|has| $ (-6 -4414)))) (-1602 (((-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| $ (-6 -4414)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1099)) (|has| $ (-6 -4414)))) (((-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) 118 (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| $ (-6 -4414))))) (-4050 ((|#1| $) 96 (|has| |#1| (-850))) (((-566) $) 182 (|has| (-566) (-850)))) (-2599 (($ $ $) 198 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-850)))) (-3885 (($ (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 35 (|has| $ (-6 -4415))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4415))) (($ (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 111 (|has| $ (-6 -4415)))) (-2319 (($ (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71) (($ (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $ $) 167) (($ (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 110)) (-3770 (($ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) 226)) (-3267 (((-112) $ (-771)) 10)) (-1458 (((-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 129)) (-3860 (((-112) $) 125)) (-3380 (((-1157) $) 22 (-2768 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| |#2| (-1099)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099))))) (-2641 (($ $ (-771)) 146) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) 144)) (-4052 (((-644 |#1|) $) 64)) (-1826 (((-112) |#1| $) 65)) (-3278 (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) 40)) (-3888 (($ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) 41) (($ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $ (-566)) 220) (($ $ $ (-566)) 219)) (-1859 (($ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $ (-566)) 163) (($ $ $ (-566)) 162)) (-3725 (((-644 |#1|) $) 94) (((-644 (-566)) $) 184)) (-1644 (((-112) |#1| $) 93) (((-112) (-566) $) 185)) (-4072 (((-1119) $) 21 (-2768 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| |#2| (-1099)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099))))) (-3908 ((|#2| $) 98 (|has| |#1| (-850))) (($ $ (-771)) 140) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) 138)) (-3668 (((-3 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) "failed") (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 52) (((-3 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) "failed") (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 172)) (-3787 (($ $ |#2|) 99 (|has| $ (-6 -4415))) (($ $ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) 180 (|has| $ (-6 -4415)))) (-1973 (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) 42)) (-3254 (((-112) $) 192)) (-2823 (((-112) (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 33 (|has| $ (-6 -4414))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4414))) (((-112) (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 113 (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))))) 27 (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (($ $ (-295 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) 26 (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (($ $ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) 25 (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (($ $ (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) 24 (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) 87 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) 85 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 (-295 |#2|))) 84 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) 122 (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (($ $ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) 121 (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (($ $ (-295 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) 120 (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (($ $ (-644 (-295 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))))) 119 (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099))))) (-3814 (((-112) $ $) 14)) (-2847 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099)))) (((-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) 183 (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099))))) (-3486 (((-644 |#2|) $) 92) (((-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 186)) (-2872 (((-112) $) 11)) (-3493 (($) 12)) (-1309 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $ (-566) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) 188) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $ (-566)) 187) (($ $ (-1231 (-566))) 166) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $ "last") 145) (($ $ "rest") 142) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $ "first") 139) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $ "value") 127)) (-1696 (((-566) $ $) 130)) (-1792 (($) 50) (($ (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) 49)) (-1308 (($ $ (-566)) 223) (($ $ (-1231 (-566))) 222)) (-2166 (($ $ (-566)) 165) (($ $ (-1231 (-566))) 164)) (-3786 (((-112) $) 128)) (-4018 (($ $) 152)) (-3810 (($ $) 153 (|has| $ (-6 -4415)))) (-2916 (((-771) $) 151)) (-1922 (($ $) 150)) (-4083 (((-771) (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 32 (|has| $ (-6 -4414))) (((-771) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) 29 (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| $ (-6 -4414)))) (((-771) |#2| $) 82 (-12 (|has| |#2| (-1099)) (|has| $ (-6 -4414)))) (((-771) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4414))) (((-771) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) 117 (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| $ (-6 -4414)))) (((-771) (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 114 (|has| $ (-6 -4414)))) (-2661 (($ $ $ (-566)) 203 (|has| $ (-6 -4415)))) (-1480 (($ $) 13)) (-2376 (((-538) $) 60 (-2768 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-614 (-538))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-614 (-538)))))) (-1340 (($ (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) 51) (($ (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) 171)) (-1690 (($ $ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) 225) (($ $ $) 224)) (-4386 (($ $ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) 169) (($ (-644 $)) 168) (($ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) 137) (($ $ $) 136)) (-3152 (((-862) $) 18 (-2768 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-613 (-862))) (|has| |#2| (-613 (-862))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-613 (-862)))))) (-1926 (((-644 $) $) 123)) (-4385 (((-112) $ $) 131 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (-3044 (((-112) $ $) 23 (-2768 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| |#2| (-1099)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099))))) (-2948 (($ (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) 43)) (-2649 (((-3 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) "failed") |#1| $) 109)) (-2210 (((-112) (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 34 (|has| $ (-6 -4414))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4414))) (((-112) (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 112 (|has| $ (-6 -4414)))) (-2968 (((-112) $ $) 196 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-850)))) (-2946 (((-112) $ $) 195 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-850)))) (-2914 (((-112) $ $) 20 (-2768 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| |#2| (-1099)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099))))) (-2956 (((-112) $ $) 197 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-850)))) (-2935 (((-112) $ $) 194 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-850)))) (-3000 (((-771) $) 6 (|has| $ (-6 -4414))))) (((-36 |#1| |#2|) (-140) (-1099) (-1099)) (T -36)) -((-2694 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-5 *2 (-2 (|:| -2004 *3) (|:| -3867 *4)))))) -(-13 (-1190 |t#1| |t#2|) (-666 (-2 (|:| -2004 |t#1|) (|:| -3867 |t#2|))) (-10 -8 (-15 -2694 ((-3 (-2 (|:| -2004 |t#1|) (|:| -3867 |t#2|)) "failed") |t#1| $)))) -(((-34) . T) ((-107 #0=(-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) . T) ((-102) -2809 (|has| |#2| (-1099)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-850))) ((-613 (-862)) -2809 (|has| |#2| (-1099)) (|has| |#2| (-613 (-862))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-850)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-613 (-862)))) ((-151 #1=(-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) . T) ((-614 (-538)) |has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-614 (-538))) ((-229 #0#) . T) ((-235 #0#) . T) ((-287 #2=(-566) #1#) . T) ((-287 |#1| |#2|) . T) ((-289 #2# #1#) . T) ((-289 |#1| |#2|) . T) ((-310 #1#) -12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099))) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((-283 #1#) . T) ((-375 #1#) . T) ((-491 #1#) . T) ((-491 |#2|) . T) ((-604 #2# #1#) . T) ((-604 |#1| |#2|) . T) ((-516 #1# #1#) -12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099))) ((-516 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((-610 |#1| |#2|) . T) ((-651 #1#) . T) ((-666 #1#) . T) ((-850) |has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-850)) ((-1010 #1#) . T) ((-1099) -2809 (|has| |#2| (-1099)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-850))) ((-1148 #1#) . T) ((-1190 |#1| |#2|) . T) ((-1214) . T) ((-1252 #1#) . T)) -((-3783 (((-862) $) NIL) (($ (-566)) NIL) (($ |#2|) 10))) -(((-37 |#1| |#2|) (-10 -8 (-15 -3783 (|#1| |#2|)) (-15 -3783 (|#1| (-566))) (-15 -3783 ((-862) |#1|))) (-38 |#2|) (-172)) (T -37)) -NIL -(-10 -8 (-15 -3783 (|#1| |#2|)) (-15 -3783 (|#1| (-566))) (-15 -3783 ((-862) |#1|))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-4175 (((-3 $ "failed") $ $) 20)) (-3012 (($) 18 T CONST)) (-1878 (((-3 $ "failed") $) 37)) (-3934 (((-112) $) 35)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3783 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 44)) (-2107 (((-771)) 32 T CONST)) (-3117 (((-112) $ $) 9)) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-2947 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +((-2649 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-5 *2 (-2 (|:| -2674 *3) (|:| -2636 *4)))))) +(-13 (-1190 |t#1| |t#2|) (-666 (-2 (|:| -2674 |t#1|) (|:| -2636 |t#2|))) (-10 -8 (-15 -2649 ((-3 (-2 (|:| -2674 |t#1|) (|:| -2636 |t#2|)) "failed") |t#1| $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) . T) ((-102) -2768 (|has| |#2| (-1099)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-850))) ((-613 (-862)) -2768 (|has| |#2| (-1099)) (|has| |#2| (-613 (-862))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-850)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-613 (-862)))) ((-151 #1=(-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) . T) ((-614 (-538)) |has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-614 (-538))) ((-229 #0#) . T) ((-235 #0#) . T) ((-287 #2=(-566) #1#) . T) ((-287 |#1| |#2|) . T) ((-289 #2# #1#) . T) ((-289 |#1| |#2|) . T) ((-310 #1#) -12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099))) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((-283 #1#) . T) ((-375 #1#) . T) ((-491 #1#) . T) ((-491 |#2|) . T) ((-604 #2# #1#) . T) ((-604 |#1| |#2|) . T) ((-516 #1# #1#) -12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099))) ((-516 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((-610 |#1| |#2|) . T) ((-651 #1#) . T) ((-666 #1#) . T) ((-850) |has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-850)) ((-1010 #1#) . T) ((-1099) -2768 (|has| |#2| (-1099)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-850))) ((-1148 #1#) . T) ((-1190 |#1| |#2|) . T) ((-1214) . T) ((-1252 #1#) . T)) +((-3152 (((-862) $) NIL) (($ (-566)) NIL) (($ |#2|) 10))) +(((-37 |#1| |#2|) (-10 -8 (-15 -3152 (|#1| |#2|)) (-15 -3152 (|#1| (-566))) (-15 -3152 ((-862) |#1|))) (-38 |#2|) (-172)) (T -37)) +NIL +(-10 -8 (-15 -3152 (|#1| |#2|)) (-15 -3152 (|#1| (-566))) (-15 -3152 ((-862) |#1|))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-3967 (((-3 $ "failed") $ $) 20)) (-2463 (($) 18 T CONST)) (-3245 (((-3 $ "failed") $) 37)) (-2389 (((-112) $) 35)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3152 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 44)) (-2593 (((-771)) 32 T CONST)) (-3044 (((-112) $ $) 9)) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-2914 (((-112) $ $) 6)) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) (((-38 |#1|) (-140) (-172)) (T -38)) NIL (-13 (-1049) (-717 |t#1|) (-616 |t#1|)) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-616 (-566)) . T) ((-616 |#1|) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-640 |#1|) . T) ((-717 |#1|) . T) ((-726) . T) ((-1051 |#1|) . T) ((-1056 |#1|) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) -((-1815 (((-420 |#1|) |#1|) 41)) (-3719 (((-420 |#1|) |#1|) 30) (((-420 |#1|) |#1| (-644 (-48))) 33)) (-2146 (((-112) |#1|) 59))) -(((-39 |#1|) (-10 -7 (-15 -3719 ((-420 |#1|) |#1| (-644 (-48)))) (-15 -3719 ((-420 |#1|) |#1|)) (-15 -1815 ((-420 |#1|) |#1|)) (-15 -2146 ((-112) |#1|))) (-1240 (-48))) (T -39)) -((-2146 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1240 (-48))))) (-1815 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1240 (-48))))) (-3719 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1240 (-48))))) (-3719 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-48))) (-5 *2 (-420 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1240 (-48)))))) -(-10 -7 (-15 -3719 ((-420 |#1|) |#1| (-644 (-48)))) (-15 -3719 ((-420 |#1|) |#1|)) (-15 -1815 ((-420 |#1|) |#1|)) (-15 -2146 ((-112) |#1|))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-3926 (((-2 (|:| |num| (-1264 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| (-409 |#2|) (-365)))) (-3991 (($ $) NIL (|has| (-409 |#2|) (-365)))) (-2388 (((-112) $) NIL (|has| (-409 |#2|) (-365)))) (-1872 (((-689 (-409 |#2|)) (-1264 $)) NIL) (((-689 (-409 |#2|))) NIL)) (-3837 (((-409 |#2|) $) NIL)) (-3778 (((-1187 (-921) (-771)) (-566)) NIL (|has| (-409 |#2|) (-351)))) (-4175 (((-3 $ "failed") $ $) NIL)) (-1550 (($ $) NIL (|has| (-409 |#2|) (-365)))) (-3184 (((-420 $) $) NIL (|has| (-409 |#2|) (-365)))) (-2837 (((-112) $ $) NIL (|has| (-409 |#2|) (-365)))) (-1970 (((-771)) NIL (|has| (-409 |#2|) (-370)))) (-1639 (((-112)) NIL)) (-2873 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-3012 (($) NIL T CONST)) (-4307 (((-3 (-566) "failed") $) NIL (|has| (-409 |#2|) (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| (-409 |#2|) (-1038 (-409 (-566))))) (((-3 (-409 |#2|) "failed") $) NIL)) (-4205 (((-566) $) NIL (|has| (-409 |#2|) (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| (-409 |#2|) (-1038 (-409 (-566))))) (((-409 |#2|) $) NIL)) (-2392 (($ (-1264 (-409 |#2|)) (-1264 $)) NIL) (($ (-1264 (-409 |#2|))) 61) (($ (-1264 |#2|) |#2|) 136)) (-1910 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-409 |#2|) (-351)))) (-2946 (($ $ $) NIL (|has| (-409 |#2|) (-365)))) (-4360 (((-689 (-409 |#2|)) $ (-1264 $)) NIL) (((-689 (-409 |#2|)) $) NIL)) (-3577 (((-689 (-566)) (-689 $)) NIL (|has| (-409 |#2|) (-639 (-566)))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| (-409 |#2|) (-639 (-566)))) (((-2 (|:| -4227 (-689 (-409 |#2|))) (|:| |vec| (-1264 (-409 |#2|)))) (-689 $) (-1264 $)) NIL) (((-689 (-409 |#2|)) (-689 $)) NIL)) (-3608 (((-1264 $) (-1264 $)) NIL)) (-1676 (($ |#3|) NIL) (((-3 $ "failed") (-409 |#3|)) NIL (|has| (-409 |#2|) (-365)))) (-1878 (((-3 $ "failed") $) NIL)) (-1431 (((-644 (-644 |#1|))) NIL (|has| |#1| (-370)))) (-3811 (((-112) |#1| |#1|) NIL)) (-4313 (((-921)) NIL)) (-1552 (($) NIL (|has| (-409 |#2|) (-370)))) (-1361 (((-112)) NIL)) (-2979 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2957 (($ $ $) NIL (|has| (-409 |#2|) (-365)))) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL (|has| (-409 |#2|) (-365)))) (-4075 (($ $) NIL)) (-2781 (($) NIL (|has| (-409 |#2|) (-351)))) (-3506 (((-112) $) NIL (|has| (-409 |#2|) (-351)))) (-3369 (($ $ (-771)) NIL (|has| (-409 |#2|) (-351))) (($ $) NIL (|has| (-409 |#2|) (-351)))) (-3268 (((-112) $) NIL (|has| (-409 |#2|) (-365)))) (-3254 (((-921) $) NIL (|has| (-409 |#2|) (-351))) (((-833 (-921)) $) NIL (|has| (-409 |#2|) (-351)))) (-3934 (((-112) $) NIL)) (-3285 (((-771)) NIL)) (-1433 (((-1264 $) (-1264 $)) 111)) (-1577 (((-409 |#2|) $) NIL)) (-3545 (((-644 (-952 |#1|)) (-1175)) NIL (|has| |#1| (-365)))) (-4363 (((-3 $ "failed") $) NIL (|has| (-409 |#2|) (-351)))) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| (-409 |#2|) (-365)))) (-1627 ((|#3| $) NIL (|has| (-409 |#2|) (-365)))) (-3681 (((-921) $) NIL (|has| (-409 |#2|) (-370)))) (-1662 ((|#3| $) NIL)) (-2167 (($ (-644 $)) NIL (|has| (-409 |#2|) (-365))) (($ $ $) NIL (|has| (-409 |#2|) (-365)))) (-4117 (((-1157) $) NIL)) (-1490 (((-1269) (-771)) 88)) (-2571 (((-689 (-409 |#2|))) 56)) (-3829 (((-689 (-409 |#2|))) 49)) (-1713 (($ $) NIL (|has| (-409 |#2|) (-365)))) (-2918 (($ (-1264 |#2|) |#2|) 137)) (-4359 (((-689 (-409 |#2|))) 50)) (-3707 (((-689 (-409 |#2|))) 48)) (-2016 (((-2 (|:| |num| (-689 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 135)) (-1812 (((-2 (|:| |num| (-1264 |#2|)) (|:| |den| |#2|)) $) 68)) (-3815 (((-1264 $)) 47)) (-2444 (((-1264 $)) 46)) (-2455 (((-112) $) NIL)) (-3810 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-1761 (($) NIL (|has| (-409 |#2|) (-351)) CONST)) (-2178 (($ (-921)) NIL (|has| (-409 |#2|) (-370)))) (-3288 (((-3 |#2| "failed")) NIL)) (-4035 (((-1119) $) NIL)) (-3686 (((-771)) NIL)) (-3441 (($) NIL)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| (-409 |#2|) (-365)))) (-2214 (($ (-644 $)) NIL (|has| (-409 |#2|) (-365))) (($ $ $) NIL (|has| (-409 |#2|) (-365)))) (-1548 (((-644 (-2 (|:| -3719 (-566)) (|:| -2852 (-566))))) NIL (|has| (-409 |#2|) (-351)))) (-3719 (((-420 $) $) NIL (|has| (-409 |#2|) (-365)))) (-3148 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-409 |#2|) (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| (-409 |#2|) (-365)))) (-2994 (((-3 $ "failed") $ $) NIL (|has| (-409 |#2|) (-365)))) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| (-409 |#2|) (-365)))) (-3039 (((-771) $) NIL (|has| (-409 |#2|) (-365)))) (-4390 ((|#1| $ |#1| |#1|) NIL)) (-3204 (((-3 |#2| "failed")) NIL)) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL (|has| (-409 |#2|) (-365)))) (-3652 (((-409 |#2|) (-1264 $)) NIL) (((-409 |#2|)) 44)) (-1437 (((-771) $) NIL (|has| (-409 |#2|) (-351))) (((-3 (-771) "failed") $ $) NIL (|has| (-409 |#2|) (-351)))) (-3561 (($ $ (-1 (-409 |#2|) (-409 |#2|)) (-771)) NIL (|has| (-409 |#2|) (-365))) (($ $ (-1 (-409 |#2|) (-409 |#2|))) NIL (|has| (-409 |#2|) (-365))) (($ $ (-1 |#2| |#2|)) 131) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-771)) NIL (-2809 (-12 (|has| (-409 |#2|) (-233)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-351)))) (($ $) NIL (-2809 (-12 (|has| (-409 |#2|) (-233)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-351))))) (-3213 (((-689 (-409 |#2|)) (-1264 $) (-1 (-409 |#2|) (-409 |#2|))) NIL (|has| (-409 |#2|) (-365)))) (-1616 ((|#3|) 55)) (-3974 (($) NIL (|has| (-409 |#2|) (-351)))) (-2154 (((-1264 (-409 |#2|)) $ (-1264 $)) NIL) (((-689 (-409 |#2|)) (-1264 $) (-1264 $)) NIL) (((-1264 (-409 |#2|)) $) 62) (((-689 (-409 |#2|)) (-1264 $)) 112)) (-1348 (((-1264 (-409 |#2|)) $) NIL) (($ (-1264 (-409 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1656 (((-3 (-1264 $) "failed") (-689 $)) NIL (|has| (-409 |#2|) (-351)))) (-2258 (((-1264 $) (-1264 $)) NIL)) (-3783 (((-862) $) NIL) (($ (-566)) NIL) (($ (-409 |#2|)) NIL) (($ (-409 (-566))) NIL (-2809 (|has| (-409 |#2|) (-1038 (-409 (-566)))) (|has| (-409 |#2|) (-365)))) (($ $) NIL (|has| (-409 |#2|) (-365)))) (-3144 (($ $) NIL (|has| (-409 |#2|) (-351))) (((-3 $ "failed") $) NIL (|has| (-409 |#2|) (-145)))) (-1820 ((|#3| $) NIL)) (-2107 (((-771)) NIL T CONST)) (-2379 (((-112)) 42)) (-3382 (((-112) |#1|) 54) (((-112) |#2|) 143)) (-3117 (((-112) $ $) NIL)) (-2365 (((-1264 $)) 102)) (-2695 (((-112) $ $) NIL (|has| (-409 |#2|) (-365)))) (-2014 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3740 (((-112)) NIL)) (-2479 (($) 17 T CONST)) (-4334 (($) 27 T CONST)) (-2875 (($ $ (-1 (-409 |#2|) (-409 |#2|)) (-771)) NIL (|has| (-409 |#2|) (-365))) (($ $ (-1 (-409 |#2|) (-409 |#2|))) NIL (|has| (-409 |#2|) (-365))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-771)) NIL (-2809 (-12 (|has| (-409 |#2|) (-233)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-351)))) (($ $) NIL (-2809 (-12 (|has| (-409 |#2|) (-233)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-351))))) (-2947 (((-112) $ $) NIL)) (-3065 (($ $ $) NIL (|has| (-409 |#2|) (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL (|has| (-409 |#2|) (-365)))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 |#2|)) NIL) (($ (-409 |#2|) $) NIL) (($ (-409 (-566)) $) NIL (|has| (-409 |#2|) (-365))) (($ $ (-409 (-566))) NIL (|has| (-409 |#2|) (-365))))) -(((-40 |#1| |#2| |#3| |#4|) (-13 (-344 |#1| |#2| |#3|) (-10 -7 (-15 -1490 ((-1269) (-771))))) (-365) (-1240 |#1|) (-1240 (-409 |#2|)) |#3|) (T -40)) -((-1490 (*1 *2 *3) (-12 (-5 *3 (-771)) (-4 *4 (-365)) (-4 *5 (-1240 *4)) (-5 *2 (-1269)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1240 (-409 *5))) (-14 *7 *6)))) -(-13 (-344 |#1| |#2| |#3|) (-10 -7 (-15 -1490 ((-1269) (-771))))) -((-2103 ((|#2| |#2|) 47)) (-1993 ((|#2| |#2|) 139 (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-13 (-454) (-1038 (-566))))))) (-3831 ((|#2| |#2|) 100 (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-13 (-454) (-1038 (-566))))))) (-1768 ((|#2| |#2|) 101 (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-13 (-454) (-1038 (-566))))))) (-2939 ((|#2| (-114) |#2| (-771)) 135 (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-13 (-454) (-1038 (-566))))))) (-3253 (((-1171 |#2|) |#2|) 44)) (-4116 ((|#2| |#2| (-644 (-612 |#2|))) 18) ((|#2| |#2| (-644 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) -(((-41 |#1| |#2|) (-10 -7 (-15 -2103 (|#2| |#2|)) (-15 -4116 (|#2| |#2|)) (-15 -4116 (|#2| |#2| |#2|)) (-15 -4116 (|#2| |#2| (-644 |#2|))) (-15 -4116 (|#2| |#2| (-644 (-612 |#2|)))) (-15 -3253 ((-1171 |#2|) |#2|)) (IF (|has| |#1| (-13 (-454) (-1038 (-566)))) (IF (|has| |#2| (-432 |#1|)) (PROGN (-15 -1768 (|#2| |#2|)) (-15 -3831 (|#2| |#2|)) (-15 -1993 (|#2| |#2|)) (-15 -2939 (|#2| (-114) |#2| (-771)))) |%noBranch|) |%noBranch|)) (-558) (-13 (-365) (-303) (-10 -8 (-15 -4326 ((-1124 |#1| (-612 $)) $)) (-15 -4339 ((-1124 |#1| (-612 $)) $)) (-15 -3783 ($ (-1124 |#1| (-612 $))))))) (T -41)) -((-2939 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-114)) (-5 *4 (-771)) (-4 *5 (-13 (-454) (-1038 (-566)))) (-4 *5 (-558)) (-5 *1 (-41 *5 *2)) (-4 *2 (-432 *5)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -4326 ((-1124 *5 (-612 $)) $)) (-15 -4339 ((-1124 *5 (-612 $)) $)) (-15 -3783 ($ (-1124 *5 (-612 $))))))))) (-1993 (*1 *2 *2) (-12 (-4 *3 (-13 (-454) (-1038 (-566)))) (-4 *3 (-558)) (-5 *1 (-41 *3 *2)) (-4 *2 (-432 *3)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -4326 ((-1124 *3 (-612 $)) $)) (-15 -4339 ((-1124 *3 (-612 $)) $)) (-15 -3783 ($ (-1124 *3 (-612 $))))))))) (-3831 (*1 *2 *2) (-12 (-4 *3 (-13 (-454) (-1038 (-566)))) (-4 *3 (-558)) (-5 *1 (-41 *3 *2)) (-4 *2 (-432 *3)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -4326 ((-1124 *3 (-612 $)) $)) (-15 -4339 ((-1124 *3 (-612 $)) $)) (-15 -3783 ($ (-1124 *3 (-612 $))))))))) (-1768 (*1 *2 *2) (-12 (-4 *3 (-13 (-454) (-1038 (-566)))) (-4 *3 (-558)) (-5 *1 (-41 *3 *2)) (-4 *2 (-432 *3)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -4326 ((-1124 *3 (-612 $)) $)) (-15 -4339 ((-1124 *3 (-612 $)) $)) (-15 -3783 ($ (-1124 *3 (-612 $))))))))) (-3253 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-1171 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-365) (-303) (-10 -8 (-15 -4326 ((-1124 *4 (-612 $)) $)) (-15 -4339 ((-1124 *4 (-612 $)) $)) (-15 -3783 ($ (-1124 *4 (-612 $))))))))) (-4116 (*1 *2 *2 *3) (-12 (-5 *3 (-644 (-612 *2))) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -4326 ((-1124 *4 (-612 $)) $)) (-15 -4339 ((-1124 *4 (-612 $)) $)) (-15 -3783 ($ (-1124 *4 (-612 $))))))) (-4 *4 (-558)) (-5 *1 (-41 *4 *2)))) (-4116 (*1 *2 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -4326 ((-1124 *4 (-612 $)) $)) (-15 -4339 ((-1124 *4 (-612 $)) $)) (-15 -3783 ($ (-1124 *4 (-612 $))))))) (-4 *4 (-558)) (-5 *1 (-41 *4 *2)))) (-4116 (*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -4326 ((-1124 *3 (-612 $)) $)) (-15 -4339 ((-1124 *3 (-612 $)) $)) (-15 -3783 ($ (-1124 *3 (-612 $))))))))) (-4116 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -4326 ((-1124 *3 (-612 $)) $)) (-15 -4339 ((-1124 *3 (-612 $)) $)) (-15 -3783 ($ (-1124 *3 (-612 $))))))))) (-2103 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -4326 ((-1124 *3 (-612 $)) $)) (-15 -4339 ((-1124 *3 (-612 $)) $)) (-15 -3783 ($ (-1124 *3 (-612 $)))))))))) -(-10 -7 (-15 -2103 (|#2| |#2|)) (-15 -4116 (|#2| |#2|)) (-15 -4116 (|#2| |#2| |#2|)) (-15 -4116 (|#2| |#2| (-644 |#2|))) (-15 -4116 (|#2| |#2| (-644 (-612 |#2|)))) (-15 -3253 ((-1171 |#2|) |#2|)) (IF (|has| |#1| (-13 (-454) (-1038 (-566)))) (IF (|has| |#2| (-432 |#1|)) (PROGN (-15 -1768 (|#2| |#2|)) (-15 -3831 (|#2| |#2|)) (-15 -1993 (|#2| |#2|)) (-15 -2939 (|#2| (-114) |#2| (-771)))) |%noBranch|) |%noBranch|)) -((-3719 (((-420 (-1171 |#3|)) (-1171 |#3|) (-644 (-48))) 23) (((-420 |#3|) |#3| (-644 (-48))) 19))) -(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -3719 ((-420 |#3|) |#3| (-644 (-48)))) (-15 -3719 ((-420 (-1171 |#3|)) (-1171 |#3|) (-644 (-48))))) (-850) (-793) (-949 (-48) |#2| |#1|)) (T -42)) -((-3719 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-48))) (-4 *5 (-850)) (-4 *6 (-793)) (-4 *7 (-949 (-48) *6 *5)) (-5 *2 (-420 (-1171 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1171 *7)))) (-3719 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-48))) (-4 *5 (-850)) (-4 *6 (-793)) (-5 *2 (-420 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-949 (-48) *6 *5))))) -(-10 -7 (-15 -3719 ((-420 |#3|) |#3| (-644 (-48)))) (-15 -3719 ((-420 (-1171 |#3|)) (-1171 |#3|) (-644 (-48))))) -((-3330 (((-771) |#2|) 72)) (-2687 (((-771) |#2|) 76)) (-3488 (((-644 |#2|)) 39)) (-2793 (((-771) |#2|) 75)) (-4129 (((-771) |#2|) 71)) (-3650 (((-771) |#2|) 74)) (-3678 (((-644 (-689 |#1|))) 67)) (-3645 (((-644 |#2|)) 62)) (-1339 (((-644 |#2|) |#2|) 50)) (-2523 (((-644 |#2|)) 64)) (-3336 (((-644 |#2|)) 63)) (-1642 (((-644 (-689 |#1|))) 55)) (-3959 (((-644 |#2|)) 61)) (-3066 (((-644 |#2|) |#2|) 49)) (-1570 (((-644 |#2|)) 57)) (-3665 (((-644 (-689 |#1|))) 68)) (-3350 (((-644 |#2|)) 66)) (-2365 (((-1264 |#2|) (-1264 |#2|)) 101 (|has| |#1| (-308))))) -(((-43 |#1| |#2|) (-10 -7 (-15 -2793 ((-771) |#2|)) (-15 -2687 ((-771) |#2|)) (-15 -4129 ((-771) |#2|)) (-15 -3330 ((-771) |#2|)) (-15 -3650 ((-771) |#2|)) (-15 -1570 ((-644 |#2|))) (-15 -3066 ((-644 |#2|) |#2|)) (-15 -1339 ((-644 |#2|) |#2|)) (-15 -3959 ((-644 |#2|))) (-15 -3645 ((-644 |#2|))) (-15 -3336 ((-644 |#2|))) (-15 -2523 ((-644 |#2|))) (-15 -3350 ((-644 |#2|))) (-15 -1642 ((-644 (-689 |#1|)))) (-15 -3678 ((-644 (-689 |#1|)))) (-15 -3665 ((-644 (-689 |#1|)))) (-15 -3488 ((-644 |#2|))) (IF (|has| |#1| (-308)) (-15 -2365 ((-1264 |#2|) (-1264 |#2|))) |%noBranch|)) (-558) (-419 |#1|)) (T -43)) -((-2365 (*1 *2 *2) (-12 (-5 *2 (-1264 *4)) (-4 *4 (-419 *3)) (-4 *3 (-308)) (-4 *3 (-558)) (-5 *1 (-43 *3 *4)))) (-3488 (*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-419 *3)))) (-3665 (*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-644 (-689 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-419 *3)))) (-3678 (*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-644 (-689 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-419 *3)))) (-1642 (*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-644 (-689 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-419 *3)))) (-3350 (*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-419 *3)))) (-2523 (*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-419 *3)))) (-3336 (*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-419 *3)))) (-3645 (*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-419 *3)))) (-3959 (*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-419 *3)))) (-1339 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-644 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-419 *4)))) (-3066 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-644 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-419 *4)))) (-1570 (*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-419 *3)))) (-3650 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-771)) (-5 *1 (-43 *4 *3)) (-4 *3 (-419 *4)))) (-3330 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-771)) (-5 *1 (-43 *4 *3)) (-4 *3 (-419 *4)))) (-4129 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-771)) (-5 *1 (-43 *4 *3)) (-4 *3 (-419 *4)))) (-2687 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-771)) (-5 *1 (-43 *4 *3)) (-4 *3 (-419 *4)))) (-2793 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-771)) (-5 *1 (-43 *4 *3)) (-4 *3 (-419 *4))))) -(-10 -7 (-15 -2793 ((-771) |#2|)) (-15 -2687 ((-771) |#2|)) (-15 -4129 ((-771) |#2|)) (-15 -3330 ((-771) |#2|)) (-15 -3650 ((-771) |#2|)) (-15 -1570 ((-644 |#2|))) (-15 -3066 ((-644 |#2|) |#2|)) (-15 -1339 ((-644 |#2|) |#2|)) (-15 -3959 ((-644 |#2|))) (-15 -3645 ((-644 |#2|))) (-15 -3336 ((-644 |#2|))) (-15 -2523 ((-644 |#2|))) (-15 -3350 ((-644 |#2|))) (-15 -1642 ((-644 (-689 |#1|)))) (-15 -3678 ((-644 (-689 |#1|)))) (-15 -3665 ((-644 (-689 |#1|)))) (-15 -3488 ((-644 |#2|))) (IF (|has| |#1| (-308)) (-15 -2365 ((-1264 |#2|) (-1264 |#2|))) |%noBranch|)) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-3002 (((-3 $ "failed")) NIL (|has| |#1| (-558)))) (-4175 (((-3 $ "failed") $ $) NIL)) (-4085 (((-1264 (-689 |#1|)) (-1264 $)) NIL) (((-1264 (-689 |#1|))) 24)) (-2092 (((-1264 $)) 55)) (-3012 (($) NIL T CONST)) (-4119 (((-3 (-2 (|:| |particular| $) (|:| -2365 (-644 $))) "failed")) NIL (|has| |#1| (-558)))) (-1446 (((-3 $ "failed")) NIL (|has| |#1| (-558)))) (-3058 (((-689 |#1|) (-1264 $)) NIL) (((-689 |#1|)) NIL)) (-2468 ((|#1| $) NIL)) (-4298 (((-689 |#1|) $ (-1264 $)) NIL) (((-689 |#1|) $) NIL)) (-2715 (((-3 $ "failed") $) NIL (|has| |#1| (-558)))) (-2727 (((-1171 (-952 |#1|))) NIL (|has| |#1| (-365)))) (-3942 (($ $ (-921)) NIL)) (-1670 ((|#1| $) NIL)) (-3757 (((-1171 |#1|) $) NIL (|has| |#1| (-558)))) (-2072 ((|#1| (-1264 $)) NIL) ((|#1|) NIL)) (-2410 (((-1171 |#1|) $) NIL)) (-3036 (((-112)) 102)) (-2392 (($ (-1264 |#1|) (-1264 $)) NIL) (($ (-1264 |#1|)) NIL)) (-1878 (((-3 $ "failed") $) 14 (|has| |#1| (-558)))) (-4313 (((-921)) 56)) (-2658 (((-112)) NIL)) (-2322 (($ $ (-921)) NIL)) (-1652 (((-112)) NIL)) (-1543 (((-112)) NIL)) (-2763 (((-112)) 104)) (-2906 (((-3 (-2 (|:| |particular| $) (|:| -2365 (-644 $))) "failed")) NIL (|has| |#1| (-558)))) (-1710 (((-3 $ "failed")) NIL (|has| |#1| (-558)))) (-1371 (((-689 |#1|) (-1264 $)) NIL) (((-689 |#1|)) NIL)) (-3307 ((|#1| $) NIL)) (-3131 (((-689 |#1|) $ (-1264 $)) NIL) (((-689 |#1|) $) NIL)) (-2305 (((-3 $ "failed") $) NIL (|has| |#1| (-558)))) (-2537 (((-1171 (-952 |#1|))) NIL (|has| |#1| (-365)))) (-2437 (($ $ (-921)) NIL)) (-3473 ((|#1| $) NIL)) (-4108 (((-1171 |#1|) $) NIL (|has| |#1| (-558)))) (-1950 ((|#1| (-1264 $)) NIL) ((|#1|) NIL)) (-1974 (((-1171 |#1|) $) NIL)) (-3390 (((-112)) 101)) (-4117 (((-1157) $) NIL)) (-3170 (((-112)) 109)) (-3326 (((-112)) 108)) (-2829 (((-112)) 110)) (-4035 (((-1119) $) NIL)) (-1976 (((-112)) 103)) (-4390 ((|#1| $ (-566)) 58)) (-2154 (((-1264 |#1|) $ (-1264 $)) 53) (((-689 |#1|) (-1264 $) (-1264 $)) NIL) (((-1264 |#1|) $) 28) (((-689 |#1|) (-1264 $)) NIL)) (-1348 (((-1264 |#1|) $) NIL) (($ (-1264 |#1|)) NIL)) (-3453 (((-644 (-952 |#1|)) (-1264 $)) NIL) (((-644 (-952 |#1|))) NIL)) (-3171 (($ $ $) NIL)) (-2638 (((-112)) 98)) (-3783 (((-862) $) 75) (($ (-1264 |#1|)) 22)) (-3117 (((-112) $ $) NIL)) (-2365 (((-1264 $)) 49)) (-3023 (((-644 (-1264 |#1|))) NIL (|has| |#1| (-558)))) (-2320 (($ $ $ $) NIL)) (-3232 (((-112)) 94)) (-1948 (($ (-689 |#1|) $) 18)) (-3027 (($ $ $) NIL)) (-2653 (((-112)) 100)) (-1843 (((-112)) 95)) (-1938 (((-112)) 93)) (-2479 (($) NIL T CONST)) (-2947 (((-112) $ $) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-921)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 84) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1141 |#2| |#1|) $) 19))) -(((-44 |#1| |#2| |#3| |#4|) (-13 (-419 |#1|) (-648 (-1141 |#2| |#1|)) (-10 -8 (-15 -3783 ($ (-1264 |#1|))))) (-365) (-921) (-644 (-1175)) (-1264 (-689 |#1|))) (T -44)) -((-3783 (*1 *1 *2) (-12 (-5 *2 (-1264 *3)) (-4 *3 (-365)) (-14 *6 (-1264 (-689 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-921)) (-14 *5 (-644 (-1175)))))) -(-13 (-419 |#1|) (-648 (-1141 |#2| |#1|)) (-10 -8 (-15 -3783 ($ (-1264 |#1|))))) -((-3007 (((-112) $ $) NIL (-2809 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-2233 (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL)) (-2593 (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL)) (-2223 (($ $) NIL)) (-4254 (($) NIL) (($ (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) NIL)) (-3734 (((-1269) $ |#1| |#1|) NIL (|has| $ (-6 -4415))) (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4415)))) (-2807 (($ $ (-566)) NIL (|has| $ (-6 -4415)))) (-2644 (((-112) (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-850)))) (-1944 (($ (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4415))) (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-850))))) (-1510 (($ (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-850)))) (-2256 (((-112) $ (-771)) NIL)) (-3396 (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) NIL (|has| $ (-6 -4415)))) (-4107 (($ $ $) 33 (|has| $ (-6 -4415)))) (-3178 (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) NIL (|has| $ (-6 -4415)))) (-2905 (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) 35 (|has| $ (-6 -4415)))) (-3923 ((|#2| $ |#1| |#2|) 53) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $ (-566) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) NIL (|has| $ (-6 -4415))) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $ (-1231 (-566)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) NIL (|has| $ (-6 -4415))) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $ "last" (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) NIL (|has| $ (-6 -4415))) (($ $ "rest" $) NIL (|has| $ (-6 -4415))) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $ "first" (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) NIL (|has| $ (-6 -4415))) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $ "value" (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) NIL (|has| $ (-6 -4415)))) (-3800 (($ $ (-644 $)) NIL (|has| $ (-6 -4415)))) (-4016 (($ (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414))) (($ (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL)) (-2701 (($ (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414))) (($ (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-2582 (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL)) (-2434 (((-3 |#2| "failed") |#1| $) 43)) (-3012 (($) NIL T CONST)) (-3413 (($ $) NIL (|has| $ (-6 -4415)))) (-1377 (($ $) NIL)) (-2010 (($ $ (-771)) NIL) (($ $) 29)) (-3657 (($ $) NIL (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (-2031 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099))))) (-2956 (($ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL (|has| $ (-6 -4414))) (($ (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-3 |#2| "failed") |#1| $) 56) (($ (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL) (($ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (-2665 (($ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (($ (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414))) (($ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (($ (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-1676 (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) NIL (|has| $ (-6 -4414))) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) NIL (|has| $ (-6 -4414))) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-2920 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4415))) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $ (-566) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) NIL (|has| $ (-6 -4415)))) (-2855 ((|#2| $ |#1|) NIL) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $ (-566)) NIL)) (-1902 (((-112) $) NIL)) (-4000 (((-566) (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL) (((-566) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099))) (((-566) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $ (-566)) NIL (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (-3979 (((-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 20 (|has| $ (-6 -4414))) (((-644 |#2|) $) NIL (|has| $ (-6 -4414))) (((-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 20 (|has| $ (-6 -4414)))) (-4009 (((-644 $) $) NIL)) (-3891 (((-112) $ $) NIL (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (-4265 (($ (-771) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) NIL)) (-2404 (((-112) $ (-771)) NIL)) (-3854 ((|#1| $) NIL (|has| |#1| (-850))) (((-566) $) 38 (|has| (-566) (-850)))) (-2097 (($ $ $) NIL (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-850)))) (-3463 (($ (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-850)))) (-3298 (($ (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-850)))) (-2329 (((-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-644 |#2|) $) NIL (|has| $ (-6 -4414))) (((-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099)))) (((-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099))))) (-2712 ((|#1| $) NIL (|has| |#1| (-850))) (((-566) $) 40 (|has| (-566) (-850)))) (-3962 (($ $ $) NIL (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-850)))) (-2908 (($ (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4415))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4415))) (($ (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4415)))) (-1301 (($ (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL)) (-1881 (($ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) NIL)) (-2603 (((-112) $ (-771)) NIL)) (-3701 (((-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL)) (-3438 (((-112) $) NIL)) (-4117 (((-1157) $) 49 (-2809 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-2686 (($ $ (-771)) NIL) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL)) (-4103 (((-644 |#1|) $) 22)) (-2876 (((-112) |#1| $) NIL)) (-4039 (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL)) (-3406 (($ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL) (($ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $ (-566)) NIL) (($ $ $ (-566)) NIL)) (-4276 (($ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $ (-566)) NIL) (($ $ $ (-566)) NIL)) (-4074 (((-644 |#1|) $) NIL) (((-644 (-566)) $) NIL)) (-3792 (((-112) |#1| $) NIL) (((-112) (-566) $) NIL)) (-4035 (((-1119) $) NIL (-2809 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-1998 ((|#2| $) NIL (|has| |#1| (-850))) (($ $ (-771)) NIL) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) 27)) (-2006 (((-3 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) "failed") (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL) (((-3 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) "failed") (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL)) (-4030 (($ $ |#2|) NIL (|has| $ (-6 -4415))) (($ $ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) NIL (|has| $ (-6 -4415)))) (-2539 (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL)) (-2373 (((-112) $) NIL)) (-2692 (((-112) (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))))) NIL (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (($ $ (-295 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) NIL (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (($ $ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) NIL (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (($ $ (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) NIL (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) NIL (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (($ $ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) NIL (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (($ $ (-295 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) NIL (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (($ $ (-644 (-295 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))))) NIL (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099))))) (-1932 (((-112) $ $) NIL)) (-4156 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099)))) (((-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099))))) (-2993 (((-644 |#2|) $) NIL) (((-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 19)) (-3467 (((-112) $) 18)) (-1494 (($) 14)) (-4390 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $ (-566) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) NIL) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $ (-566)) NIL) (($ $ (-1231 (-566))) NIL) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $ "first") NIL) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $ "value") NIL)) (-1416 (((-566) $ $) NIL)) (-3481 (($) 13) (($ (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) NIL)) (-1772 (($ $ (-566)) NIL) (($ $ (-1231 (-566))) NIL)) (-2187 (($ $ (-566)) NIL) (($ $ (-1231 (-566))) NIL)) (-3494 (((-112) $) NIL)) (-4272 (($ $) NIL)) (-1844 (($ $) NIL (|has| $ (-6 -4415)))) (-2833 (((-771) $) NIL)) (-2369 (($ $) NIL)) (-4045 (((-771) (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-771) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (((-771) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099)))) (((-771) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414))) (((-771) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (((-771) (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-1297 (($ $ $ (-566)) NIL (|has| $ (-6 -4415)))) (-3940 (($ $) NIL)) (-1348 (((-538) $) NIL (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-614 (-538))))) (-3796 (($ (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) NIL) (($ (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) NIL)) (-3480 (($ $ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) NIL) (($ $ $) NIL)) (-3721 (($ $ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) NIL) (($ (-644 $)) NIL) (($ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) 31) (($ $ $) NIL)) (-3783 (((-862) $) NIL (-2809 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-613 (-862))) (|has| |#2| (-613 (-862)))))) (-2462 (((-644 $) $) NIL)) (-4288 (((-112) $ $) NIL (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (-3117 (((-112) $ $) NIL (-2809 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-1748 (($ (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) NIL)) (-2694 (((-3 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) "failed") |#1| $) 51)) (-1894 (((-112) (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-3009 (((-112) $ $) NIL (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-850)))) (-2984 (((-112) $ $) NIL (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-850)))) (-2947 (((-112) $ $) NIL (-2809 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-2995 (((-112) $ $) NIL (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-850)))) (-2969 (((-112) $ $) NIL (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-850)))) (-3018 (((-771) $) 25 (|has| $ (-6 -4414))))) +((-3011 (((-420 |#1|) |#1|) 41)) (-1624 (((-420 |#1|) |#1|) 30) (((-420 |#1|) |#1| (-644 (-48))) 33)) (-3978 (((-112) |#1|) 59))) +(((-39 |#1|) (-10 -7 (-15 -1624 ((-420 |#1|) |#1| (-644 (-48)))) (-15 -1624 ((-420 |#1|) |#1|)) (-15 -3011 ((-420 |#1|) |#1|)) (-15 -3978 ((-112) |#1|))) (-1240 (-48))) (T -39)) +((-3978 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1240 (-48))))) (-3011 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1240 (-48))))) (-1624 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1240 (-48))))) (-1624 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-48))) (-5 *2 (-420 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1240 (-48)))))) +(-10 -7 (-15 -1624 ((-420 |#1|) |#1| (-644 (-48)))) (-15 -1624 ((-420 |#1|) |#1|)) (-15 -3011 ((-420 |#1|) |#1|)) (-15 -3978 ((-112) |#1|))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-2802 (((-2 (|:| |num| (-1264 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| (-409 |#2|) (-365)))) (-2161 (($ $) NIL (|has| (-409 |#2|) (-365)))) (-2345 (((-112) $) NIL (|has| (-409 |#2|) (-365)))) (-3899 (((-689 (-409 |#2|)) (-1264 $)) NIL) (((-689 (-409 |#2|))) NIL)) (-3833 (((-409 |#2|) $) NIL)) (-2894 (((-1187 (-921) (-771)) (-566)) NIL (|has| (-409 |#2|) (-351)))) (-3967 (((-3 $ "failed") $ $) NIL)) (-1378 (($ $) NIL (|has| (-409 |#2|) (-365)))) (-1364 (((-420 $) $) NIL (|has| (-409 |#2|) (-365)))) (-2085 (((-112) $ $) NIL (|has| (-409 |#2|) (-365)))) (-3870 (((-771)) NIL (|has| (-409 |#2|) (-370)))) (-2239 (((-112)) NIL)) (-3333 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2463 (($) NIL T CONST)) (-2229 (((-3 (-566) "failed") $) NIL (|has| (-409 |#2|) (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| (-409 |#2|) (-1038 (-409 (-566))))) (((-3 (-409 |#2|) "failed") $) NIL)) (-4158 (((-566) $) NIL (|has| (-409 |#2|) (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| (-409 |#2|) (-1038 (-409 (-566))))) (((-409 |#2|) $) NIL)) (-1563 (($ (-1264 (-409 |#2|)) (-1264 $)) NIL) (($ (-1264 (-409 |#2|))) 61) (($ (-1264 |#2|) |#2|) 136)) (-2347 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-409 |#2|) (-351)))) (-2933 (($ $ $) NIL (|has| (-409 |#2|) (-365)))) (-3578 (((-689 (-409 |#2|)) $ (-1264 $)) NIL) (((-689 (-409 |#2|)) $) NIL)) (-4089 (((-689 (-566)) (-689 $)) NIL (|has| (-409 |#2|) (-639 (-566)))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| (-409 |#2|) (-639 (-566)))) (((-2 (|:| -3361 (-689 (-409 |#2|))) (|:| |vec| (-1264 (-409 |#2|)))) (-689 $) (-1264 $)) NIL) (((-689 (-409 |#2|)) (-689 $)) NIL)) (-2108 (((-1264 $) (-1264 $)) NIL)) (-2873 (($ |#3|) NIL) (((-3 $ "failed") (-409 |#3|)) NIL (|has| (-409 |#2|) (-365)))) (-3245 (((-3 $ "failed") $) NIL)) (-3831 (((-644 (-644 |#1|))) NIL (|has| |#1| (-370)))) (-3748 (((-112) |#1| |#1|) NIL)) (-2755 (((-921)) NIL)) (-2715 (($) NIL (|has| (-409 |#2|) (-370)))) (-3032 (((-112)) NIL)) (-3756 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2945 (($ $ $) NIL (|has| (-409 |#2|) (-365)))) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL (|has| (-409 |#2|) (-365)))) (-2616 (($ $) NIL)) (-3359 (($) NIL (|has| (-409 |#2|) (-351)))) (-2466 (((-112) $) NIL (|has| (-409 |#2|) (-351)))) (-1574 (($ $ (-771)) NIL (|has| (-409 |#2|) (-351))) (($ $) NIL (|has| (-409 |#2|) (-351)))) (-1615 (((-112) $) NIL (|has| (-409 |#2|) (-365)))) (-2679 (((-921) $) NIL (|has| (-409 |#2|) (-351))) (((-833 (-921)) $) NIL (|has| (-409 |#2|) (-351)))) (-2389 (((-112) $) NIL)) (-3962 (((-771)) NIL)) (-2803 (((-1264 $) (-1264 $)) 111)) (-2064 (((-409 |#2|) $) NIL)) (-4172 (((-644 (-952 |#1|)) (-1175)) NIL (|has| |#1| (-365)))) (-2621 (((-3 $ "failed") $) NIL (|has| (-409 |#2|) (-351)))) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| (-409 |#2|) (-365)))) (-3468 ((|#3| $) NIL (|has| (-409 |#2|) (-365)))) (-1866 (((-921) $) NIL (|has| (-409 |#2|) (-370)))) (-2860 ((|#3| $) NIL)) (-2128 (($ (-644 $)) NIL (|has| (-409 |#2|) (-365))) (($ $ $) NIL (|has| (-409 |#2|) (-365)))) (-3380 (((-1157) $) NIL)) (-4384 (((-1269) (-771)) 88)) (-3224 (((-689 (-409 |#2|))) 56)) (-1740 (((-689 (-409 |#2|))) 49)) (-2748 (($ $) NIL (|has| (-409 |#2|) (-365)))) (-4364 (($ (-1264 |#2|) |#2|) 137)) (-3458 (((-689 (-409 |#2|))) 50)) (-2300 (((-689 (-409 |#2|))) 48)) (-2238 (((-2 (|:| |num| (-689 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 135)) (-2713 (((-2 (|:| |num| (-1264 |#2|)) (|:| |den| |#2|)) $) 68)) (-2942 (((-1264 $)) 47)) (-2736 (((-1264 $)) 46)) (-2534 (((-112) $) NIL)) (-3626 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3289 (($) NIL (|has| (-409 |#2|) (-351)) CONST)) (-2835 (($ (-921)) NIL (|has| (-409 |#2|) (-370)))) (-4257 (((-3 |#2| "failed")) NIL)) (-4072 (((-1119) $) NIL)) (-4200 (((-771)) NIL)) (-3302 (($) NIL)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| (-409 |#2|) (-365)))) (-2164 (($ (-644 $)) NIL (|has| (-409 |#2|) (-365))) (($ $ $) NIL (|has| (-409 |#2|) (-365)))) (-2442 (((-644 (-2 (|:| -1624 (-566)) (|:| -2201 (-566))))) NIL (|has| (-409 |#2|) (-351)))) (-1624 (((-420 $) $) NIL (|has| (-409 |#2|) (-365)))) (-3005 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-409 |#2|) (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL (|has| (-409 |#2|) (-365)))) (-2978 (((-3 $ "failed") $ $) NIL (|has| (-409 |#2|) (-365)))) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| (-409 |#2|) (-365)))) (-4357 (((-771) $) NIL (|has| (-409 |#2|) (-365)))) (-1309 ((|#1| $ |#1| |#1|) NIL)) (-1438 (((-3 |#2| "failed")) NIL)) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL (|has| (-409 |#2|) (-365)))) (-4068 (((-409 |#2|) (-1264 $)) NIL) (((-409 |#2|)) 44)) (-3169 (((-771) $) NIL (|has| (-409 |#2|) (-351))) (((-3 (-771) "failed") $ $) NIL (|has| (-409 |#2|) (-351)))) (-3629 (($ $ (-1 (-409 |#2|) (-409 |#2|)) (-771)) NIL (|has| (-409 |#2|) (-365))) (($ $ (-1 (-409 |#2|) (-409 |#2|))) NIL (|has| (-409 |#2|) (-365))) (($ $ (-1 |#2| |#2|)) 131) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-771)) NIL (-2768 (-12 (|has| (-409 |#2|) (-233)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-351)))) (($ $) NIL (-2768 (-12 (|has| (-409 |#2|) (-233)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-351))))) (-3225 (((-689 (-409 |#2|)) (-1264 $) (-1 (-409 |#2|) (-409 |#2|))) NIL (|has| (-409 |#2|) (-365)))) (-1705 ((|#3|) 55)) (-4122 (($) NIL (|has| (-409 |#2|) (-351)))) (-3350 (((-1264 (-409 |#2|)) $ (-1264 $)) NIL) (((-689 (-409 |#2|)) (-1264 $) (-1264 $)) NIL) (((-1264 (-409 |#2|)) $) 62) (((-689 (-409 |#2|)) (-1264 $)) 112)) (-2376 (((-1264 (-409 |#2|)) $) NIL) (($ (-1264 (-409 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3391 (((-3 (-1264 $) "failed") (-689 $)) NIL (|has| (-409 |#2|) (-351)))) (-1726 (((-1264 $) (-1264 $)) NIL)) (-3152 (((-862) $) NIL) (($ (-566)) NIL) (($ (-409 |#2|)) NIL) (($ (-409 (-566))) NIL (-2768 (|has| (-409 |#2|) (-1038 (-409 (-566)))) (|has| (-409 |#2|) (-365)))) (($ $) NIL (|has| (-409 |#2|) (-365)))) (-2633 (($ $) NIL (|has| (-409 |#2|) (-351))) (((-3 $ "failed") $) NIL (|has| (-409 |#2|) (-145)))) (-2318 ((|#3| $) NIL)) (-2593 (((-771)) NIL T CONST)) (-2675 (((-112)) 42)) (-3401 (((-112) |#1|) 54) (((-112) |#2|) 143)) (-3044 (((-112) $ $) NIL)) (-2875 (((-1264 $)) 102)) (-3014 (((-112) $ $) NIL (|has| (-409 |#2|) (-365)))) (-2019 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1361 (((-112)) NIL)) (-4356 (($) 17 T CONST)) (-4366 (($) 27 T CONST)) (-3497 (($ $ (-1 (-409 |#2|) (-409 |#2|)) (-771)) NIL (|has| (-409 |#2|) (-365))) (($ $ (-1 (-409 |#2|) (-409 |#2|))) NIL (|has| (-409 |#2|) (-365))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-771)) NIL (-2768 (-12 (|has| (-409 |#2|) (-233)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-351)))) (($ $) NIL (-2768 (-12 (|has| (-409 |#2|) (-233)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-351))))) (-2914 (((-112) $ $) NIL)) (-3025 (($ $ $) NIL (|has| (-409 |#2|) (-365)))) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL (|has| (-409 |#2|) (-365)))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 |#2|)) NIL) (($ (-409 |#2|) $) NIL) (($ (-409 (-566)) $) NIL (|has| (-409 |#2|) (-365))) (($ $ (-409 (-566))) NIL (|has| (-409 |#2|) (-365))))) +(((-40 |#1| |#2| |#3| |#4|) (-13 (-344 |#1| |#2| |#3|) (-10 -7 (-15 -4384 ((-1269) (-771))))) (-365) (-1240 |#1|) (-1240 (-409 |#2|)) |#3|) (T -40)) +((-4384 (*1 *2 *3) (-12 (-5 *3 (-771)) (-4 *4 (-365)) (-4 *5 (-1240 *4)) (-5 *2 (-1269)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1240 (-409 *5))) (-14 *7 *6)))) +(-13 (-344 |#1| |#2| |#3|) (-10 -7 (-15 -4384 ((-1269) (-771))))) +((-2171 ((|#2| |#2|) 47)) (-3706 ((|#2| |#2|) 139 (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-13 (-454) (-1038 (-566))))))) (-3562 ((|#2| |#2|) 100 (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-13 (-454) (-1038 (-566))))))) (-4002 ((|#2| |#2|) 101 (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-13 (-454) (-1038 (-566))))))) (-2569 ((|#2| (-114) |#2| (-771)) 135 (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-13 (-454) (-1038 (-566))))))) (-3735 (((-1171 |#2|) |#2|) 44)) (-3286 ((|#2| |#2| (-644 (-612 |#2|))) 18) ((|#2| |#2| (-644 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) +(((-41 |#1| |#2|) (-10 -7 (-15 -2171 (|#2| |#2|)) (-15 -3286 (|#2| |#2|)) (-15 -3286 (|#2| |#2| |#2|)) (-15 -3286 (|#2| |#2| (-644 |#2|))) (-15 -3286 (|#2| |#2| (-644 (-612 |#2|)))) (-15 -3735 ((-1171 |#2|) |#2|)) (IF (|has| |#1| (-13 (-454) (-1038 (-566)))) (IF (|has| |#2| (-432 |#1|)) (PROGN (-15 -4002 (|#2| |#2|)) (-15 -3562 (|#2| |#2|)) (-15 -3706 (|#2| |#2|)) (-15 -2569 (|#2| (-114) |#2| (-771)))) |%noBranch|) |%noBranch|)) (-558) (-13 (-365) (-303) (-10 -8 (-15 -2248 ((-1124 |#1| (-612 $)) $)) (-15 -2260 ((-1124 |#1| (-612 $)) $)) (-15 -3152 ($ (-1124 |#1| (-612 $))))))) (T -41)) +((-2569 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-114)) (-5 *4 (-771)) (-4 *5 (-13 (-454) (-1038 (-566)))) (-4 *5 (-558)) (-5 *1 (-41 *5 *2)) (-4 *2 (-432 *5)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -2248 ((-1124 *5 (-612 $)) $)) (-15 -2260 ((-1124 *5 (-612 $)) $)) (-15 -3152 ($ (-1124 *5 (-612 $))))))))) (-3706 (*1 *2 *2) (-12 (-4 *3 (-13 (-454) (-1038 (-566)))) (-4 *3 (-558)) (-5 *1 (-41 *3 *2)) (-4 *2 (-432 *3)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -2248 ((-1124 *3 (-612 $)) $)) (-15 -2260 ((-1124 *3 (-612 $)) $)) (-15 -3152 ($ (-1124 *3 (-612 $))))))))) (-3562 (*1 *2 *2) (-12 (-4 *3 (-13 (-454) (-1038 (-566)))) (-4 *3 (-558)) (-5 *1 (-41 *3 *2)) (-4 *2 (-432 *3)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -2248 ((-1124 *3 (-612 $)) $)) (-15 -2260 ((-1124 *3 (-612 $)) $)) (-15 -3152 ($ (-1124 *3 (-612 $))))))))) (-4002 (*1 *2 *2) (-12 (-4 *3 (-13 (-454) (-1038 (-566)))) (-4 *3 (-558)) (-5 *1 (-41 *3 *2)) (-4 *2 (-432 *3)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -2248 ((-1124 *3 (-612 $)) $)) (-15 -2260 ((-1124 *3 (-612 $)) $)) (-15 -3152 ($ (-1124 *3 (-612 $))))))))) (-3735 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-1171 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-365) (-303) (-10 -8 (-15 -2248 ((-1124 *4 (-612 $)) $)) (-15 -2260 ((-1124 *4 (-612 $)) $)) (-15 -3152 ($ (-1124 *4 (-612 $))))))))) (-3286 (*1 *2 *2 *3) (-12 (-5 *3 (-644 (-612 *2))) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -2248 ((-1124 *4 (-612 $)) $)) (-15 -2260 ((-1124 *4 (-612 $)) $)) (-15 -3152 ($ (-1124 *4 (-612 $))))))) (-4 *4 (-558)) (-5 *1 (-41 *4 *2)))) (-3286 (*1 *2 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -2248 ((-1124 *4 (-612 $)) $)) (-15 -2260 ((-1124 *4 (-612 $)) $)) (-15 -3152 ($ (-1124 *4 (-612 $))))))) (-4 *4 (-558)) (-5 *1 (-41 *4 *2)))) (-3286 (*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -2248 ((-1124 *3 (-612 $)) $)) (-15 -2260 ((-1124 *3 (-612 $)) $)) (-15 -3152 ($ (-1124 *3 (-612 $))))))))) (-3286 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -2248 ((-1124 *3 (-612 $)) $)) (-15 -2260 ((-1124 *3 (-612 $)) $)) (-15 -3152 ($ (-1124 *3 (-612 $))))))))) (-2171 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -2248 ((-1124 *3 (-612 $)) $)) (-15 -2260 ((-1124 *3 (-612 $)) $)) (-15 -3152 ($ (-1124 *3 (-612 $)))))))))) +(-10 -7 (-15 -2171 (|#2| |#2|)) (-15 -3286 (|#2| |#2|)) (-15 -3286 (|#2| |#2| |#2|)) (-15 -3286 (|#2| |#2| (-644 |#2|))) (-15 -3286 (|#2| |#2| (-644 (-612 |#2|)))) (-15 -3735 ((-1171 |#2|) |#2|)) (IF (|has| |#1| (-13 (-454) (-1038 (-566)))) (IF (|has| |#2| (-432 |#1|)) (PROGN (-15 -4002 (|#2| |#2|)) (-15 -3562 (|#2| |#2|)) (-15 -3706 (|#2| |#2|)) (-15 -2569 (|#2| (-114) |#2| (-771)))) |%noBranch|) |%noBranch|)) +((-1624 (((-420 (-1171 |#3|)) (-1171 |#3|) (-644 (-48))) 23) (((-420 |#3|) |#3| (-644 (-48))) 19))) +(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -1624 ((-420 |#3|) |#3| (-644 (-48)))) (-15 -1624 ((-420 (-1171 |#3|)) (-1171 |#3|) (-644 (-48))))) (-850) (-793) (-949 (-48) |#2| |#1|)) (T -42)) +((-1624 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-48))) (-4 *5 (-850)) (-4 *6 (-793)) (-4 *7 (-949 (-48) *6 *5)) (-5 *2 (-420 (-1171 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1171 *7)))) (-1624 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-48))) (-4 *5 (-850)) (-4 *6 (-793)) (-5 *2 (-420 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-949 (-48) *6 *5))))) +(-10 -7 (-15 -1624 ((-420 |#3|) |#3| (-644 (-48)))) (-15 -1624 ((-420 (-1171 |#3|)) (-1171 |#3|) (-644 (-48))))) +((-1858 (((-771) |#2|) 72)) (-3556 (((-771) |#2|) 76)) (-1317 (((-644 |#2|)) 39)) (-2088 (((-771) |#2|) 75)) (-2059 (((-771) |#2|) 71)) (-3947 (((-771) |#2|) 74)) (-1498 (((-644 (-689 |#1|))) 67)) (-1679 (((-644 |#2|)) 62)) (-2482 (((-644 |#2|) |#2|) 50)) (-3053 (((-644 |#2|)) 64)) (-1326 (((-644 |#2|)) 63)) (-1348 (((-644 (-689 |#1|))) 55)) (-3958 (((-644 |#2|)) 61)) (-1841 (((-644 |#2|) |#2|) 49)) (-3790 (((-644 |#2|)) 57)) (-2651 (((-644 (-689 |#1|))) 68)) (-3258 (((-644 |#2|)) 66)) (-2875 (((-1264 |#2|) (-1264 |#2|)) 101 (|has| |#1| (-308))))) +(((-43 |#1| |#2|) (-10 -7 (-15 -2088 ((-771) |#2|)) (-15 -3556 ((-771) |#2|)) (-15 -2059 ((-771) |#2|)) (-15 -1858 ((-771) |#2|)) (-15 -3947 ((-771) |#2|)) (-15 -3790 ((-644 |#2|))) (-15 -1841 ((-644 |#2|) |#2|)) (-15 -2482 ((-644 |#2|) |#2|)) (-15 -3958 ((-644 |#2|))) (-15 -1679 ((-644 |#2|))) (-15 -1326 ((-644 |#2|))) (-15 -3053 ((-644 |#2|))) (-15 -3258 ((-644 |#2|))) (-15 -1348 ((-644 (-689 |#1|)))) (-15 -1498 ((-644 (-689 |#1|)))) (-15 -2651 ((-644 (-689 |#1|)))) (-15 -1317 ((-644 |#2|))) (IF (|has| |#1| (-308)) (-15 -2875 ((-1264 |#2|) (-1264 |#2|))) |%noBranch|)) (-558) (-419 |#1|)) (T -43)) +((-2875 (*1 *2 *2) (-12 (-5 *2 (-1264 *4)) (-4 *4 (-419 *3)) (-4 *3 (-308)) (-4 *3 (-558)) (-5 *1 (-43 *3 *4)))) (-1317 (*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-419 *3)))) (-2651 (*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-644 (-689 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-419 *3)))) (-1498 (*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-644 (-689 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-419 *3)))) (-1348 (*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-644 (-689 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-419 *3)))) (-3258 (*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-419 *3)))) (-3053 (*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-419 *3)))) (-1326 (*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-419 *3)))) (-1679 (*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-419 *3)))) (-3958 (*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-419 *3)))) (-2482 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-644 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-419 *4)))) (-1841 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-644 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-419 *4)))) (-3790 (*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-419 *3)))) (-3947 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-771)) (-5 *1 (-43 *4 *3)) (-4 *3 (-419 *4)))) (-1858 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-771)) (-5 *1 (-43 *4 *3)) (-4 *3 (-419 *4)))) (-2059 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-771)) (-5 *1 (-43 *4 *3)) (-4 *3 (-419 *4)))) (-3556 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-771)) (-5 *1 (-43 *4 *3)) (-4 *3 (-419 *4)))) (-2088 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-771)) (-5 *1 (-43 *4 *3)) (-4 *3 (-419 *4))))) +(-10 -7 (-15 -2088 ((-771) |#2|)) (-15 -3556 ((-771) |#2|)) (-15 -2059 ((-771) |#2|)) (-15 -1858 ((-771) |#2|)) (-15 -3947 ((-771) |#2|)) (-15 -3790 ((-644 |#2|))) (-15 -1841 ((-644 |#2|) |#2|)) (-15 -2482 ((-644 |#2|) |#2|)) (-15 -3958 ((-644 |#2|))) (-15 -1679 ((-644 |#2|))) (-15 -1326 ((-644 |#2|))) (-15 -3053 ((-644 |#2|))) (-15 -3258 ((-644 |#2|))) (-15 -1348 ((-644 (-689 |#1|)))) (-15 -1498 ((-644 (-689 |#1|)))) (-15 -2651 ((-644 (-689 |#1|)))) (-15 -1317 ((-644 |#2|))) (IF (|has| |#1| (-308)) (-15 -2875 ((-1264 |#2|) (-1264 |#2|))) |%noBranch|)) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-2896 (((-3 $ "failed")) NIL (|has| |#1| (-558)))) (-3967 (((-3 $ "failed") $ $) NIL)) (-2336 (((-1264 (-689 |#1|)) (-1264 $)) NIL) (((-1264 (-689 |#1|))) 24)) (-3717 (((-1264 $)) 55)) (-2463 (($) NIL T CONST)) (-3574 (((-3 (-2 (|:| |particular| $) (|:| -2875 (-644 $))) "failed")) NIL (|has| |#1| (-558)))) (-1469 (((-3 $ "failed")) NIL (|has| |#1| (-558)))) (-2411 (((-689 |#1|) (-1264 $)) NIL) (((-689 |#1|)) NIL)) (-4373 ((|#1| $) NIL)) (-2800 (((-689 |#1|) $ (-1264 $)) NIL) (((-689 |#1|) $) NIL)) (-4392 (((-3 $ "failed") $) NIL (|has| |#1| (-558)))) (-3031 (((-1171 (-952 |#1|))) NIL (|has| |#1| (-365)))) (-1856 (($ $ (-921)) NIL)) (-4039 ((|#1| $) NIL)) (-3648 (((-1171 |#1|) $) NIL (|has| |#1| (-558)))) (-2597 ((|#1| (-1264 $)) NIL) ((|#1|) NIL)) (-2765 (((-1171 |#1|) $) NIL)) (-4029 (((-112)) 102)) (-1563 (($ (-1264 |#1|) (-1264 $)) NIL) (($ (-1264 |#1|)) NIL)) (-3245 (((-3 $ "failed") $) 14 (|has| |#1| (-558)))) (-2755 (((-921)) 56)) (-3793 (((-112)) NIL)) (-4090 (($ $ (-921)) NIL)) (-4240 (((-112)) NIL)) (-2057 (((-112)) NIL)) (-2158 (((-112)) 104)) (-1476 (((-3 (-2 (|:| |particular| $) (|:| -2875 (-644 $))) "failed")) NIL (|has| |#1| (-558)))) (-1731 (((-3 $ "failed")) NIL (|has| |#1| (-558)))) (-2734 (((-689 |#1|) (-1264 $)) NIL) (((-689 |#1|)) NIL)) (-2366 ((|#1| $) NIL)) (-3769 (((-689 |#1|) $ (-1264 $)) NIL) (((-689 |#1|) $) NIL)) (-2851 (((-3 $ "failed") $) NIL (|has| |#1| (-558)))) (-1793 (((-1171 (-952 |#1|))) NIL (|has| |#1| (-365)))) (-3270 (($ $ (-921)) NIL)) (-2241 ((|#1| $) NIL)) (-1910 (((-1171 |#1|) $) NIL (|has| |#1| (-558)))) (-2990 ((|#1| (-1264 $)) NIL) ((|#1|) NIL)) (-3548 (((-1171 |#1|) $) NIL)) (-2974 (((-112)) 101)) (-3380 (((-1157) $) NIL)) (-2402 (((-112)) 109)) (-1459 (((-112)) 108)) (-3846 (((-112)) 110)) (-4072 (((-1119) $) NIL)) (-3795 (((-112)) 103)) (-1309 ((|#1| $ (-566)) 58)) (-3350 (((-1264 |#1|) $ (-1264 $)) 53) (((-689 |#1|) (-1264 $) (-1264 $)) NIL) (((-1264 |#1|) $) 28) (((-689 |#1|) (-1264 $)) NIL)) (-2376 (((-1264 |#1|) $) NIL) (($ (-1264 |#1|)) NIL)) (-2861 (((-644 (-952 |#1|)) (-1264 $)) NIL) (((-644 (-952 |#1|))) NIL)) (-2527 (($ $ $) NIL)) (-2512 (((-112)) 98)) (-3152 (((-862) $) 75) (($ (-1264 |#1|)) 22)) (-3044 (((-112) $ $) NIL)) (-2875 (((-1264 $)) 49)) (-2243 (((-644 (-1264 |#1|))) NIL (|has| |#1| (-558)))) (-3876 (($ $ $ $) NIL)) (-2468 (((-112)) 94)) (-3847 (($ (-689 |#1|) $) 18)) (-1471 (($ $ $) NIL)) (-1465 (((-112)) 100)) (-3692 (((-112)) 95)) (-4369 (((-112)) 93)) (-4356 (($) NIL T CONST)) (-2914 (((-112) $ $) NIL)) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-921)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 84) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1141 |#2| |#1|) $) 19))) +(((-44 |#1| |#2| |#3| |#4|) (-13 (-419 |#1|) (-648 (-1141 |#2| |#1|)) (-10 -8 (-15 -3152 ($ (-1264 |#1|))))) (-365) (-921) (-644 (-1175)) (-1264 (-689 |#1|))) (T -44)) +((-3152 (*1 *1 *2) (-12 (-5 *2 (-1264 *3)) (-4 *3 (-365)) (-14 *6 (-1264 (-689 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-921)) (-14 *5 (-644 (-1175)))))) +(-13 (-419 |#1|) (-648 (-1141 |#2| |#1|)) (-10 -8 (-15 -3152 ($ (-1264 |#1|))))) +((-2988 (((-112) $ $) NIL (-2768 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-2876 (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL)) (-3541 (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL)) (-3214 (($ $) NIL)) (-1849 (($) NIL) (($ (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) NIL)) (-1944 (((-1269) $ |#1| |#1|) NIL (|has| $ (-6 -4415))) (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4415)))) (-4258 (($ $ (-566)) NIL (|has| $ (-6 -4415)))) (-3054 (((-112) (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-850)))) (-3628 (($ (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4415))) (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-850))))) (-2671 (($ (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-850)))) (-1504 (((-112) $ (-771)) NIL)) (-2191 (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) NIL (|has| $ (-6 -4415)))) (-1813 (($ $ $) 33 (|has| $ (-6 -4415)))) (-1948 (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) NIL (|has| $ (-6 -4415)))) (-1381 (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) 35 (|has| $ (-6 -4415)))) (-1456 ((|#2| $ |#1| |#2|) 53) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $ (-566) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) NIL (|has| $ (-6 -4415))) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $ (-1231 (-566)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) NIL (|has| $ (-6 -4415))) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $ "last" (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) NIL (|has| $ (-6 -4415))) (($ $ "rest" $) NIL (|has| $ (-6 -4415))) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $ "first" (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) NIL (|has| $ (-6 -4415))) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $ "value" (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) NIL (|has| $ (-6 -4415)))) (-4202 (($ $ (-644 $)) NIL (|has| $ (-6 -4415)))) (-2995 (($ (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414))) (($ (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL)) (-3678 (($ (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414))) (($ (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-3531 (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL)) (-3070 (((-3 |#2| "failed") |#1| $) 43)) (-2463 (($) NIL T CONST)) (-3166 (($ $) NIL (|has| $ (-6 -4415)))) (-3683 (($ $) NIL)) (-3919 (($ $ (-771)) NIL) (($ $) 29)) (-3322 (($ $) NIL (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (-3942 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099))))) (-3512 (($ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL (|has| $ (-6 -4414))) (($ (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-3 |#2| "failed") |#1| $) 56) (($ (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL) (($ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (-2622 (($ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (($ (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414))) (($ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (($ (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-2873 (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) NIL (|has| $ (-6 -4414))) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) NIL (|has| $ (-6 -4414))) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-3897 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4415))) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $ (-566) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) NIL (|has| $ (-6 -4415)))) (-3829 ((|#2| $ |#1|) NIL) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $ (-566)) NIL)) (-1781 (((-112) $) NIL)) (-1569 (((-566) (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL) (((-566) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099))) (((-566) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $ (-566)) NIL (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (-1683 (((-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 20 (|has| $ (-6 -4414))) (((-644 |#2|) $) NIL (|has| $ (-6 -4414))) (((-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 20 (|has| $ (-6 -4414)))) (-3431 (((-644 $) $) NIL)) (-1507 (((-112) $ $) NIL (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (-1860 (($ (-771) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) NIL)) (-3456 (((-112) $ (-771)) NIL)) (-2296 ((|#1| $) NIL (|has| |#1| (-850))) (((-566) $) 38 (|has| (-566) (-850)))) (-1478 (($ $ $) NIL (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-850)))) (-3674 (($ (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-850)))) (-2696 (($ (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-850)))) (-3491 (((-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-644 |#2|) $) NIL (|has| $ (-6 -4414))) (((-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099)))) (((-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099))))) (-4050 ((|#1| $) NIL (|has| |#1| (-850))) (((-566) $) 40 (|has| (-566) (-850)))) (-2599 (($ $ $) NIL (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-850)))) (-3885 (($ (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4415))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4415))) (($ (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4415)))) (-2319 (($ (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL)) (-3770 (($ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) NIL)) (-3267 (((-112) $ (-771)) NIL)) (-1458 (((-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL)) (-3860 (((-112) $) NIL)) (-3380 (((-1157) $) 49 (-2768 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-2641 (($ $ (-771)) NIL) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL)) (-4052 (((-644 |#1|) $) 22)) (-1826 (((-112) |#1| $) NIL)) (-3278 (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL)) (-3888 (($ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL) (($ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $ (-566)) NIL) (($ $ $ (-566)) NIL)) (-1859 (($ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $ (-566)) NIL) (($ $ $ (-566)) NIL)) (-3725 (((-644 |#1|) $) NIL) (((-644 (-566)) $) NIL)) (-1644 (((-112) |#1| $) NIL) (((-112) (-566) $) NIL)) (-4072 (((-1119) $) NIL (-2768 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-3908 ((|#2| $) NIL (|has| |#1| (-850))) (($ $ (-771)) NIL) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) 27)) (-3668 (((-3 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) "failed") (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL) (((-3 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) "failed") (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL)) (-3787 (($ $ |#2|) NIL (|has| $ (-6 -4415))) (($ $ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) NIL (|has| $ (-6 -4415)))) (-1973 (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL)) (-3254 (((-112) $) NIL)) (-2823 (((-112) (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))))) NIL (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (($ $ (-295 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) NIL (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (($ $ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) NIL (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (($ $ (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) NIL (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) NIL (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (($ $ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) NIL (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (($ $ (-295 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) NIL (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (($ $ (-644 (-295 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))))) NIL (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099))))) (-3814 (((-112) $ $) NIL)) (-2847 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099)))) (((-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099))))) (-3486 (((-644 |#2|) $) NIL) (((-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 19)) (-2872 (((-112) $) 18)) (-3493 (($) 14)) (-1309 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $ (-566) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) NIL) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $ (-566)) NIL) (($ $ (-1231 (-566))) NIL) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $ "first") NIL) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $ "value") NIL)) (-1696 (((-566) $ $) NIL)) (-1792 (($) 13) (($ (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) NIL)) (-1308 (($ $ (-566)) NIL) (($ $ (-1231 (-566))) NIL)) (-2166 (($ $ (-566)) NIL) (($ $ (-1231 (-566))) NIL)) (-3786 (((-112) $) NIL)) (-4018 (($ $) NIL)) (-3810 (($ $) NIL (|has| $ (-6 -4415)))) (-2916 (((-771) $) NIL)) (-1922 (($ $) NIL)) (-4083 (((-771) (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-771) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (((-771) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099)))) (((-771) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414))) (((-771) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (((-771) (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-2661 (($ $ $ (-566)) NIL (|has| $ (-6 -4415)))) (-1480 (($ $) NIL)) (-2376 (((-538) $) NIL (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-614 (-538))))) (-1340 (($ (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) NIL) (($ (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) NIL)) (-1690 (($ $ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) NIL) (($ $ $) NIL)) (-4386 (($ $ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) NIL) (($ (-644 $)) NIL) (($ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) 31) (($ $ $) NIL)) (-3152 (((-862) $) NIL (-2768 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-613 (-862))) (|has| |#2| (-613 (-862)))))) (-1926 (((-644 $) $) NIL)) (-4385 (((-112) $ $) NIL (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (-3044 (((-112) $ $) NIL (-2768 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-2948 (($ (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) NIL)) (-2649 (((-3 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) "failed") |#1| $) 51)) (-2210 (((-112) (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-2968 (((-112) $ $) NIL (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-850)))) (-2946 (((-112) $ $) NIL (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-850)))) (-2914 (((-112) $ $) NIL (-2768 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-2956 (((-112) $ $) NIL (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-850)))) (-2935 (((-112) $ $) NIL (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-850)))) (-3000 (((-771) $) 25 (|has| $ (-6 -4414))))) (((-45 |#1| |#2|) (-36 |#1| |#2|) (-1099) (-1099)) (T -45)) NIL (-36 |#1| |#2|) -((-3264 (((-112) $) 12)) (-1301 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-409 (-566)) $) 25) (($ $ (-409 (-566))) NIL))) -(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-409 (-566)))) (-15 * (|#1| (-409 (-566)) |#1|)) (-15 -3264 ((-112) |#1|)) (-15 -1301 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-921) |#1|))) (-47 |#2| |#3|) (-1049) (-792)) (T -46)) +((-2497 (((-112) $) 12)) (-2319 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-409 (-566)) $) 25) (($ $ (-409 (-566))) NIL))) +(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-409 (-566)))) (-15 * (|#1| (-409 (-566)) |#1|)) (-15 -2497 ((-112) |#1|)) (-15 -2319 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-921) |#1|))) (-47 |#2| |#3|) (-1049) (-792)) (T -46)) NIL -(-10 -8 (-15 * (|#1| |#1| (-409 (-566)))) (-15 * (|#1| (-409 (-566)) |#1|)) (-15 -3264 ((-112) |#1|)) (-15 -1301 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-921) |#1|))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) 63 (|has| |#1| (-558)))) (-3991 (($ $) 64 (|has| |#1| (-558)))) (-2388 (((-112) $) 66 (|has| |#1| (-558)))) (-4175 (((-3 $ "failed") $ $) 20)) (-3012 (($) 18 T CONST)) (-1786 (($ $) 72)) (-1878 (((-3 $ "failed") $) 37)) (-3934 (((-112) $) 35)) (-3264 (((-112) $) 74)) (-3840 (($ |#1| |#2|) 73)) (-1301 (($ (-1 |#1| |#1|) $) 75)) (-1749 (($ $) 77)) (-1763 ((|#1| $) 78)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-2994 (((-3 $ "failed") $ $) 62 (|has| |#1| (-558)))) (-3636 ((|#2| $) 76)) (-3783 (((-862) $) 12) (($ (-566)) 33) (($ (-409 (-566))) 69 (|has| |#1| (-38 (-409 (-566))))) (($ $) 61 (|has| |#1| (-558))) (($ |#1|) 59 (|has| |#1| (-172)))) (-2649 ((|#1| $ |#2|) 71)) (-3144 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2107 (((-771)) 32 T CONST)) (-3117 (((-112) $ $) 9)) (-2695 (((-112) $ $) 65 (|has| |#1| (-558)))) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-2947 (((-112) $ $) 6)) (-3065 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-409 (-566)) $) 68 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 67 (|has| |#1| (-38 (-409 (-566))))))) +(-10 -8 (-15 * (|#1| |#1| (-409 (-566)))) (-15 * (|#1| (-409 (-566)) |#1|)) (-15 -2497 ((-112) |#1|)) (-15 -2319 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-921) |#1|))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) 63 (|has| |#1| (-558)))) (-2161 (($ $) 64 (|has| |#1| (-558)))) (-2345 (((-112) $) 66 (|has| |#1| (-558)))) (-3967 (((-3 $ "failed") $ $) 20)) (-2463 (($) 18 T CONST)) (-2814 (($ $) 72)) (-3245 (((-3 $ "failed") $) 37)) (-2389 (((-112) $) 35)) (-2497 (((-112) $) 74)) (-1746 (($ |#1| |#2|) 73)) (-2319 (($ (-1 |#1| |#1|) $) 75)) (-2784 (($ $) 77)) (-2794 ((|#1| $) 78)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-2978 (((-3 $ "failed") $ $) 62 (|has| |#1| (-558)))) (-3902 ((|#2| $) 76)) (-3152 (((-862) $) 12) (($ (-566)) 33) (($ (-409 (-566))) 69 (|has| |#1| (-38 (-409 (-566))))) (($ $) 61 (|has| |#1| (-558))) (($ |#1|) 59 (|has| |#1| (-172)))) (-2271 ((|#1| $ |#2|) 71)) (-2633 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2593 (((-771)) 32 T CONST)) (-3044 (((-112) $ $) 9)) (-3014 (((-112) $ $) 65 (|has| |#1| (-558)))) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-2914 (((-112) $ $) 6)) (-3025 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-409 (-566)) $) 68 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 67 (|has| |#1| (-38 (-409 (-566))))))) (((-47 |#1| |#2|) (-140) (-1049) (-792)) (T -47)) -((-1763 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-792)) (-4 *2 (-1049)))) (-1749 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-792)))) (-3636 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-792)))) (-1301 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)))) (-3264 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)) (-5 *2 (-112)))) (-3840 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-792)))) (-1786 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-792)))) (-2649 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-792)) (-4 *2 (-1049)))) (-3065 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-792)) (-4 *2 (-365))))) -(-13 (-1049) (-111 |t#1| |t#1|) (-10 -8 (-15 -1763 (|t#1| $)) (-15 -1749 ($ $)) (-15 -3636 (|t#2| $)) (-15 -1301 ($ (-1 |t#1| |t#1|) $)) (-15 -3264 ((-112) $)) (-15 -3840 ($ |t#1| |t#2|)) (-15 -1786 ($ $)) (-15 -2649 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-365)) (-15 -3065 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-6 (-172)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-558)) (-6 (-558)) |%noBranch|) (IF (|has| |t#1| (-38 (-409 (-566)))) (-6 (-38 (-409 (-566)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-558)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-409 (-566)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2809 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #0#) |has| |#1| (-38 (-409 (-566)))) ((-616 (-566)) . T) ((-616 |#1|) |has| |#1| (-172)) ((-616 $) |has| |#1| (-558)) ((-613 (-862)) . T) ((-172) -2809 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-291) |has| |#1| (-558)) ((-558) |has| |#1| (-558)) ((-646 #0#) |has| |#1| (-38 (-409 (-566)))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #0#) |has| |#1| (-38 (-409 (-566)))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #0#) |has| |#1| (-38 (-409 (-566)))) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) |has| |#1| (-558)) ((-717 #0#) |has| |#1| (-38 (-409 (-566)))) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) |has| |#1| (-558)) ((-726) . T) ((-1051 #0#) |has| |#1| (-38 (-409 (-566)))) ((-1051 |#1|) . T) ((-1051 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-1056 #0#) |has| |#1| (-38 (-409 (-566)))) ((-1056 |#1|) . T) ((-1056 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) -((-3007 (((-112) $ $) NIL)) (-1702 (((-644 $) (-1171 $) (-1175)) NIL) (((-644 $) (-1171 $)) NIL) (((-644 $) (-952 $)) NIL)) (-3710 (($ (-1171 $) (-1175)) NIL) (($ (-1171 $)) NIL) (($ (-952 $)) NIL)) (-1788 (((-112) $) 11)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-3991 (($ $) NIL)) (-2388 (((-112) $) NIL)) (-3570 (((-644 (-612 $)) $) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-2645 (($ $ (-295 $)) NIL) (($ $ (-644 (-295 $))) NIL) (($ $ (-644 (-612 $)) (-644 $)) NIL)) (-1550 (($ $) NIL)) (-3184 (((-420 $) $) NIL)) (-3731 (($ $) NIL)) (-2837 (((-112) $ $) NIL)) (-3012 (($) NIL T CONST)) (-1422 (((-644 $) (-1171 $) (-1175)) NIL) (((-644 $) (-1171 $)) NIL) (((-644 $) (-952 $)) NIL)) (-3912 (($ (-1171 $) (-1175)) NIL) (($ (-1171 $)) NIL) (($ (-952 $)) NIL)) (-4307 (((-3 (-612 $) "failed") $) NIL) (((-3 (-566) "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL)) (-4205 (((-612 $) $) NIL) (((-566) $) NIL) (((-409 (-566)) $) NIL)) (-2946 (($ $ $) NIL)) (-3577 (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL) (((-689 (-566)) (-689 $)) NIL) (((-2 (|:| -4227 (-689 (-409 (-566)))) (|:| |vec| (-1264 (-409 (-566))))) (-689 $) (-1264 $)) NIL) (((-689 (-409 (-566))) (-689 $)) NIL)) (-1676 (($ $) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-2957 (($ $ $) NIL)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL)) (-3268 (((-112) $) NIL)) (-2228 (($ $) NIL) (($ (-644 $)) NIL)) (-2535 (((-644 (-114)) $) NIL)) (-3659 (((-114) (-114)) NIL)) (-3934 (((-112) $) 14)) (-2824 (((-112) $) NIL (|has| $ (-1038 (-566))))) (-4326 (((-1124 (-566) (-612 $)) $) NIL)) (-2140 (($ $ (-566)) NIL)) (-1577 (((-1171 $) (-1171 $) (-612 $)) NIL) (((-1171 $) (-1171 $) (-644 (-612 $))) NIL) (($ $ (-612 $)) NIL) (($ $ (-644 (-612 $))) NIL)) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3006 (((-1171 $) (-612 $)) NIL (|has| $ (-1049)))) (-1301 (($ (-1 $ $) (-612 $)) NIL)) (-3133 (((-3 (-612 $) "failed") $) NIL)) (-2167 (($ (-644 $)) NIL) (($ $ $) NIL)) (-4117 (((-1157) $) NIL)) (-3647 (((-644 (-612 $)) $) NIL)) (-1307 (($ (-114) $) NIL) (($ (-114) (-644 $)) NIL)) (-2572 (((-112) $ (-114)) NIL) (((-112) $ (-1175)) NIL)) (-1713 (($ $) NIL)) (-2076 (((-771) $) NIL)) (-4035 (((-1119) $) NIL)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2214 (($ (-644 $)) NIL) (($ $ $) NIL)) (-2746 (((-112) $ $) NIL) (((-112) $ (-1175)) NIL)) (-3719 (((-420 $) $) NIL)) (-3148 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL)) (-2994 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1946 (((-112) $) NIL (|has| $ (-1038 (-566))))) (-2055 (($ $ (-612 $) $) NIL) (($ $ (-644 (-612 $)) (-644 $)) NIL) (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-644 (-1175)) (-644 (-1 $ $))) NIL) (($ $ (-644 (-1175)) (-644 (-1 $ (-644 $)))) NIL) (($ $ (-1175) (-1 $ (-644 $))) NIL) (($ $ (-1175) (-1 $ $)) NIL) (($ $ (-644 (-114)) (-644 (-1 $ $))) NIL) (($ $ (-644 (-114)) (-644 (-1 $ (-644 $)))) NIL) (($ $ (-114) (-1 $ (-644 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-3039 (((-771) $) NIL)) (-4390 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-644 $)) NIL)) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL)) (-3529 (($ $) NIL) (($ $ $) NIL)) (-3561 (($ $ (-771)) NIL) (($ $) NIL)) (-4339 (((-1124 (-566) (-612 $)) $) NIL)) (-1616 (($ $) NIL (|has| $ (-1049)))) (-1348 (((-381) $) NIL) (((-225) $) NIL) (((-169 (-381)) $) NIL)) (-3783 (((-862) $) NIL) (($ (-612 $)) NIL) (($ (-409 (-566))) NIL) (($ $) NIL) (($ (-566)) NIL) (($ (-1124 (-566) (-612 $))) NIL)) (-2107 (((-771)) NIL T CONST)) (-1630 (($ $) NIL) (($ (-644 $)) NIL)) (-2825 (((-112) (-114)) NIL)) (-3117 (((-112) $ $) NIL)) (-2695 (((-112) $ $) NIL)) (-2479 (($) 7 T CONST)) (-4334 (($) 12 T CONST)) (-2875 (($ $ (-771)) NIL) (($ $) NIL)) (-2947 (((-112) $ $) 16)) (-3065 (($ $ $) NIL)) (-3053 (($ $ $) 15) (($ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-409 (-566))) NIL) (($ $ (-566)) NIL) (($ $ (-771)) NIL) (($ $ (-921)) NIL)) (* (($ (-409 (-566)) $) NIL) (($ $ (-409 (-566))) NIL) (($ $ $) NIL) (($ (-566) $) NIL) (($ (-771) $) NIL) (($ (-921) $) NIL))) -(((-48) (-13 (-303) (-27) (-1038 (-566)) (-1038 (-409 (-566))) (-639 (-566)) (-1022) (-639 (-409 (-566))) (-147) (-614 (-169 (-381))) (-233) (-10 -8 (-15 -3783 ($ (-1124 (-566) (-612 $)))) (-15 -4326 ((-1124 (-566) (-612 $)) $)) (-15 -4339 ((-1124 (-566) (-612 $)) $)) (-15 -1676 ($ $)) (-15 -1577 ((-1171 $) (-1171 $) (-612 $))) (-15 -1577 ((-1171 $) (-1171 $) (-644 (-612 $)))) (-15 -1577 ($ $ (-612 $))) (-15 -1577 ($ $ (-644 (-612 $))))))) (T -48)) -((-3783 (*1 *1 *2) (-12 (-5 *2 (-1124 (-566) (-612 (-48)))) (-5 *1 (-48)))) (-4326 (*1 *2 *1) (-12 (-5 *2 (-1124 (-566) (-612 (-48)))) (-5 *1 (-48)))) (-4339 (*1 *2 *1) (-12 (-5 *2 (-1124 (-566) (-612 (-48)))) (-5 *1 (-48)))) (-1676 (*1 *1 *1) (-5 *1 (-48))) (-1577 (*1 *2 *2 *3) (-12 (-5 *2 (-1171 (-48))) (-5 *3 (-612 (-48))) (-5 *1 (-48)))) (-1577 (*1 *2 *2 *3) (-12 (-5 *2 (-1171 (-48))) (-5 *3 (-644 (-612 (-48)))) (-5 *1 (-48)))) (-1577 (*1 *1 *1 *2) (-12 (-5 *2 (-612 (-48))) (-5 *1 (-48)))) (-1577 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-612 (-48)))) (-5 *1 (-48))))) -(-13 (-303) (-27) (-1038 (-566)) (-1038 (-409 (-566))) (-639 (-566)) (-1022) (-639 (-409 (-566))) (-147) (-614 (-169 (-381))) (-233) (-10 -8 (-15 -3783 ($ (-1124 (-566) (-612 $)))) (-15 -4326 ((-1124 (-566) (-612 $)) $)) (-15 -4339 ((-1124 (-566) (-612 $)) $)) (-15 -1676 ($ $)) (-15 -1577 ((-1171 $) (-1171 $) (-612 $))) (-15 -1577 ((-1171 $) (-1171 $) (-644 (-612 $)))) (-15 -1577 ($ $ (-612 $))) (-15 -1577 ($ $ (-644 (-612 $)))))) -((-3007 (((-112) $ $) NIL)) (-1451 (((-644 (-508)) $) 17)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 7)) (-1382 (((-1180) $) 18)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) -(((-49) (-13 (-1099) (-10 -8 (-15 -1451 ((-644 (-508)) $)) (-15 -1382 ((-1180) $))))) (T -49)) -((-1451 (*1 *2 *1) (-12 (-5 *2 (-644 (-508))) (-5 *1 (-49)))) (-1382 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-49))))) -(-13 (-1099) (-10 -8 (-15 -1451 ((-644 (-508)) $)) (-15 -1382 ((-1180) $)))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) 87)) (-4175 (((-3 $ "failed") $ $) NIL)) (-3012 (($) NIL T CONST)) (-3032 (((-112) $) 30)) (-4307 (((-3 |#1| "failed") $) 33)) (-4205 ((|#1| $) 34)) (-1786 (($ $) 40)) (-1878 (((-3 $ "failed") $) NIL)) (-3934 (((-112) $) NIL)) (-1301 (($ (-1 |#1| |#1|) $) NIL)) (-1763 ((|#1| $) 31)) (-2215 (($ $) 76)) (-4117 (((-1157) $) NIL)) (-1849 (((-112) $) 43)) (-4035 (((-1119) $) NIL)) (-3441 (($ (-771)) 74)) (-2561 (($ (-644 (-566))) 75)) (-3636 (((-771) $) 44)) (-3783 (((-862) $) 93) (($ (-566)) 71) (($ |#1|) 69)) (-2649 ((|#1| $ $) 28)) (-2107 (((-771)) 73 T CONST)) (-3117 (((-112) $ $) NIL)) (-2479 (($) 45 T CONST)) (-4334 (($) 17 T CONST)) (-2947 (((-112) $ $) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) 66)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 67) (($ |#1| $) 60))) -(((-50 |#1| |#2|) (-13 (-620 |#1|) (-1038 |#1|) (-10 -8 (-15 -1763 (|#1| $)) (-15 -2215 ($ $)) (-15 -1786 ($ $)) (-15 -2649 (|#1| $ $)) (-15 -3441 ($ (-771))) (-15 -2561 ($ (-644 (-566)))) (-15 -1849 ((-112) $)) (-15 -3032 ((-112) $)) (-15 -3636 ((-771) $)) (-15 -1301 ($ (-1 |#1| |#1|) $)))) (-1049) (-644 (-1175))) (T -50)) -((-1763 (*1 *2 *1) (-12 (-4 *2 (-1049)) (-5 *1 (-50 *2 *3)) (-14 *3 (-644 (-1175))))) (-2215 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1049)) (-14 *3 (-644 (-1175))))) (-1786 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1049)) (-14 *3 (-644 (-1175))))) (-2649 (*1 *2 *1 *1) (-12 (-4 *2 (-1049)) (-5 *1 (-50 *2 *3)) (-14 *3 (-644 (-1175))))) (-3441 (*1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1049)) (-14 *4 (-644 (-1175))))) (-2561 (*1 *1 *2) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1049)) (-14 *4 (-644 (-1175))))) (-1849 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1049)) (-14 *4 (-644 (-1175))))) (-3032 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1049)) (-14 *4 (-644 (-1175))))) (-3636 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1049)) (-14 *4 (-644 (-1175))))) (-1301 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1049)) (-5 *1 (-50 *3 *4)) (-14 *4 (-644 (-1175)))))) -(-13 (-620 |#1|) (-1038 |#1|) (-10 -8 (-15 -1763 (|#1| $)) (-15 -2215 ($ $)) (-15 -1786 ($ $)) (-15 -2649 (|#1| $ $)) (-15 -3441 ($ (-771))) (-15 -2561 ($ (-644 (-566)))) (-15 -1849 ((-112) $)) (-15 -3032 ((-112) $)) (-15 -3636 ((-771) $)) (-15 -1301 ($ (-1 |#1| |#1|) $)))) -((-3032 (((-112) (-52)) 18)) (-4307 (((-3 |#1| "failed") (-52)) 20)) (-4205 ((|#1| (-52)) 21)) (-3783 (((-52) |#1|) 14))) -(((-51 |#1|) (-10 -7 (-15 -3783 ((-52) |#1|)) (-15 -4307 ((-3 |#1| "failed") (-52))) (-15 -3032 ((-112) (-52))) (-15 -4205 (|#1| (-52)))) (-1214)) (T -51)) -((-4205 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1214)))) (-3032 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1214)))) (-4307 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1214)))) (-3783 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1214))))) -(-10 -7 (-15 -3783 ((-52) |#1|)) (-15 -4307 ((-3 |#1| "failed") (-52))) (-15 -3032 ((-112) (-52))) (-15 -4205 (|#1| (-52)))) -((-3007 (((-112) $ $) NIL)) (-2598 (((-774) $) 8)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3317 (((-1103) $) 10)) (-3783 (((-862) $) 15)) (-3117 (((-112) $ $) NIL)) (-2090 (($ (-1103) (-774)) 16)) (-2947 (((-112) $ $) 12))) -(((-52) (-13 (-1099) (-10 -8 (-15 -2090 ($ (-1103) (-774))) (-15 -3317 ((-1103) $)) (-15 -2598 ((-774) $))))) (T -52)) -((-2090 (*1 *1 *2 *3) (-12 (-5 *2 (-1103)) (-5 *3 (-774)) (-5 *1 (-52)))) (-3317 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-52)))) (-2598 (*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-52))))) -(-13 (-1099) (-10 -8 (-15 -2090 ($ (-1103) (-774))) (-15 -3317 ((-1103) $)) (-15 -2598 ((-774) $)))) -((-1948 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 19))) -(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -1948 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1049) (-648 |#1|) (-852 |#1|)) (T -53)) -((-1948 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-648 *5)) (-4 *5 (-1049)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-852 *5))))) -(-10 -7 (-15 -1948 (|#2| |#3| (-1 |#2| |#2|) |#2|))) -((-3403 ((|#3| |#3| (-644 (-1175))) 46)) (-2803 ((|#3| (-644 (-1075 |#1| |#2| |#3|)) |#3| (-921)) 32) ((|#3| (-644 (-1075 |#1| |#2| |#3|)) |#3|) 31))) -(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -2803 (|#3| (-644 (-1075 |#1| |#2| |#3|)) |#3|)) (-15 -2803 (|#3| (-644 (-1075 |#1| |#2| |#3|)) |#3| (-921))) (-15 -3403 (|#3| |#3| (-644 (-1175))))) (-1099) (-13 (-1049) (-886 |#1|) (-614 (-892 |#1|))) (-13 (-432 |#2|) (-886 |#1|) (-614 (-892 |#1|)))) (T -54)) -((-3403 (*1 *2 *2 *3) (-12 (-5 *3 (-644 (-1175))) (-4 *4 (-1099)) (-4 *5 (-13 (-1049) (-886 *4) (-614 (-892 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-432 *5) (-886 *4) (-614 (-892 *4)))))) (-2803 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-644 (-1075 *5 *6 *2))) (-5 *4 (-921)) (-4 *5 (-1099)) (-4 *6 (-13 (-1049) (-886 *5) (-614 (-892 *5)))) (-4 *2 (-13 (-432 *6) (-886 *5) (-614 (-892 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-2803 (*1 *2 *3 *2) (-12 (-5 *3 (-644 (-1075 *4 *5 *2))) (-4 *4 (-1099)) (-4 *5 (-13 (-1049) (-886 *4) (-614 (-892 *4)))) (-4 *2 (-13 (-432 *5) (-886 *4) (-614 (-892 *4)))) (-5 *1 (-54 *4 *5 *2))))) -(-10 -7 (-15 -2803 (|#3| (-644 (-1075 |#1| |#2| |#3|)) |#3|)) (-15 -2803 (|#3| (-644 (-1075 |#1| |#2| |#3|)) |#3| (-921))) (-15 -3403 (|#3| |#3| (-644 (-1175))))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) 14)) (-4307 (((-3 (-771) "failed") $) 34)) (-4205 (((-771) $) NIL)) (-3934 (((-112) $) 16)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) 18)) (-3783 (((-862) $) 23) (($ (-771)) 29)) (-3117 (((-112) $ $) NIL)) (-1994 (($) 11 T CONST)) (-2947 (((-112) $ $) 20))) -(((-55) (-13 (-1099) (-1038 (-771)) (-10 -8 (-15 -1994 ($) -3704) (-15 -1788 ((-112) $)) (-15 -3934 ((-112) $))))) (T -55)) -((-1994 (*1 *1) (-5 *1 (-55))) (-1788 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) (-3934 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))) -(-13 (-1099) (-1038 (-771)) (-10 -8 (-15 -1994 ($) -3704) (-15 -1788 ((-112) $)) (-15 -3934 ((-112) $)))) -((-2256 (((-112) $ (-771)) 27)) (-1708 (($ $ (-566) |#3|) 66)) (-2521 (($ $ (-566) |#4|) 70)) (-4379 ((|#3| $ (-566)) 79)) (-3979 (((-644 |#2|) $) 47)) (-2404 (((-112) $ (-771)) 31)) (-1916 (((-112) |#2| $) 74)) (-2908 (($ (-1 |#2| |#2|) $) 55)) (-1301 (($ (-1 |#2| |#2|) $) 54) (($ (-1 |#2| |#2| |#2|) $ $) 58) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 62)) (-2603 (((-112) $ (-771)) 29)) (-4030 (($ $ |#2|) 52)) (-2692 (((-112) (-1 (-112) |#2|) $) 21)) (-4390 ((|#2| $ (-566) (-566)) NIL) ((|#2| $ (-566) (-566) |#2|) 35)) (-4045 (((-771) (-1 (-112) |#2|) $) 41) (((-771) |#2| $) 76)) (-3940 (($ $) 51)) (-2306 ((|#4| $ (-566)) 82)) (-3783 (((-862) $) 88)) (-1894 (((-112) (-1 (-112) |#2|) $) 20)) (-2947 (((-112) $ $) 73)) (-3018 (((-771) $) 32))) -(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3783 ((-862) |#1|)) (-15 -1301 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1301 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2908 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2521 (|#1| |#1| (-566) |#4|)) (-15 -1708 (|#1| |#1| (-566) |#3|)) (-15 -3979 ((-644 |#2|) |#1|)) (-15 -2306 (|#4| |#1| (-566))) (-15 -4379 (|#3| |#1| (-566))) (-15 -4390 (|#2| |#1| (-566) (-566) |#2|)) (-15 -4390 (|#2| |#1| (-566) (-566))) (-15 -4030 (|#1| |#1| |#2|)) (-15 -2947 ((-112) |#1| |#1|)) (-15 -1916 ((-112) |#2| |#1|)) (-15 -4045 ((-771) |#2| |#1|)) (-15 -4045 ((-771) (-1 (-112) |#2|) |#1|)) (-15 -2692 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1894 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1301 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3018 ((-771) |#1|)) (-15 -2256 ((-112) |#1| (-771))) (-15 -2404 ((-112) |#1| (-771))) (-15 -2603 ((-112) |#1| (-771))) (-15 -3940 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1214) (-375 |#2|) (-375 |#2|)) (T -56)) -NIL -(-10 -8 (-15 -3783 ((-862) |#1|)) (-15 -1301 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1301 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2908 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2521 (|#1| |#1| (-566) |#4|)) (-15 -1708 (|#1| |#1| (-566) |#3|)) (-15 -3979 ((-644 |#2|) |#1|)) (-15 -2306 (|#4| |#1| (-566))) (-15 -4379 (|#3| |#1| (-566))) (-15 -4390 (|#2| |#1| (-566) (-566) |#2|)) (-15 -4390 (|#2| |#1| (-566) (-566))) (-15 -4030 (|#1| |#1| |#2|)) (-15 -2947 ((-112) |#1| |#1|)) (-15 -1916 ((-112) |#2| |#1|)) (-15 -4045 ((-771) |#2| |#1|)) (-15 -4045 ((-771) (-1 (-112) |#2|) |#1|)) (-15 -2692 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1894 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1301 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3018 ((-771) |#1|)) (-15 -2256 ((-112) |#1| (-771))) (-15 -2404 ((-112) |#1| (-771))) (-15 -2603 ((-112) |#1| (-771))) (-15 -3940 (|#1| |#1|))) -((-3007 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2256 (((-112) $ (-771)) 8)) (-3923 ((|#1| $ (-566) (-566) |#1|) 45)) (-1708 (($ $ (-566) |#2|) 43)) (-2521 (($ $ (-566) |#3|) 42)) (-3012 (($) 7 T CONST)) (-4379 ((|#2| $ (-566)) 47)) (-2920 ((|#1| $ (-566) (-566) |#1|) 44)) (-2855 ((|#1| $ (-566) (-566)) 49)) (-3979 (((-644 |#1|) $) 31)) (-1380 (((-771) $) 52)) (-4265 (($ (-771) (-771) |#1|) 58)) (-1391 (((-771) $) 51)) (-2404 (((-112) $ (-771)) 9)) (-1368 (((-566) $) 56)) (-3832 (((-566) $) 54)) (-2329 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-1821 (((-566) $) 55)) (-1809 (((-566) $) 53)) (-2908 (($ (-1 |#1| |#1|) $) 35)) (-1301 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-2603 (((-112) $ (-771)) 10)) (-4117 (((-1157) $) 22 (|has| |#1| (-1099)))) (-4035 (((-1119) $) 21 (|has| |#1| (-1099)))) (-4030 (($ $ |#1|) 57)) (-2692 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) 14)) (-3467 (((-112) $) 11)) (-1494 (($) 12)) (-4390 ((|#1| $ (-566) (-566)) 50) ((|#1| $ (-566) (-566) |#1|) 48)) (-4045 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-3940 (($ $) 13)) (-2306 ((|#3| $ (-566)) 46)) (-3783 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-3117 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-1894 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3018 (((-771) $) 6 (|has| $ (-6 -4414))))) +((-2794 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-792)) (-4 *2 (-1049)))) (-2784 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-792)))) (-3902 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-792)))) (-2319 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)))) (-2497 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)) (-5 *2 (-112)))) (-1746 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-792)))) (-2814 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-792)))) (-2271 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-792)) (-4 *2 (-1049)))) (-3025 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-792)) (-4 *2 (-365))))) +(-13 (-1049) (-111 |t#1| |t#1|) (-10 -8 (-15 -2794 (|t#1| $)) (-15 -2784 ($ $)) (-15 -3902 (|t#2| $)) (-15 -2319 ($ (-1 |t#1| |t#1|) $)) (-15 -2497 ((-112) $)) (-15 -1746 ($ |t#1| |t#2|)) (-15 -2814 ($ $)) (-15 -2271 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-365)) (-15 -3025 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-6 (-172)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-558)) (-6 (-558)) |%noBranch|) (IF (|has| |t#1| (-38 (-409 (-566)))) (-6 (-38 (-409 (-566)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-558)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-409 (-566)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2768 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #0#) |has| |#1| (-38 (-409 (-566)))) ((-616 (-566)) . T) ((-616 |#1|) |has| |#1| (-172)) ((-616 $) |has| |#1| (-558)) ((-613 (-862)) . T) ((-172) -2768 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-291) |has| |#1| (-558)) ((-558) |has| |#1| (-558)) ((-646 #0#) |has| |#1| (-38 (-409 (-566)))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #0#) |has| |#1| (-38 (-409 (-566)))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #0#) |has| |#1| (-38 (-409 (-566)))) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) |has| |#1| (-558)) ((-717 #0#) |has| |#1| (-38 (-409 (-566)))) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) |has| |#1| (-558)) ((-726) . T) ((-1051 #0#) |has| |#1| (-38 (-409 (-566)))) ((-1051 |#1|) . T) ((-1051 $) -2768 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-1056 #0#) |has| |#1| (-38 (-409 (-566)))) ((-1056 |#1|) . T) ((-1056 $) -2768 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) +((-2988 (((-112) $ $) NIL)) (-2082 (((-644 $) (-1171 $) (-1175)) NIL) (((-644 $) (-1171 $)) NIL) (((-644 $) (-952 $)) NIL)) (-1557 (($ (-1171 $) (-1175)) NIL) (($ (-1171 $)) NIL) (($ (-952 $)) NIL)) (-3230 (((-112) $) 11)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-2161 (($ $) NIL)) (-2345 (((-112) $) NIL)) (-1470 (((-644 (-612 $)) $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-2500 (($ $ (-295 $)) NIL) (($ $ (-644 (-295 $))) NIL) (($ $ (-644 (-612 $)) (-644 $)) NIL)) (-1378 (($ $) NIL)) (-1364 (((-420 $) $) NIL)) (-1635 (($ $) NIL)) (-2085 (((-112) $ $) NIL)) (-2463 (($) NIL T CONST)) (-4112 (((-644 $) (-1171 $) (-1175)) NIL) (((-644 $) (-1171 $)) NIL) (((-644 $) (-952 $)) NIL)) (-4093 (($ (-1171 $) (-1175)) NIL) (($ (-1171 $)) NIL) (($ (-952 $)) NIL)) (-2229 (((-3 (-612 $) "failed") $) NIL) (((-3 (-566) "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL)) (-4158 (((-612 $) $) NIL) (((-566) $) NIL) (((-409 (-566)) $) NIL)) (-2933 (($ $ $) NIL)) (-4089 (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL) (((-689 (-566)) (-689 $)) NIL) (((-2 (|:| -3361 (-689 (-409 (-566)))) (|:| |vec| (-1264 (-409 (-566))))) (-689 $) (-1264 $)) NIL) (((-689 (-409 (-566))) (-689 $)) NIL)) (-2873 (($ $) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-2945 (($ $ $) NIL)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL)) (-1615 (((-112) $) NIL)) (-1633 (($ $) NIL) (($ (-644 $)) NIL)) (-1689 (((-644 (-114)) $) NIL)) (-1566 (((-114) (-114)) NIL)) (-2389 (((-112) $) 14)) (-3419 (((-112) $) NIL (|has| $ (-1038 (-566))))) (-2248 (((-1124 (-566) (-612 $)) $) NIL)) (-1575 (($ $ (-566)) NIL)) (-2064 (((-1171 $) (-1171 $) (-612 $)) NIL) (((-1171 $) (-1171 $) (-644 (-612 $))) NIL) (($ $ (-612 $)) NIL) (($ $ (-644 (-612 $))) NIL)) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2024 (((-1171 $) (-612 $)) NIL (|has| $ (-1049)))) (-2319 (($ (-1 $ $) (-612 $)) NIL)) (-4010 (((-3 (-612 $) "failed") $) NIL)) (-2128 (($ (-644 $)) NIL) (($ $ $) NIL)) (-3380 (((-1157) $) NIL)) (-1552 (((-644 (-612 $)) $) NIL)) (-2328 (($ (-114) $) NIL) (($ (-114) (-644 $)) NIL)) (-3335 (((-112) $ (-114)) NIL) (((-112) $ (-1175)) NIL)) (-2748 (($ $) NIL)) (-3106 (((-771) $) NIL)) (-4072 (((-1119) $) NIL)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2164 (($ (-644 $)) NIL) (($ $ $) NIL)) (-3671 (((-112) $ $) NIL) (((-112) $ (-1175)) NIL)) (-1624 (((-420 $) $) NIL)) (-3005 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL)) (-2978 (((-3 $ "failed") $ $) NIL)) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2664 (((-112) $) NIL (|has| $ (-1038 (-566))))) (-2023 (($ $ (-612 $) $) NIL) (($ $ (-644 (-612 $)) (-644 $)) NIL) (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-644 (-1175)) (-644 (-1 $ $))) NIL) (($ $ (-644 (-1175)) (-644 (-1 $ (-644 $)))) NIL) (($ $ (-1175) (-1 $ (-644 $))) NIL) (($ $ (-1175) (-1 $ $)) NIL) (($ $ (-644 (-114)) (-644 (-1 $ $))) NIL) (($ $ (-644 (-114)) (-644 (-1 $ (-644 $)))) NIL) (($ $ (-114) (-1 $ (-644 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-4357 (((-771) $) NIL)) (-1309 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-644 $)) NIL)) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL)) (-2020 (($ $) NIL) (($ $ $) NIL)) (-3629 (($ $ (-771)) NIL) (($ $) NIL)) (-2260 (((-1124 (-566) (-612 $)) $) NIL)) (-1705 (($ $) NIL (|has| $ (-1049)))) (-2376 (((-381) $) NIL) (((-225) $) NIL) (((-169 (-381)) $) NIL)) (-3152 (((-862) $) NIL) (($ (-612 $)) NIL) (($ (-409 (-566))) NIL) (($ $) NIL) (($ (-566)) NIL) (($ (-1124 (-566) (-612 $))) NIL)) (-2593 (((-771)) NIL T CONST)) (-3928 (($ $) NIL) (($ (-644 $)) NIL)) (-3515 (((-112) (-114)) NIL)) (-3044 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-4356 (($) 7 T CONST)) (-4366 (($) 12 T CONST)) (-3497 (($ $ (-771)) NIL) (($ $) NIL)) (-2914 (((-112) $ $) 16)) (-3025 (($ $ $) NIL)) (-3012 (($ $ $) 15) (($ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-409 (-566))) NIL) (($ $ (-566)) NIL) (($ $ (-771)) NIL) (($ $ (-921)) NIL)) (* (($ (-409 (-566)) $) NIL) (($ $ (-409 (-566))) NIL) (($ $ $) NIL) (($ (-566) $) NIL) (($ (-771) $) NIL) (($ (-921) $) NIL))) +(((-48) (-13 (-303) (-27) (-1038 (-566)) (-1038 (-409 (-566))) (-639 (-566)) (-1022) (-639 (-409 (-566))) (-147) (-614 (-169 (-381))) (-233) (-10 -8 (-15 -3152 ($ (-1124 (-566) (-612 $)))) (-15 -2248 ((-1124 (-566) (-612 $)) $)) (-15 -2260 ((-1124 (-566) (-612 $)) $)) (-15 -2873 ($ $)) (-15 -2064 ((-1171 $) (-1171 $) (-612 $))) (-15 -2064 ((-1171 $) (-1171 $) (-644 (-612 $)))) (-15 -2064 ($ $ (-612 $))) (-15 -2064 ($ $ (-644 (-612 $))))))) (T -48)) +((-3152 (*1 *1 *2) (-12 (-5 *2 (-1124 (-566) (-612 (-48)))) (-5 *1 (-48)))) (-2248 (*1 *2 *1) (-12 (-5 *2 (-1124 (-566) (-612 (-48)))) (-5 *1 (-48)))) (-2260 (*1 *2 *1) (-12 (-5 *2 (-1124 (-566) (-612 (-48)))) (-5 *1 (-48)))) (-2873 (*1 *1 *1) (-5 *1 (-48))) (-2064 (*1 *2 *2 *3) (-12 (-5 *2 (-1171 (-48))) (-5 *3 (-612 (-48))) (-5 *1 (-48)))) (-2064 (*1 *2 *2 *3) (-12 (-5 *2 (-1171 (-48))) (-5 *3 (-644 (-612 (-48)))) (-5 *1 (-48)))) (-2064 (*1 *1 *1 *2) (-12 (-5 *2 (-612 (-48))) (-5 *1 (-48)))) (-2064 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-612 (-48)))) (-5 *1 (-48))))) +(-13 (-303) (-27) (-1038 (-566)) (-1038 (-409 (-566))) (-639 (-566)) (-1022) (-639 (-409 (-566))) (-147) (-614 (-169 (-381))) (-233) (-10 -8 (-15 -3152 ($ (-1124 (-566) (-612 $)))) (-15 -2248 ((-1124 (-566) (-612 $)) $)) (-15 -2260 ((-1124 (-566) (-612 $)) $)) (-15 -2873 ($ $)) (-15 -2064 ((-1171 $) (-1171 $) (-612 $))) (-15 -2064 ((-1171 $) (-1171 $) (-644 (-612 $)))) (-15 -2064 ($ $ (-612 $))) (-15 -2064 ($ $ (-644 (-612 $)))))) +((-2988 (((-112) $ $) NIL)) (-2644 (((-644 (-508)) $) 17)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 7)) (-1377 (((-1180) $) 18)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) +(((-49) (-13 (-1099) (-10 -8 (-15 -2644 ((-644 (-508)) $)) (-15 -1377 ((-1180) $))))) (T -49)) +((-2644 (*1 *2 *1) (-12 (-5 *2 (-644 (-508))) (-5 *1 (-49)))) (-1377 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-49))))) +(-13 (-1099) (-10 -8 (-15 -2644 ((-644 (-508)) $)) (-15 -1377 ((-1180) $)))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) 87)) (-3967 (((-3 $ "failed") $ $) NIL)) (-2463 (($) NIL T CONST)) (-1748 (((-112) $) 30)) (-2229 (((-3 |#1| "failed") $) 33)) (-4158 ((|#1| $) 34)) (-2814 (($ $) 40)) (-3245 (((-3 $ "failed") $) NIL)) (-2389 (((-112) $) NIL)) (-2319 (($ (-1 |#1| |#1|) $) NIL)) (-2794 ((|#1| $) 31)) (-3095 (($ $) 76)) (-3380 (((-1157) $) NIL)) (-3156 (((-112) $) 43)) (-4072 (((-1119) $) NIL)) (-3302 (($ (-771)) 74)) (-3521 (($ (-644 (-566))) 75)) (-3902 (((-771) $) 44)) (-3152 (((-862) $) 93) (($ (-566)) 71) (($ |#1|) 69)) (-2271 ((|#1| $ $) 28)) (-2593 (((-771)) 73 T CONST)) (-3044 (((-112) $ $) NIL)) (-4356 (($) 45 T CONST)) (-4366 (($) 17 T CONST)) (-2914 (((-112) $ $) NIL)) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) 66)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 67) (($ |#1| $) 60))) +(((-50 |#1| |#2|) (-13 (-620 |#1|) (-1038 |#1|) (-10 -8 (-15 -2794 (|#1| $)) (-15 -3095 ($ $)) (-15 -2814 ($ $)) (-15 -2271 (|#1| $ $)) (-15 -3302 ($ (-771))) (-15 -3521 ($ (-644 (-566)))) (-15 -3156 ((-112) $)) (-15 -1748 ((-112) $)) (-15 -3902 ((-771) $)) (-15 -2319 ($ (-1 |#1| |#1|) $)))) (-1049) (-644 (-1175))) (T -50)) +((-2794 (*1 *2 *1) (-12 (-4 *2 (-1049)) (-5 *1 (-50 *2 *3)) (-14 *3 (-644 (-1175))))) (-3095 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1049)) (-14 *3 (-644 (-1175))))) (-2814 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1049)) (-14 *3 (-644 (-1175))))) (-2271 (*1 *2 *1 *1) (-12 (-4 *2 (-1049)) (-5 *1 (-50 *2 *3)) (-14 *3 (-644 (-1175))))) (-3302 (*1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1049)) (-14 *4 (-644 (-1175))))) (-3521 (*1 *1 *2) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1049)) (-14 *4 (-644 (-1175))))) (-3156 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1049)) (-14 *4 (-644 (-1175))))) (-1748 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1049)) (-14 *4 (-644 (-1175))))) (-3902 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1049)) (-14 *4 (-644 (-1175))))) (-2319 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1049)) (-5 *1 (-50 *3 *4)) (-14 *4 (-644 (-1175)))))) +(-13 (-620 |#1|) (-1038 |#1|) (-10 -8 (-15 -2794 (|#1| $)) (-15 -3095 ($ $)) (-15 -2814 ($ $)) (-15 -2271 (|#1| $ $)) (-15 -3302 ($ (-771))) (-15 -3521 ($ (-644 (-566)))) (-15 -3156 ((-112) $)) (-15 -1748 ((-112) $)) (-15 -3902 ((-771) $)) (-15 -2319 ($ (-1 |#1| |#1|) $)))) +((-1748 (((-112) (-52)) 18)) (-2229 (((-3 |#1| "failed") (-52)) 20)) (-4158 ((|#1| (-52)) 21)) (-3152 (((-52) |#1|) 14))) +(((-51 |#1|) (-10 -7 (-15 -3152 ((-52) |#1|)) (-15 -2229 ((-3 |#1| "failed") (-52))) (-15 -1748 ((-112) (-52))) (-15 -4158 (|#1| (-52)))) (-1214)) (T -51)) +((-4158 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1214)))) (-1748 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1214)))) (-2229 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1214)))) (-3152 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1214))))) +(-10 -7 (-15 -3152 ((-52) |#1|)) (-15 -2229 ((-3 |#1| "failed") (-52))) (-15 -1748 ((-112) (-52))) (-15 -4158 (|#1| (-52)))) +((-2988 (((-112) $ $) NIL)) (-3217 (((-774) $) 8)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3965 (((-1103) $) 10)) (-3152 (((-862) $) 15)) (-3044 (((-112) $ $) NIL)) (-3393 (($ (-1103) (-774)) 16)) (-2914 (((-112) $ $) 12))) +(((-52) (-13 (-1099) (-10 -8 (-15 -3393 ($ (-1103) (-774))) (-15 -3965 ((-1103) $)) (-15 -3217 ((-774) $))))) (T -52)) +((-3393 (*1 *1 *2 *3) (-12 (-5 *2 (-1103)) (-5 *3 (-774)) (-5 *1 (-52)))) (-3965 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-52)))) (-3217 (*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-52))))) +(-13 (-1099) (-10 -8 (-15 -3393 ($ (-1103) (-774))) (-15 -3965 ((-1103) $)) (-15 -3217 ((-774) $)))) +((-3847 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 19))) +(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -3847 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1049) (-648 |#1|) (-852 |#1|)) (T -53)) +((-3847 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-648 *5)) (-4 *5 (-1049)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-852 *5))))) +(-10 -7 (-15 -3847 (|#2| |#3| (-1 |#2| |#2|) |#2|))) +((-4231 ((|#3| |#3| (-644 (-1175))) 46)) (-1905 ((|#3| (-644 (-1075 |#1| |#2| |#3|)) |#3| (-921)) 32) ((|#3| (-644 (-1075 |#1| |#2| |#3|)) |#3|) 31))) +(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1905 (|#3| (-644 (-1075 |#1| |#2| |#3|)) |#3|)) (-15 -1905 (|#3| (-644 (-1075 |#1| |#2| |#3|)) |#3| (-921))) (-15 -4231 (|#3| |#3| (-644 (-1175))))) (-1099) (-13 (-1049) (-886 |#1|) (-614 (-892 |#1|))) (-13 (-432 |#2|) (-886 |#1|) (-614 (-892 |#1|)))) (T -54)) +((-4231 (*1 *2 *2 *3) (-12 (-5 *3 (-644 (-1175))) (-4 *4 (-1099)) (-4 *5 (-13 (-1049) (-886 *4) (-614 (-892 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-432 *5) (-886 *4) (-614 (-892 *4)))))) (-1905 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-644 (-1075 *5 *6 *2))) (-5 *4 (-921)) (-4 *5 (-1099)) (-4 *6 (-13 (-1049) (-886 *5) (-614 (-892 *5)))) (-4 *2 (-13 (-432 *6) (-886 *5) (-614 (-892 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1905 (*1 *2 *3 *2) (-12 (-5 *3 (-644 (-1075 *4 *5 *2))) (-4 *4 (-1099)) (-4 *5 (-13 (-1049) (-886 *4) (-614 (-892 *4)))) (-4 *2 (-13 (-432 *5) (-886 *4) (-614 (-892 *4)))) (-5 *1 (-54 *4 *5 *2))))) +(-10 -7 (-15 -1905 (|#3| (-644 (-1075 |#1| |#2| |#3|)) |#3|)) (-15 -1905 (|#3| (-644 (-1075 |#1| |#2| |#3|)) |#3| (-921))) (-15 -4231 (|#3| |#3| (-644 (-1175))))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) 14)) (-2229 (((-3 (-771) "failed") $) 34)) (-4158 (((-771) $) NIL)) (-2389 (((-112) $) 16)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) 18)) (-3152 (((-862) $) 23) (($ (-771)) 29)) (-3044 (((-112) $ $) NIL)) (-3813 (($) 11 T CONST)) (-2914 (((-112) $ $) 20))) +(((-55) (-13 (-1099) (-1038 (-771)) (-10 -8 (-15 -3813 ($) -1623) (-15 -3230 ((-112) $)) (-15 -2389 ((-112) $))))) (T -55)) +((-3813 (*1 *1) (-5 *1 (-55))) (-3230 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) (-2389 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))) +(-13 (-1099) (-1038 (-771)) (-10 -8 (-15 -3813 ($) -1623) (-15 -3230 ((-112) $)) (-15 -2389 ((-112) $)))) +((-1504 (((-112) $ (-771)) 27)) (-1499 (($ $ (-566) |#3|) 66)) (-2837 (($ $ (-566) |#4|) 70)) (-1721 ((|#3| $ (-566)) 79)) (-1683 (((-644 |#2|) $) 47)) (-3456 (((-112) $ (-771)) 31)) (-1602 (((-112) |#2| $) 74)) (-3885 (($ (-1 |#2| |#2|) $) 55)) (-2319 (($ (-1 |#2| |#2|) $) 54) (($ (-1 |#2| |#2| |#2|) $ $) 58) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 62)) (-3267 (((-112) $ (-771)) 29)) (-3787 (($ $ |#2|) 52)) (-2823 (((-112) (-1 (-112) |#2|) $) 21)) (-1309 ((|#2| $ (-566) (-566)) NIL) ((|#2| $ (-566) (-566) |#2|) 35)) (-4083 (((-771) (-1 (-112) |#2|) $) 41) (((-771) |#2| $) 76)) (-1480 (($ $) 51)) (-2986 ((|#4| $ (-566)) 82)) (-3152 (((-862) $) 88)) (-2210 (((-112) (-1 (-112) |#2|) $) 20)) (-2914 (((-112) $ $) 73)) (-3000 (((-771) $) 32))) +(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3152 ((-862) |#1|)) (-15 -2319 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2319 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3885 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2837 (|#1| |#1| (-566) |#4|)) (-15 -1499 (|#1| |#1| (-566) |#3|)) (-15 -1683 ((-644 |#2|) |#1|)) (-15 -2986 (|#4| |#1| (-566))) (-15 -1721 (|#3| |#1| (-566))) (-15 -1309 (|#2| |#1| (-566) (-566) |#2|)) (-15 -1309 (|#2| |#1| (-566) (-566))) (-15 -3787 (|#1| |#1| |#2|)) (-15 -2914 ((-112) |#1| |#1|)) (-15 -1602 ((-112) |#2| |#1|)) (-15 -4083 ((-771) |#2| |#1|)) (-15 -4083 ((-771) (-1 (-112) |#2|) |#1|)) (-15 -2823 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2210 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2319 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3000 ((-771) |#1|)) (-15 -1504 ((-112) |#1| (-771))) (-15 -3456 ((-112) |#1| (-771))) (-15 -3267 ((-112) |#1| (-771))) (-15 -1480 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1214) (-375 |#2|) (-375 |#2|)) (T -56)) +NIL +(-10 -8 (-15 -3152 ((-862) |#1|)) (-15 -2319 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2319 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3885 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2837 (|#1| |#1| (-566) |#4|)) (-15 -1499 (|#1| |#1| (-566) |#3|)) (-15 -1683 ((-644 |#2|) |#1|)) (-15 -2986 (|#4| |#1| (-566))) (-15 -1721 (|#3| |#1| (-566))) (-15 -1309 (|#2| |#1| (-566) (-566) |#2|)) (-15 -1309 (|#2| |#1| (-566) (-566))) (-15 -3787 (|#1| |#1| |#2|)) (-15 -2914 ((-112) |#1| |#1|)) (-15 -1602 ((-112) |#2| |#1|)) (-15 -4083 ((-771) |#2| |#1|)) (-15 -4083 ((-771) (-1 (-112) |#2|) |#1|)) (-15 -2823 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2210 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2319 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3000 ((-771) |#1|)) (-15 -1504 ((-112) |#1| (-771))) (-15 -3456 ((-112) |#1| (-771))) (-15 -3267 ((-112) |#1| (-771))) (-15 -1480 (|#1| |#1|))) +((-2988 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-1504 (((-112) $ (-771)) 8)) (-1456 ((|#1| $ (-566) (-566) |#1|) 45)) (-1499 (($ $ (-566) |#2|) 43)) (-2837 (($ $ (-566) |#3|) 42)) (-2463 (($) 7 T CONST)) (-1721 ((|#2| $ (-566)) 47)) (-3897 ((|#1| $ (-566) (-566) |#1|) 44)) (-3829 ((|#1| $ (-566) (-566)) 49)) (-1683 (((-644 |#1|) $) 31)) (-3811 (((-771) $) 52)) (-1860 (($ (-771) (-771) |#1|) 58)) (-3824 (((-771) $) 51)) (-3456 (((-112) $ (-771)) 9)) (-2531 (((-566) $) 56)) (-3688 (((-566) $) 54)) (-3491 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2422 (((-566) $) 55)) (-3632 (((-566) $) 53)) (-3885 (($ (-1 |#1| |#1|) $) 35)) (-2319 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-3267 (((-112) $ (-771)) 10)) (-3380 (((-1157) $) 22 (|has| |#1| (-1099)))) (-4072 (((-1119) $) 21 (|has| |#1| (-1099)))) (-3787 (($ $ |#1|) 57)) (-2823 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) 14)) (-2872 (((-112) $) 11)) (-3493 (($) 12)) (-1309 ((|#1| $ (-566) (-566)) 50) ((|#1| $ (-566) (-566) |#1|) 48)) (-4083 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-1480 (($ $) 13)) (-2986 ((|#3| $ (-566)) 46)) (-3152 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-3044 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-2210 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3000 (((-771) $) 6 (|has| $ (-6 -4414))))) (((-57 |#1| |#2| |#3|) (-140) (-1214) (-375 |t#1|) (-375 |t#1|)) (T -57)) -((-1301 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-4265 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-771)) (-4 *3 (-1214)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-4030 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1214)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-1368 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-566)))) (-1821 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-566)))) (-3832 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-566)))) (-1809 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-566)))) (-1380 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-771)))) (-1391 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-771)))) (-4390 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-566)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-1214)))) (-2855 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-566)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-1214)))) (-4390 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-566)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1214)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)))) (-4379 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1214)) (-4 *5 (-375 *4)) (-4 *2 (-375 *4)))) (-2306 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1214)) (-4 *5 (-375 *4)) (-4 *2 (-375 *4)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-644 *3)))) (-3923 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-566)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1214)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)))) (-2920 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-566)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1214)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)))) (-1708 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-566)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1214)) (-4 *3 (-375 *4)) (-4 *5 (-375 *4)))) (-2521 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-566)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1214)) (-4 *5 (-375 *4)) (-4 *3 (-375 *4)))) (-2908 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-1301 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-1301 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3))))) -(-13 (-491 |t#1|) (-10 -8 (-6 -4415) (-6 -4414) (-15 -4265 ($ (-771) (-771) |t#1|)) (-15 -4030 ($ $ |t#1|)) (-15 -1368 ((-566) $)) (-15 -1821 ((-566) $)) (-15 -3832 ((-566) $)) (-15 -1809 ((-566) $)) (-15 -1380 ((-771) $)) (-15 -1391 ((-771) $)) (-15 -4390 (|t#1| $ (-566) (-566))) (-15 -2855 (|t#1| $ (-566) (-566))) (-15 -4390 (|t#1| $ (-566) (-566) |t#1|)) (-15 -4379 (|t#2| $ (-566))) (-15 -2306 (|t#3| $ (-566))) (-15 -3979 ((-644 |t#1|) $)) (-15 -3923 (|t#1| $ (-566) (-566) |t#1|)) (-15 -2920 (|t#1| $ (-566) (-566) |t#1|)) (-15 -1708 ($ $ (-566) |t#2|)) (-15 -2521 ($ $ (-566) |t#3|)) (-15 -1301 ($ (-1 |t#1| |t#1|) $)) (-15 -2908 ($ (-1 |t#1| |t#1|) $)) (-15 -1301 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1301 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) -(((-34) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2809 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1099) |has| |#1| (-1099)) ((-1214) . T)) -((-3795 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-1676 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-1301 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13))) -(((-58 |#1| |#2|) (-10 -7 (-15 -3795 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -1676 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -1301 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1214) (-1214)) (T -58)) -((-1301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1214)) (-4 *6 (-1214)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-1676 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1214)) (-4 *2 (-1214)) (-5 *1 (-58 *5 *2)))) (-3795 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1214)) (-4 *5 (-1214)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))) -(-10 -7 (-15 -3795 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -1676 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -1301 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) -((-3007 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3734 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4415)))) (-2644 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-850)))) (-1944 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4415))) (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-850))))) (-1510 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-850)))) (-2256 (((-112) $ (-771)) NIL)) (-3923 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4415))) ((|#1| $ (-1231 (-566)) |#1|) NIL (|has| $ (-6 -4415)))) (-2701 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-3012 (($) NIL T CONST)) (-3413 (($ $) NIL (|has| $ (-6 -4415)))) (-1377 (($ $) NIL)) (-2031 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2665 (($ |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-1676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4414)))) (-2920 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4415)))) (-2855 ((|#1| $ (-566)) NIL)) (-4000 (((-566) (-1 (-112) |#1|) $) NIL) (((-566) |#1| $) NIL (|has| |#1| (-1099))) (((-566) |#1| $ (-566)) NIL (|has| |#1| (-1099)))) (-3979 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-2951 (($ (-644 |#1|)) 11) (($ (-771) |#1|) 14)) (-4265 (($ (-771) |#1|) 13)) (-2404 (((-112) $ (-771)) NIL)) (-3854 (((-566) $) NIL (|has| (-566) (-850)))) (-2097 (($ $ $) NIL (|has| |#1| (-850)))) (-3298 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-850)))) (-2329 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2712 (((-566) $) NIL (|has| (-566) (-850)))) (-3962 (($ $ $) NIL (|has| |#1| (-850)))) (-2908 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2603 (((-112) $ (-771)) NIL)) (-4117 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4276 (($ |#1| $ (-566)) NIL) (($ $ $ (-566)) NIL)) (-4074 (((-644 (-566)) $) NIL)) (-3792 (((-112) (-566) $) NIL)) (-4035 (((-1119) $) NIL (|has| |#1| (-1099)))) (-1998 ((|#1| $) NIL (|has| (-566) (-850)))) (-2006 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4030 (($ $ |#1|) NIL (|has| $ (-6 -4415)))) (-2692 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) NIL)) (-4156 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2993 (((-644 |#1|) $) NIL)) (-3467 (((-112) $) NIL)) (-1494 (($) NIL)) (-4390 ((|#1| $ (-566) |#1|) NIL) ((|#1| $ (-566)) NIL) (($ $ (-1231 (-566))) NIL)) (-2187 (($ $ (-566)) NIL) (($ $ (-1231 (-566))) NIL)) (-4045 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-1297 (($ $ $ (-566)) NIL (|has| $ (-6 -4415)))) (-3940 (($ $) NIL)) (-1348 (((-538) $) NIL (|has| |#1| (-614 (-538))))) (-3796 (($ (-644 |#1|)) 10)) (-3721 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-644 $)) NIL)) (-3783 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-3117 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1894 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-3009 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2984 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2947 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2995 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2969 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3018 (((-771) $) NIL (|has| $ (-6 -4414))))) -(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -2951 ($ (-644 |#1|))) (-15 -2951 ($ (-771) |#1|)))) (-1214)) (T -59)) -((-2951 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1214)) (-5 *1 (-59 *3)))) (-2951 (*1 *1 *2 *3) (-12 (-5 *2 (-771)) (-5 *1 (-59 *3)) (-4 *3 (-1214))))) -(-13 (-19 |#1|) (-10 -8 (-15 -2951 ($ (-644 |#1|))) (-15 -2951 ($ (-771) |#1|)))) -((-3007 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2256 (((-112) $ (-771)) NIL)) (-3923 ((|#1| $ (-566) (-566) |#1|) NIL)) (-1708 (($ $ (-566) (-59 |#1|)) NIL)) (-2521 (($ $ (-566) (-59 |#1|)) NIL)) (-3012 (($) NIL T CONST)) (-4379 (((-59 |#1|) $ (-566)) NIL)) (-2920 ((|#1| $ (-566) (-566) |#1|) NIL)) (-2855 ((|#1| $ (-566) (-566)) NIL)) (-3979 (((-644 |#1|) $) NIL)) (-1380 (((-771) $) NIL)) (-4265 (($ (-771) (-771) |#1|) NIL)) (-1391 (((-771) $) NIL)) (-2404 (((-112) $ (-771)) NIL)) (-1368 (((-566) $) NIL)) (-3832 (((-566) $) NIL)) (-2329 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-1821 (((-566) $) NIL)) (-1809 (((-566) $) NIL)) (-2908 (($ (-1 |#1| |#1|) $) NIL)) (-1301 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2603 (((-112) $ (-771)) NIL)) (-4117 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4035 (((-1119) $) NIL (|has| |#1| (-1099)))) (-4030 (($ $ |#1|) NIL)) (-2692 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) NIL)) (-3467 (((-112) $) NIL)) (-1494 (($) NIL)) (-4390 ((|#1| $ (-566) (-566)) NIL) ((|#1| $ (-566) (-566) |#1|) NIL)) (-4045 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3940 (($ $) NIL)) (-2306 (((-59 |#1|) $ (-566)) NIL)) (-3783 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-3117 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1894 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3018 (((-771) $) NIL (|has| $ (-6 -4414))))) +((-2319 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-1860 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-771)) (-4 *3 (-1214)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3787 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1214)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-2531 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-566)))) (-2422 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-566)))) (-3688 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-566)))) (-3632 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-566)))) (-3811 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-771)))) (-3824 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-771)))) (-1309 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-566)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-1214)))) (-3829 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-566)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-1214)))) (-1309 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-566)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1214)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)))) (-1721 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1214)) (-4 *5 (-375 *4)) (-4 *2 (-375 *4)))) (-2986 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1214)) (-4 *5 (-375 *4)) (-4 *2 (-375 *4)))) (-1683 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-644 *3)))) (-1456 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-566)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1214)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)))) (-3897 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-566)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1214)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)))) (-1499 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-566)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1214)) (-4 *3 (-375 *4)) (-4 *5 (-375 *4)))) (-2837 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-566)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1214)) (-4 *5 (-375 *4)) (-4 *3 (-375 *4)))) (-3885 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2319 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2319 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3))))) +(-13 (-491 |t#1|) (-10 -8 (-6 -4415) (-6 -4414) (-15 -1860 ($ (-771) (-771) |t#1|)) (-15 -3787 ($ $ |t#1|)) (-15 -2531 ((-566) $)) (-15 -2422 ((-566) $)) (-15 -3688 ((-566) $)) (-15 -3632 ((-566) $)) (-15 -3811 ((-771) $)) (-15 -3824 ((-771) $)) (-15 -1309 (|t#1| $ (-566) (-566))) (-15 -3829 (|t#1| $ (-566) (-566))) (-15 -1309 (|t#1| $ (-566) (-566) |t#1|)) (-15 -1721 (|t#2| $ (-566))) (-15 -2986 (|t#3| $ (-566))) (-15 -1683 ((-644 |t#1|) $)) (-15 -1456 (|t#1| $ (-566) (-566) |t#1|)) (-15 -3897 (|t#1| $ (-566) (-566) |t#1|)) (-15 -1499 ($ $ (-566) |t#2|)) (-15 -2837 ($ $ (-566) |t#3|)) (-15 -2319 ($ (-1 |t#1| |t#1|) $)) (-15 -3885 ($ (-1 |t#1| |t#1|) $)) (-15 -2319 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2319 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) +(((-34) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2768 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1099) |has| |#1| (-1099)) ((-1214) . T)) +((-1960 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-2873 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-2319 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13))) +(((-58 |#1| |#2|) (-10 -7 (-15 -1960 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2873 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2319 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1214) (-1214)) (T -58)) +((-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1214)) (-4 *6 (-1214)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-2873 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1214)) (-4 *2 (-1214)) (-5 *1 (-58 *5 *2)))) (-1960 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1214)) (-4 *5 (-1214)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))) +(-10 -7 (-15 -1960 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2873 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2319 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) +((-2988 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1944 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4415)))) (-3054 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-850)))) (-3628 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4415))) (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-850))))) (-2671 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-850)))) (-1504 (((-112) $ (-771)) NIL)) (-1456 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4415))) ((|#1| $ (-1231 (-566)) |#1|) NIL (|has| $ (-6 -4415)))) (-3678 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2463 (($) NIL T CONST)) (-3166 (($ $) NIL (|has| $ (-6 -4415)))) (-3683 (($ $) NIL)) (-3942 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2622 (($ |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2873 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4414)))) (-3897 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4415)))) (-3829 ((|#1| $ (-566)) NIL)) (-1569 (((-566) (-1 (-112) |#1|) $) NIL) (((-566) |#1| $) NIL (|has| |#1| (-1099))) (((-566) |#1| $ (-566)) NIL (|has| |#1| (-1099)))) (-1683 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-4194 (($ (-644 |#1|)) 11) (($ (-771) |#1|) 14)) (-1860 (($ (-771) |#1|) 13)) (-3456 (((-112) $ (-771)) NIL)) (-2296 (((-566) $) NIL (|has| (-566) (-850)))) (-1478 (($ $ $) NIL (|has| |#1| (-850)))) (-2696 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-850)))) (-3491 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-4050 (((-566) $) NIL (|has| (-566) (-850)))) (-2599 (($ $ $) NIL (|has| |#1| (-850)))) (-3885 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3267 (((-112) $ (-771)) NIL)) (-3380 (((-1157) $) NIL (|has| |#1| (-1099)))) (-1859 (($ |#1| $ (-566)) NIL) (($ $ $ (-566)) NIL)) (-3725 (((-644 (-566)) $) NIL)) (-1644 (((-112) (-566) $) NIL)) (-4072 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3908 ((|#1| $) NIL (|has| (-566) (-850)))) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3787 (($ $ |#1|) NIL (|has| $ (-6 -4415)))) (-2823 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) NIL)) (-2847 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3486 (((-644 |#1|) $) NIL)) (-2872 (((-112) $) NIL)) (-3493 (($) NIL)) (-1309 ((|#1| $ (-566) |#1|) NIL) ((|#1| $ (-566)) NIL) (($ $ (-1231 (-566))) NIL)) (-2166 (($ $ (-566)) NIL) (($ $ (-1231 (-566))) NIL)) (-4083 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2661 (($ $ $ (-566)) NIL (|has| $ (-6 -4415)))) (-1480 (($ $) NIL)) (-2376 (((-538) $) NIL (|has| |#1| (-614 (-538))))) (-1340 (($ (-644 |#1|)) 10)) (-4386 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-644 $)) NIL)) (-3152 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-3044 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2210 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2968 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2914 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2956 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2935 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3000 (((-771) $) NIL (|has| $ (-6 -4414))))) +(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -4194 ($ (-644 |#1|))) (-15 -4194 ($ (-771) |#1|)))) (-1214)) (T -59)) +((-4194 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1214)) (-5 *1 (-59 *3)))) (-4194 (*1 *1 *2 *3) (-12 (-5 *2 (-771)) (-5 *1 (-59 *3)) (-4 *3 (-1214))))) +(-13 (-19 |#1|) (-10 -8 (-15 -4194 ($ (-644 |#1|))) (-15 -4194 ($ (-771) |#1|)))) +((-2988 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1504 (((-112) $ (-771)) NIL)) (-1456 ((|#1| $ (-566) (-566) |#1|) NIL)) (-1499 (($ $ (-566) (-59 |#1|)) NIL)) (-2837 (($ $ (-566) (-59 |#1|)) NIL)) (-2463 (($) NIL T CONST)) (-1721 (((-59 |#1|) $ (-566)) NIL)) (-3897 ((|#1| $ (-566) (-566) |#1|) NIL)) (-3829 ((|#1| $ (-566) (-566)) NIL)) (-1683 (((-644 |#1|) $) NIL)) (-3811 (((-771) $) NIL)) (-1860 (($ (-771) (-771) |#1|) NIL)) (-3824 (((-771) $) NIL)) (-3456 (((-112) $ (-771)) NIL)) (-2531 (((-566) $) NIL)) (-3688 (((-566) $) NIL)) (-3491 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2422 (((-566) $) NIL)) (-3632 (((-566) $) NIL)) (-3885 (($ (-1 |#1| |#1|) $) NIL)) (-2319 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3267 (((-112) $ (-771)) NIL)) (-3380 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4072 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3787 (($ $ |#1|) NIL)) (-2823 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) NIL)) (-2872 (((-112) $) NIL)) (-3493 (($) NIL)) (-1309 ((|#1| $ (-566) (-566)) NIL) ((|#1| $ (-566) (-566) |#1|) NIL)) (-4083 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-1480 (($ $) NIL)) (-2986 (((-59 |#1|) $ (-566)) NIL)) (-3152 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-3044 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2210 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3000 (((-771) $) NIL (|has| $ (-6 -4414))))) (((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4415))) (-1214)) (T -60)) NIL (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4415))) -((-4307 (((-3 $ "failed") (-1264 (-317 (-381)))) 74) (((-3 $ "failed") (-1264 (-317 (-566)))) 63) (((-3 $ "failed") (-1264 (-952 (-381)))) 94) (((-3 $ "failed") (-1264 (-952 (-566)))) 84) (((-3 $ "failed") (-1264 (-409 (-952 (-381))))) 52) (((-3 $ "failed") (-1264 (-409 (-952 (-566))))) 39)) (-4205 (($ (-1264 (-317 (-381)))) 70) (($ (-1264 (-317 (-566)))) 59) (($ (-1264 (-952 (-381)))) 90) (($ (-1264 (-952 (-566)))) 80) (($ (-1264 (-409 (-952 (-381))))) 48) (($ (-1264 (-409 (-952 (-566))))) 32)) (-3435 (((-1269) $) 127)) (-3783 (((-862) $) 121) (($ (-644 (-331))) 103) (($ (-331)) 97) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3261 (-644 (-331))))) 101) (($ (-1264 (-341 (-3796 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3796) (-699)))) 31))) -(((-61 |#1|) (-13 (-443) (-10 -8 (-15 -3783 ($ (-1264 (-341 (-3796 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3796) (-699))))))) (-1175)) (T -61)) -((-3783 (*1 *1 *2) (-12 (-5 *2 (-1264 (-341 (-3796 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3796) (-699)))) (-5 *1 (-61 *3)) (-14 *3 (-1175))))) -(-13 (-443) (-10 -8 (-15 -3783 ($ (-1264 (-341 (-3796 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3796) (-699))))))) -((-3435 (((-1269) $) 54) (((-1269)) 55)) (-3783 (((-862) $) 51))) -(((-62 |#1|) (-13 (-397) (-10 -7 (-15 -3435 ((-1269))))) (-1175)) (T -62)) -((-3435 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-62 *3)) (-14 *3 (-1175))))) -(-13 (-397) (-10 -7 (-15 -3435 ((-1269))))) -((-4307 (((-3 $ "failed") (-1264 (-317 (-381)))) 154) (((-3 $ "failed") (-1264 (-317 (-566)))) 144) (((-3 $ "failed") (-1264 (-952 (-381)))) 174) (((-3 $ "failed") (-1264 (-952 (-566)))) 164) (((-3 $ "failed") (-1264 (-409 (-952 (-381))))) 133) (((-3 $ "failed") (-1264 (-409 (-952 (-566))))) 121)) (-4205 (($ (-1264 (-317 (-381)))) 150) (($ (-1264 (-317 (-566)))) 140) (($ (-1264 (-952 (-381)))) 170) (($ (-1264 (-952 (-566)))) 160) (($ (-1264 (-409 (-952 (-381))))) 129) (($ (-1264 (-409 (-952 (-566))))) 114)) (-3435 (((-1269) $) 107)) (-3783 (((-862) $) 101) (($ (-644 (-331))) 30) (($ (-331)) 35) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3261 (-644 (-331))))) 33) (($ (-1264 (-341 (-3796) (-3796 (QUOTE XC)) (-699)))) 99))) -(((-63 |#1|) (-13 (-443) (-10 -8 (-15 -3783 ($ (-1264 (-341 (-3796) (-3796 (QUOTE XC)) (-699))))))) (-1175)) (T -63)) -((-3783 (*1 *1 *2) (-12 (-5 *2 (-1264 (-341 (-3796) (-3796 (QUOTE XC)) (-699)))) (-5 *1 (-63 *3)) (-14 *3 (-1175))))) -(-13 (-443) (-10 -8 (-15 -3783 ($ (-1264 (-341 (-3796) (-3796 (QUOTE XC)) (-699))))))) -((-4307 (((-3 $ "failed") (-317 (-381))) 41) (((-3 $ "failed") (-317 (-566))) 46) (((-3 $ "failed") (-952 (-381))) 50) (((-3 $ "failed") (-952 (-566))) 54) (((-3 $ "failed") (-409 (-952 (-381)))) 36) (((-3 $ "failed") (-409 (-952 (-566)))) 29)) (-4205 (($ (-317 (-381))) 39) (($ (-317 (-566))) 44) (($ (-952 (-381))) 48) (($ (-952 (-566))) 52) (($ (-409 (-952 (-381)))) 34) (($ (-409 (-952 (-566)))) 26)) (-3435 (((-1269) $) 76)) (-3783 (((-862) $) 69) (($ (-644 (-331))) 61) (($ (-331)) 66) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3261 (-644 (-331))))) 64) (($ (-341 (-3796 (QUOTE X)) (-3796) (-699))) 25))) -(((-64 |#1|) (-13 (-398) (-10 -8 (-15 -3783 ($ (-341 (-3796 (QUOTE X)) (-3796) (-699)))))) (-1175)) (T -64)) -((-3783 (*1 *1 *2) (-12 (-5 *2 (-341 (-3796 (QUOTE X)) (-3796) (-699))) (-5 *1 (-64 *3)) (-14 *3 (-1175))))) -(-13 (-398) (-10 -8 (-15 -3783 ($ (-341 (-3796 (QUOTE X)) (-3796) (-699)))))) -((-4307 (((-3 $ "failed") (-689 (-317 (-381)))) 114) (((-3 $ "failed") (-689 (-317 (-566)))) 102) (((-3 $ "failed") (-689 (-952 (-381)))) 136) (((-3 $ "failed") (-689 (-952 (-566)))) 125) (((-3 $ "failed") (-689 (-409 (-952 (-381))))) 90) (((-3 $ "failed") (-689 (-409 (-952 (-566))))) 76)) (-4205 (($ (-689 (-317 (-381)))) 110) (($ (-689 (-317 (-566)))) 98) (($ (-689 (-952 (-381)))) 132) (($ (-689 (-952 (-566)))) 121) (($ (-689 (-409 (-952 (-381))))) 86) (($ (-689 (-409 (-952 (-566))))) 69)) (-3435 (((-1269) $) 144)) (-3783 (((-862) $) 138) (($ (-644 (-331))) 29) (($ (-331)) 34) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3261 (-644 (-331))))) 32) (($ (-689 (-341 (-3796) (-3796 (QUOTE X) (QUOTE HESS)) (-699)))) 59))) -(((-65 |#1|) (-13 (-386) (-616 (-689 (-341 (-3796) (-3796 (QUOTE X) (QUOTE HESS)) (-699))))) (-1175)) (T -65)) -NIL -(-13 (-386) (-616 (-689 (-341 (-3796) (-3796 (QUOTE X) (QUOTE HESS)) (-699))))) -((-4307 (((-3 $ "failed") (-317 (-381))) 60) (((-3 $ "failed") (-317 (-566))) 65) (((-3 $ "failed") (-952 (-381))) 69) (((-3 $ "failed") (-952 (-566))) 73) (((-3 $ "failed") (-409 (-952 (-381)))) 55) (((-3 $ "failed") (-409 (-952 (-566)))) 48)) (-4205 (($ (-317 (-381))) 58) (($ (-317 (-566))) 63) (($ (-952 (-381))) 67) (($ (-952 (-566))) 71) (($ (-409 (-952 (-381)))) 53) (($ (-409 (-952 (-566)))) 45)) (-3435 (((-1269) $) 82)) (-3783 (((-862) $) 76) (($ (-644 (-331))) 29) (($ (-331)) 34) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3261 (-644 (-331))))) 32) (($ (-341 (-3796) (-3796 (QUOTE XC)) (-699))) 40))) -(((-66 |#1|) (-13 (-398) (-10 -8 (-15 -3783 ($ (-341 (-3796) (-3796 (QUOTE XC)) (-699)))))) (-1175)) (T -66)) -((-3783 (*1 *1 *2) (-12 (-5 *2 (-341 (-3796) (-3796 (QUOTE XC)) (-699))) (-5 *1 (-66 *3)) (-14 *3 (-1175))))) -(-13 (-398) (-10 -8 (-15 -3783 ($ (-341 (-3796) (-3796 (QUOTE XC)) (-699)))))) -((-3435 (((-1269) $) 68)) (-3783 (((-862) $) 62) (($ (-689 (-699))) 54) (($ (-644 (-331))) 53) (($ (-331)) 60) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3261 (-644 (-331))))) 58))) +((-2229 (((-3 $ "failed") (-1264 (-317 (-381)))) 74) (((-3 $ "failed") (-1264 (-317 (-566)))) 63) (((-3 $ "failed") (-1264 (-952 (-381)))) 94) (((-3 $ "failed") (-1264 (-952 (-566)))) 84) (((-3 $ "failed") (-1264 (-409 (-952 (-381))))) 52) (((-3 $ "failed") (-1264 (-409 (-952 (-566))))) 39)) (-4158 (($ (-1264 (-317 (-381)))) 70) (($ (-1264 (-317 (-566)))) 59) (($ (-1264 (-952 (-381)))) 90) (($ (-1264 (-952 (-566)))) 80) (($ (-1264 (-409 (-952 (-381))))) 48) (($ (-1264 (-409 (-952 (-566))))) 32)) (-1586 (((-1269) $) 127)) (-3152 (((-862) $) 121) (($ (-644 (-331))) 103) (($ (-331)) 97) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3906 (-644 (-331))))) 101) (($ (-1264 (-341 (-1340 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1340) (-699)))) 31))) +(((-61 |#1|) (-13 (-443) (-10 -8 (-15 -3152 ($ (-1264 (-341 (-1340 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1340) (-699))))))) (-1175)) (T -61)) +((-3152 (*1 *1 *2) (-12 (-5 *2 (-1264 (-341 (-1340 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1340) (-699)))) (-5 *1 (-61 *3)) (-14 *3 (-1175))))) +(-13 (-443) (-10 -8 (-15 -3152 ($ (-1264 (-341 (-1340 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1340) (-699))))))) +((-1586 (((-1269) $) 54) (((-1269)) 55)) (-3152 (((-862) $) 51))) +(((-62 |#1|) (-13 (-397) (-10 -7 (-15 -1586 ((-1269))))) (-1175)) (T -62)) +((-1586 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-62 *3)) (-14 *3 (-1175))))) +(-13 (-397) (-10 -7 (-15 -1586 ((-1269))))) +((-2229 (((-3 $ "failed") (-1264 (-317 (-381)))) 154) (((-3 $ "failed") (-1264 (-317 (-566)))) 144) (((-3 $ "failed") (-1264 (-952 (-381)))) 174) (((-3 $ "failed") (-1264 (-952 (-566)))) 164) (((-3 $ "failed") (-1264 (-409 (-952 (-381))))) 133) (((-3 $ "failed") (-1264 (-409 (-952 (-566))))) 121)) (-4158 (($ (-1264 (-317 (-381)))) 150) (($ (-1264 (-317 (-566)))) 140) (($ (-1264 (-952 (-381)))) 170) (($ (-1264 (-952 (-566)))) 160) (($ (-1264 (-409 (-952 (-381))))) 129) (($ (-1264 (-409 (-952 (-566))))) 114)) (-1586 (((-1269) $) 107)) (-3152 (((-862) $) 101) (($ (-644 (-331))) 30) (($ (-331)) 35) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3906 (-644 (-331))))) 33) (($ (-1264 (-341 (-1340) (-1340 (QUOTE XC)) (-699)))) 99))) +(((-63 |#1|) (-13 (-443) (-10 -8 (-15 -3152 ($ (-1264 (-341 (-1340) (-1340 (QUOTE XC)) (-699))))))) (-1175)) (T -63)) +((-3152 (*1 *1 *2) (-12 (-5 *2 (-1264 (-341 (-1340) (-1340 (QUOTE XC)) (-699)))) (-5 *1 (-63 *3)) (-14 *3 (-1175))))) +(-13 (-443) (-10 -8 (-15 -3152 ($ (-1264 (-341 (-1340) (-1340 (QUOTE XC)) (-699))))))) +((-2229 (((-3 $ "failed") (-317 (-381))) 41) (((-3 $ "failed") (-317 (-566))) 46) (((-3 $ "failed") (-952 (-381))) 50) (((-3 $ "failed") (-952 (-566))) 54) (((-3 $ "failed") (-409 (-952 (-381)))) 36) (((-3 $ "failed") (-409 (-952 (-566)))) 29)) (-4158 (($ (-317 (-381))) 39) (($ (-317 (-566))) 44) (($ (-952 (-381))) 48) (($ (-952 (-566))) 52) (($ (-409 (-952 (-381)))) 34) (($ (-409 (-952 (-566)))) 26)) (-1586 (((-1269) $) 76)) (-3152 (((-862) $) 69) (($ (-644 (-331))) 61) (($ (-331)) 66) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3906 (-644 (-331))))) 64) (($ (-341 (-1340 (QUOTE X)) (-1340) (-699))) 25))) +(((-64 |#1|) (-13 (-398) (-10 -8 (-15 -3152 ($ (-341 (-1340 (QUOTE X)) (-1340) (-699)))))) (-1175)) (T -64)) +((-3152 (*1 *1 *2) (-12 (-5 *2 (-341 (-1340 (QUOTE X)) (-1340) (-699))) (-5 *1 (-64 *3)) (-14 *3 (-1175))))) +(-13 (-398) (-10 -8 (-15 -3152 ($ (-341 (-1340 (QUOTE X)) (-1340) (-699)))))) +((-2229 (((-3 $ "failed") (-689 (-317 (-381)))) 114) (((-3 $ "failed") (-689 (-317 (-566)))) 102) (((-3 $ "failed") (-689 (-952 (-381)))) 136) (((-3 $ "failed") (-689 (-952 (-566)))) 125) (((-3 $ "failed") (-689 (-409 (-952 (-381))))) 90) (((-3 $ "failed") (-689 (-409 (-952 (-566))))) 76)) (-4158 (($ (-689 (-317 (-381)))) 110) (($ (-689 (-317 (-566)))) 98) (($ (-689 (-952 (-381)))) 132) (($ (-689 (-952 (-566)))) 121) (($ (-689 (-409 (-952 (-381))))) 86) (($ (-689 (-409 (-952 (-566))))) 69)) (-1586 (((-1269) $) 144)) (-3152 (((-862) $) 138) (($ (-644 (-331))) 29) (($ (-331)) 34) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3906 (-644 (-331))))) 32) (($ (-689 (-341 (-1340) (-1340 (QUOTE X) (QUOTE HESS)) (-699)))) 59))) +(((-65 |#1|) (-13 (-386) (-616 (-689 (-341 (-1340) (-1340 (QUOTE X) (QUOTE HESS)) (-699))))) (-1175)) (T -65)) +NIL +(-13 (-386) (-616 (-689 (-341 (-1340) (-1340 (QUOTE X) (QUOTE HESS)) (-699))))) +((-2229 (((-3 $ "failed") (-317 (-381))) 60) (((-3 $ "failed") (-317 (-566))) 65) (((-3 $ "failed") (-952 (-381))) 69) (((-3 $ "failed") (-952 (-566))) 73) (((-3 $ "failed") (-409 (-952 (-381)))) 55) (((-3 $ "failed") (-409 (-952 (-566)))) 48)) (-4158 (($ (-317 (-381))) 58) (($ (-317 (-566))) 63) (($ (-952 (-381))) 67) (($ (-952 (-566))) 71) (($ (-409 (-952 (-381)))) 53) (($ (-409 (-952 (-566)))) 45)) (-1586 (((-1269) $) 82)) (-3152 (((-862) $) 76) (($ (-644 (-331))) 29) (($ (-331)) 34) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3906 (-644 (-331))))) 32) (($ (-341 (-1340) (-1340 (QUOTE XC)) (-699))) 40))) +(((-66 |#1|) (-13 (-398) (-10 -8 (-15 -3152 ($ (-341 (-1340) (-1340 (QUOTE XC)) (-699)))))) (-1175)) (T -66)) +((-3152 (*1 *1 *2) (-12 (-5 *2 (-341 (-1340) (-1340 (QUOTE XC)) (-699))) (-5 *1 (-66 *3)) (-14 *3 (-1175))))) +(-13 (-398) (-10 -8 (-15 -3152 ($ (-341 (-1340) (-1340 (QUOTE XC)) (-699)))))) +((-1586 (((-1269) $) 68)) (-3152 (((-862) $) 62) (($ (-689 (-699))) 54) (($ (-644 (-331))) 53) (($ (-331)) 60) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3906 (-644 (-331))))) 58))) (((-67 |#1|) (-385) (-1175)) (T -67)) NIL (-385) -((-3435 (((-1269) $) 69)) (-3783 (((-862) $) 63) (($ (-689 (-699))) 55) (($ (-644 (-331))) 54) (($ (-331)) 57) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3261 (-644 (-331))))) 60))) +((-1586 (((-1269) $) 69)) (-3152 (((-862) $) 63) (($ (-689 (-699))) 55) (($ (-644 (-331))) 54) (($ (-331)) 57) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3906 (-644 (-331))))) 60))) (((-68 |#1|) (-385) (-1175)) (T -68)) NIL (-385) -((-3435 (((-1269) $) NIL) (((-1269)) 33)) (-3783 (((-862) $) NIL))) -(((-69 |#1|) (-13 (-397) (-10 -7 (-15 -3435 ((-1269))))) (-1175)) (T -69)) -((-3435 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-69 *3)) (-14 *3 (-1175))))) -(-13 (-397) (-10 -7 (-15 -3435 ((-1269))))) -((-3435 (((-1269) $) 75)) (-3783 (((-862) $) 69) (($ (-689 (-699))) 61) (($ (-644 (-331))) 63) (($ (-331)) 66) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3261 (-644 (-331))))) 60))) +((-1586 (((-1269) $) NIL) (((-1269)) 33)) (-3152 (((-862) $) NIL))) +(((-69 |#1|) (-13 (-397) (-10 -7 (-15 -1586 ((-1269))))) (-1175)) (T -69)) +((-1586 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-69 *3)) (-14 *3 (-1175))))) +(-13 (-397) (-10 -7 (-15 -1586 ((-1269))))) +((-1586 (((-1269) $) 75)) (-3152 (((-862) $) 69) (($ (-689 (-699))) 61) (($ (-644 (-331))) 63) (($ (-331)) 66) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3906 (-644 (-331))))) 60))) (((-70 |#1|) (-385) (-1175)) (T -70)) NIL (-385) -((-4307 (((-3 $ "failed") (-1264 (-317 (-381)))) 111) (((-3 $ "failed") (-1264 (-317 (-566)))) 100) (((-3 $ "failed") (-1264 (-952 (-381)))) 131) (((-3 $ "failed") (-1264 (-952 (-566)))) 121) (((-3 $ "failed") (-1264 (-409 (-952 (-381))))) 89) (((-3 $ "failed") (-1264 (-409 (-952 (-566))))) 76)) (-4205 (($ (-1264 (-317 (-381)))) 107) (($ (-1264 (-317 (-566)))) 96) (($ (-1264 (-952 (-381)))) 127) (($ (-1264 (-952 (-566)))) 117) (($ (-1264 (-409 (-952 (-381))))) 85) (($ (-1264 (-409 (-952 (-566))))) 69)) (-3435 (((-1269) $) 144)) (-3783 (((-862) $) 138) (($ (-644 (-331))) 133) (($ (-331)) 136) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3261 (-644 (-331))))) 61) (($ (-1264 (-341 (-3796 (QUOTE X)) (-3796 (QUOTE -2509)) (-699)))) 62))) -(((-71 |#1|) (-13 (-443) (-10 -8 (-15 -3783 ($ (-1264 (-341 (-3796 (QUOTE X)) (-3796 (QUOTE -2509)) (-699))))))) (-1175)) (T -71)) -((-3783 (*1 *1 *2) (-12 (-5 *2 (-1264 (-341 (-3796 (QUOTE X)) (-3796 (QUOTE -2509)) (-699)))) (-5 *1 (-71 *3)) (-14 *3 (-1175))))) -(-13 (-443) (-10 -8 (-15 -3783 ($ (-1264 (-341 (-3796 (QUOTE X)) (-3796 (QUOTE -2509)) (-699))))))) -((-3435 (((-1269) $) 33) (((-1269)) 32)) (-3783 (((-862) $) 36))) -(((-72 |#1|) (-13 (-397) (-10 -7 (-15 -3435 ((-1269))))) (-1175)) (T -72)) -((-3435 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-72 *3)) (-14 *3 (-1175))))) -(-13 (-397) (-10 -7 (-15 -3435 ((-1269))))) -((-3435 (((-1269) $) 65)) (-3783 (((-862) $) 59) (($ (-689 (-699))) 51) (($ (-644 (-331))) 53) (($ (-331)) 56) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3261 (-644 (-331))))) 50))) +((-2229 (((-3 $ "failed") (-1264 (-317 (-381)))) 111) (((-3 $ "failed") (-1264 (-317 (-566)))) 100) (((-3 $ "failed") (-1264 (-952 (-381)))) 131) (((-3 $ "failed") (-1264 (-952 (-566)))) 121) (((-3 $ "failed") (-1264 (-409 (-952 (-381))))) 89) (((-3 $ "failed") (-1264 (-409 (-952 (-566))))) 76)) (-4158 (($ (-1264 (-317 (-381)))) 107) (($ (-1264 (-317 (-566)))) 96) (($ (-1264 (-952 (-381)))) 127) (($ (-1264 (-952 (-566)))) 117) (($ (-1264 (-409 (-952 (-381))))) 85) (($ (-1264 (-409 (-952 (-566))))) 69)) (-1586 (((-1269) $) 144)) (-3152 (((-862) $) 138) (($ (-644 (-331))) 133) (($ (-331)) 136) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3906 (-644 (-331))))) 61) (($ (-1264 (-341 (-1340 (QUOTE X)) (-1340 (QUOTE -2481)) (-699)))) 62))) +(((-71 |#1|) (-13 (-443) (-10 -8 (-15 -3152 ($ (-1264 (-341 (-1340 (QUOTE X)) (-1340 (QUOTE -2481)) (-699))))))) (-1175)) (T -71)) +((-3152 (*1 *1 *2) (-12 (-5 *2 (-1264 (-341 (-1340 (QUOTE X)) (-1340 (QUOTE -2481)) (-699)))) (-5 *1 (-71 *3)) (-14 *3 (-1175))))) +(-13 (-443) (-10 -8 (-15 -3152 ($ (-1264 (-341 (-1340 (QUOTE X)) (-1340 (QUOTE -2481)) (-699))))))) +((-1586 (((-1269) $) 33) (((-1269)) 32)) (-3152 (((-862) $) 36))) +(((-72 |#1|) (-13 (-397) (-10 -7 (-15 -1586 ((-1269))))) (-1175)) (T -72)) +((-1586 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-72 *3)) (-14 *3 (-1175))))) +(-13 (-397) (-10 -7 (-15 -1586 ((-1269))))) +((-1586 (((-1269) $) 65)) (-3152 (((-862) $) 59) (($ (-689 (-699))) 51) (($ (-644 (-331))) 53) (($ (-331)) 56) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3906 (-644 (-331))))) 50))) (((-73 |#1|) (-385) (-1175)) (T -73)) NIL (-385) -((-4307 (((-3 $ "failed") (-1264 (-317 (-381)))) 130) (((-3 $ "failed") (-1264 (-317 (-566)))) 120) (((-3 $ "failed") (-1264 (-952 (-381)))) 150) (((-3 $ "failed") (-1264 (-952 (-566)))) 140) (((-3 $ "failed") (-1264 (-409 (-952 (-381))))) 110) (((-3 $ "failed") (-1264 (-409 (-952 (-566))))) 98)) (-4205 (($ (-1264 (-317 (-381)))) 126) (($ (-1264 (-317 (-566)))) 116) (($ (-1264 (-952 (-381)))) 146) (($ (-1264 (-952 (-566)))) 136) (($ (-1264 (-409 (-952 (-381))))) 106) (($ (-1264 (-409 (-952 (-566))))) 91)) (-3435 (((-1269) $) 83)) (-3783 (((-862) $) 28) (($ (-644 (-331))) 73) (($ (-331)) 69) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3261 (-644 (-331))))) 76) (($ (-1264 (-341 (-3796) (-3796 (QUOTE X)) (-699)))) 70))) -(((-74 |#1|) (-13 (-443) (-10 -8 (-15 -3783 ($ (-1264 (-341 (-3796) (-3796 (QUOTE X)) (-699))))))) (-1175)) (T -74)) -((-3783 (*1 *1 *2) (-12 (-5 *2 (-1264 (-341 (-3796) (-3796 (QUOTE X)) (-699)))) (-5 *1 (-74 *3)) (-14 *3 (-1175))))) -(-13 (-443) (-10 -8 (-15 -3783 ($ (-1264 (-341 (-3796) (-3796 (QUOTE X)) (-699))))))) -((-4307 (((-3 $ "failed") (-1264 (-317 (-381)))) 135) (((-3 $ "failed") (-1264 (-317 (-566)))) 124) (((-3 $ "failed") (-1264 (-952 (-381)))) 155) (((-3 $ "failed") (-1264 (-952 (-566)))) 145) (((-3 $ "failed") (-1264 (-409 (-952 (-381))))) 113) (((-3 $ "failed") (-1264 (-409 (-952 (-566))))) 100)) (-4205 (($ (-1264 (-317 (-381)))) 131) (($ (-1264 (-317 (-566)))) 120) (($ (-1264 (-952 (-381)))) 151) (($ (-1264 (-952 (-566)))) 141) (($ (-1264 (-409 (-952 (-381))))) 109) (($ (-1264 (-409 (-952 (-566))))) 93)) (-3435 (((-1269) $) 85)) (-3783 (((-862) $) 77) (($ (-644 (-331))) NIL) (($ (-331)) NIL) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3261 (-644 (-331))))) NIL) (($ (-1264 (-341 (-3796 (QUOTE X) (QUOTE EPS)) (-3796 (QUOTE -2509)) (-699)))) 72))) -(((-75 |#1| |#2| |#3|) (-13 (-443) (-10 -8 (-15 -3783 ($ (-1264 (-341 (-3796 (QUOTE X) (QUOTE EPS)) (-3796 (QUOTE -2509)) (-699))))))) (-1175) (-1175) (-1175)) (T -75)) -((-3783 (*1 *1 *2) (-12 (-5 *2 (-1264 (-341 (-3796 (QUOTE X) (QUOTE EPS)) (-3796 (QUOTE -2509)) (-699)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1175)) (-14 *4 (-1175)) (-14 *5 (-1175))))) -(-13 (-443) (-10 -8 (-15 -3783 ($ (-1264 (-341 (-3796 (QUOTE X) (QUOTE EPS)) (-3796 (QUOTE -2509)) (-699))))))) -((-4307 (((-3 $ "failed") (-1264 (-317 (-381)))) 141) (((-3 $ "failed") (-1264 (-317 (-566)))) 130) (((-3 $ "failed") (-1264 (-952 (-381)))) 161) (((-3 $ "failed") (-1264 (-952 (-566)))) 151) (((-3 $ "failed") (-1264 (-409 (-952 (-381))))) 119) (((-3 $ "failed") (-1264 (-409 (-952 (-566))))) 106)) (-4205 (($ (-1264 (-317 (-381)))) 137) (($ (-1264 (-317 (-566)))) 126) (($ (-1264 (-952 (-381)))) 157) (($ (-1264 (-952 (-566)))) 147) (($ (-1264 (-409 (-952 (-381))))) 115) (($ (-1264 (-409 (-952 (-566))))) 99)) (-3435 (((-1269) $) 91)) (-3783 (((-862) $) 83) (($ (-644 (-331))) NIL) (($ (-331)) NIL) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3261 (-644 (-331))))) NIL) (($ (-1264 (-341 (-3796 (QUOTE EPS)) (-3796 (QUOTE YA) (QUOTE YB)) (-699)))) 78))) -(((-76 |#1| |#2| |#3|) (-13 (-443) (-10 -8 (-15 -3783 ($ (-1264 (-341 (-3796 (QUOTE EPS)) (-3796 (QUOTE YA) (QUOTE YB)) (-699))))))) (-1175) (-1175) (-1175)) (T -76)) -((-3783 (*1 *1 *2) (-12 (-5 *2 (-1264 (-341 (-3796 (QUOTE EPS)) (-3796 (QUOTE YA) (QUOTE YB)) (-699)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1175)) (-14 *4 (-1175)) (-14 *5 (-1175))))) -(-13 (-443) (-10 -8 (-15 -3783 ($ (-1264 (-341 (-3796 (QUOTE EPS)) (-3796 (QUOTE YA) (QUOTE YB)) (-699))))))) -((-4307 (((-3 $ "failed") (-317 (-381))) 83) (((-3 $ "failed") (-317 (-566))) 88) (((-3 $ "failed") (-952 (-381))) 92) (((-3 $ "failed") (-952 (-566))) 96) (((-3 $ "failed") (-409 (-952 (-381)))) 78) (((-3 $ "failed") (-409 (-952 (-566)))) 71)) (-4205 (($ (-317 (-381))) 81) (($ (-317 (-566))) 86) (($ (-952 (-381))) 90) (($ (-952 (-566))) 94) (($ (-409 (-952 (-381)))) 76) (($ (-409 (-952 (-566)))) 68)) (-3435 (((-1269) $) 63)) (-3783 (((-862) $) 51) (($ (-644 (-331))) 47) (($ (-331)) 57) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3261 (-644 (-331))))) 55) (($ (-341 (-3796) (-3796 (QUOTE X)) (-699))) 48))) -(((-77 |#1|) (-13 (-398) (-10 -8 (-15 -3783 ($ (-341 (-3796) (-3796 (QUOTE X)) (-699)))))) (-1175)) (T -77)) -((-3783 (*1 *1 *2) (-12 (-5 *2 (-341 (-3796) (-3796 (QUOTE X)) (-699))) (-5 *1 (-77 *3)) (-14 *3 (-1175))))) -(-13 (-398) (-10 -8 (-15 -3783 ($ (-341 (-3796) (-3796 (QUOTE X)) (-699)))))) -((-4307 (((-3 $ "failed") (-317 (-381))) 47) (((-3 $ "failed") (-317 (-566))) 52) (((-3 $ "failed") (-952 (-381))) 56) (((-3 $ "failed") (-952 (-566))) 60) (((-3 $ "failed") (-409 (-952 (-381)))) 42) (((-3 $ "failed") (-409 (-952 (-566)))) 35)) (-4205 (($ (-317 (-381))) 45) (($ (-317 (-566))) 50) (($ (-952 (-381))) 54) (($ (-952 (-566))) 58) (($ (-409 (-952 (-381)))) 40) (($ (-409 (-952 (-566)))) 32)) (-3435 (((-1269) $) 81)) (-3783 (((-862) $) 75) (($ (-644 (-331))) 67) (($ (-331)) 72) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3261 (-644 (-331))))) 70) (($ (-341 (-3796) (-3796 (QUOTE X)) (-699))) 31))) -(((-78 |#1|) (-13 (-398) (-10 -8 (-15 -3783 ($ (-341 (-3796) (-3796 (QUOTE X)) (-699)))))) (-1175)) (T -78)) -((-3783 (*1 *1 *2) (-12 (-5 *2 (-341 (-3796) (-3796 (QUOTE X)) (-699))) (-5 *1 (-78 *3)) (-14 *3 (-1175))))) -(-13 (-398) (-10 -8 (-15 -3783 ($ (-341 (-3796) (-3796 (QUOTE X)) (-699)))))) -((-4307 (((-3 $ "failed") (-1264 (-317 (-381)))) 90) (((-3 $ "failed") (-1264 (-317 (-566)))) 79) (((-3 $ "failed") (-1264 (-952 (-381)))) 110) (((-3 $ "failed") (-1264 (-952 (-566)))) 100) (((-3 $ "failed") (-1264 (-409 (-952 (-381))))) 68) (((-3 $ "failed") (-1264 (-409 (-952 (-566))))) 55)) (-4205 (($ (-1264 (-317 (-381)))) 86) (($ (-1264 (-317 (-566)))) 75) (($ (-1264 (-952 (-381)))) 106) (($ (-1264 (-952 (-566)))) 96) (($ (-1264 (-409 (-952 (-381))))) 64) (($ (-1264 (-409 (-952 (-566))))) 48)) (-3435 (((-1269) $) 126)) (-3783 (((-862) $) 120) (($ (-644 (-331))) 113) (($ (-331)) 38) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3261 (-644 (-331))))) 116) (($ (-1264 (-341 (-3796) (-3796 (QUOTE XC)) (-699)))) 39))) -(((-79 |#1|) (-13 (-443) (-10 -8 (-15 -3783 ($ (-1264 (-341 (-3796) (-3796 (QUOTE XC)) (-699))))))) (-1175)) (T -79)) -((-3783 (*1 *1 *2) (-12 (-5 *2 (-1264 (-341 (-3796) (-3796 (QUOTE XC)) (-699)))) (-5 *1 (-79 *3)) (-14 *3 (-1175))))) -(-13 (-443) (-10 -8 (-15 -3783 ($ (-1264 (-341 (-3796) (-3796 (QUOTE XC)) (-699))))))) -((-4307 (((-3 $ "failed") (-1264 (-317 (-381)))) 158) (((-3 $ "failed") (-1264 (-317 (-566)))) 148) (((-3 $ "failed") (-1264 (-952 (-381)))) 178) (((-3 $ "failed") (-1264 (-952 (-566)))) 168) (((-3 $ "failed") (-1264 (-409 (-952 (-381))))) 138) (((-3 $ "failed") (-1264 (-409 (-952 (-566))))) 126)) (-4205 (($ (-1264 (-317 (-381)))) 154) (($ (-1264 (-317 (-566)))) 144) (($ (-1264 (-952 (-381)))) 174) (($ (-1264 (-952 (-566)))) 164) (($ (-1264 (-409 (-952 (-381))))) 134) (($ (-1264 (-409 (-952 (-566))))) 119)) (-3435 (((-1269) $) 112)) (-3783 (((-862) $) 106) (($ (-644 (-331))) 97) (($ (-331)) 104) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3261 (-644 (-331))))) 102) (($ (-1264 (-341 (-3796) (-3796 (QUOTE X)) (-699)))) 98))) -(((-80 |#1|) (-13 (-443) (-10 -8 (-15 -3783 ($ (-1264 (-341 (-3796) (-3796 (QUOTE X)) (-699))))))) (-1175)) (T -80)) -((-3783 (*1 *1 *2) (-12 (-5 *2 (-1264 (-341 (-3796) (-3796 (QUOTE X)) (-699)))) (-5 *1 (-80 *3)) (-14 *3 (-1175))))) -(-13 (-443) (-10 -8 (-15 -3783 ($ (-1264 (-341 (-3796) (-3796 (QUOTE X)) (-699))))))) -((-4307 (((-3 $ "failed") (-1264 (-317 (-381)))) 79) (((-3 $ "failed") (-1264 (-317 (-566)))) 68) (((-3 $ "failed") (-1264 (-952 (-381)))) 99) (((-3 $ "failed") (-1264 (-952 (-566)))) 89) (((-3 $ "failed") (-1264 (-409 (-952 (-381))))) 57) (((-3 $ "failed") (-1264 (-409 (-952 (-566))))) 44)) (-4205 (($ (-1264 (-317 (-381)))) 75) (($ (-1264 (-317 (-566)))) 64) (($ (-1264 (-952 (-381)))) 95) (($ (-1264 (-952 (-566)))) 85) (($ (-1264 (-409 (-952 (-381))))) 53) (($ (-1264 (-409 (-952 (-566))))) 37)) (-3435 (((-1269) $) 125)) (-3783 (((-862) $) 119) (($ (-644 (-331))) 110) (($ (-331)) 116) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3261 (-644 (-331))))) 114) (($ (-1264 (-341 (-3796) (-3796 (QUOTE X)) (-699)))) 36))) -(((-81 |#1|) (-13 (-443) (-616 (-1264 (-341 (-3796) (-3796 (QUOTE X)) (-699))))) (-1175)) (T -81)) -NIL -(-13 (-443) (-616 (-1264 (-341 (-3796) (-3796 (QUOTE X)) (-699))))) -((-4307 (((-3 $ "failed") (-1264 (-317 (-381)))) 98) (((-3 $ "failed") (-1264 (-317 (-566)))) 87) (((-3 $ "failed") (-1264 (-952 (-381)))) 118) (((-3 $ "failed") (-1264 (-952 (-566)))) 108) (((-3 $ "failed") (-1264 (-409 (-952 (-381))))) 76) (((-3 $ "failed") (-1264 (-409 (-952 (-566))))) 63)) (-4205 (($ (-1264 (-317 (-381)))) 94) (($ (-1264 (-317 (-566)))) 83) (($ (-1264 (-952 (-381)))) 114) (($ (-1264 (-952 (-566)))) 104) (($ (-1264 (-409 (-952 (-381))))) 72) (($ (-1264 (-409 (-952 (-566))))) 56)) (-3435 (((-1269) $) 48)) (-3783 (((-862) $) 42) (($ (-644 (-331))) 32) (($ (-331)) 35) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3261 (-644 (-331))))) 38) (($ (-1264 (-341 (-3796 (QUOTE X) (QUOTE -2509)) (-3796) (-699)))) 33))) -(((-82 |#1|) (-13 (-443) (-10 -8 (-15 -3783 ($ (-1264 (-341 (-3796 (QUOTE X) (QUOTE -2509)) (-3796) (-699))))))) (-1175)) (T -82)) -((-3783 (*1 *1 *2) (-12 (-5 *2 (-1264 (-341 (-3796 (QUOTE X) (QUOTE -2509)) (-3796) (-699)))) (-5 *1 (-82 *3)) (-14 *3 (-1175))))) -(-13 (-443) (-10 -8 (-15 -3783 ($ (-1264 (-341 (-3796 (QUOTE X) (QUOTE -2509)) (-3796) (-699))))))) -((-4307 (((-3 $ "failed") (-689 (-317 (-381)))) 118) (((-3 $ "failed") (-689 (-317 (-566)))) 107) (((-3 $ "failed") (-689 (-952 (-381)))) 140) (((-3 $ "failed") (-689 (-952 (-566)))) 129) (((-3 $ "failed") (-689 (-409 (-952 (-381))))) 96) (((-3 $ "failed") (-689 (-409 (-952 (-566))))) 83)) (-4205 (($ (-689 (-317 (-381)))) 114) (($ (-689 (-317 (-566)))) 103) (($ (-689 (-952 (-381)))) 136) (($ (-689 (-952 (-566)))) 125) (($ (-689 (-409 (-952 (-381))))) 92) (($ (-689 (-409 (-952 (-566))))) 76)) (-3435 (((-1269) $) 66)) (-3783 (((-862) $) 53) (($ (-644 (-331))) 60) (($ (-331)) 49) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3261 (-644 (-331))))) 58) (($ (-689 (-341 (-3796 (QUOTE X) (QUOTE -2509)) (-3796) (-699)))) 50))) -(((-83 |#1|) (-13 (-386) (-10 -8 (-15 -3783 ($ (-689 (-341 (-3796 (QUOTE X) (QUOTE -2509)) (-3796) (-699))))))) (-1175)) (T -83)) -((-3783 (*1 *1 *2) (-12 (-5 *2 (-689 (-341 (-3796 (QUOTE X) (QUOTE -2509)) (-3796) (-699)))) (-5 *1 (-83 *3)) (-14 *3 (-1175))))) -(-13 (-386) (-10 -8 (-15 -3783 ($ (-689 (-341 (-3796 (QUOTE X) (QUOTE -2509)) (-3796) (-699))))))) -((-4307 (((-3 $ "failed") (-689 (-317 (-381)))) 113) (((-3 $ "failed") (-689 (-317 (-566)))) 101) (((-3 $ "failed") (-689 (-952 (-381)))) 135) (((-3 $ "failed") (-689 (-952 (-566)))) 124) (((-3 $ "failed") (-689 (-409 (-952 (-381))))) 89) (((-3 $ "failed") (-689 (-409 (-952 (-566))))) 75)) (-4205 (($ (-689 (-317 (-381)))) 109) (($ (-689 (-317 (-566)))) 97) (($ (-689 (-952 (-381)))) 131) (($ (-689 (-952 (-566)))) 120) (($ (-689 (-409 (-952 (-381))))) 85) (($ (-689 (-409 (-952 (-566))))) 68)) (-3435 (((-1269) $) 60)) (-3783 (((-862) $) 54) (($ (-644 (-331))) 48) (($ (-331)) 51) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3261 (-644 (-331))))) 45) (($ (-689 (-341 (-3796 (QUOTE X)) (-3796) (-699)))) 46))) -(((-84 |#1|) (-13 (-386) (-10 -8 (-15 -3783 ($ (-689 (-341 (-3796 (QUOTE X)) (-3796) (-699))))))) (-1175)) (T -84)) -((-3783 (*1 *1 *2) (-12 (-5 *2 (-689 (-341 (-3796 (QUOTE X)) (-3796) (-699)))) (-5 *1 (-84 *3)) (-14 *3 (-1175))))) -(-13 (-386) (-10 -8 (-15 -3783 ($ (-689 (-341 (-3796 (QUOTE X)) (-3796) (-699))))))) -((-4307 (((-3 $ "failed") (-1264 (-317 (-381)))) 105) (((-3 $ "failed") (-1264 (-317 (-566)))) 94) (((-3 $ "failed") (-1264 (-952 (-381)))) 125) (((-3 $ "failed") (-1264 (-952 (-566)))) 115) (((-3 $ "failed") (-1264 (-409 (-952 (-381))))) 83) (((-3 $ "failed") (-1264 (-409 (-952 (-566))))) 70)) (-4205 (($ (-1264 (-317 (-381)))) 101) (($ (-1264 (-317 (-566)))) 90) (($ (-1264 (-952 (-381)))) 121) (($ (-1264 (-952 (-566)))) 111) (($ (-1264 (-409 (-952 (-381))))) 79) (($ (-1264 (-409 (-952 (-566))))) 63)) (-3435 (((-1269) $) 47)) (-3783 (((-862) $) 41) (($ (-644 (-331))) 50) (($ (-331)) 37) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3261 (-644 (-331))))) 53) (($ (-1264 (-341 (-3796 (QUOTE X)) (-3796) (-699)))) 38))) -(((-85 |#1|) (-13 (-443) (-10 -8 (-15 -3783 ($ (-1264 (-341 (-3796 (QUOTE X)) (-3796) (-699))))))) (-1175)) (T -85)) -((-3783 (*1 *1 *2) (-12 (-5 *2 (-1264 (-341 (-3796 (QUOTE X)) (-3796) (-699)))) (-5 *1 (-85 *3)) (-14 *3 (-1175))))) -(-13 (-443) (-10 -8 (-15 -3783 ($ (-1264 (-341 (-3796 (QUOTE X)) (-3796) (-699))))))) -((-4307 (((-3 $ "failed") (-1264 (-317 (-381)))) 80) (((-3 $ "failed") (-1264 (-317 (-566)))) 69) (((-3 $ "failed") (-1264 (-952 (-381)))) 100) (((-3 $ "failed") (-1264 (-952 (-566)))) 90) (((-3 $ "failed") (-1264 (-409 (-952 (-381))))) 58) (((-3 $ "failed") (-1264 (-409 (-952 (-566))))) 45)) (-4205 (($ (-1264 (-317 (-381)))) 76) (($ (-1264 (-317 (-566)))) 65) (($ (-1264 (-952 (-381)))) 96) (($ (-1264 (-952 (-566)))) 86) (($ (-1264 (-409 (-952 (-381))))) 54) (($ (-1264 (-409 (-952 (-566))))) 38)) (-3435 (((-1269) $) 126)) (-3783 (((-862) $) 120) (($ (-644 (-331))) 111) (($ (-331)) 117) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3261 (-644 (-331))))) 115) (($ (-1264 (-341 (-3796 (QUOTE X)) (-3796 (QUOTE -2509)) (-699)))) 37))) -(((-86 |#1|) (-13 (-443) (-10 -8 (-15 -3783 ($ (-1264 (-341 (-3796 (QUOTE X)) (-3796 (QUOTE -2509)) (-699))))))) (-1175)) (T -86)) -((-3783 (*1 *1 *2) (-12 (-5 *2 (-1264 (-341 (-3796 (QUOTE X)) (-3796 (QUOTE -2509)) (-699)))) (-5 *1 (-86 *3)) (-14 *3 (-1175))))) -(-13 (-443) (-10 -8 (-15 -3783 ($ (-1264 (-341 (-3796 (QUOTE X)) (-3796 (QUOTE -2509)) (-699))))))) -((-4307 (((-3 $ "failed") (-689 (-317 (-381)))) 117) (((-3 $ "failed") (-689 (-317 (-566)))) 105) (((-3 $ "failed") (-689 (-952 (-381)))) 139) (((-3 $ "failed") (-689 (-952 (-566)))) 128) (((-3 $ "failed") (-689 (-409 (-952 (-381))))) 93) (((-3 $ "failed") (-689 (-409 (-952 (-566))))) 79)) (-4205 (($ (-689 (-317 (-381)))) 113) (($ (-689 (-317 (-566)))) 101) (($ (-689 (-952 (-381)))) 135) (($ (-689 (-952 (-566)))) 124) (($ (-689 (-409 (-952 (-381))))) 89) (($ (-689 (-409 (-952 (-566))))) 72)) (-3435 (((-1269) $) 63)) (-3783 (((-862) $) 57) (($ (-644 (-331))) 47) (($ (-331)) 54) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3261 (-644 (-331))))) 52) (($ (-689 (-341 (-3796 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3796) (-699)))) 48))) -(((-87 |#1|) (-13 (-386) (-10 -8 (-15 -3783 ($ (-689 (-341 (-3796 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3796) (-699))))))) (-1175)) (T -87)) -((-3783 (*1 *1 *2) (-12 (-5 *2 (-689 (-341 (-3796 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3796) (-699)))) (-5 *1 (-87 *3)) (-14 *3 (-1175))))) -(-13 (-386) (-10 -8 (-15 -3783 ($ (-689 (-341 (-3796 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3796) (-699))))))) -((-3435 (((-1269) $) 45)) (-3783 (((-862) $) 39) (($ (-1264 (-699))) 101) (($ (-644 (-331))) 31) (($ (-331)) 36) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3261 (-644 (-331))))) 34))) +((-2229 (((-3 $ "failed") (-1264 (-317 (-381)))) 130) (((-3 $ "failed") (-1264 (-317 (-566)))) 120) (((-3 $ "failed") (-1264 (-952 (-381)))) 150) (((-3 $ "failed") (-1264 (-952 (-566)))) 140) (((-3 $ "failed") (-1264 (-409 (-952 (-381))))) 110) (((-3 $ "failed") (-1264 (-409 (-952 (-566))))) 98)) (-4158 (($ (-1264 (-317 (-381)))) 126) (($ (-1264 (-317 (-566)))) 116) (($ (-1264 (-952 (-381)))) 146) (($ (-1264 (-952 (-566)))) 136) (($ (-1264 (-409 (-952 (-381))))) 106) (($ (-1264 (-409 (-952 (-566))))) 91)) (-1586 (((-1269) $) 83)) (-3152 (((-862) $) 28) (($ (-644 (-331))) 73) (($ (-331)) 69) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3906 (-644 (-331))))) 76) (($ (-1264 (-341 (-1340) (-1340 (QUOTE X)) (-699)))) 70))) +(((-74 |#1|) (-13 (-443) (-10 -8 (-15 -3152 ($ (-1264 (-341 (-1340) (-1340 (QUOTE X)) (-699))))))) (-1175)) (T -74)) +((-3152 (*1 *1 *2) (-12 (-5 *2 (-1264 (-341 (-1340) (-1340 (QUOTE X)) (-699)))) (-5 *1 (-74 *3)) (-14 *3 (-1175))))) +(-13 (-443) (-10 -8 (-15 -3152 ($ (-1264 (-341 (-1340) (-1340 (QUOTE X)) (-699))))))) +((-2229 (((-3 $ "failed") (-1264 (-317 (-381)))) 135) (((-3 $ "failed") (-1264 (-317 (-566)))) 124) (((-3 $ "failed") (-1264 (-952 (-381)))) 155) (((-3 $ "failed") (-1264 (-952 (-566)))) 145) (((-3 $ "failed") (-1264 (-409 (-952 (-381))))) 113) (((-3 $ "failed") (-1264 (-409 (-952 (-566))))) 100)) (-4158 (($ (-1264 (-317 (-381)))) 131) (($ (-1264 (-317 (-566)))) 120) (($ (-1264 (-952 (-381)))) 151) (($ (-1264 (-952 (-566)))) 141) (($ (-1264 (-409 (-952 (-381))))) 109) (($ (-1264 (-409 (-952 (-566))))) 93)) (-1586 (((-1269) $) 85)) (-3152 (((-862) $) 77) (($ (-644 (-331))) NIL) (($ (-331)) NIL) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3906 (-644 (-331))))) NIL) (($ (-1264 (-341 (-1340 (QUOTE X) (QUOTE EPS)) (-1340 (QUOTE -2481)) (-699)))) 72))) +(((-75 |#1| |#2| |#3|) (-13 (-443) (-10 -8 (-15 -3152 ($ (-1264 (-341 (-1340 (QUOTE X) (QUOTE EPS)) (-1340 (QUOTE -2481)) (-699))))))) (-1175) (-1175) (-1175)) (T -75)) +((-3152 (*1 *1 *2) (-12 (-5 *2 (-1264 (-341 (-1340 (QUOTE X) (QUOTE EPS)) (-1340 (QUOTE -2481)) (-699)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1175)) (-14 *4 (-1175)) (-14 *5 (-1175))))) +(-13 (-443) (-10 -8 (-15 -3152 ($ (-1264 (-341 (-1340 (QUOTE X) (QUOTE EPS)) (-1340 (QUOTE -2481)) (-699))))))) +((-2229 (((-3 $ "failed") (-1264 (-317 (-381)))) 141) (((-3 $ "failed") (-1264 (-317 (-566)))) 130) (((-3 $ "failed") (-1264 (-952 (-381)))) 161) (((-3 $ "failed") (-1264 (-952 (-566)))) 151) (((-3 $ "failed") (-1264 (-409 (-952 (-381))))) 119) (((-3 $ "failed") (-1264 (-409 (-952 (-566))))) 106)) (-4158 (($ (-1264 (-317 (-381)))) 137) (($ (-1264 (-317 (-566)))) 126) (($ (-1264 (-952 (-381)))) 157) (($ (-1264 (-952 (-566)))) 147) (($ (-1264 (-409 (-952 (-381))))) 115) (($ (-1264 (-409 (-952 (-566))))) 99)) (-1586 (((-1269) $) 91)) (-3152 (((-862) $) 83) (($ (-644 (-331))) NIL) (($ (-331)) NIL) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3906 (-644 (-331))))) NIL) (($ (-1264 (-341 (-1340 (QUOTE EPS)) (-1340 (QUOTE YA) (QUOTE YB)) (-699)))) 78))) +(((-76 |#1| |#2| |#3|) (-13 (-443) (-10 -8 (-15 -3152 ($ (-1264 (-341 (-1340 (QUOTE EPS)) (-1340 (QUOTE YA) (QUOTE YB)) (-699))))))) (-1175) (-1175) (-1175)) (T -76)) +((-3152 (*1 *1 *2) (-12 (-5 *2 (-1264 (-341 (-1340 (QUOTE EPS)) (-1340 (QUOTE YA) (QUOTE YB)) (-699)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1175)) (-14 *4 (-1175)) (-14 *5 (-1175))))) +(-13 (-443) (-10 -8 (-15 -3152 ($ (-1264 (-341 (-1340 (QUOTE EPS)) (-1340 (QUOTE YA) (QUOTE YB)) (-699))))))) +((-2229 (((-3 $ "failed") (-317 (-381))) 83) (((-3 $ "failed") (-317 (-566))) 88) (((-3 $ "failed") (-952 (-381))) 92) (((-3 $ "failed") (-952 (-566))) 96) (((-3 $ "failed") (-409 (-952 (-381)))) 78) (((-3 $ "failed") (-409 (-952 (-566)))) 71)) (-4158 (($ (-317 (-381))) 81) (($ (-317 (-566))) 86) (($ (-952 (-381))) 90) (($ (-952 (-566))) 94) (($ (-409 (-952 (-381)))) 76) (($ (-409 (-952 (-566)))) 68)) (-1586 (((-1269) $) 63)) (-3152 (((-862) $) 51) (($ (-644 (-331))) 47) (($ (-331)) 57) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3906 (-644 (-331))))) 55) (($ (-341 (-1340) (-1340 (QUOTE X)) (-699))) 48))) +(((-77 |#1|) (-13 (-398) (-10 -8 (-15 -3152 ($ (-341 (-1340) (-1340 (QUOTE X)) (-699)))))) (-1175)) (T -77)) +((-3152 (*1 *1 *2) (-12 (-5 *2 (-341 (-1340) (-1340 (QUOTE X)) (-699))) (-5 *1 (-77 *3)) (-14 *3 (-1175))))) +(-13 (-398) (-10 -8 (-15 -3152 ($ (-341 (-1340) (-1340 (QUOTE X)) (-699)))))) +((-2229 (((-3 $ "failed") (-317 (-381))) 47) (((-3 $ "failed") (-317 (-566))) 52) (((-3 $ "failed") (-952 (-381))) 56) (((-3 $ "failed") (-952 (-566))) 60) (((-3 $ "failed") (-409 (-952 (-381)))) 42) (((-3 $ "failed") (-409 (-952 (-566)))) 35)) (-4158 (($ (-317 (-381))) 45) (($ (-317 (-566))) 50) (($ (-952 (-381))) 54) (($ (-952 (-566))) 58) (($ (-409 (-952 (-381)))) 40) (($ (-409 (-952 (-566)))) 32)) (-1586 (((-1269) $) 81)) (-3152 (((-862) $) 75) (($ (-644 (-331))) 67) (($ (-331)) 72) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3906 (-644 (-331))))) 70) (($ (-341 (-1340) (-1340 (QUOTE X)) (-699))) 31))) +(((-78 |#1|) (-13 (-398) (-10 -8 (-15 -3152 ($ (-341 (-1340) (-1340 (QUOTE X)) (-699)))))) (-1175)) (T -78)) +((-3152 (*1 *1 *2) (-12 (-5 *2 (-341 (-1340) (-1340 (QUOTE X)) (-699))) (-5 *1 (-78 *3)) (-14 *3 (-1175))))) +(-13 (-398) (-10 -8 (-15 -3152 ($ (-341 (-1340) (-1340 (QUOTE X)) (-699)))))) +((-2229 (((-3 $ "failed") (-1264 (-317 (-381)))) 90) (((-3 $ "failed") (-1264 (-317 (-566)))) 79) (((-3 $ "failed") (-1264 (-952 (-381)))) 110) (((-3 $ "failed") (-1264 (-952 (-566)))) 100) (((-3 $ "failed") (-1264 (-409 (-952 (-381))))) 68) (((-3 $ "failed") (-1264 (-409 (-952 (-566))))) 55)) (-4158 (($ (-1264 (-317 (-381)))) 86) (($ (-1264 (-317 (-566)))) 75) (($ (-1264 (-952 (-381)))) 106) (($ (-1264 (-952 (-566)))) 96) (($ (-1264 (-409 (-952 (-381))))) 64) (($ (-1264 (-409 (-952 (-566))))) 48)) (-1586 (((-1269) $) 126)) (-3152 (((-862) $) 120) (($ (-644 (-331))) 113) (($ (-331)) 38) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3906 (-644 (-331))))) 116) (($ (-1264 (-341 (-1340) (-1340 (QUOTE XC)) (-699)))) 39))) +(((-79 |#1|) (-13 (-443) (-10 -8 (-15 -3152 ($ (-1264 (-341 (-1340) (-1340 (QUOTE XC)) (-699))))))) (-1175)) (T -79)) +((-3152 (*1 *1 *2) (-12 (-5 *2 (-1264 (-341 (-1340) (-1340 (QUOTE XC)) (-699)))) (-5 *1 (-79 *3)) (-14 *3 (-1175))))) +(-13 (-443) (-10 -8 (-15 -3152 ($ (-1264 (-341 (-1340) (-1340 (QUOTE XC)) (-699))))))) +((-2229 (((-3 $ "failed") (-1264 (-317 (-381)))) 158) (((-3 $ "failed") (-1264 (-317 (-566)))) 148) (((-3 $ "failed") (-1264 (-952 (-381)))) 178) (((-3 $ "failed") (-1264 (-952 (-566)))) 168) (((-3 $ "failed") (-1264 (-409 (-952 (-381))))) 138) (((-3 $ "failed") (-1264 (-409 (-952 (-566))))) 126)) (-4158 (($ (-1264 (-317 (-381)))) 154) (($ (-1264 (-317 (-566)))) 144) (($ (-1264 (-952 (-381)))) 174) (($ (-1264 (-952 (-566)))) 164) (($ (-1264 (-409 (-952 (-381))))) 134) (($ (-1264 (-409 (-952 (-566))))) 119)) (-1586 (((-1269) $) 112)) (-3152 (((-862) $) 106) (($ (-644 (-331))) 97) (($ (-331)) 104) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3906 (-644 (-331))))) 102) (($ (-1264 (-341 (-1340) (-1340 (QUOTE X)) (-699)))) 98))) +(((-80 |#1|) (-13 (-443) (-10 -8 (-15 -3152 ($ (-1264 (-341 (-1340) (-1340 (QUOTE X)) (-699))))))) (-1175)) (T -80)) +((-3152 (*1 *1 *2) (-12 (-5 *2 (-1264 (-341 (-1340) (-1340 (QUOTE X)) (-699)))) (-5 *1 (-80 *3)) (-14 *3 (-1175))))) +(-13 (-443) (-10 -8 (-15 -3152 ($ (-1264 (-341 (-1340) (-1340 (QUOTE X)) (-699))))))) +((-2229 (((-3 $ "failed") (-1264 (-317 (-381)))) 79) (((-3 $ "failed") (-1264 (-317 (-566)))) 68) (((-3 $ "failed") (-1264 (-952 (-381)))) 99) (((-3 $ "failed") (-1264 (-952 (-566)))) 89) (((-3 $ "failed") (-1264 (-409 (-952 (-381))))) 57) (((-3 $ "failed") (-1264 (-409 (-952 (-566))))) 44)) (-4158 (($ (-1264 (-317 (-381)))) 75) (($ (-1264 (-317 (-566)))) 64) (($ (-1264 (-952 (-381)))) 95) (($ (-1264 (-952 (-566)))) 85) (($ (-1264 (-409 (-952 (-381))))) 53) (($ (-1264 (-409 (-952 (-566))))) 37)) (-1586 (((-1269) $) 125)) (-3152 (((-862) $) 119) (($ (-644 (-331))) 110) (($ (-331)) 116) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3906 (-644 (-331))))) 114) (($ (-1264 (-341 (-1340) (-1340 (QUOTE X)) (-699)))) 36))) +(((-81 |#1|) (-13 (-443) (-616 (-1264 (-341 (-1340) (-1340 (QUOTE X)) (-699))))) (-1175)) (T -81)) +NIL +(-13 (-443) (-616 (-1264 (-341 (-1340) (-1340 (QUOTE X)) (-699))))) +((-2229 (((-3 $ "failed") (-1264 (-317 (-381)))) 98) (((-3 $ "failed") (-1264 (-317 (-566)))) 87) (((-3 $ "failed") (-1264 (-952 (-381)))) 118) (((-3 $ "failed") (-1264 (-952 (-566)))) 108) (((-3 $ "failed") (-1264 (-409 (-952 (-381))))) 76) (((-3 $ "failed") (-1264 (-409 (-952 (-566))))) 63)) (-4158 (($ (-1264 (-317 (-381)))) 94) (($ (-1264 (-317 (-566)))) 83) (($ (-1264 (-952 (-381)))) 114) (($ (-1264 (-952 (-566)))) 104) (($ (-1264 (-409 (-952 (-381))))) 72) (($ (-1264 (-409 (-952 (-566))))) 56)) (-1586 (((-1269) $) 48)) (-3152 (((-862) $) 42) (($ (-644 (-331))) 32) (($ (-331)) 35) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3906 (-644 (-331))))) 38) (($ (-1264 (-341 (-1340 (QUOTE X) (QUOTE -2481)) (-1340) (-699)))) 33))) +(((-82 |#1|) (-13 (-443) (-10 -8 (-15 -3152 ($ (-1264 (-341 (-1340 (QUOTE X) (QUOTE -2481)) (-1340) (-699))))))) (-1175)) (T -82)) +((-3152 (*1 *1 *2) (-12 (-5 *2 (-1264 (-341 (-1340 (QUOTE X) (QUOTE -2481)) (-1340) (-699)))) (-5 *1 (-82 *3)) (-14 *3 (-1175))))) +(-13 (-443) (-10 -8 (-15 -3152 ($ (-1264 (-341 (-1340 (QUOTE X) (QUOTE -2481)) (-1340) (-699))))))) +((-2229 (((-3 $ "failed") (-689 (-317 (-381)))) 118) (((-3 $ "failed") (-689 (-317 (-566)))) 107) (((-3 $ "failed") (-689 (-952 (-381)))) 140) (((-3 $ "failed") (-689 (-952 (-566)))) 129) (((-3 $ "failed") (-689 (-409 (-952 (-381))))) 96) (((-3 $ "failed") (-689 (-409 (-952 (-566))))) 83)) (-4158 (($ (-689 (-317 (-381)))) 114) (($ (-689 (-317 (-566)))) 103) (($ (-689 (-952 (-381)))) 136) (($ (-689 (-952 (-566)))) 125) (($ (-689 (-409 (-952 (-381))))) 92) (($ (-689 (-409 (-952 (-566))))) 76)) (-1586 (((-1269) $) 66)) (-3152 (((-862) $) 53) (($ (-644 (-331))) 60) (($ (-331)) 49) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3906 (-644 (-331))))) 58) (($ (-689 (-341 (-1340 (QUOTE X) (QUOTE -2481)) (-1340) (-699)))) 50))) +(((-83 |#1|) (-13 (-386) (-10 -8 (-15 -3152 ($ (-689 (-341 (-1340 (QUOTE X) (QUOTE -2481)) (-1340) (-699))))))) (-1175)) (T -83)) +((-3152 (*1 *1 *2) (-12 (-5 *2 (-689 (-341 (-1340 (QUOTE X) (QUOTE -2481)) (-1340) (-699)))) (-5 *1 (-83 *3)) (-14 *3 (-1175))))) +(-13 (-386) (-10 -8 (-15 -3152 ($ (-689 (-341 (-1340 (QUOTE X) (QUOTE -2481)) (-1340) (-699))))))) +((-2229 (((-3 $ "failed") (-689 (-317 (-381)))) 113) (((-3 $ "failed") (-689 (-317 (-566)))) 101) (((-3 $ "failed") (-689 (-952 (-381)))) 135) (((-3 $ "failed") (-689 (-952 (-566)))) 124) (((-3 $ "failed") (-689 (-409 (-952 (-381))))) 89) (((-3 $ "failed") (-689 (-409 (-952 (-566))))) 75)) (-4158 (($ (-689 (-317 (-381)))) 109) (($ (-689 (-317 (-566)))) 97) (($ (-689 (-952 (-381)))) 131) (($ (-689 (-952 (-566)))) 120) (($ (-689 (-409 (-952 (-381))))) 85) (($ (-689 (-409 (-952 (-566))))) 68)) (-1586 (((-1269) $) 60)) (-3152 (((-862) $) 54) (($ (-644 (-331))) 48) (($ (-331)) 51) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3906 (-644 (-331))))) 45) (($ (-689 (-341 (-1340 (QUOTE X)) (-1340) (-699)))) 46))) +(((-84 |#1|) (-13 (-386) (-10 -8 (-15 -3152 ($ (-689 (-341 (-1340 (QUOTE X)) (-1340) (-699))))))) (-1175)) (T -84)) +((-3152 (*1 *1 *2) (-12 (-5 *2 (-689 (-341 (-1340 (QUOTE X)) (-1340) (-699)))) (-5 *1 (-84 *3)) (-14 *3 (-1175))))) +(-13 (-386) (-10 -8 (-15 -3152 ($ (-689 (-341 (-1340 (QUOTE X)) (-1340) (-699))))))) +((-2229 (((-3 $ "failed") (-1264 (-317 (-381)))) 105) (((-3 $ "failed") (-1264 (-317 (-566)))) 94) (((-3 $ "failed") (-1264 (-952 (-381)))) 125) (((-3 $ "failed") (-1264 (-952 (-566)))) 115) (((-3 $ "failed") (-1264 (-409 (-952 (-381))))) 83) (((-3 $ "failed") (-1264 (-409 (-952 (-566))))) 70)) (-4158 (($ (-1264 (-317 (-381)))) 101) (($ (-1264 (-317 (-566)))) 90) (($ (-1264 (-952 (-381)))) 121) (($ (-1264 (-952 (-566)))) 111) (($ (-1264 (-409 (-952 (-381))))) 79) (($ (-1264 (-409 (-952 (-566))))) 63)) (-1586 (((-1269) $) 47)) (-3152 (((-862) $) 41) (($ (-644 (-331))) 50) (($ (-331)) 37) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3906 (-644 (-331))))) 53) (($ (-1264 (-341 (-1340 (QUOTE X)) (-1340) (-699)))) 38))) +(((-85 |#1|) (-13 (-443) (-10 -8 (-15 -3152 ($ (-1264 (-341 (-1340 (QUOTE X)) (-1340) (-699))))))) (-1175)) (T -85)) +((-3152 (*1 *1 *2) (-12 (-5 *2 (-1264 (-341 (-1340 (QUOTE X)) (-1340) (-699)))) (-5 *1 (-85 *3)) (-14 *3 (-1175))))) +(-13 (-443) (-10 -8 (-15 -3152 ($ (-1264 (-341 (-1340 (QUOTE X)) (-1340) (-699))))))) +((-2229 (((-3 $ "failed") (-1264 (-317 (-381)))) 80) (((-3 $ "failed") (-1264 (-317 (-566)))) 69) (((-3 $ "failed") (-1264 (-952 (-381)))) 100) (((-3 $ "failed") (-1264 (-952 (-566)))) 90) (((-3 $ "failed") (-1264 (-409 (-952 (-381))))) 58) (((-3 $ "failed") (-1264 (-409 (-952 (-566))))) 45)) (-4158 (($ (-1264 (-317 (-381)))) 76) (($ (-1264 (-317 (-566)))) 65) (($ (-1264 (-952 (-381)))) 96) (($ (-1264 (-952 (-566)))) 86) (($ (-1264 (-409 (-952 (-381))))) 54) (($ (-1264 (-409 (-952 (-566))))) 38)) (-1586 (((-1269) $) 126)) (-3152 (((-862) $) 120) (($ (-644 (-331))) 111) (($ (-331)) 117) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3906 (-644 (-331))))) 115) (($ (-1264 (-341 (-1340 (QUOTE X)) (-1340 (QUOTE -2481)) (-699)))) 37))) +(((-86 |#1|) (-13 (-443) (-10 -8 (-15 -3152 ($ (-1264 (-341 (-1340 (QUOTE X)) (-1340 (QUOTE -2481)) (-699))))))) (-1175)) (T -86)) +((-3152 (*1 *1 *2) (-12 (-5 *2 (-1264 (-341 (-1340 (QUOTE X)) (-1340 (QUOTE -2481)) (-699)))) (-5 *1 (-86 *3)) (-14 *3 (-1175))))) +(-13 (-443) (-10 -8 (-15 -3152 ($ (-1264 (-341 (-1340 (QUOTE X)) (-1340 (QUOTE -2481)) (-699))))))) +((-2229 (((-3 $ "failed") (-689 (-317 (-381)))) 117) (((-3 $ "failed") (-689 (-317 (-566)))) 105) (((-3 $ "failed") (-689 (-952 (-381)))) 139) (((-3 $ "failed") (-689 (-952 (-566)))) 128) (((-3 $ "failed") (-689 (-409 (-952 (-381))))) 93) (((-3 $ "failed") (-689 (-409 (-952 (-566))))) 79)) (-4158 (($ (-689 (-317 (-381)))) 113) (($ (-689 (-317 (-566)))) 101) (($ (-689 (-952 (-381)))) 135) (($ (-689 (-952 (-566)))) 124) (($ (-689 (-409 (-952 (-381))))) 89) (($ (-689 (-409 (-952 (-566))))) 72)) (-1586 (((-1269) $) 63)) (-3152 (((-862) $) 57) (($ (-644 (-331))) 47) (($ (-331)) 54) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3906 (-644 (-331))))) 52) (($ (-689 (-341 (-1340 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1340) (-699)))) 48))) +(((-87 |#1|) (-13 (-386) (-10 -8 (-15 -3152 ($ (-689 (-341 (-1340 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1340) (-699))))))) (-1175)) (T -87)) +((-3152 (*1 *1 *2) (-12 (-5 *2 (-689 (-341 (-1340 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1340) (-699)))) (-5 *1 (-87 *3)) (-14 *3 (-1175))))) +(-13 (-386) (-10 -8 (-15 -3152 ($ (-689 (-341 (-1340 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1340) (-699))))))) +((-1586 (((-1269) $) 45)) (-3152 (((-862) $) 39) (($ (-1264 (-699))) 101) (($ (-644 (-331))) 31) (($ (-331)) 36) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3906 (-644 (-331))))) 34))) (((-88 |#1|) (-442) (-1175)) (T -88)) NIL (-442) -((-4307 (((-3 $ "failed") (-317 (-381))) 48) (((-3 $ "failed") (-317 (-566))) 53) (((-3 $ "failed") (-952 (-381))) 57) (((-3 $ "failed") (-952 (-566))) 61) (((-3 $ "failed") (-409 (-952 (-381)))) 43) (((-3 $ "failed") (-409 (-952 (-566)))) 36)) (-4205 (($ (-317 (-381))) 46) (($ (-317 (-566))) 51) (($ (-952 (-381))) 55) (($ (-952 (-566))) 59) (($ (-409 (-952 (-381)))) 41) (($ (-409 (-952 (-566)))) 33)) (-3435 (((-1269) $) 91)) (-3783 (((-862) $) 85) (($ (-644 (-331))) 79) (($ (-331)) 82) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3261 (-644 (-331))))) 77) (($ (-341 (-3796 (QUOTE X)) (-3796 (QUOTE -2509)) (-699))) 32))) -(((-89 |#1|) (-13 (-398) (-10 -8 (-15 -3783 ($ (-341 (-3796 (QUOTE X)) (-3796 (QUOTE -2509)) (-699)))))) (-1175)) (T -89)) -((-3783 (*1 *1 *2) (-12 (-5 *2 (-341 (-3796 (QUOTE X)) (-3796 (QUOTE -2509)) (-699))) (-5 *1 (-89 *3)) (-14 *3 (-1175))))) -(-13 (-398) (-10 -8 (-15 -3783 ($ (-341 (-3796 (QUOTE X)) (-3796 (QUOTE -2509)) (-699)))))) -((-2634 (((-1264 (-689 |#1|)) (-689 |#1|)) 65)) (-4081 (((-2 (|:| -4227 (-689 |#1|)) (|:| |vec| (-1264 (-644 (-921))))) |#2| (-921)) 54)) (-2726 (((-2 (|:| |minor| (-644 (-921))) (|:| -2470 |#2|) (|:| |minors| (-644 (-644 (-921)))) (|:| |ops| (-644 |#2|))) |#2| (-921)) 76 (|has| |#1| (-365))))) -(((-90 |#1| |#2|) (-10 -7 (-15 -4081 ((-2 (|:| -4227 (-689 |#1|)) (|:| |vec| (-1264 (-644 (-921))))) |#2| (-921))) (-15 -2634 ((-1264 (-689 |#1|)) (-689 |#1|))) (IF (|has| |#1| (-365)) (-15 -2726 ((-2 (|:| |minor| (-644 (-921))) (|:| -2470 |#2|) (|:| |minors| (-644 (-644 (-921)))) (|:| |ops| (-644 |#2|))) |#2| (-921))) |%noBranch|)) (-558) (-656 |#1|)) (T -90)) -((-2726 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *5 (-558)) (-5 *2 (-2 (|:| |minor| (-644 (-921))) (|:| -2470 *3) (|:| |minors| (-644 (-644 (-921)))) (|:| |ops| (-644 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-921)) (-4 *3 (-656 *5)))) (-2634 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-1264 (-689 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-689 *4)) (-4 *5 (-656 *4)))) (-4081 (*1 *2 *3 *4) (-12 (-4 *5 (-558)) (-5 *2 (-2 (|:| -4227 (-689 *5)) (|:| |vec| (-1264 (-644 (-921)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-921)) (-4 *3 (-656 *5))))) -(-10 -7 (-15 -4081 ((-2 (|:| -4227 (-689 |#1|)) (|:| |vec| (-1264 (-644 (-921))))) |#2| (-921))) (-15 -2634 ((-1264 (-689 |#1|)) (-689 |#1|))) (IF (|has| |#1| (-365)) (-15 -2726 ((-2 (|:| |minor| (-644 (-921))) (|:| -2470 |#2|) (|:| |minors| (-644 (-644 (-921)))) (|:| |ops| (-644 |#2|))) |#2| (-921))) |%noBranch|)) -((-3007 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1825 ((|#1| $) 42)) (-2256 (((-112) $ (-771)) NIL)) (-3012 (($) NIL T CONST)) (-2261 ((|#1| |#1| $) 37)) (-2008 ((|#1| $) 35)) (-3979 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-2404 (((-112) $ (-771)) NIL)) (-2329 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2908 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#1| |#1|) $) NIL)) (-2603 (((-112) $ (-771)) NIL)) (-4117 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4039 ((|#1| $) NIL)) (-3406 (($ |#1| $) 38)) (-4035 (((-1119) $) NIL (|has| |#1| (-1099)))) (-2539 ((|#1| $) 36)) (-2692 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) NIL)) (-3467 (((-112) $) 18)) (-1494 (($) 46)) (-2266 (((-771) $) 33)) (-4045 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3940 (($ $) 17)) (-3783 (((-862) $) 32 (|has| |#1| (-613 (-862))))) (-3117 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1748 (($ (-644 |#1|)) NIL)) (-4248 (($ (-644 |#1|)) 44)) (-1894 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) 15 (|has| |#1| (-1099)))) (-3018 (((-771) $) 12 (|has| $ (-6 -4414))))) -(((-91 |#1|) (-13 (-1120 |#1|) (-10 -8 (-15 -4248 ($ (-644 |#1|))))) (-1099)) (T -91)) -((-4248 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-91 *3))))) -(-13 (-1120 |#1|) (-10 -8 (-15 -4248 ($ (-644 |#1|))))) -((-3783 (((-862) $) 13) (($ (-1180)) 9) (((-1180) $) 8))) -(((-92 |#1|) (-10 -8 (-15 -3783 ((-1180) |#1|)) (-15 -3783 (|#1| (-1180))) (-15 -3783 ((-862) |#1|))) (-93)) (T -92)) -NIL -(-10 -8 (-15 -3783 ((-1180) |#1|)) (-15 -3783 (|#1| (-1180))) (-15 -3783 ((-862) |#1|))) -((-3007 (((-112) $ $) 7)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3783 (((-862) $) 12) (($ (-1180)) 17) (((-1180) $) 16)) (-3117 (((-112) $ $) 9)) (-2947 (((-112) $ $) 6))) +((-2229 (((-3 $ "failed") (-317 (-381))) 48) (((-3 $ "failed") (-317 (-566))) 53) (((-3 $ "failed") (-952 (-381))) 57) (((-3 $ "failed") (-952 (-566))) 61) (((-3 $ "failed") (-409 (-952 (-381)))) 43) (((-3 $ "failed") (-409 (-952 (-566)))) 36)) (-4158 (($ (-317 (-381))) 46) (($ (-317 (-566))) 51) (($ (-952 (-381))) 55) (($ (-952 (-566))) 59) (($ (-409 (-952 (-381)))) 41) (($ (-409 (-952 (-566)))) 33)) (-1586 (((-1269) $) 91)) (-3152 (((-862) $) 85) (($ (-644 (-331))) 79) (($ (-331)) 82) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3906 (-644 (-331))))) 77) (($ (-341 (-1340 (QUOTE X)) (-1340 (QUOTE -2481)) (-699))) 32))) +(((-89 |#1|) (-13 (-398) (-10 -8 (-15 -3152 ($ (-341 (-1340 (QUOTE X)) (-1340 (QUOTE -2481)) (-699)))))) (-1175)) (T -89)) +((-3152 (*1 *1 *2) (-12 (-5 *2 (-341 (-1340 (QUOTE X)) (-1340 (QUOTE -2481)) (-699))) (-5 *1 (-89 *3)) (-14 *3 (-1175))))) +(-13 (-398) (-10 -8 (-15 -3152 ($ (-341 (-1340 (QUOTE X)) (-1340 (QUOTE -2481)) (-699)))))) +((-3223 (((-1264 (-689 |#1|)) (-689 |#1|)) 65)) (-1930 (((-2 (|:| -3361 (-689 |#1|)) (|:| |vec| (-1264 (-644 (-921))))) |#2| (-921)) 54)) (-2930 (((-2 (|:| |minor| (-644 (-921))) (|:| -3434 |#2|) (|:| |minors| (-644 (-644 (-921)))) (|:| |ops| (-644 |#2|))) |#2| (-921)) 76 (|has| |#1| (-365))))) +(((-90 |#1| |#2|) (-10 -7 (-15 -1930 ((-2 (|:| -3361 (-689 |#1|)) (|:| |vec| (-1264 (-644 (-921))))) |#2| (-921))) (-15 -3223 ((-1264 (-689 |#1|)) (-689 |#1|))) (IF (|has| |#1| (-365)) (-15 -2930 ((-2 (|:| |minor| (-644 (-921))) (|:| -3434 |#2|) (|:| |minors| (-644 (-644 (-921)))) (|:| |ops| (-644 |#2|))) |#2| (-921))) |%noBranch|)) (-558) (-656 |#1|)) (T -90)) +((-2930 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *5 (-558)) (-5 *2 (-2 (|:| |minor| (-644 (-921))) (|:| -3434 *3) (|:| |minors| (-644 (-644 (-921)))) (|:| |ops| (-644 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-921)) (-4 *3 (-656 *5)))) (-3223 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-1264 (-689 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-689 *4)) (-4 *5 (-656 *4)))) (-1930 (*1 *2 *3 *4) (-12 (-4 *5 (-558)) (-5 *2 (-2 (|:| -3361 (-689 *5)) (|:| |vec| (-1264 (-644 (-921)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-921)) (-4 *3 (-656 *5))))) +(-10 -7 (-15 -1930 ((-2 (|:| -3361 (-689 |#1|)) (|:| |vec| (-1264 (-644 (-921))))) |#2| (-921))) (-15 -3223 ((-1264 (-689 |#1|)) (-689 |#1|))) (IF (|has| |#1| (-365)) (-15 -2930 ((-2 (|:| |minor| (-644 (-921))) (|:| -3434 |#2|) (|:| |minors| (-644 (-644 (-921)))) (|:| |ops| (-644 |#2|))) |#2| (-921))) |%noBranch|)) +((-2988 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3712 ((|#1| $) 42)) (-1504 (((-112) $ (-771)) NIL)) (-2463 (($) NIL T CONST)) (-3890 ((|#1| |#1| $) 37)) (-2692 ((|#1| $) 35)) (-1683 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-3456 (((-112) $ (-771)) NIL)) (-3491 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3885 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#1| |#1|) $) NIL)) (-3267 (((-112) $ (-771)) NIL)) (-3380 (((-1157) $) NIL (|has| |#1| (-1099)))) (-3278 ((|#1| $) NIL)) (-3888 (($ |#1| $) 38)) (-4072 (((-1119) $) NIL (|has| |#1| (-1099)))) (-1973 ((|#1| $) 36)) (-2823 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) NIL)) (-2872 (((-112) $) 18)) (-3493 (($) 46)) (-2766 (((-771) $) 33)) (-4083 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-1480 (($ $) 17)) (-3152 (((-862) $) 32 (|has| |#1| (-613 (-862))))) (-3044 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2948 (($ (-644 |#1|)) NIL)) (-1500 (($ (-644 |#1|)) 44)) (-2210 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) 15 (|has| |#1| (-1099)))) (-3000 (((-771) $) 12 (|has| $ (-6 -4414))))) +(((-91 |#1|) (-13 (-1120 |#1|) (-10 -8 (-15 -1500 ($ (-644 |#1|))))) (-1099)) (T -91)) +((-1500 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-91 *3))))) +(-13 (-1120 |#1|) (-10 -8 (-15 -1500 ($ (-644 |#1|))))) +((-3152 (((-862) $) 13) (($ (-1180)) 9) (((-1180) $) 8))) +(((-92 |#1|) (-10 -8 (-15 -3152 ((-1180) |#1|)) (-15 -3152 (|#1| (-1180))) (-15 -3152 ((-862) |#1|))) (-93)) (T -92)) +NIL +(-10 -8 (-15 -3152 ((-1180) |#1|)) (-15 -3152 (|#1| (-1180))) (-15 -3152 ((-862) |#1|))) +((-2988 (((-112) $ $) 7)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3152 (((-862) $) 12) (($ (-1180)) 17) (((-1180) $) 16)) (-3044 (((-112) $ $) 9)) (-2914 (((-112) $ $) 6))) (((-93) (-140)) (T -93)) NIL (-13 (-1099) (-492 (-1180))) (((-102) . T) ((-616 #0=(-1180)) . T) ((-613 (-862)) . T) ((-613 #0#) . T) ((-492 #0#) . T) ((-1099) . T)) -((-2212 (($ $) 10)) (-2227 (($ $) 12))) -(((-94 |#1|) (-10 -8 (-15 -2227 (|#1| |#1|)) (-15 -2212 (|#1| |#1|))) (-95)) (T -94)) +((-3917 (($ $) 10)) (-3929 (($ $) 12))) +(((-94 |#1|) (-10 -8 (-15 -3929 (|#1| |#1|)) (-15 -3917 (|#1| |#1|))) (-95)) (T -94)) NIL -(-10 -8 (-15 -2227 (|#1| |#1|)) (-15 -2212 (|#1| |#1|))) -((-2180 (($ $) 11)) (-2153 (($ $) 10)) (-2212 (($ $) 9)) (-2227 (($ $) 8)) (-2196 (($ $) 7)) (-2166 (($ $) 6))) +(-10 -8 (-15 -3929 (|#1| |#1|)) (-15 -3917 (|#1| |#1|))) +((-3892 (($ $) 11)) (-3684 (($ $) 10)) (-3917 (($ $) 9)) (-3929 (($ $) 8)) (-3904 (($ $) 7)) (-3879 (($ $) 6))) (((-95) (-140)) (T -95)) -((-2180 (*1 *1 *1) (-4 *1 (-95))) (-2153 (*1 *1 *1) (-4 *1 (-95))) (-2212 (*1 *1 *1) (-4 *1 (-95))) (-2227 (*1 *1 *1) (-4 *1 (-95))) (-2196 (*1 *1 *1) (-4 *1 (-95))) (-2166 (*1 *1 *1) (-4 *1 (-95)))) -(-13 (-10 -8 (-15 -2166 ($ $)) (-15 -2196 ($ $)) (-15 -2227 ($ $)) (-15 -2212 ($ $)) (-15 -2153 ($ $)) (-15 -2180 ($ $)))) -((-3007 (((-112) $ $) NIL)) (-2640 (((-1134) $) 9)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 15) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) -(((-96) (-13 (-1082) (-10 -8 (-15 -2640 ((-1134) $))))) (T -96)) -((-2640 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-96))))) -(-13 (-1082) (-10 -8 (-15 -2640 ((-1134) $)))) -((-3007 (((-112) $ $) NIL)) (-1754 (((-381) (-1157) (-381)) 47) (((-381) (-1157) (-1157) (-381)) 45)) (-1730 (((-381) (-381)) 35)) (-2958 (((-1269)) 38)) (-4117 (((-1157) $) NIL)) (-3865 (((-381) (-1157) (-1157)) 51) (((-381) (-1157)) 53)) (-4035 (((-1119) $) NIL)) (-3292 (((-381) (-1157) (-1157)) 52)) (-4036 (((-381) (-1157) (-1157)) 54) (((-381) (-1157)) 55)) (-3783 (((-862) $) NIL)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) -(((-97) (-13 (-1099) (-10 -7 (-15 -3865 ((-381) (-1157) (-1157))) (-15 -3865 ((-381) (-1157))) (-15 -4036 ((-381) (-1157) (-1157))) (-15 -4036 ((-381) (-1157))) (-15 -3292 ((-381) (-1157) (-1157))) (-15 -2958 ((-1269))) (-15 -1730 ((-381) (-381))) (-15 -1754 ((-381) (-1157) (-381))) (-15 -1754 ((-381) (-1157) (-1157) (-381))) (-6 -4414)))) (T -97)) -((-3865 (*1 *2 *3 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-381)) (-5 *1 (-97)))) (-3865 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-381)) (-5 *1 (-97)))) (-4036 (*1 *2 *3 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-381)) (-5 *1 (-97)))) (-4036 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-381)) (-5 *1 (-97)))) (-3292 (*1 *2 *3 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-381)) (-5 *1 (-97)))) (-2958 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-97)))) (-1730 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-97)))) (-1754 (*1 *2 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-1157)) (-5 *1 (-97)))) (-1754 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-1157)) (-5 *1 (-97))))) -(-13 (-1099) (-10 -7 (-15 -3865 ((-381) (-1157) (-1157))) (-15 -3865 ((-381) (-1157))) (-15 -4036 ((-381) (-1157) (-1157))) (-15 -4036 ((-381) (-1157))) (-15 -3292 ((-381) (-1157) (-1157))) (-15 -2958 ((-1269))) (-15 -1730 ((-381) (-381))) (-15 -1754 ((-381) (-1157) (-381))) (-15 -1754 ((-381) (-1157) (-1157) (-381))) (-6 -4414))) +((-3892 (*1 *1 *1) (-4 *1 (-95))) (-3684 (*1 *1 *1) (-4 *1 (-95))) (-3917 (*1 *1 *1) (-4 *1 (-95))) (-3929 (*1 *1 *1) (-4 *1 (-95))) (-3904 (*1 *1 *1) (-4 *1 (-95))) (-3879 (*1 *1 *1) (-4 *1 (-95)))) +(-13 (-10 -8 (-15 -3879 ($ $)) (-15 -3904 ($ $)) (-15 -3929 ($ $)) (-15 -3917 ($ $)) (-15 -3684 ($ $)) (-15 -3892 ($ $)))) +((-2988 (((-112) $ $) NIL)) (-1368 (((-1134) $) 9)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 15) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) +(((-96) (-13 (-1082) (-10 -8 (-15 -1368 ((-1134) $))))) (T -96)) +((-1368 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-96))))) +(-13 (-1082) (-10 -8 (-15 -1368 ((-1134) $)))) +((-2988 (((-112) $ $) NIL)) (-2219 (((-381) (-1157) (-381)) 47) (((-381) (-1157) (-1157) (-381)) 45)) (-1952 (((-381) (-381)) 35)) (-3588 (((-1269)) 38)) (-3380 (((-1157) $) NIL)) (-3861 (((-381) (-1157) (-1157)) 51) (((-381) (-1157)) 53)) (-4072 (((-1119) $) NIL)) (-3287 (((-381) (-1157) (-1157)) 52)) (-4203 (((-381) (-1157) (-1157)) 54) (((-381) (-1157)) 55)) (-3152 (((-862) $) NIL)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) +(((-97) (-13 (-1099) (-10 -7 (-15 -3861 ((-381) (-1157) (-1157))) (-15 -3861 ((-381) (-1157))) (-15 -4203 ((-381) (-1157) (-1157))) (-15 -4203 ((-381) (-1157))) (-15 -3287 ((-381) (-1157) (-1157))) (-15 -3588 ((-1269))) (-15 -1952 ((-381) (-381))) (-15 -2219 ((-381) (-1157) (-381))) (-15 -2219 ((-381) (-1157) (-1157) (-381))) (-6 -4414)))) (T -97)) +((-3861 (*1 *2 *3 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-381)) (-5 *1 (-97)))) (-3861 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-381)) (-5 *1 (-97)))) (-4203 (*1 *2 *3 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-381)) (-5 *1 (-97)))) (-4203 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-381)) (-5 *1 (-97)))) (-3287 (*1 *2 *3 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-381)) (-5 *1 (-97)))) (-3588 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-97)))) (-1952 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-97)))) (-2219 (*1 *2 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-1157)) (-5 *1 (-97)))) (-2219 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-1157)) (-5 *1 (-97))))) +(-13 (-1099) (-10 -7 (-15 -3861 ((-381) (-1157) (-1157))) (-15 -3861 ((-381) (-1157))) (-15 -4203 ((-381) (-1157) (-1157))) (-15 -4203 ((-381) (-1157))) (-15 -3287 ((-381) (-1157) (-1157))) (-15 -3588 ((-1269))) (-15 -1952 ((-381) (-381))) (-15 -2219 ((-381) (-1157) (-381))) (-15 -2219 ((-381) (-1157) (-1157) (-381))) (-6 -4414))) NIL (((-98) (-140)) (T -98)) NIL (-13 (-10 -7 (-6 -4414) (-6 (-4416 "*")) (-6 -4415) (-6 -4411) (-6 -4409) (-6 -4408) (-6 -4407) (-6 -4412) (-6 -4406) (-6 -4405) (-6 -4404) (-6 -4403) (-6 -4402) (-6 -4410) (-6 -4413) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4401))) -((-3007 (((-112) $ $) NIL)) (-3012 (($) NIL T CONST)) (-1878 (((-3 $ "failed") $) NIL)) (-3934 (((-112) $) NIL)) (-4235 (($ (-1 |#1| |#1|)) 27) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26) (($ (-1 |#1| |#1| (-566))) 24)) (-4117 (((-1157) $) NIL)) (-1713 (($ $) 16)) (-4035 (((-1119) $) NIL)) (-4390 ((|#1| $ |#1|) 13)) (-2358 (($ $ $) NIL)) (-3171 (($ $ $) NIL)) (-3783 (((-862) $) 22)) (-3117 (((-112) $ $) NIL)) (-4334 (($) 8 T CONST)) (-2947 (((-112) $ $) 10)) (-3065 (($ $ $) NIL)) (** (($ $ (-921)) 34) (($ $ (-771)) NIL) (($ $ (-566)) 18)) (* (($ $ $) 35))) -(((-99 |#1|) (-13 (-475) (-287 |#1| |#1|) (-10 -8 (-15 -4235 ($ (-1 |#1| |#1|))) (-15 -4235 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -4235 ($ (-1 |#1| |#1| (-566)))))) (-1049)) (T -99)) -((-4235 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1049)) (-5 *1 (-99 *3)))) (-4235 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1049)) (-5 *1 (-99 *3)))) (-4235 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-566))) (-4 *3 (-1049)) (-5 *1 (-99 *3))))) -(-13 (-475) (-287 |#1| |#1|) (-10 -8 (-15 -4235 ($ (-1 |#1| |#1|))) (-15 -4235 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -4235 ($ (-1 |#1| |#1| (-566)))))) -((-2152 (((-420 |#2|) |#2| (-644 |#2|)) 10) (((-420 |#2|) |#2| |#2|) 11))) -(((-100 |#1| |#2|) (-10 -7 (-15 -2152 ((-420 |#2|) |#2| |#2|)) (-15 -2152 ((-420 |#2|) |#2| (-644 |#2|)))) (-13 (-454) (-147)) (-1240 |#1|)) (T -100)) -((-2152 (*1 *2 *3 *4) (-12 (-5 *4 (-644 *3)) (-4 *3 (-1240 *5)) (-4 *5 (-13 (-454) (-147))) (-5 *2 (-420 *3)) (-5 *1 (-100 *5 *3)))) (-2152 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-454) (-147))) (-5 *2 (-420 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1240 *4))))) -(-10 -7 (-15 -2152 ((-420 |#2|) |#2| |#2|)) (-15 -2152 ((-420 |#2|) |#2| (-644 |#2|)))) -((-3007 (((-112) $ $) 10))) -(((-101 |#1|) (-10 -8 (-15 -3007 ((-112) |#1| |#1|))) (-102)) (T -101)) -NIL -(-10 -8 (-15 -3007 ((-112) |#1| |#1|))) -((-3007 (((-112) $ $) 7)) (-2947 (((-112) $ $) 6))) +((-2988 (((-112) $ $) NIL)) (-2463 (($) NIL T CONST)) (-3245 (((-3 $ "failed") $) NIL)) (-2389 (((-112) $) NIL)) (-2759 (($ (-1 |#1| |#1|)) 27) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26) (($ (-1 |#1| |#1| (-566))) 24)) (-3380 (((-1157) $) NIL)) (-2748 (($ $) 16)) (-4072 (((-1119) $) NIL)) (-1309 ((|#1| $ |#1|) 13)) (-3357 (($ $ $) NIL)) (-2527 (($ $ $) NIL)) (-3152 (((-862) $) 22)) (-3044 (((-112) $ $) NIL)) (-4366 (($) 8 T CONST)) (-2914 (((-112) $ $) 10)) (-3025 (($ $ $) NIL)) (** (($ $ (-921)) 34) (($ $ (-771)) NIL) (($ $ (-566)) 18)) (* (($ $ $) 35))) +(((-99 |#1|) (-13 (-475) (-287 |#1| |#1|) (-10 -8 (-15 -2759 ($ (-1 |#1| |#1|))) (-15 -2759 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2759 ($ (-1 |#1| |#1| (-566)))))) (-1049)) (T -99)) +((-2759 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1049)) (-5 *1 (-99 *3)))) (-2759 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1049)) (-5 *1 (-99 *3)))) (-2759 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-566))) (-4 *3 (-1049)) (-5 *1 (-99 *3))))) +(-13 (-475) (-287 |#1| |#1|) (-10 -8 (-15 -2759 ($ (-1 |#1| |#1|))) (-15 -2759 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2759 ($ (-1 |#1| |#1| (-566)))))) +((-3247 (((-420 |#2|) |#2| (-644 |#2|)) 10) (((-420 |#2|) |#2| |#2|) 11))) +(((-100 |#1| |#2|) (-10 -7 (-15 -3247 ((-420 |#2|) |#2| |#2|)) (-15 -3247 ((-420 |#2|) |#2| (-644 |#2|)))) (-13 (-454) (-147)) (-1240 |#1|)) (T -100)) +((-3247 (*1 *2 *3 *4) (-12 (-5 *4 (-644 *3)) (-4 *3 (-1240 *5)) (-4 *5 (-13 (-454) (-147))) (-5 *2 (-420 *3)) (-5 *1 (-100 *5 *3)))) (-3247 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-454) (-147))) (-5 *2 (-420 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1240 *4))))) +(-10 -7 (-15 -3247 ((-420 |#2|) |#2| |#2|)) (-15 -3247 ((-420 |#2|) |#2| (-644 |#2|)))) +((-2988 (((-112) $ $) 10))) +(((-101 |#1|) (-10 -8 (-15 -2988 ((-112) |#1| |#1|))) (-102)) (T -101)) +NIL +(-10 -8 (-15 -2988 ((-112) |#1| |#1|))) +((-2988 (((-112) $ $) 7)) (-2914 (((-112) $ $) 6))) (((-102) (-140)) (T -102)) -((-3007 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-2947 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))) -(-13 (-10 -8 (-15 -2947 ((-112) $ $)) (-15 -3007 ((-112) $ $)))) -((-3007 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2233 ((|#1| $) NIL)) (-2256 (((-112) $ (-771)) NIL)) (-3396 ((|#1| $ |#1|) 24 (|has| $ (-6 -4415)))) (-2862 (($ $ $) NIL (|has| $ (-6 -4415)))) (-2636 (($ $ $) NIL (|has| $ (-6 -4415)))) (-1885 (($ $ (-644 |#1|)) 34)) (-3923 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4415))) (($ $ "left" $) NIL (|has| $ (-6 -4415))) (($ $ "right" $) NIL (|has| $ (-6 -4415)))) (-3800 (($ $ (-644 $)) NIL (|has| $ (-6 -4415)))) (-3012 (($) NIL T CONST)) (-4392 (($ $) 12)) (-3979 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-4009 (((-644 $) $) NIL)) (-3891 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3051 (($ $ |#1| $) 36)) (-2404 (((-112) $ (-771)) NIL)) (-2329 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3784 ((|#1| $ (-1 |#1| |#1| |#1|)) 44) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 49)) (-1899 (($ $ |#1| (-1 |#1| |#1| |#1|)) 50) (($ $ |#1| (-1 (-644 |#1|) |#1| |#1| |#1|)) 53)) (-2908 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#1| |#1|) $) NIL)) (-2603 (((-112) $ (-771)) NIL)) (-4380 (($ $) 11)) (-3701 (((-644 |#1|) $) NIL)) (-3438 (((-112) $) 13)) (-4117 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4035 (((-1119) $) NIL (|has| |#1| (-1099)))) (-2692 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) NIL)) (-3467 (((-112) $) 9)) (-1494 (($) 35)) (-4390 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1416 (((-566) $ $) NIL)) (-3494 (((-112) $) NIL)) (-4045 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3940 (($ $) NIL)) (-3783 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-2462 (((-644 $) $) NIL)) (-4288 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3117 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1886 (($ (-771) |#1|) 37)) (-1894 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3018 (((-771) $) NIL (|has| $ (-6 -4414))))) -(((-103 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4414) (-6 -4415) (-15 -1886 ($ (-771) |#1|)) (-15 -1885 ($ $ (-644 |#1|))) (-15 -3784 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3784 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1899 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1899 ($ $ |#1| (-1 (-644 |#1|) |#1| |#1| |#1|))))) (-1099)) (T -103)) -((-1886 (*1 *1 *2 *3) (-12 (-5 *2 (-771)) (-5 *1 (-103 *3)) (-4 *3 (-1099)))) (-1885 (*1 *1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-103 *3)))) (-3784 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1099)))) (-3784 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1099)) (-5 *1 (-103 *3)))) (-1899 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1099)) (-5 *1 (-103 *2)))) (-1899 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-644 *2) *2 *2 *2)) (-4 *2 (-1099)) (-5 *1 (-103 *2))))) -(-13 (-125 |#1|) (-10 -8 (-6 -4414) (-6 -4415) (-15 -1886 ($ (-771) |#1|)) (-15 -1885 ($ $ (-644 |#1|))) (-15 -3784 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3784 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1899 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1899 ($ $ |#1| (-1 (-644 |#1|) |#1| |#1| |#1|))))) -((-2377 ((|#3| |#2| |#2|) 36)) (-2132 ((|#1| |#2| |#2|) 53 (|has| |#1| (-6 (-4416 "*"))))) (-2048 ((|#3| |#2| |#2|) 38)) (-2104 ((|#1| |#2|) 58 (|has| |#1| (-6 (-4416 "*")))))) -(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2377 (|#3| |#2| |#2|)) (-15 -2048 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4416 "*"))) (PROGN (-15 -2132 (|#1| |#2| |#2|)) (-15 -2104 (|#1| |#2|))) |%noBranch|)) (-1049) (-1240 |#1|) (-687 |#1| |#4| |#5|) (-375 |#1|) (-375 |#1|)) (T -104)) -((-2104 (*1 *2 *3) (-12 (|has| *2 (-6 (-4416 "*"))) (-4 *5 (-375 *2)) (-4 *6 (-375 *2)) (-4 *2 (-1049)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1240 *2)) (-4 *4 (-687 *2 *5 *6)))) (-2132 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4416 "*"))) (-4 *5 (-375 *2)) (-4 *6 (-375 *2)) (-4 *2 (-1049)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1240 *2)) (-4 *4 (-687 *2 *5 *6)))) (-2048 (*1 *2 *3 *3) (-12 (-4 *4 (-1049)) (-4 *2 (-687 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1240 *4)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)))) (-2377 (*1 *2 *3 *3) (-12 (-4 *4 (-1049)) (-4 *2 (-687 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1240 *4)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4))))) -(-10 -7 (-15 -2377 (|#3| |#2| |#2|)) (-15 -2048 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4416 "*"))) (PROGN (-15 -2132 (|#1| |#2| |#2|)) (-15 -2104 (|#1| |#2|))) |%noBranch|)) -((-3007 (((-112) $ $) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) NIL)) (-4115 (((-644 (-1175))) 37)) (-2260 (((-2 (|:| |zeros| (-1155 (-225))) (|:| |ones| (-1155 (-225))) (|:| |singularities| (-1155 (-225)))) (-1175)) 39)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) -(((-105) (-13 (-1099) (-10 -7 (-15 -4115 ((-644 (-1175)))) (-15 -2260 ((-2 (|:| |zeros| (-1155 (-225))) (|:| |ones| (-1155 (-225))) (|:| |singularities| (-1155 (-225)))) (-1175))) (-6 -4414)))) (T -105)) -((-4115 (*1 *2) (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-105)))) (-2260 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-2 (|:| |zeros| (-1155 (-225))) (|:| |ones| (-1155 (-225))) (|:| |singularities| (-1155 (-225))))) (-5 *1 (-105))))) -(-13 (-1099) (-10 -7 (-15 -4115 ((-644 (-1175)))) (-15 -2260 ((-2 (|:| |zeros| (-1155 (-225))) (|:| |ones| (-1155 (-225))) (|:| |singularities| (-1155 (-225)))) (-1175))) (-6 -4414))) -((-1748 (($ (-644 |#2|)) 11))) -(((-106 |#1| |#2|) (-10 -8 (-15 -1748 (|#1| (-644 |#2|)))) (-107 |#2|) (-1214)) (T -106)) -NIL -(-10 -8 (-15 -1748 (|#1| (-644 |#2|)))) -((-3007 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2256 (((-112) $ (-771)) 8)) (-3012 (($) 7 T CONST)) (-3979 (((-644 |#1|) $) 31 (|has| $ (-6 -4414)))) (-2404 (((-112) $ (-771)) 9)) (-2329 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2908 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#1| |#1|) $) 36)) (-2603 (((-112) $ (-771)) 10)) (-4117 (((-1157) $) 22 (|has| |#1| (-1099)))) (-4039 ((|#1| $) 40)) (-3406 (($ |#1| $) 41)) (-4035 (((-1119) $) 21 (|has| |#1| (-1099)))) (-2539 ((|#1| $) 42)) (-2692 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) 14)) (-3467 (((-112) $) 11)) (-1494 (($) 12)) (-4045 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-3940 (($ $) 13)) (-3783 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-3117 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-1748 (($ (-644 |#1|)) 43)) (-1894 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3018 (((-771) $) 6 (|has| $ (-6 -4414))))) +((-2988 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-2914 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))) +(-13 (-10 -8 (-15 -2914 ((-112) $ $)) (-15 -2988 ((-112) $ $)))) +((-2988 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2876 ((|#1| $) NIL)) (-1504 (((-112) $ (-771)) NIL)) (-2191 ((|#1| $ |#1|) 24 (|has| $ (-6 -4415)))) (-1878 (($ $ $) NIL (|has| $ (-6 -4415)))) (-3414 (($ $ $) NIL (|has| $ (-6 -4415)))) (-3856 (($ $ (-644 |#1|)) 34)) (-1456 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4415))) (($ $ "left" $) NIL (|has| $ (-6 -4415))) (($ $ "right" $) NIL (|has| $ (-6 -4415)))) (-4202 (($ $ (-644 $)) NIL (|has| $ (-6 -4415)))) (-2463 (($) NIL T CONST)) (-1966 (($ $) 12)) (-1683 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-3431 (((-644 $) $) NIL)) (-1507 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-4326 (($ $ |#1| $) 36)) (-3456 (((-112) $ (-771)) NIL)) (-3491 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2147 ((|#1| $ (-1 |#1| |#1| |#1|)) 44) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 49)) (-1468 (($ $ |#1| (-1 |#1| |#1| |#1|)) 50) (($ $ |#1| (-1 (-644 |#1|) |#1| |#1| |#1|)) 53)) (-3885 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#1| |#1|) $) NIL)) (-3267 (((-112) $ (-771)) NIL)) (-1953 (($ $) 11)) (-1458 (((-644 |#1|) $) NIL)) (-3860 (((-112) $) 13)) (-3380 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4072 (((-1119) $) NIL (|has| |#1| (-1099)))) (-2823 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) NIL)) (-2872 (((-112) $) 9)) (-3493 (($) 35)) (-1309 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1696 (((-566) $ $) NIL)) (-3786 (((-112) $) NIL)) (-4083 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-1480 (($ $) NIL)) (-3152 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-1926 (((-644 $) $) NIL)) (-4385 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3044 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2727 (($ (-771) |#1|) 37)) (-2210 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3000 (((-771) $) NIL (|has| $ (-6 -4414))))) +(((-103 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4414) (-6 -4415) (-15 -2727 ($ (-771) |#1|)) (-15 -3856 ($ $ (-644 |#1|))) (-15 -2147 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2147 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1468 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1468 ($ $ |#1| (-1 (-644 |#1|) |#1| |#1| |#1|))))) (-1099)) (T -103)) +((-2727 (*1 *1 *2 *3) (-12 (-5 *2 (-771)) (-5 *1 (-103 *3)) (-4 *3 (-1099)))) (-3856 (*1 *1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-103 *3)))) (-2147 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1099)))) (-2147 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1099)) (-5 *1 (-103 *3)))) (-1468 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1099)) (-5 *1 (-103 *2)))) (-1468 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-644 *2) *2 *2 *2)) (-4 *2 (-1099)) (-5 *1 (-103 *2))))) +(-13 (-125 |#1|) (-10 -8 (-6 -4414) (-6 -4415) (-15 -2727 ($ (-771) |#1|)) (-15 -3856 ($ $ (-644 |#1|))) (-15 -2147 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2147 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1468 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1468 ($ $ |#1| (-1 (-644 |#1|) |#1| |#1| |#1|))))) +((-3654 ((|#3| |#2| |#2|) 36)) (-2061 ((|#1| |#2| |#2|) 53 (|has| |#1| (-6 (-4416 "*"))))) (-4225 ((|#3| |#2| |#2|) 38)) (-2280 ((|#1| |#2|) 58 (|has| |#1| (-6 (-4416 "*")))))) +(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3654 (|#3| |#2| |#2|)) (-15 -4225 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4416 "*"))) (PROGN (-15 -2061 (|#1| |#2| |#2|)) (-15 -2280 (|#1| |#2|))) |%noBranch|)) (-1049) (-1240 |#1|) (-687 |#1| |#4| |#5|) (-375 |#1|) (-375 |#1|)) (T -104)) +((-2280 (*1 *2 *3) (-12 (|has| *2 (-6 (-4416 "*"))) (-4 *5 (-375 *2)) (-4 *6 (-375 *2)) (-4 *2 (-1049)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1240 *2)) (-4 *4 (-687 *2 *5 *6)))) (-2061 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4416 "*"))) (-4 *5 (-375 *2)) (-4 *6 (-375 *2)) (-4 *2 (-1049)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1240 *2)) (-4 *4 (-687 *2 *5 *6)))) (-4225 (*1 *2 *3 *3) (-12 (-4 *4 (-1049)) (-4 *2 (-687 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1240 *4)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)))) (-3654 (*1 *2 *3 *3) (-12 (-4 *4 (-1049)) (-4 *2 (-687 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1240 *4)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4))))) +(-10 -7 (-15 -3654 (|#3| |#2| |#2|)) (-15 -4225 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4416 "*"))) (PROGN (-15 -2061 (|#1| |#2| |#2|)) (-15 -2280 (|#1| |#2|))) |%noBranch|)) +((-2988 (((-112) $ $) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) NIL)) (-1331 (((-644 (-1175))) 37)) (-1877 (((-2 (|:| |zeros| (-1155 (-225))) (|:| |ones| (-1155 (-225))) (|:| |singularities| (-1155 (-225)))) (-1175)) 39)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) +(((-105) (-13 (-1099) (-10 -7 (-15 -1331 ((-644 (-1175)))) (-15 -1877 ((-2 (|:| |zeros| (-1155 (-225))) (|:| |ones| (-1155 (-225))) (|:| |singularities| (-1155 (-225)))) (-1175))) (-6 -4414)))) (T -105)) +((-1331 (*1 *2) (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-105)))) (-1877 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-2 (|:| |zeros| (-1155 (-225))) (|:| |ones| (-1155 (-225))) (|:| |singularities| (-1155 (-225))))) (-5 *1 (-105))))) +(-13 (-1099) (-10 -7 (-15 -1331 ((-644 (-1175)))) (-15 -1877 ((-2 (|:| |zeros| (-1155 (-225))) (|:| |ones| (-1155 (-225))) (|:| |singularities| (-1155 (-225)))) (-1175))) (-6 -4414))) +((-2948 (($ (-644 |#2|)) 11))) +(((-106 |#1| |#2|) (-10 -8 (-15 -2948 (|#1| (-644 |#2|)))) (-107 |#2|) (-1214)) (T -106)) +NIL +(-10 -8 (-15 -2948 (|#1| (-644 |#2|)))) +((-2988 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-1504 (((-112) $ (-771)) 8)) (-2463 (($) 7 T CONST)) (-1683 (((-644 |#1|) $) 31 (|has| $ (-6 -4414)))) (-3456 (((-112) $ (-771)) 9)) (-3491 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-3885 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#1| |#1|) $) 36)) (-3267 (((-112) $ (-771)) 10)) (-3380 (((-1157) $) 22 (|has| |#1| (-1099)))) (-3278 ((|#1| $) 40)) (-3888 (($ |#1| $) 41)) (-4072 (((-1119) $) 21 (|has| |#1| (-1099)))) (-1973 ((|#1| $) 42)) (-2823 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) 14)) (-2872 (((-112) $) 11)) (-3493 (($) 12)) (-4083 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-1480 (($ $) 13)) (-3152 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-3044 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-2948 (($ (-644 |#1|)) 43)) (-2210 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3000 (((-771) $) 6 (|has| $ (-6 -4414))))) (((-107 |#1|) (-140) (-1214)) (T -107)) -((-1748 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1214)) (-4 *1 (-107 *3)))) (-2539 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1214)))) (-3406 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1214)))) (-4039 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1214))))) -(-13 (-491 |t#1|) (-10 -8 (-6 -4415) (-15 -1748 ($ (-644 |t#1|))) (-15 -2539 (|t#1| $)) (-15 -3406 ($ |t#1| $)) (-15 -4039 (|t#1| $)))) -(((-34) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2809 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1099) |has| |#1| (-1099)) ((-1214) . T)) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-1515 (((-566) $) NIL (|has| (-566) (-308)))) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-3991 (($ $) NIL)) (-2388 (((-112) $) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-1477 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-1550 (($ $) NIL)) (-3184 (((-420 $) $) NIL)) (-3717 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-2837 (((-112) $ $) NIL)) (-4364 (((-566) $) NIL (|has| (-566) (-820)))) (-3012 (($) NIL T CONST)) (-4307 (((-3 (-566) "failed") $) NIL) (((-3 (-1175) "failed") $) NIL (|has| (-566) (-1038 (-1175)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| (-566) (-1038 (-566)))) (((-3 (-566) "failed") $) NIL (|has| (-566) (-1038 (-566))))) (-4205 (((-566) $) NIL) (((-1175) $) NIL (|has| (-566) (-1038 (-1175)))) (((-409 (-566)) $) NIL (|has| (-566) (-1038 (-566)))) (((-566) $) NIL (|has| (-566) (-1038 (-566))))) (-2946 (($ $ $) NIL)) (-3577 (((-689 (-566)) (-689 $)) NIL (|has| (-566) (-639 (-566)))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| (-566) (-639 (-566)))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL) (((-689 (-566)) (-689 $)) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-1552 (($) NIL (|has| (-566) (-547)))) (-2957 (($ $ $) NIL)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL)) (-3268 (((-112) $) NIL)) (-1897 (((-112) $) NIL (|has| (-566) (-820)))) (-2062 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (|has| (-566) (-886 (-566)))) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (|has| (-566) (-886 (-381))))) (-3934 (((-112) $) NIL)) (-1493 (($ $) NIL)) (-4326 (((-566) $) NIL)) (-4363 (((-3 $ "failed") $) NIL (|has| (-566) (-1150)))) (-2117 (((-112) $) NIL (|has| (-566) (-820)))) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2097 (($ $ $) NIL (|has| (-566) (-850)))) (-3962 (($ $ $) NIL (|has| (-566) (-850)))) (-1301 (($ (-1 (-566) (-566)) $) NIL)) (-2167 (($ $ $) NIL) (($ (-644 $)) NIL)) (-4117 (((-1157) $) NIL)) (-1713 (($ $) NIL)) (-1761 (($) NIL (|has| (-566) (-1150)) CONST)) (-4035 (((-1119) $) NIL)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2214 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2938 (($ $) NIL (|has| (-566) (-308))) (((-409 (-566)) $) NIL)) (-3470 (((-566) $) NIL (|has| (-566) (-547)))) (-4303 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-3240 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-3719 (((-420 $) $) NIL)) (-3148 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2994 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2055 (($ $ (-644 (-566)) (-644 (-566))) NIL (|has| (-566) (-310 (-566)))) (($ $ (-566) (-566)) NIL (|has| (-566) (-310 (-566)))) (($ $ (-295 (-566))) NIL (|has| (-566) (-310 (-566)))) (($ $ (-644 (-295 (-566)))) NIL (|has| (-566) (-310 (-566)))) (($ $ (-644 (-1175)) (-644 (-566))) NIL (|has| (-566) (-516 (-1175) (-566)))) (($ $ (-1175) (-566)) NIL (|has| (-566) (-516 (-1175) (-566))))) (-3039 (((-771) $) NIL)) (-4390 (($ $ (-566)) NIL (|has| (-566) (-287 (-566) (-566))))) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL)) (-3561 (($ $) NIL (|has| (-566) (-233))) (($ $ (-771)) NIL (|has| (-566) (-233))) (($ $ (-1175)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1 (-566) (-566)) (-771)) NIL) (($ $ (-1 (-566) (-566))) NIL)) (-2023 (($ $) NIL)) (-4339 (((-566) $) NIL)) (-1348 (((-892 (-566)) $) NIL (|has| (-566) (-614 (-892 (-566))))) (((-892 (-381)) $) NIL (|has| (-566) (-614 (-892 (-381))))) (((-538) $) NIL (|has| (-566) (-614 (-538)))) (((-381) $) NIL (|has| (-566) (-1022))) (((-225) $) NIL (|has| (-566) (-1022)))) (-1656 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| (-566) (-909))))) (-3783 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) 8) (($ (-566)) NIL) (($ (-1175)) NIL (|has| (-566) (-1038 (-1175)))) (((-409 (-566)) $) NIL) (((-1004 2) $) 10)) (-3144 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| $ (-145)) (|has| (-566) (-909))) (|has| (-566) (-145))))) (-2107 (((-771)) NIL T CONST)) (-2948 (((-566) $) NIL (|has| (-566) (-547)))) (-2997 (($ (-409 (-566))) 9)) (-3117 (((-112) $ $) NIL)) (-2695 (((-112) $ $) NIL)) (-2086 (($ $) NIL (|has| (-566) (-820)))) (-2479 (($) NIL T CONST)) (-4334 (($) NIL T CONST)) (-2875 (($ $) NIL (|has| (-566) (-233))) (($ $ (-771)) NIL (|has| (-566) (-233))) (($ $ (-1175)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1 (-566) (-566)) (-771)) NIL) (($ $ (-1 (-566) (-566))) NIL)) (-3009 (((-112) $ $) NIL (|has| (-566) (-850)))) (-2984 (((-112) $ $) NIL (|has| (-566) (-850)))) (-2947 (((-112) $ $) NIL)) (-2995 (((-112) $ $) NIL (|has| (-566) (-850)))) (-2969 (((-112) $ $) NIL (|has| (-566) (-850)))) (-3065 (($ $ $) NIL) (($ (-566) (-566)) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ (-566) $) NIL) (($ $ (-566)) NIL))) -(((-108) (-13 (-992 (-566)) (-613 (-409 (-566))) (-613 (-1004 2)) (-10 -8 (-15 -2938 ((-409 (-566)) $)) (-15 -2997 ($ (-409 (-566))))))) (T -108)) -((-2938 (*1 *2 *1) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-108)))) (-2997 (*1 *1 *2) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-108))))) -(-13 (-992 (-566)) (-613 (-409 (-566))) (-613 (-1004 2)) (-10 -8 (-15 -2938 ((-409 (-566)) $)) (-15 -2997 ($ (-409 (-566)))))) -((-4171 (((-644 (-965)) $) 13)) (-2640 (((-508) $) 9)) (-3783 (((-862) $) 20)) (-2722 (($ (-508) (-644 (-965))) 15))) -(((-109) (-13 (-613 (-862)) (-10 -8 (-15 -2640 ((-508) $)) (-15 -4171 ((-644 (-965)) $)) (-15 -2722 ($ (-508) (-644 (-965))))))) (T -109)) -((-2640 (*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-109)))) (-4171 (*1 *2 *1) (-12 (-5 *2 (-644 (-965))) (-5 *1 (-109)))) (-2722 (*1 *1 *2 *3) (-12 (-5 *2 (-508)) (-5 *3 (-644 (-965))) (-5 *1 (-109))))) -(-13 (-613 (-862)) (-10 -8 (-15 -2640 ((-508) $)) (-15 -4171 ((-644 (-965)) $)) (-15 -2722 ($ (-508) (-644 (-965)))))) -((-3007 (((-112) $ $) NIL)) (-3029 (($ $) NIL)) (-2456 (($ $ $) NIL)) (-3734 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4415)))) (-2644 (((-112) $) NIL (|has| (-112) (-850))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-1944 (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-112) (-850)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4415)))) (-1510 (($ $) NIL (|has| (-112) (-850))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-2256 (((-112) $ (-771)) NIL)) (-3923 (((-112) $ (-1231 (-566)) (-112)) NIL (|has| $ (-6 -4415))) (((-112) $ (-566) (-112)) NIL (|has| $ (-6 -4415)))) (-2701 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4414)))) (-3012 (($) NIL T CONST)) (-3413 (($ $) NIL (|has| $ (-6 -4415)))) (-1377 (($ $) NIL)) (-2031 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-112) (-1099))))) (-2665 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4414))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-112) (-1099))))) (-1676 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4414)) (|has| (-112) (-1099))))) (-2920 (((-112) $ (-566) (-112)) NIL (|has| $ (-6 -4415)))) (-2855 (((-112) $ (-566)) NIL)) (-4000 (((-566) (-112) $ (-566)) NIL (|has| (-112) (-1099))) (((-566) (-112) $) NIL (|has| (-112) (-1099))) (((-566) (-1 (-112) (-112)) $) NIL)) (-3979 (((-644 (-112)) $) NIL (|has| $ (-6 -4414)))) (-2445 (($ $ $) NIL)) (-2418 (($ $) NIL)) (-4219 (($ $ $) NIL)) (-4265 (($ (-771) (-112)) 10)) (-1497 (($ $ $) NIL)) (-2404 (((-112) $ (-771)) NIL)) (-3854 (((-566) $) NIL (|has| (-566) (-850)))) (-2097 (($ $ $) NIL)) (-3298 (($ $ $) NIL (|has| (-112) (-850))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2329 (((-644 (-112)) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-112) (-1099))))) (-2712 (((-566) $) NIL (|has| (-566) (-850)))) (-3962 (($ $ $) NIL)) (-2908 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4415)))) (-1301 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-2603 (((-112) $ (-771)) NIL)) (-4117 (((-1157) $) NIL)) (-4276 (($ $ $ (-566)) NIL) (($ (-112) $ (-566)) NIL)) (-4074 (((-644 (-566)) $) NIL)) (-3792 (((-112) (-566) $) NIL)) (-4035 (((-1119) $) NIL)) (-1998 (((-112) $) NIL (|has| (-566) (-850)))) (-2006 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-4030 (($ $ (-112)) NIL (|has| $ (-6 -4415)))) (-2692 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-112)) (-644 (-112))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1099)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1099)))) (($ $ (-295 (-112))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1099)))) (($ $ (-644 (-295 (-112)))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1099))))) (-1932 (((-112) $ $) NIL)) (-4156 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-112) (-1099))))) (-2993 (((-644 (-112)) $) NIL)) (-3467 (((-112) $) NIL)) (-1494 (($) NIL)) (-4390 (($ $ (-1231 (-566))) NIL) (((-112) $ (-566)) NIL) (((-112) $ (-566) (-112)) NIL)) (-2187 (($ $ (-1231 (-566))) NIL) (($ $ (-566)) NIL)) (-4045 (((-771) (-112) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-112) (-1099)))) (((-771) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4414)))) (-1297 (($ $ $ (-566)) NIL (|has| $ (-6 -4415)))) (-3940 (($ $) NIL)) (-1348 (((-538) $) NIL (|has| (-112) (-614 (-538))))) (-3796 (($ (-644 (-112))) NIL)) (-3721 (($ (-644 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-3783 (((-862) $) NIL)) (-4099 (($ (-771) (-112)) 11)) (-3117 (((-112) $ $) NIL)) (-1894 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4414)))) (-2432 (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (-3009 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL)) (-2995 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-3063 (($ $ $) NIL)) (-3018 (((-771) $) NIL (|has| $ (-6 -4414))))) -(((-110) (-13 (-123) (-10 -8 (-15 -4099 ($ (-771) (-112)))))) (T -110)) -((-4099 (*1 *1 *2 *3) (-12 (-5 *2 (-771)) (-5 *3 (-112)) (-5 *1 (-110))))) -(-13 (-123) (-10 -8 (-15 -4099 ($ (-771) (-112))))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-4175 (((-3 $ "failed") $ $) 20)) (-3012 (($) 18 T CONST)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3783 (((-862) $) 12)) (-3117 (((-112) $ $) 9)) (-2479 (($) 19 T CONST)) (-2947 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ |#1| $) 27) (($ $ |#2|) 31))) +((-2948 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1214)) (-4 *1 (-107 *3)))) (-1973 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1214)))) (-3888 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1214)))) (-3278 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1214))))) +(-13 (-491 |t#1|) (-10 -8 (-6 -4415) (-15 -2948 ($ (-644 |t#1|))) (-15 -1973 (|t#1| $)) (-15 -3888 ($ |t#1| $)) (-15 -3278 (|t#1| $)))) +(((-34) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2768 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1099) |has| |#1| (-1099)) ((-1214) . T)) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-1873 (((-566) $) NIL (|has| (-566) (-308)))) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-2161 (($ $) NIL)) (-2345 (((-112) $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-2292 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-1378 (($ $) NIL)) (-1364 (((-420 $) $) NIL)) (-4066 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-2085 (((-112) $ $) NIL)) (-2743 (((-566) $) NIL (|has| (-566) (-820)))) (-2463 (($) NIL T CONST)) (-2229 (((-3 (-566) "failed") $) NIL) (((-3 (-1175) "failed") $) NIL (|has| (-566) (-1038 (-1175)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| (-566) (-1038 (-566)))) (((-3 (-566) "failed") $) NIL (|has| (-566) (-1038 (-566))))) (-4158 (((-566) $) NIL) (((-1175) $) NIL (|has| (-566) (-1038 (-1175)))) (((-409 (-566)) $) NIL (|has| (-566) (-1038 (-566)))) (((-566) $) NIL (|has| (-566) (-1038 (-566))))) (-2933 (($ $ $) NIL)) (-4089 (((-689 (-566)) (-689 $)) NIL (|has| (-566) (-639 (-566)))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| (-566) (-639 (-566)))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL) (((-689 (-566)) (-689 $)) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-2715 (($) NIL (|has| (-566) (-547)))) (-2945 (($ $ $) NIL)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL)) (-1615 (((-112) $) NIL)) (-2528 (((-112) $) NIL (|has| (-566) (-820)))) (-2926 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (|has| (-566) (-886 (-566)))) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (|has| (-566) (-886 (-381))))) (-2389 (((-112) $) NIL)) (-3406 (($ $) NIL)) (-2248 (((-566) $) NIL)) (-2621 (((-3 $ "failed") $) NIL (|has| (-566) (-1150)))) (-3233 (((-112) $) NIL (|has| (-566) (-820)))) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1478 (($ $ $) NIL (|has| (-566) (-850)))) (-2599 (($ $ $) NIL (|has| (-566) (-850)))) (-2319 (($ (-1 (-566) (-566)) $) NIL)) (-2128 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3380 (((-1157) $) NIL)) (-2748 (($ $) NIL)) (-3289 (($) NIL (|has| (-566) (-1150)) CONST)) (-4072 (((-1119) $) NIL)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2164 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2487 (($ $) NIL (|has| (-566) (-308))) (((-409 (-566)) $) NIL)) (-3143 (((-566) $) NIL (|has| (-566) (-547)))) (-2010 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-1893 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-1624 (((-420 $) $) NIL)) (-3005 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2978 (((-3 $ "failed") $ $) NIL)) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2023 (($ $ (-644 (-566)) (-644 (-566))) NIL (|has| (-566) (-310 (-566)))) (($ $ (-566) (-566)) NIL (|has| (-566) (-310 (-566)))) (($ $ (-295 (-566))) NIL (|has| (-566) (-310 (-566)))) (($ $ (-644 (-295 (-566)))) NIL (|has| (-566) (-310 (-566)))) (($ $ (-644 (-1175)) (-644 (-566))) NIL (|has| (-566) (-516 (-1175) (-566)))) (($ $ (-1175) (-566)) NIL (|has| (-566) (-516 (-1175) (-566))))) (-4357 (((-771) $) NIL)) (-1309 (($ $ (-566)) NIL (|has| (-566) (-287 (-566) (-566))))) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL)) (-3629 (($ $) NIL (|has| (-566) (-233))) (($ $ (-771)) NIL (|has| (-566) (-233))) (($ $ (-1175)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1 (-566) (-566)) (-771)) NIL) (($ $ (-1 (-566) (-566))) NIL)) (-1452 (($ $) NIL)) (-2260 (((-566) $) NIL)) (-2376 (((-892 (-566)) $) NIL (|has| (-566) (-614 (-892 (-566))))) (((-892 (-381)) $) NIL (|has| (-566) (-614 (-892 (-381))))) (((-538) $) NIL (|has| (-566) (-614 (-538)))) (((-381) $) NIL (|has| (-566) (-1022))) (((-225) $) NIL (|has| (-566) (-1022)))) (-3391 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| (-566) (-909))))) (-3152 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) 8) (($ (-566)) NIL) (($ (-1175)) NIL (|has| (-566) (-1038 (-1175)))) (((-409 (-566)) $) NIL) (((-1004 2) $) 10)) (-2633 (((-3 $ "failed") $) NIL (-2768 (-12 (|has| $ (-145)) (|has| (-566) (-909))) (|has| (-566) (-145))))) (-2593 (((-771)) NIL T CONST)) (-3913 (((-566) $) NIL (|has| (-566) (-547)))) (-3676 (($ (-409 (-566))) 9)) (-3044 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-1358 (($ $) NIL (|has| (-566) (-820)))) (-4356 (($) NIL T CONST)) (-4366 (($) NIL T CONST)) (-3497 (($ $) NIL (|has| (-566) (-233))) (($ $ (-771)) NIL (|has| (-566) (-233))) (($ $ (-1175)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1 (-566) (-566)) (-771)) NIL) (($ $ (-1 (-566) (-566))) NIL)) (-2968 (((-112) $ $) NIL (|has| (-566) (-850)))) (-2946 (((-112) $ $) NIL (|has| (-566) (-850)))) (-2914 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL (|has| (-566) (-850)))) (-2935 (((-112) $ $) NIL (|has| (-566) (-850)))) (-3025 (($ $ $) NIL) (($ (-566) (-566)) NIL)) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ (-566) $) NIL) (($ $ (-566)) NIL))) +(((-108) (-13 (-992 (-566)) (-613 (-409 (-566))) (-613 (-1004 2)) (-10 -8 (-15 -2487 ((-409 (-566)) $)) (-15 -3676 ($ (-409 (-566))))))) (T -108)) +((-2487 (*1 *2 *1) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-108)))) (-3676 (*1 *1 *2) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-108))))) +(-13 (-992 (-566)) (-613 (-409 (-566))) (-613 (-1004 2)) (-10 -8 (-15 -2487 ((-409 (-566)) $)) (-15 -3676 ($ (-409 (-566)))))) +((-2104 (((-644 (-965)) $) 13)) (-1368 (((-508) $) 9)) (-3152 (((-862) $) 20)) (-3737 (($ (-508) (-644 (-965))) 15))) +(((-109) (-13 (-613 (-862)) (-10 -8 (-15 -1368 ((-508) $)) (-15 -2104 ((-644 (-965)) $)) (-15 -3737 ($ (-508) (-644 (-965))))))) (T -109)) +((-1368 (*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-109)))) (-2104 (*1 *2 *1) (-12 (-5 *2 (-644 (-965))) (-5 *1 (-109)))) (-3737 (*1 *1 *2 *3) (-12 (-5 *2 (-508)) (-5 *3 (-644 (-965))) (-5 *1 (-109))))) +(-13 (-613 (-862)) (-10 -8 (-15 -1368 ((-508) $)) (-15 -2104 ((-644 (-965)) $)) (-15 -3737 ($ (-508) (-644 (-965)))))) +((-2988 (((-112) $ $) NIL)) (-3010 (($ $) NIL)) (-2439 (($ $ $) NIL)) (-1944 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4415)))) (-3054 (((-112) $) NIL (|has| (-112) (-850))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-3628 (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-112) (-850)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4415)))) (-2671 (($ $) NIL (|has| (-112) (-850))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-1504 (((-112) $ (-771)) NIL)) (-1456 (((-112) $ (-1231 (-566)) (-112)) NIL (|has| $ (-6 -4415))) (((-112) $ (-566) (-112)) NIL (|has| $ (-6 -4415)))) (-3678 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4414)))) (-2463 (($) NIL T CONST)) (-3166 (($ $) NIL (|has| $ (-6 -4415)))) (-3683 (($ $) NIL)) (-3942 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-112) (-1099))))) (-2622 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4414))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-112) (-1099))))) (-2873 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4414)) (|has| (-112) (-1099))))) (-3897 (((-112) $ (-566) (-112)) NIL (|has| $ (-6 -4415)))) (-3829 (((-112) $ (-566)) NIL)) (-1569 (((-566) (-112) $ (-566)) NIL (|has| (-112) (-1099))) (((-566) (-112) $) NIL (|has| (-112) (-1099))) (((-566) (-1 (-112) (-112)) $) NIL)) (-1683 (((-644 (-112)) $) NIL (|has| $ (-6 -4414)))) (-2427 (($ $ $) NIL)) (-2404 (($ $) NIL)) (-3801 (($ $ $) NIL)) (-1860 (($ (-771) (-112)) 10)) (-2584 (($ $ $) NIL)) (-3456 (((-112) $ (-771)) NIL)) (-2296 (((-566) $) NIL (|has| (-566) (-850)))) (-1478 (($ $ $) NIL)) (-2696 (($ $ $) NIL (|has| (-112) (-850))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-3491 (((-644 (-112)) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-112) (-1099))))) (-4050 (((-566) $) NIL (|has| (-566) (-850)))) (-2599 (($ $ $) NIL)) (-3885 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4415)))) (-2319 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-3267 (((-112) $ (-771)) NIL)) (-3380 (((-1157) $) NIL)) (-1859 (($ $ $ (-566)) NIL) (($ (-112) $ (-566)) NIL)) (-3725 (((-644 (-566)) $) NIL)) (-1644 (((-112) (-566) $) NIL)) (-4072 (((-1119) $) NIL)) (-3908 (((-112) $) NIL (|has| (-566) (-850)))) (-3668 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-3787 (($ $ (-112)) NIL (|has| $ (-6 -4415)))) (-2823 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-112)) (-644 (-112))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1099)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1099)))) (($ $ (-295 (-112))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1099)))) (($ $ (-644 (-295 (-112)))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1099))))) (-3814 (((-112) $ $) NIL)) (-2847 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-112) (-1099))))) (-3486 (((-644 (-112)) $) NIL)) (-2872 (((-112) $) NIL)) (-3493 (($) NIL)) (-1309 (($ $ (-1231 (-566))) NIL) (((-112) $ (-566)) NIL) (((-112) $ (-566) (-112)) NIL)) (-2166 (($ $ (-1231 (-566))) NIL) (($ $ (-566)) NIL)) (-4083 (((-771) (-112) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-112) (-1099)))) (((-771) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4414)))) (-2661 (($ $ $ (-566)) NIL (|has| $ (-6 -4415)))) (-1480 (($ $) NIL)) (-2376 (((-538) $) NIL (|has| (-112) (-614 (-538))))) (-1340 (($ (-644 (-112))) NIL)) (-4386 (($ (-644 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-3152 (((-862) $) NIL)) (-2367 (($ (-771) (-112)) 11)) (-3044 (((-112) $ $) NIL)) (-2210 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4414)))) (-2415 (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2935 (((-112) $ $) NIL)) (-3043 (($ $ $) NIL)) (-3000 (((-771) $) NIL (|has| $ (-6 -4414))))) +(((-110) (-13 (-123) (-10 -8 (-15 -2367 ($ (-771) (-112)))))) (T -110)) +((-2367 (*1 *1 *2 *3) (-12 (-5 *2 (-771)) (-5 *3 (-112)) (-5 *1 (-110))))) +(-13 (-123) (-10 -8 (-15 -2367 ($ (-771) (-112))))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-3967 (((-3 $ "failed") $ $) 20)) (-2463 (($) 18 T CONST)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3152 (((-862) $) 12)) (-3044 (((-112) $ $) 9)) (-4356 (($) 19 T CONST)) (-2914 (((-112) $ $) 6)) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ |#1| $) 27) (($ $ |#2|) 31))) (((-111 |#1| |#2|) (-140) (-1049) (-1049)) (T -111)) NIL (-13 (-648 |t#1|) (-1056 |t#2|) (-10 -7 (-6 -4409) (-6 -4408))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-648 |#1|) . T) ((-1051 |#2|) . T) ((-1056 |#2|) . T) ((-1099) . T)) -((-3007 (((-112) $ $) NIL)) (-3029 (($ $) 13)) (-2456 (($ $ $) 18)) (-3389 (($) 7 T CONST)) (-2425 (($ $) 6)) (-1970 (((-771)) 26)) (-1552 (($) 34)) (-2445 (($ $ $) 16)) (-2418 (($ $) 9)) (-4219 (($ $ $) 19)) (-1497 (($ $ $) 20)) (-2097 (($ $ $) NIL) (($) NIL T CONST)) (-3962 (($ $ $) NIL) (($) NIL T CONST)) (-3681 (((-921) $) 32)) (-4117 (((-1157) $) NIL)) (-2178 (($ (-921)) 30)) (-3044 (($ $ $) 22)) (-4035 (((-1119) $) NIL)) (-2229 (($) 8 T CONST)) (-3235 (($ $ $) 23)) (-1348 (((-538) $) 36)) (-3783 (((-862) $) 38)) (-3117 (((-112) $ $) NIL)) (-2432 (($ $ $) 14)) (-3075 (($ $ $) 17)) (-3009 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2947 (((-112) $ $) 21)) (-2995 (((-112) $ $) NIL)) (-2969 (((-112) $ $) 24)) (-3063 (($ $ $) 15))) -(((-112) (-13 (-844) (-661) (-967) (-614 (-538)) (-10 -8 (-15 -2456 ($ $ $)) (-15 -1497 ($ $ $)) (-15 -4219 ($ $ $)) (-15 -2425 ($ $))))) (T -112)) -((-2456 (*1 *1 *1 *1) (-5 *1 (-112))) (-1497 (*1 *1 *1 *1) (-5 *1 (-112))) (-4219 (*1 *1 *1 *1) (-5 *1 (-112))) (-2425 (*1 *1 *1) (-5 *1 (-112)))) -(-13 (-844) (-661) (-967) (-614 (-538)) (-10 -8 (-15 -2456 ($ $ $)) (-15 -1497 ($ $ $)) (-15 -4219 ($ $ $)) (-15 -2425 ($ $)))) -((-3024 (((-3 (-1 |#1| (-644 |#1|)) "failed") (-114)) 23) (((-114) (-114) (-1 |#1| |#1|)) 13) (((-114) (-114) (-1 |#1| (-644 |#1|))) 11) (((-3 |#1| "failed") (-114) (-644 |#1|)) 25)) (-3896 (((-3 (-644 (-1 |#1| (-644 |#1|))) "failed") (-114)) 29) (((-114) (-114) (-1 |#1| |#1|)) 33) (((-114) (-114) (-644 (-1 |#1| (-644 |#1|)))) 30)) (-2175 (((-114) |#1|) 63)) (-3271 (((-3 |#1| "failed") (-114)) 58))) -(((-113 |#1|) (-10 -7 (-15 -3024 ((-3 |#1| "failed") (-114) (-644 |#1|))) (-15 -3024 ((-114) (-114) (-1 |#1| (-644 |#1|)))) (-15 -3024 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3024 ((-3 (-1 |#1| (-644 |#1|)) "failed") (-114))) (-15 -3896 ((-114) (-114) (-644 (-1 |#1| (-644 |#1|))))) (-15 -3896 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3896 ((-3 (-644 (-1 |#1| (-644 |#1|))) "failed") (-114))) (-15 -2175 ((-114) |#1|)) (-15 -3271 ((-3 |#1| "failed") (-114)))) (-1099)) (T -113)) -((-3271 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *1 (-113 *2)) (-4 *2 (-1099)))) (-2175 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-1099)))) (-3896 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-644 (-1 *4 (-644 *4)))) (-5 *1 (-113 *4)) (-4 *4 (-1099)))) (-3896 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1099)) (-5 *1 (-113 *4)))) (-3896 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-644 (-1 *4 (-644 *4)))) (-4 *4 (-1099)) (-5 *1 (-113 *4)))) (-3024 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-644 *4))) (-5 *1 (-113 *4)) (-4 *4 (-1099)))) (-3024 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1099)) (-5 *1 (-113 *4)))) (-3024 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-644 *4))) (-4 *4 (-1099)) (-5 *1 (-113 *4)))) (-3024 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-644 *2)) (-5 *1 (-113 *2)) (-4 *2 (-1099))))) -(-10 -7 (-15 -3024 ((-3 |#1| "failed") (-114) (-644 |#1|))) (-15 -3024 ((-114) (-114) (-1 |#1| (-644 |#1|)))) (-15 -3024 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3024 ((-3 (-1 |#1| (-644 |#1|)) "failed") (-114))) (-15 -3896 ((-114) (-114) (-644 (-1 |#1| (-644 |#1|))))) (-15 -3896 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3896 ((-3 (-644 (-1 |#1| (-644 |#1|))) "failed") (-114))) (-15 -2175 ((-114) |#1|)) (-15 -3271 ((-3 |#1| "failed") (-114)))) -((-3007 (((-112) $ $) NIL)) (-1617 (((-771) $) 91) (($ $ (-771)) 37)) (-2248 (((-112) $) 41)) (-4046 (($ $ (-1157) (-774)) 58) (($ $ (-508) (-774)) 33)) (-3762 (($ $ (-45 (-1157) (-774))) 16)) (-3174 (((-3 (-774) "failed") $ (-1157)) 27) (((-691 (-774)) $ (-508)) 32)) (-4171 (((-45 (-1157) (-774)) $) 15)) (-3659 (($ (-1175)) 20) (($ (-1175) (-771)) 23) (($ (-1175) (-55)) 24)) (-4323 (((-112) $) 39)) (-3028 (((-112) $) 43)) (-2640 (((-1175) $) 8)) (-2097 (($ $ $) NIL)) (-3962 (($ $ $) NIL)) (-4117 (((-1157) $) NIL)) (-2572 (((-112) $ (-1175)) 11)) (-1734 (($ $ (-1 (-538) (-644 (-538)))) 64) (((-3 (-1 (-538) (-644 (-538))) "failed") $) 71)) (-4035 (((-1119) $) NIL)) (-1522 (((-112) $ (-508)) 36)) (-1718 (($ $ (-1 (-112) $ $)) 45)) (-1675 (((-3 (-1 (-862) (-644 (-862))) "failed") $) 69) (($ $ (-1 (-862) (-644 (-862)))) 51) (($ $ (-1 (-862) (-862))) 53)) (-1603 (($ $ (-1157)) 55) (($ $ (-508)) 56)) (-3940 (($ $) 77)) (-3433 (($ $ (-1 (-112) $ $)) 46)) (-3783 (((-862) $) 60)) (-3117 (((-112) $ $) NIL)) (-1475 (($ $ (-508)) 34)) (-2347 (((-55) $) 72)) (-3009 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2947 (((-112) $ $) 89)) (-2995 (((-112) $ $) NIL)) (-2969 (((-112) $ $) 103))) -(((-114) (-13 (-850) (-835 (-1175)) (-10 -8 (-15 -4171 ((-45 (-1157) (-774)) $)) (-15 -3940 ($ $)) (-15 -3659 ($ (-1175))) (-15 -3659 ($ (-1175) (-771))) (-15 -3659 ($ (-1175) (-55))) (-15 -4323 ((-112) $)) (-15 -2248 ((-112) $)) (-15 -3028 ((-112) $)) (-15 -1617 ((-771) $)) (-15 -1617 ($ $ (-771))) (-15 -1718 ($ $ (-1 (-112) $ $))) (-15 -3433 ($ $ (-1 (-112) $ $))) (-15 -1675 ((-3 (-1 (-862) (-644 (-862))) "failed") $)) (-15 -1675 ($ $ (-1 (-862) (-644 (-862))))) (-15 -1675 ($ $ (-1 (-862) (-862)))) (-15 -1734 ($ $ (-1 (-538) (-644 (-538))))) (-15 -1734 ((-3 (-1 (-538) (-644 (-538))) "failed") $)) (-15 -1522 ((-112) $ (-508))) (-15 -1475 ($ $ (-508))) (-15 -1603 ($ $ (-1157))) (-15 -1603 ($ $ (-508))) (-15 -3174 ((-3 (-774) "failed") $ (-1157))) (-15 -3174 ((-691 (-774)) $ (-508))) (-15 -4046 ($ $ (-1157) (-774))) (-15 -4046 ($ $ (-508) (-774))) (-15 -3762 ($ $ (-45 (-1157) (-774))))))) (T -114)) -((-4171 (*1 *2 *1) (-12 (-5 *2 (-45 (-1157) (-774))) (-5 *1 (-114)))) (-3940 (*1 *1 *1) (-5 *1 (-114))) (-3659 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-114)))) (-3659 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-771)) (-5 *1 (-114)))) (-3659 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-55)) (-5 *1 (-114)))) (-4323 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-2248 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-3028 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-1617 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-114)))) (-1617 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-114)))) (-1718 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-3433 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-1675 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-862) (-644 (-862)))) (-5 *1 (-114)))) (-1675 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-862) (-644 (-862)))) (-5 *1 (-114)))) (-1675 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-862) (-862))) (-5 *1 (-114)))) (-1734 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-538) (-644 (-538)))) (-5 *1 (-114)))) (-1734 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-538) (-644 (-538)))) (-5 *1 (-114)))) (-1522 (*1 *2 *1 *3) (-12 (-5 *3 (-508)) (-5 *2 (-112)) (-5 *1 (-114)))) (-1475 (*1 *1 *1 *2) (-12 (-5 *2 (-508)) (-5 *1 (-114)))) (-1603 (*1 *1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-114)))) (-1603 (*1 *1 *1 *2) (-12 (-5 *2 (-508)) (-5 *1 (-114)))) (-3174 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1157)) (-5 *2 (-774)) (-5 *1 (-114)))) (-3174 (*1 *2 *1 *3) (-12 (-5 *3 (-508)) (-5 *2 (-691 (-774))) (-5 *1 (-114)))) (-4046 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1157)) (-5 *3 (-774)) (-5 *1 (-114)))) (-4046 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-508)) (-5 *3 (-774)) (-5 *1 (-114)))) (-3762 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1157) (-774))) (-5 *1 (-114))))) -(-13 (-850) (-835 (-1175)) (-10 -8 (-15 -4171 ((-45 (-1157) (-774)) $)) (-15 -3940 ($ $)) (-15 -3659 ($ (-1175))) (-15 -3659 ($ (-1175) (-771))) (-15 -3659 ($ (-1175) (-55))) (-15 -4323 ((-112) $)) (-15 -2248 ((-112) $)) (-15 -3028 ((-112) $)) (-15 -1617 ((-771) $)) (-15 -1617 ($ $ (-771))) (-15 -1718 ($ $ (-1 (-112) $ $))) (-15 -3433 ($ $ (-1 (-112) $ $))) (-15 -1675 ((-3 (-1 (-862) (-644 (-862))) "failed") $)) (-15 -1675 ($ $ (-1 (-862) (-644 (-862))))) (-15 -1675 ($ $ (-1 (-862) (-862)))) (-15 -1734 ($ $ (-1 (-538) (-644 (-538))))) (-15 -1734 ((-3 (-1 (-538) (-644 (-538))) "failed") $)) (-15 -1522 ((-112) $ (-508))) (-15 -1475 ($ $ (-508))) (-15 -1603 ($ $ (-1157))) (-15 -1603 ($ $ (-508))) (-15 -3174 ((-3 (-774) "failed") $ (-1157))) (-15 -3174 ((-691 (-774)) $ (-508))) (-15 -4046 ($ $ (-1157) (-774))) (-15 -4046 ($ $ (-508) (-774))) (-15 -3762 ($ $ (-45 (-1157) (-774)))))) -((-3604 (((-566) |#2|) 41))) -(((-115 |#1| |#2|) (-10 -7 (-15 -3604 ((-566) |#2|))) (-13 (-365) (-1038 (-409 (-566)))) (-1240 |#1|)) (T -115)) -((-3604 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-1038 (-409 *2)))) (-5 *2 (-566)) (-5 *1 (-115 *4 *3)) (-4 *3 (-1240 *4))))) -(-10 -7 (-15 -3604 ((-566) |#2|))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-3991 (($ $) NIL)) (-2388 (((-112) $) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-3731 (($ $ (-566)) NIL)) (-2837 (((-112) $ $) NIL)) (-3012 (($) NIL T CONST)) (-1751 (($ (-1171 (-566)) (-566)) NIL)) (-2946 (($ $ $) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-4026 (($ $) NIL)) (-2957 (($ $ $) NIL)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL)) (-3254 (((-771) $) NIL)) (-3934 (((-112) $) NIL)) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3930 (((-566)) NIL)) (-2542 (((-566) $) NIL)) (-2167 (($ $ $) NIL) (($ (-644 $)) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2214 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3148 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3874 (($ $ (-566)) NIL)) (-2994 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3039 (((-771) $) NIL)) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL)) (-4163 (((-1155 (-566)) $) NIL)) (-2770 (($ $) NIL)) (-3783 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL)) (-2107 (((-771)) NIL T CONST)) (-3117 (((-112) $ $) NIL)) (-2695 (((-112) $ $) NIL)) (-3628 (((-566) $ (-566)) NIL)) (-2479 (($) NIL T CONST)) (-4334 (($) NIL T CONST)) (-2947 (((-112) $ $) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL))) +((-2988 (((-112) $ $) NIL)) (-3010 (($ $) 13)) (-2439 (($ $ $) 18)) (-3338 (($) 7 T CONST)) (-3399 (($ $) 6)) (-3870 (((-771)) 26)) (-2715 (($) 34)) (-2427 (($ $ $) 16)) (-2404 (($ $) 9)) (-3801 (($ $ $) 19)) (-2584 (($ $ $) 20)) (-1478 (($ $ $) NIL) (($) NIL T CONST)) (-2599 (($ $ $) NIL) (($) NIL T CONST)) (-1866 (((-921) $) 32)) (-3380 (((-1157) $) NIL)) (-2835 (($ (-921)) 30)) (-3513 (($ $ $) 22)) (-4072 (((-1119) $) NIL)) (-2177 (($) 8 T CONST)) (-1562 (($ $ $) 23)) (-2376 (((-538) $) 36)) (-3152 (((-862) $) 38)) (-3044 (((-112) $ $) NIL)) (-2415 (($ $ $) 14)) (-3055 (($ $ $) 17)) (-2968 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2914 (((-112) $ $) 21)) (-2956 (((-112) $ $) NIL)) (-2935 (((-112) $ $) 24)) (-3043 (($ $ $) 15))) +(((-112) (-13 (-844) (-661) (-967) (-614 (-538)) (-10 -8 (-15 -2439 ($ $ $)) (-15 -2584 ($ $ $)) (-15 -3801 ($ $ $)) (-15 -3399 ($ $))))) (T -112)) +((-2439 (*1 *1 *1 *1) (-5 *1 (-112))) (-2584 (*1 *1 *1 *1) (-5 *1 (-112))) (-3801 (*1 *1 *1 *1) (-5 *1 (-112))) (-3399 (*1 *1 *1) (-5 *1 (-112)))) +(-13 (-844) (-661) (-967) (-614 (-538)) (-10 -8 (-15 -2439 ($ $ $)) (-15 -2584 ($ $ $)) (-15 -3801 ($ $ $)) (-15 -3399 ($ $)))) +((-2359 (((-3 (-1 |#1| (-644 |#1|)) "failed") (-114)) 23) (((-114) (-114) (-1 |#1| |#1|)) 13) (((-114) (-114) (-1 |#1| (-644 |#1|))) 11) (((-3 |#1| "failed") (-114) (-644 |#1|)) 25)) (-1933 (((-3 (-644 (-1 |#1| (-644 |#1|))) "failed") (-114)) 29) (((-114) (-114) (-1 |#1| |#1|)) 33) (((-114) (-114) (-644 (-1 |#1| (-644 |#1|)))) 30)) (-1703 (((-114) |#1|) 63)) (-1914 (((-3 |#1| "failed") (-114)) 58))) +(((-113 |#1|) (-10 -7 (-15 -2359 ((-3 |#1| "failed") (-114) (-644 |#1|))) (-15 -2359 ((-114) (-114) (-1 |#1| (-644 |#1|)))) (-15 -2359 ((-114) (-114) (-1 |#1| |#1|))) (-15 -2359 ((-3 (-1 |#1| (-644 |#1|)) "failed") (-114))) (-15 -1933 ((-114) (-114) (-644 (-1 |#1| (-644 |#1|))))) (-15 -1933 ((-114) (-114) (-1 |#1| |#1|))) (-15 -1933 ((-3 (-644 (-1 |#1| (-644 |#1|))) "failed") (-114))) (-15 -1703 ((-114) |#1|)) (-15 -1914 ((-3 |#1| "failed") (-114)))) (-1099)) (T -113)) +((-1914 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *1 (-113 *2)) (-4 *2 (-1099)))) (-1703 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-1099)))) (-1933 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-644 (-1 *4 (-644 *4)))) (-5 *1 (-113 *4)) (-4 *4 (-1099)))) (-1933 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1099)) (-5 *1 (-113 *4)))) (-1933 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-644 (-1 *4 (-644 *4)))) (-4 *4 (-1099)) (-5 *1 (-113 *4)))) (-2359 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-644 *4))) (-5 *1 (-113 *4)) (-4 *4 (-1099)))) (-2359 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1099)) (-5 *1 (-113 *4)))) (-2359 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-644 *4))) (-4 *4 (-1099)) (-5 *1 (-113 *4)))) (-2359 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-644 *2)) (-5 *1 (-113 *2)) (-4 *2 (-1099))))) +(-10 -7 (-15 -2359 ((-3 |#1| "failed") (-114) (-644 |#1|))) (-15 -2359 ((-114) (-114) (-1 |#1| (-644 |#1|)))) (-15 -2359 ((-114) (-114) (-1 |#1| |#1|))) (-15 -2359 ((-3 (-1 |#1| (-644 |#1|)) "failed") (-114))) (-15 -1933 ((-114) (-114) (-644 (-1 |#1| (-644 |#1|))))) (-15 -1933 ((-114) (-114) (-1 |#1| |#1|))) (-15 -1933 ((-3 (-644 (-1 |#1| (-644 |#1|))) "failed") (-114))) (-15 -1703 ((-114) |#1|)) (-15 -1914 ((-3 |#1| "failed") (-114)))) +((-2988 (((-112) $ $) NIL)) (-1784 (((-771) $) 91) (($ $ (-771)) 37)) (-1869 (((-112) $) 41)) (-2789 (($ $ (-1157) (-774)) 58) (($ $ (-508) (-774)) 33)) (-2927 (($ $ (-45 (-1157) (-774))) 16)) (-3808 (((-3 (-774) "failed") $ (-1157)) 27) (((-691 (-774)) $ (-508)) 32)) (-2104 (((-45 (-1157) (-774)) $) 15)) (-1566 (($ (-1175)) 20) (($ (-1175) (-771)) 23) (($ (-1175) (-55)) 24)) (-1315 (((-112) $) 39)) (-1553 (((-112) $) 43)) (-1368 (((-1175) $) 8)) (-1478 (($ $ $) NIL)) (-2599 (($ $ $) NIL)) (-3380 (((-1157) $) NIL)) (-3335 (((-112) $ (-1175)) 11)) (-1763 (($ $ (-1 (-538) (-644 (-538)))) 64) (((-3 (-1 (-538) (-644 (-538))) "failed") $) 71)) (-4072 (((-1119) $) NIL)) (-3237 (((-112) $ (-508)) 36)) (-4278 (($ $ (-1 (-112) $ $)) 45)) (-1710 (((-3 (-1 (-862) (-644 (-862))) "failed") $) 69) (($ $ (-1 (-862) (-644 (-862)))) 51) (($ $ (-1 (-862) (-862))) 53)) (-3049 (($ $ (-1157)) 55) (($ $ (-508)) 56)) (-1480 (($ $) 77)) (-1510 (($ $ (-1 (-112) $ $)) 46)) (-3152 (((-862) $) 60)) (-3044 (((-112) $ $) NIL)) (-1442 (($ $ (-508)) 34)) (-1752 (((-55) $) 72)) (-2968 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2914 (((-112) $ $) 89)) (-2956 (((-112) $ $) NIL)) (-2935 (((-112) $ $) 103))) +(((-114) (-13 (-850) (-835 (-1175)) (-10 -8 (-15 -2104 ((-45 (-1157) (-774)) $)) (-15 -1480 ($ $)) (-15 -1566 ($ (-1175))) (-15 -1566 ($ (-1175) (-771))) (-15 -1566 ($ (-1175) (-55))) (-15 -1315 ((-112) $)) (-15 -1869 ((-112) $)) (-15 -1553 ((-112) $)) (-15 -1784 ((-771) $)) (-15 -1784 ($ $ (-771))) (-15 -4278 ($ $ (-1 (-112) $ $))) (-15 -1510 ($ $ (-1 (-112) $ $))) (-15 -1710 ((-3 (-1 (-862) (-644 (-862))) "failed") $)) (-15 -1710 ($ $ (-1 (-862) (-644 (-862))))) (-15 -1710 ($ $ (-1 (-862) (-862)))) (-15 -1763 ($ $ (-1 (-538) (-644 (-538))))) (-15 -1763 ((-3 (-1 (-538) (-644 (-538))) "failed") $)) (-15 -3237 ((-112) $ (-508))) (-15 -1442 ($ $ (-508))) (-15 -3049 ($ $ (-1157))) (-15 -3049 ($ $ (-508))) (-15 -3808 ((-3 (-774) "failed") $ (-1157))) (-15 -3808 ((-691 (-774)) $ (-508))) (-15 -2789 ($ $ (-1157) (-774))) (-15 -2789 ($ $ (-508) (-774))) (-15 -2927 ($ $ (-45 (-1157) (-774))))))) (T -114)) +((-2104 (*1 *2 *1) (-12 (-5 *2 (-45 (-1157) (-774))) (-5 *1 (-114)))) (-1480 (*1 *1 *1) (-5 *1 (-114))) (-1566 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-114)))) (-1566 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-771)) (-5 *1 (-114)))) (-1566 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-55)) (-5 *1 (-114)))) (-1315 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-1869 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-1553 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-1784 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-114)))) (-1784 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-114)))) (-4278 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-1510 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-1710 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-862) (-644 (-862)))) (-5 *1 (-114)))) (-1710 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-862) (-644 (-862)))) (-5 *1 (-114)))) (-1710 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-862) (-862))) (-5 *1 (-114)))) (-1763 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-538) (-644 (-538)))) (-5 *1 (-114)))) (-1763 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-538) (-644 (-538)))) (-5 *1 (-114)))) (-3237 (*1 *2 *1 *3) (-12 (-5 *3 (-508)) (-5 *2 (-112)) (-5 *1 (-114)))) (-1442 (*1 *1 *1 *2) (-12 (-5 *2 (-508)) (-5 *1 (-114)))) (-3049 (*1 *1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-114)))) (-3049 (*1 *1 *1 *2) (-12 (-5 *2 (-508)) (-5 *1 (-114)))) (-3808 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1157)) (-5 *2 (-774)) (-5 *1 (-114)))) (-3808 (*1 *2 *1 *3) (-12 (-5 *3 (-508)) (-5 *2 (-691 (-774))) (-5 *1 (-114)))) (-2789 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1157)) (-5 *3 (-774)) (-5 *1 (-114)))) (-2789 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-508)) (-5 *3 (-774)) (-5 *1 (-114)))) (-2927 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1157) (-774))) (-5 *1 (-114))))) +(-13 (-850) (-835 (-1175)) (-10 -8 (-15 -2104 ((-45 (-1157) (-774)) $)) (-15 -1480 ($ $)) (-15 -1566 ($ (-1175))) (-15 -1566 ($ (-1175) (-771))) (-15 -1566 ($ (-1175) (-55))) (-15 -1315 ((-112) $)) (-15 -1869 ((-112) $)) (-15 -1553 ((-112) $)) (-15 -1784 ((-771) $)) (-15 -1784 ($ $ (-771))) (-15 -4278 ($ $ (-1 (-112) $ $))) (-15 -1510 ($ $ (-1 (-112) $ $))) (-15 -1710 ((-3 (-1 (-862) (-644 (-862))) "failed") $)) (-15 -1710 ($ $ (-1 (-862) (-644 (-862))))) (-15 -1710 ($ $ (-1 (-862) (-862)))) (-15 -1763 ($ $ (-1 (-538) (-644 (-538))))) (-15 -1763 ((-3 (-1 (-538) (-644 (-538))) "failed") $)) (-15 -3237 ((-112) $ (-508))) (-15 -1442 ($ $ (-508))) (-15 -3049 ($ $ (-1157))) (-15 -3049 ($ $ (-508))) (-15 -3808 ((-3 (-774) "failed") $ (-1157))) (-15 -3808 ((-691 (-774)) $ (-508))) (-15 -2789 ($ $ (-1157) (-774))) (-15 -2789 ($ $ (-508) (-774))) (-15 -2927 ($ $ (-45 (-1157) (-774)))))) +((-3068 (((-566) |#2|) 41))) +(((-115 |#1| |#2|) (-10 -7 (-15 -3068 ((-566) |#2|))) (-13 (-365) (-1038 (-409 (-566)))) (-1240 |#1|)) (T -115)) +((-3068 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-1038 (-409 *2)))) (-5 *2 (-566)) (-5 *1 (-115 *4 *3)) (-4 *3 (-1240 *4))))) +(-10 -7 (-15 -3068 ((-566) |#2|))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-2161 (($ $) NIL)) (-2345 (((-112) $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-1635 (($ $ (-566)) NIL)) (-2085 (((-112) $ $) NIL)) (-2463 (($) NIL T CONST)) (-3134 (($ (-1171 (-566)) (-566)) NIL)) (-2933 (($ $ $) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-1406 (($ $) NIL)) (-2945 (($ $ $) NIL)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL)) (-2679 (((-771) $) NIL)) (-2389 (((-112) $) NIL)) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3206 (((-566)) NIL)) (-2168 (((-566) $) NIL)) (-2128 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2164 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3005 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3369 (($ $ (-566)) NIL)) (-2978 (((-3 $ "failed") $ $) NIL)) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-4357 (((-771) $) NIL)) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL)) (-2251 (((-1155 (-566)) $) NIL)) (-1687 (($ $) NIL)) (-3152 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL)) (-2593 (((-771)) NIL T CONST)) (-3044 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-3603 (((-566) $ (-566)) NIL)) (-4356 (($) NIL T CONST)) (-4366 (($) NIL T CONST)) (-2914 (((-112) $ $) NIL)) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL))) (((-116 |#1|) (-869 |#1|) (-566)) (T -116)) NIL (-869 |#1|) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-1515 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-308)))) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-3991 (($ $) NIL)) (-2388 (((-112) $) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-1477 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-116 |#1|) (-909)))) (-1550 (($ $) NIL)) (-3184 (((-420 $) $) NIL)) (-3717 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| (-116 |#1|) (-909)))) (-2837 (((-112) $ $) NIL)) (-4364 (((-566) $) NIL (|has| (-116 |#1|) (-820)))) (-3012 (($) NIL T CONST)) (-4307 (((-3 (-116 |#1|) "failed") $) NIL) (((-3 (-1175) "failed") $) NIL (|has| (-116 |#1|) (-1038 (-1175)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| (-116 |#1|) (-1038 (-566)))) (((-3 (-566) "failed") $) NIL (|has| (-116 |#1|) (-1038 (-566))))) (-4205 (((-116 |#1|) $) NIL) (((-1175) $) NIL (|has| (-116 |#1|) (-1038 (-1175)))) (((-409 (-566)) $) NIL (|has| (-116 |#1|) (-1038 (-566)))) (((-566) $) NIL (|has| (-116 |#1|) (-1038 (-566))))) (-3569 (($ $) NIL) (($ (-566) $) NIL)) (-2946 (($ $ $) NIL)) (-3577 (((-689 (-566)) (-689 $)) NIL (|has| (-116 |#1|) (-639 (-566)))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| (-116 |#1|) (-639 (-566)))) (((-2 (|:| -4227 (-689 (-116 |#1|))) (|:| |vec| (-1264 (-116 |#1|)))) (-689 $) (-1264 $)) NIL) (((-689 (-116 |#1|)) (-689 $)) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-1552 (($) NIL (|has| (-116 |#1|) (-547)))) (-2957 (($ $ $) NIL)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL)) (-3268 (((-112) $) NIL)) (-1897 (((-112) $) NIL (|has| (-116 |#1|) (-820)))) (-2062 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (|has| (-116 |#1|) (-886 (-566)))) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (|has| (-116 |#1|) (-886 (-381))))) (-3934 (((-112) $) NIL)) (-1493 (($ $) NIL)) (-4326 (((-116 |#1|) $) NIL)) (-4363 (((-3 $ "failed") $) NIL (|has| (-116 |#1|) (-1150)))) (-2117 (((-112) $) NIL (|has| (-116 |#1|) (-820)))) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2097 (($ $ $) NIL (|has| (-116 |#1|) (-850)))) (-3962 (($ $ $) NIL (|has| (-116 |#1|) (-850)))) (-1301 (($ (-1 (-116 |#1|) (-116 |#1|)) $) NIL)) (-2167 (($ $ $) NIL) (($ (-644 $)) NIL)) (-4117 (((-1157) $) NIL)) (-1713 (($ $) NIL)) (-1761 (($) NIL (|has| (-116 |#1|) (-1150)) CONST)) (-4035 (((-1119) $) NIL)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2214 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2938 (($ $) NIL (|has| (-116 |#1|) (-308)))) (-3470 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-547)))) (-4303 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-116 |#1|) (-909)))) (-3240 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-116 |#1|) (-909)))) (-3719 (((-420 $) $) NIL)) (-3148 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2994 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2055 (($ $ (-644 (-116 |#1|)) (-644 (-116 |#1|))) NIL (|has| (-116 |#1|) (-310 (-116 |#1|)))) (($ $ (-116 |#1|) (-116 |#1|)) NIL (|has| (-116 |#1|) (-310 (-116 |#1|)))) (($ $ (-295 (-116 |#1|))) NIL (|has| (-116 |#1|) (-310 (-116 |#1|)))) (($ $ (-644 (-295 (-116 |#1|)))) NIL (|has| (-116 |#1|) (-310 (-116 |#1|)))) (($ $ (-644 (-1175)) (-644 (-116 |#1|))) NIL (|has| (-116 |#1|) (-516 (-1175) (-116 |#1|)))) (($ $ (-1175) (-116 |#1|)) NIL (|has| (-116 |#1|) (-516 (-1175) (-116 |#1|))))) (-3039 (((-771) $) NIL)) (-4390 (($ $ (-116 |#1|)) NIL (|has| (-116 |#1|) (-287 (-116 |#1|) (-116 |#1|))))) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL)) (-3561 (($ $) NIL (|has| (-116 |#1|) (-233))) (($ $ (-771)) NIL (|has| (-116 |#1|) (-233))) (($ $ (-1175)) NIL (|has| (-116 |#1|) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-116 |#1|) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-116 |#1|) (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-116 |#1|) (-900 (-1175)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-771)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-2023 (($ $) NIL)) (-4339 (((-116 |#1|) $) NIL)) (-1348 (((-892 (-566)) $) NIL (|has| (-116 |#1|) (-614 (-892 (-566))))) (((-892 (-381)) $) NIL (|has| (-116 |#1|) (-614 (-892 (-381))))) (((-538) $) NIL (|has| (-116 |#1|) (-614 (-538)))) (((-381) $) NIL (|has| (-116 |#1|) (-1022))) (((-225) $) NIL (|has| (-116 |#1|) (-1022)))) (-3503 (((-174 (-409 (-566))) $) NIL)) (-1656 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-909))))) (-3783 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (($ (-116 |#1|)) NIL) (($ (-1175)) NIL (|has| (-116 |#1|) (-1038 (-1175))))) (-3144 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-909))) (|has| (-116 |#1|) (-145))))) (-2107 (((-771)) NIL T CONST)) (-2948 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-547)))) (-3117 (((-112) $ $) NIL)) (-2695 (((-112) $ $) NIL)) (-3628 (((-409 (-566)) $ (-566)) NIL)) (-2086 (($ $) NIL (|has| (-116 |#1|) (-820)))) (-2479 (($) NIL T CONST)) (-4334 (($) NIL T CONST)) (-2875 (($ $) NIL (|has| (-116 |#1|) (-233))) (($ $ (-771)) NIL (|has| (-116 |#1|) (-233))) (($ $ (-1175)) NIL (|has| (-116 |#1|) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-116 |#1|) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-116 |#1|) (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-116 |#1|) (-900 (-1175)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-771)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-3009 (((-112) $ $) NIL (|has| (-116 |#1|) (-850)))) (-2984 (((-112) $ $) NIL (|has| (-116 |#1|) (-850)))) (-2947 (((-112) $ $) NIL)) (-2995 (((-112) $ $) NIL (|has| (-116 |#1|) (-850)))) (-2969 (((-112) $ $) NIL (|has| (-116 |#1|) (-850)))) (-3065 (($ $ $) NIL) (($ (-116 |#1|) (-116 |#1|)) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ (-116 |#1|) $) NIL) (($ $ (-116 |#1|)) NIL))) -(((-117 |#1|) (-13 (-992 (-116 |#1|)) (-10 -8 (-15 -3628 ((-409 (-566)) $ (-566))) (-15 -3503 ((-174 (-409 (-566))) $)) (-15 -3569 ($ $)) (-15 -3569 ($ (-566) $)))) (-566)) (T -117)) -((-3628 (*1 *2 *1 *3) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-566)))) (-3503 (*1 *2 *1) (-12 (-5 *2 (-174 (-409 (-566)))) (-5 *1 (-117 *3)) (-14 *3 (-566)))) (-3569 (*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-566)))) (-3569 (*1 *1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-117 *3)) (-14 *3 *2)))) -(-13 (-992 (-116 |#1|)) (-10 -8 (-15 -3628 ((-409 (-566)) $ (-566))) (-15 -3503 ((-174 (-409 (-566))) $)) (-15 -3569 ($ $)) (-15 -3569 ($ (-566) $)))) -((-3923 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 61) (($ $ "right" $) 63)) (-4009 (((-644 $) $) 31)) (-3891 (((-112) $ $) 36)) (-1916 (((-112) |#2| $) 40)) (-3701 (((-644 |#2|) $) 25)) (-3438 (((-112) $) 18)) (-4390 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-3494 (((-112) $) 57)) (-3783 (((-862) $) 47)) (-2462 (((-644 $) $) 32)) (-2947 (((-112) $ $) 38)) (-3018 (((-771) $) 50))) -(((-118 |#1| |#2|) (-10 -8 (-15 -3783 ((-862) |#1|)) (-15 -3923 (|#1| |#1| "right" |#1|)) (-15 -3923 (|#1| |#1| "left" |#1|)) (-15 -4390 (|#1| |#1| "right")) (-15 -4390 (|#1| |#1| "left")) (-15 -3923 (|#2| |#1| "value" |#2|)) (-15 -3891 ((-112) |#1| |#1|)) (-15 -3701 ((-644 |#2|) |#1|)) (-15 -3494 ((-112) |#1|)) (-15 -4390 (|#2| |#1| "value")) (-15 -3438 ((-112) |#1|)) (-15 -4009 ((-644 |#1|) |#1|)) (-15 -2462 ((-644 |#1|) |#1|)) (-15 -2947 ((-112) |#1| |#1|)) (-15 -1916 ((-112) |#2| |#1|)) (-15 -3018 ((-771) |#1|))) (-119 |#2|) (-1214)) (T -118)) -NIL -(-10 -8 (-15 -3783 ((-862) |#1|)) (-15 -3923 (|#1| |#1| "right" |#1|)) (-15 -3923 (|#1| |#1| "left" |#1|)) (-15 -4390 (|#1| |#1| "right")) (-15 -4390 (|#1| |#1| "left")) (-15 -3923 (|#2| |#1| "value" |#2|)) (-15 -3891 ((-112) |#1| |#1|)) (-15 -3701 ((-644 |#2|) |#1|)) (-15 -3494 ((-112) |#1|)) (-15 -4390 (|#2| |#1| "value")) (-15 -3438 ((-112) |#1|)) (-15 -4009 ((-644 |#1|) |#1|)) (-15 -2462 ((-644 |#1|) |#1|)) (-15 -2947 ((-112) |#1| |#1|)) (-15 -1916 ((-112) |#2| |#1|)) (-15 -3018 ((-771) |#1|))) -((-3007 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2233 ((|#1| $) 49)) (-2256 (((-112) $ (-771)) 8)) (-3396 ((|#1| $ |#1|) 40 (|has| $ (-6 -4415)))) (-2862 (($ $ $) 53 (|has| $ (-6 -4415)))) (-2636 (($ $ $) 55 (|has| $ (-6 -4415)))) (-3923 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4415))) (($ $ "left" $) 56 (|has| $ (-6 -4415))) (($ $ "right" $) 54 (|has| $ (-6 -4415)))) (-3800 (($ $ (-644 $)) 42 (|has| $ (-6 -4415)))) (-3012 (($) 7 T CONST)) (-4392 (($ $) 58)) (-3979 (((-644 |#1|) $) 31 (|has| $ (-6 -4414)))) (-4009 (((-644 $) $) 51)) (-3891 (((-112) $ $) 43 (|has| |#1| (-1099)))) (-2404 (((-112) $ (-771)) 9)) (-2329 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2908 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#1| |#1|) $) 36)) (-2603 (((-112) $ (-771)) 10)) (-4380 (($ $) 60)) (-3701 (((-644 |#1|) $) 46)) (-3438 (((-112) $) 50)) (-4117 (((-1157) $) 22 (|has| |#1| (-1099)))) (-4035 (((-1119) $) 21 (|has| |#1| (-1099)))) (-2692 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) 14)) (-3467 (((-112) $) 11)) (-1494 (($) 12)) (-4390 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-1416 (((-566) $ $) 45)) (-3494 (((-112) $) 47)) (-4045 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-3940 (($ $) 13)) (-3783 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-2462 (((-644 $) $) 52)) (-4288 (((-112) $ $) 44 (|has| |#1| (-1099)))) (-3117 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-1894 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3018 (((-771) $) 6 (|has| $ (-6 -4414))))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-1873 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-308)))) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-2161 (($ $) NIL)) (-2345 (((-112) $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-2292 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-116 |#1|) (-909)))) (-1378 (($ $) NIL)) (-1364 (((-420 $) $) NIL)) (-4066 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| (-116 |#1|) (-909)))) (-2085 (((-112) $ $) NIL)) (-2743 (((-566) $) NIL (|has| (-116 |#1|) (-820)))) (-2463 (($) NIL T CONST)) (-2229 (((-3 (-116 |#1|) "failed") $) NIL) (((-3 (-1175) "failed") $) NIL (|has| (-116 |#1|) (-1038 (-1175)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| (-116 |#1|) (-1038 (-566)))) (((-3 (-566) "failed") $) NIL (|has| (-116 |#1|) (-1038 (-566))))) (-4158 (((-116 |#1|) $) NIL) (((-1175) $) NIL (|has| (-116 |#1|) (-1038 (-1175)))) (((-409 (-566)) $) NIL (|has| (-116 |#1|) (-1038 (-566)))) (((-566) $) NIL (|has| (-116 |#1|) (-1038 (-566))))) (-1556 (($ $) NIL) (($ (-566) $) NIL)) (-2933 (($ $ $) NIL)) (-4089 (((-689 (-566)) (-689 $)) NIL (|has| (-116 |#1|) (-639 (-566)))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| (-116 |#1|) (-639 (-566)))) (((-2 (|:| -3361 (-689 (-116 |#1|))) (|:| |vec| (-1264 (-116 |#1|)))) (-689 $) (-1264 $)) NIL) (((-689 (-116 |#1|)) (-689 $)) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-2715 (($) NIL (|has| (-116 |#1|) (-547)))) (-2945 (($ $ $) NIL)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL)) (-1615 (((-112) $) NIL)) (-2528 (((-112) $) NIL (|has| (-116 |#1|) (-820)))) (-2926 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (|has| (-116 |#1|) (-886 (-566)))) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (|has| (-116 |#1|) (-886 (-381))))) (-2389 (((-112) $) NIL)) (-3406 (($ $) NIL)) (-2248 (((-116 |#1|) $) NIL)) (-2621 (((-3 $ "failed") $) NIL (|has| (-116 |#1|) (-1150)))) (-3233 (((-112) $) NIL (|has| (-116 |#1|) (-820)))) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1478 (($ $ $) NIL (|has| (-116 |#1|) (-850)))) (-2599 (($ $ $) NIL (|has| (-116 |#1|) (-850)))) (-2319 (($ (-1 (-116 |#1|) (-116 |#1|)) $) NIL)) (-2128 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3380 (((-1157) $) NIL)) (-2748 (($ $) NIL)) (-3289 (($) NIL (|has| (-116 |#1|) (-1150)) CONST)) (-4072 (((-1119) $) NIL)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2164 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2487 (($ $) NIL (|has| (-116 |#1|) (-308)))) (-3143 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-547)))) (-2010 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-116 |#1|) (-909)))) (-1893 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-116 |#1|) (-909)))) (-1624 (((-420 $) $) NIL)) (-3005 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2978 (((-3 $ "failed") $ $) NIL)) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2023 (($ $ (-644 (-116 |#1|)) (-644 (-116 |#1|))) NIL (|has| (-116 |#1|) (-310 (-116 |#1|)))) (($ $ (-116 |#1|) (-116 |#1|)) NIL (|has| (-116 |#1|) (-310 (-116 |#1|)))) (($ $ (-295 (-116 |#1|))) NIL (|has| (-116 |#1|) (-310 (-116 |#1|)))) (($ $ (-644 (-295 (-116 |#1|)))) NIL (|has| (-116 |#1|) (-310 (-116 |#1|)))) (($ $ (-644 (-1175)) (-644 (-116 |#1|))) NIL (|has| (-116 |#1|) (-516 (-1175) (-116 |#1|)))) (($ $ (-1175) (-116 |#1|)) NIL (|has| (-116 |#1|) (-516 (-1175) (-116 |#1|))))) (-4357 (((-771) $) NIL)) (-1309 (($ $ (-116 |#1|)) NIL (|has| (-116 |#1|) (-287 (-116 |#1|) (-116 |#1|))))) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL)) (-3629 (($ $) NIL (|has| (-116 |#1|) (-233))) (($ $ (-771)) NIL (|has| (-116 |#1|) (-233))) (($ $ (-1175)) NIL (|has| (-116 |#1|) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-116 |#1|) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-116 |#1|) (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-116 |#1|) (-900 (-1175)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-771)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-1452 (($ $) NIL)) (-2260 (((-116 |#1|) $) NIL)) (-2376 (((-892 (-566)) $) NIL (|has| (-116 |#1|) (-614 (-892 (-566))))) (((-892 (-381)) $) NIL (|has| (-116 |#1|) (-614 (-892 (-381))))) (((-538) $) NIL (|has| (-116 |#1|) (-614 (-538)))) (((-381) $) NIL (|has| (-116 |#1|) (-1022))) (((-225) $) NIL (|has| (-116 |#1|) (-1022)))) (-2146 (((-174 (-409 (-566))) $) NIL)) (-3391 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-909))))) (-3152 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (($ (-116 |#1|)) NIL) (($ (-1175)) NIL (|has| (-116 |#1|) (-1038 (-1175))))) (-2633 (((-3 $ "failed") $) NIL (-2768 (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-909))) (|has| (-116 |#1|) (-145))))) (-2593 (((-771)) NIL T CONST)) (-3913 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-547)))) (-3044 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-3603 (((-409 (-566)) $ (-566)) NIL)) (-1358 (($ $) NIL (|has| (-116 |#1|) (-820)))) (-4356 (($) NIL T CONST)) (-4366 (($) NIL T CONST)) (-3497 (($ $) NIL (|has| (-116 |#1|) (-233))) (($ $ (-771)) NIL (|has| (-116 |#1|) (-233))) (($ $ (-1175)) NIL (|has| (-116 |#1|) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-116 |#1|) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-116 |#1|) (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-116 |#1|) (-900 (-1175)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-771)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-2968 (((-112) $ $) NIL (|has| (-116 |#1|) (-850)))) (-2946 (((-112) $ $) NIL (|has| (-116 |#1|) (-850)))) (-2914 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL (|has| (-116 |#1|) (-850)))) (-2935 (((-112) $ $) NIL (|has| (-116 |#1|) (-850)))) (-3025 (($ $ $) NIL) (($ (-116 |#1|) (-116 |#1|)) NIL)) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ (-116 |#1|) $) NIL) (($ $ (-116 |#1|)) NIL))) +(((-117 |#1|) (-13 (-992 (-116 |#1|)) (-10 -8 (-15 -3603 ((-409 (-566)) $ (-566))) (-15 -2146 ((-174 (-409 (-566))) $)) (-15 -1556 ($ $)) (-15 -1556 ($ (-566) $)))) (-566)) (T -117)) +((-3603 (*1 *2 *1 *3) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-566)))) (-2146 (*1 *2 *1) (-12 (-5 *2 (-174 (-409 (-566)))) (-5 *1 (-117 *3)) (-14 *3 (-566)))) (-1556 (*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-566)))) (-1556 (*1 *1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-117 *3)) (-14 *3 *2)))) +(-13 (-992 (-116 |#1|)) (-10 -8 (-15 -3603 ((-409 (-566)) $ (-566))) (-15 -2146 ((-174 (-409 (-566))) $)) (-15 -1556 ($ $)) (-15 -1556 ($ (-566) $)))) +((-1456 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 61) (($ $ "right" $) 63)) (-3431 (((-644 $) $) 31)) (-1507 (((-112) $ $) 36)) (-1602 (((-112) |#2| $) 40)) (-1458 (((-644 |#2|) $) 25)) (-3860 (((-112) $) 18)) (-1309 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-3786 (((-112) $) 57)) (-3152 (((-862) $) 47)) (-1926 (((-644 $) $) 32)) (-2914 (((-112) $ $) 38)) (-3000 (((-771) $) 50))) +(((-118 |#1| |#2|) (-10 -8 (-15 -3152 ((-862) |#1|)) (-15 -1456 (|#1| |#1| "right" |#1|)) (-15 -1456 (|#1| |#1| "left" |#1|)) (-15 -1309 (|#1| |#1| "right")) (-15 -1309 (|#1| |#1| "left")) (-15 -1456 (|#2| |#1| "value" |#2|)) (-15 -1507 ((-112) |#1| |#1|)) (-15 -1458 ((-644 |#2|) |#1|)) (-15 -3786 ((-112) |#1|)) (-15 -1309 (|#2| |#1| "value")) (-15 -3860 ((-112) |#1|)) (-15 -3431 ((-644 |#1|) |#1|)) (-15 -1926 ((-644 |#1|) |#1|)) (-15 -2914 ((-112) |#1| |#1|)) (-15 -1602 ((-112) |#2| |#1|)) (-15 -3000 ((-771) |#1|))) (-119 |#2|) (-1214)) (T -118)) +NIL +(-10 -8 (-15 -3152 ((-862) |#1|)) (-15 -1456 (|#1| |#1| "right" |#1|)) (-15 -1456 (|#1| |#1| "left" |#1|)) (-15 -1309 (|#1| |#1| "right")) (-15 -1309 (|#1| |#1| "left")) (-15 -1456 (|#2| |#1| "value" |#2|)) (-15 -1507 ((-112) |#1| |#1|)) (-15 -1458 ((-644 |#2|) |#1|)) (-15 -3786 ((-112) |#1|)) (-15 -1309 (|#2| |#1| "value")) (-15 -3860 ((-112) |#1|)) (-15 -3431 ((-644 |#1|) |#1|)) (-15 -1926 ((-644 |#1|) |#1|)) (-15 -2914 ((-112) |#1| |#1|)) (-15 -1602 ((-112) |#2| |#1|)) (-15 -3000 ((-771) |#1|))) +((-2988 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2876 ((|#1| $) 49)) (-1504 (((-112) $ (-771)) 8)) (-2191 ((|#1| $ |#1|) 40 (|has| $ (-6 -4415)))) (-1878 (($ $ $) 53 (|has| $ (-6 -4415)))) (-3414 (($ $ $) 55 (|has| $ (-6 -4415)))) (-1456 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4415))) (($ $ "left" $) 56 (|has| $ (-6 -4415))) (($ $ "right" $) 54 (|has| $ (-6 -4415)))) (-4202 (($ $ (-644 $)) 42 (|has| $ (-6 -4415)))) (-2463 (($) 7 T CONST)) (-1966 (($ $) 58)) (-1683 (((-644 |#1|) $) 31 (|has| $ (-6 -4414)))) (-3431 (((-644 $) $) 51)) (-1507 (((-112) $ $) 43 (|has| |#1| (-1099)))) (-3456 (((-112) $ (-771)) 9)) (-3491 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-3885 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#1| |#1|) $) 36)) (-3267 (((-112) $ (-771)) 10)) (-1953 (($ $) 60)) (-1458 (((-644 |#1|) $) 46)) (-3860 (((-112) $) 50)) (-3380 (((-1157) $) 22 (|has| |#1| (-1099)))) (-4072 (((-1119) $) 21 (|has| |#1| (-1099)))) (-2823 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) 14)) (-2872 (((-112) $) 11)) (-3493 (($) 12)) (-1309 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-1696 (((-566) $ $) 45)) (-3786 (((-112) $) 47)) (-4083 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-1480 (($ $) 13)) (-3152 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-1926 (((-644 $) $) 52)) (-4385 (((-112) $ $) 44 (|has| |#1| (-1099)))) (-3044 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-2210 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3000 (((-771) $) 6 (|has| $ (-6 -4414))))) (((-119 |#1|) (-140) (-1214)) (T -119)) -((-4380 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1214)))) (-4390 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1214)))) (-4392 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1214)))) (-4390 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1214)))) (-3923 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4415)) (-4 *1 (-119 *3)) (-4 *3 (-1214)))) (-2636 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4415)) (-4 *1 (-119 *2)) (-4 *2 (-1214)))) (-3923 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4415)) (-4 *1 (-119 *3)) (-4 *3 (-1214)))) (-2862 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4415)) (-4 *1 (-119 *2)) (-4 *2 (-1214))))) -(-13 (-1010 |t#1|) (-10 -8 (-15 -4380 ($ $)) (-15 -4390 ($ $ "left")) (-15 -4392 ($ $)) (-15 -4390 ($ $ "right")) (IF (|has| $ (-6 -4415)) (PROGN (-15 -3923 ($ $ "left" $)) (-15 -2636 ($ $ $)) (-15 -3923 ($ $ "right" $)) (-15 -2862 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2809 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1010 |#1|) . T) ((-1099) |has| |#1| (-1099)) ((-1214) . T)) -((-1566 (((-112) |#1|) 29)) (-4054 (((-771) (-771)) 28) (((-771)) 27)) (-1539 (((-112) |#1| (-112)) 30) (((-112) |#1|) 31))) -(((-120 |#1|) (-10 -7 (-15 -1539 ((-112) |#1|)) (-15 -1539 ((-112) |#1| (-112))) (-15 -4054 ((-771))) (-15 -4054 ((-771) (-771))) (-15 -1566 ((-112) |#1|))) (-1240 (-566))) (T -120)) -((-1566 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1240 (-566))))) (-4054 (*1 *2 *2) (-12 (-5 *2 (-771)) (-5 *1 (-120 *3)) (-4 *3 (-1240 (-566))))) (-4054 (*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-120 *3)) (-4 *3 (-1240 (-566))))) (-1539 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1240 (-566))))) (-1539 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1240 (-566)))))) -(-10 -7 (-15 -1539 ((-112) |#1|)) (-15 -1539 ((-112) |#1| (-112))) (-15 -4054 ((-771))) (-15 -4054 ((-771) (-771))) (-15 -1566 ((-112) |#1|))) -((-3007 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2233 ((|#1| $) 18)) (-1815 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26)) (-2256 (((-112) $ (-771)) NIL)) (-3396 ((|#1| $ |#1|) NIL (|has| $ (-6 -4415)))) (-2862 (($ $ $) 21 (|has| $ (-6 -4415)))) (-2636 (($ $ $) 23 (|has| $ (-6 -4415)))) (-3923 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4415))) (($ $ "left" $) NIL (|has| $ (-6 -4415))) (($ $ "right" $) NIL (|has| $ (-6 -4415)))) (-3800 (($ $ (-644 $)) NIL (|has| $ (-6 -4415)))) (-3012 (($) NIL T CONST)) (-4392 (($ $) 20)) (-3979 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-4009 (((-644 $) $) NIL)) (-3891 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3051 (($ $ |#1| $) 27)) (-2404 (((-112) $ (-771)) NIL)) (-2329 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2908 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#1| |#1|) $) NIL)) (-2603 (((-112) $ (-771)) NIL)) (-4380 (($ $) 22)) (-3701 (((-644 |#1|) $) NIL)) (-3438 (((-112) $) NIL)) (-4117 (((-1157) $) NIL (|has| |#1| (-1099)))) (-2285 (($ |#1| $) 28)) (-3406 (($ |#1| $) 15)) (-4035 (((-1119) $) NIL (|has| |#1| (-1099)))) (-2692 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) NIL)) (-3467 (((-112) $) 17)) (-1494 (($) 11)) (-4390 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1416 (((-566) $ $) NIL)) (-3494 (((-112) $) NIL)) (-4045 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3940 (($ $) NIL)) (-3783 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-2462 (((-644 $) $) NIL)) (-4288 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2650 (($ (-644 |#1|)) 16)) (-3117 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1894 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3018 (((-771) $) NIL (|has| $ (-6 -4414))))) -(((-121 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4415) (-6 -4414) (-15 -2650 ($ (-644 |#1|))) (-15 -3406 ($ |#1| $)) (-15 -2285 ($ |#1| $)) (-15 -1815 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-850)) (T -121)) -((-2650 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-850)) (-5 *1 (-121 *3)))) (-3406 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-850)))) (-2285 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-850)))) (-1815 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) (-5 *1 (-121 *3)) (-4 *3 (-850))))) -(-13 (-125 |#1|) (-10 -8 (-6 -4415) (-6 -4414) (-15 -2650 ($ (-644 |#1|))) (-15 -3406 ($ |#1| $)) (-15 -2285 ($ |#1| $)) (-15 -1815 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) -((-3029 (($ $) 13)) (-2418 (($ $) 11)) (-4219 (($ $ $) 23)) (-1497 (($ $ $) 21)) (-3075 (($ $ $) 19)) (-3063 (($ $ $) 17))) -(((-122 |#1|) (-10 -8 (-15 -4219 (|#1| |#1| |#1|)) (-15 -1497 (|#1| |#1| |#1|)) (-15 -2418 (|#1| |#1|)) (-15 -3029 (|#1| |#1|)) (-15 -3063 (|#1| |#1| |#1|)) (-15 -3075 (|#1| |#1| |#1|))) (-123)) (T -122)) -NIL -(-10 -8 (-15 -4219 (|#1| |#1| |#1|)) (-15 -1497 (|#1| |#1| |#1|)) (-15 -2418 (|#1| |#1|)) (-15 -3029 (|#1| |#1|)) (-15 -3063 (|#1| |#1| |#1|)) (-15 -3075 (|#1| |#1| |#1|))) -((-3007 (((-112) $ $) 7)) (-3029 (($ $) 104)) (-2456 (($ $ $) 26)) (-3734 (((-1269) $ (-566) (-566)) 67 (|has| $ (-6 -4415)))) (-2644 (((-112) $) 99 (|has| (-112) (-850))) (((-112) (-1 (-112) (-112) (-112)) $) 93)) (-1944 (($ $) 103 (-12 (|has| (-112) (-850)) (|has| $ (-6 -4415)))) (($ (-1 (-112) (-112) (-112)) $) 102 (|has| $ (-6 -4415)))) (-1510 (($ $) 98 (|has| (-112) (-850))) (($ (-1 (-112) (-112) (-112)) $) 92)) (-2256 (((-112) $ (-771)) 38)) (-3923 (((-112) $ (-1231 (-566)) (-112)) 89 (|has| $ (-6 -4415))) (((-112) $ (-566) (-112)) 55 (|has| $ (-6 -4415)))) (-2701 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4414)))) (-3012 (($) 39 T CONST)) (-3413 (($ $) 101 (|has| $ (-6 -4415)))) (-1377 (($ $) 91)) (-2031 (($ $) 69 (-12 (|has| (-112) (-1099)) (|has| $ (-6 -4414))))) (-2665 (($ (-1 (-112) (-112)) $) 73 (|has| $ (-6 -4414))) (($ (-112) $) 70 (-12 (|has| (-112) (-1099)) (|has| $ (-6 -4414))))) (-1676 (((-112) (-1 (-112) (-112) (-112)) $) 75 (|has| $ (-6 -4414))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 74 (|has| $ (-6 -4414))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 71 (-12 (|has| (-112) (-1099)) (|has| $ (-6 -4414))))) (-2920 (((-112) $ (-566) (-112)) 54 (|has| $ (-6 -4415)))) (-2855 (((-112) $ (-566)) 56)) (-4000 (((-566) (-112) $ (-566)) 96 (|has| (-112) (-1099))) (((-566) (-112) $) 95 (|has| (-112) (-1099))) (((-566) (-1 (-112) (-112)) $) 94)) (-3979 (((-644 (-112)) $) 46 (|has| $ (-6 -4414)))) (-2445 (($ $ $) 27)) (-2418 (($ $) 31)) (-4219 (($ $ $) 29)) (-4265 (($ (-771) (-112)) 78)) (-1497 (($ $ $) 30)) (-2404 (((-112) $ (-771)) 37)) (-3854 (((-566) $) 64 (|has| (-566) (-850)))) (-2097 (($ $ $) 14)) (-3298 (($ $ $) 97 (|has| (-112) (-850))) (($ (-1 (-112) (-112) (-112)) $ $) 90)) (-2329 (((-644 (-112)) $) 47 (|has| $ (-6 -4414)))) (-1916 (((-112) (-112) $) 49 (-12 (|has| (-112) (-1099)) (|has| $ (-6 -4414))))) (-2712 (((-566) $) 63 (|has| (-566) (-850)))) (-3962 (($ $ $) 15)) (-2908 (($ (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4415)))) (-1301 (($ (-1 (-112) (-112) (-112)) $ $) 83) (($ (-1 (-112) (-112)) $) 41)) (-2603 (((-112) $ (-771)) 36)) (-4117 (((-1157) $) 10)) (-4276 (($ $ $ (-566)) 88) (($ (-112) $ (-566)) 87)) (-4074 (((-644 (-566)) $) 61)) (-3792 (((-112) (-566) $) 60)) (-4035 (((-1119) $) 11)) (-1998 (((-112) $) 65 (|has| (-566) (-850)))) (-2006 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 76)) (-4030 (($ $ (-112)) 66 (|has| $ (-6 -4415)))) (-2692 (((-112) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-112)) (-644 (-112))) 53 (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1099)))) (($ $ (-112) (-112)) 52 (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1099)))) (($ $ (-295 (-112))) 51 (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1099)))) (($ $ (-644 (-295 (-112)))) 50 (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1099))))) (-1932 (((-112) $ $) 32)) (-4156 (((-112) (-112) $) 62 (-12 (|has| $ (-6 -4414)) (|has| (-112) (-1099))))) (-2993 (((-644 (-112)) $) 59)) (-3467 (((-112) $) 35)) (-1494 (($) 34)) (-4390 (($ $ (-1231 (-566))) 84) (((-112) $ (-566)) 58) (((-112) $ (-566) (-112)) 57)) (-2187 (($ $ (-1231 (-566))) 86) (($ $ (-566)) 85)) (-4045 (((-771) (-112) $) 48 (-12 (|has| (-112) (-1099)) (|has| $ (-6 -4414)))) (((-771) (-1 (-112) (-112)) $) 45 (|has| $ (-6 -4414)))) (-1297 (($ $ $ (-566)) 100 (|has| $ (-6 -4415)))) (-3940 (($ $) 33)) (-1348 (((-538) $) 68 (|has| (-112) (-614 (-538))))) (-3796 (($ (-644 (-112))) 77)) (-3721 (($ (-644 $)) 82) (($ $ $) 81) (($ (-112) $) 80) (($ $ (-112)) 79)) (-3783 (((-862) $) 12)) (-3117 (((-112) $ $) 9)) (-1894 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4414)))) (-2432 (($ $ $) 28)) (-3075 (($ $ $) 106)) (-3009 (((-112) $ $) 17)) (-2984 (((-112) $ $) 18)) (-2947 (((-112) $ $) 6)) (-2995 (((-112) $ $) 16)) (-2969 (((-112) $ $) 19)) (-3063 (($ $ $) 105)) (-3018 (((-771) $) 40 (|has| $ (-6 -4414))))) +((-1953 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1214)))) (-1309 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1214)))) (-1966 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1214)))) (-1309 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1214)))) (-1456 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4415)) (-4 *1 (-119 *3)) (-4 *3 (-1214)))) (-3414 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4415)) (-4 *1 (-119 *2)) (-4 *2 (-1214)))) (-1456 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4415)) (-4 *1 (-119 *3)) (-4 *3 (-1214)))) (-1878 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4415)) (-4 *1 (-119 *2)) (-4 *2 (-1214))))) +(-13 (-1010 |t#1|) (-10 -8 (-15 -1953 ($ $)) (-15 -1309 ($ $ "left")) (-15 -1966 ($ $)) (-15 -1309 ($ $ "right")) (IF (|has| $ (-6 -4415)) (PROGN (-15 -1456 ($ $ "left" $)) (-15 -3414 ($ $ $)) (-15 -1456 ($ $ "right" $)) (-15 -1878 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2768 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1010 |#1|) . T) ((-1099) |has| |#1| (-1099)) ((-1214) . T)) +((-3375 (((-112) |#1|) 29)) (-2329 (((-771) (-771)) 28) (((-771)) 27)) (-2841 (((-112) |#1| (-112)) 30) (((-112) |#1|) 31))) +(((-120 |#1|) (-10 -7 (-15 -2841 ((-112) |#1|)) (-15 -2841 ((-112) |#1| (-112))) (-15 -2329 ((-771))) (-15 -2329 ((-771) (-771))) (-15 -3375 ((-112) |#1|))) (-1240 (-566))) (T -120)) +((-3375 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1240 (-566))))) (-2329 (*1 *2 *2) (-12 (-5 *2 (-771)) (-5 *1 (-120 *3)) (-4 *3 (-1240 (-566))))) (-2329 (*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-120 *3)) (-4 *3 (-1240 (-566))))) (-2841 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1240 (-566))))) (-2841 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1240 (-566)))))) +(-10 -7 (-15 -2841 ((-112) |#1|)) (-15 -2841 ((-112) |#1| (-112))) (-15 -2329 ((-771))) (-15 -2329 ((-771) (-771))) (-15 -3375 ((-112) |#1|))) +((-2988 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2876 ((|#1| $) 18)) (-3011 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26)) (-1504 (((-112) $ (-771)) NIL)) (-2191 ((|#1| $ |#1|) NIL (|has| $ (-6 -4415)))) (-1878 (($ $ $) 21 (|has| $ (-6 -4415)))) (-3414 (($ $ $) 23 (|has| $ (-6 -4415)))) (-1456 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4415))) (($ $ "left" $) NIL (|has| $ (-6 -4415))) (($ $ "right" $) NIL (|has| $ (-6 -4415)))) (-4202 (($ $ (-644 $)) NIL (|has| $ (-6 -4415)))) (-2463 (($) NIL T CONST)) (-1966 (($ $) 20)) (-1683 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-3431 (((-644 $) $) NIL)) (-1507 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-4326 (($ $ |#1| $) 27)) (-3456 (((-112) $ (-771)) NIL)) (-3491 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3885 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#1| |#1|) $) NIL)) (-3267 (((-112) $ (-771)) NIL)) (-1953 (($ $) 22)) (-1458 (((-644 |#1|) $) NIL)) (-3860 (((-112) $) NIL)) (-3380 (((-1157) $) NIL (|has| |#1| (-1099)))) (-2478 (($ |#1| $) 28)) (-3888 (($ |#1| $) 15)) (-4072 (((-1119) $) NIL (|has| |#1| (-1099)))) (-2823 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) NIL)) (-2872 (((-112) $) 17)) (-3493 (($) 11)) (-1309 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1696 (((-566) $ $) NIL)) (-3786 (((-112) $) NIL)) (-4083 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-1480 (($ $) NIL)) (-3152 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-1926 (((-644 $) $) NIL)) (-4385 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2373 (($ (-644 |#1|)) 16)) (-3044 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2210 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3000 (((-771) $) NIL (|has| $ (-6 -4414))))) +(((-121 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4415) (-6 -4414) (-15 -2373 ($ (-644 |#1|))) (-15 -3888 ($ |#1| $)) (-15 -2478 ($ |#1| $)) (-15 -3011 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-850)) (T -121)) +((-2373 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-850)) (-5 *1 (-121 *3)))) (-3888 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-850)))) (-2478 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-850)))) (-3011 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) (-5 *1 (-121 *3)) (-4 *3 (-850))))) +(-13 (-125 |#1|) (-10 -8 (-6 -4415) (-6 -4414) (-15 -2373 ($ (-644 |#1|))) (-15 -3888 ($ |#1| $)) (-15 -2478 ($ |#1| $)) (-15 -3011 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) +((-3010 (($ $) 13)) (-2404 (($ $) 11)) (-3801 (($ $ $) 23)) (-2584 (($ $ $) 21)) (-3055 (($ $ $) 19)) (-3043 (($ $ $) 17))) +(((-122 |#1|) (-10 -8 (-15 -3801 (|#1| |#1| |#1|)) (-15 -2584 (|#1| |#1| |#1|)) (-15 -2404 (|#1| |#1|)) (-15 -3010 (|#1| |#1|)) (-15 -3043 (|#1| |#1| |#1|)) (-15 -3055 (|#1| |#1| |#1|))) (-123)) (T -122)) +NIL +(-10 -8 (-15 -3801 (|#1| |#1| |#1|)) (-15 -2584 (|#1| |#1| |#1|)) (-15 -2404 (|#1| |#1|)) (-15 -3010 (|#1| |#1|)) (-15 -3043 (|#1| |#1| |#1|)) (-15 -3055 (|#1| |#1| |#1|))) +((-2988 (((-112) $ $) 7)) (-3010 (($ $) 104)) (-2439 (($ $ $) 26)) (-1944 (((-1269) $ (-566) (-566)) 67 (|has| $ (-6 -4415)))) (-3054 (((-112) $) 99 (|has| (-112) (-850))) (((-112) (-1 (-112) (-112) (-112)) $) 93)) (-3628 (($ $) 103 (-12 (|has| (-112) (-850)) (|has| $ (-6 -4415)))) (($ (-1 (-112) (-112) (-112)) $) 102 (|has| $ (-6 -4415)))) (-2671 (($ $) 98 (|has| (-112) (-850))) (($ (-1 (-112) (-112) (-112)) $) 92)) (-1504 (((-112) $ (-771)) 38)) (-1456 (((-112) $ (-1231 (-566)) (-112)) 89 (|has| $ (-6 -4415))) (((-112) $ (-566) (-112)) 55 (|has| $ (-6 -4415)))) (-3678 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4414)))) (-2463 (($) 39 T CONST)) (-3166 (($ $) 101 (|has| $ (-6 -4415)))) (-3683 (($ $) 91)) (-3942 (($ $) 69 (-12 (|has| (-112) (-1099)) (|has| $ (-6 -4414))))) (-2622 (($ (-1 (-112) (-112)) $) 73 (|has| $ (-6 -4414))) (($ (-112) $) 70 (-12 (|has| (-112) (-1099)) (|has| $ (-6 -4414))))) (-2873 (((-112) (-1 (-112) (-112) (-112)) $) 75 (|has| $ (-6 -4414))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 74 (|has| $ (-6 -4414))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 71 (-12 (|has| (-112) (-1099)) (|has| $ (-6 -4414))))) (-3897 (((-112) $ (-566) (-112)) 54 (|has| $ (-6 -4415)))) (-3829 (((-112) $ (-566)) 56)) (-1569 (((-566) (-112) $ (-566)) 96 (|has| (-112) (-1099))) (((-566) (-112) $) 95 (|has| (-112) (-1099))) (((-566) (-1 (-112) (-112)) $) 94)) (-1683 (((-644 (-112)) $) 46 (|has| $ (-6 -4414)))) (-2427 (($ $ $) 27)) (-2404 (($ $) 31)) (-3801 (($ $ $) 29)) (-1860 (($ (-771) (-112)) 78)) (-2584 (($ $ $) 30)) (-3456 (((-112) $ (-771)) 37)) (-2296 (((-566) $) 64 (|has| (-566) (-850)))) (-1478 (($ $ $) 14)) (-2696 (($ $ $) 97 (|has| (-112) (-850))) (($ (-1 (-112) (-112) (-112)) $ $) 90)) (-3491 (((-644 (-112)) $) 47 (|has| $ (-6 -4414)))) (-1602 (((-112) (-112) $) 49 (-12 (|has| (-112) (-1099)) (|has| $ (-6 -4414))))) (-4050 (((-566) $) 63 (|has| (-566) (-850)))) (-2599 (($ $ $) 15)) (-3885 (($ (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4415)))) (-2319 (($ (-1 (-112) (-112) (-112)) $ $) 83) (($ (-1 (-112) (-112)) $) 41)) (-3267 (((-112) $ (-771)) 36)) (-3380 (((-1157) $) 10)) (-1859 (($ $ $ (-566)) 88) (($ (-112) $ (-566)) 87)) (-3725 (((-644 (-566)) $) 61)) (-1644 (((-112) (-566) $) 60)) (-4072 (((-1119) $) 11)) (-3908 (((-112) $) 65 (|has| (-566) (-850)))) (-3668 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 76)) (-3787 (($ $ (-112)) 66 (|has| $ (-6 -4415)))) (-2823 (((-112) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-112)) (-644 (-112))) 53 (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1099)))) (($ $ (-112) (-112)) 52 (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1099)))) (($ $ (-295 (-112))) 51 (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1099)))) (($ $ (-644 (-295 (-112)))) 50 (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1099))))) (-3814 (((-112) $ $) 32)) (-2847 (((-112) (-112) $) 62 (-12 (|has| $ (-6 -4414)) (|has| (-112) (-1099))))) (-3486 (((-644 (-112)) $) 59)) (-2872 (((-112) $) 35)) (-3493 (($) 34)) (-1309 (($ $ (-1231 (-566))) 84) (((-112) $ (-566)) 58) (((-112) $ (-566) (-112)) 57)) (-2166 (($ $ (-1231 (-566))) 86) (($ $ (-566)) 85)) (-4083 (((-771) (-112) $) 48 (-12 (|has| (-112) (-1099)) (|has| $ (-6 -4414)))) (((-771) (-1 (-112) (-112)) $) 45 (|has| $ (-6 -4414)))) (-2661 (($ $ $ (-566)) 100 (|has| $ (-6 -4415)))) (-1480 (($ $) 33)) (-2376 (((-538) $) 68 (|has| (-112) (-614 (-538))))) (-1340 (($ (-644 (-112))) 77)) (-4386 (($ (-644 $)) 82) (($ $ $) 81) (($ (-112) $) 80) (($ $ (-112)) 79)) (-3152 (((-862) $) 12)) (-3044 (((-112) $ $) 9)) (-2210 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4414)))) (-2415 (($ $ $) 28)) (-3055 (($ $ $) 106)) (-2968 (((-112) $ $) 17)) (-2946 (((-112) $ $) 18)) (-2914 (((-112) $ $) 6)) (-2956 (((-112) $ $) 16)) (-2935 (((-112) $ $) 19)) (-3043 (($ $ $) 105)) (-3000 (((-771) $) 40 (|has| $ (-6 -4414))))) (((-123) (-140)) (T -123)) -((-2418 (*1 *1 *1) (-4 *1 (-123))) (-1497 (*1 *1 *1 *1) (-4 *1 (-123))) (-4219 (*1 *1 *1 *1) (-4 *1 (-123))) (-2432 (*1 *1 *1 *1) (-4 *1 (-123))) (-2445 (*1 *1 *1 *1) (-4 *1 (-123))) (-2456 (*1 *1 *1 *1) (-4 *1 (-123)))) -(-13 (-850) (-661) (-19 (-112)) (-10 -8 (-15 -2418 ($ $)) (-15 -1497 ($ $ $)) (-15 -4219 ($ $ $)) (-15 -2432 ($ $ $)) (-15 -2445 ($ $ $)) (-15 -2456 ($ $ $)))) +((-2404 (*1 *1 *1) (-4 *1 (-123))) (-2584 (*1 *1 *1 *1) (-4 *1 (-123))) (-3801 (*1 *1 *1 *1) (-4 *1 (-123))) (-2415 (*1 *1 *1 *1) (-4 *1 (-123))) (-2427 (*1 *1 *1 *1) (-4 *1 (-123))) (-2439 (*1 *1 *1 *1) (-4 *1 (-123)))) +(-13 (-850) (-661) (-19 (-112)) (-10 -8 (-15 -2404 ($ $)) (-15 -2584 ($ $ $)) (-15 -3801 ($ $ $)) (-15 -2415 ($ $ $)) (-15 -2427 ($ $ $)) (-15 -2439 ($ $ $)))) (((-34) . T) ((-102) . T) ((-613 (-862)) . T) ((-151 #0=(-112)) . T) ((-614 (-538)) |has| (-112) (-614 (-538))) ((-287 #1=(-566) #0#) . T) ((-289 #1# #0#) . T) ((-310 #0#) -12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1099))) ((-375 #0#) . T) ((-491 #0#) . T) ((-604 #1# #0#) . T) ((-516 #0# #0#) -12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1099))) ((-651 #0#) . T) ((-661) . T) ((-19 #0#) . T) ((-850) . T) ((-1099) . T) ((-1214) . T)) -((-2908 (($ (-1 |#2| |#2|) $) 22)) (-3940 (($ $) 16)) (-3018 (((-771) $) 25))) -(((-124 |#1| |#2|) (-10 -8 (-15 -2908 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3018 ((-771) |#1|)) (-15 -3940 (|#1| |#1|))) (-125 |#2|) (-1099)) (T -124)) +((-3885 (($ (-1 |#2| |#2|) $) 22)) (-1480 (($ $) 16)) (-3000 (((-771) $) 25))) +(((-124 |#1| |#2|) (-10 -8 (-15 -3885 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3000 ((-771) |#1|)) (-15 -1480 (|#1| |#1|))) (-125 |#2|) (-1099)) (T -124)) NIL -(-10 -8 (-15 -2908 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3018 ((-771) |#1|)) (-15 -3940 (|#1| |#1|))) -((-3007 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2233 ((|#1| $) 49)) (-2256 (((-112) $ (-771)) 8)) (-3396 ((|#1| $ |#1|) 40 (|has| $ (-6 -4415)))) (-2862 (($ $ $) 53 (|has| $ (-6 -4415)))) (-2636 (($ $ $) 55 (|has| $ (-6 -4415)))) (-3923 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4415))) (($ $ "left" $) 56 (|has| $ (-6 -4415))) (($ $ "right" $) 54 (|has| $ (-6 -4415)))) (-3800 (($ $ (-644 $)) 42 (|has| $ (-6 -4415)))) (-3012 (($) 7 T CONST)) (-4392 (($ $) 58)) (-3979 (((-644 |#1|) $) 31 (|has| $ (-6 -4414)))) (-4009 (((-644 $) $) 51)) (-3891 (((-112) $ $) 43 (|has| |#1| (-1099)))) (-3051 (($ $ |#1| $) 61)) (-2404 (((-112) $ (-771)) 9)) (-2329 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2908 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#1| |#1|) $) 36)) (-2603 (((-112) $ (-771)) 10)) (-4380 (($ $) 60)) (-3701 (((-644 |#1|) $) 46)) (-3438 (((-112) $) 50)) (-4117 (((-1157) $) 22 (|has| |#1| (-1099)))) (-4035 (((-1119) $) 21 (|has| |#1| (-1099)))) (-2692 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) 14)) (-3467 (((-112) $) 11)) (-1494 (($) 12)) (-4390 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-1416 (((-566) $ $) 45)) (-3494 (((-112) $) 47)) (-4045 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-3940 (($ $) 13)) (-3783 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-2462 (((-644 $) $) 52)) (-4288 (((-112) $ $) 44 (|has| |#1| (-1099)))) (-3117 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-1894 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3018 (((-771) $) 6 (|has| $ (-6 -4414))))) +(-10 -8 (-15 -3885 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3000 ((-771) |#1|)) (-15 -1480 (|#1| |#1|))) +((-2988 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2876 ((|#1| $) 49)) (-1504 (((-112) $ (-771)) 8)) (-2191 ((|#1| $ |#1|) 40 (|has| $ (-6 -4415)))) (-1878 (($ $ $) 53 (|has| $ (-6 -4415)))) (-3414 (($ $ $) 55 (|has| $ (-6 -4415)))) (-1456 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4415))) (($ $ "left" $) 56 (|has| $ (-6 -4415))) (($ $ "right" $) 54 (|has| $ (-6 -4415)))) (-4202 (($ $ (-644 $)) 42 (|has| $ (-6 -4415)))) (-2463 (($) 7 T CONST)) (-1966 (($ $) 58)) (-1683 (((-644 |#1|) $) 31 (|has| $ (-6 -4414)))) (-3431 (((-644 $) $) 51)) (-1507 (((-112) $ $) 43 (|has| |#1| (-1099)))) (-4326 (($ $ |#1| $) 61)) (-3456 (((-112) $ (-771)) 9)) (-3491 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-3885 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#1| |#1|) $) 36)) (-3267 (((-112) $ (-771)) 10)) (-1953 (($ $) 60)) (-1458 (((-644 |#1|) $) 46)) (-3860 (((-112) $) 50)) (-3380 (((-1157) $) 22 (|has| |#1| (-1099)))) (-4072 (((-1119) $) 21 (|has| |#1| (-1099)))) (-2823 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) 14)) (-2872 (((-112) $) 11)) (-3493 (($) 12)) (-1309 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-1696 (((-566) $ $) 45)) (-3786 (((-112) $) 47)) (-4083 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-1480 (($ $) 13)) (-3152 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-1926 (((-644 $) $) 52)) (-4385 (((-112) $ $) 44 (|has| |#1| (-1099)))) (-3044 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-2210 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3000 (((-771) $) 6 (|has| $ (-6 -4414))))) (((-125 |#1|) (-140) (-1099)) (T -125)) -((-3051 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1099))))) -(-13 (-119 |t#1|) (-10 -8 (-6 -4415) (-6 -4414) (-15 -3051 ($ $ |t#1| $)))) -(((-34) . T) ((-102) |has| |#1| (-1099)) ((-119 |#1|) . T) ((-613 (-862)) -2809 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1010 |#1|) . T) ((-1099) |has| |#1| (-1099)) ((-1214) . T)) -((-3007 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2233 ((|#1| $) 18)) (-2256 (((-112) $ (-771)) NIL)) (-3396 ((|#1| $ |#1|) 22 (|has| $ (-6 -4415)))) (-2862 (($ $ $) 23 (|has| $ (-6 -4415)))) (-2636 (($ $ $) 21 (|has| $ (-6 -4415)))) (-3923 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4415))) (($ $ "left" $) NIL (|has| $ (-6 -4415))) (($ $ "right" $) NIL (|has| $ (-6 -4415)))) (-3800 (($ $ (-644 $)) NIL (|has| $ (-6 -4415)))) (-3012 (($) NIL T CONST)) (-4392 (($ $) 24)) (-3979 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-4009 (((-644 $) $) NIL)) (-3891 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3051 (($ $ |#1| $) NIL)) (-2404 (((-112) $ (-771)) NIL)) (-2329 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2908 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#1| |#1|) $) NIL)) (-2603 (((-112) $ (-771)) NIL)) (-4380 (($ $) NIL)) (-3701 (((-644 |#1|) $) NIL)) (-3438 (((-112) $) NIL)) (-4117 (((-1157) $) NIL (|has| |#1| (-1099)))) (-3406 (($ |#1| $) 15)) (-4035 (((-1119) $) NIL (|has| |#1| (-1099)))) (-2692 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) NIL)) (-3467 (((-112) $) 17)) (-1494 (($) 11)) (-4390 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1416 (((-566) $ $) NIL)) (-3494 (((-112) $) NIL)) (-4045 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3940 (($ $) 20)) (-3783 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-2462 (((-644 $) $) NIL)) (-4288 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3739 (($ (-644 |#1|)) 16)) (-3117 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1894 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3018 (((-771) $) NIL (|has| $ (-6 -4414))))) -(((-126 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4415) (-15 -3739 ($ (-644 |#1|))) (-15 -3406 ($ |#1| $)))) (-850)) (T -126)) -((-3739 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-850)) (-5 *1 (-126 *3)))) (-3406 (*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-850))))) -(-13 (-125 |#1|) (-10 -8 (-6 -4415) (-15 -3739 ($ (-644 |#1|))) (-15 -3406 ($ |#1| $)))) -((-3007 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2233 ((|#1| $) 30)) (-2256 (((-112) $ (-771)) NIL)) (-3396 ((|#1| $ |#1|) 32 (|has| $ (-6 -4415)))) (-2862 (($ $ $) 36 (|has| $ (-6 -4415)))) (-2636 (($ $ $) 34 (|has| $ (-6 -4415)))) (-3923 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4415))) (($ $ "left" $) NIL (|has| $ (-6 -4415))) (($ $ "right" $) NIL (|has| $ (-6 -4415)))) (-3800 (($ $ (-644 $)) NIL (|has| $ (-6 -4415)))) (-3012 (($) NIL T CONST)) (-4392 (($ $) 23)) (-3979 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-4009 (((-644 $) $) NIL)) (-3891 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3051 (($ $ |#1| $) 16)) (-2404 (((-112) $ (-771)) NIL)) (-2329 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2908 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#1| |#1|) $) NIL)) (-2603 (((-112) $ (-771)) NIL)) (-4380 (($ $) 22)) (-3701 (((-644 |#1|) $) NIL)) (-3438 (((-112) $) 25)) (-4117 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4035 (((-1119) $) NIL (|has| |#1| (-1099)))) (-2692 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) NIL)) (-3467 (((-112) $) 20)) (-1494 (($) 11)) (-4390 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1416 (((-566) $ $) NIL)) (-3494 (((-112) $) NIL)) (-4045 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3940 (($ $) NIL)) (-3783 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-2462 (((-644 $) $) NIL)) (-4288 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2309 (($ |#1|) 18) (($ $ |#1| $) 17)) (-3117 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1894 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) 10 (|has| |#1| (-1099)))) (-3018 (((-771) $) NIL (|has| $ (-6 -4414))))) -(((-127 |#1|) (-13 (-125 |#1|) (-10 -8 (-15 -2309 ($ |#1|)) (-15 -2309 ($ $ |#1| $)))) (-1099)) (T -127)) -((-2309 (*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1099)))) (-2309 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1099))))) -(-13 (-125 |#1|) (-10 -8 (-15 -2309 ($ |#1|)) (-15 -2309 ($ $ |#1| $)))) -((-3007 (((-112) $ $) NIL (|has| (-129) (-1099)))) (-3734 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4415)))) (-2644 (((-112) (-1 (-112) (-129) (-129)) $) NIL) (((-112) $) NIL (|has| (-129) (-850)))) (-1944 (($ (-1 (-112) (-129) (-129)) $) NIL (|has| $ (-6 -4415))) (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-129) (-850))))) (-1510 (($ (-1 (-112) (-129) (-129)) $) NIL) (($ $) NIL (|has| (-129) (-850)))) (-2256 (((-112) $ (-771)) NIL)) (-3923 (((-129) $ (-566) (-129)) 26 (|has| $ (-6 -4415))) (((-129) $ (-1231 (-566)) (-129)) NIL (|has| $ (-6 -4415)))) (-3230 (((-771) $ (-771)) 34)) (-2701 (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4414)))) (-3012 (($) NIL T CONST)) (-3413 (($ $) NIL (|has| $ (-6 -4415)))) (-1377 (($ $) NIL)) (-2031 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-129) (-1099))))) (-2665 (($ (-129) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-129) (-1099)))) (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4414)))) (-1676 (((-129) (-1 (-129) (-129) (-129)) $ (-129) (-129)) NIL (-12 (|has| $ (-6 -4414)) (|has| (-129) (-1099)))) (((-129) (-1 (-129) (-129) (-129)) $ (-129)) NIL (|has| $ (-6 -4414))) (((-129) (-1 (-129) (-129) (-129)) $) NIL (|has| $ (-6 -4414)))) (-2920 (((-129) $ (-566) (-129)) 25 (|has| $ (-6 -4415)))) (-2855 (((-129) $ (-566)) 20)) (-4000 (((-566) (-1 (-112) (-129)) $) NIL) (((-566) (-129) $) NIL (|has| (-129) (-1099))) (((-566) (-129) $ (-566)) NIL (|has| (-129) (-1099)))) (-3979 (((-644 (-129)) $) NIL (|has| $ (-6 -4414)))) (-4265 (($ (-771) (-129)) 14)) (-2404 (((-112) $ (-771)) NIL)) (-3854 (((-566) $) 27 (|has| (-566) (-850)))) (-2097 (($ $ $) NIL (|has| (-129) (-850)))) (-3298 (($ (-1 (-112) (-129) (-129)) $ $) NIL) (($ $ $) NIL (|has| (-129) (-850)))) (-2329 (((-644 (-129)) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-129) (-1099))))) (-2712 (((-566) $) 30 (|has| (-566) (-850)))) (-3962 (($ $ $) NIL (|has| (-129) (-850)))) (-2908 (($ (-1 (-129) (-129)) $) NIL (|has| $ (-6 -4415)))) (-1301 (($ (-1 (-129) (-129)) $) NIL) (($ (-1 (-129) (-129) (-129)) $ $) NIL)) (-2603 (((-112) $ (-771)) NIL)) (-4117 (((-1157) $) NIL (|has| (-129) (-1099)))) (-4276 (($ (-129) $ (-566)) NIL) (($ $ $ (-566)) NIL)) (-4074 (((-644 (-566)) $) NIL)) (-3792 (((-112) (-566) $) NIL)) (-4035 (((-1119) $) NIL (|has| (-129) (-1099)))) (-1998 (((-129) $) NIL (|has| (-566) (-850)))) (-2006 (((-3 (-129) "failed") (-1 (-112) (-129)) $) NIL)) (-4030 (($ $ (-129)) NIL (|has| $ (-6 -4415)))) (-2692 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 (-129)))) NIL (-12 (|has| (-129) (-310 (-129))) (|has| (-129) (-1099)))) (($ $ (-295 (-129))) NIL (-12 (|has| (-129) (-310 (-129))) (|has| (-129) (-1099)))) (($ $ (-129) (-129)) NIL (-12 (|has| (-129) (-310 (-129))) (|has| (-129) (-1099)))) (($ $ (-644 (-129)) (-644 (-129))) NIL (-12 (|has| (-129) (-310 (-129))) (|has| (-129) (-1099))))) (-1932 (((-112) $ $) NIL)) (-4156 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-129) (-1099))))) (-2993 (((-644 (-129)) $) NIL)) (-3467 (((-112) $) NIL)) (-1494 (($) 12)) (-4390 (((-129) $ (-566) (-129)) NIL) (((-129) $ (-566)) 23) (($ $ (-1231 (-566))) NIL)) (-2187 (($ $ (-566)) NIL) (($ $ (-1231 (-566))) NIL)) (-4045 (((-771) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4414))) (((-771) (-129) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-129) (-1099))))) (-1297 (($ $ $ (-566)) NIL (|has| $ (-6 -4415)))) (-3940 (($ $) NIL)) (-1348 (((-538) $) NIL (|has| (-129) (-614 (-538))))) (-3796 (($ (-644 (-129))) 47)) (-3721 (($ $ (-129)) NIL) (($ (-129) $) NIL) (($ $ $) 48) (($ (-644 $)) NIL)) (-3783 (((-958 (-129)) $) 35) (((-1157) $) 44) (((-862) $) NIL (|has| (-129) (-613 (-862))))) (-3941 (((-771) $) 18)) (-2426 (($ (-771)) 8)) (-3117 (((-112) $ $) NIL (|has| (-129) (-1099)))) (-1894 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4414)))) (-3009 (((-112) $ $) NIL (|has| (-129) (-850)))) (-2984 (((-112) $ $) NIL (|has| (-129) (-850)))) (-2947 (((-112) $ $) 32 (|has| (-129) (-1099)))) (-2995 (((-112) $ $) NIL (|has| (-129) (-850)))) (-2969 (((-112) $ $) NIL (|has| (-129) (-850)))) (-3018 (((-771) $) 15 (|has| $ (-6 -4414))))) -(((-128) (-13 (-19 (-129)) (-613 (-958 (-129))) (-613 (-1157)) (-10 -8 (-15 -2426 ($ (-771))) (-15 -3941 ((-771) $)) (-15 -3230 ((-771) $ (-771))) (-6 -4414)))) (T -128)) -((-2426 (*1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-128)))) (-3941 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-128)))) (-3230 (*1 *2 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-128))))) -(-13 (-19 (-129)) (-613 (-958 (-129))) (-613 (-1157)) (-10 -8 (-15 -2426 ($ (-771))) (-15 -3941 ((-771) $)) (-15 -3230 ((-771) $ (-771))) (-6 -4414))) -((-3007 (((-112) $ $) NIL)) (-1970 (((-771)) NIL)) (-3012 (($) 12 T CONST)) (-1552 (($) NIL)) (-2097 (($ $ $) NIL) (($) 25 T CONST)) (-3962 (($ $ $) NIL) (($) 26 T CONST)) (-3681 (((-921) $) NIL)) (-4117 (((-1157) $) NIL)) (-2178 (($ (-921)) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) NIL) (($ (-144)) 16) (((-144) $) 18)) (-3872 (($ (-771)) 8)) (-2367 (($ $ $) 28)) (-2356 (($ $ $) 27)) (-3117 (((-112) $ $) NIL)) (-3009 (((-112) $ $) 23)) (-2984 (((-112) $ $) 21)) (-2947 (((-112) $ $) 19)) (-2995 (((-112) $ $) 22)) (-2969 (((-112) $ $) 20))) -(((-129) (-13 (-844) (-492 (-144)) (-10 -8 (-15 -3872 ($ (-771))) (-15 -2356 ($ $ $)) (-15 -2367 ($ $ $)) (-15 -3012 ($) -3704)))) (T -129)) -((-3872 (*1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-129)))) (-2356 (*1 *1 *1 *1) (-5 *1 (-129))) (-2367 (*1 *1 *1 *1) (-5 *1 (-129))) (-3012 (*1 *1) (-5 *1 (-129)))) -(-13 (-844) (-492 (-144)) (-10 -8 (-15 -3872 ($ (-771))) (-15 -2356 ($ $ $)) (-15 -2367 ($ $ $)) (-15 -3012 ($) -3704))) +((-4326 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1099))))) +(-13 (-119 |t#1|) (-10 -8 (-6 -4415) (-6 -4414) (-15 -4326 ($ $ |t#1| $)))) +(((-34) . T) ((-102) |has| |#1| (-1099)) ((-119 |#1|) . T) ((-613 (-862)) -2768 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1010 |#1|) . T) ((-1099) |has| |#1| (-1099)) ((-1214) . T)) +((-2988 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2876 ((|#1| $) 18)) (-1504 (((-112) $ (-771)) NIL)) (-2191 ((|#1| $ |#1|) 22 (|has| $ (-6 -4415)))) (-1878 (($ $ $) 23 (|has| $ (-6 -4415)))) (-3414 (($ $ $) 21 (|has| $ (-6 -4415)))) (-1456 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4415))) (($ $ "left" $) NIL (|has| $ (-6 -4415))) (($ $ "right" $) NIL (|has| $ (-6 -4415)))) (-4202 (($ $ (-644 $)) NIL (|has| $ (-6 -4415)))) (-2463 (($) NIL T CONST)) (-1966 (($ $) 24)) (-1683 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-3431 (((-644 $) $) NIL)) (-1507 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-4326 (($ $ |#1| $) NIL)) (-3456 (((-112) $ (-771)) NIL)) (-3491 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3885 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#1| |#1|) $) NIL)) (-3267 (((-112) $ (-771)) NIL)) (-1953 (($ $) NIL)) (-1458 (((-644 |#1|) $) NIL)) (-3860 (((-112) $) NIL)) (-3380 (((-1157) $) NIL (|has| |#1| (-1099)))) (-3888 (($ |#1| $) 15)) (-4072 (((-1119) $) NIL (|has| |#1| (-1099)))) (-2823 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) NIL)) (-2872 (((-112) $) 17)) (-3493 (($) 11)) (-1309 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1696 (((-566) $ $) NIL)) (-3786 (((-112) $) NIL)) (-4083 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-1480 (($ $) 20)) (-3152 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-1926 (((-644 $) $) NIL)) (-4385 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-4380 (($ (-644 |#1|)) 16)) (-3044 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2210 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3000 (((-771) $) NIL (|has| $ (-6 -4414))))) +(((-126 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4415) (-15 -4380 ($ (-644 |#1|))) (-15 -3888 ($ |#1| $)))) (-850)) (T -126)) +((-4380 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-850)) (-5 *1 (-126 *3)))) (-3888 (*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-850))))) +(-13 (-125 |#1|) (-10 -8 (-6 -4415) (-15 -4380 ($ (-644 |#1|))) (-15 -3888 ($ |#1| $)))) +((-2988 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2876 ((|#1| $) 30)) (-1504 (((-112) $ (-771)) NIL)) (-2191 ((|#1| $ |#1|) 32 (|has| $ (-6 -4415)))) (-1878 (($ $ $) 36 (|has| $ (-6 -4415)))) (-3414 (($ $ $) 34 (|has| $ (-6 -4415)))) (-1456 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4415))) (($ $ "left" $) NIL (|has| $ (-6 -4415))) (($ $ "right" $) NIL (|has| $ (-6 -4415)))) (-4202 (($ $ (-644 $)) NIL (|has| $ (-6 -4415)))) (-2463 (($) NIL T CONST)) (-1966 (($ $) 23)) (-1683 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-3431 (((-644 $) $) NIL)) (-1507 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-4326 (($ $ |#1| $) 16)) (-3456 (((-112) $ (-771)) NIL)) (-3491 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3885 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#1| |#1|) $) NIL)) (-3267 (((-112) $ (-771)) NIL)) (-1953 (($ $) 22)) (-1458 (((-644 |#1|) $) NIL)) (-3860 (((-112) $) 25)) (-3380 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4072 (((-1119) $) NIL (|has| |#1| (-1099)))) (-2823 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) NIL)) (-2872 (((-112) $) 20)) (-3493 (($) 11)) (-1309 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1696 (((-566) $ $) NIL)) (-3786 (((-112) $) NIL)) (-4083 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-1480 (($ $) NIL)) (-3152 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-1926 (((-644 $) $) NIL)) (-4385 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2065 (($ |#1|) 18) (($ $ |#1| $) 17)) (-3044 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2210 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) 10 (|has| |#1| (-1099)))) (-3000 (((-771) $) NIL (|has| $ (-6 -4414))))) +(((-127 |#1|) (-13 (-125 |#1|) (-10 -8 (-15 -2065 ($ |#1|)) (-15 -2065 ($ $ |#1| $)))) (-1099)) (T -127)) +((-2065 (*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1099)))) (-2065 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1099))))) +(-13 (-125 |#1|) (-10 -8 (-15 -2065 ($ |#1|)) (-15 -2065 ($ $ |#1| $)))) +((-2988 (((-112) $ $) NIL (|has| (-129) (-1099)))) (-1944 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4415)))) (-3054 (((-112) (-1 (-112) (-129) (-129)) $) NIL) (((-112) $) NIL (|has| (-129) (-850)))) (-3628 (($ (-1 (-112) (-129) (-129)) $) NIL (|has| $ (-6 -4415))) (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-129) (-850))))) (-2671 (($ (-1 (-112) (-129) (-129)) $) NIL) (($ $) NIL (|has| (-129) (-850)))) (-1504 (((-112) $ (-771)) NIL)) (-1456 (((-129) $ (-566) (-129)) 26 (|has| $ (-6 -4415))) (((-129) $ (-1231 (-566)) (-129)) NIL (|has| $ (-6 -4415)))) (-2272 (((-771) $ (-771)) 34)) (-3678 (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4414)))) (-2463 (($) NIL T CONST)) (-3166 (($ $) NIL (|has| $ (-6 -4415)))) (-3683 (($ $) NIL)) (-3942 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-129) (-1099))))) (-2622 (($ (-129) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-129) (-1099)))) (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4414)))) (-2873 (((-129) (-1 (-129) (-129) (-129)) $ (-129) (-129)) NIL (-12 (|has| $ (-6 -4414)) (|has| (-129) (-1099)))) (((-129) (-1 (-129) (-129) (-129)) $ (-129)) NIL (|has| $ (-6 -4414))) (((-129) (-1 (-129) (-129) (-129)) $) NIL (|has| $ (-6 -4414)))) (-3897 (((-129) $ (-566) (-129)) 25 (|has| $ (-6 -4415)))) (-3829 (((-129) $ (-566)) 20)) (-1569 (((-566) (-1 (-112) (-129)) $) NIL) (((-566) (-129) $) NIL (|has| (-129) (-1099))) (((-566) (-129) $ (-566)) NIL (|has| (-129) (-1099)))) (-1683 (((-644 (-129)) $) NIL (|has| $ (-6 -4414)))) (-1860 (($ (-771) (-129)) 14)) (-3456 (((-112) $ (-771)) NIL)) (-2296 (((-566) $) 27 (|has| (-566) (-850)))) (-1478 (($ $ $) NIL (|has| (-129) (-850)))) (-2696 (($ (-1 (-112) (-129) (-129)) $ $) NIL) (($ $ $) NIL (|has| (-129) (-850)))) (-3491 (((-644 (-129)) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-129) (-1099))))) (-4050 (((-566) $) 30 (|has| (-566) (-850)))) (-2599 (($ $ $) NIL (|has| (-129) (-850)))) (-3885 (($ (-1 (-129) (-129)) $) NIL (|has| $ (-6 -4415)))) (-2319 (($ (-1 (-129) (-129)) $) NIL) (($ (-1 (-129) (-129) (-129)) $ $) NIL)) (-3267 (((-112) $ (-771)) NIL)) (-3380 (((-1157) $) NIL (|has| (-129) (-1099)))) (-1859 (($ (-129) $ (-566)) NIL) (($ $ $ (-566)) NIL)) (-3725 (((-644 (-566)) $) NIL)) (-1644 (((-112) (-566) $) NIL)) (-4072 (((-1119) $) NIL (|has| (-129) (-1099)))) (-3908 (((-129) $) NIL (|has| (-566) (-850)))) (-3668 (((-3 (-129) "failed") (-1 (-112) (-129)) $) NIL)) (-3787 (($ $ (-129)) NIL (|has| $ (-6 -4415)))) (-2823 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 (-129)))) NIL (-12 (|has| (-129) (-310 (-129))) (|has| (-129) (-1099)))) (($ $ (-295 (-129))) NIL (-12 (|has| (-129) (-310 (-129))) (|has| (-129) (-1099)))) (($ $ (-129) (-129)) NIL (-12 (|has| (-129) (-310 (-129))) (|has| (-129) (-1099)))) (($ $ (-644 (-129)) (-644 (-129))) NIL (-12 (|has| (-129) (-310 (-129))) (|has| (-129) (-1099))))) (-3814 (((-112) $ $) NIL)) (-2847 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-129) (-1099))))) (-3486 (((-644 (-129)) $) NIL)) (-2872 (((-112) $) NIL)) (-3493 (($) 12)) (-1309 (((-129) $ (-566) (-129)) NIL) (((-129) $ (-566)) 23) (($ $ (-1231 (-566))) NIL)) (-2166 (($ $ (-566)) NIL) (($ $ (-1231 (-566))) NIL)) (-4083 (((-771) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4414))) (((-771) (-129) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-129) (-1099))))) (-2661 (($ $ $ (-566)) NIL (|has| $ (-6 -4415)))) (-1480 (($ $) NIL)) (-2376 (((-538) $) NIL (|has| (-129) (-614 (-538))))) (-1340 (($ (-644 (-129))) 47)) (-4386 (($ $ (-129)) NIL) (($ (-129) $) NIL) (($ $ $) 48) (($ (-644 $)) NIL)) (-3152 (((-958 (-129)) $) 35) (((-1157) $) 44) (((-862) $) NIL (|has| (-129) (-613 (-862))))) (-1755 (((-771) $) 18)) (-1595 (($ (-771)) 8)) (-3044 (((-112) $ $) NIL (|has| (-129) (-1099)))) (-2210 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4414)))) (-2968 (((-112) $ $) NIL (|has| (-129) (-850)))) (-2946 (((-112) $ $) NIL (|has| (-129) (-850)))) (-2914 (((-112) $ $) 32 (|has| (-129) (-1099)))) (-2956 (((-112) $ $) NIL (|has| (-129) (-850)))) (-2935 (((-112) $ $) NIL (|has| (-129) (-850)))) (-3000 (((-771) $) 15 (|has| $ (-6 -4414))))) +(((-128) (-13 (-19 (-129)) (-613 (-958 (-129))) (-613 (-1157)) (-10 -8 (-15 -1595 ($ (-771))) (-15 -1755 ((-771) $)) (-15 -2272 ((-771) $ (-771))) (-6 -4414)))) (T -128)) +((-1595 (*1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-128)))) (-1755 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-128)))) (-2272 (*1 *2 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-128))))) +(-13 (-19 (-129)) (-613 (-958 (-129))) (-613 (-1157)) (-10 -8 (-15 -1595 ($ (-771))) (-15 -1755 ((-771) $)) (-15 -2272 ((-771) $ (-771))) (-6 -4414))) +((-2988 (((-112) $ $) NIL)) (-3870 (((-771)) NIL)) (-2463 (($) 12 T CONST)) (-2715 (($) NIL)) (-1478 (($ $ $) NIL) (($) 25 T CONST)) (-2599 (($ $ $) NIL) (($) 26 T CONST)) (-1866 (((-921) $) NIL)) (-3380 (((-1157) $) NIL)) (-2835 (($ (-921)) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) NIL) (($ (-144)) 16) (((-144) $) 18)) (-2559 (($ (-771)) 8)) (-2339 (($ $ $) 28)) (-2326 (($ $ $) 27)) (-3044 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 23)) (-2946 (((-112) $ $) 21)) (-2914 (((-112) $ $) 19)) (-2956 (((-112) $ $) 22)) (-2935 (((-112) $ $) 20))) +(((-129) (-13 (-844) (-492 (-144)) (-10 -8 (-15 -2559 ($ (-771))) (-15 -2326 ($ $ $)) (-15 -2339 ($ $ $)) (-15 -2463 ($) -1623)))) (T -129)) +((-2559 (*1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-129)))) (-2326 (*1 *1 *1 *1) (-5 *1 (-129))) (-2339 (*1 *1 *1 *1) (-5 *1 (-129))) (-2463 (*1 *1) (-5 *1 (-129)))) +(-13 (-844) (-492 (-144)) (-10 -8 (-15 -2559 ($ (-771))) (-15 -2326 ($ $ $)) (-15 -2339 ($ $ $)) (-15 -2463 ($) -1623))) ((|NonNegativeInteger|) (< |#1| 256)) -((-3007 (((-112) $ $) NIL)) (-3383 (($) 6 T CONST)) (-3898 (($) 7 T CONST)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 14)) (-2383 (($) 8 T CONST)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) 10))) -(((-130) (-13 (-1099) (-10 -8 (-15 -3898 ($) -3704) (-15 -2383 ($) -3704) (-15 -3383 ($) -3704)))) (T -130)) -((-3898 (*1 *1) (-5 *1 (-130))) (-2383 (*1 *1) (-5 *1 (-130))) (-3383 (*1 *1) (-5 *1 (-130)))) -(-13 (-1099) (-10 -8 (-15 -3898 ($) -3704) (-15 -2383 ($) -3704) (-15 -3383 ($) -3704))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-4175 (((-3 $ "failed") $ $) 20)) (-3012 (($) 18 T CONST)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3783 (((-862) $) 12)) (-3117 (((-112) $ $) 9)) (-2479 (($) 19 T CONST)) (-2947 (((-112) $ $) 6)) (-3041 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16))) +((-2988 (((-112) $ $) NIL)) (-3509 (($) 6 T CONST)) (-3912 (($) 7 T CONST)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 14)) (-3042 (($) 8 T CONST)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) 10))) +(((-130) (-13 (-1099) (-10 -8 (-15 -3912 ($) -1623) (-15 -3042 ($) -1623) (-15 -3509 ($) -1623)))) (T -130)) +((-3912 (*1 *1) (-5 *1 (-130))) (-3042 (*1 *1) (-5 *1 (-130))) (-3509 (*1 *1) (-5 *1 (-130)))) +(-13 (-1099) (-10 -8 (-15 -3912 ($) -1623) (-15 -3042 ($) -1623) (-15 -3509 ($) -1623))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-3967 (((-3 $ "failed") $ $) 20)) (-2463 (($) 18 T CONST)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3152 (((-862) $) 12)) (-3044 (((-112) $ $) 9)) (-4356 (($) 19 T CONST)) (-2914 (((-112) $ $) 6)) (-3002 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16))) (((-131) (-140)) (T -131)) -((-4175 (*1 *1 *1 *1) (|partial| -4 *1 (-131)))) -(-13 (-23) (-10 -8 (-15 -4175 ((-3 $ "failed") $ $)))) +((-3967 (*1 *1 *1 *1) (|partial| -4 *1 (-131)))) +(-13 (-23) (-10 -8 (-15 -3967 ((-3 $ "failed") $ $)))) (((-23) . T) ((-25) . T) ((-102) . T) ((-613 (-862)) . T) ((-1099) . T)) -((-3007 (((-112) $ $) 7)) (-4077 (((-1269) $ (-771)) 14)) (-4000 (((-771) $) 15)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3783 (((-862) $) 12)) (-3117 (((-112) $ $) 9)) (-2947 (((-112) $ $) 6))) +((-2988 (((-112) $ $) 7)) (-2785 (((-1269) $ (-771)) 14)) (-1569 (((-771) $) 15)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3152 (((-862) $) 12)) (-3044 (((-112) $ $) 9)) (-2914 (((-112) $ $) 6))) (((-132) (-140)) (T -132)) -((-4000 (*1 *2 *1) (-12 (-4 *1 (-132)) (-5 *2 (-771)))) (-4077 (*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-771)) (-5 *2 (-1269))))) -(-13 (-1099) (-10 -8 (-15 -4000 ((-771) $)) (-15 -4077 ((-1269) $ (-771))))) +((-1569 (*1 *2 *1) (-12 (-4 *1 (-132)) (-5 *2 (-771)))) (-2785 (*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-771)) (-5 *2 (-1269))))) +(-13 (-1099) (-10 -8 (-15 -1569 ((-771) $)) (-15 -2785 ((-1269) $ (-771))))) (((-102) . T) ((-613 (-862)) . T) ((-1099) . T)) -((-3007 (((-112) $ $) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 16) (($ (-1180)) NIL) (((-1180) $) NIL)) (-1382 (((-644 (-1134)) $) 10)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) -(((-133) (-13 (-1082) (-10 -8 (-15 -1382 ((-644 (-1134)) $))))) (T -133)) -((-1382 (*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-133))))) -(-13 (-1082) (-10 -8 (-15 -1382 ((-644 (-1134)) $)))) -((-3007 (((-112) $ $) 49)) (-1788 (((-112) $) NIL)) (-3012 (($) NIL T CONST)) (-4307 (((-3 (-771) "failed") $) 58)) (-4205 (((-771) $) 56)) (-1878 (((-3 $ "failed") $) NIL)) (-3934 (((-112) $) NIL)) (-2097 (($ $ $) NIL)) (-3962 (($ $ $) 37)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-4220 (((-112)) 59)) (-2315 (((-112) (-112)) 61)) (-1997 (((-112) $) 30)) (-1443 (((-112) $) 55)) (-3783 (((-862) $) 28) (($ (-771)) 20)) (-3117 (((-112) $ $) NIL)) (-2479 (($) 18 T CONST)) (-4334 (($) 19 T CONST)) (-2039 (($ (-771)) 21)) (-3009 (((-112) $ $) NIL)) (-2984 (((-112) $ $) 40)) (-2947 (((-112) $ $) 32)) (-2995 (((-112) $ $) NIL)) (-2969 (((-112) $ $) 35)) (-3053 (((-3 $ "failed") $ $) 42)) (-3041 (($ $ $) 38)) (** (($ $ (-771)) NIL) (($ $ (-921)) NIL) (($ $ $) 54)) (* (($ (-771) $) 48) (($ (-921) $) NIL) (($ $ $) 45))) -(((-134) (-13 (-850) (-23) (-726) (-1038 (-771)) (-10 -8 (-6 (-4416 "*")) (-15 -3053 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2039 ($ (-771))) (-15 -1997 ((-112) $)) (-15 -1443 ((-112) $)) (-15 -4220 ((-112))) (-15 -2315 ((-112) (-112)))))) (T -134)) -((-3053 (*1 *1 *1 *1) (|partial| -5 *1 (-134))) (** (*1 *1 *1 *1) (-5 *1 (-134))) (-2039 (*1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-134)))) (-1997 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-1443 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-4220 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-2315 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) -(-13 (-850) (-23) (-726) (-1038 (-771)) (-10 -8 (-6 (-4416 "*")) (-15 -3053 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2039 ($ (-771))) (-15 -1997 ((-112) $)) (-15 -1443 ((-112) $)) (-15 -4220 ((-112))) (-15 -2315 ((-112) (-112))))) -((-3907 (((-136 |#1| |#2| |#4|) (-644 |#4|) (-136 |#1| |#2| |#3|)) 14)) (-1301 (((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)) 18))) -(((-135 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3907 ((-136 |#1| |#2| |#4|) (-644 |#4|) (-136 |#1| |#2| |#3|))) (-15 -1301 ((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)))) (-566) (-771) (-172) (-172)) (T -135)) -((-1301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-566)) (-14 *6 (-771)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))) (-3907 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-566)) (-14 *6 (-771)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8))))) -(-10 -7 (-15 -3907 ((-136 |#1| |#2| |#4|) (-644 |#4|) (-136 |#1| |#2| |#3|))) (-15 -1301 ((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)))) -((-3007 (((-112) $ $) NIL)) (-3015 (($ (-644 |#3|)) 64)) (-1560 (($ $) 126) (($ $ (-566) (-566)) 125)) (-3012 (($) 20)) (-4307 (((-3 |#3| "failed") $) 86)) (-4205 ((|#3| $) NIL)) (-4279 (($ $ (-644 (-566))) 127)) (-3897 (((-644 |#3|) $) 59)) (-4313 (((-771) $) 69)) (-2235 (($ $ $) 120)) (-3723 (($) 68)) (-4117 (((-1157) $) NIL)) (-3439 (($) 19)) (-4035 (((-1119) $) NIL)) (-4390 ((|#3| $) 71) ((|#3| $ (-566)) 72) ((|#3| $ (-566) (-566)) 73) ((|#3| $ (-566) (-566) (-566)) 74) ((|#3| $ (-566) (-566) (-566) (-566)) 75) ((|#3| $ (-644 (-566))) 76)) (-3636 (((-771) $) 70)) (-2220 (($ $ (-566) $ (-566)) 121) (($ $ (-566) (-566)) 123)) (-3783 (((-862) $) 94) (($ |#3|) 95) (($ (-240 |#2| |#3|)) 102) (($ (-1141 |#2| |#3|)) 105) (($ (-644 |#3|)) 77) (($ (-644 $)) 83)) (-3117 (((-112) $ $) NIL)) (-2479 (($) 96 T CONST)) (-4334 (($) 97 T CONST)) (-2947 (((-112) $ $) 107)) (-3053 (($ $) 113) (($ $ $) 111)) (-3041 (($ $ $) 109)) (* (($ |#3| $) 118) (($ $ |#3|) 119) (($ $ (-566)) 116) (($ (-566) $) 115) (($ $ $) 122))) -(((-136 |#1| |#2| |#3|) (-13 (-467 |#3| (-771)) (-472 (-566) (-771)) (-10 -8 (-15 -3783 ($ (-240 |#2| |#3|))) (-15 -3783 ($ (-1141 |#2| |#3|))) (-15 -3783 ($ (-644 |#3|))) (-15 -3783 ($ (-644 $))) (-15 -4313 ((-771) $)) (-15 -4390 (|#3| $)) (-15 -4390 (|#3| $ (-566))) (-15 -4390 (|#3| $ (-566) (-566))) (-15 -4390 (|#3| $ (-566) (-566) (-566))) (-15 -4390 (|#3| $ (-566) (-566) (-566) (-566))) (-15 -4390 (|#3| $ (-644 (-566)))) (-15 -2235 ($ $ $)) (-15 * ($ $ $)) (-15 -2220 ($ $ (-566) $ (-566))) (-15 -2220 ($ $ (-566) (-566))) (-15 -1560 ($ $)) (-15 -1560 ($ $ (-566) (-566))) (-15 -4279 ($ $ (-644 (-566)))) (-15 -3439 ($)) (-15 -3723 ($)) (-15 -3897 ((-644 |#3|) $)) (-15 -3015 ($ (-644 |#3|))) (-15 -3012 ($)))) (-566) (-771) (-172)) (T -136)) -((-2235 (*1 *1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-566)) (-14 *3 (-771)) (-4 *4 (-172)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-240 *4 *5)) (-14 *4 (-771)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-566)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-1141 *4 *5)) (-14 *4 (-771)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-566)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-644 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-566)) (-14 *4 (-771)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-644 (-136 *3 *4 *5))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-566)) (-14 *4 (-771)) (-4 *5 (-172)))) (-4313 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-566)) (-14 *4 *2) (-4 *5 (-172)))) (-4390 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-136 *3 *4 *2)) (-14 *3 (-566)) (-14 *4 (-771)))) (-4390 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-771)))) (-4390 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-566)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-771)))) (-4390 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-566)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-771)))) (-4390 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-566)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-771)))) (-4390 (*1 *2 *1 *3) (-12 (-5 *3 (-644 (-566))) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 (-566)) (-14 *5 (-771)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-566)) (-14 *3 (-771)) (-4 *4 (-172)))) (-2220 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-771)) (-4 *5 (-172)))) (-2220 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-771)) (-4 *5 (-172)))) (-1560 (*1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-566)) (-14 *3 (-771)) (-4 *4 (-172)))) (-1560 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-771)) (-4 *5 (-172)))) (-4279 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-566)) (-14 *4 (-771)) (-4 *5 (-172)))) (-3439 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-566)) (-14 *3 (-771)) (-4 *4 (-172)))) (-3723 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-566)) (-14 *3 (-771)) (-4 *4 (-172)))) (-3897 (*1 *2 *1) (-12 (-5 *2 (-644 *5)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-566)) (-14 *4 (-771)) (-4 *5 (-172)))) (-3015 (*1 *1 *2) (-12 (-5 *2 (-644 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-566)) (-14 *4 (-771)))) (-3012 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-566)) (-14 *3 (-771)) (-4 *4 (-172))))) -(-13 (-467 |#3| (-771)) (-472 (-566) (-771)) (-10 -8 (-15 -3783 ($ (-240 |#2| |#3|))) (-15 -3783 ($ (-1141 |#2| |#3|))) (-15 -3783 ($ (-644 |#3|))) (-15 -3783 ($ (-644 $))) (-15 -4313 ((-771) $)) (-15 -4390 (|#3| $)) (-15 -4390 (|#3| $ (-566))) (-15 -4390 (|#3| $ (-566) (-566))) (-15 -4390 (|#3| $ (-566) (-566) (-566))) (-15 -4390 (|#3| $ (-566) (-566) (-566) (-566))) (-15 -4390 (|#3| $ (-644 (-566)))) (-15 -2235 ($ $ $)) (-15 * ($ $ $)) (-15 -2220 ($ $ (-566) $ (-566))) (-15 -2220 ($ $ (-566) (-566))) (-15 -1560 ($ $)) (-15 -1560 ($ $ (-566) (-566))) (-15 -4279 ($ $ (-644 (-566)))) (-15 -3439 ($)) (-15 -3723 ($)) (-15 -3897 ((-644 |#3|) $)) (-15 -3015 ($ (-644 |#3|))) (-15 -3012 ($)))) -((-3007 (((-112) $ $) NIL)) (-4330 (((-1134) $) 11)) (-4318 (((-1134) $) 9)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 17) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) -(((-137) (-13 (-1082) (-10 -8 (-15 -4318 ((-1134) $)) (-15 -4330 ((-1134) $))))) (T -137)) -((-4318 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-137)))) (-4330 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-137))))) -(-13 (-1082) (-10 -8 (-15 -4318 ((-1134) $)) (-15 -4330 ((-1134) $)))) -((-3007 (((-112) $ $) NIL)) (-4117 (((-1157) $) NIL)) (-1669 (((-186) $) 10)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 20) (($ (-1180)) NIL) (((-1180) $) NIL)) (-1382 (((-644 (-1134)) $) 13)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) -(((-138) (-13 (-1082) (-10 -8 (-15 -1669 ((-186) $)) (-15 -1382 ((-644 (-1134)) $))))) (T -138)) -((-1669 (*1 *2 *1) (-12 (-5 *2 (-186)) (-5 *1 (-138)))) (-1382 (*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-138))))) -(-13 (-1082) (-10 -8 (-15 -1669 ((-186) $)) (-15 -1382 ((-644 (-1134)) $)))) -((-3007 (((-112) $ $) NIL)) (-3538 (((-644 (-865)) $) NIL)) (-2640 (((-508) $) NIL)) (-4117 (((-1157) $) NIL)) (-1669 (((-186) $) NIL)) (-2572 (((-112) $ (-508)) NIL)) (-4035 (((-1119) $) NIL)) (-1429 (((-644 (-112)) $) NIL)) (-3783 (((-862) $) NIL) (((-187) $) 6)) (-3117 (((-112) $ $) NIL)) (-2347 (((-55) $) NIL)) (-2947 (((-112) $ $) NIL))) +((-2988 (((-112) $ $) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 16) (($ (-1180)) NIL) (((-1180) $) NIL)) (-1377 (((-644 (-1134)) $) 10)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) +(((-133) (-13 (-1082) (-10 -8 (-15 -1377 ((-644 (-1134)) $))))) (T -133)) +((-1377 (*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-133))))) +(-13 (-1082) (-10 -8 (-15 -1377 ((-644 (-1134)) $)))) +((-2988 (((-112) $ $) 49)) (-3230 (((-112) $) NIL)) (-2463 (($) NIL T CONST)) (-2229 (((-3 (-771) "failed") $) 58)) (-4158 (((-771) $) 56)) (-3245 (((-3 $ "failed") $) NIL)) (-2389 (((-112) $) NIL)) (-1478 (($ $ $) NIL)) (-2599 (($ $ $) 37)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-4026 (((-112)) 59)) (-3573 (((-112) (-112)) 61)) (-4156 (((-112) $) 30)) (-2377 (((-112) $) 55)) (-3152 (((-862) $) 28) (($ (-771)) 20)) (-3044 (((-112) $ $) NIL)) (-4356 (($) 18 T CONST)) (-4366 (($) 19 T CONST)) (-3623 (($ (-771)) 21)) (-2968 (((-112) $ $) NIL)) (-2946 (((-112) $ $) 40)) (-2914 (((-112) $ $) 32)) (-2956 (((-112) $ $) NIL)) (-2935 (((-112) $ $) 35)) (-3012 (((-3 $ "failed") $ $) 42)) (-3002 (($ $ $) 38)) (** (($ $ (-771)) NIL) (($ $ (-921)) NIL) (($ $ $) 54)) (* (($ (-771) $) 48) (($ (-921) $) NIL) (($ $ $) 45))) +(((-134) (-13 (-850) (-23) (-726) (-1038 (-771)) (-10 -8 (-6 (-4416 "*")) (-15 -3012 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3623 ($ (-771))) (-15 -4156 ((-112) $)) (-15 -2377 ((-112) $)) (-15 -4026 ((-112))) (-15 -3573 ((-112) (-112)))))) (T -134)) +((-3012 (*1 *1 *1 *1) (|partial| -5 *1 (-134))) (** (*1 *1 *1 *1) (-5 *1 (-134))) (-3623 (*1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-134)))) (-4156 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-2377 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-4026 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-3573 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) +(-13 (-850) (-23) (-726) (-1038 (-771)) (-10 -8 (-6 (-4416 "*")) (-15 -3012 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3623 ($ (-771))) (-15 -4156 ((-112) $)) (-15 -2377 ((-112) $)) (-15 -4026 ((-112))) (-15 -3573 ((-112) (-112))))) +((-1448 (((-136 |#1| |#2| |#4|) (-644 |#4|) (-136 |#1| |#2| |#3|)) 14)) (-2319 (((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)) 18))) +(((-135 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1448 ((-136 |#1| |#2| |#4|) (-644 |#4|) (-136 |#1| |#2| |#3|))) (-15 -2319 ((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)))) (-566) (-771) (-172) (-172)) (T -135)) +((-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-566)) (-14 *6 (-771)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))) (-1448 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-566)) (-14 *6 (-771)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8))))) +(-10 -7 (-15 -1448 ((-136 |#1| |#2| |#4|) (-644 |#4|) (-136 |#1| |#2| |#3|))) (-15 -2319 ((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)))) +((-2988 (((-112) $ $) NIL)) (-1421 (($ (-644 |#3|)) 64)) (-4160 (($ $) 126) (($ $ (-566) (-566)) 125)) (-2463 (($) 20)) (-2229 (((-3 |#3| "failed") $) 86)) (-4158 ((|#3| $) NIL)) (-3290 (($ $ (-644 (-566))) 127)) (-1432 (((-644 |#3|) $) 59)) (-2755 (((-771) $) 69)) (-2014 (($ $ $) 120)) (-3231 (($) 68)) (-3380 (((-1157) $) NIL)) (-3966 (($) 19)) (-4072 (((-1119) $) NIL)) (-1309 ((|#3| $) 71) ((|#3| $ (-566)) 72) ((|#3| $ (-566) (-566)) 73) ((|#3| $ (-566) (-566) (-566)) 74) ((|#3| $ (-566) (-566) (-566) (-566)) 75) ((|#3| $ (-644 (-566))) 76)) (-3902 (((-771) $) 70)) (-2378 (($ $ (-566) $ (-566)) 121) (($ $ (-566) (-566)) 123)) (-3152 (((-862) $) 94) (($ |#3|) 95) (($ (-240 |#2| |#3|)) 102) (($ (-1141 |#2| |#3|)) 105) (($ (-644 |#3|)) 77) (($ (-644 $)) 83)) (-3044 (((-112) $ $) NIL)) (-4356 (($) 96 T CONST)) (-4366 (($) 97 T CONST)) (-2914 (((-112) $ $) 107)) (-3012 (($ $) 113) (($ $ $) 111)) (-3002 (($ $ $) 109)) (* (($ |#3| $) 118) (($ $ |#3|) 119) (($ $ (-566)) 116) (($ (-566) $) 115) (($ $ $) 122))) +(((-136 |#1| |#2| |#3|) (-13 (-467 |#3| (-771)) (-472 (-566) (-771)) (-10 -8 (-15 -3152 ($ (-240 |#2| |#3|))) (-15 -3152 ($ (-1141 |#2| |#3|))) (-15 -3152 ($ (-644 |#3|))) (-15 -3152 ($ (-644 $))) (-15 -2755 ((-771) $)) (-15 -1309 (|#3| $)) (-15 -1309 (|#3| $ (-566))) (-15 -1309 (|#3| $ (-566) (-566))) (-15 -1309 (|#3| $ (-566) (-566) (-566))) (-15 -1309 (|#3| $ (-566) (-566) (-566) (-566))) (-15 -1309 (|#3| $ (-644 (-566)))) (-15 -2014 ($ $ $)) (-15 * ($ $ $)) (-15 -2378 ($ $ (-566) $ (-566))) (-15 -2378 ($ $ (-566) (-566))) (-15 -4160 ($ $)) (-15 -4160 ($ $ (-566) (-566))) (-15 -3290 ($ $ (-644 (-566)))) (-15 -3966 ($)) (-15 -3231 ($)) (-15 -1432 ((-644 |#3|) $)) (-15 -1421 ($ (-644 |#3|))) (-15 -2463 ($)))) (-566) (-771) (-172)) (T -136)) +((-2014 (*1 *1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-566)) (-14 *3 (-771)) (-4 *4 (-172)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-240 *4 *5)) (-14 *4 (-771)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-566)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-1141 *4 *5)) (-14 *4 (-771)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-566)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-644 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-566)) (-14 *4 (-771)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-644 (-136 *3 *4 *5))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-566)) (-14 *4 (-771)) (-4 *5 (-172)))) (-2755 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-566)) (-14 *4 *2) (-4 *5 (-172)))) (-1309 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-136 *3 *4 *2)) (-14 *3 (-566)) (-14 *4 (-771)))) (-1309 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-771)))) (-1309 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-566)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-771)))) (-1309 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-566)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-771)))) (-1309 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-566)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-771)))) (-1309 (*1 *2 *1 *3) (-12 (-5 *3 (-644 (-566))) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 (-566)) (-14 *5 (-771)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-566)) (-14 *3 (-771)) (-4 *4 (-172)))) (-2378 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-771)) (-4 *5 (-172)))) (-2378 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-771)) (-4 *5 (-172)))) (-4160 (*1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-566)) (-14 *3 (-771)) (-4 *4 (-172)))) (-4160 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-771)) (-4 *5 (-172)))) (-3290 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-566)) (-14 *4 (-771)) (-4 *5 (-172)))) (-3966 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-566)) (-14 *3 (-771)) (-4 *4 (-172)))) (-3231 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-566)) (-14 *3 (-771)) (-4 *4 (-172)))) (-1432 (*1 *2 *1) (-12 (-5 *2 (-644 *5)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-566)) (-14 *4 (-771)) (-4 *5 (-172)))) (-1421 (*1 *1 *2) (-12 (-5 *2 (-644 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-566)) (-14 *4 (-771)))) (-2463 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-566)) (-14 *3 (-771)) (-4 *4 (-172))))) +(-13 (-467 |#3| (-771)) (-472 (-566) (-771)) (-10 -8 (-15 -3152 ($ (-240 |#2| |#3|))) (-15 -3152 ($ (-1141 |#2| |#3|))) (-15 -3152 ($ (-644 |#3|))) (-15 -3152 ($ (-644 $))) (-15 -2755 ((-771) $)) (-15 -1309 (|#3| $)) (-15 -1309 (|#3| $ (-566))) (-15 -1309 (|#3| $ (-566) (-566))) (-15 -1309 (|#3| $ (-566) (-566) (-566))) (-15 -1309 (|#3| $ (-566) (-566) (-566) (-566))) (-15 -1309 (|#3| $ (-644 (-566)))) (-15 -2014 ($ $ $)) (-15 * ($ $ $)) (-15 -2378 ($ $ (-566) $ (-566))) (-15 -2378 ($ $ (-566) (-566))) (-15 -4160 ($ $)) (-15 -4160 ($ $ (-566) (-566))) (-15 -3290 ($ $ (-644 (-566)))) (-15 -3966 ($)) (-15 -3231 ($)) (-15 -1432 ((-644 |#3|) $)) (-15 -1421 ($ (-644 |#3|))) (-15 -2463 ($)))) +((-2988 (((-112) $ $) NIL)) (-3124 (((-1134) $) 11)) (-3114 (((-1134) $) 9)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 17) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) +(((-137) (-13 (-1082) (-10 -8 (-15 -3114 ((-1134) $)) (-15 -3124 ((-1134) $))))) (T -137)) +((-3114 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-137)))) (-3124 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-137))))) +(-13 (-1082) (-10 -8 (-15 -3114 ((-1134) $)) (-15 -3124 ((-1134) $)))) +((-2988 (((-112) $ $) NIL)) (-3380 (((-1157) $) NIL)) (-1691 (((-186) $) 10)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 20) (($ (-1180)) NIL) (((-1180) $) NIL)) (-1377 (((-644 (-1134)) $) 13)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) +(((-138) (-13 (-1082) (-10 -8 (-15 -1691 ((-186) $)) (-15 -1377 ((-644 (-1134)) $))))) (T -138)) +((-1691 (*1 *2 *1) (-12 (-5 *2 (-186)) (-5 *1 (-138)))) (-1377 (*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-138))))) +(-13 (-1082) (-10 -8 (-15 -1691 ((-186) $)) (-15 -1377 ((-644 (-1134)) $)))) +((-2988 (((-112) $ $) NIL)) (-3332 (((-644 (-865)) $) NIL)) (-1368 (((-508) $) NIL)) (-3380 (((-1157) $) NIL)) (-1691 (((-186) $) NIL)) (-3335 (((-112) $ (-508)) NIL)) (-4072 (((-1119) $) NIL)) (-3589 (((-644 (-112)) $) NIL)) (-3152 (((-862) $) NIL) (((-187) $) 6)) (-3044 (((-112) $ $) NIL)) (-1752 (((-55) $) NIL)) (-2914 (((-112) $ $) NIL))) (((-139) (-13 (-185) (-613 (-187)))) (T -139)) NIL (-13 (-185) (-613 (-187))) -((-4384 (((-644 (-183 (-139))) $) 13)) (-2732 (((-644 (-183 (-139))) $) 14)) (-2914 (((-644 (-838)) $) 10)) (-1547 (((-139) $) 7)) (-3783 (((-862) $) 16))) -(((-140) (-13 (-613 (-862)) (-10 -8 (-15 -1547 ((-139) $)) (-15 -2914 ((-644 (-838)) $)) (-15 -4384 ((-644 (-183 (-139))) $)) (-15 -2732 ((-644 (-183 (-139))) $))))) (T -140)) -((-1547 (*1 *2 *1) (-12 (-5 *2 (-139)) (-5 *1 (-140)))) (-2914 (*1 *2 *1) (-12 (-5 *2 (-644 (-838))) (-5 *1 (-140)))) (-4384 (*1 *2 *1) (-12 (-5 *2 (-644 (-183 (-139)))) (-5 *1 (-140)))) (-2732 (*1 *2 *1) (-12 (-5 *2 (-644 (-183 (-139)))) (-5 *1 (-140))))) -(-13 (-613 (-862)) (-10 -8 (-15 -1547 ((-139) $)) (-15 -2914 ((-644 (-838)) $)) (-15 -4384 ((-644 (-183 (-139))) $)) (-15 -2732 ((-644 (-183 (-139))) $)))) -((-3007 (((-112) $ $) NIL)) (-3761 (($) 17 T CONST)) (-1636 (($) NIL (|has| (-144) (-370)))) (-1756 (($ $ $) 19) (($ $ (-144)) NIL) (($ (-144) $) NIL)) (-2204 (($ $ $) NIL)) (-2904 (((-112) $ $) NIL)) (-2256 (((-112) $ (-771)) NIL)) (-1970 (((-771)) NIL (|has| (-144) (-370)))) (-3700 (($) NIL) (($ (-644 (-144))) NIL)) (-4016 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4414)))) (-2701 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4414)))) (-3012 (($) NIL T CONST)) (-2031 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-144) (-1099))))) (-2956 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4414))) (($ (-144) $) 61 (|has| $ (-6 -4414)))) (-2665 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4414))) (($ (-144) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-144) (-1099))))) (-1676 (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4414))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4414))) (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4414)) (|has| (-144) (-1099))))) (-1552 (($) NIL (|has| (-144) (-370)))) (-3979 (((-644 (-144)) $) 70 (|has| $ (-6 -4414)))) (-2376 (((-112) $ $) NIL)) (-2404 (((-112) $ (-771)) NIL)) (-2097 (((-144) $) NIL (|has| (-144) (-850)))) (-2329 (((-644 (-144)) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) (-144) $) 27 (-12 (|has| $ (-6 -4414)) (|has| (-144) (-1099))))) (-3962 (((-144) $) NIL (|has| (-144) (-850)))) (-2908 (($ (-1 (-144) (-144)) $) 69 (|has| $ (-6 -4415)))) (-1301 (($ (-1 (-144) (-144)) $) 65)) (-3895 (($) 18 T CONST)) (-3681 (((-921) $) NIL (|has| (-144) (-370)))) (-2603 (((-112) $ (-771)) NIL)) (-4117 (((-1157) $) NIL)) (-4018 (($ $ $) 30)) (-4039 (((-144) $) 62)) (-3406 (($ (-144) $) 60)) (-2178 (($ (-921)) NIL (|has| (-144) (-370)))) (-3671 (($) 16 T CONST)) (-4035 (((-1119) $) NIL)) (-2006 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-2539 (((-144) $) 63)) (-2692 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-144)) (-644 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-295 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-644 (-295 (-144)))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099))))) (-1932 (((-112) $ $) NIL)) (-3467 (((-112) $) NIL)) (-1494 (($) 58)) (-3980 (($) 15 T CONST)) (-4340 (($ $ $) 32) (($ $ (-144)) NIL)) (-3481 (($ (-644 (-144))) NIL) (($) NIL)) (-4045 (((-771) (-144) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-144) (-1099)))) (((-771) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4414)))) (-3940 (($ $) NIL)) (-1348 (((-1157) $) 37) (((-538) $) NIL (|has| (-144) (-614 (-538)))) (((-644 (-144)) $) 35)) (-3796 (($ (-644 (-144))) NIL)) (-3443 (($ $) 33 (|has| (-144) (-370)))) (-3783 (((-862) $) 55)) (-1837 (($ (-1157)) 14) (($ (-644 (-144))) 52)) (-2093 (((-771) $) NIL)) (-3788 (($) 59) (($ (-644 (-144))) NIL)) (-3117 (((-112) $ $) NIL)) (-1748 (($ (-644 (-144))) NIL)) (-1894 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4414)))) (-4246 (($) 21 T CONST)) (-1404 (($) 20 T CONST)) (-2947 (((-112) $ $) 24)) (-3018 (((-771) $) 57 (|has| $ (-6 -4414))))) -(((-141) (-13 (-1099) (-614 (-1157)) (-427 (-144)) (-614 (-644 (-144))) (-10 -8 (-15 -1837 ($ (-1157))) (-15 -1837 ($ (-644 (-144)))) (-15 -3980 ($) -3704) (-15 -3671 ($) -3704) (-15 -3761 ($) -3704) (-15 -3895 ($) -3704) (-15 -1404 ($) -3704) (-15 -4246 ($) -3704)))) (T -141)) -((-1837 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-141)))) (-1837 (*1 *1 *2) (-12 (-5 *2 (-644 (-144))) (-5 *1 (-141)))) (-3980 (*1 *1) (-5 *1 (-141))) (-3671 (*1 *1) (-5 *1 (-141))) (-3761 (*1 *1) (-5 *1 (-141))) (-3895 (*1 *1) (-5 *1 (-141))) (-1404 (*1 *1) (-5 *1 (-141))) (-4246 (*1 *1) (-5 *1 (-141)))) -(-13 (-1099) (-614 (-1157)) (-427 (-144)) (-614 (-644 (-144))) (-10 -8 (-15 -1837 ($ (-1157))) (-15 -1837 ($ (-644 (-144)))) (-15 -3980 ($) -3704) (-15 -3671 ($) -3704) (-15 -3761 ($) -3704) (-15 -3895 ($) -3704) (-15 -1404 ($) -3704) (-15 -4246 ($) -3704))) -((-3830 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-4297 ((|#1| |#3|) 9)) (-3738 ((|#3| |#3|) 15))) -(((-142 |#1| |#2| |#3|) (-10 -7 (-15 -4297 (|#1| |#3|)) (-15 -3738 (|#3| |#3|)) (-15 -3830 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-558) (-992 |#1|) (-375 |#2|)) (T -142)) -((-3830 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-992 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3)) (-4 *3 (-375 *5)))) (-3738 (*1 *2 *2) (-12 (-4 *3 (-558)) (-4 *4 (-992 *3)) (-5 *1 (-142 *3 *4 *2)) (-4 *2 (-375 *4)))) (-4297 (*1 *2 *3) (-12 (-4 *4 (-992 *2)) (-4 *2 (-558)) (-5 *1 (-142 *2 *4 *3)) (-4 *3 (-375 *4))))) -(-10 -7 (-15 -4297 (|#1| |#3|)) (-15 -3738 (|#3| |#3|)) (-15 -3830 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-2529 (($ $ $) 8)) (-3727 (($ $) 7)) (-3228 (($ $ $) 6))) +((-4060 (((-644 (-183 (-139))) $) 13)) (-3326 (((-644 (-183 (-139))) $) 14)) (-4048 (((-644 (-838)) $) 10)) (-2233 (((-139) $) 7)) (-3152 (((-862) $) 16))) +(((-140) (-13 (-613 (-862)) (-10 -8 (-15 -2233 ((-139) $)) (-15 -4048 ((-644 (-838)) $)) (-15 -4060 ((-644 (-183 (-139))) $)) (-15 -3326 ((-644 (-183 (-139))) $))))) (T -140)) +((-2233 (*1 *2 *1) (-12 (-5 *2 (-139)) (-5 *1 (-140)))) (-4048 (*1 *2 *1) (-12 (-5 *2 (-644 (-838))) (-5 *1 (-140)))) (-4060 (*1 *2 *1) (-12 (-5 *2 (-644 (-183 (-139)))) (-5 *1 (-140)))) (-3326 (*1 *2 *1) (-12 (-5 *2 (-644 (-183 (-139)))) (-5 *1 (-140))))) +(-13 (-613 (-862)) (-10 -8 (-15 -2233 ((-139) $)) (-15 -4048 ((-644 (-838)) $)) (-15 -4060 ((-644 (-183 (-139))) $)) (-15 -3326 ((-644 (-183 (-139))) $)))) +((-2988 (((-112) $ $) NIL)) (-2840 (($) 17 T CONST)) (-3131 (($) NIL (|has| (-144) (-370)))) (-1775 (($ $ $) 19) (($ $ (-144)) NIL) (($ (-144) $) NIL)) (-3495 (($ $ $) NIL)) (-2515 (((-112) $ $) NIL)) (-1504 (((-112) $ (-771)) NIL)) (-3870 (((-771)) NIL (|has| (-144) (-370)))) (-3690 (($) NIL) (($ (-644 (-144))) NIL)) (-2995 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4414)))) (-3678 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4414)))) (-2463 (($) NIL T CONST)) (-3942 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-144) (-1099))))) (-3512 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4414))) (($ (-144) $) 61 (|has| $ (-6 -4414)))) (-2622 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4414))) (($ (-144) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-144) (-1099))))) (-2873 (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4414))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4414))) (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4414)) (|has| (-144) (-1099))))) (-2715 (($) NIL (|has| (-144) (-370)))) (-1683 (((-644 (-144)) $) 70 (|has| $ (-6 -4414)))) (-3546 (((-112) $ $) NIL)) (-3456 (((-112) $ (-771)) NIL)) (-1478 (((-144) $) NIL (|has| (-144) (-850)))) (-3491 (((-644 (-144)) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) (-144) $) 27 (-12 (|has| $ (-6 -4414)) (|has| (-144) (-1099))))) (-2599 (((-144) $) NIL (|has| (-144) (-850)))) (-3885 (($ (-1 (-144) (-144)) $) 69 (|has| $ (-6 -4415)))) (-2319 (($ (-1 (-144) (-144)) $) 65)) (-1852 (($) 18 T CONST)) (-1866 (((-921) $) NIL (|has| (-144) (-370)))) (-3267 (((-112) $ (-771)) NIL)) (-3380 (((-1157) $) NIL)) (-1997 (($ $ $) 30)) (-3278 (((-144) $) 62)) (-3888 (($ (-144) $) 60)) (-2835 (($ (-921)) NIL (|has| (-144) (-370)))) (-2095 (($) 16 T CONST)) (-4072 (((-1119) $) NIL)) (-3668 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-1973 (((-144) $) 63)) (-2823 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-144)) (-644 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-295 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-644 (-295 (-144)))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099))))) (-3814 (((-112) $ $) NIL)) (-2872 (((-112) $) NIL)) (-3493 (($) 58)) (-3383 (($) 15 T CONST)) (-2048 (($ $ $) 32) (($ $ (-144)) NIL)) (-1792 (($ (-644 (-144))) NIL) (($) NIL)) (-4083 (((-771) (-144) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-144) (-1099)))) (((-771) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4414)))) (-1480 (($ $) NIL)) (-2376 (((-1157) $) 37) (((-538) $) NIL (|has| (-144) (-614 (-538)))) (((-644 (-144)) $) 35)) (-1340 (($ (-644 (-144))) NIL)) (-4289 (($ $) 33 (|has| (-144) (-370)))) (-3152 (((-862) $) 55)) (-3197 (($ (-1157)) 14) (($ (-644 (-144))) 52)) (-3823 (((-771) $) NIL)) (-1692 (($) 59) (($ (-644 (-144))) NIL)) (-3044 (((-112) $ $) NIL)) (-2948 (($ (-644 (-144))) NIL)) (-2210 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4414)))) (-2546 (($) 21 T CONST)) (-2232 (($) 20 T CONST)) (-2914 (((-112) $ $) 24)) (-3000 (((-771) $) 57 (|has| $ (-6 -4414))))) +(((-141) (-13 (-1099) (-614 (-1157)) (-427 (-144)) (-614 (-644 (-144))) (-10 -8 (-15 -3197 ($ (-1157))) (-15 -3197 ($ (-644 (-144)))) (-15 -3383 ($) -1623) (-15 -2095 ($) -1623) (-15 -2840 ($) -1623) (-15 -1852 ($) -1623) (-15 -2232 ($) -1623) (-15 -2546 ($) -1623)))) (T -141)) +((-3197 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-141)))) (-3197 (*1 *1 *2) (-12 (-5 *2 (-644 (-144))) (-5 *1 (-141)))) (-3383 (*1 *1) (-5 *1 (-141))) (-2095 (*1 *1) (-5 *1 (-141))) (-2840 (*1 *1) (-5 *1 (-141))) (-1852 (*1 *1) (-5 *1 (-141))) (-2232 (*1 *1) (-5 *1 (-141))) (-2546 (*1 *1) (-5 *1 (-141)))) +(-13 (-1099) (-614 (-1157)) (-427 (-144)) (-614 (-644 (-144))) (-10 -8 (-15 -3197 ($ (-1157))) (-15 -3197 ($ (-644 (-144)))) (-15 -3383 ($) -1623) (-15 -2095 ($) -1623) (-15 -2840 ($) -1623) (-15 -1852 ($) -1623) (-15 -2232 ($) -1623) (-15 -2546 ($) -1623))) +((-4367 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-2693 ((|#1| |#3|) 9)) (-2386 ((|#3| |#3|) 15))) +(((-142 |#1| |#2| |#3|) (-10 -7 (-15 -2693 (|#1| |#3|)) (-15 -2386 (|#3| |#3|)) (-15 -4367 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-558) (-992 |#1|) (-375 |#2|)) (T -142)) +((-4367 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-992 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3)) (-4 *3 (-375 *5)))) (-2386 (*1 *2 *2) (-12 (-4 *3 (-558)) (-4 *4 (-992 *3)) (-5 *1 (-142 *3 *4 *2)) (-4 *2 (-375 *4)))) (-2693 (*1 *2 *3) (-12 (-4 *4 (-992 *2)) (-4 *2 (-558)) (-5 *1 (-142 *2 *4 *3)) (-4 *3 (-375 *4))))) +(-10 -7 (-15 -2693 (|#1| |#3|)) (-15 -2386 (|#3| |#3|)) (-15 -4367 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-2413 (($ $ $) 8)) (-2499 (($ $) 7)) (-2073 (($ $ $) 6))) (((-143) (-140)) (T -143)) -((-2529 (*1 *1 *1 *1) (-4 *1 (-143))) (-3727 (*1 *1 *1) (-4 *1 (-143))) (-3228 (*1 *1 *1 *1) (-4 *1 (-143)))) -(-13 (-10 -8 (-15 -3228 ($ $ $)) (-15 -3727 ($ $)) (-15 -2529 ($ $ $)))) -((-3007 (((-112) $ $) NIL)) (-2580 (((-112) $) 39)) (-3761 (($ $) 55)) (-4224 (($) 26)) (-1970 (((-771)) 13)) (-1552 (($) 25)) (-4245 (($) 27)) (-1989 (((-771) $) 21)) (-2097 (($ $ $) NIL) (($) NIL T CONST)) (-3962 (($ $ $) NIL) (($) NIL T CONST)) (-1738 (((-112) $) 41)) (-3895 (($ $) 56)) (-3681 (((-921) $) 23)) (-4117 (((-1157) $) 49)) (-2178 (($ (-921)) 20)) (-2975 (((-112) $) 37)) (-4035 (((-1119) $) NIL)) (-3588 (($) 28)) (-4047 (((-112) $) 35)) (-3783 (((-862) $) 30)) (-2916 (($ (-771)) 19) (($ (-1157)) 54)) (-3117 (((-112) $ $) NIL)) (-4341 (((-112) $) 45)) (-2454 (((-112) $) 43)) (-3009 (((-112) $ $) 11)) (-2984 (((-112) $ $) 9)) (-2947 (((-112) $ $) 7)) (-2995 (((-112) $ $) 10)) (-2969 (((-112) $ $) 8))) -(((-144) (-13 (-844) (-10 -8 (-15 -1989 ((-771) $)) (-15 -2916 ($ (-771))) (-15 -2916 ($ (-1157))) (-15 -4224 ($)) (-15 -4245 ($)) (-15 -3588 ($)) (-15 -3761 ($ $)) (-15 -3895 ($ $)) (-15 -4047 ((-112) $)) (-15 -2975 ((-112) $)) (-15 -2454 ((-112) $)) (-15 -2580 ((-112) $)) (-15 -1738 ((-112) $)) (-15 -4341 ((-112) $))))) (T -144)) -((-1989 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-144)))) (-2916 (*1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-144)))) (-2916 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-144)))) (-4224 (*1 *1) (-5 *1 (-144))) (-4245 (*1 *1) (-5 *1 (-144))) (-3588 (*1 *1) (-5 *1 (-144))) (-3761 (*1 *1 *1) (-5 *1 (-144))) (-3895 (*1 *1 *1) (-5 *1 (-144))) (-4047 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-2975 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-2454 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-2580 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1738 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-4341 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) -(-13 (-844) (-10 -8 (-15 -1989 ((-771) $)) (-15 -2916 ($ (-771))) (-15 -2916 ($ (-1157))) (-15 -4224 ($)) (-15 -4245 ($)) (-15 -3588 ($)) (-15 -3761 ($ $)) (-15 -3895 ($ $)) (-15 -4047 ((-112) $)) (-15 -2975 ((-112) $)) (-15 -2454 ((-112) $)) (-15 -2580 ((-112) $)) (-15 -1738 ((-112) $)) (-15 -4341 ((-112) $)))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-4175 (((-3 $ "failed") $ $) 20)) (-3012 (($) 18 T CONST)) (-1878 (((-3 $ "failed") $) 37)) (-3934 (((-112) $) 35)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3783 (((-862) $) 12) (($ (-566)) 33)) (-3144 (((-3 $ "failed") $) 39)) (-2107 (((-771)) 32 T CONST)) (-3117 (((-112) $ $) 9)) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-2947 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) +((-2413 (*1 *1 *1 *1) (-4 *1 (-143))) (-2499 (*1 *1 *1) (-4 *1 (-143))) (-2073 (*1 *1 *1 *1) (-4 *1 (-143)))) +(-13 (-10 -8 (-15 -2073 ($ $ $)) (-15 -2499 ($ $)) (-15 -2413 ($ $ $)))) +((-2988 (((-112) $ $) NIL)) (-2980 (((-112) $) 39)) (-2840 (($ $) 55)) (-4338 (($) 26 T CONST)) (-3870 (((-771)) 13)) (-2715 (($) 25)) (-2450 (($) 27 T CONST)) (-1961 (((-771) $) 21)) (-1478 (($ $ $) NIL) (($) NIL T CONST)) (-2599 (($ $ $) NIL) (($) NIL T CONST)) (-3234 (((-112) $) 41)) (-1852 (($ $) 56)) (-1866 (((-921) $) 23)) (-3380 (((-1157) $) 49)) (-2835 (($ (-921)) 20)) (-1535 (((-112) $) 37)) (-4072 (((-1119) $) NIL)) (-4116 (($) 28 T CONST)) (-2029 (((-112) $) 35)) (-3152 (((-862) $) 30)) (-2866 (($ (-771)) 19) (($ (-1157)) 54)) (-3044 (((-112) $ $) NIL)) (-2144 (((-112) $) 45)) (-2434 (((-112) $) 43)) (-2968 (((-112) $ $) 11)) (-2946 (((-112) $ $) 9)) (-2914 (((-112) $ $) 7)) (-2956 (((-112) $ $) 10)) (-2935 (((-112) $ $) 8))) +(((-144) (-13 (-844) (-10 -8 (-15 -1961 ((-771) $)) (-15 -2866 ($ (-771))) (-15 -2866 ($ (-1157))) (-15 -4338 ($) -1623) (-15 -2450 ($) -1623) (-15 -4116 ($) -1623) (-15 -2840 ($ $)) (-15 -1852 ($ $)) (-15 -2029 ((-112) $)) (-15 -1535 ((-112) $)) (-15 -2434 ((-112) $)) (-15 -2980 ((-112) $)) (-15 -3234 ((-112) $)) (-15 -2144 ((-112) $))))) (T -144)) +((-1961 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-144)))) (-2866 (*1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-144)))) (-2866 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-144)))) (-4338 (*1 *1) (-5 *1 (-144))) (-2450 (*1 *1) (-5 *1 (-144))) (-4116 (*1 *1) (-5 *1 (-144))) (-2840 (*1 *1 *1) (-5 *1 (-144))) (-1852 (*1 *1 *1) (-5 *1 (-144))) (-2029 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1535 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-2434 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-2980 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-3234 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-2144 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) +(-13 (-844) (-10 -8 (-15 -1961 ((-771) $)) (-15 -2866 ($ (-771))) (-15 -2866 ($ (-1157))) (-15 -4338 ($) -1623) (-15 -2450 ($) -1623) (-15 -4116 ($) -1623) (-15 -2840 ($ $)) (-15 -1852 ($ $)) (-15 -2029 ((-112) $)) (-15 -1535 ((-112) $)) (-15 -2434 ((-112) $)) (-15 -2980 ((-112) $)) (-15 -3234 ((-112) $)) (-15 -2144 ((-112) $)))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-3967 (((-3 $ "failed") $ $) 20)) (-2463 (($) 18 T CONST)) (-3245 (((-3 $ "failed") $) 37)) (-2389 (((-112) $) 35)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3152 (((-862) $) 12) (($ (-566)) 33)) (-2633 (((-3 $ "failed") $) 39)) (-2593 (((-771)) 32 T CONST)) (-3044 (((-112) $ $) 9)) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-2914 (((-112) $ $) 6)) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) (((-145) (-140)) (T -145)) -((-3144 (*1 *1 *1) (|partial| -4 *1 (-145)))) -(-13 (-1049) (-10 -8 (-15 -3144 ((-3 $ "failed") $)))) +((-2633 (*1 *1 *1) (|partial| -4 *1 (-145)))) +(-13 (-1049) (-10 -8 (-15 -2633 ((-3 $ "failed") $)))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-616 (-566)) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-726) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) -((-1820 ((|#1| (-689 |#1|) |#1|) 23))) -(((-146 |#1|) (-10 -7 (-15 -1820 (|#1| (-689 |#1|) |#1|))) (-172)) (T -146)) -((-1820 (*1 *2 *3 *2) (-12 (-5 *3 (-689 *2)) (-4 *2 (-172)) (-5 *1 (-146 *2))))) -(-10 -7 (-15 -1820 (|#1| (-689 |#1|) |#1|))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-4175 (((-3 $ "failed") $ $) 20)) (-3012 (($) 18 T CONST)) (-1878 (((-3 $ "failed") $) 37)) (-3934 (((-112) $) 35)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3783 (((-862) $) 12) (($ (-566)) 33)) (-2107 (((-771)) 32 T CONST)) (-3117 (((-112) $ $) 9)) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-2947 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) +((-2318 ((|#1| (-689 |#1|) |#1|) 23))) +(((-146 |#1|) (-10 -7 (-15 -2318 (|#1| (-689 |#1|) |#1|))) (-172)) (T -146)) +((-2318 (*1 *2 *3 *2) (-12 (-5 *3 (-689 *2)) (-4 *2 (-172)) (-5 *1 (-146 *2))))) +(-10 -7 (-15 -2318 (|#1| (-689 |#1|) |#1|))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-3967 (((-3 $ "failed") $ $) 20)) (-2463 (($) 18 T CONST)) (-3245 (((-3 $ "failed") $) 37)) (-2389 (((-112) $) 35)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3152 (((-862) $) 12) (($ (-566)) 33)) (-2593 (((-771)) 32 T CONST)) (-3044 (((-112) $ $) 9)) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-2914 (((-112) $ $) 6)) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) (((-147) (-140)) (T -147)) NIL (-13 (-1049)) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-616 (-566)) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-726) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) -((-2313 (((-2 (|:| -2852 (-771)) (|:| -1364 (-409 |#2|)) (|:| |radicand| |#2|)) (-409 |#2|) (-771)) 76)) (-3909 (((-3 (-2 (|:| |radicand| (-409 |#2|)) (|:| |deg| (-771))) "failed") |#3|) 56)) (-3147 (((-2 (|:| -1364 (-409 |#2|)) (|:| |poly| |#3|)) |#3|) 41)) (-3621 ((|#1| |#3| |#3|) 44)) (-2055 ((|#3| |#3| (-409 |#2|) (-409 |#2|)) 20)) (-2381 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-409 |#2|)) (|:| |c2| (-409 |#2|)) (|:| |deg| (-771))) |#3| |#3|) 53))) -(((-148 |#1| |#2| |#3|) (-10 -7 (-15 -3147 ((-2 (|:| -1364 (-409 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3909 ((-3 (-2 (|:| |radicand| (-409 |#2|)) (|:| |deg| (-771))) "failed") |#3|)) (-15 -2313 ((-2 (|:| -2852 (-771)) (|:| -1364 (-409 |#2|)) (|:| |radicand| |#2|)) (-409 |#2|) (-771))) (-15 -3621 (|#1| |#3| |#3|)) (-15 -2055 (|#3| |#3| (-409 |#2|) (-409 |#2|))) (-15 -2381 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-409 |#2|)) (|:| |c2| (-409 |#2|)) (|:| |deg| (-771))) |#3| |#3|))) (-1218) (-1240 |#1|) (-1240 (-409 |#2|))) (T -148)) -((-2381 (*1 *2 *3 *3) (-12 (-4 *4 (-1218)) (-4 *5 (-1240 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-409 *5)) (|:| |c2| (-409 *5)) (|:| |deg| (-771)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1240 (-409 *5))))) (-2055 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-409 *5)) (-4 *4 (-1218)) (-4 *5 (-1240 *4)) (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1240 *3)))) (-3621 (*1 *2 *3 *3) (-12 (-4 *4 (-1240 *2)) (-4 *2 (-1218)) (-5 *1 (-148 *2 *4 *3)) (-4 *3 (-1240 (-409 *4))))) (-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-409 *6)) (-4 *5 (-1218)) (-4 *6 (-1240 *5)) (-5 *2 (-2 (|:| -2852 (-771)) (|:| -1364 *3) (|:| |radicand| *6))) (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-771)) (-4 *7 (-1240 *3)))) (-3909 (*1 *2 *3) (|partial| -12 (-4 *4 (-1218)) (-4 *5 (-1240 *4)) (-5 *2 (-2 (|:| |radicand| (-409 *5)) (|:| |deg| (-771)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1240 (-409 *5))))) (-3147 (*1 *2 *3) (-12 (-4 *4 (-1218)) (-4 *5 (-1240 *4)) (-5 *2 (-2 (|:| -1364 (-409 *5)) (|:| |poly| *3))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1240 (-409 *5)))))) -(-10 -7 (-15 -3147 ((-2 (|:| -1364 (-409 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3909 ((-3 (-2 (|:| |radicand| (-409 |#2|)) (|:| |deg| (-771))) "failed") |#3|)) (-15 -2313 ((-2 (|:| -2852 (-771)) (|:| -1364 (-409 |#2|)) (|:| |radicand| |#2|)) (-409 |#2|) (-771))) (-15 -3621 (|#1| |#3| |#3|)) (-15 -2055 (|#3| |#3| (-409 |#2|) (-409 |#2|))) (-15 -2381 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-409 |#2|)) (|:| |c2| (-409 |#2|)) (|:| |deg| (-771))) |#3| |#3|))) -((-3717 (((-3 (-644 (-1171 |#2|)) "failed") (-644 (-1171 |#2|)) (-1171 |#2|)) 35))) -(((-149 |#1| |#2|) (-10 -7 (-15 -3717 ((-3 (-644 (-1171 |#2|)) "failed") (-644 (-1171 |#2|)) (-1171 |#2|)))) (-547) (-166 |#1|)) (T -149)) -((-3717 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-644 (-1171 *5))) (-5 *3 (-1171 *5)) (-4 *5 (-166 *4)) (-4 *4 (-547)) (-5 *1 (-149 *4 *5))))) -(-10 -7 (-15 -3717 ((-3 (-644 (-1171 |#2|)) "failed") (-644 (-1171 |#2|)) (-1171 |#2|)))) -((-2701 (($ (-1 (-112) |#2|) $) 35)) (-2031 (($ $) 42)) (-2665 (($ (-1 (-112) |#2|) $) 33) (($ |#2| $) 38)) (-1676 ((|#2| (-1 |#2| |#2| |#2|) $) 28) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 30) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40)) (-2006 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 25)) (-2692 (((-112) (-1 (-112) |#2|) $) 22)) (-4045 (((-771) (-1 (-112) |#2|) $) 18) (((-771) |#2| $) NIL)) (-1894 (((-112) (-1 (-112) |#2|) $) 21)) (-3018 (((-771) $) 12))) -(((-150 |#1| |#2|) (-10 -8 (-15 -2031 (|#1| |#1|)) (-15 -2665 (|#1| |#2| |#1|)) (-15 -1676 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2701 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2665 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1676 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1676 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2006 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4045 ((-771) |#2| |#1|)) (-15 -4045 ((-771) (-1 (-112) |#2|) |#1|)) (-15 -2692 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1894 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3018 ((-771) |#1|))) (-151 |#2|) (-1214)) (T -150)) -NIL -(-10 -8 (-15 -2031 (|#1| |#1|)) (-15 -2665 (|#1| |#2| |#1|)) (-15 -1676 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2701 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2665 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1676 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1676 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2006 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4045 ((-771) |#2| |#1|)) (-15 -4045 ((-771) (-1 (-112) |#2|) |#1|)) (-15 -2692 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1894 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3018 ((-771) |#1|))) -((-3007 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2256 (((-112) $ (-771)) 8)) (-2701 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4414)))) (-3012 (($) 7 T CONST)) (-2031 (($ $) 42 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2665 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4414))) (($ |#1| $) 43 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-1676 ((|#1| (-1 |#1| |#1| |#1|) $) 48 (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 47 (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-3979 (((-644 |#1|) $) 31 (|has| $ (-6 -4414)))) (-2404 (((-112) $ (-771)) 9)) (-2329 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2908 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#1| |#1|) $) 36)) (-2603 (((-112) $ (-771)) 10)) (-4117 (((-1157) $) 22 (|has| |#1| (-1099)))) (-4035 (((-1119) $) 21 (|has| |#1| (-1099)))) (-2006 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 49)) (-2692 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) 14)) (-3467 (((-112) $) 11)) (-1494 (($) 12)) (-4045 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-3940 (($ $) 13)) (-1348 (((-538) $) 41 (|has| |#1| (-614 (-538))))) (-3796 (($ (-644 |#1|)) 50)) (-3783 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-3117 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-1894 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3018 (((-771) $) 6 (|has| $ (-6 -4414))))) +((-2825 (((-2 (|:| -2201 (-771)) (|:| -2397 (-409 |#2|)) (|:| |radicand| |#2|)) (-409 |#2|) (-771)) 76)) (-1889 (((-3 (-2 (|:| |radicand| (-409 |#2|)) (|:| |deg| (-771))) "failed") |#3|) 56)) (-2906 (((-2 (|:| -2397 (-409 |#2|)) (|:| |poly| |#3|)) |#3|) 41)) (-2045 ((|#1| |#3| |#3|) 44)) (-2023 ((|#3| |#3| (-409 |#2|) (-409 |#2|)) 20)) (-2858 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-409 |#2|)) (|:| |c2| (-409 |#2|)) (|:| |deg| (-771))) |#3| |#3|) 53))) +(((-148 |#1| |#2| |#3|) (-10 -7 (-15 -2906 ((-2 (|:| -2397 (-409 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1889 ((-3 (-2 (|:| |radicand| (-409 |#2|)) (|:| |deg| (-771))) "failed") |#3|)) (-15 -2825 ((-2 (|:| -2201 (-771)) (|:| -2397 (-409 |#2|)) (|:| |radicand| |#2|)) (-409 |#2|) (-771))) (-15 -2045 (|#1| |#3| |#3|)) (-15 -2023 (|#3| |#3| (-409 |#2|) (-409 |#2|))) (-15 -2858 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-409 |#2|)) (|:| |c2| (-409 |#2|)) (|:| |deg| (-771))) |#3| |#3|))) (-1218) (-1240 |#1|) (-1240 (-409 |#2|))) (T -148)) +((-2858 (*1 *2 *3 *3) (-12 (-4 *4 (-1218)) (-4 *5 (-1240 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-409 *5)) (|:| |c2| (-409 *5)) (|:| |deg| (-771)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1240 (-409 *5))))) (-2023 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-409 *5)) (-4 *4 (-1218)) (-4 *5 (-1240 *4)) (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1240 *3)))) (-2045 (*1 *2 *3 *3) (-12 (-4 *4 (-1240 *2)) (-4 *2 (-1218)) (-5 *1 (-148 *2 *4 *3)) (-4 *3 (-1240 (-409 *4))))) (-2825 (*1 *2 *3 *4) (-12 (-5 *3 (-409 *6)) (-4 *5 (-1218)) (-4 *6 (-1240 *5)) (-5 *2 (-2 (|:| -2201 (-771)) (|:| -2397 *3) (|:| |radicand| *6))) (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-771)) (-4 *7 (-1240 *3)))) (-1889 (*1 *2 *3) (|partial| -12 (-4 *4 (-1218)) (-4 *5 (-1240 *4)) (-5 *2 (-2 (|:| |radicand| (-409 *5)) (|:| |deg| (-771)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1240 (-409 *5))))) (-2906 (*1 *2 *3) (-12 (-4 *4 (-1218)) (-4 *5 (-1240 *4)) (-5 *2 (-2 (|:| -2397 (-409 *5)) (|:| |poly| *3))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1240 (-409 *5)))))) +(-10 -7 (-15 -2906 ((-2 (|:| -2397 (-409 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1889 ((-3 (-2 (|:| |radicand| (-409 |#2|)) (|:| |deg| (-771))) "failed") |#3|)) (-15 -2825 ((-2 (|:| -2201 (-771)) (|:| -2397 (-409 |#2|)) (|:| |radicand| |#2|)) (-409 |#2|) (-771))) (-15 -2045 (|#1| |#3| |#3|)) (-15 -2023 (|#3| |#3| (-409 |#2|) (-409 |#2|))) (-15 -2858 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-409 |#2|)) (|:| |c2| (-409 |#2|)) (|:| |deg| (-771))) |#3| |#3|))) +((-4066 (((-3 (-644 (-1171 |#2|)) "failed") (-644 (-1171 |#2|)) (-1171 |#2|)) 35))) +(((-149 |#1| |#2|) (-10 -7 (-15 -4066 ((-3 (-644 (-1171 |#2|)) "failed") (-644 (-1171 |#2|)) (-1171 |#2|)))) (-547) (-166 |#1|)) (T -149)) +((-4066 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-644 (-1171 *5))) (-5 *3 (-1171 *5)) (-4 *5 (-166 *4)) (-4 *4 (-547)) (-5 *1 (-149 *4 *5))))) +(-10 -7 (-15 -4066 ((-3 (-644 (-1171 |#2|)) "failed") (-644 (-1171 |#2|)) (-1171 |#2|)))) +((-3678 (($ (-1 (-112) |#2|) $) 35)) (-3942 (($ $) 42)) (-2622 (($ (-1 (-112) |#2|) $) 33) (($ |#2| $) 38)) (-2873 ((|#2| (-1 |#2| |#2| |#2|) $) 28) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 30) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40)) (-3668 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 25)) (-2823 (((-112) (-1 (-112) |#2|) $) 22)) (-4083 (((-771) (-1 (-112) |#2|) $) 18) (((-771) |#2| $) NIL)) (-2210 (((-112) (-1 (-112) |#2|) $) 21)) (-3000 (((-771) $) 12))) +(((-150 |#1| |#2|) (-10 -8 (-15 -3942 (|#1| |#1|)) (-15 -2622 (|#1| |#2| |#1|)) (-15 -2873 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3678 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2622 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2873 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2873 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3668 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4083 ((-771) |#2| |#1|)) (-15 -4083 ((-771) (-1 (-112) |#2|) |#1|)) (-15 -2823 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2210 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3000 ((-771) |#1|))) (-151 |#2|) (-1214)) (T -150)) +NIL +(-10 -8 (-15 -3942 (|#1| |#1|)) (-15 -2622 (|#1| |#2| |#1|)) (-15 -2873 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3678 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2622 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2873 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2873 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3668 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4083 ((-771) |#2| |#1|)) (-15 -4083 ((-771) (-1 (-112) |#2|) |#1|)) (-15 -2823 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2210 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3000 ((-771) |#1|))) +((-2988 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-1504 (((-112) $ (-771)) 8)) (-3678 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4414)))) (-2463 (($) 7 T CONST)) (-3942 (($ $) 42 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2622 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4414))) (($ |#1| $) 43 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2873 ((|#1| (-1 |#1| |#1| |#1|) $) 48 (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 47 (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-1683 (((-644 |#1|) $) 31 (|has| $ (-6 -4414)))) (-3456 (((-112) $ (-771)) 9)) (-3491 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-3885 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#1| |#1|) $) 36)) (-3267 (((-112) $ (-771)) 10)) (-3380 (((-1157) $) 22 (|has| |#1| (-1099)))) (-4072 (((-1119) $) 21 (|has| |#1| (-1099)))) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 49)) (-2823 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) 14)) (-2872 (((-112) $) 11)) (-3493 (($) 12)) (-4083 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-1480 (($ $) 13)) (-2376 (((-538) $) 41 (|has| |#1| (-614 (-538))))) (-1340 (($ (-644 |#1|)) 50)) (-3152 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-3044 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-2210 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3000 (((-771) $) 6 (|has| $ (-6 -4414))))) (((-151 |#1|) (-140) (-1214)) (T -151)) -((-3796 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1214)) (-4 *1 (-151 *3)))) (-2006 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2)) (-4 *2 (-1214)))) (-1676 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4414)) (-4 *1 (-151 *2)) (-4 *2 (-1214)))) (-1676 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4414)) (-4 *1 (-151 *2)) (-4 *2 (-1214)))) (-2665 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4414)) (-4 *1 (-151 *3)) (-4 *3 (-1214)))) (-2701 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4414)) (-4 *1 (-151 *3)) (-4 *3 (-1214)))) (-1676 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1099)) (|has| *1 (-6 -4414)) (-4 *1 (-151 *2)) (-4 *2 (-1214)))) (-2665 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4414)) (-4 *1 (-151 *2)) (-4 *2 (-1214)) (-4 *2 (-1099)))) (-2031 (*1 *1 *1) (-12 (|has| *1 (-6 -4414)) (-4 *1 (-151 *2)) (-4 *2 (-1214)) (-4 *2 (-1099))))) -(-13 (-491 |t#1|) (-10 -8 (-15 -3796 ($ (-644 |t#1|))) (-15 -2006 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4414)) (PROGN (-15 -1676 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -1676 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -2665 ($ (-1 (-112) |t#1|) $)) (-15 -2701 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1099)) (PROGN (-15 -1676 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -2665 ($ |t#1| $)) (-15 -2031 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2809 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1099) |has| |#1| (-1099)) ((-1214) . T)) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-3012 (($) NIL T CONST)) (-1878 (((-3 $ "failed") $) 114)) (-3934 (((-112) $) NIL)) (-3840 (($ |#2| (-644 (-921))) 74)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3392 (($ (-921)) 61)) (-3164 (((-134)) 26)) (-3783 (((-862) $) 89) (($ (-566)) 57) (($ |#2|) 58)) (-2649 ((|#2| $ (-644 (-921))) 77)) (-2107 (((-771)) 23 T CONST)) (-3117 (((-112) $ $) NIL)) (-2479 (($) 51 T CONST)) (-4334 (($) 55 T CONST)) (-2947 (((-112) $ $) 37)) (-3065 (($ $ |#2|) NIL)) (-3053 (($ $) 46) (($ $ $) 44)) (-3041 (($ $ $) 42)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 48) (($ $ $) 67) (($ |#2| $) 50) (($ $ |#2|) NIL))) -(((-152 |#1| |#2| |#3|) (-13 (-1049) (-38 |#2|) (-1271 |#2|) (-10 -8 (-15 -3392 ($ (-921))) (-15 -3840 ($ |#2| (-644 (-921)))) (-15 -2649 (|#2| $ (-644 (-921)))) (-15 -1878 ((-3 $ "failed") $)))) (-921) (-365) (-993 |#1| |#2|)) (T -152)) -((-1878 (*1 *1 *1) (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-921)) (-4 *3 (-365)) (-14 *4 (-993 *2 *3)))) (-3392 (*1 *1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-365)) (-14 *5 (-993 *3 *4)))) (-3840 (*1 *1 *2 *3) (-12 (-5 *3 (-644 (-921))) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-921)) (-4 *2 (-365)) (-14 *5 (-993 *4 *2)))) (-2649 (*1 *2 *1 *3) (-12 (-5 *3 (-644 (-921))) (-4 *2 (-365)) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-921)) (-14 *5 (-993 *4 *2))))) -(-13 (-1049) (-38 |#2|) (-1271 |#2|) (-10 -8 (-15 -3392 ($ (-921))) (-15 -3840 ($ |#2| (-644 (-921)))) (-15 -2649 (|#2| $ (-644 (-921)))) (-15 -1878 ((-3 $ "failed") $)))) -((-3750 (((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-644 (-644 (-943 (-225)))) (-225) (-225) (-225) (-225)) 62)) (-2319 (((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-927) (-409 (-566)) (-409 (-566))) 101) (((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-927)) 102)) (-1599 (((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-644 (-644 (-943 (-225))))) 105) (((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-644 (-943 (-225)))) 104) (((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-927) (-409 (-566)) (-409 (-566))) 96) (((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-927)) 97))) -(((-153) (-10 -7 (-15 -1599 ((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-927))) (-15 -1599 ((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-927) (-409 (-566)) (-409 (-566)))) (-15 -2319 ((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-927))) (-15 -2319 ((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-927) (-409 (-566)) (-409 (-566)))) (-15 -3750 ((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-644 (-644 (-943 (-225)))) (-225) (-225) (-225) (-225))) (-15 -1599 ((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-644 (-943 (-225))))) (-15 -1599 ((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-644 (-644 (-943 (-225)))))))) (T -153)) -((-1599 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225))))) (-5 *1 (-153)) (-5 *3 (-644 (-644 (-943 (-225))))))) (-1599 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225))))) (-5 *1 (-153)) (-5 *3 (-644 (-943 (-225)))))) (-3750 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-225)) (-5 *2 (-2 (|:| |brans| (-644 (-644 (-943 *4)))) (|:| |xValues| (-1093 *4)) (|:| |yValues| (-1093 *4)))) (-5 *1 (-153)) (-5 *3 (-644 (-644 (-943 *4)))))) (-2319 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-927)) (-5 *4 (-409 (-566))) (-5 *2 (-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225))))) (-5 *1 (-153)))) (-2319 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225))))) (-5 *1 (-153)))) (-1599 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-927)) (-5 *4 (-409 (-566))) (-5 *2 (-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225))))) (-5 *1 (-153)))) (-1599 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225))))) (-5 *1 (-153))))) -(-10 -7 (-15 -1599 ((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-927))) (-15 -1599 ((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-927) (-409 (-566)) (-409 (-566)))) (-15 -2319 ((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-927))) (-15 -2319 ((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-927) (-409 (-566)) (-409 (-566)))) (-15 -3750 ((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-644 (-644 (-943 (-225)))) (-225) (-225) (-225) (-225))) (-15 -1599 ((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-644 (-943 (-225))))) (-15 -1599 ((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-644 (-644 (-943 (-225))))))) -((-3007 (((-112) $ $) NIL)) (-4117 (((-1157) $) NIL)) (-1397 (((-644 (-1134)) $) 20)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 27) (($ (-1180)) NIL) (((-1180) $) NIL)) (-1382 (((-1134) $) 9)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) -(((-154) (-13 (-1082) (-10 -8 (-15 -1397 ((-644 (-1134)) $)) (-15 -1382 ((-1134) $))))) (T -154)) -((-1397 (*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-154)))) (-1382 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-154))))) -(-13 (-1082) (-10 -8 (-15 -1397 ((-644 (-1134)) $)) (-15 -1382 ((-1134) $)))) -((-3924 (((-644 (-169 |#2|)) |#1| |#2|) 50))) -(((-155 |#1| |#2|) (-10 -7 (-15 -3924 ((-644 (-169 |#2|)) |#1| |#2|))) (-1240 (-169 (-566))) (-13 (-365) (-848))) (T -155)) -((-3924 (*1 *2 *3 *4) (-12 (-5 *2 (-644 (-169 *4))) (-5 *1 (-155 *3 *4)) (-4 *3 (-1240 (-169 (-566)))) (-4 *4 (-13 (-365) (-848)))))) -(-10 -7 (-15 -3924 ((-644 (-169 |#2|)) |#1| |#2|))) -((-3007 (((-112) $ $) NIL)) (-4330 (((-1213) $) 12)) (-4318 (((-1134) $) 9)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 19) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) -(((-156) (-13 (-1082) (-10 -8 (-15 -4318 ((-1134) $)) (-15 -4330 ((-1213) $))))) (T -156)) -((-4318 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-156)))) (-4330 (*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-156))))) -(-13 (-1082) (-10 -8 (-15 -4318 ((-1134) $)) (-15 -4330 ((-1213) $)))) -((-3007 (((-112) $ $) NIL)) (-4337 (($) 41)) (-4270 (($) 40)) (-4249 (((-921)) 46)) (-4117 (((-1157) $) NIL)) (-3745 (((-566) $) 44)) (-4035 (((-1119) $) NIL)) (-3348 (($) 42)) (-1744 (($ (-566)) 47)) (-3783 (((-862) $) 53)) (-3437 (($) 43)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) 38)) (-3041 (($ $ $) 35)) (* (($ (-921) $) 45) (($ (-225) $) 11))) -(((-157) (-13 (-25) (-10 -8 (-15 * ($ (-921) $)) (-15 * ($ (-225) $)) (-15 -3041 ($ $ $)) (-15 -4270 ($)) (-15 -4337 ($)) (-15 -3348 ($)) (-15 -3437 ($)) (-15 -3745 ((-566) $)) (-15 -4249 ((-921))) (-15 -1744 ($ (-566)))))) (T -157)) -((-3041 (*1 *1 *1 *1) (-5 *1 (-157))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-921)) (-5 *1 (-157)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-157)))) (-4270 (*1 *1) (-5 *1 (-157))) (-4337 (*1 *1) (-5 *1 (-157))) (-3348 (*1 *1) (-5 *1 (-157))) (-3437 (*1 *1) (-5 *1 (-157))) (-3745 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-157)))) (-4249 (*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-157)))) (-1744 (*1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-157))))) -(-13 (-25) (-10 -8 (-15 * ($ (-921) $)) (-15 * ($ (-225) $)) (-15 -3041 ($ $ $)) (-15 -4270 ($)) (-15 -4337 ($)) (-15 -3348 ($)) (-15 -3437 ($)) (-15 -3745 ((-566) $)) (-15 -4249 ((-921))) (-15 -1744 ($ (-566))))) -((-1978 ((|#2| |#2| (-1091 |#2|)) 98) ((|#2| |#2| (-1175)) 75)) (-2235 ((|#2| |#2| (-1091 |#2|)) 97) ((|#2| |#2| (-1175)) 74)) (-2529 ((|#2| |#2| |#2|) 25)) (-3659 (((-114) (-114)) 111)) (-2830 ((|#2| (-644 |#2|)) 130)) (-2854 ((|#2| (-644 |#2|)) 152)) (-1977 ((|#2| (-644 |#2|)) 138)) (-3489 ((|#2| |#2|) 136)) (-2002 ((|#2| (-644 |#2|)) 124)) (-2724 ((|#2| (-644 |#2|)) 125)) (-2101 ((|#2| (-644 |#2|)) 150)) (-3826 ((|#2| |#2| (-1175)) 63) ((|#2| |#2|) 62)) (-3727 ((|#2| |#2|) 21)) (-3228 ((|#2| |#2| |#2|) 24)) (-2825 (((-112) (-114)) 55)) (** ((|#2| |#2| |#2|) 46))) -(((-158 |#1| |#2|) (-10 -7 (-15 -2825 ((-112) (-114))) (-15 -3659 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -3228 (|#2| |#2| |#2|)) (-15 -2529 (|#2| |#2| |#2|)) (-15 -3727 (|#2| |#2|)) (-15 -3826 (|#2| |#2|)) (-15 -3826 (|#2| |#2| (-1175))) (-15 -1978 (|#2| |#2| (-1175))) (-15 -1978 (|#2| |#2| (-1091 |#2|))) (-15 -2235 (|#2| |#2| (-1175))) (-15 -2235 (|#2| |#2| (-1091 |#2|))) (-15 -3489 (|#2| |#2|)) (-15 -2101 (|#2| (-644 |#2|))) (-15 -1977 (|#2| (-644 |#2|))) (-15 -2854 (|#2| (-644 |#2|))) (-15 -2002 (|#2| (-644 |#2|))) (-15 -2724 (|#2| (-644 |#2|))) (-15 -2830 (|#2| (-644 |#2|)))) (-558) (-432 |#1|)) (T -158)) -((-2830 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-432 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-558)))) (-2724 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-432 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-558)))) (-2002 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-432 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-558)))) (-2854 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-432 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-558)))) (-1977 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-432 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-558)))) (-2101 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-432 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-558)))) (-3489 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-158 *3 *2)) (-4 *2 (-432 *3)))) (-2235 (*1 *2 *2 *3) (-12 (-5 *3 (-1091 *2)) (-4 *2 (-432 *4)) (-4 *4 (-558)) (-5 *1 (-158 *4 *2)))) (-2235 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-558)) (-5 *1 (-158 *4 *2)) (-4 *2 (-432 *4)))) (-1978 (*1 *2 *2 *3) (-12 (-5 *3 (-1091 *2)) (-4 *2 (-432 *4)) (-4 *4 (-558)) (-5 *1 (-158 *4 *2)))) (-1978 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-558)) (-5 *1 (-158 *4 *2)) (-4 *2 (-432 *4)))) (-3826 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-558)) (-5 *1 (-158 *4 *2)) (-4 *2 (-432 *4)))) (-3826 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-158 *3 *2)) (-4 *2 (-432 *3)))) (-3727 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-158 *3 *2)) (-4 *2 (-432 *3)))) (-2529 (*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-158 *3 *2)) (-4 *2 (-432 *3)))) (-3228 (*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-158 *3 *2)) (-4 *2 (-432 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-158 *3 *2)) (-4 *2 (-432 *3)))) (-3659 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-558)) (-5 *1 (-158 *3 *4)) (-4 *4 (-432 *3)))) (-2825 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-558)) (-5 *2 (-112)) (-5 *1 (-158 *4 *5)) (-4 *5 (-432 *4))))) -(-10 -7 (-15 -2825 ((-112) (-114))) (-15 -3659 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -3228 (|#2| |#2| |#2|)) (-15 -2529 (|#2| |#2| |#2|)) (-15 -3727 (|#2| |#2|)) (-15 -3826 (|#2| |#2|)) (-15 -3826 (|#2| |#2| (-1175))) (-15 -1978 (|#2| |#2| (-1175))) (-15 -1978 (|#2| |#2| (-1091 |#2|))) (-15 -2235 (|#2| |#2| (-1175))) (-15 -2235 (|#2| |#2| (-1091 |#2|))) (-15 -3489 (|#2| |#2|)) (-15 -2101 (|#2| (-644 |#2|))) (-15 -1977 (|#2| (-644 |#2|))) (-15 -2854 (|#2| (-644 |#2|))) (-15 -2002 (|#2| (-644 |#2|))) (-15 -2724 (|#2| (-644 |#2|))) (-15 -2830 (|#2| (-644 |#2|)))) -((-4002 ((|#1| |#1| |#1|) 67)) (-3902 ((|#1| |#1| |#1|) 64)) (-2529 ((|#1| |#1| |#1|) 58)) (-1887 ((|#1| |#1|) 45)) (-3697 ((|#1| |#1| (-644 |#1|)) 55)) (-3727 ((|#1| |#1|) 48)) (-3228 ((|#1| |#1| |#1|) 51))) -(((-159 |#1|) (-10 -7 (-15 -3228 (|#1| |#1| |#1|)) (-15 -3727 (|#1| |#1|)) (-15 -3697 (|#1| |#1| (-644 |#1|))) (-15 -1887 (|#1| |#1|)) (-15 -2529 (|#1| |#1| |#1|)) (-15 -3902 (|#1| |#1| |#1|)) (-15 -4002 (|#1| |#1| |#1|))) (-547)) (T -159)) -((-4002 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-547)))) (-3902 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-547)))) (-2529 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-547)))) (-1887 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-547)))) (-3697 (*1 *2 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-547)) (-5 *1 (-159 *2)))) (-3727 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-547)))) (-3228 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-547))))) -(-10 -7 (-15 -3228 (|#1| |#1| |#1|)) (-15 -3727 (|#1| |#1|)) (-15 -3697 (|#1| |#1| (-644 |#1|))) (-15 -1887 (|#1| |#1|)) (-15 -2529 (|#1| |#1| |#1|)) (-15 -3902 (|#1| |#1| |#1|)) (-15 -4002 (|#1| |#1| |#1|))) -((-1978 (($ $ (-1175)) 12) (($ $ (-1091 $)) 11)) (-2235 (($ $ (-1175)) 10) (($ $ (-1091 $)) 9)) (-2529 (($ $ $) 8)) (-3826 (($ $) 14) (($ $ (-1175)) 13)) (-3727 (($ $) 7)) (-3228 (($ $ $) 6))) +((-1340 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1214)) (-4 *1 (-151 *3)))) (-3668 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2)) (-4 *2 (-1214)))) (-2873 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4414)) (-4 *1 (-151 *2)) (-4 *2 (-1214)))) (-2873 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4414)) (-4 *1 (-151 *2)) (-4 *2 (-1214)))) (-2622 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4414)) (-4 *1 (-151 *3)) (-4 *3 (-1214)))) (-3678 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4414)) (-4 *1 (-151 *3)) (-4 *3 (-1214)))) (-2873 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1099)) (|has| *1 (-6 -4414)) (-4 *1 (-151 *2)) (-4 *2 (-1214)))) (-2622 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4414)) (-4 *1 (-151 *2)) (-4 *2 (-1214)) (-4 *2 (-1099)))) (-3942 (*1 *1 *1) (-12 (|has| *1 (-6 -4414)) (-4 *1 (-151 *2)) (-4 *2 (-1214)) (-4 *2 (-1099))))) +(-13 (-491 |t#1|) (-10 -8 (-15 -1340 ($ (-644 |t#1|))) (-15 -3668 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4414)) (PROGN (-15 -2873 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -2873 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -2622 ($ (-1 (-112) |t#1|) $)) (-15 -3678 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1099)) (PROGN (-15 -2873 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -2622 ($ |t#1| $)) (-15 -3942 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2768 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1099) |has| |#1| (-1099)) ((-1214) . T)) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-2463 (($) NIL T CONST)) (-3245 (((-3 $ "failed") $) 114)) (-2389 (((-112) $) NIL)) (-1746 (($ |#2| (-644 (-921))) 74)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-4061 (($ (-921)) 61)) (-3126 (((-134)) 26)) (-3152 (((-862) $) 89) (($ (-566)) 57) (($ |#2|) 58)) (-2271 ((|#2| $ (-644 (-921))) 77)) (-2593 (((-771)) 23 T CONST)) (-3044 (((-112) $ $) NIL)) (-4356 (($) 51 T CONST)) (-4366 (($) 55 T CONST)) (-2914 (((-112) $ $) 37)) (-3025 (($ $ |#2|) NIL)) (-3012 (($ $) 46) (($ $ $) 44)) (-3002 (($ $ $) 42)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 48) (($ $ $) 67) (($ |#2| $) 50) (($ $ |#2|) NIL))) +(((-152 |#1| |#2| |#3|) (-13 (-1049) (-38 |#2|) (-1271 |#2|) (-10 -8 (-15 -4061 ($ (-921))) (-15 -1746 ($ |#2| (-644 (-921)))) (-15 -2271 (|#2| $ (-644 (-921)))) (-15 -3245 ((-3 $ "failed") $)))) (-921) (-365) (-993 |#1| |#2|)) (T -152)) +((-3245 (*1 *1 *1) (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-921)) (-4 *3 (-365)) (-14 *4 (-993 *2 *3)))) (-4061 (*1 *1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-365)) (-14 *5 (-993 *3 *4)))) (-1746 (*1 *1 *2 *3) (-12 (-5 *3 (-644 (-921))) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-921)) (-4 *2 (-365)) (-14 *5 (-993 *4 *2)))) (-2271 (*1 *2 *1 *3) (-12 (-5 *3 (-644 (-921))) (-4 *2 (-365)) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-921)) (-14 *5 (-993 *4 *2))))) +(-13 (-1049) (-38 |#2|) (-1271 |#2|) (-10 -8 (-15 -4061 ($ (-921))) (-15 -1746 ($ |#2| (-644 (-921)))) (-15 -2271 (|#2| $ (-644 (-921)))) (-15 -3245 ((-3 $ "failed") $)))) +((-4228 (((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-644 (-644 (-943 (-225)))) (-225) (-225) (-225) (-225)) 62)) (-3762 (((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-927) (-409 (-566)) (-409 (-566))) 101) (((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-927)) 102)) (-1446 (((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-644 (-644 (-943 (-225))))) 105) (((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-644 (-943 (-225)))) 104) (((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-927) (-409 (-566)) (-409 (-566))) 96) (((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-927)) 97))) +(((-153) (-10 -7 (-15 -1446 ((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-927))) (-15 -1446 ((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-927) (-409 (-566)) (-409 (-566)))) (-15 -3762 ((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-927))) (-15 -3762 ((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-927) (-409 (-566)) (-409 (-566)))) (-15 -4228 ((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-644 (-644 (-943 (-225)))) (-225) (-225) (-225) (-225))) (-15 -1446 ((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-644 (-943 (-225))))) (-15 -1446 ((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-644 (-644 (-943 (-225)))))))) (T -153)) +((-1446 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225))))) (-5 *1 (-153)) (-5 *3 (-644 (-644 (-943 (-225))))))) (-1446 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225))))) (-5 *1 (-153)) (-5 *3 (-644 (-943 (-225)))))) (-4228 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-225)) (-5 *2 (-2 (|:| |brans| (-644 (-644 (-943 *4)))) (|:| |xValues| (-1093 *4)) (|:| |yValues| (-1093 *4)))) (-5 *1 (-153)) (-5 *3 (-644 (-644 (-943 *4)))))) (-3762 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-927)) (-5 *4 (-409 (-566))) (-5 *2 (-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225))))) (-5 *1 (-153)))) (-3762 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225))))) (-5 *1 (-153)))) (-1446 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-927)) (-5 *4 (-409 (-566))) (-5 *2 (-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225))))) (-5 *1 (-153)))) (-1446 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225))))) (-5 *1 (-153))))) +(-10 -7 (-15 -1446 ((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-927))) (-15 -1446 ((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-927) (-409 (-566)) (-409 (-566)))) (-15 -3762 ((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-927))) (-15 -3762 ((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-927) (-409 (-566)) (-409 (-566)))) (-15 -4228 ((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-644 (-644 (-943 (-225)))) (-225) (-225) (-225) (-225))) (-15 -1446 ((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-644 (-943 (-225))))) (-15 -1446 ((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-644 (-644 (-943 (-225))))))) +((-2988 (((-112) $ $) NIL)) (-3380 (((-1157) $) NIL)) (-4359 (((-644 (-1134)) $) 20)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 27) (($ (-1180)) NIL) (((-1180) $) NIL)) (-1377 (((-1134) $) 9)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) +(((-154) (-13 (-1082) (-10 -8 (-15 -4359 ((-644 (-1134)) $)) (-15 -1377 ((-1134) $))))) (T -154)) +((-4359 (*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-154)))) (-1377 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-154))))) +(-13 (-1082) (-10 -8 (-15 -4359 ((-644 (-1134)) $)) (-15 -1377 ((-1134) $)))) +((-3828 (((-644 (-169 |#2|)) |#1| |#2|) 50))) +(((-155 |#1| |#2|) (-10 -7 (-15 -3828 ((-644 (-169 |#2|)) |#1| |#2|))) (-1240 (-169 (-566))) (-13 (-365) (-848))) (T -155)) +((-3828 (*1 *2 *3 *4) (-12 (-5 *2 (-644 (-169 *4))) (-5 *1 (-155 *3 *4)) (-4 *3 (-1240 (-169 (-566)))) (-4 *4 (-13 (-365) (-848)))))) +(-10 -7 (-15 -3828 ((-644 (-169 |#2|)) |#1| |#2|))) +((-2988 (((-112) $ $) NIL)) (-3124 (((-1213) $) 12)) (-3114 (((-1134) $) 9)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 19) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) +(((-156) (-13 (-1082) (-10 -8 (-15 -3114 ((-1134) $)) (-15 -3124 ((-1213) $))))) (T -156)) +((-3114 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-156)))) (-3124 (*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-156))))) +(-13 (-1082) (-10 -8 (-15 -3114 ((-1134) $)) (-15 -3124 ((-1213) $)))) +((-2988 (((-112) $ $) NIL)) (-3062 (($) 41)) (-3914 (($) 40)) (-1610 (((-921)) 46)) (-3380 (((-1157) $) NIL)) (-1820 (((-566) $) 44)) (-4072 (((-1119) $) NIL)) (-4307 (($) 42)) (-2665 (($ (-566)) 47)) (-3152 (((-862) $) 53)) (-1864 (($) 43)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) 38)) (-3002 (($ $ $) 35)) (* (($ (-921) $) 45) (($ (-225) $) 11))) +(((-157) (-13 (-25) (-10 -8 (-15 * ($ (-921) $)) (-15 * ($ (-225) $)) (-15 -3002 ($ $ $)) (-15 -3914 ($)) (-15 -3062 ($)) (-15 -4307 ($)) (-15 -1864 ($)) (-15 -1820 ((-566) $)) (-15 -1610 ((-921))) (-15 -2665 ($ (-566)))))) (T -157)) +((-3002 (*1 *1 *1 *1) (-5 *1 (-157))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-921)) (-5 *1 (-157)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-157)))) (-3914 (*1 *1) (-5 *1 (-157))) (-3062 (*1 *1) (-5 *1 (-157))) (-4307 (*1 *1) (-5 *1 (-157))) (-1864 (*1 *1) (-5 *1 (-157))) (-1820 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-157)))) (-1610 (*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-157)))) (-2665 (*1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-157))))) +(-13 (-25) (-10 -8 (-15 * ($ (-921) $)) (-15 * ($ (-225) $)) (-15 -3002 ($ $ $)) (-15 -3914 ($)) (-15 -3062 ($)) (-15 -4307 ($)) (-15 -1864 ($)) (-15 -1820 ((-566) $)) (-15 -1610 ((-921))) (-15 -2665 ($ (-566))))) +((-2786 ((|#2| |#2| (-1091 |#2|)) 98) ((|#2| |#2| (-1175)) 75)) (-2014 ((|#2| |#2| (-1091 |#2|)) 97) ((|#2| |#2| (-1175)) 74)) (-2413 ((|#2| |#2| |#2|) 25)) (-1566 (((-114) (-114)) 111)) (-2705 ((|#2| (-644 |#2|)) 130)) (-2392 ((|#2| (-644 |#2|)) 152)) (-2688 ((|#2| (-644 |#2|)) 138)) (-3268 ((|#2| |#2|) 136)) (-3298 ((|#2| (-644 |#2|)) 124)) (-2701 ((|#2| (-644 |#2|)) 125)) (-3174 ((|#2| (-644 |#2|)) 150)) (-1464 ((|#2| |#2| (-1175)) 63) ((|#2| |#2|) 62)) (-2499 ((|#2| |#2|) 21)) (-2073 ((|#2| |#2| |#2|) 24)) (-3515 (((-112) (-114)) 55)) (** ((|#2| |#2| |#2|) 46))) +(((-158 |#1| |#2|) (-10 -7 (-15 -3515 ((-112) (-114))) (-15 -1566 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -2073 (|#2| |#2| |#2|)) (-15 -2413 (|#2| |#2| |#2|)) (-15 -2499 (|#2| |#2|)) (-15 -1464 (|#2| |#2|)) (-15 -1464 (|#2| |#2| (-1175))) (-15 -2786 (|#2| |#2| (-1175))) (-15 -2786 (|#2| |#2| (-1091 |#2|))) (-15 -2014 (|#2| |#2| (-1175))) (-15 -2014 (|#2| |#2| (-1091 |#2|))) (-15 -3268 (|#2| |#2|)) (-15 -3174 (|#2| (-644 |#2|))) (-15 -2688 (|#2| (-644 |#2|))) (-15 -2392 (|#2| (-644 |#2|))) (-15 -3298 (|#2| (-644 |#2|))) (-15 -2701 (|#2| (-644 |#2|))) (-15 -2705 (|#2| (-644 |#2|)))) (-558) (-432 |#1|)) (T -158)) +((-2705 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-432 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-558)))) (-2701 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-432 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-558)))) (-3298 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-432 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-558)))) (-2392 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-432 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-558)))) (-2688 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-432 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-558)))) (-3174 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-432 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-558)))) (-3268 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-158 *3 *2)) (-4 *2 (-432 *3)))) (-2014 (*1 *2 *2 *3) (-12 (-5 *3 (-1091 *2)) (-4 *2 (-432 *4)) (-4 *4 (-558)) (-5 *1 (-158 *4 *2)))) (-2014 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-558)) (-5 *1 (-158 *4 *2)) (-4 *2 (-432 *4)))) (-2786 (*1 *2 *2 *3) (-12 (-5 *3 (-1091 *2)) (-4 *2 (-432 *4)) (-4 *4 (-558)) (-5 *1 (-158 *4 *2)))) (-2786 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-558)) (-5 *1 (-158 *4 *2)) (-4 *2 (-432 *4)))) (-1464 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-558)) (-5 *1 (-158 *4 *2)) (-4 *2 (-432 *4)))) (-1464 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-158 *3 *2)) (-4 *2 (-432 *3)))) (-2499 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-158 *3 *2)) (-4 *2 (-432 *3)))) (-2413 (*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-158 *3 *2)) (-4 *2 (-432 *3)))) (-2073 (*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-158 *3 *2)) (-4 *2 (-432 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-158 *3 *2)) (-4 *2 (-432 *3)))) (-1566 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-558)) (-5 *1 (-158 *3 *4)) (-4 *4 (-432 *3)))) (-3515 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-558)) (-5 *2 (-112)) (-5 *1 (-158 *4 *5)) (-4 *5 (-432 *4))))) +(-10 -7 (-15 -3515 ((-112) (-114))) (-15 -1566 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -2073 (|#2| |#2| |#2|)) (-15 -2413 (|#2| |#2| |#2|)) (-15 -2499 (|#2| |#2|)) (-15 -1464 (|#2| |#2|)) (-15 -1464 (|#2| |#2| (-1175))) (-15 -2786 (|#2| |#2| (-1175))) (-15 -2786 (|#2| |#2| (-1091 |#2|))) (-15 -2014 (|#2| |#2| (-1175))) (-15 -2014 (|#2| |#2| (-1091 |#2|))) (-15 -3268 (|#2| |#2|)) (-15 -3174 (|#2| (-644 |#2|))) (-15 -2688 (|#2| (-644 |#2|))) (-15 -2392 (|#2| (-644 |#2|))) (-15 -3298 (|#2| (-644 |#2|))) (-15 -2701 (|#2| (-644 |#2|))) (-15 -2705 (|#2| (-644 |#2|)))) +((-3933 ((|#1| |#1| |#1|) 67)) (-4360 ((|#1| |#1| |#1|) 64)) (-2413 ((|#1| |#1| |#1|) 58)) (-2824 ((|#1| |#1|) 45)) (-2806 ((|#1| |#1| (-644 |#1|)) 55)) (-2499 ((|#1| |#1|) 48)) (-2073 ((|#1| |#1| |#1|) 51))) +(((-159 |#1|) (-10 -7 (-15 -2073 (|#1| |#1| |#1|)) (-15 -2499 (|#1| |#1|)) (-15 -2806 (|#1| |#1| (-644 |#1|))) (-15 -2824 (|#1| |#1|)) (-15 -2413 (|#1| |#1| |#1|)) (-15 -4360 (|#1| |#1| |#1|)) (-15 -3933 (|#1| |#1| |#1|))) (-547)) (T -159)) +((-3933 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-547)))) (-4360 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-547)))) (-2413 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-547)))) (-2824 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-547)))) (-2806 (*1 *2 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-547)) (-5 *1 (-159 *2)))) (-2499 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-547)))) (-2073 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-547))))) +(-10 -7 (-15 -2073 (|#1| |#1| |#1|)) (-15 -2499 (|#1| |#1|)) (-15 -2806 (|#1| |#1| (-644 |#1|))) (-15 -2824 (|#1| |#1|)) (-15 -2413 (|#1| |#1| |#1|)) (-15 -4360 (|#1| |#1| |#1|)) (-15 -3933 (|#1| |#1| |#1|))) +((-2786 (($ $ (-1175)) 12) (($ $ (-1091 $)) 11)) (-2014 (($ $ (-1175)) 10) (($ $ (-1091 $)) 9)) (-2413 (($ $ $) 8)) (-1464 (($ $) 14) (($ $ (-1175)) 13)) (-2499 (($ $) 7)) (-2073 (($ $ $) 6))) (((-160) (-140)) (T -160)) -((-3826 (*1 *1 *1) (-4 *1 (-160))) (-3826 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1175)))) (-1978 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1175)))) (-1978 (*1 *1 *1 *2) (-12 (-5 *2 (-1091 *1)) (-4 *1 (-160)))) (-2235 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1175)))) (-2235 (*1 *1 *1 *2) (-12 (-5 *2 (-1091 *1)) (-4 *1 (-160))))) -(-13 (-143) (-10 -8 (-15 -3826 ($ $)) (-15 -3826 ($ $ (-1175))) (-15 -1978 ($ $ (-1175))) (-15 -1978 ($ $ (-1091 $))) (-15 -2235 ($ $ (-1175))) (-15 -2235 ($ $ (-1091 $))))) +((-1464 (*1 *1 *1) (-4 *1 (-160))) (-1464 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1175)))) (-2786 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1175)))) (-2786 (*1 *1 *1 *2) (-12 (-5 *2 (-1091 *1)) (-4 *1 (-160)))) (-2014 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1175)))) (-2014 (*1 *1 *1 *2) (-12 (-5 *2 (-1091 *1)) (-4 *1 (-160))))) +(-13 (-143) (-10 -8 (-15 -1464 ($ $)) (-15 -1464 ($ $ (-1175))) (-15 -2786 ($ $ (-1175))) (-15 -2786 ($ $ (-1091 $))) (-15 -2014 ($ $ (-1175))) (-15 -2014 ($ $ (-1091 $))))) (((-143) . T)) -((-3007 (((-112) $ $) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 16) (($ (-1180)) NIL) (((-1180) $) NIL)) (-1382 (((-644 (-1134)) $) 10)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) -(((-161) (-13 (-1082) (-10 -8 (-15 -1382 ((-644 (-1134)) $))))) (T -161)) -((-1382 (*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-161))))) -(-13 (-1082) (-10 -8 (-15 -1382 ((-644 (-1134)) $)))) -((-3007 (((-112) $ $) NIL)) (-2641 (($ (-566)) 14) (($ $ $) 15)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 18)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) 9))) -(((-162) (-13 (-1099) (-10 -8 (-15 -2641 ($ (-566))) (-15 -2641 ($ $ $))))) (T -162)) -((-2641 (*1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-162)))) (-2641 (*1 *1 *1 *1) (-5 *1 (-162)))) -(-13 (-1099) (-10 -8 (-15 -2641 ($ (-566))) (-15 -2641 ($ $ $)))) -((-3659 (((-114) (-1175)) 102))) -(((-163) (-10 -7 (-15 -3659 ((-114) (-1175))))) (T -163)) -((-3659 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-114)) (-5 *1 (-163))))) -(-10 -7 (-15 -3659 ((-114) (-1175)))) -((-2541 ((|#3| |#3|) 19))) -(((-164 |#1| |#2| |#3|) (-10 -7 (-15 -2541 (|#3| |#3|))) (-1049) (-1240 |#1|) (-1240 |#2|)) (T -164)) -((-2541 (*1 *2 *2) (-12 (-4 *3 (-1049)) (-4 *4 (-1240 *3)) (-5 *1 (-164 *3 *4 *2)) (-4 *2 (-1240 *4))))) -(-10 -7 (-15 -2541 (|#3| |#3|))) -((-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) 223)) (-3837 ((|#2| $) 102)) (-4114 (($ $) 256)) (-2109 (($ $) 250)) (-3717 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) 47)) (-2240 (($ $) 254)) (-2085 (($ $) 248)) (-4307 (((-3 (-566) "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL) (((-3 |#2| "failed") $) 146)) (-4205 (((-566) $) NIL) (((-409 (-566)) $) NIL) ((|#2| $) 144)) (-2946 (($ $ $) 229)) (-3577 (((-689 (-566)) (-689 $)) NIL) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL) (((-2 (|:| -4227 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 $) (-1264 $)) 160) (((-689 |#2|) (-689 $)) 154)) (-1676 (($ (-1171 |#2|)) 125) (((-3 $ "failed") (-409 (-1171 |#2|))) NIL)) (-1878 (((-3 $ "failed") $) 214)) (-1521 (((-3 (-409 (-566)) "failed") $) 204)) (-1942 (((-112) $) 199)) (-4204 (((-409 (-566)) $) 202)) (-4313 (((-921)) 96)) (-2957 (($ $ $) 231)) (-1777 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 270)) (-4361 (($) 245)) (-2062 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 193) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 198)) (-1577 ((|#2| $) 100)) (-1627 (((-1171 |#2|) $) 127)) (-1301 (($ (-1 |#2| |#2|) $) 108)) (-3651 (($ $) 247)) (-1662 (((-1171 |#2|) $) 126)) (-1713 (($ $) 207)) (-3536 (($) 103)) (-4303 (((-420 (-1171 $)) (-1171 $)) 95)) (-3240 (((-420 (-1171 $)) (-1171 $)) 64)) (-2994 (((-3 $ "failed") $ |#2|) 209) (((-3 $ "failed") $ $) 212)) (-2561 (($ $) 246)) (-3039 (((-771) $) 226)) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) 236)) (-3652 ((|#2| (-1264 $)) NIL) ((|#2|) 98)) (-3561 (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-1 |#2| |#2|)) 119) (($ $ (-644 (-1175)) (-644 (-771))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175)) NIL) (($ $ (-771)) NIL) (($ $) NIL)) (-1616 (((-1171 |#2|)) 120)) (-4104 (($ $) 255)) (-2098 (($ $) 249)) (-2154 (((-1264 |#2|) $ (-1264 $)) 136) (((-689 |#2|) (-1264 $) (-1264 $)) NIL) (((-1264 |#2|) $) 116) (((-689 |#2|) (-1264 $)) NIL)) (-1348 (((-1264 |#2|) $) NIL) (($ (-1264 |#2|)) NIL) (((-1171 |#2|) $) NIL) (($ (-1171 |#2|)) NIL) (((-892 (-566)) $) 184) (((-892 (-381)) $) 188) (((-169 (-381)) $) 172) (((-169 (-225)) $) 167) (((-538) $) 180)) (-2358 (($ $) 104)) (-3783 (((-862) $) 143) (($ (-566)) NIL) (($ |#2|) NIL) (($ (-409 (-566))) NIL) (($ $) NIL)) (-1820 (((-1171 |#2|) $) 32)) (-2107 (((-771)) 106)) (-3117 (((-112) $ $) 13)) (-4177 (($ $) 259)) (-2180 (($ $) 253)) (-4155 (($ $) 257)) (-2153 (($ $) 251)) (-2428 ((|#2| $) 242)) (-4166 (($ $) 258)) (-2166 (($ $) 252)) (-2086 (($ $) 162)) (-2947 (((-112) $ $) 110)) (-3053 (($ $) 112) (($ $ $) NIL)) (-3041 (($ $ $) 111)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-409 (-566))) 277) (($ $ $) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 118) (($ $ $) 147) (($ $ |#2|) NIL) (($ |#2| $) 114) (($ (-409 (-566)) $) NIL) (($ $ (-409 (-566))) NIL))) -(((-165 |#1| |#2|) (-10 -8 (-15 -3561 (|#1| |#1|)) (-15 -3561 (|#1| |#1| (-771))) (-15 -3783 (|#1| |#1|)) (-15 -2994 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1860 ((-2 (|:| -3002 |#1|) (|:| -4401 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3561 (|#1| |#1| (-1175))) (-15 -3561 (|#1| |#1| (-644 (-1175)))) (-15 -3561 (|#1| |#1| (-1175) (-771))) (-15 -3561 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -3039 ((-771) |#1|)) (-15 -1685 ((-2 (|:| -2275 |#1|) (|:| -2513 |#1|)) |#1| |#1|)) (-15 -2957 (|#1| |#1| |#1|)) (-15 -2946 (|#1| |#1| |#1|)) (-15 -1713 (|#1| |#1|)) (-15 ** (|#1| |#1| (-566))) (-15 * (|#1| |#1| (-409 (-566)))) (-15 * (|#1| (-409 (-566)) |#1|)) (-15 -3783 (|#1| (-409 (-566)))) (-15 -1348 ((-538) |#1|)) (-15 -1348 ((-169 (-225)) |#1|)) (-15 -1348 ((-169 (-381)) |#1|)) (-15 -2109 (|#1| |#1|)) (-15 -2085 (|#1| |#1|)) (-15 -2098 (|#1| |#1|)) (-15 -2166 (|#1| |#1|)) (-15 -2153 (|#1| |#1|)) (-15 -2180 (|#1| |#1|)) (-15 -4104 (|#1| |#1|)) (-15 -2240 (|#1| |#1|)) (-15 -4114 (|#1| |#1|)) (-15 -4166 (|#1| |#1|)) (-15 -4155 (|#1| |#1|)) (-15 -4177 (|#1| |#1|)) (-15 -3651 (|#1| |#1|)) (-15 -2561 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -4361 (|#1|)) (-15 ** (|#1| |#1| (-409 (-566)))) (-15 -3240 ((-420 (-1171 |#1|)) (-1171 |#1|))) (-15 -4303 ((-420 (-1171 |#1|)) (-1171 |#1|))) (-15 -3717 ((-3 (-644 (-1171 |#1|)) "failed") (-644 (-1171 |#1|)) (-1171 |#1|))) (-15 -1521 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -4204 ((-409 (-566)) |#1|)) (-15 -1942 ((-112) |#1|)) (-15 -1777 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2428 (|#2| |#1|)) (-15 -2086 (|#1| |#1|)) (-15 -2994 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2358 (|#1| |#1|)) (-15 -3536 (|#1|)) (-15 -1348 ((-892 (-381)) |#1|)) (-15 -1348 ((-892 (-566)) |#1|)) (-15 -2062 ((-889 (-381) |#1|) |#1| (-892 (-381)) (-889 (-381) |#1|))) (-15 -2062 ((-889 (-566) |#1|) |#1| (-892 (-566)) (-889 (-566) |#1|))) (-15 -1301 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3561 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3561 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -1676 ((-3 |#1| "failed") (-409 (-1171 |#2|)))) (-15 -1662 ((-1171 |#2|) |#1|)) (-15 -1348 (|#1| (-1171 |#2|))) (-15 -1676 (|#1| (-1171 |#2|))) (-15 -1616 ((-1171 |#2|))) (-15 -3577 ((-689 |#2|) (-689 |#1|))) (-15 -3577 ((-2 (|:| -4227 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 |#1|) (-1264 |#1|))) (-15 -3577 ((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 |#1|) (-1264 |#1|))) (-15 -3577 ((-689 (-566)) (-689 |#1|))) (-15 -4307 ((-3 |#2| "failed") |#1|)) (-15 -4205 (|#2| |#1|)) (-15 -4205 ((-409 (-566)) |#1|)) (-15 -4307 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -4205 ((-566) |#1|)) (-15 -4307 ((-3 (-566) "failed") |#1|)) (-15 -1348 ((-1171 |#2|) |#1|)) (-15 -3652 (|#2|)) (-15 -1348 (|#1| (-1264 |#2|))) (-15 -1348 ((-1264 |#2|) |#1|)) (-15 -2154 ((-689 |#2|) (-1264 |#1|))) (-15 -2154 ((-1264 |#2|) |#1|)) (-15 -1627 ((-1171 |#2|) |#1|)) (-15 -1820 ((-1171 |#2|) |#1|)) (-15 -3652 (|#2| (-1264 |#1|))) (-15 -2154 ((-689 |#2|) (-1264 |#1|) (-1264 |#1|))) (-15 -2154 ((-1264 |#2|) |#1| (-1264 |#1|))) (-15 -1577 (|#2| |#1|)) (-15 -3837 (|#2| |#1|)) (-15 -4313 ((-921))) (-15 -3783 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2107 ((-771))) (-15 -3783 (|#1| (-566))) (-15 ** (|#1| |#1| (-771))) (-15 -1878 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-921))) (-15 -3053 (|#1| |#1| |#1|)) (-15 -3053 (|#1| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-921) |#1|)) (-15 -3041 (|#1| |#1| |#1|)) (-15 -3117 ((-112) |#1| |#1|)) (-15 -3783 ((-862) |#1|)) (-15 -2947 ((-112) |#1| |#1|))) (-166 |#2|) (-172)) (T -165)) -((-2107 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-771)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-4313 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-921)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-3652 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2)))) (-1616 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1171 *4)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4))))) -(-10 -8 (-15 -3561 (|#1| |#1|)) (-15 -3561 (|#1| |#1| (-771))) (-15 -3783 (|#1| |#1|)) (-15 -2994 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1860 ((-2 (|:| -3002 |#1|) (|:| -4401 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3561 (|#1| |#1| (-1175))) (-15 -3561 (|#1| |#1| (-644 (-1175)))) (-15 -3561 (|#1| |#1| (-1175) (-771))) (-15 -3561 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -3039 ((-771) |#1|)) (-15 -1685 ((-2 (|:| -2275 |#1|) (|:| -2513 |#1|)) |#1| |#1|)) (-15 -2957 (|#1| |#1| |#1|)) (-15 -2946 (|#1| |#1| |#1|)) (-15 -1713 (|#1| |#1|)) (-15 ** (|#1| |#1| (-566))) (-15 * (|#1| |#1| (-409 (-566)))) (-15 * (|#1| (-409 (-566)) |#1|)) (-15 -3783 (|#1| (-409 (-566)))) (-15 -1348 ((-538) |#1|)) (-15 -1348 ((-169 (-225)) |#1|)) (-15 -1348 ((-169 (-381)) |#1|)) (-15 -2109 (|#1| |#1|)) (-15 -2085 (|#1| |#1|)) (-15 -2098 (|#1| |#1|)) (-15 -2166 (|#1| |#1|)) (-15 -2153 (|#1| |#1|)) (-15 -2180 (|#1| |#1|)) (-15 -4104 (|#1| |#1|)) (-15 -2240 (|#1| |#1|)) (-15 -4114 (|#1| |#1|)) (-15 -4166 (|#1| |#1|)) (-15 -4155 (|#1| |#1|)) (-15 -4177 (|#1| |#1|)) (-15 -3651 (|#1| |#1|)) (-15 -2561 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -4361 (|#1|)) (-15 ** (|#1| |#1| (-409 (-566)))) (-15 -3240 ((-420 (-1171 |#1|)) (-1171 |#1|))) (-15 -4303 ((-420 (-1171 |#1|)) (-1171 |#1|))) (-15 -3717 ((-3 (-644 (-1171 |#1|)) "failed") (-644 (-1171 |#1|)) (-1171 |#1|))) (-15 -1521 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -4204 ((-409 (-566)) |#1|)) (-15 -1942 ((-112) |#1|)) (-15 -1777 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2428 (|#2| |#1|)) (-15 -2086 (|#1| |#1|)) (-15 -2994 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2358 (|#1| |#1|)) (-15 -3536 (|#1|)) (-15 -1348 ((-892 (-381)) |#1|)) (-15 -1348 ((-892 (-566)) |#1|)) (-15 -2062 ((-889 (-381) |#1|) |#1| (-892 (-381)) (-889 (-381) |#1|))) (-15 -2062 ((-889 (-566) |#1|) |#1| (-892 (-566)) (-889 (-566) |#1|))) (-15 -1301 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3561 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3561 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -1676 ((-3 |#1| "failed") (-409 (-1171 |#2|)))) (-15 -1662 ((-1171 |#2|) |#1|)) (-15 -1348 (|#1| (-1171 |#2|))) (-15 -1676 (|#1| (-1171 |#2|))) (-15 -1616 ((-1171 |#2|))) (-15 -3577 ((-689 |#2|) (-689 |#1|))) (-15 -3577 ((-2 (|:| -4227 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 |#1|) (-1264 |#1|))) (-15 -3577 ((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 |#1|) (-1264 |#1|))) (-15 -3577 ((-689 (-566)) (-689 |#1|))) (-15 -4307 ((-3 |#2| "failed") |#1|)) (-15 -4205 (|#2| |#1|)) (-15 -4205 ((-409 (-566)) |#1|)) (-15 -4307 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -4205 ((-566) |#1|)) (-15 -4307 ((-3 (-566) "failed") |#1|)) (-15 -1348 ((-1171 |#2|) |#1|)) (-15 -3652 (|#2|)) (-15 -1348 (|#1| (-1264 |#2|))) (-15 -1348 ((-1264 |#2|) |#1|)) (-15 -2154 ((-689 |#2|) (-1264 |#1|))) (-15 -2154 ((-1264 |#2|) |#1|)) (-15 -1627 ((-1171 |#2|) |#1|)) (-15 -1820 ((-1171 |#2|) |#1|)) (-15 -3652 (|#2| (-1264 |#1|))) (-15 -2154 ((-689 |#2|) (-1264 |#1|) (-1264 |#1|))) (-15 -2154 ((-1264 |#2|) |#1| (-1264 |#1|))) (-15 -1577 (|#2| |#1|)) (-15 -3837 (|#2| |#1|)) (-15 -4313 ((-921))) (-15 -3783 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2107 ((-771))) (-15 -3783 (|#1| (-566))) (-15 ** (|#1| |#1| (-771))) (-15 -1878 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-921))) (-15 -3053 (|#1| |#1| |#1|)) (-15 -3053 (|#1| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-921) |#1|)) (-15 -3041 (|#1| |#1| |#1|)) (-15 -3117 ((-112) |#1| |#1|)) (-15 -3783 ((-862) |#1|)) (-15 -2947 ((-112) |#1| |#1|))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) 102 (-2809 (|has| |#1| (-558)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))))) (-3991 (($ $) 103 (-2809 (|has| |#1| (-558)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))))) (-2388 (((-112) $) 105 (-2809 (|has| |#1| (-558)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))))) (-1872 (((-689 |#1|) (-1264 $)) 53) (((-689 |#1|)) 68)) (-3837 ((|#1| $) 59)) (-4114 (($ $) 229 (|has| |#1| (-1199)))) (-2109 (($ $) 212 (|has| |#1| (-1199)))) (-3778 (((-1187 (-921) (-771)) (-566)) 155 (|has| |#1| (-351)))) (-4175 (((-3 $ "failed") $ $) 20)) (-1477 (((-420 (-1171 $)) (-1171 $)) 243 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))))) (-1550 (($ $) 122 (-2809 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-365))))) (-3184 (((-420 $) $) 123 (-2809 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-365))))) (-3731 (($ $) 242 (-12 (|has| |#1| (-1002)) (|has| |#1| (-1199))))) (-3717 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) 246 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))))) (-2837 (((-112) $ $) 113 (|has| |#1| (-308)))) (-1970 (((-771)) 96 (|has| |#1| (-370)))) (-2240 (($ $) 228 (|has| |#1| (-1199)))) (-2085 (($ $) 213 (|has| |#1| (-1199)))) (-4134 (($ $) 227 (|has| |#1| (-1199)))) (-2129 (($ $) 214 (|has| |#1| (-1199)))) (-3012 (($) 18 T CONST)) (-4307 (((-3 (-566) "failed") $) 178 (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) 176 (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) 173)) (-4205 (((-566) $) 177 (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) 175 (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) 174)) (-2392 (($ (-1264 |#1|) (-1264 $)) 55) (($ (-1264 |#1|)) 71)) (-1910 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| |#1| (-351)))) (-2946 (($ $ $) 117 (|has| |#1| (-308)))) (-4360 (((-689 |#1|) $ (-1264 $)) 60) (((-689 |#1|) $) 66)) (-3577 (((-689 (-566)) (-689 $)) 172 (|has| |#1| (-639 (-566)))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) 171 (|has| |#1| (-639 (-566)))) (((-2 (|:| -4227 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) 170) (((-689 |#1|) (-689 $)) 169)) (-1676 (($ (-1171 |#1|)) 166) (((-3 $ "failed") (-409 (-1171 |#1|))) 163 (|has| |#1| (-365)))) (-1878 (((-3 $ "failed") $) 37)) (-3742 ((|#1| $) 254)) (-1521 (((-3 (-409 (-566)) "failed") $) 247 (|has| |#1| (-547)))) (-1942 (((-112) $) 249 (|has| |#1| (-547)))) (-4204 (((-409 (-566)) $) 248 (|has| |#1| (-547)))) (-4313 (((-921)) 61)) (-1552 (($) 99 (|has| |#1| (-370)))) (-2957 (($ $ $) 116 (|has| |#1| (-308)))) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) 111 (|has| |#1| (-308)))) (-2781 (($) 157 (|has| |#1| (-351)))) (-3506 (((-112) $) 158 (|has| |#1| (-351)))) (-3369 (($ $ (-771)) 149 (|has| |#1| (-351))) (($ $) 148 (|has| |#1| (-351)))) (-3268 (((-112) $) 124 (-2809 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-365))))) (-1777 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 250 (-12 (|has| |#1| (-1059)) (|has| |#1| (-1199))))) (-4361 (($) 239 (|has| |#1| (-1199)))) (-2062 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 262 (|has| |#1| (-886 (-566)))) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 261 (|has| |#1| (-886 (-381))))) (-3254 (((-921) $) 160 (|has| |#1| (-351))) (((-833 (-921)) $) 146 (|has| |#1| (-351)))) (-3934 (((-112) $) 35)) (-2140 (($ $ (-566)) 241 (-12 (|has| |#1| (-1002)) (|has| |#1| (-1199))))) (-1577 ((|#1| $) 58)) (-4363 (((-3 $ "failed") $) 150 (|has| |#1| (-351)))) (-3775 (((-3 (-644 $) "failed") (-644 $) $) 120 (|has| |#1| (-308)))) (-1627 (((-1171 |#1|) $) 51 (|has| |#1| (-365)))) (-1301 (($ (-1 |#1| |#1|) $) 263)) (-3681 (((-921) $) 98 (|has| |#1| (-370)))) (-3651 (($ $) 236 (|has| |#1| (-1199)))) (-1662 (((-1171 |#1|) $) 164)) (-2167 (($ (-644 $)) 109 (-2809 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909))))) (($ $ $) 108 (-2809 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))))) (-4117 (((-1157) $) 10)) (-1713 (($ $) 125 (|has| |#1| (-365)))) (-1761 (($) 151 (|has| |#1| (-351)) CONST)) (-2178 (($ (-921)) 97 (|has| |#1| (-370)))) (-3536 (($) 258)) (-3753 ((|#1| $) 255)) (-4035 (((-1119) $) 11)) (-3441 (($) 168)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) 110 (-2809 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))))) (-2214 (($ (-644 $)) 107 (-2809 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909))))) (($ $ $) 106 (-2809 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))))) (-1548 (((-644 (-2 (|:| -3719 (-566)) (|:| -2852 (-566))))) 154 (|has| |#1| (-351)))) (-4303 (((-420 (-1171 $)) (-1171 $)) 245 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))))) (-3240 (((-420 (-1171 $)) (-1171 $)) 244 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))))) (-3719 (((-420 $) $) 121 (-2809 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-365))))) (-3148 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119 (|has| |#1| (-308))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 118 (|has| |#1| (-308)))) (-2994 (((-3 $ "failed") $ |#1|) 253 (|has| |#1| (-558))) (((-3 $ "failed") $ $) 101 (-2809 (|has| |#1| (-558)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))))) (-3161 (((-3 (-644 $) "failed") (-644 $) $) 112 (|has| |#1| (-308)))) (-2561 (($ $) 237 (|has| |#1| (-1199)))) (-2055 (($ $ (-644 |#1|) (-644 |#1|)) 269 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 268 (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) 267 (|has| |#1| (-310 |#1|))) (($ $ (-644 (-295 |#1|))) 266 (|has| |#1| (-310 |#1|))) (($ $ (-644 (-1175)) (-644 |#1|)) 265 (|has| |#1| (-516 (-1175) |#1|))) (($ $ (-1175) |#1|) 264 (|has| |#1| (-516 (-1175) |#1|)))) (-3039 (((-771) $) 114 (|has| |#1| (-308)))) (-4390 (($ $ |#1|) 270 (|has| |#1| (-287 |#1| |#1|)))) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) 115 (|has| |#1| (-308)))) (-3652 ((|#1| (-1264 $)) 54) ((|#1|) 67)) (-1437 (((-771) $) 159 (|has| |#1| (-351))) (((-3 (-771) "failed") $ $) 147 (|has| |#1| (-351)))) (-3561 (($ $ (-1 |#1| |#1|) (-771)) 131) (($ $ (-1 |#1| |#1|)) 130) (($ $ (-644 (-1175)) (-644 (-771))) 138 (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) 139 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) 140 (|has| |#1| (-900 (-1175)))) (($ $ (-1175)) 141 (|has| |#1| (-900 (-1175)))) (($ $ (-771)) 143 (-2809 (-2432 (|has| |#1| (-365)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-2432 (|has| |#1| (-233)) (|has| |#1| (-365))))) (($ $) 145 (-2809 (-2432 (|has| |#1| (-365)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-2432 (|has| |#1| (-233)) (|has| |#1| (-365)))))) (-3213 (((-689 |#1|) (-1264 $) (-1 |#1| |#1|)) 162 (|has| |#1| (-365)))) (-1616 (((-1171 |#1|)) 167)) (-4144 (($ $) 226 (|has| |#1| (-1199)))) (-2141 (($ $) 215 (|has| |#1| (-1199)))) (-3974 (($) 156 (|has| |#1| (-351)))) (-4124 (($ $) 225 (|has| |#1| (-1199)))) (-2118 (($ $) 216 (|has| |#1| (-1199)))) (-4104 (($ $) 224 (|has| |#1| (-1199)))) (-2098 (($ $) 217 (|has| |#1| (-1199)))) (-2154 (((-1264 |#1|) $ (-1264 $)) 57) (((-689 |#1|) (-1264 $) (-1264 $)) 56) (((-1264 |#1|) $) 73) (((-689 |#1|) (-1264 $)) 72)) (-1348 (((-1264 |#1|) $) 70) (($ (-1264 |#1|)) 69) (((-1171 |#1|) $) 179) (($ (-1171 |#1|)) 165) (((-892 (-566)) $) 260 (|has| |#1| (-614 (-892 (-566))))) (((-892 (-381)) $) 259 (|has| |#1| (-614 (-892 (-381))))) (((-169 (-381)) $) 211 (|has| |#1| (-1022))) (((-169 (-225)) $) 210 (|has| |#1| (-1022))) (((-538) $) 209 (|has| |#1| (-614 (-538))))) (-2358 (($ $) 257)) (-1656 (((-3 (-1264 $) "failed") (-689 $)) 153 (-2809 (-2432 (|has| $ (-145)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))) (|has| |#1| (-351))))) (-3638 (($ |#1| |#1|) 256)) (-3783 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 44) (($ (-409 (-566))) 95 (-2809 (|has| |#1| (-365)) (|has| |#1| (-1038 (-409 (-566)))))) (($ $) 100 (-2809 (|has| |#1| (-558)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))))) (-3144 (($ $) 152 (|has| |#1| (-351))) (((-3 $ "failed") $) 50 (-2809 (-2432 (|has| $ (-145)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))) (|has| |#1| (-145))))) (-1820 (((-1171 |#1|) $) 52)) (-2107 (((-771)) 32 T CONST)) (-3117 (((-112) $ $) 9)) (-2365 (((-1264 $)) 74)) (-4177 (($ $) 235 (|has| |#1| (-1199)))) (-2180 (($ $) 223 (|has| |#1| (-1199)))) (-2695 (((-112) $ $) 104 (-2809 (|has| |#1| (-558)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))))) (-4155 (($ $) 234 (|has| |#1| (-1199)))) (-2153 (($ $) 222 (|has| |#1| (-1199)))) (-4198 (($ $) 233 (|has| |#1| (-1199)))) (-2212 (($ $) 221 (|has| |#1| (-1199)))) (-2428 ((|#1| $) 251 (|has| |#1| (-1199)))) (-2976 (($ $) 232 (|has| |#1| (-1199)))) (-2227 (($ $) 220 (|has| |#1| (-1199)))) (-4188 (($ $) 231 (|has| |#1| (-1199)))) (-2196 (($ $) 219 (|has| |#1| (-1199)))) (-4166 (($ $) 230 (|has| |#1| (-1199)))) (-2166 (($ $) 218 (|has| |#1| (-1199)))) (-2086 (($ $) 252 (|has| |#1| (-1059)))) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-2875 (($ $ (-1 |#1| |#1|) (-771)) 133) (($ $ (-1 |#1| |#1|)) 132) (($ $ (-644 (-1175)) (-644 (-771))) 134 (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) 135 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) 136 (|has| |#1| (-900 (-1175)))) (($ $ (-1175)) 137 (|has| |#1| (-900 (-1175)))) (($ $ (-771)) 142 (-2809 (-2432 (|has| |#1| (-365)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-2432 (|has| |#1| (-233)) (|has| |#1| (-365))))) (($ $) 144 (-2809 (-2432 (|has| |#1| (-365)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-2432 (|has| |#1| (-233)) (|has| |#1| (-365)))))) (-2947 (((-112) $ $) 6)) (-3065 (($ $ $) 129 (|has| |#1| (-365)))) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-409 (-566))) 240 (-12 (|has| |#1| (-1002)) (|has| |#1| (-1199)))) (($ $ $) 238 (|has| |#1| (-1199))) (($ $ (-566)) 126 (|has| |#1| (-365)))) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-409 (-566)) $) 128 (|has| |#1| (-365))) (($ $ (-409 (-566))) 127 (|has| |#1| (-365))))) +((-2988 (((-112) $ $) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 16) (($ (-1180)) NIL) (((-1180) $) NIL)) (-1377 (((-644 (-1134)) $) 10)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) +(((-161) (-13 (-1082) (-10 -8 (-15 -1377 ((-644 (-1134)) $))))) (T -161)) +((-1377 (*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-161))))) +(-13 (-1082) (-10 -8 (-15 -1377 ((-644 (-1134)) $)))) +((-2988 (((-112) $ $) NIL)) (-2712 (($ (-566)) 14) (($ $ $) 15)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 18)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) 9))) +(((-162) (-13 (-1099) (-10 -8 (-15 -2712 ($ (-566))) (-15 -2712 ($ $ $))))) (T -162)) +((-2712 (*1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-162)))) (-2712 (*1 *1 *1 *1) (-5 *1 (-162)))) +(-13 (-1099) (-10 -8 (-15 -2712 ($ (-566))) (-15 -2712 ($ $ $)))) +((-1566 (((-114) (-1175)) 102))) +(((-163) (-10 -7 (-15 -1566 ((-114) (-1175))))) (T -163)) +((-1566 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-114)) (-5 *1 (-163))))) +(-10 -7 (-15 -1566 ((-114) (-1175)))) +((-2066 ((|#3| |#3|) 19))) +(((-164 |#1| |#2| |#3|) (-10 -7 (-15 -2066 (|#3| |#3|))) (-1049) (-1240 |#1|) (-1240 |#2|)) (T -164)) +((-2066 (*1 *2 *2) (-12 (-4 *3 (-1049)) (-4 *4 (-1240 *3)) (-5 *1 (-164 *3 *4 *2)) (-4 *2 (-1240 *4))))) +(-10 -7 (-15 -2066 (|#3| |#3|))) +((-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) 223)) (-3833 ((|#2| $) 102)) (-3963 (($ $) 256)) (-3630 (($ $) 250)) (-4066 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) 47)) (-3941 (($ $) 254)) (-3602 (($ $) 248)) (-2229 (((-3 (-566) "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL) (((-3 |#2| "failed") $) 146)) (-4158 (((-566) $) NIL) (((-409 (-566)) $) NIL) ((|#2| $) 144)) (-2933 (($ $ $) 229)) (-4089 (((-689 (-566)) (-689 $)) NIL) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL) (((-2 (|:| -3361 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 $) (-1264 $)) 160) (((-689 |#2|) (-689 $)) 154)) (-2873 (($ (-1171 |#2|)) 125) (((-3 $ "failed") (-409 (-1171 |#2|))) NIL)) (-3245 (((-3 $ "failed") $) 214)) (-4391 (((-3 (-409 (-566)) "failed") $) 204)) (-3407 (((-112) $) 199)) (-1786 (((-409 (-566)) $) 202)) (-2755 (((-921)) 96)) (-2945 (($ $ $) 231)) (-3540 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 270)) (-2281 (($) 245)) (-2926 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 193) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 198)) (-2064 ((|#2| $) 100)) (-3468 (((-1171 |#2|) $) 127)) (-2319 (($ (-1 |#2| |#2|) $) 108)) (-3619 (($ $) 247)) (-2860 (((-1171 |#2|) $) 126)) (-2748 (($ $) 207)) (-1511 (($) 103)) (-2010 (((-420 (-1171 $)) (-1171 $)) 95)) (-1893 (((-420 (-1171 $)) (-1171 $)) 64)) (-2978 (((-3 $ "failed") $ |#2|) 209) (((-3 $ "failed") $ $) 212)) (-3521 (($ $) 246)) (-4357 (((-771) $) 226)) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) 236)) (-4068 ((|#2| (-1264 $)) NIL) ((|#2|) 98)) (-3629 (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-1 |#2| |#2|)) 119) (($ $ (-644 (-1175)) (-644 (-771))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175)) NIL) (($ $ (-771)) NIL) (($ $) NIL)) (-1705 (((-1171 |#2|)) 120)) (-3952 (($ $) 255)) (-3618 (($ $) 249)) (-3350 (((-1264 |#2|) $ (-1264 $)) 136) (((-689 |#2|) (-1264 $) (-1264 $)) NIL) (((-1264 |#2|) $) 116) (((-689 |#2|) (-1264 $)) NIL)) (-2376 (((-1264 |#2|) $) NIL) (($ (-1264 |#2|)) NIL) (((-1171 |#2|) $) NIL) (($ (-1171 |#2|)) NIL) (((-892 (-566)) $) 184) (((-892 (-381)) $) 188) (((-169 (-381)) $) 172) (((-169 (-225)) $) 167) (((-538) $) 180)) (-3357 (($ $) 104)) (-3152 (((-862) $) 143) (($ (-566)) NIL) (($ |#2|) NIL) (($ (-409 (-566))) NIL) (($ $) NIL)) (-2318 (((-1171 |#2|) $) 32)) (-2593 (((-771)) 106)) (-3044 (((-112) $ $) 13)) (-4032 (($ $) 259)) (-3892 (($ $) 253)) (-4008 (($ $) 257)) (-3684 (($ $) 251)) (-1684 ((|#2| $) 242)) (-4020 (($ $) 258)) (-3879 (($ $) 252)) (-1358 (($ $) 162)) (-2914 (((-112) $ $) 110)) (-3012 (($ $) 112) (($ $ $) NIL)) (-3002 (($ $ $) 111)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-409 (-566))) 277) (($ $ $) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 118) (($ $ $) 147) (($ $ |#2|) NIL) (($ |#2| $) 114) (($ (-409 (-566)) $) NIL) (($ $ (-409 (-566))) NIL))) +(((-165 |#1| |#2|) (-10 -8 (-15 -3629 (|#1| |#1|)) (-15 -3629 (|#1| |#1| (-771))) (-15 -3152 (|#1| |#1|)) (-15 -2978 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2112 ((-2 (|:| -2896 |#1|) (|:| -4401 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3629 (|#1| |#1| (-1175))) (-15 -3629 (|#1| |#1| (-644 (-1175)))) (-15 -3629 (|#1| |#1| (-1175) (-771))) (-15 -3629 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -4357 ((-771) |#1|)) (-15 -4100 ((-2 (|:| -2631 |#1|) (|:| -3264 |#1|)) |#1| |#1|)) (-15 -2945 (|#1| |#1| |#1|)) (-15 -2933 (|#1| |#1| |#1|)) (-15 -2748 (|#1| |#1|)) (-15 ** (|#1| |#1| (-566))) (-15 * (|#1| |#1| (-409 (-566)))) (-15 * (|#1| (-409 (-566)) |#1|)) (-15 -3152 (|#1| (-409 (-566)))) (-15 -2376 ((-538) |#1|)) (-15 -2376 ((-169 (-225)) |#1|)) (-15 -2376 ((-169 (-381)) |#1|)) (-15 -3630 (|#1| |#1|)) (-15 -3602 (|#1| |#1|)) (-15 -3618 (|#1| |#1|)) (-15 -3879 (|#1| |#1|)) (-15 -3684 (|#1| |#1|)) (-15 -3892 (|#1| |#1|)) (-15 -3952 (|#1| |#1|)) (-15 -3941 (|#1| |#1|)) (-15 -3963 (|#1| |#1|)) (-15 -4020 (|#1| |#1|)) (-15 -4008 (|#1| |#1|)) (-15 -4032 (|#1| |#1|)) (-15 -3619 (|#1| |#1|)) (-15 -3521 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2281 (|#1|)) (-15 ** (|#1| |#1| (-409 (-566)))) (-15 -1893 ((-420 (-1171 |#1|)) (-1171 |#1|))) (-15 -2010 ((-420 (-1171 |#1|)) (-1171 |#1|))) (-15 -4066 ((-3 (-644 (-1171 |#1|)) "failed") (-644 (-1171 |#1|)) (-1171 |#1|))) (-15 -4391 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -1786 ((-409 (-566)) |#1|)) (-15 -3407 ((-112) |#1|)) (-15 -3540 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -1684 (|#2| |#1|)) (-15 -1358 (|#1| |#1|)) (-15 -2978 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3357 (|#1| |#1|)) (-15 -1511 (|#1|)) (-15 -2376 ((-892 (-381)) |#1|)) (-15 -2376 ((-892 (-566)) |#1|)) (-15 -2926 ((-889 (-381) |#1|) |#1| (-892 (-381)) (-889 (-381) |#1|))) (-15 -2926 ((-889 (-566) |#1|) |#1| (-892 (-566)) (-889 (-566) |#1|))) (-15 -2319 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3629 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3629 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -2873 ((-3 |#1| "failed") (-409 (-1171 |#2|)))) (-15 -2860 ((-1171 |#2|) |#1|)) (-15 -2376 (|#1| (-1171 |#2|))) (-15 -2873 (|#1| (-1171 |#2|))) (-15 -1705 ((-1171 |#2|))) (-15 -4089 ((-689 |#2|) (-689 |#1|))) (-15 -4089 ((-2 (|:| -3361 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 |#1|) (-1264 |#1|))) (-15 -4089 ((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 |#1|) (-1264 |#1|))) (-15 -4089 ((-689 (-566)) (-689 |#1|))) (-15 -2229 ((-3 |#2| "failed") |#1|)) (-15 -4158 (|#2| |#1|)) (-15 -4158 ((-409 (-566)) |#1|)) (-15 -2229 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -4158 ((-566) |#1|)) (-15 -2229 ((-3 (-566) "failed") |#1|)) (-15 -2376 ((-1171 |#2|) |#1|)) (-15 -4068 (|#2|)) (-15 -2376 (|#1| (-1264 |#2|))) (-15 -2376 ((-1264 |#2|) |#1|)) (-15 -3350 ((-689 |#2|) (-1264 |#1|))) (-15 -3350 ((-1264 |#2|) |#1|)) (-15 -3468 ((-1171 |#2|) |#1|)) (-15 -2318 ((-1171 |#2|) |#1|)) (-15 -4068 (|#2| (-1264 |#1|))) (-15 -3350 ((-689 |#2|) (-1264 |#1|) (-1264 |#1|))) (-15 -3350 ((-1264 |#2|) |#1| (-1264 |#1|))) (-15 -2064 (|#2| |#1|)) (-15 -3833 (|#2| |#1|)) (-15 -2755 ((-921))) (-15 -3152 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2593 ((-771))) (-15 -3152 (|#1| (-566))) (-15 ** (|#1| |#1| (-771))) (-15 -3245 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-921))) (-15 -3012 (|#1| |#1| |#1|)) (-15 -3012 (|#1| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-921) |#1|)) (-15 -3002 (|#1| |#1| |#1|)) (-15 -3044 ((-112) |#1| |#1|)) (-15 -3152 ((-862) |#1|)) (-15 -2914 ((-112) |#1| |#1|))) (-166 |#2|) (-172)) (T -165)) +((-2593 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-771)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-2755 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-921)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-4068 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2)))) (-1705 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1171 *4)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4))))) +(-10 -8 (-15 -3629 (|#1| |#1|)) (-15 -3629 (|#1| |#1| (-771))) (-15 -3152 (|#1| |#1|)) (-15 -2978 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2112 ((-2 (|:| -2896 |#1|) (|:| -4401 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3629 (|#1| |#1| (-1175))) (-15 -3629 (|#1| |#1| (-644 (-1175)))) (-15 -3629 (|#1| |#1| (-1175) (-771))) (-15 -3629 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -4357 ((-771) |#1|)) (-15 -4100 ((-2 (|:| -2631 |#1|) (|:| -3264 |#1|)) |#1| |#1|)) (-15 -2945 (|#1| |#1| |#1|)) (-15 -2933 (|#1| |#1| |#1|)) (-15 -2748 (|#1| |#1|)) (-15 ** (|#1| |#1| (-566))) (-15 * (|#1| |#1| (-409 (-566)))) (-15 * (|#1| (-409 (-566)) |#1|)) (-15 -3152 (|#1| (-409 (-566)))) (-15 -2376 ((-538) |#1|)) (-15 -2376 ((-169 (-225)) |#1|)) (-15 -2376 ((-169 (-381)) |#1|)) (-15 -3630 (|#1| |#1|)) (-15 -3602 (|#1| |#1|)) (-15 -3618 (|#1| |#1|)) (-15 -3879 (|#1| |#1|)) (-15 -3684 (|#1| |#1|)) (-15 -3892 (|#1| |#1|)) (-15 -3952 (|#1| |#1|)) (-15 -3941 (|#1| |#1|)) (-15 -3963 (|#1| |#1|)) (-15 -4020 (|#1| |#1|)) (-15 -4008 (|#1| |#1|)) (-15 -4032 (|#1| |#1|)) (-15 -3619 (|#1| |#1|)) (-15 -3521 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2281 (|#1|)) (-15 ** (|#1| |#1| (-409 (-566)))) (-15 -1893 ((-420 (-1171 |#1|)) (-1171 |#1|))) (-15 -2010 ((-420 (-1171 |#1|)) (-1171 |#1|))) (-15 -4066 ((-3 (-644 (-1171 |#1|)) "failed") (-644 (-1171 |#1|)) (-1171 |#1|))) (-15 -4391 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -1786 ((-409 (-566)) |#1|)) (-15 -3407 ((-112) |#1|)) (-15 -3540 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -1684 (|#2| |#1|)) (-15 -1358 (|#1| |#1|)) (-15 -2978 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3357 (|#1| |#1|)) (-15 -1511 (|#1|)) (-15 -2376 ((-892 (-381)) |#1|)) (-15 -2376 ((-892 (-566)) |#1|)) (-15 -2926 ((-889 (-381) |#1|) |#1| (-892 (-381)) (-889 (-381) |#1|))) (-15 -2926 ((-889 (-566) |#1|) |#1| (-892 (-566)) (-889 (-566) |#1|))) (-15 -2319 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3629 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3629 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -2873 ((-3 |#1| "failed") (-409 (-1171 |#2|)))) (-15 -2860 ((-1171 |#2|) |#1|)) (-15 -2376 (|#1| (-1171 |#2|))) (-15 -2873 (|#1| (-1171 |#2|))) (-15 -1705 ((-1171 |#2|))) (-15 -4089 ((-689 |#2|) (-689 |#1|))) (-15 -4089 ((-2 (|:| -3361 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 |#1|) (-1264 |#1|))) (-15 -4089 ((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 |#1|) (-1264 |#1|))) (-15 -4089 ((-689 (-566)) (-689 |#1|))) (-15 -2229 ((-3 |#2| "failed") |#1|)) (-15 -4158 (|#2| |#1|)) (-15 -4158 ((-409 (-566)) |#1|)) (-15 -2229 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -4158 ((-566) |#1|)) (-15 -2229 ((-3 (-566) "failed") |#1|)) (-15 -2376 ((-1171 |#2|) |#1|)) (-15 -4068 (|#2|)) (-15 -2376 (|#1| (-1264 |#2|))) (-15 -2376 ((-1264 |#2|) |#1|)) (-15 -3350 ((-689 |#2|) (-1264 |#1|))) (-15 -3350 ((-1264 |#2|) |#1|)) (-15 -3468 ((-1171 |#2|) |#1|)) (-15 -2318 ((-1171 |#2|) |#1|)) (-15 -4068 (|#2| (-1264 |#1|))) (-15 -3350 ((-689 |#2|) (-1264 |#1|) (-1264 |#1|))) (-15 -3350 ((-1264 |#2|) |#1| (-1264 |#1|))) (-15 -2064 (|#2| |#1|)) (-15 -3833 (|#2| |#1|)) (-15 -2755 ((-921))) (-15 -3152 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2593 ((-771))) (-15 -3152 (|#1| (-566))) (-15 ** (|#1| |#1| (-771))) (-15 -3245 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-921))) (-15 -3012 (|#1| |#1| |#1|)) (-15 -3012 (|#1| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-921) |#1|)) (-15 -3002 (|#1| |#1| |#1|)) (-15 -3044 ((-112) |#1| |#1|)) (-15 -3152 ((-862) |#1|)) (-15 -2914 ((-112) |#1| |#1|))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) 102 (-2768 (|has| |#1| (-558)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))))) (-2161 (($ $) 103 (-2768 (|has| |#1| (-558)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))))) (-2345 (((-112) $) 105 (-2768 (|has| |#1| (-558)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))))) (-3899 (((-689 |#1|) (-1264 $)) 53) (((-689 |#1|)) 68)) (-3833 ((|#1| $) 59)) (-3963 (($ $) 229 (|has| |#1| (-1199)))) (-3630 (($ $) 212 (|has| |#1| (-1199)))) (-2894 (((-1187 (-921) (-771)) (-566)) 155 (|has| |#1| (-351)))) (-3967 (((-3 $ "failed") $ $) 20)) (-2292 (((-420 (-1171 $)) (-1171 $)) 243 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))))) (-1378 (($ $) 122 (-2768 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-365))))) (-1364 (((-420 $) $) 123 (-2768 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-365))))) (-1635 (($ $) 242 (-12 (|has| |#1| (-1002)) (|has| |#1| (-1199))))) (-4066 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) 246 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))))) (-2085 (((-112) $ $) 113 (|has| |#1| (-308)))) (-3870 (((-771)) 96 (|has| |#1| (-370)))) (-3941 (($ $) 228 (|has| |#1| (-1199)))) (-3602 (($ $) 213 (|has| |#1| (-1199)))) (-3986 (($ $) 227 (|has| |#1| (-1199)))) (-3656 (($ $) 214 (|has| |#1| (-1199)))) (-2463 (($) 18 T CONST)) (-2229 (((-3 (-566) "failed") $) 178 (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) 176 (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) 173)) (-4158 (((-566) $) 177 (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) 175 (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) 174)) (-1563 (($ (-1264 |#1|) (-1264 $)) 55) (($ (-1264 |#1|)) 71)) (-2347 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| |#1| (-351)))) (-2933 (($ $ $) 117 (|has| |#1| (-308)))) (-3578 (((-689 |#1|) $ (-1264 $)) 60) (((-689 |#1|) $) 66)) (-4089 (((-689 (-566)) (-689 $)) 172 (|has| |#1| (-639 (-566)))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) 171 (|has| |#1| (-639 (-566)))) (((-2 (|:| -3361 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) 170) (((-689 |#1|) (-689 $)) 169)) (-2873 (($ (-1171 |#1|)) 166) (((-3 $ "failed") (-409 (-1171 |#1|))) 163 (|has| |#1| (-365)))) (-3245 (((-3 $ "failed") $) 37)) (-1646 ((|#1| $) 254)) (-4391 (((-3 (-409 (-566)) "failed") $) 247 (|has| |#1| (-547)))) (-3407 (((-112) $) 249 (|has| |#1| (-547)))) (-1786 (((-409 (-566)) $) 248 (|has| |#1| (-547)))) (-2755 (((-921)) 61)) (-2715 (($) 99 (|has| |#1| (-370)))) (-2945 (($ $ $) 116 (|has| |#1| (-308)))) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) 111 (|has| |#1| (-308)))) (-3359 (($) 157 (|has| |#1| (-351)))) (-2466 (((-112) $) 158 (|has| |#1| (-351)))) (-1574 (($ $ (-771)) 149 (|has| |#1| (-351))) (($ $) 148 (|has| |#1| (-351)))) (-1615 (((-112) $) 124 (-2768 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-365))))) (-3540 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 250 (-12 (|has| |#1| (-1059)) (|has| |#1| (-1199))))) (-2281 (($) 239 (|has| |#1| (-1199)))) (-2926 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 262 (|has| |#1| (-886 (-566)))) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 261 (|has| |#1| (-886 (-381))))) (-2679 (((-921) $) 160 (|has| |#1| (-351))) (((-833 (-921)) $) 146 (|has| |#1| (-351)))) (-2389 (((-112) $) 35)) (-1575 (($ $ (-566)) 241 (-12 (|has| |#1| (-1002)) (|has| |#1| (-1199))))) (-2064 ((|#1| $) 58)) (-2621 (((-3 $ "failed") $) 150 (|has| |#1| (-351)))) (-3816 (((-3 (-644 $) "failed") (-644 $) $) 120 (|has| |#1| (-308)))) (-3468 (((-1171 |#1|) $) 51 (|has| |#1| (-365)))) (-2319 (($ (-1 |#1| |#1|) $) 263)) (-1866 (((-921) $) 98 (|has| |#1| (-370)))) (-3619 (($ $) 236 (|has| |#1| (-1199)))) (-2860 (((-1171 |#1|) $) 164)) (-2128 (($ (-644 $)) 109 (-2768 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909))))) (($ $ $) 108 (-2768 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))))) (-3380 (((-1157) $) 10)) (-2748 (($ $) 125 (|has| |#1| (-365)))) (-3289 (($) 151 (|has| |#1| (-351)) CONST)) (-2835 (($ (-921)) 97 (|has| |#1| (-370)))) (-1511 (($) 258)) (-1657 ((|#1| $) 255)) (-4072 (((-1119) $) 11)) (-3302 (($) 168)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) 110 (-2768 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))))) (-2164 (($ (-644 $)) 107 (-2768 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909))))) (($ $ $) 106 (-2768 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))))) (-2442 (((-644 (-2 (|:| -1624 (-566)) (|:| -2201 (-566))))) 154 (|has| |#1| (-351)))) (-2010 (((-420 (-1171 $)) (-1171 $)) 245 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))))) (-1893 (((-420 (-1171 $)) (-1171 $)) 244 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))))) (-1624 (((-420 $) $) 121 (-2768 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-365))))) (-3005 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119 (|has| |#1| (-308))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) 118 (|has| |#1| (-308)))) (-2978 (((-3 $ "failed") $ |#1|) 253 (|has| |#1| (-558))) (((-3 $ "failed") $ $) 101 (-2768 (|has| |#1| (-558)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))))) (-2915 (((-3 (-644 $) "failed") (-644 $) $) 112 (|has| |#1| (-308)))) (-3521 (($ $) 237 (|has| |#1| (-1199)))) (-2023 (($ $ (-644 |#1|) (-644 |#1|)) 269 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 268 (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) 267 (|has| |#1| (-310 |#1|))) (($ $ (-644 (-295 |#1|))) 266 (|has| |#1| (-310 |#1|))) (($ $ (-644 (-1175)) (-644 |#1|)) 265 (|has| |#1| (-516 (-1175) |#1|))) (($ $ (-1175) |#1|) 264 (|has| |#1| (-516 (-1175) |#1|)))) (-4357 (((-771) $) 114 (|has| |#1| (-308)))) (-1309 (($ $ |#1|) 270 (|has| |#1| (-287 |#1| |#1|)))) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) 115 (|has| |#1| (-308)))) (-4068 ((|#1| (-1264 $)) 54) ((|#1|) 67)) (-3169 (((-771) $) 159 (|has| |#1| (-351))) (((-3 (-771) "failed") $ $) 147 (|has| |#1| (-351)))) (-3629 (($ $ (-1 |#1| |#1|) (-771)) 131) (($ $ (-1 |#1| |#1|)) 130) (($ $ (-644 (-1175)) (-644 (-771))) 138 (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) 139 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) 140 (|has| |#1| (-900 (-1175)))) (($ $ (-1175)) 141 (|has| |#1| (-900 (-1175)))) (($ $ (-771)) 143 (-2768 (-2415 (|has| |#1| (-365)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-2415 (|has| |#1| (-233)) (|has| |#1| (-365))))) (($ $) 145 (-2768 (-2415 (|has| |#1| (-365)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-2415 (|has| |#1| (-233)) (|has| |#1| (-365)))))) (-3225 (((-689 |#1|) (-1264 $) (-1 |#1| |#1|)) 162 (|has| |#1| (-365)))) (-1705 (((-1171 |#1|)) 167)) (-3996 (($ $) 226 (|has| |#1| (-1199)))) (-3670 (($ $) 215 (|has| |#1| (-1199)))) (-4122 (($) 156 (|has| |#1| (-351)))) (-3976 (($ $) 225 (|has| |#1| (-1199)))) (-3643 (($ $) 216 (|has| |#1| (-1199)))) (-3952 (($ $) 224 (|has| |#1| (-1199)))) (-3618 (($ $) 217 (|has| |#1| (-1199)))) (-3350 (((-1264 |#1|) $ (-1264 $)) 57) (((-689 |#1|) (-1264 $) (-1264 $)) 56) (((-1264 |#1|) $) 73) (((-689 |#1|) (-1264 $)) 72)) (-2376 (((-1264 |#1|) $) 70) (($ (-1264 |#1|)) 69) (((-1171 |#1|) $) 179) (($ (-1171 |#1|)) 165) (((-892 (-566)) $) 260 (|has| |#1| (-614 (-892 (-566))))) (((-892 (-381)) $) 259 (|has| |#1| (-614 (-892 (-381))))) (((-169 (-381)) $) 211 (|has| |#1| (-1022))) (((-169 (-225)) $) 210 (|has| |#1| (-1022))) (((-538) $) 209 (|has| |#1| (-614 (-538))))) (-3357 (($ $) 257)) (-3391 (((-3 (-1264 $) "failed") (-689 $)) 153 (-2768 (-2415 (|has| $ (-145)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))) (|has| |#1| (-351))))) (-3608 (($ |#1| |#1|) 256)) (-3152 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 44) (($ (-409 (-566))) 95 (-2768 (|has| |#1| (-365)) (|has| |#1| (-1038 (-409 (-566)))))) (($ $) 100 (-2768 (|has| |#1| (-558)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))))) (-2633 (($ $) 152 (|has| |#1| (-351))) (((-3 $ "failed") $) 50 (-2768 (-2415 (|has| $ (-145)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))) (|has| |#1| (-145))))) (-2318 (((-1171 |#1|) $) 52)) (-2593 (((-771)) 32 T CONST)) (-3044 (((-112) $ $) 9)) (-2875 (((-1264 $)) 74)) (-4032 (($ $) 235 (|has| |#1| (-1199)))) (-3892 (($ $) 223 (|has| |#1| (-1199)))) (-3014 (((-112) $ $) 104 (-2768 (|has| |#1| (-558)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))))) (-4008 (($ $) 234 (|has| |#1| (-1199)))) (-3684 (($ $) 222 (|has| |#1| (-1199)))) (-4057 (($ $) 233 (|has| |#1| (-1199)))) (-3917 (($ $) 221 (|has| |#1| (-1199)))) (-1684 ((|#1| $) 251 (|has| |#1| (-1199)))) (-3964 (($ $) 232 (|has| |#1| (-1199)))) (-3929 (($ $) 220 (|has| |#1| (-1199)))) (-4044 (($ $) 231 (|has| |#1| (-1199)))) (-3904 (($ $) 219 (|has| |#1| (-1199)))) (-4020 (($ $) 230 (|has| |#1| (-1199)))) (-3879 (($ $) 218 (|has| |#1| (-1199)))) (-1358 (($ $) 252 (|has| |#1| (-1059)))) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-3497 (($ $ (-1 |#1| |#1|) (-771)) 133) (($ $ (-1 |#1| |#1|)) 132) (($ $ (-644 (-1175)) (-644 (-771))) 134 (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) 135 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) 136 (|has| |#1| (-900 (-1175)))) (($ $ (-1175)) 137 (|has| |#1| (-900 (-1175)))) (($ $ (-771)) 142 (-2768 (-2415 (|has| |#1| (-365)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-2415 (|has| |#1| (-233)) (|has| |#1| (-365))))) (($ $) 144 (-2768 (-2415 (|has| |#1| (-365)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-2415 (|has| |#1| (-233)) (|has| |#1| (-365)))))) (-2914 (((-112) $ $) 6)) (-3025 (($ $ $) 129 (|has| |#1| (-365)))) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-409 (-566))) 240 (-12 (|has| |#1| (-1002)) (|has| |#1| (-1199)))) (($ $ $) 238 (|has| |#1| (-1199))) (($ $ (-566)) 126 (|has| |#1| (-365)))) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-409 (-566)) $) 128 (|has| |#1| (-365))) (($ $ (-409 (-566))) 127 (|has| |#1| (-365))))) (((-166 |#1|) (-140) (-172)) (T -166)) -((-1577 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-3536 (*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2358 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-3638 (*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-3753 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-3742 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2994 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-558)))) (-2086 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1059)))) (-2428 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1199)))) (-1777 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-1059)) (-4 *3 (-1199)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-1942 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-547)) (-5 *2 (-112)))) (-4204 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-547)) (-5 *2 (-409 (-566))))) (-1521 (*1 *2 *1) (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-547)) (-5 *2 (-409 (-566)))))) -(-13 (-724 |t#1| (-1171 |t#1|)) (-413 |t#1|) (-231 |t#1|) (-340 |t#1|) (-402 |t#1|) (-884 |t#1|) (-379 |t#1|) (-172) (-10 -8 (-6 -3638) (-15 -3536 ($)) (-15 -2358 ($ $)) (-15 -3638 ($ |t#1| |t#1|)) (-15 -3753 (|t#1| $)) (-15 -3742 (|t#1| $)) (-15 -1577 (|t#1| $)) (IF (|has| |t#1| (-558)) (PROGN (-6 (-558)) (-15 -2994 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-308)) (-6 (-308)) |%noBranch|) (IF (|has| |t#1| (-6 -4413)) (-6 -4413) |%noBranch|) (IF (|has| |t#1| (-6 -4410)) (-6 -4410) |%noBranch|) (IF (|has| |t#1| (-365)) (-6 (-365)) |%noBranch|) (IF (|has| |t#1| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1022)) (PROGN (-6 (-614 (-169 (-225)))) (-6 (-614 (-169 (-381))))) |%noBranch|) (IF (|has| |t#1| (-1059)) (-15 -2086 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1199)) (PROGN (-6 (-1199)) (-15 -2428 (|t#1| $)) (IF (|has| |t#1| (-1002)) (-6 (-1002)) |%noBranch|) (IF (|has| |t#1| (-1059)) (-15 -1777 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-547)) (PROGN (-15 -1942 ((-112) $)) (-15 -4204 ((-409 (-566)) $)) (-15 -1521 ((-3 (-409 (-566)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-909)) (IF (|has| |t#1| (-308)) (-6 (-909)) |%noBranch|) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-38 |#1|) . T) ((-38 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-35) |has| |#1| (-1199)) ((-95) |has| |#1| (-1199)) ((-102) . T) ((-111 #0# #0#) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2809 (|has| |#1| (-351)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-616 #0#) -2809 (|has| |#1| (-1038 (-409 (-566)))) (|has| |#1| (-351)) (|has| |#1| (-365))) ((-616 (-566)) . T) ((-616 |#1|) . T) ((-616 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-613 (-862)) . T) ((-172) . T) ((-614 (-169 (-225))) |has| |#1| (-1022)) ((-614 (-169 (-381))) |has| |#1| (-1022)) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-614 (-892 (-381))) |has| |#1| (-614 (-892 (-381)))) ((-614 (-892 (-566))) |has| |#1| (-614 (-892 (-566)))) ((-614 #1=(-1171 |#1|)) . T) ((-231 |#1|) . T) ((-233) -2809 (|has| |#1| (-351)) (|has| |#1| (-233))) ((-243) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-285) |has| |#1| (-1199)) ((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-291) -2809 (|has| |#1| (-558)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-308) -2809 (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-365) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-404) |has| |#1| (-351)) ((-370) -2809 (|has| |#1| (-370)) (|has| |#1| (-351))) ((-351) |has| |#1| (-351)) ((-372 |#1| #1#) . T) ((-411 |#1| #1#) . T) ((-340 |#1|) . T) ((-379 |#1|) . T) ((-402 |#1|) . T) ((-413 |#1|) . T) ((-454) -2809 (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-495) |has| |#1| (-1199)) ((-516 (-1175) |#1|) |has| |#1| (-516 (-1175) |#1|)) ((-516 |#1| |#1|) |has| |#1| (-310 |#1|)) ((-558) -2809 (|has| |#1| (-558)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-646 #0#) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #0#) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #0#) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-640 |#1|) . T) ((-640 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-639 (-566)) |has| |#1| (-639 (-566))) ((-639 |#1|) . T) ((-717 #0#) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-717 |#1|) . T) ((-717 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-724 |#1| #1#) . T) ((-726) . T) ((-900 (-1175)) |has| |#1| (-900 (-1175))) ((-886 (-381)) |has| |#1| (-886 (-381))) ((-886 (-566)) |has| |#1| (-886 (-566))) ((-884 |#1|) . T) ((-909) -12 (|has| |#1| (-308)) (|has| |#1| (-909))) ((-920) -2809 (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-1002) -12 (|has| |#1| (-1002)) (|has| |#1| (-1199))) ((-1038 (-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((-1038 (-566)) |has| |#1| (-1038 (-566))) ((-1038 |#1|) . T) ((-1051 #0#) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-1051 |#1|) . T) ((-1051 $) . T) ((-1056 #0#) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-1056 |#1|) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1150) |has| |#1| (-351)) ((-1199) |has| |#1| (-1199)) ((-1202) |has| |#1| (-1199)) ((-1214) . T) ((-1218) -2809 (|has| |#1| (-351)) (|has| |#1| (-365)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909))))) -((-3719 (((-420 |#2|) |#2|) 69))) -(((-167 |#1| |#2|) (-10 -7 (-15 -3719 ((-420 |#2|) |#2|))) (-308) (-1240 (-169 |#1|))) (T -167)) -((-3719 (*1 *2 *3) (-12 (-4 *4 (-308)) (-5 *2 (-420 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1240 (-169 *4)))))) -(-10 -7 (-15 -3719 ((-420 |#2|) |#2|))) -((-1301 (((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)) 14))) -(((-168 |#1| |#2|) (-10 -7 (-15 -1301 ((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)))) (-172) (-172)) (T -168)) -((-1301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-169 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-5 *2 (-169 *6)) (-5 *1 (-168 *5 *6))))) -(-10 -7 (-15 -1301 ((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) 34)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (-2809 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-558))))) (-3991 (($ $) NIL (-2809 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-558))))) (-2388 (((-112) $) NIL (-2809 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-558))))) (-1872 (((-689 |#1|) (-1264 $)) NIL) (((-689 |#1|)) NIL)) (-3837 ((|#1| $) NIL)) (-4114 (($ $) NIL (|has| |#1| (-1199)))) (-2109 (($ $) NIL (|has| |#1| (-1199)))) (-3778 (((-1187 (-921) (-771)) (-566)) NIL (|has| |#1| (-351)))) (-4175 (((-3 $ "failed") $ $) NIL)) (-1477 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-909))))) (-1550 (($ $) NIL (-2809 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-365))))) (-3184 (((-420 $) $) NIL (-2809 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-365))))) (-3731 (($ $) NIL (-12 (|has| |#1| (-1002)) (|has| |#1| (-1199))))) (-3717 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-909))))) (-2837 (((-112) $ $) NIL (|has| |#1| (-308)))) (-1970 (((-771)) NIL (|has| |#1| (-370)))) (-2240 (($ $) NIL (|has| |#1| (-1199)))) (-2085 (($ $) NIL (|has| |#1| (-1199)))) (-4134 (($ $) NIL (|has| |#1| (-1199)))) (-2129 (($ $) NIL (|has| |#1| (-1199)))) (-3012 (($) NIL T CONST)) (-4307 (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) NIL)) (-4205 (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) NIL)) (-2392 (($ (-1264 |#1|) (-1264 $)) NIL) (($ (-1264 |#1|)) NIL)) (-1910 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-351)))) (-2946 (($ $ $) NIL (|has| |#1| (-308)))) (-4360 (((-689 |#1|) $ (-1264 $)) NIL) (((-689 |#1|) $) NIL)) (-3577 (((-689 (-566)) (-689 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -4227 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) NIL) (((-689 |#1|) (-689 $)) NIL)) (-1676 (($ (-1171 |#1|)) NIL) (((-3 $ "failed") (-409 (-1171 |#1|))) NIL (|has| |#1| (-365)))) (-1878 (((-3 $ "failed") $) NIL)) (-3742 ((|#1| $) 13)) (-1521 (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-547)))) (-1942 (((-112) $) NIL (|has| |#1| (-547)))) (-4204 (((-409 (-566)) $) NIL (|has| |#1| (-547)))) (-4313 (((-921)) NIL)) (-1552 (($) NIL (|has| |#1| (-370)))) (-2957 (($ $ $) NIL (|has| |#1| (-308)))) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL (|has| |#1| (-308)))) (-2781 (($) NIL (|has| |#1| (-351)))) (-3506 (((-112) $) NIL (|has| |#1| (-351)))) (-3369 (($ $ (-771)) NIL (|has| |#1| (-351))) (($ $) NIL (|has| |#1| (-351)))) (-3268 (((-112) $) NIL (-2809 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-365))))) (-1777 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1059)) (|has| |#1| (-1199))))) (-4361 (($) NIL (|has| |#1| (-1199)))) (-2062 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (|has| |#1| (-886 (-566)))) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (|has| |#1| (-886 (-381))))) (-3254 (((-921) $) NIL (|has| |#1| (-351))) (((-833 (-921)) $) NIL (|has| |#1| (-351)))) (-3934 (((-112) $) 36)) (-2140 (($ $ (-566)) NIL (-12 (|has| |#1| (-1002)) (|has| |#1| (-1199))))) (-1577 ((|#1| $) 47)) (-4363 (((-3 $ "failed") $) NIL (|has| |#1| (-351)))) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-308)))) (-1627 (((-1171 |#1|) $) NIL (|has| |#1| (-365)))) (-1301 (($ (-1 |#1| |#1|) $) NIL)) (-3681 (((-921) $) NIL (|has| |#1| (-370)))) (-3651 (($ $) NIL (|has| |#1| (-1199)))) (-1662 (((-1171 |#1|) $) NIL)) (-2167 (($ (-644 $)) NIL (|has| |#1| (-308))) (($ $ $) NIL (|has| |#1| (-308)))) (-4117 (((-1157) $) NIL)) (-1713 (($ $) NIL (|has| |#1| (-365)))) (-1761 (($) NIL (|has| |#1| (-351)) CONST)) (-2178 (($ (-921)) NIL (|has| |#1| (-370)))) (-3536 (($) NIL)) (-3753 ((|#1| $) 15)) (-4035 (((-1119) $) NIL)) (-3441 (($) NIL)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-308)))) (-2214 (($ (-644 $)) NIL (|has| |#1| (-308))) (($ $ $) NIL (|has| |#1| (-308)))) (-1548 (((-644 (-2 (|:| -3719 (-566)) (|:| -2852 (-566))))) NIL (|has| |#1| (-351)))) (-4303 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-909))))) (-3240 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-909))))) (-3719 (((-420 $) $) NIL (-2809 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-365))))) (-3148 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-308))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-308)))) (-2994 (((-3 $ "failed") $ |#1|) 45 (|has| |#1| (-558))) (((-3 $ "failed") $ $) 48 (-2809 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-558))))) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-308)))) (-2561 (($ $) NIL (|has| |#1| (-1199)))) (-2055 (($ $ (-644 |#1|) (-644 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-644 (-295 |#1|))) NIL (|has| |#1| (-310 |#1|))) (($ $ (-644 (-1175)) (-644 |#1|)) NIL (|has| |#1| (-516 (-1175) |#1|))) (($ $ (-1175) |#1|) NIL (|has| |#1| (-516 (-1175) |#1|)))) (-3039 (((-771) $) NIL (|has| |#1| (-308)))) (-4390 (($ $ |#1|) NIL (|has| |#1| (-287 |#1| |#1|)))) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL (|has| |#1| (-308)))) (-3652 ((|#1| (-1264 $)) NIL) ((|#1|) NIL)) (-1437 (((-771) $) NIL (|has| |#1| (-351))) (((-3 (-771) "failed") $ $) NIL (|has| |#1| (-351)))) (-3561 (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-3213 (((-689 |#1|) (-1264 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-365)))) (-1616 (((-1171 |#1|)) NIL)) (-4144 (($ $) NIL (|has| |#1| (-1199)))) (-2141 (($ $) NIL (|has| |#1| (-1199)))) (-3974 (($) NIL (|has| |#1| (-351)))) (-4124 (($ $) NIL (|has| |#1| (-1199)))) (-2118 (($ $) NIL (|has| |#1| (-1199)))) (-4104 (($ $) NIL (|has| |#1| (-1199)))) (-2098 (($ $) NIL (|has| |#1| (-1199)))) (-2154 (((-1264 |#1|) $ (-1264 $)) NIL) (((-689 |#1|) (-1264 $) (-1264 $)) NIL) (((-1264 |#1|) $) NIL) (((-689 |#1|) (-1264 $)) NIL)) (-1348 (((-1264 |#1|) $) NIL) (($ (-1264 |#1|)) NIL) (((-1171 |#1|) $) NIL) (($ (-1171 |#1|)) NIL) (((-892 (-566)) $) NIL (|has| |#1| (-614 (-892 (-566))))) (((-892 (-381)) $) NIL (|has| |#1| (-614 (-892 (-381))))) (((-169 (-381)) $) NIL (|has| |#1| (-1022))) (((-169 (-225)) $) NIL (|has| |#1| (-1022))) (((-538) $) NIL (|has| |#1| (-614 (-538))))) (-2358 (($ $) 46)) (-1656 (((-3 (-1264 $) "failed") (-689 $)) NIL (-2809 (-12 (|has| $ (-145)) (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-351))))) (-3638 (($ |#1| |#1|) 38)) (-3783 (((-862) $) NIL) (($ (-566)) NIL) (($ |#1|) 37) (($ (-409 (-566))) NIL (-2809 (|has| |#1| (-365)) (|has| |#1| (-1038 (-409 (-566)))))) (($ $) NIL (-2809 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-558))))) (-3144 (($ $) NIL (|has| |#1| (-351))) (((-3 $ "failed") $) NIL (-2809 (-12 (|has| $ (-145)) (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-1820 (((-1171 |#1|) $) NIL)) (-2107 (((-771)) NIL T CONST)) (-3117 (((-112) $ $) NIL)) (-2365 (((-1264 $)) NIL)) (-4177 (($ $) NIL (|has| |#1| (-1199)))) (-2180 (($ $) NIL (|has| |#1| (-1199)))) (-2695 (((-112) $ $) NIL (-2809 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-558))))) (-4155 (($ $) NIL (|has| |#1| (-1199)))) (-2153 (($ $) NIL (|has| |#1| (-1199)))) (-4198 (($ $) NIL (|has| |#1| (-1199)))) (-2212 (($ $) NIL (|has| |#1| (-1199)))) (-2428 ((|#1| $) NIL (|has| |#1| (-1199)))) (-2976 (($ $) NIL (|has| |#1| (-1199)))) (-2227 (($ $) NIL (|has| |#1| (-1199)))) (-4188 (($ $) NIL (|has| |#1| (-1199)))) (-2196 (($ $) NIL (|has| |#1| (-1199)))) (-4166 (($ $) NIL (|has| |#1| (-1199)))) (-2166 (($ $) NIL (|has| |#1| (-1199)))) (-2086 (($ $) NIL (|has| |#1| (-1059)))) (-2479 (($) 28 T CONST)) (-4334 (($) 30 T CONST)) (-2452 (((-1157) $) 23 (|has| |#1| (-828))) (((-1157) $ (-112)) 25 (|has| |#1| (-828))) (((-1269) (-822) $) 26 (|has| |#1| (-828))) (((-1269) (-822) $ (-112)) 27 (|has| |#1| (-828)))) (-2875 (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-2947 (((-112) $ $) NIL)) (-3065 (($ $ $) NIL (|has| |#1| (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) 40)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-409 (-566))) NIL (-12 (|has| |#1| (-1002)) (|has| |#1| (-1199)))) (($ $ $) NIL (|has| |#1| (-1199))) (($ $ (-566)) NIL (|has| |#1| (-365)))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 43) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-409 (-566)) $) NIL (|has| |#1| (-365))) (($ $ (-409 (-566))) NIL (|has| |#1| (-365))))) +((-2064 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-1511 (*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-3357 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-3608 (*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-1657 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-1646 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2978 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-558)))) (-1358 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1059)))) (-1684 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1199)))) (-3540 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-1059)) (-4 *3 (-1199)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3407 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-547)) (-5 *2 (-112)))) (-1786 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-547)) (-5 *2 (-409 (-566))))) (-4391 (*1 *2 *1) (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-547)) (-5 *2 (-409 (-566)))))) +(-13 (-724 |t#1| (-1171 |t#1|)) (-413 |t#1|) (-231 |t#1|) (-340 |t#1|) (-402 |t#1|) (-884 |t#1|) (-379 |t#1|) (-172) (-10 -8 (-6 -3608) (-15 -1511 ($)) (-15 -3357 ($ $)) (-15 -3608 ($ |t#1| |t#1|)) (-15 -1657 (|t#1| $)) (-15 -1646 (|t#1| $)) (-15 -2064 (|t#1| $)) (IF (|has| |t#1| (-558)) (PROGN (-6 (-558)) (-15 -2978 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-308)) (-6 (-308)) |%noBranch|) (IF (|has| |t#1| (-6 -4413)) (-6 -4413) |%noBranch|) (IF (|has| |t#1| (-6 -4410)) (-6 -4410) |%noBranch|) (IF (|has| |t#1| (-365)) (-6 (-365)) |%noBranch|) (IF (|has| |t#1| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1022)) (PROGN (-6 (-614 (-169 (-225)))) (-6 (-614 (-169 (-381))))) |%noBranch|) (IF (|has| |t#1| (-1059)) (-15 -1358 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1199)) (PROGN (-6 (-1199)) (-15 -1684 (|t#1| $)) (IF (|has| |t#1| (-1002)) (-6 (-1002)) |%noBranch|) (IF (|has| |t#1| (-1059)) (-15 -3540 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-547)) (PROGN (-15 -3407 ((-112) $)) (-15 -1786 ((-409 (-566)) $)) (-15 -4391 ((-3 (-409 (-566)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-909)) (IF (|has| |t#1| (-308)) (-6 (-909)) |%noBranch|) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) -2768 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-38 |#1|) . T) ((-38 $) -2768 (|has| |#1| (-558)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-35) |has| |#1| (-1199)) ((-95) |has| |#1| (-1199)) ((-102) . T) ((-111 #0# #0#) -2768 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2768 (|has| |#1| (-351)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-616 #0#) -2768 (|has| |#1| (-1038 (-409 (-566)))) (|has| |#1| (-351)) (|has| |#1| (-365))) ((-616 (-566)) . T) ((-616 |#1|) . T) ((-616 $) -2768 (|has| |#1| (-558)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-613 (-862)) . T) ((-172) . T) ((-614 (-169 (-225))) |has| |#1| (-1022)) ((-614 (-169 (-381))) |has| |#1| (-1022)) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-614 (-892 (-381))) |has| |#1| (-614 (-892 (-381)))) ((-614 (-892 (-566))) |has| |#1| (-614 (-892 (-566)))) ((-614 #1=(-1171 |#1|)) . T) ((-231 |#1|) . T) ((-233) -2768 (|has| |#1| (-351)) (|has| |#1| (-233))) ((-243) -2768 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-285) |has| |#1| (-1199)) ((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-291) -2768 (|has| |#1| (-558)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-308) -2768 (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-365) -2768 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-404) |has| |#1| (-351)) ((-370) -2768 (|has| |#1| (-370)) (|has| |#1| (-351))) ((-351) |has| |#1| (-351)) ((-372 |#1| #1#) . T) ((-411 |#1| #1#) . T) ((-340 |#1|) . T) ((-379 |#1|) . T) ((-402 |#1|) . T) ((-413 |#1|) . T) ((-454) -2768 (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-495) |has| |#1| (-1199)) ((-516 (-1175) |#1|) |has| |#1| (-516 (-1175) |#1|)) ((-516 |#1| |#1|) |has| |#1| (-310 |#1|)) ((-558) -2768 (|has| |#1| (-558)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-646 #0#) -2768 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #0#) -2768 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #0#) -2768 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-640 |#1|) . T) ((-640 $) -2768 (|has| |#1| (-558)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-639 (-566)) |has| |#1| (-639 (-566))) ((-639 |#1|) . T) ((-717 #0#) -2768 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-717 |#1|) . T) ((-717 $) -2768 (|has| |#1| (-558)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-724 |#1| #1#) . T) ((-726) . T) ((-900 (-1175)) |has| |#1| (-900 (-1175))) ((-886 (-381)) |has| |#1| (-886 (-381))) ((-886 (-566)) |has| |#1| (-886 (-566))) ((-884 |#1|) . T) ((-909) -12 (|has| |#1| (-308)) (|has| |#1| (-909))) ((-920) -2768 (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-1002) -12 (|has| |#1| (-1002)) (|has| |#1| (-1199))) ((-1038 (-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((-1038 (-566)) |has| |#1| (-1038 (-566))) ((-1038 |#1|) . T) ((-1051 #0#) -2768 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-1051 |#1|) . T) ((-1051 $) . T) ((-1056 #0#) -2768 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-1056 |#1|) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1150) |has| |#1| (-351)) ((-1199) |has| |#1| (-1199)) ((-1202) |has| |#1| (-1199)) ((-1214) . T) ((-1218) -2768 (|has| |#1| (-351)) (|has| |#1| (-365)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909))))) +((-1624 (((-420 |#2|) |#2|) 69))) +(((-167 |#1| |#2|) (-10 -7 (-15 -1624 ((-420 |#2|) |#2|))) (-308) (-1240 (-169 |#1|))) (T -167)) +((-1624 (*1 *2 *3) (-12 (-4 *4 (-308)) (-5 *2 (-420 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1240 (-169 *4)))))) +(-10 -7 (-15 -1624 ((-420 |#2|) |#2|))) +((-2319 (((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)) 14))) +(((-168 |#1| |#2|) (-10 -7 (-15 -2319 ((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)))) (-172) (-172)) (T -168)) +((-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-169 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-5 *2 (-169 *6)) (-5 *1 (-168 *5 *6))))) +(-10 -7 (-15 -2319 ((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) 34)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (-2768 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-558))))) (-2161 (($ $) NIL (-2768 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-558))))) (-2345 (((-112) $) NIL (-2768 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-558))))) (-3899 (((-689 |#1|) (-1264 $)) NIL) (((-689 |#1|)) NIL)) (-3833 ((|#1| $) NIL)) (-3963 (($ $) NIL (|has| |#1| (-1199)))) (-3630 (($ $) NIL (|has| |#1| (-1199)))) (-2894 (((-1187 (-921) (-771)) (-566)) NIL (|has| |#1| (-351)))) (-3967 (((-3 $ "failed") $ $) NIL)) (-2292 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-909))))) (-1378 (($ $) NIL (-2768 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-365))))) (-1364 (((-420 $) $) NIL (-2768 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-365))))) (-1635 (($ $) NIL (-12 (|has| |#1| (-1002)) (|has| |#1| (-1199))))) (-4066 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-909))))) (-2085 (((-112) $ $) NIL (|has| |#1| (-308)))) (-3870 (((-771)) NIL (|has| |#1| (-370)))) (-3941 (($ $) NIL (|has| |#1| (-1199)))) (-3602 (($ $) NIL (|has| |#1| (-1199)))) (-3986 (($ $) NIL (|has| |#1| (-1199)))) (-3656 (($ $) NIL (|has| |#1| (-1199)))) (-2463 (($) NIL T CONST)) (-2229 (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) NIL)) (-4158 (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) NIL)) (-1563 (($ (-1264 |#1|) (-1264 $)) NIL) (($ (-1264 |#1|)) NIL)) (-2347 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-351)))) (-2933 (($ $ $) NIL (|has| |#1| (-308)))) (-3578 (((-689 |#1|) $ (-1264 $)) NIL) (((-689 |#1|) $) NIL)) (-4089 (((-689 (-566)) (-689 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -3361 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) NIL) (((-689 |#1|) (-689 $)) NIL)) (-2873 (($ (-1171 |#1|)) NIL) (((-3 $ "failed") (-409 (-1171 |#1|))) NIL (|has| |#1| (-365)))) (-3245 (((-3 $ "failed") $) NIL)) (-1646 ((|#1| $) 13)) (-4391 (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-547)))) (-3407 (((-112) $) NIL (|has| |#1| (-547)))) (-1786 (((-409 (-566)) $) NIL (|has| |#1| (-547)))) (-2755 (((-921)) NIL)) (-2715 (($) NIL (|has| |#1| (-370)))) (-2945 (($ $ $) NIL (|has| |#1| (-308)))) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL (|has| |#1| (-308)))) (-3359 (($) NIL (|has| |#1| (-351)))) (-2466 (((-112) $) NIL (|has| |#1| (-351)))) (-1574 (($ $ (-771)) NIL (|has| |#1| (-351))) (($ $) NIL (|has| |#1| (-351)))) (-1615 (((-112) $) NIL (-2768 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-365))))) (-3540 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1059)) (|has| |#1| (-1199))))) (-2281 (($) NIL (|has| |#1| (-1199)))) (-2926 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (|has| |#1| (-886 (-566)))) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (|has| |#1| (-886 (-381))))) (-2679 (((-921) $) NIL (|has| |#1| (-351))) (((-833 (-921)) $) NIL (|has| |#1| (-351)))) (-2389 (((-112) $) 36)) (-1575 (($ $ (-566)) NIL (-12 (|has| |#1| (-1002)) (|has| |#1| (-1199))))) (-2064 ((|#1| $) 47)) (-2621 (((-3 $ "failed") $) NIL (|has| |#1| (-351)))) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-308)))) (-3468 (((-1171 |#1|) $) NIL (|has| |#1| (-365)))) (-2319 (($ (-1 |#1| |#1|) $) NIL)) (-1866 (((-921) $) NIL (|has| |#1| (-370)))) (-3619 (($ $) NIL (|has| |#1| (-1199)))) (-2860 (((-1171 |#1|) $) NIL)) (-2128 (($ (-644 $)) NIL (|has| |#1| (-308))) (($ $ $) NIL (|has| |#1| (-308)))) (-3380 (((-1157) $) NIL)) (-2748 (($ $) NIL (|has| |#1| (-365)))) (-3289 (($) NIL (|has| |#1| (-351)) CONST)) (-2835 (($ (-921)) NIL (|has| |#1| (-370)))) (-1511 (($) NIL)) (-1657 ((|#1| $) 15)) (-4072 (((-1119) $) NIL)) (-3302 (($) NIL)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-308)))) (-2164 (($ (-644 $)) NIL (|has| |#1| (-308))) (($ $ $) NIL (|has| |#1| (-308)))) (-2442 (((-644 (-2 (|:| -1624 (-566)) (|:| -2201 (-566))))) NIL (|has| |#1| (-351)))) (-2010 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-909))))) (-1893 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-909))))) (-1624 (((-420 $) $) NIL (-2768 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-365))))) (-3005 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-308))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL (|has| |#1| (-308)))) (-2978 (((-3 $ "failed") $ |#1|) 45 (|has| |#1| (-558))) (((-3 $ "failed") $ $) 48 (-2768 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-558))))) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-308)))) (-3521 (($ $) NIL (|has| |#1| (-1199)))) (-2023 (($ $ (-644 |#1|) (-644 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-644 (-295 |#1|))) NIL (|has| |#1| (-310 |#1|))) (($ $ (-644 (-1175)) (-644 |#1|)) NIL (|has| |#1| (-516 (-1175) |#1|))) (($ $ (-1175) |#1|) NIL (|has| |#1| (-516 (-1175) |#1|)))) (-4357 (((-771) $) NIL (|has| |#1| (-308)))) (-1309 (($ $ |#1|) NIL (|has| |#1| (-287 |#1| |#1|)))) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL (|has| |#1| (-308)))) (-4068 ((|#1| (-1264 $)) NIL) ((|#1|) NIL)) (-3169 (((-771) $) NIL (|has| |#1| (-351))) (((-3 (-771) "failed") $ $) NIL (|has| |#1| (-351)))) (-3629 (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-3225 (((-689 |#1|) (-1264 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-365)))) (-1705 (((-1171 |#1|)) NIL)) (-3996 (($ $) NIL (|has| |#1| (-1199)))) (-3670 (($ $) NIL (|has| |#1| (-1199)))) (-4122 (($) NIL (|has| |#1| (-351)))) (-3976 (($ $) NIL (|has| |#1| (-1199)))) (-3643 (($ $) NIL (|has| |#1| (-1199)))) (-3952 (($ $) NIL (|has| |#1| (-1199)))) (-3618 (($ $) NIL (|has| |#1| (-1199)))) (-3350 (((-1264 |#1|) $ (-1264 $)) NIL) (((-689 |#1|) (-1264 $) (-1264 $)) NIL) (((-1264 |#1|) $) NIL) (((-689 |#1|) (-1264 $)) NIL)) (-2376 (((-1264 |#1|) $) NIL) (($ (-1264 |#1|)) NIL) (((-1171 |#1|) $) NIL) (($ (-1171 |#1|)) NIL) (((-892 (-566)) $) NIL (|has| |#1| (-614 (-892 (-566))))) (((-892 (-381)) $) NIL (|has| |#1| (-614 (-892 (-381))))) (((-169 (-381)) $) NIL (|has| |#1| (-1022))) (((-169 (-225)) $) NIL (|has| |#1| (-1022))) (((-538) $) NIL (|has| |#1| (-614 (-538))))) (-3357 (($ $) 46)) (-3391 (((-3 (-1264 $) "failed") (-689 $)) NIL (-2768 (-12 (|has| $ (-145)) (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-351))))) (-3608 (($ |#1| |#1|) 38)) (-3152 (((-862) $) NIL) (($ (-566)) NIL) (($ |#1|) 37) (($ (-409 (-566))) NIL (-2768 (|has| |#1| (-365)) (|has| |#1| (-1038 (-409 (-566)))))) (($ $) NIL (-2768 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-558))))) (-2633 (($ $) NIL (|has| |#1| (-351))) (((-3 $ "failed") $) NIL (-2768 (-12 (|has| $ (-145)) (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-2318 (((-1171 |#1|) $) NIL)) (-2593 (((-771)) NIL T CONST)) (-3044 (((-112) $ $) NIL)) (-2875 (((-1264 $)) NIL)) (-4032 (($ $) NIL (|has| |#1| (-1199)))) (-3892 (($ $) NIL (|has| |#1| (-1199)))) (-3014 (((-112) $ $) NIL (-2768 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-558))))) (-4008 (($ $) NIL (|has| |#1| (-1199)))) (-3684 (($ $) NIL (|has| |#1| (-1199)))) (-4057 (($ $) NIL (|has| |#1| (-1199)))) (-3917 (($ $) NIL (|has| |#1| (-1199)))) (-1684 ((|#1| $) NIL (|has| |#1| (-1199)))) (-3964 (($ $) NIL (|has| |#1| (-1199)))) (-3929 (($ $) NIL (|has| |#1| (-1199)))) (-4044 (($ $) NIL (|has| |#1| (-1199)))) (-3904 (($ $) NIL (|has| |#1| (-1199)))) (-4020 (($ $) NIL (|has| |#1| (-1199)))) (-3879 (($ $) NIL (|has| |#1| (-1199)))) (-1358 (($ $) NIL (|has| |#1| (-1059)))) (-4356 (($) 28 T CONST)) (-4366 (($) 30 T CONST)) (-2226 (((-1157) $) 23 (|has| |#1| (-828))) (((-1157) $ (-112)) 25 (|has| |#1| (-828))) (((-1269) (-822) $) 26 (|has| |#1| (-828))) (((-1269) (-822) $ (-112)) 27 (|has| |#1| (-828)))) (-3497 (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-2914 (((-112) $ $) NIL)) (-3025 (($ $ $) NIL (|has| |#1| (-365)))) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) 40)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-409 (-566))) NIL (-12 (|has| |#1| (-1002)) (|has| |#1| (-1199)))) (($ $ $) NIL (|has| |#1| (-1199))) (($ $ (-566)) NIL (|has| |#1| (-365)))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 43) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-409 (-566)) $) NIL (|has| |#1| (-365))) (($ $ (-409 (-566))) NIL (|has| |#1| (-365))))) (((-169 |#1|) (-13 (-166 |#1|) (-10 -7 (IF (|has| |#1| (-828)) (-6 (-828)) |%noBranch|))) (-172)) (T -169)) NIL (-13 (-166 |#1|) (-10 -7 (IF (|has| |#1| (-828)) (-6 (-828)) |%noBranch|))) -((-1348 (((-892 |#1|) |#3|) 22))) -(((-170 |#1| |#2| |#3|) (-10 -7 (-15 -1348 ((-892 |#1|) |#3|))) (-1099) (-13 (-614 (-892 |#1|)) (-172)) (-166 |#2|)) (T -170)) -((-1348 (*1 *2 *3) (-12 (-4 *5 (-13 (-614 *2) (-172))) (-5 *2 (-892 *4)) (-5 *1 (-170 *4 *5 *3)) (-4 *4 (-1099)) (-4 *3 (-166 *5))))) -(-10 -7 (-15 -1348 ((-892 |#1|) |#3|))) -((-3007 (((-112) $ $) NIL)) (-3156 (((-112) $) 9)) (-2772 (((-112) $ (-112)) 11)) (-4265 (($) 13)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3940 (($ $) 14)) (-3783 (((-862) $) 18)) (-3153 (((-112) $) 8)) (-1651 (((-112) $ (-112)) 10)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) -(((-171) (-13 (-1099) (-10 -8 (-15 -4265 ($)) (-15 -3153 ((-112) $)) (-15 -3156 ((-112) $)) (-15 -1651 ((-112) $ (-112))) (-15 -2772 ((-112) $ (-112))) (-15 -3940 ($ $))))) (T -171)) -((-4265 (*1 *1) (-5 *1 (-171))) (-3153 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-3156 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-1651 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-2772 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-3940 (*1 *1 *1) (-5 *1 (-171)))) -(-13 (-1099) (-10 -8 (-15 -4265 ($)) (-15 -3153 ((-112) $)) (-15 -3156 ((-112) $)) (-15 -1651 ((-112) $ (-112))) (-15 -2772 ((-112) $ (-112))) (-15 -3940 ($ $)))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-4175 (((-3 $ "failed") $ $) 20)) (-3012 (($) 18 T CONST)) (-1878 (((-3 $ "failed") $) 37)) (-3934 (((-112) $) 35)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3783 (((-862) $) 12) (($ (-566)) 33)) (-2107 (((-771)) 32 T CONST)) (-3117 (((-112) $ $) 9)) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-2947 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) +((-2376 (((-892 |#1|) |#3|) 22))) +(((-170 |#1| |#2| |#3|) (-10 -7 (-15 -2376 ((-892 |#1|) |#3|))) (-1099) (-13 (-614 (-892 |#1|)) (-172)) (-166 |#2|)) (T -170)) +((-2376 (*1 *2 *3) (-12 (-4 *5 (-13 (-614 *2) (-172))) (-5 *2 (-892 *4)) (-5 *1 (-170 *4 *5 *3)) (-4 *4 (-1099)) (-4 *3 (-166 *5))))) +(-10 -7 (-15 -2376 ((-892 |#1|) |#3|))) +((-2988 (((-112) $ $) NIL)) (-3575 (((-112) $) 9)) (-1865 (((-112) $ (-112)) 11)) (-1860 (($) 13)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-1480 (($ $) 14)) (-3152 (((-862) $) 18)) (-3293 (((-112) $) 8)) (-1685 (((-112) $ (-112)) 10)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) +(((-171) (-13 (-1099) (-10 -8 (-15 -1860 ($)) (-15 -3293 ((-112) $)) (-15 -3575 ((-112) $)) (-15 -1685 ((-112) $ (-112))) (-15 -1865 ((-112) $ (-112))) (-15 -1480 ($ $))))) (T -171)) +((-1860 (*1 *1) (-5 *1 (-171))) (-3293 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-3575 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-1685 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-1865 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-1480 (*1 *1 *1) (-5 *1 (-171)))) +(-13 (-1099) (-10 -8 (-15 -1860 ($)) (-15 -3293 ((-112) $)) (-15 -3575 ((-112) $)) (-15 -1685 ((-112) $ (-112))) (-15 -1865 ((-112) $ (-112))) (-15 -1480 ($ $)))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-3967 (((-3 $ "failed") $ $) 20)) (-2463 (($) 18 T CONST)) (-3245 (((-3 $ "failed") $) 37)) (-2389 (((-112) $) 35)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3152 (((-862) $) 12) (($ (-566)) 33)) (-2593 (((-771)) 32 T CONST)) (-3044 (((-112) $ $) 9)) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-2914 (((-112) $ $) 6)) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) (((-172) (-140)) (T -172)) NIL (-13 (-1049) (-111 $ $) (-10 -7 (-6 (-4416 "*")))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-616 (-566)) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-726) . T) ((-1051 $) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) -((-1596 (($ $) 6))) +((-2405 (($ $) 6))) (((-173) (-140)) (T -173)) -((-1596 (*1 *1 *1) (-4 *1 (-173)))) -(-13 (-10 -8 (-15 -1596 ($ $)))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-1515 ((|#1| $) 81)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-3991 (($ $) NIL)) (-2388 (((-112) $) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-1550 (($ $) NIL)) (-3184 (((-420 $) $) NIL)) (-2837 (((-112) $ $) NIL)) (-3012 (($) NIL T CONST)) (-2946 (($ $ $) NIL)) (-4230 (($ $) 21)) (-4057 (($ |#1| (-1155 |#1|)) 50)) (-1878 (((-3 $ "failed") $) 123)) (-2957 (($ $ $) NIL)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL)) (-3268 (((-112) $) NIL)) (-1408 (((-1155 |#1|) $) 88)) (-3462 (((-1155 |#1|) $) 85)) (-2348 (((-1155 |#1|) $) 86)) (-3934 (((-112) $) NIL)) (-2733 (((-1155 |#1|) $) 94)) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2167 (($ (-644 $)) NIL) (($ $ $) NIL)) (-4117 (((-1157) $) NIL)) (-1713 (($ $) NIL)) (-4035 (((-1119) $) NIL)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2214 (($ (-644 $)) NIL) (($ $ $) NIL)) (-3719 (((-420 $) $) NIL)) (-3148 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL)) (-3874 (($ $ (-566)) 97)) (-2994 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3039 (((-771) $) NIL)) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL)) (-4048 (((-1155 |#1|) $) 95)) (-4269 (((-1155 (-409 |#1|)) $) 14)) (-3503 (($ (-409 |#1|)) 17) (($ |#1| (-1155 |#1|) (-1155 |#1|)) 40)) (-2770 (($ $) 99)) (-3783 (((-862) $) 140) (($ (-566)) 53) (($ |#1|) 54) (($ (-409 |#1|)) 38) (($ (-409 (-566))) NIL) (($ $) NIL)) (-2107 (((-771)) 70 T CONST)) (-3117 (((-112) $ $) NIL)) (-2695 (((-112) $ $) NIL)) (-3694 (((-1155 (-409 |#1|)) $) 20)) (-2479 (($) 27 T CONST)) (-4334 (($) 30 T CONST)) (-2947 (((-112) $ $) 37)) (-3065 (($ $ $) 121)) (-3053 (($ $) 112) (($ $ $) 109)) (-3041 (($ $ $) 107)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 119) (($ $ $) 114) (($ $ |#1|) NIL) (($ |#1| $) 116) (($ (-409 |#1|) $) 117) (($ $ (-409 |#1|)) NIL) (($ (-409 (-566)) $) NIL) (($ $ (-409 (-566))) NIL))) -(((-174 |#1|) (-13 (-38 |#1|) (-38 (-409 |#1|)) (-365) (-10 -8 (-15 -3503 ($ (-409 |#1|))) (-15 -3503 ($ |#1| (-1155 |#1|) (-1155 |#1|))) (-15 -4057 ($ |#1| (-1155 |#1|))) (-15 -3462 ((-1155 |#1|) $)) (-15 -2348 ((-1155 |#1|) $)) (-15 -1408 ((-1155 |#1|) $)) (-15 -1515 (|#1| $)) (-15 -4230 ($ $)) (-15 -3694 ((-1155 (-409 |#1|)) $)) (-15 -4269 ((-1155 (-409 |#1|)) $)) (-15 -2733 ((-1155 |#1|) $)) (-15 -4048 ((-1155 |#1|) $)) (-15 -3874 ($ $ (-566))) (-15 -2770 ($ $)))) (-308)) (T -174)) -((-3503 (*1 *1 *2) (-12 (-5 *2 (-409 *3)) (-4 *3 (-308)) (-5 *1 (-174 *3)))) (-3503 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1155 *2)) (-4 *2 (-308)) (-5 *1 (-174 *2)))) (-4057 (*1 *1 *2 *3) (-12 (-5 *3 (-1155 *2)) (-4 *2 (-308)) (-5 *1 (-174 *2)))) (-3462 (*1 *2 *1) (-12 (-5 *2 (-1155 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-2348 (*1 *2 *1) (-12 (-5 *2 (-1155 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-1408 (*1 *2 *1) (-12 (-5 *2 (-1155 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-1515 (*1 *2 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308)))) (-4230 (*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308)))) (-3694 (*1 *2 *1) (-12 (-5 *2 (-1155 (-409 *3))) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-4269 (*1 *2 *1) (-12 (-5 *2 (-1155 (-409 *3))) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-2733 (*1 *2 *1) (-12 (-5 *2 (-1155 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-4048 (*1 *2 *1) (-12 (-5 *2 (-1155 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-3874 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-2770 (*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308))))) -(-13 (-38 |#1|) (-38 (-409 |#1|)) (-365) (-10 -8 (-15 -3503 ($ (-409 |#1|))) (-15 -3503 ($ |#1| (-1155 |#1|) (-1155 |#1|))) (-15 -4057 ($ |#1| (-1155 |#1|))) (-15 -3462 ((-1155 |#1|) $)) (-15 -2348 ((-1155 |#1|) $)) (-15 -1408 ((-1155 |#1|) $)) (-15 -1515 (|#1| $)) (-15 -4230 ($ $)) (-15 -3694 ((-1155 (-409 |#1|)) $)) (-15 -4269 ((-1155 (-409 |#1|)) $)) (-15 -2733 ((-1155 |#1|) $)) (-15 -4048 ((-1155 |#1|) $)) (-15 -3874 ($ $ (-566))) (-15 -2770 ($ $)))) -((-1795 (($ (-109) $) 15)) (-3553 (((-691 (-109)) (-508) $) 14)) (-3783 (((-862) $) 18)) (-3121 (((-644 (-109)) $) 8))) -(((-175) (-13 (-613 (-862)) (-10 -8 (-15 -3121 ((-644 (-109)) $)) (-15 -1795 ($ (-109) $)) (-15 -3553 ((-691 (-109)) (-508) $))))) (T -175)) -((-3121 (*1 *2 *1) (-12 (-5 *2 (-644 (-109))) (-5 *1 (-175)))) (-1795 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-175)))) (-3553 (*1 *2 *3 *1) (-12 (-5 *3 (-508)) (-5 *2 (-691 (-109))) (-5 *1 (-175))))) -(-13 (-613 (-862)) (-10 -8 (-15 -3121 ((-644 (-109)) $)) (-15 -1795 ($ (-109) $)) (-15 -3553 ((-691 (-109)) (-508) $)))) -((-3246 (((-1 (-943 |#1|) (-943 |#1|)) |#1|) 40)) (-3956 (((-943 |#1|) (-943 |#1|)) 24)) (-2512 (((-1 (-943 |#1|) (-943 |#1|)) |#1|) 36)) (-4367 (((-943 |#1|) (-943 |#1|)) 22)) (-3502 (((-943 |#1|) (-943 |#1|)) 30)) (-2674 (((-943 |#1|) (-943 |#1|)) 29)) (-3287 (((-943 |#1|) (-943 |#1|)) 28)) (-4076 (((-1 (-943 |#1|) (-943 |#1|)) |#1|) 37)) (-1303 (((-1 (-943 |#1|) (-943 |#1|)) |#1|) 35)) (-3204 (((-1 (-943 |#1|) (-943 |#1|)) |#1|) 34)) (-3833 (((-943 |#1|) (-943 |#1|)) 23)) (-3224 (((-1 (-943 |#1|) (-943 |#1|)) |#1| |#1|) 43)) (-1846 (((-943 |#1|) (-943 |#1|)) 8)) (-3333 (((-1 (-943 |#1|) (-943 |#1|)) |#1|) 39)) (-1502 (((-1 (-943 |#1|) (-943 |#1|)) |#1|) 38))) -(((-176 |#1|) (-10 -7 (-15 -1846 ((-943 |#1|) (-943 |#1|))) (-15 -4367 ((-943 |#1|) (-943 |#1|))) (-15 -3833 ((-943 |#1|) (-943 |#1|))) (-15 -3956 ((-943 |#1|) (-943 |#1|))) (-15 -3287 ((-943 |#1|) (-943 |#1|))) (-15 -2674 ((-943 |#1|) (-943 |#1|))) (-15 -3502 ((-943 |#1|) (-943 |#1|))) (-15 -3204 ((-1 (-943 |#1|) (-943 |#1|)) |#1|)) (-15 -1303 ((-1 (-943 |#1|) (-943 |#1|)) |#1|)) (-15 -2512 ((-1 (-943 |#1|) (-943 |#1|)) |#1|)) (-15 -4076 ((-1 (-943 |#1|) (-943 |#1|)) |#1|)) (-15 -1502 ((-1 (-943 |#1|) (-943 |#1|)) |#1|)) (-15 -3333 ((-1 (-943 |#1|) (-943 |#1|)) |#1|)) (-15 -3246 ((-1 (-943 |#1|) (-943 |#1|)) |#1|)) (-15 -3224 ((-1 (-943 |#1|) (-943 |#1|)) |#1| |#1|))) (-13 (-365) (-1199) (-1002))) (T -176)) -((-3224 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))))) (-3246 (*1 *2 *3) (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))))) (-3333 (*1 *2 *3) (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))))) (-1502 (*1 *2 *3) (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))))) (-4076 (*1 *2 *3) (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))))) (-2512 (*1 *2 *3) (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))))) (-1303 (*1 *2 *3) (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))))) (-3204 (*1 *2 *3) (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))))) (-3502 (*1 *2 *2) (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))) (-5 *1 (-176 *3)))) (-2674 (*1 *2 *2) (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))) (-5 *1 (-176 *3)))) (-3287 (*1 *2 *2) (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))) (-5 *1 (-176 *3)))) (-3956 (*1 *2 *2) (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))) (-5 *1 (-176 *3)))) (-3833 (*1 *2 *2) (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))) (-5 *1 (-176 *3)))) (-4367 (*1 *2 *2) (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))) (-5 *1 (-176 *3)))) (-1846 (*1 *2 *2) (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))) (-5 *1 (-176 *3))))) -(-10 -7 (-15 -1846 ((-943 |#1|) (-943 |#1|))) (-15 -4367 ((-943 |#1|) (-943 |#1|))) (-15 -3833 ((-943 |#1|) (-943 |#1|))) (-15 -3956 ((-943 |#1|) (-943 |#1|))) (-15 -3287 ((-943 |#1|) (-943 |#1|))) (-15 -2674 ((-943 |#1|) (-943 |#1|))) (-15 -3502 ((-943 |#1|) (-943 |#1|))) (-15 -3204 ((-1 (-943 |#1|) (-943 |#1|)) |#1|)) (-15 -1303 ((-1 (-943 |#1|) (-943 |#1|)) |#1|)) (-15 -2512 ((-1 (-943 |#1|) (-943 |#1|)) |#1|)) (-15 -4076 ((-1 (-943 |#1|) (-943 |#1|)) |#1|)) (-15 -1502 ((-1 (-943 |#1|) (-943 |#1|)) |#1|)) (-15 -3333 ((-1 (-943 |#1|) (-943 |#1|)) |#1|)) (-15 -3246 ((-1 (-943 |#1|) (-943 |#1|)) |#1|)) (-15 -3224 ((-1 (-943 |#1|) (-943 |#1|)) |#1| |#1|))) -((-1820 ((|#2| |#3|) 28))) -(((-177 |#1| |#2| |#3|) (-10 -7 (-15 -1820 (|#2| |#3|))) (-172) (-1240 |#1|) (-724 |#1| |#2|)) (T -177)) -((-1820 (*1 *2 *3) (-12 (-4 *4 (-172)) (-4 *2 (-1240 *4)) (-5 *1 (-177 *4 *2 *3)) (-4 *3 (-724 *4 *2))))) -(-10 -7 (-15 -1820 (|#2| |#3|))) -((-2062 (((-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|)) 44 (|has| (-952 |#2|) (-886 |#1|))))) -(((-178 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-952 |#2|) (-886 |#1|)) (-15 -2062 ((-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|))) |%noBranch|)) (-1099) (-13 (-886 |#1|) (-172)) (-166 |#2|)) (T -178)) -((-2062 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-889 *5 *3)) (-5 *4 (-892 *5)) (-4 *5 (-1099)) (-4 *3 (-166 *6)) (-4 (-952 *6) (-886 *5)) (-4 *6 (-13 (-886 *5) (-172))) (-5 *1 (-178 *5 *6 *3))))) -(-10 -7 (IF (|has| (-952 |#2|) (-886 |#1|)) (-15 -2062 ((-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|))) |%noBranch|)) -((-1958 (((-644 |#1|) (-644 |#1|) |#1|) 41)) (-2183 (((-644 |#1|) |#1| (-644 |#1|)) 20)) (-3434 (((-644 |#1|) (-644 (-644 |#1|)) (-644 |#1|)) 36) ((|#1| (-644 |#1|) (-644 |#1|)) 32))) -(((-179 |#1|) (-10 -7 (-15 -2183 ((-644 |#1|) |#1| (-644 |#1|))) (-15 -3434 (|#1| (-644 |#1|) (-644 |#1|))) (-15 -3434 ((-644 |#1|) (-644 (-644 |#1|)) (-644 |#1|))) (-15 -1958 ((-644 |#1|) (-644 |#1|) |#1|))) (-308)) (T -179)) -((-1958 (*1 *2 *2 *3) (-12 (-5 *2 (-644 *3)) (-4 *3 (-308)) (-5 *1 (-179 *3)))) (-3434 (*1 *2 *3 *2) (-12 (-5 *3 (-644 (-644 *4))) (-5 *2 (-644 *4)) (-4 *4 (-308)) (-5 *1 (-179 *4)))) (-3434 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *2)) (-5 *1 (-179 *2)) (-4 *2 (-308)))) (-2183 (*1 *2 *3 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-308)) (-5 *1 (-179 *3))))) -(-10 -7 (-15 -2183 ((-644 |#1|) |#1| (-644 |#1|))) (-15 -3434 (|#1| (-644 |#1|) (-644 |#1|))) (-15 -3434 ((-644 |#1|) (-644 (-644 |#1|)) (-644 |#1|))) (-15 -1958 ((-644 |#1|) (-644 |#1|) |#1|))) -((-3007 (((-112) $ $) NIL)) (-3852 (((-1213) $) 13)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-1403 (((-1134) $) 10)) (-3783 (((-862) $) 20) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) -(((-180) (-13 (-1082) (-10 -8 (-15 -1403 ((-1134) $)) (-15 -3852 ((-1213) $))))) (T -180)) -((-1403 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-180)))) (-3852 (*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-180))))) -(-13 (-1082) (-10 -8 (-15 -1403 ((-1134) $)) (-15 -3852 ((-1213) $)))) -((-1759 (((-2 (|:| |start| |#2|) (|:| -4138 (-420 |#2|))) |#2|) 66)) (-3425 ((|#1| |#1|) 58)) (-1847 (((-169 |#1|) |#2|) 93)) (-2518 ((|#1| |#2|) 141) ((|#1| |#2| |#1|) 90)) (-3989 ((|#2| |#2|) 91)) (-2144 (((-420 |#2|) |#2| |#1|) 121) (((-420 |#2|) |#2| |#1| (-112)) 88)) (-1577 ((|#1| |#2|) 120)) (-4241 ((|#2| |#2|) 135)) (-3719 (((-420 |#2|) |#2|) 158) (((-420 |#2|) |#2| |#1|) 33) (((-420 |#2|) |#2| |#1| (-112)) 157)) (-3072 (((-644 (-2 (|:| -4138 (-644 |#2|)) (|:| -1465 |#1|))) |#2| |#2|) 156) (((-644 (-2 (|:| -4138 (-644 |#2|)) (|:| -1465 |#1|))) |#2| |#2| (-112)) 81)) (-3924 (((-644 (-169 |#1|)) |#2| |#1|) 42) (((-644 (-169 |#1|)) |#2|) 43))) -(((-181 |#1| |#2|) (-10 -7 (-15 -3924 ((-644 (-169 |#1|)) |#2|)) (-15 -3924 ((-644 (-169 |#1|)) |#2| |#1|)) (-15 -3072 ((-644 (-2 (|:| -4138 (-644 |#2|)) (|:| -1465 |#1|))) |#2| |#2| (-112))) (-15 -3072 ((-644 (-2 (|:| -4138 (-644 |#2|)) (|:| -1465 |#1|))) |#2| |#2|)) (-15 -3719 ((-420 |#2|) |#2| |#1| (-112))) (-15 -3719 ((-420 |#2|) |#2| |#1|)) (-15 -3719 ((-420 |#2|) |#2|)) (-15 -4241 (|#2| |#2|)) (-15 -1577 (|#1| |#2|)) (-15 -2144 ((-420 |#2|) |#2| |#1| (-112))) (-15 -2144 ((-420 |#2|) |#2| |#1|)) (-15 -3989 (|#2| |#2|)) (-15 -2518 (|#1| |#2| |#1|)) (-15 -2518 (|#1| |#2|)) (-15 -1847 ((-169 |#1|) |#2|)) (-15 -3425 (|#1| |#1|)) (-15 -1759 ((-2 (|:| |start| |#2|) (|:| -4138 (-420 |#2|))) |#2|))) (-13 (-365) (-848)) (-1240 (-169 |#1|))) (T -181)) -((-1759 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-848))) (-5 *2 (-2 (|:| |start| *3) (|:| -4138 (-420 *3)))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1240 (-169 *4))))) (-3425 (*1 *2 *2) (-12 (-4 *2 (-13 (-365) (-848))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1240 (-169 *2))))) (-1847 (*1 *2 *3) (-12 (-5 *2 (-169 *4)) (-5 *1 (-181 *4 *3)) (-4 *4 (-13 (-365) (-848))) (-4 *3 (-1240 *2)))) (-2518 (*1 *2 *3) (-12 (-4 *2 (-13 (-365) (-848))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1240 (-169 *2))))) (-2518 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-365) (-848))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1240 (-169 *2))))) (-3989 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-848))) (-5 *1 (-181 *3 *2)) (-4 *2 (-1240 (-169 *3))))) (-2144 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-365) (-848))) (-5 *2 (-420 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1240 (-169 *4))))) (-2144 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-365) (-848))) (-5 *2 (-420 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1240 (-169 *4))))) (-1577 (*1 *2 *3) (-12 (-4 *2 (-13 (-365) (-848))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1240 (-169 *2))))) (-4241 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-848))) (-5 *1 (-181 *3 *2)) (-4 *2 (-1240 (-169 *3))))) (-3719 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-848))) (-5 *2 (-420 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1240 (-169 *4))))) (-3719 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-365) (-848))) (-5 *2 (-420 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1240 (-169 *4))))) (-3719 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-365) (-848))) (-5 *2 (-420 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1240 (-169 *4))))) (-3072 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-365) (-848))) (-5 *2 (-644 (-2 (|:| -4138 (-644 *3)) (|:| -1465 *4)))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1240 (-169 *4))))) (-3072 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-365) (-848))) (-5 *2 (-644 (-2 (|:| -4138 (-644 *3)) (|:| -1465 *5)))) (-5 *1 (-181 *5 *3)) (-4 *3 (-1240 (-169 *5))))) (-3924 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-365) (-848))) (-5 *2 (-644 (-169 *4))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1240 (-169 *4))))) (-3924 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-848))) (-5 *2 (-644 (-169 *4))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1240 (-169 *4)))))) -(-10 -7 (-15 -3924 ((-644 (-169 |#1|)) |#2|)) (-15 -3924 ((-644 (-169 |#1|)) |#2| |#1|)) (-15 -3072 ((-644 (-2 (|:| -4138 (-644 |#2|)) (|:| -1465 |#1|))) |#2| |#2| (-112))) (-15 -3072 ((-644 (-2 (|:| -4138 (-644 |#2|)) (|:| -1465 |#1|))) |#2| |#2|)) (-15 -3719 ((-420 |#2|) |#2| |#1| (-112))) (-15 -3719 ((-420 |#2|) |#2| |#1|)) (-15 -3719 ((-420 |#2|) |#2|)) (-15 -4241 (|#2| |#2|)) (-15 -1577 (|#1| |#2|)) (-15 -2144 ((-420 |#2|) |#2| |#1| (-112))) (-15 -2144 ((-420 |#2|) |#2| |#1|)) (-15 -3989 (|#2| |#2|)) (-15 -2518 (|#1| |#2| |#1|)) (-15 -2518 (|#1| |#2|)) (-15 -1847 ((-169 |#1|) |#2|)) (-15 -3425 (|#1| |#1|)) (-15 -1759 ((-2 (|:| |start| |#2|) (|:| -4138 (-420 |#2|))) |#2|))) -((-2889 (((-3 |#2| "failed") |#2|) 20)) (-2207 (((-771) |#2|) 23)) (-4374 ((|#2| |#2| |#2|) 25))) -(((-182 |#1| |#2|) (-10 -7 (-15 -2889 ((-3 |#2| "failed") |#2|)) (-15 -2207 ((-771) |#2|)) (-15 -4374 (|#2| |#2| |#2|))) (-1214) (-674 |#1|)) (T -182)) -((-4374 (*1 *2 *2 *2) (-12 (-4 *3 (-1214)) (-5 *1 (-182 *3 *2)) (-4 *2 (-674 *3)))) (-2207 (*1 *2 *3) (-12 (-4 *4 (-1214)) (-5 *2 (-771)) (-5 *1 (-182 *4 *3)) (-4 *3 (-674 *4)))) (-2889 (*1 *2 *2) (|partial| -12 (-4 *3 (-1214)) (-5 *1 (-182 *3 *2)) (-4 *2 (-674 *3))))) -(-10 -7 (-15 -2889 ((-3 |#2| "failed") |#2|)) (-15 -2207 ((-771) |#2|)) (-15 -4374 (|#2| |#2| |#2|))) -((-3007 (((-112) $ $) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-1547 ((|#1| $) 7)) (-3783 (((-862) $) 14)) (-3117 (((-112) $ $) NIL)) (-3218 (((-644 (-1180)) $) 10)) (-2947 (((-112) $ $) 12))) -(((-183 |#1|) (-13 (-1099) (-10 -8 (-15 -1547 (|#1| $)) (-15 -3218 ((-644 (-1180)) $)))) (-185)) (T -183)) -((-1547 (*1 *2 *1) (-12 (-5 *1 (-183 *2)) (-4 *2 (-185)))) (-3218 (*1 *2 *1) (-12 (-5 *2 (-644 (-1180))) (-5 *1 (-183 *3)) (-4 *3 (-185))))) -(-13 (-1099) (-10 -8 (-15 -1547 (|#1| $)) (-15 -3218 ((-644 (-1180)) $)))) -((-3538 (((-644 (-865)) $) 16)) (-1669 (((-186) $) 8)) (-1429 (((-644 (-112)) $) 13)) (-2347 (((-55) $) 10))) -(((-184 |#1|) (-10 -8 (-15 -3538 ((-644 (-865)) |#1|)) (-15 -1429 ((-644 (-112)) |#1|)) (-15 -1669 ((-186) |#1|)) (-15 -2347 ((-55) |#1|))) (-185)) (T -184)) -NIL -(-10 -8 (-15 -3538 ((-644 (-865)) |#1|)) (-15 -1429 ((-644 (-112)) |#1|)) (-15 -1669 ((-186) |#1|)) (-15 -2347 ((-55) |#1|))) -((-3007 (((-112) $ $) 7)) (-3538 (((-644 (-865)) $) 19)) (-2640 (((-508) $) 16)) (-4117 (((-1157) $) 10)) (-1669 (((-186) $) 21)) (-2572 (((-112) $ (-508)) 14)) (-4035 (((-1119) $) 11)) (-1429 (((-644 (-112)) $) 20)) (-3783 (((-862) $) 12)) (-3117 (((-112) $ $) 9)) (-2347 (((-55) $) 15)) (-2947 (((-112) $ $) 6))) +((-2405 (*1 *1 *1) (-4 *1 (-173)))) +(-13 (-10 -8 (-15 -2405 ($ $)))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-1873 ((|#1| $) 81)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-2161 (($ $) NIL)) (-2345 (((-112) $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-1378 (($ $) NIL)) (-1364 (((-420 $) $) NIL)) (-2085 (((-112) $ $) NIL)) (-2463 (($) NIL T CONST)) (-2933 (($ $ $) NIL)) (-3557 (($ $) 21)) (-1330 (($ |#1| (-1155 |#1|)) 50)) (-3245 (((-3 $ "failed") $) 123)) (-2945 (($ $ $) NIL)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL)) (-1615 (((-112) $) NIL)) (-1901 (((-1155 |#1|) $) 88)) (-3535 (((-1155 |#1|) $) 85)) (-1853 (((-1155 |#1|) $) 86)) (-2389 (((-112) $) NIL)) (-2215 (((-1155 |#1|) $) 94)) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2128 (($ (-644 $)) NIL) (($ $ $) NIL)) (-3380 (((-1157) $) NIL)) (-2748 (($ $) NIL)) (-4072 (((-1119) $) NIL)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2164 (($ (-644 $)) NIL) (($ $ $) NIL)) (-1624 (((-420 $) $) NIL)) (-3005 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL)) (-3369 (($ $ (-566)) 97)) (-2978 (((-3 $ "failed") $ $) NIL)) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-4357 (((-771) $) NIL)) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL)) (-2901 (((-1155 |#1|) $) 95)) (-3799 (((-1155 (-409 |#1|)) $) 14)) (-2146 (($ (-409 |#1|)) 17) (($ |#1| (-1155 |#1|) (-1155 |#1|)) 40)) (-1687 (($ $) 99)) (-3152 (((-862) $) 140) (($ (-566)) 53) (($ |#1|) 54) (($ (-409 |#1|)) 38) (($ (-409 (-566))) NIL) (($ $) NIL)) (-2593 (((-771)) 70 T CONST)) (-3044 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-3703 (((-1155 (-409 |#1|)) $) 20)) (-4356 (($) 27 T CONST)) (-4366 (($) 30 T CONST)) (-2914 (((-112) $ $) 37)) (-3025 (($ $ $) 121)) (-3012 (($ $) 112) (($ $ $) 109)) (-3002 (($ $ $) 107)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 119) (($ $ $) 114) (($ $ |#1|) NIL) (($ |#1| $) 116) (($ (-409 |#1|) $) 117) (($ $ (-409 |#1|)) NIL) (($ (-409 (-566)) $) NIL) (($ $ (-409 (-566))) NIL))) +(((-174 |#1|) (-13 (-38 |#1|) (-38 (-409 |#1|)) (-365) (-10 -8 (-15 -2146 ($ (-409 |#1|))) (-15 -2146 ($ |#1| (-1155 |#1|) (-1155 |#1|))) (-15 -1330 ($ |#1| (-1155 |#1|))) (-15 -3535 ((-1155 |#1|) $)) (-15 -1853 ((-1155 |#1|) $)) (-15 -1901 ((-1155 |#1|) $)) (-15 -1873 (|#1| $)) (-15 -3557 ($ $)) (-15 -3703 ((-1155 (-409 |#1|)) $)) (-15 -3799 ((-1155 (-409 |#1|)) $)) (-15 -2215 ((-1155 |#1|) $)) (-15 -2901 ((-1155 |#1|) $)) (-15 -3369 ($ $ (-566))) (-15 -1687 ($ $)))) (-308)) (T -174)) +((-2146 (*1 *1 *2) (-12 (-5 *2 (-409 *3)) (-4 *3 (-308)) (-5 *1 (-174 *3)))) (-2146 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1155 *2)) (-4 *2 (-308)) (-5 *1 (-174 *2)))) (-1330 (*1 *1 *2 *3) (-12 (-5 *3 (-1155 *2)) (-4 *2 (-308)) (-5 *1 (-174 *2)))) (-3535 (*1 *2 *1) (-12 (-5 *2 (-1155 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-1853 (*1 *2 *1) (-12 (-5 *2 (-1155 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-1901 (*1 *2 *1) (-12 (-5 *2 (-1155 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-1873 (*1 *2 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308)))) (-3557 (*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308)))) (-3703 (*1 *2 *1) (-12 (-5 *2 (-1155 (-409 *3))) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-3799 (*1 *2 *1) (-12 (-5 *2 (-1155 (-409 *3))) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-2215 (*1 *2 *1) (-12 (-5 *2 (-1155 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-2901 (*1 *2 *1) (-12 (-5 *2 (-1155 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-3369 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-1687 (*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308))))) +(-13 (-38 |#1|) (-38 (-409 |#1|)) (-365) (-10 -8 (-15 -2146 ($ (-409 |#1|))) (-15 -2146 ($ |#1| (-1155 |#1|) (-1155 |#1|))) (-15 -1330 ($ |#1| (-1155 |#1|))) (-15 -3535 ((-1155 |#1|) $)) (-15 -1853 ((-1155 |#1|) $)) (-15 -1901 ((-1155 |#1|) $)) (-15 -1873 (|#1| $)) (-15 -3557 ($ $)) (-15 -3703 ((-1155 (-409 |#1|)) $)) (-15 -3799 ((-1155 (-409 |#1|)) $)) (-15 -2215 ((-1155 |#1|) $)) (-15 -2901 ((-1155 |#1|) $)) (-15 -3369 ($ $ (-566))) (-15 -1687 ($ $)))) +((-1487 (($ (-109) $) 15)) (-3585 (((-691 (-109)) (-508) $) 14)) (-3152 (((-862) $) 18)) (-2126 (((-644 (-109)) $) 8))) +(((-175) (-13 (-613 (-862)) (-10 -8 (-15 -2126 ((-644 (-109)) $)) (-15 -1487 ($ (-109) $)) (-15 -3585 ((-691 (-109)) (-508) $))))) (T -175)) +((-2126 (*1 *2 *1) (-12 (-5 *2 (-644 (-109))) (-5 *1 (-175)))) (-1487 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-175)))) (-3585 (*1 *2 *3 *1) (-12 (-5 *3 (-508)) (-5 *2 (-691 (-109))) (-5 *1 (-175))))) +(-13 (-613 (-862)) (-10 -8 (-15 -2126 ((-644 (-109)) $)) (-15 -1487 ($ (-109) $)) (-15 -3585 ((-691 (-109)) (-508) $)))) +((-1300 (((-1 (-943 |#1|) (-943 |#1|)) |#1|) 40)) (-1783 (((-943 |#1|) (-943 |#1|)) 24)) (-1303 (((-1 (-943 |#1|) (-943 |#1|)) |#1|) 36)) (-2965 (((-943 |#1|) (-943 |#1|)) 22)) (-3239 (((-943 |#1|) (-943 |#1|)) 30)) (-2739 (((-943 |#1|) (-943 |#1|)) 29)) (-4144 (((-943 |#1|) (-943 |#1|)) 28)) (-2698 (((-1 (-943 |#1|) (-943 |#1|)) |#1|) 37)) (-2570 (((-1 (-943 |#1|) (-943 |#1|)) |#1|) 35)) (-1438 (((-1 (-943 |#1|) (-943 |#1|)) |#1|) 34)) (-3763 (((-943 |#1|) (-943 |#1|)) 23)) (-2867 (((-1 (-943 |#1|) (-943 |#1|)) |#1| |#1|) 43)) (-2828 (((-943 |#1|) (-943 |#1|)) 8)) (-4038 (((-1 (-943 |#1|) (-943 |#1|)) |#1|) 39)) (-3056 (((-1 (-943 |#1|) (-943 |#1|)) |#1|) 38))) +(((-176 |#1|) (-10 -7 (-15 -2828 ((-943 |#1|) (-943 |#1|))) (-15 -2965 ((-943 |#1|) (-943 |#1|))) (-15 -3763 ((-943 |#1|) (-943 |#1|))) (-15 -1783 ((-943 |#1|) (-943 |#1|))) (-15 -4144 ((-943 |#1|) (-943 |#1|))) (-15 -2739 ((-943 |#1|) (-943 |#1|))) (-15 -3239 ((-943 |#1|) (-943 |#1|))) (-15 -1438 ((-1 (-943 |#1|) (-943 |#1|)) |#1|)) (-15 -2570 ((-1 (-943 |#1|) (-943 |#1|)) |#1|)) (-15 -1303 ((-1 (-943 |#1|) (-943 |#1|)) |#1|)) (-15 -2698 ((-1 (-943 |#1|) (-943 |#1|)) |#1|)) (-15 -3056 ((-1 (-943 |#1|) (-943 |#1|)) |#1|)) (-15 -4038 ((-1 (-943 |#1|) (-943 |#1|)) |#1|)) (-15 -1300 ((-1 (-943 |#1|) (-943 |#1|)) |#1|)) (-15 -2867 ((-1 (-943 |#1|) (-943 |#1|)) |#1| |#1|))) (-13 (-365) (-1199) (-1002))) (T -176)) +((-2867 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))))) (-1300 (*1 *2 *3) (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))))) (-4038 (*1 *2 *3) (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))))) (-3056 (*1 *2 *3) (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))))) (-2698 (*1 *2 *3) (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))))) (-1303 (*1 *2 *3) (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))))) (-2570 (*1 *2 *3) (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))))) (-1438 (*1 *2 *3) (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))))) (-3239 (*1 *2 *2) (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))) (-5 *1 (-176 *3)))) (-2739 (*1 *2 *2) (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))) (-5 *1 (-176 *3)))) (-4144 (*1 *2 *2) (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))) (-5 *1 (-176 *3)))) (-1783 (*1 *2 *2) (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))) (-5 *1 (-176 *3)))) (-3763 (*1 *2 *2) (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))) (-5 *1 (-176 *3)))) (-2965 (*1 *2 *2) (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))) (-5 *1 (-176 *3)))) (-2828 (*1 *2 *2) (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))) (-5 *1 (-176 *3))))) +(-10 -7 (-15 -2828 ((-943 |#1|) (-943 |#1|))) (-15 -2965 ((-943 |#1|) (-943 |#1|))) (-15 -3763 ((-943 |#1|) (-943 |#1|))) (-15 -1783 ((-943 |#1|) (-943 |#1|))) (-15 -4144 ((-943 |#1|) (-943 |#1|))) (-15 -2739 ((-943 |#1|) (-943 |#1|))) (-15 -3239 ((-943 |#1|) (-943 |#1|))) (-15 -1438 ((-1 (-943 |#1|) (-943 |#1|)) |#1|)) (-15 -2570 ((-1 (-943 |#1|) (-943 |#1|)) |#1|)) (-15 -1303 ((-1 (-943 |#1|) (-943 |#1|)) |#1|)) (-15 -2698 ((-1 (-943 |#1|) (-943 |#1|)) |#1|)) (-15 -3056 ((-1 (-943 |#1|) (-943 |#1|)) |#1|)) (-15 -4038 ((-1 (-943 |#1|) (-943 |#1|)) |#1|)) (-15 -1300 ((-1 (-943 |#1|) (-943 |#1|)) |#1|)) (-15 -2867 ((-1 (-943 |#1|) (-943 |#1|)) |#1| |#1|))) +((-2318 ((|#2| |#3|) 28))) +(((-177 |#1| |#2| |#3|) (-10 -7 (-15 -2318 (|#2| |#3|))) (-172) (-1240 |#1|) (-724 |#1| |#2|)) (T -177)) +((-2318 (*1 *2 *3) (-12 (-4 *4 (-172)) (-4 *2 (-1240 *4)) (-5 *1 (-177 *4 *2 *3)) (-4 *3 (-724 *4 *2))))) +(-10 -7 (-15 -2318 (|#2| |#3|))) +((-2926 (((-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|)) 44 (|has| (-952 |#2|) (-886 |#1|))))) +(((-178 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-952 |#2|) (-886 |#1|)) (-15 -2926 ((-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|))) |%noBranch|)) (-1099) (-13 (-886 |#1|) (-172)) (-166 |#2|)) (T -178)) +((-2926 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-889 *5 *3)) (-5 *4 (-892 *5)) (-4 *5 (-1099)) (-4 *3 (-166 *6)) (-4 (-952 *6) (-886 *5)) (-4 *6 (-13 (-886 *5) (-172))) (-5 *1 (-178 *5 *6 *3))))) +(-10 -7 (IF (|has| (-952 |#2|) (-886 |#1|)) (-15 -2926 ((-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|))) |%noBranch|)) +((-2525 (((-644 |#1|) (-644 |#1|) |#1|) 41)) (-2550 (((-644 |#1|) |#1| (-644 |#1|)) 20)) (-1630 (((-644 |#1|) (-644 (-644 |#1|)) (-644 |#1|)) 36) ((|#1| (-644 |#1|) (-644 |#1|)) 32))) +(((-179 |#1|) (-10 -7 (-15 -2550 ((-644 |#1|) |#1| (-644 |#1|))) (-15 -1630 (|#1| (-644 |#1|) (-644 |#1|))) (-15 -1630 ((-644 |#1|) (-644 (-644 |#1|)) (-644 |#1|))) (-15 -2525 ((-644 |#1|) (-644 |#1|) |#1|))) (-308)) (T -179)) +((-2525 (*1 *2 *2 *3) (-12 (-5 *2 (-644 *3)) (-4 *3 (-308)) (-5 *1 (-179 *3)))) (-1630 (*1 *2 *3 *2) (-12 (-5 *3 (-644 (-644 *4))) (-5 *2 (-644 *4)) (-4 *4 (-308)) (-5 *1 (-179 *4)))) (-1630 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *2)) (-5 *1 (-179 *2)) (-4 *2 (-308)))) (-2550 (*1 *2 *3 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-308)) (-5 *1 (-179 *3))))) +(-10 -7 (-15 -2550 ((-644 |#1|) |#1| (-644 |#1|))) (-15 -1630 (|#1| (-644 |#1|) (-644 |#1|))) (-15 -1630 ((-644 |#1|) (-644 (-644 |#1|)) (-644 |#1|))) (-15 -2525 ((-644 |#1|) (-644 |#1|) |#1|))) +((-2988 (((-112) $ $) NIL)) (-1385 (((-1213) $) 13)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-2080 (((-1134) $) 10)) (-3152 (((-862) $) 20) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) +(((-180) (-13 (-1082) (-10 -8 (-15 -2080 ((-1134) $)) (-15 -1385 ((-1213) $))))) (T -180)) +((-2080 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-180)))) (-1385 (*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-180))))) +(-13 (-1082) (-10 -8 (-15 -2080 ((-1134) $)) (-15 -1385 ((-1213) $)))) +((-1419 (((-2 (|:| |start| |#2|) (|:| -1616 (-420 |#2|))) |#2|) 66)) (-1881 ((|#1| |#1|) 58)) (-2951 (((-169 |#1|) |#2|) 93)) (-3751 ((|#1| |#2|) 141) ((|#1| |#2| |#1|) 90)) (-1943 ((|#2| |#2|) 91)) (-1882 (((-420 |#2|) |#2| |#1|) 121) (((-420 |#2|) |#2| |#1| (-112)) 88)) (-2064 ((|#1| |#2|) 120)) (-2043 ((|#2| |#2|) 135)) (-1624 (((-420 |#2|) |#2|) 158) (((-420 |#2|) |#2| |#1|) 33) (((-420 |#2|) |#2| |#1| (-112)) 157)) (-4381 (((-644 (-2 (|:| -1616 (-644 |#2|)) (|:| -1425 |#1|))) |#2| |#2|) 156) (((-644 (-2 (|:| -1616 (-644 |#2|)) (|:| -1425 |#1|))) |#2| |#2| (-112)) 81)) (-3828 (((-644 (-169 |#1|)) |#2| |#1|) 42) (((-644 (-169 |#1|)) |#2|) 43))) +(((-181 |#1| |#2|) (-10 -7 (-15 -3828 ((-644 (-169 |#1|)) |#2|)) (-15 -3828 ((-644 (-169 |#1|)) |#2| |#1|)) (-15 -4381 ((-644 (-2 (|:| -1616 (-644 |#2|)) (|:| -1425 |#1|))) |#2| |#2| (-112))) (-15 -4381 ((-644 (-2 (|:| -1616 (-644 |#2|)) (|:| -1425 |#1|))) |#2| |#2|)) (-15 -1624 ((-420 |#2|) |#2| |#1| (-112))) (-15 -1624 ((-420 |#2|) |#2| |#1|)) (-15 -1624 ((-420 |#2|) |#2|)) (-15 -2043 (|#2| |#2|)) (-15 -2064 (|#1| |#2|)) (-15 -1882 ((-420 |#2|) |#2| |#1| (-112))) (-15 -1882 ((-420 |#2|) |#2| |#1|)) (-15 -1943 (|#2| |#2|)) (-15 -3751 (|#1| |#2| |#1|)) (-15 -3751 (|#1| |#2|)) (-15 -2951 ((-169 |#1|) |#2|)) (-15 -1881 (|#1| |#1|)) (-15 -1419 ((-2 (|:| |start| |#2|) (|:| -1616 (-420 |#2|))) |#2|))) (-13 (-365) (-848)) (-1240 (-169 |#1|))) (T -181)) +((-1419 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-848))) (-5 *2 (-2 (|:| |start| *3) (|:| -1616 (-420 *3)))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1240 (-169 *4))))) (-1881 (*1 *2 *2) (-12 (-4 *2 (-13 (-365) (-848))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1240 (-169 *2))))) (-2951 (*1 *2 *3) (-12 (-5 *2 (-169 *4)) (-5 *1 (-181 *4 *3)) (-4 *4 (-13 (-365) (-848))) (-4 *3 (-1240 *2)))) (-3751 (*1 *2 *3) (-12 (-4 *2 (-13 (-365) (-848))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1240 (-169 *2))))) (-3751 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-365) (-848))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1240 (-169 *2))))) (-1943 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-848))) (-5 *1 (-181 *3 *2)) (-4 *2 (-1240 (-169 *3))))) (-1882 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-365) (-848))) (-5 *2 (-420 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1240 (-169 *4))))) (-1882 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-365) (-848))) (-5 *2 (-420 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1240 (-169 *4))))) (-2064 (*1 *2 *3) (-12 (-4 *2 (-13 (-365) (-848))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1240 (-169 *2))))) (-2043 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-848))) (-5 *1 (-181 *3 *2)) (-4 *2 (-1240 (-169 *3))))) (-1624 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-848))) (-5 *2 (-420 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1240 (-169 *4))))) (-1624 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-365) (-848))) (-5 *2 (-420 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1240 (-169 *4))))) (-1624 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-365) (-848))) (-5 *2 (-420 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1240 (-169 *4))))) (-4381 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-365) (-848))) (-5 *2 (-644 (-2 (|:| -1616 (-644 *3)) (|:| -1425 *4)))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1240 (-169 *4))))) (-4381 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-365) (-848))) (-5 *2 (-644 (-2 (|:| -1616 (-644 *3)) (|:| -1425 *5)))) (-5 *1 (-181 *5 *3)) (-4 *3 (-1240 (-169 *5))))) (-3828 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-365) (-848))) (-5 *2 (-644 (-169 *4))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1240 (-169 *4))))) (-3828 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-848))) (-5 *2 (-644 (-169 *4))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1240 (-169 *4)))))) +(-10 -7 (-15 -3828 ((-644 (-169 |#1|)) |#2|)) (-15 -3828 ((-644 (-169 |#1|)) |#2| |#1|)) (-15 -4381 ((-644 (-2 (|:| -1616 (-644 |#2|)) (|:| -1425 |#1|))) |#2| |#2| (-112))) (-15 -4381 ((-644 (-2 (|:| -1616 (-644 |#2|)) (|:| -1425 |#1|))) |#2| |#2|)) (-15 -1624 ((-420 |#2|) |#2| |#1| (-112))) (-15 -1624 ((-420 |#2|) |#2| |#1|)) (-15 -1624 ((-420 |#2|) |#2|)) (-15 -2043 (|#2| |#2|)) (-15 -2064 (|#1| |#2|)) (-15 -1882 ((-420 |#2|) |#2| |#1| (-112))) (-15 -1882 ((-420 |#2|) |#2| |#1|)) (-15 -1943 (|#2| |#2|)) (-15 -3751 (|#1| |#2| |#1|)) (-15 -3751 (|#1| |#2|)) (-15 -2951 ((-169 |#1|) |#2|)) (-15 -1881 (|#1| |#1|)) (-15 -1419 ((-2 (|:| |start| |#2|) (|:| -1616 (-420 |#2|))) |#2|))) +((-3457 (((-3 |#2| "failed") |#2|) 20)) (-3696 (((-771) |#2|) 23)) (-2398 ((|#2| |#2| |#2|) 25))) +(((-182 |#1| |#2|) (-10 -7 (-15 -3457 ((-3 |#2| "failed") |#2|)) (-15 -3696 ((-771) |#2|)) (-15 -2398 (|#2| |#2| |#2|))) (-1214) (-674 |#1|)) (T -182)) +((-2398 (*1 *2 *2 *2) (-12 (-4 *3 (-1214)) (-5 *1 (-182 *3 *2)) (-4 *2 (-674 *3)))) (-3696 (*1 *2 *3) (-12 (-4 *4 (-1214)) (-5 *2 (-771)) (-5 *1 (-182 *4 *3)) (-4 *3 (-674 *4)))) (-3457 (*1 *2 *2) (|partial| -12 (-4 *3 (-1214)) (-5 *1 (-182 *3 *2)) (-4 *2 (-674 *3))))) +(-10 -7 (-15 -3457 ((-3 |#2| "failed") |#2|)) (-15 -3696 ((-771) |#2|)) (-15 -2398 (|#2| |#2| |#2|))) +((-2988 (((-112) $ $) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-2233 ((|#1| $) 7)) (-3152 (((-862) $) 14)) (-3044 (((-112) $ $) NIL)) (-4368 (((-644 (-1180)) $) 10)) (-2914 (((-112) $ $) 12))) +(((-183 |#1|) (-13 (-1099) (-10 -8 (-15 -2233 (|#1| $)) (-15 -4368 ((-644 (-1180)) $)))) (-185)) (T -183)) +((-2233 (*1 *2 *1) (-12 (-5 *1 (-183 *2)) (-4 *2 (-185)))) (-4368 (*1 *2 *1) (-12 (-5 *2 (-644 (-1180))) (-5 *1 (-183 *3)) (-4 *3 (-185))))) +(-13 (-1099) (-10 -8 (-15 -2233 (|#1| $)) (-15 -4368 ((-644 (-1180)) $)))) +((-3332 (((-644 (-865)) $) 16)) (-1691 (((-186) $) 8)) (-3589 (((-644 (-112)) $) 13)) (-1752 (((-55) $) 10))) +(((-184 |#1|) (-10 -8 (-15 -3332 ((-644 (-865)) |#1|)) (-15 -3589 ((-644 (-112)) |#1|)) (-15 -1691 ((-186) |#1|)) (-15 -1752 ((-55) |#1|))) (-185)) (T -184)) +NIL +(-10 -8 (-15 -3332 ((-644 (-865)) |#1|)) (-15 -3589 ((-644 (-112)) |#1|)) (-15 -1691 ((-186) |#1|)) (-15 -1752 ((-55) |#1|))) +((-2988 (((-112) $ $) 7)) (-3332 (((-644 (-865)) $) 19)) (-1368 (((-508) $) 16)) (-3380 (((-1157) $) 10)) (-1691 (((-186) $) 21)) (-3335 (((-112) $ (-508)) 14)) (-4072 (((-1119) $) 11)) (-3589 (((-644 (-112)) $) 20)) (-3152 (((-862) $) 12)) (-3044 (((-112) $ $) 9)) (-1752 (((-55) $) 15)) (-2914 (((-112) $ $) 6))) (((-185) (-140)) (T -185)) -((-1669 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-186)))) (-1429 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-644 (-112))))) (-3538 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-644 (-865)))))) -(-13 (-835 (-508)) (-10 -8 (-15 -1669 ((-186) $)) (-15 -1429 ((-644 (-112)) $)) (-15 -3538 ((-644 (-865)) $)))) +((-1691 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-186)))) (-3589 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-644 (-112))))) (-3332 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-644 (-865)))))) +(-13 (-835 (-508)) (-10 -8 (-15 -1691 ((-186) $)) (-15 -3589 ((-644 (-112)) $)) (-15 -3332 ((-644 (-865)) $)))) (((-102) . T) ((-613 (-862)) . T) ((-835 (-508)) . T) ((-1099) . T)) -((-3007 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-8 (($) 7 T CONST)) (-3783 (((-862) $) 12)) (-9 (($) 6 T CONST)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) 10))) -(((-186) (-13 (-1099) (-10 -8 (-15 -9 ($) -3704) (-15 -8 ($) -3704) (-15 -7 ($) -3704)))) (T -186)) +((-2988 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-8 (($) 7 T CONST)) (-3152 (((-862) $) 12)) (-9 (($) 6 T CONST)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) 10))) +(((-186) (-13 (-1099) (-10 -8 (-15 -9 ($) -1623) (-15 -8 ($) -1623) (-15 -7 ($) -1623)))) (T -186)) ((-9 (*1 *1) (-5 *1 (-186))) (-8 (*1 *1) (-5 *1 (-186))) (-7 (*1 *1) (-5 *1 (-186)))) -(-13 (-1099) (-10 -8 (-15 -9 ($) -3704) (-15 -8 ($) -3704) (-15 -7 ($) -3704))) -((-3007 (((-112) $ $) NIL)) (-3538 (((-644 (-865)) $) NIL)) (-2640 (((-508) $) 8)) (-4117 (((-1157) $) NIL)) (-1669 (((-186) $) 10)) (-2572 (((-112) $ (-508)) NIL)) (-4035 (((-1119) $) NIL)) (-2801 (((-691 $) (-508)) 17)) (-1429 (((-644 (-112)) $) NIL)) (-3783 (((-862) $) NIL)) (-3117 (((-112) $ $) NIL)) (-2347 (((-55) $) 12)) (-2947 (((-112) $ $) NIL))) -(((-187) (-13 (-185) (-10 -8 (-15 -2801 ((-691 $) (-508)))))) (T -187)) -((-2801 (*1 *2 *3) (-12 (-5 *3 (-508)) (-5 *2 (-691 (-187))) (-5 *1 (-187))))) -(-13 (-185) (-10 -8 (-15 -2801 ((-691 $) (-508))))) -((-4201 ((|#2| |#2|) 28)) (-2472 (((-112) |#2|) 19)) (-3742 (((-317 |#1|) |#2|) 12)) (-3753 (((-317 |#1|) |#2|) 14)) (-2978 ((|#2| |#2| (-1175)) 69) ((|#2| |#2|) 70)) (-1673 (((-169 (-317 |#1|)) |#2|) 10)) (-2853 ((|#2| |#2| (-1175)) 66) ((|#2| |#2|) 60))) -(((-188 |#1| |#2|) (-10 -7 (-15 -2978 (|#2| |#2|)) (-15 -2978 (|#2| |#2| (-1175))) (-15 -2853 (|#2| |#2|)) (-15 -2853 (|#2| |#2| (-1175))) (-15 -3742 ((-317 |#1|) |#2|)) (-15 -3753 ((-317 |#1|) |#2|)) (-15 -2472 ((-112) |#2|)) (-15 -4201 (|#2| |#2|)) (-15 -1673 ((-169 (-317 |#1|)) |#2|))) (-13 (-558) (-1038 (-566))) (-13 (-27) (-1199) (-432 (-169 |#1|)))) (T -188)) -((-1673 (*1 *2 *3) (-12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *2 (-169 (-317 *4))) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 (-169 *4)))))) (-4201 (*1 *2 *2) (-12 (-4 *3 (-13 (-558) (-1038 (-566)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1199) (-432 (-169 *3)))))) (-2472 (*1 *2 *3) (-12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *2 (-112)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 (-169 *4)))))) (-3753 (*1 *2 *3) (-12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *2 (-317 *4)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 (-169 *4)))))) (-3742 (*1 *2 *3) (-12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *2 (-317 *4)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 (-169 *4)))))) (-2853 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1199) (-432 (-169 *4)))))) (-2853 (*1 *2 *2) (-12 (-4 *3 (-13 (-558) (-1038 (-566)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1199) (-432 (-169 *3)))))) (-2978 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1199) (-432 (-169 *4)))))) (-2978 (*1 *2 *2) (-12 (-4 *3 (-13 (-558) (-1038 (-566)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1199) (-432 (-169 *3))))))) -(-10 -7 (-15 -2978 (|#2| |#2|)) (-15 -2978 (|#2| |#2| (-1175))) (-15 -2853 (|#2| |#2|)) (-15 -2853 (|#2| |#2| (-1175))) (-15 -3742 ((-317 |#1|) |#2|)) (-15 -3753 ((-317 |#1|) |#2|)) (-15 -2472 ((-112) |#2|)) (-15 -4201 (|#2| |#2|)) (-15 -1673 ((-169 (-317 |#1|)) |#2|))) -((-3957 (((-1264 (-689 (-952 |#1|))) (-1264 (-689 |#1|))) 26)) (-3783 (((-1264 (-689 (-409 (-952 |#1|)))) (-1264 (-689 |#1|))) 37))) -(((-189 |#1|) (-10 -7 (-15 -3957 ((-1264 (-689 (-952 |#1|))) (-1264 (-689 |#1|)))) (-15 -3783 ((-1264 (-689 (-409 (-952 |#1|)))) (-1264 (-689 |#1|))))) (-172)) (T -189)) -((-3783 (*1 *2 *3) (-12 (-5 *3 (-1264 (-689 *4))) (-4 *4 (-172)) (-5 *2 (-1264 (-689 (-409 (-952 *4))))) (-5 *1 (-189 *4)))) (-3957 (*1 *2 *3) (-12 (-5 *3 (-1264 (-689 *4))) (-4 *4 (-172)) (-5 *2 (-1264 (-689 (-952 *4)))) (-5 *1 (-189 *4))))) -(-10 -7 (-15 -3957 ((-1264 (-689 (-952 |#1|))) (-1264 (-689 |#1|)))) (-15 -3783 ((-1264 (-689 (-409 (-952 |#1|)))) (-1264 (-689 |#1|))))) -((-2777 (((-1177 (-409 (-566))) (-1177 (-409 (-566))) (-1177 (-409 (-566)))) 89)) (-1375 (((-1177 (-409 (-566))) (-644 (-566)) (-644 (-566))) 100)) (-3355 (((-1177 (-409 (-566))) (-566)) 56)) (-1882 (((-1177 (-409 (-566))) (-566)) 75)) (-2055 (((-409 (-566)) (-1177 (-409 (-566)))) 85)) (-2082 (((-1177 (-409 (-566))) (-566)) 37)) (-3547 (((-1177 (-409 (-566))) (-566)) 68)) (-1359 (((-1177 (-409 (-566))) (-566)) 62)) (-3637 (((-1177 (-409 (-566))) (-1177 (-409 (-566))) (-1177 (-409 (-566)))) 83)) (-2770 (((-1177 (-409 (-566))) (-566)) 29)) (-4327 (((-409 (-566)) (-1177 (-409 (-566))) (-1177 (-409 (-566)))) 87)) (-2091 (((-1177 (-409 (-566))) (-566)) 35)) (-3814 (((-1177 (-409 (-566))) (-644 (-566))) 96))) -(((-190) (-10 -7 (-15 -2770 ((-1177 (-409 (-566))) (-566))) (-15 -3355 ((-1177 (-409 (-566))) (-566))) (-15 -2082 ((-1177 (-409 (-566))) (-566))) (-15 -2091 ((-1177 (-409 (-566))) (-566))) (-15 -1359 ((-1177 (-409 (-566))) (-566))) (-15 -3547 ((-1177 (-409 (-566))) (-566))) (-15 -1882 ((-1177 (-409 (-566))) (-566))) (-15 -4327 ((-409 (-566)) (-1177 (-409 (-566))) (-1177 (-409 (-566))))) (-15 -3637 ((-1177 (-409 (-566))) (-1177 (-409 (-566))) (-1177 (-409 (-566))))) (-15 -2055 ((-409 (-566)) (-1177 (-409 (-566))))) (-15 -2777 ((-1177 (-409 (-566))) (-1177 (-409 (-566))) (-1177 (-409 (-566))))) (-15 -3814 ((-1177 (-409 (-566))) (-644 (-566)))) (-15 -1375 ((-1177 (-409 (-566))) (-644 (-566)) (-644 (-566)))))) (T -190)) -((-1375 (*1 *2 *3 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)))) (-3814 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)))) (-2777 (*1 *2 *2 *2) (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)))) (-2055 (*1 *2 *3) (-12 (-5 *3 (-1177 (-409 (-566)))) (-5 *2 (-409 (-566))) (-5 *1 (-190)))) (-3637 (*1 *2 *2 *2) (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)))) (-4327 (*1 *2 *3 *3) (-12 (-5 *3 (-1177 (-409 (-566)))) (-5 *2 (-409 (-566))) (-5 *1 (-190)))) (-1882 (*1 *2 *3) (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)) (-5 *3 (-566)))) (-3547 (*1 *2 *3) (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)) (-5 *3 (-566)))) (-1359 (*1 *2 *3) (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)) (-5 *3 (-566)))) (-2091 (*1 *2 *3) (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)) (-5 *3 (-566)))) (-2082 (*1 *2 *3) (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)) (-5 *3 (-566)))) (-3355 (*1 *2 *3) (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)) (-5 *3 (-566)))) (-2770 (*1 *2 *3) (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)) (-5 *3 (-566))))) -(-10 -7 (-15 -2770 ((-1177 (-409 (-566))) (-566))) (-15 -3355 ((-1177 (-409 (-566))) (-566))) (-15 -2082 ((-1177 (-409 (-566))) (-566))) (-15 -2091 ((-1177 (-409 (-566))) (-566))) (-15 -1359 ((-1177 (-409 (-566))) (-566))) (-15 -3547 ((-1177 (-409 (-566))) (-566))) (-15 -1882 ((-1177 (-409 (-566))) (-566))) (-15 -4327 ((-409 (-566)) (-1177 (-409 (-566))) (-1177 (-409 (-566))))) (-15 -3637 ((-1177 (-409 (-566))) (-1177 (-409 (-566))) (-1177 (-409 (-566))))) (-15 -2055 ((-409 (-566)) (-1177 (-409 (-566))))) (-15 -2777 ((-1177 (-409 (-566))) (-1177 (-409 (-566))) (-1177 (-409 (-566))))) (-15 -3814 ((-1177 (-409 (-566))) (-644 (-566)))) (-15 -1375 ((-1177 (-409 (-566))) (-644 (-566)) (-644 (-566))))) -((-4296 (((-420 (-1171 (-566))) (-566)) 38)) (-2043 (((-644 (-1171 (-566))) (-566)) 33)) (-2184 (((-1171 (-566)) (-566)) 28))) -(((-191) (-10 -7 (-15 -2043 ((-644 (-1171 (-566))) (-566))) (-15 -2184 ((-1171 (-566)) (-566))) (-15 -4296 ((-420 (-1171 (-566))) (-566))))) (T -191)) -((-4296 (*1 *2 *3) (-12 (-5 *2 (-420 (-1171 (-566)))) (-5 *1 (-191)) (-5 *3 (-566)))) (-2184 (*1 *2 *3) (-12 (-5 *2 (-1171 (-566))) (-5 *1 (-191)) (-5 *3 (-566)))) (-2043 (*1 *2 *3) (-12 (-5 *2 (-644 (-1171 (-566)))) (-5 *1 (-191)) (-5 *3 (-566))))) -(-10 -7 (-15 -2043 ((-644 (-1171 (-566))) (-566))) (-15 -2184 ((-1171 (-566)) (-566))) (-15 -4296 ((-420 (-1171 (-566))) (-566)))) -((-4331 (((-1155 (-225)) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 132)) (-4239 (((-644 (-1157)) (-1155 (-225))) NIL)) (-3265 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 108)) (-3548 (((-644 (-225)) (-317 (-225)) (-1175) (-1093 (-843 (-225)))) NIL)) (-1312 (((-644 (-1157)) (-644 (-225))) NIL)) (-3418 (((-225) (-1093 (-843 (-225)))) 31)) (-4078 (((-225) (-1093 (-843 (-225)))) 32)) (-1803 (((-381) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 126)) (-3820 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 68)) (-3551 (((-1157) (-225)) NIL)) (-1817 (((-1157) (-644 (-1157))) 27)) (-1424 (((-1035) (-1175) (-1175) (-1035)) 13))) -(((-192) (-10 -7 (-15 -3265 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3820 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3418 ((-225) (-1093 (-843 (-225))))) (-15 -4078 ((-225) (-1093 (-843 (-225))))) (-15 -1803 ((-381) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3548 ((-644 (-225)) (-317 (-225)) (-1175) (-1093 (-843 (-225))))) (-15 -4331 ((-1155 (-225)) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3551 ((-1157) (-225))) (-15 -1312 ((-644 (-1157)) (-644 (-225)))) (-15 -4239 ((-644 (-1157)) (-1155 (-225)))) (-15 -1817 ((-1157) (-644 (-1157)))) (-15 -1424 ((-1035) (-1175) (-1175) (-1035))))) (T -192)) -((-1424 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1035)) (-5 *3 (-1175)) (-5 *1 (-192)))) (-1817 (*1 *2 *3) (-12 (-5 *3 (-644 (-1157))) (-5 *2 (-1157)) (-5 *1 (-192)))) (-4239 (*1 *2 *3) (-12 (-5 *3 (-1155 (-225))) (-5 *2 (-644 (-1157))) (-5 *1 (-192)))) (-1312 (*1 *2 *3) (-12 (-5 *3 (-644 (-225))) (-5 *2 (-644 (-1157))) (-5 *1 (-192)))) (-3551 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1157)) (-5 *1 (-192)))) (-4331 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-1155 (-225))) (-5 *1 (-192)))) (-3548 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-225))) (-5 *4 (-1175)) (-5 *5 (-1093 (-843 (-225)))) (-5 *2 (-644 (-225))) (-5 *1 (-192)))) (-1803 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-381)) (-5 *1 (-192)))) (-4078 (*1 *2 *3) (-12 (-5 *3 (-1093 (-843 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) (-3418 (*1 *2 *3) (-12 (-5 *3 (-1093 (-843 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) (-3820 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-192)))) (-3265 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-192))))) -(-10 -7 (-15 -3265 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3820 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3418 ((-225) (-1093 (-843 (-225))))) (-15 -4078 ((-225) (-1093 (-843 (-225))))) (-15 -1803 ((-381) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3548 ((-644 (-225)) (-317 (-225)) (-1175) (-1093 (-843 (-225))))) (-15 -4331 ((-1155 (-225)) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3551 ((-1157) (-225))) (-15 -1312 ((-644 (-1157)) (-644 (-225)))) (-15 -4239 ((-644 (-1157)) (-1155 (-225)))) (-15 -1817 ((-1157) (-644 (-1157)))) (-15 -1424 ((-1035) (-1175) (-1175) (-1035)))) -((-3007 (((-112) $ $) NIL)) (-1936 (((-1035) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) 61) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -2446 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) NIL)) (-1338 (((-2 (|:| -1338 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 33) (((-2 (|:| -1338 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -2446 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) NIL)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) +(-13 (-1099) (-10 -8 (-15 -9 ($) -1623) (-15 -8 ($) -1623) (-15 -7 ($) -1623))) +((-2988 (((-112) $ $) NIL)) (-3332 (((-644 (-865)) $) NIL)) (-1368 (((-508) $) 8)) (-3380 (((-1157) $) NIL)) (-1691 (((-186) $) 10)) (-3335 (((-112) $ (-508)) NIL)) (-4072 (((-1119) $) NIL)) (-1718 (((-691 $) (-508)) 17)) (-3589 (((-644 (-112)) $) NIL)) (-3152 (((-862) $) NIL)) (-3044 (((-112) $ $) NIL)) (-1752 (((-55) $) 12)) (-2914 (((-112) $ $) NIL))) +(((-187) (-13 (-185) (-10 -8 (-15 -1718 ((-691 $) (-508)))))) (T -187)) +((-1718 (*1 *2 *3) (-12 (-5 *3 (-508)) (-5 *2 (-691 (-187))) (-5 *1 (-187))))) +(-13 (-185) (-10 -8 (-15 -1718 ((-691 $) (-508))))) +((-1449 ((|#2| |#2|) 28)) (-3402 (((-112) |#2|) 19)) (-1646 (((-317 |#1|) |#2|) 12)) (-1657 (((-317 |#1|) |#2|) 14)) (-1778 ((|#2| |#2| (-1175)) 69) ((|#2| |#2|) 70)) (-2524 (((-169 (-317 |#1|)) |#2|) 10)) (-2337 ((|#2| |#2| (-1175)) 66) ((|#2| |#2|) 60))) +(((-188 |#1| |#2|) (-10 -7 (-15 -1778 (|#2| |#2|)) (-15 -1778 (|#2| |#2| (-1175))) (-15 -2337 (|#2| |#2|)) (-15 -2337 (|#2| |#2| (-1175))) (-15 -1646 ((-317 |#1|) |#2|)) (-15 -1657 ((-317 |#1|) |#2|)) (-15 -3402 ((-112) |#2|)) (-15 -1449 (|#2| |#2|)) (-15 -2524 ((-169 (-317 |#1|)) |#2|))) (-13 (-558) (-1038 (-566))) (-13 (-27) (-1199) (-432 (-169 |#1|)))) (T -188)) +((-2524 (*1 *2 *3) (-12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *2 (-169 (-317 *4))) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 (-169 *4)))))) (-1449 (*1 *2 *2) (-12 (-4 *3 (-13 (-558) (-1038 (-566)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1199) (-432 (-169 *3)))))) (-3402 (*1 *2 *3) (-12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *2 (-112)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 (-169 *4)))))) (-1657 (*1 *2 *3) (-12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *2 (-317 *4)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 (-169 *4)))))) (-1646 (*1 *2 *3) (-12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *2 (-317 *4)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 (-169 *4)))))) (-2337 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1199) (-432 (-169 *4)))))) (-2337 (*1 *2 *2) (-12 (-4 *3 (-13 (-558) (-1038 (-566)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1199) (-432 (-169 *3)))))) (-1778 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1199) (-432 (-169 *4)))))) (-1778 (*1 *2 *2) (-12 (-4 *3 (-13 (-558) (-1038 (-566)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1199) (-432 (-169 *3))))))) +(-10 -7 (-15 -1778 (|#2| |#2|)) (-15 -1778 (|#2| |#2| (-1175))) (-15 -2337 (|#2| |#2|)) (-15 -2337 (|#2| |#2| (-1175))) (-15 -1646 ((-317 |#1|) |#2|)) (-15 -1657 ((-317 |#1|) |#2|)) (-15 -3402 ((-112) |#2|)) (-15 -1449 (|#2| |#2|)) (-15 -2524 ((-169 (-317 |#1|)) |#2|))) +((-1887 (((-1264 (-689 (-952 |#1|))) (-1264 (-689 |#1|))) 26)) (-3152 (((-1264 (-689 (-409 (-952 |#1|)))) (-1264 (-689 |#1|))) 37))) +(((-189 |#1|) (-10 -7 (-15 -1887 ((-1264 (-689 (-952 |#1|))) (-1264 (-689 |#1|)))) (-15 -3152 ((-1264 (-689 (-409 (-952 |#1|)))) (-1264 (-689 |#1|))))) (-172)) (T -189)) +((-3152 (*1 *2 *3) (-12 (-5 *3 (-1264 (-689 *4))) (-4 *4 (-172)) (-5 *2 (-1264 (-689 (-409 (-952 *4))))) (-5 *1 (-189 *4)))) (-1887 (*1 *2 *3) (-12 (-5 *3 (-1264 (-689 *4))) (-4 *4 (-172)) (-5 *2 (-1264 (-689 (-952 *4)))) (-5 *1 (-189 *4))))) +(-10 -7 (-15 -1887 ((-1264 (-689 (-952 |#1|))) (-1264 (-689 |#1|)))) (-15 -3152 ((-1264 (-689 (-409 (-952 |#1|)))) (-1264 (-689 |#1|))))) +((-4299 (((-1177 (-409 (-566))) (-1177 (-409 (-566))) (-1177 (-409 (-566)))) 89)) (-1539 (((-1177 (-409 (-566))) (-644 (-566)) (-644 (-566))) 100)) (-2603 (((-1177 (-409 (-566))) (-566)) 56)) (-3526 (((-1177 (-409 (-566))) (-566)) 75)) (-2023 (((-409 (-566)) (-1177 (-409 (-566)))) 85)) (-4164 (((-1177 (-409 (-566))) (-566)) 37)) (-4363 (((-1177 (-409 (-566))) (-566)) 68)) (-4387 (((-1177 (-409 (-566))) (-566)) 62)) (-3992 (((-1177 (-409 (-566))) (-1177 (-409 (-566))) (-1177 (-409 (-566)))) 83)) (-1687 (((-1177 (-409 (-566))) (-566)) 29)) (-3488 (((-409 (-566)) (-1177 (-409 (-566))) (-1177 (-409 (-566)))) 87)) (-3586 (((-1177 (-409 (-566))) (-566)) 35)) (-2830 (((-1177 (-409 (-566))) (-644 (-566))) 96))) +(((-190) (-10 -7 (-15 -1687 ((-1177 (-409 (-566))) (-566))) (-15 -2603 ((-1177 (-409 (-566))) (-566))) (-15 -4164 ((-1177 (-409 (-566))) (-566))) (-15 -3586 ((-1177 (-409 (-566))) (-566))) (-15 -4387 ((-1177 (-409 (-566))) (-566))) (-15 -4363 ((-1177 (-409 (-566))) (-566))) (-15 -3526 ((-1177 (-409 (-566))) (-566))) (-15 -3488 ((-409 (-566)) (-1177 (-409 (-566))) (-1177 (-409 (-566))))) (-15 -3992 ((-1177 (-409 (-566))) (-1177 (-409 (-566))) (-1177 (-409 (-566))))) (-15 -2023 ((-409 (-566)) (-1177 (-409 (-566))))) (-15 -4299 ((-1177 (-409 (-566))) (-1177 (-409 (-566))) (-1177 (-409 (-566))))) (-15 -2830 ((-1177 (-409 (-566))) (-644 (-566)))) (-15 -1539 ((-1177 (-409 (-566))) (-644 (-566)) (-644 (-566)))))) (T -190)) +((-1539 (*1 *2 *3 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)))) (-2830 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)))) (-4299 (*1 *2 *2 *2) (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)))) (-2023 (*1 *2 *3) (-12 (-5 *3 (-1177 (-409 (-566)))) (-5 *2 (-409 (-566))) (-5 *1 (-190)))) (-3992 (*1 *2 *2 *2) (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)))) (-3488 (*1 *2 *3 *3) (-12 (-5 *3 (-1177 (-409 (-566)))) (-5 *2 (-409 (-566))) (-5 *1 (-190)))) (-3526 (*1 *2 *3) (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)) (-5 *3 (-566)))) (-4363 (*1 *2 *3) (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)) (-5 *3 (-566)))) (-4387 (*1 *2 *3) (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)) (-5 *3 (-566)))) (-3586 (*1 *2 *3) (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)) (-5 *3 (-566)))) (-4164 (*1 *2 *3) (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)) (-5 *3 (-566)))) (-2603 (*1 *2 *3) (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)) (-5 *3 (-566)))) (-1687 (*1 *2 *3) (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)) (-5 *3 (-566))))) +(-10 -7 (-15 -1687 ((-1177 (-409 (-566))) (-566))) (-15 -2603 ((-1177 (-409 (-566))) (-566))) (-15 -4164 ((-1177 (-409 (-566))) (-566))) (-15 -3586 ((-1177 (-409 (-566))) (-566))) (-15 -4387 ((-1177 (-409 (-566))) (-566))) (-15 -4363 ((-1177 (-409 (-566))) (-566))) (-15 -3526 ((-1177 (-409 (-566))) (-566))) (-15 -3488 ((-409 (-566)) (-1177 (-409 (-566))) (-1177 (-409 (-566))))) (-15 -3992 ((-1177 (-409 (-566))) (-1177 (-409 (-566))) (-1177 (-409 (-566))))) (-15 -2023 ((-409 (-566)) (-1177 (-409 (-566))))) (-15 -4299 ((-1177 (-409 (-566))) (-1177 (-409 (-566))) (-1177 (-409 (-566))))) (-15 -2830 ((-1177 (-409 (-566))) (-644 (-566)))) (-15 -1539 ((-1177 (-409 (-566))) (-644 (-566)) (-644 (-566))))) +((-2595 (((-420 (-1171 (-566))) (-566)) 38)) (-2720 (((-644 (-1171 (-566))) (-566)) 33)) (-1394 (((-1171 (-566)) (-566)) 28))) +(((-191) (-10 -7 (-15 -2720 ((-644 (-1171 (-566))) (-566))) (-15 -1394 ((-1171 (-566)) (-566))) (-15 -2595 ((-420 (-1171 (-566))) (-566))))) (T -191)) +((-2595 (*1 *2 *3) (-12 (-5 *2 (-420 (-1171 (-566)))) (-5 *1 (-191)) (-5 *3 (-566)))) (-1394 (*1 *2 *3) (-12 (-5 *2 (-1171 (-566))) (-5 *1 (-191)) (-5 *3 (-566)))) (-2720 (*1 *2 *3) (-12 (-5 *2 (-644 (-1171 (-566)))) (-5 *1 (-191)) (-5 *3 (-566))))) +(-10 -7 (-15 -2720 ((-644 (-1171 (-566))) (-566))) (-15 -1394 ((-1171 (-566)) (-566))) (-15 -2595 ((-420 (-1171 (-566))) (-566)))) +((-2627 (((-1155 (-225)) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 132)) (-3078 (((-644 (-1157)) (-1155 (-225))) NIL)) (-2591 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 108)) (-3208 (((-644 (-225)) (-317 (-225)) (-1175) (-1093 (-843 (-225)))) NIL)) (-2235 (((-644 (-1157)) (-644 (-225))) NIL)) (-2533 (((-225) (-1093 (-843 (-225)))) 31)) (-2887 (((-225) (-1093 (-843 (-225)))) 32)) (-4345 (((-381) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 126)) (-2103 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 68)) (-3390 (((-1157) (-225)) NIL)) (-2009 (((-1157) (-644 (-1157))) 27)) (-4330 (((-1035) (-1175) (-1175) (-1035)) 13))) +(((-192) (-10 -7 (-15 -2591 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2103 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2533 ((-225) (-1093 (-843 (-225))))) (-15 -2887 ((-225) (-1093 (-843 (-225))))) (-15 -4345 ((-381) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3208 ((-644 (-225)) (-317 (-225)) (-1175) (-1093 (-843 (-225))))) (-15 -2627 ((-1155 (-225)) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3390 ((-1157) (-225))) (-15 -2235 ((-644 (-1157)) (-644 (-225)))) (-15 -3078 ((-644 (-1157)) (-1155 (-225)))) (-15 -2009 ((-1157) (-644 (-1157)))) (-15 -4330 ((-1035) (-1175) (-1175) (-1035))))) (T -192)) +((-4330 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1035)) (-5 *3 (-1175)) (-5 *1 (-192)))) (-2009 (*1 *2 *3) (-12 (-5 *3 (-644 (-1157))) (-5 *2 (-1157)) (-5 *1 (-192)))) (-3078 (*1 *2 *3) (-12 (-5 *3 (-1155 (-225))) (-5 *2 (-644 (-1157))) (-5 *1 (-192)))) (-2235 (*1 *2 *3) (-12 (-5 *3 (-644 (-225))) (-5 *2 (-644 (-1157))) (-5 *1 (-192)))) (-3390 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1157)) (-5 *1 (-192)))) (-2627 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-1155 (-225))) (-5 *1 (-192)))) (-3208 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-225))) (-5 *4 (-1175)) (-5 *5 (-1093 (-843 (-225)))) (-5 *2 (-644 (-225))) (-5 *1 (-192)))) (-4345 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-381)) (-5 *1 (-192)))) (-2887 (*1 *2 *3) (-12 (-5 *3 (-1093 (-843 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) (-2533 (*1 *2 *3) (-12 (-5 *3 (-1093 (-843 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) (-2103 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-192)))) (-2591 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-192))))) +(-10 -7 (-15 -2591 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2103 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2533 ((-225) (-1093 (-843 (-225))))) (-15 -2887 ((-225) (-1093 (-843 (-225))))) (-15 -4345 ((-381) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3208 ((-644 (-225)) (-317 (-225)) (-1175) (-1093 (-843 (-225))))) (-15 -2627 ((-1155 (-225)) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3390 ((-1157) (-225))) (-15 -2235 ((-644 (-1157)) (-644 (-225)))) (-15 -3078 ((-644 (-1157)) (-1155 (-225)))) (-15 -2009 ((-1157) (-644 (-1157)))) (-15 -4330 ((-1035) (-1175) (-1175) (-1035)))) +((-2988 (((-112) $ $) NIL)) (-4167 (((-1035) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) 61) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -2821 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) NIL)) (-2659 (((-2 (|:| -2659 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 33) (((-2 (|:| -2659 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -2821 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) NIL)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) (((-193) (-787)) (T -193)) NIL (-787) -((-3007 (((-112) $ $) NIL)) (-1936 (((-1035) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) 66) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -2446 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) NIL)) (-1338 (((-2 (|:| -1338 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 44) (((-2 (|:| -1338 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -2446 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) NIL)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) +((-2988 (((-112) $ $) NIL)) (-4167 (((-1035) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) 66) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -2821 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) NIL)) (-2659 (((-2 (|:| -2659 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 44) (((-2 (|:| -2659 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -2821 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) NIL)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) (((-194) (-787)) (T -194)) NIL (-787) -((-3007 (((-112) $ $) NIL)) (-1936 (((-1035) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) 81) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -2446 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) NIL)) (-1338 (((-2 (|:| -1338 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 46) (((-2 (|:| -1338 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -2446 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) NIL)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) +((-2988 (((-112) $ $) NIL)) (-4167 (((-1035) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) 81) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -2821 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) NIL)) (-2659 (((-2 (|:| -2659 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 46) (((-2 (|:| -2659 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -2821 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) NIL)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) (((-195) (-787)) (T -195)) NIL (-787) -((-3007 (((-112) $ $) NIL)) (-1936 (((-1035) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) 63) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -2446 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) NIL)) (-1338 (((-2 (|:| -1338 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 36) (((-2 (|:| -1338 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -2446 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) NIL)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) +((-2988 (((-112) $ $) NIL)) (-4167 (((-1035) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) 63) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -2821 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) NIL)) (-2659 (((-2 (|:| -2659 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 36) (((-2 (|:| -2659 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -2821 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) NIL)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) (((-196) (-787)) (T -196)) NIL (-787) -((-3007 (((-112) $ $) NIL)) (-1936 (((-1035) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) 75) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -2446 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) NIL)) (-1338 (((-2 (|:| -1338 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 40) (((-2 (|:| -1338 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -2446 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) NIL)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) +((-2988 (((-112) $ $) NIL)) (-4167 (((-1035) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) 75) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -2821 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) NIL)) (-2659 (((-2 (|:| -2659 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 40) (((-2 (|:| -2659 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -2821 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) NIL)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) (((-197) (-787)) (T -197)) NIL (-787) -((-3007 (((-112) $ $) NIL)) (-1936 (((-1035) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) 90) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -2446 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) NIL)) (-1338 (((-2 (|:| -1338 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 49) (((-2 (|:| -1338 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -2446 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) NIL)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) +((-2988 (((-112) $ $) NIL)) (-4167 (((-1035) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) 90) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -2821 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) NIL)) (-2659 (((-2 (|:| -2659 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 49) (((-2 (|:| -2659 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -2821 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) NIL)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) (((-198) (-787)) (T -198)) NIL (-787) -((-3007 (((-112) $ $) NIL)) (-1936 (((-1035) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) 90) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -2446 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) NIL)) (-1338 (((-2 (|:| -1338 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 51) (((-2 (|:| -1338 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -2446 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) NIL)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) +((-2988 (((-112) $ $) NIL)) (-4167 (((-1035) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) 90) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -2821 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) NIL)) (-2659 (((-2 (|:| -2659 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 51) (((-2 (|:| -2659 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -2821 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) NIL)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) (((-199) (-787)) (T -199)) NIL (-787) -((-3007 (((-112) $ $) NIL)) (-1936 (((-1035) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) 77) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -2446 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) NIL)) (-1338 (((-2 (|:| -1338 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 42) (((-2 (|:| -1338 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -2446 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) NIL)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) +((-2988 (((-112) $ $) NIL)) (-4167 (((-1035) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) 77) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -2821 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) NIL)) (-2659 (((-2 (|:| -2659 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 42) (((-2 (|:| -2659 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -2821 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) NIL)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) (((-200) (-787)) (T -200)) NIL (-787) -((-3007 (((-112) $ $) NIL)) (-1936 (((-1035) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) NIL) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -2446 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) 78)) (-1338 (((-2 (|:| -1338 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL) (((-2 (|:| -1338 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -2446 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 38)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) NIL)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) +((-2988 (((-112) $ $) NIL)) (-4167 (((-1035) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) NIL) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -2821 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) 78)) (-2659 (((-2 (|:| -2659 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL) (((-2 (|:| -2659 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -2821 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 38)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) NIL)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) (((-201) (-787)) (T -201)) NIL (-787) -((-3007 (((-112) $ $) NIL)) (-1936 (((-1035) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) NIL) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -2446 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) 79)) (-1338 (((-2 (|:| -1338 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL) (((-2 (|:| -1338 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -2446 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 44)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) NIL)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) +((-2988 (((-112) $ $) NIL)) (-4167 (((-1035) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) NIL) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -2821 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) 79)) (-2659 (((-2 (|:| -2659 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL) (((-2 (|:| -2659 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -2821 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 44)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) NIL)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) (((-202) (-787)) (T -202)) NIL (-787) -((-3007 (((-112) $ $) NIL)) (-1936 (((-1035) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) 105) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -2446 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) NIL)) (-1338 (((-2 (|:| -1338 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 86) (((-2 (|:| -1338 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -2446 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) NIL)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) +((-2988 (((-112) $ $) NIL)) (-4167 (((-1035) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) 105) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -2821 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) NIL)) (-2659 (((-2 (|:| -2659 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 86) (((-2 (|:| -2659 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -2821 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) NIL)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) (((-203) (-787)) (T -203)) NIL (-787) -((-4283 (((-3 (-2 (|:| -1684 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 110)) (-1907 (((-566) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 60)) (-2498 (((-3 (-644 (-225)) "failed") (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 91))) -(((-204) (-10 -7 (-15 -4283 ((-3 (-2 (|:| -1684 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2498 ((-3 (-644 (-225)) "failed") (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1907 ((-566) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -204)) -((-1907 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-566)) (-5 *1 (-204)))) (-2498 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-644 (-225))) (-5 *1 (-204)))) (-4283 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -1684 (-114)) (|:| |w| (-225)))) (-5 *1 (-204))))) -(-10 -7 (-15 -4283 ((-3 (-2 (|:| -1684 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2498 ((-3 (-644 (-225)) "failed") (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1907 ((-566) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) -((-3299 (((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 49)) (-4090 (((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 160)) (-3602 (((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-689 (-317 (-225)))) 112)) (-4109 (((-381) (-689 (-317 (-225)))) 140)) (-1499 (((-689 (-317 (-225))) (-1264 (-317 (-225))) (-644 (-1175))) 136)) (-1828 (((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 37)) (-3295 (((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 53)) (-2055 (((-689 (-317 (-225))) (-689 (-317 (-225))) (-644 (-1175)) (-1264 (-317 (-225)))) 125)) (-1752 (((-381) (-381) (-644 (-381))) 133) (((-381) (-381) (-381)) 128)) (-4381 (((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 45))) -(((-205) (-10 -7 (-15 -1752 ((-381) (-381) (-381))) (-15 -1752 ((-381) (-381) (-644 (-381)))) (-15 -4109 ((-381) (-689 (-317 (-225))))) (-15 -1499 ((-689 (-317 (-225))) (-1264 (-317 (-225))) (-644 (-1175)))) (-15 -2055 ((-689 (-317 (-225))) (-689 (-317 (-225))) (-644 (-1175)) (-1264 (-317 (-225))))) (-15 -3602 ((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-689 (-317 (-225))))) (-15 -4090 ((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3299 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3295 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4381 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1828 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -205)) -((-1828 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-381)) (-5 *1 (-205)))) (-4381 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-381)) (-5 *1 (-205)))) (-3295 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-381)) (-5 *1 (-205)))) (-3299 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-381)) (-5 *1 (-205)))) (-4090 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381)))) (-5 *1 (-205)))) (-3602 (*1 *2 *3) (-12 (-5 *3 (-689 (-317 (-225)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381)))) (-5 *1 (-205)))) (-2055 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-689 (-317 (-225)))) (-5 *3 (-644 (-1175))) (-5 *4 (-1264 (-317 (-225)))) (-5 *1 (-205)))) (-1499 (*1 *2 *3 *4) (-12 (-5 *3 (-1264 (-317 (-225)))) (-5 *4 (-644 (-1175))) (-5 *2 (-689 (-317 (-225)))) (-5 *1 (-205)))) (-4109 (*1 *2 *3) (-12 (-5 *3 (-689 (-317 (-225)))) (-5 *2 (-381)) (-5 *1 (-205)))) (-1752 (*1 *2 *2 *3) (-12 (-5 *3 (-644 (-381))) (-5 *2 (-381)) (-5 *1 (-205)))) (-1752 (*1 *2 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-205))))) -(-10 -7 (-15 -1752 ((-381) (-381) (-381))) (-15 -1752 ((-381) (-381) (-644 (-381)))) (-15 -4109 ((-381) (-689 (-317 (-225))))) (-15 -1499 ((-689 (-317 (-225))) (-1264 (-317 (-225))) (-644 (-1175)))) (-15 -2055 ((-689 (-317 (-225))) (-689 (-317 (-225))) (-644 (-1175)) (-1264 (-317 (-225))))) (-15 -3602 ((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-689 (-317 (-225))))) (-15 -4090 ((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3299 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3295 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4381 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1828 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) -((-3007 (((-112) $ $) NIL)) (-1338 (((-2 (|:| -1338 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 43)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) NIL)) (-3117 (((-112) $ $) NIL)) (-2083 (((-1035) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 75)) (-2947 (((-112) $ $) NIL))) +((-3669 (((-3 (-2 (|:| -1707 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 110)) (-2055 (((-566) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 60)) (-4188 (((-3 (-644 (-225)) "failed") (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 91))) +(((-204) (-10 -7 (-15 -3669 ((-3 (-2 (|:| -1707 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4188 ((-3 (-644 (-225)) "failed") (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2055 ((-566) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -204)) +((-2055 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-566)) (-5 *1 (-204)))) (-4188 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-644 (-225))) (-5 *1 (-204)))) (-3669 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -1707 (-114)) (|:| |w| (-225)))) (-5 *1 (-204))))) +(-10 -7 (-15 -3669 ((-3 (-2 (|:| -1707 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4188 ((-3 (-644 (-225)) "failed") (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2055 ((-566) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) +((-2782 (((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 49)) (-1636 (((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 160)) (-2848 (((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-689 (-317 (-225)))) 112)) (-3923 (((-381) (-689 (-317 (-225)))) 140)) (-2757 (((-689 (-317 (-225))) (-1264 (-317 (-225))) (-644 (-1175))) 136)) (-1712 (((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 37)) (-3577 (((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 53)) (-2023 (((-689 (-317 (-225))) (-689 (-317 (-225))) (-644 (-1175)) (-1264 (-317 (-225)))) 125)) (-3215 (((-381) (-381) (-644 (-381))) 133) (((-381) (-381) (-381)) 128)) (-1832 (((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 45))) +(((-205) (-10 -7 (-15 -3215 ((-381) (-381) (-381))) (-15 -3215 ((-381) (-381) (-644 (-381)))) (-15 -3923 ((-381) (-689 (-317 (-225))))) (-15 -2757 ((-689 (-317 (-225))) (-1264 (-317 (-225))) (-644 (-1175)))) (-15 -2023 ((-689 (-317 (-225))) (-689 (-317 (-225))) (-644 (-1175)) (-1264 (-317 (-225))))) (-15 -2848 ((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-689 (-317 (-225))))) (-15 -1636 ((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2782 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3577 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1832 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1712 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -205)) +((-1712 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-381)) (-5 *1 (-205)))) (-1832 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-381)) (-5 *1 (-205)))) (-3577 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-381)) (-5 *1 (-205)))) (-2782 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-381)) (-5 *1 (-205)))) (-1636 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381)))) (-5 *1 (-205)))) (-2848 (*1 *2 *3) (-12 (-5 *3 (-689 (-317 (-225)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381)))) (-5 *1 (-205)))) (-2023 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-689 (-317 (-225)))) (-5 *3 (-644 (-1175))) (-5 *4 (-1264 (-317 (-225)))) (-5 *1 (-205)))) (-2757 (*1 *2 *3 *4) (-12 (-5 *3 (-1264 (-317 (-225)))) (-5 *4 (-644 (-1175))) (-5 *2 (-689 (-317 (-225)))) (-5 *1 (-205)))) (-3923 (*1 *2 *3) (-12 (-5 *3 (-689 (-317 (-225)))) (-5 *2 (-381)) (-5 *1 (-205)))) (-3215 (*1 *2 *2 *3) (-12 (-5 *3 (-644 (-381))) (-5 *2 (-381)) (-5 *1 (-205)))) (-3215 (*1 *2 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-205))))) +(-10 -7 (-15 -3215 ((-381) (-381) (-381))) (-15 -3215 ((-381) (-381) (-644 (-381)))) (-15 -3923 ((-381) (-689 (-317 (-225))))) (-15 -2757 ((-689 (-317 (-225))) (-1264 (-317 (-225))) (-644 (-1175)))) (-15 -2023 ((-689 (-317 (-225))) (-689 (-317 (-225))) (-644 (-1175)) (-1264 (-317 (-225))))) (-15 -2848 ((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-689 (-317 (-225))))) (-15 -1636 ((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2782 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3577 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1832 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1712 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) +((-2988 (((-112) $ $) NIL)) (-2659 (((-2 (|:| -2659 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 43)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) NIL)) (-3044 (((-112) $ $) NIL)) (-4293 (((-1035) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 75)) (-2914 (((-112) $ $) NIL))) (((-206) (-800)) (T -206)) NIL (-800) -((-3007 (((-112) $ $) NIL)) (-1338 (((-2 (|:| -1338 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 43)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) NIL)) (-3117 (((-112) $ $) NIL)) (-2083 (((-1035) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 73)) (-2947 (((-112) $ $) NIL))) +((-2988 (((-112) $ $) NIL)) (-2659 (((-2 (|:| -2659 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 43)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) NIL)) (-3044 (((-112) $ $) NIL)) (-4293 (((-1035) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 73)) (-2914 (((-112) $ $) NIL))) (((-207) (-800)) (T -207)) NIL (-800) -((-3007 (((-112) $ $) NIL)) (-1338 (((-2 (|:| -1338 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 40)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) NIL)) (-3117 (((-112) $ $) NIL)) (-2083 (((-1035) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 76)) (-2947 (((-112) $ $) NIL))) +((-2988 (((-112) $ $) NIL)) (-2659 (((-2 (|:| -2659 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 40)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) NIL)) (-3044 (((-112) $ $) NIL)) (-4293 (((-1035) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 76)) (-2914 (((-112) $ $) NIL))) (((-208) (-800)) (T -208)) NIL (-800) -((-3007 (((-112) $ $) NIL)) (-1338 (((-2 (|:| -1338 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 48)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) NIL)) (-3117 (((-112) $ $) NIL)) (-2083 (((-1035) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 88)) (-2947 (((-112) $ $) NIL))) +((-2988 (((-112) $ $) NIL)) (-2659 (((-2 (|:| -2659 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 48)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) NIL)) (-3044 (((-112) $ $) NIL)) (-4293 (((-1035) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 88)) (-2914 (((-112) $ $) NIL))) (((-209) (-800)) (T -209)) NIL (-800) -((-3095 (((-644 (-1175)) (-1175) (-771)) 26)) (-3884 (((-317 (-225)) (-317 (-225))) 35)) (-1335 (((-112) (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))) 87)) (-2530 (((-112) (-225) (-225) (-644 (-317 (-225)))) 47))) -(((-210) (-10 -7 (-15 -3095 ((-644 (-1175)) (-1175) (-771))) (-15 -3884 ((-317 (-225)) (-317 (-225)))) (-15 -2530 ((-112) (-225) (-225) (-644 (-317 (-225))))) (-15 -1335 ((-112) (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225))))))) (T -210)) -((-1335 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))) (-5 *2 (-112)) (-5 *1 (-210)))) (-2530 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-644 (-317 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-210)))) (-3884 (*1 *2 *2) (-12 (-5 *2 (-317 (-225))) (-5 *1 (-210)))) (-3095 (*1 *2 *3 *4) (-12 (-5 *4 (-771)) (-5 *2 (-644 (-1175))) (-5 *1 (-210)) (-5 *3 (-1175))))) -(-10 -7 (-15 -3095 ((-644 (-1175)) (-1175) (-771))) (-15 -3884 ((-317 (-225)) (-317 (-225)))) (-15 -2530 ((-112) (-225) (-225) (-644 (-317 (-225))))) (-15 -1335 ((-112) (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))))) -((-3007 (((-112) $ $) NIL)) (-1338 (((-2 (|:| -1338 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))) 28)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) NIL)) (-3117 (((-112) $ $) NIL)) (-2776 (((-1035) (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))) 70)) (-2947 (((-112) $ $) NIL))) +((-4111 (((-644 (-1175)) (-1175) (-771)) 26)) (-3090 (((-317 (-225)) (-317 (-225))) 35)) (-2209 (((-112) (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))) 87)) (-2516 (((-112) (-225) (-225) (-644 (-317 (-225)))) 47))) +(((-210) (-10 -7 (-15 -4111 ((-644 (-1175)) (-1175) (-771))) (-15 -3090 ((-317 (-225)) (-317 (-225)))) (-15 -2516 ((-112) (-225) (-225) (-644 (-317 (-225))))) (-15 -2209 ((-112) (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225))))))) (T -210)) +((-2209 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))) (-5 *2 (-112)) (-5 *1 (-210)))) (-2516 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-644 (-317 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-210)))) (-3090 (*1 *2 *2) (-12 (-5 *2 (-317 (-225))) (-5 *1 (-210)))) (-4111 (*1 *2 *3 *4) (-12 (-5 *4 (-771)) (-5 *2 (-644 (-1175))) (-5 *1 (-210)) (-5 *3 (-1175))))) +(-10 -7 (-15 -4111 ((-644 (-1175)) (-1175) (-771))) (-15 -3090 ((-317 (-225)) (-317 (-225)))) (-15 -2516 ((-112) (-225) (-225) (-644 (-317 (-225))))) (-15 -2209 ((-112) (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))))) +((-2988 (((-112) $ $) NIL)) (-2659 (((-2 (|:| -2659 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))) 28)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) NIL)) (-3044 (((-112) $ $) NIL)) (-4241 (((-1035) (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))) 70)) (-2914 (((-112) $ $) NIL))) (((-211) (-895)) (T -211)) NIL (-895) -((-3007 (((-112) $ $) NIL)) (-1338 (((-2 (|:| -1338 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))) 24)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) NIL)) (-3117 (((-112) $ $) NIL)) (-2776 (((-1035) (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))) NIL)) (-2947 (((-112) $ $) NIL))) +((-2988 (((-112) $ $) NIL)) (-2659 (((-2 (|:| -2659 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))) 24)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) NIL)) (-3044 (((-112) $ $) NIL)) (-4241 (((-1035) (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))) NIL)) (-2914 (((-112) $ $) NIL))) (((-212) (-895)) (T -212)) NIL (-895) -((-3007 (((-112) $ $) NIL)) (-2865 ((|#2| $ (-771) |#2|) 11)) (-2855 ((|#2| $ (-771)) 10)) (-4265 (($) 8)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 26)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) 13))) -(((-213 |#1| |#2|) (-13 (-1099) (-10 -8 (-15 -4265 ($)) (-15 -2855 (|#2| $ (-771))) (-15 -2865 (|#2| $ (-771) |#2|)))) (-921) (-1099)) (T -213)) -((-4265 (*1 *1) (-12 (-5 *1 (-213 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1099)))) (-2855 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-4 *2 (-1099)) (-5 *1 (-213 *4 *2)) (-14 *4 (-921)))) (-2865 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-213 *4 *2)) (-14 *4 (-921)) (-4 *2 (-1099))))) -(-13 (-1099) (-10 -8 (-15 -4265 ($)) (-15 -2855 (|#2| $ (-771))) (-15 -2865 (|#2| $ (-771) |#2|)))) -((-3007 (((-112) $ $) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3997 (((-1269) $) 37) (((-1269) $ (-921) (-921)) 44)) (-4390 (($ $ (-989)) 19) (((-245 (-1157)) $ (-1175)) 15)) (-1675 (((-1269) $) 35)) (-3783 (((-862) $) 32) (($ (-644 |#1|)) 8)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL)) (-3053 (($ $ $) 27)) (-3041 (($ $ $) 22))) -(((-214 |#1|) (-13 (-1099) (-616 (-644 |#1|)) (-10 -8 (-15 -4390 ($ $ (-989))) (-15 -4390 ((-245 (-1157)) $ (-1175))) (-15 -3041 ($ $ $)) (-15 -3053 ($ $ $)) (-15 -1675 ((-1269) $)) (-15 -3997 ((-1269) $)) (-15 -3997 ((-1269) $ (-921) (-921))))) (-13 (-850) (-10 -8 (-15 -4390 ((-1157) $ (-1175))) (-15 -1675 ((-1269) $)) (-15 -3997 ((-1269) $))))) (T -214)) -((-4390 (*1 *1 *1 *2) (-12 (-5 *2 (-989)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-850) (-10 -8 (-15 -4390 ((-1157) $ (-1175))) (-15 -1675 ((-1269) $)) (-15 -3997 ((-1269) $))))))) (-4390 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-245 (-1157))) (-5 *1 (-214 *4)) (-4 *4 (-13 (-850) (-10 -8 (-15 -4390 ((-1157) $ *3)) (-15 -1675 ((-1269) $)) (-15 -3997 ((-1269) $))))))) (-3041 (*1 *1 *1 *1) (-12 (-5 *1 (-214 *2)) (-4 *2 (-13 (-850) (-10 -8 (-15 -4390 ((-1157) $ (-1175))) (-15 -1675 ((-1269) $)) (-15 -3997 ((-1269) $))))))) (-3053 (*1 *1 *1 *1) (-12 (-5 *1 (-214 *2)) (-4 *2 (-13 (-850) (-10 -8 (-15 -4390 ((-1157) $ (-1175))) (-15 -1675 ((-1269) $)) (-15 -3997 ((-1269) $))))))) (-1675 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-850) (-10 -8 (-15 -4390 ((-1157) $ (-1175))) (-15 -1675 (*2 $)) (-15 -3997 (*2 $))))))) (-3997 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-850) (-10 -8 (-15 -4390 ((-1157) $ (-1175))) (-15 -1675 (*2 $)) (-15 -3997 (*2 $))))))) (-3997 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1269)) (-5 *1 (-214 *4)) (-4 *4 (-13 (-850) (-10 -8 (-15 -4390 ((-1157) $ (-1175))) (-15 -1675 (*2 $)) (-15 -3997 (*2 $)))))))) -(-13 (-1099) (-616 (-644 |#1|)) (-10 -8 (-15 -4390 ($ $ (-989))) (-15 -4390 ((-245 (-1157)) $ (-1175))) (-15 -3041 ($ $ $)) (-15 -3053 ($ $ $)) (-15 -1675 ((-1269) $)) (-15 -3997 ((-1269) $)) (-15 -3997 ((-1269) $ (-921) (-921))))) -((-2056 ((|#2| |#4| (-1 |#2| |#2|)) 49))) -(((-215 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2056 (|#2| |#4| (-1 |#2| |#2|)))) (-365) (-1240 |#1|) (-1240 (-409 |#2|)) (-344 |#1| |#2| |#3|)) (T -215)) -((-2056 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-365)) (-4 *6 (-1240 (-409 *2))) (-4 *2 (-1240 *5)) (-5 *1 (-215 *5 *2 *6 *3)) (-4 *3 (-344 *5 *2 *6))))) -(-10 -7 (-15 -2056 (|#2| |#4| (-1 |#2| |#2|)))) -((-2307 ((|#2| |#2| (-771) |#2|) 58)) (-2630 ((|#2| |#2| (-771) |#2|) 54)) (-3179 (((-644 |#2|) (-644 (-2 (|:| |deg| (-771)) (|:| -1300 |#2|)))) 82)) (-4325 (((-644 (-2 (|:| |deg| (-771)) (|:| -1300 |#2|))) |#2|) 76)) (-4181 (((-112) |#2|) 74)) (-2585 (((-420 |#2|) |#2|) 96)) (-3719 (((-420 |#2|) |#2|) 95)) (-3988 ((|#2| |#2| (-771) |#2|) 52)) (-3497 (((-2 (|:| |cont| |#1|) (|:| -4138 (-644 (-2 (|:| |irr| |#2|) (|:| -3149 (-566)))))) |#2| (-112)) 88))) -(((-216 |#1| |#2|) (-10 -7 (-15 -3719 ((-420 |#2|) |#2|)) (-15 -2585 ((-420 |#2|) |#2|)) (-15 -3497 ((-2 (|:| |cont| |#1|) (|:| -4138 (-644 (-2 (|:| |irr| |#2|) (|:| -3149 (-566)))))) |#2| (-112))) (-15 -4325 ((-644 (-2 (|:| |deg| (-771)) (|:| -1300 |#2|))) |#2|)) (-15 -3179 ((-644 |#2|) (-644 (-2 (|:| |deg| (-771)) (|:| -1300 |#2|))))) (-15 -3988 (|#2| |#2| (-771) |#2|)) (-15 -2630 (|#2| |#2| (-771) |#2|)) (-15 -2307 (|#2| |#2| (-771) |#2|)) (-15 -4181 ((-112) |#2|))) (-351) (-1240 |#1|)) (T -216)) -((-4181 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-112)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1240 *4)))) (-2307 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-771)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1240 *4)))) (-2630 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-771)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1240 *4)))) (-3988 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-771)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1240 *4)))) (-3179 (*1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| |deg| (-771)) (|:| -1300 *5)))) (-4 *5 (-1240 *4)) (-4 *4 (-351)) (-5 *2 (-644 *5)) (-5 *1 (-216 *4 *5)))) (-4325 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-644 (-2 (|:| |deg| (-771)) (|:| -1300 *3)))) (-5 *1 (-216 *4 *3)) (-4 *3 (-1240 *4)))) (-3497 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-351)) (-5 *2 (-2 (|:| |cont| *5) (|:| -4138 (-644 (-2 (|:| |irr| *3) (|:| -3149 (-566))))))) (-5 *1 (-216 *5 *3)) (-4 *3 (-1240 *5)))) (-2585 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-420 *3)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1240 *4)))) (-3719 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-420 *3)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1240 *4))))) -(-10 -7 (-15 -3719 ((-420 |#2|) |#2|)) (-15 -2585 ((-420 |#2|) |#2|)) (-15 -3497 ((-2 (|:| |cont| |#1|) (|:| -4138 (-644 (-2 (|:| |irr| |#2|) (|:| -3149 (-566)))))) |#2| (-112))) (-15 -4325 ((-644 (-2 (|:| |deg| (-771)) (|:| -1300 |#2|))) |#2|)) (-15 -3179 ((-644 |#2|) (-644 (-2 (|:| |deg| (-771)) (|:| -1300 |#2|))))) (-15 -3988 (|#2| |#2| (-771) |#2|)) (-15 -2630 (|#2| |#2| (-771) |#2|)) (-15 -2307 (|#2| |#2| (-771) |#2|)) (-15 -4181 ((-112) |#2|))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-1515 (((-566) $) NIL (|has| (-566) (-308)))) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-3991 (($ $) NIL)) (-2388 (((-112) $) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-1477 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-1550 (($ $) NIL)) (-3184 (((-420 $) $) NIL)) (-3717 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-2837 (((-112) $ $) NIL)) (-4364 (((-566) $) NIL (|has| (-566) (-820)))) (-3012 (($) NIL T CONST)) (-4307 (((-3 (-566) "failed") $) NIL) (((-3 (-1175) "failed") $) NIL (|has| (-566) (-1038 (-1175)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| (-566) (-1038 (-566)))) (((-3 (-566) "failed") $) NIL (|has| (-566) (-1038 (-566))))) (-4205 (((-566) $) NIL) (((-1175) $) NIL (|has| (-566) (-1038 (-1175)))) (((-409 (-566)) $) NIL (|has| (-566) (-1038 (-566)))) (((-566) $) NIL (|has| (-566) (-1038 (-566))))) (-2946 (($ $ $) NIL)) (-3577 (((-689 (-566)) (-689 $)) NIL (|has| (-566) (-639 (-566)))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| (-566) (-639 (-566)))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL) (((-689 (-566)) (-689 $)) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-1552 (($) NIL (|has| (-566) (-547)))) (-2957 (($ $ $) NIL)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL)) (-3268 (((-112) $) NIL)) (-1897 (((-112) $) NIL (|has| (-566) (-820)))) (-2062 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (|has| (-566) (-886 (-566)))) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (|has| (-566) (-886 (-381))))) (-3934 (((-112) $) NIL)) (-1493 (($ $) NIL)) (-4326 (((-566) $) NIL)) (-4363 (((-3 $ "failed") $) NIL (|has| (-566) (-1150)))) (-2117 (((-112) $) NIL (|has| (-566) (-820)))) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2097 (($ $ $) NIL (|has| (-566) (-850)))) (-3962 (($ $ $) NIL (|has| (-566) (-850)))) (-1301 (($ (-1 (-566) (-566)) $) NIL)) (-2167 (($ $ $) NIL) (($ (-644 $)) NIL)) (-4117 (((-1157) $) NIL)) (-1713 (($ $) NIL)) (-1761 (($) NIL (|has| (-566) (-1150)) CONST)) (-4035 (((-1119) $) NIL)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2214 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2938 (($ $) NIL (|has| (-566) (-308))) (((-409 (-566)) $) NIL)) (-3470 (((-566) $) NIL (|has| (-566) (-547)))) (-4303 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-3240 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-3719 (((-420 $) $) NIL)) (-3148 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2994 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2055 (($ $ (-644 (-566)) (-644 (-566))) NIL (|has| (-566) (-310 (-566)))) (($ $ (-566) (-566)) NIL (|has| (-566) (-310 (-566)))) (($ $ (-295 (-566))) NIL (|has| (-566) (-310 (-566)))) (($ $ (-644 (-295 (-566)))) NIL (|has| (-566) (-310 (-566)))) (($ $ (-644 (-1175)) (-644 (-566))) NIL (|has| (-566) (-516 (-1175) (-566)))) (($ $ (-1175) (-566)) NIL (|has| (-566) (-516 (-1175) (-566))))) (-3039 (((-771) $) NIL)) (-4390 (($ $ (-566)) NIL (|has| (-566) (-287 (-566) (-566))))) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL)) (-3561 (($ $) NIL (|has| (-566) (-233))) (($ $ (-771)) NIL (|has| (-566) (-233))) (($ $ (-1175)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1 (-566) (-566)) (-771)) NIL) (($ $ (-1 (-566) (-566))) NIL)) (-2023 (($ $) NIL)) (-4339 (((-566) $) NIL)) (-1598 (($ (-409 (-566))) 9)) (-1348 (((-892 (-566)) $) NIL (|has| (-566) (-614 (-892 (-566))))) (((-892 (-381)) $) NIL (|has| (-566) (-614 (-892 (-381))))) (((-538) $) NIL (|has| (-566) (-614 (-538)))) (((-381) $) NIL (|has| (-566) (-1022))) (((-225) $) NIL (|has| (-566) (-1022)))) (-1656 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| (-566) (-909))))) (-3783 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) 8) (($ (-566)) NIL) (($ (-1175)) NIL (|has| (-566) (-1038 (-1175)))) (((-409 (-566)) $) NIL) (((-1004 10) $) 10)) (-3144 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| $ (-145)) (|has| (-566) (-909))) (|has| (-566) (-145))))) (-2107 (((-771)) NIL T CONST)) (-2948 (((-566) $) NIL (|has| (-566) (-547)))) (-3117 (((-112) $ $) NIL)) (-2695 (((-112) $ $) NIL)) (-2086 (($ $) NIL (|has| (-566) (-820)))) (-2479 (($) NIL T CONST)) (-4334 (($) NIL T CONST)) (-2875 (($ $) NIL (|has| (-566) (-233))) (($ $ (-771)) NIL (|has| (-566) (-233))) (($ $ (-1175)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1 (-566) (-566)) (-771)) NIL) (($ $ (-1 (-566) (-566))) NIL)) (-3009 (((-112) $ $) NIL (|has| (-566) (-850)))) (-2984 (((-112) $ $) NIL (|has| (-566) (-850)))) (-2947 (((-112) $ $) NIL)) (-2995 (((-112) $ $) NIL (|has| (-566) (-850)))) (-2969 (((-112) $ $) NIL (|has| (-566) (-850)))) (-3065 (($ $ $) NIL) (($ (-566) (-566)) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ (-566) $) NIL) (($ $ (-566)) NIL))) -(((-217) (-13 (-992 (-566)) (-613 (-409 (-566))) (-613 (-1004 10)) (-10 -8 (-15 -2938 ((-409 (-566)) $)) (-15 -1598 ($ (-409 (-566))))))) (T -217)) -((-2938 (*1 *2 *1) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-217)))) (-1598 (*1 *1 *2) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-217))))) -(-13 (-992 (-566)) (-613 (-409 (-566))) (-613 (-1004 10)) (-10 -8 (-15 -2938 ((-409 (-566)) $)) (-15 -1598 ($ (-409 (-566)))))) -((-3007 (((-112) $ $) NIL)) (-3030 (((-1117) $) 13)) (-4117 (((-1157) $) NIL)) (-3558 (((-485) $) 10)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 23) (($ (-1180)) NIL) (((-1180) $) NIL)) (-1382 (((-1134) $) 15)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) -(((-218) (-13 (-1082) (-10 -8 (-15 -3558 ((-485) $)) (-15 -3030 ((-1117) $)) (-15 -1382 ((-1134) $))))) (T -218)) -((-3558 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-218)))) (-3030 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-218)))) (-1382 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-218))))) -(-13 (-1082) (-10 -8 (-15 -3558 ((-485) $)) (-15 -3030 ((-1117) $)) (-15 -1382 ((-1134) $)))) -((-1941 (((-3 (|:| |f1| (-843 |#2|)) (|:| |f2| (-644 (-843 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1091 (-843 |#2|)) (-1157)) 29) (((-3 (|:| |f1| (-843 |#2|)) (|:| |f2| (-644 (-843 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1091 (-843 |#2|))) 25)) (-3207 (((-3 (|:| |f1| (-843 |#2|)) (|:| |f2| (-644 (-843 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1175) (-843 |#2|) (-843 |#2|) (-112)) 17))) -(((-219 |#1| |#2|) (-10 -7 (-15 -1941 ((-3 (|:| |f1| (-843 |#2|)) (|:| |f2| (-644 (-843 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1091 (-843 |#2|)))) (-15 -1941 ((-3 (|:| |f1| (-843 |#2|)) (|:| |f2| (-644 (-843 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1091 (-843 |#2|)) (-1157))) (-15 -3207 ((-3 (|:| |f1| (-843 |#2|)) (|:| |f2| (-644 (-843 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1175) (-843 |#2|) (-843 |#2|) (-112)))) (-13 (-308) (-147) (-1038 (-566)) (-639 (-566))) (-13 (-1199) (-959) (-29 |#1|))) (T -219)) -((-3207 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1175)) (-5 *6 (-112)) (-4 *7 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) (-4 *3 (-13 (-1199) (-959) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-843 *3)) (|:| |f2| (-644 (-843 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *7 *3)) (-5 *5 (-843 *3)))) (-1941 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1091 (-843 *3))) (-5 *5 (-1157)) (-4 *3 (-13 (-1199) (-959) (-29 *6))) (-4 *6 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-3 (|:| |f1| (-843 *3)) (|:| |f2| (-644 (-843 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *6 *3)))) (-1941 (*1 *2 *3 *4) (-12 (-5 *4 (-1091 (-843 *3))) (-4 *3 (-13 (-1199) (-959) (-29 *5))) (-4 *5 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-3 (|:| |f1| (-843 *3)) (|:| |f2| (-644 (-843 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *5 *3))))) -(-10 -7 (-15 -1941 ((-3 (|:| |f1| (-843 |#2|)) (|:| |f2| (-644 (-843 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1091 (-843 |#2|)))) (-15 -1941 ((-3 (|:| |f1| (-843 |#2|)) (|:| |f2| (-644 (-843 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1091 (-843 |#2|)) (-1157))) (-15 -3207 ((-3 (|:| |f1| (-843 |#2|)) (|:| |f2| (-644 (-843 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1175) (-843 |#2|) (-843 |#2|) (-112)))) -((-1941 (((-3 (|:| |f1| (-843 (-317 |#1|))) (|:| |f2| (-644 (-843 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-952 |#1|)) (-1091 (-843 (-409 (-952 |#1|)))) (-1157)) 49) (((-3 (|:| |f1| (-843 (-317 |#1|))) (|:| |f2| (-644 (-843 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-952 |#1|)) (-1091 (-843 (-409 (-952 |#1|))))) 46) (((-3 (|:| |f1| (-843 (-317 |#1|))) (|:| |f2| (-644 (-843 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-952 |#1|)) (-1091 (-843 (-317 |#1|))) (-1157)) 50) (((-3 (|:| |f1| (-843 (-317 |#1|))) (|:| |f2| (-644 (-843 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-952 |#1|)) (-1091 (-843 (-317 |#1|)))) 22))) -(((-220 |#1|) (-10 -7 (-15 -1941 ((-3 (|:| |f1| (-843 (-317 |#1|))) (|:| |f2| (-644 (-843 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-952 |#1|)) (-1091 (-843 (-317 |#1|))))) (-15 -1941 ((-3 (|:| |f1| (-843 (-317 |#1|))) (|:| |f2| (-644 (-843 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-952 |#1|)) (-1091 (-843 (-317 |#1|))) (-1157))) (-15 -1941 ((-3 (|:| |f1| (-843 (-317 |#1|))) (|:| |f2| (-644 (-843 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-952 |#1|)) (-1091 (-843 (-409 (-952 |#1|)))))) (-15 -1941 ((-3 (|:| |f1| (-843 (-317 |#1|))) (|:| |f2| (-644 (-843 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-952 |#1|)) (-1091 (-843 (-409 (-952 |#1|)))) (-1157)))) (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) (T -220)) -((-1941 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1091 (-843 (-409 (-952 *6))))) (-5 *5 (-1157)) (-5 *3 (-409 (-952 *6))) (-4 *6 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-3 (|:| |f1| (-843 (-317 *6))) (|:| |f2| (-644 (-843 (-317 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *6)))) (-1941 (*1 *2 *3 *4) (-12 (-5 *4 (-1091 (-843 (-409 (-952 *5))))) (-5 *3 (-409 (-952 *5))) (-4 *5 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-3 (|:| |f1| (-843 (-317 *5))) (|:| |f2| (-644 (-843 (-317 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *5)))) (-1941 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-409 (-952 *6))) (-5 *4 (-1091 (-843 (-317 *6)))) (-5 *5 (-1157)) (-4 *6 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-3 (|:| |f1| (-843 (-317 *6))) (|:| |f2| (-644 (-843 (-317 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *6)))) (-1941 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-1091 (-843 (-317 *5)))) (-4 *5 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-3 (|:| |f1| (-843 (-317 *5))) (|:| |f2| (-644 (-843 (-317 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *5))))) -(-10 -7 (-15 -1941 ((-3 (|:| |f1| (-843 (-317 |#1|))) (|:| |f2| (-644 (-843 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-952 |#1|)) (-1091 (-843 (-317 |#1|))))) (-15 -1941 ((-3 (|:| |f1| (-843 (-317 |#1|))) (|:| |f2| (-644 (-843 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-952 |#1|)) (-1091 (-843 (-317 |#1|))) (-1157))) (-15 -1941 ((-3 (|:| |f1| (-843 (-317 |#1|))) (|:| |f2| (-644 (-843 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-952 |#1|)) (-1091 (-843 (-409 (-952 |#1|)))))) (-15 -1941 ((-3 (|:| |f1| (-843 (-317 |#1|))) (|:| |f2| (-644 (-843 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-952 |#1|)) (-1091 (-843 (-409 (-952 |#1|)))) (-1157)))) -((-1676 (((-2 (|:| -2495 (-1171 |#1|)) (|:| |deg| (-921))) (-1171 |#1|)) 26)) (-2671 (((-644 (-317 |#2|)) (-317 |#2|) (-921)) 54))) -(((-221 |#1| |#2|) (-10 -7 (-15 -1676 ((-2 (|:| -2495 (-1171 |#1|)) (|:| |deg| (-921))) (-1171 |#1|))) (-15 -2671 ((-644 (-317 |#2|)) (-317 |#2|) (-921)))) (-1049) (-558)) (T -221)) -((-2671 (*1 *2 *3 *4) (-12 (-5 *4 (-921)) (-4 *6 (-558)) (-5 *2 (-644 (-317 *6))) (-5 *1 (-221 *5 *6)) (-5 *3 (-317 *6)) (-4 *5 (-1049)))) (-1676 (*1 *2 *3) (-12 (-4 *4 (-1049)) (-5 *2 (-2 (|:| -2495 (-1171 *4)) (|:| |deg| (-921)))) (-5 *1 (-221 *4 *5)) (-5 *3 (-1171 *4)) (-4 *5 (-558))))) -(-10 -7 (-15 -1676 ((-2 (|:| -2495 (-1171 |#1|)) (|:| |deg| (-921))) (-1171 |#1|))) (-15 -2671 ((-644 (-317 |#2|)) (-317 |#2|) (-921)))) -((-3007 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2991 ((|#1| $) NIL)) (-1825 ((|#1| $) 30)) (-2256 (((-112) $ (-771)) NIL)) (-3012 (($) NIL T CONST)) (-2499 (($ $) NIL)) (-3413 (($ $) 39)) (-2261 ((|#1| |#1| $) NIL)) (-2008 ((|#1| $) NIL)) (-3979 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-2404 (((-112) $ (-771)) NIL)) (-2329 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2908 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#1| |#1|) $) NIL)) (-2603 (((-112) $ (-771)) NIL)) (-4149 (((-771) $) NIL)) (-4117 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4039 ((|#1| $) NIL)) (-1425 ((|#1| |#1| $) 35)) (-1463 ((|#1| |#1| $) 37)) (-3406 (($ |#1| $) NIL)) (-2076 (((-771) $) 33)) (-4035 (((-1119) $) NIL (|has| |#1| (-1099)))) (-2303 ((|#1| $) NIL)) (-3283 ((|#1| $) 31)) (-3181 ((|#1| $) 29)) (-2539 ((|#1| $) NIL)) (-2692 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) NIL)) (-2364 ((|#1| |#1| $) NIL)) (-3467 (((-112) $) 9)) (-1494 (($) NIL)) (-1747 ((|#1| $) NIL)) (-2675 (($) NIL) (($ (-644 |#1|)) 16)) (-2266 (((-771) $) NIL)) (-4045 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3940 (($ $) NIL)) (-3783 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-2798 ((|#1| $) 13)) (-3117 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1748 (($ (-644 |#1|)) NIL)) (-2745 ((|#1| $) NIL)) (-1894 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3018 (((-771) $) NIL (|has| $ (-6 -4414))))) -(((-222 |#1|) (-13 (-255 |#1|) (-10 -8 (-15 -2675 ($ (-644 |#1|))))) (-1099)) (T -222)) -((-2675 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-222 *3))))) -(-13 (-255 |#1|) (-10 -8 (-15 -2675 ($ (-644 |#1|))))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-2034 (($ (-317 |#1|)) 27)) (-4175 (((-3 $ "failed") $ $) NIL)) (-3012 (($) NIL T CONST)) (-3032 (((-112) $) NIL)) (-4307 (((-3 (-317 |#1|) "failed") $) NIL)) (-4205 (((-317 |#1|) $) NIL)) (-1786 (($ $) 35)) (-1878 (((-3 $ "failed") $) NIL)) (-3934 (((-112) $) NIL)) (-1301 (($ (-1 (-317 |#1|) (-317 |#1|)) $) NIL)) (-1763 (((-317 |#1|) $) NIL)) (-2215 (($ $) 34)) (-4117 (((-1157) $) NIL)) (-1849 (((-112) $) NIL)) (-4035 (((-1119) $) NIL)) (-3441 (($ (-771)) NIL)) (-2765 (($ $) 36)) (-3636 (((-566) $) NIL)) (-3783 (((-862) $) 68) (($ (-566)) NIL) (($ (-317 |#1|)) NIL)) (-2649 (((-317 |#1|) $ $) NIL)) (-2107 (((-771)) NIL T CONST)) (-3117 (((-112) $ $) NIL)) (-2479 (($) 29 T CONST)) (-4334 (($) NIL T CONST)) (-2947 (((-112) $ $) 32)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) 23)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 28) (($ (-317 |#1|) $) 22))) -(((-223 |#1| |#2|) (-13 (-620 (-317 |#1|)) (-1038 (-317 |#1|)) (-10 -8 (-15 -1763 ((-317 |#1|) $)) (-15 -2215 ($ $)) (-15 -1786 ($ $)) (-15 -2649 ((-317 |#1|) $ $)) (-15 -3441 ($ (-771))) (-15 -1849 ((-112) $)) (-15 -3032 ((-112) $)) (-15 -3636 ((-566) $)) (-15 -1301 ($ (-1 (-317 |#1|) (-317 |#1|)) $)) (-15 -2034 ($ (-317 |#1|))) (-15 -2765 ($ $)))) (-13 (-1049) (-850)) (-644 (-1175))) (T -223)) -((-1763 (*1 *2 *1) (-12 (-5 *2 (-317 *3)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1049) (-850))) (-14 *4 (-644 (-1175))))) (-2215 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1049) (-850))) (-14 *3 (-644 (-1175))))) (-1786 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1049) (-850))) (-14 *3 (-644 (-1175))))) (-2649 (*1 *2 *1 *1) (-12 (-5 *2 (-317 *3)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1049) (-850))) (-14 *4 (-644 (-1175))))) (-3441 (*1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1049) (-850))) (-14 *4 (-644 (-1175))))) (-1849 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1049) (-850))) (-14 *4 (-644 (-1175))))) (-3032 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1049) (-850))) (-14 *4 (-644 (-1175))))) (-3636 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1049) (-850))) (-14 *4 (-644 (-1175))))) (-1301 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-317 *3) (-317 *3))) (-4 *3 (-13 (-1049) (-850))) (-5 *1 (-223 *3 *4)) (-14 *4 (-644 (-1175))))) (-2034 (*1 *1 *2) (-12 (-5 *2 (-317 *3)) (-4 *3 (-13 (-1049) (-850))) (-5 *1 (-223 *3 *4)) (-14 *4 (-644 (-1175))))) (-2765 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1049) (-850))) (-14 *3 (-644 (-1175)))))) -(-13 (-620 (-317 |#1|)) (-1038 (-317 |#1|)) (-10 -8 (-15 -1763 ((-317 |#1|) $)) (-15 -2215 ($ $)) (-15 -1786 ($ $)) (-15 -2649 ((-317 |#1|) $ $)) (-15 -3441 ($ (-771))) (-15 -1849 ((-112) $)) (-15 -3032 ((-112) $)) (-15 -3636 ((-566) $)) (-15 -1301 ($ (-1 (-317 |#1|) (-317 |#1|)) $)) (-15 -2034 ($ (-317 |#1|))) (-15 -2765 ($ $)))) -((-1963 (((-112) (-1157)) 26)) (-2311 (((-3 (-843 |#2|) "failed") (-612 |#2|) |#2| (-843 |#2|) (-843 |#2|) (-112)) 35)) (-2094 (((-3 (-112) "failed") (-1171 |#2|) (-843 |#2|) (-843 |#2|) (-112)) 84) (((-3 (-112) "failed") (-952 |#1|) (-1175) (-843 |#2|) (-843 |#2|) (-112)) 85))) -(((-224 |#1| |#2|) (-10 -7 (-15 -1963 ((-112) (-1157))) (-15 -2311 ((-3 (-843 |#2|) "failed") (-612 |#2|) |#2| (-843 |#2|) (-843 |#2|) (-112))) (-15 -2094 ((-3 (-112) "failed") (-952 |#1|) (-1175) (-843 |#2|) (-843 |#2|) (-112))) (-15 -2094 ((-3 (-112) "failed") (-1171 |#2|) (-843 |#2|) (-843 |#2|) (-112)))) (-13 (-454) (-1038 (-566)) (-639 (-566))) (-13 (-1199) (-29 |#1|))) (T -224)) -((-2094 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1171 *6)) (-5 *4 (-843 *6)) (-4 *6 (-13 (-1199) (-29 *5))) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-224 *5 *6)))) (-2094 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-952 *6)) (-5 *4 (-1175)) (-5 *5 (-843 *7)) (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-4 *7 (-13 (-1199) (-29 *6))) (-5 *1 (-224 *6 *7)))) (-2311 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-843 *4)) (-5 *3 (-612 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1199) (-29 *6))) (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-224 *6 *4)))) (-1963 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-112)) (-5 *1 (-224 *4 *5)) (-4 *5 (-13 (-1199) (-29 *4)))))) -(-10 -7 (-15 -1963 ((-112) (-1157))) (-15 -2311 ((-3 (-843 |#2|) "failed") (-612 |#2|) |#2| (-843 |#2|) (-843 |#2|) (-112))) (-15 -2094 ((-3 (-112) "failed") (-952 |#1|) (-1175) (-843 |#2|) (-843 |#2|) (-112))) (-15 -2094 ((-3 (-112) "failed") (-1171 |#2|) (-843 |#2|) (-843 |#2|) (-112)))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) 100)) (-1515 (((-566) $) 36)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-3991 (($ $) NIL)) (-2388 (((-112) $) NIL)) (-2587 (($ $) NIL)) (-4114 (($ $) 89)) (-2109 (($ $) 77)) (-4175 (((-3 $ "failed") $ $) NIL)) (-1550 (($ $) NIL)) (-3184 (((-420 $) $) NIL)) (-3731 (($ $) 68)) (-2837 (((-112) $ $) NIL)) (-2240 (($ $) 87)) (-2085 (($ $) 75)) (-4364 (((-566) $) 130)) (-4134 (($ $) 92)) (-2129 (($ $) 79)) (-3012 (($) NIL T CONST)) (-2514 (($ $) NIL)) (-4307 (((-3 (-566) "failed") $) 129) (((-3 (-409 (-566)) "failed") $) 126)) (-4205 (((-566) $) 127) (((-409 (-566)) $) 124)) (-2946 (($ $ $) NIL)) (-1878 (((-3 $ "failed") $) 105)) (-2389 (((-409 (-566)) $ (-771)) 119) (((-409 (-566)) $ (-771) (-771)) 118)) (-2957 (($ $ $) NIL)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL)) (-3268 (((-112) $) NIL)) (-1951 (((-921)) 29) (((-921) (-921)) NIL (|has| $ (-6 -4405)))) (-1897 (((-112) $) NIL)) (-4361 (($) 47)) (-2062 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL)) (-3254 (((-566) $) 43)) (-3934 (((-112) $) 101)) (-2140 (($ $ (-566)) NIL)) (-1577 (($ $) NIL)) (-2117 (((-112) $) 99)) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2097 (($ $ $) 65) (($) 39 (-12 (-2418 (|has| $ (-6 -4397))) (-2418 (|has| $ (-6 -4405)))))) (-3962 (($ $ $) 64) (($) 38 (-12 (-2418 (|has| $ (-6 -4397))) (-2418 (|has| $ (-6 -4405)))))) (-1729 (((-566) $) 27)) (-3187 (($ $) 34)) (-2342 (($ $) 69)) (-3651 (($ $) 74)) (-2167 (($ $ $) NIL) (($ (-644 $)) NIL)) (-4117 (((-1157) $) NIL)) (-1713 (($ $) NIL)) (-3267 (((-921) (-566)) NIL (|has| $ (-6 -4405)))) (-4035 (((-1119) $) 103)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2214 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2938 (($ $) NIL)) (-3470 (($ $) NIL)) (-2985 (($ (-566) (-566)) NIL) (($ (-566) (-566) (-921)) 112)) (-3719 (((-420 $) $) NIL)) (-3148 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2994 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2852 (((-566) $) 28)) (-3410 (($) 46)) (-2561 (($ $) 73)) (-3039 (((-771) $) NIL)) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL)) (-4163 (((-921)) NIL) (((-921) (-921)) NIL (|has| $ (-6 -4405)))) (-3561 (($ $ (-771)) NIL) (($ $) 106)) (-1927 (((-921) (-566)) NIL (|has| $ (-6 -4405)))) (-4144 (($ $) 90)) (-2141 (($ $) 80)) (-4124 (($ $) 91)) (-2118 (($ $) 78)) (-4104 (($ $) 88)) (-2098 (($ $) 76)) (-1348 (((-381) $) 115) (((-225) $) 14) (((-892 (-381)) $) NIL) (((-538) $) 53)) (-3783 (((-862) $) 50) (($ (-566)) 72) (($ $) NIL) (($ (-409 (-566))) NIL) (($ (-566)) 72) (($ (-409 (-566))) NIL)) (-2107 (((-771)) NIL T CONST)) (-2948 (($ $) NIL)) (-4099 (((-921)) 37) (((-921) (-921)) NIL (|has| $ (-6 -4405)))) (-3117 (((-112) $ $) NIL)) (-2719 (((-921)) 25)) (-4177 (($ $) 95)) (-2180 (($ $) 83) (($ $ $) 122)) (-2695 (((-112) $ $) NIL)) (-4155 (($ $) 93)) (-2153 (($ $) 81)) (-4198 (($ $) 98)) (-2212 (($ $) 86)) (-2976 (($ $) 96)) (-2227 (($ $) 84)) (-4188 (($ $) 97)) (-2196 (($ $) 85)) (-4166 (($ $) 94)) (-2166 (($ $) 82)) (-2086 (($ $) 121)) (-2479 (($) 23 T CONST)) (-4334 (($) 44 T CONST)) (-2452 (((-1157) $) 18) (((-1157) $ (-112)) 20) (((-1269) (-822) $) 21) (((-1269) (-822) $ (-112)) 22)) (-2411 (($ $) 109)) (-2875 (($ $ (-771)) NIL) (($ $) NIL)) (-2880 (($ $ $) 111)) (-3009 (((-112) $ $) 58)) (-2984 (((-112) $ $) 55)) (-2947 (((-112) $ $) 66)) (-2995 (((-112) $ $) 57)) (-2969 (((-112) $ $) 54)) (-3065 (($ $ $) 45) (($ $ (-566)) 67)) (-3053 (($ $) 59) (($ $ $) 61)) (-3041 (($ $ $) 60)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) 70) (($ $ (-409 (-566))) 154) (($ $ $) 71)) (* (($ (-921) $) 35) (($ (-771) $) NIL) (($ (-566) $) 63) (($ $ $) 62) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL))) -(((-225) (-13 (-406) (-233) (-828) (-1199) (-614 (-538)) (-10 -8 (-15 -3065 ($ $ (-566))) (-15 ** ($ $ $)) (-15 -3410 ($)) (-15 -3187 ($ $)) (-15 -2342 ($ $)) (-15 -2180 ($ $ $)) (-15 -2411 ($ $)) (-15 -2880 ($ $ $)) (-15 -2389 ((-409 (-566)) $ (-771))) (-15 -2389 ((-409 (-566)) $ (-771) (-771)))))) (T -225)) -((** (*1 *1 *1 *1) (-5 *1 (-225))) (-3065 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-225)))) (-3410 (*1 *1) (-5 *1 (-225))) (-3187 (*1 *1 *1) (-5 *1 (-225))) (-2342 (*1 *1 *1) (-5 *1 (-225))) (-2180 (*1 *1 *1 *1) (-5 *1 (-225))) (-2411 (*1 *1 *1) (-5 *1 (-225))) (-2880 (*1 *1 *1 *1) (-5 *1 (-225))) (-2389 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *2 (-409 (-566))) (-5 *1 (-225)))) (-2389 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-771)) (-5 *2 (-409 (-566))) (-5 *1 (-225))))) -(-13 (-406) (-233) (-828) (-1199) (-614 (-538)) (-10 -8 (-15 -3065 ($ $ (-566))) (-15 ** ($ $ $)) (-15 -3410 ($)) (-15 -3187 ($ $)) (-15 -2342 ($ $)) (-15 -2180 ($ $ $)) (-15 -2411 ($ $)) (-15 -2880 ($ $ $)) (-15 -2389 ((-409 (-566)) $ (-771))) (-15 -2389 ((-409 (-566)) $ (-771) (-771))))) -((-2680 (((-169 (-225)) (-771) (-169 (-225))) 11) (((-225) (-771) (-225)) 12)) (-2317 (((-169 (-225)) (-169 (-225))) 13) (((-225) (-225)) 14)) (-1593 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 19) (((-225) (-225) (-225)) 22)) (-1641 (((-169 (-225)) (-169 (-225))) 27) (((-225) (-225)) 26)) (-1357 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 57) (((-225) (-225) (-225)) 49)) (-4226 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 62) (((-225) (-225) (-225)) 60)) (-4335 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 15) (((-225) (-225) (-225)) 16)) (-3180 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 17) (((-225) (-225) (-225)) 18)) (-1949 (((-169 (-225)) (-169 (-225))) 74) (((-225) (-225)) 73)) (-3848 (((-225) (-225)) 68) (((-169 (-225)) (-169 (-225))) 72)) (-2411 (((-169 (-225)) (-169 (-225))) 8) (((-225) (-225)) 9)) (-2880 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 35) (((-225) (-225) (-225)) 31))) -(((-226) (-10 -7 (-15 -2411 ((-225) (-225))) (-15 -2411 ((-169 (-225)) (-169 (-225)))) (-15 -2880 ((-225) (-225) (-225))) (-15 -2880 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2317 ((-225) (-225))) (-15 -2317 ((-169 (-225)) (-169 (-225)))) (-15 -1641 ((-225) (-225))) (-15 -1641 ((-169 (-225)) (-169 (-225)))) (-15 -2680 ((-225) (-771) (-225))) (-15 -2680 ((-169 (-225)) (-771) (-169 (-225)))) (-15 -4335 ((-225) (-225) (-225))) (-15 -4335 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -1357 ((-225) (-225) (-225))) (-15 -1357 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3180 ((-225) (-225) (-225))) (-15 -3180 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -4226 ((-225) (-225) (-225))) (-15 -4226 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3848 ((-169 (-225)) (-169 (-225)))) (-15 -3848 ((-225) (-225))) (-15 -1949 ((-225) (-225))) (-15 -1949 ((-169 (-225)) (-169 (-225)))) (-15 -1593 ((-225) (-225) (-225))) (-15 -1593 ((-169 (-225)) (-169 (-225)) (-169 (-225)))))) (T -226)) -((-1593 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-1593 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-1949 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-1949 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3848 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3848 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-4226 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-4226 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3180 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3180 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-1357 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-1357 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-4335 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-4335 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2680 (*1 *2 *3 *2) (-12 (-5 *2 (-169 (-225))) (-5 *3 (-771)) (-5 *1 (-226)))) (-2680 (*1 *2 *3 *2) (-12 (-5 *2 (-225)) (-5 *3 (-771)) (-5 *1 (-226)))) (-1641 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-1641 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2317 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2317 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2880 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2880 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2411 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2411 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))) -(-10 -7 (-15 -2411 ((-225) (-225))) (-15 -2411 ((-169 (-225)) (-169 (-225)))) (-15 -2880 ((-225) (-225) (-225))) (-15 -2880 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2317 ((-225) (-225))) (-15 -2317 ((-169 (-225)) (-169 (-225)))) (-15 -1641 ((-225) (-225))) (-15 -1641 ((-169 (-225)) (-169 (-225)))) (-15 -2680 ((-225) (-771) (-225))) (-15 -2680 ((-169 (-225)) (-771) (-169 (-225)))) (-15 -4335 ((-225) (-225) (-225))) (-15 -4335 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -1357 ((-225) (-225) (-225))) (-15 -1357 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3180 ((-225) (-225) (-225))) (-15 -3180 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -4226 ((-225) (-225) (-225))) (-15 -4226 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3848 ((-169 (-225)) (-169 (-225)))) (-15 -3848 ((-225) (-225))) (-15 -1949 ((-225) (-225))) (-15 -1949 ((-169 (-225)) (-169 (-225)))) (-15 -1593 ((-225) (-225) (-225))) (-15 -1593 ((-169 (-225)) (-169 (-225)) (-169 (-225))))) -((-3007 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2149 (($ (-771) (-771)) NIL)) (-1458 (($ $ $) NIL)) (-1560 (($ (-1264 |#1|)) NIL) (($ $) NIL)) (-4187 (($ |#1| |#1| |#1|) 33)) (-2143 (((-112) $) NIL)) (-3025 (($ $ (-566) (-566)) NIL)) (-1355 (($ $ (-566) (-566)) NIL)) (-1979 (($ $ (-566) (-566) (-566) (-566)) NIL)) (-1697 (($ $) NIL)) (-1743 (((-112) $) NIL)) (-2256 (((-112) $ (-771)) NIL)) (-4168 (($ $ (-566) (-566) $) NIL)) (-3923 ((|#1| $ (-566) (-566) |#1|) NIL) (($ $ (-644 (-566)) (-644 (-566)) $) NIL)) (-1708 (($ $ (-566) (-1264 |#1|)) NIL)) (-2521 (($ $ (-566) (-1264 |#1|)) NIL)) (-1389 (($ |#1| |#1| |#1|) 32)) (-3808 (($ (-771) |#1|) NIL)) (-3012 (($) NIL T CONST)) (-4137 (($ $) NIL (|has| |#1| (-308)))) (-4379 (((-1264 |#1|) $ (-566)) NIL)) (-3397 (($ |#1|) 31)) (-2393 (($ |#1|) 30)) (-2915 (($ |#1|) 29)) (-4313 (((-771) $) NIL (|has| |#1| (-558)))) (-2920 ((|#1| $ (-566) (-566) |#1|) NIL)) (-2855 ((|#1| $ (-566) (-566)) NIL)) (-3979 (((-644 |#1|) $) NIL)) (-3864 (((-771) $) NIL (|has| |#1| (-558)))) (-1601 (((-644 (-1264 |#1|)) $) NIL (|has| |#1| (-558)))) (-1380 (((-771) $) NIL)) (-4265 (($ (-771) (-771) |#1|) NIL)) (-1391 (((-771) $) NIL)) (-2404 (((-112) $ (-771)) NIL)) (-3310 ((|#1| $) NIL (|has| |#1| (-6 (-4416 "*"))))) (-1368 (((-566) $) NIL)) (-3832 (((-566) $) NIL)) (-2329 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-1821 (((-566) $) NIL)) (-1809 (((-566) $) NIL)) (-3163 (($ (-644 (-644 |#1|))) 11)) (-2908 (($ (-1 |#1| |#1|) $) NIL)) (-1301 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2909 (((-644 (-644 |#1|)) $) NIL)) (-2603 (((-112) $ (-771)) NIL)) (-4117 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4264 (((-3 $ "failed") $) NIL (|has| |#1| (-365)))) (-3586 (($) 12)) (-4140 (($ $ $) NIL)) (-4035 (((-1119) $) NIL (|has| |#1| (-1099)))) (-4030 (($ $ |#1|) NIL)) (-2994 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558)))) (-2692 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) NIL)) (-3467 (((-112) $) NIL)) (-1494 (($) NIL)) (-4390 ((|#1| $ (-566) (-566)) NIL) ((|#1| $ (-566) (-566) |#1|) NIL) (($ $ (-644 (-566)) (-644 (-566))) NIL)) (-4098 (($ (-644 |#1|)) NIL) (($ (-644 $)) NIL)) (-2652 (((-112) $) NIL)) (-4383 ((|#1| $) NIL (|has| |#1| (-6 (-4416 "*"))))) (-4045 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3940 (($ $) NIL)) (-2306 (((-1264 |#1|) $ (-566)) NIL)) (-3783 (($ (-1264 |#1|)) NIL) (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-3117 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1894 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-3098 (((-112) $) NIL)) (-2947 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3065 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3053 (($ $ $) NIL) (($ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-771)) NIL) (($ $ (-566)) NIL (|has| |#1| (-365)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-566) $) NIL) (((-1264 |#1|) $ (-1264 |#1|)) 15) (((-1264 |#1|) (-1264 |#1|) $) NIL) (((-943 |#1|) $ (-943 |#1|)) 21)) (-3018 (((-771) $) NIL (|has| $ (-6 -4414))))) -(((-227 |#1|) (-13 (-687 |#1| (-1264 |#1|) (-1264 |#1|)) (-10 -8 (-15 * ((-943 |#1|) $ (-943 |#1|))) (-15 -3586 ($)) (-15 -2915 ($ |#1|)) (-15 -2393 ($ |#1|)) (-15 -3397 ($ |#1|)) (-15 -1389 ($ |#1| |#1| |#1|)) (-15 -4187 ($ |#1| |#1| |#1|)))) (-13 (-365) (-1199))) (T -227)) -((* (*1 *2 *1 *2) (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1199))) (-5 *1 (-227 *3)))) (-3586 (*1 *1) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1199))))) (-2915 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1199))))) (-2393 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1199))))) (-3397 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1199))))) (-1389 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1199))))) (-4187 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1199)))))) -(-13 (-687 |#1| (-1264 |#1|) (-1264 |#1|)) (-10 -8 (-15 * ((-943 |#1|) $ (-943 |#1|))) (-15 -3586 ($)) (-15 -2915 ($ |#1|)) (-15 -2393 ($ |#1|)) (-15 -3397 ($ |#1|)) (-15 -1389 ($ |#1| |#1| |#1|)) (-15 -4187 ($ |#1| |#1| |#1|)))) -((-4016 (($ (-1 (-112) |#2|) $) 16)) (-2956 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 27)) (-3481 (($) NIL) (($ (-644 |#2|)) 11)) (-2947 (((-112) $ $) 25))) -(((-228 |#1| |#2|) (-10 -8 (-15 -4016 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2956 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2956 (|#1| |#2| |#1|)) (-15 -3481 (|#1| (-644 |#2|))) (-15 -3481 (|#1|)) (-15 -2947 ((-112) |#1| |#1|))) (-229 |#2|) (-1099)) (T -228)) -NIL -(-10 -8 (-15 -4016 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2956 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2956 (|#1| |#2| |#1|)) (-15 -3481 (|#1| (-644 |#2|))) (-15 -3481 (|#1|)) (-15 -2947 ((-112) |#1| |#1|))) -((-3007 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2256 (((-112) $ (-771)) 8)) (-4016 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4414)))) (-2701 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4414)))) (-3012 (($) 7 T CONST)) (-2031 (($ $) 59 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2956 (($ |#1| $) 48 (|has| $ (-6 -4414))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4414)))) (-2665 (($ |#1| $) 58 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4414)))) (-1676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4414)))) (-3979 (((-644 |#1|) $) 31 (|has| $ (-6 -4414)))) (-2404 (((-112) $ (-771)) 9)) (-2329 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2908 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#1| |#1|) $) 36)) (-2603 (((-112) $ (-771)) 10)) (-4117 (((-1157) $) 22 (|has| |#1| (-1099)))) (-4039 ((|#1| $) 40)) (-3406 (($ |#1| $) 41)) (-4035 (((-1119) $) 21 (|has| |#1| (-1099)))) (-2006 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2539 ((|#1| $) 42)) (-2692 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) 14)) (-3467 (((-112) $) 11)) (-1494 (($) 12)) (-3481 (($) 50) (($ (-644 |#1|)) 49)) (-4045 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-3940 (($ $) 13)) (-1348 (((-538) $) 60 (|has| |#1| (-614 (-538))))) (-3796 (($ (-644 |#1|)) 51)) (-3783 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-3117 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-1748 (($ (-644 |#1|)) 43)) (-1894 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3018 (((-771) $) 6 (|has| $ (-6 -4414))))) +((-2988 (((-112) $ $) NIL)) (-3843 ((|#2| $ (-771) |#2|) 11)) (-3829 ((|#2| $ (-771)) 10)) (-1860 (($) 8)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 26)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) 13))) +(((-213 |#1| |#2|) (-13 (-1099) (-10 -8 (-15 -1860 ($)) (-15 -3829 (|#2| $ (-771))) (-15 -3843 (|#2| $ (-771) |#2|)))) (-921) (-1099)) (T -213)) +((-1860 (*1 *1) (-12 (-5 *1 (-213 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1099)))) (-3829 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-4 *2 (-1099)) (-5 *1 (-213 *4 *2)) (-14 *4 (-921)))) (-3843 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-213 *4 *2)) (-14 *4 (-921)) (-4 *2 (-1099))))) +(-13 (-1099) (-10 -8 (-15 -1860 ($)) (-15 -3829 (|#2| $ (-771))) (-15 -3843 (|#2| $ (-771) |#2|)))) +((-2988 (((-112) $ $) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-1597 (((-1269) $) 37) (((-1269) $ (-921) (-921)) 44)) (-1309 (($ $ (-989)) 19) (((-245 (-1157)) $ (-1175)) 15)) (-1710 (((-1269) $) 35)) (-3152 (((-862) $) 32) (($ (-644 |#1|)) 8)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL)) (-3012 (($ $ $) 27)) (-3002 (($ $ $) 22))) +(((-214 |#1|) (-13 (-1099) (-616 (-644 |#1|)) (-10 -8 (-15 -1309 ($ $ (-989))) (-15 -1309 ((-245 (-1157)) $ (-1175))) (-15 -3002 ($ $ $)) (-15 -3012 ($ $ $)) (-15 -1710 ((-1269) $)) (-15 -1597 ((-1269) $)) (-15 -1597 ((-1269) $ (-921) (-921))))) (-13 (-850) (-10 -8 (-15 -1309 ((-1157) $ (-1175))) (-15 -1710 ((-1269) $)) (-15 -1597 ((-1269) $))))) (T -214)) +((-1309 (*1 *1 *1 *2) (-12 (-5 *2 (-989)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-850) (-10 -8 (-15 -1309 ((-1157) $ (-1175))) (-15 -1710 ((-1269) $)) (-15 -1597 ((-1269) $))))))) (-1309 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-245 (-1157))) (-5 *1 (-214 *4)) (-4 *4 (-13 (-850) (-10 -8 (-15 -1309 ((-1157) $ *3)) (-15 -1710 ((-1269) $)) (-15 -1597 ((-1269) $))))))) (-3002 (*1 *1 *1 *1) (-12 (-5 *1 (-214 *2)) (-4 *2 (-13 (-850) (-10 -8 (-15 -1309 ((-1157) $ (-1175))) (-15 -1710 ((-1269) $)) (-15 -1597 ((-1269) $))))))) (-3012 (*1 *1 *1 *1) (-12 (-5 *1 (-214 *2)) (-4 *2 (-13 (-850) (-10 -8 (-15 -1309 ((-1157) $ (-1175))) (-15 -1710 ((-1269) $)) (-15 -1597 ((-1269) $))))))) (-1710 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-850) (-10 -8 (-15 -1309 ((-1157) $ (-1175))) (-15 -1710 (*2 $)) (-15 -1597 (*2 $))))))) (-1597 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-850) (-10 -8 (-15 -1309 ((-1157) $ (-1175))) (-15 -1710 (*2 $)) (-15 -1597 (*2 $))))))) (-1597 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1269)) (-5 *1 (-214 *4)) (-4 *4 (-13 (-850) (-10 -8 (-15 -1309 ((-1157) $ (-1175))) (-15 -1710 (*2 $)) (-15 -1597 (*2 $)))))))) +(-13 (-1099) (-616 (-644 |#1|)) (-10 -8 (-15 -1309 ($ $ (-989))) (-15 -1309 ((-245 (-1157)) $ (-1175))) (-15 -3002 ($ $ $)) (-15 -3012 ($ $ $)) (-15 -1710 ((-1269) $)) (-15 -1597 ((-1269) $)) (-15 -1597 ((-1269) $ (-921) (-921))))) +((-3494 ((|#2| |#4| (-1 |#2| |#2|)) 49))) +(((-215 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3494 (|#2| |#4| (-1 |#2| |#2|)))) (-365) (-1240 |#1|) (-1240 (-409 |#2|)) (-344 |#1| |#2| |#3|)) (T -215)) +((-3494 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-365)) (-4 *6 (-1240 (-409 *2))) (-4 *2 (-1240 *5)) (-5 *1 (-215 *5 *2 *6 *3)) (-4 *3 (-344 *5 *2 *6))))) +(-10 -7 (-15 -3494 (|#2| |#4| (-1 |#2| |#2|)))) +((-3091 ((|#2| |#2| (-771) |#2|) 58)) (-4027 ((|#2| |#2| (-771) |#2|) 54)) (-3957 (((-644 |#2|) (-644 (-2 (|:| |deg| (-771)) (|:| -3527 |#2|)))) 82)) (-3378 (((-644 (-2 (|:| |deg| (-771)) (|:| -3527 |#2|))) |#2|) 76)) (-3228 (((-112) |#2|) 74)) (-2208 (((-420 |#2|) |#2|) 96)) (-1624 (((-420 |#2|) |#2|) 95)) (-3067 ((|#2| |#2| (-771) |#2|) 52)) (-2864 (((-2 (|:| |cont| |#1|) (|:| -1616 (-644 (-2 (|:| |irr| |#2|) (|:| -4125 (-566)))))) |#2| (-112)) 88))) +(((-216 |#1| |#2|) (-10 -7 (-15 -1624 ((-420 |#2|) |#2|)) (-15 -2208 ((-420 |#2|) |#2|)) (-15 -2864 ((-2 (|:| |cont| |#1|) (|:| -1616 (-644 (-2 (|:| |irr| |#2|) (|:| -4125 (-566)))))) |#2| (-112))) (-15 -3378 ((-644 (-2 (|:| |deg| (-771)) (|:| -3527 |#2|))) |#2|)) (-15 -3957 ((-644 |#2|) (-644 (-2 (|:| |deg| (-771)) (|:| -3527 |#2|))))) (-15 -3067 (|#2| |#2| (-771) |#2|)) (-15 -4027 (|#2| |#2| (-771) |#2|)) (-15 -3091 (|#2| |#2| (-771) |#2|)) (-15 -3228 ((-112) |#2|))) (-351) (-1240 |#1|)) (T -216)) +((-3228 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-112)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1240 *4)))) (-3091 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-771)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1240 *4)))) (-4027 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-771)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1240 *4)))) (-3067 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-771)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1240 *4)))) (-3957 (*1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| |deg| (-771)) (|:| -3527 *5)))) (-4 *5 (-1240 *4)) (-4 *4 (-351)) (-5 *2 (-644 *5)) (-5 *1 (-216 *4 *5)))) (-3378 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-644 (-2 (|:| |deg| (-771)) (|:| -3527 *3)))) (-5 *1 (-216 *4 *3)) (-4 *3 (-1240 *4)))) (-2864 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-351)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1616 (-644 (-2 (|:| |irr| *3) (|:| -4125 (-566))))))) (-5 *1 (-216 *5 *3)) (-4 *3 (-1240 *5)))) (-2208 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-420 *3)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1240 *4)))) (-1624 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-420 *3)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1240 *4))))) +(-10 -7 (-15 -1624 ((-420 |#2|) |#2|)) (-15 -2208 ((-420 |#2|) |#2|)) (-15 -2864 ((-2 (|:| |cont| |#1|) (|:| -1616 (-644 (-2 (|:| |irr| |#2|) (|:| -4125 (-566)))))) |#2| (-112))) (-15 -3378 ((-644 (-2 (|:| |deg| (-771)) (|:| -3527 |#2|))) |#2|)) (-15 -3957 ((-644 |#2|) (-644 (-2 (|:| |deg| (-771)) (|:| -3527 |#2|))))) (-15 -3067 (|#2| |#2| (-771) |#2|)) (-15 -4027 (|#2| |#2| (-771) |#2|)) (-15 -3091 (|#2| |#2| (-771) |#2|)) (-15 -3228 ((-112) |#2|))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-1873 (((-566) $) NIL (|has| (-566) (-308)))) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-2161 (($ $) NIL)) (-2345 (((-112) $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-2292 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-1378 (($ $) NIL)) (-1364 (((-420 $) $) NIL)) (-4066 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-2085 (((-112) $ $) NIL)) (-2743 (((-566) $) NIL (|has| (-566) (-820)))) (-2463 (($) NIL T CONST)) (-2229 (((-3 (-566) "failed") $) NIL) (((-3 (-1175) "failed") $) NIL (|has| (-566) (-1038 (-1175)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| (-566) (-1038 (-566)))) (((-3 (-566) "failed") $) NIL (|has| (-566) (-1038 (-566))))) (-4158 (((-566) $) NIL) (((-1175) $) NIL (|has| (-566) (-1038 (-1175)))) (((-409 (-566)) $) NIL (|has| (-566) (-1038 (-566)))) (((-566) $) NIL (|has| (-566) (-1038 (-566))))) (-2933 (($ $ $) NIL)) (-4089 (((-689 (-566)) (-689 $)) NIL (|has| (-566) (-639 (-566)))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| (-566) (-639 (-566)))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL) (((-689 (-566)) (-689 $)) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-2715 (($) NIL (|has| (-566) (-547)))) (-2945 (($ $ $) NIL)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL)) (-1615 (((-112) $) NIL)) (-2528 (((-112) $) NIL (|has| (-566) (-820)))) (-2926 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (|has| (-566) (-886 (-566)))) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (|has| (-566) (-886 (-381))))) (-2389 (((-112) $) NIL)) (-3406 (($ $) NIL)) (-2248 (((-566) $) NIL)) (-2621 (((-3 $ "failed") $) NIL (|has| (-566) (-1150)))) (-3233 (((-112) $) NIL (|has| (-566) (-820)))) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1478 (($ $ $) NIL (|has| (-566) (-850)))) (-2599 (($ $ $) NIL (|has| (-566) (-850)))) (-2319 (($ (-1 (-566) (-566)) $) NIL)) (-2128 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3380 (((-1157) $) NIL)) (-2748 (($ $) NIL)) (-3289 (($) NIL (|has| (-566) (-1150)) CONST)) (-4072 (((-1119) $) NIL)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2164 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2487 (($ $) NIL (|has| (-566) (-308))) (((-409 (-566)) $) NIL)) (-3143 (((-566) $) NIL (|has| (-566) (-547)))) (-2010 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-1893 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-1624 (((-420 $) $) NIL)) (-3005 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2978 (((-3 $ "failed") $ $) NIL)) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2023 (($ $ (-644 (-566)) (-644 (-566))) NIL (|has| (-566) (-310 (-566)))) (($ $ (-566) (-566)) NIL (|has| (-566) (-310 (-566)))) (($ $ (-295 (-566))) NIL (|has| (-566) (-310 (-566)))) (($ $ (-644 (-295 (-566)))) NIL (|has| (-566) (-310 (-566)))) (($ $ (-644 (-1175)) (-644 (-566))) NIL (|has| (-566) (-516 (-1175) (-566)))) (($ $ (-1175) (-566)) NIL (|has| (-566) (-516 (-1175) (-566))))) (-4357 (((-771) $) NIL)) (-1309 (($ $ (-566)) NIL (|has| (-566) (-287 (-566) (-566))))) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL)) (-3629 (($ $) NIL (|has| (-566) (-233))) (($ $ (-771)) NIL (|has| (-566) (-233))) (($ $ (-1175)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1 (-566) (-566)) (-771)) NIL) (($ $ (-1 (-566) (-566))) NIL)) (-1452 (($ $) NIL)) (-2260 (((-566) $) NIL)) (-1359 (($ (-409 (-566))) 9)) (-2376 (((-892 (-566)) $) NIL (|has| (-566) (-614 (-892 (-566))))) (((-892 (-381)) $) NIL (|has| (-566) (-614 (-892 (-381))))) (((-538) $) NIL (|has| (-566) (-614 (-538)))) (((-381) $) NIL (|has| (-566) (-1022))) (((-225) $) NIL (|has| (-566) (-1022)))) (-3391 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| (-566) (-909))))) (-3152 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) 8) (($ (-566)) NIL) (($ (-1175)) NIL (|has| (-566) (-1038 (-1175)))) (((-409 (-566)) $) NIL) (((-1004 10) $) 10)) (-2633 (((-3 $ "failed") $) NIL (-2768 (-12 (|has| $ (-145)) (|has| (-566) (-909))) (|has| (-566) (-145))))) (-2593 (((-771)) NIL T CONST)) (-3913 (((-566) $) NIL (|has| (-566) (-547)))) (-3044 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-1358 (($ $) NIL (|has| (-566) (-820)))) (-4356 (($) NIL T CONST)) (-4366 (($) NIL T CONST)) (-3497 (($ $) NIL (|has| (-566) (-233))) (($ $ (-771)) NIL (|has| (-566) (-233))) (($ $ (-1175)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1 (-566) (-566)) (-771)) NIL) (($ $ (-1 (-566) (-566))) NIL)) (-2968 (((-112) $ $) NIL (|has| (-566) (-850)))) (-2946 (((-112) $ $) NIL (|has| (-566) (-850)))) (-2914 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL (|has| (-566) (-850)))) (-2935 (((-112) $ $) NIL (|has| (-566) (-850)))) (-3025 (($ $ $) NIL) (($ (-566) (-566)) NIL)) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ (-566) $) NIL) (($ $ (-566)) NIL))) +(((-217) (-13 (-992 (-566)) (-613 (-409 (-566))) (-613 (-1004 10)) (-10 -8 (-15 -2487 ((-409 (-566)) $)) (-15 -1359 ($ (-409 (-566))))))) (T -217)) +((-2487 (*1 *2 *1) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-217)))) (-1359 (*1 *1 *2) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-217))))) +(-13 (-992 (-566)) (-613 (-409 (-566))) (-613 (-1004 10)) (-10 -8 (-15 -2487 ((-409 (-566)) $)) (-15 -1359 ($ (-409 (-566)))))) +((-2988 (((-112) $ $) NIL)) (-2831 (((-1117) $) 13)) (-3380 (((-1157) $) NIL)) (-2842 (((-485) $) 10)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 23) (($ (-1180)) NIL) (((-1180) $) NIL)) (-1377 (((-1134) $) 15)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) +(((-218) (-13 (-1082) (-10 -8 (-15 -2842 ((-485) $)) (-15 -2831 ((-1117) $)) (-15 -1377 ((-1134) $))))) (T -218)) +((-2842 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-218)))) (-2831 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-218)))) (-1377 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-218))))) +(-13 (-1082) (-10 -8 (-15 -2842 ((-485) $)) (-15 -2831 ((-1117) $)) (-15 -1377 ((-1134) $)))) +((-3313 (((-3 (|:| |f1| (-843 |#2|)) (|:| |f2| (-644 (-843 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1091 (-843 |#2|)) (-1157)) 29) (((-3 (|:| |f1| (-843 |#2|)) (|:| |f2| (-644 (-843 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1091 (-843 |#2|))) 25)) (-1629 (((-3 (|:| |f1| (-843 |#2|)) (|:| |f2| (-644 (-843 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1175) (-843 |#2|) (-843 |#2|) (-112)) 17))) +(((-219 |#1| |#2|) (-10 -7 (-15 -3313 ((-3 (|:| |f1| (-843 |#2|)) (|:| |f2| (-644 (-843 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1091 (-843 |#2|)))) (-15 -3313 ((-3 (|:| |f1| (-843 |#2|)) (|:| |f2| (-644 (-843 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1091 (-843 |#2|)) (-1157))) (-15 -1629 ((-3 (|:| |f1| (-843 |#2|)) (|:| |f2| (-644 (-843 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1175) (-843 |#2|) (-843 |#2|) (-112)))) (-13 (-308) (-147) (-1038 (-566)) (-639 (-566))) (-13 (-1199) (-959) (-29 |#1|))) (T -219)) +((-1629 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1175)) (-5 *6 (-112)) (-4 *7 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) (-4 *3 (-13 (-1199) (-959) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-843 *3)) (|:| |f2| (-644 (-843 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *7 *3)) (-5 *5 (-843 *3)))) (-3313 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1091 (-843 *3))) (-5 *5 (-1157)) (-4 *3 (-13 (-1199) (-959) (-29 *6))) (-4 *6 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-3 (|:| |f1| (-843 *3)) (|:| |f2| (-644 (-843 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *6 *3)))) (-3313 (*1 *2 *3 *4) (-12 (-5 *4 (-1091 (-843 *3))) (-4 *3 (-13 (-1199) (-959) (-29 *5))) (-4 *5 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-3 (|:| |f1| (-843 *3)) (|:| |f2| (-644 (-843 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *5 *3))))) +(-10 -7 (-15 -3313 ((-3 (|:| |f1| (-843 |#2|)) (|:| |f2| (-644 (-843 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1091 (-843 |#2|)))) (-15 -3313 ((-3 (|:| |f1| (-843 |#2|)) (|:| |f2| (-644 (-843 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1091 (-843 |#2|)) (-1157))) (-15 -1629 ((-3 (|:| |f1| (-843 |#2|)) (|:| |f2| (-644 (-843 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1175) (-843 |#2|) (-843 |#2|) (-112)))) +((-3313 (((-3 (|:| |f1| (-843 (-317 |#1|))) (|:| |f2| (-644 (-843 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-952 |#1|)) (-1091 (-843 (-409 (-952 |#1|)))) (-1157)) 49) (((-3 (|:| |f1| (-843 (-317 |#1|))) (|:| |f2| (-644 (-843 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-952 |#1|)) (-1091 (-843 (-409 (-952 |#1|))))) 46) (((-3 (|:| |f1| (-843 (-317 |#1|))) (|:| |f2| (-644 (-843 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-952 |#1|)) (-1091 (-843 (-317 |#1|))) (-1157)) 50) (((-3 (|:| |f1| (-843 (-317 |#1|))) (|:| |f2| (-644 (-843 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-952 |#1|)) (-1091 (-843 (-317 |#1|)))) 22))) +(((-220 |#1|) (-10 -7 (-15 -3313 ((-3 (|:| |f1| (-843 (-317 |#1|))) (|:| |f2| (-644 (-843 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-952 |#1|)) (-1091 (-843 (-317 |#1|))))) (-15 -3313 ((-3 (|:| |f1| (-843 (-317 |#1|))) (|:| |f2| (-644 (-843 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-952 |#1|)) (-1091 (-843 (-317 |#1|))) (-1157))) (-15 -3313 ((-3 (|:| |f1| (-843 (-317 |#1|))) (|:| |f2| (-644 (-843 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-952 |#1|)) (-1091 (-843 (-409 (-952 |#1|)))))) (-15 -3313 ((-3 (|:| |f1| (-843 (-317 |#1|))) (|:| |f2| (-644 (-843 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-952 |#1|)) (-1091 (-843 (-409 (-952 |#1|)))) (-1157)))) (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) (T -220)) +((-3313 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1091 (-843 (-409 (-952 *6))))) (-5 *5 (-1157)) (-5 *3 (-409 (-952 *6))) (-4 *6 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-3 (|:| |f1| (-843 (-317 *6))) (|:| |f2| (-644 (-843 (-317 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *6)))) (-3313 (*1 *2 *3 *4) (-12 (-5 *4 (-1091 (-843 (-409 (-952 *5))))) (-5 *3 (-409 (-952 *5))) (-4 *5 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-3 (|:| |f1| (-843 (-317 *5))) (|:| |f2| (-644 (-843 (-317 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *5)))) (-3313 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-409 (-952 *6))) (-5 *4 (-1091 (-843 (-317 *6)))) (-5 *5 (-1157)) (-4 *6 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-3 (|:| |f1| (-843 (-317 *6))) (|:| |f2| (-644 (-843 (-317 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *6)))) (-3313 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-1091 (-843 (-317 *5)))) (-4 *5 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-3 (|:| |f1| (-843 (-317 *5))) (|:| |f2| (-644 (-843 (-317 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *5))))) +(-10 -7 (-15 -3313 ((-3 (|:| |f1| (-843 (-317 |#1|))) (|:| |f2| (-644 (-843 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-952 |#1|)) (-1091 (-843 (-317 |#1|))))) (-15 -3313 ((-3 (|:| |f1| (-843 (-317 |#1|))) (|:| |f2| (-644 (-843 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-952 |#1|)) (-1091 (-843 (-317 |#1|))) (-1157))) (-15 -3313 ((-3 (|:| |f1| (-843 (-317 |#1|))) (|:| |f2| (-644 (-843 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-952 |#1|)) (-1091 (-843 (-409 (-952 |#1|)))))) (-15 -3313 ((-3 (|:| |f1| (-843 (-317 |#1|))) (|:| |f2| (-644 (-843 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-952 |#1|)) (-1091 (-843 (-409 (-952 |#1|)))) (-1157)))) +((-2873 (((-2 (|:| -3877 (-1171 |#1|)) (|:| |deg| (-921))) (-1171 |#1|)) 26)) (-3640 (((-644 (-317 |#2|)) (-317 |#2|) (-921)) 54))) +(((-221 |#1| |#2|) (-10 -7 (-15 -2873 ((-2 (|:| -3877 (-1171 |#1|)) (|:| |deg| (-921))) (-1171 |#1|))) (-15 -3640 ((-644 (-317 |#2|)) (-317 |#2|) (-921)))) (-1049) (-558)) (T -221)) +((-3640 (*1 *2 *3 *4) (-12 (-5 *4 (-921)) (-4 *6 (-558)) (-5 *2 (-644 (-317 *6))) (-5 *1 (-221 *5 *6)) (-5 *3 (-317 *6)) (-4 *5 (-1049)))) (-2873 (*1 *2 *3) (-12 (-4 *4 (-1049)) (-5 *2 (-2 (|:| -3877 (-1171 *4)) (|:| |deg| (-921)))) (-5 *1 (-221 *4 *5)) (-5 *3 (-1171 *4)) (-4 *5 (-558))))) +(-10 -7 (-15 -2873 ((-2 (|:| -3877 (-1171 |#1|)) (|:| |deg| (-921))) (-1171 |#1|))) (-15 -3640 ((-644 (-317 |#2|)) (-317 |#2|) (-921)))) +((-2988 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3265 ((|#1| $) NIL)) (-3712 ((|#1| $) 30)) (-1504 (((-112) $ (-771)) NIL)) (-2463 (($) NIL T CONST)) (-4310 (($ $) NIL)) (-3166 (($ $) 39)) (-3890 ((|#1| |#1| $) NIL)) (-2692 ((|#1| $) NIL)) (-1683 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-3456 (((-112) $ (-771)) NIL)) (-3491 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3885 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#1| |#1|) $) NIL)) (-3267 (((-112) $ (-771)) NIL)) (-2440 (((-771) $) NIL)) (-3380 (((-1157) $) NIL (|has| |#1| (-1099)))) (-3278 ((|#1| $) NIL)) (-1312 ((|#1| |#1| $) 35)) (-3490 ((|#1| |#1| $) 37)) (-3888 (($ |#1| $) NIL)) (-3106 (((-771) $) 33)) (-4072 (((-1119) $) NIL (|has| |#1| (-1099)))) (-2660 ((|#1| $) NIL)) (-1871 ((|#1| $) 31)) (-4183 ((|#1| $) 29)) (-1973 ((|#1| $) NIL)) (-2823 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) NIL)) (-2774 ((|#1| |#1| $) NIL)) (-2872 (((-112) $) 9)) (-3493 (($) NIL)) (-2849 ((|#1| $) NIL)) (-2827 (($) NIL) (($ (-644 |#1|)) 16)) (-2766 (((-771) $) NIL)) (-4083 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-1480 (($ $) NIL)) (-3152 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-1473 ((|#1| $) 13)) (-3044 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2948 (($ (-644 |#1|)) NIL)) (-3582 ((|#1| $) NIL)) (-2210 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3000 (((-771) $) NIL (|has| $ (-6 -4414))))) +(((-222 |#1|) (-13 (-255 |#1|) (-10 -8 (-15 -2827 ($ (-644 |#1|))))) (-1099)) (T -222)) +((-2827 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-222 *3))))) +(-13 (-255 |#1|) (-10 -8 (-15 -2827 ($ (-644 |#1|))))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-4332 (($ (-317 |#1|)) 27)) (-3967 (((-3 $ "failed") $ $) NIL)) (-2463 (($) NIL T CONST)) (-1748 (((-112) $) NIL)) (-2229 (((-3 (-317 |#1|) "failed") $) NIL)) (-4158 (((-317 |#1|) $) NIL)) (-2814 (($ $) 35)) (-3245 (((-3 $ "failed") $) NIL)) (-2389 (((-112) $) NIL)) (-2319 (($ (-1 (-317 |#1|) (-317 |#1|)) $) NIL)) (-2794 (((-317 |#1|) $) NIL)) (-3095 (($ $) 34)) (-3380 (((-1157) $) NIL)) (-3156 (((-112) $) NIL)) (-4072 (((-1119) $) NIL)) (-3302 (($ (-771)) NIL)) (-2400 (($ $) 36)) (-3902 (((-566) $) NIL)) (-3152 (((-862) $) 68) (($ (-566)) NIL) (($ (-317 |#1|)) NIL)) (-2271 (((-317 |#1|) $ $) NIL)) (-2593 (((-771)) NIL T CONST)) (-3044 (((-112) $ $) NIL)) (-4356 (($) 29 T CONST)) (-4366 (($) NIL T CONST)) (-2914 (((-112) $ $) 32)) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) 23)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 28) (($ (-317 |#1|) $) 22))) +(((-223 |#1| |#2|) (-13 (-620 (-317 |#1|)) (-1038 (-317 |#1|)) (-10 -8 (-15 -2794 ((-317 |#1|) $)) (-15 -3095 ($ $)) (-15 -2814 ($ $)) (-15 -2271 ((-317 |#1|) $ $)) (-15 -3302 ($ (-771))) (-15 -3156 ((-112) $)) (-15 -1748 ((-112) $)) (-15 -3902 ((-566) $)) (-15 -2319 ($ (-1 (-317 |#1|) (-317 |#1|)) $)) (-15 -4332 ($ (-317 |#1|))) (-15 -2400 ($ $)))) (-13 (-1049) (-850)) (-644 (-1175))) (T -223)) +((-2794 (*1 *2 *1) (-12 (-5 *2 (-317 *3)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1049) (-850))) (-14 *4 (-644 (-1175))))) (-3095 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1049) (-850))) (-14 *3 (-644 (-1175))))) (-2814 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1049) (-850))) (-14 *3 (-644 (-1175))))) (-2271 (*1 *2 *1 *1) (-12 (-5 *2 (-317 *3)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1049) (-850))) (-14 *4 (-644 (-1175))))) (-3302 (*1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1049) (-850))) (-14 *4 (-644 (-1175))))) (-3156 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1049) (-850))) (-14 *4 (-644 (-1175))))) (-1748 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1049) (-850))) (-14 *4 (-644 (-1175))))) (-3902 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1049) (-850))) (-14 *4 (-644 (-1175))))) (-2319 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-317 *3) (-317 *3))) (-4 *3 (-13 (-1049) (-850))) (-5 *1 (-223 *3 *4)) (-14 *4 (-644 (-1175))))) (-4332 (*1 *1 *2) (-12 (-5 *2 (-317 *3)) (-4 *3 (-13 (-1049) (-850))) (-5 *1 (-223 *3 *4)) (-14 *4 (-644 (-1175))))) (-2400 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1049) (-850))) (-14 *3 (-644 (-1175)))))) +(-13 (-620 (-317 |#1|)) (-1038 (-317 |#1|)) (-10 -8 (-15 -2794 ((-317 |#1|) $)) (-15 -3095 ($ $)) (-15 -2814 ($ $)) (-15 -2271 ((-317 |#1|) $ $)) (-15 -3302 ($ (-771))) (-15 -3156 ((-112) $)) (-15 -1748 ((-112) $)) (-15 -3902 ((-566) $)) (-15 -2319 ($ (-1 (-317 |#1|) (-317 |#1|)) $)) (-15 -4332 ($ (-317 |#1|))) (-15 -2400 ($ $)))) +((-1854 (((-112) (-1157)) 26)) (-4028 (((-3 (-843 |#2|) "failed") (-612 |#2|) |#2| (-843 |#2|) (-843 |#2|) (-112)) 35)) (-2723 (((-3 (-112) "failed") (-1171 |#2|) (-843 |#2|) (-843 |#2|) (-112)) 84) (((-3 (-112) "failed") (-952 |#1|) (-1175) (-843 |#2|) (-843 |#2|) (-112)) 85))) +(((-224 |#1| |#2|) (-10 -7 (-15 -1854 ((-112) (-1157))) (-15 -4028 ((-3 (-843 |#2|) "failed") (-612 |#2|) |#2| (-843 |#2|) (-843 |#2|) (-112))) (-15 -2723 ((-3 (-112) "failed") (-952 |#1|) (-1175) (-843 |#2|) (-843 |#2|) (-112))) (-15 -2723 ((-3 (-112) "failed") (-1171 |#2|) (-843 |#2|) (-843 |#2|) (-112)))) (-13 (-454) (-1038 (-566)) (-639 (-566))) (-13 (-1199) (-29 |#1|))) (T -224)) +((-2723 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1171 *6)) (-5 *4 (-843 *6)) (-4 *6 (-13 (-1199) (-29 *5))) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-224 *5 *6)))) (-2723 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-952 *6)) (-5 *4 (-1175)) (-5 *5 (-843 *7)) (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-4 *7 (-13 (-1199) (-29 *6))) (-5 *1 (-224 *6 *7)))) (-4028 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-843 *4)) (-5 *3 (-612 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1199) (-29 *6))) (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-224 *6 *4)))) (-1854 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-112)) (-5 *1 (-224 *4 *5)) (-4 *5 (-13 (-1199) (-29 *4)))))) +(-10 -7 (-15 -1854 ((-112) (-1157))) (-15 -4028 ((-3 (-843 |#2|) "failed") (-612 |#2|) |#2| (-843 |#2|) (-843 |#2|) (-112))) (-15 -2723 ((-3 (-112) "failed") (-952 |#1|) (-1175) (-843 |#2|) (-843 |#2|) (-112))) (-15 -2723 ((-3 (-112) "failed") (-1171 |#2|) (-843 |#2|) (-843 |#2|) (-112)))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) 100)) (-1873 (((-566) $) 36)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-2161 (($ $) NIL)) (-2345 (((-112) $) NIL)) (-2331 (($ $) NIL)) (-3963 (($ $) 89)) (-3630 (($ $) 77)) (-3967 (((-3 $ "failed") $ $) NIL)) (-1378 (($ $) NIL)) (-1364 (((-420 $) $) NIL)) (-1635 (($ $) 68)) (-2085 (((-112) $ $) NIL)) (-3941 (($ $) 87)) (-3602 (($ $) 75)) (-2743 (((-566) $) 130)) (-3986 (($ $) 92)) (-3656 (($ $) 79)) (-2463 (($) NIL T CONST)) (-3347 (($ $) NIL)) (-2229 (((-3 (-566) "failed") $) 129) (((-3 (-409 (-566)) "failed") $) 126)) (-4158 (((-566) $) 127) (((-409 (-566)) $) 124)) (-2933 (($ $ $) NIL)) (-3245 (((-3 $ "failed") $) 105)) (-2449 (((-409 (-566)) $ (-771)) 119) (((-409 (-566)) $ (-771) (-771)) 118)) (-2945 (($ $ $) NIL)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL)) (-1615 (((-112) $) NIL)) (-3262 (((-921)) 29) (((-921) (-921)) NIL (|has| $ (-6 -4405)))) (-2528 (((-112) $) NIL)) (-2281 (($) 47)) (-2926 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL)) (-2679 (((-566) $) 43)) (-2389 (((-112) $) 101)) (-1575 (($ $ (-566)) NIL)) (-2064 (($ $) NIL)) (-3233 (((-112) $) 99)) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1478 (($ $ $) 65) (($) 39 (-12 (-2404 (|has| $ (-6 -4397))) (-2404 (|has| $ (-6 -4405)))))) (-2599 (($ $ $) 64) (($) 38 (-12 (-2404 (|has| $ (-6 -4397))) (-2404 (|has| $ (-6 -4405)))))) (-2431 (((-566) $) 27)) (-3501 (($ $) 34)) (-2310 (($ $) 69)) (-3619 (($ $) 74)) (-2128 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3380 (((-1157) $) NIL)) (-2748 (($ $) NIL)) (-1485 (((-921) (-566)) NIL (|has| $ (-6 -4405)))) (-4072 (((-1119) $) 103)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2164 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2487 (($ $) NIL)) (-3143 (($ $) NIL)) (-2938 (($ (-566) (-566)) NIL) (($ (-566) (-566) (-921)) 112)) (-1624 (((-420 $) $) NIL)) (-3005 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2978 (((-3 $ "failed") $ $) NIL)) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2201 (((-566) $) 28)) (-4213 (($) 46)) (-3521 (($ $) 73)) (-4357 (((-771) $) NIL)) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL)) (-2251 (((-921)) NIL) (((-921) (-921)) NIL (|has| $ (-6 -4405)))) (-3629 (($ $ (-771)) NIL) (($ $) 106)) (-1460 (((-921) (-566)) NIL (|has| $ (-6 -4405)))) (-3996 (($ $) 90)) (-3670 (($ $) 80)) (-3976 (($ $) 91)) (-3643 (($ $) 78)) (-3952 (($ $) 88)) (-3618 (($ $) 76)) (-2376 (((-381) $) 115) (((-225) $) 14) (((-892 (-381)) $) NIL) (((-538) $) 53)) (-3152 (((-862) $) 50) (($ (-566)) 72) (($ $) NIL) (($ (-409 (-566))) NIL) (($ (-566)) 72) (($ (-409 (-566))) NIL)) (-2593 (((-771)) NIL T CONST)) (-3913 (($ $) NIL)) (-2367 (((-921)) 37) (((-921) (-921)) NIL (|has| $ (-6 -4405)))) (-3044 (((-112) $ $) NIL)) (-2576 (((-921)) 25)) (-4032 (($ $) 95)) (-3892 (($ $) 83) (($ $ $) 122)) (-3014 (((-112) $ $) NIL)) (-4008 (($ $) 93)) (-3684 (($ $) 81)) (-4057 (($ $) 98)) (-3917 (($ $) 86)) (-3964 (($ $) 96)) (-3929 (($ $) 84)) (-4044 (($ $) 97)) (-3904 (($ $) 85)) (-4020 (($ $) 94)) (-3879 (($ $) 82)) (-1358 (($ $) 121)) (-4356 (($) 23 T CONST)) (-4366 (($) 44 T CONST)) (-2226 (((-1157) $) 18) (((-1157) $ (-112)) 20) (((-1269) (-822) $) 21) (((-1269) (-822) $ (-112)) 22)) (-2879 (($ $) 109)) (-3497 (($ $ (-771)) NIL) (($ $) NIL)) (-4006 (($ $ $) 111)) (-2968 (((-112) $ $) 58)) (-2946 (((-112) $ $) 55)) (-2914 (((-112) $ $) 66)) (-2956 (((-112) $ $) 57)) (-2935 (((-112) $ $) 54)) (-3025 (($ $ $) 45) (($ $ (-566)) 67)) (-3012 (($ $) 59) (($ $ $) 61)) (-3002 (($ $ $) 60)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) 70) (($ $ (-409 (-566))) 154) (($ $ $) 71)) (* (($ (-921) $) 35) (($ (-771) $) NIL) (($ (-566) $) 63) (($ $ $) 62) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL))) +(((-225) (-13 (-406) (-233) (-828) (-1199) (-614 (-538)) (-10 -8 (-15 -3025 ($ $ (-566))) (-15 ** ($ $ $)) (-15 -4213 ($)) (-15 -3501 ($ $)) (-15 -2310 ($ $)) (-15 -3892 ($ $ $)) (-15 -2879 ($ $)) (-15 -4006 ($ $ $)) (-15 -2449 ((-409 (-566)) $ (-771))) (-15 -2449 ((-409 (-566)) $ (-771) (-771)))))) (T -225)) +((** (*1 *1 *1 *1) (-5 *1 (-225))) (-3025 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-225)))) (-4213 (*1 *1) (-5 *1 (-225))) (-3501 (*1 *1 *1) (-5 *1 (-225))) (-2310 (*1 *1 *1) (-5 *1 (-225))) (-3892 (*1 *1 *1 *1) (-5 *1 (-225))) (-2879 (*1 *1 *1) (-5 *1 (-225))) (-4006 (*1 *1 *1 *1) (-5 *1 (-225))) (-2449 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *2 (-409 (-566))) (-5 *1 (-225)))) (-2449 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-771)) (-5 *2 (-409 (-566))) (-5 *1 (-225))))) +(-13 (-406) (-233) (-828) (-1199) (-614 (-538)) (-10 -8 (-15 -3025 ($ $ (-566))) (-15 ** ($ $ $)) (-15 -4213 ($)) (-15 -3501 ($ $)) (-15 -2310 ($ $)) (-15 -3892 ($ $ $)) (-15 -2879 ($ $)) (-15 -4006 ($ $ $)) (-15 -2449 ((-409 (-566)) $ (-771))) (-15 -2449 ((-409 (-566)) $ (-771) (-771))))) +((-2078 (((-169 (-225)) (-771) (-169 (-225))) 11) (((-225) (-771) (-225)) 12)) (-1931 (((-169 (-225)) (-169 (-225))) 13) (((-225) (-225)) 14)) (-2188 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 19) (((-225) (-225) (-225)) 22)) (-2469 (((-169 (-225)) (-169 (-225))) 27) (((-225) (-225)) 26)) (-1429 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 57) (((-225) (-225) (-225)) 49)) (-3273 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 62) (((-225) (-225) (-225)) 60)) (-2941 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 15) (((-225) (-225) (-225)) 16)) (-4087 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 17) (((-225) (-225) (-225)) 18)) (-2893 (((-169 (-225)) (-169 (-225))) 74) (((-225) (-225)) 73)) (-3094 (((-225) (-225)) 68) (((-169 (-225)) (-169 (-225))) 72)) (-2879 (((-169 (-225)) (-169 (-225))) 8) (((-225) (-225)) 9)) (-4006 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 35) (((-225) (-225) (-225)) 31))) +(((-226) (-10 -7 (-15 -2879 ((-225) (-225))) (-15 -2879 ((-169 (-225)) (-169 (-225)))) (-15 -4006 ((-225) (-225) (-225))) (-15 -4006 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -1931 ((-225) (-225))) (-15 -1931 ((-169 (-225)) (-169 (-225)))) (-15 -2469 ((-225) (-225))) (-15 -2469 ((-169 (-225)) (-169 (-225)))) (-15 -2078 ((-225) (-771) (-225))) (-15 -2078 ((-169 (-225)) (-771) (-169 (-225)))) (-15 -2941 ((-225) (-225) (-225))) (-15 -2941 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -1429 ((-225) (-225) (-225))) (-15 -1429 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -4087 ((-225) (-225) (-225))) (-15 -4087 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3273 ((-225) (-225) (-225))) (-15 -3273 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3094 ((-169 (-225)) (-169 (-225)))) (-15 -3094 ((-225) (-225))) (-15 -2893 ((-225) (-225))) (-15 -2893 ((-169 (-225)) (-169 (-225)))) (-15 -2188 ((-225) (-225) (-225))) (-15 -2188 ((-169 (-225)) (-169 (-225)) (-169 (-225)))))) (T -226)) +((-2188 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2188 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2893 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2893 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3094 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3094 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3273 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3273 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-4087 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-4087 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-1429 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-1429 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2941 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2941 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2078 (*1 *2 *3 *2) (-12 (-5 *2 (-169 (-225))) (-5 *3 (-771)) (-5 *1 (-226)))) (-2078 (*1 *2 *3 *2) (-12 (-5 *2 (-225)) (-5 *3 (-771)) (-5 *1 (-226)))) (-2469 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2469 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-1931 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-1931 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-4006 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-4006 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2879 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2879 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))) +(-10 -7 (-15 -2879 ((-225) (-225))) (-15 -2879 ((-169 (-225)) (-169 (-225)))) (-15 -4006 ((-225) (-225) (-225))) (-15 -4006 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -1931 ((-225) (-225))) (-15 -1931 ((-169 (-225)) (-169 (-225)))) (-15 -2469 ((-225) (-225))) (-15 -2469 ((-169 (-225)) (-169 (-225)))) (-15 -2078 ((-225) (-771) (-225))) (-15 -2078 ((-169 (-225)) (-771) (-169 (-225)))) (-15 -2941 ((-225) (-225) (-225))) (-15 -2941 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -1429 ((-225) (-225) (-225))) (-15 -1429 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -4087 ((-225) (-225) (-225))) (-15 -4087 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3273 ((-225) (-225) (-225))) (-15 -3273 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3094 ((-169 (-225)) (-169 (-225)))) (-15 -3094 ((-225) (-225))) (-15 -2893 ((-225) (-225))) (-15 -2893 ((-169 (-225)) (-169 (-225)))) (-15 -2188 ((-225) (-225) (-225))) (-15 -2188 ((-169 (-225)) (-169 (-225)) (-169 (-225))))) +((-2988 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2819 (($ (-771) (-771)) NIL)) (-4383 (($ $ $) NIL)) (-4160 (($ (-1264 |#1|)) NIL) (($ $) NIL)) (-2116 (($ |#1| |#1| |#1|) 33)) (-1791 (((-112) $) NIL)) (-2485 (($ $ (-566) (-566)) NIL)) (-2106 (($ $ (-566) (-566)) NIL)) (-2897 (($ $ (-566) (-566) (-566) (-566)) NIL)) (-2754 (($ $) NIL)) (-3768 (((-112) $) NIL)) (-1504 (((-112) $ (-771)) NIL)) (-1418 (($ $ (-566) (-566) $) NIL)) (-1456 ((|#1| $ (-566) (-566) |#1|) NIL) (($ $ (-644 (-566)) (-644 (-566)) $) NIL)) (-1499 (($ $ (-566) (-1264 |#1|)) NIL)) (-2837 (($ $ (-566) (-1264 |#1|)) NIL)) (-2406 (($ |#1| |#1| |#1|) 32)) (-3520 (($ (-771) |#1|) NIL)) (-2463 (($) NIL T CONST)) (-1521 (($ $) NIL (|has| |#1| (-308)))) (-1721 (((-1264 |#1|) $ (-566)) NIL)) (-4051 (($ |#1|) 31)) (-1677 (($ |#1|) 30)) (-4162 (($ |#1|) 29)) (-2755 (((-771) $) NIL (|has| |#1| (-558)))) (-3897 ((|#1| $ (-566) (-566) |#1|) NIL)) (-3829 ((|#1| $ (-566) (-566)) NIL)) (-1683 (((-644 |#1|) $) NIL)) (-1908 (((-771) $) NIL (|has| |#1| (-558)))) (-2950 (((-644 (-1264 |#1|)) $) NIL (|has| |#1| (-558)))) (-3811 (((-771) $) NIL)) (-1860 (($ (-771) (-771) |#1|) NIL)) (-3824 (((-771) $) NIL)) (-3456 (((-112) $ (-771)) NIL)) (-1444 ((|#1| $) NIL (|has| |#1| (-6 (-4416 "*"))))) (-2531 (((-566) $) NIL)) (-3688 (((-566) $) NIL)) (-3491 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2422 (((-566) $) NIL)) (-3632 (((-566) $) NIL)) (-4184 (($ (-644 (-644 |#1|))) 11)) (-3885 (($ (-1 |#1| |#1|) $) NIL)) (-2319 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1723 (((-644 (-644 |#1|)) $) NIL)) (-3267 (((-112) $ (-771)) NIL)) (-3380 (((-1157) $) NIL (|has| |#1| (-1099)))) (-1542 (((-3 $ "failed") $) NIL (|has| |#1| (-365)))) (-3916 (($) 12)) (-1798 (($ $ $) NIL)) (-4072 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3787 (($ $ |#1|) NIL)) (-2978 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558)))) (-2823 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) NIL)) (-2872 (((-112) $) NIL)) (-3493 (($) NIL)) (-1309 ((|#1| $ (-566) (-566)) NIL) ((|#1| $ (-566) (-566) |#1|) NIL) (($ $ (-644 (-566)) (-644 (-566))) NIL)) (-2253 (($ (-644 |#1|)) NIL) (($ (-644 $)) NIL)) (-1370 (((-112) $) NIL)) (-3943 ((|#1| $) NIL (|has| |#1| (-6 (-4416 "*"))))) (-4083 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-1480 (($ $) NIL)) (-2986 (((-1264 |#1|) $ (-566)) NIL)) (-3152 (($ (-1264 |#1|)) NIL) (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-3044 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2210 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-1950 (((-112) $) NIL)) (-2914 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3025 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3012 (($ $ $) NIL) (($ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-771)) NIL) (($ $ (-566)) NIL (|has| |#1| (-365)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-566) $) NIL) (((-1264 |#1|) $ (-1264 |#1|)) 15) (((-1264 |#1|) (-1264 |#1|) $) NIL) (((-943 |#1|) $ (-943 |#1|)) 21)) (-3000 (((-771) $) NIL (|has| $ (-6 -4414))))) +(((-227 |#1|) (-13 (-687 |#1| (-1264 |#1|) (-1264 |#1|)) (-10 -8 (-15 * ((-943 |#1|) $ (-943 |#1|))) (-15 -3916 ($)) (-15 -4162 ($ |#1|)) (-15 -1677 ($ |#1|)) (-15 -4051 ($ |#1|)) (-15 -2406 ($ |#1| |#1| |#1|)) (-15 -2116 ($ |#1| |#1| |#1|)))) (-13 (-365) (-1199))) (T -227)) +((* (*1 *2 *1 *2) (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1199))) (-5 *1 (-227 *3)))) (-3916 (*1 *1) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1199))))) (-4162 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1199))))) (-1677 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1199))))) (-4051 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1199))))) (-2406 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1199))))) (-2116 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1199)))))) +(-13 (-687 |#1| (-1264 |#1|) (-1264 |#1|)) (-10 -8 (-15 * ((-943 |#1|) $ (-943 |#1|))) (-15 -3916 ($)) (-15 -4162 ($ |#1|)) (-15 -1677 ($ |#1|)) (-15 -4051 ($ |#1|)) (-15 -2406 ($ |#1| |#1| |#1|)) (-15 -2116 ($ |#1| |#1| |#1|)))) +((-2995 (($ (-1 (-112) |#2|) $) 16)) (-3512 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 27)) (-1792 (($) NIL) (($ (-644 |#2|)) 11)) (-2914 (((-112) $ $) 25))) +(((-228 |#1| |#2|) (-10 -8 (-15 -2995 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3512 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3512 (|#1| |#2| |#1|)) (-15 -1792 (|#1| (-644 |#2|))) (-15 -1792 (|#1|)) (-15 -2914 ((-112) |#1| |#1|))) (-229 |#2|) (-1099)) (T -228)) +NIL +(-10 -8 (-15 -2995 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3512 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3512 (|#1| |#2| |#1|)) (-15 -1792 (|#1| (-644 |#2|))) (-15 -1792 (|#1|)) (-15 -2914 ((-112) |#1| |#1|))) +((-2988 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-1504 (((-112) $ (-771)) 8)) (-2995 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4414)))) (-3678 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4414)))) (-2463 (($) 7 T CONST)) (-3942 (($ $) 59 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-3512 (($ |#1| $) 48 (|has| $ (-6 -4414))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4414)))) (-2622 (($ |#1| $) 58 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4414)))) (-2873 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4414)))) (-1683 (((-644 |#1|) $) 31 (|has| $ (-6 -4414)))) (-3456 (((-112) $ (-771)) 9)) (-3491 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-3885 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#1| |#1|) $) 36)) (-3267 (((-112) $ (-771)) 10)) (-3380 (((-1157) $) 22 (|has| |#1| (-1099)))) (-3278 ((|#1| $) 40)) (-3888 (($ |#1| $) 41)) (-4072 (((-1119) $) 21 (|has| |#1| (-1099)))) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1973 ((|#1| $) 42)) (-2823 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) 14)) (-2872 (((-112) $) 11)) (-3493 (($) 12)) (-1792 (($) 50) (($ (-644 |#1|)) 49)) (-4083 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-1480 (($ $) 13)) (-2376 (((-538) $) 60 (|has| |#1| (-614 (-538))))) (-1340 (($ (-644 |#1|)) 51)) (-3152 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-3044 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-2948 (($ (-644 |#1|)) 43)) (-2210 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3000 (((-771) $) 6 (|has| $ (-6 -4414))))) (((-229 |#1|) (-140) (-1099)) (T -229)) NIL (-13 (-235 |t#1|)) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2809 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-151 |#1|) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-235 |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1099) |has| |#1| (-1099)) ((-1214) . T)) -((-3561 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-771)) 14) (($ $ (-644 (-1175)) (-644 (-771))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175)) 22) (($ $ (-771)) NIL) (($ $) 19)) (-2875 (($ $ (-1 |#2| |#2|)) 15) (($ $ (-1 |#2| |#2|) (-771)) 17) (($ $ (-644 (-1175)) (-644 (-771))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175)) NIL) (($ $ (-771)) NIL) (($ $) NIL))) -(((-230 |#1| |#2|) (-10 -8 (-15 -3561 (|#1| |#1|)) (-15 -2875 (|#1| |#1|)) (-15 -3561 (|#1| |#1| (-771))) (-15 -2875 (|#1| |#1| (-771))) (-15 -3561 (|#1| |#1| (-1175))) (-15 -3561 (|#1| |#1| (-644 (-1175)))) (-15 -3561 (|#1| |#1| (-1175) (-771))) (-15 -3561 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -2875 (|#1| |#1| (-1175))) (-15 -2875 (|#1| |#1| (-644 (-1175)))) (-15 -2875 (|#1| |#1| (-1175) (-771))) (-15 -2875 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -2875 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -2875 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3561 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -3561 (|#1| |#1| (-1 |#2| |#2|)))) (-231 |#2|) (-1049)) (T -230)) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2768 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-151 |#1|) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-235 |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1099) |has| |#1| (-1099)) ((-1214) . T)) +((-3629 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-771)) 14) (($ $ (-644 (-1175)) (-644 (-771))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175)) 22) (($ $ (-771)) NIL) (($ $) 19)) (-3497 (($ $ (-1 |#2| |#2|)) 15) (($ $ (-1 |#2| |#2|) (-771)) 17) (($ $ (-644 (-1175)) (-644 (-771))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175)) NIL) (($ $ (-771)) NIL) (($ $) NIL))) +(((-230 |#1| |#2|) (-10 -8 (-15 -3629 (|#1| |#1|)) (-15 -3497 (|#1| |#1|)) (-15 -3629 (|#1| |#1| (-771))) (-15 -3497 (|#1| |#1| (-771))) (-15 -3629 (|#1| |#1| (-1175))) (-15 -3629 (|#1| |#1| (-644 (-1175)))) (-15 -3629 (|#1| |#1| (-1175) (-771))) (-15 -3629 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -3497 (|#1| |#1| (-1175))) (-15 -3497 (|#1| |#1| (-644 (-1175)))) (-15 -3497 (|#1| |#1| (-1175) (-771))) (-15 -3497 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -3497 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -3497 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3629 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -3629 (|#1| |#1| (-1 |#2| |#2|)))) (-231 |#2|) (-1049)) (T -230)) NIL -(-10 -8 (-15 -3561 (|#1| |#1|)) (-15 -2875 (|#1| |#1|)) (-15 -3561 (|#1| |#1| (-771))) (-15 -2875 (|#1| |#1| (-771))) (-15 -3561 (|#1| |#1| (-1175))) (-15 -3561 (|#1| |#1| (-644 (-1175)))) (-15 -3561 (|#1| |#1| (-1175) (-771))) (-15 -3561 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -2875 (|#1| |#1| (-1175))) (-15 -2875 (|#1| |#1| (-644 (-1175)))) (-15 -2875 (|#1| |#1| (-1175) (-771))) (-15 -2875 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -2875 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -2875 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3561 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -3561 (|#1| |#1| (-1 |#2| |#2|)))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-4175 (((-3 $ "failed") $ $) 20)) (-3012 (($) 18 T CONST)) (-1878 (((-3 $ "failed") $) 37)) (-3934 (((-112) $) 35)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3561 (($ $ (-1 |#1| |#1|)) 56) (($ $ (-1 |#1| |#1|) (-771)) 55) (($ $ (-644 (-1175)) (-644 (-771))) 48 (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) 47 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) 46 (|has| |#1| (-900 (-1175)))) (($ $ (-1175)) 45 (|has| |#1| (-900 (-1175)))) (($ $ (-771)) 43 (|has| |#1| (-233))) (($ $) 41 (|has| |#1| (-233)))) (-3783 (((-862) $) 12) (($ (-566)) 33)) (-2107 (((-771)) 32 T CONST)) (-3117 (((-112) $ $) 9)) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-2875 (($ $ (-1 |#1| |#1|)) 54) (($ $ (-1 |#1| |#1|) (-771)) 53) (($ $ (-644 (-1175)) (-644 (-771))) 52 (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) 51 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) 50 (|has| |#1| (-900 (-1175)))) (($ $ (-1175)) 49 (|has| |#1| (-900 (-1175)))) (($ $ (-771)) 44 (|has| |#1| (-233))) (($ $) 42 (|has| |#1| (-233)))) (-2947 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) +(-10 -8 (-15 -3629 (|#1| |#1|)) (-15 -3497 (|#1| |#1|)) (-15 -3629 (|#1| |#1| (-771))) (-15 -3497 (|#1| |#1| (-771))) (-15 -3629 (|#1| |#1| (-1175))) (-15 -3629 (|#1| |#1| (-644 (-1175)))) (-15 -3629 (|#1| |#1| (-1175) (-771))) (-15 -3629 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -3497 (|#1| |#1| (-1175))) (-15 -3497 (|#1| |#1| (-644 (-1175)))) (-15 -3497 (|#1| |#1| (-1175) (-771))) (-15 -3497 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -3497 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -3497 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3629 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -3629 (|#1| |#1| (-1 |#2| |#2|)))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-3967 (((-3 $ "failed") $ $) 20)) (-2463 (($) 18 T CONST)) (-3245 (((-3 $ "failed") $) 37)) (-2389 (((-112) $) 35)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3629 (($ $ (-1 |#1| |#1|)) 56) (($ $ (-1 |#1| |#1|) (-771)) 55) (($ $ (-644 (-1175)) (-644 (-771))) 48 (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) 47 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) 46 (|has| |#1| (-900 (-1175)))) (($ $ (-1175)) 45 (|has| |#1| (-900 (-1175)))) (($ $ (-771)) 43 (|has| |#1| (-233))) (($ $) 41 (|has| |#1| (-233)))) (-3152 (((-862) $) 12) (($ (-566)) 33)) (-2593 (((-771)) 32 T CONST)) (-3044 (((-112) $ $) 9)) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-3497 (($ $ (-1 |#1| |#1|)) 54) (($ $ (-1 |#1| |#1|) (-771)) 53) (($ $ (-644 (-1175)) (-644 (-771))) 52 (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) 51 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) 50 (|has| |#1| (-900 (-1175)))) (($ $ (-1175)) 49 (|has| |#1| (-900 (-1175)))) (($ $ (-771)) 44 (|has| |#1| (-233))) (($ $) 42 (|has| |#1| (-233)))) (-2914 (((-112) $ $) 6)) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) (((-231 |#1|) (-140) (-1049)) (T -231)) -((-3561 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1049)))) (-3561 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-771)) (-4 *1 (-231 *4)) (-4 *4 (-1049)))) (-2875 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1049)))) (-2875 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-771)) (-4 *1 (-231 *4)) (-4 *4 (-1049))))) -(-13 (-1049) (-10 -8 (-15 -3561 ($ $ (-1 |t#1| |t#1|))) (-15 -3561 ($ $ (-1 |t#1| |t#1|) (-771))) (-15 -2875 ($ $ (-1 |t#1| |t#1|))) (-15 -2875 ($ $ (-1 |t#1| |t#1|) (-771))) (IF (|has| |t#1| (-233)) (-6 (-233)) |%noBranch|) (IF (|has| |t#1| (-900 (-1175))) (-6 (-900 (-1175))) |%noBranch|))) +((-3629 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1049)))) (-3629 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-771)) (-4 *1 (-231 *4)) (-4 *4 (-1049)))) (-3497 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1049)))) (-3497 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-771)) (-4 *1 (-231 *4)) (-4 *4 (-1049))))) +(-13 (-1049) (-10 -8 (-15 -3629 ($ $ (-1 |t#1| |t#1|))) (-15 -3629 ($ $ (-1 |t#1| |t#1|) (-771))) (-15 -3497 ($ $ (-1 |t#1| |t#1|))) (-15 -3497 ($ $ (-1 |t#1| |t#1|) (-771))) (IF (|has| |t#1| (-233)) (-6 (-233)) |%noBranch|) (IF (|has| |t#1| (-900 (-1175))) (-6 (-900 (-1175))) |%noBranch|))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-616 (-566)) . T) ((-613 (-862)) . T) ((-233) |has| |#1| (-233)) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-726) . T) ((-900 (-1175)) |has| |#1| (-900 (-1175))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) -((-3561 (($ $) NIL) (($ $ (-771)) 13)) (-2875 (($ $) 8) (($ $ (-771)) 15))) -(((-232 |#1|) (-10 -8 (-15 -2875 (|#1| |#1| (-771))) (-15 -3561 (|#1| |#1| (-771))) (-15 -2875 (|#1| |#1|)) (-15 -3561 (|#1| |#1|))) (-233)) (T -232)) +((-3629 (($ $) NIL) (($ $ (-771)) 13)) (-3497 (($ $) 8) (($ $ (-771)) 15))) +(((-232 |#1|) (-10 -8 (-15 -3497 (|#1| |#1| (-771))) (-15 -3629 (|#1| |#1| (-771))) (-15 -3497 (|#1| |#1|)) (-15 -3629 (|#1| |#1|))) (-233)) (T -232)) NIL -(-10 -8 (-15 -2875 (|#1| |#1| (-771))) (-15 -3561 (|#1| |#1| (-771))) (-15 -2875 (|#1| |#1|)) (-15 -3561 (|#1| |#1|))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-4175 (((-3 $ "failed") $ $) 20)) (-3012 (($) 18 T CONST)) (-1878 (((-3 $ "failed") $) 37)) (-3934 (((-112) $) 35)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3561 (($ $) 42) (($ $ (-771)) 40)) (-3783 (((-862) $) 12) (($ (-566)) 33)) (-2107 (((-771)) 32 T CONST)) (-3117 (((-112) $ $) 9)) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-2875 (($ $) 41) (($ $ (-771)) 39)) (-2947 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) +(-10 -8 (-15 -3497 (|#1| |#1| (-771))) (-15 -3629 (|#1| |#1| (-771))) (-15 -3497 (|#1| |#1|)) (-15 -3629 (|#1| |#1|))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-3967 (((-3 $ "failed") $ $) 20)) (-2463 (($) 18 T CONST)) (-3245 (((-3 $ "failed") $) 37)) (-2389 (((-112) $) 35)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3629 (($ $) 42) (($ $ (-771)) 40)) (-3152 (((-862) $) 12) (($ (-566)) 33)) (-2593 (((-771)) 32 T CONST)) (-3044 (((-112) $ $) 9)) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-3497 (($ $) 41) (($ $ (-771)) 39)) (-2914 (((-112) $ $) 6)) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) (((-233) (-140)) (T -233)) -((-3561 (*1 *1 *1) (-4 *1 (-233))) (-2875 (*1 *1 *1) (-4 *1 (-233))) (-3561 (*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-771)))) (-2875 (*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-771))))) -(-13 (-1049) (-10 -8 (-15 -3561 ($ $)) (-15 -2875 ($ $)) (-15 -3561 ($ $ (-771))) (-15 -2875 ($ $ (-771))))) +((-3629 (*1 *1 *1) (-4 *1 (-233))) (-3497 (*1 *1 *1) (-4 *1 (-233))) (-3629 (*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-771)))) (-3497 (*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-771))))) +(-13 (-1049) (-10 -8 (-15 -3629 ($ $)) (-15 -3497 ($ $)) (-15 -3629 ($ $ (-771))) (-15 -3497 ($ $ (-771))))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-616 (-566)) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-726) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) -((-3481 (($) 12) (($ (-644 |#2|)) NIL)) (-3940 (($ $) 14)) (-3796 (($ (-644 |#2|)) 10)) (-3783 (((-862) $) 21))) -(((-234 |#1| |#2|) (-10 -8 (-15 -3783 ((-862) |#1|)) (-15 -3481 (|#1| (-644 |#2|))) (-15 -3481 (|#1|)) (-15 -3796 (|#1| (-644 |#2|))) (-15 -3940 (|#1| |#1|))) (-235 |#2|) (-1099)) (T -234)) +((-1792 (($) 12) (($ (-644 |#2|)) NIL)) (-1480 (($ $) 14)) (-1340 (($ (-644 |#2|)) 10)) (-3152 (((-862) $) 21))) +(((-234 |#1| |#2|) (-10 -8 (-15 -3152 ((-862) |#1|)) (-15 -1792 (|#1| (-644 |#2|))) (-15 -1792 (|#1|)) (-15 -1340 (|#1| (-644 |#2|))) (-15 -1480 (|#1| |#1|))) (-235 |#2|) (-1099)) (T -234)) NIL -(-10 -8 (-15 -3783 ((-862) |#1|)) (-15 -3481 (|#1| (-644 |#2|))) (-15 -3481 (|#1|)) (-15 -3796 (|#1| (-644 |#2|))) (-15 -3940 (|#1| |#1|))) -((-3007 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2256 (((-112) $ (-771)) 8)) (-4016 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4414)))) (-2701 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4414)))) (-3012 (($) 7 T CONST)) (-2031 (($ $) 59 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2956 (($ |#1| $) 48 (|has| $ (-6 -4414))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4414)))) (-2665 (($ |#1| $) 58 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4414)))) (-1676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4414)))) (-3979 (((-644 |#1|) $) 31 (|has| $ (-6 -4414)))) (-2404 (((-112) $ (-771)) 9)) (-2329 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2908 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#1| |#1|) $) 36)) (-2603 (((-112) $ (-771)) 10)) (-4117 (((-1157) $) 22 (|has| |#1| (-1099)))) (-4039 ((|#1| $) 40)) (-3406 (($ |#1| $) 41)) (-4035 (((-1119) $) 21 (|has| |#1| (-1099)))) (-2006 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2539 ((|#1| $) 42)) (-2692 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) 14)) (-3467 (((-112) $) 11)) (-1494 (($) 12)) (-3481 (($) 50) (($ (-644 |#1|)) 49)) (-4045 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-3940 (($ $) 13)) (-1348 (((-538) $) 60 (|has| |#1| (-614 (-538))))) (-3796 (($ (-644 |#1|)) 51)) (-3783 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-3117 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-1748 (($ (-644 |#1|)) 43)) (-1894 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3018 (((-771) $) 6 (|has| $ (-6 -4414))))) +(-10 -8 (-15 -3152 ((-862) |#1|)) (-15 -1792 (|#1| (-644 |#2|))) (-15 -1792 (|#1|)) (-15 -1340 (|#1| (-644 |#2|))) (-15 -1480 (|#1| |#1|))) +((-2988 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-1504 (((-112) $ (-771)) 8)) (-2995 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4414)))) (-3678 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4414)))) (-2463 (($) 7 T CONST)) (-3942 (($ $) 59 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-3512 (($ |#1| $) 48 (|has| $ (-6 -4414))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4414)))) (-2622 (($ |#1| $) 58 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4414)))) (-2873 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4414)))) (-1683 (((-644 |#1|) $) 31 (|has| $ (-6 -4414)))) (-3456 (((-112) $ (-771)) 9)) (-3491 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-3885 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#1| |#1|) $) 36)) (-3267 (((-112) $ (-771)) 10)) (-3380 (((-1157) $) 22 (|has| |#1| (-1099)))) (-3278 ((|#1| $) 40)) (-3888 (($ |#1| $) 41)) (-4072 (((-1119) $) 21 (|has| |#1| (-1099)))) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1973 ((|#1| $) 42)) (-2823 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) 14)) (-2872 (((-112) $) 11)) (-3493 (($) 12)) (-1792 (($) 50) (($ (-644 |#1|)) 49)) (-4083 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-1480 (($ $) 13)) (-2376 (((-538) $) 60 (|has| |#1| (-614 (-538))))) (-1340 (($ (-644 |#1|)) 51)) (-3152 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-3044 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-2948 (($ (-644 |#1|)) 43)) (-2210 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3000 (((-771) $) 6 (|has| $ (-6 -4414))))) (((-235 |#1|) (-140) (-1099)) (T -235)) -((-3481 (*1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1099)))) (-3481 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-4 *1 (-235 *3)))) (-2956 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4414)) (-4 *1 (-235 *2)) (-4 *2 (-1099)))) (-2956 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4414)) (-4 *1 (-235 *3)) (-4 *3 (-1099)))) (-4016 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4414)) (-4 *1 (-235 *3)) (-4 *3 (-1099))))) -(-13 (-107 |t#1|) (-151 |t#1|) (-10 -8 (-15 -3481 ($)) (-15 -3481 ($ (-644 |t#1|))) (IF (|has| $ (-6 -4414)) (PROGN (-15 -2956 ($ |t#1| $)) (-15 -2956 ($ (-1 (-112) |t#1|) $)) (-15 -4016 ($ (-1 (-112) |t#1|) $))) |%noBranch|))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2809 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-151 |#1|) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1099) |has| |#1| (-1099)) ((-1214) . T)) -((-3447 (((-2 (|:| |varOrder| (-644 (-1175))) (|:| |inhom| (-3 (-644 (-1264 (-771))) "failed")) (|:| |hom| (-644 (-1264 (-771))))) (-295 (-952 (-566)))) 42))) -(((-236) (-10 -7 (-15 -3447 ((-2 (|:| |varOrder| (-644 (-1175))) (|:| |inhom| (-3 (-644 (-1264 (-771))) "failed")) (|:| |hom| (-644 (-1264 (-771))))) (-295 (-952 (-566))))))) (T -236)) -((-3447 (*1 *2 *3) (-12 (-5 *3 (-295 (-952 (-566)))) (-5 *2 (-2 (|:| |varOrder| (-644 (-1175))) (|:| |inhom| (-3 (-644 (-1264 (-771))) "failed")) (|:| |hom| (-644 (-1264 (-771)))))) (-5 *1 (-236))))) -(-10 -7 (-15 -3447 ((-2 (|:| |varOrder| (-644 (-1175))) (|:| |inhom| (-3 (-644 (-1264 (-771))) "failed")) (|:| |hom| (-644 (-1264 (-771))))) (-295 (-952 (-566)))))) -((-1970 (((-771)) 56)) (-3577 (((-2 (|:| -4227 (-689 |#3|)) (|:| |vec| (-1264 |#3|))) (-689 $) (-1264 $)) 53) (((-689 |#3|) (-689 $)) 44) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL) (((-689 (-566)) (-689 $)) NIL)) (-3164 (((-134)) 62)) (-3561 (($ $ (-1 |#3| |#3|) (-771)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-644 (-1175)) (-644 (-771))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175)) NIL) (($ $ (-771)) NIL) (($ $) NIL)) (-3783 (((-1264 |#3|) $) NIL) (($ |#3|) NIL) (((-862) $) NIL) (($ (-566)) 12) (($ (-409 (-566))) NIL)) (-2107 (((-771)) 15)) (-3065 (($ $ |#3|) 59))) -(((-237 |#1| |#2| |#3|) (-10 -8 (-15 -3783 (|#1| (-409 (-566)))) (-15 -3783 (|#1| (-566))) (-15 -3783 ((-862) |#1|)) (-15 -2107 ((-771))) (-15 -3561 (|#1| |#1|)) (-15 -3561 (|#1| |#1| (-771))) (-15 -3561 (|#1| |#1| (-1175))) (-15 -3561 (|#1| |#1| (-644 (-1175)))) (-15 -3561 (|#1| |#1| (-1175) (-771))) (-15 -3561 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -3577 ((-689 (-566)) (-689 |#1|))) (-15 -3577 ((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 |#1|) (-1264 |#1|))) (-15 -3783 (|#1| |#3|)) (-15 -3561 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3561 (|#1| |#1| (-1 |#3| |#3|) (-771))) (-15 -3577 ((-689 |#3|) (-689 |#1|))) (-15 -3577 ((-2 (|:| -4227 (-689 |#3|)) (|:| |vec| (-1264 |#3|))) (-689 |#1|) (-1264 |#1|))) (-15 -1970 ((-771))) (-15 -3065 (|#1| |#1| |#3|)) (-15 -3164 ((-134))) (-15 -3783 ((-1264 |#3|) |#1|))) (-238 |#2| |#3|) (-771) (-1214)) (T -237)) -((-3164 (*1 *2) (-12 (-14 *4 (-771)) (-4 *5 (-1214)) (-5 *2 (-134)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) (-1970 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1214)) (-5 *2 (-771)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) (-2107 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1214)) (-5 *2 (-771)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5))))) -(-10 -8 (-15 -3783 (|#1| (-409 (-566)))) (-15 -3783 (|#1| (-566))) (-15 -3783 ((-862) |#1|)) (-15 -2107 ((-771))) (-15 -3561 (|#1| |#1|)) (-15 -3561 (|#1| |#1| (-771))) (-15 -3561 (|#1| |#1| (-1175))) (-15 -3561 (|#1| |#1| (-644 (-1175)))) (-15 -3561 (|#1| |#1| (-1175) (-771))) (-15 -3561 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -3577 ((-689 (-566)) (-689 |#1|))) (-15 -3577 ((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 |#1|) (-1264 |#1|))) (-15 -3783 (|#1| |#3|)) (-15 -3561 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3561 (|#1| |#1| (-1 |#3| |#3|) (-771))) (-15 -3577 ((-689 |#3|) (-689 |#1|))) (-15 -3577 ((-2 (|:| -4227 (-689 |#3|)) (|:| |vec| (-1264 |#3|))) (-689 |#1|) (-1264 |#1|))) (-15 -1970 ((-771))) (-15 -3065 (|#1| |#1| |#3|)) (-15 -3164 ((-134))) (-15 -3783 ((-1264 |#3|) |#1|))) -((-3007 (((-112) $ $) 19 (|has| |#2| (-1099)))) (-1788 (((-112) $) 73 (|has| |#2| (-131)))) (-4348 (($ (-921)) 126 (|has| |#2| (-1049)))) (-3734 (((-1269) $ (-566) (-566)) 41 (|has| $ (-6 -4415)))) (-2660 (($ $ $) 122 (|has| |#2| (-793)))) (-4175 (((-3 $ "failed") $ $) 75 (|has| |#2| (-131)))) (-2256 (((-112) $ (-771)) 8)) (-1970 (((-771)) 108 (|has| |#2| (-370)))) (-4364 (((-566) $) 120 (|has| |#2| (-848)))) (-3923 ((|#2| $ (-566) |#2|) 53 (|has| $ (-6 -4415)))) (-3012 (($) 7 T CONST)) (-4307 (((-3 (-566) "failed") $) 68 (-2432 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099)))) (((-3 (-409 (-566)) "failed") $) 65 (-2432 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) (((-3 |#2| "failed") $) 62 (|has| |#2| (-1099)))) (-4205 (((-566) $) 67 (-2432 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099)))) (((-409 (-566)) $) 64 (-2432 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) ((|#2| $) 63 (|has| |#2| (-1099)))) (-3577 (((-689 (-566)) (-689 $)) 107 (-2432 (|has| |#2| (-639 (-566))) (|has| |#2| (-1049)))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) 106 (-2432 (|has| |#2| (-639 (-566))) (|has| |#2| (-1049)))) (((-2 (|:| -4227 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 $) (-1264 $)) 105 (|has| |#2| (-1049))) (((-689 |#2|) (-689 $)) 104 (|has| |#2| (-1049)))) (-1878 (((-3 $ "failed") $) 80 (|has| |#2| (-726)))) (-1552 (($) 111 (|has| |#2| (-370)))) (-2920 ((|#2| $ (-566) |#2|) 54 (|has| $ (-6 -4415)))) (-2855 ((|#2| $ (-566)) 52)) (-1897 (((-112) $) 118 (|has| |#2| (-848)))) (-3979 (((-644 |#2|) $) 31 (|has| $ (-6 -4414)))) (-3934 (((-112) $) 82 (|has| |#2| (-726)))) (-2117 (((-112) $) 119 (|has| |#2| (-848)))) (-2404 (((-112) $ (-771)) 9)) (-3854 (((-566) $) 44 (|has| (-566) (-850)))) (-2097 (($ $ $) 117 (-2809 (|has| |#2| (-848)) (|has| |#2| (-793))))) (-2329 (((-644 |#2|) $) 30 (|has| $ (-6 -4414)))) (-1916 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1099)) (|has| $ (-6 -4414))))) (-2712 (((-566) $) 45 (|has| (-566) (-850)))) (-3962 (($ $ $) 116 (-2809 (|has| |#2| (-848)) (|has| |#2| (-793))))) (-2908 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#2| |#2|) $) 36)) (-3681 (((-921) $) 110 (|has| |#2| (-370)))) (-2603 (((-112) $ (-771)) 10)) (-4117 (((-1157) $) 22 (|has| |#2| (-1099)))) (-4074 (((-644 (-566)) $) 47)) (-3792 (((-112) (-566) $) 48)) (-2178 (($ (-921)) 109 (|has| |#2| (-370)))) (-4035 (((-1119) $) 21 (|has| |#2| (-1099)))) (-1998 ((|#2| $) 43 (|has| (-566) (-850)))) (-4030 (($ $ |#2|) 42 (|has| $ (-6 -4415)))) (-2692 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#2|))) 27 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) 26 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) 24 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-1932 (((-112) $ $) 14)) (-4156 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099))))) (-2993 (((-644 |#2|) $) 49)) (-3467 (((-112) $) 11)) (-1494 (($) 12)) (-4390 ((|#2| $ (-566) |#2|) 51) ((|#2| $ (-566)) 50)) (-4280 ((|#2| $ $) 125 (|has| |#2| (-1049)))) (-3764 (($ (-1264 |#2|)) 127)) (-3164 (((-134)) 124 (|has| |#2| (-365)))) (-3561 (($ $) 99 (-2432 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-771)) 97 (-2432 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-1175)) 95 (-2432 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175))) 94 (-2432 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1175) (-771)) 93 (-2432 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175)) (-644 (-771))) 92 (-2432 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1 |#2| |#2|) (-771)) 85 (|has| |#2| (-1049))) (($ $ (-1 |#2| |#2|)) 84 (|has| |#2| (-1049)))) (-4045 (((-771) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4414))) (((-771) |#2| $) 29 (-12 (|has| |#2| (-1099)) (|has| $ (-6 -4414))))) (-3940 (($ $) 13)) (-3783 (((-1264 |#2|) $) 128) (($ (-566)) 69 (-2809 (-2432 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099))) (|has| |#2| (-1049)))) (($ (-409 (-566))) 66 (-2432 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) (($ |#2|) 61 (|has| |#2| (-1099))) (((-862) $) 18 (|has| |#2| (-613 (-862))))) (-2107 (((-771)) 103 (|has| |#2| (-1049)) CONST)) (-3117 (((-112) $ $) 23 (|has| |#2| (-1099)))) (-1894 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4414)))) (-2086 (($ $) 121 (|has| |#2| (-848)))) (-2479 (($) 72 (|has| |#2| (-131)) CONST)) (-4334 (($) 83 (|has| |#2| (-726)) CONST)) (-2875 (($ $) 98 (-2432 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-771)) 96 (-2432 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-1175)) 91 (-2432 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175))) 90 (-2432 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1175) (-771)) 89 (-2432 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175)) (-644 (-771))) 88 (-2432 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1 |#2| |#2|) (-771)) 87 (|has| |#2| (-1049))) (($ $ (-1 |#2| |#2|)) 86 (|has| |#2| (-1049)))) (-3009 (((-112) $ $) 114 (-2809 (|has| |#2| (-848)) (|has| |#2| (-793))))) (-2984 (((-112) $ $) 113 (-2809 (|has| |#2| (-848)) (|has| |#2| (-793))))) (-2947 (((-112) $ $) 20 (|has| |#2| (-1099)))) (-2995 (((-112) $ $) 115 (-2809 (|has| |#2| (-848)) (|has| |#2| (-793))))) (-2969 (((-112) $ $) 112 (-2809 (|has| |#2| (-848)) (|has| |#2| (-793))))) (-3065 (($ $ |#2|) 123 (|has| |#2| (-365)))) (-3053 (($ $ $) 102 (|has| |#2| (-1049))) (($ $) 101 (|has| |#2| (-1049)))) (-3041 (($ $ $) 70 (|has| |#2| (-25)))) (** (($ $ (-771)) 81 (|has| |#2| (-726))) (($ $ (-921)) 78 (|has| |#2| (-726)))) (* (($ (-566) $) 100 (|has| |#2| (-1049))) (($ $ $) 79 (|has| |#2| (-726))) (($ $ |#2|) 77 (|has| |#2| (-726))) (($ |#2| $) 76 (|has| |#2| (-726))) (($ (-771) $) 74 (|has| |#2| (-131))) (($ (-921) $) 71 (|has| |#2| (-25)))) (-3018 (((-771) $) 6 (|has| $ (-6 -4414))))) +((-1792 (*1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1099)))) (-1792 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-4 *1 (-235 *3)))) (-3512 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4414)) (-4 *1 (-235 *2)) (-4 *2 (-1099)))) (-3512 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4414)) (-4 *1 (-235 *3)) (-4 *3 (-1099)))) (-2995 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4414)) (-4 *1 (-235 *3)) (-4 *3 (-1099))))) +(-13 (-107 |t#1|) (-151 |t#1|) (-10 -8 (-15 -1792 ($)) (-15 -1792 ($ (-644 |t#1|))) (IF (|has| $ (-6 -4414)) (PROGN (-15 -3512 ($ |t#1| $)) (-15 -3512 ($ (-1 (-112) |t#1|) $)) (-15 -2995 ($ (-1 (-112) |t#1|) $))) |%noBranch|))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2768 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-151 |#1|) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1099) |has| |#1| (-1099)) ((-1214) . T)) +((-3474 (((-2 (|:| |varOrder| (-644 (-1175))) (|:| |inhom| (-3 (-644 (-1264 (-771))) "failed")) (|:| |hom| (-644 (-1264 (-771))))) (-295 (-952 (-566)))) 42))) +(((-236) (-10 -7 (-15 -3474 ((-2 (|:| |varOrder| (-644 (-1175))) (|:| |inhom| (-3 (-644 (-1264 (-771))) "failed")) (|:| |hom| (-644 (-1264 (-771))))) (-295 (-952 (-566))))))) (T -236)) +((-3474 (*1 *2 *3) (-12 (-5 *3 (-295 (-952 (-566)))) (-5 *2 (-2 (|:| |varOrder| (-644 (-1175))) (|:| |inhom| (-3 (-644 (-1264 (-771))) "failed")) (|:| |hom| (-644 (-1264 (-771)))))) (-5 *1 (-236))))) +(-10 -7 (-15 -3474 ((-2 (|:| |varOrder| (-644 (-1175))) (|:| |inhom| (-3 (-644 (-1264 (-771))) "failed")) (|:| |hom| (-644 (-1264 (-771))))) (-295 (-952 (-566)))))) +((-3870 (((-771)) 56)) (-4089 (((-2 (|:| -3361 (-689 |#3|)) (|:| |vec| (-1264 |#3|))) (-689 $) (-1264 $)) 53) (((-689 |#3|) (-689 $)) 44) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL) (((-689 (-566)) (-689 $)) NIL)) (-3126 (((-134)) 62)) (-3629 (($ $ (-1 |#3| |#3|) (-771)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-644 (-1175)) (-644 (-771))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175)) NIL) (($ $ (-771)) NIL) (($ $) NIL)) (-3152 (((-1264 |#3|) $) NIL) (($ |#3|) NIL) (((-862) $) NIL) (($ (-566)) 12) (($ (-409 (-566))) NIL)) (-2593 (((-771)) 15)) (-3025 (($ $ |#3|) 59))) +(((-237 |#1| |#2| |#3|) (-10 -8 (-15 -3152 (|#1| (-409 (-566)))) (-15 -3152 (|#1| (-566))) (-15 -3152 ((-862) |#1|)) (-15 -2593 ((-771))) (-15 -3629 (|#1| |#1|)) (-15 -3629 (|#1| |#1| (-771))) (-15 -3629 (|#1| |#1| (-1175))) (-15 -3629 (|#1| |#1| (-644 (-1175)))) (-15 -3629 (|#1| |#1| (-1175) (-771))) (-15 -3629 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -4089 ((-689 (-566)) (-689 |#1|))) (-15 -4089 ((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 |#1|) (-1264 |#1|))) (-15 -3152 (|#1| |#3|)) (-15 -3629 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3629 (|#1| |#1| (-1 |#3| |#3|) (-771))) (-15 -4089 ((-689 |#3|) (-689 |#1|))) (-15 -4089 ((-2 (|:| -3361 (-689 |#3|)) (|:| |vec| (-1264 |#3|))) (-689 |#1|) (-1264 |#1|))) (-15 -3870 ((-771))) (-15 -3025 (|#1| |#1| |#3|)) (-15 -3126 ((-134))) (-15 -3152 ((-1264 |#3|) |#1|))) (-238 |#2| |#3|) (-771) (-1214)) (T -237)) +((-3126 (*1 *2) (-12 (-14 *4 (-771)) (-4 *5 (-1214)) (-5 *2 (-134)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) (-3870 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1214)) (-5 *2 (-771)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) (-2593 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1214)) (-5 *2 (-771)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5))))) +(-10 -8 (-15 -3152 (|#1| (-409 (-566)))) (-15 -3152 (|#1| (-566))) (-15 -3152 ((-862) |#1|)) (-15 -2593 ((-771))) (-15 -3629 (|#1| |#1|)) (-15 -3629 (|#1| |#1| (-771))) (-15 -3629 (|#1| |#1| (-1175))) (-15 -3629 (|#1| |#1| (-644 (-1175)))) (-15 -3629 (|#1| |#1| (-1175) (-771))) (-15 -3629 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -4089 ((-689 (-566)) (-689 |#1|))) (-15 -4089 ((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 |#1|) (-1264 |#1|))) (-15 -3152 (|#1| |#3|)) (-15 -3629 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3629 (|#1| |#1| (-1 |#3| |#3|) (-771))) (-15 -4089 ((-689 |#3|) (-689 |#1|))) (-15 -4089 ((-2 (|:| -3361 (-689 |#3|)) (|:| |vec| (-1264 |#3|))) (-689 |#1|) (-1264 |#1|))) (-15 -3870 ((-771))) (-15 -3025 (|#1| |#1| |#3|)) (-15 -3126 ((-134))) (-15 -3152 ((-1264 |#3|) |#1|))) +((-2988 (((-112) $ $) 19 (|has| |#2| (-1099)))) (-3230 (((-112) $) 73 (|has| |#2| (-131)))) (-1570 (($ (-921)) 126 (|has| |#2| (-1049)))) (-1944 (((-1269) $ (-566) (-566)) 41 (|has| $ (-6 -4415)))) (-3920 (($ $ $) 122 (|has| |#2| (-793)))) (-3967 (((-3 $ "failed") $ $) 75 (|has| |#2| (-131)))) (-1504 (((-112) $ (-771)) 8)) (-3870 (((-771)) 108 (|has| |#2| (-370)))) (-2743 (((-566) $) 120 (|has| |#2| (-848)))) (-1456 ((|#2| $ (-566) |#2|) 53 (|has| $ (-6 -4415)))) (-2463 (($) 7 T CONST)) (-2229 (((-3 (-566) "failed") $) 68 (-2415 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099)))) (((-3 (-409 (-566)) "failed") $) 65 (-2415 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) (((-3 |#2| "failed") $) 62 (|has| |#2| (-1099)))) (-4158 (((-566) $) 67 (-2415 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099)))) (((-409 (-566)) $) 64 (-2415 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) ((|#2| $) 63 (|has| |#2| (-1099)))) (-4089 (((-689 (-566)) (-689 $)) 107 (-2415 (|has| |#2| (-639 (-566))) (|has| |#2| (-1049)))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) 106 (-2415 (|has| |#2| (-639 (-566))) (|has| |#2| (-1049)))) (((-2 (|:| -3361 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 $) (-1264 $)) 105 (|has| |#2| (-1049))) (((-689 |#2|) (-689 $)) 104 (|has| |#2| (-1049)))) (-3245 (((-3 $ "failed") $) 80 (|has| |#2| (-726)))) (-2715 (($) 111 (|has| |#2| (-370)))) (-3897 ((|#2| $ (-566) |#2|) 54 (|has| $ (-6 -4415)))) (-3829 ((|#2| $ (-566)) 52)) (-2528 (((-112) $) 118 (|has| |#2| (-848)))) (-1683 (((-644 |#2|) $) 31 (|has| $ (-6 -4414)))) (-2389 (((-112) $) 82 (|has| |#2| (-726)))) (-3233 (((-112) $) 119 (|has| |#2| (-848)))) (-3456 (((-112) $ (-771)) 9)) (-2296 (((-566) $) 44 (|has| (-566) (-850)))) (-1478 (($ $ $) 117 (-2768 (|has| |#2| (-848)) (|has| |#2| (-793))))) (-3491 (((-644 |#2|) $) 30 (|has| $ (-6 -4414)))) (-1602 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1099)) (|has| $ (-6 -4414))))) (-4050 (((-566) $) 45 (|has| (-566) (-850)))) (-2599 (($ $ $) 116 (-2768 (|has| |#2| (-848)) (|has| |#2| (-793))))) (-3885 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#2| |#2|) $) 36)) (-1866 (((-921) $) 110 (|has| |#2| (-370)))) (-3267 (((-112) $ (-771)) 10)) (-3380 (((-1157) $) 22 (|has| |#2| (-1099)))) (-3725 (((-644 (-566)) $) 47)) (-1644 (((-112) (-566) $) 48)) (-2835 (($ (-921)) 109 (|has| |#2| (-370)))) (-4072 (((-1119) $) 21 (|has| |#2| (-1099)))) (-3908 ((|#2| $) 43 (|has| (-566) (-850)))) (-3787 (($ $ |#2|) 42 (|has| $ (-6 -4415)))) (-2823 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#2|))) 27 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) 26 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) 24 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-3814 (((-112) $ $) 14)) (-2847 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099))))) (-3486 (((-644 |#2|) $) 49)) (-2872 (((-112) $) 11)) (-3493 (($) 12)) (-1309 ((|#2| $ (-566) |#2|) 51) ((|#2| $ (-566)) 50)) (-3386 ((|#2| $ $) 125 (|has| |#2| (-1049)))) (-1668 (($ (-1264 |#2|)) 127)) (-3126 (((-134)) 124 (|has| |#2| (-365)))) (-3629 (($ $) 99 (-2415 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-771)) 97 (-2415 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-1175)) 95 (-2415 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175))) 94 (-2415 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1175) (-771)) 93 (-2415 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175)) (-644 (-771))) 92 (-2415 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1 |#2| |#2|) (-771)) 85 (|has| |#2| (-1049))) (($ $ (-1 |#2| |#2|)) 84 (|has| |#2| (-1049)))) (-4083 (((-771) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4414))) (((-771) |#2| $) 29 (-12 (|has| |#2| (-1099)) (|has| $ (-6 -4414))))) (-1480 (($ $) 13)) (-3152 (((-1264 |#2|) $) 128) (($ (-566)) 69 (-2768 (-2415 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099))) (|has| |#2| (-1049)))) (($ (-409 (-566))) 66 (-2415 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) (($ |#2|) 61 (|has| |#2| (-1099))) (((-862) $) 18 (|has| |#2| (-613 (-862))))) (-2593 (((-771)) 103 (|has| |#2| (-1049)) CONST)) (-3044 (((-112) $ $) 23 (|has| |#2| (-1099)))) (-2210 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4414)))) (-1358 (($ $) 121 (|has| |#2| (-848)))) (-4356 (($) 72 (|has| |#2| (-131)) CONST)) (-4366 (($) 83 (|has| |#2| (-726)) CONST)) (-3497 (($ $) 98 (-2415 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-771)) 96 (-2415 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-1175)) 91 (-2415 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175))) 90 (-2415 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1175) (-771)) 89 (-2415 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175)) (-644 (-771))) 88 (-2415 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1 |#2| |#2|) (-771)) 87 (|has| |#2| (-1049))) (($ $ (-1 |#2| |#2|)) 86 (|has| |#2| (-1049)))) (-2968 (((-112) $ $) 114 (-2768 (|has| |#2| (-848)) (|has| |#2| (-793))))) (-2946 (((-112) $ $) 113 (-2768 (|has| |#2| (-848)) (|has| |#2| (-793))))) (-2914 (((-112) $ $) 20 (|has| |#2| (-1099)))) (-2956 (((-112) $ $) 115 (-2768 (|has| |#2| (-848)) (|has| |#2| (-793))))) (-2935 (((-112) $ $) 112 (-2768 (|has| |#2| (-848)) (|has| |#2| (-793))))) (-3025 (($ $ |#2|) 123 (|has| |#2| (-365)))) (-3012 (($ $ $) 102 (|has| |#2| (-1049))) (($ $) 101 (|has| |#2| (-1049)))) (-3002 (($ $ $) 70 (|has| |#2| (-25)))) (** (($ $ (-771)) 81 (|has| |#2| (-726))) (($ $ (-921)) 78 (|has| |#2| (-726)))) (* (($ (-566) $) 100 (|has| |#2| (-1049))) (($ $ $) 79 (|has| |#2| (-726))) (($ $ |#2|) 77 (|has| |#2| (-726))) (($ |#2| $) 76 (|has| |#2| (-726))) (($ (-771) $) 74 (|has| |#2| (-131))) (($ (-921) $) 71 (|has| |#2| (-25)))) (-3000 (((-771) $) 6 (|has| $ (-6 -4414))))) (((-238 |#1| |#2|) (-140) (-771) (-1214)) (T -238)) -((-3764 (*1 *1 *2) (-12 (-5 *2 (-1264 *4)) (-4 *4 (-1214)) (-4 *1 (-238 *3 *4)))) (-4348 (*1 *1 *2) (-12 (-5 *2 (-921)) (-4 *1 (-238 *3 *4)) (-4 *4 (-1049)) (-4 *4 (-1214)))) (-4280 (*1 *2 *1 *1) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1214)) (-4 *2 (-1049)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1214)) (-4 *2 (-726)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1214)) (-4 *2 (-726))))) -(-13 (-604 (-566) |t#2|) (-613 (-1264 |t#2|)) (-10 -8 (-6 -4414) (-15 -3764 ($ (-1264 |t#2|))) (IF (|has| |t#2| (-1099)) (-6 (-413 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1049)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-231 |t#2|)) (-6 (-379 |t#2|)) (-15 -4348 ($ (-921))) (-15 -4280 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-131)) (-6 (-131)) |%noBranch|) (IF (|has| |t#2| (-726)) (PROGN (-6 (-726)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-370)) (-6 (-370)) |%noBranch|) (IF (|has| |t#2| (-172)) (PROGN (-6 (-38 |t#2|)) (-6 (-172))) |%noBranch|) (IF (|has| |t#2| (-6 -4411)) (-6 -4411) |%noBranch|) (IF (|has| |t#2| (-848)) (-6 (-848)) |%noBranch|) (IF (|has| |t#2| (-793)) (-6 (-793)) |%noBranch|) (IF (|has| |t#2| (-365)) (-6 (-1271 |t#2|)) |%noBranch|))) -(((-21) -2809 (|has| |#2| (-1049)) (|has| |#2| (-848)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-23) -2809 (|has| |#2| (-1049)) (|has| |#2| (-848)) (|has| |#2| (-793)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131))) ((-25) -2809 (|has| |#2| (-1049)) (|has| |#2| (-848)) (|has| |#2| (-793)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) -2809 (|has| |#2| (-1099)) (|has| |#2| (-1049)) (|has| |#2| (-848)) (|has| |#2| (-793)) (|has| |#2| (-726)) (|has| |#2| (-370)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -2809 (|has| |#2| (-1049)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-111 $ $) |has| |#2| (-172)) ((-131) -2809 (|has| |#2| (-1049)) (|has| |#2| (-848)) (|has| |#2| (-793)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131))) ((-616 #0=(-409 (-566))) -12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099))) ((-616 (-566)) -2809 (|has| |#2| (-1049)) (-12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099))) (|has| |#2| (-848)) (|has| |#2| (-172))) ((-616 |#2|) -2809 (|has| |#2| (-1099)) (|has| |#2| (-172))) ((-613 (-862)) -2809 (|has| |#2| (-1099)) (|has| |#2| (-1049)) (|has| |#2| (-848)) (|has| |#2| (-793)) (|has| |#2| (-726)) (|has| |#2| (-370)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-613 (-862))) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-613 (-1264 |#2|)) . T) ((-172) |has| |#2| (-172)) ((-231 |#2|) |has| |#2| (-1049)) ((-233) -12 (|has| |#2| (-233)) (|has| |#2| (-1049))) ((-287 #1=(-566) |#2|) . T) ((-289 #1# |#2|) . T) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((-370) |has| |#2| (-370)) ((-379 |#2|) |has| |#2| (-1049)) ((-413 |#2|) |has| |#2| (-1099)) ((-491 |#2|) . T) ((-604 #1# |#2|) . T) ((-516 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((-646 (-566)) -2809 (|has| |#2| (-1049)) (|has| |#2| (-848)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-646 |#2|) -2809 (|has| |#2| (-1049)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-646 $) -2809 (|has| |#2| (-1049)) (|has| |#2| (-848)) (|has| |#2| (-172))) ((-648 |#2|) -2809 (|has| |#2| (-1049)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-648 $) -2809 (|has| |#2| (-1049)) (|has| |#2| (-848)) (|has| |#2| (-172))) ((-640 |#2|) -2809 (|has| |#2| (-365)) (|has| |#2| (-172))) ((-639 (-566)) -12 (|has| |#2| (-639 (-566))) (|has| |#2| (-1049))) ((-639 |#2|) |has| |#2| (-1049)) ((-717 |#2|) -2809 (|has| |#2| (-365)) (|has| |#2| (-172))) ((-726) -2809 (|has| |#2| (-1049)) (|has| |#2| (-848)) (|has| |#2| (-726)) (|has| |#2| (-172))) ((-791) |has| |#2| (-848)) ((-792) -2809 (|has| |#2| (-848)) (|has| |#2| (-793))) ((-793) |has| |#2| (-793)) ((-794) -2809 (|has| |#2| (-848)) (|has| |#2| (-793))) ((-795) -2809 (|has| |#2| (-848)) (|has| |#2| (-793))) ((-848) |has| |#2| (-848)) ((-850) -2809 (|has| |#2| (-848)) (|has| |#2| (-793))) ((-900 (-1175)) -12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049))) ((-1038 #0#) -12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099))) ((-1038 (-566)) -12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099))) ((-1038 |#2|) |has| |#2| (-1099)) ((-1051 |#2|) -2809 (|has| |#2| (-1049)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-1051 $) |has| |#2| (-172)) ((-1056 |#2|) -2809 (|has| |#2| (-1049)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-1056 $) |has| |#2| (-172)) ((-1049) -2809 (|has| |#2| (-1049)) (|has| |#2| (-848)) (|has| |#2| (-172))) ((-1057) -2809 (|has| |#2| (-1049)) (|has| |#2| (-848)) (|has| |#2| (-172))) ((-1111) -2809 (|has| |#2| (-1049)) (|has| |#2| (-848)) (|has| |#2| (-726)) (|has| |#2| (-172))) ((-1099) -2809 (|has| |#2| (-1099)) (|has| |#2| (-1049)) (|has| |#2| (-848)) (|has| |#2| (-793)) (|has| |#2| (-726)) (|has| |#2| (-370)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-1214) . T) ((-1271 |#2|) |has| |#2| (-365))) -((-3795 (((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|) 21)) (-1676 ((|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|) 23)) (-1301 (((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)) 18))) -(((-239 |#1| |#2| |#3|) (-10 -7 (-15 -3795 ((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -1676 (|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -1301 ((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)))) (-771) (-1214) (-1214)) (T -239)) -((-1301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-240 *5 *6)) (-14 *5 (-771)) (-4 *6 (-1214)) (-4 *7 (-1214)) (-5 *2 (-240 *5 *7)) (-5 *1 (-239 *5 *6 *7)))) (-1676 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-240 *5 *6)) (-14 *5 (-771)) (-4 *6 (-1214)) (-4 *2 (-1214)) (-5 *1 (-239 *5 *6 *2)))) (-3795 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-240 *6 *7)) (-14 *6 (-771)) (-4 *7 (-1214)) (-4 *5 (-1214)) (-5 *2 (-240 *6 *5)) (-5 *1 (-239 *6 *7 *5))))) -(-10 -7 (-15 -3795 ((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -1676 (|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -1301 ((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)))) -((-3007 (((-112) $ $) NIL (|has| |#2| (-1099)))) (-1788 (((-112) $) NIL (|has| |#2| (-131)))) (-4348 (($ (-921)) 65 (|has| |#2| (-1049)))) (-3734 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4415)))) (-2660 (($ $ $) 70 (|has| |#2| (-793)))) (-4175 (((-3 $ "failed") $ $) 57 (|has| |#2| (-131)))) (-2256 (((-112) $ (-771)) 17)) (-1970 (((-771)) NIL (|has| |#2| (-370)))) (-4364 (((-566) $) NIL (|has| |#2| (-848)))) (-3923 ((|#2| $ (-566) |#2|) NIL (|has| $ (-6 -4415)))) (-3012 (($) NIL T CONST)) (-4307 (((-3 (-566) "failed") $) NIL (-12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099)))) (((-3 (-409 (-566)) "failed") $) NIL (-12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) (((-3 |#2| "failed") $) 34 (|has| |#2| (-1099)))) (-4205 (((-566) $) NIL (-12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099)))) (((-409 (-566)) $) NIL (-12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) ((|#2| $) 32 (|has| |#2| (-1099)))) (-3577 (((-689 (-566)) (-689 $)) NIL (-12 (|has| |#2| (-639 (-566))) (|has| |#2| (-1049)))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (-12 (|has| |#2| (-639 (-566))) (|has| |#2| (-1049)))) (((-2 (|:| -4227 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 $) (-1264 $)) NIL (|has| |#2| (-1049))) (((-689 |#2|) (-689 $)) NIL (|has| |#2| (-1049)))) (-1878 (((-3 $ "failed") $) 61 (|has| |#2| (-726)))) (-1552 (($) NIL (|has| |#2| (-370)))) (-2920 ((|#2| $ (-566) |#2|) NIL (|has| $ (-6 -4415)))) (-2855 ((|#2| $ (-566)) 59)) (-1897 (((-112) $) NIL (|has| |#2| (-848)))) (-3979 (((-644 |#2|) $) 15 (|has| $ (-6 -4414)))) (-3934 (((-112) $) NIL (|has| |#2| (-726)))) (-2117 (((-112) $) NIL (|has| |#2| (-848)))) (-2404 (((-112) $ (-771)) NIL)) (-3854 (((-566) $) 20 (|has| (-566) (-850)))) (-2097 (($ $ $) NIL (-2809 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-2329 (((-644 |#2|) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099))))) (-2712 (((-566) $) 58 (|has| (-566) (-850)))) (-3962 (($ $ $) NIL (-2809 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-2908 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#2| |#2|) $) 47)) (-3681 (((-921) $) NIL (|has| |#2| (-370)))) (-2603 (((-112) $ (-771)) NIL)) (-4117 (((-1157) $) NIL (|has| |#2| (-1099)))) (-4074 (((-644 (-566)) $) NIL)) (-3792 (((-112) (-566) $) NIL)) (-2178 (($ (-921)) NIL (|has| |#2| (-370)))) (-4035 (((-1119) $) NIL (|has| |#2| (-1099)))) (-1998 ((|#2| $) NIL (|has| (-566) (-850)))) (-4030 (($ $ |#2|) NIL (|has| $ (-6 -4415)))) (-2692 (((-112) (-1 (-112) |#2|) $) 24 (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-1932 (((-112) $ $) NIL)) (-4156 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099))))) (-2993 (((-644 |#2|) $) NIL)) (-3467 (((-112) $) NIL)) (-1494 (($) NIL)) (-4390 ((|#2| $ (-566) |#2|) NIL) ((|#2| $ (-566)) 21)) (-4280 ((|#2| $ $) NIL (|has| |#2| (-1049)))) (-3764 (($ (-1264 |#2|)) 18)) (-3164 (((-134)) NIL (|has| |#2| (-365)))) (-3561 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-771)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-1175)) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1 |#2| |#2|) (-771)) NIL (|has| |#2| (-1049))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1049)))) (-4045 (((-771) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414))) (((-771) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099))))) (-3940 (($ $) NIL)) (-3783 (((-1264 |#2|) $) 10) (($ (-566)) NIL (-2809 (-12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099))) (|has| |#2| (-1049)))) (($ (-409 (-566))) NIL (-12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) (($ |#2|) 13 (|has| |#2| (-1099))) (((-862) $) NIL (|has| |#2| (-613 (-862))))) (-2107 (((-771)) NIL (|has| |#2| (-1049)) CONST)) (-3117 (((-112) $ $) NIL (|has| |#2| (-1099)))) (-1894 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414)))) (-2086 (($ $) NIL (|has| |#2| (-848)))) (-2479 (($) 40 (|has| |#2| (-131)) CONST)) (-4334 (($) 44 (|has| |#2| (-726)) CONST)) (-2875 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-771)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-1175)) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1 |#2| |#2|) (-771)) NIL (|has| |#2| (-1049))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1049)))) (-3009 (((-112) $ $) NIL (-2809 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-2984 (((-112) $ $) NIL (-2809 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-2947 (((-112) $ $) 31 (|has| |#2| (-1099)))) (-2995 (((-112) $ $) NIL (-2809 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-2969 (((-112) $ $) 68 (-2809 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-3065 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3053 (($ $ $) NIL (|has| |#2| (-1049))) (($ $) NIL (|has| |#2| (-1049)))) (-3041 (($ $ $) 38 (|has| |#2| (-25)))) (** (($ $ (-771)) NIL (|has| |#2| (-726))) (($ $ (-921)) NIL (|has| |#2| (-726)))) (* (($ (-566) $) NIL (|has| |#2| (-1049))) (($ $ $) 50 (|has| |#2| (-726))) (($ $ |#2|) 48 (|has| |#2| (-726))) (($ |#2| $) 49 (|has| |#2| (-726))) (($ (-771) $) NIL (|has| |#2| (-131))) (($ (-921) $) NIL (|has| |#2| (-25)))) (-3018 (((-771) $) NIL (|has| $ (-6 -4414))))) +((-1668 (*1 *1 *2) (-12 (-5 *2 (-1264 *4)) (-4 *4 (-1214)) (-4 *1 (-238 *3 *4)))) (-1570 (*1 *1 *2) (-12 (-5 *2 (-921)) (-4 *1 (-238 *3 *4)) (-4 *4 (-1049)) (-4 *4 (-1214)))) (-3386 (*1 *2 *1 *1) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1214)) (-4 *2 (-1049)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1214)) (-4 *2 (-726)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1214)) (-4 *2 (-726))))) +(-13 (-604 (-566) |t#2|) (-613 (-1264 |t#2|)) (-10 -8 (-6 -4414) (-15 -1668 ($ (-1264 |t#2|))) (IF (|has| |t#2| (-1099)) (-6 (-413 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1049)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-231 |t#2|)) (-6 (-379 |t#2|)) (-15 -1570 ($ (-921))) (-15 -3386 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-131)) (-6 (-131)) |%noBranch|) (IF (|has| |t#2| (-726)) (PROGN (-6 (-726)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-370)) (-6 (-370)) |%noBranch|) (IF (|has| |t#2| (-172)) (PROGN (-6 (-38 |t#2|)) (-6 (-172))) |%noBranch|) (IF (|has| |t#2| (-6 -4411)) (-6 -4411) |%noBranch|) (IF (|has| |t#2| (-848)) (-6 (-848)) |%noBranch|) (IF (|has| |t#2| (-793)) (-6 (-793)) |%noBranch|) (IF (|has| |t#2| (-365)) (-6 (-1271 |t#2|)) |%noBranch|))) +(((-21) -2768 (|has| |#2| (-1049)) (|has| |#2| (-848)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-23) -2768 (|has| |#2| (-1049)) (|has| |#2| (-848)) (|has| |#2| (-793)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131))) ((-25) -2768 (|has| |#2| (-1049)) (|has| |#2| (-848)) (|has| |#2| (-793)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) -2768 (|has| |#2| (-1099)) (|has| |#2| (-1049)) (|has| |#2| (-848)) (|has| |#2| (-793)) (|has| |#2| (-726)) (|has| |#2| (-370)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -2768 (|has| |#2| (-1049)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-111 $ $) |has| |#2| (-172)) ((-131) -2768 (|has| |#2| (-1049)) (|has| |#2| (-848)) (|has| |#2| (-793)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131))) ((-616 #0=(-409 (-566))) -12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099))) ((-616 (-566)) -2768 (|has| |#2| (-1049)) (-12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099))) (|has| |#2| (-848)) (|has| |#2| (-172))) ((-616 |#2|) -2768 (|has| |#2| (-1099)) (|has| |#2| (-172))) ((-613 (-862)) -2768 (|has| |#2| (-1099)) (|has| |#2| (-1049)) (|has| |#2| (-848)) (|has| |#2| (-793)) (|has| |#2| (-726)) (|has| |#2| (-370)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-613 (-862))) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-613 (-1264 |#2|)) . T) ((-172) |has| |#2| (-172)) ((-231 |#2|) |has| |#2| (-1049)) ((-233) -12 (|has| |#2| (-233)) (|has| |#2| (-1049))) ((-287 #1=(-566) |#2|) . T) ((-289 #1# |#2|) . T) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((-370) |has| |#2| (-370)) ((-379 |#2|) |has| |#2| (-1049)) ((-413 |#2|) |has| |#2| (-1099)) ((-491 |#2|) . T) ((-604 #1# |#2|) . T) ((-516 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((-646 (-566)) -2768 (|has| |#2| (-1049)) (|has| |#2| (-848)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-646 |#2|) -2768 (|has| |#2| (-1049)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-646 $) -2768 (|has| |#2| (-1049)) (|has| |#2| (-848)) (|has| |#2| (-172))) ((-648 |#2|) -2768 (|has| |#2| (-1049)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-648 $) -2768 (|has| |#2| (-1049)) (|has| |#2| (-848)) (|has| |#2| (-172))) ((-640 |#2|) -2768 (|has| |#2| (-365)) (|has| |#2| (-172))) ((-639 (-566)) -12 (|has| |#2| (-639 (-566))) (|has| |#2| (-1049))) ((-639 |#2|) |has| |#2| (-1049)) ((-717 |#2|) -2768 (|has| |#2| (-365)) (|has| |#2| (-172))) ((-726) -2768 (|has| |#2| (-1049)) (|has| |#2| (-848)) (|has| |#2| (-726)) (|has| |#2| (-172))) ((-791) |has| |#2| (-848)) ((-792) -2768 (|has| |#2| (-848)) (|has| |#2| (-793))) ((-793) |has| |#2| (-793)) ((-794) -2768 (|has| |#2| (-848)) (|has| |#2| (-793))) ((-795) -2768 (|has| |#2| (-848)) (|has| |#2| (-793))) ((-848) |has| |#2| (-848)) ((-850) -2768 (|has| |#2| (-848)) (|has| |#2| (-793))) ((-900 (-1175)) -12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049))) ((-1038 #0#) -12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099))) ((-1038 (-566)) -12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099))) ((-1038 |#2|) |has| |#2| (-1099)) ((-1051 |#2|) -2768 (|has| |#2| (-1049)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-1051 $) |has| |#2| (-172)) ((-1056 |#2|) -2768 (|has| |#2| (-1049)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-1056 $) |has| |#2| (-172)) ((-1049) -2768 (|has| |#2| (-1049)) (|has| |#2| (-848)) (|has| |#2| (-172))) ((-1057) -2768 (|has| |#2| (-1049)) (|has| |#2| (-848)) (|has| |#2| (-172))) ((-1111) -2768 (|has| |#2| (-1049)) (|has| |#2| (-848)) (|has| |#2| (-726)) (|has| |#2| (-172))) ((-1099) -2768 (|has| |#2| (-1099)) (|has| |#2| (-1049)) (|has| |#2| (-848)) (|has| |#2| (-793)) (|has| |#2| (-726)) (|has| |#2| (-370)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-1214) . T) ((-1271 |#2|) |has| |#2| (-365))) +((-1960 (((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|) 21)) (-2873 ((|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|) 23)) (-2319 (((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)) 18))) +(((-239 |#1| |#2| |#3|) (-10 -7 (-15 -1960 ((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -2873 (|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -2319 ((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)))) (-771) (-1214) (-1214)) (T -239)) +((-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-240 *5 *6)) (-14 *5 (-771)) (-4 *6 (-1214)) (-4 *7 (-1214)) (-5 *2 (-240 *5 *7)) (-5 *1 (-239 *5 *6 *7)))) (-2873 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-240 *5 *6)) (-14 *5 (-771)) (-4 *6 (-1214)) (-4 *2 (-1214)) (-5 *1 (-239 *5 *6 *2)))) (-1960 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-240 *6 *7)) (-14 *6 (-771)) (-4 *7 (-1214)) (-4 *5 (-1214)) (-5 *2 (-240 *6 *5)) (-5 *1 (-239 *6 *7 *5))))) +(-10 -7 (-15 -1960 ((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -2873 (|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -2319 ((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)))) +((-2988 (((-112) $ $) NIL (|has| |#2| (-1099)))) (-3230 (((-112) $) NIL (|has| |#2| (-131)))) (-1570 (($ (-921)) 65 (|has| |#2| (-1049)))) (-1944 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4415)))) (-3920 (($ $ $) 70 (|has| |#2| (-793)))) (-3967 (((-3 $ "failed") $ $) 57 (|has| |#2| (-131)))) (-1504 (((-112) $ (-771)) 17)) (-3870 (((-771)) NIL (|has| |#2| (-370)))) (-2743 (((-566) $) NIL (|has| |#2| (-848)))) (-1456 ((|#2| $ (-566) |#2|) NIL (|has| $ (-6 -4415)))) (-2463 (($) NIL T CONST)) (-2229 (((-3 (-566) "failed") $) NIL (-12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099)))) (((-3 (-409 (-566)) "failed") $) NIL (-12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) (((-3 |#2| "failed") $) 34 (|has| |#2| (-1099)))) (-4158 (((-566) $) NIL (-12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099)))) (((-409 (-566)) $) NIL (-12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) ((|#2| $) 32 (|has| |#2| (-1099)))) (-4089 (((-689 (-566)) (-689 $)) NIL (-12 (|has| |#2| (-639 (-566))) (|has| |#2| (-1049)))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (-12 (|has| |#2| (-639 (-566))) (|has| |#2| (-1049)))) (((-2 (|:| -3361 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 $) (-1264 $)) NIL (|has| |#2| (-1049))) (((-689 |#2|) (-689 $)) NIL (|has| |#2| (-1049)))) (-3245 (((-3 $ "failed") $) 61 (|has| |#2| (-726)))) (-2715 (($) NIL (|has| |#2| (-370)))) (-3897 ((|#2| $ (-566) |#2|) NIL (|has| $ (-6 -4415)))) (-3829 ((|#2| $ (-566)) 59)) (-2528 (((-112) $) NIL (|has| |#2| (-848)))) (-1683 (((-644 |#2|) $) 15 (|has| $ (-6 -4414)))) (-2389 (((-112) $) NIL (|has| |#2| (-726)))) (-3233 (((-112) $) NIL (|has| |#2| (-848)))) (-3456 (((-112) $ (-771)) NIL)) (-2296 (((-566) $) 20 (|has| (-566) (-850)))) (-1478 (($ $ $) NIL (-2768 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-3491 (((-644 |#2|) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099))))) (-4050 (((-566) $) 58 (|has| (-566) (-850)))) (-2599 (($ $ $) NIL (-2768 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-3885 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#2| |#2|) $) 47)) (-1866 (((-921) $) NIL (|has| |#2| (-370)))) (-3267 (((-112) $ (-771)) NIL)) (-3380 (((-1157) $) NIL (|has| |#2| (-1099)))) (-3725 (((-644 (-566)) $) NIL)) (-1644 (((-112) (-566) $) NIL)) (-2835 (($ (-921)) NIL (|has| |#2| (-370)))) (-4072 (((-1119) $) NIL (|has| |#2| (-1099)))) (-3908 ((|#2| $) NIL (|has| (-566) (-850)))) (-3787 (($ $ |#2|) NIL (|has| $ (-6 -4415)))) (-2823 (((-112) (-1 (-112) |#2|) $) 24 (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-3814 (((-112) $ $) NIL)) (-2847 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099))))) (-3486 (((-644 |#2|) $) NIL)) (-2872 (((-112) $) NIL)) (-3493 (($) NIL)) (-1309 ((|#2| $ (-566) |#2|) NIL) ((|#2| $ (-566)) 21)) (-3386 ((|#2| $ $) NIL (|has| |#2| (-1049)))) (-1668 (($ (-1264 |#2|)) 18)) (-3126 (((-134)) NIL (|has| |#2| (-365)))) (-3629 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-771)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-1175)) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1 |#2| |#2|) (-771)) NIL (|has| |#2| (-1049))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1049)))) (-4083 (((-771) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414))) (((-771) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099))))) (-1480 (($ $) NIL)) (-3152 (((-1264 |#2|) $) 10) (($ (-566)) NIL (-2768 (-12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099))) (|has| |#2| (-1049)))) (($ (-409 (-566))) NIL (-12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) (($ |#2|) 13 (|has| |#2| (-1099))) (((-862) $) NIL (|has| |#2| (-613 (-862))))) (-2593 (((-771)) NIL (|has| |#2| (-1049)) CONST)) (-3044 (((-112) $ $) NIL (|has| |#2| (-1099)))) (-2210 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414)))) (-1358 (($ $) NIL (|has| |#2| (-848)))) (-4356 (($) 40 (|has| |#2| (-131)) CONST)) (-4366 (($) 44 (|has| |#2| (-726)) CONST)) (-3497 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-771)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-1175)) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1 |#2| |#2|) (-771)) NIL (|has| |#2| (-1049))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1049)))) (-2968 (((-112) $ $) NIL (-2768 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-2946 (((-112) $ $) NIL (-2768 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-2914 (((-112) $ $) 31 (|has| |#2| (-1099)))) (-2956 (((-112) $ $) NIL (-2768 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-2935 (((-112) $ $) 68 (-2768 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-3025 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3012 (($ $ $) NIL (|has| |#2| (-1049))) (($ $) NIL (|has| |#2| (-1049)))) (-3002 (($ $ $) 38 (|has| |#2| (-25)))) (** (($ $ (-771)) NIL (|has| |#2| (-726))) (($ $ (-921)) NIL (|has| |#2| (-726)))) (* (($ (-566) $) NIL (|has| |#2| (-1049))) (($ $ $) 50 (|has| |#2| (-726))) (($ $ |#2|) 48 (|has| |#2| (-726))) (($ |#2| $) 49 (|has| |#2| (-726))) (($ (-771) $) NIL (|has| |#2| (-131))) (($ (-921) $) NIL (|has| |#2| (-25)))) (-3000 (((-771) $) NIL (|has| $ (-6 -4414))))) (((-240 |#1| |#2|) (-238 |#1| |#2|) (-771) (-1214)) (T -240)) NIL (-238 |#1| |#2|) -((-2525 (((-566) (-644 (-1157))) 36) (((-566) (-1157)) 29)) (-2930 (((-1269) (-644 (-1157))) 41) (((-1269) (-1157)) 40)) (-3725 (((-1157)) 16)) (-3882 (((-1157) (-566) (-1157)) 23)) (-1320 (((-644 (-1157)) (-644 (-1157)) (-566) (-1157)) 37) (((-1157) (-1157) (-566) (-1157)) 35)) (-3251 (((-644 (-1157)) (-644 (-1157))) 15) (((-644 (-1157)) (-1157)) 11))) -(((-241) (-10 -7 (-15 -3251 ((-644 (-1157)) (-1157))) (-15 -3251 ((-644 (-1157)) (-644 (-1157)))) (-15 -3725 ((-1157))) (-15 -3882 ((-1157) (-566) (-1157))) (-15 -1320 ((-1157) (-1157) (-566) (-1157))) (-15 -1320 ((-644 (-1157)) (-644 (-1157)) (-566) (-1157))) (-15 -2930 ((-1269) (-1157))) (-15 -2930 ((-1269) (-644 (-1157)))) (-15 -2525 ((-566) (-1157))) (-15 -2525 ((-566) (-644 (-1157)))))) (T -241)) -((-2525 (*1 *2 *3) (-12 (-5 *3 (-644 (-1157))) (-5 *2 (-566)) (-5 *1 (-241)))) (-2525 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-566)) (-5 *1 (-241)))) (-2930 (*1 *2 *3) (-12 (-5 *3 (-644 (-1157))) (-5 *2 (-1269)) (-5 *1 (-241)))) (-2930 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-241)))) (-1320 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-644 (-1157))) (-5 *3 (-566)) (-5 *4 (-1157)) (-5 *1 (-241)))) (-1320 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1157)) (-5 *3 (-566)) (-5 *1 (-241)))) (-3882 (*1 *2 *3 *2) (-12 (-5 *2 (-1157)) (-5 *3 (-566)) (-5 *1 (-241)))) (-3725 (*1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-241)))) (-3251 (*1 *2 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-241)))) (-3251 (*1 *2 *3) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-241)) (-5 *3 (-1157))))) -(-10 -7 (-15 -3251 ((-644 (-1157)) (-1157))) (-15 -3251 ((-644 (-1157)) (-644 (-1157)))) (-15 -3725 ((-1157))) (-15 -3882 ((-1157) (-566) (-1157))) (-15 -1320 ((-1157) (-1157) (-566) (-1157))) (-15 -1320 ((-644 (-1157)) (-644 (-1157)) (-566) (-1157))) (-15 -2930 ((-1269) (-1157))) (-15 -2930 ((-1269) (-644 (-1157)))) (-15 -2525 ((-566) (-1157))) (-15 -2525 ((-566) (-644 (-1157))))) +((-2017 (((-566) (-644 (-1157))) 36) (((-566) (-1157)) 29)) (-3953 (((-1269) (-644 (-1157))) 41) (((-1269) (-1157)) 40)) (-3445 (((-1157)) 16)) (-2888 (((-1157) (-566) (-1157)) 23)) (-4290 (((-644 (-1157)) (-644 (-1157)) (-566) (-1157)) 37) (((-1157) (-1157) (-566) (-1157)) 35)) (-1988 (((-644 (-1157)) (-644 (-1157))) 15) (((-644 (-1157)) (-1157)) 11))) +(((-241) (-10 -7 (-15 -1988 ((-644 (-1157)) (-1157))) (-15 -1988 ((-644 (-1157)) (-644 (-1157)))) (-15 -3445 ((-1157))) (-15 -2888 ((-1157) (-566) (-1157))) (-15 -4290 ((-1157) (-1157) (-566) (-1157))) (-15 -4290 ((-644 (-1157)) (-644 (-1157)) (-566) (-1157))) (-15 -3953 ((-1269) (-1157))) (-15 -3953 ((-1269) (-644 (-1157)))) (-15 -2017 ((-566) (-1157))) (-15 -2017 ((-566) (-644 (-1157)))))) (T -241)) +((-2017 (*1 *2 *3) (-12 (-5 *3 (-644 (-1157))) (-5 *2 (-566)) (-5 *1 (-241)))) (-2017 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-566)) (-5 *1 (-241)))) (-3953 (*1 *2 *3) (-12 (-5 *3 (-644 (-1157))) (-5 *2 (-1269)) (-5 *1 (-241)))) (-3953 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-241)))) (-4290 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-644 (-1157))) (-5 *3 (-566)) (-5 *4 (-1157)) (-5 *1 (-241)))) (-4290 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1157)) (-5 *3 (-566)) (-5 *1 (-241)))) (-2888 (*1 *2 *3 *2) (-12 (-5 *2 (-1157)) (-5 *3 (-566)) (-5 *1 (-241)))) (-3445 (*1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-241)))) (-1988 (*1 *2 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-241)))) (-1988 (*1 *2 *3) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-241)) (-5 *3 (-1157))))) +(-10 -7 (-15 -1988 ((-644 (-1157)) (-1157))) (-15 -1988 ((-644 (-1157)) (-644 (-1157)))) (-15 -3445 ((-1157))) (-15 -2888 ((-1157) (-566) (-1157))) (-15 -4290 ((-1157) (-1157) (-566) (-1157))) (-15 -4290 ((-644 (-1157)) (-644 (-1157)) (-566) (-1157))) (-15 -3953 ((-1269) (-1157))) (-15 -3953 ((-1269) (-644 (-1157)))) (-15 -2017 ((-566) (-1157))) (-15 -2017 ((-566) (-644 (-1157))))) ((** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) 20)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ (-409 (-566)) $) 27) (($ $ (-409 (-566))) NIL))) (((-242 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-566))) (-15 * (|#1| |#1| (-409 (-566)))) (-15 * (|#1| (-409 (-566)) |#1|)) (-15 ** (|#1| |#1| (-771))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-921))) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-921) |#1|))) (-243)) (T -242)) NIL (-10 -8 (-15 ** (|#1| |#1| (-566))) (-15 * (|#1| |#1| (-409 (-566)))) (-15 * (|#1| (-409 (-566)) |#1|)) (-15 ** (|#1| |#1| (-771))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-921))) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-921) |#1|))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-4175 (((-3 $ "failed") $ $) 20)) (-3012 (($) 18 T CONST)) (-1878 (((-3 $ "failed") $) 37)) (-3934 (((-112) $) 35)) (-4117 (((-1157) $) 10)) (-1713 (($ $) 47)) (-4035 (((-1119) $) 11)) (-3783 (((-862) $) 12) (($ (-566)) 33) (($ (-409 (-566))) 51)) (-2107 (((-771)) 32 T CONST)) (-3117 (((-112) $ $) 9)) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-2947 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 48)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ (-409 (-566)) $) 50) (($ $ (-409 (-566))) 49))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-3967 (((-3 $ "failed") $ $) 20)) (-2463 (($) 18 T CONST)) (-3245 (((-3 $ "failed") $) 37)) (-2389 (((-112) $) 35)) (-3380 (((-1157) $) 10)) (-2748 (($ $) 47)) (-4072 (((-1119) $) 11)) (-3152 (((-862) $) 12) (($ (-566)) 33) (($ (-409 (-566))) 51)) (-2593 (((-771)) 32 T CONST)) (-3044 (((-112) $ $) 9)) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-2914 (((-112) $ $) 6)) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 48)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ (-409 (-566)) $) 50) (($ $ (-409 (-566))) 49))) (((-243) (-140)) (T -243)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-243)) (-5 *2 (-566)))) (-1713 (*1 *1 *1) (-4 *1 (-243)))) -(-13 (-291) (-38 (-409 (-566))) (-10 -8 (-15 ** ($ $ (-566))) (-15 -1713 ($ $)))) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-243)) (-5 *2 (-566)))) (-2748 (*1 *1 *1) (-4 *1 (-243)))) +(-13 (-291) (-38 (-409 (-566))) (-10 -8 (-15 ** ($ $ (-566))) (-15 -2748 ($ $)))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-616 #0#) . T) ((-616 (-566)) . T) ((-613 (-862)) . T) ((-291) . T) ((-646 #0#) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 #0#) . T) ((-648 $) . T) ((-640 #0#) . T) ((-717 #0#) . T) ((-726) . T) ((-1051 #0#) . T) ((-1051 $) . T) ((-1056 #0#) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) -((-3007 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2233 ((|#1| $) 49)) (-2223 (($ $) 58)) (-2256 (((-112) $ (-771)) 8)) (-3396 ((|#1| $ |#1|) 40 (|has| $ (-6 -4415)))) (-2156 (($ $ $) 54 (|has| $ (-6 -4415)))) (-3582 (($ $ $) 53 (|has| $ (-6 -4415)))) (-3923 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4415)))) (-3800 (($ $ (-644 $)) 42 (|has| $ (-6 -4415)))) (-3012 (($) 7 T CONST)) (-1595 (($ $) 57)) (-3979 (((-644 |#1|) $) 31 (|has| $ (-6 -4414)))) (-4009 (((-644 $) $) 51)) (-3891 (((-112) $ $) 43 (|has| |#1| (-1099)))) (-3859 (($ $) 56)) (-2404 (((-112) $ (-771)) 9)) (-2329 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2908 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#1| |#1|) $) 36)) (-2603 (((-112) $ (-771)) 10)) (-3701 (((-644 |#1|) $) 46)) (-3438 (((-112) $) 50)) (-4117 (((-1157) $) 22 (|has| |#1| (-1099)))) (-2686 ((|#1| $) 60)) (-3558 (($ $) 59)) (-4035 (((-1119) $) 21 (|has| |#1| (-1099)))) (-2692 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) 14)) (-3467 (((-112) $) 11)) (-1494 (($) 12)) (-4390 ((|#1| $ "value") 48)) (-1416 (((-566) $ $) 45)) (-3494 (((-112) $) 47)) (-4045 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-3940 (($ $) 13)) (-3480 (($ $ $) 55 (|has| $ (-6 -4415)))) (-3783 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-2462 (((-644 $) $) 52)) (-4288 (((-112) $ $) 44 (|has| |#1| (-1099)))) (-3117 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-1894 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3018 (((-771) $) 6 (|has| $ (-6 -4414))))) +((-2988 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2876 ((|#1| $) 49)) (-3214 (($ $) 58)) (-1504 (((-112) $ (-771)) 8)) (-2191 ((|#1| $ |#1|) 40 (|has| $ (-6 -4415)))) (-3528 (($ $ $) 54 (|has| $ (-6 -4415)))) (-1649 (($ $ $) 53 (|has| $ (-6 -4415)))) (-1456 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4415)))) (-4202 (($ $ (-644 $)) 42 (|has| $ (-6 -4415)))) (-2463 (($) 7 T CONST)) (-1451 (($ $) 57)) (-1683 (((-644 |#1|) $) 31 (|has| $ (-6 -4414)))) (-3431 (((-644 $) $) 51)) (-1507 (((-112) $ $) 43 (|has| |#1| (-1099)))) (-3655 (($ $) 56)) (-3456 (((-112) $ (-771)) 9)) (-3491 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-3885 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#1| |#1|) $) 36)) (-3267 (((-112) $ (-771)) 10)) (-1458 (((-644 |#1|) $) 46)) (-3860 (((-112) $) 50)) (-3380 (((-1157) $) 22 (|has| |#1| (-1099)))) (-2641 ((|#1| $) 60)) (-2842 (($ $) 59)) (-4072 (((-1119) $) 21 (|has| |#1| (-1099)))) (-2823 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) 14)) (-2872 (((-112) $) 11)) (-3493 (($) 12)) (-1309 ((|#1| $ "value") 48)) (-1696 (((-566) $ $) 45)) (-3786 (((-112) $) 47)) (-4083 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-1480 (($ $) 13)) (-1690 (($ $ $) 55 (|has| $ (-6 -4415)))) (-3152 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-1926 (((-644 $) $) 52)) (-4385 (((-112) $ $) 44 (|has| |#1| (-1099)))) (-3044 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-2210 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3000 (((-771) $) 6 (|has| $ (-6 -4414))))) (((-244 |#1|) (-140) (-1214)) (T -244)) -((-2686 (*1 *2 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1214)))) (-3558 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1214)))) (-2223 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1214)))) (-1595 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1214)))) (-3859 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1214)))) (-3480 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4415)) (-4 *1 (-244 *2)) (-4 *2 (-1214)))) (-2156 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4415)) (-4 *1 (-244 *2)) (-4 *2 (-1214)))) (-3582 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4415)) (-4 *1 (-244 *2)) (-4 *2 (-1214))))) -(-13 (-1010 |t#1|) (-10 -8 (-15 -2686 (|t#1| $)) (-15 -3558 ($ $)) (-15 -2223 ($ $)) (-15 -1595 ($ $)) (-15 -3859 ($ $)) (IF (|has| $ (-6 -4415)) (PROGN (-15 -3480 ($ $ $)) (-15 -2156 ($ $ $)) (-15 -3582 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2809 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1010 |#1|) . T) ((-1099) |has| |#1| (-1099)) ((-1214) . T)) -((-3007 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2233 ((|#1| $) NIL)) (-2593 ((|#1| $) NIL)) (-2223 (($ $) NIL)) (-3734 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4415)))) (-2807 (($ $ (-566)) NIL (|has| $ (-6 -4415)))) (-2644 (((-112) $) NIL (|has| |#1| (-850))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1944 (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-850)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4415)))) (-1510 (($ $) 10 (|has| |#1| (-850))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2256 (((-112) $ (-771)) NIL)) (-3396 ((|#1| $ |#1|) NIL (|has| $ (-6 -4415)))) (-4107 (($ $ $) NIL (|has| $ (-6 -4415)))) (-3178 ((|#1| $ |#1|) NIL (|has| $ (-6 -4415)))) (-2905 ((|#1| $ |#1|) NIL (|has| $ (-6 -4415)))) (-3923 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4415))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4415))) (($ $ "rest" $) NIL (|has| $ (-6 -4415))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4415))) ((|#1| $ (-1231 (-566)) |#1|) NIL (|has| $ (-6 -4415))) ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4415)))) (-3800 (($ $ (-644 $)) NIL (|has| $ (-6 -4415)))) (-4016 (($ (-1 (-112) |#1|) $) NIL)) (-2701 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2582 ((|#1| $) NIL)) (-3012 (($) NIL T CONST)) (-3413 (($ $) NIL (|has| $ (-6 -4415)))) (-1377 (($ $) NIL)) (-2010 (($ $) NIL) (($ $ (-771)) NIL)) (-3657 (($ $) NIL (|has| |#1| (-1099)))) (-2031 (($ $) 7 (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2956 (($ |#1| $) NIL (|has| |#1| (-1099))) (($ (-1 (-112) |#1|) $) NIL)) (-2665 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-1676 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2920 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4415)))) (-2855 ((|#1| $ (-566)) NIL)) (-1902 (((-112) $) NIL)) (-4000 (((-566) |#1| $ (-566)) NIL (|has| |#1| (-1099))) (((-566) |#1| $) NIL (|has| |#1| (-1099))) (((-566) (-1 (-112) |#1|) $) NIL)) (-3979 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-4009 (((-644 $) $) NIL)) (-3891 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-4265 (($ (-771) |#1|) NIL)) (-2404 (((-112) $ (-771)) NIL)) (-3854 (((-566) $) NIL (|has| (-566) (-850)))) (-2097 (($ $ $) NIL (|has| |#1| (-850)))) (-3463 (($ $ $) NIL (|has| |#1| (-850))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3298 (($ $ $) NIL (|has| |#1| (-850))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2329 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2712 (((-566) $) NIL (|has| (-566) (-850)))) (-3962 (($ $ $) NIL (|has| |#1| (-850)))) (-2908 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1881 (($ |#1|) NIL)) (-2603 (((-112) $ (-771)) NIL)) (-3701 (((-644 |#1|) $) NIL)) (-3438 (((-112) $) NIL)) (-4117 (((-1157) $) NIL (|has| |#1| (-1099)))) (-2686 ((|#1| $) NIL) (($ $ (-771)) NIL)) (-3406 (($ $ $ (-566)) NIL) (($ |#1| $ (-566)) NIL)) (-4276 (($ $ $ (-566)) NIL) (($ |#1| $ (-566)) NIL)) (-4074 (((-644 (-566)) $) NIL)) (-3792 (((-112) (-566) $) NIL)) (-4035 (((-1119) $) NIL (|has| |#1| (-1099)))) (-1998 ((|#1| $) NIL) (($ $ (-771)) NIL)) (-2006 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4030 (($ $ |#1|) NIL (|has| $ (-6 -4415)))) (-2373 (((-112) $) NIL)) (-2692 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) NIL)) (-4156 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2993 (((-644 |#1|) $) NIL)) (-3467 (((-112) $) NIL)) (-1494 (($) NIL)) (-4390 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1231 (-566))) NIL) ((|#1| $ (-566)) NIL) ((|#1| $ (-566) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-771) $ "count") 16)) (-1416 (((-566) $ $) NIL)) (-1772 (($ $ (-1231 (-566))) NIL) (($ $ (-566)) NIL)) (-2187 (($ $ (-1231 (-566))) NIL) (($ $ (-566)) NIL)) (-3663 (($ (-644 |#1|)) 22)) (-3494 (((-112) $) NIL)) (-4272 (($ $) NIL)) (-1844 (($ $) NIL (|has| $ (-6 -4415)))) (-2833 (((-771) $) NIL)) (-2369 (($ $) NIL)) (-4045 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-1297 (($ $ $ (-566)) NIL (|has| $ (-6 -4415)))) (-3940 (($ $) NIL)) (-1348 (((-538) $) NIL (|has| |#1| (-614 (-538))))) (-3796 (($ (-644 |#1|)) NIL)) (-3480 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3721 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-644 $)) NIL) (($ $ |#1|) NIL)) (-3783 (($ (-644 |#1|)) 17) (((-644 |#1|) $) 18) (((-862) $) 21 (|has| |#1| (-613 (-862))))) (-2462 (((-644 $) $) NIL)) (-4288 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3117 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1894 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-3009 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2984 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2947 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2995 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2969 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3018 (((-771) $) 14 (|has| $ (-6 -4414))))) -(((-245 |#1|) (-13 (-666 |#1|) (-492 (-644 |#1|)) (-10 -8 (-15 -3663 ($ (-644 |#1|))) (-15 -4390 ($ $ "unique")) (-15 -4390 ($ $ "sort")) (-15 -4390 ((-771) $ "count")))) (-850)) (T -245)) -((-3663 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-850)) (-5 *1 (-245 *3)))) (-4390 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-245 *3)) (-4 *3 (-850)))) (-4390 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-245 *3)) (-4 *3 (-850)))) (-4390 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-771)) (-5 *1 (-245 *4)) (-4 *4 (-850))))) -(-13 (-666 |#1|) (-492 (-644 |#1|)) (-10 -8 (-15 -3663 ($ (-644 |#1|))) (-15 -4390 ($ $ "unique")) (-15 -4390 ($ $ "sort")) (-15 -4390 ((-771) $ "count")))) -((-2058 (((-3 (-771) "failed") |#1| |#1| (-771)) 43))) -(((-246 |#1|) (-10 -7 (-15 -2058 ((-3 (-771) "failed") |#1| |#1| (-771)))) (-13 (-726) (-370) (-10 -7 (-15 ** (|#1| |#1| (-566)))))) (T -246)) -((-2058 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-771)) (-4 *3 (-13 (-726) (-370) (-10 -7 (-15 ** (*3 *3 (-566)))))) (-5 *1 (-246 *3))))) -(-10 -7 (-15 -2058 ((-3 (-771) "failed") |#1| |#1| (-771)))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-3863 (((-644 (-864 |#1|)) $) NIL)) (-3683 (((-1171 $) $ (-864 |#1|)) NIL) (((-1171 |#2|) $) NIL)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#2| (-558)))) (-3991 (($ $) NIL (|has| |#2| (-558)))) (-2388 (((-112) $) NIL (|has| |#2| (-558)))) (-3367 (((-771) $) NIL) (((-771) $ (-644 (-864 |#1|))) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-1477 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-1550 (($ $) NIL (|has| |#2| (-454)))) (-3184 (((-420 $) $) NIL (|has| |#2| (-454)))) (-3717 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-3012 (($) NIL T CONST)) (-4307 (((-3 |#2| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#2| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#2| (-1038 (-566)))) (((-3 (-864 |#1|) "failed") $) NIL)) (-4205 ((|#2| $) NIL) (((-409 (-566)) $) NIL (|has| |#2| (-1038 (-409 (-566))))) (((-566) $) NIL (|has| |#2| (-1038 (-566)))) (((-864 |#1|) $) NIL)) (-2738 (($ $ $ (-864 |#1|)) NIL (|has| |#2| (-172)))) (-2973 (($ $ (-644 (-566))) NIL)) (-1786 (($ $) NIL)) (-3577 (((-689 (-566)) (-689 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -4227 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 $) (-1264 $)) NIL) (((-689 |#2|) (-689 $)) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-4075 (($ $) NIL (|has| |#2| (-454))) (($ $ (-864 |#1|)) NIL (|has| |#2| (-454)))) (-1774 (((-644 $) $) NIL)) (-3268 (((-112) $) NIL (|has| |#2| (-909)))) (-3635 (($ $ |#2| (-240 (-3018 |#1|) (-771)) $) NIL)) (-2062 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| (-864 |#1|) (-886 (-381))) (|has| |#2| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| (-864 |#1|) (-886 (-566))) (|has| |#2| (-886 (-566)))))) (-3934 (((-112) $) NIL)) (-2614 (((-771) $) NIL)) (-3851 (($ (-1171 |#2|) (-864 |#1|)) NIL) (($ (-1171 $) (-864 |#1|)) NIL)) (-2288 (((-644 $) $) NIL)) (-3264 (((-112) $) NIL)) (-3840 (($ |#2| (-240 (-3018 |#1|) (-771))) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-2044 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $ (-864 |#1|)) NIL)) (-3760 (((-240 (-3018 |#1|) (-771)) $) NIL) (((-771) $ (-864 |#1|)) NIL) (((-644 (-771)) $ (-644 (-864 |#1|))) NIL)) (-4301 (($ (-1 (-240 (-3018 |#1|) (-771)) (-240 (-3018 |#1|) (-771))) $) NIL)) (-1301 (($ (-1 |#2| |#2|) $) NIL)) (-3169 (((-3 (-864 |#1|) "failed") $) NIL)) (-1749 (($ $) NIL)) (-1763 ((|#2| $) NIL)) (-2167 (($ (-644 $)) NIL (|has| |#2| (-454))) (($ $ $) NIL (|has| |#2| (-454)))) (-4117 (((-1157) $) NIL)) (-3714 (((-3 (-644 $) "failed") $) NIL)) (-2353 (((-3 (-644 $) "failed") $) NIL)) (-1518 (((-3 (-2 (|:| |var| (-864 |#1|)) (|:| -2852 (-771))) "failed") $) NIL)) (-4035 (((-1119) $) NIL)) (-1723 (((-112) $) NIL)) (-1736 ((|#2| $) NIL)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#2| (-454)))) (-2214 (($ (-644 $)) NIL (|has| |#2| (-454))) (($ $ $) NIL (|has| |#2| (-454)))) (-4303 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-3240 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-3719 (((-420 $) $) NIL (|has| |#2| (-909)))) (-2994 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-558))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-558)))) (-2055 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-864 |#1|) |#2|) NIL) (($ $ (-644 (-864 |#1|)) (-644 |#2|)) NIL) (($ $ (-864 |#1|) $) NIL) (($ $ (-644 (-864 |#1|)) (-644 $)) NIL)) (-3652 (($ $ (-864 |#1|)) NIL (|has| |#2| (-172)))) (-3561 (($ $ (-864 |#1|)) NIL) (($ $ (-644 (-864 |#1|))) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-3636 (((-240 (-3018 |#1|) (-771)) $) NIL) (((-771) $ (-864 |#1|)) NIL) (((-644 (-771)) $ (-644 (-864 |#1|))) NIL)) (-1348 (((-892 (-381)) $) NIL (-12 (|has| (-864 |#1|) (-614 (-892 (-381)))) (|has| |#2| (-614 (-892 (-381)))))) (((-892 (-566)) $) NIL (-12 (|has| (-864 |#1|) (-614 (-892 (-566)))) (|has| |#2| (-614 (-892 (-566)))))) (((-538) $) NIL (-12 (|has| (-864 |#1|) (-614 (-538))) (|has| |#2| (-614 (-538)))))) (-2483 ((|#2| $) NIL (|has| |#2| (-454))) (($ $ (-864 |#1|)) NIL (|has| |#2| (-454)))) (-1656 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-909))))) (-3783 (((-862) $) NIL) (($ (-566)) NIL) (($ |#2|) NIL) (($ (-864 |#1|)) NIL) (($ (-409 (-566))) NIL (-2809 (|has| |#2| (-38 (-409 (-566)))) (|has| |#2| (-1038 (-409 (-566)))))) (($ $) NIL (|has| |#2| (-558)))) (-4170 (((-644 |#2|) $) NIL)) (-2649 ((|#2| $ (-240 (-3018 |#1|) (-771))) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-3144 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| $ (-145)) (|has| |#2| (-909))) (|has| |#2| (-145))))) (-2107 (((-771)) NIL T CONST)) (-3362 (($ $ $ (-771)) NIL (|has| |#2| (-172)))) (-3117 (((-112) $ $) NIL)) (-2695 (((-112) $ $) NIL (|has| |#2| (-558)))) (-2479 (($) NIL T CONST)) (-4334 (($) NIL T CONST)) (-2875 (($ $ (-864 |#1|)) NIL) (($ $ (-644 (-864 |#1|))) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-2947 (((-112) $ $) NIL)) (-3065 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL (|has| |#2| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#2| (-38 (-409 (-566))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-247 |#1| |#2|) (-13 (-949 |#2| (-240 (-3018 |#1|) (-771)) (-864 |#1|)) (-10 -8 (-15 -2973 ($ $ (-644 (-566)))))) (-644 (-1175)) (-1049)) (T -247)) -((-2973 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-247 *3 *4)) (-14 *3 (-644 (-1175))) (-4 *4 (-1049))))) -(-13 (-949 |#2| (-240 (-3018 |#1|) (-771)) (-864 |#1|)) (-10 -8 (-15 -2973 ($ $ (-644 (-566)))))) -((-3007 (((-112) $ $) NIL)) (-2586 (((-1269) $) 17)) (-1482 (((-183 (-249)) $) 11)) (-2691 (($ (-183 (-249))) 12)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-1547 (((-249) $) 7)) (-3783 (((-862) $) 9)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) 15))) -(((-248) (-13 (-1099) (-10 -8 (-15 -1547 ((-249) $)) (-15 -1482 ((-183 (-249)) $)) (-15 -2691 ($ (-183 (-249)))) (-15 -2586 ((-1269) $))))) (T -248)) -((-1547 (*1 *2 *1) (-12 (-5 *2 (-249)) (-5 *1 (-248)))) (-1482 (*1 *2 *1) (-12 (-5 *2 (-183 (-249))) (-5 *1 (-248)))) (-2691 (*1 *1 *2) (-12 (-5 *2 (-183 (-249))) (-5 *1 (-248)))) (-2586 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-248))))) -(-13 (-1099) (-10 -8 (-15 -1547 ((-249) $)) (-15 -1482 ((-183 (-249)) $)) (-15 -2691 ($ (-183 (-249)))) (-15 -2586 ((-1269) $)))) -((-3007 (((-112) $ $) NIL)) (-3538 (((-644 (-865)) $) NIL)) (-2640 (((-508) $) NIL)) (-4117 (((-1157) $) NIL)) (-1669 (((-186) $) NIL)) (-2572 (((-112) $ (-508)) NIL)) (-4035 (((-1119) $) NIL)) (-1653 (((-334) $) 7)) (-1429 (((-644 (-112)) $) NIL)) (-3783 (((-862) $) NIL) (((-187) $) 8)) (-3117 (((-112) $ $) NIL)) (-2347 (((-55) $) NIL)) (-2947 (((-112) $ $) NIL))) -(((-249) (-13 (-185) (-613 (-187)) (-10 -8 (-15 -1653 ((-334) $))))) (T -249)) -((-1653 (*1 *2 *1) (-12 (-5 *2 (-334)) (-5 *1 (-249))))) -(-13 (-185) (-613 (-187)) (-10 -8 (-15 -1653 ((-334) $)))) -((-3007 (((-112) $ $) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-4390 (((-1180) $ (-771)) 13)) (-3783 (((-862) $) 20)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) 16)) (-3018 (((-771) $) 9))) -(((-250) (-13 (-1099) (-10 -8 (-15 -3018 ((-771) $)) (-15 -4390 ((-1180) $ (-771)))))) (T -250)) -((-3018 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-250)))) (-4390 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1180)) (-5 *1 (-250))))) -(-13 (-1099) (-10 -8 (-15 -3018 ((-771) $)) (-15 -4390 ((-1180) $ (-771))))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-4348 (($ (-921)) NIL (|has| |#4| (-1049)))) (-3734 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4415)))) (-2660 (($ $ $) NIL (|has| |#4| (-793)))) (-4175 (((-3 $ "failed") $ $) NIL)) (-2256 (((-112) $ (-771)) NIL)) (-1970 (((-771)) NIL (|has| |#4| (-370)))) (-4364 (((-566) $) NIL (|has| |#4| (-848)))) (-3923 ((|#4| $ (-566) |#4|) NIL (|has| $ (-6 -4415)))) (-3012 (($) NIL T CONST)) (-4307 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1099))) (((-3 (-566) "failed") $) NIL (-12 (|has| |#4| (-1038 (-566))) (|has| |#4| (-1099)))) (((-3 (-409 (-566)) "failed") $) NIL (-12 (|has| |#4| (-1038 (-409 (-566)))) (|has| |#4| (-1099))))) (-4205 ((|#4| $) NIL (|has| |#4| (-1099))) (((-566) $) NIL (-12 (|has| |#4| (-1038 (-566))) (|has| |#4| (-1099)))) (((-409 (-566)) $) NIL (-12 (|has| |#4| (-1038 (-409 (-566)))) (|has| |#4| (-1099))))) (-3577 (((-2 (|:| -4227 (-689 |#4|)) (|:| |vec| (-1264 |#4|))) (-689 $) (-1264 $)) NIL (|has| |#4| (-1049))) (((-689 |#4|) (-689 $)) NIL (|has| |#4| (-1049))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (-12 (|has| |#4| (-639 (-566))) (|has| |#4| (-1049)))) (((-689 (-566)) (-689 $)) NIL (-12 (|has| |#4| (-639 (-566))) (|has| |#4| (-1049))))) (-1878 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| |#4| (-233)) (|has| |#4| (-1049))) (-12 (|has| |#4| (-639 (-566))) (|has| |#4| (-1049))) (|has| |#4| (-726)) (-12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049)))))) (-1552 (($) NIL (|has| |#4| (-370)))) (-2920 ((|#4| $ (-566) |#4|) NIL (|has| $ (-6 -4415)))) (-2855 ((|#4| $ (-566)) NIL)) (-1897 (((-112) $) NIL (|has| |#4| (-848)))) (-3979 (((-644 |#4|) $) NIL (|has| $ (-6 -4414)))) (-3934 (((-112) $) NIL (-2809 (-12 (|has| |#4| (-233)) (|has| |#4| (-1049))) (-12 (|has| |#4| (-639 (-566))) (|has| |#4| (-1049))) (|has| |#4| (-726)) (-12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049)))))) (-2117 (((-112) $) NIL (|has| |#4| (-848)))) (-2404 (((-112) $ (-771)) NIL)) (-3854 (((-566) $) NIL (|has| (-566) (-850)))) (-2097 (($ $ $) NIL (-2809 (|has| |#4| (-793)) (|has| |#4| (-848))))) (-2329 (((-644 |#4|) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#4| (-1099))))) (-2712 (((-566) $) NIL (|has| (-566) (-850)))) (-3962 (($ $ $) NIL (-2809 (|has| |#4| (-793)) (|has| |#4| (-848))))) (-2908 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#4| |#4|) $) NIL)) (-3681 (((-921) $) NIL (|has| |#4| (-370)))) (-2603 (((-112) $ (-771)) NIL)) (-4117 (((-1157) $) NIL)) (-4074 (((-644 (-566)) $) NIL)) (-3792 (((-112) (-566) $) NIL)) (-2178 (($ (-921)) NIL (|has| |#4| (-370)))) (-4035 (((-1119) $) NIL)) (-1998 ((|#4| $) NIL (|has| (-566) (-850)))) (-4030 (($ $ |#4|) NIL (|has| $ (-6 -4415)))) (-2692 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-644 |#4|) (-644 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))) (-1932 (((-112) $ $) NIL)) (-4156 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#4| (-1099))))) (-2993 (((-644 |#4|) $) NIL)) (-3467 (((-112) $) NIL)) (-1494 (($) NIL)) (-4390 ((|#4| $ (-566) |#4|) NIL) ((|#4| $ (-566)) 16)) (-4280 ((|#4| $ $) NIL (|has| |#4| (-1049)))) (-3764 (($ (-1264 |#4|)) NIL)) (-3164 (((-134)) NIL (|has| |#4| (-365)))) (-3561 (($ $ (-1 |#4| |#4|) (-771)) NIL (|has| |#4| (-1049))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1049))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049)))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049)))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049)))) (($ $ (-1175)) NIL (-12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049)))) (($ $ (-771)) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1049)))) (($ $) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1049))))) (-4045 (((-771) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4414))) (((-771) |#4| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#4| (-1099))))) (-3940 (($ $) NIL)) (-3783 (((-1264 |#4|) $) NIL) (((-862) $) NIL) (($ |#4|) NIL (|has| |#4| (-1099))) (($ (-566)) NIL (-2809 (-12 (|has| |#4| (-1038 (-566))) (|has| |#4| (-1099))) (|has| |#4| (-1049)))) (($ (-409 (-566))) NIL (-12 (|has| |#4| (-1038 (-409 (-566)))) (|has| |#4| (-1099))))) (-2107 (((-771)) NIL (|has| |#4| (-1049)) CONST)) (-3117 (((-112) $ $) NIL)) (-1894 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4414)))) (-2086 (($ $) NIL (|has| |#4| (-848)))) (-2479 (($) NIL T CONST)) (-4334 (($) NIL (-2809 (-12 (|has| |#4| (-233)) (|has| |#4| (-1049))) (-12 (|has| |#4| (-639 (-566))) (|has| |#4| (-1049))) (|has| |#4| (-726)) (-12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049)))) CONST)) (-2875 (($ $ (-1 |#4| |#4|) (-771)) NIL (|has| |#4| (-1049))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1049))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049)))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049)))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049)))) (($ $ (-1175)) NIL (-12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049)))) (($ $ (-771)) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1049)))) (($ $) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1049))))) (-3009 (((-112) $ $) NIL (-2809 (|has| |#4| (-793)) (|has| |#4| (-848))))) (-2984 (((-112) $ $) NIL (-2809 (|has| |#4| (-793)) (|has| |#4| (-848))))) (-2947 (((-112) $ $) NIL)) (-2995 (((-112) $ $) NIL (-2809 (|has| |#4| (-793)) (|has| |#4| (-848))))) (-2969 (((-112) $ $) NIL (-2809 (|has| |#4| (-793)) (|has| |#4| (-848))))) (-3065 (($ $ |#4|) NIL (|has| |#4| (-365)))) (-3053 (($ $ $) NIL) (($ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-771)) NIL (-2809 (-12 (|has| |#4| (-233)) (|has| |#4| (-1049))) (-12 (|has| |#4| (-639 (-566))) (|has| |#4| (-1049))) (|has| |#4| (-726)) (-12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049))))) (($ $ (-921)) NIL (-2809 (-12 (|has| |#4| (-233)) (|has| |#4| (-1049))) (-12 (|has| |#4| (-639 (-566))) (|has| |#4| (-1049))) (|has| |#4| (-726)) (-12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049)))))) (* (($ |#2| $) 18) (($ (-566) $) NIL) (($ (-771) $) NIL) (($ (-921) $) NIL) (($ |#3| $) 22) (($ $ |#4|) NIL (|has| |#4| (-726))) (($ |#4| $) NIL (|has| |#4| (-726))) (($ $ $) NIL (-2809 (-12 (|has| |#4| (-233)) (|has| |#4| (-1049))) (-12 (|has| |#4| (-639 (-566))) (|has| |#4| (-1049))) (|has| |#4| (-726)) (-12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049)))))) (-3018 (((-771) $) NIL (|has| $ (-6 -4414))))) +((-2641 (*1 *2 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1214)))) (-2842 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1214)))) (-3214 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1214)))) (-1451 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1214)))) (-3655 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1214)))) (-1690 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4415)) (-4 *1 (-244 *2)) (-4 *2 (-1214)))) (-3528 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4415)) (-4 *1 (-244 *2)) (-4 *2 (-1214)))) (-1649 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4415)) (-4 *1 (-244 *2)) (-4 *2 (-1214))))) +(-13 (-1010 |t#1|) (-10 -8 (-15 -2641 (|t#1| $)) (-15 -2842 ($ $)) (-15 -3214 ($ $)) (-15 -1451 ($ $)) (-15 -3655 ($ $)) (IF (|has| $ (-6 -4415)) (PROGN (-15 -1690 ($ $ $)) (-15 -3528 ($ $ $)) (-15 -1649 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2768 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1010 |#1|) . T) ((-1099) |has| |#1| (-1099)) ((-1214) . T)) +((-2988 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2876 ((|#1| $) NIL)) (-3541 ((|#1| $) NIL)) (-3214 (($ $) NIL)) (-1944 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4415)))) (-4258 (($ $ (-566)) NIL (|has| $ (-6 -4415)))) (-3054 (((-112) $) NIL (|has| |#1| (-850))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3628 (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-850)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4415)))) (-2671 (($ $) 10 (|has| |#1| (-850))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1504 (((-112) $ (-771)) NIL)) (-2191 ((|#1| $ |#1|) NIL (|has| $ (-6 -4415)))) (-1813 (($ $ $) NIL (|has| $ (-6 -4415)))) (-1948 ((|#1| $ |#1|) NIL (|has| $ (-6 -4415)))) (-1381 ((|#1| $ |#1|) NIL (|has| $ (-6 -4415)))) (-1456 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4415))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4415))) (($ $ "rest" $) NIL (|has| $ (-6 -4415))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4415))) ((|#1| $ (-1231 (-566)) |#1|) NIL (|has| $ (-6 -4415))) ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4415)))) (-4202 (($ $ (-644 $)) NIL (|has| $ (-6 -4415)))) (-2995 (($ (-1 (-112) |#1|) $) NIL)) (-3678 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-3531 ((|#1| $) NIL)) (-2463 (($) NIL T CONST)) (-3166 (($ $) NIL (|has| $ (-6 -4415)))) (-3683 (($ $) NIL)) (-3919 (($ $) NIL) (($ $ (-771)) NIL)) (-3322 (($ $) NIL (|has| |#1| (-1099)))) (-3942 (($ $) 7 (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3512 (($ |#1| $) NIL (|has| |#1| (-1099))) (($ (-1 (-112) |#1|) $) NIL)) (-2622 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2873 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3897 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4415)))) (-3829 ((|#1| $ (-566)) NIL)) (-1781 (((-112) $) NIL)) (-1569 (((-566) |#1| $ (-566)) NIL (|has| |#1| (-1099))) (((-566) |#1| $) NIL (|has| |#1| (-1099))) (((-566) (-1 (-112) |#1|) $) NIL)) (-1683 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-3431 (((-644 $) $) NIL)) (-1507 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1860 (($ (-771) |#1|) NIL)) (-3456 (((-112) $ (-771)) NIL)) (-2296 (((-566) $) NIL (|has| (-566) (-850)))) (-1478 (($ $ $) NIL (|has| |#1| (-850)))) (-3674 (($ $ $) NIL (|has| |#1| (-850))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2696 (($ $ $) NIL (|has| |#1| (-850))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3491 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-4050 (((-566) $) NIL (|has| (-566) (-850)))) (-2599 (($ $ $) NIL (|has| |#1| (-850)))) (-3885 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3770 (($ |#1|) NIL)) (-3267 (((-112) $ (-771)) NIL)) (-1458 (((-644 |#1|) $) NIL)) (-3860 (((-112) $) NIL)) (-3380 (((-1157) $) NIL (|has| |#1| (-1099)))) (-2641 ((|#1| $) NIL) (($ $ (-771)) NIL)) (-3888 (($ $ $ (-566)) NIL) (($ |#1| $ (-566)) NIL)) (-1859 (($ $ $ (-566)) NIL) (($ |#1| $ (-566)) NIL)) (-3725 (((-644 (-566)) $) NIL)) (-1644 (((-112) (-566) $) NIL)) (-4072 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3908 ((|#1| $) NIL) (($ $ (-771)) NIL)) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3787 (($ $ |#1|) NIL (|has| $ (-6 -4415)))) (-3254 (((-112) $) NIL)) (-2823 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) NIL)) (-2847 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3486 (((-644 |#1|) $) NIL)) (-2872 (((-112) $) NIL)) (-3493 (($) NIL)) (-1309 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1231 (-566))) NIL) ((|#1| $ (-566)) NIL) ((|#1| $ (-566) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-771) $ "count") 16)) (-1696 (((-566) $ $) NIL)) (-1308 (($ $ (-1231 (-566))) NIL) (($ $ (-566)) NIL)) (-2166 (($ $ (-1231 (-566))) NIL) (($ $ (-566)) NIL)) (-1388 (($ (-644 |#1|)) 22)) (-3786 (((-112) $) NIL)) (-4018 (($ $) NIL)) (-3810 (($ $) NIL (|has| $ (-6 -4415)))) (-2916 (((-771) $) NIL)) (-1922 (($ $) NIL)) (-4083 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2661 (($ $ $ (-566)) NIL (|has| $ (-6 -4415)))) (-1480 (($ $) NIL)) (-2376 (((-538) $) NIL (|has| |#1| (-614 (-538))))) (-1340 (($ (-644 |#1|)) NIL)) (-1690 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4386 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-644 $)) NIL) (($ $ |#1|) NIL)) (-3152 (($ (-644 |#1|)) 17) (((-644 |#1|) $) 18) (((-862) $) 21 (|has| |#1| (-613 (-862))))) (-1926 (((-644 $) $) NIL)) (-4385 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3044 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2210 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2968 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2914 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2956 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2935 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3000 (((-771) $) 14 (|has| $ (-6 -4414))))) +(((-245 |#1|) (-13 (-666 |#1|) (-492 (-644 |#1|)) (-10 -8 (-15 -1388 ($ (-644 |#1|))) (-15 -1309 ($ $ "unique")) (-15 -1309 ($ $ "sort")) (-15 -1309 ((-771) $ "count")))) (-850)) (T -245)) +((-1388 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-850)) (-5 *1 (-245 *3)))) (-1309 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-245 *3)) (-4 *3 (-850)))) (-1309 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-245 *3)) (-4 *3 (-850)))) (-1309 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-771)) (-5 *1 (-245 *4)) (-4 *4 (-850))))) +(-13 (-666 |#1|) (-492 (-644 |#1|)) (-10 -8 (-15 -1388 ($ (-644 |#1|))) (-15 -1309 ($ $ "unique")) (-15 -1309 ($ $ "sort")) (-15 -1309 ((-771) $ "count")))) +((-3681 (((-3 (-771) "failed") |#1| |#1| (-771)) 43))) +(((-246 |#1|) (-10 -7 (-15 -3681 ((-3 (-771) "failed") |#1| |#1| (-771)))) (-13 (-726) (-370) (-10 -7 (-15 ** (|#1| |#1| (-566)))))) (T -246)) +((-3681 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-771)) (-4 *3 (-13 (-726) (-370) (-10 -7 (-15 ** (*3 *3 (-566)))))) (-5 *1 (-246 *3))))) +(-10 -7 (-15 -3681 ((-3 (-771) "failed") |#1| |#1| (-771)))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-1771 (((-644 (-864 |#1|)) $) NIL)) (-1590 (((-1171 $) $ (-864 |#1|)) NIL) (((-1171 |#2|) $) NIL)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#2| (-558)))) (-2161 (($ $) NIL (|has| |#2| (-558)))) (-2345 (((-112) $) NIL (|has| |#2| (-558)))) (-1357 (((-771) $) NIL) (((-771) $ (-644 (-864 |#1|))) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-2292 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-1378 (($ $) NIL (|has| |#2| (-454)))) (-1364 (((-420 $) $) NIL (|has| |#2| (-454)))) (-4066 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-2463 (($) NIL T CONST)) (-2229 (((-3 |#2| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#2| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#2| (-1038 (-566)))) (((-3 (-864 |#1|) "failed") $) NIL)) (-4158 ((|#2| $) NIL) (((-409 (-566)) $) NIL (|has| |#2| (-1038 (-409 (-566))))) (((-566) $) NIL (|has| |#2| (-1038 (-566)))) (((-864 |#1|) $) NIL)) (-2610 (($ $ $ (-864 |#1|)) NIL (|has| |#2| (-172)))) (-1416 (($ $ (-644 (-566))) NIL)) (-2814 (($ $) NIL)) (-4089 (((-689 (-566)) (-689 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -3361 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 $) (-1264 $)) NIL) (((-689 |#2|) (-689 $)) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-2616 (($ $) NIL (|has| |#2| (-454))) (($ $ (-864 |#1|)) NIL (|has| |#2| (-454)))) (-2804 (((-644 $) $) NIL)) (-1615 (((-112) $) NIL (|has| |#2| (-909)))) (-1896 (($ $ |#2| (-240 (-3000 |#1|) (-771)) $) NIL)) (-2926 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| (-864 |#1|) (-886 (-381))) (|has| |#2| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| (-864 |#1|) (-886 (-566))) (|has| |#2| (-886 (-566)))))) (-2389 (((-112) $) NIL)) (-3039 (((-771) $) NIL)) (-1757 (($ (-1171 |#2|) (-864 |#1|)) NIL) (($ (-1171 $) (-864 |#1|)) NIL)) (-1587 (((-644 $) $) NIL)) (-2497 (((-112) $) NIL)) (-1746 (($ |#2| (-240 (-3000 |#1|) (-771))) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-2815 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $ (-864 |#1|)) NIL)) (-2749 (((-240 (-3000 |#1|) (-771)) $) NIL) (((-771) $ (-864 |#1|)) NIL) (((-644 (-771)) $ (-644 (-864 |#1|))) NIL)) (-3021 (($ (-1 (-240 (-3000 |#1|) (-771)) (-240 (-3000 |#1|) (-771))) $) NIL)) (-2319 (($ (-1 |#2| |#2|) $) NIL)) (-2297 (((-3 (-864 |#1|) "failed") $) NIL)) (-2784 (($ $) NIL)) (-2794 ((|#2| $) NIL)) (-2128 (($ (-644 $)) NIL (|has| |#2| (-454))) (($ $ $) NIL (|has| |#2| (-454)))) (-3380 (((-1157) $) NIL)) (-3738 (((-3 (-644 $) "failed") $) NIL)) (-4199 (((-3 (-644 $) "failed") $) NIL)) (-4108 (((-3 (-2 (|:| |var| (-864 |#1|)) (|:| -2201 (-771))) "failed") $) NIL)) (-4072 (((-1119) $) NIL)) (-2761 (((-112) $) NIL)) (-2773 ((|#2| $) NIL)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#2| (-454)))) (-2164 (($ (-644 $)) NIL (|has| |#2| (-454))) (($ $ $) NIL (|has| |#2| (-454)))) (-2010 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-1893 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-1624 (((-420 $) $) NIL (|has| |#2| (-909)))) (-2978 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-558))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-558)))) (-2023 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-864 |#1|) |#2|) NIL) (($ $ (-644 (-864 |#1|)) (-644 |#2|)) NIL) (($ $ (-864 |#1|) $) NIL) (($ $ (-644 (-864 |#1|)) (-644 $)) NIL)) (-4068 (($ $ (-864 |#1|)) NIL (|has| |#2| (-172)))) (-3629 (($ $ (-864 |#1|)) NIL) (($ $ (-644 (-864 |#1|))) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-3902 (((-240 (-3000 |#1|) (-771)) $) NIL) (((-771) $ (-864 |#1|)) NIL) (((-644 (-771)) $ (-644 (-864 |#1|))) NIL)) (-2376 (((-892 (-381)) $) NIL (-12 (|has| (-864 |#1|) (-614 (-892 (-381)))) (|has| |#2| (-614 (-892 (-381)))))) (((-892 (-566)) $) NIL (-12 (|has| (-864 |#1|) (-614 (-892 (-566)))) (|has| |#2| (-614 (-892 (-566)))))) (((-538) $) NIL (-12 (|has| (-864 |#1|) (-614 (-538))) (|has| |#2| (-614 (-538)))))) (-3173 ((|#2| $) NIL (|has| |#2| (-454))) (($ $ (-864 |#1|)) NIL (|has| |#2| (-454)))) (-3391 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-909))))) (-3152 (((-862) $) NIL) (($ (-566)) NIL) (($ |#2|) NIL) (($ (-864 |#1|)) NIL) (($ (-409 (-566))) NIL (-2768 (|has| |#2| (-38 (-409 (-566)))) (|has| |#2| (-1038 (-409 (-566)))))) (($ $) NIL (|has| |#2| (-558)))) (-1643 (((-644 |#2|) $) NIL)) (-2271 ((|#2| $ (-240 (-3000 |#1|) (-771))) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-2633 (((-3 $ "failed") $) NIL (-2768 (-12 (|has| $ (-145)) (|has| |#2| (-909))) (|has| |#2| (-145))))) (-2593 (((-771)) NIL T CONST)) (-2021 (($ $ $ (-771)) NIL (|has| |#2| (-172)))) (-3044 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL (|has| |#2| (-558)))) (-4356 (($) NIL T CONST)) (-4366 (($) NIL T CONST)) (-3497 (($ $ (-864 |#1|)) NIL) (($ $ (-644 (-864 |#1|))) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-2914 (((-112) $ $) NIL)) (-3025 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL (|has| |#2| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#2| (-38 (-409 (-566))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-247 |#1| |#2|) (-13 (-949 |#2| (-240 (-3000 |#1|) (-771)) (-864 |#1|)) (-10 -8 (-15 -1416 ($ $ (-644 (-566)))))) (-644 (-1175)) (-1049)) (T -247)) +((-1416 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-247 *3 *4)) (-14 *3 (-644 (-1175))) (-4 *4 (-1049))))) +(-13 (-949 |#2| (-240 (-3000 |#1|) (-771)) (-864 |#1|)) (-10 -8 (-15 -1416 ($ $ (-644 (-566)))))) +((-2988 (((-112) $ $) NIL)) (-2018 (((-1269) $) 17)) (-1848 (((-183 (-249)) $) 11)) (-2695 (($ (-183 (-249))) 12)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-2233 (((-249) $) 7)) (-3152 (((-862) $) 9)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) 15))) +(((-248) (-13 (-1099) (-10 -8 (-15 -2233 ((-249) $)) (-15 -1848 ((-183 (-249)) $)) (-15 -2695 ($ (-183 (-249)))) (-15 -2018 ((-1269) $))))) (T -248)) +((-2233 (*1 *2 *1) (-12 (-5 *2 (-249)) (-5 *1 (-248)))) (-1848 (*1 *2 *1) (-12 (-5 *2 (-183 (-249))) (-5 *1 (-248)))) (-2695 (*1 *1 *2) (-12 (-5 *2 (-183 (-249))) (-5 *1 (-248)))) (-2018 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-248))))) +(-13 (-1099) (-10 -8 (-15 -2233 ((-249) $)) (-15 -1848 ((-183 (-249)) $)) (-15 -2695 ($ (-183 (-249)))) (-15 -2018 ((-1269) $)))) +((-2988 (((-112) $ $) NIL)) (-3332 (((-644 (-865)) $) NIL)) (-1368 (((-508) $) NIL)) (-3380 (((-1157) $) NIL)) (-1691 (((-186) $) NIL)) (-3335 (((-112) $ (-508)) NIL)) (-4072 (((-1119) $) NIL)) (-4333 (((-334) $) 7)) (-3589 (((-644 (-112)) $) NIL)) (-3152 (((-862) $) NIL) (((-187) $) 8)) (-3044 (((-112) $ $) NIL)) (-1752 (((-55) $) NIL)) (-2914 (((-112) $ $) NIL))) +(((-249) (-13 (-185) (-613 (-187)) (-10 -8 (-15 -4333 ((-334) $))))) (T -249)) +((-4333 (*1 *2 *1) (-12 (-5 *2 (-334)) (-5 *1 (-249))))) +(-13 (-185) (-613 (-187)) (-10 -8 (-15 -4333 ((-334) $)))) +((-2988 (((-112) $ $) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-1309 (((-1180) $ (-771)) 13)) (-3152 (((-862) $) 20)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) 16)) (-3000 (((-771) $) 9))) +(((-250) (-13 (-1099) (-10 -8 (-15 -3000 ((-771) $)) (-15 -1309 ((-1180) $ (-771)))))) (T -250)) +((-3000 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-250)))) (-1309 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1180)) (-5 *1 (-250))))) +(-13 (-1099) (-10 -8 (-15 -3000 ((-771) $)) (-15 -1309 ((-1180) $ (-771))))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-1570 (($ (-921)) NIL (|has| |#4| (-1049)))) (-1944 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4415)))) (-3920 (($ $ $) NIL (|has| |#4| (-793)))) (-3967 (((-3 $ "failed") $ $) NIL)) (-1504 (((-112) $ (-771)) NIL)) (-3870 (((-771)) NIL (|has| |#4| (-370)))) (-2743 (((-566) $) NIL (|has| |#4| (-848)))) (-1456 ((|#4| $ (-566) |#4|) NIL (|has| $ (-6 -4415)))) (-2463 (($) NIL T CONST)) (-2229 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1099))) (((-3 (-566) "failed") $) NIL (-12 (|has| |#4| (-1038 (-566))) (|has| |#4| (-1099)))) (((-3 (-409 (-566)) "failed") $) NIL (-12 (|has| |#4| (-1038 (-409 (-566)))) (|has| |#4| (-1099))))) (-4158 ((|#4| $) NIL (|has| |#4| (-1099))) (((-566) $) NIL (-12 (|has| |#4| (-1038 (-566))) (|has| |#4| (-1099)))) (((-409 (-566)) $) NIL (-12 (|has| |#4| (-1038 (-409 (-566)))) (|has| |#4| (-1099))))) (-4089 (((-2 (|:| -3361 (-689 |#4|)) (|:| |vec| (-1264 |#4|))) (-689 $) (-1264 $)) NIL (|has| |#4| (-1049))) (((-689 |#4|) (-689 $)) NIL (|has| |#4| (-1049))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (-12 (|has| |#4| (-639 (-566))) (|has| |#4| (-1049)))) (((-689 (-566)) (-689 $)) NIL (-12 (|has| |#4| (-639 (-566))) (|has| |#4| (-1049))))) (-3245 (((-3 $ "failed") $) NIL (-2768 (-12 (|has| |#4| (-233)) (|has| |#4| (-1049))) (-12 (|has| |#4| (-639 (-566))) (|has| |#4| (-1049))) (|has| |#4| (-726)) (-12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049)))))) (-2715 (($) NIL (|has| |#4| (-370)))) (-3897 ((|#4| $ (-566) |#4|) NIL (|has| $ (-6 -4415)))) (-3829 ((|#4| $ (-566)) NIL)) (-2528 (((-112) $) NIL (|has| |#4| (-848)))) (-1683 (((-644 |#4|) $) NIL (|has| $ (-6 -4414)))) (-2389 (((-112) $) NIL (-2768 (-12 (|has| |#4| (-233)) (|has| |#4| (-1049))) (-12 (|has| |#4| (-639 (-566))) (|has| |#4| (-1049))) (|has| |#4| (-726)) (-12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049)))))) (-3233 (((-112) $) NIL (|has| |#4| (-848)))) (-3456 (((-112) $ (-771)) NIL)) (-2296 (((-566) $) NIL (|has| (-566) (-850)))) (-1478 (($ $ $) NIL (-2768 (|has| |#4| (-793)) (|has| |#4| (-848))))) (-3491 (((-644 |#4|) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#4| (-1099))))) (-4050 (((-566) $) NIL (|has| (-566) (-850)))) (-2599 (($ $ $) NIL (-2768 (|has| |#4| (-793)) (|has| |#4| (-848))))) (-3885 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#4| |#4|) $) NIL)) (-1866 (((-921) $) NIL (|has| |#4| (-370)))) (-3267 (((-112) $ (-771)) NIL)) (-3380 (((-1157) $) NIL)) (-3725 (((-644 (-566)) $) NIL)) (-1644 (((-112) (-566) $) NIL)) (-2835 (($ (-921)) NIL (|has| |#4| (-370)))) (-4072 (((-1119) $) NIL)) (-3908 ((|#4| $) NIL (|has| (-566) (-850)))) (-3787 (($ $ |#4|) NIL (|has| $ (-6 -4415)))) (-2823 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-644 |#4|) (-644 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))) (-3814 (((-112) $ $) NIL)) (-2847 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#4| (-1099))))) (-3486 (((-644 |#4|) $) NIL)) (-2872 (((-112) $) NIL)) (-3493 (($) NIL)) (-1309 ((|#4| $ (-566) |#4|) NIL) ((|#4| $ (-566)) 16)) (-3386 ((|#4| $ $) NIL (|has| |#4| (-1049)))) (-1668 (($ (-1264 |#4|)) NIL)) (-3126 (((-134)) NIL (|has| |#4| (-365)))) (-3629 (($ $ (-1 |#4| |#4|) (-771)) NIL (|has| |#4| (-1049))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1049))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049)))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049)))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049)))) (($ $ (-1175)) NIL (-12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049)))) (($ $ (-771)) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1049)))) (($ $) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1049))))) (-4083 (((-771) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4414))) (((-771) |#4| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#4| (-1099))))) (-1480 (($ $) NIL)) (-3152 (((-1264 |#4|) $) NIL) (((-862) $) NIL) (($ |#4|) NIL (|has| |#4| (-1099))) (($ (-566)) NIL (-2768 (-12 (|has| |#4| (-1038 (-566))) (|has| |#4| (-1099))) (|has| |#4| (-1049)))) (($ (-409 (-566))) NIL (-12 (|has| |#4| (-1038 (-409 (-566)))) (|has| |#4| (-1099))))) (-2593 (((-771)) NIL (|has| |#4| (-1049)) CONST)) (-3044 (((-112) $ $) NIL)) (-2210 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4414)))) (-1358 (($ $) NIL (|has| |#4| (-848)))) (-4356 (($) NIL T CONST)) (-4366 (($) NIL (-2768 (-12 (|has| |#4| (-233)) (|has| |#4| (-1049))) (-12 (|has| |#4| (-639 (-566))) (|has| |#4| (-1049))) (|has| |#4| (-726)) (-12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049)))) CONST)) (-3497 (($ $ (-1 |#4| |#4|) (-771)) NIL (|has| |#4| (-1049))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1049))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049)))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049)))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049)))) (($ $ (-1175)) NIL (-12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049)))) (($ $ (-771)) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1049)))) (($ $) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1049))))) (-2968 (((-112) $ $) NIL (-2768 (|has| |#4| (-793)) (|has| |#4| (-848))))) (-2946 (((-112) $ $) NIL (-2768 (|has| |#4| (-793)) (|has| |#4| (-848))))) (-2914 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL (-2768 (|has| |#4| (-793)) (|has| |#4| (-848))))) (-2935 (((-112) $ $) NIL (-2768 (|has| |#4| (-793)) (|has| |#4| (-848))))) (-3025 (($ $ |#4|) NIL (|has| |#4| (-365)))) (-3012 (($ $ $) NIL) (($ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-771)) NIL (-2768 (-12 (|has| |#4| (-233)) (|has| |#4| (-1049))) (-12 (|has| |#4| (-639 (-566))) (|has| |#4| (-1049))) (|has| |#4| (-726)) (-12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049))))) (($ $ (-921)) NIL (-2768 (-12 (|has| |#4| (-233)) (|has| |#4| (-1049))) (-12 (|has| |#4| (-639 (-566))) (|has| |#4| (-1049))) (|has| |#4| (-726)) (-12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049)))))) (* (($ |#2| $) 18) (($ (-566) $) NIL) (($ (-771) $) NIL) (($ (-921) $) NIL) (($ |#3| $) 22) (($ $ |#4|) NIL (|has| |#4| (-726))) (($ |#4| $) NIL (|has| |#4| (-726))) (($ $ $) NIL (-2768 (-12 (|has| |#4| (-233)) (|has| |#4| (-1049))) (-12 (|has| |#4| (-639 (-566))) (|has| |#4| (-1049))) (|has| |#4| (-726)) (-12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049)))))) (-3000 (((-771) $) NIL (|has| $ (-6 -4414))))) (((-251 |#1| |#2| |#3| |#4|) (-13 (-238 |#1| |#4|) (-648 |#2|) (-648 |#3|)) (-921) (-1049) (-1122 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-648 |#2|)) (T -251)) NIL (-13 (-238 |#1| |#4|) (-648 |#2|) (-648 |#3|)) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-4348 (($ (-921)) NIL (|has| |#3| (-1049)))) (-3734 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4415)))) (-2660 (($ $ $) NIL (|has| |#3| (-793)))) (-4175 (((-3 $ "failed") $ $) NIL)) (-2256 (((-112) $ (-771)) NIL)) (-1970 (((-771)) NIL (|has| |#3| (-370)))) (-4364 (((-566) $) NIL (|has| |#3| (-848)))) (-3923 ((|#3| $ (-566) |#3|) NIL (|has| $ (-6 -4415)))) (-3012 (($) NIL T CONST)) (-4307 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1099))) (((-3 (-566) "failed") $) NIL (-12 (|has| |#3| (-1038 (-566))) (|has| |#3| (-1099)))) (((-3 (-409 (-566)) "failed") $) NIL (-12 (|has| |#3| (-1038 (-409 (-566)))) (|has| |#3| (-1099))))) (-4205 ((|#3| $) NIL (|has| |#3| (-1099))) (((-566) $) NIL (-12 (|has| |#3| (-1038 (-566))) (|has| |#3| (-1099)))) (((-409 (-566)) $) NIL (-12 (|has| |#3| (-1038 (-409 (-566)))) (|has| |#3| (-1099))))) (-3577 (((-2 (|:| -4227 (-689 |#3|)) (|:| |vec| (-1264 |#3|))) (-689 $) (-1264 $)) NIL (|has| |#3| (-1049))) (((-689 |#3|) (-689 $)) NIL (|has| |#3| (-1049))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (-12 (|has| |#3| (-639 (-566))) (|has| |#3| (-1049)))) (((-689 (-566)) (-689 $)) NIL (-12 (|has| |#3| (-639 (-566))) (|has| |#3| (-1049))))) (-1878 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| |#3| (-233)) (|has| |#3| (-1049))) (-12 (|has| |#3| (-639 (-566))) (|has| |#3| (-1049))) (|has| |#3| (-726)) (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))))) (-1552 (($) NIL (|has| |#3| (-370)))) (-2920 ((|#3| $ (-566) |#3|) NIL (|has| $ (-6 -4415)))) (-2855 ((|#3| $ (-566)) NIL)) (-1897 (((-112) $) NIL (|has| |#3| (-848)))) (-3979 (((-644 |#3|) $) NIL (|has| $ (-6 -4414)))) (-3934 (((-112) $) NIL (-2809 (-12 (|has| |#3| (-233)) (|has| |#3| (-1049))) (-12 (|has| |#3| (-639 (-566))) (|has| |#3| (-1049))) (|has| |#3| (-726)) (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))))) (-2117 (((-112) $) NIL (|has| |#3| (-848)))) (-2404 (((-112) $ (-771)) NIL)) (-3854 (((-566) $) NIL (|has| (-566) (-850)))) (-2097 (($ $ $) NIL (-2809 (|has| |#3| (-793)) (|has| |#3| (-848))))) (-2329 (((-644 |#3|) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#3| (-1099))))) (-2712 (((-566) $) NIL (|has| (-566) (-850)))) (-3962 (($ $ $) NIL (-2809 (|has| |#3| (-793)) (|has| |#3| (-848))))) (-2908 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#3| |#3|) $) NIL)) (-3681 (((-921) $) NIL (|has| |#3| (-370)))) (-2603 (((-112) $ (-771)) NIL)) (-4117 (((-1157) $) NIL)) (-4074 (((-644 (-566)) $) NIL)) (-3792 (((-112) (-566) $) NIL)) (-2178 (($ (-921)) NIL (|has| |#3| (-370)))) (-4035 (((-1119) $) NIL)) (-1998 ((|#3| $) NIL (|has| (-566) (-850)))) (-4030 (($ $ |#3|) NIL (|has| $ (-6 -4415)))) (-2692 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#3|))) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) (($ $ (-295 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) (($ $ (-644 |#3|) (-644 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099))))) (-1932 (((-112) $ $) NIL)) (-4156 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#3| (-1099))))) (-2993 (((-644 |#3|) $) NIL)) (-3467 (((-112) $) NIL)) (-1494 (($) NIL)) (-4390 ((|#3| $ (-566) |#3|) NIL) ((|#3| $ (-566)) 15)) (-4280 ((|#3| $ $) NIL (|has| |#3| (-1049)))) (-3764 (($ (-1264 |#3|)) NIL)) (-3164 (((-134)) NIL (|has| |#3| (-365)))) (-3561 (($ $ (-1 |#3| |#3|) (-771)) NIL (|has| |#3| (-1049))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1049))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-1175)) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-771)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1049)))) (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1049))))) (-4045 (((-771) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4414))) (((-771) |#3| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#3| (-1099))))) (-3940 (($ $) NIL)) (-3783 (((-1264 |#3|) $) NIL) (((-862) $) NIL) (($ |#3|) NIL (|has| |#3| (-1099))) (($ (-566)) NIL (-2809 (-12 (|has| |#3| (-1038 (-566))) (|has| |#3| (-1099))) (|has| |#3| (-1049)))) (($ (-409 (-566))) NIL (-12 (|has| |#3| (-1038 (-409 (-566)))) (|has| |#3| (-1099))))) (-2107 (((-771)) NIL (|has| |#3| (-1049)) CONST)) (-3117 (((-112) $ $) NIL)) (-1894 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4414)))) (-2086 (($ $) NIL (|has| |#3| (-848)))) (-2479 (($) NIL T CONST)) (-4334 (($) NIL (-2809 (-12 (|has| |#3| (-233)) (|has| |#3| (-1049))) (-12 (|has| |#3| (-639 (-566))) (|has| |#3| (-1049))) (|has| |#3| (-726)) (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) CONST)) (-2875 (($ $ (-1 |#3| |#3|) (-771)) NIL (|has| |#3| (-1049))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1049))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-1175)) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-771)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1049)))) (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1049))))) (-3009 (((-112) $ $) NIL (-2809 (|has| |#3| (-793)) (|has| |#3| (-848))))) (-2984 (((-112) $ $) NIL (-2809 (|has| |#3| (-793)) (|has| |#3| (-848))))) (-2947 (((-112) $ $) NIL)) (-2995 (((-112) $ $) NIL (-2809 (|has| |#3| (-793)) (|has| |#3| (-848))))) (-2969 (((-112) $ $) NIL (-2809 (|has| |#3| (-793)) (|has| |#3| (-848))))) (-3065 (($ $ |#3|) NIL (|has| |#3| (-365)))) (-3053 (($ $ $) NIL) (($ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-771)) NIL (-2809 (-12 (|has| |#3| (-233)) (|has| |#3| (-1049))) (-12 (|has| |#3| (-639 (-566))) (|has| |#3| (-1049))) (|has| |#3| (-726)) (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049))))) (($ $ (-921)) NIL (-2809 (-12 (|has| |#3| (-233)) (|has| |#3| (-1049))) (-12 (|has| |#3| (-639 (-566))) (|has| |#3| (-1049))) (|has| |#3| (-726)) (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))))) (* (($ |#2| $) 17) (($ (-566) $) NIL) (($ (-771) $) NIL) (($ (-921) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-726))) (($ |#3| $) NIL (|has| |#3| (-726))) (($ $ $) NIL (-2809 (-12 (|has| |#3| (-233)) (|has| |#3| (-1049))) (-12 (|has| |#3| (-639 (-566))) (|has| |#3| (-1049))) (|has| |#3| (-726)) (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))))) (-3018 (((-771) $) NIL (|has| $ (-6 -4414))))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-1570 (($ (-921)) NIL (|has| |#3| (-1049)))) (-1944 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4415)))) (-3920 (($ $ $) NIL (|has| |#3| (-793)))) (-3967 (((-3 $ "failed") $ $) NIL)) (-1504 (((-112) $ (-771)) NIL)) (-3870 (((-771)) NIL (|has| |#3| (-370)))) (-2743 (((-566) $) NIL (|has| |#3| (-848)))) (-1456 ((|#3| $ (-566) |#3|) NIL (|has| $ (-6 -4415)))) (-2463 (($) NIL T CONST)) (-2229 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1099))) (((-3 (-566) "failed") $) NIL (-12 (|has| |#3| (-1038 (-566))) (|has| |#3| (-1099)))) (((-3 (-409 (-566)) "failed") $) NIL (-12 (|has| |#3| (-1038 (-409 (-566)))) (|has| |#3| (-1099))))) (-4158 ((|#3| $) NIL (|has| |#3| (-1099))) (((-566) $) NIL (-12 (|has| |#3| (-1038 (-566))) (|has| |#3| (-1099)))) (((-409 (-566)) $) NIL (-12 (|has| |#3| (-1038 (-409 (-566)))) (|has| |#3| (-1099))))) (-4089 (((-2 (|:| -3361 (-689 |#3|)) (|:| |vec| (-1264 |#3|))) (-689 $) (-1264 $)) NIL (|has| |#3| (-1049))) (((-689 |#3|) (-689 $)) NIL (|has| |#3| (-1049))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (-12 (|has| |#3| (-639 (-566))) (|has| |#3| (-1049)))) (((-689 (-566)) (-689 $)) NIL (-12 (|has| |#3| (-639 (-566))) (|has| |#3| (-1049))))) (-3245 (((-3 $ "failed") $) NIL (-2768 (-12 (|has| |#3| (-233)) (|has| |#3| (-1049))) (-12 (|has| |#3| (-639 (-566))) (|has| |#3| (-1049))) (|has| |#3| (-726)) (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))))) (-2715 (($) NIL (|has| |#3| (-370)))) (-3897 ((|#3| $ (-566) |#3|) NIL (|has| $ (-6 -4415)))) (-3829 ((|#3| $ (-566)) NIL)) (-2528 (((-112) $) NIL (|has| |#3| (-848)))) (-1683 (((-644 |#3|) $) NIL (|has| $ (-6 -4414)))) (-2389 (((-112) $) NIL (-2768 (-12 (|has| |#3| (-233)) (|has| |#3| (-1049))) (-12 (|has| |#3| (-639 (-566))) (|has| |#3| (-1049))) (|has| |#3| (-726)) (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))))) (-3233 (((-112) $) NIL (|has| |#3| (-848)))) (-3456 (((-112) $ (-771)) NIL)) (-2296 (((-566) $) NIL (|has| (-566) (-850)))) (-1478 (($ $ $) NIL (-2768 (|has| |#3| (-793)) (|has| |#3| (-848))))) (-3491 (((-644 |#3|) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#3| (-1099))))) (-4050 (((-566) $) NIL (|has| (-566) (-850)))) (-2599 (($ $ $) NIL (-2768 (|has| |#3| (-793)) (|has| |#3| (-848))))) (-3885 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#3| |#3|) $) NIL)) (-1866 (((-921) $) NIL (|has| |#3| (-370)))) (-3267 (((-112) $ (-771)) NIL)) (-3380 (((-1157) $) NIL)) (-3725 (((-644 (-566)) $) NIL)) (-1644 (((-112) (-566) $) NIL)) (-2835 (($ (-921)) NIL (|has| |#3| (-370)))) (-4072 (((-1119) $) NIL)) (-3908 ((|#3| $) NIL (|has| (-566) (-850)))) (-3787 (($ $ |#3|) NIL (|has| $ (-6 -4415)))) (-2823 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#3|))) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) (($ $ (-295 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) (($ $ (-644 |#3|) (-644 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099))))) (-3814 (((-112) $ $) NIL)) (-2847 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#3| (-1099))))) (-3486 (((-644 |#3|) $) NIL)) (-2872 (((-112) $) NIL)) (-3493 (($) NIL)) (-1309 ((|#3| $ (-566) |#3|) NIL) ((|#3| $ (-566)) 15)) (-3386 ((|#3| $ $) NIL (|has| |#3| (-1049)))) (-1668 (($ (-1264 |#3|)) NIL)) (-3126 (((-134)) NIL (|has| |#3| (-365)))) (-3629 (($ $ (-1 |#3| |#3|) (-771)) NIL (|has| |#3| (-1049))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1049))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-1175)) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-771)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1049)))) (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1049))))) (-4083 (((-771) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4414))) (((-771) |#3| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#3| (-1099))))) (-1480 (($ $) NIL)) (-3152 (((-1264 |#3|) $) NIL) (((-862) $) NIL) (($ |#3|) NIL (|has| |#3| (-1099))) (($ (-566)) NIL (-2768 (-12 (|has| |#3| (-1038 (-566))) (|has| |#3| (-1099))) (|has| |#3| (-1049)))) (($ (-409 (-566))) NIL (-12 (|has| |#3| (-1038 (-409 (-566)))) (|has| |#3| (-1099))))) (-2593 (((-771)) NIL (|has| |#3| (-1049)) CONST)) (-3044 (((-112) $ $) NIL)) (-2210 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4414)))) (-1358 (($ $) NIL (|has| |#3| (-848)))) (-4356 (($) NIL T CONST)) (-4366 (($) NIL (-2768 (-12 (|has| |#3| (-233)) (|has| |#3| (-1049))) (-12 (|has| |#3| (-639 (-566))) (|has| |#3| (-1049))) (|has| |#3| (-726)) (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) CONST)) (-3497 (($ $ (-1 |#3| |#3|) (-771)) NIL (|has| |#3| (-1049))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1049))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-1175)) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-771)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1049)))) (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1049))))) (-2968 (((-112) $ $) NIL (-2768 (|has| |#3| (-793)) (|has| |#3| (-848))))) (-2946 (((-112) $ $) NIL (-2768 (|has| |#3| (-793)) (|has| |#3| (-848))))) (-2914 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL (-2768 (|has| |#3| (-793)) (|has| |#3| (-848))))) (-2935 (((-112) $ $) NIL (-2768 (|has| |#3| (-793)) (|has| |#3| (-848))))) (-3025 (($ $ |#3|) NIL (|has| |#3| (-365)))) (-3012 (($ $ $) NIL) (($ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-771)) NIL (-2768 (-12 (|has| |#3| (-233)) (|has| |#3| (-1049))) (-12 (|has| |#3| (-639 (-566))) (|has| |#3| (-1049))) (|has| |#3| (-726)) (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049))))) (($ $ (-921)) NIL (-2768 (-12 (|has| |#3| (-233)) (|has| |#3| (-1049))) (-12 (|has| |#3| (-639 (-566))) (|has| |#3| (-1049))) (|has| |#3| (-726)) (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))))) (* (($ |#2| $) 17) (($ (-566) $) NIL) (($ (-771) $) NIL) (($ (-921) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-726))) (($ |#3| $) NIL (|has| |#3| (-726))) (($ $ $) NIL (-2768 (-12 (|has| |#3| (-233)) (|has| |#3| (-1049))) (-12 (|has| |#3| (-639 (-566))) (|has| |#3| (-1049))) (|has| |#3| (-726)) (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))))) (-3000 (((-771) $) NIL (|has| $ (-6 -4414))))) (((-252 |#1| |#2| |#3|) (-13 (-238 |#1| |#3|) (-648 |#2|)) (-771) (-1049) (-648 |#2|)) (T -252)) NIL (-13 (-238 |#1| |#3|) (-648 |#2|)) -((-2430 (((-644 (-771)) $) 56) (((-644 (-771)) $ |#3|) 59)) (-1617 (((-771) $) 58) (((-771) $ |#3|) 61)) (-1644 (($ $) 76)) (-4307 (((-3 |#2| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL) (((-3 (-566) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 83)) (-3254 (((-771) $ |#3|) 43) (((-771) $) 38)) (-4151 (((-1 $ (-771)) |#3|) 15) (((-1 $ (-771)) $) 88)) (-2886 ((|#4| $) 69)) (-3843 (((-112) $) 67)) (-2780 (($ $) 75)) (-2055 (($ $ (-644 (-295 $))) 114) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-644 |#4|) (-644 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-644 |#4|) (-644 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-644 |#3|) (-644 $)) 106) (($ $ |#3| |#2|) NIL) (($ $ (-644 |#3|) (-644 |#2|)) 100)) (-3561 (($ $ |#4|) NIL) (($ $ (-644 |#4|)) NIL) (($ $ |#4| (-771)) NIL) (($ $ (-644 |#4|) (-644 (-771))) NIL) (($ $) NIL) (($ $ (-771)) NIL) (($ $ (-1175)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL) (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-4110 (((-644 |#3|) $) 86)) (-3636 ((|#5| $) NIL) (((-771) $ |#4|) NIL) (((-644 (-771)) $ (-644 |#4|)) NIL) (((-771) $ |#3|) 49)) (-3783 (((-862) $) NIL) (($ (-566)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 78) (($ (-409 (-566))) NIL) (($ $) NIL))) -(((-253 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3783 (|#1| |#1|)) (-15 -3783 (|#1| (-409 (-566)))) (-15 -2055 (|#1| |#1| (-644 |#3|) (-644 |#2|))) (-15 -2055 (|#1| |#1| |#3| |#2|)) (-15 -2055 (|#1| |#1| (-644 |#3|) (-644 |#1|))) (-15 -2055 (|#1| |#1| |#3| |#1|)) (-15 -4151 ((-1 |#1| (-771)) |#1|)) (-15 -1644 (|#1| |#1|)) (-15 -2780 (|#1| |#1|)) (-15 -2886 (|#4| |#1|)) (-15 -3843 ((-112) |#1|)) (-15 -1617 ((-771) |#1| |#3|)) (-15 -2430 ((-644 (-771)) |#1| |#3|)) (-15 -1617 ((-771) |#1|)) (-15 -2430 ((-644 (-771)) |#1|)) (-15 -3636 ((-771) |#1| |#3|)) (-15 -3254 ((-771) |#1|)) (-15 -3254 ((-771) |#1| |#3|)) (-15 -4110 ((-644 |#3|) |#1|)) (-15 -4151 ((-1 |#1| (-771)) |#3|)) (-15 -3783 (|#1| |#3|)) (-15 -4307 ((-3 |#3| "failed") |#1|)) (-15 -3561 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3561 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -3561 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -3561 (|#1| |#1| (-1175) (-771))) (-15 -3561 (|#1| |#1| (-644 (-1175)))) (-15 -3561 (|#1| |#1| (-1175))) (-15 -3561 (|#1| |#1| (-771))) (-15 -3561 (|#1| |#1|)) (-15 -3636 ((-644 (-771)) |#1| (-644 |#4|))) (-15 -3636 ((-771) |#1| |#4|)) (-15 -3783 (|#1| |#4|)) (-15 -4307 ((-3 |#4| "failed") |#1|)) (-15 -2055 (|#1| |#1| (-644 |#4|) (-644 |#1|))) (-15 -2055 (|#1| |#1| |#4| |#1|)) (-15 -2055 (|#1| |#1| (-644 |#4|) (-644 |#2|))) (-15 -2055 (|#1| |#1| |#4| |#2|)) (-15 -2055 (|#1| |#1| (-644 |#1|) (-644 |#1|))) (-15 -2055 (|#1| |#1| |#1| |#1|)) (-15 -2055 (|#1| |#1| (-295 |#1|))) (-15 -2055 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -3636 (|#5| |#1|)) (-15 -4307 ((-3 (-566) "failed") |#1|)) (-15 -4307 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -4307 ((-3 |#2| "failed") |#1|)) (-15 -3783 (|#1| |#2|)) (-15 -3561 (|#1| |#1| (-644 |#4|) (-644 (-771)))) (-15 -3561 (|#1| |#1| |#4| (-771))) (-15 -3561 (|#1| |#1| (-644 |#4|))) (-15 -3561 (|#1| |#1| |#4|)) (-15 -3783 (|#1| (-566))) (-15 -3783 ((-862) |#1|))) (-254 |#2| |#3| |#4| |#5|) (-1049) (-850) (-267 |#3|) (-793)) (T -253)) +((-1825 (((-644 (-771)) $) 56) (((-644 (-771)) $ |#3|) 59)) (-1784 (((-771) $) 58) (((-771) $ |#3|) 61)) (-1559 (($ $) 76)) (-2229 (((-3 |#2| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL) (((-3 (-566) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 83)) (-2679 (((-771) $ |#3|) 43) (((-771) $) 38)) (-1545 (((-1 $ (-771)) |#3|) 15) (((-1 $ (-771)) $) 88)) (-1528 ((|#4| $) 69)) (-2663 (((-112) $) 67)) (-3779 (($ $) 75)) (-2023 (($ $ (-644 (-295 $))) 114) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-644 |#4|) (-644 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-644 |#4|) (-644 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-644 |#3|) (-644 $)) 106) (($ $ |#3| |#2|) NIL) (($ $ (-644 |#3|) (-644 |#2|)) 100)) (-3629 (($ $ |#4|) NIL) (($ $ (-644 |#4|)) NIL) (($ $ |#4| (-771)) NIL) (($ $ (-644 |#4|) (-644 (-771))) NIL) (($ $) NIL) (($ $ (-771)) NIL) (($ $ (-1175)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL) (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-4037 (((-644 |#3|) $) 86)) (-3902 ((|#5| $) NIL) (((-771) $ |#4|) NIL) (((-644 (-771)) $ (-644 |#4|)) NIL) (((-771) $ |#3|) 49)) (-3152 (((-862) $) NIL) (($ (-566)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 78) (($ (-409 (-566))) NIL) (($ $) NIL))) +(((-253 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3152 (|#1| |#1|)) (-15 -3152 (|#1| (-409 (-566)))) (-15 -2023 (|#1| |#1| (-644 |#3|) (-644 |#2|))) (-15 -2023 (|#1| |#1| |#3| |#2|)) (-15 -2023 (|#1| |#1| (-644 |#3|) (-644 |#1|))) (-15 -2023 (|#1| |#1| |#3| |#1|)) (-15 -1545 ((-1 |#1| (-771)) |#1|)) (-15 -1559 (|#1| |#1|)) (-15 -3779 (|#1| |#1|)) (-15 -1528 (|#4| |#1|)) (-15 -2663 ((-112) |#1|)) (-15 -1784 ((-771) |#1| |#3|)) (-15 -1825 ((-644 (-771)) |#1| |#3|)) (-15 -1784 ((-771) |#1|)) (-15 -1825 ((-644 (-771)) |#1|)) (-15 -3902 ((-771) |#1| |#3|)) (-15 -2679 ((-771) |#1|)) (-15 -2679 ((-771) |#1| |#3|)) (-15 -4037 ((-644 |#3|) |#1|)) (-15 -1545 ((-1 |#1| (-771)) |#3|)) (-15 -3152 (|#1| |#3|)) (-15 -2229 ((-3 |#3| "failed") |#1|)) (-15 -3629 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3629 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -3629 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -3629 (|#1| |#1| (-1175) (-771))) (-15 -3629 (|#1| |#1| (-644 (-1175)))) (-15 -3629 (|#1| |#1| (-1175))) (-15 -3629 (|#1| |#1| (-771))) (-15 -3629 (|#1| |#1|)) (-15 -3902 ((-644 (-771)) |#1| (-644 |#4|))) (-15 -3902 ((-771) |#1| |#4|)) (-15 -3152 (|#1| |#4|)) (-15 -2229 ((-3 |#4| "failed") |#1|)) (-15 -2023 (|#1| |#1| (-644 |#4|) (-644 |#1|))) (-15 -2023 (|#1| |#1| |#4| |#1|)) (-15 -2023 (|#1| |#1| (-644 |#4|) (-644 |#2|))) (-15 -2023 (|#1| |#1| |#4| |#2|)) (-15 -2023 (|#1| |#1| (-644 |#1|) (-644 |#1|))) (-15 -2023 (|#1| |#1| |#1| |#1|)) (-15 -2023 (|#1| |#1| (-295 |#1|))) (-15 -2023 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -3902 (|#5| |#1|)) (-15 -2229 ((-3 (-566) "failed") |#1|)) (-15 -2229 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -2229 ((-3 |#2| "failed") |#1|)) (-15 -3152 (|#1| |#2|)) (-15 -3629 (|#1| |#1| (-644 |#4|) (-644 (-771)))) (-15 -3629 (|#1| |#1| |#4| (-771))) (-15 -3629 (|#1| |#1| (-644 |#4|))) (-15 -3629 (|#1| |#1| |#4|)) (-15 -3152 (|#1| (-566))) (-15 -3152 ((-862) |#1|))) (-254 |#2| |#3| |#4| |#5|) (-1049) (-850) (-267 |#3|) (-793)) (T -253)) NIL -(-10 -8 (-15 -3783 (|#1| |#1|)) (-15 -3783 (|#1| (-409 (-566)))) (-15 -2055 (|#1| |#1| (-644 |#3|) (-644 |#2|))) (-15 -2055 (|#1| |#1| |#3| |#2|)) (-15 -2055 (|#1| |#1| (-644 |#3|) (-644 |#1|))) (-15 -2055 (|#1| |#1| |#3| |#1|)) (-15 -4151 ((-1 |#1| (-771)) |#1|)) (-15 -1644 (|#1| |#1|)) (-15 -2780 (|#1| |#1|)) (-15 -2886 (|#4| |#1|)) (-15 -3843 ((-112) |#1|)) (-15 -1617 ((-771) |#1| |#3|)) (-15 -2430 ((-644 (-771)) |#1| |#3|)) (-15 -1617 ((-771) |#1|)) (-15 -2430 ((-644 (-771)) |#1|)) (-15 -3636 ((-771) |#1| |#3|)) (-15 -3254 ((-771) |#1|)) (-15 -3254 ((-771) |#1| |#3|)) (-15 -4110 ((-644 |#3|) |#1|)) (-15 -4151 ((-1 |#1| (-771)) |#3|)) (-15 -3783 (|#1| |#3|)) (-15 -4307 ((-3 |#3| "failed") |#1|)) (-15 -3561 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3561 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -3561 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -3561 (|#1| |#1| (-1175) (-771))) (-15 -3561 (|#1| |#1| (-644 (-1175)))) (-15 -3561 (|#1| |#1| (-1175))) (-15 -3561 (|#1| |#1| (-771))) (-15 -3561 (|#1| |#1|)) (-15 -3636 ((-644 (-771)) |#1| (-644 |#4|))) (-15 -3636 ((-771) |#1| |#4|)) (-15 -3783 (|#1| |#4|)) (-15 -4307 ((-3 |#4| "failed") |#1|)) (-15 -2055 (|#1| |#1| (-644 |#4|) (-644 |#1|))) (-15 -2055 (|#1| |#1| |#4| |#1|)) (-15 -2055 (|#1| |#1| (-644 |#4|) (-644 |#2|))) (-15 -2055 (|#1| |#1| |#4| |#2|)) (-15 -2055 (|#1| |#1| (-644 |#1|) (-644 |#1|))) (-15 -2055 (|#1| |#1| |#1| |#1|)) (-15 -2055 (|#1| |#1| (-295 |#1|))) (-15 -2055 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -3636 (|#5| |#1|)) (-15 -4307 ((-3 (-566) "failed") |#1|)) (-15 -4307 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -4307 ((-3 |#2| "failed") |#1|)) (-15 -3783 (|#1| |#2|)) (-15 -3561 (|#1| |#1| (-644 |#4|) (-644 (-771)))) (-15 -3561 (|#1| |#1| |#4| (-771))) (-15 -3561 (|#1| |#1| (-644 |#4|))) (-15 -3561 (|#1| |#1| |#4|)) (-15 -3783 (|#1| (-566))) (-15 -3783 ((-862) |#1|))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-2430 (((-644 (-771)) $) 216) (((-644 (-771)) $ |#2|) 214)) (-1617 (((-771) $) 215) (((-771) $ |#2|) 213)) (-3863 (((-644 |#3|) $) 112)) (-3683 (((-1171 $) $ |#3|) 127) (((-1171 |#1|) $) 126)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) 89 (|has| |#1| (-558)))) (-3991 (($ $) 90 (|has| |#1| (-558)))) (-2388 (((-112) $) 92 (|has| |#1| (-558)))) (-3367 (((-771) $) 114) (((-771) $ (-644 |#3|)) 113)) (-4175 (((-3 $ "failed") $ $) 20)) (-1477 (((-420 (-1171 $)) (-1171 $)) 102 (|has| |#1| (-909)))) (-1550 (($ $) 100 (|has| |#1| (-454)))) (-3184 (((-420 $) $) 99 (|has| |#1| (-454)))) (-3717 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) 105 (|has| |#1| (-909)))) (-1644 (($ $) 209)) (-3012 (($) 18 T CONST)) (-4307 (((-3 |#1| "failed") $) 166) (((-3 (-409 (-566)) "failed") $) 163 (|has| |#1| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) 161 (|has| |#1| (-1038 (-566)))) (((-3 |#3| "failed") $) 138) (((-3 |#2| "failed") $) 223)) (-4205 ((|#1| $) 165) (((-409 (-566)) $) 164 (|has| |#1| (-1038 (-409 (-566))))) (((-566) $) 162 (|has| |#1| (-1038 (-566)))) ((|#3| $) 139) ((|#2| $) 224)) (-2738 (($ $ $ |#3|) 110 (|has| |#1| (-172)))) (-1786 (($ $) 156)) (-3577 (((-689 (-566)) (-689 $)) 136 (|has| |#1| (-639 (-566)))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) 135 (|has| |#1| (-639 (-566)))) (((-2 (|:| -4227 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) 134) (((-689 |#1|) (-689 $)) 133)) (-1878 (((-3 $ "failed") $) 37)) (-4075 (($ $) 178 (|has| |#1| (-454))) (($ $ |#3|) 107 (|has| |#1| (-454)))) (-1774 (((-644 $) $) 111)) (-3268 (((-112) $) 98 (|has| |#1| (-909)))) (-3635 (($ $ |#1| |#4| $) 174)) (-2062 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 86 (-12 (|has| |#3| (-886 (-381))) (|has| |#1| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 85 (-12 (|has| |#3| (-886 (-566))) (|has| |#1| (-886 (-566)))))) (-3254 (((-771) $ |#2|) 219) (((-771) $) 218)) (-3934 (((-112) $) 35)) (-2614 (((-771) $) 171)) (-3851 (($ (-1171 |#1|) |#3|) 119) (($ (-1171 $) |#3|) 118)) (-2288 (((-644 $) $) 128)) (-3264 (((-112) $) 154)) (-3840 (($ |#1| |#4|) 155) (($ $ |#3| (-771)) 121) (($ $ (-644 |#3|) (-644 (-771))) 120)) (-2044 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $ |#3|) 122)) (-3760 ((|#4| $) 172) (((-771) $ |#3|) 124) (((-644 (-771)) $ (-644 |#3|)) 123)) (-4301 (($ (-1 |#4| |#4|) $) 173)) (-1301 (($ (-1 |#1| |#1|) $) 153)) (-4151 (((-1 $ (-771)) |#2|) 221) (((-1 $ (-771)) $) 208 (|has| |#1| (-233)))) (-3169 (((-3 |#3| "failed") $) 125)) (-1749 (($ $) 151)) (-1763 ((|#1| $) 150)) (-2886 ((|#3| $) 211)) (-2167 (($ (-644 $)) 96 (|has| |#1| (-454))) (($ $ $) 95 (|has| |#1| (-454)))) (-4117 (((-1157) $) 10)) (-3843 (((-112) $) 212)) (-3714 (((-3 (-644 $) "failed") $) 116)) (-2353 (((-3 (-644 $) "failed") $) 117)) (-1518 (((-3 (-2 (|:| |var| |#3|) (|:| -2852 (-771))) "failed") $) 115)) (-2780 (($ $) 210)) (-4035 (((-1119) $) 11)) (-1723 (((-112) $) 168)) (-1736 ((|#1| $) 169)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) 97 (|has| |#1| (-454)))) (-2214 (($ (-644 $)) 94 (|has| |#1| (-454))) (($ $ $) 93 (|has| |#1| (-454)))) (-4303 (((-420 (-1171 $)) (-1171 $)) 104 (|has| |#1| (-909)))) (-3240 (((-420 (-1171 $)) (-1171 $)) 103 (|has| |#1| (-909)))) (-3719 (((-420 $) $) 101 (|has| |#1| (-909)))) (-2994 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-558))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-558)))) (-2055 (($ $ (-644 (-295 $))) 147) (($ $ (-295 $)) 146) (($ $ $ $) 145) (($ $ (-644 $) (-644 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-644 |#3|) (-644 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-644 |#3|) (-644 $)) 140) (($ $ |#2| $) 207 (|has| |#1| (-233))) (($ $ (-644 |#2|) (-644 $)) 206 (|has| |#1| (-233))) (($ $ |#2| |#1|) 205 (|has| |#1| (-233))) (($ $ (-644 |#2|) (-644 |#1|)) 204 (|has| |#1| (-233)))) (-3652 (($ $ |#3|) 109 (|has| |#1| (-172)))) (-3561 (($ $ |#3|) 46) (($ $ (-644 |#3|)) 45) (($ $ |#3| (-771)) 44) (($ $ (-644 |#3|) (-644 (-771))) 43) (($ $) 240 (|has| |#1| (-233))) (($ $ (-771)) 238 (|has| |#1| (-233))) (($ $ (-1175)) 236 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) 235 (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) 234 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) 233 (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-4110 (((-644 |#2|) $) 220)) (-3636 ((|#4| $) 152) (((-771) $ |#3|) 132) (((-644 (-771)) $ (-644 |#3|)) 131) (((-771) $ |#2|) 217)) (-1348 (((-892 (-381)) $) 84 (-12 (|has| |#3| (-614 (-892 (-381)))) (|has| |#1| (-614 (-892 (-381)))))) (((-892 (-566)) $) 83 (-12 (|has| |#3| (-614 (-892 (-566)))) (|has| |#1| (-614 (-892 (-566)))))) (((-538) $) 82 (-12 (|has| |#3| (-614 (-538))) (|has| |#1| (-614 (-538)))))) (-2483 ((|#1| $) 177 (|has| |#1| (-454))) (($ $ |#3|) 108 (|has| |#1| (-454)))) (-1656 (((-3 (-1264 $) "failed") (-689 $)) 106 (-2432 (|has| $ (-145)) (|has| |#1| (-909))))) (-3783 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 167) (($ |#3|) 137) (($ |#2|) 222) (($ (-409 (-566))) 80 (-2809 (|has| |#1| (-1038 (-409 (-566)))) (|has| |#1| (-38 (-409 (-566)))))) (($ $) 87 (|has| |#1| (-558)))) (-4170 (((-644 |#1|) $) 170)) (-2649 ((|#1| $ |#4|) 157) (($ $ |#3| (-771)) 130) (($ $ (-644 |#3|) (-644 (-771))) 129)) (-3144 (((-3 $ "failed") $) 81 (-2809 (-2432 (|has| $ (-145)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-2107 (((-771)) 32 T CONST)) (-3362 (($ $ $ (-771)) 175 (|has| |#1| (-172)))) (-3117 (((-112) $ $) 9)) (-2695 (((-112) $ $) 91 (|has| |#1| (-558)))) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-2875 (($ $ |#3|) 42) (($ $ (-644 |#3|)) 41) (($ $ |#3| (-771)) 40) (($ $ (-644 |#3|) (-644 (-771))) 39) (($ $) 239 (|has| |#1| (-233))) (($ $ (-771)) 237 (|has| |#1| (-233))) (($ $ (-1175)) 232 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) 231 (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) 230 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) 229 (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) 228) (($ $ (-1 |#1| |#1|)) 227)) (-2947 (((-112) $ $) 6)) (-3065 (($ $ |#1|) 158 (|has| |#1| (-365)))) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 160 (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) 159 (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) 149) (($ $ |#1|) 148))) +(-10 -8 (-15 -3152 (|#1| |#1|)) (-15 -3152 (|#1| (-409 (-566)))) (-15 -2023 (|#1| |#1| (-644 |#3|) (-644 |#2|))) (-15 -2023 (|#1| |#1| |#3| |#2|)) (-15 -2023 (|#1| |#1| (-644 |#3|) (-644 |#1|))) (-15 -2023 (|#1| |#1| |#3| |#1|)) (-15 -1545 ((-1 |#1| (-771)) |#1|)) (-15 -1559 (|#1| |#1|)) (-15 -3779 (|#1| |#1|)) (-15 -1528 (|#4| |#1|)) (-15 -2663 ((-112) |#1|)) (-15 -1784 ((-771) |#1| |#3|)) (-15 -1825 ((-644 (-771)) |#1| |#3|)) (-15 -1784 ((-771) |#1|)) (-15 -1825 ((-644 (-771)) |#1|)) (-15 -3902 ((-771) |#1| |#3|)) (-15 -2679 ((-771) |#1|)) (-15 -2679 ((-771) |#1| |#3|)) (-15 -4037 ((-644 |#3|) |#1|)) (-15 -1545 ((-1 |#1| (-771)) |#3|)) (-15 -3152 (|#1| |#3|)) (-15 -2229 ((-3 |#3| "failed") |#1|)) (-15 -3629 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3629 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -3629 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -3629 (|#1| |#1| (-1175) (-771))) (-15 -3629 (|#1| |#1| (-644 (-1175)))) (-15 -3629 (|#1| |#1| (-1175))) (-15 -3629 (|#1| |#1| (-771))) (-15 -3629 (|#1| |#1|)) (-15 -3902 ((-644 (-771)) |#1| (-644 |#4|))) (-15 -3902 ((-771) |#1| |#4|)) (-15 -3152 (|#1| |#4|)) (-15 -2229 ((-3 |#4| "failed") |#1|)) (-15 -2023 (|#1| |#1| (-644 |#4|) (-644 |#1|))) (-15 -2023 (|#1| |#1| |#4| |#1|)) (-15 -2023 (|#1| |#1| (-644 |#4|) (-644 |#2|))) (-15 -2023 (|#1| |#1| |#4| |#2|)) (-15 -2023 (|#1| |#1| (-644 |#1|) (-644 |#1|))) (-15 -2023 (|#1| |#1| |#1| |#1|)) (-15 -2023 (|#1| |#1| (-295 |#1|))) (-15 -2023 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -3902 (|#5| |#1|)) (-15 -2229 ((-3 (-566) "failed") |#1|)) (-15 -2229 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -2229 ((-3 |#2| "failed") |#1|)) (-15 -3152 (|#1| |#2|)) (-15 -3629 (|#1| |#1| (-644 |#4|) (-644 (-771)))) (-15 -3629 (|#1| |#1| |#4| (-771))) (-15 -3629 (|#1| |#1| (-644 |#4|))) (-15 -3629 (|#1| |#1| |#4|)) (-15 -3152 (|#1| (-566))) (-15 -3152 ((-862) |#1|))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-1825 (((-644 (-771)) $) 216) (((-644 (-771)) $ |#2|) 214)) (-1784 (((-771) $) 215) (((-771) $ |#2|) 213)) (-1771 (((-644 |#3|) $) 112)) (-1590 (((-1171 $) $ |#3|) 127) (((-1171 |#1|) $) 126)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) 89 (|has| |#1| (-558)))) (-2161 (($ $) 90 (|has| |#1| (-558)))) (-2345 (((-112) $) 92 (|has| |#1| (-558)))) (-1357 (((-771) $) 114) (((-771) $ (-644 |#3|)) 113)) (-3967 (((-3 $ "failed") $ $) 20)) (-2292 (((-420 (-1171 $)) (-1171 $)) 102 (|has| |#1| (-909)))) (-1378 (($ $) 100 (|has| |#1| (-454)))) (-1364 (((-420 $) $) 99 (|has| |#1| (-454)))) (-4066 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) 105 (|has| |#1| (-909)))) (-1559 (($ $) 209)) (-2463 (($) 18 T CONST)) (-2229 (((-3 |#1| "failed") $) 166) (((-3 (-409 (-566)) "failed") $) 163 (|has| |#1| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) 161 (|has| |#1| (-1038 (-566)))) (((-3 |#3| "failed") $) 138) (((-3 |#2| "failed") $) 223)) (-4158 ((|#1| $) 165) (((-409 (-566)) $) 164 (|has| |#1| (-1038 (-409 (-566))))) (((-566) $) 162 (|has| |#1| (-1038 (-566)))) ((|#3| $) 139) ((|#2| $) 224)) (-2610 (($ $ $ |#3|) 110 (|has| |#1| (-172)))) (-2814 (($ $) 156)) (-4089 (((-689 (-566)) (-689 $)) 136 (|has| |#1| (-639 (-566)))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) 135 (|has| |#1| (-639 (-566)))) (((-2 (|:| -3361 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) 134) (((-689 |#1|) (-689 $)) 133)) (-3245 (((-3 $ "failed") $) 37)) (-2616 (($ $) 178 (|has| |#1| (-454))) (($ $ |#3|) 107 (|has| |#1| (-454)))) (-2804 (((-644 $) $) 111)) (-1615 (((-112) $) 98 (|has| |#1| (-909)))) (-1896 (($ $ |#1| |#4| $) 174)) (-2926 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 86 (-12 (|has| |#3| (-886 (-381))) (|has| |#1| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 85 (-12 (|has| |#3| (-886 (-566))) (|has| |#1| (-886 (-566)))))) (-2679 (((-771) $ |#2|) 219) (((-771) $) 218)) (-2389 (((-112) $) 35)) (-3039 (((-771) $) 171)) (-1757 (($ (-1171 |#1|) |#3|) 119) (($ (-1171 $) |#3|) 118)) (-1587 (((-644 $) $) 128)) (-2497 (((-112) $) 154)) (-1746 (($ |#1| |#4|) 155) (($ $ |#3| (-771)) 121) (($ $ (-644 |#3|) (-644 (-771))) 120)) (-2815 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $ |#3|) 122)) (-2749 ((|#4| $) 172) (((-771) $ |#3|) 124) (((-644 (-771)) $ (-644 |#3|)) 123)) (-3021 (($ (-1 |#4| |#4|) $) 173)) (-2319 (($ (-1 |#1| |#1|) $) 153)) (-1545 (((-1 $ (-771)) |#2|) 221) (((-1 $ (-771)) $) 208 (|has| |#1| (-233)))) (-2297 (((-3 |#3| "failed") $) 125)) (-2784 (($ $) 151)) (-2794 ((|#1| $) 150)) (-1528 ((|#3| $) 211)) (-2128 (($ (-644 $)) 96 (|has| |#1| (-454))) (($ $ $) 95 (|has| |#1| (-454)))) (-3380 (((-1157) $) 10)) (-2663 (((-112) $) 212)) (-3738 (((-3 (-644 $) "failed") $) 116)) (-4199 (((-3 (-644 $) "failed") $) 117)) (-4108 (((-3 (-2 (|:| |var| |#3|) (|:| -2201 (-771))) "failed") $) 115)) (-3779 (($ $) 210)) (-4072 (((-1119) $) 11)) (-2761 (((-112) $) 168)) (-2773 ((|#1| $) 169)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) 97 (|has| |#1| (-454)))) (-2164 (($ (-644 $)) 94 (|has| |#1| (-454))) (($ $ $) 93 (|has| |#1| (-454)))) (-2010 (((-420 (-1171 $)) (-1171 $)) 104 (|has| |#1| (-909)))) (-1893 (((-420 (-1171 $)) (-1171 $)) 103 (|has| |#1| (-909)))) (-1624 (((-420 $) $) 101 (|has| |#1| (-909)))) (-2978 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-558))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-558)))) (-2023 (($ $ (-644 (-295 $))) 147) (($ $ (-295 $)) 146) (($ $ $ $) 145) (($ $ (-644 $) (-644 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-644 |#3|) (-644 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-644 |#3|) (-644 $)) 140) (($ $ |#2| $) 207 (|has| |#1| (-233))) (($ $ (-644 |#2|) (-644 $)) 206 (|has| |#1| (-233))) (($ $ |#2| |#1|) 205 (|has| |#1| (-233))) (($ $ (-644 |#2|) (-644 |#1|)) 204 (|has| |#1| (-233)))) (-4068 (($ $ |#3|) 109 (|has| |#1| (-172)))) (-3629 (($ $ |#3|) 46) (($ $ (-644 |#3|)) 45) (($ $ |#3| (-771)) 44) (($ $ (-644 |#3|) (-644 (-771))) 43) (($ $) 240 (|has| |#1| (-233))) (($ $ (-771)) 238 (|has| |#1| (-233))) (($ $ (-1175)) 236 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) 235 (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) 234 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) 233 (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-4037 (((-644 |#2|) $) 220)) (-3902 ((|#4| $) 152) (((-771) $ |#3|) 132) (((-644 (-771)) $ (-644 |#3|)) 131) (((-771) $ |#2|) 217)) (-2376 (((-892 (-381)) $) 84 (-12 (|has| |#3| (-614 (-892 (-381)))) (|has| |#1| (-614 (-892 (-381)))))) (((-892 (-566)) $) 83 (-12 (|has| |#3| (-614 (-892 (-566)))) (|has| |#1| (-614 (-892 (-566)))))) (((-538) $) 82 (-12 (|has| |#3| (-614 (-538))) (|has| |#1| (-614 (-538)))))) (-3173 ((|#1| $) 177 (|has| |#1| (-454))) (($ $ |#3|) 108 (|has| |#1| (-454)))) (-3391 (((-3 (-1264 $) "failed") (-689 $)) 106 (-2415 (|has| $ (-145)) (|has| |#1| (-909))))) (-3152 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 167) (($ |#3|) 137) (($ |#2|) 222) (($ (-409 (-566))) 80 (-2768 (|has| |#1| (-1038 (-409 (-566)))) (|has| |#1| (-38 (-409 (-566)))))) (($ $) 87 (|has| |#1| (-558)))) (-1643 (((-644 |#1|) $) 170)) (-2271 ((|#1| $ |#4|) 157) (($ $ |#3| (-771)) 130) (($ $ (-644 |#3|) (-644 (-771))) 129)) (-2633 (((-3 $ "failed") $) 81 (-2768 (-2415 (|has| $ (-145)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-2593 (((-771)) 32 T CONST)) (-2021 (($ $ $ (-771)) 175 (|has| |#1| (-172)))) (-3044 (((-112) $ $) 9)) (-3014 (((-112) $ $) 91 (|has| |#1| (-558)))) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-3497 (($ $ |#3|) 42) (($ $ (-644 |#3|)) 41) (($ $ |#3| (-771)) 40) (($ $ (-644 |#3|) (-644 (-771))) 39) (($ $) 239 (|has| |#1| (-233))) (($ $ (-771)) 237 (|has| |#1| (-233))) (($ $ (-1175)) 232 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) 231 (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) 230 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) 229 (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) 228) (($ $ (-1 |#1| |#1|)) 227)) (-2914 (((-112) $ $) 6)) (-3025 (($ $ |#1|) 158 (|has| |#1| (-365)))) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 160 (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) 159 (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) 149) (($ $ |#1|) 148))) (((-254 |#1| |#2| |#3| |#4|) (-140) (-1049) (-850) (-267 |t#2|) (-793)) (T -254)) -((-4151 (*1 *2 *3) (-12 (-4 *4 (-1049)) (-4 *3 (-850)) (-4 *5 (-267 *3)) (-4 *6 (-793)) (-5 *2 (-1 *1 (-771))) (-4 *1 (-254 *4 *3 *5 *6)))) (-4110 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-850)) (-4 *5 (-267 *4)) (-4 *6 (-793)) (-5 *2 (-644 *4)))) (-3254 (*1 *2 *1 *3) (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1049)) (-4 *3 (-850)) (-4 *5 (-267 *3)) (-4 *6 (-793)) (-5 *2 (-771)))) (-3254 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-850)) (-4 *5 (-267 *4)) (-4 *6 (-793)) (-5 *2 (-771)))) (-3636 (*1 *2 *1 *3) (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1049)) (-4 *3 (-850)) (-4 *5 (-267 *3)) (-4 *6 (-793)) (-5 *2 (-771)))) (-2430 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-850)) (-4 *5 (-267 *4)) (-4 *6 (-793)) (-5 *2 (-644 (-771))))) (-1617 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-850)) (-4 *5 (-267 *4)) (-4 *6 (-793)) (-5 *2 (-771)))) (-2430 (*1 *2 *1 *3) (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1049)) (-4 *3 (-850)) (-4 *5 (-267 *3)) (-4 *6 (-793)) (-5 *2 (-644 (-771))))) (-1617 (*1 *2 *1 *3) (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1049)) (-4 *3 (-850)) (-4 *5 (-267 *3)) (-4 *6 (-793)) (-5 *2 (-771)))) (-3843 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-850)) (-4 *5 (-267 *4)) (-4 *6 (-793)) (-5 *2 (-112)))) (-2886 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *2 *5)) (-4 *3 (-1049)) (-4 *4 (-850)) (-4 *5 (-793)) (-4 *2 (-267 *4)))) (-2780 (*1 *1 *1) (-12 (-4 *1 (-254 *2 *3 *4 *5)) (-4 *2 (-1049)) (-4 *3 (-850)) (-4 *4 (-267 *3)) (-4 *5 (-793)))) (-1644 (*1 *1 *1) (-12 (-4 *1 (-254 *2 *3 *4 *5)) (-4 *2 (-1049)) (-4 *3 (-850)) (-4 *4 (-267 *3)) (-4 *5 (-793)))) (-4151 (*1 *2 *1) (-12 (-4 *3 (-233)) (-4 *3 (-1049)) (-4 *4 (-850)) (-4 *5 (-267 *4)) (-4 *6 (-793)) (-5 *2 (-1 *1 (-771))) (-4 *1 (-254 *3 *4 *5 *6))))) -(-13 (-949 |t#1| |t#4| |t#3|) (-231 |t#1|) (-1038 |t#2|) (-10 -8 (-15 -4151 ((-1 $ (-771)) |t#2|)) (-15 -4110 ((-644 |t#2|) $)) (-15 -3254 ((-771) $ |t#2|)) (-15 -3254 ((-771) $)) (-15 -3636 ((-771) $ |t#2|)) (-15 -2430 ((-644 (-771)) $)) (-15 -1617 ((-771) $)) (-15 -2430 ((-644 (-771)) $ |t#2|)) (-15 -1617 ((-771) $ |t#2|)) (-15 -3843 ((-112) $)) (-15 -2886 (|t#3| $)) (-15 -2780 ($ $)) (-15 -1644 ($ $)) (IF (|has| |t#1| (-233)) (PROGN (-6 (-516 |t#2| |t#1|)) (-6 (-516 |t#2| $)) (-6 (-310 $)) (-15 -4151 ((-1 $ (-771)) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-409 (-566)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #0#) -2809 (|has| |#1| (-1038 (-409 (-566)))) (|has| |#1| (-38 (-409 (-566))))) ((-616 (-566)) . T) ((-616 |#1|) . T) ((-616 |#2|) . T) ((-616 |#3|) . T) ((-616 $) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-613 (-862)) . T) ((-172) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-172))) ((-614 (-538)) -12 (|has| |#1| (-614 (-538))) (|has| |#3| (-614 (-538)))) ((-614 (-892 (-381))) -12 (|has| |#1| (-614 (-892 (-381)))) (|has| |#3| (-614 (-892 (-381))))) ((-614 (-892 (-566))) -12 (|has| |#1| (-614 (-892 (-566)))) (|has| |#3| (-614 (-892 (-566))))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-291) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-310 $) . T) ((-327 |#1| |#4|) . T) ((-379 |#1|) . T) ((-413 |#1|) . T) ((-454) -2809 (|has| |#1| (-909)) (|has| |#1| (-454))) ((-516 |#2| |#1|) |has| |#1| (-233)) ((-516 |#2| $) |has| |#1| (-233)) ((-516 |#3| |#1|) . T) ((-516 |#3| $) . T) ((-516 $ $) . T) ((-558) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-646 #0#) |has| |#1| (-38 (-409 (-566)))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #0#) |has| |#1| (-38 (-409 (-566)))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #0#) |has| |#1| (-38 (-409 (-566)))) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-639 (-566)) |has| |#1| (-639 (-566))) ((-639 |#1|) . T) ((-717 #0#) |has| |#1| (-38 (-409 (-566)))) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-726) . T) ((-900 (-1175)) |has| |#1| (-900 (-1175))) ((-900 |#3|) . T) ((-886 (-381)) -12 (|has| |#1| (-886 (-381))) (|has| |#3| (-886 (-381)))) ((-886 (-566)) -12 (|has| |#1| (-886 (-566))) (|has| |#3| (-886 (-566)))) ((-949 |#1| |#4| |#3|) . T) ((-909) |has| |#1| (-909)) ((-1038 (-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((-1038 (-566)) |has| |#1| (-1038 (-566))) ((-1038 |#1|) . T) ((-1038 |#2|) . T) ((-1038 |#3|) . T) ((-1051 #0#) |has| |#1| (-38 (-409 (-566)))) ((-1051 |#1|) . T) ((-1051 $) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-172))) ((-1056 #0#) |has| |#1| (-38 (-409 (-566)))) ((-1056 |#1|) . T) ((-1056 $) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-172))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1218) |has| |#1| (-909))) -((-3007 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2991 ((|#1| $) 55)) (-1825 ((|#1| $) 45)) (-2256 (((-112) $ (-771)) 8)) (-3012 (($) 7 T CONST)) (-2499 (($ $) 61)) (-3413 (($ $) 49)) (-2261 ((|#1| |#1| $) 47)) (-2008 ((|#1| $) 46)) (-3979 (((-644 |#1|) $) 31 (|has| $ (-6 -4414)))) (-2404 (((-112) $ (-771)) 9)) (-2329 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2908 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#1| |#1|) $) 36)) (-2603 (((-112) $ (-771)) 10)) (-4149 (((-771) $) 62)) (-4117 (((-1157) $) 22 (|has| |#1| (-1099)))) (-4039 ((|#1| $) 40)) (-1425 ((|#1| |#1| $) 53)) (-1463 ((|#1| |#1| $) 52)) (-3406 (($ |#1| $) 41)) (-2076 (((-771) $) 56)) (-4035 (((-1119) $) 21 (|has| |#1| (-1099)))) (-2303 ((|#1| $) 63)) (-3283 ((|#1| $) 51)) (-3181 ((|#1| $) 50)) (-2539 ((|#1| $) 42)) (-2692 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) 14)) (-2364 ((|#1| |#1| $) 59)) (-3467 (((-112) $) 11)) (-1494 (($) 12)) (-1747 ((|#1| $) 60)) (-2675 (($) 58) (($ (-644 |#1|)) 57)) (-2266 (((-771) $) 44)) (-4045 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-3940 (($ $) 13)) (-3783 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-2798 ((|#1| $) 54)) (-3117 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-1748 (($ (-644 |#1|)) 43)) (-2745 ((|#1| $) 64)) (-1894 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3018 (((-771) $) 6 (|has| $ (-6 -4414))))) +((-1545 (*1 *2 *3) (-12 (-4 *4 (-1049)) (-4 *3 (-850)) (-4 *5 (-267 *3)) (-4 *6 (-793)) (-5 *2 (-1 *1 (-771))) (-4 *1 (-254 *4 *3 *5 *6)))) (-4037 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-850)) (-4 *5 (-267 *4)) (-4 *6 (-793)) (-5 *2 (-644 *4)))) (-2679 (*1 *2 *1 *3) (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1049)) (-4 *3 (-850)) (-4 *5 (-267 *3)) (-4 *6 (-793)) (-5 *2 (-771)))) (-2679 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-850)) (-4 *5 (-267 *4)) (-4 *6 (-793)) (-5 *2 (-771)))) (-3902 (*1 *2 *1 *3) (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1049)) (-4 *3 (-850)) (-4 *5 (-267 *3)) (-4 *6 (-793)) (-5 *2 (-771)))) (-1825 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-850)) (-4 *5 (-267 *4)) (-4 *6 (-793)) (-5 *2 (-644 (-771))))) (-1784 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-850)) (-4 *5 (-267 *4)) (-4 *6 (-793)) (-5 *2 (-771)))) (-1825 (*1 *2 *1 *3) (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1049)) (-4 *3 (-850)) (-4 *5 (-267 *3)) (-4 *6 (-793)) (-5 *2 (-644 (-771))))) (-1784 (*1 *2 *1 *3) (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1049)) (-4 *3 (-850)) (-4 *5 (-267 *3)) (-4 *6 (-793)) (-5 *2 (-771)))) (-2663 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-850)) (-4 *5 (-267 *4)) (-4 *6 (-793)) (-5 *2 (-112)))) (-1528 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *2 *5)) (-4 *3 (-1049)) (-4 *4 (-850)) (-4 *5 (-793)) (-4 *2 (-267 *4)))) (-3779 (*1 *1 *1) (-12 (-4 *1 (-254 *2 *3 *4 *5)) (-4 *2 (-1049)) (-4 *3 (-850)) (-4 *4 (-267 *3)) (-4 *5 (-793)))) (-1559 (*1 *1 *1) (-12 (-4 *1 (-254 *2 *3 *4 *5)) (-4 *2 (-1049)) (-4 *3 (-850)) (-4 *4 (-267 *3)) (-4 *5 (-793)))) (-1545 (*1 *2 *1) (-12 (-4 *3 (-233)) (-4 *3 (-1049)) (-4 *4 (-850)) (-4 *5 (-267 *4)) (-4 *6 (-793)) (-5 *2 (-1 *1 (-771))) (-4 *1 (-254 *3 *4 *5 *6))))) +(-13 (-949 |t#1| |t#4| |t#3|) (-231 |t#1|) (-1038 |t#2|) (-10 -8 (-15 -1545 ((-1 $ (-771)) |t#2|)) (-15 -4037 ((-644 |t#2|) $)) (-15 -2679 ((-771) $ |t#2|)) (-15 -2679 ((-771) $)) (-15 -3902 ((-771) $ |t#2|)) (-15 -1825 ((-644 (-771)) $)) (-15 -1784 ((-771) $)) (-15 -1825 ((-644 (-771)) $ |t#2|)) (-15 -1784 ((-771) $ |t#2|)) (-15 -2663 ((-112) $)) (-15 -1528 (|t#3| $)) (-15 -3779 ($ $)) (-15 -1559 ($ $)) (IF (|has| |t#1| (-233)) (PROGN (-6 (-516 |t#2| |t#1|)) (-6 (-516 |t#2| $)) (-6 (-310 $)) (-15 -1545 ((-1 $ (-771)) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2768 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-409 (-566)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2768 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #0#) -2768 (|has| |#1| (-1038 (-409 (-566)))) (|has| |#1| (-38 (-409 (-566))))) ((-616 (-566)) . T) ((-616 |#1|) . T) ((-616 |#2|) . T) ((-616 |#3|) . T) ((-616 $) -2768 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-613 (-862)) . T) ((-172) -2768 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-172))) ((-614 (-538)) -12 (|has| |#1| (-614 (-538))) (|has| |#3| (-614 (-538)))) ((-614 (-892 (-381))) -12 (|has| |#1| (-614 (-892 (-381)))) (|has| |#3| (-614 (-892 (-381))))) ((-614 (-892 (-566))) -12 (|has| |#1| (-614 (-892 (-566)))) (|has| |#3| (-614 (-892 (-566))))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-291) -2768 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-310 $) . T) ((-327 |#1| |#4|) . T) ((-379 |#1|) . T) ((-413 |#1|) . T) ((-454) -2768 (|has| |#1| (-909)) (|has| |#1| (-454))) ((-516 |#2| |#1|) |has| |#1| (-233)) ((-516 |#2| $) |has| |#1| (-233)) ((-516 |#3| |#1|) . T) ((-516 |#3| $) . T) ((-516 $ $) . T) ((-558) -2768 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-646 #0#) |has| |#1| (-38 (-409 (-566)))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #0#) |has| |#1| (-38 (-409 (-566)))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #0#) |has| |#1| (-38 (-409 (-566)))) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) -2768 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-639 (-566)) |has| |#1| (-639 (-566))) ((-639 |#1|) . T) ((-717 #0#) |has| |#1| (-38 (-409 (-566)))) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) -2768 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-726) . T) ((-900 (-1175)) |has| |#1| (-900 (-1175))) ((-900 |#3|) . T) ((-886 (-381)) -12 (|has| |#1| (-886 (-381))) (|has| |#3| (-886 (-381)))) ((-886 (-566)) -12 (|has| |#1| (-886 (-566))) (|has| |#3| (-886 (-566)))) ((-949 |#1| |#4| |#3|) . T) ((-909) |has| |#1| (-909)) ((-1038 (-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((-1038 (-566)) |has| |#1| (-1038 (-566))) ((-1038 |#1|) . T) ((-1038 |#2|) . T) ((-1038 |#3|) . T) ((-1051 #0#) |has| |#1| (-38 (-409 (-566)))) ((-1051 |#1|) . T) ((-1051 $) -2768 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-172))) ((-1056 #0#) |has| |#1| (-38 (-409 (-566)))) ((-1056 |#1|) . T) ((-1056 $) -2768 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-172))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1218) |has| |#1| (-909))) +((-2988 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-3265 ((|#1| $) 55)) (-3712 ((|#1| $) 45)) (-1504 (((-112) $ (-771)) 8)) (-2463 (($) 7 T CONST)) (-4310 (($ $) 61)) (-3166 (($ $) 49)) (-3890 ((|#1| |#1| $) 47)) (-2692 ((|#1| $) 46)) (-1683 (((-644 |#1|) $) 31 (|has| $ (-6 -4414)))) (-3456 (((-112) $ (-771)) 9)) (-3491 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-3885 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#1| |#1|) $) 36)) (-3267 (((-112) $ (-771)) 10)) (-2440 (((-771) $) 62)) (-3380 (((-1157) $) 22 (|has| |#1| (-1099)))) (-3278 ((|#1| $) 40)) (-1312 ((|#1| |#1| $) 53)) (-3490 ((|#1| |#1| $) 52)) (-3888 (($ |#1| $) 41)) (-3106 (((-771) $) 56)) (-4072 (((-1119) $) 21 (|has| |#1| (-1099)))) (-2660 ((|#1| $) 63)) (-1871 ((|#1| $) 51)) (-4183 ((|#1| $) 50)) (-1973 ((|#1| $) 42)) (-2823 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) 14)) (-2774 ((|#1| |#1| $) 59)) (-2872 (((-112) $) 11)) (-3493 (($) 12)) (-2849 ((|#1| $) 60)) (-2827 (($) 58) (($ (-644 |#1|)) 57)) (-2766 (((-771) $) 44)) (-4083 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-1480 (($ $) 13)) (-3152 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-1473 ((|#1| $) 54)) (-3044 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-2948 (($ (-644 |#1|)) 43)) (-3582 ((|#1| $) 64)) (-2210 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3000 (((-771) $) 6 (|has| $ (-6 -4414))))) (((-255 |#1|) (-140) (-1214)) (T -255)) -((-2675 (*1 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1214)))) (-2675 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1214)) (-4 *1 (-255 *3)))) (-2076 (*1 *2 *1) (-12 (-4 *1 (-255 *3)) (-4 *3 (-1214)) (-5 *2 (-771)))) (-2991 (*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1214)))) (-2798 (*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1214)))) (-1425 (*1 *2 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1214)))) (-1463 (*1 *2 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1214)))) (-3283 (*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1214)))) (-3181 (*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1214)))) (-3413 (*1 *1 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1214))))) -(-13 (-1120 |t#1|) (-995 |t#1|) (-10 -8 (-15 -2675 ($)) (-15 -2675 ($ (-644 |t#1|))) (-15 -2076 ((-771) $)) (-15 -2991 (|t#1| $)) (-15 -2798 (|t#1| $)) (-15 -1425 (|t#1| |t#1| $)) (-15 -1463 (|t#1| |t#1| $)) (-15 -3283 (|t#1| $)) (-15 -3181 (|t#1| $)) (-15 -3413 ($ $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2809 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-995 |#1|) . T) ((-1099) |has| |#1| (-1099)) ((-1120 |#1|) . T) ((-1214) . T)) -((-3154 (((-1 (-943 (-225)) (-225) (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))) 153)) (-1353 (((-1132 (-225)) (-882 (-1 (-225) (-225) (-225))) (-1093 (-381)) (-1093 (-381))) 173) (((-1132 (-225)) (-882 (-1 (-225) (-225) (-225))) (-1093 (-381)) (-1093 (-381)) (-644 (-264))) 171) (((-1132 (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-381)) (-1093 (-381))) 176) (((-1132 (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-381)) (-1093 (-381)) (-644 (-264))) 172) (((-1132 (-225)) (-1 (-225) (-225) (-225)) (-1093 (-381)) (-1093 (-381))) 164) (((-1132 (-225)) (-1 (-225) (-225) (-225)) (-1093 (-381)) (-1093 (-381)) (-644 (-264))) 163) (((-1132 (-225)) (-1 (-943 (-225)) (-225)) (-1093 (-381))) 145) (((-1132 (-225)) (-1 (-943 (-225)) (-225)) (-1093 (-381)) (-644 (-264))) 143) (((-1132 (-225)) (-879 (-1 (-225) (-225))) (-1093 (-381))) 144) (((-1132 (-225)) (-879 (-1 (-225) (-225))) (-1093 (-381)) (-644 (-264))) 141)) (-1315 (((-1266) (-882 (-1 (-225) (-225) (-225))) (-1093 (-381)) (-1093 (-381))) 175) (((-1266) (-882 (-1 (-225) (-225) (-225))) (-1093 (-381)) (-1093 (-381)) (-644 (-264))) 174) (((-1266) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-381)) (-1093 (-381))) 178) (((-1266) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-381)) (-1093 (-381)) (-644 (-264))) 177) (((-1266) (-1 (-225) (-225) (-225)) (-1093 (-381)) (-1093 (-381))) 166) (((-1266) (-1 (-225) (-225) (-225)) (-1093 (-381)) (-1093 (-381)) (-644 (-264))) 165) (((-1266) (-1 (-943 (-225)) (-225)) (-1093 (-381))) 151) (((-1266) (-1 (-943 (-225)) (-225)) (-1093 (-381)) (-644 (-264))) 150) (((-1266) (-879 (-1 (-225) (-225))) (-1093 (-381))) 149) (((-1266) (-879 (-1 (-225) (-225))) (-1093 (-381)) (-644 (-264))) 148) (((-1265) (-877 (-1 (-225) (-225))) (-1093 (-381))) 113) (((-1265) (-877 (-1 (-225) (-225))) (-1093 (-381)) (-644 (-264))) 112) (((-1265) (-1 (-225) (-225)) (-1093 (-381))) 107) (((-1265) (-1 (-225) (-225)) (-1093 (-381)) (-644 (-264))) 105))) -(((-256) (-10 -7 (-15 -1315 ((-1265) (-1 (-225) (-225)) (-1093 (-381)) (-644 (-264)))) (-15 -1315 ((-1265) (-1 (-225) (-225)) (-1093 (-381)))) (-15 -1315 ((-1265) (-877 (-1 (-225) (-225))) (-1093 (-381)) (-644 (-264)))) (-15 -1315 ((-1265) (-877 (-1 (-225) (-225))) (-1093 (-381)))) (-15 -1315 ((-1266) (-879 (-1 (-225) (-225))) (-1093 (-381)) (-644 (-264)))) (-15 -1315 ((-1266) (-879 (-1 (-225) (-225))) (-1093 (-381)))) (-15 -1315 ((-1266) (-1 (-943 (-225)) (-225)) (-1093 (-381)) (-644 (-264)))) (-15 -1315 ((-1266) (-1 (-943 (-225)) (-225)) (-1093 (-381)))) (-15 -1353 ((-1132 (-225)) (-879 (-1 (-225) (-225))) (-1093 (-381)) (-644 (-264)))) (-15 -1353 ((-1132 (-225)) (-879 (-1 (-225) (-225))) (-1093 (-381)))) (-15 -1353 ((-1132 (-225)) (-1 (-943 (-225)) (-225)) (-1093 (-381)) (-644 (-264)))) (-15 -1353 ((-1132 (-225)) (-1 (-943 (-225)) (-225)) (-1093 (-381)))) (-15 -1315 ((-1266) (-1 (-225) (-225) (-225)) (-1093 (-381)) (-1093 (-381)) (-644 (-264)))) (-15 -1315 ((-1266) (-1 (-225) (-225) (-225)) (-1093 (-381)) (-1093 (-381)))) (-15 -1353 ((-1132 (-225)) (-1 (-225) (-225) (-225)) (-1093 (-381)) (-1093 (-381)) (-644 (-264)))) (-15 -1353 ((-1132 (-225)) (-1 (-225) (-225) (-225)) (-1093 (-381)) (-1093 (-381)))) (-15 -1315 ((-1266) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-381)) (-1093 (-381)) (-644 (-264)))) (-15 -1315 ((-1266) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-381)) (-1093 (-381)))) (-15 -1353 ((-1132 (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-381)) (-1093 (-381)) (-644 (-264)))) (-15 -1353 ((-1132 (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-381)) (-1093 (-381)))) (-15 -1315 ((-1266) (-882 (-1 (-225) (-225) (-225))) (-1093 (-381)) (-1093 (-381)) (-644 (-264)))) (-15 -1315 ((-1266) (-882 (-1 (-225) (-225) (-225))) (-1093 (-381)) (-1093 (-381)))) (-15 -1353 ((-1132 (-225)) (-882 (-1 (-225) (-225) (-225))) (-1093 (-381)) (-1093 (-381)) (-644 (-264)))) (-15 -1353 ((-1132 (-225)) (-882 (-1 (-225) (-225) (-225))) (-1093 (-381)) (-1093 (-381)))) (-15 -3154 ((-1 (-943 (-225)) (-225) (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))) (T -256)) -((-3154 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-943 (-225)) (-225) (-225))) (-5 *3 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-256)))) (-1353 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-882 (-1 (-225) (-225) (-225)))) (-5 *4 (-1093 (-381))) (-5 *2 (-1132 (-225))) (-5 *1 (-256)))) (-1353 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-882 (-1 (-225) (-225) (-225)))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-256)))) (-1315 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-882 (-1 (-225) (-225) (-225)))) (-5 *4 (-1093 (-381))) (-5 *2 (-1266)) (-5 *1 (-256)))) (-1315 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-882 (-1 (-225) (-225) (-225)))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1266)) (-5 *1 (-256)))) (-1353 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-943 (-225)) (-225) (-225))) (-5 *4 (-1093 (-381))) (-5 *2 (-1132 (-225))) (-5 *1 (-256)))) (-1353 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-943 (-225)) (-225) (-225))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-256)))) (-1315 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-943 (-225)) (-225) (-225))) (-5 *4 (-1093 (-381))) (-5 *2 (-1266)) (-5 *1 (-256)))) (-1315 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-943 (-225)) (-225) (-225))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1266)) (-5 *1 (-256)))) (-1353 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1093 (-381))) (-5 *2 (-1132 (-225))) (-5 *1 (-256)))) (-1353 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-256)))) (-1315 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1093 (-381))) (-5 *2 (-1266)) (-5 *1 (-256)))) (-1315 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1266)) (-5 *1 (-256)))) (-1353 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-943 (-225)) (-225))) (-5 *4 (-1093 (-381))) (-5 *2 (-1132 (-225))) (-5 *1 (-256)))) (-1353 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-943 (-225)) (-225))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-256)))) (-1353 (*1 *2 *3 *4) (-12 (-5 *3 (-879 (-1 (-225) (-225)))) (-5 *4 (-1093 (-381))) (-5 *2 (-1132 (-225))) (-5 *1 (-256)))) (-1353 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-879 (-1 (-225) (-225)))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-256)))) (-1315 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-943 (-225)) (-225))) (-5 *4 (-1093 (-381))) (-5 *2 (-1266)) (-5 *1 (-256)))) (-1315 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-943 (-225)) (-225))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1266)) (-5 *1 (-256)))) (-1315 (*1 *2 *3 *4) (-12 (-5 *3 (-879 (-1 (-225) (-225)))) (-5 *4 (-1093 (-381))) (-5 *2 (-1266)) (-5 *1 (-256)))) (-1315 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-879 (-1 (-225) (-225)))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1266)) (-5 *1 (-256)))) (-1315 (*1 *2 *3 *4) (-12 (-5 *3 (-877 (-1 (-225) (-225)))) (-5 *4 (-1093 (-381))) (-5 *2 (-1265)) (-5 *1 (-256)))) (-1315 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-877 (-1 (-225) (-225)))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1265)) (-5 *1 (-256)))) (-1315 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1093 (-381))) (-5 *2 (-1265)) (-5 *1 (-256)))) (-1315 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1265)) (-5 *1 (-256))))) -(-10 -7 (-15 -1315 ((-1265) (-1 (-225) (-225)) (-1093 (-381)) (-644 (-264)))) (-15 -1315 ((-1265) (-1 (-225) (-225)) (-1093 (-381)))) (-15 -1315 ((-1265) (-877 (-1 (-225) (-225))) (-1093 (-381)) (-644 (-264)))) (-15 -1315 ((-1265) (-877 (-1 (-225) (-225))) (-1093 (-381)))) (-15 -1315 ((-1266) (-879 (-1 (-225) (-225))) (-1093 (-381)) (-644 (-264)))) (-15 -1315 ((-1266) (-879 (-1 (-225) (-225))) (-1093 (-381)))) (-15 -1315 ((-1266) (-1 (-943 (-225)) (-225)) (-1093 (-381)) (-644 (-264)))) (-15 -1315 ((-1266) (-1 (-943 (-225)) (-225)) (-1093 (-381)))) (-15 -1353 ((-1132 (-225)) (-879 (-1 (-225) (-225))) (-1093 (-381)) (-644 (-264)))) (-15 -1353 ((-1132 (-225)) (-879 (-1 (-225) (-225))) (-1093 (-381)))) (-15 -1353 ((-1132 (-225)) (-1 (-943 (-225)) (-225)) (-1093 (-381)) (-644 (-264)))) (-15 -1353 ((-1132 (-225)) (-1 (-943 (-225)) (-225)) (-1093 (-381)))) (-15 -1315 ((-1266) (-1 (-225) (-225) (-225)) (-1093 (-381)) (-1093 (-381)) (-644 (-264)))) (-15 -1315 ((-1266) (-1 (-225) (-225) (-225)) (-1093 (-381)) (-1093 (-381)))) (-15 -1353 ((-1132 (-225)) (-1 (-225) (-225) (-225)) (-1093 (-381)) (-1093 (-381)) (-644 (-264)))) (-15 -1353 ((-1132 (-225)) (-1 (-225) (-225) (-225)) (-1093 (-381)) (-1093 (-381)))) (-15 -1315 ((-1266) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-381)) (-1093 (-381)) (-644 (-264)))) (-15 -1315 ((-1266) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-381)) (-1093 (-381)))) (-15 -1353 ((-1132 (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-381)) (-1093 (-381)) (-644 (-264)))) (-15 -1353 ((-1132 (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-381)) (-1093 (-381)))) (-15 -1315 ((-1266) (-882 (-1 (-225) (-225) (-225))) (-1093 (-381)) (-1093 (-381)) (-644 (-264)))) (-15 -1315 ((-1266) (-882 (-1 (-225) (-225) (-225))) (-1093 (-381)) (-1093 (-381)))) (-15 -1353 ((-1132 (-225)) (-882 (-1 (-225) (-225) (-225))) (-1093 (-381)) (-1093 (-381)) (-644 (-264)))) (-15 -1353 ((-1132 (-225)) (-882 (-1 (-225) (-225) (-225))) (-1093 (-381)) (-1093 (-381)))) (-15 -3154 ((-1 (-943 (-225)) (-225) (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))))) -((-1315 (((-1265) (-295 |#2|) (-1175) (-1175) (-644 (-264))) 101))) -(((-257 |#1| |#2|) (-10 -7 (-15 -1315 ((-1265) (-295 |#2|) (-1175) (-1175) (-644 (-264))))) (-13 (-558) (-850) (-1038 (-566))) (-432 |#1|)) (T -257)) -((-1315 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-295 *7)) (-5 *4 (-1175)) (-5 *5 (-644 (-264))) (-4 *7 (-432 *6)) (-4 *6 (-13 (-558) (-850) (-1038 (-566)))) (-5 *2 (-1265)) (-5 *1 (-257 *6 *7))))) -(-10 -7 (-15 -1315 ((-1265) (-295 |#2|) (-1175) (-1175) (-644 (-264))))) -((-1961 (((-566) (-566)) 73)) (-1352 (((-566) (-566)) 74)) (-3431 (((-225) (-225)) 75)) (-3306 (((-1266) (-1 (-169 (-225)) (-169 (-225))) (-1093 (-225)) (-1093 (-225))) 72)) (-2559 (((-1266) (-1 (-169 (-225)) (-169 (-225))) (-1093 (-225)) (-1093 (-225)) (-112)) 70))) -(((-258) (-10 -7 (-15 -2559 ((-1266) (-1 (-169 (-225)) (-169 (-225))) (-1093 (-225)) (-1093 (-225)) (-112))) (-15 -3306 ((-1266) (-1 (-169 (-225)) (-169 (-225))) (-1093 (-225)) (-1093 (-225)))) (-15 -1961 ((-566) (-566))) (-15 -1352 ((-566) (-566))) (-15 -3431 ((-225) (-225))))) (T -258)) -((-3431 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-258)))) (-1352 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-258)))) (-1961 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-258)))) (-3306 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1093 (-225))) (-5 *2 (-1266)) (-5 *1 (-258)))) (-2559 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1093 (-225))) (-5 *5 (-112)) (-5 *2 (-1266)) (-5 *1 (-258))))) -(-10 -7 (-15 -2559 ((-1266) (-1 (-169 (-225)) (-169 (-225))) (-1093 (-225)) (-1093 (-225)) (-112))) (-15 -3306 ((-1266) (-1 (-169 (-225)) (-169 (-225))) (-1093 (-225)) (-1093 (-225)))) (-15 -1961 ((-566) (-566))) (-15 -1352 ((-566) (-566))) (-15 -3431 ((-225) (-225)))) -((-3783 (((-1091 (-381)) (-1091 (-317 |#1|))) 16))) -(((-259 |#1|) (-10 -7 (-15 -3783 ((-1091 (-381)) (-1091 (-317 |#1|))))) (-13 (-850) (-558) (-614 (-381)))) (T -259)) -((-3783 (*1 *2 *3) (-12 (-5 *3 (-1091 (-317 *4))) (-4 *4 (-13 (-850) (-558) (-614 (-381)))) (-5 *2 (-1091 (-381))) (-5 *1 (-259 *4))))) -(-10 -7 (-15 -3783 ((-1091 (-381)) (-1091 (-317 |#1|))))) -((-1353 (((-1132 (-225)) (-882 |#1|) (-1091 (-381)) (-1091 (-381))) 75) (((-1132 (-225)) (-882 |#1|) (-1091 (-381)) (-1091 (-381)) (-644 (-264))) 74) (((-1132 (-225)) |#1| (-1091 (-381)) (-1091 (-381))) 65) (((-1132 (-225)) |#1| (-1091 (-381)) (-1091 (-381)) (-644 (-264))) 64) (((-1132 (-225)) (-879 |#1|) (-1091 (-381))) 56) (((-1132 (-225)) (-879 |#1|) (-1091 (-381)) (-644 (-264))) 55)) (-1315 (((-1266) (-882 |#1|) (-1091 (-381)) (-1091 (-381))) 78) (((-1266) (-882 |#1|) (-1091 (-381)) (-1091 (-381)) (-644 (-264))) 77) (((-1266) |#1| (-1091 (-381)) (-1091 (-381))) 68) (((-1266) |#1| (-1091 (-381)) (-1091 (-381)) (-644 (-264))) 67) (((-1266) (-879 |#1|) (-1091 (-381))) 60) (((-1266) (-879 |#1|) (-1091 (-381)) (-644 (-264))) 59) (((-1265) (-877 |#1|) (-1091 (-381))) 47) (((-1265) (-877 |#1|) (-1091 (-381)) (-644 (-264))) 46) (((-1265) |#1| (-1091 (-381))) 38) (((-1265) |#1| (-1091 (-381)) (-644 (-264))) 36))) -(((-260 |#1|) (-10 -7 (-15 -1315 ((-1265) |#1| (-1091 (-381)) (-644 (-264)))) (-15 -1315 ((-1265) |#1| (-1091 (-381)))) (-15 -1315 ((-1265) (-877 |#1|) (-1091 (-381)) (-644 (-264)))) (-15 -1315 ((-1265) (-877 |#1|) (-1091 (-381)))) (-15 -1315 ((-1266) (-879 |#1|) (-1091 (-381)) (-644 (-264)))) (-15 -1315 ((-1266) (-879 |#1|) (-1091 (-381)))) (-15 -1353 ((-1132 (-225)) (-879 |#1|) (-1091 (-381)) (-644 (-264)))) (-15 -1353 ((-1132 (-225)) (-879 |#1|) (-1091 (-381)))) (-15 -1315 ((-1266) |#1| (-1091 (-381)) (-1091 (-381)) (-644 (-264)))) (-15 -1315 ((-1266) |#1| (-1091 (-381)) (-1091 (-381)))) (-15 -1353 ((-1132 (-225)) |#1| (-1091 (-381)) (-1091 (-381)) (-644 (-264)))) (-15 -1353 ((-1132 (-225)) |#1| (-1091 (-381)) (-1091 (-381)))) (-15 -1315 ((-1266) (-882 |#1|) (-1091 (-381)) (-1091 (-381)) (-644 (-264)))) (-15 -1315 ((-1266) (-882 |#1|) (-1091 (-381)) (-1091 (-381)))) (-15 -1353 ((-1132 (-225)) (-882 |#1|) (-1091 (-381)) (-1091 (-381)) (-644 (-264)))) (-15 -1353 ((-1132 (-225)) (-882 |#1|) (-1091 (-381)) (-1091 (-381))))) (-13 (-614 (-538)) (-1099))) (T -260)) -((-1353 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-882 *5)) (-5 *4 (-1091 (-381))) (-4 *5 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1132 (-225))) (-5 *1 (-260 *5)))) (-1353 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-882 *6)) (-5 *4 (-1091 (-381))) (-5 *5 (-644 (-264))) (-4 *6 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1132 (-225))) (-5 *1 (-260 *6)))) (-1315 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-882 *5)) (-5 *4 (-1091 (-381))) (-4 *5 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1266)) (-5 *1 (-260 *5)))) (-1315 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-882 *6)) (-5 *4 (-1091 (-381))) (-5 *5 (-644 (-264))) (-4 *6 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1266)) (-5 *1 (-260 *6)))) (-1353 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1091 (-381))) (-5 *2 (-1132 (-225))) (-5 *1 (-260 *3)) (-4 *3 (-13 (-614 (-538)) (-1099))))) (-1353 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1091 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-260 *3)) (-4 *3 (-13 (-614 (-538)) (-1099))))) (-1315 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1091 (-381))) (-5 *2 (-1266)) (-5 *1 (-260 *3)) (-4 *3 (-13 (-614 (-538)) (-1099))))) (-1315 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1091 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1266)) (-5 *1 (-260 *3)) (-4 *3 (-13 (-614 (-538)) (-1099))))) (-1353 (*1 *2 *3 *4) (-12 (-5 *3 (-879 *5)) (-5 *4 (-1091 (-381))) (-4 *5 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1132 (-225))) (-5 *1 (-260 *5)))) (-1353 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-879 *6)) (-5 *4 (-1091 (-381))) (-5 *5 (-644 (-264))) (-4 *6 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1132 (-225))) (-5 *1 (-260 *6)))) (-1315 (*1 *2 *3 *4) (-12 (-5 *3 (-879 *5)) (-5 *4 (-1091 (-381))) (-4 *5 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1266)) (-5 *1 (-260 *5)))) (-1315 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-879 *6)) (-5 *4 (-1091 (-381))) (-5 *5 (-644 (-264))) (-4 *6 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1266)) (-5 *1 (-260 *6)))) (-1315 (*1 *2 *3 *4) (-12 (-5 *3 (-877 *5)) (-5 *4 (-1091 (-381))) (-4 *5 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1265)) (-5 *1 (-260 *5)))) (-1315 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-877 *6)) (-5 *4 (-1091 (-381))) (-5 *5 (-644 (-264))) (-4 *6 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1265)) (-5 *1 (-260 *6)))) (-1315 (*1 *2 *3 *4) (-12 (-5 *4 (-1091 (-381))) (-5 *2 (-1265)) (-5 *1 (-260 *3)) (-4 *3 (-13 (-614 (-538)) (-1099))))) (-1315 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1091 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1265)) (-5 *1 (-260 *3)) (-4 *3 (-13 (-614 (-538)) (-1099)))))) -(-10 -7 (-15 -1315 ((-1265) |#1| (-1091 (-381)) (-644 (-264)))) (-15 -1315 ((-1265) |#1| (-1091 (-381)))) (-15 -1315 ((-1265) (-877 |#1|) (-1091 (-381)) (-644 (-264)))) (-15 -1315 ((-1265) (-877 |#1|) (-1091 (-381)))) (-15 -1315 ((-1266) (-879 |#1|) (-1091 (-381)) (-644 (-264)))) (-15 -1315 ((-1266) (-879 |#1|) (-1091 (-381)))) (-15 -1353 ((-1132 (-225)) (-879 |#1|) (-1091 (-381)) (-644 (-264)))) (-15 -1353 ((-1132 (-225)) (-879 |#1|) (-1091 (-381)))) (-15 -1315 ((-1266) |#1| (-1091 (-381)) (-1091 (-381)) (-644 (-264)))) (-15 -1315 ((-1266) |#1| (-1091 (-381)) (-1091 (-381)))) (-15 -1353 ((-1132 (-225)) |#1| (-1091 (-381)) (-1091 (-381)) (-644 (-264)))) (-15 -1353 ((-1132 (-225)) |#1| (-1091 (-381)) (-1091 (-381)))) (-15 -1315 ((-1266) (-882 |#1|) (-1091 (-381)) (-1091 (-381)) (-644 (-264)))) (-15 -1315 ((-1266) (-882 |#1|) (-1091 (-381)) (-1091 (-381)))) (-15 -1353 ((-1132 (-225)) (-882 |#1|) (-1091 (-381)) (-1091 (-381)) (-644 (-264)))) (-15 -1353 ((-1132 (-225)) (-882 |#1|) (-1091 (-381)) (-1091 (-381))))) -((-1315 (((-1266) (-644 (-225)) (-644 (-225)) (-644 (-225)) (-644 (-264))) 23) (((-1266) (-644 (-225)) (-644 (-225)) (-644 (-225))) 24) (((-1265) (-644 (-943 (-225))) (-644 (-264))) 16) (((-1265) (-644 (-943 (-225)))) 17) (((-1265) (-644 (-225)) (-644 (-225)) (-644 (-264))) 20) (((-1265) (-644 (-225)) (-644 (-225))) 21))) -(((-261) (-10 -7 (-15 -1315 ((-1265) (-644 (-225)) (-644 (-225)))) (-15 -1315 ((-1265) (-644 (-225)) (-644 (-225)) (-644 (-264)))) (-15 -1315 ((-1265) (-644 (-943 (-225))))) (-15 -1315 ((-1265) (-644 (-943 (-225))) (-644 (-264)))) (-15 -1315 ((-1266) (-644 (-225)) (-644 (-225)) (-644 (-225)))) (-15 -1315 ((-1266) (-644 (-225)) (-644 (-225)) (-644 (-225)) (-644 (-264)))))) (T -261)) -((-1315 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-644 (-225))) (-5 *4 (-644 (-264))) (-5 *2 (-1266)) (-5 *1 (-261)))) (-1315 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-644 (-225))) (-5 *2 (-1266)) (-5 *1 (-261)))) (-1315 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-943 (-225)))) (-5 *4 (-644 (-264))) (-5 *2 (-1265)) (-5 *1 (-261)))) (-1315 (*1 *2 *3) (-12 (-5 *3 (-644 (-943 (-225)))) (-5 *2 (-1265)) (-5 *1 (-261)))) (-1315 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-644 (-225))) (-5 *4 (-644 (-264))) (-5 *2 (-1265)) (-5 *1 (-261)))) (-1315 (*1 *2 *3 *3) (-12 (-5 *3 (-644 (-225))) (-5 *2 (-1265)) (-5 *1 (-261))))) -(-10 -7 (-15 -1315 ((-1265) (-644 (-225)) (-644 (-225)))) (-15 -1315 ((-1265) (-644 (-225)) (-644 (-225)) (-644 (-264)))) (-15 -1315 ((-1265) (-644 (-943 (-225))))) (-15 -1315 ((-1265) (-644 (-943 (-225))) (-644 (-264)))) (-15 -1315 ((-1266) (-644 (-225)) (-644 (-225)) (-644 (-225)))) (-15 -1315 ((-1266) (-644 (-225)) (-644 (-225)) (-644 (-225)) (-644 (-264))))) -((-3087 (((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -1389 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-644 (-264)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -1389 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 25)) (-2502 (((-921) (-644 (-264)) (-921)) 52)) (-3052 (((-921) (-644 (-264)) (-921)) 51)) (-3206 (((-644 (-381)) (-644 (-264)) (-644 (-381))) 68)) (-1578 (((-381) (-644 (-264)) (-381)) 57)) (-2624 (((-921) (-644 (-264)) (-921)) 53)) (-3698 (((-112) (-644 (-264)) (-112)) 27)) (-3361 (((-1157) (-644 (-264)) (-1157)) 19)) (-2702 (((-1157) (-644 (-264)) (-1157)) 26)) (-4224 (((-1132 (-225)) (-644 (-264))) 46)) (-3667 (((-644 (-1093 (-381))) (-644 (-264)) (-644 (-1093 (-381)))) 40)) (-4062 (((-874) (-644 (-264)) (-874)) 32)) (-2492 (((-874) (-644 (-264)) (-874)) 33)) (-4059 (((-1 (-943 (-225)) (-943 (-225))) (-644 (-264)) (-1 (-943 (-225)) (-943 (-225)))) 63)) (-4324 (((-112) (-644 (-264)) (-112)) 14)) (-2400 (((-112) (-644 (-264)) (-112)) 13))) -(((-262) (-10 -7 (-15 -2400 ((-112) (-644 (-264)) (-112))) (-15 -4324 ((-112) (-644 (-264)) (-112))) (-15 -3087 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -1389 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-644 (-264)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -1389 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3361 ((-1157) (-644 (-264)) (-1157))) (-15 -2702 ((-1157) (-644 (-264)) (-1157))) (-15 -3698 ((-112) (-644 (-264)) (-112))) (-15 -4062 ((-874) (-644 (-264)) (-874))) (-15 -2492 ((-874) (-644 (-264)) (-874))) (-15 -3667 ((-644 (-1093 (-381))) (-644 (-264)) (-644 (-1093 (-381))))) (-15 -3052 ((-921) (-644 (-264)) (-921))) (-15 -2502 ((-921) (-644 (-264)) (-921))) (-15 -4224 ((-1132 (-225)) (-644 (-264)))) (-15 -2624 ((-921) (-644 (-264)) (-921))) (-15 -1578 ((-381) (-644 (-264)) (-381))) (-15 -4059 ((-1 (-943 (-225)) (-943 (-225))) (-644 (-264)) (-1 (-943 (-225)) (-943 (-225))))) (-15 -3206 ((-644 (-381)) (-644 (-264)) (-644 (-381)))))) (T -262)) -((-3206 (*1 *2 *3 *2) (-12 (-5 *2 (-644 (-381))) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) (-4059 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-943 (-225)) (-943 (-225)))) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) (-1578 (*1 *2 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) (-2624 (*1 *2 *3 *2) (-12 (-5 *2 (-921)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) (-4224 (*1 *2 *3) (-12 (-5 *3 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-262)))) (-2502 (*1 *2 *3 *2) (-12 (-5 *2 (-921)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) (-3052 (*1 *2 *3 *2) (-12 (-5 *2 (-921)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) (-3667 (*1 *2 *3 *2) (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) (-2492 (*1 *2 *3 *2) (-12 (-5 *2 (-874)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) (-4062 (*1 *2 *3 *2) (-12 (-5 *2 (-874)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) (-3698 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) (-2702 (*1 *2 *3 *2) (-12 (-5 *2 (-1157)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) (-3361 (*1 *2 *3 *2) (-12 (-5 *2 (-1157)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) (-3087 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -1389 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) (-4324 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) (-2400 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-644 (-264))) (-5 *1 (-262))))) -(-10 -7 (-15 -2400 ((-112) (-644 (-264)) (-112))) (-15 -4324 ((-112) (-644 (-264)) (-112))) (-15 -3087 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -1389 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-644 (-264)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -1389 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3361 ((-1157) (-644 (-264)) (-1157))) (-15 -2702 ((-1157) (-644 (-264)) (-1157))) (-15 -3698 ((-112) (-644 (-264)) (-112))) (-15 -4062 ((-874) (-644 (-264)) (-874))) (-15 -2492 ((-874) (-644 (-264)) (-874))) (-15 -3667 ((-644 (-1093 (-381))) (-644 (-264)) (-644 (-1093 (-381))))) (-15 -3052 ((-921) (-644 (-264)) (-921))) (-15 -2502 ((-921) (-644 (-264)) (-921))) (-15 -4224 ((-1132 (-225)) (-644 (-264)))) (-15 -2624 ((-921) (-644 (-264)) (-921))) (-15 -1578 ((-381) (-644 (-264)) (-381))) (-15 -4059 ((-1 (-943 (-225)) (-943 (-225))) (-644 (-264)) (-1 (-943 (-225)) (-943 (-225))))) (-15 -3206 ((-644 (-381)) (-644 (-264)) (-644 (-381))))) -((-1563 (((-3 |#1| "failed") (-644 (-264)) (-1175)) 17))) -(((-263 |#1|) (-10 -7 (-15 -1563 ((-3 |#1| "failed") (-644 (-264)) (-1175)))) (-1214)) (T -263)) -((-1563 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-644 (-264))) (-5 *4 (-1175)) (-5 *1 (-263 *2)) (-4 *2 (-1214))))) -(-10 -7 (-15 -1563 ((-3 |#1| "failed") (-644 (-264)) (-1175)))) -((-3007 (((-112) $ $) NIL)) (-3087 (($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -1389 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 24)) (-2502 (($ (-921)) 81)) (-3052 (($ (-921)) 80)) (-3002 (($ (-644 (-381))) 87)) (-1578 (($ (-381)) 66)) (-2624 (($ (-921)) 82)) (-3698 (($ (-112)) 33)) (-3361 (($ (-1157)) 28)) (-2702 (($ (-1157)) 29)) (-4224 (($ (-1132 (-225))) 76)) (-3667 (($ (-644 (-1093 (-381)))) 72)) (-2446 (($ (-644 (-1093 (-381)))) 68) (($ (-644 (-1093 (-409 (-566))))) 71)) (-3062 (($ (-381)) 38) (($ (-874)) 42)) (-3177 (((-112) (-644 $) (-1175)) 100)) (-1563 (((-3 (-52) "failed") (-644 $) (-1175)) 102)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3279 (($ (-381)) 43) (($ (-874)) 44)) (-2154 (($ (-1 (-943 (-225)) (-943 (-225)))) 65)) (-4059 (($ (-1 (-943 (-225)) (-943 (-225)))) 83)) (-3978 (($ (-1 (-225) (-225))) 48) (($ (-1 (-225) (-225) (-225))) 52) (($ (-1 (-225) (-225) (-225) (-225))) 56)) (-3783 (((-862) $) 93)) (-1599 (($ (-112)) 34) (($ (-644 (-1093 (-381)))) 60)) (-3117 (((-112) $ $) NIL)) (-2400 (($ (-112)) 35)) (-2947 (((-112) $ $) 97))) -(((-264) (-13 (-1099) (-10 -8 (-15 -2400 ($ (-112))) (-15 -1599 ($ (-112))) (-15 -3087 ($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -1389 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3361 ($ (-1157))) (-15 -2702 ($ (-1157))) (-15 -3698 ($ (-112))) (-15 -1599 ($ (-644 (-1093 (-381))))) (-15 -2154 ($ (-1 (-943 (-225)) (-943 (-225))))) (-15 -3062 ($ (-381))) (-15 -3062 ($ (-874))) (-15 -3279 ($ (-381))) (-15 -3279 ($ (-874))) (-15 -3978 ($ (-1 (-225) (-225)))) (-15 -3978 ($ (-1 (-225) (-225) (-225)))) (-15 -3978 ($ (-1 (-225) (-225) (-225) (-225)))) (-15 -1578 ($ (-381))) (-15 -2446 ($ (-644 (-1093 (-381))))) (-15 -2446 ($ (-644 (-1093 (-409 (-566)))))) (-15 -3667 ($ (-644 (-1093 (-381))))) (-15 -4224 ($ (-1132 (-225)))) (-15 -3052 ($ (-921))) (-15 -2502 ($ (-921))) (-15 -2624 ($ (-921))) (-15 -4059 ($ (-1 (-943 (-225)) (-943 (-225))))) (-15 -3002 ($ (-644 (-381)))) (-15 -1563 ((-3 (-52) "failed") (-644 $) (-1175))) (-15 -3177 ((-112) (-644 $) (-1175)))))) (T -264)) -((-2400 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264)))) (-1599 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264)))) (-3087 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -1389 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *1 (-264)))) (-3361 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-264)))) (-2702 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-264)))) (-3698 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264)))) (-1599 (*1 *1 *2) (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *1 (-264)))) (-2154 (*1 *1 *2) (-12 (-5 *2 (-1 (-943 (-225)) (-943 (-225)))) (-5 *1 (-264)))) (-3062 (*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264)))) (-3062 (*1 *1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-264)))) (-3279 (*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264)))) (-3279 (*1 *1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-264)))) (-3978 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-264)))) (-3978 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-264)))) (-3978 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-264)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264)))) (-2446 (*1 *1 *2) (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *1 (-264)))) (-2446 (*1 *1 *2) (-12 (-5 *2 (-644 (-1093 (-409 (-566))))) (-5 *1 (-264)))) (-3667 (*1 *1 *2) (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *1 (-264)))) (-4224 (*1 *1 *2) (-12 (-5 *2 (-1132 (-225))) (-5 *1 (-264)))) (-3052 (*1 *1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-264)))) (-2502 (*1 *1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-264)))) (-2624 (*1 *1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-264)))) (-4059 (*1 *1 *2) (-12 (-5 *2 (-1 (-943 (-225)) (-943 (-225)))) (-5 *1 (-264)))) (-3002 (*1 *1 *2) (-12 (-5 *2 (-644 (-381))) (-5 *1 (-264)))) (-1563 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-644 (-264))) (-5 *4 (-1175)) (-5 *2 (-52)) (-5 *1 (-264)))) (-3177 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-264))) (-5 *4 (-1175)) (-5 *2 (-112)) (-5 *1 (-264))))) -(-13 (-1099) (-10 -8 (-15 -2400 ($ (-112))) (-15 -1599 ($ (-112))) (-15 -3087 ($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -1389 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3361 ($ (-1157))) (-15 -2702 ($ (-1157))) (-15 -3698 ($ (-112))) (-15 -1599 ($ (-644 (-1093 (-381))))) (-15 -2154 ($ (-1 (-943 (-225)) (-943 (-225))))) (-15 -3062 ($ (-381))) (-15 -3062 ($ (-874))) (-15 -3279 ($ (-381))) (-15 -3279 ($ (-874))) (-15 -3978 ($ (-1 (-225) (-225)))) (-15 -3978 ($ (-1 (-225) (-225) (-225)))) (-15 -3978 ($ (-1 (-225) (-225) (-225) (-225)))) (-15 -1578 ($ (-381))) (-15 -2446 ($ (-644 (-1093 (-381))))) (-15 -2446 ($ (-644 (-1093 (-409 (-566)))))) (-15 -3667 ($ (-644 (-1093 (-381))))) (-15 -4224 ($ (-1132 (-225)))) (-15 -3052 ($ (-921))) (-15 -2502 ($ (-921))) (-15 -2624 ($ (-921))) (-15 -4059 ($ (-1 (-943 (-225)) (-943 (-225))))) (-15 -3002 ($ (-644 (-381)))) (-15 -1563 ((-3 (-52) "failed") (-644 $) (-1175))) (-15 -3177 ((-112) (-644 $) (-1175))))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-2430 (((-644 (-771)) $) NIL) (((-644 (-771)) $ |#2|) NIL)) (-1617 (((-771) $) NIL) (((-771) $ |#2|) NIL)) (-3863 (((-644 |#3|) $) NIL)) (-3683 (((-1171 $) $ |#3|) NIL) (((-1171 |#1|) $) NIL)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-3991 (($ $) NIL (|has| |#1| (-558)))) (-2388 (((-112) $) NIL (|has| |#1| (-558)))) (-3367 (((-771) $) NIL) (((-771) $ (-644 |#3|)) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-1477 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-1550 (($ $) NIL (|has| |#1| (-454)))) (-3184 (((-420 $) $) NIL (|has| |#1| (-454)))) (-3717 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-1644 (($ $) NIL)) (-3012 (($) NIL T CONST)) (-4307 (((-3 |#1| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1124 |#1| |#2|) "failed") $) 23)) (-4205 ((|#1| $) NIL) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-566) $) NIL (|has| |#1| (-1038 (-566)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1124 |#1| |#2|) $) NIL)) (-2738 (($ $ $ |#3|) NIL (|has| |#1| (-172)))) (-1786 (($ $) NIL)) (-3577 (((-689 (-566)) (-689 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -4227 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) NIL) (((-689 |#1|) (-689 $)) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-4075 (($ $) NIL (|has| |#1| (-454))) (($ $ |#3|) NIL (|has| |#1| (-454)))) (-1774 (((-644 $) $) NIL)) (-3268 (((-112) $) NIL (|has| |#1| (-909)))) (-3635 (($ $ |#1| (-533 |#3|) $) NIL)) (-2062 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| |#1| (-886 (-381))) (|has| |#3| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| |#1| (-886 (-566))) (|has| |#3| (-886 (-566)))))) (-3254 (((-771) $ |#2|) NIL) (((-771) $) 10)) (-3934 (((-112) $) NIL)) (-2614 (((-771) $) NIL)) (-3851 (($ (-1171 |#1|) |#3|) NIL) (($ (-1171 $) |#3|) NIL)) (-2288 (((-644 $) $) NIL)) (-3264 (((-112) $) NIL)) (-3840 (($ |#1| (-533 |#3|)) NIL) (($ $ |#3| (-771)) NIL) (($ $ (-644 |#3|) (-644 (-771))) NIL)) (-2044 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $ |#3|) NIL)) (-3760 (((-533 |#3|) $) NIL) (((-771) $ |#3|) NIL) (((-644 (-771)) $ (-644 |#3|)) NIL)) (-4301 (($ (-1 (-533 |#3|) (-533 |#3|)) $) NIL)) (-1301 (($ (-1 |#1| |#1|) $) NIL)) (-4151 (((-1 $ (-771)) |#2|) NIL) (((-1 $ (-771)) $) NIL (|has| |#1| (-233)))) (-3169 (((-3 |#3| "failed") $) NIL)) (-1749 (($ $) NIL)) (-1763 ((|#1| $) NIL)) (-2886 ((|#3| $) NIL)) (-2167 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-4117 (((-1157) $) NIL)) (-3843 (((-112) $) NIL)) (-3714 (((-3 (-644 $) "failed") $) NIL)) (-2353 (((-3 (-644 $) "failed") $) NIL)) (-1518 (((-3 (-2 (|:| |var| |#3|) (|:| -2852 (-771))) "failed") $) NIL)) (-2780 (($ $) NIL)) (-4035 (((-1119) $) NIL)) (-1723 (((-112) $) NIL)) (-1736 ((|#1| $) NIL)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-454)))) (-2214 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-4303 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-3240 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-3719 (((-420 $) $) NIL (|has| |#1| (-909)))) (-2994 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-2055 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-644 |#3|) (-644 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-644 |#3|) (-644 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-233))) (($ $ (-644 |#2|) (-644 $)) NIL (|has| |#1| (-233))) (($ $ |#2| |#1|) NIL (|has| |#1| (-233))) (($ $ (-644 |#2|) (-644 |#1|)) NIL (|has| |#1| (-233)))) (-3652 (($ $ |#3|) NIL (|has| |#1| (-172)))) (-3561 (($ $ |#3|) NIL) (($ $ (-644 |#3|)) NIL) (($ $ |#3| (-771)) NIL) (($ $ (-644 |#3|) (-644 (-771))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4110 (((-644 |#2|) $) NIL)) (-3636 (((-533 |#3|) $) NIL) (((-771) $ |#3|) NIL) (((-644 (-771)) $ (-644 |#3|)) NIL) (((-771) $ |#2|) NIL)) (-1348 (((-892 (-381)) $) NIL (-12 (|has| |#1| (-614 (-892 (-381)))) (|has| |#3| (-614 (-892 (-381)))))) (((-892 (-566)) $) NIL (-12 (|has| |#1| (-614 (-892 (-566)))) (|has| |#3| (-614 (-892 (-566)))))) (((-538) $) NIL (-12 (|has| |#1| (-614 (-538))) (|has| |#3| (-614 (-538)))))) (-2483 ((|#1| $) NIL (|has| |#1| (-454))) (($ $ |#3|) NIL (|has| |#1| (-454)))) (-1656 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-909))))) (-3783 (((-862) $) NIL) (($ (-566)) NIL) (($ |#1|) 26) (($ |#3|) 25) (($ |#2|) NIL) (($ (-1124 |#1| |#2|)) 32) (($ (-409 (-566))) NIL (-2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566)))))) (($ $) NIL (|has| |#1| (-558)))) (-4170 (((-644 |#1|) $) NIL)) (-2649 ((|#1| $ (-533 |#3|)) NIL) (($ $ |#3| (-771)) NIL) (($ $ (-644 |#3|) (-644 (-771))) NIL)) (-3144 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| $ (-145)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-2107 (((-771)) NIL T CONST)) (-3362 (($ $ $ (-771)) NIL (|has| |#1| (-172)))) (-3117 (((-112) $ $) NIL)) (-2695 (((-112) $ $) NIL (|has| |#1| (-558)))) (-2479 (($) NIL T CONST)) (-4334 (($) NIL T CONST)) (-2875 (($ $ |#3|) NIL) (($ $ (-644 |#3|)) NIL) (($ $ |#3| (-771)) NIL) (($ $ (-644 |#3|) (-644 (-771))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2947 (((-112) $ $) NIL)) (-3065 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +((-2827 (*1 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1214)))) (-2827 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1214)) (-4 *1 (-255 *3)))) (-3106 (*1 *2 *1) (-12 (-4 *1 (-255 *3)) (-4 *3 (-1214)) (-5 *2 (-771)))) (-3265 (*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1214)))) (-1473 (*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1214)))) (-1312 (*1 *2 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1214)))) (-3490 (*1 *2 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1214)))) (-1871 (*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1214)))) (-4183 (*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1214)))) (-3166 (*1 *1 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1214))))) +(-13 (-1120 |t#1|) (-995 |t#1|) (-10 -8 (-15 -2827 ($)) (-15 -2827 ($ (-644 |t#1|))) (-15 -3106 ((-771) $)) (-15 -3265 (|t#1| $)) (-15 -1473 (|t#1| $)) (-15 -1312 (|t#1| |t#1| $)) (-15 -3490 (|t#1| |t#1| $)) (-15 -1871 (|t#1| $)) (-15 -4183 (|t#1| $)) (-15 -3166 ($ $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2768 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-995 |#1|) . T) ((-1099) |has| |#1| (-1099)) ((-1120 |#1|) . T) ((-1214) . T)) +((-3385 (((-1 (-943 (-225)) (-225) (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))) 153)) (-2384 (((-1132 (-225)) (-882 (-1 (-225) (-225) (-225))) (-1093 (-381)) (-1093 (-381))) 173) (((-1132 (-225)) (-882 (-1 (-225) (-225) (-225))) (-1093 (-381)) (-1093 (-381)) (-644 (-264))) 171) (((-1132 (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-381)) (-1093 (-381))) 176) (((-1132 (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-381)) (-1093 (-381)) (-644 (-264))) 172) (((-1132 (-225)) (-1 (-225) (-225) (-225)) (-1093 (-381)) (-1093 (-381))) 164) (((-1132 (-225)) (-1 (-225) (-225) (-225)) (-1093 (-381)) (-1093 (-381)) (-644 (-264))) 163) (((-1132 (-225)) (-1 (-943 (-225)) (-225)) (-1093 (-381))) 145) (((-1132 (-225)) (-1 (-943 (-225)) (-225)) (-1093 (-381)) (-644 (-264))) 143) (((-1132 (-225)) (-879 (-1 (-225) (-225))) (-1093 (-381))) 144) (((-1132 (-225)) (-879 (-1 (-225) (-225))) (-1093 (-381)) (-644 (-264))) 141)) (-2341 (((-1266) (-882 (-1 (-225) (-225) (-225))) (-1093 (-381)) (-1093 (-381))) 175) (((-1266) (-882 (-1 (-225) (-225) (-225))) (-1093 (-381)) (-1093 (-381)) (-644 (-264))) 174) (((-1266) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-381)) (-1093 (-381))) 178) (((-1266) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-381)) (-1093 (-381)) (-644 (-264))) 177) (((-1266) (-1 (-225) (-225) (-225)) (-1093 (-381)) (-1093 (-381))) 166) (((-1266) (-1 (-225) (-225) (-225)) (-1093 (-381)) (-1093 (-381)) (-644 (-264))) 165) (((-1266) (-1 (-943 (-225)) (-225)) (-1093 (-381))) 151) (((-1266) (-1 (-943 (-225)) (-225)) (-1093 (-381)) (-644 (-264))) 150) (((-1266) (-879 (-1 (-225) (-225))) (-1093 (-381))) 149) (((-1266) (-879 (-1 (-225) (-225))) (-1093 (-381)) (-644 (-264))) 148) (((-1265) (-877 (-1 (-225) (-225))) (-1093 (-381))) 113) (((-1265) (-877 (-1 (-225) (-225))) (-1093 (-381)) (-644 (-264))) 112) (((-1265) (-1 (-225) (-225)) (-1093 (-381))) 107) (((-1265) (-1 (-225) (-225)) (-1093 (-381)) (-644 (-264))) 105))) +(((-256) (-10 -7 (-15 -2341 ((-1265) (-1 (-225) (-225)) (-1093 (-381)) (-644 (-264)))) (-15 -2341 ((-1265) (-1 (-225) (-225)) (-1093 (-381)))) (-15 -2341 ((-1265) (-877 (-1 (-225) (-225))) (-1093 (-381)) (-644 (-264)))) (-15 -2341 ((-1265) (-877 (-1 (-225) (-225))) (-1093 (-381)))) (-15 -2341 ((-1266) (-879 (-1 (-225) (-225))) (-1093 (-381)) (-644 (-264)))) (-15 -2341 ((-1266) (-879 (-1 (-225) (-225))) (-1093 (-381)))) (-15 -2341 ((-1266) (-1 (-943 (-225)) (-225)) (-1093 (-381)) (-644 (-264)))) (-15 -2341 ((-1266) (-1 (-943 (-225)) (-225)) (-1093 (-381)))) (-15 -2384 ((-1132 (-225)) (-879 (-1 (-225) (-225))) (-1093 (-381)) (-644 (-264)))) (-15 -2384 ((-1132 (-225)) (-879 (-1 (-225) (-225))) (-1093 (-381)))) (-15 -2384 ((-1132 (-225)) (-1 (-943 (-225)) (-225)) (-1093 (-381)) (-644 (-264)))) (-15 -2384 ((-1132 (-225)) (-1 (-943 (-225)) (-225)) (-1093 (-381)))) (-15 -2341 ((-1266) (-1 (-225) (-225) (-225)) (-1093 (-381)) (-1093 (-381)) (-644 (-264)))) (-15 -2341 ((-1266) (-1 (-225) (-225) (-225)) (-1093 (-381)) (-1093 (-381)))) (-15 -2384 ((-1132 (-225)) (-1 (-225) (-225) (-225)) (-1093 (-381)) (-1093 (-381)) (-644 (-264)))) (-15 -2384 ((-1132 (-225)) (-1 (-225) (-225) (-225)) (-1093 (-381)) (-1093 (-381)))) (-15 -2341 ((-1266) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-381)) (-1093 (-381)) (-644 (-264)))) (-15 -2341 ((-1266) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-381)) (-1093 (-381)))) (-15 -2384 ((-1132 (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-381)) (-1093 (-381)) (-644 (-264)))) (-15 -2384 ((-1132 (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-381)) (-1093 (-381)))) (-15 -2341 ((-1266) (-882 (-1 (-225) (-225) (-225))) (-1093 (-381)) (-1093 (-381)) (-644 (-264)))) (-15 -2341 ((-1266) (-882 (-1 (-225) (-225) (-225))) (-1093 (-381)) (-1093 (-381)))) (-15 -2384 ((-1132 (-225)) (-882 (-1 (-225) (-225) (-225))) (-1093 (-381)) (-1093 (-381)) (-644 (-264)))) (-15 -2384 ((-1132 (-225)) (-882 (-1 (-225) (-225) (-225))) (-1093 (-381)) (-1093 (-381)))) (-15 -3385 ((-1 (-943 (-225)) (-225) (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))) (T -256)) +((-3385 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-943 (-225)) (-225) (-225))) (-5 *3 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-256)))) (-2384 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-882 (-1 (-225) (-225) (-225)))) (-5 *4 (-1093 (-381))) (-5 *2 (-1132 (-225))) (-5 *1 (-256)))) (-2384 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-882 (-1 (-225) (-225) (-225)))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-256)))) (-2341 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-882 (-1 (-225) (-225) (-225)))) (-5 *4 (-1093 (-381))) (-5 *2 (-1266)) (-5 *1 (-256)))) (-2341 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-882 (-1 (-225) (-225) (-225)))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1266)) (-5 *1 (-256)))) (-2384 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-943 (-225)) (-225) (-225))) (-5 *4 (-1093 (-381))) (-5 *2 (-1132 (-225))) (-5 *1 (-256)))) (-2384 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-943 (-225)) (-225) (-225))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-256)))) (-2341 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-943 (-225)) (-225) (-225))) (-5 *4 (-1093 (-381))) (-5 *2 (-1266)) (-5 *1 (-256)))) (-2341 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-943 (-225)) (-225) (-225))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1266)) (-5 *1 (-256)))) (-2384 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1093 (-381))) (-5 *2 (-1132 (-225))) (-5 *1 (-256)))) (-2384 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-256)))) (-2341 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1093 (-381))) (-5 *2 (-1266)) (-5 *1 (-256)))) (-2341 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1266)) (-5 *1 (-256)))) (-2384 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-943 (-225)) (-225))) (-5 *4 (-1093 (-381))) (-5 *2 (-1132 (-225))) (-5 *1 (-256)))) (-2384 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-943 (-225)) (-225))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-256)))) (-2384 (*1 *2 *3 *4) (-12 (-5 *3 (-879 (-1 (-225) (-225)))) (-5 *4 (-1093 (-381))) (-5 *2 (-1132 (-225))) (-5 *1 (-256)))) (-2384 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-879 (-1 (-225) (-225)))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-256)))) (-2341 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-943 (-225)) (-225))) (-5 *4 (-1093 (-381))) (-5 *2 (-1266)) (-5 *1 (-256)))) (-2341 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-943 (-225)) (-225))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1266)) (-5 *1 (-256)))) (-2341 (*1 *2 *3 *4) (-12 (-5 *3 (-879 (-1 (-225) (-225)))) (-5 *4 (-1093 (-381))) (-5 *2 (-1266)) (-5 *1 (-256)))) (-2341 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-879 (-1 (-225) (-225)))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1266)) (-5 *1 (-256)))) (-2341 (*1 *2 *3 *4) (-12 (-5 *3 (-877 (-1 (-225) (-225)))) (-5 *4 (-1093 (-381))) (-5 *2 (-1265)) (-5 *1 (-256)))) (-2341 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-877 (-1 (-225) (-225)))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1265)) (-5 *1 (-256)))) (-2341 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1093 (-381))) (-5 *2 (-1265)) (-5 *1 (-256)))) (-2341 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1265)) (-5 *1 (-256))))) +(-10 -7 (-15 -2341 ((-1265) (-1 (-225) (-225)) (-1093 (-381)) (-644 (-264)))) (-15 -2341 ((-1265) (-1 (-225) (-225)) (-1093 (-381)))) (-15 -2341 ((-1265) (-877 (-1 (-225) (-225))) (-1093 (-381)) (-644 (-264)))) (-15 -2341 ((-1265) (-877 (-1 (-225) (-225))) (-1093 (-381)))) (-15 -2341 ((-1266) (-879 (-1 (-225) (-225))) (-1093 (-381)) (-644 (-264)))) (-15 -2341 ((-1266) (-879 (-1 (-225) (-225))) (-1093 (-381)))) (-15 -2341 ((-1266) (-1 (-943 (-225)) (-225)) (-1093 (-381)) (-644 (-264)))) (-15 -2341 ((-1266) (-1 (-943 (-225)) (-225)) (-1093 (-381)))) (-15 -2384 ((-1132 (-225)) (-879 (-1 (-225) (-225))) (-1093 (-381)) (-644 (-264)))) (-15 -2384 ((-1132 (-225)) (-879 (-1 (-225) (-225))) (-1093 (-381)))) (-15 -2384 ((-1132 (-225)) (-1 (-943 (-225)) (-225)) (-1093 (-381)) (-644 (-264)))) (-15 -2384 ((-1132 (-225)) (-1 (-943 (-225)) (-225)) (-1093 (-381)))) (-15 -2341 ((-1266) (-1 (-225) (-225) (-225)) (-1093 (-381)) (-1093 (-381)) (-644 (-264)))) (-15 -2341 ((-1266) (-1 (-225) (-225) (-225)) (-1093 (-381)) (-1093 (-381)))) (-15 -2384 ((-1132 (-225)) (-1 (-225) (-225) (-225)) (-1093 (-381)) (-1093 (-381)) (-644 (-264)))) (-15 -2384 ((-1132 (-225)) (-1 (-225) (-225) (-225)) (-1093 (-381)) (-1093 (-381)))) (-15 -2341 ((-1266) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-381)) (-1093 (-381)) (-644 (-264)))) (-15 -2341 ((-1266) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-381)) (-1093 (-381)))) (-15 -2384 ((-1132 (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-381)) (-1093 (-381)) (-644 (-264)))) (-15 -2384 ((-1132 (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-381)) (-1093 (-381)))) (-15 -2341 ((-1266) (-882 (-1 (-225) (-225) (-225))) (-1093 (-381)) (-1093 (-381)) (-644 (-264)))) (-15 -2341 ((-1266) (-882 (-1 (-225) (-225) (-225))) (-1093 (-381)) (-1093 (-381)))) (-15 -2384 ((-1132 (-225)) (-882 (-1 (-225) (-225) (-225))) (-1093 (-381)) (-1093 (-381)) (-644 (-264)))) (-15 -2384 ((-1132 (-225)) (-882 (-1 (-225) (-225) (-225))) (-1093 (-381)) (-1093 (-381)))) (-15 -3385 ((-1 (-943 (-225)) (-225) (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))))) +((-2341 (((-1265) (-295 |#2|) (-1175) (-1175) (-644 (-264))) 101))) +(((-257 |#1| |#2|) (-10 -7 (-15 -2341 ((-1265) (-295 |#2|) (-1175) (-1175) (-644 (-264))))) (-13 (-558) (-850) (-1038 (-566))) (-432 |#1|)) (T -257)) +((-2341 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-295 *7)) (-5 *4 (-1175)) (-5 *5 (-644 (-264))) (-4 *7 (-432 *6)) (-4 *6 (-13 (-558) (-850) (-1038 (-566)))) (-5 *2 (-1265)) (-5 *1 (-257 *6 *7))))) +(-10 -7 (-15 -2341 ((-1265) (-295 |#2|) (-1175) (-1175) (-644 (-264))))) +((-1617 (((-566) (-566)) 73)) (-4262 (((-566) (-566)) 74)) (-1314 (((-225) (-225)) 75)) (-2264 (((-1266) (-1 (-169 (-225)) (-169 (-225))) (-1093 (-225)) (-1093 (-225))) 72)) (-1445 (((-1266) (-1 (-169 (-225)) (-169 (-225))) (-1093 (-225)) (-1093 (-225)) (-112)) 70))) +(((-258) (-10 -7 (-15 -1445 ((-1266) (-1 (-169 (-225)) (-169 (-225))) (-1093 (-225)) (-1093 (-225)) (-112))) (-15 -2264 ((-1266) (-1 (-169 (-225)) (-169 (-225))) (-1093 (-225)) (-1093 (-225)))) (-15 -1617 ((-566) (-566))) (-15 -4262 ((-566) (-566))) (-15 -1314 ((-225) (-225))))) (T -258)) +((-1314 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-258)))) (-4262 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-258)))) (-1617 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-258)))) (-2264 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1093 (-225))) (-5 *2 (-1266)) (-5 *1 (-258)))) (-1445 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1093 (-225))) (-5 *5 (-112)) (-5 *2 (-1266)) (-5 *1 (-258))))) +(-10 -7 (-15 -1445 ((-1266) (-1 (-169 (-225)) (-169 (-225))) (-1093 (-225)) (-1093 (-225)) (-112))) (-15 -2264 ((-1266) (-1 (-169 (-225)) (-169 (-225))) (-1093 (-225)) (-1093 (-225)))) (-15 -1617 ((-566) (-566))) (-15 -4262 ((-566) (-566))) (-15 -1314 ((-225) (-225)))) +((-3152 (((-1091 (-381)) (-1091 (-317 |#1|))) 16))) +(((-259 |#1|) (-10 -7 (-15 -3152 ((-1091 (-381)) (-1091 (-317 |#1|))))) (-13 (-850) (-558) (-614 (-381)))) (T -259)) +((-3152 (*1 *2 *3) (-12 (-5 *3 (-1091 (-317 *4))) (-4 *4 (-13 (-850) (-558) (-614 (-381)))) (-5 *2 (-1091 (-381))) (-5 *1 (-259 *4))))) +(-10 -7 (-15 -3152 ((-1091 (-381)) (-1091 (-317 |#1|))))) +((-2384 (((-1132 (-225)) (-882 |#1|) (-1091 (-381)) (-1091 (-381))) 75) (((-1132 (-225)) (-882 |#1|) (-1091 (-381)) (-1091 (-381)) (-644 (-264))) 74) (((-1132 (-225)) |#1| (-1091 (-381)) (-1091 (-381))) 65) (((-1132 (-225)) |#1| (-1091 (-381)) (-1091 (-381)) (-644 (-264))) 64) (((-1132 (-225)) (-879 |#1|) (-1091 (-381))) 56) (((-1132 (-225)) (-879 |#1|) (-1091 (-381)) (-644 (-264))) 55)) (-2341 (((-1266) (-882 |#1|) (-1091 (-381)) (-1091 (-381))) 78) (((-1266) (-882 |#1|) (-1091 (-381)) (-1091 (-381)) (-644 (-264))) 77) (((-1266) |#1| (-1091 (-381)) (-1091 (-381))) 68) (((-1266) |#1| (-1091 (-381)) (-1091 (-381)) (-644 (-264))) 67) (((-1266) (-879 |#1|) (-1091 (-381))) 60) (((-1266) (-879 |#1|) (-1091 (-381)) (-644 (-264))) 59) (((-1265) (-877 |#1|) (-1091 (-381))) 47) (((-1265) (-877 |#1|) (-1091 (-381)) (-644 (-264))) 46) (((-1265) |#1| (-1091 (-381))) 38) (((-1265) |#1| (-1091 (-381)) (-644 (-264))) 36))) +(((-260 |#1|) (-10 -7 (-15 -2341 ((-1265) |#1| (-1091 (-381)) (-644 (-264)))) (-15 -2341 ((-1265) |#1| (-1091 (-381)))) (-15 -2341 ((-1265) (-877 |#1|) (-1091 (-381)) (-644 (-264)))) (-15 -2341 ((-1265) (-877 |#1|) (-1091 (-381)))) (-15 -2341 ((-1266) (-879 |#1|) (-1091 (-381)) (-644 (-264)))) (-15 -2341 ((-1266) (-879 |#1|) (-1091 (-381)))) (-15 -2384 ((-1132 (-225)) (-879 |#1|) (-1091 (-381)) (-644 (-264)))) (-15 -2384 ((-1132 (-225)) (-879 |#1|) (-1091 (-381)))) (-15 -2341 ((-1266) |#1| (-1091 (-381)) (-1091 (-381)) (-644 (-264)))) (-15 -2341 ((-1266) |#1| (-1091 (-381)) (-1091 (-381)))) (-15 -2384 ((-1132 (-225)) |#1| (-1091 (-381)) (-1091 (-381)) (-644 (-264)))) (-15 -2384 ((-1132 (-225)) |#1| (-1091 (-381)) (-1091 (-381)))) (-15 -2341 ((-1266) (-882 |#1|) (-1091 (-381)) (-1091 (-381)) (-644 (-264)))) (-15 -2341 ((-1266) (-882 |#1|) (-1091 (-381)) (-1091 (-381)))) (-15 -2384 ((-1132 (-225)) (-882 |#1|) (-1091 (-381)) (-1091 (-381)) (-644 (-264)))) (-15 -2384 ((-1132 (-225)) (-882 |#1|) (-1091 (-381)) (-1091 (-381))))) (-13 (-614 (-538)) (-1099))) (T -260)) +((-2384 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-882 *5)) (-5 *4 (-1091 (-381))) (-4 *5 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1132 (-225))) (-5 *1 (-260 *5)))) (-2384 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-882 *6)) (-5 *4 (-1091 (-381))) (-5 *5 (-644 (-264))) (-4 *6 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1132 (-225))) (-5 *1 (-260 *6)))) (-2341 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-882 *5)) (-5 *4 (-1091 (-381))) (-4 *5 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1266)) (-5 *1 (-260 *5)))) (-2341 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-882 *6)) (-5 *4 (-1091 (-381))) (-5 *5 (-644 (-264))) (-4 *6 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1266)) (-5 *1 (-260 *6)))) (-2384 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1091 (-381))) (-5 *2 (-1132 (-225))) (-5 *1 (-260 *3)) (-4 *3 (-13 (-614 (-538)) (-1099))))) (-2384 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1091 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-260 *3)) (-4 *3 (-13 (-614 (-538)) (-1099))))) (-2341 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1091 (-381))) (-5 *2 (-1266)) (-5 *1 (-260 *3)) (-4 *3 (-13 (-614 (-538)) (-1099))))) (-2341 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1091 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1266)) (-5 *1 (-260 *3)) (-4 *3 (-13 (-614 (-538)) (-1099))))) (-2384 (*1 *2 *3 *4) (-12 (-5 *3 (-879 *5)) (-5 *4 (-1091 (-381))) (-4 *5 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1132 (-225))) (-5 *1 (-260 *5)))) (-2384 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-879 *6)) (-5 *4 (-1091 (-381))) (-5 *5 (-644 (-264))) (-4 *6 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1132 (-225))) (-5 *1 (-260 *6)))) (-2341 (*1 *2 *3 *4) (-12 (-5 *3 (-879 *5)) (-5 *4 (-1091 (-381))) (-4 *5 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1266)) (-5 *1 (-260 *5)))) (-2341 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-879 *6)) (-5 *4 (-1091 (-381))) (-5 *5 (-644 (-264))) (-4 *6 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1266)) (-5 *1 (-260 *6)))) (-2341 (*1 *2 *3 *4) (-12 (-5 *3 (-877 *5)) (-5 *4 (-1091 (-381))) (-4 *5 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1265)) (-5 *1 (-260 *5)))) (-2341 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-877 *6)) (-5 *4 (-1091 (-381))) (-5 *5 (-644 (-264))) (-4 *6 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1265)) (-5 *1 (-260 *6)))) (-2341 (*1 *2 *3 *4) (-12 (-5 *4 (-1091 (-381))) (-5 *2 (-1265)) (-5 *1 (-260 *3)) (-4 *3 (-13 (-614 (-538)) (-1099))))) (-2341 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1091 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1265)) (-5 *1 (-260 *3)) (-4 *3 (-13 (-614 (-538)) (-1099)))))) +(-10 -7 (-15 -2341 ((-1265) |#1| (-1091 (-381)) (-644 (-264)))) (-15 -2341 ((-1265) |#1| (-1091 (-381)))) (-15 -2341 ((-1265) (-877 |#1|) (-1091 (-381)) (-644 (-264)))) (-15 -2341 ((-1265) (-877 |#1|) (-1091 (-381)))) (-15 -2341 ((-1266) (-879 |#1|) (-1091 (-381)) (-644 (-264)))) (-15 -2341 ((-1266) (-879 |#1|) (-1091 (-381)))) (-15 -2384 ((-1132 (-225)) (-879 |#1|) (-1091 (-381)) (-644 (-264)))) (-15 -2384 ((-1132 (-225)) (-879 |#1|) (-1091 (-381)))) (-15 -2341 ((-1266) |#1| (-1091 (-381)) (-1091 (-381)) (-644 (-264)))) (-15 -2341 ((-1266) |#1| (-1091 (-381)) (-1091 (-381)))) (-15 -2384 ((-1132 (-225)) |#1| (-1091 (-381)) (-1091 (-381)) (-644 (-264)))) (-15 -2384 ((-1132 (-225)) |#1| (-1091 (-381)) (-1091 (-381)))) (-15 -2341 ((-1266) (-882 |#1|) (-1091 (-381)) (-1091 (-381)) (-644 (-264)))) (-15 -2341 ((-1266) (-882 |#1|) (-1091 (-381)) (-1091 (-381)))) (-15 -2384 ((-1132 (-225)) (-882 |#1|) (-1091 (-381)) (-1091 (-381)) (-644 (-264)))) (-15 -2384 ((-1132 (-225)) (-882 |#1|) (-1091 (-381)) (-1091 (-381))))) +((-2341 (((-1266) (-644 (-225)) (-644 (-225)) (-644 (-225)) (-644 (-264))) 23) (((-1266) (-644 (-225)) (-644 (-225)) (-644 (-225))) 24) (((-1265) (-644 (-943 (-225))) (-644 (-264))) 16) (((-1265) (-644 (-943 (-225)))) 17) (((-1265) (-644 (-225)) (-644 (-225)) (-644 (-264))) 20) (((-1265) (-644 (-225)) (-644 (-225))) 21))) +(((-261) (-10 -7 (-15 -2341 ((-1265) (-644 (-225)) (-644 (-225)))) (-15 -2341 ((-1265) (-644 (-225)) (-644 (-225)) (-644 (-264)))) (-15 -2341 ((-1265) (-644 (-943 (-225))))) (-15 -2341 ((-1265) (-644 (-943 (-225))) (-644 (-264)))) (-15 -2341 ((-1266) (-644 (-225)) (-644 (-225)) (-644 (-225)))) (-15 -2341 ((-1266) (-644 (-225)) (-644 (-225)) (-644 (-225)) (-644 (-264)))))) (T -261)) +((-2341 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-644 (-225))) (-5 *4 (-644 (-264))) (-5 *2 (-1266)) (-5 *1 (-261)))) (-2341 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-644 (-225))) (-5 *2 (-1266)) (-5 *1 (-261)))) (-2341 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-943 (-225)))) (-5 *4 (-644 (-264))) (-5 *2 (-1265)) (-5 *1 (-261)))) (-2341 (*1 *2 *3) (-12 (-5 *3 (-644 (-943 (-225)))) (-5 *2 (-1265)) (-5 *1 (-261)))) (-2341 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-644 (-225))) (-5 *4 (-644 (-264))) (-5 *2 (-1265)) (-5 *1 (-261)))) (-2341 (*1 *2 *3 *3) (-12 (-5 *3 (-644 (-225))) (-5 *2 (-1265)) (-5 *1 (-261))))) +(-10 -7 (-15 -2341 ((-1265) (-644 (-225)) (-644 (-225)))) (-15 -2341 ((-1265) (-644 (-225)) (-644 (-225)) (-644 (-264)))) (-15 -2341 ((-1265) (-644 (-943 (-225))))) (-15 -2341 ((-1265) (-644 (-943 (-225))) (-644 (-264)))) (-15 -2341 ((-1266) (-644 (-225)) (-644 (-225)) (-644 (-225)))) (-15 -2341 ((-1266) (-644 (-225)) (-644 (-225)) (-644 (-225)) (-644 (-264))))) +((-3755 (((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2406 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-644 (-264)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2406 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 25)) (-1661 (((-921) (-644 (-264)) (-921)) 52)) (-3085 (((-921) (-644 (-264)) (-921)) 51)) (-3851 (((-644 (-381)) (-644 (-264)) (-644 (-381))) 68)) (-2151 (((-381) (-644 (-264)) (-381)) 57)) (-2697 (((-921) (-644 (-264)) (-921)) 53)) (-2917 (((-112) (-644 (-264)) (-112)) 27)) (-4024 (((-1157) (-644 (-264)) (-1157)) 19)) (-2385 (((-1157) (-644 (-264)) (-1157)) 26)) (-4338 (((-1132 (-225)) (-644 (-264))) 46)) (-2869 (((-644 (-1093 (-381))) (-644 (-264)) (-644 (-1093 (-381)))) 40)) (-3744 (((-874) (-644 (-264)) (-874)) 32)) (-1660 (((-874) (-644 (-264)) (-874)) 33)) (-1547 (((-1 (-943 (-225)) (-943 (-225))) (-644 (-264)) (-1 (-943 (-225)) (-943 (-225)))) 63)) (-3275 (((-112) (-644 (-264)) (-112)) 14)) (-4335 (((-112) (-644 (-264)) (-112)) 13))) +(((-262) (-10 -7 (-15 -4335 ((-112) (-644 (-264)) (-112))) (-15 -3275 ((-112) (-644 (-264)) (-112))) (-15 -3755 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2406 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-644 (-264)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2406 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -4024 ((-1157) (-644 (-264)) (-1157))) (-15 -2385 ((-1157) (-644 (-264)) (-1157))) (-15 -2917 ((-112) (-644 (-264)) (-112))) (-15 -3744 ((-874) (-644 (-264)) (-874))) (-15 -1660 ((-874) (-644 (-264)) (-874))) (-15 -2869 ((-644 (-1093 (-381))) (-644 (-264)) (-644 (-1093 (-381))))) (-15 -3085 ((-921) (-644 (-264)) (-921))) (-15 -1661 ((-921) (-644 (-264)) (-921))) (-15 -4338 ((-1132 (-225)) (-644 (-264)))) (-15 -2697 ((-921) (-644 (-264)) (-921))) (-15 -2151 ((-381) (-644 (-264)) (-381))) (-15 -1547 ((-1 (-943 (-225)) (-943 (-225))) (-644 (-264)) (-1 (-943 (-225)) (-943 (-225))))) (-15 -3851 ((-644 (-381)) (-644 (-264)) (-644 (-381)))))) (T -262)) +((-3851 (*1 *2 *3 *2) (-12 (-5 *2 (-644 (-381))) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) (-1547 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-943 (-225)) (-943 (-225)))) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) (-2151 (*1 *2 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) (-2697 (*1 *2 *3 *2) (-12 (-5 *2 (-921)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) (-4338 (*1 *2 *3) (-12 (-5 *3 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-262)))) (-1661 (*1 *2 *3 *2) (-12 (-5 *2 (-921)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) (-3085 (*1 *2 *3 *2) (-12 (-5 *2 (-921)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) (-2869 (*1 *2 *3 *2) (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) (-1660 (*1 *2 *3 *2) (-12 (-5 *2 (-874)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) (-3744 (*1 *2 *3 *2) (-12 (-5 *2 (-874)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) (-2917 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) (-2385 (*1 *2 *3 *2) (-12 (-5 *2 (-1157)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) (-4024 (*1 *2 *3 *2) (-12 (-5 *2 (-1157)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) (-3755 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2406 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) (-3275 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) (-4335 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-644 (-264))) (-5 *1 (-262))))) +(-10 -7 (-15 -4335 ((-112) (-644 (-264)) (-112))) (-15 -3275 ((-112) (-644 (-264)) (-112))) (-15 -3755 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2406 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-644 (-264)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2406 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -4024 ((-1157) (-644 (-264)) (-1157))) (-15 -2385 ((-1157) (-644 (-264)) (-1157))) (-15 -2917 ((-112) (-644 (-264)) (-112))) (-15 -3744 ((-874) (-644 (-264)) (-874))) (-15 -1660 ((-874) (-644 (-264)) (-874))) (-15 -2869 ((-644 (-1093 (-381))) (-644 (-264)) (-644 (-1093 (-381))))) (-15 -3085 ((-921) (-644 (-264)) (-921))) (-15 -1661 ((-921) (-644 (-264)) (-921))) (-15 -4338 ((-1132 (-225)) (-644 (-264)))) (-15 -2697 ((-921) (-644 (-264)) (-921))) (-15 -2151 ((-381) (-644 (-264)) (-381))) (-15 -1547 ((-1 (-943 (-225)) (-943 (-225))) (-644 (-264)) (-1 (-943 (-225)) (-943 (-225))))) (-15 -3851 ((-644 (-381)) (-644 (-264)) (-644 (-381))))) +((-2249 (((-3 |#1| "failed") (-644 (-264)) (-1175)) 17))) +(((-263 |#1|) (-10 -7 (-15 -2249 ((-3 |#1| "failed") (-644 (-264)) (-1175)))) (-1214)) (T -263)) +((-2249 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-644 (-264))) (-5 *4 (-1175)) (-5 *1 (-263 *2)) (-4 *2 (-1214))))) +(-10 -7 (-15 -2249 ((-3 |#1| "failed") (-644 (-264)) (-1175)))) +((-2988 (((-112) $ $) NIL)) (-3755 (($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2406 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 24)) (-1661 (($ (-921)) 81)) (-3085 (($ (-921)) 80)) (-2896 (($ (-644 (-381))) 87)) (-2151 (($ (-381)) 66)) (-2697 (($ (-921)) 82)) (-2917 (($ (-112)) 33)) (-4024 (($ (-1157)) 28)) (-2385 (($ (-1157)) 29)) (-4338 (($ (-1132 (-225))) 76)) (-2869 (($ (-644 (-1093 (-381)))) 72)) (-2821 (($ (-644 (-1093 (-381)))) 68) (($ (-644 (-1093 (-409 (-566))))) 71)) (-1631 (($ (-381)) 38) (($ (-874)) 42)) (-1823 (((-112) (-644 $) (-1175)) 100)) (-2249 (((-3 (-52) "failed") (-644 $) (-1175)) 102)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-1581 (($ (-381)) 43) (($ (-874)) 44)) (-3350 (($ (-1 (-943 (-225)) (-943 (-225)))) 65)) (-1547 (($ (-1 (-943 (-225)) (-943 (-225)))) 83)) (-3279 (($ (-1 (-225) (-225))) 48) (($ (-1 (-225) (-225) (-225))) 52) (($ (-1 (-225) (-225) (-225) (-225))) 56)) (-3152 (((-862) $) 93)) (-1446 (($ (-112)) 34) (($ (-644 (-1093 (-381)))) 60)) (-3044 (((-112) $ $) NIL)) (-4335 (($ (-112)) 35)) (-2914 (((-112) $ $) 97))) +(((-264) (-13 (-1099) (-10 -8 (-15 -4335 ($ (-112))) (-15 -1446 ($ (-112))) (-15 -3755 ($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2406 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -4024 ($ (-1157))) (-15 -2385 ($ (-1157))) (-15 -2917 ($ (-112))) (-15 -1446 ($ (-644 (-1093 (-381))))) (-15 -3350 ($ (-1 (-943 (-225)) (-943 (-225))))) (-15 -1631 ($ (-381))) (-15 -1631 ($ (-874))) (-15 -1581 ($ (-381))) (-15 -1581 ($ (-874))) (-15 -3279 ($ (-1 (-225) (-225)))) (-15 -3279 ($ (-1 (-225) (-225) (-225)))) (-15 -3279 ($ (-1 (-225) (-225) (-225) (-225)))) (-15 -2151 ($ (-381))) (-15 -2821 ($ (-644 (-1093 (-381))))) (-15 -2821 ($ (-644 (-1093 (-409 (-566)))))) (-15 -2869 ($ (-644 (-1093 (-381))))) (-15 -4338 ($ (-1132 (-225)))) (-15 -3085 ($ (-921))) (-15 -1661 ($ (-921))) (-15 -2697 ($ (-921))) (-15 -1547 ($ (-1 (-943 (-225)) (-943 (-225))))) (-15 -2896 ($ (-644 (-381)))) (-15 -2249 ((-3 (-52) "failed") (-644 $) (-1175))) (-15 -1823 ((-112) (-644 $) (-1175)))))) (T -264)) +((-4335 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264)))) (-1446 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264)))) (-3755 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2406 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *1 (-264)))) (-4024 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-264)))) (-2385 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-264)))) (-2917 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264)))) (-1446 (*1 *1 *2) (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *1 (-264)))) (-3350 (*1 *1 *2) (-12 (-5 *2 (-1 (-943 (-225)) (-943 (-225)))) (-5 *1 (-264)))) (-1631 (*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264)))) (-1631 (*1 *1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-264)))) (-1581 (*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264)))) (-1581 (*1 *1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-264)))) (-3279 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-264)))) (-3279 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-264)))) (-3279 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-264)))) (-2151 (*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264)))) (-2821 (*1 *1 *2) (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *1 (-264)))) (-2821 (*1 *1 *2) (-12 (-5 *2 (-644 (-1093 (-409 (-566))))) (-5 *1 (-264)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *1 (-264)))) (-4338 (*1 *1 *2) (-12 (-5 *2 (-1132 (-225))) (-5 *1 (-264)))) (-3085 (*1 *1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-264)))) (-1661 (*1 *1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-264)))) (-2697 (*1 *1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-264)))) (-1547 (*1 *1 *2) (-12 (-5 *2 (-1 (-943 (-225)) (-943 (-225)))) (-5 *1 (-264)))) (-2896 (*1 *1 *2) (-12 (-5 *2 (-644 (-381))) (-5 *1 (-264)))) (-2249 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-644 (-264))) (-5 *4 (-1175)) (-5 *2 (-52)) (-5 *1 (-264)))) (-1823 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-264))) (-5 *4 (-1175)) (-5 *2 (-112)) (-5 *1 (-264))))) +(-13 (-1099) (-10 -8 (-15 -4335 ($ (-112))) (-15 -1446 ($ (-112))) (-15 -3755 ($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2406 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -4024 ($ (-1157))) (-15 -2385 ($ (-1157))) (-15 -2917 ($ (-112))) (-15 -1446 ($ (-644 (-1093 (-381))))) (-15 -3350 ($ (-1 (-943 (-225)) (-943 (-225))))) (-15 -1631 ($ (-381))) (-15 -1631 ($ (-874))) (-15 -1581 ($ (-381))) (-15 -1581 ($ (-874))) (-15 -3279 ($ (-1 (-225) (-225)))) (-15 -3279 ($ (-1 (-225) (-225) (-225)))) (-15 -3279 ($ (-1 (-225) (-225) (-225) (-225)))) (-15 -2151 ($ (-381))) (-15 -2821 ($ (-644 (-1093 (-381))))) (-15 -2821 ($ (-644 (-1093 (-409 (-566)))))) (-15 -2869 ($ (-644 (-1093 (-381))))) (-15 -4338 ($ (-1132 (-225)))) (-15 -3085 ($ (-921))) (-15 -1661 ($ (-921))) (-15 -2697 ($ (-921))) (-15 -1547 ($ (-1 (-943 (-225)) (-943 (-225))))) (-15 -2896 ($ (-644 (-381)))) (-15 -2249 ((-3 (-52) "failed") (-644 $) (-1175))) (-15 -1823 ((-112) (-644 $) (-1175))))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-1825 (((-644 (-771)) $) NIL) (((-644 (-771)) $ |#2|) NIL)) (-1784 (((-771) $) NIL) (((-771) $ |#2|) NIL)) (-1771 (((-644 |#3|) $) NIL)) (-1590 (((-1171 $) $ |#3|) NIL) (((-1171 |#1|) $) NIL)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-2161 (($ $) NIL (|has| |#1| (-558)))) (-2345 (((-112) $) NIL (|has| |#1| (-558)))) (-1357 (((-771) $) NIL) (((-771) $ (-644 |#3|)) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-2292 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-1378 (($ $) NIL (|has| |#1| (-454)))) (-1364 (((-420 $) $) NIL (|has| |#1| (-454)))) (-4066 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-1559 (($ $) NIL)) (-2463 (($) NIL T CONST)) (-2229 (((-3 |#1| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1124 |#1| |#2|) "failed") $) 23)) (-4158 ((|#1| $) NIL) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-566) $) NIL (|has| |#1| (-1038 (-566)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1124 |#1| |#2|) $) NIL)) (-2610 (($ $ $ |#3|) NIL (|has| |#1| (-172)))) (-2814 (($ $) NIL)) (-4089 (((-689 (-566)) (-689 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -3361 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) NIL) (((-689 |#1|) (-689 $)) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-2616 (($ $) NIL (|has| |#1| (-454))) (($ $ |#3|) NIL (|has| |#1| (-454)))) (-2804 (((-644 $) $) NIL)) (-1615 (((-112) $) NIL (|has| |#1| (-909)))) (-1896 (($ $ |#1| (-533 |#3|) $) NIL)) (-2926 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| |#1| (-886 (-381))) (|has| |#3| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| |#1| (-886 (-566))) (|has| |#3| (-886 (-566)))))) (-2679 (((-771) $ |#2|) NIL) (((-771) $) 10)) (-2389 (((-112) $) NIL)) (-3039 (((-771) $) NIL)) (-1757 (($ (-1171 |#1|) |#3|) NIL) (($ (-1171 $) |#3|) NIL)) (-1587 (((-644 $) $) NIL)) (-2497 (((-112) $) NIL)) (-1746 (($ |#1| (-533 |#3|)) NIL) (($ $ |#3| (-771)) NIL) (($ $ (-644 |#3|) (-644 (-771))) NIL)) (-2815 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $ |#3|) NIL)) (-2749 (((-533 |#3|) $) NIL) (((-771) $ |#3|) NIL) (((-644 (-771)) $ (-644 |#3|)) NIL)) (-3021 (($ (-1 (-533 |#3|) (-533 |#3|)) $) NIL)) (-2319 (($ (-1 |#1| |#1|) $) NIL)) (-1545 (((-1 $ (-771)) |#2|) NIL) (((-1 $ (-771)) $) NIL (|has| |#1| (-233)))) (-2297 (((-3 |#3| "failed") $) NIL)) (-2784 (($ $) NIL)) (-2794 ((|#1| $) NIL)) (-1528 ((|#3| $) NIL)) (-2128 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-3380 (((-1157) $) NIL)) (-2663 (((-112) $) NIL)) (-3738 (((-3 (-644 $) "failed") $) NIL)) (-4199 (((-3 (-644 $) "failed") $) NIL)) (-4108 (((-3 (-2 (|:| |var| |#3|) (|:| -2201 (-771))) "failed") $) NIL)) (-3779 (($ $) NIL)) (-4072 (((-1119) $) NIL)) (-2761 (((-112) $) NIL)) (-2773 ((|#1| $) NIL)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-454)))) (-2164 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-2010 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-1893 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-1624 (((-420 $) $) NIL (|has| |#1| (-909)))) (-2978 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-2023 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-644 |#3|) (-644 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-644 |#3|) (-644 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-233))) (($ $ (-644 |#2|) (-644 $)) NIL (|has| |#1| (-233))) (($ $ |#2| |#1|) NIL (|has| |#1| (-233))) (($ $ (-644 |#2|) (-644 |#1|)) NIL (|has| |#1| (-233)))) (-4068 (($ $ |#3|) NIL (|has| |#1| (-172)))) (-3629 (($ $ |#3|) NIL) (($ $ (-644 |#3|)) NIL) (($ $ |#3| (-771)) NIL) (($ $ (-644 |#3|) (-644 (-771))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4037 (((-644 |#2|) $) NIL)) (-3902 (((-533 |#3|) $) NIL) (((-771) $ |#3|) NIL) (((-644 (-771)) $ (-644 |#3|)) NIL) (((-771) $ |#2|) NIL)) (-2376 (((-892 (-381)) $) NIL (-12 (|has| |#1| (-614 (-892 (-381)))) (|has| |#3| (-614 (-892 (-381)))))) (((-892 (-566)) $) NIL (-12 (|has| |#1| (-614 (-892 (-566)))) (|has| |#3| (-614 (-892 (-566)))))) (((-538) $) NIL (-12 (|has| |#1| (-614 (-538))) (|has| |#3| (-614 (-538)))))) (-3173 ((|#1| $) NIL (|has| |#1| (-454))) (($ $ |#3|) NIL (|has| |#1| (-454)))) (-3391 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-909))))) (-3152 (((-862) $) NIL) (($ (-566)) NIL) (($ |#1|) 26) (($ |#3|) 25) (($ |#2|) NIL) (($ (-1124 |#1| |#2|)) 32) (($ (-409 (-566))) NIL (-2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566)))))) (($ $) NIL (|has| |#1| (-558)))) (-1643 (((-644 |#1|) $) NIL)) (-2271 ((|#1| $ (-533 |#3|)) NIL) (($ $ |#3| (-771)) NIL) (($ $ (-644 |#3|) (-644 (-771))) NIL)) (-2633 (((-3 $ "failed") $) NIL (-2768 (-12 (|has| $ (-145)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-2593 (((-771)) NIL T CONST)) (-2021 (($ $ $ (-771)) NIL (|has| |#1| (-172)))) (-3044 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL (|has| |#1| (-558)))) (-4356 (($) NIL T CONST)) (-4366 (($) NIL T CONST)) (-3497 (($ $ |#3|) NIL) (($ $ (-644 |#3|)) NIL) (($ $ |#3| (-771)) NIL) (($ $ (-644 |#3|) (-644 (-771))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2914 (((-112) $ $) NIL)) (-3025 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) (((-265 |#1| |#2| |#3|) (-13 (-254 |#1| |#2| |#3| (-533 |#3|)) (-1038 (-1124 |#1| |#2|))) (-1049) (-850) (-267 |#2|)) (T -265)) NIL (-13 (-254 |#1| |#2| |#3| (-533 |#3|)) (-1038 (-1124 |#1| |#2|))) -((-1617 (((-771) $) 37)) (-4307 (((-3 |#2| "failed") $) 22)) (-4205 ((|#2| $) 33)) (-3561 (($ $) 14) (($ $ (-771)) 18)) (-3783 (((-862) $) 32) (($ |#2|) 11)) (-2947 (((-112) $ $) 26)) (-2969 (((-112) $ $) 36))) -(((-266 |#1| |#2|) (-10 -8 (-15 -3561 (|#1| |#1| (-771))) (-15 -3561 (|#1| |#1|)) (-15 -1617 ((-771) |#1|)) (-15 -3783 (|#1| |#2|)) (-15 -4307 ((-3 |#2| "failed") |#1|)) (-15 -4205 (|#2| |#1|)) (-15 -2969 ((-112) |#1| |#1|)) (-15 -3783 ((-862) |#1|)) (-15 -2947 ((-112) |#1| |#1|))) (-267 |#2|) (-850)) (T -266)) +((-1784 (((-771) $) 37)) (-2229 (((-3 |#2| "failed") $) 22)) (-4158 ((|#2| $) 33)) (-3629 (($ $) 14) (($ $ (-771)) 18)) (-3152 (((-862) $) 32) (($ |#2|) 11)) (-2914 (((-112) $ $) 26)) (-2935 (((-112) $ $) 36))) +(((-266 |#1| |#2|) (-10 -8 (-15 -3629 (|#1| |#1| (-771))) (-15 -3629 (|#1| |#1|)) (-15 -1784 ((-771) |#1|)) (-15 -3152 (|#1| |#2|)) (-15 -2229 ((-3 |#2| "failed") |#1|)) (-15 -4158 (|#2| |#1|)) (-15 -2935 ((-112) |#1| |#1|)) (-15 -3152 ((-862) |#1|)) (-15 -2914 ((-112) |#1| |#1|))) (-267 |#2|) (-850)) (T -266)) NIL -(-10 -8 (-15 -3561 (|#1| |#1| (-771))) (-15 -3561 (|#1| |#1|)) (-15 -1617 ((-771) |#1|)) (-15 -3783 (|#1| |#2|)) (-15 -4307 ((-3 |#2| "failed") |#1|)) (-15 -4205 (|#2| |#1|)) (-15 -2969 ((-112) |#1| |#1|)) (-15 -3783 ((-862) |#1|)) (-15 -2947 ((-112) |#1| |#1|))) -((-3007 (((-112) $ $) 7)) (-1617 (((-771) $) 23)) (-1385 ((|#1| $) 24)) (-4307 (((-3 |#1| "failed") $) 28)) (-4205 ((|#1| $) 29)) (-3254 (((-771) $) 25)) (-2097 (($ $ $) 14)) (-3962 (($ $ $) 15)) (-4151 (($ |#1| (-771)) 26)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3561 (($ $) 22) (($ $ (-771)) 21)) (-3783 (((-862) $) 12) (($ |#1|) 27)) (-3117 (((-112) $ $) 9)) (-3009 (((-112) $ $) 17)) (-2984 (((-112) $ $) 18)) (-2947 (((-112) $ $) 6)) (-2995 (((-112) $ $) 16)) (-2969 (((-112) $ $) 19))) +(-10 -8 (-15 -3629 (|#1| |#1| (-771))) (-15 -3629 (|#1| |#1|)) (-15 -1784 ((-771) |#1|)) (-15 -3152 (|#1| |#2|)) (-15 -2229 ((-3 |#2| "failed") |#1|)) (-15 -4158 (|#2| |#1|)) (-15 -2935 ((-112) |#1| |#1|)) (-15 -3152 ((-862) |#1|)) (-15 -2914 ((-112) |#1| |#1|))) +((-2988 (((-112) $ $) 7)) (-1784 (((-771) $) 23)) (-4347 ((|#1| $) 24)) (-2229 (((-3 |#1| "failed") $) 28)) (-4158 ((|#1| $) 29)) (-2679 (((-771) $) 25)) (-1478 (($ $ $) 14)) (-2599 (($ $ $) 15)) (-1545 (($ |#1| (-771)) 26)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3629 (($ $) 22) (($ $ (-771)) 21)) (-3152 (((-862) $) 12) (($ |#1|) 27)) (-3044 (((-112) $ $) 9)) (-2968 (((-112) $ $) 17)) (-2946 (((-112) $ $) 18)) (-2914 (((-112) $ $) 6)) (-2956 (((-112) $ $) 16)) (-2935 (((-112) $ $) 19))) (((-267 |#1|) (-140) (-850)) (T -267)) -((-3783 (*1 *1 *2) (-12 (-4 *1 (-267 *2)) (-4 *2 (-850)))) (-4151 (*1 *1 *2 *3) (-12 (-5 *3 (-771)) (-4 *1 (-267 *2)) (-4 *2 (-850)))) (-3254 (*1 *2 *1) (-12 (-4 *1 (-267 *3)) (-4 *3 (-850)) (-5 *2 (-771)))) (-1385 (*1 *2 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-850)))) (-1617 (*1 *2 *1) (-12 (-4 *1 (-267 *3)) (-4 *3 (-850)) (-5 *2 (-771)))) (-3561 (*1 *1 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-850)))) (-3561 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-267 *3)) (-4 *3 (-850))))) -(-13 (-850) (-1038 |t#1|) (-10 -8 (-15 -4151 ($ |t#1| (-771))) (-15 -3254 ((-771) $)) (-15 -1385 (|t#1| $)) (-15 -1617 ((-771) $)) (-15 -3561 ($ $)) (-15 -3561 ($ $ (-771))) (-15 -3783 ($ |t#1|)))) +((-3152 (*1 *1 *2) (-12 (-4 *1 (-267 *2)) (-4 *2 (-850)))) (-1545 (*1 *1 *2 *3) (-12 (-5 *3 (-771)) (-4 *1 (-267 *2)) (-4 *2 (-850)))) (-2679 (*1 *2 *1) (-12 (-4 *1 (-267 *3)) (-4 *3 (-850)) (-5 *2 (-771)))) (-4347 (*1 *2 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-850)))) (-1784 (*1 *2 *1) (-12 (-4 *1 (-267 *3)) (-4 *3 (-850)) (-5 *2 (-771)))) (-3629 (*1 *1 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-850)))) (-3629 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-267 *3)) (-4 *3 (-850))))) +(-13 (-850) (-1038 |t#1|) (-10 -8 (-15 -1545 ($ |t#1| (-771))) (-15 -2679 ((-771) $)) (-15 -4347 (|t#1| $)) (-15 -1784 ((-771) $)) (-15 -3629 ($ $)) (-15 -3629 ($ $ (-771))) (-15 -3152 ($ |t#1|)))) (((-102) . T) ((-616 |#1|) . T) ((-613 (-862)) . T) ((-850) . T) ((-1038 |#1|) . T) ((-1099) . T)) -((-3863 (((-644 (-1175)) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1761 (-644 (-225))))) 54)) (-3095 (((-644 (-1175)) (-317 (-225)) (-771)) 96)) (-1299 (((-3 (-317 (-225)) "failed") (-317 (-225))) 64)) (-3623 (((-317 (-225)) (-317 (-225))) 82)) (-1838 (((-2 (|:| |fn| (-317 (-225))) (|:| -1761 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225))))) (-2 (|:| |fn| (-317 (-225))) (|:| -1761 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 39)) (-3878 (((-112) (-644 (-317 (-225)))) 106)) (-2236 (((-112) (-317 (-225))) 37)) (-1356 (((-644 (-1157)) (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -1761 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1761 (-644 (-225))))))) 134)) (-2171 (((-644 (-317 (-225))) (-644 (-317 (-225)))) 110)) (-2570 (((-644 (-317 (-225))) (-644 (-317 (-225)))) 108)) (-1856 (((-689 (-225)) (-644 (-317 (-225))) (-771)) 122)) (-2845 (((-112) (-317 (-225))) 32) (((-112) (-644 (-317 (-225)))) 107)) (-3250 (((-644 (-225)) (-644 (-843 (-225))) (-225)) 15)) (-3220 (((-381) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1761 (-644 (-225))))) 128)) (-1921 (((-1035) (-1175) (-1035)) 47))) -(((-268) (-10 -7 (-15 -3250 ((-644 (-225)) (-644 (-843 (-225))) (-225))) (-15 -1838 ((-2 (|:| |fn| (-317 (-225))) (|:| -1761 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225))))) (-2 (|:| |fn| (-317 (-225))) (|:| -1761 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225))))))) (-15 -1299 ((-3 (-317 (-225)) "failed") (-317 (-225)))) (-15 -3623 ((-317 (-225)) (-317 (-225)))) (-15 -3878 ((-112) (-644 (-317 (-225))))) (-15 -2845 ((-112) (-644 (-317 (-225))))) (-15 -2845 ((-112) (-317 (-225)))) (-15 -1856 ((-689 (-225)) (-644 (-317 (-225))) (-771))) (-15 -2570 ((-644 (-317 (-225))) (-644 (-317 (-225))))) (-15 -2171 ((-644 (-317 (-225))) (-644 (-317 (-225))))) (-15 -2236 ((-112) (-317 (-225)))) (-15 -3863 ((-644 (-1175)) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1761 (-644 (-225)))))) (-15 -3095 ((-644 (-1175)) (-317 (-225)) (-771))) (-15 -1921 ((-1035) (-1175) (-1035))) (-15 -3220 ((-381) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1761 (-644 (-225)))))) (-15 -1356 ((-644 (-1157)) (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -1761 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1761 (-644 (-225)))))))))) (T -268)) -((-1356 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -1761 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1761 (-644 (-225))))))) (-5 *2 (-644 (-1157))) (-5 *1 (-268)))) (-3220 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1761 (-644 (-225))))) (-5 *2 (-381)) (-5 *1 (-268)))) (-1921 (*1 *2 *3 *2) (-12 (-5 *2 (-1035)) (-5 *3 (-1175)) (-5 *1 (-268)))) (-3095 (*1 *2 *3 *4) (-12 (-5 *3 (-317 (-225))) (-5 *4 (-771)) (-5 *2 (-644 (-1175))) (-5 *1 (-268)))) (-3863 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1761 (-644 (-225))))) (-5 *2 (-644 (-1175))) (-5 *1 (-268)))) (-2236 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-112)) (-5 *1 (-268)))) (-2171 (*1 *2 *2) (-12 (-5 *2 (-644 (-317 (-225)))) (-5 *1 (-268)))) (-2570 (*1 *2 *2) (-12 (-5 *2 (-644 (-317 (-225)))) (-5 *1 (-268)))) (-1856 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-317 (-225)))) (-5 *4 (-771)) (-5 *2 (-689 (-225))) (-5 *1 (-268)))) (-2845 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-112)) (-5 *1 (-268)))) (-2845 (*1 *2 *3) (-12 (-5 *3 (-644 (-317 (-225)))) (-5 *2 (-112)) (-5 *1 (-268)))) (-3878 (*1 *2 *3) (-12 (-5 *3 (-644 (-317 (-225)))) (-5 *2 (-112)) (-5 *1 (-268)))) (-3623 (*1 *2 *2) (-12 (-5 *2 (-317 (-225))) (-5 *1 (-268)))) (-1299 (*1 *2 *2) (|partial| -12 (-5 *2 (-317 (-225))) (-5 *1 (-268)))) (-1838 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-317 (-225))) (|:| -1761 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (-5 *1 (-268)))) (-3250 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-843 (-225)))) (-5 *4 (-225)) (-5 *2 (-644 *4)) (-5 *1 (-268))))) -(-10 -7 (-15 -3250 ((-644 (-225)) (-644 (-843 (-225))) (-225))) (-15 -1838 ((-2 (|:| |fn| (-317 (-225))) (|:| -1761 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225))))) (-2 (|:| |fn| (-317 (-225))) (|:| -1761 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225))))))) (-15 -1299 ((-3 (-317 (-225)) "failed") (-317 (-225)))) (-15 -3623 ((-317 (-225)) (-317 (-225)))) (-15 -3878 ((-112) (-644 (-317 (-225))))) (-15 -2845 ((-112) (-644 (-317 (-225))))) (-15 -2845 ((-112) (-317 (-225)))) (-15 -1856 ((-689 (-225)) (-644 (-317 (-225))) (-771))) (-15 -2570 ((-644 (-317 (-225))) (-644 (-317 (-225))))) (-15 -2171 ((-644 (-317 (-225))) (-644 (-317 (-225))))) (-15 -2236 ((-112) (-317 (-225)))) (-15 -3863 ((-644 (-1175)) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1761 (-644 (-225)))))) (-15 -3095 ((-644 (-1175)) (-317 (-225)) (-771))) (-15 -1921 ((-1035) (-1175) (-1035))) (-15 -3220 ((-381) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1761 (-644 (-225)))))) (-15 -1356 ((-644 (-1157)) (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -1761 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1761 (-644 (-225))))))))) -((-3007 (((-112) $ $) NIL)) (-4082 (((-1035) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1761 (-644 (-225))))) NIL) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -1761 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 56)) (-1338 (((-2 (|:| -1338 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -1761 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 32) (((-2 (|:| -1338 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1761 (-644 (-225))))) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) NIL)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) +((-1771 (((-644 (-1175)) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3289 (-644 (-225))))) 54)) (-4111 (((-644 (-1175)) (-317 (-225)) (-771)) 96)) (-3389 (((-3 (-317 (-225)) "failed") (-317 (-225))) 64)) (-2153 (((-317 (-225)) (-317 (-225))) 82)) (-3284 (((-2 (|:| |fn| (-317 (-225))) (|:| -3289 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225))))) (-2 (|:| |fn| (-317 (-225))) (|:| -3289 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 39)) (-3783 (((-112) (-644 (-317 (-225)))) 106)) (-2089 (((-112) (-317 (-225))) 37)) (-1337 (((-644 (-1157)) (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -3289 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3289 (-644 (-225))))))) 134)) (-1365 (((-644 (-317 (-225))) (-644 (-317 (-225)))) 110)) (-4346 (((-644 (-317 (-225))) (-644 (-317 (-225)))) 108)) (-1532 (((-689 (-225)) (-644 (-317 (-225))) (-771)) 122)) (-1656 (((-112) (-317 (-225))) 32) (((-112) (-644 (-317 (-225)))) 107)) (-3538 (((-644 (-225)) (-644 (-843 (-225))) (-225)) 15)) (-3685 (((-381) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3289 (-644 (-225))))) 128)) (-2142 (((-1035) (-1175) (-1035)) 47))) +(((-268) (-10 -7 (-15 -3538 ((-644 (-225)) (-644 (-843 (-225))) (-225))) (-15 -3284 ((-2 (|:| |fn| (-317 (-225))) (|:| -3289 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225))))) (-2 (|:| |fn| (-317 (-225))) (|:| -3289 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225))))))) (-15 -3389 ((-3 (-317 (-225)) "failed") (-317 (-225)))) (-15 -2153 ((-317 (-225)) (-317 (-225)))) (-15 -3783 ((-112) (-644 (-317 (-225))))) (-15 -1656 ((-112) (-644 (-317 (-225))))) (-15 -1656 ((-112) (-317 (-225)))) (-15 -1532 ((-689 (-225)) (-644 (-317 (-225))) (-771))) (-15 -4346 ((-644 (-317 (-225))) (-644 (-317 (-225))))) (-15 -1365 ((-644 (-317 (-225))) (-644 (-317 (-225))))) (-15 -2089 ((-112) (-317 (-225)))) (-15 -1771 ((-644 (-1175)) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3289 (-644 (-225)))))) (-15 -4111 ((-644 (-1175)) (-317 (-225)) (-771))) (-15 -2142 ((-1035) (-1175) (-1035))) (-15 -3685 ((-381) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3289 (-644 (-225)))))) (-15 -1337 ((-644 (-1157)) (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -3289 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3289 (-644 (-225)))))))))) (T -268)) +((-1337 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -3289 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3289 (-644 (-225))))))) (-5 *2 (-644 (-1157))) (-5 *1 (-268)))) (-3685 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3289 (-644 (-225))))) (-5 *2 (-381)) (-5 *1 (-268)))) (-2142 (*1 *2 *3 *2) (-12 (-5 *2 (-1035)) (-5 *3 (-1175)) (-5 *1 (-268)))) (-4111 (*1 *2 *3 *4) (-12 (-5 *3 (-317 (-225))) (-5 *4 (-771)) (-5 *2 (-644 (-1175))) (-5 *1 (-268)))) (-1771 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3289 (-644 (-225))))) (-5 *2 (-644 (-1175))) (-5 *1 (-268)))) (-2089 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-112)) (-5 *1 (-268)))) (-1365 (*1 *2 *2) (-12 (-5 *2 (-644 (-317 (-225)))) (-5 *1 (-268)))) (-4346 (*1 *2 *2) (-12 (-5 *2 (-644 (-317 (-225)))) (-5 *1 (-268)))) (-1532 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-317 (-225)))) (-5 *4 (-771)) (-5 *2 (-689 (-225))) (-5 *1 (-268)))) (-1656 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-112)) (-5 *1 (-268)))) (-1656 (*1 *2 *3) (-12 (-5 *3 (-644 (-317 (-225)))) (-5 *2 (-112)) (-5 *1 (-268)))) (-3783 (*1 *2 *3) (-12 (-5 *3 (-644 (-317 (-225)))) (-5 *2 (-112)) (-5 *1 (-268)))) (-2153 (*1 *2 *2) (-12 (-5 *2 (-317 (-225))) (-5 *1 (-268)))) (-3389 (*1 *2 *2) (|partial| -12 (-5 *2 (-317 (-225))) (-5 *1 (-268)))) (-3284 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-317 (-225))) (|:| -3289 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (-5 *1 (-268)))) (-3538 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-843 (-225)))) (-5 *4 (-225)) (-5 *2 (-644 *4)) (-5 *1 (-268))))) +(-10 -7 (-15 -3538 ((-644 (-225)) (-644 (-843 (-225))) (-225))) (-15 -3284 ((-2 (|:| |fn| (-317 (-225))) (|:| -3289 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225))))) (-2 (|:| |fn| (-317 (-225))) (|:| -3289 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225))))))) (-15 -3389 ((-3 (-317 (-225)) "failed") (-317 (-225)))) (-15 -2153 ((-317 (-225)) (-317 (-225)))) (-15 -3783 ((-112) (-644 (-317 (-225))))) (-15 -1656 ((-112) (-644 (-317 (-225))))) (-15 -1656 ((-112) (-317 (-225)))) (-15 -1532 ((-689 (-225)) (-644 (-317 (-225))) (-771))) (-15 -4346 ((-644 (-317 (-225))) (-644 (-317 (-225))))) (-15 -1365 ((-644 (-317 (-225))) (-644 (-317 (-225))))) (-15 -2089 ((-112) (-317 (-225)))) (-15 -1771 ((-644 (-1175)) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3289 (-644 (-225)))))) (-15 -4111 ((-644 (-1175)) (-317 (-225)) (-771))) (-15 -2142 ((-1035) (-1175) (-1035))) (-15 -3685 ((-381) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3289 (-644 (-225)))))) (-15 -1337 ((-644 (-1157)) (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -3289 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3289 (-644 (-225))))))))) +((-2988 (((-112) $ $) NIL)) (-2035 (((-1035) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3289 (-644 (-225))))) NIL) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -3289 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 56)) (-2659 (((-2 (|:| -2659 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -3289 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 32) (((-2 (|:| -2659 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3289 (-644 (-225))))) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) NIL)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) (((-269) (-839)) (T -269)) NIL (-839) -((-3007 (((-112) $ $) NIL)) (-4082 (((-1035) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1761 (-644 (-225))))) 72) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -1761 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 63)) (-1338 (((-2 (|:| -1338 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -1761 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 41) (((-2 (|:| -1338 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1761 (-644 (-225))))) 43)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) NIL)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) +((-2988 (((-112) $ $) NIL)) (-2035 (((-1035) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3289 (-644 (-225))))) 72) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -3289 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 63)) (-2659 (((-2 (|:| -2659 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -3289 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 41) (((-2 (|:| -2659 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3289 (-644 (-225))))) 43)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) NIL)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) (((-270) (-839)) (T -270)) NIL (-839) -((-3007 (((-112) $ $) NIL)) (-4082 (((-1035) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1761 (-644 (-225))))) 90) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -1761 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 85)) (-1338 (((-2 (|:| -1338 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -1761 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 52) (((-2 (|:| -1338 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1761 (-644 (-225))))) 65)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) NIL)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) +((-2988 (((-112) $ $) NIL)) (-2035 (((-1035) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3289 (-644 (-225))))) 90) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -3289 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 85)) (-2659 (((-2 (|:| -2659 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -3289 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 52) (((-2 (|:| -2659 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3289 (-644 (-225))))) 65)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) NIL)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) (((-271) (-839)) (T -271)) NIL (-839) -((-3007 (((-112) $ $) NIL)) (-4082 (((-1035) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1761 (-644 (-225))))) NIL) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -1761 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 73)) (-1338 (((-2 (|:| -1338 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -1761 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 45) (((-2 (|:| -1338 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1761 (-644 (-225))))) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) NIL)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) +((-2988 (((-112) $ $) NIL)) (-2035 (((-1035) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3289 (-644 (-225))))) NIL) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -3289 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 73)) (-2659 (((-2 (|:| -2659 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -3289 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 45) (((-2 (|:| -2659 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3289 (-644 (-225))))) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) NIL)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) (((-272) (-839)) (T -272)) NIL (-839) -((-3007 (((-112) $ $) NIL)) (-4082 (((-1035) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1761 (-644 (-225))))) NIL) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -1761 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 65)) (-1338 (((-2 (|:| -1338 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -1761 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 31) (((-2 (|:| -1338 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1761 (-644 (-225))))) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) NIL)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) +((-2988 (((-112) $ $) NIL)) (-2035 (((-1035) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3289 (-644 (-225))))) NIL) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -3289 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 65)) (-2659 (((-2 (|:| -2659 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -3289 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 31) (((-2 (|:| -2659 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3289 (-644 (-225))))) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) NIL)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) (((-273) (-839)) (T -273)) NIL (-839) -((-3007 (((-112) $ $) NIL)) (-4082 (((-1035) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1761 (-644 (-225))))) NIL) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -1761 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 90)) (-1338 (((-2 (|:| -1338 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -1761 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 33) (((-2 (|:| -1338 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1761 (-644 (-225))))) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) NIL)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) +((-2988 (((-112) $ $) NIL)) (-2035 (((-1035) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3289 (-644 (-225))))) NIL) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -3289 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 90)) (-2659 (((-2 (|:| -2659 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -3289 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 33) (((-2 (|:| -2659 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3289 (-644 (-225))))) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) NIL)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) (((-274) (-839)) (T -274)) NIL (-839) -((-3007 (((-112) $ $) NIL)) (-4082 (((-1035) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1761 (-644 (-225))))) NIL) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -1761 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 95)) (-1338 (((-2 (|:| -1338 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -1761 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 32) (((-2 (|:| -1338 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1761 (-644 (-225))))) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) NIL)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) +((-2988 (((-112) $ $) NIL)) (-2035 (((-1035) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3289 (-644 (-225))))) NIL) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -3289 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 95)) (-2659 (((-2 (|:| -2659 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -3289 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 32) (((-2 (|:| -2659 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3289 (-644 (-225))))) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) NIL)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) (((-275) (-839)) (T -275)) NIL (-839) -((-3007 (((-112) $ $) NIL)) (-2097 (($ $ $) NIL)) (-3962 (($ $ $) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3019 (((-644 (-566)) $) 29)) (-3636 (((-771) $) 27)) (-3783 (((-862) $) 36) (($ (-644 (-566))) 23)) (-3117 (((-112) $ $) NIL)) (-4013 (($ (-771)) 33)) (-3009 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2947 (((-112) $ $) 9)) (-2995 (((-112) $ $) NIL)) (-2969 (((-112) $ $) 17))) -(((-276) (-13 (-850) (-10 -8 (-15 -3783 ($ (-644 (-566)))) (-15 -3636 ((-771) $)) (-15 -3019 ((-644 (-566)) $)) (-15 -4013 ($ (-771)))))) (T -276)) -((-3783 (*1 *1 *2) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-276)))) (-3636 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-276)))) (-3019 (*1 *2 *1) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-276)))) (-4013 (*1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-276))))) -(-13 (-850) (-10 -8 (-15 -3783 ($ (-644 (-566)))) (-15 -3636 ((-771) $)) (-15 -3019 ((-644 (-566)) $)) (-15 -4013 ($ (-771))))) -((-4114 ((|#2| |#2|) 77)) (-2109 ((|#2| |#2|) 65)) (-3374 (((-3 |#2| "failed") |#2| (-644 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125)) (-2240 ((|#2| |#2|) 75)) (-2085 ((|#2| |#2|) 63)) (-4134 ((|#2| |#2|) 79)) (-2129 ((|#2| |#2|) 67)) (-4361 ((|#2|) 46)) (-3659 (((-114) (-114)) 100)) (-3651 ((|#2| |#2|) 61)) (-3919 (((-112) |#2|) 147)) (-1608 ((|#2| |#2|) 195)) (-1316 ((|#2| |#2|) 171)) (-2866 ((|#2|) 59)) (-1618 ((|#2|) 58)) (-2066 ((|#2| |#2|) 191)) (-1580 ((|#2| |#2|) 167)) (-4376 ((|#2| |#2|) 199)) (-3607 ((|#2| |#2|) 175)) (-3386 ((|#2| |#2|) 163)) (-3893 ((|#2| |#2|) 165)) (-1712 ((|#2| |#2|) 201)) (-2387 ((|#2| |#2|) 177)) (-2295 ((|#2| |#2|) 197)) (-3054 ((|#2| |#2|) 173)) (-2730 ((|#2| |#2|) 193)) (-3786 ((|#2| |#2|) 169)) (-1524 ((|#2| |#2|) 207)) (-3328 ((|#2| |#2|) 183)) (-2964 ((|#2| |#2|) 203)) (-3590 ((|#2| |#2|) 179)) (-2609 ((|#2| |#2|) 211)) (-2534 ((|#2| |#2|) 187)) (-2599 ((|#2| |#2|) 213)) (-4202 ((|#2| |#2|) 189)) (-1720 ((|#2| |#2|) 209)) (-1607 ((|#2| |#2|) 185)) (-2655 ((|#2| |#2|) 205)) (-1449 ((|#2| |#2|) 181)) (-2561 ((|#2| |#2|) 62)) (-4144 ((|#2| |#2|) 80)) (-2141 ((|#2| |#2|) 68)) (-4124 ((|#2| |#2|) 78)) (-2118 ((|#2| |#2|) 66)) (-4104 ((|#2| |#2|) 76)) (-2098 ((|#2| |#2|) 64)) (-2825 (((-112) (-114)) 98)) (-4177 ((|#2| |#2|) 83)) (-2180 ((|#2| |#2|) 71)) (-4155 ((|#2| |#2|) 81)) (-2153 ((|#2| |#2|) 69)) (-4198 ((|#2| |#2|) 85)) (-2212 ((|#2| |#2|) 73)) (-2976 ((|#2| |#2|) 86)) (-2227 ((|#2| |#2|) 74)) (-4188 ((|#2| |#2|) 84)) (-2196 ((|#2| |#2|) 72)) (-4166 ((|#2| |#2|) 82)) (-2166 ((|#2| |#2|) 70))) -(((-277 |#1| |#2|) (-10 -7 (-15 -2561 (|#2| |#2|)) (-15 -3651 (|#2| |#2|)) (-15 -2085 (|#2| |#2|)) (-15 -2098 (|#2| |#2|)) (-15 -2109 (|#2| |#2|)) (-15 -2118 (|#2| |#2|)) (-15 -2129 (|#2| |#2|)) (-15 -2141 (|#2| |#2|)) (-15 -2153 (|#2| |#2|)) (-15 -2166 (|#2| |#2|)) (-15 -2180 (|#2| |#2|)) (-15 -2196 (|#2| |#2|)) (-15 -2212 (|#2| |#2|)) (-15 -2227 (|#2| |#2|)) (-15 -2240 (|#2| |#2|)) (-15 -4104 (|#2| |#2|)) (-15 -4114 (|#2| |#2|)) (-15 -4124 (|#2| |#2|)) (-15 -4134 (|#2| |#2|)) (-15 -4144 (|#2| |#2|)) (-15 -4155 (|#2| |#2|)) (-15 -4166 (|#2| |#2|)) (-15 -4177 (|#2| |#2|)) (-15 -4188 (|#2| |#2|)) (-15 -4198 (|#2| |#2|)) (-15 -2976 (|#2| |#2|)) (-15 -4361 (|#2|)) (-15 -2825 ((-112) (-114))) (-15 -3659 ((-114) (-114))) (-15 -1618 (|#2|)) (-15 -2866 (|#2|)) (-15 -3893 (|#2| |#2|)) (-15 -3386 (|#2| |#2|)) (-15 -1580 (|#2| |#2|)) (-15 -3786 (|#2| |#2|)) (-15 -1316 (|#2| |#2|)) (-15 -3054 (|#2| |#2|)) (-15 -3607 (|#2| |#2|)) (-15 -2387 (|#2| |#2|)) (-15 -3590 (|#2| |#2|)) (-15 -1449 (|#2| |#2|)) (-15 -3328 (|#2| |#2|)) (-15 -1607 (|#2| |#2|)) (-15 -2534 (|#2| |#2|)) (-15 -4202 (|#2| |#2|)) (-15 -2066 (|#2| |#2|)) (-15 -2730 (|#2| |#2|)) (-15 -1608 (|#2| |#2|)) (-15 -2295 (|#2| |#2|)) (-15 -4376 (|#2| |#2|)) (-15 -1712 (|#2| |#2|)) (-15 -2964 (|#2| |#2|)) (-15 -2655 (|#2| |#2|)) (-15 -1524 (|#2| |#2|)) (-15 -1720 (|#2| |#2|)) (-15 -2609 (|#2| |#2|)) (-15 -2599 (|#2| |#2|)) (-15 -3374 ((-3 |#2| "failed") |#2| (-644 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -3919 ((-112) |#2|))) (-558) (-13 (-432 |#1|) (-1002))) (T -277)) -((-3919 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-112)) (-5 *1 (-277 *4 *3)) (-4 *3 (-13 (-432 *4) (-1002))))) (-3374 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-644 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-432 *4) (-1002))) (-4 *4 (-558)) (-5 *1 (-277 *4 *2)))) (-2599 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2609 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-1720 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-1524 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2655 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2964 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-1712 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-4376 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2295 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-1608 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2730 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2066 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-4202 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2534 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-1607 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3328 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-1449 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3590 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2387 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3607 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3054 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-1316 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3786 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-1580 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3386 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3893 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2866 (*1 *2) (-12 (-4 *2 (-13 (-432 *3) (-1002))) (-5 *1 (-277 *3 *2)) (-4 *3 (-558)))) (-1618 (*1 *2) (-12 (-4 *2 (-13 (-432 *3) (-1002))) (-5 *1 (-277 *3 *2)) (-4 *3 (-558)))) (-3659 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-558)) (-5 *1 (-277 *3 *4)) (-4 *4 (-13 (-432 *3) (-1002))))) (-2825 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-558)) (-5 *2 (-112)) (-5 *1 (-277 *4 *5)) (-4 *5 (-13 (-432 *4) (-1002))))) (-4361 (*1 *2) (-12 (-4 *2 (-13 (-432 *3) (-1002))) (-5 *1 (-277 *3 *2)) (-4 *3 (-558)))) (-2976 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-4198 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-4188 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-4177 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-4166 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-4155 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-4144 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-4134 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-4124 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-4114 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-4104 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2240 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2227 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2212 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2196 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2180 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2166 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2153 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2141 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2129 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2118 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2109 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2098 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2085 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3651 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2561 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002)))))) -(-10 -7 (-15 -2561 (|#2| |#2|)) (-15 -3651 (|#2| |#2|)) (-15 -2085 (|#2| |#2|)) (-15 -2098 (|#2| |#2|)) (-15 -2109 (|#2| |#2|)) (-15 -2118 (|#2| |#2|)) (-15 -2129 (|#2| |#2|)) (-15 -2141 (|#2| |#2|)) (-15 -2153 (|#2| |#2|)) (-15 -2166 (|#2| |#2|)) (-15 -2180 (|#2| |#2|)) (-15 -2196 (|#2| |#2|)) (-15 -2212 (|#2| |#2|)) (-15 -2227 (|#2| |#2|)) (-15 -2240 (|#2| |#2|)) (-15 -4104 (|#2| |#2|)) (-15 -4114 (|#2| |#2|)) (-15 -4124 (|#2| |#2|)) (-15 -4134 (|#2| |#2|)) (-15 -4144 (|#2| |#2|)) (-15 -4155 (|#2| |#2|)) (-15 -4166 (|#2| |#2|)) (-15 -4177 (|#2| |#2|)) (-15 -4188 (|#2| |#2|)) (-15 -4198 (|#2| |#2|)) (-15 -2976 (|#2| |#2|)) (-15 -4361 (|#2|)) (-15 -2825 ((-112) (-114))) (-15 -3659 ((-114) (-114))) (-15 -1618 (|#2|)) (-15 -2866 (|#2|)) (-15 -3893 (|#2| |#2|)) (-15 -3386 (|#2| |#2|)) (-15 -1580 (|#2| |#2|)) (-15 -3786 (|#2| |#2|)) (-15 -1316 (|#2| |#2|)) (-15 -3054 (|#2| |#2|)) (-15 -3607 (|#2| |#2|)) (-15 -2387 (|#2| |#2|)) (-15 -3590 (|#2| |#2|)) (-15 -1449 (|#2| |#2|)) (-15 -3328 (|#2| |#2|)) (-15 -1607 (|#2| |#2|)) (-15 -2534 (|#2| |#2|)) (-15 -4202 (|#2| |#2|)) (-15 -2066 (|#2| |#2|)) (-15 -2730 (|#2| |#2|)) (-15 -1608 (|#2| |#2|)) (-15 -2295 (|#2| |#2|)) (-15 -4376 (|#2| |#2|)) (-15 -1712 (|#2| |#2|)) (-15 -2964 (|#2| |#2|)) (-15 -2655 (|#2| |#2|)) (-15 -1524 (|#2| |#2|)) (-15 -1720 (|#2| |#2|)) (-15 -2609 (|#2| |#2|)) (-15 -2599 (|#2| |#2|)) (-15 -3374 ((-3 |#2| "failed") |#2| (-644 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -3919 ((-112) |#2|))) -((-4136 (((-3 |#2| "failed") (-644 (-612 |#2|)) |#2| (-1175)) 153)) (-3970 ((|#2| (-409 (-566)) |#2|) 49)) (-1698 ((|#2| |#2| (-612 |#2|)) 146)) (-2067 (((-2 (|:| |func| |#2|) (|:| |kers| (-644 (-612 |#2|))) (|:| |vals| (-644 |#2|))) |#2| (-1175)) 145)) (-2142 ((|#2| |#2| (-1175)) 20) ((|#2| |#2|) 23)) (-4017 ((|#2| |#2| (-1175)) 159) ((|#2| |#2|) 157))) -(((-278 |#1| |#2|) (-10 -7 (-15 -4017 (|#2| |#2|)) (-15 -4017 (|#2| |#2| (-1175))) (-15 -2067 ((-2 (|:| |func| |#2|) (|:| |kers| (-644 (-612 |#2|))) (|:| |vals| (-644 |#2|))) |#2| (-1175))) (-15 -2142 (|#2| |#2|)) (-15 -2142 (|#2| |#2| (-1175))) (-15 -4136 ((-3 |#2| "failed") (-644 (-612 |#2|)) |#2| (-1175))) (-15 -1698 (|#2| |#2| (-612 |#2|))) (-15 -3970 (|#2| (-409 (-566)) |#2|))) (-13 (-558) (-1038 (-566)) (-639 (-566))) (-13 (-27) (-1199) (-432 |#1|))) (T -278)) -((-3970 (*1 *2 *3 *2) (-12 (-5 *3 (-409 (-566))) (-4 *4 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *4))))) (-1698 (*1 *2 *2 *3) (-12 (-5 *3 (-612 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *4))) (-4 *4 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-278 *4 *2)))) (-4136 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-644 (-612 *2))) (-5 *4 (-1175)) (-4 *2 (-13 (-27) (-1199) (-432 *5))) (-4 *5 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-278 *5 *2)))) (-2142 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *4))))) (-2142 (*1 *2 *2) (-12 (-4 *3 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *3))))) (-2067 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-4 *5 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-644 (-612 *3))) (|:| |vals| (-644 *3)))) (-5 *1 (-278 *5 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5))))) (-4017 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *4))))) (-4017 (*1 *2 *2) (-12 (-4 *3 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *3)))))) -(-10 -7 (-15 -4017 (|#2| |#2|)) (-15 -4017 (|#2| |#2| (-1175))) (-15 -2067 ((-2 (|:| |func| |#2|) (|:| |kers| (-644 (-612 |#2|))) (|:| |vals| (-644 |#2|))) |#2| (-1175))) (-15 -2142 (|#2| |#2|)) (-15 -2142 (|#2| |#2| (-1175))) (-15 -4136 ((-3 |#2| "failed") (-644 (-612 |#2|)) |#2| (-1175))) (-15 -1698 (|#2| |#2| (-612 |#2|))) (-15 -3970 (|#2| (-409 (-566)) |#2|))) -((-3471 (((-3 |#3| "failed") |#3|) 120)) (-4114 ((|#3| |#3|) 142)) (-2108 (((-3 |#3| "failed") |#3|) 89)) (-2109 ((|#3| |#3|) 132)) (-3644 (((-3 |#3| "failed") |#3|) 65)) (-2240 ((|#3| |#3|) 140)) (-3200 (((-3 |#3| "failed") |#3|) 53)) (-2085 ((|#3| |#3|) 130)) (-1381 (((-3 |#3| "failed") |#3|) 122)) (-4134 ((|#3| |#3|) 144)) (-2742 (((-3 |#3| "failed") |#3|) 91)) (-2129 ((|#3| |#3|) 134)) (-1606 (((-3 |#3| "failed") |#3| (-771)) 41)) (-3185 (((-3 |#3| "failed") |#3|) 81)) (-3651 ((|#3| |#3|) 129)) (-3648 (((-3 |#3| "failed") |#3|) 51)) (-2561 ((|#3| |#3|) 128)) (-2037 (((-3 |#3| "failed") |#3|) 123)) (-4144 ((|#3| |#3|) 145)) (-2546 (((-3 |#3| "failed") |#3|) 92)) (-2141 ((|#3| |#3|) 135)) (-3452 (((-3 |#3| "failed") |#3|) 121)) (-4124 ((|#3| |#3|) 143)) (-1590 (((-3 |#3| "failed") |#3|) 90)) (-2118 ((|#3| |#3|) 133)) (-3883 (((-3 |#3| "failed") |#3|) 67)) (-4104 ((|#3| |#3|) 141)) (-4122 (((-3 |#3| "failed") |#3|) 55)) (-2098 ((|#3| |#3|) 131)) (-4189 (((-3 |#3| "failed") |#3|) 73)) (-4177 ((|#3| |#3|) 148)) (-3939 (((-3 |#3| "failed") |#3|) 114)) (-2180 ((|#3| |#3|) 154)) (-2406 (((-3 |#3| "failed") |#3|) 69)) (-4155 ((|#3| |#3|) 146)) (-1536 (((-3 |#3| "failed") |#3|) 57)) (-2153 ((|#3| |#3|) 136)) (-1358 (((-3 |#3| "failed") |#3|) 77)) (-4198 ((|#3| |#3|) 150)) (-1905 (((-3 |#3| "failed") |#3|) 61)) (-2212 ((|#3| |#3|) 138)) (-4233 (((-3 |#3| "failed") |#3|) 79)) (-2976 ((|#3| |#3|) 151)) (-2811 (((-3 |#3| "failed") |#3|) 63)) (-2227 ((|#3| |#3|) 139)) (-1984 (((-3 |#3| "failed") |#3|) 75)) (-4188 ((|#3| |#3|) 149)) (-2662 (((-3 |#3| "failed") |#3|) 117)) (-2196 ((|#3| |#3|) 155)) (-4031 (((-3 |#3| "failed") |#3|) 71)) (-4166 ((|#3| |#3|) 147)) (-3658 (((-3 |#3| "failed") |#3|) 59)) (-2166 ((|#3| |#3|) 137)) (** ((|#3| |#3| (-409 (-566))) 47 (|has| |#1| (-365))))) -(((-279 |#1| |#2| |#3|) (-13 (-983 |#3|) (-10 -7 (IF (|has| |#1| (-365)) (-15 ** (|#3| |#3| (-409 (-566)))) |%noBranch|) (-15 -2561 (|#3| |#3|)) (-15 -3651 (|#3| |#3|)) (-15 -2085 (|#3| |#3|)) (-15 -2098 (|#3| |#3|)) (-15 -2109 (|#3| |#3|)) (-15 -2118 (|#3| |#3|)) (-15 -2129 (|#3| |#3|)) (-15 -2141 (|#3| |#3|)) (-15 -2153 (|#3| |#3|)) (-15 -2166 (|#3| |#3|)) (-15 -2180 (|#3| |#3|)) (-15 -2196 (|#3| |#3|)) (-15 -2212 (|#3| |#3|)) (-15 -2227 (|#3| |#3|)) (-15 -2240 (|#3| |#3|)) (-15 -4104 (|#3| |#3|)) (-15 -4114 (|#3| |#3|)) (-15 -4124 (|#3| |#3|)) (-15 -4134 (|#3| |#3|)) (-15 -4144 (|#3| |#3|)) (-15 -4155 (|#3| |#3|)) (-15 -4166 (|#3| |#3|)) (-15 -4177 (|#3| |#3|)) (-15 -4188 (|#3| |#3|)) (-15 -4198 (|#3| |#3|)) (-15 -2976 (|#3| |#3|)))) (-38 (-409 (-566))) (-1255 |#1|) (-1226 |#1| |#2|)) (T -279)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-409 (-566))) (-4 *4 (-365)) (-4 *4 (-38 *3)) (-4 *5 (-1255 *4)) (-5 *1 (-279 *4 *5 *2)) (-4 *2 (-1226 *4 *5)))) (-2561 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-3651 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-2085 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-2098 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-2109 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-2118 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-2129 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-2141 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-2153 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-2166 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-2180 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-2196 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-2212 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-2227 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-2240 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-4104 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-4114 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-4124 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-4134 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-4144 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-4155 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-4166 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-4177 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-4188 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-4198 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-2976 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4))))) -(-13 (-983 |#3|) (-10 -7 (IF (|has| |#1| (-365)) (-15 ** (|#3| |#3| (-409 (-566)))) |%noBranch|) (-15 -2561 (|#3| |#3|)) (-15 -3651 (|#3| |#3|)) (-15 -2085 (|#3| |#3|)) (-15 -2098 (|#3| |#3|)) (-15 -2109 (|#3| |#3|)) (-15 -2118 (|#3| |#3|)) (-15 -2129 (|#3| |#3|)) (-15 -2141 (|#3| |#3|)) (-15 -2153 (|#3| |#3|)) (-15 -2166 (|#3| |#3|)) (-15 -2180 (|#3| |#3|)) (-15 -2196 (|#3| |#3|)) (-15 -2212 (|#3| |#3|)) (-15 -2227 (|#3| |#3|)) (-15 -2240 (|#3| |#3|)) (-15 -4104 (|#3| |#3|)) (-15 -4114 (|#3| |#3|)) (-15 -4124 (|#3| |#3|)) (-15 -4134 (|#3| |#3|)) (-15 -4144 (|#3| |#3|)) (-15 -4155 (|#3| |#3|)) (-15 -4166 (|#3| |#3|)) (-15 -4177 (|#3| |#3|)) (-15 -4188 (|#3| |#3|)) (-15 -4198 (|#3| |#3|)) (-15 -2976 (|#3| |#3|)))) -((-3471 (((-3 |#3| "failed") |#3|) 70)) (-4114 ((|#3| |#3|) 137)) (-2108 (((-3 |#3| "failed") |#3|) 54)) (-2109 ((|#3| |#3|) 125)) (-3644 (((-3 |#3| "failed") |#3|) 66)) (-2240 ((|#3| |#3|) 135)) (-3200 (((-3 |#3| "failed") |#3|) 50)) (-2085 ((|#3| |#3|) 123)) (-1381 (((-3 |#3| "failed") |#3|) 74)) (-4134 ((|#3| |#3|) 139)) (-2742 (((-3 |#3| "failed") |#3|) 58)) (-2129 ((|#3| |#3|) 127)) (-1606 (((-3 |#3| "failed") |#3| (-771)) 38)) (-3185 (((-3 |#3| "failed") |#3|) 48)) (-3651 ((|#3| |#3|) 111)) (-3648 (((-3 |#3| "failed") |#3|) 46)) (-2561 ((|#3| |#3|) 122)) (-2037 (((-3 |#3| "failed") |#3|) 76)) (-4144 ((|#3| |#3|) 140)) (-2546 (((-3 |#3| "failed") |#3|) 60)) (-2141 ((|#3| |#3|) 128)) (-3452 (((-3 |#3| "failed") |#3|) 72)) (-4124 ((|#3| |#3|) 138)) (-1590 (((-3 |#3| "failed") |#3|) 56)) (-2118 ((|#3| |#3|) 126)) (-3883 (((-3 |#3| "failed") |#3|) 68)) (-4104 ((|#3| |#3|) 136)) (-4122 (((-3 |#3| "failed") |#3|) 52)) (-2098 ((|#3| |#3|) 124)) (-4189 (((-3 |#3| "failed") |#3|) 78)) (-4177 ((|#3| |#3|) 143)) (-3939 (((-3 |#3| "failed") |#3|) 62)) (-2180 ((|#3| |#3|) 131)) (-2406 (((-3 |#3| "failed") |#3|) 112)) (-4155 ((|#3| |#3|) 141)) (-1536 (((-3 |#3| "failed") |#3|) 100)) (-2153 ((|#3| |#3|) 129)) (-1358 (((-3 |#3| "failed") |#3|) 116)) (-4198 ((|#3| |#3|) 145)) (-1905 (((-3 |#3| "failed") |#3|) 107)) (-2212 ((|#3| |#3|) 133)) (-4233 (((-3 |#3| "failed") |#3|) 117)) (-2976 ((|#3| |#3|) 146)) (-2811 (((-3 |#3| "failed") |#3|) 109)) (-2227 ((|#3| |#3|) 134)) (-1984 (((-3 |#3| "failed") |#3|) 80)) (-4188 ((|#3| |#3|) 144)) (-2662 (((-3 |#3| "failed") |#3|) 64)) (-2196 ((|#3| |#3|) 132)) (-4031 (((-3 |#3| "failed") |#3|) 113)) (-4166 ((|#3| |#3|) 142)) (-3658 (((-3 |#3| "failed") |#3|) 103)) (-2166 ((|#3| |#3|) 130)) (** ((|#3| |#3| (-409 (-566))) 44 (|has| |#1| (-365))))) -(((-280 |#1| |#2| |#3| |#4|) (-13 (-983 |#3|) (-10 -7 (IF (|has| |#1| (-365)) (-15 ** (|#3| |#3| (-409 (-566)))) |%noBranch|) (-15 -2561 (|#3| |#3|)) (-15 -3651 (|#3| |#3|)) (-15 -2085 (|#3| |#3|)) (-15 -2098 (|#3| |#3|)) (-15 -2109 (|#3| |#3|)) (-15 -2118 (|#3| |#3|)) (-15 -2129 (|#3| |#3|)) (-15 -2141 (|#3| |#3|)) (-15 -2153 (|#3| |#3|)) (-15 -2166 (|#3| |#3|)) (-15 -2180 (|#3| |#3|)) (-15 -2196 (|#3| |#3|)) (-15 -2212 (|#3| |#3|)) (-15 -2227 (|#3| |#3|)) (-15 -2240 (|#3| |#3|)) (-15 -4104 (|#3| |#3|)) (-15 -4114 (|#3| |#3|)) (-15 -4124 (|#3| |#3|)) (-15 -4134 (|#3| |#3|)) (-15 -4144 (|#3| |#3|)) (-15 -4155 (|#3| |#3|)) (-15 -4166 (|#3| |#3|)) (-15 -4177 (|#3| |#3|)) (-15 -4188 (|#3| |#3|)) (-15 -4198 (|#3| |#3|)) (-15 -2976 (|#3| |#3|)))) (-38 (-409 (-566))) (-1224 |#1|) (-1247 |#1| |#2|) (-983 |#2|)) (T -280)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-409 (-566))) (-4 *4 (-365)) (-4 *4 (-38 *3)) (-4 *5 (-1224 *4)) (-5 *1 (-280 *4 *5 *2 *6)) (-4 *2 (-1247 *4 *5)) (-4 *6 (-983 *5)))) (-2561 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-3651 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-2085 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-2098 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-2109 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-2118 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-2129 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-2141 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-2153 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-2166 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-2180 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-2196 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-2212 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-2227 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-2240 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-4104 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-4114 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-4124 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-4134 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-4144 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-4155 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-4166 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-4177 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-4188 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-4198 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-2976 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4))))) -(-13 (-983 |#3|) (-10 -7 (IF (|has| |#1| (-365)) (-15 ** (|#3| |#3| (-409 (-566)))) |%noBranch|) (-15 -2561 (|#3| |#3|)) (-15 -3651 (|#3| |#3|)) (-15 -2085 (|#3| |#3|)) (-15 -2098 (|#3| |#3|)) (-15 -2109 (|#3| |#3|)) (-15 -2118 (|#3| |#3|)) (-15 -2129 (|#3| |#3|)) (-15 -2141 (|#3| |#3|)) (-15 -2153 (|#3| |#3|)) (-15 -2166 (|#3| |#3|)) (-15 -2180 (|#3| |#3|)) (-15 -2196 (|#3| |#3|)) (-15 -2212 (|#3| |#3|)) (-15 -2227 (|#3| |#3|)) (-15 -2240 (|#3| |#3|)) (-15 -4104 (|#3| |#3|)) (-15 -4114 (|#3| |#3|)) (-15 -4124 (|#3| |#3|)) (-15 -4134 (|#3| |#3|)) (-15 -4144 (|#3| |#3|)) (-15 -4155 (|#3| |#3|)) (-15 -4166 (|#3| |#3|)) (-15 -4177 (|#3| |#3|)) (-15 -4188 (|#3| |#3|)) (-15 -4198 (|#3| |#3|)) (-15 -2976 (|#3| |#3|)))) -((-3627 (((-112) $) 20)) (-3001 (((-1180) $) 7)) (-1648 (((-3 (-508) "failed") $) 14)) (-1707 (((-3 (-644 $) "failed") $) NIL)) (-2210 (((-3 (-508) "failed") $) 21)) (-3231 (((-3 (-1103) "failed") $) 18)) (-1466 (((-112) $) 16)) (-3783 (((-862) $) NIL)) (-2869 (((-112) $) 9))) -(((-281) (-13 (-613 (-862)) (-10 -8 (-15 -3001 ((-1180) $)) (-15 -1466 ((-112) $)) (-15 -3231 ((-3 (-1103) "failed") $)) (-15 -3627 ((-112) $)) (-15 -2210 ((-3 (-508) "failed") $)) (-15 -2869 ((-112) $)) (-15 -1648 ((-3 (-508) "failed") $)) (-15 -1707 ((-3 (-644 $) "failed") $))))) (T -281)) -((-3001 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-281)))) (-1466 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281)))) (-3231 (*1 *2 *1) (|partial| -12 (-5 *2 (-1103)) (-5 *1 (-281)))) (-3627 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281)))) (-2210 (*1 *2 *1) (|partial| -12 (-5 *2 (-508)) (-5 *1 (-281)))) (-2869 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281)))) (-1648 (*1 *2 *1) (|partial| -12 (-5 *2 (-508)) (-5 *1 (-281)))) (-1707 (*1 *2 *1) (|partial| -12 (-5 *2 (-644 (-281))) (-5 *1 (-281))))) -(-13 (-613 (-862)) (-10 -8 (-15 -3001 ((-1180) $)) (-15 -1466 ((-112) $)) (-15 -3231 ((-3 (-1103) "failed") $)) (-15 -3627 ((-112) $)) (-15 -2210 ((-3 (-508) "failed") $)) (-15 -2869 ((-112) $)) (-15 -1648 ((-3 (-508) "failed") $)) (-15 -1707 ((-3 (-644 $) "failed") $)))) -((-2701 (($ (-1 (-112) |#2|) $) 24)) (-2031 (($ $) 38)) (-2956 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 36)) (-2665 (($ |#2| $) 34) (($ (-1 (-112) |#2|) $) 18)) (-3463 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 42)) (-4276 (($ |#2| $ (-566)) 20) (($ $ $ (-566)) 22)) (-2187 (($ $ (-566)) 11) (($ $ (-1231 (-566))) 14)) (-3480 (($ $ |#2|) 32) (($ $ $) NIL)) (-3721 (($ $ |#2|) 31) (($ |#2| $) NIL) (($ $ $) 26) (($ (-644 $)) NIL))) -(((-282 |#1| |#2|) (-10 -8 (-15 -3463 (|#1| |#1| |#1|)) (-15 -2956 (|#1| |#2| |#1|)) (-15 -3463 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2956 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3480 (|#1| |#1| |#1|)) (-15 -3480 (|#1| |#1| |#2|)) (-15 -4276 (|#1| |#1| |#1| (-566))) (-15 -4276 (|#1| |#2| |#1| (-566))) (-15 -2187 (|#1| |#1| (-1231 (-566)))) (-15 -2187 (|#1| |#1| (-566))) (-15 -3721 (|#1| (-644 |#1|))) (-15 -3721 (|#1| |#1| |#1|)) (-15 -3721 (|#1| |#2| |#1|)) (-15 -3721 (|#1| |#1| |#2|)) (-15 -2665 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2701 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2665 (|#1| |#2| |#1|)) (-15 -2031 (|#1| |#1|))) (-283 |#2|) (-1214)) (T -282)) -NIL -(-10 -8 (-15 -3463 (|#1| |#1| |#1|)) (-15 -2956 (|#1| |#2| |#1|)) (-15 -3463 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2956 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3480 (|#1| |#1| |#1|)) (-15 -3480 (|#1| |#1| |#2|)) (-15 -4276 (|#1| |#1| |#1| (-566))) (-15 -4276 (|#1| |#2| |#1| (-566))) (-15 -2187 (|#1| |#1| (-1231 (-566)))) (-15 -2187 (|#1| |#1| (-566))) (-15 -3721 (|#1| (-644 |#1|))) (-15 -3721 (|#1| |#1| |#1|)) (-15 -3721 (|#1| |#2| |#1|)) (-15 -3721 (|#1| |#1| |#2|)) (-15 -2665 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2701 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2665 (|#1| |#2| |#1|)) (-15 -2031 (|#1| |#1|))) -((-3007 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-3734 (((-1269) $ (-566) (-566)) 41 (|has| $ (-6 -4415)))) (-2256 (((-112) $ (-771)) 8)) (-3923 ((|#1| $ (-566) |#1|) 53 (|has| $ (-6 -4415))) ((|#1| $ (-1231 (-566)) |#1|) 59 (|has| $ (-6 -4415)))) (-4016 (($ (-1 (-112) |#1|) $) 86)) (-2701 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4414)))) (-3012 (($) 7 T CONST)) (-3657 (($ $) 84 (|has| |#1| (-1099)))) (-2031 (($ $) 79 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2956 (($ (-1 (-112) |#1|) $) 90) (($ |#1| $) 85 (|has| |#1| (-1099)))) (-2665 (($ |#1| $) 78 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4414)))) (-1676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4414)))) (-2920 ((|#1| $ (-566) |#1|) 54 (|has| $ (-6 -4415)))) (-2855 ((|#1| $ (-566)) 52)) (-3979 (((-644 |#1|) $) 31 (|has| $ (-6 -4414)))) (-4265 (($ (-771) |#1|) 70)) (-2404 (((-112) $ (-771)) 9)) (-3854 (((-566) $) 44 (|has| (-566) (-850)))) (-3463 (($ (-1 (-112) |#1| |#1|) $ $) 87) (($ $ $) 83 (|has| |#1| (-850)))) (-2329 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2712 (((-566) $) 45 (|has| (-566) (-850)))) (-2908 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2603 (((-112) $ (-771)) 10)) (-4117 (((-1157) $) 22 (|has| |#1| (-1099)))) (-3406 (($ |#1| $ (-566)) 89) (($ $ $ (-566)) 88)) (-4276 (($ |#1| $ (-566)) 61) (($ $ $ (-566)) 60)) (-4074 (((-644 (-566)) $) 47)) (-3792 (((-112) (-566) $) 48)) (-4035 (((-1119) $) 21 (|has| |#1| (-1099)))) (-1998 ((|#1| $) 43 (|has| (-566) (-850)))) (-2006 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-4030 (($ $ |#1|) 42 (|has| $ (-6 -4415)))) (-2692 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) 14)) (-4156 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2993 (((-644 |#1|) $) 49)) (-3467 (((-112) $) 11)) (-1494 (($) 12)) (-4390 ((|#1| $ (-566) |#1|) 51) ((|#1| $ (-566)) 50) (($ $ (-1231 (-566))) 64)) (-1772 (($ $ (-566)) 92) (($ $ (-1231 (-566))) 91)) (-2187 (($ $ (-566)) 63) (($ $ (-1231 (-566))) 62)) (-4045 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-3940 (($ $) 13)) (-1348 (((-538) $) 80 (|has| |#1| (-614 (-538))))) (-3796 (($ (-644 |#1|)) 71)) (-3480 (($ $ |#1|) 94) (($ $ $) 93)) (-3721 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-644 $)) 66)) (-3783 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-3117 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-1894 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3018 (((-771) $) 6 (|has| $ (-6 -4414))))) +((-2988 (((-112) $ $) NIL)) (-1478 (($ $ $) NIL)) (-2599 (($ $ $) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-1949 (((-644 (-566)) $) 29)) (-3902 (((-771) $) 27)) (-3152 (((-862) $) 36) (($ (-644 (-566))) 23)) (-3044 (((-112) $ $) NIL)) (-2668 (($ (-771)) 33)) (-2968 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2914 (((-112) $ $) 9)) (-2956 (((-112) $ $) NIL)) (-2935 (((-112) $ $) 17))) +(((-276) (-13 (-850) (-10 -8 (-15 -3152 ($ (-644 (-566)))) (-15 -3902 ((-771) $)) (-15 -1949 ((-644 (-566)) $)) (-15 -2668 ($ (-771)))))) (T -276)) +((-3152 (*1 *1 *2) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-276)))) (-3902 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-276)))) (-1949 (*1 *2 *1) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-276)))) (-2668 (*1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-276))))) +(-13 (-850) (-10 -8 (-15 -3152 ($ (-644 (-566)))) (-15 -3902 ((-771) $)) (-15 -1949 ((-644 (-566)) $)) (-15 -2668 ($ (-771))))) +((-3963 ((|#2| |#2|) 77)) (-3630 ((|#2| |#2|) 65)) (-4021 (((-3 |#2| "failed") |#2| (-644 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125)) (-3941 ((|#2| |#2|) 75)) (-3602 ((|#2| |#2|) 63)) (-3986 ((|#2| |#2|) 79)) (-3656 ((|#2| |#2|) 67)) (-2281 ((|#2|) 46)) (-1566 (((-114) (-114)) 100)) (-3619 ((|#2| |#2|) 61)) (-3404 (((-112) |#2|) 147)) (-2287 ((|#2| |#2|) 195)) (-1374 ((|#2| |#2|) 171)) (-3970 ((|#2|) 59)) (-1888 ((|#2|) 58)) (-2053 ((|#2| |#2|) 191)) (-2356 ((|#2| |#2|) 167)) (-1379 ((|#2| |#2|) 199)) (-2033 ((|#2| |#2|) 175)) (-2634 ((|#2| |#2|) 163)) (-1593 ((|#2| |#2|) 165)) (-1842 ((|#2| |#2|) 201)) (-2230 ((|#2| |#2|) 177)) (-4229 ((|#2| |#2|) 197)) (-1969 ((|#2| |#2|) 173)) (-3210 ((|#2| |#2|) 193)) (-2265 ((|#2| |#2|) 169)) (-3421 ((|#2| |#2|) 207)) (-1658 ((|#2| |#2|) 183)) (-3009 ((|#2| |#2|) 203)) (-4319 ((|#2| |#2|) 179)) (-2709 ((|#2| |#2|) 211)) (-1588 ((|#2| |#2|) 187)) (-4096 ((|#2| |#2|) 213)) (-1565 ((|#2| |#2|) 189)) (-3236 ((|#2| |#2|) 209)) (-2199 ((|#2| |#2|) 185)) (-1584 ((|#2| |#2|) 205)) (-1714 ((|#2| |#2|) 181)) (-3521 ((|#2| |#2|) 62)) (-3996 ((|#2| |#2|) 80)) (-3670 ((|#2| |#2|) 68)) (-3976 ((|#2| |#2|) 78)) (-3643 ((|#2| |#2|) 66)) (-3952 ((|#2| |#2|) 76)) (-3618 ((|#2| |#2|) 64)) (-3515 (((-112) (-114)) 98)) (-4032 ((|#2| |#2|) 83)) (-3892 ((|#2| |#2|) 71)) (-4008 ((|#2| |#2|) 81)) (-3684 ((|#2| |#2|) 69)) (-4057 ((|#2| |#2|) 85)) (-3917 ((|#2| |#2|) 73)) (-3964 ((|#2| |#2|) 86)) (-3929 ((|#2| |#2|) 74)) (-4044 ((|#2| |#2|) 84)) (-3904 ((|#2| |#2|) 72)) (-4020 ((|#2| |#2|) 82)) (-3879 ((|#2| |#2|) 70))) +(((-277 |#1| |#2|) (-10 -7 (-15 -3521 (|#2| |#2|)) (-15 -3619 (|#2| |#2|)) (-15 -3602 (|#2| |#2|)) (-15 -3618 (|#2| |#2|)) (-15 -3630 (|#2| |#2|)) (-15 -3643 (|#2| |#2|)) (-15 -3656 (|#2| |#2|)) (-15 -3670 (|#2| |#2|)) (-15 -3684 (|#2| |#2|)) (-15 -3879 (|#2| |#2|)) (-15 -3892 (|#2| |#2|)) (-15 -3904 (|#2| |#2|)) (-15 -3917 (|#2| |#2|)) (-15 -3929 (|#2| |#2|)) (-15 -3941 (|#2| |#2|)) (-15 -3952 (|#2| |#2|)) (-15 -3963 (|#2| |#2|)) (-15 -3976 (|#2| |#2|)) (-15 -3986 (|#2| |#2|)) (-15 -3996 (|#2| |#2|)) (-15 -4008 (|#2| |#2|)) (-15 -4020 (|#2| |#2|)) (-15 -4032 (|#2| |#2|)) (-15 -4044 (|#2| |#2|)) (-15 -4057 (|#2| |#2|)) (-15 -3964 (|#2| |#2|)) (-15 -2281 (|#2|)) (-15 -3515 ((-112) (-114))) (-15 -1566 ((-114) (-114))) (-15 -1888 (|#2|)) (-15 -3970 (|#2|)) (-15 -1593 (|#2| |#2|)) (-15 -2634 (|#2| |#2|)) (-15 -2356 (|#2| |#2|)) (-15 -2265 (|#2| |#2|)) (-15 -1374 (|#2| |#2|)) (-15 -1969 (|#2| |#2|)) (-15 -2033 (|#2| |#2|)) (-15 -2230 (|#2| |#2|)) (-15 -4319 (|#2| |#2|)) (-15 -1714 (|#2| |#2|)) (-15 -1658 (|#2| |#2|)) (-15 -2199 (|#2| |#2|)) (-15 -1588 (|#2| |#2|)) (-15 -1565 (|#2| |#2|)) (-15 -2053 (|#2| |#2|)) (-15 -3210 (|#2| |#2|)) (-15 -2287 (|#2| |#2|)) (-15 -4229 (|#2| |#2|)) (-15 -1379 (|#2| |#2|)) (-15 -1842 (|#2| |#2|)) (-15 -3009 (|#2| |#2|)) (-15 -1584 (|#2| |#2|)) (-15 -3421 (|#2| |#2|)) (-15 -3236 (|#2| |#2|)) (-15 -2709 (|#2| |#2|)) (-15 -4096 (|#2| |#2|)) (-15 -4021 ((-3 |#2| "failed") |#2| (-644 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -3404 ((-112) |#2|))) (-558) (-13 (-432 |#1|) (-1002))) (T -277)) +((-3404 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-112)) (-5 *1 (-277 *4 *3)) (-4 *3 (-13 (-432 *4) (-1002))))) (-4021 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-644 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-432 *4) (-1002))) (-4 *4 (-558)) (-5 *1 (-277 *4 *2)))) (-4096 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2709 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3236 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3421 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-1584 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3009 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-1842 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-1379 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-4229 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2287 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3210 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2053 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-1565 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-1588 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2199 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-1658 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-1714 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-4319 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2230 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2033 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-1969 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-1374 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2265 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2356 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2634 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-1593 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3970 (*1 *2) (-12 (-4 *2 (-13 (-432 *3) (-1002))) (-5 *1 (-277 *3 *2)) (-4 *3 (-558)))) (-1888 (*1 *2) (-12 (-4 *2 (-13 (-432 *3) (-1002))) (-5 *1 (-277 *3 *2)) (-4 *3 (-558)))) (-1566 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-558)) (-5 *1 (-277 *3 *4)) (-4 *4 (-13 (-432 *3) (-1002))))) (-3515 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-558)) (-5 *2 (-112)) (-5 *1 (-277 *4 *5)) (-4 *5 (-13 (-432 *4) (-1002))))) (-2281 (*1 *2) (-12 (-4 *2 (-13 (-432 *3) (-1002))) (-5 *1 (-277 *3 *2)) (-4 *3 (-558)))) (-3964 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-4057 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-4044 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-4032 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-4020 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-4008 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3996 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3986 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3976 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3963 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3952 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3941 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3929 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3917 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3904 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3892 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3879 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3684 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3670 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3656 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3643 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3630 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3618 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3602 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3619 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3521 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002)))))) +(-10 -7 (-15 -3521 (|#2| |#2|)) (-15 -3619 (|#2| |#2|)) (-15 -3602 (|#2| |#2|)) (-15 -3618 (|#2| |#2|)) (-15 -3630 (|#2| |#2|)) (-15 -3643 (|#2| |#2|)) (-15 -3656 (|#2| |#2|)) (-15 -3670 (|#2| |#2|)) (-15 -3684 (|#2| |#2|)) (-15 -3879 (|#2| |#2|)) (-15 -3892 (|#2| |#2|)) (-15 -3904 (|#2| |#2|)) (-15 -3917 (|#2| |#2|)) (-15 -3929 (|#2| |#2|)) (-15 -3941 (|#2| |#2|)) (-15 -3952 (|#2| |#2|)) (-15 -3963 (|#2| |#2|)) (-15 -3976 (|#2| |#2|)) (-15 -3986 (|#2| |#2|)) (-15 -3996 (|#2| |#2|)) (-15 -4008 (|#2| |#2|)) (-15 -4020 (|#2| |#2|)) (-15 -4032 (|#2| |#2|)) (-15 -4044 (|#2| |#2|)) (-15 -4057 (|#2| |#2|)) (-15 -3964 (|#2| |#2|)) (-15 -2281 (|#2|)) (-15 -3515 ((-112) (-114))) (-15 -1566 ((-114) (-114))) (-15 -1888 (|#2|)) (-15 -3970 (|#2|)) (-15 -1593 (|#2| |#2|)) (-15 -2634 (|#2| |#2|)) (-15 -2356 (|#2| |#2|)) (-15 -2265 (|#2| |#2|)) (-15 -1374 (|#2| |#2|)) (-15 -1969 (|#2| |#2|)) (-15 -2033 (|#2| |#2|)) (-15 -2230 (|#2| |#2|)) (-15 -4319 (|#2| |#2|)) (-15 -1714 (|#2| |#2|)) (-15 -1658 (|#2| |#2|)) (-15 -2199 (|#2| |#2|)) (-15 -1588 (|#2| |#2|)) (-15 -1565 (|#2| |#2|)) (-15 -2053 (|#2| |#2|)) (-15 -3210 (|#2| |#2|)) (-15 -2287 (|#2| |#2|)) (-15 -4229 (|#2| |#2|)) (-15 -1379 (|#2| |#2|)) (-15 -1842 (|#2| |#2|)) (-15 -3009 (|#2| |#2|)) (-15 -1584 (|#2| |#2|)) (-15 -3421 (|#2| |#2|)) (-15 -3236 (|#2| |#2|)) (-15 -2709 (|#2| |#2|)) (-15 -4096 (|#2| |#2|)) (-15 -4021 ((-3 |#2| "failed") |#2| (-644 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -3404 ((-112) |#2|))) +((-2648 (((-3 |#2| "failed") (-644 (-612 |#2|)) |#2| (-1175)) 153)) (-1794 ((|#2| (-409 (-566)) |#2|) 49)) (-2868 ((|#2| |#2| (-612 |#2|)) 146)) (-2172 (((-2 (|:| |func| |#2|) (|:| |kers| (-644 (-612 |#2|))) (|:| |vals| (-644 |#2|))) |#2| (-1175)) 145)) (-1653 ((|#2| |#2| (-1175)) 20) ((|#2| |#2|) 23)) (-3109 ((|#2| |#2| (-1175)) 159) ((|#2| |#2|) 157))) +(((-278 |#1| |#2|) (-10 -7 (-15 -3109 (|#2| |#2|)) (-15 -3109 (|#2| |#2| (-1175))) (-15 -2172 ((-2 (|:| |func| |#2|) (|:| |kers| (-644 (-612 |#2|))) (|:| |vals| (-644 |#2|))) |#2| (-1175))) (-15 -1653 (|#2| |#2|)) (-15 -1653 (|#2| |#2| (-1175))) (-15 -2648 ((-3 |#2| "failed") (-644 (-612 |#2|)) |#2| (-1175))) (-15 -2868 (|#2| |#2| (-612 |#2|))) (-15 -1794 (|#2| (-409 (-566)) |#2|))) (-13 (-558) (-1038 (-566)) (-639 (-566))) (-13 (-27) (-1199) (-432 |#1|))) (T -278)) +((-1794 (*1 *2 *3 *2) (-12 (-5 *3 (-409 (-566))) (-4 *4 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *4))))) (-2868 (*1 *2 *2 *3) (-12 (-5 *3 (-612 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *4))) (-4 *4 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-278 *4 *2)))) (-2648 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-644 (-612 *2))) (-5 *4 (-1175)) (-4 *2 (-13 (-27) (-1199) (-432 *5))) (-4 *5 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-278 *5 *2)))) (-1653 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *4))))) (-1653 (*1 *2 *2) (-12 (-4 *3 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *3))))) (-2172 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-4 *5 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-644 (-612 *3))) (|:| |vals| (-644 *3)))) (-5 *1 (-278 *5 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5))))) (-3109 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *4))))) (-3109 (*1 *2 *2) (-12 (-4 *3 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *3)))))) +(-10 -7 (-15 -3109 (|#2| |#2|)) (-15 -3109 (|#2| |#2| (-1175))) (-15 -2172 ((-2 (|:| |func| |#2|) (|:| |kers| (-644 (-612 |#2|))) (|:| |vals| (-644 |#2|))) |#2| (-1175))) (-15 -1653 (|#2| |#2|)) (-15 -1653 (|#2| |#2| (-1175))) (-15 -2648 ((-3 |#2| "failed") (-644 (-612 |#2|)) |#2| (-1175))) (-15 -2868 (|#2| |#2| (-612 |#2|))) (-15 -1794 (|#2| (-409 (-566)) |#2|))) +((-2034 (((-3 |#3| "failed") |#3|) 120)) (-3963 ((|#3| |#3|) 142)) (-1450 (((-3 |#3| "failed") |#3|) 89)) (-3630 ((|#3| |#3|) 132)) (-1591 (((-3 |#3| "failed") |#3|) 65)) (-3941 ((|#3| |#3|) 140)) (-2315 (((-3 |#3| "failed") |#3|) 53)) (-3602 ((|#3| |#3|) 130)) (-2322 (((-3 |#3| "failed") |#3|) 122)) (-3986 ((|#3| |#3|) 144)) (-1751 (((-3 |#3| "failed") |#3|) 91)) (-3656 ((|#3| |#3|) 134)) (-2090 (((-3 |#3| "failed") |#3| (-771)) 41)) (-3309 (((-3 |#3| "failed") |#3|) 81)) (-3619 ((|#3| |#3|) 129)) (-1861 (((-3 |#3| "failed") |#3|) 51)) (-3521 ((|#3| |#3|) 128)) (-3410 (((-3 |#3| "failed") |#3|) 123)) (-3996 ((|#3| |#3|) 145)) (-1343 (((-3 |#3| "failed") |#3|) 92)) (-3670 ((|#3| |#3|) 135)) (-2762 (((-3 |#3| "failed") |#3|) 121)) (-3976 ((|#3| |#3|) 143)) (-1913 (((-3 |#3| "failed") |#3|) 90)) (-3643 ((|#3| |#3|) 133)) (-3051 (((-3 |#3| "failed") |#3|) 67)) (-3952 ((|#3| |#3|) 141)) (-2680 (((-3 |#3| "failed") |#3|) 55)) (-3618 ((|#3| |#3|) 131)) (-2628 (((-3 |#3| "failed") |#3|) 73)) (-4032 ((|#3| |#3|) 148)) (-1666 (((-3 |#3| "failed") |#3|) 114)) (-3892 ((|#3| |#3|) 154)) (-3667 (((-3 |#3| "failed") |#3|) 69)) (-4008 ((|#3| |#3|) 146)) (-2224 (((-3 |#3| "failed") |#3|) 57)) (-3684 ((|#3| |#3|) 136)) (-4277 (((-3 |#3| "failed") |#3|) 77)) (-4057 ((|#3| |#3|) 150)) (-1959 (((-3 |#3| "failed") |#3|) 61)) (-3917 ((|#3| |#3|) 138)) (-2666 (((-3 |#3| "failed") |#3|) 79)) (-3964 ((|#3| |#3|) 151)) (-3324 (((-3 |#3| "failed") |#3|) 63)) (-3929 ((|#3| |#3|) 139)) (-3859 (((-3 |#3| "failed") |#3|) 75)) (-4044 ((|#3| |#3|) 149)) (-4150 (((-3 |#3| "failed") |#3|) 117)) (-3904 ((|#3| |#3|) 155)) (-3900 (((-3 |#3| "failed") |#3|) 71)) (-4020 ((|#3| |#3|) 147)) (-3427 (((-3 |#3| "failed") |#3|) 59)) (-3879 ((|#3| |#3|) 137)) (** ((|#3| |#3| (-409 (-566))) 47 (|has| |#1| (-365))))) +(((-279 |#1| |#2| |#3|) (-13 (-983 |#3|) (-10 -7 (IF (|has| |#1| (-365)) (-15 ** (|#3| |#3| (-409 (-566)))) |%noBranch|) (-15 -3521 (|#3| |#3|)) (-15 -3619 (|#3| |#3|)) (-15 -3602 (|#3| |#3|)) (-15 -3618 (|#3| |#3|)) (-15 -3630 (|#3| |#3|)) (-15 -3643 (|#3| |#3|)) (-15 -3656 (|#3| |#3|)) (-15 -3670 (|#3| |#3|)) (-15 -3684 (|#3| |#3|)) (-15 -3879 (|#3| |#3|)) (-15 -3892 (|#3| |#3|)) (-15 -3904 (|#3| |#3|)) (-15 -3917 (|#3| |#3|)) (-15 -3929 (|#3| |#3|)) (-15 -3941 (|#3| |#3|)) (-15 -3952 (|#3| |#3|)) (-15 -3963 (|#3| |#3|)) (-15 -3976 (|#3| |#3|)) (-15 -3986 (|#3| |#3|)) (-15 -3996 (|#3| |#3|)) (-15 -4008 (|#3| |#3|)) (-15 -4020 (|#3| |#3|)) (-15 -4032 (|#3| |#3|)) (-15 -4044 (|#3| |#3|)) (-15 -4057 (|#3| |#3|)) (-15 -3964 (|#3| |#3|)))) (-38 (-409 (-566))) (-1255 |#1|) (-1226 |#1| |#2|)) (T -279)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-409 (-566))) (-4 *4 (-365)) (-4 *4 (-38 *3)) (-4 *5 (-1255 *4)) (-5 *1 (-279 *4 *5 *2)) (-4 *2 (-1226 *4 *5)))) (-3521 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-3619 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-3602 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-3618 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-3630 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-3643 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-3656 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-3670 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-3684 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-3879 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-3892 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-3904 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-3917 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-3929 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-3941 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-3952 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-3963 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-3976 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-3986 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-3996 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-4008 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-4020 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-4032 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-4044 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-4057 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) (-3964 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4))))) +(-13 (-983 |#3|) (-10 -7 (IF (|has| |#1| (-365)) (-15 ** (|#3| |#3| (-409 (-566)))) |%noBranch|) (-15 -3521 (|#3| |#3|)) (-15 -3619 (|#3| |#3|)) (-15 -3602 (|#3| |#3|)) (-15 -3618 (|#3| |#3|)) (-15 -3630 (|#3| |#3|)) (-15 -3643 (|#3| |#3|)) (-15 -3656 (|#3| |#3|)) (-15 -3670 (|#3| |#3|)) (-15 -3684 (|#3| |#3|)) (-15 -3879 (|#3| |#3|)) (-15 -3892 (|#3| |#3|)) (-15 -3904 (|#3| |#3|)) (-15 -3917 (|#3| |#3|)) (-15 -3929 (|#3| |#3|)) (-15 -3941 (|#3| |#3|)) (-15 -3952 (|#3| |#3|)) (-15 -3963 (|#3| |#3|)) (-15 -3976 (|#3| |#3|)) (-15 -3986 (|#3| |#3|)) (-15 -3996 (|#3| |#3|)) (-15 -4008 (|#3| |#3|)) (-15 -4020 (|#3| |#3|)) (-15 -4032 (|#3| |#3|)) (-15 -4044 (|#3| |#3|)) (-15 -4057 (|#3| |#3|)) (-15 -3964 (|#3| |#3|)))) +((-2034 (((-3 |#3| "failed") |#3|) 70)) (-3963 ((|#3| |#3|) 137)) (-1450 (((-3 |#3| "failed") |#3|) 54)) (-3630 ((|#3| |#3|) 125)) (-1591 (((-3 |#3| "failed") |#3|) 66)) (-3941 ((|#3| |#3|) 135)) (-2315 (((-3 |#3| "failed") |#3|) 50)) (-3602 ((|#3| |#3|) 123)) (-2322 (((-3 |#3| "failed") |#3|) 74)) (-3986 ((|#3| |#3|) 139)) (-1751 (((-3 |#3| "failed") |#3|) 58)) (-3656 ((|#3| |#3|) 127)) (-2090 (((-3 |#3| "failed") |#3| (-771)) 38)) (-3309 (((-3 |#3| "failed") |#3|) 48)) (-3619 ((|#3| |#3|) 111)) (-1861 (((-3 |#3| "failed") |#3|) 46)) (-3521 ((|#3| |#3|) 122)) (-3410 (((-3 |#3| "failed") |#3|) 76)) (-3996 ((|#3| |#3|) 140)) (-1343 (((-3 |#3| "failed") |#3|) 60)) (-3670 ((|#3| |#3|) 128)) (-2762 (((-3 |#3| "failed") |#3|) 72)) (-3976 ((|#3| |#3|) 138)) (-1913 (((-3 |#3| "failed") |#3|) 56)) (-3643 ((|#3| |#3|) 126)) (-3051 (((-3 |#3| "failed") |#3|) 68)) (-3952 ((|#3| |#3|) 136)) (-2680 (((-3 |#3| "failed") |#3|) 52)) (-3618 ((|#3| |#3|) 124)) (-2628 (((-3 |#3| "failed") |#3|) 78)) (-4032 ((|#3| |#3|) 143)) (-1666 (((-3 |#3| "failed") |#3|) 62)) (-3892 ((|#3| |#3|) 131)) (-3667 (((-3 |#3| "failed") |#3|) 112)) (-4008 ((|#3| |#3|) 141)) (-2224 (((-3 |#3| "failed") |#3|) 100)) (-3684 ((|#3| |#3|) 129)) (-4277 (((-3 |#3| "failed") |#3|) 116)) (-4057 ((|#3| |#3|) 145)) (-1959 (((-3 |#3| "failed") |#3|) 107)) (-3917 ((|#3| |#3|) 133)) (-2666 (((-3 |#3| "failed") |#3|) 117)) (-3964 ((|#3| |#3|) 146)) (-3324 (((-3 |#3| "failed") |#3|) 109)) (-3929 ((|#3| |#3|) 134)) (-3859 (((-3 |#3| "failed") |#3|) 80)) (-4044 ((|#3| |#3|) 144)) (-4150 (((-3 |#3| "failed") |#3|) 64)) (-3904 ((|#3| |#3|) 132)) (-3900 (((-3 |#3| "failed") |#3|) 113)) (-4020 ((|#3| |#3|) 142)) (-3427 (((-3 |#3| "failed") |#3|) 103)) (-3879 ((|#3| |#3|) 130)) (** ((|#3| |#3| (-409 (-566))) 44 (|has| |#1| (-365))))) +(((-280 |#1| |#2| |#3| |#4|) (-13 (-983 |#3|) (-10 -7 (IF (|has| |#1| (-365)) (-15 ** (|#3| |#3| (-409 (-566)))) |%noBranch|) (-15 -3521 (|#3| |#3|)) (-15 -3619 (|#3| |#3|)) (-15 -3602 (|#3| |#3|)) (-15 -3618 (|#3| |#3|)) (-15 -3630 (|#3| |#3|)) (-15 -3643 (|#3| |#3|)) (-15 -3656 (|#3| |#3|)) (-15 -3670 (|#3| |#3|)) (-15 -3684 (|#3| |#3|)) (-15 -3879 (|#3| |#3|)) (-15 -3892 (|#3| |#3|)) (-15 -3904 (|#3| |#3|)) (-15 -3917 (|#3| |#3|)) (-15 -3929 (|#3| |#3|)) (-15 -3941 (|#3| |#3|)) (-15 -3952 (|#3| |#3|)) (-15 -3963 (|#3| |#3|)) (-15 -3976 (|#3| |#3|)) (-15 -3986 (|#3| |#3|)) (-15 -3996 (|#3| |#3|)) (-15 -4008 (|#3| |#3|)) (-15 -4020 (|#3| |#3|)) (-15 -4032 (|#3| |#3|)) (-15 -4044 (|#3| |#3|)) (-15 -4057 (|#3| |#3|)) (-15 -3964 (|#3| |#3|)))) (-38 (-409 (-566))) (-1224 |#1|) (-1247 |#1| |#2|) (-983 |#2|)) (T -280)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-409 (-566))) (-4 *4 (-365)) (-4 *4 (-38 *3)) (-4 *5 (-1224 *4)) (-5 *1 (-280 *4 *5 *2 *6)) (-4 *2 (-1247 *4 *5)) (-4 *6 (-983 *5)))) (-3521 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-3619 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-3602 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-3618 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-3630 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-3643 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-3656 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-3670 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-3684 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-3879 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-3892 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-3904 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-3917 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-3929 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-3941 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-3952 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-3963 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-3976 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-3986 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-3996 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-4008 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-4020 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-4032 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-4044 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-4057 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) (-3964 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4))))) +(-13 (-983 |#3|) (-10 -7 (IF (|has| |#1| (-365)) (-15 ** (|#3| |#3| (-409 (-566)))) |%noBranch|) (-15 -3521 (|#3| |#3|)) (-15 -3619 (|#3| |#3|)) (-15 -3602 (|#3| |#3|)) (-15 -3618 (|#3| |#3|)) (-15 -3630 (|#3| |#3|)) (-15 -3643 (|#3| |#3|)) (-15 -3656 (|#3| |#3|)) (-15 -3670 (|#3| |#3|)) (-15 -3684 (|#3| |#3|)) (-15 -3879 (|#3| |#3|)) (-15 -3892 (|#3| |#3|)) (-15 -3904 (|#3| |#3|)) (-15 -3917 (|#3| |#3|)) (-15 -3929 (|#3| |#3|)) (-15 -3941 (|#3| |#3|)) (-15 -3952 (|#3| |#3|)) (-15 -3963 (|#3| |#3|)) (-15 -3976 (|#3| |#3|)) (-15 -3986 (|#3| |#3|)) (-15 -3996 (|#3| |#3|)) (-15 -4008 (|#3| |#3|)) (-15 -4020 (|#3| |#3|)) (-15 -4032 (|#3| |#3|)) (-15 -4044 (|#3| |#3|)) (-15 -4057 (|#3| |#3|)) (-15 -3964 (|#3| |#3|)))) +((-2462 (((-112) $) 20)) (-2972 (((-1180) $) 7)) (-3896 (((-3 (-508) "failed") $) 14)) (-1389 (((-3 (-644 $) "failed") $) NIL)) (-2792 (((-3 (-508) "failed") $) 21)) (-2374 (((-3 (-1103) "failed") $) 18)) (-3705 (((-112) $) 16)) (-3152 (((-862) $) NIL)) (-4233 (((-112) $) 9))) +(((-281) (-13 (-613 (-862)) (-10 -8 (-15 -2972 ((-1180) $)) (-15 -3705 ((-112) $)) (-15 -2374 ((-3 (-1103) "failed") $)) (-15 -2462 ((-112) $)) (-15 -2792 ((-3 (-508) "failed") $)) (-15 -4233 ((-112) $)) (-15 -3896 ((-3 (-508) "failed") $)) (-15 -1389 ((-3 (-644 $) "failed") $))))) (T -281)) +((-2972 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-281)))) (-3705 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281)))) (-2374 (*1 *2 *1) (|partial| -12 (-5 *2 (-1103)) (-5 *1 (-281)))) (-2462 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281)))) (-2792 (*1 *2 *1) (|partial| -12 (-5 *2 (-508)) (-5 *1 (-281)))) (-4233 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281)))) (-3896 (*1 *2 *1) (|partial| -12 (-5 *2 (-508)) (-5 *1 (-281)))) (-1389 (*1 *2 *1) (|partial| -12 (-5 *2 (-644 (-281))) (-5 *1 (-281))))) +(-13 (-613 (-862)) (-10 -8 (-15 -2972 ((-1180) $)) (-15 -3705 ((-112) $)) (-15 -2374 ((-3 (-1103) "failed") $)) (-15 -2462 ((-112) $)) (-15 -2792 ((-3 (-508) "failed") $)) (-15 -4233 ((-112) $)) (-15 -3896 ((-3 (-508) "failed") $)) (-15 -1389 ((-3 (-644 $) "failed") $)))) +((-3678 (($ (-1 (-112) |#2|) $) 24)) (-3942 (($ $) 38)) (-3512 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 36)) (-2622 (($ |#2| $) 34) (($ (-1 (-112) |#2|) $) 18)) (-3674 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 42)) (-1859 (($ |#2| $ (-566)) 20) (($ $ $ (-566)) 22)) (-2166 (($ $ (-566)) 11) (($ $ (-1231 (-566))) 14)) (-1690 (($ $ |#2|) 32) (($ $ $) NIL)) (-4386 (($ $ |#2|) 31) (($ |#2| $) NIL) (($ $ $) 26) (($ (-644 $)) NIL))) +(((-282 |#1| |#2|) (-10 -8 (-15 -3674 (|#1| |#1| |#1|)) (-15 -3512 (|#1| |#2| |#1|)) (-15 -3674 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3512 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1690 (|#1| |#1| |#1|)) (-15 -1690 (|#1| |#1| |#2|)) (-15 -1859 (|#1| |#1| |#1| (-566))) (-15 -1859 (|#1| |#2| |#1| (-566))) (-15 -2166 (|#1| |#1| (-1231 (-566)))) (-15 -2166 (|#1| |#1| (-566))) (-15 -4386 (|#1| (-644 |#1|))) (-15 -4386 (|#1| |#1| |#1|)) (-15 -4386 (|#1| |#2| |#1|)) (-15 -4386 (|#1| |#1| |#2|)) (-15 -2622 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3678 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2622 (|#1| |#2| |#1|)) (-15 -3942 (|#1| |#1|))) (-283 |#2|) (-1214)) (T -282)) +NIL +(-10 -8 (-15 -3674 (|#1| |#1| |#1|)) (-15 -3512 (|#1| |#2| |#1|)) (-15 -3674 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3512 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1690 (|#1| |#1| |#1|)) (-15 -1690 (|#1| |#1| |#2|)) (-15 -1859 (|#1| |#1| |#1| (-566))) (-15 -1859 (|#1| |#2| |#1| (-566))) (-15 -2166 (|#1| |#1| (-1231 (-566)))) (-15 -2166 (|#1| |#1| (-566))) (-15 -4386 (|#1| (-644 |#1|))) (-15 -4386 (|#1| |#1| |#1|)) (-15 -4386 (|#1| |#2| |#1|)) (-15 -4386 (|#1| |#1| |#2|)) (-15 -2622 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3678 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2622 (|#1| |#2| |#1|)) (-15 -3942 (|#1| |#1|))) +((-2988 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-1944 (((-1269) $ (-566) (-566)) 41 (|has| $ (-6 -4415)))) (-1504 (((-112) $ (-771)) 8)) (-1456 ((|#1| $ (-566) |#1|) 53 (|has| $ (-6 -4415))) ((|#1| $ (-1231 (-566)) |#1|) 59 (|has| $ (-6 -4415)))) (-2995 (($ (-1 (-112) |#1|) $) 86)) (-3678 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4414)))) (-2463 (($) 7 T CONST)) (-3322 (($ $) 84 (|has| |#1| (-1099)))) (-3942 (($ $) 79 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-3512 (($ (-1 (-112) |#1|) $) 90) (($ |#1| $) 85 (|has| |#1| (-1099)))) (-2622 (($ |#1| $) 78 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4414)))) (-2873 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4414)))) (-3897 ((|#1| $ (-566) |#1|) 54 (|has| $ (-6 -4415)))) (-3829 ((|#1| $ (-566)) 52)) (-1683 (((-644 |#1|) $) 31 (|has| $ (-6 -4414)))) (-1860 (($ (-771) |#1|) 70)) (-3456 (((-112) $ (-771)) 9)) (-2296 (((-566) $) 44 (|has| (-566) (-850)))) (-3674 (($ (-1 (-112) |#1| |#1|) $ $) 87) (($ $ $) 83 (|has| |#1| (-850)))) (-3491 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-4050 (((-566) $) 45 (|has| (-566) (-850)))) (-3885 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3267 (((-112) $ (-771)) 10)) (-3380 (((-1157) $) 22 (|has| |#1| (-1099)))) (-3888 (($ |#1| $ (-566)) 89) (($ $ $ (-566)) 88)) (-1859 (($ |#1| $ (-566)) 61) (($ $ $ (-566)) 60)) (-3725 (((-644 (-566)) $) 47)) (-1644 (((-112) (-566) $) 48)) (-4072 (((-1119) $) 21 (|has| |#1| (-1099)))) (-3908 ((|#1| $) 43 (|has| (-566) (-850)))) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-3787 (($ $ |#1|) 42 (|has| $ (-6 -4415)))) (-2823 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) 14)) (-2847 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3486 (((-644 |#1|) $) 49)) (-2872 (((-112) $) 11)) (-3493 (($) 12)) (-1309 ((|#1| $ (-566) |#1|) 51) ((|#1| $ (-566)) 50) (($ $ (-1231 (-566))) 64)) (-1308 (($ $ (-566)) 92) (($ $ (-1231 (-566))) 91)) (-2166 (($ $ (-566)) 63) (($ $ (-1231 (-566))) 62)) (-4083 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-1480 (($ $) 13)) (-2376 (((-538) $) 80 (|has| |#1| (-614 (-538))))) (-1340 (($ (-644 |#1|)) 71)) (-1690 (($ $ |#1|) 94) (($ $ $) 93)) (-4386 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-644 $)) 66)) (-3152 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-3044 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-2210 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3000 (((-771) $) 6 (|has| $ (-6 -4414))))) (((-283 |#1|) (-140) (-1214)) (T -283)) -((-3480 (*1 *1 *1 *2) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1214)))) (-3480 (*1 *1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1214)))) (-1772 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-283 *3)) (-4 *3 (-1214)))) (-1772 (*1 *1 *1 *2) (-12 (-5 *2 (-1231 (-566))) (-4 *1 (-283 *3)) (-4 *3 (-1214)))) (-2956 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-283 *3)) (-4 *3 (-1214)))) (-3406 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *1 (-283 *2)) (-4 *2 (-1214)))) (-3406 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-283 *3)) (-4 *3 (-1214)))) (-3463 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-283 *3)) (-4 *3 (-1214)))) (-4016 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-283 *3)) (-4 *3 (-1214)))) (-2956 (*1 *1 *2 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1214)) (-4 *2 (-1099)))) (-3657 (*1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1214)) (-4 *2 (-1099)))) (-3463 (*1 *1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1214)) (-4 *2 (-850))))) -(-13 (-651 |t#1|) (-10 -8 (-6 -4415) (-15 -3480 ($ $ |t#1|)) (-15 -3480 ($ $ $)) (-15 -1772 ($ $ (-566))) (-15 -1772 ($ $ (-1231 (-566)))) (-15 -2956 ($ (-1 (-112) |t#1|) $)) (-15 -3406 ($ |t#1| $ (-566))) (-15 -3406 ($ $ $ (-566))) (-15 -3463 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -4016 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1099)) (PROGN (-15 -2956 ($ |t#1| $)) (-15 -3657 ($ $))) |%noBranch|) (IF (|has| |t#1| (-850)) (-15 -3463 ($ $ $)) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2809 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-151 |#1|) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-287 #0=(-566) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-604 #0# |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-651 |#1|) . T) ((-1099) |has| |#1| (-1099)) ((-1214) . T)) +((-1690 (*1 *1 *1 *2) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1214)))) (-1690 (*1 *1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1214)))) (-1308 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-283 *3)) (-4 *3 (-1214)))) (-1308 (*1 *1 *1 *2) (-12 (-5 *2 (-1231 (-566))) (-4 *1 (-283 *3)) (-4 *3 (-1214)))) (-3512 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-283 *3)) (-4 *3 (-1214)))) (-3888 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *1 (-283 *2)) (-4 *2 (-1214)))) (-3888 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-283 *3)) (-4 *3 (-1214)))) (-3674 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-283 *3)) (-4 *3 (-1214)))) (-2995 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-283 *3)) (-4 *3 (-1214)))) (-3512 (*1 *1 *2 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1214)) (-4 *2 (-1099)))) (-3322 (*1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1214)) (-4 *2 (-1099)))) (-3674 (*1 *1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1214)) (-4 *2 (-850))))) +(-13 (-651 |t#1|) (-10 -8 (-6 -4415) (-15 -1690 ($ $ |t#1|)) (-15 -1690 ($ $ $)) (-15 -1308 ($ $ (-566))) (-15 -1308 ($ $ (-1231 (-566)))) (-15 -3512 ($ (-1 (-112) |t#1|) $)) (-15 -3888 ($ |t#1| $ (-566))) (-15 -3888 ($ $ $ (-566))) (-15 -3674 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -2995 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1099)) (PROGN (-15 -3512 ($ |t#1| $)) (-15 -3322 ($ $))) |%noBranch|) (IF (|has| |t#1| (-850)) (-15 -3674 ($ $ $)) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2768 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-151 |#1|) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-287 #0=(-566) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-604 #0# |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-651 |#1|) . T) ((-1099) |has| |#1| (-1099)) ((-1214) . T)) ((** (($ $ $) 10))) (((-284 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-285)) (T -284)) NIL (-10 -8 (-15 ** (|#1| |#1| |#1|))) -((-3651 (($ $) 6)) (-2561 (($ $) 7)) (** (($ $ $) 8))) +((-3619 (($ $) 6)) (-3521 (($ $) 7)) (** (($ $ $) 8))) (((-285) (-140)) (T -285)) -((** (*1 *1 *1 *1) (-4 *1 (-285))) (-2561 (*1 *1 *1) (-4 *1 (-285))) (-3651 (*1 *1 *1) (-4 *1 (-285)))) -(-13 (-10 -8 (-15 -3651 ($ $)) (-15 -2561 ($ $)) (-15 ** ($ $ $)))) -((-2633 (((-644 (-1155 |#1|)) (-1155 |#1|) |#1|) 35)) (-2433 ((|#2| |#2| |#1|) 39)) (-4064 ((|#2| |#2| |#1|) 41)) (-2831 ((|#2| |#2| |#1|) 40))) -(((-286 |#1| |#2|) (-10 -7 (-15 -2433 (|#2| |#2| |#1|)) (-15 -2831 (|#2| |#2| |#1|)) (-15 -4064 (|#2| |#2| |#1|)) (-15 -2633 ((-644 (-1155 |#1|)) (-1155 |#1|) |#1|))) (-365) (-1255 |#1|)) (T -286)) -((-2633 (*1 *2 *3 *4) (-12 (-4 *4 (-365)) (-5 *2 (-644 (-1155 *4))) (-5 *1 (-286 *4 *5)) (-5 *3 (-1155 *4)) (-4 *5 (-1255 *4)))) (-4064 (*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1255 *3)))) (-2831 (*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1255 *3)))) (-2433 (*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1255 *3))))) -(-10 -7 (-15 -2433 (|#2| |#2| |#1|)) (-15 -2831 (|#2| |#2| |#1|)) (-15 -4064 (|#2| |#2| |#1|)) (-15 -2633 ((-644 (-1155 |#1|)) (-1155 |#1|) |#1|))) -((-4390 ((|#2| $ |#1|) 6))) +((** (*1 *1 *1 *1) (-4 *1 (-285))) (-3521 (*1 *1 *1) (-4 *1 (-285))) (-3619 (*1 *1 *1) (-4 *1 (-285)))) +(-13 (-10 -8 (-15 -3619 ($ $)) (-15 -3521 ($ $)) (-15 ** ($ $ $)))) +((-3130 (((-644 (-1155 |#1|)) (-1155 |#1|) |#1|) 35)) (-4204 ((|#2| |#2| |#1|) 39)) (-3988 ((|#2| |#2| |#1|) 41)) (-2655 ((|#2| |#2| |#1|) 40))) +(((-286 |#1| |#2|) (-10 -7 (-15 -4204 (|#2| |#2| |#1|)) (-15 -2655 (|#2| |#2| |#1|)) (-15 -3988 (|#2| |#2| |#1|)) (-15 -3130 ((-644 (-1155 |#1|)) (-1155 |#1|) |#1|))) (-365) (-1255 |#1|)) (T -286)) +((-3130 (*1 *2 *3 *4) (-12 (-4 *4 (-365)) (-5 *2 (-644 (-1155 *4))) (-5 *1 (-286 *4 *5)) (-5 *3 (-1155 *4)) (-4 *5 (-1255 *4)))) (-3988 (*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1255 *3)))) (-2655 (*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1255 *3)))) (-4204 (*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1255 *3))))) +(-10 -7 (-15 -4204 (|#2| |#2| |#1|)) (-15 -2655 (|#2| |#2| |#1|)) (-15 -3988 (|#2| |#2| |#1|)) (-15 -3130 ((-644 (-1155 |#1|)) (-1155 |#1|) |#1|))) +((-1309 ((|#2| $ |#1|) 6))) (((-287 |#1| |#2|) (-140) (-1099) (-1214)) (T -287)) -((-4390 (*1 *2 *1 *3) (-12 (-4 *1 (-287 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1214))))) -(-13 (-10 -8 (-15 -4390 (|t#2| $ |t#1|)))) -((-2920 ((|#3| $ |#2| |#3|) 12)) (-2855 ((|#3| $ |#2|) 10))) -(((-288 |#1| |#2| |#3|) (-10 -8 (-15 -2920 (|#3| |#1| |#2| |#3|)) (-15 -2855 (|#3| |#1| |#2|))) (-289 |#2| |#3|) (-1099) (-1214)) (T -288)) +((-1309 (*1 *2 *1 *3) (-12 (-4 *1 (-287 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1214))))) +(-13 (-10 -8 (-15 -1309 (|t#2| $ |t#1|)))) +((-3897 ((|#3| $ |#2| |#3|) 12)) (-3829 ((|#3| $ |#2|) 10))) +(((-288 |#1| |#2| |#3|) (-10 -8 (-15 -3897 (|#3| |#1| |#2| |#3|)) (-15 -3829 (|#3| |#1| |#2|))) (-289 |#2| |#3|) (-1099) (-1214)) (T -288)) NIL -(-10 -8 (-15 -2920 (|#3| |#1| |#2| |#3|)) (-15 -2855 (|#3| |#1| |#2|))) -((-3923 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4415)))) (-2920 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4415)))) (-2855 ((|#2| $ |#1|) 11)) (-4390 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) +(-10 -8 (-15 -3897 (|#3| |#1| |#2| |#3|)) (-15 -3829 (|#3| |#1| |#2|))) +((-1456 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4415)))) (-3897 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4415)))) (-3829 ((|#2| $ |#1|) 11)) (-1309 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) (((-289 |#1| |#2|) (-140) (-1099) (-1214)) (T -289)) -((-4390 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1214)))) (-2855 (*1 *2 *1 *3) (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1214)))) (-3923 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4415)) (-4 *1 (-289 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1214)))) (-2920 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4415)) (-4 *1 (-289 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1214))))) -(-13 (-287 |t#1| |t#2|) (-10 -8 (-15 -4390 (|t#2| $ |t#1| |t#2|)) (-15 -2855 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4415)) (PROGN (-15 -3923 (|t#2| $ |t#1| |t#2|)) (-15 -2920 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) +((-1309 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1214)))) (-3829 (*1 *2 *1 *3) (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1214)))) (-1456 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4415)) (-4 *1 (-289 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1214)))) (-3897 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4415)) (-4 *1 (-289 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1214))))) +(-13 (-287 |t#1| |t#2|) (-10 -8 (-15 -1309 (|t#2| $ |t#1| |t#2|)) (-15 -3829 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4415)) (PROGN (-15 -1456 (|t#2| $ |t#1| |t#2|)) (-15 -3897 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) (((-287 |#1| |#2|) . T)) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) 37)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) 44)) (-3991 (($ $) 41)) (-2388 (((-112) $) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-2837 (((-112) $ $) NIL)) (-3012 (($) NIL T CONST)) (-2946 (($ $ $) 35)) (-1676 (($ |#2| |#3|) 18)) (-1878 (((-3 $ "failed") $) NIL)) (-2957 (($ $ $) NIL)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL)) (-3934 (((-112) $) NIL)) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3930 ((|#3| $) NIL)) (-2167 (($ $ $) NIL) (($ (-644 $)) NIL)) (-4117 (((-1157) $) NIL)) (-1713 (($ $) 19)) (-4035 (((-1119) $) NIL)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2214 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3148 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2994 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3857 (((-3 $ "failed") $ $) NIL)) (-3039 (((-771) $) 36)) (-4390 ((|#2| $ |#2|) 46)) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) 23)) (-3783 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-2107 (((-771)) NIL T CONST)) (-3117 (((-112) $ $) NIL)) (-2695 (((-112) $ $) NIL)) (-2479 (($) 31 T CONST)) (-4334 (($) 39 T CONST)) (-2947 (((-112) $ $) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 40))) -(((-290 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-308) (-10 -8 (-15 -3930 (|#3| $)) (-15 -3783 (|#2| $)) (-15 -1676 ($ |#2| |#3|)) (-15 -3857 ((-3 $ "failed") $ $)) (-15 -1878 ((-3 $ "failed") $)) (-15 -1713 ($ $)) (-15 -4390 (|#2| $ |#2|)))) (-172) (-1240 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -290)) -((-1878 (*1 *1 *1) (|partial| -12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1240 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3930 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-23)) (-5 *1 (-290 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1240 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-3783 (*1 *2 *1) (-12 (-4 *2 (-1240 *3)) (-5 *1 (-290 *3 *2 *4 *5 *6 *7)) (-4 *3 (-172)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-1676 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-290 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1240 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3857 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1240 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1713 (*1 *1 *1) (-12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1240 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-4390 (*1 *2 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-290 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1240 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))) -(-13 (-308) (-10 -8 (-15 -3930 (|#3| $)) (-15 -3783 (|#2| $)) (-15 -1676 ($ |#2| |#3|)) (-15 -3857 ((-3 $ "failed") $ $)) (-15 -1878 ((-3 $ "failed") $)) (-15 -1713 ($ $)) (-15 -4390 (|#2| $ |#2|)))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-4175 (((-3 $ "failed") $ $) 20)) (-3012 (($) 18 T CONST)) (-1878 (((-3 $ "failed") $) 37)) (-3934 (((-112) $) 35)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3783 (((-862) $) 12) (($ (-566)) 33)) (-2107 (((-771)) 32 T CONST)) (-3117 (((-112) $ $) 9)) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-2947 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) 37)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) 44)) (-2161 (($ $) 41)) (-2345 (((-112) $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-2085 (((-112) $ $) NIL)) (-2463 (($) NIL T CONST)) (-2933 (($ $ $) 35)) (-2873 (($ |#2| |#3|) 18)) (-3245 (((-3 $ "failed") $) NIL)) (-2945 (($ $ $) NIL)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL)) (-2389 (((-112) $) NIL)) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3206 ((|#3| $) NIL)) (-2128 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3380 (((-1157) $) NIL)) (-2748 (($ $) 19)) (-4072 (((-1119) $) NIL)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2164 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3005 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2978 (((-3 $ "failed") $ $) NIL)) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1371 (((-3 $ "failed") $ $) NIL)) (-4357 (((-771) $) 36)) (-1309 ((|#2| $ |#2|) 46)) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) 23)) (-3152 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-2593 (((-771)) NIL T CONST)) (-3044 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-4356 (($) 31 T CONST)) (-4366 (($) 39 T CONST)) (-2914 (((-112) $ $) NIL)) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 40))) +(((-290 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-308) (-10 -8 (-15 -3206 (|#3| $)) (-15 -3152 (|#2| $)) (-15 -2873 ($ |#2| |#3|)) (-15 -1371 ((-3 $ "failed") $ $)) (-15 -3245 ((-3 $ "failed") $)) (-15 -2748 ($ $)) (-15 -1309 (|#2| $ |#2|)))) (-172) (-1240 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -290)) +((-3245 (*1 *1 *1) (|partial| -12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1240 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3206 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-23)) (-5 *1 (-290 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1240 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-3152 (*1 *2 *1) (-12 (-4 *2 (-1240 *3)) (-5 *1 (-290 *3 *2 *4 *5 *6 *7)) (-4 *3 (-172)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-2873 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-290 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1240 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1371 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1240 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2748 (*1 *1 *1) (-12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1240 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1309 (*1 *2 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-290 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1240 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))) +(-13 (-308) (-10 -8 (-15 -3206 (|#3| $)) (-15 -3152 (|#2| $)) (-15 -2873 ($ |#2| |#3|)) (-15 -1371 ((-3 $ "failed") $ $)) (-15 -3245 ((-3 $ "failed") $)) (-15 -2748 ($ $)) (-15 -1309 (|#2| $ |#2|)))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-3967 (((-3 $ "failed") $ $) 20)) (-2463 (($) 18 T CONST)) (-3245 (((-3 $ "failed") $) 37)) (-2389 (((-112) $) 35)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3152 (((-862) $) 12) (($ (-566)) 33)) (-2593 (((-771)) 32 T CONST)) (-3044 (((-112) $ $) 9)) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-2914 (((-112) $ $) 6)) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) (((-291) (-140)) (T -291)) NIL (-13 (-1049) (-111 $ $) (-10 -7 (-6 -4407))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-616 (-566)) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-726) . T) ((-1051 $) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) -((-4221 (($ (-508) (-508) (-1103) $) 19)) (-3094 (($ (-508) (-644 (-965)) $) 23)) (-1631 (((-644 (-1084)) $) 10)) (-1727 (($) 25)) (-2224 (((-691 (-1103)) (-508) (-508) $) 18)) (-2494 (((-644 (-965)) (-508) $) 22)) (-1494 (($) 7)) (-1610 (($) 24)) (-3783 (((-862) $) 29)) (-3507 (($) 26))) -(((-292) (-13 (-613 (-862)) (-10 -8 (-15 -1494 ($)) (-15 -1631 ((-644 (-1084)) $)) (-15 -2224 ((-691 (-1103)) (-508) (-508) $)) (-15 -4221 ($ (-508) (-508) (-1103) $)) (-15 -2494 ((-644 (-965)) (-508) $)) (-15 -3094 ($ (-508) (-644 (-965)) $)) (-15 -1610 ($)) (-15 -1727 ($)) (-15 -3507 ($))))) (T -292)) -((-1494 (*1 *1) (-5 *1 (-292))) (-1631 (*1 *2 *1) (-12 (-5 *2 (-644 (-1084))) (-5 *1 (-292)))) (-2224 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-508)) (-5 *2 (-691 (-1103))) (-5 *1 (-292)))) (-4221 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-508)) (-5 *3 (-1103)) (-5 *1 (-292)))) (-2494 (*1 *2 *3 *1) (-12 (-5 *3 (-508)) (-5 *2 (-644 (-965))) (-5 *1 (-292)))) (-3094 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-508)) (-5 *3 (-644 (-965))) (-5 *1 (-292)))) (-1610 (*1 *1) (-5 *1 (-292))) (-1727 (*1 *1) (-5 *1 (-292))) (-3507 (*1 *1) (-5 *1 (-292)))) -(-13 (-613 (-862)) (-10 -8 (-15 -1494 ($)) (-15 -1631 ((-644 (-1084)) $)) (-15 -2224 ((-691 (-1103)) (-508) (-508) $)) (-15 -4221 ($ (-508) (-508) (-1103) $)) (-15 -2494 ((-644 (-965)) (-508) $)) (-15 -3094 ($ (-508) (-644 (-965)) $)) (-15 -1610 ($)) (-15 -1727 ($)) (-15 -3507 ($)))) -((-4052 (((-644 (-2 (|:| |eigval| (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|)))) (|:| |geneigvec| (-644 (-689 (-409 (-952 |#1|))))))) (-689 (-409 (-952 |#1|)))) 105)) (-3262 (((-644 (-689 (-409 (-952 |#1|)))) (-2 (|:| |eigval| (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|)))) (|:| |eigmult| (-771)) (|:| |eigvec| (-644 (-689 (-409 (-952 |#1|)))))) (-689 (-409 (-952 |#1|)))) 100) (((-644 (-689 (-409 (-952 |#1|)))) (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|))) (-689 (-409 (-952 |#1|))) (-771) (-771)) 41)) (-1321 (((-644 (-2 (|:| |eigval| (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|)))) (|:| |eigmult| (-771)) (|:| |eigvec| (-644 (-689 (-409 (-952 |#1|))))))) (-689 (-409 (-952 |#1|)))) 102)) (-4145 (((-644 (-689 (-409 (-952 |#1|)))) (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|))) (-689 (-409 (-952 |#1|)))) 77)) (-3157 (((-644 (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|)))) (-689 (-409 (-952 |#1|)))) 76)) (-1820 (((-952 |#1|) (-689 (-409 (-952 |#1|)))) 57) (((-952 |#1|) (-689 (-409 (-952 |#1|))) (-1175)) 58))) -(((-293 |#1|) (-10 -7 (-15 -1820 ((-952 |#1|) (-689 (-409 (-952 |#1|))) (-1175))) (-15 -1820 ((-952 |#1|) (-689 (-409 (-952 |#1|))))) (-15 -3157 ((-644 (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|)))) (-689 (-409 (-952 |#1|))))) (-15 -4145 ((-644 (-689 (-409 (-952 |#1|)))) (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|))) (-689 (-409 (-952 |#1|))))) (-15 -3262 ((-644 (-689 (-409 (-952 |#1|)))) (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|))) (-689 (-409 (-952 |#1|))) (-771) (-771))) (-15 -3262 ((-644 (-689 (-409 (-952 |#1|)))) (-2 (|:| |eigval| (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|)))) (|:| |eigmult| (-771)) (|:| |eigvec| (-644 (-689 (-409 (-952 |#1|)))))) (-689 (-409 (-952 |#1|))))) (-15 -4052 ((-644 (-2 (|:| |eigval| (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|)))) (|:| |geneigvec| (-644 (-689 (-409 (-952 |#1|))))))) (-689 (-409 (-952 |#1|))))) (-15 -1321 ((-644 (-2 (|:| |eigval| (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|)))) (|:| |eigmult| (-771)) (|:| |eigvec| (-644 (-689 (-409 (-952 |#1|))))))) (-689 (-409 (-952 |#1|)))))) (-454)) (T -293)) -((-1321 (*1 *2 *3) (-12 (-4 *4 (-454)) (-5 *2 (-644 (-2 (|:| |eigval| (-3 (-409 (-952 *4)) (-1164 (-1175) (-952 *4)))) (|:| |eigmult| (-771)) (|:| |eigvec| (-644 (-689 (-409 (-952 *4)))))))) (-5 *1 (-293 *4)) (-5 *3 (-689 (-409 (-952 *4)))))) (-4052 (*1 *2 *3) (-12 (-4 *4 (-454)) (-5 *2 (-644 (-2 (|:| |eigval| (-3 (-409 (-952 *4)) (-1164 (-1175) (-952 *4)))) (|:| |geneigvec| (-644 (-689 (-409 (-952 *4)))))))) (-5 *1 (-293 *4)) (-5 *3 (-689 (-409 (-952 *4)))))) (-3262 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-409 (-952 *5)) (-1164 (-1175) (-952 *5)))) (|:| |eigmult| (-771)) (|:| |eigvec| (-644 *4)))) (-4 *5 (-454)) (-5 *2 (-644 (-689 (-409 (-952 *5))))) (-5 *1 (-293 *5)) (-5 *4 (-689 (-409 (-952 *5)))))) (-3262 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-409 (-952 *6)) (-1164 (-1175) (-952 *6)))) (-5 *5 (-771)) (-4 *6 (-454)) (-5 *2 (-644 (-689 (-409 (-952 *6))))) (-5 *1 (-293 *6)) (-5 *4 (-689 (-409 (-952 *6)))))) (-4145 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-409 (-952 *5)) (-1164 (-1175) (-952 *5)))) (-4 *5 (-454)) (-5 *2 (-644 (-689 (-409 (-952 *5))))) (-5 *1 (-293 *5)) (-5 *4 (-689 (-409 (-952 *5)))))) (-3157 (*1 *2 *3) (-12 (-5 *3 (-689 (-409 (-952 *4)))) (-4 *4 (-454)) (-5 *2 (-644 (-3 (-409 (-952 *4)) (-1164 (-1175) (-952 *4))))) (-5 *1 (-293 *4)))) (-1820 (*1 *2 *3) (-12 (-5 *3 (-689 (-409 (-952 *4)))) (-5 *2 (-952 *4)) (-5 *1 (-293 *4)) (-4 *4 (-454)))) (-1820 (*1 *2 *3 *4) (-12 (-5 *3 (-689 (-409 (-952 *5)))) (-5 *4 (-1175)) (-5 *2 (-952 *5)) (-5 *1 (-293 *5)) (-4 *5 (-454))))) -(-10 -7 (-15 -1820 ((-952 |#1|) (-689 (-409 (-952 |#1|))) (-1175))) (-15 -1820 ((-952 |#1|) (-689 (-409 (-952 |#1|))))) (-15 -3157 ((-644 (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|)))) (-689 (-409 (-952 |#1|))))) (-15 -4145 ((-644 (-689 (-409 (-952 |#1|)))) (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|))) (-689 (-409 (-952 |#1|))))) (-15 -3262 ((-644 (-689 (-409 (-952 |#1|)))) (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|))) (-689 (-409 (-952 |#1|))) (-771) (-771))) (-15 -3262 ((-644 (-689 (-409 (-952 |#1|)))) (-2 (|:| |eigval| (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|)))) (|:| |eigmult| (-771)) (|:| |eigvec| (-644 (-689 (-409 (-952 |#1|)))))) (-689 (-409 (-952 |#1|))))) (-15 -4052 ((-644 (-2 (|:| |eigval| (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|)))) (|:| |geneigvec| (-644 (-689 (-409 (-952 |#1|))))))) (-689 (-409 (-952 |#1|))))) (-15 -1321 ((-644 (-2 (|:| |eigval| (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|)))) (|:| |eigmult| (-771)) (|:| |eigvec| (-644 (-689 (-409 (-952 |#1|))))))) (-689 (-409 (-952 |#1|)))))) -((-1301 (((-295 |#2|) (-1 |#2| |#1|) (-295 |#1|)) 14))) -(((-294 |#1| |#2|) (-10 -7 (-15 -1301 ((-295 |#2|) (-1 |#2| |#1|) (-295 |#1|)))) (-1214) (-1214)) (T -294)) -((-1301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-295 *5)) (-4 *5 (-1214)) (-4 *6 (-1214)) (-5 *2 (-295 *6)) (-5 *1 (-294 *5 *6))))) -(-10 -7 (-15 -1301 ((-295 |#2|) (-1 |#2| |#1|) (-295 |#1|)))) -((-3007 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1788 (((-112) $) NIL (|has| |#1| (-21)))) (-2541 (($ $) 12)) (-4175 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2645 (($ $ $) 95 (|has| |#1| (-303)))) (-3012 (($) NIL (-2809 (|has| |#1| (-21)) (|has| |#1| (-726))) CONST)) (-2622 (($ $) 51 (|has| |#1| (-21)))) (-3219 (((-3 $ "failed") $) 62 (|has| |#1| (-726)))) (-4330 ((|#1| $) 11)) (-1878 (((-3 $ "failed") $) 60 (|has| |#1| (-726)))) (-3934 (((-112) $) NIL (|has| |#1| (-726)))) (-1301 (($ (-1 |#1| |#1|) $) 14)) (-4318 ((|#1| $) 10)) (-3076 (($ $) 50 (|has| |#1| (-21)))) (-1965 (((-3 $ "failed") $) 61 (|has| |#1| (-726)))) (-4117 (((-1157) $) NIL (|has| |#1| (-1099)))) (-1713 (($ $) 64 (-2809 (|has| |#1| (-365)) (|has| |#1| (-475))))) (-4035 (((-1119) $) NIL (|has| |#1| (-1099)))) (-2795 (((-644 $) $) 85 (|has| |#1| (-558)))) (-2055 (($ $ $) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 $)) 28 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-1175) |#1|) 17 (|has| |#1| (-516 (-1175) |#1|))) (($ $ (-644 (-1175)) (-644 |#1|)) 21 (|has| |#1| (-516 (-1175) |#1|)))) (-3191 (($ |#1| |#1|) 9)) (-3164 (((-134)) 90 (|has| |#1| (-365)))) (-3561 (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175)) 87 (|has| |#1| (-900 (-1175))))) (-2358 (($ $ $) NIL (|has| |#1| (-475)))) (-3171 (($ $ $) NIL (|has| |#1| (-475)))) (-3783 (($ (-566)) NIL (|has| |#1| (-1049))) (((-112) $) 37 (|has| |#1| (-1099))) (((-862) $) 36 (|has| |#1| (-1099)))) (-2107 (((-771)) 67 (|has| |#1| (-1049)) CONST)) (-3117 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2479 (($) 47 (|has| |#1| (-21)) CONST)) (-4334 (($) 57 (|has| |#1| (-726)) CONST)) (-2875 (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175))))) (-2947 (($ |#1| |#1|) 8) (((-112) $ $) 32 (|has| |#1| (-1099)))) (-3065 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) 92 (-2809 (|has| |#1| (-365)) (|has| |#1| (-475))))) (-3053 (($ |#1| $) 45 (|has| |#1| (-21))) (($ $ |#1|) 46 (|has| |#1| (-21))) (($ $ $) 44 (|has| |#1| (-21))) (($ $) 43 (|has| |#1| (-21)))) (-3041 (($ |#1| $) 40 (|has| |#1| (-25))) (($ $ |#1|) 41 (|has| |#1| (-25))) (($ $ $) 39 (|has| |#1| (-25)))) (** (($ $ (-566)) NIL (|has| |#1| (-475))) (($ $ (-771)) NIL (|has| |#1| (-726))) (($ $ (-921)) NIL (|has| |#1| (-1111)))) (* (($ $ |#1|) 55 (|has| |#1| (-1111))) (($ |#1| $) 54 (|has| |#1| (-1111))) (($ $ $) 53 (|has| |#1| (-1111))) (($ (-566) $) 70 (|has| |#1| (-21))) (($ (-771) $) NIL (|has| |#1| (-21))) (($ (-921) $) NIL (|has| |#1| (-25))))) -(((-295 |#1|) (-13 (-1214) (-10 -8 (-15 -2947 ($ |#1| |#1|)) (-15 -3191 ($ |#1| |#1|)) (-15 -2541 ($ $)) (-15 -4318 (|#1| $)) (-15 -4330 (|#1| $)) (-15 -1301 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-516 (-1175) |#1|)) (-6 (-516 (-1175) |#1|)) |%noBranch|) (IF (|has| |#1| (-1099)) (PROGN (-6 (-1099)) (-6 (-613 (-112))) (IF (|has| |#1| (-310 |#1|)) (PROGN (-15 -2055 ($ $ $)) (-15 -2055 ($ $ (-644 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3041 ($ |#1| $)) (-15 -3041 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3076 ($ $)) (-15 -2622 ($ $)) (-15 -3053 ($ |#1| $)) (-15 -3053 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1111)) (PROGN (-6 (-1111)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-726)) (PROGN (-6 (-726)) (-15 -1965 ((-3 $ "failed") $)) (-15 -3219 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-475)) (PROGN (-6 (-475)) (-15 -1965 ((-3 $ "failed") $)) (-15 -3219 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1049)) (PROGN (-6 (-1049)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-717 |#1|)) |%noBranch|) (IF (|has| |#1| (-558)) (-15 -2795 ((-644 $) $)) |%noBranch|) (IF (|has| |#1| (-900 (-1175))) (-6 (-900 (-1175))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-6 (-1271 |#1|)) (-15 -3065 ($ $ $)) (-15 -1713 ($ $))) |%noBranch|) (IF (|has| |#1| (-303)) (-15 -2645 ($ $ $)) |%noBranch|))) (-1214)) (T -295)) -((-2947 (*1 *1 *2 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1214)))) (-3191 (*1 *1 *2 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1214)))) (-2541 (*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1214)))) (-4318 (*1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1214)))) (-4330 (*1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1214)))) (-1301 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1214)) (-5 *1 (-295 *3)))) (-2055 (*1 *1 *1 *1) (-12 (-4 *2 (-310 *2)) (-4 *2 (-1099)) (-4 *2 (-1214)) (-5 *1 (-295 *2)))) (-2055 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-295 *3))) (-4 *3 (-310 *3)) (-4 *3 (-1099)) (-4 *3 (-1214)) (-5 *1 (-295 *3)))) (-3041 (*1 *1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-25)) (-4 *2 (-1214)))) (-3041 (*1 *1 *1 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-25)) (-4 *2 (-1214)))) (-3076 (*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1214)))) (-2622 (*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1214)))) (-3053 (*1 *1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1214)))) (-3053 (*1 *1 *1 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1214)))) (-1965 (*1 *1 *1) (|partial| -12 (-5 *1 (-295 *2)) (-4 *2 (-726)) (-4 *2 (-1214)))) (-3219 (*1 *1 *1) (|partial| -12 (-5 *1 (-295 *2)) (-4 *2 (-726)) (-4 *2 (-1214)))) (-2795 (*1 *2 *1) (-12 (-5 *2 (-644 (-295 *3))) (-5 *1 (-295 *3)) (-4 *3 (-558)) (-4 *3 (-1214)))) (-2645 (*1 *1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-303)) (-4 *2 (-1214)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1111)) (-4 *2 (-1214)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1111)) (-4 *2 (-1214)))) (-3065 (*1 *1 *1 *1) (-2809 (-12 (-5 *1 (-295 *2)) (-4 *2 (-365)) (-4 *2 (-1214))) (-12 (-5 *1 (-295 *2)) (-4 *2 (-475)) (-4 *2 (-1214))))) (-1713 (*1 *1 *1) (-2809 (-12 (-5 *1 (-295 *2)) (-4 *2 (-365)) (-4 *2 (-1214))) (-12 (-5 *1 (-295 *2)) (-4 *2 (-475)) (-4 *2 (-1214)))))) -(-13 (-1214) (-10 -8 (-15 -2947 ($ |#1| |#1|)) (-15 -3191 ($ |#1| |#1|)) (-15 -2541 ($ $)) (-15 -4318 (|#1| $)) (-15 -4330 (|#1| $)) (-15 -1301 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-516 (-1175) |#1|)) (-6 (-516 (-1175) |#1|)) |%noBranch|) (IF (|has| |#1| (-1099)) (PROGN (-6 (-1099)) (-6 (-613 (-112))) (IF (|has| |#1| (-310 |#1|)) (PROGN (-15 -2055 ($ $ $)) (-15 -2055 ($ $ (-644 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3041 ($ |#1| $)) (-15 -3041 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3076 ($ $)) (-15 -2622 ($ $)) (-15 -3053 ($ |#1| $)) (-15 -3053 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1111)) (PROGN (-6 (-1111)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-726)) (PROGN (-6 (-726)) (-15 -1965 ((-3 $ "failed") $)) (-15 -3219 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-475)) (PROGN (-6 (-475)) (-15 -1965 ((-3 $ "failed") $)) (-15 -3219 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1049)) (PROGN (-6 (-1049)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-717 |#1|)) |%noBranch|) (IF (|has| |#1| (-558)) (-15 -2795 ((-644 $) $)) |%noBranch|) (IF (|has| |#1| (-900 (-1175))) (-6 (-900 (-1175))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-6 (-1271 |#1|)) (-15 -3065 ($ $ $)) (-15 -1713 ($ $))) |%noBranch|) (IF (|has| |#1| (-303)) (-15 -2645 ($ $ $)) |%noBranch|))) -((-3007 (((-112) $ $) NIL (-2809 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-4254 (($) NIL) (($ (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) NIL)) (-3734 (((-1269) $ |#1| |#1|) NIL (|has| $ (-6 -4415)))) (-2256 (((-112) $ (-771)) NIL)) (-3923 ((|#2| $ |#1| |#2|) NIL)) (-4016 (($ (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-2701 (($ (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-2434 (((-3 |#2| "failed") |#1| $) NIL)) (-3012 (($) NIL T CONST)) (-2031 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099))))) (-2956 (($ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL (|has| $ (-6 -4414))) (($ (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-3 |#2| "failed") |#1| $) NIL)) (-2665 (($ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (($ (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-1676 (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) NIL (|has| $ (-6 -4414))) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-2920 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4415)))) (-2855 ((|#2| $ |#1|) NIL)) (-3979 (((-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-644 |#2|) $) NIL (|has| $ (-6 -4414)))) (-2404 (((-112) $ (-771)) NIL)) (-3854 ((|#1| $) NIL (|has| |#1| (-850)))) (-2329 (((-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-644 |#2|) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099))))) (-2712 ((|#1| $) NIL (|has| |#1| (-850)))) (-2908 (($ (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4415))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4415)))) (-1301 (($ (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2603 (((-112) $ (-771)) NIL)) (-4117 (((-1157) $) NIL (-2809 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-4103 (((-644 |#1|) $) NIL)) (-2876 (((-112) |#1| $) NIL)) (-4039 (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL)) (-3406 (($ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL)) (-4074 (((-644 |#1|) $) NIL)) (-3792 (((-112) |#1| $) NIL)) (-4035 (((-1119) $) NIL (-2809 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-1998 ((|#2| $) NIL (|has| |#1| (-850)))) (-2006 (((-3 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) "failed") (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL)) (-4030 (($ $ |#2|) NIL (|has| $ (-6 -4415)))) (-2539 (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL)) (-2692 (((-112) (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))))) NIL (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (($ $ (-295 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) NIL (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (($ $ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) NIL (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (($ $ (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) NIL (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-1932 (((-112) $ $) NIL)) (-4156 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099))))) (-2993 (((-644 |#2|) $) NIL)) (-3467 (((-112) $) NIL)) (-1494 (($) NIL)) (-4390 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3481 (($) NIL) (($ (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) NIL)) (-4045 (((-771) (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-771) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (((-771) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099)))) (((-771) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414)))) (-3940 (($ $) NIL)) (-1348 (((-538) $) NIL (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-614 (-538))))) (-3796 (($ (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) NIL)) (-3783 (((-862) $) NIL (-2809 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-613 (-862))) (|has| |#2| (-613 (-862)))))) (-3117 (((-112) $ $) NIL (-2809 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-1748 (($ (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) NIL)) (-1894 (((-112) (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) NIL (-2809 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-3018 (((-771) $) NIL (|has| $ (-6 -4414))))) +((-4133 (($ (-508) (-508) (-1103) $) 19)) (-1977 (($ (-508) (-644 (-965)) $) 23)) (-2612 (((-644 (-1084)) $) 10)) (-2667 (($) 25)) (-1410 (((-691 (-1103)) (-508) (-508) $) 18)) (-1872 (((-644 (-965)) (-508) $) 22)) (-3493 (($) 7)) (-2656 (($) 24)) (-3152 (((-862) $) 29)) (-2552 (($) 26))) +(((-292) (-13 (-613 (-862)) (-10 -8 (-15 -3493 ($)) (-15 -2612 ((-644 (-1084)) $)) (-15 -1410 ((-691 (-1103)) (-508) (-508) $)) (-15 -4133 ($ (-508) (-508) (-1103) $)) (-15 -1872 ((-644 (-965)) (-508) $)) (-15 -1977 ($ (-508) (-644 (-965)) $)) (-15 -2656 ($)) (-15 -2667 ($)) (-15 -2552 ($))))) (T -292)) +((-3493 (*1 *1) (-5 *1 (-292))) (-2612 (*1 *2 *1) (-12 (-5 *2 (-644 (-1084))) (-5 *1 (-292)))) (-1410 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-508)) (-5 *2 (-691 (-1103))) (-5 *1 (-292)))) (-4133 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-508)) (-5 *3 (-1103)) (-5 *1 (-292)))) (-1872 (*1 *2 *3 *1) (-12 (-5 *3 (-508)) (-5 *2 (-644 (-965))) (-5 *1 (-292)))) (-1977 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-508)) (-5 *3 (-644 (-965))) (-5 *1 (-292)))) (-2656 (*1 *1) (-5 *1 (-292))) (-2667 (*1 *1) (-5 *1 (-292))) (-2552 (*1 *1) (-5 *1 (-292)))) +(-13 (-613 (-862)) (-10 -8 (-15 -3493 ($)) (-15 -2612 ((-644 (-1084)) $)) (-15 -1410 ((-691 (-1103)) (-508) (-508) $)) (-15 -4133 ($ (-508) (-508) (-1103) $)) (-15 -1872 ((-644 (-965)) (-508) $)) (-15 -1977 ($ (-508) (-644 (-965)) $)) (-15 -2656 ($)) (-15 -2667 ($)) (-15 -2552 ($)))) +((-2071 (((-644 (-2 (|:| |eigval| (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|)))) (|:| |geneigvec| (-644 (-689 (-409 (-952 |#1|))))))) (-689 (-409 (-952 |#1|)))) 105)) (-2213 (((-644 (-689 (-409 (-952 |#1|)))) (-2 (|:| |eigval| (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|)))) (|:| |eigmult| (-771)) (|:| |eigvec| (-644 (-689 (-409 (-952 |#1|)))))) (-689 (-409 (-952 |#1|)))) 100) (((-644 (-689 (-409 (-952 |#1|)))) (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|))) (-689 (-409 (-952 |#1|))) (-771) (-771)) 41)) (-1806 (((-644 (-2 (|:| |eigval| (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|)))) (|:| |eigmult| (-771)) (|:| |eigvec| (-644 (-689 (-409 (-952 |#1|))))))) (-689 (-409 (-952 |#1|)))) 102)) (-3830 (((-644 (-689 (-409 (-952 |#1|)))) (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|))) (-689 (-409 (-952 |#1|)))) 77)) (-3707 (((-644 (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|)))) (-689 (-409 (-952 |#1|)))) 76)) (-2318 (((-952 |#1|) (-689 (-409 (-952 |#1|)))) 57) (((-952 |#1|) (-689 (-409 (-952 |#1|))) (-1175)) 58))) +(((-293 |#1|) (-10 -7 (-15 -2318 ((-952 |#1|) (-689 (-409 (-952 |#1|))) (-1175))) (-15 -2318 ((-952 |#1|) (-689 (-409 (-952 |#1|))))) (-15 -3707 ((-644 (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|)))) (-689 (-409 (-952 |#1|))))) (-15 -3830 ((-644 (-689 (-409 (-952 |#1|)))) (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|))) (-689 (-409 (-952 |#1|))))) (-15 -2213 ((-644 (-689 (-409 (-952 |#1|)))) (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|))) (-689 (-409 (-952 |#1|))) (-771) (-771))) (-15 -2213 ((-644 (-689 (-409 (-952 |#1|)))) (-2 (|:| |eigval| (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|)))) (|:| |eigmult| (-771)) (|:| |eigvec| (-644 (-689 (-409 (-952 |#1|)))))) (-689 (-409 (-952 |#1|))))) (-15 -2071 ((-644 (-2 (|:| |eigval| (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|)))) (|:| |geneigvec| (-644 (-689 (-409 (-952 |#1|))))))) (-689 (-409 (-952 |#1|))))) (-15 -1806 ((-644 (-2 (|:| |eigval| (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|)))) (|:| |eigmult| (-771)) (|:| |eigvec| (-644 (-689 (-409 (-952 |#1|))))))) (-689 (-409 (-952 |#1|)))))) (-454)) (T -293)) +((-1806 (*1 *2 *3) (-12 (-4 *4 (-454)) (-5 *2 (-644 (-2 (|:| |eigval| (-3 (-409 (-952 *4)) (-1164 (-1175) (-952 *4)))) (|:| |eigmult| (-771)) (|:| |eigvec| (-644 (-689 (-409 (-952 *4)))))))) (-5 *1 (-293 *4)) (-5 *3 (-689 (-409 (-952 *4)))))) (-2071 (*1 *2 *3) (-12 (-4 *4 (-454)) (-5 *2 (-644 (-2 (|:| |eigval| (-3 (-409 (-952 *4)) (-1164 (-1175) (-952 *4)))) (|:| |geneigvec| (-644 (-689 (-409 (-952 *4)))))))) (-5 *1 (-293 *4)) (-5 *3 (-689 (-409 (-952 *4)))))) (-2213 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-409 (-952 *5)) (-1164 (-1175) (-952 *5)))) (|:| |eigmult| (-771)) (|:| |eigvec| (-644 *4)))) (-4 *5 (-454)) (-5 *2 (-644 (-689 (-409 (-952 *5))))) (-5 *1 (-293 *5)) (-5 *4 (-689 (-409 (-952 *5)))))) (-2213 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-409 (-952 *6)) (-1164 (-1175) (-952 *6)))) (-5 *5 (-771)) (-4 *6 (-454)) (-5 *2 (-644 (-689 (-409 (-952 *6))))) (-5 *1 (-293 *6)) (-5 *4 (-689 (-409 (-952 *6)))))) (-3830 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-409 (-952 *5)) (-1164 (-1175) (-952 *5)))) (-4 *5 (-454)) (-5 *2 (-644 (-689 (-409 (-952 *5))))) (-5 *1 (-293 *5)) (-5 *4 (-689 (-409 (-952 *5)))))) (-3707 (*1 *2 *3) (-12 (-5 *3 (-689 (-409 (-952 *4)))) (-4 *4 (-454)) (-5 *2 (-644 (-3 (-409 (-952 *4)) (-1164 (-1175) (-952 *4))))) (-5 *1 (-293 *4)))) (-2318 (*1 *2 *3) (-12 (-5 *3 (-689 (-409 (-952 *4)))) (-5 *2 (-952 *4)) (-5 *1 (-293 *4)) (-4 *4 (-454)))) (-2318 (*1 *2 *3 *4) (-12 (-5 *3 (-689 (-409 (-952 *5)))) (-5 *4 (-1175)) (-5 *2 (-952 *5)) (-5 *1 (-293 *5)) (-4 *5 (-454))))) +(-10 -7 (-15 -2318 ((-952 |#1|) (-689 (-409 (-952 |#1|))) (-1175))) (-15 -2318 ((-952 |#1|) (-689 (-409 (-952 |#1|))))) (-15 -3707 ((-644 (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|)))) (-689 (-409 (-952 |#1|))))) (-15 -3830 ((-644 (-689 (-409 (-952 |#1|)))) (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|))) (-689 (-409 (-952 |#1|))))) (-15 -2213 ((-644 (-689 (-409 (-952 |#1|)))) (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|))) (-689 (-409 (-952 |#1|))) (-771) (-771))) (-15 -2213 ((-644 (-689 (-409 (-952 |#1|)))) (-2 (|:| |eigval| (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|)))) (|:| |eigmult| (-771)) (|:| |eigvec| (-644 (-689 (-409 (-952 |#1|)))))) (-689 (-409 (-952 |#1|))))) (-15 -2071 ((-644 (-2 (|:| |eigval| (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|)))) (|:| |geneigvec| (-644 (-689 (-409 (-952 |#1|))))))) (-689 (-409 (-952 |#1|))))) (-15 -1806 ((-644 (-2 (|:| |eigval| (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|)))) (|:| |eigmult| (-771)) (|:| |eigvec| (-644 (-689 (-409 (-952 |#1|))))))) (-689 (-409 (-952 |#1|)))))) +((-2319 (((-295 |#2|) (-1 |#2| |#1|) (-295 |#1|)) 14))) +(((-294 |#1| |#2|) (-10 -7 (-15 -2319 ((-295 |#2|) (-1 |#2| |#1|) (-295 |#1|)))) (-1214) (-1214)) (T -294)) +((-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-295 *5)) (-4 *5 (-1214)) (-4 *6 (-1214)) (-5 *2 (-295 *6)) (-5 *1 (-294 *5 *6))))) +(-10 -7 (-15 -2319 ((-295 |#2|) (-1 |#2| |#1|) (-295 |#1|)))) +((-2988 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3230 (((-112) $) NIL (|has| |#1| (-21)))) (-2066 (($ $) 12)) (-3967 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2500 (($ $ $) 95 (|has| |#1| (-303)))) (-2463 (($) NIL (-2768 (|has| |#1| (-21)) (|has| |#1| (-726))) CONST)) (-4045 (($ $) 51 (|has| |#1| (-21)))) (-3579 (((-3 $ "failed") $) 62 (|has| |#1| (-726)))) (-3124 ((|#1| $) 11)) (-3245 (((-3 $ "failed") $) 60 (|has| |#1| (-726)))) (-2389 (((-112) $) NIL (|has| |#1| (-726)))) (-2319 (($ (-1 |#1| |#1|) $) 14)) (-3114 ((|#1| $) 10)) (-3442 (($ $) 50 (|has| |#1| (-21)))) (-3955 (((-3 $ "failed") $) 61 (|has| |#1| (-726)))) (-3380 (((-1157) $) NIL (|has| |#1| (-1099)))) (-2748 (($ $) 64 (-2768 (|has| |#1| (-365)) (|has| |#1| (-475))))) (-4072 (((-1119) $) NIL (|has| |#1| (-1099)))) (-2334 (((-644 $) $) 85 (|has| |#1| (-558)))) (-2023 (($ $ $) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 $)) 28 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-1175) |#1|) 17 (|has| |#1| (-516 (-1175) |#1|))) (($ $ (-644 (-1175)) (-644 |#1|)) 21 (|has| |#1| (-516 (-1175) |#1|)))) (-1335 (($ |#1| |#1|) 9)) (-3126 (((-134)) 90 (|has| |#1| (-365)))) (-3629 (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175)) 87 (|has| |#1| (-900 (-1175))))) (-3357 (($ $ $) NIL (|has| |#1| (-475)))) (-2527 (($ $ $) NIL (|has| |#1| (-475)))) (-3152 (($ (-566)) NIL (|has| |#1| (-1049))) (((-112) $) 37 (|has| |#1| (-1099))) (((-862) $) 36 (|has| |#1| (-1099)))) (-2593 (((-771)) 67 (|has| |#1| (-1049)) CONST)) (-3044 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-4356 (($) 47 (|has| |#1| (-21)) CONST)) (-4366 (($) 57 (|has| |#1| (-726)) CONST)) (-3497 (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175))))) (-2914 (($ |#1| |#1|) 8) (((-112) $ $) 32 (|has| |#1| (-1099)))) (-3025 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) 92 (-2768 (|has| |#1| (-365)) (|has| |#1| (-475))))) (-3012 (($ |#1| $) 45 (|has| |#1| (-21))) (($ $ |#1|) 46 (|has| |#1| (-21))) (($ $ $) 44 (|has| |#1| (-21))) (($ $) 43 (|has| |#1| (-21)))) (-3002 (($ |#1| $) 40 (|has| |#1| (-25))) (($ $ |#1|) 41 (|has| |#1| (-25))) (($ $ $) 39 (|has| |#1| (-25)))) (** (($ $ (-566)) NIL (|has| |#1| (-475))) (($ $ (-771)) NIL (|has| |#1| (-726))) (($ $ (-921)) NIL (|has| |#1| (-1111)))) (* (($ $ |#1|) 55 (|has| |#1| (-1111))) (($ |#1| $) 54 (|has| |#1| (-1111))) (($ $ $) 53 (|has| |#1| (-1111))) (($ (-566) $) 70 (|has| |#1| (-21))) (($ (-771) $) NIL (|has| |#1| (-21))) (($ (-921) $) NIL (|has| |#1| (-25))))) +(((-295 |#1|) (-13 (-1214) (-10 -8 (-15 -2914 ($ |#1| |#1|)) (-15 -1335 ($ |#1| |#1|)) (-15 -2066 ($ $)) (-15 -3114 (|#1| $)) (-15 -3124 (|#1| $)) (-15 -2319 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-516 (-1175) |#1|)) (-6 (-516 (-1175) |#1|)) |%noBranch|) (IF (|has| |#1| (-1099)) (PROGN (-6 (-1099)) (-6 (-613 (-112))) (IF (|has| |#1| (-310 |#1|)) (PROGN (-15 -2023 ($ $ $)) (-15 -2023 ($ $ (-644 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3002 ($ |#1| $)) (-15 -3002 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3442 ($ $)) (-15 -4045 ($ $)) (-15 -3012 ($ |#1| $)) (-15 -3012 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1111)) (PROGN (-6 (-1111)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-726)) (PROGN (-6 (-726)) (-15 -3955 ((-3 $ "failed") $)) (-15 -3579 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-475)) (PROGN (-6 (-475)) (-15 -3955 ((-3 $ "failed") $)) (-15 -3579 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1049)) (PROGN (-6 (-1049)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-717 |#1|)) |%noBranch|) (IF (|has| |#1| (-558)) (-15 -2334 ((-644 $) $)) |%noBranch|) (IF (|has| |#1| (-900 (-1175))) (-6 (-900 (-1175))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-6 (-1271 |#1|)) (-15 -3025 ($ $ $)) (-15 -2748 ($ $))) |%noBranch|) (IF (|has| |#1| (-303)) (-15 -2500 ($ $ $)) |%noBranch|))) (-1214)) (T -295)) +((-2914 (*1 *1 *2 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1214)))) (-1335 (*1 *1 *2 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1214)))) (-2066 (*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1214)))) (-3114 (*1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1214)))) (-3124 (*1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1214)))) (-2319 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1214)) (-5 *1 (-295 *3)))) (-2023 (*1 *1 *1 *1) (-12 (-4 *2 (-310 *2)) (-4 *2 (-1099)) (-4 *2 (-1214)) (-5 *1 (-295 *2)))) (-2023 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-295 *3))) (-4 *3 (-310 *3)) (-4 *3 (-1099)) (-4 *3 (-1214)) (-5 *1 (-295 *3)))) (-3002 (*1 *1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-25)) (-4 *2 (-1214)))) (-3002 (*1 *1 *1 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-25)) (-4 *2 (-1214)))) (-3442 (*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1214)))) (-4045 (*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1214)))) (-3012 (*1 *1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1214)))) (-3012 (*1 *1 *1 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1214)))) (-3955 (*1 *1 *1) (|partial| -12 (-5 *1 (-295 *2)) (-4 *2 (-726)) (-4 *2 (-1214)))) (-3579 (*1 *1 *1) (|partial| -12 (-5 *1 (-295 *2)) (-4 *2 (-726)) (-4 *2 (-1214)))) (-2334 (*1 *2 *1) (-12 (-5 *2 (-644 (-295 *3))) (-5 *1 (-295 *3)) (-4 *3 (-558)) (-4 *3 (-1214)))) (-2500 (*1 *1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-303)) (-4 *2 (-1214)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1111)) (-4 *2 (-1214)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1111)) (-4 *2 (-1214)))) (-3025 (*1 *1 *1 *1) (-2768 (-12 (-5 *1 (-295 *2)) (-4 *2 (-365)) (-4 *2 (-1214))) (-12 (-5 *1 (-295 *2)) (-4 *2 (-475)) (-4 *2 (-1214))))) (-2748 (*1 *1 *1) (-2768 (-12 (-5 *1 (-295 *2)) (-4 *2 (-365)) (-4 *2 (-1214))) (-12 (-5 *1 (-295 *2)) (-4 *2 (-475)) (-4 *2 (-1214)))))) +(-13 (-1214) (-10 -8 (-15 -2914 ($ |#1| |#1|)) (-15 -1335 ($ |#1| |#1|)) (-15 -2066 ($ $)) (-15 -3114 (|#1| $)) (-15 -3124 (|#1| $)) (-15 -2319 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-516 (-1175) |#1|)) (-6 (-516 (-1175) |#1|)) |%noBranch|) (IF (|has| |#1| (-1099)) (PROGN (-6 (-1099)) (-6 (-613 (-112))) (IF (|has| |#1| (-310 |#1|)) (PROGN (-15 -2023 ($ $ $)) (-15 -2023 ($ $ (-644 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3002 ($ |#1| $)) (-15 -3002 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3442 ($ $)) (-15 -4045 ($ $)) (-15 -3012 ($ |#1| $)) (-15 -3012 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1111)) (PROGN (-6 (-1111)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-726)) (PROGN (-6 (-726)) (-15 -3955 ((-3 $ "failed") $)) (-15 -3579 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-475)) (PROGN (-6 (-475)) (-15 -3955 ((-3 $ "failed") $)) (-15 -3579 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1049)) (PROGN (-6 (-1049)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-717 |#1|)) |%noBranch|) (IF (|has| |#1| (-558)) (-15 -2334 ((-644 $) $)) |%noBranch|) (IF (|has| |#1| (-900 (-1175))) (-6 (-900 (-1175))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-6 (-1271 |#1|)) (-15 -3025 ($ $ $)) (-15 -2748 ($ $))) |%noBranch|) (IF (|has| |#1| (-303)) (-15 -2500 ($ $ $)) |%noBranch|))) +((-2988 (((-112) $ $) NIL (-2768 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-1849 (($) NIL) (($ (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) NIL)) (-1944 (((-1269) $ |#1| |#1|) NIL (|has| $ (-6 -4415)))) (-1504 (((-112) $ (-771)) NIL)) (-1456 ((|#2| $ |#1| |#2|) NIL)) (-2995 (($ (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-3678 (($ (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-3070 (((-3 |#2| "failed") |#1| $) NIL)) (-2463 (($) NIL T CONST)) (-3942 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099))))) (-3512 (($ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL (|has| $ (-6 -4414))) (($ (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-3 |#2| "failed") |#1| $) NIL)) (-2622 (($ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (($ (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-2873 (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) NIL (|has| $ (-6 -4414))) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-3897 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4415)))) (-3829 ((|#2| $ |#1|) NIL)) (-1683 (((-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-644 |#2|) $) NIL (|has| $ (-6 -4414)))) (-3456 (((-112) $ (-771)) NIL)) (-2296 ((|#1| $) NIL (|has| |#1| (-850)))) (-3491 (((-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-644 |#2|) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099))))) (-4050 ((|#1| $) NIL (|has| |#1| (-850)))) (-3885 (($ (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4415))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4415)))) (-2319 (($ (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3267 (((-112) $ (-771)) NIL)) (-3380 (((-1157) $) NIL (-2768 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-4052 (((-644 |#1|) $) NIL)) (-1826 (((-112) |#1| $) NIL)) (-3278 (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL)) (-3888 (($ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL)) (-3725 (((-644 |#1|) $) NIL)) (-1644 (((-112) |#1| $) NIL)) (-4072 (((-1119) $) NIL (-2768 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-3908 ((|#2| $) NIL (|has| |#1| (-850)))) (-3668 (((-3 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) "failed") (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL)) (-3787 (($ $ |#2|) NIL (|has| $ (-6 -4415)))) (-1973 (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL)) (-2823 (((-112) (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))))) NIL (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (($ $ (-295 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) NIL (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (($ $ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) NIL (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (($ $ (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) NIL (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-3814 (((-112) $ $) NIL)) (-2847 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099))))) (-3486 (((-644 |#2|) $) NIL)) (-2872 (((-112) $) NIL)) (-3493 (($) NIL)) (-1309 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1792 (($) NIL) (($ (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) NIL)) (-4083 (((-771) (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-771) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (((-771) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099)))) (((-771) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414)))) (-1480 (($ $) NIL)) (-2376 (((-538) $) NIL (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-614 (-538))))) (-1340 (($ (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) NIL)) (-3152 (((-862) $) NIL (-2768 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-613 (-862))) (|has| |#2| (-613 (-862)))))) (-3044 (((-112) $ $) NIL (-2768 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-2948 (($ (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) NIL)) (-2210 (((-112) (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) NIL (-2768 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-3000 (((-771) $) NIL (|has| $ (-6 -4414))))) (((-296 |#1| |#2|) (-13 (-1190 |#1| |#2|) (-10 -7 (-6 -4414))) (-1099) (-1099)) (T -296)) NIL (-13 (-1190 |#1| |#2|) (-10 -7 (-6 -4414))) -((-1465 (((-313) (-1157) (-644 (-1157))) 17) (((-313) (-1157) (-1157)) 16) (((-313) (-644 (-1157))) 15) (((-313) (-1157)) 14))) -(((-297) (-10 -7 (-15 -1465 ((-313) (-1157))) (-15 -1465 ((-313) (-644 (-1157)))) (-15 -1465 ((-313) (-1157) (-1157))) (-15 -1465 ((-313) (-1157) (-644 (-1157)))))) (T -297)) -((-1465 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-1157))) (-5 *3 (-1157)) (-5 *2 (-313)) (-5 *1 (-297)))) (-1465 (*1 *2 *3 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-313)) (-5 *1 (-297)))) (-1465 (*1 *2 *3) (-12 (-5 *3 (-644 (-1157))) (-5 *2 (-313)) (-5 *1 (-297)))) (-1465 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-313)) (-5 *1 (-297))))) -(-10 -7 (-15 -1465 ((-313) (-1157))) (-15 -1465 ((-313) (-644 (-1157)))) (-15 -1465 ((-313) (-1157) (-1157))) (-15 -1465 ((-313) (-1157) (-644 (-1157))))) -((-1301 ((|#2| (-1 |#2| |#1|) (-1157) (-612 |#1|)) 18))) -(((-298 |#1| |#2|) (-10 -7 (-15 -1301 (|#2| (-1 |#2| |#1|) (-1157) (-612 |#1|)))) (-303) (-1214)) (T -298)) -((-1301 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1157)) (-5 *5 (-612 *6)) (-4 *6 (-303)) (-4 *2 (-1214)) (-5 *1 (-298 *6 *2))))) -(-10 -7 (-15 -1301 (|#2| (-1 |#2| |#1|) (-1157) (-612 |#1|)))) -((-1301 ((|#2| (-1 |#2| |#1|) (-612 |#1|)) 17))) -(((-299 |#1| |#2|) (-10 -7 (-15 -1301 (|#2| (-1 |#2| |#1|) (-612 |#1|)))) (-303) (-303)) (T -299)) -((-1301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-612 *5)) (-4 *5 (-303)) (-4 *2 (-303)) (-5 *1 (-299 *5 *2))))) -(-10 -7 (-15 -1301 (|#2| (-1 |#2| |#1|) (-612 |#1|)))) -((-4263 (((-112) (-225)) 12))) -(((-300 |#1| |#2|) (-10 -7 (-15 -4263 ((-112) (-225)))) (-225) (-225)) (T -300)) -((-4263 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-300 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-10 -7 (-15 -4263 ((-112) (-225)))) -((-1702 (((-1155 (-225)) (-317 (-225)) (-644 (-1175)) (-1093 (-843 (-225)))) 118)) (-4331 (((-1155 (-225)) (-1264 (-317 (-225))) (-644 (-1175)) (-1093 (-843 (-225)))) 135) (((-1155 (-225)) (-317 (-225)) (-644 (-1175)) (-1093 (-843 (-225)))) 72)) (-4239 (((-644 (-1157)) (-1155 (-225))) NIL)) (-3548 (((-644 (-225)) (-317 (-225)) (-1175) (-1093 (-843 (-225)))) 69)) (-2704 (((-644 (-225)) (-952 (-409 (-566))) (-1175) (-1093 (-843 (-225)))) 59)) (-1312 (((-644 (-1157)) (-644 (-225))) NIL)) (-3418 (((-225) (-1093 (-843 (-225)))) 29)) (-4078 (((-225) (-1093 (-843 (-225)))) 30)) (-2755 (((-112) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 64)) (-3551 (((-1157) (-225)) NIL))) -(((-301) (-10 -7 (-15 -3418 ((-225) (-1093 (-843 (-225))))) (-15 -4078 ((-225) (-1093 (-843 (-225))))) (-15 -2755 ((-112) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3548 ((-644 (-225)) (-317 (-225)) (-1175) (-1093 (-843 (-225))))) (-15 -1702 ((-1155 (-225)) (-317 (-225)) (-644 (-1175)) (-1093 (-843 (-225))))) (-15 -4331 ((-1155 (-225)) (-317 (-225)) (-644 (-1175)) (-1093 (-843 (-225))))) (-15 -4331 ((-1155 (-225)) (-1264 (-317 (-225))) (-644 (-1175)) (-1093 (-843 (-225))))) (-15 -2704 ((-644 (-225)) (-952 (-409 (-566))) (-1175) (-1093 (-843 (-225))))) (-15 -3551 ((-1157) (-225))) (-15 -1312 ((-644 (-1157)) (-644 (-225)))) (-15 -4239 ((-644 (-1157)) (-1155 (-225)))))) (T -301)) -((-4239 (*1 *2 *3) (-12 (-5 *3 (-1155 (-225))) (-5 *2 (-644 (-1157))) (-5 *1 (-301)))) (-1312 (*1 *2 *3) (-12 (-5 *3 (-644 (-225))) (-5 *2 (-644 (-1157))) (-5 *1 (-301)))) (-3551 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1157)) (-5 *1 (-301)))) (-2704 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-952 (-409 (-566)))) (-5 *4 (-1175)) (-5 *5 (-1093 (-843 (-225)))) (-5 *2 (-644 (-225))) (-5 *1 (-301)))) (-4331 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1264 (-317 (-225)))) (-5 *4 (-644 (-1175))) (-5 *5 (-1093 (-843 (-225)))) (-5 *2 (-1155 (-225))) (-5 *1 (-301)))) (-4331 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-225))) (-5 *4 (-644 (-1175))) (-5 *5 (-1093 (-843 (-225)))) (-5 *2 (-1155 (-225))) (-5 *1 (-301)))) (-1702 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-225))) (-5 *4 (-644 (-1175))) (-5 *5 (-1093 (-843 (-225)))) (-5 *2 (-1155 (-225))) (-5 *1 (-301)))) (-3548 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-225))) (-5 *4 (-1175)) (-5 *5 (-1093 (-843 (-225)))) (-5 *2 (-644 (-225))) (-5 *1 (-301)))) (-2755 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-112)) (-5 *1 (-301)))) (-4078 (*1 *2 *3) (-12 (-5 *3 (-1093 (-843 (-225)))) (-5 *2 (-225)) (-5 *1 (-301)))) (-3418 (*1 *2 *3) (-12 (-5 *3 (-1093 (-843 (-225)))) (-5 *2 (-225)) (-5 *1 (-301))))) -(-10 -7 (-15 -3418 ((-225) (-1093 (-843 (-225))))) (-15 -4078 ((-225) (-1093 (-843 (-225))))) (-15 -2755 ((-112) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3548 ((-644 (-225)) (-317 (-225)) (-1175) (-1093 (-843 (-225))))) (-15 -1702 ((-1155 (-225)) (-317 (-225)) (-644 (-1175)) (-1093 (-843 (-225))))) (-15 -4331 ((-1155 (-225)) (-317 (-225)) (-644 (-1175)) (-1093 (-843 (-225))))) (-15 -4331 ((-1155 (-225)) (-1264 (-317 (-225))) (-644 (-1175)) (-1093 (-843 (-225))))) (-15 -2704 ((-644 (-225)) (-952 (-409 (-566))) (-1175) (-1093 (-843 (-225))))) (-15 -3551 ((-1157) (-225))) (-15 -1312 ((-644 (-1157)) (-644 (-225)))) (-15 -4239 ((-644 (-1157)) (-1155 (-225))))) -((-3570 (((-644 (-612 $)) $) 27)) (-2645 (($ $ (-295 $)) 78) (($ $ (-644 (-295 $))) 139) (($ $ (-644 (-612 $)) (-644 $)) NIL)) (-4307 (((-3 (-612 $) "failed") $) 127)) (-4205 (((-612 $) $) 126)) (-2228 (($ $) 17) (($ (-644 $)) 54)) (-2535 (((-644 (-114)) $) 35)) (-3659 (((-114) (-114)) 88)) (-2824 (((-112) $) 150)) (-1301 (($ (-1 $ $) (-612 $)) 86)) (-3133 (((-3 (-612 $) "failed") $) 94)) (-1307 (($ (-114) $) 59) (($ (-114) (-644 $)) 110)) (-2572 (((-112) $ (-114)) 132) (((-112) $ (-1175)) 131)) (-2076 (((-771) $) 44)) (-2746 (((-112) $ $) 57) (((-112) $ (-1175)) 49)) (-1946 (((-112) $) 148)) (-2055 (($ $ (-612 $) $) NIL) (($ $ (-644 (-612 $)) (-644 $)) NIL) (($ $ (-644 (-295 $))) 137) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-644 (-1175)) (-644 (-1 $ $))) 81) (($ $ (-644 (-1175)) (-644 (-1 $ (-644 $)))) NIL) (($ $ (-1175) (-1 $ (-644 $))) 67) (($ $ (-1175) (-1 $ $)) 72) (($ $ (-644 (-114)) (-644 (-1 $ $))) 80) (($ $ (-644 (-114)) (-644 (-1 $ (-644 $)))) 82) (($ $ (-114) (-1 $ (-644 $))) 68) (($ $ (-114) (-1 $ $)) 74)) (-4390 (($ (-114) $) 60) (($ (-114) $ $) 61) (($ (-114) $ $ $) 62) (($ (-114) $ $ $ $) 63) (($ (-114) (-644 $)) 123)) (-3529 (($ $) 51) (($ $ $) 135)) (-1630 (($ $) 15) (($ (-644 $)) 53)) (-2825 (((-112) (-114)) 21))) -(((-302 |#1|) (-10 -8 (-15 -2824 ((-112) |#1|)) (-15 -1946 ((-112) |#1|)) (-15 -2055 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2055 (|#1| |#1| (-114) (-1 |#1| (-644 |#1|)))) (-15 -2055 (|#1| |#1| (-644 (-114)) (-644 (-1 |#1| (-644 |#1|))))) (-15 -2055 (|#1| |#1| (-644 (-114)) (-644 (-1 |#1| |#1|)))) (-15 -2055 (|#1| |#1| (-1175) (-1 |#1| |#1|))) (-15 -2055 (|#1| |#1| (-1175) (-1 |#1| (-644 |#1|)))) (-15 -2055 (|#1| |#1| (-644 (-1175)) (-644 (-1 |#1| (-644 |#1|))))) (-15 -2055 (|#1| |#1| (-644 (-1175)) (-644 (-1 |#1| |#1|)))) (-15 -2746 ((-112) |#1| (-1175))) (-15 -2746 ((-112) |#1| |#1|)) (-15 -1301 (|#1| (-1 |#1| |#1|) (-612 |#1|))) (-15 -1307 (|#1| (-114) (-644 |#1|))) (-15 -1307 (|#1| (-114) |#1|)) (-15 -2572 ((-112) |#1| (-1175))) (-15 -2572 ((-112) |#1| (-114))) (-15 -2825 ((-112) (-114))) (-15 -3659 ((-114) (-114))) (-15 -2535 ((-644 (-114)) |#1|)) (-15 -3570 ((-644 (-612 |#1|)) |#1|)) (-15 -3133 ((-3 (-612 |#1|) "failed") |#1|)) (-15 -2076 ((-771) |#1|)) (-15 -3529 (|#1| |#1| |#1|)) (-15 -3529 (|#1| |#1|)) (-15 -2228 (|#1| (-644 |#1|))) (-15 -2228 (|#1| |#1|)) (-15 -1630 (|#1| (-644 |#1|))) (-15 -1630 (|#1| |#1|)) (-15 -2645 (|#1| |#1| (-644 (-612 |#1|)) (-644 |#1|))) (-15 -2645 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -2645 (|#1| |#1| (-295 |#1|))) (-15 -4390 (|#1| (-114) (-644 |#1|))) (-15 -4390 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -4390 (|#1| (-114) |#1| |#1| |#1|)) (-15 -4390 (|#1| (-114) |#1| |#1|)) (-15 -4390 (|#1| (-114) |#1|)) (-15 -2055 (|#1| |#1| (-644 |#1|) (-644 |#1|))) (-15 -2055 (|#1| |#1| |#1| |#1|)) (-15 -2055 (|#1| |#1| (-295 |#1|))) (-15 -2055 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -2055 (|#1| |#1| (-644 (-612 |#1|)) (-644 |#1|))) (-15 -2055 (|#1| |#1| (-612 |#1|) |#1|)) (-15 -4307 ((-3 (-612 |#1|) "failed") |#1|)) (-15 -4205 ((-612 |#1|) |#1|))) (-303)) (T -302)) -((-3659 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-302 *3)) (-4 *3 (-303)))) (-2825 (*1 *2 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-302 *4)) (-4 *4 (-303))))) -(-10 -8 (-15 -2824 ((-112) |#1|)) (-15 -1946 ((-112) |#1|)) (-15 -2055 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2055 (|#1| |#1| (-114) (-1 |#1| (-644 |#1|)))) (-15 -2055 (|#1| |#1| (-644 (-114)) (-644 (-1 |#1| (-644 |#1|))))) (-15 -2055 (|#1| |#1| (-644 (-114)) (-644 (-1 |#1| |#1|)))) (-15 -2055 (|#1| |#1| (-1175) (-1 |#1| |#1|))) (-15 -2055 (|#1| |#1| (-1175) (-1 |#1| (-644 |#1|)))) (-15 -2055 (|#1| |#1| (-644 (-1175)) (-644 (-1 |#1| (-644 |#1|))))) (-15 -2055 (|#1| |#1| (-644 (-1175)) (-644 (-1 |#1| |#1|)))) (-15 -2746 ((-112) |#1| (-1175))) (-15 -2746 ((-112) |#1| |#1|)) (-15 -1301 (|#1| (-1 |#1| |#1|) (-612 |#1|))) (-15 -1307 (|#1| (-114) (-644 |#1|))) (-15 -1307 (|#1| (-114) |#1|)) (-15 -2572 ((-112) |#1| (-1175))) (-15 -2572 ((-112) |#1| (-114))) (-15 -2825 ((-112) (-114))) (-15 -3659 ((-114) (-114))) (-15 -2535 ((-644 (-114)) |#1|)) (-15 -3570 ((-644 (-612 |#1|)) |#1|)) (-15 -3133 ((-3 (-612 |#1|) "failed") |#1|)) (-15 -2076 ((-771) |#1|)) (-15 -3529 (|#1| |#1| |#1|)) (-15 -3529 (|#1| |#1|)) (-15 -2228 (|#1| (-644 |#1|))) (-15 -2228 (|#1| |#1|)) (-15 -1630 (|#1| (-644 |#1|))) (-15 -1630 (|#1| |#1|)) (-15 -2645 (|#1| |#1| (-644 (-612 |#1|)) (-644 |#1|))) (-15 -2645 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -2645 (|#1| |#1| (-295 |#1|))) (-15 -4390 (|#1| (-114) (-644 |#1|))) (-15 -4390 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -4390 (|#1| (-114) |#1| |#1| |#1|)) (-15 -4390 (|#1| (-114) |#1| |#1|)) (-15 -4390 (|#1| (-114) |#1|)) (-15 -2055 (|#1| |#1| (-644 |#1|) (-644 |#1|))) (-15 -2055 (|#1| |#1| |#1| |#1|)) (-15 -2055 (|#1| |#1| (-295 |#1|))) (-15 -2055 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -2055 (|#1| |#1| (-644 (-612 |#1|)) (-644 |#1|))) (-15 -2055 (|#1| |#1| (-612 |#1|) |#1|)) (-15 -4307 ((-3 (-612 |#1|) "failed") |#1|)) (-15 -4205 ((-612 |#1|) |#1|))) -((-3007 (((-112) $ $) 7)) (-3570 (((-644 (-612 $)) $) 39)) (-2645 (($ $ (-295 $)) 51) (($ $ (-644 (-295 $))) 50) (($ $ (-644 (-612 $)) (-644 $)) 49)) (-4307 (((-3 (-612 $) "failed") $) 64)) (-4205 (((-612 $) $) 65)) (-2228 (($ $) 46) (($ (-644 $)) 45)) (-2535 (((-644 (-114)) $) 38)) (-3659 (((-114) (-114)) 37)) (-2824 (((-112) $) 17 (|has| $ (-1038 (-566))))) (-3006 (((-1171 $) (-612 $)) 20 (|has| $ (-1049)))) (-1301 (($ (-1 $ $) (-612 $)) 31)) (-3133 (((-3 (-612 $) "failed") $) 41)) (-4117 (((-1157) $) 10)) (-3647 (((-644 (-612 $)) $) 40)) (-1307 (($ (-114) $) 33) (($ (-114) (-644 $)) 32)) (-2572 (((-112) $ (-114)) 35) (((-112) $ (-1175)) 34)) (-2076 (((-771) $) 42)) (-4035 (((-1119) $) 11)) (-2746 (((-112) $ $) 30) (((-112) $ (-1175)) 29)) (-1946 (((-112) $) 18 (|has| $ (-1038 (-566))))) (-2055 (($ $ (-612 $) $) 62) (($ $ (-644 (-612 $)) (-644 $)) 61) (($ $ (-644 (-295 $))) 60) (($ $ (-295 $)) 59) (($ $ $ $) 58) (($ $ (-644 $) (-644 $)) 57) (($ $ (-644 (-1175)) (-644 (-1 $ $))) 28) (($ $ (-644 (-1175)) (-644 (-1 $ (-644 $)))) 27) (($ $ (-1175) (-1 $ (-644 $))) 26) (($ $ (-1175) (-1 $ $)) 25) (($ $ (-644 (-114)) (-644 (-1 $ $))) 24) (($ $ (-644 (-114)) (-644 (-1 $ (-644 $)))) 23) (($ $ (-114) (-1 $ (-644 $))) 22) (($ $ (-114) (-1 $ $)) 21)) (-4390 (($ (-114) $) 56) (($ (-114) $ $) 55) (($ (-114) $ $ $) 54) (($ (-114) $ $ $ $) 53) (($ (-114) (-644 $)) 52)) (-3529 (($ $) 44) (($ $ $) 43)) (-1616 (($ $) 19 (|has| $ (-1049)))) (-3783 (((-862) $) 12) (($ (-612 $)) 63)) (-1630 (($ $) 48) (($ (-644 $)) 47)) (-2825 (((-112) (-114)) 36)) (-3117 (((-112) $ $) 9)) (-2947 (((-112) $ $) 6))) +((-1425 (((-313) (-1157) (-644 (-1157))) 17) (((-313) (-1157) (-1157)) 16) (((-313) (-644 (-1157))) 15) (((-313) (-1157)) 14))) +(((-297) (-10 -7 (-15 -1425 ((-313) (-1157))) (-15 -1425 ((-313) (-644 (-1157)))) (-15 -1425 ((-313) (-1157) (-1157))) (-15 -1425 ((-313) (-1157) (-644 (-1157)))))) (T -297)) +((-1425 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-1157))) (-5 *3 (-1157)) (-5 *2 (-313)) (-5 *1 (-297)))) (-1425 (*1 *2 *3 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-313)) (-5 *1 (-297)))) (-1425 (*1 *2 *3) (-12 (-5 *3 (-644 (-1157))) (-5 *2 (-313)) (-5 *1 (-297)))) (-1425 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-313)) (-5 *1 (-297))))) +(-10 -7 (-15 -1425 ((-313) (-1157))) (-15 -1425 ((-313) (-644 (-1157)))) (-15 -1425 ((-313) (-1157) (-1157))) (-15 -1425 ((-313) (-1157) (-644 (-1157))))) +((-2319 ((|#2| (-1 |#2| |#1|) (-1157) (-612 |#1|)) 18))) +(((-298 |#1| |#2|) (-10 -7 (-15 -2319 (|#2| (-1 |#2| |#1|) (-1157) (-612 |#1|)))) (-303) (-1214)) (T -298)) +((-2319 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1157)) (-5 *5 (-612 *6)) (-4 *6 (-303)) (-4 *2 (-1214)) (-5 *1 (-298 *6 *2))))) +(-10 -7 (-15 -2319 (|#2| (-1 |#2| |#1|) (-1157) (-612 |#1|)))) +((-2319 ((|#2| (-1 |#2| |#1|) (-612 |#1|)) 17))) +(((-299 |#1| |#2|) (-10 -7 (-15 -2319 (|#2| (-1 |#2| |#1|) (-612 |#1|)))) (-303) (-303)) (T -299)) +((-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-612 *5)) (-4 *5 (-303)) (-4 *2 (-303)) (-5 *1 (-299 *5 *2))))) +(-10 -7 (-15 -2319 (|#2| (-1 |#2| |#1|) (-612 |#1|)))) +((-1435 (((-112) (-225)) 12))) +(((-300 |#1| |#2|) (-10 -7 (-15 -1435 ((-112) (-225)))) (-225) (-225)) (T -300)) +((-1435 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-300 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-10 -7 (-15 -1435 ((-112) (-225)))) +((-2082 (((-1155 (-225)) (-317 (-225)) (-644 (-1175)) (-1093 (-843 (-225)))) 118)) (-2627 (((-1155 (-225)) (-1264 (-317 (-225))) (-644 (-1175)) (-1093 (-843 (-225)))) 135) (((-1155 (-225)) (-317 (-225)) (-644 (-1175)) (-1093 (-843 (-225)))) 72)) (-3078 (((-644 (-1157)) (-1155 (-225))) NIL)) (-3208 (((-644 (-225)) (-317 (-225)) (-1175) (-1093 (-843 (-225)))) 69)) (-2586 (((-644 (-225)) (-952 (-409 (-566))) (-1175) (-1093 (-843 (-225)))) 59)) (-2235 (((-644 (-1157)) (-644 (-225))) NIL)) (-2533 (((-225) (-1093 (-843 (-225)))) 29)) (-2887 (((-225) (-1093 (-843 (-225)))) 30)) (-2703 (((-112) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 64)) (-3390 (((-1157) (-225)) NIL))) +(((-301) (-10 -7 (-15 -2533 ((-225) (-1093 (-843 (-225))))) (-15 -2887 ((-225) (-1093 (-843 (-225))))) (-15 -2703 ((-112) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3208 ((-644 (-225)) (-317 (-225)) (-1175) (-1093 (-843 (-225))))) (-15 -2082 ((-1155 (-225)) (-317 (-225)) (-644 (-1175)) (-1093 (-843 (-225))))) (-15 -2627 ((-1155 (-225)) (-317 (-225)) (-644 (-1175)) (-1093 (-843 (-225))))) (-15 -2627 ((-1155 (-225)) (-1264 (-317 (-225))) (-644 (-1175)) (-1093 (-843 (-225))))) (-15 -2586 ((-644 (-225)) (-952 (-409 (-566))) (-1175) (-1093 (-843 (-225))))) (-15 -3390 ((-1157) (-225))) (-15 -2235 ((-644 (-1157)) (-644 (-225)))) (-15 -3078 ((-644 (-1157)) (-1155 (-225)))))) (T -301)) +((-3078 (*1 *2 *3) (-12 (-5 *3 (-1155 (-225))) (-5 *2 (-644 (-1157))) (-5 *1 (-301)))) (-2235 (*1 *2 *3) (-12 (-5 *3 (-644 (-225))) (-5 *2 (-644 (-1157))) (-5 *1 (-301)))) (-3390 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1157)) (-5 *1 (-301)))) (-2586 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-952 (-409 (-566)))) (-5 *4 (-1175)) (-5 *5 (-1093 (-843 (-225)))) (-5 *2 (-644 (-225))) (-5 *1 (-301)))) (-2627 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1264 (-317 (-225)))) (-5 *4 (-644 (-1175))) (-5 *5 (-1093 (-843 (-225)))) (-5 *2 (-1155 (-225))) (-5 *1 (-301)))) (-2627 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-225))) (-5 *4 (-644 (-1175))) (-5 *5 (-1093 (-843 (-225)))) (-5 *2 (-1155 (-225))) (-5 *1 (-301)))) (-2082 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-225))) (-5 *4 (-644 (-1175))) (-5 *5 (-1093 (-843 (-225)))) (-5 *2 (-1155 (-225))) (-5 *1 (-301)))) (-3208 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-225))) (-5 *4 (-1175)) (-5 *5 (-1093 (-843 (-225)))) (-5 *2 (-644 (-225))) (-5 *1 (-301)))) (-2703 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-112)) (-5 *1 (-301)))) (-2887 (*1 *2 *3) (-12 (-5 *3 (-1093 (-843 (-225)))) (-5 *2 (-225)) (-5 *1 (-301)))) (-2533 (*1 *2 *3) (-12 (-5 *3 (-1093 (-843 (-225)))) (-5 *2 (-225)) (-5 *1 (-301))))) +(-10 -7 (-15 -2533 ((-225) (-1093 (-843 (-225))))) (-15 -2887 ((-225) (-1093 (-843 (-225))))) (-15 -2703 ((-112) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3208 ((-644 (-225)) (-317 (-225)) (-1175) (-1093 (-843 (-225))))) (-15 -2082 ((-1155 (-225)) (-317 (-225)) (-644 (-1175)) (-1093 (-843 (-225))))) (-15 -2627 ((-1155 (-225)) (-317 (-225)) (-644 (-1175)) (-1093 (-843 (-225))))) (-15 -2627 ((-1155 (-225)) (-1264 (-317 (-225))) (-644 (-1175)) (-1093 (-843 (-225))))) (-15 -2586 ((-644 (-225)) (-952 (-409 (-566))) (-1175) (-1093 (-843 (-225))))) (-15 -3390 ((-1157) (-225))) (-15 -2235 ((-644 (-1157)) (-644 (-225)))) (-15 -3078 ((-644 (-1157)) (-1155 (-225))))) +((-1470 (((-644 (-612 $)) $) 27)) (-2500 (($ $ (-295 $)) 78) (($ $ (-644 (-295 $))) 139) (($ $ (-644 (-612 $)) (-644 $)) NIL)) (-2229 (((-3 (-612 $) "failed") $) 127)) (-4158 (((-612 $) $) 126)) (-1633 (($ $) 17) (($ (-644 $)) 54)) (-1689 (((-644 (-114)) $) 35)) (-1566 (((-114) (-114)) 88)) (-3419 (((-112) $) 150)) (-2319 (($ (-1 $ $) (-612 $)) 86)) (-4010 (((-3 (-612 $) "failed") $) 94)) (-2328 (($ (-114) $) 59) (($ (-114) (-644 $)) 110)) (-3335 (((-112) $ (-114)) 132) (((-112) $ (-1175)) 131)) (-3106 (((-771) $) 44)) (-3671 (((-112) $ $) 57) (((-112) $ (-1175)) 49)) (-2664 (((-112) $) 148)) (-2023 (($ $ (-612 $) $) NIL) (($ $ (-644 (-612 $)) (-644 $)) NIL) (($ $ (-644 (-295 $))) 137) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-644 (-1175)) (-644 (-1 $ $))) 81) (($ $ (-644 (-1175)) (-644 (-1 $ (-644 $)))) NIL) (($ $ (-1175) (-1 $ (-644 $))) 67) (($ $ (-1175) (-1 $ $)) 72) (($ $ (-644 (-114)) (-644 (-1 $ $))) 80) (($ $ (-644 (-114)) (-644 (-1 $ (-644 $)))) 82) (($ $ (-114) (-1 $ (-644 $))) 68) (($ $ (-114) (-1 $ $)) 74)) (-1309 (($ (-114) $) 60) (($ (-114) $ $) 61) (($ (-114) $ $ $) 62) (($ (-114) $ $ $ $) 63) (($ (-114) (-644 $)) 123)) (-2020 (($ $) 51) (($ $ $) 135)) (-3928 (($ $) 15) (($ (-644 $)) 53)) (-3515 (((-112) (-114)) 21))) +(((-302 |#1|) (-10 -8 (-15 -3419 ((-112) |#1|)) (-15 -2664 ((-112) |#1|)) (-15 -2023 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2023 (|#1| |#1| (-114) (-1 |#1| (-644 |#1|)))) (-15 -2023 (|#1| |#1| (-644 (-114)) (-644 (-1 |#1| (-644 |#1|))))) (-15 -2023 (|#1| |#1| (-644 (-114)) (-644 (-1 |#1| |#1|)))) (-15 -2023 (|#1| |#1| (-1175) (-1 |#1| |#1|))) (-15 -2023 (|#1| |#1| (-1175) (-1 |#1| (-644 |#1|)))) (-15 -2023 (|#1| |#1| (-644 (-1175)) (-644 (-1 |#1| (-644 |#1|))))) (-15 -2023 (|#1| |#1| (-644 (-1175)) (-644 (-1 |#1| |#1|)))) (-15 -3671 ((-112) |#1| (-1175))) (-15 -3671 ((-112) |#1| |#1|)) (-15 -2319 (|#1| (-1 |#1| |#1|) (-612 |#1|))) (-15 -2328 (|#1| (-114) (-644 |#1|))) (-15 -2328 (|#1| (-114) |#1|)) (-15 -3335 ((-112) |#1| (-1175))) (-15 -3335 ((-112) |#1| (-114))) (-15 -3515 ((-112) (-114))) (-15 -1566 ((-114) (-114))) (-15 -1689 ((-644 (-114)) |#1|)) (-15 -1470 ((-644 (-612 |#1|)) |#1|)) (-15 -4010 ((-3 (-612 |#1|) "failed") |#1|)) (-15 -3106 ((-771) |#1|)) (-15 -2020 (|#1| |#1| |#1|)) (-15 -2020 (|#1| |#1|)) (-15 -1633 (|#1| (-644 |#1|))) (-15 -1633 (|#1| |#1|)) (-15 -3928 (|#1| (-644 |#1|))) (-15 -3928 (|#1| |#1|)) (-15 -2500 (|#1| |#1| (-644 (-612 |#1|)) (-644 |#1|))) (-15 -2500 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -2500 (|#1| |#1| (-295 |#1|))) (-15 -1309 (|#1| (-114) (-644 |#1|))) (-15 -1309 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -1309 (|#1| (-114) |#1| |#1| |#1|)) (-15 -1309 (|#1| (-114) |#1| |#1|)) (-15 -1309 (|#1| (-114) |#1|)) (-15 -2023 (|#1| |#1| (-644 |#1|) (-644 |#1|))) (-15 -2023 (|#1| |#1| |#1| |#1|)) (-15 -2023 (|#1| |#1| (-295 |#1|))) (-15 -2023 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -2023 (|#1| |#1| (-644 (-612 |#1|)) (-644 |#1|))) (-15 -2023 (|#1| |#1| (-612 |#1|) |#1|)) (-15 -2229 ((-3 (-612 |#1|) "failed") |#1|)) (-15 -4158 ((-612 |#1|) |#1|))) (-303)) (T -302)) +((-1566 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-302 *3)) (-4 *3 (-303)))) (-3515 (*1 *2 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-302 *4)) (-4 *4 (-303))))) +(-10 -8 (-15 -3419 ((-112) |#1|)) (-15 -2664 ((-112) |#1|)) (-15 -2023 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2023 (|#1| |#1| (-114) (-1 |#1| (-644 |#1|)))) (-15 -2023 (|#1| |#1| (-644 (-114)) (-644 (-1 |#1| (-644 |#1|))))) (-15 -2023 (|#1| |#1| (-644 (-114)) (-644 (-1 |#1| |#1|)))) (-15 -2023 (|#1| |#1| (-1175) (-1 |#1| |#1|))) (-15 -2023 (|#1| |#1| (-1175) (-1 |#1| (-644 |#1|)))) (-15 -2023 (|#1| |#1| (-644 (-1175)) (-644 (-1 |#1| (-644 |#1|))))) (-15 -2023 (|#1| |#1| (-644 (-1175)) (-644 (-1 |#1| |#1|)))) (-15 -3671 ((-112) |#1| (-1175))) (-15 -3671 ((-112) |#1| |#1|)) (-15 -2319 (|#1| (-1 |#1| |#1|) (-612 |#1|))) (-15 -2328 (|#1| (-114) (-644 |#1|))) (-15 -2328 (|#1| (-114) |#1|)) (-15 -3335 ((-112) |#1| (-1175))) (-15 -3335 ((-112) |#1| (-114))) (-15 -3515 ((-112) (-114))) (-15 -1566 ((-114) (-114))) (-15 -1689 ((-644 (-114)) |#1|)) (-15 -1470 ((-644 (-612 |#1|)) |#1|)) (-15 -4010 ((-3 (-612 |#1|) "failed") |#1|)) (-15 -3106 ((-771) |#1|)) (-15 -2020 (|#1| |#1| |#1|)) (-15 -2020 (|#1| |#1|)) (-15 -1633 (|#1| (-644 |#1|))) (-15 -1633 (|#1| |#1|)) (-15 -3928 (|#1| (-644 |#1|))) (-15 -3928 (|#1| |#1|)) (-15 -2500 (|#1| |#1| (-644 (-612 |#1|)) (-644 |#1|))) (-15 -2500 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -2500 (|#1| |#1| (-295 |#1|))) (-15 -1309 (|#1| (-114) (-644 |#1|))) (-15 -1309 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -1309 (|#1| (-114) |#1| |#1| |#1|)) (-15 -1309 (|#1| (-114) |#1| |#1|)) (-15 -1309 (|#1| (-114) |#1|)) (-15 -2023 (|#1| |#1| (-644 |#1|) (-644 |#1|))) (-15 -2023 (|#1| |#1| |#1| |#1|)) (-15 -2023 (|#1| |#1| (-295 |#1|))) (-15 -2023 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -2023 (|#1| |#1| (-644 (-612 |#1|)) (-644 |#1|))) (-15 -2023 (|#1| |#1| (-612 |#1|) |#1|)) (-15 -2229 ((-3 (-612 |#1|) "failed") |#1|)) (-15 -4158 ((-612 |#1|) |#1|))) +((-2988 (((-112) $ $) 7)) (-1470 (((-644 (-612 $)) $) 39)) (-2500 (($ $ (-295 $)) 51) (($ $ (-644 (-295 $))) 50) (($ $ (-644 (-612 $)) (-644 $)) 49)) (-2229 (((-3 (-612 $) "failed") $) 64)) (-4158 (((-612 $) $) 65)) (-1633 (($ $) 46) (($ (-644 $)) 45)) (-1689 (((-644 (-114)) $) 38)) (-1566 (((-114) (-114)) 37)) (-3419 (((-112) $) 17 (|has| $ (-1038 (-566))))) (-2024 (((-1171 $) (-612 $)) 20 (|has| $ (-1049)))) (-2319 (($ (-1 $ $) (-612 $)) 31)) (-4010 (((-3 (-612 $) "failed") $) 41)) (-3380 (((-1157) $) 10)) (-1552 (((-644 (-612 $)) $) 40)) (-2328 (($ (-114) $) 33) (($ (-114) (-644 $)) 32)) (-3335 (((-112) $ (-114)) 35) (((-112) $ (-1175)) 34)) (-3106 (((-771) $) 42)) (-4072 (((-1119) $) 11)) (-3671 (((-112) $ $) 30) (((-112) $ (-1175)) 29)) (-2664 (((-112) $) 18 (|has| $ (-1038 (-566))))) (-2023 (($ $ (-612 $) $) 62) (($ $ (-644 (-612 $)) (-644 $)) 61) (($ $ (-644 (-295 $))) 60) (($ $ (-295 $)) 59) (($ $ $ $) 58) (($ $ (-644 $) (-644 $)) 57) (($ $ (-644 (-1175)) (-644 (-1 $ $))) 28) (($ $ (-644 (-1175)) (-644 (-1 $ (-644 $)))) 27) (($ $ (-1175) (-1 $ (-644 $))) 26) (($ $ (-1175) (-1 $ $)) 25) (($ $ (-644 (-114)) (-644 (-1 $ $))) 24) (($ $ (-644 (-114)) (-644 (-1 $ (-644 $)))) 23) (($ $ (-114) (-1 $ (-644 $))) 22) (($ $ (-114) (-1 $ $)) 21)) (-1309 (($ (-114) $) 56) (($ (-114) $ $) 55) (($ (-114) $ $ $) 54) (($ (-114) $ $ $ $) 53) (($ (-114) (-644 $)) 52)) (-2020 (($ $) 44) (($ $ $) 43)) (-1705 (($ $) 19 (|has| $ (-1049)))) (-3152 (((-862) $) 12) (($ (-612 $)) 63)) (-3928 (($ $) 48) (($ (-644 $)) 47)) (-3515 (((-112) (-114)) 36)) (-3044 (((-112) $ $) 9)) (-2914 (((-112) $ $) 6))) (((-303) (-140)) (T -303)) -((-4390 (*1 *1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-4390 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-4390 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-4390 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-4390 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-644 *1)) (-4 *1 (-303)))) (-2645 (*1 *1 *1 *2) (-12 (-5 *2 (-295 *1)) (-4 *1 (-303)))) (-2645 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-295 *1))) (-4 *1 (-303)))) (-2645 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-612 *1))) (-5 *3 (-644 *1)) (-4 *1 (-303)))) (-1630 (*1 *1 *1) (-4 *1 (-303))) (-1630 (*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-303)))) (-2228 (*1 *1 *1) (-4 *1 (-303))) (-2228 (*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-303)))) (-3529 (*1 *1 *1) (-4 *1 (-303))) (-3529 (*1 *1 *1 *1) (-4 *1 (-303))) (-2076 (*1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-771)))) (-3133 (*1 *2 *1) (|partial| -12 (-5 *2 (-612 *1)) (-4 *1 (-303)))) (-3647 (*1 *2 *1) (-12 (-5 *2 (-644 (-612 *1))) (-4 *1 (-303)))) (-3570 (*1 *2 *1) (-12 (-5 *2 (-644 (-612 *1))) (-4 *1 (-303)))) (-2535 (*1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-644 (-114))))) (-3659 (*1 *2 *2) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-2825 (*1 *2 *3) (-12 (-4 *1 (-303)) (-5 *3 (-114)) (-5 *2 (-112)))) (-2572 (*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-114)) (-5 *2 (-112)))) (-2572 (*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-1175)) (-5 *2 (-112)))) (-1307 (*1 *1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-1307 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-644 *1)) (-4 *1 (-303)))) (-1301 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-612 *1)) (-4 *1 (-303)))) (-2746 (*1 *2 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-112)))) (-2746 (*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-1175)) (-5 *2 (-112)))) (-2055 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-1175))) (-5 *3 (-644 (-1 *1 *1))) (-4 *1 (-303)))) (-2055 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-1175))) (-5 *3 (-644 (-1 *1 (-644 *1)))) (-4 *1 (-303)))) (-2055 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1 *1 (-644 *1))) (-4 *1 (-303)))) (-2055 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1 *1 *1)) (-4 *1 (-303)))) (-2055 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-114))) (-5 *3 (-644 (-1 *1 *1))) (-4 *1 (-303)))) (-2055 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-114))) (-5 *3 (-644 (-1 *1 (-644 *1)))) (-4 *1 (-303)))) (-2055 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-644 *1))) (-4 *1 (-303)))) (-2055 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-303)))) (-3006 (*1 *2 *3) (-12 (-5 *3 (-612 *1)) (-4 *1 (-1049)) (-4 *1 (-303)) (-5 *2 (-1171 *1)))) (-1616 (*1 *1 *1) (-12 (-4 *1 (-1049)) (-4 *1 (-303)))) (-1946 (*1 *2 *1) (-12 (-4 *1 (-1038 (-566))) (-4 *1 (-303)) (-5 *2 (-112)))) (-2824 (*1 *2 *1) (-12 (-4 *1 (-1038 (-566))) (-4 *1 (-303)) (-5 *2 (-112))))) -(-13 (-1099) (-1038 (-612 $)) (-516 (-612 $) $) (-310 $) (-10 -8 (-15 -4390 ($ (-114) $)) (-15 -4390 ($ (-114) $ $)) (-15 -4390 ($ (-114) $ $ $)) (-15 -4390 ($ (-114) $ $ $ $)) (-15 -4390 ($ (-114) (-644 $))) (-15 -2645 ($ $ (-295 $))) (-15 -2645 ($ $ (-644 (-295 $)))) (-15 -2645 ($ $ (-644 (-612 $)) (-644 $))) (-15 -1630 ($ $)) (-15 -1630 ($ (-644 $))) (-15 -2228 ($ $)) (-15 -2228 ($ (-644 $))) (-15 -3529 ($ $)) (-15 -3529 ($ $ $)) (-15 -2076 ((-771) $)) (-15 -3133 ((-3 (-612 $) "failed") $)) (-15 -3647 ((-644 (-612 $)) $)) (-15 -3570 ((-644 (-612 $)) $)) (-15 -2535 ((-644 (-114)) $)) (-15 -3659 ((-114) (-114))) (-15 -2825 ((-112) (-114))) (-15 -2572 ((-112) $ (-114))) (-15 -2572 ((-112) $ (-1175))) (-15 -1307 ($ (-114) $)) (-15 -1307 ($ (-114) (-644 $))) (-15 -1301 ($ (-1 $ $) (-612 $))) (-15 -2746 ((-112) $ $)) (-15 -2746 ((-112) $ (-1175))) (-15 -2055 ($ $ (-644 (-1175)) (-644 (-1 $ $)))) (-15 -2055 ($ $ (-644 (-1175)) (-644 (-1 $ (-644 $))))) (-15 -2055 ($ $ (-1175) (-1 $ (-644 $)))) (-15 -2055 ($ $ (-1175) (-1 $ $))) (-15 -2055 ($ $ (-644 (-114)) (-644 (-1 $ $)))) (-15 -2055 ($ $ (-644 (-114)) (-644 (-1 $ (-644 $))))) (-15 -2055 ($ $ (-114) (-1 $ (-644 $)))) (-15 -2055 ($ $ (-114) (-1 $ $))) (IF (|has| $ (-1049)) (PROGN (-15 -3006 ((-1171 $) (-612 $))) (-15 -1616 ($ $))) |%noBranch|) (IF (|has| $ (-1038 (-566))) (PROGN (-15 -1946 ((-112) $)) (-15 -2824 ((-112) $))) |%noBranch|))) +((-1309 (*1 *1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-1309 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-1309 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-1309 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-1309 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-644 *1)) (-4 *1 (-303)))) (-2500 (*1 *1 *1 *2) (-12 (-5 *2 (-295 *1)) (-4 *1 (-303)))) (-2500 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-295 *1))) (-4 *1 (-303)))) (-2500 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-612 *1))) (-5 *3 (-644 *1)) (-4 *1 (-303)))) (-3928 (*1 *1 *1) (-4 *1 (-303))) (-3928 (*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-303)))) (-1633 (*1 *1 *1) (-4 *1 (-303))) (-1633 (*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-303)))) (-2020 (*1 *1 *1) (-4 *1 (-303))) (-2020 (*1 *1 *1 *1) (-4 *1 (-303))) (-3106 (*1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-771)))) (-4010 (*1 *2 *1) (|partial| -12 (-5 *2 (-612 *1)) (-4 *1 (-303)))) (-1552 (*1 *2 *1) (-12 (-5 *2 (-644 (-612 *1))) (-4 *1 (-303)))) (-1470 (*1 *2 *1) (-12 (-5 *2 (-644 (-612 *1))) (-4 *1 (-303)))) (-1689 (*1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-644 (-114))))) (-1566 (*1 *2 *2) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-3515 (*1 *2 *3) (-12 (-4 *1 (-303)) (-5 *3 (-114)) (-5 *2 (-112)))) (-3335 (*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-114)) (-5 *2 (-112)))) (-3335 (*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-1175)) (-5 *2 (-112)))) (-2328 (*1 *1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-2328 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-644 *1)) (-4 *1 (-303)))) (-2319 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-612 *1)) (-4 *1 (-303)))) (-3671 (*1 *2 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-112)))) (-3671 (*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-1175)) (-5 *2 (-112)))) (-2023 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-1175))) (-5 *3 (-644 (-1 *1 *1))) (-4 *1 (-303)))) (-2023 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-1175))) (-5 *3 (-644 (-1 *1 (-644 *1)))) (-4 *1 (-303)))) (-2023 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1 *1 (-644 *1))) (-4 *1 (-303)))) (-2023 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1 *1 *1)) (-4 *1 (-303)))) (-2023 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-114))) (-5 *3 (-644 (-1 *1 *1))) (-4 *1 (-303)))) (-2023 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-114))) (-5 *3 (-644 (-1 *1 (-644 *1)))) (-4 *1 (-303)))) (-2023 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-644 *1))) (-4 *1 (-303)))) (-2023 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-303)))) (-2024 (*1 *2 *3) (-12 (-5 *3 (-612 *1)) (-4 *1 (-1049)) (-4 *1 (-303)) (-5 *2 (-1171 *1)))) (-1705 (*1 *1 *1) (-12 (-4 *1 (-1049)) (-4 *1 (-303)))) (-2664 (*1 *2 *1) (-12 (-4 *1 (-1038 (-566))) (-4 *1 (-303)) (-5 *2 (-112)))) (-3419 (*1 *2 *1) (-12 (-4 *1 (-1038 (-566))) (-4 *1 (-303)) (-5 *2 (-112))))) +(-13 (-1099) (-1038 (-612 $)) (-516 (-612 $) $) (-310 $) (-10 -8 (-15 -1309 ($ (-114) $)) (-15 -1309 ($ (-114) $ $)) (-15 -1309 ($ (-114) $ $ $)) (-15 -1309 ($ (-114) $ $ $ $)) (-15 -1309 ($ (-114) (-644 $))) (-15 -2500 ($ $ (-295 $))) (-15 -2500 ($ $ (-644 (-295 $)))) (-15 -2500 ($ $ (-644 (-612 $)) (-644 $))) (-15 -3928 ($ $)) (-15 -3928 ($ (-644 $))) (-15 -1633 ($ $)) (-15 -1633 ($ (-644 $))) (-15 -2020 ($ $)) (-15 -2020 ($ $ $)) (-15 -3106 ((-771) $)) (-15 -4010 ((-3 (-612 $) "failed") $)) (-15 -1552 ((-644 (-612 $)) $)) (-15 -1470 ((-644 (-612 $)) $)) (-15 -1689 ((-644 (-114)) $)) (-15 -1566 ((-114) (-114))) (-15 -3515 ((-112) (-114))) (-15 -3335 ((-112) $ (-114))) (-15 -3335 ((-112) $ (-1175))) (-15 -2328 ($ (-114) $)) (-15 -2328 ($ (-114) (-644 $))) (-15 -2319 ($ (-1 $ $) (-612 $))) (-15 -3671 ((-112) $ $)) (-15 -3671 ((-112) $ (-1175))) (-15 -2023 ($ $ (-644 (-1175)) (-644 (-1 $ $)))) (-15 -2023 ($ $ (-644 (-1175)) (-644 (-1 $ (-644 $))))) (-15 -2023 ($ $ (-1175) (-1 $ (-644 $)))) (-15 -2023 ($ $ (-1175) (-1 $ $))) (-15 -2023 ($ $ (-644 (-114)) (-644 (-1 $ $)))) (-15 -2023 ($ $ (-644 (-114)) (-644 (-1 $ (-644 $))))) (-15 -2023 ($ $ (-114) (-1 $ (-644 $)))) (-15 -2023 ($ $ (-114) (-1 $ $))) (IF (|has| $ (-1049)) (PROGN (-15 -2024 ((-1171 $) (-612 $))) (-15 -1705 ($ $))) |%noBranch|) (IF (|has| $ (-1038 (-566))) (PROGN (-15 -2664 ((-112) $)) (-15 -3419 ((-112) $))) |%noBranch|))) (((-102) . T) ((-616 #0=(-612 $)) . T) ((-613 (-862)) . T) ((-310 $) . T) ((-516 (-612 $) $) . T) ((-516 $ $) . T) ((-1038 #0#) . T) ((-1099) . T)) -((-2933 (((-644 |#1|) (-644 |#1|)) 10))) -(((-304 |#1|) (-10 -7 (-15 -2933 ((-644 |#1|) (-644 |#1|)))) (-848)) (T -304)) -((-2933 (*1 *2 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-848)) (-5 *1 (-304 *3))))) -(-10 -7 (-15 -2933 ((-644 |#1|) (-644 |#1|)))) -((-1301 (((-689 |#2|) (-1 |#2| |#1|) (-689 |#1|)) 17))) -(((-305 |#1| |#2|) (-10 -7 (-15 -1301 ((-689 |#2|) (-1 |#2| |#1|) (-689 |#1|)))) (-1049) (-1049)) (T -305)) -((-1301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-689 *5)) (-4 *5 (-1049)) (-4 *6 (-1049)) (-5 *2 (-689 *6)) (-5 *1 (-305 *5 *6))))) -(-10 -7 (-15 -1301 ((-689 |#2|) (-1 |#2| |#1|) (-689 |#1|)))) -((-3562 (((-1264 (-317 (-381))) (-1264 (-317 (-225)))) 112)) (-2399 (((-1093 (-843 (-225))) (-1093 (-843 (-381)))) 45)) (-4239 (((-644 (-1157)) (-1155 (-225))) 94)) (-2217 (((-317 (-381)) (-952 (-225))) 55)) (-2575 (((-225) (-952 (-225))) 51)) (-1706 (((-1157) (-381)) 197)) (-1868 (((-843 (-225)) (-843 (-381))) 39)) (-1372 (((-2 (|:| |additions| (-566)) (|:| |multiplications| (-566)) (|:| |exponentiations| (-566)) (|:| |functionCalls| (-566))) (-1264 (-317 (-225)))) 165)) (-2391 (((-1035) (-2 (|:| -1338 (-381)) (|:| -2640 (-1157)) (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035)))) 209) (((-1035) (-2 (|:| -1338 (-381)) (|:| -2640 (-1157)) (|:| |explanations| (-644 (-1157))))) 207)) (-4227 (((-689 (-225)) (-644 (-225)) (-771)) 21)) (-4157 (((-1264 (-699)) (-644 (-225))) 101)) (-1312 (((-644 (-1157)) (-644 (-225))) 81)) (-2021 (((-3 (-317 (-225)) "failed") (-317 (-225))) 130)) (-4263 (((-112) (-225) (-1093 (-843 (-225)))) 119)) (-2632 (((-1035) (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))) 226)) (-3418 (((-225) (-1093 (-843 (-225)))) 114)) (-4078 (((-225) (-1093 (-843 (-225)))) 115)) (-4250 (((-225) (-409 (-566))) 33)) (-2252 (((-1157) (-381)) 79)) (-2003 (((-225) (-381)) 24)) (-3220 (((-381) (-1264 (-317 (-225)))) 179)) (-1638 (((-317 (-225)) (-317 (-381))) 30)) (-2169 (((-409 (-566)) (-317 (-225))) 58)) (-3221 (((-317 (-409 (-566))) (-317 (-225))) 75)) (-2199 (((-317 (-381)) (-317 (-225))) 105)) (-2061 (((-225) (-317 (-225))) 59)) (-4345 (((-644 (-225)) (-644 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566)))))) 70)) (-2610 (((-1093 (-843 (-225))) (-1093 (-843 (-225)))) 67)) (-3551 (((-1157) (-225)) 78)) (-4352 (((-699) (-225)) 97)) (-2079 (((-409 (-566)) (-225)) 60)) (-2176 (((-317 (-381)) (-225)) 54)) (-1348 (((-644 (-1093 (-843 (-225)))) (-644 (-1093 (-843 (-381))))) 48)) (-3721 (((-1035) (-644 (-1035))) 193) (((-1035) (-1035) (-1035)) 187)) (-2284 (((-1035) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2446 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 223))) -(((-306) (-10 -7 (-15 -2003 ((-225) (-381))) (-15 -1638 ((-317 (-225)) (-317 (-381)))) (-15 -1868 ((-843 (-225)) (-843 (-381)))) (-15 -2399 ((-1093 (-843 (-225))) (-1093 (-843 (-381))))) (-15 -1348 ((-644 (-1093 (-843 (-225)))) (-644 (-1093 (-843 (-381)))))) (-15 -2079 ((-409 (-566)) (-225))) (-15 -2169 ((-409 (-566)) (-317 (-225)))) (-15 -2061 ((-225) (-317 (-225)))) (-15 -2021 ((-3 (-317 (-225)) "failed") (-317 (-225)))) (-15 -3220 ((-381) (-1264 (-317 (-225))))) (-15 -1372 ((-2 (|:| |additions| (-566)) (|:| |multiplications| (-566)) (|:| |exponentiations| (-566)) (|:| |functionCalls| (-566))) (-1264 (-317 (-225))))) (-15 -3221 ((-317 (-409 (-566))) (-317 (-225)))) (-15 -2610 ((-1093 (-843 (-225))) (-1093 (-843 (-225))))) (-15 -4345 ((-644 (-225)) (-644 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566))))))) (-15 -4352 ((-699) (-225))) (-15 -4157 ((-1264 (-699)) (-644 (-225)))) (-15 -2199 ((-317 (-381)) (-317 (-225)))) (-15 -3562 ((-1264 (-317 (-381))) (-1264 (-317 (-225))))) (-15 -4263 ((-112) (-225) (-1093 (-843 (-225))))) (-15 -3551 ((-1157) (-225))) (-15 -2252 ((-1157) (-381))) (-15 -1312 ((-644 (-1157)) (-644 (-225)))) (-15 -4239 ((-644 (-1157)) (-1155 (-225)))) (-15 -3418 ((-225) (-1093 (-843 (-225))))) (-15 -4078 ((-225) (-1093 (-843 (-225))))) (-15 -3721 ((-1035) (-1035) (-1035))) (-15 -3721 ((-1035) (-644 (-1035)))) (-15 -1706 ((-1157) (-381))) (-15 -2391 ((-1035) (-2 (|:| -1338 (-381)) (|:| -2640 (-1157)) (|:| |explanations| (-644 (-1157)))))) (-15 -2391 ((-1035) (-2 (|:| -1338 (-381)) (|:| -2640 (-1157)) (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035))))) (-15 -2284 ((-1035) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2446 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2632 ((-1035) (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))) (-15 -2217 ((-317 (-381)) (-952 (-225)))) (-15 -2575 ((-225) (-952 (-225)))) (-15 -2176 ((-317 (-381)) (-225))) (-15 -4250 ((-225) (-409 (-566)))) (-15 -4227 ((-689 (-225)) (-644 (-225)) (-771))))) (T -306)) -((-4227 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-225))) (-5 *4 (-771)) (-5 *2 (-689 (-225))) (-5 *1 (-306)))) (-4250 (*1 *2 *3) (-12 (-5 *3 (-409 (-566))) (-5 *2 (-225)) (-5 *1 (-306)))) (-2176 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-317 (-381))) (-5 *1 (-306)))) (-2575 (*1 *2 *3) (-12 (-5 *3 (-952 (-225))) (-5 *2 (-225)) (-5 *1 (-306)))) (-2217 (*1 *2 *3) (-12 (-5 *3 (-952 (-225))) (-5 *2 (-317 (-381))) (-5 *1 (-306)))) (-2632 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))) (-5 *2 (-1035)) (-5 *1 (-306)))) (-2284 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2446 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1035)) (-5 *1 (-306)))) (-2391 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1338 (-381)) (|:| -2640 (-1157)) (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035)))) (-5 *2 (-1035)) (-5 *1 (-306)))) (-2391 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1338 (-381)) (|:| -2640 (-1157)) (|:| |explanations| (-644 (-1157))))) (-5 *2 (-1035)) (-5 *1 (-306)))) (-1706 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1157)) (-5 *1 (-306)))) (-3721 (*1 *2 *3) (-12 (-5 *3 (-644 (-1035))) (-5 *2 (-1035)) (-5 *1 (-306)))) (-3721 (*1 *2 *2 *2) (-12 (-5 *2 (-1035)) (-5 *1 (-306)))) (-4078 (*1 *2 *3) (-12 (-5 *3 (-1093 (-843 (-225)))) (-5 *2 (-225)) (-5 *1 (-306)))) (-3418 (*1 *2 *3) (-12 (-5 *3 (-1093 (-843 (-225)))) (-5 *2 (-225)) (-5 *1 (-306)))) (-4239 (*1 *2 *3) (-12 (-5 *3 (-1155 (-225))) (-5 *2 (-644 (-1157))) (-5 *1 (-306)))) (-1312 (*1 *2 *3) (-12 (-5 *3 (-644 (-225))) (-5 *2 (-644 (-1157))) (-5 *1 (-306)))) (-2252 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1157)) (-5 *1 (-306)))) (-3551 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1157)) (-5 *1 (-306)))) (-4263 (*1 *2 *3 *4) (-12 (-5 *4 (-1093 (-843 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-306)))) (-3562 (*1 *2 *3) (-12 (-5 *3 (-1264 (-317 (-225)))) (-5 *2 (-1264 (-317 (-381)))) (-5 *1 (-306)))) (-2199 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-317 (-381))) (-5 *1 (-306)))) (-4157 (*1 *2 *3) (-12 (-5 *3 (-644 (-225))) (-5 *2 (-1264 (-699))) (-5 *1 (-306)))) (-4352 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-699)) (-5 *1 (-306)))) (-4345 (*1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566)))))) (-5 *2 (-644 (-225))) (-5 *1 (-306)))) (-2610 (*1 *2 *2) (-12 (-5 *2 (-1093 (-843 (-225)))) (-5 *1 (-306)))) (-3221 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-317 (-409 (-566)))) (-5 *1 (-306)))) (-1372 (*1 *2 *3) (-12 (-5 *3 (-1264 (-317 (-225)))) (-5 *2 (-2 (|:| |additions| (-566)) (|:| |multiplications| (-566)) (|:| |exponentiations| (-566)) (|:| |functionCalls| (-566)))) (-5 *1 (-306)))) (-3220 (*1 *2 *3) (-12 (-5 *3 (-1264 (-317 (-225)))) (-5 *2 (-381)) (-5 *1 (-306)))) (-2021 (*1 *2 *2) (|partial| -12 (-5 *2 (-317 (-225))) (-5 *1 (-306)))) (-2061 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-225)) (-5 *1 (-306)))) (-2169 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-409 (-566))) (-5 *1 (-306)))) (-2079 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-409 (-566))) (-5 *1 (-306)))) (-1348 (*1 *2 *3) (-12 (-5 *3 (-644 (-1093 (-843 (-381))))) (-5 *2 (-644 (-1093 (-843 (-225))))) (-5 *1 (-306)))) (-2399 (*1 *2 *3) (-12 (-5 *3 (-1093 (-843 (-381)))) (-5 *2 (-1093 (-843 (-225)))) (-5 *1 (-306)))) (-1868 (*1 *2 *3) (-12 (-5 *3 (-843 (-381))) (-5 *2 (-843 (-225))) (-5 *1 (-306)))) (-1638 (*1 *2 *3) (-12 (-5 *3 (-317 (-381))) (-5 *2 (-317 (-225))) (-5 *1 (-306)))) (-2003 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-225)) (-5 *1 (-306))))) -(-10 -7 (-15 -2003 ((-225) (-381))) (-15 -1638 ((-317 (-225)) (-317 (-381)))) (-15 -1868 ((-843 (-225)) (-843 (-381)))) (-15 -2399 ((-1093 (-843 (-225))) (-1093 (-843 (-381))))) (-15 -1348 ((-644 (-1093 (-843 (-225)))) (-644 (-1093 (-843 (-381)))))) (-15 -2079 ((-409 (-566)) (-225))) (-15 -2169 ((-409 (-566)) (-317 (-225)))) (-15 -2061 ((-225) (-317 (-225)))) (-15 -2021 ((-3 (-317 (-225)) "failed") (-317 (-225)))) (-15 -3220 ((-381) (-1264 (-317 (-225))))) (-15 -1372 ((-2 (|:| |additions| (-566)) (|:| |multiplications| (-566)) (|:| |exponentiations| (-566)) (|:| |functionCalls| (-566))) (-1264 (-317 (-225))))) (-15 -3221 ((-317 (-409 (-566))) (-317 (-225)))) (-15 -2610 ((-1093 (-843 (-225))) (-1093 (-843 (-225))))) (-15 -4345 ((-644 (-225)) (-644 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566))))))) (-15 -4352 ((-699) (-225))) (-15 -4157 ((-1264 (-699)) (-644 (-225)))) (-15 -2199 ((-317 (-381)) (-317 (-225)))) (-15 -3562 ((-1264 (-317 (-381))) (-1264 (-317 (-225))))) (-15 -4263 ((-112) (-225) (-1093 (-843 (-225))))) (-15 -3551 ((-1157) (-225))) (-15 -2252 ((-1157) (-381))) (-15 -1312 ((-644 (-1157)) (-644 (-225)))) (-15 -4239 ((-644 (-1157)) (-1155 (-225)))) (-15 -3418 ((-225) (-1093 (-843 (-225))))) (-15 -4078 ((-225) (-1093 (-843 (-225))))) (-15 -3721 ((-1035) (-1035) (-1035))) (-15 -3721 ((-1035) (-644 (-1035)))) (-15 -1706 ((-1157) (-381))) (-15 -2391 ((-1035) (-2 (|:| -1338 (-381)) (|:| -2640 (-1157)) (|:| |explanations| (-644 (-1157)))))) (-15 -2391 ((-1035) (-2 (|:| -1338 (-381)) (|:| -2640 (-1157)) (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035))))) (-15 -2284 ((-1035) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2446 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2632 ((-1035) (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))) (-15 -2217 ((-317 (-381)) (-952 (-225)))) (-15 -2575 ((-225) (-952 (-225)))) (-15 -2176 ((-317 (-381)) (-225))) (-15 -4250 ((-225) (-409 (-566)))) (-15 -4227 ((-689 (-225)) (-644 (-225)) (-771)))) -((-2837 (((-112) $ $) 14)) (-2946 (($ $ $) 18)) (-2957 (($ $ $) 17)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) 50)) (-3775 (((-3 (-644 $) "failed") (-644 $) $) 65)) (-2214 (($ $ $) 25) (($ (-644 $)) NIL)) (-3148 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 35) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 40)) (-2994 (((-3 $ "failed") $ $) 21)) (-3161 (((-3 (-644 $) "failed") (-644 $) $) 53))) -(((-307 |#1|) (-10 -8 (-15 -3775 ((-3 (-644 |#1|) "failed") (-644 |#1|) |#1|)) (-15 -3148 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3148 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3441 |#1|)) |#1| |#1|)) (-15 -2946 (|#1| |#1| |#1|)) (-15 -2957 (|#1| |#1| |#1|)) (-15 -2837 ((-112) |#1| |#1|)) (-15 -3161 ((-3 (-644 |#1|) "failed") (-644 |#1|) |#1|)) (-15 -2357 ((-2 (|:| -1364 (-644 |#1|)) (|:| -3441 |#1|)) (-644 |#1|))) (-15 -2214 (|#1| (-644 |#1|))) (-15 -2214 (|#1| |#1| |#1|)) (-15 -2994 ((-3 |#1| "failed") |#1| |#1|))) (-308)) (T -307)) -NIL -(-10 -8 (-15 -3775 ((-3 (-644 |#1|) "failed") (-644 |#1|) |#1|)) (-15 -3148 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3148 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3441 |#1|)) |#1| |#1|)) (-15 -2946 (|#1| |#1| |#1|)) (-15 -2957 (|#1| |#1| |#1|)) (-15 -2837 ((-112) |#1| |#1|)) (-15 -3161 ((-3 (-644 |#1|) "failed") (-644 |#1|) |#1|)) (-15 -2357 ((-2 (|:| -1364 (-644 |#1|)) (|:| -3441 |#1|)) (-644 |#1|))) (-15 -2214 (|#1| (-644 |#1|))) (-15 -2214 (|#1| |#1| |#1|)) (-15 -2994 ((-3 |#1| "failed") |#1| |#1|))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) 47)) (-3991 (($ $) 46)) (-2388 (((-112) $) 44)) (-4175 (((-3 $ "failed") $ $) 20)) (-2837 (((-112) $ $) 65)) (-3012 (($) 18 T CONST)) (-2946 (($ $ $) 61)) (-1878 (((-3 $ "failed") $) 37)) (-2957 (($ $ $) 62)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) 57)) (-3934 (((-112) $) 35)) (-3775 (((-3 (-644 $) "failed") (-644 $) $) 58)) (-2167 (($ $ $) 52) (($ (-644 $)) 51)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-2214 (($ $ $) 54) (($ (-644 $)) 53)) (-3148 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2994 (((-3 $ "failed") $ $) 48)) (-3161 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-3039 (((-771) $) 64)) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) 63)) (-3783 (((-862) $) 12) (($ (-566)) 33) (($ $) 49)) (-2107 (((-771)) 32 T CONST)) (-3117 (((-112) $ $) 9)) (-2695 (((-112) $ $) 45)) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-2947 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) +((-1984 (((-644 |#1|) (-644 |#1|)) 10))) +(((-304 |#1|) (-10 -7 (-15 -1984 ((-644 |#1|) (-644 |#1|)))) (-848)) (T -304)) +((-1984 (*1 *2 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-848)) (-5 *1 (-304 *3))))) +(-10 -7 (-15 -1984 ((-644 |#1|) (-644 |#1|)))) +((-2319 (((-689 |#2|) (-1 |#2| |#1|) (-689 |#1|)) 17))) +(((-305 |#1| |#2|) (-10 -7 (-15 -2319 ((-689 |#2|) (-1 |#2| |#1|) (-689 |#1|)))) (-1049) (-1049)) (T -305)) +((-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-689 *5)) (-4 *5 (-1049)) (-4 *6 (-1049)) (-5 *2 (-689 *6)) (-5 *1 (-305 *5 *6))))) +(-10 -7 (-15 -2319 ((-689 |#2|) (-1 |#2| |#1|) (-689 |#1|)))) +((-3163 (((-1264 (-317 (-381))) (-1264 (-317 (-225)))) 112)) (-4232 (((-1093 (-843 (-225))) (-1093 (-843 (-381)))) 45)) (-3078 (((-644 (-1157)) (-1155 (-225))) 94)) (-2054 (((-317 (-381)) (-952 (-225))) 55)) (-3658 (((-225) (-952 (-225))) 51)) (-1305 (((-1157) (-381)) 197)) (-1638 (((-843 (-225)) (-843 (-381))) 39)) (-2472 (((-2 (|:| |additions| (-566)) (|:| |multiplications| (-566)) (|:| |exponentiations| (-566)) (|:| |functionCalls| (-566))) (-1264 (-317 (-225)))) 165)) (-1430 (((-1035) (-2 (|:| -2659 (-381)) (|:| -1368 (-1157)) (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035)))) 209) (((-1035) (-2 (|:| -2659 (-381)) (|:| -1368 (-1157)) (|:| |explanations| (-644 (-1157))))) 207)) (-3361 (((-689 (-225)) (-644 (-225)) (-771)) 21)) (-2943 (((-1264 (-699)) (-644 (-225))) 101)) (-2235 (((-644 (-1157)) (-644 (-225))) 81)) (-3060 (((-3 (-317 (-225)) "failed") (-317 (-225))) 130)) (-1435 (((-112) (-225) (-1093 (-843 (-225)))) 119)) (-4244 (((-1035) (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))) 226)) (-2533 (((-225) (-1093 (-843 (-225)))) 114)) (-2887 (((-225) (-1093 (-843 (-225)))) 115)) (-1715 (((-225) (-409 (-566))) 33)) (-2299 (((-1157) (-381)) 79)) (-3424 (((-225) (-381)) 24)) (-3685 (((-381) (-1264 (-317 (-225)))) 179)) (-2127 (((-317 (-225)) (-317 (-381))) 30)) (-2360 (((-409 (-566)) (-317 (-225))) 58)) (-2596 (((-317 (-409 (-566))) (-317 (-225))) 75)) (-4348 (((-317 (-381)) (-317 (-225))) 105)) (-2793 (((-225) (-317 (-225))) 59)) (-2530 (((-644 (-225)) (-644 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566)))))) 70)) (-2816 (((-1093 (-843 (-225))) (-1093 (-843 (-225)))) 67)) (-3390 (((-1157) (-225)) 78)) (-1934 (((-699) (-225)) 97)) (-1920 (((-409 (-566)) (-225)) 60)) (-1814 (((-317 (-381)) (-225)) 54)) (-2376 (((-644 (-1093 (-843 (-225)))) (-644 (-1093 (-843 (-381))))) 48)) (-4386 (((-1035) (-644 (-1035))) 193) (((-1035) (-1035) (-1035)) 187)) (-2364 (((-1035) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 223))) +(((-306) (-10 -7 (-15 -3424 ((-225) (-381))) (-15 -2127 ((-317 (-225)) (-317 (-381)))) (-15 -1638 ((-843 (-225)) (-843 (-381)))) (-15 -4232 ((-1093 (-843 (-225))) (-1093 (-843 (-381))))) (-15 -2376 ((-644 (-1093 (-843 (-225)))) (-644 (-1093 (-843 (-381)))))) (-15 -1920 ((-409 (-566)) (-225))) (-15 -2360 ((-409 (-566)) (-317 (-225)))) (-15 -2793 ((-225) (-317 (-225)))) (-15 -3060 ((-3 (-317 (-225)) "failed") (-317 (-225)))) (-15 -3685 ((-381) (-1264 (-317 (-225))))) (-15 -2472 ((-2 (|:| |additions| (-566)) (|:| |multiplications| (-566)) (|:| |exponentiations| (-566)) (|:| |functionCalls| (-566))) (-1264 (-317 (-225))))) (-15 -2596 ((-317 (-409 (-566))) (-317 (-225)))) (-15 -2816 ((-1093 (-843 (-225))) (-1093 (-843 (-225))))) (-15 -2530 ((-644 (-225)) (-644 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566))))))) (-15 -1934 ((-699) (-225))) (-15 -2943 ((-1264 (-699)) (-644 (-225)))) (-15 -4348 ((-317 (-381)) (-317 (-225)))) (-15 -3163 ((-1264 (-317 (-381))) (-1264 (-317 (-225))))) (-15 -1435 ((-112) (-225) (-1093 (-843 (-225))))) (-15 -3390 ((-1157) (-225))) (-15 -2299 ((-1157) (-381))) (-15 -2235 ((-644 (-1157)) (-644 (-225)))) (-15 -3078 ((-644 (-1157)) (-1155 (-225)))) (-15 -2533 ((-225) (-1093 (-843 (-225))))) (-15 -2887 ((-225) (-1093 (-843 (-225))))) (-15 -4386 ((-1035) (-1035) (-1035))) (-15 -4386 ((-1035) (-644 (-1035)))) (-15 -1305 ((-1157) (-381))) (-15 -1430 ((-1035) (-2 (|:| -2659 (-381)) (|:| -1368 (-1157)) (|:| |explanations| (-644 (-1157)))))) (-15 -1430 ((-1035) (-2 (|:| -2659 (-381)) (|:| -1368 (-1157)) (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035))))) (-15 -2364 ((-1035) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -4244 ((-1035) (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))) (-15 -2054 ((-317 (-381)) (-952 (-225)))) (-15 -3658 ((-225) (-952 (-225)))) (-15 -1814 ((-317 (-381)) (-225))) (-15 -1715 ((-225) (-409 (-566)))) (-15 -3361 ((-689 (-225)) (-644 (-225)) (-771))))) (T -306)) +((-3361 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-225))) (-5 *4 (-771)) (-5 *2 (-689 (-225))) (-5 *1 (-306)))) (-1715 (*1 *2 *3) (-12 (-5 *3 (-409 (-566))) (-5 *2 (-225)) (-5 *1 (-306)))) (-1814 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-317 (-381))) (-5 *1 (-306)))) (-3658 (*1 *2 *3) (-12 (-5 *3 (-952 (-225))) (-5 *2 (-225)) (-5 *1 (-306)))) (-2054 (*1 *2 *3) (-12 (-5 *3 (-952 (-225))) (-5 *2 (-317 (-381))) (-5 *1 (-306)))) (-4244 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))) (-5 *2 (-1035)) (-5 *1 (-306)))) (-2364 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1035)) (-5 *1 (-306)))) (-1430 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2659 (-381)) (|:| -1368 (-1157)) (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035)))) (-5 *2 (-1035)) (-5 *1 (-306)))) (-1430 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2659 (-381)) (|:| -1368 (-1157)) (|:| |explanations| (-644 (-1157))))) (-5 *2 (-1035)) (-5 *1 (-306)))) (-1305 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1157)) (-5 *1 (-306)))) (-4386 (*1 *2 *3) (-12 (-5 *3 (-644 (-1035))) (-5 *2 (-1035)) (-5 *1 (-306)))) (-4386 (*1 *2 *2 *2) (-12 (-5 *2 (-1035)) (-5 *1 (-306)))) (-2887 (*1 *2 *3) (-12 (-5 *3 (-1093 (-843 (-225)))) (-5 *2 (-225)) (-5 *1 (-306)))) (-2533 (*1 *2 *3) (-12 (-5 *3 (-1093 (-843 (-225)))) (-5 *2 (-225)) (-5 *1 (-306)))) (-3078 (*1 *2 *3) (-12 (-5 *3 (-1155 (-225))) (-5 *2 (-644 (-1157))) (-5 *1 (-306)))) (-2235 (*1 *2 *3) (-12 (-5 *3 (-644 (-225))) (-5 *2 (-644 (-1157))) (-5 *1 (-306)))) (-2299 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1157)) (-5 *1 (-306)))) (-3390 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1157)) (-5 *1 (-306)))) (-1435 (*1 *2 *3 *4) (-12 (-5 *4 (-1093 (-843 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-306)))) (-3163 (*1 *2 *3) (-12 (-5 *3 (-1264 (-317 (-225)))) (-5 *2 (-1264 (-317 (-381)))) (-5 *1 (-306)))) (-4348 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-317 (-381))) (-5 *1 (-306)))) (-2943 (*1 *2 *3) (-12 (-5 *3 (-644 (-225))) (-5 *2 (-1264 (-699))) (-5 *1 (-306)))) (-1934 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-699)) (-5 *1 (-306)))) (-2530 (*1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566)))))) (-5 *2 (-644 (-225))) (-5 *1 (-306)))) (-2816 (*1 *2 *2) (-12 (-5 *2 (-1093 (-843 (-225)))) (-5 *1 (-306)))) (-2596 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-317 (-409 (-566)))) (-5 *1 (-306)))) (-2472 (*1 *2 *3) (-12 (-5 *3 (-1264 (-317 (-225)))) (-5 *2 (-2 (|:| |additions| (-566)) (|:| |multiplications| (-566)) (|:| |exponentiations| (-566)) (|:| |functionCalls| (-566)))) (-5 *1 (-306)))) (-3685 (*1 *2 *3) (-12 (-5 *3 (-1264 (-317 (-225)))) (-5 *2 (-381)) (-5 *1 (-306)))) (-3060 (*1 *2 *2) (|partial| -12 (-5 *2 (-317 (-225))) (-5 *1 (-306)))) (-2793 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-225)) (-5 *1 (-306)))) (-2360 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-409 (-566))) (-5 *1 (-306)))) (-1920 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-409 (-566))) (-5 *1 (-306)))) (-2376 (*1 *2 *3) (-12 (-5 *3 (-644 (-1093 (-843 (-381))))) (-5 *2 (-644 (-1093 (-843 (-225))))) (-5 *1 (-306)))) (-4232 (*1 *2 *3) (-12 (-5 *3 (-1093 (-843 (-381)))) (-5 *2 (-1093 (-843 (-225)))) (-5 *1 (-306)))) (-1638 (*1 *2 *3) (-12 (-5 *3 (-843 (-381))) (-5 *2 (-843 (-225))) (-5 *1 (-306)))) (-2127 (*1 *2 *3) (-12 (-5 *3 (-317 (-381))) (-5 *2 (-317 (-225))) (-5 *1 (-306)))) (-3424 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-225)) (-5 *1 (-306))))) +(-10 -7 (-15 -3424 ((-225) (-381))) (-15 -2127 ((-317 (-225)) (-317 (-381)))) (-15 -1638 ((-843 (-225)) (-843 (-381)))) (-15 -4232 ((-1093 (-843 (-225))) (-1093 (-843 (-381))))) (-15 -2376 ((-644 (-1093 (-843 (-225)))) (-644 (-1093 (-843 (-381)))))) (-15 -1920 ((-409 (-566)) (-225))) (-15 -2360 ((-409 (-566)) (-317 (-225)))) (-15 -2793 ((-225) (-317 (-225)))) (-15 -3060 ((-3 (-317 (-225)) "failed") (-317 (-225)))) (-15 -3685 ((-381) (-1264 (-317 (-225))))) (-15 -2472 ((-2 (|:| |additions| (-566)) (|:| |multiplications| (-566)) (|:| |exponentiations| (-566)) (|:| |functionCalls| (-566))) (-1264 (-317 (-225))))) (-15 -2596 ((-317 (-409 (-566))) (-317 (-225)))) (-15 -2816 ((-1093 (-843 (-225))) (-1093 (-843 (-225))))) (-15 -2530 ((-644 (-225)) (-644 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566))))))) (-15 -1934 ((-699) (-225))) (-15 -2943 ((-1264 (-699)) (-644 (-225)))) (-15 -4348 ((-317 (-381)) (-317 (-225)))) (-15 -3163 ((-1264 (-317 (-381))) (-1264 (-317 (-225))))) (-15 -1435 ((-112) (-225) (-1093 (-843 (-225))))) (-15 -3390 ((-1157) (-225))) (-15 -2299 ((-1157) (-381))) (-15 -2235 ((-644 (-1157)) (-644 (-225)))) (-15 -3078 ((-644 (-1157)) (-1155 (-225)))) (-15 -2533 ((-225) (-1093 (-843 (-225))))) (-15 -2887 ((-225) (-1093 (-843 (-225))))) (-15 -4386 ((-1035) (-1035) (-1035))) (-15 -4386 ((-1035) (-644 (-1035)))) (-15 -1305 ((-1157) (-381))) (-15 -1430 ((-1035) (-2 (|:| -2659 (-381)) (|:| -1368 (-1157)) (|:| |explanations| (-644 (-1157)))))) (-15 -1430 ((-1035) (-2 (|:| -2659 (-381)) (|:| -1368 (-1157)) (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035))))) (-15 -2364 ((-1035) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -4244 ((-1035) (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))) (-15 -2054 ((-317 (-381)) (-952 (-225)))) (-15 -3658 ((-225) (-952 (-225)))) (-15 -1814 ((-317 (-381)) (-225))) (-15 -1715 ((-225) (-409 (-566)))) (-15 -3361 ((-689 (-225)) (-644 (-225)) (-771)))) +((-2085 (((-112) $ $) 14)) (-2933 (($ $ $) 18)) (-2945 (($ $ $) 17)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) 50)) (-3816 (((-3 (-644 $) "failed") (-644 $) $) 65)) (-2164 (($ $ $) 25) (($ (-644 $)) NIL)) (-3005 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) 35) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 40)) (-2978 (((-3 $ "failed") $ $) 21)) (-2915 (((-3 (-644 $) "failed") (-644 $) $) 53))) +(((-307 |#1|) (-10 -8 (-15 -3816 ((-3 (-644 |#1|) "failed") (-644 |#1|) |#1|)) (-15 -3005 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3005 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3302 |#1|)) |#1| |#1|)) (-15 -2933 (|#1| |#1| |#1|)) (-15 -2945 (|#1| |#1| |#1|)) (-15 -2085 ((-112) |#1| |#1|)) (-15 -2915 ((-3 (-644 |#1|) "failed") (-644 |#1|) |#1|)) (-15 -3255 ((-2 (|:| -2397 (-644 |#1|)) (|:| -3302 |#1|)) (-644 |#1|))) (-15 -2164 (|#1| (-644 |#1|))) (-15 -2164 (|#1| |#1| |#1|)) (-15 -2978 ((-3 |#1| "failed") |#1| |#1|))) (-308)) (T -307)) +NIL +(-10 -8 (-15 -3816 ((-3 (-644 |#1|) "failed") (-644 |#1|) |#1|)) (-15 -3005 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3005 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3302 |#1|)) |#1| |#1|)) (-15 -2933 (|#1| |#1| |#1|)) (-15 -2945 (|#1| |#1| |#1|)) (-15 -2085 ((-112) |#1| |#1|)) (-15 -2915 ((-3 (-644 |#1|) "failed") (-644 |#1|) |#1|)) (-15 -3255 ((-2 (|:| -2397 (-644 |#1|)) (|:| -3302 |#1|)) (-644 |#1|))) (-15 -2164 (|#1| (-644 |#1|))) (-15 -2164 (|#1| |#1| |#1|)) (-15 -2978 ((-3 |#1| "failed") |#1| |#1|))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) 47)) (-2161 (($ $) 46)) (-2345 (((-112) $) 44)) (-3967 (((-3 $ "failed") $ $) 20)) (-2085 (((-112) $ $) 65)) (-2463 (($) 18 T CONST)) (-2933 (($ $ $) 61)) (-3245 (((-3 $ "failed") $) 37)) (-2945 (($ $ $) 62)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) 57)) (-2389 (((-112) $) 35)) (-3816 (((-3 (-644 $) "failed") (-644 $) $) 58)) (-2128 (($ $ $) 52) (($ (-644 $)) 51)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-2164 (($ $ $) 54) (($ (-644 $)) 53)) (-3005 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2978 (((-3 $ "failed") $ $) 48)) (-2915 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-4357 (((-771) $) 64)) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) 63)) (-3152 (((-862) $) 12) (($ (-566)) 33) (($ $) 49)) (-2593 (((-771)) 32 T CONST)) (-3044 (((-112) $ $) 9)) (-3014 (((-112) $ $) 45)) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-2914 (((-112) $ $) 6)) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) (((-308) (-140)) (T -308)) -((-2837 (*1 *2 *1 *1) (-12 (-4 *1 (-308)) (-5 *2 (-112)))) (-3039 (*1 *2 *1) (-12 (-4 *1 (-308)) (-5 *2 (-771)))) (-1685 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2275 *1) (|:| -2513 *1))) (-4 *1 (-308)))) (-2957 (*1 *1 *1 *1) (-4 *1 (-308))) (-2946 (*1 *1 *1 *1) (-4 *1 (-308))) (-3148 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3441 *1))) (-4 *1 (-308)))) (-3148 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-308)))) (-3775 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-644 *1)) (-4 *1 (-308))))) -(-13 (-920) (-10 -8 (-15 -2837 ((-112) $ $)) (-15 -3039 ((-771) $)) (-15 -1685 ((-2 (|:| -2275 $) (|:| -2513 $)) $ $)) (-15 -2957 ($ $ $)) (-15 -2946 ($ $ $)) (-15 -3148 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $)) (-15 -3148 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -3775 ((-3 (-644 $) "failed") (-644 $) $)))) +((-2085 (*1 *2 *1 *1) (-12 (-4 *1 (-308)) (-5 *2 (-112)))) (-4357 (*1 *2 *1) (-12 (-4 *1 (-308)) (-5 *2 (-771)))) (-4100 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2631 *1) (|:| -3264 *1))) (-4 *1 (-308)))) (-2945 (*1 *1 *1 *1) (-4 *1 (-308))) (-2933 (*1 *1 *1 *1) (-4 *1 (-308))) (-3005 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3302 *1))) (-4 *1 (-308)))) (-3005 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-308)))) (-3816 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-644 *1)) (-4 *1 (-308))))) +(-13 (-920) (-10 -8 (-15 -2085 ((-112) $ $)) (-15 -4357 ((-771) $)) (-15 -4100 ((-2 (|:| -2631 $) (|:| -3264 $)) $ $)) (-15 -2945 ($ $ $)) (-15 -2933 ($ $ $)) (-15 -3005 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $)) (-15 -3005 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -3816 ((-3 (-644 $) "failed") (-644 $) $)))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-616 (-566)) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-291) . T) ((-454) . T) ((-558) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-640 $) . T) ((-717 $) . T) ((-726) . T) ((-920) . T) ((-1051 $) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) -((-2055 (($ $ (-644 |#2|) (-644 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-295 |#2|)) 11) (($ $ (-644 (-295 |#2|))) NIL))) -(((-309 |#1| |#2|) (-10 -8 (-15 -2055 (|#1| |#1| (-644 (-295 |#2|)))) (-15 -2055 (|#1| |#1| (-295 |#2|))) (-15 -2055 (|#1| |#1| |#2| |#2|)) (-15 -2055 (|#1| |#1| (-644 |#2|) (-644 |#2|)))) (-310 |#2|) (-1099)) (T -309)) +((-2023 (($ $ (-644 |#2|) (-644 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-295 |#2|)) 11) (($ $ (-644 (-295 |#2|))) NIL))) +(((-309 |#1| |#2|) (-10 -8 (-15 -2023 (|#1| |#1| (-644 (-295 |#2|)))) (-15 -2023 (|#1| |#1| (-295 |#2|))) (-15 -2023 (|#1| |#1| |#2| |#2|)) (-15 -2023 (|#1| |#1| (-644 |#2|) (-644 |#2|)))) (-310 |#2|) (-1099)) (T -309)) NIL -(-10 -8 (-15 -2055 (|#1| |#1| (-644 (-295 |#2|)))) (-15 -2055 (|#1| |#1| (-295 |#2|))) (-15 -2055 (|#1| |#1| |#2| |#2|)) (-15 -2055 (|#1| |#1| (-644 |#2|) (-644 |#2|)))) -((-2055 (($ $ (-644 |#1|) (-644 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-295 |#1|)) 11) (($ $ (-644 (-295 |#1|))) 10))) +(-10 -8 (-15 -2023 (|#1| |#1| (-644 (-295 |#2|)))) (-15 -2023 (|#1| |#1| (-295 |#2|))) (-15 -2023 (|#1| |#1| |#2| |#2|)) (-15 -2023 (|#1| |#1| (-644 |#2|) (-644 |#2|)))) +((-2023 (($ $ (-644 |#1|) (-644 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-295 |#1|)) 11) (($ $ (-644 (-295 |#1|))) 10))) (((-310 |#1|) (-140) (-1099)) (T -310)) -((-2055 (*1 *1 *1 *2) (-12 (-5 *2 (-295 *3)) (-4 *1 (-310 *3)) (-4 *3 (-1099)))) (-2055 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-295 *3))) (-4 *1 (-310 *3)) (-4 *3 (-1099))))) -(-13 (-516 |t#1| |t#1|) (-10 -8 (-15 -2055 ($ $ (-295 |t#1|))) (-15 -2055 ($ $ (-644 (-295 |t#1|)))))) +((-2023 (*1 *1 *1 *2) (-12 (-5 *2 (-295 *3)) (-4 *1 (-310 *3)) (-4 *3 (-1099)))) (-2023 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-295 *3))) (-4 *1 (-310 *3)) (-4 *3 (-1099))))) +(-13 (-516 |t#1| |t#1|) (-10 -8 (-15 -2023 ($ $ (-295 |t#1|))) (-15 -2023 ($ $ (-644 (-295 |t#1|)))))) (((-516 |#1| |#1|) . T)) -((-2055 ((|#1| (-1 |#1| (-566)) (-1177 (-409 (-566)))) 25))) -(((-311 |#1|) (-10 -7 (-15 -2055 (|#1| (-1 |#1| (-566)) (-1177 (-409 (-566)))))) (-38 (-409 (-566)))) (T -311)) -((-2055 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-566))) (-5 *4 (-1177 (-409 (-566)))) (-5 *1 (-311 *2)) (-4 *2 (-38 (-409 (-566))))))) -(-10 -7 (-15 -2055 (|#1| (-1 |#1| (-566)) (-1177 (-409 (-566)))))) -((-3007 (((-112) $ $) NIL)) (-3118 (((-566) $) 12)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-1403 (((-1134) $) 9)) (-3783 (((-862) $) 19) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) -(((-312) (-13 (-1082) (-10 -8 (-15 -1403 ((-1134) $)) (-15 -3118 ((-566) $))))) (T -312)) -((-1403 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-312)))) (-3118 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-312))))) -(-13 (-1082) (-10 -8 (-15 -1403 ((-1134) $)) (-15 -3118 ((-566) $)))) -((-3007 (((-112) $ $) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 7)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) 9))) +((-2023 ((|#1| (-1 |#1| (-566)) (-1177 (-409 (-566)))) 25))) +(((-311 |#1|) (-10 -7 (-15 -2023 (|#1| (-1 |#1| (-566)) (-1177 (-409 (-566)))))) (-38 (-409 (-566)))) (T -311)) +((-2023 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-566))) (-5 *4 (-1177 (-409 (-566)))) (-5 *1 (-311 *2)) (-4 *2 (-38 (-409 (-566))))))) +(-10 -7 (-15 -2023 (|#1| (-1 |#1| (-566)) (-1177 (-409 (-566)))))) +((-2988 (((-112) $ $) NIL)) (-4143 (((-566) $) 12)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-2080 (((-1134) $) 9)) (-3152 (((-862) $) 19) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) +(((-312) (-13 (-1082) (-10 -8 (-15 -2080 ((-1134) $)) (-15 -4143 ((-566) $))))) (T -312)) +((-2080 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-312)))) (-4143 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-312))))) +(-13 (-1082) (-10 -8 (-15 -2080 ((-1134) $)) (-15 -4143 ((-566) $)))) +((-2988 (((-112) $ $) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 7)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) 9))) (((-313) (-1099)) (T -313)) NIL (-1099) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) 60)) (-1515 (((-1250 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-308)))) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-3991 (($ $) NIL)) (-2388 (((-112) $) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-1477 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-909)))) (-1550 (($ $) NIL)) (-3184 (((-420 $) $) NIL)) (-3717 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-909)))) (-2837 (((-112) $ $) NIL)) (-4364 (((-566) $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-820)))) (-3012 (($) NIL T CONST)) (-4307 (((-3 (-1250 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1175) "failed") $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-1038 (-1175)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-1038 (-566)))) (((-3 (-566) "failed") $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-1038 (-566)))) (((-3 (-1249 |#2| |#3| |#4|) "failed") $) 26)) (-4205 (((-1250 |#1| |#2| |#3| |#4|) $) NIL) (((-1175) $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-1038 (-1175)))) (((-409 (-566)) $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-1038 (-566)))) (((-566) $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-1038 (-566)))) (((-1249 |#2| |#3| |#4|) $) NIL)) (-2946 (($ $ $) NIL)) (-3577 (((-689 (-566)) (-689 $)) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-639 (-566)))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-639 (-566)))) (((-2 (|:| -4227 (-689 (-1250 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1264 (-1250 |#1| |#2| |#3| |#4|)))) (-689 $) (-1264 $)) NIL) (((-689 (-1250 |#1| |#2| |#3| |#4|)) (-689 $)) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-1552 (($) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-547)))) (-2957 (($ $ $) NIL)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL)) (-3268 (((-112) $) NIL)) (-1897 (((-112) $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-820)))) (-2062 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-886 (-566)))) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-886 (-381))))) (-3934 (((-112) $) NIL)) (-1493 (($ $) NIL)) (-4326 (((-1250 |#1| |#2| |#3| |#4|) $) 22)) (-4363 (((-3 $ "failed") $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-1150)))) (-2117 (((-112) $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-820)))) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2097 (($ $ $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-850)))) (-3962 (($ $ $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-850)))) (-1301 (($ (-1 (-1250 |#1| |#2| |#3| |#4|) (-1250 |#1| |#2| |#3| |#4|)) $) NIL)) (-2839 (((-3 (-843 |#2|) "failed") $) 80)) (-2167 (($ $ $) NIL) (($ (-644 $)) NIL)) (-4117 (((-1157) $) NIL)) (-1713 (($ $) NIL)) (-1761 (($) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-1150)) CONST)) (-4035 (((-1119) $) NIL)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2214 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2938 (($ $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-308)))) (-3470 (((-1250 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-547)))) (-4303 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-909)))) (-3240 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-909)))) (-3719 (((-420 $) $) NIL)) (-3148 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2994 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2055 (($ $ (-644 (-1250 |#1| |#2| |#3| |#4|)) (-644 (-1250 |#1| |#2| |#3| |#4|))) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-310 (-1250 |#1| |#2| |#3| |#4|)))) (($ $ (-1250 |#1| |#2| |#3| |#4|) (-1250 |#1| |#2| |#3| |#4|)) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-310 (-1250 |#1| |#2| |#3| |#4|)))) (($ $ (-295 (-1250 |#1| |#2| |#3| |#4|))) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-310 (-1250 |#1| |#2| |#3| |#4|)))) (($ $ (-644 (-295 (-1250 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-310 (-1250 |#1| |#2| |#3| |#4|)))) (($ $ (-644 (-1175)) (-644 (-1250 |#1| |#2| |#3| |#4|))) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-516 (-1175) (-1250 |#1| |#2| |#3| |#4|)))) (($ $ (-1175) (-1250 |#1| |#2| |#3| |#4|)) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-516 (-1175) (-1250 |#1| |#2| |#3| |#4|))))) (-3039 (((-771) $) NIL)) (-4390 (($ $ (-1250 |#1| |#2| |#3| |#4|)) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-287 (-1250 |#1| |#2| |#3| |#4|) (-1250 |#1| |#2| |#3| |#4|))))) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL)) (-3561 (($ $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-771)) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-1175)) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-900 (-1175)))) (($ $ (-1 (-1250 |#1| |#2| |#3| |#4|) (-1250 |#1| |#2| |#3| |#4|)) (-771)) NIL) (($ $ (-1 (-1250 |#1| |#2| |#3| |#4|) (-1250 |#1| |#2| |#3| |#4|))) NIL)) (-2023 (($ $) NIL)) (-4339 (((-1250 |#1| |#2| |#3| |#4|) $) 19)) (-1348 (((-892 (-566)) $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-614 (-892 (-566))))) (((-892 (-381)) $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-614 (-892 (-381))))) (((-538) $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-614 (-538)))) (((-381) $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-1022))) (((-225) $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-1022)))) (-1656 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| (-1250 |#1| |#2| |#3| |#4|) (-909))))) (-3783 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (($ (-1250 |#1| |#2| |#3| |#4|)) 30) (($ (-1175)) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-1038 (-1175)))) (($ (-1249 |#2| |#3| |#4|)) 37)) (-3144 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| $ (-145)) (|has| (-1250 |#1| |#2| |#3| |#4|) (-909))) (|has| (-1250 |#1| |#2| |#3| |#4|) (-145))))) (-2107 (((-771)) NIL T CONST)) (-2948 (((-1250 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-547)))) (-3117 (((-112) $ $) NIL)) (-2695 (((-112) $ $) NIL)) (-2086 (($ $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-820)))) (-2479 (($) NIL T CONST)) (-4334 (($) NIL T CONST)) (-2875 (($ $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-771)) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-1175)) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-900 (-1175)))) (($ $ (-1 (-1250 |#1| |#2| |#3| |#4|) (-1250 |#1| |#2| |#3| |#4|)) (-771)) NIL) (($ $ (-1 (-1250 |#1| |#2| |#3| |#4|) (-1250 |#1| |#2| |#3| |#4|))) NIL)) (-3009 (((-112) $ $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-850)))) (-2984 (((-112) $ $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-850)))) (-2947 (((-112) $ $) NIL)) (-2995 (((-112) $ $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-850)))) (-2969 (((-112) $ $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-850)))) (-3065 (($ $ $) 35) (($ (-1250 |#1| |#2| |#3| |#4|) (-1250 |#1| |#2| |#3| |#4|)) 32)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ (-1250 |#1| |#2| |#3| |#4|) $) 31) (($ $ (-1250 |#1| |#2| |#3| |#4|)) NIL))) -(((-314 |#1| |#2| |#3| |#4|) (-13 (-992 (-1250 |#1| |#2| |#3| |#4|)) (-1038 (-1249 |#2| |#3| |#4|)) (-10 -8 (-15 -2839 ((-3 (-843 |#2|) "failed") $)) (-15 -3783 ($ (-1249 |#2| |#3| |#4|))))) (-13 (-1038 (-566)) (-639 (-566)) (-454)) (-13 (-27) (-1199) (-432 |#1|)) (-1175) |#2|) (T -314)) -((-3783 (*1 *1 *2) (-12 (-5 *2 (-1249 *4 *5 *6)) (-4 *4 (-13 (-27) (-1199) (-432 *3))) (-14 *5 (-1175)) (-14 *6 *4) (-4 *3 (-13 (-1038 (-566)) (-639 (-566)) (-454))) (-5 *1 (-314 *3 *4 *5 *6)))) (-2839 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1038 (-566)) (-639 (-566)) (-454))) (-5 *2 (-843 *4)) (-5 *1 (-314 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1199) (-432 *3))) (-14 *5 (-1175)) (-14 *6 *4)))) -(-13 (-992 (-1250 |#1| |#2| |#3| |#4|)) (-1038 (-1249 |#2| |#3| |#4|)) (-10 -8 (-15 -2839 ((-3 (-843 |#2|) "failed") $)) (-15 -3783 ($ (-1249 |#2| |#3| |#4|))))) -((-1301 (((-317 |#2|) (-1 |#2| |#1|) (-317 |#1|)) 13))) -(((-315 |#1| |#2|) (-10 -7 (-15 -1301 ((-317 |#2|) (-1 |#2| |#1|) (-317 |#1|)))) (-1099) (-1099)) (T -315)) -((-1301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-317 *5)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-5 *2 (-317 *6)) (-5 *1 (-315 *5 *6))))) -(-10 -7 (-15 -1301 ((-317 |#2|) (-1 |#2| |#1|) (-317 |#1|)))) -((-3916 (((-52) |#2| (-295 |#2|) (-771)) 40) (((-52) |#2| (-295 |#2|)) 32) (((-52) |#2| (-771)) 35) (((-52) |#2|) 33) (((-52) (-1175)) 26)) (-2052 (((-52) |#2| (-295 |#2|) (-409 (-566))) 59) (((-52) |#2| (-295 |#2|)) 56) (((-52) |#2| (-409 (-566))) 58) (((-52) |#2|) 57) (((-52) (-1175)) 55)) (-1690 (((-52) |#2| (-295 |#2|) (-409 (-566))) 54) (((-52) |#2| (-295 |#2|)) 51) (((-52) |#2| (-409 (-566))) 53) (((-52) |#2|) 52) (((-52) (-1175)) 50)) (-1678 (((-52) |#2| (-295 |#2|) (-566)) 47) (((-52) |#2| (-295 |#2|)) 44) (((-52) |#2| (-566)) 46) (((-52) |#2|) 45) (((-52) (-1175)) 43))) -(((-316 |#1| |#2|) (-10 -7 (-15 -3916 ((-52) (-1175))) (-15 -3916 ((-52) |#2|)) (-15 -3916 ((-52) |#2| (-771))) (-15 -3916 ((-52) |#2| (-295 |#2|))) (-15 -3916 ((-52) |#2| (-295 |#2|) (-771))) (-15 -1678 ((-52) (-1175))) (-15 -1678 ((-52) |#2|)) (-15 -1678 ((-52) |#2| (-566))) (-15 -1678 ((-52) |#2| (-295 |#2|))) (-15 -1678 ((-52) |#2| (-295 |#2|) (-566))) (-15 -1690 ((-52) (-1175))) (-15 -1690 ((-52) |#2|)) (-15 -1690 ((-52) |#2| (-409 (-566)))) (-15 -1690 ((-52) |#2| (-295 |#2|))) (-15 -1690 ((-52) |#2| (-295 |#2|) (-409 (-566)))) (-15 -2052 ((-52) (-1175))) (-15 -2052 ((-52) |#2|)) (-15 -2052 ((-52) |#2| (-409 (-566)))) (-15 -2052 ((-52) |#2| (-295 |#2|))) (-15 -2052 ((-52) |#2| (-295 |#2|) (-409 (-566))))) (-13 (-454) (-1038 (-566)) (-639 (-566))) (-13 (-27) (-1199) (-432 |#1|))) (T -316)) -((-2052 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-295 *3)) (-5 *5 (-409 (-566))) (-4 *3 (-13 (-27) (-1199) (-432 *6))) (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) (-2052 (*1 *2 *3 *4) (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5))) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)))) (-2052 (*1 *2 *3 *4) (-12 (-5 *4 (-409 (-566))) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5))))) (-2052 (*1 *2 *3) (-12 (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *4))))) (-2052 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1199) (-432 *4))))) (-1690 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-295 *3)) (-5 *5 (-409 (-566))) (-4 *3 (-13 (-27) (-1199) (-432 *6))) (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) (-1690 (*1 *2 *3 *4) (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5))) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)))) (-1690 (*1 *2 *3 *4) (-12 (-5 *4 (-409 (-566))) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5))))) (-1690 (*1 *2 *3) (-12 (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *4))))) (-1690 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1199) (-432 *4))))) (-1678 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *6))) (-4 *6 (-13 (-454) (-1038 *5) (-639 *5))) (-5 *5 (-566)) (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) (-1678 (*1 *2 *3 *4) (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5))) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)))) (-1678 (*1 *2 *3 *4) (-12 (-5 *4 (-566)) (-4 *5 (-13 (-454) (-1038 *4) (-639 *4))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5))))) (-1678 (*1 *2 *3) (-12 (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *4))))) (-1678 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1199) (-432 *4))))) (-3916 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-295 *3)) (-5 *5 (-771)) (-4 *3 (-13 (-27) (-1199) (-432 *6))) (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) (-3916 (*1 *2 *3 *4) (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5))) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)))) (-3916 (*1 *2 *3 *4) (-12 (-5 *4 (-771)) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5))))) (-3916 (*1 *2 *3) (-12 (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *4))))) (-3916 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1199) (-432 *4)))))) -(-10 -7 (-15 -3916 ((-52) (-1175))) (-15 -3916 ((-52) |#2|)) (-15 -3916 ((-52) |#2| (-771))) (-15 -3916 ((-52) |#2| (-295 |#2|))) (-15 -3916 ((-52) |#2| (-295 |#2|) (-771))) (-15 -1678 ((-52) (-1175))) (-15 -1678 ((-52) |#2|)) (-15 -1678 ((-52) |#2| (-566))) (-15 -1678 ((-52) |#2| (-295 |#2|))) (-15 -1678 ((-52) |#2| (-295 |#2|) (-566))) (-15 -1690 ((-52) (-1175))) (-15 -1690 ((-52) |#2|)) (-15 -1690 ((-52) |#2| (-409 (-566)))) (-15 -1690 ((-52) |#2| (-295 |#2|))) (-15 -1690 ((-52) |#2| (-295 |#2|) (-409 (-566)))) (-15 -2052 ((-52) (-1175))) (-15 -2052 ((-52) |#2|)) (-15 -2052 ((-52) |#2| (-409 (-566)))) (-15 -2052 ((-52) |#2| (-295 |#2|))) (-15 -2052 ((-52) |#2| (-295 |#2|) (-409 (-566))))) -((-3007 (((-112) $ $) NIL)) (-1702 (((-644 $) $ (-1175)) NIL (|has| |#1| (-558))) (((-644 $) $) NIL (|has| |#1| (-558))) (((-644 $) (-1171 $) (-1175)) NIL (|has| |#1| (-558))) (((-644 $) (-1171 $)) NIL (|has| |#1| (-558))) (((-644 $) (-952 $)) NIL (|has| |#1| (-558)))) (-3710 (($ $ (-1175)) NIL (|has| |#1| (-558))) (($ $) NIL (|has| |#1| (-558))) (($ (-1171 $) (-1175)) NIL (|has| |#1| (-558))) (($ (-1171 $)) NIL (|has| |#1| (-558))) (($ (-952 $)) NIL (|has| |#1| (-558)))) (-1788 (((-112) $) 27 (-2809 (|has| |#1| (-25)) (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049)))))) (-3863 (((-644 (-1175)) $) 368)) (-3683 (((-409 (-1171 $)) $ (-612 $)) NIL (|has| |#1| (-558)))) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-3991 (($ $) NIL (|has| |#1| (-558)))) (-2388 (((-112) $) NIL (|has| |#1| (-558)))) (-3570 (((-644 (-612 $)) $) NIL)) (-4114 (($ $) 171 (|has| |#1| (-558)))) (-2109 (($ $) 147 (|has| |#1| (-558)))) (-1978 (($ $ (-1091 $)) 232 (|has| |#1| (-558))) (($ $ (-1175)) 228 (|has| |#1| (-558)))) (-4175 (((-3 $ "failed") $ $) NIL (-2809 (|has| |#1| (-21)) (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049)))))) (-2645 (($ $ (-295 $)) NIL) (($ $ (-644 (-295 $))) 386) (($ $ (-644 (-612 $)) (-644 $)) 430)) (-1477 (((-420 (-1171 $)) (-1171 $)) 308 (-12 (|has| |#1| (-454)) (|has| |#1| (-558))))) (-1550 (($ $) NIL (|has| |#1| (-558)))) (-3184 (((-420 $) $) NIL (|has| |#1| (-558)))) (-3731 (($ $) NIL (|has| |#1| (-558)))) (-2837 (((-112) $ $) NIL (|has| |#1| (-558)))) (-2240 (($ $) 167 (|has| |#1| (-558)))) (-2085 (($ $) 143 (|has| |#1| (-558)))) (-1609 (($ $ (-566)) 73 (|has| |#1| (-558)))) (-4134 (($ $) 175 (|has| |#1| (-558)))) (-2129 (($ $) 151 (|has| |#1| (-558)))) (-3012 (($) NIL (-2809 (|has| |#1| (-25)) (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))) (|has| |#1| (-1111))) CONST)) (-1422 (((-644 $) $ (-1175)) NIL (|has| |#1| (-558))) (((-644 $) $) NIL (|has| |#1| (-558))) (((-644 $) (-1171 $) (-1175)) NIL (|has| |#1| (-558))) (((-644 $) (-1171 $)) NIL (|has| |#1| (-558))) (((-644 $) (-952 $)) NIL (|has| |#1| (-558)))) (-3912 (($ $ (-1175)) NIL (|has| |#1| (-558))) (($ $) NIL (|has| |#1| (-558))) (($ (-1171 $) (-1175)) 134 (|has| |#1| (-558))) (($ (-1171 $)) NIL (|has| |#1| (-558))) (($ (-952 $)) NIL (|has| |#1| (-558)))) (-4307 (((-3 (-612 $) "failed") $) 18) (((-3 (-1175) "failed") $) NIL) (((-3 |#1| "failed") $) 441) (((-3 (-48) "failed") $) 336 (-12 (|has| |#1| (-558)) (|has| |#1| (-1038 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-952 |#1|)) "failed") $) NIL (|has| |#1| (-558))) (((-3 (-952 |#1|) "failed") $) NIL (|has| |#1| (-1049))) (((-3 (-409 (-566)) "failed") $) 46 (-2809 (-12 (|has| |#1| (-558)) (|has| |#1| (-1038 (-566)))) (|has| |#1| (-1038 (-409 (-566))))))) (-4205 (((-612 $) $) 12) (((-1175) $) NIL) ((|#1| $) 421) (((-48) $) NIL (-12 (|has| |#1| (-558)) (|has| |#1| (-1038 (-566))))) (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-409 (-952 |#1|)) $) NIL (|has| |#1| (-558))) (((-952 |#1|) $) NIL (|has| |#1| (-1049))) (((-409 (-566)) $) 319 (-2809 (-12 (|has| |#1| (-558)) (|has| |#1| (-1038 (-566)))) (|has| |#1| (-1038 (-409 (-566))))))) (-2946 (($ $ $) NIL (|has| |#1| (-558)))) (-3577 (((-2 (|:| -4227 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) 125 (|has| |#1| (-1049))) (((-689 |#1|) (-689 $)) 115 (|has| |#1| (-1049))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049)))) (((-689 (-566)) (-689 $)) NIL (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))))) (-1676 (($ $) 96 (|has| |#1| (-558)))) (-1878 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))) (|has| |#1| (-1111))))) (-2957 (($ $ $) NIL (|has| |#1| (-558)))) (-2235 (($ $ (-1091 $)) 236 (|has| |#1| (-558))) (($ $ (-1175)) 234 (|has| |#1| (-558)))) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL (|has| |#1| (-558)))) (-3268 (((-112) $) NIL (|has| |#1| (-558)))) (-2680 (($ $ $) 202 (|has| |#1| (-558)))) (-4361 (($) 137 (|has| |#1| (-558)))) (-2529 (($ $ $) 222 (|has| |#1| (-558)))) (-2062 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 392 (|has| |#1| (-886 (-566)))) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 399 (|has| |#1| (-886 (-381))))) (-2228 (($ $) NIL) (($ (-644 $)) NIL)) (-2535 (((-644 (-114)) $) NIL)) (-3659 (((-114) (-114)) 276)) (-3934 (((-112) $) 25 (-2809 (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))) (|has| |#1| (-1111))))) (-2824 (((-112) $) NIL (|has| $ (-1038 (-566))))) (-1493 (($ $) 72 (|has| |#1| (-1049)))) (-4326 (((-1124 |#1| (-612 $)) $) 91 (|has| |#1| (-1049)))) (-2009 (((-112) $) 62 (|has| |#1| (-558)))) (-2140 (($ $ (-566)) NIL (|has| |#1| (-558)))) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-558)))) (-3006 (((-1171 $) (-612 $)) 277 (|has| $ (-1049)))) (-1301 (($ (-1 $ $) (-612 $)) 426)) (-3133 (((-3 (-612 $) "failed") $) NIL)) (-3651 (($ $) 141 (|has| |#1| (-558)))) (-2324 (($ $) 247 (|has| |#1| (-558)))) (-2167 (($ (-644 $)) NIL (|has| |#1| (-558))) (($ $ $) NIL (|has| |#1| (-558)))) (-4117 (((-1157) $) NIL)) (-3647 (((-644 (-612 $)) $) 49)) (-1307 (($ (-114) $) NIL) (($ (-114) (-644 $)) 431)) (-3714 (((-3 (-644 $) "failed") $) NIL (|has| |#1| (-1111)))) (-2114 (((-3 (-2 (|:| |val| $) (|:| -2852 (-566))) "failed") $) NIL (|has| |#1| (-1049)))) (-2353 (((-3 (-644 $) "failed") $) 436 (|has| |#1| (-25)))) (-3542 (((-3 (-2 (|:| -1364 (-566)) (|:| |var| (-612 $))) "failed") $) 440 (|has| |#1| (-25)))) (-1518 (((-3 (-2 (|:| |var| (-612 $)) (|:| -2852 (-566))) "failed") $) NIL (|has| |#1| (-1111))) (((-3 (-2 (|:| |var| (-612 $)) (|:| -2852 (-566))) "failed") $ (-114)) NIL (|has| |#1| (-1049))) (((-3 (-2 (|:| |var| (-612 $)) (|:| -2852 (-566))) "failed") $ (-1175)) NIL (|has| |#1| (-1049)))) (-2572 (((-112) $ (-114)) NIL) (((-112) $ (-1175)) 51)) (-1713 (($ $) NIL (-2809 (|has| |#1| (-475)) (|has| |#1| (-558))))) (-1880 (($ $ (-1175)) 251 (|has| |#1| (-558))) (($ $ (-1091 $)) 253 (|has| |#1| (-558)))) (-2076 (((-771) $) NIL)) (-4035 (((-1119) $) NIL)) (-1723 (((-112) $) 43)) (-1736 ((|#1| $) NIL)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) 301 (|has| |#1| (-558)))) (-2214 (($ (-644 $)) NIL (|has| |#1| (-558))) (($ $ $) NIL (|has| |#1| (-558)))) (-2746 (((-112) $ $) NIL) (((-112) $ (-1175)) NIL)) (-3826 (($ $ (-1175)) 226 (|has| |#1| (-558))) (($ $) 224 (|has| |#1| (-558)))) (-3727 (($ $) 218 (|has| |#1| (-558)))) (-3240 (((-420 (-1171 $)) (-1171 $)) 306 (-12 (|has| |#1| (-454)) (|has| |#1| (-558))))) (-3719 (((-420 $) $) NIL (|has| |#1| (-558)))) (-3148 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-558))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-558)))) (-2994 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-558)))) (-2561 (($ $) 139 (|has| |#1| (-558)))) (-1946 (((-112) $) NIL (|has| $ (-1038 (-566))))) (-2055 (($ $ (-612 $) $) NIL) (($ $ (-644 (-612 $)) (-644 $)) 425) (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-644 (-1175)) (-644 (-1 $ $))) NIL) (($ $ (-644 (-1175)) (-644 (-1 $ (-644 $)))) NIL) (($ $ (-1175) (-1 $ (-644 $))) NIL) (($ $ (-1175) (-1 $ $)) NIL) (($ $ (-644 (-114)) (-644 (-1 $ $))) 379) (($ $ (-644 (-114)) (-644 (-1 $ (-644 $)))) NIL) (($ $ (-114) (-1 $ (-644 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1175)) NIL (|has| |#1| (-614 (-538)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-614 (-538)))) (($ $) NIL (|has| |#1| (-614 (-538)))) (($ $ (-114) $ (-1175)) 366 (|has| |#1| (-614 (-538)))) (($ $ (-644 (-114)) (-644 $) (-1175)) 365 (|has| |#1| (-614 (-538)))) (($ $ (-644 (-1175)) (-644 (-771)) (-644 (-1 $ $))) NIL (|has| |#1| (-1049))) (($ $ (-644 (-1175)) (-644 (-771)) (-644 (-1 $ (-644 $)))) NIL (|has| |#1| (-1049))) (($ $ (-1175) (-771) (-1 $ (-644 $))) NIL (|has| |#1| (-1049))) (($ $ (-1175) (-771) (-1 $ $)) NIL (|has| |#1| (-1049)))) (-3039 (((-771) $) NIL (|has| |#1| (-558)))) (-2040 (($ $) 239 (|has| |#1| (-558)))) (-4390 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-644 $)) NIL)) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL (|has| |#1| (-558)))) (-3529 (($ $) NIL) (($ $ $) NIL)) (-2073 (($ $) 249 (|has| |#1| (-558)))) (-1641 (($ $) 200 (|has| |#1| (-558)))) (-3561 (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-1049))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-1049))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-1049))) (($ $ (-1175)) NIL (|has| |#1| (-1049)))) (-2023 (($ $) 74 (|has| |#1| (-558)))) (-4339 (((-1124 |#1| (-612 $)) $) 93 (|has| |#1| (-558)))) (-1616 (($ $) 317 (|has| $ (-1049)))) (-4144 (($ $) 177 (|has| |#1| (-558)))) (-2141 (($ $) 153 (|has| |#1| (-558)))) (-4124 (($ $) 173 (|has| |#1| (-558)))) (-2118 (($ $) 149 (|has| |#1| (-558)))) (-4104 (($ $) 169 (|has| |#1| (-558)))) (-2098 (($ $) 145 (|has| |#1| (-558)))) (-1348 (((-892 (-566)) $) NIL (|has| |#1| (-614 (-892 (-566))))) (((-892 (-381)) $) NIL (|has| |#1| (-614 (-892 (-381))))) (($ (-420 $)) NIL (|has| |#1| (-558))) (((-538) $) 363 (|has| |#1| (-614 (-538))))) (-2358 (($ $ $) NIL (|has| |#1| (-475)))) (-3171 (($ $ $) NIL (|has| |#1| (-475)))) (-3783 (((-862) $) 424) (($ (-612 $)) 415) (($ (-1175)) 381) (($ |#1|) 337) (($ $) NIL (|has| |#1| (-558))) (($ (-48)) 312 (-12 (|has| |#1| (-558)) (|has| |#1| (-1038 (-566))))) (($ (-1124 |#1| (-612 $))) 95 (|has| |#1| (-1049))) (($ (-409 |#1|)) NIL (|has| |#1| (-558))) (($ (-952 (-409 |#1|))) NIL (|has| |#1| (-558))) (($ (-409 (-952 (-409 |#1|)))) NIL (|has| |#1| (-558))) (($ (-409 (-952 |#1|))) NIL (|has| |#1| (-558))) (($ (-952 |#1|)) NIL (|has| |#1| (-1049))) (($ (-409 (-566))) NIL (-2809 (|has| |#1| (-558)) (|has| |#1| (-1038 (-409 (-566)))))) (($ (-566)) 34 (-2809 (|has| |#1| (-1038 (-566))) (|has| |#1| (-1049))))) (-3144 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2107 (((-771)) NIL (|has| |#1| (-1049)) CONST)) (-1630 (($ $) NIL) (($ (-644 $)) NIL)) (-3228 (($ $ $) 220 (|has| |#1| (-558)))) (-1357 (($ $ $) 206 (|has| |#1| (-558)))) (-4226 (($ $ $) 210 (|has| |#1| (-558)))) (-4335 (($ $ $) 204 (|has| |#1| (-558)))) (-3180 (($ $ $) 208 (|has| |#1| (-558)))) (-2825 (((-112) (-114)) 10)) (-3117 (((-112) $ $) 86)) (-4177 (($ $) 183 (|has| |#1| (-558)))) (-2180 (($ $) 159 (|has| |#1| (-558)))) (-2695 (((-112) $ $) NIL (|has| |#1| (-558)))) (-4155 (($ $) 179 (|has| |#1| (-558)))) (-2153 (($ $) 155 (|has| |#1| (-558)))) (-4198 (($ $) 187 (|has| |#1| (-558)))) (-2212 (($ $) 163 (|has| |#1| (-558)))) (-4229 (($ (-1175) $) NIL) (($ (-1175) $ $) NIL) (($ (-1175) $ $ $) NIL) (($ (-1175) $ $ $ $) NIL) (($ (-1175) (-644 $)) NIL)) (-1949 (($ $) 214 (|has| |#1| (-558)))) (-3848 (($ $) 212 (|has| |#1| (-558)))) (-2976 (($ $) 189 (|has| |#1| (-558)))) (-2227 (($ $) 165 (|has| |#1| (-558)))) (-4188 (($ $) 185 (|has| |#1| (-558)))) (-2196 (($ $) 161 (|has| |#1| (-558)))) (-4166 (($ $) 181 (|has| |#1| (-558)))) (-2166 (($ $) 157 (|has| |#1| (-558)))) (-2086 (($ $) 192 (|has| |#1| (-558)))) (-2479 (($) 21 (-2809 (|has| |#1| (-25)) (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049)))) CONST)) (-4092 (($ $) 243 (|has| |#1| (-558)))) (-4334 (($) 23 (-2809 (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))) (|has| |#1| (-1111))) CONST)) (-2411 (($ $) 194 (|has| |#1| (-558))) (($ $ $) 196 (|has| |#1| (-558)))) (-3685 (($ $) 241 (|has| |#1| (-558)))) (-2875 (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-1049))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-1049))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-1049))) (($ $ (-1175)) NIL (|has| |#1| (-1049)))) (-3617 (($ $) 245 (|has| |#1| (-558)))) (-2880 (($ $ $) 198 (|has| |#1| (-558)))) (-2947 (((-112) $ $) 88)) (-3065 (($ (-1124 |#1| (-612 $)) (-1124 |#1| (-612 $))) 106 (|has| |#1| (-558))) (($ $ $) 42 (-2809 (|has| |#1| (-475)) (|has| |#1| (-558))))) (-3053 (($ $ $) 40 (-2809 (|has| |#1| (-21)) (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))))) (($ $) 29 (-2809 (|has| |#1| (-21)) (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049)))))) (-3041 (($ $ $) 38 (-2809 (|has| |#1| (-25)) (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049)))))) (** (($ $ $) 64 (|has| |#1| (-558))) (($ $ (-409 (-566))) 314 (|has| |#1| (-558))) (($ $ (-566)) 80 (-2809 (|has| |#1| (-475)) (|has| |#1| (-558)))) (($ $ (-771)) 75 (-2809 (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))) (|has| |#1| (-1111)))) (($ $ (-921)) 84 (-2809 (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))) (|has| |#1| (-1111))))) (* (($ (-409 (-566)) $) NIL (|has| |#1| (-558))) (($ $ (-409 (-566))) NIL (|has| |#1| (-558))) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))) (($ $ $) 36 (-2809 (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))) (|has| |#1| (-1111)))) (($ (-566) $) 32 (-2809 (|has| |#1| (-21)) (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))))) (($ (-771) $) NIL (-2809 (|has| |#1| (-25)) (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))))) (($ (-921) $) NIL (-2809 (|has| |#1| (-25)) (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))))))) -(((-317 |#1|) (-13 (-432 |#1|) (-10 -8 (IF (|has| |#1| (-558)) (PROGN (-6 (-29 |#1|)) (-6 (-1199)) (-6 (-160)) (-6 (-629)) (-6 (-1138)) (-15 -1676 ($ $)) (-15 -2009 ((-112) $)) (-15 -1609 ($ $ (-566))) (IF (|has| |#1| (-454)) (PROGN (-15 -3240 ((-420 (-1171 $)) (-1171 $))) (-15 -1477 ((-420 (-1171 $)) (-1171 $)))) |%noBranch|) (IF (|has| |#1| (-1038 (-566))) (-6 (-1038 (-48))) |%noBranch|)) |%noBranch|))) (-1099)) (T -317)) -((-1676 (*1 *1 *1) (-12 (-5 *1 (-317 *2)) (-4 *2 (-558)) (-4 *2 (-1099)))) (-2009 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-317 *3)) (-4 *3 (-558)) (-4 *3 (-1099)))) (-1609 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-317 *3)) (-4 *3 (-558)) (-4 *3 (-1099)))) (-3240 (*1 *2 *3) (-12 (-5 *2 (-420 (-1171 *1))) (-5 *1 (-317 *4)) (-5 *3 (-1171 *1)) (-4 *4 (-454)) (-4 *4 (-558)) (-4 *4 (-1099)))) (-1477 (*1 *2 *3) (-12 (-5 *2 (-420 (-1171 *1))) (-5 *1 (-317 *4)) (-5 *3 (-1171 *1)) (-4 *4 (-454)) (-4 *4 (-558)) (-4 *4 (-1099))))) -(-13 (-432 |#1|) (-10 -8 (IF (|has| |#1| (-558)) (PROGN (-6 (-29 |#1|)) (-6 (-1199)) (-6 (-160)) (-6 (-629)) (-6 (-1138)) (-15 -1676 ($ $)) (-15 -2009 ((-112) $)) (-15 -1609 ($ $ (-566))) (IF (|has| |#1| (-454)) (PROGN (-15 -3240 ((-420 (-1171 $)) (-1171 $))) (-15 -1477 ((-420 (-1171 $)) (-1171 $)))) |%noBranch|) (IF (|has| |#1| (-1038 (-566))) (-6 (-1038 (-48))) |%noBranch|)) |%noBranch|))) -((-2088 (((-52) |#2| (-114) (-295 |#2|) (-644 |#2|)) 89) (((-52) |#2| (-114) (-295 |#2|) (-295 |#2|)) 85) (((-52) |#2| (-114) (-295 |#2|) |#2|) 87) (((-52) (-295 |#2|) (-114) (-295 |#2|) |#2|) 88) (((-52) (-644 |#2|) (-644 (-114)) (-295 |#2|) (-644 (-295 |#2|))) 81) (((-52) (-644 |#2|) (-644 (-114)) (-295 |#2|) (-644 |#2|)) 83) (((-52) (-644 (-295 |#2|)) (-644 (-114)) (-295 |#2|) (-644 |#2|)) 84) (((-52) (-644 (-295 |#2|)) (-644 (-114)) (-295 |#2|) (-644 (-295 |#2|))) 82) (((-52) (-295 |#2|) (-114) (-295 |#2|) (-644 |#2|)) 90) (((-52) (-295 |#2|) (-114) (-295 |#2|) (-295 |#2|)) 86))) -(((-318 |#1| |#2|) (-10 -7 (-15 -2088 ((-52) (-295 |#2|) (-114) (-295 |#2|) (-295 |#2|))) (-15 -2088 ((-52) (-295 |#2|) (-114) (-295 |#2|) (-644 |#2|))) (-15 -2088 ((-52) (-644 (-295 |#2|)) (-644 (-114)) (-295 |#2|) (-644 (-295 |#2|)))) (-15 -2088 ((-52) (-644 (-295 |#2|)) (-644 (-114)) (-295 |#2|) (-644 |#2|))) (-15 -2088 ((-52) (-644 |#2|) (-644 (-114)) (-295 |#2|) (-644 |#2|))) (-15 -2088 ((-52) (-644 |#2|) (-644 (-114)) (-295 |#2|) (-644 (-295 |#2|)))) (-15 -2088 ((-52) (-295 |#2|) (-114) (-295 |#2|) |#2|)) (-15 -2088 ((-52) |#2| (-114) (-295 |#2|) |#2|)) (-15 -2088 ((-52) |#2| (-114) (-295 |#2|) (-295 |#2|))) (-15 -2088 ((-52) |#2| (-114) (-295 |#2|) (-644 |#2|)))) (-13 (-558) (-614 (-538))) (-432 |#1|)) (T -318)) -((-2088 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-5 *6 (-644 *3)) (-4 *3 (-432 *7)) (-4 *7 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) (-5 *1 (-318 *7 *3)))) (-2088 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-4 *3 (-432 *6)) (-4 *6 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *3)))) (-2088 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-4 *3 (-432 *6)) (-4 *6 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *3)))) (-2088 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-295 *5)) (-5 *4 (-114)) (-4 *5 (-432 *6)) (-4 *6 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *5)))) (-2088 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 (-114))) (-5 *6 (-644 (-295 *8))) (-4 *8 (-432 *7)) (-5 *5 (-295 *8)) (-4 *7 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) (-5 *1 (-318 *7 *8)))) (-2088 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-644 *7)) (-5 *4 (-644 (-114))) (-5 *5 (-295 *7)) (-4 *7 (-432 *6)) (-4 *6 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *7)))) (-2088 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-644 (-295 *8))) (-5 *4 (-644 (-114))) (-5 *5 (-295 *8)) (-5 *6 (-644 *8)) (-4 *8 (-432 *7)) (-4 *7 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) (-5 *1 (-318 *7 *8)))) (-2088 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-644 (-295 *7))) (-5 *4 (-644 (-114))) (-5 *5 (-295 *7)) (-4 *7 (-432 *6)) (-4 *6 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *7)))) (-2088 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-295 *7)) (-5 *4 (-114)) (-5 *5 (-644 *7)) (-4 *7 (-432 *6)) (-4 *6 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *7)))) (-2088 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-295 *6)) (-5 *4 (-114)) (-4 *6 (-432 *5)) (-4 *5 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) (-5 *1 (-318 *5 *6))))) -(-10 -7 (-15 -2088 ((-52) (-295 |#2|) (-114) (-295 |#2|) (-295 |#2|))) (-15 -2088 ((-52) (-295 |#2|) (-114) (-295 |#2|) (-644 |#2|))) (-15 -2088 ((-52) (-644 (-295 |#2|)) (-644 (-114)) (-295 |#2|) (-644 (-295 |#2|)))) (-15 -2088 ((-52) (-644 (-295 |#2|)) (-644 (-114)) (-295 |#2|) (-644 |#2|))) (-15 -2088 ((-52) (-644 |#2|) (-644 (-114)) (-295 |#2|) (-644 |#2|))) (-15 -2088 ((-52) (-644 |#2|) (-644 (-114)) (-295 |#2|) (-644 (-295 |#2|)))) (-15 -2088 ((-52) (-295 |#2|) (-114) (-295 |#2|) |#2|)) (-15 -2088 ((-52) |#2| (-114) (-295 |#2|) |#2|)) (-15 -2088 ((-52) |#2| (-114) (-295 |#2|) (-295 |#2|))) (-15 -2088 ((-52) |#2| (-114) (-295 |#2|) (-644 |#2|)))) -((-4182 (((-1209 (-926)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-225) (-566) (-1157)) 67) (((-1209 (-926)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-225) (-566)) 68) (((-1209 (-926)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-1 (-225) (-225)) (-566) (-1157)) 64) (((-1209 (-926)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-1 (-225) (-225)) (-566)) 65)) (-1504 (((-1 (-225) (-225)) (-225)) 66))) -(((-319) (-10 -7 (-15 -1504 ((-1 (-225) (-225)) (-225))) (-15 -4182 ((-1209 (-926)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-1 (-225) (-225)) (-566))) (-15 -4182 ((-1209 (-926)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-1 (-225) (-225)) (-566) (-1157))) (-15 -4182 ((-1209 (-926)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-225) (-566))) (-15 -4182 ((-1209 (-926)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-225) (-566) (-1157))))) (T -319)) -((-4182 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-317 (-566))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1093 (-225))) (-5 *6 (-225)) (-5 *7 (-566)) (-5 *8 (-1157)) (-5 *2 (-1209 (-926))) (-5 *1 (-319)))) (-4182 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-317 (-566))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1093 (-225))) (-5 *6 (-225)) (-5 *7 (-566)) (-5 *2 (-1209 (-926))) (-5 *1 (-319)))) (-4182 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-317 (-566))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1093 (-225))) (-5 *6 (-566)) (-5 *7 (-1157)) (-5 *2 (-1209 (-926))) (-5 *1 (-319)))) (-4182 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-317 (-566))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1093 (-225))) (-5 *6 (-566)) (-5 *2 (-1209 (-926))) (-5 *1 (-319)))) (-1504 (*1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-319)) (-5 *3 (-225))))) -(-10 -7 (-15 -1504 ((-1 (-225) (-225)) (-225))) (-15 -4182 ((-1209 (-926)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-1 (-225) (-225)) (-566))) (-15 -4182 ((-1209 (-926)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-1 (-225) (-225)) (-566) (-1157))) (-15 -4182 ((-1209 (-926)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-225) (-566))) (-15 -4182 ((-1209 (-926)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-225) (-566) (-1157)))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) 26)) (-3863 (((-644 (-1081)) $) NIL)) (-1385 (((-1175) $) NIL)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-3991 (($ $) NIL (|has| |#1| (-558)))) (-2388 (((-112) $) NIL (|has| |#1| (-558)))) (-2587 (($ $ (-409 (-566))) NIL) (($ $ (-409 (-566)) (-409 (-566))) NIL)) (-2775 (((-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#1|))) $) 20)) (-4114 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2109 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4175 (((-3 $ "failed") $ $) NIL)) (-1550 (($ $) NIL (|has| |#1| (-365)))) (-3184 (((-420 $) $) NIL (|has| |#1| (-365)))) (-3731 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2837 (((-112) $ $) NIL (|has| |#1| (-365)))) (-2240 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2085 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2052 (($ (-771) (-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#1|)))) NIL)) (-4134 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2129 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3012 (($) NIL T CONST)) (-2946 (($ $ $) NIL (|has| |#1| (-365)))) (-1786 (($ $) 36)) (-1878 (((-3 $ "failed") $) NIL)) (-2957 (($ $ $) NIL (|has| |#1| (-365)))) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL (|has| |#1| (-365)))) (-3268 (((-112) $) NIL (|has| |#1| (-365)))) (-2158 (((-112) $) NIL)) (-4361 (($) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3254 (((-409 (-566)) $) NIL) (((-409 (-566)) $ (-409 (-566))) 16)) (-3934 (((-112) $) NIL)) (-2140 (($ $ (-566)) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2955 (($ $ (-921)) NIL) (($ $ (-409 (-566))) NIL)) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-3264 (((-112) $) NIL)) (-3840 (($ |#1| (-409 (-566))) NIL) (($ $ (-1081) (-409 (-566))) NIL) (($ $ (-644 (-1081)) (-644 (-409 (-566)))) NIL)) (-2097 (($ $ $) NIL)) (-3962 (($ $ $) NIL)) (-1301 (($ (-1 |#1| |#1|) $) NIL)) (-3651 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1749 (($ $) NIL)) (-1763 ((|#1| $) NIL)) (-2167 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4117 (((-1157) $) NIL)) (-1713 (($ $) NIL (|has| |#1| (-365)))) (-1941 (($ $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) NIL (-2809 (-12 (|has| |#1| (-15 -1941 (|#1| |#1| (-1175)))) (|has| |#1| (-15 -3863 ((-644 (-1175)) |#1|))) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-959)) (|has| |#1| (-1199)))))) (-4035 (((-1119) $) NIL)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-365)))) (-2214 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3719 (((-420 $) $) NIL (|has| |#1| (-365)))) (-3148 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-365)))) (-3874 (($ $ (-409 (-566))) NIL)) (-2994 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-1831 (((-409 (-566)) $) 17)) (-1417 (($ (-1249 |#1| |#2| |#3|)) 11)) (-2852 (((-1249 |#1| |#2| |#3|) $) 12)) (-2561 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2055 (((-1155 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-409 (-566))))))) (-3039 (((-771) $) NIL (|has| |#1| (-365)))) (-4390 ((|#1| $ (-409 (-566))) NIL) (($ $ $) NIL (|has| (-409 (-566)) (-1111)))) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL (|has| |#1| (-365)))) (-3561 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (-3636 (((-409 (-566)) $) NIL)) (-4144 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2141 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4124 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2118 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4104 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2098 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2770 (($ $) 10)) (-3783 (((-862) $) 42) (($ (-566)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $) NIL (|has| |#1| (-558)))) (-2649 ((|#1| $ (-409 (-566))) 34)) (-3144 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2107 (((-771)) NIL T CONST)) (-1320 ((|#1| $) NIL)) (-3117 (((-112) $ $) NIL)) (-4177 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2180 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2695 (((-112) $ $) NIL (|has| |#1| (-558)))) (-4155 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2153 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4198 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2212 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3628 ((|#1| $ (-409 (-566))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-409 (-566))))) (|has| |#1| (-15 -3783 (|#1| (-1175))))))) (-2976 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2227 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4188 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2196 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4166 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2166 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2479 (($) NIL T CONST)) (-4334 (($) NIL T CONST)) (-2875 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (-3009 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2947 (((-112) $ $) 28)) (-2995 (((-112) $ $) NIL)) (-2969 (((-112) $ $) 37)) (-3065 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))))) -(((-320 |#1| |#2| |#3|) (-13 (-1245 |#1|) (-792) (-10 -8 (-15 -1417 ($ (-1249 |#1| |#2| |#3|))) (-15 -2852 ((-1249 |#1| |#2| |#3|) $)) (-15 -1831 ((-409 (-566)) $)))) (-365) (-1175) |#1|) (T -320)) -((-1417 (*1 *1 *2) (-12 (-5 *2 (-1249 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-1175)) (-14 *5 *3) (-5 *1 (-320 *3 *4 *5)))) (-2852 (*1 *2 *1) (-12 (-5 *2 (-1249 *3 *4 *5)) (-5 *1 (-320 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-1175)) (-14 *5 *3))) (-1831 (*1 *2 *1) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-320 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-1175)) (-14 *5 *3)))) -(-13 (-1245 |#1|) (-792) (-10 -8 (-15 -1417 ($ (-1249 |#1| |#2| |#3|))) (-15 -2852 ((-1249 |#1| |#2| |#3|) $)) (-15 -1831 ((-409 (-566)) $)))) -((-2140 (((-2 (|:| -2852 (-771)) (|:| -1364 |#1|) (|:| |radicand| (-644 |#1|))) (-420 |#1|) (-771)) 35)) (-3651 (((-644 (-2 (|:| -1364 (-771)) (|:| |logand| |#1|))) (-420 |#1|)) 40))) -(((-321 |#1|) (-10 -7 (-15 -2140 ((-2 (|:| -2852 (-771)) (|:| -1364 |#1|) (|:| |radicand| (-644 |#1|))) (-420 |#1|) (-771))) (-15 -3651 ((-644 (-2 (|:| -1364 (-771)) (|:| |logand| |#1|))) (-420 |#1|)))) (-558)) (T -321)) -((-3651 (*1 *2 *3) (-12 (-5 *3 (-420 *4)) (-4 *4 (-558)) (-5 *2 (-644 (-2 (|:| -1364 (-771)) (|:| |logand| *4)))) (-5 *1 (-321 *4)))) (-2140 (*1 *2 *3 *4) (-12 (-5 *3 (-420 *5)) (-4 *5 (-558)) (-5 *2 (-2 (|:| -2852 (-771)) (|:| -1364 *5) (|:| |radicand| (-644 *5)))) (-5 *1 (-321 *5)) (-5 *4 (-771))))) -(-10 -7 (-15 -2140 ((-2 (|:| -2852 (-771)) (|:| -1364 |#1|) (|:| |radicand| (-644 |#1|))) (-420 |#1|) (-771))) (-15 -3651 ((-644 (-2 (|:| -1364 (-771)) (|:| |logand| |#1|))) (-420 |#1|)))) -((-3863 (((-644 |#2|) (-1171 |#4|)) 44)) (-1383 ((|#3| (-566)) 47)) (-2527 (((-1171 |#4|) (-1171 |#3|)) 30)) (-1874 (((-1171 |#4|) (-1171 |#4|) (-566)) 66)) (-1757 (((-1171 |#3|) (-1171 |#4|)) 21)) (-3636 (((-644 (-771)) (-1171 |#4|) (-644 |#2|)) 41)) (-2294 (((-1171 |#3|) (-1171 |#4|) (-644 |#2|) (-644 |#3|)) 35))) -(((-322 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2294 ((-1171 |#3|) (-1171 |#4|) (-644 |#2|) (-644 |#3|))) (-15 -3636 ((-644 (-771)) (-1171 |#4|) (-644 |#2|))) (-15 -3863 ((-644 |#2|) (-1171 |#4|))) (-15 -1757 ((-1171 |#3|) (-1171 |#4|))) (-15 -2527 ((-1171 |#4|) (-1171 |#3|))) (-15 -1874 ((-1171 |#4|) (-1171 |#4|) (-566))) (-15 -1383 (|#3| (-566)))) (-793) (-850) (-1049) (-949 |#3| |#1| |#2|)) (T -322)) -((-1383 (*1 *2 *3) (-12 (-5 *3 (-566)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1049)) (-5 *1 (-322 *4 *5 *2 *6)) (-4 *6 (-949 *2 *4 *5)))) (-1874 (*1 *2 *2 *3) (-12 (-5 *2 (-1171 *7)) (-5 *3 (-566)) (-4 *7 (-949 *6 *4 *5)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1049)) (-5 *1 (-322 *4 *5 *6 *7)))) (-2527 (*1 *2 *3) (-12 (-5 *3 (-1171 *6)) (-4 *6 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-1171 *7)) (-5 *1 (-322 *4 *5 *6 *7)) (-4 *7 (-949 *6 *4 *5)))) (-1757 (*1 *2 *3) (-12 (-5 *3 (-1171 *7)) (-4 *7 (-949 *6 *4 *5)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1049)) (-5 *2 (-1171 *6)) (-5 *1 (-322 *4 *5 *6 *7)))) (-3863 (*1 *2 *3) (-12 (-5 *3 (-1171 *7)) (-4 *7 (-949 *6 *4 *5)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1049)) (-5 *2 (-644 *5)) (-5 *1 (-322 *4 *5 *6 *7)))) (-3636 (*1 *2 *3 *4) (-12 (-5 *3 (-1171 *8)) (-5 *4 (-644 *6)) (-4 *6 (-850)) (-4 *8 (-949 *7 *5 *6)) (-4 *5 (-793)) (-4 *7 (-1049)) (-5 *2 (-644 (-771))) (-5 *1 (-322 *5 *6 *7 *8)))) (-2294 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1171 *9)) (-5 *4 (-644 *7)) (-5 *5 (-644 *8)) (-4 *7 (-850)) (-4 *8 (-1049)) (-4 *9 (-949 *8 *6 *7)) (-4 *6 (-793)) (-5 *2 (-1171 *8)) (-5 *1 (-322 *6 *7 *8 *9))))) -(-10 -7 (-15 -2294 ((-1171 |#3|) (-1171 |#4|) (-644 |#2|) (-644 |#3|))) (-15 -3636 ((-644 (-771)) (-1171 |#4|) (-644 |#2|))) (-15 -3863 ((-644 |#2|) (-1171 |#4|))) (-15 -1757 ((-1171 |#3|) (-1171 |#4|))) (-15 -2527 ((-1171 |#4|) (-1171 |#3|))) (-15 -1874 ((-1171 |#4|) (-1171 |#4|) (-566))) (-15 -1383 (|#3| (-566)))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) 19)) (-2775 (((-644 (-2 (|:| |gen| |#1|) (|:| -2561 (-566)))) $) 21)) (-4175 (((-3 $ "failed") $ $) NIL)) (-1970 (((-771) $) NIL)) (-3012 (($) NIL T CONST)) (-4307 (((-3 |#1| "failed") $) NIL)) (-4205 ((|#1| $) NIL)) (-3946 ((|#1| $ (-566)) NIL)) (-3990 (((-566) $ (-566)) NIL)) (-2097 (($ $ $) NIL (|has| |#1| (-850)))) (-3962 (($ $ $) NIL (|has| |#1| (-850)))) (-1657 (($ (-1 |#1| |#1|) $) NIL)) (-3269 (($ (-1 (-566) (-566)) $) 11)) (-4117 (((-1157) $) NIL)) (-2943 (($ $ $) NIL (|has| (-566) (-792)))) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) NIL) (($ |#1|) NIL)) (-2649 (((-566) |#1| $) NIL)) (-3117 (((-112) $ $) NIL)) (-2479 (($) NIL T CONST)) (-3009 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2984 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2947 (((-112) $ $) NIL)) (-2995 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2969 (((-112) $ $) 29 (|has| |#1| (-850)))) (-3053 (($ $) 12) (($ $ $) 28)) (-3041 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ (-566)) NIL) (($ (-566) |#1|) 27))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) 60)) (-1873 (((-1250 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-308)))) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-2161 (($ $) NIL)) (-2345 (((-112) $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-2292 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-909)))) (-1378 (($ $) NIL)) (-1364 (((-420 $) $) NIL)) (-4066 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-909)))) (-2085 (((-112) $ $) NIL)) (-2743 (((-566) $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-820)))) (-2463 (($) NIL T CONST)) (-2229 (((-3 (-1250 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1175) "failed") $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-1038 (-1175)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-1038 (-566)))) (((-3 (-566) "failed") $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-1038 (-566)))) (((-3 (-1249 |#2| |#3| |#4|) "failed") $) 26)) (-4158 (((-1250 |#1| |#2| |#3| |#4|) $) NIL) (((-1175) $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-1038 (-1175)))) (((-409 (-566)) $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-1038 (-566)))) (((-566) $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-1038 (-566)))) (((-1249 |#2| |#3| |#4|) $) NIL)) (-2933 (($ $ $) NIL)) (-4089 (((-689 (-566)) (-689 $)) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-639 (-566)))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-639 (-566)))) (((-2 (|:| -3361 (-689 (-1250 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1264 (-1250 |#1| |#2| |#3| |#4|)))) (-689 $) (-1264 $)) NIL) (((-689 (-1250 |#1| |#2| |#3| |#4|)) (-689 $)) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-2715 (($) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-547)))) (-2945 (($ $ $) NIL)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL)) (-1615 (((-112) $) NIL)) (-2528 (((-112) $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-820)))) (-2926 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-886 (-566)))) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-886 (-381))))) (-2389 (((-112) $) NIL)) (-3406 (($ $) NIL)) (-2248 (((-1250 |#1| |#2| |#3| |#4|) $) 22)) (-2621 (((-3 $ "failed") $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-1150)))) (-3233 (((-112) $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-820)))) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1478 (($ $ $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-850)))) (-2599 (($ $ $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-850)))) (-2319 (($ (-1 (-1250 |#1| |#2| |#3| |#4|) (-1250 |#1| |#2| |#3| |#4|)) $) NIL)) (-2298 (((-3 (-843 |#2|) "failed") $) 80)) (-2128 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3380 (((-1157) $) NIL)) (-2748 (($ $) NIL)) (-3289 (($) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-1150)) CONST)) (-4072 (((-1119) $) NIL)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2164 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2487 (($ $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-308)))) (-3143 (((-1250 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-547)))) (-2010 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-909)))) (-1893 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-909)))) (-1624 (((-420 $) $) NIL)) (-3005 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2978 (((-3 $ "failed") $ $) NIL)) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2023 (($ $ (-644 (-1250 |#1| |#2| |#3| |#4|)) (-644 (-1250 |#1| |#2| |#3| |#4|))) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-310 (-1250 |#1| |#2| |#3| |#4|)))) (($ $ (-1250 |#1| |#2| |#3| |#4|) (-1250 |#1| |#2| |#3| |#4|)) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-310 (-1250 |#1| |#2| |#3| |#4|)))) (($ $ (-295 (-1250 |#1| |#2| |#3| |#4|))) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-310 (-1250 |#1| |#2| |#3| |#4|)))) (($ $ (-644 (-295 (-1250 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-310 (-1250 |#1| |#2| |#3| |#4|)))) (($ $ (-644 (-1175)) (-644 (-1250 |#1| |#2| |#3| |#4|))) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-516 (-1175) (-1250 |#1| |#2| |#3| |#4|)))) (($ $ (-1175) (-1250 |#1| |#2| |#3| |#4|)) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-516 (-1175) (-1250 |#1| |#2| |#3| |#4|))))) (-4357 (((-771) $) NIL)) (-1309 (($ $ (-1250 |#1| |#2| |#3| |#4|)) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-287 (-1250 |#1| |#2| |#3| |#4|) (-1250 |#1| |#2| |#3| |#4|))))) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL)) (-3629 (($ $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-771)) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-1175)) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-900 (-1175)))) (($ $ (-1 (-1250 |#1| |#2| |#3| |#4|) (-1250 |#1| |#2| |#3| |#4|)) (-771)) NIL) (($ $ (-1 (-1250 |#1| |#2| |#3| |#4|) (-1250 |#1| |#2| |#3| |#4|))) NIL)) (-1452 (($ $) NIL)) (-2260 (((-1250 |#1| |#2| |#3| |#4|) $) 19)) (-2376 (((-892 (-566)) $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-614 (-892 (-566))))) (((-892 (-381)) $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-614 (-892 (-381))))) (((-538) $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-614 (-538)))) (((-381) $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-1022))) (((-225) $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-1022)))) (-3391 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| (-1250 |#1| |#2| |#3| |#4|) (-909))))) (-3152 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (($ (-1250 |#1| |#2| |#3| |#4|)) 30) (($ (-1175)) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-1038 (-1175)))) (($ (-1249 |#2| |#3| |#4|)) 37)) (-2633 (((-3 $ "failed") $) NIL (-2768 (-12 (|has| $ (-145)) (|has| (-1250 |#1| |#2| |#3| |#4|) (-909))) (|has| (-1250 |#1| |#2| |#3| |#4|) (-145))))) (-2593 (((-771)) NIL T CONST)) (-3913 (((-1250 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-547)))) (-3044 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-1358 (($ $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-820)))) (-4356 (($) NIL T CONST)) (-4366 (($) NIL T CONST)) (-3497 (($ $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-771)) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-1175)) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-900 (-1175)))) (($ $ (-1 (-1250 |#1| |#2| |#3| |#4|) (-1250 |#1| |#2| |#3| |#4|)) (-771)) NIL) (($ $ (-1 (-1250 |#1| |#2| |#3| |#4|) (-1250 |#1| |#2| |#3| |#4|))) NIL)) (-2968 (((-112) $ $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-850)))) (-2946 (((-112) $ $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-850)))) (-2914 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-850)))) (-2935 (((-112) $ $) NIL (|has| (-1250 |#1| |#2| |#3| |#4|) (-850)))) (-3025 (($ $ $) 35) (($ (-1250 |#1| |#2| |#3| |#4|) (-1250 |#1| |#2| |#3| |#4|)) 32)) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ (-1250 |#1| |#2| |#3| |#4|) $) 31) (($ $ (-1250 |#1| |#2| |#3| |#4|)) NIL))) +(((-314 |#1| |#2| |#3| |#4|) (-13 (-992 (-1250 |#1| |#2| |#3| |#4|)) (-1038 (-1249 |#2| |#3| |#4|)) (-10 -8 (-15 -2298 ((-3 (-843 |#2|) "failed") $)) (-15 -3152 ($ (-1249 |#2| |#3| |#4|))))) (-13 (-1038 (-566)) (-639 (-566)) (-454)) (-13 (-27) (-1199) (-432 |#1|)) (-1175) |#2|) (T -314)) +((-3152 (*1 *1 *2) (-12 (-5 *2 (-1249 *4 *5 *6)) (-4 *4 (-13 (-27) (-1199) (-432 *3))) (-14 *5 (-1175)) (-14 *6 *4) (-4 *3 (-13 (-1038 (-566)) (-639 (-566)) (-454))) (-5 *1 (-314 *3 *4 *5 *6)))) (-2298 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1038 (-566)) (-639 (-566)) (-454))) (-5 *2 (-843 *4)) (-5 *1 (-314 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1199) (-432 *3))) (-14 *5 (-1175)) (-14 *6 *4)))) +(-13 (-992 (-1250 |#1| |#2| |#3| |#4|)) (-1038 (-1249 |#2| |#3| |#4|)) (-10 -8 (-15 -2298 ((-3 (-843 |#2|) "failed") $)) (-15 -3152 ($ (-1249 |#2| |#3| |#4|))))) +((-2319 (((-317 |#2|) (-1 |#2| |#1|) (-317 |#1|)) 13))) +(((-315 |#1| |#2|) (-10 -7 (-15 -2319 ((-317 |#2|) (-1 |#2| |#1|) (-317 |#1|)))) (-1099) (-1099)) (T -315)) +((-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-317 *5)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-5 *2 (-317 *6)) (-5 *1 (-315 *5 *6))))) +(-10 -7 (-15 -2319 ((-317 |#2|) (-1 |#2| |#1|) (-317 |#1|)))) +((-1827 (((-52) |#2| (-295 |#2|) (-771)) 40) (((-52) |#2| (-295 |#2|)) 32) (((-52) |#2| (-771)) 35) (((-52) |#2|) 33) (((-52) (-1175)) 26)) (-1427 (((-52) |#2| (-295 |#2|) (-409 (-566))) 59) (((-52) |#2| (-295 |#2|)) 56) (((-52) |#2| (-409 (-566))) 58) (((-52) |#2|) 57) (((-52) (-1175)) 55)) (-2729 (((-52) |#2| (-295 |#2|) (-409 (-566))) 54) (((-52) |#2| (-295 |#2|)) 51) (((-52) |#2| (-409 (-566))) 53) (((-52) |#2|) 52) (((-52) (-1175)) 50)) (-2719 (((-52) |#2| (-295 |#2|) (-566)) 47) (((-52) |#2| (-295 |#2|)) 44) (((-52) |#2| (-566)) 46) (((-52) |#2|) 45) (((-52) (-1175)) 43))) +(((-316 |#1| |#2|) (-10 -7 (-15 -1827 ((-52) (-1175))) (-15 -1827 ((-52) |#2|)) (-15 -1827 ((-52) |#2| (-771))) (-15 -1827 ((-52) |#2| (-295 |#2|))) (-15 -1827 ((-52) |#2| (-295 |#2|) (-771))) (-15 -2719 ((-52) (-1175))) (-15 -2719 ((-52) |#2|)) (-15 -2719 ((-52) |#2| (-566))) (-15 -2719 ((-52) |#2| (-295 |#2|))) (-15 -2719 ((-52) |#2| (-295 |#2|) (-566))) (-15 -2729 ((-52) (-1175))) (-15 -2729 ((-52) |#2|)) (-15 -2729 ((-52) |#2| (-409 (-566)))) (-15 -2729 ((-52) |#2| (-295 |#2|))) (-15 -2729 ((-52) |#2| (-295 |#2|) (-409 (-566)))) (-15 -1427 ((-52) (-1175))) (-15 -1427 ((-52) |#2|)) (-15 -1427 ((-52) |#2| (-409 (-566)))) (-15 -1427 ((-52) |#2| (-295 |#2|))) (-15 -1427 ((-52) |#2| (-295 |#2|) (-409 (-566))))) (-13 (-454) (-1038 (-566)) (-639 (-566))) (-13 (-27) (-1199) (-432 |#1|))) (T -316)) +((-1427 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-295 *3)) (-5 *5 (-409 (-566))) (-4 *3 (-13 (-27) (-1199) (-432 *6))) (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) (-1427 (*1 *2 *3 *4) (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5))) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)))) (-1427 (*1 *2 *3 *4) (-12 (-5 *4 (-409 (-566))) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5))))) (-1427 (*1 *2 *3) (-12 (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *4))))) (-1427 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1199) (-432 *4))))) (-2729 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-295 *3)) (-5 *5 (-409 (-566))) (-4 *3 (-13 (-27) (-1199) (-432 *6))) (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) (-2729 (*1 *2 *3 *4) (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5))) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)))) (-2729 (*1 *2 *3 *4) (-12 (-5 *4 (-409 (-566))) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5))))) (-2729 (*1 *2 *3) (-12 (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *4))))) (-2729 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1199) (-432 *4))))) (-2719 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *6))) (-4 *6 (-13 (-454) (-1038 *5) (-639 *5))) (-5 *5 (-566)) (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) (-2719 (*1 *2 *3 *4) (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5))) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)))) (-2719 (*1 *2 *3 *4) (-12 (-5 *4 (-566)) (-4 *5 (-13 (-454) (-1038 *4) (-639 *4))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5))))) (-2719 (*1 *2 *3) (-12 (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *4))))) (-2719 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1199) (-432 *4))))) (-1827 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-295 *3)) (-5 *5 (-771)) (-4 *3 (-13 (-27) (-1199) (-432 *6))) (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) (-1827 (*1 *2 *3 *4) (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5))) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)))) (-1827 (*1 *2 *3 *4) (-12 (-5 *4 (-771)) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5))))) (-1827 (*1 *2 *3) (-12 (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *4))))) (-1827 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1199) (-432 *4)))))) +(-10 -7 (-15 -1827 ((-52) (-1175))) (-15 -1827 ((-52) |#2|)) (-15 -1827 ((-52) |#2| (-771))) (-15 -1827 ((-52) |#2| (-295 |#2|))) (-15 -1827 ((-52) |#2| (-295 |#2|) (-771))) (-15 -2719 ((-52) (-1175))) (-15 -2719 ((-52) |#2|)) (-15 -2719 ((-52) |#2| (-566))) (-15 -2719 ((-52) |#2| (-295 |#2|))) (-15 -2719 ((-52) |#2| (-295 |#2|) (-566))) (-15 -2729 ((-52) (-1175))) (-15 -2729 ((-52) |#2|)) (-15 -2729 ((-52) |#2| (-409 (-566)))) (-15 -2729 ((-52) |#2| (-295 |#2|))) (-15 -2729 ((-52) |#2| (-295 |#2|) (-409 (-566)))) (-15 -1427 ((-52) (-1175))) (-15 -1427 ((-52) |#2|)) (-15 -1427 ((-52) |#2| (-409 (-566)))) (-15 -1427 ((-52) |#2| (-295 |#2|))) (-15 -1427 ((-52) |#2| (-295 |#2|) (-409 (-566))))) +((-2988 (((-112) $ $) NIL)) (-2082 (((-644 $) $ (-1175)) NIL (|has| |#1| (-558))) (((-644 $) $) NIL (|has| |#1| (-558))) (((-644 $) (-1171 $) (-1175)) NIL (|has| |#1| (-558))) (((-644 $) (-1171 $)) NIL (|has| |#1| (-558))) (((-644 $) (-952 $)) NIL (|has| |#1| (-558)))) (-1557 (($ $ (-1175)) NIL (|has| |#1| (-558))) (($ $) NIL (|has| |#1| (-558))) (($ (-1171 $) (-1175)) NIL (|has| |#1| (-558))) (($ (-1171 $)) NIL (|has| |#1| (-558))) (($ (-952 $)) NIL (|has| |#1| (-558)))) (-3230 (((-112) $) 27 (-2768 (|has| |#1| (-25)) (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049)))))) (-1771 (((-644 (-1175)) $) 368)) (-1590 (((-409 (-1171 $)) $ (-612 $)) NIL (|has| |#1| (-558)))) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-2161 (($ $) NIL (|has| |#1| (-558)))) (-2345 (((-112) $) NIL (|has| |#1| (-558)))) (-1470 (((-644 (-612 $)) $) NIL)) (-3963 (($ $) 171 (|has| |#1| (-558)))) (-3630 (($ $) 147 (|has| |#1| (-558)))) (-2786 (($ $ (-1091 $)) 232 (|has| |#1| (-558))) (($ $ (-1175)) 228 (|has| |#1| (-558)))) (-3967 (((-3 $ "failed") $ $) NIL (-2768 (|has| |#1| (-21)) (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049)))))) (-2500 (($ $ (-295 $)) NIL) (($ $ (-644 (-295 $))) 386) (($ $ (-644 (-612 $)) (-644 $)) 430)) (-2292 (((-420 (-1171 $)) (-1171 $)) 308 (-12 (|has| |#1| (-454)) (|has| |#1| (-558))))) (-1378 (($ $) NIL (|has| |#1| (-558)))) (-1364 (((-420 $) $) NIL (|has| |#1| (-558)))) (-1635 (($ $) NIL (|has| |#1| (-558)))) (-2085 (((-112) $ $) NIL (|has| |#1| (-558)))) (-3941 (($ $) 167 (|has| |#1| (-558)))) (-3602 (($ $) 143 (|has| |#1| (-558)))) (-2416 (($ $ (-566)) 73 (|has| |#1| (-558)))) (-3986 (($ $) 175 (|has| |#1| (-558)))) (-3656 (($ $) 151 (|has| |#1| (-558)))) (-2463 (($) NIL (-2768 (|has| |#1| (-25)) (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))) (|has| |#1| (-1111))) CONST)) (-4112 (((-644 $) $ (-1175)) NIL (|has| |#1| (-558))) (((-644 $) $) NIL (|has| |#1| (-558))) (((-644 $) (-1171 $) (-1175)) NIL (|has| |#1| (-558))) (((-644 $) (-1171 $)) NIL (|has| |#1| (-558))) (((-644 $) (-952 $)) NIL (|has| |#1| (-558)))) (-4093 (($ $ (-1175)) NIL (|has| |#1| (-558))) (($ $) NIL (|has| |#1| (-558))) (($ (-1171 $) (-1175)) 134 (|has| |#1| (-558))) (($ (-1171 $)) NIL (|has| |#1| (-558))) (($ (-952 $)) NIL (|has| |#1| (-558)))) (-2229 (((-3 (-612 $) "failed") $) 18) (((-3 (-1175) "failed") $) NIL) (((-3 |#1| "failed") $) 441) (((-3 (-48) "failed") $) 336 (-12 (|has| |#1| (-558)) (|has| |#1| (-1038 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-952 |#1|)) "failed") $) NIL (|has| |#1| (-558))) (((-3 (-952 |#1|) "failed") $) NIL (|has| |#1| (-1049))) (((-3 (-409 (-566)) "failed") $) 46 (-2768 (-12 (|has| |#1| (-558)) (|has| |#1| (-1038 (-566)))) (|has| |#1| (-1038 (-409 (-566))))))) (-4158 (((-612 $) $) 12) (((-1175) $) NIL) ((|#1| $) 421) (((-48) $) NIL (-12 (|has| |#1| (-558)) (|has| |#1| (-1038 (-566))))) (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-409 (-952 |#1|)) $) NIL (|has| |#1| (-558))) (((-952 |#1|) $) NIL (|has| |#1| (-1049))) (((-409 (-566)) $) 319 (-2768 (-12 (|has| |#1| (-558)) (|has| |#1| (-1038 (-566)))) (|has| |#1| (-1038 (-409 (-566))))))) (-2933 (($ $ $) NIL (|has| |#1| (-558)))) (-4089 (((-2 (|:| -3361 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) 125 (|has| |#1| (-1049))) (((-689 |#1|) (-689 $)) 115 (|has| |#1| (-1049))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049)))) (((-689 (-566)) (-689 $)) NIL (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))))) (-2873 (($ $) 96 (|has| |#1| (-558)))) (-3245 (((-3 $ "failed") $) NIL (-2768 (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))) (|has| |#1| (-1111))))) (-2945 (($ $ $) NIL (|has| |#1| (-558)))) (-2014 (($ $ (-1091 $)) 236 (|has| |#1| (-558))) (($ $ (-1175)) 234 (|has| |#1| (-558)))) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL (|has| |#1| (-558)))) (-1615 (((-112) $) NIL (|has| |#1| (-558)))) (-2078 (($ $ $) 202 (|has| |#1| (-558)))) (-2281 (($) 137 (|has| |#1| (-558)))) (-2413 (($ $ $) 222 (|has| |#1| (-558)))) (-2926 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 392 (|has| |#1| (-886 (-566)))) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 399 (|has| |#1| (-886 (-381))))) (-1633 (($ $) NIL) (($ (-644 $)) NIL)) (-1689 (((-644 (-114)) $) NIL)) (-1566 (((-114) (-114)) 276)) (-2389 (((-112) $) 25 (-2768 (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))) (|has| |#1| (-1111))))) (-3419 (((-112) $) NIL (|has| $ (-1038 (-566))))) (-3406 (($ $) 72 (|has| |#1| (-1049)))) (-2248 (((-1124 |#1| (-612 $)) $) 91 (|has| |#1| (-1049)))) (-2809 (((-112) $) 62 (|has| |#1| (-558)))) (-1575 (($ $ (-566)) NIL (|has| |#1| (-558)))) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-558)))) (-2024 (((-1171 $) (-612 $)) 277 (|has| $ (-1049)))) (-2319 (($ (-1 $ $) (-612 $)) 426)) (-4010 (((-3 (-612 $) "failed") $) NIL)) (-3619 (($ $) 141 (|has| |#1| (-558)))) (-3301 (($ $) 247 (|has| |#1| (-558)))) (-2128 (($ (-644 $)) NIL (|has| |#1| (-558))) (($ $ $) NIL (|has| |#1| (-558)))) (-3380 (((-1157) $) NIL)) (-1552 (((-644 (-612 $)) $) 49)) (-2328 (($ (-114) $) NIL) (($ (-114) (-644 $)) 431)) (-3738 (((-3 (-644 $) "failed") $) NIL (|has| |#1| (-1111)))) (-4224 (((-3 (-2 (|:| |val| $) (|:| -2201 (-566))) "failed") $) NIL (|has| |#1| (-1049)))) (-4199 (((-3 (-644 $) "failed") $) 436 (|has| |#1| (-25)))) (-3944 (((-3 (-2 (|:| -2397 (-566)) (|:| |var| (-612 $))) "failed") $) 440 (|has| |#1| (-25)))) (-4108 (((-3 (-2 (|:| |var| (-612 $)) (|:| -2201 (-566))) "failed") $) NIL (|has| |#1| (-1111))) (((-3 (-2 (|:| |var| (-612 $)) (|:| -2201 (-566))) "failed") $ (-114)) NIL (|has| |#1| (-1049))) (((-3 (-2 (|:| |var| (-612 $)) (|:| -2201 (-566))) "failed") $ (-1175)) NIL (|has| |#1| (-1049)))) (-3335 (((-112) $ (-114)) NIL) (((-112) $ (-1175)) 51)) (-2748 (($ $) NIL (-2768 (|has| |#1| (-475)) (|has| |#1| (-558))))) (-3428 (($ $ (-1175)) 251 (|has| |#1| (-558))) (($ $ (-1091 $)) 253 (|has| |#1| (-558)))) (-3106 (((-771) $) NIL)) (-4072 (((-1119) $) NIL)) (-2761 (((-112) $) 43)) (-2773 ((|#1| $) NIL)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) 301 (|has| |#1| (-558)))) (-2164 (($ (-644 $)) NIL (|has| |#1| (-558))) (($ $ $) NIL (|has| |#1| (-558)))) (-3671 (((-112) $ $) NIL) (((-112) $ (-1175)) NIL)) (-1464 (($ $ (-1175)) 226 (|has| |#1| (-558))) (($ $) 224 (|has| |#1| (-558)))) (-2499 (($ $) 218 (|has| |#1| (-558)))) (-1893 (((-420 (-1171 $)) (-1171 $)) 306 (-12 (|has| |#1| (-454)) (|has| |#1| (-558))))) (-1624 (((-420 $) $) NIL (|has| |#1| (-558)))) (-3005 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-558))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL (|has| |#1| (-558)))) (-2978 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-558)))) (-3521 (($ $) 139 (|has| |#1| (-558)))) (-2664 (((-112) $) NIL (|has| $ (-1038 (-566))))) (-2023 (($ $ (-612 $) $) NIL) (($ $ (-644 (-612 $)) (-644 $)) 425) (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-644 (-1175)) (-644 (-1 $ $))) NIL) (($ $ (-644 (-1175)) (-644 (-1 $ (-644 $)))) NIL) (($ $ (-1175) (-1 $ (-644 $))) NIL) (($ $ (-1175) (-1 $ $)) NIL) (($ $ (-644 (-114)) (-644 (-1 $ $))) 379) (($ $ (-644 (-114)) (-644 (-1 $ (-644 $)))) NIL) (($ $ (-114) (-1 $ (-644 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1175)) NIL (|has| |#1| (-614 (-538)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-614 (-538)))) (($ $) NIL (|has| |#1| (-614 (-538)))) (($ $ (-114) $ (-1175)) 366 (|has| |#1| (-614 (-538)))) (($ $ (-644 (-114)) (-644 $) (-1175)) 365 (|has| |#1| (-614 (-538)))) (($ $ (-644 (-1175)) (-644 (-771)) (-644 (-1 $ $))) NIL (|has| |#1| (-1049))) (($ $ (-644 (-1175)) (-644 (-771)) (-644 (-1 $ (-644 $)))) NIL (|has| |#1| (-1049))) (($ $ (-1175) (-771) (-1 $ (-644 $))) NIL (|has| |#1| (-1049))) (($ $ (-1175) (-771) (-1 $ $)) NIL (|has| |#1| (-1049)))) (-4357 (((-771) $) NIL (|has| |#1| (-558)))) (-3552 (($ $) 239 (|has| |#1| (-558)))) (-1309 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-644 $)) NIL)) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL (|has| |#1| (-558)))) (-2020 (($ $) NIL) (($ $ $) NIL)) (-3590 (($ $) 249 (|has| |#1| (-558)))) (-2469 (($ $) 200 (|has| |#1| (-558)))) (-3629 (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-1049))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-1049))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-1049))) (($ $ (-1175)) NIL (|has| |#1| (-1049)))) (-1452 (($ $) 74 (|has| |#1| (-558)))) (-2260 (((-1124 |#1| (-612 $)) $) 93 (|has| |#1| (-558)))) (-1705 (($ $) 317 (|has| $ (-1049)))) (-3996 (($ $) 177 (|has| |#1| (-558)))) (-3670 (($ $) 153 (|has| |#1| (-558)))) (-3976 (($ $) 173 (|has| |#1| (-558)))) (-3643 (($ $) 149 (|has| |#1| (-558)))) (-3952 (($ $) 169 (|has| |#1| (-558)))) (-3618 (($ $) 145 (|has| |#1| (-558)))) (-2376 (((-892 (-566)) $) NIL (|has| |#1| (-614 (-892 (-566))))) (((-892 (-381)) $) NIL (|has| |#1| (-614 (-892 (-381))))) (($ (-420 $)) NIL (|has| |#1| (-558))) (((-538) $) 363 (|has| |#1| (-614 (-538))))) (-3357 (($ $ $) NIL (|has| |#1| (-475)))) (-2527 (($ $ $) NIL (|has| |#1| (-475)))) (-3152 (((-862) $) 424) (($ (-612 $)) 415) (($ (-1175)) 381) (($ |#1|) 337) (($ $) NIL (|has| |#1| (-558))) (($ (-48)) 312 (-12 (|has| |#1| (-558)) (|has| |#1| (-1038 (-566))))) (($ (-1124 |#1| (-612 $))) 95 (|has| |#1| (-1049))) (($ (-409 |#1|)) NIL (|has| |#1| (-558))) (($ (-952 (-409 |#1|))) NIL (|has| |#1| (-558))) (($ (-409 (-952 (-409 |#1|)))) NIL (|has| |#1| (-558))) (($ (-409 (-952 |#1|))) NIL (|has| |#1| (-558))) (($ (-952 |#1|)) NIL (|has| |#1| (-1049))) (($ (-409 (-566))) NIL (-2768 (|has| |#1| (-558)) (|has| |#1| (-1038 (-409 (-566)))))) (($ (-566)) 34 (-2768 (|has| |#1| (-1038 (-566))) (|has| |#1| (-1049))))) (-2633 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2593 (((-771)) NIL (|has| |#1| (-1049)) CONST)) (-3928 (($ $) NIL) (($ (-644 $)) NIL)) (-2073 (($ $ $) 220 (|has| |#1| (-558)))) (-1429 (($ $ $) 206 (|has| |#1| (-558)))) (-3273 (($ $ $) 210 (|has| |#1| (-558)))) (-2941 (($ $ $) 204 (|has| |#1| (-558)))) (-4087 (($ $ $) 208 (|has| |#1| (-558)))) (-3515 (((-112) (-114)) 10)) (-3044 (((-112) $ $) 86)) (-4032 (($ $) 183 (|has| |#1| (-558)))) (-3892 (($ $) 159 (|has| |#1| (-558)))) (-3014 (((-112) $ $) NIL (|has| |#1| (-558)))) (-4008 (($ $) 179 (|has| |#1| (-558)))) (-3684 (($ $) 155 (|has| |#1| (-558)))) (-4057 (($ $) 187 (|has| |#1| (-558)))) (-3917 (($ $) 163 (|has| |#1| (-558)))) (-4088 (($ (-1175) $) NIL) (($ (-1175) $ $) NIL) (($ (-1175) $ $ $) NIL) (($ (-1175) $ $ $ $) NIL) (($ (-1175) (-644 $)) NIL)) (-2893 (($ $) 214 (|has| |#1| (-558)))) (-3094 (($ $) 212 (|has| |#1| (-558)))) (-3964 (($ $) 189 (|has| |#1| (-558)))) (-3929 (($ $) 165 (|has| |#1| (-558)))) (-4044 (($ $) 185 (|has| |#1| (-558)))) (-3904 (($ $) 161 (|has| |#1| (-558)))) (-4020 (($ $) 181 (|has| |#1| (-558)))) (-3879 (($ $) 157 (|has| |#1| (-558)))) (-1358 (($ $) 192 (|has| |#1| (-558)))) (-4356 (($) 21 (-2768 (|has| |#1| (-25)) (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049)))) CONST)) (-2884 (($ $) 243 (|has| |#1| (-558)))) (-4366 (($) 23 (-2768 (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))) (|has| |#1| (-1111))) CONST)) (-2879 (($ $) 194 (|has| |#1| (-558))) (($ $ $) 196 (|has| |#1| (-558)))) (-4106 (($ $) 241 (|has| |#1| (-558)))) (-3497 (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-1049))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-1049))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-1049))) (($ $ (-1175)) NIL (|has| |#1| (-1049)))) (-1802 (($ $) 245 (|has| |#1| (-558)))) (-4006 (($ $ $) 198 (|has| |#1| (-558)))) (-2914 (((-112) $ $) 88)) (-3025 (($ (-1124 |#1| (-612 $)) (-1124 |#1| (-612 $))) 106 (|has| |#1| (-558))) (($ $ $) 42 (-2768 (|has| |#1| (-475)) (|has| |#1| (-558))))) (-3012 (($ $ $) 40 (-2768 (|has| |#1| (-21)) (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))))) (($ $) 29 (-2768 (|has| |#1| (-21)) (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049)))))) (-3002 (($ $ $) 38 (-2768 (|has| |#1| (-25)) (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049)))))) (** (($ $ $) 64 (|has| |#1| (-558))) (($ $ (-409 (-566))) 314 (|has| |#1| (-558))) (($ $ (-566)) 80 (-2768 (|has| |#1| (-475)) (|has| |#1| (-558)))) (($ $ (-771)) 75 (-2768 (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))) (|has| |#1| (-1111)))) (($ $ (-921)) 84 (-2768 (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))) (|has| |#1| (-1111))))) (* (($ (-409 (-566)) $) NIL (|has| |#1| (-558))) (($ $ (-409 (-566))) NIL (|has| |#1| (-558))) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))) (($ $ $) 36 (-2768 (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))) (|has| |#1| (-1111)))) (($ (-566) $) 32 (-2768 (|has| |#1| (-21)) (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))))) (($ (-771) $) NIL (-2768 (|has| |#1| (-25)) (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))))) (($ (-921) $) NIL (-2768 (|has| |#1| (-25)) (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))))))) +(((-317 |#1|) (-13 (-432 |#1|) (-10 -8 (IF (|has| |#1| (-558)) (PROGN (-6 (-29 |#1|)) (-6 (-1199)) (-6 (-160)) (-6 (-629)) (-6 (-1138)) (-15 -2873 ($ $)) (-15 -2809 ((-112) $)) (-15 -2416 ($ $ (-566))) (IF (|has| |#1| (-454)) (PROGN (-15 -1893 ((-420 (-1171 $)) (-1171 $))) (-15 -2292 ((-420 (-1171 $)) (-1171 $)))) |%noBranch|) (IF (|has| |#1| (-1038 (-566))) (-6 (-1038 (-48))) |%noBranch|)) |%noBranch|))) (-1099)) (T -317)) +((-2873 (*1 *1 *1) (-12 (-5 *1 (-317 *2)) (-4 *2 (-558)) (-4 *2 (-1099)))) (-2809 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-317 *3)) (-4 *3 (-558)) (-4 *3 (-1099)))) (-2416 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-317 *3)) (-4 *3 (-558)) (-4 *3 (-1099)))) (-1893 (*1 *2 *3) (-12 (-5 *2 (-420 (-1171 *1))) (-5 *1 (-317 *4)) (-5 *3 (-1171 *1)) (-4 *4 (-454)) (-4 *4 (-558)) (-4 *4 (-1099)))) (-2292 (*1 *2 *3) (-12 (-5 *2 (-420 (-1171 *1))) (-5 *1 (-317 *4)) (-5 *3 (-1171 *1)) (-4 *4 (-454)) (-4 *4 (-558)) (-4 *4 (-1099))))) +(-13 (-432 |#1|) (-10 -8 (IF (|has| |#1| (-558)) (PROGN (-6 (-29 |#1|)) (-6 (-1199)) (-6 (-160)) (-6 (-629)) (-6 (-1138)) (-15 -2873 ($ $)) (-15 -2809 ((-112) $)) (-15 -2416 ($ $ (-566))) (IF (|has| |#1| (-454)) (PROGN (-15 -1893 ((-420 (-1171 $)) (-1171 $))) (-15 -2292 ((-420 (-1171 $)) (-1171 $)))) |%noBranch|) (IF (|has| |#1| (-1038 (-566))) (-6 (-1038 (-48))) |%noBranch|)) |%noBranch|))) +((-3403 (((-52) |#2| (-114) (-295 |#2|) (-644 |#2|)) 89) (((-52) |#2| (-114) (-295 |#2|) (-295 |#2|)) 85) (((-52) |#2| (-114) (-295 |#2|) |#2|) 87) (((-52) (-295 |#2|) (-114) (-295 |#2|) |#2|) 88) (((-52) (-644 |#2|) (-644 (-114)) (-295 |#2|) (-644 (-295 |#2|))) 81) (((-52) (-644 |#2|) (-644 (-114)) (-295 |#2|) (-644 |#2|)) 83) (((-52) (-644 (-295 |#2|)) (-644 (-114)) (-295 |#2|) (-644 |#2|)) 84) (((-52) (-644 (-295 |#2|)) (-644 (-114)) (-295 |#2|) (-644 (-295 |#2|))) 82) (((-52) (-295 |#2|) (-114) (-295 |#2|) (-644 |#2|)) 90) (((-52) (-295 |#2|) (-114) (-295 |#2|) (-295 |#2|)) 86))) +(((-318 |#1| |#2|) (-10 -7 (-15 -3403 ((-52) (-295 |#2|) (-114) (-295 |#2|) (-295 |#2|))) (-15 -3403 ((-52) (-295 |#2|) (-114) (-295 |#2|) (-644 |#2|))) (-15 -3403 ((-52) (-644 (-295 |#2|)) (-644 (-114)) (-295 |#2|) (-644 (-295 |#2|)))) (-15 -3403 ((-52) (-644 (-295 |#2|)) (-644 (-114)) (-295 |#2|) (-644 |#2|))) (-15 -3403 ((-52) (-644 |#2|) (-644 (-114)) (-295 |#2|) (-644 |#2|))) (-15 -3403 ((-52) (-644 |#2|) (-644 (-114)) (-295 |#2|) (-644 (-295 |#2|)))) (-15 -3403 ((-52) (-295 |#2|) (-114) (-295 |#2|) |#2|)) (-15 -3403 ((-52) |#2| (-114) (-295 |#2|) |#2|)) (-15 -3403 ((-52) |#2| (-114) (-295 |#2|) (-295 |#2|))) (-15 -3403 ((-52) |#2| (-114) (-295 |#2|) (-644 |#2|)))) (-13 (-558) (-614 (-538))) (-432 |#1|)) (T -318)) +((-3403 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-5 *6 (-644 *3)) (-4 *3 (-432 *7)) (-4 *7 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) (-5 *1 (-318 *7 *3)))) (-3403 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-4 *3 (-432 *6)) (-4 *6 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *3)))) (-3403 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-4 *3 (-432 *6)) (-4 *6 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *3)))) (-3403 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-295 *5)) (-5 *4 (-114)) (-4 *5 (-432 *6)) (-4 *6 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *5)))) (-3403 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 (-114))) (-5 *6 (-644 (-295 *8))) (-4 *8 (-432 *7)) (-5 *5 (-295 *8)) (-4 *7 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) (-5 *1 (-318 *7 *8)))) (-3403 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-644 *7)) (-5 *4 (-644 (-114))) (-5 *5 (-295 *7)) (-4 *7 (-432 *6)) (-4 *6 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *7)))) (-3403 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-644 (-295 *8))) (-5 *4 (-644 (-114))) (-5 *5 (-295 *8)) (-5 *6 (-644 *8)) (-4 *8 (-432 *7)) (-4 *7 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) (-5 *1 (-318 *7 *8)))) (-3403 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-644 (-295 *7))) (-5 *4 (-644 (-114))) (-5 *5 (-295 *7)) (-4 *7 (-432 *6)) (-4 *6 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *7)))) (-3403 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-295 *7)) (-5 *4 (-114)) (-5 *5 (-644 *7)) (-4 *7 (-432 *6)) (-4 *6 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *7)))) (-3403 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-295 *6)) (-5 *4 (-114)) (-4 *6 (-432 *5)) (-4 *5 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) (-5 *1 (-318 *5 *6))))) +(-10 -7 (-15 -3403 ((-52) (-295 |#2|) (-114) (-295 |#2|) (-295 |#2|))) (-15 -3403 ((-52) (-295 |#2|) (-114) (-295 |#2|) (-644 |#2|))) (-15 -3403 ((-52) (-644 (-295 |#2|)) (-644 (-114)) (-295 |#2|) (-644 (-295 |#2|)))) (-15 -3403 ((-52) (-644 (-295 |#2|)) (-644 (-114)) (-295 |#2|) (-644 |#2|))) (-15 -3403 ((-52) (-644 |#2|) (-644 (-114)) (-295 |#2|) (-644 |#2|))) (-15 -3403 ((-52) (-644 |#2|) (-644 (-114)) (-295 |#2|) (-644 (-295 |#2|)))) (-15 -3403 ((-52) (-295 |#2|) (-114) (-295 |#2|) |#2|)) (-15 -3403 ((-52) |#2| (-114) (-295 |#2|) |#2|)) (-15 -3403 ((-52) |#2| (-114) (-295 |#2|) (-295 |#2|))) (-15 -3403 ((-52) |#2| (-114) (-295 |#2|) (-644 |#2|)))) +((-3318 (((-1209 (-926)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-225) (-566) (-1157)) 67) (((-1209 (-926)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-225) (-566)) 68) (((-1209 (-926)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-1 (-225) (-225)) (-566) (-1157)) 64) (((-1209 (-926)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-1 (-225) (-225)) (-566)) 65)) (-2051 (((-1 (-225) (-225)) (-225)) 66))) +(((-319) (-10 -7 (-15 -2051 ((-1 (-225) (-225)) (-225))) (-15 -3318 ((-1209 (-926)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-1 (-225) (-225)) (-566))) (-15 -3318 ((-1209 (-926)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-1 (-225) (-225)) (-566) (-1157))) (-15 -3318 ((-1209 (-926)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-225) (-566))) (-15 -3318 ((-1209 (-926)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-225) (-566) (-1157))))) (T -319)) +((-3318 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-317 (-566))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1093 (-225))) (-5 *6 (-225)) (-5 *7 (-566)) (-5 *8 (-1157)) (-5 *2 (-1209 (-926))) (-5 *1 (-319)))) (-3318 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-317 (-566))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1093 (-225))) (-5 *6 (-225)) (-5 *7 (-566)) (-5 *2 (-1209 (-926))) (-5 *1 (-319)))) (-3318 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-317 (-566))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1093 (-225))) (-5 *6 (-566)) (-5 *7 (-1157)) (-5 *2 (-1209 (-926))) (-5 *1 (-319)))) (-3318 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-317 (-566))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1093 (-225))) (-5 *6 (-566)) (-5 *2 (-1209 (-926))) (-5 *1 (-319)))) (-2051 (*1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-319)) (-5 *3 (-225))))) +(-10 -7 (-15 -2051 ((-1 (-225) (-225)) (-225))) (-15 -3318 ((-1209 (-926)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-1 (-225) (-225)) (-566))) (-15 -3318 ((-1209 (-926)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-1 (-225) (-225)) (-566) (-1157))) (-15 -3318 ((-1209 (-926)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-225) (-566))) (-15 -3318 ((-1209 (-926)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-225) (-566) (-1157)))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) 26)) (-1771 (((-644 (-1081)) $) NIL)) (-4347 (((-1175) $) NIL)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-2161 (($ $) NIL (|has| |#1| (-558)))) (-2345 (((-112) $) NIL (|has| |#1| (-558)))) (-2331 (($ $ (-409 (-566))) NIL) (($ $ (-409 (-566)) (-409 (-566))) NIL)) (-4152 (((-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#1|))) $) 20)) (-3963 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3630 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3967 (((-3 $ "failed") $ $) NIL)) (-1378 (($ $) NIL (|has| |#1| (-365)))) (-1364 (((-420 $) $) NIL (|has| |#1| (-365)))) (-1635 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2085 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3941 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3602 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1427 (($ (-771) (-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#1|)))) NIL)) (-3986 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3656 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2463 (($) NIL T CONST)) (-2933 (($ $ $) NIL (|has| |#1| (-365)))) (-2814 (($ $) 36)) (-3245 (((-3 $ "failed") $) NIL)) (-2945 (($ $ $) NIL (|has| |#1| (-365)))) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL (|has| |#1| (-365)))) (-1615 (((-112) $) NIL (|has| |#1| (-365)))) (-3772 (((-112) $) NIL)) (-2281 (($) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2679 (((-409 (-566)) $) NIL) (((-409 (-566)) $ (-409 (-566))) 16)) (-2389 (((-112) $) NIL)) (-1575 (($ $ (-566)) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3394 (($ $ (-921)) NIL) (($ $ (-409 (-566))) NIL)) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-2497 (((-112) $) NIL)) (-1746 (($ |#1| (-409 (-566))) NIL) (($ $ (-1081) (-409 (-566))) NIL) (($ $ (-644 (-1081)) (-644 (-409 (-566)))) NIL)) (-1478 (($ $ $) NIL)) (-2599 (($ $ $) NIL)) (-2319 (($ (-1 |#1| |#1|) $) NIL)) (-3619 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2784 (($ $) NIL)) (-2794 ((|#1| $) NIL)) (-2128 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3380 (((-1157) $) NIL)) (-2748 (($ $) NIL (|has| |#1| (-365)))) (-3313 (($ $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) NIL (-2768 (-12 (|has| |#1| (-15 -3313 (|#1| |#1| (-1175)))) (|has| |#1| (-15 -1771 ((-644 (-1175)) |#1|))) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-959)) (|has| |#1| (-1199)))))) (-4072 (((-1119) $) NIL)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-365)))) (-2164 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-1624 (((-420 $) $) NIL (|has| |#1| (-365)))) (-3005 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL (|has| |#1| (-365)))) (-3369 (($ $ (-409 (-566))) NIL)) (-2978 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-1917 (((-409 (-566)) $) 17)) (-1797 (($ (-1249 |#1| |#2| |#3|)) 11)) (-2201 (((-1249 |#1| |#2| |#3|) $) 12)) (-3521 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2023 (((-1155 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-409 (-566))))))) (-4357 (((-771) $) NIL (|has| |#1| (-365)))) (-1309 ((|#1| $ (-409 (-566))) NIL) (($ $ $) NIL (|has| (-409 (-566)) (-1111)))) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL (|has| |#1| (-365)))) (-3629 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (-3902 (((-409 (-566)) $) NIL)) (-3996 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3670 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3976 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3643 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3952 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3618 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1687 (($ $) 10)) (-3152 (((-862) $) 42) (($ (-566)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $) NIL (|has| |#1| (-558)))) (-2271 ((|#1| $ (-409 (-566))) 34)) (-2633 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2593 (((-771)) NIL T CONST)) (-4290 ((|#1| $) NIL)) (-3044 (((-112) $ $) NIL)) (-4032 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3892 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3014 (((-112) $ $) NIL (|has| |#1| (-558)))) (-4008 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3684 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4057 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3917 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3603 ((|#1| $ (-409 (-566))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-409 (-566))))) (|has| |#1| (-15 -3152 (|#1| (-1175))))))) (-3964 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3929 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4044 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3904 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4020 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3879 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4356 (($) NIL T CONST)) (-4366 (($) NIL T CONST)) (-3497 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (-2968 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2914 (((-112) $ $) 28)) (-2956 (((-112) $ $) NIL)) (-2935 (((-112) $ $) 37)) (-3025 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))))) +(((-320 |#1| |#2| |#3|) (-13 (-1245 |#1|) (-792) (-10 -8 (-15 -1797 ($ (-1249 |#1| |#2| |#3|))) (-15 -2201 ((-1249 |#1| |#2| |#3|) $)) (-15 -1917 ((-409 (-566)) $)))) (-365) (-1175) |#1|) (T -320)) +((-1797 (*1 *1 *2) (-12 (-5 *2 (-1249 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-1175)) (-14 *5 *3) (-5 *1 (-320 *3 *4 *5)))) (-2201 (*1 *2 *1) (-12 (-5 *2 (-1249 *3 *4 *5)) (-5 *1 (-320 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-1175)) (-14 *5 *3))) (-1917 (*1 *2 *1) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-320 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-1175)) (-14 *5 *3)))) +(-13 (-1245 |#1|) (-792) (-10 -8 (-15 -1797 ($ (-1249 |#1| |#2| |#3|))) (-15 -2201 ((-1249 |#1| |#2| |#3|) $)) (-15 -1917 ((-409 (-566)) $)))) +((-1575 (((-2 (|:| -2201 (-771)) (|:| -2397 |#1|) (|:| |radicand| (-644 |#1|))) (-420 |#1|) (-771)) 35)) (-3619 (((-644 (-2 (|:| -2397 (-771)) (|:| |logand| |#1|))) (-420 |#1|)) 40))) +(((-321 |#1|) (-10 -7 (-15 -1575 ((-2 (|:| -2201 (-771)) (|:| -2397 |#1|) (|:| |radicand| (-644 |#1|))) (-420 |#1|) (-771))) (-15 -3619 ((-644 (-2 (|:| -2397 (-771)) (|:| |logand| |#1|))) (-420 |#1|)))) (-558)) (T -321)) +((-3619 (*1 *2 *3) (-12 (-5 *3 (-420 *4)) (-4 *4 (-558)) (-5 *2 (-644 (-2 (|:| -2397 (-771)) (|:| |logand| *4)))) (-5 *1 (-321 *4)))) (-1575 (*1 *2 *3 *4) (-12 (-5 *3 (-420 *5)) (-4 *5 (-558)) (-5 *2 (-2 (|:| -2201 (-771)) (|:| -2397 *5) (|:| |radicand| (-644 *5)))) (-5 *1 (-321 *5)) (-5 *4 (-771))))) +(-10 -7 (-15 -1575 ((-2 (|:| -2201 (-771)) (|:| -2397 |#1|) (|:| |radicand| (-644 |#1|))) (-420 |#1|) (-771))) (-15 -3619 ((-644 (-2 (|:| -2397 (-771)) (|:| |logand| |#1|))) (-420 |#1|)))) +((-1771 (((-644 |#2|) (-1171 |#4|)) 44)) (-3467 ((|#3| (-566)) 47)) (-2220 (((-1171 |#4|) (-1171 |#3|)) 30)) (-4099 (((-1171 |#4|) (-1171 |#4|) (-566)) 66)) (-2436 (((-1171 |#3|) (-1171 |#4|)) 21)) (-3902 (((-644 (-771)) (-1171 |#4|) (-644 |#2|)) 41)) (-4130 (((-1171 |#3|) (-1171 |#4|) (-644 |#2|) (-644 |#3|)) 35))) +(((-322 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4130 ((-1171 |#3|) (-1171 |#4|) (-644 |#2|) (-644 |#3|))) (-15 -3902 ((-644 (-771)) (-1171 |#4|) (-644 |#2|))) (-15 -1771 ((-644 |#2|) (-1171 |#4|))) (-15 -2436 ((-1171 |#3|) (-1171 |#4|))) (-15 -2220 ((-1171 |#4|) (-1171 |#3|))) (-15 -4099 ((-1171 |#4|) (-1171 |#4|) (-566))) (-15 -3467 (|#3| (-566)))) (-793) (-850) (-1049) (-949 |#3| |#1| |#2|)) (T -322)) +((-3467 (*1 *2 *3) (-12 (-5 *3 (-566)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1049)) (-5 *1 (-322 *4 *5 *2 *6)) (-4 *6 (-949 *2 *4 *5)))) (-4099 (*1 *2 *2 *3) (-12 (-5 *2 (-1171 *7)) (-5 *3 (-566)) (-4 *7 (-949 *6 *4 *5)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1049)) (-5 *1 (-322 *4 *5 *6 *7)))) (-2220 (*1 *2 *3) (-12 (-5 *3 (-1171 *6)) (-4 *6 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-1171 *7)) (-5 *1 (-322 *4 *5 *6 *7)) (-4 *7 (-949 *6 *4 *5)))) (-2436 (*1 *2 *3) (-12 (-5 *3 (-1171 *7)) (-4 *7 (-949 *6 *4 *5)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1049)) (-5 *2 (-1171 *6)) (-5 *1 (-322 *4 *5 *6 *7)))) (-1771 (*1 *2 *3) (-12 (-5 *3 (-1171 *7)) (-4 *7 (-949 *6 *4 *5)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1049)) (-5 *2 (-644 *5)) (-5 *1 (-322 *4 *5 *6 *7)))) (-3902 (*1 *2 *3 *4) (-12 (-5 *3 (-1171 *8)) (-5 *4 (-644 *6)) (-4 *6 (-850)) (-4 *8 (-949 *7 *5 *6)) (-4 *5 (-793)) (-4 *7 (-1049)) (-5 *2 (-644 (-771))) (-5 *1 (-322 *5 *6 *7 *8)))) (-4130 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1171 *9)) (-5 *4 (-644 *7)) (-5 *5 (-644 *8)) (-4 *7 (-850)) (-4 *8 (-1049)) (-4 *9 (-949 *8 *6 *7)) (-4 *6 (-793)) (-5 *2 (-1171 *8)) (-5 *1 (-322 *6 *7 *8 *9))))) +(-10 -7 (-15 -4130 ((-1171 |#3|) (-1171 |#4|) (-644 |#2|) (-644 |#3|))) (-15 -3902 ((-644 (-771)) (-1171 |#4|) (-644 |#2|))) (-15 -1771 ((-644 |#2|) (-1171 |#4|))) (-15 -2436 ((-1171 |#3|) (-1171 |#4|))) (-15 -2220 ((-1171 |#4|) (-1171 |#3|))) (-15 -4099 ((-1171 |#4|) (-1171 |#4|) (-566))) (-15 -3467 (|#3| (-566)))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) 19)) (-4152 (((-644 (-2 (|:| |gen| |#1|) (|:| -3521 (-566)))) $) 21)) (-3967 (((-3 $ "failed") $ $) NIL)) (-3870 (((-771) $) NIL)) (-2463 (($) NIL T CONST)) (-2229 (((-3 |#1| "failed") $) NIL)) (-4158 ((|#1| $) NIL)) (-2121 ((|#1| $ (-566)) NIL)) (-2052 (((-566) $ (-566)) NIL)) (-1478 (($ $ $) NIL (|has| |#1| (-850)))) (-2599 (($ $ $) NIL (|has| |#1| (-850)))) (-3499 (($ (-1 |#1| |#1|) $) NIL)) (-1728 (($ (-1 (-566) (-566)) $) 11)) (-3380 (((-1157) $) NIL)) (-1614 (($ $ $) NIL (|has| (-566) (-792)))) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) NIL) (($ |#1|) NIL)) (-2271 (((-566) |#1| $) NIL)) (-3044 (((-112) $ $) NIL)) (-4356 (($) NIL T CONST)) (-2968 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2914 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2935 (((-112) $ $) 29 (|has| |#1| (-850)))) (-3012 (($ $) 12) (($ $ $) 28)) (-3002 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ (-566)) NIL) (($ (-566) |#1|) 27))) (((-323 |#1|) (-13 (-21) (-717 (-566)) (-324 |#1| (-566)) (-10 -7 (IF (|has| |#1| (-850)) (-6 (-850)) |%noBranch|))) (-1099)) (T -323)) NIL (-13 (-21) (-717 (-566)) (-324 |#1| (-566)) (-10 -7 (IF (|has| |#1| (-850)) (-6 (-850)) |%noBranch|))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-2775 (((-644 (-2 (|:| |gen| |#1|) (|:| -2561 |#2|))) $) 28)) (-4175 (((-3 $ "failed") $ $) 20)) (-1970 (((-771) $) 29)) (-3012 (($) 18 T CONST)) (-4307 (((-3 |#1| "failed") $) 33)) (-4205 ((|#1| $) 34)) (-3946 ((|#1| $ (-566)) 26)) (-3990 ((|#2| $ (-566)) 27)) (-1657 (($ (-1 |#1| |#1|) $) 23)) (-3269 (($ (-1 |#2| |#2|) $) 24)) (-4117 (((-1157) $) 10)) (-2943 (($ $ $) 22 (|has| |#2| (-792)))) (-4035 (((-1119) $) 11)) (-3783 (((-862) $) 12) (($ |#1|) 32)) (-2649 ((|#2| |#1| $) 25)) (-3117 (((-112) $ $) 9)) (-2479 (($) 19 T CONST)) (-2947 (((-112) $ $) 6)) (-3041 (($ $ $) 15) (($ |#1| $) 31)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ |#2| |#1|) 30))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-4152 (((-644 (-2 (|:| |gen| |#1|) (|:| -3521 |#2|))) $) 28)) (-3967 (((-3 $ "failed") $ $) 20)) (-3870 (((-771) $) 29)) (-2463 (($) 18 T CONST)) (-2229 (((-3 |#1| "failed") $) 33)) (-4158 ((|#1| $) 34)) (-2121 ((|#1| $ (-566)) 26)) (-2052 ((|#2| $ (-566)) 27)) (-3499 (($ (-1 |#1| |#1|) $) 23)) (-1728 (($ (-1 |#2| |#2|) $) 24)) (-3380 (((-1157) $) 10)) (-1614 (($ $ $) 22 (|has| |#2| (-792)))) (-4072 (((-1119) $) 11)) (-3152 (((-862) $) 12) (($ |#1|) 32)) (-2271 ((|#2| |#1| $) 25)) (-3044 (((-112) $ $) 9)) (-4356 (($) 19 T CONST)) (-2914 (((-112) $ $) 6)) (-3002 (($ $ $) 15) (($ |#1| $) 31)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ |#2| |#1|) 30))) (((-324 |#1| |#2|) (-140) (-1099) (-131)) (T -324)) -((-3041 (*1 *1 *2 *1) (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-131)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-324 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-131)))) (-1970 (*1 *2 *1) (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-131)) (-5 *2 (-771)))) (-2775 (*1 *2 *1) (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-131)) (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -2561 *4)))))) (-3990 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *1 (-324 *4 *2)) (-4 *4 (-1099)) (-4 *2 (-131)))) (-3946 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *1 (-324 *2 *4)) (-4 *4 (-131)) (-4 *2 (-1099)))) (-2649 (*1 *2 *3 *1) (-12 (-4 *1 (-324 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-131)))) (-3269 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-324 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-131)))) (-1657 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-324 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-131)))) (-2943 (*1 *1 *1 *1) (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-131)) (-4 *3 (-792))))) -(-13 (-131) (-1038 |t#1|) (-10 -8 (-15 -3041 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -1970 ((-771) $)) (-15 -2775 ((-644 (-2 (|:| |gen| |t#1|) (|:| -2561 |t#2|))) $)) (-15 -3990 (|t#2| $ (-566))) (-15 -3946 (|t#1| $ (-566))) (-15 -2649 (|t#2| |t#1| $)) (-15 -3269 ($ (-1 |t#2| |t#2|) $)) (-15 -1657 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-792)) (-15 -2943 ($ $ $)) |%noBranch|))) +((-3002 (*1 *1 *2 *1) (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-131)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-324 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-131)))) (-3870 (*1 *2 *1) (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-131)) (-5 *2 (-771)))) (-4152 (*1 *2 *1) (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-131)) (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -3521 *4)))))) (-2052 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *1 (-324 *4 *2)) (-4 *4 (-1099)) (-4 *2 (-131)))) (-2121 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *1 (-324 *2 *4)) (-4 *4 (-131)) (-4 *2 (-1099)))) (-2271 (*1 *2 *3 *1) (-12 (-4 *1 (-324 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-131)))) (-1728 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-324 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-131)))) (-3499 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-324 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-131)))) (-1614 (*1 *1 *1 *1) (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-131)) (-4 *3 (-792))))) +(-13 (-131) (-1038 |t#1|) (-10 -8 (-15 -3002 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3870 ((-771) $)) (-15 -4152 ((-644 (-2 (|:| |gen| |t#1|) (|:| -3521 |t#2|))) $)) (-15 -2052 (|t#2| $ (-566))) (-15 -2121 (|t#1| $ (-566))) (-15 -2271 (|t#2| |t#1| $)) (-15 -1728 ($ (-1 |t#2| |t#2|) $)) (-15 -3499 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-792)) (-15 -1614 ($ $ $)) |%noBranch|))) (((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-616 |#1|) . T) ((-613 (-862)) . T) ((-1038 |#1|) . T) ((-1099) . T)) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-2775 (((-644 (-2 (|:| |gen| |#1|) (|:| -2561 (-771)))) $) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-1970 (((-771) $) NIL)) (-3012 (($) NIL T CONST)) (-4307 (((-3 |#1| "failed") $) NIL)) (-4205 ((|#1| $) NIL)) (-3946 ((|#1| $ (-566)) NIL)) (-3990 (((-771) $ (-566)) NIL)) (-1657 (($ (-1 |#1| |#1|) $) NIL)) (-3269 (($ (-1 (-771) (-771)) $) NIL)) (-4117 (((-1157) $) NIL)) (-2943 (($ $ $) NIL (|has| (-771) (-792)))) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) NIL) (($ |#1|) NIL)) (-2649 (((-771) |#1| $) NIL)) (-3117 (((-112) $ $) NIL)) (-2479 (($) NIL T CONST)) (-2947 (((-112) $ $) NIL)) (-3041 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-771) |#1|) NIL))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-4152 (((-644 (-2 (|:| |gen| |#1|) (|:| -3521 (-771)))) $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-3870 (((-771) $) NIL)) (-2463 (($) NIL T CONST)) (-2229 (((-3 |#1| "failed") $) NIL)) (-4158 ((|#1| $) NIL)) (-2121 ((|#1| $ (-566)) NIL)) (-2052 (((-771) $ (-566)) NIL)) (-3499 (($ (-1 |#1| |#1|) $) NIL)) (-1728 (($ (-1 (-771) (-771)) $) NIL)) (-3380 (((-1157) $) NIL)) (-1614 (($ $ $) NIL (|has| (-771) (-792)))) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) NIL) (($ |#1|) NIL)) (-2271 (((-771) |#1| $) NIL)) (-3044 (((-112) $ $) NIL)) (-4356 (($) NIL T CONST)) (-2914 (((-112) $ $) NIL)) (-3002 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-771) |#1|) NIL))) (((-325 |#1|) (-324 |#1| (-771)) (-1099)) (T -325)) NIL (-324 |#1| (-771)) -((-4075 (($ $) 72)) (-3635 (($ $ |#2| |#3| $) 14)) (-4301 (($ (-1 |#3| |#3|) $) 51)) (-1723 (((-112) $) 42)) (-1736 ((|#2| $) 44)) (-2994 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 64)) (-2483 ((|#2| $) 68)) (-4170 (((-644 |#2|) $) 56)) (-3362 (($ $ $ (-771)) 37)) (-3065 (($ $ |#2|) 60))) -(((-326 |#1| |#2| |#3|) (-10 -8 (-15 -4075 (|#1| |#1|)) (-15 -2483 (|#2| |#1|)) (-15 -2994 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3362 (|#1| |#1| |#1| (-771))) (-15 -3635 (|#1| |#1| |#2| |#3| |#1|)) (-15 -4301 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4170 ((-644 |#2|) |#1|)) (-15 -1736 (|#2| |#1|)) (-15 -1723 ((-112) |#1|)) (-15 -2994 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3065 (|#1| |#1| |#2|))) (-327 |#2| |#3|) (-1049) (-792)) (T -326)) +((-2616 (($ $) 72)) (-1896 (($ $ |#2| |#3| $) 14)) (-3021 (($ (-1 |#3| |#3|) $) 51)) (-2761 (((-112) $) 42)) (-2773 ((|#2| $) 44)) (-2978 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 64)) (-3173 ((|#2| $) 68)) (-1643 (((-644 |#2|) $) 56)) (-2021 (($ $ $ (-771)) 37)) (-3025 (($ $ |#2|) 60))) +(((-326 |#1| |#2| |#3|) (-10 -8 (-15 -2616 (|#1| |#1|)) (-15 -3173 (|#2| |#1|)) (-15 -2978 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2021 (|#1| |#1| |#1| (-771))) (-15 -1896 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3021 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1643 ((-644 |#2|) |#1|)) (-15 -2773 (|#2| |#1|)) (-15 -2761 ((-112) |#1|)) (-15 -2978 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3025 (|#1| |#1| |#2|))) (-327 |#2| |#3|) (-1049) (-792)) (T -326)) NIL -(-10 -8 (-15 -4075 (|#1| |#1|)) (-15 -2483 (|#2| |#1|)) (-15 -2994 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3362 (|#1| |#1| |#1| (-771))) (-15 -3635 (|#1| |#1| |#2| |#3| |#1|)) (-15 -4301 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4170 ((-644 |#2|) |#1|)) (-15 -1736 (|#2| |#1|)) (-15 -1723 ((-112) |#1|)) (-15 -2994 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3065 (|#1| |#1| |#2|))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) 63 (|has| |#1| (-558)))) (-3991 (($ $) 64 (|has| |#1| (-558)))) (-2388 (((-112) $) 66 (|has| |#1| (-558)))) (-4175 (((-3 $ "failed") $ $) 20)) (-3012 (($) 18 T CONST)) (-4307 (((-3 (-566) "failed") $) 100 (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) 98 (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) 95)) (-4205 (((-566) $) 99 (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) 97 (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) 96)) (-1786 (($ $) 72)) (-1878 (((-3 $ "failed") $) 37)) (-4075 (($ $) 84 (|has| |#1| (-454)))) (-3635 (($ $ |#1| |#2| $) 88)) (-3934 (((-112) $) 35)) (-2614 (((-771) $) 91)) (-3264 (((-112) $) 74)) (-3840 (($ |#1| |#2|) 73)) (-3760 ((|#2| $) 90)) (-4301 (($ (-1 |#2| |#2|) $) 89)) (-1301 (($ (-1 |#1| |#1|) $) 75)) (-1749 (($ $) 77)) (-1763 ((|#1| $) 78)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-1723 (((-112) $) 94)) (-1736 ((|#1| $) 93)) (-2994 (((-3 $ "failed") $ $) 62 (|has| |#1| (-558))) (((-3 $ "failed") $ |#1|) 86 (|has| |#1| (-558)))) (-3636 ((|#2| $) 76)) (-2483 ((|#1| $) 85 (|has| |#1| (-454)))) (-3783 (((-862) $) 12) (($ (-566)) 33) (($ $) 61 (|has| |#1| (-558))) (($ |#1|) 59) (($ (-409 (-566))) 69 (-2809 (|has| |#1| (-1038 (-409 (-566)))) (|has| |#1| (-38 (-409 (-566))))))) (-4170 (((-644 |#1|) $) 92)) (-2649 ((|#1| $ |#2|) 71)) (-3144 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2107 (((-771)) 32 T CONST)) (-3362 (($ $ $ (-771)) 87 (|has| |#1| (-172)))) (-3117 (((-112) $ $) 9)) (-2695 (((-112) $ $) 65 (|has| |#1| (-558)))) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-2947 (((-112) $ $) 6)) (-3065 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-409 (-566)) $) 68 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 67 (|has| |#1| (-38 (-409 (-566))))))) +(-10 -8 (-15 -2616 (|#1| |#1|)) (-15 -3173 (|#2| |#1|)) (-15 -2978 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2021 (|#1| |#1| |#1| (-771))) (-15 -1896 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3021 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1643 ((-644 |#2|) |#1|)) (-15 -2773 (|#2| |#1|)) (-15 -2761 ((-112) |#1|)) (-15 -2978 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3025 (|#1| |#1| |#2|))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) 63 (|has| |#1| (-558)))) (-2161 (($ $) 64 (|has| |#1| (-558)))) (-2345 (((-112) $) 66 (|has| |#1| (-558)))) (-3967 (((-3 $ "failed") $ $) 20)) (-2463 (($) 18 T CONST)) (-2229 (((-3 (-566) "failed") $) 100 (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) 98 (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) 95)) (-4158 (((-566) $) 99 (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) 97 (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) 96)) (-2814 (($ $) 72)) (-3245 (((-3 $ "failed") $) 37)) (-2616 (($ $) 84 (|has| |#1| (-454)))) (-1896 (($ $ |#1| |#2| $) 88)) (-2389 (((-112) $) 35)) (-3039 (((-771) $) 91)) (-2497 (((-112) $) 74)) (-1746 (($ |#1| |#2|) 73)) (-2749 ((|#2| $) 90)) (-3021 (($ (-1 |#2| |#2|) $) 89)) (-2319 (($ (-1 |#1| |#1|) $) 75)) (-2784 (($ $) 77)) (-2794 ((|#1| $) 78)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-2761 (((-112) $) 94)) (-2773 ((|#1| $) 93)) (-2978 (((-3 $ "failed") $ $) 62 (|has| |#1| (-558))) (((-3 $ "failed") $ |#1|) 86 (|has| |#1| (-558)))) (-3902 ((|#2| $) 76)) (-3173 ((|#1| $) 85 (|has| |#1| (-454)))) (-3152 (((-862) $) 12) (($ (-566)) 33) (($ $) 61 (|has| |#1| (-558))) (($ |#1|) 59) (($ (-409 (-566))) 69 (-2768 (|has| |#1| (-1038 (-409 (-566)))) (|has| |#1| (-38 (-409 (-566))))))) (-1643 (((-644 |#1|) $) 92)) (-2271 ((|#1| $ |#2|) 71)) (-2633 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2593 (((-771)) 32 T CONST)) (-2021 (($ $ $ (-771)) 87 (|has| |#1| (-172)))) (-3044 (((-112) $ $) 9)) (-3014 (((-112) $ $) 65 (|has| |#1| (-558)))) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-2914 (((-112) $ $) 6)) (-3025 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-409 (-566)) $) 68 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 67 (|has| |#1| (-38 (-409 (-566))))))) (((-327 |#1| |#2|) (-140) (-1049) (-792)) (T -327)) -((-1723 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)) (-5 *2 (-112)))) (-1736 (*1 *2 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *3 (-792)) (-4 *2 (-1049)))) (-4170 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)) (-5 *2 (-644 *3)))) (-2614 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)) (-5 *2 (-771)))) (-3760 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-792)))) (-4301 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-327 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)))) (-3635 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-792)))) (-3362 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-327 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)) (-4 *3 (-172)))) (-2994 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-792)) (-4 *2 (-558)))) (-2483 (*1 *2 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *3 (-792)) (-4 *2 (-1049)) (-4 *2 (-454)))) (-4075 (*1 *1 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-792)) (-4 *2 (-454))))) -(-13 (-47 |t#1| |t#2|) (-413 |t#1|) (-10 -8 (-15 -1723 ((-112) $)) (-15 -1736 (|t#1| $)) (-15 -4170 ((-644 |t#1|) $)) (-15 -2614 ((-771) $)) (-15 -3760 (|t#2| $)) (-15 -4301 ($ (-1 |t#2| |t#2|) $)) (-15 -3635 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-172)) (-15 -3362 ($ $ $ (-771))) |%noBranch|) (IF (|has| |t#1| (-558)) (-15 -2994 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-454)) (PROGN (-15 -2483 (|t#1| $)) (-15 -4075 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-558)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-409 (-566)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2809 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #0#) -2809 (|has| |#1| (-1038 (-409 (-566)))) (|has| |#1| (-38 (-409 (-566))))) ((-616 (-566)) . T) ((-616 |#1|) . T) ((-616 $) |has| |#1| (-558)) ((-613 (-862)) . T) ((-172) -2809 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-291) |has| |#1| (-558)) ((-413 |#1|) . T) ((-558) |has| |#1| (-558)) ((-646 #0#) |has| |#1| (-38 (-409 (-566)))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #0#) |has| |#1| (-38 (-409 (-566)))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #0#) |has| |#1| (-38 (-409 (-566)))) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) |has| |#1| (-558)) ((-717 #0#) |has| |#1| (-38 (-409 (-566)))) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) |has| |#1| (-558)) ((-726) . T) ((-1038 (-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((-1038 (-566)) |has| |#1| (-1038 (-566))) ((-1038 |#1|) . T) ((-1051 #0#) |has| |#1| (-38 (-409 (-566)))) ((-1051 |#1|) . T) ((-1051 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-1056 #0#) |has| |#1| (-38 (-409 (-566)))) ((-1056 |#1|) . T) ((-1056 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) -((-3007 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3734 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4415)))) (-2644 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-850)))) (-1944 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4415))) (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-850))))) (-1510 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-850)))) (-2256 (((-112) $ (-771)) NIL)) (-1956 (((-112) (-112)) NIL)) (-3923 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4415))) ((|#1| $ (-1231 (-566)) |#1|) NIL (|has| $ (-6 -4415)))) (-4016 (($ (-1 (-112) |#1|) $) NIL)) (-2701 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-3012 (($) NIL T CONST)) (-3413 (($ $) NIL (|has| $ (-6 -4415)))) (-1377 (($ $) NIL)) (-3657 (($ $) NIL (|has| |#1| (-1099)))) (-2031 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2956 (($ |#1| $) NIL (|has| |#1| (-1099))) (($ (-1 (-112) |#1|) $) NIL)) (-2665 (($ |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-1676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4414)))) (-2920 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4415)))) (-2855 ((|#1| $ (-566)) NIL)) (-4000 (((-566) (-1 (-112) |#1|) $) NIL) (((-566) |#1| $) NIL (|has| |#1| (-1099))) (((-566) |#1| $ (-566)) NIL (|has| |#1| (-1099)))) (-3341 (($ $ (-566)) NIL)) (-3182 (((-771) $) NIL)) (-3979 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-4265 (($ (-771) |#1|) NIL)) (-2404 (((-112) $ (-771)) NIL)) (-3854 (((-566) $) NIL (|has| (-566) (-850)))) (-2097 (($ $ $) NIL (|has| |#1| (-850)))) (-3463 (($ $ $) NIL (|has| |#1| (-850))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3298 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-850)))) (-2329 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2712 (((-566) $) NIL (|has| (-566) (-850)))) (-3962 (($ $ $) NIL (|has| |#1| (-850)))) (-2908 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2603 (((-112) $ (-771)) NIL)) (-4117 (((-1157) $) NIL (|has| |#1| (-1099)))) (-3406 (($ $ $ (-566)) NIL) (($ |#1| $ (-566)) NIL)) (-4276 (($ |#1| $ (-566)) NIL) (($ $ $ (-566)) NIL)) (-4074 (((-644 (-566)) $) NIL)) (-3792 (((-112) (-566) $) NIL)) (-4035 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3834 (($ (-644 |#1|)) NIL)) (-1998 ((|#1| $) NIL (|has| (-566) (-850)))) (-2006 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4030 (($ $ |#1|) NIL (|has| $ (-6 -4415)))) (-2692 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) NIL)) (-4156 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2993 (((-644 |#1|) $) NIL)) (-3467 (((-112) $) NIL)) (-1494 (($) NIL)) (-4390 ((|#1| $ (-566) |#1|) NIL) ((|#1| $ (-566)) NIL) (($ $ (-1231 (-566))) NIL)) (-1772 (($ $ (-1231 (-566))) NIL) (($ $ (-566)) NIL)) (-2187 (($ $ (-566)) NIL) (($ $ (-1231 (-566))) NIL)) (-4045 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-1297 (($ $ $ (-566)) NIL (|has| $ (-6 -4415)))) (-3940 (($ $) NIL)) (-1348 (((-538) $) NIL (|has| |#1| (-614 (-538))))) (-3796 (($ (-644 |#1|)) NIL)) (-3480 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3721 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-644 $)) NIL)) (-3783 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-3117 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1894 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-3009 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2984 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2947 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2995 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2969 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3018 (((-771) $) NIL (|has| $ (-6 -4414))))) -(((-328 |#1|) (-13 (-19 |#1|) (-283 |#1|) (-10 -8 (-15 -3834 ($ (-644 |#1|))) (-15 -3182 ((-771) $)) (-15 -3341 ($ $ (-566))) (-15 -1956 ((-112) (-112))))) (-1214)) (T -328)) -((-3834 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1214)) (-5 *1 (-328 *3)))) (-3182 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-328 *3)) (-4 *3 (-1214)))) (-3341 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-328 *3)) (-4 *3 (-1214)))) (-1956 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-328 *3)) (-4 *3 (-1214))))) -(-13 (-19 |#1|) (-283 |#1|) (-10 -8 (-15 -3834 ($ (-644 |#1|))) (-15 -3182 ((-771) $)) (-15 -3341 ($ $ (-566))) (-15 -1956 ((-112) (-112))))) -((-2131 (((-112) $) 50)) (-3193 (((-771)) 26)) (-3837 ((|#2| $) 54) (($ $ (-921)) 124)) (-1970 (((-771)) 125)) (-2392 (($ (-1264 |#2|)) 23)) (-1784 (((-112) $) 138)) (-1577 ((|#2| $) 56) (($ $ (-921)) 121)) (-1627 (((-1171 |#2|) $) NIL) (((-1171 $) $ (-921)) 112)) (-2372 (((-1171 |#2|) $) 98)) (-1526 (((-1171 |#2|) $) 94) (((-3 (-1171 |#2|) "failed") $ $) 91)) (-3158 (($ $ (-1171 |#2|)) 62)) (-3129 (((-833 (-921))) 33) (((-921)) 51)) (-3164 (((-134)) 30)) (-3636 (((-833 (-921)) $) 35) (((-921) $) 141)) (-3458 (($) 131)) (-2154 (((-1264 |#2|) $) NIL) (((-689 |#2|) (-1264 $)) 45)) (-3144 (($ $) NIL) (((-3 $ "failed") $) 101)) (-1423 (((-112) $) 48))) -(((-329 |#1| |#2|) (-10 -8 (-15 -3144 ((-3 |#1| "failed") |#1|)) (-15 -1970 ((-771))) (-15 -3144 (|#1| |#1|)) (-15 -1526 ((-3 (-1171 |#2|) "failed") |#1| |#1|)) (-15 -1526 ((-1171 |#2|) |#1|)) (-15 -2372 ((-1171 |#2|) |#1|)) (-15 -3158 (|#1| |#1| (-1171 |#2|))) (-15 -1784 ((-112) |#1|)) (-15 -3458 (|#1|)) (-15 -3837 (|#1| |#1| (-921))) (-15 -1577 (|#1| |#1| (-921))) (-15 -1627 ((-1171 |#1|) |#1| (-921))) (-15 -3837 (|#2| |#1|)) (-15 -1577 (|#2| |#1|)) (-15 -3636 ((-921) |#1|)) (-15 -3129 ((-921))) (-15 -1627 ((-1171 |#2|) |#1|)) (-15 -2392 (|#1| (-1264 |#2|))) (-15 -2154 ((-689 |#2|) (-1264 |#1|))) (-15 -2154 ((-1264 |#2|) |#1|)) (-15 -3193 ((-771))) (-15 -3129 ((-833 (-921)))) (-15 -3636 ((-833 (-921)) |#1|)) (-15 -2131 ((-112) |#1|)) (-15 -1423 ((-112) |#1|)) (-15 -3164 ((-134)))) (-330 |#2|) (-365)) (T -329)) -((-3164 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-134)) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))) (-3129 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-833 (-921))) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))) (-3193 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-771)) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))) (-3129 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-921)) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))) (-1970 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-771)) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4))))) -(-10 -8 (-15 -3144 ((-3 |#1| "failed") |#1|)) (-15 -1970 ((-771))) (-15 -3144 (|#1| |#1|)) (-15 -1526 ((-3 (-1171 |#2|) "failed") |#1| |#1|)) (-15 -1526 ((-1171 |#2|) |#1|)) (-15 -2372 ((-1171 |#2|) |#1|)) (-15 -3158 (|#1| |#1| (-1171 |#2|))) (-15 -1784 ((-112) |#1|)) (-15 -3458 (|#1|)) (-15 -3837 (|#1| |#1| (-921))) (-15 -1577 (|#1| |#1| (-921))) (-15 -1627 ((-1171 |#1|) |#1| (-921))) (-15 -3837 (|#2| |#1|)) (-15 -1577 (|#2| |#1|)) (-15 -3636 ((-921) |#1|)) (-15 -3129 ((-921))) (-15 -1627 ((-1171 |#2|) |#1|)) (-15 -2392 (|#1| (-1264 |#2|))) (-15 -2154 ((-689 |#2|) (-1264 |#1|))) (-15 -2154 ((-1264 |#2|) |#1|)) (-15 -3193 ((-771))) (-15 -3129 ((-833 (-921)))) (-15 -3636 ((-833 (-921)) |#1|)) (-15 -2131 ((-112) |#1|)) (-15 -1423 ((-112) |#1|)) (-15 -3164 ((-134)))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) 47)) (-3991 (($ $) 46)) (-2388 (((-112) $) 44)) (-2131 (((-112) $) 104)) (-3193 (((-771)) 100)) (-3837 ((|#1| $) 150) (($ $ (-921)) 147 (|has| |#1| (-370)))) (-3778 (((-1187 (-921) (-771)) (-566)) 132 (|has| |#1| (-370)))) (-4175 (((-3 $ "failed") $ $) 20)) (-1550 (($ $) 81)) (-3184 (((-420 $) $) 80)) (-2837 (((-112) $ $) 65)) (-1970 (((-771)) 122 (|has| |#1| (-370)))) (-3012 (($) 18 T CONST)) (-4307 (((-3 |#1| "failed") $) 111)) (-4205 ((|#1| $) 112)) (-2392 (($ (-1264 |#1|)) 156)) (-1910 (((-3 "prime" "polynomial" "normal" "cyclic")) 138 (|has| |#1| (-370)))) (-2946 (($ $ $) 61)) (-1878 (((-3 $ "failed") $) 37)) (-1552 (($) 119 (|has| |#1| (-370)))) (-2957 (($ $ $) 62)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) 57)) (-2781 (($) 134 (|has| |#1| (-370)))) (-3506 (((-112) $) 135 (|has| |#1| (-370)))) (-3369 (($ $ (-771)) 97 (-2809 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) 96 (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3268 (((-112) $) 79)) (-3254 (((-921) $) 137 (|has| |#1| (-370))) (((-833 (-921)) $) 94 (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3934 (((-112) $) 35)) (-3611 (($) 145 (|has| |#1| (-370)))) (-1784 (((-112) $) 144 (|has| |#1| (-370)))) (-1577 ((|#1| $) 151) (($ $ (-921)) 148 (|has| |#1| (-370)))) (-4363 (((-3 $ "failed") $) 123 (|has| |#1| (-370)))) (-3775 (((-3 (-644 $) "failed") (-644 $) $) 58)) (-1627 (((-1171 |#1|) $) 155) (((-1171 $) $ (-921)) 149 (|has| |#1| (-370)))) (-3681 (((-921) $) 120 (|has| |#1| (-370)))) (-2372 (((-1171 |#1|) $) 141 (|has| |#1| (-370)))) (-1526 (((-1171 |#1|) $) 140 (|has| |#1| (-370))) (((-3 (-1171 |#1|) "failed") $ $) 139 (|has| |#1| (-370)))) (-3158 (($ $ (-1171 |#1|)) 142 (|has| |#1| (-370)))) (-2167 (($ $ $) 52) (($ (-644 $)) 51)) (-4117 (((-1157) $) 10)) (-1713 (($ $) 78)) (-1761 (($) 124 (|has| |#1| (-370)) CONST)) (-2178 (($ (-921)) 121 (|has| |#1| (-370)))) (-1778 (((-112) $) 103)) (-4035 (((-1119) $) 11)) (-3441 (($) 143 (|has| |#1| (-370)))) (-2197 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-2214 (($ $ $) 54) (($ (-644 $)) 53)) (-1548 (((-644 (-2 (|:| -3719 (-566)) (|:| -2852 (-566))))) 131 (|has| |#1| (-370)))) (-3719 (((-420 $) $) 82)) (-3129 (((-833 (-921))) 101) (((-921)) 153)) (-3148 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2994 (((-3 $ "failed") $ $) 48)) (-3161 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-3039 (((-771) $) 64)) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) 63)) (-1437 (((-771) $) 136 (|has| |#1| (-370))) (((-3 (-771) "failed") $ $) 95 (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3164 (((-134)) 109)) (-3561 (($ $) 128 (|has| |#1| (-370))) (($ $ (-771)) 126 (|has| |#1| (-370)))) (-3636 (((-833 (-921)) $) 102) (((-921) $) 152)) (-1616 (((-1171 |#1|)) 154)) (-3974 (($) 133 (|has| |#1| (-370)))) (-3458 (($) 146 (|has| |#1| (-370)))) (-2154 (((-1264 |#1|) $) 158) (((-689 |#1|) (-1264 $)) 157)) (-1656 (((-3 (-1264 $) "failed") (-689 $)) 130 (|has| |#1| (-370)))) (-3783 (((-862) $) 12) (($ (-566)) 33) (($ $) 49) (($ (-409 (-566))) 74) (($ |#1|) 110)) (-3144 (($ $) 129 (|has| |#1| (-370))) (((-3 $ "failed") $) 93 (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2107 (((-771)) 32 T CONST)) (-3117 (((-112) $ $) 9)) (-2365 (((-1264 $)) 160) (((-1264 $) (-921)) 159)) (-2695 (((-112) $ $) 45)) (-1423 (((-112) $) 105)) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-2699 (($ $) 99 (|has| |#1| (-370))) (($ $ (-771)) 98 (|has| |#1| (-370)))) (-2875 (($ $) 127 (|has| |#1| (-370))) (($ $ (-771)) 125 (|has| |#1| (-370)))) (-2947 (((-112) $ $) 6)) (-3065 (($ $ $) 73) (($ $ |#1|) 108)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 77)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 76) (($ (-409 (-566)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) +((-2761 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)) (-5 *2 (-112)))) (-2773 (*1 *2 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *3 (-792)) (-4 *2 (-1049)))) (-1643 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)) (-5 *2 (-644 *3)))) (-3039 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)) (-5 *2 (-771)))) (-2749 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-792)))) (-3021 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-327 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)))) (-1896 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-792)))) (-2021 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-327 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)) (-4 *3 (-172)))) (-2978 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-792)) (-4 *2 (-558)))) (-3173 (*1 *2 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *3 (-792)) (-4 *2 (-1049)) (-4 *2 (-454)))) (-2616 (*1 *1 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-792)) (-4 *2 (-454))))) +(-13 (-47 |t#1| |t#2|) (-413 |t#1|) (-10 -8 (-15 -2761 ((-112) $)) (-15 -2773 (|t#1| $)) (-15 -1643 ((-644 |t#1|) $)) (-15 -3039 ((-771) $)) (-15 -2749 (|t#2| $)) (-15 -3021 ($ (-1 |t#2| |t#2|) $)) (-15 -1896 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-172)) (-15 -2021 ($ $ $ (-771))) |%noBranch|) (IF (|has| |t#1| (-558)) (-15 -2978 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-454)) (PROGN (-15 -3173 (|t#1| $)) (-15 -2616 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-558)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-409 (-566)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2768 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #0#) -2768 (|has| |#1| (-1038 (-409 (-566)))) (|has| |#1| (-38 (-409 (-566))))) ((-616 (-566)) . T) ((-616 |#1|) . T) ((-616 $) |has| |#1| (-558)) ((-613 (-862)) . T) ((-172) -2768 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-291) |has| |#1| (-558)) ((-413 |#1|) . T) ((-558) |has| |#1| (-558)) ((-646 #0#) |has| |#1| (-38 (-409 (-566)))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #0#) |has| |#1| (-38 (-409 (-566)))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #0#) |has| |#1| (-38 (-409 (-566)))) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) |has| |#1| (-558)) ((-717 #0#) |has| |#1| (-38 (-409 (-566)))) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) |has| |#1| (-558)) ((-726) . T) ((-1038 (-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((-1038 (-566)) |has| |#1| (-1038 (-566))) ((-1038 |#1|) . T) ((-1051 #0#) |has| |#1| (-38 (-409 (-566)))) ((-1051 |#1|) . T) ((-1051 $) -2768 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-1056 #0#) |has| |#1| (-38 (-409 (-566)))) ((-1056 |#1|) . T) ((-1056 $) -2768 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) +((-2988 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1944 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4415)))) (-3054 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-850)))) (-3628 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4415))) (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-850))))) (-2671 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-850)))) (-1504 (((-112) $ (-771)) NIL)) (-2295 (((-112) (-112)) NIL)) (-1456 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4415))) ((|#1| $ (-1231 (-566)) |#1|) NIL (|has| $ (-6 -4415)))) (-2995 (($ (-1 (-112) |#1|) $) NIL)) (-3678 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2463 (($) NIL T CONST)) (-3166 (($ $) NIL (|has| $ (-6 -4415)))) (-3683 (($ $) NIL)) (-3322 (($ $) NIL (|has| |#1| (-1099)))) (-3942 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3512 (($ |#1| $) NIL (|has| |#1| (-1099))) (($ (-1 (-112) |#1|) $) NIL)) (-2622 (($ |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2873 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4414)))) (-3897 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4415)))) (-3829 ((|#1| $ (-566)) NIL)) (-1569 (((-566) (-1 (-112) |#1|) $) NIL) (((-566) |#1| $) NIL (|has| |#1| (-1099))) (((-566) |#1| $ (-566)) NIL (|has| |#1| (-1099)))) (-1805 (($ $ (-566)) NIL)) (-4281 (((-771) $) NIL)) (-1683 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1860 (($ (-771) |#1|) NIL)) (-3456 (((-112) $ (-771)) NIL)) (-2296 (((-566) $) NIL (|has| (-566) (-850)))) (-1478 (($ $ $) NIL (|has| |#1| (-850)))) (-3674 (($ $ $) NIL (|has| |#1| (-850))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2696 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-850)))) (-3491 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-4050 (((-566) $) NIL (|has| (-566) (-850)))) (-2599 (($ $ $) NIL (|has| |#1| (-850)))) (-3885 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3267 (((-112) $ (-771)) NIL)) (-3380 (((-1157) $) NIL (|has| |#1| (-1099)))) (-3888 (($ $ $ (-566)) NIL) (($ |#1| $ (-566)) NIL)) (-1859 (($ |#1| $ (-566)) NIL) (($ $ $ (-566)) NIL)) (-3725 (((-644 (-566)) $) NIL)) (-1644 (((-112) (-566) $) NIL)) (-4072 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3881 (($ (-644 |#1|)) NIL)) (-3908 ((|#1| $) NIL (|has| (-566) (-850)))) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3787 (($ $ |#1|) NIL (|has| $ (-6 -4415)))) (-2823 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) NIL)) (-2847 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3486 (((-644 |#1|) $) NIL)) (-2872 (((-112) $) NIL)) (-3493 (($) NIL)) (-1309 ((|#1| $ (-566) |#1|) NIL) ((|#1| $ (-566)) NIL) (($ $ (-1231 (-566))) NIL)) (-1308 (($ $ (-1231 (-566))) NIL) (($ $ (-566)) NIL)) (-2166 (($ $ (-566)) NIL) (($ $ (-1231 (-566))) NIL)) (-4083 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2661 (($ $ $ (-566)) NIL (|has| $ (-6 -4415)))) (-1480 (($ $) NIL)) (-2376 (((-538) $) NIL (|has| |#1| (-614 (-538))))) (-1340 (($ (-644 |#1|)) NIL)) (-1690 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4386 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-644 $)) NIL)) (-3152 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-3044 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2210 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2968 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2914 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2956 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2935 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3000 (((-771) $) NIL (|has| $ (-6 -4414))))) +(((-328 |#1|) (-13 (-19 |#1|) (-283 |#1|) (-10 -8 (-15 -3881 ($ (-644 |#1|))) (-15 -4281 ((-771) $)) (-15 -1805 ($ $ (-566))) (-15 -2295 ((-112) (-112))))) (-1214)) (T -328)) +((-3881 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1214)) (-5 *1 (-328 *3)))) (-4281 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-328 *3)) (-4 *3 (-1214)))) (-1805 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-328 *3)) (-4 *3 (-1214)))) (-2295 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-328 *3)) (-4 *3 (-1214))))) +(-13 (-19 |#1|) (-283 |#1|) (-10 -8 (-15 -3881 ($ (-644 |#1|))) (-15 -4281 ((-771) $)) (-15 -1805 ($ $ (-566))) (-15 -2295 ((-112) (-112))))) +((-1972 (((-112) $) 50)) (-2818 (((-771)) 26)) (-3833 ((|#2| $) 54) (($ $ (-921)) 124)) (-3870 (((-771)) 125)) (-1563 (($ (-1264 |#2|)) 23)) (-2953 (((-112) $) 138)) (-2064 ((|#2| $) 56) (($ $ (-921)) 121)) (-3468 (((-1171 |#2|) $) NIL) (((-1171 $) $ (-921)) 112)) (-2099 (((-1171 |#2|) $) 98)) (-3624 (((-1171 |#2|) $) 94) (((-3 (-1171 |#2|) "failed") $ $) 91)) (-3844 (($ $ (-1171 |#2|)) 62)) (-1686 (((-833 (-921))) 33) (((-921)) 51)) (-3126 (((-134)) 30)) (-3902 (((-833 (-921)) $) 35) (((-921) $) 141)) (-2110 (($) 131)) (-3350 (((-1264 |#2|) $) NIL) (((-689 |#2|) (-1264 $)) 45)) (-2633 (($ $) NIL) (((-3 $ "failed") $) 101)) (-4217 (((-112) $) 48))) +(((-329 |#1| |#2|) (-10 -8 (-15 -2633 ((-3 |#1| "failed") |#1|)) (-15 -3870 ((-771))) (-15 -2633 (|#1| |#1|)) (-15 -3624 ((-3 (-1171 |#2|) "failed") |#1| |#1|)) (-15 -3624 ((-1171 |#2|) |#1|)) (-15 -2099 ((-1171 |#2|) |#1|)) (-15 -3844 (|#1| |#1| (-1171 |#2|))) (-15 -2953 ((-112) |#1|)) (-15 -2110 (|#1|)) (-15 -3833 (|#1| |#1| (-921))) (-15 -2064 (|#1| |#1| (-921))) (-15 -3468 ((-1171 |#1|) |#1| (-921))) (-15 -3833 (|#2| |#1|)) (-15 -2064 (|#2| |#1|)) (-15 -3902 ((-921) |#1|)) (-15 -1686 ((-921))) (-15 -3468 ((-1171 |#2|) |#1|)) (-15 -1563 (|#1| (-1264 |#2|))) (-15 -3350 ((-689 |#2|) (-1264 |#1|))) (-15 -3350 ((-1264 |#2|) |#1|)) (-15 -2818 ((-771))) (-15 -1686 ((-833 (-921)))) (-15 -3902 ((-833 (-921)) |#1|)) (-15 -1972 ((-112) |#1|)) (-15 -4217 ((-112) |#1|)) (-15 -3126 ((-134)))) (-330 |#2|) (-365)) (T -329)) +((-3126 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-134)) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))) (-1686 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-833 (-921))) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))) (-2818 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-771)) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))) (-1686 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-921)) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))) (-3870 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-771)) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4))))) +(-10 -8 (-15 -2633 ((-3 |#1| "failed") |#1|)) (-15 -3870 ((-771))) (-15 -2633 (|#1| |#1|)) (-15 -3624 ((-3 (-1171 |#2|) "failed") |#1| |#1|)) (-15 -3624 ((-1171 |#2|) |#1|)) (-15 -2099 ((-1171 |#2|) |#1|)) (-15 -3844 (|#1| |#1| (-1171 |#2|))) (-15 -2953 ((-112) |#1|)) (-15 -2110 (|#1|)) (-15 -3833 (|#1| |#1| (-921))) (-15 -2064 (|#1| |#1| (-921))) (-15 -3468 ((-1171 |#1|) |#1| (-921))) (-15 -3833 (|#2| |#1|)) (-15 -2064 (|#2| |#1|)) (-15 -3902 ((-921) |#1|)) (-15 -1686 ((-921))) (-15 -3468 ((-1171 |#2|) |#1|)) (-15 -1563 (|#1| (-1264 |#2|))) (-15 -3350 ((-689 |#2|) (-1264 |#1|))) (-15 -3350 ((-1264 |#2|) |#1|)) (-15 -2818 ((-771))) (-15 -1686 ((-833 (-921)))) (-15 -3902 ((-833 (-921)) |#1|)) (-15 -1972 ((-112) |#1|)) (-15 -4217 ((-112) |#1|)) (-15 -3126 ((-134)))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) 47)) (-2161 (($ $) 46)) (-2345 (((-112) $) 44)) (-1972 (((-112) $) 104)) (-2818 (((-771)) 100)) (-3833 ((|#1| $) 150) (($ $ (-921)) 147 (|has| |#1| (-370)))) (-2894 (((-1187 (-921) (-771)) (-566)) 132 (|has| |#1| (-370)))) (-3967 (((-3 $ "failed") $ $) 20)) (-1378 (($ $) 81)) (-1364 (((-420 $) $) 80)) (-2085 (((-112) $ $) 65)) (-3870 (((-771)) 122 (|has| |#1| (-370)))) (-2463 (($) 18 T CONST)) (-2229 (((-3 |#1| "failed") $) 111)) (-4158 ((|#1| $) 112)) (-1563 (($ (-1264 |#1|)) 156)) (-2347 (((-3 "prime" "polynomial" "normal" "cyclic")) 138 (|has| |#1| (-370)))) (-2933 (($ $ $) 61)) (-3245 (((-3 $ "failed") $) 37)) (-2715 (($) 119 (|has| |#1| (-370)))) (-2945 (($ $ $) 62)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) 57)) (-3359 (($) 134 (|has| |#1| (-370)))) (-2466 (((-112) $) 135 (|has| |#1| (-370)))) (-1574 (($ $ (-771)) 97 (-2768 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) 96 (-2768 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1615 (((-112) $) 79)) (-2679 (((-921) $) 137 (|has| |#1| (-370))) (((-833 (-921)) $) 94 (-2768 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2389 (((-112) $) 35)) (-2437 (($) 145 (|has| |#1| (-370)))) (-2953 (((-112) $) 144 (|has| |#1| (-370)))) (-2064 ((|#1| $) 151) (($ $ (-921)) 148 (|has| |#1| (-370)))) (-2621 (((-3 $ "failed") $) 123 (|has| |#1| (-370)))) (-3816 (((-3 (-644 $) "failed") (-644 $) $) 58)) (-3468 (((-1171 |#1|) $) 155) (((-1171 $) $ (-921)) 149 (|has| |#1| (-370)))) (-1866 (((-921) $) 120 (|has| |#1| (-370)))) (-2099 (((-1171 |#1|) $) 141 (|has| |#1| (-370)))) (-3624 (((-1171 |#1|) $) 140 (|has| |#1| (-370))) (((-3 (-1171 |#1|) "failed") $ $) 139 (|has| |#1| (-370)))) (-3844 (($ $ (-1171 |#1|)) 142 (|has| |#1| (-370)))) (-2128 (($ $ $) 52) (($ (-644 $)) 51)) (-3380 (((-1157) $) 10)) (-2748 (($ $) 78)) (-3289 (($) 124 (|has| |#1| (-370)) CONST)) (-2835 (($ (-921)) 121 (|has| |#1| (-370)))) (-3653 (((-112) $) 103)) (-4072 (((-1119) $) 11)) (-3302 (($) 143 (|has| |#1| (-370)))) (-4170 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-2164 (($ $ $) 54) (($ (-644 $)) 53)) (-2442 (((-644 (-2 (|:| -1624 (-566)) (|:| -2201 (-566))))) 131 (|has| |#1| (-370)))) (-1624 (((-420 $) $) 82)) (-1686 (((-833 (-921))) 101) (((-921)) 153)) (-3005 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2978 (((-3 $ "failed") $ $) 48)) (-2915 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-4357 (((-771) $) 64)) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) 63)) (-3169 (((-771) $) 136 (|has| |#1| (-370))) (((-3 (-771) "failed") $ $) 95 (-2768 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3126 (((-134)) 109)) (-3629 (($ $) 128 (|has| |#1| (-370))) (($ $ (-771)) 126 (|has| |#1| (-370)))) (-3902 (((-833 (-921)) $) 102) (((-921) $) 152)) (-1705 (((-1171 |#1|)) 154)) (-4122 (($) 133 (|has| |#1| (-370)))) (-2110 (($) 146 (|has| |#1| (-370)))) (-3350 (((-1264 |#1|) $) 158) (((-689 |#1|) (-1264 $)) 157)) (-3391 (((-3 (-1264 $) "failed") (-689 $)) 130 (|has| |#1| (-370)))) (-3152 (((-862) $) 12) (($ (-566)) 33) (($ $) 49) (($ (-409 (-566))) 74) (($ |#1|) 110)) (-2633 (($ $) 129 (|has| |#1| (-370))) (((-3 $ "failed") $) 93 (-2768 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2593 (((-771)) 32 T CONST)) (-3044 (((-112) $ $) 9)) (-2875 (((-1264 $)) 160) (((-1264 $) (-921)) 159)) (-3014 (((-112) $ $) 45)) (-4217 (((-112) $) 105)) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-2198 (($ $) 99 (|has| |#1| (-370))) (($ $ (-771)) 98 (|has| |#1| (-370)))) (-3497 (($ $) 127 (|has| |#1| (-370))) (($ $ (-771)) 125 (|has| |#1| (-370)))) (-2914 (((-112) $ $) 6)) (-3025 (($ $ $) 73) (($ $ |#1|) 108)) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 77)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 76) (($ (-409 (-566)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) (((-330 |#1|) (-140) (-365)) (T -330)) -((-2365 (*1 *2) (-12 (-4 *3 (-365)) (-5 *2 (-1264 *1)) (-4 *1 (-330 *3)))) (-2365 (*1 *2 *3) (-12 (-5 *3 (-921)) (-4 *4 (-365)) (-5 *2 (-1264 *1)) (-4 *1 (-330 *4)))) (-2154 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1264 *3)))) (-2154 (*1 *2 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-330 *4)) (-4 *4 (-365)) (-5 *2 (-689 *4)))) (-2392 (*1 *1 *2) (-12 (-5 *2 (-1264 *3)) (-4 *3 (-365)) (-4 *1 (-330 *3)))) (-1627 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1171 *3)))) (-1616 (*1 *2) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1171 *3)))) (-3129 (*1 *2) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-921)))) (-3636 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-921)))) (-1577 (*1 *2 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-365)))) (-3837 (*1 *2 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-365)))) (-1627 (*1 *2 *1 *3) (-12 (-5 *3 (-921)) (-4 *4 (-370)) (-4 *4 (-365)) (-5 *2 (-1171 *1)) (-4 *1 (-330 *4)))) (-1577 (*1 *1 *1 *2) (-12 (-5 *2 (-921)) (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)))) (-3837 (*1 *1 *1 *2) (-12 (-5 *2 (-921)) (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)))) (-3458 (*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365)))) (-3611 (*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365)))) (-1784 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-112)))) (-3441 (*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365)))) (-3158 (*1 *1 *1 *2) (-12 (-5 *2 (-1171 *3)) (-4 *3 (-370)) (-4 *1 (-330 *3)) (-4 *3 (-365)))) (-2372 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-1171 *3)))) (-1526 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-1171 *3)))) (-1526 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-1171 *3))))) -(-13 (-1283 |t#1|) (-1038 |t#1|) (-10 -8 (-15 -2365 ((-1264 $))) (-15 -2365 ((-1264 $) (-921))) (-15 -2154 ((-1264 |t#1|) $)) (-15 -2154 ((-689 |t#1|) (-1264 $))) (-15 -2392 ($ (-1264 |t#1|))) (-15 -1627 ((-1171 |t#1|) $)) (-15 -1616 ((-1171 |t#1|))) (-15 -3129 ((-921))) (-15 -3636 ((-921) $)) (-15 -1577 (|t#1| $)) (-15 -3837 (|t#1| $)) (IF (|has| |t#1| (-370)) (PROGN (-6 (-351)) (-15 -1627 ((-1171 $) $ (-921))) (-15 -1577 ($ $ (-921))) (-15 -3837 ($ $ (-921))) (-15 -3458 ($)) (-15 -3611 ($)) (-15 -1784 ((-112) $)) (-15 -3441 ($)) (-15 -3158 ($ $ (-1171 |t#1|))) (-15 -2372 ((-1171 |t#1|) $)) (-15 -1526 ((-1171 |t#1|) $)) (-15 -1526 ((-3 (-1171 |t#1|) "failed") $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2809 (|has| |#1| (-370)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-616 #0#) . T) ((-616 (-566)) . T) ((-616 |#1|) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-233) |has| |#1| (-370)) ((-243) . T) ((-291) . T) ((-308) . T) ((-1283 |#1|) . T) ((-365) . T) ((-404) -2809 (|has| |#1| (-370)) (|has| |#1| (-145))) ((-370) |has| |#1| (-370)) ((-351) |has| |#1| (-370)) ((-454) . T) ((-558) . T) ((-646 #0#) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #0#) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #0#) . T) ((-640 |#1|) . T) ((-640 $) . T) ((-717 #0#) . T) ((-717 |#1|) . T) ((-717 $) . T) ((-726) . T) ((-920) . T) ((-1038 |#1|) . T) ((-1051 #0#) . T) ((-1051 |#1|) . T) ((-1051 $) . T) ((-1056 #0#) . T) ((-1056 |#1|) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1150) |has| |#1| (-370)) ((-1218) . T) ((-1271 |#1|) . T)) -((-3007 (((-112) $ $) NIL)) (-4358 (($ (-1174) $) 104)) (-4237 (($) 93)) (-2099 (((-1119) (-1119)) 9)) (-3021 (($) 94)) (-2892 (($) 108) (($ (-317 (-699))) 116) (($ (-317 (-701))) 112) (($ (-317 (-694))) 120) (($ (-317 (-381))) 127) (($ (-317 (-566))) 123) (($ (-317 (-169 (-381)))) 131)) (-4148 (($ (-1174) $) 105)) (-2590 (($ (-644 (-862))) 95)) (-3212 (((-1269) $) 91)) (-2654 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 35)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3272 (($ (-1119)) 60)) (-2403 (((-1103) $) 32)) (-3088 (($ (-1091 (-952 (-566))) $) 101) (($ (-1091 (-952 (-566))) (-952 (-566)) $) 102)) (-1858 (($ (-1119)) 103)) (-3168 (($ (-1174) $) 133) (($ (-1174) $ $) 134)) (-3344 (($ (-1175) (-644 (-1175))) 92)) (-3809 (($ (-1157)) 98) (($ (-644 (-1157))) 96)) (-3783 (((-862) $) 136)) (-3261 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1175)) (|:| |arrayIndex| (-644 (-952 (-566)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1346 (-862)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1175)) (|:| |rand| (-862)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1174)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3467 (-112)) (|:| -2233 (-2 (|:| |ints2Floats?| (-112)) (|:| -1346 (-862)))))) (|:| |blockBranch| (-644 $)) (|:| |commentBranch| (-644 (-1157))) (|:| |callBranch| (-1157)) (|:| |forBranch| (-2 (|:| -2446 (-1091 (-952 (-566)))) (|:| |span| (-952 (-566))) (|:| -1382 $))) (|:| |labelBranch| (-1119)) (|:| |loopBranch| (-2 (|:| |switch| (-1174)) (|:| -1382 $))) (|:| |commonBranch| (-2 (|:| -2640 (-1175)) (|:| |contents| (-644 (-1175))))) (|:| |printBranch| (-644 (-862)))) $) 51)) (-1386 (($ (-1157)) 205)) (-2385 (($ (-644 $)) 132)) (-3117 (((-112) $ $) NIL)) (-1343 (($ (-1175) (-1157)) 138) (($ (-1175) (-317 (-701))) 178) (($ (-1175) (-317 (-699))) 179) (($ (-1175) (-317 (-694))) 180) (($ (-1175) (-689 (-701))) 141) (($ (-1175) (-689 (-699))) 144) (($ (-1175) (-689 (-694))) 147) (($ (-1175) (-1264 (-701))) 150) (($ (-1175) (-1264 (-699))) 153) (($ (-1175) (-1264 (-694))) 156) (($ (-1175) (-689 (-317 (-701)))) 159) (($ (-1175) (-689 (-317 (-699)))) 162) (($ (-1175) (-689 (-317 (-694)))) 165) (($ (-1175) (-1264 (-317 (-701)))) 168) (($ (-1175) (-1264 (-317 (-699)))) 171) (($ (-1175) (-1264 (-317 (-694)))) 174) (($ (-1175) (-644 (-952 (-566))) (-317 (-701))) 175) (($ (-1175) (-644 (-952 (-566))) (-317 (-699))) 176) (($ (-1175) (-644 (-952 (-566))) (-317 (-694))) 177) (($ (-1175) (-317 (-566))) 202) (($ (-1175) (-317 (-381))) 203) (($ (-1175) (-317 (-169 (-381)))) 204) (($ (-1175) (-689 (-317 (-566)))) 183) (($ (-1175) (-689 (-317 (-381)))) 186) (($ (-1175) (-689 (-317 (-169 (-381))))) 189) (($ (-1175) (-1264 (-317 (-566)))) 192) (($ (-1175) (-1264 (-317 (-381)))) 195) (($ (-1175) (-1264 (-317 (-169 (-381))))) 198) (($ (-1175) (-644 (-952 (-566))) (-317 (-566))) 199) (($ (-1175) (-644 (-952 (-566))) (-317 (-381))) 200) (($ (-1175) (-644 (-952 (-566))) (-317 (-169 (-381)))) 201)) (-2947 (((-112) $ $) NIL))) -(((-331) (-13 (-1099) (-10 -8 (-15 -3088 ($ (-1091 (-952 (-566))) $)) (-15 -3088 ($ (-1091 (-952 (-566))) (-952 (-566)) $)) (-15 -4358 ($ (-1174) $)) (-15 -4148 ($ (-1174) $)) (-15 -3272 ($ (-1119))) (-15 -1858 ($ (-1119))) (-15 -3809 ($ (-1157))) (-15 -3809 ($ (-644 (-1157)))) (-15 -1386 ($ (-1157))) (-15 -2892 ($)) (-15 -2892 ($ (-317 (-699)))) (-15 -2892 ($ (-317 (-701)))) (-15 -2892 ($ (-317 (-694)))) (-15 -2892 ($ (-317 (-381)))) (-15 -2892 ($ (-317 (-566)))) (-15 -2892 ($ (-317 (-169 (-381))))) (-15 -3168 ($ (-1174) $)) (-15 -3168 ($ (-1174) $ $)) (-15 -1343 ($ (-1175) (-1157))) (-15 -1343 ($ (-1175) (-317 (-701)))) (-15 -1343 ($ (-1175) (-317 (-699)))) (-15 -1343 ($ (-1175) (-317 (-694)))) (-15 -1343 ($ (-1175) (-689 (-701)))) (-15 -1343 ($ (-1175) (-689 (-699)))) (-15 -1343 ($ (-1175) (-689 (-694)))) (-15 -1343 ($ (-1175) (-1264 (-701)))) (-15 -1343 ($ (-1175) (-1264 (-699)))) (-15 -1343 ($ (-1175) (-1264 (-694)))) (-15 -1343 ($ (-1175) (-689 (-317 (-701))))) (-15 -1343 ($ (-1175) (-689 (-317 (-699))))) (-15 -1343 ($ (-1175) (-689 (-317 (-694))))) (-15 -1343 ($ (-1175) (-1264 (-317 (-701))))) (-15 -1343 ($ (-1175) (-1264 (-317 (-699))))) (-15 -1343 ($ (-1175) (-1264 (-317 (-694))))) (-15 -1343 ($ (-1175) (-644 (-952 (-566))) (-317 (-701)))) (-15 -1343 ($ (-1175) (-644 (-952 (-566))) (-317 (-699)))) (-15 -1343 ($ (-1175) (-644 (-952 (-566))) (-317 (-694)))) (-15 -1343 ($ (-1175) (-317 (-566)))) (-15 -1343 ($ (-1175) (-317 (-381)))) (-15 -1343 ($ (-1175) (-317 (-169 (-381))))) (-15 -1343 ($ (-1175) (-689 (-317 (-566))))) (-15 -1343 ($ (-1175) (-689 (-317 (-381))))) (-15 -1343 ($ (-1175) (-689 (-317 (-169 (-381)))))) (-15 -1343 ($ (-1175) (-1264 (-317 (-566))))) (-15 -1343 ($ (-1175) (-1264 (-317 (-381))))) (-15 -1343 ($ (-1175) (-1264 (-317 (-169 (-381)))))) (-15 -1343 ($ (-1175) (-644 (-952 (-566))) (-317 (-566)))) (-15 -1343 ($ (-1175) (-644 (-952 (-566))) (-317 (-381)))) (-15 -1343 ($ (-1175) (-644 (-952 (-566))) (-317 (-169 (-381))))) (-15 -2385 ($ (-644 $))) (-15 -4237 ($)) (-15 -3021 ($)) (-15 -2590 ($ (-644 (-862)))) (-15 -3344 ($ (-1175) (-644 (-1175)))) (-15 -2654 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3261 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1175)) (|:| |arrayIndex| (-644 (-952 (-566)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1346 (-862)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1175)) (|:| |rand| (-862)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1174)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3467 (-112)) (|:| -2233 (-2 (|:| |ints2Floats?| (-112)) (|:| -1346 (-862)))))) (|:| |blockBranch| (-644 $)) (|:| |commentBranch| (-644 (-1157))) (|:| |callBranch| (-1157)) (|:| |forBranch| (-2 (|:| -2446 (-1091 (-952 (-566)))) (|:| |span| (-952 (-566))) (|:| -1382 $))) (|:| |labelBranch| (-1119)) (|:| |loopBranch| (-2 (|:| |switch| (-1174)) (|:| -1382 $))) (|:| |commonBranch| (-2 (|:| -2640 (-1175)) (|:| |contents| (-644 (-1175))))) (|:| |printBranch| (-644 (-862)))) $)) (-15 -3212 ((-1269) $)) (-15 -2403 ((-1103) $)) (-15 -2099 ((-1119) (-1119)))))) (T -331)) -((-3088 (*1 *1 *2 *1) (-12 (-5 *2 (-1091 (-952 (-566)))) (-5 *1 (-331)))) (-3088 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1091 (-952 (-566)))) (-5 *3 (-952 (-566))) (-5 *1 (-331)))) (-4358 (*1 *1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-331)))) (-4148 (*1 *1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-331)))) (-3272 (*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-331)))) (-1858 (*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-331)))) (-3809 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-331)))) (-3809 (*1 *1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-331)))) (-1386 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-331)))) (-2892 (*1 *1) (-5 *1 (-331))) (-2892 (*1 *1 *2) (-12 (-5 *2 (-317 (-699))) (-5 *1 (-331)))) (-2892 (*1 *1 *2) (-12 (-5 *2 (-317 (-701))) (-5 *1 (-331)))) (-2892 (*1 *1 *2) (-12 (-5 *2 (-317 (-694))) (-5 *1 (-331)))) (-2892 (*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-5 *1 (-331)))) (-2892 (*1 *1 *2) (-12 (-5 *2 (-317 (-566))) (-5 *1 (-331)))) (-2892 (*1 *1 *2) (-12 (-5 *2 (-317 (-169 (-381)))) (-5 *1 (-331)))) (-3168 (*1 *1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-331)))) (-3168 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-331)))) (-1343 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1157)) (-5 *1 (-331)))) (-1343 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-317 (-701))) (-5 *1 (-331)))) (-1343 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-317 (-699))) (-5 *1 (-331)))) (-1343 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-317 (-694))) (-5 *1 (-331)))) (-1343 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-701))) (-5 *1 (-331)))) (-1343 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-699))) (-5 *1 (-331)))) (-1343 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-694))) (-5 *1 (-331)))) (-1343 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-701))) (-5 *1 (-331)))) (-1343 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-699))) (-5 *1 (-331)))) (-1343 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-694))) (-5 *1 (-331)))) (-1343 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-317 (-701)))) (-5 *1 (-331)))) (-1343 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-317 (-699)))) (-5 *1 (-331)))) (-1343 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-317 (-694)))) (-5 *1 (-331)))) (-1343 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-317 (-701)))) (-5 *1 (-331)))) (-1343 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-317 (-699)))) (-5 *1 (-331)))) (-1343 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-317 (-694)))) (-5 *1 (-331)))) (-1343 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1175)) (-5 *3 (-644 (-952 (-566)))) (-5 *4 (-317 (-701))) (-5 *1 (-331)))) (-1343 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1175)) (-5 *3 (-644 (-952 (-566)))) (-5 *4 (-317 (-699))) (-5 *1 (-331)))) (-1343 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1175)) (-5 *3 (-644 (-952 (-566)))) (-5 *4 (-317 (-694))) (-5 *1 (-331)))) (-1343 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-317 (-566))) (-5 *1 (-331)))) (-1343 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-317 (-381))) (-5 *1 (-331)))) (-1343 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-317 (-169 (-381)))) (-5 *1 (-331)))) (-1343 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-317 (-566)))) (-5 *1 (-331)))) (-1343 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-317 (-381)))) (-5 *1 (-331)))) (-1343 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-317 (-169 (-381))))) (-5 *1 (-331)))) (-1343 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-317 (-566)))) (-5 *1 (-331)))) (-1343 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-317 (-381)))) (-5 *1 (-331)))) (-1343 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-317 (-169 (-381))))) (-5 *1 (-331)))) (-1343 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1175)) (-5 *3 (-644 (-952 (-566)))) (-5 *4 (-317 (-566))) (-5 *1 (-331)))) (-1343 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1175)) (-5 *3 (-644 (-952 (-566)))) (-5 *4 (-317 (-381))) (-5 *1 (-331)))) (-1343 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1175)) (-5 *3 (-644 (-952 (-566)))) (-5 *4 (-317 (-169 (-381)))) (-5 *1 (-331)))) (-2385 (*1 *1 *2) (-12 (-5 *2 (-644 (-331))) (-5 *1 (-331)))) (-4237 (*1 *1) (-5 *1 (-331))) (-3021 (*1 *1) (-5 *1 (-331))) (-2590 (*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-331)))) (-3344 (*1 *1 *2 *3) (-12 (-5 *3 (-644 (-1175))) (-5 *2 (-1175)) (-5 *1 (-331)))) (-2654 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-331)))) (-3261 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1175)) (|:| |arrayIndex| (-644 (-952 (-566)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1346 (-862)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1175)) (|:| |rand| (-862)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1174)) (|:| |thenClause| (-331)) (|:| |elseClause| (-331)))) (|:| |returnBranch| (-2 (|:| -3467 (-112)) (|:| -2233 (-2 (|:| |ints2Floats?| (-112)) (|:| -1346 (-862)))))) (|:| |blockBranch| (-644 (-331))) (|:| |commentBranch| (-644 (-1157))) (|:| |callBranch| (-1157)) (|:| |forBranch| (-2 (|:| -2446 (-1091 (-952 (-566)))) (|:| |span| (-952 (-566))) (|:| -1382 (-331)))) (|:| |labelBranch| (-1119)) (|:| |loopBranch| (-2 (|:| |switch| (-1174)) (|:| -1382 (-331)))) (|:| |commonBranch| (-2 (|:| -2640 (-1175)) (|:| |contents| (-644 (-1175))))) (|:| |printBranch| (-644 (-862))))) (-5 *1 (-331)))) (-3212 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-331)))) (-2403 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-331)))) (-2099 (*1 *2 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-331))))) -(-13 (-1099) (-10 -8 (-15 -3088 ($ (-1091 (-952 (-566))) $)) (-15 -3088 ($ (-1091 (-952 (-566))) (-952 (-566)) $)) (-15 -4358 ($ (-1174) $)) (-15 -4148 ($ (-1174) $)) (-15 -3272 ($ (-1119))) (-15 -1858 ($ (-1119))) (-15 -3809 ($ (-1157))) (-15 -3809 ($ (-644 (-1157)))) (-15 -1386 ($ (-1157))) (-15 -2892 ($)) (-15 -2892 ($ (-317 (-699)))) (-15 -2892 ($ (-317 (-701)))) (-15 -2892 ($ (-317 (-694)))) (-15 -2892 ($ (-317 (-381)))) (-15 -2892 ($ (-317 (-566)))) (-15 -2892 ($ (-317 (-169 (-381))))) (-15 -3168 ($ (-1174) $)) (-15 -3168 ($ (-1174) $ $)) (-15 -1343 ($ (-1175) (-1157))) (-15 -1343 ($ (-1175) (-317 (-701)))) (-15 -1343 ($ (-1175) (-317 (-699)))) (-15 -1343 ($ (-1175) (-317 (-694)))) (-15 -1343 ($ (-1175) (-689 (-701)))) (-15 -1343 ($ (-1175) (-689 (-699)))) (-15 -1343 ($ (-1175) (-689 (-694)))) (-15 -1343 ($ (-1175) (-1264 (-701)))) (-15 -1343 ($ (-1175) (-1264 (-699)))) (-15 -1343 ($ (-1175) (-1264 (-694)))) (-15 -1343 ($ (-1175) (-689 (-317 (-701))))) (-15 -1343 ($ (-1175) (-689 (-317 (-699))))) (-15 -1343 ($ (-1175) (-689 (-317 (-694))))) (-15 -1343 ($ (-1175) (-1264 (-317 (-701))))) (-15 -1343 ($ (-1175) (-1264 (-317 (-699))))) (-15 -1343 ($ (-1175) (-1264 (-317 (-694))))) (-15 -1343 ($ (-1175) (-644 (-952 (-566))) (-317 (-701)))) (-15 -1343 ($ (-1175) (-644 (-952 (-566))) (-317 (-699)))) (-15 -1343 ($ (-1175) (-644 (-952 (-566))) (-317 (-694)))) (-15 -1343 ($ (-1175) (-317 (-566)))) (-15 -1343 ($ (-1175) (-317 (-381)))) (-15 -1343 ($ (-1175) (-317 (-169 (-381))))) (-15 -1343 ($ (-1175) (-689 (-317 (-566))))) (-15 -1343 ($ (-1175) (-689 (-317 (-381))))) (-15 -1343 ($ (-1175) (-689 (-317 (-169 (-381)))))) (-15 -1343 ($ (-1175) (-1264 (-317 (-566))))) (-15 -1343 ($ (-1175) (-1264 (-317 (-381))))) (-15 -1343 ($ (-1175) (-1264 (-317 (-169 (-381)))))) (-15 -1343 ($ (-1175) (-644 (-952 (-566))) (-317 (-566)))) (-15 -1343 ($ (-1175) (-644 (-952 (-566))) (-317 (-381)))) (-15 -1343 ($ (-1175) (-644 (-952 (-566))) (-317 (-169 (-381))))) (-15 -2385 ($ (-644 $))) (-15 -4237 ($)) (-15 -3021 ($)) (-15 -2590 ($ (-644 (-862)))) (-15 -3344 ($ (-1175) (-644 (-1175)))) (-15 -2654 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3261 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1175)) (|:| |arrayIndex| (-644 (-952 (-566)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1346 (-862)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1175)) (|:| |rand| (-862)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1174)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3467 (-112)) (|:| -2233 (-2 (|:| |ints2Floats?| (-112)) (|:| -1346 (-862)))))) (|:| |blockBranch| (-644 $)) (|:| |commentBranch| (-644 (-1157))) (|:| |callBranch| (-1157)) (|:| |forBranch| (-2 (|:| -2446 (-1091 (-952 (-566)))) (|:| |span| (-952 (-566))) (|:| -1382 $))) (|:| |labelBranch| (-1119)) (|:| |loopBranch| (-2 (|:| |switch| (-1174)) (|:| -1382 $))) (|:| |commonBranch| (-2 (|:| -2640 (-1175)) (|:| |contents| (-644 (-1175))))) (|:| |printBranch| (-644 (-862)))) $)) (-15 -3212 ((-1269) $)) (-15 -2403 ((-1103) $)) (-15 -2099 ((-1119) (-1119))))) -((-3007 (((-112) $ $) NIL)) (-2011 (((-112) $) 13)) (-2085 (($ |#1|) 10)) (-2097 (($ $ $) NIL)) (-3962 (($ $ $) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-2098 (($ |#1|) 12)) (-3783 (((-862) $) 19)) (-3117 (((-112) $ $) NIL)) (-2428 ((|#1| $) 14)) (-3009 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL)) (-2995 (((-112) $ $) NIL)) (-2969 (((-112) $ $) 21))) -(((-332 |#1|) (-13 (-850) (-10 -8 (-15 -2085 ($ |#1|)) (-15 -2098 ($ |#1|)) (-15 -2011 ((-112) $)) (-15 -2428 (|#1| $)))) (-850)) (T -332)) -((-2085 (*1 *1 *2) (-12 (-5 *1 (-332 *2)) (-4 *2 (-850)))) (-2098 (*1 *1 *2) (-12 (-5 *1 (-332 *2)) (-4 *2 (-850)))) (-2011 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-332 *3)) (-4 *3 (-850)))) (-2428 (*1 *2 *1) (-12 (-5 *1 (-332 *2)) (-4 *2 (-850))))) -(-13 (-850) (-10 -8 (-15 -2085 ($ |#1|)) (-15 -2098 ($ |#1|)) (-15 -2011 ((-112) $)) (-15 -2428 (|#1| $)))) -((-3951 (((-331) (-1175) (-952 (-566))) 23)) (-2490 (((-331) (-1175) (-952 (-566))) 27)) (-1556 (((-331) (-1175) (-1091 (-952 (-566))) (-1091 (-952 (-566)))) 26) (((-331) (-1175) (-952 (-566)) (-952 (-566))) 24)) (-1954 (((-331) (-1175) (-952 (-566))) 31))) -(((-333) (-10 -7 (-15 -3951 ((-331) (-1175) (-952 (-566)))) (-15 -1556 ((-331) (-1175) (-952 (-566)) (-952 (-566)))) (-15 -1556 ((-331) (-1175) (-1091 (-952 (-566))) (-1091 (-952 (-566))))) (-15 -2490 ((-331) (-1175) (-952 (-566)))) (-15 -1954 ((-331) (-1175) (-952 (-566)))))) (T -333)) -((-1954 (*1 *2 *3 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-952 (-566))) (-5 *2 (-331)) (-5 *1 (-333)))) (-2490 (*1 *2 *3 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-952 (-566))) (-5 *2 (-331)) (-5 *1 (-333)))) (-1556 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-1091 (-952 (-566)))) (-5 *2 (-331)) (-5 *1 (-333)))) (-1556 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-952 (-566))) (-5 *2 (-331)) (-5 *1 (-333)))) (-3951 (*1 *2 *3 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-952 (-566))) (-5 *2 (-331)) (-5 *1 (-333))))) -(-10 -7 (-15 -3951 ((-331) (-1175) (-952 (-566)))) (-15 -1556 ((-331) (-1175) (-952 (-566)) (-952 (-566)))) (-15 -1556 ((-331) (-1175) (-1091 (-952 (-566))) (-1091 (-952 (-566))))) (-15 -2490 ((-331) (-1175) (-952 (-566)))) (-15 -1954 ((-331) (-1175) (-952 (-566))))) -((-3007 (((-112) $ $) NIL)) (-1796 (((-508) $) 20)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-2718 (((-958 (-771)) $) 18)) (-2870 (((-250) $) 7)) (-3783 (((-862) $) 26)) (-3214 (((-958 (-183 (-139))) $) 16)) (-3117 (((-112) $ $) NIL)) (-4328 (((-644 (-873 (-1180) (-771))) $) 12)) (-2947 (((-112) $ $) 22))) -(((-334) (-13 (-1099) (-10 -8 (-15 -2870 ((-250) $)) (-15 -4328 ((-644 (-873 (-1180) (-771))) $)) (-15 -2718 ((-958 (-771)) $)) (-15 -3214 ((-958 (-183 (-139))) $)) (-15 -1796 ((-508) $))))) (T -334)) -((-2870 (*1 *2 *1) (-12 (-5 *2 (-250)) (-5 *1 (-334)))) (-4328 (*1 *2 *1) (-12 (-5 *2 (-644 (-873 (-1180) (-771)))) (-5 *1 (-334)))) (-2718 (*1 *2 *1) (-12 (-5 *2 (-958 (-771))) (-5 *1 (-334)))) (-3214 (*1 *2 *1) (-12 (-5 *2 (-958 (-183 (-139)))) (-5 *1 (-334)))) (-1796 (*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-334))))) -(-13 (-1099) (-10 -8 (-15 -2870 ((-250) $)) (-15 -4328 ((-644 (-873 (-1180) (-771))) $)) (-15 -2718 ((-958 (-771)) $)) (-15 -3214 ((-958 (-183 (-139))) $)) (-15 -1796 ((-508) $)))) -((-1301 (((-338 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-338 |#1| |#2| |#3| |#4|)) 33))) -(((-335 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1301 ((-338 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-338 |#1| |#2| |#3| |#4|)))) (-365) (-1240 |#1|) (-1240 (-409 |#2|)) (-344 |#1| |#2| |#3|) (-365) (-1240 |#5|) (-1240 (-409 |#6|)) (-344 |#5| |#6| |#7|)) (T -335)) -((-1301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-338 *5 *6 *7 *8)) (-4 *5 (-365)) (-4 *6 (-1240 *5)) (-4 *7 (-1240 (-409 *6))) (-4 *8 (-344 *5 *6 *7)) (-4 *9 (-365)) (-4 *10 (-1240 *9)) (-4 *11 (-1240 (-409 *10))) (-5 *2 (-338 *9 *10 *11 *12)) (-5 *1 (-335 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-344 *9 *10 *11))))) -(-10 -7 (-15 -1301 ((-338 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-338 |#1| |#2| |#3| |#4|)))) -((-3363 (((-112) $) 14))) -(((-336 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3363 ((-112) |#1|))) (-337 |#2| |#3| |#4| |#5|) (-365) (-1240 |#2|) (-1240 (-409 |#3|)) (-344 |#2| |#3| |#4|)) (T -336)) -NIL -(-10 -8 (-15 -3363 ((-112) |#1|))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-4175 (((-3 $ "failed") $ $) 20)) (-3012 (($) 18 T CONST)) (-1676 (($ $) 29)) (-3363 (((-112) $) 28)) (-4117 (((-1157) $) 10)) (-3787 (((-415 |#2| (-409 |#2|) |#3| |#4|) $) 35)) (-4035 (((-1119) $) 11)) (-3441 (((-3 |#4| "failed") $) 27)) (-4357 (($ (-415 |#2| (-409 |#2|) |#3| |#4|)) 34) (($ |#4|) 33) (($ |#1| |#1|) 32) (($ |#1| |#1| (-566)) 31) (($ |#4| |#2| |#2| |#2| |#1|) 26)) (-3475 (((-2 (|:| -4234 (-415 |#2| (-409 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 30)) (-3783 (((-862) $) 12)) (-3117 (((-112) $ $) 9)) (-2479 (($) 19 T CONST)) (-2947 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24))) +((-2875 (*1 *2) (-12 (-4 *3 (-365)) (-5 *2 (-1264 *1)) (-4 *1 (-330 *3)))) (-2875 (*1 *2 *3) (-12 (-5 *3 (-921)) (-4 *4 (-365)) (-5 *2 (-1264 *1)) (-4 *1 (-330 *4)))) (-3350 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1264 *3)))) (-3350 (*1 *2 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-330 *4)) (-4 *4 (-365)) (-5 *2 (-689 *4)))) (-1563 (*1 *1 *2) (-12 (-5 *2 (-1264 *3)) (-4 *3 (-365)) (-4 *1 (-330 *3)))) (-3468 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1171 *3)))) (-1705 (*1 *2) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1171 *3)))) (-1686 (*1 *2) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-921)))) (-3902 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-921)))) (-2064 (*1 *2 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-365)))) (-3833 (*1 *2 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-365)))) (-3468 (*1 *2 *1 *3) (-12 (-5 *3 (-921)) (-4 *4 (-370)) (-4 *4 (-365)) (-5 *2 (-1171 *1)) (-4 *1 (-330 *4)))) (-2064 (*1 *1 *1 *2) (-12 (-5 *2 (-921)) (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)))) (-3833 (*1 *1 *1 *2) (-12 (-5 *2 (-921)) (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)))) (-2110 (*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365)))) (-2437 (*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365)))) (-2953 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-112)))) (-3302 (*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365)))) (-3844 (*1 *1 *1 *2) (-12 (-5 *2 (-1171 *3)) (-4 *3 (-370)) (-4 *1 (-330 *3)) (-4 *3 (-365)))) (-2099 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-1171 *3)))) (-3624 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-1171 *3)))) (-3624 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-1171 *3))))) +(-13 (-1283 |t#1|) (-1038 |t#1|) (-10 -8 (-15 -2875 ((-1264 $))) (-15 -2875 ((-1264 $) (-921))) (-15 -3350 ((-1264 |t#1|) $)) (-15 -3350 ((-689 |t#1|) (-1264 $))) (-15 -1563 ($ (-1264 |t#1|))) (-15 -3468 ((-1171 |t#1|) $)) (-15 -1705 ((-1171 |t#1|))) (-15 -1686 ((-921))) (-15 -3902 ((-921) $)) (-15 -2064 (|t#1| $)) (-15 -3833 (|t#1| $)) (IF (|has| |t#1| (-370)) (PROGN (-6 (-351)) (-15 -3468 ((-1171 $) $ (-921))) (-15 -2064 ($ $ (-921))) (-15 -3833 ($ $ (-921))) (-15 -2110 ($)) (-15 -2437 ($)) (-15 -2953 ((-112) $)) (-15 -3302 ($)) (-15 -3844 ($ $ (-1171 |t#1|))) (-15 -2099 ((-1171 |t#1|) $)) (-15 -3624 ((-1171 |t#1|) $)) (-15 -3624 ((-3 (-1171 |t#1|) "failed") $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2768 (|has| |#1| (-370)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-616 #0#) . T) ((-616 (-566)) . T) ((-616 |#1|) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-233) |has| |#1| (-370)) ((-243) . T) ((-291) . T) ((-308) . T) ((-1283 |#1|) . T) ((-365) . T) ((-404) -2768 (|has| |#1| (-370)) (|has| |#1| (-145))) ((-370) |has| |#1| (-370)) ((-351) |has| |#1| (-370)) ((-454) . T) ((-558) . T) ((-646 #0#) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #0#) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #0#) . T) ((-640 |#1|) . T) ((-640 $) . T) ((-717 #0#) . T) ((-717 |#1|) . T) ((-717 $) . T) ((-726) . T) ((-920) . T) ((-1038 |#1|) . T) ((-1051 #0#) . T) ((-1051 |#1|) . T) ((-1051 $) . T) ((-1056 #0#) . T) ((-1056 |#1|) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1150) |has| |#1| (-370)) ((-1218) . T) ((-1271 |#1|) . T)) +((-2988 (((-112) $ $) NIL)) (-3343 (($ (-1174) $) 104)) (-2886 (($) 93)) (-3008 (((-1119) (-1119)) 9)) (-4046 (($) 94)) (-2620 (($) 108) (($ (-317 (-699))) 116) (($ (-317 (-701))) 112) (($ (-317 (-694))) 120) (($ (-317 (-381))) 127) (($ (-317 (-566))) 123) (($ (-317 (-169 (-381)))) 131)) (-3316 (($ (-1174) $) 105)) (-1390 (($ (-644 (-862))) 95)) (-4393 (((-1269) $) 91)) (-2657 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 35)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3924 (($ (-1119)) 60)) (-3360 (((-1103) $) 32)) (-3845 (($ (-1091 (-952 (-566))) $) 101) (($ (-1091 (-952 (-566))) (-952 (-566)) $) 102)) (-3745 (($ (-1119)) 103)) (-2963 (($ (-1174) $) 133) (($ (-1174) $ $) 134)) (-4353 (($ (-1175) (-644 (-1175))) 92)) (-3581 (($ (-1157)) 98) (($ (-644 (-1157))) 96)) (-3152 (((-862) $) 136)) (-3906 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1175)) (|:| |arrayIndex| (-644 (-952 (-566)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -4308 (-862)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1175)) (|:| |rand| (-862)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1174)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2872 (-112)) (|:| -2876 (-2 (|:| |ints2Floats?| (-112)) (|:| -4308 (-862)))))) (|:| |blockBranch| (-644 $)) (|:| |commentBranch| (-644 (-1157))) (|:| |callBranch| (-1157)) (|:| |forBranch| (-2 (|:| -2821 (-1091 (-952 (-566)))) (|:| |span| (-952 (-566))) (|:| -1377 $))) (|:| |labelBranch| (-1119)) (|:| |loopBranch| (-2 (|:| |switch| (-1174)) (|:| -1377 $))) (|:| |commonBranch| (-2 (|:| -1368 (-1175)) (|:| |contents| (-644 (-1175))))) (|:| |printBranch| (-644 (-862)))) $) 51)) (-3259 (($ (-1157)) 205)) (-2022 (($ (-644 $)) 132)) (-3044 (((-112) $ $) NIL)) (-1655 (($ (-1175) (-1157)) 138) (($ (-1175) (-317 (-701))) 178) (($ (-1175) (-317 (-699))) 179) (($ (-1175) (-317 (-694))) 180) (($ (-1175) (-689 (-701))) 141) (($ (-1175) (-689 (-699))) 144) (($ (-1175) (-689 (-694))) 147) (($ (-1175) (-1264 (-701))) 150) (($ (-1175) (-1264 (-699))) 153) (($ (-1175) (-1264 (-694))) 156) (($ (-1175) (-689 (-317 (-701)))) 159) (($ (-1175) (-689 (-317 (-699)))) 162) (($ (-1175) (-689 (-317 (-694)))) 165) (($ (-1175) (-1264 (-317 (-701)))) 168) (($ (-1175) (-1264 (-317 (-699)))) 171) (($ (-1175) (-1264 (-317 (-694)))) 174) (($ (-1175) (-644 (-952 (-566))) (-317 (-701))) 175) (($ (-1175) (-644 (-952 (-566))) (-317 (-699))) 176) (($ (-1175) (-644 (-952 (-566))) (-317 (-694))) 177) (($ (-1175) (-317 (-566))) 202) (($ (-1175) (-317 (-381))) 203) (($ (-1175) (-317 (-169 (-381)))) 204) (($ (-1175) (-689 (-317 (-566)))) 183) (($ (-1175) (-689 (-317 (-381)))) 186) (($ (-1175) (-689 (-317 (-169 (-381))))) 189) (($ (-1175) (-1264 (-317 (-566)))) 192) (($ (-1175) (-1264 (-317 (-381)))) 195) (($ (-1175) (-1264 (-317 (-169 (-381))))) 198) (($ (-1175) (-644 (-952 (-566))) (-317 (-566))) 199) (($ (-1175) (-644 (-952 (-566))) (-317 (-381))) 200) (($ (-1175) (-644 (-952 (-566))) (-317 (-169 (-381)))) 201)) (-2914 (((-112) $ $) NIL))) +(((-331) (-13 (-1099) (-10 -8 (-15 -3845 ($ (-1091 (-952 (-566))) $)) (-15 -3845 ($ (-1091 (-952 (-566))) (-952 (-566)) $)) (-15 -3343 ($ (-1174) $)) (-15 -3316 ($ (-1174) $)) (-15 -3924 ($ (-1119))) (-15 -3745 ($ (-1119))) (-15 -3581 ($ (-1157))) (-15 -3581 ($ (-644 (-1157)))) (-15 -3259 ($ (-1157))) (-15 -2620 ($)) (-15 -2620 ($ (-317 (-699)))) (-15 -2620 ($ (-317 (-701)))) (-15 -2620 ($ (-317 (-694)))) (-15 -2620 ($ (-317 (-381)))) (-15 -2620 ($ (-317 (-566)))) (-15 -2620 ($ (-317 (-169 (-381))))) (-15 -2963 ($ (-1174) $)) (-15 -2963 ($ (-1174) $ $)) (-15 -1655 ($ (-1175) (-1157))) (-15 -1655 ($ (-1175) (-317 (-701)))) (-15 -1655 ($ (-1175) (-317 (-699)))) (-15 -1655 ($ (-1175) (-317 (-694)))) (-15 -1655 ($ (-1175) (-689 (-701)))) (-15 -1655 ($ (-1175) (-689 (-699)))) (-15 -1655 ($ (-1175) (-689 (-694)))) (-15 -1655 ($ (-1175) (-1264 (-701)))) (-15 -1655 ($ (-1175) (-1264 (-699)))) (-15 -1655 ($ (-1175) (-1264 (-694)))) (-15 -1655 ($ (-1175) (-689 (-317 (-701))))) (-15 -1655 ($ (-1175) (-689 (-317 (-699))))) (-15 -1655 ($ (-1175) (-689 (-317 (-694))))) (-15 -1655 ($ (-1175) (-1264 (-317 (-701))))) (-15 -1655 ($ (-1175) (-1264 (-317 (-699))))) (-15 -1655 ($ (-1175) (-1264 (-317 (-694))))) (-15 -1655 ($ (-1175) (-644 (-952 (-566))) (-317 (-701)))) (-15 -1655 ($ (-1175) (-644 (-952 (-566))) (-317 (-699)))) (-15 -1655 ($ (-1175) (-644 (-952 (-566))) (-317 (-694)))) (-15 -1655 ($ (-1175) (-317 (-566)))) (-15 -1655 ($ (-1175) (-317 (-381)))) (-15 -1655 ($ (-1175) (-317 (-169 (-381))))) (-15 -1655 ($ (-1175) (-689 (-317 (-566))))) (-15 -1655 ($ (-1175) (-689 (-317 (-381))))) (-15 -1655 ($ (-1175) (-689 (-317 (-169 (-381)))))) (-15 -1655 ($ (-1175) (-1264 (-317 (-566))))) (-15 -1655 ($ (-1175) (-1264 (-317 (-381))))) (-15 -1655 ($ (-1175) (-1264 (-317 (-169 (-381)))))) (-15 -1655 ($ (-1175) (-644 (-952 (-566))) (-317 (-566)))) (-15 -1655 ($ (-1175) (-644 (-952 (-566))) (-317 (-381)))) (-15 -1655 ($ (-1175) (-644 (-952 (-566))) (-317 (-169 (-381))))) (-15 -2022 ($ (-644 $))) (-15 -2886 ($)) (-15 -4046 ($)) (-15 -1390 ($ (-644 (-862)))) (-15 -4353 ($ (-1175) (-644 (-1175)))) (-15 -2657 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3906 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1175)) (|:| |arrayIndex| (-644 (-952 (-566)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -4308 (-862)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1175)) (|:| |rand| (-862)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1174)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2872 (-112)) (|:| -2876 (-2 (|:| |ints2Floats?| (-112)) (|:| -4308 (-862)))))) (|:| |blockBranch| (-644 $)) (|:| |commentBranch| (-644 (-1157))) (|:| |callBranch| (-1157)) (|:| |forBranch| (-2 (|:| -2821 (-1091 (-952 (-566)))) (|:| |span| (-952 (-566))) (|:| -1377 $))) (|:| |labelBranch| (-1119)) (|:| |loopBranch| (-2 (|:| |switch| (-1174)) (|:| -1377 $))) (|:| |commonBranch| (-2 (|:| -1368 (-1175)) (|:| |contents| (-644 (-1175))))) (|:| |printBranch| (-644 (-862)))) $)) (-15 -4393 ((-1269) $)) (-15 -3360 ((-1103) $)) (-15 -3008 ((-1119) (-1119)))))) (T -331)) +((-3845 (*1 *1 *2 *1) (-12 (-5 *2 (-1091 (-952 (-566)))) (-5 *1 (-331)))) (-3845 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1091 (-952 (-566)))) (-5 *3 (-952 (-566))) (-5 *1 (-331)))) (-3343 (*1 *1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-331)))) (-3316 (*1 *1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-331)))) (-3924 (*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-331)))) (-3745 (*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-331)))) (-3581 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-331)))) (-3581 (*1 *1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-331)))) (-3259 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-331)))) (-2620 (*1 *1) (-5 *1 (-331))) (-2620 (*1 *1 *2) (-12 (-5 *2 (-317 (-699))) (-5 *1 (-331)))) (-2620 (*1 *1 *2) (-12 (-5 *2 (-317 (-701))) (-5 *1 (-331)))) (-2620 (*1 *1 *2) (-12 (-5 *2 (-317 (-694))) (-5 *1 (-331)))) (-2620 (*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-5 *1 (-331)))) (-2620 (*1 *1 *2) (-12 (-5 *2 (-317 (-566))) (-5 *1 (-331)))) (-2620 (*1 *1 *2) (-12 (-5 *2 (-317 (-169 (-381)))) (-5 *1 (-331)))) (-2963 (*1 *1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-331)))) (-2963 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-331)))) (-1655 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1157)) (-5 *1 (-331)))) (-1655 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-317 (-701))) (-5 *1 (-331)))) (-1655 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-317 (-699))) (-5 *1 (-331)))) (-1655 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-317 (-694))) (-5 *1 (-331)))) (-1655 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-701))) (-5 *1 (-331)))) (-1655 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-699))) (-5 *1 (-331)))) (-1655 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-694))) (-5 *1 (-331)))) (-1655 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-701))) (-5 *1 (-331)))) (-1655 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-699))) (-5 *1 (-331)))) (-1655 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-694))) (-5 *1 (-331)))) (-1655 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-317 (-701)))) (-5 *1 (-331)))) (-1655 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-317 (-699)))) (-5 *1 (-331)))) (-1655 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-317 (-694)))) (-5 *1 (-331)))) (-1655 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-317 (-701)))) (-5 *1 (-331)))) (-1655 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-317 (-699)))) (-5 *1 (-331)))) (-1655 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-317 (-694)))) (-5 *1 (-331)))) (-1655 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1175)) (-5 *3 (-644 (-952 (-566)))) (-5 *4 (-317 (-701))) (-5 *1 (-331)))) (-1655 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1175)) (-5 *3 (-644 (-952 (-566)))) (-5 *4 (-317 (-699))) (-5 *1 (-331)))) (-1655 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1175)) (-5 *3 (-644 (-952 (-566)))) (-5 *4 (-317 (-694))) (-5 *1 (-331)))) (-1655 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-317 (-566))) (-5 *1 (-331)))) (-1655 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-317 (-381))) (-5 *1 (-331)))) (-1655 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-317 (-169 (-381)))) (-5 *1 (-331)))) (-1655 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-317 (-566)))) (-5 *1 (-331)))) (-1655 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-317 (-381)))) (-5 *1 (-331)))) (-1655 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-317 (-169 (-381))))) (-5 *1 (-331)))) (-1655 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-317 (-566)))) (-5 *1 (-331)))) (-1655 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-317 (-381)))) (-5 *1 (-331)))) (-1655 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-317 (-169 (-381))))) (-5 *1 (-331)))) (-1655 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1175)) (-5 *3 (-644 (-952 (-566)))) (-5 *4 (-317 (-566))) (-5 *1 (-331)))) (-1655 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1175)) (-5 *3 (-644 (-952 (-566)))) (-5 *4 (-317 (-381))) (-5 *1 (-331)))) (-1655 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1175)) (-5 *3 (-644 (-952 (-566)))) (-5 *4 (-317 (-169 (-381)))) (-5 *1 (-331)))) (-2022 (*1 *1 *2) (-12 (-5 *2 (-644 (-331))) (-5 *1 (-331)))) (-2886 (*1 *1) (-5 *1 (-331))) (-4046 (*1 *1) (-5 *1 (-331))) (-1390 (*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-331)))) (-4353 (*1 *1 *2 *3) (-12 (-5 *3 (-644 (-1175))) (-5 *2 (-1175)) (-5 *1 (-331)))) (-2657 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-331)))) (-3906 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1175)) (|:| |arrayIndex| (-644 (-952 (-566)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -4308 (-862)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1175)) (|:| |rand| (-862)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1174)) (|:| |thenClause| (-331)) (|:| |elseClause| (-331)))) (|:| |returnBranch| (-2 (|:| -2872 (-112)) (|:| -2876 (-2 (|:| |ints2Floats?| (-112)) (|:| -4308 (-862)))))) (|:| |blockBranch| (-644 (-331))) (|:| |commentBranch| (-644 (-1157))) (|:| |callBranch| (-1157)) (|:| |forBranch| (-2 (|:| -2821 (-1091 (-952 (-566)))) (|:| |span| (-952 (-566))) (|:| -1377 (-331)))) (|:| |labelBranch| (-1119)) (|:| |loopBranch| (-2 (|:| |switch| (-1174)) (|:| -1377 (-331)))) (|:| |commonBranch| (-2 (|:| -1368 (-1175)) (|:| |contents| (-644 (-1175))))) (|:| |printBranch| (-644 (-862))))) (-5 *1 (-331)))) (-4393 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-331)))) (-3360 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-331)))) (-3008 (*1 *2 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-331))))) +(-13 (-1099) (-10 -8 (-15 -3845 ($ (-1091 (-952 (-566))) $)) (-15 -3845 ($ (-1091 (-952 (-566))) (-952 (-566)) $)) (-15 -3343 ($ (-1174) $)) (-15 -3316 ($ (-1174) $)) (-15 -3924 ($ (-1119))) (-15 -3745 ($ (-1119))) (-15 -3581 ($ (-1157))) (-15 -3581 ($ (-644 (-1157)))) (-15 -3259 ($ (-1157))) (-15 -2620 ($)) (-15 -2620 ($ (-317 (-699)))) (-15 -2620 ($ (-317 (-701)))) (-15 -2620 ($ (-317 (-694)))) (-15 -2620 ($ (-317 (-381)))) (-15 -2620 ($ (-317 (-566)))) (-15 -2620 ($ (-317 (-169 (-381))))) (-15 -2963 ($ (-1174) $)) (-15 -2963 ($ (-1174) $ $)) (-15 -1655 ($ (-1175) (-1157))) (-15 -1655 ($ (-1175) (-317 (-701)))) (-15 -1655 ($ (-1175) (-317 (-699)))) (-15 -1655 ($ (-1175) (-317 (-694)))) (-15 -1655 ($ (-1175) (-689 (-701)))) (-15 -1655 ($ (-1175) (-689 (-699)))) (-15 -1655 ($ (-1175) (-689 (-694)))) (-15 -1655 ($ (-1175) (-1264 (-701)))) (-15 -1655 ($ (-1175) (-1264 (-699)))) (-15 -1655 ($ (-1175) (-1264 (-694)))) (-15 -1655 ($ (-1175) (-689 (-317 (-701))))) (-15 -1655 ($ (-1175) (-689 (-317 (-699))))) (-15 -1655 ($ (-1175) (-689 (-317 (-694))))) (-15 -1655 ($ (-1175) (-1264 (-317 (-701))))) (-15 -1655 ($ (-1175) (-1264 (-317 (-699))))) (-15 -1655 ($ (-1175) (-1264 (-317 (-694))))) (-15 -1655 ($ (-1175) (-644 (-952 (-566))) (-317 (-701)))) (-15 -1655 ($ (-1175) (-644 (-952 (-566))) (-317 (-699)))) (-15 -1655 ($ (-1175) (-644 (-952 (-566))) (-317 (-694)))) (-15 -1655 ($ (-1175) (-317 (-566)))) (-15 -1655 ($ (-1175) (-317 (-381)))) (-15 -1655 ($ (-1175) (-317 (-169 (-381))))) (-15 -1655 ($ (-1175) (-689 (-317 (-566))))) (-15 -1655 ($ (-1175) (-689 (-317 (-381))))) (-15 -1655 ($ (-1175) (-689 (-317 (-169 (-381)))))) (-15 -1655 ($ (-1175) (-1264 (-317 (-566))))) (-15 -1655 ($ (-1175) (-1264 (-317 (-381))))) (-15 -1655 ($ (-1175) (-1264 (-317 (-169 (-381)))))) (-15 -1655 ($ (-1175) (-644 (-952 (-566))) (-317 (-566)))) (-15 -1655 ($ (-1175) (-644 (-952 (-566))) (-317 (-381)))) (-15 -1655 ($ (-1175) (-644 (-952 (-566))) (-317 (-169 (-381))))) (-15 -2022 ($ (-644 $))) (-15 -2886 ($)) (-15 -4046 ($)) (-15 -1390 ($ (-644 (-862)))) (-15 -4353 ($ (-1175) (-644 (-1175)))) (-15 -2657 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3906 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1175)) (|:| |arrayIndex| (-644 (-952 (-566)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -4308 (-862)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1175)) (|:| |rand| (-862)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1174)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2872 (-112)) (|:| -2876 (-2 (|:| |ints2Floats?| (-112)) (|:| -4308 (-862)))))) (|:| |blockBranch| (-644 $)) (|:| |commentBranch| (-644 (-1157))) (|:| |callBranch| (-1157)) (|:| |forBranch| (-2 (|:| -2821 (-1091 (-952 (-566)))) (|:| |span| (-952 (-566))) (|:| -1377 $))) (|:| |labelBranch| (-1119)) (|:| |loopBranch| (-2 (|:| |switch| (-1174)) (|:| -1377 $))) (|:| |commonBranch| (-2 (|:| -1368 (-1175)) (|:| |contents| (-644 (-1175))))) (|:| |printBranch| (-644 (-862)))) $)) (-15 -4393 ((-1269) $)) (-15 -3360 ((-1103) $)) (-15 -3008 ((-1119) (-1119))))) +((-2988 (((-112) $ $) NIL)) (-2922 (((-112) $) 13)) (-3602 (($ |#1|) 10)) (-1478 (($ $ $) NIL)) (-2599 (($ $ $) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3618 (($ |#1|) 12)) (-3152 (((-862) $) 19)) (-3044 (((-112) $ $) NIL)) (-1684 ((|#1| $) 14)) (-2968 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2935 (((-112) $ $) 21))) +(((-332 |#1|) (-13 (-850) (-10 -8 (-15 -3602 ($ |#1|)) (-15 -3618 ($ |#1|)) (-15 -2922 ((-112) $)) (-15 -1684 (|#1| $)))) (-850)) (T -332)) +((-3602 (*1 *1 *2) (-12 (-5 *1 (-332 *2)) (-4 *2 (-850)))) (-3618 (*1 *1 *2) (-12 (-5 *1 (-332 *2)) (-4 *2 (-850)))) (-2922 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-332 *3)) (-4 *3 (-850)))) (-1684 (*1 *2 *1) (-12 (-5 *1 (-332 *2)) (-4 *2 (-850))))) +(-13 (-850) (-10 -8 (-15 -3602 ($ |#1|)) (-15 -3618 ($ |#1|)) (-15 -2922 ((-112) $)) (-15 -1684 (|#1| $)))) +((-1383 (((-331) (-1175) (-952 (-566))) 23)) (-1423 (((-331) (-1175) (-952 (-566))) 27)) (-1862 (((-331) (-1175) (-1091 (-952 (-566))) (-1091 (-952 (-566)))) 26) (((-331) (-1175) (-952 (-566)) (-952 (-566))) 24)) (-2072 (((-331) (-1175) (-952 (-566))) 31))) +(((-333) (-10 -7 (-15 -1383 ((-331) (-1175) (-952 (-566)))) (-15 -1862 ((-331) (-1175) (-952 (-566)) (-952 (-566)))) (-15 -1862 ((-331) (-1175) (-1091 (-952 (-566))) (-1091 (-952 (-566))))) (-15 -1423 ((-331) (-1175) (-952 (-566)))) (-15 -2072 ((-331) (-1175) (-952 (-566)))))) (T -333)) +((-2072 (*1 *2 *3 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-952 (-566))) (-5 *2 (-331)) (-5 *1 (-333)))) (-1423 (*1 *2 *3 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-952 (-566))) (-5 *2 (-331)) (-5 *1 (-333)))) (-1862 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-1091 (-952 (-566)))) (-5 *2 (-331)) (-5 *1 (-333)))) (-1862 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-952 (-566))) (-5 *2 (-331)) (-5 *1 (-333)))) (-1383 (*1 *2 *3 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-952 (-566))) (-5 *2 (-331)) (-5 *1 (-333))))) +(-10 -7 (-15 -1383 ((-331) (-1175) (-952 (-566)))) (-15 -1862 ((-331) (-1175) (-952 (-566)) (-952 (-566)))) (-15 -1862 ((-331) (-1175) (-1091 (-952 (-566))) (-1091 (-952 (-566))))) (-15 -1423 ((-331) (-1175) (-952 (-566)))) (-15 -2072 ((-331) (-1175) (-952 (-566))))) +((-2988 (((-112) $ $) NIL)) (-3873 (((-508) $) 20)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3423 (((-958 (-771)) $) 18)) (-4328 (((-250) $) 7)) (-3152 (((-862) $) 26)) (-4227 (((-958 (-183 (-139))) $) 16)) (-3044 (((-112) $ $) NIL)) (-3597 (((-644 (-873 (-1180) (-771))) $) 12)) (-2914 (((-112) $ $) 22))) +(((-334) (-13 (-1099) (-10 -8 (-15 -4328 ((-250) $)) (-15 -3597 ((-644 (-873 (-1180) (-771))) $)) (-15 -3423 ((-958 (-771)) $)) (-15 -4227 ((-958 (-183 (-139))) $)) (-15 -3873 ((-508) $))))) (T -334)) +((-4328 (*1 *2 *1) (-12 (-5 *2 (-250)) (-5 *1 (-334)))) (-3597 (*1 *2 *1) (-12 (-5 *2 (-644 (-873 (-1180) (-771)))) (-5 *1 (-334)))) (-3423 (*1 *2 *1) (-12 (-5 *2 (-958 (-771))) (-5 *1 (-334)))) (-4227 (*1 *2 *1) (-12 (-5 *2 (-958 (-183 (-139)))) (-5 *1 (-334)))) (-3873 (*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-334))))) +(-13 (-1099) (-10 -8 (-15 -4328 ((-250) $)) (-15 -3597 ((-644 (-873 (-1180) (-771))) $)) (-15 -3423 ((-958 (-771)) $)) (-15 -4227 ((-958 (-183 (-139))) $)) (-15 -3873 ((-508) $)))) +((-2319 (((-338 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-338 |#1| |#2| |#3| |#4|)) 33))) +(((-335 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2319 ((-338 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-338 |#1| |#2| |#3| |#4|)))) (-365) (-1240 |#1|) (-1240 (-409 |#2|)) (-344 |#1| |#2| |#3|) (-365) (-1240 |#5|) (-1240 (-409 |#6|)) (-344 |#5| |#6| |#7|)) (T -335)) +((-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-338 *5 *6 *7 *8)) (-4 *5 (-365)) (-4 *6 (-1240 *5)) (-4 *7 (-1240 (-409 *6))) (-4 *8 (-344 *5 *6 *7)) (-4 *9 (-365)) (-4 *10 (-1240 *9)) (-4 *11 (-1240 (-409 *10))) (-5 *2 (-338 *9 *10 *11 *12)) (-5 *1 (-335 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-344 *9 *10 *11))))) +(-10 -7 (-15 -2319 ((-338 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-338 |#1| |#2| |#3| |#4|)))) +((-2138 (((-112) $) 14))) +(((-336 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2138 ((-112) |#1|))) (-337 |#2| |#3| |#4| |#5|) (-365) (-1240 |#2|) (-1240 (-409 |#3|)) (-344 |#2| |#3| |#4|)) (T -336)) +NIL +(-10 -8 (-15 -2138 ((-112) |#1|))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-3967 (((-3 $ "failed") $ $) 20)) (-2463 (($) 18 T CONST)) (-2873 (($ $) 29)) (-2138 (((-112) $) 28)) (-3380 (((-1157) $) 10)) (-2424 (((-415 |#2| (-409 |#2|) |#3| |#4|) $) 35)) (-4072 (((-1119) $) 11)) (-3302 (((-3 |#4| "failed") $) 27)) (-3240 (($ (-415 |#2| (-409 |#2|) |#3| |#4|)) 34) (($ |#4|) 33) (($ |#1| |#1|) 32) (($ |#1| |#1| (-566)) 31) (($ |#4| |#2| |#2| |#2| |#1|) 26)) (-2461 (((-2 (|:| -1828 (-415 |#2| (-409 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 30)) (-3152 (((-862) $) 12)) (-3044 (((-112) $ $) 9)) (-4356 (($) 19 T CONST)) (-2914 (((-112) $ $) 6)) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24))) (((-337 |#1| |#2| |#3| |#4|) (-140) (-365) (-1240 |t#1|) (-1240 (-409 |t#2|)) (-344 |t#1| |t#2| |t#3|)) (T -337)) -((-3787 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-4 *6 (-344 *3 *4 *5)) (-5 *2 (-415 *4 (-409 *4) *5 *6)))) (-4357 (*1 *1 *2) (-12 (-5 *2 (-415 *4 (-409 *4) *5 *6)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-4 *6 (-344 *3 *4 *5)) (-4 *3 (-365)) (-4 *1 (-337 *3 *4 *5 *6)))) (-4357 (*1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-4 *1 (-337 *3 *4 *5 *2)) (-4 *2 (-344 *3 *4 *5)))) (-4357 (*1 *1 *2 *2) (-12 (-4 *2 (-365)) (-4 *3 (-1240 *2)) (-4 *4 (-1240 (-409 *3))) (-4 *1 (-337 *2 *3 *4 *5)) (-4 *5 (-344 *2 *3 *4)))) (-4357 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-566)) (-4 *2 (-365)) (-4 *4 (-1240 *2)) (-4 *5 (-1240 (-409 *4))) (-4 *1 (-337 *2 *4 *5 *6)) (-4 *6 (-344 *2 *4 *5)))) (-3475 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-4 *6 (-344 *3 *4 *5)) (-5 *2 (-2 (|:| -4234 (-415 *4 (-409 *4) *5 *6)) (|:| |principalPart| *6))))) (-1676 (*1 *1 *1) (-12 (-4 *1 (-337 *2 *3 *4 *5)) (-4 *2 (-365)) (-4 *3 (-1240 *2)) (-4 *4 (-1240 (-409 *3))) (-4 *5 (-344 *2 *3 *4)))) (-3363 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-4 *6 (-344 *3 *4 *5)) (-5 *2 (-112)))) (-3441 (*1 *2 *1) (|partial| -12 (-4 *1 (-337 *3 *4 *5 *2)) (-4 *3 (-365)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-4 *2 (-344 *3 *4 *5)))) (-4357 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-365)) (-4 *3 (-1240 *4)) (-4 *5 (-1240 (-409 *3))) (-4 *1 (-337 *4 *3 *5 *2)) (-4 *2 (-344 *4 *3 *5))))) -(-13 (-21) (-10 -8 (-15 -3787 ((-415 |t#2| (-409 |t#2|) |t#3| |t#4|) $)) (-15 -4357 ($ (-415 |t#2| (-409 |t#2|) |t#3| |t#4|))) (-15 -4357 ($ |t#4|)) (-15 -4357 ($ |t#1| |t#1|)) (-15 -4357 ($ |t#1| |t#1| (-566))) (-15 -3475 ((-2 (|:| -4234 (-415 |t#2| (-409 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -1676 ($ $)) (-15 -3363 ((-112) $)) (-15 -3441 ((-3 |t#4| "failed") $)) (-15 -4357 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) +((-2424 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-4 *6 (-344 *3 *4 *5)) (-5 *2 (-415 *4 (-409 *4) *5 *6)))) (-3240 (*1 *1 *2) (-12 (-5 *2 (-415 *4 (-409 *4) *5 *6)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-4 *6 (-344 *3 *4 *5)) (-4 *3 (-365)) (-4 *1 (-337 *3 *4 *5 *6)))) (-3240 (*1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-4 *1 (-337 *3 *4 *5 *2)) (-4 *2 (-344 *3 *4 *5)))) (-3240 (*1 *1 *2 *2) (-12 (-4 *2 (-365)) (-4 *3 (-1240 *2)) (-4 *4 (-1240 (-409 *3))) (-4 *1 (-337 *2 *3 *4 *5)) (-4 *5 (-344 *2 *3 *4)))) (-3240 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-566)) (-4 *2 (-365)) (-4 *4 (-1240 *2)) (-4 *5 (-1240 (-409 *4))) (-4 *1 (-337 *2 *4 *5 *6)) (-4 *6 (-344 *2 *4 *5)))) (-2461 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-4 *6 (-344 *3 *4 *5)) (-5 *2 (-2 (|:| -1828 (-415 *4 (-409 *4) *5 *6)) (|:| |principalPart| *6))))) (-2873 (*1 *1 *1) (-12 (-4 *1 (-337 *2 *3 *4 *5)) (-4 *2 (-365)) (-4 *3 (-1240 *2)) (-4 *4 (-1240 (-409 *3))) (-4 *5 (-344 *2 *3 *4)))) (-2138 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-4 *6 (-344 *3 *4 *5)) (-5 *2 (-112)))) (-3302 (*1 *2 *1) (|partial| -12 (-4 *1 (-337 *3 *4 *5 *2)) (-4 *3 (-365)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-4 *2 (-344 *3 *4 *5)))) (-3240 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-365)) (-4 *3 (-1240 *4)) (-4 *5 (-1240 (-409 *3))) (-4 *1 (-337 *4 *3 *5 *2)) (-4 *2 (-344 *4 *3 *5))))) +(-13 (-21) (-10 -8 (-15 -2424 ((-415 |t#2| (-409 |t#2|) |t#3| |t#4|) $)) (-15 -3240 ($ (-415 |t#2| (-409 |t#2|) |t#3| |t#4|))) (-15 -3240 ($ |t#4|)) (-15 -3240 ($ |t#1| |t#1|)) (-15 -3240 ($ |t#1| |t#1| (-566))) (-15 -2461 ((-2 (|:| -1828 (-415 |t#2| (-409 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -2873 ($ $)) (-15 -2138 ((-112) $)) (-15 -3302 ((-3 |t#4| "failed") $)) (-15 -3240 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-1099) . T)) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-3012 (($) NIL T CONST)) (-1676 (($ $) 33)) (-3363 (((-112) $) NIL)) (-4117 (((-1157) $) NIL)) (-2657 (((-1264 |#4|) $) 135)) (-3787 (((-415 |#2| (-409 |#2|) |#3| |#4|) $) 31)) (-4035 (((-1119) $) NIL)) (-3441 (((-3 |#4| "failed") $) 36)) (-4320 (((-1264 |#4|) $) 127)) (-4357 (($ (-415 |#2| (-409 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-566)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-3475 (((-2 (|:| -4234 (-415 |#2| (-409 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-3783 (((-862) $) 17)) (-3117 (((-112) $ $) NIL)) (-2479 (($) 14 T CONST)) (-2947 (((-112) $ $) 20)) (-3053 (($ $) 27) (($ $ $) NIL)) (-3041 (($ $ $) 25)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 23))) -(((-338 |#1| |#2| |#3| |#4|) (-13 (-337 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4320 ((-1264 |#4|) $)) (-15 -2657 ((-1264 |#4|) $)))) (-365) (-1240 |#1|) (-1240 (-409 |#2|)) (-344 |#1| |#2| |#3|)) (T -338)) -((-4320 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-1264 *6)) (-5 *1 (-338 *3 *4 *5 *6)) (-4 *6 (-344 *3 *4 *5)))) (-2657 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-1264 *6)) (-5 *1 (-338 *3 *4 *5 *6)) (-4 *6 (-344 *3 *4 *5))))) -(-13 (-337 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4320 ((-1264 |#4|) $)) (-15 -2657 ((-1264 |#4|) $)))) -((-2055 (($ $ (-1175) |#2|) NIL) (($ $ (-644 (-1175)) (-644 |#2|)) 20) (($ $ (-644 (-295 |#2|))) 15) (($ $ (-295 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-644 |#2|) (-644 |#2|)) NIL)) (-4390 (($ $ |#2|) 11))) -(((-339 |#1| |#2|) (-10 -8 (-15 -4390 (|#1| |#1| |#2|)) (-15 -2055 (|#1| |#1| (-644 |#2|) (-644 |#2|))) (-15 -2055 (|#1| |#1| |#2| |#2|)) (-15 -2055 (|#1| |#1| (-295 |#2|))) (-15 -2055 (|#1| |#1| (-644 (-295 |#2|)))) (-15 -2055 (|#1| |#1| (-644 (-1175)) (-644 |#2|))) (-15 -2055 (|#1| |#1| (-1175) |#2|))) (-340 |#2|) (-1099)) (T -339)) -NIL -(-10 -8 (-15 -4390 (|#1| |#1| |#2|)) (-15 -2055 (|#1| |#1| (-644 |#2|) (-644 |#2|))) (-15 -2055 (|#1| |#1| |#2| |#2|)) (-15 -2055 (|#1| |#1| (-295 |#2|))) (-15 -2055 (|#1| |#1| (-644 (-295 |#2|)))) (-15 -2055 (|#1| |#1| (-644 (-1175)) (-644 |#2|))) (-15 -2055 (|#1| |#1| (-1175) |#2|))) -((-1301 (($ (-1 |#1| |#1|) $) 6)) (-2055 (($ $ (-1175) |#1|) 17 (|has| |#1| (-516 (-1175) |#1|))) (($ $ (-644 (-1175)) (-644 |#1|)) 16 (|has| |#1| (-516 (-1175) |#1|))) (($ $ (-644 (-295 |#1|))) 15 (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) 14 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-310 |#1|))) (($ $ (-644 |#1|) (-644 |#1|)) 12 (|has| |#1| (-310 |#1|)))) (-4390 (($ $ |#1|) 11 (|has| |#1| (-287 |#1| |#1|))))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-2463 (($) NIL T CONST)) (-2873 (($ $) 33)) (-2138 (((-112) $) NIL)) (-3380 (((-1157) $) NIL)) (-1809 (((-1264 |#4|) $) 135)) (-2424 (((-415 |#2| (-409 |#2|) |#3| |#4|) $) 31)) (-4072 (((-1119) $) NIL)) (-3302 (((-3 |#4| "failed") $) 36)) (-4119 (((-1264 |#4|) $) 127)) (-3240 (($ (-415 |#2| (-409 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-566)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-2461 (((-2 (|:| -1828 (-415 |#2| (-409 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-3152 (((-862) $) 17)) (-3044 (((-112) $ $) NIL)) (-4356 (($) 14 T CONST)) (-2914 (((-112) $ $) 20)) (-3012 (($ $) 27) (($ $ $) NIL)) (-3002 (($ $ $) 25)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 23))) +(((-338 |#1| |#2| |#3| |#4|) (-13 (-337 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4119 ((-1264 |#4|) $)) (-15 -1809 ((-1264 |#4|) $)))) (-365) (-1240 |#1|) (-1240 (-409 |#2|)) (-344 |#1| |#2| |#3|)) (T -338)) +((-4119 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-1264 *6)) (-5 *1 (-338 *3 *4 *5 *6)) (-4 *6 (-344 *3 *4 *5)))) (-1809 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-1264 *6)) (-5 *1 (-338 *3 *4 *5 *6)) (-4 *6 (-344 *3 *4 *5))))) +(-13 (-337 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4119 ((-1264 |#4|) $)) (-15 -1809 ((-1264 |#4|) $)))) +((-2023 (($ $ (-1175) |#2|) NIL) (($ $ (-644 (-1175)) (-644 |#2|)) 20) (($ $ (-644 (-295 |#2|))) 15) (($ $ (-295 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-644 |#2|) (-644 |#2|)) NIL)) (-1309 (($ $ |#2|) 11))) +(((-339 |#1| |#2|) (-10 -8 (-15 -1309 (|#1| |#1| |#2|)) (-15 -2023 (|#1| |#1| (-644 |#2|) (-644 |#2|))) (-15 -2023 (|#1| |#1| |#2| |#2|)) (-15 -2023 (|#1| |#1| (-295 |#2|))) (-15 -2023 (|#1| |#1| (-644 (-295 |#2|)))) (-15 -2023 (|#1| |#1| (-644 (-1175)) (-644 |#2|))) (-15 -2023 (|#1| |#1| (-1175) |#2|))) (-340 |#2|) (-1099)) (T -339)) +NIL +(-10 -8 (-15 -1309 (|#1| |#1| |#2|)) (-15 -2023 (|#1| |#1| (-644 |#2|) (-644 |#2|))) (-15 -2023 (|#1| |#1| |#2| |#2|)) (-15 -2023 (|#1| |#1| (-295 |#2|))) (-15 -2023 (|#1| |#1| (-644 (-295 |#2|)))) (-15 -2023 (|#1| |#1| (-644 (-1175)) (-644 |#2|))) (-15 -2023 (|#1| |#1| (-1175) |#2|))) +((-2319 (($ (-1 |#1| |#1|) $) 6)) (-2023 (($ $ (-1175) |#1|) 17 (|has| |#1| (-516 (-1175) |#1|))) (($ $ (-644 (-1175)) (-644 |#1|)) 16 (|has| |#1| (-516 (-1175) |#1|))) (($ $ (-644 (-295 |#1|))) 15 (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) 14 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-310 |#1|))) (($ $ (-644 |#1|) (-644 |#1|)) 12 (|has| |#1| (-310 |#1|)))) (-1309 (($ $ |#1|) 11 (|has| |#1| (-287 |#1| |#1|))))) (((-340 |#1|) (-140) (-1099)) (T -340)) -((-1301 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-340 *3)) (-4 *3 (-1099))))) -(-13 (-10 -8 (-15 -1301 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-287 |t#1| |t#1|)) (-6 (-287 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-310 |t#1|)) (-6 (-310 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-516 (-1175) |t#1|)) (-6 (-516 (-1175) |t#1|)) |%noBranch|))) +((-2319 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-340 *3)) (-4 *3 (-1099))))) +(-13 (-10 -8 (-15 -2319 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-287 |t#1| |t#1|)) (-6 (-287 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-310 |t#1|)) (-6 (-310 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-516 (-1175) |t#1|)) (-6 (-516 (-1175) |t#1|)) |%noBranch|))) (((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-516 (-1175) |#1|) |has| |#1| (-516 (-1175) |#1|)) ((-516 |#1| |#1|) |has| |#1| (-310 |#1|))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-3863 (((-644 (-1175)) $) NIL)) (-2441 (((-112)) 99) (((-112) (-112)) 100)) (-3570 (((-644 (-612 $)) $) NIL)) (-4114 (($ $) NIL)) (-2109 (($ $) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-2645 (($ $ (-295 $)) NIL) (($ $ (-644 (-295 $))) NIL) (($ $ (-644 (-612 $)) (-644 $)) NIL)) (-3731 (($ $) NIL)) (-2240 (($ $) NIL)) (-2085 (($ $) NIL)) (-3012 (($) NIL T CONST)) (-4307 (((-3 (-612 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-317 |#3|)) 79) (((-3 $ "failed") (-1175)) 105) (((-3 $ "failed") (-317 (-566))) 67 (|has| |#3| (-1038 (-566)))) (((-3 $ "failed") (-409 (-952 (-566)))) 73 (|has| |#3| (-1038 (-566)))) (((-3 $ "failed") (-952 (-566))) 68 (|has| |#3| (-1038 (-566)))) (((-3 $ "failed") (-317 (-381))) 97 (|has| |#3| (-1038 (-381)))) (((-3 $ "failed") (-409 (-952 (-381)))) 91 (|has| |#3| (-1038 (-381)))) (((-3 $ "failed") (-952 (-381))) 86 (|has| |#3| (-1038 (-381))))) (-4205 (((-612 $) $) NIL) ((|#3| $) NIL) (($ (-317 |#3|)) 80) (($ (-1175)) 106) (($ (-317 (-566))) 69 (|has| |#3| (-1038 (-566)))) (($ (-409 (-952 (-566)))) 74 (|has| |#3| (-1038 (-566)))) (($ (-952 (-566))) 70 (|has| |#3| (-1038 (-566)))) (($ (-317 (-381))) 98 (|has| |#3| (-1038 (-381)))) (($ (-409 (-952 (-381)))) 92 (|has| |#3| (-1038 (-381)))) (($ (-952 (-381))) 88 (|has| |#3| (-1038 (-381))))) (-1878 (((-3 $ "failed") $) NIL)) (-4361 (($) 10)) (-2228 (($ $) NIL) (($ (-644 $)) NIL)) (-2535 (((-644 (-114)) $) NIL)) (-3659 (((-114) (-114)) NIL)) (-3934 (((-112) $) NIL)) (-2824 (((-112) $) NIL (|has| $ (-1038 (-566))))) (-3006 (((-1171 $) (-612 $)) NIL (|has| $ (-1049)))) (-1301 (($ (-1 $ $) (-612 $)) NIL)) (-3133 (((-3 (-612 $) "failed") $) NIL)) (-2342 (($ $) 102)) (-3651 (($ $) NIL)) (-4117 (((-1157) $) NIL)) (-3647 (((-644 (-612 $)) $) NIL)) (-1307 (($ (-114) $) 101) (($ (-114) (-644 $)) NIL)) (-2572 (((-112) $ (-114)) NIL) (((-112) $ (-1175)) NIL)) (-2076 (((-771) $) NIL)) (-4035 (((-1119) $) NIL)) (-2746 (((-112) $ $) NIL) (((-112) $ (-1175)) NIL)) (-2561 (($ $) NIL)) (-1946 (((-112) $) NIL (|has| $ (-1038 (-566))))) (-2055 (($ $ (-612 $) $) NIL) (($ $ (-644 (-612 $)) (-644 $)) NIL) (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-644 (-1175)) (-644 (-1 $ $))) NIL) (($ $ (-644 (-1175)) (-644 (-1 $ (-644 $)))) NIL) (($ $ (-1175) (-1 $ (-644 $))) NIL) (($ $ (-1175) (-1 $ $)) NIL) (($ $ (-644 (-114)) (-644 (-1 $ $))) NIL) (($ $ (-644 (-114)) (-644 (-1 $ (-644 $)))) NIL) (($ $ (-114) (-1 $ (-644 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-4390 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-644 $)) NIL)) (-3529 (($ $) NIL) (($ $ $) NIL)) (-3561 (($ $ (-644 (-1175)) (-644 (-771))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175)) NIL)) (-1616 (($ $) NIL (|has| $ (-1049)))) (-4104 (($ $) NIL)) (-2098 (($ $) NIL)) (-3783 (((-862) $) NIL) (($ (-612 $)) NIL) (($ |#3|) NIL) (($ (-566)) NIL) (((-317 |#3|) $) 104)) (-2107 (((-771)) NIL T CONST)) (-1630 (($ $) NIL) (($ (-644 $)) NIL)) (-2825 (((-112) (-114)) NIL)) (-3117 (((-112) $ $) NIL)) (-2180 (($ $) NIL)) (-2153 (($ $) NIL)) (-2166 (($ $) NIL)) (-2086 (($ $) NIL)) (-2479 (($) 103 T CONST)) (-4334 (($) NIL T CONST)) (-2875 (($ $ (-644 (-1175)) (-644 (-771))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175)) NIL)) (-2947 (((-112) $ $) NIL)) (-3053 (($ $ $) NIL) (($ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-771)) NIL) (($ $ (-921)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-566) $) NIL) (($ (-771) $) NIL) (($ (-921) $) NIL))) -(((-341 |#1| |#2| |#3|) (-13 (-303) (-38 |#3|) (-1038 |#3|) (-900 (-1175)) (-10 -8 (-15 -4205 ($ (-317 |#3|))) (-15 -4307 ((-3 $ "failed") (-317 |#3|))) (-15 -4205 ($ (-1175))) (-15 -4307 ((-3 $ "failed") (-1175))) (-15 -3783 ((-317 |#3|) $)) (IF (|has| |#3| (-1038 (-566))) (PROGN (-15 -4205 ($ (-317 (-566)))) (-15 -4307 ((-3 $ "failed") (-317 (-566)))) (-15 -4205 ($ (-409 (-952 (-566))))) (-15 -4307 ((-3 $ "failed") (-409 (-952 (-566))))) (-15 -4205 ($ (-952 (-566)))) (-15 -4307 ((-3 $ "failed") (-952 (-566))))) |%noBranch|) (IF (|has| |#3| (-1038 (-381))) (PROGN (-15 -4205 ($ (-317 (-381)))) (-15 -4307 ((-3 $ "failed") (-317 (-381)))) (-15 -4205 ($ (-409 (-952 (-381))))) (-15 -4307 ((-3 $ "failed") (-409 (-952 (-381))))) (-15 -4205 ($ (-952 (-381)))) (-15 -4307 ((-3 $ "failed") (-952 (-381))))) |%noBranch|) (-15 -2086 ($ $)) (-15 -3731 ($ $)) (-15 -2561 ($ $)) (-15 -3651 ($ $)) (-15 -2342 ($ $)) (-15 -2085 ($ $)) (-15 -2098 ($ $)) (-15 -2109 ($ $)) (-15 -2153 ($ $)) (-15 -2166 ($ $)) (-15 -2180 ($ $)) (-15 -2240 ($ $)) (-15 -4104 ($ $)) (-15 -4114 ($ $)) (-15 -4361 ($)) (-15 -3863 ((-644 (-1175)) $)) (-15 -2441 ((-112))) (-15 -2441 ((-112) (-112))))) (-644 (-1175)) (-644 (-1175)) (-389)) (T -341)) -((-4205 (*1 *1 *2) (-12 (-5 *2 (-317 *5)) (-4 *5 (-389)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))))) (-4307 (*1 *1 *2) (|partial| -12 (-5 *2 (-317 *5)) (-4 *5 (-389)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))))) (-4205 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-644 *2)) (-14 *4 (-644 *2)) (-4 *5 (-389)))) (-4307 (*1 *1 *2) (|partial| -12 (-5 *2 (-1175)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-644 *2)) (-14 *4 (-644 *2)) (-4 *5 (-389)))) (-3783 (*1 *2 *1) (-12 (-5 *2 (-317 *5)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) (-4205 (*1 *1 *2) (-12 (-5 *2 (-317 (-566))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1038 (-566))) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) (-4307 (*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-566))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1038 (-566))) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) (-4205 (*1 *1 *2) (-12 (-5 *2 (-409 (-952 (-566)))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1038 (-566))) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) (-4307 (*1 *1 *2) (|partial| -12 (-5 *2 (-409 (-952 (-566)))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1038 (-566))) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) (-4205 (*1 *1 *2) (-12 (-5 *2 (-952 (-566))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1038 (-566))) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) (-4307 (*1 *1 *2) (|partial| -12 (-5 *2 (-952 (-566))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1038 (-566))) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) (-4205 (*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1038 (-381))) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) (-4307 (*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-381))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1038 (-381))) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) (-4205 (*1 *1 *2) (-12 (-5 *2 (-409 (-952 (-381)))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1038 (-381))) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) (-4307 (*1 *1 *2) (|partial| -12 (-5 *2 (-409 (-952 (-381)))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1038 (-381))) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) (-4205 (*1 *1 *2) (-12 (-5 *2 (-952 (-381))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1038 (-381))) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) (-4307 (*1 *1 *2) (|partial| -12 (-5 *2 (-952 (-381))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1038 (-381))) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) (-2086 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-3731 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-2561 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-3651 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-2342 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-2085 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-2098 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-2109 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-2153 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-2166 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-2180 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-2240 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-4104 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-4114 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-4361 (*1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-3863 (*1 *2 *1) (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-341 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-389)))) (-2441 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) (-2441 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389))))) -(-13 (-303) (-38 |#3|) (-1038 |#3|) (-900 (-1175)) (-10 -8 (-15 -4205 ($ (-317 |#3|))) (-15 -4307 ((-3 $ "failed") (-317 |#3|))) (-15 -4205 ($ (-1175))) (-15 -4307 ((-3 $ "failed") (-1175))) (-15 -3783 ((-317 |#3|) $)) (IF (|has| |#3| (-1038 (-566))) (PROGN (-15 -4205 ($ (-317 (-566)))) (-15 -4307 ((-3 $ "failed") (-317 (-566)))) (-15 -4205 ($ (-409 (-952 (-566))))) (-15 -4307 ((-3 $ "failed") (-409 (-952 (-566))))) (-15 -4205 ($ (-952 (-566)))) (-15 -4307 ((-3 $ "failed") (-952 (-566))))) |%noBranch|) (IF (|has| |#3| (-1038 (-381))) (PROGN (-15 -4205 ($ (-317 (-381)))) (-15 -4307 ((-3 $ "failed") (-317 (-381)))) (-15 -4205 ($ (-409 (-952 (-381))))) (-15 -4307 ((-3 $ "failed") (-409 (-952 (-381))))) (-15 -4205 ($ (-952 (-381)))) (-15 -4307 ((-3 $ "failed") (-952 (-381))))) |%noBranch|) (-15 -2086 ($ $)) (-15 -3731 ($ $)) (-15 -2561 ($ $)) (-15 -3651 ($ $)) (-15 -2342 ($ $)) (-15 -2085 ($ $)) (-15 -2098 ($ $)) (-15 -2109 ($ $)) (-15 -2153 ($ $)) (-15 -2166 ($ $)) (-15 -2180 ($ $)) (-15 -2240 ($ $)) (-15 -4104 ($ $)) (-15 -4114 ($ $)) (-15 -4361 ($)) (-15 -3863 ((-644 (-1175)) $)) (-15 -2441 ((-112))) (-15 -2441 ((-112) (-112))))) -((-1301 ((|#8| (-1 |#5| |#1|) |#4|) 19))) -(((-342 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1301 (|#8| (-1 |#5| |#1|) |#4|))) (-1218) (-1240 |#1|) (-1240 (-409 |#2|)) (-344 |#1| |#2| |#3|) (-1218) (-1240 |#5|) (-1240 (-409 |#6|)) (-344 |#5| |#6| |#7|)) (T -342)) -((-1301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1218)) (-4 *8 (-1218)) (-4 *6 (-1240 *5)) (-4 *7 (-1240 (-409 *6))) (-4 *9 (-1240 *8)) (-4 *2 (-344 *8 *9 *10)) (-5 *1 (-342 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-344 *5 *6 *7)) (-4 *10 (-1240 (-409 *9)))))) -(-10 -7 (-15 -1301 (|#8| (-1 |#5| |#1|) |#4|))) -((-3926 (((-2 (|:| |num| (-1264 |#3|)) (|:| |den| |#3|)) $) 40)) (-2392 (($ (-1264 (-409 |#3|)) (-1264 $)) NIL) (($ (-1264 (-409 |#3|))) NIL) (($ (-1264 |#3|) |#3|) 177)) (-3608 (((-1264 $) (-1264 $)) 161)) (-1431 (((-644 (-644 |#2|))) 130)) (-3811 (((-112) |#2| |#2|) 77)) (-4075 (($ $) 152)) (-3285 (((-771)) 33)) (-1433 (((-1264 $) (-1264 $)) 222)) (-3545 (((-644 (-952 |#2|)) (-1175)) 119)) (-2455 (((-112) $) 174)) (-3810 (((-112) $) 27) (((-112) $ |#2|) 31) (((-112) $ |#3|) 226)) (-3288 (((-3 |#3| "failed")) 53)) (-3686 (((-771)) 188)) (-4390 ((|#2| $ |#2| |#2|) 144)) (-3204 (((-3 |#3| "failed")) 72)) (-3561 (($ $ (-1 (-409 |#3|) (-409 |#3|)) (-771)) NIL) (($ $ (-1 (-409 |#3|) (-409 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 230) (($ $ (-644 (-1175)) (-644 (-771))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175)) NIL) (($ $ (-771)) NIL) (($ $) NIL)) (-2258 (((-1264 $) (-1264 $)) 167)) (-2014 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 69)) (-3740 (((-112)) 35))) -(((-343 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3561 (|#1| |#1|)) (-15 -3561 (|#1| |#1| (-771))) (-15 -3561 (|#1| |#1| (-1175))) (-15 -3561 (|#1| |#1| (-644 (-1175)))) (-15 -3561 (|#1| |#1| (-1175) (-771))) (-15 -3561 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -1431 ((-644 (-644 |#2|)))) (-15 -3545 ((-644 (-952 |#2|)) (-1175))) (-15 -2014 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3288 ((-3 |#3| "failed"))) (-15 -3204 ((-3 |#3| "failed"))) (-15 -4390 (|#2| |#1| |#2| |#2|)) (-15 -4075 (|#1| |#1|)) (-15 -3561 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3810 ((-112) |#1| |#3|)) (-15 -3810 ((-112) |#1| |#2|)) (-15 -2392 (|#1| (-1264 |#3|) |#3|)) (-15 -3926 ((-2 (|:| |num| (-1264 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3608 ((-1264 |#1|) (-1264 |#1|))) (-15 -1433 ((-1264 |#1|) (-1264 |#1|))) (-15 -2258 ((-1264 |#1|) (-1264 |#1|))) (-15 -3810 ((-112) |#1|)) (-15 -2455 ((-112) |#1|)) (-15 -3811 ((-112) |#2| |#2|)) (-15 -3740 ((-112))) (-15 -3686 ((-771))) (-15 -3285 ((-771))) (-15 -3561 (|#1| |#1| (-1 (-409 |#3|) (-409 |#3|)))) (-15 -3561 (|#1| |#1| (-1 (-409 |#3|) (-409 |#3|)) (-771))) (-15 -2392 (|#1| (-1264 (-409 |#3|)))) (-15 -2392 (|#1| (-1264 (-409 |#3|)) (-1264 |#1|)))) (-344 |#2| |#3| |#4|) (-1218) (-1240 |#2|) (-1240 (-409 |#3|))) (T -343)) -((-3285 (*1 *2) (-12 (-4 *4 (-1218)) (-4 *5 (-1240 *4)) (-4 *6 (-1240 (-409 *5))) (-5 *2 (-771)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) (-3686 (*1 *2) (-12 (-4 *4 (-1218)) (-4 *5 (-1240 *4)) (-4 *6 (-1240 (-409 *5))) (-5 *2 (-771)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) (-3740 (*1 *2) (-12 (-4 *4 (-1218)) (-4 *5 (-1240 *4)) (-4 *6 (-1240 (-409 *5))) (-5 *2 (-112)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) (-3811 (*1 *2 *3 *3) (-12 (-4 *3 (-1218)) (-4 *5 (-1240 *3)) (-4 *6 (-1240 (-409 *5))) (-5 *2 (-112)) (-5 *1 (-343 *4 *3 *5 *6)) (-4 *4 (-344 *3 *5 *6)))) (-3204 (*1 *2) (|partial| -12 (-4 *4 (-1218)) (-4 *5 (-1240 (-409 *2))) (-4 *2 (-1240 *4)) (-5 *1 (-343 *3 *4 *2 *5)) (-4 *3 (-344 *4 *2 *5)))) (-3288 (*1 *2) (|partial| -12 (-4 *4 (-1218)) (-4 *5 (-1240 (-409 *2))) (-4 *2 (-1240 *4)) (-5 *1 (-343 *3 *4 *2 *5)) (-4 *3 (-344 *4 *2 *5)))) (-3545 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-4 *5 (-1218)) (-4 *6 (-1240 *5)) (-4 *7 (-1240 (-409 *6))) (-5 *2 (-644 (-952 *5))) (-5 *1 (-343 *4 *5 *6 *7)) (-4 *4 (-344 *5 *6 *7)))) (-1431 (*1 *2) (-12 (-4 *4 (-1218)) (-4 *5 (-1240 *4)) (-4 *6 (-1240 (-409 *5))) (-5 *2 (-644 (-644 *4))) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6))))) -(-10 -8 (-15 -3561 (|#1| |#1|)) (-15 -3561 (|#1| |#1| (-771))) (-15 -3561 (|#1| |#1| (-1175))) (-15 -3561 (|#1| |#1| (-644 (-1175)))) (-15 -3561 (|#1| |#1| (-1175) (-771))) (-15 -3561 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -1431 ((-644 (-644 |#2|)))) (-15 -3545 ((-644 (-952 |#2|)) (-1175))) (-15 -2014 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3288 ((-3 |#3| "failed"))) (-15 -3204 ((-3 |#3| "failed"))) (-15 -4390 (|#2| |#1| |#2| |#2|)) (-15 -4075 (|#1| |#1|)) (-15 -3561 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3810 ((-112) |#1| |#3|)) (-15 -3810 ((-112) |#1| |#2|)) (-15 -2392 (|#1| (-1264 |#3|) |#3|)) (-15 -3926 ((-2 (|:| |num| (-1264 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3608 ((-1264 |#1|) (-1264 |#1|))) (-15 -1433 ((-1264 |#1|) (-1264 |#1|))) (-15 -2258 ((-1264 |#1|) (-1264 |#1|))) (-15 -3810 ((-112) |#1|)) (-15 -2455 ((-112) |#1|)) (-15 -3811 ((-112) |#2| |#2|)) (-15 -3740 ((-112))) (-15 -3686 ((-771))) (-15 -3285 ((-771))) (-15 -3561 (|#1| |#1| (-1 (-409 |#3|) (-409 |#3|)))) (-15 -3561 (|#1| |#1| (-1 (-409 |#3|) (-409 |#3|)) (-771))) (-15 -2392 (|#1| (-1264 (-409 |#3|)))) (-15 -2392 (|#1| (-1264 (-409 |#3|)) (-1264 |#1|)))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-3926 (((-2 (|:| |num| (-1264 |#2|)) (|:| |den| |#2|)) $) 204)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) 102 (|has| (-409 |#2|) (-365)))) (-3991 (($ $) 103 (|has| (-409 |#2|) (-365)))) (-2388 (((-112) $) 105 (|has| (-409 |#2|) (-365)))) (-1872 (((-689 (-409 |#2|)) (-1264 $)) 53) (((-689 (-409 |#2|))) 68)) (-3837 (((-409 |#2|) $) 59)) (-3778 (((-1187 (-921) (-771)) (-566)) 155 (|has| (-409 |#2|) (-351)))) (-4175 (((-3 $ "failed") $ $) 20)) (-1550 (($ $) 122 (|has| (-409 |#2|) (-365)))) (-3184 (((-420 $) $) 123 (|has| (-409 |#2|) (-365)))) (-2837 (((-112) $ $) 113 (|has| (-409 |#2|) (-365)))) (-1970 (((-771)) 96 (|has| (-409 |#2|) (-370)))) (-1639 (((-112)) 221)) (-2873 (((-112) |#1|) 220) (((-112) |#2|) 219)) (-3012 (($) 18 T CONST)) (-4307 (((-3 (-566) "failed") $) 178 (|has| (-409 |#2|) (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) 176 (|has| (-409 |#2|) (-1038 (-409 (-566))))) (((-3 (-409 |#2|) "failed") $) 173)) (-4205 (((-566) $) 177 (|has| (-409 |#2|) (-1038 (-566)))) (((-409 (-566)) $) 175 (|has| (-409 |#2|) (-1038 (-409 (-566))))) (((-409 |#2|) $) 174)) (-2392 (($ (-1264 (-409 |#2|)) (-1264 $)) 55) (($ (-1264 (-409 |#2|))) 71) (($ (-1264 |#2|) |#2|) 203)) (-1910 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| (-409 |#2|) (-351)))) (-2946 (($ $ $) 117 (|has| (-409 |#2|) (-365)))) (-4360 (((-689 (-409 |#2|)) $ (-1264 $)) 60) (((-689 (-409 |#2|)) $) 66)) (-3577 (((-689 (-566)) (-689 $)) 172 (|has| (-409 |#2|) (-639 (-566)))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) 171 (|has| (-409 |#2|) (-639 (-566)))) (((-2 (|:| -4227 (-689 (-409 |#2|))) (|:| |vec| (-1264 (-409 |#2|)))) (-689 $) (-1264 $)) 170) (((-689 (-409 |#2|)) (-689 $)) 169)) (-3608 (((-1264 $) (-1264 $)) 209)) (-1676 (($ |#3|) 166) (((-3 $ "failed") (-409 |#3|)) 163 (|has| (-409 |#2|) (-365)))) (-1878 (((-3 $ "failed") $) 37)) (-1431 (((-644 (-644 |#1|))) 190 (|has| |#1| (-370)))) (-3811 (((-112) |#1| |#1|) 225)) (-4313 (((-921)) 61)) (-1552 (($) 99 (|has| (-409 |#2|) (-370)))) (-1361 (((-112)) 218)) (-2979 (((-112) |#1|) 217) (((-112) |#2|) 216)) (-2957 (($ $ $) 116 (|has| (-409 |#2|) (-365)))) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) 111 (|has| (-409 |#2|) (-365)))) (-4075 (($ $) 196)) (-2781 (($) 157 (|has| (-409 |#2|) (-351)))) (-3506 (((-112) $) 158 (|has| (-409 |#2|) (-351)))) (-3369 (($ $ (-771)) 149 (|has| (-409 |#2|) (-351))) (($ $) 148 (|has| (-409 |#2|) (-351)))) (-3268 (((-112) $) 124 (|has| (-409 |#2|) (-365)))) (-3254 (((-921) $) 160 (|has| (-409 |#2|) (-351))) (((-833 (-921)) $) 146 (|has| (-409 |#2|) (-351)))) (-3934 (((-112) $) 35)) (-3285 (((-771)) 228)) (-1433 (((-1264 $) (-1264 $)) 210)) (-1577 (((-409 |#2|) $) 58)) (-3545 (((-644 (-952 |#1|)) (-1175)) 191 (|has| |#1| (-365)))) (-4363 (((-3 $ "failed") $) 150 (|has| (-409 |#2|) (-351)))) (-3775 (((-3 (-644 $) "failed") (-644 $) $) 120 (|has| (-409 |#2|) (-365)))) (-1627 ((|#3| $) 51 (|has| (-409 |#2|) (-365)))) (-3681 (((-921) $) 98 (|has| (-409 |#2|) (-370)))) (-1662 ((|#3| $) 164)) (-2167 (($ (-644 $)) 109 (|has| (-409 |#2|) (-365))) (($ $ $) 108 (|has| (-409 |#2|) (-365)))) (-4117 (((-1157) $) 10)) (-2571 (((-689 (-409 |#2|))) 205)) (-3829 (((-689 (-409 |#2|))) 207)) (-1713 (($ $) 125 (|has| (-409 |#2|) (-365)))) (-2918 (($ (-1264 |#2|) |#2|) 201)) (-4359 (((-689 (-409 |#2|))) 206)) (-3707 (((-689 (-409 |#2|))) 208)) (-2016 (((-2 (|:| |num| (-689 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 200)) (-1812 (((-2 (|:| |num| (-1264 |#2|)) (|:| |den| |#2|)) $) 202)) (-3815 (((-1264 $)) 214)) (-2444 (((-1264 $)) 215)) (-2455 (((-112) $) 213)) (-3810 (((-112) $) 212) (((-112) $ |#1|) 199) (((-112) $ |#2|) 198)) (-1761 (($) 151 (|has| (-409 |#2|) (-351)) CONST)) (-2178 (($ (-921)) 97 (|has| (-409 |#2|) (-370)))) (-3288 (((-3 |#2| "failed")) 193)) (-4035 (((-1119) $) 11)) (-3686 (((-771)) 227)) (-3441 (($) 168)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) 110 (|has| (-409 |#2|) (-365)))) (-2214 (($ (-644 $)) 107 (|has| (-409 |#2|) (-365))) (($ $ $) 106 (|has| (-409 |#2|) (-365)))) (-1548 (((-644 (-2 (|:| -3719 (-566)) (|:| -2852 (-566))))) 154 (|has| (-409 |#2|) (-351)))) (-3719 (((-420 $) $) 121 (|has| (-409 |#2|) (-365)))) (-3148 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119 (|has| (-409 |#2|) (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 118 (|has| (-409 |#2|) (-365)))) (-2994 (((-3 $ "failed") $ $) 101 (|has| (-409 |#2|) (-365)))) (-3161 (((-3 (-644 $) "failed") (-644 $) $) 112 (|has| (-409 |#2|) (-365)))) (-3039 (((-771) $) 114 (|has| (-409 |#2|) (-365)))) (-4390 ((|#1| $ |#1| |#1|) 195)) (-3204 (((-3 |#2| "failed")) 194)) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) 115 (|has| (-409 |#2|) (-365)))) (-3652 (((-409 |#2|) (-1264 $)) 54) (((-409 |#2|)) 67)) (-1437 (((-771) $) 159 (|has| (-409 |#2|) (-351))) (((-3 (-771) "failed") $ $) 147 (|has| (-409 |#2|) (-351)))) (-3561 (($ $ (-1 (-409 |#2|) (-409 |#2|)) (-771)) 131 (|has| (-409 |#2|) (-365))) (($ $ (-1 (-409 |#2|) (-409 |#2|))) 130 (|has| (-409 |#2|) (-365))) (($ $ (-1 |#2| |#2|)) 197) (($ $ (-644 (-1175)) (-644 (-771))) 138 (-2809 (-2432 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175)))) (-2432 (|has| (-409 |#2|) (-900 (-1175))) (|has| (-409 |#2|) (-365))))) (($ $ (-1175) (-771)) 139 (-2809 (-2432 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175)))) (-2432 (|has| (-409 |#2|) (-900 (-1175))) (|has| (-409 |#2|) (-365))))) (($ $ (-644 (-1175))) 140 (-2809 (-2432 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175)))) (-2432 (|has| (-409 |#2|) (-900 (-1175))) (|has| (-409 |#2|) (-365))))) (($ $ (-1175)) 141 (-2809 (-2432 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175)))) (-2432 (|has| (-409 |#2|) (-900 (-1175))) (|has| (-409 |#2|) (-365))))) (($ $ (-771)) 143 (-2809 (-2432 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-233))) (-2432 (|has| (-409 |#2|) (-233)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-351)))) (($ $) 145 (-2809 (-2432 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-233))) (-2432 (|has| (-409 |#2|) (-233)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-351))))) (-3213 (((-689 (-409 |#2|)) (-1264 $) (-1 (-409 |#2|) (-409 |#2|))) 162 (|has| (-409 |#2|) (-365)))) (-1616 ((|#3|) 167)) (-3974 (($) 156 (|has| (-409 |#2|) (-351)))) (-2154 (((-1264 (-409 |#2|)) $ (-1264 $)) 57) (((-689 (-409 |#2|)) (-1264 $) (-1264 $)) 56) (((-1264 (-409 |#2|)) $) 73) (((-689 (-409 |#2|)) (-1264 $)) 72)) (-1348 (((-1264 (-409 |#2|)) $) 70) (($ (-1264 (-409 |#2|))) 69) ((|#3| $) 179) (($ |#3|) 165)) (-1656 (((-3 (-1264 $) "failed") (-689 $)) 153 (|has| (-409 |#2|) (-351)))) (-2258 (((-1264 $) (-1264 $)) 211)) (-3783 (((-862) $) 12) (($ (-566)) 33) (($ (-409 |#2|)) 44) (($ (-409 (-566))) 95 (-2809 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-1038 (-409 (-566)))))) (($ $) 100 (|has| (-409 |#2|) (-365)))) (-3144 (($ $) 152 (|has| (-409 |#2|) (-351))) (((-3 $ "failed") $) 50 (|has| (-409 |#2|) (-145)))) (-1820 ((|#3| $) 52)) (-2107 (((-771)) 32 T CONST)) (-2379 (((-112)) 224)) (-3382 (((-112) |#1|) 223) (((-112) |#2|) 222)) (-3117 (((-112) $ $) 9)) (-2365 (((-1264 $)) 74)) (-2695 (((-112) $ $) 104 (|has| (-409 |#2|) (-365)))) (-2014 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 192)) (-3740 (((-112)) 226)) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-2875 (($ $ (-1 (-409 |#2|) (-409 |#2|)) (-771)) 133 (|has| (-409 |#2|) (-365))) (($ $ (-1 (-409 |#2|) (-409 |#2|))) 132 (|has| (-409 |#2|) (-365))) (($ $ (-644 (-1175)) (-644 (-771))) 134 (-2809 (-2432 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175)))) (-2432 (|has| (-409 |#2|) (-900 (-1175))) (|has| (-409 |#2|) (-365))))) (($ $ (-1175) (-771)) 135 (-2809 (-2432 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175)))) (-2432 (|has| (-409 |#2|) (-900 (-1175))) (|has| (-409 |#2|) (-365))))) (($ $ (-644 (-1175))) 136 (-2809 (-2432 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175)))) (-2432 (|has| (-409 |#2|) (-900 (-1175))) (|has| (-409 |#2|) (-365))))) (($ $ (-1175)) 137 (-2809 (-2432 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175)))) (-2432 (|has| (-409 |#2|) (-900 (-1175))) (|has| (-409 |#2|) (-365))))) (($ $ (-771)) 142 (-2809 (-2432 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-233))) (-2432 (|has| (-409 |#2|) (-233)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-351)))) (($ $) 144 (-2809 (-2432 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-233))) (-2432 (|has| (-409 |#2|) (-233)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-351))))) (-2947 (((-112) $ $) 6)) (-3065 (($ $ $) 129 (|has| (-409 |#2|) (-365)))) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 126 (|has| (-409 |#2|) (-365)))) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 |#2|)) 46) (($ (-409 |#2|) $) 45) (($ (-409 (-566)) $) 128 (|has| (-409 |#2|) (-365))) (($ $ (-409 (-566))) 127 (|has| (-409 |#2|) (-365))))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-1771 (((-644 (-1175)) $) NIL)) (-3641 (((-112)) 99) (((-112) (-112)) 100)) (-1470 (((-644 (-612 $)) $) NIL)) (-3963 (($ $) NIL)) (-3630 (($ $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-2500 (($ $ (-295 $)) NIL) (($ $ (-644 (-295 $))) NIL) (($ $ (-644 (-612 $)) (-644 $)) NIL)) (-1635 (($ $) NIL)) (-3941 (($ $) NIL)) (-3602 (($ $) NIL)) (-2463 (($) NIL T CONST)) (-2229 (((-3 (-612 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-317 |#3|)) 79) (((-3 $ "failed") (-1175)) 105) (((-3 $ "failed") (-317 (-566))) 67 (|has| |#3| (-1038 (-566)))) (((-3 $ "failed") (-409 (-952 (-566)))) 73 (|has| |#3| (-1038 (-566)))) (((-3 $ "failed") (-952 (-566))) 68 (|has| |#3| (-1038 (-566)))) (((-3 $ "failed") (-317 (-381))) 97 (|has| |#3| (-1038 (-381)))) (((-3 $ "failed") (-409 (-952 (-381)))) 91 (|has| |#3| (-1038 (-381)))) (((-3 $ "failed") (-952 (-381))) 86 (|has| |#3| (-1038 (-381))))) (-4158 (((-612 $) $) NIL) ((|#3| $) NIL) (($ (-317 |#3|)) 80) (($ (-1175)) 106) (($ (-317 (-566))) 69 (|has| |#3| (-1038 (-566)))) (($ (-409 (-952 (-566)))) 74 (|has| |#3| (-1038 (-566)))) (($ (-952 (-566))) 70 (|has| |#3| (-1038 (-566)))) (($ (-317 (-381))) 98 (|has| |#3| (-1038 (-381)))) (($ (-409 (-952 (-381)))) 92 (|has| |#3| (-1038 (-381)))) (($ (-952 (-381))) 88 (|has| |#3| (-1038 (-381))))) (-3245 (((-3 $ "failed") $) NIL)) (-2281 (($) 10)) (-1633 (($ $) NIL) (($ (-644 $)) NIL)) (-1689 (((-644 (-114)) $) NIL)) (-1566 (((-114) (-114)) NIL)) (-2389 (((-112) $) NIL)) (-3419 (((-112) $) NIL (|has| $ (-1038 (-566))))) (-2024 (((-1171 $) (-612 $)) NIL (|has| $ (-1049)))) (-2319 (($ (-1 $ $) (-612 $)) NIL)) (-4010 (((-3 (-612 $) "failed") $) NIL)) (-2310 (($ $) 102)) (-3619 (($ $) NIL)) (-3380 (((-1157) $) NIL)) (-1552 (((-644 (-612 $)) $) NIL)) (-2328 (($ (-114) $) 101) (($ (-114) (-644 $)) NIL)) (-3335 (((-112) $ (-114)) NIL) (((-112) $ (-1175)) NIL)) (-3106 (((-771) $) NIL)) (-4072 (((-1119) $) NIL)) (-3671 (((-112) $ $) NIL) (((-112) $ (-1175)) NIL)) (-3521 (($ $) NIL)) (-2664 (((-112) $) NIL (|has| $ (-1038 (-566))))) (-2023 (($ $ (-612 $) $) NIL) (($ $ (-644 (-612 $)) (-644 $)) NIL) (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-644 (-1175)) (-644 (-1 $ $))) NIL) (($ $ (-644 (-1175)) (-644 (-1 $ (-644 $)))) NIL) (($ $ (-1175) (-1 $ (-644 $))) NIL) (($ $ (-1175) (-1 $ $)) NIL) (($ $ (-644 (-114)) (-644 (-1 $ $))) NIL) (($ $ (-644 (-114)) (-644 (-1 $ (-644 $)))) NIL) (($ $ (-114) (-1 $ (-644 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-1309 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-644 $)) NIL)) (-2020 (($ $) NIL) (($ $ $) NIL)) (-3629 (($ $ (-644 (-1175)) (-644 (-771))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175)) NIL)) (-1705 (($ $) NIL (|has| $ (-1049)))) (-3952 (($ $) NIL)) (-3618 (($ $) NIL)) (-3152 (((-862) $) NIL) (($ (-612 $)) NIL) (($ |#3|) NIL) (($ (-566)) NIL) (((-317 |#3|) $) 104)) (-2593 (((-771)) NIL T CONST)) (-3928 (($ $) NIL) (($ (-644 $)) NIL)) (-3515 (((-112) (-114)) NIL)) (-3044 (((-112) $ $) NIL)) (-3892 (($ $) NIL)) (-3684 (($ $) NIL)) (-3879 (($ $) NIL)) (-1358 (($ $) NIL)) (-4356 (($) 103 T CONST)) (-4366 (($) NIL T CONST)) (-3497 (($ $ (-644 (-1175)) (-644 (-771))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175)) NIL)) (-2914 (((-112) $ $) NIL)) (-3012 (($ $ $) NIL) (($ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-771)) NIL) (($ $ (-921)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-566) $) NIL) (($ (-771) $) NIL) (($ (-921) $) NIL))) +(((-341 |#1| |#2| |#3|) (-13 (-303) (-38 |#3|) (-1038 |#3|) (-900 (-1175)) (-10 -8 (-15 -4158 ($ (-317 |#3|))) (-15 -2229 ((-3 $ "failed") (-317 |#3|))) (-15 -4158 ($ (-1175))) (-15 -2229 ((-3 $ "failed") (-1175))) (-15 -3152 ((-317 |#3|) $)) (IF (|has| |#3| (-1038 (-566))) (PROGN (-15 -4158 ($ (-317 (-566)))) (-15 -2229 ((-3 $ "failed") (-317 (-566)))) (-15 -4158 ($ (-409 (-952 (-566))))) (-15 -2229 ((-3 $ "failed") (-409 (-952 (-566))))) (-15 -4158 ($ (-952 (-566)))) (-15 -2229 ((-3 $ "failed") (-952 (-566))))) |%noBranch|) (IF (|has| |#3| (-1038 (-381))) (PROGN (-15 -4158 ($ (-317 (-381)))) (-15 -2229 ((-3 $ "failed") (-317 (-381)))) (-15 -4158 ($ (-409 (-952 (-381))))) (-15 -2229 ((-3 $ "failed") (-409 (-952 (-381))))) (-15 -4158 ($ (-952 (-381)))) (-15 -2229 ((-3 $ "failed") (-952 (-381))))) |%noBranch|) (-15 -1358 ($ $)) (-15 -1635 ($ $)) (-15 -3521 ($ $)) (-15 -3619 ($ $)) (-15 -2310 ($ $)) (-15 -3602 ($ $)) (-15 -3618 ($ $)) (-15 -3630 ($ $)) (-15 -3684 ($ $)) (-15 -3879 ($ $)) (-15 -3892 ($ $)) (-15 -3941 ($ $)) (-15 -3952 ($ $)) (-15 -3963 ($ $)) (-15 -2281 ($)) (-15 -1771 ((-644 (-1175)) $)) (-15 -3641 ((-112))) (-15 -3641 ((-112) (-112))))) (-644 (-1175)) (-644 (-1175)) (-389)) (T -341)) +((-4158 (*1 *1 *2) (-12 (-5 *2 (-317 *5)) (-4 *5 (-389)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))))) (-2229 (*1 *1 *2) (|partial| -12 (-5 *2 (-317 *5)) (-4 *5 (-389)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))))) (-4158 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-644 *2)) (-14 *4 (-644 *2)) (-4 *5 (-389)))) (-2229 (*1 *1 *2) (|partial| -12 (-5 *2 (-1175)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-644 *2)) (-14 *4 (-644 *2)) (-4 *5 (-389)))) (-3152 (*1 *2 *1) (-12 (-5 *2 (-317 *5)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) (-4158 (*1 *1 *2) (-12 (-5 *2 (-317 (-566))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1038 (-566))) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) (-2229 (*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-566))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1038 (-566))) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) (-4158 (*1 *1 *2) (-12 (-5 *2 (-409 (-952 (-566)))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1038 (-566))) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) (-2229 (*1 *1 *2) (|partial| -12 (-5 *2 (-409 (-952 (-566)))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1038 (-566))) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) (-4158 (*1 *1 *2) (-12 (-5 *2 (-952 (-566))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1038 (-566))) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) (-2229 (*1 *1 *2) (|partial| -12 (-5 *2 (-952 (-566))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1038 (-566))) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) (-4158 (*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1038 (-381))) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) (-2229 (*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-381))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1038 (-381))) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) (-4158 (*1 *1 *2) (-12 (-5 *2 (-409 (-952 (-381)))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1038 (-381))) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) (-2229 (*1 *1 *2) (|partial| -12 (-5 *2 (-409 (-952 (-381)))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1038 (-381))) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) (-4158 (*1 *1 *2) (-12 (-5 *2 (-952 (-381))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1038 (-381))) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) (-2229 (*1 *1 *2) (|partial| -12 (-5 *2 (-952 (-381))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1038 (-381))) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) (-1358 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-1635 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-3521 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-3619 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-2310 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-3602 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-3618 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-3630 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-3684 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-3879 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-3892 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-3941 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-3952 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-3963 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-2281 (*1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-1771 (*1 *2 *1) (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-341 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-389)))) (-3641 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) (-3641 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389))))) +(-13 (-303) (-38 |#3|) (-1038 |#3|) (-900 (-1175)) (-10 -8 (-15 -4158 ($ (-317 |#3|))) (-15 -2229 ((-3 $ "failed") (-317 |#3|))) (-15 -4158 ($ (-1175))) (-15 -2229 ((-3 $ "failed") (-1175))) (-15 -3152 ((-317 |#3|) $)) (IF (|has| |#3| (-1038 (-566))) (PROGN (-15 -4158 ($ (-317 (-566)))) (-15 -2229 ((-3 $ "failed") (-317 (-566)))) (-15 -4158 ($ (-409 (-952 (-566))))) (-15 -2229 ((-3 $ "failed") (-409 (-952 (-566))))) (-15 -4158 ($ (-952 (-566)))) (-15 -2229 ((-3 $ "failed") (-952 (-566))))) |%noBranch|) (IF (|has| |#3| (-1038 (-381))) (PROGN (-15 -4158 ($ (-317 (-381)))) (-15 -2229 ((-3 $ "failed") (-317 (-381)))) (-15 -4158 ($ (-409 (-952 (-381))))) (-15 -2229 ((-3 $ "failed") (-409 (-952 (-381))))) (-15 -4158 ($ (-952 (-381)))) (-15 -2229 ((-3 $ "failed") (-952 (-381))))) |%noBranch|) (-15 -1358 ($ $)) (-15 -1635 ($ $)) (-15 -3521 ($ $)) (-15 -3619 ($ $)) (-15 -2310 ($ $)) (-15 -3602 ($ $)) (-15 -3618 ($ $)) (-15 -3630 ($ $)) (-15 -3684 ($ $)) (-15 -3879 ($ $)) (-15 -3892 ($ $)) (-15 -3941 ($ $)) (-15 -3952 ($ $)) (-15 -3963 ($ $)) (-15 -2281 ($)) (-15 -1771 ((-644 (-1175)) $)) (-15 -3641 ((-112))) (-15 -3641 ((-112) (-112))))) +((-2319 ((|#8| (-1 |#5| |#1|) |#4|) 19))) +(((-342 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2319 (|#8| (-1 |#5| |#1|) |#4|))) (-1218) (-1240 |#1|) (-1240 (-409 |#2|)) (-344 |#1| |#2| |#3|) (-1218) (-1240 |#5|) (-1240 (-409 |#6|)) (-344 |#5| |#6| |#7|)) (T -342)) +((-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1218)) (-4 *8 (-1218)) (-4 *6 (-1240 *5)) (-4 *7 (-1240 (-409 *6))) (-4 *9 (-1240 *8)) (-4 *2 (-344 *8 *9 *10)) (-5 *1 (-342 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-344 *5 *6 *7)) (-4 *10 (-1240 (-409 *9)))))) +(-10 -7 (-15 -2319 (|#8| (-1 |#5| |#1|) |#4|))) +((-2802 (((-2 (|:| |num| (-1264 |#3|)) (|:| |den| |#3|)) $) 40)) (-1563 (($ (-1264 (-409 |#3|)) (-1264 $)) NIL) (($ (-1264 (-409 |#3|))) NIL) (($ (-1264 |#3|) |#3|) 177)) (-2108 (((-1264 $) (-1264 $)) 161)) (-3831 (((-644 (-644 |#2|))) 130)) (-3748 (((-112) |#2| |#2|) 77)) (-2616 (($ $) 152)) (-3962 (((-771)) 33)) (-2803 (((-1264 $) (-1264 $)) 222)) (-4172 (((-644 (-952 |#2|)) (-1175)) 119)) (-2534 (((-112) $) 174)) (-3626 (((-112) $) 27) (((-112) $ |#2|) 31) (((-112) $ |#3|) 226)) (-4257 (((-3 |#3| "failed")) 53)) (-4200 (((-771)) 188)) (-1309 ((|#2| $ |#2| |#2|) 144)) (-1438 (((-3 |#3| "failed")) 72)) (-3629 (($ $ (-1 (-409 |#3|) (-409 |#3|)) (-771)) NIL) (($ $ (-1 (-409 |#3|) (-409 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 230) (($ $ (-644 (-1175)) (-644 (-771))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175)) NIL) (($ $ (-771)) NIL) (($ $) NIL)) (-1726 (((-1264 $) (-1264 $)) 167)) (-2019 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 69)) (-1361 (((-112)) 35))) +(((-343 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3629 (|#1| |#1|)) (-15 -3629 (|#1| |#1| (-771))) (-15 -3629 (|#1| |#1| (-1175))) (-15 -3629 (|#1| |#1| (-644 (-1175)))) (-15 -3629 (|#1| |#1| (-1175) (-771))) (-15 -3629 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -3831 ((-644 (-644 |#2|)))) (-15 -4172 ((-644 (-952 |#2|)) (-1175))) (-15 -2019 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -4257 ((-3 |#3| "failed"))) (-15 -1438 ((-3 |#3| "failed"))) (-15 -1309 (|#2| |#1| |#2| |#2|)) (-15 -2616 (|#1| |#1|)) (-15 -3629 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3626 ((-112) |#1| |#3|)) (-15 -3626 ((-112) |#1| |#2|)) (-15 -1563 (|#1| (-1264 |#3|) |#3|)) (-15 -2802 ((-2 (|:| |num| (-1264 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2108 ((-1264 |#1|) (-1264 |#1|))) (-15 -2803 ((-1264 |#1|) (-1264 |#1|))) (-15 -1726 ((-1264 |#1|) (-1264 |#1|))) (-15 -3626 ((-112) |#1|)) (-15 -2534 ((-112) |#1|)) (-15 -3748 ((-112) |#2| |#2|)) (-15 -1361 ((-112))) (-15 -4200 ((-771))) (-15 -3962 ((-771))) (-15 -3629 (|#1| |#1| (-1 (-409 |#3|) (-409 |#3|)))) (-15 -3629 (|#1| |#1| (-1 (-409 |#3|) (-409 |#3|)) (-771))) (-15 -1563 (|#1| (-1264 (-409 |#3|)))) (-15 -1563 (|#1| (-1264 (-409 |#3|)) (-1264 |#1|)))) (-344 |#2| |#3| |#4|) (-1218) (-1240 |#2|) (-1240 (-409 |#3|))) (T -343)) +((-3962 (*1 *2) (-12 (-4 *4 (-1218)) (-4 *5 (-1240 *4)) (-4 *6 (-1240 (-409 *5))) (-5 *2 (-771)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) (-4200 (*1 *2) (-12 (-4 *4 (-1218)) (-4 *5 (-1240 *4)) (-4 *6 (-1240 (-409 *5))) (-5 *2 (-771)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) (-1361 (*1 *2) (-12 (-4 *4 (-1218)) (-4 *5 (-1240 *4)) (-4 *6 (-1240 (-409 *5))) (-5 *2 (-112)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) (-3748 (*1 *2 *3 *3) (-12 (-4 *3 (-1218)) (-4 *5 (-1240 *3)) (-4 *6 (-1240 (-409 *5))) (-5 *2 (-112)) (-5 *1 (-343 *4 *3 *5 *6)) (-4 *4 (-344 *3 *5 *6)))) (-1438 (*1 *2) (|partial| -12 (-4 *4 (-1218)) (-4 *5 (-1240 (-409 *2))) (-4 *2 (-1240 *4)) (-5 *1 (-343 *3 *4 *2 *5)) (-4 *3 (-344 *4 *2 *5)))) (-4257 (*1 *2) (|partial| -12 (-4 *4 (-1218)) (-4 *5 (-1240 (-409 *2))) (-4 *2 (-1240 *4)) (-5 *1 (-343 *3 *4 *2 *5)) (-4 *3 (-344 *4 *2 *5)))) (-4172 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-4 *5 (-1218)) (-4 *6 (-1240 *5)) (-4 *7 (-1240 (-409 *6))) (-5 *2 (-644 (-952 *5))) (-5 *1 (-343 *4 *5 *6 *7)) (-4 *4 (-344 *5 *6 *7)))) (-3831 (*1 *2) (-12 (-4 *4 (-1218)) (-4 *5 (-1240 *4)) (-4 *6 (-1240 (-409 *5))) (-5 *2 (-644 (-644 *4))) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6))))) +(-10 -8 (-15 -3629 (|#1| |#1|)) (-15 -3629 (|#1| |#1| (-771))) (-15 -3629 (|#1| |#1| (-1175))) (-15 -3629 (|#1| |#1| (-644 (-1175)))) (-15 -3629 (|#1| |#1| (-1175) (-771))) (-15 -3629 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -3831 ((-644 (-644 |#2|)))) (-15 -4172 ((-644 (-952 |#2|)) (-1175))) (-15 -2019 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -4257 ((-3 |#3| "failed"))) (-15 -1438 ((-3 |#3| "failed"))) (-15 -1309 (|#2| |#1| |#2| |#2|)) (-15 -2616 (|#1| |#1|)) (-15 -3629 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3626 ((-112) |#1| |#3|)) (-15 -3626 ((-112) |#1| |#2|)) (-15 -1563 (|#1| (-1264 |#3|) |#3|)) (-15 -2802 ((-2 (|:| |num| (-1264 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2108 ((-1264 |#1|) (-1264 |#1|))) (-15 -2803 ((-1264 |#1|) (-1264 |#1|))) (-15 -1726 ((-1264 |#1|) (-1264 |#1|))) (-15 -3626 ((-112) |#1|)) (-15 -2534 ((-112) |#1|)) (-15 -3748 ((-112) |#2| |#2|)) (-15 -1361 ((-112))) (-15 -4200 ((-771))) (-15 -3962 ((-771))) (-15 -3629 (|#1| |#1| (-1 (-409 |#3|) (-409 |#3|)))) (-15 -3629 (|#1| |#1| (-1 (-409 |#3|) (-409 |#3|)) (-771))) (-15 -1563 (|#1| (-1264 (-409 |#3|)))) (-15 -1563 (|#1| (-1264 (-409 |#3|)) (-1264 |#1|)))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-2802 (((-2 (|:| |num| (-1264 |#2|)) (|:| |den| |#2|)) $) 204)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) 102 (|has| (-409 |#2|) (-365)))) (-2161 (($ $) 103 (|has| (-409 |#2|) (-365)))) (-2345 (((-112) $) 105 (|has| (-409 |#2|) (-365)))) (-3899 (((-689 (-409 |#2|)) (-1264 $)) 53) (((-689 (-409 |#2|))) 68)) (-3833 (((-409 |#2|) $) 59)) (-2894 (((-1187 (-921) (-771)) (-566)) 155 (|has| (-409 |#2|) (-351)))) (-3967 (((-3 $ "failed") $ $) 20)) (-1378 (($ $) 122 (|has| (-409 |#2|) (-365)))) (-1364 (((-420 $) $) 123 (|has| (-409 |#2|) (-365)))) (-2085 (((-112) $ $) 113 (|has| (-409 |#2|) (-365)))) (-3870 (((-771)) 96 (|has| (-409 |#2|) (-370)))) (-2239 (((-112)) 221)) (-3333 (((-112) |#1|) 220) (((-112) |#2|) 219)) (-2463 (($) 18 T CONST)) (-2229 (((-3 (-566) "failed") $) 178 (|has| (-409 |#2|) (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) 176 (|has| (-409 |#2|) (-1038 (-409 (-566))))) (((-3 (-409 |#2|) "failed") $) 173)) (-4158 (((-566) $) 177 (|has| (-409 |#2|) (-1038 (-566)))) (((-409 (-566)) $) 175 (|has| (-409 |#2|) (-1038 (-409 (-566))))) (((-409 |#2|) $) 174)) (-1563 (($ (-1264 (-409 |#2|)) (-1264 $)) 55) (($ (-1264 (-409 |#2|))) 71) (($ (-1264 |#2|) |#2|) 203)) (-2347 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| (-409 |#2|) (-351)))) (-2933 (($ $ $) 117 (|has| (-409 |#2|) (-365)))) (-3578 (((-689 (-409 |#2|)) $ (-1264 $)) 60) (((-689 (-409 |#2|)) $) 66)) (-4089 (((-689 (-566)) (-689 $)) 172 (|has| (-409 |#2|) (-639 (-566)))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) 171 (|has| (-409 |#2|) (-639 (-566)))) (((-2 (|:| -3361 (-689 (-409 |#2|))) (|:| |vec| (-1264 (-409 |#2|)))) (-689 $) (-1264 $)) 170) (((-689 (-409 |#2|)) (-689 $)) 169)) (-2108 (((-1264 $) (-1264 $)) 209)) (-2873 (($ |#3|) 166) (((-3 $ "failed") (-409 |#3|)) 163 (|has| (-409 |#2|) (-365)))) (-3245 (((-3 $ "failed") $) 37)) (-3831 (((-644 (-644 |#1|))) 190 (|has| |#1| (-370)))) (-3748 (((-112) |#1| |#1|) 225)) (-2755 (((-921)) 61)) (-2715 (($) 99 (|has| (-409 |#2|) (-370)))) (-3032 (((-112)) 218)) (-3756 (((-112) |#1|) 217) (((-112) |#2|) 216)) (-2945 (($ $ $) 116 (|has| (-409 |#2|) (-365)))) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) 111 (|has| (-409 |#2|) (-365)))) (-2616 (($ $) 196)) (-3359 (($) 157 (|has| (-409 |#2|) (-351)))) (-2466 (((-112) $) 158 (|has| (-409 |#2|) (-351)))) (-1574 (($ $ (-771)) 149 (|has| (-409 |#2|) (-351))) (($ $) 148 (|has| (-409 |#2|) (-351)))) (-1615 (((-112) $) 124 (|has| (-409 |#2|) (-365)))) (-2679 (((-921) $) 160 (|has| (-409 |#2|) (-351))) (((-833 (-921)) $) 146 (|has| (-409 |#2|) (-351)))) (-2389 (((-112) $) 35)) (-3962 (((-771)) 228)) (-2803 (((-1264 $) (-1264 $)) 210)) (-2064 (((-409 |#2|) $) 58)) (-4172 (((-644 (-952 |#1|)) (-1175)) 191 (|has| |#1| (-365)))) (-2621 (((-3 $ "failed") $) 150 (|has| (-409 |#2|) (-351)))) (-3816 (((-3 (-644 $) "failed") (-644 $) $) 120 (|has| (-409 |#2|) (-365)))) (-3468 ((|#3| $) 51 (|has| (-409 |#2|) (-365)))) (-1866 (((-921) $) 98 (|has| (-409 |#2|) (-370)))) (-2860 ((|#3| $) 164)) (-2128 (($ (-644 $)) 109 (|has| (-409 |#2|) (-365))) (($ $ $) 108 (|has| (-409 |#2|) (-365)))) (-3380 (((-1157) $) 10)) (-3224 (((-689 (-409 |#2|))) 205)) (-1740 (((-689 (-409 |#2|))) 207)) (-2748 (($ $) 125 (|has| (-409 |#2|) (-365)))) (-4364 (($ (-1264 |#2|) |#2|) 201)) (-3458 (((-689 (-409 |#2|))) 206)) (-2300 (((-689 (-409 |#2|))) 208)) (-2238 (((-2 (|:| |num| (-689 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 200)) (-2713 (((-2 (|:| |num| (-1264 |#2|)) (|:| |den| |#2|)) $) 202)) (-2942 (((-1264 $)) 214)) (-2736 (((-1264 $)) 215)) (-2534 (((-112) $) 213)) (-3626 (((-112) $) 212) (((-112) $ |#1|) 199) (((-112) $ |#2|) 198)) (-3289 (($) 151 (|has| (-409 |#2|) (-351)) CONST)) (-2835 (($ (-921)) 97 (|has| (-409 |#2|) (-370)))) (-4257 (((-3 |#2| "failed")) 193)) (-4072 (((-1119) $) 11)) (-4200 (((-771)) 227)) (-3302 (($) 168)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) 110 (|has| (-409 |#2|) (-365)))) (-2164 (($ (-644 $)) 107 (|has| (-409 |#2|) (-365))) (($ $ $) 106 (|has| (-409 |#2|) (-365)))) (-2442 (((-644 (-2 (|:| -1624 (-566)) (|:| -2201 (-566))))) 154 (|has| (-409 |#2|) (-351)))) (-1624 (((-420 $) $) 121 (|has| (-409 |#2|) (-365)))) (-3005 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119 (|has| (-409 |#2|) (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) 118 (|has| (-409 |#2|) (-365)))) (-2978 (((-3 $ "failed") $ $) 101 (|has| (-409 |#2|) (-365)))) (-2915 (((-3 (-644 $) "failed") (-644 $) $) 112 (|has| (-409 |#2|) (-365)))) (-4357 (((-771) $) 114 (|has| (-409 |#2|) (-365)))) (-1309 ((|#1| $ |#1| |#1|) 195)) (-1438 (((-3 |#2| "failed")) 194)) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) 115 (|has| (-409 |#2|) (-365)))) (-4068 (((-409 |#2|) (-1264 $)) 54) (((-409 |#2|)) 67)) (-3169 (((-771) $) 159 (|has| (-409 |#2|) (-351))) (((-3 (-771) "failed") $ $) 147 (|has| (-409 |#2|) (-351)))) (-3629 (($ $ (-1 (-409 |#2|) (-409 |#2|)) (-771)) 131 (|has| (-409 |#2|) (-365))) (($ $ (-1 (-409 |#2|) (-409 |#2|))) 130 (|has| (-409 |#2|) (-365))) (($ $ (-1 |#2| |#2|)) 197) (($ $ (-644 (-1175)) (-644 (-771))) 138 (-2768 (-2415 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175)))) (-2415 (|has| (-409 |#2|) (-900 (-1175))) (|has| (-409 |#2|) (-365))))) (($ $ (-1175) (-771)) 139 (-2768 (-2415 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175)))) (-2415 (|has| (-409 |#2|) (-900 (-1175))) (|has| (-409 |#2|) (-365))))) (($ $ (-644 (-1175))) 140 (-2768 (-2415 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175)))) (-2415 (|has| (-409 |#2|) (-900 (-1175))) (|has| (-409 |#2|) (-365))))) (($ $ (-1175)) 141 (-2768 (-2415 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175)))) (-2415 (|has| (-409 |#2|) (-900 (-1175))) (|has| (-409 |#2|) (-365))))) (($ $ (-771)) 143 (-2768 (-2415 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-233))) (-2415 (|has| (-409 |#2|) (-233)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-351)))) (($ $) 145 (-2768 (-2415 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-233))) (-2415 (|has| (-409 |#2|) (-233)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-351))))) (-3225 (((-689 (-409 |#2|)) (-1264 $) (-1 (-409 |#2|) (-409 |#2|))) 162 (|has| (-409 |#2|) (-365)))) (-1705 ((|#3|) 167)) (-4122 (($) 156 (|has| (-409 |#2|) (-351)))) (-3350 (((-1264 (-409 |#2|)) $ (-1264 $)) 57) (((-689 (-409 |#2|)) (-1264 $) (-1264 $)) 56) (((-1264 (-409 |#2|)) $) 73) (((-689 (-409 |#2|)) (-1264 $)) 72)) (-2376 (((-1264 (-409 |#2|)) $) 70) (($ (-1264 (-409 |#2|))) 69) ((|#3| $) 179) (($ |#3|) 165)) (-3391 (((-3 (-1264 $) "failed") (-689 $)) 153 (|has| (-409 |#2|) (-351)))) (-1726 (((-1264 $) (-1264 $)) 211)) (-3152 (((-862) $) 12) (($ (-566)) 33) (($ (-409 |#2|)) 44) (($ (-409 (-566))) 95 (-2768 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-1038 (-409 (-566)))))) (($ $) 100 (|has| (-409 |#2|) (-365)))) (-2633 (($ $) 152 (|has| (-409 |#2|) (-351))) (((-3 $ "failed") $) 50 (|has| (-409 |#2|) (-145)))) (-2318 ((|#3| $) 52)) (-2593 (((-771)) 32 T CONST)) (-2675 (((-112)) 224)) (-3401 (((-112) |#1|) 223) (((-112) |#2|) 222)) (-3044 (((-112) $ $) 9)) (-2875 (((-1264 $)) 74)) (-3014 (((-112) $ $) 104 (|has| (-409 |#2|) (-365)))) (-2019 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 192)) (-1361 (((-112)) 226)) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-3497 (($ $ (-1 (-409 |#2|) (-409 |#2|)) (-771)) 133 (|has| (-409 |#2|) (-365))) (($ $ (-1 (-409 |#2|) (-409 |#2|))) 132 (|has| (-409 |#2|) (-365))) (($ $ (-644 (-1175)) (-644 (-771))) 134 (-2768 (-2415 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175)))) (-2415 (|has| (-409 |#2|) (-900 (-1175))) (|has| (-409 |#2|) (-365))))) (($ $ (-1175) (-771)) 135 (-2768 (-2415 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175)))) (-2415 (|has| (-409 |#2|) (-900 (-1175))) (|has| (-409 |#2|) (-365))))) (($ $ (-644 (-1175))) 136 (-2768 (-2415 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175)))) (-2415 (|has| (-409 |#2|) (-900 (-1175))) (|has| (-409 |#2|) (-365))))) (($ $ (-1175)) 137 (-2768 (-2415 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175)))) (-2415 (|has| (-409 |#2|) (-900 (-1175))) (|has| (-409 |#2|) (-365))))) (($ $ (-771)) 142 (-2768 (-2415 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-233))) (-2415 (|has| (-409 |#2|) (-233)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-351)))) (($ $) 144 (-2768 (-2415 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-233))) (-2415 (|has| (-409 |#2|) (-233)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-351))))) (-2914 (((-112) $ $) 6)) (-3025 (($ $ $) 129 (|has| (-409 |#2|) (-365)))) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 126 (|has| (-409 |#2|) (-365)))) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 |#2|)) 46) (($ (-409 |#2|) $) 45) (($ (-409 (-566)) $) 128 (|has| (-409 |#2|) (-365))) (($ $ (-409 (-566))) 127 (|has| (-409 |#2|) (-365))))) (((-344 |#1| |#2| |#3|) (-140) (-1218) (-1240 |t#1|) (-1240 (-409 |t#2|))) (T -344)) -((-3285 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-771)))) (-3686 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-771)))) (-3740 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112)))) (-3811 (*1 *2 *3 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112)))) (-2379 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112)))) (-3382 (*1 *2 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112)))) (-3382 (*1 *2 *3) (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1218)) (-4 *3 (-1240 *4)) (-4 *5 (-1240 (-409 *3))) (-5 *2 (-112)))) (-1639 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112)))) (-2873 (*1 *2 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112)))) (-2873 (*1 *2 *3) (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1218)) (-4 *3 (-1240 *4)) (-4 *5 (-1240 (-409 *3))) (-5 *2 (-112)))) (-1361 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112)))) (-2979 (*1 *2 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112)))) (-2979 (*1 *2 *3) (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1218)) (-4 *3 (-1240 *4)) (-4 *5 (-1240 (-409 *3))) (-5 *2 (-112)))) (-2444 (*1 *2) (-12 (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-1264 *1)) (-4 *1 (-344 *3 *4 *5)))) (-3815 (*1 *2) (-12 (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-1264 *1)) (-4 *1 (-344 *3 *4 *5)))) (-2455 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112)))) (-3810 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112)))) (-2258 (*1 *2 *2) (-12 (-5 *2 (-1264 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))))) (-1433 (*1 *2 *2) (-12 (-5 *2 (-1264 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))))) (-3608 (*1 *2 *2) (-12 (-5 *2 (-1264 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))))) (-3707 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-689 (-409 *4))))) (-3829 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-689 (-409 *4))))) (-4359 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-689 (-409 *4))))) (-2571 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-689 (-409 *4))))) (-3926 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-2 (|:| |num| (-1264 *4)) (|:| |den| *4))))) (-2392 (*1 *1 *2 *3) (-12 (-5 *2 (-1264 *3)) (-4 *3 (-1240 *4)) (-4 *4 (-1218)) (-4 *1 (-344 *4 *3 *5)) (-4 *5 (-1240 (-409 *3))))) (-1812 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-2 (|:| |num| (-1264 *4)) (|:| |den| *4))))) (-2918 (*1 *1 *2 *3) (-12 (-5 *2 (-1264 *3)) (-4 *3 (-1240 *4)) (-4 *4 (-1218)) (-4 *1 (-344 *4 *3 *5)) (-4 *5 (-1240 (-409 *3))))) (-2016 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-344 *4 *5 *6)) (-4 *4 (-1218)) (-4 *5 (-1240 *4)) (-4 *6 (-1240 (-409 *5))) (-5 *2 (-2 (|:| |num| (-689 *5)) (|:| |den| *5))))) (-3810 (*1 *2 *1 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112)))) (-3810 (*1 *2 *1 *3) (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1218)) (-4 *3 (-1240 *4)) (-4 *5 (-1240 (-409 *3))) (-5 *2 (-112)))) (-3561 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))))) (-4075 (*1 *1 *1) (-12 (-4 *1 (-344 *2 *3 *4)) (-4 *2 (-1218)) (-4 *3 (-1240 *2)) (-4 *4 (-1240 (-409 *3))))) (-4390 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-344 *2 *3 *4)) (-4 *2 (-1218)) (-4 *3 (-1240 *2)) (-4 *4 (-1240 (-409 *3))))) (-3204 (*1 *2) (|partial| -12 (-4 *1 (-344 *3 *2 *4)) (-4 *3 (-1218)) (-4 *4 (-1240 (-409 *2))) (-4 *2 (-1240 *3)))) (-3288 (*1 *2) (|partial| -12 (-4 *1 (-344 *3 *2 *4)) (-4 *3 (-1218)) (-4 *4 (-1240 (-409 *2))) (-4 *2 (-1240 *3)))) (-2014 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1240 *4)) (-4 *4 (-1218)) (-4 *6 (-1240 (-409 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-344 *4 *5 *6)))) (-3545 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-4 *1 (-344 *4 *5 *6)) (-4 *4 (-1218)) (-4 *5 (-1240 *4)) (-4 *6 (-1240 (-409 *5))) (-4 *4 (-365)) (-5 *2 (-644 (-952 *4))))) (-1431 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-4 *3 (-370)) (-5 *2 (-644 (-644 *3)))))) -(-13 (-724 (-409 |t#2|) |t#3|) (-10 -8 (-15 -3285 ((-771))) (-15 -3686 ((-771))) (-15 -3740 ((-112))) (-15 -3811 ((-112) |t#1| |t#1|)) (-15 -2379 ((-112))) (-15 -3382 ((-112) |t#1|)) (-15 -3382 ((-112) |t#2|)) (-15 -1639 ((-112))) (-15 -2873 ((-112) |t#1|)) (-15 -2873 ((-112) |t#2|)) (-15 -1361 ((-112))) (-15 -2979 ((-112) |t#1|)) (-15 -2979 ((-112) |t#2|)) (-15 -2444 ((-1264 $))) (-15 -3815 ((-1264 $))) (-15 -2455 ((-112) $)) (-15 -3810 ((-112) $)) (-15 -2258 ((-1264 $) (-1264 $))) (-15 -1433 ((-1264 $) (-1264 $))) (-15 -3608 ((-1264 $) (-1264 $))) (-15 -3707 ((-689 (-409 |t#2|)))) (-15 -3829 ((-689 (-409 |t#2|)))) (-15 -4359 ((-689 (-409 |t#2|)))) (-15 -2571 ((-689 (-409 |t#2|)))) (-15 -3926 ((-2 (|:| |num| (-1264 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2392 ($ (-1264 |t#2|) |t#2|)) (-15 -1812 ((-2 (|:| |num| (-1264 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2918 ($ (-1264 |t#2|) |t#2|)) (-15 -2016 ((-2 (|:| |num| (-689 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -3810 ((-112) $ |t#1|)) (-15 -3810 ((-112) $ |t#2|)) (-15 -3561 ($ $ (-1 |t#2| |t#2|))) (-15 -4075 ($ $)) (-15 -4390 (|t#1| $ |t#1| |t#1|)) (-15 -3204 ((-3 |t#2| "failed"))) (-15 -3288 ((-3 |t#2| "failed"))) (-15 -2014 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-365)) (-15 -3545 ((-644 (-952 |t#1|)) (-1175))) |%noBranch|) (IF (|has| |t#1| (-370)) (-15 -1431 ((-644 (-644 |t#1|)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) -2809 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-38 #1=(-409 |#2|)) . T) ((-38 $) -2809 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-102) . T) ((-111 #0# #0#) -2809 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2809 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-145))) ((-147) |has| (-409 |#2|) (-147)) ((-616 #0#) -2809 (|has| (-409 |#2|) (-1038 (-409 (-566)))) (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-616 #1#) . T) ((-616 (-566)) . T) ((-616 $) -2809 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-613 (-862)) . T) ((-172) . T) ((-614 |#3|) . T) ((-231 #1#) |has| (-409 |#2|) (-365)) ((-233) -2809 (|has| (-409 |#2|) (-351)) (-12 (|has| (-409 |#2|) (-233)) (|has| (-409 |#2|) (-365)))) ((-243) -2809 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-291) -2809 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-308) -2809 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-365) -2809 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-404) |has| (-409 |#2|) (-351)) ((-370) -2809 (|has| (-409 |#2|) (-370)) (|has| (-409 |#2|) (-351))) ((-351) |has| (-409 |#2|) (-351)) ((-372 #1# |#3|) . T) ((-411 #1# |#3|) . T) ((-379 #1#) . T) ((-413 #1#) . T) ((-454) -2809 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-558) -2809 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-646 #0#) -2809 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-646 #1#) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 #0#) -2809 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-648 #1#) . T) ((-648 $) . T) ((-640 #0#) -2809 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-640 #1#) . T) ((-640 $) -2809 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-639 #1#) . T) ((-639 (-566)) |has| (-409 |#2|) (-639 (-566))) ((-717 #0#) -2809 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-717 #1#) . T) ((-717 $) -2809 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-724 #1# |#3|) . T) ((-726) . T) ((-900 (-1175)) -12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175)))) ((-920) -2809 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-1038 (-409 (-566))) |has| (-409 |#2|) (-1038 (-409 (-566)))) ((-1038 #1#) . T) ((-1038 (-566)) |has| (-409 |#2|) (-1038 (-566))) ((-1051 #0#) -2809 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-1051 #1#) . T) ((-1051 $) . T) ((-1056 #0#) -2809 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-1056 #1#) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1150) |has| (-409 |#2|) (-351)) ((-1218) -2809 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365)))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-3991 (($ $) NIL)) (-2388 (((-112) $) NIL)) (-2131 (((-112) $) NIL)) (-3193 (((-771)) NIL)) (-3837 (((-910 |#1|) $) NIL) (($ $ (-921)) NIL (|has| (-910 |#1|) (-370)))) (-3778 (((-1187 (-921) (-771)) (-566)) NIL (|has| (-910 |#1|) (-370)))) (-4175 (((-3 $ "failed") $ $) NIL)) (-1550 (($ $) NIL)) (-3184 (((-420 $) $) NIL)) (-2837 (((-112) $ $) NIL)) (-1970 (((-771)) NIL (|has| (-910 |#1|) (-370)))) (-3012 (($) NIL T CONST)) (-4307 (((-3 (-910 |#1|) "failed") $) NIL)) (-4205 (((-910 |#1|) $) NIL)) (-2392 (($ (-1264 (-910 |#1|))) NIL)) (-1910 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-910 |#1|) (-370)))) (-2946 (($ $ $) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-1552 (($) NIL (|has| (-910 |#1|) (-370)))) (-2957 (($ $ $) NIL)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL)) (-2781 (($) NIL (|has| (-910 |#1|) (-370)))) (-3506 (((-112) $) NIL (|has| (-910 |#1|) (-370)))) (-3369 (($ $ (-771)) NIL (-2809 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370)))) (($ $) NIL (-2809 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370))))) (-3268 (((-112) $) NIL)) (-3254 (((-921) $) NIL (|has| (-910 |#1|) (-370))) (((-833 (-921)) $) NIL (-2809 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370))))) (-3934 (((-112) $) NIL)) (-3611 (($) NIL (|has| (-910 |#1|) (-370)))) (-1784 (((-112) $) NIL (|has| (-910 |#1|) (-370)))) (-1577 (((-910 |#1|) $) NIL) (($ $ (-921)) NIL (|has| (-910 |#1|) (-370)))) (-4363 (((-3 $ "failed") $) NIL (|has| (-910 |#1|) (-370)))) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1627 (((-1171 (-910 |#1|)) $) NIL) (((-1171 $) $ (-921)) NIL (|has| (-910 |#1|) (-370)))) (-3681 (((-921) $) NIL (|has| (-910 |#1|) (-370)))) (-2372 (((-1171 (-910 |#1|)) $) NIL (|has| (-910 |#1|) (-370)))) (-1526 (((-1171 (-910 |#1|)) $) NIL (|has| (-910 |#1|) (-370))) (((-3 (-1171 (-910 |#1|)) "failed") $ $) NIL (|has| (-910 |#1|) (-370)))) (-3158 (($ $ (-1171 (-910 |#1|))) NIL (|has| (-910 |#1|) (-370)))) (-2167 (($ $ $) NIL) (($ (-644 $)) NIL)) (-4117 (((-1157) $) NIL)) (-1713 (($ $) NIL)) (-1761 (($) NIL (|has| (-910 |#1|) (-370)) CONST)) (-2178 (($ (-921)) NIL (|has| (-910 |#1|) (-370)))) (-1778 (((-112) $) NIL)) (-4035 (((-1119) $) NIL)) (-3936 (((-958 (-1119))) NIL)) (-3441 (($) NIL (|has| (-910 |#1|) (-370)))) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2214 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1548 (((-644 (-2 (|:| -3719 (-566)) (|:| -2852 (-566))))) NIL (|has| (-910 |#1|) (-370)))) (-3719 (((-420 $) $) NIL)) (-3129 (((-833 (-921))) NIL) (((-921)) NIL)) (-3148 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2994 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3039 (((-771) $) NIL)) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL)) (-1437 (((-771) $) NIL (|has| (-910 |#1|) (-370))) (((-3 (-771) "failed") $ $) NIL (-2809 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370))))) (-3164 (((-134)) NIL)) (-3561 (($ $) NIL (|has| (-910 |#1|) (-370))) (($ $ (-771)) NIL (|has| (-910 |#1|) (-370)))) (-3636 (((-833 (-921)) $) NIL) (((-921) $) NIL)) (-1616 (((-1171 (-910 |#1|))) NIL)) (-3974 (($) NIL (|has| (-910 |#1|) (-370)))) (-3458 (($) NIL (|has| (-910 |#1|) (-370)))) (-2154 (((-1264 (-910 |#1|)) $) NIL) (((-689 (-910 |#1|)) (-1264 $)) NIL)) (-1656 (((-3 (-1264 $) "failed") (-689 $)) NIL (|has| (-910 |#1|) (-370)))) (-3783 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (($ (-910 |#1|)) NIL)) (-3144 (($ $) NIL (|has| (-910 |#1|) (-370))) (((-3 $ "failed") $) NIL (-2809 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370))))) (-2107 (((-771)) NIL T CONST)) (-3117 (((-112) $ $) NIL)) (-2365 (((-1264 $)) NIL) (((-1264 $) (-921)) NIL)) (-2695 (((-112) $ $) NIL)) (-1423 (((-112) $) NIL)) (-2479 (($) NIL T CONST)) (-4334 (($) NIL T CONST)) (-2699 (($ $) NIL (|has| (-910 |#1|) (-370))) (($ $ (-771)) NIL (|has| (-910 |#1|) (-370)))) (-2875 (($ $) NIL (|has| (-910 |#1|) (-370))) (($ $ (-771)) NIL (|has| (-910 |#1|) (-370)))) (-2947 (((-112) $ $) NIL)) (-3065 (($ $ $) NIL) (($ $ (-910 |#1|)) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ $ (-910 |#1|)) NIL) (($ (-910 |#1|) $) NIL))) -(((-345 |#1| |#2|) (-13 (-330 (-910 |#1|)) (-10 -7 (-15 -3936 ((-958 (-1119)))))) (-921) (-921)) (T -345)) -((-3936 (*1 *2) (-12 (-5 *2 (-958 (-1119))) (-5 *1 (-345 *3 *4)) (-14 *3 (-921)) (-14 *4 (-921))))) -(-13 (-330 (-910 |#1|)) (-10 -7 (-15 -3936 ((-958 (-1119)))))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) 58)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-3991 (($ $) NIL)) (-2388 (((-112) $) NIL)) (-2131 (((-112) $) NIL)) (-3193 (((-771)) NIL)) (-3837 ((|#1| $) NIL) (($ $ (-921)) NIL (|has| |#1| (-370)))) (-3778 (((-1187 (-921) (-771)) (-566)) 56 (|has| |#1| (-370)))) (-4175 (((-3 $ "failed") $ $) NIL)) (-1550 (($ $) NIL)) (-3184 (((-420 $) $) NIL)) (-2837 (((-112) $ $) NIL)) (-1970 (((-771)) NIL (|has| |#1| (-370)))) (-3012 (($) NIL T CONST)) (-4307 (((-3 |#1| "failed") $) 144)) (-4205 ((|#1| $) 115)) (-2392 (($ (-1264 |#1|)) 132)) (-1910 (((-3 "prime" "polynomial" "normal" "cyclic")) 123 (|has| |#1| (-370)))) (-2946 (($ $ $) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-1552 (($) 126 (|has| |#1| (-370)))) (-2957 (($ $ $) NIL)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL)) (-2781 (($) 162 (|has| |#1| (-370)))) (-3506 (((-112) $) 66 (|has| |#1| (-370)))) (-3369 (($ $ (-771)) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3268 (((-112) $) NIL)) (-3254 (((-921) $) 60 (|has| |#1| (-370))) (((-833 (-921)) $) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3934 (((-112) $) 62)) (-3611 (($) 164 (|has| |#1| (-370)))) (-1784 (((-112) $) NIL (|has| |#1| (-370)))) (-1577 ((|#1| $) NIL) (($ $ (-921)) NIL (|has| |#1| (-370)))) (-4363 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1627 (((-1171 |#1|) $) 119) (((-1171 $) $ (-921)) NIL (|has| |#1| (-370)))) (-3681 (((-921) $) 173 (|has| |#1| (-370)))) (-2372 (((-1171 |#1|) $) NIL (|has| |#1| (-370)))) (-1526 (((-1171 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1171 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-3158 (($ $ (-1171 |#1|)) NIL (|has| |#1| (-370)))) (-2167 (($ $ $) NIL) (($ (-644 $)) NIL)) (-4117 (((-1157) $) NIL)) (-1713 (($ $) 180)) (-1761 (($) NIL (|has| |#1| (-370)) CONST)) (-2178 (($ (-921)) 98 (|has| |#1| (-370)))) (-1778 (((-112) $) 149)) (-4035 (((-1119) $) NIL)) (-3936 (((-958 (-1119))) 57)) (-3441 (($) 160 (|has| |#1| (-370)))) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2214 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1548 (((-644 (-2 (|:| -3719 (-566)) (|:| -2852 (-566))))) 121 (|has| |#1| (-370)))) (-3719 (((-420 $) $) NIL)) (-3129 (((-833 (-921))) 92) (((-921)) 93)) (-3148 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2994 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3039 (((-771) $) NIL)) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL)) (-1437 (((-771) $) 163 (|has| |#1| (-370))) (((-3 (-771) "failed") $ $) 156 (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3164 (((-134)) NIL)) (-3561 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-3636 (((-833 (-921)) $) NIL) (((-921) $) NIL)) (-1616 (((-1171 |#1|)) 124)) (-3974 (($) 161 (|has| |#1| (-370)))) (-3458 (($) 169 (|has| |#1| (-370)))) (-2154 (((-1264 |#1|) $) 77) (((-689 |#1|) (-1264 $)) NIL)) (-1656 (((-3 (-1264 $) "failed") (-689 $)) NIL (|has| |#1| (-370)))) (-3783 (((-862) $) 176) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (($ |#1|) 102)) (-3144 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2107 (((-771)) 157 T CONST)) (-3117 (((-112) $ $) NIL)) (-2365 (((-1264 $)) 146) (((-1264 $) (-921)) 100)) (-2695 (((-112) $ $) NIL)) (-1423 (((-112) $) NIL)) (-2479 (($) 67 T CONST)) (-4334 (($) 105 T CONST)) (-2699 (($ $) 109 (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-2875 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-2947 (((-112) $ $) 65)) (-3065 (($ $ $) 178) (($ $ |#1|) 179)) (-3053 (($ $) 159) (($ $ $) NIL)) (-3041 (($ $ $) 86)) (** (($ $ (-921)) 182) (($ $ (-771)) 183) (($ $ (-566)) 181)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 104) (($ $ $) 103) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 177))) -(((-346 |#1| |#2|) (-13 (-330 |#1|) (-10 -7 (-15 -3936 ((-958 (-1119)))))) (-351) (-1171 |#1|)) (T -346)) -((-3936 (*1 *2) (-12 (-5 *2 (-958 (-1119))) (-5 *1 (-346 *3 *4)) (-4 *3 (-351)) (-14 *4 (-1171 *3))))) -(-13 (-330 |#1|) (-10 -7 (-15 -3936 ((-958 (-1119)))))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-3991 (($ $) NIL)) (-2388 (((-112) $) NIL)) (-2131 (((-112) $) NIL)) (-3193 (((-771)) NIL)) (-3837 ((|#1| $) NIL) (($ $ (-921)) NIL (|has| |#1| (-370)))) (-3778 (((-1187 (-921) (-771)) (-566)) NIL (|has| |#1| (-370)))) (-4175 (((-3 $ "failed") $ $) NIL)) (-1550 (($ $) NIL)) (-3184 (((-420 $) $) NIL)) (-2837 (((-112) $ $) NIL)) (-1970 (((-771)) NIL (|has| |#1| (-370)))) (-3012 (($) NIL T CONST)) (-4307 (((-3 |#1| "failed") $) NIL)) (-4205 ((|#1| $) NIL)) (-2392 (($ (-1264 |#1|)) NIL)) (-1910 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-370)))) (-2946 (($ $ $) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-1552 (($) NIL (|has| |#1| (-370)))) (-2957 (($ $ $) NIL)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL)) (-2781 (($) NIL (|has| |#1| (-370)))) (-3506 (((-112) $) NIL (|has| |#1| (-370)))) (-3369 (($ $ (-771)) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3268 (((-112) $) NIL)) (-3254 (((-921) $) NIL (|has| |#1| (-370))) (((-833 (-921)) $) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3934 (((-112) $) NIL)) (-3611 (($) NIL (|has| |#1| (-370)))) (-1784 (((-112) $) NIL (|has| |#1| (-370)))) (-1577 ((|#1| $) NIL) (($ $ (-921)) NIL (|has| |#1| (-370)))) (-4363 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1627 (((-1171 |#1|) $) NIL) (((-1171 $) $ (-921)) NIL (|has| |#1| (-370)))) (-3681 (((-921) $) NIL (|has| |#1| (-370)))) (-2372 (((-1171 |#1|) $) NIL (|has| |#1| (-370)))) (-1526 (((-1171 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1171 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-3158 (($ $ (-1171 |#1|)) NIL (|has| |#1| (-370)))) (-2167 (($ $ $) NIL) (($ (-644 $)) NIL)) (-4117 (((-1157) $) NIL)) (-1713 (($ $) NIL)) (-1761 (($) NIL (|has| |#1| (-370)) CONST)) (-2178 (($ (-921)) NIL (|has| |#1| (-370)))) (-1778 (((-112) $) NIL)) (-4035 (((-1119) $) NIL)) (-3936 (((-958 (-1119))) NIL)) (-3441 (($) NIL (|has| |#1| (-370)))) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2214 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1548 (((-644 (-2 (|:| -3719 (-566)) (|:| -2852 (-566))))) NIL (|has| |#1| (-370)))) (-3719 (((-420 $) $) NIL)) (-3129 (((-833 (-921))) NIL) (((-921)) NIL)) (-3148 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2994 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3039 (((-771) $) NIL)) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL)) (-1437 (((-771) $) NIL (|has| |#1| (-370))) (((-3 (-771) "failed") $ $) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3164 (((-134)) NIL)) (-3561 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-3636 (((-833 (-921)) $) NIL) (((-921) $) NIL)) (-1616 (((-1171 |#1|)) NIL)) (-3974 (($) NIL (|has| |#1| (-370)))) (-3458 (($) NIL (|has| |#1| (-370)))) (-2154 (((-1264 |#1|) $) NIL) (((-689 |#1|) (-1264 $)) NIL)) (-1656 (((-3 (-1264 $) "failed") (-689 $)) NIL (|has| |#1| (-370)))) (-3783 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (($ |#1|) NIL)) (-3144 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2107 (((-771)) NIL T CONST)) (-3117 (((-112) $ $) NIL)) (-2365 (((-1264 $)) NIL) (((-1264 $) (-921)) NIL)) (-2695 (((-112) $ $) NIL)) (-1423 (((-112) $) NIL)) (-2479 (($) NIL T CONST)) (-4334 (($) NIL T CONST)) (-2699 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-2875 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-2947 (((-112) $ $) NIL)) (-3065 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-347 |#1| |#2|) (-13 (-330 |#1|) (-10 -7 (-15 -3936 ((-958 (-1119)))))) (-351) (-921)) (T -347)) -((-3936 (*1 *2) (-12 (-5 *2 (-958 (-1119))) (-5 *1 (-347 *3 *4)) (-4 *3 (-351)) (-14 *4 (-921))))) -(-13 (-330 |#1|) (-10 -7 (-15 -3936 ((-958 (-1119)))))) -((-2500 (((-771) (-1264 (-644 (-2 (|:| -2233 |#1|) (|:| -2178 (-1119)))))) 61)) (-4256 (((-958 (-1119)) (-1171 |#1|)) 113)) (-1918 (((-1264 (-644 (-2 (|:| -2233 |#1|) (|:| -2178 (-1119))))) (-1171 |#1|)) 105)) (-1991 (((-689 |#1|) (-1264 (-644 (-2 (|:| -2233 |#1|) (|:| -2178 (-1119)))))) 115)) (-3085 (((-3 (-1264 (-644 (-2 (|:| -2233 |#1|) (|:| -2178 (-1119))))) "failed") (-921)) 13)) (-3100 (((-3 (-1171 |#1|) (-1264 (-644 (-2 (|:| -2233 |#1|) (|:| -2178 (-1119)))))) (-921)) 18))) -(((-348 |#1|) (-10 -7 (-15 -4256 ((-958 (-1119)) (-1171 |#1|))) (-15 -1918 ((-1264 (-644 (-2 (|:| -2233 |#1|) (|:| -2178 (-1119))))) (-1171 |#1|))) (-15 -1991 ((-689 |#1|) (-1264 (-644 (-2 (|:| -2233 |#1|) (|:| -2178 (-1119))))))) (-15 -2500 ((-771) (-1264 (-644 (-2 (|:| -2233 |#1|) (|:| -2178 (-1119))))))) (-15 -3085 ((-3 (-1264 (-644 (-2 (|:| -2233 |#1|) (|:| -2178 (-1119))))) "failed") (-921))) (-15 -3100 ((-3 (-1171 |#1|) (-1264 (-644 (-2 (|:| -2233 |#1|) (|:| -2178 (-1119)))))) (-921)))) (-351)) (T -348)) -((-3100 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-3 (-1171 *4) (-1264 (-644 (-2 (|:| -2233 *4) (|:| -2178 (-1119))))))) (-5 *1 (-348 *4)) (-4 *4 (-351)))) (-3085 (*1 *2 *3) (|partial| -12 (-5 *3 (-921)) (-5 *2 (-1264 (-644 (-2 (|:| -2233 *4) (|:| -2178 (-1119)))))) (-5 *1 (-348 *4)) (-4 *4 (-351)))) (-2500 (*1 *2 *3) (-12 (-5 *3 (-1264 (-644 (-2 (|:| -2233 *4) (|:| -2178 (-1119)))))) (-4 *4 (-351)) (-5 *2 (-771)) (-5 *1 (-348 *4)))) (-1991 (*1 *2 *3) (-12 (-5 *3 (-1264 (-644 (-2 (|:| -2233 *4) (|:| -2178 (-1119)))))) (-4 *4 (-351)) (-5 *2 (-689 *4)) (-5 *1 (-348 *4)))) (-1918 (*1 *2 *3) (-12 (-5 *3 (-1171 *4)) (-4 *4 (-351)) (-5 *2 (-1264 (-644 (-2 (|:| -2233 *4) (|:| -2178 (-1119)))))) (-5 *1 (-348 *4)))) (-4256 (*1 *2 *3) (-12 (-5 *3 (-1171 *4)) (-4 *4 (-351)) (-5 *2 (-958 (-1119))) (-5 *1 (-348 *4))))) -(-10 -7 (-15 -4256 ((-958 (-1119)) (-1171 |#1|))) (-15 -1918 ((-1264 (-644 (-2 (|:| -2233 |#1|) (|:| -2178 (-1119))))) (-1171 |#1|))) (-15 -1991 ((-689 |#1|) (-1264 (-644 (-2 (|:| -2233 |#1|) (|:| -2178 (-1119))))))) (-15 -2500 ((-771) (-1264 (-644 (-2 (|:| -2233 |#1|) (|:| -2178 (-1119))))))) (-15 -3085 ((-3 (-1264 (-644 (-2 (|:| -2233 |#1|) (|:| -2178 (-1119))))) "failed") (-921))) (-15 -3100 ((-3 (-1171 |#1|) (-1264 (-644 (-2 (|:| -2233 |#1|) (|:| -2178 (-1119)))))) (-921)))) -((-3783 ((|#1| |#3|) 108) ((|#3| |#1|) 91))) -(((-349 |#1| |#2| |#3|) (-10 -7 (-15 -3783 (|#3| |#1|)) (-15 -3783 (|#1| |#3|))) (-330 |#2|) (-351) (-330 |#2|)) (T -349)) -((-3783 (*1 *2 *3) (-12 (-4 *4 (-351)) (-4 *2 (-330 *4)) (-5 *1 (-349 *2 *4 *3)) (-4 *3 (-330 *4)))) (-3783 (*1 *2 *3) (-12 (-4 *4 (-351)) (-4 *2 (-330 *4)) (-5 *1 (-349 *3 *4 *2)) (-4 *3 (-330 *4))))) -(-10 -7 (-15 -3783 (|#3| |#1|)) (-15 -3783 (|#1| |#3|))) -((-3506 (((-112) $) 60)) (-3254 (((-833 (-921)) $) 23) (((-921) $) 66)) (-4363 (((-3 $ "failed") $) 18)) (-1761 (($) 9)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) 116)) (-1437 (((-3 (-771) "failed") $ $) 94) (((-771) $) 81)) (-3561 (($ $ (-771)) NIL) (($ $) 8)) (-3974 (($) 53)) (-1656 (((-3 (-1264 $) "failed") (-689 $)) 38)) (-3144 (((-3 $ "failed") $) 45) (($ $) 44))) -(((-350 |#1|) (-10 -8 (-15 -3254 ((-921) |#1|)) (-15 -1437 ((-771) |#1|)) (-15 -3506 ((-112) |#1|)) (-15 -3974 (|#1|)) (-15 -1656 ((-3 (-1264 |#1|) "failed") (-689 |#1|))) (-15 -3144 (|#1| |#1|)) (-15 -3561 (|#1| |#1|)) (-15 -3561 (|#1| |#1| (-771))) (-15 -1761 (|#1|)) (-15 -4363 ((-3 |#1| "failed") |#1|)) (-15 -1437 ((-3 (-771) "failed") |#1| |#1|)) (-15 -3254 ((-833 (-921)) |#1|)) (-15 -3144 ((-3 |#1| "failed") |#1|)) (-15 -2197 ((-1171 |#1|) (-1171 |#1|) (-1171 |#1|)))) (-351)) (T -350)) -NIL -(-10 -8 (-15 -3254 ((-921) |#1|)) (-15 -1437 ((-771) |#1|)) (-15 -3506 ((-112) |#1|)) (-15 -3974 (|#1|)) (-15 -1656 ((-3 (-1264 |#1|) "failed") (-689 |#1|))) (-15 -3144 (|#1| |#1|)) (-15 -3561 (|#1| |#1|)) (-15 -3561 (|#1| |#1| (-771))) (-15 -1761 (|#1|)) (-15 -4363 ((-3 |#1| "failed") |#1|)) (-15 -1437 ((-3 (-771) "failed") |#1| |#1|)) (-15 -3254 ((-833 (-921)) |#1|)) (-15 -3144 ((-3 |#1| "failed") |#1|)) (-15 -2197 ((-1171 |#1|) (-1171 |#1|) (-1171 |#1|)))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) 47)) (-3991 (($ $) 46)) (-2388 (((-112) $) 44)) (-3778 (((-1187 (-921) (-771)) (-566)) 101)) (-4175 (((-3 $ "failed") $ $) 20)) (-1550 (($ $) 81)) (-3184 (((-420 $) $) 80)) (-2837 (((-112) $ $) 65)) (-1970 (((-771)) 111)) (-3012 (($) 18 T CONST)) (-1910 (((-3 "prime" "polynomial" "normal" "cyclic")) 95)) (-2946 (($ $ $) 61)) (-1878 (((-3 $ "failed") $) 37)) (-1552 (($) 114)) (-2957 (($ $ $) 62)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) 57)) (-2781 (($) 99)) (-3506 (((-112) $) 98)) (-3369 (($ $) 87) (($ $ (-771)) 86)) (-3268 (((-112) $) 79)) (-3254 (((-833 (-921)) $) 89) (((-921) $) 96)) (-3934 (((-112) $) 35)) (-4363 (((-3 $ "failed") $) 110)) (-3775 (((-3 (-644 $) "failed") (-644 $) $) 58)) (-3681 (((-921) $) 113)) (-2167 (($ $ $) 52) (($ (-644 $)) 51)) (-4117 (((-1157) $) 10)) (-1713 (($ $) 78)) (-1761 (($) 109 T CONST)) (-2178 (($ (-921)) 112)) (-4035 (((-1119) $) 11)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-2214 (($ $ $) 54) (($ (-644 $)) 53)) (-1548 (((-644 (-2 (|:| -3719 (-566)) (|:| -2852 (-566))))) 102)) (-3719 (((-420 $) $) 82)) (-3148 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2994 (((-3 $ "failed") $ $) 48)) (-3161 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-3039 (((-771) $) 64)) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) 63)) (-1437 (((-3 (-771) "failed") $ $) 88) (((-771) $) 97)) (-3561 (($ $ (-771)) 107) (($ $) 105)) (-3974 (($) 100)) (-1656 (((-3 (-1264 $) "failed") (-689 $)) 103)) (-3783 (((-862) $) 12) (($ (-566)) 33) (($ $) 49) (($ (-409 (-566))) 74)) (-3144 (((-3 $ "failed") $) 90) (($ $) 104)) (-2107 (((-771)) 32 T CONST)) (-3117 (((-112) $ $) 9)) (-2695 (((-112) $ $) 45)) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-2875 (($ $ (-771)) 108) (($ $) 106)) (-2947 (((-112) $ $) 6)) (-3065 (($ $ $) 73)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 77)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 76) (($ (-409 (-566)) $) 75))) +((-3962 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-771)))) (-4200 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-771)))) (-1361 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112)))) (-3748 (*1 *2 *3 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112)))) (-2675 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112)))) (-3401 (*1 *2 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112)))) (-3401 (*1 *2 *3) (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1218)) (-4 *3 (-1240 *4)) (-4 *5 (-1240 (-409 *3))) (-5 *2 (-112)))) (-2239 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112)))) (-3333 (*1 *2 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112)))) (-3333 (*1 *2 *3) (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1218)) (-4 *3 (-1240 *4)) (-4 *5 (-1240 (-409 *3))) (-5 *2 (-112)))) (-3032 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112)))) (-3756 (*1 *2 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112)))) (-3756 (*1 *2 *3) (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1218)) (-4 *3 (-1240 *4)) (-4 *5 (-1240 (-409 *3))) (-5 *2 (-112)))) (-2736 (*1 *2) (-12 (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-1264 *1)) (-4 *1 (-344 *3 *4 *5)))) (-2942 (*1 *2) (-12 (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-1264 *1)) (-4 *1 (-344 *3 *4 *5)))) (-2534 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112)))) (-3626 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112)))) (-1726 (*1 *2 *2) (-12 (-5 *2 (-1264 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))))) (-2803 (*1 *2 *2) (-12 (-5 *2 (-1264 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))))) (-2108 (*1 *2 *2) (-12 (-5 *2 (-1264 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))))) (-2300 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-689 (-409 *4))))) (-1740 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-689 (-409 *4))))) (-3458 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-689 (-409 *4))))) (-3224 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-689 (-409 *4))))) (-2802 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-2 (|:| |num| (-1264 *4)) (|:| |den| *4))))) (-1563 (*1 *1 *2 *3) (-12 (-5 *2 (-1264 *3)) (-4 *3 (-1240 *4)) (-4 *4 (-1218)) (-4 *1 (-344 *4 *3 *5)) (-4 *5 (-1240 (-409 *3))))) (-2713 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-2 (|:| |num| (-1264 *4)) (|:| |den| *4))))) (-4364 (*1 *1 *2 *3) (-12 (-5 *2 (-1264 *3)) (-4 *3 (-1240 *4)) (-4 *4 (-1218)) (-4 *1 (-344 *4 *3 *5)) (-4 *5 (-1240 (-409 *3))))) (-2238 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-344 *4 *5 *6)) (-4 *4 (-1218)) (-4 *5 (-1240 *4)) (-4 *6 (-1240 (-409 *5))) (-5 *2 (-2 (|:| |num| (-689 *5)) (|:| |den| *5))))) (-3626 (*1 *2 *1 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112)))) (-3626 (*1 *2 *1 *3) (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1218)) (-4 *3 (-1240 *4)) (-4 *5 (-1240 (-409 *3))) (-5 *2 (-112)))) (-3629 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))))) (-2616 (*1 *1 *1) (-12 (-4 *1 (-344 *2 *3 *4)) (-4 *2 (-1218)) (-4 *3 (-1240 *2)) (-4 *4 (-1240 (-409 *3))))) (-1309 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-344 *2 *3 *4)) (-4 *2 (-1218)) (-4 *3 (-1240 *2)) (-4 *4 (-1240 (-409 *3))))) (-1438 (*1 *2) (|partial| -12 (-4 *1 (-344 *3 *2 *4)) (-4 *3 (-1218)) (-4 *4 (-1240 (-409 *2))) (-4 *2 (-1240 *3)))) (-4257 (*1 *2) (|partial| -12 (-4 *1 (-344 *3 *2 *4)) (-4 *3 (-1218)) (-4 *4 (-1240 (-409 *2))) (-4 *2 (-1240 *3)))) (-2019 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1240 *4)) (-4 *4 (-1218)) (-4 *6 (-1240 (-409 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-344 *4 *5 *6)))) (-4172 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-4 *1 (-344 *4 *5 *6)) (-4 *4 (-1218)) (-4 *5 (-1240 *4)) (-4 *6 (-1240 (-409 *5))) (-4 *4 (-365)) (-5 *2 (-644 (-952 *4))))) (-3831 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-4 *3 (-370)) (-5 *2 (-644 (-644 *3)))))) +(-13 (-724 (-409 |t#2|) |t#3|) (-10 -8 (-15 -3962 ((-771))) (-15 -4200 ((-771))) (-15 -1361 ((-112))) (-15 -3748 ((-112) |t#1| |t#1|)) (-15 -2675 ((-112))) (-15 -3401 ((-112) |t#1|)) (-15 -3401 ((-112) |t#2|)) (-15 -2239 ((-112))) (-15 -3333 ((-112) |t#1|)) (-15 -3333 ((-112) |t#2|)) (-15 -3032 ((-112))) (-15 -3756 ((-112) |t#1|)) (-15 -3756 ((-112) |t#2|)) (-15 -2736 ((-1264 $))) (-15 -2942 ((-1264 $))) (-15 -2534 ((-112) $)) (-15 -3626 ((-112) $)) (-15 -1726 ((-1264 $) (-1264 $))) (-15 -2803 ((-1264 $) (-1264 $))) (-15 -2108 ((-1264 $) (-1264 $))) (-15 -2300 ((-689 (-409 |t#2|)))) (-15 -1740 ((-689 (-409 |t#2|)))) (-15 -3458 ((-689 (-409 |t#2|)))) (-15 -3224 ((-689 (-409 |t#2|)))) (-15 -2802 ((-2 (|:| |num| (-1264 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1563 ($ (-1264 |t#2|) |t#2|)) (-15 -2713 ((-2 (|:| |num| (-1264 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -4364 ($ (-1264 |t#2|) |t#2|)) (-15 -2238 ((-2 (|:| |num| (-689 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -3626 ((-112) $ |t#1|)) (-15 -3626 ((-112) $ |t#2|)) (-15 -3629 ($ $ (-1 |t#2| |t#2|))) (-15 -2616 ($ $)) (-15 -1309 (|t#1| $ |t#1| |t#1|)) (-15 -1438 ((-3 |t#2| "failed"))) (-15 -4257 ((-3 |t#2| "failed"))) (-15 -2019 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-365)) (-15 -4172 ((-644 (-952 |t#1|)) (-1175))) |%noBranch|) (IF (|has| |t#1| (-370)) (-15 -3831 ((-644 (-644 |t#1|)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) -2768 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-38 #1=(-409 |#2|)) . T) ((-38 $) -2768 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-102) . T) ((-111 #0# #0#) -2768 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2768 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-145))) ((-147) |has| (-409 |#2|) (-147)) ((-616 #0#) -2768 (|has| (-409 |#2|) (-1038 (-409 (-566)))) (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-616 #1#) . T) ((-616 (-566)) . T) ((-616 $) -2768 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-613 (-862)) . T) ((-172) . T) ((-614 |#3|) . T) ((-231 #1#) |has| (-409 |#2|) (-365)) ((-233) -2768 (|has| (-409 |#2|) (-351)) (-12 (|has| (-409 |#2|) (-233)) (|has| (-409 |#2|) (-365)))) ((-243) -2768 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-291) -2768 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-308) -2768 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-365) -2768 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-404) |has| (-409 |#2|) (-351)) ((-370) -2768 (|has| (-409 |#2|) (-370)) (|has| (-409 |#2|) (-351))) ((-351) |has| (-409 |#2|) (-351)) ((-372 #1# |#3|) . T) ((-411 #1# |#3|) . T) ((-379 #1#) . T) ((-413 #1#) . T) ((-454) -2768 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-558) -2768 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-646 #0#) -2768 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-646 #1#) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 #0#) -2768 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-648 #1#) . T) ((-648 $) . T) ((-640 #0#) -2768 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-640 #1#) . T) ((-640 $) -2768 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-639 #1#) . T) ((-639 (-566)) |has| (-409 |#2|) (-639 (-566))) ((-717 #0#) -2768 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-717 #1#) . T) ((-717 $) -2768 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-724 #1# |#3|) . T) ((-726) . T) ((-900 (-1175)) -12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175)))) ((-920) -2768 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-1038 (-409 (-566))) |has| (-409 |#2|) (-1038 (-409 (-566)))) ((-1038 #1#) . T) ((-1038 (-566)) |has| (-409 |#2|) (-1038 (-566))) ((-1051 #0#) -2768 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-1051 #1#) . T) ((-1051 $) . T) ((-1056 #0#) -2768 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-1056 #1#) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1150) |has| (-409 |#2|) (-351)) ((-1218) -2768 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365)))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-2161 (($ $) NIL)) (-2345 (((-112) $) NIL)) (-1972 (((-112) $) NIL)) (-2818 (((-771)) NIL)) (-3833 (((-910 |#1|) $) NIL) (($ $ (-921)) NIL (|has| (-910 |#1|) (-370)))) (-2894 (((-1187 (-921) (-771)) (-566)) NIL (|has| (-910 |#1|) (-370)))) (-3967 (((-3 $ "failed") $ $) NIL)) (-1378 (($ $) NIL)) (-1364 (((-420 $) $) NIL)) (-2085 (((-112) $ $) NIL)) (-3870 (((-771)) NIL (|has| (-910 |#1|) (-370)))) (-2463 (($) NIL T CONST)) (-2229 (((-3 (-910 |#1|) "failed") $) NIL)) (-4158 (((-910 |#1|) $) NIL)) (-1563 (($ (-1264 (-910 |#1|))) NIL)) (-2347 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-910 |#1|) (-370)))) (-2933 (($ $ $) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-2715 (($) NIL (|has| (-910 |#1|) (-370)))) (-2945 (($ $ $) NIL)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL)) (-3359 (($) NIL (|has| (-910 |#1|) (-370)))) (-2466 (((-112) $) NIL (|has| (-910 |#1|) (-370)))) (-1574 (($ $ (-771)) NIL (-2768 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370)))) (($ $) NIL (-2768 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370))))) (-1615 (((-112) $) NIL)) (-2679 (((-921) $) NIL (|has| (-910 |#1|) (-370))) (((-833 (-921)) $) NIL (-2768 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370))))) (-2389 (((-112) $) NIL)) (-2437 (($) NIL (|has| (-910 |#1|) (-370)))) (-2953 (((-112) $) NIL (|has| (-910 |#1|) (-370)))) (-2064 (((-910 |#1|) $) NIL) (($ $ (-921)) NIL (|has| (-910 |#1|) (-370)))) (-2621 (((-3 $ "failed") $) NIL (|has| (-910 |#1|) (-370)))) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3468 (((-1171 (-910 |#1|)) $) NIL) (((-1171 $) $ (-921)) NIL (|has| (-910 |#1|) (-370)))) (-1866 (((-921) $) NIL (|has| (-910 |#1|) (-370)))) (-2099 (((-1171 (-910 |#1|)) $) NIL (|has| (-910 |#1|) (-370)))) (-3624 (((-1171 (-910 |#1|)) $) NIL (|has| (-910 |#1|) (-370))) (((-3 (-1171 (-910 |#1|)) "failed") $ $) NIL (|has| (-910 |#1|) (-370)))) (-3844 (($ $ (-1171 (-910 |#1|))) NIL (|has| (-910 |#1|) (-370)))) (-2128 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3380 (((-1157) $) NIL)) (-2748 (($ $) NIL)) (-3289 (($) NIL (|has| (-910 |#1|) (-370)) CONST)) (-2835 (($ (-921)) NIL (|has| (-910 |#1|) (-370)))) (-3653 (((-112) $) NIL)) (-4072 (((-1119) $) NIL)) (-2587 (((-958 (-1119))) NIL)) (-3302 (($) NIL (|has| (-910 |#1|) (-370)))) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2164 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2442 (((-644 (-2 (|:| -1624 (-566)) (|:| -2201 (-566))))) NIL (|has| (-910 |#1|) (-370)))) (-1624 (((-420 $) $) NIL)) (-1686 (((-833 (-921))) NIL) (((-921)) NIL)) (-3005 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2978 (((-3 $ "failed") $ $) NIL)) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-4357 (((-771) $) NIL)) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL)) (-3169 (((-771) $) NIL (|has| (-910 |#1|) (-370))) (((-3 (-771) "failed") $ $) NIL (-2768 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370))))) (-3126 (((-134)) NIL)) (-3629 (($ $) NIL (|has| (-910 |#1|) (-370))) (($ $ (-771)) NIL (|has| (-910 |#1|) (-370)))) (-3902 (((-833 (-921)) $) NIL) (((-921) $) NIL)) (-1705 (((-1171 (-910 |#1|))) NIL)) (-4122 (($) NIL (|has| (-910 |#1|) (-370)))) (-2110 (($) NIL (|has| (-910 |#1|) (-370)))) (-3350 (((-1264 (-910 |#1|)) $) NIL) (((-689 (-910 |#1|)) (-1264 $)) NIL)) (-3391 (((-3 (-1264 $) "failed") (-689 $)) NIL (|has| (-910 |#1|) (-370)))) (-3152 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (($ (-910 |#1|)) NIL)) (-2633 (($ $) NIL (|has| (-910 |#1|) (-370))) (((-3 $ "failed") $) NIL (-2768 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370))))) (-2593 (((-771)) NIL T CONST)) (-3044 (((-112) $ $) NIL)) (-2875 (((-1264 $)) NIL) (((-1264 $) (-921)) NIL)) (-3014 (((-112) $ $) NIL)) (-4217 (((-112) $) NIL)) (-4356 (($) NIL T CONST)) (-4366 (($) NIL T CONST)) (-2198 (($ $) NIL (|has| (-910 |#1|) (-370))) (($ $ (-771)) NIL (|has| (-910 |#1|) (-370)))) (-3497 (($ $) NIL (|has| (-910 |#1|) (-370))) (($ $ (-771)) NIL (|has| (-910 |#1|) (-370)))) (-2914 (((-112) $ $) NIL)) (-3025 (($ $ $) NIL) (($ $ (-910 |#1|)) NIL)) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ $ (-910 |#1|)) NIL) (($ (-910 |#1|) $) NIL))) +(((-345 |#1| |#2|) (-13 (-330 (-910 |#1|)) (-10 -7 (-15 -2587 ((-958 (-1119)))))) (-921) (-921)) (T -345)) +((-2587 (*1 *2) (-12 (-5 *2 (-958 (-1119))) (-5 *1 (-345 *3 *4)) (-14 *3 (-921)) (-14 *4 (-921))))) +(-13 (-330 (-910 |#1|)) (-10 -7 (-15 -2587 ((-958 (-1119)))))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) 58)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-2161 (($ $) NIL)) (-2345 (((-112) $) NIL)) (-1972 (((-112) $) NIL)) (-2818 (((-771)) NIL)) (-3833 ((|#1| $) NIL) (($ $ (-921)) NIL (|has| |#1| (-370)))) (-2894 (((-1187 (-921) (-771)) (-566)) 56 (|has| |#1| (-370)))) (-3967 (((-3 $ "failed") $ $) NIL)) (-1378 (($ $) NIL)) (-1364 (((-420 $) $) NIL)) (-2085 (((-112) $ $) NIL)) (-3870 (((-771)) NIL (|has| |#1| (-370)))) (-2463 (($) NIL T CONST)) (-2229 (((-3 |#1| "failed") $) 144)) (-4158 ((|#1| $) 115)) (-1563 (($ (-1264 |#1|)) 132)) (-2347 (((-3 "prime" "polynomial" "normal" "cyclic")) 123 (|has| |#1| (-370)))) (-2933 (($ $ $) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-2715 (($) 126 (|has| |#1| (-370)))) (-2945 (($ $ $) NIL)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL)) (-3359 (($) 162 (|has| |#1| (-370)))) (-2466 (((-112) $) 66 (|has| |#1| (-370)))) (-1574 (($ $ (-771)) NIL (-2768 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2768 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1615 (((-112) $) NIL)) (-2679 (((-921) $) 60 (|has| |#1| (-370))) (((-833 (-921)) $) NIL (-2768 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2389 (((-112) $) 62)) (-2437 (($) 164 (|has| |#1| (-370)))) (-2953 (((-112) $) NIL (|has| |#1| (-370)))) (-2064 ((|#1| $) NIL) (($ $ (-921)) NIL (|has| |#1| (-370)))) (-2621 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3468 (((-1171 |#1|) $) 119) (((-1171 $) $ (-921)) NIL (|has| |#1| (-370)))) (-1866 (((-921) $) 173 (|has| |#1| (-370)))) (-2099 (((-1171 |#1|) $) NIL (|has| |#1| (-370)))) (-3624 (((-1171 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1171 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-3844 (($ $ (-1171 |#1|)) NIL (|has| |#1| (-370)))) (-2128 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3380 (((-1157) $) NIL)) (-2748 (($ $) 180)) (-3289 (($) NIL (|has| |#1| (-370)) CONST)) (-2835 (($ (-921)) 98 (|has| |#1| (-370)))) (-3653 (((-112) $) 149)) (-4072 (((-1119) $) NIL)) (-2587 (((-958 (-1119))) 57)) (-3302 (($) 160 (|has| |#1| (-370)))) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2164 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2442 (((-644 (-2 (|:| -1624 (-566)) (|:| -2201 (-566))))) 121 (|has| |#1| (-370)))) (-1624 (((-420 $) $) NIL)) (-1686 (((-833 (-921))) 92) (((-921)) 93)) (-3005 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2978 (((-3 $ "failed") $ $) NIL)) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-4357 (((-771) $) NIL)) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL)) (-3169 (((-771) $) 163 (|has| |#1| (-370))) (((-3 (-771) "failed") $ $) 156 (-2768 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3126 (((-134)) NIL)) (-3629 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-3902 (((-833 (-921)) $) NIL) (((-921) $) NIL)) (-1705 (((-1171 |#1|)) 124)) (-4122 (($) 161 (|has| |#1| (-370)))) (-2110 (($) 169 (|has| |#1| (-370)))) (-3350 (((-1264 |#1|) $) 77) (((-689 |#1|) (-1264 $)) NIL)) (-3391 (((-3 (-1264 $) "failed") (-689 $)) NIL (|has| |#1| (-370)))) (-3152 (((-862) $) 176) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (($ |#1|) 102)) (-2633 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2768 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2593 (((-771)) 157 T CONST)) (-3044 (((-112) $ $) NIL)) (-2875 (((-1264 $)) 146) (((-1264 $) (-921)) 100)) (-3014 (((-112) $ $) NIL)) (-4217 (((-112) $) NIL)) (-4356 (($) 67 T CONST)) (-4366 (($) 105 T CONST)) (-2198 (($ $) 109 (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-3497 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-2914 (((-112) $ $) 65)) (-3025 (($ $ $) 178) (($ $ |#1|) 179)) (-3012 (($ $) 159) (($ $ $) NIL)) (-3002 (($ $ $) 86)) (** (($ $ (-921)) 182) (($ $ (-771)) 183) (($ $ (-566)) 181)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 104) (($ $ $) 103) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 177))) +(((-346 |#1| |#2|) (-13 (-330 |#1|) (-10 -7 (-15 -2587 ((-958 (-1119)))))) (-351) (-1171 |#1|)) (T -346)) +((-2587 (*1 *2) (-12 (-5 *2 (-958 (-1119))) (-5 *1 (-346 *3 *4)) (-4 *3 (-351)) (-14 *4 (-1171 *3))))) +(-13 (-330 |#1|) (-10 -7 (-15 -2587 ((-958 (-1119)))))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-2161 (($ $) NIL)) (-2345 (((-112) $) NIL)) (-1972 (((-112) $) NIL)) (-2818 (((-771)) NIL)) (-3833 ((|#1| $) NIL) (($ $ (-921)) NIL (|has| |#1| (-370)))) (-2894 (((-1187 (-921) (-771)) (-566)) NIL (|has| |#1| (-370)))) (-3967 (((-3 $ "failed") $ $) NIL)) (-1378 (($ $) NIL)) (-1364 (((-420 $) $) NIL)) (-2085 (((-112) $ $) NIL)) (-3870 (((-771)) NIL (|has| |#1| (-370)))) (-2463 (($) NIL T CONST)) (-2229 (((-3 |#1| "failed") $) NIL)) (-4158 ((|#1| $) NIL)) (-1563 (($ (-1264 |#1|)) NIL)) (-2347 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-370)))) (-2933 (($ $ $) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-2715 (($) NIL (|has| |#1| (-370)))) (-2945 (($ $ $) NIL)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL)) (-3359 (($) NIL (|has| |#1| (-370)))) (-2466 (((-112) $) NIL (|has| |#1| (-370)))) (-1574 (($ $ (-771)) NIL (-2768 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2768 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1615 (((-112) $) NIL)) (-2679 (((-921) $) NIL (|has| |#1| (-370))) (((-833 (-921)) $) NIL (-2768 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2389 (((-112) $) NIL)) (-2437 (($) NIL (|has| |#1| (-370)))) (-2953 (((-112) $) NIL (|has| |#1| (-370)))) (-2064 ((|#1| $) NIL) (($ $ (-921)) NIL (|has| |#1| (-370)))) (-2621 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3468 (((-1171 |#1|) $) NIL) (((-1171 $) $ (-921)) NIL (|has| |#1| (-370)))) (-1866 (((-921) $) NIL (|has| |#1| (-370)))) (-2099 (((-1171 |#1|) $) NIL (|has| |#1| (-370)))) (-3624 (((-1171 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1171 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-3844 (($ $ (-1171 |#1|)) NIL (|has| |#1| (-370)))) (-2128 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3380 (((-1157) $) NIL)) (-2748 (($ $) NIL)) (-3289 (($) NIL (|has| |#1| (-370)) CONST)) (-2835 (($ (-921)) NIL (|has| |#1| (-370)))) (-3653 (((-112) $) NIL)) (-4072 (((-1119) $) NIL)) (-2587 (((-958 (-1119))) NIL)) (-3302 (($) NIL (|has| |#1| (-370)))) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2164 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2442 (((-644 (-2 (|:| -1624 (-566)) (|:| -2201 (-566))))) NIL (|has| |#1| (-370)))) (-1624 (((-420 $) $) NIL)) (-1686 (((-833 (-921))) NIL) (((-921)) NIL)) (-3005 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2978 (((-3 $ "failed") $ $) NIL)) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-4357 (((-771) $) NIL)) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL)) (-3169 (((-771) $) NIL (|has| |#1| (-370))) (((-3 (-771) "failed") $ $) NIL (-2768 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3126 (((-134)) NIL)) (-3629 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-3902 (((-833 (-921)) $) NIL) (((-921) $) NIL)) (-1705 (((-1171 |#1|)) NIL)) (-4122 (($) NIL (|has| |#1| (-370)))) (-2110 (($) NIL (|has| |#1| (-370)))) (-3350 (((-1264 |#1|) $) NIL) (((-689 |#1|) (-1264 $)) NIL)) (-3391 (((-3 (-1264 $) "failed") (-689 $)) NIL (|has| |#1| (-370)))) (-3152 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (($ |#1|) NIL)) (-2633 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2768 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2593 (((-771)) NIL T CONST)) (-3044 (((-112) $ $) NIL)) (-2875 (((-1264 $)) NIL) (((-1264 $) (-921)) NIL)) (-3014 (((-112) $ $) NIL)) (-4217 (((-112) $) NIL)) (-4356 (($) NIL T CONST)) (-4366 (($) NIL T CONST)) (-2198 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-3497 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-2914 (((-112) $ $) NIL)) (-3025 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-347 |#1| |#2|) (-13 (-330 |#1|) (-10 -7 (-15 -2587 ((-958 (-1119)))))) (-351) (-921)) (T -347)) +((-2587 (*1 *2) (-12 (-5 *2 (-958 (-1119))) (-5 *1 (-347 *3 *4)) (-4 *3 (-351)) (-14 *4 (-921))))) +(-13 (-330 |#1|) (-10 -7 (-15 -2587 ((-958 (-1119)))))) +((-1433 (((-771) (-1264 (-644 (-2 (|:| -2876 |#1|) (|:| -2835 (-1119)))))) 61)) (-2076 (((-958 (-1119)) (-1171 |#1|)) 113)) (-1804 (((-1264 (-644 (-2 (|:| -2876 |#1|) (|:| -2835 (-1119))))) (-1171 |#1|)) 105)) (-4304 (((-689 |#1|) (-1264 (-644 (-2 (|:| -2876 |#1|) (|:| -2835 (-1119)))))) 115)) (-3016 (((-3 (-1264 (-644 (-2 (|:| -2876 |#1|) (|:| -2835 (-1119))))) "failed") (-921)) 13)) (-3825 (((-3 (-1171 |#1|) (-1264 (-644 (-2 (|:| -2876 |#1|) (|:| -2835 (-1119)))))) (-921)) 18))) +(((-348 |#1|) (-10 -7 (-15 -2076 ((-958 (-1119)) (-1171 |#1|))) (-15 -1804 ((-1264 (-644 (-2 (|:| -2876 |#1|) (|:| -2835 (-1119))))) (-1171 |#1|))) (-15 -4304 ((-689 |#1|) (-1264 (-644 (-2 (|:| -2876 |#1|) (|:| -2835 (-1119))))))) (-15 -1433 ((-771) (-1264 (-644 (-2 (|:| -2876 |#1|) (|:| -2835 (-1119))))))) (-15 -3016 ((-3 (-1264 (-644 (-2 (|:| -2876 |#1|) (|:| -2835 (-1119))))) "failed") (-921))) (-15 -3825 ((-3 (-1171 |#1|) (-1264 (-644 (-2 (|:| -2876 |#1|) (|:| -2835 (-1119)))))) (-921)))) (-351)) (T -348)) +((-3825 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-3 (-1171 *4) (-1264 (-644 (-2 (|:| -2876 *4) (|:| -2835 (-1119))))))) (-5 *1 (-348 *4)) (-4 *4 (-351)))) (-3016 (*1 *2 *3) (|partial| -12 (-5 *3 (-921)) (-5 *2 (-1264 (-644 (-2 (|:| -2876 *4) (|:| -2835 (-1119)))))) (-5 *1 (-348 *4)) (-4 *4 (-351)))) (-1433 (*1 *2 *3) (-12 (-5 *3 (-1264 (-644 (-2 (|:| -2876 *4) (|:| -2835 (-1119)))))) (-4 *4 (-351)) (-5 *2 (-771)) (-5 *1 (-348 *4)))) (-4304 (*1 *2 *3) (-12 (-5 *3 (-1264 (-644 (-2 (|:| -2876 *4) (|:| -2835 (-1119)))))) (-4 *4 (-351)) (-5 *2 (-689 *4)) (-5 *1 (-348 *4)))) (-1804 (*1 *2 *3) (-12 (-5 *3 (-1171 *4)) (-4 *4 (-351)) (-5 *2 (-1264 (-644 (-2 (|:| -2876 *4) (|:| -2835 (-1119)))))) (-5 *1 (-348 *4)))) (-2076 (*1 *2 *3) (-12 (-5 *3 (-1171 *4)) (-4 *4 (-351)) (-5 *2 (-958 (-1119))) (-5 *1 (-348 *4))))) +(-10 -7 (-15 -2076 ((-958 (-1119)) (-1171 |#1|))) (-15 -1804 ((-1264 (-644 (-2 (|:| -2876 |#1|) (|:| -2835 (-1119))))) (-1171 |#1|))) (-15 -4304 ((-689 |#1|) (-1264 (-644 (-2 (|:| -2876 |#1|) (|:| -2835 (-1119))))))) (-15 -1433 ((-771) (-1264 (-644 (-2 (|:| -2876 |#1|) (|:| -2835 (-1119))))))) (-15 -3016 ((-3 (-1264 (-644 (-2 (|:| -2876 |#1|) (|:| -2835 (-1119))))) "failed") (-921))) (-15 -3825 ((-3 (-1171 |#1|) (-1264 (-644 (-2 (|:| -2876 |#1|) (|:| -2835 (-1119)))))) (-921)))) +((-3152 ((|#1| |#3|) 108) ((|#3| |#1|) 91))) +(((-349 |#1| |#2| |#3|) (-10 -7 (-15 -3152 (|#3| |#1|)) (-15 -3152 (|#1| |#3|))) (-330 |#2|) (-351) (-330 |#2|)) (T -349)) +((-3152 (*1 *2 *3) (-12 (-4 *4 (-351)) (-4 *2 (-330 *4)) (-5 *1 (-349 *2 *4 *3)) (-4 *3 (-330 *4)))) (-3152 (*1 *2 *3) (-12 (-4 *4 (-351)) (-4 *2 (-330 *4)) (-5 *1 (-349 *3 *4 *2)) (-4 *3 (-330 *4))))) +(-10 -7 (-15 -3152 (|#3| |#1|)) (-15 -3152 (|#1| |#3|))) +((-2466 (((-112) $) 60)) (-2679 (((-833 (-921)) $) 23) (((-921) $) 66)) (-2621 (((-3 $ "failed") $) 18)) (-3289 (($) 9)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) 116)) (-3169 (((-3 (-771) "failed") $ $) 94) (((-771) $) 81)) (-3629 (($ $ (-771)) NIL) (($ $) 8)) (-4122 (($) 53)) (-3391 (((-3 (-1264 $) "failed") (-689 $)) 38)) (-2633 (((-3 $ "failed") $) 45) (($ $) 44))) +(((-350 |#1|) (-10 -8 (-15 -2679 ((-921) |#1|)) (-15 -3169 ((-771) |#1|)) (-15 -2466 ((-112) |#1|)) (-15 -4122 (|#1|)) (-15 -3391 ((-3 (-1264 |#1|) "failed") (-689 |#1|))) (-15 -2633 (|#1| |#1|)) (-15 -3629 (|#1| |#1|)) (-15 -3629 (|#1| |#1| (-771))) (-15 -3289 (|#1|)) (-15 -2621 ((-3 |#1| "failed") |#1|)) (-15 -3169 ((-3 (-771) "failed") |#1| |#1|)) (-15 -2679 ((-833 (-921)) |#1|)) (-15 -2633 ((-3 |#1| "failed") |#1|)) (-15 -4170 ((-1171 |#1|) (-1171 |#1|) (-1171 |#1|)))) (-351)) (T -350)) +NIL +(-10 -8 (-15 -2679 ((-921) |#1|)) (-15 -3169 ((-771) |#1|)) (-15 -2466 ((-112) |#1|)) (-15 -4122 (|#1|)) (-15 -3391 ((-3 (-1264 |#1|) "failed") (-689 |#1|))) (-15 -2633 (|#1| |#1|)) (-15 -3629 (|#1| |#1|)) (-15 -3629 (|#1| |#1| (-771))) (-15 -3289 (|#1|)) (-15 -2621 ((-3 |#1| "failed") |#1|)) (-15 -3169 ((-3 (-771) "failed") |#1| |#1|)) (-15 -2679 ((-833 (-921)) |#1|)) (-15 -2633 ((-3 |#1| "failed") |#1|)) (-15 -4170 ((-1171 |#1|) (-1171 |#1|) (-1171 |#1|)))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) 47)) (-2161 (($ $) 46)) (-2345 (((-112) $) 44)) (-2894 (((-1187 (-921) (-771)) (-566)) 101)) (-3967 (((-3 $ "failed") $ $) 20)) (-1378 (($ $) 81)) (-1364 (((-420 $) $) 80)) (-2085 (((-112) $ $) 65)) (-3870 (((-771)) 111)) (-2463 (($) 18 T CONST)) (-2347 (((-3 "prime" "polynomial" "normal" "cyclic")) 95)) (-2933 (($ $ $) 61)) (-3245 (((-3 $ "failed") $) 37)) (-2715 (($) 114)) (-2945 (($ $ $) 62)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) 57)) (-3359 (($) 99)) (-2466 (((-112) $) 98)) (-1574 (($ $) 87) (($ $ (-771)) 86)) (-1615 (((-112) $) 79)) (-2679 (((-833 (-921)) $) 89) (((-921) $) 96)) (-2389 (((-112) $) 35)) (-2621 (((-3 $ "failed") $) 110)) (-3816 (((-3 (-644 $) "failed") (-644 $) $) 58)) (-1866 (((-921) $) 113)) (-2128 (($ $ $) 52) (($ (-644 $)) 51)) (-3380 (((-1157) $) 10)) (-2748 (($ $) 78)) (-3289 (($) 109 T CONST)) (-2835 (($ (-921)) 112)) (-4072 (((-1119) $) 11)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-2164 (($ $ $) 54) (($ (-644 $)) 53)) (-2442 (((-644 (-2 (|:| -1624 (-566)) (|:| -2201 (-566))))) 102)) (-1624 (((-420 $) $) 82)) (-3005 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2978 (((-3 $ "failed") $ $) 48)) (-2915 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-4357 (((-771) $) 64)) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) 63)) (-3169 (((-3 (-771) "failed") $ $) 88) (((-771) $) 97)) (-3629 (($ $ (-771)) 107) (($ $) 105)) (-4122 (($) 100)) (-3391 (((-3 (-1264 $) "failed") (-689 $)) 103)) (-3152 (((-862) $) 12) (($ (-566)) 33) (($ $) 49) (($ (-409 (-566))) 74)) (-2633 (((-3 $ "failed") $) 90) (($ $) 104)) (-2593 (((-771)) 32 T CONST)) (-3044 (((-112) $ $) 9)) (-3014 (((-112) $ $) 45)) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-3497 (($ $ (-771)) 108) (($ $) 106)) (-2914 (((-112) $ $) 6)) (-3025 (($ $ $) 73)) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 77)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 76) (($ (-409 (-566)) $) 75))) (((-351) (-140)) (T -351)) -((-3144 (*1 *1 *1) (-4 *1 (-351))) (-1656 (*1 *2 *3) (|partial| -12 (-5 *3 (-689 *1)) (-4 *1 (-351)) (-5 *2 (-1264 *1)))) (-1548 (*1 *2) (-12 (-4 *1 (-351)) (-5 *2 (-644 (-2 (|:| -3719 (-566)) (|:| -2852 (-566))))))) (-3778 (*1 *2 *3) (-12 (-4 *1 (-351)) (-5 *3 (-566)) (-5 *2 (-1187 (-921) (-771))))) (-3974 (*1 *1) (-4 *1 (-351))) (-2781 (*1 *1) (-4 *1 (-351))) (-3506 (*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-112)))) (-1437 (*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-771)))) (-3254 (*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-921)))) (-1910 (*1 *2) (-12 (-4 *1 (-351)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(-13 (-404) (-370) (-1150) (-233) (-10 -8 (-15 -3144 ($ $)) (-15 -1656 ((-3 (-1264 $) "failed") (-689 $))) (-15 -1548 ((-644 (-2 (|:| -3719 (-566)) (|:| -2852 (-566)))))) (-15 -3778 ((-1187 (-921) (-771)) (-566))) (-15 -3974 ($)) (-15 -2781 ($)) (-15 -3506 ((-112) $)) (-15 -1437 ((-771) $)) (-15 -3254 ((-921) $)) (-15 -1910 ((-3 "prime" "polynomial" "normal" "cyclic"))))) +((-2633 (*1 *1 *1) (-4 *1 (-351))) (-3391 (*1 *2 *3) (|partial| -12 (-5 *3 (-689 *1)) (-4 *1 (-351)) (-5 *2 (-1264 *1)))) (-2442 (*1 *2) (-12 (-4 *1 (-351)) (-5 *2 (-644 (-2 (|:| -1624 (-566)) (|:| -2201 (-566))))))) (-2894 (*1 *2 *3) (-12 (-4 *1 (-351)) (-5 *3 (-566)) (-5 *2 (-1187 (-921) (-771))))) (-4122 (*1 *1) (-4 *1 (-351))) (-3359 (*1 *1) (-4 *1 (-351))) (-2466 (*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-112)))) (-3169 (*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-771)))) (-2679 (*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-921)))) (-2347 (*1 *2) (-12 (-4 *1 (-351)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(-13 (-404) (-370) (-1150) (-233) (-10 -8 (-15 -2633 ($ $)) (-15 -3391 ((-3 (-1264 $) "failed") (-689 $))) (-15 -2442 ((-644 (-2 (|:| -1624 (-566)) (|:| -2201 (-566)))))) (-15 -2894 ((-1187 (-921) (-771)) (-566))) (-15 -4122 ($)) (-15 -3359 ($)) (-15 -2466 ((-112) $)) (-15 -3169 ((-771) $)) (-15 -2679 ((-921) $)) (-15 -2347 ((-3 "prime" "polynomial" "normal" "cyclic"))))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) . T) ((-616 #0#) . T) ((-616 (-566)) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-233) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-404) . T) ((-370) . T) ((-454) . T) ((-558) . T) ((-646 #0#) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 #0#) . T) ((-648 $) . T) ((-640 #0#) . T) ((-640 $) . T) ((-717 #0#) . T) ((-717 $) . T) ((-726) . T) ((-920) . T) ((-1051 #0#) . T) ((-1051 $) . T) ((-1056 #0#) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1150) . T) ((-1218) . T)) -((-4266 (((-2 (|:| -2365 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|))) |#1|) 55)) (-2444 (((-2 (|:| -2365 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|)))) 53))) -(((-352 |#1| |#2| |#3|) (-10 -7 (-15 -2444 ((-2 (|:| -2365 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|))))) (-15 -4266 ((-2 (|:| -2365 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|))) |#1|))) (-13 (-308) (-10 -8 (-15 -3184 ((-420 $) $)))) (-1240 |#1|) (-411 |#1| |#2|)) (T -352)) -((-4266 (*1 *2 *3) (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 -3184 ((-420 $) $))))) (-4 *4 (-1240 *3)) (-5 *2 (-2 (|:| -2365 (-689 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-689 *3)))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-411 *3 *4)))) (-2444 (*1 *2) (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 -3184 ((-420 $) $))))) (-4 *4 (-1240 *3)) (-5 *2 (-2 (|:| -2365 (-689 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-689 *3)))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-411 *3 *4))))) -(-10 -7 (-15 -2444 ((-2 (|:| -2365 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|))))) (-15 -4266 ((-2 (|:| -2365 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|))) |#1|))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-3991 (($ $) NIL)) (-2388 (((-112) $) NIL)) (-2131 (((-112) $) NIL)) (-3193 (((-771)) NIL)) (-3837 (((-910 |#1|) $) NIL) (($ $ (-921)) NIL (|has| (-910 |#1|) (-370)))) (-3778 (((-1187 (-921) (-771)) (-566)) NIL (|has| (-910 |#1|) (-370)))) (-4175 (((-3 $ "failed") $ $) NIL)) (-1550 (($ $) NIL)) (-3184 (((-420 $) $) NIL)) (-2500 (((-771)) NIL)) (-2837 (((-112) $ $) NIL)) (-1970 (((-771)) NIL (|has| (-910 |#1|) (-370)))) (-3012 (($) NIL T CONST)) (-4307 (((-3 (-910 |#1|) "failed") $) NIL)) (-4205 (((-910 |#1|) $) NIL)) (-2392 (($ (-1264 (-910 |#1|))) NIL)) (-1910 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-910 |#1|) (-370)))) (-2946 (($ $ $) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-1552 (($) NIL (|has| (-910 |#1|) (-370)))) (-2957 (($ $ $) NIL)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL)) (-2781 (($) NIL (|has| (-910 |#1|) (-370)))) (-3506 (((-112) $) NIL (|has| (-910 |#1|) (-370)))) (-3369 (($ $ (-771)) NIL (-2809 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370)))) (($ $) NIL (-2809 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370))))) (-3268 (((-112) $) NIL)) (-3254 (((-921) $) NIL (|has| (-910 |#1|) (-370))) (((-833 (-921)) $) NIL (-2809 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370))))) (-3934 (((-112) $) NIL)) (-3611 (($) NIL (|has| (-910 |#1|) (-370)))) (-1784 (((-112) $) NIL (|has| (-910 |#1|) (-370)))) (-1577 (((-910 |#1|) $) NIL) (($ $ (-921)) NIL (|has| (-910 |#1|) (-370)))) (-4363 (((-3 $ "failed") $) NIL (|has| (-910 |#1|) (-370)))) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1627 (((-1171 (-910 |#1|)) $) NIL) (((-1171 $) $ (-921)) NIL (|has| (-910 |#1|) (-370)))) (-3681 (((-921) $) NIL (|has| (-910 |#1|) (-370)))) (-2372 (((-1171 (-910 |#1|)) $) NIL (|has| (-910 |#1|) (-370)))) (-1526 (((-1171 (-910 |#1|)) $) NIL (|has| (-910 |#1|) (-370))) (((-3 (-1171 (-910 |#1|)) "failed") $ $) NIL (|has| (-910 |#1|) (-370)))) (-3158 (($ $ (-1171 (-910 |#1|))) NIL (|has| (-910 |#1|) (-370)))) (-2167 (($ $ $) NIL) (($ (-644 $)) NIL)) (-4117 (((-1157) $) NIL)) (-1713 (($ $) NIL)) (-1761 (($) NIL (|has| (-910 |#1|) (-370)) CONST)) (-2178 (($ (-921)) NIL (|has| (-910 |#1|) (-370)))) (-1778 (((-112) $) NIL)) (-4035 (((-1119) $) NIL)) (-3486 (((-1264 (-644 (-2 (|:| -2233 (-910 |#1|)) (|:| -2178 (-1119)))))) NIL)) (-3910 (((-689 (-910 |#1|))) NIL)) (-3441 (($) NIL (|has| (-910 |#1|) (-370)))) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2214 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1548 (((-644 (-2 (|:| -3719 (-566)) (|:| -2852 (-566))))) NIL (|has| (-910 |#1|) (-370)))) (-3719 (((-420 $) $) NIL)) (-3129 (((-833 (-921))) NIL) (((-921)) NIL)) (-3148 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2994 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3039 (((-771) $) NIL)) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL)) (-1437 (((-771) $) NIL (|has| (-910 |#1|) (-370))) (((-3 (-771) "failed") $ $) NIL (-2809 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370))))) (-3164 (((-134)) NIL)) (-3561 (($ $) NIL (|has| (-910 |#1|) (-370))) (($ $ (-771)) NIL (|has| (-910 |#1|) (-370)))) (-3636 (((-833 (-921)) $) NIL) (((-921) $) NIL)) (-1616 (((-1171 (-910 |#1|))) NIL)) (-3974 (($) NIL (|has| (-910 |#1|) (-370)))) (-3458 (($) NIL (|has| (-910 |#1|) (-370)))) (-2154 (((-1264 (-910 |#1|)) $) NIL) (((-689 (-910 |#1|)) (-1264 $)) NIL)) (-1656 (((-3 (-1264 $) "failed") (-689 $)) NIL (|has| (-910 |#1|) (-370)))) (-3783 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (($ (-910 |#1|)) NIL)) (-3144 (($ $) NIL (|has| (-910 |#1|) (-370))) (((-3 $ "failed") $) NIL (-2809 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370))))) (-2107 (((-771)) NIL T CONST)) (-3117 (((-112) $ $) NIL)) (-2365 (((-1264 $)) NIL) (((-1264 $) (-921)) NIL)) (-2695 (((-112) $ $) NIL)) (-1423 (((-112) $) NIL)) (-2479 (($) NIL T CONST)) (-4334 (($) NIL T CONST)) (-2699 (($ $) NIL (|has| (-910 |#1|) (-370))) (($ $ (-771)) NIL (|has| (-910 |#1|) (-370)))) (-2875 (($ $) NIL (|has| (-910 |#1|) (-370))) (($ $ (-771)) NIL (|has| (-910 |#1|) (-370)))) (-2947 (((-112) $ $) NIL)) (-3065 (($ $ $) NIL) (($ $ (-910 |#1|)) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ $ (-910 |#1|)) NIL) (($ (-910 |#1|) $) NIL))) -(((-353 |#1| |#2|) (-13 (-330 (-910 |#1|)) (-10 -7 (-15 -3486 ((-1264 (-644 (-2 (|:| -2233 (-910 |#1|)) (|:| -2178 (-1119))))))) (-15 -3910 ((-689 (-910 |#1|)))) (-15 -2500 ((-771))))) (-921) (-921)) (T -353)) -((-3486 (*1 *2) (-12 (-5 *2 (-1264 (-644 (-2 (|:| -2233 (-910 *3)) (|:| -2178 (-1119)))))) (-5 *1 (-353 *3 *4)) (-14 *3 (-921)) (-14 *4 (-921)))) (-3910 (*1 *2) (-12 (-5 *2 (-689 (-910 *3))) (-5 *1 (-353 *3 *4)) (-14 *3 (-921)) (-14 *4 (-921)))) (-2500 (*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-353 *3 *4)) (-14 *3 (-921)) (-14 *4 (-921))))) -(-13 (-330 (-910 |#1|)) (-10 -7 (-15 -3486 ((-1264 (-644 (-2 (|:| -2233 (-910 |#1|)) (|:| -2178 (-1119))))))) (-15 -3910 ((-689 (-910 |#1|)))) (-15 -2500 ((-771))))) -((-3007 (((-112) $ $) 76)) (-1788 (((-112) $) 90)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-3991 (($ $) NIL)) (-2388 (((-112) $) NIL)) (-2131 (((-112) $) NIL)) (-3193 (((-771)) NIL)) (-3837 ((|#1| $) 108) (($ $ (-921)) 106 (|has| |#1| (-370)))) (-3778 (((-1187 (-921) (-771)) (-566)) 177 (|has| |#1| (-370)))) (-4175 (((-3 $ "failed") $ $) NIL)) (-1550 (($ $) NIL)) (-3184 (((-420 $) $) NIL)) (-2500 (((-771)) 105)) (-2837 (((-112) $ $) NIL)) (-1970 (((-771)) 193 (|has| |#1| (-370)))) (-3012 (($) NIL T CONST)) (-4307 (((-3 |#1| "failed") $) 130)) (-4205 ((|#1| $) 107)) (-2392 (($ (-1264 |#1|)) 74)) (-1910 (((-3 "prime" "polynomial" "normal" "cyclic")) 219 (|has| |#1| (-370)))) (-2946 (($ $ $) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-1552 (($) 189 (|has| |#1| (-370)))) (-2957 (($ $ $) NIL)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL)) (-2781 (($) 178 (|has| |#1| (-370)))) (-3506 (((-112) $) NIL (|has| |#1| (-370)))) (-3369 (($ $ (-771)) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3268 (((-112) $) NIL)) (-3254 (((-921) $) NIL (|has| |#1| (-370))) (((-833 (-921)) $) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3934 (((-112) $) NIL)) (-3611 (($) 116 (|has| |#1| (-370)))) (-1784 (((-112) $) 206 (|has| |#1| (-370)))) (-1577 ((|#1| $) 110) (($ $ (-921)) 109 (|has| |#1| (-370)))) (-4363 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1627 (((-1171 |#1|) $) 220) (((-1171 $) $ (-921)) NIL (|has| |#1| (-370)))) (-3681 (((-921) $) 154 (|has| |#1| (-370)))) (-2372 (((-1171 |#1|) $) 89 (|has| |#1| (-370)))) (-1526 (((-1171 |#1|) $) 86 (|has| |#1| (-370))) (((-3 (-1171 |#1|) "failed") $ $) 98 (|has| |#1| (-370)))) (-3158 (($ $ (-1171 |#1|)) 85 (|has| |#1| (-370)))) (-2167 (($ $ $) NIL) (($ (-644 $)) NIL)) (-4117 (((-1157) $) NIL)) (-1713 (($ $) 224)) (-1761 (($) NIL (|has| |#1| (-370)) CONST)) (-2178 (($ (-921)) 157 (|has| |#1| (-370)))) (-1778 (((-112) $) 126)) (-4035 (((-1119) $) NIL)) (-3486 (((-1264 (-644 (-2 (|:| -2233 |#1|) (|:| -2178 (-1119)))))) 99)) (-3910 (((-689 |#1|)) 103)) (-3441 (($) 112 (|has| |#1| (-370)))) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2214 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1548 (((-644 (-2 (|:| -3719 (-566)) (|:| -2852 (-566))))) 180 (|has| |#1| (-370)))) (-3719 (((-420 $) $) NIL)) (-3129 (((-833 (-921))) NIL) (((-921)) 181)) (-3148 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2994 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3039 (((-771) $) NIL)) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL)) (-1437 (((-771) $) NIL (|has| |#1| (-370))) (((-3 (-771) "failed") $ $) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3164 (((-134)) NIL)) (-3561 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-3636 (((-833 (-921)) $) NIL) (((-921) $) 78)) (-1616 (((-1171 |#1|)) 182)) (-3974 (($) 153 (|has| |#1| (-370)))) (-3458 (($) NIL (|has| |#1| (-370)))) (-2154 (((-1264 |#1|) $) 124) (((-689 |#1|) (-1264 $)) NIL)) (-1656 (((-3 (-1264 $) "failed") (-689 $)) NIL (|has| |#1| (-370)))) (-3783 (((-862) $) 146) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (($ |#1|) 73)) (-3144 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2107 (((-771)) 187 T CONST)) (-3117 (((-112) $ $) NIL)) (-2365 (((-1264 $)) 203) (((-1264 $) (-921)) 119)) (-2695 (((-112) $ $) NIL)) (-1423 (((-112) $) NIL)) (-2479 (($) 140 T CONST)) (-4334 (($) 44 T CONST)) (-2699 (($ $) 125 (|has| |#1| (-370))) (($ $ (-771)) 117 (|has| |#1| (-370)))) (-2875 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-2947 (((-112) $ $) 214)) (-3065 (($ $ $) 122) (($ $ |#1|) 123)) (-3053 (($ $) 208) (($ $ $) 212)) (-3041 (($ $ $) 210)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) 159)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 217) (($ $ $) 171) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 121))) -(((-354 |#1| |#2|) (-13 (-330 |#1|) (-10 -7 (-15 -3486 ((-1264 (-644 (-2 (|:| -2233 |#1|) (|:| -2178 (-1119))))))) (-15 -3910 ((-689 |#1|))) (-15 -2500 ((-771))))) (-351) (-3 (-1171 |#1|) (-1264 (-644 (-2 (|:| -2233 |#1|) (|:| -2178 (-1119))))))) (T -354)) -((-3486 (*1 *2) (-12 (-5 *2 (-1264 (-644 (-2 (|:| -2233 *3) (|:| -2178 (-1119)))))) (-5 *1 (-354 *3 *4)) (-4 *3 (-351)) (-14 *4 (-3 (-1171 *3) *2)))) (-3910 (*1 *2) (-12 (-5 *2 (-689 *3)) (-5 *1 (-354 *3 *4)) (-4 *3 (-351)) (-14 *4 (-3 (-1171 *3) (-1264 (-644 (-2 (|:| -2233 *3) (|:| -2178 (-1119))))))))) (-2500 (*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-354 *3 *4)) (-4 *3 (-351)) (-14 *4 (-3 (-1171 *3) (-1264 (-644 (-2 (|:| -2233 *3) (|:| -2178 (-1119)))))))))) -(-13 (-330 |#1|) (-10 -7 (-15 -3486 ((-1264 (-644 (-2 (|:| -2233 |#1|) (|:| -2178 (-1119))))))) (-15 -3910 ((-689 |#1|))) (-15 -2500 ((-771))))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-3991 (($ $) NIL)) (-2388 (((-112) $) NIL)) (-2131 (((-112) $) NIL)) (-3193 (((-771)) NIL)) (-3837 ((|#1| $) NIL) (($ $ (-921)) NIL (|has| |#1| (-370)))) (-3778 (((-1187 (-921) (-771)) (-566)) NIL (|has| |#1| (-370)))) (-4175 (((-3 $ "failed") $ $) NIL)) (-1550 (($ $) NIL)) (-3184 (((-420 $) $) NIL)) (-2500 (((-771)) NIL)) (-2837 (((-112) $ $) NIL)) (-1970 (((-771)) NIL (|has| |#1| (-370)))) (-3012 (($) NIL T CONST)) (-4307 (((-3 |#1| "failed") $) NIL)) (-4205 ((|#1| $) NIL)) (-2392 (($ (-1264 |#1|)) NIL)) (-1910 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-370)))) (-2946 (($ $ $) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-1552 (($) NIL (|has| |#1| (-370)))) (-2957 (($ $ $) NIL)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL)) (-2781 (($) NIL (|has| |#1| (-370)))) (-3506 (((-112) $) NIL (|has| |#1| (-370)))) (-3369 (($ $ (-771)) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3268 (((-112) $) NIL)) (-3254 (((-921) $) NIL (|has| |#1| (-370))) (((-833 (-921)) $) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3934 (((-112) $) NIL)) (-3611 (($) NIL (|has| |#1| (-370)))) (-1784 (((-112) $) NIL (|has| |#1| (-370)))) (-1577 ((|#1| $) NIL) (($ $ (-921)) NIL (|has| |#1| (-370)))) (-4363 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1627 (((-1171 |#1|) $) NIL) (((-1171 $) $ (-921)) NIL (|has| |#1| (-370)))) (-3681 (((-921) $) NIL (|has| |#1| (-370)))) (-2372 (((-1171 |#1|) $) NIL (|has| |#1| (-370)))) (-1526 (((-1171 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1171 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-3158 (($ $ (-1171 |#1|)) NIL (|has| |#1| (-370)))) (-2167 (($ $ $) NIL) (($ (-644 $)) NIL)) (-4117 (((-1157) $) NIL)) (-1713 (($ $) NIL)) (-1761 (($) NIL (|has| |#1| (-370)) CONST)) (-2178 (($ (-921)) NIL (|has| |#1| (-370)))) (-1778 (((-112) $) NIL)) (-4035 (((-1119) $) NIL)) (-3486 (((-1264 (-644 (-2 (|:| -2233 |#1|) (|:| -2178 (-1119)))))) NIL)) (-3910 (((-689 |#1|)) NIL)) (-3441 (($) NIL (|has| |#1| (-370)))) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2214 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1548 (((-644 (-2 (|:| -3719 (-566)) (|:| -2852 (-566))))) NIL (|has| |#1| (-370)))) (-3719 (((-420 $) $) NIL)) (-3129 (((-833 (-921))) NIL) (((-921)) NIL)) (-3148 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2994 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3039 (((-771) $) NIL)) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL)) (-1437 (((-771) $) NIL (|has| |#1| (-370))) (((-3 (-771) "failed") $ $) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3164 (((-134)) NIL)) (-3561 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-3636 (((-833 (-921)) $) NIL) (((-921) $) NIL)) (-1616 (((-1171 |#1|)) NIL)) (-3974 (($) NIL (|has| |#1| (-370)))) (-3458 (($) NIL (|has| |#1| (-370)))) (-2154 (((-1264 |#1|) $) NIL) (((-689 |#1|) (-1264 $)) NIL)) (-1656 (((-3 (-1264 $) "failed") (-689 $)) NIL (|has| |#1| (-370)))) (-3783 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (($ |#1|) NIL)) (-3144 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2107 (((-771)) NIL T CONST)) (-3117 (((-112) $ $) NIL)) (-2365 (((-1264 $)) NIL) (((-1264 $) (-921)) NIL)) (-2695 (((-112) $ $) NIL)) (-1423 (((-112) $) NIL)) (-2479 (($) NIL T CONST)) (-4334 (($) NIL T CONST)) (-2699 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-2875 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-2947 (((-112) $ $) NIL)) (-3065 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-355 |#1| |#2|) (-13 (-330 |#1|) (-10 -7 (-15 -3486 ((-1264 (-644 (-2 (|:| -2233 |#1|) (|:| -2178 (-1119))))))) (-15 -3910 ((-689 |#1|))) (-15 -2500 ((-771))))) (-351) (-921)) (T -355)) -((-3486 (*1 *2) (-12 (-5 *2 (-1264 (-644 (-2 (|:| -2233 *3) (|:| -2178 (-1119)))))) (-5 *1 (-355 *3 *4)) (-4 *3 (-351)) (-14 *4 (-921)))) (-3910 (*1 *2) (-12 (-5 *2 (-689 *3)) (-5 *1 (-355 *3 *4)) (-4 *3 (-351)) (-14 *4 (-921)))) (-2500 (*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-355 *3 *4)) (-4 *3 (-351)) (-14 *4 (-921))))) -(-13 (-330 |#1|) (-10 -7 (-15 -3486 ((-1264 (-644 (-2 (|:| -2233 |#1|) (|:| -2178 (-1119))))))) (-15 -3910 ((-689 |#1|))) (-15 -2500 ((-771))))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-3991 (($ $) NIL)) (-2388 (((-112) $) NIL)) (-2131 (((-112) $) NIL)) (-3193 (((-771)) NIL)) (-3837 (((-910 |#1|) $) NIL) (($ $ (-921)) NIL (|has| (-910 |#1|) (-370)))) (-3778 (((-1187 (-921) (-771)) (-566)) NIL (|has| (-910 |#1|) (-370)))) (-4175 (((-3 $ "failed") $ $) NIL)) (-1550 (($ $) NIL)) (-3184 (((-420 $) $) NIL)) (-2837 (((-112) $ $) NIL)) (-1970 (((-771)) NIL (|has| (-910 |#1|) (-370)))) (-3012 (($) NIL T CONST)) (-4307 (((-3 (-910 |#1|) "failed") $) NIL)) (-4205 (((-910 |#1|) $) NIL)) (-2392 (($ (-1264 (-910 |#1|))) NIL)) (-1910 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-910 |#1|) (-370)))) (-2946 (($ $ $) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-1552 (($) NIL (|has| (-910 |#1|) (-370)))) (-2957 (($ $ $) NIL)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL)) (-2781 (($) NIL (|has| (-910 |#1|) (-370)))) (-3506 (((-112) $) NIL (|has| (-910 |#1|) (-370)))) (-3369 (($ $ (-771)) NIL (-2809 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370)))) (($ $) NIL (-2809 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370))))) (-3268 (((-112) $) NIL)) (-3254 (((-921) $) NIL (|has| (-910 |#1|) (-370))) (((-833 (-921)) $) NIL (-2809 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370))))) (-3934 (((-112) $) NIL)) (-3611 (($) NIL (|has| (-910 |#1|) (-370)))) (-1784 (((-112) $) NIL (|has| (-910 |#1|) (-370)))) (-1577 (((-910 |#1|) $) NIL) (($ $ (-921)) NIL (|has| (-910 |#1|) (-370)))) (-4363 (((-3 $ "failed") $) NIL (|has| (-910 |#1|) (-370)))) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1627 (((-1171 (-910 |#1|)) $) NIL) (((-1171 $) $ (-921)) NIL (|has| (-910 |#1|) (-370)))) (-3681 (((-921) $) NIL (|has| (-910 |#1|) (-370)))) (-2372 (((-1171 (-910 |#1|)) $) NIL (|has| (-910 |#1|) (-370)))) (-1526 (((-1171 (-910 |#1|)) $) NIL (|has| (-910 |#1|) (-370))) (((-3 (-1171 (-910 |#1|)) "failed") $ $) NIL (|has| (-910 |#1|) (-370)))) (-3158 (($ $ (-1171 (-910 |#1|))) NIL (|has| (-910 |#1|) (-370)))) (-2167 (($ $ $) NIL) (($ (-644 $)) NIL)) (-4117 (((-1157) $) NIL)) (-1713 (($ $) NIL)) (-1761 (($) NIL (|has| (-910 |#1|) (-370)) CONST)) (-2178 (($ (-921)) NIL (|has| (-910 |#1|) (-370)))) (-1778 (((-112) $) NIL)) (-4035 (((-1119) $) NIL)) (-3441 (($) NIL (|has| (-910 |#1|) (-370)))) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2214 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1548 (((-644 (-2 (|:| -3719 (-566)) (|:| -2852 (-566))))) NIL (|has| (-910 |#1|) (-370)))) (-3719 (((-420 $) $) NIL)) (-3129 (((-833 (-921))) NIL) (((-921)) NIL)) (-3148 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2994 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3039 (((-771) $) NIL)) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL)) (-1437 (((-771) $) NIL (|has| (-910 |#1|) (-370))) (((-3 (-771) "failed") $ $) NIL (-2809 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370))))) (-3164 (((-134)) NIL)) (-3561 (($ $) NIL (|has| (-910 |#1|) (-370))) (($ $ (-771)) NIL (|has| (-910 |#1|) (-370)))) (-3636 (((-833 (-921)) $) NIL) (((-921) $) NIL)) (-1616 (((-1171 (-910 |#1|))) NIL)) (-3974 (($) NIL (|has| (-910 |#1|) (-370)))) (-3458 (($) NIL (|has| (-910 |#1|) (-370)))) (-2154 (((-1264 (-910 |#1|)) $) NIL) (((-689 (-910 |#1|)) (-1264 $)) NIL)) (-1656 (((-3 (-1264 $) "failed") (-689 $)) NIL (|has| (-910 |#1|) (-370)))) (-3783 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (($ (-910 |#1|)) NIL)) (-3144 (($ $) NIL (|has| (-910 |#1|) (-370))) (((-3 $ "failed") $) NIL (-2809 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370))))) (-2107 (((-771)) NIL T CONST)) (-3117 (((-112) $ $) NIL)) (-2365 (((-1264 $)) NIL) (((-1264 $) (-921)) NIL)) (-2695 (((-112) $ $) NIL)) (-1423 (((-112) $) NIL)) (-2479 (($) NIL T CONST)) (-4334 (($) NIL T CONST)) (-2699 (($ $) NIL (|has| (-910 |#1|) (-370))) (($ $ (-771)) NIL (|has| (-910 |#1|) (-370)))) (-2875 (($ $) NIL (|has| (-910 |#1|) (-370))) (($ $ (-771)) NIL (|has| (-910 |#1|) (-370)))) (-2947 (((-112) $ $) NIL)) (-3065 (($ $ $) NIL) (($ $ (-910 |#1|)) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ $ (-910 |#1|)) NIL) (($ (-910 |#1|) $) NIL))) +((-1637 (((-2 (|:| -2875 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|))) |#1|) 55)) (-2736 (((-2 (|:| -2875 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|)))) 53))) +(((-352 |#1| |#2| |#3|) (-10 -7 (-15 -2736 ((-2 (|:| -2875 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|))))) (-15 -1637 ((-2 (|:| -2875 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|))) |#1|))) (-13 (-308) (-10 -8 (-15 -1364 ((-420 $) $)))) (-1240 |#1|) (-411 |#1| |#2|)) (T -352)) +((-1637 (*1 *2 *3) (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 -1364 ((-420 $) $))))) (-4 *4 (-1240 *3)) (-5 *2 (-2 (|:| -2875 (-689 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-689 *3)))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-411 *3 *4)))) (-2736 (*1 *2) (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 -1364 ((-420 $) $))))) (-4 *4 (-1240 *3)) (-5 *2 (-2 (|:| -2875 (-689 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-689 *3)))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-411 *3 *4))))) +(-10 -7 (-15 -2736 ((-2 (|:| -2875 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|))))) (-15 -1637 ((-2 (|:| -2875 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|))) |#1|))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-2161 (($ $) NIL)) (-2345 (((-112) $) NIL)) (-1972 (((-112) $) NIL)) (-2818 (((-771)) NIL)) (-3833 (((-910 |#1|) $) NIL) (($ $ (-921)) NIL (|has| (-910 |#1|) (-370)))) (-2894 (((-1187 (-921) (-771)) (-566)) NIL (|has| (-910 |#1|) (-370)))) (-3967 (((-3 $ "failed") $ $) NIL)) (-1378 (($ $) NIL)) (-1364 (((-420 $) $) NIL)) (-1433 (((-771)) NIL)) (-2085 (((-112) $ $) NIL)) (-3870 (((-771)) NIL (|has| (-910 |#1|) (-370)))) (-2463 (($) NIL T CONST)) (-2229 (((-3 (-910 |#1|) "failed") $) NIL)) (-4158 (((-910 |#1|) $) NIL)) (-1563 (($ (-1264 (-910 |#1|))) NIL)) (-2347 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-910 |#1|) (-370)))) (-2933 (($ $ $) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-2715 (($) NIL (|has| (-910 |#1|) (-370)))) (-2945 (($ $ $) NIL)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL)) (-3359 (($) NIL (|has| (-910 |#1|) (-370)))) (-2466 (((-112) $) NIL (|has| (-910 |#1|) (-370)))) (-1574 (($ $ (-771)) NIL (-2768 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370)))) (($ $) NIL (-2768 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370))))) (-1615 (((-112) $) NIL)) (-2679 (((-921) $) NIL (|has| (-910 |#1|) (-370))) (((-833 (-921)) $) NIL (-2768 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370))))) (-2389 (((-112) $) NIL)) (-2437 (($) NIL (|has| (-910 |#1|) (-370)))) (-2953 (((-112) $) NIL (|has| (-910 |#1|) (-370)))) (-2064 (((-910 |#1|) $) NIL) (($ $ (-921)) NIL (|has| (-910 |#1|) (-370)))) (-2621 (((-3 $ "failed") $) NIL (|has| (-910 |#1|) (-370)))) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3468 (((-1171 (-910 |#1|)) $) NIL) (((-1171 $) $ (-921)) NIL (|has| (-910 |#1|) (-370)))) (-1866 (((-921) $) NIL (|has| (-910 |#1|) (-370)))) (-2099 (((-1171 (-910 |#1|)) $) NIL (|has| (-910 |#1|) (-370)))) (-3624 (((-1171 (-910 |#1|)) $) NIL (|has| (-910 |#1|) (-370))) (((-3 (-1171 (-910 |#1|)) "failed") $ $) NIL (|has| (-910 |#1|) (-370)))) (-3844 (($ $ (-1171 (-910 |#1|))) NIL (|has| (-910 |#1|) (-370)))) (-2128 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3380 (((-1157) $) NIL)) (-2748 (($ $) NIL)) (-3289 (($) NIL (|has| (-910 |#1|) (-370)) CONST)) (-2835 (($ (-921)) NIL (|has| (-910 |#1|) (-370)))) (-3653 (((-112) $) NIL)) (-4072 (((-1119) $) NIL)) (-4242 (((-1264 (-644 (-2 (|:| -2876 (-910 |#1|)) (|:| -2835 (-1119)))))) NIL)) (-3875 (((-689 (-910 |#1|))) NIL)) (-3302 (($) NIL (|has| (-910 |#1|) (-370)))) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2164 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2442 (((-644 (-2 (|:| -1624 (-566)) (|:| -2201 (-566))))) NIL (|has| (-910 |#1|) (-370)))) (-1624 (((-420 $) $) NIL)) (-1686 (((-833 (-921))) NIL) (((-921)) NIL)) (-3005 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2978 (((-3 $ "failed") $ $) NIL)) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-4357 (((-771) $) NIL)) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL)) (-3169 (((-771) $) NIL (|has| (-910 |#1|) (-370))) (((-3 (-771) "failed") $ $) NIL (-2768 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370))))) (-3126 (((-134)) NIL)) (-3629 (($ $) NIL (|has| (-910 |#1|) (-370))) (($ $ (-771)) NIL (|has| (-910 |#1|) (-370)))) (-3902 (((-833 (-921)) $) NIL) (((-921) $) NIL)) (-1705 (((-1171 (-910 |#1|))) NIL)) (-4122 (($) NIL (|has| (-910 |#1|) (-370)))) (-2110 (($) NIL (|has| (-910 |#1|) (-370)))) (-3350 (((-1264 (-910 |#1|)) $) NIL) (((-689 (-910 |#1|)) (-1264 $)) NIL)) (-3391 (((-3 (-1264 $) "failed") (-689 $)) NIL (|has| (-910 |#1|) (-370)))) (-3152 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (($ (-910 |#1|)) NIL)) (-2633 (($ $) NIL (|has| (-910 |#1|) (-370))) (((-3 $ "failed") $) NIL (-2768 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370))))) (-2593 (((-771)) NIL T CONST)) (-3044 (((-112) $ $) NIL)) (-2875 (((-1264 $)) NIL) (((-1264 $) (-921)) NIL)) (-3014 (((-112) $ $) NIL)) (-4217 (((-112) $) NIL)) (-4356 (($) NIL T CONST)) (-4366 (($) NIL T CONST)) (-2198 (($ $) NIL (|has| (-910 |#1|) (-370))) (($ $ (-771)) NIL (|has| (-910 |#1|) (-370)))) (-3497 (($ $) NIL (|has| (-910 |#1|) (-370))) (($ $ (-771)) NIL (|has| (-910 |#1|) (-370)))) (-2914 (((-112) $ $) NIL)) (-3025 (($ $ $) NIL) (($ $ (-910 |#1|)) NIL)) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ $ (-910 |#1|)) NIL) (($ (-910 |#1|) $) NIL))) +(((-353 |#1| |#2|) (-13 (-330 (-910 |#1|)) (-10 -7 (-15 -4242 ((-1264 (-644 (-2 (|:| -2876 (-910 |#1|)) (|:| -2835 (-1119))))))) (-15 -3875 ((-689 (-910 |#1|)))) (-15 -1433 ((-771))))) (-921) (-921)) (T -353)) +((-4242 (*1 *2) (-12 (-5 *2 (-1264 (-644 (-2 (|:| -2876 (-910 *3)) (|:| -2835 (-1119)))))) (-5 *1 (-353 *3 *4)) (-14 *3 (-921)) (-14 *4 (-921)))) (-3875 (*1 *2) (-12 (-5 *2 (-689 (-910 *3))) (-5 *1 (-353 *3 *4)) (-14 *3 (-921)) (-14 *4 (-921)))) (-1433 (*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-353 *3 *4)) (-14 *3 (-921)) (-14 *4 (-921))))) +(-13 (-330 (-910 |#1|)) (-10 -7 (-15 -4242 ((-1264 (-644 (-2 (|:| -2876 (-910 |#1|)) (|:| -2835 (-1119))))))) (-15 -3875 ((-689 (-910 |#1|)))) (-15 -1433 ((-771))))) +((-2988 (((-112) $ $) 76)) (-3230 (((-112) $) 90)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-2161 (($ $) NIL)) (-2345 (((-112) $) NIL)) (-1972 (((-112) $) NIL)) (-2818 (((-771)) NIL)) (-3833 ((|#1| $) 108) (($ $ (-921)) 106 (|has| |#1| (-370)))) (-2894 (((-1187 (-921) (-771)) (-566)) 177 (|has| |#1| (-370)))) (-3967 (((-3 $ "failed") $ $) NIL)) (-1378 (($ $) NIL)) (-1364 (((-420 $) $) NIL)) (-1433 (((-771)) 105)) (-2085 (((-112) $ $) NIL)) (-3870 (((-771)) 193 (|has| |#1| (-370)))) (-2463 (($) NIL T CONST)) (-2229 (((-3 |#1| "failed") $) 130)) (-4158 ((|#1| $) 107)) (-1563 (($ (-1264 |#1|)) 74)) (-2347 (((-3 "prime" "polynomial" "normal" "cyclic")) 219 (|has| |#1| (-370)))) (-2933 (($ $ $) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-2715 (($) 189 (|has| |#1| (-370)))) (-2945 (($ $ $) NIL)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL)) (-3359 (($) 178 (|has| |#1| (-370)))) (-2466 (((-112) $) NIL (|has| |#1| (-370)))) (-1574 (($ $ (-771)) NIL (-2768 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2768 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1615 (((-112) $) NIL)) (-2679 (((-921) $) NIL (|has| |#1| (-370))) (((-833 (-921)) $) NIL (-2768 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2389 (((-112) $) NIL)) (-2437 (($) 116 (|has| |#1| (-370)))) (-2953 (((-112) $) 206 (|has| |#1| (-370)))) (-2064 ((|#1| $) 110) (($ $ (-921)) 109 (|has| |#1| (-370)))) (-2621 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3468 (((-1171 |#1|) $) 220) (((-1171 $) $ (-921)) NIL (|has| |#1| (-370)))) (-1866 (((-921) $) 154 (|has| |#1| (-370)))) (-2099 (((-1171 |#1|) $) 89 (|has| |#1| (-370)))) (-3624 (((-1171 |#1|) $) 86 (|has| |#1| (-370))) (((-3 (-1171 |#1|) "failed") $ $) 98 (|has| |#1| (-370)))) (-3844 (($ $ (-1171 |#1|)) 85 (|has| |#1| (-370)))) (-2128 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3380 (((-1157) $) NIL)) (-2748 (($ $) 224)) (-3289 (($) NIL (|has| |#1| (-370)) CONST)) (-2835 (($ (-921)) 157 (|has| |#1| (-370)))) (-3653 (((-112) $) 126)) (-4072 (((-1119) $) NIL)) (-4242 (((-1264 (-644 (-2 (|:| -2876 |#1|) (|:| -2835 (-1119)))))) 99)) (-3875 (((-689 |#1|)) 103)) (-3302 (($) 112 (|has| |#1| (-370)))) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2164 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2442 (((-644 (-2 (|:| -1624 (-566)) (|:| -2201 (-566))))) 180 (|has| |#1| (-370)))) (-1624 (((-420 $) $) NIL)) (-1686 (((-833 (-921))) NIL) (((-921)) 181)) (-3005 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2978 (((-3 $ "failed") $ $) NIL)) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-4357 (((-771) $) NIL)) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL)) (-3169 (((-771) $) NIL (|has| |#1| (-370))) (((-3 (-771) "failed") $ $) NIL (-2768 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3126 (((-134)) NIL)) (-3629 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-3902 (((-833 (-921)) $) NIL) (((-921) $) 78)) (-1705 (((-1171 |#1|)) 182)) (-4122 (($) 153 (|has| |#1| (-370)))) (-2110 (($) NIL (|has| |#1| (-370)))) (-3350 (((-1264 |#1|) $) 124) (((-689 |#1|) (-1264 $)) NIL)) (-3391 (((-3 (-1264 $) "failed") (-689 $)) NIL (|has| |#1| (-370)))) (-3152 (((-862) $) 146) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (($ |#1|) 73)) (-2633 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2768 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2593 (((-771)) 187 T CONST)) (-3044 (((-112) $ $) NIL)) (-2875 (((-1264 $)) 203) (((-1264 $) (-921)) 119)) (-3014 (((-112) $ $) NIL)) (-4217 (((-112) $) NIL)) (-4356 (($) 140 T CONST)) (-4366 (($) 44 T CONST)) (-2198 (($ $) 125 (|has| |#1| (-370))) (($ $ (-771)) 117 (|has| |#1| (-370)))) (-3497 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-2914 (((-112) $ $) 214)) (-3025 (($ $ $) 122) (($ $ |#1|) 123)) (-3012 (($ $) 208) (($ $ $) 212)) (-3002 (($ $ $) 210)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) 159)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 217) (($ $ $) 171) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 121))) +(((-354 |#1| |#2|) (-13 (-330 |#1|) (-10 -7 (-15 -4242 ((-1264 (-644 (-2 (|:| -2876 |#1|) (|:| -2835 (-1119))))))) (-15 -3875 ((-689 |#1|))) (-15 -1433 ((-771))))) (-351) (-3 (-1171 |#1|) (-1264 (-644 (-2 (|:| -2876 |#1|) (|:| -2835 (-1119))))))) (T -354)) +((-4242 (*1 *2) (-12 (-5 *2 (-1264 (-644 (-2 (|:| -2876 *3) (|:| -2835 (-1119)))))) (-5 *1 (-354 *3 *4)) (-4 *3 (-351)) (-14 *4 (-3 (-1171 *3) *2)))) (-3875 (*1 *2) (-12 (-5 *2 (-689 *3)) (-5 *1 (-354 *3 *4)) (-4 *3 (-351)) (-14 *4 (-3 (-1171 *3) (-1264 (-644 (-2 (|:| -2876 *3) (|:| -2835 (-1119))))))))) (-1433 (*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-354 *3 *4)) (-4 *3 (-351)) (-14 *4 (-3 (-1171 *3) (-1264 (-644 (-2 (|:| -2876 *3) (|:| -2835 (-1119)))))))))) +(-13 (-330 |#1|) (-10 -7 (-15 -4242 ((-1264 (-644 (-2 (|:| -2876 |#1|) (|:| -2835 (-1119))))))) (-15 -3875 ((-689 |#1|))) (-15 -1433 ((-771))))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-2161 (($ $) NIL)) (-2345 (((-112) $) NIL)) (-1972 (((-112) $) NIL)) (-2818 (((-771)) NIL)) (-3833 ((|#1| $) NIL) (($ $ (-921)) NIL (|has| |#1| (-370)))) (-2894 (((-1187 (-921) (-771)) (-566)) NIL (|has| |#1| (-370)))) (-3967 (((-3 $ "failed") $ $) NIL)) (-1378 (($ $) NIL)) (-1364 (((-420 $) $) NIL)) (-1433 (((-771)) NIL)) (-2085 (((-112) $ $) NIL)) (-3870 (((-771)) NIL (|has| |#1| (-370)))) (-2463 (($) NIL T CONST)) (-2229 (((-3 |#1| "failed") $) NIL)) (-4158 ((|#1| $) NIL)) (-1563 (($ (-1264 |#1|)) NIL)) (-2347 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-370)))) (-2933 (($ $ $) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-2715 (($) NIL (|has| |#1| (-370)))) (-2945 (($ $ $) NIL)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL)) (-3359 (($) NIL (|has| |#1| (-370)))) (-2466 (((-112) $) NIL (|has| |#1| (-370)))) (-1574 (($ $ (-771)) NIL (-2768 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2768 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1615 (((-112) $) NIL)) (-2679 (((-921) $) NIL (|has| |#1| (-370))) (((-833 (-921)) $) NIL (-2768 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2389 (((-112) $) NIL)) (-2437 (($) NIL (|has| |#1| (-370)))) (-2953 (((-112) $) NIL (|has| |#1| (-370)))) (-2064 ((|#1| $) NIL) (($ $ (-921)) NIL (|has| |#1| (-370)))) (-2621 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3468 (((-1171 |#1|) $) NIL) (((-1171 $) $ (-921)) NIL (|has| |#1| (-370)))) (-1866 (((-921) $) NIL (|has| |#1| (-370)))) (-2099 (((-1171 |#1|) $) NIL (|has| |#1| (-370)))) (-3624 (((-1171 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1171 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-3844 (($ $ (-1171 |#1|)) NIL (|has| |#1| (-370)))) (-2128 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3380 (((-1157) $) NIL)) (-2748 (($ $) NIL)) (-3289 (($) NIL (|has| |#1| (-370)) CONST)) (-2835 (($ (-921)) NIL (|has| |#1| (-370)))) (-3653 (((-112) $) NIL)) (-4072 (((-1119) $) NIL)) (-4242 (((-1264 (-644 (-2 (|:| -2876 |#1|) (|:| -2835 (-1119)))))) NIL)) (-3875 (((-689 |#1|)) NIL)) (-3302 (($) NIL (|has| |#1| (-370)))) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2164 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2442 (((-644 (-2 (|:| -1624 (-566)) (|:| -2201 (-566))))) NIL (|has| |#1| (-370)))) (-1624 (((-420 $) $) NIL)) (-1686 (((-833 (-921))) NIL) (((-921)) NIL)) (-3005 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2978 (((-3 $ "failed") $ $) NIL)) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-4357 (((-771) $) NIL)) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL)) (-3169 (((-771) $) NIL (|has| |#1| (-370))) (((-3 (-771) "failed") $ $) NIL (-2768 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3126 (((-134)) NIL)) (-3629 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-3902 (((-833 (-921)) $) NIL) (((-921) $) NIL)) (-1705 (((-1171 |#1|)) NIL)) (-4122 (($) NIL (|has| |#1| (-370)))) (-2110 (($) NIL (|has| |#1| (-370)))) (-3350 (((-1264 |#1|) $) NIL) (((-689 |#1|) (-1264 $)) NIL)) (-3391 (((-3 (-1264 $) "failed") (-689 $)) NIL (|has| |#1| (-370)))) (-3152 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (($ |#1|) NIL)) (-2633 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2768 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2593 (((-771)) NIL T CONST)) (-3044 (((-112) $ $) NIL)) (-2875 (((-1264 $)) NIL) (((-1264 $) (-921)) NIL)) (-3014 (((-112) $ $) NIL)) (-4217 (((-112) $) NIL)) (-4356 (($) NIL T CONST)) (-4366 (($) NIL T CONST)) (-2198 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-3497 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-2914 (((-112) $ $) NIL)) (-3025 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-355 |#1| |#2|) (-13 (-330 |#1|) (-10 -7 (-15 -4242 ((-1264 (-644 (-2 (|:| -2876 |#1|) (|:| -2835 (-1119))))))) (-15 -3875 ((-689 |#1|))) (-15 -1433 ((-771))))) (-351) (-921)) (T -355)) +((-4242 (*1 *2) (-12 (-5 *2 (-1264 (-644 (-2 (|:| -2876 *3) (|:| -2835 (-1119)))))) (-5 *1 (-355 *3 *4)) (-4 *3 (-351)) (-14 *4 (-921)))) (-3875 (*1 *2) (-12 (-5 *2 (-689 *3)) (-5 *1 (-355 *3 *4)) (-4 *3 (-351)) (-14 *4 (-921)))) (-1433 (*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-355 *3 *4)) (-4 *3 (-351)) (-14 *4 (-921))))) +(-13 (-330 |#1|) (-10 -7 (-15 -4242 ((-1264 (-644 (-2 (|:| -2876 |#1|) (|:| -2835 (-1119))))))) (-15 -3875 ((-689 |#1|))) (-15 -1433 ((-771))))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-2161 (($ $) NIL)) (-2345 (((-112) $) NIL)) (-1972 (((-112) $) NIL)) (-2818 (((-771)) NIL)) (-3833 (((-910 |#1|) $) NIL) (($ $ (-921)) NIL (|has| (-910 |#1|) (-370)))) (-2894 (((-1187 (-921) (-771)) (-566)) NIL (|has| (-910 |#1|) (-370)))) (-3967 (((-3 $ "failed") $ $) NIL)) (-1378 (($ $) NIL)) (-1364 (((-420 $) $) NIL)) (-2085 (((-112) $ $) NIL)) (-3870 (((-771)) NIL (|has| (-910 |#1|) (-370)))) (-2463 (($) NIL T CONST)) (-2229 (((-3 (-910 |#1|) "failed") $) NIL)) (-4158 (((-910 |#1|) $) NIL)) (-1563 (($ (-1264 (-910 |#1|))) NIL)) (-2347 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-910 |#1|) (-370)))) (-2933 (($ $ $) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-2715 (($) NIL (|has| (-910 |#1|) (-370)))) (-2945 (($ $ $) NIL)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL)) (-3359 (($) NIL (|has| (-910 |#1|) (-370)))) (-2466 (((-112) $) NIL (|has| (-910 |#1|) (-370)))) (-1574 (($ $ (-771)) NIL (-2768 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370)))) (($ $) NIL (-2768 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370))))) (-1615 (((-112) $) NIL)) (-2679 (((-921) $) NIL (|has| (-910 |#1|) (-370))) (((-833 (-921)) $) NIL (-2768 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370))))) (-2389 (((-112) $) NIL)) (-2437 (($) NIL (|has| (-910 |#1|) (-370)))) (-2953 (((-112) $) NIL (|has| (-910 |#1|) (-370)))) (-2064 (((-910 |#1|) $) NIL) (($ $ (-921)) NIL (|has| (-910 |#1|) (-370)))) (-2621 (((-3 $ "failed") $) NIL (|has| (-910 |#1|) (-370)))) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3468 (((-1171 (-910 |#1|)) $) NIL) (((-1171 $) $ (-921)) NIL (|has| (-910 |#1|) (-370)))) (-1866 (((-921) $) NIL (|has| (-910 |#1|) (-370)))) (-2099 (((-1171 (-910 |#1|)) $) NIL (|has| (-910 |#1|) (-370)))) (-3624 (((-1171 (-910 |#1|)) $) NIL (|has| (-910 |#1|) (-370))) (((-3 (-1171 (-910 |#1|)) "failed") $ $) NIL (|has| (-910 |#1|) (-370)))) (-3844 (($ $ (-1171 (-910 |#1|))) NIL (|has| (-910 |#1|) (-370)))) (-2128 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3380 (((-1157) $) NIL)) (-2748 (($ $) NIL)) (-3289 (($) NIL (|has| (-910 |#1|) (-370)) CONST)) (-2835 (($ (-921)) NIL (|has| (-910 |#1|) (-370)))) (-3653 (((-112) $) NIL)) (-4072 (((-1119) $) NIL)) (-3302 (($) NIL (|has| (-910 |#1|) (-370)))) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2164 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2442 (((-644 (-2 (|:| -1624 (-566)) (|:| -2201 (-566))))) NIL (|has| (-910 |#1|) (-370)))) (-1624 (((-420 $) $) NIL)) (-1686 (((-833 (-921))) NIL) (((-921)) NIL)) (-3005 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2978 (((-3 $ "failed") $ $) NIL)) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-4357 (((-771) $) NIL)) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL)) (-3169 (((-771) $) NIL (|has| (-910 |#1|) (-370))) (((-3 (-771) "failed") $ $) NIL (-2768 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370))))) (-3126 (((-134)) NIL)) (-3629 (($ $) NIL (|has| (-910 |#1|) (-370))) (($ $ (-771)) NIL (|has| (-910 |#1|) (-370)))) (-3902 (((-833 (-921)) $) NIL) (((-921) $) NIL)) (-1705 (((-1171 (-910 |#1|))) NIL)) (-4122 (($) NIL (|has| (-910 |#1|) (-370)))) (-2110 (($) NIL (|has| (-910 |#1|) (-370)))) (-3350 (((-1264 (-910 |#1|)) $) NIL) (((-689 (-910 |#1|)) (-1264 $)) NIL)) (-3391 (((-3 (-1264 $) "failed") (-689 $)) NIL (|has| (-910 |#1|) (-370)))) (-3152 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (($ (-910 |#1|)) NIL)) (-2633 (($ $) NIL (|has| (-910 |#1|) (-370))) (((-3 $ "failed") $) NIL (-2768 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370))))) (-2593 (((-771)) NIL T CONST)) (-3044 (((-112) $ $) NIL)) (-2875 (((-1264 $)) NIL) (((-1264 $) (-921)) NIL)) (-3014 (((-112) $ $) NIL)) (-4217 (((-112) $) NIL)) (-4356 (($) NIL T CONST)) (-4366 (($) NIL T CONST)) (-2198 (($ $) NIL (|has| (-910 |#1|) (-370))) (($ $ (-771)) NIL (|has| (-910 |#1|) (-370)))) (-3497 (($ $) NIL (|has| (-910 |#1|) (-370))) (($ $ (-771)) NIL (|has| (-910 |#1|) (-370)))) (-2914 (((-112) $ $) NIL)) (-3025 (($ $ $) NIL) (($ $ (-910 |#1|)) NIL)) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ $ (-910 |#1|)) NIL) (($ (-910 |#1|) $) NIL))) (((-356 |#1| |#2|) (-330 (-910 |#1|)) (-921) (-921)) (T -356)) NIL (-330 (-910 |#1|)) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-3991 (($ $) NIL)) (-2388 (((-112) $) NIL)) (-2131 (((-112) $) NIL)) (-3193 (((-771)) NIL)) (-3837 ((|#1| $) NIL) (($ $ (-921)) NIL (|has| |#1| (-370)))) (-3778 (((-1187 (-921) (-771)) (-566)) 135 (|has| |#1| (-370)))) (-4175 (((-3 $ "failed") $ $) NIL)) (-1550 (($ $) NIL)) (-3184 (((-420 $) $) NIL)) (-2837 (((-112) $ $) NIL)) (-1970 (((-771)) 165 (|has| |#1| (-370)))) (-3012 (($) NIL T CONST)) (-4307 (((-3 |#1| "failed") $) 109)) (-4205 ((|#1| $) 106)) (-2392 (($ (-1264 |#1|)) 101)) (-1910 (((-3 "prime" "polynomial" "normal" "cyclic")) 132 (|has| |#1| (-370)))) (-2946 (($ $ $) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-1552 (($) 98 (|has| |#1| (-370)))) (-2957 (($ $ $) NIL)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL)) (-2781 (($) 51 (|has| |#1| (-370)))) (-3506 (((-112) $) NIL (|has| |#1| (-370)))) (-3369 (($ $ (-771)) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3268 (((-112) $) NIL)) (-3254 (((-921) $) NIL (|has| |#1| (-370))) (((-833 (-921)) $) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3934 (((-112) $) NIL)) (-3611 (($) 136 (|has| |#1| (-370)))) (-1784 (((-112) $) 90 (|has| |#1| (-370)))) (-1577 ((|#1| $) 47) (($ $ (-921)) 52 (|has| |#1| (-370)))) (-4363 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1627 (((-1171 |#1|) $) 79) (((-1171 $) $ (-921)) NIL (|has| |#1| (-370)))) (-3681 (((-921) $) 113 (|has| |#1| (-370)))) (-2372 (((-1171 |#1|) $) NIL (|has| |#1| (-370)))) (-1526 (((-1171 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1171 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-3158 (($ $ (-1171 |#1|)) NIL (|has| |#1| (-370)))) (-2167 (($ $ $) NIL) (($ (-644 $)) NIL)) (-4117 (((-1157) $) NIL)) (-1713 (($ $) NIL)) (-1761 (($) NIL (|has| |#1| (-370)) CONST)) (-2178 (($ (-921)) 111 (|has| |#1| (-370)))) (-1778 (((-112) $) 167)) (-4035 (((-1119) $) NIL)) (-3441 (($) 44 (|has| |#1| (-370)))) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2214 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1548 (((-644 (-2 (|:| -3719 (-566)) (|:| -2852 (-566))))) 130 (|has| |#1| (-370)))) (-3719 (((-420 $) $) NIL)) (-3129 (((-833 (-921))) NIL) (((-921)) 164)) (-3148 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2994 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3039 (((-771) $) NIL)) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL)) (-1437 (((-771) $) NIL (|has| |#1| (-370))) (((-3 (-771) "failed") $ $) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3164 (((-134)) NIL)) (-3561 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-3636 (((-833 (-921)) $) NIL) (((-921) $) 71)) (-1616 (((-1171 |#1|)) 104)) (-3974 (($) 141 (|has| |#1| (-370)))) (-3458 (($) NIL (|has| |#1| (-370)))) (-2154 (((-1264 |#1|) $) 66) (((-689 |#1|) (-1264 $)) NIL)) (-1656 (((-3 (-1264 $) "failed") (-689 $)) NIL (|has| |#1| (-370)))) (-3783 (((-862) $) 163) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (($ |#1|) 103)) (-3144 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2107 (((-771)) 169 T CONST)) (-3117 (((-112) $ $) 171)) (-2365 (((-1264 $)) 125) (((-1264 $) (-921)) 60)) (-2695 (((-112) $ $) NIL)) (-1423 (((-112) $) NIL)) (-2479 (($) 127 T CONST)) (-4334 (($) 40 T CONST)) (-2699 (($ $) 82 (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-2875 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-2947 (((-112) $ $) 123)) (-3065 (($ $ $) 115) (($ $ |#1|) 116)) (-3053 (($ $) 96) (($ $ $) 121)) (-3041 (($ $ $) 119)) (** (($ $ (-921)) NIL) (($ $ (-771)) 55) (($ $ (-566)) 146)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 94) (($ $ $) 68) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 92))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-2161 (($ $) NIL)) (-2345 (((-112) $) NIL)) (-1972 (((-112) $) NIL)) (-2818 (((-771)) NIL)) (-3833 ((|#1| $) NIL) (($ $ (-921)) NIL (|has| |#1| (-370)))) (-2894 (((-1187 (-921) (-771)) (-566)) 135 (|has| |#1| (-370)))) (-3967 (((-3 $ "failed") $ $) NIL)) (-1378 (($ $) NIL)) (-1364 (((-420 $) $) NIL)) (-2085 (((-112) $ $) NIL)) (-3870 (((-771)) 165 (|has| |#1| (-370)))) (-2463 (($) NIL T CONST)) (-2229 (((-3 |#1| "failed") $) 109)) (-4158 ((|#1| $) 106)) (-1563 (($ (-1264 |#1|)) 101)) (-2347 (((-3 "prime" "polynomial" "normal" "cyclic")) 132 (|has| |#1| (-370)))) (-2933 (($ $ $) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-2715 (($) 98 (|has| |#1| (-370)))) (-2945 (($ $ $) NIL)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL)) (-3359 (($) 51 (|has| |#1| (-370)))) (-2466 (((-112) $) NIL (|has| |#1| (-370)))) (-1574 (($ $ (-771)) NIL (-2768 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2768 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1615 (((-112) $) NIL)) (-2679 (((-921) $) NIL (|has| |#1| (-370))) (((-833 (-921)) $) NIL (-2768 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2389 (((-112) $) NIL)) (-2437 (($) 136 (|has| |#1| (-370)))) (-2953 (((-112) $) 90 (|has| |#1| (-370)))) (-2064 ((|#1| $) 47) (($ $ (-921)) 52 (|has| |#1| (-370)))) (-2621 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3468 (((-1171 |#1|) $) 79) (((-1171 $) $ (-921)) NIL (|has| |#1| (-370)))) (-1866 (((-921) $) 113 (|has| |#1| (-370)))) (-2099 (((-1171 |#1|) $) NIL (|has| |#1| (-370)))) (-3624 (((-1171 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1171 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-3844 (($ $ (-1171 |#1|)) NIL (|has| |#1| (-370)))) (-2128 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3380 (((-1157) $) NIL)) (-2748 (($ $) NIL)) (-3289 (($) NIL (|has| |#1| (-370)) CONST)) (-2835 (($ (-921)) 111 (|has| |#1| (-370)))) (-3653 (((-112) $) 167)) (-4072 (((-1119) $) NIL)) (-3302 (($) 44 (|has| |#1| (-370)))) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2164 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2442 (((-644 (-2 (|:| -1624 (-566)) (|:| -2201 (-566))))) 130 (|has| |#1| (-370)))) (-1624 (((-420 $) $) NIL)) (-1686 (((-833 (-921))) NIL) (((-921)) 164)) (-3005 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2978 (((-3 $ "failed") $ $) NIL)) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-4357 (((-771) $) NIL)) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL)) (-3169 (((-771) $) NIL (|has| |#1| (-370))) (((-3 (-771) "failed") $ $) NIL (-2768 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3126 (((-134)) NIL)) (-3629 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-3902 (((-833 (-921)) $) NIL) (((-921) $) 71)) (-1705 (((-1171 |#1|)) 104)) (-4122 (($) 141 (|has| |#1| (-370)))) (-2110 (($) NIL (|has| |#1| (-370)))) (-3350 (((-1264 |#1|) $) 66) (((-689 |#1|) (-1264 $)) NIL)) (-3391 (((-3 (-1264 $) "failed") (-689 $)) NIL (|has| |#1| (-370)))) (-3152 (((-862) $) 163) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (($ |#1|) 103)) (-2633 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2768 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2593 (((-771)) 169 T CONST)) (-3044 (((-112) $ $) 171)) (-2875 (((-1264 $)) 125) (((-1264 $) (-921)) 60)) (-3014 (((-112) $ $) NIL)) (-4217 (((-112) $) NIL)) (-4356 (($) 127 T CONST)) (-4366 (($) 40 T CONST)) (-2198 (($ $) 82 (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-3497 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-2914 (((-112) $ $) 123)) (-3025 (($ $ $) 115) (($ $ |#1|) 116)) (-3012 (($ $) 96) (($ $ $) 121)) (-3002 (($ $ $) 119)) (** (($ $ (-921)) NIL) (($ $ (-771)) 55) (($ $ (-566)) 146)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 94) (($ $ $) 68) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 92))) (((-357 |#1| |#2|) (-330 |#1|) (-351) (-1171 |#1|)) (T -357)) NIL (-330 |#1|) -((-1328 ((|#1| (-1171 |#2|)) 63))) -(((-358 |#1| |#2|) (-10 -7 (-15 -1328 (|#1| (-1171 |#2|)))) (-13 (-404) (-10 -7 (-15 -3783 (|#1| |#2|)) (-15 -3681 ((-921) |#1|)) (-15 -2365 ((-1264 |#1|) (-921))) (-15 -2699 (|#1| |#1|)))) (-351)) (T -358)) -((-1328 (*1 *2 *3) (-12 (-5 *3 (-1171 *4)) (-4 *4 (-351)) (-4 *2 (-13 (-404) (-10 -7 (-15 -3783 (*2 *4)) (-15 -3681 ((-921) *2)) (-15 -2365 ((-1264 *2) (-921))) (-15 -2699 (*2 *2))))) (-5 *1 (-358 *2 *4))))) -(-10 -7 (-15 -1328 (|#1| (-1171 |#2|)))) -((-2461 (((-958 (-1171 |#1|)) (-1171 |#1|)) 53)) (-1552 (((-1171 |#1|) (-921) (-921)) 168) (((-1171 |#1|) (-921)) 164)) (-3506 (((-112) (-1171 |#1|)) 120)) (-3277 (((-921) (-921)) 98)) (-1479 (((-921) (-921)) 105)) (-2714 (((-921) (-921)) 96)) (-1784 (((-112) (-1171 |#1|)) 124)) (-3603 (((-3 (-1171 |#1|) "failed") (-1171 |#1|)) 149)) (-2068 (((-3 (-1171 |#1|) "failed") (-1171 |#1|)) 154)) (-3776 (((-3 (-1171 |#1|) "failed") (-1171 |#1|)) 153)) (-4037 (((-3 (-1171 |#1|) "failed") (-1171 |#1|)) 152)) (-3016 (((-3 (-1171 |#1|) "failed") (-1171 |#1|)) 144)) (-3676 (((-1171 |#1|) (-1171 |#1|)) 84)) (-1309 (((-1171 |#1|) (-921)) 159)) (-3469 (((-1171 |#1|) (-921)) 162)) (-4159 (((-1171 |#1|) (-921)) 161)) (-1533 (((-1171 |#1|) (-921)) 160)) (-3634 (((-1171 |#1|) (-921)) 157))) -(((-359 |#1|) (-10 -7 (-15 -3506 ((-112) (-1171 |#1|))) (-15 -1784 ((-112) (-1171 |#1|))) (-15 -2714 ((-921) (-921))) (-15 -3277 ((-921) (-921))) (-15 -1479 ((-921) (-921))) (-15 -3634 ((-1171 |#1|) (-921))) (-15 -1309 ((-1171 |#1|) (-921))) (-15 -1533 ((-1171 |#1|) (-921))) (-15 -4159 ((-1171 |#1|) (-921))) (-15 -3469 ((-1171 |#1|) (-921))) (-15 -3016 ((-3 (-1171 |#1|) "failed") (-1171 |#1|))) (-15 -3603 ((-3 (-1171 |#1|) "failed") (-1171 |#1|))) (-15 -4037 ((-3 (-1171 |#1|) "failed") (-1171 |#1|))) (-15 -3776 ((-3 (-1171 |#1|) "failed") (-1171 |#1|))) (-15 -2068 ((-3 (-1171 |#1|) "failed") (-1171 |#1|))) (-15 -1552 ((-1171 |#1|) (-921))) (-15 -1552 ((-1171 |#1|) (-921) (-921))) (-15 -3676 ((-1171 |#1|) (-1171 |#1|))) (-15 -2461 ((-958 (-1171 |#1|)) (-1171 |#1|)))) (-351)) (T -359)) -((-2461 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-958 (-1171 *4))) (-5 *1 (-359 *4)) (-5 *3 (-1171 *4)))) (-3676 (*1 *2 *2) (-12 (-5 *2 (-1171 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-1552 (*1 *2 *3 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-1552 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-2068 (*1 *2 *2) (|partial| -12 (-5 *2 (-1171 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-3776 (*1 *2 *2) (|partial| -12 (-5 *2 (-1171 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-4037 (*1 *2 *2) (|partial| -12 (-5 *2 (-1171 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-3603 (*1 *2 *2) (|partial| -12 (-5 *2 (-1171 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-3016 (*1 *2 *2) (|partial| -12 (-5 *2 (-1171 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-3469 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-4159 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-1533 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-1309 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-3634 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-1479 (*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-359 *3)) (-4 *3 (-351)))) (-3277 (*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-359 *3)) (-4 *3 (-351)))) (-2714 (*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-359 *3)) (-4 *3 (-351)))) (-1784 (*1 *2 *3) (-12 (-5 *3 (-1171 *4)) (-4 *4 (-351)) (-5 *2 (-112)) (-5 *1 (-359 *4)))) (-3506 (*1 *2 *3) (-12 (-5 *3 (-1171 *4)) (-4 *4 (-351)) (-5 *2 (-112)) (-5 *1 (-359 *4))))) -(-10 -7 (-15 -3506 ((-112) (-1171 |#1|))) (-15 -1784 ((-112) (-1171 |#1|))) (-15 -2714 ((-921) (-921))) (-15 -3277 ((-921) (-921))) (-15 -1479 ((-921) (-921))) (-15 -3634 ((-1171 |#1|) (-921))) (-15 -1309 ((-1171 |#1|) (-921))) (-15 -1533 ((-1171 |#1|) (-921))) (-15 -4159 ((-1171 |#1|) (-921))) (-15 -3469 ((-1171 |#1|) (-921))) (-15 -3016 ((-3 (-1171 |#1|) "failed") (-1171 |#1|))) (-15 -3603 ((-3 (-1171 |#1|) "failed") (-1171 |#1|))) (-15 -4037 ((-3 (-1171 |#1|) "failed") (-1171 |#1|))) (-15 -3776 ((-3 (-1171 |#1|) "failed") (-1171 |#1|))) (-15 -2068 ((-3 (-1171 |#1|) "failed") (-1171 |#1|))) (-15 -1552 ((-1171 |#1|) (-921))) (-15 -1552 ((-1171 |#1|) (-921) (-921))) (-15 -3676 ((-1171 |#1|) (-1171 |#1|))) (-15 -2461 ((-958 (-1171 |#1|)) (-1171 |#1|)))) -((-3717 (((-3 (-644 |#3|) "failed") (-644 |#3|) |#3|) 38))) -(((-360 |#1| |#2| |#3|) (-10 -7 (-15 -3717 ((-3 (-644 |#3|) "failed") (-644 |#3|) |#3|))) (-351) (-1240 |#1|) (-1240 |#2|)) (T -360)) -((-3717 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-644 *3)) (-4 *3 (-1240 *5)) (-4 *5 (-1240 *4)) (-4 *4 (-351)) (-5 *1 (-360 *4 *5 *3))))) -(-10 -7 (-15 -3717 ((-3 (-644 |#3|) "failed") (-644 |#3|) |#3|))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-3991 (($ $) NIL)) (-2388 (((-112) $) NIL)) (-2131 (((-112) $) NIL)) (-3193 (((-771)) NIL)) (-3837 ((|#1| $) NIL) (($ $ (-921)) NIL (|has| |#1| (-370)))) (-3778 (((-1187 (-921) (-771)) (-566)) NIL (|has| |#1| (-370)))) (-4175 (((-3 $ "failed") $ $) NIL)) (-1550 (($ $) NIL)) (-3184 (((-420 $) $) NIL)) (-2837 (((-112) $ $) NIL)) (-1970 (((-771)) NIL (|has| |#1| (-370)))) (-3012 (($) NIL T CONST)) (-4307 (((-3 |#1| "failed") $) NIL)) (-4205 ((|#1| $) NIL)) (-2392 (($ (-1264 |#1|)) NIL)) (-1910 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-370)))) (-2946 (($ $ $) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-1552 (($) NIL (|has| |#1| (-370)))) (-2957 (($ $ $) NIL)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL)) (-2781 (($) NIL (|has| |#1| (-370)))) (-3506 (((-112) $) NIL (|has| |#1| (-370)))) (-3369 (($ $ (-771)) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3268 (((-112) $) NIL)) (-3254 (((-921) $) NIL (|has| |#1| (-370))) (((-833 (-921)) $) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3934 (((-112) $) NIL)) (-3611 (($) NIL (|has| |#1| (-370)))) (-1784 (((-112) $) NIL (|has| |#1| (-370)))) (-1577 ((|#1| $) NIL) (($ $ (-921)) NIL (|has| |#1| (-370)))) (-4363 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1627 (((-1171 |#1|) $) NIL) (((-1171 $) $ (-921)) NIL (|has| |#1| (-370)))) (-3681 (((-921) $) NIL (|has| |#1| (-370)))) (-2372 (((-1171 |#1|) $) NIL (|has| |#1| (-370)))) (-1526 (((-1171 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1171 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-3158 (($ $ (-1171 |#1|)) NIL (|has| |#1| (-370)))) (-2167 (($ $ $) NIL) (($ (-644 $)) NIL)) (-4117 (((-1157) $) NIL)) (-1713 (($ $) NIL)) (-1761 (($) NIL (|has| |#1| (-370)) CONST)) (-2178 (($ (-921)) NIL (|has| |#1| (-370)))) (-1778 (((-112) $) NIL)) (-4035 (((-1119) $) NIL)) (-3441 (($) NIL (|has| |#1| (-370)))) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2214 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1548 (((-644 (-2 (|:| -3719 (-566)) (|:| -2852 (-566))))) NIL (|has| |#1| (-370)))) (-3719 (((-420 $) $) NIL)) (-3129 (((-833 (-921))) NIL) (((-921)) NIL)) (-3148 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2994 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3039 (((-771) $) NIL)) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL)) (-1437 (((-771) $) NIL (|has| |#1| (-370))) (((-3 (-771) "failed") $ $) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3164 (((-134)) NIL)) (-3561 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-3636 (((-833 (-921)) $) NIL) (((-921) $) NIL)) (-1616 (((-1171 |#1|)) NIL)) (-3974 (($) NIL (|has| |#1| (-370)))) (-3458 (($) NIL (|has| |#1| (-370)))) (-2154 (((-1264 |#1|) $) NIL) (((-689 |#1|) (-1264 $)) NIL)) (-1656 (((-3 (-1264 $) "failed") (-689 $)) NIL (|has| |#1| (-370)))) (-3783 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (($ |#1|) NIL)) (-3144 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2107 (((-771)) NIL T CONST)) (-3117 (((-112) $ $) NIL)) (-2365 (((-1264 $)) NIL) (((-1264 $) (-921)) NIL)) (-2695 (((-112) $ $) NIL)) (-1423 (((-112) $) NIL)) (-2479 (($) NIL T CONST)) (-4334 (($) NIL T CONST)) (-2699 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-2875 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-2947 (((-112) $ $) NIL)) (-3065 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +((-1334 ((|#1| (-1171 |#2|)) 63))) +(((-358 |#1| |#2|) (-10 -7 (-15 -1334 (|#1| (-1171 |#2|)))) (-13 (-404) (-10 -7 (-15 -3152 (|#1| |#2|)) (-15 -1866 ((-921) |#1|)) (-15 -2875 ((-1264 |#1|) (-921))) (-15 -2198 (|#1| |#1|)))) (-351)) (T -358)) +((-1334 (*1 *2 *3) (-12 (-5 *3 (-1171 *4)) (-4 *4 (-351)) (-4 *2 (-13 (-404) (-10 -7 (-15 -3152 (*2 *4)) (-15 -1866 ((-921) *2)) (-15 -2875 ((-1264 *2) (-921))) (-15 -2198 (*2 *2))))) (-5 *1 (-358 *2 *4))))) +(-10 -7 (-15 -1334 (|#1| (-1171 |#2|)))) +((-1833 (((-958 (-1171 |#1|)) (-1171 |#1|)) 53)) (-2715 (((-1171 |#1|) (-921) (-921)) 168) (((-1171 |#1|) (-921)) 164)) (-2466 (((-112) (-1171 |#1|)) 120)) (-1386 (((-921) (-921)) 98)) (-1647 (((-921) (-921)) 105)) (-4303 (((-921) (-921)) 96)) (-2953 (((-112) (-1171 |#1|)) 124)) (-2949 (((-3 (-1171 |#1|) "failed") (-1171 |#1|)) 149)) (-2285 (((-3 (-1171 |#1|) "failed") (-1171 |#1|)) 154)) (-2737 (((-3 (-1171 |#1|) "failed") (-1171 |#1|)) 153)) (-4327 (((-3 (-1171 |#1|) "failed") (-1171 |#1|)) 152)) (-1530 (((-3 (-1171 |#1|) "failed") (-1171 |#1|)) 144)) (-2544 (((-1171 |#1|) (-1171 |#1|)) 84)) (-3136 (((-1171 |#1|) (-921)) 159)) (-3069 (((-1171 |#1|) (-921)) 162)) (-3140 (((-1171 |#1|) (-921)) 161)) (-3108 (((-1171 |#1|) (-921)) 160)) (-1815 (((-1171 |#1|) (-921)) 157))) +(((-359 |#1|) (-10 -7 (-15 -2466 ((-112) (-1171 |#1|))) (-15 -2953 ((-112) (-1171 |#1|))) (-15 -4303 ((-921) (-921))) (-15 -1386 ((-921) (-921))) (-15 -1647 ((-921) (-921))) (-15 -1815 ((-1171 |#1|) (-921))) (-15 -3136 ((-1171 |#1|) (-921))) (-15 -3108 ((-1171 |#1|) (-921))) (-15 -3140 ((-1171 |#1|) (-921))) (-15 -3069 ((-1171 |#1|) (-921))) (-15 -1530 ((-3 (-1171 |#1|) "failed") (-1171 |#1|))) (-15 -2949 ((-3 (-1171 |#1|) "failed") (-1171 |#1|))) (-15 -4327 ((-3 (-1171 |#1|) "failed") (-1171 |#1|))) (-15 -2737 ((-3 (-1171 |#1|) "failed") (-1171 |#1|))) (-15 -2285 ((-3 (-1171 |#1|) "failed") (-1171 |#1|))) (-15 -2715 ((-1171 |#1|) (-921))) (-15 -2715 ((-1171 |#1|) (-921) (-921))) (-15 -2544 ((-1171 |#1|) (-1171 |#1|))) (-15 -1833 ((-958 (-1171 |#1|)) (-1171 |#1|)))) (-351)) (T -359)) +((-1833 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-958 (-1171 *4))) (-5 *1 (-359 *4)) (-5 *3 (-1171 *4)))) (-2544 (*1 *2 *2) (-12 (-5 *2 (-1171 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-2715 (*1 *2 *3 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-2715 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-2285 (*1 *2 *2) (|partial| -12 (-5 *2 (-1171 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-2737 (*1 *2 *2) (|partial| -12 (-5 *2 (-1171 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-4327 (*1 *2 *2) (|partial| -12 (-5 *2 (-1171 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-2949 (*1 *2 *2) (|partial| -12 (-5 *2 (-1171 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-1530 (*1 *2 *2) (|partial| -12 (-5 *2 (-1171 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-3069 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-3140 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-3108 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-3136 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-1815 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-1647 (*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-359 *3)) (-4 *3 (-351)))) (-1386 (*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-359 *3)) (-4 *3 (-351)))) (-4303 (*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-359 *3)) (-4 *3 (-351)))) (-2953 (*1 *2 *3) (-12 (-5 *3 (-1171 *4)) (-4 *4 (-351)) (-5 *2 (-112)) (-5 *1 (-359 *4)))) (-2466 (*1 *2 *3) (-12 (-5 *3 (-1171 *4)) (-4 *4 (-351)) (-5 *2 (-112)) (-5 *1 (-359 *4))))) +(-10 -7 (-15 -2466 ((-112) (-1171 |#1|))) (-15 -2953 ((-112) (-1171 |#1|))) (-15 -4303 ((-921) (-921))) (-15 -1386 ((-921) (-921))) (-15 -1647 ((-921) (-921))) (-15 -1815 ((-1171 |#1|) (-921))) (-15 -3136 ((-1171 |#1|) (-921))) (-15 -3108 ((-1171 |#1|) (-921))) (-15 -3140 ((-1171 |#1|) (-921))) (-15 -3069 ((-1171 |#1|) (-921))) (-15 -1530 ((-3 (-1171 |#1|) "failed") (-1171 |#1|))) (-15 -2949 ((-3 (-1171 |#1|) "failed") (-1171 |#1|))) (-15 -4327 ((-3 (-1171 |#1|) "failed") (-1171 |#1|))) (-15 -2737 ((-3 (-1171 |#1|) "failed") (-1171 |#1|))) (-15 -2285 ((-3 (-1171 |#1|) "failed") (-1171 |#1|))) (-15 -2715 ((-1171 |#1|) (-921))) (-15 -2715 ((-1171 |#1|) (-921) (-921))) (-15 -2544 ((-1171 |#1|) (-1171 |#1|))) (-15 -1833 ((-958 (-1171 |#1|)) (-1171 |#1|)))) +((-4066 (((-3 (-644 |#3|) "failed") (-644 |#3|) |#3|) 38))) +(((-360 |#1| |#2| |#3|) (-10 -7 (-15 -4066 ((-3 (-644 |#3|) "failed") (-644 |#3|) |#3|))) (-351) (-1240 |#1|) (-1240 |#2|)) (T -360)) +((-4066 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-644 *3)) (-4 *3 (-1240 *5)) (-4 *5 (-1240 *4)) (-4 *4 (-351)) (-5 *1 (-360 *4 *5 *3))))) +(-10 -7 (-15 -4066 ((-3 (-644 |#3|) "failed") (-644 |#3|) |#3|))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-2161 (($ $) NIL)) (-2345 (((-112) $) NIL)) (-1972 (((-112) $) NIL)) (-2818 (((-771)) NIL)) (-3833 ((|#1| $) NIL) (($ $ (-921)) NIL (|has| |#1| (-370)))) (-2894 (((-1187 (-921) (-771)) (-566)) NIL (|has| |#1| (-370)))) (-3967 (((-3 $ "failed") $ $) NIL)) (-1378 (($ $) NIL)) (-1364 (((-420 $) $) NIL)) (-2085 (((-112) $ $) NIL)) (-3870 (((-771)) NIL (|has| |#1| (-370)))) (-2463 (($) NIL T CONST)) (-2229 (((-3 |#1| "failed") $) NIL)) (-4158 ((|#1| $) NIL)) (-1563 (($ (-1264 |#1|)) NIL)) (-2347 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-370)))) (-2933 (($ $ $) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-2715 (($) NIL (|has| |#1| (-370)))) (-2945 (($ $ $) NIL)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL)) (-3359 (($) NIL (|has| |#1| (-370)))) (-2466 (((-112) $) NIL (|has| |#1| (-370)))) (-1574 (($ $ (-771)) NIL (-2768 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2768 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1615 (((-112) $) NIL)) (-2679 (((-921) $) NIL (|has| |#1| (-370))) (((-833 (-921)) $) NIL (-2768 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2389 (((-112) $) NIL)) (-2437 (($) NIL (|has| |#1| (-370)))) (-2953 (((-112) $) NIL (|has| |#1| (-370)))) (-2064 ((|#1| $) NIL) (($ $ (-921)) NIL (|has| |#1| (-370)))) (-2621 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3468 (((-1171 |#1|) $) NIL) (((-1171 $) $ (-921)) NIL (|has| |#1| (-370)))) (-1866 (((-921) $) NIL (|has| |#1| (-370)))) (-2099 (((-1171 |#1|) $) NIL (|has| |#1| (-370)))) (-3624 (((-1171 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1171 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-3844 (($ $ (-1171 |#1|)) NIL (|has| |#1| (-370)))) (-2128 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3380 (((-1157) $) NIL)) (-2748 (($ $) NIL)) (-3289 (($) NIL (|has| |#1| (-370)) CONST)) (-2835 (($ (-921)) NIL (|has| |#1| (-370)))) (-3653 (((-112) $) NIL)) (-4072 (((-1119) $) NIL)) (-3302 (($) NIL (|has| |#1| (-370)))) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2164 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2442 (((-644 (-2 (|:| -1624 (-566)) (|:| -2201 (-566))))) NIL (|has| |#1| (-370)))) (-1624 (((-420 $) $) NIL)) (-1686 (((-833 (-921))) NIL) (((-921)) NIL)) (-3005 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2978 (((-3 $ "failed") $ $) NIL)) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-4357 (((-771) $) NIL)) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL)) (-3169 (((-771) $) NIL (|has| |#1| (-370))) (((-3 (-771) "failed") $ $) NIL (-2768 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3126 (((-134)) NIL)) (-3629 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-3902 (((-833 (-921)) $) NIL) (((-921) $) NIL)) (-1705 (((-1171 |#1|)) NIL)) (-4122 (($) NIL (|has| |#1| (-370)))) (-2110 (($) NIL (|has| |#1| (-370)))) (-3350 (((-1264 |#1|) $) NIL) (((-689 |#1|) (-1264 $)) NIL)) (-3391 (((-3 (-1264 $) "failed") (-689 $)) NIL (|has| |#1| (-370)))) (-3152 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (($ |#1|) NIL)) (-2633 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2768 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2593 (((-771)) NIL T CONST)) (-3044 (((-112) $ $) NIL)) (-2875 (((-1264 $)) NIL) (((-1264 $) (-921)) NIL)) (-3014 (((-112) $ $) NIL)) (-4217 (((-112) $) NIL)) (-4356 (($) NIL T CONST)) (-4366 (($) NIL T CONST)) (-2198 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-3497 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-2914 (((-112) $ $) NIL)) (-3025 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) (((-361 |#1| |#2|) (-330 |#1|) (-351) (-921)) (T -361)) NIL (-330 |#1|) -((-1896 (((-112) (-644 (-952 |#1|))) 41)) (-1793 (((-644 (-952 |#1|)) (-644 (-952 |#1|))) 53)) (-4095 (((-3 (-644 (-952 |#1|)) "failed") (-644 (-952 |#1|))) 48))) -(((-362 |#1| |#2|) (-10 -7 (-15 -1896 ((-112) (-644 (-952 |#1|)))) (-15 -4095 ((-3 (-644 (-952 |#1|)) "failed") (-644 (-952 |#1|)))) (-15 -1793 ((-644 (-952 |#1|)) (-644 (-952 |#1|))))) (-454) (-644 (-1175))) (T -362)) -((-1793 (*1 *2 *2) (-12 (-5 *2 (-644 (-952 *3))) (-4 *3 (-454)) (-5 *1 (-362 *3 *4)) (-14 *4 (-644 (-1175))))) (-4095 (*1 *2 *2) (|partial| -12 (-5 *2 (-644 (-952 *3))) (-4 *3 (-454)) (-5 *1 (-362 *3 *4)) (-14 *4 (-644 (-1175))))) (-1896 (*1 *2 *3) (-12 (-5 *3 (-644 (-952 *4))) (-4 *4 (-454)) (-5 *2 (-112)) (-5 *1 (-362 *4 *5)) (-14 *5 (-644 (-1175)))))) -(-10 -7 (-15 -1896 ((-112) (-644 (-952 |#1|)))) (-15 -4095 ((-3 (-644 (-952 |#1|)) "failed") (-644 (-952 |#1|)))) (-15 -1793 ((-644 (-952 |#1|)) (-644 (-952 |#1|))))) -((-3007 (((-112) $ $) NIL)) (-1970 (((-771) $) NIL)) (-3012 (($) NIL T CONST)) (-4307 (((-3 |#1| "failed") $) NIL)) (-4205 ((|#1| $) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-3934 (((-112) $) 17)) (-3946 ((|#1| $ (-566)) NIL)) (-3712 (((-566) $ (-566)) NIL)) (-1657 (($ (-1 |#1| |#1|) $) 34)) (-3352 (($ (-1 (-566) (-566)) $) 26)) (-4117 (((-1157) $) NIL)) (-1713 (($ $) 28)) (-4035 (((-1119) $) NIL)) (-4138 (((-644 (-2 (|:| |gen| |#1|) (|:| -2561 (-566)))) $) 30)) (-2358 (($ $ $) NIL)) (-3171 (($ $ $) NIL)) (-3783 (((-862) $) 40) (($ |#1|) NIL)) (-3117 (((-112) $ $) NIL)) (-4334 (($) 11 T CONST)) (-2947 (((-112) $ $) NIL)) (-3065 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL) (($ |#1| (-566)) 19)) (* (($ $ $) 53) (($ |#1| $) 23) (($ $ |#1|) 21))) -(((-363 |#1|) (-13 (-475) (-1038 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-566))) (-15 -1970 ((-771) $)) (-15 -3712 ((-566) $ (-566))) (-15 -3946 (|#1| $ (-566))) (-15 -3352 ($ (-1 (-566) (-566)) $)) (-15 -1657 ($ (-1 |#1| |#1|) $)) (-15 -4138 ((-644 (-2 (|:| |gen| |#1|) (|:| -2561 (-566)))) $)))) (-1099)) (T -363)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-363 *2)) (-4 *2 (-1099)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-363 *2)) (-4 *2 (-1099)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-363 *2)) (-4 *2 (-1099)))) (-1970 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-363 *3)) (-4 *3 (-1099)))) (-3712 (*1 *2 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-363 *3)) (-4 *3 (-1099)))) (-3946 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *1 (-363 *2)) (-4 *2 (-1099)))) (-3352 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-566) (-566))) (-5 *1 (-363 *3)) (-4 *3 (-1099)))) (-1657 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1099)) (-5 *1 (-363 *3)))) (-4138 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -2561 (-566))))) (-5 *1 (-363 *3)) (-4 *3 (-1099))))) -(-13 (-475) (-1038 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-566))) (-15 -1970 ((-771) $)) (-15 -3712 ((-566) $ (-566))) (-15 -3946 (|#1| $ (-566))) (-15 -3352 ($ (-1 (-566) (-566)) $)) (-15 -1657 ($ (-1 |#1| |#1|) $)) (-15 -4138 ((-644 (-2 (|:| |gen| |#1|) (|:| -2561 (-566)))) $)))) -((-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) 13)) (-3991 (($ $) 14)) (-3184 (((-420 $) $) 34)) (-3268 (((-112) $) 30)) (-1713 (($ $) 19)) (-2214 (($ $ $) 25) (($ (-644 $)) NIL)) (-3719 (((-420 $) $) 35)) (-2994 (((-3 $ "failed") $ $) 24)) (-3039 (((-771) $) 28)) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) 39)) (-2695 (((-112) $ $) 16)) (-3065 (($ $ $) 37))) -(((-364 |#1|) (-10 -8 (-15 -3065 (|#1| |#1| |#1|)) (-15 -1713 (|#1| |#1|)) (-15 -3268 ((-112) |#1|)) (-15 -3184 ((-420 |#1|) |#1|)) (-15 -3719 ((-420 |#1|) |#1|)) (-15 -1685 ((-2 (|:| -2275 |#1|) (|:| -2513 |#1|)) |#1| |#1|)) (-15 -3039 ((-771) |#1|)) (-15 -2214 (|#1| (-644 |#1|))) (-15 -2214 (|#1| |#1| |#1|)) (-15 -2695 ((-112) |#1| |#1|)) (-15 -3991 (|#1| |#1|)) (-15 -1860 ((-2 (|:| -3002 |#1|) (|:| -4401 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2994 ((-3 |#1| "failed") |#1| |#1|))) (-365)) (T -364)) -NIL -(-10 -8 (-15 -3065 (|#1| |#1| |#1|)) (-15 -1713 (|#1| |#1|)) (-15 -3268 ((-112) |#1|)) (-15 -3184 ((-420 |#1|) |#1|)) (-15 -3719 ((-420 |#1|) |#1|)) (-15 -1685 ((-2 (|:| -2275 |#1|) (|:| -2513 |#1|)) |#1| |#1|)) (-15 -3039 ((-771) |#1|)) (-15 -2214 (|#1| (-644 |#1|))) (-15 -2214 (|#1| |#1| |#1|)) (-15 -2695 ((-112) |#1| |#1|)) (-15 -3991 (|#1| |#1|)) (-15 -1860 ((-2 (|:| -3002 |#1|) (|:| -4401 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2994 ((-3 |#1| "failed") |#1| |#1|))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) 47)) (-3991 (($ $) 46)) (-2388 (((-112) $) 44)) (-4175 (((-3 $ "failed") $ $) 20)) (-1550 (($ $) 81)) (-3184 (((-420 $) $) 80)) (-2837 (((-112) $ $) 65)) (-3012 (($) 18 T CONST)) (-2946 (($ $ $) 61)) (-1878 (((-3 $ "failed") $) 37)) (-2957 (($ $ $) 62)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) 57)) (-3268 (((-112) $) 79)) (-3934 (((-112) $) 35)) (-3775 (((-3 (-644 $) "failed") (-644 $) $) 58)) (-2167 (($ $ $) 52) (($ (-644 $)) 51)) (-4117 (((-1157) $) 10)) (-1713 (($ $) 78)) (-4035 (((-1119) $) 11)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-2214 (($ $ $) 54) (($ (-644 $)) 53)) (-3719 (((-420 $) $) 82)) (-3148 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2994 (((-3 $ "failed") $ $) 48)) (-3161 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-3039 (((-771) $) 64)) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) 63)) (-3783 (((-862) $) 12) (($ (-566)) 33) (($ $) 49) (($ (-409 (-566))) 74)) (-2107 (((-771)) 32 T CONST)) (-3117 (((-112) $ $) 9)) (-2695 (((-112) $ $) 45)) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-2947 (((-112) $ $) 6)) (-3065 (($ $ $) 73)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 77)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 76) (($ (-409 (-566)) $) 75))) +((-2425 (((-112) (-644 (-952 |#1|))) 41)) (-2542 (((-644 (-952 |#1|)) (-644 (-952 |#1|))) 53)) (-3160 (((-3 (-644 (-952 |#1|)) "failed") (-644 (-952 |#1|))) 48))) +(((-362 |#1| |#2|) (-10 -7 (-15 -2425 ((-112) (-644 (-952 |#1|)))) (-15 -3160 ((-3 (-644 (-952 |#1|)) "failed") (-644 (-952 |#1|)))) (-15 -2542 ((-644 (-952 |#1|)) (-644 (-952 |#1|))))) (-454) (-644 (-1175))) (T -362)) +((-2542 (*1 *2 *2) (-12 (-5 *2 (-644 (-952 *3))) (-4 *3 (-454)) (-5 *1 (-362 *3 *4)) (-14 *4 (-644 (-1175))))) (-3160 (*1 *2 *2) (|partial| -12 (-5 *2 (-644 (-952 *3))) (-4 *3 (-454)) (-5 *1 (-362 *3 *4)) (-14 *4 (-644 (-1175))))) (-2425 (*1 *2 *3) (-12 (-5 *3 (-644 (-952 *4))) (-4 *4 (-454)) (-5 *2 (-112)) (-5 *1 (-362 *4 *5)) (-14 *5 (-644 (-1175)))))) +(-10 -7 (-15 -2425 ((-112) (-644 (-952 |#1|)))) (-15 -3160 ((-3 (-644 (-952 |#1|)) "failed") (-644 (-952 |#1|)))) (-15 -2542 ((-644 (-952 |#1|)) (-644 (-952 |#1|))))) +((-2988 (((-112) $ $) NIL)) (-3870 (((-771) $) NIL)) (-2463 (($) NIL T CONST)) (-2229 (((-3 |#1| "failed") $) NIL)) (-4158 ((|#1| $) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-2389 (((-112) $) 17)) (-2121 ((|#1| $ (-566)) NIL)) (-2707 (((-566) $ (-566)) NIL)) (-3499 (($ (-1 |#1| |#1|) $) 34)) (-3480 (($ (-1 (-566) (-566)) $) 26)) (-3380 (((-1157) $) NIL)) (-2748 (($ $) 28)) (-4072 (((-1119) $) NIL)) (-1616 (((-644 (-2 (|:| |gen| |#1|) (|:| -3521 (-566)))) $) 30)) (-3357 (($ $ $) NIL)) (-2527 (($ $ $) NIL)) (-3152 (((-862) $) 40) (($ |#1|) NIL)) (-3044 (((-112) $ $) NIL)) (-4366 (($) 11 T CONST)) (-2914 (((-112) $ $) NIL)) (-3025 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL) (($ |#1| (-566)) 19)) (* (($ $ $) 53) (($ |#1| $) 23) (($ $ |#1|) 21))) +(((-363 |#1|) (-13 (-475) (-1038 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-566))) (-15 -3870 ((-771) $)) (-15 -2707 ((-566) $ (-566))) (-15 -2121 (|#1| $ (-566))) (-15 -3480 ($ (-1 (-566) (-566)) $)) (-15 -3499 ($ (-1 |#1| |#1|) $)) (-15 -1616 ((-644 (-2 (|:| |gen| |#1|) (|:| -3521 (-566)))) $)))) (-1099)) (T -363)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-363 *2)) (-4 *2 (-1099)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-363 *2)) (-4 *2 (-1099)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-363 *2)) (-4 *2 (-1099)))) (-3870 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-363 *3)) (-4 *3 (-1099)))) (-2707 (*1 *2 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-363 *3)) (-4 *3 (-1099)))) (-2121 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *1 (-363 *2)) (-4 *2 (-1099)))) (-3480 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-566) (-566))) (-5 *1 (-363 *3)) (-4 *3 (-1099)))) (-3499 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1099)) (-5 *1 (-363 *3)))) (-1616 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -3521 (-566))))) (-5 *1 (-363 *3)) (-4 *3 (-1099))))) +(-13 (-475) (-1038 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-566))) (-15 -3870 ((-771) $)) (-15 -2707 ((-566) $ (-566))) (-15 -2121 (|#1| $ (-566))) (-15 -3480 ($ (-1 (-566) (-566)) $)) (-15 -3499 ($ (-1 |#1| |#1|) $)) (-15 -1616 ((-644 (-2 (|:| |gen| |#1|) (|:| -3521 (-566)))) $)))) +((-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) 13)) (-2161 (($ $) 14)) (-1364 (((-420 $) $) 34)) (-1615 (((-112) $) 30)) (-2748 (($ $) 19)) (-2164 (($ $ $) 25) (($ (-644 $)) NIL)) (-1624 (((-420 $) $) 35)) (-2978 (((-3 $ "failed") $ $) 24)) (-4357 (((-771) $) 28)) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) 39)) (-3014 (((-112) $ $) 16)) (-3025 (($ $ $) 37))) +(((-364 |#1|) (-10 -8 (-15 -3025 (|#1| |#1| |#1|)) (-15 -2748 (|#1| |#1|)) (-15 -1615 ((-112) |#1|)) (-15 -1364 ((-420 |#1|) |#1|)) (-15 -1624 ((-420 |#1|) |#1|)) (-15 -4100 ((-2 (|:| -2631 |#1|) (|:| -3264 |#1|)) |#1| |#1|)) (-15 -4357 ((-771) |#1|)) (-15 -2164 (|#1| (-644 |#1|))) (-15 -2164 (|#1| |#1| |#1|)) (-15 -3014 ((-112) |#1| |#1|)) (-15 -2161 (|#1| |#1|)) (-15 -2112 ((-2 (|:| -2896 |#1|) (|:| -4401 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2978 ((-3 |#1| "failed") |#1| |#1|))) (-365)) (T -364)) +NIL +(-10 -8 (-15 -3025 (|#1| |#1| |#1|)) (-15 -2748 (|#1| |#1|)) (-15 -1615 ((-112) |#1|)) (-15 -1364 ((-420 |#1|) |#1|)) (-15 -1624 ((-420 |#1|) |#1|)) (-15 -4100 ((-2 (|:| -2631 |#1|) (|:| -3264 |#1|)) |#1| |#1|)) (-15 -4357 ((-771) |#1|)) (-15 -2164 (|#1| (-644 |#1|))) (-15 -2164 (|#1| |#1| |#1|)) (-15 -3014 ((-112) |#1| |#1|)) (-15 -2161 (|#1| |#1|)) (-15 -2112 ((-2 (|:| -2896 |#1|) (|:| -4401 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2978 ((-3 |#1| "failed") |#1| |#1|))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) 47)) (-2161 (($ $) 46)) (-2345 (((-112) $) 44)) (-3967 (((-3 $ "failed") $ $) 20)) (-1378 (($ $) 81)) (-1364 (((-420 $) $) 80)) (-2085 (((-112) $ $) 65)) (-2463 (($) 18 T CONST)) (-2933 (($ $ $) 61)) (-3245 (((-3 $ "failed") $) 37)) (-2945 (($ $ $) 62)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) 57)) (-1615 (((-112) $) 79)) (-2389 (((-112) $) 35)) (-3816 (((-3 (-644 $) "failed") (-644 $) $) 58)) (-2128 (($ $ $) 52) (($ (-644 $)) 51)) (-3380 (((-1157) $) 10)) (-2748 (($ $) 78)) (-4072 (((-1119) $) 11)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-2164 (($ $ $) 54) (($ (-644 $)) 53)) (-1624 (((-420 $) $) 82)) (-3005 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2978 (((-3 $ "failed") $ $) 48)) (-2915 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-4357 (((-771) $) 64)) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) 63)) (-3152 (((-862) $) 12) (($ (-566)) 33) (($ $) 49) (($ (-409 (-566))) 74)) (-2593 (((-771)) 32 T CONST)) (-3044 (((-112) $ $) 9)) (-3014 (((-112) $ $) 45)) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-2914 (((-112) $ $) 6)) (-3025 (($ $ $) 73)) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 77)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 76) (($ (-409 (-566)) $) 75))) (((-365) (-140)) (T -365)) -((-3065 (*1 *1 *1 *1) (-4 *1 (-365)))) -(-13 (-308) (-1218) (-243) (-10 -8 (-15 -3065 ($ $ $)) (-6 -4412) (-6 -4406))) +((-3025 (*1 *1 *1 *1) (-4 *1 (-365)))) +(-13 (-308) (-1218) (-243) (-10 -8 (-15 -3025 ($ $ $)) (-6 -4412) (-6 -4406))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-616 #0#) . T) ((-616 (-566)) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-454) . T) ((-558) . T) ((-646 #0#) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 #0#) . T) ((-648 $) . T) ((-640 #0#) . T) ((-640 $) . T) ((-717 #0#) . T) ((-717 $) . T) ((-726) . T) ((-920) . T) ((-1051 #0#) . T) ((-1051 $) . T) ((-1056 #0#) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1218) . T)) -((-3007 (((-112) $ $) 7)) (-3349 ((|#2| $ |#2|) 14)) (-3534 (($ $ (-1157)) 19)) (-2972 ((|#2| $) 15)) (-3501 (($ |#1|) 21) (($ |#1| (-1157)) 20)) (-2640 ((|#1| $) 17)) (-4117 (((-1157) $) 10)) (-4176 (((-1157) $) 16)) (-4035 (((-1119) $) 11)) (-3783 (((-862) $) 12)) (-1596 (($ $) 18)) (-3117 (((-112) $ $) 9)) (-2947 (((-112) $ $) 6))) +((-2988 (((-112) $ $) 7)) (-3167 ((|#2| $ |#2|) 14)) (-2545 (($ $ (-1157)) 19)) (-1338 ((|#2| $) 15)) (-3292 (($ |#1|) 21) (($ |#1| (-1157)) 20)) (-1368 ((|#1| $) 17)) (-3380 (((-1157) $) 10)) (-4085 (((-1157) $) 16)) (-4072 (((-1119) $) 11)) (-3152 (((-862) $) 12)) (-2405 (($ $) 18)) (-3044 (((-112) $ $) 9)) (-2914 (((-112) $ $) 6))) (((-366 |#1| |#2|) (-140) (-1099) (-1099)) (T -366)) -((-3501 (*1 *1 *2) (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099)))) (-3501 (*1 *1 *2 *3) (-12 (-5 *3 (-1157)) (-4 *1 (-366 *2 *4)) (-4 *2 (-1099)) (-4 *4 (-1099)))) (-3534 (*1 *1 *1 *2) (-12 (-5 *2 (-1157)) (-4 *1 (-366 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)))) (-1596 (*1 *1 *1) (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099)))) (-2640 (*1 *2 *1) (-12 (-4 *1 (-366 *2 *3)) (-4 *3 (-1099)) (-4 *2 (-1099)))) (-4176 (*1 *2 *1) (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-5 *2 (-1157)))) (-2972 (*1 *2 *1) (-12 (-4 *1 (-366 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1099)))) (-3349 (*1 *2 *1 *2) (-12 (-4 *1 (-366 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1099))))) -(-13 (-1099) (-10 -8 (-15 -3501 ($ |t#1|)) (-15 -3501 ($ |t#1| (-1157))) (-15 -3534 ($ $ (-1157))) (-15 -1596 ($ $)) (-15 -2640 (|t#1| $)) (-15 -4176 ((-1157) $)) (-15 -2972 (|t#2| $)) (-15 -3349 (|t#2| $ |t#2|)))) +((-3292 (*1 *1 *2) (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099)))) (-3292 (*1 *1 *2 *3) (-12 (-5 *3 (-1157)) (-4 *1 (-366 *2 *4)) (-4 *2 (-1099)) (-4 *4 (-1099)))) (-2545 (*1 *1 *1 *2) (-12 (-5 *2 (-1157)) (-4 *1 (-366 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)))) (-2405 (*1 *1 *1) (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099)))) (-1368 (*1 *2 *1) (-12 (-4 *1 (-366 *2 *3)) (-4 *3 (-1099)) (-4 *2 (-1099)))) (-4085 (*1 *2 *1) (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-5 *2 (-1157)))) (-1338 (*1 *2 *1) (-12 (-4 *1 (-366 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1099)))) (-3167 (*1 *2 *1 *2) (-12 (-4 *1 (-366 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1099))))) +(-13 (-1099) (-10 -8 (-15 -3292 ($ |t#1|)) (-15 -3292 ($ |t#1| (-1157))) (-15 -2545 ($ $ (-1157))) (-15 -2405 ($ $)) (-15 -1368 (|t#1| $)) (-15 -4085 ((-1157) $)) (-15 -1338 (|t#2| $)) (-15 -3167 (|t#2| $ |t#2|)))) (((-102) . T) ((-613 (-862)) . T) ((-1099) . T)) -((-3007 (((-112) $ $) NIL)) (-3349 ((|#1| $ |#1|) 31)) (-3534 (($ $ (-1157)) 23)) (-2840 (((-3 |#1| "failed") $) 30)) (-2972 ((|#1| $) 28)) (-3501 (($ (-390)) 22) (($ (-390) (-1157)) 21)) (-2640 (((-390) $) 25)) (-4117 (((-1157) $) NIL)) (-4176 (((-1157) $) 26)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 20)) (-1596 (($ $) 24)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) 19))) -(((-367 |#1|) (-13 (-366 (-390) |#1|) (-10 -8 (-15 -2840 ((-3 |#1| "failed") $)))) (-1099)) (T -367)) -((-2840 (*1 *2 *1) (|partial| -12 (-5 *1 (-367 *2)) (-4 *2 (-1099))))) -(-13 (-366 (-390) |#1|) (-10 -8 (-15 -2840 ((-3 |#1| "failed") $)))) -((-4085 (((-1264 (-689 |#2|)) (-1264 $)) 70)) (-3058 (((-689 |#2|) (-1264 $)) 141)) (-2468 ((|#2| $) 39)) (-4298 (((-689 |#2|) $ (-1264 $)) 144)) (-2715 (((-3 $ "failed") $) 91)) (-1670 ((|#2| $) 42)) (-3757 (((-1171 |#2|) $) 99)) (-2072 ((|#2| (-1264 $)) 124)) (-2410 (((-1171 |#2|) $) 34)) (-3036 (((-112)) 118)) (-2392 (($ (-1264 |#2|) (-1264 $)) 134)) (-1878 (((-3 $ "failed") $) 95)) (-1652 (((-112)) 112)) (-1543 (((-112)) 107)) (-2763 (((-112)) 61)) (-1371 (((-689 |#2|) (-1264 $)) 139)) (-3307 ((|#2| $) 38)) (-3131 (((-689 |#2|) $ (-1264 $)) 143)) (-2305 (((-3 $ "failed") $) 89)) (-3473 ((|#2| $) 41)) (-4108 (((-1171 |#2|) $) 98)) (-1950 ((|#2| (-1264 $)) 122)) (-1974 (((-1171 |#2|) $) 32)) (-3390 (((-112)) 117)) (-3170 (((-112)) 109)) (-3326 (((-112)) 59)) (-2829 (((-112)) 104)) (-1976 (((-112)) 119)) (-2154 (((-1264 |#2|) $ (-1264 $)) NIL) (((-689 |#2|) (-1264 $) (-1264 $)) 130)) (-2638 (((-112)) 115)) (-3023 (((-644 (-1264 |#2|))) 103)) (-3232 (((-112)) 116)) (-2653 (((-112)) 113)) (-1843 (((-112)) 54)) (-1938 (((-112)) 120))) -(((-368 |#1| |#2|) (-10 -8 (-15 -3757 ((-1171 |#2|) |#1|)) (-15 -4108 ((-1171 |#2|) |#1|)) (-15 -3023 ((-644 (-1264 |#2|)))) (-15 -2715 ((-3 |#1| "failed") |#1|)) (-15 -2305 ((-3 |#1| "failed") |#1|)) (-15 -1878 ((-3 |#1| "failed") |#1|)) (-15 -1543 ((-112))) (-15 -3170 ((-112))) (-15 -1652 ((-112))) (-15 -3326 ((-112))) (-15 -2763 ((-112))) (-15 -2829 ((-112))) (-15 -1938 ((-112))) (-15 -1976 ((-112))) (-15 -3036 ((-112))) (-15 -3390 ((-112))) (-15 -1843 ((-112))) (-15 -3232 ((-112))) (-15 -2653 ((-112))) (-15 -2638 ((-112))) (-15 -2410 ((-1171 |#2|) |#1|)) (-15 -1974 ((-1171 |#2|) |#1|)) (-15 -3058 ((-689 |#2|) (-1264 |#1|))) (-15 -1371 ((-689 |#2|) (-1264 |#1|))) (-15 -2072 (|#2| (-1264 |#1|))) (-15 -1950 (|#2| (-1264 |#1|))) (-15 -2392 (|#1| (-1264 |#2|) (-1264 |#1|))) (-15 -2154 ((-689 |#2|) (-1264 |#1|) (-1264 |#1|))) (-15 -2154 ((-1264 |#2|) |#1| (-1264 |#1|))) (-15 -1670 (|#2| |#1|)) (-15 -3473 (|#2| |#1|)) (-15 -2468 (|#2| |#1|)) (-15 -3307 (|#2| |#1|)) (-15 -4298 ((-689 |#2|) |#1| (-1264 |#1|))) (-15 -3131 ((-689 |#2|) |#1| (-1264 |#1|))) (-15 -4085 ((-1264 (-689 |#2|)) (-1264 |#1|)))) (-369 |#2|) (-172)) (T -368)) -((-2638 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-2653 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3232 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1843 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3390 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3036 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1976 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1938 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-2829 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-2763 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3326 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1652 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3170 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1543 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3023 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-644 (-1264 *4))) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4))))) -(-10 -8 (-15 -3757 ((-1171 |#2|) |#1|)) (-15 -4108 ((-1171 |#2|) |#1|)) (-15 -3023 ((-644 (-1264 |#2|)))) (-15 -2715 ((-3 |#1| "failed") |#1|)) (-15 -2305 ((-3 |#1| "failed") |#1|)) (-15 -1878 ((-3 |#1| "failed") |#1|)) (-15 -1543 ((-112))) (-15 -3170 ((-112))) (-15 -1652 ((-112))) (-15 -3326 ((-112))) (-15 -2763 ((-112))) (-15 -2829 ((-112))) (-15 -1938 ((-112))) (-15 -1976 ((-112))) (-15 -3036 ((-112))) (-15 -3390 ((-112))) (-15 -1843 ((-112))) (-15 -3232 ((-112))) (-15 -2653 ((-112))) (-15 -2638 ((-112))) (-15 -2410 ((-1171 |#2|) |#1|)) (-15 -1974 ((-1171 |#2|) |#1|)) (-15 -3058 ((-689 |#2|) (-1264 |#1|))) (-15 -1371 ((-689 |#2|) (-1264 |#1|))) (-15 -2072 (|#2| (-1264 |#1|))) (-15 -1950 (|#2| (-1264 |#1|))) (-15 -2392 (|#1| (-1264 |#2|) (-1264 |#1|))) (-15 -2154 ((-689 |#2|) (-1264 |#1|) (-1264 |#1|))) (-15 -2154 ((-1264 |#2|) |#1| (-1264 |#1|))) (-15 -1670 (|#2| |#1|)) (-15 -3473 (|#2| |#1|)) (-15 -2468 (|#2| |#1|)) (-15 -3307 (|#2| |#1|)) (-15 -4298 ((-689 |#2|) |#1| (-1264 |#1|))) (-15 -3131 ((-689 |#2|) |#1| (-1264 |#1|))) (-15 -4085 ((-1264 (-689 |#2|)) (-1264 |#1|)))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-3002 (((-3 $ "failed")) 42 (|has| |#1| (-558)))) (-4175 (((-3 $ "failed") $ $) 20)) (-4085 (((-1264 (-689 |#1|)) (-1264 $)) 83)) (-2092 (((-1264 $)) 86)) (-3012 (($) 18 T CONST)) (-4119 (((-3 (-2 (|:| |particular| $) (|:| -2365 (-644 $))) "failed")) 45 (|has| |#1| (-558)))) (-1446 (((-3 $ "failed")) 43 (|has| |#1| (-558)))) (-3058 (((-689 |#1|) (-1264 $)) 70)) (-2468 ((|#1| $) 79)) (-4298 (((-689 |#1|) $ (-1264 $)) 81)) (-2715 (((-3 $ "failed") $) 50 (|has| |#1| (-558)))) (-3942 (($ $ (-921)) 31)) (-1670 ((|#1| $) 77)) (-3757 (((-1171 |#1|) $) 47 (|has| |#1| (-558)))) (-2072 ((|#1| (-1264 $)) 72)) (-2410 (((-1171 |#1|) $) 68)) (-3036 (((-112)) 62)) (-2392 (($ (-1264 |#1|) (-1264 $)) 74)) (-1878 (((-3 $ "failed") $) 52 (|has| |#1| (-558)))) (-4313 (((-921)) 85)) (-2658 (((-112)) 59)) (-2322 (($ $ (-921)) 38)) (-1652 (((-112)) 55)) (-1543 (((-112)) 53)) (-2763 (((-112)) 57)) (-2906 (((-3 (-2 (|:| |particular| $) (|:| -2365 (-644 $))) "failed")) 46 (|has| |#1| (-558)))) (-1710 (((-3 $ "failed")) 44 (|has| |#1| (-558)))) (-1371 (((-689 |#1|) (-1264 $)) 71)) (-3307 ((|#1| $) 80)) (-3131 (((-689 |#1|) $ (-1264 $)) 82)) (-2305 (((-3 $ "failed") $) 51 (|has| |#1| (-558)))) (-2437 (($ $ (-921)) 32)) (-3473 ((|#1| $) 78)) (-4108 (((-1171 |#1|) $) 48 (|has| |#1| (-558)))) (-1950 ((|#1| (-1264 $)) 73)) (-1974 (((-1171 |#1|) $) 69)) (-3390 (((-112)) 63)) (-4117 (((-1157) $) 10)) (-3170 (((-112)) 54)) (-3326 (((-112)) 56)) (-2829 (((-112)) 58)) (-4035 (((-1119) $) 11)) (-1976 (((-112)) 61)) (-2154 (((-1264 |#1|) $ (-1264 $)) 76) (((-689 |#1|) (-1264 $) (-1264 $)) 75)) (-3453 (((-644 (-952 |#1|)) (-1264 $)) 84)) (-3171 (($ $ $) 28)) (-2638 (((-112)) 67)) (-3783 (((-862) $) 12)) (-3117 (((-112) $ $) 9)) (-3023 (((-644 (-1264 |#1|))) 49 (|has| |#1| (-558)))) (-2320 (($ $ $ $) 29)) (-3232 (((-112)) 65)) (-3027 (($ $ $) 27)) (-2653 (((-112)) 66)) (-1843 (((-112)) 64)) (-1938 (((-112)) 60)) (-2479 (($) 19 T CONST)) (-2947 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 33)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) +((-2988 (((-112) $ $) NIL)) (-3167 ((|#1| $ |#1|) 31)) (-2545 (($ $ (-1157)) 23)) (-2403 (((-3 |#1| "failed") $) 30)) (-1338 ((|#1| $) 28)) (-3292 (($ (-390)) 22) (($ (-390) (-1157)) 21)) (-1368 (((-390) $) 25)) (-3380 (((-1157) $) NIL)) (-4085 (((-1157) $) 26)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 20)) (-2405 (($ $) 24)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) 19))) +(((-367 |#1|) (-13 (-366 (-390) |#1|) (-10 -8 (-15 -2403 ((-3 |#1| "failed") $)))) (-1099)) (T -367)) +((-2403 (*1 *2 *1) (|partial| -12 (-5 *1 (-367 *2)) (-4 *2 (-1099))))) +(-13 (-366 (-390) |#1|) (-10 -8 (-15 -2403 ((-3 |#1| "failed") $)))) +((-2336 (((-1264 (-689 |#2|)) (-1264 $)) 70)) (-2411 (((-689 |#2|) (-1264 $)) 141)) (-4373 ((|#2| $) 39)) (-2800 (((-689 |#2|) $ (-1264 $)) 144)) (-4392 (((-3 $ "failed") $) 91)) (-4039 ((|#2| $) 42)) (-3648 (((-1171 |#2|) $) 99)) (-2597 ((|#2| (-1264 $)) 124)) (-2765 (((-1171 |#2|) $) 34)) (-4029 (((-112)) 118)) (-1563 (($ (-1264 |#2|) (-1264 $)) 134)) (-3245 (((-3 $ "failed") $) 95)) (-4240 (((-112)) 112)) (-2057 (((-112)) 107)) (-2158 (((-112)) 61)) (-2734 (((-689 |#2|) (-1264 $)) 139)) (-2366 ((|#2| $) 38)) (-3769 (((-689 |#2|) $ (-1264 $)) 143)) (-2851 (((-3 $ "failed") $) 89)) (-2241 ((|#2| $) 41)) (-1910 (((-1171 |#2|) $) 98)) (-2990 ((|#2| (-1264 $)) 122)) (-3548 (((-1171 |#2|) $) 32)) (-2974 (((-112)) 117)) (-2402 (((-112)) 109)) (-1459 (((-112)) 59)) (-3846 (((-112)) 104)) (-3795 (((-112)) 119)) (-3350 (((-1264 |#2|) $ (-1264 $)) NIL) (((-689 |#2|) (-1264 $) (-1264 $)) 130)) (-2512 (((-112)) 115)) (-2243 (((-644 (-1264 |#2|))) 103)) (-2468 (((-112)) 116)) (-1465 (((-112)) 113)) (-3692 (((-112)) 54)) (-4369 (((-112)) 120))) +(((-368 |#1| |#2|) (-10 -8 (-15 -3648 ((-1171 |#2|) |#1|)) (-15 -1910 ((-1171 |#2|) |#1|)) (-15 -2243 ((-644 (-1264 |#2|)))) (-15 -4392 ((-3 |#1| "failed") |#1|)) (-15 -2851 ((-3 |#1| "failed") |#1|)) (-15 -3245 ((-3 |#1| "failed") |#1|)) (-15 -2057 ((-112))) (-15 -2402 ((-112))) (-15 -4240 ((-112))) (-15 -1459 ((-112))) (-15 -2158 ((-112))) (-15 -3846 ((-112))) (-15 -4369 ((-112))) (-15 -3795 ((-112))) (-15 -4029 ((-112))) (-15 -2974 ((-112))) (-15 -3692 ((-112))) (-15 -2468 ((-112))) (-15 -1465 ((-112))) (-15 -2512 ((-112))) (-15 -2765 ((-1171 |#2|) |#1|)) (-15 -3548 ((-1171 |#2|) |#1|)) (-15 -2411 ((-689 |#2|) (-1264 |#1|))) (-15 -2734 ((-689 |#2|) (-1264 |#1|))) (-15 -2597 (|#2| (-1264 |#1|))) (-15 -2990 (|#2| (-1264 |#1|))) (-15 -1563 (|#1| (-1264 |#2|) (-1264 |#1|))) (-15 -3350 ((-689 |#2|) (-1264 |#1|) (-1264 |#1|))) (-15 -3350 ((-1264 |#2|) |#1| (-1264 |#1|))) (-15 -4039 (|#2| |#1|)) (-15 -2241 (|#2| |#1|)) (-15 -4373 (|#2| |#1|)) (-15 -2366 (|#2| |#1|)) (-15 -2800 ((-689 |#2|) |#1| (-1264 |#1|))) (-15 -3769 ((-689 |#2|) |#1| (-1264 |#1|))) (-15 -2336 ((-1264 (-689 |#2|)) (-1264 |#1|)))) (-369 |#2|) (-172)) (T -368)) +((-2512 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1465 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-2468 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3692 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-2974 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-4029 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3795 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-4369 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3846 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-2158 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1459 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-4240 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-2402 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-2057 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-2243 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-644 (-1264 *4))) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4))))) +(-10 -8 (-15 -3648 ((-1171 |#2|) |#1|)) (-15 -1910 ((-1171 |#2|) |#1|)) (-15 -2243 ((-644 (-1264 |#2|)))) (-15 -4392 ((-3 |#1| "failed") |#1|)) (-15 -2851 ((-3 |#1| "failed") |#1|)) (-15 -3245 ((-3 |#1| "failed") |#1|)) (-15 -2057 ((-112))) (-15 -2402 ((-112))) (-15 -4240 ((-112))) (-15 -1459 ((-112))) (-15 -2158 ((-112))) (-15 -3846 ((-112))) (-15 -4369 ((-112))) (-15 -3795 ((-112))) (-15 -4029 ((-112))) (-15 -2974 ((-112))) (-15 -3692 ((-112))) (-15 -2468 ((-112))) (-15 -1465 ((-112))) (-15 -2512 ((-112))) (-15 -2765 ((-1171 |#2|) |#1|)) (-15 -3548 ((-1171 |#2|) |#1|)) (-15 -2411 ((-689 |#2|) (-1264 |#1|))) (-15 -2734 ((-689 |#2|) (-1264 |#1|))) (-15 -2597 (|#2| (-1264 |#1|))) (-15 -2990 (|#2| (-1264 |#1|))) (-15 -1563 (|#1| (-1264 |#2|) (-1264 |#1|))) (-15 -3350 ((-689 |#2|) (-1264 |#1|) (-1264 |#1|))) (-15 -3350 ((-1264 |#2|) |#1| (-1264 |#1|))) (-15 -4039 (|#2| |#1|)) (-15 -2241 (|#2| |#1|)) (-15 -4373 (|#2| |#1|)) (-15 -2366 (|#2| |#1|)) (-15 -2800 ((-689 |#2|) |#1| (-1264 |#1|))) (-15 -3769 ((-689 |#2|) |#1| (-1264 |#1|))) (-15 -2336 ((-1264 (-689 |#2|)) (-1264 |#1|)))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-2896 (((-3 $ "failed")) 42 (|has| |#1| (-558)))) (-3967 (((-3 $ "failed") $ $) 20)) (-2336 (((-1264 (-689 |#1|)) (-1264 $)) 83)) (-3717 (((-1264 $)) 86)) (-2463 (($) 18 T CONST)) (-3574 (((-3 (-2 (|:| |particular| $) (|:| -2875 (-644 $))) "failed")) 45 (|has| |#1| (-558)))) (-1469 (((-3 $ "failed")) 43 (|has| |#1| (-558)))) (-2411 (((-689 |#1|) (-1264 $)) 70)) (-4373 ((|#1| $) 79)) (-2800 (((-689 |#1|) $ (-1264 $)) 81)) (-4392 (((-3 $ "failed") $) 50 (|has| |#1| (-558)))) (-1856 (($ $ (-921)) 31)) (-4039 ((|#1| $) 77)) (-3648 (((-1171 |#1|) $) 47 (|has| |#1| (-558)))) (-2597 ((|#1| (-1264 $)) 72)) (-2765 (((-1171 |#1|) $) 68)) (-4029 (((-112)) 62)) (-1563 (($ (-1264 |#1|) (-1264 $)) 74)) (-3245 (((-3 $ "failed") $) 52 (|has| |#1| (-558)))) (-2755 (((-921)) 85)) (-3793 (((-112)) 59)) (-4090 (($ $ (-921)) 38)) (-4240 (((-112)) 55)) (-2057 (((-112)) 53)) (-2158 (((-112)) 57)) (-1476 (((-3 (-2 (|:| |particular| $) (|:| -2875 (-644 $))) "failed")) 46 (|has| |#1| (-558)))) (-1731 (((-3 $ "failed")) 44 (|has| |#1| (-558)))) (-2734 (((-689 |#1|) (-1264 $)) 71)) (-2366 ((|#1| $) 80)) (-3769 (((-689 |#1|) $ (-1264 $)) 82)) (-2851 (((-3 $ "failed") $) 51 (|has| |#1| (-558)))) (-3270 (($ $ (-921)) 32)) (-2241 ((|#1| $) 78)) (-1910 (((-1171 |#1|) $) 48 (|has| |#1| (-558)))) (-2990 ((|#1| (-1264 $)) 73)) (-3548 (((-1171 |#1|) $) 69)) (-2974 (((-112)) 63)) (-3380 (((-1157) $) 10)) (-2402 (((-112)) 54)) (-1459 (((-112)) 56)) (-3846 (((-112)) 58)) (-4072 (((-1119) $) 11)) (-3795 (((-112)) 61)) (-3350 (((-1264 |#1|) $ (-1264 $)) 76) (((-689 |#1|) (-1264 $) (-1264 $)) 75)) (-2861 (((-644 (-952 |#1|)) (-1264 $)) 84)) (-2527 (($ $ $) 28)) (-2512 (((-112)) 67)) (-3152 (((-862) $) 12)) (-3044 (((-112) $ $) 9)) (-2243 (((-644 (-1264 |#1|))) 49 (|has| |#1| (-558)))) (-3876 (($ $ $ $) 29)) (-2468 (((-112)) 65)) (-1471 (($ $ $) 27)) (-1465 (((-112)) 66)) (-3692 (((-112)) 64)) (-4369 (((-112)) 60)) (-4356 (($) 19 T CONST)) (-2914 (((-112) $ $) 6)) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 33)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) (((-369 |#1|) (-140) (-172)) (T -369)) -((-2092 (*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1264 *1)) (-4 *1 (-369 *3)))) (-4313 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-921)))) (-3453 (*1 *2 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-644 (-952 *4))))) (-4085 (*1 *2 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-1264 (-689 *4))))) (-3131 (*1 *2 *1 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-689 *4)))) (-4298 (*1 *2 *1 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-689 *4)))) (-3307 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-2468 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-3473 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-1670 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-2154 (*1 *2 *1 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-1264 *4)))) (-2154 (*1 *2 *3 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-689 *4)))) (-2392 (*1 *1 *2 *3) (-12 (-5 *2 (-1264 *4)) (-5 *3 (-1264 *1)) (-4 *4 (-172)) (-4 *1 (-369 *4)))) (-1950 (*1 *2 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-2072 (*1 *2 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-1371 (*1 *2 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-689 *4)))) (-3058 (*1 *2 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-689 *4)))) (-1974 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-1171 *3)))) (-2410 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-1171 *3)))) (-2638 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2653 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3232 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1843 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3390 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3036 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1976 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1938 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2658 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2829 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2763 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3326 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1652 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3170 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1543 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1878 (*1 *1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-558)))) (-2305 (*1 *1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-558)))) (-2715 (*1 *1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-558)))) (-3023 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-558)) (-5 *2 (-644 (-1264 *3))))) (-4108 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-558)) (-5 *2 (-1171 *3)))) (-3757 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-558)) (-5 *2 (-1171 *3)))) (-2906 (*1 *2) (|partial| -12 (-4 *3 (-558)) (-4 *3 (-172)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2365 (-644 *1)))) (-4 *1 (-369 *3)))) (-4119 (*1 *2) (|partial| -12 (-4 *3 (-558)) (-4 *3 (-172)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2365 (-644 *1)))) (-4 *1 (-369 *3)))) (-1710 (*1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-558)) (-4 *2 (-172)))) (-1446 (*1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-558)) (-4 *2 (-172)))) (-3002 (*1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-558)) (-4 *2 (-172))))) -(-13 (-744 |t#1|) (-10 -8 (-15 -2092 ((-1264 $))) (-15 -4313 ((-921))) (-15 -3453 ((-644 (-952 |t#1|)) (-1264 $))) (-15 -4085 ((-1264 (-689 |t#1|)) (-1264 $))) (-15 -3131 ((-689 |t#1|) $ (-1264 $))) (-15 -4298 ((-689 |t#1|) $ (-1264 $))) (-15 -3307 (|t#1| $)) (-15 -2468 (|t#1| $)) (-15 -3473 (|t#1| $)) (-15 -1670 (|t#1| $)) (-15 -2154 ((-1264 |t#1|) $ (-1264 $))) (-15 -2154 ((-689 |t#1|) (-1264 $) (-1264 $))) (-15 -2392 ($ (-1264 |t#1|) (-1264 $))) (-15 -1950 (|t#1| (-1264 $))) (-15 -2072 (|t#1| (-1264 $))) (-15 -1371 ((-689 |t#1|) (-1264 $))) (-15 -3058 ((-689 |t#1|) (-1264 $))) (-15 -1974 ((-1171 |t#1|) $)) (-15 -2410 ((-1171 |t#1|) $)) (-15 -2638 ((-112))) (-15 -2653 ((-112))) (-15 -3232 ((-112))) (-15 -1843 ((-112))) (-15 -3390 ((-112))) (-15 -3036 ((-112))) (-15 -1976 ((-112))) (-15 -1938 ((-112))) (-15 -2658 ((-112))) (-15 -2829 ((-112))) (-15 -2763 ((-112))) (-15 -3326 ((-112))) (-15 -1652 ((-112))) (-15 -3170 ((-112))) (-15 -1543 ((-112))) (IF (|has| |t#1| (-558)) (PROGN (-15 -1878 ((-3 $ "failed") $)) (-15 -2305 ((-3 $ "failed") $)) (-15 -2715 ((-3 $ "failed") $)) (-15 -3023 ((-644 (-1264 |t#1|)))) (-15 -4108 ((-1171 |t#1|) $)) (-15 -3757 ((-1171 |t#1|) $)) (-15 -2906 ((-3 (-2 (|:| |particular| $) (|:| -2365 (-644 $))) "failed"))) (-15 -4119 ((-3 (-2 (|:| |particular| $) (|:| -2365 (-644 $))) "failed"))) (-15 -1710 ((-3 $ "failed"))) (-15 -1446 ((-3 $ "failed"))) (-15 -3002 ((-3 $ "failed"))) (-6 -4411)) |%noBranch|))) +((-3717 (*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1264 *1)) (-4 *1 (-369 *3)))) (-2755 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-921)))) (-2861 (*1 *2 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-644 (-952 *4))))) (-2336 (*1 *2 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-1264 (-689 *4))))) (-3769 (*1 *2 *1 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-689 *4)))) (-2800 (*1 *2 *1 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-689 *4)))) (-2366 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-4373 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-2241 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-4039 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-3350 (*1 *2 *1 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-1264 *4)))) (-3350 (*1 *2 *3 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-689 *4)))) (-1563 (*1 *1 *2 *3) (-12 (-5 *2 (-1264 *4)) (-5 *3 (-1264 *1)) (-4 *4 (-172)) (-4 *1 (-369 *4)))) (-2990 (*1 *2 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-2597 (*1 *2 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-2734 (*1 *2 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-689 *4)))) (-2411 (*1 *2 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-689 *4)))) (-3548 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-1171 *3)))) (-2765 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-1171 *3)))) (-2512 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1465 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2468 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3692 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2974 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-4029 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3795 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-4369 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3793 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3846 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2158 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1459 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-4240 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2402 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2057 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3245 (*1 *1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-558)))) (-2851 (*1 *1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-558)))) (-4392 (*1 *1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-558)))) (-2243 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-558)) (-5 *2 (-644 (-1264 *3))))) (-1910 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-558)) (-5 *2 (-1171 *3)))) (-3648 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-558)) (-5 *2 (-1171 *3)))) (-1476 (*1 *2) (|partial| -12 (-4 *3 (-558)) (-4 *3 (-172)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2875 (-644 *1)))) (-4 *1 (-369 *3)))) (-3574 (*1 *2) (|partial| -12 (-4 *3 (-558)) (-4 *3 (-172)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2875 (-644 *1)))) (-4 *1 (-369 *3)))) (-1731 (*1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-558)) (-4 *2 (-172)))) (-1469 (*1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-558)) (-4 *2 (-172)))) (-2896 (*1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-558)) (-4 *2 (-172))))) +(-13 (-744 |t#1|) (-10 -8 (-15 -3717 ((-1264 $))) (-15 -2755 ((-921))) (-15 -2861 ((-644 (-952 |t#1|)) (-1264 $))) (-15 -2336 ((-1264 (-689 |t#1|)) (-1264 $))) (-15 -3769 ((-689 |t#1|) $ (-1264 $))) (-15 -2800 ((-689 |t#1|) $ (-1264 $))) (-15 -2366 (|t#1| $)) (-15 -4373 (|t#1| $)) (-15 -2241 (|t#1| $)) (-15 -4039 (|t#1| $)) (-15 -3350 ((-1264 |t#1|) $ (-1264 $))) (-15 -3350 ((-689 |t#1|) (-1264 $) (-1264 $))) (-15 -1563 ($ (-1264 |t#1|) (-1264 $))) (-15 -2990 (|t#1| (-1264 $))) (-15 -2597 (|t#1| (-1264 $))) (-15 -2734 ((-689 |t#1|) (-1264 $))) (-15 -2411 ((-689 |t#1|) (-1264 $))) (-15 -3548 ((-1171 |t#1|) $)) (-15 -2765 ((-1171 |t#1|) $)) (-15 -2512 ((-112))) (-15 -1465 ((-112))) (-15 -2468 ((-112))) (-15 -3692 ((-112))) (-15 -2974 ((-112))) (-15 -4029 ((-112))) (-15 -3795 ((-112))) (-15 -4369 ((-112))) (-15 -3793 ((-112))) (-15 -3846 ((-112))) (-15 -2158 ((-112))) (-15 -1459 ((-112))) (-15 -4240 ((-112))) (-15 -2402 ((-112))) (-15 -2057 ((-112))) (IF (|has| |t#1| (-558)) (PROGN (-15 -3245 ((-3 $ "failed") $)) (-15 -2851 ((-3 $ "failed") $)) (-15 -4392 ((-3 $ "failed") $)) (-15 -2243 ((-644 (-1264 |t#1|)))) (-15 -1910 ((-1171 |t#1|) $)) (-15 -3648 ((-1171 |t#1|) $)) (-15 -1476 ((-3 (-2 (|:| |particular| $) (|:| -2875 (-644 $))) "failed"))) (-15 -3574 ((-3 (-2 (|:| |particular| $) (|:| -2875 (-644 $))) "failed"))) (-15 -1731 ((-3 $ "failed"))) (-15 -1469 ((-3 $ "failed"))) (-15 -2896 ((-3 $ "failed"))) (-6 -4411)) |%noBranch|))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-648 |#1|) . T) ((-640 |#1|) . T) ((-717 |#1|) . T) ((-720) . T) ((-744 |#1|) . T) ((-761) . T) ((-1051 |#1|) . T) ((-1056 |#1|) . T) ((-1099) . T)) -((-3007 (((-112) $ $) 7)) (-1970 (((-771)) 17)) (-1552 (($) 14)) (-3681 (((-921) $) 15)) (-4117 (((-1157) $) 10)) (-2178 (($ (-921)) 16)) (-4035 (((-1119) $) 11)) (-3783 (((-862) $) 12)) (-3117 (((-112) $ $) 9)) (-2947 (((-112) $ $) 6))) +((-2988 (((-112) $ $) 7)) (-3870 (((-771)) 17)) (-2715 (($) 14)) (-1866 (((-921) $) 15)) (-3380 (((-1157) $) 10)) (-2835 (($ (-921)) 16)) (-4072 (((-1119) $) 11)) (-3152 (((-862) $) 12)) (-3044 (((-112) $ $) 9)) (-2914 (((-112) $ $) 6))) (((-370) (-140)) (T -370)) -((-1970 (*1 *2) (-12 (-4 *1 (-370)) (-5 *2 (-771)))) (-2178 (*1 *1 *2) (-12 (-5 *2 (-921)) (-4 *1 (-370)))) (-3681 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-921)))) (-1552 (*1 *1) (-4 *1 (-370)))) -(-13 (-1099) (-10 -8 (-15 -1970 ((-771))) (-15 -2178 ($ (-921))) (-15 -3681 ((-921) $)) (-15 -1552 ($)))) +((-3870 (*1 *2) (-12 (-4 *1 (-370)) (-5 *2 (-771)))) (-2835 (*1 *1 *2) (-12 (-5 *2 (-921)) (-4 *1 (-370)))) (-1866 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-921)))) (-2715 (*1 *1) (-4 *1 (-370)))) +(-13 (-1099) (-10 -8 (-15 -3870 ((-771))) (-15 -2835 ($ (-921))) (-15 -1866 ((-921) $)) (-15 -2715 ($)))) (((-102) . T) ((-613 (-862)) . T) ((-1099) . T)) -((-1872 (((-689 |#2|) (-1264 $)) 47)) (-2392 (($ (-1264 |#2|) (-1264 $)) 41)) (-4360 (((-689 |#2|) $ (-1264 $)) 49)) (-3652 ((|#2| (-1264 $)) 13)) (-2154 (((-1264 |#2|) $ (-1264 $)) NIL) (((-689 |#2|) (-1264 $) (-1264 $)) 27))) -(((-371 |#1| |#2| |#3|) (-10 -8 (-15 -1872 ((-689 |#2|) (-1264 |#1|))) (-15 -3652 (|#2| (-1264 |#1|))) (-15 -2392 (|#1| (-1264 |#2|) (-1264 |#1|))) (-15 -2154 ((-689 |#2|) (-1264 |#1|) (-1264 |#1|))) (-15 -2154 ((-1264 |#2|) |#1| (-1264 |#1|))) (-15 -4360 ((-689 |#2|) |#1| (-1264 |#1|)))) (-372 |#2| |#3|) (-172) (-1240 |#2|)) (T -371)) +((-3899 (((-689 |#2|) (-1264 $)) 47)) (-1563 (($ (-1264 |#2|) (-1264 $)) 41)) (-3578 (((-689 |#2|) $ (-1264 $)) 49)) (-4068 ((|#2| (-1264 $)) 13)) (-3350 (((-1264 |#2|) $ (-1264 $)) NIL) (((-689 |#2|) (-1264 $) (-1264 $)) 27))) +(((-371 |#1| |#2| |#3|) (-10 -8 (-15 -3899 ((-689 |#2|) (-1264 |#1|))) (-15 -4068 (|#2| (-1264 |#1|))) (-15 -1563 (|#1| (-1264 |#2|) (-1264 |#1|))) (-15 -3350 ((-689 |#2|) (-1264 |#1|) (-1264 |#1|))) (-15 -3350 ((-1264 |#2|) |#1| (-1264 |#1|))) (-15 -3578 ((-689 |#2|) |#1| (-1264 |#1|)))) (-372 |#2| |#3|) (-172) (-1240 |#2|)) (T -371)) NIL -(-10 -8 (-15 -1872 ((-689 |#2|) (-1264 |#1|))) (-15 -3652 (|#2| (-1264 |#1|))) (-15 -2392 (|#1| (-1264 |#2|) (-1264 |#1|))) (-15 -2154 ((-689 |#2|) (-1264 |#1|) (-1264 |#1|))) (-15 -2154 ((-1264 |#2|) |#1| (-1264 |#1|))) (-15 -4360 ((-689 |#2|) |#1| (-1264 |#1|)))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-1872 (((-689 |#1|) (-1264 $)) 53)) (-3837 ((|#1| $) 59)) (-4175 (((-3 $ "failed") $ $) 20)) (-3012 (($) 18 T CONST)) (-2392 (($ (-1264 |#1|) (-1264 $)) 55)) (-4360 (((-689 |#1|) $ (-1264 $)) 60)) (-1878 (((-3 $ "failed") $) 37)) (-4313 (((-921)) 61)) (-3934 (((-112) $) 35)) (-1577 ((|#1| $) 58)) (-1627 ((|#2| $) 51 (|has| |#1| (-365)))) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3652 ((|#1| (-1264 $)) 54)) (-2154 (((-1264 |#1|) $ (-1264 $)) 57) (((-689 |#1|) (-1264 $) (-1264 $)) 56)) (-3783 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 44)) (-3144 (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-1820 ((|#2| $) 52)) (-2107 (((-771)) 32 T CONST)) (-3117 (((-112) $ $) 9)) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-2947 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +(-10 -8 (-15 -3899 ((-689 |#2|) (-1264 |#1|))) (-15 -4068 (|#2| (-1264 |#1|))) (-15 -1563 (|#1| (-1264 |#2|) (-1264 |#1|))) (-15 -3350 ((-689 |#2|) (-1264 |#1|) (-1264 |#1|))) (-15 -3350 ((-1264 |#2|) |#1| (-1264 |#1|))) (-15 -3578 ((-689 |#2|) |#1| (-1264 |#1|)))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-3899 (((-689 |#1|) (-1264 $)) 53)) (-3833 ((|#1| $) 59)) (-3967 (((-3 $ "failed") $ $) 20)) (-2463 (($) 18 T CONST)) (-1563 (($ (-1264 |#1|) (-1264 $)) 55)) (-3578 (((-689 |#1|) $ (-1264 $)) 60)) (-3245 (((-3 $ "failed") $) 37)) (-2755 (((-921)) 61)) (-2389 (((-112) $) 35)) (-2064 ((|#1| $) 58)) (-3468 ((|#2| $) 51 (|has| |#1| (-365)))) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-4068 ((|#1| (-1264 $)) 54)) (-3350 (((-1264 |#1|) $ (-1264 $)) 57) (((-689 |#1|) (-1264 $) (-1264 $)) 56)) (-3152 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 44)) (-2633 (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-2318 ((|#2| $) 52)) (-2593 (((-771)) 32 T CONST)) (-3044 (((-112) $ $) 9)) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-2914 (((-112) $ $) 6)) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) (((-372 |#1| |#2|) (-140) (-172) (-1240 |t#1|)) (T -372)) -((-4313 (*1 *2) (-12 (-4 *1 (-372 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1240 *3)) (-5 *2 (-921)))) (-4360 (*1 *2 *1 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1240 *4)) (-5 *2 (-689 *4)))) (-3837 (*1 *2 *1) (-12 (-4 *1 (-372 *2 *3)) (-4 *3 (-1240 *2)) (-4 *2 (-172)))) (-1577 (*1 *2 *1) (-12 (-4 *1 (-372 *2 *3)) (-4 *3 (-1240 *2)) (-4 *2 (-172)))) (-2154 (*1 *2 *1 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1240 *4)) (-5 *2 (-1264 *4)))) (-2154 (*1 *2 *3 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1240 *4)) (-5 *2 (-689 *4)))) (-2392 (*1 *1 *2 *3) (-12 (-5 *2 (-1264 *4)) (-5 *3 (-1264 *1)) (-4 *4 (-172)) (-4 *1 (-372 *4 *5)) (-4 *5 (-1240 *4)))) (-3652 (*1 *2 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-372 *2 *4)) (-4 *4 (-1240 *2)) (-4 *2 (-172)))) (-1872 (*1 *2 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1240 *4)) (-5 *2 (-689 *4)))) (-1820 (*1 *2 *1) (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1240 *3)))) (-1627 (*1 *2 *1) (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-172)) (-4 *3 (-365)) (-4 *2 (-1240 *3))))) -(-13 (-38 |t#1|) (-10 -8 (-15 -4313 ((-921))) (-15 -4360 ((-689 |t#1|) $ (-1264 $))) (-15 -3837 (|t#1| $)) (-15 -1577 (|t#1| $)) (-15 -2154 ((-1264 |t#1|) $ (-1264 $))) (-15 -2154 ((-689 |t#1|) (-1264 $) (-1264 $))) (-15 -2392 ($ (-1264 |t#1|) (-1264 $))) (-15 -3652 (|t#1| (-1264 $))) (-15 -1872 ((-689 |t#1|) (-1264 $))) (-15 -1820 (|t#2| $)) (IF (|has| |t#1| (-365)) (-15 -1627 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|))) +((-2755 (*1 *2) (-12 (-4 *1 (-372 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1240 *3)) (-5 *2 (-921)))) (-3578 (*1 *2 *1 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1240 *4)) (-5 *2 (-689 *4)))) (-3833 (*1 *2 *1) (-12 (-4 *1 (-372 *2 *3)) (-4 *3 (-1240 *2)) (-4 *2 (-172)))) (-2064 (*1 *2 *1) (-12 (-4 *1 (-372 *2 *3)) (-4 *3 (-1240 *2)) (-4 *2 (-172)))) (-3350 (*1 *2 *1 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1240 *4)) (-5 *2 (-1264 *4)))) (-3350 (*1 *2 *3 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1240 *4)) (-5 *2 (-689 *4)))) (-1563 (*1 *1 *2 *3) (-12 (-5 *2 (-1264 *4)) (-5 *3 (-1264 *1)) (-4 *4 (-172)) (-4 *1 (-372 *4 *5)) (-4 *5 (-1240 *4)))) (-4068 (*1 *2 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-372 *2 *4)) (-4 *4 (-1240 *2)) (-4 *2 (-172)))) (-3899 (*1 *2 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1240 *4)) (-5 *2 (-689 *4)))) (-2318 (*1 *2 *1) (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1240 *3)))) (-3468 (*1 *2 *1) (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-172)) (-4 *3 (-365)) (-4 *2 (-1240 *3))))) +(-13 (-38 |t#1|) (-10 -8 (-15 -2755 ((-921))) (-15 -3578 ((-689 |t#1|) $ (-1264 $))) (-15 -3833 (|t#1| $)) (-15 -2064 (|t#1| $)) (-15 -3350 ((-1264 |t#1|) $ (-1264 $))) (-15 -3350 ((-689 |t#1|) (-1264 $) (-1264 $))) (-15 -1563 ($ (-1264 |t#1|) (-1264 $))) (-15 -4068 (|t#1| (-1264 $))) (-15 -3899 ((-689 |t#1|) (-1264 $))) (-15 -2318 (|t#2| $)) (IF (|has| |t#1| (-365)) (-15 -3468 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 (-566)) . T) ((-616 |#1|) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-640 |#1|) . T) ((-717 |#1|) . T) ((-726) . T) ((-1051 |#1|) . T) ((-1056 |#1|) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) -((-3795 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25)) (-1676 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17)) (-1301 ((|#4| (-1 |#3| |#1|) |#2|) 23))) -(((-373 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1301 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1676 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3795 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1214) (-375 |#1|) (-1214) (-375 |#3|)) (T -373)) -((-3795 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1214)) (-4 *5 (-1214)) (-4 *2 (-375 *5)) (-5 *1 (-373 *6 *4 *5 *2)) (-4 *4 (-375 *6)))) (-1676 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1214)) (-4 *2 (-1214)) (-5 *1 (-373 *5 *4 *2 *6)) (-4 *4 (-375 *5)) (-4 *6 (-375 *2)))) (-1301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1214)) (-4 *6 (-1214)) (-4 *2 (-375 *6)) (-5 *1 (-373 *5 *4 *6 *2)) (-4 *4 (-375 *5))))) -(-10 -7 (-15 -1301 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1676 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3795 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-2644 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-1944 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-1510 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-1377 (($ $) 25)) (-4000 (((-566) (-1 (-112) |#2|) $) NIL) (((-566) |#2| $) 11) (((-566) |#2| $ (-566)) NIL)) (-3298 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20))) -(((-374 |#1| |#2|) (-10 -8 (-15 -1944 (|#1| |#1|)) (-15 -1944 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2644 ((-112) |#1|)) (-15 -1510 (|#1| |#1|)) (-15 -3298 (|#1| |#1| |#1|)) (-15 -4000 ((-566) |#2| |#1| (-566))) (-15 -4000 ((-566) |#2| |#1|)) (-15 -4000 ((-566) (-1 (-112) |#2|) |#1|)) (-15 -2644 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1510 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1377 (|#1| |#1|)) (-15 -3298 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-375 |#2|) (-1214)) (T -374)) -NIL -(-10 -8 (-15 -1944 (|#1| |#1|)) (-15 -1944 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2644 ((-112) |#1|)) (-15 -1510 (|#1| |#1|)) (-15 -3298 (|#1| |#1| |#1|)) (-15 -4000 ((-566) |#2| |#1| (-566))) (-15 -4000 ((-566) |#2| |#1|)) (-15 -4000 ((-566) (-1 (-112) |#2|) |#1|)) (-15 -2644 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1510 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1377 (|#1| |#1|)) (-15 -3298 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) -((-3007 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-3734 (((-1269) $ (-566) (-566)) 41 (|has| $ (-6 -4415)))) (-2644 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-850)))) (-1944 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4415))) (($ $) 89 (-12 (|has| |#1| (-850)) (|has| $ (-6 -4415))))) (-1510 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-850)))) (-2256 (((-112) $ (-771)) 8)) (-3923 ((|#1| $ (-566) |#1|) 53 (|has| $ (-6 -4415))) ((|#1| $ (-1231 (-566)) |#1|) 59 (|has| $ (-6 -4415)))) (-2701 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4414)))) (-3012 (($) 7 T CONST)) (-3413 (($ $) 91 (|has| $ (-6 -4415)))) (-1377 (($ $) 101)) (-2031 (($ $) 79 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2665 (($ |#1| $) 78 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4414)))) (-1676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4414)))) (-2920 ((|#1| $ (-566) |#1|) 54 (|has| $ (-6 -4415)))) (-2855 ((|#1| $ (-566)) 52)) (-4000 (((-566) (-1 (-112) |#1|) $) 98) (((-566) |#1| $) 97 (|has| |#1| (-1099))) (((-566) |#1| $ (-566)) 96 (|has| |#1| (-1099)))) (-3979 (((-644 |#1|) $) 31 (|has| $ (-6 -4414)))) (-4265 (($ (-771) |#1|) 70)) (-2404 (((-112) $ (-771)) 9)) (-3854 (((-566) $) 44 (|has| (-566) (-850)))) (-2097 (($ $ $) 88 (|has| |#1| (-850)))) (-3298 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-850)))) (-2329 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2712 (((-566) $) 45 (|has| (-566) (-850)))) (-3962 (($ $ $) 87 (|has| |#1| (-850)))) (-2908 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2603 (((-112) $ (-771)) 10)) (-4117 (((-1157) $) 22 (|has| |#1| (-1099)))) (-4276 (($ |#1| $ (-566)) 61) (($ $ $ (-566)) 60)) (-4074 (((-644 (-566)) $) 47)) (-3792 (((-112) (-566) $) 48)) (-4035 (((-1119) $) 21 (|has| |#1| (-1099)))) (-1998 ((|#1| $) 43 (|has| (-566) (-850)))) (-2006 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-4030 (($ $ |#1|) 42 (|has| $ (-6 -4415)))) (-2692 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) 14)) (-4156 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2993 (((-644 |#1|) $) 49)) (-3467 (((-112) $) 11)) (-1494 (($) 12)) (-4390 ((|#1| $ (-566) |#1|) 51) ((|#1| $ (-566)) 50) (($ $ (-1231 (-566))) 64)) (-2187 (($ $ (-566)) 63) (($ $ (-1231 (-566))) 62)) (-4045 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-1297 (($ $ $ (-566)) 92 (|has| $ (-6 -4415)))) (-3940 (($ $) 13)) (-1348 (((-538) $) 80 (|has| |#1| (-614 (-538))))) (-3796 (($ (-644 |#1|)) 71)) (-3721 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-644 $)) 66)) (-3783 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-3117 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-1894 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-3009 (((-112) $ $) 85 (|has| |#1| (-850)))) (-2984 (((-112) $ $) 84 (|has| |#1| (-850)))) (-2947 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-2995 (((-112) $ $) 86 (|has| |#1| (-850)))) (-2969 (((-112) $ $) 83 (|has| |#1| (-850)))) (-3018 (((-771) $) 6 (|has| $ (-6 -4414))))) +((-1960 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25)) (-2873 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17)) (-2319 ((|#4| (-1 |#3| |#1|) |#2|) 23))) +(((-373 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2319 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2873 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1960 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1214) (-375 |#1|) (-1214) (-375 |#3|)) (T -373)) +((-1960 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1214)) (-4 *5 (-1214)) (-4 *2 (-375 *5)) (-5 *1 (-373 *6 *4 *5 *2)) (-4 *4 (-375 *6)))) (-2873 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1214)) (-4 *2 (-1214)) (-5 *1 (-373 *5 *4 *2 *6)) (-4 *4 (-375 *5)) (-4 *6 (-375 *2)))) (-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1214)) (-4 *6 (-1214)) (-4 *2 (-375 *6)) (-5 *1 (-373 *5 *4 *6 *2)) (-4 *4 (-375 *5))))) +(-10 -7 (-15 -2319 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2873 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1960 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-3054 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-3628 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-2671 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-3683 (($ $) 25)) (-1569 (((-566) (-1 (-112) |#2|) $) NIL) (((-566) |#2| $) 11) (((-566) |#2| $ (-566)) NIL)) (-2696 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20))) +(((-374 |#1| |#2|) (-10 -8 (-15 -3628 (|#1| |#1|)) (-15 -3628 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3054 ((-112) |#1|)) (-15 -2671 (|#1| |#1|)) (-15 -2696 (|#1| |#1| |#1|)) (-15 -1569 ((-566) |#2| |#1| (-566))) (-15 -1569 ((-566) |#2| |#1|)) (-15 -1569 ((-566) (-1 (-112) |#2|) |#1|)) (-15 -3054 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2671 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3683 (|#1| |#1|)) (-15 -2696 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-375 |#2|) (-1214)) (T -374)) +NIL +(-10 -8 (-15 -3628 (|#1| |#1|)) (-15 -3628 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3054 ((-112) |#1|)) (-15 -2671 (|#1| |#1|)) (-15 -2696 (|#1| |#1| |#1|)) (-15 -1569 ((-566) |#2| |#1| (-566))) (-15 -1569 ((-566) |#2| |#1|)) (-15 -1569 ((-566) (-1 (-112) |#2|) |#1|)) (-15 -3054 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2671 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3683 (|#1| |#1|)) (-15 -2696 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) +((-2988 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-1944 (((-1269) $ (-566) (-566)) 41 (|has| $ (-6 -4415)))) (-3054 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-850)))) (-3628 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4415))) (($ $) 89 (-12 (|has| |#1| (-850)) (|has| $ (-6 -4415))))) (-2671 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-850)))) (-1504 (((-112) $ (-771)) 8)) (-1456 ((|#1| $ (-566) |#1|) 53 (|has| $ (-6 -4415))) ((|#1| $ (-1231 (-566)) |#1|) 59 (|has| $ (-6 -4415)))) (-3678 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4414)))) (-2463 (($) 7 T CONST)) (-3166 (($ $) 91 (|has| $ (-6 -4415)))) (-3683 (($ $) 101)) (-3942 (($ $) 79 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2622 (($ |#1| $) 78 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4414)))) (-2873 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4414)))) (-3897 ((|#1| $ (-566) |#1|) 54 (|has| $ (-6 -4415)))) (-3829 ((|#1| $ (-566)) 52)) (-1569 (((-566) (-1 (-112) |#1|) $) 98) (((-566) |#1| $) 97 (|has| |#1| (-1099))) (((-566) |#1| $ (-566)) 96 (|has| |#1| (-1099)))) (-1683 (((-644 |#1|) $) 31 (|has| $ (-6 -4414)))) (-1860 (($ (-771) |#1|) 70)) (-3456 (((-112) $ (-771)) 9)) (-2296 (((-566) $) 44 (|has| (-566) (-850)))) (-1478 (($ $ $) 88 (|has| |#1| (-850)))) (-2696 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-850)))) (-3491 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-4050 (((-566) $) 45 (|has| (-566) (-850)))) (-2599 (($ $ $) 87 (|has| |#1| (-850)))) (-3885 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3267 (((-112) $ (-771)) 10)) (-3380 (((-1157) $) 22 (|has| |#1| (-1099)))) (-1859 (($ |#1| $ (-566)) 61) (($ $ $ (-566)) 60)) (-3725 (((-644 (-566)) $) 47)) (-1644 (((-112) (-566) $) 48)) (-4072 (((-1119) $) 21 (|has| |#1| (-1099)))) (-3908 ((|#1| $) 43 (|has| (-566) (-850)))) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-3787 (($ $ |#1|) 42 (|has| $ (-6 -4415)))) (-2823 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) 14)) (-2847 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3486 (((-644 |#1|) $) 49)) (-2872 (((-112) $) 11)) (-3493 (($) 12)) (-1309 ((|#1| $ (-566) |#1|) 51) ((|#1| $ (-566)) 50) (($ $ (-1231 (-566))) 64)) (-2166 (($ $ (-566)) 63) (($ $ (-1231 (-566))) 62)) (-4083 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2661 (($ $ $ (-566)) 92 (|has| $ (-6 -4415)))) (-1480 (($ $) 13)) (-2376 (((-538) $) 80 (|has| |#1| (-614 (-538))))) (-1340 (($ (-644 |#1|)) 71)) (-4386 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-644 $)) 66)) (-3152 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-3044 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-2210 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-2968 (((-112) $ $) 85 (|has| |#1| (-850)))) (-2946 (((-112) $ $) 84 (|has| |#1| (-850)))) (-2914 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-2956 (((-112) $ $) 86 (|has| |#1| (-850)))) (-2935 (((-112) $ $) 83 (|has| |#1| (-850)))) (-3000 (((-771) $) 6 (|has| $ (-6 -4414))))) (((-375 |#1|) (-140) (-1214)) (T -375)) -((-3298 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-375 *3)) (-4 *3 (-1214)))) (-1377 (*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1214)))) (-1510 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-375 *3)) (-4 *3 (-1214)))) (-2644 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-375 *4)) (-4 *4 (-1214)) (-5 *2 (-112)))) (-4000 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-375 *4)) (-4 *4 (-1214)) (-5 *2 (-566)))) (-4000 (*1 *2 *3 *1) (-12 (-4 *1 (-375 *3)) (-4 *3 (-1214)) (-4 *3 (-1099)) (-5 *2 (-566)))) (-4000 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-375 *3)) (-4 *3 (-1214)) (-4 *3 (-1099)))) (-3298 (*1 *1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1214)) (-4 *2 (-850)))) (-1510 (*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1214)) (-4 *2 (-850)))) (-2644 (*1 *2 *1) (-12 (-4 *1 (-375 *3)) (-4 *3 (-1214)) (-4 *3 (-850)) (-5 *2 (-112)))) (-1297 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-566)) (|has| *1 (-6 -4415)) (-4 *1 (-375 *3)) (-4 *3 (-1214)))) (-3413 (*1 *1 *1) (-12 (|has| *1 (-6 -4415)) (-4 *1 (-375 *2)) (-4 *2 (-1214)))) (-1944 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4415)) (-4 *1 (-375 *3)) (-4 *3 (-1214)))) (-1944 (*1 *1 *1) (-12 (|has| *1 (-6 -4415)) (-4 *1 (-375 *2)) (-4 *2 (-1214)) (-4 *2 (-850))))) -(-13 (-651 |t#1|) (-10 -8 (-6 -4414) (-15 -3298 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -1377 ($ $)) (-15 -1510 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -2644 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -4000 ((-566) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1099)) (PROGN (-15 -4000 ((-566) |t#1| $)) (-15 -4000 ((-566) |t#1| $ (-566)))) |%noBranch|) (IF (|has| |t#1| (-850)) (PROGN (-6 (-850)) (-15 -3298 ($ $ $)) (-15 -1510 ($ $)) (-15 -2644 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4415)) (PROGN (-15 -1297 ($ $ $ (-566))) (-15 -3413 ($ $)) (-15 -1944 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-850)) (-15 -1944 ($ $)) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-102) -2809 (|has| |#1| (-1099)) (|has| |#1| (-850))) ((-613 (-862)) -2809 (|has| |#1| (-1099)) (|has| |#1| (-850)) (|has| |#1| (-613 (-862)))) ((-151 |#1|) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-287 #0=(-566) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-604 #0# |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-651 |#1|) . T) ((-850) |has| |#1| (-850)) ((-1099) -2809 (|has| |#1| (-1099)) (|has| |#1| (-850))) ((-1214) . T)) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-3095 (((-644 |#1|) $) 37)) (-3684 (($ $ (-771)) 38)) (-4175 (((-3 $ "failed") $ $) 20)) (-3012 (($) 18 T CONST)) (-2374 (((-1288 |#1| |#2|) (-1288 |#1| |#2|) $) 41)) (-3000 (($ $) 39)) (-2274 (((-1288 |#1| |#2|) (-1288 |#1| |#2|) $) 42)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-2055 (($ $ |#1| $) 36) (($ $ (-644 |#1|) (-644 $)) 35)) (-3636 (((-771) $) 43)) (-3796 (($ $ $) 34)) (-3783 (((-862) $) 12) (($ |#1|) 46) (((-1279 |#1| |#2|) $) 45) (((-1288 |#1| |#2|) $) 44)) (-1364 ((|#2| (-1288 |#1| |#2|) $) 47)) (-3117 (((-112) $ $) 9)) (-2479 (($) 19 T CONST)) (-3387 (($ (-672 |#1|)) 40)) (-2947 (((-112) $ $) 6)) (-3065 (($ $ |#2|) 33 (|has| |#2| (-365)))) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ |#2| $) 27) (($ $ |#2|) 31))) +((-2696 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-375 *3)) (-4 *3 (-1214)))) (-3683 (*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1214)))) (-2671 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-375 *3)) (-4 *3 (-1214)))) (-3054 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-375 *4)) (-4 *4 (-1214)) (-5 *2 (-112)))) (-1569 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-375 *4)) (-4 *4 (-1214)) (-5 *2 (-566)))) (-1569 (*1 *2 *3 *1) (-12 (-4 *1 (-375 *3)) (-4 *3 (-1214)) (-4 *3 (-1099)) (-5 *2 (-566)))) (-1569 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-375 *3)) (-4 *3 (-1214)) (-4 *3 (-1099)))) (-2696 (*1 *1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1214)) (-4 *2 (-850)))) (-2671 (*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1214)) (-4 *2 (-850)))) (-3054 (*1 *2 *1) (-12 (-4 *1 (-375 *3)) (-4 *3 (-1214)) (-4 *3 (-850)) (-5 *2 (-112)))) (-2661 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-566)) (|has| *1 (-6 -4415)) (-4 *1 (-375 *3)) (-4 *3 (-1214)))) (-3166 (*1 *1 *1) (-12 (|has| *1 (-6 -4415)) (-4 *1 (-375 *2)) (-4 *2 (-1214)))) (-3628 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4415)) (-4 *1 (-375 *3)) (-4 *3 (-1214)))) (-3628 (*1 *1 *1) (-12 (|has| *1 (-6 -4415)) (-4 *1 (-375 *2)) (-4 *2 (-1214)) (-4 *2 (-850))))) +(-13 (-651 |t#1|) (-10 -8 (-6 -4414) (-15 -2696 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -3683 ($ $)) (-15 -2671 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -3054 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -1569 ((-566) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1099)) (PROGN (-15 -1569 ((-566) |t#1| $)) (-15 -1569 ((-566) |t#1| $ (-566)))) |%noBranch|) (IF (|has| |t#1| (-850)) (PROGN (-6 (-850)) (-15 -2696 ($ $ $)) (-15 -2671 ($ $)) (-15 -3054 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4415)) (PROGN (-15 -2661 ($ $ $ (-566))) (-15 -3166 ($ $)) (-15 -3628 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-850)) (-15 -3628 ($ $)) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-102) -2768 (|has| |#1| (-1099)) (|has| |#1| (-850))) ((-613 (-862)) -2768 (|has| |#1| (-1099)) (|has| |#1| (-850)) (|has| |#1| (-613 (-862)))) ((-151 |#1|) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-287 #0=(-566) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-604 #0# |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-651 |#1|) . T) ((-850) |has| |#1| (-850)) ((-1099) -2768 (|has| |#1| (-1099)) (|has| |#1| (-850))) ((-1214) . T)) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-4111 (((-644 |#1|) $) 37)) (-3990 (($ $ (-771)) 38)) (-3967 (((-3 $ "failed") $ $) 20)) (-2463 (($) 18 T CONST)) (-3356 (((-1288 |#1| |#2|) (-1288 |#1| |#2|) $) 41)) (-2795 (($ $) 39)) (-3722 (((-1288 |#1| |#2|) (-1288 |#1| |#2|) $) 42)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-2023 (($ $ |#1| $) 36) (($ $ (-644 |#1|) (-644 $)) 35)) (-3902 (((-771) $) 43)) (-1340 (($ $ $) 34)) (-3152 (((-862) $) 12) (($ |#1|) 46) (((-1279 |#1| |#2|) $) 45) (((-1288 |#1| |#2|) $) 44)) (-2397 ((|#2| (-1288 |#1| |#2|) $) 47)) (-3044 (((-112) $ $) 9)) (-4356 (($) 19 T CONST)) (-2740 (($ (-672 |#1|)) 40)) (-2914 (((-112) $ $) 6)) (-3025 (($ $ |#2|) 33 (|has| |#2| (-365)))) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ |#2| $) 27) (($ $ |#2|) 31))) (((-376 |#1| |#2|) (-140) (-850) (-172)) (T -376)) -((-1364 (*1 *2 *3 *1) (-12 (-5 *3 (-1288 *4 *2)) (-4 *1 (-376 *4 *2)) (-4 *4 (-850)) (-4 *2 (-172)))) (-3783 (*1 *1 *2) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-850)) (-4 *3 (-172)))) (-3783 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)) (-5 *2 (-1279 *3 *4)))) (-3783 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)) (-5 *2 (-1288 *3 *4)))) (-3636 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)) (-5 *2 (-771)))) (-2274 (*1 *2 *2 *1) (-12 (-5 *2 (-1288 *3 *4)) (-4 *1 (-376 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)))) (-2374 (*1 *2 *2 *1) (-12 (-5 *2 (-1288 *3 *4)) (-4 *1 (-376 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)))) (-3387 (*1 *1 *2) (-12 (-5 *2 (-672 *3)) (-4 *3 (-850)) (-4 *1 (-376 *3 *4)) (-4 *4 (-172)))) (-3000 (*1 *1 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-850)) (-4 *3 (-172)))) (-3684 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-376 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)))) (-3095 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)) (-5 *2 (-644 *3)))) (-2055 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-850)) (-4 *3 (-172)))) (-2055 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 *4)) (-5 *3 (-644 *1)) (-4 *1 (-376 *4 *5)) (-4 *4 (-850)) (-4 *5 (-172))))) -(-13 (-634 |t#2|) (-10 -8 (-15 -1364 (|t#2| (-1288 |t#1| |t#2|) $)) (-15 -3783 ($ |t#1|)) (-15 -3783 ((-1279 |t#1| |t#2|) $)) (-15 -3783 ((-1288 |t#1| |t#2|) $)) (-15 -3636 ((-771) $)) (-15 -2274 ((-1288 |t#1| |t#2|) (-1288 |t#1| |t#2|) $)) (-15 -2374 ((-1288 |t#1| |t#2|) (-1288 |t#1| |t#2|) $)) (-15 -3387 ($ (-672 |t#1|))) (-15 -3000 ($ $)) (-15 -3684 ($ $ (-771))) (-15 -3095 ((-644 |t#1|) $)) (-15 -2055 ($ $ |t#1| $)) (-15 -2055 ($ $ (-644 |t#1|) (-644 $))))) +((-2397 (*1 *2 *3 *1) (-12 (-5 *3 (-1288 *4 *2)) (-4 *1 (-376 *4 *2)) (-4 *4 (-850)) (-4 *2 (-172)))) (-3152 (*1 *1 *2) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-850)) (-4 *3 (-172)))) (-3152 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)) (-5 *2 (-1279 *3 *4)))) (-3152 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)) (-5 *2 (-1288 *3 *4)))) (-3902 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)) (-5 *2 (-771)))) (-3722 (*1 *2 *2 *1) (-12 (-5 *2 (-1288 *3 *4)) (-4 *1 (-376 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)))) (-3356 (*1 *2 *2 *1) (-12 (-5 *2 (-1288 *3 *4)) (-4 *1 (-376 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)))) (-2740 (*1 *1 *2) (-12 (-5 *2 (-672 *3)) (-4 *3 (-850)) (-4 *1 (-376 *3 *4)) (-4 *4 (-172)))) (-2795 (*1 *1 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-850)) (-4 *3 (-172)))) (-3990 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-376 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)))) (-4111 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)) (-5 *2 (-644 *3)))) (-2023 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-850)) (-4 *3 (-172)))) (-2023 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 *4)) (-5 *3 (-644 *1)) (-4 *1 (-376 *4 *5)) (-4 *4 (-850)) (-4 *5 (-172))))) +(-13 (-634 |t#2|) (-10 -8 (-15 -2397 (|t#2| (-1288 |t#1| |t#2|) $)) (-15 -3152 ($ |t#1|)) (-15 -3152 ((-1279 |t#1| |t#2|) $)) (-15 -3152 ((-1288 |t#1| |t#2|) $)) (-15 -3902 ((-771) $)) (-15 -3722 ((-1288 |t#1| |t#2|) (-1288 |t#1| |t#2|) $)) (-15 -3356 ((-1288 |t#1| |t#2|) (-1288 |t#1| |t#2|) $)) (-15 -2740 ($ (-672 |t#1|))) (-15 -2795 ($ $)) (-15 -3990 ($ $ (-771))) (-15 -4111 ((-644 |t#1|) $)) (-15 -2023 ($ $ |t#1| $)) (-15 -2023 ($ $ (-644 |t#1|) (-644 $))))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 |#2|) . T) ((-648 |#2|) . T) ((-634 |#2|) . T) ((-640 |#2|) . T) ((-717 |#2|) . T) ((-1051 |#2|) . T) ((-1056 |#2|) . T) ((-1099) . T)) -((-1457 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 44)) (-3400 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-4200 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 35))) -(((-377 |#1| |#2|) (-10 -7 (-15 -3400 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -4200 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1457 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1214) (-13 (-375 |#1|) (-10 -7 (-6 -4415)))) (T -377)) -((-1457 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1214)) (-5 *1 (-377 *4 *2)) (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4415)))))) (-4200 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1214)) (-5 *1 (-377 *4 *2)) (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4415)))))) (-3400 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1214)) (-5 *1 (-377 *4 *2)) (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4415))))))) -(-10 -7 (-15 -3400 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -4200 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1457 (|#2| (-1 (-112) |#1| |#1|) |#2|))) -((-3577 (((-689 |#2|) (-689 $)) NIL) (((-2 (|:| -4227 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 $) (-1264 $)) NIL) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) 22) (((-689 (-566)) (-689 $)) 14))) -(((-378 |#1| |#2|) (-10 -8 (-15 -3577 ((-689 (-566)) (-689 |#1|))) (-15 -3577 ((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 |#1|) (-1264 |#1|))) (-15 -3577 ((-2 (|:| -4227 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 |#1|) (-1264 |#1|))) (-15 -3577 ((-689 |#2|) (-689 |#1|)))) (-379 |#2|) (-1049)) (T -378)) -NIL -(-10 -8 (-15 -3577 ((-689 (-566)) (-689 |#1|))) (-15 -3577 ((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 |#1|) (-1264 |#1|))) (-15 -3577 ((-2 (|:| -4227 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 |#1|) (-1264 |#1|))) (-15 -3577 ((-689 |#2|) (-689 |#1|)))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-4175 (((-3 $ "failed") $ $) 20)) (-3012 (($) 18 T CONST)) (-3577 (((-689 |#1|) (-689 $)) 40) (((-2 (|:| -4227 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) 39) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) 47 (|has| |#1| (-639 (-566)))) (((-689 (-566)) (-689 $)) 46 (|has| |#1| (-639 (-566))))) (-1878 (((-3 $ "failed") $) 37)) (-3934 (((-112) $) 35)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3783 (((-862) $) 12) (($ (-566)) 33)) (-2107 (((-771)) 32 T CONST)) (-3117 (((-112) $ $) 9)) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-2947 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) +((-4271 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 44)) (-3689 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-2579 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 35))) +(((-377 |#1| |#2|) (-10 -7 (-15 -3689 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2579 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -4271 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1214) (-13 (-375 |#1|) (-10 -7 (-6 -4415)))) (T -377)) +((-4271 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1214)) (-5 *1 (-377 *4 *2)) (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4415)))))) (-2579 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1214)) (-5 *1 (-377 *4 *2)) (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4415)))))) (-3689 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1214)) (-5 *1 (-377 *4 *2)) (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4415))))))) +(-10 -7 (-15 -3689 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2579 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -4271 (|#2| (-1 (-112) |#1| |#1|) |#2|))) +((-4089 (((-689 |#2|) (-689 $)) NIL) (((-2 (|:| -3361 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 $) (-1264 $)) NIL) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) 22) (((-689 (-566)) (-689 $)) 14))) +(((-378 |#1| |#2|) (-10 -8 (-15 -4089 ((-689 (-566)) (-689 |#1|))) (-15 -4089 ((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 |#1|) (-1264 |#1|))) (-15 -4089 ((-2 (|:| -3361 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 |#1|) (-1264 |#1|))) (-15 -4089 ((-689 |#2|) (-689 |#1|)))) (-379 |#2|) (-1049)) (T -378)) +NIL +(-10 -8 (-15 -4089 ((-689 (-566)) (-689 |#1|))) (-15 -4089 ((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 |#1|) (-1264 |#1|))) (-15 -4089 ((-2 (|:| -3361 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 |#1|) (-1264 |#1|))) (-15 -4089 ((-689 |#2|) (-689 |#1|)))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-3967 (((-3 $ "failed") $ $) 20)) (-2463 (($) 18 T CONST)) (-4089 (((-689 |#1|) (-689 $)) 40) (((-2 (|:| -3361 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) 39) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) 47 (|has| |#1| (-639 (-566)))) (((-689 (-566)) (-689 $)) 46 (|has| |#1| (-639 (-566))))) (-3245 (((-3 $ "failed") $) 37)) (-2389 (((-112) $) 35)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3152 (((-862) $) 12) (($ (-566)) 33)) (-2593 (((-771)) 32 T CONST)) (-3044 (((-112) $ $) 9)) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-2914 (((-112) $ $) 6)) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) (((-379 |#1|) (-140) (-1049)) (T -379)) NIL (-13 (-639 |t#1|) (-10 -7 (IF (|has| |t#1| (-639 (-566))) (-6 (-639 (-566))) |%noBranch|))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-616 (-566)) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-639 (-566)) |has| |#1| (-639 (-566))) ((-639 |#1|) . T) ((-726) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) -((-1975 (((-644 (-295 (-952 (-169 |#1|)))) (-295 (-409 (-952 (-169 (-566))))) |#1|) 51) (((-644 (-295 (-952 (-169 |#1|)))) (-409 (-952 (-169 (-566)))) |#1|) 50) (((-644 (-644 (-295 (-952 (-169 |#1|))))) (-644 (-295 (-409 (-952 (-169 (-566)))))) |#1|) 47) (((-644 (-644 (-295 (-952 (-169 |#1|))))) (-644 (-409 (-952 (-169 (-566))))) |#1|) 41)) (-2761 (((-644 (-644 (-169 |#1|))) (-644 (-409 (-952 (-169 (-566))))) (-644 (-1175)) |#1|) 30) (((-644 (-169 |#1|)) (-409 (-952 (-169 (-566)))) |#1|) 18))) -(((-380 |#1|) (-10 -7 (-15 -1975 ((-644 (-644 (-295 (-952 (-169 |#1|))))) (-644 (-409 (-952 (-169 (-566))))) |#1|)) (-15 -1975 ((-644 (-644 (-295 (-952 (-169 |#1|))))) (-644 (-295 (-409 (-952 (-169 (-566)))))) |#1|)) (-15 -1975 ((-644 (-295 (-952 (-169 |#1|)))) (-409 (-952 (-169 (-566)))) |#1|)) (-15 -1975 ((-644 (-295 (-952 (-169 |#1|)))) (-295 (-409 (-952 (-169 (-566))))) |#1|)) (-15 -2761 ((-644 (-169 |#1|)) (-409 (-952 (-169 (-566)))) |#1|)) (-15 -2761 ((-644 (-644 (-169 |#1|))) (-644 (-409 (-952 (-169 (-566))))) (-644 (-1175)) |#1|))) (-13 (-365) (-848))) (T -380)) -((-2761 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-644 (-409 (-952 (-169 (-566)))))) (-5 *4 (-644 (-1175))) (-5 *2 (-644 (-644 (-169 *5)))) (-5 *1 (-380 *5)) (-4 *5 (-13 (-365) (-848))))) (-2761 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-952 (-169 (-566))))) (-5 *2 (-644 (-169 *4))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-848))))) (-1975 (*1 *2 *3 *4) (-12 (-5 *3 (-295 (-409 (-952 (-169 (-566)))))) (-5 *2 (-644 (-295 (-952 (-169 *4))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-848))))) (-1975 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-952 (-169 (-566))))) (-5 *2 (-644 (-295 (-952 (-169 *4))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-848))))) (-1975 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-295 (-409 (-952 (-169 (-566))))))) (-5 *2 (-644 (-644 (-295 (-952 (-169 *4)))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-848))))) (-1975 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-409 (-952 (-169 (-566)))))) (-5 *2 (-644 (-644 (-295 (-952 (-169 *4)))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-848)))))) -(-10 -7 (-15 -1975 ((-644 (-644 (-295 (-952 (-169 |#1|))))) (-644 (-409 (-952 (-169 (-566))))) |#1|)) (-15 -1975 ((-644 (-644 (-295 (-952 (-169 |#1|))))) (-644 (-295 (-409 (-952 (-169 (-566)))))) |#1|)) (-15 -1975 ((-644 (-295 (-952 (-169 |#1|)))) (-409 (-952 (-169 (-566)))) |#1|)) (-15 -1975 ((-644 (-295 (-952 (-169 |#1|)))) (-295 (-409 (-952 (-169 (-566))))) |#1|)) (-15 -2761 ((-644 (-169 |#1|)) (-409 (-952 (-169 (-566)))) |#1|)) (-15 -2761 ((-644 (-644 (-169 |#1|))) (-644 (-409 (-952 (-169 (-566))))) (-644 (-1175)) |#1|))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) 35)) (-1515 (((-566) $) 62)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-3991 (($ $) NIL)) (-2388 (((-112) $) NIL)) (-2587 (($ $) 144)) (-4114 (($ $) 107)) (-2109 (($ $) 94)) (-4175 (((-3 $ "failed") $ $) NIL)) (-1550 (($ $) NIL)) (-3184 (((-420 $) $) NIL)) (-3731 (($ $) 47)) (-2837 (((-112) $ $) NIL)) (-2240 (($ $) 105)) (-2085 (($ $) 88)) (-4364 (((-566) $) 81)) (-3136 (($ $ (-566)) 76)) (-4134 (($ $) NIL)) (-2129 (($ $) NIL)) (-3012 (($) NIL T CONST)) (-2514 (($ $) 146)) (-4307 (((-3 (-566) "failed") $) 242) (((-3 (-409 (-566)) "failed") $) 238)) (-4205 (((-566) $) 240) (((-409 (-566)) $) 236)) (-2946 (($ $ $) NIL)) (-3584 (((-566) $ $) 133)) (-1878 (((-3 $ "failed") $) 149)) (-2389 (((-409 (-566)) $ (-771)) 243) (((-409 (-566)) $ (-771) (-771)) 235)) (-2957 (($ $ $) NIL)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL)) (-3268 (((-112) $) NIL)) (-1951 (((-921)) 96) (((-921) (-921)) 129 (|has| $ (-6 -4405)))) (-1897 (((-112) $) 138)) (-4361 (($) 41)) (-2062 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL)) (-3126 (((-1269) (-771)) 201)) (-4350 (((-1269)) 206) (((-1269) (-771)) 207)) (-3789 (((-1269)) 208) (((-1269) (-771)) 209)) (-3976 (((-1269)) 204) (((-1269) (-771)) 205)) (-3254 (((-566) $) 69)) (-3934 (((-112) $) 40)) (-2140 (($ $ (-566)) NIL)) (-4017 (($ $) 51)) (-1577 (($ $) NIL)) (-2117 (((-112) $) 37)) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2097 (($ $ $) NIL) (($) NIL (-12 (-2418 (|has| $ (-6 -4397))) (-2418 (|has| $ (-6 -4405)))))) (-3962 (($ $ $) NIL) (($) 130 (-12 (-2418 (|has| $ (-6 -4397))) (-2418 (|has| $ (-6 -4405)))))) (-1729 (((-566) $) 17)) (-3187 (($) 115) (($ $) 121)) (-2342 (($) 120) (($ $) 122)) (-3651 (($ $) 110)) (-2167 (($ $ $) NIL) (($ (-644 $)) NIL)) (-4117 (((-1157) $) NIL)) (-1713 (($ $) 151)) (-3267 (((-921) (-566)) 46 (|has| $ (-6 -4405)))) (-4035 (((-1119) $) NIL)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2214 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2938 (($ $) 60)) (-3470 (($ $) 143)) (-2985 (($ (-566) (-566)) 139) (($ (-566) (-566) (-921)) 140)) (-3719 (((-420 $) $) NIL)) (-3148 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2994 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2852 (((-566) $) 19)) (-3410 (($) 123)) (-2561 (($ $) 104)) (-3039 (((-771) $) NIL)) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL)) (-4163 (((-921)) 131) (((-921) (-921)) 132 (|has| $ (-6 -4405)))) (-3561 (($ $ (-771)) NIL) (($ $) 150)) (-1927 (((-921) (-566)) 50 (|has| $ (-6 -4405)))) (-4144 (($ $) NIL)) (-2141 (($ $) NIL)) (-4124 (($ $) NIL)) (-2118 (($ $) NIL)) (-4104 (($ $) 106)) (-2098 (($ $) 93)) (-1348 (((-381) $) 229) (((-225) $) 230) (((-892 (-381)) $) NIL) (((-1157) $) 212) (((-538) $) 227) (($ (-225)) 234)) (-3783 (((-862) $) 216) (($ (-566)) 239) (($ $) NIL) (($ (-409 (-566))) NIL) (($ (-566)) 239) (($ (-409 (-566))) NIL) (((-225) $) 231)) (-2107 (((-771)) NIL T CONST)) (-2948 (($ $) 145)) (-4099 (((-921)) 61) (((-921) (-921)) 83 (|has| $ (-6 -4405)))) (-3117 (((-112) $ $) NIL)) (-2719 (((-921)) 134)) (-4177 (($ $) 113)) (-2180 (($ $) 49) (($ $ $) 59)) (-2695 (((-112) $ $) NIL)) (-4155 (($ $) 111)) (-2153 (($ $) 39)) (-4198 (($ $) NIL)) (-2212 (($ $) NIL)) (-2976 (($ $) NIL)) (-2227 (($ $) NIL)) (-4188 (($ $) NIL)) (-2196 (($ $) NIL)) (-4166 (($ $) 112)) (-2166 (($ $) 52)) (-2086 (($ $) 58)) (-2479 (($) 36 T CONST)) (-4334 (($) 43 T CONST)) (-2452 (((-1157) $) 27) (((-1157) $ (-112)) 29) (((-1269) (-822) $) 30) (((-1269) (-822) $ (-112)) 31)) (-2875 (($ $ (-771)) NIL) (($ $) NIL)) (-3009 (((-112) $ $) 213)) (-2984 (((-112) $ $) 45)) (-2947 (((-112) $ $) 56)) (-2995 (((-112) $ $) NIL)) (-2969 (((-112) $ $) 57)) (-3065 (($ $ $) 48) (($ $ (-566)) 42)) (-3053 (($ $) 38) (($ $ $) 53)) (-3041 (($ $ $) 75)) (** (($ $ (-921)) 86) (($ $ (-771)) NIL) (($ $ (-566)) 116) (($ $ (-409 (-566))) 162) (($ $ $) 153)) (* (($ (-921) $) 82) (($ (-771) $) NIL) (($ (-566) $) 87) (($ $ $) 74) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL))) -(((-381) (-13 (-406) (-233) (-614 (-1157)) (-828) (-613 (-225)) (-1199) (-614 (-538)) (-618 (-225)) (-10 -8 (-15 -3065 ($ $ (-566))) (-15 ** ($ $ $)) (-15 -4017 ($ $)) (-15 -3584 ((-566) $ $)) (-15 -3136 ($ $ (-566))) (-15 -2389 ((-409 (-566)) $ (-771))) (-15 -2389 ((-409 (-566)) $ (-771) (-771))) (-15 -3187 ($)) (-15 -2342 ($)) (-15 -3410 ($)) (-15 -2180 ($ $ $)) (-15 -3187 ($ $)) (-15 -2342 ($ $)) (-15 -3789 ((-1269))) (-15 -3789 ((-1269) (-771))) (-15 -3976 ((-1269))) (-15 -3976 ((-1269) (-771))) (-15 -4350 ((-1269))) (-15 -4350 ((-1269) (-771))) (-15 -3126 ((-1269) (-771))) (-6 -4405) (-6 -4397)))) (T -381)) -((** (*1 *1 *1 *1) (-5 *1 (-381))) (-3065 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-381)))) (-4017 (*1 *1 *1) (-5 *1 (-381))) (-3584 (*1 *2 *1 *1) (-12 (-5 *2 (-566)) (-5 *1 (-381)))) (-3136 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-381)))) (-2389 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *2 (-409 (-566))) (-5 *1 (-381)))) (-2389 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-771)) (-5 *2 (-409 (-566))) (-5 *1 (-381)))) (-3187 (*1 *1) (-5 *1 (-381))) (-2342 (*1 *1) (-5 *1 (-381))) (-3410 (*1 *1) (-5 *1 (-381))) (-2180 (*1 *1 *1 *1) (-5 *1 (-381))) (-3187 (*1 *1 *1) (-5 *1 (-381))) (-2342 (*1 *1 *1) (-5 *1 (-381))) (-3789 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-381)))) (-3789 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1269)) (-5 *1 (-381)))) (-3976 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-381)))) (-3976 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1269)) (-5 *1 (-381)))) (-4350 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-381)))) (-4350 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1269)) (-5 *1 (-381)))) (-3126 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1269)) (-5 *1 (-381))))) -(-13 (-406) (-233) (-614 (-1157)) (-828) (-613 (-225)) (-1199) (-614 (-538)) (-618 (-225)) (-10 -8 (-15 -3065 ($ $ (-566))) (-15 ** ($ $ $)) (-15 -4017 ($ $)) (-15 -3584 ((-566) $ $)) (-15 -3136 ($ $ (-566))) (-15 -2389 ((-409 (-566)) $ (-771))) (-15 -2389 ((-409 (-566)) $ (-771) (-771))) (-15 -3187 ($)) (-15 -2342 ($)) (-15 -3410 ($)) (-15 -2180 ($ $ $)) (-15 -3187 ($ $)) (-15 -2342 ($ $)) (-15 -3789 ((-1269))) (-15 -3789 ((-1269) (-771))) (-15 -3976 ((-1269))) (-15 -3976 ((-1269) (-771))) (-15 -4350 ((-1269))) (-15 -4350 ((-1269) (-771))) (-15 -3126 ((-1269) (-771))) (-6 -4405) (-6 -4397))) -((-1957 (((-644 (-295 (-952 |#1|))) (-295 (-409 (-952 (-566)))) |#1|) 46) (((-644 (-295 (-952 |#1|))) (-409 (-952 (-566))) |#1|) 45) (((-644 (-644 (-295 (-952 |#1|)))) (-644 (-295 (-409 (-952 (-566))))) |#1|) 42) (((-644 (-644 (-295 (-952 |#1|)))) (-644 (-409 (-952 (-566)))) |#1|) 36)) (-2700 (((-644 |#1|) (-409 (-952 (-566))) |#1|) 20) (((-644 (-644 |#1|)) (-644 (-409 (-952 (-566)))) (-644 (-1175)) |#1|) 30))) -(((-382 |#1|) (-10 -7 (-15 -1957 ((-644 (-644 (-295 (-952 |#1|)))) (-644 (-409 (-952 (-566)))) |#1|)) (-15 -1957 ((-644 (-644 (-295 (-952 |#1|)))) (-644 (-295 (-409 (-952 (-566))))) |#1|)) (-15 -1957 ((-644 (-295 (-952 |#1|))) (-409 (-952 (-566))) |#1|)) (-15 -1957 ((-644 (-295 (-952 |#1|))) (-295 (-409 (-952 (-566)))) |#1|)) (-15 -2700 ((-644 (-644 |#1|)) (-644 (-409 (-952 (-566)))) (-644 (-1175)) |#1|)) (-15 -2700 ((-644 |#1|) (-409 (-952 (-566))) |#1|))) (-13 (-848) (-365))) (T -382)) -((-2700 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-952 (-566)))) (-5 *2 (-644 *4)) (-5 *1 (-382 *4)) (-4 *4 (-13 (-848) (-365))))) (-2700 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-644 (-409 (-952 (-566))))) (-5 *4 (-644 (-1175))) (-5 *2 (-644 (-644 *5))) (-5 *1 (-382 *5)) (-4 *5 (-13 (-848) (-365))))) (-1957 (*1 *2 *3 *4) (-12 (-5 *3 (-295 (-409 (-952 (-566))))) (-5 *2 (-644 (-295 (-952 *4)))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-848) (-365))))) (-1957 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-952 (-566)))) (-5 *2 (-644 (-295 (-952 *4)))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-848) (-365))))) (-1957 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-295 (-409 (-952 (-566)))))) (-5 *2 (-644 (-644 (-295 (-952 *4))))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-848) (-365))))) (-1957 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-409 (-952 (-566))))) (-5 *2 (-644 (-644 (-295 (-952 *4))))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-848) (-365)))))) -(-10 -7 (-15 -1957 ((-644 (-644 (-295 (-952 |#1|)))) (-644 (-409 (-952 (-566)))) |#1|)) (-15 -1957 ((-644 (-644 (-295 (-952 |#1|)))) (-644 (-295 (-409 (-952 (-566))))) |#1|)) (-15 -1957 ((-644 (-295 (-952 |#1|))) (-409 (-952 (-566))) |#1|)) (-15 -1957 ((-644 (-295 (-952 |#1|))) (-295 (-409 (-952 (-566)))) |#1|)) (-15 -2700 ((-644 (-644 |#1|)) (-644 (-409 (-952 (-566)))) (-644 (-1175)) |#1|)) (-15 -2700 ((-644 |#1|) (-409 (-952 (-566))) |#1|))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-3012 (($) NIL T CONST)) (-4307 (((-3 |#2| "failed") $) 30)) (-4205 ((|#2| $) 32)) (-1786 (($ $) NIL)) (-2614 (((-771) $) 11)) (-2288 (((-644 $) $) 23)) (-3264 (((-112) $) NIL)) (-3319 (($ |#2| |#1|) 21)) (-1301 (($ (-1 |#1| |#1|) $) NIL)) (-3849 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17)) (-1749 ((|#2| $) 18)) (-1763 ((|#1| $) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 51) (($ |#2|) 31)) (-4170 (((-644 |#1|) $) 20)) (-2649 ((|#1| $ |#2|) 55)) (-3117 (((-112) $ $) NIL)) (-2479 (($) 33 T CONST)) (-2935 (((-644 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14)) (-2947 (((-112) $ $) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ |#1| $) 36) (($ $ |#1|) 37) (($ |#1| |#2|) 39) (($ |#2| |#1|) 40))) +((-3675 (((-644 (-295 (-952 (-169 |#1|)))) (-295 (-409 (-952 (-169 (-566))))) |#1|) 51) (((-644 (-295 (-952 (-169 |#1|)))) (-409 (-952 (-169 (-566)))) |#1|) 50) (((-644 (-644 (-295 (-952 (-169 |#1|))))) (-644 (-295 (-409 (-952 (-169 (-566)))))) |#1|) 47) (((-644 (-644 (-295 (-952 (-169 |#1|))))) (-644 (-409 (-952 (-169 (-566))))) |#1|) 41)) (-3149 (((-644 (-644 (-169 |#1|))) (-644 (-409 (-952 (-169 (-566))))) (-644 (-1175)) |#1|) 30) (((-644 (-169 |#1|)) (-409 (-952 (-169 (-566)))) |#1|) 18))) +(((-380 |#1|) (-10 -7 (-15 -3675 ((-644 (-644 (-295 (-952 (-169 |#1|))))) (-644 (-409 (-952 (-169 (-566))))) |#1|)) (-15 -3675 ((-644 (-644 (-295 (-952 (-169 |#1|))))) (-644 (-295 (-409 (-952 (-169 (-566)))))) |#1|)) (-15 -3675 ((-644 (-295 (-952 (-169 |#1|)))) (-409 (-952 (-169 (-566)))) |#1|)) (-15 -3675 ((-644 (-295 (-952 (-169 |#1|)))) (-295 (-409 (-952 (-169 (-566))))) |#1|)) (-15 -3149 ((-644 (-169 |#1|)) (-409 (-952 (-169 (-566)))) |#1|)) (-15 -3149 ((-644 (-644 (-169 |#1|))) (-644 (-409 (-952 (-169 (-566))))) (-644 (-1175)) |#1|))) (-13 (-365) (-848))) (T -380)) +((-3149 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-644 (-409 (-952 (-169 (-566)))))) (-5 *4 (-644 (-1175))) (-5 *2 (-644 (-644 (-169 *5)))) (-5 *1 (-380 *5)) (-4 *5 (-13 (-365) (-848))))) (-3149 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-952 (-169 (-566))))) (-5 *2 (-644 (-169 *4))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-848))))) (-3675 (*1 *2 *3 *4) (-12 (-5 *3 (-295 (-409 (-952 (-169 (-566)))))) (-5 *2 (-644 (-295 (-952 (-169 *4))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-848))))) (-3675 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-952 (-169 (-566))))) (-5 *2 (-644 (-295 (-952 (-169 *4))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-848))))) (-3675 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-295 (-409 (-952 (-169 (-566))))))) (-5 *2 (-644 (-644 (-295 (-952 (-169 *4)))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-848))))) (-3675 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-409 (-952 (-169 (-566)))))) (-5 *2 (-644 (-644 (-295 (-952 (-169 *4)))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-848)))))) +(-10 -7 (-15 -3675 ((-644 (-644 (-295 (-952 (-169 |#1|))))) (-644 (-409 (-952 (-169 (-566))))) |#1|)) (-15 -3675 ((-644 (-644 (-295 (-952 (-169 |#1|))))) (-644 (-295 (-409 (-952 (-169 (-566)))))) |#1|)) (-15 -3675 ((-644 (-295 (-952 (-169 |#1|)))) (-409 (-952 (-169 (-566)))) |#1|)) (-15 -3675 ((-644 (-295 (-952 (-169 |#1|)))) (-295 (-409 (-952 (-169 (-566))))) |#1|)) (-15 -3149 ((-644 (-169 |#1|)) (-409 (-952 (-169 (-566)))) |#1|)) (-15 -3149 ((-644 (-644 (-169 |#1|))) (-644 (-409 (-952 (-169 (-566))))) (-644 (-1175)) |#1|))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) 35)) (-1873 (((-566) $) 62)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-2161 (($ $) NIL)) (-2345 (((-112) $) NIL)) (-2331 (($ $) 144)) (-3963 (($ $) 107)) (-3630 (($ $) 94)) (-3967 (((-3 $ "failed") $ $) NIL)) (-1378 (($ $) NIL)) (-1364 (((-420 $) $) NIL)) (-1635 (($ $) 47)) (-2085 (((-112) $ $) NIL)) (-3941 (($ $) 105)) (-3602 (($ $) 88)) (-2743 (((-566) $) 81)) (-3764 (($ $ (-566)) 76)) (-3986 (($ $) NIL)) (-3656 (($ $) NIL)) (-2463 (($) NIL T CONST)) (-3347 (($ $) 146)) (-2229 (((-3 (-566) "failed") $) 242) (((-3 (-409 (-566)) "failed") $) 238)) (-4158 (((-566) $) 240) (((-409 (-566)) $) 236)) (-2933 (($ $ $) NIL)) (-1830 (((-566) $ $) 133)) (-3245 (((-3 $ "failed") $) 149)) (-2449 (((-409 (-566)) $ (-771)) 243) (((-409 (-566)) $ (-771) (-771)) 235)) (-2945 (($ $ $) NIL)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL)) (-1615 (((-112) $) NIL)) (-3262 (((-921)) 96) (((-921) (-921)) 129 (|has| $ (-6 -4405)))) (-2528 (((-112) $) 138)) (-2281 (($) 41)) (-2926 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL)) (-1347 (((-1269) (-771)) 201)) (-1749 (((-1269)) 206) (((-1269) (-771)) 207)) (-2491 (((-1269)) 208) (((-1269) (-771)) 209)) (-4329 (((-1269)) 204) (((-1269) (-771)) 205)) (-2679 (((-566) $) 69)) (-2389 (((-112) $) 40)) (-1575 (($ $ (-566)) NIL)) (-3109 (($ $) 51)) (-2064 (($ $) NIL)) (-3233 (((-112) $) 37)) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1478 (($ $ $) NIL) (($) NIL (-12 (-2404 (|has| $ (-6 -4397))) (-2404 (|has| $ (-6 -4405)))))) (-2599 (($ $ $) NIL) (($) 130 (-12 (-2404 (|has| $ (-6 -4397))) (-2404 (|has| $ (-6 -4405)))))) (-2431 (((-566) $) 17)) (-3501 (($) 115) (($ $) 121)) (-2310 (($) 120) (($ $) 122)) (-3619 (($ $) 110)) (-2128 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3380 (((-1157) $) NIL)) (-2748 (($ $) 151)) (-1485 (((-921) (-566)) 46 (|has| $ (-6 -4405)))) (-4072 (((-1119) $) NIL)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2164 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2487 (($ $) 60)) (-3143 (($ $) 143)) (-2938 (($ (-566) (-566)) 139) (($ (-566) (-566) (-921)) 140)) (-1624 (((-420 $) $) NIL)) (-3005 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2978 (((-3 $ "failed") $ $) NIL)) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2201 (((-566) $) 19)) (-4213 (($) 123)) (-3521 (($ $) 104)) (-4357 (((-771) $) NIL)) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL)) (-2251 (((-921)) 131) (((-921) (-921)) 132 (|has| $ (-6 -4405)))) (-3629 (($ $ (-771)) NIL) (($ $) 150)) (-1460 (((-921) (-566)) 50 (|has| $ (-6 -4405)))) (-3996 (($ $) NIL)) (-3670 (($ $) NIL)) (-3976 (($ $) NIL)) (-3643 (($ $) NIL)) (-3952 (($ $) 106)) (-3618 (($ $) 93)) (-2376 (((-381) $) 229) (((-225) $) 230) (((-892 (-381)) $) NIL) (((-1157) $) 212) (((-538) $) 227) (($ (-225)) 234)) (-3152 (((-862) $) 216) (($ (-566)) 239) (($ $) NIL) (($ (-409 (-566))) NIL) (($ (-566)) 239) (($ (-409 (-566))) NIL) (((-225) $) 231)) (-2593 (((-771)) NIL T CONST)) (-3913 (($ $) 145)) (-2367 (((-921)) 61) (((-921) (-921)) 83 (|has| $ (-6 -4405)))) (-3044 (((-112) $ $) NIL)) (-2576 (((-921)) 134)) (-4032 (($ $) 113)) (-3892 (($ $) 49) (($ $ $) 59)) (-3014 (((-112) $ $) NIL)) (-4008 (($ $) 111)) (-3684 (($ $) 39)) (-4057 (($ $) NIL)) (-3917 (($ $) NIL)) (-3964 (($ $) NIL)) (-3929 (($ $) NIL)) (-4044 (($ $) NIL)) (-3904 (($ $) NIL)) (-4020 (($ $) 112)) (-3879 (($ $) 52)) (-1358 (($ $) 58)) (-4356 (($) 36 T CONST)) (-4366 (($) 43 T CONST)) (-2226 (((-1157) $) 27) (((-1157) $ (-112)) 29) (((-1269) (-822) $) 30) (((-1269) (-822) $ (-112)) 31)) (-3497 (($ $ (-771)) NIL) (($ $) NIL)) (-2968 (((-112) $ $) 213)) (-2946 (((-112) $ $) 45)) (-2914 (((-112) $ $) 56)) (-2956 (((-112) $ $) NIL)) (-2935 (((-112) $ $) 57)) (-3025 (($ $ $) 48) (($ $ (-566)) 42)) (-3012 (($ $) 38) (($ $ $) 53)) (-3002 (($ $ $) 75)) (** (($ $ (-921)) 86) (($ $ (-771)) NIL) (($ $ (-566)) 116) (($ $ (-409 (-566))) 162) (($ $ $) 153)) (* (($ (-921) $) 82) (($ (-771) $) NIL) (($ (-566) $) 87) (($ $ $) 74) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL))) +(((-381) (-13 (-406) (-233) (-614 (-1157)) (-828) (-613 (-225)) (-1199) (-614 (-538)) (-618 (-225)) (-10 -8 (-15 -3025 ($ $ (-566))) (-15 ** ($ $ $)) (-15 -3109 ($ $)) (-15 -1830 ((-566) $ $)) (-15 -3764 ($ $ (-566))) (-15 -2449 ((-409 (-566)) $ (-771))) (-15 -2449 ((-409 (-566)) $ (-771) (-771))) (-15 -3501 ($)) (-15 -2310 ($)) (-15 -4213 ($)) (-15 -3892 ($ $ $)) (-15 -3501 ($ $)) (-15 -2310 ($ $)) (-15 -2491 ((-1269))) (-15 -2491 ((-1269) (-771))) (-15 -4329 ((-1269))) (-15 -4329 ((-1269) (-771))) (-15 -1749 ((-1269))) (-15 -1749 ((-1269) (-771))) (-15 -1347 ((-1269) (-771))) (-6 -4405) (-6 -4397)))) (T -381)) +((** (*1 *1 *1 *1) (-5 *1 (-381))) (-3025 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-381)))) (-3109 (*1 *1 *1) (-5 *1 (-381))) (-1830 (*1 *2 *1 *1) (-12 (-5 *2 (-566)) (-5 *1 (-381)))) (-3764 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-381)))) (-2449 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *2 (-409 (-566))) (-5 *1 (-381)))) (-2449 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-771)) (-5 *2 (-409 (-566))) (-5 *1 (-381)))) (-3501 (*1 *1) (-5 *1 (-381))) (-2310 (*1 *1) (-5 *1 (-381))) (-4213 (*1 *1) (-5 *1 (-381))) (-3892 (*1 *1 *1 *1) (-5 *1 (-381))) (-3501 (*1 *1 *1) (-5 *1 (-381))) (-2310 (*1 *1 *1) (-5 *1 (-381))) (-2491 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-381)))) (-2491 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1269)) (-5 *1 (-381)))) (-4329 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-381)))) (-4329 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1269)) (-5 *1 (-381)))) (-1749 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-381)))) (-1749 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1269)) (-5 *1 (-381)))) (-1347 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1269)) (-5 *1 (-381))))) +(-13 (-406) (-233) (-614 (-1157)) (-828) (-613 (-225)) (-1199) (-614 (-538)) (-618 (-225)) (-10 -8 (-15 -3025 ($ $ (-566))) (-15 ** ($ $ $)) (-15 -3109 ($ $)) (-15 -1830 ((-566) $ $)) (-15 -3764 ($ $ (-566))) (-15 -2449 ((-409 (-566)) $ (-771))) (-15 -2449 ((-409 (-566)) $ (-771) (-771))) (-15 -3501 ($)) (-15 -2310 ($)) (-15 -4213 ($)) (-15 -3892 ($ $ $)) (-15 -3501 ($ $)) (-15 -2310 ($ $)) (-15 -2491 ((-1269))) (-15 -2491 ((-1269) (-771))) (-15 -4329 ((-1269))) (-15 -4329 ((-1269) (-771))) (-15 -1749 ((-1269))) (-15 -1749 ((-1269) (-771))) (-15 -1347 ((-1269) (-771))) (-6 -4405) (-6 -4397))) +((-2423 (((-644 (-295 (-952 |#1|))) (-295 (-409 (-952 (-566)))) |#1|) 46) (((-644 (-295 (-952 |#1|))) (-409 (-952 (-566))) |#1|) 45) (((-644 (-644 (-295 (-952 |#1|)))) (-644 (-295 (-409 (-952 (-566))))) |#1|) 42) (((-644 (-644 (-295 (-952 |#1|)))) (-644 (-409 (-952 (-566)))) |#1|) 36)) (-2308 (((-644 |#1|) (-409 (-952 (-566))) |#1|) 20) (((-644 (-644 |#1|)) (-644 (-409 (-952 (-566)))) (-644 (-1175)) |#1|) 30))) +(((-382 |#1|) (-10 -7 (-15 -2423 ((-644 (-644 (-295 (-952 |#1|)))) (-644 (-409 (-952 (-566)))) |#1|)) (-15 -2423 ((-644 (-644 (-295 (-952 |#1|)))) (-644 (-295 (-409 (-952 (-566))))) |#1|)) (-15 -2423 ((-644 (-295 (-952 |#1|))) (-409 (-952 (-566))) |#1|)) (-15 -2423 ((-644 (-295 (-952 |#1|))) (-295 (-409 (-952 (-566)))) |#1|)) (-15 -2308 ((-644 (-644 |#1|)) (-644 (-409 (-952 (-566)))) (-644 (-1175)) |#1|)) (-15 -2308 ((-644 |#1|) (-409 (-952 (-566))) |#1|))) (-13 (-848) (-365))) (T -382)) +((-2308 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-952 (-566)))) (-5 *2 (-644 *4)) (-5 *1 (-382 *4)) (-4 *4 (-13 (-848) (-365))))) (-2308 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-644 (-409 (-952 (-566))))) (-5 *4 (-644 (-1175))) (-5 *2 (-644 (-644 *5))) (-5 *1 (-382 *5)) (-4 *5 (-13 (-848) (-365))))) (-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-295 (-409 (-952 (-566))))) (-5 *2 (-644 (-295 (-952 *4)))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-848) (-365))))) (-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-952 (-566)))) (-5 *2 (-644 (-295 (-952 *4)))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-848) (-365))))) (-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-295 (-409 (-952 (-566)))))) (-5 *2 (-644 (-644 (-295 (-952 *4))))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-848) (-365))))) (-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-409 (-952 (-566))))) (-5 *2 (-644 (-644 (-295 (-952 *4))))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-848) (-365)))))) +(-10 -7 (-15 -2423 ((-644 (-644 (-295 (-952 |#1|)))) (-644 (-409 (-952 (-566)))) |#1|)) (-15 -2423 ((-644 (-644 (-295 (-952 |#1|)))) (-644 (-295 (-409 (-952 (-566))))) |#1|)) (-15 -2423 ((-644 (-295 (-952 |#1|))) (-409 (-952 (-566))) |#1|)) (-15 -2423 ((-644 (-295 (-952 |#1|))) (-295 (-409 (-952 (-566)))) |#1|)) (-15 -2308 ((-644 (-644 |#1|)) (-644 (-409 (-952 (-566)))) (-644 (-1175)) |#1|)) (-15 -2308 ((-644 |#1|) (-409 (-952 (-566))) |#1|))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-2463 (($) NIL T CONST)) (-2229 (((-3 |#2| "failed") $) 30)) (-4158 ((|#2| $) 32)) (-2814 (($ $) NIL)) (-3039 (((-771) $) 11)) (-1587 (((-644 $) $) 23)) (-2497 (((-112) $) NIL)) (-4325 (($ |#2| |#1|) 21)) (-2319 (($ (-1 |#1| |#1|) $) NIL)) (-1978 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17)) (-2784 ((|#2| $) 18)) (-2794 ((|#1| $) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 51) (($ |#2|) 31)) (-1643 (((-644 |#1|) $) 20)) (-2271 ((|#1| $ |#2|) 55)) (-3044 (((-112) $ $) NIL)) (-4356 (($) 33 T CONST)) (-2203 (((-644 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14)) (-2914 (((-112) $ $) NIL)) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ |#1| $) 36) (($ $ |#1|) 37) (($ |#1| |#2|) 39) (($ |#2| |#1|) 40))) (((-383 |#1| |#2|) (-13 (-384 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1049) (-850)) (T -383)) ((* (*1 *1 *2 *3) (-12 (-5 *1 (-383 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-850))))) (-13 (-384 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-4175 (((-3 $ "failed") $ $) 20)) (-3012 (($) 18 T CONST)) (-4307 (((-3 |#2| "failed") $) 49)) (-4205 ((|#2| $) 50)) (-1786 (($ $) 35)) (-2614 (((-771) $) 39)) (-2288 (((-644 $) $) 40)) (-3264 (((-112) $) 43)) (-3319 (($ |#2| |#1|) 44)) (-1301 (($ (-1 |#1| |#1|) $) 45)) (-3849 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 36)) (-1749 ((|#2| $) 38)) (-1763 ((|#1| $) 37)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3783 (((-862) $) 12) (($ |#2|) 48)) (-4170 (((-644 |#1|) $) 41)) (-2649 ((|#1| $ |#2|) 46)) (-3117 (((-112) $ $) 9)) (-2479 (($) 19 T CONST)) (-2935 (((-644 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 42)) (-2947 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31) (($ |#1| |#2|) 47))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-3967 (((-3 $ "failed") $ $) 20)) (-2463 (($) 18 T CONST)) (-2229 (((-3 |#2| "failed") $) 49)) (-4158 ((|#2| $) 50)) (-2814 (($ $) 35)) (-3039 (((-771) $) 39)) (-1587 (((-644 $) $) 40)) (-2497 (((-112) $) 43)) (-4325 (($ |#2| |#1|) 44)) (-2319 (($ (-1 |#1| |#1|) $) 45)) (-1978 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 36)) (-2784 ((|#2| $) 38)) (-2794 ((|#1| $) 37)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3152 (((-862) $) 12) (($ |#2|) 48)) (-1643 (((-644 |#1|) $) 41)) (-2271 ((|#1| $ |#2|) 46)) (-3044 (((-112) $ $) 9)) (-4356 (($) 19 T CONST)) (-2203 (((-644 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 42)) (-2914 (((-112) $ $) 6)) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31) (($ |#1| |#2|) 47))) (((-384 |#1| |#2|) (-140) (-1049) (-1099)) (T -384)) -((* (*1 *1 *2 *3) (-12 (-4 *1 (-384 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-1099)))) (-2649 (*1 *2 *1 *3) (-12 (-4 *1 (-384 *2 *3)) (-4 *3 (-1099)) (-4 *2 (-1049)))) (-1301 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-384 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1099)))) (-3319 (*1 *1 *2 *3) (-12 (-4 *1 (-384 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-1099)))) (-3264 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1099)) (-5 *2 (-112)))) (-2935 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1099)) (-5 *2 (-644 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4170 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1099)) (-5 *2 (-644 *3)))) (-2288 (*1 *2 *1) (-12 (-4 *3 (-1049)) (-4 *4 (-1099)) (-5 *2 (-644 *1)) (-4 *1 (-384 *3 *4)))) (-2614 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1099)) (-5 *2 (-771)))) (-1749 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-1099)))) (-1763 (*1 *2 *1) (-12 (-4 *1 (-384 *2 *3)) (-4 *3 (-1099)) (-4 *2 (-1049)))) (-3849 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1099)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-1786 (*1 *1 *1) (-12 (-4 *1 (-384 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-1099))))) -(-13 (-111 |t#1| |t#1|) (-1038 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -2649 (|t#1| $ |t#2|)) (-15 -1301 ($ (-1 |t#1| |t#1|) $)) (-15 -3319 ($ |t#2| |t#1|)) (-15 -3264 ((-112) $)) (-15 -2935 ((-644 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4170 ((-644 |t#1|) $)) (-15 -2288 ((-644 $) $)) (-15 -2614 ((-771) $)) (-15 -1749 (|t#2| $)) (-15 -1763 (|t#1| $)) (-15 -3849 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -1786 ($ $)) (IF (|has| |t#1| (-172)) (-6 (-717 |t#1|)) |%noBranch|))) +((* (*1 *1 *2 *3) (-12 (-4 *1 (-384 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-1099)))) (-2271 (*1 *2 *1 *3) (-12 (-4 *1 (-384 *2 *3)) (-4 *3 (-1099)) (-4 *2 (-1049)))) (-2319 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-384 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1099)))) (-4325 (*1 *1 *2 *3) (-12 (-4 *1 (-384 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-1099)))) (-2497 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1099)) (-5 *2 (-112)))) (-2203 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1099)) (-5 *2 (-644 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1643 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1099)) (-5 *2 (-644 *3)))) (-1587 (*1 *2 *1) (-12 (-4 *3 (-1049)) (-4 *4 (-1099)) (-5 *2 (-644 *1)) (-4 *1 (-384 *3 *4)))) (-3039 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1099)) (-5 *2 (-771)))) (-2784 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-1099)))) (-2794 (*1 *2 *1) (-12 (-4 *1 (-384 *2 *3)) (-4 *3 (-1099)) (-4 *2 (-1049)))) (-1978 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1099)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-2814 (*1 *1 *1) (-12 (-4 *1 (-384 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-1099))))) +(-13 (-111 |t#1| |t#1|) (-1038 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -2271 (|t#1| $ |t#2|)) (-15 -2319 ($ (-1 |t#1| |t#1|) $)) (-15 -4325 ($ |t#2| |t#1|)) (-15 -2497 ((-112) $)) (-15 -2203 ((-644 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1643 ((-644 |t#1|) $)) (-15 -1587 ((-644 $) $)) (-15 -3039 ((-771) $)) (-15 -2784 (|t#2| $)) (-15 -2794 (|t#1| $)) (-15 -1978 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -2814 ($ $)) (IF (|has| |t#1| (-172)) (-6 (-717 |t#1|)) |%noBranch|))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-616 |#2|) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-648 |#1|) . T) ((-640 |#1|) |has| |#1| (-172)) ((-717 |#1|) |has| |#1| (-172)) ((-1038 |#2|) . T) ((-1051 |#1|) . T) ((-1056 |#1|) . T) ((-1099) . T)) -((-3435 (((-1269) $) 7)) (-3783 (((-862) $) 8) (($ (-689 (-699))) 14) (($ (-644 (-331))) 13) (($ (-331)) 12) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3261 (-644 (-331))))) 11))) +((-1586 (((-1269) $) 7)) (-3152 (((-862) $) 8) (($ (-689 (-699))) 14) (($ (-644 (-331))) 13) (($ (-331)) 12) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3906 (-644 (-331))))) 11))) (((-385) (-140)) (T -385)) -((-3783 (*1 *1 *2) (-12 (-5 *2 (-689 (-699))) (-4 *1 (-385)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-644 (-331))) (-4 *1 (-385)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-385)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1179)) (|:| -3261 (-644 (-331))))) (-4 *1 (-385))))) -(-13 (-397) (-10 -8 (-15 -3783 ($ (-689 (-699)))) (-15 -3783 ($ (-644 (-331)))) (-15 -3783 ($ (-331))) (-15 -3783 ($ (-2 (|:| |localSymbols| (-1179)) (|:| -3261 (-644 (-331)))))))) +((-3152 (*1 *1 *2) (-12 (-5 *2 (-689 (-699))) (-4 *1 (-385)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-644 (-331))) (-4 *1 (-385)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-385)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1179)) (|:| -3906 (-644 (-331))))) (-4 *1 (-385))))) +(-13 (-397) (-10 -8 (-15 -3152 ($ (-689 (-699)))) (-15 -3152 ($ (-644 (-331)))) (-15 -3152 ($ (-331))) (-15 -3152 ($ (-2 (|:| |localSymbols| (-1179)) (|:| -3906 (-644 (-331)))))))) (((-613 (-862)) . T) ((-397) . T) ((-1214) . T)) -((-4307 (((-3 $ "failed") (-689 (-317 (-381)))) 21) (((-3 $ "failed") (-689 (-317 (-566)))) 19) (((-3 $ "failed") (-689 (-952 (-381)))) 17) (((-3 $ "failed") (-689 (-952 (-566)))) 15) (((-3 $ "failed") (-689 (-409 (-952 (-381))))) 13) (((-3 $ "failed") (-689 (-409 (-952 (-566))))) 11)) (-4205 (($ (-689 (-317 (-381)))) 22) (($ (-689 (-317 (-566)))) 20) (($ (-689 (-952 (-381)))) 18) (($ (-689 (-952 (-566)))) 16) (($ (-689 (-409 (-952 (-381))))) 14) (($ (-689 (-409 (-952 (-566))))) 12)) (-3435 (((-1269) $) 7)) (-3783 (((-862) $) 8) (($ (-644 (-331))) 25) (($ (-331)) 24) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3261 (-644 (-331))))) 23))) +((-2229 (((-3 $ "failed") (-689 (-317 (-381)))) 21) (((-3 $ "failed") (-689 (-317 (-566)))) 19) (((-3 $ "failed") (-689 (-952 (-381)))) 17) (((-3 $ "failed") (-689 (-952 (-566)))) 15) (((-3 $ "failed") (-689 (-409 (-952 (-381))))) 13) (((-3 $ "failed") (-689 (-409 (-952 (-566))))) 11)) (-4158 (($ (-689 (-317 (-381)))) 22) (($ (-689 (-317 (-566)))) 20) (($ (-689 (-952 (-381)))) 18) (($ (-689 (-952 (-566)))) 16) (($ (-689 (-409 (-952 (-381))))) 14) (($ (-689 (-409 (-952 (-566))))) 12)) (-1586 (((-1269) $) 7)) (-3152 (((-862) $) 8) (($ (-644 (-331))) 25) (($ (-331)) 24) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3906 (-644 (-331))))) 23))) (((-386) (-140)) (T -386)) -((-3783 (*1 *1 *2) (-12 (-5 *2 (-644 (-331))) (-4 *1 (-386)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-386)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1179)) (|:| -3261 (-644 (-331))))) (-4 *1 (-386)))) (-4205 (*1 *1 *2) (-12 (-5 *2 (-689 (-317 (-381)))) (-4 *1 (-386)))) (-4307 (*1 *1 *2) (|partial| -12 (-5 *2 (-689 (-317 (-381)))) (-4 *1 (-386)))) (-4205 (*1 *1 *2) (-12 (-5 *2 (-689 (-317 (-566)))) (-4 *1 (-386)))) (-4307 (*1 *1 *2) (|partial| -12 (-5 *2 (-689 (-317 (-566)))) (-4 *1 (-386)))) (-4205 (*1 *1 *2) (-12 (-5 *2 (-689 (-952 (-381)))) (-4 *1 (-386)))) (-4307 (*1 *1 *2) (|partial| -12 (-5 *2 (-689 (-952 (-381)))) (-4 *1 (-386)))) (-4205 (*1 *1 *2) (-12 (-5 *2 (-689 (-952 (-566)))) (-4 *1 (-386)))) (-4307 (*1 *1 *2) (|partial| -12 (-5 *2 (-689 (-952 (-566)))) (-4 *1 (-386)))) (-4205 (*1 *1 *2) (-12 (-5 *2 (-689 (-409 (-952 (-381))))) (-4 *1 (-386)))) (-4307 (*1 *1 *2) (|partial| -12 (-5 *2 (-689 (-409 (-952 (-381))))) (-4 *1 (-386)))) (-4205 (*1 *1 *2) (-12 (-5 *2 (-689 (-409 (-952 (-566))))) (-4 *1 (-386)))) (-4307 (*1 *1 *2) (|partial| -12 (-5 *2 (-689 (-409 (-952 (-566))))) (-4 *1 (-386))))) -(-13 (-397) (-10 -8 (-15 -3783 ($ (-644 (-331)))) (-15 -3783 ($ (-331))) (-15 -3783 ($ (-2 (|:| |localSymbols| (-1179)) (|:| -3261 (-644 (-331)))))) (-15 -4205 ($ (-689 (-317 (-381))))) (-15 -4307 ((-3 $ "failed") (-689 (-317 (-381))))) (-15 -4205 ($ (-689 (-317 (-566))))) (-15 -4307 ((-3 $ "failed") (-689 (-317 (-566))))) (-15 -4205 ($ (-689 (-952 (-381))))) (-15 -4307 ((-3 $ "failed") (-689 (-952 (-381))))) (-15 -4205 ($ (-689 (-952 (-566))))) (-15 -4307 ((-3 $ "failed") (-689 (-952 (-566))))) (-15 -4205 ($ (-689 (-409 (-952 (-381)))))) (-15 -4307 ((-3 $ "failed") (-689 (-409 (-952 (-381)))))) (-15 -4205 ($ (-689 (-409 (-952 (-566)))))) (-15 -4307 ((-3 $ "failed") (-689 (-409 (-952 (-566)))))))) +((-3152 (*1 *1 *2) (-12 (-5 *2 (-644 (-331))) (-4 *1 (-386)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-386)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1179)) (|:| -3906 (-644 (-331))))) (-4 *1 (-386)))) (-4158 (*1 *1 *2) (-12 (-5 *2 (-689 (-317 (-381)))) (-4 *1 (-386)))) (-2229 (*1 *1 *2) (|partial| -12 (-5 *2 (-689 (-317 (-381)))) (-4 *1 (-386)))) (-4158 (*1 *1 *2) (-12 (-5 *2 (-689 (-317 (-566)))) (-4 *1 (-386)))) (-2229 (*1 *1 *2) (|partial| -12 (-5 *2 (-689 (-317 (-566)))) (-4 *1 (-386)))) (-4158 (*1 *1 *2) (-12 (-5 *2 (-689 (-952 (-381)))) (-4 *1 (-386)))) (-2229 (*1 *1 *2) (|partial| -12 (-5 *2 (-689 (-952 (-381)))) (-4 *1 (-386)))) (-4158 (*1 *1 *2) (-12 (-5 *2 (-689 (-952 (-566)))) (-4 *1 (-386)))) (-2229 (*1 *1 *2) (|partial| -12 (-5 *2 (-689 (-952 (-566)))) (-4 *1 (-386)))) (-4158 (*1 *1 *2) (-12 (-5 *2 (-689 (-409 (-952 (-381))))) (-4 *1 (-386)))) (-2229 (*1 *1 *2) (|partial| -12 (-5 *2 (-689 (-409 (-952 (-381))))) (-4 *1 (-386)))) (-4158 (*1 *1 *2) (-12 (-5 *2 (-689 (-409 (-952 (-566))))) (-4 *1 (-386)))) (-2229 (*1 *1 *2) (|partial| -12 (-5 *2 (-689 (-409 (-952 (-566))))) (-4 *1 (-386))))) +(-13 (-397) (-10 -8 (-15 -3152 ($ (-644 (-331)))) (-15 -3152 ($ (-331))) (-15 -3152 ($ (-2 (|:| |localSymbols| (-1179)) (|:| -3906 (-644 (-331)))))) (-15 -4158 ($ (-689 (-317 (-381))))) (-15 -2229 ((-3 $ "failed") (-689 (-317 (-381))))) (-15 -4158 ($ (-689 (-317 (-566))))) (-15 -2229 ((-3 $ "failed") (-689 (-317 (-566))))) (-15 -4158 ($ (-689 (-952 (-381))))) (-15 -2229 ((-3 $ "failed") (-689 (-952 (-381))))) (-15 -4158 ($ (-689 (-952 (-566))))) (-15 -2229 ((-3 $ "failed") (-689 (-952 (-566))))) (-15 -4158 ($ (-689 (-409 (-952 (-381)))))) (-15 -2229 ((-3 $ "failed") (-689 (-409 (-952 (-381)))))) (-15 -4158 ($ (-689 (-409 (-952 (-566)))))) (-15 -2229 ((-3 $ "failed") (-689 (-409 (-952 (-566)))))))) (((-613 (-862)) . T) ((-397) . T) ((-1214) . T)) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-3012 (($) NIL T CONST)) (-1786 (($ $) NIL)) (-3840 (($ |#1| |#2|) NIL)) (-1301 (($ (-1 |#1| |#1|) $) NIL)) (-2703 ((|#2| $) NIL)) (-1763 ((|#1| $) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 34)) (-3117 (((-112) $ $) NIL)) (-2479 (($) 12 T CONST)) (-2947 (((-112) $ $) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ |#1| $) 15) (($ $ |#1|) 18))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-2463 (($) NIL T CONST)) (-2814 (($ $) NIL)) (-1746 (($ |#1| |#2|) NIL)) (-2319 (($ (-1 |#1| |#1|) $) NIL)) (-2536 ((|#2| $) NIL)) (-2794 ((|#1| $) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 34)) (-3044 (((-112) $ $) NIL)) (-4356 (($) 12 T CONST)) (-2914 (((-112) $ $) NIL)) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ |#1| $) 15) (($ $ |#1|) 18))) (((-387 |#1| |#2|) (-13 (-111 |#1| |#1|) (-511 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-172)) (-6 (-717 |#1|)) |%noBranch|))) (-1049) (-850)) (T -387)) NIL (-13 (-111 |#1| |#1|) (-511 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-172)) (-6 (-717 |#1|)) |%noBranch|))) -((-3007 (((-112) $ $) NIL)) (-1970 (((-771) $) 74)) (-3012 (($) NIL T CONST)) (-2374 (((-3 $ "failed") $ $) 77)) (-4307 (((-3 |#1| "failed") $) NIL)) (-4205 ((|#1| $) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-1399 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64)) (-3934 (((-112) $) 17)) (-3946 ((|#1| $ (-566)) NIL)) (-3712 (((-771) $ (-566)) NIL)) (-2097 (($ $ $) NIL (|has| |#1| (-850)))) (-3962 (($ $ $) NIL (|has| |#1| (-850)))) (-1657 (($ (-1 |#1| |#1|) $) 40)) (-3352 (($ (-1 (-771) (-771)) $) 37)) (-2274 (((-3 $ "failed") $ $) 60)) (-4117 (((-1157) $) NIL)) (-1810 (($ $ $) 28)) (-2301 (($ $ $) 26)) (-4035 (((-1119) $) NIL)) (-4138 (((-644 (-2 (|:| |gen| |#1|) (|:| -2561 (-771)))) $) 34)) (-1685 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 70)) (-3783 (((-862) $) 24) (($ |#1|) NIL)) (-3117 (((-112) $ $) NIL)) (-4334 (($) 11 T CONST)) (-3009 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2984 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2947 (((-112) $ $) NIL)) (-2995 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2969 (((-112) $ $) 84 (|has| |#1| (-850)))) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ |#1| (-771)) 42)) (* (($ $ $) 52) (($ |#1| $) 32) (($ $ |#1|) 30))) -(((-388 |#1|) (-13 (-726) (-1038 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-771))) (-15 -2301 ($ $ $)) (-15 -1810 ($ $ $)) (-15 -2274 ((-3 $ "failed") $ $)) (-15 -2374 ((-3 $ "failed") $ $)) (-15 -1685 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1399 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1970 ((-771) $)) (-15 -4138 ((-644 (-2 (|:| |gen| |#1|) (|:| -2561 (-771)))) $)) (-15 -3712 ((-771) $ (-566))) (-15 -3946 (|#1| $ (-566))) (-15 -3352 ($ (-1 (-771) (-771)) $)) (-15 -1657 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-850)) (-6 (-850)) |%noBranch|))) (-1099)) (T -388)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-1099)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-388 *2)) (-4 *2 (-1099)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-771)) (-5 *1 (-388 *2)) (-4 *2 (-1099)))) (-2301 (*1 *1 *1 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-1099)))) (-1810 (*1 *1 *1 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-1099)))) (-2274 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-388 *2)) (-4 *2 (-1099)))) (-2374 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-388 *2)) (-4 *2 (-1099)))) (-1685 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-388 *3)) (|:| |rm| (-388 *3)))) (-5 *1 (-388 *3)) (-4 *3 (-1099)))) (-1399 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-388 *3)) (|:| |mm| (-388 *3)) (|:| |rm| (-388 *3)))) (-5 *1 (-388 *3)) (-4 *3 (-1099)))) (-1970 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-388 *3)) (-4 *3 (-1099)))) (-4138 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -2561 (-771))))) (-5 *1 (-388 *3)) (-4 *3 (-1099)))) (-3712 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *2 (-771)) (-5 *1 (-388 *4)) (-4 *4 (-1099)))) (-3946 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *1 (-388 *2)) (-4 *2 (-1099)))) (-3352 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-771) (-771))) (-5 *1 (-388 *3)) (-4 *3 (-1099)))) (-1657 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1099)) (-5 *1 (-388 *3))))) -(-13 (-726) (-1038 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-771))) (-15 -2301 ($ $ $)) (-15 -1810 ($ $ $)) (-15 -2274 ((-3 $ "failed") $ $)) (-15 -2374 ((-3 $ "failed") $ $)) (-15 -1685 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1399 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1970 ((-771) $)) (-15 -4138 ((-644 (-2 (|:| |gen| |#1|) (|:| -2561 (-771)))) $)) (-15 -3712 ((-771) $ (-566))) (-15 -3946 (|#1| $ (-566))) (-15 -3352 ($ (-1 (-771) (-771)) $)) (-15 -1657 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-850)) (-6 (-850)) |%noBranch|))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) 47)) (-3991 (($ $) 46)) (-2388 (((-112) $) 44)) (-4175 (((-3 $ "failed") $ $) 20)) (-3012 (($) 18 T CONST)) (-4307 (((-3 (-566) "failed") $) 53)) (-4205 (((-566) $) 54)) (-1878 (((-3 $ "failed") $) 37)) (-3934 (((-112) $) 35)) (-2097 (($ $ $) 60)) (-3962 (($ $ $) 59)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-2994 (((-3 $ "failed") $ $) 48)) (-3783 (((-862) $) 12) (($ (-566)) 33) (($ $) 49) (($ (-566)) 52)) (-2107 (((-771)) 32 T CONST)) (-3117 (((-112) $ $) 9)) (-2695 (((-112) $ $) 45)) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-3009 (((-112) $ $) 57)) (-2984 (((-112) $ $) 56)) (-2947 (((-112) $ $) 6)) (-2995 (((-112) $ $) 58)) (-2969 (((-112) $ $) 55)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) +((-2988 (((-112) $ $) NIL)) (-3870 (((-771) $) 74)) (-2463 (($) NIL T CONST)) (-3356 (((-3 $ "failed") $ $) 77)) (-2229 (((-3 |#1| "failed") $) NIL)) (-4158 ((|#1| $) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-4298 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64)) (-2389 (((-112) $) 17)) (-2121 ((|#1| $ (-566)) NIL)) (-2707 (((-771) $ (-566)) NIL)) (-1478 (($ $ $) NIL (|has| |#1| (-850)))) (-2599 (($ $ $) NIL (|has| |#1| (-850)))) (-3499 (($ (-1 |#1| |#1|) $) 40)) (-3480 (($ (-1 (-771) (-771)) $) 37)) (-3722 (((-3 $ "failed") $ $) 60)) (-3380 (((-1157) $) NIL)) (-3740 (($ $ $) 28)) (-3625 (($ $ $) 26)) (-4072 (((-1119) $) NIL)) (-1616 (((-644 (-2 (|:| |gen| |#1|) (|:| -3521 (-771)))) $) 34)) (-4100 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 70)) (-3152 (((-862) $) 24) (($ |#1|) NIL)) (-3044 (((-112) $ $) NIL)) (-4366 (($) 11 T CONST)) (-2968 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2914 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2935 (((-112) $ $) 84 (|has| |#1| (-850)))) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ |#1| (-771)) 42)) (* (($ $ $) 52) (($ |#1| $) 32) (($ $ |#1|) 30))) +(((-388 |#1|) (-13 (-726) (-1038 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-771))) (-15 -3625 ($ $ $)) (-15 -3740 ($ $ $)) (-15 -3722 ((-3 $ "failed") $ $)) (-15 -3356 ((-3 $ "failed") $ $)) (-15 -4100 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4298 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3870 ((-771) $)) (-15 -1616 ((-644 (-2 (|:| |gen| |#1|) (|:| -3521 (-771)))) $)) (-15 -2707 ((-771) $ (-566))) (-15 -2121 (|#1| $ (-566))) (-15 -3480 ($ (-1 (-771) (-771)) $)) (-15 -3499 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-850)) (-6 (-850)) |%noBranch|))) (-1099)) (T -388)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-1099)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-388 *2)) (-4 *2 (-1099)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-771)) (-5 *1 (-388 *2)) (-4 *2 (-1099)))) (-3625 (*1 *1 *1 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-1099)))) (-3740 (*1 *1 *1 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-1099)))) (-3722 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-388 *2)) (-4 *2 (-1099)))) (-3356 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-388 *2)) (-4 *2 (-1099)))) (-4100 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-388 *3)) (|:| |rm| (-388 *3)))) (-5 *1 (-388 *3)) (-4 *3 (-1099)))) (-4298 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-388 *3)) (|:| |mm| (-388 *3)) (|:| |rm| (-388 *3)))) (-5 *1 (-388 *3)) (-4 *3 (-1099)))) (-3870 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-388 *3)) (-4 *3 (-1099)))) (-1616 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -3521 (-771))))) (-5 *1 (-388 *3)) (-4 *3 (-1099)))) (-2707 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *2 (-771)) (-5 *1 (-388 *4)) (-4 *4 (-1099)))) (-2121 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *1 (-388 *2)) (-4 *2 (-1099)))) (-3480 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-771) (-771))) (-5 *1 (-388 *3)) (-4 *3 (-1099)))) (-3499 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1099)) (-5 *1 (-388 *3))))) +(-13 (-726) (-1038 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-771))) (-15 -3625 ($ $ $)) (-15 -3740 ($ $ $)) (-15 -3722 ((-3 $ "failed") $ $)) (-15 -3356 ((-3 $ "failed") $ $)) (-15 -4100 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4298 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3870 ((-771) $)) (-15 -1616 ((-644 (-2 (|:| |gen| |#1|) (|:| -3521 (-771)))) $)) (-15 -2707 ((-771) $ (-566))) (-15 -2121 (|#1| $ (-566))) (-15 -3480 ($ (-1 (-771) (-771)) $)) (-15 -3499 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-850)) (-6 (-850)) |%noBranch|))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) 47)) (-2161 (($ $) 46)) (-2345 (((-112) $) 44)) (-3967 (((-3 $ "failed") $ $) 20)) (-2463 (($) 18 T CONST)) (-2229 (((-3 (-566) "failed") $) 53)) (-4158 (((-566) $) 54)) (-3245 (((-3 $ "failed") $) 37)) (-2389 (((-112) $) 35)) (-1478 (($ $ $) 60)) (-2599 (($ $ $) 59)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-2978 (((-3 $ "failed") $ $) 48)) (-3152 (((-862) $) 12) (($ (-566)) 33) (($ $) 49) (($ (-566)) 52)) (-2593 (((-771)) 32 T CONST)) (-3044 (((-112) $ $) 9)) (-3014 (((-112) $ $) 45)) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-2968 (((-112) $ $) 57)) (-2946 (((-112) $ $) 56)) (-2914 (((-112) $ $) 6)) (-2956 (((-112) $ $) 58)) (-2935 (((-112) $ $) 55)) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) (((-389) (-140)) (T -389)) NIL (-13 (-558) (-850) (-1038 (-566))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-616 (-566)) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-291) . T) ((-558) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-640 $) . T) ((-717 $) . T) ((-726) . T) ((-850) . T) ((-1038 (-566)) . T) ((-1051 $) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) -((-3007 (((-112) $ $) NIL)) (-2419 (((-112) $) 25)) (-3850 (((-112) $) 22)) (-4265 (($ (-1157) (-1157) (-1157)) 26)) (-2640 (((-1157) $) 16)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-2029 (($ (-1157) (-1157) (-1157)) 14)) (-4063 (((-1157) $) 17)) (-1411 (((-112) $) 18)) (-3124 (((-1157) $) 15)) (-3783 (((-862) $) 12) (($ (-1157)) 13) (((-1157) $) 9)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) 7))) +((-2988 (((-112) $ $) NIL)) (-2362 (((-112) $) 25)) (-2083 (((-112) $) 22)) (-1860 (($ (-1157) (-1157) (-1157)) 26)) (-1368 (((-1157) $) 16)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-2691 (($ (-1157) (-1157) (-1157)) 14)) (-3869 (((-1157) $) 17)) (-3989 (((-112) $) 18)) (-1618 (((-1157) $) 15)) (-3152 (((-862) $) 12) (($ (-1157)) 13) (((-1157) $) 9)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) 7))) (((-390) (-391)) (T -390)) NIL (-391) -((-3007 (((-112) $ $) 7)) (-2419 (((-112) $) 17)) (-3850 (((-112) $) 18)) (-4265 (($ (-1157) (-1157) (-1157)) 16)) (-2640 (((-1157) $) 21)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-2029 (($ (-1157) (-1157) (-1157)) 23)) (-4063 (((-1157) $) 20)) (-1411 (((-112) $) 19)) (-3124 (((-1157) $) 22)) (-3783 (((-862) $) 12) (($ (-1157)) 25) (((-1157) $) 24)) (-3117 (((-112) $ $) 9)) (-2947 (((-112) $ $) 6))) +((-2988 (((-112) $ $) 7)) (-2362 (((-112) $) 17)) (-2083 (((-112) $) 18)) (-1860 (($ (-1157) (-1157) (-1157)) 16)) (-1368 (((-1157) $) 21)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-2691 (($ (-1157) (-1157) (-1157)) 23)) (-3869 (((-1157) $) 20)) (-3989 (((-112) $) 19)) (-1618 (((-1157) $) 22)) (-3152 (((-862) $) 12) (($ (-1157)) 25) (((-1157) $) 24)) (-3044 (((-112) $ $) 9)) (-2914 (((-112) $ $) 6))) (((-391) (-140)) (T -391)) -((-2029 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1157)) (-4 *1 (-391)))) (-3124 (*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-1157)))) (-2640 (*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-1157)))) (-4063 (*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-1157)))) (-1411 (*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-112)))) (-3850 (*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-112)))) (-2419 (*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-112)))) (-4265 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1157)) (-4 *1 (-391))))) -(-13 (-1099) (-492 (-1157)) (-10 -8 (-15 -2029 ($ (-1157) (-1157) (-1157))) (-15 -3124 ((-1157) $)) (-15 -2640 ((-1157) $)) (-15 -4063 ((-1157) $)) (-15 -1411 ((-112) $)) (-15 -3850 ((-112) $)) (-15 -2419 ((-112) $)) (-15 -4265 ($ (-1157) (-1157) (-1157))))) +((-2691 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1157)) (-4 *1 (-391)))) (-1618 (*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-1157)))) (-1368 (*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-1157)))) (-3869 (*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-1157)))) (-3989 (*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-112)))) (-2083 (*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-112)))) (-2362 (*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-112)))) (-1860 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1157)) (-4 *1 (-391))))) +(-13 (-1099) (-492 (-1157)) (-10 -8 (-15 -2691 ($ (-1157) (-1157) (-1157))) (-15 -1618 ((-1157) $)) (-15 -1368 ((-1157) $)) (-15 -3869 ((-1157) $)) (-15 -3989 ((-112) $)) (-15 -2083 ((-112) $)) (-15 -2362 ((-112) $)) (-15 -1860 ($ (-1157) (-1157) (-1157))))) (((-102) . T) ((-616 #0=(-1157)) . T) ((-613 (-862)) . T) ((-613 #0#) . T) ((-492 #0#) . T) ((-1099) . T)) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-2849 (((-862) $) 64)) (-3012 (($) NIL T CONST)) (-3942 (($ $ (-921)) NIL)) (-2322 (($ $ (-921)) NIL)) (-2437 (($ $ (-921)) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3441 (($ (-771)) 38)) (-3164 (((-771)) 18)) (-3346 (((-862) $) 66)) (-3171 (($ $ $) NIL)) (-3783 (((-862) $) NIL)) (-3117 (((-112) $ $) NIL)) (-2320 (($ $ $ $) NIL)) (-3027 (($ $ $) NIL)) (-2479 (($) 24 T CONST)) (-2947 (((-112) $ $) 41)) (-3053 (($ $) 48) (($ $ $) 50)) (-3041 (($ $ $) 51)) (** (($ $ (-921)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 52) (($ $ |#3|) NIL) (($ |#3| $) 47))) -(((-392 |#1| |#2| |#3|) (-13 (-744 |#3|) (-10 -8 (-15 -3164 ((-771))) (-15 -3346 ((-862) $)) (-15 -2849 ((-862) $)) (-15 -3441 ($ (-771))))) (-771) (-771) (-172)) (T -392)) -((-3164 (*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-392 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-172)))) (-3346 (*1 *2 *1) (-12 (-5 *2 (-862)) (-5 *1 (-392 *3 *4 *5)) (-14 *3 (-771)) (-14 *4 (-771)) (-4 *5 (-172)))) (-2849 (*1 *2 *1) (-12 (-5 *2 (-862)) (-5 *1 (-392 *3 *4 *5)) (-14 *3 (-771)) (-14 *4 (-771)) (-4 *5 (-172)))) (-3441 (*1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-392 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-172))))) -(-13 (-744 |#3|) (-10 -8 (-15 -3164 ((-771))) (-15 -3346 ((-862) $)) (-15 -2849 ((-862) $)) (-15 -3441 ($ (-771))))) -((-2435 (((-1157)) 12)) (-1923 (((-1146 (-1157))) 31)) (-3412 (((-1269) (-1157)) 28) (((-1269) (-390)) 27)) (-3423 (((-1269)) 29)) (-2164 (((-1146 (-1157))) 30))) -(((-393) (-10 -7 (-15 -2164 ((-1146 (-1157)))) (-15 -1923 ((-1146 (-1157)))) (-15 -3423 ((-1269))) (-15 -3412 ((-1269) (-390))) (-15 -3412 ((-1269) (-1157))) (-15 -2435 ((-1157))))) (T -393)) -((-2435 (*1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-393)))) (-3412 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-393)))) (-3412 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1269)) (-5 *1 (-393)))) (-3423 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-393)))) (-1923 (*1 *2) (-12 (-5 *2 (-1146 (-1157))) (-5 *1 (-393)))) (-2164 (*1 *2) (-12 (-5 *2 (-1146 (-1157))) (-5 *1 (-393))))) -(-10 -7 (-15 -2164 ((-1146 (-1157)))) (-15 -1923 ((-1146 (-1157)))) (-15 -3423 ((-1269))) (-15 -3412 ((-1269) (-390))) (-15 -3412 ((-1269) (-1157))) (-15 -2435 ((-1157)))) -((-3254 (((-771) (-338 |#1| |#2| |#3| |#4|)) 19))) -(((-394 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3254 ((-771) (-338 |#1| |#2| |#3| |#4|)))) (-13 (-370) (-365)) (-1240 |#1|) (-1240 (-409 |#2|)) (-344 |#1| |#2| |#3|)) (T -394)) -((-3254 (*1 *2 *3) (-12 (-5 *3 (-338 *4 *5 *6 *7)) (-4 *4 (-13 (-370) (-365))) (-4 *5 (-1240 *4)) (-4 *6 (-1240 (-409 *5))) (-4 *7 (-344 *4 *5 *6)) (-5 *2 (-771)) (-5 *1 (-394 *4 *5 *6 *7))))) -(-10 -7 (-15 -3254 ((-771) (-338 |#1| |#2| |#3| |#4|)))) -((-3783 (((-396) |#1|) 11))) -(((-395 |#1|) (-10 -7 (-15 -3783 ((-396) |#1|))) (-1099)) (T -395)) -((-3783 (*1 *2 *3) (-12 (-5 *2 (-396)) (-5 *1 (-395 *3)) (-4 *3 (-1099))))) -(-10 -7 (-15 -3783 ((-396) |#1|))) -((-3007 (((-112) $ $) NIL)) (-3093 (((-644 (-1157)) $ (-644 (-1157))) 43)) (-4289 (((-644 (-1157)) $ (-644 (-1157))) 44)) (-1792 (((-644 (-1157)) $ (-644 (-1157))) 45)) (-3695 (((-644 (-1157)) $) 40)) (-4265 (($) 30)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-1342 (((-644 (-1157)) $) 41)) (-3337 (((-644 (-1157)) $) 42)) (-1675 (((-1269) $ (-566)) 38) (((-1269) $) 39)) (-1348 (($ (-862) (-566)) 35)) (-3783 (((-862) $) 54) (($ (-862)) 32)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) -(((-396) (-13 (-1099) (-616 (-862)) (-10 -8 (-15 -1348 ($ (-862) (-566))) (-15 -1675 ((-1269) $ (-566))) (-15 -1675 ((-1269) $)) (-15 -3337 ((-644 (-1157)) $)) (-15 -1342 ((-644 (-1157)) $)) (-15 -4265 ($)) (-15 -3695 ((-644 (-1157)) $)) (-15 -1792 ((-644 (-1157)) $ (-644 (-1157)))) (-15 -4289 ((-644 (-1157)) $ (-644 (-1157)))) (-15 -3093 ((-644 (-1157)) $ (-644 (-1157))))))) (T -396)) -((-1348 (*1 *1 *2 *3) (-12 (-5 *2 (-862)) (-5 *3 (-566)) (-5 *1 (-396)))) (-1675 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *2 (-1269)) (-5 *1 (-396)))) (-1675 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-396)))) (-3337 (*1 *2 *1) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-396)))) (-1342 (*1 *2 *1) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-396)))) (-4265 (*1 *1) (-5 *1 (-396))) (-3695 (*1 *2 *1) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-396)))) (-1792 (*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-396)))) (-4289 (*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-396)))) (-3093 (*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-396))))) -(-13 (-1099) (-616 (-862)) (-10 -8 (-15 -1348 ($ (-862) (-566))) (-15 -1675 ((-1269) $ (-566))) (-15 -1675 ((-1269) $)) (-15 -3337 ((-644 (-1157)) $)) (-15 -1342 ((-644 (-1157)) $)) (-15 -4265 ($)) (-15 -3695 ((-644 (-1157)) $)) (-15 -1792 ((-644 (-1157)) $ (-644 (-1157)))) (-15 -4289 ((-644 (-1157)) $ (-644 (-1157)))) (-15 -3093 ((-644 (-1157)) $ (-644 (-1157)))))) -((-3435 (((-1269) $) 7)) (-3783 (((-862) $) 8))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-1932 (((-862) $) 64)) (-2463 (($) NIL T CONST)) (-1856 (($ $ (-921)) NIL)) (-4090 (($ $ (-921)) NIL)) (-3270 (($ $ (-921)) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3302 (($ (-771)) 38)) (-3126 (((-771)) 18)) (-4101 (((-862) $) 66)) (-2527 (($ $ $) NIL)) (-3152 (((-862) $) NIL)) (-3044 (((-112) $ $) NIL)) (-3876 (($ $ $ $) NIL)) (-1471 (($ $ $) NIL)) (-4356 (($) 24 T CONST)) (-2914 (((-112) $ $) 41)) (-3012 (($ $) 48) (($ $ $) 50)) (-3002 (($ $ $) 51)) (** (($ $ (-921)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 52) (($ $ |#3|) NIL) (($ |#3| $) 47))) +(((-392 |#1| |#2| |#3|) (-13 (-744 |#3|) (-10 -8 (-15 -3126 ((-771))) (-15 -4101 ((-862) $)) (-15 -1932 ((-862) $)) (-15 -3302 ($ (-771))))) (-771) (-771) (-172)) (T -392)) +((-3126 (*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-392 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-172)))) (-4101 (*1 *2 *1) (-12 (-5 *2 (-862)) (-5 *1 (-392 *3 *4 *5)) (-14 *3 (-771)) (-14 *4 (-771)) (-4 *5 (-172)))) (-1932 (*1 *2 *1) (-12 (-5 *2 (-862)) (-5 *1 (-392 *3 *4 *5)) (-14 *3 (-771)) (-14 *4 (-771)) (-4 *5 (-172)))) (-3302 (*1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-392 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-172))))) +(-13 (-744 |#3|) (-10 -8 (-15 -3126 ((-771))) (-15 -4101 ((-862) $)) (-15 -1932 ((-862) $)) (-15 -3302 ($ (-771))))) +((-3710 (((-1157)) 12)) (-2348 (((-1146 (-1157))) 31)) (-1561 (((-1269) (-1157)) 28) (((-1269) (-390)) 27)) (-1572 (((-1269)) 29)) (-1987 (((-1146 (-1157))) 30))) +(((-393) (-10 -7 (-15 -1987 ((-1146 (-1157)))) (-15 -2348 ((-1146 (-1157)))) (-15 -1572 ((-1269))) (-15 -1561 ((-1269) (-390))) (-15 -1561 ((-1269) (-1157))) (-15 -3710 ((-1157))))) (T -393)) +((-3710 (*1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-393)))) (-1561 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-393)))) (-1561 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1269)) (-5 *1 (-393)))) (-1572 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-393)))) (-2348 (*1 *2) (-12 (-5 *2 (-1146 (-1157))) (-5 *1 (-393)))) (-1987 (*1 *2) (-12 (-5 *2 (-1146 (-1157))) (-5 *1 (-393))))) +(-10 -7 (-15 -1987 ((-1146 (-1157)))) (-15 -2348 ((-1146 (-1157)))) (-15 -1572 ((-1269))) (-15 -1561 ((-1269) (-390))) (-15 -1561 ((-1269) (-1157))) (-15 -3710 ((-1157)))) +((-2679 (((-771) (-338 |#1| |#2| |#3| |#4|)) 19))) +(((-394 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2679 ((-771) (-338 |#1| |#2| |#3| |#4|)))) (-13 (-370) (-365)) (-1240 |#1|) (-1240 (-409 |#2|)) (-344 |#1| |#2| |#3|)) (T -394)) +((-2679 (*1 *2 *3) (-12 (-5 *3 (-338 *4 *5 *6 *7)) (-4 *4 (-13 (-370) (-365))) (-4 *5 (-1240 *4)) (-4 *6 (-1240 (-409 *5))) (-4 *7 (-344 *4 *5 *6)) (-5 *2 (-771)) (-5 *1 (-394 *4 *5 *6 *7))))) +(-10 -7 (-15 -2679 ((-771) (-338 |#1| |#2| |#3| |#4|)))) +((-3152 (((-396) |#1|) 11))) +(((-395 |#1|) (-10 -7 (-15 -3152 ((-396) |#1|))) (-1099)) (T -395)) +((-3152 (*1 *2 *3) (-12 (-5 *2 (-396)) (-5 *1 (-395 *3)) (-4 *3 (-1099))))) +(-10 -7 (-15 -3152 ((-396) |#1|))) +((-2988 (((-112) $ $) NIL)) (-2539 (((-644 (-1157)) $ (-644 (-1157))) 43)) (-3241 (((-644 (-1157)) $ (-644 (-1157))) 44)) (-2456 (((-644 (-1157)) $ (-644 (-1157))) 45)) (-2618 (((-644 (-1157)) $) 40)) (-1860 (($) 30)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3760 (((-644 (-1157)) $) 41)) (-1404 (((-644 (-1157)) $) 42)) (-1710 (((-1269) $ (-566)) 38) (((-1269) $) 39)) (-2376 (($ (-862) (-566)) 35)) (-3152 (((-862) $) 54) (($ (-862)) 32)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) +(((-396) (-13 (-1099) (-616 (-862)) (-10 -8 (-15 -2376 ($ (-862) (-566))) (-15 -1710 ((-1269) $ (-566))) (-15 -1710 ((-1269) $)) (-15 -1404 ((-644 (-1157)) $)) (-15 -3760 ((-644 (-1157)) $)) (-15 -1860 ($)) (-15 -2618 ((-644 (-1157)) $)) (-15 -2456 ((-644 (-1157)) $ (-644 (-1157)))) (-15 -3241 ((-644 (-1157)) $ (-644 (-1157)))) (-15 -2539 ((-644 (-1157)) $ (-644 (-1157))))))) (T -396)) +((-2376 (*1 *1 *2 *3) (-12 (-5 *2 (-862)) (-5 *3 (-566)) (-5 *1 (-396)))) (-1710 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *2 (-1269)) (-5 *1 (-396)))) (-1710 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-396)))) (-1404 (*1 *2 *1) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-396)))) (-3760 (*1 *2 *1) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-396)))) (-1860 (*1 *1) (-5 *1 (-396))) (-2618 (*1 *2 *1) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-396)))) (-2456 (*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-396)))) (-3241 (*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-396)))) (-2539 (*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-396))))) +(-13 (-1099) (-616 (-862)) (-10 -8 (-15 -2376 ($ (-862) (-566))) (-15 -1710 ((-1269) $ (-566))) (-15 -1710 ((-1269) $)) (-15 -1404 ((-644 (-1157)) $)) (-15 -3760 ((-644 (-1157)) $)) (-15 -1860 ($)) (-15 -2618 ((-644 (-1157)) $)) (-15 -2456 ((-644 (-1157)) $ (-644 (-1157)))) (-15 -3241 ((-644 (-1157)) $ (-644 (-1157)))) (-15 -2539 ((-644 (-1157)) $ (-644 (-1157)))))) +((-1586 (((-1269) $) 7)) (-3152 (((-862) $) 8))) (((-397) (-140)) (T -397)) -((-3435 (*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-1269))))) -(-13 (-1214) (-613 (-862)) (-10 -8 (-15 -3435 ((-1269) $)))) +((-1586 (*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-1269))))) +(-13 (-1214) (-613 (-862)) (-10 -8 (-15 -1586 ((-1269) $)))) (((-613 (-862)) . T) ((-1214) . T)) -((-4307 (((-3 $ "failed") (-317 (-381))) 21) (((-3 $ "failed") (-317 (-566))) 19) (((-3 $ "failed") (-952 (-381))) 17) (((-3 $ "failed") (-952 (-566))) 15) (((-3 $ "failed") (-409 (-952 (-381)))) 13) (((-3 $ "failed") (-409 (-952 (-566)))) 11)) (-4205 (($ (-317 (-381))) 22) (($ (-317 (-566))) 20) (($ (-952 (-381))) 18) (($ (-952 (-566))) 16) (($ (-409 (-952 (-381)))) 14) (($ (-409 (-952 (-566)))) 12)) (-3435 (((-1269) $) 7)) (-3783 (((-862) $) 8) (($ (-644 (-331))) 25) (($ (-331)) 24) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3261 (-644 (-331))))) 23))) +((-2229 (((-3 $ "failed") (-317 (-381))) 21) (((-3 $ "failed") (-317 (-566))) 19) (((-3 $ "failed") (-952 (-381))) 17) (((-3 $ "failed") (-952 (-566))) 15) (((-3 $ "failed") (-409 (-952 (-381)))) 13) (((-3 $ "failed") (-409 (-952 (-566)))) 11)) (-4158 (($ (-317 (-381))) 22) (($ (-317 (-566))) 20) (($ (-952 (-381))) 18) (($ (-952 (-566))) 16) (($ (-409 (-952 (-381)))) 14) (($ (-409 (-952 (-566)))) 12)) (-1586 (((-1269) $) 7)) (-3152 (((-862) $) 8) (($ (-644 (-331))) 25) (($ (-331)) 24) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3906 (-644 (-331))))) 23))) (((-398) (-140)) (T -398)) -((-3783 (*1 *1 *2) (-12 (-5 *2 (-644 (-331))) (-4 *1 (-398)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-398)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1179)) (|:| -3261 (-644 (-331))))) (-4 *1 (-398)))) (-4205 (*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-4 *1 (-398)))) (-4307 (*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-381))) (-4 *1 (-398)))) (-4205 (*1 *1 *2) (-12 (-5 *2 (-317 (-566))) (-4 *1 (-398)))) (-4307 (*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-566))) (-4 *1 (-398)))) (-4205 (*1 *1 *2) (-12 (-5 *2 (-952 (-381))) (-4 *1 (-398)))) (-4307 (*1 *1 *2) (|partial| -12 (-5 *2 (-952 (-381))) (-4 *1 (-398)))) (-4205 (*1 *1 *2) (-12 (-5 *2 (-952 (-566))) (-4 *1 (-398)))) (-4307 (*1 *1 *2) (|partial| -12 (-5 *2 (-952 (-566))) (-4 *1 (-398)))) (-4205 (*1 *1 *2) (-12 (-5 *2 (-409 (-952 (-381)))) (-4 *1 (-398)))) (-4307 (*1 *1 *2) (|partial| -12 (-5 *2 (-409 (-952 (-381)))) (-4 *1 (-398)))) (-4205 (*1 *1 *2) (-12 (-5 *2 (-409 (-952 (-566)))) (-4 *1 (-398)))) (-4307 (*1 *1 *2) (|partial| -12 (-5 *2 (-409 (-952 (-566)))) (-4 *1 (-398))))) -(-13 (-397) (-10 -8 (-15 -3783 ($ (-644 (-331)))) (-15 -3783 ($ (-331))) (-15 -3783 ($ (-2 (|:| |localSymbols| (-1179)) (|:| -3261 (-644 (-331)))))) (-15 -4205 ($ (-317 (-381)))) (-15 -4307 ((-3 $ "failed") (-317 (-381)))) (-15 -4205 ($ (-317 (-566)))) (-15 -4307 ((-3 $ "failed") (-317 (-566)))) (-15 -4205 ($ (-952 (-381)))) (-15 -4307 ((-3 $ "failed") (-952 (-381)))) (-15 -4205 ($ (-952 (-566)))) (-15 -4307 ((-3 $ "failed") (-952 (-566)))) (-15 -4205 ($ (-409 (-952 (-381))))) (-15 -4307 ((-3 $ "failed") (-409 (-952 (-381))))) (-15 -4205 ($ (-409 (-952 (-566))))) (-15 -4307 ((-3 $ "failed") (-409 (-952 (-566))))))) +((-3152 (*1 *1 *2) (-12 (-5 *2 (-644 (-331))) (-4 *1 (-398)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-398)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1179)) (|:| -3906 (-644 (-331))))) (-4 *1 (-398)))) (-4158 (*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-4 *1 (-398)))) (-2229 (*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-381))) (-4 *1 (-398)))) (-4158 (*1 *1 *2) (-12 (-5 *2 (-317 (-566))) (-4 *1 (-398)))) (-2229 (*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-566))) (-4 *1 (-398)))) (-4158 (*1 *1 *2) (-12 (-5 *2 (-952 (-381))) (-4 *1 (-398)))) (-2229 (*1 *1 *2) (|partial| -12 (-5 *2 (-952 (-381))) (-4 *1 (-398)))) (-4158 (*1 *1 *2) (-12 (-5 *2 (-952 (-566))) (-4 *1 (-398)))) (-2229 (*1 *1 *2) (|partial| -12 (-5 *2 (-952 (-566))) (-4 *1 (-398)))) (-4158 (*1 *1 *2) (-12 (-5 *2 (-409 (-952 (-381)))) (-4 *1 (-398)))) (-2229 (*1 *1 *2) (|partial| -12 (-5 *2 (-409 (-952 (-381)))) (-4 *1 (-398)))) (-4158 (*1 *1 *2) (-12 (-5 *2 (-409 (-952 (-566)))) (-4 *1 (-398)))) (-2229 (*1 *1 *2) (|partial| -12 (-5 *2 (-409 (-952 (-566)))) (-4 *1 (-398))))) +(-13 (-397) (-10 -8 (-15 -3152 ($ (-644 (-331)))) (-15 -3152 ($ (-331))) (-15 -3152 ($ (-2 (|:| |localSymbols| (-1179)) (|:| -3906 (-644 (-331)))))) (-15 -4158 ($ (-317 (-381)))) (-15 -2229 ((-3 $ "failed") (-317 (-381)))) (-15 -4158 ($ (-317 (-566)))) (-15 -2229 ((-3 $ "failed") (-317 (-566)))) (-15 -4158 ($ (-952 (-381)))) (-15 -2229 ((-3 $ "failed") (-952 (-381)))) (-15 -4158 ($ (-952 (-566)))) (-15 -2229 ((-3 $ "failed") (-952 (-566)))) (-15 -4158 ($ (-409 (-952 (-381))))) (-15 -2229 ((-3 $ "failed") (-409 (-952 (-381))))) (-15 -4158 ($ (-409 (-952 (-566))))) (-15 -2229 ((-3 $ "failed") (-409 (-952 (-566))))))) (((-613 (-862)) . T) ((-397) . T) ((-1214) . T)) -((-2018 (((-644 (-1157)) (-644 (-1157))) 9)) (-3435 (((-1269) (-390)) 27)) (-3127 (((-1103) (-1175) (-644 (-1175)) (-1178) (-644 (-1175))) 60) (((-1103) (-1175) (-644 (-3 (|:| |array| (-644 (-1175))) (|:| |scalar| (-1175)))) (-644 (-644 (-3 (|:| |array| (-644 (-1175))) (|:| |scalar| (-1175))))) (-644 (-1175)) (-1175)) 35) (((-1103) (-1175) (-644 (-3 (|:| |array| (-644 (-1175))) (|:| |scalar| (-1175)))) (-644 (-644 (-3 (|:| |array| (-644 (-1175))) (|:| |scalar| (-1175))))) (-644 (-1175))) 34))) -(((-399) (-10 -7 (-15 -3127 ((-1103) (-1175) (-644 (-3 (|:| |array| (-644 (-1175))) (|:| |scalar| (-1175)))) (-644 (-644 (-3 (|:| |array| (-644 (-1175))) (|:| |scalar| (-1175))))) (-644 (-1175)))) (-15 -3127 ((-1103) (-1175) (-644 (-3 (|:| |array| (-644 (-1175))) (|:| |scalar| (-1175)))) (-644 (-644 (-3 (|:| |array| (-644 (-1175))) (|:| |scalar| (-1175))))) (-644 (-1175)) (-1175))) (-15 -3127 ((-1103) (-1175) (-644 (-1175)) (-1178) (-644 (-1175)))) (-15 -3435 ((-1269) (-390))) (-15 -2018 ((-644 (-1157)) (-644 (-1157)))))) (T -399)) -((-2018 (*1 *2 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-399)))) (-3435 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1269)) (-5 *1 (-399)))) (-3127 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-644 (-1175))) (-5 *5 (-1178)) (-5 *3 (-1175)) (-5 *2 (-1103)) (-5 *1 (-399)))) (-3127 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-644 (-644 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-644 (-3 (|:| |array| (-644 *3)) (|:| |scalar| (-1175))))) (-5 *6 (-644 (-1175))) (-5 *3 (-1175)) (-5 *2 (-1103)) (-5 *1 (-399)))) (-3127 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-644 (-644 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-644 (-3 (|:| |array| (-644 *3)) (|:| |scalar| (-1175))))) (-5 *6 (-644 (-1175))) (-5 *3 (-1175)) (-5 *2 (-1103)) (-5 *1 (-399))))) -(-10 -7 (-15 -3127 ((-1103) (-1175) (-644 (-3 (|:| |array| (-644 (-1175))) (|:| |scalar| (-1175)))) (-644 (-644 (-3 (|:| |array| (-644 (-1175))) (|:| |scalar| (-1175))))) (-644 (-1175)))) (-15 -3127 ((-1103) (-1175) (-644 (-3 (|:| |array| (-644 (-1175))) (|:| |scalar| (-1175)))) (-644 (-644 (-3 (|:| |array| (-644 (-1175))) (|:| |scalar| (-1175))))) (-644 (-1175)) (-1175))) (-15 -3127 ((-1103) (-1175) (-644 (-1175)) (-1178) (-644 (-1175)))) (-15 -3435 ((-1269) (-390))) (-15 -2018 ((-644 (-1157)) (-644 (-1157))))) -((-3435 (((-1269) $) 36)) (-3783 (((-862) $) 98) (($ (-331)) 100) (($ (-644 (-331))) 99) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3261 (-644 (-331))))) 97) (($ (-317 (-701))) 53) (($ (-317 (-699))) 73) (($ (-317 (-694))) 86) (($ (-295 (-317 (-701)))) 68) (($ (-295 (-317 (-699)))) 81) (($ (-295 (-317 (-694)))) 94) (($ (-317 (-566))) 105) (($ (-317 (-381))) 118) (($ (-317 (-169 (-381)))) 131) (($ (-295 (-317 (-566)))) 113) (($ (-295 (-317 (-381)))) 126) (($ (-295 (-317 (-169 (-381))))) 139))) -(((-400 |#1| |#2| |#3| |#4|) (-13 (-397) (-10 -8 (-15 -3783 ($ (-331))) (-15 -3783 ($ (-644 (-331)))) (-15 -3783 ($ (-2 (|:| |localSymbols| (-1179)) (|:| -3261 (-644 (-331)))))) (-15 -3783 ($ (-317 (-701)))) (-15 -3783 ($ (-317 (-699)))) (-15 -3783 ($ (-317 (-694)))) (-15 -3783 ($ (-295 (-317 (-701))))) (-15 -3783 ($ (-295 (-317 (-699))))) (-15 -3783 ($ (-295 (-317 (-694))))) (-15 -3783 ($ (-317 (-566)))) (-15 -3783 ($ (-317 (-381)))) (-15 -3783 ($ (-317 (-169 (-381))))) (-15 -3783 ($ (-295 (-317 (-566))))) (-15 -3783 ($ (-295 (-317 (-381))))) (-15 -3783 ($ (-295 (-317 (-169 (-381)))))))) (-1175) (-3 (|:| |fst| (-436)) (|:| -2895 "void")) (-644 (-1175)) (-1179)) (T -400)) -((-3783 (*1 *1 *2) (-12 (-5 *2 (-331)) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -2895 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-644 (-331))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -2895 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1179)) (|:| -3261 (-644 (-331))))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -2895 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-317 (-701))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -2895 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-317 (-699))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -2895 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-317 (-694))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -2895 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-701)))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -2895 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-699)))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -2895 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-694)))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -2895 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-317 (-566))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -2895 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -2895 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-317 (-169 (-381)))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -2895 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-566)))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -2895 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-381)))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -2895 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-169 (-381))))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -2895 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179))))) -(-13 (-397) (-10 -8 (-15 -3783 ($ (-331))) (-15 -3783 ($ (-644 (-331)))) (-15 -3783 ($ (-2 (|:| |localSymbols| (-1179)) (|:| -3261 (-644 (-331)))))) (-15 -3783 ($ (-317 (-701)))) (-15 -3783 ($ (-317 (-699)))) (-15 -3783 ($ (-317 (-694)))) (-15 -3783 ($ (-295 (-317 (-701))))) (-15 -3783 ($ (-295 (-317 (-699))))) (-15 -3783 ($ (-295 (-317 (-694))))) (-15 -3783 ($ (-317 (-566)))) (-15 -3783 ($ (-317 (-381)))) (-15 -3783 ($ (-317 (-169 (-381))))) (-15 -3783 ($ (-295 (-317 (-566))))) (-15 -3783 ($ (-295 (-317 (-381))))) (-15 -3783 ($ (-295 (-317 (-169 (-381)))))))) -((-3007 (((-112) $ $) NIL)) (-4199 ((|#2| $) 38)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-1545 (($ (-409 |#2|)) 95)) (-2821 (((-644 (-2 (|:| -2852 (-771)) (|:| -1320 |#2|) (|:| |num| |#2|))) $) 39)) (-3561 (($ $) 34) (($ $ (-771)) 36)) (-1348 (((-409 |#2|) $) 51)) (-3796 (($ (-644 (-2 (|:| -2852 (-771)) (|:| -1320 |#2|) (|:| |num| |#2|)))) 33)) (-3783 (((-862) $) 132)) (-3117 (((-112) $ $) NIL)) (-2875 (($ $) 35) (($ $ (-771)) 37)) (-2947 (((-112) $ $) NIL)) (-3041 (($ |#2| $) 41))) -(((-401 |#1| |#2|) (-13 (-1099) (-614 (-409 |#2|)) (-10 -8 (-15 -3041 ($ |#2| $)) (-15 -1545 ($ (-409 |#2|))) (-15 -4199 (|#2| $)) (-15 -2821 ((-644 (-2 (|:| -2852 (-771)) (|:| -1320 |#2|) (|:| |num| |#2|))) $)) (-15 -3796 ($ (-644 (-2 (|:| -2852 (-771)) (|:| -1320 |#2|) (|:| |num| |#2|))))) (-15 -3561 ($ $)) (-15 -2875 ($ $)) (-15 -3561 ($ $ (-771))) (-15 -2875 ($ $ (-771))))) (-13 (-365) (-147)) (-1240 |#1|)) (T -401)) -((-3041 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-365) (-147))) (-5 *1 (-401 *3 *2)) (-4 *2 (-1240 *3)))) (-1545 (*1 *1 *2) (-12 (-5 *2 (-409 *4)) (-4 *4 (-1240 *3)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-401 *3 *4)))) (-4199 (*1 *2 *1) (-12 (-4 *2 (-1240 *3)) (-5 *1 (-401 *3 *2)) (-4 *3 (-13 (-365) (-147))))) (-2821 (*1 *2 *1) (-12 (-4 *3 (-13 (-365) (-147))) (-5 *2 (-644 (-2 (|:| -2852 (-771)) (|:| -1320 *4) (|:| |num| *4)))) (-5 *1 (-401 *3 *4)) (-4 *4 (-1240 *3)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-644 (-2 (|:| -2852 (-771)) (|:| -1320 *4) (|:| |num| *4)))) (-4 *4 (-1240 *3)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-401 *3 *4)))) (-3561 (*1 *1 *1) (-12 (-4 *2 (-13 (-365) (-147))) (-5 *1 (-401 *2 *3)) (-4 *3 (-1240 *2)))) (-2875 (*1 *1 *1) (-12 (-4 *2 (-13 (-365) (-147))) (-5 *1 (-401 *2 *3)) (-4 *3 (-1240 *2)))) (-3561 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-401 *3 *4)) (-4 *4 (-1240 *3)))) (-2875 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-401 *3 *4)) (-4 *4 (-1240 *3))))) -(-13 (-1099) (-614 (-409 |#2|)) (-10 -8 (-15 -3041 ($ |#2| $)) (-15 -1545 ($ (-409 |#2|))) (-15 -4199 (|#2| $)) (-15 -2821 ((-644 (-2 (|:| -2852 (-771)) (|:| -1320 |#2|) (|:| |num| |#2|))) $)) (-15 -3796 ($ (-644 (-2 (|:| -2852 (-771)) (|:| -1320 |#2|) (|:| |num| |#2|))))) (-15 -3561 ($ $)) (-15 -2875 ($ $)) (-15 -3561 ($ $ (-771))) (-15 -2875 ($ $ (-771))))) -((-3007 (((-112) $ $) 9 (-2809 (|has| |#1| (-886 (-566))) (|has| |#1| (-886 (-381)))))) (-2062 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 16 (|has| |#1| (-886 (-381)))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 15 (|has| |#1| (-886 (-566))))) (-4117 (((-1157) $) 13 (-2809 (|has| |#1| (-886 (-566))) (|has| |#1| (-886 (-381)))))) (-4035 (((-1119) $) 12 (-2809 (|has| |#1| (-886 (-566))) (|has| |#1| (-886 (-381)))))) (-3783 (((-862) $) 11 (-2809 (|has| |#1| (-886 (-566))) (|has| |#1| (-886 (-381)))))) (-3117 (((-112) $ $) 14 (-2809 (|has| |#1| (-886 (-566))) (|has| |#1| (-886 (-381)))))) (-2947 (((-112) $ $) 10 (-2809 (|has| |#1| (-886 (-566))) (|has| |#1| (-886 (-381))))))) +((-2353 (((-644 (-1157)) (-644 (-1157))) 9)) (-1586 (((-1269) (-390)) 27)) (-1439 (((-1103) (-1175) (-644 (-1175)) (-1178) (-644 (-1175))) 60) (((-1103) (-1175) (-644 (-3 (|:| |array| (-644 (-1175))) (|:| |scalar| (-1175)))) (-644 (-644 (-3 (|:| |array| (-644 (-1175))) (|:| |scalar| (-1175))))) (-644 (-1175)) (-1175)) 35) (((-1103) (-1175) (-644 (-3 (|:| |array| (-644 (-1175))) (|:| |scalar| (-1175)))) (-644 (-644 (-3 (|:| |array| (-644 (-1175))) (|:| |scalar| (-1175))))) (-644 (-1175))) 34))) +(((-399) (-10 -7 (-15 -1439 ((-1103) (-1175) (-644 (-3 (|:| |array| (-644 (-1175))) (|:| |scalar| (-1175)))) (-644 (-644 (-3 (|:| |array| (-644 (-1175))) (|:| |scalar| (-1175))))) (-644 (-1175)))) (-15 -1439 ((-1103) (-1175) (-644 (-3 (|:| |array| (-644 (-1175))) (|:| |scalar| (-1175)))) (-644 (-644 (-3 (|:| |array| (-644 (-1175))) (|:| |scalar| (-1175))))) (-644 (-1175)) (-1175))) (-15 -1439 ((-1103) (-1175) (-644 (-1175)) (-1178) (-644 (-1175)))) (-15 -1586 ((-1269) (-390))) (-15 -2353 ((-644 (-1157)) (-644 (-1157)))))) (T -399)) +((-2353 (*1 *2 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-399)))) (-1586 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1269)) (-5 *1 (-399)))) (-1439 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-644 (-1175))) (-5 *5 (-1178)) (-5 *3 (-1175)) (-5 *2 (-1103)) (-5 *1 (-399)))) (-1439 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-644 (-644 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-644 (-3 (|:| |array| (-644 *3)) (|:| |scalar| (-1175))))) (-5 *6 (-644 (-1175))) (-5 *3 (-1175)) (-5 *2 (-1103)) (-5 *1 (-399)))) (-1439 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-644 (-644 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-644 (-3 (|:| |array| (-644 *3)) (|:| |scalar| (-1175))))) (-5 *6 (-644 (-1175))) (-5 *3 (-1175)) (-5 *2 (-1103)) (-5 *1 (-399))))) +(-10 -7 (-15 -1439 ((-1103) (-1175) (-644 (-3 (|:| |array| (-644 (-1175))) (|:| |scalar| (-1175)))) (-644 (-644 (-3 (|:| |array| (-644 (-1175))) (|:| |scalar| (-1175))))) (-644 (-1175)))) (-15 -1439 ((-1103) (-1175) (-644 (-3 (|:| |array| (-644 (-1175))) (|:| |scalar| (-1175)))) (-644 (-644 (-3 (|:| |array| (-644 (-1175))) (|:| |scalar| (-1175))))) (-644 (-1175)) (-1175))) (-15 -1439 ((-1103) (-1175) (-644 (-1175)) (-1178) (-644 (-1175)))) (-15 -1586 ((-1269) (-390))) (-15 -2353 ((-644 (-1157)) (-644 (-1157))))) +((-1586 (((-1269) $) 36)) (-3152 (((-862) $) 98) (($ (-331)) 100) (($ (-644 (-331))) 99) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3906 (-644 (-331))))) 97) (($ (-317 (-701))) 53) (($ (-317 (-699))) 73) (($ (-317 (-694))) 86) (($ (-295 (-317 (-701)))) 68) (($ (-295 (-317 (-699)))) 81) (($ (-295 (-317 (-694)))) 94) (($ (-317 (-566))) 105) (($ (-317 (-381))) 118) (($ (-317 (-169 (-381)))) 131) (($ (-295 (-317 (-566)))) 113) (($ (-295 (-317 (-381)))) 126) (($ (-295 (-317 (-169 (-381))))) 139))) +(((-400 |#1| |#2| |#3| |#4|) (-13 (-397) (-10 -8 (-15 -3152 ($ (-331))) (-15 -3152 ($ (-644 (-331)))) (-15 -3152 ($ (-2 (|:| |localSymbols| (-1179)) (|:| -3906 (-644 (-331)))))) (-15 -3152 ($ (-317 (-701)))) (-15 -3152 ($ (-317 (-699)))) (-15 -3152 ($ (-317 (-694)))) (-15 -3152 ($ (-295 (-317 (-701))))) (-15 -3152 ($ (-295 (-317 (-699))))) (-15 -3152 ($ (-295 (-317 (-694))))) (-15 -3152 ($ (-317 (-566)))) (-15 -3152 ($ (-317 (-381)))) (-15 -3152 ($ (-317 (-169 (-381))))) (-15 -3152 ($ (-295 (-317 (-566))))) (-15 -3152 ($ (-295 (-317 (-381))))) (-15 -3152 ($ (-295 (-317 (-169 (-381)))))))) (-1175) (-3 (|:| |fst| (-436)) (|:| -3907 "void")) (-644 (-1175)) (-1179)) (T -400)) +((-3152 (*1 *1 *2) (-12 (-5 *2 (-331)) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3907 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-644 (-331))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3907 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1179)) (|:| -3906 (-644 (-331))))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3907 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-317 (-701))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3907 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-317 (-699))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3907 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-317 (-694))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3907 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-701)))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3907 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-699)))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3907 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-694)))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3907 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-317 (-566))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3907 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3907 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-317 (-169 (-381)))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3907 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-566)))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3907 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-381)))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3907 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-169 (-381))))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3907 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179))))) +(-13 (-397) (-10 -8 (-15 -3152 ($ (-331))) (-15 -3152 ($ (-644 (-331)))) (-15 -3152 ($ (-2 (|:| |localSymbols| (-1179)) (|:| -3906 (-644 (-331)))))) (-15 -3152 ($ (-317 (-701)))) (-15 -3152 ($ (-317 (-699)))) (-15 -3152 ($ (-317 (-694)))) (-15 -3152 ($ (-295 (-317 (-701))))) (-15 -3152 ($ (-295 (-317 (-699))))) (-15 -3152 ($ (-295 (-317 (-694))))) (-15 -3152 ($ (-317 (-566)))) (-15 -3152 ($ (-317 (-381)))) (-15 -3152 ($ (-317 (-169 (-381))))) (-15 -3152 ($ (-295 (-317 (-566))))) (-15 -3152 ($ (-295 (-317 (-381))))) (-15 -3152 ($ (-295 (-317 (-169 (-381)))))))) +((-2988 (((-112) $ $) NIL)) (-2426 ((|#2| $) 38)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-2257 (($ (-409 |#2|)) 95)) (-4378 (((-644 (-2 (|:| -2201 (-771)) (|:| -4290 |#2|) (|:| |num| |#2|))) $) 39)) (-3629 (($ $) 34) (($ $ (-771)) 36)) (-2376 (((-409 |#2|) $) 51)) (-1340 (($ (-644 (-2 (|:| -2201 (-771)) (|:| -4290 |#2|) (|:| |num| |#2|)))) 33)) (-3152 (((-862) $) 132)) (-3044 (((-112) $ $) NIL)) (-3497 (($ $) 35) (($ $ (-771)) 37)) (-2914 (((-112) $ $) NIL)) (-3002 (($ |#2| $) 41))) +(((-401 |#1| |#2|) (-13 (-1099) (-614 (-409 |#2|)) (-10 -8 (-15 -3002 ($ |#2| $)) (-15 -2257 ($ (-409 |#2|))) (-15 -2426 (|#2| $)) (-15 -4378 ((-644 (-2 (|:| -2201 (-771)) (|:| -4290 |#2|) (|:| |num| |#2|))) $)) (-15 -1340 ($ (-644 (-2 (|:| -2201 (-771)) (|:| -4290 |#2|) (|:| |num| |#2|))))) (-15 -3629 ($ $)) (-15 -3497 ($ $)) (-15 -3629 ($ $ (-771))) (-15 -3497 ($ $ (-771))))) (-13 (-365) (-147)) (-1240 |#1|)) (T -401)) +((-3002 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-365) (-147))) (-5 *1 (-401 *3 *2)) (-4 *2 (-1240 *3)))) (-2257 (*1 *1 *2) (-12 (-5 *2 (-409 *4)) (-4 *4 (-1240 *3)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-401 *3 *4)))) (-2426 (*1 *2 *1) (-12 (-4 *2 (-1240 *3)) (-5 *1 (-401 *3 *2)) (-4 *3 (-13 (-365) (-147))))) (-4378 (*1 *2 *1) (-12 (-4 *3 (-13 (-365) (-147))) (-5 *2 (-644 (-2 (|:| -2201 (-771)) (|:| -4290 *4) (|:| |num| *4)))) (-5 *1 (-401 *3 *4)) (-4 *4 (-1240 *3)))) (-1340 (*1 *1 *2) (-12 (-5 *2 (-644 (-2 (|:| -2201 (-771)) (|:| -4290 *4) (|:| |num| *4)))) (-4 *4 (-1240 *3)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-401 *3 *4)))) (-3629 (*1 *1 *1) (-12 (-4 *2 (-13 (-365) (-147))) (-5 *1 (-401 *2 *3)) (-4 *3 (-1240 *2)))) (-3497 (*1 *1 *1) (-12 (-4 *2 (-13 (-365) (-147))) (-5 *1 (-401 *2 *3)) (-4 *3 (-1240 *2)))) (-3629 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-401 *3 *4)) (-4 *4 (-1240 *3)))) (-3497 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-401 *3 *4)) (-4 *4 (-1240 *3))))) +(-13 (-1099) (-614 (-409 |#2|)) (-10 -8 (-15 -3002 ($ |#2| $)) (-15 -2257 ($ (-409 |#2|))) (-15 -2426 (|#2| $)) (-15 -4378 ((-644 (-2 (|:| -2201 (-771)) (|:| -4290 |#2|) (|:| |num| |#2|))) $)) (-15 -1340 ($ (-644 (-2 (|:| -2201 (-771)) (|:| -4290 |#2|) (|:| |num| |#2|))))) (-15 -3629 ($ $)) (-15 -3497 ($ $)) (-15 -3629 ($ $ (-771))) (-15 -3497 ($ $ (-771))))) +((-2988 (((-112) $ $) 9 (-2768 (|has| |#1| (-886 (-566))) (|has| |#1| (-886 (-381)))))) (-2926 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 16 (|has| |#1| (-886 (-381)))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 15 (|has| |#1| (-886 (-566))))) (-3380 (((-1157) $) 13 (-2768 (|has| |#1| (-886 (-566))) (|has| |#1| (-886 (-381)))))) (-4072 (((-1119) $) 12 (-2768 (|has| |#1| (-886 (-566))) (|has| |#1| (-886 (-381)))))) (-3152 (((-862) $) 11 (-2768 (|has| |#1| (-886 (-566))) (|has| |#1| (-886 (-381)))))) (-3044 (((-112) $ $) 14 (-2768 (|has| |#1| (-886 (-566))) (|has| |#1| (-886 (-381)))))) (-2914 (((-112) $ $) 10 (-2768 (|has| |#1| (-886 (-566))) (|has| |#1| (-886 (-381))))))) (((-402 |#1|) (-140) (-1214)) (T -402)) NIL (-13 (-1214) (-10 -7 (IF (|has| |t#1| (-886 (-566))) (-6 (-886 (-566))) |%noBranch|) (IF (|has| |t#1| (-886 (-381))) (-6 (-886 (-381))) |%noBranch|))) -(((-102) -2809 (|has| |#1| (-886 (-566))) (|has| |#1| (-886 (-381)))) ((-613 (-862)) -2809 (|has| |#1| (-886 (-566))) (|has| |#1| (-886 (-381)))) ((-886 (-381)) |has| |#1| (-886 (-381))) ((-886 (-566)) |has| |#1| (-886 (-566))) ((-1099) -2809 (|has| |#1| (-886 (-566))) (|has| |#1| (-886 (-381)))) ((-1214) . T)) -((-3369 (($ $) 10) (($ $ (-771)) 12))) -(((-403 |#1|) (-10 -8 (-15 -3369 (|#1| |#1| (-771))) (-15 -3369 (|#1| |#1|))) (-404)) (T -403)) +(((-102) -2768 (|has| |#1| (-886 (-566))) (|has| |#1| (-886 (-381)))) ((-613 (-862)) -2768 (|has| |#1| (-886 (-566))) (|has| |#1| (-886 (-381)))) ((-886 (-381)) |has| |#1| (-886 (-381))) ((-886 (-566)) |has| |#1| (-886 (-566))) ((-1099) -2768 (|has| |#1| (-886 (-566))) (|has| |#1| (-886 (-381)))) ((-1214) . T)) +((-1574 (($ $) 10) (($ $ (-771)) 12))) +(((-403 |#1|) (-10 -8 (-15 -1574 (|#1| |#1| (-771))) (-15 -1574 (|#1| |#1|))) (-404)) (T -403)) NIL -(-10 -8 (-15 -3369 (|#1| |#1| (-771))) (-15 -3369 (|#1| |#1|))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) 47)) (-3991 (($ $) 46)) (-2388 (((-112) $) 44)) (-4175 (((-3 $ "failed") $ $) 20)) (-1550 (($ $) 81)) (-3184 (((-420 $) $) 80)) (-2837 (((-112) $ $) 65)) (-3012 (($) 18 T CONST)) (-2946 (($ $ $) 61)) (-1878 (((-3 $ "failed") $) 37)) (-2957 (($ $ $) 62)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) 57)) (-3369 (($ $) 87) (($ $ (-771)) 86)) (-3268 (((-112) $) 79)) (-3254 (((-833 (-921)) $) 89)) (-3934 (((-112) $) 35)) (-3775 (((-3 (-644 $) "failed") (-644 $) $) 58)) (-2167 (($ $ $) 52) (($ (-644 $)) 51)) (-4117 (((-1157) $) 10)) (-1713 (($ $) 78)) (-4035 (((-1119) $) 11)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-2214 (($ $ $) 54) (($ (-644 $)) 53)) (-3719 (((-420 $) $) 82)) (-3148 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2994 (((-3 $ "failed") $ $) 48)) (-3161 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-3039 (((-771) $) 64)) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) 63)) (-1437 (((-3 (-771) "failed") $ $) 88)) (-3783 (((-862) $) 12) (($ (-566)) 33) (($ $) 49) (($ (-409 (-566))) 74)) (-3144 (((-3 $ "failed") $) 90)) (-2107 (((-771)) 32 T CONST)) (-3117 (((-112) $ $) 9)) (-2695 (((-112) $ $) 45)) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-2947 (((-112) $ $) 6)) (-3065 (($ $ $) 73)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 77)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 76) (($ (-409 (-566)) $) 75))) +(-10 -8 (-15 -1574 (|#1| |#1| (-771))) (-15 -1574 (|#1| |#1|))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) 47)) (-2161 (($ $) 46)) (-2345 (((-112) $) 44)) (-3967 (((-3 $ "failed") $ $) 20)) (-1378 (($ $) 81)) (-1364 (((-420 $) $) 80)) (-2085 (((-112) $ $) 65)) (-2463 (($) 18 T CONST)) (-2933 (($ $ $) 61)) (-3245 (((-3 $ "failed") $) 37)) (-2945 (($ $ $) 62)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) 57)) (-1574 (($ $) 87) (($ $ (-771)) 86)) (-1615 (((-112) $) 79)) (-2679 (((-833 (-921)) $) 89)) (-2389 (((-112) $) 35)) (-3816 (((-3 (-644 $) "failed") (-644 $) $) 58)) (-2128 (($ $ $) 52) (($ (-644 $)) 51)) (-3380 (((-1157) $) 10)) (-2748 (($ $) 78)) (-4072 (((-1119) $) 11)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-2164 (($ $ $) 54) (($ (-644 $)) 53)) (-1624 (((-420 $) $) 82)) (-3005 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2978 (((-3 $ "failed") $ $) 48)) (-2915 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-4357 (((-771) $) 64)) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) 63)) (-3169 (((-3 (-771) "failed") $ $) 88)) (-3152 (((-862) $) 12) (($ (-566)) 33) (($ $) 49) (($ (-409 (-566))) 74)) (-2633 (((-3 $ "failed") $) 90)) (-2593 (((-771)) 32 T CONST)) (-3044 (((-112) $ $) 9)) (-3014 (((-112) $ $) 45)) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-2914 (((-112) $ $) 6)) (-3025 (($ $ $) 73)) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 77)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 76) (($ (-409 (-566)) $) 75))) (((-404) (-140)) (T -404)) -((-3254 (*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-833 (-921))))) (-1437 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-404)) (-5 *2 (-771)))) (-3369 (*1 *1 *1) (-4 *1 (-404))) (-3369 (*1 *1 *1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-771))))) -(-13 (-365) (-145) (-10 -8 (-15 -3254 ((-833 (-921)) $)) (-15 -1437 ((-3 (-771) "failed") $ $)) (-15 -3369 ($ $)) (-15 -3369 ($ $ (-771))))) +((-2679 (*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-833 (-921))))) (-3169 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-404)) (-5 *2 (-771)))) (-1574 (*1 *1 *1) (-4 *1 (-404))) (-1574 (*1 *1 *1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-771))))) +(-13 (-365) (-145) (-10 -8 (-15 -2679 ((-833 (-921)) $)) (-15 -3169 ((-3 (-771) "failed") $ $)) (-15 -1574 ($ $)) (-15 -1574 ($ $ (-771))))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) . T) ((-616 #0#) . T) ((-616 (-566)) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-454) . T) ((-558) . T) ((-646 #0#) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 #0#) . T) ((-648 $) . T) ((-640 #0#) . T) ((-640 $) . T) ((-717 #0#) . T) ((-717 $) . T) ((-726) . T) ((-920) . T) ((-1051 #0#) . T) ((-1051 $) . T) ((-1056 #0#) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1218) . T)) -((-2985 (($ (-566) (-566)) 11) (($ (-566) (-566) (-921)) NIL)) (-4163 (((-921)) 20) (((-921) (-921)) NIL))) -(((-405 |#1|) (-10 -8 (-15 -4163 ((-921) (-921))) (-15 -4163 ((-921))) (-15 -2985 (|#1| (-566) (-566) (-921))) (-15 -2985 (|#1| (-566) (-566)))) (-406)) (T -405)) -((-4163 (*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-405 *3)) (-4 *3 (-406)))) (-4163 (*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-405 *3)) (-4 *3 (-406))))) -(-10 -8 (-15 -4163 ((-921) (-921))) (-15 -4163 ((-921))) (-15 -2985 (|#1| (-566) (-566) (-921))) (-15 -2985 (|#1| (-566) (-566)))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-1515 (((-566) $) 97)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) 47)) (-3991 (($ $) 46)) (-2388 (((-112) $) 44)) (-2587 (($ $) 95)) (-4175 (((-3 $ "failed") $ $) 20)) (-1550 (($ $) 81)) (-3184 (((-420 $) $) 80)) (-3731 (($ $) 105)) (-2837 (((-112) $ $) 65)) (-4364 (((-566) $) 122)) (-3012 (($) 18 T CONST)) (-2514 (($ $) 94)) (-4307 (((-3 (-566) "failed") $) 110) (((-3 (-409 (-566)) "failed") $) 107)) (-4205 (((-566) $) 111) (((-409 (-566)) $) 108)) (-2946 (($ $ $) 61)) (-1878 (((-3 $ "failed") $) 37)) (-2957 (($ $ $) 62)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) 57)) (-3268 (((-112) $) 79)) (-1951 (((-921)) 138) (((-921) (-921)) 135 (|has| $ (-6 -4405)))) (-1897 (((-112) $) 120)) (-2062 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 101)) (-3254 (((-566) $) 144)) (-3934 (((-112) $) 35)) (-2140 (($ $ (-566)) 104)) (-1577 (($ $) 100)) (-2117 (((-112) $) 121)) (-3775 (((-3 (-644 $) "failed") (-644 $) $) 58)) (-2097 (($ $ $) 119) (($) 132 (-12 (-2418 (|has| $ (-6 -4405))) (-2418 (|has| $ (-6 -4397)))))) (-3962 (($ $ $) 118) (($) 131 (-12 (-2418 (|has| $ (-6 -4405))) (-2418 (|has| $ (-6 -4397)))))) (-1729 (((-566) $) 141)) (-2167 (($ $ $) 52) (($ (-644 $)) 51)) (-4117 (((-1157) $) 10)) (-1713 (($ $) 78)) (-3267 (((-921) (-566)) 134 (|has| $ (-6 -4405)))) (-4035 (((-1119) $) 11)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-2214 (($ $ $) 54) (($ (-644 $)) 53)) (-2938 (($ $) 96)) (-3470 (($ $) 98)) (-2985 (($ (-566) (-566)) 146) (($ (-566) (-566) (-921)) 145)) (-3719 (((-420 $) $) 82)) (-3148 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2994 (((-3 $ "failed") $ $) 48)) (-3161 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-2852 (((-566) $) 142)) (-3039 (((-771) $) 64)) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) 63)) (-4163 (((-921)) 139) (((-921) (-921)) 136 (|has| $ (-6 -4405)))) (-1927 (((-921) (-566)) 133 (|has| $ (-6 -4405)))) (-1348 (((-381) $) 113) (((-225) $) 112) (((-892 (-381)) $) 102)) (-3783 (((-862) $) 12) (($ (-566)) 33) (($ $) 49) (($ (-409 (-566))) 74) (($ (-566)) 109) (($ (-409 (-566))) 106)) (-2107 (((-771)) 32 T CONST)) (-2948 (($ $) 99)) (-4099 (((-921)) 140) (((-921) (-921)) 137 (|has| $ (-6 -4405)))) (-3117 (((-112) $ $) 9)) (-2719 (((-921)) 143)) (-2695 (((-112) $ $) 45)) (-2086 (($ $) 123)) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-3009 (((-112) $ $) 116)) (-2984 (((-112) $ $) 115)) (-2947 (((-112) $ $) 6)) (-2995 (((-112) $ $) 117)) (-2969 (((-112) $ $) 114)) (-3065 (($ $ $) 73)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 77) (($ $ (-409 (-566))) 103)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 76) (($ (-409 (-566)) $) 75))) +((-2938 (($ (-566) (-566)) 11) (($ (-566) (-566) (-921)) NIL)) (-2251 (((-921)) 20) (((-921) (-921)) NIL))) +(((-405 |#1|) (-10 -8 (-15 -2251 ((-921) (-921))) (-15 -2251 ((-921))) (-15 -2938 (|#1| (-566) (-566) (-921))) (-15 -2938 (|#1| (-566) (-566)))) (-406)) (T -405)) +((-2251 (*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-405 *3)) (-4 *3 (-406)))) (-2251 (*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-405 *3)) (-4 *3 (-406))))) +(-10 -8 (-15 -2251 ((-921) (-921))) (-15 -2251 ((-921))) (-15 -2938 (|#1| (-566) (-566) (-921))) (-15 -2938 (|#1| (-566) (-566)))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-1873 (((-566) $) 97)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) 47)) (-2161 (($ $) 46)) (-2345 (((-112) $) 44)) (-2331 (($ $) 95)) (-3967 (((-3 $ "failed") $ $) 20)) (-1378 (($ $) 81)) (-1364 (((-420 $) $) 80)) (-1635 (($ $) 105)) (-2085 (((-112) $ $) 65)) (-2743 (((-566) $) 122)) (-2463 (($) 18 T CONST)) (-3347 (($ $) 94)) (-2229 (((-3 (-566) "failed") $) 110) (((-3 (-409 (-566)) "failed") $) 107)) (-4158 (((-566) $) 111) (((-409 (-566)) $) 108)) (-2933 (($ $ $) 61)) (-3245 (((-3 $ "failed") $) 37)) (-2945 (($ $ $) 62)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) 57)) (-1615 (((-112) $) 79)) (-3262 (((-921)) 138) (((-921) (-921)) 135 (|has| $ (-6 -4405)))) (-2528 (((-112) $) 120)) (-2926 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 101)) (-2679 (((-566) $) 144)) (-2389 (((-112) $) 35)) (-1575 (($ $ (-566)) 104)) (-2064 (($ $) 100)) (-3233 (((-112) $) 121)) (-3816 (((-3 (-644 $) "failed") (-644 $) $) 58)) (-1478 (($ $ $) 119) (($) 132 (-12 (-2404 (|has| $ (-6 -4405))) (-2404 (|has| $ (-6 -4397)))))) (-2599 (($ $ $) 118) (($) 131 (-12 (-2404 (|has| $ (-6 -4405))) (-2404 (|has| $ (-6 -4397)))))) (-2431 (((-566) $) 141)) (-2128 (($ $ $) 52) (($ (-644 $)) 51)) (-3380 (((-1157) $) 10)) (-2748 (($ $) 78)) (-1485 (((-921) (-566)) 134 (|has| $ (-6 -4405)))) (-4072 (((-1119) $) 11)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-2164 (($ $ $) 54) (($ (-644 $)) 53)) (-2487 (($ $) 96)) (-3143 (($ $) 98)) (-2938 (($ (-566) (-566)) 146) (($ (-566) (-566) (-921)) 145)) (-1624 (((-420 $) $) 82)) (-3005 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2978 (((-3 $ "failed") $ $) 48)) (-2915 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-2201 (((-566) $) 142)) (-4357 (((-771) $) 64)) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) 63)) (-2251 (((-921)) 139) (((-921) (-921)) 136 (|has| $ (-6 -4405)))) (-1460 (((-921) (-566)) 133 (|has| $ (-6 -4405)))) (-2376 (((-381) $) 113) (((-225) $) 112) (((-892 (-381)) $) 102)) (-3152 (((-862) $) 12) (($ (-566)) 33) (($ $) 49) (($ (-409 (-566))) 74) (($ (-566)) 109) (($ (-409 (-566))) 106)) (-2593 (((-771)) 32 T CONST)) (-3913 (($ $) 99)) (-2367 (((-921)) 140) (((-921) (-921)) 137 (|has| $ (-6 -4405)))) (-3044 (((-112) $ $) 9)) (-2576 (((-921)) 143)) (-3014 (((-112) $ $) 45)) (-1358 (($ $) 123)) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-2968 (((-112) $ $) 116)) (-2946 (((-112) $ $) 115)) (-2914 (((-112) $ $) 6)) (-2956 (((-112) $ $) 117)) (-2935 (((-112) $ $) 114)) (-3025 (($ $ $) 73)) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 77) (($ $ (-409 (-566))) 103)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 76) (($ (-409 (-566)) $) 75))) (((-406) (-140)) (T -406)) -((-2985 (*1 *1 *2 *2) (-12 (-5 *2 (-566)) (-4 *1 (-406)))) (-2985 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-566)) (-5 *3 (-921)) (-4 *1 (-406)))) (-3254 (*1 *2 *1) (-12 (-4 *1 (-406)) (-5 *2 (-566)))) (-2719 (*1 *2) (-12 (-4 *1 (-406)) (-5 *2 (-921)))) (-2852 (*1 *2 *1) (-12 (-4 *1 (-406)) (-5 *2 (-566)))) (-1729 (*1 *2 *1) (-12 (-4 *1 (-406)) (-5 *2 (-566)))) (-4099 (*1 *2) (-12 (-4 *1 (-406)) (-5 *2 (-921)))) (-4163 (*1 *2) (-12 (-4 *1 (-406)) (-5 *2 (-921)))) (-1951 (*1 *2) (-12 (-4 *1 (-406)) (-5 *2 (-921)))) (-4099 (*1 *2 *2) (-12 (-5 *2 (-921)) (|has| *1 (-6 -4405)) (-4 *1 (-406)))) (-4163 (*1 *2 *2) (-12 (-5 *2 (-921)) (|has| *1 (-6 -4405)) (-4 *1 (-406)))) (-1951 (*1 *2 *2) (-12 (-5 *2 (-921)) (|has| *1 (-6 -4405)) (-4 *1 (-406)))) (-3267 (*1 *2 *3) (-12 (-5 *3 (-566)) (|has| *1 (-6 -4405)) (-4 *1 (-406)) (-5 *2 (-921)))) (-1927 (*1 *2 *3) (-12 (-5 *3 (-566)) (|has| *1 (-6 -4405)) (-4 *1 (-406)) (-5 *2 (-921)))) (-2097 (*1 *1) (-12 (-4 *1 (-406)) (-2418 (|has| *1 (-6 -4405))) (-2418 (|has| *1 (-6 -4397))))) (-3962 (*1 *1) (-12 (-4 *1 (-406)) (-2418 (|has| *1 (-6 -4405))) (-2418 (|has| *1 (-6 -4397)))))) -(-13 (-1059) (-10 -8 (-6 -3628) (-15 -2985 ($ (-566) (-566))) (-15 -2985 ($ (-566) (-566) (-921))) (-15 -3254 ((-566) $)) (-15 -2719 ((-921))) (-15 -2852 ((-566) $)) (-15 -1729 ((-566) $)) (-15 -4099 ((-921))) (-15 -4163 ((-921))) (-15 -1951 ((-921))) (IF (|has| $ (-6 -4405)) (PROGN (-15 -4099 ((-921) (-921))) (-15 -4163 ((-921) (-921))) (-15 -1951 ((-921) (-921))) (-15 -3267 ((-921) (-566))) (-15 -1927 ((-921) (-566)))) |%noBranch|) (IF (|has| $ (-6 -4397)) |%noBranch| (IF (|has| $ (-6 -4405)) |%noBranch| (PROGN (-15 -2097 ($)) (-15 -3962 ($))))))) +((-2938 (*1 *1 *2 *2) (-12 (-5 *2 (-566)) (-4 *1 (-406)))) (-2938 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-566)) (-5 *3 (-921)) (-4 *1 (-406)))) (-2679 (*1 *2 *1) (-12 (-4 *1 (-406)) (-5 *2 (-566)))) (-2576 (*1 *2) (-12 (-4 *1 (-406)) (-5 *2 (-921)))) (-2201 (*1 *2 *1) (-12 (-4 *1 (-406)) (-5 *2 (-566)))) (-2431 (*1 *2 *1) (-12 (-4 *1 (-406)) (-5 *2 (-566)))) (-2367 (*1 *2) (-12 (-4 *1 (-406)) (-5 *2 (-921)))) (-2251 (*1 *2) (-12 (-4 *1 (-406)) (-5 *2 (-921)))) (-3262 (*1 *2) (-12 (-4 *1 (-406)) (-5 *2 (-921)))) (-2367 (*1 *2 *2) (-12 (-5 *2 (-921)) (|has| *1 (-6 -4405)) (-4 *1 (-406)))) (-2251 (*1 *2 *2) (-12 (-5 *2 (-921)) (|has| *1 (-6 -4405)) (-4 *1 (-406)))) (-3262 (*1 *2 *2) (-12 (-5 *2 (-921)) (|has| *1 (-6 -4405)) (-4 *1 (-406)))) (-1485 (*1 *2 *3) (-12 (-5 *3 (-566)) (|has| *1 (-6 -4405)) (-4 *1 (-406)) (-5 *2 (-921)))) (-1460 (*1 *2 *3) (-12 (-5 *3 (-566)) (|has| *1 (-6 -4405)) (-4 *1 (-406)) (-5 *2 (-921)))) (-1478 (*1 *1) (-12 (-4 *1 (-406)) (-2404 (|has| *1 (-6 -4405))) (-2404 (|has| *1 (-6 -4397))))) (-2599 (*1 *1) (-12 (-4 *1 (-406)) (-2404 (|has| *1 (-6 -4405))) (-2404 (|has| *1 (-6 -4397)))))) +(-13 (-1059) (-10 -8 (-6 -3603) (-15 -2938 ($ (-566) (-566))) (-15 -2938 ($ (-566) (-566) (-921))) (-15 -2679 ((-566) $)) (-15 -2576 ((-921))) (-15 -2201 ((-566) $)) (-15 -2431 ((-566) $)) (-15 -2367 ((-921))) (-15 -2251 ((-921))) (-15 -3262 ((-921))) (IF (|has| $ (-6 -4405)) (PROGN (-15 -2367 ((-921) (-921))) (-15 -2251 ((-921) (-921))) (-15 -3262 ((-921) (-921))) (-15 -1485 ((-921) (-566))) (-15 -1460 ((-921) (-566)))) |%noBranch|) (IF (|has| $ (-6 -4397)) |%noBranch| (IF (|has| $ (-6 -4405)) |%noBranch| (PROGN (-15 -1478 ($)) (-15 -2599 ($))))))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-616 #0#) . T) ((-616 (-566)) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-614 (-225)) . T) ((-614 (-381)) . T) ((-614 (-892 (-381))) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-454) . T) ((-558) . T) ((-646 #0#) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 #0#) . T) ((-648 $) . T) ((-640 #0#) . T) ((-640 $) . T) ((-717 #0#) . T) ((-717 $) . T) ((-726) . T) ((-791) . T) ((-792) . T) ((-794) . T) ((-795) . T) ((-848) . T) ((-850) . T) ((-886 (-381)) . T) ((-920) . T) ((-1002) . T) ((-1022) . T) ((-1059) . T) ((-1038 (-409 (-566))) . T) ((-1038 (-566)) . T) ((-1051 #0#) . T) ((-1051 $) . T) ((-1056 #0#) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1218) . T)) -((-1301 (((-420 |#2|) (-1 |#2| |#1|) (-420 |#1|)) 20))) -(((-407 |#1| |#2|) (-10 -7 (-15 -1301 ((-420 |#2|) (-1 |#2| |#1|) (-420 |#1|)))) (-558) (-558)) (T -407)) -((-1301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-420 *5)) (-4 *5 (-558)) (-4 *6 (-558)) (-5 *2 (-420 *6)) (-5 *1 (-407 *5 *6))))) -(-10 -7 (-15 -1301 ((-420 |#2|) (-1 |#2| |#1|) (-420 |#1|)))) -((-1301 (((-409 |#2|) (-1 |#2| |#1|) (-409 |#1|)) 13))) -(((-408 |#1| |#2|) (-10 -7 (-15 -1301 ((-409 |#2|) (-1 |#2| |#1|) (-409 |#1|)))) (-558) (-558)) (T -408)) -((-1301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-409 *5)) (-4 *5 (-558)) (-4 *6 (-558)) (-5 *2 (-409 *6)) (-5 *1 (-408 *5 *6))))) -(-10 -7 (-15 -1301 ((-409 |#2|) (-1 |#2| |#1|) (-409 |#1|)))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) 13)) (-1515 ((|#1| $) 21 (|has| |#1| (-308)))) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-3991 (($ $) NIL)) (-2388 (((-112) $) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-1477 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-1550 (($ $) NIL)) (-3184 (((-420 $) $) NIL)) (-3717 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-2837 (((-112) $ $) NIL)) (-4364 (((-566) $) NIL (|has| |#1| (-820)))) (-3012 (($) NIL T CONST)) (-4307 (((-3 |#1| "failed") $) 17) (((-3 (-1175) "failed") $) NIL (|has| |#1| (-1038 (-1175)))) (((-3 (-409 (-566)) "failed") $) 72 (|has| |#1| (-1038 (-566)))) (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566))))) (-4205 ((|#1| $) 15) (((-1175) $) NIL (|has| |#1| (-1038 (-1175)))) (((-409 (-566)) $) 69 (|has| |#1| (-1038 (-566)))) (((-566) $) NIL (|has| |#1| (-1038 (-566))))) (-2946 (($ $ $) NIL)) (-3577 (((-689 (-566)) (-689 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -4227 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) NIL) (((-689 |#1|) (-689 $)) NIL)) (-1878 (((-3 $ "failed") $) 51)) (-1552 (($) NIL (|has| |#1| (-547)))) (-2957 (($ $ $) NIL)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL)) (-3268 (((-112) $) NIL)) (-1897 (((-112) $) NIL (|has| |#1| (-820)))) (-2062 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (|has| |#1| (-886 (-566)))) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (|has| |#1| (-886 (-381))))) (-3934 (((-112) $) 57)) (-1493 (($ $) NIL)) (-4326 ((|#1| $) 73)) (-4363 (((-3 $ "failed") $) NIL (|has| |#1| (-1150)))) (-2117 (((-112) $) NIL (|has| |#1| (-820)))) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2097 (($ $ $) NIL (|has| |#1| (-850)))) (-3962 (($ $ $) NIL (|has| |#1| (-850)))) (-1301 (($ (-1 |#1| |#1|) $) NIL)) (-2167 (($ $ $) NIL) (($ (-644 $)) NIL)) (-4117 (((-1157) $) NIL)) (-1713 (($ $) NIL)) (-1761 (($) NIL (|has| |#1| (-1150)) CONST)) (-4035 (((-1119) $) NIL)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) 100)) (-2214 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2938 (($ $) NIL (|has| |#1| (-308)))) (-3470 ((|#1| $) 28 (|has| |#1| (-547)))) (-4303 (((-420 (-1171 $)) (-1171 $)) 148 (|has| |#1| (-909)))) (-3240 (((-420 (-1171 $)) (-1171 $)) 141 (|has| |#1| (-909)))) (-3719 (((-420 $) $) NIL)) (-3148 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2994 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2055 (($ $ (-644 |#1|) (-644 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-644 (-295 |#1|))) NIL (|has| |#1| (-310 |#1|))) (($ $ (-644 (-1175)) (-644 |#1|)) NIL (|has| |#1| (-516 (-1175) |#1|))) (($ $ (-1175) |#1|) NIL (|has| |#1| (-516 (-1175) |#1|)))) (-3039 (((-771) $) NIL)) (-4390 (($ $ |#1|) NIL (|has| |#1| (-287 |#1| |#1|)))) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL)) (-3561 (($ $) NIL (|has| |#1| (-233))) (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) 64)) (-2023 (($ $) NIL)) (-4339 ((|#1| $) 75)) (-1348 (((-892 (-566)) $) NIL (|has| |#1| (-614 (-892 (-566))))) (((-892 (-381)) $) NIL (|has| |#1| (-614 (-892 (-381))))) (((-538) $) NIL (|has| |#1| (-614 (-538)))) (((-381) $) NIL (|has| |#1| (-1022))) (((-225) $) NIL (|has| |#1| (-1022)))) (-1656 (((-3 (-1264 $) "failed") (-689 $)) 125 (-12 (|has| $ (-145)) (|has| |#1| (-909))))) (-3783 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (($ |#1|) 10) (($ (-1175)) NIL (|has| |#1| (-1038 (-1175))))) (-3144 (((-3 $ "failed") $) 102 (-2809 (-12 (|has| $ (-145)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-2107 (((-771)) 103 T CONST)) (-2948 ((|#1| $) 26 (|has| |#1| (-547)))) (-3117 (((-112) $ $) NIL)) (-2695 (((-112) $ $) NIL)) (-2086 (($ $) NIL (|has| |#1| (-820)))) (-2479 (($) 22 T CONST)) (-4334 (($) 8 T CONST)) (-2452 (((-1157) $) 44 (-12 (|has| |#1| (-547)) (|has| |#1| (-828)))) (((-1157) $ (-112)) 45 (-12 (|has| |#1| (-547)) (|has| |#1| (-828)))) (((-1269) (-822) $) 46 (-12 (|has| |#1| (-547)) (|has| |#1| (-828)))) (((-1269) (-822) $ (-112)) 47 (-12 (|has| |#1| (-547)) (|has| |#1| (-828))))) (-2875 (($ $) NIL (|has| |#1| (-233))) (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3009 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2984 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2947 (((-112) $ $) 66)) (-2995 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2969 (((-112) $ $) 24 (|has| |#1| (-850)))) (-3065 (($ $ $) 136) (($ |#1| |#1|) 53)) (-3053 (($ $) 25) (($ $ $) 56)) (-3041 (($ $ $) 54)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) 135)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 61) (($ $ $) 58) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ |#1| $) 62) (($ $ |#1|) 88))) +((-2319 (((-420 |#2|) (-1 |#2| |#1|) (-420 |#1|)) 20))) +(((-407 |#1| |#2|) (-10 -7 (-15 -2319 ((-420 |#2|) (-1 |#2| |#1|) (-420 |#1|)))) (-558) (-558)) (T -407)) +((-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-420 *5)) (-4 *5 (-558)) (-4 *6 (-558)) (-5 *2 (-420 *6)) (-5 *1 (-407 *5 *6))))) +(-10 -7 (-15 -2319 ((-420 |#2|) (-1 |#2| |#1|) (-420 |#1|)))) +((-2319 (((-409 |#2|) (-1 |#2| |#1|) (-409 |#1|)) 13))) +(((-408 |#1| |#2|) (-10 -7 (-15 -2319 ((-409 |#2|) (-1 |#2| |#1|) (-409 |#1|)))) (-558) (-558)) (T -408)) +((-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-409 *5)) (-4 *5 (-558)) (-4 *6 (-558)) (-5 *2 (-409 *6)) (-5 *1 (-408 *5 *6))))) +(-10 -7 (-15 -2319 ((-409 |#2|) (-1 |#2| |#1|) (-409 |#1|)))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) 13)) (-1873 ((|#1| $) 21 (|has| |#1| (-308)))) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-2161 (($ $) NIL)) (-2345 (((-112) $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-2292 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-1378 (($ $) NIL)) (-1364 (((-420 $) $) NIL)) (-4066 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-2085 (((-112) $ $) NIL)) (-2743 (((-566) $) NIL (|has| |#1| (-820)))) (-2463 (($) NIL T CONST)) (-2229 (((-3 |#1| "failed") $) 17) (((-3 (-1175) "failed") $) NIL (|has| |#1| (-1038 (-1175)))) (((-3 (-409 (-566)) "failed") $) 72 (|has| |#1| (-1038 (-566)))) (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566))))) (-4158 ((|#1| $) 15) (((-1175) $) NIL (|has| |#1| (-1038 (-1175)))) (((-409 (-566)) $) 69 (|has| |#1| (-1038 (-566)))) (((-566) $) NIL (|has| |#1| (-1038 (-566))))) (-2933 (($ $ $) NIL)) (-4089 (((-689 (-566)) (-689 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -3361 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) NIL) (((-689 |#1|) (-689 $)) NIL)) (-3245 (((-3 $ "failed") $) 51)) (-2715 (($) NIL (|has| |#1| (-547)))) (-2945 (($ $ $) NIL)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL)) (-1615 (((-112) $) NIL)) (-2528 (((-112) $) NIL (|has| |#1| (-820)))) (-2926 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (|has| |#1| (-886 (-566)))) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (|has| |#1| (-886 (-381))))) (-2389 (((-112) $) 57)) (-3406 (($ $) NIL)) (-2248 ((|#1| $) 73)) (-2621 (((-3 $ "failed") $) NIL (|has| |#1| (-1150)))) (-3233 (((-112) $) NIL (|has| |#1| (-820)))) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1478 (($ $ $) NIL (|has| |#1| (-850)))) (-2599 (($ $ $) NIL (|has| |#1| (-850)))) (-2319 (($ (-1 |#1| |#1|) $) NIL)) (-2128 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3380 (((-1157) $) NIL)) (-2748 (($ $) NIL)) (-3289 (($) NIL (|has| |#1| (-1150)) CONST)) (-4072 (((-1119) $) NIL)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) 100)) (-2164 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2487 (($ $) NIL (|has| |#1| (-308)))) (-3143 ((|#1| $) 28 (|has| |#1| (-547)))) (-2010 (((-420 (-1171 $)) (-1171 $)) 148 (|has| |#1| (-909)))) (-1893 (((-420 (-1171 $)) (-1171 $)) 141 (|has| |#1| (-909)))) (-1624 (((-420 $) $) NIL)) (-3005 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2978 (((-3 $ "failed") $ $) NIL)) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2023 (($ $ (-644 |#1|) (-644 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-644 (-295 |#1|))) NIL (|has| |#1| (-310 |#1|))) (($ $ (-644 (-1175)) (-644 |#1|)) NIL (|has| |#1| (-516 (-1175) |#1|))) (($ $ (-1175) |#1|) NIL (|has| |#1| (-516 (-1175) |#1|)))) (-4357 (((-771) $) NIL)) (-1309 (($ $ |#1|) NIL (|has| |#1| (-287 |#1| |#1|)))) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL)) (-3629 (($ $) NIL (|has| |#1| (-233))) (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) 64)) (-1452 (($ $) NIL)) (-2260 ((|#1| $) 75)) (-2376 (((-892 (-566)) $) NIL (|has| |#1| (-614 (-892 (-566))))) (((-892 (-381)) $) NIL (|has| |#1| (-614 (-892 (-381))))) (((-538) $) NIL (|has| |#1| (-614 (-538)))) (((-381) $) NIL (|has| |#1| (-1022))) (((-225) $) NIL (|has| |#1| (-1022)))) (-3391 (((-3 (-1264 $) "failed") (-689 $)) 125 (-12 (|has| $ (-145)) (|has| |#1| (-909))))) (-3152 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (($ |#1|) 10) (($ (-1175)) NIL (|has| |#1| (-1038 (-1175))))) (-2633 (((-3 $ "failed") $) 102 (-2768 (-12 (|has| $ (-145)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-2593 (((-771)) 103 T CONST)) (-3913 ((|#1| $) 26 (|has| |#1| (-547)))) (-3044 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-1358 (($ $) NIL (|has| |#1| (-820)))) (-4356 (($) 22 T CONST)) (-4366 (($) 8 T CONST)) (-2226 (((-1157) $) 44 (-12 (|has| |#1| (-547)) (|has| |#1| (-828)))) (((-1157) $ (-112)) 45 (-12 (|has| |#1| (-547)) (|has| |#1| (-828)))) (((-1269) (-822) $) 46 (-12 (|has| |#1| (-547)) (|has| |#1| (-828)))) (((-1269) (-822) $ (-112)) 47 (-12 (|has| |#1| (-547)) (|has| |#1| (-828))))) (-3497 (($ $) NIL (|has| |#1| (-233))) (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2968 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2914 (((-112) $ $) 66)) (-2956 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2935 (((-112) $ $) 24 (|has| |#1| (-850)))) (-3025 (($ $ $) 136) (($ |#1| |#1|) 53)) (-3012 (($ $) 25) (($ $ $) 56)) (-3002 (($ $ $) 54)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) 135)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 61) (($ $ $) 58) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ |#1| $) 62) (($ $ |#1|) 88))) (((-409 |#1|) (-13 (-992 |#1|) (-10 -7 (IF (|has| |#1| (-547)) (IF (|has| |#1| (-828)) (-6 (-828)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4401)) (IF (|has| |#1| (-454)) (IF (|has| |#1| (-6 -4412)) (-6 -4401) |%noBranch|) |%noBranch|) |%noBranch|))) (-558)) (T -409)) NIL (-13 (-992 |#1|) (-10 -7 (IF (|has| |#1| (-547)) (IF (|has| |#1| (-828)) (-6 (-828)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4401)) (IF (|has| |#1| (-454)) (IF (|has| |#1| (-6 -4412)) (-6 -4401) |%noBranch|) |%noBranch|) |%noBranch|))) -((-1872 (((-689 |#2|) (-1264 $)) NIL) (((-689 |#2|)) 18)) (-2392 (($ (-1264 |#2|) (-1264 $)) NIL) (($ (-1264 |#2|)) 24)) (-4360 (((-689 |#2|) $ (-1264 $)) NIL) (((-689 |#2|) $) 40)) (-1627 ((|#3| $) 73)) (-3652 ((|#2| (-1264 $)) NIL) ((|#2|) 20)) (-2154 (((-1264 |#2|) $ (-1264 $)) NIL) (((-689 |#2|) (-1264 $) (-1264 $)) NIL) (((-1264 |#2|) $) 22) (((-689 |#2|) (-1264 $)) 38)) (-1348 (((-1264 |#2|) $) 11) (($ (-1264 |#2|)) 13)) (-1820 ((|#3| $) 55))) -(((-410 |#1| |#2| |#3|) (-10 -8 (-15 -4360 ((-689 |#2|) |#1|)) (-15 -3652 (|#2|)) (-15 -1872 ((-689 |#2|))) (-15 -1348 (|#1| (-1264 |#2|))) (-15 -1348 ((-1264 |#2|) |#1|)) (-15 -2392 (|#1| (-1264 |#2|))) (-15 -2154 ((-689 |#2|) (-1264 |#1|))) (-15 -2154 ((-1264 |#2|) |#1|)) (-15 -1627 (|#3| |#1|)) (-15 -1820 (|#3| |#1|)) (-15 -1872 ((-689 |#2|) (-1264 |#1|))) (-15 -3652 (|#2| (-1264 |#1|))) (-15 -2392 (|#1| (-1264 |#2|) (-1264 |#1|))) (-15 -2154 ((-689 |#2|) (-1264 |#1|) (-1264 |#1|))) (-15 -2154 ((-1264 |#2|) |#1| (-1264 |#1|))) (-15 -4360 ((-689 |#2|) |#1| (-1264 |#1|)))) (-411 |#2| |#3|) (-172) (-1240 |#2|)) (T -410)) -((-1872 (*1 *2) (-12 (-4 *4 (-172)) (-4 *5 (-1240 *4)) (-5 *2 (-689 *4)) (-5 *1 (-410 *3 *4 *5)) (-4 *3 (-411 *4 *5)))) (-3652 (*1 *2) (-12 (-4 *4 (-1240 *2)) (-4 *2 (-172)) (-5 *1 (-410 *3 *2 *4)) (-4 *3 (-411 *2 *4))))) -(-10 -8 (-15 -4360 ((-689 |#2|) |#1|)) (-15 -3652 (|#2|)) (-15 -1872 ((-689 |#2|))) (-15 -1348 (|#1| (-1264 |#2|))) (-15 -1348 ((-1264 |#2|) |#1|)) (-15 -2392 (|#1| (-1264 |#2|))) (-15 -2154 ((-689 |#2|) (-1264 |#1|))) (-15 -2154 ((-1264 |#2|) |#1|)) (-15 -1627 (|#3| |#1|)) (-15 -1820 (|#3| |#1|)) (-15 -1872 ((-689 |#2|) (-1264 |#1|))) (-15 -3652 (|#2| (-1264 |#1|))) (-15 -2392 (|#1| (-1264 |#2|) (-1264 |#1|))) (-15 -2154 ((-689 |#2|) (-1264 |#1|) (-1264 |#1|))) (-15 -2154 ((-1264 |#2|) |#1| (-1264 |#1|))) (-15 -4360 ((-689 |#2|) |#1| (-1264 |#1|)))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-1872 (((-689 |#1|) (-1264 $)) 53) (((-689 |#1|)) 68)) (-3837 ((|#1| $) 59)) (-4175 (((-3 $ "failed") $ $) 20)) (-3012 (($) 18 T CONST)) (-2392 (($ (-1264 |#1|) (-1264 $)) 55) (($ (-1264 |#1|)) 71)) (-4360 (((-689 |#1|) $ (-1264 $)) 60) (((-689 |#1|) $) 66)) (-1878 (((-3 $ "failed") $) 37)) (-4313 (((-921)) 61)) (-3934 (((-112) $) 35)) (-1577 ((|#1| $) 58)) (-1627 ((|#2| $) 51 (|has| |#1| (-365)))) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3652 ((|#1| (-1264 $)) 54) ((|#1|) 67)) (-2154 (((-1264 |#1|) $ (-1264 $)) 57) (((-689 |#1|) (-1264 $) (-1264 $)) 56) (((-1264 |#1|) $) 73) (((-689 |#1|) (-1264 $)) 72)) (-1348 (((-1264 |#1|) $) 70) (($ (-1264 |#1|)) 69)) (-3783 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 44)) (-3144 (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-1820 ((|#2| $) 52)) (-2107 (((-771)) 32 T CONST)) (-3117 (((-112) $ $) 9)) (-2365 (((-1264 $)) 74)) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-2947 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +((-3899 (((-689 |#2|) (-1264 $)) NIL) (((-689 |#2|)) 18)) (-1563 (($ (-1264 |#2|) (-1264 $)) NIL) (($ (-1264 |#2|)) 24)) (-3578 (((-689 |#2|) $ (-1264 $)) NIL) (((-689 |#2|) $) 40)) (-3468 ((|#3| $) 73)) (-4068 ((|#2| (-1264 $)) NIL) ((|#2|) 20)) (-3350 (((-1264 |#2|) $ (-1264 $)) NIL) (((-689 |#2|) (-1264 $) (-1264 $)) NIL) (((-1264 |#2|) $) 22) (((-689 |#2|) (-1264 $)) 38)) (-2376 (((-1264 |#2|) $) 11) (($ (-1264 |#2|)) 13)) (-2318 ((|#3| $) 55))) +(((-410 |#1| |#2| |#3|) (-10 -8 (-15 -3578 ((-689 |#2|) |#1|)) (-15 -4068 (|#2|)) (-15 -3899 ((-689 |#2|))) (-15 -2376 (|#1| (-1264 |#2|))) (-15 -2376 ((-1264 |#2|) |#1|)) (-15 -1563 (|#1| (-1264 |#2|))) (-15 -3350 ((-689 |#2|) (-1264 |#1|))) (-15 -3350 ((-1264 |#2|) |#1|)) (-15 -3468 (|#3| |#1|)) (-15 -2318 (|#3| |#1|)) (-15 -3899 ((-689 |#2|) (-1264 |#1|))) (-15 -4068 (|#2| (-1264 |#1|))) (-15 -1563 (|#1| (-1264 |#2|) (-1264 |#1|))) (-15 -3350 ((-689 |#2|) (-1264 |#1|) (-1264 |#1|))) (-15 -3350 ((-1264 |#2|) |#1| (-1264 |#1|))) (-15 -3578 ((-689 |#2|) |#1| (-1264 |#1|)))) (-411 |#2| |#3|) (-172) (-1240 |#2|)) (T -410)) +((-3899 (*1 *2) (-12 (-4 *4 (-172)) (-4 *5 (-1240 *4)) (-5 *2 (-689 *4)) (-5 *1 (-410 *3 *4 *5)) (-4 *3 (-411 *4 *5)))) (-4068 (*1 *2) (-12 (-4 *4 (-1240 *2)) (-4 *2 (-172)) (-5 *1 (-410 *3 *2 *4)) (-4 *3 (-411 *2 *4))))) +(-10 -8 (-15 -3578 ((-689 |#2|) |#1|)) (-15 -4068 (|#2|)) (-15 -3899 ((-689 |#2|))) (-15 -2376 (|#1| (-1264 |#2|))) (-15 -2376 ((-1264 |#2|) |#1|)) (-15 -1563 (|#1| (-1264 |#2|))) (-15 -3350 ((-689 |#2|) (-1264 |#1|))) (-15 -3350 ((-1264 |#2|) |#1|)) (-15 -3468 (|#3| |#1|)) (-15 -2318 (|#3| |#1|)) (-15 -3899 ((-689 |#2|) (-1264 |#1|))) (-15 -4068 (|#2| (-1264 |#1|))) (-15 -1563 (|#1| (-1264 |#2|) (-1264 |#1|))) (-15 -3350 ((-689 |#2|) (-1264 |#1|) (-1264 |#1|))) (-15 -3350 ((-1264 |#2|) |#1| (-1264 |#1|))) (-15 -3578 ((-689 |#2|) |#1| (-1264 |#1|)))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-3899 (((-689 |#1|) (-1264 $)) 53) (((-689 |#1|)) 68)) (-3833 ((|#1| $) 59)) (-3967 (((-3 $ "failed") $ $) 20)) (-2463 (($) 18 T CONST)) (-1563 (($ (-1264 |#1|) (-1264 $)) 55) (($ (-1264 |#1|)) 71)) (-3578 (((-689 |#1|) $ (-1264 $)) 60) (((-689 |#1|) $) 66)) (-3245 (((-3 $ "failed") $) 37)) (-2755 (((-921)) 61)) (-2389 (((-112) $) 35)) (-2064 ((|#1| $) 58)) (-3468 ((|#2| $) 51 (|has| |#1| (-365)))) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-4068 ((|#1| (-1264 $)) 54) ((|#1|) 67)) (-3350 (((-1264 |#1|) $ (-1264 $)) 57) (((-689 |#1|) (-1264 $) (-1264 $)) 56) (((-1264 |#1|) $) 73) (((-689 |#1|) (-1264 $)) 72)) (-2376 (((-1264 |#1|) $) 70) (($ (-1264 |#1|)) 69)) (-3152 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 44)) (-2633 (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-2318 ((|#2| $) 52)) (-2593 (((-771)) 32 T CONST)) (-3044 (((-112) $ $) 9)) (-2875 (((-1264 $)) 74)) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-2914 (((-112) $ $) 6)) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) (((-411 |#1| |#2|) (-140) (-172) (-1240 |t#1|)) (T -411)) -((-2365 (*1 *2) (-12 (-4 *3 (-172)) (-4 *4 (-1240 *3)) (-5 *2 (-1264 *1)) (-4 *1 (-411 *3 *4)))) (-2154 (*1 *2 *1) (-12 (-4 *1 (-411 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1240 *3)) (-5 *2 (-1264 *3)))) (-2154 (*1 *2 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-411 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1240 *4)) (-5 *2 (-689 *4)))) (-2392 (*1 *1 *2) (-12 (-5 *2 (-1264 *3)) (-4 *3 (-172)) (-4 *1 (-411 *3 *4)) (-4 *4 (-1240 *3)))) (-1348 (*1 *2 *1) (-12 (-4 *1 (-411 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1240 *3)) (-5 *2 (-1264 *3)))) (-1348 (*1 *1 *2) (-12 (-5 *2 (-1264 *3)) (-4 *3 (-172)) (-4 *1 (-411 *3 *4)) (-4 *4 (-1240 *3)))) (-1872 (*1 *2) (-12 (-4 *1 (-411 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1240 *3)) (-5 *2 (-689 *3)))) (-3652 (*1 *2) (-12 (-4 *1 (-411 *2 *3)) (-4 *3 (-1240 *2)) (-4 *2 (-172)))) (-4360 (*1 *2 *1) (-12 (-4 *1 (-411 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1240 *3)) (-5 *2 (-689 *3))))) -(-13 (-372 |t#1| |t#2|) (-10 -8 (-15 -2365 ((-1264 $))) (-15 -2154 ((-1264 |t#1|) $)) (-15 -2154 ((-689 |t#1|) (-1264 $))) (-15 -2392 ($ (-1264 |t#1|))) (-15 -1348 ((-1264 |t#1|) $)) (-15 -1348 ($ (-1264 |t#1|))) (-15 -1872 ((-689 |t#1|))) (-15 -3652 (|t#1|)) (-15 -4360 ((-689 |t#1|) $)))) +((-2875 (*1 *2) (-12 (-4 *3 (-172)) (-4 *4 (-1240 *3)) (-5 *2 (-1264 *1)) (-4 *1 (-411 *3 *4)))) (-3350 (*1 *2 *1) (-12 (-4 *1 (-411 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1240 *3)) (-5 *2 (-1264 *3)))) (-3350 (*1 *2 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-411 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1240 *4)) (-5 *2 (-689 *4)))) (-1563 (*1 *1 *2) (-12 (-5 *2 (-1264 *3)) (-4 *3 (-172)) (-4 *1 (-411 *3 *4)) (-4 *4 (-1240 *3)))) (-2376 (*1 *2 *1) (-12 (-4 *1 (-411 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1240 *3)) (-5 *2 (-1264 *3)))) (-2376 (*1 *1 *2) (-12 (-5 *2 (-1264 *3)) (-4 *3 (-172)) (-4 *1 (-411 *3 *4)) (-4 *4 (-1240 *3)))) (-3899 (*1 *2) (-12 (-4 *1 (-411 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1240 *3)) (-5 *2 (-689 *3)))) (-4068 (*1 *2) (-12 (-4 *1 (-411 *2 *3)) (-4 *3 (-1240 *2)) (-4 *2 (-172)))) (-3578 (*1 *2 *1) (-12 (-4 *1 (-411 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1240 *3)) (-5 *2 (-689 *3))))) +(-13 (-372 |t#1| |t#2|) (-10 -8 (-15 -2875 ((-1264 $))) (-15 -3350 ((-1264 |t#1|) $)) (-15 -3350 ((-689 |t#1|) (-1264 $))) (-15 -1563 ($ (-1264 |t#1|))) (-15 -2376 ((-1264 |t#1|) $)) (-15 -2376 ($ (-1264 |t#1|))) (-15 -3899 ((-689 |t#1|))) (-15 -4068 (|t#1|)) (-15 -3578 ((-689 |t#1|) $)))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 (-566)) . T) ((-616 |#1|) . T) ((-613 (-862)) . T) ((-372 |#1| |#2|) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-640 |#1|) . T) ((-717 |#1|) . T) ((-726) . T) ((-1051 |#1|) . T) ((-1056 |#1|) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) -((-4307 (((-3 |#2| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) 27) (((-3 (-566) "failed") $) 19)) (-4205 ((|#2| $) NIL) (((-409 (-566)) $) 24) (((-566) $) 14)) (-3783 (($ |#2|) NIL) (($ (-409 (-566))) 22) (($ (-566)) 11))) -(((-412 |#1| |#2|) (-10 -8 (-15 -3783 (|#1| (-566))) (-15 -4307 ((-3 (-566) "failed") |#1|)) (-15 -4205 ((-566) |#1|)) (-15 -3783 (|#1| (-409 (-566)))) (-15 -4307 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -4205 ((-409 (-566)) |#1|)) (-15 -4205 (|#2| |#1|)) (-15 -4307 ((-3 |#2| "failed") |#1|)) (-15 -3783 (|#1| |#2|))) (-413 |#2|) (-1214)) (T -412)) +((-2229 (((-3 |#2| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) 27) (((-3 (-566) "failed") $) 19)) (-4158 ((|#2| $) NIL) (((-409 (-566)) $) 24) (((-566) $) 14)) (-3152 (($ |#2|) NIL) (($ (-409 (-566))) 22) (($ (-566)) 11))) +(((-412 |#1| |#2|) (-10 -8 (-15 -3152 (|#1| (-566))) (-15 -2229 ((-3 (-566) "failed") |#1|)) (-15 -4158 ((-566) |#1|)) (-15 -3152 (|#1| (-409 (-566)))) (-15 -2229 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -4158 ((-409 (-566)) |#1|)) (-15 -4158 (|#2| |#1|)) (-15 -2229 ((-3 |#2| "failed") |#1|)) (-15 -3152 (|#1| |#2|))) (-413 |#2|) (-1214)) (T -412)) NIL -(-10 -8 (-15 -3783 (|#1| (-566))) (-15 -4307 ((-3 (-566) "failed") |#1|)) (-15 -4205 ((-566) |#1|)) (-15 -3783 (|#1| (-409 (-566)))) (-15 -4307 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -4205 ((-409 (-566)) |#1|)) (-15 -4205 (|#2| |#1|)) (-15 -4307 ((-3 |#2| "failed") |#1|)) (-15 -3783 (|#1| |#2|))) -((-4307 (((-3 |#1| "failed") $) 9) (((-3 (-409 (-566)) "failed") $) 16 (|has| |#1| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) 13 (|has| |#1| (-1038 (-566))))) (-4205 ((|#1| $) 8) (((-409 (-566)) $) 17 (|has| |#1| (-1038 (-409 (-566))))) (((-566) $) 14 (|has| |#1| (-1038 (-566))))) (-3783 (($ |#1|) 6) (($ (-409 (-566))) 15 (|has| |#1| (-1038 (-409 (-566))))) (($ (-566)) 12 (|has| |#1| (-1038 (-566)))))) +(-10 -8 (-15 -3152 (|#1| (-566))) (-15 -2229 ((-3 (-566) "failed") |#1|)) (-15 -4158 ((-566) |#1|)) (-15 -3152 (|#1| (-409 (-566)))) (-15 -2229 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -4158 ((-409 (-566)) |#1|)) (-15 -4158 (|#2| |#1|)) (-15 -2229 ((-3 |#2| "failed") |#1|)) (-15 -3152 (|#1| |#2|))) +((-2229 (((-3 |#1| "failed") $) 9) (((-3 (-409 (-566)) "failed") $) 16 (|has| |#1| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) 13 (|has| |#1| (-1038 (-566))))) (-4158 ((|#1| $) 8) (((-409 (-566)) $) 17 (|has| |#1| (-1038 (-409 (-566))))) (((-566) $) 14 (|has| |#1| (-1038 (-566))))) (-3152 (($ |#1|) 6) (($ (-409 (-566))) 15 (|has| |#1| (-1038 (-409 (-566))))) (($ (-566)) 12 (|has| |#1| (-1038 (-566)))))) (((-413 |#1|) (-140) (-1214)) (T -413)) NIL (-13 (-1038 |t#1|) (-10 -7 (IF (|has| |t#1| (-1038 (-566))) (-6 (-1038 (-566))) |%noBranch|) (IF (|has| |t#1| (-1038 (-409 (-566)))) (-6 (-1038 (-409 (-566)))) |%noBranch|))) (((-616 #0=(-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((-616 #1=(-566)) |has| |#1| (-1038 (-566))) ((-616 |#1|) . T) ((-1038 #0#) |has| |#1| (-1038 (-409 (-566)))) ((-1038 #1#) |has| |#1| (-1038 (-566))) ((-1038 |#1|) . T)) -((-1301 (((-415 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-415 |#1| |#2| |#3| |#4|)) 35))) -(((-414 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1301 ((-415 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-415 |#1| |#2| |#3| |#4|)))) (-308) (-992 |#1|) (-1240 |#2|) (-13 (-411 |#2| |#3|) (-1038 |#2|)) (-308) (-992 |#5|) (-1240 |#6|) (-13 (-411 |#6| |#7|) (-1038 |#6|))) (T -414)) -((-1301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-415 *5 *6 *7 *8)) (-4 *5 (-308)) (-4 *6 (-992 *5)) (-4 *7 (-1240 *6)) (-4 *8 (-13 (-411 *6 *7) (-1038 *6))) (-4 *9 (-308)) (-4 *10 (-992 *9)) (-4 *11 (-1240 *10)) (-5 *2 (-415 *9 *10 *11 *12)) (-5 *1 (-414 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-411 *10 *11) (-1038 *10)))))) -(-10 -7 (-15 -1301 ((-415 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-415 |#1| |#2| |#3| |#4|)))) -((-3007 (((-112) $ $) NIL)) (-3012 (($) NIL T CONST)) (-1878 (((-3 $ "failed") $) NIL)) (-1819 ((|#4| (-771) (-1264 |#4|)) 60)) (-3934 (((-112) $) NIL)) (-4326 (((-1264 |#4|) $) 17)) (-1577 ((|#2| $) 55)) (-4196 (($ $) 163)) (-4117 (((-1157) $) NIL)) (-1713 (($ $) 108)) (-3787 (($ (-1264 |#4|)) 107)) (-4035 (((-1119) $) NIL)) (-4339 ((|#1| $) 18)) (-2358 (($ $ $) NIL)) (-3171 (($ $ $) NIL)) (-3783 (((-862) $) 153)) (-3117 (((-112) $ $) NIL)) (-2365 (((-1264 |#4|) $) 146)) (-4334 (($) 11 T CONST)) (-2947 (((-112) $ $) 41)) (-3065 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) 139)) (* (($ $ $) 135))) -(((-415 |#1| |#2| |#3| |#4|) (-13 (-475) (-10 -8 (-15 -3787 ($ (-1264 |#4|))) (-15 -2365 ((-1264 |#4|) $)) (-15 -1577 (|#2| $)) (-15 -4326 ((-1264 |#4|) $)) (-15 -4339 (|#1| $)) (-15 -4196 ($ $)) (-15 -1819 (|#4| (-771) (-1264 |#4|))))) (-308) (-992 |#1|) (-1240 |#2|) (-13 (-411 |#2| |#3|) (-1038 |#2|))) (T -415)) -((-3787 (*1 *1 *2) (-12 (-5 *2 (-1264 *6)) (-4 *6 (-13 (-411 *4 *5) (-1038 *4))) (-4 *4 (-992 *3)) (-4 *5 (-1240 *4)) (-4 *3 (-308)) (-5 *1 (-415 *3 *4 *5 *6)))) (-2365 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-992 *3)) (-4 *5 (-1240 *4)) (-5 *2 (-1264 *6)) (-5 *1 (-415 *3 *4 *5 *6)) (-4 *6 (-13 (-411 *4 *5) (-1038 *4))))) (-1577 (*1 *2 *1) (-12 (-4 *4 (-1240 *2)) (-4 *2 (-992 *3)) (-5 *1 (-415 *3 *2 *4 *5)) (-4 *3 (-308)) (-4 *5 (-13 (-411 *2 *4) (-1038 *2))))) (-4326 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-992 *3)) (-4 *5 (-1240 *4)) (-5 *2 (-1264 *6)) (-5 *1 (-415 *3 *4 *5 *6)) (-4 *6 (-13 (-411 *4 *5) (-1038 *4))))) (-4339 (*1 *2 *1) (-12 (-4 *3 (-992 *2)) (-4 *4 (-1240 *3)) (-4 *2 (-308)) (-5 *1 (-415 *2 *3 *4 *5)) (-4 *5 (-13 (-411 *3 *4) (-1038 *3))))) (-4196 (*1 *1 *1) (-12 (-4 *2 (-308)) (-4 *3 (-992 *2)) (-4 *4 (-1240 *3)) (-5 *1 (-415 *2 *3 *4 *5)) (-4 *5 (-13 (-411 *3 *4) (-1038 *3))))) (-1819 (*1 *2 *3 *4) (-12 (-5 *3 (-771)) (-5 *4 (-1264 *2)) (-4 *5 (-308)) (-4 *6 (-992 *5)) (-4 *2 (-13 (-411 *6 *7) (-1038 *6))) (-5 *1 (-415 *5 *6 *7 *2)) (-4 *7 (-1240 *6))))) -(-13 (-475) (-10 -8 (-15 -3787 ($ (-1264 |#4|))) (-15 -2365 ((-1264 |#4|) $)) (-15 -1577 (|#2| $)) (-15 -4326 ((-1264 |#4|) $)) (-15 -4339 (|#1| $)) (-15 -4196 ($ $)) (-15 -1819 (|#4| (-771) (-1264 |#4|))))) -((-3007 (((-112) $ $) NIL)) (-3012 (($) NIL T CONST)) (-1878 (((-3 $ "failed") $) NIL)) (-3934 (((-112) $) NIL)) (-1577 ((|#2| $) 71)) (-1862 (($ (-1264 |#4|)) 27) (($ (-415 |#1| |#2| |#3| |#4|)) 86 (|has| |#4| (-1038 |#2|)))) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 37)) (-3117 (((-112) $ $) NIL)) (-2365 (((-1264 |#4|) $) 28)) (-4334 (($) 25 T CONST)) (-2947 (((-112) $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ $ $) 82))) -(((-416 |#1| |#2| |#3| |#4| |#5|) (-13 (-726) (-10 -8 (-15 -2365 ((-1264 |#4|) $)) (-15 -1577 (|#2| $)) (-15 -1862 ($ (-1264 |#4|))) (IF (|has| |#4| (-1038 |#2|)) (-15 -1862 ($ (-415 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-308) (-992 |#1|) (-1240 |#2|) (-411 |#2| |#3|) (-1264 |#4|)) (T -416)) -((-2365 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-992 *3)) (-4 *5 (-1240 *4)) (-5 *2 (-1264 *6)) (-5 *1 (-416 *3 *4 *5 *6 *7)) (-4 *6 (-411 *4 *5)) (-14 *7 *2))) (-1577 (*1 *2 *1) (-12 (-4 *4 (-1240 *2)) (-4 *2 (-992 *3)) (-5 *1 (-416 *3 *2 *4 *5 *6)) (-4 *3 (-308)) (-4 *5 (-411 *2 *4)) (-14 *6 (-1264 *5)))) (-1862 (*1 *1 *2) (-12 (-5 *2 (-1264 *6)) (-4 *6 (-411 *4 *5)) (-4 *4 (-992 *3)) (-4 *5 (-1240 *4)) (-4 *3 (-308)) (-5 *1 (-416 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1862 (*1 *1 *2) (-12 (-5 *2 (-415 *3 *4 *5 *6)) (-4 *6 (-1038 *4)) (-4 *3 (-308)) (-4 *4 (-992 *3)) (-4 *5 (-1240 *4)) (-4 *6 (-411 *4 *5)) (-14 *7 (-1264 *6)) (-5 *1 (-416 *3 *4 *5 *6 *7))))) -(-13 (-726) (-10 -8 (-15 -2365 ((-1264 |#4|) $)) (-15 -1577 (|#2| $)) (-15 -1862 ($ (-1264 |#4|))) (IF (|has| |#4| (-1038 |#2|)) (-15 -1862 ($ (-415 |#1| |#2| |#3| |#4|))) |%noBranch|))) -((-1301 ((|#3| (-1 |#4| |#2|) |#1|) 32))) -(((-417 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1301 (|#3| (-1 |#4| |#2|) |#1|))) (-419 |#2|) (-172) (-419 |#4|) (-172)) (T -417)) -((-1301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-419 *6)) (-5 *1 (-417 *4 *5 *2 *6)) (-4 *4 (-419 *5))))) -(-10 -7 (-15 -1301 (|#3| (-1 |#4| |#2|) |#1|))) -((-3002 (((-3 $ "failed")) 99)) (-4085 (((-1264 (-689 |#2|)) (-1264 $)) NIL) (((-1264 (-689 |#2|))) 104)) (-4119 (((-3 (-2 (|:| |particular| $) (|:| -2365 (-644 $))) "failed")) 97)) (-1446 (((-3 $ "failed")) 96)) (-3058 (((-689 |#2|) (-1264 $)) NIL) (((-689 |#2|)) 115)) (-4298 (((-689 |#2|) $ (-1264 $)) NIL) (((-689 |#2|) $) 123)) (-2727 (((-1171 (-952 |#2|))) 65)) (-2072 ((|#2| (-1264 $)) NIL) ((|#2|) 119)) (-2392 (($ (-1264 |#2|) (-1264 $)) NIL) (($ (-1264 |#2|)) 125)) (-2906 (((-3 (-2 (|:| |particular| $) (|:| -2365 (-644 $))) "failed")) 95)) (-1710 (((-3 $ "failed")) 87)) (-1371 (((-689 |#2|) (-1264 $)) NIL) (((-689 |#2|)) 113)) (-3131 (((-689 |#2|) $ (-1264 $)) NIL) (((-689 |#2|) $) 121)) (-2537 (((-1171 (-952 |#2|))) 64)) (-1950 ((|#2| (-1264 $)) NIL) ((|#2|) 117)) (-2154 (((-1264 |#2|) $ (-1264 $)) NIL) (((-689 |#2|) (-1264 $) (-1264 $)) NIL) (((-1264 |#2|) $) 124) (((-689 |#2|) (-1264 $)) 133)) (-1348 (((-1264 |#2|) $) 109) (($ (-1264 |#2|)) 111)) (-3453 (((-644 (-952 |#2|)) (-1264 $)) NIL) (((-644 (-952 |#2|))) 107)) (-1948 (($ (-689 |#2|) $) 103))) -(((-418 |#1| |#2|) (-10 -8 (-15 -1948 (|#1| (-689 |#2|) |#1|)) (-15 -2727 ((-1171 (-952 |#2|)))) (-15 -2537 ((-1171 (-952 |#2|)))) (-15 -4298 ((-689 |#2|) |#1|)) (-15 -3131 ((-689 |#2|) |#1|)) (-15 -3058 ((-689 |#2|))) (-15 -1371 ((-689 |#2|))) (-15 -2072 (|#2|)) (-15 -1950 (|#2|)) (-15 -1348 (|#1| (-1264 |#2|))) (-15 -1348 ((-1264 |#2|) |#1|)) (-15 -2392 (|#1| (-1264 |#2|))) (-15 -3453 ((-644 (-952 |#2|)))) (-15 -4085 ((-1264 (-689 |#2|)))) (-15 -2154 ((-689 |#2|) (-1264 |#1|))) (-15 -2154 ((-1264 |#2|) |#1|)) (-15 -3002 ((-3 |#1| "failed"))) (-15 -1446 ((-3 |#1| "failed"))) (-15 -1710 ((-3 |#1| "failed"))) (-15 -4119 ((-3 (-2 (|:| |particular| |#1|) (|:| -2365 (-644 |#1|))) "failed"))) (-15 -2906 ((-3 (-2 (|:| |particular| |#1|) (|:| -2365 (-644 |#1|))) "failed"))) (-15 -3058 ((-689 |#2|) (-1264 |#1|))) (-15 -1371 ((-689 |#2|) (-1264 |#1|))) (-15 -2072 (|#2| (-1264 |#1|))) (-15 -1950 (|#2| (-1264 |#1|))) (-15 -2392 (|#1| (-1264 |#2|) (-1264 |#1|))) (-15 -2154 ((-689 |#2|) (-1264 |#1|) (-1264 |#1|))) (-15 -2154 ((-1264 |#2|) |#1| (-1264 |#1|))) (-15 -4298 ((-689 |#2|) |#1| (-1264 |#1|))) (-15 -3131 ((-689 |#2|) |#1| (-1264 |#1|))) (-15 -4085 ((-1264 (-689 |#2|)) (-1264 |#1|))) (-15 -3453 ((-644 (-952 |#2|)) (-1264 |#1|)))) (-419 |#2|) (-172)) (T -418)) -((-4085 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1264 (-689 *4))) (-5 *1 (-418 *3 *4)) (-4 *3 (-419 *4)))) (-3453 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-644 (-952 *4))) (-5 *1 (-418 *3 *4)) (-4 *3 (-419 *4)))) (-1950 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-418 *3 *2)) (-4 *3 (-419 *2)))) (-2072 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-418 *3 *2)) (-4 *3 (-419 *2)))) (-1371 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-689 *4)) (-5 *1 (-418 *3 *4)) (-4 *3 (-419 *4)))) (-3058 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-689 *4)) (-5 *1 (-418 *3 *4)) (-4 *3 (-419 *4)))) (-2537 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1171 (-952 *4))) (-5 *1 (-418 *3 *4)) (-4 *3 (-419 *4)))) (-2727 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1171 (-952 *4))) (-5 *1 (-418 *3 *4)) (-4 *3 (-419 *4))))) -(-10 -8 (-15 -1948 (|#1| (-689 |#2|) |#1|)) (-15 -2727 ((-1171 (-952 |#2|)))) (-15 -2537 ((-1171 (-952 |#2|)))) (-15 -4298 ((-689 |#2|) |#1|)) (-15 -3131 ((-689 |#2|) |#1|)) (-15 -3058 ((-689 |#2|))) (-15 -1371 ((-689 |#2|))) (-15 -2072 (|#2|)) (-15 -1950 (|#2|)) (-15 -1348 (|#1| (-1264 |#2|))) (-15 -1348 ((-1264 |#2|) |#1|)) (-15 -2392 (|#1| (-1264 |#2|))) (-15 -3453 ((-644 (-952 |#2|)))) (-15 -4085 ((-1264 (-689 |#2|)))) (-15 -2154 ((-689 |#2|) (-1264 |#1|))) (-15 -2154 ((-1264 |#2|) |#1|)) (-15 -3002 ((-3 |#1| "failed"))) (-15 -1446 ((-3 |#1| "failed"))) (-15 -1710 ((-3 |#1| "failed"))) (-15 -4119 ((-3 (-2 (|:| |particular| |#1|) (|:| -2365 (-644 |#1|))) "failed"))) (-15 -2906 ((-3 (-2 (|:| |particular| |#1|) (|:| -2365 (-644 |#1|))) "failed"))) (-15 -3058 ((-689 |#2|) (-1264 |#1|))) (-15 -1371 ((-689 |#2|) (-1264 |#1|))) (-15 -2072 (|#2| (-1264 |#1|))) (-15 -1950 (|#2| (-1264 |#1|))) (-15 -2392 (|#1| (-1264 |#2|) (-1264 |#1|))) (-15 -2154 ((-689 |#2|) (-1264 |#1|) (-1264 |#1|))) (-15 -2154 ((-1264 |#2|) |#1| (-1264 |#1|))) (-15 -4298 ((-689 |#2|) |#1| (-1264 |#1|))) (-15 -3131 ((-689 |#2|) |#1| (-1264 |#1|))) (-15 -4085 ((-1264 (-689 |#2|)) (-1264 |#1|))) (-15 -3453 ((-644 (-952 |#2|)) (-1264 |#1|)))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-3002 (((-3 $ "failed")) 42 (|has| |#1| (-558)))) (-4175 (((-3 $ "failed") $ $) 20)) (-4085 (((-1264 (-689 |#1|)) (-1264 $)) 83) (((-1264 (-689 |#1|))) 105)) (-2092 (((-1264 $)) 86)) (-3012 (($) 18 T CONST)) (-4119 (((-3 (-2 (|:| |particular| $) (|:| -2365 (-644 $))) "failed")) 45 (|has| |#1| (-558)))) (-1446 (((-3 $ "failed")) 43 (|has| |#1| (-558)))) (-3058 (((-689 |#1|) (-1264 $)) 70) (((-689 |#1|)) 97)) (-2468 ((|#1| $) 79)) (-4298 (((-689 |#1|) $ (-1264 $)) 81) (((-689 |#1|) $) 95)) (-2715 (((-3 $ "failed") $) 50 (|has| |#1| (-558)))) (-2727 (((-1171 (-952 |#1|))) 93 (|has| |#1| (-365)))) (-3942 (($ $ (-921)) 31)) (-1670 ((|#1| $) 77)) (-3757 (((-1171 |#1|) $) 47 (|has| |#1| (-558)))) (-2072 ((|#1| (-1264 $)) 72) ((|#1|) 99)) (-2410 (((-1171 |#1|) $) 68)) (-3036 (((-112)) 62)) (-2392 (($ (-1264 |#1|) (-1264 $)) 74) (($ (-1264 |#1|)) 103)) (-1878 (((-3 $ "failed") $) 52 (|has| |#1| (-558)))) (-4313 (((-921)) 85)) (-2658 (((-112)) 59)) (-2322 (($ $ (-921)) 38)) (-1652 (((-112)) 55)) (-1543 (((-112)) 53)) (-2763 (((-112)) 57)) (-2906 (((-3 (-2 (|:| |particular| $) (|:| -2365 (-644 $))) "failed")) 46 (|has| |#1| (-558)))) (-1710 (((-3 $ "failed")) 44 (|has| |#1| (-558)))) (-1371 (((-689 |#1|) (-1264 $)) 71) (((-689 |#1|)) 98)) (-3307 ((|#1| $) 80)) (-3131 (((-689 |#1|) $ (-1264 $)) 82) (((-689 |#1|) $) 96)) (-2305 (((-3 $ "failed") $) 51 (|has| |#1| (-558)))) (-2537 (((-1171 (-952 |#1|))) 94 (|has| |#1| (-365)))) (-2437 (($ $ (-921)) 32)) (-3473 ((|#1| $) 78)) (-4108 (((-1171 |#1|) $) 48 (|has| |#1| (-558)))) (-1950 ((|#1| (-1264 $)) 73) ((|#1|) 100)) (-1974 (((-1171 |#1|) $) 69)) (-3390 (((-112)) 63)) (-4117 (((-1157) $) 10)) (-3170 (((-112)) 54)) (-3326 (((-112)) 56)) (-2829 (((-112)) 58)) (-4035 (((-1119) $) 11)) (-1976 (((-112)) 61)) (-4390 ((|#1| $ (-566)) 106)) (-2154 (((-1264 |#1|) $ (-1264 $)) 76) (((-689 |#1|) (-1264 $) (-1264 $)) 75) (((-1264 |#1|) $) 108) (((-689 |#1|) (-1264 $)) 107)) (-1348 (((-1264 |#1|) $) 102) (($ (-1264 |#1|)) 101)) (-3453 (((-644 (-952 |#1|)) (-1264 $)) 84) (((-644 (-952 |#1|))) 104)) (-3171 (($ $ $) 28)) (-2638 (((-112)) 67)) (-3783 (((-862) $) 12)) (-3117 (((-112) $ $) 9)) (-2365 (((-1264 $)) 109)) (-3023 (((-644 (-1264 |#1|))) 49 (|has| |#1| (-558)))) (-2320 (($ $ $ $) 29)) (-3232 (((-112)) 65)) (-1948 (($ (-689 |#1|) $) 92)) (-3027 (($ $ $) 27)) (-2653 (((-112)) 66)) (-1843 (((-112)) 64)) (-1938 (((-112)) 60)) (-2479 (($) 19 T CONST)) (-2947 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 33)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) +((-2319 (((-415 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-415 |#1| |#2| |#3| |#4|)) 35))) +(((-414 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2319 ((-415 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-415 |#1| |#2| |#3| |#4|)))) (-308) (-992 |#1|) (-1240 |#2|) (-13 (-411 |#2| |#3|) (-1038 |#2|)) (-308) (-992 |#5|) (-1240 |#6|) (-13 (-411 |#6| |#7|) (-1038 |#6|))) (T -414)) +((-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-415 *5 *6 *7 *8)) (-4 *5 (-308)) (-4 *6 (-992 *5)) (-4 *7 (-1240 *6)) (-4 *8 (-13 (-411 *6 *7) (-1038 *6))) (-4 *9 (-308)) (-4 *10 (-992 *9)) (-4 *11 (-1240 *10)) (-5 *2 (-415 *9 *10 *11 *12)) (-5 *1 (-414 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-411 *10 *11) (-1038 *10)))))) +(-10 -7 (-15 -2319 ((-415 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-415 |#1| |#2| |#3| |#4|)))) +((-2988 (((-112) $ $) NIL)) (-2463 (($) NIL T CONST)) (-3245 (((-3 $ "failed") $) NIL)) (-2217 ((|#4| (-771) (-1264 |#4|)) 60)) (-2389 (((-112) $) NIL)) (-2248 (((-1264 |#4|) $) 17)) (-2064 ((|#2| $) 55)) (-2155 (($ $) 163)) (-3380 (((-1157) $) NIL)) (-2748 (($ $) 108)) (-2424 (($ (-1264 |#4|)) 107)) (-4072 (((-1119) $) NIL)) (-2260 ((|#1| $) 18)) (-3357 (($ $ $) NIL)) (-2527 (($ $ $) NIL)) (-3152 (((-862) $) 153)) (-3044 (((-112) $ $) NIL)) (-2875 (((-1264 |#4|) $) 146)) (-4366 (($) 11 T CONST)) (-2914 (((-112) $ $) 41)) (-3025 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) 139)) (* (($ $ $) 135))) +(((-415 |#1| |#2| |#3| |#4|) (-13 (-475) (-10 -8 (-15 -2424 ($ (-1264 |#4|))) (-15 -2875 ((-1264 |#4|) $)) (-15 -2064 (|#2| $)) (-15 -2248 ((-1264 |#4|) $)) (-15 -2260 (|#1| $)) (-15 -2155 ($ $)) (-15 -2217 (|#4| (-771) (-1264 |#4|))))) (-308) (-992 |#1|) (-1240 |#2|) (-13 (-411 |#2| |#3|) (-1038 |#2|))) (T -415)) +((-2424 (*1 *1 *2) (-12 (-5 *2 (-1264 *6)) (-4 *6 (-13 (-411 *4 *5) (-1038 *4))) (-4 *4 (-992 *3)) (-4 *5 (-1240 *4)) (-4 *3 (-308)) (-5 *1 (-415 *3 *4 *5 *6)))) (-2875 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-992 *3)) (-4 *5 (-1240 *4)) (-5 *2 (-1264 *6)) (-5 *1 (-415 *3 *4 *5 *6)) (-4 *6 (-13 (-411 *4 *5) (-1038 *4))))) (-2064 (*1 *2 *1) (-12 (-4 *4 (-1240 *2)) (-4 *2 (-992 *3)) (-5 *1 (-415 *3 *2 *4 *5)) (-4 *3 (-308)) (-4 *5 (-13 (-411 *2 *4) (-1038 *2))))) (-2248 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-992 *3)) (-4 *5 (-1240 *4)) (-5 *2 (-1264 *6)) (-5 *1 (-415 *3 *4 *5 *6)) (-4 *6 (-13 (-411 *4 *5) (-1038 *4))))) (-2260 (*1 *2 *1) (-12 (-4 *3 (-992 *2)) (-4 *4 (-1240 *3)) (-4 *2 (-308)) (-5 *1 (-415 *2 *3 *4 *5)) (-4 *5 (-13 (-411 *3 *4) (-1038 *3))))) (-2155 (*1 *1 *1) (-12 (-4 *2 (-308)) (-4 *3 (-992 *2)) (-4 *4 (-1240 *3)) (-5 *1 (-415 *2 *3 *4 *5)) (-4 *5 (-13 (-411 *3 *4) (-1038 *3))))) (-2217 (*1 *2 *3 *4) (-12 (-5 *3 (-771)) (-5 *4 (-1264 *2)) (-4 *5 (-308)) (-4 *6 (-992 *5)) (-4 *2 (-13 (-411 *6 *7) (-1038 *6))) (-5 *1 (-415 *5 *6 *7 *2)) (-4 *7 (-1240 *6))))) +(-13 (-475) (-10 -8 (-15 -2424 ($ (-1264 |#4|))) (-15 -2875 ((-1264 |#4|) $)) (-15 -2064 (|#2| $)) (-15 -2248 ((-1264 |#4|) $)) (-15 -2260 (|#1| $)) (-15 -2155 ($ $)) (-15 -2217 (|#4| (-771) (-1264 |#4|))))) +((-2988 (((-112) $ $) NIL)) (-2463 (($) NIL T CONST)) (-3245 (((-3 $ "failed") $) NIL)) (-2389 (((-112) $) NIL)) (-2064 ((|#2| $) 71)) (-2288 (($ (-1264 |#4|)) 27) (($ (-415 |#1| |#2| |#3| |#4|)) 86 (|has| |#4| (-1038 |#2|)))) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 37)) (-3044 (((-112) $ $) NIL)) (-2875 (((-1264 |#4|) $) 28)) (-4366 (($) 25 T CONST)) (-2914 (((-112) $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ $ $) 82))) +(((-416 |#1| |#2| |#3| |#4| |#5|) (-13 (-726) (-10 -8 (-15 -2875 ((-1264 |#4|) $)) (-15 -2064 (|#2| $)) (-15 -2288 ($ (-1264 |#4|))) (IF (|has| |#4| (-1038 |#2|)) (-15 -2288 ($ (-415 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-308) (-992 |#1|) (-1240 |#2|) (-411 |#2| |#3|) (-1264 |#4|)) (T -416)) +((-2875 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-992 *3)) (-4 *5 (-1240 *4)) (-5 *2 (-1264 *6)) (-5 *1 (-416 *3 *4 *5 *6 *7)) (-4 *6 (-411 *4 *5)) (-14 *7 *2))) (-2064 (*1 *2 *1) (-12 (-4 *4 (-1240 *2)) (-4 *2 (-992 *3)) (-5 *1 (-416 *3 *2 *4 *5 *6)) (-4 *3 (-308)) (-4 *5 (-411 *2 *4)) (-14 *6 (-1264 *5)))) (-2288 (*1 *1 *2) (-12 (-5 *2 (-1264 *6)) (-4 *6 (-411 *4 *5)) (-4 *4 (-992 *3)) (-4 *5 (-1240 *4)) (-4 *3 (-308)) (-5 *1 (-416 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-2288 (*1 *1 *2) (-12 (-5 *2 (-415 *3 *4 *5 *6)) (-4 *6 (-1038 *4)) (-4 *3 (-308)) (-4 *4 (-992 *3)) (-4 *5 (-1240 *4)) (-4 *6 (-411 *4 *5)) (-14 *7 (-1264 *6)) (-5 *1 (-416 *3 *4 *5 *6 *7))))) +(-13 (-726) (-10 -8 (-15 -2875 ((-1264 |#4|) $)) (-15 -2064 (|#2| $)) (-15 -2288 ($ (-1264 |#4|))) (IF (|has| |#4| (-1038 |#2|)) (-15 -2288 ($ (-415 |#1| |#2| |#3| |#4|))) |%noBranch|))) +((-2319 ((|#3| (-1 |#4| |#2|) |#1|) 32))) +(((-417 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2319 (|#3| (-1 |#4| |#2|) |#1|))) (-419 |#2|) (-172) (-419 |#4|) (-172)) (T -417)) +((-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-419 *6)) (-5 *1 (-417 *4 *5 *2 *6)) (-4 *4 (-419 *5))))) +(-10 -7 (-15 -2319 (|#3| (-1 |#4| |#2|) |#1|))) +((-2896 (((-3 $ "failed")) 99)) (-2336 (((-1264 (-689 |#2|)) (-1264 $)) NIL) (((-1264 (-689 |#2|))) 104)) (-3574 (((-3 (-2 (|:| |particular| $) (|:| -2875 (-644 $))) "failed")) 97)) (-1469 (((-3 $ "failed")) 96)) (-2411 (((-689 |#2|) (-1264 $)) NIL) (((-689 |#2|)) 115)) (-2800 (((-689 |#2|) $ (-1264 $)) NIL) (((-689 |#2|) $) 123)) (-3031 (((-1171 (-952 |#2|))) 65)) (-2597 ((|#2| (-1264 $)) NIL) ((|#2|) 119)) (-1563 (($ (-1264 |#2|) (-1264 $)) NIL) (($ (-1264 |#2|)) 125)) (-1476 (((-3 (-2 (|:| |particular| $) (|:| -2875 (-644 $))) "failed")) 95)) (-1731 (((-3 $ "failed")) 87)) (-2734 (((-689 |#2|) (-1264 $)) NIL) (((-689 |#2|)) 113)) (-3769 (((-689 |#2|) $ (-1264 $)) NIL) (((-689 |#2|) $) 121)) (-1793 (((-1171 (-952 |#2|))) 64)) (-2990 ((|#2| (-1264 $)) NIL) ((|#2|) 117)) (-3350 (((-1264 |#2|) $ (-1264 $)) NIL) (((-689 |#2|) (-1264 $) (-1264 $)) NIL) (((-1264 |#2|) $) 124) (((-689 |#2|) (-1264 $)) 133)) (-2376 (((-1264 |#2|) $) 109) (($ (-1264 |#2|)) 111)) (-2861 (((-644 (-952 |#2|)) (-1264 $)) NIL) (((-644 (-952 |#2|))) 107)) (-3847 (($ (-689 |#2|) $) 103))) +(((-418 |#1| |#2|) (-10 -8 (-15 -3847 (|#1| (-689 |#2|) |#1|)) (-15 -3031 ((-1171 (-952 |#2|)))) (-15 -1793 ((-1171 (-952 |#2|)))) (-15 -2800 ((-689 |#2|) |#1|)) (-15 -3769 ((-689 |#2|) |#1|)) (-15 -2411 ((-689 |#2|))) (-15 -2734 ((-689 |#2|))) (-15 -2597 (|#2|)) (-15 -2990 (|#2|)) (-15 -2376 (|#1| (-1264 |#2|))) (-15 -2376 ((-1264 |#2|) |#1|)) (-15 -1563 (|#1| (-1264 |#2|))) (-15 -2861 ((-644 (-952 |#2|)))) (-15 -2336 ((-1264 (-689 |#2|)))) (-15 -3350 ((-689 |#2|) (-1264 |#1|))) (-15 -3350 ((-1264 |#2|) |#1|)) (-15 -2896 ((-3 |#1| "failed"))) (-15 -1469 ((-3 |#1| "failed"))) (-15 -1731 ((-3 |#1| "failed"))) (-15 -3574 ((-3 (-2 (|:| |particular| |#1|) (|:| -2875 (-644 |#1|))) "failed"))) (-15 -1476 ((-3 (-2 (|:| |particular| |#1|) (|:| -2875 (-644 |#1|))) "failed"))) (-15 -2411 ((-689 |#2|) (-1264 |#1|))) (-15 -2734 ((-689 |#2|) (-1264 |#1|))) (-15 -2597 (|#2| (-1264 |#1|))) (-15 -2990 (|#2| (-1264 |#1|))) (-15 -1563 (|#1| (-1264 |#2|) (-1264 |#1|))) (-15 -3350 ((-689 |#2|) (-1264 |#1|) (-1264 |#1|))) (-15 -3350 ((-1264 |#2|) |#1| (-1264 |#1|))) (-15 -2800 ((-689 |#2|) |#1| (-1264 |#1|))) (-15 -3769 ((-689 |#2|) |#1| (-1264 |#1|))) (-15 -2336 ((-1264 (-689 |#2|)) (-1264 |#1|))) (-15 -2861 ((-644 (-952 |#2|)) (-1264 |#1|)))) (-419 |#2|) (-172)) (T -418)) +((-2336 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1264 (-689 *4))) (-5 *1 (-418 *3 *4)) (-4 *3 (-419 *4)))) (-2861 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-644 (-952 *4))) (-5 *1 (-418 *3 *4)) (-4 *3 (-419 *4)))) (-2990 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-418 *3 *2)) (-4 *3 (-419 *2)))) (-2597 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-418 *3 *2)) (-4 *3 (-419 *2)))) (-2734 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-689 *4)) (-5 *1 (-418 *3 *4)) (-4 *3 (-419 *4)))) (-2411 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-689 *4)) (-5 *1 (-418 *3 *4)) (-4 *3 (-419 *4)))) (-1793 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1171 (-952 *4))) (-5 *1 (-418 *3 *4)) (-4 *3 (-419 *4)))) (-3031 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1171 (-952 *4))) (-5 *1 (-418 *3 *4)) (-4 *3 (-419 *4))))) +(-10 -8 (-15 -3847 (|#1| (-689 |#2|) |#1|)) (-15 -3031 ((-1171 (-952 |#2|)))) (-15 -1793 ((-1171 (-952 |#2|)))) (-15 -2800 ((-689 |#2|) |#1|)) (-15 -3769 ((-689 |#2|) |#1|)) (-15 -2411 ((-689 |#2|))) (-15 -2734 ((-689 |#2|))) (-15 -2597 (|#2|)) (-15 -2990 (|#2|)) (-15 -2376 (|#1| (-1264 |#2|))) (-15 -2376 ((-1264 |#2|) |#1|)) (-15 -1563 (|#1| (-1264 |#2|))) (-15 -2861 ((-644 (-952 |#2|)))) (-15 -2336 ((-1264 (-689 |#2|)))) (-15 -3350 ((-689 |#2|) (-1264 |#1|))) (-15 -3350 ((-1264 |#2|) |#1|)) (-15 -2896 ((-3 |#1| "failed"))) (-15 -1469 ((-3 |#1| "failed"))) (-15 -1731 ((-3 |#1| "failed"))) (-15 -3574 ((-3 (-2 (|:| |particular| |#1|) (|:| -2875 (-644 |#1|))) "failed"))) (-15 -1476 ((-3 (-2 (|:| |particular| |#1|) (|:| -2875 (-644 |#1|))) "failed"))) (-15 -2411 ((-689 |#2|) (-1264 |#1|))) (-15 -2734 ((-689 |#2|) (-1264 |#1|))) (-15 -2597 (|#2| (-1264 |#1|))) (-15 -2990 (|#2| (-1264 |#1|))) (-15 -1563 (|#1| (-1264 |#2|) (-1264 |#1|))) (-15 -3350 ((-689 |#2|) (-1264 |#1|) (-1264 |#1|))) (-15 -3350 ((-1264 |#2|) |#1| (-1264 |#1|))) (-15 -2800 ((-689 |#2|) |#1| (-1264 |#1|))) (-15 -3769 ((-689 |#2|) |#1| (-1264 |#1|))) (-15 -2336 ((-1264 (-689 |#2|)) (-1264 |#1|))) (-15 -2861 ((-644 (-952 |#2|)) (-1264 |#1|)))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-2896 (((-3 $ "failed")) 42 (|has| |#1| (-558)))) (-3967 (((-3 $ "failed") $ $) 20)) (-2336 (((-1264 (-689 |#1|)) (-1264 $)) 83) (((-1264 (-689 |#1|))) 105)) (-3717 (((-1264 $)) 86)) (-2463 (($) 18 T CONST)) (-3574 (((-3 (-2 (|:| |particular| $) (|:| -2875 (-644 $))) "failed")) 45 (|has| |#1| (-558)))) (-1469 (((-3 $ "failed")) 43 (|has| |#1| (-558)))) (-2411 (((-689 |#1|) (-1264 $)) 70) (((-689 |#1|)) 97)) (-4373 ((|#1| $) 79)) (-2800 (((-689 |#1|) $ (-1264 $)) 81) (((-689 |#1|) $) 95)) (-4392 (((-3 $ "failed") $) 50 (|has| |#1| (-558)))) (-3031 (((-1171 (-952 |#1|))) 93 (|has| |#1| (-365)))) (-1856 (($ $ (-921)) 31)) (-4039 ((|#1| $) 77)) (-3648 (((-1171 |#1|) $) 47 (|has| |#1| (-558)))) (-2597 ((|#1| (-1264 $)) 72) ((|#1|) 99)) (-2765 (((-1171 |#1|) $) 68)) (-4029 (((-112)) 62)) (-1563 (($ (-1264 |#1|) (-1264 $)) 74) (($ (-1264 |#1|)) 103)) (-3245 (((-3 $ "failed") $) 52 (|has| |#1| (-558)))) (-2755 (((-921)) 85)) (-3793 (((-112)) 59)) (-4090 (($ $ (-921)) 38)) (-4240 (((-112)) 55)) (-2057 (((-112)) 53)) (-2158 (((-112)) 57)) (-1476 (((-3 (-2 (|:| |particular| $) (|:| -2875 (-644 $))) "failed")) 46 (|has| |#1| (-558)))) (-1731 (((-3 $ "failed")) 44 (|has| |#1| (-558)))) (-2734 (((-689 |#1|) (-1264 $)) 71) (((-689 |#1|)) 98)) (-2366 ((|#1| $) 80)) (-3769 (((-689 |#1|) $ (-1264 $)) 82) (((-689 |#1|) $) 96)) (-2851 (((-3 $ "failed") $) 51 (|has| |#1| (-558)))) (-1793 (((-1171 (-952 |#1|))) 94 (|has| |#1| (-365)))) (-3270 (($ $ (-921)) 32)) (-2241 ((|#1| $) 78)) (-1910 (((-1171 |#1|) $) 48 (|has| |#1| (-558)))) (-2990 ((|#1| (-1264 $)) 73) ((|#1|) 100)) (-3548 (((-1171 |#1|) $) 69)) (-2974 (((-112)) 63)) (-3380 (((-1157) $) 10)) (-2402 (((-112)) 54)) (-1459 (((-112)) 56)) (-3846 (((-112)) 58)) (-4072 (((-1119) $) 11)) (-3795 (((-112)) 61)) (-1309 ((|#1| $ (-566)) 106)) (-3350 (((-1264 |#1|) $ (-1264 $)) 76) (((-689 |#1|) (-1264 $) (-1264 $)) 75) (((-1264 |#1|) $) 108) (((-689 |#1|) (-1264 $)) 107)) (-2376 (((-1264 |#1|) $) 102) (($ (-1264 |#1|)) 101)) (-2861 (((-644 (-952 |#1|)) (-1264 $)) 84) (((-644 (-952 |#1|))) 104)) (-2527 (($ $ $) 28)) (-2512 (((-112)) 67)) (-3152 (((-862) $) 12)) (-3044 (((-112) $ $) 9)) (-2875 (((-1264 $)) 109)) (-2243 (((-644 (-1264 |#1|))) 49 (|has| |#1| (-558)))) (-3876 (($ $ $ $) 29)) (-2468 (((-112)) 65)) (-3847 (($ (-689 |#1|) $) 92)) (-1471 (($ $ $) 27)) (-1465 (((-112)) 66)) (-3692 (((-112)) 64)) (-4369 (((-112)) 60)) (-4356 (($) 19 T CONST)) (-2914 (((-112) $ $) 6)) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 33)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) (((-419 |#1|) (-140) (-172)) (T -419)) -((-2365 (*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1264 *1)) (-4 *1 (-419 *3)))) (-2154 (*1 *2 *1) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-1264 *3)))) (-2154 (*1 *2 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-419 *4)) (-4 *4 (-172)) (-5 *2 (-689 *4)))) (-4390 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *1 (-419 *2)) (-4 *2 (-172)))) (-4085 (*1 *2) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-1264 (-689 *3))))) (-3453 (*1 *2) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-644 (-952 *3))))) (-2392 (*1 *1 *2) (-12 (-5 *2 (-1264 *3)) (-4 *3 (-172)) (-4 *1 (-419 *3)))) (-1348 (*1 *2 *1) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-1264 *3)))) (-1348 (*1 *1 *2) (-12 (-5 *2 (-1264 *3)) (-4 *3 (-172)) (-4 *1 (-419 *3)))) (-1950 (*1 *2) (-12 (-4 *1 (-419 *2)) (-4 *2 (-172)))) (-2072 (*1 *2) (-12 (-4 *1 (-419 *2)) (-4 *2 (-172)))) (-1371 (*1 *2) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-689 *3)))) (-3058 (*1 *2) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-689 *3)))) (-3131 (*1 *2 *1) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-689 *3)))) (-4298 (*1 *2 *1) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-689 *3)))) (-2537 (*1 *2) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-4 *3 (-365)) (-5 *2 (-1171 (-952 *3))))) (-2727 (*1 *2) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-4 *3 (-365)) (-5 *2 (-1171 (-952 *3))))) (-1948 (*1 *1 *2 *1) (-12 (-5 *2 (-689 *3)) (-4 *1 (-419 *3)) (-4 *3 (-172))))) -(-13 (-369 |t#1|) (-10 -8 (-15 -2365 ((-1264 $))) (-15 -2154 ((-1264 |t#1|) $)) (-15 -2154 ((-689 |t#1|) (-1264 $))) (-15 -4390 (|t#1| $ (-566))) (-15 -4085 ((-1264 (-689 |t#1|)))) (-15 -3453 ((-644 (-952 |t#1|)))) (-15 -2392 ($ (-1264 |t#1|))) (-15 -1348 ((-1264 |t#1|) $)) (-15 -1348 ($ (-1264 |t#1|))) (-15 -1950 (|t#1|)) (-15 -2072 (|t#1|)) (-15 -1371 ((-689 |t#1|))) (-15 -3058 ((-689 |t#1|))) (-15 -3131 ((-689 |t#1|) $)) (-15 -4298 ((-689 |t#1|) $)) (IF (|has| |t#1| (-365)) (PROGN (-15 -2537 ((-1171 (-952 |t#1|)))) (-15 -2727 ((-1171 (-952 |t#1|))))) |%noBranch|) (-15 -1948 ($ (-689 |t#1|) $)))) +((-2875 (*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1264 *1)) (-4 *1 (-419 *3)))) (-3350 (*1 *2 *1) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-1264 *3)))) (-3350 (*1 *2 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-419 *4)) (-4 *4 (-172)) (-5 *2 (-689 *4)))) (-1309 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *1 (-419 *2)) (-4 *2 (-172)))) (-2336 (*1 *2) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-1264 (-689 *3))))) (-2861 (*1 *2) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-644 (-952 *3))))) (-1563 (*1 *1 *2) (-12 (-5 *2 (-1264 *3)) (-4 *3 (-172)) (-4 *1 (-419 *3)))) (-2376 (*1 *2 *1) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-1264 *3)))) (-2376 (*1 *1 *2) (-12 (-5 *2 (-1264 *3)) (-4 *3 (-172)) (-4 *1 (-419 *3)))) (-2990 (*1 *2) (-12 (-4 *1 (-419 *2)) (-4 *2 (-172)))) (-2597 (*1 *2) (-12 (-4 *1 (-419 *2)) (-4 *2 (-172)))) (-2734 (*1 *2) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-689 *3)))) (-2411 (*1 *2) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-689 *3)))) (-3769 (*1 *2 *1) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-689 *3)))) (-2800 (*1 *2 *1) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-689 *3)))) (-1793 (*1 *2) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-4 *3 (-365)) (-5 *2 (-1171 (-952 *3))))) (-3031 (*1 *2) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-4 *3 (-365)) (-5 *2 (-1171 (-952 *3))))) (-3847 (*1 *1 *2 *1) (-12 (-5 *2 (-689 *3)) (-4 *1 (-419 *3)) (-4 *3 (-172))))) +(-13 (-369 |t#1|) (-10 -8 (-15 -2875 ((-1264 $))) (-15 -3350 ((-1264 |t#1|) $)) (-15 -3350 ((-689 |t#1|) (-1264 $))) (-15 -1309 (|t#1| $ (-566))) (-15 -2336 ((-1264 (-689 |t#1|)))) (-15 -2861 ((-644 (-952 |t#1|)))) (-15 -1563 ($ (-1264 |t#1|))) (-15 -2376 ((-1264 |t#1|) $)) (-15 -2376 ($ (-1264 |t#1|))) (-15 -2990 (|t#1|)) (-15 -2597 (|t#1|)) (-15 -2734 ((-689 |t#1|))) (-15 -2411 ((-689 |t#1|))) (-15 -3769 ((-689 |t#1|) $)) (-15 -2800 ((-689 |t#1|) $)) (IF (|has| |t#1| (-365)) (PROGN (-15 -1793 ((-1171 (-952 |t#1|)))) (-15 -3031 ((-1171 (-952 |t#1|))))) |%noBranch|) (-15 -3847 ($ (-689 |t#1|) $)))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-613 (-862)) . T) ((-369 |#1|) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-648 |#1|) . T) ((-640 |#1|) . T) ((-717 |#1|) . T) ((-720) . T) ((-744 |#1|) . T) ((-761) . T) ((-1051 |#1|) . T) ((-1056 |#1|) . T) ((-1099) . T)) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) 60)) (-2928 (($ $) 78)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) 191)) (-3991 (($ $) NIL)) (-2388 (((-112) $) 48)) (-3002 ((|#1| $) 16)) (-4175 (((-3 $ "failed") $ $) NIL)) (-1550 (($ $) NIL (|has| |#1| (-1218)))) (-3184 (((-420 $) $) NIL (|has| |#1| (-1218)))) (-1362 (($ |#1| (-566)) 42)) (-3012 (($) NIL T CONST)) (-4307 (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) 148)) (-4205 (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) 74)) (-1878 (((-3 $ "failed") $) 164)) (-1521 (((-3 (-409 (-566)) "failed") $) 84 (|has| |#1| (-547)))) (-1942 (((-112) $) 80 (|has| |#1| (-547)))) (-4204 (((-409 (-566)) $) 91 (|has| |#1| (-547)))) (-3155 (($ |#1| (-566)) 44)) (-3268 (((-112) $) 213 (|has| |#1| (-1218)))) (-3934 (((-112) $) 62)) (-3208 (((-771) $) 51)) (-3426 (((-3 "nil" "sqfr" "irred" "prime") $ (-566)) 175)) (-3946 ((|#1| $ (-566)) 174)) (-2422 (((-566) $ (-566)) 173)) (-3140 (($ |#1| (-566)) 41)) (-1301 (($ (-1 |#1| |#1|) $) 183)) (-3050 (($ |#1| (-644 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-566))))) 79)) (-2167 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-4117 (((-1157) $) NIL)) (-1955 (($ |#1| (-566)) 43)) (-4035 (((-1119) $) NIL)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-454)))) (-2214 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) 192 (|has| |#1| (-454)))) (-1650 (($ |#1| (-566) (-3 "nil" "sqfr" "irred" "prime")) 40)) (-4138 (((-644 (-2 (|:| -3719 |#1|) (|:| -2852 (-566)))) $) 73)) (-1426 (((-644 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-566)))) $) 12)) (-3719 (((-420 $) $) NIL (|has| |#1| (-1218)))) (-2994 (((-3 $ "failed") $ $) 176)) (-2852 (((-566) $) 167)) (-2671 ((|#1| $) 75)) (-2055 (($ $ (-644 |#1|) (-644 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-644 (-295 |#1|))) 100 (|has| |#1| (-310 |#1|))) (($ $ (-644 (-1175)) (-644 |#1|)) 106 (|has| |#1| (-516 (-1175) |#1|))) (($ $ (-1175) |#1|) NIL (|has| |#1| (-516 (-1175) |#1|))) (($ $ (-1175) $) NIL (|has| |#1| (-516 (-1175) $))) (($ $ (-644 (-1175)) (-644 $)) 107 (|has| |#1| (-516 (-1175) $))) (($ $ (-644 (-295 $))) 103 (|has| |#1| (-310 $))) (($ $ (-295 $)) NIL (|has| |#1| (-310 $))) (($ $ $ $) NIL (|has| |#1| (-310 $))) (($ $ (-644 $) (-644 $)) NIL (|has| |#1| (-310 $)))) (-4390 (($ $ |#1|) 92 (|has| |#1| (-287 |#1| |#1|))) (($ $ $) 93 (|has| |#1| (-287 $ $)))) (-3561 (($ $) NIL (|has| |#1| (-233))) (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) 182)) (-1348 (((-538) $) 39 (|has| |#1| (-614 (-538)))) (((-381) $) 113 (|has| |#1| (-1022))) (((-225) $) 119 (|has| |#1| (-1022)))) (-3783 (((-862) $) 146) (($ (-566)) 65) (($ $) NIL) (($ |#1|) 64) (($ (-409 (-566))) NIL (|has| |#1| (-1038 (-409 (-566)))))) (-2107 (((-771)) 67 T CONST)) (-3117 (((-112) $ $) NIL)) (-2695 (((-112) $ $) NIL)) (-2479 (($) 53 T CONST)) (-4334 (($) 52 T CONST)) (-2875 (($ $) NIL (|has| |#1| (-233))) (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2947 (((-112) $ $) 159)) (-3053 (($ $) 161) (($ $ $) NIL)) (-3041 (($ $ $) 180)) (** (($ $ (-921)) NIL) (($ $ (-771)) 125)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 69) (($ $ $) 68) (($ |#1| $) 70) (($ $ |#1|) NIL))) -(((-420 |#1|) (-13 (-558) (-231 |#1|) (-38 |#1|) (-340 |#1|) (-413 |#1|) (-10 -8 (-15 -2671 (|#1| $)) (-15 -2852 ((-566) $)) (-15 -3050 ($ |#1| (-644 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-566)))))) (-15 -1426 ((-644 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-566)))) $)) (-15 -3140 ($ |#1| (-566))) (-15 -4138 ((-644 (-2 (|:| -3719 |#1|) (|:| -2852 (-566)))) $)) (-15 -1955 ($ |#1| (-566))) (-15 -2422 ((-566) $ (-566))) (-15 -3946 (|#1| $ (-566))) (-15 -3426 ((-3 "nil" "sqfr" "irred" "prime") $ (-566))) (-15 -3208 ((-771) $)) (-15 -3155 ($ |#1| (-566))) (-15 -1362 ($ |#1| (-566))) (-15 -1650 ($ |#1| (-566) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3002 (|#1| $)) (-15 -2928 ($ $)) (-15 -1301 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-454)) (-6 (-454)) |%noBranch|) (IF (|has| |#1| (-1022)) (-6 (-1022)) |%noBranch|) (IF (|has| |#1| (-1218)) (-6 (-1218)) |%noBranch|) (IF (|has| |#1| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|) (IF (|has| |#1| (-547)) (PROGN (-15 -1942 ((-112) $)) (-15 -4204 ((-409 (-566)) $)) (-15 -1521 ((-3 (-409 (-566)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-287 $ $)) (-6 (-287 $ $)) |%noBranch|) (IF (|has| |#1| (-310 $)) (-6 (-310 $)) |%noBranch|) (IF (|has| |#1| (-516 (-1175) $)) (-6 (-516 (-1175) $)) |%noBranch|))) (-558)) (T -420)) -((-1301 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-558)) (-5 *1 (-420 *3)))) (-2671 (*1 *2 *1) (-12 (-5 *1 (-420 *2)) (-4 *2 (-558)))) (-2852 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-420 *3)) (-4 *3 (-558)))) (-3050 (*1 *1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-566))))) (-4 *2 (-558)) (-5 *1 (-420 *2)))) (-1426 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-566))))) (-5 *1 (-420 *3)) (-4 *3 (-558)))) (-3140 (*1 *1 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-420 *2)) (-4 *2 (-558)))) (-4138 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| -3719 *3) (|:| -2852 (-566))))) (-5 *1 (-420 *3)) (-4 *3 (-558)))) (-1955 (*1 *1 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-420 *2)) (-4 *2 (-558)))) (-2422 (*1 *2 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-420 *3)) (-4 *3 (-558)))) (-3946 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *1 (-420 *2)) (-4 *2 (-558)))) (-3426 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-420 *4)) (-4 *4 (-558)))) (-3208 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-420 *3)) (-4 *3 (-558)))) (-3155 (*1 *1 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-420 *2)) (-4 *2 (-558)))) (-1362 (*1 *1 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-420 *2)) (-4 *2 (-558)))) (-1650 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-566)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-420 *2)) (-4 *2 (-558)))) (-3002 (*1 *2 *1) (-12 (-5 *1 (-420 *2)) (-4 *2 (-558)))) (-2928 (*1 *1 *1) (-12 (-5 *1 (-420 *2)) (-4 *2 (-558)))) (-1942 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-420 *3)) (-4 *3 (-547)) (-4 *3 (-558)))) (-4204 (*1 *2 *1) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-420 *3)) (-4 *3 (-547)) (-4 *3 (-558)))) (-1521 (*1 *2 *1) (|partial| -12 (-5 *2 (-409 (-566))) (-5 *1 (-420 *3)) (-4 *3 (-547)) (-4 *3 (-558))))) -(-13 (-558) (-231 |#1|) (-38 |#1|) (-340 |#1|) (-413 |#1|) (-10 -8 (-15 -2671 (|#1| $)) (-15 -2852 ((-566) $)) (-15 -3050 ($ |#1| (-644 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-566)))))) (-15 -1426 ((-644 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-566)))) $)) (-15 -3140 ($ |#1| (-566))) (-15 -4138 ((-644 (-2 (|:| -3719 |#1|) (|:| -2852 (-566)))) $)) (-15 -1955 ($ |#1| (-566))) (-15 -2422 ((-566) $ (-566))) (-15 -3946 (|#1| $ (-566))) (-15 -3426 ((-3 "nil" "sqfr" "irred" "prime") $ (-566))) (-15 -3208 ((-771) $)) (-15 -3155 ($ |#1| (-566))) (-15 -1362 ($ |#1| (-566))) (-15 -1650 ($ |#1| (-566) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3002 (|#1| $)) (-15 -2928 ($ $)) (-15 -1301 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-454)) (-6 (-454)) |%noBranch|) (IF (|has| |#1| (-1022)) (-6 (-1022)) |%noBranch|) (IF (|has| |#1| (-1218)) (-6 (-1218)) |%noBranch|) (IF (|has| |#1| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|) (IF (|has| |#1| (-547)) (PROGN (-15 -1942 ((-112) $)) (-15 -4204 ((-409 (-566)) $)) (-15 -1521 ((-3 (-409 (-566)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-287 $ $)) (-6 (-287 $ $)) |%noBranch|) (IF (|has| |#1| (-310 $)) (-6 (-310 $)) |%noBranch|) (IF (|has| |#1| (-516 (-1175) $)) (-6 (-516 (-1175) $)) |%noBranch|))) -((-4022 (((-420 |#1|) (-420 |#1|) (-1 (-420 |#1|) |#1|)) 28)) (-4332 (((-420 |#1|) (-420 |#1|) (-420 |#1|)) 17))) -(((-421 |#1|) (-10 -7 (-15 -4022 ((-420 |#1|) (-420 |#1|) (-1 (-420 |#1|) |#1|))) (-15 -4332 ((-420 |#1|) (-420 |#1|) (-420 |#1|)))) (-558)) (T -421)) -((-4332 (*1 *2 *2 *2) (-12 (-5 *2 (-420 *3)) (-4 *3 (-558)) (-5 *1 (-421 *3)))) (-4022 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-420 *4) *4)) (-4 *4 (-558)) (-5 *2 (-420 *4)) (-5 *1 (-421 *4))))) -(-10 -7 (-15 -4022 ((-420 |#1|) (-420 |#1|) (-1 (-420 |#1|) |#1|))) (-15 -4332 ((-420 |#1|) (-420 |#1|) (-420 |#1|)))) -((-2856 ((|#2| |#2|) 183)) (-3579 (((-3 (|:| |%expansion| (-314 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157))))) |#2| (-112)) 60))) -(((-422 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3579 ((-3 (|:| |%expansion| (-314 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157))))) |#2| (-112))) (-15 -2856 (|#2| |#2|))) (-13 (-454) (-1038 (-566)) (-639 (-566))) (-13 (-27) (-1199) (-432 |#1|)) (-1175) |#2|) (T -422)) -((-2856 (*1 *2 *2) (-12 (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-422 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1199) (-432 *3))) (-14 *4 (-1175)) (-14 *5 *2))) (-3579 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-3 (|:| |%expansion| (-314 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157)))))) (-5 *1 (-422 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1199) (-432 *5))) (-14 *6 (-1175)) (-14 *7 *3)))) -(-10 -7 (-15 -3579 ((-3 (|:| |%expansion| (-314 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157))))) |#2| (-112))) (-15 -2856 (|#2| |#2|))) -((-1301 ((|#4| (-1 |#3| |#1|) |#2|) 11))) -(((-423 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1301 (|#4| (-1 |#3| |#1|) |#2|))) (-1049) (-432 |#1|) (-1049) (-432 |#3|)) (T -423)) -((-1301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1049)) (-4 *6 (-1049)) (-4 *2 (-432 *6)) (-5 *1 (-423 *5 *4 *6 *2)) (-4 *4 (-432 *5))))) -(-10 -7 (-15 -1301 (|#4| (-1 |#3| |#1|) |#2|))) -((-2856 ((|#2| |#2|) 106)) (-3198 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157))))) |#2| (-112) (-1157)) 52)) (-3599 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157))))) |#2| (-112) (-1157)) 171))) -(((-424 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3198 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157))))) |#2| (-112) (-1157))) (-15 -3599 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157))))) |#2| (-112) (-1157))) (-15 -2856 (|#2| |#2|))) (-13 (-454) (-1038 (-566)) (-639 (-566))) (-13 (-27) (-1199) (-432 |#1|) (-10 -8 (-15 -3783 ($ |#3|)))) (-848) (-13 (-1242 |#2| |#3|) (-365) (-1199) (-10 -8 (-15 -3561 ($ $)) (-15 -1941 ($ $)))) (-983 |#4|) (-1175)) (T -424)) -((-2856 (*1 *2 *2) (-12 (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-4 *2 (-13 (-27) (-1199) (-432 *3) (-10 -8 (-15 -3783 ($ *4))))) (-4 *4 (-848)) (-4 *5 (-13 (-1242 *2 *4) (-365) (-1199) (-10 -8 (-15 -3561 ($ $)) (-15 -1941 ($ $))))) (-5 *1 (-424 *3 *2 *4 *5 *6 *7)) (-4 *6 (-983 *5)) (-14 *7 (-1175)))) (-3599 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-4 *3 (-13 (-27) (-1199) (-432 *6) (-10 -8 (-15 -3783 ($ *7))))) (-4 *7 (-848)) (-4 *8 (-13 (-1242 *3 *7) (-365) (-1199) (-10 -8 (-15 -3561 ($ $)) (-15 -1941 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157)))))) (-5 *1 (-424 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1157)) (-4 *9 (-983 *8)) (-14 *10 (-1175)))) (-3198 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-4 *3 (-13 (-27) (-1199) (-432 *6) (-10 -8 (-15 -3783 ($ *7))))) (-4 *7 (-848)) (-4 *8 (-13 (-1242 *3 *7) (-365) (-1199) (-10 -8 (-15 -3561 ($ $)) (-15 -1941 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157)))))) (-5 *1 (-424 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1157)) (-4 *9 (-983 *8)) (-14 *10 (-1175))))) -(-10 -7 (-15 -3198 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157))))) |#2| (-112) (-1157))) (-15 -3599 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157))))) |#2| (-112) (-1157))) (-15 -2856 (|#2| |#2|))) -((-3795 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-1676 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-1301 ((|#4| (-1 |#3| |#1|) |#2|) 17))) -(((-425 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1301 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1676 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3795 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1099) (-427 |#1|) (-1099) (-427 |#3|)) (T -425)) -((-3795 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1099)) (-4 *5 (-1099)) (-4 *2 (-427 *5)) (-5 *1 (-425 *6 *4 *5 *2)) (-4 *4 (-427 *6)))) (-1676 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1099)) (-4 *2 (-1099)) (-5 *1 (-425 *5 *4 *2 *6)) (-4 *4 (-427 *5)) (-4 *6 (-427 *2)))) (-1301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *2 (-427 *6)) (-5 *1 (-425 *5 *4 *6 *2)) (-4 *4 (-427 *5))))) -(-10 -7 (-15 -1301 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1676 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3795 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-1636 (($) 52)) (-1756 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 46)) (-2204 (($ $ $) 45)) (-2904 (((-112) $ $) 34)) (-1970 (((-771)) 56)) (-3700 (($ (-644 |#2|)) 23) (($) NIL)) (-1552 (($) 67)) (-2376 (((-112) $ $) 15)) (-2097 ((|#2| $) 78)) (-3962 ((|#2| $) 76)) (-3681 (((-921) $) 71)) (-4018 (($ $ $) 41)) (-2178 (($ (-921)) 61)) (-4340 (($ $ |#2|) NIL) (($ $ $) 44)) (-4045 (((-771) (-1 (-112) |#2|) $) NIL) (((-771) |#2| $) 31)) (-3796 (($ (-644 |#2|)) 27)) (-3443 (($ $) 54)) (-3783 (((-862) $) 39)) (-2093 (((-771) $) 24)) (-3788 (($ (-644 |#2|)) 22) (($) NIL)) (-2947 (((-112) $ $) 19))) -(((-426 |#1| |#2|) (-10 -8 (-15 -1970 ((-771))) (-15 -2178 (|#1| (-921))) (-15 -3681 ((-921) |#1|)) (-15 -1552 (|#1|)) (-15 -2097 (|#2| |#1|)) (-15 -3962 (|#2| |#1|)) (-15 -1636 (|#1|)) (-15 -3443 (|#1| |#1|)) (-15 -2093 ((-771) |#1|)) (-15 -2947 ((-112) |#1| |#1|)) (-15 -3783 ((-862) |#1|)) (-15 -2376 ((-112) |#1| |#1|)) (-15 -3788 (|#1|)) (-15 -3788 (|#1| (-644 |#2|))) (-15 -3700 (|#1|)) (-15 -3700 (|#1| (-644 |#2|))) (-15 -4018 (|#1| |#1| |#1|)) (-15 -4340 (|#1| |#1| |#1|)) (-15 -4340 (|#1| |#1| |#2|)) (-15 -2204 (|#1| |#1| |#1|)) (-15 -2904 ((-112) |#1| |#1|)) (-15 -1756 (|#1| |#1| |#1|)) (-15 -1756 (|#1| |#1| |#2|)) (-15 -1756 (|#1| |#2| |#1|)) (-15 -3796 (|#1| (-644 |#2|))) (-15 -4045 ((-771) |#2| |#1|)) (-15 -4045 ((-771) (-1 (-112) |#2|) |#1|))) (-427 |#2|) (-1099)) (T -426)) -((-1970 (*1 *2) (-12 (-4 *4 (-1099)) (-5 *2 (-771)) (-5 *1 (-426 *3 *4)) (-4 *3 (-427 *4))))) -(-10 -8 (-15 -1970 ((-771))) (-15 -2178 (|#1| (-921))) (-15 -3681 ((-921) |#1|)) (-15 -1552 (|#1|)) (-15 -2097 (|#2| |#1|)) (-15 -3962 (|#2| |#1|)) (-15 -1636 (|#1|)) (-15 -3443 (|#1| |#1|)) (-15 -2093 ((-771) |#1|)) (-15 -2947 ((-112) |#1| |#1|)) (-15 -3783 ((-862) |#1|)) (-15 -2376 ((-112) |#1| |#1|)) (-15 -3788 (|#1|)) (-15 -3788 (|#1| (-644 |#2|))) (-15 -3700 (|#1|)) (-15 -3700 (|#1| (-644 |#2|))) (-15 -4018 (|#1| |#1| |#1|)) (-15 -4340 (|#1| |#1| |#1|)) (-15 -4340 (|#1| |#1| |#2|)) (-15 -2204 (|#1| |#1| |#1|)) (-15 -2904 ((-112) |#1| |#1|)) (-15 -1756 (|#1| |#1| |#1|)) (-15 -1756 (|#1| |#1| |#2|)) (-15 -1756 (|#1| |#2| |#1|)) (-15 -3796 (|#1| (-644 |#2|))) (-15 -4045 ((-771) |#2| |#1|)) (-15 -4045 ((-771) (-1 (-112) |#2|) |#1|))) -((-3007 (((-112) $ $) 19)) (-1636 (($) 68 (|has| |#1| (-370)))) (-1756 (($ |#1| $) 83) (($ $ |#1|) 82) (($ $ $) 81)) (-2204 (($ $ $) 79)) (-2904 (((-112) $ $) 80)) (-2256 (((-112) $ (-771)) 8)) (-1970 (((-771)) 62 (|has| |#1| (-370)))) (-3700 (($ (-644 |#1|)) 75) (($) 74)) (-4016 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4414)))) (-2701 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4414)))) (-3012 (($) 7 T CONST)) (-2031 (($ $) 59 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2956 (($ |#1| $) 48 (|has| $ (-6 -4414))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4414)))) (-2665 (($ |#1| $) 58 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4414)))) (-1676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4414)))) (-1552 (($) 65 (|has| |#1| (-370)))) (-3979 (((-644 |#1|) $) 31 (|has| $ (-6 -4414)))) (-2376 (((-112) $ $) 71)) (-2404 (((-112) $ (-771)) 9)) (-2097 ((|#1| $) 66 (|has| |#1| (-850)))) (-2329 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-3962 ((|#1| $) 67 (|has| |#1| (-850)))) (-2908 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#1| |#1|) $) 36)) (-3681 (((-921) $) 64 (|has| |#1| (-370)))) (-2603 (((-112) $ (-771)) 10)) (-4117 (((-1157) $) 22)) (-4018 (($ $ $) 76)) (-4039 ((|#1| $) 40)) (-3406 (($ |#1| $) 41)) (-2178 (($ (-921)) 63 (|has| |#1| (-370)))) (-4035 (((-1119) $) 21)) (-2006 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2539 ((|#1| $) 42)) (-2692 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) 14)) (-3467 (((-112) $) 11)) (-1494 (($) 12)) (-4340 (($ $ |#1|) 78) (($ $ $) 77)) (-3481 (($) 50) (($ (-644 |#1|)) 49)) (-4045 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-3940 (($ $) 13)) (-1348 (((-538) $) 60 (|has| |#1| (-614 (-538))))) (-3796 (($ (-644 |#1|)) 51)) (-3443 (($ $) 69 (|has| |#1| (-370)))) (-3783 (((-862) $) 18)) (-2093 (((-771) $) 70)) (-3788 (($ (-644 |#1|)) 73) (($) 72)) (-3117 (((-112) $ $) 23)) (-1748 (($ (-644 |#1|)) 43)) (-1894 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) 20)) (-3018 (((-771) $) 6 (|has| $ (-6 -4414))))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) 60)) (-2874 (($ $) 78)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) 191)) (-2161 (($ $) NIL)) (-2345 (((-112) $) 48)) (-2896 ((|#1| $) 16)) (-3967 (((-3 $ "failed") $ $) NIL)) (-1378 (($ $) NIL (|has| |#1| (-1218)))) (-1364 (((-420 $) $) NIL (|has| |#1| (-1218)))) (-3127 (($ |#1| (-566)) 42)) (-2463 (($) NIL T CONST)) (-2229 (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) 148)) (-4158 (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) 74)) (-3245 (((-3 $ "failed") $) 164)) (-4391 (((-3 (-409 (-566)) "failed") $) 84 (|has| |#1| (-547)))) (-3407 (((-112) $) 80 (|has| |#1| (-547)))) (-1786 (((-409 (-566)) $) 91 (|has| |#1| (-547)))) (-3506 (($ |#1| (-566)) 44)) (-1615 (((-112) $) 213 (|has| |#1| (-1218)))) (-2389 (((-112) $) 62)) (-1720 (((-771) $) 51)) (-1979 (((-3 "nil" "sqfr" "irred" "prime") $ (-566)) 175)) (-2121 ((|#1| $ (-566)) 174)) (-2563 (((-566) $ (-566)) 173)) (-3400 (($ |#1| (-566)) 41)) (-2319 (($ (-1 |#1| |#1|) $) 183)) (-2998 (($ |#1| (-644 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-566))))) 79)) (-2128 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-3380 (((-1157) $) NIL)) (-2184 (($ |#1| (-566)) 43)) (-4072 (((-1119) $) NIL)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-454)))) (-2164 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) 192 (|has| |#1| (-454)))) (-4140 (($ |#1| (-566) (-3 "nil" "sqfr" "irred" "prime")) 40)) (-1616 (((-644 (-2 (|:| -1624 |#1|) (|:| -2201 (-566)))) $) 73)) (-3272 (((-644 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-566)))) $) 12)) (-1624 (((-420 $) $) NIL (|has| |#1| (-1218)))) (-2978 (((-3 $ "failed") $ $) 176)) (-2201 (((-566) $) 167)) (-3640 ((|#1| $) 75)) (-2023 (($ $ (-644 |#1|) (-644 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-644 (-295 |#1|))) 100 (|has| |#1| (-310 |#1|))) (($ $ (-644 (-1175)) (-644 |#1|)) 106 (|has| |#1| (-516 (-1175) |#1|))) (($ $ (-1175) |#1|) NIL (|has| |#1| (-516 (-1175) |#1|))) (($ $ (-1175) $) NIL (|has| |#1| (-516 (-1175) $))) (($ $ (-644 (-1175)) (-644 $)) 107 (|has| |#1| (-516 (-1175) $))) (($ $ (-644 (-295 $))) 103 (|has| |#1| (-310 $))) (($ $ (-295 $)) NIL (|has| |#1| (-310 $))) (($ $ $ $) NIL (|has| |#1| (-310 $))) (($ $ (-644 $) (-644 $)) NIL (|has| |#1| (-310 $)))) (-1309 (($ $ |#1|) 92 (|has| |#1| (-287 |#1| |#1|))) (($ $ $) 93 (|has| |#1| (-287 $ $)))) (-3629 (($ $) NIL (|has| |#1| (-233))) (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) 182)) (-2376 (((-538) $) 39 (|has| |#1| (-614 (-538)))) (((-381) $) 113 (|has| |#1| (-1022))) (((-225) $) 119 (|has| |#1| (-1022)))) (-3152 (((-862) $) 146) (($ (-566)) 65) (($ $) NIL) (($ |#1|) 64) (($ (-409 (-566))) NIL (|has| |#1| (-1038 (-409 (-566)))))) (-2593 (((-771)) 67 T CONST)) (-3044 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-4356 (($) 53 T CONST)) (-4366 (($) 52 T CONST)) (-3497 (($ $) NIL (|has| |#1| (-233))) (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2914 (((-112) $ $) 159)) (-3012 (($ $) 161) (($ $ $) NIL)) (-3002 (($ $ $) 180)) (** (($ $ (-921)) NIL) (($ $ (-771)) 125)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 69) (($ $ $) 68) (($ |#1| $) 70) (($ $ |#1|) NIL))) +(((-420 |#1|) (-13 (-558) (-231 |#1|) (-38 |#1|) (-340 |#1|) (-413 |#1|) (-10 -8 (-15 -3640 (|#1| $)) (-15 -2201 ((-566) $)) (-15 -2998 ($ |#1| (-644 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-566)))))) (-15 -3272 ((-644 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-566)))) $)) (-15 -3400 ($ |#1| (-566))) (-15 -1616 ((-644 (-2 (|:| -1624 |#1|) (|:| -2201 (-566)))) $)) (-15 -2184 ($ |#1| (-566))) (-15 -2563 ((-566) $ (-566))) (-15 -2121 (|#1| $ (-566))) (-15 -1979 ((-3 "nil" "sqfr" "irred" "prime") $ (-566))) (-15 -1720 ((-771) $)) (-15 -3506 ($ |#1| (-566))) (-15 -3127 ($ |#1| (-566))) (-15 -4140 ($ |#1| (-566) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2896 (|#1| $)) (-15 -2874 ($ $)) (-15 -2319 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-454)) (-6 (-454)) |%noBranch|) (IF (|has| |#1| (-1022)) (-6 (-1022)) |%noBranch|) (IF (|has| |#1| (-1218)) (-6 (-1218)) |%noBranch|) (IF (|has| |#1| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|) (IF (|has| |#1| (-547)) (PROGN (-15 -3407 ((-112) $)) (-15 -1786 ((-409 (-566)) $)) (-15 -4391 ((-3 (-409 (-566)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-287 $ $)) (-6 (-287 $ $)) |%noBranch|) (IF (|has| |#1| (-310 $)) (-6 (-310 $)) |%noBranch|) (IF (|has| |#1| (-516 (-1175) $)) (-6 (-516 (-1175) $)) |%noBranch|))) (-558)) (T -420)) +((-2319 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-558)) (-5 *1 (-420 *3)))) (-3640 (*1 *2 *1) (-12 (-5 *1 (-420 *2)) (-4 *2 (-558)))) (-2201 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-420 *3)) (-4 *3 (-558)))) (-2998 (*1 *1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-566))))) (-4 *2 (-558)) (-5 *1 (-420 *2)))) (-3272 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-566))))) (-5 *1 (-420 *3)) (-4 *3 (-558)))) (-3400 (*1 *1 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-420 *2)) (-4 *2 (-558)))) (-1616 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| -1624 *3) (|:| -2201 (-566))))) (-5 *1 (-420 *3)) (-4 *3 (-558)))) (-2184 (*1 *1 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-420 *2)) (-4 *2 (-558)))) (-2563 (*1 *2 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-420 *3)) (-4 *3 (-558)))) (-2121 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *1 (-420 *2)) (-4 *2 (-558)))) (-1979 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-420 *4)) (-4 *4 (-558)))) (-1720 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-420 *3)) (-4 *3 (-558)))) (-3506 (*1 *1 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-420 *2)) (-4 *2 (-558)))) (-3127 (*1 *1 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-420 *2)) (-4 *2 (-558)))) (-4140 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-566)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-420 *2)) (-4 *2 (-558)))) (-2896 (*1 *2 *1) (-12 (-5 *1 (-420 *2)) (-4 *2 (-558)))) (-2874 (*1 *1 *1) (-12 (-5 *1 (-420 *2)) (-4 *2 (-558)))) (-3407 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-420 *3)) (-4 *3 (-547)) (-4 *3 (-558)))) (-1786 (*1 *2 *1) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-420 *3)) (-4 *3 (-547)) (-4 *3 (-558)))) (-4391 (*1 *2 *1) (|partial| -12 (-5 *2 (-409 (-566))) (-5 *1 (-420 *3)) (-4 *3 (-547)) (-4 *3 (-558))))) +(-13 (-558) (-231 |#1|) (-38 |#1|) (-340 |#1|) (-413 |#1|) (-10 -8 (-15 -3640 (|#1| $)) (-15 -2201 ((-566) $)) (-15 -2998 ($ |#1| (-644 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-566)))))) (-15 -3272 ((-644 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-566)))) $)) (-15 -3400 ($ |#1| (-566))) (-15 -1616 ((-644 (-2 (|:| -1624 |#1|) (|:| -2201 (-566)))) $)) (-15 -2184 ($ |#1| (-566))) (-15 -2563 ((-566) $ (-566))) (-15 -2121 (|#1| $ (-566))) (-15 -1979 ((-3 "nil" "sqfr" "irred" "prime") $ (-566))) (-15 -1720 ((-771) $)) (-15 -3506 ($ |#1| (-566))) (-15 -3127 ($ |#1| (-566))) (-15 -4140 ($ |#1| (-566) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2896 (|#1| $)) (-15 -2874 ($ $)) (-15 -2319 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-454)) (-6 (-454)) |%noBranch|) (IF (|has| |#1| (-1022)) (-6 (-1022)) |%noBranch|) (IF (|has| |#1| (-1218)) (-6 (-1218)) |%noBranch|) (IF (|has| |#1| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|) (IF (|has| |#1| (-547)) (PROGN (-15 -3407 ((-112) $)) (-15 -1786 ((-409 (-566)) $)) (-15 -4391 ((-3 (-409 (-566)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-287 $ $)) (-6 (-287 $ $)) |%noBranch|) (IF (|has| |#1| (-310 $)) (-6 (-310 $)) |%noBranch|) (IF (|has| |#1| (-516 (-1175) $)) (-6 (-516 (-1175) $)) |%noBranch|))) +((-2279 (((-420 |#1|) (-420 |#1|) (-1 (-420 |#1|) |#1|)) 28)) (-2731 (((-420 |#1|) (-420 |#1|) (-420 |#1|)) 17))) +(((-421 |#1|) (-10 -7 (-15 -2279 ((-420 |#1|) (-420 |#1|) (-1 (-420 |#1|) |#1|))) (-15 -2731 ((-420 |#1|) (-420 |#1|) (-420 |#1|)))) (-558)) (T -421)) +((-2731 (*1 *2 *2 *2) (-12 (-5 *2 (-420 *3)) (-4 *3 (-558)) (-5 *1 (-421 *3)))) (-2279 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-420 *4) *4)) (-4 *4 (-558)) (-5 *2 (-420 *4)) (-5 *1 (-421 *4))))) +(-10 -7 (-15 -2279 ((-420 |#1|) (-420 |#1|) (-1 (-420 |#1|) |#1|))) (-15 -2731 ((-420 |#1|) (-420 |#1|) (-420 |#1|)))) +((-1310 ((|#2| |#2|) 183)) (-4297 (((-3 (|:| |%expansion| (-314 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157))))) |#2| (-112)) 60))) +(((-422 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4297 ((-3 (|:| |%expansion| (-314 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157))))) |#2| (-112))) (-15 -1310 (|#2| |#2|))) (-13 (-454) (-1038 (-566)) (-639 (-566))) (-13 (-27) (-1199) (-432 |#1|)) (-1175) |#2|) (T -422)) +((-1310 (*1 *2 *2) (-12 (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-422 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1199) (-432 *3))) (-14 *4 (-1175)) (-14 *5 *2))) (-4297 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-3 (|:| |%expansion| (-314 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157)))))) (-5 *1 (-422 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1199) (-432 *5))) (-14 *6 (-1175)) (-14 *7 *3)))) +(-10 -7 (-15 -4297 ((-3 (|:| |%expansion| (-314 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157))))) |#2| (-112))) (-15 -1310 (|#2| |#2|))) +((-2319 ((|#4| (-1 |#3| |#1|) |#2|) 11))) +(((-423 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2319 (|#4| (-1 |#3| |#1|) |#2|))) (-1049) (-432 |#1|) (-1049) (-432 |#3|)) (T -423)) +((-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1049)) (-4 *6 (-1049)) (-4 *2 (-432 *6)) (-5 *1 (-423 *5 *4 *6 *2)) (-4 *4 (-432 *5))))) +(-10 -7 (-15 -2319 (|#4| (-1 |#3| |#1|) |#2|))) +((-1310 ((|#2| |#2|) 106)) (-2081 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157))))) |#2| (-112) (-1157)) 52)) (-3767 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157))))) |#2| (-112) (-1157)) 171))) +(((-424 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2081 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157))))) |#2| (-112) (-1157))) (-15 -3767 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157))))) |#2| (-112) (-1157))) (-15 -1310 (|#2| |#2|))) (-13 (-454) (-1038 (-566)) (-639 (-566))) (-13 (-27) (-1199) (-432 |#1|) (-10 -8 (-15 -3152 ($ |#3|)))) (-848) (-13 (-1242 |#2| |#3|) (-365) (-1199) (-10 -8 (-15 -3629 ($ $)) (-15 -3313 ($ $)))) (-983 |#4|) (-1175)) (T -424)) +((-1310 (*1 *2 *2) (-12 (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-4 *2 (-13 (-27) (-1199) (-432 *3) (-10 -8 (-15 -3152 ($ *4))))) (-4 *4 (-848)) (-4 *5 (-13 (-1242 *2 *4) (-365) (-1199) (-10 -8 (-15 -3629 ($ $)) (-15 -3313 ($ $))))) (-5 *1 (-424 *3 *2 *4 *5 *6 *7)) (-4 *6 (-983 *5)) (-14 *7 (-1175)))) (-3767 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-4 *3 (-13 (-27) (-1199) (-432 *6) (-10 -8 (-15 -3152 ($ *7))))) (-4 *7 (-848)) (-4 *8 (-13 (-1242 *3 *7) (-365) (-1199) (-10 -8 (-15 -3629 ($ $)) (-15 -3313 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157)))))) (-5 *1 (-424 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1157)) (-4 *9 (-983 *8)) (-14 *10 (-1175)))) (-2081 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-4 *3 (-13 (-27) (-1199) (-432 *6) (-10 -8 (-15 -3152 ($ *7))))) (-4 *7 (-848)) (-4 *8 (-13 (-1242 *3 *7) (-365) (-1199) (-10 -8 (-15 -3629 ($ $)) (-15 -3313 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157)))))) (-5 *1 (-424 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1157)) (-4 *9 (-983 *8)) (-14 *10 (-1175))))) +(-10 -7 (-15 -2081 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157))))) |#2| (-112) (-1157))) (-15 -3767 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157))))) |#2| (-112) (-1157))) (-15 -1310 (|#2| |#2|))) +((-1960 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-2873 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-2319 ((|#4| (-1 |#3| |#1|) |#2|) 17))) +(((-425 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2319 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2873 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1960 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1099) (-427 |#1|) (-1099) (-427 |#3|)) (T -425)) +((-1960 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1099)) (-4 *5 (-1099)) (-4 *2 (-427 *5)) (-5 *1 (-425 *6 *4 *5 *2)) (-4 *4 (-427 *6)))) (-2873 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1099)) (-4 *2 (-1099)) (-5 *1 (-425 *5 *4 *2 *6)) (-4 *4 (-427 *5)) (-4 *6 (-427 *2)))) (-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *2 (-427 *6)) (-5 *1 (-425 *5 *4 *6 *2)) (-4 *4 (-427 *5))))) +(-10 -7 (-15 -2319 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2873 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1960 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-3131 (($) 52)) (-1775 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 46)) (-3495 (($ $ $) 45)) (-2515 (((-112) $ $) 34)) (-3870 (((-771)) 56)) (-3690 (($ (-644 |#2|)) 23) (($) NIL)) (-2715 (($) 67)) (-3546 (((-112) $ $) 15)) (-1478 ((|#2| $) 78)) (-2599 ((|#2| $) 76)) (-1866 (((-921) $) 71)) (-1997 (($ $ $) 41)) (-2835 (($ (-921)) 61)) (-2048 (($ $ |#2|) NIL) (($ $ $) 44)) (-4083 (((-771) (-1 (-112) |#2|) $) NIL) (((-771) |#2| $) 31)) (-1340 (($ (-644 |#2|)) 27)) (-4289 (($ $) 54)) (-3152 (((-862) $) 39)) (-3823 (((-771) $) 24)) (-1692 (($ (-644 |#2|)) 22) (($) NIL)) (-2914 (((-112) $ $) 19))) +(((-426 |#1| |#2|) (-10 -8 (-15 -3870 ((-771))) (-15 -2835 (|#1| (-921))) (-15 -1866 ((-921) |#1|)) (-15 -2715 (|#1|)) (-15 -1478 (|#2| |#1|)) (-15 -2599 (|#2| |#1|)) (-15 -3131 (|#1|)) (-15 -4289 (|#1| |#1|)) (-15 -3823 ((-771) |#1|)) (-15 -2914 ((-112) |#1| |#1|)) (-15 -3152 ((-862) |#1|)) (-15 -3546 ((-112) |#1| |#1|)) (-15 -1692 (|#1|)) (-15 -1692 (|#1| (-644 |#2|))) (-15 -3690 (|#1|)) (-15 -3690 (|#1| (-644 |#2|))) (-15 -1997 (|#1| |#1| |#1|)) (-15 -2048 (|#1| |#1| |#1|)) (-15 -2048 (|#1| |#1| |#2|)) (-15 -3495 (|#1| |#1| |#1|)) (-15 -2515 ((-112) |#1| |#1|)) (-15 -1775 (|#1| |#1| |#1|)) (-15 -1775 (|#1| |#1| |#2|)) (-15 -1775 (|#1| |#2| |#1|)) (-15 -1340 (|#1| (-644 |#2|))) (-15 -4083 ((-771) |#2| |#1|)) (-15 -4083 ((-771) (-1 (-112) |#2|) |#1|))) (-427 |#2|) (-1099)) (T -426)) +((-3870 (*1 *2) (-12 (-4 *4 (-1099)) (-5 *2 (-771)) (-5 *1 (-426 *3 *4)) (-4 *3 (-427 *4))))) +(-10 -8 (-15 -3870 ((-771))) (-15 -2835 (|#1| (-921))) (-15 -1866 ((-921) |#1|)) (-15 -2715 (|#1|)) (-15 -1478 (|#2| |#1|)) (-15 -2599 (|#2| |#1|)) (-15 -3131 (|#1|)) (-15 -4289 (|#1| |#1|)) (-15 -3823 ((-771) |#1|)) (-15 -2914 ((-112) |#1| |#1|)) (-15 -3152 ((-862) |#1|)) (-15 -3546 ((-112) |#1| |#1|)) (-15 -1692 (|#1|)) (-15 -1692 (|#1| (-644 |#2|))) (-15 -3690 (|#1|)) (-15 -3690 (|#1| (-644 |#2|))) (-15 -1997 (|#1| |#1| |#1|)) (-15 -2048 (|#1| |#1| |#1|)) (-15 -2048 (|#1| |#1| |#2|)) (-15 -3495 (|#1| |#1| |#1|)) (-15 -2515 ((-112) |#1| |#1|)) (-15 -1775 (|#1| |#1| |#1|)) (-15 -1775 (|#1| |#1| |#2|)) (-15 -1775 (|#1| |#2| |#1|)) (-15 -1340 (|#1| (-644 |#2|))) (-15 -4083 ((-771) |#2| |#1|)) (-15 -4083 ((-771) (-1 (-112) |#2|) |#1|))) +((-2988 (((-112) $ $) 19)) (-3131 (($) 68 (|has| |#1| (-370)))) (-1775 (($ |#1| $) 83) (($ $ |#1|) 82) (($ $ $) 81)) (-3495 (($ $ $) 79)) (-2515 (((-112) $ $) 80)) (-1504 (((-112) $ (-771)) 8)) (-3870 (((-771)) 62 (|has| |#1| (-370)))) (-3690 (($ (-644 |#1|)) 75) (($) 74)) (-2995 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4414)))) (-3678 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4414)))) (-2463 (($) 7 T CONST)) (-3942 (($ $) 59 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-3512 (($ |#1| $) 48 (|has| $ (-6 -4414))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4414)))) (-2622 (($ |#1| $) 58 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4414)))) (-2873 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4414)))) (-2715 (($) 65 (|has| |#1| (-370)))) (-1683 (((-644 |#1|) $) 31 (|has| $ (-6 -4414)))) (-3546 (((-112) $ $) 71)) (-3456 (((-112) $ (-771)) 9)) (-1478 ((|#1| $) 66 (|has| |#1| (-850)))) (-3491 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2599 ((|#1| $) 67 (|has| |#1| (-850)))) (-3885 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#1| |#1|) $) 36)) (-1866 (((-921) $) 64 (|has| |#1| (-370)))) (-3267 (((-112) $ (-771)) 10)) (-3380 (((-1157) $) 22)) (-1997 (($ $ $) 76)) (-3278 ((|#1| $) 40)) (-3888 (($ |#1| $) 41)) (-2835 (($ (-921)) 63 (|has| |#1| (-370)))) (-4072 (((-1119) $) 21)) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1973 ((|#1| $) 42)) (-2823 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) 14)) (-2872 (((-112) $) 11)) (-3493 (($) 12)) (-2048 (($ $ |#1|) 78) (($ $ $) 77)) (-1792 (($) 50) (($ (-644 |#1|)) 49)) (-4083 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-1480 (($ $) 13)) (-2376 (((-538) $) 60 (|has| |#1| (-614 (-538))))) (-1340 (($ (-644 |#1|)) 51)) (-4289 (($ $) 69 (|has| |#1| (-370)))) (-3152 (((-862) $) 18)) (-3823 (((-771) $) 70)) (-1692 (($ (-644 |#1|)) 73) (($) 72)) (-3044 (((-112) $ $) 23)) (-2948 (($ (-644 |#1|)) 43)) (-2210 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) 20)) (-3000 (((-771) $) 6 (|has| $ (-6 -4414))))) (((-427 |#1|) (-140) (-1099)) (T -427)) -((-2093 (*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-1099)) (-5 *2 (-771)))) (-3443 (*1 *1 *1) (-12 (-4 *1 (-427 *2)) (-4 *2 (-1099)) (-4 *2 (-370)))) (-1636 (*1 *1) (-12 (-4 *1 (-427 *2)) (-4 *2 (-370)) (-4 *2 (-1099)))) (-3962 (*1 *2 *1) (-12 (-4 *1 (-427 *2)) (-4 *2 (-1099)) (-4 *2 (-850)))) (-2097 (*1 *2 *1) (-12 (-4 *1 (-427 *2)) (-4 *2 (-1099)) (-4 *2 (-850))))) -(-13 (-229 |t#1|) (-1097 |t#1|) (-10 -8 (-6 -4414) (-15 -2093 ((-771) $)) (IF (|has| |t#1| (-370)) (PROGN (-6 (-370)) (-15 -3443 ($ $)) (-15 -1636 ($))) |%noBranch|) (IF (|has| |t#1| (-850)) (PROGN (-15 -3962 (|t#1| $)) (-15 -2097 (|t#1| $))) |%noBranch|))) +((-3823 (*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-1099)) (-5 *2 (-771)))) (-4289 (*1 *1 *1) (-12 (-4 *1 (-427 *2)) (-4 *2 (-1099)) (-4 *2 (-370)))) (-3131 (*1 *1) (-12 (-4 *1 (-427 *2)) (-4 *2 (-370)) (-4 *2 (-1099)))) (-2599 (*1 *2 *1) (-12 (-4 *1 (-427 *2)) (-4 *2 (-1099)) (-4 *2 (-850)))) (-1478 (*1 *2 *1) (-12 (-4 *1 (-427 *2)) (-4 *2 (-1099)) (-4 *2 (-850))))) +(-13 (-229 |t#1|) (-1097 |t#1|) (-10 -8 (-6 -4414) (-15 -3823 ((-771) $)) (IF (|has| |t#1| (-370)) (PROGN (-6 (-370)) (-15 -4289 ($ $)) (-15 -3131 ($))) |%noBranch|) (IF (|has| |t#1| (-850)) (PROGN (-15 -2599 (|t#1| $)) (-15 -1478 (|t#1| $))) |%noBranch|))) (((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-613 (-862)) . T) ((-151 |#1|) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-229 |#1|) . T) ((-235 |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-370) |has| |#1| (-370)) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1097 |#1|) . T) ((-1099) . T) ((-1214) . T)) -((-3017 (((-587 |#2|) |#2| (-1175)) 36)) (-1523 (((-587 |#2|) |#2| (-1175)) 21)) (-1666 ((|#2| |#2| (-1175)) 26))) -(((-428 |#1| |#2|) (-10 -7 (-15 -1523 ((-587 |#2|) |#2| (-1175))) (-15 -3017 ((-587 |#2|) |#2| (-1175))) (-15 -1666 (|#2| |#2| (-1175)))) (-13 (-308) (-147) (-1038 (-566)) (-639 (-566))) (-13 (-1199) (-29 |#1|))) (T -428)) -((-1666 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-428 *4 *2)) (-4 *2 (-13 (-1199) (-29 *4))))) (-3017 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-4 *5 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-587 *3)) (-5 *1 (-428 *5 *3)) (-4 *3 (-13 (-1199) (-29 *5))))) (-1523 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-4 *5 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-587 *3)) (-5 *1 (-428 *5 *3)) (-4 *3 (-13 (-1199) (-29 *5)))))) -(-10 -7 (-15 -1523 ((-587 |#2|) |#2| (-1175))) (-15 -3017 ((-587 |#2|) |#2| (-1175))) (-15 -1666 (|#2| |#2| (-1175)))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-3012 (($) NIL T CONST)) (-1878 (((-3 $ "failed") $) NIL)) (-3934 (((-112) $) NIL)) (-1591 (($ |#2| |#1|) 37)) (-1305 (($ |#2| |#1|) 35)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) NIL) (($ (-566)) NIL) (($ |#1|) NIL) (($ (-332 |#2|)) 25)) (-2107 (((-771)) NIL T CONST)) (-3117 (((-112) $ $) NIL)) (-2479 (($) 10 T CONST)) (-4334 (($) 16 T CONST)) (-2947 (((-112) $ $) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) 36)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 39) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-429 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4401)) (IF (|has| |#1| (-6 -4401)) (-6 -4401) |%noBranch|) |%noBranch|) (-15 -3783 ($ |#1|)) (-15 -3783 ($ (-332 |#2|))) (-15 -1591 ($ |#2| |#1|)) (-15 -1305 ($ |#2| |#1|)))) (-13 (-172) (-38 (-409 (-566)))) (-13 (-850) (-21))) (T -429)) -((-3783 (*1 *1 *2) (-12 (-5 *1 (-429 *2 *3)) (-4 *2 (-13 (-172) (-38 (-409 (-566))))) (-4 *3 (-13 (-850) (-21))))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-332 *4)) (-4 *4 (-13 (-850) (-21))) (-5 *1 (-429 *3 *4)) (-4 *3 (-13 (-172) (-38 (-409 (-566))))))) (-1591 (*1 *1 *2 *3) (-12 (-5 *1 (-429 *3 *2)) (-4 *3 (-13 (-172) (-38 (-409 (-566))))) (-4 *2 (-13 (-850) (-21))))) (-1305 (*1 *1 *2 *3) (-12 (-5 *1 (-429 *3 *2)) (-4 *3 (-13 (-172) (-38 (-409 (-566))))) (-4 *2 (-13 (-850) (-21)))))) -(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4401)) (IF (|has| |#1| (-6 -4401)) (-6 -4401) |%noBranch|) |%noBranch|) (-15 -3783 ($ |#1|)) (-15 -3783 ($ (-332 |#2|))) (-15 -1591 ($ |#2| |#1|)) (-15 -1305 ($ |#2| |#1|)))) -((-1941 (((-3 |#2| (-644 |#2|)) |#2| (-1175)) 115))) -(((-430 |#1| |#2|) (-10 -7 (-15 -1941 ((-3 |#2| (-644 |#2|)) |#2| (-1175)))) (-13 (-308) (-147) (-1038 (-566)) (-639 (-566))) (-13 (-1199) (-959) (-29 |#1|))) (T -430)) -((-1941 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-4 *5 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-3 *3 (-644 *3))) (-5 *1 (-430 *5 *3)) (-4 *3 (-13 (-1199) (-959) (-29 *5)))))) -(-10 -7 (-15 -1941 ((-3 |#2| (-644 |#2|)) |#2| (-1175)))) -((-3863 (((-644 (-1175)) $) 81)) (-3683 (((-409 (-1171 $)) $ (-612 $)) 314)) (-2645 (($ $ (-295 $)) NIL) (($ $ (-644 (-295 $))) NIL) (($ $ (-644 (-612 $)) (-644 $)) 278)) (-4307 (((-3 (-612 $) "failed") $) NIL) (((-3 (-1175) "failed") $) 84) (((-3 (-566) "failed") $) NIL) (((-3 |#2| "failed") $) 274) (((-3 (-409 (-952 |#2|)) "failed") $) 364) (((-3 (-952 |#2|) "failed") $) 276) (((-3 (-409 (-566)) "failed") $) NIL)) (-4205 (((-612 $) $) NIL) (((-1175) $) 28) (((-566) $) NIL) ((|#2| $) 272) (((-409 (-952 |#2|)) $) 346) (((-952 |#2|) $) 273) (((-409 (-566)) $) NIL)) (-3659 (((-114) (-114)) 47)) (-1493 (($ $) 99)) (-3133 (((-3 (-612 $) "failed") $) 269)) (-3647 (((-644 (-612 $)) $) 270)) (-3714 (((-3 (-644 $) "failed") $) 288)) (-2114 (((-3 (-2 (|:| |val| $) (|:| -2852 (-566))) "failed") $) 295)) (-2353 (((-3 (-644 $) "failed") $) 286)) (-3542 (((-3 (-2 (|:| -1364 (-566)) (|:| |var| (-612 $))) "failed") $) 305)) (-1518 (((-3 (-2 (|:| |var| (-612 $)) (|:| -2852 (-566))) "failed") $) 292) (((-3 (-2 (|:| |var| (-612 $)) (|:| -2852 (-566))) "failed") $ (-114)) 256) (((-3 (-2 (|:| |var| (-612 $)) (|:| -2852 (-566))) "failed") $ (-1175)) 258)) (-1723 (((-112) $) 17)) (-1736 ((|#2| $) 19)) (-2055 (($ $ (-612 $) $) NIL) (($ $ (-644 (-612 $)) (-644 $)) 277) (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-644 (-1175)) (-644 (-1 $ $))) NIL) (($ $ (-644 (-1175)) (-644 (-1 $ (-644 $)))) 109) (($ $ (-1175) (-1 $ (-644 $))) NIL) (($ $ (-1175) (-1 $ $)) NIL) (($ $ (-644 (-114)) (-644 (-1 $ $))) NIL) (($ $ (-644 (-114)) (-644 (-1 $ (-644 $)))) NIL) (($ $ (-114) (-1 $ (-644 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1175)) 62) (($ $ (-644 (-1175))) 281) (($ $) 282) (($ $ (-114) $ (-1175)) 65) (($ $ (-644 (-114)) (-644 $) (-1175)) 72) (($ $ (-644 (-1175)) (-644 (-771)) (-644 (-1 $ $))) 120) (($ $ (-644 (-1175)) (-644 (-771)) (-644 (-1 $ (-644 $)))) 283) (($ $ (-1175) (-771) (-1 $ (-644 $))) 105) (($ $ (-1175) (-771) (-1 $ $)) 104)) (-4390 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-644 $)) 119)) (-3561 (($ $ (-644 (-1175)) (-644 (-771))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175)) 279)) (-2023 (($ $) 325)) (-1348 (((-892 (-566)) $) 298) (((-892 (-381)) $) 302) (($ (-420 $)) 360) (((-538) $) NIL)) (-3783 (((-862) $) 280) (($ (-612 $)) 93) (($ (-1175)) 24) (($ |#2|) NIL) (($ (-1124 |#2| (-612 $))) NIL) (($ (-409 |#2|)) 330) (($ (-952 (-409 |#2|))) 369) (($ (-409 (-952 (-409 |#2|)))) 342) (($ (-409 (-952 |#2|))) 336) (($ $) NIL) (($ (-952 |#2|)) 218) (($ (-409 (-566))) 374) (($ (-566)) NIL)) (-2107 (((-771)) 88)) (-2825 (((-112) (-114)) 42)) (-4229 (($ (-1175) $) 31) (($ (-1175) $ $) 32) (($ (-1175) $ $ $) 33) (($ (-1175) $ $ $ $) 34) (($ (-1175) (-644 $)) 39)) (* (($ (-409 (-566)) $) NIL) (($ $ (-409 (-566))) NIL) (($ |#2| $) 307) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-566) $) NIL) (($ (-771) $) NIL) (($ (-921) $) NIL))) -(((-431 |#1| |#2|) (-10 -8 (-15 * (|#1| (-921) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3783 (|#1| (-566))) (-15 -2107 ((-771))) (-15 -3783 (|#1| (-409 (-566)))) (-15 -4307 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -4205 ((-409 (-566)) |#1|)) (-15 -1348 ((-538) |#1|)) (-15 -3783 (|#1| (-952 |#2|))) (-15 -4307 ((-3 (-952 |#2|) "failed") |#1|)) (-15 -4205 ((-952 |#2|) |#1|)) (-15 -3561 (|#1| |#1| (-1175))) (-15 -3561 (|#1| |#1| (-644 (-1175)))) (-15 -3561 (|#1| |#1| (-1175) (-771))) (-15 -3561 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3783 (|#1| |#1|)) (-15 * (|#1| |#1| (-409 (-566)))) (-15 * (|#1| (-409 (-566)) |#1|)) (-15 -3783 (|#1| (-409 (-952 |#2|)))) (-15 -4307 ((-3 (-409 (-952 |#2|)) "failed") |#1|)) (-15 -4205 ((-409 (-952 |#2|)) |#1|)) (-15 -3683 ((-409 (-1171 |#1|)) |#1| (-612 |#1|))) (-15 -3783 (|#1| (-409 (-952 (-409 |#2|))))) (-15 -3783 (|#1| (-952 (-409 |#2|)))) (-15 -3783 (|#1| (-409 |#2|))) (-15 -2023 (|#1| |#1|)) (-15 -1348 (|#1| (-420 |#1|))) (-15 -2055 (|#1| |#1| (-1175) (-771) (-1 |#1| |#1|))) (-15 -2055 (|#1| |#1| (-1175) (-771) (-1 |#1| (-644 |#1|)))) (-15 -2055 (|#1| |#1| (-644 (-1175)) (-644 (-771)) (-644 (-1 |#1| (-644 |#1|))))) (-15 -2055 (|#1| |#1| (-644 (-1175)) (-644 (-771)) (-644 (-1 |#1| |#1|)))) (-15 -2114 ((-3 (-2 (|:| |val| |#1|) (|:| -2852 (-566))) "failed") |#1|)) (-15 -1518 ((-3 (-2 (|:| |var| (-612 |#1|)) (|:| -2852 (-566))) "failed") |#1| (-1175))) (-15 -1518 ((-3 (-2 (|:| |var| (-612 |#1|)) (|:| -2852 (-566))) "failed") |#1| (-114))) (-15 -1493 (|#1| |#1|)) (-15 -3783 (|#1| (-1124 |#2| (-612 |#1|)))) (-15 -3542 ((-3 (-2 (|:| -1364 (-566)) (|:| |var| (-612 |#1|))) "failed") |#1|)) (-15 -2353 ((-3 (-644 |#1|) "failed") |#1|)) (-15 -1518 ((-3 (-2 (|:| |var| (-612 |#1|)) (|:| -2852 (-566))) "failed") |#1|)) (-15 -3714 ((-3 (-644 |#1|) "failed") |#1|)) (-15 -2055 (|#1| |#1| (-644 (-114)) (-644 |#1|) (-1175))) (-15 -2055 (|#1| |#1| (-114) |#1| (-1175))) (-15 -2055 (|#1| |#1|)) (-15 -2055 (|#1| |#1| (-644 (-1175)))) (-15 -2055 (|#1| |#1| (-1175))) (-15 -4229 (|#1| (-1175) (-644 |#1|))) (-15 -4229 (|#1| (-1175) |#1| |#1| |#1| |#1|)) (-15 -4229 (|#1| (-1175) |#1| |#1| |#1|)) (-15 -4229 (|#1| (-1175) |#1| |#1|)) (-15 -4229 (|#1| (-1175) |#1|)) (-15 -3863 ((-644 (-1175)) |#1|)) (-15 -1736 (|#2| |#1|)) (-15 -1723 ((-112) |#1|)) (-15 -3783 (|#1| |#2|)) (-15 -4307 ((-3 |#2| "failed") |#1|)) (-15 -4205 (|#2| |#1|)) (-15 -4205 ((-566) |#1|)) (-15 -4307 ((-3 (-566) "failed") |#1|)) (-15 -1348 ((-892 (-381)) |#1|)) (-15 -1348 ((-892 (-566)) |#1|)) (-15 -3783 (|#1| (-1175))) (-15 -4307 ((-3 (-1175) "failed") |#1|)) (-15 -4205 ((-1175) |#1|)) (-15 -2055 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2055 (|#1| |#1| (-114) (-1 |#1| (-644 |#1|)))) (-15 -2055 (|#1| |#1| (-644 (-114)) (-644 (-1 |#1| (-644 |#1|))))) (-15 -2055 (|#1| |#1| (-644 (-114)) (-644 (-1 |#1| |#1|)))) (-15 -2055 (|#1| |#1| (-1175) (-1 |#1| |#1|))) (-15 -2055 (|#1| |#1| (-1175) (-1 |#1| (-644 |#1|)))) (-15 -2055 (|#1| |#1| (-644 (-1175)) (-644 (-1 |#1| (-644 |#1|))))) (-15 -2055 (|#1| |#1| (-644 (-1175)) (-644 (-1 |#1| |#1|)))) (-15 -2825 ((-112) (-114))) (-15 -3659 ((-114) (-114))) (-15 -3647 ((-644 (-612 |#1|)) |#1|)) (-15 -3133 ((-3 (-612 |#1|) "failed") |#1|)) (-15 -2645 (|#1| |#1| (-644 (-612 |#1|)) (-644 |#1|))) (-15 -2645 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -2645 (|#1| |#1| (-295 |#1|))) (-15 -4390 (|#1| (-114) (-644 |#1|))) (-15 -4390 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -4390 (|#1| (-114) |#1| |#1| |#1|)) (-15 -4390 (|#1| (-114) |#1| |#1|)) (-15 -4390 (|#1| (-114) |#1|)) (-15 -2055 (|#1| |#1| (-644 |#1|) (-644 |#1|))) (-15 -2055 (|#1| |#1| |#1| |#1|)) (-15 -2055 (|#1| |#1| (-295 |#1|))) (-15 -2055 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -2055 (|#1| |#1| (-644 (-612 |#1|)) (-644 |#1|))) (-15 -2055 (|#1| |#1| (-612 |#1|) |#1|)) (-15 -3783 (|#1| (-612 |#1|))) (-15 -4307 ((-3 (-612 |#1|) "failed") |#1|)) (-15 -4205 ((-612 |#1|) |#1|)) (-15 -3783 ((-862) |#1|))) (-432 |#2|) (-1099)) (T -431)) -((-3659 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *4 (-1099)) (-5 *1 (-431 *3 *4)) (-4 *3 (-432 *4)))) (-2825 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *5 (-1099)) (-5 *2 (-112)) (-5 *1 (-431 *4 *5)) (-4 *4 (-432 *5)))) (-2107 (*1 *2) (-12 (-4 *4 (-1099)) (-5 *2 (-771)) (-5 *1 (-431 *3 *4)) (-4 *3 (-432 *4))))) -(-10 -8 (-15 * (|#1| (-921) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3783 (|#1| (-566))) (-15 -2107 ((-771))) (-15 -3783 (|#1| (-409 (-566)))) (-15 -4307 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -4205 ((-409 (-566)) |#1|)) (-15 -1348 ((-538) |#1|)) (-15 -3783 (|#1| (-952 |#2|))) (-15 -4307 ((-3 (-952 |#2|) "failed") |#1|)) (-15 -4205 ((-952 |#2|) |#1|)) (-15 -3561 (|#1| |#1| (-1175))) (-15 -3561 (|#1| |#1| (-644 (-1175)))) (-15 -3561 (|#1| |#1| (-1175) (-771))) (-15 -3561 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3783 (|#1| |#1|)) (-15 * (|#1| |#1| (-409 (-566)))) (-15 * (|#1| (-409 (-566)) |#1|)) (-15 -3783 (|#1| (-409 (-952 |#2|)))) (-15 -4307 ((-3 (-409 (-952 |#2|)) "failed") |#1|)) (-15 -4205 ((-409 (-952 |#2|)) |#1|)) (-15 -3683 ((-409 (-1171 |#1|)) |#1| (-612 |#1|))) (-15 -3783 (|#1| (-409 (-952 (-409 |#2|))))) (-15 -3783 (|#1| (-952 (-409 |#2|)))) (-15 -3783 (|#1| (-409 |#2|))) (-15 -2023 (|#1| |#1|)) (-15 -1348 (|#1| (-420 |#1|))) (-15 -2055 (|#1| |#1| (-1175) (-771) (-1 |#1| |#1|))) (-15 -2055 (|#1| |#1| (-1175) (-771) (-1 |#1| (-644 |#1|)))) (-15 -2055 (|#1| |#1| (-644 (-1175)) (-644 (-771)) (-644 (-1 |#1| (-644 |#1|))))) (-15 -2055 (|#1| |#1| (-644 (-1175)) (-644 (-771)) (-644 (-1 |#1| |#1|)))) (-15 -2114 ((-3 (-2 (|:| |val| |#1|) (|:| -2852 (-566))) "failed") |#1|)) (-15 -1518 ((-3 (-2 (|:| |var| (-612 |#1|)) (|:| -2852 (-566))) "failed") |#1| (-1175))) (-15 -1518 ((-3 (-2 (|:| |var| (-612 |#1|)) (|:| -2852 (-566))) "failed") |#1| (-114))) (-15 -1493 (|#1| |#1|)) (-15 -3783 (|#1| (-1124 |#2| (-612 |#1|)))) (-15 -3542 ((-3 (-2 (|:| -1364 (-566)) (|:| |var| (-612 |#1|))) "failed") |#1|)) (-15 -2353 ((-3 (-644 |#1|) "failed") |#1|)) (-15 -1518 ((-3 (-2 (|:| |var| (-612 |#1|)) (|:| -2852 (-566))) "failed") |#1|)) (-15 -3714 ((-3 (-644 |#1|) "failed") |#1|)) (-15 -2055 (|#1| |#1| (-644 (-114)) (-644 |#1|) (-1175))) (-15 -2055 (|#1| |#1| (-114) |#1| (-1175))) (-15 -2055 (|#1| |#1|)) (-15 -2055 (|#1| |#1| (-644 (-1175)))) (-15 -2055 (|#1| |#1| (-1175))) (-15 -4229 (|#1| (-1175) (-644 |#1|))) (-15 -4229 (|#1| (-1175) |#1| |#1| |#1| |#1|)) (-15 -4229 (|#1| (-1175) |#1| |#1| |#1|)) (-15 -4229 (|#1| (-1175) |#1| |#1|)) (-15 -4229 (|#1| (-1175) |#1|)) (-15 -3863 ((-644 (-1175)) |#1|)) (-15 -1736 (|#2| |#1|)) (-15 -1723 ((-112) |#1|)) (-15 -3783 (|#1| |#2|)) (-15 -4307 ((-3 |#2| "failed") |#1|)) (-15 -4205 (|#2| |#1|)) (-15 -4205 ((-566) |#1|)) (-15 -4307 ((-3 (-566) "failed") |#1|)) (-15 -1348 ((-892 (-381)) |#1|)) (-15 -1348 ((-892 (-566)) |#1|)) (-15 -3783 (|#1| (-1175))) (-15 -4307 ((-3 (-1175) "failed") |#1|)) (-15 -4205 ((-1175) |#1|)) (-15 -2055 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2055 (|#1| |#1| (-114) (-1 |#1| (-644 |#1|)))) (-15 -2055 (|#1| |#1| (-644 (-114)) (-644 (-1 |#1| (-644 |#1|))))) (-15 -2055 (|#1| |#1| (-644 (-114)) (-644 (-1 |#1| |#1|)))) (-15 -2055 (|#1| |#1| (-1175) (-1 |#1| |#1|))) (-15 -2055 (|#1| |#1| (-1175) (-1 |#1| (-644 |#1|)))) (-15 -2055 (|#1| |#1| (-644 (-1175)) (-644 (-1 |#1| (-644 |#1|))))) (-15 -2055 (|#1| |#1| (-644 (-1175)) (-644 (-1 |#1| |#1|)))) (-15 -2825 ((-112) (-114))) (-15 -3659 ((-114) (-114))) (-15 -3647 ((-644 (-612 |#1|)) |#1|)) (-15 -3133 ((-3 (-612 |#1|) "failed") |#1|)) (-15 -2645 (|#1| |#1| (-644 (-612 |#1|)) (-644 |#1|))) (-15 -2645 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -2645 (|#1| |#1| (-295 |#1|))) (-15 -4390 (|#1| (-114) (-644 |#1|))) (-15 -4390 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -4390 (|#1| (-114) |#1| |#1| |#1|)) (-15 -4390 (|#1| (-114) |#1| |#1|)) (-15 -4390 (|#1| (-114) |#1|)) (-15 -2055 (|#1| |#1| (-644 |#1|) (-644 |#1|))) (-15 -2055 (|#1| |#1| |#1| |#1|)) (-15 -2055 (|#1| |#1| (-295 |#1|))) (-15 -2055 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -2055 (|#1| |#1| (-644 (-612 |#1|)) (-644 |#1|))) (-15 -2055 (|#1| |#1| (-612 |#1|) |#1|)) (-15 -3783 (|#1| (-612 |#1|))) (-15 -4307 ((-3 (-612 |#1|) "failed") |#1|)) (-15 -4205 ((-612 |#1|) |#1|)) (-15 -3783 ((-862) |#1|))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 116 (|has| |#1| (-25)))) (-3863 (((-644 (-1175)) $) 203)) (-3683 (((-409 (-1171 $)) $ (-612 $)) 171 (|has| |#1| (-558)))) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) 143 (|has| |#1| (-558)))) (-3991 (($ $) 144 (|has| |#1| (-558)))) (-2388 (((-112) $) 146 (|has| |#1| (-558)))) (-3570 (((-644 (-612 $)) $) 39)) (-4175 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-2645 (($ $ (-295 $)) 51) (($ $ (-644 (-295 $))) 50) (($ $ (-644 (-612 $)) (-644 $)) 49)) (-1550 (($ $) 163 (|has| |#1| (-558)))) (-3184 (((-420 $) $) 164 (|has| |#1| (-558)))) (-2837 (((-112) $ $) 154 (|has| |#1| (-558)))) (-3012 (($) 104 (-2809 (|has| |#1| (-1111)) (|has| |#1| (-25))) CONST)) (-4307 (((-3 (-612 $) "failed") $) 64) (((-3 (-1175) "failed") $) 216) (((-3 (-566) "failed") $) 210 (|has| |#1| (-1038 (-566)))) (((-3 |#1| "failed") $) 207) (((-3 (-409 (-952 |#1|)) "failed") $) 169 (|has| |#1| (-558))) (((-3 (-952 |#1|) "failed") $) 123 (|has| |#1| (-1049))) (((-3 (-409 (-566)) "failed") $) 98 (-2809 (-12 (|has| |#1| (-1038 (-566))) (|has| |#1| (-558))) (|has| |#1| (-1038 (-409 (-566))))))) (-4205 (((-612 $) $) 65) (((-1175) $) 217) (((-566) $) 209 (|has| |#1| (-1038 (-566)))) ((|#1| $) 208) (((-409 (-952 |#1|)) $) 170 (|has| |#1| (-558))) (((-952 |#1|) $) 124 (|has| |#1| (-1049))) (((-409 (-566)) $) 99 (-2809 (-12 (|has| |#1| (-1038 (-566))) (|has| |#1| (-558))) (|has| |#1| (-1038 (-409 (-566))))))) (-2946 (($ $ $) 158 (|has| |#1| (-558)))) (-3577 (((-689 (-566)) (-689 $)) 137 (-2432 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049)))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) 136 (-2432 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049)))) (((-2 (|:| -4227 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) 135 (|has| |#1| (-1049))) (((-689 |#1|) (-689 $)) 134 (|has| |#1| (-1049)))) (-1878 (((-3 $ "failed") $) 106 (|has| |#1| (-1111)))) (-2957 (($ $ $) 157 (|has| |#1| (-558)))) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) 152 (|has| |#1| (-558)))) (-3268 (((-112) $) 165 (|has| |#1| (-558)))) (-2062 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 212 (|has| |#1| (-886 (-566)))) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 211 (|has| |#1| (-886 (-381))))) (-2228 (($ $) 46) (($ (-644 $)) 45)) (-2535 (((-644 (-114)) $) 38)) (-3659 (((-114) (-114)) 37)) (-3934 (((-112) $) 105 (|has| |#1| (-1111)))) (-2824 (((-112) $) 17 (|has| $ (-1038 (-566))))) (-1493 (($ $) 186 (|has| |#1| (-1049)))) (-4326 (((-1124 |#1| (-612 $)) $) 187 (|has| |#1| (-1049)))) (-3775 (((-3 (-644 $) "failed") (-644 $) $) 161 (|has| |#1| (-558)))) (-3006 (((-1171 $) (-612 $)) 20 (|has| $ (-1049)))) (-1301 (($ (-1 $ $) (-612 $)) 31)) (-3133 (((-3 (-612 $) "failed") $) 41)) (-2167 (($ (-644 $)) 150 (|has| |#1| (-558))) (($ $ $) 149 (|has| |#1| (-558)))) (-4117 (((-1157) $) 10)) (-3647 (((-644 (-612 $)) $) 40)) (-1307 (($ (-114) $) 33) (($ (-114) (-644 $)) 32)) (-3714 (((-3 (-644 $) "failed") $) 192 (|has| |#1| (-1111)))) (-2114 (((-3 (-2 (|:| |val| $) (|:| -2852 (-566))) "failed") $) 183 (|has| |#1| (-1049)))) (-2353 (((-3 (-644 $) "failed") $) 190 (|has| |#1| (-25)))) (-3542 (((-3 (-2 (|:| -1364 (-566)) (|:| |var| (-612 $))) "failed") $) 189 (|has| |#1| (-25)))) (-1518 (((-3 (-2 (|:| |var| (-612 $)) (|:| -2852 (-566))) "failed") $) 191 (|has| |#1| (-1111))) (((-3 (-2 (|:| |var| (-612 $)) (|:| -2852 (-566))) "failed") $ (-114)) 185 (|has| |#1| (-1049))) (((-3 (-2 (|:| |var| (-612 $)) (|:| -2852 (-566))) "failed") $ (-1175)) 184 (|has| |#1| (-1049)))) (-2572 (((-112) $ (-114)) 35) (((-112) $ (-1175)) 34)) (-1713 (($ $) 108 (-2809 (|has| |#1| (-475)) (|has| |#1| (-558))))) (-2076 (((-771) $) 42)) (-4035 (((-1119) $) 11)) (-1723 (((-112) $) 205)) (-1736 ((|#1| $) 204)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) 151 (|has| |#1| (-558)))) (-2214 (($ (-644 $)) 148 (|has| |#1| (-558))) (($ $ $) 147 (|has| |#1| (-558)))) (-2746 (((-112) $ $) 30) (((-112) $ (-1175)) 29)) (-3719 (((-420 $) $) 162 (|has| |#1| (-558)))) (-3148 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 160 (|has| |#1| (-558))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 159 (|has| |#1| (-558)))) (-2994 (((-3 $ "failed") $ $) 142 (|has| |#1| (-558)))) (-3161 (((-3 (-644 $) "failed") (-644 $) $) 153 (|has| |#1| (-558)))) (-1946 (((-112) $) 18 (|has| $ (-1038 (-566))))) (-2055 (($ $ (-612 $) $) 62) (($ $ (-644 (-612 $)) (-644 $)) 61) (($ $ (-644 (-295 $))) 60) (($ $ (-295 $)) 59) (($ $ $ $) 58) (($ $ (-644 $) (-644 $)) 57) (($ $ (-644 (-1175)) (-644 (-1 $ $))) 28) (($ $ (-644 (-1175)) (-644 (-1 $ (-644 $)))) 27) (($ $ (-1175) (-1 $ (-644 $))) 26) (($ $ (-1175) (-1 $ $)) 25) (($ $ (-644 (-114)) (-644 (-1 $ $))) 24) (($ $ (-644 (-114)) (-644 (-1 $ (-644 $)))) 23) (($ $ (-114) (-1 $ (-644 $))) 22) (($ $ (-114) (-1 $ $)) 21) (($ $ (-1175)) 197 (|has| |#1| (-614 (-538)))) (($ $ (-644 (-1175))) 196 (|has| |#1| (-614 (-538)))) (($ $) 195 (|has| |#1| (-614 (-538)))) (($ $ (-114) $ (-1175)) 194 (|has| |#1| (-614 (-538)))) (($ $ (-644 (-114)) (-644 $) (-1175)) 193 (|has| |#1| (-614 (-538)))) (($ $ (-644 (-1175)) (-644 (-771)) (-644 (-1 $ $))) 182 (|has| |#1| (-1049))) (($ $ (-644 (-1175)) (-644 (-771)) (-644 (-1 $ (-644 $)))) 181 (|has| |#1| (-1049))) (($ $ (-1175) (-771) (-1 $ (-644 $))) 180 (|has| |#1| (-1049))) (($ $ (-1175) (-771) (-1 $ $)) 179 (|has| |#1| (-1049)))) (-3039 (((-771) $) 155 (|has| |#1| (-558)))) (-4390 (($ (-114) $) 56) (($ (-114) $ $) 55) (($ (-114) $ $ $) 54) (($ (-114) $ $ $ $) 53) (($ (-114) (-644 $)) 52)) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) 156 (|has| |#1| (-558)))) (-3529 (($ $) 44) (($ $ $) 43)) (-3561 (($ $ (-644 (-1175)) (-644 (-771))) 128 (|has| |#1| (-1049))) (($ $ (-1175) (-771)) 127 (|has| |#1| (-1049))) (($ $ (-644 (-1175))) 126 (|has| |#1| (-1049))) (($ $ (-1175)) 125 (|has| |#1| (-1049)))) (-2023 (($ $) 176 (|has| |#1| (-558)))) (-4339 (((-1124 |#1| (-612 $)) $) 177 (|has| |#1| (-558)))) (-1616 (($ $) 19 (|has| $ (-1049)))) (-1348 (((-892 (-566)) $) 214 (|has| |#1| (-614 (-892 (-566))))) (((-892 (-381)) $) 213 (|has| |#1| (-614 (-892 (-381))))) (($ (-420 $)) 178 (|has| |#1| (-558))) (((-538) $) 100 (|has| |#1| (-614 (-538))))) (-2358 (($ $ $) 111 (|has| |#1| (-475)))) (-3171 (($ $ $) 112 (|has| |#1| (-475)))) (-3783 (((-862) $) 12) (($ (-612 $)) 63) (($ (-1175)) 215) (($ |#1|) 206) (($ (-1124 |#1| (-612 $))) 188 (|has| |#1| (-1049))) (($ (-409 |#1|)) 174 (|has| |#1| (-558))) (($ (-952 (-409 |#1|))) 173 (|has| |#1| (-558))) (($ (-409 (-952 (-409 |#1|)))) 172 (|has| |#1| (-558))) (($ (-409 (-952 |#1|))) 168 (|has| |#1| (-558))) (($ $) 141 (|has| |#1| (-558))) (($ (-952 |#1|)) 122 (|has| |#1| (-1049))) (($ (-409 (-566))) 97 (-2809 (|has| |#1| (-558)) (-12 (|has| |#1| (-1038 (-566))) (|has| |#1| (-558))) (|has| |#1| (-1038 (-409 (-566)))))) (($ (-566)) 96 (-2809 (|has| |#1| (-1049)) (|has| |#1| (-1038 (-566)))))) (-3144 (((-3 $ "failed") $) 138 (|has| |#1| (-145)))) (-2107 (((-771)) 133 (|has| |#1| (-1049)) CONST)) (-1630 (($ $) 48) (($ (-644 $)) 47)) (-2825 (((-112) (-114)) 36)) (-3117 (((-112) $ $) 9)) (-2695 (((-112) $ $) 145 (|has| |#1| (-558)))) (-4229 (($ (-1175) $) 202) (($ (-1175) $ $) 201) (($ (-1175) $ $ $) 200) (($ (-1175) $ $ $ $) 199) (($ (-1175) (-644 $)) 198)) (-2479 (($) 115 (|has| |#1| (-25)) CONST)) (-4334 (($) 103 (|has| |#1| (-1111)) CONST)) (-2875 (($ $ (-644 (-1175)) (-644 (-771))) 132 (|has| |#1| (-1049))) (($ $ (-1175) (-771)) 131 (|has| |#1| (-1049))) (($ $ (-644 (-1175))) 130 (|has| |#1| (-1049))) (($ $ (-1175)) 129 (|has| |#1| (-1049)))) (-2947 (((-112) $ $) 6)) (-3065 (($ (-1124 |#1| (-612 $)) (-1124 |#1| (-612 $))) 175 (|has| |#1| (-558))) (($ $ $) 109 (-2809 (|has| |#1| (-475)) (|has| |#1| (-558))))) (-3053 (($ $ $) 121 (|has| |#1| (-21))) (($ $) 120 (|has| |#1| (-21)))) (-3041 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-566)) 110 (-2809 (|has| |#1| (-475)) (|has| |#1| (-558)))) (($ $ (-771)) 107 (|has| |#1| (-1111))) (($ $ (-921)) 102 (|has| |#1| (-1111)))) (* (($ (-409 (-566)) $) 167 (|has| |#1| (-558))) (($ $ (-409 (-566))) 166 (|has| |#1| (-558))) (($ |#1| $) 140 (|has| |#1| (-172))) (($ $ |#1|) 139 (|has| |#1| (-172))) (($ (-566) $) 119 (|has| |#1| (-21))) (($ (-771) $) 117 (|has| |#1| (-25))) (($ (-921) $) 114 (|has| |#1| (-25))) (($ $ $) 101 (|has| |#1| (-1111))))) +((-1648 (((-587 |#2|) |#2| (-1175)) 36)) (-3329 (((-587 |#2|) |#2| (-1175)) 21)) (-3699 ((|#2| |#2| (-1175)) 26))) +(((-428 |#1| |#2|) (-10 -7 (-15 -3329 ((-587 |#2|) |#2| (-1175))) (-15 -1648 ((-587 |#2|) |#2| (-1175))) (-15 -3699 (|#2| |#2| (-1175)))) (-13 (-308) (-147) (-1038 (-566)) (-639 (-566))) (-13 (-1199) (-29 |#1|))) (T -428)) +((-3699 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-428 *4 *2)) (-4 *2 (-13 (-1199) (-29 *4))))) (-1648 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-4 *5 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-587 *3)) (-5 *1 (-428 *5 *3)) (-4 *3 (-13 (-1199) (-29 *5))))) (-3329 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-4 *5 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-587 *3)) (-5 *1 (-428 *5 *3)) (-4 *3 (-13 (-1199) (-29 *5)))))) +(-10 -7 (-15 -3329 ((-587 |#2|) |#2| (-1175))) (-15 -1648 ((-587 |#2|) |#2| (-1175))) (-15 -3699 (|#2| |#2| (-1175)))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-2463 (($) NIL T CONST)) (-3245 (((-3 $ "failed") $) NIL)) (-2389 (((-112) $) NIL)) (-1994 (($ |#2| |#1|) 37)) (-2763 (($ |#2| |#1|) 35)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) NIL) (($ (-566)) NIL) (($ |#1|) NIL) (($ (-332 |#2|)) 25)) (-2593 (((-771)) NIL T CONST)) (-3044 (((-112) $ $) NIL)) (-4356 (($) 10 T CONST)) (-4366 (($) 16 T CONST)) (-2914 (((-112) $ $) NIL)) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) 36)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 39) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-429 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4401)) (IF (|has| |#1| (-6 -4401)) (-6 -4401) |%noBranch|) |%noBranch|) (-15 -3152 ($ |#1|)) (-15 -3152 ($ (-332 |#2|))) (-15 -1994 ($ |#2| |#1|)) (-15 -2763 ($ |#2| |#1|)))) (-13 (-172) (-38 (-409 (-566)))) (-13 (-850) (-21))) (T -429)) +((-3152 (*1 *1 *2) (-12 (-5 *1 (-429 *2 *3)) (-4 *2 (-13 (-172) (-38 (-409 (-566))))) (-4 *3 (-13 (-850) (-21))))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-332 *4)) (-4 *4 (-13 (-850) (-21))) (-5 *1 (-429 *3 *4)) (-4 *3 (-13 (-172) (-38 (-409 (-566))))))) (-1994 (*1 *1 *2 *3) (-12 (-5 *1 (-429 *3 *2)) (-4 *3 (-13 (-172) (-38 (-409 (-566))))) (-4 *2 (-13 (-850) (-21))))) (-2763 (*1 *1 *2 *3) (-12 (-5 *1 (-429 *3 *2)) (-4 *3 (-13 (-172) (-38 (-409 (-566))))) (-4 *2 (-13 (-850) (-21)))))) +(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4401)) (IF (|has| |#1| (-6 -4401)) (-6 -4401) |%noBranch|) |%noBranch|) (-15 -3152 ($ |#1|)) (-15 -3152 ($ (-332 |#2|))) (-15 -1994 ($ |#2| |#1|)) (-15 -2763 ($ |#2| |#1|)))) +((-3313 (((-3 |#2| (-644 |#2|)) |#2| (-1175)) 115))) +(((-430 |#1| |#2|) (-10 -7 (-15 -3313 ((-3 |#2| (-644 |#2|)) |#2| (-1175)))) (-13 (-308) (-147) (-1038 (-566)) (-639 (-566))) (-13 (-1199) (-959) (-29 |#1|))) (T -430)) +((-3313 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-4 *5 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-3 *3 (-644 *3))) (-5 *1 (-430 *5 *3)) (-4 *3 (-13 (-1199) (-959) (-29 *5)))))) +(-10 -7 (-15 -3313 ((-3 |#2| (-644 |#2|)) |#2| (-1175)))) +((-1771 (((-644 (-1175)) $) 81)) (-1590 (((-409 (-1171 $)) $ (-612 $)) 314)) (-2500 (($ $ (-295 $)) NIL) (($ $ (-644 (-295 $))) NIL) (($ $ (-644 (-612 $)) (-644 $)) 278)) (-2229 (((-3 (-612 $) "failed") $) NIL) (((-3 (-1175) "failed") $) 84) (((-3 (-566) "failed") $) NIL) (((-3 |#2| "failed") $) 274) (((-3 (-409 (-952 |#2|)) "failed") $) 364) (((-3 (-952 |#2|) "failed") $) 276) (((-3 (-409 (-566)) "failed") $) NIL)) (-4158 (((-612 $) $) NIL) (((-1175) $) 28) (((-566) $) NIL) ((|#2| $) 272) (((-409 (-952 |#2|)) $) 346) (((-952 |#2|) $) 273) (((-409 (-566)) $) NIL)) (-1566 (((-114) (-114)) 47)) (-3406 (($ $) 99)) (-4010 (((-3 (-612 $) "failed") $) 269)) (-1552 (((-644 (-612 $)) $) 270)) (-3738 (((-3 (-644 $) "failed") $) 288)) (-4224 (((-3 (-2 (|:| |val| $) (|:| -2201 (-566))) "failed") $) 295)) (-4199 (((-3 (-644 $) "failed") $) 286)) (-3944 (((-3 (-2 (|:| -2397 (-566)) (|:| |var| (-612 $))) "failed") $) 305)) (-4108 (((-3 (-2 (|:| |var| (-612 $)) (|:| -2201 (-566))) "failed") $) 292) (((-3 (-2 (|:| |var| (-612 $)) (|:| -2201 (-566))) "failed") $ (-114)) 256) (((-3 (-2 (|:| |var| (-612 $)) (|:| -2201 (-566))) "failed") $ (-1175)) 258)) (-2761 (((-112) $) 17)) (-2773 ((|#2| $) 19)) (-2023 (($ $ (-612 $) $) NIL) (($ $ (-644 (-612 $)) (-644 $)) 277) (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-644 (-1175)) (-644 (-1 $ $))) NIL) (($ $ (-644 (-1175)) (-644 (-1 $ (-644 $)))) 109) (($ $ (-1175) (-1 $ (-644 $))) NIL) (($ $ (-1175) (-1 $ $)) NIL) (($ $ (-644 (-114)) (-644 (-1 $ $))) NIL) (($ $ (-644 (-114)) (-644 (-1 $ (-644 $)))) NIL) (($ $ (-114) (-1 $ (-644 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1175)) 62) (($ $ (-644 (-1175))) 281) (($ $) 282) (($ $ (-114) $ (-1175)) 65) (($ $ (-644 (-114)) (-644 $) (-1175)) 72) (($ $ (-644 (-1175)) (-644 (-771)) (-644 (-1 $ $))) 120) (($ $ (-644 (-1175)) (-644 (-771)) (-644 (-1 $ (-644 $)))) 283) (($ $ (-1175) (-771) (-1 $ (-644 $))) 105) (($ $ (-1175) (-771) (-1 $ $)) 104)) (-1309 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-644 $)) 119)) (-3629 (($ $ (-644 (-1175)) (-644 (-771))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175)) 279)) (-1452 (($ $) 325)) (-2376 (((-892 (-566)) $) 298) (((-892 (-381)) $) 302) (($ (-420 $)) 360) (((-538) $) NIL)) (-3152 (((-862) $) 280) (($ (-612 $)) 93) (($ (-1175)) 24) (($ |#2|) NIL) (($ (-1124 |#2| (-612 $))) NIL) (($ (-409 |#2|)) 330) (($ (-952 (-409 |#2|))) 369) (($ (-409 (-952 (-409 |#2|)))) 342) (($ (-409 (-952 |#2|))) 336) (($ $) NIL) (($ (-952 |#2|)) 218) (($ (-409 (-566))) 374) (($ (-566)) NIL)) (-2593 (((-771)) 88)) (-3515 (((-112) (-114)) 42)) (-4088 (($ (-1175) $) 31) (($ (-1175) $ $) 32) (($ (-1175) $ $ $) 33) (($ (-1175) $ $ $ $) 34) (($ (-1175) (-644 $)) 39)) (* (($ (-409 (-566)) $) NIL) (($ $ (-409 (-566))) NIL) (($ |#2| $) 307) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-566) $) NIL) (($ (-771) $) NIL) (($ (-921) $) NIL))) +(((-431 |#1| |#2|) (-10 -8 (-15 * (|#1| (-921) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3152 (|#1| (-566))) (-15 -2593 ((-771))) (-15 -3152 (|#1| (-409 (-566)))) (-15 -2229 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -4158 ((-409 (-566)) |#1|)) (-15 -2376 ((-538) |#1|)) (-15 -3152 (|#1| (-952 |#2|))) (-15 -2229 ((-3 (-952 |#2|) "failed") |#1|)) (-15 -4158 ((-952 |#2|) |#1|)) (-15 -3629 (|#1| |#1| (-1175))) (-15 -3629 (|#1| |#1| (-644 (-1175)))) (-15 -3629 (|#1| |#1| (-1175) (-771))) (-15 -3629 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3152 (|#1| |#1|)) (-15 * (|#1| |#1| (-409 (-566)))) (-15 * (|#1| (-409 (-566)) |#1|)) (-15 -3152 (|#1| (-409 (-952 |#2|)))) (-15 -2229 ((-3 (-409 (-952 |#2|)) "failed") |#1|)) (-15 -4158 ((-409 (-952 |#2|)) |#1|)) (-15 -1590 ((-409 (-1171 |#1|)) |#1| (-612 |#1|))) (-15 -3152 (|#1| (-409 (-952 (-409 |#2|))))) (-15 -3152 (|#1| (-952 (-409 |#2|)))) (-15 -3152 (|#1| (-409 |#2|))) (-15 -1452 (|#1| |#1|)) (-15 -2376 (|#1| (-420 |#1|))) (-15 -2023 (|#1| |#1| (-1175) (-771) (-1 |#1| |#1|))) (-15 -2023 (|#1| |#1| (-1175) (-771) (-1 |#1| (-644 |#1|)))) (-15 -2023 (|#1| |#1| (-644 (-1175)) (-644 (-771)) (-644 (-1 |#1| (-644 |#1|))))) (-15 -2023 (|#1| |#1| (-644 (-1175)) (-644 (-771)) (-644 (-1 |#1| |#1|)))) (-15 -4224 ((-3 (-2 (|:| |val| |#1|) (|:| -2201 (-566))) "failed") |#1|)) (-15 -4108 ((-3 (-2 (|:| |var| (-612 |#1|)) (|:| -2201 (-566))) "failed") |#1| (-1175))) (-15 -4108 ((-3 (-2 (|:| |var| (-612 |#1|)) (|:| -2201 (-566))) "failed") |#1| (-114))) (-15 -3406 (|#1| |#1|)) (-15 -3152 (|#1| (-1124 |#2| (-612 |#1|)))) (-15 -3944 ((-3 (-2 (|:| -2397 (-566)) (|:| |var| (-612 |#1|))) "failed") |#1|)) (-15 -4199 ((-3 (-644 |#1|) "failed") |#1|)) (-15 -4108 ((-3 (-2 (|:| |var| (-612 |#1|)) (|:| -2201 (-566))) "failed") |#1|)) (-15 -3738 ((-3 (-644 |#1|) "failed") |#1|)) (-15 -2023 (|#1| |#1| (-644 (-114)) (-644 |#1|) (-1175))) (-15 -2023 (|#1| |#1| (-114) |#1| (-1175))) (-15 -2023 (|#1| |#1|)) (-15 -2023 (|#1| |#1| (-644 (-1175)))) (-15 -2023 (|#1| |#1| (-1175))) (-15 -4088 (|#1| (-1175) (-644 |#1|))) (-15 -4088 (|#1| (-1175) |#1| |#1| |#1| |#1|)) (-15 -4088 (|#1| (-1175) |#1| |#1| |#1|)) (-15 -4088 (|#1| (-1175) |#1| |#1|)) (-15 -4088 (|#1| (-1175) |#1|)) (-15 -1771 ((-644 (-1175)) |#1|)) (-15 -2773 (|#2| |#1|)) (-15 -2761 ((-112) |#1|)) (-15 -3152 (|#1| |#2|)) (-15 -2229 ((-3 |#2| "failed") |#1|)) (-15 -4158 (|#2| |#1|)) (-15 -4158 ((-566) |#1|)) (-15 -2229 ((-3 (-566) "failed") |#1|)) (-15 -2376 ((-892 (-381)) |#1|)) (-15 -2376 ((-892 (-566)) |#1|)) (-15 -3152 (|#1| (-1175))) (-15 -2229 ((-3 (-1175) "failed") |#1|)) (-15 -4158 ((-1175) |#1|)) (-15 -2023 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2023 (|#1| |#1| (-114) (-1 |#1| (-644 |#1|)))) (-15 -2023 (|#1| |#1| (-644 (-114)) (-644 (-1 |#1| (-644 |#1|))))) (-15 -2023 (|#1| |#1| (-644 (-114)) (-644 (-1 |#1| |#1|)))) (-15 -2023 (|#1| |#1| (-1175) (-1 |#1| |#1|))) (-15 -2023 (|#1| |#1| (-1175) (-1 |#1| (-644 |#1|)))) (-15 -2023 (|#1| |#1| (-644 (-1175)) (-644 (-1 |#1| (-644 |#1|))))) (-15 -2023 (|#1| |#1| (-644 (-1175)) (-644 (-1 |#1| |#1|)))) (-15 -3515 ((-112) (-114))) (-15 -1566 ((-114) (-114))) (-15 -1552 ((-644 (-612 |#1|)) |#1|)) (-15 -4010 ((-3 (-612 |#1|) "failed") |#1|)) (-15 -2500 (|#1| |#1| (-644 (-612 |#1|)) (-644 |#1|))) (-15 -2500 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -2500 (|#1| |#1| (-295 |#1|))) (-15 -1309 (|#1| (-114) (-644 |#1|))) (-15 -1309 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -1309 (|#1| (-114) |#1| |#1| |#1|)) (-15 -1309 (|#1| (-114) |#1| |#1|)) (-15 -1309 (|#1| (-114) |#1|)) (-15 -2023 (|#1| |#1| (-644 |#1|) (-644 |#1|))) (-15 -2023 (|#1| |#1| |#1| |#1|)) (-15 -2023 (|#1| |#1| (-295 |#1|))) (-15 -2023 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -2023 (|#1| |#1| (-644 (-612 |#1|)) (-644 |#1|))) (-15 -2023 (|#1| |#1| (-612 |#1|) |#1|)) (-15 -3152 (|#1| (-612 |#1|))) (-15 -2229 ((-3 (-612 |#1|) "failed") |#1|)) (-15 -4158 ((-612 |#1|) |#1|)) (-15 -3152 ((-862) |#1|))) (-432 |#2|) (-1099)) (T -431)) +((-1566 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *4 (-1099)) (-5 *1 (-431 *3 *4)) (-4 *3 (-432 *4)))) (-3515 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *5 (-1099)) (-5 *2 (-112)) (-5 *1 (-431 *4 *5)) (-4 *4 (-432 *5)))) (-2593 (*1 *2) (-12 (-4 *4 (-1099)) (-5 *2 (-771)) (-5 *1 (-431 *3 *4)) (-4 *3 (-432 *4))))) +(-10 -8 (-15 * (|#1| (-921) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3152 (|#1| (-566))) (-15 -2593 ((-771))) (-15 -3152 (|#1| (-409 (-566)))) (-15 -2229 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -4158 ((-409 (-566)) |#1|)) (-15 -2376 ((-538) |#1|)) (-15 -3152 (|#1| (-952 |#2|))) (-15 -2229 ((-3 (-952 |#2|) "failed") |#1|)) (-15 -4158 ((-952 |#2|) |#1|)) (-15 -3629 (|#1| |#1| (-1175))) (-15 -3629 (|#1| |#1| (-644 (-1175)))) (-15 -3629 (|#1| |#1| (-1175) (-771))) (-15 -3629 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3152 (|#1| |#1|)) (-15 * (|#1| |#1| (-409 (-566)))) (-15 * (|#1| (-409 (-566)) |#1|)) (-15 -3152 (|#1| (-409 (-952 |#2|)))) (-15 -2229 ((-3 (-409 (-952 |#2|)) "failed") |#1|)) (-15 -4158 ((-409 (-952 |#2|)) |#1|)) (-15 -1590 ((-409 (-1171 |#1|)) |#1| (-612 |#1|))) (-15 -3152 (|#1| (-409 (-952 (-409 |#2|))))) (-15 -3152 (|#1| (-952 (-409 |#2|)))) (-15 -3152 (|#1| (-409 |#2|))) (-15 -1452 (|#1| |#1|)) (-15 -2376 (|#1| (-420 |#1|))) (-15 -2023 (|#1| |#1| (-1175) (-771) (-1 |#1| |#1|))) (-15 -2023 (|#1| |#1| (-1175) (-771) (-1 |#1| (-644 |#1|)))) (-15 -2023 (|#1| |#1| (-644 (-1175)) (-644 (-771)) (-644 (-1 |#1| (-644 |#1|))))) (-15 -2023 (|#1| |#1| (-644 (-1175)) (-644 (-771)) (-644 (-1 |#1| |#1|)))) (-15 -4224 ((-3 (-2 (|:| |val| |#1|) (|:| -2201 (-566))) "failed") |#1|)) (-15 -4108 ((-3 (-2 (|:| |var| (-612 |#1|)) (|:| -2201 (-566))) "failed") |#1| (-1175))) (-15 -4108 ((-3 (-2 (|:| |var| (-612 |#1|)) (|:| -2201 (-566))) "failed") |#1| (-114))) (-15 -3406 (|#1| |#1|)) (-15 -3152 (|#1| (-1124 |#2| (-612 |#1|)))) (-15 -3944 ((-3 (-2 (|:| -2397 (-566)) (|:| |var| (-612 |#1|))) "failed") |#1|)) (-15 -4199 ((-3 (-644 |#1|) "failed") |#1|)) (-15 -4108 ((-3 (-2 (|:| |var| (-612 |#1|)) (|:| -2201 (-566))) "failed") |#1|)) (-15 -3738 ((-3 (-644 |#1|) "failed") |#1|)) (-15 -2023 (|#1| |#1| (-644 (-114)) (-644 |#1|) (-1175))) (-15 -2023 (|#1| |#1| (-114) |#1| (-1175))) (-15 -2023 (|#1| |#1|)) (-15 -2023 (|#1| |#1| (-644 (-1175)))) (-15 -2023 (|#1| |#1| (-1175))) (-15 -4088 (|#1| (-1175) (-644 |#1|))) (-15 -4088 (|#1| (-1175) |#1| |#1| |#1| |#1|)) (-15 -4088 (|#1| (-1175) |#1| |#1| |#1|)) (-15 -4088 (|#1| (-1175) |#1| |#1|)) (-15 -4088 (|#1| (-1175) |#1|)) (-15 -1771 ((-644 (-1175)) |#1|)) (-15 -2773 (|#2| |#1|)) (-15 -2761 ((-112) |#1|)) (-15 -3152 (|#1| |#2|)) (-15 -2229 ((-3 |#2| "failed") |#1|)) (-15 -4158 (|#2| |#1|)) (-15 -4158 ((-566) |#1|)) (-15 -2229 ((-3 (-566) "failed") |#1|)) (-15 -2376 ((-892 (-381)) |#1|)) (-15 -2376 ((-892 (-566)) |#1|)) (-15 -3152 (|#1| (-1175))) (-15 -2229 ((-3 (-1175) "failed") |#1|)) (-15 -4158 ((-1175) |#1|)) (-15 -2023 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2023 (|#1| |#1| (-114) (-1 |#1| (-644 |#1|)))) (-15 -2023 (|#1| |#1| (-644 (-114)) (-644 (-1 |#1| (-644 |#1|))))) (-15 -2023 (|#1| |#1| (-644 (-114)) (-644 (-1 |#1| |#1|)))) (-15 -2023 (|#1| |#1| (-1175) (-1 |#1| |#1|))) (-15 -2023 (|#1| |#1| (-1175) (-1 |#1| (-644 |#1|)))) (-15 -2023 (|#1| |#1| (-644 (-1175)) (-644 (-1 |#1| (-644 |#1|))))) (-15 -2023 (|#1| |#1| (-644 (-1175)) (-644 (-1 |#1| |#1|)))) (-15 -3515 ((-112) (-114))) (-15 -1566 ((-114) (-114))) (-15 -1552 ((-644 (-612 |#1|)) |#1|)) (-15 -4010 ((-3 (-612 |#1|) "failed") |#1|)) (-15 -2500 (|#1| |#1| (-644 (-612 |#1|)) (-644 |#1|))) (-15 -2500 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -2500 (|#1| |#1| (-295 |#1|))) (-15 -1309 (|#1| (-114) (-644 |#1|))) (-15 -1309 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -1309 (|#1| (-114) |#1| |#1| |#1|)) (-15 -1309 (|#1| (-114) |#1| |#1|)) (-15 -1309 (|#1| (-114) |#1|)) (-15 -2023 (|#1| |#1| (-644 |#1|) (-644 |#1|))) (-15 -2023 (|#1| |#1| |#1| |#1|)) (-15 -2023 (|#1| |#1| (-295 |#1|))) (-15 -2023 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -2023 (|#1| |#1| (-644 (-612 |#1|)) (-644 |#1|))) (-15 -2023 (|#1| |#1| (-612 |#1|) |#1|)) (-15 -3152 (|#1| (-612 |#1|))) (-15 -2229 ((-3 (-612 |#1|) "failed") |#1|)) (-15 -4158 ((-612 |#1|) |#1|)) (-15 -3152 ((-862) |#1|))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 116 (|has| |#1| (-25)))) (-1771 (((-644 (-1175)) $) 203)) (-1590 (((-409 (-1171 $)) $ (-612 $)) 171 (|has| |#1| (-558)))) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) 143 (|has| |#1| (-558)))) (-2161 (($ $) 144 (|has| |#1| (-558)))) (-2345 (((-112) $) 146 (|has| |#1| (-558)))) (-1470 (((-644 (-612 $)) $) 39)) (-3967 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-2500 (($ $ (-295 $)) 51) (($ $ (-644 (-295 $))) 50) (($ $ (-644 (-612 $)) (-644 $)) 49)) (-1378 (($ $) 163 (|has| |#1| (-558)))) (-1364 (((-420 $) $) 164 (|has| |#1| (-558)))) (-2085 (((-112) $ $) 154 (|has| |#1| (-558)))) (-2463 (($) 104 (-2768 (|has| |#1| (-1111)) (|has| |#1| (-25))) CONST)) (-2229 (((-3 (-612 $) "failed") $) 64) (((-3 (-1175) "failed") $) 216) (((-3 (-566) "failed") $) 210 (|has| |#1| (-1038 (-566)))) (((-3 |#1| "failed") $) 207) (((-3 (-409 (-952 |#1|)) "failed") $) 169 (|has| |#1| (-558))) (((-3 (-952 |#1|) "failed") $) 123 (|has| |#1| (-1049))) (((-3 (-409 (-566)) "failed") $) 98 (-2768 (-12 (|has| |#1| (-1038 (-566))) (|has| |#1| (-558))) (|has| |#1| (-1038 (-409 (-566))))))) (-4158 (((-612 $) $) 65) (((-1175) $) 217) (((-566) $) 209 (|has| |#1| (-1038 (-566)))) ((|#1| $) 208) (((-409 (-952 |#1|)) $) 170 (|has| |#1| (-558))) (((-952 |#1|) $) 124 (|has| |#1| (-1049))) (((-409 (-566)) $) 99 (-2768 (-12 (|has| |#1| (-1038 (-566))) (|has| |#1| (-558))) (|has| |#1| (-1038 (-409 (-566))))))) (-2933 (($ $ $) 158 (|has| |#1| (-558)))) (-4089 (((-689 (-566)) (-689 $)) 137 (-2415 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049)))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) 136 (-2415 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049)))) (((-2 (|:| -3361 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) 135 (|has| |#1| (-1049))) (((-689 |#1|) (-689 $)) 134 (|has| |#1| (-1049)))) (-3245 (((-3 $ "failed") $) 106 (|has| |#1| (-1111)))) (-2945 (($ $ $) 157 (|has| |#1| (-558)))) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) 152 (|has| |#1| (-558)))) (-1615 (((-112) $) 165 (|has| |#1| (-558)))) (-2926 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 212 (|has| |#1| (-886 (-566)))) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 211 (|has| |#1| (-886 (-381))))) (-1633 (($ $) 46) (($ (-644 $)) 45)) (-1689 (((-644 (-114)) $) 38)) (-1566 (((-114) (-114)) 37)) (-2389 (((-112) $) 105 (|has| |#1| (-1111)))) (-3419 (((-112) $) 17 (|has| $ (-1038 (-566))))) (-3406 (($ $) 186 (|has| |#1| (-1049)))) (-2248 (((-1124 |#1| (-612 $)) $) 187 (|has| |#1| (-1049)))) (-3816 (((-3 (-644 $) "failed") (-644 $) $) 161 (|has| |#1| (-558)))) (-2024 (((-1171 $) (-612 $)) 20 (|has| $ (-1049)))) (-2319 (($ (-1 $ $) (-612 $)) 31)) (-4010 (((-3 (-612 $) "failed") $) 41)) (-2128 (($ (-644 $)) 150 (|has| |#1| (-558))) (($ $ $) 149 (|has| |#1| (-558)))) (-3380 (((-1157) $) 10)) (-1552 (((-644 (-612 $)) $) 40)) (-2328 (($ (-114) $) 33) (($ (-114) (-644 $)) 32)) (-3738 (((-3 (-644 $) "failed") $) 192 (|has| |#1| (-1111)))) (-4224 (((-3 (-2 (|:| |val| $) (|:| -2201 (-566))) "failed") $) 183 (|has| |#1| (-1049)))) (-4199 (((-3 (-644 $) "failed") $) 190 (|has| |#1| (-25)))) (-3944 (((-3 (-2 (|:| -2397 (-566)) (|:| |var| (-612 $))) "failed") $) 189 (|has| |#1| (-25)))) (-4108 (((-3 (-2 (|:| |var| (-612 $)) (|:| -2201 (-566))) "failed") $) 191 (|has| |#1| (-1111))) (((-3 (-2 (|:| |var| (-612 $)) (|:| -2201 (-566))) "failed") $ (-114)) 185 (|has| |#1| (-1049))) (((-3 (-2 (|:| |var| (-612 $)) (|:| -2201 (-566))) "failed") $ (-1175)) 184 (|has| |#1| (-1049)))) (-3335 (((-112) $ (-114)) 35) (((-112) $ (-1175)) 34)) (-2748 (($ $) 108 (-2768 (|has| |#1| (-475)) (|has| |#1| (-558))))) (-3106 (((-771) $) 42)) (-4072 (((-1119) $) 11)) (-2761 (((-112) $) 205)) (-2773 ((|#1| $) 204)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) 151 (|has| |#1| (-558)))) (-2164 (($ (-644 $)) 148 (|has| |#1| (-558))) (($ $ $) 147 (|has| |#1| (-558)))) (-3671 (((-112) $ $) 30) (((-112) $ (-1175)) 29)) (-1624 (((-420 $) $) 162 (|has| |#1| (-558)))) (-3005 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 160 (|has| |#1| (-558))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) 159 (|has| |#1| (-558)))) (-2978 (((-3 $ "failed") $ $) 142 (|has| |#1| (-558)))) (-2915 (((-3 (-644 $) "failed") (-644 $) $) 153 (|has| |#1| (-558)))) (-2664 (((-112) $) 18 (|has| $ (-1038 (-566))))) (-2023 (($ $ (-612 $) $) 62) (($ $ (-644 (-612 $)) (-644 $)) 61) (($ $ (-644 (-295 $))) 60) (($ $ (-295 $)) 59) (($ $ $ $) 58) (($ $ (-644 $) (-644 $)) 57) (($ $ (-644 (-1175)) (-644 (-1 $ $))) 28) (($ $ (-644 (-1175)) (-644 (-1 $ (-644 $)))) 27) (($ $ (-1175) (-1 $ (-644 $))) 26) (($ $ (-1175) (-1 $ $)) 25) (($ $ (-644 (-114)) (-644 (-1 $ $))) 24) (($ $ (-644 (-114)) (-644 (-1 $ (-644 $)))) 23) (($ $ (-114) (-1 $ (-644 $))) 22) (($ $ (-114) (-1 $ $)) 21) (($ $ (-1175)) 197 (|has| |#1| (-614 (-538)))) (($ $ (-644 (-1175))) 196 (|has| |#1| (-614 (-538)))) (($ $) 195 (|has| |#1| (-614 (-538)))) (($ $ (-114) $ (-1175)) 194 (|has| |#1| (-614 (-538)))) (($ $ (-644 (-114)) (-644 $) (-1175)) 193 (|has| |#1| (-614 (-538)))) (($ $ (-644 (-1175)) (-644 (-771)) (-644 (-1 $ $))) 182 (|has| |#1| (-1049))) (($ $ (-644 (-1175)) (-644 (-771)) (-644 (-1 $ (-644 $)))) 181 (|has| |#1| (-1049))) (($ $ (-1175) (-771) (-1 $ (-644 $))) 180 (|has| |#1| (-1049))) (($ $ (-1175) (-771) (-1 $ $)) 179 (|has| |#1| (-1049)))) (-4357 (((-771) $) 155 (|has| |#1| (-558)))) (-1309 (($ (-114) $) 56) (($ (-114) $ $) 55) (($ (-114) $ $ $) 54) (($ (-114) $ $ $ $) 53) (($ (-114) (-644 $)) 52)) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) 156 (|has| |#1| (-558)))) (-2020 (($ $) 44) (($ $ $) 43)) (-3629 (($ $ (-644 (-1175)) (-644 (-771))) 128 (|has| |#1| (-1049))) (($ $ (-1175) (-771)) 127 (|has| |#1| (-1049))) (($ $ (-644 (-1175))) 126 (|has| |#1| (-1049))) (($ $ (-1175)) 125 (|has| |#1| (-1049)))) (-1452 (($ $) 176 (|has| |#1| (-558)))) (-2260 (((-1124 |#1| (-612 $)) $) 177 (|has| |#1| (-558)))) (-1705 (($ $) 19 (|has| $ (-1049)))) (-2376 (((-892 (-566)) $) 214 (|has| |#1| (-614 (-892 (-566))))) (((-892 (-381)) $) 213 (|has| |#1| (-614 (-892 (-381))))) (($ (-420 $)) 178 (|has| |#1| (-558))) (((-538) $) 100 (|has| |#1| (-614 (-538))))) (-3357 (($ $ $) 111 (|has| |#1| (-475)))) (-2527 (($ $ $) 112 (|has| |#1| (-475)))) (-3152 (((-862) $) 12) (($ (-612 $)) 63) (($ (-1175)) 215) (($ |#1|) 206) (($ (-1124 |#1| (-612 $))) 188 (|has| |#1| (-1049))) (($ (-409 |#1|)) 174 (|has| |#1| (-558))) (($ (-952 (-409 |#1|))) 173 (|has| |#1| (-558))) (($ (-409 (-952 (-409 |#1|)))) 172 (|has| |#1| (-558))) (($ (-409 (-952 |#1|))) 168 (|has| |#1| (-558))) (($ $) 141 (|has| |#1| (-558))) (($ (-952 |#1|)) 122 (|has| |#1| (-1049))) (($ (-409 (-566))) 97 (-2768 (|has| |#1| (-558)) (-12 (|has| |#1| (-1038 (-566))) (|has| |#1| (-558))) (|has| |#1| (-1038 (-409 (-566)))))) (($ (-566)) 96 (-2768 (|has| |#1| (-1049)) (|has| |#1| (-1038 (-566)))))) (-2633 (((-3 $ "failed") $) 138 (|has| |#1| (-145)))) (-2593 (((-771)) 133 (|has| |#1| (-1049)) CONST)) (-3928 (($ $) 48) (($ (-644 $)) 47)) (-3515 (((-112) (-114)) 36)) (-3044 (((-112) $ $) 9)) (-3014 (((-112) $ $) 145 (|has| |#1| (-558)))) (-4088 (($ (-1175) $) 202) (($ (-1175) $ $) 201) (($ (-1175) $ $ $) 200) (($ (-1175) $ $ $ $) 199) (($ (-1175) (-644 $)) 198)) (-4356 (($) 115 (|has| |#1| (-25)) CONST)) (-4366 (($) 103 (|has| |#1| (-1111)) CONST)) (-3497 (($ $ (-644 (-1175)) (-644 (-771))) 132 (|has| |#1| (-1049))) (($ $ (-1175) (-771)) 131 (|has| |#1| (-1049))) (($ $ (-644 (-1175))) 130 (|has| |#1| (-1049))) (($ $ (-1175)) 129 (|has| |#1| (-1049)))) (-2914 (((-112) $ $) 6)) (-3025 (($ (-1124 |#1| (-612 $)) (-1124 |#1| (-612 $))) 175 (|has| |#1| (-558))) (($ $ $) 109 (-2768 (|has| |#1| (-475)) (|has| |#1| (-558))))) (-3012 (($ $ $) 121 (|has| |#1| (-21))) (($ $) 120 (|has| |#1| (-21)))) (-3002 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-566)) 110 (-2768 (|has| |#1| (-475)) (|has| |#1| (-558)))) (($ $ (-771)) 107 (|has| |#1| (-1111))) (($ $ (-921)) 102 (|has| |#1| (-1111)))) (* (($ (-409 (-566)) $) 167 (|has| |#1| (-558))) (($ $ (-409 (-566))) 166 (|has| |#1| (-558))) (($ |#1| $) 140 (|has| |#1| (-172))) (($ $ |#1|) 139 (|has| |#1| (-172))) (($ (-566) $) 119 (|has| |#1| (-21))) (($ (-771) $) 117 (|has| |#1| (-25))) (($ (-921) $) 114 (|has| |#1| (-25))) (($ $ $) 101 (|has| |#1| (-1111))))) (((-432 |#1|) (-140) (-1099)) (T -432)) -((-1723 (*1 *2 *1) (-12 (-4 *1 (-432 *3)) (-4 *3 (-1099)) (-5 *2 (-112)))) (-1736 (*1 *2 *1) (-12 (-4 *1 (-432 *2)) (-4 *2 (-1099)))) (-3863 (*1 *2 *1) (-12 (-4 *1 (-432 *3)) (-4 *3 (-1099)) (-5 *2 (-644 (-1175))))) (-4229 (*1 *1 *2 *1) (-12 (-5 *2 (-1175)) (-4 *1 (-432 *3)) (-4 *3 (-1099)))) (-4229 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1175)) (-4 *1 (-432 *3)) (-4 *3 (-1099)))) (-4229 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1175)) (-4 *1 (-432 *3)) (-4 *3 (-1099)))) (-4229 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1175)) (-4 *1 (-432 *3)) (-4 *3 (-1099)))) (-4229 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-644 *1)) (-4 *1 (-432 *4)) (-4 *4 (-1099)))) (-2055 (*1 *1 *1 *2) (-12 (-5 *2 (-1175)) (-4 *1 (-432 *3)) (-4 *3 (-1099)) (-4 *3 (-614 (-538))))) (-2055 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-1175))) (-4 *1 (-432 *3)) (-4 *3 (-1099)) (-4 *3 (-614 (-538))))) (-2055 (*1 *1 *1) (-12 (-4 *1 (-432 *2)) (-4 *2 (-1099)) (-4 *2 (-614 (-538))))) (-2055 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1175)) (-4 *1 (-432 *4)) (-4 *4 (-1099)) (-4 *4 (-614 (-538))))) (-2055 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-644 (-114))) (-5 *3 (-644 *1)) (-5 *4 (-1175)) (-4 *1 (-432 *5)) (-4 *5 (-1099)) (-4 *5 (-614 (-538))))) (-3714 (*1 *2 *1) (|partial| -12 (-4 *3 (-1111)) (-4 *3 (-1099)) (-5 *2 (-644 *1)) (-4 *1 (-432 *3)))) (-1518 (*1 *2 *1) (|partial| -12 (-4 *3 (-1111)) (-4 *3 (-1099)) (-5 *2 (-2 (|:| |var| (-612 *1)) (|:| -2852 (-566)))) (-4 *1 (-432 *3)))) (-2353 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1099)) (-5 *2 (-644 *1)) (-4 *1 (-432 *3)))) (-3542 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1099)) (-5 *2 (-2 (|:| -1364 (-566)) (|:| |var| (-612 *1)))) (-4 *1 (-432 *3)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-1124 *3 (-612 *1))) (-4 *3 (-1049)) (-4 *3 (-1099)) (-4 *1 (-432 *3)))) (-4326 (*1 *2 *1) (-12 (-4 *3 (-1049)) (-4 *3 (-1099)) (-5 *2 (-1124 *3 (-612 *1))) (-4 *1 (-432 *3)))) (-1493 (*1 *1 *1) (-12 (-4 *1 (-432 *2)) (-4 *2 (-1099)) (-4 *2 (-1049)))) (-1518 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1049)) (-4 *4 (-1099)) (-5 *2 (-2 (|:| |var| (-612 *1)) (|:| -2852 (-566)))) (-4 *1 (-432 *4)))) (-1518 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1175)) (-4 *4 (-1049)) (-4 *4 (-1099)) (-5 *2 (-2 (|:| |var| (-612 *1)) (|:| -2852 (-566)))) (-4 *1 (-432 *4)))) (-2114 (*1 *2 *1) (|partial| -12 (-4 *3 (-1049)) (-4 *3 (-1099)) (-5 *2 (-2 (|:| |val| *1) (|:| -2852 (-566)))) (-4 *1 (-432 *3)))) (-2055 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-644 (-1175))) (-5 *3 (-644 (-771))) (-5 *4 (-644 (-1 *1 *1))) (-4 *1 (-432 *5)) (-4 *5 (-1099)) (-4 *5 (-1049)))) (-2055 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-644 (-1175))) (-5 *3 (-644 (-771))) (-5 *4 (-644 (-1 *1 (-644 *1)))) (-4 *1 (-432 *5)) (-4 *5 (-1099)) (-4 *5 (-1049)))) (-2055 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1175)) (-5 *3 (-771)) (-5 *4 (-1 *1 (-644 *1))) (-4 *1 (-432 *5)) (-4 *5 (-1099)) (-4 *5 (-1049)))) (-2055 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1175)) (-5 *3 (-771)) (-5 *4 (-1 *1 *1)) (-4 *1 (-432 *5)) (-4 *5 (-1099)) (-4 *5 (-1049)))) (-1348 (*1 *1 *2) (-12 (-5 *2 (-420 *1)) (-4 *1 (-432 *3)) (-4 *3 (-558)) (-4 *3 (-1099)))) (-4339 (*1 *2 *1) (-12 (-4 *3 (-558)) (-4 *3 (-1099)) (-5 *2 (-1124 *3 (-612 *1))) (-4 *1 (-432 *3)))) (-2023 (*1 *1 *1) (-12 (-4 *1 (-432 *2)) (-4 *2 (-1099)) (-4 *2 (-558)))) (-3065 (*1 *1 *2 *2) (-12 (-5 *2 (-1124 *3 (-612 *1))) (-4 *3 (-558)) (-4 *3 (-1099)) (-4 *1 (-432 *3)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-409 *3)) (-4 *3 (-558)) (-4 *3 (-1099)) (-4 *1 (-432 *3)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-952 (-409 *3))) (-4 *3 (-558)) (-4 *3 (-1099)) (-4 *1 (-432 *3)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-409 (-952 (-409 *3)))) (-4 *3 (-558)) (-4 *3 (-1099)) (-4 *1 (-432 *3)))) (-3683 (*1 *2 *1 *3) (-12 (-5 *3 (-612 *1)) (-4 *1 (-432 *4)) (-4 *4 (-1099)) (-4 *4 (-558)) (-5 *2 (-409 (-1171 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-432 *3)) (-4 *3 (-1099)) (-4 *3 (-1111))))) -(-13 (-303) (-1038 (-1175)) (-884 |t#1|) (-402 |t#1|) (-413 |t#1|) (-10 -8 (-15 -1723 ((-112) $)) (-15 -1736 (|t#1| $)) (-15 -3863 ((-644 (-1175)) $)) (-15 -4229 ($ (-1175) $)) (-15 -4229 ($ (-1175) $ $)) (-15 -4229 ($ (-1175) $ $ $)) (-15 -4229 ($ (-1175) $ $ $ $)) (-15 -4229 ($ (-1175) (-644 $))) (IF (|has| |t#1| (-614 (-538))) (PROGN (-6 (-614 (-538))) (-15 -2055 ($ $ (-1175))) (-15 -2055 ($ $ (-644 (-1175)))) (-15 -2055 ($ $)) (-15 -2055 ($ $ (-114) $ (-1175))) (-15 -2055 ($ $ (-644 (-114)) (-644 $) (-1175)))) |%noBranch|) (IF (|has| |t#1| (-1111)) (PROGN (-6 (-726)) (-15 ** ($ $ (-771))) (-15 -3714 ((-3 (-644 $) "failed") $)) (-15 -1518 ((-3 (-2 (|:| |var| (-612 $)) (|:| -2852 (-566))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-475)) (-6 (-475)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2353 ((-3 (-644 $) "failed") $)) (-15 -3542 ((-3 (-2 (|:| -1364 (-566)) (|:| |var| (-612 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1049)) (PROGN (-6 (-1049)) (-6 (-1038 (-952 |t#1|))) (-6 (-900 (-1175))) (-6 (-379 |t#1|)) (-15 -3783 ($ (-1124 |t#1| (-612 $)))) (-15 -4326 ((-1124 |t#1| (-612 $)) $)) (-15 -1493 ($ $)) (-15 -1518 ((-3 (-2 (|:| |var| (-612 $)) (|:| -2852 (-566))) "failed") $ (-114))) (-15 -1518 ((-3 (-2 (|:| |var| (-612 $)) (|:| -2852 (-566))) "failed") $ (-1175))) (-15 -2114 ((-3 (-2 (|:| |val| $) (|:| -2852 (-566))) "failed") $)) (-15 -2055 ($ $ (-644 (-1175)) (-644 (-771)) (-644 (-1 $ $)))) (-15 -2055 ($ $ (-644 (-1175)) (-644 (-771)) (-644 (-1 $ (-644 $))))) (-15 -2055 ($ $ (-1175) (-771) (-1 $ (-644 $)))) (-15 -2055 ($ $ (-1175) (-771) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-558)) (PROGN (-6 (-365)) (-6 (-1038 (-409 (-952 |t#1|)))) (-15 -1348 ($ (-420 $))) (-15 -4339 ((-1124 |t#1| (-612 $)) $)) (-15 -2023 ($ $)) (-15 -3065 ($ (-1124 |t#1| (-612 $)) (-1124 |t#1| (-612 $)))) (-15 -3783 ($ (-409 |t#1|))) (-15 -3783 ($ (-952 (-409 |t#1|)))) (-15 -3783 ($ (-409 (-952 (-409 |t#1|))))) (-15 -3683 ((-409 (-1171 $)) $ (-612 $))) (IF (|has| |t#1| (-1038 (-566))) (-6 (-1038 (-409 (-566)))) |%noBranch|)) |%noBranch|))) -(((-21) -2809 (|has| |#1| (-1049)) (|has| |#1| (-558)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-23) -2809 (|has| |#1| (-1049)) (|has| |#1| (-558)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -2809 (|has| |#1| (-1049)) (|has| |#1| (-558)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-409 (-566))) |has| |#1| (-558)) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-558)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-558)) ((-111 |#1| |#1|) |has| |#1| (-172)) ((-111 $ $) |has| |#1| (-558)) ((-131) -2809 (|has| |#1| (-1049)) (|has| |#1| (-558)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #0#) -2809 (|has| |#1| (-1038 (-409 (-566)))) (|has| |#1| (-558))) ((-616 #1=(-409 (-952 |#1|))) |has| |#1| (-558)) ((-616 (-566)) -2809 (|has| |#1| (-1049)) (|has| |#1| (-1038 (-566))) (|has| |#1| (-558)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-616 #2=(-612 $)) . T) ((-616 #3=(-952 |#1|)) |has| |#1| (-1049)) ((-616 #4=(-1175)) . T) ((-616 |#1|) . T) ((-616 $) |has| |#1| (-558)) ((-613 (-862)) . T) ((-172) |has| |#1| (-558)) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-614 (-892 (-381))) |has| |#1| (-614 (-892 (-381)))) ((-614 (-892 (-566))) |has| |#1| (-614 (-892 (-566)))) ((-243) |has| |#1| (-558)) ((-291) |has| |#1| (-558)) ((-308) |has| |#1| (-558)) ((-310 $) . T) ((-303) . T) ((-365) |has| |#1| (-558)) ((-379 |#1|) |has| |#1| (-1049)) ((-402 |#1|) . T) ((-413 |#1|) . T) ((-454) |has| |#1| (-558)) ((-475) |has| |#1| (-475)) ((-516 (-612 $) $) . T) ((-516 $ $) . T) ((-558) |has| |#1| (-558)) ((-646 #0#) |has| |#1| (-558)) ((-646 (-566)) -2809 (|has| |#1| (-1049)) (|has| |#1| (-558)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-646 |#1|) |has| |#1| (-172)) ((-646 $) -2809 (|has| |#1| (-1049)) (|has| |#1| (-558)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-648 #0#) |has| |#1| (-558)) ((-648 |#1|) |has| |#1| (-172)) ((-648 $) -2809 (|has| |#1| (-1049)) (|has| |#1| (-558)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-640 #0#) |has| |#1| (-558)) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) |has| |#1| (-558)) ((-639 (-566)) -12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))) ((-639 |#1|) |has| |#1| (-1049)) ((-717 #0#) |has| |#1| (-558)) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) |has| |#1| (-558)) ((-726) -2809 (|has| |#1| (-1111)) (|has| |#1| (-1049)) (|has| |#1| (-558)) (|has| |#1| (-475)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-900 (-1175)) |has| |#1| (-1049)) ((-886 (-381)) |has| |#1| (-886 (-381))) ((-886 (-566)) |has| |#1| (-886 (-566))) ((-884 |#1|) . T) ((-920) |has| |#1| (-558)) ((-1038 (-409 (-566))) -2809 (|has| |#1| (-1038 (-409 (-566)))) (-12 (|has| |#1| (-558)) (|has| |#1| (-1038 (-566))))) ((-1038 #1#) |has| |#1| (-558)) ((-1038 (-566)) |has| |#1| (-1038 (-566))) ((-1038 #2#) . T) ((-1038 #3#) |has| |#1| (-1049)) ((-1038 #4#) . T) ((-1038 |#1|) . T) ((-1051 #0#) |has| |#1| (-558)) ((-1051 |#1|) |has| |#1| (-172)) ((-1051 $) |has| |#1| (-558)) ((-1056 #0#) |has| |#1| (-558)) ((-1056 |#1|) |has| |#1| (-172)) ((-1056 $) |has| |#1| (-558)) ((-1049) -2809 (|has| |#1| (-1049)) (|has| |#1| (-558)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1057) -2809 (|has| |#1| (-1049)) (|has| |#1| (-558)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1111) -2809 (|has| |#1| (-1111)) (|has| |#1| (-1049)) (|has| |#1| (-558)) (|has| |#1| (-475)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1099) . T) ((-1214) . T) ((-1218) |has| |#1| (-558))) -((-2680 ((|#2| |#2| |#2|) 31)) (-3659 (((-114) (-114)) 43)) (-2334 ((|#2| |#2|) 63)) (-4065 ((|#2| |#2|) 66)) (-1641 ((|#2| |#2|) 30)) (-1357 ((|#2| |#2| |#2|) 33)) (-4226 ((|#2| |#2| |#2|) 35)) (-4335 ((|#2| |#2| |#2|) 32)) (-3180 ((|#2| |#2| |#2|) 34)) (-2825 (((-112) (-114)) 41)) (-1949 ((|#2| |#2|) 37)) (-3848 ((|#2| |#2|) 36)) (-2086 ((|#2| |#2|) 25)) (-2411 ((|#2| |#2| |#2|) 28) ((|#2| |#2|) 26)) (-2880 ((|#2| |#2| |#2|) 29))) -(((-433 |#1| |#2|) (-10 -7 (-15 -2825 ((-112) (-114))) (-15 -3659 ((-114) (-114))) (-15 -2086 (|#2| |#2|)) (-15 -2411 (|#2| |#2|)) (-15 -2411 (|#2| |#2| |#2|)) (-15 -2880 (|#2| |#2| |#2|)) (-15 -1641 (|#2| |#2|)) (-15 -2680 (|#2| |#2| |#2|)) (-15 -4335 (|#2| |#2| |#2|)) (-15 -1357 (|#2| |#2| |#2|)) (-15 -3180 (|#2| |#2| |#2|)) (-15 -4226 (|#2| |#2| |#2|)) (-15 -3848 (|#2| |#2|)) (-15 -1949 (|#2| |#2|)) (-15 -4065 (|#2| |#2|)) (-15 -2334 (|#2| |#2|))) (-558) (-432 |#1|)) (T -433)) -((-2334 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-4065 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-1949 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-3848 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-4226 (*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-3180 (*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-1357 (*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-4335 (*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-2680 (*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-1641 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-2880 (*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-2411 (*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-2411 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-2086 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-3659 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-558)) (-5 *1 (-433 *3 *4)) (-4 *4 (-432 *3)))) (-2825 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-558)) (-5 *2 (-112)) (-5 *1 (-433 *4 *5)) (-4 *5 (-432 *4))))) -(-10 -7 (-15 -2825 ((-112) (-114))) (-15 -3659 ((-114) (-114))) (-15 -2086 (|#2| |#2|)) (-15 -2411 (|#2| |#2|)) (-15 -2411 (|#2| |#2| |#2|)) (-15 -2880 (|#2| |#2| |#2|)) (-15 -1641 (|#2| |#2|)) (-15 -2680 (|#2| |#2| |#2|)) (-15 -4335 (|#2| |#2| |#2|)) (-15 -1357 (|#2| |#2| |#2|)) (-15 -3180 (|#2| |#2| |#2|)) (-15 -4226 (|#2| |#2| |#2|)) (-15 -3848 (|#2| |#2|)) (-15 -1949 (|#2| |#2|)) (-15 -4065 (|#2| |#2|)) (-15 -2334 (|#2| |#2|))) -((-2781 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1171 |#2|)) (|:| |pol2| (-1171 |#2|)) (|:| |prim| (-1171 |#2|))) |#2| |#2|) 106 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-644 (-1171 |#2|))) (|:| |prim| (-1171 |#2|))) (-644 |#2|)) 68))) -(((-434 |#1| |#2|) (-10 -7 (-15 -2781 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-644 (-1171 |#2|))) (|:| |prim| (-1171 |#2|))) (-644 |#2|))) (IF (|has| |#2| (-27)) (-15 -2781 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1171 |#2|)) (|:| |pol2| (-1171 |#2|)) (|:| |prim| (-1171 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-558) (-147)) (-432 |#1|)) (T -434)) -((-2781 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-558) (-147))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1171 *3)) (|:| |pol2| (-1171 *3)) (|:| |prim| (-1171 *3)))) (-5 *1 (-434 *4 *3)) (-4 *3 (-27)) (-4 *3 (-432 *4)))) (-2781 (*1 *2 *3) (-12 (-5 *3 (-644 *5)) (-4 *5 (-432 *4)) (-4 *4 (-13 (-558) (-147))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-644 (-1171 *5))) (|:| |prim| (-1171 *5)))) (-5 *1 (-434 *4 *5))))) -(-10 -7 (-15 -2781 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-644 (-1171 |#2|))) (|:| |prim| (-1171 |#2|))) (-644 |#2|))) (IF (|has| |#2| (-27)) (-15 -2781 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1171 |#2|)) (|:| |pol2| (-1171 |#2|)) (|:| |prim| (-1171 |#2|))) |#2| |#2|)) |%noBranch|)) -((-2496 (((-1269)) 19)) (-3086 (((-1171 (-409 (-566))) |#2| (-612 |#2|)) 41) (((-409 (-566)) |#2|) 25))) -(((-435 |#1| |#2|) (-10 -7 (-15 -3086 ((-409 (-566)) |#2|)) (-15 -3086 ((-1171 (-409 (-566))) |#2| (-612 |#2|))) (-15 -2496 ((-1269)))) (-13 (-558) (-1038 (-566))) (-432 |#1|)) (T -435)) -((-2496 (*1 *2) (-12 (-4 *3 (-13 (-558) (-1038 (-566)))) (-5 *2 (-1269)) (-5 *1 (-435 *3 *4)) (-4 *4 (-432 *3)))) (-3086 (*1 *2 *3 *4) (-12 (-5 *4 (-612 *3)) (-4 *3 (-432 *5)) (-4 *5 (-13 (-558) (-1038 (-566)))) (-5 *2 (-1171 (-409 (-566)))) (-5 *1 (-435 *5 *3)))) (-3086 (*1 *2 *3) (-12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *2 (-409 (-566))) (-5 *1 (-435 *4 *3)) (-4 *3 (-432 *4))))) -(-10 -7 (-15 -3086 ((-409 (-566)) |#2|)) (-15 -3086 ((-1171 (-409 (-566))) |#2| (-612 |#2|))) (-15 -2496 ((-1269)))) -((-2472 (((-112) $) 32)) (-2990 (((-112) $) 34)) (-3354 (((-112) $) 35)) (-2084 (((-112) $) 38)) (-3311 (((-112) $) 33)) (-2884 (((-112) $) 37)) (-3783 (((-862) $) 20) (($ (-1157)) 31) (($ (-1175)) 26) (((-1175) $) 24) (((-1103) $) 23)) (-3376 (((-112) $) 36)) (-2947 (((-112) $ $) 17))) -(((-436) (-13 (-613 (-862)) (-10 -8 (-15 -3783 ($ (-1157))) (-15 -3783 ($ (-1175))) (-15 -3783 ((-1175) $)) (-15 -3783 ((-1103) $)) (-15 -2472 ((-112) $)) (-15 -3311 ((-112) $)) (-15 -3354 ((-112) $)) (-15 -2884 ((-112) $)) (-15 -2084 ((-112) $)) (-15 -3376 ((-112) $)) (-15 -2990 ((-112) $)) (-15 -2947 ((-112) $ $))))) (T -436)) -((-3783 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-436)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-436)))) (-3783 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-436)))) (-3783 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-436)))) (-2472 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436)))) (-3311 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436)))) (-3354 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436)))) (-2884 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436)))) (-2084 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436)))) (-3376 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436)))) (-2990 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436)))) (-2947 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436))))) -(-13 (-613 (-862)) (-10 -8 (-15 -3783 ($ (-1157))) (-15 -3783 ($ (-1175))) (-15 -3783 ((-1175) $)) (-15 -3783 ((-1103) $)) (-15 -2472 ((-112) $)) (-15 -3311 ((-112) $)) (-15 -3354 ((-112) $)) (-15 -2884 ((-112) $)) (-15 -2084 ((-112) $)) (-15 -3376 ((-112) $)) (-15 -2990 ((-112) $)) (-15 -2947 ((-112) $ $)))) -((-3356 (((-3 (-420 (-1171 (-409 (-566)))) "failed") |#3|) 72)) (-3574 (((-420 |#3|) |#3|) 34)) (-3152 (((-3 (-420 (-1171 (-48))) "failed") |#3|) 46 (|has| |#2| (-1038 (-48))))) (-1495 (((-3 (|:| |overq| (-1171 (-409 (-566)))) (|:| |overan| (-1171 (-48))) (|:| -3273 (-112))) |#3|) 37))) -(((-437 |#1| |#2| |#3|) (-10 -7 (-15 -3574 ((-420 |#3|) |#3|)) (-15 -3356 ((-3 (-420 (-1171 (-409 (-566)))) "failed") |#3|)) (-15 -1495 ((-3 (|:| |overq| (-1171 (-409 (-566)))) (|:| |overan| (-1171 (-48))) (|:| -3273 (-112))) |#3|)) (IF (|has| |#2| (-1038 (-48))) (-15 -3152 ((-3 (-420 (-1171 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-558) (-1038 (-566))) (-432 |#1|) (-1240 |#2|)) (T -437)) -((-3152 (*1 *2 *3) (|partial| -12 (-4 *5 (-1038 (-48))) (-4 *4 (-13 (-558) (-1038 (-566)))) (-4 *5 (-432 *4)) (-5 *2 (-420 (-1171 (-48)))) (-5 *1 (-437 *4 *5 *3)) (-4 *3 (-1240 *5)))) (-1495 (*1 *2 *3) (-12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-4 *5 (-432 *4)) (-5 *2 (-3 (|:| |overq| (-1171 (-409 (-566)))) (|:| |overan| (-1171 (-48))) (|:| -3273 (-112)))) (-5 *1 (-437 *4 *5 *3)) (-4 *3 (-1240 *5)))) (-3356 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-4 *5 (-432 *4)) (-5 *2 (-420 (-1171 (-409 (-566))))) (-5 *1 (-437 *4 *5 *3)) (-4 *3 (-1240 *5)))) (-3574 (*1 *2 *3) (-12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-4 *5 (-432 *4)) (-5 *2 (-420 *3)) (-5 *1 (-437 *4 *5 *3)) (-4 *3 (-1240 *5))))) -(-10 -7 (-15 -3574 ((-420 |#3|) |#3|)) (-15 -3356 ((-3 (-420 (-1171 (-409 (-566)))) "failed") |#3|)) (-15 -1495 ((-3 (|:| |overq| (-1171 (-409 (-566)))) (|:| |overan| (-1171 (-48))) (|:| -3273 (-112))) |#3|)) (IF (|has| |#2| (-1038 (-48))) (-15 -3152 ((-3 (-420 (-1171 (-48))) "failed") |#3|)) |%noBranch|)) -((-3007 (((-112) $ $) NIL)) (-3349 (((-1157) $ (-1157)) NIL)) (-3534 (($ $ (-1157)) NIL)) (-2972 (((-1157) $) NIL)) (-3320 (((-390) (-390) (-390)) 17) (((-390) (-390)) 15)) (-3501 (($ (-390)) NIL) (($ (-390) (-1157)) NIL)) (-2640 (((-390) $) NIL)) (-4117 (((-1157) $) NIL)) (-4176 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-1773 (((-1269) (-1157)) 9)) (-2813 (((-1269) (-1157)) 10)) (-3516 (((-1269)) 11)) (-3783 (((-862) $) NIL)) (-1596 (($ $) 39)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) -(((-438) (-13 (-366 (-390) (-1157)) (-10 -7 (-15 -3320 ((-390) (-390) (-390))) (-15 -3320 ((-390) (-390))) (-15 -1773 ((-1269) (-1157))) (-15 -2813 ((-1269) (-1157))) (-15 -3516 ((-1269)))))) (T -438)) -((-3320 (*1 *2 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-438)))) (-3320 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-438)))) (-1773 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-438)))) (-2813 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-438)))) (-3516 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-438))))) -(-13 (-366 (-390) (-1157)) (-10 -7 (-15 -3320 ((-390) (-390) (-390))) (-15 -3320 ((-390) (-390))) (-15 -1773 ((-1269) (-1157))) (-15 -2813 ((-1269) (-1157))) (-15 -3516 ((-1269))))) -((-3007 (((-112) $ $) NIL)) (-1409 (((-3 (|:| |fst| (-436)) (|:| -2895 "void")) $) 11)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3755 (($) 35)) (-2721 (($) 41)) (-3975 (($) 37)) (-2778 (($) 39)) (-2253 (($) 36)) (-3889 (($) 38)) (-2106 (($) 40)) (-3920 (((-112) $) 8)) (-3880 (((-644 (-952 (-566))) $) 19)) (-3796 (($ (-3 (|:| |fst| (-436)) (|:| -2895 "void")) (-644 (-1175)) (-112)) 29) (($ (-3 (|:| |fst| (-436)) (|:| -2895 "void")) (-644 (-952 (-566))) (-112)) 30)) (-3783 (((-862) $) 24) (($ (-436)) 32)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) -(((-439) (-13 (-1099) (-10 -8 (-15 -3783 ($ (-436))) (-15 -1409 ((-3 (|:| |fst| (-436)) (|:| -2895 "void")) $)) (-15 -3880 ((-644 (-952 (-566))) $)) (-15 -3920 ((-112) $)) (-15 -3796 ($ (-3 (|:| |fst| (-436)) (|:| -2895 "void")) (-644 (-1175)) (-112))) (-15 -3796 ($ (-3 (|:| |fst| (-436)) (|:| -2895 "void")) (-644 (-952 (-566))) (-112))) (-15 -3755 ($)) (-15 -2253 ($)) (-15 -3975 ($)) (-15 -2721 ($)) (-15 -3889 ($)) (-15 -2778 ($)) (-15 -2106 ($))))) (T -439)) -((-3783 (*1 *1 *2) (-12 (-5 *2 (-436)) (-5 *1 (-439)))) (-1409 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-436)) (|:| -2895 "void"))) (-5 *1 (-439)))) (-3880 (*1 *2 *1) (-12 (-5 *2 (-644 (-952 (-566)))) (-5 *1 (-439)))) (-3920 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))) (-3796 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-436)) (|:| -2895 "void"))) (-5 *3 (-644 (-1175))) (-5 *4 (-112)) (-5 *1 (-439)))) (-3796 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-436)) (|:| -2895 "void"))) (-5 *3 (-644 (-952 (-566)))) (-5 *4 (-112)) (-5 *1 (-439)))) (-3755 (*1 *1) (-5 *1 (-439))) (-2253 (*1 *1) (-5 *1 (-439))) (-3975 (*1 *1) (-5 *1 (-439))) (-2721 (*1 *1) (-5 *1 (-439))) (-3889 (*1 *1) (-5 *1 (-439))) (-2778 (*1 *1) (-5 *1 (-439))) (-2106 (*1 *1) (-5 *1 (-439)))) -(-13 (-1099) (-10 -8 (-15 -3783 ($ (-436))) (-15 -1409 ((-3 (|:| |fst| (-436)) (|:| -2895 "void")) $)) (-15 -3880 ((-644 (-952 (-566))) $)) (-15 -3920 ((-112) $)) (-15 -3796 ($ (-3 (|:| |fst| (-436)) (|:| -2895 "void")) (-644 (-1175)) (-112))) (-15 -3796 ($ (-3 (|:| |fst| (-436)) (|:| -2895 "void")) (-644 (-952 (-566))) (-112))) (-15 -3755 ($)) (-15 -2253 ($)) (-15 -3975 ($)) (-15 -2721 ($)) (-15 -3889 ($)) (-15 -2778 ($)) (-15 -2106 ($)))) -((-3007 (((-112) $ $) NIL)) (-2640 (((-1175) $) 8)) (-4117 (((-1157) $) 17)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 11)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) 14))) -(((-440 |#1|) (-13 (-1099) (-10 -8 (-15 -2640 ((-1175) $)))) (-1175)) (T -440)) -((-2640 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-440 *3)) (-14 *3 *2)))) -(-13 (-1099) (-10 -8 (-15 -2640 ((-1175) $)))) -((-3007 (((-112) $ $) NIL)) (-3030 (((-1117) $) 7)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 13)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) 9))) -(((-441) (-13 (-1099) (-10 -8 (-15 -3030 ((-1117) $))))) (T -441)) -((-3030 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-441))))) -(-13 (-1099) (-10 -8 (-15 -3030 ((-1117) $)))) -((-3435 (((-1269) $) 7)) (-3783 (((-862) $) 8) (($ (-1264 (-699))) 14) (($ (-644 (-331))) 13) (($ (-331)) 12) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3261 (-644 (-331))))) 11))) +((-2761 (*1 *2 *1) (-12 (-4 *1 (-432 *3)) (-4 *3 (-1099)) (-5 *2 (-112)))) (-2773 (*1 *2 *1) (-12 (-4 *1 (-432 *2)) (-4 *2 (-1099)))) (-1771 (*1 *2 *1) (-12 (-4 *1 (-432 *3)) (-4 *3 (-1099)) (-5 *2 (-644 (-1175))))) (-4088 (*1 *1 *2 *1) (-12 (-5 *2 (-1175)) (-4 *1 (-432 *3)) (-4 *3 (-1099)))) (-4088 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1175)) (-4 *1 (-432 *3)) (-4 *3 (-1099)))) (-4088 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1175)) (-4 *1 (-432 *3)) (-4 *3 (-1099)))) (-4088 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1175)) (-4 *1 (-432 *3)) (-4 *3 (-1099)))) (-4088 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-644 *1)) (-4 *1 (-432 *4)) (-4 *4 (-1099)))) (-2023 (*1 *1 *1 *2) (-12 (-5 *2 (-1175)) (-4 *1 (-432 *3)) (-4 *3 (-1099)) (-4 *3 (-614 (-538))))) (-2023 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-1175))) (-4 *1 (-432 *3)) (-4 *3 (-1099)) (-4 *3 (-614 (-538))))) (-2023 (*1 *1 *1) (-12 (-4 *1 (-432 *2)) (-4 *2 (-1099)) (-4 *2 (-614 (-538))))) (-2023 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1175)) (-4 *1 (-432 *4)) (-4 *4 (-1099)) (-4 *4 (-614 (-538))))) (-2023 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-644 (-114))) (-5 *3 (-644 *1)) (-5 *4 (-1175)) (-4 *1 (-432 *5)) (-4 *5 (-1099)) (-4 *5 (-614 (-538))))) (-3738 (*1 *2 *1) (|partial| -12 (-4 *3 (-1111)) (-4 *3 (-1099)) (-5 *2 (-644 *1)) (-4 *1 (-432 *3)))) (-4108 (*1 *2 *1) (|partial| -12 (-4 *3 (-1111)) (-4 *3 (-1099)) (-5 *2 (-2 (|:| |var| (-612 *1)) (|:| -2201 (-566)))) (-4 *1 (-432 *3)))) (-4199 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1099)) (-5 *2 (-644 *1)) (-4 *1 (-432 *3)))) (-3944 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1099)) (-5 *2 (-2 (|:| -2397 (-566)) (|:| |var| (-612 *1)))) (-4 *1 (-432 *3)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-1124 *3 (-612 *1))) (-4 *3 (-1049)) (-4 *3 (-1099)) (-4 *1 (-432 *3)))) (-2248 (*1 *2 *1) (-12 (-4 *3 (-1049)) (-4 *3 (-1099)) (-5 *2 (-1124 *3 (-612 *1))) (-4 *1 (-432 *3)))) (-3406 (*1 *1 *1) (-12 (-4 *1 (-432 *2)) (-4 *2 (-1099)) (-4 *2 (-1049)))) (-4108 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1049)) (-4 *4 (-1099)) (-5 *2 (-2 (|:| |var| (-612 *1)) (|:| -2201 (-566)))) (-4 *1 (-432 *4)))) (-4108 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1175)) (-4 *4 (-1049)) (-4 *4 (-1099)) (-5 *2 (-2 (|:| |var| (-612 *1)) (|:| -2201 (-566)))) (-4 *1 (-432 *4)))) (-4224 (*1 *2 *1) (|partial| -12 (-4 *3 (-1049)) (-4 *3 (-1099)) (-5 *2 (-2 (|:| |val| *1) (|:| -2201 (-566)))) (-4 *1 (-432 *3)))) (-2023 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-644 (-1175))) (-5 *3 (-644 (-771))) (-5 *4 (-644 (-1 *1 *1))) (-4 *1 (-432 *5)) (-4 *5 (-1099)) (-4 *5 (-1049)))) (-2023 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-644 (-1175))) (-5 *3 (-644 (-771))) (-5 *4 (-644 (-1 *1 (-644 *1)))) (-4 *1 (-432 *5)) (-4 *5 (-1099)) (-4 *5 (-1049)))) (-2023 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1175)) (-5 *3 (-771)) (-5 *4 (-1 *1 (-644 *1))) (-4 *1 (-432 *5)) (-4 *5 (-1099)) (-4 *5 (-1049)))) (-2023 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1175)) (-5 *3 (-771)) (-5 *4 (-1 *1 *1)) (-4 *1 (-432 *5)) (-4 *5 (-1099)) (-4 *5 (-1049)))) (-2376 (*1 *1 *2) (-12 (-5 *2 (-420 *1)) (-4 *1 (-432 *3)) (-4 *3 (-558)) (-4 *3 (-1099)))) (-2260 (*1 *2 *1) (-12 (-4 *3 (-558)) (-4 *3 (-1099)) (-5 *2 (-1124 *3 (-612 *1))) (-4 *1 (-432 *3)))) (-1452 (*1 *1 *1) (-12 (-4 *1 (-432 *2)) (-4 *2 (-1099)) (-4 *2 (-558)))) (-3025 (*1 *1 *2 *2) (-12 (-5 *2 (-1124 *3 (-612 *1))) (-4 *3 (-558)) (-4 *3 (-1099)) (-4 *1 (-432 *3)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-409 *3)) (-4 *3 (-558)) (-4 *3 (-1099)) (-4 *1 (-432 *3)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-952 (-409 *3))) (-4 *3 (-558)) (-4 *3 (-1099)) (-4 *1 (-432 *3)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-409 (-952 (-409 *3)))) (-4 *3 (-558)) (-4 *3 (-1099)) (-4 *1 (-432 *3)))) (-1590 (*1 *2 *1 *3) (-12 (-5 *3 (-612 *1)) (-4 *1 (-432 *4)) (-4 *4 (-1099)) (-4 *4 (-558)) (-5 *2 (-409 (-1171 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-432 *3)) (-4 *3 (-1099)) (-4 *3 (-1111))))) +(-13 (-303) (-1038 (-1175)) (-884 |t#1|) (-402 |t#1|) (-413 |t#1|) (-10 -8 (-15 -2761 ((-112) $)) (-15 -2773 (|t#1| $)) (-15 -1771 ((-644 (-1175)) $)) (-15 -4088 ($ (-1175) $)) (-15 -4088 ($ (-1175) $ $)) (-15 -4088 ($ (-1175) $ $ $)) (-15 -4088 ($ (-1175) $ $ $ $)) (-15 -4088 ($ (-1175) (-644 $))) (IF (|has| |t#1| (-614 (-538))) (PROGN (-6 (-614 (-538))) (-15 -2023 ($ $ (-1175))) (-15 -2023 ($ $ (-644 (-1175)))) (-15 -2023 ($ $)) (-15 -2023 ($ $ (-114) $ (-1175))) (-15 -2023 ($ $ (-644 (-114)) (-644 $) (-1175)))) |%noBranch|) (IF (|has| |t#1| (-1111)) (PROGN (-6 (-726)) (-15 ** ($ $ (-771))) (-15 -3738 ((-3 (-644 $) "failed") $)) (-15 -4108 ((-3 (-2 (|:| |var| (-612 $)) (|:| -2201 (-566))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-475)) (-6 (-475)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -4199 ((-3 (-644 $) "failed") $)) (-15 -3944 ((-3 (-2 (|:| -2397 (-566)) (|:| |var| (-612 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1049)) (PROGN (-6 (-1049)) (-6 (-1038 (-952 |t#1|))) (-6 (-900 (-1175))) (-6 (-379 |t#1|)) (-15 -3152 ($ (-1124 |t#1| (-612 $)))) (-15 -2248 ((-1124 |t#1| (-612 $)) $)) (-15 -3406 ($ $)) (-15 -4108 ((-3 (-2 (|:| |var| (-612 $)) (|:| -2201 (-566))) "failed") $ (-114))) (-15 -4108 ((-3 (-2 (|:| |var| (-612 $)) (|:| -2201 (-566))) "failed") $ (-1175))) (-15 -4224 ((-3 (-2 (|:| |val| $) (|:| -2201 (-566))) "failed") $)) (-15 -2023 ($ $ (-644 (-1175)) (-644 (-771)) (-644 (-1 $ $)))) (-15 -2023 ($ $ (-644 (-1175)) (-644 (-771)) (-644 (-1 $ (-644 $))))) (-15 -2023 ($ $ (-1175) (-771) (-1 $ (-644 $)))) (-15 -2023 ($ $ (-1175) (-771) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-558)) (PROGN (-6 (-365)) (-6 (-1038 (-409 (-952 |t#1|)))) (-15 -2376 ($ (-420 $))) (-15 -2260 ((-1124 |t#1| (-612 $)) $)) (-15 -1452 ($ $)) (-15 -3025 ($ (-1124 |t#1| (-612 $)) (-1124 |t#1| (-612 $)))) (-15 -3152 ($ (-409 |t#1|))) (-15 -3152 ($ (-952 (-409 |t#1|)))) (-15 -3152 ($ (-409 (-952 (-409 |t#1|))))) (-15 -1590 ((-409 (-1171 $)) $ (-612 $))) (IF (|has| |t#1| (-1038 (-566))) (-6 (-1038 (-409 (-566)))) |%noBranch|)) |%noBranch|))) +(((-21) -2768 (|has| |#1| (-1049)) (|has| |#1| (-558)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-23) -2768 (|has| |#1| (-1049)) (|has| |#1| (-558)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -2768 (|has| |#1| (-1049)) (|has| |#1| (-558)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-409 (-566))) |has| |#1| (-558)) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-558)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-558)) ((-111 |#1| |#1|) |has| |#1| (-172)) ((-111 $ $) |has| |#1| (-558)) ((-131) -2768 (|has| |#1| (-1049)) (|has| |#1| (-558)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #0#) -2768 (|has| |#1| (-1038 (-409 (-566)))) (|has| |#1| (-558))) ((-616 #1=(-409 (-952 |#1|))) |has| |#1| (-558)) ((-616 (-566)) -2768 (|has| |#1| (-1049)) (|has| |#1| (-1038 (-566))) (|has| |#1| (-558)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-616 #2=(-612 $)) . T) ((-616 #3=(-952 |#1|)) |has| |#1| (-1049)) ((-616 #4=(-1175)) . T) ((-616 |#1|) . T) ((-616 $) |has| |#1| (-558)) ((-613 (-862)) . T) ((-172) |has| |#1| (-558)) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-614 (-892 (-381))) |has| |#1| (-614 (-892 (-381)))) ((-614 (-892 (-566))) |has| |#1| (-614 (-892 (-566)))) ((-243) |has| |#1| (-558)) ((-291) |has| |#1| (-558)) ((-308) |has| |#1| (-558)) ((-310 $) . T) ((-303) . T) ((-365) |has| |#1| (-558)) ((-379 |#1|) |has| |#1| (-1049)) ((-402 |#1|) . T) ((-413 |#1|) . T) ((-454) |has| |#1| (-558)) ((-475) |has| |#1| (-475)) ((-516 (-612 $) $) . T) ((-516 $ $) . T) ((-558) |has| |#1| (-558)) ((-646 #0#) |has| |#1| (-558)) ((-646 (-566)) -2768 (|has| |#1| (-1049)) (|has| |#1| (-558)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-646 |#1|) |has| |#1| (-172)) ((-646 $) -2768 (|has| |#1| (-1049)) (|has| |#1| (-558)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-648 #0#) |has| |#1| (-558)) ((-648 |#1|) |has| |#1| (-172)) ((-648 $) -2768 (|has| |#1| (-1049)) (|has| |#1| (-558)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-640 #0#) |has| |#1| (-558)) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) |has| |#1| (-558)) ((-639 (-566)) -12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))) ((-639 |#1|) |has| |#1| (-1049)) ((-717 #0#) |has| |#1| (-558)) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) |has| |#1| (-558)) ((-726) -2768 (|has| |#1| (-1111)) (|has| |#1| (-1049)) (|has| |#1| (-558)) (|has| |#1| (-475)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-900 (-1175)) |has| |#1| (-1049)) ((-886 (-381)) |has| |#1| (-886 (-381))) ((-886 (-566)) |has| |#1| (-886 (-566))) ((-884 |#1|) . T) ((-920) |has| |#1| (-558)) ((-1038 (-409 (-566))) -2768 (|has| |#1| (-1038 (-409 (-566)))) (-12 (|has| |#1| (-558)) (|has| |#1| (-1038 (-566))))) ((-1038 #1#) |has| |#1| (-558)) ((-1038 (-566)) |has| |#1| (-1038 (-566))) ((-1038 #2#) . T) ((-1038 #3#) |has| |#1| (-1049)) ((-1038 #4#) . T) ((-1038 |#1|) . T) ((-1051 #0#) |has| |#1| (-558)) ((-1051 |#1|) |has| |#1| (-172)) ((-1051 $) |has| |#1| (-558)) ((-1056 #0#) |has| |#1| (-558)) ((-1056 |#1|) |has| |#1| (-172)) ((-1056 $) |has| |#1| (-558)) ((-1049) -2768 (|has| |#1| (-1049)) (|has| |#1| (-558)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1057) -2768 (|has| |#1| (-1049)) (|has| |#1| (-558)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1111) -2768 (|has| |#1| (-1111)) (|has| |#1| (-1049)) (|has| |#1| (-558)) (|has| |#1| (-475)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1099) . T) ((-1214) . T) ((-1218) |has| |#1| (-558))) +((-2078 ((|#2| |#2| |#2|) 31)) (-1566 (((-114) (-114)) 43)) (-2880 ((|#2| |#2|) 63)) (-4105 ((|#2| |#2|) 66)) (-2469 ((|#2| |#2|) 30)) (-1429 ((|#2| |#2| |#2|) 33)) (-3273 ((|#2| |#2| |#2|) 35)) (-2941 ((|#2| |#2| |#2|) 32)) (-4087 ((|#2| |#2| |#2|) 34)) (-3515 (((-112) (-114)) 41)) (-2893 ((|#2| |#2|) 37)) (-3094 ((|#2| |#2|) 36)) (-1358 ((|#2| |#2|) 25)) (-2879 ((|#2| |#2| |#2|) 28) ((|#2| |#2|) 26)) (-4006 ((|#2| |#2| |#2|) 29))) +(((-433 |#1| |#2|) (-10 -7 (-15 -3515 ((-112) (-114))) (-15 -1566 ((-114) (-114))) (-15 -1358 (|#2| |#2|)) (-15 -2879 (|#2| |#2|)) (-15 -2879 (|#2| |#2| |#2|)) (-15 -4006 (|#2| |#2| |#2|)) (-15 -2469 (|#2| |#2|)) (-15 -2078 (|#2| |#2| |#2|)) (-15 -2941 (|#2| |#2| |#2|)) (-15 -1429 (|#2| |#2| |#2|)) (-15 -4087 (|#2| |#2| |#2|)) (-15 -3273 (|#2| |#2| |#2|)) (-15 -3094 (|#2| |#2|)) (-15 -2893 (|#2| |#2|)) (-15 -4105 (|#2| |#2|)) (-15 -2880 (|#2| |#2|))) (-558) (-432 |#1|)) (T -433)) +((-2880 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-4105 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-2893 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-3094 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-3273 (*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-4087 (*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-1429 (*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-2941 (*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-2078 (*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-2469 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-4006 (*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-2879 (*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-2879 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-1358 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-1566 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-558)) (-5 *1 (-433 *3 *4)) (-4 *4 (-432 *3)))) (-3515 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-558)) (-5 *2 (-112)) (-5 *1 (-433 *4 *5)) (-4 *5 (-432 *4))))) +(-10 -7 (-15 -3515 ((-112) (-114))) (-15 -1566 ((-114) (-114))) (-15 -1358 (|#2| |#2|)) (-15 -2879 (|#2| |#2|)) (-15 -2879 (|#2| |#2| |#2|)) (-15 -4006 (|#2| |#2| |#2|)) (-15 -2469 (|#2| |#2|)) (-15 -2078 (|#2| |#2| |#2|)) (-15 -2941 (|#2| |#2| |#2|)) (-15 -1429 (|#2| |#2| |#2|)) (-15 -4087 (|#2| |#2| |#2|)) (-15 -3273 (|#2| |#2| |#2|)) (-15 -3094 (|#2| |#2|)) (-15 -2893 (|#2| |#2|)) (-15 -4105 (|#2| |#2|)) (-15 -2880 (|#2| |#2|))) +((-3359 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1171 |#2|)) (|:| |pol2| (-1171 |#2|)) (|:| |prim| (-1171 |#2|))) |#2| |#2|) 106 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-644 (-1171 |#2|))) (|:| |prim| (-1171 |#2|))) (-644 |#2|)) 68))) +(((-434 |#1| |#2|) (-10 -7 (-15 -3359 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-644 (-1171 |#2|))) (|:| |prim| (-1171 |#2|))) (-644 |#2|))) (IF (|has| |#2| (-27)) (-15 -3359 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1171 |#2|)) (|:| |pol2| (-1171 |#2|)) (|:| |prim| (-1171 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-558) (-147)) (-432 |#1|)) (T -434)) +((-3359 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-558) (-147))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1171 *3)) (|:| |pol2| (-1171 *3)) (|:| |prim| (-1171 *3)))) (-5 *1 (-434 *4 *3)) (-4 *3 (-27)) (-4 *3 (-432 *4)))) (-3359 (*1 *2 *3) (-12 (-5 *3 (-644 *5)) (-4 *5 (-432 *4)) (-4 *4 (-13 (-558) (-147))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-644 (-1171 *5))) (|:| |prim| (-1171 *5)))) (-5 *1 (-434 *4 *5))))) +(-10 -7 (-15 -3359 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-644 (-1171 |#2|))) (|:| |prim| (-1171 |#2|))) (-644 |#2|))) (IF (|has| |#2| (-27)) (-15 -3359 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1171 |#2|)) (|:| |pol2| (-1171 |#2|)) (|:| |prim| (-1171 |#2|))) |#2| |#2|)) |%noBranch|)) +((-3981 (((-1269)) 19)) (-3644 (((-1171 (-409 (-566))) |#2| (-612 |#2|)) 41) (((-409 (-566)) |#2|) 25))) +(((-435 |#1| |#2|) (-10 -7 (-15 -3644 ((-409 (-566)) |#2|)) (-15 -3644 ((-1171 (-409 (-566))) |#2| (-612 |#2|))) (-15 -3981 ((-1269)))) (-13 (-558) (-1038 (-566))) (-432 |#1|)) (T -435)) +((-3981 (*1 *2) (-12 (-4 *3 (-13 (-558) (-1038 (-566)))) (-5 *2 (-1269)) (-5 *1 (-435 *3 *4)) (-4 *4 (-432 *3)))) (-3644 (*1 *2 *3 *4) (-12 (-5 *4 (-612 *3)) (-4 *3 (-432 *5)) (-4 *5 (-13 (-558) (-1038 (-566)))) (-5 *2 (-1171 (-409 (-566)))) (-5 *1 (-435 *5 *3)))) (-3644 (*1 *2 *3) (-12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *2 (-409 (-566))) (-5 *1 (-435 *4 *3)) (-4 *3 (-432 *4))))) +(-10 -7 (-15 -3644 ((-409 (-566)) |#2|)) (-15 -3644 ((-1171 (-409 (-566))) |#2| (-612 |#2|))) (-15 -3981 ((-1269)))) +((-3402 (((-112) $) 32)) (-3171 (((-112) $) 34)) (-3709 (((-112) $) 35)) (-4365 (((-112) $) 38)) (-1512 (((-112) $) 33)) (-3185 (((-112) $) 37)) (-3152 (((-862) $) 20) (($ (-1157)) 31) (($ (-1175)) 26) (((-1175) $) 24) (((-1103) $) 23)) (-4250 (((-112) $) 36)) (-2914 (((-112) $ $) 17))) +(((-436) (-13 (-613 (-862)) (-10 -8 (-15 -3152 ($ (-1157))) (-15 -3152 ($ (-1175))) (-15 -3152 ((-1175) $)) (-15 -3152 ((-1103) $)) (-15 -3402 ((-112) $)) (-15 -1512 ((-112) $)) (-15 -3709 ((-112) $)) (-15 -3185 ((-112) $)) (-15 -4365 ((-112) $)) (-15 -4250 ((-112) $)) (-15 -3171 ((-112) $)) (-15 -2914 ((-112) $ $))))) (T -436)) +((-3152 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-436)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-436)))) (-3152 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-436)))) (-3152 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-436)))) (-3402 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436)))) (-1512 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436)))) (-3709 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436)))) (-3185 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436)))) (-4365 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436)))) (-4250 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436)))) (-3171 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436)))) (-2914 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436))))) +(-13 (-613 (-862)) (-10 -8 (-15 -3152 ($ (-1157))) (-15 -3152 ($ (-1175))) (-15 -3152 ((-1175) $)) (-15 -3152 ((-1103) $)) (-15 -3402 ((-112) $)) (-15 -1512 ((-112) $)) (-15 -3709 ((-112) $)) (-15 -3185 ((-112) $)) (-15 -4365 ((-112) $)) (-15 -4250 ((-112) $)) (-15 -3171 ((-112) $)) (-15 -2914 ((-112) $ $)))) +((-2704 (((-3 (-420 (-1171 (-409 (-566)))) "failed") |#3|) 72)) (-1965 (((-420 |#3|) |#3|) 34)) (-1320 (((-3 (-420 (-1171 (-48))) "failed") |#3|) 46 (|has| |#2| (-1038 (-48))))) (-3563 (((-3 (|:| |overq| (-1171 (-409 (-566)))) (|:| |overan| (-1171 (-48))) (|:| -3221 (-112))) |#3|) 37))) +(((-437 |#1| |#2| |#3|) (-10 -7 (-15 -1965 ((-420 |#3|) |#3|)) (-15 -2704 ((-3 (-420 (-1171 (-409 (-566)))) "failed") |#3|)) (-15 -3563 ((-3 (|:| |overq| (-1171 (-409 (-566)))) (|:| |overan| (-1171 (-48))) (|:| -3221 (-112))) |#3|)) (IF (|has| |#2| (-1038 (-48))) (-15 -1320 ((-3 (-420 (-1171 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-558) (-1038 (-566))) (-432 |#1|) (-1240 |#2|)) (T -437)) +((-1320 (*1 *2 *3) (|partial| -12 (-4 *5 (-1038 (-48))) (-4 *4 (-13 (-558) (-1038 (-566)))) (-4 *5 (-432 *4)) (-5 *2 (-420 (-1171 (-48)))) (-5 *1 (-437 *4 *5 *3)) (-4 *3 (-1240 *5)))) (-3563 (*1 *2 *3) (-12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-4 *5 (-432 *4)) (-5 *2 (-3 (|:| |overq| (-1171 (-409 (-566)))) (|:| |overan| (-1171 (-48))) (|:| -3221 (-112)))) (-5 *1 (-437 *4 *5 *3)) (-4 *3 (-1240 *5)))) (-2704 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-4 *5 (-432 *4)) (-5 *2 (-420 (-1171 (-409 (-566))))) (-5 *1 (-437 *4 *5 *3)) (-4 *3 (-1240 *5)))) (-1965 (*1 *2 *3) (-12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-4 *5 (-432 *4)) (-5 *2 (-420 *3)) (-5 *1 (-437 *4 *5 *3)) (-4 *3 (-1240 *5))))) +(-10 -7 (-15 -1965 ((-420 |#3|) |#3|)) (-15 -2704 ((-3 (-420 (-1171 (-409 (-566)))) "failed") |#3|)) (-15 -3563 ((-3 (|:| |overq| (-1171 (-409 (-566)))) (|:| |overan| (-1171 (-48))) (|:| -3221 (-112))) |#3|)) (IF (|has| |#2| (-1038 (-48))) (-15 -1320 ((-3 (-420 (-1171 (-48))) "failed") |#3|)) |%noBranch|)) +((-2988 (((-112) $ $) NIL)) (-3167 (((-1157) $ (-1157)) NIL)) (-2545 (($ $ (-1157)) NIL)) (-1338 (((-1157) $) NIL)) (-2100 (((-390) (-390) (-390)) 17) (((-390) (-390)) 15)) (-3292 (($ (-390)) NIL) (($ (-390) (-1157)) NIL)) (-1368 (((-390) $) NIL)) (-3380 (((-1157) $) NIL)) (-4085 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-1382 (((-1269) (-1157)) 9)) (-1796 (((-1269) (-1157)) 10)) (-3802 (((-1269)) 11)) (-3152 (((-862) $) NIL)) (-2405 (($ $) 39)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) +(((-438) (-13 (-366 (-390) (-1157)) (-10 -7 (-15 -2100 ((-390) (-390) (-390))) (-15 -2100 ((-390) (-390))) (-15 -1382 ((-1269) (-1157))) (-15 -1796 ((-1269) (-1157))) (-15 -3802 ((-1269)))))) (T -438)) +((-2100 (*1 *2 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-438)))) (-2100 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-438)))) (-1382 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-438)))) (-1796 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-438)))) (-3802 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-438))))) +(-13 (-366 (-390) (-1157)) (-10 -7 (-15 -2100 ((-390) (-390) (-390))) (-15 -2100 ((-390) (-390))) (-15 -1382 ((-1269) (-1157))) (-15 -1796 ((-1269) (-1157))) (-15 -3802 ((-1269))))) +((-2988 (((-112) $ $) NIL)) (-3910 (((-3 (|:| |fst| (-436)) (|:| -3907 "void")) $) 11)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3420 (($) 35)) (-3639 (($) 41)) (-4223 (($) 37)) (-1316 (($) 39)) (-2428 (($) 36)) (-2464 (($) 38)) (-2498 (($) 40)) (-3507 (((-112) $) 8)) (-2817 (((-644 (-952 (-566))) $) 19)) (-1340 (($ (-3 (|:| |fst| (-436)) (|:| -3907 "void")) (-644 (-1175)) (-112)) 29) (($ (-3 (|:| |fst| (-436)) (|:| -3907 "void")) (-644 (-952 (-566))) (-112)) 30)) (-3152 (((-862) $) 24) (($ (-436)) 32)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) +(((-439) (-13 (-1099) (-10 -8 (-15 -3152 ($ (-436))) (-15 -3910 ((-3 (|:| |fst| (-436)) (|:| -3907 "void")) $)) (-15 -2817 ((-644 (-952 (-566))) $)) (-15 -3507 ((-112) $)) (-15 -1340 ($ (-3 (|:| |fst| (-436)) (|:| -3907 "void")) (-644 (-1175)) (-112))) (-15 -1340 ($ (-3 (|:| |fst| (-436)) (|:| -3907 "void")) (-644 (-952 (-566))) (-112))) (-15 -3420 ($)) (-15 -2428 ($)) (-15 -4223 ($)) (-15 -3639 ($)) (-15 -2464 ($)) (-15 -1316 ($)) (-15 -2498 ($))))) (T -439)) +((-3152 (*1 *1 *2) (-12 (-5 *2 (-436)) (-5 *1 (-439)))) (-3910 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-436)) (|:| -3907 "void"))) (-5 *1 (-439)))) (-2817 (*1 *2 *1) (-12 (-5 *2 (-644 (-952 (-566)))) (-5 *1 (-439)))) (-3507 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))) (-1340 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-436)) (|:| -3907 "void"))) (-5 *3 (-644 (-1175))) (-5 *4 (-112)) (-5 *1 (-439)))) (-1340 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-436)) (|:| -3907 "void"))) (-5 *3 (-644 (-952 (-566)))) (-5 *4 (-112)) (-5 *1 (-439)))) (-3420 (*1 *1) (-5 *1 (-439))) (-2428 (*1 *1) (-5 *1 (-439))) (-4223 (*1 *1) (-5 *1 (-439))) (-3639 (*1 *1) (-5 *1 (-439))) (-2464 (*1 *1) (-5 *1 (-439))) (-1316 (*1 *1) (-5 *1 (-439))) (-2498 (*1 *1) (-5 *1 (-439)))) +(-13 (-1099) (-10 -8 (-15 -3152 ($ (-436))) (-15 -3910 ((-3 (|:| |fst| (-436)) (|:| -3907 "void")) $)) (-15 -2817 ((-644 (-952 (-566))) $)) (-15 -3507 ((-112) $)) (-15 -1340 ($ (-3 (|:| |fst| (-436)) (|:| -3907 "void")) (-644 (-1175)) (-112))) (-15 -1340 ($ (-3 (|:| |fst| (-436)) (|:| -3907 "void")) (-644 (-952 (-566))) (-112))) (-15 -3420 ($)) (-15 -2428 ($)) (-15 -4223 ($)) (-15 -3639 ($)) (-15 -2464 ($)) (-15 -1316 ($)) (-15 -2498 ($)))) +((-2988 (((-112) $ $) NIL)) (-1368 (((-1175) $) 8)) (-3380 (((-1157) $) 17)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 11)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) 14))) +(((-440 |#1|) (-13 (-1099) (-10 -8 (-15 -1368 ((-1175) $)))) (-1175)) (T -440)) +((-1368 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-440 *3)) (-14 *3 *2)))) +(-13 (-1099) (-10 -8 (-15 -1368 ((-1175) $)))) +((-2988 (((-112) $ $) NIL)) (-2831 (((-1117) $) 7)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 13)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) 9))) +(((-441) (-13 (-1099) (-10 -8 (-15 -2831 ((-1117) $))))) (T -441)) +((-2831 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-441))))) +(-13 (-1099) (-10 -8 (-15 -2831 ((-1117) $)))) +((-1586 (((-1269) $) 7)) (-3152 (((-862) $) 8) (($ (-1264 (-699))) 14) (($ (-644 (-331))) 13) (($ (-331)) 12) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3906 (-644 (-331))))) 11))) (((-442) (-140)) (T -442)) -((-3783 (*1 *1 *2) (-12 (-5 *2 (-1264 (-699))) (-4 *1 (-442)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-644 (-331))) (-4 *1 (-442)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-442)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1179)) (|:| -3261 (-644 (-331))))) (-4 *1 (-442))))) -(-13 (-397) (-10 -8 (-15 -3783 ($ (-1264 (-699)))) (-15 -3783 ($ (-644 (-331)))) (-15 -3783 ($ (-331))) (-15 -3783 ($ (-2 (|:| |localSymbols| (-1179)) (|:| -3261 (-644 (-331)))))))) +((-3152 (*1 *1 *2) (-12 (-5 *2 (-1264 (-699))) (-4 *1 (-442)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-644 (-331))) (-4 *1 (-442)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-442)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1179)) (|:| -3906 (-644 (-331))))) (-4 *1 (-442))))) +(-13 (-397) (-10 -8 (-15 -3152 ($ (-1264 (-699)))) (-15 -3152 ($ (-644 (-331)))) (-15 -3152 ($ (-331))) (-15 -3152 ($ (-2 (|:| |localSymbols| (-1179)) (|:| -3906 (-644 (-331)))))))) (((-613 (-862)) . T) ((-397) . T) ((-1214) . T)) -((-4307 (((-3 $ "failed") (-1264 (-317 (-381)))) 21) (((-3 $ "failed") (-1264 (-317 (-566)))) 19) (((-3 $ "failed") (-1264 (-952 (-381)))) 17) (((-3 $ "failed") (-1264 (-952 (-566)))) 15) (((-3 $ "failed") (-1264 (-409 (-952 (-381))))) 13) (((-3 $ "failed") (-1264 (-409 (-952 (-566))))) 11)) (-4205 (($ (-1264 (-317 (-381)))) 22) (($ (-1264 (-317 (-566)))) 20) (($ (-1264 (-952 (-381)))) 18) (($ (-1264 (-952 (-566)))) 16) (($ (-1264 (-409 (-952 (-381))))) 14) (($ (-1264 (-409 (-952 (-566))))) 12)) (-3435 (((-1269) $) 7)) (-3783 (((-862) $) 8) (($ (-644 (-331))) 25) (($ (-331)) 24) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3261 (-644 (-331))))) 23))) +((-2229 (((-3 $ "failed") (-1264 (-317 (-381)))) 21) (((-3 $ "failed") (-1264 (-317 (-566)))) 19) (((-3 $ "failed") (-1264 (-952 (-381)))) 17) (((-3 $ "failed") (-1264 (-952 (-566)))) 15) (((-3 $ "failed") (-1264 (-409 (-952 (-381))))) 13) (((-3 $ "failed") (-1264 (-409 (-952 (-566))))) 11)) (-4158 (($ (-1264 (-317 (-381)))) 22) (($ (-1264 (-317 (-566)))) 20) (($ (-1264 (-952 (-381)))) 18) (($ (-1264 (-952 (-566)))) 16) (($ (-1264 (-409 (-952 (-381))))) 14) (($ (-1264 (-409 (-952 (-566))))) 12)) (-1586 (((-1269) $) 7)) (-3152 (((-862) $) 8) (($ (-644 (-331))) 25) (($ (-331)) 24) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3906 (-644 (-331))))) 23))) (((-443) (-140)) (T -443)) -((-3783 (*1 *1 *2) (-12 (-5 *2 (-644 (-331))) (-4 *1 (-443)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-443)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1179)) (|:| -3261 (-644 (-331))))) (-4 *1 (-443)))) (-4205 (*1 *1 *2) (-12 (-5 *2 (-1264 (-317 (-381)))) (-4 *1 (-443)))) (-4307 (*1 *1 *2) (|partial| -12 (-5 *2 (-1264 (-317 (-381)))) (-4 *1 (-443)))) (-4205 (*1 *1 *2) (-12 (-5 *2 (-1264 (-317 (-566)))) (-4 *1 (-443)))) (-4307 (*1 *1 *2) (|partial| -12 (-5 *2 (-1264 (-317 (-566)))) (-4 *1 (-443)))) (-4205 (*1 *1 *2) (-12 (-5 *2 (-1264 (-952 (-381)))) (-4 *1 (-443)))) (-4307 (*1 *1 *2) (|partial| -12 (-5 *2 (-1264 (-952 (-381)))) (-4 *1 (-443)))) (-4205 (*1 *1 *2) (-12 (-5 *2 (-1264 (-952 (-566)))) (-4 *1 (-443)))) (-4307 (*1 *1 *2) (|partial| -12 (-5 *2 (-1264 (-952 (-566)))) (-4 *1 (-443)))) (-4205 (*1 *1 *2) (-12 (-5 *2 (-1264 (-409 (-952 (-381))))) (-4 *1 (-443)))) (-4307 (*1 *1 *2) (|partial| -12 (-5 *2 (-1264 (-409 (-952 (-381))))) (-4 *1 (-443)))) (-4205 (*1 *1 *2) (-12 (-5 *2 (-1264 (-409 (-952 (-566))))) (-4 *1 (-443)))) (-4307 (*1 *1 *2) (|partial| -12 (-5 *2 (-1264 (-409 (-952 (-566))))) (-4 *1 (-443))))) -(-13 (-397) (-10 -8 (-15 -3783 ($ (-644 (-331)))) (-15 -3783 ($ (-331))) (-15 -3783 ($ (-2 (|:| |localSymbols| (-1179)) (|:| -3261 (-644 (-331)))))) (-15 -4205 ($ (-1264 (-317 (-381))))) (-15 -4307 ((-3 $ "failed") (-1264 (-317 (-381))))) (-15 -4205 ($ (-1264 (-317 (-566))))) (-15 -4307 ((-3 $ "failed") (-1264 (-317 (-566))))) (-15 -4205 ($ (-1264 (-952 (-381))))) (-15 -4307 ((-3 $ "failed") (-1264 (-952 (-381))))) (-15 -4205 ($ (-1264 (-952 (-566))))) (-15 -4307 ((-3 $ "failed") (-1264 (-952 (-566))))) (-15 -4205 ($ (-1264 (-409 (-952 (-381)))))) (-15 -4307 ((-3 $ "failed") (-1264 (-409 (-952 (-381)))))) (-15 -4205 ($ (-1264 (-409 (-952 (-566)))))) (-15 -4307 ((-3 $ "failed") (-1264 (-409 (-952 (-566)))))))) +((-3152 (*1 *1 *2) (-12 (-5 *2 (-644 (-331))) (-4 *1 (-443)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-443)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1179)) (|:| -3906 (-644 (-331))))) (-4 *1 (-443)))) (-4158 (*1 *1 *2) (-12 (-5 *2 (-1264 (-317 (-381)))) (-4 *1 (-443)))) (-2229 (*1 *1 *2) (|partial| -12 (-5 *2 (-1264 (-317 (-381)))) (-4 *1 (-443)))) (-4158 (*1 *1 *2) (-12 (-5 *2 (-1264 (-317 (-566)))) (-4 *1 (-443)))) (-2229 (*1 *1 *2) (|partial| -12 (-5 *2 (-1264 (-317 (-566)))) (-4 *1 (-443)))) (-4158 (*1 *1 *2) (-12 (-5 *2 (-1264 (-952 (-381)))) (-4 *1 (-443)))) (-2229 (*1 *1 *2) (|partial| -12 (-5 *2 (-1264 (-952 (-381)))) (-4 *1 (-443)))) (-4158 (*1 *1 *2) (-12 (-5 *2 (-1264 (-952 (-566)))) (-4 *1 (-443)))) (-2229 (*1 *1 *2) (|partial| -12 (-5 *2 (-1264 (-952 (-566)))) (-4 *1 (-443)))) (-4158 (*1 *1 *2) (-12 (-5 *2 (-1264 (-409 (-952 (-381))))) (-4 *1 (-443)))) (-2229 (*1 *1 *2) (|partial| -12 (-5 *2 (-1264 (-409 (-952 (-381))))) (-4 *1 (-443)))) (-4158 (*1 *1 *2) (-12 (-5 *2 (-1264 (-409 (-952 (-566))))) (-4 *1 (-443)))) (-2229 (*1 *1 *2) (|partial| -12 (-5 *2 (-1264 (-409 (-952 (-566))))) (-4 *1 (-443))))) +(-13 (-397) (-10 -8 (-15 -3152 ($ (-644 (-331)))) (-15 -3152 ($ (-331))) (-15 -3152 ($ (-2 (|:| |localSymbols| (-1179)) (|:| -3906 (-644 (-331)))))) (-15 -4158 ($ (-1264 (-317 (-381))))) (-15 -2229 ((-3 $ "failed") (-1264 (-317 (-381))))) (-15 -4158 ($ (-1264 (-317 (-566))))) (-15 -2229 ((-3 $ "failed") (-1264 (-317 (-566))))) (-15 -4158 ($ (-1264 (-952 (-381))))) (-15 -2229 ((-3 $ "failed") (-1264 (-952 (-381))))) (-15 -4158 ($ (-1264 (-952 (-566))))) (-15 -2229 ((-3 $ "failed") (-1264 (-952 (-566))))) (-15 -4158 ($ (-1264 (-409 (-952 (-381)))))) (-15 -2229 ((-3 $ "failed") (-1264 (-409 (-952 (-381)))))) (-15 -4158 ($ (-1264 (-409 (-952 (-566)))))) (-15 -2229 ((-3 $ "failed") (-1264 (-409 (-952 (-566)))))))) (((-613 (-862)) . T) ((-397) . T) ((-1214) . T)) -((-3108 (((-112)) 18)) (-4349 (((-112) (-112)) 19)) (-3420 (((-112)) 14)) (-1888 (((-112) (-112)) 15)) (-3226 (((-112)) 16)) (-2382 (((-112) (-112)) 17)) (-1354 (((-921) (-921)) 22) (((-921)) 21)) (-3208 (((-771) (-644 (-2 (|:| -3719 |#1|) (|:| -3636 (-566))))) 52)) (-2543 (((-921) (-921)) 24) (((-921)) 23)) (-3270 (((-2 (|:| -3380 (-566)) (|:| -4138 (-644 |#1|))) |#1|) 97)) (-3050 (((-420 |#1|) (-2 (|:| |contp| (-566)) (|:| -4138 (-644 (-2 (|:| |irr| |#1|) (|:| -3149 (-566))))))) 178)) (-4006 (((-2 (|:| |contp| (-566)) (|:| -4138 (-644 (-2 (|:| |irr| |#1|) (|:| -3149 (-566)))))) |#1| (-112)) 211)) (-2585 (((-420 |#1|) |#1| (-771) (-771)) 226) (((-420 |#1|) |#1| (-644 (-771)) (-771)) 223) (((-420 |#1|) |#1| (-644 (-771))) 225) (((-420 |#1|) |#1| (-771)) 224) (((-420 |#1|) |#1|) 222)) (-2606 (((-3 |#1| "failed") (-921) |#1| (-644 (-771)) (-771) (-112)) 228) (((-3 |#1| "failed") (-921) |#1| (-644 (-771)) (-771)) 229) (((-3 |#1| "failed") (-921) |#1| (-644 (-771))) 231) (((-3 |#1| "failed") (-921) |#1| (-771)) 230) (((-3 |#1| "failed") (-921) |#1|) 232)) (-3719 (((-420 |#1|) |#1| (-771) (-771)) 221) (((-420 |#1|) |#1| (-644 (-771)) (-771)) 217) (((-420 |#1|) |#1| (-644 (-771))) 219) (((-420 |#1|) |#1| (-771)) 218) (((-420 |#1|) |#1|) 216)) (-3673 (((-112) |#1|) 44)) (-2250 (((-737 (-771)) (-644 (-2 (|:| -3719 |#1|) (|:| -3636 (-566))))) 102)) (-1724 (((-2 (|:| |contp| (-566)) (|:| -4138 (-644 (-2 (|:| |irr| |#1|) (|:| -3149 (-566)))))) |#1| (-112) (-1101 (-771)) (-771)) 215))) -(((-444 |#1|) (-10 -7 (-15 -3050 ((-420 |#1|) (-2 (|:| |contp| (-566)) (|:| -4138 (-644 (-2 (|:| |irr| |#1|) (|:| -3149 (-566)))))))) (-15 -2250 ((-737 (-771)) (-644 (-2 (|:| -3719 |#1|) (|:| -3636 (-566)))))) (-15 -2543 ((-921))) (-15 -2543 ((-921) (-921))) (-15 -1354 ((-921))) (-15 -1354 ((-921) (-921))) (-15 -3208 ((-771) (-644 (-2 (|:| -3719 |#1|) (|:| -3636 (-566)))))) (-15 -3270 ((-2 (|:| -3380 (-566)) (|:| -4138 (-644 |#1|))) |#1|)) (-15 -3108 ((-112))) (-15 -4349 ((-112) (-112))) (-15 -3420 ((-112))) (-15 -1888 ((-112) (-112))) (-15 -3673 ((-112) |#1|)) (-15 -3226 ((-112))) (-15 -2382 ((-112) (-112))) (-15 -3719 ((-420 |#1|) |#1|)) (-15 -3719 ((-420 |#1|) |#1| (-771))) (-15 -3719 ((-420 |#1|) |#1| (-644 (-771)))) (-15 -3719 ((-420 |#1|) |#1| (-644 (-771)) (-771))) (-15 -3719 ((-420 |#1|) |#1| (-771) (-771))) (-15 -2585 ((-420 |#1|) |#1|)) (-15 -2585 ((-420 |#1|) |#1| (-771))) (-15 -2585 ((-420 |#1|) |#1| (-644 (-771)))) (-15 -2585 ((-420 |#1|) |#1| (-644 (-771)) (-771))) (-15 -2585 ((-420 |#1|) |#1| (-771) (-771))) (-15 -2606 ((-3 |#1| "failed") (-921) |#1|)) (-15 -2606 ((-3 |#1| "failed") (-921) |#1| (-771))) (-15 -2606 ((-3 |#1| "failed") (-921) |#1| (-644 (-771)))) (-15 -2606 ((-3 |#1| "failed") (-921) |#1| (-644 (-771)) (-771))) (-15 -2606 ((-3 |#1| "failed") (-921) |#1| (-644 (-771)) (-771) (-112))) (-15 -4006 ((-2 (|:| |contp| (-566)) (|:| -4138 (-644 (-2 (|:| |irr| |#1|) (|:| -3149 (-566)))))) |#1| (-112))) (-15 -1724 ((-2 (|:| |contp| (-566)) (|:| -4138 (-644 (-2 (|:| |irr| |#1|) (|:| -3149 (-566)))))) |#1| (-112) (-1101 (-771)) (-771)))) (-1240 (-566))) (T -444)) -((-1724 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1101 (-771))) (-5 *6 (-771)) (-5 *2 (-2 (|:| |contp| (-566)) (|:| -4138 (-644 (-2 (|:| |irr| *3) (|:| -3149 (-566))))))) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-4006 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-566)) (|:| -4138 (-644 (-2 (|:| |irr| *3) (|:| -3149 (-566))))))) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-2606 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-921)) (-5 *4 (-644 (-771))) (-5 *5 (-771)) (-5 *6 (-112)) (-5 *1 (-444 *2)) (-4 *2 (-1240 (-566))))) (-2606 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-921)) (-5 *4 (-644 (-771))) (-5 *5 (-771)) (-5 *1 (-444 *2)) (-4 *2 (-1240 (-566))))) (-2606 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-921)) (-5 *4 (-644 (-771))) (-5 *1 (-444 *2)) (-4 *2 (-1240 (-566))))) (-2606 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-921)) (-5 *4 (-771)) (-5 *1 (-444 *2)) (-4 *2 (-1240 (-566))))) (-2606 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-921)) (-5 *1 (-444 *2)) (-4 *2 (-1240 (-566))))) (-2585 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-771)) (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-2585 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-644 (-771))) (-5 *5 (-771)) (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-2585 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-771))) (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-2585 (*1 *2 *3 *4) (-12 (-5 *4 (-771)) (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-2585 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-3719 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-771)) (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-3719 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-644 (-771))) (-5 *5 (-771)) (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-3719 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-771))) (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-3719 (*1 *2 *3 *4) (-12 (-5 *4 (-771)) (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-3719 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-2382 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-3226 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-3673 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-1888 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-3420 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-4349 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-3108 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-3270 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3380 (-566)) (|:| -4138 (-644 *3)))) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-3208 (*1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| -3719 *4) (|:| -3636 (-566))))) (-4 *4 (-1240 (-566))) (-5 *2 (-771)) (-5 *1 (-444 *4)))) (-1354 (*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-1354 (*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-2543 (*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-2543 (*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-2250 (*1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| -3719 *4) (|:| -3636 (-566))))) (-4 *4 (-1240 (-566))) (-5 *2 (-737 (-771))) (-5 *1 (-444 *4)))) (-3050 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-566)) (|:| -4138 (-644 (-2 (|:| |irr| *4) (|:| -3149 (-566))))))) (-4 *4 (-1240 (-566))) (-5 *2 (-420 *4)) (-5 *1 (-444 *4))))) -(-10 -7 (-15 -3050 ((-420 |#1|) (-2 (|:| |contp| (-566)) (|:| -4138 (-644 (-2 (|:| |irr| |#1|) (|:| -3149 (-566)))))))) (-15 -2250 ((-737 (-771)) (-644 (-2 (|:| -3719 |#1|) (|:| -3636 (-566)))))) (-15 -2543 ((-921))) (-15 -2543 ((-921) (-921))) (-15 -1354 ((-921))) (-15 -1354 ((-921) (-921))) (-15 -3208 ((-771) (-644 (-2 (|:| -3719 |#1|) (|:| -3636 (-566)))))) (-15 -3270 ((-2 (|:| -3380 (-566)) (|:| -4138 (-644 |#1|))) |#1|)) (-15 -3108 ((-112))) (-15 -4349 ((-112) (-112))) (-15 -3420 ((-112))) (-15 -1888 ((-112) (-112))) (-15 -3673 ((-112) |#1|)) (-15 -3226 ((-112))) (-15 -2382 ((-112) (-112))) (-15 -3719 ((-420 |#1|) |#1|)) (-15 -3719 ((-420 |#1|) |#1| (-771))) (-15 -3719 ((-420 |#1|) |#1| (-644 (-771)))) (-15 -3719 ((-420 |#1|) |#1| (-644 (-771)) (-771))) (-15 -3719 ((-420 |#1|) |#1| (-771) (-771))) (-15 -2585 ((-420 |#1|) |#1|)) (-15 -2585 ((-420 |#1|) |#1| (-771))) (-15 -2585 ((-420 |#1|) |#1| (-644 (-771)))) (-15 -2585 ((-420 |#1|) |#1| (-644 (-771)) (-771))) (-15 -2585 ((-420 |#1|) |#1| (-771) (-771))) (-15 -2606 ((-3 |#1| "failed") (-921) |#1|)) (-15 -2606 ((-3 |#1| "failed") (-921) |#1| (-771))) (-15 -2606 ((-3 |#1| "failed") (-921) |#1| (-644 (-771)))) (-15 -2606 ((-3 |#1| "failed") (-921) |#1| (-644 (-771)) (-771))) (-15 -2606 ((-3 |#1| "failed") (-921) |#1| (-644 (-771)) (-771) (-112))) (-15 -4006 ((-2 (|:| |contp| (-566)) (|:| -4138 (-644 (-2 (|:| |irr| |#1|) (|:| -3149 (-566)))))) |#1| (-112))) (-15 -1724 ((-2 (|:| |contp| (-566)) (|:| -4138 (-644 (-2 (|:| |irr| |#1|) (|:| -3149 (-566)))))) |#1| (-112) (-1101 (-771)) (-771)))) -((-3160 (((-566) |#2|) 52) (((-566) |#2| (-771)) 51)) (-2816 (((-566) |#2|) 67)) (-3875 ((|#3| |#2|) 26)) (-1577 ((|#3| |#2| (-921)) 15)) (-4149 ((|#3| |#2|) 16)) (-2077 ((|#3| |#2|) 9)) (-2076 ((|#3| |#2|) 10)) (-1535 ((|#3| |#2| (-921)) 74) ((|#3| |#2|) 34)) (-1306 (((-566) |#2|) 69))) -(((-445 |#1| |#2| |#3|) (-10 -7 (-15 -1306 ((-566) |#2|)) (-15 -1535 (|#3| |#2|)) (-15 -1535 (|#3| |#2| (-921))) (-15 -2816 ((-566) |#2|)) (-15 -3160 ((-566) |#2| (-771))) (-15 -3160 ((-566) |#2|)) (-15 -1577 (|#3| |#2| (-921))) (-15 -3875 (|#3| |#2|)) (-15 -2077 (|#3| |#2|)) (-15 -2076 (|#3| |#2|)) (-15 -4149 (|#3| |#2|))) (-1049) (-1240 |#1|) (-13 (-406) (-1038 |#1|) (-365) (-1199) (-285))) (T -445)) -((-4149 (*1 *2 *3) (-12 (-4 *4 (-1049)) (-4 *2 (-13 (-406) (-1038 *4) (-365) (-1199) (-285))) (-5 *1 (-445 *4 *3 *2)) (-4 *3 (-1240 *4)))) (-2076 (*1 *2 *3) (-12 (-4 *4 (-1049)) (-4 *2 (-13 (-406) (-1038 *4) (-365) (-1199) (-285))) (-5 *1 (-445 *4 *3 *2)) (-4 *3 (-1240 *4)))) (-2077 (*1 *2 *3) (-12 (-4 *4 (-1049)) (-4 *2 (-13 (-406) (-1038 *4) (-365) (-1199) (-285))) (-5 *1 (-445 *4 *3 *2)) (-4 *3 (-1240 *4)))) (-3875 (*1 *2 *3) (-12 (-4 *4 (-1049)) (-4 *2 (-13 (-406) (-1038 *4) (-365) (-1199) (-285))) (-5 *1 (-445 *4 *3 *2)) (-4 *3 (-1240 *4)))) (-1577 (*1 *2 *3 *4) (-12 (-5 *4 (-921)) (-4 *5 (-1049)) (-4 *2 (-13 (-406) (-1038 *5) (-365) (-1199) (-285))) (-5 *1 (-445 *5 *3 *2)) (-4 *3 (-1240 *5)))) (-3160 (*1 *2 *3) (-12 (-4 *4 (-1049)) (-5 *2 (-566)) (-5 *1 (-445 *4 *3 *5)) (-4 *3 (-1240 *4)) (-4 *5 (-13 (-406) (-1038 *4) (-365) (-1199) (-285))))) (-3160 (*1 *2 *3 *4) (-12 (-5 *4 (-771)) (-4 *5 (-1049)) (-5 *2 (-566)) (-5 *1 (-445 *5 *3 *6)) (-4 *3 (-1240 *5)) (-4 *6 (-13 (-406) (-1038 *5) (-365) (-1199) (-285))))) (-2816 (*1 *2 *3) (-12 (-4 *4 (-1049)) (-5 *2 (-566)) (-5 *1 (-445 *4 *3 *5)) (-4 *3 (-1240 *4)) (-4 *5 (-13 (-406) (-1038 *4) (-365) (-1199) (-285))))) (-1535 (*1 *2 *3 *4) (-12 (-5 *4 (-921)) (-4 *5 (-1049)) (-4 *2 (-13 (-406) (-1038 *5) (-365) (-1199) (-285))) (-5 *1 (-445 *5 *3 *2)) (-4 *3 (-1240 *5)))) (-1535 (*1 *2 *3) (-12 (-4 *4 (-1049)) (-4 *2 (-13 (-406) (-1038 *4) (-365) (-1199) (-285))) (-5 *1 (-445 *4 *3 *2)) (-4 *3 (-1240 *4)))) (-1306 (*1 *2 *3) (-12 (-4 *4 (-1049)) (-5 *2 (-566)) (-5 *1 (-445 *4 *3 *5)) (-4 *3 (-1240 *4)) (-4 *5 (-13 (-406) (-1038 *4) (-365) (-1199) (-285)))))) -(-10 -7 (-15 -1306 ((-566) |#2|)) (-15 -1535 (|#3| |#2|)) (-15 -1535 (|#3| |#2| (-921))) (-15 -2816 ((-566) |#2|)) (-15 -3160 ((-566) |#2| (-771))) (-15 -3160 ((-566) |#2|)) (-15 -1577 (|#3| |#2| (-921))) (-15 -3875 (|#3| |#2|)) (-15 -2077 (|#3| |#2|)) (-15 -2076 (|#3| |#2|)) (-15 -4149 (|#3| |#2|))) -((-1842 ((|#2| (-1264 |#1|)) 45)) (-4112 ((|#2| |#2| |#1|) 61)) (-2637 ((|#2| |#2| |#1|) 53)) (-1377 ((|#2| |#2|) 49)) (-1314 (((-112) |#2|) 36)) (-1780 (((-644 |#2|) (-921) (-420 |#2|)) 24)) (-2606 ((|#2| (-921) (-420 |#2|)) 28)) (-2250 (((-737 (-771)) (-420 |#2|)) 33))) -(((-446 |#1| |#2|) (-10 -7 (-15 -1314 ((-112) |#2|)) (-15 -1842 (|#2| (-1264 |#1|))) (-15 -1377 (|#2| |#2|)) (-15 -2637 (|#2| |#2| |#1|)) (-15 -4112 (|#2| |#2| |#1|)) (-15 -2250 ((-737 (-771)) (-420 |#2|))) (-15 -2606 (|#2| (-921) (-420 |#2|))) (-15 -1780 ((-644 |#2|) (-921) (-420 |#2|)))) (-1049) (-1240 |#1|)) (T -446)) -((-1780 (*1 *2 *3 *4) (-12 (-5 *3 (-921)) (-5 *4 (-420 *6)) (-4 *6 (-1240 *5)) (-4 *5 (-1049)) (-5 *2 (-644 *6)) (-5 *1 (-446 *5 *6)))) (-2606 (*1 *2 *3 *4) (-12 (-5 *3 (-921)) (-5 *4 (-420 *2)) (-4 *2 (-1240 *5)) (-5 *1 (-446 *5 *2)) (-4 *5 (-1049)))) (-2250 (*1 *2 *3) (-12 (-5 *3 (-420 *5)) (-4 *5 (-1240 *4)) (-4 *4 (-1049)) (-5 *2 (-737 (-771))) (-5 *1 (-446 *4 *5)))) (-4112 (*1 *2 *2 *3) (-12 (-4 *3 (-1049)) (-5 *1 (-446 *3 *2)) (-4 *2 (-1240 *3)))) (-2637 (*1 *2 *2 *3) (-12 (-4 *3 (-1049)) (-5 *1 (-446 *3 *2)) (-4 *2 (-1240 *3)))) (-1377 (*1 *2 *2) (-12 (-4 *3 (-1049)) (-5 *1 (-446 *3 *2)) (-4 *2 (-1240 *3)))) (-1842 (*1 *2 *3) (-12 (-5 *3 (-1264 *4)) (-4 *4 (-1049)) (-4 *2 (-1240 *4)) (-5 *1 (-446 *4 *2)))) (-1314 (*1 *2 *3) (-12 (-4 *4 (-1049)) (-5 *2 (-112)) (-5 *1 (-446 *4 *3)) (-4 *3 (-1240 *4))))) -(-10 -7 (-15 -1314 ((-112) |#2|)) (-15 -1842 (|#2| (-1264 |#1|))) (-15 -1377 (|#2| |#2|)) (-15 -2637 (|#2| |#2| |#1|)) (-15 -4112 (|#2| |#2| |#1|)) (-15 -2250 ((-737 (-771)) (-420 |#2|))) (-15 -2606 (|#2| (-921) (-420 |#2|))) (-15 -1780 ((-644 |#2|) (-921) (-420 |#2|)))) -((-2937 (((-771)) 59)) (-4179 (((-771)) 29 (|has| |#1| (-406))) (((-771) (-771)) 28 (|has| |#1| (-406)))) (-3111 (((-566) |#1|) 25 (|has| |#1| (-406)))) (-2145 (((-566) |#1|) 27 (|has| |#1| (-406)))) (-1637 (((-771)) 58) (((-771) (-771)) 57)) (-1945 ((|#1| (-771) (-566)) 37)) (-2201 (((-1269)) 61))) -(((-447 |#1|) (-10 -7 (-15 -1945 (|#1| (-771) (-566))) (-15 -1637 ((-771) (-771))) (-15 -1637 ((-771))) (-15 -2937 ((-771))) (-15 -2201 ((-1269))) (IF (|has| |#1| (-406)) (PROGN (-15 -2145 ((-566) |#1|)) (-15 -3111 ((-566) |#1|)) (-15 -4179 ((-771) (-771))) (-15 -4179 ((-771)))) |%noBranch|)) (-1049)) (T -447)) -((-4179 (*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-447 *3)) (-4 *3 (-406)) (-4 *3 (-1049)))) (-4179 (*1 *2 *2) (-12 (-5 *2 (-771)) (-5 *1 (-447 *3)) (-4 *3 (-406)) (-4 *3 (-1049)))) (-3111 (*1 *2 *3) (-12 (-5 *2 (-566)) (-5 *1 (-447 *3)) (-4 *3 (-406)) (-4 *3 (-1049)))) (-2145 (*1 *2 *3) (-12 (-5 *2 (-566)) (-5 *1 (-447 *3)) (-4 *3 (-406)) (-4 *3 (-1049)))) (-2201 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-447 *3)) (-4 *3 (-1049)))) (-2937 (*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-447 *3)) (-4 *3 (-1049)))) (-1637 (*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-447 *3)) (-4 *3 (-1049)))) (-1637 (*1 *2 *2) (-12 (-5 *2 (-771)) (-5 *1 (-447 *3)) (-4 *3 (-1049)))) (-1945 (*1 *2 *3 *4) (-12 (-5 *3 (-771)) (-5 *4 (-566)) (-5 *1 (-447 *2)) (-4 *2 (-1049))))) -(-10 -7 (-15 -1945 (|#1| (-771) (-566))) (-15 -1637 ((-771) (-771))) (-15 -1637 ((-771))) (-15 -2937 ((-771))) (-15 -2201 ((-1269))) (IF (|has| |#1| (-406)) (PROGN (-15 -2145 ((-566) |#1|)) (-15 -3111 ((-566) |#1|)) (-15 -4179 ((-771) (-771))) (-15 -4179 ((-771)))) |%noBranch|)) -((-4003 (((-644 (-566)) (-566)) 76)) (-3268 (((-112) (-169 (-566))) 82)) (-3719 (((-420 (-169 (-566))) (-169 (-566))) 75))) -(((-448) (-10 -7 (-15 -3719 ((-420 (-169 (-566))) (-169 (-566)))) (-15 -4003 ((-644 (-566)) (-566))) (-15 -3268 ((-112) (-169 (-566)))))) (T -448)) -((-3268 (*1 *2 *3) (-12 (-5 *3 (-169 (-566))) (-5 *2 (-112)) (-5 *1 (-448)))) (-4003 (*1 *2 *3) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-448)) (-5 *3 (-566)))) (-3719 (*1 *2 *3) (-12 (-5 *2 (-420 (-169 (-566)))) (-5 *1 (-448)) (-5 *3 (-169 (-566)))))) -(-10 -7 (-15 -3719 ((-420 (-169 (-566))) (-169 (-566)))) (-15 -4003 ((-644 (-566)) (-566))) (-15 -3268 ((-112) (-169 (-566))))) -((-3150 ((|#4| |#4| (-644 |#4|)) 82)) (-3257 (((-644 |#4|) (-644 |#4|) (-1157) (-1157)) 22) (((-644 |#4|) (-644 |#4|) (-1157)) 21) (((-644 |#4|) (-644 |#4|)) 13))) -(((-449 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3150 (|#4| |#4| (-644 |#4|))) (-15 -3257 ((-644 |#4|) (-644 |#4|))) (-15 -3257 ((-644 |#4|) (-644 |#4|) (-1157))) (-15 -3257 ((-644 |#4|) (-644 |#4|) (-1157) (-1157)))) (-308) (-793) (-850) (-949 |#1| |#2| |#3|)) (T -449)) -((-3257 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-644 *7)) (-5 *3 (-1157)) (-4 *7 (-949 *4 *5 *6)) (-4 *4 (-308)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-449 *4 *5 *6 *7)))) (-3257 (*1 *2 *2 *3) (-12 (-5 *2 (-644 *7)) (-5 *3 (-1157)) (-4 *7 (-949 *4 *5 *6)) (-4 *4 (-308)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-449 *4 *5 *6 *7)))) (-3257 (*1 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-308)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-449 *3 *4 *5 *6)))) (-3150 (*1 *2 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-949 *4 *5 *6)) (-4 *4 (-308)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-449 *4 *5 *6 *2))))) -(-10 -7 (-15 -3150 (|#4| |#4| (-644 |#4|))) (-15 -3257 ((-644 |#4|) (-644 |#4|))) (-15 -3257 ((-644 |#4|) (-644 |#4|) (-1157))) (-15 -3257 ((-644 |#4|) (-644 |#4|) (-1157) (-1157)))) -((-3518 (((-644 (-644 |#4|)) (-644 |#4|) (-112)) 91) (((-644 (-644 |#4|)) (-644 |#4|)) 90) (((-644 (-644 |#4|)) (-644 |#4|) (-644 |#4|) (-112)) 84) (((-644 (-644 |#4|)) (-644 |#4|) (-644 |#4|)) 85)) (-2741 (((-644 (-644 |#4|)) (-644 |#4|) (-112)) 55) (((-644 (-644 |#4|)) (-644 |#4|)) 77))) -(((-450 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2741 ((-644 (-644 |#4|)) (-644 |#4|))) (-15 -2741 ((-644 (-644 |#4|)) (-644 |#4|) (-112))) (-15 -3518 ((-644 (-644 |#4|)) (-644 |#4|) (-644 |#4|))) (-15 -3518 ((-644 (-644 |#4|)) (-644 |#4|) (-644 |#4|) (-112))) (-15 -3518 ((-644 (-644 |#4|)) (-644 |#4|))) (-15 -3518 ((-644 (-644 |#4|)) (-644 |#4|) (-112)))) (-13 (-308) (-147)) (-793) (-850) (-949 |#1| |#2| |#3|)) (T -450)) -((-3518 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-949 *5 *6 *7)) (-5 *2 (-644 (-644 *8))) (-5 *1 (-450 *5 *6 *7 *8)) (-5 *3 (-644 *8)))) (-3518 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-949 *4 *5 *6)) (-5 *2 (-644 (-644 *7))) (-5 *1 (-450 *4 *5 *6 *7)) (-5 *3 (-644 *7)))) (-3518 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-949 *5 *6 *7)) (-5 *2 (-644 (-644 *8))) (-5 *1 (-450 *5 *6 *7 *8)) (-5 *3 (-644 *8)))) (-3518 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-949 *4 *5 *6)) (-5 *2 (-644 (-644 *7))) (-5 *1 (-450 *4 *5 *6 *7)) (-5 *3 (-644 *7)))) (-2741 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-949 *5 *6 *7)) (-5 *2 (-644 (-644 *8))) (-5 *1 (-450 *5 *6 *7 *8)) (-5 *3 (-644 *8)))) (-2741 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-949 *4 *5 *6)) (-5 *2 (-644 (-644 *7))) (-5 *1 (-450 *4 *5 *6 *7)) (-5 *3 (-644 *7))))) -(-10 -7 (-15 -2741 ((-644 (-644 |#4|)) (-644 |#4|))) (-15 -2741 ((-644 (-644 |#4|)) (-644 |#4|) (-112))) (-15 -3518 ((-644 (-644 |#4|)) (-644 |#4|) (-644 |#4|))) (-15 -3518 ((-644 (-644 |#4|)) (-644 |#4|) (-644 |#4|) (-112))) (-15 -3518 ((-644 (-644 |#4|)) (-644 |#4|))) (-15 -3518 ((-644 (-644 |#4|)) (-644 |#4|) (-112)))) -((-3448 (((-771) |#4|) 12)) (-1604 (((-644 (-2 (|:| |totdeg| (-771)) (|:| -2495 |#4|))) |#4| (-771) (-644 (-2 (|:| |totdeg| (-771)) (|:| -2495 |#4|)))) 39)) (-2249 (((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 51)) (-2646 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 54)) (-2405 ((|#4| |#4| (-644 |#4|)) 56)) (-1671 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-644 |#4|)) 98)) (-2748 (((-1269) |#4|) 61)) (-2289 (((-1269) (-644 |#4|)) 71)) (-3752 (((-566) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-566) (-566) (-566)) 68)) (-3429 (((-1269) (-566)) 113)) (-1966 (((-644 |#4|) (-644 |#4|)) 105)) (-4262 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-771)) (|:| -2495 |#4|)) |#4| (-771)) 31)) (-1816 (((-566) |#4|) 110)) (-1537 ((|#4| |#4|) 37)) (-4377 (((-644 |#4|) (-644 |#4|) (-566) (-566)) 76)) (-1461 (((-566) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-566) (-566) (-566) (-566)) 126)) (-1688 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20)) (-2882 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 80)) (-4236 (((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 78)) (-2635 (((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49)) (-2921 (((-112) |#2| |#2|) 77)) (-2112 (((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 50)) (-2035 (((-112) |#2| |#2| |#2| |#2|) 82)) (-3669 ((|#4| |#4| (-644 |#4|)) 99))) -(((-451 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3669 (|#4| |#4| (-644 |#4|))) (-15 -2405 (|#4| |#4| (-644 |#4|))) (-15 -4377 ((-644 |#4|) (-644 |#4|) (-566) (-566))) (-15 -2882 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2921 ((-112) |#2| |#2|)) (-15 -2035 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2112 ((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2635 ((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4236 ((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1671 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-644 |#4|))) (-15 -1537 (|#4| |#4|)) (-15 -1604 ((-644 (-2 (|:| |totdeg| (-771)) (|:| -2495 |#4|))) |#4| (-771) (-644 (-2 (|:| |totdeg| (-771)) (|:| -2495 |#4|))))) (-15 -2646 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2249 ((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1966 ((-644 |#4|) (-644 |#4|))) (-15 -1816 ((-566) |#4|)) (-15 -2748 ((-1269) |#4|)) (-15 -3752 ((-566) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-566) (-566) (-566))) (-15 -1461 ((-566) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-566) (-566) (-566) (-566))) (-15 -2289 ((-1269) (-644 |#4|))) (-15 -3429 ((-1269) (-566))) (-15 -1688 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4262 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-771)) (|:| -2495 |#4|)) |#4| (-771))) (-15 -3448 ((-771) |#4|))) (-454) (-793) (-850) (-949 |#1| |#2| |#3|)) (T -451)) -((-3448 (*1 *2 *3) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-771)) (-5 *1 (-451 *4 *5 *6 *3)) (-4 *3 (-949 *4 *5 *6)))) (-4262 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-771)) (|:| -2495 *4))) (-5 *5 (-771)) (-4 *4 (-949 *6 *7 *8)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-451 *6 *7 *8 *4)))) (-1688 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-771)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-793)) (-4 *7 (-949 *4 *5 *6)) (-4 *4 (-454)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-451 *4 *5 *6 *7)))) (-3429 (*1 *2 *3) (-12 (-5 *3 (-566)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-1269)) (-5 *1 (-451 *4 *5 *6 *7)) (-4 *7 (-949 *4 *5 *6)))) (-2289 (*1 *2 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-949 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-1269)) (-5 *1 (-451 *4 *5 *6 *7)))) (-1461 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-771)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-793)) (-4 *4 (-949 *5 *6 *7)) (-4 *5 (-454)) (-4 *7 (-850)) (-5 *1 (-451 *5 *6 *7 *4)))) (-3752 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-771)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-793)) (-4 *4 (-949 *5 *6 *7)) (-4 *5 (-454)) (-4 *7 (-850)) (-5 *1 (-451 *5 *6 *7 *4)))) (-2748 (*1 *2 *3) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-1269)) (-5 *1 (-451 *4 *5 *6 *3)) (-4 *3 (-949 *4 *5 *6)))) (-1816 (*1 *2 *3) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-566)) (-5 *1 (-451 *4 *5 *6 *3)) (-4 *3 (-949 *4 *5 *6)))) (-1966 (*1 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-451 *3 *4 *5 *6)))) (-2249 (*1 *2 *2 *2) (-12 (-5 *2 (-644 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-771)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-793)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-454)) (-4 *5 (-850)) (-5 *1 (-451 *3 *4 *5 *6)))) (-2646 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-771)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-793)) (-4 *2 (-949 *4 *5 *6)) (-5 *1 (-451 *4 *5 *6 *2)) (-4 *4 (-454)) (-4 *6 (-850)))) (-1604 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-644 (-2 (|:| |totdeg| (-771)) (|:| -2495 *3)))) (-5 *4 (-771)) (-4 *3 (-949 *5 *6 *7)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-451 *5 *6 *7 *3)))) (-1537 (*1 *2 *2) (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-451 *3 *4 *5 *2)) (-4 *2 (-949 *3 *4 *5)))) (-1671 (*1 *2 *3 *4) (-12 (-5 *4 (-644 *3)) (-4 *3 (-949 *5 *6 *7)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-451 *5 *6 *7 *3)))) (-4236 (*1 *2 *3 *2) (-12 (-5 *2 (-644 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-771)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-793)) (-4 *6 (-949 *4 *3 *5)) (-4 *4 (-454)) (-4 *5 (-850)) (-5 *1 (-451 *4 *3 *5 *6)))) (-2635 (*1 *2 *2) (-12 (-5 *2 (-644 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-771)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-793)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-454)) (-4 *5 (-850)) (-5 *1 (-451 *3 *4 *5 *6)))) (-2112 (*1 *2 *3 *2) (-12 (-5 *2 (-644 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-771)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-793)) (-4 *3 (-949 *4 *5 *6)) (-4 *4 (-454)) (-4 *6 (-850)) (-5 *1 (-451 *4 *5 *6 *3)))) (-2035 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-454)) (-4 *3 (-793)) (-4 *5 (-850)) (-5 *2 (-112)) (-5 *1 (-451 *4 *3 *5 *6)) (-4 *6 (-949 *4 *3 *5)))) (-2921 (*1 *2 *3 *3) (-12 (-4 *4 (-454)) (-4 *3 (-793)) (-4 *5 (-850)) (-5 *2 (-112)) (-5 *1 (-451 *4 *3 *5 *6)) (-4 *6 (-949 *4 *3 *5)))) (-2882 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-771)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-793)) (-4 *7 (-949 *4 *5 *6)) (-4 *4 (-454)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-451 *4 *5 *6 *7)))) (-4377 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-644 *7)) (-5 *3 (-566)) (-4 *7 (-949 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-451 *4 *5 *6 *7)))) (-2405 (*1 *2 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-949 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-451 *4 *5 *6 *2)))) (-3669 (*1 *2 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-949 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-451 *4 *5 *6 *2))))) -(-10 -7 (-15 -3669 (|#4| |#4| (-644 |#4|))) (-15 -2405 (|#4| |#4| (-644 |#4|))) (-15 -4377 ((-644 |#4|) (-644 |#4|) (-566) (-566))) (-15 -2882 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2921 ((-112) |#2| |#2|)) (-15 -2035 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2112 ((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2635 ((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4236 ((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1671 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-644 |#4|))) (-15 -1537 (|#4| |#4|)) (-15 -1604 ((-644 (-2 (|:| |totdeg| (-771)) (|:| -2495 |#4|))) |#4| (-771) (-644 (-2 (|:| |totdeg| (-771)) (|:| -2495 |#4|))))) (-15 -2646 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2249 ((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1966 ((-644 |#4|) (-644 |#4|))) (-15 -1816 ((-566) |#4|)) (-15 -2748 ((-1269) |#4|)) (-15 -3752 ((-566) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-566) (-566) (-566))) (-15 -1461 ((-566) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-566) (-566) (-566) (-566))) (-15 -2289 ((-1269) (-644 |#4|))) (-15 -3429 ((-1269) (-566))) (-15 -1688 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4262 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-771)) (|:| -2495 |#4|)) |#4| (-771))) (-15 -3448 ((-771) |#4|))) -((-3598 ((|#4| |#4| (-644 |#4|)) 20 (|has| |#1| (-365)))) (-1793 (((-644 |#4|) (-644 |#4|) (-1157) (-1157)) 46) (((-644 |#4|) (-644 |#4|) (-1157)) 45) (((-644 |#4|) (-644 |#4|)) 34))) -(((-452 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1793 ((-644 |#4|) (-644 |#4|))) (-15 -1793 ((-644 |#4|) (-644 |#4|) (-1157))) (-15 -1793 ((-644 |#4|) (-644 |#4|) (-1157) (-1157))) (IF (|has| |#1| (-365)) (-15 -3598 (|#4| |#4| (-644 |#4|))) |%noBranch|)) (-454) (-793) (-850) (-949 |#1| |#2| |#3|)) (T -452)) -((-3598 (*1 *2 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-949 *4 *5 *6)) (-4 *4 (-365)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-452 *4 *5 *6 *2)))) (-1793 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-644 *7)) (-5 *3 (-1157)) (-4 *7 (-949 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-452 *4 *5 *6 *7)))) (-1793 (*1 *2 *2 *3) (-12 (-5 *2 (-644 *7)) (-5 *3 (-1157)) (-4 *7 (-949 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-452 *4 *5 *6 *7)))) (-1793 (*1 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-452 *3 *4 *5 *6))))) -(-10 -7 (-15 -1793 ((-644 |#4|) (-644 |#4|))) (-15 -1793 ((-644 |#4|) (-644 |#4|) (-1157))) (-15 -1793 ((-644 |#4|) (-644 |#4|) (-1157) (-1157))) (IF (|has| |#1| (-365)) (-15 -3598 (|#4| |#4| (-644 |#4|))) |%noBranch|)) -((-2167 (($ $ $) 14) (($ (-644 $)) 21)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) 46)) (-2214 (($ $ $) NIL) (($ (-644 $)) 22))) -(((-453 |#1|) (-10 -8 (-15 -2197 ((-1171 |#1|) (-1171 |#1|) (-1171 |#1|))) (-15 -2167 (|#1| (-644 |#1|))) (-15 -2167 (|#1| |#1| |#1|)) (-15 -2214 (|#1| (-644 |#1|))) (-15 -2214 (|#1| |#1| |#1|))) (-454)) (T -453)) -NIL -(-10 -8 (-15 -2197 ((-1171 |#1|) (-1171 |#1|) (-1171 |#1|))) (-15 -2167 (|#1| (-644 |#1|))) (-15 -2167 (|#1| |#1| |#1|)) (-15 -2214 (|#1| (-644 |#1|))) (-15 -2214 (|#1| |#1| |#1|))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) 47)) (-3991 (($ $) 46)) (-2388 (((-112) $) 44)) (-4175 (((-3 $ "failed") $ $) 20)) (-3012 (($) 18 T CONST)) (-1878 (((-3 $ "failed") $) 37)) (-3934 (((-112) $) 35)) (-2167 (($ $ $) 52) (($ (-644 $)) 51)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-2214 (($ $ $) 54) (($ (-644 $)) 53)) (-2994 (((-3 $ "failed") $ $) 48)) (-3783 (((-862) $) 12) (($ (-566)) 33) (($ $) 49)) (-2107 (((-771)) 32 T CONST)) (-3117 (((-112) $ $) 9)) (-2695 (((-112) $ $) 45)) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-2947 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) +((-3310 (((-112)) 18)) (-1671 (((-112) (-112)) 19)) (-2767 (((-112)) 14)) (-2931 (((-112) (-112)) 15)) (-3066 (((-112)) 16)) (-2958 (((-112) (-112)) 17)) (-2000 (((-921) (-921)) 22) (((-921)) 21)) (-1720 (((-771) (-644 (-2 (|:| -1624 |#1|) (|:| -3902 (-566))))) 52)) (-2255 (((-921) (-921)) 24) (((-921)) 23)) (-1831 (((-2 (|:| -3209 (-566)) (|:| -1616 (-644 |#1|))) |#1|) 97)) (-2998 (((-420 |#1|) (-2 (|:| |contp| (-566)) (|:| -1616 (-644 (-2 (|:| |irr| |#1|) (|:| -4125 (-566))))))) 178)) (-4374 (((-2 (|:| |contp| (-566)) (|:| -1616 (-644 (-2 (|:| |irr| |#1|) (|:| -4125 (-566)))))) |#1| (-112)) 211)) (-2208 (((-420 |#1|) |#1| (-771) (-771)) 226) (((-420 |#1|) |#1| (-644 (-771)) (-771)) 223) (((-420 |#1|) |#1| (-644 (-771))) 225) (((-420 |#1|) |#1| (-771)) 224) (((-420 |#1|) |#1|) 222)) (-3571 (((-3 |#1| "failed") (-921) |#1| (-644 (-771)) (-771) (-112)) 228) (((-3 |#1| "failed") (-921) |#1| (-644 (-771)) (-771)) 229) (((-3 |#1| "failed") (-921) |#1| (-644 (-771))) 231) (((-3 |#1| "failed") (-921) |#1| (-771)) 230) (((-3 |#1| "failed") (-921) |#1|) 232)) (-1624 (((-420 |#1|) |#1| (-771) (-771)) 221) (((-420 |#1|) |#1| (-644 (-771)) (-771)) 217) (((-420 |#1|) |#1| (-644 (-771))) 219) (((-420 |#1|) |#1| (-771)) 218) (((-420 |#1|) |#1|) 216)) (-2316 (((-112) |#1|) 44)) (-3936 (((-737 (-771)) (-644 (-2 (|:| -1624 |#1|) (|:| -3902 (-566))))) 102)) (-3558 (((-2 (|:| |contp| (-566)) (|:| -1616 (-644 (-2 (|:| |irr| |#1|) (|:| -4125 (-566)))))) |#1| (-112) (-1101 (-771)) (-771)) 215))) +(((-444 |#1|) (-10 -7 (-15 -2998 ((-420 |#1|) (-2 (|:| |contp| (-566)) (|:| -1616 (-644 (-2 (|:| |irr| |#1|) (|:| -4125 (-566)))))))) (-15 -3936 ((-737 (-771)) (-644 (-2 (|:| -1624 |#1|) (|:| -3902 (-566)))))) (-15 -2255 ((-921))) (-15 -2255 ((-921) (-921))) (-15 -2000 ((-921))) (-15 -2000 ((-921) (-921))) (-15 -1720 ((-771) (-644 (-2 (|:| -1624 |#1|) (|:| -3902 (-566)))))) (-15 -1831 ((-2 (|:| -3209 (-566)) (|:| -1616 (-644 |#1|))) |#1|)) (-15 -3310 ((-112))) (-15 -1671 ((-112) (-112))) (-15 -2767 ((-112))) (-15 -2931 ((-112) (-112))) (-15 -2316 ((-112) |#1|)) (-15 -3066 ((-112))) (-15 -2958 ((-112) (-112))) (-15 -1624 ((-420 |#1|) |#1|)) (-15 -1624 ((-420 |#1|) |#1| (-771))) (-15 -1624 ((-420 |#1|) |#1| (-644 (-771)))) (-15 -1624 ((-420 |#1|) |#1| (-644 (-771)) (-771))) (-15 -1624 ((-420 |#1|) |#1| (-771) (-771))) (-15 -2208 ((-420 |#1|) |#1|)) (-15 -2208 ((-420 |#1|) |#1| (-771))) (-15 -2208 ((-420 |#1|) |#1| (-644 (-771)))) (-15 -2208 ((-420 |#1|) |#1| (-644 (-771)) (-771))) (-15 -2208 ((-420 |#1|) |#1| (-771) (-771))) (-15 -3571 ((-3 |#1| "failed") (-921) |#1|)) (-15 -3571 ((-3 |#1| "failed") (-921) |#1| (-771))) (-15 -3571 ((-3 |#1| "failed") (-921) |#1| (-644 (-771)))) (-15 -3571 ((-3 |#1| "failed") (-921) |#1| (-644 (-771)) (-771))) (-15 -3571 ((-3 |#1| "failed") (-921) |#1| (-644 (-771)) (-771) (-112))) (-15 -4374 ((-2 (|:| |contp| (-566)) (|:| -1616 (-644 (-2 (|:| |irr| |#1|) (|:| -4125 (-566)))))) |#1| (-112))) (-15 -3558 ((-2 (|:| |contp| (-566)) (|:| -1616 (-644 (-2 (|:| |irr| |#1|) (|:| -4125 (-566)))))) |#1| (-112) (-1101 (-771)) (-771)))) (-1240 (-566))) (T -444)) +((-3558 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1101 (-771))) (-5 *6 (-771)) (-5 *2 (-2 (|:| |contp| (-566)) (|:| -1616 (-644 (-2 (|:| |irr| *3) (|:| -4125 (-566))))))) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-4374 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-566)) (|:| -1616 (-644 (-2 (|:| |irr| *3) (|:| -4125 (-566))))))) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-3571 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-921)) (-5 *4 (-644 (-771))) (-5 *5 (-771)) (-5 *6 (-112)) (-5 *1 (-444 *2)) (-4 *2 (-1240 (-566))))) (-3571 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-921)) (-5 *4 (-644 (-771))) (-5 *5 (-771)) (-5 *1 (-444 *2)) (-4 *2 (-1240 (-566))))) (-3571 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-921)) (-5 *4 (-644 (-771))) (-5 *1 (-444 *2)) (-4 *2 (-1240 (-566))))) (-3571 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-921)) (-5 *4 (-771)) (-5 *1 (-444 *2)) (-4 *2 (-1240 (-566))))) (-3571 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-921)) (-5 *1 (-444 *2)) (-4 *2 (-1240 (-566))))) (-2208 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-771)) (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-2208 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-644 (-771))) (-5 *5 (-771)) (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-2208 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-771))) (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-2208 (*1 *2 *3 *4) (-12 (-5 *4 (-771)) (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-2208 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-1624 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-771)) (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-1624 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-644 (-771))) (-5 *5 (-771)) (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-1624 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-771))) (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-1624 (*1 *2 *3 *4) (-12 (-5 *4 (-771)) (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-1624 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-2958 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-3066 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-2316 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-2931 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-2767 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-1671 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-3310 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-1831 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3209 (-566)) (|:| -1616 (-644 *3)))) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-1720 (*1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| -1624 *4) (|:| -3902 (-566))))) (-4 *4 (-1240 (-566))) (-5 *2 (-771)) (-5 *1 (-444 *4)))) (-2000 (*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-2000 (*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-2255 (*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-2255 (*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) (-3936 (*1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| -1624 *4) (|:| -3902 (-566))))) (-4 *4 (-1240 (-566))) (-5 *2 (-737 (-771))) (-5 *1 (-444 *4)))) (-2998 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-566)) (|:| -1616 (-644 (-2 (|:| |irr| *4) (|:| -4125 (-566))))))) (-4 *4 (-1240 (-566))) (-5 *2 (-420 *4)) (-5 *1 (-444 *4))))) +(-10 -7 (-15 -2998 ((-420 |#1|) (-2 (|:| |contp| (-566)) (|:| -1616 (-644 (-2 (|:| |irr| |#1|) (|:| -4125 (-566)))))))) (-15 -3936 ((-737 (-771)) (-644 (-2 (|:| -1624 |#1|) (|:| -3902 (-566)))))) (-15 -2255 ((-921))) (-15 -2255 ((-921) (-921))) (-15 -2000 ((-921))) (-15 -2000 ((-921) (-921))) (-15 -1720 ((-771) (-644 (-2 (|:| -1624 |#1|) (|:| -3902 (-566)))))) (-15 -1831 ((-2 (|:| -3209 (-566)) (|:| -1616 (-644 |#1|))) |#1|)) (-15 -3310 ((-112))) (-15 -1671 ((-112) (-112))) (-15 -2767 ((-112))) (-15 -2931 ((-112) (-112))) (-15 -2316 ((-112) |#1|)) (-15 -3066 ((-112))) (-15 -2958 ((-112) (-112))) (-15 -1624 ((-420 |#1|) |#1|)) (-15 -1624 ((-420 |#1|) |#1| (-771))) (-15 -1624 ((-420 |#1|) |#1| (-644 (-771)))) (-15 -1624 ((-420 |#1|) |#1| (-644 (-771)) (-771))) (-15 -1624 ((-420 |#1|) |#1| (-771) (-771))) (-15 -2208 ((-420 |#1|) |#1|)) (-15 -2208 ((-420 |#1|) |#1| (-771))) (-15 -2208 ((-420 |#1|) |#1| (-644 (-771)))) (-15 -2208 ((-420 |#1|) |#1| (-644 (-771)) (-771))) (-15 -2208 ((-420 |#1|) |#1| (-771) (-771))) (-15 -3571 ((-3 |#1| "failed") (-921) |#1|)) (-15 -3571 ((-3 |#1| "failed") (-921) |#1| (-771))) (-15 -3571 ((-3 |#1| "failed") (-921) |#1| (-644 (-771)))) (-15 -3571 ((-3 |#1| "failed") (-921) |#1| (-644 (-771)) (-771))) (-15 -3571 ((-3 |#1| "failed") (-921) |#1| (-644 (-771)) (-771) (-112))) (-15 -4374 ((-2 (|:| |contp| (-566)) (|:| -1616 (-644 (-2 (|:| |irr| |#1|) (|:| -4125 (-566)))))) |#1| (-112))) (-15 -3558 ((-2 (|:| |contp| (-566)) (|:| -1616 (-644 (-2 (|:| |irr| |#1|) (|:| -4125 (-566)))))) |#1| (-112) (-1101 (-771)) (-771)))) +((-2812 (((-566) |#2|) 52) (((-566) |#2| (-771)) 51)) (-3973 (((-566) |#2|) 67)) (-3454 ((|#3| |#2|) 26)) (-2064 ((|#3| |#2| (-921)) 15)) (-2440 ((|#3| |#2|) 16)) (-1724 ((|#3| |#2|) 9)) (-3106 ((|#3| |#2|) 10)) (-2101 ((|#3| |#2| (-921)) 74) ((|#3| |#2|) 34)) (-2928 (((-566) |#2|) 69))) +(((-445 |#1| |#2| |#3|) (-10 -7 (-15 -2928 ((-566) |#2|)) (-15 -2101 (|#3| |#2|)) (-15 -2101 (|#3| |#2| (-921))) (-15 -3973 ((-566) |#2|)) (-15 -2812 ((-566) |#2| (-771))) (-15 -2812 ((-566) |#2|)) (-15 -2064 (|#3| |#2| (-921))) (-15 -3454 (|#3| |#2|)) (-15 -1724 (|#3| |#2|)) (-15 -3106 (|#3| |#2|)) (-15 -2440 (|#3| |#2|))) (-1049) (-1240 |#1|) (-13 (-406) (-1038 |#1|) (-365) (-1199) (-285))) (T -445)) +((-2440 (*1 *2 *3) (-12 (-4 *4 (-1049)) (-4 *2 (-13 (-406) (-1038 *4) (-365) (-1199) (-285))) (-5 *1 (-445 *4 *3 *2)) (-4 *3 (-1240 *4)))) (-3106 (*1 *2 *3) (-12 (-4 *4 (-1049)) (-4 *2 (-13 (-406) (-1038 *4) (-365) (-1199) (-285))) (-5 *1 (-445 *4 *3 *2)) (-4 *3 (-1240 *4)))) (-1724 (*1 *2 *3) (-12 (-4 *4 (-1049)) (-4 *2 (-13 (-406) (-1038 *4) (-365) (-1199) (-285))) (-5 *1 (-445 *4 *3 *2)) (-4 *3 (-1240 *4)))) (-3454 (*1 *2 *3) (-12 (-4 *4 (-1049)) (-4 *2 (-13 (-406) (-1038 *4) (-365) (-1199) (-285))) (-5 *1 (-445 *4 *3 *2)) (-4 *3 (-1240 *4)))) (-2064 (*1 *2 *3 *4) (-12 (-5 *4 (-921)) (-4 *5 (-1049)) (-4 *2 (-13 (-406) (-1038 *5) (-365) (-1199) (-285))) (-5 *1 (-445 *5 *3 *2)) (-4 *3 (-1240 *5)))) (-2812 (*1 *2 *3) (-12 (-4 *4 (-1049)) (-5 *2 (-566)) (-5 *1 (-445 *4 *3 *5)) (-4 *3 (-1240 *4)) (-4 *5 (-13 (-406) (-1038 *4) (-365) (-1199) (-285))))) (-2812 (*1 *2 *3 *4) (-12 (-5 *4 (-771)) (-4 *5 (-1049)) (-5 *2 (-566)) (-5 *1 (-445 *5 *3 *6)) (-4 *3 (-1240 *5)) (-4 *6 (-13 (-406) (-1038 *5) (-365) (-1199) (-285))))) (-3973 (*1 *2 *3) (-12 (-4 *4 (-1049)) (-5 *2 (-566)) (-5 *1 (-445 *4 *3 *5)) (-4 *3 (-1240 *4)) (-4 *5 (-13 (-406) (-1038 *4) (-365) (-1199) (-285))))) (-2101 (*1 *2 *3 *4) (-12 (-5 *4 (-921)) (-4 *5 (-1049)) (-4 *2 (-13 (-406) (-1038 *5) (-365) (-1199) (-285))) (-5 *1 (-445 *5 *3 *2)) (-4 *3 (-1240 *5)))) (-2101 (*1 *2 *3) (-12 (-4 *4 (-1049)) (-4 *2 (-13 (-406) (-1038 *4) (-365) (-1199) (-285))) (-5 *1 (-445 *4 *3 *2)) (-4 *3 (-1240 *4)))) (-2928 (*1 *2 *3) (-12 (-4 *4 (-1049)) (-5 *2 (-566)) (-5 *1 (-445 *4 *3 *5)) (-4 *3 (-1240 *4)) (-4 *5 (-13 (-406) (-1038 *4) (-365) (-1199) (-285)))))) +(-10 -7 (-15 -2928 ((-566) |#2|)) (-15 -2101 (|#3| |#2|)) (-15 -2101 (|#3| |#2| (-921))) (-15 -3973 ((-566) |#2|)) (-15 -2812 ((-566) |#2| (-771))) (-15 -2812 ((-566) |#2|)) (-15 -2064 (|#3| |#2| (-921))) (-15 -3454 (|#3| |#2|)) (-15 -1724 (|#3| |#2|)) (-15 -3106 (|#3| |#2|)) (-15 -2440 (|#3| |#2|))) +((-3572 ((|#2| (-1264 |#1|)) 45)) (-4252 ((|#2| |#2| |#1|) 61)) (-3551 ((|#2| |#2| |#1|) 53)) (-3683 ((|#2| |#2|) 49)) (-2520 (((-112) |#2|) 36)) (-3761 (((-644 |#2|) (-921) (-420 |#2|)) 24)) (-3571 ((|#2| (-921) (-420 |#2|)) 28)) (-3936 (((-737 (-771)) (-420 |#2|)) 33))) +(((-446 |#1| |#2|) (-10 -7 (-15 -2520 ((-112) |#2|)) (-15 -3572 (|#2| (-1264 |#1|))) (-15 -3683 (|#2| |#2|)) (-15 -3551 (|#2| |#2| |#1|)) (-15 -4252 (|#2| |#2| |#1|)) (-15 -3936 ((-737 (-771)) (-420 |#2|))) (-15 -3571 (|#2| (-921) (-420 |#2|))) (-15 -3761 ((-644 |#2|) (-921) (-420 |#2|)))) (-1049) (-1240 |#1|)) (T -446)) +((-3761 (*1 *2 *3 *4) (-12 (-5 *3 (-921)) (-5 *4 (-420 *6)) (-4 *6 (-1240 *5)) (-4 *5 (-1049)) (-5 *2 (-644 *6)) (-5 *1 (-446 *5 *6)))) (-3571 (*1 *2 *3 *4) (-12 (-5 *3 (-921)) (-5 *4 (-420 *2)) (-4 *2 (-1240 *5)) (-5 *1 (-446 *5 *2)) (-4 *5 (-1049)))) (-3936 (*1 *2 *3) (-12 (-5 *3 (-420 *5)) (-4 *5 (-1240 *4)) (-4 *4 (-1049)) (-5 *2 (-737 (-771))) (-5 *1 (-446 *4 *5)))) (-4252 (*1 *2 *2 *3) (-12 (-4 *3 (-1049)) (-5 *1 (-446 *3 *2)) (-4 *2 (-1240 *3)))) (-3551 (*1 *2 *2 *3) (-12 (-4 *3 (-1049)) (-5 *1 (-446 *3 *2)) (-4 *2 (-1240 *3)))) (-3683 (*1 *2 *2) (-12 (-4 *3 (-1049)) (-5 *1 (-446 *3 *2)) (-4 *2 (-1240 *3)))) (-3572 (*1 *2 *3) (-12 (-5 *3 (-1264 *4)) (-4 *4 (-1049)) (-4 *2 (-1240 *4)) (-5 *1 (-446 *4 *2)))) (-2520 (*1 *2 *3) (-12 (-4 *4 (-1049)) (-5 *2 (-112)) (-5 *1 (-446 *4 *3)) (-4 *3 (-1240 *4))))) +(-10 -7 (-15 -2520 ((-112) |#2|)) (-15 -3572 (|#2| (-1264 |#1|))) (-15 -3683 (|#2| |#2|)) (-15 -3551 (|#2| |#2| |#1|)) (-15 -4252 (|#2| |#2| |#1|)) (-15 -3936 ((-737 (-771)) (-420 |#2|))) (-15 -3571 (|#2| (-921) (-420 |#2|))) (-15 -3761 ((-644 |#2|) (-921) (-420 |#2|)))) +((-2370 (((-771)) 59)) (-4291 (((-771)) 29 (|has| |#1| (-406))) (((-771) (-771)) 28 (|has| |#1| (-406)))) (-3682 (((-566) |#1|) 25 (|has| |#1| (-406)))) (-3883 (((-566) |#1|) 27 (|has| |#1| (-406)))) (-2031 (((-771)) 58) (((-771) (-771)) 57)) (-3752 ((|#1| (-771) (-566)) 37)) (-3299 (((-1269)) 61))) +(((-447 |#1|) (-10 -7 (-15 -3752 (|#1| (-771) (-566))) (-15 -2031 ((-771) (-771))) (-15 -2031 ((-771))) (-15 -2370 ((-771))) (-15 -3299 ((-1269))) (IF (|has| |#1| (-406)) (PROGN (-15 -3883 ((-566) |#1|)) (-15 -3682 ((-566) |#1|)) (-15 -4291 ((-771) (-771))) (-15 -4291 ((-771)))) |%noBranch|)) (-1049)) (T -447)) +((-4291 (*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-447 *3)) (-4 *3 (-406)) (-4 *3 (-1049)))) (-4291 (*1 *2 *2) (-12 (-5 *2 (-771)) (-5 *1 (-447 *3)) (-4 *3 (-406)) (-4 *3 (-1049)))) (-3682 (*1 *2 *3) (-12 (-5 *2 (-566)) (-5 *1 (-447 *3)) (-4 *3 (-406)) (-4 *3 (-1049)))) (-3883 (*1 *2 *3) (-12 (-5 *2 (-566)) (-5 *1 (-447 *3)) (-4 *3 (-406)) (-4 *3 (-1049)))) (-3299 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-447 *3)) (-4 *3 (-1049)))) (-2370 (*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-447 *3)) (-4 *3 (-1049)))) (-2031 (*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-447 *3)) (-4 *3 (-1049)))) (-2031 (*1 *2 *2) (-12 (-5 *2 (-771)) (-5 *1 (-447 *3)) (-4 *3 (-1049)))) (-3752 (*1 *2 *3 *4) (-12 (-5 *3 (-771)) (-5 *4 (-566)) (-5 *1 (-447 *2)) (-4 *2 (-1049))))) +(-10 -7 (-15 -3752 (|#1| (-771) (-566))) (-15 -2031 ((-771) (-771))) (-15 -2031 ((-771))) (-15 -2370 ((-771))) (-15 -3299 ((-1269))) (IF (|has| |#1| (-406)) (PROGN (-15 -3883 ((-566) |#1|)) (-15 -3682 ((-566) |#1|)) (-15 -4291 ((-771) (-771))) (-15 -4291 ((-771)))) |%noBranch|)) +((-4062 (((-644 (-566)) (-566)) 76)) (-1615 (((-112) (-169 (-566))) 82)) (-1624 (((-420 (-169 (-566))) (-169 (-566))) 75))) +(((-448) (-10 -7 (-15 -1624 ((-420 (-169 (-566))) (-169 (-566)))) (-15 -4062 ((-644 (-566)) (-566))) (-15 -1615 ((-112) (-169 (-566)))))) (T -448)) +((-1615 (*1 *2 *3) (-12 (-5 *3 (-169 (-566))) (-5 *2 (-112)) (-5 *1 (-448)))) (-4062 (*1 *2 *3) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-448)) (-5 *3 (-566)))) (-1624 (*1 *2 *3) (-12 (-5 *2 (-420 (-169 (-566)))) (-5 *1 (-448)) (-5 *3 (-169 (-566)))))) +(-10 -7 (-15 -1624 ((-420 (-169 (-566))) (-169 (-566)))) (-15 -4062 ((-644 (-566)) (-566))) (-15 -1615 ((-112) (-169 (-566))))) +((-4235 ((|#4| |#4| (-644 |#4|)) 82)) (-2996 (((-644 |#4|) (-644 |#4|) (-1157) (-1157)) 22) (((-644 |#4|) (-644 |#4|) (-1157)) 21) (((-644 |#4|) (-644 |#4|)) 13))) +(((-449 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4235 (|#4| |#4| (-644 |#4|))) (-15 -2996 ((-644 |#4|) (-644 |#4|))) (-15 -2996 ((-644 |#4|) (-644 |#4|) (-1157))) (-15 -2996 ((-644 |#4|) (-644 |#4|) (-1157) (-1157)))) (-308) (-793) (-850) (-949 |#1| |#2| |#3|)) (T -449)) +((-2996 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-644 *7)) (-5 *3 (-1157)) (-4 *7 (-949 *4 *5 *6)) (-4 *4 (-308)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-449 *4 *5 *6 *7)))) (-2996 (*1 *2 *2 *3) (-12 (-5 *2 (-644 *7)) (-5 *3 (-1157)) (-4 *7 (-949 *4 *5 *6)) (-4 *4 (-308)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-449 *4 *5 *6 *7)))) (-2996 (*1 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-308)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-449 *3 *4 *5 *6)))) (-4235 (*1 *2 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-949 *4 *5 *6)) (-4 *4 (-308)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-449 *4 *5 *6 *2))))) +(-10 -7 (-15 -4235 (|#4| |#4| (-644 |#4|))) (-15 -2996 ((-644 |#4|) (-644 |#4|))) (-15 -2996 ((-644 |#4|) (-644 |#4|) (-1157))) (-15 -2996 ((-644 |#4|) (-644 |#4|) (-1157) (-1157)))) +((-3363 (((-644 (-644 |#4|)) (-644 |#4|) (-112)) 91) (((-644 (-644 |#4|)) (-644 |#4|)) 90) (((-644 (-644 |#4|)) (-644 |#4|) (-644 |#4|) (-112)) 84) (((-644 (-644 |#4|)) (-644 |#4|) (-644 |#4|)) 85)) (-1651 (((-644 (-644 |#4|)) (-644 |#4|) (-112)) 55) (((-644 (-644 |#4|)) (-644 |#4|)) 77))) +(((-450 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1651 ((-644 (-644 |#4|)) (-644 |#4|))) (-15 -1651 ((-644 (-644 |#4|)) (-644 |#4|) (-112))) (-15 -3363 ((-644 (-644 |#4|)) (-644 |#4|) (-644 |#4|))) (-15 -3363 ((-644 (-644 |#4|)) (-644 |#4|) (-644 |#4|) (-112))) (-15 -3363 ((-644 (-644 |#4|)) (-644 |#4|))) (-15 -3363 ((-644 (-644 |#4|)) (-644 |#4|) (-112)))) (-13 (-308) (-147)) (-793) (-850) (-949 |#1| |#2| |#3|)) (T -450)) +((-3363 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-949 *5 *6 *7)) (-5 *2 (-644 (-644 *8))) (-5 *1 (-450 *5 *6 *7 *8)) (-5 *3 (-644 *8)))) (-3363 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-949 *4 *5 *6)) (-5 *2 (-644 (-644 *7))) (-5 *1 (-450 *4 *5 *6 *7)) (-5 *3 (-644 *7)))) (-3363 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-949 *5 *6 *7)) (-5 *2 (-644 (-644 *8))) (-5 *1 (-450 *5 *6 *7 *8)) (-5 *3 (-644 *8)))) (-3363 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-949 *4 *5 *6)) (-5 *2 (-644 (-644 *7))) (-5 *1 (-450 *4 *5 *6 *7)) (-5 *3 (-644 *7)))) (-1651 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-949 *5 *6 *7)) (-5 *2 (-644 (-644 *8))) (-5 *1 (-450 *5 *6 *7 *8)) (-5 *3 (-644 *8)))) (-1651 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-949 *4 *5 *6)) (-5 *2 (-644 (-644 *7))) (-5 *1 (-450 *4 *5 *6 *7)) (-5 *3 (-644 *7))))) +(-10 -7 (-15 -1651 ((-644 (-644 |#4|)) (-644 |#4|))) (-15 -1651 ((-644 (-644 |#4|)) (-644 |#4|) (-112))) (-15 -3363 ((-644 (-644 |#4|)) (-644 |#4|) (-644 |#4|))) (-15 -3363 ((-644 (-644 |#4|)) (-644 |#4|) (-644 |#4|) (-112))) (-15 -3363 ((-644 (-644 |#4|)) (-644 |#4|))) (-15 -3363 ((-644 (-644 |#4|)) (-644 |#4|) (-112)))) +((-3570 (((-771) |#4|) 12)) (-3117 (((-644 (-2 (|:| |totdeg| (-771)) (|:| -3877 |#4|))) |#4| (-771) (-644 (-2 (|:| |totdeg| (-771)) (|:| -3877 |#4|)))) 39)) (-3826 (((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 51)) (-1935 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 54)) (-3550 ((|#4| |#4| (-644 |#4|)) 56)) (-4123 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-644 |#4|)) 98)) (-3868 (((-1269) |#4|) 61)) (-1675 (((-1269) (-644 |#4|)) 71)) (-3207 (((-566) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-566) (-566) (-566)) 68)) (-2305 (((-1269) (-566)) 113)) (-4073 (((-644 |#4|) (-644 |#4|)) 105)) (-1351 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-771)) (|:| -3877 |#4|)) |#4| (-771)) 31)) (-3112 (((-566) |#4|) 110)) (-2349 ((|#4| |#4|) 37)) (-1488 (((-644 |#4|) (-644 |#4|) (-566) (-566)) 76)) (-3297 (((-566) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-566) (-566) (-566) (-566)) 126)) (-3159 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20)) (-4236 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 80)) (-2859 (((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 78)) (-3321 (((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49)) (-3319 (((-112) |#2| |#2|) 77)) (-1730 (((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 50)) (-3189 (((-112) |#2| |#2| |#2| |#2|) 82)) (-3102 ((|#4| |#4| (-644 |#4|)) 99))) +(((-451 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3102 (|#4| |#4| (-644 |#4|))) (-15 -3550 (|#4| |#4| (-644 |#4|))) (-15 -1488 ((-644 |#4|) (-644 |#4|) (-566) (-566))) (-15 -4236 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3319 ((-112) |#2| |#2|)) (-15 -3189 ((-112) |#2| |#2| |#2| |#2|)) (-15 -1730 ((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3321 ((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2859 ((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4123 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-644 |#4|))) (-15 -2349 (|#4| |#4|)) (-15 -3117 ((-644 (-2 (|:| |totdeg| (-771)) (|:| -3877 |#4|))) |#4| (-771) (-644 (-2 (|:| |totdeg| (-771)) (|:| -3877 |#4|))))) (-15 -1935 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3826 ((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4073 ((-644 |#4|) (-644 |#4|))) (-15 -3112 ((-566) |#4|)) (-15 -3868 ((-1269) |#4|)) (-15 -3207 ((-566) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-566) (-566) (-566))) (-15 -3297 ((-566) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-566) (-566) (-566) (-566))) (-15 -1675 ((-1269) (-644 |#4|))) (-15 -2305 ((-1269) (-566))) (-15 -3159 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1351 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-771)) (|:| -3877 |#4|)) |#4| (-771))) (-15 -3570 ((-771) |#4|))) (-454) (-793) (-850) (-949 |#1| |#2| |#3|)) (T -451)) +((-3570 (*1 *2 *3) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-771)) (-5 *1 (-451 *4 *5 *6 *3)) (-4 *3 (-949 *4 *5 *6)))) (-1351 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-771)) (|:| -3877 *4))) (-5 *5 (-771)) (-4 *4 (-949 *6 *7 *8)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-451 *6 *7 *8 *4)))) (-3159 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-771)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-793)) (-4 *7 (-949 *4 *5 *6)) (-4 *4 (-454)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-451 *4 *5 *6 *7)))) (-2305 (*1 *2 *3) (-12 (-5 *3 (-566)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-1269)) (-5 *1 (-451 *4 *5 *6 *7)) (-4 *7 (-949 *4 *5 *6)))) (-1675 (*1 *2 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-949 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-1269)) (-5 *1 (-451 *4 *5 *6 *7)))) (-3297 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-771)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-793)) (-4 *4 (-949 *5 *6 *7)) (-4 *5 (-454)) (-4 *7 (-850)) (-5 *1 (-451 *5 *6 *7 *4)))) (-3207 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-771)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-793)) (-4 *4 (-949 *5 *6 *7)) (-4 *5 (-454)) (-4 *7 (-850)) (-5 *1 (-451 *5 *6 *7 *4)))) (-3868 (*1 *2 *3) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-1269)) (-5 *1 (-451 *4 *5 *6 *3)) (-4 *3 (-949 *4 *5 *6)))) (-3112 (*1 *2 *3) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-566)) (-5 *1 (-451 *4 *5 *6 *3)) (-4 *3 (-949 *4 *5 *6)))) (-4073 (*1 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-451 *3 *4 *5 *6)))) (-3826 (*1 *2 *2 *2) (-12 (-5 *2 (-644 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-771)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-793)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-454)) (-4 *5 (-850)) (-5 *1 (-451 *3 *4 *5 *6)))) (-1935 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-771)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-793)) (-4 *2 (-949 *4 *5 *6)) (-5 *1 (-451 *4 *5 *6 *2)) (-4 *4 (-454)) (-4 *6 (-850)))) (-3117 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-644 (-2 (|:| |totdeg| (-771)) (|:| -3877 *3)))) (-5 *4 (-771)) (-4 *3 (-949 *5 *6 *7)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-451 *5 *6 *7 *3)))) (-2349 (*1 *2 *2) (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-451 *3 *4 *5 *2)) (-4 *2 (-949 *3 *4 *5)))) (-4123 (*1 *2 *3 *4) (-12 (-5 *4 (-644 *3)) (-4 *3 (-949 *5 *6 *7)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-451 *5 *6 *7 *3)))) (-2859 (*1 *2 *3 *2) (-12 (-5 *2 (-644 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-771)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-793)) (-4 *6 (-949 *4 *3 *5)) (-4 *4 (-454)) (-4 *5 (-850)) (-5 *1 (-451 *4 *3 *5 *6)))) (-3321 (*1 *2 *2) (-12 (-5 *2 (-644 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-771)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-793)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-454)) (-4 *5 (-850)) (-5 *1 (-451 *3 *4 *5 *6)))) (-1730 (*1 *2 *3 *2) (-12 (-5 *2 (-644 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-771)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-793)) (-4 *3 (-949 *4 *5 *6)) (-4 *4 (-454)) (-4 *6 (-850)) (-5 *1 (-451 *4 *5 *6 *3)))) (-3189 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-454)) (-4 *3 (-793)) (-4 *5 (-850)) (-5 *2 (-112)) (-5 *1 (-451 *4 *3 *5 *6)) (-4 *6 (-949 *4 *3 *5)))) (-3319 (*1 *2 *3 *3) (-12 (-4 *4 (-454)) (-4 *3 (-793)) (-4 *5 (-850)) (-5 *2 (-112)) (-5 *1 (-451 *4 *3 *5 *6)) (-4 *6 (-949 *4 *3 *5)))) (-4236 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-771)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-793)) (-4 *7 (-949 *4 *5 *6)) (-4 *4 (-454)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-451 *4 *5 *6 *7)))) (-1488 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-644 *7)) (-5 *3 (-566)) (-4 *7 (-949 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-451 *4 *5 *6 *7)))) (-3550 (*1 *2 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-949 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-451 *4 *5 *6 *2)))) (-3102 (*1 *2 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-949 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-451 *4 *5 *6 *2))))) +(-10 -7 (-15 -3102 (|#4| |#4| (-644 |#4|))) (-15 -3550 (|#4| |#4| (-644 |#4|))) (-15 -1488 ((-644 |#4|) (-644 |#4|) (-566) (-566))) (-15 -4236 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3319 ((-112) |#2| |#2|)) (-15 -3189 ((-112) |#2| |#2| |#2| |#2|)) (-15 -1730 ((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3321 ((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2859 ((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4123 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-644 |#4|))) (-15 -2349 (|#4| |#4|)) (-15 -3117 ((-644 (-2 (|:| |totdeg| (-771)) (|:| -3877 |#4|))) |#4| (-771) (-644 (-2 (|:| |totdeg| (-771)) (|:| -3877 |#4|))))) (-15 -1935 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3826 ((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4073 ((-644 |#4|) (-644 |#4|))) (-15 -3112 ((-566) |#4|)) (-15 -3868 ((-1269) |#4|)) (-15 -3207 ((-566) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-566) (-566) (-566))) (-15 -3297 ((-566) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-566) (-566) (-566) (-566))) (-15 -1675 ((-1269) (-644 |#4|))) (-15 -2305 ((-1269) (-566))) (-15 -3159 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1351 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-771)) (|:| -3877 |#4|)) |#4| (-771))) (-15 -3570 ((-771) |#4|))) +((-3647 ((|#4| |#4| (-644 |#4|)) 20 (|has| |#1| (-365)))) (-2542 (((-644 |#4|) (-644 |#4|) (-1157) (-1157)) 46) (((-644 |#4|) (-644 |#4|) (-1157)) 45) (((-644 |#4|) (-644 |#4|)) 34))) +(((-452 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2542 ((-644 |#4|) (-644 |#4|))) (-15 -2542 ((-644 |#4|) (-644 |#4|) (-1157))) (-15 -2542 ((-644 |#4|) (-644 |#4|) (-1157) (-1157))) (IF (|has| |#1| (-365)) (-15 -3647 (|#4| |#4| (-644 |#4|))) |%noBranch|)) (-454) (-793) (-850) (-949 |#1| |#2| |#3|)) (T -452)) +((-3647 (*1 *2 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-949 *4 *5 *6)) (-4 *4 (-365)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-452 *4 *5 *6 *2)))) (-2542 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-644 *7)) (-5 *3 (-1157)) (-4 *7 (-949 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-452 *4 *5 *6 *7)))) (-2542 (*1 *2 *2 *3) (-12 (-5 *2 (-644 *7)) (-5 *3 (-1157)) (-4 *7 (-949 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-452 *4 *5 *6 *7)))) (-2542 (*1 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-452 *3 *4 *5 *6))))) +(-10 -7 (-15 -2542 ((-644 |#4|) (-644 |#4|))) (-15 -2542 ((-644 |#4|) (-644 |#4|) (-1157))) (-15 -2542 ((-644 |#4|) (-644 |#4|) (-1157) (-1157))) (IF (|has| |#1| (-365)) (-15 -3647 (|#4| |#4| (-644 |#4|))) |%noBranch|)) +((-2128 (($ $ $) 14) (($ (-644 $)) 21)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) 46)) (-2164 (($ $ $) NIL) (($ (-644 $)) 22))) +(((-453 |#1|) (-10 -8 (-15 -4170 ((-1171 |#1|) (-1171 |#1|) (-1171 |#1|))) (-15 -2128 (|#1| (-644 |#1|))) (-15 -2128 (|#1| |#1| |#1|)) (-15 -2164 (|#1| (-644 |#1|))) (-15 -2164 (|#1| |#1| |#1|))) (-454)) (T -453)) +NIL +(-10 -8 (-15 -4170 ((-1171 |#1|) (-1171 |#1|) (-1171 |#1|))) (-15 -2128 (|#1| (-644 |#1|))) (-15 -2128 (|#1| |#1| |#1|)) (-15 -2164 (|#1| (-644 |#1|))) (-15 -2164 (|#1| |#1| |#1|))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) 47)) (-2161 (($ $) 46)) (-2345 (((-112) $) 44)) (-3967 (((-3 $ "failed") $ $) 20)) (-2463 (($) 18 T CONST)) (-3245 (((-3 $ "failed") $) 37)) (-2389 (((-112) $) 35)) (-2128 (($ $ $) 52) (($ (-644 $)) 51)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-2164 (($ $ $) 54) (($ (-644 $)) 53)) (-2978 (((-3 $ "failed") $ $) 48)) (-3152 (((-862) $) 12) (($ (-566)) 33) (($ $) 49)) (-2593 (((-771)) 32 T CONST)) (-3044 (((-112) $ $) 9)) (-3014 (((-112) $ $) 45)) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-2914 (((-112) $ $) 6)) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) (((-454) (-140)) (T -454)) -((-2214 (*1 *1 *1 *1) (-4 *1 (-454))) (-2214 (*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-454)))) (-2167 (*1 *1 *1 *1) (-4 *1 (-454))) (-2167 (*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-454)))) (-2197 (*1 *2 *2 *2) (-12 (-5 *2 (-1171 *1)) (-4 *1 (-454))))) -(-13 (-558) (-10 -8 (-15 -2214 ($ $ $)) (-15 -2214 ($ (-644 $))) (-15 -2167 ($ $ $)) (-15 -2167 ($ (-644 $))) (-15 -2197 ((-1171 $) (-1171 $) (-1171 $))))) +((-2164 (*1 *1 *1 *1) (-4 *1 (-454))) (-2164 (*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-454)))) (-2128 (*1 *1 *1 *1) (-4 *1 (-454))) (-2128 (*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-454)))) (-4170 (*1 *2 *2 *2) (-12 (-5 *2 (-1171 *1)) (-4 *1 (-454))))) +(-13 (-558) (-10 -8 (-15 -2164 ($ $ $)) (-15 -2164 ($ (-644 $))) (-15 -2128 ($ $ $)) (-15 -2128 ($ (-644 $))) (-15 -4170 ((-1171 $) (-1171 $) (-1171 $))))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-616 (-566)) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-291) . T) ((-558) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-640 $) . T) ((-717 $) . T) ((-726) . T) ((-1051 $) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-3002 (((-3 $ "failed")) NIL (|has| (-409 (-952 |#1|)) (-558)))) (-4175 (((-3 $ "failed") $ $) NIL)) (-4085 (((-1264 (-689 (-409 (-952 |#1|)))) (-1264 $)) NIL) (((-1264 (-689 (-409 (-952 |#1|))))) NIL)) (-2092 (((-1264 $)) NIL)) (-3012 (($) NIL T CONST)) (-4119 (((-3 (-2 (|:| |particular| $) (|:| -2365 (-644 $))) "failed")) NIL)) (-1446 (((-3 $ "failed")) NIL (|has| (-409 (-952 |#1|)) (-558)))) (-3058 (((-689 (-409 (-952 |#1|))) (-1264 $)) NIL) (((-689 (-409 (-952 |#1|)))) NIL)) (-2468 (((-409 (-952 |#1|)) $) NIL)) (-4298 (((-689 (-409 (-952 |#1|))) $ (-1264 $)) NIL) (((-689 (-409 (-952 |#1|))) $) NIL)) (-2715 (((-3 $ "failed") $) NIL (|has| (-409 (-952 |#1|)) (-558)))) (-2727 (((-1171 (-952 (-409 (-952 |#1|))))) NIL (|has| (-409 (-952 |#1|)) (-365))) (((-1171 (-409 (-952 |#1|)))) 94 (|has| |#1| (-558)))) (-3942 (($ $ (-921)) NIL)) (-1670 (((-409 (-952 |#1|)) $) NIL)) (-3757 (((-1171 (-409 (-952 |#1|))) $) 92 (|has| (-409 (-952 |#1|)) (-558)))) (-2072 (((-409 (-952 |#1|)) (-1264 $)) NIL) (((-409 (-952 |#1|))) NIL)) (-2410 (((-1171 (-409 (-952 |#1|))) $) NIL)) (-3036 (((-112)) NIL)) (-2392 (($ (-1264 (-409 (-952 |#1|))) (-1264 $)) 118) (($ (-1264 (-409 (-952 |#1|)))) NIL)) (-1878 (((-3 $ "failed") $) NIL (|has| (-409 (-952 |#1|)) (-558)))) (-4313 (((-921)) NIL)) (-2658 (((-112)) NIL)) (-2322 (($ $ (-921)) NIL)) (-1652 (((-112)) NIL)) (-1543 (((-112)) NIL)) (-2763 (((-112)) NIL)) (-2906 (((-3 (-2 (|:| |particular| $) (|:| -2365 (-644 $))) "failed")) NIL)) (-1710 (((-3 $ "failed")) NIL (|has| (-409 (-952 |#1|)) (-558)))) (-1371 (((-689 (-409 (-952 |#1|))) (-1264 $)) NIL) (((-689 (-409 (-952 |#1|)))) NIL)) (-3307 (((-409 (-952 |#1|)) $) NIL)) (-3131 (((-689 (-409 (-952 |#1|))) $ (-1264 $)) NIL) (((-689 (-409 (-952 |#1|))) $) NIL)) (-2305 (((-3 $ "failed") $) NIL (|has| (-409 (-952 |#1|)) (-558)))) (-2537 (((-1171 (-952 (-409 (-952 |#1|))))) NIL (|has| (-409 (-952 |#1|)) (-365))) (((-1171 (-409 (-952 |#1|)))) 93 (|has| |#1| (-558)))) (-2437 (($ $ (-921)) NIL)) (-3473 (((-409 (-952 |#1|)) $) NIL)) (-4108 (((-1171 (-409 (-952 |#1|))) $) 87 (|has| (-409 (-952 |#1|)) (-558)))) (-1950 (((-409 (-952 |#1|)) (-1264 $)) NIL) (((-409 (-952 |#1|))) NIL)) (-1974 (((-1171 (-409 (-952 |#1|))) $) NIL)) (-3390 (((-112)) NIL)) (-4117 (((-1157) $) NIL)) (-3170 (((-112)) NIL)) (-3326 (((-112)) NIL)) (-2829 (((-112)) NIL)) (-4035 (((-1119) $) NIL)) (-3092 (((-409 (-952 |#1|)) $ $) 78 (|has| |#1| (-558)))) (-3451 (((-409 (-952 |#1|)) $) 104 (|has| |#1| (-558)))) (-3873 (((-409 (-952 |#1|)) $) 108 (|has| |#1| (-558)))) (-2123 (((-1171 (-409 (-952 |#1|))) $) 98 (|has| |#1| (-558)))) (-1632 (((-409 (-952 |#1|))) 79 (|has| |#1| (-558)))) (-1646 (((-409 (-952 |#1|)) $ $) 71 (|has| |#1| (-558)))) (-3499 (((-409 (-952 |#1|)) $) 103 (|has| |#1| (-558)))) (-2734 (((-409 (-952 |#1|)) $) 107 (|has| |#1| (-558)))) (-2395 (((-1171 (-409 (-952 |#1|))) $) 97 (|has| |#1| (-558)))) (-2706 (((-409 (-952 |#1|))) 75 (|has| |#1| (-558)))) (-2666 (($) 114) (($ (-1175)) 122) (($ (-1264 (-1175))) 121) (($ (-1264 $)) 109) (($ (-1175) (-1264 $)) 120) (($ (-1264 (-1175)) (-1264 $)) 119)) (-1976 (((-112)) NIL)) (-4390 (((-409 (-952 |#1|)) $ (-566)) NIL)) (-2154 (((-1264 (-409 (-952 |#1|))) $ (-1264 $)) 111) (((-689 (-409 (-952 |#1|))) (-1264 $) (-1264 $)) NIL) (((-1264 (-409 (-952 |#1|))) $) 45) (((-689 (-409 (-952 |#1|))) (-1264 $)) NIL)) (-1348 (((-1264 (-409 (-952 |#1|))) $) NIL) (($ (-1264 (-409 (-952 |#1|)))) 42)) (-3453 (((-644 (-952 (-409 (-952 |#1|)))) (-1264 $)) NIL) (((-644 (-952 (-409 (-952 |#1|))))) NIL) (((-644 (-952 |#1|)) (-1264 $)) 112 (|has| |#1| (-558))) (((-644 (-952 |#1|))) 113 (|has| |#1| (-558)))) (-3171 (($ $ $) NIL)) (-2638 (((-112)) NIL)) (-3783 (((-862) $) NIL) (($ (-1264 (-409 (-952 |#1|)))) NIL)) (-3117 (((-112) $ $) NIL)) (-2365 (((-1264 $)) 67)) (-3023 (((-644 (-1264 (-409 (-952 |#1|))))) NIL (|has| (-409 (-952 |#1|)) (-558)))) (-2320 (($ $ $ $) NIL)) (-3232 (((-112)) NIL)) (-1948 (($ (-689 (-409 (-952 |#1|))) $) NIL)) (-3027 (($ $ $) NIL)) (-2653 (((-112)) NIL)) (-1843 (((-112)) NIL)) (-1938 (((-112)) NIL)) (-2479 (($) NIL T CONST)) (-2947 (((-112) $ $) NIL)) (-3053 (($ $) NIL) (($ $ $) 110)) (-3041 (($ $ $) NIL)) (** (($ $ (-921)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 63) (($ $ (-409 (-952 |#1|))) NIL) (($ (-409 (-952 |#1|)) $) NIL) (($ (-1141 |#2| (-409 (-952 |#1|))) $) NIL))) -(((-455 |#1| |#2| |#3| |#4|) (-13 (-419 (-409 (-952 |#1|))) (-648 (-1141 |#2| (-409 (-952 |#1|)))) (-10 -8 (-15 -3783 ($ (-1264 (-409 (-952 |#1|))))) (-15 -2906 ((-3 (-2 (|:| |particular| $) (|:| -2365 (-644 $))) "failed"))) (-15 -4119 ((-3 (-2 (|:| |particular| $) (|:| -2365 (-644 $))) "failed"))) (-15 -2666 ($)) (-15 -2666 ($ (-1175))) (-15 -2666 ($ (-1264 (-1175)))) (-15 -2666 ($ (-1264 $))) (-15 -2666 ($ (-1175) (-1264 $))) (-15 -2666 ($ (-1264 (-1175)) (-1264 $))) (IF (|has| |#1| (-558)) (PROGN (-15 -2537 ((-1171 (-409 (-952 |#1|))))) (-15 -2395 ((-1171 (-409 (-952 |#1|))) $)) (-15 -3499 ((-409 (-952 |#1|)) $)) (-15 -2734 ((-409 (-952 |#1|)) $)) (-15 -2727 ((-1171 (-409 (-952 |#1|))))) (-15 -2123 ((-1171 (-409 (-952 |#1|))) $)) (-15 -3451 ((-409 (-952 |#1|)) $)) (-15 -3873 ((-409 (-952 |#1|)) $)) (-15 -1646 ((-409 (-952 |#1|)) $ $)) (-15 -2706 ((-409 (-952 |#1|)))) (-15 -3092 ((-409 (-952 |#1|)) $ $)) (-15 -1632 ((-409 (-952 |#1|)))) (-15 -3453 ((-644 (-952 |#1|)) (-1264 $))) (-15 -3453 ((-644 (-952 |#1|))))) |%noBranch|))) (-172) (-921) (-644 (-1175)) (-1264 (-689 |#1|))) (T -455)) -((-3783 (*1 *1 *2) (-12 (-5 *2 (-1264 (-409 (-952 *3)))) (-4 *3 (-172)) (-14 *6 (-1264 (-689 *3))) (-5 *1 (-455 *3 *4 *5 *6)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))))) (-2906 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-455 *3 *4 *5 *6)) (|:| -2365 (-644 (-455 *3 *4 *5 *6))))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3))))) (-4119 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-455 *3 *4 *5 *6)) (|:| -2365 (-644 (-455 *3 *4 *5 *6))))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3))))) (-2666 (*1 *1) (-12 (-5 *1 (-455 *2 *3 *4 *5)) (-4 *2 (-172)) (-14 *3 (-921)) (-14 *4 (-644 (-1175))) (-14 *5 (-1264 (-689 *2))))) (-2666 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 *2)) (-14 *6 (-1264 (-689 *3))))) (-2666 (*1 *1 *2) (-12 (-5 *2 (-1264 (-1175))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3))))) (-2666 (*1 *1 *2) (-12 (-5 *2 (-1264 (-455 *3 *4 *5 *6))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3))))) (-2666 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-455 *4 *5 *6 *7))) (-5 *1 (-455 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-921)) (-14 *6 (-644 *2)) (-14 *7 (-1264 (-689 *4))))) (-2666 (*1 *1 *2 *3) (-12 (-5 *2 (-1264 (-1175))) (-5 *3 (-1264 (-455 *4 *5 *6 *7))) (-5 *1 (-455 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-921)) (-14 *6 (-644 (-1175))) (-14 *7 (-1264 (-689 *4))))) (-2537 (*1 *2) (-12 (-5 *2 (-1171 (-409 (-952 *3)))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3))))) (-2395 (*1 *2 *1) (-12 (-5 *2 (-1171 (-409 (-952 *3)))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3))))) (-3499 (*1 *2 *1) (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3))))) (-2734 (*1 *2 *1) (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3))))) (-2727 (*1 *2) (-12 (-5 *2 (-1171 (-409 (-952 *3)))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3))))) (-2123 (*1 *2 *1) (-12 (-5 *2 (-1171 (-409 (-952 *3)))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3))))) (-3451 (*1 *2 *1) (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3))))) (-3873 (*1 *2 *1) (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3))))) (-1646 (*1 *2 *1 *1) (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3))))) (-2706 (*1 *2) (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3))))) (-3092 (*1 *2 *1 *1) (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3))))) (-1632 (*1 *2) (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3))))) (-3453 (*1 *2 *3) (-12 (-5 *3 (-1264 (-455 *4 *5 *6 *7))) (-5 *2 (-644 (-952 *4))) (-5 *1 (-455 *4 *5 *6 *7)) (-4 *4 (-558)) (-4 *4 (-172)) (-14 *5 (-921)) (-14 *6 (-644 (-1175))) (-14 *7 (-1264 (-689 *4))))) (-3453 (*1 *2) (-12 (-5 *2 (-644 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3)))))) -(-13 (-419 (-409 (-952 |#1|))) (-648 (-1141 |#2| (-409 (-952 |#1|)))) (-10 -8 (-15 -3783 ($ (-1264 (-409 (-952 |#1|))))) (-15 -2906 ((-3 (-2 (|:| |particular| $) (|:| -2365 (-644 $))) "failed"))) (-15 -4119 ((-3 (-2 (|:| |particular| $) (|:| -2365 (-644 $))) "failed"))) (-15 -2666 ($)) (-15 -2666 ($ (-1175))) (-15 -2666 ($ (-1264 (-1175)))) (-15 -2666 ($ (-1264 $))) (-15 -2666 ($ (-1175) (-1264 $))) (-15 -2666 ($ (-1264 (-1175)) (-1264 $))) (IF (|has| |#1| (-558)) (PROGN (-15 -2537 ((-1171 (-409 (-952 |#1|))))) (-15 -2395 ((-1171 (-409 (-952 |#1|))) $)) (-15 -3499 ((-409 (-952 |#1|)) $)) (-15 -2734 ((-409 (-952 |#1|)) $)) (-15 -2727 ((-1171 (-409 (-952 |#1|))))) (-15 -2123 ((-1171 (-409 (-952 |#1|))) $)) (-15 -3451 ((-409 (-952 |#1|)) $)) (-15 -3873 ((-409 (-952 |#1|)) $)) (-15 -1646 ((-409 (-952 |#1|)) $ $)) (-15 -2706 ((-409 (-952 |#1|)))) (-15 -3092 ((-409 (-952 |#1|)) $ $)) (-15 -1632 ((-409 (-952 |#1|)))) (-15 -3453 ((-644 (-952 |#1|)) (-1264 $))) (-15 -3453 ((-644 (-952 |#1|))))) |%noBranch|))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) 18)) (-3863 (((-644 (-864 |#1|)) $) 92)) (-3683 (((-1171 $) $ (-864 |#1|)) 55) (((-1171 |#2|) $) 143)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#2| (-558)))) (-3991 (($ $) NIL (|has| |#2| (-558)))) (-2388 (((-112) $) NIL (|has| |#2| (-558)))) (-3367 (((-771) $) 27) (((-771) $ (-644 (-864 |#1|))) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-1477 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-1550 (($ $) NIL (|has| |#2| (-454)))) (-3184 (((-420 $) $) NIL (|has| |#2| (-454)))) (-3717 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-3012 (($) NIL T CONST)) (-4307 (((-3 |#2| "failed") $) 53) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#2| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#2| (-1038 (-566)))) (((-3 (-864 |#1|) "failed") $) NIL)) (-4205 ((|#2| $) 51) (((-409 (-566)) $) NIL (|has| |#2| (-1038 (-409 (-566))))) (((-566) $) NIL (|has| |#2| (-1038 (-566)))) (((-864 |#1|) $) NIL)) (-2738 (($ $ $ (-864 |#1|)) NIL (|has| |#2| (-172)))) (-2973 (($ $ (-644 (-566))) 98)) (-1786 (($ $) 85)) (-3577 (((-689 (-566)) (-689 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -4227 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 $) (-1264 $)) NIL) (((-689 |#2|) (-689 $)) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-4075 (($ $) NIL (|has| |#2| (-454))) (($ $ (-864 |#1|)) NIL (|has| |#2| (-454)))) (-1774 (((-644 $) $) NIL)) (-3268 (((-112) $) NIL (|has| |#2| (-909)))) (-3635 (($ $ |#2| |#3| $) NIL)) (-2062 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| (-864 |#1|) (-886 (-381))) (|has| |#2| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| (-864 |#1|) (-886 (-566))) (|has| |#2| (-886 (-566)))))) (-3934 (((-112) $) NIL)) (-2614 (((-771) $) 68)) (-3851 (($ (-1171 |#2|) (-864 |#1|)) 148) (($ (-1171 $) (-864 |#1|)) 61)) (-2288 (((-644 $) $) NIL)) (-3264 (((-112) $) 71)) (-3840 (($ |#2| |#3|) 38) (($ $ (-864 |#1|) (-771)) 40) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-2044 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $ (-864 |#1|)) NIL)) (-3760 ((|#3| $) NIL) (((-771) $ (-864 |#1|)) 59) (((-644 (-771)) $ (-644 (-864 |#1|))) 66)) (-4301 (($ (-1 |#3| |#3|) $) NIL)) (-1301 (($ (-1 |#2| |#2|) $) NIL)) (-3169 (((-3 (-864 |#1|) "failed") $) 48)) (-1749 (($ $) NIL)) (-1763 ((|#2| $) 50)) (-2167 (($ (-644 $)) NIL (|has| |#2| (-454))) (($ $ $) NIL (|has| |#2| (-454)))) (-4117 (((-1157) $) NIL)) (-3714 (((-3 (-644 $) "failed") $) NIL)) (-2353 (((-3 (-644 $) "failed") $) NIL)) (-1518 (((-3 (-2 (|:| |var| (-864 |#1|)) (|:| -2852 (-771))) "failed") $) NIL)) (-4035 (((-1119) $) NIL)) (-1723 (((-112) $) 49)) (-1736 ((|#2| $) 141)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#2| (-454)))) (-2214 (($ (-644 $)) NIL (|has| |#2| (-454))) (($ $ $) 154 (|has| |#2| (-454)))) (-4303 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-3240 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-3719 (((-420 $) $) NIL (|has| |#2| (-909)))) (-2994 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-558))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-558)))) (-2055 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-864 |#1|) |#2|) 105) (($ $ (-644 (-864 |#1|)) (-644 |#2|)) 111) (($ $ (-864 |#1|) $) 103) (($ $ (-644 (-864 |#1|)) (-644 $)) 129)) (-3652 (($ $ (-864 |#1|)) NIL (|has| |#2| (-172)))) (-3561 (($ $ (-864 |#1|)) 62) (($ $ (-644 (-864 |#1|))) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-3636 ((|#3| $) 84) (((-771) $ (-864 |#1|)) 45) (((-644 (-771)) $ (-644 (-864 |#1|))) 65)) (-1348 (((-892 (-381)) $) NIL (-12 (|has| (-864 |#1|) (-614 (-892 (-381)))) (|has| |#2| (-614 (-892 (-381)))))) (((-892 (-566)) $) NIL (-12 (|has| (-864 |#1|) (-614 (-892 (-566)))) (|has| |#2| (-614 (-892 (-566)))))) (((-538) $) NIL (-12 (|has| (-864 |#1|) (-614 (-538))) (|has| |#2| (-614 (-538)))))) (-2483 ((|#2| $) 150 (|has| |#2| (-454))) (($ $ (-864 |#1|)) NIL (|has| |#2| (-454)))) (-1656 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-909))))) (-3783 (((-862) $) 179) (($ (-566)) NIL) (($ |#2|) 104) (($ (-864 |#1|)) 42) (($ (-409 (-566))) NIL (-2809 (|has| |#2| (-38 (-409 (-566)))) (|has| |#2| (-1038 (-409 (-566)))))) (($ $) NIL (|has| |#2| (-558)))) (-4170 (((-644 |#2|) $) NIL)) (-2649 ((|#2| $ |#3|) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-3144 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| $ (-145)) (|has| |#2| (-909))) (|has| |#2| (-145))))) (-2107 (((-771)) NIL T CONST)) (-3362 (($ $ $ (-771)) NIL (|has| |#2| (-172)))) (-3117 (((-112) $ $) NIL)) (-2695 (((-112) $ $) NIL (|has| |#2| (-558)))) (-2479 (($) 22 T CONST)) (-4334 (($) 31 T CONST)) (-2875 (($ $ (-864 |#1|)) NIL) (($ $ (-644 (-864 |#1|))) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-2947 (((-112) $ $) NIL)) (-3065 (($ $ |#2|) 81 (|has| |#2| (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) 136)) (** (($ $ (-921)) NIL) (($ $ (-771)) 134)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 39) (($ $ (-409 (-566))) NIL (|has| |#2| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#2| (-38 (-409 (-566))))) (($ |#2| $) 80) (($ $ |#2|) NIL))) -(((-456 |#1| |#2| |#3|) (-13 (-949 |#2| |#3| (-864 |#1|)) (-10 -8 (-15 -2973 ($ $ (-644 (-566)))))) (-644 (-1175)) (-1049) (-238 (-3018 |#1|) (-771))) (T -456)) -((-2973 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-566))) (-14 *3 (-644 (-1175))) (-5 *1 (-456 *3 *4 *5)) (-4 *4 (-1049)) (-4 *5 (-238 (-3018 *3) (-771)))))) -(-13 (-949 |#2| |#3| (-864 |#1|)) (-10 -8 (-15 -2973 ($ $ (-644 (-566)))))) -((-2064 (((-112) |#1| (-644 |#2|)) 94)) (-2491 (((-3 (-1264 (-644 |#2|)) "failed") (-771) |#1| (-644 |#2|)) 103)) (-2185 (((-3 (-644 |#2|) "failed") |#2| |#1| (-1264 (-644 |#2|))) 105)) (-3646 ((|#2| |#2| |#1|) 35)) (-4261 (((-771) |#2| (-644 |#2|)) 26))) -(((-457 |#1| |#2|) (-10 -7 (-15 -3646 (|#2| |#2| |#1|)) (-15 -4261 ((-771) |#2| (-644 |#2|))) (-15 -2491 ((-3 (-1264 (-644 |#2|)) "failed") (-771) |#1| (-644 |#2|))) (-15 -2185 ((-3 (-644 |#2|) "failed") |#2| |#1| (-1264 (-644 |#2|)))) (-15 -2064 ((-112) |#1| (-644 |#2|)))) (-308) (-1240 |#1|)) (T -457)) -((-2064 (*1 *2 *3 *4) (-12 (-5 *4 (-644 *5)) (-4 *5 (-1240 *3)) (-4 *3 (-308)) (-5 *2 (-112)) (-5 *1 (-457 *3 *5)))) (-2185 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1264 (-644 *3))) (-4 *4 (-308)) (-5 *2 (-644 *3)) (-5 *1 (-457 *4 *3)) (-4 *3 (-1240 *4)))) (-2491 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-771)) (-4 *4 (-308)) (-4 *6 (-1240 *4)) (-5 *2 (-1264 (-644 *6))) (-5 *1 (-457 *4 *6)) (-5 *5 (-644 *6)))) (-4261 (*1 *2 *3 *4) (-12 (-5 *4 (-644 *3)) (-4 *3 (-1240 *5)) (-4 *5 (-308)) (-5 *2 (-771)) (-5 *1 (-457 *5 *3)))) (-3646 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-5 *1 (-457 *3 *2)) (-4 *2 (-1240 *3))))) -(-10 -7 (-15 -3646 (|#2| |#2| |#1|)) (-15 -4261 ((-771) |#2| (-644 |#2|))) (-15 -2491 ((-3 (-1264 (-644 |#2|)) "failed") (-771) |#1| (-644 |#2|))) (-15 -2185 ((-3 (-644 |#2|) "failed") |#2| |#1| (-1264 (-644 |#2|)))) (-15 -2064 ((-112) |#1| (-644 |#2|)))) -((-3719 (((-420 |#5|) |#5|) 24))) -(((-458 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3719 ((-420 |#5|) |#5|))) (-13 (-850) (-10 -8 (-15 -1348 ((-1175) $)) (-15 -1385 ((-3 $ "failed") (-1175))))) (-793) (-558) (-558) (-949 |#4| |#2| |#1|)) (T -458)) -((-3719 (*1 *2 *3) (-12 (-4 *4 (-13 (-850) (-10 -8 (-15 -1348 ((-1175) $)) (-15 -1385 ((-3 $ "failed") (-1175)))))) (-4 *5 (-793)) (-4 *7 (-558)) (-5 *2 (-420 *3)) (-5 *1 (-458 *4 *5 *6 *7 *3)) (-4 *6 (-558)) (-4 *3 (-949 *7 *5 *4))))) -(-10 -7 (-15 -3719 ((-420 |#5|) |#5|))) -((-1996 ((|#3|) 40)) (-2197 (((-1171 |#4|) (-1171 |#4|) (-1171 |#4|)) 36))) -(((-459 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2197 ((-1171 |#4|) (-1171 |#4|) (-1171 |#4|))) (-15 -1996 (|#3|))) (-793) (-850) (-909) (-949 |#3| |#1| |#2|)) (T -459)) -((-1996 (*1 *2) (-12 (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-909)) (-5 *1 (-459 *3 *4 *2 *5)) (-4 *5 (-949 *2 *3 *4)))) (-2197 (*1 *2 *2 *2) (-12 (-5 *2 (-1171 *6)) (-4 *6 (-949 *5 *3 *4)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *5 (-909)) (-5 *1 (-459 *3 *4 *5 *6))))) -(-10 -7 (-15 -2197 ((-1171 |#4|) (-1171 |#4|) (-1171 |#4|))) (-15 -1996 (|#3|))) -((-3719 (((-420 (-1171 |#1|)) (-1171 |#1|)) 43))) -(((-460 |#1|) (-10 -7 (-15 -3719 ((-420 (-1171 |#1|)) (-1171 |#1|)))) (-308)) (T -460)) -((-3719 (*1 *2 *3) (-12 (-4 *4 (-308)) (-5 *2 (-420 (-1171 *4))) (-5 *1 (-460 *4)) (-5 *3 (-1171 *4))))) -(-10 -7 (-15 -3719 ((-420 (-1171 |#1|)) (-1171 |#1|)))) -((-3916 (((-52) |#2| (-1175) (-295 |#2|) (-1231 (-771))) 44) (((-52) (-1 |#2| (-566)) (-295 |#2|) (-1231 (-771))) 43) (((-52) |#2| (-1175) (-295 |#2|)) 36) (((-52) (-1 |#2| (-566)) (-295 |#2|)) 29)) (-2052 (((-52) |#2| (-1175) (-295 |#2|) (-1231 (-409 (-566))) (-409 (-566))) 88) (((-52) (-1 |#2| (-409 (-566))) (-295 |#2|) (-1231 (-409 (-566))) (-409 (-566))) 87) (((-52) |#2| (-1175) (-295 |#2|) (-1231 (-566))) 86) (((-52) (-1 |#2| (-566)) (-295 |#2|) (-1231 (-566))) 85) (((-52) |#2| (-1175) (-295 |#2|)) 80) (((-52) (-1 |#2| (-566)) (-295 |#2|)) 79)) (-1690 (((-52) |#2| (-1175) (-295 |#2|) (-1231 (-409 (-566))) (-409 (-566))) 74) (((-52) (-1 |#2| (-409 (-566))) (-295 |#2|) (-1231 (-409 (-566))) (-409 (-566))) 72)) (-1678 (((-52) |#2| (-1175) (-295 |#2|) (-1231 (-566))) 51) (((-52) (-1 |#2| (-566)) (-295 |#2|) (-1231 (-566))) 50))) -(((-461 |#1| |#2|) (-10 -7 (-15 -3916 ((-52) (-1 |#2| (-566)) (-295 |#2|))) (-15 -3916 ((-52) |#2| (-1175) (-295 |#2|))) (-15 -3916 ((-52) (-1 |#2| (-566)) (-295 |#2|) (-1231 (-771)))) (-15 -3916 ((-52) |#2| (-1175) (-295 |#2|) (-1231 (-771)))) (-15 -1678 ((-52) (-1 |#2| (-566)) (-295 |#2|) (-1231 (-566)))) (-15 -1678 ((-52) |#2| (-1175) (-295 |#2|) (-1231 (-566)))) (-15 -1690 ((-52) (-1 |#2| (-409 (-566))) (-295 |#2|) (-1231 (-409 (-566))) (-409 (-566)))) (-15 -1690 ((-52) |#2| (-1175) (-295 |#2|) (-1231 (-409 (-566))) (-409 (-566)))) (-15 -2052 ((-52) (-1 |#2| (-566)) (-295 |#2|))) (-15 -2052 ((-52) |#2| (-1175) (-295 |#2|))) (-15 -2052 ((-52) (-1 |#2| (-566)) (-295 |#2|) (-1231 (-566)))) (-15 -2052 ((-52) |#2| (-1175) (-295 |#2|) (-1231 (-566)))) (-15 -2052 ((-52) (-1 |#2| (-409 (-566))) (-295 |#2|) (-1231 (-409 (-566))) (-409 (-566)))) (-15 -2052 ((-52) |#2| (-1175) (-295 |#2|) (-1231 (-409 (-566))) (-409 (-566))))) (-13 (-558) (-1038 (-566)) (-639 (-566))) (-13 (-27) (-1199) (-432 |#1|))) (T -461)) -((-2052 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1175)) (-5 *5 (-295 *3)) (-5 *6 (-1231 (-409 (-566)))) (-5 *7 (-409 (-566))) (-4 *3 (-13 (-27) (-1199) (-432 *8))) (-4 *8 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-461 *8 *3)))) (-2052 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-409 (-566)))) (-5 *4 (-295 *8)) (-5 *5 (-1231 (-409 (-566)))) (-5 *6 (-409 (-566))) (-4 *8 (-13 (-27) (-1199) (-432 *7))) (-4 *7 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-461 *7 *8)))) (-2052 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1175)) (-5 *5 (-295 *3)) (-5 *6 (-1231 (-566))) (-4 *3 (-13 (-27) (-1199) (-432 *7))) (-4 *7 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-461 *7 *3)))) (-2052 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-566))) (-5 *4 (-295 *7)) (-5 *5 (-1231 (-566))) (-4 *7 (-13 (-27) (-1199) (-432 *6))) (-4 *6 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-461 *6 *7)))) (-2052 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1175)) (-5 *5 (-295 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *6))) (-4 *6 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-461 *6 *3)))) (-2052 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-566))) (-5 *4 (-295 *6)) (-4 *6 (-13 (-27) (-1199) (-432 *5))) (-4 *5 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-461 *5 *6)))) (-1690 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1175)) (-5 *5 (-295 *3)) (-5 *6 (-1231 (-409 (-566)))) (-5 *7 (-409 (-566))) (-4 *3 (-13 (-27) (-1199) (-432 *8))) (-4 *8 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-461 *8 *3)))) (-1690 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-409 (-566)))) (-5 *4 (-295 *8)) (-5 *5 (-1231 (-409 (-566)))) (-5 *6 (-409 (-566))) (-4 *8 (-13 (-27) (-1199) (-432 *7))) (-4 *7 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-461 *7 *8)))) (-1678 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1175)) (-5 *5 (-295 *3)) (-5 *6 (-1231 (-566))) (-4 *3 (-13 (-27) (-1199) (-432 *7))) (-4 *7 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-461 *7 *3)))) (-1678 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-566))) (-5 *4 (-295 *7)) (-5 *5 (-1231 (-566))) (-4 *7 (-13 (-27) (-1199) (-432 *6))) (-4 *6 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-461 *6 *7)))) (-3916 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1175)) (-5 *5 (-295 *3)) (-5 *6 (-1231 (-771))) (-4 *3 (-13 (-27) (-1199) (-432 *7))) (-4 *7 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-461 *7 *3)))) (-3916 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-566))) (-5 *4 (-295 *7)) (-5 *5 (-1231 (-771))) (-4 *7 (-13 (-27) (-1199) (-432 *6))) (-4 *6 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-461 *6 *7)))) (-3916 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1175)) (-5 *5 (-295 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *6))) (-4 *6 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-461 *6 *3)))) (-3916 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-566))) (-5 *4 (-295 *6)) (-4 *6 (-13 (-27) (-1199) (-432 *5))) (-4 *5 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-461 *5 *6))))) -(-10 -7 (-15 -3916 ((-52) (-1 |#2| (-566)) (-295 |#2|))) (-15 -3916 ((-52) |#2| (-1175) (-295 |#2|))) (-15 -3916 ((-52) (-1 |#2| (-566)) (-295 |#2|) (-1231 (-771)))) (-15 -3916 ((-52) |#2| (-1175) (-295 |#2|) (-1231 (-771)))) (-15 -1678 ((-52) (-1 |#2| (-566)) (-295 |#2|) (-1231 (-566)))) (-15 -1678 ((-52) |#2| (-1175) (-295 |#2|) (-1231 (-566)))) (-15 -1690 ((-52) (-1 |#2| (-409 (-566))) (-295 |#2|) (-1231 (-409 (-566))) (-409 (-566)))) (-15 -1690 ((-52) |#2| (-1175) (-295 |#2|) (-1231 (-409 (-566))) (-409 (-566)))) (-15 -2052 ((-52) (-1 |#2| (-566)) (-295 |#2|))) (-15 -2052 ((-52) |#2| (-1175) (-295 |#2|))) (-15 -2052 ((-52) (-1 |#2| (-566)) (-295 |#2|) (-1231 (-566)))) (-15 -2052 ((-52) |#2| (-1175) (-295 |#2|) (-1231 (-566)))) (-15 -2052 ((-52) (-1 |#2| (-409 (-566))) (-295 |#2|) (-1231 (-409 (-566))) (-409 (-566)))) (-15 -2052 ((-52) |#2| (-1175) (-295 |#2|) (-1231 (-409 (-566))) (-409 (-566))))) -((-3646 ((|#2| |#2| |#1|) 15)) (-2682 (((-644 |#2|) |#2| (-644 |#2|) |#1| (-921)) 82)) (-1625 (((-2 (|:| |plist| (-644 |#2|)) (|:| |modulo| |#1|)) |#2| (-644 |#2|) |#1| (-921)) 72))) -(((-462 |#1| |#2|) (-10 -7 (-15 -1625 ((-2 (|:| |plist| (-644 |#2|)) (|:| |modulo| |#1|)) |#2| (-644 |#2|) |#1| (-921))) (-15 -2682 ((-644 |#2|) |#2| (-644 |#2|) |#1| (-921))) (-15 -3646 (|#2| |#2| |#1|))) (-308) (-1240 |#1|)) (T -462)) -((-3646 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-5 *1 (-462 *3 *2)) (-4 *2 (-1240 *3)))) (-2682 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-644 *3)) (-5 *5 (-921)) (-4 *3 (-1240 *4)) (-4 *4 (-308)) (-5 *1 (-462 *4 *3)))) (-1625 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-921)) (-4 *5 (-308)) (-4 *3 (-1240 *5)) (-5 *2 (-2 (|:| |plist| (-644 *3)) (|:| |modulo| *5))) (-5 *1 (-462 *5 *3)) (-5 *4 (-644 *3))))) -(-10 -7 (-15 -1625 ((-2 (|:| |plist| (-644 |#2|)) (|:| |modulo| |#1|)) |#2| (-644 |#2|) |#1| (-921))) (-15 -2682 ((-644 |#2|) |#2| (-644 |#2|) |#1| (-921))) (-15 -3646 (|#2| |#2| |#1|))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) 28)) (-4348 (($ |#3|) 25)) (-4175 (((-3 $ "failed") $ $) NIL)) (-3012 (($) NIL T CONST)) (-1786 (($ $) 32)) (-3060 (($ |#2| |#4| $) 33)) (-3840 (($ |#2| (-713 |#3| |#4| |#5|)) 24)) (-1749 (((-713 |#3| |#4| |#5|) $) 15)) (-3844 ((|#3| $) 19)) (-1527 ((|#4| $) 17)) (-1763 ((|#2| $) 29)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) NIL)) (-1363 (($ |#2| |#3| |#4|) 26)) (-3117 (((-112) $ $) NIL)) (-2479 (($) 36 T CONST)) (-2947 (((-112) $ $) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) 34)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-463 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-717 |#6|) (-717 |#2|) (-10 -8 (-15 -1763 (|#2| $)) (-15 -1749 ((-713 |#3| |#4| |#5|) $)) (-15 -1527 (|#4| $)) (-15 -3844 (|#3| $)) (-15 -1786 ($ $)) (-15 -3840 ($ |#2| (-713 |#3| |#4| |#5|))) (-15 -4348 ($ |#3|)) (-15 -1363 ($ |#2| |#3| |#4|)) (-15 -3060 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-644 (-1175)) (-172) (-850) (-238 (-3018 |#1|) (-771)) (-1 (-112) (-2 (|:| -2178 |#3|) (|:| -2852 |#4|)) (-2 (|:| -2178 |#3|) (|:| -2852 |#4|))) (-949 |#2| |#4| (-864 |#1|))) (T -463)) -((* (*1 *1 *2 *1) (-12 (-14 *3 (-644 (-1175))) (-4 *4 (-172)) (-4 *6 (-238 (-3018 *3) (-771))) (-14 *7 (-1 (-112) (-2 (|:| -2178 *5) (|:| -2852 *6)) (-2 (|:| -2178 *5) (|:| -2852 *6)))) (-5 *1 (-463 *3 *4 *5 *6 *7 *2)) (-4 *5 (-850)) (-4 *2 (-949 *4 *6 (-864 *3))))) (-1763 (*1 *2 *1) (-12 (-14 *3 (-644 (-1175))) (-4 *5 (-238 (-3018 *3) (-771))) (-14 *6 (-1 (-112) (-2 (|:| -2178 *4) (|:| -2852 *5)) (-2 (|:| -2178 *4) (|:| -2852 *5)))) (-4 *2 (-172)) (-5 *1 (-463 *3 *2 *4 *5 *6 *7)) (-4 *4 (-850)) (-4 *7 (-949 *2 *5 (-864 *3))))) (-1749 (*1 *2 *1) (-12 (-14 *3 (-644 (-1175))) (-4 *4 (-172)) (-4 *6 (-238 (-3018 *3) (-771))) (-14 *7 (-1 (-112) (-2 (|:| -2178 *5) (|:| -2852 *6)) (-2 (|:| -2178 *5) (|:| -2852 *6)))) (-5 *2 (-713 *5 *6 *7)) (-5 *1 (-463 *3 *4 *5 *6 *7 *8)) (-4 *5 (-850)) (-4 *8 (-949 *4 *6 (-864 *3))))) (-1527 (*1 *2 *1) (-12 (-14 *3 (-644 (-1175))) (-4 *4 (-172)) (-14 *6 (-1 (-112) (-2 (|:| -2178 *5) (|:| -2852 *2)) (-2 (|:| -2178 *5) (|:| -2852 *2)))) (-4 *2 (-238 (-3018 *3) (-771))) (-5 *1 (-463 *3 *4 *5 *2 *6 *7)) (-4 *5 (-850)) (-4 *7 (-949 *4 *2 (-864 *3))))) (-3844 (*1 *2 *1) (-12 (-14 *3 (-644 (-1175))) (-4 *4 (-172)) (-4 *5 (-238 (-3018 *3) (-771))) (-14 *6 (-1 (-112) (-2 (|:| -2178 *2) (|:| -2852 *5)) (-2 (|:| -2178 *2) (|:| -2852 *5)))) (-4 *2 (-850)) (-5 *1 (-463 *3 *4 *2 *5 *6 *7)) (-4 *7 (-949 *4 *5 (-864 *3))))) (-1786 (*1 *1 *1) (-12 (-14 *2 (-644 (-1175))) (-4 *3 (-172)) (-4 *5 (-238 (-3018 *2) (-771))) (-14 *6 (-1 (-112) (-2 (|:| -2178 *4) (|:| -2852 *5)) (-2 (|:| -2178 *4) (|:| -2852 *5)))) (-5 *1 (-463 *2 *3 *4 *5 *6 *7)) (-4 *4 (-850)) (-4 *7 (-949 *3 *5 (-864 *2))))) (-3840 (*1 *1 *2 *3) (-12 (-5 *3 (-713 *5 *6 *7)) (-4 *5 (-850)) (-4 *6 (-238 (-3018 *4) (-771))) (-14 *7 (-1 (-112) (-2 (|:| -2178 *5) (|:| -2852 *6)) (-2 (|:| -2178 *5) (|:| -2852 *6)))) (-14 *4 (-644 (-1175))) (-4 *2 (-172)) (-5 *1 (-463 *4 *2 *5 *6 *7 *8)) (-4 *8 (-949 *2 *6 (-864 *4))))) (-4348 (*1 *1 *2) (-12 (-14 *3 (-644 (-1175))) (-4 *4 (-172)) (-4 *5 (-238 (-3018 *3) (-771))) (-14 *6 (-1 (-112) (-2 (|:| -2178 *2) (|:| -2852 *5)) (-2 (|:| -2178 *2) (|:| -2852 *5)))) (-5 *1 (-463 *3 *4 *2 *5 *6 *7)) (-4 *2 (-850)) (-4 *7 (-949 *4 *5 (-864 *3))))) (-1363 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-644 (-1175))) (-4 *2 (-172)) (-4 *4 (-238 (-3018 *5) (-771))) (-14 *6 (-1 (-112) (-2 (|:| -2178 *3) (|:| -2852 *4)) (-2 (|:| -2178 *3) (|:| -2852 *4)))) (-5 *1 (-463 *5 *2 *3 *4 *6 *7)) (-4 *3 (-850)) (-4 *7 (-949 *2 *4 (-864 *5))))) (-3060 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-644 (-1175))) (-4 *2 (-172)) (-4 *3 (-238 (-3018 *4) (-771))) (-14 *6 (-1 (-112) (-2 (|:| -2178 *5) (|:| -2852 *3)) (-2 (|:| -2178 *5) (|:| -2852 *3)))) (-5 *1 (-463 *4 *2 *5 *3 *6 *7)) (-4 *5 (-850)) (-4 *7 (-949 *2 *3 (-864 *4)))))) -(-13 (-717 |#6|) (-717 |#2|) (-10 -8 (-15 -1763 (|#2| $)) (-15 -1749 ((-713 |#3| |#4| |#5|) $)) (-15 -1527 (|#4| $)) (-15 -3844 (|#3| $)) (-15 -1786 ($ $)) (-15 -3840 ($ |#2| (-713 |#3| |#4| |#5|))) (-15 -4348 ($ |#3|)) (-15 -1363 ($ |#2| |#3| |#4|)) (-15 -3060 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) -((-1462 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39))) -(((-464 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1462 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-793) (-850) (-558) (-949 |#3| |#1| |#2|) (-13 (-1038 (-409 (-566))) (-365) (-10 -8 (-15 -3783 ($ |#4|)) (-15 -4326 (|#4| $)) (-15 -4339 (|#4| $))))) (T -464)) -((-1462 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-850)) (-4 *5 (-793)) (-4 *6 (-558)) (-4 *7 (-949 *6 *5 *3)) (-5 *1 (-464 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1038 (-409 (-566))) (-365) (-10 -8 (-15 -3783 ($ *7)) (-15 -4326 (*7 $)) (-15 -4339 (*7 $)))))))) -(-10 -7 (-15 -1462 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) -((-3007 (((-112) $ $) NIL)) (-3863 (((-644 |#3|) $) 41)) (-2368 (((-112) $) NIL)) (-4070 (((-112) $) NIL (|has| |#1| (-558)))) (-1510 (((-2 (|:| |under| $) (|:| -3470 $) (|:| |upper| $)) $ |#3|) NIL)) (-2256 (((-112) $ (-771)) NIL)) (-2701 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4414)))) (-3012 (($) NIL T CONST)) (-3779 (((-112) $) NIL (|has| |#1| (-558)))) (-2540 (((-112) $ $) NIL (|has| |#1| (-558)))) (-4093 (((-112) $ $) NIL (|has| |#1| (-558)))) (-3741 (((-112) $) NIL (|has| |#1| (-558)))) (-2026 (((-644 |#4|) (-644 |#4|) $) NIL (|has| |#1| (-558)))) (-4306 (((-644 |#4|) (-644 |#4|) $) NIL (|has| |#1| (-558)))) (-4307 (((-3 $ "failed") (-644 |#4|)) 49)) (-4205 (($ (-644 |#4|)) NIL)) (-2031 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#4| (-1099))))) (-2665 (($ |#4| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#4| (-1099)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4414)))) (-2513 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-558)))) (-1676 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4414)) (|has| |#4| (-1099)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4414))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4414)))) (-3979 (((-644 |#4|) $) 18 (|has| $ (-6 -4414)))) (-1489 ((|#3| $) 47)) (-2404 (((-112) $ (-771)) NIL)) (-2329 (((-644 |#4|) $) 14 (|has| $ (-6 -4414)))) (-1916 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4414)) (|has| |#4| (-1099))))) (-2908 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#4| |#4|) $) 21)) (-2189 (((-644 |#3|) $) NIL)) (-3953 (((-112) |#3| $) NIL)) (-2603 (((-112) $ (-771)) NIL)) (-4117 (((-1157) $) NIL)) (-3112 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-558)))) (-4035 (((-1119) $) NIL)) (-2006 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2692 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 |#4|) (-644 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-644 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))) (-1932 (((-112) $ $) NIL)) (-3467 (((-112) $) 39)) (-1494 (($) 17)) (-4045 (((-771) |#4| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#4| (-1099)))) (((-771) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4414)))) (-3940 (($ $) 16)) (-1348 (((-538) $) NIL (|has| |#4| (-614 (-538)))) (($ (-644 |#4|)) 51)) (-3796 (($ (-644 |#4|)) 13)) (-2325 (($ $ |#3|) NIL)) (-4106 (($ $ |#3|) NIL)) (-3080 (($ $ |#3|) NIL)) (-3783 (((-862) $) 38) (((-644 |#4|) $) 50)) (-3117 (((-112) $ $) NIL)) (-1894 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) 30)) (-3018 (((-771) $) NIL (|has| $ (-6 -4414))))) -(((-465 |#1| |#2| |#3| |#4|) (-13 (-976 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1348 ($ (-644 |#4|))) (-6 -4414) (-6 -4415))) (-1049) (-793) (-850) (-1064 |#1| |#2| |#3|)) (T -465)) -((-1348 (*1 *1 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-465 *3 *4 *5 *6))))) -(-13 (-976 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1348 ($ (-644 |#4|))) (-6 -4414) (-6 -4415))) -((-2479 (($) 11)) (-4334 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) -(((-466 |#1| |#2| |#3|) (-10 -8 (-15 -4334 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2479 (|#1|))) (-467 |#2| |#3|) (-172) (-23)) (T -466)) -NIL -(-10 -8 (-15 -4334 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2479 (|#1|))) -((-3007 (((-112) $ $) 7)) (-4307 (((-3 |#1| "failed") $) 27)) (-4205 ((|#1| $) 28)) (-2235 (($ $ $) 24)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3636 ((|#2| $) 20)) (-3783 (((-862) $) 12) (($ |#1|) 26)) (-3117 (((-112) $ $) 9)) (-2479 (($) 19 T CONST)) (-4334 (($) 25 T CONST)) (-2947 (((-112) $ $) 6)) (-3053 (($ $) 16) (($ $ $) 14)) (-3041 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-2896 (((-3 $ "failed")) NIL (|has| (-409 (-952 |#1|)) (-558)))) (-3967 (((-3 $ "failed") $ $) NIL)) (-2336 (((-1264 (-689 (-409 (-952 |#1|)))) (-1264 $)) NIL) (((-1264 (-689 (-409 (-952 |#1|))))) NIL)) (-3717 (((-1264 $)) NIL)) (-2463 (($) NIL T CONST)) (-3574 (((-3 (-2 (|:| |particular| $) (|:| -2875 (-644 $))) "failed")) NIL)) (-1469 (((-3 $ "failed")) NIL (|has| (-409 (-952 |#1|)) (-558)))) (-2411 (((-689 (-409 (-952 |#1|))) (-1264 $)) NIL) (((-689 (-409 (-952 |#1|)))) NIL)) (-4373 (((-409 (-952 |#1|)) $) NIL)) (-2800 (((-689 (-409 (-952 |#1|))) $ (-1264 $)) NIL) (((-689 (-409 (-952 |#1|))) $) NIL)) (-4392 (((-3 $ "failed") $) NIL (|has| (-409 (-952 |#1|)) (-558)))) (-3031 (((-1171 (-952 (-409 (-952 |#1|))))) NIL (|has| (-409 (-952 |#1|)) (-365))) (((-1171 (-409 (-952 |#1|)))) 94 (|has| |#1| (-558)))) (-1856 (($ $ (-921)) NIL)) (-4039 (((-409 (-952 |#1|)) $) NIL)) (-3648 (((-1171 (-409 (-952 |#1|))) $) 92 (|has| (-409 (-952 |#1|)) (-558)))) (-2597 (((-409 (-952 |#1|)) (-1264 $)) NIL) (((-409 (-952 |#1|))) NIL)) (-2765 (((-1171 (-409 (-952 |#1|))) $) NIL)) (-4029 (((-112)) NIL)) (-1563 (($ (-1264 (-409 (-952 |#1|))) (-1264 $)) 118) (($ (-1264 (-409 (-952 |#1|)))) NIL)) (-3245 (((-3 $ "failed") $) NIL (|has| (-409 (-952 |#1|)) (-558)))) (-2755 (((-921)) NIL)) (-3793 (((-112)) NIL)) (-4090 (($ $ (-921)) NIL)) (-4240 (((-112)) NIL)) (-2057 (((-112)) NIL)) (-2158 (((-112)) NIL)) (-1476 (((-3 (-2 (|:| |particular| $) (|:| -2875 (-644 $))) "failed")) NIL)) (-1731 (((-3 $ "failed")) NIL (|has| (-409 (-952 |#1|)) (-558)))) (-2734 (((-689 (-409 (-952 |#1|))) (-1264 $)) NIL) (((-689 (-409 (-952 |#1|)))) NIL)) (-2366 (((-409 (-952 |#1|)) $) NIL)) (-3769 (((-689 (-409 (-952 |#1|))) $ (-1264 $)) NIL) (((-689 (-409 (-952 |#1|))) $) NIL)) (-2851 (((-3 $ "failed") $) NIL (|has| (-409 (-952 |#1|)) (-558)))) (-1793 (((-1171 (-952 (-409 (-952 |#1|))))) NIL (|has| (-409 (-952 |#1|)) (-365))) (((-1171 (-409 (-952 |#1|)))) 93 (|has| |#1| (-558)))) (-3270 (($ $ (-921)) NIL)) (-2241 (((-409 (-952 |#1|)) $) NIL)) (-1910 (((-1171 (-409 (-952 |#1|))) $) 87 (|has| (-409 (-952 |#1|)) (-558)))) (-2990 (((-409 (-952 |#1|)) (-1264 $)) NIL) (((-409 (-952 |#1|))) NIL)) (-3548 (((-1171 (-409 (-952 |#1|))) $) NIL)) (-2974 (((-112)) NIL)) (-3380 (((-1157) $) NIL)) (-2402 (((-112)) NIL)) (-1459 (((-112)) NIL)) (-3846 (((-112)) NIL)) (-4072 (((-1119) $) NIL)) (-3327 (((-409 (-952 |#1|)) $ $) 78 (|has| |#1| (-558)))) (-2677 (((-409 (-952 |#1|)) $) 104 (|has| |#1| (-558)))) (-3266 (((-409 (-952 |#1|)) $) 108 (|has| |#1| (-558)))) (-3708 (((-1171 (-409 (-952 |#1|))) $) 98 (|has| |#1| (-558)))) (-2714 (((-409 (-952 |#1|))) 79 (|has| |#1| (-558)))) (-1790 (((-409 (-952 |#1|)) $ $) 71 (|has| |#1| (-558)))) (-3064 (((-409 (-952 |#1|)) $) 103 (|has| |#1| (-558)))) (-2327 (((-409 (-952 |#1|)) $) 107 (|has| |#1| (-558)))) (-1894 (((-1171 (-409 (-952 |#1|))) $) 97 (|has| |#1| (-558)))) (-1599 (((-409 (-952 |#1|))) 75 (|has| |#1| (-558)))) (-3218 (($) 114) (($ (-1175)) 122) (($ (-1264 (-1175))) 121) (($ (-1264 $)) 109) (($ (-1175) (-1264 $)) 120) (($ (-1264 (-1175)) (-1264 $)) 119)) (-3795 (((-112)) NIL)) (-1309 (((-409 (-952 |#1|)) $ (-566)) NIL)) (-3350 (((-1264 (-409 (-952 |#1|))) $ (-1264 $)) 111) (((-689 (-409 (-952 |#1|))) (-1264 $) (-1264 $)) NIL) (((-1264 (-409 (-952 |#1|))) $) 45) (((-689 (-409 (-952 |#1|))) (-1264 $)) NIL)) (-2376 (((-1264 (-409 (-952 |#1|))) $) NIL) (($ (-1264 (-409 (-952 |#1|)))) 42)) (-2861 (((-644 (-952 (-409 (-952 |#1|)))) (-1264 $)) NIL) (((-644 (-952 (-409 (-952 |#1|))))) NIL) (((-644 (-952 |#1|)) (-1264 $)) 112 (|has| |#1| (-558))) (((-644 (-952 |#1|))) 113 (|has| |#1| (-558)))) (-2527 (($ $ $) NIL)) (-2512 (((-112)) NIL)) (-3152 (((-862) $) NIL) (($ (-1264 (-409 (-952 |#1|)))) NIL)) (-3044 (((-112) $ $) NIL)) (-2875 (((-1264 $)) 67)) (-2243 (((-644 (-1264 (-409 (-952 |#1|))))) NIL (|has| (-409 (-952 |#1|)) (-558)))) (-3876 (($ $ $ $) NIL)) (-2468 (((-112)) NIL)) (-3847 (($ (-689 (-409 (-952 |#1|))) $) NIL)) (-1471 (($ $ $) NIL)) (-1465 (((-112)) NIL)) (-3692 (((-112)) NIL)) (-4369 (((-112)) NIL)) (-4356 (($) NIL T CONST)) (-2914 (((-112) $ $) NIL)) (-3012 (($ $) NIL) (($ $ $) 110)) (-3002 (($ $ $) NIL)) (** (($ $ (-921)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 63) (($ $ (-409 (-952 |#1|))) NIL) (($ (-409 (-952 |#1|)) $) NIL) (($ (-1141 |#2| (-409 (-952 |#1|))) $) NIL))) +(((-455 |#1| |#2| |#3| |#4|) (-13 (-419 (-409 (-952 |#1|))) (-648 (-1141 |#2| (-409 (-952 |#1|)))) (-10 -8 (-15 -3152 ($ (-1264 (-409 (-952 |#1|))))) (-15 -1476 ((-3 (-2 (|:| |particular| $) (|:| -2875 (-644 $))) "failed"))) (-15 -3574 ((-3 (-2 (|:| |particular| $) (|:| -2875 (-644 $))) "failed"))) (-15 -3218 ($)) (-15 -3218 ($ (-1175))) (-15 -3218 ($ (-1264 (-1175)))) (-15 -3218 ($ (-1264 $))) (-15 -3218 ($ (-1175) (-1264 $))) (-15 -3218 ($ (-1264 (-1175)) (-1264 $))) (IF (|has| |#1| (-558)) (PROGN (-15 -1793 ((-1171 (-409 (-952 |#1|))))) (-15 -1894 ((-1171 (-409 (-952 |#1|))) $)) (-15 -3064 ((-409 (-952 |#1|)) $)) (-15 -2327 ((-409 (-952 |#1|)) $)) (-15 -3031 ((-1171 (-409 (-952 |#1|))))) (-15 -3708 ((-1171 (-409 (-952 |#1|))) $)) (-15 -2677 ((-409 (-952 |#1|)) $)) (-15 -3266 ((-409 (-952 |#1|)) $)) (-15 -1790 ((-409 (-952 |#1|)) $ $)) (-15 -1599 ((-409 (-952 |#1|)))) (-15 -3327 ((-409 (-952 |#1|)) $ $)) (-15 -2714 ((-409 (-952 |#1|)))) (-15 -2861 ((-644 (-952 |#1|)) (-1264 $))) (-15 -2861 ((-644 (-952 |#1|))))) |%noBranch|))) (-172) (-921) (-644 (-1175)) (-1264 (-689 |#1|))) (T -455)) +((-3152 (*1 *1 *2) (-12 (-5 *2 (-1264 (-409 (-952 *3)))) (-4 *3 (-172)) (-14 *6 (-1264 (-689 *3))) (-5 *1 (-455 *3 *4 *5 *6)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))))) (-1476 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-455 *3 *4 *5 *6)) (|:| -2875 (-644 (-455 *3 *4 *5 *6))))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3))))) (-3574 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-455 *3 *4 *5 *6)) (|:| -2875 (-644 (-455 *3 *4 *5 *6))))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3))))) (-3218 (*1 *1) (-12 (-5 *1 (-455 *2 *3 *4 *5)) (-4 *2 (-172)) (-14 *3 (-921)) (-14 *4 (-644 (-1175))) (-14 *5 (-1264 (-689 *2))))) (-3218 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 *2)) (-14 *6 (-1264 (-689 *3))))) (-3218 (*1 *1 *2) (-12 (-5 *2 (-1264 (-1175))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3))))) (-3218 (*1 *1 *2) (-12 (-5 *2 (-1264 (-455 *3 *4 *5 *6))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3))))) (-3218 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-455 *4 *5 *6 *7))) (-5 *1 (-455 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-921)) (-14 *6 (-644 *2)) (-14 *7 (-1264 (-689 *4))))) (-3218 (*1 *1 *2 *3) (-12 (-5 *2 (-1264 (-1175))) (-5 *3 (-1264 (-455 *4 *5 *6 *7))) (-5 *1 (-455 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-921)) (-14 *6 (-644 (-1175))) (-14 *7 (-1264 (-689 *4))))) (-1793 (*1 *2) (-12 (-5 *2 (-1171 (-409 (-952 *3)))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3))))) (-1894 (*1 *2 *1) (-12 (-5 *2 (-1171 (-409 (-952 *3)))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3))))) (-3064 (*1 *2 *1) (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3))))) (-2327 (*1 *2 *1) (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3))))) (-3031 (*1 *2) (-12 (-5 *2 (-1171 (-409 (-952 *3)))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3))))) (-3708 (*1 *2 *1) (-12 (-5 *2 (-1171 (-409 (-952 *3)))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3))))) (-2677 (*1 *2 *1) (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3))))) (-3266 (*1 *2 *1) (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3))))) (-1790 (*1 *2 *1 *1) (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3))))) (-1599 (*1 *2) (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3))))) (-3327 (*1 *2 *1 *1) (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3))))) (-2714 (*1 *2) (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3))))) (-2861 (*1 *2 *3) (-12 (-5 *3 (-1264 (-455 *4 *5 *6 *7))) (-5 *2 (-644 (-952 *4))) (-5 *1 (-455 *4 *5 *6 *7)) (-4 *4 (-558)) (-4 *4 (-172)) (-14 *5 (-921)) (-14 *6 (-644 (-1175))) (-14 *7 (-1264 (-689 *4))))) (-2861 (*1 *2) (-12 (-5 *2 (-644 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3)))))) +(-13 (-419 (-409 (-952 |#1|))) (-648 (-1141 |#2| (-409 (-952 |#1|)))) (-10 -8 (-15 -3152 ($ (-1264 (-409 (-952 |#1|))))) (-15 -1476 ((-3 (-2 (|:| |particular| $) (|:| -2875 (-644 $))) "failed"))) (-15 -3574 ((-3 (-2 (|:| |particular| $) (|:| -2875 (-644 $))) "failed"))) (-15 -3218 ($)) (-15 -3218 ($ (-1175))) (-15 -3218 ($ (-1264 (-1175)))) (-15 -3218 ($ (-1264 $))) (-15 -3218 ($ (-1175) (-1264 $))) (-15 -3218 ($ (-1264 (-1175)) (-1264 $))) (IF (|has| |#1| (-558)) (PROGN (-15 -1793 ((-1171 (-409 (-952 |#1|))))) (-15 -1894 ((-1171 (-409 (-952 |#1|))) $)) (-15 -3064 ((-409 (-952 |#1|)) $)) (-15 -2327 ((-409 (-952 |#1|)) $)) (-15 -3031 ((-1171 (-409 (-952 |#1|))))) (-15 -3708 ((-1171 (-409 (-952 |#1|))) $)) (-15 -2677 ((-409 (-952 |#1|)) $)) (-15 -3266 ((-409 (-952 |#1|)) $)) (-15 -1790 ((-409 (-952 |#1|)) $ $)) (-15 -1599 ((-409 (-952 |#1|)))) (-15 -3327 ((-409 (-952 |#1|)) $ $)) (-15 -2714 ((-409 (-952 |#1|)))) (-15 -2861 ((-644 (-952 |#1|)) (-1264 $))) (-15 -2861 ((-644 (-952 |#1|))))) |%noBranch|))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) 18)) (-1771 (((-644 (-864 |#1|)) $) 92)) (-1590 (((-1171 $) $ (-864 |#1|)) 55) (((-1171 |#2|) $) 143)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#2| (-558)))) (-2161 (($ $) NIL (|has| |#2| (-558)))) (-2345 (((-112) $) NIL (|has| |#2| (-558)))) (-1357 (((-771) $) 27) (((-771) $ (-644 (-864 |#1|))) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-2292 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-1378 (($ $) NIL (|has| |#2| (-454)))) (-1364 (((-420 $) $) NIL (|has| |#2| (-454)))) (-4066 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-2463 (($) NIL T CONST)) (-2229 (((-3 |#2| "failed") $) 53) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#2| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#2| (-1038 (-566)))) (((-3 (-864 |#1|) "failed") $) NIL)) (-4158 ((|#2| $) 51) (((-409 (-566)) $) NIL (|has| |#2| (-1038 (-409 (-566))))) (((-566) $) NIL (|has| |#2| (-1038 (-566)))) (((-864 |#1|) $) NIL)) (-2610 (($ $ $ (-864 |#1|)) NIL (|has| |#2| (-172)))) (-1416 (($ $ (-644 (-566))) 98)) (-2814 (($ $) 85)) (-4089 (((-689 (-566)) (-689 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -3361 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 $) (-1264 $)) NIL) (((-689 |#2|) (-689 $)) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-2616 (($ $) NIL (|has| |#2| (-454))) (($ $ (-864 |#1|)) NIL (|has| |#2| (-454)))) (-2804 (((-644 $) $) NIL)) (-1615 (((-112) $) NIL (|has| |#2| (-909)))) (-1896 (($ $ |#2| |#3| $) NIL)) (-2926 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| (-864 |#1|) (-886 (-381))) (|has| |#2| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| (-864 |#1|) (-886 (-566))) (|has| |#2| (-886 (-566)))))) (-2389 (((-112) $) NIL)) (-3039 (((-771) $) 68)) (-1757 (($ (-1171 |#2|) (-864 |#1|)) 148) (($ (-1171 $) (-864 |#1|)) 61)) (-1587 (((-644 $) $) NIL)) (-2497 (((-112) $) 71)) (-1746 (($ |#2| |#3|) 38) (($ $ (-864 |#1|) (-771)) 40) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-2815 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $ (-864 |#1|)) NIL)) (-2749 ((|#3| $) NIL) (((-771) $ (-864 |#1|)) 59) (((-644 (-771)) $ (-644 (-864 |#1|))) 66)) (-3021 (($ (-1 |#3| |#3|) $) NIL)) (-2319 (($ (-1 |#2| |#2|) $) NIL)) (-2297 (((-3 (-864 |#1|) "failed") $) 48)) (-2784 (($ $) NIL)) (-2794 ((|#2| $) 50)) (-2128 (($ (-644 $)) NIL (|has| |#2| (-454))) (($ $ $) NIL (|has| |#2| (-454)))) (-3380 (((-1157) $) NIL)) (-3738 (((-3 (-644 $) "failed") $) NIL)) (-4199 (((-3 (-644 $) "failed") $) NIL)) (-4108 (((-3 (-2 (|:| |var| (-864 |#1|)) (|:| -2201 (-771))) "failed") $) NIL)) (-4072 (((-1119) $) NIL)) (-2761 (((-112) $) 49)) (-2773 ((|#2| $) 141)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#2| (-454)))) (-2164 (($ (-644 $)) NIL (|has| |#2| (-454))) (($ $ $) 154 (|has| |#2| (-454)))) (-2010 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-1893 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-1624 (((-420 $) $) NIL (|has| |#2| (-909)))) (-2978 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-558))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-558)))) (-2023 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-864 |#1|) |#2|) 105) (($ $ (-644 (-864 |#1|)) (-644 |#2|)) 111) (($ $ (-864 |#1|) $) 103) (($ $ (-644 (-864 |#1|)) (-644 $)) 129)) (-4068 (($ $ (-864 |#1|)) NIL (|has| |#2| (-172)))) (-3629 (($ $ (-864 |#1|)) 62) (($ $ (-644 (-864 |#1|))) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-3902 ((|#3| $) 84) (((-771) $ (-864 |#1|)) 45) (((-644 (-771)) $ (-644 (-864 |#1|))) 65)) (-2376 (((-892 (-381)) $) NIL (-12 (|has| (-864 |#1|) (-614 (-892 (-381)))) (|has| |#2| (-614 (-892 (-381)))))) (((-892 (-566)) $) NIL (-12 (|has| (-864 |#1|) (-614 (-892 (-566)))) (|has| |#2| (-614 (-892 (-566)))))) (((-538) $) NIL (-12 (|has| (-864 |#1|) (-614 (-538))) (|has| |#2| (-614 (-538)))))) (-3173 ((|#2| $) 150 (|has| |#2| (-454))) (($ $ (-864 |#1|)) NIL (|has| |#2| (-454)))) (-3391 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-909))))) (-3152 (((-862) $) 179) (($ (-566)) NIL) (($ |#2|) 104) (($ (-864 |#1|)) 42) (($ (-409 (-566))) NIL (-2768 (|has| |#2| (-38 (-409 (-566)))) (|has| |#2| (-1038 (-409 (-566)))))) (($ $) NIL (|has| |#2| (-558)))) (-1643 (((-644 |#2|) $) NIL)) (-2271 ((|#2| $ |#3|) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-2633 (((-3 $ "failed") $) NIL (-2768 (-12 (|has| $ (-145)) (|has| |#2| (-909))) (|has| |#2| (-145))))) (-2593 (((-771)) NIL T CONST)) (-2021 (($ $ $ (-771)) NIL (|has| |#2| (-172)))) (-3044 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL (|has| |#2| (-558)))) (-4356 (($) 22 T CONST)) (-4366 (($) 31 T CONST)) (-3497 (($ $ (-864 |#1|)) NIL) (($ $ (-644 (-864 |#1|))) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-2914 (((-112) $ $) NIL)) (-3025 (($ $ |#2|) 81 (|has| |#2| (-365)))) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) 136)) (** (($ $ (-921)) NIL) (($ $ (-771)) 134)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 39) (($ $ (-409 (-566))) NIL (|has| |#2| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#2| (-38 (-409 (-566))))) (($ |#2| $) 80) (($ $ |#2|) NIL))) +(((-456 |#1| |#2| |#3|) (-13 (-949 |#2| |#3| (-864 |#1|)) (-10 -8 (-15 -1416 ($ $ (-644 (-566)))))) (-644 (-1175)) (-1049) (-238 (-3000 |#1|) (-771))) (T -456)) +((-1416 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-566))) (-14 *3 (-644 (-1175))) (-5 *1 (-456 *3 *4 *5)) (-4 *4 (-1049)) (-4 *5 (-238 (-3000 *3) (-771)))))) +(-13 (-949 |#2| |#3| (-864 |#1|)) (-10 -8 (-15 -1416 ($ $ (-644 (-566)))))) +((-3087 (((-112) |#1| (-644 |#2|)) 94)) (-1543 (((-3 (-1264 (-644 |#2|)) "failed") (-771) |#1| (-644 |#2|)) 103)) (-1486 (((-3 (-644 |#2|) "failed") |#2| |#1| (-1264 (-644 |#2|))) 105)) (-1736 ((|#2| |#2| |#1|) 35)) (-2484 (((-771) |#2| (-644 |#2|)) 26))) +(((-457 |#1| |#2|) (-10 -7 (-15 -1736 (|#2| |#2| |#1|)) (-15 -2484 ((-771) |#2| (-644 |#2|))) (-15 -1543 ((-3 (-1264 (-644 |#2|)) "failed") (-771) |#1| (-644 |#2|))) (-15 -1486 ((-3 (-644 |#2|) "failed") |#2| |#1| (-1264 (-644 |#2|)))) (-15 -3087 ((-112) |#1| (-644 |#2|)))) (-308) (-1240 |#1|)) (T -457)) +((-3087 (*1 *2 *3 *4) (-12 (-5 *4 (-644 *5)) (-4 *5 (-1240 *3)) (-4 *3 (-308)) (-5 *2 (-112)) (-5 *1 (-457 *3 *5)))) (-1486 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1264 (-644 *3))) (-4 *4 (-308)) (-5 *2 (-644 *3)) (-5 *1 (-457 *4 *3)) (-4 *3 (-1240 *4)))) (-1543 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-771)) (-4 *4 (-308)) (-4 *6 (-1240 *4)) (-5 *2 (-1264 (-644 *6))) (-5 *1 (-457 *4 *6)) (-5 *5 (-644 *6)))) (-2484 (*1 *2 *3 *4) (-12 (-5 *4 (-644 *3)) (-4 *3 (-1240 *5)) (-4 *5 (-308)) (-5 *2 (-771)) (-5 *1 (-457 *5 *3)))) (-1736 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-5 *1 (-457 *3 *2)) (-4 *2 (-1240 *3))))) +(-10 -7 (-15 -1736 (|#2| |#2| |#1|)) (-15 -2484 ((-771) |#2| (-644 |#2|))) (-15 -1543 ((-3 (-1264 (-644 |#2|)) "failed") (-771) |#1| (-644 |#2|))) (-15 -1486 ((-3 (-644 |#2|) "failed") |#2| |#1| (-1264 (-644 |#2|)))) (-15 -3087 ((-112) |#1| (-644 |#2|)))) +((-1624 (((-420 |#5|) |#5|) 24))) +(((-458 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1624 ((-420 |#5|) |#5|))) (-13 (-850) (-10 -8 (-15 -2376 ((-1175) $)) (-15 -4347 ((-3 $ "failed") (-1175))))) (-793) (-558) (-558) (-949 |#4| |#2| |#1|)) (T -458)) +((-1624 (*1 *2 *3) (-12 (-4 *4 (-13 (-850) (-10 -8 (-15 -2376 ((-1175) $)) (-15 -4347 ((-3 $ "failed") (-1175)))))) (-4 *5 (-793)) (-4 *7 (-558)) (-5 *2 (-420 *3)) (-5 *1 (-458 *4 *5 *6 *7 *3)) (-4 *6 (-558)) (-4 *3 (-949 *7 *5 *4))))) +(-10 -7 (-15 -1624 ((-420 |#5|) |#5|))) +((-4054 ((|#3|) 40)) (-4170 (((-1171 |#4|) (-1171 |#4|) (-1171 |#4|)) 36))) +(((-459 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4170 ((-1171 |#4|) (-1171 |#4|) (-1171 |#4|))) (-15 -4054 (|#3|))) (-793) (-850) (-909) (-949 |#3| |#1| |#2|)) (T -459)) +((-4054 (*1 *2) (-12 (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-909)) (-5 *1 (-459 *3 *4 *2 *5)) (-4 *5 (-949 *2 *3 *4)))) (-4170 (*1 *2 *2 *2) (-12 (-5 *2 (-1171 *6)) (-4 *6 (-949 *5 *3 *4)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *5 (-909)) (-5 *1 (-459 *3 *4 *5 *6))))) +(-10 -7 (-15 -4170 ((-1171 |#4|) (-1171 |#4|) (-1171 |#4|))) (-15 -4054 (|#3|))) +((-1624 (((-420 (-1171 |#1|)) (-1171 |#1|)) 43))) +(((-460 |#1|) (-10 -7 (-15 -1624 ((-420 (-1171 |#1|)) (-1171 |#1|)))) (-308)) (T -460)) +((-1624 (*1 *2 *3) (-12 (-4 *4 (-308)) (-5 *2 (-420 (-1171 *4))) (-5 *1 (-460 *4)) (-5 *3 (-1171 *4))))) +(-10 -7 (-15 -1624 ((-420 (-1171 |#1|)) (-1171 |#1|)))) +((-1827 (((-52) |#2| (-1175) (-295 |#2|) (-1231 (-771))) 44) (((-52) (-1 |#2| (-566)) (-295 |#2|) (-1231 (-771))) 43) (((-52) |#2| (-1175) (-295 |#2|)) 36) (((-52) (-1 |#2| (-566)) (-295 |#2|)) 29)) (-1427 (((-52) |#2| (-1175) (-295 |#2|) (-1231 (-409 (-566))) (-409 (-566))) 88) (((-52) (-1 |#2| (-409 (-566))) (-295 |#2|) (-1231 (-409 (-566))) (-409 (-566))) 87) (((-52) |#2| (-1175) (-295 |#2|) (-1231 (-566))) 86) (((-52) (-1 |#2| (-566)) (-295 |#2|) (-1231 (-566))) 85) (((-52) |#2| (-1175) (-295 |#2|)) 80) (((-52) (-1 |#2| (-566)) (-295 |#2|)) 79)) (-2729 (((-52) |#2| (-1175) (-295 |#2|) (-1231 (-409 (-566))) (-409 (-566))) 74) (((-52) (-1 |#2| (-409 (-566))) (-295 |#2|) (-1231 (-409 (-566))) (-409 (-566))) 72)) (-2719 (((-52) |#2| (-1175) (-295 |#2|) (-1231 (-566))) 51) (((-52) (-1 |#2| (-566)) (-295 |#2|) (-1231 (-566))) 50))) +(((-461 |#1| |#2|) (-10 -7 (-15 -1827 ((-52) (-1 |#2| (-566)) (-295 |#2|))) (-15 -1827 ((-52) |#2| (-1175) (-295 |#2|))) (-15 -1827 ((-52) (-1 |#2| (-566)) (-295 |#2|) (-1231 (-771)))) (-15 -1827 ((-52) |#2| (-1175) (-295 |#2|) (-1231 (-771)))) (-15 -2719 ((-52) (-1 |#2| (-566)) (-295 |#2|) (-1231 (-566)))) (-15 -2719 ((-52) |#2| (-1175) (-295 |#2|) (-1231 (-566)))) (-15 -2729 ((-52) (-1 |#2| (-409 (-566))) (-295 |#2|) (-1231 (-409 (-566))) (-409 (-566)))) (-15 -2729 ((-52) |#2| (-1175) (-295 |#2|) (-1231 (-409 (-566))) (-409 (-566)))) (-15 -1427 ((-52) (-1 |#2| (-566)) (-295 |#2|))) (-15 -1427 ((-52) |#2| (-1175) (-295 |#2|))) (-15 -1427 ((-52) (-1 |#2| (-566)) (-295 |#2|) (-1231 (-566)))) (-15 -1427 ((-52) |#2| (-1175) (-295 |#2|) (-1231 (-566)))) (-15 -1427 ((-52) (-1 |#2| (-409 (-566))) (-295 |#2|) (-1231 (-409 (-566))) (-409 (-566)))) (-15 -1427 ((-52) |#2| (-1175) (-295 |#2|) (-1231 (-409 (-566))) (-409 (-566))))) (-13 (-558) (-1038 (-566)) (-639 (-566))) (-13 (-27) (-1199) (-432 |#1|))) (T -461)) +((-1427 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1175)) (-5 *5 (-295 *3)) (-5 *6 (-1231 (-409 (-566)))) (-5 *7 (-409 (-566))) (-4 *3 (-13 (-27) (-1199) (-432 *8))) (-4 *8 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-461 *8 *3)))) (-1427 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-409 (-566)))) (-5 *4 (-295 *8)) (-5 *5 (-1231 (-409 (-566)))) (-5 *6 (-409 (-566))) (-4 *8 (-13 (-27) (-1199) (-432 *7))) (-4 *7 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-461 *7 *8)))) (-1427 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1175)) (-5 *5 (-295 *3)) (-5 *6 (-1231 (-566))) (-4 *3 (-13 (-27) (-1199) (-432 *7))) (-4 *7 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-461 *7 *3)))) (-1427 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-566))) (-5 *4 (-295 *7)) (-5 *5 (-1231 (-566))) (-4 *7 (-13 (-27) (-1199) (-432 *6))) (-4 *6 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-461 *6 *7)))) (-1427 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1175)) (-5 *5 (-295 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *6))) (-4 *6 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-461 *6 *3)))) (-1427 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-566))) (-5 *4 (-295 *6)) (-4 *6 (-13 (-27) (-1199) (-432 *5))) (-4 *5 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-461 *5 *6)))) (-2729 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1175)) (-5 *5 (-295 *3)) (-5 *6 (-1231 (-409 (-566)))) (-5 *7 (-409 (-566))) (-4 *3 (-13 (-27) (-1199) (-432 *8))) (-4 *8 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-461 *8 *3)))) (-2729 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-409 (-566)))) (-5 *4 (-295 *8)) (-5 *5 (-1231 (-409 (-566)))) (-5 *6 (-409 (-566))) (-4 *8 (-13 (-27) (-1199) (-432 *7))) (-4 *7 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-461 *7 *8)))) (-2719 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1175)) (-5 *5 (-295 *3)) (-5 *6 (-1231 (-566))) (-4 *3 (-13 (-27) (-1199) (-432 *7))) (-4 *7 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-461 *7 *3)))) (-2719 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-566))) (-5 *4 (-295 *7)) (-5 *5 (-1231 (-566))) (-4 *7 (-13 (-27) (-1199) (-432 *6))) (-4 *6 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-461 *6 *7)))) (-1827 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1175)) (-5 *5 (-295 *3)) (-5 *6 (-1231 (-771))) (-4 *3 (-13 (-27) (-1199) (-432 *7))) (-4 *7 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-461 *7 *3)))) (-1827 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-566))) (-5 *4 (-295 *7)) (-5 *5 (-1231 (-771))) (-4 *7 (-13 (-27) (-1199) (-432 *6))) (-4 *6 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-461 *6 *7)))) (-1827 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1175)) (-5 *5 (-295 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *6))) (-4 *6 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-461 *6 *3)))) (-1827 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-566))) (-5 *4 (-295 *6)) (-4 *6 (-13 (-27) (-1199) (-432 *5))) (-4 *5 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-461 *5 *6))))) +(-10 -7 (-15 -1827 ((-52) (-1 |#2| (-566)) (-295 |#2|))) (-15 -1827 ((-52) |#2| (-1175) (-295 |#2|))) (-15 -1827 ((-52) (-1 |#2| (-566)) (-295 |#2|) (-1231 (-771)))) (-15 -1827 ((-52) |#2| (-1175) (-295 |#2|) (-1231 (-771)))) (-15 -2719 ((-52) (-1 |#2| (-566)) (-295 |#2|) (-1231 (-566)))) (-15 -2719 ((-52) |#2| (-1175) (-295 |#2|) (-1231 (-566)))) (-15 -2729 ((-52) (-1 |#2| (-409 (-566))) (-295 |#2|) (-1231 (-409 (-566))) (-409 (-566)))) (-15 -2729 ((-52) |#2| (-1175) (-295 |#2|) (-1231 (-409 (-566))) (-409 (-566)))) (-15 -1427 ((-52) (-1 |#2| (-566)) (-295 |#2|))) (-15 -1427 ((-52) |#2| (-1175) (-295 |#2|))) (-15 -1427 ((-52) (-1 |#2| (-566)) (-295 |#2|) (-1231 (-566)))) (-15 -1427 ((-52) |#2| (-1175) (-295 |#2|) (-1231 (-566)))) (-15 -1427 ((-52) (-1 |#2| (-409 (-566))) (-295 |#2|) (-1231 (-409 (-566))) (-409 (-566)))) (-15 -1427 ((-52) |#2| (-1175) (-295 |#2|) (-1231 (-409 (-566))) (-409 (-566))))) +((-1736 ((|#2| |#2| |#1|) 15)) (-2178 (((-644 |#2|) |#2| (-644 |#2|) |#1| (-921)) 82)) (-3251 (((-2 (|:| |plist| (-644 |#2|)) (|:| |modulo| |#1|)) |#2| (-644 |#2|) |#1| (-921)) 72))) +(((-462 |#1| |#2|) (-10 -7 (-15 -3251 ((-2 (|:| |plist| (-644 |#2|)) (|:| |modulo| |#1|)) |#2| (-644 |#2|) |#1| (-921))) (-15 -2178 ((-644 |#2|) |#2| (-644 |#2|) |#1| (-921))) (-15 -1736 (|#2| |#2| |#1|))) (-308) (-1240 |#1|)) (T -462)) +((-1736 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-5 *1 (-462 *3 *2)) (-4 *2 (-1240 *3)))) (-2178 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-644 *3)) (-5 *5 (-921)) (-4 *3 (-1240 *4)) (-4 *4 (-308)) (-5 *1 (-462 *4 *3)))) (-3251 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-921)) (-4 *5 (-308)) (-4 *3 (-1240 *5)) (-5 *2 (-2 (|:| |plist| (-644 *3)) (|:| |modulo| *5))) (-5 *1 (-462 *5 *3)) (-5 *4 (-644 *3))))) +(-10 -7 (-15 -3251 ((-2 (|:| |plist| (-644 |#2|)) (|:| |modulo| |#1|)) |#2| (-644 |#2|) |#1| (-921))) (-15 -2178 ((-644 |#2|) |#2| (-644 |#2|) |#1| (-921))) (-15 -1736 (|#2| |#2| |#1|))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) 28)) (-1570 (($ |#3|) 25)) (-3967 (((-3 $ "failed") $ $) NIL)) (-2463 (($) NIL T CONST)) (-2814 (($ $) 32)) (-1398 (($ |#2| |#4| $) 33)) (-1746 (($ |#2| (-713 |#3| |#4| |#5|)) 24)) (-2784 (((-713 |#3| |#4| |#5|) $) 15)) (-2790 ((|#3| $) 19)) (-3746 ((|#4| $) 17)) (-2794 ((|#2| $) 29)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) NIL)) (-2012 (($ |#2| |#3| |#4|) 26)) (-3044 (((-112) $ $) NIL)) (-4356 (($) 36 T CONST)) (-2914 (((-112) $ $) NIL)) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) 34)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-463 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-717 |#6|) (-717 |#2|) (-10 -8 (-15 -2794 (|#2| $)) (-15 -2784 ((-713 |#3| |#4| |#5|) $)) (-15 -3746 (|#4| $)) (-15 -2790 (|#3| $)) (-15 -2814 ($ $)) (-15 -1746 ($ |#2| (-713 |#3| |#4| |#5|))) (-15 -1570 ($ |#3|)) (-15 -2012 ($ |#2| |#3| |#4|)) (-15 -1398 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-644 (-1175)) (-172) (-850) (-238 (-3000 |#1|) (-771)) (-1 (-112) (-2 (|:| -2835 |#3|) (|:| -2201 |#4|)) (-2 (|:| -2835 |#3|) (|:| -2201 |#4|))) (-949 |#2| |#4| (-864 |#1|))) (T -463)) +((* (*1 *1 *2 *1) (-12 (-14 *3 (-644 (-1175))) (-4 *4 (-172)) (-4 *6 (-238 (-3000 *3) (-771))) (-14 *7 (-1 (-112) (-2 (|:| -2835 *5) (|:| -2201 *6)) (-2 (|:| -2835 *5) (|:| -2201 *6)))) (-5 *1 (-463 *3 *4 *5 *6 *7 *2)) (-4 *5 (-850)) (-4 *2 (-949 *4 *6 (-864 *3))))) (-2794 (*1 *2 *1) (-12 (-14 *3 (-644 (-1175))) (-4 *5 (-238 (-3000 *3) (-771))) (-14 *6 (-1 (-112) (-2 (|:| -2835 *4) (|:| -2201 *5)) (-2 (|:| -2835 *4) (|:| -2201 *5)))) (-4 *2 (-172)) (-5 *1 (-463 *3 *2 *4 *5 *6 *7)) (-4 *4 (-850)) (-4 *7 (-949 *2 *5 (-864 *3))))) (-2784 (*1 *2 *1) (-12 (-14 *3 (-644 (-1175))) (-4 *4 (-172)) (-4 *6 (-238 (-3000 *3) (-771))) (-14 *7 (-1 (-112) (-2 (|:| -2835 *5) (|:| -2201 *6)) (-2 (|:| -2835 *5) (|:| -2201 *6)))) (-5 *2 (-713 *5 *6 *7)) (-5 *1 (-463 *3 *4 *5 *6 *7 *8)) (-4 *5 (-850)) (-4 *8 (-949 *4 *6 (-864 *3))))) (-3746 (*1 *2 *1) (-12 (-14 *3 (-644 (-1175))) (-4 *4 (-172)) (-14 *6 (-1 (-112) (-2 (|:| -2835 *5) (|:| -2201 *2)) (-2 (|:| -2835 *5) (|:| -2201 *2)))) (-4 *2 (-238 (-3000 *3) (-771))) (-5 *1 (-463 *3 *4 *5 *2 *6 *7)) (-4 *5 (-850)) (-4 *7 (-949 *4 *2 (-864 *3))))) (-2790 (*1 *2 *1) (-12 (-14 *3 (-644 (-1175))) (-4 *4 (-172)) (-4 *5 (-238 (-3000 *3) (-771))) (-14 *6 (-1 (-112) (-2 (|:| -2835 *2) (|:| -2201 *5)) (-2 (|:| -2835 *2) (|:| -2201 *5)))) (-4 *2 (-850)) (-5 *1 (-463 *3 *4 *2 *5 *6 *7)) (-4 *7 (-949 *4 *5 (-864 *3))))) (-2814 (*1 *1 *1) (-12 (-14 *2 (-644 (-1175))) (-4 *3 (-172)) (-4 *5 (-238 (-3000 *2) (-771))) (-14 *6 (-1 (-112) (-2 (|:| -2835 *4) (|:| -2201 *5)) (-2 (|:| -2835 *4) (|:| -2201 *5)))) (-5 *1 (-463 *2 *3 *4 *5 *6 *7)) (-4 *4 (-850)) (-4 *7 (-949 *3 *5 (-864 *2))))) (-1746 (*1 *1 *2 *3) (-12 (-5 *3 (-713 *5 *6 *7)) (-4 *5 (-850)) (-4 *6 (-238 (-3000 *4) (-771))) (-14 *7 (-1 (-112) (-2 (|:| -2835 *5) (|:| -2201 *6)) (-2 (|:| -2835 *5) (|:| -2201 *6)))) (-14 *4 (-644 (-1175))) (-4 *2 (-172)) (-5 *1 (-463 *4 *2 *5 *6 *7 *8)) (-4 *8 (-949 *2 *6 (-864 *4))))) (-1570 (*1 *1 *2) (-12 (-14 *3 (-644 (-1175))) (-4 *4 (-172)) (-4 *5 (-238 (-3000 *3) (-771))) (-14 *6 (-1 (-112) (-2 (|:| -2835 *2) (|:| -2201 *5)) (-2 (|:| -2835 *2) (|:| -2201 *5)))) (-5 *1 (-463 *3 *4 *2 *5 *6 *7)) (-4 *2 (-850)) (-4 *7 (-949 *4 *5 (-864 *3))))) (-2012 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-644 (-1175))) (-4 *2 (-172)) (-4 *4 (-238 (-3000 *5) (-771))) (-14 *6 (-1 (-112) (-2 (|:| -2835 *3) (|:| -2201 *4)) (-2 (|:| -2835 *3) (|:| -2201 *4)))) (-5 *1 (-463 *5 *2 *3 *4 *6 *7)) (-4 *3 (-850)) (-4 *7 (-949 *2 *4 (-864 *5))))) (-1398 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-644 (-1175))) (-4 *2 (-172)) (-4 *3 (-238 (-3000 *4) (-771))) (-14 *6 (-1 (-112) (-2 (|:| -2835 *5) (|:| -2201 *3)) (-2 (|:| -2835 *5) (|:| -2201 *3)))) (-5 *1 (-463 *4 *2 *5 *3 *6 *7)) (-4 *5 (-850)) (-4 *7 (-949 *2 *3 (-864 *4)))))) +(-13 (-717 |#6|) (-717 |#2|) (-10 -8 (-15 -2794 (|#2| $)) (-15 -2784 ((-713 |#3| |#4| |#5|) $)) (-15 -3746 (|#4| $)) (-15 -2790 (|#3| $)) (-15 -2814 ($ $)) (-15 -1746 ($ |#2| (-713 |#3| |#4| |#5|))) (-15 -1570 ($ |#3|)) (-15 -2012 ($ |#2| |#3| |#4|)) (-15 -1398 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) +((-3392 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39))) +(((-464 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3392 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-793) (-850) (-558) (-949 |#3| |#1| |#2|) (-13 (-1038 (-409 (-566))) (-365) (-10 -8 (-15 -3152 ($ |#4|)) (-15 -2248 (|#4| $)) (-15 -2260 (|#4| $))))) (T -464)) +((-3392 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-850)) (-4 *5 (-793)) (-4 *6 (-558)) (-4 *7 (-949 *6 *5 *3)) (-5 *1 (-464 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1038 (-409 (-566))) (-365) (-10 -8 (-15 -3152 ($ *7)) (-15 -2248 (*7 $)) (-15 -2260 (*7 $)))))))) +(-10 -7 (-15 -3392 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) +((-2988 (((-112) $ $) NIL)) (-1771 (((-644 |#3|) $) 41)) (-3071 (((-112) $) NIL)) (-3274 (((-112) $) NIL (|has| |#1| (-558)))) (-2671 (((-2 (|:| |under| $) (|:| -3143 $) (|:| |upper| $)) $ |#3|) NIL)) (-1504 (((-112) $ (-771)) NIL)) (-3678 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4414)))) (-2463 (($) NIL T CONST)) (-3036 (((-112) $) NIL (|has| |#1| (-558)))) (-1963 (((-112) $ $) NIL (|has| |#1| (-558)))) (-2983 (((-112) $ $) NIL (|has| |#1| (-558)))) (-1477 (((-112) $) NIL (|has| |#1| (-558)))) (-1789 (((-644 |#4|) (-644 |#4|) $) NIL (|has| |#1| (-558)))) (-2228 (((-644 |#4|) (-644 |#4|) $) NIL (|has| |#1| (-558)))) (-2229 (((-3 $ "failed") (-644 |#4|)) 49)) (-4158 (($ (-644 |#4|)) NIL)) (-3942 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#4| (-1099))))) (-2622 (($ |#4| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#4| (-1099)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4414)))) (-3264 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-558)))) (-2873 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4414)) (|has| |#4| (-1099)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4414))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4414)))) (-1683 (((-644 |#4|) $) 18 (|has| $ (-6 -4414)))) (-4296 ((|#3| $) 47)) (-3456 (((-112) $ (-771)) NIL)) (-3491 (((-644 |#4|) $) 14 (|has| $ (-6 -4414)))) (-1602 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4414)) (|has| |#4| (-1099))))) (-3885 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#4| |#4|) $) 21)) (-1785 (((-644 |#3|) $) NIL)) (-1579 (((-112) |#3| $) NIL)) (-3267 (((-112) $ (-771)) NIL)) (-3380 (((-1157) $) NIL)) (-2594 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-558)))) (-4072 (((-1119) $) NIL)) (-3668 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2823 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 |#4|) (-644 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-644 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))) (-3814 (((-112) $ $) NIL)) (-2872 (((-112) $) 39)) (-3493 (($) 17)) (-4083 (((-771) |#4| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#4| (-1099)))) (((-771) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4414)))) (-1480 (($ $) 16)) (-2376 (((-538) $) NIL (|has| |#4| (-614 (-538)))) (($ (-644 |#4|)) 51)) (-1340 (($ (-644 |#4|)) 13)) (-4305 (($ $ |#3|) NIL)) (-1702 (($ $ |#3|) NIL)) (-3809 (($ $ |#3|) NIL)) (-3152 (((-862) $) 38) (((-644 |#4|) $) 50)) (-3044 (((-112) $ $) NIL)) (-2210 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) 30)) (-3000 (((-771) $) NIL (|has| $ (-6 -4414))))) +(((-465 |#1| |#2| |#3| |#4|) (-13 (-976 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2376 ($ (-644 |#4|))) (-6 -4414) (-6 -4415))) (-1049) (-793) (-850) (-1064 |#1| |#2| |#3|)) (T -465)) +((-2376 (*1 *1 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-465 *3 *4 *5 *6))))) +(-13 (-976 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2376 ($ (-644 |#4|))) (-6 -4414) (-6 -4415))) +((-4356 (($) 11)) (-4366 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) +(((-466 |#1| |#2| |#3|) (-10 -8 (-15 -4366 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4356 (|#1|))) (-467 |#2| |#3|) (-172) (-23)) (T -466)) +NIL +(-10 -8 (-15 -4366 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4356 (|#1|))) +((-2988 (((-112) $ $) 7)) (-2229 (((-3 |#1| "failed") $) 27)) (-4158 ((|#1| $) 28)) (-2014 (($ $ $) 24)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3902 ((|#2| $) 20)) (-3152 (((-862) $) 12) (($ |#1|) 26)) (-3044 (((-112) $ $) 9)) (-4356 (($) 19 T CONST)) (-4366 (($) 25 T CONST)) (-2914 (((-112) $ $) 6)) (-3012 (($ $) 16) (($ $ $) 14)) (-3002 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) (((-467 |#1| |#2|) (-140) (-172) (-23)) (T -467)) -((-4334 (*1 *1) (-12 (-4 *1 (-467 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-2235 (*1 *1 *1 *1) (-12 (-4 *1 (-467 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))) -(-13 (-472 |t#1| |t#2|) (-1038 |t#1|) (-10 -8 (-15 (-4334) ($) -3704) (-15 -2235 ($ $ $)))) +((-4366 (*1 *1) (-12 (-4 *1 (-467 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-2014 (*1 *1 *1 *1) (-12 (-4 *1 (-467 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))) +(-13 (-472 |t#1| |t#2|) (-1038 |t#1|) (-10 -8 (-15 (-4366) ($) -1623) (-15 -2014 ($ $ $)))) (((-102) . T) ((-616 |#1|) . T) ((-613 (-862)) . T) ((-472 |#1| |#2|) . T) ((-1038 |#1|) . T) ((-1099) . T)) -((-2416 (((-1264 (-1264 (-566))) (-1264 (-1264 (-566))) (-921)) 29)) (-4097 (((-1264 (-1264 (-566))) (-921)) 24))) -(((-468) (-10 -7 (-15 -2416 ((-1264 (-1264 (-566))) (-1264 (-1264 (-566))) (-921))) (-15 -4097 ((-1264 (-1264 (-566))) (-921))))) (T -468)) -((-4097 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1264 (-1264 (-566)))) (-5 *1 (-468)))) (-2416 (*1 *2 *2 *3) (-12 (-5 *2 (-1264 (-1264 (-566)))) (-5 *3 (-921)) (-5 *1 (-468))))) -(-10 -7 (-15 -2416 ((-1264 (-1264 (-566))) (-1264 (-1264 (-566))) (-921))) (-15 -4097 ((-1264 (-1264 (-566))) (-921)))) -((-3192 (((-566) (-566)) 32) (((-566)) 24)) (-3751 (((-566) (-566)) 28) (((-566)) 20)) (-3252 (((-566) (-566)) 30) (((-566)) 22)) (-4351 (((-112) (-112)) 14) (((-112)) 12)) (-4088 (((-112) (-112)) 13) (((-112)) 11)) (-2400 (((-112) (-112)) 26) (((-112)) 17))) -(((-469) (-10 -7 (-15 -4088 ((-112))) (-15 -4351 ((-112))) (-15 -4088 ((-112) (-112))) (-15 -4351 ((-112) (-112))) (-15 -2400 ((-112))) (-15 -3252 ((-566))) (-15 -3751 ((-566))) (-15 -3192 ((-566))) (-15 -2400 ((-112) (-112))) (-15 -3252 ((-566) (-566))) (-15 -3751 ((-566) (-566))) (-15 -3192 ((-566) (-566))))) (T -469)) -((-3192 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-469)))) (-3751 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-469)))) (-3252 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-469)))) (-2400 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-469)))) (-3192 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-469)))) (-3751 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-469)))) (-3252 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-469)))) (-2400 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-469)))) (-4351 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-469)))) (-4088 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-469)))) (-4351 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-469)))) (-4088 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-469))))) -(-10 -7 (-15 -4088 ((-112))) (-15 -4351 ((-112))) (-15 -4088 ((-112) (-112))) (-15 -4351 ((-112) (-112))) (-15 -2400 ((-112))) (-15 -3252 ((-566))) (-15 -3751 ((-566))) (-15 -3192 ((-566))) (-15 -2400 ((-112) (-112))) (-15 -3252 ((-566) (-566))) (-15 -3751 ((-566) (-566))) (-15 -3192 ((-566) (-566)))) -((-3007 (((-112) $ $) NIL)) (-3206 (((-644 (-381)) $) 34) (((-644 (-381)) $ (-644 (-381))) 146)) (-3667 (((-644 (-1093 (-381))) $) 16) (((-644 (-1093 (-381))) $ (-644 (-1093 (-381)))) 142)) (-3190 (((-644 (-644 (-943 (-225)))) (-644 (-644 (-943 (-225)))) (-644 (-874))) 58)) (-4353 (((-644 (-644 (-943 (-225)))) $) 137)) (-2017 (((-1269) $ (-943 (-225)) (-874)) 163)) (-2065 (($ $) 136) (($ (-644 (-644 (-943 (-225))))) 149) (($ (-644 (-644 (-943 (-225)))) (-644 (-874)) (-644 (-874)) (-644 (-921))) 148) (($ (-644 (-644 (-943 (-225)))) (-644 (-874)) (-644 (-874)) (-644 (-921)) (-644 (-264))) 150)) (-4117 (((-1157) $) NIL)) (-2004 (((-566) $) 110)) (-4035 (((-1119) $) NIL)) (-3763 (($) 147)) (-3521 (((-644 (-225)) (-644 (-644 (-943 (-225))))) 89)) (-1390 (((-1269) $ (-644 (-943 (-225))) (-874) (-874) (-921)) 155) (((-1269) $ (-943 (-225))) 157) (((-1269) $ (-943 (-225)) (-874) (-874) (-921)) 156)) (-3783 (((-862) $) 169) (($ (-644 (-644 (-943 (-225))))) 164)) (-3117 (((-112) $ $) NIL)) (-4295 (((-1269) $ (-943 (-225))) 162)) (-2947 (((-112) $ $) NIL))) -(((-470) (-13 (-1099) (-10 -8 (-15 -3763 ($)) (-15 -2065 ($ $)) (-15 -2065 ($ (-644 (-644 (-943 (-225)))))) (-15 -2065 ($ (-644 (-644 (-943 (-225)))) (-644 (-874)) (-644 (-874)) (-644 (-921)))) (-15 -2065 ($ (-644 (-644 (-943 (-225)))) (-644 (-874)) (-644 (-874)) (-644 (-921)) (-644 (-264)))) (-15 -4353 ((-644 (-644 (-943 (-225)))) $)) (-15 -2004 ((-566) $)) (-15 -3667 ((-644 (-1093 (-381))) $)) (-15 -3667 ((-644 (-1093 (-381))) $ (-644 (-1093 (-381))))) (-15 -3206 ((-644 (-381)) $)) (-15 -3206 ((-644 (-381)) $ (-644 (-381)))) (-15 -1390 ((-1269) $ (-644 (-943 (-225))) (-874) (-874) (-921))) (-15 -1390 ((-1269) $ (-943 (-225)))) (-15 -1390 ((-1269) $ (-943 (-225)) (-874) (-874) (-921))) (-15 -4295 ((-1269) $ (-943 (-225)))) (-15 -2017 ((-1269) $ (-943 (-225)) (-874))) (-15 -3783 ($ (-644 (-644 (-943 (-225)))))) (-15 -3783 ((-862) $)) (-15 -3190 ((-644 (-644 (-943 (-225)))) (-644 (-644 (-943 (-225)))) (-644 (-874)))) (-15 -3521 ((-644 (-225)) (-644 (-644 (-943 (-225))))))))) (T -470)) -((-3783 (*1 *2 *1) (-12 (-5 *2 (-862)) (-5 *1 (-470)))) (-3763 (*1 *1) (-5 *1 (-470))) (-2065 (*1 *1 *1) (-5 *1 (-470))) (-2065 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 (-943 (-225))))) (-5 *1 (-470)))) (-2065 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-644 (-644 (-943 (-225))))) (-5 *3 (-644 (-874))) (-5 *4 (-644 (-921))) (-5 *1 (-470)))) (-2065 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-644 (-644 (-943 (-225))))) (-5 *3 (-644 (-874))) (-5 *4 (-644 (-921))) (-5 *5 (-644 (-264))) (-5 *1 (-470)))) (-4353 (*1 *2 *1) (-12 (-5 *2 (-644 (-644 (-943 (-225))))) (-5 *1 (-470)))) (-2004 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-470)))) (-3667 (*1 *2 *1) (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *1 (-470)))) (-3667 (*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *1 (-470)))) (-3206 (*1 *2 *1) (-12 (-5 *2 (-644 (-381))) (-5 *1 (-470)))) (-3206 (*1 *2 *1 *2) (-12 (-5 *2 (-644 (-381))) (-5 *1 (-470)))) (-1390 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-644 (-943 (-225)))) (-5 *4 (-874)) (-5 *5 (-921)) (-5 *2 (-1269)) (-5 *1 (-470)))) (-1390 (*1 *2 *1 *3) (-12 (-5 *3 (-943 (-225))) (-5 *2 (-1269)) (-5 *1 (-470)))) (-1390 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-943 (-225))) (-5 *4 (-874)) (-5 *5 (-921)) (-5 *2 (-1269)) (-5 *1 (-470)))) (-4295 (*1 *2 *1 *3) (-12 (-5 *3 (-943 (-225))) (-5 *2 (-1269)) (-5 *1 (-470)))) (-2017 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-943 (-225))) (-5 *4 (-874)) (-5 *2 (-1269)) (-5 *1 (-470)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 (-943 (-225))))) (-5 *1 (-470)))) (-3190 (*1 *2 *2 *3) (-12 (-5 *2 (-644 (-644 (-943 (-225))))) (-5 *3 (-644 (-874))) (-5 *1 (-470)))) (-3521 (*1 *2 *3) (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *2 (-644 (-225))) (-5 *1 (-470))))) -(-13 (-1099) (-10 -8 (-15 -3763 ($)) (-15 -2065 ($ $)) (-15 -2065 ($ (-644 (-644 (-943 (-225)))))) (-15 -2065 ($ (-644 (-644 (-943 (-225)))) (-644 (-874)) (-644 (-874)) (-644 (-921)))) (-15 -2065 ($ (-644 (-644 (-943 (-225)))) (-644 (-874)) (-644 (-874)) (-644 (-921)) (-644 (-264)))) (-15 -4353 ((-644 (-644 (-943 (-225)))) $)) (-15 -2004 ((-566) $)) (-15 -3667 ((-644 (-1093 (-381))) $)) (-15 -3667 ((-644 (-1093 (-381))) $ (-644 (-1093 (-381))))) (-15 -3206 ((-644 (-381)) $)) (-15 -3206 ((-644 (-381)) $ (-644 (-381)))) (-15 -1390 ((-1269) $ (-644 (-943 (-225))) (-874) (-874) (-921))) (-15 -1390 ((-1269) $ (-943 (-225)))) (-15 -1390 ((-1269) $ (-943 (-225)) (-874) (-874) (-921))) (-15 -4295 ((-1269) $ (-943 (-225)))) (-15 -2017 ((-1269) $ (-943 (-225)) (-874))) (-15 -3783 ($ (-644 (-644 (-943 (-225)))))) (-15 -3783 ((-862) $)) (-15 -3190 ((-644 (-644 (-943 (-225)))) (-644 (-644 (-943 (-225)))) (-644 (-874)))) (-15 -3521 ((-644 (-225)) (-644 (-644 (-943 (-225)))))))) -((-3053 (($ $) NIL) (($ $ $) 11))) -(((-471 |#1| |#2| |#3|) (-10 -8 (-15 -3053 (|#1| |#1| |#1|)) (-15 -3053 (|#1| |#1|))) (-472 |#2| |#3|) (-172) (-23)) (T -471)) -NIL -(-10 -8 (-15 -3053 (|#1| |#1| |#1|)) (-15 -3053 (|#1| |#1|))) -((-3007 (((-112) $ $) 7)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3636 ((|#2| $) 20)) (-3783 (((-862) $) 12)) (-3117 (((-112) $ $) 9)) (-2479 (($) 19 T CONST)) (-2947 (((-112) $ $) 6)) (-3053 (($ $) 16) (($ $ $) 14)) (-3041 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) +((-2125 (((-1264 (-1264 (-566))) (-1264 (-1264 (-566))) (-921)) 29)) (-2140 (((-1264 (-1264 (-566))) (-921)) 24))) +(((-468) (-10 -7 (-15 -2125 ((-1264 (-1264 (-566))) (-1264 (-1264 (-566))) (-921))) (-15 -2140 ((-1264 (-1264 (-566))) (-921))))) (T -468)) +((-2140 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1264 (-1264 (-566)))) (-5 *1 (-468)))) (-2125 (*1 *2 *2 *3) (-12 (-5 *2 (-1264 (-1264 (-566)))) (-5 *3 (-921)) (-5 *1 (-468))))) +(-10 -7 (-15 -2125 ((-1264 (-1264 (-566))) (-1264 (-1264 (-566))) (-921))) (-15 -2140 ((-1264 (-1264 (-566))) (-921)))) +((-2733 (((-566) (-566)) 32) (((-566)) 24)) (-4350 (((-566) (-566)) 28) (((-566)) 20)) (-3651 (((-566) (-566)) 30) (((-566)) 22)) (-1851 (((-112) (-112)) 14) (((-112)) 12)) (-1434 (((-112) (-112)) 13) (((-112)) 11)) (-4335 (((-112) (-112)) 26) (((-112)) 17))) +(((-469) (-10 -7 (-15 -1434 ((-112))) (-15 -1851 ((-112))) (-15 -1434 ((-112) (-112))) (-15 -1851 ((-112) (-112))) (-15 -4335 ((-112))) (-15 -3651 ((-566))) (-15 -4350 ((-566))) (-15 -2733 ((-566))) (-15 -4335 ((-112) (-112))) (-15 -3651 ((-566) (-566))) (-15 -4350 ((-566) (-566))) (-15 -2733 ((-566) (-566))))) (T -469)) +((-2733 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-469)))) (-4350 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-469)))) (-3651 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-469)))) (-4335 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-469)))) (-2733 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-469)))) (-4350 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-469)))) (-3651 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-469)))) (-4335 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-469)))) (-1851 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-469)))) (-1434 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-469)))) (-1851 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-469)))) (-1434 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-469))))) +(-10 -7 (-15 -1434 ((-112))) (-15 -1851 ((-112))) (-15 -1434 ((-112) (-112))) (-15 -1851 ((-112) (-112))) (-15 -4335 ((-112))) (-15 -3651 ((-566))) (-15 -4350 ((-566))) (-15 -2733 ((-566))) (-15 -4335 ((-112) (-112))) (-15 -3651 ((-566) (-566))) (-15 -4350 ((-566) (-566))) (-15 -2733 ((-566) (-566)))) +((-2988 (((-112) $ $) NIL)) (-3851 (((-644 (-381)) $) 34) (((-644 (-381)) $ (-644 (-381))) 146)) (-2869 (((-644 (-1093 (-381))) $) 16) (((-644 (-1093 (-381))) $ (-644 (-1093 (-381)))) 142)) (-3838 (((-644 (-644 (-943 (-225)))) (-644 (-644 (-943 (-225)))) (-644 (-874))) 58)) (-4076 (((-644 (-644 (-943 (-225)))) $) 137)) (-1397 (((-1269) $ (-943 (-225)) (-874)) 163)) (-3178 (($ $) 136) (($ (-644 (-644 (-943 (-225))))) 149) (($ (-644 (-644 (-943 (-225)))) (-644 (-874)) (-644 (-874)) (-644 (-921))) 148) (($ (-644 (-644 (-943 (-225)))) (-644 (-874)) (-644 (-874)) (-644 (-921)) (-644 (-264))) 150)) (-3380 (((-1157) $) NIL)) (-2674 (((-566) $) 110)) (-4072 (((-1119) $) NIL)) (-3028 (($) 147)) (-3659 (((-644 (-225)) (-644 (-644 (-943 (-225))))) 89)) (-2518 (((-1269) $ (-644 (-943 (-225))) (-874) (-874) (-921)) 155) (((-1269) $ (-943 (-225))) 157) (((-1269) $ (-943 (-225)) (-874) (-874) (-921)) 156)) (-3152 (((-862) $) 169) (($ (-644 (-644 (-943 (-225))))) 164)) (-3044 (((-112) $ $) NIL)) (-3686 (((-1269) $ (-943 (-225))) 162)) (-2914 (((-112) $ $) NIL))) +(((-470) (-13 (-1099) (-10 -8 (-15 -3028 ($)) (-15 -3178 ($ $)) (-15 -3178 ($ (-644 (-644 (-943 (-225)))))) (-15 -3178 ($ (-644 (-644 (-943 (-225)))) (-644 (-874)) (-644 (-874)) (-644 (-921)))) (-15 -3178 ($ (-644 (-644 (-943 (-225)))) (-644 (-874)) (-644 (-874)) (-644 (-921)) (-644 (-264)))) (-15 -4076 ((-644 (-644 (-943 (-225)))) $)) (-15 -2674 ((-566) $)) (-15 -2869 ((-644 (-1093 (-381))) $)) (-15 -2869 ((-644 (-1093 (-381))) $ (-644 (-1093 (-381))))) (-15 -3851 ((-644 (-381)) $)) (-15 -3851 ((-644 (-381)) $ (-644 (-381)))) (-15 -2518 ((-1269) $ (-644 (-943 (-225))) (-874) (-874) (-921))) (-15 -2518 ((-1269) $ (-943 (-225)))) (-15 -2518 ((-1269) $ (-943 (-225)) (-874) (-874) (-921))) (-15 -3686 ((-1269) $ (-943 (-225)))) (-15 -1397 ((-1269) $ (-943 (-225)) (-874))) (-15 -3152 ($ (-644 (-644 (-943 (-225)))))) (-15 -3152 ((-862) $)) (-15 -3838 ((-644 (-644 (-943 (-225)))) (-644 (-644 (-943 (-225)))) (-644 (-874)))) (-15 -3659 ((-644 (-225)) (-644 (-644 (-943 (-225))))))))) (T -470)) +((-3152 (*1 *2 *1) (-12 (-5 *2 (-862)) (-5 *1 (-470)))) (-3028 (*1 *1) (-5 *1 (-470))) (-3178 (*1 *1 *1) (-5 *1 (-470))) (-3178 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 (-943 (-225))))) (-5 *1 (-470)))) (-3178 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-644 (-644 (-943 (-225))))) (-5 *3 (-644 (-874))) (-5 *4 (-644 (-921))) (-5 *1 (-470)))) (-3178 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-644 (-644 (-943 (-225))))) (-5 *3 (-644 (-874))) (-5 *4 (-644 (-921))) (-5 *5 (-644 (-264))) (-5 *1 (-470)))) (-4076 (*1 *2 *1) (-12 (-5 *2 (-644 (-644 (-943 (-225))))) (-5 *1 (-470)))) (-2674 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-470)))) (-2869 (*1 *2 *1) (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *1 (-470)))) (-2869 (*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *1 (-470)))) (-3851 (*1 *2 *1) (-12 (-5 *2 (-644 (-381))) (-5 *1 (-470)))) (-3851 (*1 *2 *1 *2) (-12 (-5 *2 (-644 (-381))) (-5 *1 (-470)))) (-2518 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-644 (-943 (-225)))) (-5 *4 (-874)) (-5 *5 (-921)) (-5 *2 (-1269)) (-5 *1 (-470)))) (-2518 (*1 *2 *1 *3) (-12 (-5 *3 (-943 (-225))) (-5 *2 (-1269)) (-5 *1 (-470)))) (-2518 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-943 (-225))) (-5 *4 (-874)) (-5 *5 (-921)) (-5 *2 (-1269)) (-5 *1 (-470)))) (-3686 (*1 *2 *1 *3) (-12 (-5 *3 (-943 (-225))) (-5 *2 (-1269)) (-5 *1 (-470)))) (-1397 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-943 (-225))) (-5 *4 (-874)) (-5 *2 (-1269)) (-5 *1 (-470)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 (-943 (-225))))) (-5 *1 (-470)))) (-3838 (*1 *2 *2 *3) (-12 (-5 *2 (-644 (-644 (-943 (-225))))) (-5 *3 (-644 (-874))) (-5 *1 (-470)))) (-3659 (*1 *2 *3) (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *2 (-644 (-225))) (-5 *1 (-470))))) +(-13 (-1099) (-10 -8 (-15 -3028 ($)) (-15 -3178 ($ $)) (-15 -3178 ($ (-644 (-644 (-943 (-225)))))) (-15 -3178 ($ (-644 (-644 (-943 (-225)))) (-644 (-874)) (-644 (-874)) (-644 (-921)))) (-15 -3178 ($ (-644 (-644 (-943 (-225)))) (-644 (-874)) (-644 (-874)) (-644 (-921)) (-644 (-264)))) (-15 -4076 ((-644 (-644 (-943 (-225)))) $)) (-15 -2674 ((-566) $)) (-15 -2869 ((-644 (-1093 (-381))) $)) (-15 -2869 ((-644 (-1093 (-381))) $ (-644 (-1093 (-381))))) (-15 -3851 ((-644 (-381)) $)) (-15 -3851 ((-644 (-381)) $ (-644 (-381)))) (-15 -2518 ((-1269) $ (-644 (-943 (-225))) (-874) (-874) (-921))) (-15 -2518 ((-1269) $ (-943 (-225)))) (-15 -2518 ((-1269) $ (-943 (-225)) (-874) (-874) (-921))) (-15 -3686 ((-1269) $ (-943 (-225)))) (-15 -1397 ((-1269) $ (-943 (-225)) (-874))) (-15 -3152 ($ (-644 (-644 (-943 (-225)))))) (-15 -3152 ((-862) $)) (-15 -3838 ((-644 (-644 (-943 (-225)))) (-644 (-644 (-943 (-225)))) (-644 (-874)))) (-15 -3659 ((-644 (-225)) (-644 (-644 (-943 (-225)))))))) +((-3012 (($ $) NIL) (($ $ $) 11))) +(((-471 |#1| |#2| |#3|) (-10 -8 (-15 -3012 (|#1| |#1| |#1|)) (-15 -3012 (|#1| |#1|))) (-472 |#2| |#3|) (-172) (-23)) (T -471)) +NIL +(-10 -8 (-15 -3012 (|#1| |#1| |#1|)) (-15 -3012 (|#1| |#1|))) +((-2988 (((-112) $ $) 7)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3902 ((|#2| $) 20)) (-3152 (((-862) $) 12)) (-3044 (((-112) $ $) 9)) (-4356 (($) 19 T CONST)) (-2914 (((-112) $ $) 6)) (-3012 (($ $) 16) (($ $ $) 14)) (-3002 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) (((-472 |#1| |#2|) (-140) (-172) (-23)) (T -472)) -((-3636 (*1 *2 *1) (-12 (-4 *1 (-472 *3 *2)) (-4 *3 (-172)) (-4 *2 (-23)))) (-2479 (*1 *1) (-12 (-4 *1 (-472 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-472 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-472 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-3053 (*1 *1 *1) (-12 (-4 *1 (-472 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-3041 (*1 *1 *1 *1) (-12 (-4 *1 (-472 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-3053 (*1 *1 *1 *1) (-12 (-4 *1 (-472 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))) -(-13 (-1099) (-10 -8 (-15 -3636 (|t#2| $)) (-15 (-2479) ($) -3704) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3053 ($ $)) (-15 -3041 ($ $ $)) (-15 -3053 ($ $ $)))) +((-3902 (*1 *2 *1) (-12 (-4 *1 (-472 *3 *2)) (-4 *3 (-172)) (-4 *2 (-23)))) (-4356 (*1 *1) (-12 (-4 *1 (-472 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-472 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-472 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-3012 (*1 *1 *1) (-12 (-4 *1 (-472 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-3002 (*1 *1 *1 *1) (-12 (-4 *1 (-472 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-3012 (*1 *1 *1 *1) (-12 (-4 *1 (-472 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))) +(-13 (-1099) (-10 -8 (-15 -3902 (|t#2| $)) (-15 (-4356) ($) -1623) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3012 ($ $)) (-15 -3002 ($ $ $)) (-15 -3012 ($ $ $)))) (((-102) . T) ((-613 (-862)) . T) ((-1099) . T)) -((-4197 (((-3 (-644 (-483 |#1| |#2|)) "failed") (-644 (-483 |#1| |#2|)) (-644 (-864 |#1|))) 137)) (-2552 (((-644 (-644 (-247 |#1| |#2|))) (-644 (-247 |#1| |#2|)) (-644 (-864 |#1|))) 134)) (-3986 (((-2 (|:| |dpolys| (-644 (-247 |#1| |#2|))) (|:| |coords| (-644 (-566)))) (-644 (-247 |#1| |#2|)) (-644 (-864 |#1|))) 86))) -(((-473 |#1| |#2| |#3|) (-10 -7 (-15 -2552 ((-644 (-644 (-247 |#1| |#2|))) (-644 (-247 |#1| |#2|)) (-644 (-864 |#1|)))) (-15 -4197 ((-3 (-644 (-483 |#1| |#2|)) "failed") (-644 (-483 |#1| |#2|)) (-644 (-864 |#1|)))) (-15 -3986 ((-2 (|:| |dpolys| (-644 (-247 |#1| |#2|))) (|:| |coords| (-644 (-566)))) (-644 (-247 |#1| |#2|)) (-644 (-864 |#1|))))) (-644 (-1175)) (-454) (-454)) (T -473)) -((-3986 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-864 *5))) (-14 *5 (-644 (-1175))) (-4 *6 (-454)) (-5 *2 (-2 (|:| |dpolys| (-644 (-247 *5 *6))) (|:| |coords| (-644 (-566))))) (-5 *1 (-473 *5 *6 *7)) (-5 *3 (-644 (-247 *5 *6))) (-4 *7 (-454)))) (-4197 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-644 (-483 *4 *5))) (-5 *3 (-644 (-864 *4))) (-14 *4 (-644 (-1175))) (-4 *5 (-454)) (-5 *1 (-473 *4 *5 *6)) (-4 *6 (-454)))) (-2552 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-864 *5))) (-14 *5 (-644 (-1175))) (-4 *6 (-454)) (-5 *2 (-644 (-644 (-247 *5 *6)))) (-5 *1 (-473 *5 *6 *7)) (-5 *3 (-644 (-247 *5 *6))) (-4 *7 (-454))))) -(-10 -7 (-15 -2552 ((-644 (-644 (-247 |#1| |#2|))) (-644 (-247 |#1| |#2|)) (-644 (-864 |#1|)))) (-15 -4197 ((-3 (-644 (-483 |#1| |#2|)) "failed") (-644 (-483 |#1| |#2|)) (-644 (-864 |#1|)))) (-15 -3986 ((-2 (|:| |dpolys| (-644 (-247 |#1| |#2|))) (|:| |coords| (-644 (-566)))) (-644 (-247 |#1| |#2|)) (-644 (-864 |#1|))))) -((-1878 (((-3 $ "failed") $) 11)) (-2358 (($ $ $) 23)) (-3171 (($ $ $) 24)) (-3065 (($ $ $) 9)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) 22))) -(((-474 |#1|) (-10 -8 (-15 -3171 (|#1| |#1| |#1|)) (-15 -2358 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-566))) (-15 -3065 (|#1| |#1| |#1|)) (-15 -1878 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-771))) (-15 ** (|#1| |#1| (-921)))) (-475)) (T -474)) -NIL -(-10 -8 (-15 -3171 (|#1| |#1| |#1|)) (-15 -2358 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-566))) (-15 -3065 (|#1| |#1| |#1|)) (-15 -1878 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-771))) (-15 ** (|#1| |#1| (-921)))) -((-3007 (((-112) $ $) 7)) (-3012 (($) 19 T CONST)) (-1878 (((-3 $ "failed") $) 16)) (-3934 (((-112) $) 18)) (-4117 (((-1157) $) 10)) (-1713 (($ $) 25)) (-4035 (((-1119) $) 11)) (-2358 (($ $ $) 22)) (-3171 (($ $ $) 21)) (-3783 (((-862) $) 12)) (-3117 (((-112) $ $) 9)) (-4334 (($) 20 T CONST)) (-2947 (((-112) $ $) 6)) (-3065 (($ $ $) 24)) (** (($ $ (-921)) 14) (($ $ (-771)) 17) (($ $ (-566)) 23)) (* (($ $ $) 15))) +((-2278 (((-3 (-644 (-483 |#1| |#2|)) "failed") (-644 (-483 |#1| |#2|)) (-644 (-864 |#1|))) 137)) (-3788 (((-644 (-644 (-247 |#1| |#2|))) (-644 (-247 |#1| |#2|)) (-644 (-864 |#1|))) 134)) (-2846 (((-2 (|:| |dpolys| (-644 (-247 |#1| |#2|))) (|:| |coords| (-644 (-566)))) (-644 (-247 |#1| |#2|)) (-644 (-864 |#1|))) 86))) +(((-473 |#1| |#2| |#3|) (-10 -7 (-15 -3788 ((-644 (-644 (-247 |#1| |#2|))) (-644 (-247 |#1| |#2|)) (-644 (-864 |#1|)))) (-15 -2278 ((-3 (-644 (-483 |#1| |#2|)) "failed") (-644 (-483 |#1| |#2|)) (-644 (-864 |#1|)))) (-15 -2846 ((-2 (|:| |dpolys| (-644 (-247 |#1| |#2|))) (|:| |coords| (-644 (-566)))) (-644 (-247 |#1| |#2|)) (-644 (-864 |#1|))))) (-644 (-1175)) (-454) (-454)) (T -473)) +((-2846 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-864 *5))) (-14 *5 (-644 (-1175))) (-4 *6 (-454)) (-5 *2 (-2 (|:| |dpolys| (-644 (-247 *5 *6))) (|:| |coords| (-644 (-566))))) (-5 *1 (-473 *5 *6 *7)) (-5 *3 (-644 (-247 *5 *6))) (-4 *7 (-454)))) (-2278 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-644 (-483 *4 *5))) (-5 *3 (-644 (-864 *4))) (-14 *4 (-644 (-1175))) (-4 *5 (-454)) (-5 *1 (-473 *4 *5 *6)) (-4 *6 (-454)))) (-3788 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-864 *5))) (-14 *5 (-644 (-1175))) (-4 *6 (-454)) (-5 *2 (-644 (-644 (-247 *5 *6)))) (-5 *1 (-473 *5 *6 *7)) (-5 *3 (-644 (-247 *5 *6))) (-4 *7 (-454))))) +(-10 -7 (-15 -3788 ((-644 (-644 (-247 |#1| |#2|))) (-644 (-247 |#1| |#2|)) (-644 (-864 |#1|)))) (-15 -2278 ((-3 (-644 (-483 |#1| |#2|)) "failed") (-644 (-483 |#1| |#2|)) (-644 (-864 |#1|)))) (-15 -2846 ((-2 (|:| |dpolys| (-644 (-247 |#1| |#2|))) (|:| |coords| (-644 (-566)))) (-644 (-247 |#1| |#2|)) (-644 (-864 |#1|))))) +((-3245 (((-3 $ "failed") $) 11)) (-3357 (($ $ $) 23)) (-2527 (($ $ $) 24)) (-3025 (($ $ $) 9)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) 22))) +(((-474 |#1|) (-10 -8 (-15 -2527 (|#1| |#1| |#1|)) (-15 -3357 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-566))) (-15 -3025 (|#1| |#1| |#1|)) (-15 -3245 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-771))) (-15 ** (|#1| |#1| (-921)))) (-475)) (T -474)) +NIL +(-10 -8 (-15 -2527 (|#1| |#1| |#1|)) (-15 -3357 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-566))) (-15 -3025 (|#1| |#1| |#1|)) (-15 -3245 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-771))) (-15 ** (|#1| |#1| (-921)))) +((-2988 (((-112) $ $) 7)) (-2463 (($) 19 T CONST)) (-3245 (((-3 $ "failed") $) 16)) (-2389 (((-112) $) 18)) (-3380 (((-1157) $) 10)) (-2748 (($ $) 25)) (-4072 (((-1119) $) 11)) (-3357 (($ $ $) 22)) (-2527 (($ $ $) 21)) (-3152 (((-862) $) 12)) (-3044 (((-112) $ $) 9)) (-4366 (($) 20 T CONST)) (-2914 (((-112) $ $) 6)) (-3025 (($ $ $) 24)) (** (($ $ (-921)) 14) (($ $ (-771)) 17) (($ $ (-566)) 23)) (* (($ $ $) 15))) (((-475) (-140)) (T -475)) -((-1713 (*1 *1 *1) (-4 *1 (-475))) (-3065 (*1 *1 *1 *1) (-4 *1 (-475))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-475)) (-5 *2 (-566)))) (-2358 (*1 *1 *1 *1) (-4 *1 (-475))) (-3171 (*1 *1 *1 *1) (-4 *1 (-475)))) -(-13 (-726) (-10 -8 (-15 -1713 ($ $)) (-15 -3065 ($ $ $)) (-15 ** ($ $ (-566))) (-6 -4411) (-15 -2358 ($ $ $)) (-15 -3171 ($ $ $)))) +((-2748 (*1 *1 *1) (-4 *1 (-475))) (-3025 (*1 *1 *1 *1) (-4 *1 (-475))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-475)) (-5 *2 (-566)))) (-3357 (*1 *1 *1 *1) (-4 *1 (-475))) (-2527 (*1 *1 *1 *1) (-4 *1 (-475)))) +(-13 (-726) (-10 -8 (-15 -2748 ($ $)) (-15 -3025 ($ $ $)) (-15 ** ($ $ (-566))) (-6 -4411) (-15 -3357 ($ $ $)) (-15 -2527 ($ $ $)))) (((-102) . T) ((-613 (-862)) . T) ((-726) . T) ((-1111) . T) ((-1099) . T)) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-3863 (((-644 (-1081)) $) NIL)) (-1385 (((-1175) $) 18)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-3991 (($ $) NIL (|has| |#1| (-558)))) (-2388 (((-112) $) NIL (|has| |#1| (-558)))) (-2587 (($ $ (-409 (-566))) NIL) (($ $ (-409 (-566)) (-409 (-566))) NIL)) (-2775 (((-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#1|))) $) NIL)) (-4114 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2109 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4175 (((-3 $ "failed") $ $) NIL)) (-1550 (($ $) NIL (|has| |#1| (-365)))) (-3184 (((-420 $) $) NIL (|has| |#1| (-365)))) (-3731 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2837 (((-112) $ $) NIL (|has| |#1| (-365)))) (-2240 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2085 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2052 (($ (-771) (-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#1|)))) NIL)) (-4134 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2129 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3012 (($) NIL T CONST)) (-2946 (($ $ $) NIL (|has| |#1| (-365)))) (-1786 (($ $) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-2957 (($ $ $) NIL (|has| |#1| (-365)))) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL (|has| |#1| (-365)))) (-3268 (((-112) $) NIL (|has| |#1| (-365)))) (-2158 (((-112) $) NIL)) (-4361 (($) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3254 (((-409 (-566)) $) NIL) (((-409 (-566)) $ (-409 (-566))) NIL)) (-3934 (((-112) $) NIL)) (-2140 (($ $ (-566)) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2955 (($ $ (-921)) NIL) (($ $ (-409 (-566))) NIL)) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-3264 (((-112) $) NIL)) (-3840 (($ |#1| (-409 (-566))) NIL) (($ $ (-1081) (-409 (-566))) NIL) (($ $ (-644 (-1081)) (-644 (-409 (-566)))) NIL)) (-1301 (($ (-1 |#1| |#1|) $) 25)) (-3651 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1749 (($ $) NIL)) (-1763 ((|#1| $) NIL)) (-2167 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4117 (((-1157) $) NIL)) (-1713 (($ $) NIL (|has| |#1| (-365)))) (-1941 (($ $) 29 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) 35 (-2809 (-12 (|has| |#1| (-15 -1941 (|#1| |#1| (-1175)))) (|has| |#1| (-15 -3863 ((-644 (-1175)) |#1|))) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-959)) (|has| |#1| (-1199))))) (($ $ (-1260 |#2|)) 30 (|has| |#1| (-38 (-409 (-566)))))) (-4035 (((-1119) $) NIL)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-365)))) (-2214 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3719 (((-420 $) $) NIL (|has| |#1| (-365)))) (-3148 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-365)))) (-3874 (($ $ (-409 (-566))) NIL)) (-2994 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-2561 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2055 (((-1155 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-409 (-566))))))) (-3039 (((-771) $) NIL (|has| |#1| (-365)))) (-4390 ((|#1| $ (-409 (-566))) NIL) (($ $ $) NIL (|has| (-409 (-566)) (-1111)))) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL (|has| |#1| (-365)))) (-3561 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) 28 (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $) 14 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $ (-1260 |#2|)) 16)) (-3636 (((-409 (-566)) $) NIL)) (-4144 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2141 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4124 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2118 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4104 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2098 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2770 (($ $) NIL)) (-3783 (((-862) $) NIL) (($ (-566)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1260 |#2|)) NIL) (($ (-1249 |#1| |#2| |#3|)) 9) (($ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $) NIL (|has| |#1| (-558)))) (-2649 ((|#1| $ (-409 (-566))) NIL)) (-3144 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2107 (((-771)) NIL T CONST)) (-1320 ((|#1| $) 21)) (-3117 (((-112) $ $) NIL)) (-4177 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2180 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2695 (((-112) $ $) NIL (|has| |#1| (-558)))) (-4155 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2153 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4198 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2212 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3628 ((|#1| $ (-409 (-566))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-409 (-566))))) (|has| |#1| (-15 -3783 (|#1| (-1175))))))) (-2976 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2227 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4188 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2196 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4166 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2166 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2479 (($) NIL T CONST)) (-4334 (($) NIL T CONST)) (-2875 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (-2947 (((-112) $ $) NIL)) (-3065 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3053 (($ $) NIL) (($ $ $) 27)) (-3041 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 26) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))))) -(((-476 |#1| |#2| |#3|) (-13 (-1245 |#1|) (-10 -8 (-15 -3783 ($ (-1260 |#2|))) (-15 -3783 ($ (-1249 |#1| |#2| |#3|))) (-15 -3561 ($ $ (-1260 |#2|))) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -1941 ($ $ (-1260 |#2|))) |%noBranch|))) (-1049) (-1175) |#1|) (T -476)) -((-3783 (*1 *1 *2) (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-476 *3 *4 *5)) (-4 *3 (-1049)) (-14 *5 *3))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-1249 *3 *4 *5)) (-4 *3 (-1049)) (-14 *4 (-1175)) (-14 *5 *3) (-5 *1 (-476 *3 *4 *5)))) (-3561 (*1 *1 *1 *2) (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-476 *3 *4 *5)) (-4 *3 (-1049)) (-14 *5 *3))) (-1941 (*1 *1 *1 *2) (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-476 *3 *4 *5)) (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-14 *5 *3)))) -(-13 (-1245 |#1|) (-10 -8 (-15 -3783 ($ (-1260 |#2|))) (-15 -3783 ($ (-1249 |#1| |#2| |#3|))) (-15 -3561 ($ $ (-1260 |#2|))) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -1941 ($ $ (-1260 |#2|))) |%noBranch|))) -((-3007 (((-112) $ $) NIL (-2809 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-4254 (($) NIL) (($ (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) NIL)) (-3734 (((-1269) $ |#1| |#1|) NIL (|has| $ (-6 -4415)))) (-2256 (((-112) $ (-771)) NIL)) (-3923 ((|#2| $ |#1| |#2|) 18)) (-4016 (($ (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-2701 (($ (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-2434 (((-3 |#2| "failed") |#1| $) 19)) (-3012 (($) NIL T CONST)) (-2031 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099))))) (-2956 (($ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL (|has| $ (-6 -4414))) (($ (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-3 |#2| "failed") |#1| $) 16)) (-2665 (($ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (($ (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-1676 (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) NIL (|has| $ (-6 -4414))) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-2920 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4415)))) (-2855 ((|#2| $ |#1|) NIL)) (-3979 (((-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-644 |#2|) $) NIL (|has| $ (-6 -4414)))) (-2404 (((-112) $ (-771)) NIL)) (-3854 ((|#1| $) NIL (|has| |#1| (-850)))) (-2329 (((-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-644 |#2|) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099))))) (-2712 ((|#1| $) NIL (|has| |#1| (-850)))) (-2908 (($ (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4415))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4415)))) (-1301 (($ (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2603 (((-112) $ (-771)) NIL)) (-4117 (((-1157) $) NIL (-2809 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-4103 (((-644 |#1|) $) NIL)) (-2876 (((-112) |#1| $) NIL)) (-4039 (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL)) (-3406 (($ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL)) (-4074 (((-644 |#1|) $) NIL)) (-3792 (((-112) |#1| $) NIL)) (-4035 (((-1119) $) NIL (-2809 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-1998 ((|#2| $) NIL (|has| |#1| (-850)))) (-2006 (((-3 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) "failed") (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL)) (-4030 (($ $ |#2|) NIL (|has| $ (-6 -4415)))) (-2539 (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL)) (-2692 (((-112) (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))))) NIL (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (($ $ (-295 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) NIL (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (($ $ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) NIL (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (($ $ (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) NIL (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-1932 (((-112) $ $) NIL)) (-4156 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099))))) (-2993 (((-644 |#2|) $) NIL)) (-3467 (((-112) $) NIL)) (-1494 (($) NIL)) (-4390 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-3481 (($) NIL) (($ (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) NIL)) (-4045 (((-771) (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-771) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (((-771) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099)))) (((-771) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414)))) (-3940 (($ $) NIL)) (-1348 (((-538) $) NIL (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-614 (-538))))) (-3796 (($ (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) NIL)) (-3783 (((-862) $) NIL (-2809 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-613 (-862))) (|has| |#2| (-613 (-862)))))) (-3117 (((-112) $ $) NIL (-2809 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-1748 (($ (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) NIL)) (-1894 (((-112) (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) NIL (-2809 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-3018 (((-771) $) NIL (|has| $ (-6 -4414))))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-1771 (((-644 (-1081)) $) NIL)) (-4347 (((-1175) $) 18)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-2161 (($ $) NIL (|has| |#1| (-558)))) (-2345 (((-112) $) NIL (|has| |#1| (-558)))) (-2331 (($ $ (-409 (-566))) NIL) (($ $ (-409 (-566)) (-409 (-566))) NIL)) (-4152 (((-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#1|))) $) NIL)) (-3963 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3630 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3967 (((-3 $ "failed") $ $) NIL)) (-1378 (($ $) NIL (|has| |#1| (-365)))) (-1364 (((-420 $) $) NIL (|has| |#1| (-365)))) (-1635 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2085 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3941 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3602 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1427 (($ (-771) (-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#1|)))) NIL)) (-3986 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3656 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2463 (($) NIL T CONST)) (-2933 (($ $ $) NIL (|has| |#1| (-365)))) (-2814 (($ $) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-2945 (($ $ $) NIL (|has| |#1| (-365)))) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL (|has| |#1| (-365)))) (-1615 (((-112) $) NIL (|has| |#1| (-365)))) (-3772 (((-112) $) NIL)) (-2281 (($) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2679 (((-409 (-566)) $) NIL) (((-409 (-566)) $ (-409 (-566))) NIL)) (-2389 (((-112) $) NIL)) (-1575 (($ $ (-566)) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3394 (($ $ (-921)) NIL) (($ $ (-409 (-566))) NIL)) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-2497 (((-112) $) NIL)) (-1746 (($ |#1| (-409 (-566))) NIL) (($ $ (-1081) (-409 (-566))) NIL) (($ $ (-644 (-1081)) (-644 (-409 (-566)))) NIL)) (-2319 (($ (-1 |#1| |#1|) $) 25)) (-3619 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2784 (($ $) NIL)) (-2794 ((|#1| $) NIL)) (-2128 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3380 (((-1157) $) NIL)) (-2748 (($ $) NIL (|has| |#1| (-365)))) (-3313 (($ $) 29 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) 35 (-2768 (-12 (|has| |#1| (-15 -3313 (|#1| |#1| (-1175)))) (|has| |#1| (-15 -1771 ((-644 (-1175)) |#1|))) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-959)) (|has| |#1| (-1199))))) (($ $ (-1260 |#2|)) 30 (|has| |#1| (-38 (-409 (-566)))))) (-4072 (((-1119) $) NIL)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-365)))) (-2164 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-1624 (((-420 $) $) NIL (|has| |#1| (-365)))) (-3005 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL (|has| |#1| (-365)))) (-3369 (($ $ (-409 (-566))) NIL)) (-2978 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-3521 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2023 (((-1155 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-409 (-566))))))) (-4357 (((-771) $) NIL (|has| |#1| (-365)))) (-1309 ((|#1| $ (-409 (-566))) NIL) (($ $ $) NIL (|has| (-409 (-566)) (-1111)))) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL (|has| |#1| (-365)))) (-3629 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) 28 (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $) 14 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $ (-1260 |#2|)) 16)) (-3902 (((-409 (-566)) $) NIL)) (-3996 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3670 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3976 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3643 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3952 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3618 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1687 (($ $) NIL)) (-3152 (((-862) $) NIL) (($ (-566)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1260 |#2|)) NIL) (($ (-1249 |#1| |#2| |#3|)) 9) (($ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $) NIL (|has| |#1| (-558)))) (-2271 ((|#1| $ (-409 (-566))) NIL)) (-2633 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2593 (((-771)) NIL T CONST)) (-4290 ((|#1| $) 21)) (-3044 (((-112) $ $) NIL)) (-4032 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3892 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3014 (((-112) $ $) NIL (|has| |#1| (-558)))) (-4008 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3684 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4057 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3917 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3603 ((|#1| $ (-409 (-566))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-409 (-566))))) (|has| |#1| (-15 -3152 (|#1| (-1175))))))) (-3964 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3929 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4044 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3904 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4020 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3879 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4356 (($) NIL T CONST)) (-4366 (($) NIL T CONST)) (-3497 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (-2914 (((-112) $ $) NIL)) (-3025 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3012 (($ $) NIL) (($ $ $) 27)) (-3002 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 26) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))))) +(((-476 |#1| |#2| |#3|) (-13 (-1245 |#1|) (-10 -8 (-15 -3152 ($ (-1260 |#2|))) (-15 -3152 ($ (-1249 |#1| |#2| |#3|))) (-15 -3629 ($ $ (-1260 |#2|))) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -3313 ($ $ (-1260 |#2|))) |%noBranch|))) (-1049) (-1175) |#1|) (T -476)) +((-3152 (*1 *1 *2) (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-476 *3 *4 *5)) (-4 *3 (-1049)) (-14 *5 *3))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-1249 *3 *4 *5)) (-4 *3 (-1049)) (-14 *4 (-1175)) (-14 *5 *3) (-5 *1 (-476 *3 *4 *5)))) (-3629 (*1 *1 *1 *2) (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-476 *3 *4 *5)) (-4 *3 (-1049)) (-14 *5 *3))) (-3313 (*1 *1 *1 *2) (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-476 *3 *4 *5)) (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-14 *5 *3)))) +(-13 (-1245 |#1|) (-10 -8 (-15 -3152 ($ (-1260 |#2|))) (-15 -3152 ($ (-1249 |#1| |#2| |#3|))) (-15 -3629 ($ $ (-1260 |#2|))) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -3313 ($ $ (-1260 |#2|))) |%noBranch|))) +((-2988 (((-112) $ $) NIL (-2768 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-1849 (($) NIL) (($ (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) NIL)) (-1944 (((-1269) $ |#1| |#1|) NIL (|has| $ (-6 -4415)))) (-1504 (((-112) $ (-771)) NIL)) (-1456 ((|#2| $ |#1| |#2|) 18)) (-2995 (($ (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-3678 (($ (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-3070 (((-3 |#2| "failed") |#1| $) 19)) (-2463 (($) NIL T CONST)) (-3942 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099))))) (-3512 (($ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL (|has| $ (-6 -4414))) (($ (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-3 |#2| "failed") |#1| $) 16)) (-2622 (($ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (($ (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-2873 (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) NIL (|has| $ (-6 -4414))) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-3897 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4415)))) (-3829 ((|#2| $ |#1|) NIL)) (-1683 (((-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-644 |#2|) $) NIL (|has| $ (-6 -4414)))) (-3456 (((-112) $ (-771)) NIL)) (-2296 ((|#1| $) NIL (|has| |#1| (-850)))) (-3491 (((-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-644 |#2|) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099))))) (-4050 ((|#1| $) NIL (|has| |#1| (-850)))) (-3885 (($ (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4415))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4415)))) (-2319 (($ (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3267 (((-112) $ (-771)) NIL)) (-3380 (((-1157) $) NIL (-2768 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-4052 (((-644 |#1|) $) NIL)) (-1826 (((-112) |#1| $) NIL)) (-3278 (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL)) (-3888 (($ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL)) (-3725 (((-644 |#1|) $) NIL)) (-1644 (((-112) |#1| $) NIL)) (-4072 (((-1119) $) NIL (-2768 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-3908 ((|#2| $) NIL (|has| |#1| (-850)))) (-3668 (((-3 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) "failed") (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL)) (-3787 (($ $ |#2|) NIL (|has| $ (-6 -4415)))) (-1973 (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL)) (-2823 (((-112) (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))))) NIL (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (($ $ (-295 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) NIL (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (($ $ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) NIL (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (($ $ (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) NIL (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-3814 (((-112) $ $) NIL)) (-2847 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099))))) (-3486 (((-644 |#2|) $) NIL)) (-2872 (((-112) $) NIL)) (-3493 (($) NIL)) (-1309 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-1792 (($) NIL) (($ (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) NIL)) (-4083 (((-771) (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-771) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (((-771) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099)))) (((-771) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414)))) (-1480 (($ $) NIL)) (-2376 (((-538) $) NIL (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-614 (-538))))) (-1340 (($ (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) NIL)) (-3152 (((-862) $) NIL (-2768 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-613 (-862))) (|has| |#2| (-613 (-862)))))) (-3044 (((-112) $ $) NIL (-2768 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-2948 (($ (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) NIL)) (-2210 (((-112) (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) NIL (-2768 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-3000 (((-771) $) NIL (|has| $ (-6 -4414))))) (((-477 |#1| |#2| |#3| |#4|) (-1190 |#1| |#2|) (-1099) (-1099) (-1190 |#1| |#2|) |#2|) (T -477)) NIL (-1190 |#1| |#2|) -((-3007 (((-112) $ $) NIL)) (-2584 (((-644 (-2 (|:| -1651 $) (|:| -3501 (-644 |#4|)))) (-644 |#4|)) NIL)) (-2333 (((-644 $) (-644 |#4|)) NIL)) (-3863 (((-644 |#3|) $) NIL)) (-2368 (((-112) $) NIL)) (-4070 (((-112) $) NIL (|has| |#1| (-558)))) (-3624 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1374 ((|#4| |#4| $) NIL)) (-1510 (((-2 (|:| |under| $) (|:| -3470 $) (|:| |upper| $)) $ |#3|) NIL)) (-2256 (((-112) $ (-771)) NIL)) (-2701 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4414))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3012 (($) NIL T CONST)) (-3779 (((-112) $) 29 (|has| |#1| (-558)))) (-2540 (((-112) $ $) NIL (|has| |#1| (-558)))) (-4093 (((-112) $ $) NIL (|has| |#1| (-558)))) (-3741 (((-112) $) NIL (|has| |#1| (-558)))) (-2506 (((-644 |#4|) (-644 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2026 (((-644 |#4|) (-644 |#4|) $) NIL (|has| |#1| (-558)))) (-4306 (((-644 |#4|) (-644 |#4|) $) NIL (|has| |#1| (-558)))) (-4307 (((-3 $ "failed") (-644 |#4|)) NIL)) (-4205 (($ (-644 |#4|)) NIL)) (-2010 (((-3 $ "failed") $) 45)) (-2100 ((|#4| |#4| $) NIL)) (-2031 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#4| (-1099))))) (-2665 (($ |#4| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#4| (-1099)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4414)))) (-2513 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-558)))) (-1464 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-1401 ((|#4| |#4| $) NIL)) (-1676 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4414)) (|has| |#4| (-1099)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4414))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4414))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3692 (((-2 (|:| -1651 (-644 |#4|)) (|:| -3501 (-644 |#4|))) $) NIL)) (-3979 (((-644 |#4|) $) 18 (|has| $ (-6 -4414)))) (-2111 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1489 ((|#3| $) 38)) (-2404 (((-112) $ (-771)) NIL)) (-2329 (((-644 |#4|) $) 19 (|has| $ (-6 -4414)))) (-1916 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4414)) (|has| |#4| (-1099))))) (-2908 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#4| |#4|) $) 23)) (-2189 (((-644 |#3|) $) NIL)) (-3953 (((-112) |#3| $) NIL)) (-2603 (((-112) $ (-771)) NIL)) (-4117 (((-1157) $) NIL)) (-2686 (((-3 |#4| "failed") $) 42)) (-2851 (((-644 |#4|) $) NIL)) (-1694 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1871 ((|#4| |#4| $) NIL)) (-2897 (((-112) $ $) NIL)) (-3112 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-558)))) (-3351 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3544 ((|#4| |#4| $) NIL)) (-4035 (((-1119) $) NIL)) (-1998 (((-3 |#4| "failed") $) 40)) (-2006 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2060 (((-3 $ "failed") $ |#4|) 58)) (-3874 (($ $ |#4|) NIL)) (-2692 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 |#4|) (-644 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-644 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))) (-1932 (((-112) $ $) NIL)) (-3467 (((-112) $) 17)) (-1494 (($) 14)) (-3636 (((-771) $) NIL)) (-4045 (((-771) |#4| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#4| (-1099)))) (((-771) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4414)))) (-3940 (($ $) 13)) (-1348 (((-538) $) NIL (|has| |#4| (-614 (-538))))) (-3796 (($ (-644 |#4|)) 22)) (-2325 (($ $ |#3|) 52)) (-4106 (($ $ |#3|) 54)) (-3973 (($ $) NIL)) (-3080 (($ $ |#3|) NIL)) (-3783 (((-862) $) 35) (((-644 |#4|) $) 46)) (-2028 (((-771) $) NIL (|has| |#3| (-370)))) (-3117 (((-112) $ $) NIL)) (-3706 (((-3 (-2 (|:| |bas| $) (|:| -1825 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1825 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3772 (((-112) $ (-1 (-112) |#4| (-644 |#4|))) NIL)) (-1894 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4414)))) (-4180 (((-644 |#3|) $) NIL)) (-1423 (((-112) |#3| $) NIL)) (-2947 (((-112) $ $) NIL)) (-3018 (((-771) $) NIL (|has| $ (-6 -4414))))) +((-2988 (((-112) $ $) NIL)) (-2107 (((-644 (-2 (|:| -1685 $) (|:| -3292 (-644 |#4|)))) (-644 |#4|)) NIL)) (-2779 (((-644 $) (-644 |#4|)) NIL)) (-1771 (((-644 |#3|) $) NIL)) (-3071 (((-112) $) NIL)) (-3274 (((-112) $) NIL (|has| |#1| (-558)))) (-2267 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1411 ((|#4| |#4| $) NIL)) (-2671 (((-2 (|:| |under| $) (|:| -3143 $) (|:| |upper| $)) $ |#3|) NIL)) (-1504 (((-112) $ (-771)) NIL)) (-3678 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4414))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2463 (($) NIL T CONST)) (-3036 (((-112) $) 29 (|has| |#1| (-558)))) (-1963 (((-112) $ $) NIL (|has| |#1| (-558)))) (-2983 (((-112) $ $) NIL (|has| |#1| (-558)))) (-1477 (((-112) $) NIL (|has| |#1| (-558)))) (-3930 (((-644 |#4|) (-644 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1789 (((-644 |#4|) (-644 |#4|) $) NIL (|has| |#1| (-558)))) (-2228 (((-644 |#4|) (-644 |#4|) $) NIL (|has| |#1| (-558)))) (-2229 (((-3 $ "failed") (-644 |#4|)) NIL)) (-4158 (($ (-644 |#4|)) NIL)) (-3919 (((-3 $ "failed") $) 45)) (-3110 ((|#4| |#4| $) NIL)) (-3942 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#4| (-1099))))) (-2622 (($ |#4| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#4| (-1099)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4414)))) (-3264 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-558)))) (-3599 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2690 ((|#4| |#4| $) NIL)) (-2873 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4414)) (|has| |#4| (-1099)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4414))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4414))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3476 (((-2 (|:| -1685 (-644 |#4|)) (|:| -3292 (-644 |#4|))) $) NIL)) (-1683 (((-644 |#4|) $) 18 (|has| $ (-6 -4414)))) (-1640 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4296 ((|#3| $) 38)) (-3456 (((-112) $ (-771)) NIL)) (-3491 (((-644 |#4|) $) 19 (|has| $ (-6 -4414)))) (-1602 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4414)) (|has| |#4| (-1099))))) (-3885 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#4| |#4|) $) 23)) (-1785 (((-644 |#3|) $) NIL)) (-1579 (((-112) |#3| $) NIL)) (-3267 (((-112) $ (-771)) NIL)) (-3380 (((-1157) $) NIL)) (-2641 (((-3 |#4| "failed") $) 42)) (-2133 (((-644 |#4|) $) NIL)) (-2543 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1906 ((|#4| |#4| $) NIL)) (-3077 (((-112) $ $) NIL)) (-2594 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-558)))) (-3374 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4074 ((|#4| |#4| $) NIL)) (-4072 (((-1119) $) NIL)) (-3908 (((-3 |#4| "failed") $) 40)) (-3668 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2718 (((-3 $ "failed") $ |#4|) 58)) (-3369 (($ $ |#4|) NIL)) (-2823 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 |#4|) (-644 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-644 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))) (-3814 (((-112) $ $) NIL)) (-2872 (((-112) $) 17)) (-3493 (($) 14)) (-3902 (((-771) $) NIL)) (-4083 (((-771) |#4| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#4| (-1099)))) (((-771) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4414)))) (-1480 (($ $) 13)) (-2376 (((-538) $) NIL (|has| |#4| (-614 (-538))))) (-1340 (($ (-644 |#4|)) 22)) (-4305 (($ $ |#3|) 52)) (-1702 (($ $ |#3|) 54)) (-4017 (($ $) NIL)) (-3809 (($ $ |#3|) NIL)) (-3152 (((-862) $) 35) (((-644 |#4|) $) 46)) (-3909 (((-771) $) NIL (|has| |#3| (-370)))) (-3044 (((-112) $ $) NIL)) (-2236 (((-3 (-2 (|:| |bas| $) (|:| -3712 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3712 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3622 (((-112) $ (-1 (-112) |#4| (-644 |#4|))) NIL)) (-2210 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4414)))) (-4382 (((-644 |#3|) $) NIL)) (-4217 (((-112) |#3| $) NIL)) (-2914 (((-112) $ $) NIL)) (-3000 (((-771) $) NIL (|has| $ (-6 -4414))))) (((-478 |#1| |#2| |#3| |#4|) (-1207 |#1| |#2| |#3| |#4|) (-558) (-793) (-850) (-1064 |#1| |#2| |#3|)) (T -478)) NIL (-1207 |#1| |#2| |#3| |#4|) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-3991 (($ $) NIL)) (-2388 (((-112) $) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-1550 (($ $) NIL)) (-3184 (((-420 $) $) NIL)) (-2837 (((-112) $ $) NIL)) (-3012 (($) NIL T CONST)) (-4307 (((-3 (-566) "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL)) (-4205 (((-566) $) NIL) (((-409 (-566)) $) NIL)) (-2946 (($ $ $) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-2957 (($ $ $) NIL)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL)) (-3268 (((-112) $) NIL)) (-4361 (($) 17)) (-3934 (((-112) $) NIL)) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2167 (($ $ $) NIL) (($ (-644 $)) NIL)) (-4117 (((-1157) $) NIL)) (-1713 (($ $) NIL)) (-4035 (((-1119) $) NIL)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2214 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3719 (((-420 $) $) NIL)) (-3148 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2994 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3039 (((-771) $) NIL)) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL)) (-1348 (((-381) $) 21) (((-225) $) 24) (((-409 (-1171 (-566))) $) 18) (((-538) $) 53)) (-3783 (((-862) $) 51) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (((-225) $) 23) (((-381) $) 20)) (-2107 (((-771)) NIL T CONST)) (-3117 (((-112) $ $) NIL)) (-2695 (((-112) $ $) NIL)) (-2479 (($) 37 T CONST)) (-4334 (($) 8 T CONST)) (-2947 (((-112) $ $) NIL)) (-3065 (($ $ $) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL))) -(((-479) (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))) (-1022) (-613 (-225)) (-613 (-381)) (-614 (-409 (-1171 (-566)))) (-614 (-538)) (-10 -8 (-15 -4361 ($))))) (T -479)) -((-4361 (*1 *1) (-5 *1 (-479)))) -(-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))) (-1022) (-613 (-225)) (-613 (-381)) (-614 (-409 (-1171 (-566)))) (-614 (-538)) (-10 -8 (-15 -4361 ($)))) -((-3007 (((-112) $ $) NIL)) (-4330 (((-1134) $) 11)) (-4318 (((-1134) $) 9)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 17) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) -(((-480) (-13 (-1082) (-10 -8 (-15 -4318 ((-1134) $)) (-15 -4330 ((-1134) $))))) (T -480)) -((-4318 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-480)))) (-4330 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-480))))) -(-13 (-1082) (-10 -8 (-15 -4318 ((-1134) $)) (-15 -4330 ((-1134) $)))) -((-3007 (((-112) $ $) NIL (-2809 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-4254 (($) NIL) (($ (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) NIL)) (-3734 (((-1269) $ |#1| |#1|) NIL (|has| $ (-6 -4415)))) (-2256 (((-112) $ (-771)) NIL)) (-3923 ((|#2| $ |#1| |#2|) 16)) (-4016 (($ (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-2701 (($ (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-2434 (((-3 |#2| "failed") |#1| $) 20)) (-3012 (($) NIL T CONST)) (-2031 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099))))) (-2956 (($ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL (|has| $ (-6 -4414))) (($ (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-3 |#2| "failed") |#1| $) 18)) (-2665 (($ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (($ (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-1676 (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) NIL (|has| $ (-6 -4414))) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-2920 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4415)))) (-2855 ((|#2| $ |#1|) NIL)) (-3979 (((-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-644 |#2|) $) NIL (|has| $ (-6 -4414)))) (-2404 (((-112) $ (-771)) NIL)) (-3854 ((|#1| $) NIL (|has| |#1| (-850)))) (-2329 (((-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-644 |#2|) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099))))) (-2712 ((|#1| $) NIL (|has| |#1| (-850)))) (-2908 (($ (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4415))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4415)))) (-1301 (($ (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2603 (((-112) $ (-771)) NIL)) (-4117 (((-1157) $) NIL (-2809 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-4103 (((-644 |#1|) $) 13)) (-2876 (((-112) |#1| $) NIL)) (-4039 (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL)) (-3406 (($ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL)) (-4074 (((-644 |#1|) $) NIL)) (-3792 (((-112) |#1| $) NIL)) (-4035 (((-1119) $) NIL (-2809 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-1998 ((|#2| $) NIL (|has| |#1| (-850)))) (-2006 (((-3 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) "failed") (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL)) (-4030 (($ $ |#2|) NIL (|has| $ (-6 -4415)))) (-2539 (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL)) (-2692 (((-112) (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))))) NIL (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (($ $ (-295 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) NIL (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (($ $ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) NIL (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (($ $ (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) NIL (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-1932 (((-112) $ $) NIL)) (-4156 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099))))) (-2993 (((-644 |#2|) $) NIL)) (-3467 (((-112) $) NIL)) (-1494 (($) 19)) (-4390 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3481 (($) NIL) (($ (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) NIL)) (-4045 (((-771) (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-771) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (((-771) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099)))) (((-771) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414)))) (-3940 (($ $) NIL)) (-1348 (((-538) $) NIL (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-614 (-538))))) (-3796 (($ (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) NIL)) (-3783 (((-862) $) NIL (-2809 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-613 (-862))) (|has| |#2| (-613 (-862)))))) (-3117 (((-112) $ $) NIL (-2809 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-1748 (($ (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) NIL)) (-1894 (((-112) (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) 11 (-2809 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-3018 (((-771) $) 15 (|has| $ (-6 -4414))))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-2161 (($ $) NIL)) (-2345 (((-112) $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-1378 (($ $) NIL)) (-1364 (((-420 $) $) NIL)) (-2085 (((-112) $ $) NIL)) (-2463 (($) NIL T CONST)) (-2229 (((-3 (-566) "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL)) (-4158 (((-566) $) NIL) (((-409 (-566)) $) NIL)) (-2933 (($ $ $) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-2945 (($ $ $) NIL)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL)) (-1615 (((-112) $) NIL)) (-2281 (($) 17)) (-2389 (((-112) $) NIL)) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2128 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3380 (((-1157) $) NIL)) (-2748 (($ $) NIL)) (-4072 (((-1119) $) NIL)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2164 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1624 (((-420 $) $) NIL)) (-3005 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2978 (((-3 $ "failed") $ $) NIL)) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-4357 (((-771) $) NIL)) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL)) (-2376 (((-381) $) 21) (((-225) $) 24) (((-409 (-1171 (-566))) $) 18) (((-538) $) 53)) (-3152 (((-862) $) 51) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (((-225) $) 23) (((-381) $) 20)) (-2593 (((-771)) NIL T CONST)) (-3044 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-4356 (($) 37 T CONST)) (-4366 (($) 8 T CONST)) (-2914 (((-112) $ $) NIL)) (-3025 (($ $ $) NIL)) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL))) +(((-479) (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))) (-1022) (-613 (-225)) (-613 (-381)) (-614 (-409 (-1171 (-566)))) (-614 (-538)) (-10 -8 (-15 -2281 ($))))) (T -479)) +((-2281 (*1 *1) (-5 *1 (-479)))) +(-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))) (-1022) (-613 (-225)) (-613 (-381)) (-614 (-409 (-1171 (-566)))) (-614 (-538)) (-10 -8 (-15 -2281 ($)))) +((-2988 (((-112) $ $) NIL)) (-3124 (((-1134) $) 11)) (-3114 (((-1134) $) 9)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 17) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) +(((-480) (-13 (-1082) (-10 -8 (-15 -3114 ((-1134) $)) (-15 -3124 ((-1134) $))))) (T -480)) +((-3114 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-480)))) (-3124 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-480))))) +(-13 (-1082) (-10 -8 (-15 -3114 ((-1134) $)) (-15 -3124 ((-1134) $)))) +((-2988 (((-112) $ $) NIL (-2768 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-1849 (($) NIL) (($ (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) NIL)) (-1944 (((-1269) $ |#1| |#1|) NIL (|has| $ (-6 -4415)))) (-1504 (((-112) $ (-771)) NIL)) (-1456 ((|#2| $ |#1| |#2|) 16)) (-2995 (($ (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-3678 (($ (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-3070 (((-3 |#2| "failed") |#1| $) 20)) (-2463 (($) NIL T CONST)) (-3942 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099))))) (-3512 (($ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL (|has| $ (-6 -4414))) (($ (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-3 |#2| "failed") |#1| $) 18)) (-2622 (($ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (($ (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-2873 (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) NIL (|has| $ (-6 -4414))) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-3897 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4415)))) (-3829 ((|#2| $ |#1|) NIL)) (-1683 (((-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-644 |#2|) $) NIL (|has| $ (-6 -4414)))) (-3456 (((-112) $ (-771)) NIL)) (-2296 ((|#1| $) NIL (|has| |#1| (-850)))) (-3491 (((-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-644 |#2|) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099))))) (-4050 ((|#1| $) NIL (|has| |#1| (-850)))) (-3885 (($ (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4415))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4415)))) (-2319 (($ (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3267 (((-112) $ (-771)) NIL)) (-3380 (((-1157) $) NIL (-2768 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-4052 (((-644 |#1|) $) 13)) (-1826 (((-112) |#1| $) NIL)) (-3278 (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL)) (-3888 (($ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL)) (-3725 (((-644 |#1|) $) NIL)) (-1644 (((-112) |#1| $) NIL)) (-4072 (((-1119) $) NIL (-2768 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-3908 ((|#2| $) NIL (|has| |#1| (-850)))) (-3668 (((-3 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) "failed") (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL)) (-3787 (($ $ |#2|) NIL (|has| $ (-6 -4415)))) (-1973 (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL)) (-2823 (((-112) (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))))) NIL (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (($ $ (-295 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) NIL (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (($ $ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) NIL (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (($ $ (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) NIL (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-3814 (((-112) $ $) NIL)) (-2847 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099))))) (-3486 (((-644 |#2|) $) NIL)) (-2872 (((-112) $) NIL)) (-3493 (($) 19)) (-1309 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1792 (($) NIL) (($ (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) NIL)) (-4083 (((-771) (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-771) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (((-771) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099)))) (((-771) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414)))) (-1480 (($ $) NIL)) (-2376 (((-538) $) NIL (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-614 (-538))))) (-1340 (($ (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) NIL)) (-3152 (((-862) $) NIL (-2768 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-613 (-862))) (|has| |#2| (-613 (-862)))))) (-3044 (((-112) $ $) NIL (-2768 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-2948 (($ (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) NIL)) (-2210 (((-112) (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) 11 (-2768 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-3000 (((-771) $) 15 (|has| $ (-6 -4414))))) (((-481 |#1| |#2| |#3|) (-13 (-1190 |#1| |#2|) (-10 -7 (-6 -4414))) (-1099) (-1099) (-1157)) (T -481)) NIL (-13 (-1190 |#1| |#2|) (-10 -7 (-6 -4414))) -((-4228 (((-566) (-566) (-566)) 19)) (-3097 (((-112) (-566) (-566) (-566) (-566)) 28)) (-3082 (((-1264 (-644 (-566))) (-771) (-771)) 44))) -(((-482) (-10 -7 (-15 -4228 ((-566) (-566) (-566))) (-15 -3097 ((-112) (-566) (-566) (-566) (-566))) (-15 -3082 ((-1264 (-644 (-566))) (-771) (-771))))) (T -482)) -((-3082 (*1 *2 *3 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1264 (-644 (-566)))) (-5 *1 (-482)))) (-3097 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-566)) (-5 *2 (-112)) (-5 *1 (-482)))) (-4228 (*1 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-482))))) -(-10 -7 (-15 -4228 ((-566) (-566) (-566))) (-15 -3097 ((-112) (-566) (-566) (-566) (-566))) (-15 -3082 ((-1264 (-644 (-566))) (-771) (-771)))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-3863 (((-644 (-864 |#1|)) $) NIL)) (-3683 (((-1171 $) $ (-864 |#1|)) NIL) (((-1171 |#2|) $) NIL)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#2| (-558)))) (-3991 (($ $) NIL (|has| |#2| (-558)))) (-2388 (((-112) $) NIL (|has| |#2| (-558)))) (-3367 (((-771) $) NIL) (((-771) $ (-644 (-864 |#1|))) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-1477 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-1550 (($ $) NIL (|has| |#2| (-454)))) (-3184 (((-420 $) $) NIL (|has| |#2| (-454)))) (-3717 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-3012 (($) NIL T CONST)) (-4307 (((-3 |#2| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#2| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#2| (-1038 (-566)))) (((-3 (-864 |#1|) "failed") $) NIL)) (-4205 ((|#2| $) NIL) (((-409 (-566)) $) NIL (|has| |#2| (-1038 (-409 (-566))))) (((-566) $) NIL (|has| |#2| (-1038 (-566)))) (((-864 |#1|) $) NIL)) (-2738 (($ $ $ (-864 |#1|)) NIL (|has| |#2| (-172)))) (-2973 (($ $ (-644 (-566))) NIL)) (-1786 (($ $) NIL)) (-3577 (((-689 (-566)) (-689 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -4227 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 $) (-1264 $)) NIL) (((-689 |#2|) (-689 $)) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-4075 (($ $) NIL (|has| |#2| (-454))) (($ $ (-864 |#1|)) NIL (|has| |#2| (-454)))) (-1774 (((-644 $) $) NIL)) (-3268 (((-112) $) NIL (|has| |#2| (-909)))) (-3635 (($ $ |#2| (-484 (-3018 |#1|) (-771)) $) NIL)) (-2062 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| (-864 |#1|) (-886 (-381))) (|has| |#2| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| (-864 |#1|) (-886 (-566))) (|has| |#2| (-886 (-566)))))) (-3934 (((-112) $) NIL)) (-2614 (((-771) $) NIL)) (-3851 (($ (-1171 |#2|) (-864 |#1|)) NIL) (($ (-1171 $) (-864 |#1|)) NIL)) (-2288 (((-644 $) $) NIL)) (-3264 (((-112) $) NIL)) (-3840 (($ |#2| (-484 (-3018 |#1|) (-771))) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-2044 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $ (-864 |#1|)) NIL)) (-3760 (((-484 (-3018 |#1|) (-771)) $) NIL) (((-771) $ (-864 |#1|)) NIL) (((-644 (-771)) $ (-644 (-864 |#1|))) NIL)) (-4301 (($ (-1 (-484 (-3018 |#1|) (-771)) (-484 (-3018 |#1|) (-771))) $) NIL)) (-1301 (($ (-1 |#2| |#2|) $) NIL)) (-3169 (((-3 (-864 |#1|) "failed") $) NIL)) (-1749 (($ $) NIL)) (-1763 ((|#2| $) NIL)) (-2167 (($ (-644 $)) NIL (|has| |#2| (-454))) (($ $ $) NIL (|has| |#2| (-454)))) (-4117 (((-1157) $) NIL)) (-3714 (((-3 (-644 $) "failed") $) NIL)) (-2353 (((-3 (-644 $) "failed") $) NIL)) (-1518 (((-3 (-2 (|:| |var| (-864 |#1|)) (|:| -2852 (-771))) "failed") $) NIL)) (-4035 (((-1119) $) NIL)) (-1723 (((-112) $) NIL)) (-1736 ((|#2| $) NIL)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#2| (-454)))) (-2214 (($ (-644 $)) NIL (|has| |#2| (-454))) (($ $ $) NIL (|has| |#2| (-454)))) (-4303 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-3240 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-3719 (((-420 $) $) NIL (|has| |#2| (-909)))) (-2994 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-558))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-558)))) (-2055 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-864 |#1|) |#2|) NIL) (($ $ (-644 (-864 |#1|)) (-644 |#2|)) NIL) (($ $ (-864 |#1|) $) NIL) (($ $ (-644 (-864 |#1|)) (-644 $)) NIL)) (-3652 (($ $ (-864 |#1|)) NIL (|has| |#2| (-172)))) (-3561 (($ $ (-864 |#1|)) NIL) (($ $ (-644 (-864 |#1|))) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-3636 (((-484 (-3018 |#1|) (-771)) $) NIL) (((-771) $ (-864 |#1|)) NIL) (((-644 (-771)) $ (-644 (-864 |#1|))) NIL)) (-1348 (((-892 (-381)) $) NIL (-12 (|has| (-864 |#1|) (-614 (-892 (-381)))) (|has| |#2| (-614 (-892 (-381)))))) (((-892 (-566)) $) NIL (-12 (|has| (-864 |#1|) (-614 (-892 (-566)))) (|has| |#2| (-614 (-892 (-566)))))) (((-538) $) NIL (-12 (|has| (-864 |#1|) (-614 (-538))) (|has| |#2| (-614 (-538)))))) (-2483 ((|#2| $) NIL (|has| |#2| (-454))) (($ $ (-864 |#1|)) NIL (|has| |#2| (-454)))) (-1656 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-909))))) (-3783 (((-862) $) NIL) (($ (-566)) NIL) (($ |#2|) NIL) (($ (-864 |#1|)) NIL) (($ (-409 (-566))) NIL (-2809 (|has| |#2| (-38 (-409 (-566)))) (|has| |#2| (-1038 (-409 (-566)))))) (($ $) NIL (|has| |#2| (-558)))) (-4170 (((-644 |#2|) $) NIL)) (-2649 ((|#2| $ (-484 (-3018 |#1|) (-771))) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-3144 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| $ (-145)) (|has| |#2| (-909))) (|has| |#2| (-145))))) (-2107 (((-771)) NIL T CONST)) (-3362 (($ $ $ (-771)) NIL (|has| |#2| (-172)))) (-3117 (((-112) $ $) NIL)) (-2695 (((-112) $ $) NIL (|has| |#2| (-558)))) (-2479 (($) NIL T CONST)) (-4334 (($) NIL T CONST)) (-2875 (($ $ (-864 |#1|)) NIL) (($ $ (-644 (-864 |#1|))) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-2947 (((-112) $ $) NIL)) (-3065 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL (|has| |#2| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#2| (-38 (-409 (-566))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-483 |#1| |#2|) (-13 (-949 |#2| (-484 (-3018 |#1|) (-771)) (-864 |#1|)) (-10 -8 (-15 -2973 ($ $ (-644 (-566)))))) (-644 (-1175)) (-1049)) (T -483)) -((-2973 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-483 *3 *4)) (-14 *3 (-644 (-1175))) (-4 *4 (-1049))))) -(-13 (-949 |#2| (-484 (-3018 |#1|) (-771)) (-864 |#1|)) (-10 -8 (-15 -2973 ($ $ (-644 (-566)))))) -((-3007 (((-112) $ $) NIL (|has| |#2| (-1099)))) (-1788 (((-112) $) NIL (|has| |#2| (-131)))) (-4348 (($ (-921)) NIL (|has| |#2| (-1049)))) (-3734 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4415)))) (-2660 (($ $ $) NIL (|has| |#2| (-793)))) (-4175 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-2256 (((-112) $ (-771)) NIL)) (-1970 (((-771)) NIL (|has| |#2| (-370)))) (-4364 (((-566) $) NIL (|has| |#2| (-848)))) (-3923 ((|#2| $ (-566) |#2|) NIL (|has| $ (-6 -4415)))) (-3012 (($) NIL T CONST)) (-4307 (((-3 (-566) "failed") $) NIL (-12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099)))) (((-3 (-409 (-566)) "failed") $) NIL (-12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1099)))) (-4205 (((-566) $) NIL (-12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099)))) (((-409 (-566)) $) NIL (-12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) ((|#2| $) NIL (|has| |#2| (-1099)))) (-3577 (((-689 (-566)) (-689 $)) NIL (-12 (|has| |#2| (-639 (-566))) (|has| |#2| (-1049)))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (-12 (|has| |#2| (-639 (-566))) (|has| |#2| (-1049)))) (((-2 (|:| -4227 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 $) (-1264 $)) NIL (|has| |#2| (-1049))) (((-689 |#2|) (-689 $)) NIL (|has| |#2| (-1049)))) (-1878 (((-3 $ "failed") $) NIL (|has| |#2| (-726)))) (-1552 (($) NIL (|has| |#2| (-370)))) (-2920 ((|#2| $ (-566) |#2|) NIL (|has| $ (-6 -4415)))) (-2855 ((|#2| $ (-566)) 15)) (-1897 (((-112) $) NIL (|has| |#2| (-848)))) (-3979 (((-644 |#2|) $) NIL (|has| $ (-6 -4414)))) (-3934 (((-112) $) NIL (|has| |#2| (-726)))) (-2117 (((-112) $) NIL (|has| |#2| (-848)))) (-2404 (((-112) $ (-771)) NIL)) (-3854 (((-566) $) NIL (|has| (-566) (-850)))) (-2097 (($ $ $) NIL (-2809 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-2329 (((-644 |#2|) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099))))) (-2712 (((-566) $) NIL (|has| (-566) (-850)))) (-3962 (($ $ $) NIL (-2809 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-2908 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#2| |#2|) $) NIL)) (-3681 (((-921) $) NIL (|has| |#2| (-370)))) (-2603 (((-112) $ (-771)) NIL)) (-4117 (((-1157) $) NIL (|has| |#2| (-1099)))) (-4074 (((-644 (-566)) $) NIL)) (-3792 (((-112) (-566) $) NIL)) (-2178 (($ (-921)) NIL (|has| |#2| (-370)))) (-4035 (((-1119) $) NIL (|has| |#2| (-1099)))) (-1998 ((|#2| $) NIL (|has| (-566) (-850)))) (-4030 (($ $ |#2|) NIL (|has| $ (-6 -4415)))) (-2692 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-1932 (((-112) $ $) NIL)) (-4156 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099))))) (-2993 (((-644 |#2|) $) NIL)) (-3467 (((-112) $) NIL)) (-1494 (($) NIL)) (-4390 ((|#2| $ (-566) |#2|) NIL) ((|#2| $ (-566)) NIL)) (-4280 ((|#2| $ $) NIL (|has| |#2| (-1049)))) (-3764 (($ (-1264 |#2|)) NIL)) (-3164 (((-134)) NIL (|has| |#2| (-365)))) (-3561 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-771)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-1175)) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1 |#2| |#2|) (-771)) NIL (|has| |#2| (-1049))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1049)))) (-4045 (((-771) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414))) (((-771) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099))))) (-3940 (($ $) NIL)) (-3783 (((-1264 |#2|) $) NIL) (($ (-566)) NIL (-2809 (-12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099))) (|has| |#2| (-1049)))) (($ (-409 (-566))) NIL (-12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) (($ |#2|) NIL (|has| |#2| (-1099))) (((-862) $) NIL (|has| |#2| (-613 (-862))))) (-2107 (((-771)) NIL (|has| |#2| (-1049)) CONST)) (-3117 (((-112) $ $) NIL (|has| |#2| (-1099)))) (-1894 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414)))) (-2086 (($ $) NIL (|has| |#2| (-848)))) (-2479 (($) NIL (|has| |#2| (-131)) CONST)) (-4334 (($) NIL (|has| |#2| (-726)) CONST)) (-2875 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-771)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-1175)) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1 |#2| |#2|) (-771)) NIL (|has| |#2| (-1049))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1049)))) (-3009 (((-112) $ $) NIL (-2809 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-2984 (((-112) $ $) NIL (-2809 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-2947 (((-112) $ $) NIL (|has| |#2| (-1099)))) (-2995 (((-112) $ $) NIL (-2809 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-2969 (((-112) $ $) 21 (-2809 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-3065 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3053 (($ $ $) NIL (|has| |#2| (-1049))) (($ $) NIL (|has| |#2| (-1049)))) (-3041 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-771)) NIL (|has| |#2| (-726))) (($ $ (-921)) NIL (|has| |#2| (-726)))) (* (($ (-566) $) NIL (|has| |#2| (-1049))) (($ $ $) NIL (|has| |#2| (-726))) (($ $ |#2|) NIL (|has| |#2| (-726))) (($ |#2| $) NIL (|has| |#2| (-726))) (($ (-771) $) NIL (|has| |#2| (-131))) (($ (-921) $) NIL (|has| |#2| (-25)))) (-3018 (((-771) $) NIL (|has| $ (-6 -4414))))) +((-3459 (((-566) (-566) (-566)) 19)) (-4315 (((-112) (-566) (-566) (-566) (-566)) 28)) (-4109 (((-1264 (-644 (-566))) (-771) (-771)) 44))) +(((-482) (-10 -7 (-15 -3459 ((-566) (-566) (-566))) (-15 -4315 ((-112) (-566) (-566) (-566) (-566))) (-15 -4109 ((-1264 (-644 (-566))) (-771) (-771))))) (T -482)) +((-4109 (*1 *2 *3 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1264 (-644 (-566)))) (-5 *1 (-482)))) (-4315 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-566)) (-5 *2 (-112)) (-5 *1 (-482)))) (-3459 (*1 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-482))))) +(-10 -7 (-15 -3459 ((-566) (-566) (-566))) (-15 -4315 ((-112) (-566) (-566) (-566) (-566))) (-15 -4109 ((-1264 (-644 (-566))) (-771) (-771)))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-1771 (((-644 (-864 |#1|)) $) NIL)) (-1590 (((-1171 $) $ (-864 |#1|)) NIL) (((-1171 |#2|) $) NIL)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#2| (-558)))) (-2161 (($ $) NIL (|has| |#2| (-558)))) (-2345 (((-112) $) NIL (|has| |#2| (-558)))) (-1357 (((-771) $) NIL) (((-771) $ (-644 (-864 |#1|))) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-2292 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-1378 (($ $) NIL (|has| |#2| (-454)))) (-1364 (((-420 $) $) NIL (|has| |#2| (-454)))) (-4066 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-2463 (($) NIL T CONST)) (-2229 (((-3 |#2| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#2| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#2| (-1038 (-566)))) (((-3 (-864 |#1|) "failed") $) NIL)) (-4158 ((|#2| $) NIL) (((-409 (-566)) $) NIL (|has| |#2| (-1038 (-409 (-566))))) (((-566) $) NIL (|has| |#2| (-1038 (-566)))) (((-864 |#1|) $) NIL)) (-2610 (($ $ $ (-864 |#1|)) NIL (|has| |#2| (-172)))) (-1416 (($ $ (-644 (-566))) NIL)) (-2814 (($ $) NIL)) (-4089 (((-689 (-566)) (-689 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -3361 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 $) (-1264 $)) NIL) (((-689 |#2|) (-689 $)) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-2616 (($ $) NIL (|has| |#2| (-454))) (($ $ (-864 |#1|)) NIL (|has| |#2| (-454)))) (-2804 (((-644 $) $) NIL)) (-1615 (((-112) $) NIL (|has| |#2| (-909)))) (-1896 (($ $ |#2| (-484 (-3000 |#1|) (-771)) $) NIL)) (-2926 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| (-864 |#1|) (-886 (-381))) (|has| |#2| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| (-864 |#1|) (-886 (-566))) (|has| |#2| (-886 (-566)))))) (-2389 (((-112) $) NIL)) (-3039 (((-771) $) NIL)) (-1757 (($ (-1171 |#2|) (-864 |#1|)) NIL) (($ (-1171 $) (-864 |#1|)) NIL)) (-1587 (((-644 $) $) NIL)) (-2497 (((-112) $) NIL)) (-1746 (($ |#2| (-484 (-3000 |#1|) (-771))) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-2815 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $ (-864 |#1|)) NIL)) (-2749 (((-484 (-3000 |#1|) (-771)) $) NIL) (((-771) $ (-864 |#1|)) NIL) (((-644 (-771)) $ (-644 (-864 |#1|))) NIL)) (-3021 (($ (-1 (-484 (-3000 |#1|) (-771)) (-484 (-3000 |#1|) (-771))) $) NIL)) (-2319 (($ (-1 |#2| |#2|) $) NIL)) (-2297 (((-3 (-864 |#1|) "failed") $) NIL)) (-2784 (($ $) NIL)) (-2794 ((|#2| $) NIL)) (-2128 (($ (-644 $)) NIL (|has| |#2| (-454))) (($ $ $) NIL (|has| |#2| (-454)))) (-3380 (((-1157) $) NIL)) (-3738 (((-3 (-644 $) "failed") $) NIL)) (-4199 (((-3 (-644 $) "failed") $) NIL)) (-4108 (((-3 (-2 (|:| |var| (-864 |#1|)) (|:| -2201 (-771))) "failed") $) NIL)) (-4072 (((-1119) $) NIL)) (-2761 (((-112) $) NIL)) (-2773 ((|#2| $) NIL)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#2| (-454)))) (-2164 (($ (-644 $)) NIL (|has| |#2| (-454))) (($ $ $) NIL (|has| |#2| (-454)))) (-2010 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-1893 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-1624 (((-420 $) $) NIL (|has| |#2| (-909)))) (-2978 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-558))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-558)))) (-2023 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-864 |#1|) |#2|) NIL) (($ $ (-644 (-864 |#1|)) (-644 |#2|)) NIL) (($ $ (-864 |#1|) $) NIL) (($ $ (-644 (-864 |#1|)) (-644 $)) NIL)) (-4068 (($ $ (-864 |#1|)) NIL (|has| |#2| (-172)))) (-3629 (($ $ (-864 |#1|)) NIL) (($ $ (-644 (-864 |#1|))) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-3902 (((-484 (-3000 |#1|) (-771)) $) NIL) (((-771) $ (-864 |#1|)) NIL) (((-644 (-771)) $ (-644 (-864 |#1|))) NIL)) (-2376 (((-892 (-381)) $) NIL (-12 (|has| (-864 |#1|) (-614 (-892 (-381)))) (|has| |#2| (-614 (-892 (-381)))))) (((-892 (-566)) $) NIL (-12 (|has| (-864 |#1|) (-614 (-892 (-566)))) (|has| |#2| (-614 (-892 (-566)))))) (((-538) $) NIL (-12 (|has| (-864 |#1|) (-614 (-538))) (|has| |#2| (-614 (-538)))))) (-3173 ((|#2| $) NIL (|has| |#2| (-454))) (($ $ (-864 |#1|)) NIL (|has| |#2| (-454)))) (-3391 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-909))))) (-3152 (((-862) $) NIL) (($ (-566)) NIL) (($ |#2|) NIL) (($ (-864 |#1|)) NIL) (($ (-409 (-566))) NIL (-2768 (|has| |#2| (-38 (-409 (-566)))) (|has| |#2| (-1038 (-409 (-566)))))) (($ $) NIL (|has| |#2| (-558)))) (-1643 (((-644 |#2|) $) NIL)) (-2271 ((|#2| $ (-484 (-3000 |#1|) (-771))) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-2633 (((-3 $ "failed") $) NIL (-2768 (-12 (|has| $ (-145)) (|has| |#2| (-909))) (|has| |#2| (-145))))) (-2593 (((-771)) NIL T CONST)) (-2021 (($ $ $ (-771)) NIL (|has| |#2| (-172)))) (-3044 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL (|has| |#2| (-558)))) (-4356 (($) NIL T CONST)) (-4366 (($) NIL T CONST)) (-3497 (($ $ (-864 |#1|)) NIL) (($ $ (-644 (-864 |#1|))) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-2914 (((-112) $ $) NIL)) (-3025 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL (|has| |#2| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#2| (-38 (-409 (-566))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-483 |#1| |#2|) (-13 (-949 |#2| (-484 (-3000 |#1|) (-771)) (-864 |#1|)) (-10 -8 (-15 -1416 ($ $ (-644 (-566)))))) (-644 (-1175)) (-1049)) (T -483)) +((-1416 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-483 *3 *4)) (-14 *3 (-644 (-1175))) (-4 *4 (-1049))))) +(-13 (-949 |#2| (-484 (-3000 |#1|) (-771)) (-864 |#1|)) (-10 -8 (-15 -1416 ($ $ (-644 (-566)))))) +((-2988 (((-112) $ $) NIL (|has| |#2| (-1099)))) (-3230 (((-112) $) NIL (|has| |#2| (-131)))) (-1570 (($ (-921)) NIL (|has| |#2| (-1049)))) (-1944 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4415)))) (-3920 (($ $ $) NIL (|has| |#2| (-793)))) (-3967 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-1504 (((-112) $ (-771)) NIL)) (-3870 (((-771)) NIL (|has| |#2| (-370)))) (-2743 (((-566) $) NIL (|has| |#2| (-848)))) (-1456 ((|#2| $ (-566) |#2|) NIL (|has| $ (-6 -4415)))) (-2463 (($) NIL T CONST)) (-2229 (((-3 (-566) "failed") $) NIL (-12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099)))) (((-3 (-409 (-566)) "failed") $) NIL (-12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1099)))) (-4158 (((-566) $) NIL (-12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099)))) (((-409 (-566)) $) NIL (-12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) ((|#2| $) NIL (|has| |#2| (-1099)))) (-4089 (((-689 (-566)) (-689 $)) NIL (-12 (|has| |#2| (-639 (-566))) (|has| |#2| (-1049)))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (-12 (|has| |#2| (-639 (-566))) (|has| |#2| (-1049)))) (((-2 (|:| -3361 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 $) (-1264 $)) NIL (|has| |#2| (-1049))) (((-689 |#2|) (-689 $)) NIL (|has| |#2| (-1049)))) (-3245 (((-3 $ "failed") $) NIL (|has| |#2| (-726)))) (-2715 (($) NIL (|has| |#2| (-370)))) (-3897 ((|#2| $ (-566) |#2|) NIL (|has| $ (-6 -4415)))) (-3829 ((|#2| $ (-566)) 15)) (-2528 (((-112) $) NIL (|has| |#2| (-848)))) (-1683 (((-644 |#2|) $) NIL (|has| $ (-6 -4414)))) (-2389 (((-112) $) NIL (|has| |#2| (-726)))) (-3233 (((-112) $) NIL (|has| |#2| (-848)))) (-3456 (((-112) $ (-771)) NIL)) (-2296 (((-566) $) NIL (|has| (-566) (-850)))) (-1478 (($ $ $) NIL (-2768 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-3491 (((-644 |#2|) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099))))) (-4050 (((-566) $) NIL (|has| (-566) (-850)))) (-2599 (($ $ $) NIL (-2768 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-3885 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#2| |#2|) $) NIL)) (-1866 (((-921) $) NIL (|has| |#2| (-370)))) (-3267 (((-112) $ (-771)) NIL)) (-3380 (((-1157) $) NIL (|has| |#2| (-1099)))) (-3725 (((-644 (-566)) $) NIL)) (-1644 (((-112) (-566) $) NIL)) (-2835 (($ (-921)) NIL (|has| |#2| (-370)))) (-4072 (((-1119) $) NIL (|has| |#2| (-1099)))) (-3908 ((|#2| $) NIL (|has| (-566) (-850)))) (-3787 (($ $ |#2|) NIL (|has| $ (-6 -4415)))) (-2823 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-3814 (((-112) $ $) NIL)) (-2847 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099))))) (-3486 (((-644 |#2|) $) NIL)) (-2872 (((-112) $) NIL)) (-3493 (($) NIL)) (-1309 ((|#2| $ (-566) |#2|) NIL) ((|#2| $ (-566)) NIL)) (-3386 ((|#2| $ $) NIL (|has| |#2| (-1049)))) (-1668 (($ (-1264 |#2|)) NIL)) (-3126 (((-134)) NIL (|has| |#2| (-365)))) (-3629 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-771)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-1175)) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1 |#2| |#2|) (-771)) NIL (|has| |#2| (-1049))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1049)))) (-4083 (((-771) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414))) (((-771) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099))))) (-1480 (($ $) NIL)) (-3152 (((-1264 |#2|) $) NIL) (($ (-566)) NIL (-2768 (-12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099))) (|has| |#2| (-1049)))) (($ (-409 (-566))) NIL (-12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) (($ |#2|) NIL (|has| |#2| (-1099))) (((-862) $) NIL (|has| |#2| (-613 (-862))))) (-2593 (((-771)) NIL (|has| |#2| (-1049)) CONST)) (-3044 (((-112) $ $) NIL (|has| |#2| (-1099)))) (-2210 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414)))) (-1358 (($ $) NIL (|has| |#2| (-848)))) (-4356 (($) NIL (|has| |#2| (-131)) CONST)) (-4366 (($) NIL (|has| |#2| (-726)) CONST)) (-3497 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-771)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-1175)) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1 |#2| |#2|) (-771)) NIL (|has| |#2| (-1049))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1049)))) (-2968 (((-112) $ $) NIL (-2768 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-2946 (((-112) $ $) NIL (-2768 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-2914 (((-112) $ $) NIL (|has| |#2| (-1099)))) (-2956 (((-112) $ $) NIL (-2768 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-2935 (((-112) $ $) 21 (-2768 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-3025 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3012 (($ $ $) NIL (|has| |#2| (-1049))) (($ $) NIL (|has| |#2| (-1049)))) (-3002 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-771)) NIL (|has| |#2| (-726))) (($ $ (-921)) NIL (|has| |#2| (-726)))) (* (($ (-566) $) NIL (|has| |#2| (-1049))) (($ $ $) NIL (|has| |#2| (-726))) (($ $ |#2|) NIL (|has| |#2| (-726))) (($ |#2| $) NIL (|has| |#2| (-726))) (($ (-771) $) NIL (|has| |#2| (-131))) (($ (-921) $) NIL (|has| |#2| (-25)))) (-3000 (((-771) $) NIL (|has| $ (-6 -4414))))) (((-484 |#1| |#2|) (-238 |#1| |#2|) (-771) (-793)) (T -484)) NIL (-238 |#1| |#2|) -((-3007 (((-112) $ $) NIL)) (-1451 (((-644 (-508)) $) 14)) (-2640 (((-508) $) 12)) (-4117 (((-1157) $) NIL)) (-2050 (($ (-508) (-644 (-508))) 10)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 21) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) -(((-485) (-13 (-1082) (-10 -8 (-15 -2050 ($ (-508) (-644 (-508)))) (-15 -2640 ((-508) $)) (-15 -1451 ((-644 (-508)) $))))) (T -485)) -((-2050 (*1 *1 *2 *3) (-12 (-5 *3 (-644 (-508))) (-5 *2 (-508)) (-5 *1 (-485)))) (-2640 (*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-485)))) (-1451 (*1 *2 *1) (-12 (-5 *2 (-644 (-508))) (-5 *1 (-485))))) -(-13 (-1082) (-10 -8 (-15 -2050 ($ (-508) (-644 (-508)))) (-15 -2640 ((-508) $)) (-15 -1451 ((-644 (-508)) $)))) -((-3007 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2256 (((-112) $ (-771)) NIL)) (-3012 (($) NIL T CONST)) (-3979 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-2404 (((-112) $ (-771)) NIL)) (-3463 (($ $ $) 50)) (-3298 (($ $ $) 49)) (-2329 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3962 ((|#1| $) 40)) (-2908 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#1| |#1|) $) NIL)) (-2603 (((-112) $ (-771)) NIL)) (-4117 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4039 ((|#1| $) 41)) (-3406 (($ |#1| $) 18)) (-4291 (($ (-644 |#1|)) 19)) (-4035 (((-1119) $) NIL (|has| |#1| (-1099)))) (-2539 ((|#1| $) 34)) (-2692 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) NIL)) (-3467 (((-112) $) NIL)) (-1494 (($) 11)) (-4045 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3940 (($ $) NIL)) (-3783 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-3117 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1748 (($ (-644 |#1|)) 47)) (-1894 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3018 (((-771) $) 29 (|has| $ (-6 -4414))))) -(((-486 |#1|) (-13 (-968 |#1|) (-10 -8 (-15 -4291 ($ (-644 |#1|))))) (-850)) (T -486)) -((-4291 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-850)) (-5 *1 (-486 *3))))) -(-13 (-968 |#1|) (-10 -8 (-15 -4291 ($ (-644 |#1|))))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-3012 (($) NIL T CONST)) (-1676 (($ $) 72)) (-3363 (((-112) $) NIL)) (-4117 (((-1157) $) NIL)) (-3787 (((-415 |#2| (-409 |#2|) |#3| |#4|) $) 45)) (-4035 (((-1119) $) NIL)) (-3441 (((-3 |#4| "failed") $) 118)) (-4357 (($ (-415 |#2| (-409 |#2|) |#3| |#4|)) 82) (($ |#4|) 31) (($ |#1| |#1|) 128) (($ |#1| |#1| (-566)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 141)) (-3475 (((-2 (|:| -4234 (-415 |#2| (-409 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47)) (-3783 (((-862) $) 111)) (-3117 (((-112) $ $) NIL)) (-2479 (($) 32 T CONST)) (-2947 (((-112) $ $) 122)) (-3053 (($ $) 78) (($ $ $) NIL)) (-3041 (($ $ $) 73)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 79))) +((-2988 (((-112) $ $) NIL)) (-2644 (((-644 (-508)) $) 14)) (-1368 (((-508) $) 12)) (-3380 (((-1157) $) NIL)) (-1328 (($ (-508) (-644 (-508))) 10)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 21) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) +(((-485) (-13 (-1082) (-10 -8 (-15 -1328 ($ (-508) (-644 (-508)))) (-15 -1368 ((-508) $)) (-15 -2644 ((-644 (-508)) $))))) (T -485)) +((-1328 (*1 *1 *2 *3) (-12 (-5 *3 (-644 (-508))) (-5 *2 (-508)) (-5 *1 (-485)))) (-1368 (*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-485)))) (-2644 (*1 *2 *1) (-12 (-5 *2 (-644 (-508))) (-5 *1 (-485))))) +(-13 (-1082) (-10 -8 (-15 -1328 ($ (-508) (-644 (-508)))) (-15 -1368 ((-508) $)) (-15 -2644 ((-644 (-508)) $)))) +((-2988 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1504 (((-112) $ (-771)) NIL)) (-2463 (($) NIL T CONST)) (-1683 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-3456 (((-112) $ (-771)) NIL)) (-3674 (($ $ $) 50)) (-2696 (($ $ $) 49)) (-3491 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2599 ((|#1| $) 40)) (-3885 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#1| |#1|) $) NIL)) (-3267 (((-112) $ (-771)) NIL)) (-3380 (((-1157) $) NIL (|has| |#1| (-1099)))) (-3278 ((|#1| $) 41)) (-3888 (($ |#1| $) 18)) (-3447 (($ (-644 |#1|)) 19)) (-4072 (((-1119) $) NIL (|has| |#1| (-1099)))) (-1973 ((|#1| $) 34)) (-2823 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) NIL)) (-2872 (((-112) $) NIL)) (-3493 (($) 11)) (-4083 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-1480 (($ $) NIL)) (-3152 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-3044 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2948 (($ (-644 |#1|)) 47)) (-2210 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3000 (((-771) $) 29 (|has| $ (-6 -4414))))) +(((-486 |#1|) (-13 (-968 |#1|) (-10 -8 (-15 -3447 ($ (-644 |#1|))))) (-850)) (T -486)) +((-3447 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-850)) (-5 *1 (-486 *3))))) +(-13 (-968 |#1|) (-10 -8 (-15 -3447 ($ (-644 |#1|))))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-2463 (($) NIL T CONST)) (-2873 (($ $) 72)) (-2138 (((-112) $) NIL)) (-3380 (((-1157) $) NIL)) (-2424 (((-415 |#2| (-409 |#2|) |#3| |#4|) $) 45)) (-4072 (((-1119) $) NIL)) (-3302 (((-3 |#4| "failed") $) 118)) (-3240 (($ (-415 |#2| (-409 |#2|) |#3| |#4|)) 82) (($ |#4|) 31) (($ |#1| |#1|) 128) (($ |#1| |#1| (-566)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 141)) (-2461 (((-2 (|:| -1828 (-415 |#2| (-409 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47)) (-3152 (((-862) $) 111)) (-3044 (((-112) $ $) NIL)) (-4356 (($) 32 T CONST)) (-2914 (((-112) $ $) 122)) (-3012 (($ $) 78) (($ $ $) NIL)) (-3002 (($ $ $) 73)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 79))) (((-487 |#1| |#2| |#3| |#4|) (-337 |#1| |#2| |#3| |#4|) (-365) (-1240 |#1|) (-1240 (-409 |#2|)) (-344 |#1| |#2| |#3|)) (T -487)) NIL (-337 |#1| |#2| |#3| |#4|) -((-3877 (((-566) (-644 (-566))) 55)) (-3339 ((|#1| (-644 |#1|)) 97)) (-1704 (((-644 |#1|) (-644 |#1|)) 98)) (-1797 (((-644 |#1|) (-644 |#1|)) 100)) (-2214 ((|#1| (-644 |#1|)) 99)) (-2483 (((-644 (-566)) (-644 |#1|)) 58))) -(((-488 |#1|) (-10 -7 (-15 -2214 (|#1| (-644 |#1|))) (-15 -3339 (|#1| (-644 |#1|))) (-15 -1797 ((-644 |#1|) (-644 |#1|))) (-15 -1704 ((-644 |#1|) (-644 |#1|))) (-15 -2483 ((-644 (-566)) (-644 |#1|))) (-15 -3877 ((-566) (-644 (-566))))) (-1240 (-566))) (T -488)) -((-3877 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-566)) (-5 *1 (-488 *4)) (-4 *4 (-1240 *2)))) (-2483 (*1 *2 *3) (-12 (-5 *3 (-644 *4)) (-4 *4 (-1240 (-566))) (-5 *2 (-644 (-566))) (-5 *1 (-488 *4)))) (-1704 (*1 *2 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1240 (-566))) (-5 *1 (-488 *3)))) (-1797 (*1 *2 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1240 (-566))) (-5 *1 (-488 *3)))) (-3339 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-5 *1 (-488 *2)) (-4 *2 (-1240 (-566))))) (-2214 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-5 *1 (-488 *2)) (-4 *2 (-1240 (-566)))))) -(-10 -7 (-15 -2214 (|#1| (-644 |#1|))) (-15 -3339 (|#1| (-644 |#1|))) (-15 -1797 ((-644 |#1|) (-644 |#1|))) (-15 -1704 ((-644 |#1|) (-644 |#1|))) (-15 -2483 ((-644 (-566)) (-644 |#1|))) (-15 -3877 ((-566) (-644 (-566))))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-1515 (((-566) $) NIL (|has| (-566) (-308)))) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-3991 (($ $) NIL)) (-2388 (((-112) $) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-1477 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-1550 (($ $) NIL)) (-3184 (((-420 $) $) NIL)) (-3717 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-2837 (((-112) $ $) NIL)) (-4364 (((-566) $) NIL (|has| (-566) (-820)))) (-3012 (($) NIL T CONST)) (-4307 (((-3 (-566) "failed") $) NIL) (((-3 (-1175) "failed") $) NIL (|has| (-566) (-1038 (-1175)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| (-566) (-1038 (-566)))) (((-3 (-566) "failed") $) NIL (|has| (-566) (-1038 (-566))))) (-4205 (((-566) $) NIL) (((-1175) $) NIL (|has| (-566) (-1038 (-1175)))) (((-409 (-566)) $) NIL (|has| (-566) (-1038 (-566)))) (((-566) $) NIL (|has| (-566) (-1038 (-566))))) (-2946 (($ $ $) NIL)) (-3577 (((-689 (-566)) (-689 $)) NIL (|has| (-566) (-639 (-566)))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| (-566) (-639 (-566)))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL) (((-689 (-566)) (-689 $)) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-1552 (($) NIL (|has| (-566) (-547)))) (-2957 (($ $ $) NIL)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL)) (-3268 (((-112) $) NIL)) (-1897 (((-112) $) NIL (|has| (-566) (-820)))) (-2062 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (|has| (-566) (-886 (-566)))) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (|has| (-566) (-886 (-381))))) (-3934 (((-112) $) NIL)) (-1493 (($ $) NIL)) (-4326 (((-566) $) NIL)) (-4363 (((-3 $ "failed") $) NIL (|has| (-566) (-1150)))) (-2117 (((-112) $) NIL (|has| (-566) (-820)))) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2097 (($ $ $) NIL (|has| (-566) (-850)))) (-3962 (($ $ $) NIL (|has| (-566) (-850)))) (-1301 (($ (-1 (-566) (-566)) $) NIL)) (-2167 (($ $ $) NIL) (($ (-644 $)) NIL)) (-4117 (((-1157) $) NIL)) (-1713 (($ $) NIL)) (-1761 (($) NIL (|has| (-566) (-1150)) CONST)) (-2473 (($ (-409 (-566))) 9)) (-4035 (((-1119) $) NIL)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2214 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2938 (($ $) NIL (|has| (-566) (-308))) (((-409 (-566)) $) NIL)) (-3470 (((-566) $) NIL (|has| (-566) (-547)))) (-4303 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-3240 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-3719 (((-420 $) $) NIL)) (-3148 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2994 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2055 (($ $ (-644 (-566)) (-644 (-566))) NIL (|has| (-566) (-310 (-566)))) (($ $ (-566) (-566)) NIL (|has| (-566) (-310 (-566)))) (($ $ (-295 (-566))) NIL (|has| (-566) (-310 (-566)))) (($ $ (-644 (-295 (-566)))) NIL (|has| (-566) (-310 (-566)))) (($ $ (-644 (-1175)) (-644 (-566))) NIL (|has| (-566) (-516 (-1175) (-566)))) (($ $ (-1175) (-566)) NIL (|has| (-566) (-516 (-1175) (-566))))) (-3039 (((-771) $) NIL)) (-4390 (($ $ (-566)) NIL (|has| (-566) (-287 (-566) (-566))))) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL)) (-3561 (($ $) NIL (|has| (-566) (-233))) (($ $ (-771)) NIL (|has| (-566) (-233))) (($ $ (-1175)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1 (-566) (-566)) (-771)) NIL) (($ $ (-1 (-566) (-566))) NIL)) (-2023 (($ $) NIL)) (-4339 (((-566) $) NIL)) (-1348 (((-892 (-566)) $) NIL (|has| (-566) (-614 (-892 (-566))))) (((-892 (-381)) $) NIL (|has| (-566) (-614 (-892 (-381))))) (((-538) $) NIL (|has| (-566) (-614 (-538)))) (((-381) $) NIL (|has| (-566) (-1022))) (((-225) $) NIL (|has| (-566) (-1022)))) (-1656 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| (-566) (-909))))) (-3783 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) 8) (($ (-566)) NIL) (($ (-1175)) NIL (|has| (-566) (-1038 (-1175)))) (((-409 (-566)) $) NIL) (((-1004 16) $) 10)) (-3144 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| $ (-145)) (|has| (-566) (-909))) (|has| (-566) (-145))))) (-2107 (((-771)) NIL T CONST)) (-2948 (((-566) $) NIL (|has| (-566) (-547)))) (-3117 (((-112) $ $) NIL)) (-2695 (((-112) $ $) NIL)) (-2086 (($ $) NIL (|has| (-566) (-820)))) (-2479 (($) NIL T CONST)) (-4334 (($) NIL T CONST)) (-2875 (($ $) NIL (|has| (-566) (-233))) (($ $ (-771)) NIL (|has| (-566) (-233))) (($ $ (-1175)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1 (-566) (-566)) (-771)) NIL) (($ $ (-1 (-566) (-566))) NIL)) (-3009 (((-112) $ $) NIL (|has| (-566) (-850)))) (-2984 (((-112) $ $) NIL (|has| (-566) (-850)))) (-2947 (((-112) $ $) NIL)) (-2995 (((-112) $ $) NIL (|has| (-566) (-850)))) (-2969 (((-112) $ $) NIL (|has| (-566) (-850)))) (-3065 (($ $ $) NIL) (($ (-566) (-566)) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ (-566) $) NIL) (($ $ (-566)) NIL))) -(((-489) (-13 (-992 (-566)) (-613 (-409 (-566))) (-613 (-1004 16)) (-10 -8 (-15 -2938 ((-409 (-566)) $)) (-15 -2473 ($ (-409 (-566))))))) (T -489)) -((-2938 (*1 *2 *1) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-489)))) (-2473 (*1 *1 *2) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-489))))) -(-13 (-992 (-566)) (-613 (-409 (-566))) (-613 (-1004 16)) (-10 -8 (-15 -2938 ((-409 (-566)) $)) (-15 -2473 ($ (-409 (-566)))))) -((-2329 (((-644 |#2|) $) 29)) (-1916 (((-112) |#2| $) 34)) (-2692 (((-112) (-1 (-112) |#2|) $) 24)) (-2055 (($ $ (-644 (-295 |#2|))) 13) (($ $ (-295 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-644 |#2|) (-644 |#2|)) NIL)) (-4045 (((-771) (-1 (-112) |#2|) $) 28) (((-771) |#2| $) 32)) (-3783 (((-862) $) 43)) (-1894 (((-112) (-1 (-112) |#2|) $) 23)) (-2947 (((-112) $ $) 37)) (-3018 (((-771) $) 18))) -(((-490 |#1| |#2|) (-10 -8 (-15 -3783 ((-862) |#1|)) (-15 -2947 ((-112) |#1| |#1|)) (-15 -2055 (|#1| |#1| (-644 |#2|) (-644 |#2|))) (-15 -2055 (|#1| |#1| |#2| |#2|)) (-15 -2055 (|#1| |#1| (-295 |#2|))) (-15 -2055 (|#1| |#1| (-644 (-295 |#2|)))) (-15 -1916 ((-112) |#2| |#1|)) (-15 -4045 ((-771) |#2| |#1|)) (-15 -2329 ((-644 |#2|) |#1|)) (-15 -4045 ((-771) (-1 (-112) |#2|) |#1|)) (-15 -2692 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1894 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3018 ((-771) |#1|))) (-491 |#2|) (-1214)) (T -490)) -NIL -(-10 -8 (-15 -3783 ((-862) |#1|)) (-15 -2947 ((-112) |#1| |#1|)) (-15 -2055 (|#1| |#1| (-644 |#2|) (-644 |#2|))) (-15 -2055 (|#1| |#1| |#2| |#2|)) (-15 -2055 (|#1| |#1| (-295 |#2|))) (-15 -2055 (|#1| |#1| (-644 (-295 |#2|)))) (-15 -1916 ((-112) |#2| |#1|)) (-15 -4045 ((-771) |#2| |#1|)) (-15 -2329 ((-644 |#2|) |#1|)) (-15 -4045 ((-771) (-1 (-112) |#2|) |#1|)) (-15 -2692 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1894 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3018 ((-771) |#1|))) -((-3007 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2256 (((-112) $ (-771)) 8)) (-3012 (($) 7 T CONST)) (-3979 (((-644 |#1|) $) 31 (|has| $ (-6 -4414)))) (-2404 (((-112) $ (-771)) 9)) (-2329 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2908 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#1| |#1|) $) 36)) (-2603 (((-112) $ (-771)) 10)) (-4117 (((-1157) $) 22 (|has| |#1| (-1099)))) (-4035 (((-1119) $) 21 (|has| |#1| (-1099)))) (-2692 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) 14)) (-3467 (((-112) $) 11)) (-1494 (($) 12)) (-4045 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-3940 (($ $) 13)) (-3783 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-3117 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-1894 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3018 (((-771) $) 6 (|has| $ (-6 -4414))))) +((-3662 (((-566) (-644 (-566))) 55)) (-1612 ((|#1| (-644 |#1|)) 97)) (-2294 (((-644 |#1|) (-644 |#1|)) 98)) (-3983 (((-644 |#1|) (-644 |#1|)) 100)) (-2164 ((|#1| (-644 |#1|)) 99)) (-3173 (((-644 (-566)) (-644 |#1|)) 58))) +(((-488 |#1|) (-10 -7 (-15 -2164 (|#1| (-644 |#1|))) (-15 -1612 (|#1| (-644 |#1|))) (-15 -3983 ((-644 |#1|) (-644 |#1|))) (-15 -2294 ((-644 |#1|) (-644 |#1|))) (-15 -3173 ((-644 (-566)) (-644 |#1|))) (-15 -3662 ((-566) (-644 (-566))))) (-1240 (-566))) (T -488)) +((-3662 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-566)) (-5 *1 (-488 *4)) (-4 *4 (-1240 *2)))) (-3173 (*1 *2 *3) (-12 (-5 *3 (-644 *4)) (-4 *4 (-1240 (-566))) (-5 *2 (-644 (-566))) (-5 *1 (-488 *4)))) (-2294 (*1 *2 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1240 (-566))) (-5 *1 (-488 *3)))) (-3983 (*1 *2 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1240 (-566))) (-5 *1 (-488 *3)))) (-1612 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-5 *1 (-488 *2)) (-4 *2 (-1240 (-566))))) (-2164 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-5 *1 (-488 *2)) (-4 *2 (-1240 (-566)))))) +(-10 -7 (-15 -2164 (|#1| (-644 |#1|))) (-15 -1612 (|#1| (-644 |#1|))) (-15 -3983 ((-644 |#1|) (-644 |#1|))) (-15 -2294 ((-644 |#1|) (-644 |#1|))) (-15 -3173 ((-644 (-566)) (-644 |#1|))) (-15 -3662 ((-566) (-644 (-566))))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-1873 (((-566) $) NIL (|has| (-566) (-308)))) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-2161 (($ $) NIL)) (-2345 (((-112) $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-2292 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-1378 (($ $) NIL)) (-1364 (((-420 $) $) NIL)) (-4066 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-2085 (((-112) $ $) NIL)) (-2743 (((-566) $) NIL (|has| (-566) (-820)))) (-2463 (($) NIL T CONST)) (-2229 (((-3 (-566) "failed") $) NIL) (((-3 (-1175) "failed") $) NIL (|has| (-566) (-1038 (-1175)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| (-566) (-1038 (-566)))) (((-3 (-566) "failed") $) NIL (|has| (-566) (-1038 (-566))))) (-4158 (((-566) $) NIL) (((-1175) $) NIL (|has| (-566) (-1038 (-1175)))) (((-409 (-566)) $) NIL (|has| (-566) (-1038 (-566)))) (((-566) $) NIL (|has| (-566) (-1038 (-566))))) (-2933 (($ $ $) NIL)) (-4089 (((-689 (-566)) (-689 $)) NIL (|has| (-566) (-639 (-566)))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| (-566) (-639 (-566)))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL) (((-689 (-566)) (-689 $)) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-2715 (($) NIL (|has| (-566) (-547)))) (-2945 (($ $ $) NIL)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL)) (-1615 (((-112) $) NIL)) (-2528 (((-112) $) NIL (|has| (-566) (-820)))) (-2926 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (|has| (-566) (-886 (-566)))) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (|has| (-566) (-886 (-381))))) (-2389 (((-112) $) NIL)) (-3406 (($ $) NIL)) (-2248 (((-566) $) NIL)) (-2621 (((-3 $ "failed") $) NIL (|has| (-566) (-1150)))) (-3233 (((-112) $) NIL (|has| (-566) (-820)))) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1478 (($ $ $) NIL (|has| (-566) (-850)))) (-2599 (($ $ $) NIL (|has| (-566) (-850)))) (-2319 (($ (-1 (-566) (-566)) $) NIL)) (-2128 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3380 (((-1157) $) NIL)) (-2748 (($ $) NIL)) (-3289 (($) NIL (|has| (-566) (-1150)) CONST)) (-3489 (($ (-409 (-566))) 9)) (-4072 (((-1119) $) NIL)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2164 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2487 (($ $) NIL (|has| (-566) (-308))) (((-409 (-566)) $) NIL)) (-3143 (((-566) $) NIL (|has| (-566) (-547)))) (-2010 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-1893 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-1624 (((-420 $) $) NIL)) (-3005 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2978 (((-3 $ "failed") $ $) NIL)) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2023 (($ $ (-644 (-566)) (-644 (-566))) NIL (|has| (-566) (-310 (-566)))) (($ $ (-566) (-566)) NIL (|has| (-566) (-310 (-566)))) (($ $ (-295 (-566))) NIL (|has| (-566) (-310 (-566)))) (($ $ (-644 (-295 (-566)))) NIL (|has| (-566) (-310 (-566)))) (($ $ (-644 (-1175)) (-644 (-566))) NIL (|has| (-566) (-516 (-1175) (-566)))) (($ $ (-1175) (-566)) NIL (|has| (-566) (-516 (-1175) (-566))))) (-4357 (((-771) $) NIL)) (-1309 (($ $ (-566)) NIL (|has| (-566) (-287 (-566) (-566))))) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL)) (-3629 (($ $) NIL (|has| (-566) (-233))) (($ $ (-771)) NIL (|has| (-566) (-233))) (($ $ (-1175)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1 (-566) (-566)) (-771)) NIL) (($ $ (-1 (-566) (-566))) NIL)) (-1452 (($ $) NIL)) (-2260 (((-566) $) NIL)) (-2376 (((-892 (-566)) $) NIL (|has| (-566) (-614 (-892 (-566))))) (((-892 (-381)) $) NIL (|has| (-566) (-614 (-892 (-381))))) (((-538) $) NIL (|has| (-566) (-614 (-538)))) (((-381) $) NIL (|has| (-566) (-1022))) (((-225) $) NIL (|has| (-566) (-1022)))) (-3391 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| (-566) (-909))))) (-3152 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) 8) (($ (-566)) NIL) (($ (-1175)) NIL (|has| (-566) (-1038 (-1175)))) (((-409 (-566)) $) NIL) (((-1004 16) $) 10)) (-2633 (((-3 $ "failed") $) NIL (-2768 (-12 (|has| $ (-145)) (|has| (-566) (-909))) (|has| (-566) (-145))))) (-2593 (((-771)) NIL T CONST)) (-3913 (((-566) $) NIL (|has| (-566) (-547)))) (-3044 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-1358 (($ $) NIL (|has| (-566) (-820)))) (-4356 (($) NIL T CONST)) (-4366 (($) NIL T CONST)) (-3497 (($ $) NIL (|has| (-566) (-233))) (($ $ (-771)) NIL (|has| (-566) (-233))) (($ $ (-1175)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1 (-566) (-566)) (-771)) NIL) (($ $ (-1 (-566) (-566))) NIL)) (-2968 (((-112) $ $) NIL (|has| (-566) (-850)))) (-2946 (((-112) $ $) NIL (|has| (-566) (-850)))) (-2914 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL (|has| (-566) (-850)))) (-2935 (((-112) $ $) NIL (|has| (-566) (-850)))) (-3025 (($ $ $) NIL) (($ (-566) (-566)) NIL)) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ (-566) $) NIL) (($ $ (-566)) NIL))) +(((-489) (-13 (-992 (-566)) (-613 (-409 (-566))) (-613 (-1004 16)) (-10 -8 (-15 -2487 ((-409 (-566)) $)) (-15 -3489 ($ (-409 (-566))))))) (T -489)) +((-2487 (*1 *2 *1) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-489)))) (-3489 (*1 *1 *2) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-489))))) +(-13 (-992 (-566)) (-613 (-409 (-566))) (-613 (-1004 16)) (-10 -8 (-15 -2487 ((-409 (-566)) $)) (-15 -3489 ($ (-409 (-566)))))) +((-3491 (((-644 |#2|) $) 29)) (-1602 (((-112) |#2| $) 34)) (-2823 (((-112) (-1 (-112) |#2|) $) 24)) (-2023 (($ $ (-644 (-295 |#2|))) 13) (($ $ (-295 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-644 |#2|) (-644 |#2|)) NIL)) (-4083 (((-771) (-1 (-112) |#2|) $) 28) (((-771) |#2| $) 32)) (-3152 (((-862) $) 43)) (-2210 (((-112) (-1 (-112) |#2|) $) 23)) (-2914 (((-112) $ $) 37)) (-3000 (((-771) $) 18))) +(((-490 |#1| |#2|) (-10 -8 (-15 -3152 ((-862) |#1|)) (-15 -2914 ((-112) |#1| |#1|)) (-15 -2023 (|#1| |#1| (-644 |#2|) (-644 |#2|))) (-15 -2023 (|#1| |#1| |#2| |#2|)) (-15 -2023 (|#1| |#1| (-295 |#2|))) (-15 -2023 (|#1| |#1| (-644 (-295 |#2|)))) (-15 -1602 ((-112) |#2| |#1|)) (-15 -4083 ((-771) |#2| |#1|)) (-15 -3491 ((-644 |#2|) |#1|)) (-15 -4083 ((-771) (-1 (-112) |#2|) |#1|)) (-15 -2823 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2210 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3000 ((-771) |#1|))) (-491 |#2|) (-1214)) (T -490)) +NIL +(-10 -8 (-15 -3152 ((-862) |#1|)) (-15 -2914 ((-112) |#1| |#1|)) (-15 -2023 (|#1| |#1| (-644 |#2|) (-644 |#2|))) (-15 -2023 (|#1| |#1| |#2| |#2|)) (-15 -2023 (|#1| |#1| (-295 |#2|))) (-15 -2023 (|#1| |#1| (-644 (-295 |#2|)))) (-15 -1602 ((-112) |#2| |#1|)) (-15 -4083 ((-771) |#2| |#1|)) (-15 -3491 ((-644 |#2|) |#1|)) (-15 -4083 ((-771) (-1 (-112) |#2|) |#1|)) (-15 -2823 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2210 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3000 ((-771) |#1|))) +((-2988 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-1504 (((-112) $ (-771)) 8)) (-2463 (($) 7 T CONST)) (-1683 (((-644 |#1|) $) 31 (|has| $ (-6 -4414)))) (-3456 (((-112) $ (-771)) 9)) (-3491 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-3885 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#1| |#1|) $) 36)) (-3267 (((-112) $ (-771)) 10)) (-3380 (((-1157) $) 22 (|has| |#1| (-1099)))) (-4072 (((-1119) $) 21 (|has| |#1| (-1099)))) (-2823 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) 14)) (-2872 (((-112) $) 11)) (-3493 (($) 12)) (-4083 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-1480 (($ $) 13)) (-3152 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-3044 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-2210 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3000 (((-771) $) 6 (|has| $ (-6 -4414))))) (((-491 |#1|) (-140) (-1214)) (T -491)) -((-1301 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-491 *3)) (-4 *3 (-1214)))) (-2908 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4415)) (-4 *1 (-491 *3)) (-4 *3 (-1214)))) (-1894 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4414)) (-4 *1 (-491 *4)) (-4 *4 (-1214)) (-5 *2 (-112)))) (-2692 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4414)) (-4 *1 (-491 *4)) (-4 *4 (-1214)) (-5 *2 (-112)))) (-4045 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4414)) (-4 *1 (-491 *4)) (-4 *4 (-1214)) (-5 *2 (-771)))) (-3979 (*1 *2 *1) (-12 (|has| *1 (-6 -4414)) (-4 *1 (-491 *3)) (-4 *3 (-1214)) (-5 *2 (-644 *3)))) (-2329 (*1 *2 *1) (-12 (|has| *1 (-6 -4414)) (-4 *1 (-491 *3)) (-4 *3 (-1214)) (-5 *2 (-644 *3)))) (-4045 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4414)) (-4 *1 (-491 *3)) (-4 *3 (-1214)) (-4 *3 (-1099)) (-5 *2 (-771)))) (-1916 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4414)) (-4 *1 (-491 *3)) (-4 *3 (-1214)) (-4 *3 (-1099)) (-5 *2 (-112))))) -(-13 (-34) (-10 -8 (IF (|has| |t#1| (-613 (-862))) (-6 (-613 (-862))) |%noBranch|) (IF (|has| |t#1| (-1099)) (-6 (-1099)) |%noBranch|) (IF (|has| |t#1| (-1099)) (IF (|has| |t#1| (-310 |t#1|)) (-6 (-310 |t#1|)) |%noBranch|) |%noBranch|) (-15 -1301 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4415)) (-15 -2908 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4414)) (PROGN (-15 -1894 ((-112) (-1 (-112) |t#1|) $)) (-15 -2692 ((-112) (-1 (-112) |t#1|) $)) (-15 -4045 ((-771) (-1 (-112) |t#1|) $)) (-15 -3979 ((-644 |t#1|) $)) (-15 -2329 ((-644 |t#1|) $)) (IF (|has| |t#1| (-1099)) (PROGN (-15 -4045 ((-771) |t#1| $)) (-15 -1916 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2809 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1099) |has| |#1| (-1099)) ((-1214) . T)) -((-3783 ((|#1| $) 6) (($ |#1|) 9))) +((-2319 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-491 *3)) (-4 *3 (-1214)))) (-3885 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4415)) (-4 *1 (-491 *3)) (-4 *3 (-1214)))) (-2210 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4414)) (-4 *1 (-491 *4)) (-4 *4 (-1214)) (-5 *2 (-112)))) (-2823 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4414)) (-4 *1 (-491 *4)) (-4 *4 (-1214)) (-5 *2 (-112)))) (-4083 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4414)) (-4 *1 (-491 *4)) (-4 *4 (-1214)) (-5 *2 (-771)))) (-1683 (*1 *2 *1) (-12 (|has| *1 (-6 -4414)) (-4 *1 (-491 *3)) (-4 *3 (-1214)) (-5 *2 (-644 *3)))) (-3491 (*1 *2 *1) (-12 (|has| *1 (-6 -4414)) (-4 *1 (-491 *3)) (-4 *3 (-1214)) (-5 *2 (-644 *3)))) (-4083 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4414)) (-4 *1 (-491 *3)) (-4 *3 (-1214)) (-4 *3 (-1099)) (-5 *2 (-771)))) (-1602 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4414)) (-4 *1 (-491 *3)) (-4 *3 (-1214)) (-4 *3 (-1099)) (-5 *2 (-112))))) +(-13 (-34) (-10 -8 (IF (|has| |t#1| (-613 (-862))) (-6 (-613 (-862))) |%noBranch|) (IF (|has| |t#1| (-1099)) (-6 (-1099)) |%noBranch|) (IF (|has| |t#1| (-1099)) (IF (|has| |t#1| (-310 |t#1|)) (-6 (-310 |t#1|)) |%noBranch|) |%noBranch|) (-15 -2319 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4415)) (-15 -3885 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4414)) (PROGN (-15 -2210 ((-112) (-1 (-112) |t#1|) $)) (-15 -2823 ((-112) (-1 (-112) |t#1|) $)) (-15 -4083 ((-771) (-1 (-112) |t#1|) $)) (-15 -1683 ((-644 |t#1|) $)) (-15 -3491 ((-644 |t#1|) $)) (IF (|has| |t#1| (-1099)) (PROGN (-15 -4083 ((-771) |t#1| $)) (-15 -1602 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2768 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1099) |has| |#1| (-1099)) ((-1214) . T)) +((-3152 ((|#1| $) 6) (($ |#1|) 9))) (((-492 |#1|) (-140) (-1214)) (T -492)) NIL (-13 (-613 |t#1|) (-616 |t#1|)) (((-616 |#1|) . T) ((-613 |#1|) . T)) -((-3007 (((-112) $ $) NIL)) (-4117 (((-1157) $) NIL)) (-3966 (($ (-1157)) 8)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 15) (((-1157) $) 12)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) 11))) -(((-493) (-13 (-1099) (-613 (-1157)) (-10 -8 (-15 -3966 ($ (-1157)))))) (T -493)) -((-3966 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-493))))) -(-13 (-1099) (-613 (-1157)) (-10 -8 (-15 -3966 ($ (-1157))))) -((-4114 (($ $) 15)) (-2240 (($ $) 24)) (-4134 (($ $) 12)) (-4144 (($ $) 10)) (-4124 (($ $) 17)) (-4104 (($ $) 22))) -(((-494 |#1|) (-10 -8 (-15 -4104 (|#1| |#1|)) (-15 -4124 (|#1| |#1|)) (-15 -4144 (|#1| |#1|)) (-15 -4134 (|#1| |#1|)) (-15 -2240 (|#1| |#1|)) (-15 -4114 (|#1| |#1|))) (-495)) (T -494)) -NIL -(-10 -8 (-15 -4104 (|#1| |#1|)) (-15 -4124 (|#1| |#1|)) (-15 -4144 (|#1| |#1|)) (-15 -4134 (|#1| |#1|)) (-15 -2240 (|#1| |#1|)) (-15 -4114 (|#1| |#1|))) -((-4114 (($ $) 11)) (-2240 (($ $) 10)) (-4134 (($ $) 9)) (-4144 (($ $) 8)) (-4124 (($ $) 7)) (-4104 (($ $) 6))) +((-2988 (((-112) $ $) NIL)) (-3380 (((-1157) $) NIL)) (-3242 (($ (-1157)) 8)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 15) (((-1157) $) 12)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) 11))) +(((-493) (-13 (-1099) (-613 (-1157)) (-10 -8 (-15 -3242 ($ (-1157)))))) (T -493)) +((-3242 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-493))))) +(-13 (-1099) (-613 (-1157)) (-10 -8 (-15 -3242 ($ (-1157))))) +((-3963 (($ $) 15)) (-3941 (($ $) 24)) (-3986 (($ $) 12)) (-3996 (($ $) 10)) (-3976 (($ $) 17)) (-3952 (($ $) 22))) +(((-494 |#1|) (-10 -8 (-15 -3952 (|#1| |#1|)) (-15 -3976 (|#1| |#1|)) (-15 -3996 (|#1| |#1|)) (-15 -3986 (|#1| |#1|)) (-15 -3941 (|#1| |#1|)) (-15 -3963 (|#1| |#1|))) (-495)) (T -494)) +NIL +(-10 -8 (-15 -3952 (|#1| |#1|)) (-15 -3976 (|#1| |#1|)) (-15 -3996 (|#1| |#1|)) (-15 -3986 (|#1| |#1|)) (-15 -3941 (|#1| |#1|)) (-15 -3963 (|#1| |#1|))) +((-3963 (($ $) 11)) (-3941 (($ $) 10)) (-3986 (($ $) 9)) (-3996 (($ $) 8)) (-3976 (($ $) 7)) (-3952 (($ $) 6))) (((-495) (-140)) (T -495)) -((-4114 (*1 *1 *1) (-4 *1 (-495))) (-2240 (*1 *1 *1) (-4 *1 (-495))) (-4134 (*1 *1 *1) (-4 *1 (-495))) (-4144 (*1 *1 *1) (-4 *1 (-495))) (-4124 (*1 *1 *1) (-4 *1 (-495))) (-4104 (*1 *1 *1) (-4 *1 (-495)))) -(-13 (-10 -8 (-15 -4104 ($ $)) (-15 -4124 ($ $)) (-15 -4144 ($ $)) (-15 -4134 ($ $)) (-15 -2240 ($ $)) (-15 -4114 ($ $)))) -((-3719 (((-420 |#4|) |#4| (-1 (-420 |#2|) |#2|)) 54))) -(((-496 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3719 ((-420 |#4|) |#4| (-1 (-420 |#2|) |#2|)))) (-365) (-1240 |#1|) (-13 (-365) (-147) (-724 |#1| |#2|)) (-1240 |#3|)) (T -496)) -((-3719 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-420 *6) *6)) (-4 *6 (-1240 *5)) (-4 *5 (-365)) (-4 *7 (-13 (-365) (-147) (-724 *5 *6))) (-5 *2 (-420 *3)) (-5 *1 (-496 *5 *6 *7 *3)) (-4 *3 (-1240 *7))))) -(-10 -7 (-15 -3719 ((-420 |#4|) |#4| (-1 (-420 |#2|) |#2|)))) -((-3007 (((-112) $ $) NIL)) (-1702 (((-644 $) (-1171 $) (-1175)) NIL) (((-644 $) (-1171 $)) NIL) (((-644 $) (-952 $)) NIL)) (-3710 (($ (-1171 $) (-1175)) NIL) (($ (-1171 $)) NIL) (($ (-952 $)) NIL)) (-1788 (((-112) $) 39)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-3991 (($ $) NIL)) (-2388 (((-112) $) NIL)) (-1789 (((-112) $ $) 73)) (-3570 (((-644 (-612 $)) $) 50)) (-4175 (((-3 $ "failed") $ $) NIL)) (-2645 (($ $ (-295 $)) NIL) (($ $ (-644 (-295 $))) NIL) (($ $ (-644 (-612 $)) (-644 $)) NIL)) (-1550 (($ $) NIL)) (-3184 (((-420 $) $) NIL)) (-3731 (($ $) NIL)) (-2837 (((-112) $ $) NIL)) (-3012 (($) NIL T CONST)) (-1422 (((-644 $) (-1171 $) (-1175)) NIL) (((-644 $) (-1171 $)) NIL) (((-644 $) (-952 $)) NIL)) (-3912 (($ (-1171 $) (-1175)) NIL) (($ (-1171 $)) NIL) (($ (-952 $)) NIL)) (-4307 (((-3 (-612 $) "failed") $) NIL) (((-3 (-566) "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL)) (-4205 (((-612 $) $) NIL) (((-566) $) NIL) (((-409 (-566)) $) 55)) (-2946 (($ $ $) NIL)) (-3577 (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL) (((-689 (-566)) (-689 $)) NIL) (((-2 (|:| -4227 (-689 (-409 (-566)))) (|:| |vec| (-1264 (-409 (-566))))) (-689 $) (-1264 $)) NIL) (((-689 (-409 (-566))) (-689 $)) NIL)) (-1676 (($ $) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-2957 (($ $ $) NIL)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL)) (-3268 (((-112) $) NIL)) (-2228 (($ $) NIL) (($ (-644 $)) NIL)) (-2535 (((-644 (-114)) $) NIL)) (-3659 (((-114) (-114)) NIL)) (-3934 (((-112) $) 42)) (-2824 (((-112) $) NIL (|has| $ (-1038 (-566))))) (-4326 (((-1124 (-566) (-612 $)) $) 37)) (-2140 (($ $ (-566)) NIL)) (-1577 (((-1171 $) (-1171 $) (-612 $)) 87) (((-1171 $) (-1171 $) (-644 (-612 $))) 62) (($ $ (-612 $)) 76) (($ $ (-644 (-612 $))) 77)) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3006 (((-1171 $) (-612 $)) 74 (|has| $ (-1049)))) (-1301 (($ (-1 $ $) (-612 $)) NIL)) (-3133 (((-3 (-612 $) "failed") $) NIL)) (-2167 (($ (-644 $)) NIL) (($ $ $) NIL)) (-4117 (((-1157) $) NIL)) (-3647 (((-644 (-612 $)) $) NIL)) (-1307 (($ (-114) $) NIL) (($ (-114) (-644 $)) NIL)) (-2572 (((-112) $ (-114)) NIL) (((-112) $ (-1175)) NIL)) (-1713 (($ $) NIL)) (-2076 (((-771) $) NIL)) (-4035 (((-1119) $) NIL)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2214 (($ (-644 $)) NIL) (($ $ $) NIL)) (-2746 (((-112) $ $) NIL) (((-112) $ (-1175)) NIL)) (-3719 (((-420 $) $) NIL)) (-3148 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL)) (-2994 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1946 (((-112) $) NIL (|has| $ (-1038 (-566))))) (-2055 (($ $ (-612 $) $) NIL) (($ $ (-644 (-612 $)) (-644 $)) NIL) (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-644 (-1175)) (-644 (-1 $ $))) NIL) (($ $ (-644 (-1175)) (-644 (-1 $ (-644 $)))) NIL) (($ $ (-1175) (-1 $ (-644 $))) NIL) (($ $ (-1175) (-1 $ $)) NIL) (($ $ (-644 (-114)) (-644 (-1 $ $))) NIL) (($ $ (-644 (-114)) (-644 (-1 $ (-644 $)))) NIL) (($ $ (-114) (-1 $ (-644 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-3039 (((-771) $) NIL)) (-4390 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-644 $)) NIL)) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL)) (-3529 (($ $) NIL) (($ $ $) NIL)) (-3561 (($ $ (-771)) NIL) (($ $) 36)) (-4339 (((-1124 (-566) (-612 $)) $) 20)) (-1616 (($ $) NIL (|has| $ (-1049)))) (-1348 (((-381) $) 101) (((-225) $) 109) (((-169 (-381)) $) 117)) (-3783 (((-862) $) NIL) (($ (-612 $)) NIL) (($ (-409 (-566))) NIL) (($ $) NIL) (($ (-566)) NIL) (($ (-1124 (-566) (-612 $))) 21)) (-2107 (((-771)) NIL T CONST)) (-1630 (($ $) NIL) (($ (-644 $)) NIL)) (-2825 (((-112) (-114)) 93)) (-3117 (((-112) $ $) NIL)) (-2695 (((-112) $ $) NIL)) (-2479 (($) 10 T CONST)) (-4334 (($) 22 T CONST)) (-2875 (($ $ (-771)) NIL) (($ $) NIL)) (-2947 (((-112) $ $) 24)) (-3065 (($ $ $) 44)) (-3053 (($ $ $) NIL) (($ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-409 (-566))) NIL) (($ $ (-566)) 48) (($ $ (-771)) NIL) (($ $ (-921)) NIL)) (* (($ (-409 (-566)) $) NIL) (($ $ (-409 (-566))) NIL) (($ $ $) 27) (($ (-566) $) NIL) (($ (-771) $) NIL) (($ (-921) $) NIL))) -(((-497) (-13 (-303) (-27) (-1038 (-566)) (-1038 (-409 (-566))) (-639 (-566)) (-1022) (-639 (-409 (-566))) (-147) (-614 (-169 (-381))) (-233) (-10 -8 (-15 -3783 ($ (-1124 (-566) (-612 $)))) (-15 -4326 ((-1124 (-566) (-612 $)) $)) (-15 -4339 ((-1124 (-566) (-612 $)) $)) (-15 -1676 ($ $)) (-15 -1789 ((-112) $ $)) (-15 -1577 ((-1171 $) (-1171 $) (-612 $))) (-15 -1577 ((-1171 $) (-1171 $) (-644 (-612 $)))) (-15 -1577 ($ $ (-612 $))) (-15 -1577 ($ $ (-644 (-612 $))))))) (T -497)) -((-3783 (*1 *1 *2) (-12 (-5 *2 (-1124 (-566) (-612 (-497)))) (-5 *1 (-497)))) (-4326 (*1 *2 *1) (-12 (-5 *2 (-1124 (-566) (-612 (-497)))) (-5 *1 (-497)))) (-4339 (*1 *2 *1) (-12 (-5 *2 (-1124 (-566) (-612 (-497)))) (-5 *1 (-497)))) (-1676 (*1 *1 *1) (-5 *1 (-497))) (-1789 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-497)))) (-1577 (*1 *2 *2 *3) (-12 (-5 *2 (-1171 (-497))) (-5 *3 (-612 (-497))) (-5 *1 (-497)))) (-1577 (*1 *2 *2 *3) (-12 (-5 *2 (-1171 (-497))) (-5 *3 (-644 (-612 (-497)))) (-5 *1 (-497)))) (-1577 (*1 *1 *1 *2) (-12 (-5 *2 (-612 (-497))) (-5 *1 (-497)))) (-1577 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-612 (-497)))) (-5 *1 (-497))))) -(-13 (-303) (-27) (-1038 (-566)) (-1038 (-409 (-566))) (-639 (-566)) (-1022) (-639 (-409 (-566))) (-147) (-614 (-169 (-381))) (-233) (-10 -8 (-15 -3783 ($ (-1124 (-566) (-612 $)))) (-15 -4326 ((-1124 (-566) (-612 $)) $)) (-15 -4339 ((-1124 (-566) (-612 $)) $)) (-15 -1676 ($ $)) (-15 -1789 ((-112) $ $)) (-15 -1577 ((-1171 $) (-1171 $) (-612 $))) (-15 -1577 ((-1171 $) (-1171 $) (-644 (-612 $)))) (-15 -1577 ($ $ (-612 $))) (-15 -1577 ($ $ (-644 (-612 $)))))) -((-3007 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3734 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4415)))) (-2644 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-850)))) (-1944 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4415))) (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-850))))) (-1510 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-850)))) (-2256 (((-112) $ (-771)) NIL)) (-3923 ((|#1| $ (-566) |#1|) 47 (|has| $ (-6 -4415))) ((|#1| $ (-1231 (-566)) |#1|) NIL (|has| $ (-6 -4415)))) (-2701 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-3012 (($) NIL T CONST)) (-3413 (($ $) NIL (|has| $ (-6 -4415)))) (-1377 (($ $) NIL)) (-2031 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2665 (($ |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-1676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4414)))) (-2920 ((|#1| $ (-566) |#1|) 42 (|has| $ (-6 -4415)))) (-2855 ((|#1| $ (-566)) 41)) (-4000 (((-566) (-1 (-112) |#1|) $) NIL) (((-566) |#1| $) NIL (|has| |#1| (-1099))) (((-566) |#1| $ (-566)) NIL (|has| |#1| (-1099)))) (-3979 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-4265 (($ (-771) |#1|) 21)) (-2404 (((-112) $ (-771)) NIL)) (-3854 (((-566) $) 17 (|has| (-566) (-850)))) (-2097 (($ $ $) NIL (|has| |#1| (-850)))) (-3298 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-850)))) (-2329 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2712 (((-566) $) 44 (|has| (-566) (-850)))) (-3962 (($ $ $) NIL (|has| |#1| (-850)))) (-2908 (($ (-1 |#1| |#1|) $) 32 (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 38)) (-2603 (((-112) $ (-771)) NIL)) (-4117 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4276 (($ |#1| $ (-566)) NIL) (($ $ $ (-566)) NIL)) (-4074 (((-644 (-566)) $) NIL)) (-3792 (((-112) (-566) $) NIL)) (-4035 (((-1119) $) NIL (|has| |#1| (-1099)))) (-1998 ((|#1| $) NIL (|has| (-566) (-850)))) (-2006 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4030 (($ $ |#1|) 15 (|has| $ (-6 -4415)))) (-2692 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) NIL)) (-4156 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2993 (((-644 |#1|) $) NIL)) (-3467 (((-112) $) NIL)) (-1494 (($) 19)) (-4390 ((|#1| $ (-566) |#1|) NIL) ((|#1| $ (-566)) 46) (($ $ (-1231 (-566))) NIL)) (-2187 (($ $ (-566)) NIL) (($ $ (-1231 (-566))) NIL)) (-4045 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-1297 (($ $ $ (-566)) NIL (|has| $ (-6 -4415)))) (-3940 (($ $) 13)) (-1348 (((-538) $) NIL (|has| |#1| (-614 (-538))))) (-3796 (($ (-644 |#1|)) 24)) (-3721 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-644 $)) NIL)) (-3783 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-3117 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1894 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-3009 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2984 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2947 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2995 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2969 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3018 (((-771) $) 11 (|has| $ (-6 -4414))))) +((-3963 (*1 *1 *1) (-4 *1 (-495))) (-3941 (*1 *1 *1) (-4 *1 (-495))) (-3986 (*1 *1 *1) (-4 *1 (-495))) (-3996 (*1 *1 *1) (-4 *1 (-495))) (-3976 (*1 *1 *1) (-4 *1 (-495))) (-3952 (*1 *1 *1) (-4 *1 (-495)))) +(-13 (-10 -8 (-15 -3952 ($ $)) (-15 -3976 ($ $)) (-15 -3996 ($ $)) (-15 -3986 ($ $)) (-15 -3941 ($ $)) (-15 -3963 ($ $)))) +((-1624 (((-420 |#4|) |#4| (-1 (-420 |#2|) |#2|)) 54))) +(((-496 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1624 ((-420 |#4|) |#4| (-1 (-420 |#2|) |#2|)))) (-365) (-1240 |#1|) (-13 (-365) (-147) (-724 |#1| |#2|)) (-1240 |#3|)) (T -496)) +((-1624 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-420 *6) *6)) (-4 *6 (-1240 *5)) (-4 *5 (-365)) (-4 *7 (-13 (-365) (-147) (-724 *5 *6))) (-5 *2 (-420 *3)) (-5 *1 (-496 *5 *6 *7 *3)) (-4 *3 (-1240 *7))))) +(-10 -7 (-15 -1624 ((-420 |#4|) |#4| (-1 (-420 |#2|) |#2|)))) +((-2988 (((-112) $ $) NIL)) (-2082 (((-644 $) (-1171 $) (-1175)) NIL) (((-644 $) (-1171 $)) NIL) (((-644 $) (-952 $)) NIL)) (-1557 (($ (-1171 $) (-1175)) NIL) (($ (-1171 $)) NIL) (($ (-952 $)) NIL)) (-3230 (((-112) $) 39)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-2161 (($ $) NIL)) (-2345 (((-112) $) NIL)) (-2136 (((-112) $ $) 73)) (-1470 (((-644 (-612 $)) $) 50)) (-3967 (((-3 $ "failed") $ $) NIL)) (-2500 (($ $ (-295 $)) NIL) (($ $ (-644 (-295 $))) NIL) (($ $ (-644 (-612 $)) (-644 $)) NIL)) (-1378 (($ $) NIL)) (-1364 (((-420 $) $) NIL)) (-1635 (($ $) NIL)) (-2085 (((-112) $ $) NIL)) (-2463 (($) NIL T CONST)) (-4112 (((-644 $) (-1171 $) (-1175)) NIL) (((-644 $) (-1171 $)) NIL) (((-644 $) (-952 $)) NIL)) (-4093 (($ (-1171 $) (-1175)) NIL) (($ (-1171 $)) NIL) (($ (-952 $)) NIL)) (-2229 (((-3 (-612 $) "failed") $) NIL) (((-3 (-566) "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL)) (-4158 (((-612 $) $) NIL) (((-566) $) NIL) (((-409 (-566)) $) 55)) (-2933 (($ $ $) NIL)) (-4089 (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL) (((-689 (-566)) (-689 $)) NIL) (((-2 (|:| -3361 (-689 (-409 (-566)))) (|:| |vec| (-1264 (-409 (-566))))) (-689 $) (-1264 $)) NIL) (((-689 (-409 (-566))) (-689 $)) NIL)) (-2873 (($ $) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-2945 (($ $ $) NIL)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL)) (-1615 (((-112) $) NIL)) (-1633 (($ $) NIL) (($ (-644 $)) NIL)) (-1689 (((-644 (-114)) $) NIL)) (-1566 (((-114) (-114)) NIL)) (-2389 (((-112) $) 42)) (-3419 (((-112) $) NIL (|has| $ (-1038 (-566))))) (-2248 (((-1124 (-566) (-612 $)) $) 37)) (-1575 (($ $ (-566)) NIL)) (-2064 (((-1171 $) (-1171 $) (-612 $)) 87) (((-1171 $) (-1171 $) (-644 (-612 $))) 62) (($ $ (-612 $)) 76) (($ $ (-644 (-612 $))) 77)) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2024 (((-1171 $) (-612 $)) 74 (|has| $ (-1049)))) (-2319 (($ (-1 $ $) (-612 $)) NIL)) (-4010 (((-3 (-612 $) "failed") $) NIL)) (-2128 (($ (-644 $)) NIL) (($ $ $) NIL)) (-3380 (((-1157) $) NIL)) (-1552 (((-644 (-612 $)) $) NIL)) (-2328 (($ (-114) $) NIL) (($ (-114) (-644 $)) NIL)) (-3335 (((-112) $ (-114)) NIL) (((-112) $ (-1175)) NIL)) (-2748 (($ $) NIL)) (-3106 (((-771) $) NIL)) (-4072 (((-1119) $) NIL)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2164 (($ (-644 $)) NIL) (($ $ $) NIL)) (-3671 (((-112) $ $) NIL) (((-112) $ (-1175)) NIL)) (-1624 (((-420 $) $) NIL)) (-3005 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL)) (-2978 (((-3 $ "failed") $ $) NIL)) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2664 (((-112) $) NIL (|has| $ (-1038 (-566))))) (-2023 (($ $ (-612 $) $) NIL) (($ $ (-644 (-612 $)) (-644 $)) NIL) (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-644 (-1175)) (-644 (-1 $ $))) NIL) (($ $ (-644 (-1175)) (-644 (-1 $ (-644 $)))) NIL) (($ $ (-1175) (-1 $ (-644 $))) NIL) (($ $ (-1175) (-1 $ $)) NIL) (($ $ (-644 (-114)) (-644 (-1 $ $))) NIL) (($ $ (-644 (-114)) (-644 (-1 $ (-644 $)))) NIL) (($ $ (-114) (-1 $ (-644 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-4357 (((-771) $) NIL)) (-1309 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-644 $)) NIL)) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL)) (-2020 (($ $) NIL) (($ $ $) NIL)) (-3629 (($ $ (-771)) NIL) (($ $) 36)) (-2260 (((-1124 (-566) (-612 $)) $) 20)) (-1705 (($ $) NIL (|has| $ (-1049)))) (-2376 (((-381) $) 101) (((-225) $) 109) (((-169 (-381)) $) 117)) (-3152 (((-862) $) NIL) (($ (-612 $)) NIL) (($ (-409 (-566))) NIL) (($ $) NIL) (($ (-566)) NIL) (($ (-1124 (-566) (-612 $))) 21)) (-2593 (((-771)) NIL T CONST)) (-3928 (($ $) NIL) (($ (-644 $)) NIL)) (-3515 (((-112) (-114)) 93)) (-3044 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-4356 (($) 10 T CONST)) (-4366 (($) 22 T CONST)) (-3497 (($ $ (-771)) NIL) (($ $) NIL)) (-2914 (((-112) $ $) 24)) (-3025 (($ $ $) 44)) (-3012 (($ $ $) NIL) (($ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-409 (-566))) NIL) (($ $ (-566)) 48) (($ $ (-771)) NIL) (($ $ (-921)) NIL)) (* (($ (-409 (-566)) $) NIL) (($ $ (-409 (-566))) NIL) (($ $ $) 27) (($ (-566) $) NIL) (($ (-771) $) NIL) (($ (-921) $) NIL))) +(((-497) (-13 (-303) (-27) (-1038 (-566)) (-1038 (-409 (-566))) (-639 (-566)) (-1022) (-639 (-409 (-566))) (-147) (-614 (-169 (-381))) (-233) (-10 -8 (-15 -3152 ($ (-1124 (-566) (-612 $)))) (-15 -2248 ((-1124 (-566) (-612 $)) $)) (-15 -2260 ((-1124 (-566) (-612 $)) $)) (-15 -2873 ($ $)) (-15 -2136 ((-112) $ $)) (-15 -2064 ((-1171 $) (-1171 $) (-612 $))) (-15 -2064 ((-1171 $) (-1171 $) (-644 (-612 $)))) (-15 -2064 ($ $ (-612 $))) (-15 -2064 ($ $ (-644 (-612 $))))))) (T -497)) +((-3152 (*1 *1 *2) (-12 (-5 *2 (-1124 (-566) (-612 (-497)))) (-5 *1 (-497)))) (-2248 (*1 *2 *1) (-12 (-5 *2 (-1124 (-566) (-612 (-497)))) (-5 *1 (-497)))) (-2260 (*1 *2 *1) (-12 (-5 *2 (-1124 (-566) (-612 (-497)))) (-5 *1 (-497)))) (-2873 (*1 *1 *1) (-5 *1 (-497))) (-2136 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-497)))) (-2064 (*1 *2 *2 *3) (-12 (-5 *2 (-1171 (-497))) (-5 *3 (-612 (-497))) (-5 *1 (-497)))) (-2064 (*1 *2 *2 *3) (-12 (-5 *2 (-1171 (-497))) (-5 *3 (-644 (-612 (-497)))) (-5 *1 (-497)))) (-2064 (*1 *1 *1 *2) (-12 (-5 *2 (-612 (-497))) (-5 *1 (-497)))) (-2064 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-612 (-497)))) (-5 *1 (-497))))) +(-13 (-303) (-27) (-1038 (-566)) (-1038 (-409 (-566))) (-639 (-566)) (-1022) (-639 (-409 (-566))) (-147) (-614 (-169 (-381))) (-233) (-10 -8 (-15 -3152 ($ (-1124 (-566) (-612 $)))) (-15 -2248 ((-1124 (-566) (-612 $)) $)) (-15 -2260 ((-1124 (-566) (-612 $)) $)) (-15 -2873 ($ $)) (-15 -2136 ((-112) $ $)) (-15 -2064 ((-1171 $) (-1171 $) (-612 $))) (-15 -2064 ((-1171 $) (-1171 $) (-644 (-612 $)))) (-15 -2064 ($ $ (-612 $))) (-15 -2064 ($ $ (-644 (-612 $)))))) +((-2988 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1944 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4415)))) (-3054 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-850)))) (-3628 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4415))) (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-850))))) (-2671 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-850)))) (-1504 (((-112) $ (-771)) NIL)) (-1456 ((|#1| $ (-566) |#1|) 47 (|has| $ (-6 -4415))) ((|#1| $ (-1231 (-566)) |#1|) NIL (|has| $ (-6 -4415)))) (-3678 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2463 (($) NIL T CONST)) (-3166 (($ $) NIL (|has| $ (-6 -4415)))) (-3683 (($ $) NIL)) (-3942 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2622 (($ |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2873 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4414)))) (-3897 ((|#1| $ (-566) |#1|) 42 (|has| $ (-6 -4415)))) (-3829 ((|#1| $ (-566)) 41)) (-1569 (((-566) (-1 (-112) |#1|) $) NIL) (((-566) |#1| $) NIL (|has| |#1| (-1099))) (((-566) |#1| $ (-566)) NIL (|has| |#1| (-1099)))) (-1683 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1860 (($ (-771) |#1|) 21)) (-3456 (((-112) $ (-771)) NIL)) (-2296 (((-566) $) 17 (|has| (-566) (-850)))) (-1478 (($ $ $) NIL (|has| |#1| (-850)))) (-2696 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-850)))) (-3491 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-4050 (((-566) $) 44 (|has| (-566) (-850)))) (-2599 (($ $ $) NIL (|has| |#1| (-850)))) (-3885 (($ (-1 |#1| |#1|) $) 32 (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 38)) (-3267 (((-112) $ (-771)) NIL)) (-3380 (((-1157) $) NIL (|has| |#1| (-1099)))) (-1859 (($ |#1| $ (-566)) NIL) (($ $ $ (-566)) NIL)) (-3725 (((-644 (-566)) $) NIL)) (-1644 (((-112) (-566) $) NIL)) (-4072 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3908 ((|#1| $) NIL (|has| (-566) (-850)))) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3787 (($ $ |#1|) 15 (|has| $ (-6 -4415)))) (-2823 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) NIL)) (-2847 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3486 (((-644 |#1|) $) NIL)) (-2872 (((-112) $) NIL)) (-3493 (($) 19)) (-1309 ((|#1| $ (-566) |#1|) NIL) ((|#1| $ (-566)) 46) (($ $ (-1231 (-566))) NIL)) (-2166 (($ $ (-566)) NIL) (($ $ (-1231 (-566))) NIL)) (-4083 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2661 (($ $ $ (-566)) NIL (|has| $ (-6 -4415)))) (-1480 (($ $) 13)) (-2376 (((-538) $) NIL (|has| |#1| (-614 (-538))))) (-1340 (($ (-644 |#1|)) 24)) (-4386 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-644 $)) NIL)) (-3152 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-3044 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2210 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2968 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2914 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2956 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2935 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3000 (((-771) $) 11 (|has| $ (-6 -4414))))) (((-498 |#1| |#2|) (-19 |#1|) (-1214) (-566)) (T -498)) NIL (-19 |#1|) -((-3007 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2256 (((-112) $ (-771)) NIL)) (-3923 ((|#1| $ (-566) (-566) |#1|) NIL)) (-1708 (($ $ (-566) (-498 |#1| |#3|)) NIL)) (-2521 (($ $ (-566) (-498 |#1| |#2|)) NIL)) (-3012 (($) NIL T CONST)) (-4379 (((-498 |#1| |#3|) $ (-566)) NIL)) (-2920 ((|#1| $ (-566) (-566) |#1|) NIL)) (-2855 ((|#1| $ (-566) (-566)) NIL)) (-3979 (((-644 |#1|) $) NIL)) (-1380 (((-771) $) NIL)) (-4265 (($ (-771) (-771) |#1|) NIL)) (-1391 (((-771) $) NIL)) (-2404 (((-112) $ (-771)) NIL)) (-1368 (((-566) $) NIL)) (-3832 (((-566) $) NIL)) (-2329 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-1821 (((-566) $) NIL)) (-1809 (((-566) $) NIL)) (-2908 (($ (-1 |#1| |#1|) $) NIL)) (-1301 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2603 (((-112) $ (-771)) NIL)) (-4117 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4035 (((-1119) $) NIL (|has| |#1| (-1099)))) (-4030 (($ $ |#1|) NIL)) (-2692 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) NIL)) (-3467 (((-112) $) NIL)) (-1494 (($) NIL)) (-4390 ((|#1| $ (-566) (-566)) NIL) ((|#1| $ (-566) (-566) |#1|) NIL)) (-4045 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3940 (($ $) NIL)) (-2306 (((-498 |#1| |#2|) $ (-566)) NIL)) (-3783 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-3117 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1894 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3018 (((-771) $) NIL (|has| $ (-6 -4414))))) +((-2988 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1504 (((-112) $ (-771)) NIL)) (-1456 ((|#1| $ (-566) (-566) |#1|) NIL)) (-1499 (($ $ (-566) (-498 |#1| |#3|)) NIL)) (-2837 (($ $ (-566) (-498 |#1| |#2|)) NIL)) (-2463 (($) NIL T CONST)) (-1721 (((-498 |#1| |#3|) $ (-566)) NIL)) (-3897 ((|#1| $ (-566) (-566) |#1|) NIL)) (-3829 ((|#1| $ (-566) (-566)) NIL)) (-1683 (((-644 |#1|) $) NIL)) (-3811 (((-771) $) NIL)) (-1860 (($ (-771) (-771) |#1|) NIL)) (-3824 (((-771) $) NIL)) (-3456 (((-112) $ (-771)) NIL)) (-2531 (((-566) $) NIL)) (-3688 (((-566) $) NIL)) (-3491 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2422 (((-566) $) NIL)) (-3632 (((-566) $) NIL)) (-3885 (($ (-1 |#1| |#1|) $) NIL)) (-2319 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3267 (((-112) $ (-771)) NIL)) (-3380 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4072 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3787 (($ $ |#1|) NIL)) (-2823 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) NIL)) (-2872 (((-112) $) NIL)) (-3493 (($) NIL)) (-1309 ((|#1| $ (-566) (-566)) NIL) ((|#1| $ (-566) (-566) |#1|) NIL)) (-4083 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-1480 (($ $) NIL)) (-2986 (((-498 |#1| |#2|) $ (-566)) NIL)) (-3152 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-3044 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2210 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3000 (((-771) $) NIL (|has| $ (-6 -4414))))) (((-499 |#1| |#2| |#3|) (-57 |#1| (-498 |#1| |#3|) (-498 |#1| |#2|)) (-1214) (-566) (-566)) (T -499)) NIL (-57 |#1| (-498 |#1| |#3|) (-498 |#1| |#2|)) -((-3492 (((-644 (-2 (|:| -2365 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|)))) (-2 (|:| -2365 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))) (-771) (-771)) 33)) (-1426 (((-644 (-1171 |#1|)) |#1| (-771) (-771) (-771)) 43)) (-3434 (((-2 (|:| -2365 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))) (-644 |#3|) (-644 (-2 (|:| -2365 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|)))) (-771)) 111))) -(((-500 |#1| |#2| |#3|) (-10 -7 (-15 -1426 ((-644 (-1171 |#1|)) |#1| (-771) (-771) (-771))) (-15 -3492 ((-644 (-2 (|:| -2365 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|)))) (-2 (|:| -2365 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))) (-771) (-771))) (-15 -3434 ((-2 (|:| -2365 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))) (-644 |#3|) (-644 (-2 (|:| -2365 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|)))) (-771)))) (-351) (-1240 |#1|) (-1240 |#2|)) (T -500)) -((-3434 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 (-2 (|:| -2365 (-689 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-689 *7))))) (-5 *5 (-771)) (-4 *8 (-1240 *7)) (-4 *7 (-1240 *6)) (-4 *6 (-351)) (-5 *2 (-2 (|:| -2365 (-689 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-689 *7)))) (-5 *1 (-500 *6 *7 *8)))) (-3492 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-771)) (-4 *5 (-351)) (-4 *6 (-1240 *5)) (-5 *2 (-644 (-2 (|:| -2365 (-689 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-689 *6))))) (-5 *1 (-500 *5 *6 *7)) (-5 *3 (-2 (|:| -2365 (-689 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-689 *6)))) (-4 *7 (-1240 *6)))) (-1426 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-771)) (-4 *3 (-351)) (-4 *5 (-1240 *3)) (-5 *2 (-644 (-1171 *3))) (-5 *1 (-500 *3 *5 *6)) (-4 *6 (-1240 *5))))) -(-10 -7 (-15 -1426 ((-644 (-1171 |#1|)) |#1| (-771) (-771) (-771))) (-15 -3492 ((-644 (-2 (|:| -2365 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|)))) (-2 (|:| -2365 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))) (-771) (-771))) (-15 -3434 ((-2 (|:| -2365 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))) (-644 |#3|) (-644 (-2 (|:| -2365 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|)))) (-771)))) -((-3540 (((-2 (|:| -2365 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|))) (-2 (|:| -2365 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|))) (-2 (|:| -2365 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|)))) 74)) (-2896 ((|#1| (-689 |#1|) |#1| (-771)) 27)) (-3580 (((-771) (-771) (-771)) 36)) (-2538 (((-689 |#1|) (-689 |#1|) (-689 |#1|)) 54)) (-3479 (((-689 |#1|) (-689 |#1|) (-689 |#1|) |#1|) 62) (((-689 |#1|) (-689 |#1|) (-689 |#1|)) 59)) (-4193 ((|#1| (-689 |#1|) (-689 |#1|) |#1| (-566)) 31)) (-2812 ((|#1| (-689 |#1|)) 18))) -(((-501 |#1| |#2| |#3|) (-10 -7 (-15 -2812 (|#1| (-689 |#1|))) (-15 -2896 (|#1| (-689 |#1|) |#1| (-771))) (-15 -4193 (|#1| (-689 |#1|) (-689 |#1|) |#1| (-566))) (-15 -3580 ((-771) (-771) (-771))) (-15 -3479 ((-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -3479 ((-689 |#1|) (-689 |#1|) (-689 |#1|) |#1|)) (-15 -2538 ((-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -3540 ((-2 (|:| -2365 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|))) (-2 (|:| -2365 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|))) (-2 (|:| -2365 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|)))))) (-13 (-308) (-10 -8 (-15 -3184 ((-420 $) $)))) (-1240 |#1|) (-411 |#1| |#2|)) (T -501)) -((-3540 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2365 (-689 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-689 *3)))) (-4 *3 (-13 (-308) (-10 -8 (-15 -3184 ((-420 $) $))))) (-4 *4 (-1240 *3)) (-5 *1 (-501 *3 *4 *5)) (-4 *5 (-411 *3 *4)))) (-2538 (*1 *2 *2 *2) (-12 (-5 *2 (-689 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -3184 ((-420 $) $))))) (-4 *4 (-1240 *3)) (-5 *1 (-501 *3 *4 *5)) (-4 *5 (-411 *3 *4)))) (-3479 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-689 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -3184 ((-420 $) $))))) (-4 *4 (-1240 *3)) (-5 *1 (-501 *3 *4 *5)) (-4 *5 (-411 *3 *4)))) (-3479 (*1 *2 *2 *2) (-12 (-5 *2 (-689 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -3184 ((-420 $) $))))) (-4 *4 (-1240 *3)) (-5 *1 (-501 *3 *4 *5)) (-4 *5 (-411 *3 *4)))) (-3580 (*1 *2 *2 *2) (-12 (-5 *2 (-771)) (-4 *3 (-13 (-308) (-10 -8 (-15 -3184 ((-420 $) $))))) (-4 *4 (-1240 *3)) (-5 *1 (-501 *3 *4 *5)) (-4 *5 (-411 *3 *4)))) (-4193 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-689 *2)) (-5 *4 (-566)) (-4 *2 (-13 (-308) (-10 -8 (-15 -3184 ((-420 $) $))))) (-4 *5 (-1240 *2)) (-5 *1 (-501 *2 *5 *6)) (-4 *6 (-411 *2 *5)))) (-2896 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-689 *2)) (-5 *4 (-771)) (-4 *2 (-13 (-308) (-10 -8 (-15 -3184 ((-420 $) $))))) (-4 *5 (-1240 *2)) (-5 *1 (-501 *2 *5 *6)) (-4 *6 (-411 *2 *5)))) (-2812 (*1 *2 *3) (-12 (-5 *3 (-689 *2)) (-4 *4 (-1240 *2)) (-4 *2 (-13 (-308) (-10 -8 (-15 -3184 ((-420 $) $))))) (-5 *1 (-501 *2 *4 *5)) (-4 *5 (-411 *2 *4))))) -(-10 -7 (-15 -2812 (|#1| (-689 |#1|))) (-15 -2896 (|#1| (-689 |#1|) |#1| (-771))) (-15 -4193 (|#1| (-689 |#1|) (-689 |#1|) |#1| (-566))) (-15 -3580 ((-771) (-771) (-771))) (-15 -3479 ((-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -3479 ((-689 |#1|) (-689 |#1|) (-689 |#1|) |#1|)) (-15 -2538 ((-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -3540 ((-2 (|:| -2365 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|))) (-2 (|:| -2365 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|))) (-2 (|:| -2365 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|)))))) -((-3007 (((-112) $ $) NIL)) (-3029 (($ $) NIL)) (-2456 (($ $ $) 40)) (-3734 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4415)))) (-2644 (((-112) $) NIL (|has| (-112) (-850))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-1944 (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-112) (-850)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4415)))) (-1510 (($ $) NIL (|has| (-112) (-850))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-2256 (((-112) $ (-771)) NIL)) (-3923 (((-112) $ (-1231 (-566)) (-112)) NIL (|has| $ (-6 -4415))) (((-112) $ (-566) (-112)) 42 (|has| $ (-6 -4415)))) (-2701 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4414)))) (-3012 (($) NIL T CONST)) (-3413 (($ $) NIL (|has| $ (-6 -4415)))) (-1377 (($ $) NIL)) (-2031 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-112) (-1099))))) (-2665 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4414))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-112) (-1099))))) (-1676 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4414)) (|has| (-112) (-1099))))) (-2920 (((-112) $ (-566) (-112)) NIL (|has| $ (-6 -4415)))) (-2855 (((-112) $ (-566)) NIL)) (-4000 (((-566) (-112) $ (-566)) NIL (|has| (-112) (-1099))) (((-566) (-112) $) NIL (|has| (-112) (-1099))) (((-566) (-1 (-112) (-112)) $) NIL)) (-3979 (((-644 (-112)) $) NIL (|has| $ (-6 -4414)))) (-2445 (($ $ $) 38)) (-2418 (($ $) NIL)) (-4219 (($ $ $) NIL)) (-4265 (($ (-771) (-112)) 27)) (-1497 (($ $ $) NIL)) (-2404 (((-112) $ (-771)) NIL)) (-3854 (((-566) $) 8 (|has| (-566) (-850)))) (-2097 (($ $ $) NIL)) (-3298 (($ $ $) NIL (|has| (-112) (-850))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2329 (((-644 (-112)) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-112) (-1099))))) (-2712 (((-566) $) NIL (|has| (-566) (-850)))) (-3962 (($ $ $) NIL)) (-2908 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4415)))) (-1301 (($ (-1 (-112) (-112) (-112)) $ $) 35) (($ (-1 (-112) (-112)) $) NIL)) (-2603 (((-112) $ (-771)) NIL)) (-4117 (((-1157) $) NIL)) (-4276 (($ $ $ (-566)) NIL) (($ (-112) $ (-566)) NIL)) (-4074 (((-644 (-566)) $) NIL)) (-3792 (((-112) (-566) $) NIL)) (-4035 (((-1119) $) NIL)) (-1998 (((-112) $) NIL (|has| (-566) (-850)))) (-2006 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-4030 (($ $ (-112)) NIL (|has| $ (-6 -4415)))) (-2692 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-112)) (-644 (-112))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1099)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1099)))) (($ $ (-295 (-112))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1099)))) (($ $ (-644 (-295 (-112)))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1099))))) (-1932 (((-112) $ $) NIL)) (-4156 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-112) (-1099))))) (-2993 (((-644 (-112)) $) NIL)) (-3467 (((-112) $) NIL)) (-1494 (($) 28)) (-4390 (($ $ (-1231 (-566))) NIL) (((-112) $ (-566)) 22) (((-112) $ (-566) (-112)) NIL)) (-2187 (($ $ (-1231 (-566))) NIL) (($ $ (-566)) NIL)) (-4045 (((-771) (-112) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-112) (-1099)))) (((-771) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4414)))) (-1297 (($ $ $ (-566)) NIL (|has| $ (-6 -4415)))) (-3940 (($ $) 29)) (-1348 (((-538) $) NIL (|has| (-112) (-614 (-538))))) (-3796 (($ (-644 (-112))) NIL)) (-3721 (($ (-644 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-3783 (((-862) $) 26)) (-3117 (((-112) $ $) NIL)) (-1894 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4414)))) (-2432 (($ $ $) 36)) (-3075 (($ $ $) NIL)) (-2190 (($ $ $) 45)) (-2206 (($ $) 43)) (-2174 (($ $ $) 44)) (-3009 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2947 (((-112) $ $) 30)) (-2995 (((-112) $ $) NIL)) (-2969 (((-112) $ $) 31)) (-3063 (($ $ $) NIL)) (-3018 (((-771) $) 13 (|has| $ (-6 -4414))))) -(((-502 |#1|) (-13 (-123) (-10 -8 (-15 -2206 ($ $)) (-15 -2190 ($ $ $)) (-15 -2174 ($ $ $)))) (-566)) (T -502)) -((-2206 (*1 *1 *1) (-12 (-5 *1 (-502 *2)) (-14 *2 (-566)))) (-2190 (*1 *1 *1 *1) (-12 (-5 *1 (-502 *2)) (-14 *2 (-566)))) (-2174 (*1 *1 *1 *1) (-12 (-5 *1 (-502 *2)) (-14 *2 (-566))))) -(-13 (-123) (-10 -8 (-15 -2206 ($ $)) (-15 -2190 ($ $ $)) (-15 -2174 ($ $ $)))) -((-4329 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1171 |#4|)) 35)) (-3308 (((-1171 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1171 |#4|)) 22)) (-3798 (((-3 (-689 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-689 (-1171 |#4|))) 49)) (-1920 (((-1171 (-1171 |#4|)) (-1 |#4| |#1|) |#3|) 58))) -(((-503 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3308 (|#2| (-1 |#1| |#4|) (-1171 |#4|))) (-15 -3308 ((-1171 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -4329 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1171 |#4|))) (-15 -3798 ((-3 (-689 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-689 (-1171 |#4|)))) (-15 -1920 ((-1171 (-1171 |#4|)) (-1 |#4| |#1|) |#3|))) (-1049) (-1240 |#1|) (-1240 |#2|) (-1049)) (T -503)) -((-1920 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1049)) (-4 *7 (-1049)) (-4 *6 (-1240 *5)) (-5 *2 (-1171 (-1171 *7))) (-5 *1 (-503 *5 *6 *4 *7)) (-4 *4 (-1240 *6)))) (-3798 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-689 (-1171 *8))) (-4 *5 (-1049)) (-4 *8 (-1049)) (-4 *6 (-1240 *5)) (-5 *2 (-689 *6)) (-5 *1 (-503 *5 *6 *7 *8)) (-4 *7 (-1240 *6)))) (-4329 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1171 *7)) (-4 *5 (-1049)) (-4 *7 (-1049)) (-4 *2 (-1240 *5)) (-5 *1 (-503 *5 *2 *6 *7)) (-4 *6 (-1240 *2)))) (-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1049)) (-4 *7 (-1049)) (-4 *4 (-1240 *5)) (-5 *2 (-1171 *7)) (-5 *1 (-503 *5 *4 *6 *7)) (-4 *6 (-1240 *4)))) (-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1171 *7)) (-4 *5 (-1049)) (-4 *7 (-1049)) (-4 *2 (-1240 *5)) (-5 *1 (-503 *5 *2 *6 *7)) (-4 *6 (-1240 *2))))) -(-10 -7 (-15 -3308 (|#2| (-1 |#1| |#4|) (-1171 |#4|))) (-15 -3308 ((-1171 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -4329 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1171 |#4|))) (-15 -3798 ((-3 (-689 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-689 (-1171 |#4|)))) (-15 -1920 ((-1171 (-1171 |#4|)) (-1 |#4| |#1|) |#3|))) -((-3007 (((-112) $ $) NIL)) (-2097 (($ $ $) NIL)) (-3962 (($ $ $) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3997 (((-1269) $) 25)) (-4390 (((-1157) $ (-1175)) 30)) (-1675 (((-1269) $) 17)) (-3783 (((-862) $) 27) (($ (-1157)) 26)) (-3117 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2947 (((-112) $ $) 11)) (-2995 (((-112) $ $) NIL)) (-2969 (((-112) $ $) 9))) -(((-504) (-13 (-850) (-10 -8 (-15 -4390 ((-1157) $ (-1175))) (-15 -1675 ((-1269) $)) (-15 -3997 ((-1269) $)) (-15 -3783 ($ (-1157)))))) (T -504)) -((-4390 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1157)) (-5 *1 (-504)))) (-1675 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-504)))) (-3997 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-504)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-504))))) -(-13 (-850) (-10 -8 (-15 -4390 ((-1157) $ (-1175))) (-15 -1675 ((-1269) $)) (-15 -3997 ((-1269) $)) (-15 -3783 ($ (-1157))))) -((-3830 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-4297 ((|#1| |#4|) 10)) (-3738 ((|#3| |#4|) 17))) -(((-505 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4297 (|#1| |#4|)) (-15 -3738 (|#3| |#4|)) (-15 -3830 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-558) (-992 |#1|) (-375 |#1|) (-375 |#2|)) (T -505)) -((-3830 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-992 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-505 *4 *5 *6 *3)) (-4 *6 (-375 *4)) (-4 *3 (-375 *5)))) (-3738 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-992 *4)) (-4 *2 (-375 *4)) (-5 *1 (-505 *4 *5 *2 *3)) (-4 *3 (-375 *5)))) (-4297 (*1 *2 *3) (-12 (-4 *4 (-992 *2)) (-4 *2 (-558)) (-5 *1 (-505 *2 *4 *5 *3)) (-4 *5 (-375 *2)) (-4 *3 (-375 *4))))) -(-10 -7 (-15 -4297 (|#1| |#4|)) (-15 -3738 (|#3| |#4|)) (-15 -3830 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) -((-3007 (((-112) $ $) NIL)) (-2345 (((-112) $ (-644 |#3|)) 126) (((-112) $) 127)) (-1788 (((-112) $) 178)) (-2069 (($ $ |#4|) 117) (($ $ |#4| (-644 |#3|)) 121)) (-4212 (((-1164 (-644 (-952 |#1|)) (-644 (-295 (-952 |#1|)))) (-644 |#4|)) 171 (|has| |#3| (-614 (-1175))))) (-2275 (($ $ $) 105) (($ $ |#4|) 103)) (-3934 (((-112) $) 177)) (-4284 (($ $) 131)) (-4117 (((-1157) $) NIL)) (-4018 (($ $ $) 97) (($ (-644 $)) 99)) (-2338 (((-112) |#4| $) 129)) (-4263 (((-112) $ $) 82)) (-3787 (($ (-644 |#4|)) 104)) (-4035 (((-1119) $) NIL)) (-3879 (($ (-644 |#4|)) 175)) (-1866 (((-112) $) 176)) (-1793 (($ $) 85)) (-4308 (((-644 |#4|) $) 73)) (-3037 (((-2 (|:| |mval| (-689 |#1|)) (|:| |invmval| (-689 |#1|)) (|:| |genIdeal| $)) $ (-644 |#3|)) NIL)) (-1770 (((-112) |#4| $) 89)) (-3164 (((-566) $ (-644 |#3|)) 133) (((-566) $) 134)) (-3783 (((-862) $) 174) (($ (-644 |#4|)) 100)) (-3117 (((-112) $ $) NIL)) (-2970 (($ (-2 (|:| |mval| (-689 |#1|)) (|:| |invmval| (-689 |#1|)) (|:| |genIdeal| $))) NIL)) (-2947 (((-112) $ $) 84)) (-3041 (($ $ $) 107)) (** (($ $ (-771)) 115)) (* (($ $ $) 113))) -(((-506 |#1| |#2| |#3| |#4|) (-13 (-1099) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-771))) (-15 -3041 ($ $ $)) (-15 -3934 ((-112) $)) (-15 -1788 ((-112) $)) (-15 -1770 ((-112) |#4| $)) (-15 -4263 ((-112) $ $)) (-15 -2338 ((-112) |#4| $)) (-15 -2345 ((-112) $ (-644 |#3|))) (-15 -2345 ((-112) $)) (-15 -4018 ($ $ $)) (-15 -4018 ($ (-644 $))) (-15 -2275 ($ $ $)) (-15 -2275 ($ $ |#4|)) (-15 -1793 ($ $)) (-15 -3037 ((-2 (|:| |mval| (-689 |#1|)) (|:| |invmval| (-689 |#1|)) (|:| |genIdeal| $)) $ (-644 |#3|))) (-15 -2970 ($ (-2 (|:| |mval| (-689 |#1|)) (|:| |invmval| (-689 |#1|)) (|:| |genIdeal| $)))) (-15 -3164 ((-566) $ (-644 |#3|))) (-15 -3164 ((-566) $)) (-15 -4284 ($ $)) (-15 -3787 ($ (-644 |#4|))) (-15 -3879 ($ (-644 |#4|))) (-15 -1866 ((-112) $)) (-15 -4308 ((-644 |#4|) $)) (-15 -3783 ($ (-644 |#4|))) (-15 -2069 ($ $ |#4|)) (-15 -2069 ($ $ |#4| (-644 |#3|))) (IF (|has| |#3| (-614 (-1175))) (-15 -4212 ((-1164 (-644 (-952 |#1|)) (-644 (-295 (-952 |#1|)))) (-644 |#4|))) |%noBranch|))) (-365) (-793) (-850) (-949 |#1| |#2| |#3|)) (T -506)) -((* (*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-793)) (-4 *4 (-850)) (-5 *1 (-506 *2 *3 *4 *5)) (-4 *5 (-949 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) (-3041 (*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-793)) (-4 *4 (-850)) (-5 *1 (-506 *2 *3 *4 *5)) (-4 *5 (-949 *2 *3 *4)))) (-3934 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) (-1788 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) (-1770 (*1 *2 *3 *1) (-12 (-4 *4 (-365)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-506 *4 *5 *6 *3)) (-4 *3 (-949 *4 *5 *6)))) (-4263 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) (-2338 (*1 *2 *3 *1) (-12 (-4 *4 (-365)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-506 *4 *5 *6 *3)) (-4 *3 (-949 *4 *5 *6)))) (-2345 (*1 *2 *1 *3) (-12 (-5 *3 (-644 *6)) (-4 *6 (-850)) (-4 *4 (-365)) (-4 *5 (-793)) (-5 *2 (-112)) (-5 *1 (-506 *4 *5 *6 *7)) (-4 *7 (-949 *4 *5 *6)))) (-2345 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) (-4018 (*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-793)) (-4 *4 (-850)) (-5 *1 (-506 *2 *3 *4 *5)) (-4 *5 (-949 *2 *3 *4)))) (-4018 (*1 *1 *2) (-12 (-5 *2 (-644 (-506 *3 *4 *5 *6))) (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) (-2275 (*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-793)) (-4 *4 (-850)) (-5 *1 (-506 *2 *3 *4 *5)) (-4 *5 (-949 *2 *3 *4)))) (-2275 (*1 *1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-506 *3 *4 *5 *2)) (-4 *2 (-949 *3 *4 *5)))) (-1793 (*1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-793)) (-4 *4 (-850)) (-5 *1 (-506 *2 *3 *4 *5)) (-4 *5 (-949 *2 *3 *4)))) (-3037 (*1 *2 *1 *3) (-12 (-5 *3 (-644 *6)) (-4 *6 (-850)) (-4 *4 (-365)) (-4 *5 (-793)) (-5 *2 (-2 (|:| |mval| (-689 *4)) (|:| |invmval| (-689 *4)) (|:| |genIdeal| (-506 *4 *5 *6 *7)))) (-5 *1 (-506 *4 *5 *6 *7)) (-4 *7 (-949 *4 *5 *6)))) (-2970 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-689 *3)) (|:| |invmval| (-689 *3)) (|:| |genIdeal| (-506 *3 *4 *5 *6)))) (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) (-3164 (*1 *2 *1 *3) (-12 (-5 *3 (-644 *6)) (-4 *6 (-850)) (-4 *4 (-365)) (-4 *5 (-793)) (-5 *2 (-566)) (-5 *1 (-506 *4 *5 *6 *7)) (-4 *7 (-949 *4 *5 *6)))) (-3164 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-566)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) (-4284 (*1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-793)) (-4 *4 (-850)) (-5 *1 (-506 *2 *3 *4 *5)) (-4 *5 (-949 *2 *3 *4)))) (-3787 (*1 *1 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-506 *3 *4 *5 *6)))) (-3879 (*1 *1 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-506 *3 *4 *5 *6)))) (-1866 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) (-4308 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *6)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-506 *3 *4 *5 *6)))) (-2069 (*1 *1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-506 *3 *4 *5 *2)) (-4 *2 (-949 *3 *4 *5)))) (-2069 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-644 *6)) (-4 *6 (-850)) (-4 *4 (-365)) (-4 *5 (-793)) (-5 *1 (-506 *4 *5 *6 *2)) (-4 *2 (-949 *4 *5 *6)))) (-4212 (*1 *2 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-949 *4 *5 *6)) (-4 *6 (-614 (-1175))) (-4 *4 (-365)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-1164 (-644 (-952 *4)) (-644 (-295 (-952 *4))))) (-5 *1 (-506 *4 *5 *6 *7))))) -(-13 (-1099) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-771))) (-15 -3041 ($ $ $)) (-15 -3934 ((-112) $)) (-15 -1788 ((-112) $)) (-15 -1770 ((-112) |#4| $)) (-15 -4263 ((-112) $ $)) (-15 -2338 ((-112) |#4| $)) (-15 -2345 ((-112) $ (-644 |#3|))) (-15 -2345 ((-112) $)) (-15 -4018 ($ $ $)) (-15 -4018 ($ (-644 $))) (-15 -2275 ($ $ $)) (-15 -2275 ($ $ |#4|)) (-15 -1793 ($ $)) (-15 -3037 ((-2 (|:| |mval| (-689 |#1|)) (|:| |invmval| (-689 |#1|)) (|:| |genIdeal| $)) $ (-644 |#3|))) (-15 -2970 ($ (-2 (|:| |mval| (-689 |#1|)) (|:| |invmval| (-689 |#1|)) (|:| |genIdeal| $)))) (-15 -3164 ((-566) $ (-644 |#3|))) (-15 -3164 ((-566) $)) (-15 -4284 ($ $)) (-15 -3787 ($ (-644 |#4|))) (-15 -3879 ($ (-644 |#4|))) (-15 -1866 ((-112) $)) (-15 -4308 ((-644 |#4|) $)) (-15 -3783 ($ (-644 |#4|))) (-15 -2069 ($ $ |#4|)) (-15 -2069 ($ $ |#4| (-644 |#3|))) (IF (|has| |#3| (-614 (-1175))) (-15 -4212 ((-1164 (-644 (-952 |#1|)) (-644 (-295 (-952 |#1|)))) (-644 |#4|))) |%noBranch|))) -((-2137 (((-112) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566))))) 176)) (-2592 (((-112) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566))))) 177)) (-1452 (((-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566))))) 129)) (-3268 (((-112) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566))))) NIL)) (-1683 (((-644 (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566))))) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566))))) 179)) (-2220 (((-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))) (-644 (-864 |#1|))) 195))) -(((-507 |#1| |#2|) (-10 -7 (-15 -2137 ((-112) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))))) (-15 -2592 ((-112) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))))) (-15 -3268 ((-112) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))))) (-15 -1452 ((-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))))) (-15 -1683 ((-644 (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566))))) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))))) (-15 -2220 ((-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))) (-644 (-864 |#1|))))) (-644 (-1175)) (-771)) (T -507)) -((-2220 (*1 *2 *2 *3) (-12 (-5 *2 (-506 (-409 (-566)) (-240 *5 (-771)) (-864 *4) (-247 *4 (-409 (-566))))) (-5 *3 (-644 (-864 *4))) (-14 *4 (-644 (-1175))) (-14 *5 (-771)) (-5 *1 (-507 *4 *5)))) (-1683 (*1 *2 *3) (-12 (-14 *4 (-644 (-1175))) (-14 *5 (-771)) (-5 *2 (-644 (-506 (-409 (-566)) (-240 *5 (-771)) (-864 *4) (-247 *4 (-409 (-566)))))) (-5 *1 (-507 *4 *5)) (-5 *3 (-506 (-409 (-566)) (-240 *5 (-771)) (-864 *4) (-247 *4 (-409 (-566))))))) (-1452 (*1 *2 *2) (-12 (-5 *2 (-506 (-409 (-566)) (-240 *4 (-771)) (-864 *3) (-247 *3 (-409 (-566))))) (-14 *3 (-644 (-1175))) (-14 *4 (-771)) (-5 *1 (-507 *3 *4)))) (-3268 (*1 *2 *3) (-12 (-5 *3 (-506 (-409 (-566)) (-240 *5 (-771)) (-864 *4) (-247 *4 (-409 (-566))))) (-14 *4 (-644 (-1175))) (-14 *5 (-771)) (-5 *2 (-112)) (-5 *1 (-507 *4 *5)))) (-2592 (*1 *2 *3) (-12 (-5 *3 (-506 (-409 (-566)) (-240 *5 (-771)) (-864 *4) (-247 *4 (-409 (-566))))) (-14 *4 (-644 (-1175))) (-14 *5 (-771)) (-5 *2 (-112)) (-5 *1 (-507 *4 *5)))) (-2137 (*1 *2 *3) (-12 (-5 *3 (-506 (-409 (-566)) (-240 *5 (-771)) (-864 *4) (-247 *4 (-409 (-566))))) (-14 *4 (-644 (-1175))) (-14 *5 (-771)) (-5 *2 (-112)) (-5 *1 (-507 *4 *5))))) -(-10 -7 (-15 -2137 ((-112) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))))) (-15 -2592 ((-112) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))))) (-15 -3268 ((-112) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))))) (-15 -1452 ((-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))))) (-15 -1683 ((-644 (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566))))) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))))) (-15 -2220 ((-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))) (-644 (-864 |#1|))))) -((-3007 (((-112) $ $) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-1572 (($) 6)) (-3783 (((-862) $) 12) (((-1175) $) 10)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) 8))) -(((-508) (-13 (-1099) (-613 (-1175)) (-10 -8 (-15 -1572 ($))))) (T -508)) -((-1572 (*1 *1) (-5 *1 (-508)))) -(-13 (-1099) (-613 (-1175)) (-10 -8 (-15 -1572 ($)))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-3012 (($) NIL T CONST)) (-1786 (($ $) NIL)) (-3840 (($ |#1| |#2|) NIL)) (-1301 (($ (-1 |#1| |#1|) $) NIL)) (-2703 ((|#2| $) NIL)) (-1763 ((|#1| $) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) NIL)) (-3117 (((-112) $ $) NIL)) (-2479 (($) 12 T CONST)) (-2947 (((-112) $ $) NIL)) (-3053 (($ $) 11) (($ $ $) 35)) (-3041 (($ $ $) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 21))) +((-3561 (((-644 (-2 (|:| -2875 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|)))) (-2 (|:| -2875 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))) (-771) (-771)) 33)) (-3272 (((-644 (-1171 |#1|)) |#1| (-771) (-771) (-771)) 43)) (-1630 (((-2 (|:| -2875 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))) (-644 |#3|) (-644 (-2 (|:| -2875 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|)))) (-771)) 111))) +(((-500 |#1| |#2| |#3|) (-10 -7 (-15 -3272 ((-644 (-1171 |#1|)) |#1| (-771) (-771) (-771))) (-15 -3561 ((-644 (-2 (|:| -2875 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|)))) (-2 (|:| -2875 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))) (-771) (-771))) (-15 -1630 ((-2 (|:| -2875 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))) (-644 |#3|) (-644 (-2 (|:| -2875 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|)))) (-771)))) (-351) (-1240 |#1|) (-1240 |#2|)) (T -500)) +((-1630 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 (-2 (|:| -2875 (-689 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-689 *7))))) (-5 *5 (-771)) (-4 *8 (-1240 *7)) (-4 *7 (-1240 *6)) (-4 *6 (-351)) (-5 *2 (-2 (|:| -2875 (-689 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-689 *7)))) (-5 *1 (-500 *6 *7 *8)))) (-3561 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-771)) (-4 *5 (-351)) (-4 *6 (-1240 *5)) (-5 *2 (-644 (-2 (|:| -2875 (-689 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-689 *6))))) (-5 *1 (-500 *5 *6 *7)) (-5 *3 (-2 (|:| -2875 (-689 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-689 *6)))) (-4 *7 (-1240 *6)))) (-3272 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-771)) (-4 *3 (-351)) (-4 *5 (-1240 *3)) (-5 *2 (-644 (-1171 *3))) (-5 *1 (-500 *3 *5 *6)) (-4 *6 (-1240 *5))))) +(-10 -7 (-15 -3272 ((-644 (-1171 |#1|)) |#1| (-771) (-771) (-771))) (-15 -3561 ((-644 (-2 (|:| -2875 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|)))) (-2 (|:| -2875 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))) (-771) (-771))) (-15 -1630 ((-2 (|:| -2875 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))) (-644 |#3|) (-644 (-2 (|:| -2875 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|)))) (-771)))) +((-1843 (((-2 (|:| -2875 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|))) (-2 (|:| -2875 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|))) (-2 (|:| -2875 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|)))) 74)) (-2954 ((|#1| (-689 |#1|) |#1| (-771)) 27)) (-1447 (((-771) (-771) (-771)) 36)) (-1885 (((-689 |#1|) (-689 |#1|) (-689 |#1|)) 54)) (-1576 (((-689 |#1|) (-689 |#1|) (-689 |#1|) |#1|) 62) (((-689 |#1|) (-689 |#1|) (-689 |#1|)) 59)) (-3098 ((|#1| (-689 |#1|) (-689 |#1|) |#1| (-566)) 31)) (-3429 ((|#1| (-689 |#1|)) 18))) +(((-501 |#1| |#2| |#3|) (-10 -7 (-15 -3429 (|#1| (-689 |#1|))) (-15 -2954 (|#1| (-689 |#1|) |#1| (-771))) (-15 -3098 (|#1| (-689 |#1|) (-689 |#1|) |#1| (-566))) (-15 -1447 ((-771) (-771) (-771))) (-15 -1576 ((-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -1576 ((-689 |#1|) (-689 |#1|) (-689 |#1|) |#1|)) (-15 -1885 ((-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -1843 ((-2 (|:| -2875 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|))) (-2 (|:| -2875 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|))) (-2 (|:| -2875 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|)))))) (-13 (-308) (-10 -8 (-15 -1364 ((-420 $) $)))) (-1240 |#1|) (-411 |#1| |#2|)) (T -501)) +((-1843 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2875 (-689 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-689 *3)))) (-4 *3 (-13 (-308) (-10 -8 (-15 -1364 ((-420 $) $))))) (-4 *4 (-1240 *3)) (-5 *1 (-501 *3 *4 *5)) (-4 *5 (-411 *3 *4)))) (-1885 (*1 *2 *2 *2) (-12 (-5 *2 (-689 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -1364 ((-420 $) $))))) (-4 *4 (-1240 *3)) (-5 *1 (-501 *3 *4 *5)) (-4 *5 (-411 *3 *4)))) (-1576 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-689 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -1364 ((-420 $) $))))) (-4 *4 (-1240 *3)) (-5 *1 (-501 *3 *4 *5)) (-4 *5 (-411 *3 *4)))) (-1576 (*1 *2 *2 *2) (-12 (-5 *2 (-689 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -1364 ((-420 $) $))))) (-4 *4 (-1240 *3)) (-5 *1 (-501 *3 *4 *5)) (-4 *5 (-411 *3 *4)))) (-1447 (*1 *2 *2 *2) (-12 (-5 *2 (-771)) (-4 *3 (-13 (-308) (-10 -8 (-15 -1364 ((-420 $) $))))) (-4 *4 (-1240 *3)) (-5 *1 (-501 *3 *4 *5)) (-4 *5 (-411 *3 *4)))) (-3098 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-689 *2)) (-5 *4 (-566)) (-4 *2 (-13 (-308) (-10 -8 (-15 -1364 ((-420 $) $))))) (-4 *5 (-1240 *2)) (-5 *1 (-501 *2 *5 *6)) (-4 *6 (-411 *2 *5)))) (-2954 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-689 *2)) (-5 *4 (-771)) (-4 *2 (-13 (-308) (-10 -8 (-15 -1364 ((-420 $) $))))) (-4 *5 (-1240 *2)) (-5 *1 (-501 *2 *5 *6)) (-4 *6 (-411 *2 *5)))) (-3429 (*1 *2 *3) (-12 (-5 *3 (-689 *2)) (-4 *4 (-1240 *2)) (-4 *2 (-13 (-308) (-10 -8 (-15 -1364 ((-420 $) $))))) (-5 *1 (-501 *2 *4 *5)) (-4 *5 (-411 *2 *4))))) +(-10 -7 (-15 -3429 (|#1| (-689 |#1|))) (-15 -2954 (|#1| (-689 |#1|) |#1| (-771))) (-15 -3098 (|#1| (-689 |#1|) (-689 |#1|) |#1| (-566))) (-15 -1447 ((-771) (-771) (-771))) (-15 -1576 ((-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -1576 ((-689 |#1|) (-689 |#1|) (-689 |#1|) |#1|)) (-15 -1885 ((-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -1843 ((-2 (|:| -2875 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|))) (-2 (|:| -2875 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|))) (-2 (|:| -2875 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|)))))) +((-2988 (((-112) $ $) NIL)) (-3010 (($ $) NIL)) (-2439 (($ $ $) 40)) (-1944 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4415)))) (-3054 (((-112) $) NIL (|has| (-112) (-850))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-3628 (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-112) (-850)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4415)))) (-2671 (($ $) NIL (|has| (-112) (-850))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-1504 (((-112) $ (-771)) NIL)) (-1456 (((-112) $ (-1231 (-566)) (-112)) NIL (|has| $ (-6 -4415))) (((-112) $ (-566) (-112)) 42 (|has| $ (-6 -4415)))) (-3678 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4414)))) (-2463 (($) NIL T CONST)) (-3166 (($ $) NIL (|has| $ (-6 -4415)))) (-3683 (($ $) NIL)) (-3942 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-112) (-1099))))) (-2622 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4414))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-112) (-1099))))) (-2873 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4414)) (|has| (-112) (-1099))))) (-3897 (((-112) $ (-566) (-112)) NIL (|has| $ (-6 -4415)))) (-3829 (((-112) $ (-566)) NIL)) (-1569 (((-566) (-112) $ (-566)) NIL (|has| (-112) (-1099))) (((-566) (-112) $) NIL (|has| (-112) (-1099))) (((-566) (-1 (-112) (-112)) $) NIL)) (-1683 (((-644 (-112)) $) NIL (|has| $ (-6 -4414)))) (-2427 (($ $ $) 38)) (-2404 (($ $) NIL)) (-3801 (($ $ $) NIL)) (-1860 (($ (-771) (-112)) 27)) (-2584 (($ $ $) NIL)) (-3456 (((-112) $ (-771)) NIL)) (-2296 (((-566) $) 8 (|has| (-566) (-850)))) (-1478 (($ $ $) NIL)) (-2696 (($ $ $) NIL (|has| (-112) (-850))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-3491 (((-644 (-112)) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-112) (-1099))))) (-4050 (((-566) $) NIL (|has| (-566) (-850)))) (-2599 (($ $ $) NIL)) (-3885 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4415)))) (-2319 (($ (-1 (-112) (-112) (-112)) $ $) 35) (($ (-1 (-112) (-112)) $) NIL)) (-3267 (((-112) $ (-771)) NIL)) (-3380 (((-1157) $) NIL)) (-1859 (($ $ $ (-566)) NIL) (($ (-112) $ (-566)) NIL)) (-3725 (((-644 (-566)) $) NIL)) (-1644 (((-112) (-566) $) NIL)) (-4072 (((-1119) $) NIL)) (-3908 (((-112) $) NIL (|has| (-566) (-850)))) (-3668 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-3787 (($ $ (-112)) NIL (|has| $ (-6 -4415)))) (-2823 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-112)) (-644 (-112))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1099)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1099)))) (($ $ (-295 (-112))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1099)))) (($ $ (-644 (-295 (-112)))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1099))))) (-3814 (((-112) $ $) NIL)) (-2847 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-112) (-1099))))) (-3486 (((-644 (-112)) $) NIL)) (-2872 (((-112) $) NIL)) (-3493 (($) 28)) (-1309 (($ $ (-1231 (-566))) NIL) (((-112) $ (-566)) 22) (((-112) $ (-566) (-112)) NIL)) (-2166 (($ $ (-1231 (-566))) NIL) (($ $ (-566)) NIL)) (-4083 (((-771) (-112) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-112) (-1099)))) (((-771) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4414)))) (-2661 (($ $ $ (-566)) NIL (|has| $ (-6 -4415)))) (-1480 (($ $) 29)) (-2376 (((-538) $) NIL (|has| (-112) (-614 (-538))))) (-1340 (($ (-644 (-112))) NIL)) (-4386 (($ (-644 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-3152 (((-862) $) 26)) (-3044 (((-112) $ $) NIL)) (-2210 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4414)))) (-2415 (($ $ $) 36)) (-3055 (($ $ $) NIL)) (-2854 (($ $ $) 45)) (-2865 (($ $) 43)) (-2844 (($ $ $) 44)) (-2968 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2914 (((-112) $ $) 30)) (-2956 (((-112) $ $) NIL)) (-2935 (((-112) $ $) 31)) (-3043 (($ $ $) NIL)) (-3000 (((-771) $) 13 (|has| $ (-6 -4414))))) +(((-502 |#1|) (-13 (-123) (-10 -8 (-15 -2865 ($ $)) (-15 -2854 ($ $ $)) (-15 -2844 ($ $ $)))) (-566)) (T -502)) +((-2865 (*1 *1 *1) (-12 (-5 *1 (-502 *2)) (-14 *2 (-566)))) (-2854 (*1 *1 *1 *1) (-12 (-5 *1 (-502 *2)) (-14 *2 (-566)))) (-2844 (*1 *1 *1 *1) (-12 (-5 *1 (-502 *2)) (-14 *2 (-566))))) +(-13 (-123) (-10 -8 (-15 -2865 ($ $)) (-15 -2854 ($ $ $)) (-15 -2844 ($ $ $)))) +((-3726 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1171 |#4|)) 35)) (-2460 (((-1171 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1171 |#4|)) 22)) (-3935 (((-3 (-689 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-689 (-1171 |#4|))) 49)) (-2046 (((-1171 (-1171 |#4|)) (-1 |#4| |#1|) |#3|) 58))) +(((-503 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2460 (|#2| (-1 |#1| |#4|) (-1171 |#4|))) (-15 -2460 ((-1171 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3726 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1171 |#4|))) (-15 -3935 ((-3 (-689 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-689 (-1171 |#4|)))) (-15 -2046 ((-1171 (-1171 |#4|)) (-1 |#4| |#1|) |#3|))) (-1049) (-1240 |#1|) (-1240 |#2|) (-1049)) (T -503)) +((-2046 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1049)) (-4 *7 (-1049)) (-4 *6 (-1240 *5)) (-5 *2 (-1171 (-1171 *7))) (-5 *1 (-503 *5 *6 *4 *7)) (-4 *4 (-1240 *6)))) (-3935 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-689 (-1171 *8))) (-4 *5 (-1049)) (-4 *8 (-1049)) (-4 *6 (-1240 *5)) (-5 *2 (-689 *6)) (-5 *1 (-503 *5 *6 *7 *8)) (-4 *7 (-1240 *6)))) (-3726 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1171 *7)) (-4 *5 (-1049)) (-4 *7 (-1049)) (-4 *2 (-1240 *5)) (-5 *1 (-503 *5 *2 *6 *7)) (-4 *6 (-1240 *2)))) (-2460 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1049)) (-4 *7 (-1049)) (-4 *4 (-1240 *5)) (-5 *2 (-1171 *7)) (-5 *1 (-503 *5 *4 *6 *7)) (-4 *6 (-1240 *4)))) (-2460 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1171 *7)) (-4 *5 (-1049)) (-4 *7 (-1049)) (-4 *2 (-1240 *5)) (-5 *1 (-503 *5 *2 *6 *7)) (-4 *6 (-1240 *2))))) +(-10 -7 (-15 -2460 (|#2| (-1 |#1| |#4|) (-1171 |#4|))) (-15 -2460 ((-1171 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3726 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1171 |#4|))) (-15 -3935 ((-3 (-689 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-689 (-1171 |#4|)))) (-15 -2046 ((-1171 (-1171 |#4|)) (-1 |#4| |#1|) |#3|))) +((-2988 (((-112) $ $) NIL)) (-1478 (($ $ $) NIL)) (-2599 (($ $ $) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-1597 (((-1269) $) 25)) (-1309 (((-1157) $ (-1175)) 30)) (-1710 (((-1269) $) 17)) (-3152 (((-862) $) 27) (($ (-1157)) 26)) (-3044 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2914 (((-112) $ $) 11)) (-2956 (((-112) $ $) NIL)) (-2935 (((-112) $ $) 9))) +(((-504) (-13 (-850) (-10 -8 (-15 -1309 ((-1157) $ (-1175))) (-15 -1710 ((-1269) $)) (-15 -1597 ((-1269) $)) (-15 -3152 ($ (-1157)))))) (T -504)) +((-1309 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1157)) (-5 *1 (-504)))) (-1710 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-504)))) (-1597 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-504)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-504))))) +(-13 (-850) (-10 -8 (-15 -1309 ((-1157) $ (-1175))) (-15 -1710 ((-1269) $)) (-15 -1597 ((-1269) $)) (-15 -3152 ($ (-1157))))) +((-4367 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-2693 ((|#1| |#4|) 10)) (-2386 ((|#3| |#4|) 17))) +(((-505 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2693 (|#1| |#4|)) (-15 -2386 (|#3| |#4|)) (-15 -4367 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-558) (-992 |#1|) (-375 |#1|) (-375 |#2|)) (T -505)) +((-4367 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-992 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-505 *4 *5 *6 *3)) (-4 *6 (-375 *4)) (-4 *3 (-375 *5)))) (-2386 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-992 *4)) (-4 *2 (-375 *4)) (-5 *1 (-505 *4 *5 *2 *3)) (-4 *3 (-375 *5)))) (-2693 (*1 *2 *3) (-12 (-4 *4 (-992 *2)) (-4 *2 (-558)) (-5 *1 (-505 *2 *4 *5 *3)) (-4 *5 (-375 *2)) (-4 *3 (-375 *4))))) +(-10 -7 (-15 -2693 (|#1| |#4|)) (-15 -2386 (|#3| |#4|)) (-15 -4367 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) +((-2988 (((-112) $ $) NIL)) (-1522 (((-112) $ (-644 |#3|)) 126) (((-112) $) 127)) (-3230 (((-112) $) 178)) (-2414 (($ $ |#4|) 117) (($ $ |#4| (-644 |#3|)) 121)) (-1304 (((-1164 (-644 (-952 |#1|)) (-644 (-295 (-952 |#1|)))) (-644 |#4|)) 171 (|has| |#3| (-614 (-1175))))) (-2631 (($ $ $) 105) (($ $ |#4|) 103)) (-2389 (((-112) $) 177)) (-2573 (($ $) 131)) (-3380 (((-1157) $) NIL)) (-1997 (($ $ $) 97) (($ (-644 $)) 99)) (-2094 (((-112) |#4| $) 129)) (-1435 (((-112) $ $) 82)) (-2424 (($ (-644 |#4|)) 104)) (-4072 (((-1119) $) NIL)) (-2635 (($ (-644 |#4|)) 175)) (-1424 (((-112) $) 176)) (-2542 (($ $) 85)) (-2343 (((-644 |#4|) $) 73)) (-4146 (((-2 (|:| |mval| (-689 |#1|)) (|:| |invmval| (-689 |#1|)) (|:| |genIdeal| $)) $ (-644 |#3|)) NIL)) (-4221 (((-112) |#4| $) 89)) (-3126 (((-566) $ (-644 |#3|)) 133) (((-566) $) 134)) (-3152 (((-862) $) 174) (($ (-644 |#4|)) 100)) (-3044 (((-112) $ $) NIL)) (-2342 (($ (-2 (|:| |mval| (-689 |#1|)) (|:| |invmval| (-689 |#1|)) (|:| |genIdeal| $))) NIL)) (-2914 (((-112) $ $) 84)) (-3002 (($ $ $) 107)) (** (($ $ (-771)) 115)) (* (($ $ $) 113))) +(((-506 |#1| |#2| |#3| |#4|) (-13 (-1099) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-771))) (-15 -3002 ($ $ $)) (-15 -2389 ((-112) $)) (-15 -3230 ((-112) $)) (-15 -4221 ((-112) |#4| $)) (-15 -1435 ((-112) $ $)) (-15 -2094 ((-112) |#4| $)) (-15 -1522 ((-112) $ (-644 |#3|))) (-15 -1522 ((-112) $)) (-15 -1997 ($ $ $)) (-15 -1997 ($ (-644 $))) (-15 -2631 ($ $ $)) (-15 -2631 ($ $ |#4|)) (-15 -2542 ($ $)) (-15 -4146 ((-2 (|:| |mval| (-689 |#1|)) (|:| |invmval| (-689 |#1|)) (|:| |genIdeal| $)) $ (-644 |#3|))) (-15 -2342 ($ (-2 (|:| |mval| (-689 |#1|)) (|:| |invmval| (-689 |#1|)) (|:| |genIdeal| $)))) (-15 -3126 ((-566) $ (-644 |#3|))) (-15 -3126 ((-566) $)) (-15 -2573 ($ $)) (-15 -2424 ($ (-644 |#4|))) (-15 -2635 ($ (-644 |#4|))) (-15 -1424 ((-112) $)) (-15 -2343 ((-644 |#4|) $)) (-15 -3152 ($ (-644 |#4|))) (-15 -2414 ($ $ |#4|)) (-15 -2414 ($ $ |#4| (-644 |#3|))) (IF (|has| |#3| (-614 (-1175))) (-15 -1304 ((-1164 (-644 (-952 |#1|)) (-644 (-295 (-952 |#1|)))) (-644 |#4|))) |%noBranch|))) (-365) (-793) (-850) (-949 |#1| |#2| |#3|)) (T -506)) +((* (*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-793)) (-4 *4 (-850)) (-5 *1 (-506 *2 *3 *4 *5)) (-4 *5 (-949 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) (-3002 (*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-793)) (-4 *4 (-850)) (-5 *1 (-506 *2 *3 *4 *5)) (-4 *5 (-949 *2 *3 *4)))) (-2389 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) (-3230 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) (-4221 (*1 *2 *3 *1) (-12 (-4 *4 (-365)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-506 *4 *5 *6 *3)) (-4 *3 (-949 *4 *5 *6)))) (-1435 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) (-2094 (*1 *2 *3 *1) (-12 (-4 *4 (-365)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-506 *4 *5 *6 *3)) (-4 *3 (-949 *4 *5 *6)))) (-1522 (*1 *2 *1 *3) (-12 (-5 *3 (-644 *6)) (-4 *6 (-850)) (-4 *4 (-365)) (-4 *5 (-793)) (-5 *2 (-112)) (-5 *1 (-506 *4 *5 *6 *7)) (-4 *7 (-949 *4 *5 *6)))) (-1522 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) (-1997 (*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-793)) (-4 *4 (-850)) (-5 *1 (-506 *2 *3 *4 *5)) (-4 *5 (-949 *2 *3 *4)))) (-1997 (*1 *1 *2) (-12 (-5 *2 (-644 (-506 *3 *4 *5 *6))) (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) (-2631 (*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-793)) (-4 *4 (-850)) (-5 *1 (-506 *2 *3 *4 *5)) (-4 *5 (-949 *2 *3 *4)))) (-2631 (*1 *1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-506 *3 *4 *5 *2)) (-4 *2 (-949 *3 *4 *5)))) (-2542 (*1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-793)) (-4 *4 (-850)) (-5 *1 (-506 *2 *3 *4 *5)) (-4 *5 (-949 *2 *3 *4)))) (-4146 (*1 *2 *1 *3) (-12 (-5 *3 (-644 *6)) (-4 *6 (-850)) (-4 *4 (-365)) (-4 *5 (-793)) (-5 *2 (-2 (|:| |mval| (-689 *4)) (|:| |invmval| (-689 *4)) (|:| |genIdeal| (-506 *4 *5 *6 *7)))) (-5 *1 (-506 *4 *5 *6 *7)) (-4 *7 (-949 *4 *5 *6)))) (-2342 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-689 *3)) (|:| |invmval| (-689 *3)) (|:| |genIdeal| (-506 *3 *4 *5 *6)))) (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) (-3126 (*1 *2 *1 *3) (-12 (-5 *3 (-644 *6)) (-4 *6 (-850)) (-4 *4 (-365)) (-4 *5 (-793)) (-5 *2 (-566)) (-5 *1 (-506 *4 *5 *6 *7)) (-4 *7 (-949 *4 *5 *6)))) (-3126 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-566)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) (-2573 (*1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-793)) (-4 *4 (-850)) (-5 *1 (-506 *2 *3 *4 *5)) (-4 *5 (-949 *2 *3 *4)))) (-2424 (*1 *1 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-506 *3 *4 *5 *6)))) (-2635 (*1 *1 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-506 *3 *4 *5 *6)))) (-1424 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) (-2343 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *6)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-506 *3 *4 *5 *6)))) (-2414 (*1 *1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-506 *3 *4 *5 *2)) (-4 *2 (-949 *3 *4 *5)))) (-2414 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-644 *6)) (-4 *6 (-850)) (-4 *4 (-365)) (-4 *5 (-793)) (-5 *1 (-506 *4 *5 *6 *2)) (-4 *2 (-949 *4 *5 *6)))) (-1304 (*1 *2 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-949 *4 *5 *6)) (-4 *6 (-614 (-1175))) (-4 *4 (-365)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-1164 (-644 (-952 *4)) (-644 (-295 (-952 *4))))) (-5 *1 (-506 *4 *5 *6 *7))))) +(-13 (-1099) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-771))) (-15 -3002 ($ $ $)) (-15 -2389 ((-112) $)) (-15 -3230 ((-112) $)) (-15 -4221 ((-112) |#4| $)) (-15 -1435 ((-112) $ $)) (-15 -2094 ((-112) |#4| $)) (-15 -1522 ((-112) $ (-644 |#3|))) (-15 -1522 ((-112) $)) (-15 -1997 ($ $ $)) (-15 -1997 ($ (-644 $))) (-15 -2631 ($ $ $)) (-15 -2631 ($ $ |#4|)) (-15 -2542 ($ $)) (-15 -4146 ((-2 (|:| |mval| (-689 |#1|)) (|:| |invmval| (-689 |#1|)) (|:| |genIdeal| $)) $ (-644 |#3|))) (-15 -2342 ($ (-2 (|:| |mval| (-689 |#1|)) (|:| |invmval| (-689 |#1|)) (|:| |genIdeal| $)))) (-15 -3126 ((-566) $ (-644 |#3|))) (-15 -3126 ((-566) $)) (-15 -2573 ($ $)) (-15 -2424 ($ (-644 |#4|))) (-15 -2635 ($ (-644 |#4|))) (-15 -1424 ((-112) $)) (-15 -2343 ((-644 |#4|) $)) (-15 -3152 ($ (-644 |#4|))) (-15 -2414 ($ $ |#4|)) (-15 -2414 ($ $ |#4| (-644 |#3|))) (IF (|has| |#3| (-614 (-1175))) (-15 -1304 ((-1164 (-644 (-952 |#1|)) (-644 (-295 (-952 |#1|)))) (-644 |#4|))) |%noBranch|))) +((-1356 (((-112) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566))))) 176)) (-1642 (((-112) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566))))) 177)) (-2200 (((-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566))))) 129)) (-1615 (((-112) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566))))) NIL)) (-3971 (((-644 (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566))))) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566))))) 179)) (-2378 (((-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))) (-644 (-864 |#1|))) 195))) +(((-507 |#1| |#2|) (-10 -7 (-15 -1356 ((-112) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))))) (-15 -1642 ((-112) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))))) (-15 -1615 ((-112) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))))) (-15 -2200 ((-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))))) (-15 -3971 ((-644 (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566))))) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))))) (-15 -2378 ((-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))) (-644 (-864 |#1|))))) (-644 (-1175)) (-771)) (T -507)) +((-2378 (*1 *2 *2 *3) (-12 (-5 *2 (-506 (-409 (-566)) (-240 *5 (-771)) (-864 *4) (-247 *4 (-409 (-566))))) (-5 *3 (-644 (-864 *4))) (-14 *4 (-644 (-1175))) (-14 *5 (-771)) (-5 *1 (-507 *4 *5)))) (-3971 (*1 *2 *3) (-12 (-14 *4 (-644 (-1175))) (-14 *5 (-771)) (-5 *2 (-644 (-506 (-409 (-566)) (-240 *5 (-771)) (-864 *4) (-247 *4 (-409 (-566)))))) (-5 *1 (-507 *4 *5)) (-5 *3 (-506 (-409 (-566)) (-240 *5 (-771)) (-864 *4) (-247 *4 (-409 (-566))))))) (-2200 (*1 *2 *2) (-12 (-5 *2 (-506 (-409 (-566)) (-240 *4 (-771)) (-864 *3) (-247 *3 (-409 (-566))))) (-14 *3 (-644 (-1175))) (-14 *4 (-771)) (-5 *1 (-507 *3 *4)))) (-1615 (*1 *2 *3) (-12 (-5 *3 (-506 (-409 (-566)) (-240 *5 (-771)) (-864 *4) (-247 *4 (-409 (-566))))) (-14 *4 (-644 (-1175))) (-14 *5 (-771)) (-5 *2 (-112)) (-5 *1 (-507 *4 *5)))) (-1642 (*1 *2 *3) (-12 (-5 *3 (-506 (-409 (-566)) (-240 *5 (-771)) (-864 *4) (-247 *4 (-409 (-566))))) (-14 *4 (-644 (-1175))) (-14 *5 (-771)) (-5 *2 (-112)) (-5 *1 (-507 *4 *5)))) (-1356 (*1 *2 *3) (-12 (-5 *3 (-506 (-409 (-566)) (-240 *5 (-771)) (-864 *4) (-247 *4 (-409 (-566))))) (-14 *4 (-644 (-1175))) (-14 *5 (-771)) (-5 *2 (-112)) (-5 *1 (-507 *4 *5))))) +(-10 -7 (-15 -1356 ((-112) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))))) (-15 -1642 ((-112) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))))) (-15 -1615 ((-112) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))))) (-15 -2200 ((-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))))) (-15 -3971 ((-644 (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566))))) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))))) (-15 -2378 ((-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))) (-644 (-864 |#1|))))) +((-2988 (((-112) $ $) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-2771 (($) 6)) (-3152 (((-862) $) 12) (((-1175) $) 10)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) 8))) +(((-508) (-13 (-1099) (-613 (-1175)) (-10 -8 (-15 -2771 ($))))) (T -508)) +((-2771 (*1 *1) (-5 *1 (-508)))) +(-13 (-1099) (-613 (-1175)) (-10 -8 (-15 -2771 ($)))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-2463 (($) NIL T CONST)) (-2814 (($ $) NIL)) (-1746 (($ |#1| |#2|) NIL)) (-2319 (($ (-1 |#1| |#1|) $) NIL)) (-2536 ((|#2| $) NIL)) (-2794 ((|#1| $) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) NIL)) (-3044 (((-112) $ $) NIL)) (-4356 (($) 12 T CONST)) (-2914 (((-112) $ $) NIL)) (-3012 (($ $) 11) (($ $ $) 35)) (-3002 (($ $ $) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 21))) (((-509 |#1| |#2|) (-13 (-21) (-511 |#1| |#2|)) (-21) (-850)) (T -509)) NIL (-13 (-21) (-511 |#1| |#2|)) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) 13)) (-3012 (($) NIL T CONST)) (-1786 (($ $) 41)) (-3840 (($ |#1| |#2|) 38)) (-1301 (($ (-1 |#1| |#1|) $) 40)) (-2703 ((|#2| $) NIL)) (-1763 ((|#1| $) 42)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) NIL)) (-3117 (((-112) $ $) NIL)) (-2479 (($) 10 T CONST)) (-2947 (((-112) $ $) NIL)) (-3041 (($ $ $) 26)) (* (($ (-921) $) NIL) (($ (-771) $) 36))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) 13)) (-2463 (($) NIL T CONST)) (-2814 (($ $) 41)) (-1746 (($ |#1| |#2|) 38)) (-2319 (($ (-1 |#1| |#1|) $) 40)) (-2536 ((|#2| $) NIL)) (-2794 ((|#1| $) 42)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) NIL)) (-3044 (((-112) $ $) NIL)) (-4356 (($) 10 T CONST)) (-2914 (((-112) $ $) NIL)) (-3002 (($ $ $) 26)) (* (($ (-921) $) NIL) (($ (-771) $) 36))) (((-510 |#1| |#2|) (-13 (-23) (-511 |#1| |#2|)) (-23) (-850)) (T -510)) NIL (-13 (-23) (-511 |#1| |#2|)) -((-3007 (((-112) $ $) 7)) (-1786 (($ $) 14)) (-3840 (($ |#1| |#2|) 17)) (-1301 (($ (-1 |#1| |#1|) $) 18)) (-2703 ((|#2| $) 15)) (-1763 ((|#1| $) 16)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3783 (((-862) $) 12)) (-3117 (((-112) $ $) 9)) (-2947 (((-112) $ $) 6))) +((-2988 (((-112) $ $) 7)) (-2814 (($ $) 14)) (-1746 (($ |#1| |#2|) 17)) (-2319 (($ (-1 |#1| |#1|) $) 18)) (-2536 ((|#2| $) 15)) (-2794 ((|#1| $) 16)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3152 (((-862) $) 12)) (-3044 (((-112) $ $) 9)) (-2914 (((-112) $ $) 6))) (((-511 |#1| |#2|) (-140) (-1099) (-850)) (T -511)) -((-1301 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-511 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-850)))) (-3840 (*1 *1 *2 *3) (-12 (-4 *1 (-511 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-850)))) (-1763 (*1 *2 *1) (-12 (-4 *1 (-511 *2 *3)) (-4 *3 (-850)) (-4 *2 (-1099)))) (-2703 (*1 *2 *1) (-12 (-4 *1 (-511 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-850)))) (-1786 (*1 *1 *1) (-12 (-4 *1 (-511 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-850))))) -(-13 (-1099) (-10 -8 (-15 -1301 ($ (-1 |t#1| |t#1|) $)) (-15 -3840 ($ |t#1| |t#2|)) (-15 -1763 (|t#1| $)) (-15 -2703 (|t#2| $)) (-15 -1786 ($ $)))) +((-2319 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-511 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-850)))) (-1746 (*1 *1 *2 *3) (-12 (-4 *1 (-511 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-850)))) (-2794 (*1 *2 *1) (-12 (-4 *1 (-511 *2 *3)) (-4 *3 (-850)) (-4 *2 (-1099)))) (-2536 (*1 *2 *1) (-12 (-4 *1 (-511 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-850)))) (-2814 (*1 *1 *1) (-12 (-4 *1 (-511 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-850))))) +(-13 (-1099) (-10 -8 (-15 -2319 ($ (-1 |t#1| |t#1|) $)) (-15 -1746 ($ |t#1| |t#2|)) (-15 -2794 (|t#1| $)) (-15 -2536 (|t#2| $)) (-15 -2814 ($ $)))) (((-102) . T) ((-613 (-862)) . T) ((-1099) . T)) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-3012 (($) NIL T CONST)) (-1786 (($ $) NIL)) (-3840 (($ |#1| |#2|) NIL)) (-2097 (($ $ $) NIL)) (-3962 (($ $ $) NIL)) (-1301 (($ (-1 |#1| |#1|) $) NIL)) (-2703 ((|#2| $) NIL)) (-1763 ((|#1| $) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) NIL)) (-3117 (((-112) $ $) NIL)) (-2479 (($) NIL T CONST)) (-3009 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL)) (-2995 (((-112) $ $) NIL)) (-2969 (((-112) $ $) 22)) (-3041 (($ $ $) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-2463 (($) NIL T CONST)) (-2814 (($ $) NIL)) (-1746 (($ |#1| |#2|) NIL)) (-1478 (($ $ $) NIL)) (-2599 (($ $ $) NIL)) (-2319 (($ (-1 |#1| |#1|) $) NIL)) (-2536 ((|#2| $) NIL)) (-2794 ((|#1| $) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) NIL)) (-3044 (((-112) $ $) NIL)) (-4356 (($) NIL T CONST)) (-2968 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2935 (((-112) $ $) 22)) (-3002 (($ $ $) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL))) (((-512 |#1| |#2|) (-13 (-792) (-511 |#1| |#2|)) (-792) (-850)) (T -512)) NIL (-13 (-792) (-511 |#1| |#2|)) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-2660 (($ $ $) 23)) (-4175 (((-3 $ "failed") $ $) 19)) (-3012 (($) NIL T CONST)) (-1786 (($ $) NIL)) (-3840 (($ |#1| |#2|) NIL)) (-2097 (($ $ $) NIL)) (-3962 (($ $ $) NIL)) (-1301 (($ (-1 |#1| |#1|) $) NIL)) (-2703 ((|#2| $) NIL)) (-1763 ((|#1| $) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) NIL)) (-3117 (((-112) $ $) NIL)) (-2479 (($) NIL T CONST)) (-3009 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL)) (-2995 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-3041 (($ $ $) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-3920 (($ $ $) 23)) (-3967 (((-3 $ "failed") $ $) 19)) (-2463 (($) NIL T CONST)) (-2814 (($ $) NIL)) (-1746 (($ |#1| |#2|) NIL)) (-1478 (($ $ $) NIL)) (-2599 (($ $ $) NIL)) (-2319 (($ (-1 |#1| |#1|) $) NIL)) (-2536 ((|#2| $) NIL)) (-2794 ((|#1| $) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) NIL)) (-3044 (((-112) $ $) NIL)) (-4356 (($) NIL T CONST)) (-2968 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2935 (((-112) $ $) NIL)) (-3002 (($ $ $) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL))) (((-513 |#1| |#2|) (-13 (-793) (-511 |#1| |#2|)) (-793) (-850)) (T -513)) NIL (-13 (-793) (-511 |#1| |#2|)) -((-3007 (((-112) $ $) NIL)) (-1786 (($ $) 32)) (-3840 (($ |#1| |#2|) 28)) (-1301 (($ (-1 |#1| |#1|) $) 30)) (-2703 ((|#2| $) 34)) (-1763 ((|#1| $) 33)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 27)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) 20))) +((-2988 (((-112) $ $) NIL)) (-2814 (($ $) 32)) (-1746 (($ |#1| |#2|) 28)) (-2319 (($ (-1 |#1| |#1|) $) 30)) (-2536 ((|#2| $) 34)) (-2794 ((|#1| $) 33)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 27)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) 20))) (((-514 |#1| |#2|) (-511 |#1| |#2|) (-1099) (-850)) (T -514)) NIL (-511 |#1| |#2|) -((-2055 (($ $ (-644 |#2|) (-644 |#3|)) NIL) (($ $ |#2| |#3|) 12))) -(((-515 |#1| |#2| |#3|) (-10 -8 (-15 -2055 (|#1| |#1| |#2| |#3|)) (-15 -2055 (|#1| |#1| (-644 |#2|) (-644 |#3|)))) (-516 |#2| |#3|) (-1099) (-1214)) (T -515)) +((-2023 (($ $ (-644 |#2|) (-644 |#3|)) NIL) (($ $ |#2| |#3|) 12))) +(((-515 |#1| |#2| |#3|) (-10 -8 (-15 -2023 (|#1| |#1| |#2| |#3|)) (-15 -2023 (|#1| |#1| (-644 |#2|) (-644 |#3|)))) (-516 |#2| |#3|) (-1099) (-1214)) (T -515)) NIL -(-10 -8 (-15 -2055 (|#1| |#1| |#2| |#3|)) (-15 -2055 (|#1| |#1| (-644 |#2|) (-644 |#3|)))) -((-2055 (($ $ (-644 |#1|) (-644 |#2|)) 7) (($ $ |#1| |#2|) 6))) +(-10 -8 (-15 -2023 (|#1| |#1| |#2| |#3|)) (-15 -2023 (|#1| |#1| (-644 |#2|) (-644 |#3|)))) +((-2023 (($ $ (-644 |#1|) (-644 |#2|)) 7) (($ $ |#1| |#2|) 6))) (((-516 |#1| |#2|) (-140) (-1099) (-1214)) (T -516)) -((-2055 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 *4)) (-5 *3 (-644 *5)) (-4 *1 (-516 *4 *5)) (-4 *4 (-1099)) (-4 *5 (-1214)))) (-2055 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-516 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1214))))) -(-13 (-10 -8 (-15 -2055 ($ $ |t#1| |t#2|)) (-15 -2055 ($ $ (-644 |t#1|) (-644 |t#2|))))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) 17)) (-2775 (((-644 (-2 (|:| |gen| |#1|) (|:| -2561 |#2|))) $) 19)) (-4175 (((-3 $ "failed") $ $) NIL)) (-1970 (((-771) $) NIL)) (-3012 (($) NIL T CONST)) (-4307 (((-3 |#1| "failed") $) NIL)) (-4205 ((|#1| $) NIL)) (-3946 ((|#1| $ (-566)) 24)) (-3990 ((|#2| $ (-566)) 22)) (-1657 (($ (-1 |#1| |#1|) $) 48)) (-3269 (($ (-1 |#2| |#2|) $) 45)) (-4117 (((-1157) $) NIL)) (-2943 (($ $ $) 55 (|has| |#2| (-792)))) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 44) (($ |#1|) NIL)) (-2649 ((|#2| |#1| $) 51)) (-3117 (((-112) $ $) NIL)) (-2479 (($) 11 T CONST)) (-2947 (((-112) $ $) 30)) (-3041 (($ $ $) 28) (($ |#1| $) 26)) (* (($ (-921) $) NIL) (($ (-771) $) 37) (($ |#2| |#1|) 32))) +((-2023 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 *4)) (-5 *3 (-644 *5)) (-4 *1 (-516 *4 *5)) (-4 *4 (-1099)) (-4 *5 (-1214)))) (-2023 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-516 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1214))))) +(-13 (-10 -8 (-15 -2023 ($ $ |t#1| |t#2|)) (-15 -2023 ($ $ (-644 |t#1|) (-644 |t#2|))))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) 17)) (-4152 (((-644 (-2 (|:| |gen| |#1|) (|:| -3521 |#2|))) $) 19)) (-3967 (((-3 $ "failed") $ $) NIL)) (-3870 (((-771) $) NIL)) (-2463 (($) NIL T CONST)) (-2229 (((-3 |#1| "failed") $) NIL)) (-4158 ((|#1| $) NIL)) (-2121 ((|#1| $ (-566)) 24)) (-2052 ((|#2| $ (-566)) 22)) (-3499 (($ (-1 |#1| |#1|) $) 48)) (-1728 (($ (-1 |#2| |#2|) $) 45)) (-3380 (((-1157) $) NIL)) (-1614 (($ $ $) 55 (|has| |#2| (-792)))) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 44) (($ |#1|) NIL)) (-2271 ((|#2| |#1| $) 51)) (-3044 (((-112) $ $) NIL)) (-4356 (($) 11 T CONST)) (-2914 (((-112) $ $) 30)) (-3002 (($ $ $) 28) (($ |#1| $) 26)) (* (($ (-921) $) NIL) (($ (-771) $) 37) (($ |#2| |#1|) 32))) (((-517 |#1| |#2| |#3|) (-324 |#1| |#2|) (-1099) (-131) |#2|) (T -517)) NIL (-324 |#1| |#2|) -((-3007 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3734 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4415)))) (-2644 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-850)))) (-1944 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4415))) (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-850))))) (-1510 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-850)))) (-2256 (((-112) $ (-771)) NIL)) (-1956 (((-112) (-112)) 32)) (-3923 ((|#1| $ (-566) |#1|) 42 (|has| $ (-6 -4415))) ((|#1| $ (-1231 (-566)) |#1|) NIL (|has| $ (-6 -4415)))) (-4016 (($ (-1 (-112) |#1|) $) 80)) (-2701 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-3012 (($) NIL T CONST)) (-3413 (($ $) NIL (|has| $ (-6 -4415)))) (-1377 (($ $) NIL)) (-3657 (($ $) 84 (|has| |#1| (-1099)))) (-2031 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2956 (($ |#1| $) NIL (|has| |#1| (-1099))) (($ (-1 (-112) |#1|) $) 67)) (-2665 (($ |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-1676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4414)))) (-2920 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4415)))) (-2855 ((|#1| $ (-566)) NIL)) (-4000 (((-566) (-1 (-112) |#1|) $) NIL) (((-566) |#1| $) NIL (|has| |#1| (-1099))) (((-566) |#1| $ (-566)) NIL (|has| |#1| (-1099)))) (-3341 (($ $ (-566)) 19)) (-3182 (((-771) $) 13)) (-3979 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-4265 (($ (-771) |#1|) 31)) (-2404 (((-112) $ (-771)) NIL)) (-3854 (((-566) $) 29 (|has| (-566) (-850)))) (-2097 (($ $ $) NIL (|has| |#1| (-850)))) (-3463 (($ $ $) NIL (|has| |#1| (-850))) (($ (-1 (-112) |#1| |#1|) $ $) 58)) (-3298 (($ (-1 (-112) |#1| |#1|) $ $) 59) (($ $ $) NIL (|has| |#1| (-850)))) (-2329 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2712 (((-566) $) 28 (|has| (-566) (-850)))) (-3962 (($ $ $) NIL (|has| |#1| (-850)))) (-2908 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2603 (((-112) $ (-771)) NIL)) (-4117 (((-1157) $) NIL (|has| |#1| (-1099)))) (-3406 (($ $ $ (-566)) 76) (($ |#1| $ (-566)) 60)) (-4276 (($ |#1| $ (-566)) NIL) (($ $ $ (-566)) NIL)) (-4074 (((-644 (-566)) $) NIL)) (-3792 (((-112) (-566) $) NIL)) (-4035 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3834 (($ (-644 |#1|)) 43)) (-1998 ((|#1| $) NIL (|has| (-566) (-850)))) (-2006 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4030 (($ $ |#1|) 24 (|has| $ (-6 -4415)))) (-2692 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) 63)) (-4156 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2993 (((-644 |#1|) $) NIL)) (-3467 (((-112) $) NIL)) (-1494 (($) 21)) (-4390 ((|#1| $ (-566) |#1|) NIL) ((|#1| $ (-566)) 56) (($ $ (-1231 (-566))) NIL)) (-1772 (($ $ (-1231 (-566))) 74) (($ $ (-566)) 68)) (-2187 (($ $ (-566)) NIL) (($ $ (-1231 (-566))) NIL)) (-4045 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-1297 (($ $ $ (-566)) 64 (|has| $ (-6 -4415)))) (-3940 (($ $) 54)) (-1348 (((-538) $) NIL (|has| |#1| (-614 (-538))))) (-3796 (($ (-644 |#1|)) NIL)) (-3480 (($ $ $) 65) (($ $ |#1|) 62)) (-3721 (($ $ |#1|) NIL) (($ |#1| $) 61) (($ $ $) NIL) (($ (-644 $)) NIL)) (-3783 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-3117 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1894 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-3009 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2984 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2947 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2995 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2969 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3018 (((-771) $) 22 (|has| $ (-6 -4414))))) -(((-518 |#1| |#2|) (-13 (-19 |#1|) (-283 |#1|) (-10 -8 (-15 -3834 ($ (-644 |#1|))) (-15 -3182 ((-771) $)) (-15 -3341 ($ $ (-566))) (-15 -1956 ((-112) (-112))))) (-1214) (-566)) (T -518)) -((-3834 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1214)) (-5 *1 (-518 *3 *4)) (-14 *4 (-566)))) (-3182 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-518 *3 *4)) (-4 *3 (-1214)) (-14 *4 (-566)))) (-3341 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-518 *3 *4)) (-4 *3 (-1214)) (-14 *4 *2))) (-1956 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-518 *3 *4)) (-4 *3 (-1214)) (-14 *4 (-566))))) -(-13 (-19 |#1|) (-283 |#1|) (-10 -8 (-15 -3834 ($ (-644 |#1|))) (-15 -3182 ((-771) $)) (-15 -3341 ($ $ (-566))) (-15 -1956 ((-112) (-112))))) -((-3007 (((-112) $ $) NIL)) (-4300 (((-1134) $) 11)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3347 (((-1134) $) 13)) (-3691 (((-1134) $) 9)) (-3783 (((-862) $) 19) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) -(((-519) (-13 (-1082) (-10 -8 (-15 -3691 ((-1134) $)) (-15 -4300 ((-1134) $)) (-15 -3347 ((-1134) $))))) (T -519)) -((-3691 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-519)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-519)))) (-3347 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-519))))) -(-13 (-1082) (-10 -8 (-15 -3691 ((-1134) $)) (-15 -4300 ((-1134) $)) (-15 -3347 ((-1134) $)))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-3991 (($ $) NIL)) (-2388 (((-112) $) NIL)) (-2131 (((-112) $) NIL)) (-3193 (((-771)) NIL)) (-3837 (((-583 |#1|) $) NIL) (($ $ (-921)) NIL (|has| (-583 |#1|) (-370)))) (-3778 (((-1187 (-921) (-771)) (-566)) NIL (|has| (-583 |#1|) (-370)))) (-4175 (((-3 $ "failed") $ $) NIL)) (-1550 (($ $) NIL)) (-3184 (((-420 $) $) NIL)) (-2837 (((-112) $ $) NIL)) (-1970 (((-771)) NIL (|has| (-583 |#1|) (-370)))) (-3012 (($) NIL T CONST)) (-4307 (((-3 (-583 |#1|) "failed") $) NIL)) (-4205 (((-583 |#1|) $) NIL)) (-2392 (($ (-1264 (-583 |#1|))) NIL)) (-1910 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-583 |#1|) (-370)))) (-2946 (($ $ $) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-1552 (($) NIL (|has| (-583 |#1|) (-370)))) (-2957 (($ $ $) NIL)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL)) (-2781 (($) NIL (|has| (-583 |#1|) (-370)))) (-3506 (((-112) $) NIL (|has| (-583 |#1|) (-370)))) (-3369 (($ $ (-771)) NIL (-2809 (|has| (-583 |#1|) (-145)) (|has| (-583 |#1|) (-370)))) (($ $) NIL (-2809 (|has| (-583 |#1|) (-145)) (|has| (-583 |#1|) (-370))))) (-3268 (((-112) $) NIL)) (-3254 (((-921) $) NIL (|has| (-583 |#1|) (-370))) (((-833 (-921)) $) NIL (-2809 (|has| (-583 |#1|) (-145)) (|has| (-583 |#1|) (-370))))) (-3934 (((-112) $) NIL)) (-3611 (($) NIL (|has| (-583 |#1|) (-370)))) (-1784 (((-112) $) NIL (|has| (-583 |#1|) (-370)))) (-1577 (((-583 |#1|) $) NIL) (($ $ (-921)) NIL (|has| (-583 |#1|) (-370)))) (-4363 (((-3 $ "failed") $) NIL (|has| (-583 |#1|) (-370)))) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1627 (((-1171 (-583 |#1|)) $) NIL) (((-1171 $) $ (-921)) NIL (|has| (-583 |#1|) (-370)))) (-3681 (((-921) $) NIL (|has| (-583 |#1|) (-370)))) (-2372 (((-1171 (-583 |#1|)) $) NIL (|has| (-583 |#1|) (-370)))) (-1526 (((-1171 (-583 |#1|)) $) NIL (|has| (-583 |#1|) (-370))) (((-3 (-1171 (-583 |#1|)) "failed") $ $) NIL (|has| (-583 |#1|) (-370)))) (-3158 (($ $ (-1171 (-583 |#1|))) NIL (|has| (-583 |#1|) (-370)))) (-2167 (($ $ $) NIL) (($ (-644 $)) NIL)) (-4117 (((-1157) $) NIL)) (-1713 (($ $) NIL)) (-1761 (($) NIL (|has| (-583 |#1|) (-370)) CONST)) (-2178 (($ (-921)) NIL (|has| (-583 |#1|) (-370)))) (-1778 (((-112) $) NIL)) (-4035 (((-1119) $) NIL)) (-3441 (($) NIL (|has| (-583 |#1|) (-370)))) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2214 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1548 (((-644 (-2 (|:| -3719 (-566)) (|:| -2852 (-566))))) NIL (|has| (-583 |#1|) (-370)))) (-3719 (((-420 $) $) NIL)) (-3129 (((-833 (-921))) NIL) (((-921)) NIL)) (-3148 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2994 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3039 (((-771) $) NIL)) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL)) (-1437 (((-771) $) NIL (|has| (-583 |#1|) (-370))) (((-3 (-771) "failed") $ $) NIL (-2809 (|has| (-583 |#1|) (-145)) (|has| (-583 |#1|) (-370))))) (-3164 (((-134)) NIL)) (-3561 (($ $) NIL (|has| (-583 |#1|) (-370))) (($ $ (-771)) NIL (|has| (-583 |#1|) (-370)))) (-3636 (((-833 (-921)) $) NIL) (((-921) $) NIL)) (-1616 (((-1171 (-583 |#1|))) NIL)) (-3974 (($) NIL (|has| (-583 |#1|) (-370)))) (-3458 (($) NIL (|has| (-583 |#1|) (-370)))) (-2154 (((-1264 (-583 |#1|)) $) NIL) (((-689 (-583 |#1|)) (-1264 $)) NIL)) (-1656 (((-3 (-1264 $) "failed") (-689 $)) NIL (|has| (-583 |#1|) (-370)))) (-3783 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (($ (-583 |#1|)) NIL)) (-3144 (($ $) NIL (|has| (-583 |#1|) (-370))) (((-3 $ "failed") $) NIL (-2809 (|has| (-583 |#1|) (-145)) (|has| (-583 |#1|) (-370))))) (-2107 (((-771)) NIL T CONST)) (-3117 (((-112) $ $) NIL)) (-2365 (((-1264 $)) NIL) (((-1264 $) (-921)) NIL)) (-2695 (((-112) $ $) NIL)) (-1423 (((-112) $) NIL)) (-2479 (($) NIL T CONST)) (-4334 (($) NIL T CONST)) (-2699 (($ $) NIL (|has| (-583 |#1|) (-370))) (($ $ (-771)) NIL (|has| (-583 |#1|) (-370)))) (-2875 (($ $) NIL (|has| (-583 |#1|) (-370))) (($ $ (-771)) NIL (|has| (-583 |#1|) (-370)))) (-2947 (((-112) $ $) NIL)) (-3065 (($ $ $) NIL) (($ $ (-583 |#1|)) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ $ (-583 |#1|)) NIL) (($ (-583 |#1|) $) NIL))) +((-2988 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1944 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4415)))) (-3054 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-850)))) (-3628 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4415))) (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-850))))) (-2671 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-850)))) (-1504 (((-112) $ (-771)) NIL)) (-2295 (((-112) (-112)) 32)) (-1456 ((|#1| $ (-566) |#1|) 42 (|has| $ (-6 -4415))) ((|#1| $ (-1231 (-566)) |#1|) NIL (|has| $ (-6 -4415)))) (-2995 (($ (-1 (-112) |#1|) $) 80)) (-3678 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2463 (($) NIL T CONST)) (-3166 (($ $) NIL (|has| $ (-6 -4415)))) (-3683 (($ $) NIL)) (-3322 (($ $) 84 (|has| |#1| (-1099)))) (-3942 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3512 (($ |#1| $) NIL (|has| |#1| (-1099))) (($ (-1 (-112) |#1|) $) 67)) (-2622 (($ |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2873 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4414)))) (-3897 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4415)))) (-3829 ((|#1| $ (-566)) NIL)) (-1569 (((-566) (-1 (-112) |#1|) $) NIL) (((-566) |#1| $) NIL (|has| |#1| (-1099))) (((-566) |#1| $ (-566)) NIL (|has| |#1| (-1099)))) (-1805 (($ $ (-566)) 19)) (-4281 (((-771) $) 13)) (-1683 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1860 (($ (-771) |#1|) 31)) (-3456 (((-112) $ (-771)) NIL)) (-2296 (((-566) $) 29 (|has| (-566) (-850)))) (-1478 (($ $ $) NIL (|has| |#1| (-850)))) (-3674 (($ $ $) NIL (|has| |#1| (-850))) (($ (-1 (-112) |#1| |#1|) $ $) 58)) (-2696 (($ (-1 (-112) |#1| |#1|) $ $) 59) (($ $ $) NIL (|has| |#1| (-850)))) (-3491 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-4050 (((-566) $) 28 (|has| (-566) (-850)))) (-2599 (($ $ $) NIL (|has| |#1| (-850)))) (-3885 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3267 (((-112) $ (-771)) NIL)) (-3380 (((-1157) $) NIL (|has| |#1| (-1099)))) (-3888 (($ $ $ (-566)) 76) (($ |#1| $ (-566)) 60)) (-1859 (($ |#1| $ (-566)) NIL) (($ $ $ (-566)) NIL)) (-3725 (((-644 (-566)) $) NIL)) (-1644 (((-112) (-566) $) NIL)) (-4072 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3881 (($ (-644 |#1|)) 43)) (-3908 ((|#1| $) NIL (|has| (-566) (-850)))) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3787 (($ $ |#1|) 24 (|has| $ (-6 -4415)))) (-2823 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) 63)) (-2847 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3486 (((-644 |#1|) $) NIL)) (-2872 (((-112) $) NIL)) (-3493 (($) 21)) (-1309 ((|#1| $ (-566) |#1|) NIL) ((|#1| $ (-566)) 56) (($ $ (-1231 (-566))) NIL)) (-1308 (($ $ (-1231 (-566))) 74) (($ $ (-566)) 68)) (-2166 (($ $ (-566)) NIL) (($ $ (-1231 (-566))) NIL)) (-4083 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2661 (($ $ $ (-566)) 64 (|has| $ (-6 -4415)))) (-1480 (($ $) 54)) (-2376 (((-538) $) NIL (|has| |#1| (-614 (-538))))) (-1340 (($ (-644 |#1|)) NIL)) (-1690 (($ $ $) 65) (($ $ |#1|) 62)) (-4386 (($ $ |#1|) NIL) (($ |#1| $) 61) (($ $ $) NIL) (($ (-644 $)) NIL)) (-3152 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-3044 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2210 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2968 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2914 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2956 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2935 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3000 (((-771) $) 22 (|has| $ (-6 -4414))))) +(((-518 |#1| |#2|) (-13 (-19 |#1|) (-283 |#1|) (-10 -8 (-15 -3881 ($ (-644 |#1|))) (-15 -4281 ((-771) $)) (-15 -1805 ($ $ (-566))) (-15 -2295 ((-112) (-112))))) (-1214) (-566)) (T -518)) +((-3881 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1214)) (-5 *1 (-518 *3 *4)) (-14 *4 (-566)))) (-4281 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-518 *3 *4)) (-4 *3 (-1214)) (-14 *4 (-566)))) (-1805 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-518 *3 *4)) (-4 *3 (-1214)) (-14 *4 *2))) (-2295 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-518 *3 *4)) (-4 *3 (-1214)) (-14 *4 (-566))))) +(-13 (-19 |#1|) (-283 |#1|) (-10 -8 (-15 -3881 ($ (-644 |#1|))) (-15 -4281 ((-771) $)) (-15 -1805 ($ $ (-566))) (-15 -2295 ((-112) (-112))))) +((-2988 (((-112) $ $) NIL)) (-2911 (((-1134) $) 11)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-4205 (((-1134) $) 13)) (-1607 (((-1134) $) 9)) (-3152 (((-862) $) 19) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) +(((-519) (-13 (-1082) (-10 -8 (-15 -1607 ((-1134) $)) (-15 -2911 ((-1134) $)) (-15 -4205 ((-1134) $))))) (T -519)) +((-1607 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-519)))) (-2911 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-519)))) (-4205 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-519))))) +(-13 (-1082) (-10 -8 (-15 -1607 ((-1134) $)) (-15 -2911 ((-1134) $)) (-15 -4205 ((-1134) $)))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-2161 (($ $) NIL)) (-2345 (((-112) $) NIL)) (-1972 (((-112) $) NIL)) (-2818 (((-771)) NIL)) (-3833 (((-583 |#1|) $) NIL) (($ $ (-921)) NIL (|has| (-583 |#1|) (-370)))) (-2894 (((-1187 (-921) (-771)) (-566)) NIL (|has| (-583 |#1|) (-370)))) (-3967 (((-3 $ "failed") $ $) NIL)) (-1378 (($ $) NIL)) (-1364 (((-420 $) $) NIL)) (-2085 (((-112) $ $) NIL)) (-3870 (((-771)) NIL (|has| (-583 |#1|) (-370)))) (-2463 (($) NIL T CONST)) (-2229 (((-3 (-583 |#1|) "failed") $) NIL)) (-4158 (((-583 |#1|) $) NIL)) (-1563 (($ (-1264 (-583 |#1|))) NIL)) (-2347 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-583 |#1|) (-370)))) (-2933 (($ $ $) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-2715 (($) NIL (|has| (-583 |#1|) (-370)))) (-2945 (($ $ $) NIL)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL)) (-3359 (($) NIL (|has| (-583 |#1|) (-370)))) (-2466 (((-112) $) NIL (|has| (-583 |#1|) (-370)))) (-1574 (($ $ (-771)) NIL (-2768 (|has| (-583 |#1|) (-145)) (|has| (-583 |#1|) (-370)))) (($ $) NIL (-2768 (|has| (-583 |#1|) (-145)) (|has| (-583 |#1|) (-370))))) (-1615 (((-112) $) NIL)) (-2679 (((-921) $) NIL (|has| (-583 |#1|) (-370))) (((-833 (-921)) $) NIL (-2768 (|has| (-583 |#1|) (-145)) (|has| (-583 |#1|) (-370))))) (-2389 (((-112) $) NIL)) (-2437 (($) NIL (|has| (-583 |#1|) (-370)))) (-2953 (((-112) $) NIL (|has| (-583 |#1|) (-370)))) (-2064 (((-583 |#1|) $) NIL) (($ $ (-921)) NIL (|has| (-583 |#1|) (-370)))) (-2621 (((-3 $ "failed") $) NIL (|has| (-583 |#1|) (-370)))) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3468 (((-1171 (-583 |#1|)) $) NIL) (((-1171 $) $ (-921)) NIL (|has| (-583 |#1|) (-370)))) (-1866 (((-921) $) NIL (|has| (-583 |#1|) (-370)))) (-2099 (((-1171 (-583 |#1|)) $) NIL (|has| (-583 |#1|) (-370)))) (-3624 (((-1171 (-583 |#1|)) $) NIL (|has| (-583 |#1|) (-370))) (((-3 (-1171 (-583 |#1|)) "failed") $ $) NIL (|has| (-583 |#1|) (-370)))) (-3844 (($ $ (-1171 (-583 |#1|))) NIL (|has| (-583 |#1|) (-370)))) (-2128 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3380 (((-1157) $) NIL)) (-2748 (($ $) NIL)) (-3289 (($) NIL (|has| (-583 |#1|) (-370)) CONST)) (-2835 (($ (-921)) NIL (|has| (-583 |#1|) (-370)))) (-3653 (((-112) $) NIL)) (-4072 (((-1119) $) NIL)) (-3302 (($) NIL (|has| (-583 |#1|) (-370)))) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2164 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2442 (((-644 (-2 (|:| -1624 (-566)) (|:| -2201 (-566))))) NIL (|has| (-583 |#1|) (-370)))) (-1624 (((-420 $) $) NIL)) (-1686 (((-833 (-921))) NIL) (((-921)) NIL)) (-3005 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2978 (((-3 $ "failed") $ $) NIL)) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-4357 (((-771) $) NIL)) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL)) (-3169 (((-771) $) NIL (|has| (-583 |#1|) (-370))) (((-3 (-771) "failed") $ $) NIL (-2768 (|has| (-583 |#1|) (-145)) (|has| (-583 |#1|) (-370))))) (-3126 (((-134)) NIL)) (-3629 (($ $) NIL (|has| (-583 |#1|) (-370))) (($ $ (-771)) NIL (|has| (-583 |#1|) (-370)))) (-3902 (((-833 (-921)) $) NIL) (((-921) $) NIL)) (-1705 (((-1171 (-583 |#1|))) NIL)) (-4122 (($) NIL (|has| (-583 |#1|) (-370)))) (-2110 (($) NIL (|has| (-583 |#1|) (-370)))) (-3350 (((-1264 (-583 |#1|)) $) NIL) (((-689 (-583 |#1|)) (-1264 $)) NIL)) (-3391 (((-3 (-1264 $) "failed") (-689 $)) NIL (|has| (-583 |#1|) (-370)))) (-3152 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (($ (-583 |#1|)) NIL)) (-2633 (($ $) NIL (|has| (-583 |#1|) (-370))) (((-3 $ "failed") $) NIL (-2768 (|has| (-583 |#1|) (-145)) (|has| (-583 |#1|) (-370))))) (-2593 (((-771)) NIL T CONST)) (-3044 (((-112) $ $) NIL)) (-2875 (((-1264 $)) NIL) (((-1264 $) (-921)) NIL)) (-3014 (((-112) $ $) NIL)) (-4217 (((-112) $) NIL)) (-4356 (($) NIL T CONST)) (-4366 (($) NIL T CONST)) (-2198 (($ $) NIL (|has| (-583 |#1|) (-370))) (($ $ (-771)) NIL (|has| (-583 |#1|) (-370)))) (-3497 (($ $) NIL (|has| (-583 |#1|) (-370))) (($ $ (-771)) NIL (|has| (-583 |#1|) (-370)))) (-2914 (((-112) $ $) NIL)) (-3025 (($ $ $) NIL) (($ $ (-583 |#1|)) NIL)) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ $ (-583 |#1|)) NIL) (($ (-583 |#1|) $) NIL))) (((-520 |#1| |#2|) (-330 (-583 |#1|)) (-921) (-921)) (T -520)) NIL (-330 (-583 |#1|)) -((-3007 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2256 (((-112) $ (-771)) NIL)) (-3923 ((|#1| $ (-566) (-566) |#1|) 51)) (-1708 (($ $ (-566) |#4|) NIL)) (-2521 (($ $ (-566) |#5|) NIL)) (-3012 (($) NIL T CONST)) (-4379 ((|#4| $ (-566)) NIL)) (-2920 ((|#1| $ (-566) (-566) |#1|) 50)) (-2855 ((|#1| $ (-566) (-566)) 45)) (-3979 (((-644 |#1|) $) NIL)) (-1380 (((-771) $) 33)) (-4265 (($ (-771) (-771) |#1|) 30)) (-1391 (((-771) $) 38)) (-2404 (((-112) $ (-771)) NIL)) (-1368 (((-566) $) 31)) (-3832 (((-566) $) 32)) (-2329 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-1821 (((-566) $) 37)) (-1809 (((-566) $) 39)) (-2908 (($ (-1 |#1| |#1|) $) NIL)) (-1301 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2603 (((-112) $ (-771)) NIL)) (-4117 (((-1157) $) 55 (|has| |#1| (-1099)))) (-4035 (((-1119) $) NIL (|has| |#1| (-1099)))) (-4030 (($ $ |#1|) NIL)) (-2692 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) NIL)) (-3467 (((-112) $) 14)) (-1494 (($) 16)) (-4390 ((|#1| $ (-566) (-566)) 48) ((|#1| $ (-566) (-566) |#1|) NIL)) (-4045 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3940 (($ $) NIL)) (-2306 ((|#5| $ (-566)) NIL)) (-3783 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-3117 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1894 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3018 (((-771) $) NIL (|has| $ (-6 -4414))))) +((-2988 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1504 (((-112) $ (-771)) NIL)) (-1456 ((|#1| $ (-566) (-566) |#1|) 51)) (-1499 (($ $ (-566) |#4|) NIL)) (-2837 (($ $ (-566) |#5|) NIL)) (-2463 (($) NIL T CONST)) (-1721 ((|#4| $ (-566)) NIL)) (-3897 ((|#1| $ (-566) (-566) |#1|) 50)) (-3829 ((|#1| $ (-566) (-566)) 45)) (-1683 (((-644 |#1|) $) NIL)) (-3811 (((-771) $) 33)) (-1860 (($ (-771) (-771) |#1|) 30)) (-3824 (((-771) $) 38)) (-3456 (((-112) $ (-771)) NIL)) (-2531 (((-566) $) 31)) (-3688 (((-566) $) 32)) (-3491 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2422 (((-566) $) 37)) (-3632 (((-566) $) 39)) (-3885 (($ (-1 |#1| |#1|) $) NIL)) (-2319 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3267 (((-112) $ (-771)) NIL)) (-3380 (((-1157) $) 55 (|has| |#1| (-1099)))) (-4072 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3787 (($ $ |#1|) NIL)) (-2823 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) NIL)) (-2872 (((-112) $) 14)) (-3493 (($) 16)) (-1309 ((|#1| $ (-566) (-566)) 48) ((|#1| $ (-566) (-566) |#1|) NIL)) (-4083 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-1480 (($ $) NIL)) (-2986 ((|#5| $ (-566)) NIL)) (-3152 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-3044 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2210 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3000 (((-771) $) NIL (|has| $ (-6 -4414))))) (((-521 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1214) (-566) (-566) (-375 |#1|) (-375 |#1|)) (T -521)) NIL (-57 |#1| |#4| |#5|) -((-3007 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2233 ((|#1| $) NIL)) (-2593 ((|#1| $) NIL)) (-2223 (($ $) NIL)) (-3734 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4415)))) (-2807 (($ $ (-566)) 73 (|has| $ (-6 -4415)))) (-2644 (((-112) $) NIL (|has| |#1| (-850))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1944 (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-850)))) (($ (-1 (-112) |#1| |#1|) $) 68 (|has| $ (-6 -4415)))) (-1510 (($ $) NIL (|has| |#1| (-850))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2256 (((-112) $ (-771)) NIL)) (-3396 ((|#1| $ |#1|) NIL (|has| $ (-6 -4415)))) (-4107 (($ $ $) 23 (|has| $ (-6 -4415)))) (-3178 ((|#1| $ |#1|) NIL (|has| $ (-6 -4415)))) (-2905 ((|#1| $ |#1|) 21 (|has| $ (-6 -4415)))) (-3923 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4415))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4415))) (($ $ "rest" $) 24 (|has| $ (-6 -4415))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4415))) ((|#1| $ (-1231 (-566)) |#1|) NIL (|has| $ (-6 -4415))) ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4415)))) (-3800 (($ $ (-644 $)) NIL (|has| $ (-6 -4415)))) (-4016 (($ (-1 (-112) |#1|) $) NIL)) (-2701 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2582 ((|#1| $) NIL)) (-3012 (($) NIL T CONST)) (-3413 (($ $) 28 (|has| $ (-6 -4415)))) (-1377 (($ $) 29)) (-2010 (($ $) 18) (($ $ (-771)) 35)) (-3657 (($ $) 66 (|has| |#1| (-1099)))) (-2031 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2956 (($ |#1| $) NIL (|has| |#1| (-1099))) (($ (-1 (-112) |#1|) $) NIL)) (-2665 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-1676 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2920 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4415)))) (-2855 ((|#1| $ (-566)) NIL)) (-1902 (((-112) $) NIL)) (-4000 (((-566) |#1| $ (-566)) NIL (|has| |#1| (-1099))) (((-566) |#1| $) NIL (|has| |#1| (-1099))) (((-566) (-1 (-112) |#1|) $) NIL)) (-3979 (((-644 |#1|) $) 27 (|has| $ (-6 -4414)))) (-4009 (((-644 $) $) NIL)) (-3891 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-4265 (($ (-771) |#1|) NIL)) (-2404 (((-112) $ (-771)) NIL)) (-3854 (((-566) $) 31 (|has| (-566) (-850)))) (-2097 (($ $ $) NIL (|has| |#1| (-850)))) (-3463 (($ $ $) NIL (|has| |#1| (-850))) (($ (-1 (-112) |#1| |#1|) $ $) 69)) (-3298 (($ $ $) NIL (|has| |#1| (-850))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2329 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) 64 (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2712 (((-566) $) NIL (|has| (-566) (-850)))) (-3962 (($ $ $) NIL (|has| |#1| (-850)))) (-2908 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1881 (($ |#1|) NIL)) (-2603 (((-112) $ (-771)) NIL)) (-3701 (((-644 |#1|) $) NIL)) (-3438 (((-112) $) NIL)) (-4117 (((-1157) $) 62 (|has| |#1| (-1099)))) (-2686 ((|#1| $) NIL) (($ $ (-771)) NIL)) (-3406 (($ $ $ (-566)) NIL) (($ |#1| $ (-566)) NIL)) (-4276 (($ $ $ (-566)) NIL) (($ |#1| $ (-566)) NIL)) (-4074 (((-644 (-566)) $) NIL)) (-3792 (((-112) (-566) $) NIL)) (-4035 (((-1119) $) NIL (|has| |#1| (-1099)))) (-1998 ((|#1| $) 13) (($ $ (-771)) NIL)) (-2006 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4030 (($ $ |#1|) NIL (|has| $ (-6 -4415)))) (-2373 (((-112) $) NIL)) (-2692 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) 12)) (-4156 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2993 (((-644 |#1|) $) NIL)) (-3467 (((-112) $) 17)) (-1494 (($) 16)) (-4390 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1231 (-566))) NIL) ((|#1| $ (-566)) NIL) ((|#1| $ (-566) |#1|) NIL)) (-1416 (((-566) $ $) NIL)) (-1772 (($ $ (-1231 (-566))) NIL) (($ $ (-566)) NIL)) (-2187 (($ $ (-1231 (-566))) NIL) (($ $ (-566)) NIL)) (-3494 (((-112) $) 39)) (-4272 (($ $) NIL)) (-1844 (($ $) NIL (|has| $ (-6 -4415)))) (-2833 (((-771) $) NIL)) (-2369 (($ $) 44)) (-4045 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-1297 (($ $ $ (-566)) NIL (|has| $ (-6 -4415)))) (-3940 (($ $) 40)) (-1348 (((-538) $) NIL (|has| |#1| (-614 (-538))))) (-3796 (($ (-644 |#1|)) 26)) (-3480 (($ $ $) 65) (($ $ |#1|) NIL)) (-3721 (($ $ $) NIL) (($ |#1| $) 10) (($ (-644 $)) NIL) (($ $ |#1|) NIL)) (-3783 (((-862) $) 54 (|has| |#1| (-613 (-862))))) (-2462 (((-644 $) $) NIL)) (-4288 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3117 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1894 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-3009 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2984 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2947 (((-112) $ $) 58 (|has| |#1| (-1099)))) (-2995 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2969 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3018 (((-771) $) 9 (|has| $ (-6 -4414))))) +((-2988 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2876 ((|#1| $) NIL)) (-3541 ((|#1| $) NIL)) (-3214 (($ $) NIL)) (-1944 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4415)))) (-4258 (($ $ (-566)) 73 (|has| $ (-6 -4415)))) (-3054 (((-112) $) NIL (|has| |#1| (-850))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3628 (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-850)))) (($ (-1 (-112) |#1| |#1|) $) 68 (|has| $ (-6 -4415)))) (-2671 (($ $) NIL (|has| |#1| (-850))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1504 (((-112) $ (-771)) NIL)) (-2191 ((|#1| $ |#1|) NIL (|has| $ (-6 -4415)))) (-1813 (($ $ $) 23 (|has| $ (-6 -4415)))) (-1948 ((|#1| $ |#1|) NIL (|has| $ (-6 -4415)))) (-1381 ((|#1| $ |#1|) 21 (|has| $ (-6 -4415)))) (-1456 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4415))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4415))) (($ $ "rest" $) 24 (|has| $ (-6 -4415))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4415))) ((|#1| $ (-1231 (-566)) |#1|) NIL (|has| $ (-6 -4415))) ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4415)))) (-4202 (($ $ (-644 $)) NIL (|has| $ (-6 -4415)))) (-2995 (($ (-1 (-112) |#1|) $) NIL)) (-3678 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-3531 ((|#1| $) NIL)) (-2463 (($) NIL T CONST)) (-3166 (($ $) 28 (|has| $ (-6 -4415)))) (-3683 (($ $) 29)) (-3919 (($ $) 18) (($ $ (-771)) 35)) (-3322 (($ $) 66 (|has| |#1| (-1099)))) (-3942 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3512 (($ |#1| $) NIL (|has| |#1| (-1099))) (($ (-1 (-112) |#1|) $) NIL)) (-2622 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2873 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3897 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4415)))) (-3829 ((|#1| $ (-566)) NIL)) (-1781 (((-112) $) NIL)) (-1569 (((-566) |#1| $ (-566)) NIL (|has| |#1| (-1099))) (((-566) |#1| $) NIL (|has| |#1| (-1099))) (((-566) (-1 (-112) |#1|) $) NIL)) (-1683 (((-644 |#1|) $) 27 (|has| $ (-6 -4414)))) (-3431 (((-644 $) $) NIL)) (-1507 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1860 (($ (-771) |#1|) NIL)) (-3456 (((-112) $ (-771)) NIL)) (-2296 (((-566) $) 31 (|has| (-566) (-850)))) (-1478 (($ $ $) NIL (|has| |#1| (-850)))) (-3674 (($ $ $) NIL (|has| |#1| (-850))) (($ (-1 (-112) |#1| |#1|) $ $) 69)) (-2696 (($ $ $) NIL (|has| |#1| (-850))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3491 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) 64 (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-4050 (((-566) $) NIL (|has| (-566) (-850)))) (-2599 (($ $ $) NIL (|has| |#1| (-850)))) (-3885 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3770 (($ |#1|) NIL)) (-3267 (((-112) $ (-771)) NIL)) (-1458 (((-644 |#1|) $) NIL)) (-3860 (((-112) $) NIL)) (-3380 (((-1157) $) 62 (|has| |#1| (-1099)))) (-2641 ((|#1| $) NIL) (($ $ (-771)) NIL)) (-3888 (($ $ $ (-566)) NIL) (($ |#1| $ (-566)) NIL)) (-1859 (($ $ $ (-566)) NIL) (($ |#1| $ (-566)) NIL)) (-3725 (((-644 (-566)) $) NIL)) (-1644 (((-112) (-566) $) NIL)) (-4072 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3908 ((|#1| $) 13) (($ $ (-771)) NIL)) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3787 (($ $ |#1|) NIL (|has| $ (-6 -4415)))) (-3254 (((-112) $) NIL)) (-2823 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) 12)) (-2847 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3486 (((-644 |#1|) $) NIL)) (-2872 (((-112) $) 17)) (-3493 (($) 16)) (-1309 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1231 (-566))) NIL) ((|#1| $ (-566)) NIL) ((|#1| $ (-566) |#1|) NIL)) (-1696 (((-566) $ $) NIL)) (-1308 (($ $ (-1231 (-566))) NIL) (($ $ (-566)) NIL)) (-2166 (($ $ (-1231 (-566))) NIL) (($ $ (-566)) NIL)) (-3786 (((-112) $) 39)) (-4018 (($ $) NIL)) (-3810 (($ $) NIL (|has| $ (-6 -4415)))) (-2916 (((-771) $) NIL)) (-1922 (($ $) 44)) (-4083 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2661 (($ $ $ (-566)) NIL (|has| $ (-6 -4415)))) (-1480 (($ $) 40)) (-2376 (((-538) $) NIL (|has| |#1| (-614 (-538))))) (-1340 (($ (-644 |#1|)) 26)) (-1690 (($ $ $) 65) (($ $ |#1|) NIL)) (-4386 (($ $ $) NIL) (($ |#1| $) 10) (($ (-644 $)) NIL) (($ $ |#1|) NIL)) (-3152 (((-862) $) 54 (|has| |#1| (-613 (-862))))) (-1926 (((-644 $) $) NIL)) (-4385 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3044 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2210 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2968 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2914 (((-112) $ $) 58 (|has| |#1| (-1099)))) (-2956 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2935 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3000 (((-771) $) 9 (|has| $ (-6 -4414))))) (((-522 |#1| |#2|) (-666 |#1|) (-1214) (-566)) (T -522)) NIL (-666 |#1|) -((-4137 ((|#4| |#4|) 37)) (-4313 (((-771) |#4|) 45)) (-3864 (((-771) |#4|) 46)) (-1601 (((-644 |#3|) |#4|) 56 (|has| |#3| (-6 -4415)))) (-4264 (((-3 |#4| "failed") |#4|) 70)) (-3440 ((|#4| |#4|) 62)) (-4383 ((|#1| |#4|) 61))) -(((-523 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4137 (|#4| |#4|)) (-15 -4313 ((-771) |#4|)) (-15 -3864 ((-771) |#4|)) (IF (|has| |#3| (-6 -4415)) (-15 -1601 ((-644 |#3|) |#4|)) |%noBranch|) (-15 -4383 (|#1| |#4|)) (-15 -3440 (|#4| |#4|)) (-15 -4264 ((-3 |#4| "failed") |#4|))) (-365) (-375 |#1|) (-375 |#1|) (-687 |#1| |#2| |#3|)) (T -523)) -((-4264 (*1 *2 *2) (|partial| -12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-523 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5)))) (-3440 (*1 *2 *2) (-12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-523 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5)))) (-4383 (*1 *2 *3) (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-365)) (-5 *1 (-523 *2 *4 *5 *3)) (-4 *3 (-687 *2 *4 *5)))) (-1601 (*1 *2 *3) (-12 (|has| *6 (-6 -4415)) (-4 *4 (-365)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-644 *6)) (-5 *1 (-523 *4 *5 *6 *3)) (-4 *3 (-687 *4 *5 *6)))) (-3864 (*1 *2 *3) (-12 (-4 *4 (-365)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-771)) (-5 *1 (-523 *4 *5 *6 *3)) (-4 *3 (-687 *4 *5 *6)))) (-4313 (*1 *2 *3) (-12 (-4 *4 (-365)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-771)) (-5 *1 (-523 *4 *5 *6 *3)) (-4 *3 (-687 *4 *5 *6)))) (-4137 (*1 *2 *2) (-12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-523 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5))))) -(-10 -7 (-15 -4137 (|#4| |#4|)) (-15 -4313 ((-771) |#4|)) (-15 -3864 ((-771) |#4|)) (IF (|has| |#3| (-6 -4415)) (-15 -1601 ((-644 |#3|) |#4|)) |%noBranch|) (-15 -4383 (|#1| |#4|)) (-15 -3440 (|#4| |#4|)) (-15 -4264 ((-3 |#4| "failed") |#4|))) -((-4137 ((|#8| |#4|) 20)) (-1601 (((-644 |#3|) |#4|) 29 (|has| |#7| (-6 -4415)))) (-4264 (((-3 |#8| "failed") |#4|) 23))) -(((-524 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4137 (|#8| |#4|)) (-15 -4264 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4415)) (-15 -1601 ((-644 |#3|) |#4|)) |%noBranch|)) (-558) (-375 |#1|) (-375 |#1|) (-687 |#1| |#2| |#3|) (-992 |#1|) (-375 |#5|) (-375 |#5|) (-687 |#5| |#6| |#7|)) (T -524)) -((-1601 (*1 *2 *3) (-12 (|has| *9 (-6 -4415)) (-4 *4 (-558)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-4 *7 (-992 *4)) (-4 *8 (-375 *7)) (-4 *9 (-375 *7)) (-5 *2 (-644 *6)) (-5 *1 (-524 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-687 *4 *5 *6)) (-4 *10 (-687 *7 *8 *9)))) (-4264 (*1 *2 *3) (|partial| -12 (-4 *4 (-558)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-4 *7 (-992 *4)) (-4 *2 (-687 *7 *8 *9)) (-5 *1 (-524 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-687 *4 *5 *6)) (-4 *8 (-375 *7)) (-4 *9 (-375 *7)))) (-4137 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-4 *7 (-992 *4)) (-4 *2 (-687 *7 *8 *9)) (-5 *1 (-524 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-687 *4 *5 *6)) (-4 *8 (-375 *7)) (-4 *9 (-375 *7))))) -(-10 -7 (-15 -4137 (|#8| |#4|)) (-15 -4264 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4415)) (-15 -1601 ((-644 |#3|) |#4|)) |%noBranch|)) -((-3007 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2149 (($ (-771) (-771)) NIL)) (-1458 (($ $ $) NIL)) (-1560 (($ (-602 |#1| |#3|)) NIL) (($ $) NIL)) (-2143 (((-112) $) NIL)) (-3025 (($ $ (-566) (-566)) 21)) (-1355 (($ $ (-566) (-566)) NIL)) (-1979 (($ $ (-566) (-566) (-566) (-566)) NIL)) (-1697 (($ $) NIL)) (-1743 (((-112) $) NIL)) (-2256 (((-112) $ (-771)) NIL)) (-4168 (($ $ (-566) (-566) $) NIL)) (-3923 ((|#1| $ (-566) (-566) |#1|) NIL) (($ $ (-644 (-566)) (-644 (-566)) $) NIL)) (-1708 (($ $ (-566) (-602 |#1| |#3|)) NIL)) (-2521 (($ $ (-566) (-602 |#1| |#2|)) NIL)) (-3808 (($ (-771) |#1|) NIL)) (-3012 (($) NIL T CONST)) (-4137 (($ $) 30 (|has| |#1| (-308)))) (-4379 (((-602 |#1| |#3|) $ (-566)) NIL)) (-4313 (((-771) $) 33 (|has| |#1| (-558)))) (-2920 ((|#1| $ (-566) (-566) |#1|) NIL)) (-2855 ((|#1| $ (-566) (-566)) NIL)) (-3979 (((-644 |#1|) $) NIL)) (-3864 (((-771) $) 35 (|has| |#1| (-558)))) (-1601 (((-644 (-602 |#1| |#2|)) $) 38 (|has| |#1| (-558)))) (-1380 (((-771) $) NIL)) (-4265 (($ (-771) (-771) |#1|) NIL)) (-1391 (((-771) $) NIL)) (-2404 (((-112) $ (-771)) NIL)) (-3310 ((|#1| $) 28 (|has| |#1| (-6 (-4416 "*"))))) (-1368 (((-566) $) 10)) (-3832 (((-566) $) NIL)) (-2329 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-1821 (((-566) $) 13)) (-1809 (((-566) $) NIL)) (-3163 (($ (-644 (-644 |#1|))) NIL)) (-2908 (($ (-1 |#1| |#1|) $) NIL)) (-1301 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2909 (((-644 (-644 |#1|)) $) NIL)) (-2603 (((-112) $ (-771)) NIL)) (-4117 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4264 (((-3 $ "failed") $) 42 (|has| |#1| (-365)))) (-4140 (($ $ $) NIL)) (-4035 (((-1119) $) NIL (|has| |#1| (-1099)))) (-4030 (($ $ |#1|) NIL)) (-2994 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558)))) (-2692 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) NIL)) (-3467 (((-112) $) NIL)) (-1494 (($) NIL)) (-4390 ((|#1| $ (-566) (-566)) NIL) ((|#1| $ (-566) (-566) |#1|) NIL) (($ $ (-644 (-566)) (-644 (-566))) NIL)) (-4098 (($ (-644 |#1|)) NIL) (($ (-644 $)) NIL)) (-2652 (((-112) $) NIL)) (-4383 ((|#1| $) 26 (|has| |#1| (-6 (-4416 "*"))))) (-4045 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3940 (($ $) NIL)) (-2306 (((-602 |#1| |#2|) $ (-566)) NIL)) (-3783 (($ (-602 |#1| |#2|)) NIL) (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-3117 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1894 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-3098 (((-112) $) NIL)) (-2947 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3065 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3053 (($ $ $) NIL) (($ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-771)) NIL) (($ $ (-566)) NIL (|has| |#1| (-365)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-566) $) NIL) (((-602 |#1| |#2|) $ (-602 |#1| |#2|)) NIL) (((-602 |#1| |#3|) (-602 |#1| |#3|) $) NIL)) (-3018 (((-771) $) NIL (|has| $ (-6 -4414))))) +((-1521 ((|#4| |#4|) 37)) (-2755 (((-771) |#4|) 45)) (-1908 (((-771) |#4|) 46)) (-2950 (((-644 |#3|) |#4|) 56 (|has| |#3| (-6 -4415)))) (-1542 (((-3 |#4| "failed") |#4|) 70)) (-4084 ((|#4| |#4|) 62)) (-3943 ((|#1| |#4|) 61))) +(((-523 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1521 (|#4| |#4|)) (-15 -2755 ((-771) |#4|)) (-15 -1908 ((-771) |#4|)) (IF (|has| |#3| (-6 -4415)) (-15 -2950 ((-644 |#3|) |#4|)) |%noBranch|) (-15 -3943 (|#1| |#4|)) (-15 -4084 (|#4| |#4|)) (-15 -1542 ((-3 |#4| "failed") |#4|))) (-365) (-375 |#1|) (-375 |#1|) (-687 |#1| |#2| |#3|)) (T -523)) +((-1542 (*1 *2 *2) (|partial| -12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-523 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5)))) (-4084 (*1 *2 *2) (-12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-523 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5)))) (-3943 (*1 *2 *3) (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-365)) (-5 *1 (-523 *2 *4 *5 *3)) (-4 *3 (-687 *2 *4 *5)))) (-2950 (*1 *2 *3) (-12 (|has| *6 (-6 -4415)) (-4 *4 (-365)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-644 *6)) (-5 *1 (-523 *4 *5 *6 *3)) (-4 *3 (-687 *4 *5 *6)))) (-1908 (*1 *2 *3) (-12 (-4 *4 (-365)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-771)) (-5 *1 (-523 *4 *5 *6 *3)) (-4 *3 (-687 *4 *5 *6)))) (-2755 (*1 *2 *3) (-12 (-4 *4 (-365)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-771)) (-5 *1 (-523 *4 *5 *6 *3)) (-4 *3 (-687 *4 *5 *6)))) (-1521 (*1 *2 *2) (-12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-523 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5))))) +(-10 -7 (-15 -1521 (|#4| |#4|)) (-15 -2755 ((-771) |#4|)) (-15 -1908 ((-771) |#4|)) (IF (|has| |#3| (-6 -4415)) (-15 -2950 ((-644 |#3|) |#4|)) |%noBranch|) (-15 -3943 (|#1| |#4|)) (-15 -4084 (|#4| |#4|)) (-15 -1542 ((-3 |#4| "failed") |#4|))) +((-1521 ((|#8| |#4|) 20)) (-2950 (((-644 |#3|) |#4|) 29 (|has| |#7| (-6 -4415)))) (-1542 (((-3 |#8| "failed") |#4|) 23))) +(((-524 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1521 (|#8| |#4|)) (-15 -1542 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4415)) (-15 -2950 ((-644 |#3|) |#4|)) |%noBranch|)) (-558) (-375 |#1|) (-375 |#1|) (-687 |#1| |#2| |#3|) (-992 |#1|) (-375 |#5|) (-375 |#5|) (-687 |#5| |#6| |#7|)) (T -524)) +((-2950 (*1 *2 *3) (-12 (|has| *9 (-6 -4415)) (-4 *4 (-558)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-4 *7 (-992 *4)) (-4 *8 (-375 *7)) (-4 *9 (-375 *7)) (-5 *2 (-644 *6)) (-5 *1 (-524 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-687 *4 *5 *6)) (-4 *10 (-687 *7 *8 *9)))) (-1542 (*1 *2 *3) (|partial| -12 (-4 *4 (-558)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-4 *7 (-992 *4)) (-4 *2 (-687 *7 *8 *9)) (-5 *1 (-524 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-687 *4 *5 *6)) (-4 *8 (-375 *7)) (-4 *9 (-375 *7)))) (-1521 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-4 *7 (-992 *4)) (-4 *2 (-687 *7 *8 *9)) (-5 *1 (-524 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-687 *4 *5 *6)) (-4 *8 (-375 *7)) (-4 *9 (-375 *7))))) +(-10 -7 (-15 -1521 (|#8| |#4|)) (-15 -1542 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4415)) (-15 -2950 ((-644 |#3|) |#4|)) |%noBranch|)) +((-2988 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2819 (($ (-771) (-771)) NIL)) (-4383 (($ $ $) NIL)) (-4160 (($ (-602 |#1| |#3|)) NIL) (($ $) NIL)) (-1791 (((-112) $) NIL)) (-2485 (($ $ (-566) (-566)) 21)) (-2106 (($ $ (-566) (-566)) NIL)) (-2897 (($ $ (-566) (-566) (-566) (-566)) NIL)) (-2754 (($ $) NIL)) (-3768 (((-112) $) NIL)) (-1504 (((-112) $ (-771)) NIL)) (-1418 (($ $ (-566) (-566) $) NIL)) (-1456 ((|#1| $ (-566) (-566) |#1|) NIL) (($ $ (-644 (-566)) (-644 (-566)) $) NIL)) (-1499 (($ $ (-566) (-602 |#1| |#3|)) NIL)) (-2837 (($ $ (-566) (-602 |#1| |#2|)) NIL)) (-3520 (($ (-771) |#1|) NIL)) (-2463 (($) NIL T CONST)) (-1521 (($ $) 30 (|has| |#1| (-308)))) (-1721 (((-602 |#1| |#3|) $ (-566)) NIL)) (-2755 (((-771) $) 33 (|has| |#1| (-558)))) (-3897 ((|#1| $ (-566) (-566) |#1|) NIL)) (-3829 ((|#1| $ (-566) (-566)) NIL)) (-1683 (((-644 |#1|) $) NIL)) (-1908 (((-771) $) 35 (|has| |#1| (-558)))) (-2950 (((-644 (-602 |#1| |#2|)) $) 38 (|has| |#1| (-558)))) (-3811 (((-771) $) NIL)) (-1860 (($ (-771) (-771) |#1|) NIL)) (-3824 (((-771) $) NIL)) (-3456 (((-112) $ (-771)) NIL)) (-1444 ((|#1| $) 28 (|has| |#1| (-6 (-4416 "*"))))) (-2531 (((-566) $) 10)) (-3688 (((-566) $) NIL)) (-3491 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2422 (((-566) $) 13)) (-3632 (((-566) $) NIL)) (-4184 (($ (-644 (-644 |#1|))) NIL)) (-3885 (($ (-1 |#1| |#1|) $) NIL)) (-2319 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1723 (((-644 (-644 |#1|)) $) NIL)) (-3267 (((-112) $ (-771)) NIL)) (-3380 (((-1157) $) NIL (|has| |#1| (-1099)))) (-1542 (((-3 $ "failed") $) 42 (|has| |#1| (-365)))) (-1798 (($ $ $) NIL)) (-4072 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3787 (($ $ |#1|) NIL)) (-2978 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558)))) (-2823 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) NIL)) (-2872 (((-112) $) NIL)) (-3493 (($) NIL)) (-1309 ((|#1| $ (-566) (-566)) NIL) ((|#1| $ (-566) (-566) |#1|) NIL) (($ $ (-644 (-566)) (-644 (-566))) NIL)) (-2253 (($ (-644 |#1|)) NIL) (($ (-644 $)) NIL)) (-1370 (((-112) $) NIL)) (-3943 ((|#1| $) 26 (|has| |#1| (-6 (-4416 "*"))))) (-4083 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-1480 (($ $) NIL)) (-2986 (((-602 |#1| |#2|) $ (-566)) NIL)) (-3152 (($ (-602 |#1| |#2|)) NIL) (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-3044 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2210 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-1950 (((-112) $) NIL)) (-2914 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3025 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3012 (($ $ $) NIL) (($ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-771)) NIL) (($ $ (-566)) NIL (|has| |#1| (-365)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-566) $) NIL) (((-602 |#1| |#2|) $ (-602 |#1| |#2|)) NIL) (((-602 |#1| |#3|) (-602 |#1| |#3|) $) NIL)) (-3000 (((-771) $) NIL (|has| $ (-6 -4414))))) (((-525 |#1| |#2| |#3|) (-687 |#1| (-602 |#1| |#3|) (-602 |#1| |#2|)) (-1049) (-566) (-566)) (T -525)) NIL (-687 |#1| (-602 |#1| |#3|) (-602 |#1| |#2|)) -((-3007 (((-112) $ $) NIL)) (-4117 (((-1157) $) NIL)) (-3304 (((-644 (-1213)) $) 13)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 19) (($ (-1180)) NIL) (((-1180) $) NIL) (($ (-644 (-1213))) 11)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) -(((-526) (-13 (-1082) (-10 -8 (-15 -3783 ($ (-644 (-1213)))) (-15 -3304 ((-644 (-1213)) $))))) (T -526)) -((-3783 (*1 *1 *2) (-12 (-5 *2 (-644 (-1213))) (-5 *1 (-526)))) (-3304 (*1 *2 *1) (-12 (-5 *2 (-644 (-1213))) (-5 *1 (-526))))) -(-13 (-1082) (-10 -8 (-15 -3783 ($ (-644 (-1213)))) (-15 -3304 ((-644 (-1213)) $)))) -((-3007 (((-112) $ $) NIL)) (-3487 (((-1134) $) 14)) (-4117 (((-1157) $) NIL)) (-2625 (((-508) $) 11)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 21) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) -(((-527) (-13 (-1082) (-10 -8 (-15 -2625 ((-508) $)) (-15 -3487 ((-1134) $))))) (T -527)) -((-2625 (*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-527)))) (-3487 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-527))))) -(-13 (-1082) (-10 -8 (-15 -2625 ((-508) $)) (-15 -3487 ((-1134) $)))) -((-2771 (((-691 (-1222)) $) 15)) (-3335 (((-691 (-1220)) $) 39)) (-1492 (((-691 (-1219)) $) 30)) (-2708 (((-691 (-551)) $) 12)) (-4058 (((-691 (-549)) $) 43)) (-2568 (((-691 (-548)) $) 34)) (-3619 (((-771) $ (-128)) 55))) -(((-528 |#1|) (-10 -8 (-15 -3619 ((-771) |#1| (-128))) (-15 -3335 ((-691 (-1220)) |#1|)) (-15 -4058 ((-691 (-549)) |#1|)) (-15 -1492 ((-691 (-1219)) |#1|)) (-15 -2568 ((-691 (-548)) |#1|)) (-15 -2771 ((-691 (-1222)) |#1|)) (-15 -2708 ((-691 (-551)) |#1|))) (-529)) (T -528)) -NIL -(-10 -8 (-15 -3619 ((-771) |#1| (-128))) (-15 -3335 ((-691 (-1220)) |#1|)) (-15 -4058 ((-691 (-549)) |#1|)) (-15 -1492 ((-691 (-1219)) |#1|)) (-15 -2568 ((-691 (-548)) |#1|)) (-15 -2771 ((-691 (-1222)) |#1|)) (-15 -2708 ((-691 (-551)) |#1|))) -((-2771 (((-691 (-1222)) $) 12)) (-3335 (((-691 (-1220)) $) 8)) (-1492 (((-691 (-1219)) $) 10)) (-2708 (((-691 (-551)) $) 13)) (-4058 (((-691 (-549)) $) 9)) (-2568 (((-691 (-548)) $) 11)) (-3619 (((-771) $ (-128)) 7)) (-1992 (((-691 (-129)) $) 14)) (-1596 (($ $) 6))) +((-2988 (((-112) $ $) NIL)) (-3380 (((-1157) $) NIL)) (-2074 (((-644 (-1213)) $) 13)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 19) (($ (-1180)) NIL) (((-1180) $) NIL) (($ (-644 (-1213))) 11)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) +(((-526) (-13 (-1082) (-10 -8 (-15 -3152 ($ (-644 (-1213)))) (-15 -2074 ((-644 (-1213)) $))))) (T -526)) +((-3152 (*1 *1 *2) (-12 (-5 *2 (-644 (-1213))) (-5 *1 (-526)))) (-2074 (*1 *2 *1) (-12 (-5 *2 (-644 (-1213))) (-5 *1 (-526))))) +(-13 (-1082) (-10 -8 (-15 -3152 ($ (-644 (-1213)))) (-15 -2074 ((-644 (-1213)) $)))) +((-2988 (((-112) $ $) NIL)) (-4343 (((-1134) $) 14)) (-3380 (((-1157) $) NIL)) (-1962 (((-508) $) 11)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 21) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) +(((-527) (-13 (-1082) (-10 -8 (-15 -1962 ((-508) $)) (-15 -4343 ((-1134) $))))) (T -527)) +((-1962 (*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-527)))) (-4343 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-527))))) +(-13 (-1082) (-10 -8 (-15 -1962 ((-508) $)) (-15 -4343 ((-1134) $)))) +((-1753 (((-691 (-1222)) $) 15)) (-2438 (((-691 (-1220)) $) 39)) (-3300 (((-691 (-1219)) $) 30)) (-1844 (((-691 (-551)) $) 12)) (-1426 (((-691 (-549)) $) 43)) (-4154 (((-691 (-548)) $) 34)) (-1982 (((-771) $ (-128)) 55))) +(((-528 |#1|) (-10 -8 (-15 -1982 ((-771) |#1| (-128))) (-15 -2438 ((-691 (-1220)) |#1|)) (-15 -1426 ((-691 (-549)) |#1|)) (-15 -3300 ((-691 (-1219)) |#1|)) (-15 -4154 ((-691 (-548)) |#1|)) (-15 -1753 ((-691 (-1222)) |#1|)) (-15 -1844 ((-691 (-551)) |#1|))) (-529)) (T -528)) +NIL +(-10 -8 (-15 -1982 ((-771) |#1| (-128))) (-15 -2438 ((-691 (-1220)) |#1|)) (-15 -1426 ((-691 (-549)) |#1|)) (-15 -3300 ((-691 (-1219)) |#1|)) (-15 -4154 ((-691 (-548)) |#1|)) (-15 -1753 ((-691 (-1222)) |#1|)) (-15 -1844 ((-691 (-551)) |#1|))) +((-1753 (((-691 (-1222)) $) 12)) (-2438 (((-691 (-1220)) $) 8)) (-3300 (((-691 (-1219)) $) 10)) (-1844 (((-691 (-551)) $) 13)) (-1426 (((-691 (-549)) $) 9)) (-4154 (((-691 (-548)) $) 11)) (-1982 (((-771) $ (-128)) 7)) (-1938 (((-691 (-129)) $) 14)) (-2405 (($ $) 6))) (((-529) (-140)) (T -529)) -((-1992 (*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-691 (-129))))) (-2708 (*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-691 (-551))))) (-2771 (*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-691 (-1222))))) (-2568 (*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-691 (-548))))) (-1492 (*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-691 (-1219))))) (-4058 (*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-691 (-549))))) (-3335 (*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-691 (-1220))))) (-3619 (*1 *2 *1 *3) (-12 (-4 *1 (-529)) (-5 *3 (-128)) (-5 *2 (-771))))) -(-13 (-173) (-10 -8 (-15 -1992 ((-691 (-129)) $)) (-15 -2708 ((-691 (-551)) $)) (-15 -2771 ((-691 (-1222)) $)) (-15 -2568 ((-691 (-548)) $)) (-15 -1492 ((-691 (-1219)) $)) (-15 -4058 ((-691 (-549)) $)) (-15 -3335 ((-691 (-1220)) $)) (-15 -3619 ((-771) $ (-128))))) +((-1938 (*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-691 (-129))))) (-1844 (*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-691 (-551))))) (-1753 (*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-691 (-1222))))) (-4154 (*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-691 (-548))))) (-3300 (*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-691 (-1219))))) (-1426 (*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-691 (-549))))) (-2438 (*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-691 (-1220))))) (-1982 (*1 *2 *1 *3) (-12 (-4 *1 (-529)) (-5 *3 (-128)) (-5 *2 (-771))))) +(-13 (-173) (-10 -8 (-15 -1938 ((-691 (-129)) $)) (-15 -1844 ((-691 (-551)) $)) (-15 -1753 ((-691 (-1222)) $)) (-15 -4154 ((-691 (-548)) $)) (-15 -3300 ((-691 (-1219)) $)) (-15 -1426 ((-691 (-549)) $)) (-15 -2438 ((-691 (-1220)) $)) (-15 -1982 ((-771) $ (-128))))) (((-173) . T)) -((-1771 (((-1171 |#1|) (-771)) 115)) (-3837 (((-1264 |#1|) (-1264 |#1|) (-921)) 108)) (-1643 (((-1269) (-1264 (-644 (-2 (|:| -2233 |#1|) (|:| -2178 (-1119))))) |#1|) 124)) (-1491 (((-1264 |#1|) (-1264 |#1|) (-771)) 53)) (-1552 (((-1264 |#1|) (-921)) 110)) (-3632 (((-1264 |#1|) (-1264 |#1|) (-566)) 30)) (-2495 (((-1171 |#1|) (-1264 |#1|)) 116)) (-3611 (((-1264 |#1|) (-921)) 137)) (-1784 (((-112) (-1264 |#1|)) 120)) (-1577 (((-1264 |#1|) (-1264 |#1|) (-921)) 100)) (-1627 (((-1171 |#1|) (-1264 |#1|)) 131)) (-3681 (((-921) (-1264 |#1|)) 96)) (-1713 (((-1264 |#1|) (-1264 |#1|)) 38)) (-2178 (((-1264 |#1|) (-921) (-921)) 140)) (-3512 (((-1264 |#1|) (-1264 |#1|) (-1119) (-1119)) 29)) (-1719 (((-1264 |#1|) (-1264 |#1|) (-771) (-1119)) 54)) (-2365 (((-1264 (-1264 |#1|)) (-921)) 136)) (-3065 (((-1264 |#1|) (-1264 |#1|) (-1264 |#1|)) 121)) (** (((-1264 |#1|) (-1264 |#1|) (-566)) 67)) (* (((-1264 |#1|) (-1264 |#1|) (-1264 |#1|)) 31))) -(((-530 |#1|) (-10 -7 (-15 -1643 ((-1269) (-1264 (-644 (-2 (|:| -2233 |#1|) (|:| -2178 (-1119))))) |#1|)) (-15 -1552 ((-1264 |#1|) (-921))) (-15 -2178 ((-1264 |#1|) (-921) (-921))) (-15 -2495 ((-1171 |#1|) (-1264 |#1|))) (-15 -1771 ((-1171 |#1|) (-771))) (-15 -1719 ((-1264 |#1|) (-1264 |#1|) (-771) (-1119))) (-15 -1491 ((-1264 |#1|) (-1264 |#1|) (-771))) (-15 -3512 ((-1264 |#1|) (-1264 |#1|) (-1119) (-1119))) (-15 -3632 ((-1264 |#1|) (-1264 |#1|) (-566))) (-15 ** ((-1264 |#1|) (-1264 |#1|) (-566))) (-15 * ((-1264 |#1|) (-1264 |#1|) (-1264 |#1|))) (-15 -3065 ((-1264 |#1|) (-1264 |#1|) (-1264 |#1|))) (-15 -1577 ((-1264 |#1|) (-1264 |#1|) (-921))) (-15 -3837 ((-1264 |#1|) (-1264 |#1|) (-921))) (-15 -1713 ((-1264 |#1|) (-1264 |#1|))) (-15 -3681 ((-921) (-1264 |#1|))) (-15 -1784 ((-112) (-1264 |#1|))) (-15 -2365 ((-1264 (-1264 |#1|)) (-921))) (-15 -3611 ((-1264 |#1|) (-921))) (-15 -1627 ((-1171 |#1|) (-1264 |#1|)))) (-351)) (T -530)) -((-1627 (*1 *2 *3) (-12 (-5 *3 (-1264 *4)) (-4 *4 (-351)) (-5 *2 (-1171 *4)) (-5 *1 (-530 *4)))) (-3611 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1264 *4)) (-5 *1 (-530 *4)) (-4 *4 (-351)))) (-2365 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1264 (-1264 *4))) (-5 *1 (-530 *4)) (-4 *4 (-351)))) (-1784 (*1 *2 *3) (-12 (-5 *3 (-1264 *4)) (-4 *4 (-351)) (-5 *2 (-112)) (-5 *1 (-530 *4)))) (-3681 (*1 *2 *3) (-12 (-5 *3 (-1264 *4)) (-4 *4 (-351)) (-5 *2 (-921)) (-5 *1 (-530 *4)))) (-1713 (*1 *2 *2) (-12 (-5 *2 (-1264 *3)) (-4 *3 (-351)) (-5 *1 (-530 *3)))) (-3837 (*1 *2 *2 *3) (-12 (-5 *2 (-1264 *4)) (-5 *3 (-921)) (-4 *4 (-351)) (-5 *1 (-530 *4)))) (-1577 (*1 *2 *2 *3) (-12 (-5 *2 (-1264 *4)) (-5 *3 (-921)) (-4 *4 (-351)) (-5 *1 (-530 *4)))) (-3065 (*1 *2 *2 *2) (-12 (-5 *2 (-1264 *3)) (-4 *3 (-351)) (-5 *1 (-530 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1264 *3)) (-4 *3 (-351)) (-5 *1 (-530 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1264 *4)) (-5 *3 (-566)) (-4 *4 (-351)) (-5 *1 (-530 *4)))) (-3632 (*1 *2 *2 *3) (-12 (-5 *2 (-1264 *4)) (-5 *3 (-566)) (-4 *4 (-351)) (-5 *1 (-530 *4)))) (-3512 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1264 *4)) (-5 *3 (-1119)) (-4 *4 (-351)) (-5 *1 (-530 *4)))) (-1491 (*1 *2 *2 *3) (-12 (-5 *2 (-1264 *4)) (-5 *3 (-771)) (-4 *4 (-351)) (-5 *1 (-530 *4)))) (-1719 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1264 *5)) (-5 *3 (-771)) (-5 *4 (-1119)) (-4 *5 (-351)) (-5 *1 (-530 *5)))) (-1771 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1171 *4)) (-5 *1 (-530 *4)) (-4 *4 (-351)))) (-2495 (*1 *2 *3) (-12 (-5 *3 (-1264 *4)) (-4 *4 (-351)) (-5 *2 (-1171 *4)) (-5 *1 (-530 *4)))) (-2178 (*1 *2 *3 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1264 *4)) (-5 *1 (-530 *4)) (-4 *4 (-351)))) (-1552 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1264 *4)) (-5 *1 (-530 *4)) (-4 *4 (-351)))) (-1643 (*1 *2 *3 *4) (-12 (-5 *3 (-1264 (-644 (-2 (|:| -2233 *4) (|:| -2178 (-1119)))))) (-4 *4 (-351)) (-5 *2 (-1269)) (-5 *1 (-530 *4))))) -(-10 -7 (-15 -1643 ((-1269) (-1264 (-644 (-2 (|:| -2233 |#1|) (|:| -2178 (-1119))))) |#1|)) (-15 -1552 ((-1264 |#1|) (-921))) (-15 -2178 ((-1264 |#1|) (-921) (-921))) (-15 -2495 ((-1171 |#1|) (-1264 |#1|))) (-15 -1771 ((-1171 |#1|) (-771))) (-15 -1719 ((-1264 |#1|) (-1264 |#1|) (-771) (-1119))) (-15 -1491 ((-1264 |#1|) (-1264 |#1|) (-771))) (-15 -3512 ((-1264 |#1|) (-1264 |#1|) (-1119) (-1119))) (-15 -3632 ((-1264 |#1|) (-1264 |#1|) (-566))) (-15 ** ((-1264 |#1|) (-1264 |#1|) (-566))) (-15 * ((-1264 |#1|) (-1264 |#1|) (-1264 |#1|))) (-15 -3065 ((-1264 |#1|) (-1264 |#1|) (-1264 |#1|))) (-15 -1577 ((-1264 |#1|) (-1264 |#1|) (-921))) (-15 -3837 ((-1264 |#1|) (-1264 |#1|) (-921))) (-15 -1713 ((-1264 |#1|) (-1264 |#1|))) (-15 -3681 ((-921) (-1264 |#1|))) (-15 -1784 ((-112) (-1264 |#1|))) (-15 -2365 ((-1264 (-1264 |#1|)) (-921))) (-15 -3611 ((-1264 |#1|) (-921))) (-15 -1627 ((-1171 |#1|) (-1264 |#1|)))) -((-2771 (((-691 (-1222)) $) NIL)) (-3335 (((-691 (-1220)) $) NIL)) (-1492 (((-691 (-1219)) $) NIL)) (-2708 (((-691 (-551)) $) NIL)) (-4058 (((-691 (-549)) $) NIL)) (-2568 (((-691 (-548)) $) NIL)) (-3619 (((-771) $ (-128)) NIL)) (-1992 (((-691 (-129)) $) 26)) (-2408 (((-1119) $ (-1119)) 31)) (-4000 (((-1119) $) 30)) (-2790 (((-112) $) 20)) (-4242 (($ (-390)) 14) (($ (-1157)) 16)) (-1441 (((-112) $) 27)) (-3783 (((-862) $) 34)) (-1596 (($ $) 28))) -(((-531) (-13 (-529) (-613 (-862)) (-10 -8 (-15 -4242 ($ (-390))) (-15 -4242 ($ (-1157))) (-15 -1441 ((-112) $)) (-15 -2790 ((-112) $)) (-15 -4000 ((-1119) $)) (-15 -2408 ((-1119) $ (-1119)))))) (T -531)) -((-4242 (*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-531)))) (-4242 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-531)))) (-1441 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-531)))) (-2790 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-531)))) (-4000 (*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-531)))) (-2408 (*1 *2 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-531))))) -(-13 (-529) (-613 (-862)) (-10 -8 (-15 -4242 ($ (-390))) (-15 -4242 ($ (-1157))) (-15 -1441 ((-112) $)) (-15 -2790 ((-112) $)) (-15 -4000 ((-1119) $)) (-15 -2408 ((-1119) $ (-1119))))) -((-2659 (((-1 |#1| |#1|) |#1|) 11)) (-1340 (((-1 |#1| |#1|)) 10))) -(((-532 |#1|) (-10 -7 (-15 -1340 ((-1 |#1| |#1|))) (-15 -2659 ((-1 |#1| |#1|) |#1|))) (-13 (-726) (-25))) (T -532)) -((-2659 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-532 *3)) (-4 *3 (-13 (-726) (-25))))) (-1340 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-532 *3)) (-4 *3 (-13 (-726) (-25)))))) -(-10 -7 (-15 -1340 ((-1 |#1| |#1|))) (-15 -2659 ((-1 |#1| |#1|) |#1|))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-2660 (($ $ $) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-3012 (($) NIL T CONST)) (-1786 (($ $) NIL)) (-3840 (($ (-771) |#1|) NIL)) (-2097 (($ $ $) NIL)) (-3962 (($ $ $) NIL)) (-1301 (($ (-1 (-771) (-771)) $) NIL)) (-2703 ((|#1| $) NIL)) (-1763 (((-771) $) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 27)) (-3117 (((-112) $ $) NIL)) (-2479 (($) NIL T CONST)) (-3009 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL)) (-2995 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-3041 (($ $ $) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL))) +((-4324 (((-1171 |#1|) (-771)) 115)) (-3833 (((-1264 |#1|) (-1264 |#1|) (-921)) 108)) (-1440 (((-1269) (-1264 (-644 (-2 (|:| -2876 |#1|) (|:| -2835 (-1119))))) |#1|) 124)) (-3211 (((-1264 |#1|) (-1264 |#1|) (-771)) 53)) (-2715 (((-1264 |#1|) (-921)) 110)) (-1613 (((-1264 |#1|) (-1264 |#1|) (-566)) 30)) (-3877 (((-1171 |#1|) (-1264 |#1|)) 116)) (-2437 (((-1264 |#1|) (-921)) 137)) (-2953 (((-112) (-1264 |#1|)) 120)) (-2064 (((-1264 |#1|) (-1264 |#1|) (-921)) 100)) (-3468 (((-1171 |#1|) (-1264 |#1|)) 131)) (-1866 (((-921) (-1264 |#1|)) 96)) (-2748 (((-1264 |#1|) (-1264 |#1|)) 38)) (-2835 (((-1264 |#1|) (-921) (-921)) 140)) (-1776 (((-1264 |#1|) (-1264 |#1|) (-1119) (-1119)) 29)) (-3144 (((-1264 |#1|) (-1264 |#1|) (-771) (-1119)) 54)) (-2875 (((-1264 (-1264 |#1|)) (-921)) 136)) (-3025 (((-1264 |#1|) (-1264 |#1|) (-1264 |#1|)) 121)) (** (((-1264 |#1|) (-1264 |#1|) (-566)) 67)) (* (((-1264 |#1|) (-1264 |#1|) (-1264 |#1|)) 31))) +(((-530 |#1|) (-10 -7 (-15 -1440 ((-1269) (-1264 (-644 (-2 (|:| -2876 |#1|) (|:| -2835 (-1119))))) |#1|)) (-15 -2715 ((-1264 |#1|) (-921))) (-15 -2835 ((-1264 |#1|) (-921) (-921))) (-15 -3877 ((-1171 |#1|) (-1264 |#1|))) (-15 -4324 ((-1171 |#1|) (-771))) (-15 -3144 ((-1264 |#1|) (-1264 |#1|) (-771) (-1119))) (-15 -3211 ((-1264 |#1|) (-1264 |#1|) (-771))) (-15 -1776 ((-1264 |#1|) (-1264 |#1|) (-1119) (-1119))) (-15 -1613 ((-1264 |#1|) (-1264 |#1|) (-566))) (-15 ** ((-1264 |#1|) (-1264 |#1|) (-566))) (-15 * ((-1264 |#1|) (-1264 |#1|) (-1264 |#1|))) (-15 -3025 ((-1264 |#1|) (-1264 |#1|) (-1264 |#1|))) (-15 -2064 ((-1264 |#1|) (-1264 |#1|) (-921))) (-15 -3833 ((-1264 |#1|) (-1264 |#1|) (-921))) (-15 -2748 ((-1264 |#1|) (-1264 |#1|))) (-15 -1866 ((-921) (-1264 |#1|))) (-15 -2953 ((-112) (-1264 |#1|))) (-15 -2875 ((-1264 (-1264 |#1|)) (-921))) (-15 -2437 ((-1264 |#1|) (-921))) (-15 -3468 ((-1171 |#1|) (-1264 |#1|)))) (-351)) (T -530)) +((-3468 (*1 *2 *3) (-12 (-5 *3 (-1264 *4)) (-4 *4 (-351)) (-5 *2 (-1171 *4)) (-5 *1 (-530 *4)))) (-2437 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1264 *4)) (-5 *1 (-530 *4)) (-4 *4 (-351)))) (-2875 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1264 (-1264 *4))) (-5 *1 (-530 *4)) (-4 *4 (-351)))) (-2953 (*1 *2 *3) (-12 (-5 *3 (-1264 *4)) (-4 *4 (-351)) (-5 *2 (-112)) (-5 *1 (-530 *4)))) (-1866 (*1 *2 *3) (-12 (-5 *3 (-1264 *4)) (-4 *4 (-351)) (-5 *2 (-921)) (-5 *1 (-530 *4)))) (-2748 (*1 *2 *2) (-12 (-5 *2 (-1264 *3)) (-4 *3 (-351)) (-5 *1 (-530 *3)))) (-3833 (*1 *2 *2 *3) (-12 (-5 *2 (-1264 *4)) (-5 *3 (-921)) (-4 *4 (-351)) (-5 *1 (-530 *4)))) (-2064 (*1 *2 *2 *3) (-12 (-5 *2 (-1264 *4)) (-5 *3 (-921)) (-4 *4 (-351)) (-5 *1 (-530 *4)))) (-3025 (*1 *2 *2 *2) (-12 (-5 *2 (-1264 *3)) (-4 *3 (-351)) (-5 *1 (-530 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1264 *3)) (-4 *3 (-351)) (-5 *1 (-530 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1264 *4)) (-5 *3 (-566)) (-4 *4 (-351)) (-5 *1 (-530 *4)))) (-1613 (*1 *2 *2 *3) (-12 (-5 *2 (-1264 *4)) (-5 *3 (-566)) (-4 *4 (-351)) (-5 *1 (-530 *4)))) (-1776 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1264 *4)) (-5 *3 (-1119)) (-4 *4 (-351)) (-5 *1 (-530 *4)))) (-3211 (*1 *2 *2 *3) (-12 (-5 *2 (-1264 *4)) (-5 *3 (-771)) (-4 *4 (-351)) (-5 *1 (-530 *4)))) (-3144 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1264 *5)) (-5 *3 (-771)) (-5 *4 (-1119)) (-4 *5 (-351)) (-5 *1 (-530 *5)))) (-4324 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1171 *4)) (-5 *1 (-530 *4)) (-4 *4 (-351)))) (-3877 (*1 *2 *3) (-12 (-5 *3 (-1264 *4)) (-4 *4 (-351)) (-5 *2 (-1171 *4)) (-5 *1 (-530 *4)))) (-2835 (*1 *2 *3 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1264 *4)) (-5 *1 (-530 *4)) (-4 *4 (-351)))) (-2715 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1264 *4)) (-5 *1 (-530 *4)) (-4 *4 (-351)))) (-1440 (*1 *2 *3 *4) (-12 (-5 *3 (-1264 (-644 (-2 (|:| -2876 *4) (|:| -2835 (-1119)))))) (-4 *4 (-351)) (-5 *2 (-1269)) (-5 *1 (-530 *4))))) +(-10 -7 (-15 -1440 ((-1269) (-1264 (-644 (-2 (|:| -2876 |#1|) (|:| -2835 (-1119))))) |#1|)) (-15 -2715 ((-1264 |#1|) (-921))) (-15 -2835 ((-1264 |#1|) (-921) (-921))) (-15 -3877 ((-1171 |#1|) (-1264 |#1|))) (-15 -4324 ((-1171 |#1|) (-771))) (-15 -3144 ((-1264 |#1|) (-1264 |#1|) (-771) (-1119))) (-15 -3211 ((-1264 |#1|) (-1264 |#1|) (-771))) (-15 -1776 ((-1264 |#1|) (-1264 |#1|) (-1119) (-1119))) (-15 -1613 ((-1264 |#1|) (-1264 |#1|) (-566))) (-15 ** ((-1264 |#1|) (-1264 |#1|) (-566))) (-15 * ((-1264 |#1|) (-1264 |#1|) (-1264 |#1|))) (-15 -3025 ((-1264 |#1|) (-1264 |#1|) (-1264 |#1|))) (-15 -2064 ((-1264 |#1|) (-1264 |#1|) (-921))) (-15 -3833 ((-1264 |#1|) (-1264 |#1|) (-921))) (-15 -2748 ((-1264 |#1|) (-1264 |#1|))) (-15 -1866 ((-921) (-1264 |#1|))) (-15 -2953 ((-112) (-1264 |#1|))) (-15 -2875 ((-1264 (-1264 |#1|)) (-921))) (-15 -2437 ((-1264 |#1|) (-921))) (-15 -3468 ((-1171 |#1|) (-1264 |#1|)))) +((-1753 (((-691 (-1222)) $) NIL)) (-2438 (((-691 (-1220)) $) NIL)) (-3300 (((-691 (-1219)) $) NIL)) (-1844 (((-691 (-551)) $) NIL)) (-1426 (((-691 (-549)) $) NIL)) (-4154 (((-691 (-548)) $) NIL)) (-1982 (((-771) $ (-128)) NIL)) (-1938 (((-691 (-129)) $) 26)) (-3774 (((-1119) $ (-1119)) 31)) (-1569 (((-1119) $) 30)) (-3040 (((-112) $) 20)) (-2141 (($ (-390)) 14) (($ (-1157)) 16)) (-2274 (((-112) $) 27)) (-3152 (((-862) $) 34)) (-2405 (($ $) 28))) +(((-531) (-13 (-529) (-613 (-862)) (-10 -8 (-15 -2141 ($ (-390))) (-15 -2141 ($ (-1157))) (-15 -2274 ((-112) $)) (-15 -3040 ((-112) $)) (-15 -1569 ((-1119) $)) (-15 -3774 ((-1119) $ (-1119)))))) (T -531)) +((-2141 (*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-531)))) (-2141 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-531)))) (-2274 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-531)))) (-3040 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-531)))) (-1569 (*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-531)))) (-3774 (*1 *2 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-531))))) +(-13 (-529) (-613 (-862)) (-10 -8 (-15 -2141 ($ (-390))) (-15 -2141 ($ (-1157))) (-15 -2274 ((-112) $)) (-15 -3040 ((-112) $)) (-15 -1569 ((-1119) $)) (-15 -3774 ((-1119) $ (-1119))))) +((-3627 (((-1 |#1| |#1|) |#1|) 11)) (-2614 (((-1 |#1| |#1|)) 10))) +(((-532 |#1|) (-10 -7 (-15 -2614 ((-1 |#1| |#1|))) (-15 -3627 ((-1 |#1| |#1|) |#1|))) (-13 (-726) (-25))) (T -532)) +((-3627 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-532 *3)) (-4 *3 (-13 (-726) (-25))))) (-2614 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-532 *3)) (-4 *3 (-13 (-726) (-25)))))) +(-10 -7 (-15 -2614 ((-1 |#1| |#1|))) (-15 -3627 ((-1 |#1| |#1|) |#1|))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-3920 (($ $ $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-2463 (($) NIL T CONST)) (-2814 (($ $) NIL)) (-1746 (($ (-771) |#1|) NIL)) (-1478 (($ $ $) NIL)) (-2599 (($ $ $) NIL)) (-2319 (($ (-1 (-771) (-771)) $) NIL)) (-2536 ((|#1| $) NIL)) (-2794 (((-771) $) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 27)) (-3044 (((-112) $ $) NIL)) (-4356 (($) NIL T CONST)) (-2968 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2935 (((-112) $ $) NIL)) (-3002 (($ $ $) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL))) (((-533 |#1|) (-13 (-793) (-511 (-771) |#1|)) (-850)) (T -533)) NIL (-13 (-793) (-511 (-771) |#1|)) -((-3455 (((-644 |#2|) (-1171 |#1|) |#3|) 98)) (-1549 (((-644 (-2 (|:| |outval| |#2|) (|:| |outmult| (-566)) (|:| |outvect| (-644 (-689 |#2|))))) (-689 |#1|) |#3| (-1 (-420 (-1171 |#1|)) (-1171 |#1|))) 114)) (-1857 (((-1171 |#1|) (-689 |#1|)) 110))) -(((-534 |#1| |#2| |#3|) (-10 -7 (-15 -1857 ((-1171 |#1|) (-689 |#1|))) (-15 -3455 ((-644 |#2|) (-1171 |#1|) |#3|)) (-15 -1549 ((-644 (-2 (|:| |outval| |#2|) (|:| |outmult| (-566)) (|:| |outvect| (-644 (-689 |#2|))))) (-689 |#1|) |#3| (-1 (-420 (-1171 |#1|)) (-1171 |#1|))))) (-365) (-365) (-13 (-365) (-848))) (T -534)) -((-1549 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-689 *6)) (-5 *5 (-1 (-420 (-1171 *6)) (-1171 *6))) (-4 *6 (-365)) (-5 *2 (-644 (-2 (|:| |outval| *7) (|:| |outmult| (-566)) (|:| |outvect| (-644 (-689 *7)))))) (-5 *1 (-534 *6 *7 *4)) (-4 *7 (-365)) (-4 *4 (-13 (-365) (-848))))) (-3455 (*1 *2 *3 *4) (-12 (-5 *3 (-1171 *5)) (-4 *5 (-365)) (-5 *2 (-644 *6)) (-5 *1 (-534 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-848))))) (-1857 (*1 *2 *3) (-12 (-5 *3 (-689 *4)) (-4 *4 (-365)) (-5 *2 (-1171 *4)) (-5 *1 (-534 *4 *5 *6)) (-4 *5 (-365)) (-4 *6 (-13 (-365) (-848)))))) -(-10 -7 (-15 -1857 ((-1171 |#1|) (-689 |#1|))) (-15 -3455 ((-644 |#2|) (-1171 |#1|) |#3|)) (-15 -1549 ((-644 (-2 (|:| |outval| |#2|) (|:| |outmult| (-566)) (|:| |outvect| (-644 (-689 |#2|))))) (-689 |#1|) |#3| (-1 (-420 (-1171 |#1|)) (-1171 |#1|))))) -((-3203 (((-691 (-1222)) $ (-1222)) NIL)) (-3901 (((-691 (-551)) $ (-551)) NIL)) (-3771 (((-771) $ (-128)) 41)) (-4378 (((-691 (-129)) $ (-129)) 42)) (-2771 (((-691 (-1222)) $) NIL)) (-3335 (((-691 (-1220)) $) NIL)) (-1492 (((-691 (-1219)) $) NIL)) (-2708 (((-691 (-551)) $) NIL)) (-4058 (((-691 (-549)) $) NIL)) (-2568 (((-691 (-548)) $) NIL)) (-3619 (((-771) $ (-128)) 37)) (-1992 (((-691 (-129)) $) 39)) (-1890 (((-112) $) 29)) (-3754 (((-691 $) (-581) (-954)) 19) (((-691 $) (-493) (-954)) 26)) (-3783 (((-862) $) 49)) (-1596 (($ $) 43))) -(((-535) (-13 (-767 (-581)) (-613 (-862)) (-10 -8 (-15 -3754 ((-691 $) (-493) (-954)))))) (T -535)) -((-3754 (*1 *2 *3 *4) (-12 (-5 *3 (-493)) (-5 *4 (-954)) (-5 *2 (-691 (-535))) (-5 *1 (-535))))) -(-13 (-767 (-581)) (-613 (-862)) (-10 -8 (-15 -3754 ((-691 $) (-493) (-954))))) -((-2931 (((-843 (-566))) 12)) (-2942 (((-843 (-566))) 14)) (-4373 (((-833 (-566))) 9))) -(((-536) (-10 -7 (-15 -4373 ((-833 (-566)))) (-15 -2931 ((-843 (-566)))) (-15 -2942 ((-843 (-566)))))) (T -536)) -((-2942 (*1 *2) (-12 (-5 *2 (-843 (-566))) (-5 *1 (-536)))) (-2931 (*1 *2) (-12 (-5 *2 (-843 (-566))) (-5 *1 (-536)))) (-4373 (*1 *2) (-12 (-5 *2 (-833 (-566))) (-5 *1 (-536))))) -(-10 -7 (-15 -4373 ((-833 (-566)))) (-15 -2931 ((-843 (-566)))) (-15 -2942 ((-843 (-566))))) -((-2138 (((-538) (-1175)) 15)) (-4271 ((|#1| (-538)) 20))) -(((-537 |#1|) (-10 -7 (-15 -2138 ((-538) (-1175))) (-15 -4271 (|#1| (-538)))) (-1214)) (T -537)) -((-4271 (*1 *2 *3) (-12 (-5 *3 (-538)) (-5 *1 (-537 *2)) (-4 *2 (-1214)))) (-2138 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-538)) (-5 *1 (-537 *4)) (-4 *4 (-1214))))) -(-10 -7 (-15 -2138 ((-538) (-1175))) (-15 -4271 (|#1| (-538)))) -((-3007 (((-112) $ $) NIL)) (-2759 (((-1157) $) 55)) (-2950 (((-112) $) 51)) (-1392 (((-1175) $) 52)) (-3606 (((-112) $) 49)) (-4336 (((-1157) $) 50)) (-2981 (($ (-1157)) 56)) (-1405 (((-112) $) NIL)) (-1943 (((-112) $) NIL)) (-3894 (((-112) $) NIL)) (-4117 (((-1157) $) NIL)) (-1779 (($ $ (-644 (-1175))) 21)) (-4271 (((-52) $) 23)) (-3354 (((-112) $) NIL)) (-1410 (((-566) $) NIL)) (-4035 (((-1119) $) NIL)) (-3289 (($ $ (-644 (-1175)) (-1175)) 73)) (-4240 (((-112) $) NIL)) (-2985 (((-225) $) NIL)) (-1840 (($ $) 44)) (-1346 (((-862) $) NIL)) (-2470 (((-112) $ $) NIL)) (-4390 (($ $ (-566)) NIL) (($ $ (-644 (-566))) NIL)) (-3801 (((-644 $) $) 30)) (-2202 (((-1175) (-644 $)) 57)) (-1348 (($ (-1157)) NIL) (($ (-1175)) 19) (($ (-566)) 8) (($ (-225)) 28) (($ (-862)) NIL) (($ (-644 $)) 65) (((-1103) $) 12) (($ (-1103)) 13)) (-3845 (((-1175) (-1175) (-644 $)) 60)) (-3783 (((-862) $) 54)) (-1904 (($ $) 59)) (-1893 (($ $) 58)) (-2997 (($ $ (-644 $)) 66)) (-3117 (((-112) $ $) NIL)) (-3593 (((-112) $) 29)) (-2479 (($) 9 T CONST)) (-4334 (($) 11 T CONST)) (-2947 (((-112) $ $) 74)) (-3065 (($ $ $) 82)) (-3041 (($ $ $) 75)) (** (($ $ (-771)) 81) (($ $ (-566)) 80)) (* (($ $ $) 76)) (-3018 (((-566) $) NIL))) -(((-538) (-13 (-1102 (-1157) (-1175) (-566) (-225) (-862)) (-614 (-1103)) (-10 -8 (-15 -4271 ((-52) $)) (-15 -1348 ($ (-1103))) (-15 -2997 ($ $ (-644 $))) (-15 -3289 ($ $ (-644 (-1175)) (-1175))) (-15 -1779 ($ $ (-644 (-1175)))) (-15 -3041 ($ $ $)) (-15 * ($ $ $)) (-15 -3065 ($ $ $)) (-15 ** ($ $ (-771))) (-15 ** ($ $ (-566))) (-15 0 ($) -3704) (-15 1 ($) -3704) (-15 -1840 ($ $)) (-15 -2759 ((-1157) $)) (-15 -2981 ($ (-1157))) (-15 -2202 ((-1175) (-644 $))) (-15 -3845 ((-1175) (-1175) (-644 $)))))) (T -538)) -((-4271 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-538)))) (-1348 (*1 *1 *2) (-12 (-5 *2 (-1103)) (-5 *1 (-538)))) (-2997 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-538))) (-5 *1 (-538)))) (-3289 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-1175))) (-5 *3 (-1175)) (-5 *1 (-538)))) (-1779 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-538)))) (-3041 (*1 *1 *1 *1) (-5 *1 (-538))) (* (*1 *1 *1 *1) (-5 *1 (-538))) (-3065 (*1 *1 *1 *1) (-5 *1 (-538))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-538)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-538)))) (-2479 (*1 *1) (-5 *1 (-538))) (-4334 (*1 *1) (-5 *1 (-538))) (-1840 (*1 *1 *1) (-5 *1 (-538))) (-2759 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-538)))) (-2981 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-538)))) (-2202 (*1 *2 *3) (-12 (-5 *3 (-644 (-538))) (-5 *2 (-1175)) (-5 *1 (-538)))) (-3845 (*1 *2 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-644 (-538))) (-5 *1 (-538))))) -(-13 (-1102 (-1157) (-1175) (-566) (-225) (-862)) (-614 (-1103)) (-10 -8 (-15 -4271 ((-52) $)) (-15 -1348 ($ (-1103))) (-15 -2997 ($ $ (-644 $))) (-15 -3289 ($ $ (-644 (-1175)) (-1175))) (-15 -1779 ($ $ (-644 (-1175)))) (-15 -3041 ($ $ $)) (-15 * ($ $ $)) (-15 -3065 ($ $ $)) (-15 ** ($ $ (-771))) (-15 ** ($ $ (-566))) (-15 (-2479) ($) -3704) (-15 (-4334) ($) -3704) (-15 -1840 ($ $)) (-15 -2759 ((-1157) $)) (-15 -2981 ($ (-1157))) (-15 -2202 ((-1175) (-644 $))) (-15 -3845 ((-1175) (-1175) (-644 $))))) -((-2291 ((|#2| |#2|) 17)) (-3113 ((|#2| |#2|) 13)) (-3274 ((|#2| |#2| (-566) (-566)) 20)) (-1983 ((|#2| |#2|) 15))) -(((-539 |#1| |#2|) (-10 -7 (-15 -3113 (|#2| |#2|)) (-15 -1983 (|#2| |#2|)) (-15 -2291 (|#2| |#2|)) (-15 -3274 (|#2| |#2| (-566) (-566)))) (-13 (-558) (-147)) (-1255 |#1|)) (T -539)) -((-3274 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-566)) (-4 *4 (-13 (-558) (-147))) (-5 *1 (-539 *4 *2)) (-4 *2 (-1255 *4)))) (-2291 (*1 *2 *2) (-12 (-4 *3 (-13 (-558) (-147))) (-5 *1 (-539 *3 *2)) (-4 *2 (-1255 *3)))) (-1983 (*1 *2 *2) (-12 (-4 *3 (-13 (-558) (-147))) (-5 *1 (-539 *3 *2)) (-4 *2 (-1255 *3)))) (-3113 (*1 *2 *2) (-12 (-4 *3 (-13 (-558) (-147))) (-5 *1 (-539 *3 *2)) (-4 *2 (-1255 *3))))) -(-10 -7 (-15 -3113 (|#2| |#2|)) (-15 -1983 (|#2| |#2|)) (-15 -2291 (|#2| |#2|)) (-15 -3274 (|#2| |#2| (-566) (-566)))) -((-3101 (((-644 (-295 (-952 |#2|))) (-644 |#2|) (-644 (-1175))) 32)) (-4258 (((-644 |#2|) (-952 |#1|) |#3|) 54) (((-644 |#2|) (-1171 |#1|) |#3|) 53)) (-2270 (((-644 (-644 |#2|)) (-644 (-952 |#1|)) (-644 (-952 |#1|)) (-644 (-1175)) |#3|) 106))) -(((-540 |#1| |#2| |#3|) (-10 -7 (-15 -4258 ((-644 |#2|) (-1171 |#1|) |#3|)) (-15 -4258 ((-644 |#2|) (-952 |#1|) |#3|)) (-15 -2270 ((-644 (-644 |#2|)) (-644 (-952 |#1|)) (-644 (-952 |#1|)) (-644 (-1175)) |#3|)) (-15 -3101 ((-644 (-295 (-952 |#2|))) (-644 |#2|) (-644 (-1175))))) (-454) (-365) (-13 (-365) (-848))) (T -540)) -((-3101 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *6)) (-5 *4 (-644 (-1175))) (-4 *6 (-365)) (-5 *2 (-644 (-295 (-952 *6)))) (-5 *1 (-540 *5 *6 *7)) (-4 *5 (-454)) (-4 *7 (-13 (-365) (-848))))) (-2270 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-644 (-952 *6))) (-5 *4 (-644 (-1175))) (-4 *6 (-454)) (-5 *2 (-644 (-644 *7))) (-5 *1 (-540 *6 *7 *5)) (-4 *7 (-365)) (-4 *5 (-13 (-365) (-848))))) (-4258 (*1 *2 *3 *4) (-12 (-5 *3 (-952 *5)) (-4 *5 (-454)) (-5 *2 (-644 *6)) (-5 *1 (-540 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-848))))) (-4258 (*1 *2 *3 *4) (-12 (-5 *3 (-1171 *5)) (-4 *5 (-454)) (-5 *2 (-644 *6)) (-5 *1 (-540 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-848)))))) -(-10 -7 (-15 -4258 ((-644 |#2|) (-1171 |#1|) |#3|)) (-15 -4258 ((-644 |#2|) (-952 |#1|) |#3|)) (-15 -2270 ((-644 (-644 |#2|)) (-644 (-952 |#1|)) (-644 (-952 |#1|)) (-644 (-1175)) |#3|)) (-15 -3101 ((-644 (-295 (-952 |#2|))) (-644 |#2|) (-644 (-1175))))) -((-3646 ((|#2| |#2| |#1|) 17)) (-3925 ((|#2| (-644 |#2|)) 31)) (-1384 ((|#2| (-644 |#2|)) 52))) -(((-541 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3925 (|#2| (-644 |#2|))) (-15 -1384 (|#2| (-644 |#2|))) (-15 -3646 (|#2| |#2| |#1|))) (-308) (-1240 |#1|) |#1| (-1 |#1| |#1| (-771))) (T -541)) -((-3646 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-771))) (-5 *1 (-541 *3 *2 *4 *5)) (-4 *2 (-1240 *3)))) (-1384 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-1240 *4)) (-5 *1 (-541 *4 *2 *5 *6)) (-4 *4 (-308)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-771))))) (-3925 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-1240 *4)) (-5 *1 (-541 *4 *2 *5 *6)) (-4 *4 (-308)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-771)))))) -(-10 -7 (-15 -3925 (|#2| (-644 |#2|))) (-15 -1384 (|#2| (-644 |#2|))) (-15 -3646 (|#2| |#2| |#1|))) -((-3719 (((-420 (-1171 |#4|)) (-1171 |#4|) (-1 (-420 (-1171 |#3|)) (-1171 |#3|))) 89) (((-420 |#4|) |#4| (-1 (-420 (-1171 |#3|)) (-1171 |#3|))) 218))) -(((-542 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3719 ((-420 |#4|) |#4| (-1 (-420 (-1171 |#3|)) (-1171 |#3|)))) (-15 -3719 ((-420 (-1171 |#4|)) (-1171 |#4|) (-1 (-420 (-1171 |#3|)) (-1171 |#3|))))) (-850) (-793) (-13 (-308) (-147)) (-949 |#3| |#2| |#1|)) (T -542)) -((-3719 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-420 (-1171 *7)) (-1171 *7))) (-4 *7 (-13 (-308) (-147))) (-4 *5 (-850)) (-4 *6 (-793)) (-4 *8 (-949 *7 *6 *5)) (-5 *2 (-420 (-1171 *8))) (-5 *1 (-542 *5 *6 *7 *8)) (-5 *3 (-1171 *8)))) (-3719 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-420 (-1171 *7)) (-1171 *7))) (-4 *7 (-13 (-308) (-147))) (-4 *5 (-850)) (-4 *6 (-793)) (-5 *2 (-420 *3)) (-5 *1 (-542 *5 *6 *7 *3)) (-4 *3 (-949 *7 *6 *5))))) -(-10 -7 (-15 -3719 ((-420 |#4|) |#4| (-1 (-420 (-1171 |#3|)) (-1171 |#3|)))) (-15 -3719 ((-420 (-1171 |#4|)) (-1171 |#4|) (-1 (-420 (-1171 |#3|)) (-1171 |#3|))))) -((-2291 ((|#4| |#4|) 74)) (-3113 ((|#4| |#4|) 70)) (-3274 ((|#4| |#4| (-566) (-566)) 76)) (-1983 ((|#4| |#4|) 72))) -(((-543 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3113 (|#4| |#4|)) (-15 -1983 (|#4| |#4|)) (-15 -2291 (|#4| |#4|)) (-15 -3274 (|#4| |#4| (-566) (-566)))) (-13 (-365) (-370) (-614 (-566))) (-1240 |#1|) (-724 |#1| |#2|) (-1255 |#3|)) (T -543)) -((-3274 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-566)) (-4 *4 (-13 (-365) (-370) (-614 *3))) (-4 *5 (-1240 *4)) (-4 *6 (-724 *4 *5)) (-5 *1 (-543 *4 *5 *6 *2)) (-4 *2 (-1255 *6)))) (-2291 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-614 (-566)))) (-4 *4 (-1240 *3)) (-4 *5 (-724 *3 *4)) (-5 *1 (-543 *3 *4 *5 *2)) (-4 *2 (-1255 *5)))) (-1983 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-614 (-566)))) (-4 *4 (-1240 *3)) (-4 *5 (-724 *3 *4)) (-5 *1 (-543 *3 *4 *5 *2)) (-4 *2 (-1255 *5)))) (-3113 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-614 (-566)))) (-4 *4 (-1240 *3)) (-4 *5 (-724 *3 *4)) (-5 *1 (-543 *3 *4 *5 *2)) (-4 *2 (-1255 *5))))) -(-10 -7 (-15 -3113 (|#4| |#4|)) (-15 -1983 (|#4| |#4|)) (-15 -2291 (|#4| |#4|)) (-15 -3274 (|#4| |#4| (-566) (-566)))) -((-2291 ((|#2| |#2|) 27)) (-3113 ((|#2| |#2|) 23)) (-3274 ((|#2| |#2| (-566) (-566)) 29)) (-1983 ((|#2| |#2|) 25))) -(((-544 |#1| |#2|) (-10 -7 (-15 -3113 (|#2| |#2|)) (-15 -1983 (|#2| |#2|)) (-15 -2291 (|#2| |#2|)) (-15 -3274 (|#2| |#2| (-566) (-566)))) (-13 (-365) (-370) (-614 (-566))) (-1255 |#1|)) (T -544)) -((-3274 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-566)) (-4 *4 (-13 (-365) (-370) (-614 *3))) (-5 *1 (-544 *4 *2)) (-4 *2 (-1255 *4)))) (-2291 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-614 (-566)))) (-5 *1 (-544 *3 *2)) (-4 *2 (-1255 *3)))) (-1983 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-614 (-566)))) (-5 *1 (-544 *3 *2)) (-4 *2 (-1255 *3)))) (-3113 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-614 (-566)))) (-5 *1 (-544 *3 *2)) (-4 *2 (-1255 *3))))) -(-10 -7 (-15 -3113 (|#2| |#2|)) (-15 -1983 (|#2| |#2|)) (-15 -2291 (|#2| |#2|)) (-15 -3274 (|#2| |#2| (-566) (-566)))) -((-1889 (((-3 (-566) "failed") |#2| |#1| (-1 (-3 (-566) "failed") |#1|)) 18) (((-3 (-566) "failed") |#2| |#1| (-566) (-1 (-3 (-566) "failed") |#1|)) 14) (((-3 (-566) "failed") |#2| (-566) (-1 (-3 (-566) "failed") |#1|)) 32))) -(((-545 |#1| |#2|) (-10 -7 (-15 -1889 ((-3 (-566) "failed") |#2| (-566) (-1 (-3 (-566) "failed") |#1|))) (-15 -1889 ((-3 (-566) "failed") |#2| |#1| (-566) (-1 (-3 (-566) "failed") |#1|))) (-15 -1889 ((-3 (-566) "failed") |#2| |#1| (-1 (-3 (-566) "failed") |#1|)))) (-1049) (-1240 |#1|)) (T -545)) -((-1889 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-566) "failed") *4)) (-4 *4 (-1049)) (-5 *2 (-566)) (-5 *1 (-545 *4 *3)) (-4 *3 (-1240 *4)))) (-1889 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-566) "failed") *4)) (-4 *4 (-1049)) (-5 *2 (-566)) (-5 *1 (-545 *4 *3)) (-4 *3 (-1240 *4)))) (-1889 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-566) "failed") *5)) (-4 *5 (-1049)) (-5 *2 (-566)) (-5 *1 (-545 *5 *3)) (-4 *3 (-1240 *5))))) -(-10 -7 (-15 -1889 ((-3 (-566) "failed") |#2| (-566) (-1 (-3 (-566) "failed") |#1|))) (-15 -1889 ((-3 (-566) "failed") |#2| |#1| (-566) (-1 (-3 (-566) "failed") |#1|))) (-15 -1889 ((-3 (-566) "failed") |#2| |#1| (-1 (-3 (-566) "failed") |#1|)))) -((-1573 (($ $ $) 84)) (-3184 (((-420 $) $) 52)) (-4307 (((-3 (-566) "failed") $) 64)) (-4205 (((-566) $) 42)) (-1521 (((-3 (-409 (-566)) "failed") $) 79)) (-1942 (((-112) $) 26)) (-4204 (((-409 (-566)) $) 77)) (-3268 (((-112) $) 55)) (-3994 (($ $ $ $) 92)) (-1897 (((-112) $) 17)) (-2529 (($ $ $) 62)) (-2062 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 74)) (-4363 (((-3 $ "failed") $) 69)) (-3674 (($ $) 24)) (-2548 (($ $ $) 90)) (-1761 (($) 65)) (-3727 (($ $) 58)) (-3719 (((-420 $) $) 50)) (-1946 (((-112) $) 15)) (-3039 (((-771) $) 32)) (-3561 (($ $ (-771)) NIL) (($ $) 11)) (-3940 (($ $) 18)) (-1348 (((-566) $) NIL) (((-538) $) 41) (((-892 (-566)) $) 45) (((-381) $) 35) (((-225) $) 38)) (-2107 (((-771)) 9)) (-3162 (((-112) $ $) 21)) (-3228 (($ $ $) 60))) -(((-546 |#1|) (-10 -8 (-15 -2548 (|#1| |#1| |#1|)) (-15 -3994 (|#1| |#1| |#1| |#1|)) (-15 -3674 (|#1| |#1|)) (-15 -3940 (|#1| |#1|)) (-15 -1521 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -4204 ((-409 (-566)) |#1|)) (-15 -1942 ((-112) |#1|)) (-15 -1573 (|#1| |#1| |#1|)) (-15 -3162 ((-112) |#1| |#1|)) (-15 -1946 ((-112) |#1|)) (-15 -1761 (|#1|)) (-15 -4363 ((-3 |#1| "failed") |#1|)) (-15 -1348 ((-225) |#1|)) (-15 -1348 ((-381) |#1|)) (-15 -2529 (|#1| |#1| |#1|)) (-15 -3727 (|#1| |#1|)) (-15 -3228 (|#1| |#1| |#1|)) (-15 -2062 ((-889 (-566) |#1|) |#1| (-892 (-566)) (-889 (-566) |#1|))) (-15 -1348 ((-892 (-566)) |#1|)) (-15 -1348 ((-538) |#1|)) (-15 -4307 ((-3 (-566) "failed") |#1|)) (-15 -4205 ((-566) |#1|)) (-15 -1348 ((-566) |#1|)) (-15 -3561 (|#1| |#1|)) (-15 -3561 (|#1| |#1| (-771))) (-15 -1897 ((-112) |#1|)) (-15 -3039 ((-771) |#1|)) (-15 -3719 ((-420 |#1|) |#1|)) (-15 -3184 ((-420 |#1|) |#1|)) (-15 -3268 ((-112) |#1|)) (-15 -2107 ((-771)))) (-547)) (T -546)) -((-2107 (*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-546 *3)) (-4 *3 (-547))))) -(-10 -8 (-15 -2548 (|#1| |#1| |#1|)) (-15 -3994 (|#1| |#1| |#1| |#1|)) (-15 -3674 (|#1| |#1|)) (-15 -3940 (|#1| |#1|)) (-15 -1521 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -4204 ((-409 (-566)) |#1|)) (-15 -1942 ((-112) |#1|)) (-15 -1573 (|#1| |#1| |#1|)) (-15 -3162 ((-112) |#1| |#1|)) (-15 -1946 ((-112) |#1|)) (-15 -1761 (|#1|)) (-15 -4363 ((-3 |#1| "failed") |#1|)) (-15 -1348 ((-225) |#1|)) (-15 -1348 ((-381) |#1|)) (-15 -2529 (|#1| |#1| |#1|)) (-15 -3727 (|#1| |#1|)) (-15 -3228 (|#1| |#1| |#1|)) (-15 -2062 ((-889 (-566) |#1|) |#1| (-892 (-566)) (-889 (-566) |#1|))) (-15 -1348 ((-892 (-566)) |#1|)) (-15 -1348 ((-538) |#1|)) (-15 -4307 ((-3 (-566) "failed") |#1|)) (-15 -4205 ((-566) |#1|)) (-15 -1348 ((-566) |#1|)) (-15 -3561 (|#1| |#1|)) (-15 -3561 (|#1| |#1| (-771))) (-15 -1897 ((-112) |#1|)) (-15 -3039 ((-771) |#1|)) (-15 -3719 ((-420 |#1|) |#1|)) (-15 -3184 ((-420 |#1|) |#1|)) (-15 -3268 ((-112) |#1|)) (-15 -2107 ((-771)))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) 47)) (-3991 (($ $) 46)) (-2388 (((-112) $) 44)) (-1573 (($ $ $) 90)) (-4175 (((-3 $ "failed") $ $) 20)) (-3904 (($ $ $ $) 79)) (-1550 (($ $) 57)) (-3184 (((-420 $) $) 58)) (-2837 (((-112) $ $) 130)) (-4364 (((-566) $) 119)) (-3136 (($ $ $) 93)) (-3012 (($) 18 T CONST)) (-4307 (((-3 (-566) "failed") $) 111)) (-4205 (((-566) $) 112)) (-2946 (($ $ $) 134)) (-3577 (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) 109) (((-689 (-566)) (-689 $)) 108)) (-1878 (((-3 $ "failed") $) 37)) (-1521 (((-3 (-409 (-566)) "failed") $) 87)) (-1942 (((-112) $) 89)) (-4204 (((-409 (-566)) $) 88)) (-1552 (($) 86) (($ $) 85)) (-2957 (($ $ $) 133)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) 128)) (-3268 (((-112) $) 59)) (-3994 (($ $ $ $) 77)) (-3680 (($ $ $) 91)) (-1897 (((-112) $) 121)) (-2529 (($ $ $) 102)) (-2062 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 105)) (-3934 (((-112) $) 35)) (-2824 (((-112) $) 97)) (-4363 (((-3 $ "failed") $) 99)) (-2117 (((-112) $) 120)) (-3775 (((-3 (-644 $) "failed") (-644 $) $) 137)) (-3324 (($ $ $ $) 78)) (-2097 (($ $ $) 122)) (-3962 (($ $ $) 123)) (-3674 (($ $) 81)) (-4149 (($ $) 94)) (-2167 (($ $ $) 52) (($ (-644 $)) 51)) (-4117 (((-1157) $) 10)) (-2548 (($ $ $) 76)) (-1761 (($) 98 T CONST)) (-3892 (($ $) 83)) (-4035 (((-1119) $) 11)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-2214 (($ $ $) 54) (($ (-644 $)) 53)) (-3727 (($ $) 103)) (-3719 (((-420 $) $) 56)) (-3148 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 136) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 135)) (-2994 (((-3 $ "failed") $ $) 48)) (-3161 (((-3 (-644 $) "failed") (-644 $) $) 129)) (-1946 (((-112) $) 96)) (-3039 (((-771) $) 131)) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) 132)) (-3561 (($ $ (-771)) 116) (($ $) 114)) (-3238 (($ $) 82)) (-3940 (($ $) 84)) (-1348 (((-566) $) 113) (((-538) $) 107) (((-892 (-566)) $) 106) (((-381) $) 101) (((-225) $) 100)) (-3783 (((-862) $) 12) (($ (-566)) 33) (($ $) 49) (($ (-566)) 110)) (-2107 (((-771)) 32 T CONST)) (-3162 (((-112) $ $) 92)) (-3228 (($ $ $) 104)) (-3117 (((-112) $ $) 9)) (-2719 (($) 95)) (-2695 (((-112) $ $) 45)) (-3313 (($ $ $ $) 80)) (-2086 (($ $) 118)) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-2875 (($ $ (-771)) 117) (($ $) 115)) (-3009 (((-112) $ $) 125)) (-2984 (((-112) $ $) 126)) (-2947 (((-112) $ $) 6)) (-2995 (((-112) $ $) 124)) (-2969 (((-112) $ $) 127)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) +((-3061 (((-644 |#2|) (-1171 |#1|) |#3|) 98)) (-2540 (((-644 (-2 (|:| |outval| |#2|) (|:| |outmult| (-566)) (|:| |outvect| (-644 (-689 |#2|))))) (-689 |#1|) |#3| (-1 (-420 (-1171 |#1|)) (-1171 |#1|))) 114)) (-1650 (((-1171 |#1|) (-689 |#1|)) 110))) +(((-534 |#1| |#2| |#3|) (-10 -7 (-15 -1650 ((-1171 |#1|) (-689 |#1|))) (-15 -3061 ((-644 |#2|) (-1171 |#1|) |#3|)) (-15 -2540 ((-644 (-2 (|:| |outval| |#2|) (|:| |outmult| (-566)) (|:| |outvect| (-644 (-689 |#2|))))) (-689 |#1|) |#3| (-1 (-420 (-1171 |#1|)) (-1171 |#1|))))) (-365) (-365) (-13 (-365) (-848))) (T -534)) +((-2540 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-689 *6)) (-5 *5 (-1 (-420 (-1171 *6)) (-1171 *6))) (-4 *6 (-365)) (-5 *2 (-644 (-2 (|:| |outval| *7) (|:| |outmult| (-566)) (|:| |outvect| (-644 (-689 *7)))))) (-5 *1 (-534 *6 *7 *4)) (-4 *7 (-365)) (-4 *4 (-13 (-365) (-848))))) (-3061 (*1 *2 *3 *4) (-12 (-5 *3 (-1171 *5)) (-4 *5 (-365)) (-5 *2 (-644 *6)) (-5 *1 (-534 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-848))))) (-1650 (*1 *2 *3) (-12 (-5 *3 (-689 *4)) (-4 *4 (-365)) (-5 *2 (-1171 *4)) (-5 *1 (-534 *4 *5 *6)) (-4 *5 (-365)) (-4 *6 (-13 (-365) (-848)))))) +(-10 -7 (-15 -1650 ((-1171 |#1|) (-689 |#1|))) (-15 -3061 ((-644 |#2|) (-1171 |#1|) |#3|)) (-15 -2540 ((-644 (-2 (|:| |outval| |#2|) (|:| |outmult| (-566)) (|:| |outvect| (-644 (-689 |#2|))))) (-689 |#1|) |#3| (-1 (-420 (-1171 |#1|)) (-1171 |#1|))))) +((-2581 (((-691 (-1222)) $ (-1222)) NIL)) (-4248 (((-691 (-551)) $ (-551)) NIL)) (-1311 (((-771) $ (-128)) 41)) (-1606 (((-691 (-129)) $ (-129)) 42)) (-1753 (((-691 (-1222)) $) NIL)) (-2438 (((-691 (-1220)) $) NIL)) (-3300 (((-691 (-1219)) $) NIL)) (-1844 (((-691 (-551)) $) NIL)) (-1426 (((-691 (-549)) $) NIL)) (-4154 (((-691 (-548)) $) NIL)) (-1982 (((-771) $ (-128)) 37)) (-1938 (((-691 (-129)) $) 39)) (-3133 (((-112) $) 29)) (-3306 (((-691 $) (-581) (-954)) 19) (((-691 $) (-493) (-954)) 26)) (-3152 (((-862) $) 49)) (-2405 (($ $) 43))) +(((-535) (-13 (-767 (-581)) (-613 (-862)) (-10 -8 (-15 -3306 ((-691 $) (-493) (-954)))))) (T -535)) +((-3306 (*1 *2 *3 *4) (-12 (-5 *3 (-493)) (-5 *4 (-954)) (-5 *2 (-691 (-535))) (-5 *1 (-535))))) +(-13 (-767 (-581)) (-613 (-862)) (-10 -8 (-15 -3306 ((-691 $) (-493) (-954))))) +((-2909 (((-843 (-566))) 12)) (-2919 (((-843 (-566))) 14)) (-2293 (((-833 (-566))) 9))) +(((-536) (-10 -7 (-15 -2293 ((-833 (-566)))) (-15 -2909 ((-843 (-566)))) (-15 -2919 ((-843 (-566)))))) (T -536)) +((-2919 (*1 *2) (-12 (-5 *2 (-843 (-566))) (-5 *1 (-536)))) (-2909 (*1 *2) (-12 (-5 *2 (-843 (-566))) (-5 *1 (-536)))) (-2293 (*1 *2) (-12 (-5 *2 (-833 (-566))) (-5 *1 (-536))))) +(-10 -7 (-15 -2293 ((-833 (-566)))) (-15 -2909 ((-843 (-566)))) (-15 -2919 ((-843 (-566))))) +((-1441 (((-538) (-1175)) 15)) (-2205 ((|#1| (-538)) 20))) +(((-537 |#1|) (-10 -7 (-15 -1441 ((-538) (-1175))) (-15 -2205 (|#1| (-538)))) (-1214)) (T -537)) +((-2205 (*1 *2 *3) (-12 (-5 *3 (-538)) (-5 *1 (-537 *2)) (-4 *2 (-1214)))) (-1441 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-538)) (-5 *1 (-537 *4)) (-4 *4 (-1214))))) +(-10 -7 (-15 -1441 ((-538) (-1175))) (-15 -2205 (|#1| (-538)))) +((-2988 (((-112) $ $) NIL)) (-2991 (((-1157) $) 55)) (-4124 (((-112) $) 51)) (-2069 (((-1175) $) 52)) (-3154 (((-112) $) 49)) (-3822 (((-1157) $) 50)) (-3999 (($ (-1157)) 56)) (-2368 (((-112) $) NIL)) (-3524 (((-112) $) NIL)) (-1750 (((-112) $) NIL)) (-3380 (((-1157) $) NIL)) (-3918 (($ $ (-644 (-1175))) 21)) (-2205 (((-52) $) 23)) (-3709 (((-112) $) NIL)) (-2092 (((-566) $) NIL)) (-4072 (((-1119) $) NIL)) (-3204 (($ $ (-644 (-1175)) (-1175)) 73)) (-3161 (((-112) $) NIL)) (-2938 (((-225) $) NIL)) (-2878 (($ $) 44)) (-4308 (((-862) $) NIL)) (-3434 (((-112) $ $) NIL)) (-1309 (($ $ (-566)) NIL) (($ $ (-644 (-566))) NIL)) (-1704 (((-644 $) $) 30)) (-3199 (((-1175) (-644 $)) 57)) (-2376 (($ (-1157)) NIL) (($ (-1175)) 19) (($ (-566)) 8) (($ (-225)) 28) (($ (-862)) NIL) (($ (-644 $)) 65) (((-1103) $) 12) (($ (-1103)) 13)) (-1764 (((-1175) (-1175) (-644 $)) 60)) (-3152 (((-862) $) 54)) (-3794 (($ $) 59)) (-3780 (($ $) 58)) (-3676 (($ $ (-644 $)) 66)) (-3044 (((-112) $ $) NIL)) (-3355 (((-112) $) 29)) (-4356 (($) 9 T CONST)) (-4366 (($) 11 T CONST)) (-2914 (((-112) $ $) 74)) (-3025 (($ $ $) 82)) (-3002 (($ $ $) 75)) (** (($ $ (-771)) 81) (($ $ (-566)) 80)) (* (($ $ $) 76)) (-3000 (((-566) $) NIL))) +(((-538) (-13 (-1102 (-1157) (-1175) (-566) (-225) (-862)) (-614 (-1103)) (-10 -8 (-15 -2205 ((-52) $)) (-15 -2376 ($ (-1103))) (-15 -3676 ($ $ (-644 $))) (-15 -3204 ($ $ (-644 (-1175)) (-1175))) (-15 -3918 ($ $ (-644 (-1175)))) (-15 -3002 ($ $ $)) (-15 * ($ $ $)) (-15 -3025 ($ $ $)) (-15 ** ($ $ (-771))) (-15 ** ($ $ (-566))) (-15 0 ($) -1623) (-15 1 ($) -1623) (-15 -2878 ($ $)) (-15 -2991 ((-1157) $)) (-15 -3999 ($ (-1157))) (-15 -3199 ((-1175) (-644 $))) (-15 -1764 ((-1175) (-1175) (-644 $)))))) (T -538)) +((-2205 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-538)))) (-2376 (*1 *1 *2) (-12 (-5 *2 (-1103)) (-5 *1 (-538)))) (-3676 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-538))) (-5 *1 (-538)))) (-3204 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-1175))) (-5 *3 (-1175)) (-5 *1 (-538)))) (-3918 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-538)))) (-3002 (*1 *1 *1 *1) (-5 *1 (-538))) (* (*1 *1 *1 *1) (-5 *1 (-538))) (-3025 (*1 *1 *1 *1) (-5 *1 (-538))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-538)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-538)))) (-4356 (*1 *1) (-5 *1 (-538))) (-4366 (*1 *1) (-5 *1 (-538))) (-2878 (*1 *1 *1) (-5 *1 (-538))) (-2991 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-538)))) (-3999 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-538)))) (-3199 (*1 *2 *3) (-12 (-5 *3 (-644 (-538))) (-5 *2 (-1175)) (-5 *1 (-538)))) (-1764 (*1 *2 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-644 (-538))) (-5 *1 (-538))))) +(-13 (-1102 (-1157) (-1175) (-566) (-225) (-862)) (-614 (-1103)) (-10 -8 (-15 -2205 ((-52) $)) (-15 -2376 ($ (-1103))) (-15 -3676 ($ $ (-644 $))) (-15 -3204 ($ $ (-644 (-1175)) (-1175))) (-15 -3918 ($ $ (-644 (-1175)))) (-15 -3002 ($ $ $)) (-15 * ($ $ $)) (-15 -3025 ($ $ $)) (-15 ** ($ $ (-771))) (-15 ** ($ $ (-566))) (-15 (-4356) ($) -1623) (-15 (-4366) ($) -1623) (-15 -2878 ($ $)) (-15 -2991 ((-1157) $)) (-15 -3999 ($ (-1157))) (-15 -3199 ((-1175) (-644 $))) (-15 -1764 ((-1175) (-1175) (-644 $))))) +((-1909 ((|#2| |#2|) 17)) (-2702 ((|#2| |#2|) 13)) (-2361 ((|#2| |#2| (-566) (-566)) 20)) (-3743 ((|#2| |#2|) 15))) +(((-539 |#1| |#2|) (-10 -7 (-15 -2702 (|#2| |#2|)) (-15 -3743 (|#2| |#2|)) (-15 -1909 (|#2| |#2|)) (-15 -2361 (|#2| |#2| (-566) (-566)))) (-13 (-558) (-147)) (-1255 |#1|)) (T -539)) +((-2361 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-566)) (-4 *4 (-13 (-558) (-147))) (-5 *1 (-539 *4 *2)) (-4 *2 (-1255 *4)))) (-1909 (*1 *2 *2) (-12 (-4 *3 (-13 (-558) (-147))) (-5 *1 (-539 *3 *2)) (-4 *2 (-1255 *3)))) (-3743 (*1 *2 *2) (-12 (-4 *3 (-13 (-558) (-147))) (-5 *1 (-539 *3 *2)) (-4 *2 (-1255 *3)))) (-2702 (*1 *2 *2) (-12 (-4 *3 (-13 (-558) (-147))) (-5 *1 (-539 *3 *2)) (-4 *2 (-1255 *3))))) +(-10 -7 (-15 -2702 (|#2| |#2|)) (-15 -3743 (|#2| |#2|)) (-15 -1909 (|#2| |#2|)) (-15 -2361 (|#2| |#2| (-566) (-566)))) +((-3925 (((-644 (-295 (-952 |#2|))) (-644 |#2|) (-644 (-1175))) 32)) (-2276 (((-644 |#2|) (-952 |#1|) |#3|) 54) (((-644 |#2|) (-1171 |#1|) |#3|) 53)) (-3364 (((-644 (-644 |#2|)) (-644 (-952 |#1|)) (-644 (-952 |#1|)) (-644 (-1175)) |#3|) 106))) +(((-540 |#1| |#2| |#3|) (-10 -7 (-15 -2276 ((-644 |#2|) (-1171 |#1|) |#3|)) (-15 -2276 ((-644 |#2|) (-952 |#1|) |#3|)) (-15 -3364 ((-644 (-644 |#2|)) (-644 (-952 |#1|)) (-644 (-952 |#1|)) (-644 (-1175)) |#3|)) (-15 -3925 ((-644 (-295 (-952 |#2|))) (-644 |#2|) (-644 (-1175))))) (-454) (-365) (-13 (-365) (-848))) (T -540)) +((-3925 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *6)) (-5 *4 (-644 (-1175))) (-4 *6 (-365)) (-5 *2 (-644 (-295 (-952 *6)))) (-5 *1 (-540 *5 *6 *7)) (-4 *5 (-454)) (-4 *7 (-13 (-365) (-848))))) (-3364 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-644 (-952 *6))) (-5 *4 (-644 (-1175))) (-4 *6 (-454)) (-5 *2 (-644 (-644 *7))) (-5 *1 (-540 *6 *7 *5)) (-4 *7 (-365)) (-4 *5 (-13 (-365) (-848))))) (-2276 (*1 *2 *3 *4) (-12 (-5 *3 (-952 *5)) (-4 *5 (-454)) (-5 *2 (-644 *6)) (-5 *1 (-540 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-848))))) (-2276 (*1 *2 *3 *4) (-12 (-5 *3 (-1171 *5)) (-4 *5 (-454)) (-5 *2 (-644 *6)) (-5 *1 (-540 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-848)))))) +(-10 -7 (-15 -2276 ((-644 |#2|) (-1171 |#1|) |#3|)) (-15 -2276 ((-644 |#2|) (-952 |#1|) |#3|)) (-15 -3364 ((-644 (-644 |#2|)) (-644 (-952 |#1|)) (-644 (-952 |#1|)) (-644 (-1175)) |#3|)) (-15 -3925 ((-644 (-295 (-952 |#2|))) (-644 |#2|) (-644 (-1175))))) +((-1736 ((|#2| |#2| |#1|) 17)) (-2717 ((|#2| (-644 |#2|)) 31)) (-3642 ((|#2| (-644 |#2|)) 52))) +(((-541 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2717 (|#2| (-644 |#2|))) (-15 -3642 (|#2| (-644 |#2|))) (-15 -1736 (|#2| |#2| |#1|))) (-308) (-1240 |#1|) |#1| (-1 |#1| |#1| (-771))) (T -541)) +((-1736 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-771))) (-5 *1 (-541 *3 *2 *4 *5)) (-4 *2 (-1240 *3)))) (-3642 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-1240 *4)) (-5 *1 (-541 *4 *2 *5 *6)) (-4 *4 (-308)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-771))))) (-2717 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-1240 *4)) (-5 *1 (-541 *4 *2 *5 *6)) (-4 *4 (-308)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-771)))))) +(-10 -7 (-15 -2717 (|#2| (-644 |#2|))) (-15 -3642 (|#2| (-644 |#2|))) (-15 -1736 (|#2| |#2| |#1|))) +((-1624 (((-420 (-1171 |#4|)) (-1171 |#4|) (-1 (-420 (-1171 |#3|)) (-1171 |#3|))) 89) (((-420 |#4|) |#4| (-1 (-420 (-1171 |#3|)) (-1171 |#3|))) 218))) +(((-542 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1624 ((-420 |#4|) |#4| (-1 (-420 (-1171 |#3|)) (-1171 |#3|)))) (-15 -1624 ((-420 (-1171 |#4|)) (-1171 |#4|) (-1 (-420 (-1171 |#3|)) (-1171 |#3|))))) (-850) (-793) (-13 (-308) (-147)) (-949 |#3| |#2| |#1|)) (T -542)) +((-1624 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-420 (-1171 *7)) (-1171 *7))) (-4 *7 (-13 (-308) (-147))) (-4 *5 (-850)) (-4 *6 (-793)) (-4 *8 (-949 *7 *6 *5)) (-5 *2 (-420 (-1171 *8))) (-5 *1 (-542 *5 *6 *7 *8)) (-5 *3 (-1171 *8)))) (-1624 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-420 (-1171 *7)) (-1171 *7))) (-4 *7 (-13 (-308) (-147))) (-4 *5 (-850)) (-4 *6 (-793)) (-5 *2 (-420 *3)) (-5 *1 (-542 *5 *6 *7 *3)) (-4 *3 (-949 *7 *6 *5))))) +(-10 -7 (-15 -1624 ((-420 |#4|) |#4| (-1 (-420 (-1171 |#3|)) (-1171 |#3|)))) (-15 -1624 ((-420 (-1171 |#4|)) (-1171 |#4|) (-1 (-420 (-1171 |#3|)) (-1171 |#3|))))) +((-1909 ((|#4| |#4|) 74)) (-2702 ((|#4| |#4|) 70)) (-2361 ((|#4| |#4| (-566) (-566)) 76)) (-3743 ((|#4| |#4|) 72))) +(((-543 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2702 (|#4| |#4|)) (-15 -3743 (|#4| |#4|)) (-15 -1909 (|#4| |#4|)) (-15 -2361 (|#4| |#4| (-566) (-566)))) (-13 (-365) (-370) (-614 (-566))) (-1240 |#1|) (-724 |#1| |#2|) (-1255 |#3|)) (T -543)) +((-2361 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-566)) (-4 *4 (-13 (-365) (-370) (-614 *3))) (-4 *5 (-1240 *4)) (-4 *6 (-724 *4 *5)) (-5 *1 (-543 *4 *5 *6 *2)) (-4 *2 (-1255 *6)))) (-1909 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-614 (-566)))) (-4 *4 (-1240 *3)) (-4 *5 (-724 *3 *4)) (-5 *1 (-543 *3 *4 *5 *2)) (-4 *2 (-1255 *5)))) (-3743 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-614 (-566)))) (-4 *4 (-1240 *3)) (-4 *5 (-724 *3 *4)) (-5 *1 (-543 *3 *4 *5 *2)) (-4 *2 (-1255 *5)))) (-2702 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-614 (-566)))) (-4 *4 (-1240 *3)) (-4 *5 (-724 *3 *4)) (-5 *1 (-543 *3 *4 *5 *2)) (-4 *2 (-1255 *5))))) +(-10 -7 (-15 -2702 (|#4| |#4|)) (-15 -3743 (|#4| |#4|)) (-15 -1909 (|#4| |#4|)) (-15 -2361 (|#4| |#4| (-566) (-566)))) +((-1909 ((|#2| |#2|) 27)) (-2702 ((|#2| |#2|) 23)) (-2361 ((|#2| |#2| (-566) (-566)) 29)) (-3743 ((|#2| |#2|) 25))) +(((-544 |#1| |#2|) (-10 -7 (-15 -2702 (|#2| |#2|)) (-15 -3743 (|#2| |#2|)) (-15 -1909 (|#2| |#2|)) (-15 -2361 (|#2| |#2| (-566) (-566)))) (-13 (-365) (-370) (-614 (-566))) (-1255 |#1|)) (T -544)) +((-2361 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-566)) (-4 *4 (-13 (-365) (-370) (-614 *3))) (-5 *1 (-544 *4 *2)) (-4 *2 (-1255 *4)))) (-1909 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-614 (-566)))) (-5 *1 (-544 *3 *2)) (-4 *2 (-1255 *3)))) (-3743 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-614 (-566)))) (-5 *1 (-544 *3 *2)) (-4 *2 (-1255 *3)))) (-2702 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-614 (-566)))) (-5 *1 (-544 *3 *2)) (-4 *2 (-1255 *3))))) +(-10 -7 (-15 -2702 (|#2| |#2|)) (-15 -3743 (|#2| |#2|)) (-15 -1909 (|#2| |#2|)) (-15 -2361 (|#2| |#2| (-566) (-566)))) +((-3047 (((-3 (-566) "failed") |#2| |#1| (-1 (-3 (-566) "failed") |#1|)) 18) (((-3 (-566) "failed") |#2| |#1| (-566) (-1 (-3 (-566) "failed") |#1|)) 14) (((-3 (-566) "failed") |#2| (-566) (-1 (-3 (-566) "failed") |#1|)) 32))) +(((-545 |#1| |#2|) (-10 -7 (-15 -3047 ((-3 (-566) "failed") |#2| (-566) (-1 (-3 (-566) "failed") |#1|))) (-15 -3047 ((-3 (-566) "failed") |#2| |#1| (-566) (-1 (-3 (-566) "failed") |#1|))) (-15 -3047 ((-3 (-566) "failed") |#2| |#1| (-1 (-3 (-566) "failed") |#1|)))) (-1049) (-1240 |#1|)) (T -545)) +((-3047 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-566) "failed") *4)) (-4 *4 (-1049)) (-5 *2 (-566)) (-5 *1 (-545 *4 *3)) (-4 *3 (-1240 *4)))) (-3047 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-566) "failed") *4)) (-4 *4 (-1049)) (-5 *2 (-566)) (-5 *1 (-545 *4 *3)) (-4 *3 (-1240 *4)))) (-3047 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-566) "failed") *5)) (-4 *5 (-1049)) (-5 *2 (-566)) (-5 *1 (-545 *5 *3)) (-4 *3 (-1240 *5))))) +(-10 -7 (-15 -3047 ((-3 (-566) "failed") |#2| (-566) (-1 (-3 (-566) "failed") |#1|))) (-15 -3047 ((-3 (-566) "failed") |#2| |#1| (-566) (-1 (-3 (-566) "failed") |#1|))) (-15 -3047 ((-3 (-566) "failed") |#2| |#1| (-1 (-3 (-566) "failed") |#1|)))) +((-2871 (($ $ $) 84)) (-1364 (((-420 $) $) 52)) (-2229 (((-3 (-566) "failed") $) 64)) (-4158 (((-566) $) 42)) (-4391 (((-3 (-409 (-566)) "failed") $) 79)) (-3407 (((-112) $) 26)) (-1786 (((-409 (-566)) $) 77)) (-1615 (((-112) $) 55)) (-2501 (($ $ $ $) 92)) (-2528 (((-112) $) 17)) (-2413 (($ $ $) 62)) (-2926 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 74)) (-2621 (((-3 $ "failed") $) 69)) (-3479 (($ $) 24)) (-1517 (($ $ $) 90)) (-3289 (($) 65)) (-2499 (($ $) 58)) (-1624 (((-420 $) $) 50)) (-2664 (((-112) $) 15)) (-4357 (((-771) $) 32)) (-3629 (($ $ (-771)) NIL) (($ $) 11)) (-1480 (($ $) 18)) (-2376 (((-566) $) NIL) (((-538) $) 41) (((-892 (-566)) $) 45) (((-381) $) 35) (((-225) $) 38)) (-2593 (((-771)) 9)) (-2992 (((-112) $ $) 21)) (-2073 (($ $ $) 60))) +(((-546 |#1|) (-10 -8 (-15 -1517 (|#1| |#1| |#1|)) (-15 -2501 (|#1| |#1| |#1| |#1|)) (-15 -3479 (|#1| |#1|)) (-15 -1480 (|#1| |#1|)) (-15 -4391 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -1786 ((-409 (-566)) |#1|)) (-15 -3407 ((-112) |#1|)) (-15 -2871 (|#1| |#1| |#1|)) (-15 -2992 ((-112) |#1| |#1|)) (-15 -2664 ((-112) |#1|)) (-15 -3289 (|#1|)) (-15 -2621 ((-3 |#1| "failed") |#1|)) (-15 -2376 ((-225) |#1|)) (-15 -2376 ((-381) |#1|)) (-15 -2413 (|#1| |#1| |#1|)) (-15 -2499 (|#1| |#1|)) (-15 -2073 (|#1| |#1| |#1|)) (-15 -2926 ((-889 (-566) |#1|) |#1| (-892 (-566)) (-889 (-566) |#1|))) (-15 -2376 ((-892 (-566)) |#1|)) (-15 -2376 ((-538) |#1|)) (-15 -2229 ((-3 (-566) "failed") |#1|)) (-15 -4158 ((-566) |#1|)) (-15 -2376 ((-566) |#1|)) (-15 -3629 (|#1| |#1|)) (-15 -3629 (|#1| |#1| (-771))) (-15 -2528 ((-112) |#1|)) (-15 -4357 ((-771) |#1|)) (-15 -1624 ((-420 |#1|) |#1|)) (-15 -1364 ((-420 |#1|) |#1|)) (-15 -1615 ((-112) |#1|)) (-15 -2593 ((-771)))) (-547)) (T -546)) +((-2593 (*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-546 *3)) (-4 *3 (-547))))) +(-10 -8 (-15 -1517 (|#1| |#1| |#1|)) (-15 -2501 (|#1| |#1| |#1| |#1|)) (-15 -3479 (|#1| |#1|)) (-15 -1480 (|#1| |#1|)) (-15 -4391 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -1786 ((-409 (-566)) |#1|)) (-15 -3407 ((-112) |#1|)) (-15 -2871 (|#1| |#1| |#1|)) (-15 -2992 ((-112) |#1| |#1|)) (-15 -2664 ((-112) |#1|)) (-15 -3289 (|#1|)) (-15 -2621 ((-3 |#1| "failed") |#1|)) (-15 -2376 ((-225) |#1|)) (-15 -2376 ((-381) |#1|)) (-15 -2413 (|#1| |#1| |#1|)) (-15 -2499 (|#1| |#1|)) (-15 -2073 (|#1| |#1| |#1|)) (-15 -2926 ((-889 (-566) |#1|) |#1| (-892 (-566)) (-889 (-566) |#1|))) (-15 -2376 ((-892 (-566)) |#1|)) (-15 -2376 ((-538) |#1|)) (-15 -2229 ((-3 (-566) "failed") |#1|)) (-15 -4158 ((-566) |#1|)) (-15 -2376 ((-566) |#1|)) (-15 -3629 (|#1| |#1|)) (-15 -3629 (|#1| |#1| (-771))) (-15 -2528 ((-112) |#1|)) (-15 -4357 ((-771) |#1|)) (-15 -1624 ((-420 |#1|) |#1|)) (-15 -1364 ((-420 |#1|) |#1|)) (-15 -1615 ((-112) |#1|)) (-15 -2593 ((-771)))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) 47)) (-2161 (($ $) 46)) (-2345 (((-112) $) 44)) (-2871 (($ $ $) 90)) (-3967 (((-3 $ "failed") $ $) 20)) (-1345 (($ $ $ $) 79)) (-1378 (($ $) 57)) (-1364 (((-420 $) $) 58)) (-2085 (((-112) $ $) 130)) (-2743 (((-566) $) 119)) (-3764 (($ $ $) 93)) (-2463 (($) 18 T CONST)) (-2229 (((-3 (-566) "failed") $) 111)) (-4158 (((-566) $) 112)) (-2933 (($ $ $) 134)) (-4089 (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) 109) (((-689 (-566)) (-689 $)) 108)) (-3245 (((-3 $ "failed") $) 37)) (-4391 (((-3 (-409 (-566)) "failed") $) 87)) (-3407 (((-112) $) 89)) (-1786 (((-409 (-566)) $) 88)) (-2715 (($) 86) (($ $) 85)) (-2945 (($ $ $) 133)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) 128)) (-1615 (((-112) $) 59)) (-2501 (($ $ $ $) 77)) (-1732 (($ $ $) 91)) (-2528 (((-112) $) 121)) (-2413 (($ $ $) 102)) (-2926 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 105)) (-2389 (((-112) $) 35)) (-3419 (((-112) $) 97)) (-2621 (((-3 $ "failed") $) 99)) (-3233 (((-112) $) 120)) (-3816 (((-3 (-644 $) "failed") (-644 $) $) 137)) (-2505 (($ $ $ $) 78)) (-1478 (($ $ $) 122)) (-2599 (($ $ $) 123)) (-3479 (($ $) 81)) (-2440 (($ $) 94)) (-2128 (($ $ $) 52) (($ (-644 $)) 51)) (-3380 (((-1157) $) 10)) (-1517 (($ $ $) 76)) (-3289 (($) 98 T CONST)) (-1847 (($ $) 83)) (-4072 (((-1119) $) 11)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-2164 (($ $ $) 54) (($ (-644 $)) 53)) (-2499 (($ $) 103)) (-1624 (((-420 $) $) 56)) (-3005 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 136) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) 135)) (-2978 (((-3 $ "failed") $ $) 48)) (-2915 (((-3 (-644 $) "failed") (-644 $) $) 129)) (-2664 (((-112) $) 96)) (-4357 (((-771) $) 131)) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) 132)) (-3629 (($ $ (-771)) 116) (($ $) 114)) (-2028 (($ $) 82)) (-1480 (($ $) 84)) (-2376 (((-566) $) 113) (((-538) $) 107) (((-892 (-566)) $) 106) (((-381) $) 101) (((-225) $) 100)) (-3152 (((-862) $) 12) (($ (-566)) 33) (($ $) 49) (($ (-566)) 110)) (-2593 (((-771)) 32 T CONST)) (-2992 (((-112) $ $) 92)) (-2073 (($ $ $) 104)) (-3044 (((-112) $ $) 9)) (-2576 (($) 95)) (-3014 (((-112) $ $) 45)) (-1725 (($ $ $ $) 80)) (-1358 (($ $) 118)) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-3497 (($ $ (-771)) 117) (($ $) 115)) (-2968 (((-112) $ $) 125)) (-2946 (((-112) $ $) 126)) (-2914 (((-112) $ $) 6)) (-2956 (((-112) $ $) 124)) (-2935 (((-112) $ $) 127)) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) (((-547) (-140)) (T -547)) -((-2824 (*1 *2 *1) (-12 (-4 *1 (-547)) (-5 *2 (-112)))) (-1946 (*1 *2 *1) (-12 (-4 *1 (-547)) (-5 *2 (-112)))) (-2719 (*1 *1) (-4 *1 (-547))) (-4149 (*1 *1 *1) (-4 *1 (-547))) (-3136 (*1 *1 *1 *1) (-4 *1 (-547))) (-3162 (*1 *2 *1 *1) (-12 (-4 *1 (-547)) (-5 *2 (-112)))) (-3680 (*1 *1 *1 *1) (-4 *1 (-547))) (-1573 (*1 *1 *1 *1) (-4 *1 (-547))) (-1942 (*1 *2 *1) (-12 (-4 *1 (-547)) (-5 *2 (-112)))) (-4204 (*1 *2 *1) (-12 (-4 *1 (-547)) (-5 *2 (-409 (-566))))) (-1521 (*1 *2 *1) (|partial| -12 (-4 *1 (-547)) (-5 *2 (-409 (-566))))) (-1552 (*1 *1) (-4 *1 (-547))) (-1552 (*1 *1 *1) (-4 *1 (-547))) (-3940 (*1 *1 *1) (-4 *1 (-547))) (-3892 (*1 *1 *1) (-4 *1 (-547))) (-3238 (*1 *1 *1) (-4 *1 (-547))) (-3674 (*1 *1 *1) (-4 *1 (-547))) (-3313 (*1 *1 *1 *1 *1) (-4 *1 (-547))) (-3904 (*1 *1 *1 *1 *1) (-4 *1 (-547))) (-3324 (*1 *1 *1 *1 *1) (-4 *1 (-547))) (-3994 (*1 *1 *1 *1 *1) (-4 *1 (-547))) (-2548 (*1 *1 *1 *1) (-4 *1 (-547)))) -(-13 (-1218) (-308) (-820) (-233) (-614 (-566)) (-1038 (-566)) (-639 (-566)) (-614 (-538)) (-614 (-892 (-566))) (-886 (-566)) (-143) (-1022) (-147) (-1150) (-10 -8 (-15 -2824 ((-112) $)) (-15 -1946 ((-112) $)) (-6 -4413) (-15 -2719 ($)) (-15 -4149 ($ $)) (-15 -3136 ($ $ $)) (-15 -3162 ((-112) $ $)) (-15 -3680 ($ $ $)) (-15 -1573 ($ $ $)) (-15 -1942 ((-112) $)) (-15 -4204 ((-409 (-566)) $)) (-15 -1521 ((-3 (-409 (-566)) "failed") $)) (-15 -1552 ($)) (-15 -1552 ($ $)) (-15 -3940 ($ $)) (-15 -3892 ($ $)) (-15 -3238 ($ $)) (-15 -3674 ($ $)) (-15 -3313 ($ $ $ $)) (-15 -3904 ($ $ $ $)) (-15 -3324 ($ $ $ $)) (-15 -3994 ($ $ $ $)) (-15 -2548 ($ $ $)) (-6 -4412))) +((-3419 (*1 *2 *1) (-12 (-4 *1 (-547)) (-5 *2 (-112)))) (-2664 (*1 *2 *1) (-12 (-4 *1 (-547)) (-5 *2 (-112)))) (-2576 (*1 *1) (-4 *1 (-547))) (-2440 (*1 *1 *1) (-4 *1 (-547))) (-3764 (*1 *1 *1 *1) (-4 *1 (-547))) (-2992 (*1 *2 *1 *1) (-12 (-4 *1 (-547)) (-5 *2 (-112)))) (-1732 (*1 *1 *1 *1) (-4 *1 (-547))) (-2871 (*1 *1 *1 *1) (-4 *1 (-547))) (-3407 (*1 *2 *1) (-12 (-4 *1 (-547)) (-5 *2 (-112)))) (-1786 (*1 *2 *1) (-12 (-4 *1 (-547)) (-5 *2 (-409 (-566))))) (-4391 (*1 *2 *1) (|partial| -12 (-4 *1 (-547)) (-5 *2 (-409 (-566))))) (-2715 (*1 *1) (-4 *1 (-547))) (-2715 (*1 *1 *1) (-4 *1 (-547))) (-1480 (*1 *1 *1) (-4 *1 (-547))) (-1847 (*1 *1 *1) (-4 *1 (-547))) (-2028 (*1 *1 *1) (-4 *1 (-547))) (-3479 (*1 *1 *1) (-4 *1 (-547))) (-1725 (*1 *1 *1 *1 *1) (-4 *1 (-547))) (-1345 (*1 *1 *1 *1 *1) (-4 *1 (-547))) (-2505 (*1 *1 *1 *1 *1) (-4 *1 (-547))) (-2501 (*1 *1 *1 *1 *1) (-4 *1 (-547))) (-1517 (*1 *1 *1 *1) (-4 *1 (-547)))) +(-13 (-1218) (-308) (-820) (-233) (-614 (-566)) (-1038 (-566)) (-639 (-566)) (-614 (-538)) (-614 (-892 (-566))) (-886 (-566)) (-143) (-1022) (-147) (-1150) (-10 -8 (-15 -3419 ((-112) $)) (-15 -2664 ((-112) $)) (-6 -4413) (-15 -2576 ($)) (-15 -2440 ($ $)) (-15 -3764 ($ $ $)) (-15 -2992 ((-112) $ $)) (-15 -1732 ($ $ $)) (-15 -2871 ($ $ $)) (-15 -3407 ((-112) $)) (-15 -1786 ((-409 (-566)) $)) (-15 -4391 ((-3 (-409 (-566)) "failed") $)) (-15 -2715 ($)) (-15 -2715 ($ $)) (-15 -1480 ($ $)) (-15 -1847 ($ $)) (-15 -2028 ($ $)) (-15 -3479 ($ $)) (-15 -1725 ($ $ $ $)) (-15 -1345 ($ $ $ $)) (-15 -2505 ($ $ $ $)) (-15 -2501 ($ $ $ $)) (-15 -1517 ($ $ $)) (-6 -4412))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-616 (-566)) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-143) . T) ((-172) . T) ((-614 (-225)) . T) ((-614 (-381)) . T) ((-614 (-538)) . T) ((-614 (-566)) . T) ((-614 (-892 (-566))) . T) ((-233) . T) ((-291) . T) ((-308) . T) ((-454) . T) ((-558) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-640 $) . T) ((-639 (-566)) . T) ((-717 $) . T) ((-726) . T) ((-791) . T) ((-792) . T) ((-794) . T) ((-795) . T) ((-820) . T) ((-848) . T) ((-850) . T) ((-886 (-566)) . T) ((-920) . T) ((-1022) . T) ((-1038 (-566)) . T) ((-1051 $) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1150) . T) ((-1218) . T)) -((-3007 (((-112) $ $) NIL)) (-1970 (((-771)) NIL)) (-3012 (($) NIL T CONST)) (-1552 (($) NIL)) (-2097 (($ $ $) NIL) (($) NIL T CONST)) (-3962 (($ $ $) NIL) (($) NIL T CONST)) (-3681 (((-921) $) NIL)) (-4117 (((-1157) $) NIL)) (-2178 (($ (-921)) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) NIL)) (-3117 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL)) (-2995 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL))) -(((-548) (-13 (-844) (-10 -8 (-15 -3012 ($) -3704)))) (T -548)) -((-3012 (*1 *1) (-5 *1 (-548)))) -(-13 (-844) (-10 -8 (-15 -3012 ($) -3704))) +((-2988 (((-112) $ $) NIL)) (-3870 (((-771)) NIL)) (-2463 (($) NIL T CONST)) (-2715 (($) NIL)) (-1478 (($ $ $) NIL) (($) NIL T CONST)) (-2599 (($ $ $) NIL) (($) NIL T CONST)) (-1866 (((-921) $) NIL)) (-3380 (((-1157) $) NIL)) (-2835 (($ (-921)) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) NIL)) (-3044 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2935 (((-112) $ $) NIL))) +(((-548) (-13 (-844) (-10 -8 (-15 -2463 ($) -1623)))) (T -548)) +((-2463 (*1 *1) (-5 *1 (-548)))) +(-13 (-844) (-10 -8 (-15 -2463 ($) -1623))) ((|Integer|) (NOT (> (INTEGER-LENGTH |#1|) 16))) -((-3007 (((-112) $ $) NIL)) (-1970 (((-771)) NIL)) (-3012 (($) NIL T CONST)) (-1552 (($) NIL)) (-2097 (($ $ $) NIL) (($) NIL T CONST)) (-3962 (($ $ $) NIL) (($) NIL T CONST)) (-3681 (((-921) $) NIL)) (-4117 (((-1157) $) NIL)) (-2178 (($ (-921)) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) NIL)) (-3117 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL)) (-2995 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL))) -(((-549) (-13 (-844) (-10 -8 (-15 -3012 ($) -3704)))) (T -549)) -((-3012 (*1 *1) (-5 *1 (-549)))) -(-13 (-844) (-10 -8 (-15 -3012 ($) -3704))) +((-2988 (((-112) $ $) NIL)) (-3870 (((-771)) NIL)) (-2463 (($) NIL T CONST)) (-2715 (($) NIL)) (-1478 (($ $ $) NIL) (($) NIL T CONST)) (-2599 (($ $ $) NIL) (($) NIL T CONST)) (-1866 (((-921) $) NIL)) (-3380 (((-1157) $) NIL)) (-2835 (($ (-921)) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) NIL)) (-3044 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2935 (((-112) $ $) NIL))) +(((-549) (-13 (-844) (-10 -8 (-15 -2463 ($) -1623)))) (T -549)) +((-2463 (*1 *1) (-5 *1 (-549)))) +(-13 (-844) (-10 -8 (-15 -2463 ($) -1623))) ((|Integer|) (NOT (> (INTEGER-LENGTH |#1|) 32))) -((-3007 (((-112) $ $) NIL)) (-1970 (((-771)) NIL)) (-3012 (($) NIL T CONST)) (-1552 (($) NIL)) (-2097 (($ $ $) NIL) (($) NIL T CONST)) (-3962 (($ $ $) NIL) (($) NIL T CONST)) (-3681 (((-921) $) NIL)) (-4117 (((-1157) $) NIL)) (-2178 (($ (-921)) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) NIL)) (-3117 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL)) (-2995 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL))) -(((-550) (-13 (-844) (-10 -8 (-15 -3012 ($) -3704)))) (T -550)) -((-3012 (*1 *1) (-5 *1 (-550)))) -(-13 (-844) (-10 -8 (-15 -3012 ($) -3704))) +((-2988 (((-112) $ $) NIL)) (-3870 (((-771)) NIL)) (-2463 (($) NIL T CONST)) (-2715 (($) NIL)) (-1478 (($ $ $) NIL) (($) NIL T CONST)) (-2599 (($ $ $) NIL) (($) NIL T CONST)) (-1866 (((-921) $) NIL)) (-3380 (((-1157) $) NIL)) (-2835 (($ (-921)) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) NIL)) (-3044 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2935 (((-112) $ $) NIL))) +(((-550) (-13 (-844) (-10 -8 (-15 -2463 ($) -1623)))) (T -550)) +((-2463 (*1 *1) (-5 *1 (-550)))) +(-13 (-844) (-10 -8 (-15 -2463 ($) -1623))) ((|Integer|) (NOT (> (INTEGER-LENGTH |#1|) 64))) -((-3007 (((-112) $ $) NIL)) (-1970 (((-771)) NIL)) (-3012 (($) NIL T CONST)) (-1552 (($) NIL)) (-2097 (($ $ $) NIL) (($) NIL T CONST)) (-3962 (($ $ $) NIL) (($) NIL T CONST)) (-3681 (((-921) $) NIL)) (-4117 (((-1157) $) NIL)) (-2178 (($ (-921)) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) NIL)) (-3117 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL)) (-2995 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL))) -(((-551) (-13 (-844) (-10 -8 (-15 -3012 ($) -3704)))) (T -551)) -((-3012 (*1 *1) (-5 *1 (-551)))) -(-13 (-844) (-10 -8 (-15 -3012 ($) -3704))) +((-2988 (((-112) $ $) NIL)) (-3870 (((-771)) NIL)) (-2463 (($) NIL T CONST)) (-2715 (($) NIL)) (-1478 (($ $ $) NIL) (($) NIL T CONST)) (-2599 (($ $ $) NIL) (($) NIL T CONST)) (-1866 (((-921) $) NIL)) (-3380 (((-1157) $) NIL)) (-2835 (($ (-921)) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) NIL)) (-3044 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2935 (((-112) $ $) NIL))) +(((-551) (-13 (-844) (-10 -8 (-15 -2463 ($) -1623)))) (T -551)) +((-2463 (*1 *1) (-5 *1 (-551)))) +(-13 (-844) (-10 -8 (-15 -2463 ($) -1623))) ((|Integer|) (NOT (> (INTEGER-LENGTH |#1|) 8))) -((-3007 (((-112) $ $) NIL (-2809 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-4254 (($) NIL) (($ (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) NIL)) (-3734 (((-1269) $ |#1| |#1|) NIL (|has| $ (-6 -4415)))) (-2256 (((-112) $ (-771)) NIL)) (-3923 ((|#2| $ |#1| |#2|) NIL)) (-4016 (($ (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-2701 (($ (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-2434 (((-3 |#2| "failed") |#1| $) NIL)) (-3012 (($) NIL T CONST)) (-2031 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099))))) (-2956 (($ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL (|has| $ (-6 -4414))) (($ (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-3 |#2| "failed") |#1| $) NIL)) (-2665 (($ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (($ (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-1676 (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) NIL (|has| $ (-6 -4414))) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-2920 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4415)))) (-2855 ((|#2| $ |#1|) NIL)) (-3979 (((-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-644 |#2|) $) NIL (|has| $ (-6 -4414)))) (-2404 (((-112) $ (-771)) NIL)) (-3854 ((|#1| $) NIL (|has| |#1| (-850)))) (-2329 (((-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-644 |#2|) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099))))) (-2712 ((|#1| $) NIL (|has| |#1| (-850)))) (-2908 (($ (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4415))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4415)))) (-1301 (($ (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2603 (((-112) $ (-771)) NIL)) (-4117 (((-1157) $) NIL (-2809 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-4103 (((-644 |#1|) $) NIL)) (-2876 (((-112) |#1| $) NIL)) (-4039 (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL)) (-3406 (($ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL)) (-4074 (((-644 |#1|) $) NIL)) (-3792 (((-112) |#1| $) NIL)) (-4035 (((-1119) $) NIL (-2809 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-1998 ((|#2| $) NIL (|has| |#1| (-850)))) (-2006 (((-3 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) "failed") (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL)) (-4030 (($ $ |#2|) NIL (|has| $ (-6 -4415)))) (-2539 (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL)) (-2692 (((-112) (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))))) NIL (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (($ $ (-295 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) NIL (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (($ $ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) NIL (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (($ $ (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) NIL (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-1932 (((-112) $ $) NIL)) (-4156 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099))))) (-2993 (((-644 |#2|) $) NIL)) (-3467 (((-112) $) NIL)) (-1494 (($) NIL)) (-4390 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3481 (($) NIL) (($ (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) NIL)) (-4045 (((-771) (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-771) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (((-771) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099)))) (((-771) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414)))) (-3940 (($ $) NIL)) (-1348 (((-538) $) NIL (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-614 (-538))))) (-3796 (($ (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) NIL)) (-3783 (((-862) $) NIL (-2809 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-613 (-862))) (|has| |#2| (-613 (-862)))))) (-3117 (((-112) $ $) NIL (-2809 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-1748 (($ (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) NIL)) (-1894 (((-112) (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) NIL (-2809 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-3018 (((-771) $) NIL (|has| $ (-6 -4414))))) +((-2988 (((-112) $ $) NIL (-2768 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-1849 (($) NIL) (($ (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) NIL)) (-1944 (((-1269) $ |#1| |#1|) NIL (|has| $ (-6 -4415)))) (-1504 (((-112) $ (-771)) NIL)) (-1456 ((|#2| $ |#1| |#2|) NIL)) (-2995 (($ (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-3678 (($ (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-3070 (((-3 |#2| "failed") |#1| $) NIL)) (-2463 (($) NIL T CONST)) (-3942 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099))))) (-3512 (($ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL (|has| $ (-6 -4414))) (($ (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-3 |#2| "failed") |#1| $) NIL)) (-2622 (($ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (($ (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-2873 (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) NIL (|has| $ (-6 -4414))) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-3897 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4415)))) (-3829 ((|#2| $ |#1|) NIL)) (-1683 (((-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-644 |#2|) $) NIL (|has| $ (-6 -4414)))) (-3456 (((-112) $ (-771)) NIL)) (-2296 ((|#1| $) NIL (|has| |#1| (-850)))) (-3491 (((-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-644 |#2|) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099))))) (-4050 ((|#1| $) NIL (|has| |#1| (-850)))) (-3885 (($ (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4415))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4415)))) (-2319 (($ (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3267 (((-112) $ (-771)) NIL)) (-3380 (((-1157) $) NIL (-2768 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-4052 (((-644 |#1|) $) NIL)) (-1826 (((-112) |#1| $) NIL)) (-3278 (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL)) (-3888 (($ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL)) (-3725 (((-644 |#1|) $) NIL)) (-1644 (((-112) |#1| $) NIL)) (-4072 (((-1119) $) NIL (-2768 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-3908 ((|#2| $) NIL (|has| |#1| (-850)))) (-3668 (((-3 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) "failed") (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL)) (-3787 (($ $ |#2|) NIL (|has| $ (-6 -4415)))) (-1973 (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL)) (-2823 (((-112) (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))))) NIL (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (($ $ (-295 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) NIL (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (($ $ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) NIL (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (($ $ (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) NIL (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-3814 (((-112) $ $) NIL)) (-2847 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099))))) (-3486 (((-644 |#2|) $) NIL)) (-2872 (((-112) $) NIL)) (-3493 (($) NIL)) (-1309 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1792 (($) NIL) (($ (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) NIL)) (-4083 (((-771) (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-771) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (((-771) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099)))) (((-771) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414)))) (-1480 (($ $) NIL)) (-2376 (((-538) $) NIL (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-614 (-538))))) (-1340 (($ (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) NIL)) (-3152 (((-862) $) NIL (-2768 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-613 (-862))) (|has| |#2| (-613 (-862)))))) (-3044 (((-112) $ $) NIL (-2768 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-2948 (($ (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) NIL)) (-2210 (((-112) (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) NIL (-2768 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-3000 (((-771) $) NIL (|has| $ (-6 -4414))))) (((-552 |#1| |#2| |#3|) (-13 (-1190 |#1| |#2|) (-10 -7 (-6 -4414))) (-1099) (-1099) (-13 (-1190 |#1| |#2|) (-10 -7 (-6 -4414)))) (T -552)) NIL (-13 (-1190 |#1| |#2|) (-10 -7 (-6 -4414))) -((-2019 (((-587 |#2|) |#2| (-612 |#2|) (-612 |#2|) (-1 (-1171 |#2|) (-1171 |#2|))) 50))) -(((-553 |#1| |#2|) (-10 -7 (-15 -2019 ((-587 |#2|) |#2| (-612 |#2|) (-612 |#2|) (-1 (-1171 |#2|) (-1171 |#2|))))) (-558) (-13 (-27) (-432 |#1|))) (T -553)) -((-2019 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-612 *3)) (-5 *5 (-1 (-1171 *3) (-1171 *3))) (-4 *3 (-13 (-27) (-432 *6))) (-4 *6 (-558)) (-5 *2 (-587 *3)) (-5 *1 (-553 *6 *3))))) -(-10 -7 (-15 -2019 ((-587 |#2|) |#2| (-612 |#2|) (-612 |#2|) (-1 (-1171 |#2|) (-1171 |#2|))))) -((-4344 (((-587 |#5|) |#5| (-1 |#3| |#3|)) 218)) (-1769 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 214)) (-3242 (((-587 |#5|) |#5| (-1 |#3| |#3|)) 222))) -(((-554 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3242 ((-587 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4344 ((-587 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1769 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-558) (-1038 (-566))) (-13 (-27) (-432 |#1|)) (-1240 |#2|) (-1240 (-409 |#3|)) (-344 |#2| |#3| |#4|)) (T -554)) -((-1769 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1240 *5)) (-4 *5 (-13 (-27) (-432 *4))) (-4 *4 (-13 (-558) (-1038 (-566)))) (-4 *7 (-1240 (-409 *6))) (-5 *1 (-554 *4 *5 *6 *7 *2)) (-4 *2 (-344 *5 *6 *7)))) (-4344 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1240 *6)) (-4 *6 (-13 (-27) (-432 *5))) (-4 *5 (-13 (-558) (-1038 (-566)))) (-4 *8 (-1240 (-409 *7))) (-5 *2 (-587 *3)) (-5 *1 (-554 *5 *6 *7 *8 *3)) (-4 *3 (-344 *6 *7 *8)))) (-3242 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1240 *6)) (-4 *6 (-13 (-27) (-432 *5))) (-4 *5 (-13 (-558) (-1038 (-566)))) (-4 *8 (-1240 (-409 *7))) (-5 *2 (-587 *3)) (-5 *1 (-554 *5 *6 *7 *8 *3)) (-4 *3 (-344 *6 *7 *8))))) -(-10 -7 (-15 -3242 ((-587 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4344 ((-587 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1769 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) -((-1574 (((-112) (-566) (-566)) 12)) (-2507 (((-566) (-566)) 7)) (-3456 (((-566) (-566) (-566)) 10))) -(((-555) (-10 -7 (-15 -2507 ((-566) (-566))) (-15 -3456 ((-566) (-566) (-566))) (-15 -1574 ((-112) (-566) (-566))))) (T -555)) -((-1574 (*1 *2 *3 *3) (-12 (-5 *3 (-566)) (-5 *2 (-112)) (-5 *1 (-555)))) (-3456 (*1 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-555)))) (-2507 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-555))))) -(-10 -7 (-15 -2507 ((-566) (-566))) (-15 -3456 ((-566) (-566) (-566))) (-15 -1574 ((-112) (-566) (-566)))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-3477 ((|#1| $) 67)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) 47)) (-3991 (($ $) 46)) (-2388 (((-112) $) 44)) (-4114 (($ $) 97)) (-2109 (($ $) 80)) (-2660 ((|#1| $) 68)) (-4175 (((-3 $ "failed") $ $) 20)) (-3731 (($ $) 79)) (-2240 (($ $) 96)) (-2085 (($ $) 81)) (-4134 (($ $) 95)) (-2129 (($ $) 82)) (-3012 (($) 18 T CONST)) (-4307 (((-3 (-566) "failed") $) 75)) (-4205 (((-566) $) 76)) (-1878 (((-3 $ "failed") $) 37)) (-1420 (($ |#1| |#1|) 72)) (-1897 (((-112) $) 66)) (-4361 (($) 107)) (-3934 (((-112) $) 35)) (-2140 (($ $ (-566)) 78)) (-2117 (((-112) $) 65)) (-2097 (($ $ $) 113)) (-3962 (($ $ $) 112)) (-3651 (($ $) 104)) (-2167 (($ $ $) 52) (($ (-644 $)) 51)) (-4117 (((-1157) $) 10)) (-1612 (($ |#1| |#1|) 73) (($ |#1|) 71) (($ (-409 (-566))) 70)) (-1544 ((|#1| $) 69)) (-4035 (((-1119) $) 11)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-2214 (($ $ $) 54) (($ (-644 $)) 53)) (-2994 (((-3 $ "failed") $ $) 48)) (-2561 (($ $) 105)) (-4144 (($ $) 94)) (-2141 (($ $) 83)) (-4124 (($ $) 93)) (-2118 (($ $) 84)) (-4104 (($ $) 92)) (-2098 (($ $) 85)) (-3194 (((-112) $ |#1|) 64)) (-3783 (((-862) $) 12) (($ (-566)) 33) (($ $) 49) (($ (-566)) 74)) (-2107 (((-771)) 32 T CONST)) (-3117 (((-112) $ $) 9)) (-4177 (($ $) 103)) (-2180 (($ $) 91)) (-2695 (((-112) $ $) 45)) (-4155 (($ $) 102)) (-2153 (($ $) 90)) (-4198 (($ $) 101)) (-2212 (($ $) 89)) (-2976 (($ $) 100)) (-2227 (($ $) 88)) (-4188 (($ $) 99)) (-2196 (($ $) 87)) (-4166 (($ $) 98)) (-2166 (($ $) 86)) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-3009 (((-112) $ $) 110)) (-2984 (((-112) $ $) 109)) (-2947 (((-112) $ $) 6)) (-2995 (((-112) $ $) 111)) (-2969 (((-112) $ $) 108)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ $) 106) (($ $ (-409 (-566))) 77)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) +((-2467 (((-587 |#2|) |#2| (-612 |#2|) (-612 |#2|) (-1 (-1171 |#2|) (-1171 |#2|))) 50))) +(((-553 |#1| |#2|) (-10 -7 (-15 -2467 ((-587 |#2|) |#2| (-612 |#2|) (-612 |#2|) (-1 (-1171 |#2|) (-1171 |#2|))))) (-558) (-13 (-27) (-432 |#1|))) (T -553)) +((-2467 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-612 *3)) (-5 *5 (-1 (-1171 *3) (-1171 *3))) (-4 *3 (-13 (-27) (-432 *6))) (-4 *6 (-558)) (-5 *2 (-587 *3)) (-5 *1 (-553 *6 *3))))) +(-10 -7 (-15 -2467 ((-587 |#2|) |#2| (-612 |#2|) (-612 |#2|) (-1 (-1171 |#2|) (-1171 |#2|))))) +((-2430 (((-587 |#5|) |#5| (-1 |#3| |#3|)) 218)) (-4121 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 214)) (-4012 (((-587 |#5|) |#5| (-1 |#3| |#3|)) 222))) +(((-554 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4012 ((-587 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2430 ((-587 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4121 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-558) (-1038 (-566))) (-13 (-27) (-432 |#1|)) (-1240 |#2|) (-1240 (-409 |#3|)) (-344 |#2| |#3| |#4|)) (T -554)) +((-4121 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1240 *5)) (-4 *5 (-13 (-27) (-432 *4))) (-4 *4 (-13 (-558) (-1038 (-566)))) (-4 *7 (-1240 (-409 *6))) (-5 *1 (-554 *4 *5 *6 *7 *2)) (-4 *2 (-344 *5 *6 *7)))) (-2430 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1240 *6)) (-4 *6 (-13 (-27) (-432 *5))) (-4 *5 (-13 (-558) (-1038 (-566)))) (-4 *8 (-1240 (-409 *7))) (-5 *2 (-587 *3)) (-5 *1 (-554 *5 *6 *7 *8 *3)) (-4 *3 (-344 *6 *7 *8)))) (-4012 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1240 *6)) (-4 *6 (-13 (-27) (-432 *5))) (-4 *5 (-13 (-558) (-1038 (-566)))) (-4 *8 (-1240 (-409 *7))) (-5 *2 (-587 *3)) (-5 *1 (-554 *5 *6 *7 *8 *3)) (-4 *3 (-344 *6 *7 *8))))) +(-10 -7 (-15 -4012 ((-587 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2430 ((-587 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4121 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) +((-2982 (((-112) (-566) (-566)) 12)) (-4003 (((-566) (-566)) 7)) (-1912 (((-566) (-566) (-566)) 10))) +(((-555) (-10 -7 (-15 -4003 ((-566) (-566))) (-15 -1912 ((-566) (-566) (-566))) (-15 -2982 ((-112) (-566) (-566))))) (T -555)) +((-2982 (*1 *2 *3 *3) (-12 (-5 *3 (-566)) (-5 *2 (-112)) (-5 *1 (-555)))) (-1912 (*1 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-555)))) (-4003 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-555))))) +(-10 -7 (-15 -4003 ((-566) (-566))) (-15 -1912 ((-566) (-566) (-566))) (-15 -2982 ((-112) (-566) (-566)))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-4169 ((|#1| $) 67)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) 47)) (-2161 (($ $) 46)) (-2345 (((-112) $) 44)) (-3963 (($ $) 97)) (-3630 (($ $) 80)) (-3920 ((|#1| $) 68)) (-3967 (((-3 $ "failed") $ $) 20)) (-1635 (($ $) 79)) (-3941 (($ $) 96)) (-3602 (($ $) 81)) (-3986 (($ $) 95)) (-3656 (($ $) 82)) (-2463 (($) 18 T CONST)) (-2229 (((-3 (-566) "failed") $) 75)) (-4158 (((-566) $) 76)) (-3245 (((-3 $ "failed") $) 37)) (-3903 (($ |#1| |#1|) 72)) (-2528 (((-112) $) 66)) (-2281 (($) 107)) (-2389 (((-112) $) 35)) (-1575 (($ $ (-566)) 78)) (-3233 (((-112) $) 65)) (-1478 (($ $ $) 113)) (-2599 (($ $ $) 112)) (-3619 (($ $) 104)) (-2128 (($ $ $) 52) (($ (-644 $)) 51)) (-3380 (((-1157) $) 10)) (-1392 (($ |#1| |#1|) 73) (($ |#1|) 71) (($ (-409 (-566))) 70)) (-2156 ((|#1| $) 69)) (-4072 (((-1119) $) 11)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-2164 (($ $ $) 54) (($ (-644 $)) 53)) (-2978 (((-3 $ "failed") $ $) 48)) (-3521 (($ $) 105)) (-3996 (($ $) 94)) (-3670 (($ $) 83)) (-3976 (($ $) 93)) (-3643 (($ $) 84)) (-3952 (($ $) 92)) (-3618 (($ $) 85)) (-2910 (((-112) $ |#1|) 64)) (-3152 (((-862) $) 12) (($ (-566)) 33) (($ $) 49) (($ (-566)) 74)) (-2593 (((-771)) 32 T CONST)) (-3044 (((-112) $ $) 9)) (-4032 (($ $) 103)) (-3892 (($ $) 91)) (-3014 (((-112) $ $) 45)) (-4008 (($ $) 102)) (-3684 (($ $) 90)) (-4057 (($ $) 101)) (-3917 (($ $) 89)) (-3964 (($ $) 100)) (-3929 (($ $) 88)) (-4044 (($ $) 99)) (-3904 (($ $) 87)) (-4020 (($ $) 98)) (-3879 (($ $) 86)) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-2968 (((-112) $ $) 110)) (-2946 (((-112) $ $) 109)) (-2914 (((-112) $ $) 6)) (-2956 (((-112) $ $) 111)) (-2935 (((-112) $ $) 108)) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ $) 106) (($ $ (-409 (-566))) 77)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) (((-556 |#1|) (-140) (-13 (-406) (-1199))) (T -556)) -((-1612 (*1 *1 *2 *2) (-12 (-4 *1 (-556 *2)) (-4 *2 (-13 (-406) (-1199))))) (-1420 (*1 *1 *2 *2) (-12 (-4 *1 (-556 *2)) (-4 *2 (-13 (-406) (-1199))))) (-1612 (*1 *1 *2) (-12 (-4 *1 (-556 *2)) (-4 *2 (-13 (-406) (-1199))))) (-1612 (*1 *1 *2) (-12 (-5 *2 (-409 (-566))) (-4 *1 (-556 *3)) (-4 *3 (-13 (-406) (-1199))))) (-1544 (*1 *2 *1) (-12 (-4 *1 (-556 *2)) (-4 *2 (-13 (-406) (-1199))))) (-2660 (*1 *2 *1) (-12 (-4 *1 (-556 *2)) (-4 *2 (-13 (-406) (-1199))))) (-3477 (*1 *2 *1) (-12 (-4 *1 (-556 *2)) (-4 *2 (-13 (-406) (-1199))))) (-1897 (*1 *2 *1) (-12 (-4 *1 (-556 *3)) (-4 *3 (-13 (-406) (-1199))) (-5 *2 (-112)))) (-2117 (*1 *2 *1) (-12 (-4 *1 (-556 *3)) (-4 *3 (-13 (-406) (-1199))) (-5 *2 (-112)))) (-3194 (*1 *2 *1 *3) (-12 (-4 *1 (-556 *3)) (-4 *3 (-13 (-406) (-1199))) (-5 *2 (-112))))) -(-13 (-454) (-850) (-1199) (-1002) (-1038 (-566)) (-10 -8 (-6 -3628) (-15 -1612 ($ |t#1| |t#1|)) (-15 -1420 ($ |t#1| |t#1|)) (-15 -1612 ($ |t#1|)) (-15 -1612 ($ (-409 (-566)))) (-15 -1544 (|t#1| $)) (-15 -2660 (|t#1| $)) (-15 -3477 (|t#1| $)) (-15 -1897 ((-112) $)) (-15 -2117 ((-112) $)) (-15 -3194 ((-112) $ |t#1|)))) +((-1392 (*1 *1 *2 *2) (-12 (-4 *1 (-556 *2)) (-4 *2 (-13 (-406) (-1199))))) (-3903 (*1 *1 *2 *2) (-12 (-4 *1 (-556 *2)) (-4 *2 (-13 (-406) (-1199))))) (-1392 (*1 *1 *2) (-12 (-4 *1 (-556 *2)) (-4 *2 (-13 (-406) (-1199))))) (-1392 (*1 *1 *2) (-12 (-5 *2 (-409 (-566))) (-4 *1 (-556 *3)) (-4 *3 (-13 (-406) (-1199))))) (-2156 (*1 *2 *1) (-12 (-4 *1 (-556 *2)) (-4 *2 (-13 (-406) (-1199))))) (-3920 (*1 *2 *1) (-12 (-4 *1 (-556 *2)) (-4 *2 (-13 (-406) (-1199))))) (-4169 (*1 *2 *1) (-12 (-4 *1 (-556 *2)) (-4 *2 (-13 (-406) (-1199))))) (-2528 (*1 *2 *1) (-12 (-4 *1 (-556 *3)) (-4 *3 (-13 (-406) (-1199))) (-5 *2 (-112)))) (-3233 (*1 *2 *1) (-12 (-4 *1 (-556 *3)) (-4 *3 (-13 (-406) (-1199))) (-5 *2 (-112)))) (-2910 (*1 *2 *1 *3) (-12 (-4 *1 (-556 *3)) (-4 *3 (-13 (-406) (-1199))) (-5 *2 (-112))))) +(-13 (-454) (-850) (-1199) (-1002) (-1038 (-566)) (-10 -8 (-6 -3603) (-15 -1392 ($ |t#1| |t#1|)) (-15 -3903 ($ |t#1| |t#1|)) (-15 -1392 ($ |t#1|)) (-15 -1392 ($ (-409 (-566)))) (-15 -2156 (|t#1| $)) (-15 -3920 (|t#1| $)) (-15 -4169 (|t#1| $)) (-15 -2528 ((-112) $)) (-15 -3233 ((-112) $)) (-15 -2910 ((-112) $ |t#1|)))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-616 (-566)) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-285) . T) ((-291) . T) ((-454) . T) ((-495) . T) ((-558) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-640 $) . T) ((-717 $) . T) ((-726) . T) ((-850) . T) ((-1002) . T) ((-1038 (-566)) . T) ((-1051 $) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1199) . T) ((-1202) . T)) -((-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) 9)) (-3991 (($ $) 11)) (-2388 (((-112) $) 20)) (-1878 (((-3 $ "failed") $) 16)) (-2695 (((-112) $ $) 22))) -(((-557 |#1|) (-10 -8 (-15 -2388 ((-112) |#1|)) (-15 -2695 ((-112) |#1| |#1|)) (-15 -3991 (|#1| |#1|)) (-15 -1860 ((-2 (|:| -3002 |#1|) (|:| -4401 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1878 ((-3 |#1| "failed") |#1|))) (-558)) (T -557)) +((-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) 9)) (-2161 (($ $) 11)) (-2345 (((-112) $) 20)) (-3245 (((-3 $ "failed") $) 16)) (-3014 (((-112) $ $) 22))) +(((-557 |#1|) (-10 -8 (-15 -2345 ((-112) |#1|)) (-15 -3014 ((-112) |#1| |#1|)) (-15 -2161 (|#1| |#1|)) (-15 -2112 ((-2 (|:| -2896 |#1|) (|:| -4401 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3245 ((-3 |#1| "failed") |#1|))) (-558)) (T -557)) NIL -(-10 -8 (-15 -2388 ((-112) |#1|)) (-15 -2695 ((-112) |#1| |#1|)) (-15 -3991 (|#1| |#1|)) (-15 -1860 ((-2 (|:| -3002 |#1|) (|:| -4401 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1878 ((-3 |#1| "failed") |#1|))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) 47)) (-3991 (($ $) 46)) (-2388 (((-112) $) 44)) (-4175 (((-3 $ "failed") $ $) 20)) (-3012 (($) 18 T CONST)) (-1878 (((-3 $ "failed") $) 37)) (-3934 (((-112) $) 35)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-2994 (((-3 $ "failed") $ $) 48)) (-3783 (((-862) $) 12) (($ (-566)) 33) (($ $) 49)) (-2107 (((-771)) 32 T CONST)) (-3117 (((-112) $ $) 9)) (-2695 (((-112) $ $) 45)) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-2947 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) +(-10 -8 (-15 -2345 ((-112) |#1|)) (-15 -3014 ((-112) |#1| |#1|)) (-15 -2161 (|#1| |#1|)) (-15 -2112 ((-2 (|:| -2896 |#1|) (|:| -4401 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3245 ((-3 |#1| "failed") |#1|))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) 47)) (-2161 (($ $) 46)) (-2345 (((-112) $) 44)) (-3967 (((-3 $ "failed") $ $) 20)) (-2463 (($) 18 T CONST)) (-3245 (((-3 $ "failed") $) 37)) (-2389 (((-112) $) 35)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-2978 (((-3 $ "failed") $ $) 48)) (-3152 (((-862) $) 12) (($ (-566)) 33) (($ $) 49)) (-2593 (((-771)) 32 T CONST)) (-3044 (((-112) $ $) 9)) (-3014 (((-112) $ $) 45)) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-2914 (((-112) $ $) 6)) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) (((-558) (-140)) (T -558)) -((-2994 (*1 *1 *1 *1) (|partial| -4 *1 (-558))) (-1860 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3002 *1) (|:| -4401 *1) (|:| |associate| *1))) (-4 *1 (-558)))) (-3991 (*1 *1 *1) (-4 *1 (-558))) (-2695 (*1 *2 *1 *1) (-12 (-4 *1 (-558)) (-5 *2 (-112)))) (-2388 (*1 *2 *1) (-12 (-4 *1 (-558)) (-5 *2 (-112))))) -(-13 (-172) (-38 $) (-291) (-10 -8 (-15 -2994 ((-3 $ "failed") $ $)) (-15 -1860 ((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $)) (-15 -3991 ($ $)) (-15 -2695 ((-112) $ $)) (-15 -2388 ((-112) $)))) +((-2978 (*1 *1 *1 *1) (|partial| -4 *1 (-558))) (-2112 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2896 *1) (|:| -4401 *1) (|:| |associate| *1))) (-4 *1 (-558)))) (-2161 (*1 *1 *1) (-4 *1 (-558))) (-3014 (*1 *2 *1 *1) (-12 (-4 *1 (-558)) (-5 *2 (-112)))) (-2345 (*1 *2 *1) (-12 (-4 *1 (-558)) (-5 *2 (-112))))) +(-13 (-172) (-38 $) (-291) (-10 -8 (-15 -2978 ((-3 $ "failed") $ $)) (-15 -2112 ((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $)) (-15 -2161 ($ $)) (-15 -3014 ((-112) $ $)) (-15 -2345 ((-112) $)))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-616 (-566)) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-291) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-640 $) . T) ((-717 $) . T) ((-726) . T) ((-1051 $) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) -((-1995 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1175) (-644 |#2|)) 38)) (-2340 (((-587 |#2|) |#2| (-1175)) 63)) (-3777 (((-3 |#2| "failed") |#2| (-1175)) 156)) (-2867 (((-3 (-2 (|:| -2346 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1175) (-612 |#2|) (-644 (-612 |#2|))) 159)) (-2007 (((-3 (-2 (|:| -2346 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1175) |#2|) 41))) -(((-559 |#1| |#2|) (-10 -7 (-15 -2007 ((-3 (-2 (|:| -2346 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1175) |#2|)) (-15 -1995 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1175) (-644 |#2|))) (-15 -3777 ((-3 |#2| "failed") |#2| (-1175))) (-15 -2340 ((-587 |#2|) |#2| (-1175))) (-15 -2867 ((-3 (-2 (|:| -2346 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1175) (-612 |#2|) (-644 (-612 |#2|))))) (-13 (-454) (-147) (-1038 (-566)) (-639 (-566))) (-13 (-27) (-1199) (-432 |#1|))) (T -559)) -((-2867 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1175)) (-5 *6 (-644 (-612 *3))) (-5 *5 (-612 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *7))) (-4 *7 (-13 (-454) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-2 (|:| -2346 *3) (|:| |coeff| *3))) (-5 *1 (-559 *7 *3)))) (-2340 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-4 *5 (-13 (-454) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-587 *3)) (-5 *1 (-559 *5 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5))))) (-3777 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1175)) (-4 *4 (-13 (-454) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-559 *4 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *4))))) (-1995 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1175)) (-5 *5 (-644 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *6))) (-4 *6 (-13 (-454) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-559 *6 *3)))) (-2007 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1175)) (-4 *5 (-13 (-454) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-2 (|:| -2346 *3) (|:| |coeff| *3))) (-5 *1 (-559 *5 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5)))))) -(-10 -7 (-15 -2007 ((-3 (-2 (|:| -2346 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1175) |#2|)) (-15 -1995 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1175) (-644 |#2|))) (-15 -3777 ((-3 |#2| "failed") |#2| (-1175))) (-15 -2340 ((-587 |#2|) |#2| (-1175))) (-15 -2867 ((-3 (-2 (|:| -2346 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1175) (-612 |#2|) (-644 (-612 |#2|))))) -((-3184 (((-420 |#1|) |#1|) 19)) (-3719 (((-420 |#1|) |#1|) 34)) (-2172 (((-3 |#1| "failed") |#1|) 51)) (-2191 (((-420 |#1|) |#1|) 64))) -(((-560 |#1|) (-10 -7 (-15 -3719 ((-420 |#1|) |#1|)) (-15 -3184 ((-420 |#1|) |#1|)) (-15 -2191 ((-420 |#1|) |#1|)) (-15 -2172 ((-3 |#1| "failed") |#1|))) (-547)) (T -560)) -((-2172 (*1 *2 *2) (|partial| -12 (-5 *1 (-560 *2)) (-4 *2 (-547)))) (-2191 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-560 *3)) (-4 *3 (-547)))) (-3184 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-560 *3)) (-4 *3 (-547)))) (-3719 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-560 *3)) (-4 *3 (-547))))) -(-10 -7 (-15 -3719 ((-420 |#1|) |#1|)) (-15 -3184 ((-420 |#1|) |#1|)) (-15 -2191 ((-420 |#1|) |#1|)) (-15 -2172 ((-3 |#1| "failed") |#1|))) -((-2487 (($) 9)) (-2613 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2446 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 35)) (-4103 (((-644 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $) 32)) (-3406 (($ (-2 (|:| -2004 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3867 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2446 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 29)) (-1696 (($ (-644 (-2 (|:| -2004 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3867 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2446 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 27)) (-3867 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2446 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 39)) (-2993 (((-644 (-2 (|:| -2004 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3867 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2446 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 37)) (-2423 (((-1269)) 12))) -(((-561) (-10 -8 (-15 -2487 ($)) (-15 -2423 ((-1269))) (-15 -4103 ((-644 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -1696 ($ (-644 (-2 (|:| -2004 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3867 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2446 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3406 ($ (-2 (|:| -2004 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3867 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2446 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2613 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2446 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2993 ((-644 (-2 (|:| -2004 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3867 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2446 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -3867 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2446 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -561)) -((-3867 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2446 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-561)))) (-2993 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| -2004 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3867 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2446 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-561)))) (-2613 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2446 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-561)))) (-3406 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2004 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3867 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2446 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-561)))) (-1696 (*1 *1 *2) (-12 (-5 *2 (-644 (-2 (|:| -2004 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3867 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2446 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-561)))) (-4103 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-5 *1 (-561)))) (-2423 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-561)))) (-2487 (*1 *1) (-5 *1 (-561)))) -(-10 -8 (-15 -2487 ($)) (-15 -2423 ((-1269))) (-15 -4103 ((-644 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -1696 ($ (-644 (-2 (|:| -2004 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3867 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2446 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3406 ($ (-2 (|:| -2004 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3867 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2446 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2613 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2446 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2993 ((-644 (-2 (|:| -2004 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3867 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2446 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -3867 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2446 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) -((-3683 (((-1171 (-409 (-1171 |#2|))) |#2| (-612 |#2|) (-612 |#2|) (-1171 |#2|)) 35)) (-2401 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-612 |#2|) (-612 |#2|) (-644 |#2|) (-612 |#2|) |#2| (-409 (-1171 |#2|))) 105) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-612 |#2|) (-612 |#2|) (-644 |#2|) |#2| (-1171 |#2|)) 115)) (-3281 (((-587 |#2|) |#2| (-612 |#2|) (-612 |#2|) (-612 |#2|) |#2| (-409 (-1171 |#2|))) 85) (((-587 |#2|) |#2| (-612 |#2|) (-612 |#2|) |#2| (-1171 |#2|)) 55)) (-3950 (((-3 (-2 (|:| -2346 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-612 |#2|) (-612 |#2|) |#2| (-612 |#2|) |#2| (-409 (-1171 |#2|))) 92) (((-3 (-2 (|:| -2346 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-612 |#2|) (-612 |#2|) |#2| |#2| (-1171 |#2|)) 114)) (-4161 (((-3 |#2| "failed") |#2| |#2| (-612 |#2|) (-612 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1175)) (-612 |#2|) |#2| (-409 (-1171 |#2|))) 110) (((-3 |#2| "failed") |#2| |#2| (-612 |#2|) (-612 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1175)) |#2| (-1171 |#2|)) 116)) (-2583 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2365 (-644 |#2|))) |#3| |#2| (-612 |#2|) (-612 |#2|) (-612 |#2|) |#2| (-409 (-1171 |#2|))) 135 (|has| |#3| (-656 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2365 (-644 |#2|))) |#3| |#2| (-612 |#2|) (-612 |#2|) |#2| (-1171 |#2|)) 134 (|has| |#3| (-656 |#2|)))) (-3851 ((|#2| (-1171 (-409 (-1171 |#2|))) (-612 |#2|) |#2|) 53)) (-1662 (((-1171 (-409 (-1171 |#2|))) (-1171 |#2|) (-612 |#2|)) 34))) -(((-562 |#1| |#2| |#3|) (-10 -7 (-15 -3281 ((-587 |#2|) |#2| (-612 |#2|) (-612 |#2|) |#2| (-1171 |#2|))) (-15 -3281 ((-587 |#2|) |#2| (-612 |#2|) (-612 |#2|) (-612 |#2|) |#2| (-409 (-1171 |#2|)))) (-15 -3950 ((-3 (-2 (|:| -2346 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-612 |#2|) (-612 |#2|) |#2| |#2| (-1171 |#2|))) (-15 -3950 ((-3 (-2 (|:| -2346 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-612 |#2|) (-612 |#2|) |#2| (-612 |#2|) |#2| (-409 (-1171 |#2|)))) (-15 -2401 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-612 |#2|) (-612 |#2|) (-644 |#2|) |#2| (-1171 |#2|))) (-15 -2401 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-612 |#2|) (-612 |#2|) (-644 |#2|) (-612 |#2|) |#2| (-409 (-1171 |#2|)))) (-15 -4161 ((-3 |#2| "failed") |#2| |#2| (-612 |#2|) (-612 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1175)) |#2| (-1171 |#2|))) (-15 -4161 ((-3 |#2| "failed") |#2| |#2| (-612 |#2|) (-612 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1175)) (-612 |#2|) |#2| (-409 (-1171 |#2|)))) (-15 -3683 ((-1171 (-409 (-1171 |#2|))) |#2| (-612 |#2|) (-612 |#2|) (-1171 |#2|))) (-15 -3851 (|#2| (-1171 (-409 (-1171 |#2|))) (-612 |#2|) |#2|)) (-15 -1662 ((-1171 (-409 (-1171 |#2|))) (-1171 |#2|) (-612 |#2|))) (IF (|has| |#3| (-656 |#2|)) (PROGN (-15 -2583 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2365 (-644 |#2|))) |#3| |#2| (-612 |#2|) (-612 |#2|) |#2| (-1171 |#2|))) (-15 -2583 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2365 (-644 |#2|))) |#3| |#2| (-612 |#2|) (-612 |#2|) (-612 |#2|) |#2| (-409 (-1171 |#2|))))) |%noBranch|)) (-13 (-454) (-1038 (-566)) (-147) (-639 (-566))) (-13 (-432 |#1|) (-27) (-1199)) (-1099)) (T -562)) -((-2583 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-612 *4)) (-5 *6 (-409 (-1171 *4))) (-4 *4 (-13 (-432 *7) (-27) (-1199))) (-4 *7 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2365 (-644 *4)))) (-5 *1 (-562 *7 *4 *3)) (-4 *3 (-656 *4)) (-4 *3 (-1099)))) (-2583 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-612 *4)) (-5 *6 (-1171 *4)) (-4 *4 (-13 (-432 *7) (-27) (-1199))) (-4 *7 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2365 (-644 *4)))) (-5 *1 (-562 *7 *4 *3)) (-4 *3 (-656 *4)) (-4 *3 (-1099)))) (-1662 (*1 *2 *3 *4) (-12 (-5 *4 (-612 *6)) (-4 *6 (-13 (-432 *5) (-27) (-1199))) (-4 *5 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *2 (-1171 (-409 (-1171 *6)))) (-5 *1 (-562 *5 *6 *7)) (-5 *3 (-1171 *6)) (-4 *7 (-1099)))) (-3851 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1171 (-409 (-1171 *2)))) (-5 *4 (-612 *2)) (-4 *2 (-13 (-432 *5) (-27) (-1199))) (-4 *5 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *1 (-562 *5 *2 *6)) (-4 *6 (-1099)))) (-3683 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-612 *3)) (-4 *3 (-13 (-432 *6) (-27) (-1199))) (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *2 (-1171 (-409 (-1171 *3)))) (-5 *1 (-562 *6 *3 *7)) (-5 *5 (-1171 *3)) (-4 *7 (-1099)))) (-4161 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-612 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1175))) (-5 *5 (-409 (-1171 *2))) (-4 *2 (-13 (-432 *6) (-27) (-1199))) (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *1 (-562 *6 *2 *7)) (-4 *7 (-1099)))) (-4161 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-612 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1175))) (-5 *5 (-1171 *2)) (-4 *2 (-13 (-432 *6) (-27) (-1199))) (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *1 (-562 *6 *2 *7)) (-4 *7 (-1099)))) (-2401 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-612 *3)) (-5 *5 (-644 *3)) (-5 *6 (-409 (-1171 *3))) (-4 *3 (-13 (-432 *7) (-27) (-1199))) (-4 *7 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-562 *7 *3 *8)) (-4 *8 (-1099)))) (-2401 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-612 *3)) (-5 *5 (-644 *3)) (-5 *6 (-1171 *3)) (-4 *3 (-13 (-432 *7) (-27) (-1199))) (-4 *7 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-562 *7 *3 *8)) (-4 *8 (-1099)))) (-3950 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-612 *3)) (-5 *5 (-409 (-1171 *3))) (-4 *3 (-13 (-432 *6) (-27) (-1199))) (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *2 (-2 (|:| -2346 *3) (|:| |coeff| *3))) (-5 *1 (-562 *6 *3 *7)) (-4 *7 (-1099)))) (-3950 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-612 *3)) (-5 *5 (-1171 *3)) (-4 *3 (-13 (-432 *6) (-27) (-1199))) (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *2 (-2 (|:| -2346 *3) (|:| |coeff| *3))) (-5 *1 (-562 *6 *3 *7)) (-4 *7 (-1099)))) (-3281 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-612 *3)) (-5 *5 (-409 (-1171 *3))) (-4 *3 (-13 (-432 *6) (-27) (-1199))) (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *2 (-587 *3)) (-5 *1 (-562 *6 *3 *7)) (-4 *7 (-1099)))) (-3281 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-612 *3)) (-5 *5 (-1171 *3)) (-4 *3 (-13 (-432 *6) (-27) (-1199))) (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *2 (-587 *3)) (-5 *1 (-562 *6 *3 *7)) (-4 *7 (-1099))))) -(-10 -7 (-15 -3281 ((-587 |#2|) |#2| (-612 |#2|) (-612 |#2|) |#2| (-1171 |#2|))) (-15 -3281 ((-587 |#2|) |#2| (-612 |#2|) (-612 |#2|) (-612 |#2|) |#2| (-409 (-1171 |#2|)))) (-15 -3950 ((-3 (-2 (|:| -2346 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-612 |#2|) (-612 |#2|) |#2| |#2| (-1171 |#2|))) (-15 -3950 ((-3 (-2 (|:| -2346 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-612 |#2|) (-612 |#2|) |#2| (-612 |#2|) |#2| (-409 (-1171 |#2|)))) (-15 -2401 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-612 |#2|) (-612 |#2|) (-644 |#2|) |#2| (-1171 |#2|))) (-15 -2401 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-612 |#2|) (-612 |#2|) (-644 |#2|) (-612 |#2|) |#2| (-409 (-1171 |#2|)))) (-15 -4161 ((-3 |#2| "failed") |#2| |#2| (-612 |#2|) (-612 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1175)) |#2| (-1171 |#2|))) (-15 -4161 ((-3 |#2| "failed") |#2| |#2| (-612 |#2|) (-612 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1175)) (-612 |#2|) |#2| (-409 (-1171 |#2|)))) (-15 -3683 ((-1171 (-409 (-1171 |#2|))) |#2| (-612 |#2|) (-612 |#2|) (-1171 |#2|))) (-15 -3851 (|#2| (-1171 (-409 (-1171 |#2|))) (-612 |#2|) |#2|)) (-15 -1662 ((-1171 (-409 (-1171 |#2|))) (-1171 |#2|) (-612 |#2|))) (IF (|has| |#3| (-656 |#2|)) (PROGN (-15 -2583 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2365 (-644 |#2|))) |#3| |#2| (-612 |#2|) (-612 |#2|) |#2| (-1171 |#2|))) (-15 -2583 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2365 (-644 |#2|))) |#3| |#2| (-612 |#2|) (-612 |#2|) (-612 |#2|) |#2| (-409 (-1171 |#2|))))) |%noBranch|)) -((-2967 (((-566) (-566) (-771)) 90)) (-3454 (((-566) (-566)) 88)) (-1701 (((-566) (-566)) 86)) (-2147 (((-566) (-566)) 92)) (-2519 (((-566) (-566) (-566)) 70)) (-3935 (((-566) (-566) (-566)) 67)) (-2471 (((-409 (-566)) (-566)) 30)) (-1557 (((-566) (-566)) 36)) (-3640 (((-566) (-566)) 79)) (-4217 (((-566) (-566)) 51)) (-4259 (((-644 (-566)) (-566)) 85)) (-3434 (((-566) (-566) (-566) (-566) (-566)) 63)) (-4010 (((-409 (-566)) (-566)) 60))) -(((-563) (-10 -7 (-15 -4010 ((-409 (-566)) (-566))) (-15 -3434 ((-566) (-566) (-566) (-566) (-566))) (-15 -4259 ((-644 (-566)) (-566))) (-15 -4217 ((-566) (-566))) (-15 -3640 ((-566) (-566))) (-15 -1557 ((-566) (-566))) (-15 -2471 ((-409 (-566)) (-566))) (-15 -3935 ((-566) (-566) (-566))) (-15 -2519 ((-566) (-566) (-566))) (-15 -2147 ((-566) (-566))) (-15 -1701 ((-566) (-566))) (-15 -3454 ((-566) (-566))) (-15 -2967 ((-566) (-566) (-771))))) (T -563)) -((-2967 (*1 *2 *2 *3) (-12 (-5 *2 (-566)) (-5 *3 (-771)) (-5 *1 (-563)))) (-3454 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563)))) (-1701 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563)))) (-2147 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563)))) (-2519 (*1 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563)))) (-3935 (*1 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563)))) (-2471 (*1 *2 *3) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-563)) (-5 *3 (-566)))) (-1557 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563)))) (-3640 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563)))) (-4217 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563)))) (-4259 (*1 *2 *3) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-563)) (-5 *3 (-566)))) (-3434 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563)))) (-4010 (*1 *2 *3) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-563)) (-5 *3 (-566))))) -(-10 -7 (-15 -4010 ((-409 (-566)) (-566))) (-15 -3434 ((-566) (-566) (-566) (-566) (-566))) (-15 -4259 ((-644 (-566)) (-566))) (-15 -4217 ((-566) (-566))) (-15 -3640 ((-566) (-566))) (-15 -1557 ((-566) (-566))) (-15 -2471 ((-409 (-566)) (-566))) (-15 -3935 ((-566) (-566) (-566))) (-15 -2519 ((-566) (-566) (-566))) (-15 -2147 ((-566) (-566))) (-15 -1701 ((-566) (-566))) (-15 -3454 ((-566) (-566))) (-15 -2967 ((-566) (-566) (-771)))) -((-2497 (((-2 (|:| |answer| |#4|) (|:| -2615 |#4|)) |#4| (-1 |#2| |#2|)) 56))) -(((-564 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2497 ((-2 (|:| |answer| |#4|) (|:| -2615 |#4|)) |#4| (-1 |#2| |#2|)))) (-365) (-1240 |#1|) (-1240 (-409 |#2|)) (-344 |#1| |#2| |#3|)) (T -564)) -((-2497 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1240 *5)) (-4 *5 (-365)) (-4 *7 (-1240 (-409 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2615 *3))) (-5 *1 (-564 *5 *6 *7 *3)) (-4 *3 (-344 *5 *6 *7))))) -(-10 -7 (-15 -2497 ((-2 (|:| |answer| |#4|) (|:| -2615 |#4|)) |#4| (-1 |#2| |#2|)))) -((-2497 (((-2 (|:| |answer| (-409 |#2|)) (|:| -2615 (-409 |#2|)) (|:| |specpart| (-409 |#2|)) (|:| |polypart| |#2|)) (-409 |#2|) (-1 |#2| |#2|)) 18))) -(((-565 |#1| |#2|) (-10 -7 (-15 -2497 ((-2 (|:| |answer| (-409 |#2|)) (|:| -2615 (-409 |#2|)) (|:| |specpart| (-409 |#2|)) (|:| |polypart| |#2|)) (-409 |#2|) (-1 |#2| |#2|)))) (-365) (-1240 |#1|)) (T -565)) -((-2497 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1240 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |answer| (-409 *6)) (|:| -2615 (-409 *6)) (|:| |specpart| (-409 *6)) (|:| |polypart| *6))) (-5 *1 (-565 *5 *6)) (-5 *3 (-409 *6))))) -(-10 -7 (-15 -2497 ((-2 (|:| |answer| (-409 |#2|)) (|:| -2615 (-409 |#2|)) (|:| |specpart| (-409 |#2|)) (|:| |polypart| |#2|)) (-409 |#2|) (-1 |#2| |#2|)))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) 30)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) 97)) (-3991 (($ $) 98)) (-2388 (((-112) $) NIL)) (-1573 (($ $ $) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-3904 (($ $ $ $) 52)) (-1550 (($ $) NIL)) (-3184 (((-420 $) $) NIL)) (-2837 (((-112) $ $) NIL)) (-4364 (((-566) $) NIL)) (-3136 (($ $ $) 92)) (-3012 (($) NIL T CONST)) (-4307 (((-3 (-566) "failed") $) NIL)) (-4205 (((-566) $) NIL)) (-2946 (($ $ $) 54)) (-3577 (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) 77) (((-689 (-566)) (-689 $)) 73)) (-1878 (((-3 $ "failed") $) 94)) (-1521 (((-3 (-409 (-566)) "failed") $) NIL)) (-1942 (((-112) $) NIL)) (-4204 (((-409 (-566)) $) NIL)) (-1552 (($) 79) (($ $) 80)) (-2957 (($ $ $) 91)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL)) (-3268 (((-112) $) NIL)) (-3994 (($ $ $ $) NIL)) (-3680 (($ $ $) 70)) (-1897 (((-112) $) NIL)) (-2529 (($ $ $) NIL)) (-2062 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL)) (-3934 (((-112) $) 34)) (-2824 (((-112) $) 86)) (-4363 (((-3 $ "failed") $) NIL)) (-2117 (((-112) $) 43)) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3324 (($ $ $ $) 55)) (-2097 (($ $ $) 88)) (-3962 (($ $ $) 87)) (-3674 (($ $) NIL)) (-4149 (($ $) 49)) (-2167 (($ $ $) NIL) (($ (-644 $)) NIL)) (-4117 (((-1157) $) 69)) (-2548 (($ $ $) NIL)) (-1761 (($) NIL T CONST)) (-3892 (($ $) 38)) (-4035 (((-1119) $) 42)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) 129)) (-2214 (($ $ $) 95) (($ (-644 $)) NIL)) (-3727 (($ $) NIL)) (-3719 (((-420 $) $) 115)) (-3148 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL)) (-2994 (((-3 $ "failed") $ $) 113)) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1946 (((-112) $) NIL)) (-3039 (((-771) $) NIL)) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) 90)) (-3561 (($ $ (-771)) NIL) (($ $) NIL)) (-3238 (($ $) 40)) (-3940 (($ $) 36)) (-1348 (((-566) $) 48) (((-538) $) 64) (((-892 (-566)) $) NIL) (((-381) $) 58) (((-225) $) 61) (((-1157) $) 66)) (-3783 (((-862) $) 46) (($ (-566)) 47) (($ $) NIL) (($ (-566)) 47)) (-2107 (((-771)) NIL T CONST)) (-3162 (((-112) $ $) NIL)) (-3228 (($ $ $) NIL)) (-3117 (((-112) $ $) NIL)) (-2719 (($) 35)) (-2695 (((-112) $ $) NIL)) (-3313 (($ $ $ $) 51)) (-2086 (($ $) 78)) (-2479 (($) 6 T CONST)) (-4334 (($) 31 T CONST)) (-2452 (((-1157) $) 26) (((-1157) $ (-112)) 27) (((-1269) (-822) $) 28) (((-1269) (-822) $ (-112)) 29)) (-2875 (($ $ (-771)) NIL) (($ $) NIL)) (-3009 (((-112) $ $) 50)) (-2984 (((-112) $ $) 81)) (-2947 (((-112) $ $) 33)) (-2995 (((-112) $ $) 83)) (-2969 (((-112) $ $) 10)) (-3053 (($ $) 16) (($ $ $) 39)) (-3041 (($ $ $) 37)) (** (($ $ (-921)) NIL) (($ $ (-771)) 85)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 84) (($ $ $) 53))) -(((-566) (-13 (-547) (-614 (-1157)) (-828) (-10 -8 (-15 -1552 ($ $)) (-6 -4401) (-6 -4406) (-6 -4402) (-6 -4396)))) (T -566)) -((-1552 (*1 *1 *1) (-5 *1 (-566)))) -(-13 (-547) (-614 (-1157)) (-828) (-10 -8 (-15 -1552 ($ $)) (-6 -4401) (-6 -4406) (-6 -4402) (-6 -4396))) -((-1338 (((-2 (|:| -1338 (-381)) (|:| -2640 (-1157)) (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035))) (-769) (-1062)) 119) (((-2 (|:| -1338 (-381)) (|:| -2640 (-1157)) (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035))) (-769)) 121)) (-1941 (((-3 (-1035) "failed") (-317 (-381)) (-1091 (-843 (-381))) (-1175)) 197) (((-3 (-1035) "failed") (-317 (-381)) (-1091 (-843 (-381))) (-1157)) 196) (((-1035) (-317 (-381)) (-644 (-1093 (-843 (-381)))) (-381) (-381) (-1062)) 201) (((-1035) (-317 (-381)) (-644 (-1093 (-843 (-381)))) (-381) (-381)) 202) (((-1035) (-317 (-381)) (-644 (-1093 (-843 (-381)))) (-381)) 203) (((-1035) (-317 (-381)) (-644 (-1093 (-843 (-381))))) 204) (((-1035) (-317 (-381)) (-1093 (-843 (-381)))) 192) (((-1035) (-317 (-381)) (-1093 (-843 (-381))) (-381)) 191) (((-1035) (-317 (-381)) (-1093 (-843 (-381))) (-381) (-381)) 187) (((-1035) (-769)) 179) (((-1035) (-317 (-381)) (-1093 (-843 (-381))) (-381) (-381) (-1062)) 186))) -(((-567) (-10 -7 (-15 -1941 ((-1035) (-317 (-381)) (-1093 (-843 (-381))) (-381) (-381) (-1062))) (-15 -1941 ((-1035) (-769))) (-15 -1941 ((-1035) (-317 (-381)) (-1093 (-843 (-381))) (-381) (-381))) (-15 -1941 ((-1035) (-317 (-381)) (-1093 (-843 (-381))) (-381))) (-15 -1941 ((-1035) (-317 (-381)) (-1093 (-843 (-381))))) (-15 -1941 ((-1035) (-317 (-381)) (-644 (-1093 (-843 (-381)))))) (-15 -1941 ((-1035) (-317 (-381)) (-644 (-1093 (-843 (-381)))) (-381))) (-15 -1941 ((-1035) (-317 (-381)) (-644 (-1093 (-843 (-381)))) (-381) (-381))) (-15 -1941 ((-1035) (-317 (-381)) (-644 (-1093 (-843 (-381)))) (-381) (-381) (-1062))) (-15 -1338 ((-2 (|:| -1338 (-381)) (|:| -2640 (-1157)) (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035))) (-769))) (-15 -1338 ((-2 (|:| -1338 (-381)) (|:| -2640 (-1157)) (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035))) (-769) (-1062))) (-15 -1941 ((-3 (-1035) "failed") (-317 (-381)) (-1091 (-843 (-381))) (-1157))) (-15 -1941 ((-3 (-1035) "failed") (-317 (-381)) (-1091 (-843 (-381))) (-1175))))) (T -567)) -((-1941 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-317 (-381))) (-5 *4 (-1091 (-843 (-381)))) (-5 *5 (-1175)) (-5 *2 (-1035)) (-5 *1 (-567)))) (-1941 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-317 (-381))) (-5 *4 (-1091 (-843 (-381)))) (-5 *5 (-1157)) (-5 *2 (-1035)) (-5 *1 (-567)))) (-1338 (*1 *2 *3 *4) (-12 (-5 *3 (-769)) (-5 *4 (-1062)) (-5 *2 (-2 (|:| -1338 (-381)) (|:| -2640 (-1157)) (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035)))) (-5 *1 (-567)))) (-1338 (*1 *2 *3) (-12 (-5 *3 (-769)) (-5 *2 (-2 (|:| -1338 (-381)) (|:| -2640 (-1157)) (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035)))) (-5 *1 (-567)))) (-1941 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-644 (-1093 (-843 (-381))))) (-5 *5 (-381)) (-5 *6 (-1062)) (-5 *2 (-1035)) (-5 *1 (-567)))) (-1941 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-644 (-1093 (-843 (-381))))) (-5 *5 (-381)) (-5 *2 (-1035)) (-5 *1 (-567)))) (-1941 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-644 (-1093 (-843 (-381))))) (-5 *5 (-381)) (-5 *2 (-1035)) (-5 *1 (-567)))) (-1941 (*1 *2 *3 *4) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-644 (-1093 (-843 (-381))))) (-5 *2 (-1035)) (-5 *1 (-567)))) (-1941 (*1 *2 *3 *4) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1093 (-843 (-381)))) (-5 *2 (-1035)) (-5 *1 (-567)))) (-1941 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1093 (-843 (-381)))) (-5 *5 (-381)) (-5 *2 (-1035)) (-5 *1 (-567)))) (-1941 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1093 (-843 (-381)))) (-5 *5 (-381)) (-5 *2 (-1035)) (-5 *1 (-567)))) (-1941 (*1 *2 *3) (-12 (-5 *3 (-769)) (-5 *2 (-1035)) (-5 *1 (-567)))) (-1941 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1093 (-843 (-381)))) (-5 *5 (-381)) (-5 *6 (-1062)) (-5 *2 (-1035)) (-5 *1 (-567))))) -(-10 -7 (-15 -1941 ((-1035) (-317 (-381)) (-1093 (-843 (-381))) (-381) (-381) (-1062))) (-15 -1941 ((-1035) (-769))) (-15 -1941 ((-1035) (-317 (-381)) (-1093 (-843 (-381))) (-381) (-381))) (-15 -1941 ((-1035) (-317 (-381)) (-1093 (-843 (-381))) (-381))) (-15 -1941 ((-1035) (-317 (-381)) (-1093 (-843 (-381))))) (-15 -1941 ((-1035) (-317 (-381)) (-644 (-1093 (-843 (-381)))))) (-15 -1941 ((-1035) (-317 (-381)) (-644 (-1093 (-843 (-381)))) (-381))) (-15 -1941 ((-1035) (-317 (-381)) (-644 (-1093 (-843 (-381)))) (-381) (-381))) (-15 -1941 ((-1035) (-317 (-381)) (-644 (-1093 (-843 (-381)))) (-381) (-381) (-1062))) (-15 -1338 ((-2 (|:| -1338 (-381)) (|:| -2640 (-1157)) (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035))) (-769))) (-15 -1338 ((-2 (|:| -1338 (-381)) (|:| -2640 (-1157)) (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035))) (-769) (-1062))) (-15 -1941 ((-3 (-1035) "failed") (-317 (-381)) (-1091 (-843 (-381))) (-1157))) (-15 -1941 ((-3 (-1035) "failed") (-317 (-381)) (-1091 (-843 (-381))) (-1175)))) -((-4355 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-612 |#2|) (-612 |#2|) (-644 |#2|)) 198)) (-1528 (((-587 |#2|) |#2| (-612 |#2|) (-612 |#2|)) 99)) (-4322 (((-3 (-2 (|:| -2346 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-612 |#2|) (-612 |#2|) |#2|) 194)) (-1619 (((-3 |#2| "failed") |#2| |#2| |#2| (-612 |#2|) (-612 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1175))) 203)) (-3290 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2365 (-644 |#2|))) |#3| |#2| (-612 |#2|) (-612 |#2|) (-1175)) 212 (|has| |#3| (-656 |#2|))))) -(((-568 |#1| |#2| |#3|) (-10 -7 (-15 -1528 ((-587 |#2|) |#2| (-612 |#2|) (-612 |#2|))) (-15 -4322 ((-3 (-2 (|:| -2346 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-612 |#2|) (-612 |#2|) |#2|)) (-15 -4355 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-612 |#2|) (-612 |#2|) (-644 |#2|))) (-15 -1619 ((-3 |#2| "failed") |#2| |#2| |#2| (-612 |#2|) (-612 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1175)))) (IF (|has| |#3| (-656 |#2|)) (-15 -3290 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2365 (-644 |#2|))) |#3| |#2| (-612 |#2|) (-612 |#2|) (-1175))) |%noBranch|)) (-13 (-454) (-1038 (-566)) (-147) (-639 (-566))) (-13 (-432 |#1|) (-27) (-1199)) (-1099)) (T -568)) -((-3290 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-612 *4)) (-5 *6 (-1175)) (-4 *4 (-13 (-432 *7) (-27) (-1199))) (-4 *7 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2365 (-644 *4)))) (-5 *1 (-568 *7 *4 *3)) (-4 *3 (-656 *4)) (-4 *3 (-1099)))) (-1619 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-612 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1175))) (-4 *2 (-13 (-432 *5) (-27) (-1199))) (-4 *5 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *1 (-568 *5 *2 *6)) (-4 *6 (-1099)))) (-4355 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-612 *3)) (-5 *5 (-644 *3)) (-4 *3 (-13 (-432 *6) (-27) (-1199))) (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-568 *6 *3 *7)) (-4 *7 (-1099)))) (-4322 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-612 *3)) (-4 *3 (-13 (-432 *5) (-27) (-1199))) (-4 *5 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *2 (-2 (|:| -2346 *3) (|:| |coeff| *3))) (-5 *1 (-568 *5 *3 *6)) (-4 *6 (-1099)))) (-1528 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-612 *3)) (-4 *3 (-13 (-432 *5) (-27) (-1199))) (-4 *5 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *2 (-587 *3)) (-5 *1 (-568 *5 *3 *6)) (-4 *6 (-1099))))) -(-10 -7 (-15 -1528 ((-587 |#2|) |#2| (-612 |#2|) (-612 |#2|))) (-15 -4322 ((-3 (-2 (|:| -2346 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-612 |#2|) (-612 |#2|) |#2|)) (-15 -4355 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-612 |#2|) (-612 |#2|) (-644 |#2|))) (-15 -1619 ((-3 |#2| "failed") |#2| |#2| |#2| (-612 |#2|) (-612 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1175)))) (IF (|has| |#3| (-656 |#2|)) (-15 -3290 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2365 (-644 |#2|))) |#3| |#2| (-612 |#2|) (-612 |#2|) (-1175))) |%noBranch|)) -((-2005 (((-2 (|:| -2465 |#2|) (|:| |nconst| |#2|)) |#2| (-1175)) 64)) (-4366 (((-3 |#2| "failed") |#2| (-1175) (-843 |#2|) (-843 |#2|)) 175 (-12 (|has| |#2| (-1138)) (|has| |#1| (-614 (-892 (-566)))) (|has| |#1| (-886 (-566))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1175)) 154 (-12 (|has| |#2| (-629)) (|has| |#1| (-614 (-892 (-566)))) (|has| |#1| (-886 (-566)))))) (-3338 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1175)) 156 (-12 (|has| |#2| (-629)) (|has| |#1| (-614 (-892 (-566)))) (|has| |#1| (-886 (-566))))))) -(((-569 |#1| |#2|) (-10 -7 (-15 -2005 ((-2 (|:| -2465 |#2|) (|:| |nconst| |#2|)) |#2| (-1175))) (IF (|has| |#1| (-614 (-892 (-566)))) (IF (|has| |#1| (-886 (-566))) (PROGN (IF (|has| |#2| (-629)) (PROGN (-15 -3338 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1175))) (-15 -4366 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1175)))) |%noBranch|) (IF (|has| |#2| (-1138)) (-15 -4366 ((-3 |#2| "failed") |#2| (-1175) (-843 |#2|) (-843 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1038 (-566)) (-454) (-639 (-566))) (-13 (-27) (-1199) (-432 |#1|))) (T -569)) -((-4366 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1175)) (-5 *4 (-843 *2)) (-4 *2 (-1138)) (-4 *2 (-13 (-27) (-1199) (-432 *5))) (-4 *5 (-614 (-892 (-566)))) (-4 *5 (-886 (-566))) (-4 *5 (-13 (-1038 (-566)) (-454) (-639 (-566)))) (-5 *1 (-569 *5 *2)))) (-4366 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1175)) (-4 *5 (-614 (-892 (-566)))) (-4 *5 (-886 (-566))) (-4 *5 (-13 (-1038 (-566)) (-454) (-639 (-566)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-569 *5 *3)) (-4 *3 (-629)) (-4 *3 (-13 (-27) (-1199) (-432 *5))))) (-3338 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1175)) (-4 *5 (-614 (-892 (-566)))) (-4 *5 (-886 (-566))) (-4 *5 (-13 (-1038 (-566)) (-454) (-639 (-566)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-569 *5 *3)) (-4 *3 (-629)) (-4 *3 (-13 (-27) (-1199) (-432 *5))))) (-2005 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-4 *5 (-13 (-1038 (-566)) (-454) (-639 (-566)))) (-5 *2 (-2 (|:| -2465 *3) (|:| |nconst| *3))) (-5 *1 (-569 *5 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5)))))) -(-10 -7 (-15 -2005 ((-2 (|:| -2465 |#2|) (|:| |nconst| |#2|)) |#2| (-1175))) (IF (|has| |#1| (-614 (-892 (-566)))) (IF (|has| |#1| (-886 (-566))) (PROGN (IF (|has| |#2| (-629)) (PROGN (-15 -3338 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1175))) (-15 -4366 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1175)))) |%noBranch|) (IF (|has| |#2| (-1138)) (-15 -4366 ((-3 |#2| "failed") |#2| (-1175) (-843 |#2|) (-843 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-3459 (((-3 (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|)))))) "failed") (-409 |#2|) (-644 (-409 |#2|))) 41)) (-1941 (((-587 (-409 |#2|)) (-409 |#2|)) 28)) (-2262 (((-3 (-409 |#2|) "failed") (-409 |#2|)) 17)) (-2024 (((-3 (-2 (|:| -2346 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-409 |#2|)) 48))) -(((-570 |#1| |#2|) (-10 -7 (-15 -1941 ((-587 (-409 |#2|)) (-409 |#2|))) (-15 -2262 ((-3 (-409 |#2|) "failed") (-409 |#2|))) (-15 -2024 ((-3 (-2 (|:| -2346 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-409 |#2|))) (-15 -3459 ((-3 (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|)))))) "failed") (-409 |#2|) (-644 (-409 |#2|))))) (-13 (-365) (-147) (-1038 (-566))) (-1240 |#1|)) (T -570)) -((-3459 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-644 (-409 *6))) (-5 *3 (-409 *6)) (-4 *6 (-1240 *5)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-570 *5 *6)))) (-2024 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-365) (-147) (-1038 (-566)))) (-4 *5 (-1240 *4)) (-5 *2 (-2 (|:| -2346 (-409 *5)) (|:| |coeff| (-409 *5)))) (-5 *1 (-570 *4 *5)) (-5 *3 (-409 *5)))) (-2262 (*1 *2 *2) (|partial| -12 (-5 *2 (-409 *4)) (-4 *4 (-1240 *3)) (-4 *3 (-13 (-365) (-147) (-1038 (-566)))) (-5 *1 (-570 *3 *4)))) (-1941 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1038 (-566)))) (-4 *5 (-1240 *4)) (-5 *2 (-587 (-409 *5))) (-5 *1 (-570 *4 *5)) (-5 *3 (-409 *5))))) -(-10 -7 (-15 -1941 ((-587 (-409 |#2|)) (-409 |#2|))) (-15 -2262 ((-3 (-409 |#2|) "failed") (-409 |#2|))) (-15 -2024 ((-3 (-2 (|:| -2346 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-409 |#2|))) (-15 -3459 ((-3 (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|)))))) "failed") (-409 |#2|) (-644 (-409 |#2|))))) -((-1626 (((-3 (-566) "failed") |#1|) 14)) (-3354 (((-112) |#1|) 13)) (-1410 (((-566) |#1|) 9))) -(((-571 |#1|) (-10 -7 (-15 -1410 ((-566) |#1|)) (-15 -3354 ((-112) |#1|)) (-15 -1626 ((-3 (-566) "failed") |#1|))) (-1038 (-566))) (T -571)) -((-1626 (*1 *2 *3) (|partial| -12 (-5 *2 (-566)) (-5 *1 (-571 *3)) (-4 *3 (-1038 *2)))) (-3354 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-571 *3)) (-4 *3 (-1038 (-566))))) (-1410 (*1 *2 *3) (-12 (-5 *2 (-566)) (-5 *1 (-571 *3)) (-4 *3 (-1038 *2))))) -(-10 -7 (-15 -1410 ((-566) |#1|)) (-15 -3354 ((-112) |#1|)) (-15 -1626 ((-3 (-566) "failed") |#1|))) -((-1585 (((-3 (-2 (|:| |mainpart| (-409 (-952 |#1|))) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 (-952 |#1|))) (|:| |logand| (-409 (-952 |#1|))))))) "failed") (-409 (-952 |#1|)) (-1175) (-644 (-409 (-952 |#1|)))) 48)) (-1523 (((-587 (-409 (-952 |#1|))) (-409 (-952 |#1|)) (-1175)) 28)) (-3342 (((-3 (-409 (-952 |#1|)) "failed") (-409 (-952 |#1|)) (-1175)) 23)) (-2312 (((-3 (-2 (|:| -2346 (-409 (-952 |#1|))) (|:| |coeff| (-409 (-952 |#1|)))) "failed") (-409 (-952 |#1|)) (-1175) (-409 (-952 |#1|))) 35))) -(((-572 |#1|) (-10 -7 (-15 -1523 ((-587 (-409 (-952 |#1|))) (-409 (-952 |#1|)) (-1175))) (-15 -3342 ((-3 (-409 (-952 |#1|)) "failed") (-409 (-952 |#1|)) (-1175))) (-15 -1585 ((-3 (-2 (|:| |mainpart| (-409 (-952 |#1|))) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 (-952 |#1|))) (|:| |logand| (-409 (-952 |#1|))))))) "failed") (-409 (-952 |#1|)) (-1175) (-644 (-409 (-952 |#1|))))) (-15 -2312 ((-3 (-2 (|:| -2346 (-409 (-952 |#1|))) (|:| |coeff| (-409 (-952 |#1|)))) "failed") (-409 (-952 |#1|)) (-1175) (-409 (-952 |#1|))))) (-13 (-558) (-1038 (-566)) (-147))) (T -572)) -((-2312 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1175)) (-4 *5 (-13 (-558) (-1038 (-566)) (-147))) (-5 *2 (-2 (|:| -2346 (-409 (-952 *5))) (|:| |coeff| (-409 (-952 *5))))) (-5 *1 (-572 *5)) (-5 *3 (-409 (-952 *5))))) (-1585 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1175)) (-5 *5 (-644 (-409 (-952 *6)))) (-5 *3 (-409 (-952 *6))) (-4 *6 (-13 (-558) (-1038 (-566)) (-147))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-572 *6)))) (-3342 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-409 (-952 *4))) (-5 *3 (-1175)) (-4 *4 (-13 (-558) (-1038 (-566)) (-147))) (-5 *1 (-572 *4)))) (-1523 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-4 *5 (-13 (-558) (-1038 (-566)) (-147))) (-5 *2 (-587 (-409 (-952 *5)))) (-5 *1 (-572 *5)) (-5 *3 (-409 (-952 *5)))))) -(-10 -7 (-15 -1523 ((-587 (-409 (-952 |#1|))) (-409 (-952 |#1|)) (-1175))) (-15 -3342 ((-3 (-409 (-952 |#1|)) "failed") (-409 (-952 |#1|)) (-1175))) (-15 -1585 ((-3 (-2 (|:| |mainpart| (-409 (-952 |#1|))) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 (-952 |#1|))) (|:| |logand| (-409 (-952 |#1|))))))) "failed") (-409 (-952 |#1|)) (-1175) (-644 (-409 (-952 |#1|))))) (-15 -2312 ((-3 (-2 (|:| -2346 (-409 (-952 |#1|))) (|:| |coeff| (-409 (-952 |#1|)))) "failed") (-409 (-952 |#1|)) (-1175) (-409 (-952 |#1|))))) -((-3007 (((-112) $ $) 75)) (-1788 (((-112) $) 48)) (-3477 ((|#1| $) 39)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-3991 (($ $) NIL)) (-2388 (((-112) $) 79)) (-4114 (($ $) 140)) (-2109 (($ $) 119)) (-2660 ((|#1| $) 37)) (-4175 (((-3 $ "failed") $ $) NIL)) (-3731 (($ $) NIL)) (-2240 (($ $) 142)) (-2085 (($ $) 115)) (-4134 (($ $) 144)) (-2129 (($ $) 123)) (-3012 (($) NIL T CONST)) (-4307 (((-3 (-566) "failed") $) 94)) (-4205 (((-566) $) 96)) (-1878 (((-3 $ "failed") $) 78)) (-1420 (($ |#1| |#1|) 35)) (-1897 (((-112) $) 44)) (-4361 (($) 105)) (-3934 (((-112) $) 55)) (-2140 (($ $ (-566)) NIL)) (-2117 (((-112) $) 45)) (-2097 (($ $ $) NIL)) (-3962 (($ $ $) NIL)) (-3651 (($ $) 107)) (-2167 (($ $ $) NIL) (($ (-644 $)) NIL)) (-4117 (((-1157) $) NIL)) (-1612 (($ |#1| |#1|) 29) (($ |#1|) 34) (($ (-409 (-566))) 93)) (-1544 ((|#1| $) 36)) (-4035 (((-1119) $) NIL)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2214 (($ $ $) 81) (($ (-644 $)) NIL)) (-2994 (((-3 $ "failed") $ $) 80)) (-2561 (($ $) 109)) (-4144 (($ $) 148)) (-2141 (($ $) 121)) (-4124 (($ $) 150)) (-2118 (($ $) 125)) (-4104 (($ $) 146)) (-2098 (($ $) 117)) (-3194 (((-112) $ |#1|) 42)) (-3783 (((-862) $) 101) (($ (-566)) 83) (($ $) NIL) (($ (-566)) 83)) (-2107 (((-771)) 103 T CONST)) (-3117 (((-112) $ $) NIL)) (-4177 (($ $) 162)) (-2180 (($ $) 131)) (-2695 (((-112) $ $) NIL)) (-4155 (($ $) 160)) (-2153 (($ $) 127)) (-4198 (($ $) 158)) (-2212 (($ $) 138)) (-2976 (($ $) 156)) (-2227 (($ $) 136)) (-4188 (($ $) 154)) (-2196 (($ $) 133)) (-4166 (($ $) 152)) (-2166 (($ $) 129)) (-2479 (($) 30 T CONST)) (-4334 (($) 10 T CONST)) (-3009 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2947 (((-112) $ $) 49)) (-2995 (((-112) $ $) NIL)) (-2969 (((-112) $ $) 47)) (-3053 (($ $) 53) (($ $ $) 54)) (-3041 (($ $ $) 52)) (** (($ $ (-921)) 71) (($ $ (-771)) NIL) (($ $ $) 111) (($ $ (-409 (-566))) 164)) (* (($ (-921) $) 66) (($ (-771) $) NIL) (($ (-566) $) 65) (($ $ $) 61))) +((-3937 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1175) (-644 |#2|)) 38)) (-2317 (((-587 |#2|) |#2| (-1175)) 63)) (-2838 (((-3 |#2| "failed") |#2| (-1175)) 156)) (-4065 (((-3 (-2 (|:| -1641 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1175) (-612 |#2|) (-644 (-612 |#2|))) 159)) (-2582 (((-3 (-2 (|:| -1641 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1175) |#2|) 41))) +(((-559 |#1| |#2|) (-10 -7 (-15 -2582 ((-3 (-2 (|:| -1641 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1175) |#2|)) (-15 -3937 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1175) (-644 |#2|))) (-15 -2838 ((-3 |#2| "failed") |#2| (-1175))) (-15 -2317 ((-587 |#2|) |#2| (-1175))) (-15 -4065 ((-3 (-2 (|:| -1641 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1175) (-612 |#2|) (-644 (-612 |#2|))))) (-13 (-454) (-147) (-1038 (-566)) (-639 (-566))) (-13 (-27) (-1199) (-432 |#1|))) (T -559)) +((-4065 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1175)) (-5 *6 (-644 (-612 *3))) (-5 *5 (-612 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *7))) (-4 *7 (-13 (-454) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-2 (|:| -1641 *3) (|:| |coeff| *3))) (-5 *1 (-559 *7 *3)))) (-2317 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-4 *5 (-13 (-454) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-587 *3)) (-5 *1 (-559 *5 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5))))) (-2838 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1175)) (-4 *4 (-13 (-454) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-559 *4 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *4))))) (-3937 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1175)) (-5 *5 (-644 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *6))) (-4 *6 (-13 (-454) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-559 *6 *3)))) (-2582 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1175)) (-4 *5 (-13 (-454) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-2 (|:| -1641 *3) (|:| |coeff| *3))) (-5 *1 (-559 *5 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5)))))) +(-10 -7 (-15 -2582 ((-3 (-2 (|:| -1641 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1175) |#2|)) (-15 -3937 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1175) (-644 |#2|))) (-15 -2838 ((-3 |#2| "failed") |#2| (-1175))) (-15 -2317 ((-587 |#2|) |#2| (-1175))) (-15 -4065 ((-3 (-2 (|:| -1641 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1175) (-612 |#2|) (-644 (-612 |#2|))))) +((-1364 (((-420 |#1|) |#1|) 19)) (-1624 (((-420 |#1|) |#1|) 34)) (-1495 (((-3 |#1| "failed") |#1|) 51)) (-1879 (((-420 |#1|) |#1|) 64))) +(((-560 |#1|) (-10 -7 (-15 -1624 ((-420 |#1|) |#1|)) (-15 -1364 ((-420 |#1|) |#1|)) (-15 -1879 ((-420 |#1|) |#1|)) (-15 -1495 ((-3 |#1| "failed") |#1|))) (-547)) (T -560)) +((-1495 (*1 *2 *2) (|partial| -12 (-5 *1 (-560 *2)) (-4 *2 (-547)))) (-1879 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-560 *3)) (-4 *3 (-547)))) (-1364 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-560 *3)) (-4 *3 (-547)))) (-1624 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-560 *3)) (-4 *3 (-547))))) +(-10 -7 (-15 -1624 ((-420 |#1|) |#1|)) (-15 -1364 ((-420 |#1|) |#1|)) (-15 -1879 ((-420 |#1|) |#1|)) (-15 -1495 ((-3 |#1| "failed") |#1|))) +((-2302 (($) 9)) (-2039 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 35)) (-4052 (((-644 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $) 32)) (-3888 (($ (-2 (|:| -2674 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2636 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 29)) (-2638 (($ (-644 (-2 (|:| -2674 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2636 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 27)) (-2636 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 39)) (-3486 (((-644 (-2 (|:| -2674 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2636 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 37)) (-2629 (((-1269)) 12))) +(((-561) (-10 -8 (-15 -2302 ($)) (-15 -2629 ((-1269))) (-15 -4052 ((-644 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -2638 ($ (-644 (-2 (|:| -2674 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2636 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3888 ($ (-2 (|:| -2674 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2636 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2039 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3486 ((-644 (-2 (|:| -2674 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2636 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2636 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -561)) +((-2636 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-561)))) (-3486 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| -2674 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2636 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-561)))) (-2039 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-561)))) (-3888 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2674 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2636 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-561)))) (-2638 (*1 *1 *2) (-12 (-5 *2 (-644 (-2 (|:| -2674 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2636 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-561)))) (-4052 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-5 *1 (-561)))) (-2629 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-561)))) (-2302 (*1 *1) (-5 *1 (-561)))) +(-10 -8 (-15 -2302 ($)) (-15 -2629 ((-1269))) (-15 -4052 ((-644 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -2638 ($ (-644 (-2 (|:| -2674 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2636 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3888 ($ (-2 (|:| -2674 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2636 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2039 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3486 ((-644 (-2 (|:| -2674 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2636 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2636 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) +((-1590 (((-1171 (-409 (-1171 |#2|))) |#2| (-612 |#2|) (-612 |#2|) (-1171 |#2|)) 35)) (-1325 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-612 |#2|) (-612 |#2|) (-644 |#2|) (-612 |#2|) |#2| (-409 (-1171 |#2|))) 105) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-612 |#2|) (-612 |#2|) (-644 |#2|) |#2| (-1171 |#2|)) 115)) (-1760 (((-587 |#2|) |#2| (-612 |#2|) (-612 |#2|) (-612 |#2|) |#2| (-409 (-1171 |#2|))) 85) (((-587 |#2|) |#2| (-612 |#2|) (-612 |#2|) |#2| (-1171 |#2|)) 55)) (-1318 (((-3 (-2 (|:| -1641 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-612 |#2|) (-612 |#2|) |#2| (-612 |#2|) |#2| (-409 (-1171 |#2|))) 92) (((-3 (-2 (|:| -1641 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-612 |#2|) (-612 |#2|) |#2| |#2| (-1171 |#2|)) 114)) (-2041 (((-3 |#2| "failed") |#2| |#2| (-612 |#2|) (-612 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1175)) (-612 |#2|) |#2| (-409 (-1171 |#2|))) 110) (((-3 |#2| "failed") |#2| |#2| (-612 |#2|) (-612 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1175)) |#2| (-1171 |#2|)) 116)) (-1990 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2875 (-644 |#2|))) |#3| |#2| (-612 |#2|) (-612 |#2|) (-612 |#2|) |#2| (-409 (-1171 |#2|))) 135 (|has| |#3| (-656 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2875 (-644 |#2|))) |#3| |#2| (-612 |#2|) (-612 |#2|) |#2| (-1171 |#2|)) 134 (|has| |#3| (-656 |#2|)))) (-1757 ((|#2| (-1171 (-409 (-1171 |#2|))) (-612 |#2|) |#2|) 53)) (-2860 (((-1171 (-409 (-1171 |#2|))) (-1171 |#2|) (-612 |#2|)) 34))) +(((-562 |#1| |#2| |#3|) (-10 -7 (-15 -1760 ((-587 |#2|) |#2| (-612 |#2|) (-612 |#2|) |#2| (-1171 |#2|))) (-15 -1760 ((-587 |#2|) |#2| (-612 |#2|) (-612 |#2|) (-612 |#2|) |#2| (-409 (-1171 |#2|)))) (-15 -1318 ((-3 (-2 (|:| -1641 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-612 |#2|) (-612 |#2|) |#2| |#2| (-1171 |#2|))) (-15 -1318 ((-3 (-2 (|:| -1641 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-612 |#2|) (-612 |#2|) |#2| (-612 |#2|) |#2| (-409 (-1171 |#2|)))) (-15 -1325 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-612 |#2|) (-612 |#2|) (-644 |#2|) |#2| (-1171 |#2|))) (-15 -1325 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-612 |#2|) (-612 |#2|) (-644 |#2|) (-612 |#2|) |#2| (-409 (-1171 |#2|)))) (-15 -2041 ((-3 |#2| "failed") |#2| |#2| (-612 |#2|) (-612 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1175)) |#2| (-1171 |#2|))) (-15 -2041 ((-3 |#2| "failed") |#2| |#2| (-612 |#2|) (-612 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1175)) (-612 |#2|) |#2| (-409 (-1171 |#2|)))) (-15 -1590 ((-1171 (-409 (-1171 |#2|))) |#2| (-612 |#2|) (-612 |#2|) (-1171 |#2|))) (-15 -1757 (|#2| (-1171 (-409 (-1171 |#2|))) (-612 |#2|) |#2|)) (-15 -2860 ((-1171 (-409 (-1171 |#2|))) (-1171 |#2|) (-612 |#2|))) (IF (|has| |#3| (-656 |#2|)) (PROGN (-15 -1990 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2875 (-644 |#2|))) |#3| |#2| (-612 |#2|) (-612 |#2|) |#2| (-1171 |#2|))) (-15 -1990 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2875 (-644 |#2|))) |#3| |#2| (-612 |#2|) (-612 |#2|) (-612 |#2|) |#2| (-409 (-1171 |#2|))))) |%noBranch|)) (-13 (-454) (-1038 (-566)) (-147) (-639 (-566))) (-13 (-432 |#1|) (-27) (-1199)) (-1099)) (T -562)) +((-1990 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-612 *4)) (-5 *6 (-409 (-1171 *4))) (-4 *4 (-13 (-432 *7) (-27) (-1199))) (-4 *7 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2875 (-644 *4)))) (-5 *1 (-562 *7 *4 *3)) (-4 *3 (-656 *4)) (-4 *3 (-1099)))) (-1990 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-612 *4)) (-5 *6 (-1171 *4)) (-4 *4 (-13 (-432 *7) (-27) (-1199))) (-4 *7 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2875 (-644 *4)))) (-5 *1 (-562 *7 *4 *3)) (-4 *3 (-656 *4)) (-4 *3 (-1099)))) (-2860 (*1 *2 *3 *4) (-12 (-5 *4 (-612 *6)) (-4 *6 (-13 (-432 *5) (-27) (-1199))) (-4 *5 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *2 (-1171 (-409 (-1171 *6)))) (-5 *1 (-562 *5 *6 *7)) (-5 *3 (-1171 *6)) (-4 *7 (-1099)))) (-1757 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1171 (-409 (-1171 *2)))) (-5 *4 (-612 *2)) (-4 *2 (-13 (-432 *5) (-27) (-1199))) (-4 *5 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *1 (-562 *5 *2 *6)) (-4 *6 (-1099)))) (-1590 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-612 *3)) (-4 *3 (-13 (-432 *6) (-27) (-1199))) (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *2 (-1171 (-409 (-1171 *3)))) (-5 *1 (-562 *6 *3 *7)) (-5 *5 (-1171 *3)) (-4 *7 (-1099)))) (-2041 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-612 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1175))) (-5 *5 (-409 (-1171 *2))) (-4 *2 (-13 (-432 *6) (-27) (-1199))) (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *1 (-562 *6 *2 *7)) (-4 *7 (-1099)))) (-2041 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-612 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1175))) (-5 *5 (-1171 *2)) (-4 *2 (-13 (-432 *6) (-27) (-1199))) (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *1 (-562 *6 *2 *7)) (-4 *7 (-1099)))) (-1325 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-612 *3)) (-5 *5 (-644 *3)) (-5 *6 (-409 (-1171 *3))) (-4 *3 (-13 (-432 *7) (-27) (-1199))) (-4 *7 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-562 *7 *3 *8)) (-4 *8 (-1099)))) (-1325 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-612 *3)) (-5 *5 (-644 *3)) (-5 *6 (-1171 *3)) (-4 *3 (-13 (-432 *7) (-27) (-1199))) (-4 *7 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-562 *7 *3 *8)) (-4 *8 (-1099)))) (-1318 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-612 *3)) (-5 *5 (-409 (-1171 *3))) (-4 *3 (-13 (-432 *6) (-27) (-1199))) (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *2 (-2 (|:| -1641 *3) (|:| |coeff| *3))) (-5 *1 (-562 *6 *3 *7)) (-4 *7 (-1099)))) (-1318 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-612 *3)) (-5 *5 (-1171 *3)) (-4 *3 (-13 (-432 *6) (-27) (-1199))) (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *2 (-2 (|:| -1641 *3) (|:| |coeff| *3))) (-5 *1 (-562 *6 *3 *7)) (-4 *7 (-1099)))) (-1760 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-612 *3)) (-5 *5 (-409 (-1171 *3))) (-4 *3 (-13 (-432 *6) (-27) (-1199))) (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *2 (-587 *3)) (-5 *1 (-562 *6 *3 *7)) (-4 *7 (-1099)))) (-1760 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-612 *3)) (-5 *5 (-1171 *3)) (-4 *3 (-13 (-432 *6) (-27) (-1199))) (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *2 (-587 *3)) (-5 *1 (-562 *6 *3 *7)) (-4 *7 (-1099))))) +(-10 -7 (-15 -1760 ((-587 |#2|) |#2| (-612 |#2|) (-612 |#2|) |#2| (-1171 |#2|))) (-15 -1760 ((-587 |#2|) |#2| (-612 |#2|) (-612 |#2|) (-612 |#2|) |#2| (-409 (-1171 |#2|)))) (-15 -1318 ((-3 (-2 (|:| -1641 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-612 |#2|) (-612 |#2|) |#2| |#2| (-1171 |#2|))) (-15 -1318 ((-3 (-2 (|:| -1641 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-612 |#2|) (-612 |#2|) |#2| (-612 |#2|) |#2| (-409 (-1171 |#2|)))) (-15 -1325 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-612 |#2|) (-612 |#2|) (-644 |#2|) |#2| (-1171 |#2|))) (-15 -1325 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-612 |#2|) (-612 |#2|) (-644 |#2|) (-612 |#2|) |#2| (-409 (-1171 |#2|)))) (-15 -2041 ((-3 |#2| "failed") |#2| |#2| (-612 |#2|) (-612 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1175)) |#2| (-1171 |#2|))) (-15 -2041 ((-3 |#2| "failed") |#2| |#2| (-612 |#2|) (-612 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1175)) (-612 |#2|) |#2| (-409 (-1171 |#2|)))) (-15 -1590 ((-1171 (-409 (-1171 |#2|))) |#2| (-612 |#2|) (-612 |#2|) (-1171 |#2|))) (-15 -1757 (|#2| (-1171 (-409 (-1171 |#2|))) (-612 |#2|) |#2|)) (-15 -2860 ((-1171 (-409 (-1171 |#2|))) (-1171 |#2|) (-612 |#2|))) (IF (|has| |#3| (-656 |#2|)) (PROGN (-15 -1990 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2875 (-644 |#2|))) |#3| |#2| (-612 |#2|) (-612 |#2|) |#2| (-1171 |#2|))) (-15 -1990 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2875 (-644 |#2|))) |#3| |#2| (-612 |#2|) (-612 |#2|) (-612 |#2|) |#2| (-409 (-1171 |#2|))))) |%noBranch|)) +((-2115 (((-566) (-566) (-771)) 90)) (-2960 (((-566) (-566)) 88)) (-1970 (((-566) (-566)) 86)) (-4097 (((-566) (-566)) 92)) (-2654 (((-566) (-566) (-566)) 70)) (-2492 (((-566) (-566) (-566)) 67)) (-3295 (((-409 (-566)) (-566)) 30)) (-1941 (((-566) (-566)) 36)) (-4176 (((-566) (-566)) 79)) (-3700 (((-566) (-566)) 51)) (-2379 (((-644 (-566)) (-566)) 85)) (-1630 (((-566) (-566) (-566) (-566) (-566)) 63)) (-3539 (((-409 (-566)) (-566)) 60))) +(((-563) (-10 -7 (-15 -3539 ((-409 (-566)) (-566))) (-15 -1630 ((-566) (-566) (-566) (-566) (-566))) (-15 -2379 ((-644 (-566)) (-566))) (-15 -3700 ((-566) (-566))) (-15 -4176 ((-566) (-566))) (-15 -1941 ((-566) (-566))) (-15 -3295 ((-409 (-566)) (-566))) (-15 -2492 ((-566) (-566) (-566))) (-15 -2654 ((-566) (-566) (-566))) (-15 -4097 ((-566) (-566))) (-15 -1970 ((-566) (-566))) (-15 -2960 ((-566) (-566))) (-15 -2115 ((-566) (-566) (-771))))) (T -563)) +((-2115 (*1 *2 *2 *3) (-12 (-5 *2 (-566)) (-5 *3 (-771)) (-5 *1 (-563)))) (-2960 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563)))) (-1970 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563)))) (-4097 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563)))) (-2654 (*1 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563)))) (-2492 (*1 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563)))) (-3295 (*1 *2 *3) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-563)) (-5 *3 (-566)))) (-1941 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563)))) (-4176 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563)))) (-3700 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563)))) (-2379 (*1 *2 *3) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-563)) (-5 *3 (-566)))) (-1630 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563)))) (-3539 (*1 *2 *3) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-563)) (-5 *3 (-566))))) +(-10 -7 (-15 -3539 ((-409 (-566)) (-566))) (-15 -1630 ((-566) (-566) (-566) (-566) (-566))) (-15 -2379 ((-644 (-566)) (-566))) (-15 -3700 ((-566) (-566))) (-15 -4176 ((-566) (-566))) (-15 -1941 ((-566) (-566))) (-15 -3295 ((-409 (-566)) (-566))) (-15 -2492 ((-566) (-566) (-566))) (-15 -2654 ((-566) (-566) (-566))) (-15 -4097 ((-566) (-566))) (-15 -1970 ((-566) (-566))) (-15 -2960 ((-566) (-566))) (-15 -2115 ((-566) (-566) (-771)))) +((-4077 (((-2 (|:| |answer| |#4|) (|:| -3137 |#4|)) |#4| (-1 |#2| |#2|)) 56))) +(((-564 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4077 ((-2 (|:| |answer| |#4|) (|:| -3137 |#4|)) |#4| (-1 |#2| |#2|)))) (-365) (-1240 |#1|) (-1240 (-409 |#2|)) (-344 |#1| |#2| |#3|)) (T -564)) +((-4077 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1240 *5)) (-4 *5 (-365)) (-4 *7 (-1240 (-409 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -3137 *3))) (-5 *1 (-564 *5 *6 *7 *3)) (-4 *3 (-344 *5 *6 *7))))) +(-10 -7 (-15 -4077 ((-2 (|:| |answer| |#4|) (|:| -3137 |#4|)) |#4| (-1 |#2| |#2|)))) +((-4077 (((-2 (|:| |answer| (-409 |#2|)) (|:| -3137 (-409 |#2|)) (|:| |specpart| (-409 |#2|)) (|:| |polypart| |#2|)) (-409 |#2|) (-1 |#2| |#2|)) 18))) +(((-565 |#1| |#2|) (-10 -7 (-15 -4077 ((-2 (|:| |answer| (-409 |#2|)) (|:| -3137 (-409 |#2|)) (|:| |specpart| (-409 |#2|)) (|:| |polypart| |#2|)) (-409 |#2|) (-1 |#2| |#2|)))) (-365) (-1240 |#1|)) (T -565)) +((-4077 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1240 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |answer| (-409 *6)) (|:| -3137 (-409 *6)) (|:| |specpart| (-409 *6)) (|:| |polypart| *6))) (-5 *1 (-565 *5 *6)) (-5 *3 (-409 *6))))) +(-10 -7 (-15 -4077 ((-2 (|:| |answer| (-409 |#2|)) (|:| -3137 (-409 |#2|)) (|:| |specpart| (-409 |#2|)) (|:| |polypart| |#2|)) (-409 |#2|) (-1 |#2| |#2|)))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) 30)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) 97)) (-2161 (($ $) 98)) (-2345 (((-112) $) NIL)) (-2871 (($ $ $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-1345 (($ $ $ $) 52)) (-1378 (($ $) NIL)) (-1364 (((-420 $) $) NIL)) (-2085 (((-112) $ $) NIL)) (-2743 (((-566) $) NIL)) (-3764 (($ $ $) 92)) (-2463 (($) NIL T CONST)) (-2229 (((-3 (-566) "failed") $) NIL)) (-4158 (((-566) $) NIL)) (-2933 (($ $ $) 54)) (-4089 (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) 77) (((-689 (-566)) (-689 $)) 73)) (-3245 (((-3 $ "failed") $) 94)) (-4391 (((-3 (-409 (-566)) "failed") $) NIL)) (-3407 (((-112) $) NIL)) (-1786 (((-409 (-566)) $) NIL)) (-2715 (($) 79) (($ $) 80)) (-2945 (($ $ $) 91)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL)) (-1615 (((-112) $) NIL)) (-2501 (($ $ $ $) NIL)) (-1732 (($ $ $) 70)) (-2528 (((-112) $) NIL)) (-2413 (($ $ $) NIL)) (-2926 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL)) (-2389 (((-112) $) 34)) (-3419 (((-112) $) 86)) (-2621 (((-3 $ "failed") $) NIL)) (-3233 (((-112) $) 43)) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2505 (($ $ $ $) 55)) (-1478 (($ $ $) 88)) (-2599 (($ $ $) 87)) (-3479 (($ $) NIL)) (-2440 (($ $) 49)) (-2128 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3380 (((-1157) $) 69)) (-1517 (($ $ $) NIL)) (-3289 (($) NIL T CONST)) (-1847 (($ $) 38)) (-4072 (((-1119) $) 42)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) 129)) (-2164 (($ $ $) 95) (($ (-644 $)) NIL)) (-2499 (($ $) NIL)) (-1624 (((-420 $) $) 115)) (-3005 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL)) (-2978 (((-3 $ "failed") $ $) 113)) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2664 (((-112) $) NIL)) (-4357 (((-771) $) NIL)) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) 90)) (-3629 (($ $ (-771)) NIL) (($ $) NIL)) (-2028 (($ $) 40)) (-1480 (($ $) 36)) (-2376 (((-566) $) 48) (((-538) $) 64) (((-892 (-566)) $) NIL) (((-381) $) 58) (((-225) $) 61) (((-1157) $) 66)) (-3152 (((-862) $) 46) (($ (-566)) 47) (($ $) NIL) (($ (-566)) 47)) (-2593 (((-771)) NIL T CONST)) (-2992 (((-112) $ $) NIL)) (-2073 (($ $ $) NIL)) (-3044 (((-112) $ $) NIL)) (-2576 (($) 35)) (-3014 (((-112) $ $) NIL)) (-1725 (($ $ $ $) 51)) (-1358 (($ $) 78)) (-4356 (($) 6 T CONST)) (-4366 (($) 31 T CONST)) (-2226 (((-1157) $) 26) (((-1157) $ (-112)) 27) (((-1269) (-822) $) 28) (((-1269) (-822) $ (-112)) 29)) (-3497 (($ $ (-771)) NIL) (($ $) NIL)) (-2968 (((-112) $ $) 50)) (-2946 (((-112) $ $) 81)) (-2914 (((-112) $ $) 33)) (-2956 (((-112) $ $) 83)) (-2935 (((-112) $ $) 10)) (-3012 (($ $) 16) (($ $ $) 39)) (-3002 (($ $ $) 37)) (** (($ $ (-921)) NIL) (($ $ (-771)) 85)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 84) (($ $ $) 53))) +(((-566) (-13 (-547) (-614 (-1157)) (-828) (-10 -8 (-15 -2715 ($ $)) (-6 -4401) (-6 -4406) (-6 -4402) (-6 -4396)))) (T -566)) +((-2715 (*1 *1 *1) (-5 *1 (-566)))) +(-13 (-547) (-614 (-1157)) (-828) (-10 -8 (-15 -2715 ($ $)) (-6 -4401) (-6 -4406) (-6 -4402) (-6 -4396))) +((-2659 (((-2 (|:| -2659 (-381)) (|:| -1368 (-1157)) (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035))) (-769) (-1062)) 119) (((-2 (|:| -2659 (-381)) (|:| -1368 (-1157)) (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035))) (-769)) 121)) (-3313 (((-3 (-1035) "failed") (-317 (-381)) (-1091 (-843 (-381))) (-1175)) 197) (((-3 (-1035) "failed") (-317 (-381)) (-1091 (-843 (-381))) (-1157)) 196) (((-1035) (-317 (-381)) (-644 (-1093 (-843 (-381)))) (-381) (-381) (-1062)) 201) (((-1035) (-317 (-381)) (-644 (-1093 (-843 (-381)))) (-381) (-381)) 202) (((-1035) (-317 (-381)) (-644 (-1093 (-843 (-381)))) (-381)) 203) (((-1035) (-317 (-381)) (-644 (-1093 (-843 (-381))))) 204) (((-1035) (-317 (-381)) (-1093 (-843 (-381)))) 192) (((-1035) (-317 (-381)) (-1093 (-843 (-381))) (-381)) 191) (((-1035) (-317 (-381)) (-1093 (-843 (-381))) (-381) (-381)) 187) (((-1035) (-769)) 179) (((-1035) (-317 (-381)) (-1093 (-843 (-381))) (-381) (-381) (-1062)) 186))) +(((-567) (-10 -7 (-15 -3313 ((-1035) (-317 (-381)) (-1093 (-843 (-381))) (-381) (-381) (-1062))) (-15 -3313 ((-1035) (-769))) (-15 -3313 ((-1035) (-317 (-381)) (-1093 (-843 (-381))) (-381) (-381))) (-15 -3313 ((-1035) (-317 (-381)) (-1093 (-843 (-381))) (-381))) (-15 -3313 ((-1035) (-317 (-381)) (-1093 (-843 (-381))))) (-15 -3313 ((-1035) (-317 (-381)) (-644 (-1093 (-843 (-381)))))) (-15 -3313 ((-1035) (-317 (-381)) (-644 (-1093 (-843 (-381)))) (-381))) (-15 -3313 ((-1035) (-317 (-381)) (-644 (-1093 (-843 (-381)))) (-381) (-381))) (-15 -3313 ((-1035) (-317 (-381)) (-644 (-1093 (-843 (-381)))) (-381) (-381) (-1062))) (-15 -2659 ((-2 (|:| -2659 (-381)) (|:| -1368 (-1157)) (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035))) (-769))) (-15 -2659 ((-2 (|:| -2659 (-381)) (|:| -1368 (-1157)) (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035))) (-769) (-1062))) (-15 -3313 ((-3 (-1035) "failed") (-317 (-381)) (-1091 (-843 (-381))) (-1157))) (-15 -3313 ((-3 (-1035) "failed") (-317 (-381)) (-1091 (-843 (-381))) (-1175))))) (T -567)) +((-3313 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-317 (-381))) (-5 *4 (-1091 (-843 (-381)))) (-5 *5 (-1175)) (-5 *2 (-1035)) (-5 *1 (-567)))) (-3313 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-317 (-381))) (-5 *4 (-1091 (-843 (-381)))) (-5 *5 (-1157)) (-5 *2 (-1035)) (-5 *1 (-567)))) (-2659 (*1 *2 *3 *4) (-12 (-5 *3 (-769)) (-5 *4 (-1062)) (-5 *2 (-2 (|:| -2659 (-381)) (|:| -1368 (-1157)) (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035)))) (-5 *1 (-567)))) (-2659 (*1 *2 *3) (-12 (-5 *3 (-769)) (-5 *2 (-2 (|:| -2659 (-381)) (|:| -1368 (-1157)) (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035)))) (-5 *1 (-567)))) (-3313 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-644 (-1093 (-843 (-381))))) (-5 *5 (-381)) (-5 *6 (-1062)) (-5 *2 (-1035)) (-5 *1 (-567)))) (-3313 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-644 (-1093 (-843 (-381))))) (-5 *5 (-381)) (-5 *2 (-1035)) (-5 *1 (-567)))) (-3313 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-644 (-1093 (-843 (-381))))) (-5 *5 (-381)) (-5 *2 (-1035)) (-5 *1 (-567)))) (-3313 (*1 *2 *3 *4) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-644 (-1093 (-843 (-381))))) (-5 *2 (-1035)) (-5 *1 (-567)))) (-3313 (*1 *2 *3 *4) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1093 (-843 (-381)))) (-5 *2 (-1035)) (-5 *1 (-567)))) (-3313 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1093 (-843 (-381)))) (-5 *5 (-381)) (-5 *2 (-1035)) (-5 *1 (-567)))) (-3313 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1093 (-843 (-381)))) (-5 *5 (-381)) (-5 *2 (-1035)) (-5 *1 (-567)))) (-3313 (*1 *2 *3) (-12 (-5 *3 (-769)) (-5 *2 (-1035)) (-5 *1 (-567)))) (-3313 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1093 (-843 (-381)))) (-5 *5 (-381)) (-5 *6 (-1062)) (-5 *2 (-1035)) (-5 *1 (-567))))) +(-10 -7 (-15 -3313 ((-1035) (-317 (-381)) (-1093 (-843 (-381))) (-381) (-381) (-1062))) (-15 -3313 ((-1035) (-769))) (-15 -3313 ((-1035) (-317 (-381)) (-1093 (-843 (-381))) (-381) (-381))) (-15 -3313 ((-1035) (-317 (-381)) (-1093 (-843 (-381))) (-381))) (-15 -3313 ((-1035) (-317 (-381)) (-1093 (-843 (-381))))) (-15 -3313 ((-1035) (-317 (-381)) (-644 (-1093 (-843 (-381)))))) (-15 -3313 ((-1035) (-317 (-381)) (-644 (-1093 (-843 (-381)))) (-381))) (-15 -3313 ((-1035) (-317 (-381)) (-644 (-1093 (-843 (-381)))) (-381) (-381))) (-15 -3313 ((-1035) (-317 (-381)) (-644 (-1093 (-843 (-381)))) (-381) (-381) (-1062))) (-15 -2659 ((-2 (|:| -2659 (-381)) (|:| -1368 (-1157)) (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035))) (-769))) (-15 -2659 ((-2 (|:| -2659 (-381)) (|:| -1368 (-1157)) (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035))) (-769) (-1062))) (-15 -3313 ((-3 (-1035) "failed") (-317 (-381)) (-1091 (-843 (-381))) (-1157))) (-15 -3313 ((-3 (-1035) "failed") (-317 (-381)) (-1091 (-843 (-381))) (-1175)))) +((-4283 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-612 |#2|) (-612 |#2|) (-644 |#2|)) 198)) (-2646 (((-587 |#2|) |#2| (-612 |#2|) (-612 |#2|)) 99)) (-4322 (((-3 (-2 (|:| -1641 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-612 |#2|) (-612 |#2|) |#2|) 194)) (-3865 (((-3 |#2| "failed") |#2| |#2| |#2| (-612 |#2|) (-612 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1175))) 203)) (-4361 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2875 (-644 |#2|))) |#3| |#2| (-612 |#2|) (-612 |#2|) (-1175)) 212 (|has| |#3| (-656 |#2|))))) +(((-568 |#1| |#2| |#3|) (-10 -7 (-15 -2646 ((-587 |#2|) |#2| (-612 |#2|) (-612 |#2|))) (-15 -4322 ((-3 (-2 (|:| -1641 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-612 |#2|) (-612 |#2|) |#2|)) (-15 -4283 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-612 |#2|) (-612 |#2|) (-644 |#2|))) (-15 -3865 ((-3 |#2| "failed") |#2| |#2| |#2| (-612 |#2|) (-612 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1175)))) (IF (|has| |#3| (-656 |#2|)) (-15 -4361 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2875 (-644 |#2|))) |#3| |#2| (-612 |#2|) (-612 |#2|) (-1175))) |%noBranch|)) (-13 (-454) (-1038 (-566)) (-147) (-639 (-566))) (-13 (-432 |#1|) (-27) (-1199)) (-1099)) (T -568)) +((-4361 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-612 *4)) (-5 *6 (-1175)) (-4 *4 (-13 (-432 *7) (-27) (-1199))) (-4 *7 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2875 (-644 *4)))) (-5 *1 (-568 *7 *4 *3)) (-4 *3 (-656 *4)) (-4 *3 (-1099)))) (-3865 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-612 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1175))) (-4 *2 (-13 (-432 *5) (-27) (-1199))) (-4 *5 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *1 (-568 *5 *2 *6)) (-4 *6 (-1099)))) (-4283 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-612 *3)) (-5 *5 (-644 *3)) (-4 *3 (-13 (-432 *6) (-27) (-1199))) (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-568 *6 *3 *7)) (-4 *7 (-1099)))) (-4322 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-612 *3)) (-4 *3 (-13 (-432 *5) (-27) (-1199))) (-4 *5 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *2 (-2 (|:| -1641 *3) (|:| |coeff| *3))) (-5 *1 (-568 *5 *3 *6)) (-4 *6 (-1099)))) (-2646 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-612 *3)) (-4 *3 (-13 (-432 *5) (-27) (-1199))) (-4 *5 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *2 (-587 *3)) (-5 *1 (-568 *5 *3 *6)) (-4 *6 (-1099))))) +(-10 -7 (-15 -2646 ((-587 |#2|) |#2| (-612 |#2|) (-612 |#2|))) (-15 -4322 ((-3 (-2 (|:| -1641 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-612 |#2|) (-612 |#2|) |#2|)) (-15 -4283 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-612 |#2|) (-612 |#2|) (-644 |#2|))) (-15 -3865 ((-3 |#2| "failed") |#2| |#2| |#2| (-612 |#2|) (-612 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1175)))) (IF (|has| |#3| (-656 |#2|)) (-15 -4361 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2875 (-644 |#2|))) |#3| |#2| (-612 |#2|) (-612 |#2|) (-1175))) |%noBranch|)) +((-3532 (((-2 (|:| -4182 |#2|) (|:| |nconst| |#2|)) |#2| (-1175)) 64)) (-2855 (((-3 |#2| "failed") |#2| (-1175) (-843 |#2|) (-843 |#2|)) 175 (-12 (|has| |#2| (-1138)) (|has| |#1| (-614 (-892 (-566)))) (|has| |#1| (-886 (-566))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1175)) 154 (-12 (|has| |#2| (-629)) (|has| |#1| (-614 (-892 (-566)))) (|has| |#1| (-886 (-566)))))) (-1518 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1175)) 156 (-12 (|has| |#2| (-629)) (|has| |#1| (-614 (-892 (-566)))) (|has| |#1| (-886 (-566))))))) +(((-569 |#1| |#2|) (-10 -7 (-15 -3532 ((-2 (|:| -4182 |#2|) (|:| |nconst| |#2|)) |#2| (-1175))) (IF (|has| |#1| (-614 (-892 (-566)))) (IF (|has| |#1| (-886 (-566))) (PROGN (IF (|has| |#2| (-629)) (PROGN (-15 -1518 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1175))) (-15 -2855 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1175)))) |%noBranch|) (IF (|has| |#2| (-1138)) (-15 -2855 ((-3 |#2| "failed") |#2| (-1175) (-843 |#2|) (-843 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1038 (-566)) (-454) (-639 (-566))) (-13 (-27) (-1199) (-432 |#1|))) (T -569)) +((-2855 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1175)) (-5 *4 (-843 *2)) (-4 *2 (-1138)) (-4 *2 (-13 (-27) (-1199) (-432 *5))) (-4 *5 (-614 (-892 (-566)))) (-4 *5 (-886 (-566))) (-4 *5 (-13 (-1038 (-566)) (-454) (-639 (-566)))) (-5 *1 (-569 *5 *2)))) (-2855 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1175)) (-4 *5 (-614 (-892 (-566)))) (-4 *5 (-886 (-566))) (-4 *5 (-13 (-1038 (-566)) (-454) (-639 (-566)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-569 *5 *3)) (-4 *3 (-629)) (-4 *3 (-13 (-27) (-1199) (-432 *5))))) (-1518 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1175)) (-4 *5 (-614 (-892 (-566)))) (-4 *5 (-886 (-566))) (-4 *5 (-13 (-1038 (-566)) (-454) (-639 (-566)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-569 *5 *3)) (-4 *3 (-629)) (-4 *3 (-13 (-27) (-1199) (-432 *5))))) (-3532 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-4 *5 (-13 (-1038 (-566)) (-454) (-639 (-566)))) (-5 *2 (-2 (|:| -4182 *3) (|:| |nconst| *3))) (-5 *1 (-569 *5 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5)))))) +(-10 -7 (-15 -3532 ((-2 (|:| -4182 |#2|) (|:| |nconst| |#2|)) |#2| (-1175))) (IF (|has| |#1| (-614 (-892 (-566)))) (IF (|has| |#1| (-886 (-566))) (PROGN (IF (|has| |#2| (-629)) (PROGN (-15 -1518 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1175))) (-15 -2855 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1175)))) |%noBranch|) (IF (|has| |#2| (-1138)) (-15 -2855 ((-3 |#2| "failed") |#2| (-1175) (-843 |#2|) (-843 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-3244 (((-3 (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|)))))) "failed") (-409 |#2|) (-644 (-409 |#2|))) 41)) (-3313 (((-587 (-409 |#2|)) (-409 |#2|)) 28)) (-3984 (((-3 (-409 |#2|) "failed") (-409 |#2|)) 17)) (-1560 (((-3 (-2 (|:| -1641 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-409 |#2|)) 48))) +(((-570 |#1| |#2|) (-10 -7 (-15 -3313 ((-587 (-409 |#2|)) (-409 |#2|))) (-15 -3984 ((-3 (-409 |#2|) "failed") (-409 |#2|))) (-15 -1560 ((-3 (-2 (|:| -1641 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-409 |#2|))) (-15 -3244 ((-3 (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|)))))) "failed") (-409 |#2|) (-644 (-409 |#2|))))) (-13 (-365) (-147) (-1038 (-566))) (-1240 |#1|)) (T -570)) +((-3244 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-644 (-409 *6))) (-5 *3 (-409 *6)) (-4 *6 (-1240 *5)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-570 *5 *6)))) (-1560 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-365) (-147) (-1038 (-566)))) (-4 *5 (-1240 *4)) (-5 *2 (-2 (|:| -1641 (-409 *5)) (|:| |coeff| (-409 *5)))) (-5 *1 (-570 *4 *5)) (-5 *3 (-409 *5)))) (-3984 (*1 *2 *2) (|partial| -12 (-5 *2 (-409 *4)) (-4 *4 (-1240 *3)) (-4 *3 (-13 (-365) (-147) (-1038 (-566)))) (-5 *1 (-570 *3 *4)))) (-3313 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1038 (-566)))) (-4 *5 (-1240 *4)) (-5 *2 (-587 (-409 *5))) (-5 *1 (-570 *4 *5)) (-5 *3 (-409 *5))))) +(-10 -7 (-15 -3313 ((-587 (-409 |#2|)) (-409 |#2|))) (-15 -3984 ((-3 (-409 |#2|) "failed") (-409 |#2|))) (-15 -1560 ((-3 (-2 (|:| -1641 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-409 |#2|))) (-15 -3244 ((-3 (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|)))))) "failed") (-409 |#2|) (-644 (-409 |#2|))))) +((-3353 (((-3 (-566) "failed") |#1|) 14)) (-3709 (((-112) |#1|) 13)) (-2092 (((-566) |#1|) 9))) +(((-571 |#1|) (-10 -7 (-15 -2092 ((-566) |#1|)) (-15 -3709 ((-112) |#1|)) (-15 -3353 ((-3 (-566) "failed") |#1|))) (-1038 (-566))) (T -571)) +((-3353 (*1 *2 *3) (|partial| -12 (-5 *2 (-566)) (-5 *1 (-571 *3)) (-4 *3 (-1038 *2)))) (-3709 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-571 *3)) (-4 *3 (-1038 (-566))))) (-2092 (*1 *2 *3) (-12 (-5 *2 (-566)) (-5 *1 (-571 *3)) (-4 *3 (-1038 *2))))) +(-10 -7 (-15 -2092 ((-566) |#1|)) (-15 -3709 ((-112) |#1|)) (-15 -3353 ((-3 (-566) "failed") |#1|))) +((-1620 (((-3 (-2 (|:| |mainpart| (-409 (-952 |#1|))) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 (-952 |#1|))) (|:| |logand| (-409 (-952 |#1|))))))) "failed") (-409 (-952 |#1|)) (-1175) (-644 (-409 (-952 |#1|)))) 48)) (-3329 (((-587 (-409 (-952 |#1|))) (-409 (-952 |#1|)) (-1175)) 28)) (-1897 (((-3 (-409 (-952 |#1|)) "failed") (-409 (-952 |#1|)) (-1175)) 23)) (-4137 (((-3 (-2 (|:| -1641 (-409 (-952 |#1|))) (|:| |coeff| (-409 (-952 |#1|)))) "failed") (-409 (-952 |#1|)) (-1175) (-409 (-952 |#1|))) 35))) +(((-572 |#1|) (-10 -7 (-15 -3329 ((-587 (-409 (-952 |#1|))) (-409 (-952 |#1|)) (-1175))) (-15 -1897 ((-3 (-409 (-952 |#1|)) "failed") (-409 (-952 |#1|)) (-1175))) (-15 -1620 ((-3 (-2 (|:| |mainpart| (-409 (-952 |#1|))) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 (-952 |#1|))) (|:| |logand| (-409 (-952 |#1|))))))) "failed") (-409 (-952 |#1|)) (-1175) (-644 (-409 (-952 |#1|))))) (-15 -4137 ((-3 (-2 (|:| -1641 (-409 (-952 |#1|))) (|:| |coeff| (-409 (-952 |#1|)))) "failed") (-409 (-952 |#1|)) (-1175) (-409 (-952 |#1|))))) (-13 (-558) (-1038 (-566)) (-147))) (T -572)) +((-4137 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1175)) (-4 *5 (-13 (-558) (-1038 (-566)) (-147))) (-5 *2 (-2 (|:| -1641 (-409 (-952 *5))) (|:| |coeff| (-409 (-952 *5))))) (-5 *1 (-572 *5)) (-5 *3 (-409 (-952 *5))))) (-1620 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1175)) (-5 *5 (-644 (-409 (-952 *6)))) (-5 *3 (-409 (-952 *6))) (-4 *6 (-13 (-558) (-1038 (-566)) (-147))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-572 *6)))) (-1897 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-409 (-952 *4))) (-5 *3 (-1175)) (-4 *4 (-13 (-558) (-1038 (-566)) (-147))) (-5 *1 (-572 *4)))) (-3329 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-4 *5 (-13 (-558) (-1038 (-566)) (-147))) (-5 *2 (-587 (-409 (-952 *5)))) (-5 *1 (-572 *5)) (-5 *3 (-409 (-952 *5)))))) +(-10 -7 (-15 -3329 ((-587 (-409 (-952 |#1|))) (-409 (-952 |#1|)) (-1175))) (-15 -1897 ((-3 (-409 (-952 |#1|)) "failed") (-409 (-952 |#1|)) (-1175))) (-15 -1620 ((-3 (-2 (|:| |mainpart| (-409 (-952 |#1|))) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 (-952 |#1|))) (|:| |logand| (-409 (-952 |#1|))))))) "failed") (-409 (-952 |#1|)) (-1175) (-644 (-409 (-952 |#1|))))) (-15 -4137 ((-3 (-2 (|:| -1641 (-409 (-952 |#1|))) (|:| |coeff| (-409 (-952 |#1|)))) "failed") (-409 (-952 |#1|)) (-1175) (-409 (-952 |#1|))))) +((-2988 (((-112) $ $) 75)) (-3230 (((-112) $) 48)) (-4169 ((|#1| $) 39)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-2161 (($ $) NIL)) (-2345 (((-112) $) 79)) (-3963 (($ $) 140)) (-3630 (($ $) 119)) (-3920 ((|#1| $) 37)) (-3967 (((-3 $ "failed") $ $) NIL)) (-1635 (($ $) NIL)) (-3941 (($ $) 142)) (-3602 (($ $) 115)) (-3986 (($ $) 144)) (-3656 (($ $) 123)) (-2463 (($) NIL T CONST)) (-2229 (((-3 (-566) "failed") $) 94)) (-4158 (((-566) $) 96)) (-3245 (((-3 $ "failed") $) 78)) (-3903 (($ |#1| |#1|) 35)) (-2528 (((-112) $) 44)) (-2281 (($) 105)) (-2389 (((-112) $) 55)) (-1575 (($ $ (-566)) NIL)) (-3233 (((-112) $) 45)) (-1478 (($ $ $) NIL)) (-2599 (($ $ $) NIL)) (-3619 (($ $) 107)) (-2128 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3380 (((-1157) $) NIL)) (-1392 (($ |#1| |#1|) 29) (($ |#1|) 34) (($ (-409 (-566))) 93)) (-2156 ((|#1| $) 36)) (-4072 (((-1119) $) NIL)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2164 (($ $ $) 81) (($ (-644 $)) NIL)) (-2978 (((-3 $ "failed") $ $) 80)) (-3521 (($ $) 109)) (-3996 (($ $) 148)) (-3670 (($ $) 121)) (-3976 (($ $) 150)) (-3643 (($ $) 125)) (-3952 (($ $) 146)) (-3618 (($ $) 117)) (-2910 (((-112) $ |#1|) 42)) (-3152 (((-862) $) 101) (($ (-566)) 83) (($ $) NIL) (($ (-566)) 83)) (-2593 (((-771)) 103 T CONST)) (-3044 (((-112) $ $) NIL)) (-4032 (($ $) 162)) (-3892 (($ $) 131)) (-3014 (((-112) $ $) NIL)) (-4008 (($ $) 160)) (-3684 (($ $) 127)) (-4057 (($ $) 158)) (-3917 (($ $) 138)) (-3964 (($ $) 156)) (-3929 (($ $) 136)) (-4044 (($ $) 154)) (-3904 (($ $) 133)) (-4020 (($ $) 152)) (-3879 (($ $) 129)) (-4356 (($) 30 T CONST)) (-4366 (($) 10 T CONST)) (-2968 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2914 (((-112) $ $) 49)) (-2956 (((-112) $ $) NIL)) (-2935 (((-112) $ $) 47)) (-3012 (($ $) 53) (($ $ $) 54)) (-3002 (($ $ $) 52)) (** (($ $ (-921)) 71) (($ $ (-771)) NIL) (($ $ $) 111) (($ $ (-409 (-566))) 164)) (* (($ (-921) $) 66) (($ (-771) $) NIL) (($ (-566) $) 65) (($ $ $) 61))) (((-573 |#1|) (-556 |#1|) (-13 (-406) (-1199))) (T -573)) NIL (-556 |#1|) -((-3717 (((-3 (-644 (-1171 (-566))) "failed") (-644 (-1171 (-566))) (-1171 (-566))) 27))) -(((-574) (-10 -7 (-15 -3717 ((-3 (-644 (-1171 (-566))) "failed") (-644 (-1171 (-566))) (-1171 (-566)))))) (T -574)) -((-3717 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-644 (-1171 (-566)))) (-5 *3 (-1171 (-566))) (-5 *1 (-574))))) -(-10 -7 (-15 -3717 ((-3 (-644 (-1171 (-566))) "failed") (-644 (-1171 (-566))) (-1171 (-566))))) -((-3927 (((-644 (-612 |#2|)) (-644 (-612 |#2|)) (-1175)) 19)) (-3316 (((-644 (-612 |#2|)) (-644 |#2|) (-1175)) 23)) (-1756 (((-644 (-612 |#2|)) (-644 (-612 |#2|)) (-644 (-612 |#2|))) 11)) (-4184 ((|#2| |#2| (-1175)) 59 (|has| |#1| (-558)))) (-2414 ((|#2| |#2| (-1175)) 87 (-12 (|has| |#2| (-285)) (|has| |#1| (-454))))) (-1853 (((-612 |#2|) (-612 |#2|) (-644 (-612 |#2|)) (-1175)) 25)) (-4214 (((-612 |#2|) (-644 (-612 |#2|))) 24)) (-4215 (((-587 |#2|) |#2| (-1175) (-1 (-587 |#2|) |#2| (-1175)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1175))) 115 (-12 (|has| |#2| (-285)) (|has| |#2| (-629)) (|has| |#2| (-1038 (-1175))) (|has| |#1| (-614 (-892 (-566)))) (|has| |#1| (-454)) (|has| |#1| (-886 (-566))))))) -(((-575 |#1| |#2|) (-10 -7 (-15 -3927 ((-644 (-612 |#2|)) (-644 (-612 |#2|)) (-1175))) (-15 -4214 ((-612 |#2|) (-644 (-612 |#2|)))) (-15 -1853 ((-612 |#2|) (-612 |#2|) (-644 (-612 |#2|)) (-1175))) (-15 -1756 ((-644 (-612 |#2|)) (-644 (-612 |#2|)) (-644 (-612 |#2|)))) (-15 -3316 ((-644 (-612 |#2|)) (-644 |#2|) (-1175))) (IF (|has| |#1| (-558)) (-15 -4184 (|#2| |#2| (-1175))) |%noBranch|) (IF (|has| |#1| (-454)) (IF (|has| |#2| (-285)) (PROGN (-15 -2414 (|#2| |#2| (-1175))) (IF (|has| |#1| (-614 (-892 (-566)))) (IF (|has| |#1| (-886 (-566))) (IF (|has| |#2| (-629)) (IF (|has| |#2| (-1038 (-1175))) (-15 -4215 ((-587 |#2|) |#2| (-1175) (-1 (-587 |#2|) |#2| (-1175)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1175)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1099) (-432 |#1|)) (T -575)) -((-4215 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-587 *3) *3 (-1175))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1175))) (-4 *3 (-285)) (-4 *3 (-629)) (-4 *3 (-1038 *4)) (-4 *3 (-432 *7)) (-5 *4 (-1175)) (-4 *7 (-614 (-892 (-566)))) (-4 *7 (-454)) (-4 *7 (-886 (-566))) (-4 *7 (-1099)) (-5 *2 (-587 *3)) (-5 *1 (-575 *7 *3)))) (-2414 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-454)) (-4 *4 (-1099)) (-5 *1 (-575 *4 *2)) (-4 *2 (-285)) (-4 *2 (-432 *4)))) (-4184 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-558)) (-4 *4 (-1099)) (-5 *1 (-575 *4 *2)) (-4 *2 (-432 *4)))) (-3316 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *6)) (-5 *4 (-1175)) (-4 *6 (-432 *5)) (-4 *5 (-1099)) (-5 *2 (-644 (-612 *6))) (-5 *1 (-575 *5 *6)))) (-1756 (*1 *2 *2 *2) (-12 (-5 *2 (-644 (-612 *4))) (-4 *4 (-432 *3)) (-4 *3 (-1099)) (-5 *1 (-575 *3 *4)))) (-1853 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-644 (-612 *6))) (-5 *4 (-1175)) (-5 *2 (-612 *6)) (-4 *6 (-432 *5)) (-4 *5 (-1099)) (-5 *1 (-575 *5 *6)))) (-4214 (*1 *2 *3) (-12 (-5 *3 (-644 (-612 *5))) (-4 *4 (-1099)) (-5 *2 (-612 *5)) (-5 *1 (-575 *4 *5)) (-4 *5 (-432 *4)))) (-3927 (*1 *2 *2 *3) (-12 (-5 *2 (-644 (-612 *5))) (-5 *3 (-1175)) (-4 *5 (-432 *4)) (-4 *4 (-1099)) (-5 *1 (-575 *4 *5))))) -(-10 -7 (-15 -3927 ((-644 (-612 |#2|)) (-644 (-612 |#2|)) (-1175))) (-15 -4214 ((-612 |#2|) (-644 (-612 |#2|)))) (-15 -1853 ((-612 |#2|) (-612 |#2|) (-644 (-612 |#2|)) (-1175))) (-15 -1756 ((-644 (-612 |#2|)) (-644 (-612 |#2|)) (-644 (-612 |#2|)))) (-15 -3316 ((-644 (-612 |#2|)) (-644 |#2|) (-1175))) (IF (|has| |#1| (-558)) (-15 -4184 (|#2| |#2| (-1175))) |%noBranch|) (IF (|has| |#1| (-454)) (IF (|has| |#2| (-285)) (PROGN (-15 -2414 (|#2| |#2| (-1175))) (IF (|has| |#1| (-614 (-892 (-566)))) (IF (|has| |#1| (-886 (-566))) (IF (|has| |#2| (-629)) (IF (|has| |#2| (-1038 (-1175))) (-15 -4215 ((-587 |#2|) |#2| (-1175) (-1 (-587 |#2|) |#2| (-1175)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1175)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-2297 (((-2 (|:| |answer| (-587 (-409 |#2|))) (|:| |a0| |#1|)) (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-644 |#1|) "failed") (-566) |#1| |#1|)) 202)) (-2885 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|))))))) (|:| |a0| |#1|)) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2346 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-644 (-409 |#2|))) 178)) (-3083 (((-3 (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|)))))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-644 (-409 |#2|))) 175)) (-2959 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2346 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 166)) (-2846 (((-2 (|:| |answer| (-587 (-409 |#2|))) (|:| |a0| |#1|)) (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2346 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 189)) (-3711 (((-3 (-2 (|:| -2346 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-409 |#2|)) 205)) (-1453 (((-3 (-2 (|:| |answer| (-409 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2346 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2346 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-409 |#2|)) 208)) (-3906 (((-2 (|:| |ir| (-587 (-409 |#2|))) (|:| |specpart| (-409 |#2|)) (|:| |polypart| |#2|)) (-409 |#2|) (-1 |#2| |#2|)) 90)) (-2186 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 102)) (-1971 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|))))))) (|:| |a0| |#1|)) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4392 |#1|) (|:| |sol?| (-112))) (-566) |#1|) (-644 (-409 |#2|))) 182)) (-3537 (((-3 (-623 |#1| |#2|) "failed") (-623 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4392 |#1|) (|:| |sol?| (-112))) (-566) |#1|)) 170)) (-1534 (((-2 (|:| |answer| (-587 (-409 |#2|))) (|:| |a0| |#1|)) (-409 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4392 |#1|) (|:| |sol?| (-112))) (-566) |#1|)) 193)) (-2766 (((-3 (-2 (|:| |answer| (-409 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2346 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4392 |#1|) (|:| |sol?| (-112))) (-566) |#1|) (-409 |#2|)) 213))) -(((-576 |#1| |#2|) (-10 -7 (-15 -2846 ((-2 (|:| |answer| (-587 (-409 |#2|))) (|:| |a0| |#1|)) (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2346 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -1534 ((-2 (|:| |answer| (-587 (-409 |#2|))) (|:| |a0| |#1|)) (-409 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4392 |#1|) (|:| |sol?| (-112))) (-566) |#1|))) (-15 -2297 ((-2 (|:| |answer| (-587 (-409 |#2|))) (|:| |a0| |#1|)) (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-644 |#1|) "failed") (-566) |#1| |#1|))) (-15 -1453 ((-3 (-2 (|:| |answer| (-409 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2346 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2346 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-409 |#2|))) (-15 -2766 ((-3 (-2 (|:| |answer| (-409 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2346 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4392 |#1|) (|:| |sol?| (-112))) (-566) |#1|) (-409 |#2|))) (-15 -2885 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|))))))) (|:| |a0| |#1|)) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2346 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-644 (-409 |#2|)))) (-15 -1971 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|))))))) (|:| |a0| |#1|)) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4392 |#1|) (|:| |sol?| (-112))) (-566) |#1|) (-644 (-409 |#2|)))) (-15 -3711 ((-3 (-2 (|:| -2346 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-409 |#2|))) (-15 -3083 ((-3 (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|)))))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-644 (-409 |#2|)))) (-15 -2959 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2346 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3537 ((-3 (-623 |#1| |#2|) "failed") (-623 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4392 |#1|) (|:| |sol?| (-112))) (-566) |#1|))) (-15 -3906 ((-2 (|:| |ir| (-587 (-409 |#2|))) (|:| |specpart| (-409 |#2|)) (|:| |polypart| |#2|)) (-409 |#2|) (-1 |#2| |#2|))) (-15 -2186 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-365) (-1240 |#1|)) (T -576)) -((-2186 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1240 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-576 *5 *3)))) (-3906 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1240 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |ir| (-587 (-409 *6))) (|:| |specpart| (-409 *6)) (|:| |polypart| *6))) (-5 *1 (-576 *5 *6)) (-5 *3 (-409 *6)))) (-3537 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-623 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -4392 *4) (|:| |sol?| (-112))) (-566) *4)) (-4 *4 (-365)) (-4 *5 (-1240 *4)) (-5 *1 (-576 *4 *5)))) (-2959 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2346 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-365)) (-5 *1 (-576 *4 *2)) (-4 *2 (-1240 *4)))) (-3083 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-644 (-409 *7))) (-4 *7 (-1240 *6)) (-5 *3 (-409 *7)) (-4 *6 (-365)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-576 *6 *7)))) (-3711 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1240 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| -2346 (-409 *6)) (|:| |coeff| (-409 *6)))) (-5 *1 (-576 *5 *6)) (-5 *3 (-409 *6)))) (-1971 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -4392 *7) (|:| |sol?| (-112))) (-566) *7)) (-5 *6 (-644 (-409 *8))) (-4 *7 (-365)) (-4 *8 (-1240 *7)) (-5 *3 (-409 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-576 *7 *8)))) (-2885 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2346 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-644 (-409 *8))) (-4 *7 (-365)) (-4 *8 (-1240 *7)) (-5 *3 (-409 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-576 *7 *8)))) (-2766 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -4392 *6) (|:| |sol?| (-112))) (-566) *6)) (-4 *6 (-365)) (-4 *7 (-1240 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-409 *7)) (|:| |a0| *6)) (-2 (|:| -2346 (-409 *7)) (|:| |coeff| (-409 *7))) "failed")) (-5 *1 (-576 *6 *7)) (-5 *3 (-409 *7)))) (-1453 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2346 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-365)) (-4 *7 (-1240 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-409 *7)) (|:| |a0| *6)) (-2 (|:| -2346 (-409 *7)) (|:| |coeff| (-409 *7))) "failed")) (-5 *1 (-576 *6 *7)) (-5 *3 (-409 *7)))) (-2297 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-644 *6) "failed") (-566) *6 *6)) (-4 *6 (-365)) (-4 *7 (-1240 *6)) (-5 *2 (-2 (|:| |answer| (-587 (-409 *7))) (|:| |a0| *6))) (-5 *1 (-576 *6 *7)) (-5 *3 (-409 *7)))) (-1534 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -4392 *6) (|:| |sol?| (-112))) (-566) *6)) (-4 *6 (-365)) (-4 *7 (-1240 *6)) (-5 *2 (-2 (|:| |answer| (-587 (-409 *7))) (|:| |a0| *6))) (-5 *1 (-576 *6 *7)) (-5 *3 (-409 *7)))) (-2846 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2346 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-365)) (-4 *7 (-1240 *6)) (-5 *2 (-2 (|:| |answer| (-587 (-409 *7))) (|:| |a0| *6))) (-5 *1 (-576 *6 *7)) (-5 *3 (-409 *7))))) -(-10 -7 (-15 -2846 ((-2 (|:| |answer| (-587 (-409 |#2|))) (|:| |a0| |#1|)) (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2346 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -1534 ((-2 (|:| |answer| (-587 (-409 |#2|))) (|:| |a0| |#1|)) (-409 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4392 |#1|) (|:| |sol?| (-112))) (-566) |#1|))) (-15 -2297 ((-2 (|:| |answer| (-587 (-409 |#2|))) (|:| |a0| |#1|)) (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-644 |#1|) "failed") (-566) |#1| |#1|))) (-15 -1453 ((-3 (-2 (|:| |answer| (-409 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2346 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2346 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-409 |#2|))) (-15 -2766 ((-3 (-2 (|:| |answer| (-409 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2346 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4392 |#1|) (|:| |sol?| (-112))) (-566) |#1|) (-409 |#2|))) (-15 -2885 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|))))))) (|:| |a0| |#1|)) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2346 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-644 (-409 |#2|)))) (-15 -1971 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|))))))) (|:| |a0| |#1|)) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4392 |#1|) (|:| |sol?| (-112))) (-566) |#1|) (-644 (-409 |#2|)))) (-15 -3711 ((-3 (-2 (|:| -2346 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-409 |#2|))) (-15 -3083 ((-3 (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|)))))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-644 (-409 |#2|)))) (-15 -2959 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2346 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3537 ((-3 (-623 |#1| |#2|) "failed") (-623 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4392 |#1|) (|:| |sol?| (-112))) (-566) |#1|))) (-15 -3906 ((-2 (|:| |ir| (-587 (-409 |#2|))) (|:| |specpart| (-409 |#2|)) (|:| |polypart| |#2|)) (-409 |#2|) (-1 |#2| |#2|))) (-15 -2186 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) -((-2751 (((-3 |#2| "failed") |#2| (-1175) (-1175)) 10))) -(((-577 |#1| |#2|) (-10 -7 (-15 -2751 ((-3 |#2| "failed") |#2| (-1175) (-1175)))) (-13 (-308) (-147) (-1038 (-566)) (-639 (-566))) (-13 (-1199) (-959) (-1138) (-29 |#1|))) (T -577)) -((-2751 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1175)) (-4 *4 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-577 *4 *2)) (-4 *2 (-13 (-1199) (-959) (-1138) (-29 *4)))))) -(-10 -7 (-15 -2751 ((-3 |#2| "failed") |#2| (-1175) (-1175)))) -((-3203 (((-691 (-1222)) $ (-1222)) 26)) (-3901 (((-691 (-551)) $ (-551)) 25)) (-3771 (((-771) $ (-128)) 27)) (-4378 (((-691 (-129)) $ (-129)) 24)) (-2771 (((-691 (-1222)) $) 12)) (-3335 (((-691 (-1220)) $) 8)) (-1492 (((-691 (-1219)) $) 10)) (-2708 (((-691 (-551)) $) 13)) (-4058 (((-691 (-549)) $) 9)) (-2568 (((-691 (-548)) $) 11)) (-3619 (((-771) $ (-128)) 7)) (-1992 (((-691 (-129)) $) 14)) (-1596 (($ $) 6))) +((-4066 (((-3 (-644 (-1171 (-566))) "failed") (-644 (-1171 (-566))) (-1171 (-566))) 27))) +(((-574) (-10 -7 (-15 -4066 ((-3 (-644 (-1171 (-566))) "failed") (-644 (-1171 (-566))) (-1171 (-566)))))) (T -574)) +((-4066 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-644 (-1171 (-566)))) (-5 *3 (-1171 (-566))) (-5 *1 (-574))))) +(-10 -7 (-15 -4066 ((-3 (-644 (-1171 (-566))) "failed") (-644 (-1171 (-566))) (-1171 (-566))))) +((-2904 (((-644 (-612 |#2|)) (-644 (-612 |#2|)) (-1175)) 19)) (-2002 (((-644 (-612 |#2|)) (-644 |#2|) (-1175)) 23)) (-1775 (((-644 (-612 |#2|)) (-644 (-612 |#2|)) (-644 (-612 |#2|))) 11)) (-3510 ((|#2| |#2| (-1175)) 59 (|has| |#1| (-558)))) (-3147 ((|#2| |#2| (-1175)) 87 (-12 (|has| |#2| (-285)) (|has| |#1| (-454))))) (-2418 (((-612 |#2|) (-612 |#2|) (-644 (-612 |#2|)) (-1175)) 25)) (-3365 (((-612 |#2|) (-644 (-612 |#2|))) 24)) (-3469 (((-587 |#2|) |#2| (-1175) (-1 (-587 |#2|) |#2| (-1175)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1175))) 115 (-12 (|has| |#2| (-285)) (|has| |#2| (-629)) (|has| |#2| (-1038 (-1175))) (|has| |#1| (-614 (-892 (-566)))) (|has| |#1| (-454)) (|has| |#1| (-886 (-566))))))) +(((-575 |#1| |#2|) (-10 -7 (-15 -2904 ((-644 (-612 |#2|)) (-644 (-612 |#2|)) (-1175))) (-15 -3365 ((-612 |#2|) (-644 (-612 |#2|)))) (-15 -2418 ((-612 |#2|) (-612 |#2|) (-644 (-612 |#2|)) (-1175))) (-15 -1775 ((-644 (-612 |#2|)) (-644 (-612 |#2|)) (-644 (-612 |#2|)))) (-15 -2002 ((-644 (-612 |#2|)) (-644 |#2|) (-1175))) (IF (|has| |#1| (-558)) (-15 -3510 (|#2| |#2| (-1175))) |%noBranch|) (IF (|has| |#1| (-454)) (IF (|has| |#2| (-285)) (PROGN (-15 -3147 (|#2| |#2| (-1175))) (IF (|has| |#1| (-614 (-892 (-566)))) (IF (|has| |#1| (-886 (-566))) (IF (|has| |#2| (-629)) (IF (|has| |#2| (-1038 (-1175))) (-15 -3469 ((-587 |#2|) |#2| (-1175) (-1 (-587 |#2|) |#2| (-1175)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1175)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1099) (-432 |#1|)) (T -575)) +((-3469 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-587 *3) *3 (-1175))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1175))) (-4 *3 (-285)) (-4 *3 (-629)) (-4 *3 (-1038 *4)) (-4 *3 (-432 *7)) (-5 *4 (-1175)) (-4 *7 (-614 (-892 (-566)))) (-4 *7 (-454)) (-4 *7 (-886 (-566))) (-4 *7 (-1099)) (-5 *2 (-587 *3)) (-5 *1 (-575 *7 *3)))) (-3147 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-454)) (-4 *4 (-1099)) (-5 *1 (-575 *4 *2)) (-4 *2 (-285)) (-4 *2 (-432 *4)))) (-3510 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-558)) (-4 *4 (-1099)) (-5 *1 (-575 *4 *2)) (-4 *2 (-432 *4)))) (-2002 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *6)) (-5 *4 (-1175)) (-4 *6 (-432 *5)) (-4 *5 (-1099)) (-5 *2 (-644 (-612 *6))) (-5 *1 (-575 *5 *6)))) (-1775 (*1 *2 *2 *2) (-12 (-5 *2 (-644 (-612 *4))) (-4 *4 (-432 *3)) (-4 *3 (-1099)) (-5 *1 (-575 *3 *4)))) (-2418 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-644 (-612 *6))) (-5 *4 (-1175)) (-5 *2 (-612 *6)) (-4 *6 (-432 *5)) (-4 *5 (-1099)) (-5 *1 (-575 *5 *6)))) (-3365 (*1 *2 *3) (-12 (-5 *3 (-644 (-612 *5))) (-4 *4 (-1099)) (-5 *2 (-612 *5)) (-5 *1 (-575 *4 *5)) (-4 *5 (-432 *4)))) (-2904 (*1 *2 *2 *3) (-12 (-5 *2 (-644 (-612 *5))) (-5 *3 (-1175)) (-4 *5 (-432 *4)) (-4 *4 (-1099)) (-5 *1 (-575 *4 *5))))) +(-10 -7 (-15 -2904 ((-644 (-612 |#2|)) (-644 (-612 |#2|)) (-1175))) (-15 -3365 ((-612 |#2|) (-644 (-612 |#2|)))) (-15 -2418 ((-612 |#2|) (-612 |#2|) (-644 (-612 |#2|)) (-1175))) (-15 -1775 ((-644 (-612 |#2|)) (-644 (-612 |#2|)) (-644 (-612 |#2|)))) (-15 -2002 ((-644 (-612 |#2|)) (-644 |#2|) (-1175))) (IF (|has| |#1| (-558)) (-15 -3510 (|#2| |#2| (-1175))) |%noBranch|) (IF (|has| |#1| (-454)) (IF (|has| |#2| (-285)) (PROGN (-15 -3147 (|#2| |#2| (-1175))) (IF (|has| |#1| (-614 (-892 (-566)))) (IF (|has| |#1| (-886 (-566))) (IF (|has| |#2| (-629)) (IF (|has| |#2| (-1038 (-1175))) (-15 -3469 ((-587 |#2|) |#2| (-1175) (-1 (-587 |#2|) |#2| (-1175)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1175)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-3198 (((-2 (|:| |answer| (-587 (-409 |#2|))) (|:| |a0| |#1|)) (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-644 |#1|) "failed") (-566) |#1| |#1|)) 202)) (-3291 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|))))))) (|:| |a0| |#1|)) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1641 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-644 (-409 |#2|))) 178)) (-2796 (((-3 (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|)))))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-644 (-409 |#2|))) 175)) (-2564 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1641 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 166)) (-1768 (((-2 (|:| |answer| (-587 (-409 |#2|))) (|:| |a0| |#1|)) (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1641 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 189)) (-3664 (((-3 (-2 (|:| -1641 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-409 |#2|)) 205)) (-1928 (((-3 (-2 (|:| |answer| (-409 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1641 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1641 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-409 |#2|)) 208)) (-3408 (((-2 (|:| |ir| (-587 (-409 |#2|))) (|:| |specpart| (-409 |#2|)) (|:| |polypart| |#2|)) (-409 |#2|) (-1 |#2| |#2|)) 90)) (-1603 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 102)) (-3238 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|))))))) (|:| |a0| |#1|)) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1966 |#1|) (|:| |sol?| (-112))) (-566) |#1|) (-644 (-409 |#2|))) 182)) (-1621 (((-3 (-623 |#1| |#2|) "failed") (-623 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1966 |#1|) (|:| |sol?| (-112))) (-566) |#1|)) 170)) (-1995 (((-2 (|:| |answer| (-587 (-409 |#2|))) (|:| |a0| |#1|)) (-409 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1966 |#1|) (|:| |sol?| (-112))) (-566) |#1|)) 193)) (-2489 (((-3 (-2 (|:| |answer| (-409 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1641 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1966 |#1|) (|:| |sol?| (-112))) (-566) |#1|) (-409 |#2|)) 213))) +(((-576 |#1| |#2|) (-10 -7 (-15 -1768 ((-2 (|:| |answer| (-587 (-409 |#2|))) (|:| |a0| |#1|)) (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1641 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -1995 ((-2 (|:| |answer| (-587 (-409 |#2|))) (|:| |a0| |#1|)) (-409 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1966 |#1|) (|:| |sol?| (-112))) (-566) |#1|))) (-15 -3198 ((-2 (|:| |answer| (-587 (-409 |#2|))) (|:| |a0| |#1|)) (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-644 |#1|) "failed") (-566) |#1| |#1|))) (-15 -1928 ((-3 (-2 (|:| |answer| (-409 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1641 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1641 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-409 |#2|))) (-15 -2489 ((-3 (-2 (|:| |answer| (-409 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1641 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1966 |#1|) (|:| |sol?| (-112))) (-566) |#1|) (-409 |#2|))) (-15 -3291 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|))))))) (|:| |a0| |#1|)) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1641 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-644 (-409 |#2|)))) (-15 -3238 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|))))))) (|:| |a0| |#1|)) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1966 |#1|) (|:| |sol?| (-112))) (-566) |#1|) (-644 (-409 |#2|)))) (-15 -3664 ((-3 (-2 (|:| -1641 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-409 |#2|))) (-15 -2796 ((-3 (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|)))))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-644 (-409 |#2|)))) (-15 -2564 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1641 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -1621 ((-3 (-623 |#1| |#2|) "failed") (-623 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1966 |#1|) (|:| |sol?| (-112))) (-566) |#1|))) (-15 -3408 ((-2 (|:| |ir| (-587 (-409 |#2|))) (|:| |specpart| (-409 |#2|)) (|:| |polypart| |#2|)) (-409 |#2|) (-1 |#2| |#2|))) (-15 -1603 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-365) (-1240 |#1|)) (T -576)) +((-1603 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1240 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-576 *5 *3)))) (-3408 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1240 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |ir| (-587 (-409 *6))) (|:| |specpart| (-409 *6)) (|:| |polypart| *6))) (-5 *1 (-576 *5 *6)) (-5 *3 (-409 *6)))) (-1621 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-623 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -1966 *4) (|:| |sol?| (-112))) (-566) *4)) (-4 *4 (-365)) (-4 *5 (-1240 *4)) (-5 *1 (-576 *4 *5)))) (-2564 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -1641 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-365)) (-5 *1 (-576 *4 *2)) (-4 *2 (-1240 *4)))) (-2796 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-644 (-409 *7))) (-4 *7 (-1240 *6)) (-5 *3 (-409 *7)) (-4 *6 (-365)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-576 *6 *7)))) (-3664 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1240 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| -1641 (-409 *6)) (|:| |coeff| (-409 *6)))) (-5 *1 (-576 *5 *6)) (-5 *3 (-409 *6)))) (-3238 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -1966 *7) (|:| |sol?| (-112))) (-566) *7)) (-5 *6 (-644 (-409 *8))) (-4 *7 (-365)) (-4 *8 (-1240 *7)) (-5 *3 (-409 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-576 *7 *8)))) (-3291 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -1641 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-644 (-409 *8))) (-4 *7 (-365)) (-4 *8 (-1240 *7)) (-5 *3 (-409 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-576 *7 *8)))) (-2489 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -1966 *6) (|:| |sol?| (-112))) (-566) *6)) (-4 *6 (-365)) (-4 *7 (-1240 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-409 *7)) (|:| |a0| *6)) (-2 (|:| -1641 (-409 *7)) (|:| |coeff| (-409 *7))) "failed")) (-5 *1 (-576 *6 *7)) (-5 *3 (-409 *7)))) (-1928 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -1641 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-365)) (-4 *7 (-1240 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-409 *7)) (|:| |a0| *6)) (-2 (|:| -1641 (-409 *7)) (|:| |coeff| (-409 *7))) "failed")) (-5 *1 (-576 *6 *7)) (-5 *3 (-409 *7)))) (-3198 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-644 *6) "failed") (-566) *6 *6)) (-4 *6 (-365)) (-4 *7 (-1240 *6)) (-5 *2 (-2 (|:| |answer| (-587 (-409 *7))) (|:| |a0| *6))) (-5 *1 (-576 *6 *7)) (-5 *3 (-409 *7)))) (-1995 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -1966 *6) (|:| |sol?| (-112))) (-566) *6)) (-4 *6 (-365)) (-4 *7 (-1240 *6)) (-5 *2 (-2 (|:| |answer| (-587 (-409 *7))) (|:| |a0| *6))) (-5 *1 (-576 *6 *7)) (-5 *3 (-409 *7)))) (-1768 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -1641 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-365)) (-4 *7 (-1240 *6)) (-5 *2 (-2 (|:| |answer| (-587 (-409 *7))) (|:| |a0| *6))) (-5 *1 (-576 *6 *7)) (-5 *3 (-409 *7))))) +(-10 -7 (-15 -1768 ((-2 (|:| |answer| (-587 (-409 |#2|))) (|:| |a0| |#1|)) (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1641 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -1995 ((-2 (|:| |answer| (-587 (-409 |#2|))) (|:| |a0| |#1|)) (-409 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1966 |#1|) (|:| |sol?| (-112))) (-566) |#1|))) (-15 -3198 ((-2 (|:| |answer| (-587 (-409 |#2|))) (|:| |a0| |#1|)) (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-644 |#1|) "failed") (-566) |#1| |#1|))) (-15 -1928 ((-3 (-2 (|:| |answer| (-409 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1641 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1641 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-409 |#2|))) (-15 -2489 ((-3 (-2 (|:| |answer| (-409 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1641 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1966 |#1|) (|:| |sol?| (-112))) (-566) |#1|) (-409 |#2|))) (-15 -3291 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|))))))) (|:| |a0| |#1|)) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1641 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-644 (-409 |#2|)))) (-15 -3238 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|))))))) (|:| |a0| |#1|)) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1966 |#1|) (|:| |sol?| (-112))) (-566) |#1|) (-644 (-409 |#2|)))) (-15 -3664 ((-3 (-2 (|:| -1641 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-409 |#2|))) (-15 -2796 ((-3 (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|)))))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-644 (-409 |#2|)))) (-15 -2564 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1641 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -1621 ((-3 (-623 |#1| |#2|) "failed") (-623 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1966 |#1|) (|:| |sol?| (-112))) (-566) |#1|))) (-15 -3408 ((-2 (|:| |ir| (-587 (-409 |#2|))) (|:| |specpart| (-409 |#2|)) (|:| |polypart| |#2|)) (-409 |#2|) (-1 |#2| |#2|))) (-15 -1603 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) +((-3381 (((-3 |#2| "failed") |#2| (-1175) (-1175)) 10))) +(((-577 |#1| |#2|) (-10 -7 (-15 -3381 ((-3 |#2| "failed") |#2| (-1175) (-1175)))) (-13 (-308) (-147) (-1038 (-566)) (-639 (-566))) (-13 (-1199) (-959) (-1138) (-29 |#1|))) (T -577)) +((-3381 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1175)) (-4 *4 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-577 *4 *2)) (-4 *2 (-13 (-1199) (-959) (-1138) (-29 *4)))))) +(-10 -7 (-15 -3381 ((-3 |#2| "failed") |#2| (-1175) (-1175)))) +((-2581 (((-691 (-1222)) $ (-1222)) 26)) (-4248 (((-691 (-551)) $ (-551)) 25)) (-1311 (((-771) $ (-128)) 27)) (-1606 (((-691 (-129)) $ (-129)) 24)) (-1753 (((-691 (-1222)) $) 12)) (-2438 (((-691 (-1220)) $) 8)) (-3300 (((-691 (-1219)) $) 10)) (-1844 (((-691 (-551)) $) 13)) (-1426 (((-691 (-549)) $) 9)) (-4154 (((-691 (-548)) $) 11)) (-1982 (((-771) $ (-128)) 7)) (-1938 (((-691 (-129)) $) 14)) (-2405 (($ $) 6))) (((-578) (-140)) (T -578)) NIL (-13 (-529) (-860)) (((-173) . T) ((-529) . T) ((-860) . T)) -((-3203 (((-691 (-1222)) $ (-1222)) NIL)) (-3901 (((-691 (-551)) $ (-551)) NIL)) (-3771 (((-771) $ (-128)) NIL)) (-4378 (((-691 (-129)) $ (-129)) NIL)) (-2771 (((-691 (-1222)) $) NIL)) (-3335 (((-691 (-1220)) $) NIL)) (-1492 (((-691 (-1219)) $) NIL)) (-2708 (((-691 (-551)) $) NIL)) (-4058 (((-691 (-549)) $) NIL)) (-2568 (((-691 (-548)) $) NIL)) (-3619 (((-771) $ (-128)) NIL)) (-1992 (((-691 (-129)) $) NIL)) (-2790 (((-112) $) NIL)) (-4370 (($ (-390)) 14) (($ (-1157)) 16)) (-3783 (((-862) $) NIL)) (-1596 (($ $) NIL))) -(((-579) (-13 (-578) (-613 (-862)) (-10 -8 (-15 -4370 ($ (-390))) (-15 -4370 ($ (-1157))) (-15 -2790 ((-112) $))))) (T -579)) -((-4370 (*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-579)))) (-4370 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-579)))) (-2790 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-579))))) -(-13 (-578) (-613 (-862)) (-10 -8 (-15 -4370 ($ (-390))) (-15 -4370 ($ (-1157))) (-15 -2790 ((-112) $)))) -((-3007 (((-112) $ $) NIL)) (-2533 (($) 7 T CONST)) (-4117 (((-1157) $) NIL)) (-1734 (($) 6 T CONST)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 14)) (-2397 (($) 8 T CONST)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) 10))) -(((-580) (-13 (-1099) (-10 -8 (-15 -1734 ($) -3704) (-15 -2533 ($) -3704) (-15 -2397 ($) -3704)))) (T -580)) -((-1734 (*1 *1) (-5 *1 (-580))) (-2533 (*1 *1) (-5 *1 (-580))) (-2397 (*1 *1) (-5 *1 (-580)))) -(-13 (-1099) (-10 -8 (-15 -1734 ($) -3704) (-15 -2533 ($) -3704) (-15 -2397 ($) -3704))) -((-3007 (((-112) $ $) NIL)) (-2989 (((-691 $) (-493)) 21)) (-4117 (((-1157) $) NIL)) (-4038 (($ (-1157)) 14)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 34)) (-1790 (((-213 4 (-129)) $) 24)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) 26))) -(((-581) (-13 (-1099) (-10 -8 (-15 -4038 ($ (-1157))) (-15 -1790 ((-213 4 (-129)) $)) (-15 -2989 ((-691 $) (-493)))))) (T -581)) -((-4038 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-581)))) (-1790 (*1 *2 *1) (-12 (-5 *2 (-213 4 (-129))) (-5 *1 (-581)))) (-2989 (*1 *2 *3) (-12 (-5 *3 (-493)) (-5 *2 (-691 (-581))) (-5 *1 (-581))))) -(-13 (-1099) (-10 -8 (-15 -4038 ($ (-1157))) (-15 -1790 ((-213 4 (-129)) $)) (-15 -2989 ((-691 $) (-493))))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-3991 (($ $) NIL)) (-2388 (((-112) $) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-3731 (($ $ (-566)) 77)) (-2837 (((-112) $ $) NIL)) (-3012 (($) NIL T CONST)) (-1751 (($ (-1171 (-566)) (-566)) 83)) (-2946 (($ $ $) NIL)) (-1878 (((-3 $ "failed") $) 68)) (-4026 (($ $) 43)) (-2957 (($ $ $) NIL)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL)) (-3254 (((-771) $) 16)) (-3934 (((-112) $) NIL)) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3930 (((-566)) 37)) (-2542 (((-566) $) 41)) (-2167 (($ $ $) NIL) (($ (-644 $)) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2214 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3148 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3874 (($ $ (-566)) 24)) (-2994 (((-3 $ "failed") $ $) 73)) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3039 (((-771) $) 17)) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) 74)) (-4163 (((-1155 (-566)) $) 19)) (-2770 (($ $) 26)) (-3783 (((-862) $) 104) (($ (-566)) 63) (($ $) NIL)) (-2107 (((-771)) 15 T CONST)) (-3117 (((-112) $ $) NIL)) (-2695 (((-112) $ $) NIL)) (-3628 (((-566) $ (-566)) 46)) (-2479 (($) 44 T CONST)) (-4334 (($) 21 T CONST)) (-2947 (((-112) $ $) 54)) (-3053 (($ $) 62) (($ $ $) 48)) (-3041 (($ $ $) 61)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 64) (($ $ $) 65))) +((-2581 (((-691 (-1222)) $ (-1222)) NIL)) (-4248 (((-691 (-551)) $ (-551)) NIL)) (-1311 (((-771) $ (-128)) NIL)) (-1606 (((-691 (-129)) $ (-129)) NIL)) (-1753 (((-691 (-1222)) $) NIL)) (-2438 (((-691 (-1220)) $) NIL)) (-3300 (((-691 (-1219)) $) NIL)) (-1844 (((-691 (-551)) $) NIL)) (-1426 (((-691 (-549)) $) NIL)) (-4154 (((-691 (-548)) $) NIL)) (-1982 (((-771) $ (-128)) NIL)) (-1938 (((-691 (-129)) $) NIL)) (-3040 (((-112) $) NIL)) (-2060 (($ (-390)) 14) (($ (-1157)) 16)) (-3152 (((-862) $) NIL)) (-2405 (($ $) NIL))) +(((-579) (-13 (-578) (-613 (-862)) (-10 -8 (-15 -2060 ($ (-390))) (-15 -2060 ($ (-1157))) (-15 -3040 ((-112) $))))) (T -579)) +((-2060 (*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-579)))) (-2060 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-579)))) (-3040 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-579))))) +(-13 (-578) (-613 (-862)) (-10 -8 (-15 -2060 ($ (-390))) (-15 -2060 ($ (-1157))) (-15 -3040 ((-112) $)))) +((-2988 (((-112) $ $) NIL)) (-3496 (($) 7 T CONST)) (-3380 (((-1157) $) NIL)) (-1763 (($) 6 T CONST)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 14)) (-4014 (($) 8 T CONST)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) 10))) +(((-580) (-13 (-1099) (-10 -8 (-15 -1763 ($) -1623) (-15 -3496 ($) -1623) (-15 -4014 ($) -1623)))) (T -580)) +((-1763 (*1 *1) (-5 *1 (-580))) (-3496 (*1 *1) (-5 *1 (-580))) (-4014 (*1 *1) (-5 *1 (-580)))) +(-13 (-1099) (-10 -8 (-15 -1763 ($) -1623) (-15 -3496 ($) -1623) (-15 -4014 ($) -1623))) +((-2988 (((-112) $ $) NIL)) (-3609 (((-691 $) (-493)) 21)) (-3380 (((-1157) $) NIL)) (-3184 (($ (-1157)) 14)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 34)) (-2237 (((-213 4 (-129)) $) 24)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) 26))) +(((-581) (-13 (-1099) (-10 -8 (-15 -3184 ($ (-1157))) (-15 -2237 ((-213 4 (-129)) $)) (-15 -3609 ((-691 $) (-493)))))) (T -581)) +((-3184 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-581)))) (-2237 (*1 *2 *1) (-12 (-5 *2 (-213 4 (-129))) (-5 *1 (-581)))) (-3609 (*1 *2 *3) (-12 (-5 *3 (-493)) (-5 *2 (-691 (-581))) (-5 *1 (-581))))) +(-13 (-1099) (-10 -8 (-15 -3184 ($ (-1157))) (-15 -2237 ((-213 4 (-129)) $)) (-15 -3609 ((-691 $) (-493))))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-2161 (($ $) NIL)) (-2345 (((-112) $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-1635 (($ $ (-566)) 77)) (-2085 (((-112) $ $) NIL)) (-2463 (($) NIL T CONST)) (-3134 (($ (-1171 (-566)) (-566)) 83)) (-2933 (($ $ $) NIL)) (-3245 (((-3 $ "failed") $) 68)) (-1406 (($ $) 43)) (-2945 (($ $ $) NIL)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL)) (-2679 (((-771) $) 16)) (-2389 (((-112) $) NIL)) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3206 (((-566)) 37)) (-2168 (((-566) $) 41)) (-2128 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2164 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3005 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3369 (($ $ (-566)) 24)) (-2978 (((-3 $ "failed") $ $) 73)) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-4357 (((-771) $) 17)) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) 74)) (-2251 (((-1155 (-566)) $) 19)) (-1687 (($ $) 26)) (-3152 (((-862) $) 104) (($ (-566)) 63) (($ $) NIL)) (-2593 (((-771)) 15 T CONST)) (-3044 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-3603 (((-566) $ (-566)) 46)) (-4356 (($) 44 T CONST)) (-4366 (($) 21 T CONST)) (-2914 (((-112) $ $) 54)) (-3012 (($ $) 62) (($ $ $) 48)) (-3002 (($ $ $) 61)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 64) (($ $ $) 65))) (((-582 |#1| |#2|) (-869 |#1|) (-566) (-112)) (T -582)) NIL (-869 |#1|) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) 30)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-3991 (($ $) NIL)) (-2388 (((-112) $) NIL)) (-2131 (((-112) $) NIL)) (-3193 (((-771)) NIL)) (-3837 (($ $ (-921)) NIL (|has| $ (-370))) (($ $) NIL)) (-3778 (((-1187 (-921) (-771)) (-566)) 59)) (-4175 (((-3 $ "failed") $ $) NIL)) (-1550 (($ $) NIL)) (-3184 (((-420 $) $) NIL)) (-2837 (((-112) $ $) NIL)) (-1970 (((-771)) NIL)) (-3012 (($) NIL T CONST)) (-4307 (((-3 $ "failed") $) 99)) (-4205 (($ $) 98)) (-2392 (($ (-1264 $)) 97)) (-1910 (((-3 "prime" "polynomial" "normal" "cyclic")) 56)) (-2946 (($ $ $) NIL)) (-1878 (((-3 $ "failed") $) 44)) (-1552 (($) NIL)) (-2957 (($ $ $) NIL)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL)) (-2781 (($) 61)) (-3506 (((-112) $) NIL)) (-3369 (($ $) NIL) (($ $ (-771)) NIL)) (-3268 (((-112) $) NIL)) (-3254 (((-833 (-921)) $) NIL) (((-921) $) NIL)) (-3934 (((-112) $) NIL)) (-3611 (($) 49 (|has| $ (-370)))) (-1784 (((-112) $) NIL (|has| $ (-370)))) (-1577 (($ $ (-921)) NIL (|has| $ (-370))) (($ $) NIL)) (-4363 (((-3 $ "failed") $) NIL)) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1627 (((-1171 $) $ (-921)) NIL (|has| $ (-370))) (((-1171 $) $) 108)) (-3681 (((-921) $) 67)) (-2372 (((-1171 $) $) NIL (|has| $ (-370)))) (-1526 (((-3 (-1171 $) "failed") $ $) NIL (|has| $ (-370))) (((-1171 $) $) NIL (|has| $ (-370)))) (-3158 (($ $ (-1171 $)) NIL (|has| $ (-370)))) (-2167 (($ $ $) NIL) (($ (-644 $)) NIL)) (-4117 (((-1157) $) NIL)) (-1713 (($ $) NIL)) (-1761 (($) NIL T CONST)) (-2178 (($ (-921)) 60)) (-1778 (((-112) $) 91)) (-4035 (((-1119) $) NIL)) (-3441 (($) 28 (|has| $ (-370)))) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2214 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1548 (((-644 (-2 (|:| -3719 (-566)) (|:| -2852 (-566))))) 54)) (-3719 (((-420 $) $) NIL)) (-3129 (((-921)) 90) (((-833 (-921))) NIL)) (-3148 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2994 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3039 (((-771) $) NIL)) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL)) (-1437 (((-3 (-771) "failed") $ $) NIL) (((-771) $) NIL)) (-3164 (((-134)) NIL)) (-3561 (($ $ (-771)) NIL) (($ $) NIL)) (-3636 (((-921) $) 89) (((-833 (-921)) $) NIL)) (-1616 (((-1171 $)) 106)) (-3974 (($) 66)) (-3458 (($) 50 (|has| $ (-370)))) (-2154 (((-689 $) (-1264 $)) NIL) (((-1264 $) $) 95)) (-1348 (((-566) $) 40)) (-1656 (((-3 (-1264 $) "failed") (-689 $)) NIL)) (-3783 (((-862) $) NIL) (($ (-566)) 42) (($ $) NIL) (($ (-409 (-566))) NIL)) (-3144 (((-3 $ "failed") $) NIL) (($ $) 109)) (-2107 (((-771)) 51 T CONST)) (-3117 (((-112) $ $) 111)) (-2365 (((-1264 $) (-921)) 101) (((-1264 $)) 100)) (-2695 (((-112) $ $) NIL)) (-1423 (((-112) $) NIL)) (-2479 (($) 31 T CONST)) (-4334 (($) 27 T CONST)) (-2699 (($ $ (-771)) NIL (|has| $ (-370))) (($ $) NIL (|has| $ (-370)))) (-2875 (($ $ (-771)) NIL) (($ $) NIL)) (-2947 (((-112) $ $) NIL)) (-3065 (($ $ $) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) 34)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 85) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) 30)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-2161 (($ $) NIL)) (-2345 (((-112) $) NIL)) (-1972 (((-112) $) NIL)) (-2818 (((-771)) NIL)) (-3833 (($ $ (-921)) NIL (|has| $ (-370))) (($ $) NIL)) (-2894 (((-1187 (-921) (-771)) (-566)) 59)) (-3967 (((-3 $ "failed") $ $) NIL)) (-1378 (($ $) NIL)) (-1364 (((-420 $) $) NIL)) (-2085 (((-112) $ $) NIL)) (-3870 (((-771)) NIL)) (-2463 (($) NIL T CONST)) (-2229 (((-3 $ "failed") $) 97)) (-4158 (($ $) 96)) (-1563 (($ (-1264 $)) 95)) (-2347 (((-3 "prime" "polynomial" "normal" "cyclic")) 56)) (-2933 (($ $ $) NIL)) (-3245 (((-3 $ "failed") $) 44)) (-2715 (($) NIL)) (-2945 (($ $ $) NIL)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL)) (-3359 (($) 61)) (-2466 (((-112) $) NIL)) (-1574 (($ $) NIL) (($ $ (-771)) NIL)) (-1615 (((-112) $) NIL)) (-2679 (((-833 (-921)) $) NIL) (((-921) $) NIL)) (-2389 (((-112) $) NIL)) (-2437 (($) 49 (|has| $ (-370)))) (-2953 (((-112) $) NIL (|has| $ (-370)))) (-2064 (($ $ (-921)) NIL (|has| $ (-370))) (($ $) NIL)) (-2621 (((-3 $ "failed") $) NIL)) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3468 (((-1171 $) $ (-921)) NIL (|has| $ (-370))) (((-1171 $) $) 106)) (-1866 (((-921) $) 67)) (-2099 (((-1171 $) $) NIL (|has| $ (-370)))) (-3624 (((-3 (-1171 $) "failed") $ $) NIL (|has| $ (-370))) (((-1171 $) $) NIL (|has| $ (-370)))) (-3844 (($ $ (-1171 $)) NIL (|has| $ (-370)))) (-2128 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3380 (((-1157) $) NIL)) (-2748 (($ $) NIL)) (-3289 (($) NIL T CONST)) (-2835 (($ (-921)) 60)) (-3653 (((-112) $) 89)) (-4072 (((-1119) $) NIL)) (-3302 (($) 28 (|has| $ (-370)))) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2164 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2442 (((-644 (-2 (|:| -1624 (-566)) (|:| -2201 (-566))))) 54)) (-1624 (((-420 $) $) NIL)) (-1686 (((-921)) 88) (((-833 (-921))) NIL)) (-3005 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2978 (((-3 $ "failed") $ $) NIL)) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-4357 (((-771) $) NIL)) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL)) (-3169 (((-3 (-771) "failed") $ $) NIL) (((-771) $) NIL)) (-3126 (((-134)) NIL)) (-3629 (($ $ (-771)) NIL) (($ $) NIL)) (-3902 (((-921) $) 87) (((-833 (-921)) $) NIL)) (-1705 (((-1171 $)) 104)) (-4122 (($) 66)) (-2110 (($) 50 (|has| $ (-370)))) (-3350 (((-689 $) (-1264 $)) NIL) (((-1264 $) $) 93)) (-2376 (((-566) $) 40)) (-3391 (((-3 (-1264 $) "failed") (-689 $)) NIL)) (-3152 (((-862) $) NIL) (($ (-566)) 42) (($ $) NIL) (($ (-409 (-566))) NIL)) (-2633 (((-3 $ "failed") $) NIL) (($ $) 107)) (-2593 (((-771)) 51 T CONST)) (-3044 (((-112) $ $) 109)) (-2875 (((-1264 $) (-921)) 99) (((-1264 $)) 98)) (-3014 (((-112) $ $) NIL)) (-4217 (((-112) $) NIL)) (-4356 (($) 31 T CONST)) (-4366 (($) 27 T CONST)) (-2198 (($ $ (-771)) NIL (|has| $ (-370))) (($ $) NIL (|has| $ (-370)))) (-3497 (($ $ (-771)) NIL) (($ $) NIL)) (-2914 (((-112) $ $) NIL)) (-3025 (($ $ $) NIL)) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) 34)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 83) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL))) (((-583 |#1|) (-13 (-351) (-330 $) (-614 (-566))) (-921)) (T -583)) NIL (-13 (-351) (-330 $) (-614 (-566))) -((-3327 (((-1269) (-1157)) 10))) -(((-584) (-10 -7 (-15 -3327 ((-1269) (-1157))))) (T -584)) -((-3327 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-584))))) -(-10 -7 (-15 -3327 ((-1269) (-1157)))) -((-1815 (((-587 |#2|) (-587 |#2|)) 42)) (-2671 (((-644 |#2|) (-587 |#2|)) 44)) (-3807 ((|#2| (-587 |#2|)) 50))) -(((-585 |#1| |#2|) (-10 -7 (-15 -1815 ((-587 |#2|) (-587 |#2|))) (-15 -2671 ((-644 |#2|) (-587 |#2|))) (-15 -3807 (|#2| (-587 |#2|)))) (-13 (-454) (-1038 (-566)) (-639 (-566))) (-13 (-29 |#1|) (-1199))) (T -585)) -((-3807 (*1 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-13 (-29 *4) (-1199))) (-5 *1 (-585 *4 *2)) (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))))) (-2671 (*1 *2 *3) (-12 (-5 *3 (-587 *5)) (-4 *5 (-13 (-29 *4) (-1199))) (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-644 *5)) (-5 *1 (-585 *4 *5)))) (-1815 (*1 *2 *2) (-12 (-5 *2 (-587 *4)) (-4 *4 (-13 (-29 *3) (-1199))) (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-585 *3 *4))))) -(-10 -7 (-15 -1815 ((-587 |#2|) (-587 |#2|))) (-15 -2671 ((-644 |#2|) (-587 |#2|))) (-15 -3807 (|#2| (-587 |#2|)))) -((-1301 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2346 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2346 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-587 |#2|) (-1 |#2| |#1|) (-587 |#1|)) 30))) -(((-586 |#1| |#2|) (-10 -7 (-15 -1301 ((-587 |#2|) (-1 |#2| |#1|) (-587 |#1|))) (-15 -1301 ((-3 (-2 (|:| -2346 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2346 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1301 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1301 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-365) (-365)) (T -586)) -((-1301 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-365)) (-4 *6 (-365)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-586 *5 *6)))) (-1301 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-365)) (-4 *2 (-365)) (-5 *1 (-586 *5 *2)))) (-1301 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2346 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-365)) (-4 *6 (-365)) (-5 *2 (-2 (|:| -2346 *6) (|:| |coeff| *6))) (-5 *1 (-586 *5 *6)))) (-1301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-587 *5)) (-4 *5 (-365)) (-4 *6 (-365)) (-5 *2 (-587 *6)) (-5 *1 (-586 *5 *6))))) -(-10 -7 (-15 -1301 ((-587 |#2|) (-1 |#2| |#1|) (-587 |#1|))) (-15 -1301 ((-3 (-2 (|:| -2346 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2346 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1301 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1301 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-3012 (($) NIL T CONST)) (-4307 (((-3 |#1| "failed") $) 76)) (-4205 ((|#1| $) NIL)) (-2346 ((|#1| $) 30)) (-3325 (((-644 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32)) (-3860 (($ |#1| (-644 (-2 (|:| |scalar| (-409 (-566))) (|:| |coeff| (-1171 |#1|)) (|:| |logand| (-1171 |#1|)))) (-644 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28)) (-2615 (((-644 (-2 (|:| |scalar| (-409 (-566))) (|:| |coeff| (-1171 |#1|)) (|:| |logand| (-1171 |#1|)))) $) 31)) (-4117 (((-1157) $) NIL)) (-1880 (($ |#1| |#1|) 38) (($ |#1| (-1175)) 49 (|has| |#1| (-1038 (-1175))))) (-4035 (((-1119) $) NIL)) (-4094 (((-112) $) 35)) (-3561 ((|#1| $ (-1 |#1| |#1|)) 88) ((|#1| $ (-1175)) 89 (|has| |#1| (-900 (-1175))))) (-3783 (((-862) $) 112) (($ |#1|) 29)) (-3117 (((-112) $ $) NIL)) (-2479 (($) 18 T CONST)) (-2947 (((-112) $ $) NIL)) (-3053 (($ $) 17) (($ $ $) NIL)) (-3041 (($ $ $) 85)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 16) (($ (-409 (-566)) $) 41) (($ $ (-409 (-566))) NIL))) -(((-587 |#1|) (-13 (-717 (-409 (-566))) (-1038 |#1|) (-10 -8 (-15 -3860 ($ |#1| (-644 (-2 (|:| |scalar| (-409 (-566))) (|:| |coeff| (-1171 |#1|)) (|:| |logand| (-1171 |#1|)))) (-644 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2346 (|#1| $)) (-15 -2615 ((-644 (-2 (|:| |scalar| (-409 (-566))) (|:| |coeff| (-1171 |#1|)) (|:| |logand| (-1171 |#1|)))) $)) (-15 -3325 ((-644 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -4094 ((-112) $)) (-15 -1880 ($ |#1| |#1|)) (-15 -3561 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-900 (-1175))) (-15 -3561 (|#1| $ (-1175))) |%noBranch|) (IF (|has| |#1| (-1038 (-1175))) (-15 -1880 ($ |#1| (-1175))) |%noBranch|))) (-365)) (T -587)) -((-3860 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-644 (-2 (|:| |scalar| (-409 (-566))) (|:| |coeff| (-1171 *2)) (|:| |logand| (-1171 *2))))) (-5 *4 (-644 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-365)) (-5 *1 (-587 *2)))) (-2346 (*1 *2 *1) (-12 (-5 *1 (-587 *2)) (-4 *2 (-365)))) (-2615 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |scalar| (-409 (-566))) (|:| |coeff| (-1171 *3)) (|:| |logand| (-1171 *3))))) (-5 *1 (-587 *3)) (-4 *3 (-365)))) (-3325 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-587 *3)) (-4 *3 (-365)))) (-4094 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-587 *3)) (-4 *3 (-365)))) (-1880 (*1 *1 *2 *2) (-12 (-5 *1 (-587 *2)) (-4 *2 (-365)))) (-3561 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-587 *2)) (-4 *2 (-365)))) (-3561 (*1 *2 *1 *3) (-12 (-4 *2 (-365)) (-4 *2 (-900 *3)) (-5 *1 (-587 *2)) (-5 *3 (-1175)))) (-1880 (*1 *1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *1 (-587 *2)) (-4 *2 (-1038 *3)) (-4 *2 (-365))))) -(-13 (-717 (-409 (-566))) (-1038 |#1|) (-10 -8 (-15 -3860 ($ |#1| (-644 (-2 (|:| |scalar| (-409 (-566))) (|:| |coeff| (-1171 |#1|)) (|:| |logand| (-1171 |#1|)))) (-644 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2346 (|#1| $)) (-15 -2615 ((-644 (-2 (|:| |scalar| (-409 (-566))) (|:| |coeff| (-1171 |#1|)) (|:| |logand| (-1171 |#1|)))) $)) (-15 -3325 ((-644 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -4094 ((-112) $)) (-15 -1880 ($ |#1| |#1|)) (-15 -3561 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-900 (-1175))) (-15 -3561 (|#1| $ (-1175))) |%noBranch|) (IF (|has| |#1| (-1038 (-1175))) (-15 -1880 ($ |#1| (-1175))) |%noBranch|))) -((-2161 (((-112) |#1|) 16)) (-1665 (((-3 |#1| "failed") |#1|) 14)) (-3876 (((-2 (|:| -2719 |#1|) (|:| -2852 (-771))) |#1|) 39) (((-3 |#1| "failed") |#1| (-771)) 18)) (-2626 (((-112) |#1| (-771)) 19)) (-1677 ((|#1| |#1|) 43)) (-1587 ((|#1| |#1| (-771)) 46))) -(((-588 |#1|) (-10 -7 (-15 -2626 ((-112) |#1| (-771))) (-15 -3876 ((-3 |#1| "failed") |#1| (-771))) (-15 -3876 ((-2 (|:| -2719 |#1|) (|:| -2852 (-771))) |#1|)) (-15 -1587 (|#1| |#1| (-771))) (-15 -2161 ((-112) |#1|)) (-15 -1665 ((-3 |#1| "failed") |#1|)) (-15 -1677 (|#1| |#1|))) (-547)) (T -588)) -((-1677 (*1 *2 *2) (-12 (-5 *1 (-588 *2)) (-4 *2 (-547)))) (-1665 (*1 *2 *2) (|partial| -12 (-5 *1 (-588 *2)) (-4 *2 (-547)))) (-2161 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-588 *3)) (-4 *3 (-547)))) (-1587 (*1 *2 *2 *3) (-12 (-5 *3 (-771)) (-5 *1 (-588 *2)) (-4 *2 (-547)))) (-3876 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2719 *3) (|:| -2852 (-771)))) (-5 *1 (-588 *3)) (-4 *3 (-547)))) (-3876 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-771)) (-5 *1 (-588 *2)) (-4 *2 (-547)))) (-2626 (*1 *2 *3 *4) (-12 (-5 *4 (-771)) (-5 *2 (-112)) (-5 *1 (-588 *3)) (-4 *3 (-547))))) -(-10 -7 (-15 -2626 ((-112) |#1| (-771))) (-15 -3876 ((-3 |#1| "failed") |#1| (-771))) (-15 -3876 ((-2 (|:| -2719 |#1|) (|:| -2852 (-771))) |#1|)) (-15 -1587 (|#1| |#1| (-771))) (-15 -2161 ((-112) |#1|)) (-15 -1665 ((-3 |#1| "failed") |#1|)) (-15 -1677 (|#1| |#1|))) -((-3661 (((-1171 |#1|) (-921)) 44))) -(((-589 |#1|) (-10 -7 (-15 -3661 ((-1171 |#1|) (-921)))) (-351)) (T -589)) -((-3661 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-589 *4)) (-4 *4 (-351))))) -(-10 -7 (-15 -3661 ((-1171 |#1|) (-921)))) -((-1815 (((-587 (-409 (-952 |#1|))) (-587 (-409 (-952 |#1|)))) 27)) (-1941 (((-3 (-317 |#1|) (-644 (-317 |#1|))) (-409 (-952 |#1|)) (-1175)) 34 (|has| |#1| (-147)))) (-2671 (((-644 (-317 |#1|)) (-587 (-409 (-952 |#1|)))) 19)) (-1666 (((-317 |#1|) (-409 (-952 |#1|)) (-1175)) 32 (|has| |#1| (-147)))) (-3807 (((-317 |#1|) (-587 (-409 (-952 |#1|)))) 21))) -(((-590 |#1|) (-10 -7 (-15 -1815 ((-587 (-409 (-952 |#1|))) (-587 (-409 (-952 |#1|))))) (-15 -2671 ((-644 (-317 |#1|)) (-587 (-409 (-952 |#1|))))) (-15 -3807 ((-317 |#1|) (-587 (-409 (-952 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -1941 ((-3 (-317 |#1|) (-644 (-317 |#1|))) (-409 (-952 |#1|)) (-1175))) (-15 -1666 ((-317 |#1|) (-409 (-952 |#1|)) (-1175)))) |%noBranch|)) (-13 (-454) (-1038 (-566)) (-639 (-566)))) (T -590)) -((-1666 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-1175)) (-4 *5 (-147)) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-317 *5)) (-5 *1 (-590 *5)))) (-1941 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-1175)) (-4 *5 (-147)) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-3 (-317 *5) (-644 (-317 *5)))) (-5 *1 (-590 *5)))) (-3807 (*1 *2 *3) (-12 (-5 *3 (-587 (-409 (-952 *4)))) (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-317 *4)) (-5 *1 (-590 *4)))) (-2671 (*1 *2 *3) (-12 (-5 *3 (-587 (-409 (-952 *4)))) (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-644 (-317 *4))) (-5 *1 (-590 *4)))) (-1815 (*1 *2 *2) (-12 (-5 *2 (-587 (-409 (-952 *3)))) (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-590 *3))))) -(-10 -7 (-15 -1815 ((-587 (-409 (-952 |#1|))) (-587 (-409 (-952 |#1|))))) (-15 -2671 ((-644 (-317 |#1|)) (-587 (-409 (-952 |#1|))))) (-15 -3807 ((-317 |#1|) (-587 (-409 (-952 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -1941 ((-3 (-317 |#1|) (-644 (-317 |#1|))) (-409 (-952 |#1|)) (-1175))) (-15 -1666 ((-317 |#1|) (-409 (-952 |#1|)) (-1175)))) |%noBranch|)) -((-1826 (((-644 (-689 (-566))) (-644 (-566)) (-644 (-905 (-566)))) 78) (((-644 (-689 (-566))) (-644 (-566))) 79) (((-689 (-566)) (-644 (-566)) (-905 (-566))) 72)) (-1427 (((-771) (-644 (-566))) 69))) -(((-591) (-10 -7 (-15 -1427 ((-771) (-644 (-566)))) (-15 -1826 ((-689 (-566)) (-644 (-566)) (-905 (-566)))) (-15 -1826 ((-644 (-689 (-566))) (-644 (-566)))) (-15 -1826 ((-644 (-689 (-566))) (-644 (-566)) (-644 (-905 (-566))))))) (T -591)) -((-1826 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-566))) (-5 *4 (-644 (-905 (-566)))) (-5 *2 (-644 (-689 (-566)))) (-5 *1 (-591)))) (-1826 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-644 (-689 (-566)))) (-5 *1 (-591)))) (-1826 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-566))) (-5 *4 (-905 (-566))) (-5 *2 (-689 (-566))) (-5 *1 (-591)))) (-1427 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-771)) (-5 *1 (-591))))) -(-10 -7 (-15 -1427 ((-771) (-644 (-566)))) (-15 -1826 ((-689 (-566)) (-644 (-566)) (-905 (-566)))) (-15 -1826 ((-644 (-689 (-566))) (-644 (-566)))) (-15 -1826 ((-644 (-689 (-566))) (-644 (-566)) (-644 (-905 (-566)))))) -((-3378 (((-644 |#5|) |#5| (-112)) 100)) (-1912 (((-112) |#5| (-644 |#5|)) 34))) -(((-592 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3378 ((-644 |#5|) |#5| (-112))) (-15 -1912 ((-112) |#5| (-644 |#5|)))) (-13 (-308) (-147)) (-793) (-850) (-1064 |#1| |#2| |#3|) (-1108 |#1| |#2| |#3| |#4|)) (T -592)) -((-1912 (*1 *2 *3 *4) (-12 (-5 *4 (-644 *3)) (-4 *3 (-1108 *5 *6 *7 *8)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-1064 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-592 *5 *6 *7 *8 *3)))) (-3378 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-1064 *5 *6 *7)) (-5 *2 (-644 *3)) (-5 *1 (-592 *5 *6 *7 *8 *3)) (-4 *3 (-1108 *5 *6 *7 *8))))) -(-10 -7 (-15 -3378 ((-644 |#5|) |#5| (-112))) (-15 -1912 ((-112) |#5| (-644 |#5|)))) -((-3007 (((-112) $ $) NIL)) (-4330 (((-1134) $) 11)) (-4318 (((-1134) $) 9)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 17) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) -(((-593) (-13 (-1082) (-10 -8 (-15 -4318 ((-1134) $)) (-15 -4330 ((-1134) $))))) (T -593)) -((-4318 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-593)))) (-4330 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-593))))) -(-13 (-1082) (-10 -8 (-15 -4318 ((-1134) $)) (-15 -4330 ((-1134) $)))) -((-3007 (((-112) $ $) NIL (|has| (-144) (-1099)))) (-3530 (($ $) 38)) (-3761 (($ $) NIL)) (-2436 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-3734 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4415)))) (-3575 (((-112) $ $) 68)) (-3554 (((-112) $ $ (-566)) 62)) (-1815 (((-644 $) $ (-144)) 76) (((-644 $) $ (-141)) 77)) (-2644 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-850)))) (-1944 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4415))) (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-144) (-850))))) (-1510 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-850)))) (-2256 (((-112) $ (-771)) NIL)) (-3923 (((-144) $ (-566) (-144)) 59 (|has| $ (-6 -4415))) (((-144) $ (-1231 (-566)) (-144)) NIL (|has| $ (-6 -4415)))) (-2701 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4414)))) (-3012 (($) NIL T CONST)) (-1602 (($ $ (-144)) 81) (($ $ (-141)) 82)) (-3413 (($ $) NIL (|has| $ (-6 -4415)))) (-1377 (($ $) NIL)) (-2756 (($ $ (-1231 (-566)) $) 57)) (-2031 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-144) (-1099))))) (-2665 (($ (-144) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-144) (-1099)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4414)))) (-1676 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4414)) (|has| (-144) (-1099)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4414))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4414)))) (-2920 (((-144) $ (-566) (-144)) NIL (|has| $ (-6 -4415)))) (-2855 (((-144) $ (-566)) NIL)) (-3595 (((-112) $ $) 95)) (-4000 (((-566) (-1 (-112) (-144)) $) NIL) (((-566) (-144) $) NIL (|has| (-144) (-1099))) (((-566) (-144) $ (-566)) 65 (|has| (-144) (-1099))) (((-566) $ $ (-566)) 63) (((-566) (-141) $ (-566)) 67)) (-3979 (((-644 (-144)) $) NIL (|has| $ (-6 -4414)))) (-4265 (($ (-771) (-144)) 9)) (-2404 (((-112) $ (-771)) NIL)) (-3854 (((-566) $) 32 (|has| (-566) (-850)))) (-2097 (($ $ $) NIL (|has| (-144) (-850)))) (-3298 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-850)))) (-2329 (((-644 (-144)) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-144) (-1099))))) (-2712 (((-566) $) 47 (|has| (-566) (-850)))) (-3962 (($ $ $) NIL (|has| (-144) (-850)))) (-4019 (((-112) $ $ (-144)) 96)) (-4066 (((-771) $ $ (-144)) 93)) (-2908 (($ (-1 (-144) (-144)) $) 37 (|has| $ (-6 -4415)))) (-1301 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-3858 (($ $) 41)) (-3895 (($ $) NIL)) (-2603 (((-112) $ (-771)) NIL)) (-1614 (($ $ (-144)) 78) (($ $ (-141)) 79)) (-4117 (((-1157) $) 43 (|has| (-144) (-1099)))) (-4276 (($ (-144) $ (-566)) NIL) (($ $ $ (-566)) 27)) (-4074 (((-644 (-566)) $) NIL)) (-3792 (((-112) (-566) $) NIL)) (-4035 (((-566) $) 92) (((-1119) $) NIL (|has| (-144) (-1099)))) (-1998 (((-144) $) NIL (|has| (-566) (-850)))) (-2006 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-4030 (($ $ (-144)) NIL (|has| $ (-6 -4415)))) (-2692 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 (-144)))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-295 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-644 (-144)) (-644 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099))))) (-1932 (((-112) $ $) NIL)) (-4156 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-144) (-1099))))) (-2993 (((-644 (-144)) $) NIL)) (-3467 (((-112) $) 15)) (-1494 (($) 10)) (-4390 (((-144) $ (-566) (-144)) NIL) (((-144) $ (-566)) 69) (($ $ (-1231 (-566))) 25) (($ $ $) NIL)) (-2187 (($ $ (-566)) NIL) (($ $ (-1231 (-566))) NIL)) (-4045 (((-771) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4414))) (((-771) (-144) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-144) (-1099))))) (-1297 (($ $ $ (-566)) 84 (|has| $ (-6 -4415)))) (-3940 (($ $) 20)) (-1348 (((-538) $) NIL (|has| (-144) (-614 (-538))))) (-3796 (($ (-644 (-144))) NIL)) (-3721 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) 19) (($ (-644 $)) 85)) (-3783 (($ (-144)) NIL) (((-862) $) 31 (|has| (-144) (-613 (-862))))) (-3117 (((-112) $ $) NIL (|has| (-144) (-1099)))) (-1894 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4414)))) (-3009 (((-112) $ $) NIL (|has| (-144) (-850)))) (-2984 (((-112) $ $) NIL (|has| (-144) (-850)))) (-2947 (((-112) $ $) 17 (|has| (-144) (-1099)))) (-2995 (((-112) $ $) NIL (|has| (-144) (-850)))) (-2969 (((-112) $ $) 18 (|has| (-144) (-850)))) (-3018 (((-771) $) 16 (|has| $ (-6 -4414))))) -(((-594 |#1|) (-13 (-1143) (-10 -8 (-15 -4035 ((-566) $)))) (-566)) (T -594)) -((-4035 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-594 *3)) (-14 *3 *2)))) -(-13 (-1143) (-10 -8 (-15 -4035 ((-566) $)))) -((-2744 (((-2 (|:| |num| |#4|) (|:| |den| (-566))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-566))) |#4| |#2| (-1093 |#4|)) 32))) -(((-595 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2744 ((-2 (|:| |num| |#4|) (|:| |den| (-566))) |#4| |#2| (-1093 |#4|))) (-15 -2744 ((-2 (|:| |num| |#4|) (|:| |den| (-566))) |#4| |#2|))) (-793) (-850) (-558) (-949 |#3| |#1| |#2|)) (T -595)) -((-2744 (*1 *2 *3 *4) (-12 (-4 *5 (-793)) (-4 *4 (-850)) (-4 *6 (-558)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-566)))) (-5 *1 (-595 *5 *4 *6 *3)) (-4 *3 (-949 *6 *5 *4)))) (-2744 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1093 *3)) (-4 *3 (-949 *7 *6 *4)) (-4 *6 (-793)) (-4 *4 (-850)) (-4 *7 (-558)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-566)))) (-5 *1 (-595 *6 *4 *7 *3))))) -(-10 -7 (-15 -2744 ((-2 (|:| |num| |#4|) (|:| |den| (-566))) |#4| |#2| (-1093 |#4|))) (-15 -2744 ((-2 (|:| |num| |#4|) (|:| |den| (-566))) |#4| |#2|))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) 72)) (-3863 (((-644 (-1081)) $) NIL)) (-1385 (((-1175) $) NIL)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-3991 (($ $) NIL (|has| |#1| (-558)))) (-2388 (((-112) $) NIL (|has| |#1| (-558)))) (-2587 (($ $ (-566)) 58) (($ $ (-566) (-566)) 59)) (-2775 (((-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))) $) 65)) (-3836 (($ $) 110)) (-4175 (((-3 $ "failed") $ $) NIL)) (-1876 (((-862) (-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))) (-1026 (-843 (-566))) (-1175) |#1| (-409 (-566))) 243)) (-2052 (($ (-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|)))) 36)) (-3012 (($) NIL T CONST)) (-1786 (($ $) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-2158 (((-112) $) NIL)) (-3254 (((-566) $) 63) (((-566) $ (-566)) 64)) (-3934 (((-112) $) NIL)) (-2955 (($ $ (-921)) 84)) (-4042 (($ (-1 |#1| (-566)) $) 81)) (-3264 (((-112) $) 26)) (-3840 (($ |#1| (-566)) 22) (($ $ (-1081) (-566)) NIL) (($ $ (-644 (-1081)) (-644 (-566))) NIL)) (-1301 (($ (-1 |#1| |#1|) $) 76)) (-2693 (($ (-1026 (-843 (-566))) (-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|)))) 13)) (-1749 (($ $) NIL)) (-1763 ((|#1| $) NIL)) (-4117 (((-1157) $) NIL)) (-1941 (($ $) 163 (|has| |#1| (-38 (-409 (-566)))))) (-3236 (((-3 $ "failed") $ $ (-112)) 109)) (-2588 (($ $ $) 117)) (-4035 (((-1119) $) NIL)) (-2504 (((-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))) $) 15)) (-3371 (((-1026 (-843 (-566))) $) 14)) (-3874 (($ $ (-566)) 47)) (-2994 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-2055 (((-1155 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-566)))))) (-4390 ((|#1| $ (-566)) 62) (($ $ $) NIL (|has| (-566) (-1111)))) (-3561 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-566) |#1|)))) (($ $) 78 (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (-3636 (((-566) $) NIL)) (-2770 (($ $) 48)) (-3783 (((-862) $) NIL) (($ (-566)) 29) (($ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $) NIL (|has| |#1| (-558))) (($ |#1|) 28 (|has| |#1| (-172)))) (-2649 ((|#1| $ (-566)) 61)) (-3144 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2107 (((-771)) 39 T CONST)) (-1320 ((|#1| $) NIL)) (-3613 (($ $) 201 (|has| |#1| (-38 (-409 (-566)))))) (-4275 (($ $) 171 (|has| |#1| (-38 (-409 (-566)))))) (-2020 (($ $) 205 (|has| |#1| (-38 (-409 (-566)))))) (-2173 (($ $) 176 (|has| |#1| (-38 (-409 (-566)))))) (-1722 (($ $) 204 (|has| |#1| (-38 (-409 (-566)))))) (-1999 (($ $) 175 (|has| |#1| (-38 (-409 (-566)))))) (-3498 (($ $ (-409 (-566))) 179 (|has| |#1| (-38 (-409 (-566)))))) (-2999 (($ $ |#1|) 159 (|has| |#1| (-38 (-409 (-566)))))) (-4338 (($ $) 207 (|has| |#1| (-38 (-409 (-566)))))) (-2731 (($ $) 162 (|has| |#1| (-38 (-409 (-566)))))) (-2566 (($ $) 206 (|has| |#1| (-38 (-409 (-566)))))) (-2941 (($ $) 177 (|has| |#1| (-38 (-409 (-566)))))) (-2203 (($ $) 202 (|has| |#1| (-38 (-409 (-566)))))) (-2032 (($ $) 173 (|has| |#1| (-38 (-409 (-566)))))) (-1413 (($ $) 203 (|has| |#1| (-38 (-409 (-566)))))) (-1895 (($ $) 174 (|has| |#1| (-38 (-409 (-566)))))) (-1805 (($ $) 212 (|has| |#1| (-38 (-409 (-566)))))) (-1434 (($ $) 188 (|has| |#1| (-38 (-409 (-566)))))) (-3038 (($ $) 209 (|has| |#1| (-38 (-409 (-566)))))) (-4135 (($ $) 183 (|has| |#1| (-38 (-409 (-566)))))) (-2041 (($ $) 216 (|has| |#1| (-38 (-409 (-566)))))) (-3525 (($ $) 192 (|has| |#1| (-38 (-409 (-566)))))) (-2049 (($ $) 218 (|has| |#1| (-38 (-409 (-566)))))) (-2796 (($ $) 194 (|has| |#1| (-38 (-409 (-566)))))) (-2396 (($ $) 214 (|has| |#1| (-38 (-409 (-566)))))) (-3104 (($ $) 190 (|has| |#1| (-38 (-409 (-566)))))) (-2042 (($ $) 211 (|has| |#1| (-38 (-409 (-566)))))) (-1647 (($ $) 186 (|has| |#1| (-38 (-409 (-566)))))) (-3117 (((-112) $ $) NIL)) (-2695 (((-112) $ $) NIL (|has| |#1| (-558)))) (-3628 ((|#1| $ (-566)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-566)))) (|has| |#1| (-15 -3783 (|#1| (-1175))))))) (-2479 (($) 30 T CONST)) (-4334 (($) 40 T CONST)) (-2875 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-566) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (-2947 (((-112) $ $) 74)) (-3065 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3053 (($ $) 92) (($ $ $) 73)) (-3041 (($ $ $) 89)) (** (($ $ (-921)) NIL) (($ $ (-771)) 112)) (* (($ (-921) $) 99) (($ (-771) $) 97) (($ (-566) $) 94) (($ $ $) 105) (($ $ |#1|) NIL) (($ |#1| $) 124) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))))) -(((-596 |#1|) (-13 (-1242 |#1| (-566)) (-10 -8 (-15 -2693 ($ (-1026 (-843 (-566))) (-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))))) (-15 -3371 ((-1026 (-843 (-566))) $)) (-15 -2504 ((-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))) $)) (-15 -2052 ($ (-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))))) (-15 -3264 ((-112) $)) (-15 -4042 ($ (-1 |#1| (-566)) $)) (-15 -3236 ((-3 $ "failed") $ $ (-112))) (-15 -3836 ($ $)) (-15 -2588 ($ $ $)) (-15 -1876 ((-862) (-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))) (-1026 (-843 (-566))) (-1175) |#1| (-409 (-566)))) (IF (|has| |#1| (-38 (-409 (-566)))) (PROGN (-15 -1941 ($ $)) (-15 -2999 ($ $ |#1|)) (-15 -3498 ($ $ (-409 (-566)))) (-15 -2731 ($ $)) (-15 -4338 ($ $)) (-15 -2173 ($ $)) (-15 -1895 ($ $)) (-15 -4275 ($ $)) (-15 -2032 ($ $)) (-15 -1999 ($ $)) (-15 -2941 ($ $)) (-15 -4135 ($ $)) (-15 -1647 ($ $)) (-15 -1434 ($ $)) (-15 -3104 ($ $)) (-15 -3525 ($ $)) (-15 -2796 ($ $)) (-15 -2020 ($ $)) (-15 -1413 ($ $)) (-15 -3613 ($ $)) (-15 -2203 ($ $)) (-15 -1722 ($ $)) (-15 -2566 ($ $)) (-15 -3038 ($ $)) (-15 -2042 ($ $)) (-15 -1805 ($ $)) (-15 -2396 ($ $)) (-15 -2041 ($ $)) (-15 -2049 ($ $))) |%noBranch|))) (-1049)) (T -596)) -((-3264 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-596 *3)) (-4 *3 (-1049)))) (-2693 (*1 *1 *2 *3) (-12 (-5 *2 (-1026 (-843 (-566)))) (-5 *3 (-1155 (-2 (|:| |k| (-566)) (|:| |c| *4)))) (-4 *4 (-1049)) (-5 *1 (-596 *4)))) (-3371 (*1 *2 *1) (-12 (-5 *2 (-1026 (-843 (-566)))) (-5 *1 (-596 *3)) (-4 *3 (-1049)))) (-2504 (*1 *2 *1) (-12 (-5 *2 (-1155 (-2 (|:| |k| (-566)) (|:| |c| *3)))) (-5 *1 (-596 *3)) (-4 *3 (-1049)))) (-2052 (*1 *1 *2) (-12 (-5 *2 (-1155 (-2 (|:| |k| (-566)) (|:| |c| *3)))) (-4 *3 (-1049)) (-5 *1 (-596 *3)))) (-4042 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-566))) (-4 *3 (-1049)) (-5 *1 (-596 *3)))) (-3236 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-596 *3)) (-4 *3 (-1049)))) (-3836 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-1049)))) (-2588 (*1 *1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-1049)))) (-1876 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1155 (-2 (|:| |k| (-566)) (|:| |c| *6)))) (-5 *4 (-1026 (-843 (-566)))) (-5 *5 (-1175)) (-5 *7 (-409 (-566))) (-4 *6 (-1049)) (-5 *2 (-862)) (-5 *1 (-596 *6)))) (-1941 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-2999 (*1 *1 *1 *2) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-3498 (*1 *1 *1 *2) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-596 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1049)))) (-2731 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-4338 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-2173 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-1895 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-4275 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-2032 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-1999 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-2941 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-4135 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-1647 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-1434 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-3104 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-3525 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-2796 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-2020 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-1413 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-3613 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-2203 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-1722 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-2566 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-3038 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-2042 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-1805 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-2396 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-2041 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-2049 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) -(-13 (-1242 |#1| (-566)) (-10 -8 (-15 -2693 ($ (-1026 (-843 (-566))) (-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))))) (-15 -3371 ((-1026 (-843 (-566))) $)) (-15 -2504 ((-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))) $)) (-15 -2052 ($ (-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))))) (-15 -3264 ((-112) $)) (-15 -4042 ($ (-1 |#1| (-566)) $)) (-15 -3236 ((-3 $ "failed") $ $ (-112))) (-15 -3836 ($ $)) (-15 -2588 ($ $ $)) (-15 -1876 ((-862) (-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))) (-1026 (-843 (-566))) (-1175) |#1| (-409 (-566)))) (IF (|has| |#1| (-38 (-409 (-566)))) (PROGN (-15 -1941 ($ $)) (-15 -2999 ($ $ |#1|)) (-15 -3498 ($ $ (-409 (-566)))) (-15 -2731 ($ $)) (-15 -4338 ($ $)) (-15 -2173 ($ $)) (-15 -1895 ($ $)) (-15 -4275 ($ $)) (-15 -2032 ($ $)) (-15 -1999 ($ $)) (-15 -2941 ($ $)) (-15 -4135 ($ $)) (-15 -1647 ($ $)) (-15 -1434 ($ $)) (-15 -3104 ($ $)) (-15 -3525 ($ $)) (-15 -2796 ($ $)) (-15 -2020 ($ $)) (-15 -1413 ($ $)) (-15 -3613 ($ $)) (-15 -2203 ($ $)) (-15 -1722 ($ $)) (-15 -2566 ($ $)) (-15 -3038 ($ $)) (-15 -2042 ($ $)) (-15 -1805 ($ $)) (-15 -2396 ($ $)) (-15 -2041 ($ $)) (-15 -2049 ($ $))) |%noBranch|))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-3991 (($ $) NIL (|has| |#1| (-558)))) (-2388 (((-112) $) NIL (|has| |#1| (-558)))) (-4175 (((-3 $ "failed") $ $) NIL)) (-2052 (($ (-1155 |#1|)) 9)) (-3012 (($) NIL T CONST)) (-1878 (((-3 $ "failed") $) 48)) (-2158 (((-112) $) 58)) (-3254 (((-771) $) 63) (((-771) $ (-771)) 62)) (-3934 (((-112) $) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-2994 (((-3 $ "failed") $ $) 50 (|has| |#1| (-558)))) (-3783 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL (|has| |#1| (-558)))) (-4170 (((-1155 |#1|) $) 29)) (-2107 (((-771)) 57 T CONST)) (-3117 (((-112) $ $) NIL)) (-2695 (((-112) $ $) NIL (|has| |#1| (-558)))) (-2479 (($) 10 T CONST)) (-4334 (($) 14 T CONST)) (-2947 (((-112) $ $) 28)) (-3053 (($ $) 36) (($ $ $) 16)) (-3041 (($ $ $) 31)) (** (($ $ (-921)) NIL) (($ $ (-771)) 55)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 40) (($ $ $) 34) (($ |#1| $) 43) (($ $ |#1|) 44) (($ $ (-566)) 42))) -(((-597 |#1|) (-13 (-1049) (-10 -8 (-15 -4170 ((-1155 |#1|) $)) (-15 -2052 ($ (-1155 |#1|))) (-15 -2158 ((-112) $)) (-15 -3254 ((-771) $)) (-15 -3254 ((-771) $ (-771))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-566))) (IF (|has| |#1| (-558)) (-6 (-558)) |%noBranch|))) (-1049)) (T -597)) -((-4170 (*1 *2 *1) (-12 (-5 *2 (-1155 *3)) (-5 *1 (-597 *3)) (-4 *3 (-1049)))) (-2052 (*1 *1 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-597 *3)))) (-2158 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-1049)))) (-3254 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-597 *3)) (-4 *3 (-1049)))) (-3254 (*1 *2 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-597 *3)) (-4 *3 (-1049)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1049)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1049)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-597 *3)) (-4 *3 (-1049))))) -(-13 (-1049) (-10 -8 (-15 -4170 ((-1155 |#1|) $)) (-15 -2052 ($ (-1155 |#1|))) (-15 -2158 ((-112) $)) (-15 -3254 ((-771) $)) (-15 -3254 ((-771) $ (-771))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-566))) (IF (|has| |#1| (-558)) (-6 (-558)) |%noBranch|))) -((-1301 (((-601 |#2|) (-1 |#2| |#1|) (-601 |#1|)) 15))) -(((-598 |#1| |#2|) (-10 -7 (-15 -1301 ((-601 |#2|) (-1 |#2| |#1|) (-601 |#1|)))) (-1214) (-1214)) (T -598)) -((-1301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-601 *5)) (-4 *5 (-1214)) (-4 *6 (-1214)) (-5 *2 (-601 *6)) (-5 *1 (-598 *5 *6))))) -(-10 -7 (-15 -1301 ((-601 |#2|) (-1 |#2| |#1|) (-601 |#1|)))) -((-1301 (((-1155 |#3|) (-1 |#3| |#1| |#2|) (-601 |#1|) (-1155 |#2|)) 20) (((-1155 |#3|) (-1 |#3| |#1| |#2|) (-1155 |#1|) (-601 |#2|)) 19) (((-601 |#3|) (-1 |#3| |#1| |#2|) (-601 |#1|) (-601 |#2|)) 18))) -(((-599 |#1| |#2| |#3|) (-10 -7 (-15 -1301 ((-601 |#3|) (-1 |#3| |#1| |#2|) (-601 |#1|) (-601 |#2|))) (-15 -1301 ((-1155 |#3|) (-1 |#3| |#1| |#2|) (-1155 |#1|) (-601 |#2|))) (-15 -1301 ((-1155 |#3|) (-1 |#3| |#1| |#2|) (-601 |#1|) (-1155 |#2|)))) (-1214) (-1214) (-1214)) (T -599)) -((-1301 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-601 *6)) (-5 *5 (-1155 *7)) (-4 *6 (-1214)) (-4 *7 (-1214)) (-4 *8 (-1214)) (-5 *2 (-1155 *8)) (-5 *1 (-599 *6 *7 *8)))) (-1301 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1155 *6)) (-5 *5 (-601 *7)) (-4 *6 (-1214)) (-4 *7 (-1214)) (-4 *8 (-1214)) (-5 *2 (-1155 *8)) (-5 *1 (-599 *6 *7 *8)))) (-1301 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-601 *6)) (-5 *5 (-601 *7)) (-4 *6 (-1214)) (-4 *7 (-1214)) (-4 *8 (-1214)) (-5 *2 (-601 *8)) (-5 *1 (-599 *6 *7 *8))))) -(-10 -7 (-15 -1301 ((-601 |#3|) (-1 |#3| |#1| |#2|) (-601 |#1|) (-601 |#2|))) (-15 -1301 ((-1155 |#3|) (-1 |#3| |#1| |#2|) (-1155 |#1|) (-601 |#2|))) (-15 -1301 ((-1155 |#3|) (-1 |#3| |#1| |#2|) (-601 |#1|) (-1155 |#2|)))) -((-3196 ((|#3| |#3| (-644 (-612 |#3|)) (-644 (-1175))) 57)) (-1640 (((-169 |#2|) |#3|) 121)) (-1542 ((|#3| (-169 |#2|)) 46)) (-1568 ((|#2| |#3|) 21)) (-2578 ((|#3| |#2|) 35))) -(((-600 |#1| |#2| |#3|) (-10 -7 (-15 -1542 (|#3| (-169 |#2|))) (-15 -1568 (|#2| |#3|)) (-15 -2578 (|#3| |#2|)) (-15 -1640 ((-169 |#2|) |#3|)) (-15 -3196 (|#3| |#3| (-644 (-612 |#3|)) (-644 (-1175))))) (-558) (-13 (-432 |#1|) (-1002) (-1199)) (-13 (-432 (-169 |#1|)) (-1002) (-1199))) (T -600)) -((-3196 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-644 (-612 *2))) (-5 *4 (-644 (-1175))) (-4 *2 (-13 (-432 (-169 *5)) (-1002) (-1199))) (-4 *5 (-558)) (-5 *1 (-600 *5 *6 *2)) (-4 *6 (-13 (-432 *5) (-1002) (-1199))))) (-1640 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-169 *5)) (-5 *1 (-600 *4 *5 *3)) (-4 *5 (-13 (-432 *4) (-1002) (-1199))) (-4 *3 (-13 (-432 (-169 *4)) (-1002) (-1199))))) (-2578 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *2 (-13 (-432 (-169 *4)) (-1002) (-1199))) (-5 *1 (-600 *4 *3 *2)) (-4 *3 (-13 (-432 *4) (-1002) (-1199))))) (-1568 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *2 (-13 (-432 *4) (-1002) (-1199))) (-5 *1 (-600 *4 *2 *3)) (-4 *3 (-13 (-432 (-169 *4)) (-1002) (-1199))))) (-1542 (*1 *2 *3) (-12 (-5 *3 (-169 *5)) (-4 *5 (-13 (-432 *4) (-1002) (-1199))) (-4 *4 (-558)) (-4 *2 (-13 (-432 (-169 *4)) (-1002) (-1199))) (-5 *1 (-600 *4 *5 *2))))) -(-10 -7 (-15 -1542 (|#3| (-169 |#2|))) (-15 -1568 (|#2| |#3|)) (-15 -2578 (|#3| |#2|)) (-15 -1640 ((-169 |#2|) |#3|)) (-15 -3196 (|#3| |#3| (-644 (-612 |#3|)) (-644 (-1175))))) -((-2701 (($ (-1 (-112) |#1|) $) 17)) (-1301 (($ (-1 |#1| |#1|) $) NIL)) (-3082 (($ (-1 |#1| |#1|) |#1|) 9)) (-2681 (($ (-1 (-112) |#1|) $) 13)) (-2689 (($ (-1 (-112) |#1|) $) 15)) (-3796 (((-1155 |#1|) $) 18)) (-3783 (((-862) $) NIL))) -(((-601 |#1|) (-13 (-613 (-862)) (-10 -8 (-15 -1301 ($ (-1 |#1| |#1|) $)) (-15 -2681 ($ (-1 (-112) |#1|) $)) (-15 -2689 ($ (-1 (-112) |#1|) $)) (-15 -2701 ($ (-1 (-112) |#1|) $)) (-15 -3082 ($ (-1 |#1| |#1|) |#1|)) (-15 -3796 ((-1155 |#1|) $)))) (-1214)) (T -601)) -((-1301 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1214)) (-5 *1 (-601 *3)))) (-2681 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1214)) (-5 *1 (-601 *3)))) (-2689 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1214)) (-5 *1 (-601 *3)))) (-2701 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1214)) (-5 *1 (-601 *3)))) (-3082 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1214)) (-5 *1 (-601 *3)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-1155 *3)) (-5 *1 (-601 *3)) (-4 *3 (-1214))))) -(-13 (-613 (-862)) (-10 -8 (-15 -1301 ($ (-1 |#1| |#1|) $)) (-15 -2681 ($ (-1 (-112) |#1|) $)) (-15 -2689 ($ (-1 (-112) |#1|) $)) (-15 -2701 ($ (-1 (-112) |#1|) $)) (-15 -3082 ($ (-1 |#1| |#1|) |#1|)) (-15 -3796 ((-1155 |#1|) $)))) -((-3007 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2149 (($ (-771)) NIL (|has| |#1| (-23)))) (-3734 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4415)))) (-2644 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-850)))) (-1944 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4415))) (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-850))))) (-1510 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-850)))) (-2256 (((-112) $ (-771)) NIL)) (-3923 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4415))) ((|#1| $ (-1231 (-566)) |#1|) NIL (|has| $ (-6 -4415)))) (-2701 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-3012 (($) NIL T CONST)) (-3413 (($ $) NIL (|has| $ (-6 -4415)))) (-1377 (($ $) NIL)) (-2031 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2665 (($ |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-1676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4414)))) (-2920 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4415)))) (-2855 ((|#1| $ (-566)) NIL)) (-4000 (((-566) (-1 (-112) |#1|) $) NIL) (((-566) |#1| $) NIL (|has| |#1| (-1099))) (((-566) |#1| $ (-566)) NIL (|has| |#1| (-1099)))) (-3979 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1939 (((-689 |#1|) $ $) NIL (|has| |#1| (-1049)))) (-4265 (($ (-771) |#1|) NIL)) (-2404 (((-112) $ (-771)) NIL)) (-3854 (((-566) $) NIL (|has| (-566) (-850)))) (-2097 (($ $ $) NIL (|has| |#1| (-850)))) (-3298 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-850)))) (-2329 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2712 (((-566) $) NIL (|has| (-566) (-850)))) (-3962 (($ $ $) NIL (|has| |#1| (-850)))) (-2908 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2330 ((|#1| $) NIL (-12 (|has| |#1| (-1002)) (|has| |#1| (-1049))))) (-2603 (((-112) $ (-771)) NIL)) (-4149 ((|#1| $) NIL (-12 (|has| |#1| (-1002)) (|has| |#1| (-1049))))) (-4117 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4276 (($ |#1| $ (-566)) NIL) (($ $ $ (-566)) NIL)) (-4074 (((-644 (-566)) $) NIL)) (-3792 (((-112) (-566) $) NIL)) (-4035 (((-1119) $) NIL (|has| |#1| (-1099)))) (-1998 ((|#1| $) NIL (|has| (-566) (-850)))) (-2006 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4030 (($ $ |#1|) NIL (|has| $ (-6 -4415)))) (-2692 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) NIL)) (-4156 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2993 (((-644 |#1|) $) NIL)) (-3467 (((-112) $) NIL)) (-1494 (($) NIL)) (-4390 ((|#1| $ (-566) |#1|) NIL) ((|#1| $ (-566)) NIL) (($ $ (-1231 (-566))) NIL)) (-4280 ((|#1| $ $) NIL (|has| |#1| (-1049)))) (-2187 (($ $ (-566)) NIL) (($ $ (-1231 (-566))) NIL)) (-2797 (($ $ $) NIL (|has| |#1| (-1049)))) (-4045 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-1297 (($ $ $ (-566)) NIL (|has| $ (-6 -4415)))) (-3940 (($ $) NIL)) (-1348 (((-538) $) NIL (|has| |#1| (-614 (-538))))) (-3796 (($ (-644 |#1|)) NIL)) (-3721 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-644 $)) NIL)) (-3783 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-3117 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1894 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-3009 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2984 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2947 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2995 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2969 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3053 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3041 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-566) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-726))) (($ $ |#1|) NIL (|has| |#1| (-726)))) (-3018 (((-771) $) NIL (|has| $ (-6 -4414))))) +((-1554 (((-1269) (-1157)) 10))) +(((-584) (-10 -7 (-15 -1554 ((-1269) (-1157))))) (T -584)) +((-1554 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-584))))) +(-10 -7 (-15 -1554 ((-1269) (-1157)))) +((-3011 (((-587 |#2|) (-587 |#2|)) 42)) (-3640 (((-644 |#2|) (-587 |#2|)) 44)) (-3433 ((|#2| (-587 |#2|)) 50))) +(((-585 |#1| |#2|) (-10 -7 (-15 -3011 ((-587 |#2|) (-587 |#2|))) (-15 -3640 ((-644 |#2|) (-587 |#2|))) (-15 -3433 (|#2| (-587 |#2|)))) (-13 (-454) (-1038 (-566)) (-639 (-566))) (-13 (-29 |#1|) (-1199))) (T -585)) +((-3433 (*1 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-13 (-29 *4) (-1199))) (-5 *1 (-585 *4 *2)) (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))))) (-3640 (*1 *2 *3) (-12 (-5 *3 (-587 *5)) (-4 *5 (-13 (-29 *4) (-1199))) (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-644 *5)) (-5 *1 (-585 *4 *5)))) (-3011 (*1 *2 *2) (-12 (-5 *2 (-587 *4)) (-4 *4 (-13 (-29 *3) (-1199))) (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-585 *3 *4))))) +(-10 -7 (-15 -3011 ((-587 |#2|) (-587 |#2|))) (-15 -3640 ((-644 |#2|) (-587 |#2|))) (-15 -3433 (|#2| (-587 |#2|)))) +((-2319 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -1641 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1641 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-587 |#2|) (-1 |#2| |#1|) (-587 |#1|)) 30))) +(((-586 |#1| |#2|) (-10 -7 (-15 -2319 ((-587 |#2|) (-1 |#2| |#1|) (-587 |#1|))) (-15 -2319 ((-3 (-2 (|:| -1641 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1641 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2319 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2319 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-365) (-365)) (T -586)) +((-2319 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-365)) (-4 *6 (-365)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-586 *5 *6)))) (-2319 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-365)) (-4 *2 (-365)) (-5 *1 (-586 *5 *2)))) (-2319 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -1641 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-365)) (-4 *6 (-365)) (-5 *2 (-2 (|:| -1641 *6) (|:| |coeff| *6))) (-5 *1 (-586 *5 *6)))) (-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-587 *5)) (-4 *5 (-365)) (-4 *6 (-365)) (-5 *2 (-587 *6)) (-5 *1 (-586 *5 *6))))) +(-10 -7 (-15 -2319 ((-587 |#2|) (-1 |#2| |#1|) (-587 |#1|))) (-15 -2319 ((-3 (-2 (|:| -1641 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1641 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2319 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2319 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-2463 (($) NIL T CONST)) (-2229 (((-3 |#1| "failed") $) 76)) (-4158 ((|#1| $) NIL)) (-1641 ((|#1| $) 30)) (-1366 (((-644 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32)) (-1585 (($ |#1| (-644 (-2 (|:| |scalar| (-409 (-566))) (|:| |coeff| (-1171 |#1|)) (|:| |logand| (-1171 |#1|)))) (-644 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28)) (-3137 (((-644 (-2 (|:| |scalar| (-409 (-566))) (|:| |coeff| (-1171 |#1|)) (|:| |logand| (-1171 |#1|)))) $) 31)) (-3380 (((-1157) $) NIL)) (-3428 (($ |#1| |#1|) 38) (($ |#1| (-1175)) 49 (|has| |#1| (-1038 (-1175))))) (-4072 (((-1119) $) NIL)) (-3079 (((-112) $) 35)) (-3629 ((|#1| $ (-1 |#1| |#1|)) 88) ((|#1| $ (-1175)) 89 (|has| |#1| (-900 (-1175))))) (-3152 (((-862) $) 112) (($ |#1|) 29)) (-3044 (((-112) $ $) NIL)) (-4356 (($) 18 T CONST)) (-2914 (((-112) $ $) NIL)) (-3012 (($ $) 17) (($ $ $) NIL)) (-3002 (($ $ $) 85)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 16) (($ (-409 (-566)) $) 41) (($ $ (-409 (-566))) NIL))) +(((-587 |#1|) (-13 (-717 (-409 (-566))) (-1038 |#1|) (-10 -8 (-15 -1585 ($ |#1| (-644 (-2 (|:| |scalar| (-409 (-566))) (|:| |coeff| (-1171 |#1|)) (|:| |logand| (-1171 |#1|)))) (-644 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -1641 (|#1| $)) (-15 -3137 ((-644 (-2 (|:| |scalar| (-409 (-566))) (|:| |coeff| (-1171 |#1|)) (|:| |logand| (-1171 |#1|)))) $)) (-15 -1366 ((-644 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3079 ((-112) $)) (-15 -3428 ($ |#1| |#1|)) (-15 -3629 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-900 (-1175))) (-15 -3629 (|#1| $ (-1175))) |%noBranch|) (IF (|has| |#1| (-1038 (-1175))) (-15 -3428 ($ |#1| (-1175))) |%noBranch|))) (-365)) (T -587)) +((-1585 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-644 (-2 (|:| |scalar| (-409 (-566))) (|:| |coeff| (-1171 *2)) (|:| |logand| (-1171 *2))))) (-5 *4 (-644 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-365)) (-5 *1 (-587 *2)))) (-1641 (*1 *2 *1) (-12 (-5 *1 (-587 *2)) (-4 *2 (-365)))) (-3137 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |scalar| (-409 (-566))) (|:| |coeff| (-1171 *3)) (|:| |logand| (-1171 *3))))) (-5 *1 (-587 *3)) (-4 *3 (-365)))) (-1366 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-587 *3)) (-4 *3 (-365)))) (-3079 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-587 *3)) (-4 *3 (-365)))) (-3428 (*1 *1 *2 *2) (-12 (-5 *1 (-587 *2)) (-4 *2 (-365)))) (-3629 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-587 *2)) (-4 *2 (-365)))) (-3629 (*1 *2 *1 *3) (-12 (-4 *2 (-365)) (-4 *2 (-900 *3)) (-5 *1 (-587 *2)) (-5 *3 (-1175)))) (-3428 (*1 *1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *1 (-587 *2)) (-4 *2 (-1038 *3)) (-4 *2 (-365))))) +(-13 (-717 (-409 (-566))) (-1038 |#1|) (-10 -8 (-15 -1585 ($ |#1| (-644 (-2 (|:| |scalar| (-409 (-566))) (|:| |coeff| (-1171 |#1|)) (|:| |logand| (-1171 |#1|)))) (-644 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -1641 (|#1| $)) (-15 -3137 ((-644 (-2 (|:| |scalar| (-409 (-566))) (|:| |coeff| (-1171 |#1|)) (|:| |logand| (-1171 |#1|)))) $)) (-15 -1366 ((-644 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3079 ((-112) $)) (-15 -3428 ($ |#1| |#1|)) (-15 -3629 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-900 (-1175))) (-15 -3629 (|#1| $ (-1175))) |%noBranch|) (IF (|has| |#1| (-1038 (-1175))) (-15 -3428 ($ |#1| (-1175))) |%noBranch|))) +((-2907 (((-112) |#1|) 16)) (-3593 (((-3 |#1| "failed") |#1|) 14)) (-3549 (((-2 (|:| -2576 |#1|) (|:| -2201 (-771))) |#1|) 39) (((-3 |#1| "failed") |#1| (-771)) 18)) (-3729 (((-112) |#1| (-771)) 19)) (-3311 ((|#1| |#1|) 43)) (-1824 ((|#1| |#1| (-771)) 46))) +(((-588 |#1|) (-10 -7 (-15 -3729 ((-112) |#1| (-771))) (-15 -3549 ((-3 |#1| "failed") |#1| (-771))) (-15 -3549 ((-2 (|:| -2576 |#1|) (|:| -2201 (-771))) |#1|)) (-15 -1824 (|#1| |#1| (-771))) (-15 -2907 ((-112) |#1|)) (-15 -3593 ((-3 |#1| "failed") |#1|)) (-15 -3311 (|#1| |#1|))) (-547)) (T -588)) +((-3311 (*1 *2 *2) (-12 (-5 *1 (-588 *2)) (-4 *2 (-547)))) (-3593 (*1 *2 *2) (|partial| -12 (-5 *1 (-588 *2)) (-4 *2 (-547)))) (-2907 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-588 *3)) (-4 *3 (-547)))) (-1824 (*1 *2 *2 *3) (-12 (-5 *3 (-771)) (-5 *1 (-588 *2)) (-4 *2 (-547)))) (-3549 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2576 *3) (|:| -2201 (-771)))) (-5 *1 (-588 *3)) (-4 *3 (-547)))) (-3549 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-771)) (-5 *1 (-588 *2)) (-4 *2 (-547)))) (-3729 (*1 *2 *3 *4) (-12 (-5 *4 (-771)) (-5 *2 (-112)) (-5 *1 (-588 *3)) (-4 *3 (-547))))) +(-10 -7 (-15 -3729 ((-112) |#1| (-771))) (-15 -3549 ((-3 |#1| "failed") |#1| (-771))) (-15 -3549 ((-2 (|:| -2576 |#1|) (|:| -2201 (-771))) |#1|)) (-15 -1824 (|#1| |#1| (-771))) (-15 -2907 ((-112) |#1|)) (-15 -3593 ((-3 |#1| "failed") |#1|)) (-15 -3311 (|#1| |#1|))) +((-3672 (((-1171 |#1|) (-921)) 44))) +(((-589 |#1|) (-10 -7 (-15 -3672 ((-1171 |#1|) (-921)))) (-351)) (T -589)) +((-3672 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-589 *4)) (-4 *4 (-351))))) +(-10 -7 (-15 -3672 ((-1171 |#1|) (-921)))) +((-3011 (((-587 (-409 (-952 |#1|))) (-587 (-409 (-952 |#1|)))) 27)) (-3313 (((-3 (-317 |#1|) (-644 (-317 |#1|))) (-409 (-952 |#1|)) (-1175)) 34 (|has| |#1| (-147)))) (-3640 (((-644 (-317 |#1|)) (-587 (-409 (-952 |#1|)))) 19)) (-3699 (((-317 |#1|) (-409 (-952 |#1|)) (-1175)) 32 (|has| |#1| (-147)))) (-3433 (((-317 |#1|) (-587 (-409 (-952 |#1|)))) 21))) +(((-590 |#1|) (-10 -7 (-15 -3011 ((-587 (-409 (-952 |#1|))) (-587 (-409 (-952 |#1|))))) (-15 -3640 ((-644 (-317 |#1|)) (-587 (-409 (-952 |#1|))))) (-15 -3433 ((-317 |#1|) (-587 (-409 (-952 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -3313 ((-3 (-317 |#1|) (-644 (-317 |#1|))) (-409 (-952 |#1|)) (-1175))) (-15 -3699 ((-317 |#1|) (-409 (-952 |#1|)) (-1175)))) |%noBranch|)) (-13 (-454) (-1038 (-566)) (-639 (-566)))) (T -590)) +((-3699 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-1175)) (-4 *5 (-147)) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-317 *5)) (-5 *1 (-590 *5)))) (-3313 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-1175)) (-4 *5 (-147)) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-3 (-317 *5) (-644 (-317 *5)))) (-5 *1 (-590 *5)))) (-3433 (*1 *2 *3) (-12 (-5 *3 (-587 (-409 (-952 *4)))) (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-317 *4)) (-5 *1 (-590 *4)))) (-3640 (*1 *2 *3) (-12 (-5 *3 (-587 (-409 (-952 *4)))) (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-644 (-317 *4))) (-5 *1 (-590 *4)))) (-3011 (*1 *2 *2) (-12 (-5 *2 (-587 (-409 (-952 *3)))) (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-590 *3))))) +(-10 -7 (-15 -3011 ((-587 (-409 (-952 |#1|))) (-587 (-409 (-952 |#1|))))) (-15 -3640 ((-644 (-317 |#1|)) (-587 (-409 (-952 |#1|))))) (-15 -3433 ((-317 |#1|) (-587 (-409 (-952 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -3313 ((-3 (-317 |#1|) (-644 (-317 |#1|))) (-409 (-952 |#1|)) (-1175))) (-15 -3699 ((-317 |#1|) (-409 (-952 |#1|)) (-1175)))) |%noBranch|)) +((-1608 (((-644 (-689 (-566))) (-644 (-566)) (-644 (-905 (-566)))) 78) (((-644 (-689 (-566))) (-644 (-566))) 79) (((-689 (-566)) (-644 (-566)) (-905 (-566))) 72)) (-3376 (((-771) (-644 (-566))) 69))) +(((-591) (-10 -7 (-15 -3376 ((-771) (-644 (-566)))) (-15 -1608 ((-689 (-566)) (-644 (-566)) (-905 (-566)))) (-15 -1608 ((-644 (-689 (-566))) (-644 (-566)))) (-15 -1608 ((-644 (-689 (-566))) (-644 (-566)) (-644 (-905 (-566))))))) (T -591)) +((-1608 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-566))) (-5 *4 (-644 (-905 (-566)))) (-5 *2 (-644 (-689 (-566)))) (-5 *1 (-591)))) (-1608 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-644 (-689 (-566)))) (-5 *1 (-591)))) (-1608 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-566))) (-5 *4 (-905 (-566))) (-5 *2 (-689 (-566))) (-5 *1 (-591)))) (-3376 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-771)) (-5 *1 (-591))))) +(-10 -7 (-15 -3376 ((-771) (-644 (-566)))) (-15 -1608 ((-689 (-566)) (-644 (-566)) (-905 (-566)))) (-15 -1608 ((-644 (-689 (-566))) (-644 (-566)))) (-15 -1608 ((-644 (-689 (-566))) (-644 (-566)) (-644 (-905 (-566)))))) +((-4342 (((-644 |#5|) |#5| (-112)) 100)) (-1327 (((-112) |#5| (-644 |#5|)) 34))) +(((-592 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4342 ((-644 |#5|) |#5| (-112))) (-15 -1327 ((-112) |#5| (-644 |#5|)))) (-13 (-308) (-147)) (-793) (-850) (-1064 |#1| |#2| |#3|) (-1108 |#1| |#2| |#3| |#4|)) (T -592)) +((-1327 (*1 *2 *3 *4) (-12 (-5 *4 (-644 *3)) (-4 *3 (-1108 *5 *6 *7 *8)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-1064 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-592 *5 *6 *7 *8 *3)))) (-4342 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-1064 *5 *6 *7)) (-5 *2 (-644 *3)) (-5 *1 (-592 *5 *6 *7 *8 *3)) (-4 *3 (-1108 *5 *6 *7 *8))))) +(-10 -7 (-15 -4342 ((-644 |#5|) |#5| (-112))) (-15 -1327 ((-112) |#5| (-644 |#5|)))) +((-2988 (((-112) $ $) NIL)) (-3124 (((-1134) $) 11)) (-3114 (((-1134) $) 9)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 17) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) +(((-593) (-13 (-1082) (-10 -8 (-15 -3114 ((-1134) $)) (-15 -3124 ((-1134) $))))) (T -593)) +((-3114 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-593)))) (-3124 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-593))))) +(-13 (-1082) (-10 -8 (-15 -3114 ((-1134) $)) (-15 -3124 ((-1134) $)))) +((-2988 (((-112) $ $) NIL (|has| (-144) (-1099)))) (-2129 (($ $) 38)) (-2840 (($ $) NIL)) (-3818 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-1944 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4415)))) (-3388 (((-112) $ $) 68)) (-3366 (((-112) $ $ (-566)) 62)) (-3011 (((-644 $) $ (-144)) 76) (((-644 $) $ (-141)) 77)) (-3054 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-850)))) (-3628 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4415))) (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-144) (-850))))) (-2671 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-850)))) (-1504 (((-112) $ (-771)) NIL)) (-1456 (((-144) $ (-566) (-144)) 59 (|has| $ (-6 -4415))) (((-144) $ (-1231 (-566)) (-144)) NIL (|has| $ (-6 -4415)))) (-3678 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4414)))) (-2463 (($) NIL T CONST)) (-2290 (($ $ (-144)) 81) (($ $ (-141)) 82)) (-3166 (($ $) NIL (|has| $ (-6 -4415)))) (-3683 (($ $) NIL)) (-2801 (($ $ (-1231 (-566)) $) 57)) (-3942 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-144) (-1099))))) (-2622 (($ (-144) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-144) (-1099)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4414)))) (-2873 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4414)) (|has| (-144) (-1099)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4414))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4414)))) (-3897 (((-144) $ (-566) (-144)) NIL (|has| $ (-6 -4415)))) (-3829 (((-144) $ (-566)) NIL)) (-3409 (((-112) $ $) 95)) (-1569 (((-566) (-1 (-112) (-144)) $) NIL) (((-566) (-144) $) NIL (|has| (-144) (-1099))) (((-566) (-144) $ (-566)) 65 (|has| (-144) (-1099))) (((-566) $ $ (-566)) 63) (((-566) (-141) $ (-566)) 67)) (-1683 (((-644 (-144)) $) NIL (|has| $ (-6 -4414)))) (-1860 (($ (-771) (-144)) 9)) (-3456 (((-112) $ (-771)) NIL)) (-2296 (((-566) $) 32 (|has| (-566) (-850)))) (-1478 (($ $ $) NIL (|has| (-144) (-850)))) (-2696 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-850)))) (-3491 (((-644 (-144)) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-144) (-1099))))) (-4050 (((-566) $) 47 (|has| (-566) (-850)))) (-2599 (($ $ $) NIL (|has| (-144) (-850)))) (-1580 (((-112) $ $ (-144)) 96)) (-1981 (((-771) $ $ (-144)) 93)) (-3885 (($ (-1 (-144) (-144)) $) 37 (|has| $ (-6 -4415)))) (-2319 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-1490 (($ $) 41)) (-1852 (($ $) NIL)) (-3267 (((-112) $ (-771)) NIL)) (-2303 (($ $ (-144)) 78) (($ $ (-141)) 79)) (-3380 (((-1157) $) 43 (|has| (-144) (-1099)))) (-1859 (($ (-144) $ (-566)) NIL) (($ $ $ (-566)) 27)) (-3725 (((-644 (-566)) $) NIL)) (-1644 (((-112) (-566) $) NIL)) (-4072 (((-566) $) 92) (((-1119) $) NIL (|has| (-144) (-1099)))) (-3908 (((-144) $) NIL (|has| (-566) (-850)))) (-3668 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-3787 (($ $ (-144)) NIL (|has| $ (-6 -4415)))) (-2823 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 (-144)))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-295 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-644 (-144)) (-644 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099))))) (-3814 (((-112) $ $) NIL)) (-2847 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-144) (-1099))))) (-3486 (((-644 (-144)) $) NIL)) (-2872 (((-112) $) 15)) (-3493 (($) 10)) (-1309 (((-144) $ (-566) (-144)) NIL) (((-144) $ (-566)) 69) (($ $ (-1231 (-566))) 25) (($ $ $) NIL)) (-2166 (($ $ (-566)) NIL) (($ $ (-1231 (-566))) NIL)) (-4083 (((-771) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4414))) (((-771) (-144) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-144) (-1099))))) (-2661 (($ $ $ (-566)) 84 (|has| $ (-6 -4415)))) (-1480 (($ $) 20)) (-2376 (((-538) $) NIL (|has| (-144) (-614 (-538))))) (-1340 (($ (-644 (-144))) NIL)) (-4386 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) 19) (($ (-644 $)) 85)) (-3152 (($ (-144)) NIL) (((-862) $) 31 (|has| (-144) (-613 (-862))))) (-3044 (((-112) $ $) NIL (|has| (-144) (-1099)))) (-2210 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4414)))) (-2968 (((-112) $ $) NIL (|has| (-144) (-850)))) (-2946 (((-112) $ $) NIL (|has| (-144) (-850)))) (-2914 (((-112) $ $) 17 (|has| (-144) (-1099)))) (-2956 (((-112) $ $) NIL (|has| (-144) (-850)))) (-2935 (((-112) $ $) 18 (|has| (-144) (-850)))) (-3000 (((-771) $) 16 (|has| $ (-6 -4414))))) +(((-594 |#1|) (-13 (-1143) (-10 -8 (-15 -4072 ((-566) $)))) (-566)) (T -594)) +((-4072 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-594 *3)) (-14 *3 *2)))) +(-13 (-1143) (-10 -8 (-15 -4072 ((-566) $)))) +((-4272 (((-2 (|:| |num| |#4|) (|:| |den| (-566))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-566))) |#4| |#2| (-1093 |#4|)) 32))) +(((-595 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4272 ((-2 (|:| |num| |#4|) (|:| |den| (-566))) |#4| |#2| (-1093 |#4|))) (-15 -4272 ((-2 (|:| |num| |#4|) (|:| |den| (-566))) |#4| |#2|))) (-793) (-850) (-558) (-949 |#3| |#1| |#2|)) (T -595)) +((-4272 (*1 *2 *3 *4) (-12 (-4 *5 (-793)) (-4 *4 (-850)) (-4 *6 (-558)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-566)))) (-5 *1 (-595 *5 *4 *6 *3)) (-4 *3 (-949 *6 *5 *4)))) (-4272 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1093 *3)) (-4 *3 (-949 *7 *6 *4)) (-4 *6 (-793)) (-4 *4 (-850)) (-4 *7 (-558)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-566)))) (-5 *1 (-595 *6 *4 *7 *3))))) +(-10 -7 (-15 -4272 ((-2 (|:| |num| |#4|) (|:| |den| (-566))) |#4| |#2| (-1093 |#4|))) (-15 -4272 ((-2 (|:| |num| |#4|) (|:| |den| (-566))) |#4| |#2|))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) 72)) (-1771 (((-644 (-1081)) $) NIL)) (-4347 (((-1175) $) NIL)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-2161 (($ $) NIL (|has| |#1| (-558)))) (-2345 (((-112) $) NIL (|has| |#1| (-558)))) (-2331 (($ $ (-566)) 58) (($ $ (-566) (-566)) 59)) (-4152 (((-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))) $) 65)) (-4103 (($ $) 110)) (-3967 (((-3 $ "failed") $ $) NIL)) (-4309 (((-862) (-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))) (-1026 (-843 (-566))) (-1175) |#1| (-409 (-566))) 243)) (-1427 (($ (-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|)))) 36)) (-2463 (($) NIL T CONST)) (-2814 (($ $) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-3772 (((-112) $) NIL)) (-2679 (((-566) $) 63) (((-566) $ (-566)) 64)) (-2389 (((-112) $) NIL)) (-3394 (($ $ (-921)) 84)) (-3657 (($ (-1 |#1| (-566)) $) 81)) (-2497 (((-112) $) 26)) (-1746 (($ |#1| (-566)) 22) (($ $ (-1081) (-566)) NIL) (($ $ (-644 (-1081)) (-644 (-566))) NIL)) (-2319 (($ (-1 |#1| |#1|) $) 76)) (-2937 (($ (-1026 (-843 (-566))) (-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|)))) 13)) (-2784 (($ $) NIL)) (-2794 ((|#1| $) NIL)) (-3380 (((-1157) $) NIL)) (-3313 (($ $) 163 (|has| |#1| (-38 (-409 (-566)))))) (-1676 (((-3 $ "failed") $ $ (-112)) 109)) (-2435 (($ $ $) 117)) (-4072 (((-1119) $) NIL)) (-1839 (((-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))) $) 15)) (-1800 (((-1026 (-843 (-566))) $) 14)) (-3369 (($ $ (-566)) 47)) (-2978 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-2023 (((-1155 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-566)))))) (-1309 ((|#1| $ (-566)) 62) (($ $ $) NIL (|has| (-566) (-1111)))) (-3629 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-566) |#1|)))) (($ $) 78 (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (-3902 (((-566) $) NIL)) (-1687 (($ $) 48)) (-3152 (((-862) $) NIL) (($ (-566)) 29) (($ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $) NIL (|has| |#1| (-558))) (($ |#1|) 28 (|has| |#1| (-172)))) (-2271 ((|#1| $ (-566)) 61)) (-2633 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2593 (((-771)) 39 T CONST)) (-4290 ((|#1| $) NIL)) (-2615 (($ $) 201 (|has| |#1| (-38 (-409 (-566)))))) (-4284 (($ $) 171 (|has| |#1| (-38 (-409 (-566)))))) (-1355 (($ $) 205 (|has| |#1| (-38 (-409 (-566)))))) (-1604 (($ $) 176 (|has| |#1| (-38 (-409 (-566)))))) (-3453 (($ $) 204 (|has| |#1| (-38 (-409 (-566)))))) (-4254 (($ $) 175 (|has| |#1| (-38 (-409 (-566)))))) (-2964 (($ $ (-409 (-566))) 179 (|has| |#1| (-38 (-409 (-566)))))) (-2708 (($ $ |#1|) 159 (|has| |#1| (-38 (-409 (-566)))))) (-3157 (($ $) 207 (|has| |#1| (-38 (-409 (-566)))))) (-2114 (($ $) 162 (|has| |#1| (-38 (-409 (-566)))))) (-3959 (($ $) 206 (|has| |#1| (-38 (-409 (-566)))))) (-1505 (($ $) 177 (|has| |#1| (-38 (-409 (-566)))))) (-3387 (($ $) 202 (|has| |#1| (-38 (-409 (-566)))))) (-4129 (($ $) 173 (|has| |#1| (-38 (-409 (-566)))))) (-4201 (($ $) 203 (|has| |#1| (-38 (-409 (-566)))))) (-2309 (($ $) 174 (|has| |#1| (-38 (-409 (-566)))))) (-3261 (($ $) 212 (|has| |#1| (-38 (-409 (-566)))))) (-2905 (($ $) 188 (|has| |#1| (-38 (-409 (-566)))))) (-4245 (($ $) 209 (|has| |#1| (-38 (-409 (-566)))))) (-2571 (($ $) 183 (|has| |#1| (-38 (-409 (-566)))))) (-2538 (($ $) 216 (|has| |#1| (-38 (-409 (-566)))))) (-2832 (($ $) 192 (|has| |#1| (-38 (-409 (-566)))))) (-4339 (($ $) 218 (|has| |#1| (-38 (-409 (-566)))))) (-2509 (($ $) 194 (|has| |#1| (-38 (-409 (-566)))))) (-1983 (($ $) 214 (|has| |#1| (-38 (-409 (-566)))))) (-4145 (($ $) 190 (|has| |#1| (-38 (-409 (-566)))))) (-2626 (($ $) 211 (|has| |#1| (-38 (-409 (-566)))))) (-1892 (($ $) 186 (|has| |#1| (-38 (-409 (-566)))))) (-3044 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL (|has| |#1| (-558)))) (-3603 ((|#1| $ (-566)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-566)))) (|has| |#1| (-15 -3152 (|#1| (-1175))))))) (-4356 (($) 30 T CONST)) (-4366 (($) 40 T CONST)) (-3497 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-566) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (-2914 (((-112) $ $) 74)) (-3025 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3012 (($ $) 92) (($ $ $) 73)) (-3002 (($ $ $) 89)) (** (($ $ (-921)) NIL) (($ $ (-771)) 112)) (* (($ (-921) $) 99) (($ (-771) $) 97) (($ (-566) $) 94) (($ $ $) 105) (($ $ |#1|) NIL) (($ |#1| $) 124) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))))) +(((-596 |#1|) (-13 (-1242 |#1| (-566)) (-10 -8 (-15 -2937 ($ (-1026 (-843 (-566))) (-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))))) (-15 -1800 ((-1026 (-843 (-566))) $)) (-15 -1839 ((-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))) $)) (-15 -1427 ($ (-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))))) (-15 -2497 ((-112) $)) (-15 -3657 ($ (-1 |#1| (-566)) $)) (-15 -1676 ((-3 $ "failed") $ $ (-112))) (-15 -4103 ($ $)) (-15 -2435 ($ $ $)) (-15 -4309 ((-862) (-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))) (-1026 (-843 (-566))) (-1175) |#1| (-409 (-566)))) (IF (|has| |#1| (-38 (-409 (-566)))) (PROGN (-15 -3313 ($ $)) (-15 -2708 ($ $ |#1|)) (-15 -2964 ($ $ (-409 (-566)))) (-15 -2114 ($ $)) (-15 -3157 ($ $)) (-15 -1604 ($ $)) (-15 -2309 ($ $)) (-15 -4284 ($ $)) (-15 -4129 ($ $)) (-15 -4254 ($ $)) (-15 -1505 ($ $)) (-15 -2571 ($ $)) (-15 -1892 ($ $)) (-15 -2905 ($ $)) (-15 -4145 ($ $)) (-15 -2832 ($ $)) (-15 -2509 ($ $)) (-15 -1355 ($ $)) (-15 -4201 ($ $)) (-15 -2615 ($ $)) (-15 -3387 ($ $)) (-15 -3453 ($ $)) (-15 -3959 ($ $)) (-15 -4245 ($ $)) (-15 -2626 ($ $)) (-15 -3261 ($ $)) (-15 -1983 ($ $)) (-15 -2538 ($ $)) (-15 -4339 ($ $))) |%noBranch|))) (-1049)) (T -596)) +((-2497 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-596 *3)) (-4 *3 (-1049)))) (-2937 (*1 *1 *2 *3) (-12 (-5 *2 (-1026 (-843 (-566)))) (-5 *3 (-1155 (-2 (|:| |k| (-566)) (|:| |c| *4)))) (-4 *4 (-1049)) (-5 *1 (-596 *4)))) (-1800 (*1 *2 *1) (-12 (-5 *2 (-1026 (-843 (-566)))) (-5 *1 (-596 *3)) (-4 *3 (-1049)))) (-1839 (*1 *2 *1) (-12 (-5 *2 (-1155 (-2 (|:| |k| (-566)) (|:| |c| *3)))) (-5 *1 (-596 *3)) (-4 *3 (-1049)))) (-1427 (*1 *1 *2) (-12 (-5 *2 (-1155 (-2 (|:| |k| (-566)) (|:| |c| *3)))) (-4 *3 (-1049)) (-5 *1 (-596 *3)))) (-3657 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-566))) (-4 *3 (-1049)) (-5 *1 (-596 *3)))) (-1676 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-596 *3)) (-4 *3 (-1049)))) (-4103 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-1049)))) (-2435 (*1 *1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-1049)))) (-4309 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1155 (-2 (|:| |k| (-566)) (|:| |c| *6)))) (-5 *4 (-1026 (-843 (-566)))) (-5 *5 (-1175)) (-5 *7 (-409 (-566))) (-4 *6 (-1049)) (-5 *2 (-862)) (-5 *1 (-596 *6)))) (-3313 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-2708 (*1 *1 *1 *2) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-2964 (*1 *1 *1 *2) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-596 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1049)))) (-2114 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-3157 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-1604 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-2309 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-4284 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-4129 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-4254 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-1505 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-2571 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-1892 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-2905 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-4145 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-2832 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-2509 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-1355 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-4201 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-2615 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-3387 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-3453 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-3959 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-4245 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-2626 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-3261 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-1983 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-2538 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-4339 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) +(-13 (-1242 |#1| (-566)) (-10 -8 (-15 -2937 ($ (-1026 (-843 (-566))) (-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))))) (-15 -1800 ((-1026 (-843 (-566))) $)) (-15 -1839 ((-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))) $)) (-15 -1427 ($ (-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))))) (-15 -2497 ((-112) $)) (-15 -3657 ($ (-1 |#1| (-566)) $)) (-15 -1676 ((-3 $ "failed") $ $ (-112))) (-15 -4103 ($ $)) (-15 -2435 ($ $ $)) (-15 -4309 ((-862) (-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))) (-1026 (-843 (-566))) (-1175) |#1| (-409 (-566)))) (IF (|has| |#1| (-38 (-409 (-566)))) (PROGN (-15 -3313 ($ $)) (-15 -2708 ($ $ |#1|)) (-15 -2964 ($ $ (-409 (-566)))) (-15 -2114 ($ $)) (-15 -3157 ($ $)) (-15 -1604 ($ $)) (-15 -2309 ($ $)) (-15 -4284 ($ $)) (-15 -4129 ($ $)) (-15 -4254 ($ $)) (-15 -1505 ($ $)) (-15 -2571 ($ $)) (-15 -1892 ($ $)) (-15 -2905 ($ $)) (-15 -4145 ($ $)) (-15 -2832 ($ $)) (-15 -2509 ($ $)) (-15 -1355 ($ $)) (-15 -4201 ($ $)) (-15 -2615 ($ $)) (-15 -3387 ($ $)) (-15 -3453 ($ $)) (-15 -3959 ($ $)) (-15 -4245 ($ $)) (-15 -2626 ($ $)) (-15 -3261 ($ $)) (-15 -1983 ($ $)) (-15 -2538 ($ $)) (-15 -4339 ($ $))) |%noBranch|))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-2161 (($ $) NIL (|has| |#1| (-558)))) (-2345 (((-112) $) NIL (|has| |#1| (-558)))) (-3967 (((-3 $ "failed") $ $) NIL)) (-1427 (($ (-1155 |#1|)) 9)) (-2463 (($) NIL T CONST)) (-3245 (((-3 $ "failed") $) 48)) (-3772 (((-112) $) 58)) (-2679 (((-771) $) 63) (((-771) $ (-771)) 62)) (-2389 (((-112) $) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-2978 (((-3 $ "failed") $ $) 50 (|has| |#1| (-558)))) (-3152 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL (|has| |#1| (-558)))) (-1643 (((-1155 |#1|) $) 29)) (-2593 (((-771)) 57 T CONST)) (-3044 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL (|has| |#1| (-558)))) (-4356 (($) 10 T CONST)) (-4366 (($) 14 T CONST)) (-2914 (((-112) $ $) 28)) (-3012 (($ $) 36) (($ $ $) 16)) (-3002 (($ $ $) 31)) (** (($ $ (-921)) NIL) (($ $ (-771)) 55)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 40) (($ $ $) 34) (($ |#1| $) 43) (($ $ |#1|) 44) (($ $ (-566)) 42))) +(((-597 |#1|) (-13 (-1049) (-10 -8 (-15 -1643 ((-1155 |#1|) $)) (-15 -1427 ($ (-1155 |#1|))) (-15 -3772 ((-112) $)) (-15 -2679 ((-771) $)) (-15 -2679 ((-771) $ (-771))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-566))) (IF (|has| |#1| (-558)) (-6 (-558)) |%noBranch|))) (-1049)) (T -597)) +((-1643 (*1 *2 *1) (-12 (-5 *2 (-1155 *3)) (-5 *1 (-597 *3)) (-4 *3 (-1049)))) (-1427 (*1 *1 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-597 *3)))) (-3772 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-1049)))) (-2679 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-597 *3)) (-4 *3 (-1049)))) (-2679 (*1 *2 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-597 *3)) (-4 *3 (-1049)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1049)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1049)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-597 *3)) (-4 *3 (-1049))))) +(-13 (-1049) (-10 -8 (-15 -1643 ((-1155 |#1|) $)) (-15 -1427 ($ (-1155 |#1|))) (-15 -3772 ((-112) $)) (-15 -2679 ((-771) $)) (-15 -2679 ((-771) $ (-771))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-566))) (IF (|has| |#1| (-558)) (-6 (-558)) |%noBranch|))) +((-2319 (((-601 |#2|) (-1 |#2| |#1|) (-601 |#1|)) 15))) +(((-598 |#1| |#2|) (-10 -7 (-15 -2319 ((-601 |#2|) (-1 |#2| |#1|) (-601 |#1|)))) (-1214) (-1214)) (T -598)) +((-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-601 *5)) (-4 *5 (-1214)) (-4 *6 (-1214)) (-5 *2 (-601 *6)) (-5 *1 (-598 *5 *6))))) +(-10 -7 (-15 -2319 ((-601 |#2|) (-1 |#2| |#1|) (-601 |#1|)))) +((-2319 (((-1155 |#3|) (-1 |#3| |#1| |#2|) (-601 |#1|) (-1155 |#2|)) 20) (((-1155 |#3|) (-1 |#3| |#1| |#2|) (-1155 |#1|) (-601 |#2|)) 19) (((-601 |#3|) (-1 |#3| |#1| |#2|) (-601 |#1|) (-601 |#2|)) 18))) +(((-599 |#1| |#2| |#3|) (-10 -7 (-15 -2319 ((-601 |#3|) (-1 |#3| |#1| |#2|) (-601 |#1|) (-601 |#2|))) (-15 -2319 ((-1155 |#3|) (-1 |#3| |#1| |#2|) (-1155 |#1|) (-601 |#2|))) (-15 -2319 ((-1155 |#3|) (-1 |#3| |#1| |#2|) (-601 |#1|) (-1155 |#2|)))) (-1214) (-1214) (-1214)) (T -599)) +((-2319 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-601 *6)) (-5 *5 (-1155 *7)) (-4 *6 (-1214)) (-4 *7 (-1214)) (-4 *8 (-1214)) (-5 *2 (-1155 *8)) (-5 *1 (-599 *6 *7 *8)))) (-2319 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1155 *6)) (-5 *5 (-601 *7)) (-4 *6 (-1214)) (-4 *7 (-1214)) (-4 *8 (-1214)) (-5 *2 (-1155 *8)) (-5 *1 (-599 *6 *7 *8)))) (-2319 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-601 *6)) (-5 *5 (-601 *7)) (-4 *6 (-1214)) (-4 *7 (-1214)) (-4 *8 (-1214)) (-5 *2 (-601 *8)) (-5 *1 (-599 *6 *7 *8))))) +(-10 -7 (-15 -2319 ((-601 |#3|) (-1 |#3| |#1| |#2|) (-601 |#1|) (-601 |#2|))) (-15 -2319 ((-1155 |#3|) (-1 |#3| |#1| |#2|) (-1155 |#1|) (-601 |#2|))) (-15 -2319 ((-1155 |#3|) (-1 |#3| |#1| |#2|) (-601 |#1|) (-1155 |#2|)))) +((-3100 ((|#3| |#3| (-644 (-612 |#3|)) (-644 (-1175))) 57)) (-2354 (((-169 |#2|) |#3|) 121)) (-3164 ((|#3| (-169 |#2|)) 46)) (-3568 ((|#2| |#3|) 21)) (-2780 ((|#3| |#2|) 35))) +(((-600 |#1| |#2| |#3|) (-10 -7 (-15 -3164 (|#3| (-169 |#2|))) (-15 -3568 (|#2| |#3|)) (-15 -2780 (|#3| |#2|)) (-15 -2354 ((-169 |#2|) |#3|)) (-15 -3100 (|#3| |#3| (-644 (-612 |#3|)) (-644 (-1175))))) (-558) (-13 (-432 |#1|) (-1002) (-1199)) (-13 (-432 (-169 |#1|)) (-1002) (-1199))) (T -600)) +((-3100 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-644 (-612 *2))) (-5 *4 (-644 (-1175))) (-4 *2 (-13 (-432 (-169 *5)) (-1002) (-1199))) (-4 *5 (-558)) (-5 *1 (-600 *5 *6 *2)) (-4 *6 (-13 (-432 *5) (-1002) (-1199))))) (-2354 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-169 *5)) (-5 *1 (-600 *4 *5 *3)) (-4 *5 (-13 (-432 *4) (-1002) (-1199))) (-4 *3 (-13 (-432 (-169 *4)) (-1002) (-1199))))) (-2780 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *2 (-13 (-432 (-169 *4)) (-1002) (-1199))) (-5 *1 (-600 *4 *3 *2)) (-4 *3 (-13 (-432 *4) (-1002) (-1199))))) (-3568 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *2 (-13 (-432 *4) (-1002) (-1199))) (-5 *1 (-600 *4 *2 *3)) (-4 *3 (-13 (-432 (-169 *4)) (-1002) (-1199))))) (-3164 (*1 *2 *3) (-12 (-5 *3 (-169 *5)) (-4 *5 (-13 (-432 *4) (-1002) (-1199))) (-4 *4 (-558)) (-4 *2 (-13 (-432 (-169 *4)) (-1002) (-1199))) (-5 *1 (-600 *4 *5 *2))))) +(-10 -7 (-15 -3164 (|#3| (-169 |#2|))) (-15 -3568 (|#2| |#3|)) (-15 -2780 (|#3| |#2|)) (-15 -2354 ((-169 |#2|) |#3|)) (-15 -3100 (|#3| |#3| (-644 (-612 |#3|)) (-644 (-1175))))) +((-3678 (($ (-1 (-112) |#1|) $) 17)) (-2319 (($ (-1 |#1| |#1|) $) NIL)) (-4109 (($ (-1 |#1| |#1|) |#1|) 9)) (-3652 (($ (-1 (-112) |#1|) $) 13)) (-3666 (($ (-1 (-112) |#1|) $) 15)) (-1340 (((-1155 |#1|) $) 18)) (-3152 (((-862) $) NIL))) +(((-601 |#1|) (-13 (-613 (-862)) (-10 -8 (-15 -2319 ($ (-1 |#1| |#1|) $)) (-15 -3652 ($ (-1 (-112) |#1|) $)) (-15 -3666 ($ (-1 (-112) |#1|) $)) (-15 -3678 ($ (-1 (-112) |#1|) $)) (-15 -4109 ($ (-1 |#1| |#1|) |#1|)) (-15 -1340 ((-1155 |#1|) $)))) (-1214)) (T -601)) +((-2319 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1214)) (-5 *1 (-601 *3)))) (-3652 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1214)) (-5 *1 (-601 *3)))) (-3666 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1214)) (-5 *1 (-601 *3)))) (-3678 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1214)) (-5 *1 (-601 *3)))) (-4109 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1214)) (-5 *1 (-601 *3)))) (-1340 (*1 *2 *1) (-12 (-5 *2 (-1155 *3)) (-5 *1 (-601 *3)) (-4 *3 (-1214))))) +(-13 (-613 (-862)) (-10 -8 (-15 -2319 ($ (-1 |#1| |#1|) $)) (-15 -3652 ($ (-1 (-112) |#1|) $)) (-15 -3666 ($ (-1 (-112) |#1|) $)) (-15 -3678 ($ (-1 (-112) |#1|) $)) (-15 -4109 ($ (-1 |#1| |#1|) |#1|)) (-15 -1340 ((-1155 |#1|) $)))) +((-2988 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2819 (($ (-771)) NIL (|has| |#1| (-23)))) (-1944 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4415)))) (-3054 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-850)))) (-3628 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4415))) (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-850))))) (-2671 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-850)))) (-1504 (((-112) $ (-771)) NIL)) (-1456 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4415))) ((|#1| $ (-1231 (-566)) |#1|) NIL (|has| $ (-6 -4415)))) (-3678 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2463 (($) NIL T CONST)) (-3166 (($ $) NIL (|has| $ (-6 -4415)))) (-3683 (($ $) NIL)) (-3942 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2622 (($ |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2873 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4414)))) (-3897 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4415)))) (-3829 ((|#1| $ (-566)) NIL)) (-1569 (((-566) (-1 (-112) |#1|) $) NIL) (((-566) |#1| $) NIL (|has| |#1| (-1099))) (((-566) |#1| $ (-566)) NIL (|has| |#1| (-1099)))) (-1683 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-2977 (((-689 |#1|) $ $) NIL (|has| |#1| (-1049)))) (-1860 (($ (-771) |#1|) NIL)) (-3456 (((-112) $ (-771)) NIL)) (-2296 (((-566) $) NIL (|has| (-566) (-850)))) (-1478 (($ $ $) NIL (|has| |#1| (-850)))) (-2696 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-850)))) (-3491 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-4050 (((-566) $) NIL (|has| (-566) (-850)))) (-2599 (($ $ $) NIL (|has| |#1| (-850)))) (-3885 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3631 ((|#1| $) NIL (-12 (|has| |#1| (-1002)) (|has| |#1| (-1049))))) (-3267 (((-112) $ (-771)) NIL)) (-2440 ((|#1| $) NIL (-12 (|has| |#1| (-1002)) (|has| |#1| (-1049))))) (-3380 (((-1157) $) NIL (|has| |#1| (-1099)))) (-1859 (($ |#1| $ (-566)) NIL) (($ $ $ (-566)) NIL)) (-3725 (((-644 (-566)) $) NIL)) (-1644 (((-112) (-566) $) NIL)) (-4072 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3908 ((|#1| $) NIL (|has| (-566) (-850)))) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3787 (($ $ |#1|) NIL (|has| $ (-6 -4415)))) (-2823 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) NIL)) (-2847 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3486 (((-644 |#1|) $) NIL)) (-2872 (((-112) $) NIL)) (-3493 (($) NIL)) (-1309 ((|#1| $ (-566) |#1|) NIL) ((|#1| $ (-566)) NIL) (($ $ (-1231 (-566))) NIL)) (-3386 ((|#1| $ $) NIL (|has| |#1| (-1049)))) (-2166 (($ $ (-566)) NIL) (($ $ (-1231 (-566))) NIL)) (-1395 (($ $ $) NIL (|has| |#1| (-1049)))) (-4083 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2661 (($ $ $ (-566)) NIL (|has| $ (-6 -4415)))) (-1480 (($ $) NIL)) (-2376 (((-538) $) NIL (|has| |#1| (-614 (-538))))) (-1340 (($ (-644 |#1|)) NIL)) (-4386 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-644 $)) NIL)) (-3152 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-3044 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2210 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2968 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2914 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2956 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2935 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3012 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3002 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-566) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-726))) (($ $ |#1|) NIL (|has| |#1| (-726)))) (-3000 (((-771) $) NIL (|has| $ (-6 -4414))))) (((-602 |#1| |#2|) (-1262 |#1|) (-1214) (-566)) (T -602)) NIL (-1262 |#1|) -((-3734 (((-1269) $ |#2| |#2|) 36)) (-3854 ((|#2| $) 23)) (-2712 ((|#2| $) 21)) (-2908 (($ (-1 |#3| |#3|) $) 32)) (-1301 (($ (-1 |#3| |#3|) $) 30)) (-1998 ((|#3| $) 26)) (-4030 (($ $ |#3|) 33)) (-4156 (((-112) |#3| $) 17)) (-2993 (((-644 |#3|) $) 15)) (-4390 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) -(((-603 |#1| |#2| |#3|) (-10 -8 (-15 -3734 ((-1269) |#1| |#2| |#2|)) (-15 -4030 (|#1| |#1| |#3|)) (-15 -1998 (|#3| |#1|)) (-15 -3854 (|#2| |#1|)) (-15 -2712 (|#2| |#1|)) (-15 -4156 ((-112) |#3| |#1|)) (-15 -2993 ((-644 |#3|) |#1|)) (-15 -4390 (|#3| |#1| |#2|)) (-15 -4390 (|#3| |#1| |#2| |#3|)) (-15 -2908 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1301 (|#1| (-1 |#3| |#3|) |#1|))) (-604 |#2| |#3|) (-1099) (-1214)) (T -603)) +((-1944 (((-1269) $ |#2| |#2|) 36)) (-2296 ((|#2| $) 23)) (-4050 ((|#2| $) 21)) (-3885 (($ (-1 |#3| |#3|) $) 32)) (-2319 (($ (-1 |#3| |#3|) $) 30)) (-3908 ((|#3| $) 26)) (-3787 (($ $ |#3|) 33)) (-2847 (((-112) |#3| $) 17)) (-3486 (((-644 |#3|) $) 15)) (-1309 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) +(((-603 |#1| |#2| |#3|) (-10 -8 (-15 -1944 ((-1269) |#1| |#2| |#2|)) (-15 -3787 (|#1| |#1| |#3|)) (-15 -3908 (|#3| |#1|)) (-15 -2296 (|#2| |#1|)) (-15 -4050 (|#2| |#1|)) (-15 -2847 ((-112) |#3| |#1|)) (-15 -3486 ((-644 |#3|) |#1|)) (-15 -1309 (|#3| |#1| |#2|)) (-15 -1309 (|#3| |#1| |#2| |#3|)) (-15 -3885 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2319 (|#1| (-1 |#3| |#3|) |#1|))) (-604 |#2| |#3|) (-1099) (-1214)) (T -603)) NIL -(-10 -8 (-15 -3734 ((-1269) |#1| |#2| |#2|)) (-15 -4030 (|#1| |#1| |#3|)) (-15 -1998 (|#3| |#1|)) (-15 -3854 (|#2| |#1|)) (-15 -2712 (|#2| |#1|)) (-15 -4156 ((-112) |#3| |#1|)) (-15 -2993 ((-644 |#3|) |#1|)) (-15 -4390 (|#3| |#1| |#2|)) (-15 -4390 (|#3| |#1| |#2| |#3|)) (-15 -2908 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1301 (|#1| (-1 |#3| |#3|) |#1|))) -((-3007 (((-112) $ $) 19 (|has| |#2| (-1099)))) (-3734 (((-1269) $ |#1| |#1|) 41 (|has| $ (-6 -4415)))) (-2256 (((-112) $ (-771)) 8)) (-3923 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4415)))) (-3012 (($) 7 T CONST)) (-2920 ((|#2| $ |#1| |#2|) 54 (|has| $ (-6 -4415)))) (-2855 ((|#2| $ |#1|) 52)) (-3979 (((-644 |#2|) $) 31 (|has| $ (-6 -4414)))) (-2404 (((-112) $ (-771)) 9)) (-3854 ((|#1| $) 44 (|has| |#1| (-850)))) (-2329 (((-644 |#2|) $) 30 (|has| $ (-6 -4414)))) (-1916 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1099)) (|has| $ (-6 -4414))))) (-2712 ((|#1| $) 45 (|has| |#1| (-850)))) (-2908 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#2| |#2|) $) 36)) (-2603 (((-112) $ (-771)) 10)) (-4117 (((-1157) $) 22 (|has| |#2| (-1099)))) (-4074 (((-644 |#1|) $) 47)) (-3792 (((-112) |#1| $) 48)) (-4035 (((-1119) $) 21 (|has| |#2| (-1099)))) (-1998 ((|#2| $) 43 (|has| |#1| (-850)))) (-4030 (($ $ |#2|) 42 (|has| $ (-6 -4415)))) (-2692 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#2|))) 27 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) 26 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) 24 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-1932 (((-112) $ $) 14)) (-4156 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099))))) (-2993 (((-644 |#2|) $) 49)) (-3467 (((-112) $) 11)) (-1494 (($) 12)) (-4390 ((|#2| $ |#1| |#2|) 51) ((|#2| $ |#1|) 50)) (-4045 (((-771) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4414))) (((-771) |#2| $) 29 (-12 (|has| |#2| (-1099)) (|has| $ (-6 -4414))))) (-3940 (($ $) 13)) (-3783 (((-862) $) 18 (|has| |#2| (-613 (-862))))) (-3117 (((-112) $ $) 23 (|has| |#2| (-1099)))) (-1894 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) 20 (|has| |#2| (-1099)))) (-3018 (((-771) $) 6 (|has| $ (-6 -4414))))) +(-10 -8 (-15 -1944 ((-1269) |#1| |#2| |#2|)) (-15 -3787 (|#1| |#1| |#3|)) (-15 -3908 (|#3| |#1|)) (-15 -2296 (|#2| |#1|)) (-15 -4050 (|#2| |#1|)) (-15 -2847 ((-112) |#3| |#1|)) (-15 -3486 ((-644 |#3|) |#1|)) (-15 -1309 (|#3| |#1| |#2|)) (-15 -1309 (|#3| |#1| |#2| |#3|)) (-15 -3885 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2319 (|#1| (-1 |#3| |#3|) |#1|))) +((-2988 (((-112) $ $) 19 (|has| |#2| (-1099)))) (-1944 (((-1269) $ |#1| |#1|) 41 (|has| $ (-6 -4415)))) (-1504 (((-112) $ (-771)) 8)) (-1456 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4415)))) (-2463 (($) 7 T CONST)) (-3897 ((|#2| $ |#1| |#2|) 54 (|has| $ (-6 -4415)))) (-3829 ((|#2| $ |#1|) 52)) (-1683 (((-644 |#2|) $) 31 (|has| $ (-6 -4414)))) (-3456 (((-112) $ (-771)) 9)) (-2296 ((|#1| $) 44 (|has| |#1| (-850)))) (-3491 (((-644 |#2|) $) 30 (|has| $ (-6 -4414)))) (-1602 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1099)) (|has| $ (-6 -4414))))) (-4050 ((|#1| $) 45 (|has| |#1| (-850)))) (-3885 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#2| |#2|) $) 36)) (-3267 (((-112) $ (-771)) 10)) (-3380 (((-1157) $) 22 (|has| |#2| (-1099)))) (-3725 (((-644 |#1|) $) 47)) (-1644 (((-112) |#1| $) 48)) (-4072 (((-1119) $) 21 (|has| |#2| (-1099)))) (-3908 ((|#2| $) 43 (|has| |#1| (-850)))) (-3787 (($ $ |#2|) 42 (|has| $ (-6 -4415)))) (-2823 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#2|))) 27 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) 26 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) 24 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-3814 (((-112) $ $) 14)) (-2847 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099))))) (-3486 (((-644 |#2|) $) 49)) (-2872 (((-112) $) 11)) (-3493 (($) 12)) (-1309 ((|#2| $ |#1| |#2|) 51) ((|#2| $ |#1|) 50)) (-4083 (((-771) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4414))) (((-771) |#2| $) 29 (-12 (|has| |#2| (-1099)) (|has| $ (-6 -4414))))) (-1480 (($ $) 13)) (-3152 (((-862) $) 18 (|has| |#2| (-613 (-862))))) (-3044 (((-112) $ $) 23 (|has| |#2| (-1099)))) (-2210 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) 20 (|has| |#2| (-1099)))) (-3000 (((-771) $) 6 (|has| $ (-6 -4414))))) (((-604 |#1| |#2|) (-140) (-1099) (-1214)) (T -604)) -((-2993 (*1 *2 *1) (-12 (-4 *1 (-604 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1214)) (-5 *2 (-644 *4)))) (-3792 (*1 *2 *3 *1) (-12 (-4 *1 (-604 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1214)) (-5 *2 (-112)))) (-4074 (*1 *2 *1) (-12 (-4 *1 (-604 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1214)) (-5 *2 (-644 *3)))) (-4156 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4414)) (-4 *1 (-604 *4 *3)) (-4 *4 (-1099)) (-4 *3 (-1214)) (-4 *3 (-1099)) (-5 *2 (-112)))) (-2712 (*1 *2 *1) (-12 (-4 *1 (-604 *2 *3)) (-4 *3 (-1214)) (-4 *2 (-1099)) (-4 *2 (-850)))) (-3854 (*1 *2 *1) (-12 (-4 *1 (-604 *2 *3)) (-4 *3 (-1214)) (-4 *2 (-1099)) (-4 *2 (-850)))) (-1998 (*1 *2 *1) (-12 (-4 *1 (-604 *3 *2)) (-4 *3 (-1099)) (-4 *3 (-850)) (-4 *2 (-1214)))) (-4030 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4415)) (-4 *1 (-604 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1214)))) (-3734 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4415)) (-4 *1 (-604 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1214)) (-5 *2 (-1269))))) -(-13 (-491 |t#2|) (-289 |t#1| |t#2|) (-10 -8 (-15 -2993 ((-644 |t#2|) $)) (-15 -3792 ((-112) |t#1| $)) (-15 -4074 ((-644 |t#1|) $)) (IF (|has| |t#2| (-1099)) (IF (|has| $ (-6 -4414)) (-15 -4156 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-850)) (PROGN (-15 -2712 (|t#1| $)) (-15 -3854 (|t#1| $)) (-15 -1998 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4415)) (PROGN (-15 -4030 ($ $ |t#2|)) (-15 -3734 ((-1269) $ |t#1| |t#1|))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#2| (-1099)) ((-613 (-862)) -2809 (|has| |#2| (-1099)) (|has| |#2| (-613 (-862)))) ((-287 |#1| |#2|) . T) ((-289 |#1| |#2|) . T) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((-491 |#2|) . T) ((-516 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((-1099) |has| |#2| (-1099)) ((-1214) . T)) -((-3783 (((-862) $) 19) (($ (-129)) 13) (((-129) $) 14))) +((-3486 (*1 *2 *1) (-12 (-4 *1 (-604 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1214)) (-5 *2 (-644 *4)))) (-1644 (*1 *2 *3 *1) (-12 (-4 *1 (-604 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1214)) (-5 *2 (-112)))) (-3725 (*1 *2 *1) (-12 (-4 *1 (-604 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1214)) (-5 *2 (-644 *3)))) (-2847 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4414)) (-4 *1 (-604 *4 *3)) (-4 *4 (-1099)) (-4 *3 (-1214)) (-4 *3 (-1099)) (-5 *2 (-112)))) (-4050 (*1 *2 *1) (-12 (-4 *1 (-604 *2 *3)) (-4 *3 (-1214)) (-4 *2 (-1099)) (-4 *2 (-850)))) (-2296 (*1 *2 *1) (-12 (-4 *1 (-604 *2 *3)) (-4 *3 (-1214)) (-4 *2 (-1099)) (-4 *2 (-850)))) (-3908 (*1 *2 *1) (-12 (-4 *1 (-604 *3 *2)) (-4 *3 (-1099)) (-4 *3 (-850)) (-4 *2 (-1214)))) (-3787 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4415)) (-4 *1 (-604 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1214)))) (-1944 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4415)) (-4 *1 (-604 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1214)) (-5 *2 (-1269))))) +(-13 (-491 |t#2|) (-289 |t#1| |t#2|) (-10 -8 (-15 -3486 ((-644 |t#2|) $)) (-15 -1644 ((-112) |t#1| $)) (-15 -3725 ((-644 |t#1|) $)) (IF (|has| |t#2| (-1099)) (IF (|has| $ (-6 -4414)) (-15 -2847 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-850)) (PROGN (-15 -4050 (|t#1| $)) (-15 -2296 (|t#1| $)) (-15 -3908 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4415)) (PROGN (-15 -3787 ($ $ |t#2|)) (-15 -1944 ((-1269) $ |t#1| |t#1|))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#2| (-1099)) ((-613 (-862)) -2768 (|has| |#2| (-1099)) (|has| |#2| (-613 (-862)))) ((-287 |#1| |#2|) . T) ((-289 |#1| |#2|) . T) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((-491 |#2|) . T) ((-516 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((-1099) |has| |#2| (-1099)) ((-1214) . T)) +((-3152 (((-862) $) 19) (($ (-129)) 13) (((-129) $) 14))) (((-605) (-13 (-613 (-862)) (-492 (-129)))) (T -605)) NIL (-13 (-613 (-862)) (-492 (-129))) -((-3007 (((-112) $ $) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) NIL) (($ (-1180)) NIL) (((-1180) $) NIL) (((-1213) $) 14) (($ (-644 (-1213))) 13)) (-3214 (((-644 (-1213)) $) 10)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) -(((-606) (-13 (-1082) (-613 (-1213)) (-10 -8 (-15 -3783 ($ (-644 (-1213)))) (-15 -3214 ((-644 (-1213)) $))))) (T -606)) -((-3783 (*1 *1 *2) (-12 (-5 *2 (-644 (-1213))) (-5 *1 (-606)))) (-3214 (*1 *2 *1) (-12 (-5 *2 (-644 (-1213))) (-5 *1 (-606))))) -(-13 (-1082) (-613 (-1213)) (-10 -8 (-15 -3783 ($ (-644 (-1213)))) (-15 -3214 ((-644 (-1213)) $)))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-3002 (((-3 $ "failed")) NIL (-2809 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-4175 (((-3 $ "failed") $ $) NIL)) (-4085 (((-1264 (-689 |#1|))) NIL (|has| |#2| (-419 |#1|))) (((-1264 (-689 |#1|)) (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-2092 (((-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-3012 (($) NIL T CONST)) (-4119 (((-3 (-2 (|:| |particular| $) (|:| -2365 (-644 $))) "failed")) NIL (-2809 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-1446 (((-3 $ "failed")) NIL (-2809 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-3058 (((-689 |#1|)) NIL (|has| |#2| (-419 |#1|))) (((-689 |#1|) (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-2468 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-4298 (((-689 |#1|) $) NIL (|has| |#2| (-419 |#1|))) (((-689 |#1|) $ (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-2715 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-2727 (((-1171 (-952 |#1|))) NIL (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-365))))) (-3942 (($ $ (-921)) NIL)) (-1670 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-3757 (((-1171 |#1|) $) NIL (-2809 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-2072 ((|#1|) NIL (|has| |#2| (-419 |#1|))) ((|#1| (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-2410 (((-1171 |#1|) $) NIL (|has| |#2| (-369 |#1|)))) (-3036 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2392 (($ (-1264 |#1|)) NIL (|has| |#2| (-419 |#1|))) (($ (-1264 |#1|) (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-1878 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-4313 (((-921)) NIL (|has| |#2| (-369 |#1|)))) (-2658 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2322 (($ $ (-921)) NIL)) (-1652 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1543 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2763 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2906 (((-3 (-2 (|:| |particular| $) (|:| -2365 (-644 $))) "failed")) NIL (-2809 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-1710 (((-3 $ "failed")) NIL (-2809 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-1371 (((-689 |#1|)) NIL (|has| |#2| (-419 |#1|))) (((-689 |#1|) (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-3307 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-3131 (((-689 |#1|) $) NIL (|has| |#2| (-419 |#1|))) (((-689 |#1|) $ (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-2305 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-2537 (((-1171 (-952 |#1|))) NIL (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-365))))) (-2437 (($ $ (-921)) NIL)) (-3473 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-4108 (((-1171 |#1|) $) NIL (-2809 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-1950 ((|#1|) NIL (|has| |#2| (-419 |#1|))) ((|#1| (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-1974 (((-1171 |#1|) $) NIL (|has| |#2| (-369 |#1|)))) (-3390 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-4117 (((-1157) $) NIL)) (-3170 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3326 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2829 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-4035 (((-1119) $) NIL)) (-1976 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-4390 ((|#1| $ (-566)) NIL (|has| |#2| (-419 |#1|)))) (-2154 (((-689 |#1|) (-1264 $)) NIL (|has| |#2| (-419 |#1|))) (((-1264 |#1|) $) NIL (|has| |#2| (-419 |#1|))) (((-689 |#1|) (-1264 $) (-1264 $)) NIL (|has| |#2| (-369 |#1|))) (((-1264 |#1|) $ (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-1348 (($ (-1264 |#1|)) NIL (|has| |#2| (-419 |#1|))) (((-1264 |#1|) $) NIL (|has| |#2| (-419 |#1|)))) (-3453 (((-644 (-952 |#1|))) NIL (|has| |#2| (-419 |#1|))) (((-644 (-952 |#1|)) (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-3171 (($ $ $) NIL)) (-2638 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3783 (((-862) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-3117 (((-112) $ $) NIL)) (-2365 (((-1264 $)) NIL (|has| |#2| (-419 |#1|)))) (-3023 (((-644 (-1264 |#1|))) NIL (-2809 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-2320 (($ $ $ $) NIL)) (-3232 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1948 (($ (-689 |#1|) $) NIL (|has| |#2| (-419 |#1|)))) (-3027 (($ $ $) NIL)) (-2653 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1843 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1938 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2479 (($) NIL T CONST)) (-2947 (((-112) $ $) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-921)) 24)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) -(((-607 |#1| |#2|) (-13 (-744 |#1|) (-613 |#2|) (-10 -8 (-15 -3783 ($ |#2|)) (IF (|has| |#2| (-419 |#1|)) (-6 (-419 |#1|)) |%noBranch|) (IF (|has| |#2| (-369 |#1|)) (-6 (-369 |#1|)) |%noBranch|))) (-172) (-744 |#1|)) (T -607)) -((-3783 (*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-607 *3 *2)) (-4 *2 (-744 *3))))) -(-13 (-744 |#1|) (-613 |#2|) (-10 -8 (-15 -3783 ($ |#2|)) (IF (|has| |#2| (-419 |#1|)) (-6 (-419 |#1|)) |%noBranch|) (IF (|has| |#2| (-369 |#1|)) (-6 (-369 |#1|)) |%noBranch|))) -((-3007 (((-112) $ $) NIL)) (-3349 (((-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) $ (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))) 39)) (-4254 (($ (-644 (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)))) NIL) (($) NIL)) (-3734 (((-1269) $ (-1157) (-1157)) NIL (|has| $ (-6 -4415)))) (-2256 (((-112) $ (-771)) NIL)) (-3923 ((|#1| $ (-1157) |#1|) 49)) (-4016 (($ (-1 (-112) (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))) $) NIL (|has| $ (-6 -4414)))) (-2701 (($ (-1 (-112) (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))) $) NIL (|has| $ (-6 -4414)))) (-2434 (((-3 |#1| "failed") (-1157) $) 52)) (-3012 (($) NIL T CONST)) (-3534 (($ $ (-1157)) 25)) (-2031 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-1099))))) (-2956 (((-3 |#1| "failed") (-1157) $) 53) (($ (-1 (-112) (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))) $) NIL (|has| $ (-6 -4414))) (($ (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) $) NIL (|has| $ (-6 -4414)))) (-2665 (($ (-1 (-112) (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))) $) NIL (|has| $ (-6 -4414))) (($ (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-1099))))) (-1676 (((-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-1 (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))) $) NIL (|has| $ (-6 -4414))) (((-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-1 (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))) $ (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))) NIL (|has| $ (-6 -4414))) (((-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-1 (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))) $ (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-1099))))) (-2972 (((-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) $) 38)) (-2920 ((|#1| $ (-1157) |#1|) NIL (|has| $ (-6 -4415)))) (-2855 ((|#1| $ (-1157)) NIL)) (-3979 (((-644 |#1|) $) NIL (|has| $ (-6 -4414))) (((-644 (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))) $) NIL (|has| $ (-6 -4414)))) (-3468 (($ $) 54)) (-3501 (($ (-390)) 23) (($ (-390) (-1157)) 22)) (-2640 (((-390) $) 40)) (-2404 (((-112) $ (-771)) NIL)) (-3854 (((-1157) $) NIL (|has| (-1157) (-850)))) (-2329 (((-644 |#1|) $) NIL (|has| $ (-6 -4414))) (((-644 (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099)))) (((-112) (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-1099))))) (-2712 (((-1157) $) NIL (|has| (-1157) (-850)))) (-2908 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4415))) (($ (-1 (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))) $) NIL (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))) $) NIL)) (-2603 (((-112) $ (-771)) NIL)) (-4117 (((-1157) $) NIL)) (-4103 (((-644 (-1157)) $) 45)) (-2876 (((-112) (-1157) $) NIL)) (-4176 (((-1157) $) 41)) (-4039 (((-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) $) NIL)) (-3406 (($ (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) $) NIL)) (-4074 (((-644 (-1157)) $) NIL)) (-3792 (((-112) (-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-1998 ((|#1| $) NIL (|has| (-1157) (-850)))) (-2006 (((-3 (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) "failed") (-1 (-112) (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))) $) NIL)) (-4030 (($ $ |#1|) NIL (|has| $ (-6 -4415)))) (-2539 (((-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) $) NIL)) (-2692 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))) (-644 (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)))) NIL (-12 (|has| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-310 (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)))) (|has| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-1099)))) (($ $ (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))) NIL (-12 (|has| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-310 (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)))) (|has| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-1099)))) (($ $ (-295 (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)))) NIL (-12 (|has| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-310 (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)))) (|has| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-1099)))) (($ $ (-644 (-295 (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))))) NIL (-12 (|has| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-310 (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)))) (|has| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-1099))))) (-1932 (((-112) $ $) NIL)) (-4156 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2993 (((-644 |#1|) $) NIL)) (-3467 (((-112) $) NIL)) (-1494 (($) 43)) (-4390 ((|#1| $ (-1157) |#1|) NIL) ((|#1| $ (-1157)) 48)) (-3481 (($ (-644 (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)))) NIL) (($) NIL)) (-4045 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099)))) (((-771) (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-1099)))) (((-771) (-1 (-112) (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))) $) NIL (|has| $ (-6 -4414)))) (-3940 (($ $) NIL)) (-1348 (((-538) $) NIL (|has| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-614 (-538))))) (-3796 (($ (-644 (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)))) NIL)) (-3783 (((-862) $) 21)) (-1596 (($ $) 26)) (-3117 (((-112) $ $) NIL)) (-1748 (($ (-644 (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)))) NIL)) (-1894 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))) $) NIL (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) 20)) (-3018 (((-771) $) 47 (|has| $ (-6 -4414))))) -(((-608 |#1|) (-13 (-366 (-390) (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))) (-1190 (-1157) |#1|) (-10 -8 (-6 -4414) (-15 -3468 ($ $)))) (-1099)) (T -608)) -((-3468 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-1099))))) -(-13 (-366 (-390) (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))) (-1190 (-1157) |#1|) (-10 -8 (-6 -4414) (-15 -3468 ($ $)))) -((-1916 (((-112) (-2 (|:| -2004 |#2|) (|:| -3867 |#3|)) $) 16)) (-4103 (((-644 |#2|) $) 20)) (-2876 (((-112) |#2| $) 12))) -(((-609 |#1| |#2| |#3|) (-10 -8 (-15 -4103 ((-644 |#2|) |#1|)) (-15 -2876 ((-112) |#2| |#1|)) (-15 -1916 ((-112) (-2 (|:| -2004 |#2|) (|:| -3867 |#3|)) |#1|))) (-610 |#2| |#3|) (-1099) (-1099)) (T -609)) -NIL -(-10 -8 (-15 -4103 ((-644 |#2|) |#1|)) (-15 -2876 ((-112) |#2| |#1|)) (-15 -1916 ((-112) (-2 (|:| -2004 |#2|) (|:| -3867 |#3|)) |#1|))) -((-3007 (((-112) $ $) 19 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (-2256 (((-112) $ (-771)) 8)) (-4016 (($ (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 46 (|has| $ (-6 -4414)))) (-2701 (($ (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 56 (|has| $ (-6 -4414)))) (-2434 (((-3 |#2| "failed") |#1| $) 62)) (-3012 (($) 7 T CONST)) (-2031 (($ $) 59 (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| $ (-6 -4414))))) (-2956 (($ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) 48 (|has| $ (-6 -4414))) (($ (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 47 (|has| $ (-6 -4414))) (((-3 |#2| "failed") |#1| $) 63)) (-2665 (($ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) 58 (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| $ (-6 -4414)))) (($ (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 55 (|has| $ (-6 -4414)))) (-1676 (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) 57 (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| $ (-6 -4414)))) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) 54 (|has| $ (-6 -4414))) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 53 (|has| $ (-6 -4414)))) (-3979 (((-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 31 (|has| $ (-6 -4414)))) (-2404 (((-112) $ (-771)) 9)) (-2329 (((-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 30 (|has| $ (-6 -4414)))) (-1916 (((-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| $ (-6 -4414))))) (-2908 (($ (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 35 (|has| $ (-6 -4415)))) (-1301 (($ (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 36)) (-2603 (((-112) $ (-771)) 10)) (-4117 (((-1157) $) 22 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (-4103 (((-644 |#1|) $) 64)) (-2876 (((-112) |#1| $) 65)) (-4039 (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) 40)) (-3406 (($ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) 41)) (-4035 (((-1119) $) 21 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (-2006 (((-3 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) "failed") (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 52)) (-2539 (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) 42)) (-2692 (((-112) (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 33 (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))))) 27 (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (($ $ (-295 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) 26 (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (($ $ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) 25 (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (($ $ (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) 24 (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099))))) (-1932 (((-112) $ $) 14)) (-3467 (((-112) $) 11)) (-1494 (($) 12)) (-3481 (($) 50) (($ (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) 49)) (-4045 (((-771) (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 32 (|has| $ (-6 -4414))) (((-771) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) 29 (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| $ (-6 -4414))))) (-3940 (($ $) 13)) (-1348 (((-538) $) 60 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-614 (-538))))) (-3796 (($ (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) 51)) (-3783 (((-862) $) 18 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-613 (-862))))) (-3117 (((-112) $ $) 23 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (-1748 (($ (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) 43)) (-1894 (((-112) (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 34 (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) 20 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (-3018 (((-771) $) 6 (|has| $ (-6 -4414))))) +((-2988 (((-112) $ $) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) NIL) (($ (-1180)) NIL) (((-1180) $) NIL) (((-1213) $) 14) (($ (-644 (-1213))) 13)) (-4227 (((-644 (-1213)) $) 10)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) +(((-606) (-13 (-1082) (-613 (-1213)) (-10 -8 (-15 -3152 ($ (-644 (-1213)))) (-15 -4227 ((-644 (-1213)) $))))) (T -606)) +((-3152 (*1 *1 *2) (-12 (-5 *2 (-644 (-1213))) (-5 *1 (-606)))) (-4227 (*1 *2 *1) (-12 (-5 *2 (-644 (-1213))) (-5 *1 (-606))))) +(-13 (-1082) (-613 (-1213)) (-10 -8 (-15 -3152 ($ (-644 (-1213)))) (-15 -4227 ((-644 (-1213)) $)))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-2896 (((-3 $ "failed")) NIL (-2768 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-3967 (((-3 $ "failed") $ $) NIL)) (-2336 (((-1264 (-689 |#1|))) NIL (|has| |#2| (-419 |#1|))) (((-1264 (-689 |#1|)) (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-3717 (((-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-2463 (($) NIL T CONST)) (-3574 (((-3 (-2 (|:| |particular| $) (|:| -2875 (-644 $))) "failed")) NIL (-2768 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-1469 (((-3 $ "failed")) NIL (-2768 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-2411 (((-689 |#1|)) NIL (|has| |#2| (-419 |#1|))) (((-689 |#1|) (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-4373 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-2800 (((-689 |#1|) $) NIL (|has| |#2| (-419 |#1|))) (((-689 |#1|) $ (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-4392 (((-3 $ "failed") $) NIL (-2768 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-3031 (((-1171 (-952 |#1|))) NIL (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-365))))) (-1856 (($ $ (-921)) NIL)) (-4039 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-3648 (((-1171 |#1|) $) NIL (-2768 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-2597 ((|#1|) NIL (|has| |#2| (-419 |#1|))) ((|#1| (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-2765 (((-1171 |#1|) $) NIL (|has| |#2| (-369 |#1|)))) (-4029 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1563 (($ (-1264 |#1|)) NIL (|has| |#2| (-419 |#1|))) (($ (-1264 |#1|) (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-3245 (((-3 $ "failed") $) NIL (-2768 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-2755 (((-921)) NIL (|has| |#2| (-369 |#1|)))) (-3793 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-4090 (($ $ (-921)) NIL)) (-4240 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2057 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2158 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1476 (((-3 (-2 (|:| |particular| $) (|:| -2875 (-644 $))) "failed")) NIL (-2768 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-1731 (((-3 $ "failed")) NIL (-2768 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-2734 (((-689 |#1|)) NIL (|has| |#2| (-419 |#1|))) (((-689 |#1|) (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-2366 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-3769 (((-689 |#1|) $) NIL (|has| |#2| (-419 |#1|))) (((-689 |#1|) $ (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-2851 (((-3 $ "failed") $) NIL (-2768 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-1793 (((-1171 (-952 |#1|))) NIL (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-365))))) (-3270 (($ $ (-921)) NIL)) (-2241 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-1910 (((-1171 |#1|) $) NIL (-2768 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-2990 ((|#1|) NIL (|has| |#2| (-419 |#1|))) ((|#1| (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-3548 (((-1171 |#1|) $) NIL (|has| |#2| (-369 |#1|)))) (-2974 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3380 (((-1157) $) NIL)) (-2402 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1459 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3846 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-4072 (((-1119) $) NIL)) (-3795 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1309 ((|#1| $ (-566)) NIL (|has| |#2| (-419 |#1|)))) (-3350 (((-689 |#1|) (-1264 $)) NIL (|has| |#2| (-419 |#1|))) (((-1264 |#1|) $) NIL (|has| |#2| (-419 |#1|))) (((-689 |#1|) (-1264 $) (-1264 $)) NIL (|has| |#2| (-369 |#1|))) (((-1264 |#1|) $ (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-2376 (($ (-1264 |#1|)) NIL (|has| |#2| (-419 |#1|))) (((-1264 |#1|) $) NIL (|has| |#2| (-419 |#1|)))) (-2861 (((-644 (-952 |#1|))) NIL (|has| |#2| (-419 |#1|))) (((-644 (-952 |#1|)) (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-2527 (($ $ $) NIL)) (-2512 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3152 (((-862) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-3044 (((-112) $ $) NIL)) (-2875 (((-1264 $)) NIL (|has| |#2| (-419 |#1|)))) (-2243 (((-644 (-1264 |#1|))) NIL (-2768 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-3876 (($ $ $ $) NIL)) (-2468 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3847 (($ (-689 |#1|) $) NIL (|has| |#2| (-419 |#1|)))) (-1471 (($ $ $) NIL)) (-1465 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3692 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-4369 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-4356 (($) NIL T CONST)) (-2914 (((-112) $ $) NIL)) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-921)) 24)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) +(((-607 |#1| |#2|) (-13 (-744 |#1|) (-613 |#2|) (-10 -8 (-15 -3152 ($ |#2|)) (IF (|has| |#2| (-419 |#1|)) (-6 (-419 |#1|)) |%noBranch|) (IF (|has| |#2| (-369 |#1|)) (-6 (-369 |#1|)) |%noBranch|))) (-172) (-744 |#1|)) (T -607)) +((-3152 (*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-607 *3 *2)) (-4 *2 (-744 *3))))) +(-13 (-744 |#1|) (-613 |#2|) (-10 -8 (-15 -3152 ($ |#2|)) (IF (|has| |#2| (-419 |#1|)) (-6 (-419 |#1|)) |%noBranch|) (IF (|has| |#2| (-369 |#1|)) (-6 (-369 |#1|)) |%noBranch|))) +((-2988 (((-112) $ $) NIL)) (-3167 (((-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) $ (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))) 39)) (-1849 (($ (-644 (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)))) NIL) (($) NIL)) (-1944 (((-1269) $ (-1157) (-1157)) NIL (|has| $ (-6 -4415)))) (-1504 (((-112) $ (-771)) NIL)) (-1456 ((|#1| $ (-1157) |#1|) 49)) (-2995 (($ (-1 (-112) (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))) $) NIL (|has| $ (-6 -4414)))) (-3678 (($ (-1 (-112) (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))) $) NIL (|has| $ (-6 -4414)))) (-3070 (((-3 |#1| "failed") (-1157) $) 52)) (-2463 (($) NIL T CONST)) (-2545 (($ $ (-1157)) 25)) (-3942 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-1099))))) (-3512 (((-3 |#1| "failed") (-1157) $) 53) (($ (-1 (-112) (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))) $) NIL (|has| $ (-6 -4414))) (($ (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) $) NIL (|has| $ (-6 -4414)))) (-2622 (($ (-1 (-112) (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))) $) NIL (|has| $ (-6 -4414))) (($ (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-1099))))) (-2873 (((-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-1 (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))) $) NIL (|has| $ (-6 -4414))) (((-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-1 (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))) $ (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))) NIL (|has| $ (-6 -4414))) (((-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-1 (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))) $ (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-1099))))) (-1338 (((-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) $) 38)) (-3897 ((|#1| $ (-1157) |#1|) NIL (|has| $ (-6 -4415)))) (-3829 ((|#1| $ (-1157)) NIL)) (-1683 (((-644 |#1|) $) NIL (|has| $ (-6 -4414))) (((-644 (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))) $) NIL (|has| $ (-6 -4414)))) (-2970 (($ $) 54)) (-3292 (($ (-390)) 23) (($ (-390) (-1157)) 22)) (-1368 (((-390) $) 40)) (-3456 (((-112) $ (-771)) NIL)) (-2296 (((-1157) $) NIL (|has| (-1157) (-850)))) (-3491 (((-644 |#1|) $) NIL (|has| $ (-6 -4414))) (((-644 (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099)))) (((-112) (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-1099))))) (-4050 (((-1157) $) NIL (|has| (-1157) (-850)))) (-3885 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4415))) (($ (-1 (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))) $) NIL (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))) $) NIL)) (-3267 (((-112) $ (-771)) NIL)) (-3380 (((-1157) $) NIL)) (-4052 (((-644 (-1157)) $) 45)) (-1826 (((-112) (-1157) $) NIL)) (-4085 (((-1157) $) 41)) (-3278 (((-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) $) NIL)) (-3888 (($ (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) $) NIL)) (-3725 (((-644 (-1157)) $) NIL)) (-1644 (((-112) (-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3908 ((|#1| $) NIL (|has| (-1157) (-850)))) (-3668 (((-3 (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) "failed") (-1 (-112) (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))) $) NIL)) (-3787 (($ $ |#1|) NIL (|has| $ (-6 -4415)))) (-1973 (((-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) $) NIL)) (-2823 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))) (-644 (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)))) NIL (-12 (|has| (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-310 (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)))) (|has| (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-1099)))) (($ $ (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))) NIL (-12 (|has| (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-310 (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)))) (|has| (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-1099)))) (($ $ (-295 (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)))) NIL (-12 (|has| (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-310 (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)))) (|has| (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-1099)))) (($ $ (-644 (-295 (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))))) NIL (-12 (|has| (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-310 (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)))) (|has| (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-1099))))) (-3814 (((-112) $ $) NIL)) (-2847 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3486 (((-644 |#1|) $) NIL)) (-2872 (((-112) $) NIL)) (-3493 (($) 43)) (-1309 ((|#1| $ (-1157) |#1|) NIL) ((|#1| $ (-1157)) 48)) (-1792 (($ (-644 (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)))) NIL) (($) NIL)) (-4083 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099)))) (((-771) (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-1099)))) (((-771) (-1 (-112) (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))) $) NIL (|has| $ (-6 -4414)))) (-1480 (($ $) NIL)) (-2376 (((-538) $) NIL (|has| (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-614 (-538))))) (-1340 (($ (-644 (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)))) NIL)) (-3152 (((-862) $) 21)) (-2405 (($ $) 26)) (-3044 (((-112) $ $) NIL)) (-2948 (($ (-644 (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)))) NIL)) (-2210 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))) $) NIL (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) 20)) (-3000 (((-771) $) 47 (|has| $ (-6 -4414))))) +(((-608 |#1|) (-13 (-366 (-390) (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))) (-1190 (-1157) |#1|) (-10 -8 (-6 -4414) (-15 -2970 ($ $)))) (-1099)) (T -608)) +((-2970 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-1099))))) +(-13 (-366 (-390) (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))) (-1190 (-1157) |#1|) (-10 -8 (-6 -4414) (-15 -2970 ($ $)))) +((-1602 (((-112) (-2 (|:| -2674 |#2|) (|:| -2636 |#3|)) $) 16)) (-4052 (((-644 |#2|) $) 20)) (-1826 (((-112) |#2| $) 12))) +(((-609 |#1| |#2| |#3|) (-10 -8 (-15 -4052 ((-644 |#2|) |#1|)) (-15 -1826 ((-112) |#2| |#1|)) (-15 -1602 ((-112) (-2 (|:| -2674 |#2|) (|:| -2636 |#3|)) |#1|))) (-610 |#2| |#3|) (-1099) (-1099)) (T -609)) +NIL +(-10 -8 (-15 -4052 ((-644 |#2|) |#1|)) (-15 -1826 ((-112) |#2| |#1|)) (-15 -1602 ((-112) (-2 (|:| -2674 |#2|) (|:| -2636 |#3|)) |#1|))) +((-2988 (((-112) $ $) 19 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (-1504 (((-112) $ (-771)) 8)) (-2995 (($ (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 46 (|has| $ (-6 -4414)))) (-3678 (($ (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 56 (|has| $ (-6 -4414)))) (-3070 (((-3 |#2| "failed") |#1| $) 62)) (-2463 (($) 7 T CONST)) (-3942 (($ $) 59 (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| $ (-6 -4414))))) (-3512 (($ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) 48 (|has| $ (-6 -4414))) (($ (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 47 (|has| $ (-6 -4414))) (((-3 |#2| "failed") |#1| $) 63)) (-2622 (($ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) 58 (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| $ (-6 -4414)))) (($ (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 55 (|has| $ (-6 -4414)))) (-2873 (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) 57 (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| $ (-6 -4414)))) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) 54 (|has| $ (-6 -4414))) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 53 (|has| $ (-6 -4414)))) (-1683 (((-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 31 (|has| $ (-6 -4414)))) (-3456 (((-112) $ (-771)) 9)) (-3491 (((-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 30 (|has| $ (-6 -4414)))) (-1602 (((-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| $ (-6 -4414))))) (-3885 (($ (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 35 (|has| $ (-6 -4415)))) (-2319 (($ (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 36)) (-3267 (((-112) $ (-771)) 10)) (-3380 (((-1157) $) 22 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (-4052 (((-644 |#1|) $) 64)) (-1826 (((-112) |#1| $) 65)) (-3278 (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) 40)) (-3888 (($ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) 41)) (-4072 (((-1119) $) 21 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (-3668 (((-3 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) "failed") (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 52)) (-1973 (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) 42)) (-2823 (((-112) (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 33 (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))))) 27 (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (($ $ (-295 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) 26 (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (($ $ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) 25 (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (($ $ (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) 24 (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099))))) (-3814 (((-112) $ $) 14)) (-2872 (((-112) $) 11)) (-3493 (($) 12)) (-1792 (($) 50) (($ (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) 49)) (-4083 (((-771) (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 32 (|has| $ (-6 -4414))) (((-771) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) 29 (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| $ (-6 -4414))))) (-1480 (($ $) 13)) (-2376 (((-538) $) 60 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-614 (-538))))) (-1340 (($ (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) 51)) (-3152 (((-862) $) 18 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-613 (-862))))) (-3044 (((-112) $ $) 23 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (-2948 (($ (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) 43)) (-2210 (((-112) (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 34 (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) 20 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (-3000 (((-771) $) 6 (|has| $ (-6 -4414))))) (((-610 |#1| |#2|) (-140) (-1099) (-1099)) (T -610)) -((-2876 (*1 *2 *3 *1) (-12 (-4 *1 (-610 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-5 *2 (-112)))) (-4103 (*1 *2 *1) (-12 (-4 *1 (-610 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-5 *2 (-644 *3)))) (-2956 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-610 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1099)))) (-2434 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-610 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1099))))) -(-13 (-229 (-2 (|:| -2004 |t#1|) (|:| -3867 |t#2|))) (-10 -8 (-15 -2876 ((-112) |t#1| $)) (-15 -4103 ((-644 |t#1|) $)) (-15 -2956 ((-3 |t#2| "failed") |t#1| $)) (-15 -2434 ((-3 |t#2| "failed") |t#1| $)))) -(((-34) . T) ((-107 #0=(-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) . T) ((-102) |has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) ((-613 (-862)) -2809 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-613 (-862)))) ((-151 #0#) . T) ((-614 (-538)) |has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-614 (-538))) ((-229 #0#) . T) ((-235 #0#) . T) ((-310 #0#) -12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099))) ((-491 #0#) . T) ((-516 #0# #0#) -12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099))) ((-1099) |has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) ((-1214) . T)) -((-1555 (((-612 |#2|) |#1|) 17)) (-2707 (((-3 |#1| "failed") (-612 |#2|)) 21))) -(((-611 |#1| |#2|) (-10 -7 (-15 -1555 ((-612 |#2|) |#1|)) (-15 -2707 ((-3 |#1| "failed") (-612 |#2|)))) (-1099) (-1099)) (T -611)) -((-2707 (*1 *2 *3) (|partial| -12 (-5 *3 (-612 *4)) (-4 *4 (-1099)) (-4 *2 (-1099)) (-5 *1 (-611 *2 *4)))) (-1555 (*1 *2 *3) (-12 (-5 *2 (-612 *4)) (-5 *1 (-611 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099))))) -(-10 -7 (-15 -1555 ((-612 |#2|) |#1|)) (-15 -2707 ((-3 |#1| "failed") (-612 |#2|)))) -((-3007 (((-112) $ $) NIL)) (-3202 (((-3 (-1175) "failed") $) 48)) (-4077 (((-1269) $ (-771)) 24)) (-4000 (((-771) $) 23)) (-3659 (((-114) $) 12)) (-2097 (($ $ $) NIL)) (-3962 (($ $ $) NIL)) (-4117 (((-1157) $) NIL)) (-1307 (($ (-114) (-644 |#1|) (-771)) 34) (($ (-1175)) 35)) (-2572 (((-112) $ (-114)) 18) (((-112) $ (-1175)) 16)) (-2076 (((-771) $) 20)) (-4035 (((-1119) $) NIL)) (-1348 (((-892 (-566)) $) 96 (|has| |#1| (-614 (-892 (-566))))) (((-892 (-381)) $) 103 (|has| |#1| (-614 (-892 (-381))))) (((-538) $) 89 (|has| |#1| (-614 (-538))))) (-3783 (((-862) $) 73)) (-3117 (((-112) $ $) NIL)) (-2428 (((-644 |#1|) $) 22)) (-3009 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2947 (((-112) $ $) 52)) (-2995 (((-112) $ $) NIL)) (-2969 (((-112) $ $) 54))) -(((-612 |#1|) (-13 (-132) (-850) (-884 |#1|) (-10 -8 (-15 -3659 ((-114) $)) (-15 -2428 ((-644 |#1|) $)) (-15 -2076 ((-771) $)) (-15 -1307 ($ (-114) (-644 |#1|) (-771))) (-15 -1307 ($ (-1175))) (-15 -3202 ((-3 (-1175) "failed") $)) (-15 -2572 ((-112) $ (-114))) (-15 -2572 ((-112) $ (-1175))) (IF (|has| |#1| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|))) (-1099)) (T -612)) -((-3659 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-612 *3)) (-4 *3 (-1099)))) (-2428 (*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-612 *3)) (-4 *3 (-1099)))) (-2076 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-612 *3)) (-4 *3 (-1099)))) (-1307 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-114)) (-5 *3 (-644 *5)) (-5 *4 (-771)) (-4 *5 (-1099)) (-5 *1 (-612 *5)))) (-1307 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-612 *3)) (-4 *3 (-1099)))) (-3202 (*1 *2 *1) (|partial| -12 (-5 *2 (-1175)) (-5 *1 (-612 *3)) (-4 *3 (-1099)))) (-2572 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-612 *4)) (-4 *4 (-1099)))) (-2572 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-112)) (-5 *1 (-612 *4)) (-4 *4 (-1099))))) -(-13 (-132) (-850) (-884 |#1|) (-10 -8 (-15 -3659 ((-114) $)) (-15 -2428 ((-644 |#1|) $)) (-15 -2076 ((-771) $)) (-15 -1307 ($ (-114) (-644 |#1|) (-771))) (-15 -1307 ($ (-1175))) (-15 -3202 ((-3 (-1175) "failed") $)) (-15 -2572 ((-112) $ (-114))) (-15 -2572 ((-112) $ (-1175))) (IF (|has| |#1| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|))) -((-3783 ((|#1| $) 6))) +((-1826 (*1 *2 *3 *1) (-12 (-4 *1 (-610 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-5 *2 (-112)))) (-4052 (*1 *2 *1) (-12 (-4 *1 (-610 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-5 *2 (-644 *3)))) (-3512 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-610 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1099)))) (-3070 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-610 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1099))))) +(-13 (-229 (-2 (|:| -2674 |t#1|) (|:| -2636 |t#2|))) (-10 -8 (-15 -1826 ((-112) |t#1| $)) (-15 -4052 ((-644 |t#1|) $)) (-15 -3512 ((-3 |t#2| "failed") |t#1| $)) (-15 -3070 ((-3 |t#2| "failed") |t#1| $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) . T) ((-102) |has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) ((-613 (-862)) -2768 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-613 (-862)))) ((-151 #0#) . T) ((-614 (-538)) |has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-614 (-538))) ((-229 #0#) . T) ((-235 #0#) . T) ((-310 #0#) -12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099))) ((-491 #0#) . T) ((-516 #0# #0#) -12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099))) ((-1099) |has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) ((-1214) . T)) +((-1770 (((-612 |#2|) |#1|) 17)) (-1734 (((-3 |#1| "failed") (-612 |#2|)) 21))) +(((-611 |#1| |#2|) (-10 -7 (-15 -1770 ((-612 |#2|) |#1|)) (-15 -1734 ((-3 |#1| "failed") (-612 |#2|)))) (-1099) (-1099)) (T -611)) +((-1734 (*1 *2 *3) (|partial| -12 (-5 *3 (-612 *4)) (-4 *4 (-1099)) (-4 *2 (-1099)) (-5 *1 (-611 *2 *4)))) (-1770 (*1 *2 *3) (-12 (-5 *2 (-612 *4)) (-5 *1 (-611 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099))))) +(-10 -7 (-15 -1770 ((-612 |#2|) |#1|)) (-15 -1734 ((-3 |#1| "failed") (-612 |#2|)))) +((-2988 (((-112) $ $) NIL)) (-2511 (((-3 (-1175) "failed") $) 48)) (-2785 (((-1269) $ (-771)) 24)) (-1569 (((-771) $) 23)) (-1566 (((-114) $) 12)) (-1478 (($ $ $) NIL)) (-2599 (($ $ $) NIL)) (-3380 (((-1157) $) NIL)) (-2328 (($ (-114) (-644 |#1|) (-771)) 34) (($ (-1175)) 35)) (-3335 (((-112) $ (-114)) 18) (((-112) $ (-1175)) 16)) (-3106 (((-771) $) 20)) (-4072 (((-1119) $) NIL)) (-2376 (((-892 (-566)) $) 96 (|has| |#1| (-614 (-892 (-566))))) (((-892 (-381)) $) 103 (|has| |#1| (-614 (-892 (-381))))) (((-538) $) 89 (|has| |#1| (-614 (-538))))) (-3152 (((-862) $) 73)) (-3044 (((-112) $ $) NIL)) (-1684 (((-644 |#1|) $) 22)) (-2968 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2914 (((-112) $ $) 52)) (-2956 (((-112) $ $) NIL)) (-2935 (((-112) $ $) 54))) +(((-612 |#1|) (-13 (-132) (-850) (-884 |#1|) (-10 -8 (-15 -1566 ((-114) $)) (-15 -1684 ((-644 |#1|) $)) (-15 -3106 ((-771) $)) (-15 -2328 ($ (-114) (-644 |#1|) (-771))) (-15 -2328 ($ (-1175))) (-15 -2511 ((-3 (-1175) "failed") $)) (-15 -3335 ((-112) $ (-114))) (-15 -3335 ((-112) $ (-1175))) (IF (|has| |#1| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|))) (-1099)) (T -612)) +((-1566 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-612 *3)) (-4 *3 (-1099)))) (-1684 (*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-612 *3)) (-4 *3 (-1099)))) (-3106 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-612 *3)) (-4 *3 (-1099)))) (-2328 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-114)) (-5 *3 (-644 *5)) (-5 *4 (-771)) (-4 *5 (-1099)) (-5 *1 (-612 *5)))) (-2328 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-612 *3)) (-4 *3 (-1099)))) (-2511 (*1 *2 *1) (|partial| -12 (-5 *2 (-1175)) (-5 *1 (-612 *3)) (-4 *3 (-1099)))) (-3335 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-612 *4)) (-4 *4 (-1099)))) (-3335 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-112)) (-5 *1 (-612 *4)) (-4 *4 (-1099))))) +(-13 (-132) (-850) (-884 |#1|) (-10 -8 (-15 -1566 ((-114) $)) (-15 -1684 ((-644 |#1|) $)) (-15 -3106 ((-771) $)) (-15 -2328 ($ (-114) (-644 |#1|) (-771))) (-15 -2328 ($ (-1175))) (-15 -2511 ((-3 (-1175) "failed") $)) (-15 -3335 ((-112) $ (-114))) (-15 -3335 ((-112) $ (-1175))) (IF (|has| |#1| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|))) +((-3152 ((|#1| $) 6))) (((-613 |#1|) (-140) (-1214)) (T -613)) -((-3783 (*1 *2 *1) (-12 (-4 *1 (-613 *2)) (-4 *2 (-1214))))) -(-13 (-10 -8 (-15 -3783 (|t#1| $)))) -((-1348 ((|#1| $) 6))) +((-3152 (*1 *2 *1) (-12 (-4 *1 (-613 *2)) (-4 *2 (-1214))))) +(-13 (-10 -8 (-15 -3152 (|t#1| $)))) +((-2376 ((|#1| $) 6))) (((-614 |#1|) (-140) (-1214)) (T -614)) -((-1348 (*1 *2 *1) (-12 (-4 *1 (-614 *2)) (-4 *2 (-1214))))) -(-13 (-10 -8 (-15 -1348 (|t#1| $)))) -((-3642 (((-3 (-1171 (-409 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|) (-1 (-420 |#2|) |#2|)) 15) (((-3 (-1171 (-409 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|)) 16))) -(((-615 |#1| |#2|) (-10 -7 (-15 -3642 ((-3 (-1171 (-409 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|))) (-15 -3642 ((-3 (-1171 (-409 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|) (-1 (-420 |#2|) |#2|)))) (-13 (-147) (-27) (-1038 (-566)) (-1038 (-409 (-566)))) (-1240 |#1|)) (T -615)) -((-3642 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-420 *6) *6)) (-4 *6 (-1240 *5)) (-4 *5 (-13 (-147) (-27) (-1038 (-566)) (-1038 (-409 (-566))))) (-5 *2 (-1171 (-409 *6))) (-5 *1 (-615 *5 *6)) (-5 *3 (-409 *6)))) (-3642 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-147) (-27) (-1038 (-566)) (-1038 (-409 (-566))))) (-4 *5 (-1240 *4)) (-5 *2 (-1171 (-409 *5))) (-5 *1 (-615 *4 *5)) (-5 *3 (-409 *5))))) -(-10 -7 (-15 -3642 ((-3 (-1171 (-409 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|))) (-15 -3642 ((-3 (-1171 (-409 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|) (-1 (-420 |#2|) |#2|)))) -((-3783 (($ |#1|) 6))) +((-2376 (*1 *2 *1) (-12 (-4 *1 (-614 *2)) (-4 *2 (-1214))))) +(-13 (-10 -8 (-15 -2376 (|t#1| $)))) +((-4358 (((-3 (-1171 (-409 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|) (-1 (-420 |#2|) |#2|)) 15) (((-3 (-1171 (-409 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|)) 16))) +(((-615 |#1| |#2|) (-10 -7 (-15 -4358 ((-3 (-1171 (-409 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|))) (-15 -4358 ((-3 (-1171 (-409 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|) (-1 (-420 |#2|) |#2|)))) (-13 (-147) (-27) (-1038 (-566)) (-1038 (-409 (-566)))) (-1240 |#1|)) (T -615)) +((-4358 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-420 *6) *6)) (-4 *6 (-1240 *5)) (-4 *5 (-13 (-147) (-27) (-1038 (-566)) (-1038 (-409 (-566))))) (-5 *2 (-1171 (-409 *6))) (-5 *1 (-615 *5 *6)) (-5 *3 (-409 *6)))) (-4358 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-147) (-27) (-1038 (-566)) (-1038 (-409 (-566))))) (-4 *5 (-1240 *4)) (-5 *2 (-1171 (-409 *5))) (-5 *1 (-615 *4 *5)) (-5 *3 (-409 *5))))) +(-10 -7 (-15 -4358 ((-3 (-1171 (-409 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|))) (-15 -4358 ((-3 (-1171 (-409 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|) (-1 (-420 |#2|) |#2|)))) +((-3152 (($ |#1|) 6))) (((-616 |#1|) (-140) (-1214)) (T -616)) -((-3783 (*1 *1 *2) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1214))))) -(-13 (-10 -8 (-15 -3783 ($ |t#1|)))) -((-3007 (((-112) $ $) NIL)) (-1529 (($) 14 T CONST)) (-3389 (($) 15 T CONST)) (-2445 (($ $ $) 29)) (-2418 (($ $) 27)) (-4117 (((-1157) $) NIL)) (-3044 (($ $ $) 30)) (-4035 (((-1119) $) NIL)) (-2229 (($) 11 T CONST)) (-3235 (($ $ $) 31)) (-3783 (((-862) $) 35)) (-2467 (((-112) $ (|[\|\|]| -2229)) 24) (((-112) $ (|[\|\|]| -1529)) 26) (((-112) $ (|[\|\|]| -3389)) 21)) (-3117 (((-112) $ $) NIL)) (-2432 (($ $ $) 28)) (-2947 (((-112) $ $) 18))) -(((-617) (-13 (-967) (-10 -8 (-15 -1529 ($) -3704) (-15 -2467 ((-112) $ (|[\|\|]| -2229))) (-15 -2467 ((-112) $ (|[\|\|]| -1529))) (-15 -2467 ((-112) $ (|[\|\|]| -3389)))))) (T -617)) -((-1529 (*1 *1) (-5 *1 (-617))) (-2467 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2229)) (-5 *2 (-112)) (-5 *1 (-617)))) (-2467 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1529)) (-5 *2 (-112)) (-5 *1 (-617)))) (-2467 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3389)) (-5 *2 (-112)) (-5 *1 (-617))))) -(-13 (-967) (-10 -8 (-15 -1529 ($) -3704) (-15 -2467 ((-112) $ (|[\|\|]| -2229))) (-15 -2467 ((-112) $ (|[\|\|]| -1529))) (-15 -2467 ((-112) $ (|[\|\|]| -3389))))) -((-1348 (($ |#1|) 6))) +((-3152 (*1 *1 *2) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1214))))) +(-13 (-10 -8 (-15 -3152 ($ |t#1|)))) +((-2988 (((-112) $ $) NIL)) (-2583 (($) 14 T CONST)) (-3338 (($) 15 T CONST)) (-2427 (($ $ $) 29)) (-2404 (($ $) 27)) (-3380 (((-1157) $) NIL)) (-3513 (($ $ $) 30)) (-4072 (((-1119) $) NIL)) (-2177 (($) 11 T CONST)) (-1562 (($ $ $) 31)) (-3152 (((-862) $) 35)) (-4344 (((-112) $ (|[\|\|]| -2177)) 24) (((-112) $ (|[\|\|]| -2583)) 26) (((-112) $ (|[\|\|]| -3338)) 21)) (-3044 (((-112) $ $) NIL)) (-2415 (($ $ $) 28)) (-2914 (((-112) $ $) 18))) +(((-617) (-13 (-967) (-10 -8 (-15 -2583 ($) -1623) (-15 -4344 ((-112) $ (|[\|\|]| -2177))) (-15 -4344 ((-112) $ (|[\|\|]| -2583))) (-15 -4344 ((-112) $ (|[\|\|]| -3338)))))) (T -617)) +((-2583 (*1 *1) (-5 *1 (-617))) (-4344 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2177)) (-5 *2 (-112)) (-5 *1 (-617)))) (-4344 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2583)) (-5 *2 (-112)) (-5 *1 (-617)))) (-4344 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3338)) (-5 *2 (-112)) (-5 *1 (-617))))) +(-13 (-967) (-10 -8 (-15 -2583 ($) -1623) (-15 -4344 ((-112) $ (|[\|\|]| -2177))) (-15 -4344 ((-112) $ (|[\|\|]| -2583))) (-15 -4344 ((-112) $ (|[\|\|]| -3338))))) +((-2376 (($ |#1|) 6))) (((-618 |#1|) (-140) (-1214)) (T -618)) -((-1348 (*1 *1 *2) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1214))))) -(-13 (-10 -8 (-15 -1348 ($ |t#1|)))) -((-3783 (((-862) $) NIL) (($ (-566)) NIL) (($ |#2|) 10))) -(((-619 |#1| |#2|) (-10 -8 (-15 -3783 (|#1| |#2|)) (-15 -3783 (|#1| (-566))) (-15 -3783 ((-862) |#1|))) (-620 |#2|) (-1049)) (T -619)) +((-2376 (*1 *1 *2) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1214))))) +(-13 (-10 -8 (-15 -2376 ($ |t#1|)))) +((-3152 (((-862) $) NIL) (($ (-566)) NIL) (($ |#2|) 10))) +(((-619 |#1| |#2|) (-10 -8 (-15 -3152 (|#1| |#2|)) (-15 -3152 (|#1| (-566))) (-15 -3152 ((-862) |#1|))) (-620 |#2|) (-1049)) (T -619)) NIL -(-10 -8 (-15 -3783 (|#1| |#2|)) (-15 -3783 (|#1| (-566))) (-15 -3783 ((-862) |#1|))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-4175 (((-3 $ "failed") $ $) 20)) (-3012 (($) 18 T CONST)) (-1878 (((-3 $ "failed") $) 37)) (-3934 (((-112) $) 35)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3783 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 41)) (-2107 (((-771)) 32 T CONST)) (-3117 (((-112) $ $) 9)) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-2947 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ |#1| $) 42))) +(-10 -8 (-15 -3152 (|#1| |#2|)) (-15 -3152 (|#1| (-566))) (-15 -3152 ((-862) |#1|))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-3967 (((-3 $ "failed") $ $) 20)) (-2463 (($) 18 T CONST)) (-3245 (((-3 $ "failed") $) 37)) (-2389 (((-112) $) 35)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3152 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 41)) (-2593 (((-771)) 32 T CONST)) (-3044 (((-112) $ $) 9)) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-2914 (((-112) $ $) 6)) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ |#1| $) 42))) (((-620 |#1|) (-140) (-1049)) (T -620)) -((-3783 (*1 *1 *2) (-12 (-4 *1 (-620 *2)) (-4 *2 (-1049))))) -(-13 (-1049) (-648 |t#1|) (-10 -8 (-15 -3783 ($ |t#1|)))) +((-3152 (*1 *1 *2) (-12 (-4 *1 (-620 *2)) (-4 *2 (-1049))))) +(-13 (-1049) (-648 |t#1|) (-10 -8 (-15 -3152 ($ |t#1|)))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-616 (-566)) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-726) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-4364 (((-566) $) NIL (|has| |#1| (-848)))) (-3012 (($) NIL T CONST)) (-1878 (((-3 $ "failed") $) NIL)) (-1897 (((-112) $) NIL (|has| |#1| (-848)))) (-3934 (((-112) $) NIL)) (-4326 ((|#1| $) 13)) (-2117 (((-112) $) NIL (|has| |#1| (-848)))) (-2097 (($ $ $) NIL (|has| |#1| (-848)))) (-3962 (($ $ $) NIL (|has| |#1| (-848)))) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-4339 ((|#3| $) 15)) (-3783 (((-862) $) NIL) (($ (-566)) NIL) (($ |#2|) NIL)) (-2107 (((-771)) 20 T CONST)) (-3117 (((-112) $ $) NIL)) (-2086 (($ $) NIL (|has| |#1| (-848)))) (-2479 (($) NIL T CONST)) (-4334 (($) 12 T CONST)) (-3009 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2984 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2947 (((-112) $ $) NIL)) (-2995 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2969 (((-112) $ $) NIL (|has| |#1| (-848)))) (-3065 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-621 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-848)) (-6 (-848)) |%noBranch|) (-15 -3065 ($ $ |#3|)) (-15 -3065 ($ |#1| |#3|)) (-15 -4326 (|#1| $)) (-15 -4339 (|#3| $)))) (-38 |#2|) (-172) (|SubsetCategory| (-726) |#2|)) (T -621)) -((-3065 (*1 *1 *1 *2) (-12 (-4 *4 (-172)) (-5 *1 (-621 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-726) *4)))) (-3065 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-621 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-726) *4)))) (-4326 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-38 *3)) (-5 *1 (-621 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-726) *3)))) (-4339 (*1 *2 *1) (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-726) *4)) (-5 *1 (-621 *3 *4 *2)) (-4 *3 (-38 *4))))) -(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-848)) (-6 (-848)) |%noBranch|) (-15 -3065 ($ $ |#3|)) (-15 -3065 ($ |#1| |#3|)) (-15 -4326 (|#1| $)) (-15 -4339 (|#3| $)))) -((-1762 ((|#2| |#2| (-1175) (-1175)) 16))) -(((-622 |#1| |#2|) (-10 -7 (-15 -1762 (|#2| |#2| (-1175) (-1175)))) (-13 (-308) (-147) (-1038 (-566)) (-639 (-566))) (-13 (-1199) (-959) (-29 |#1|))) (T -622)) -((-1762 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-622 *4 *2)) (-4 *2 (-13 (-1199) (-959) (-29 *4)))))) -(-10 -7 (-15 -1762 (|#2| |#2| (-1175) (-1175)))) -((-3007 (((-112) $ $) 64)) (-1788 (((-112) $) 58)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-3991 (($ $) NIL)) (-2388 (((-112) $) NIL)) (-2181 ((|#1| $) 55)) (-4175 (((-3 $ "failed") $ $) NIL)) (-2837 (((-112) $ $) NIL (|has| |#1| (-365)))) (-1454 (((-2 (|:| -4199 $) (|:| -2821 (-409 |#2|))) (-409 |#2|)) 111 (|has| |#1| (-365)))) (-3012 (($) NIL T CONST)) (-4307 (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) 99) (((-3 |#2| "failed") $) 95)) (-4205 (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2946 (($ $ $) NIL (|has| |#1| (-365)))) (-1786 (($ $) 27)) (-1878 (((-3 $ "failed") $) 88)) (-2957 (($ $ $) NIL (|has| |#1| (-365)))) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL (|has| |#1| (-365)))) (-3254 (((-566) $) 22)) (-3934 (((-112) $) NIL)) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-3264 (((-112) $) 40)) (-3840 (($ |#1| (-566)) 24)) (-1763 ((|#1| $) 57)) (-2167 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-365)))) (-2214 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) 101 (|has| |#1| (-365)))) (-3148 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 116 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-365)))) (-2994 (((-3 $ "failed") $ $) 93)) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-3039 (((-771) $) 115 (|has| |#1| (-365)))) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) 114 (|has| |#1| (-365)))) (-3561 (($ $ (-1 |#2| |#2|)) 75) (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-771)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-3636 (((-566) $) 38)) (-1348 (((-409 |#2|) $) 47)) (-3783 (((-862) $) 69) (($ (-566)) 35) (($ $) NIL) (($ (-409 (-566))) NIL (|has| |#1| (-1038 (-409 (-566))))) (($ |#1|) 34) (($ |#2|) 25)) (-2649 ((|#1| $ (-566)) 72)) (-3144 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2107 (((-771)) 32 T CONST)) (-3117 (((-112) $ $) NIL)) (-2695 (((-112) $ $) NIL)) (-2479 (($) 9 T CONST)) (-4334 (($) 14 T CONST)) (-2875 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-771)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-2947 (((-112) $ $) 21)) (-3053 (($ $) 51) (($ $ $) NIL)) (-3041 (($ $ $) 90)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 29) (($ $ $) 49))) -(((-623 |#1| |#2|) (-13 (-231 |#2|) (-558) (-614 (-409 |#2|)) (-413 |#1|) (-1038 |#2|) (-10 -8 (-15 -3264 ((-112) $)) (-15 -3636 ((-566) $)) (-15 -3254 ((-566) $)) (-15 -1786 ($ $)) (-15 -1763 (|#1| $)) (-15 -2181 (|#1| $)) (-15 -2649 (|#1| $ (-566))) (-15 -3840 ($ |#1| (-566))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-6 (-308)) (-15 -1454 ((-2 (|:| -4199 $) (|:| -2821 (-409 |#2|))) (-409 |#2|)))) |%noBranch|))) (-558) (-1240 |#1|)) (T -623)) -((-3264 (*1 *2 *1) (-12 (-4 *3 (-558)) (-5 *2 (-112)) (-5 *1 (-623 *3 *4)) (-4 *4 (-1240 *3)))) (-3636 (*1 *2 *1) (-12 (-4 *3 (-558)) (-5 *2 (-566)) (-5 *1 (-623 *3 *4)) (-4 *4 (-1240 *3)))) (-3254 (*1 *2 *1) (-12 (-4 *3 (-558)) (-5 *2 (-566)) (-5 *1 (-623 *3 *4)) (-4 *4 (-1240 *3)))) (-1786 (*1 *1 *1) (-12 (-4 *2 (-558)) (-5 *1 (-623 *2 *3)) (-4 *3 (-1240 *2)))) (-1763 (*1 *2 *1) (-12 (-4 *2 (-558)) (-5 *1 (-623 *2 *3)) (-4 *3 (-1240 *2)))) (-2181 (*1 *2 *1) (-12 (-4 *2 (-558)) (-5 *1 (-623 *2 *3)) (-4 *3 (-1240 *2)))) (-2649 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *2 (-558)) (-5 *1 (-623 *2 *4)) (-4 *4 (-1240 *2)))) (-3840 (*1 *1 *2 *3) (-12 (-5 *3 (-566)) (-4 *2 (-558)) (-5 *1 (-623 *2 *4)) (-4 *4 (-1240 *2)))) (-1454 (*1 *2 *3) (-12 (-4 *4 (-365)) (-4 *4 (-558)) (-4 *5 (-1240 *4)) (-5 *2 (-2 (|:| -4199 (-623 *4 *5)) (|:| -2821 (-409 *5)))) (-5 *1 (-623 *4 *5)) (-5 *3 (-409 *5))))) -(-13 (-231 |#2|) (-558) (-614 (-409 |#2|)) (-413 |#1|) (-1038 |#2|) (-10 -8 (-15 -3264 ((-112) $)) (-15 -3636 ((-566) $)) (-15 -3254 ((-566) $)) (-15 -1786 ($ $)) (-15 -1763 (|#1| $)) (-15 -2181 (|#1| $)) (-15 -2649 (|#1| $ (-566))) (-15 -3840 ($ |#1| (-566))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-6 (-308)) (-15 -1454 ((-2 (|:| -4199 $) (|:| -2821 (-409 |#2|))) (-409 |#2|)))) |%noBranch|))) -((-2333 (((-644 |#6|) (-644 |#4|) (-112)) 54)) (-1750 ((|#6| |#6|) 48))) -(((-624 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1750 (|#6| |#6|)) (-15 -2333 ((-644 |#6|) (-644 |#4|) (-112)))) (-454) (-793) (-850) (-1064 |#1| |#2| |#3|) (-1070 |#1| |#2| |#3| |#4|) (-1108 |#1| |#2| |#3| |#4|)) (T -624)) -((-2333 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-644 *10)) (-5 *1 (-624 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1070 *5 *6 *7 *8)) (-4 *10 (-1108 *5 *6 *7 *8)))) (-1750 (*1 *2 *2) (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *1 (-624 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1070 *3 *4 *5 *6)) (-4 *2 (-1108 *3 *4 *5 *6))))) -(-10 -7 (-15 -1750 (|#6| |#6|)) (-15 -2333 ((-644 |#6|) (-644 |#4|) (-112)))) -((-2925 (((-112) |#3| (-771) (-644 |#3|)) 32)) (-2095 (((-3 (-2 (|:| |polfac| (-644 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-644 (-1171 |#3|)))) "failed") |#3| (-644 (-1171 |#3|)) (-2 (|:| |contp| |#3|) (|:| -4138 (-644 (-2 (|:| |irr| |#4|) (|:| -3149 (-566)))))) (-644 |#3|) (-644 |#1|) (-644 |#3|)) 73))) -(((-625 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2925 ((-112) |#3| (-771) (-644 |#3|))) (-15 -2095 ((-3 (-2 (|:| |polfac| (-644 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-644 (-1171 |#3|)))) "failed") |#3| (-644 (-1171 |#3|)) (-2 (|:| |contp| |#3|) (|:| -4138 (-644 (-2 (|:| |irr| |#4|) (|:| -3149 (-566)))))) (-644 |#3|) (-644 |#1|) (-644 |#3|)))) (-850) (-793) (-308) (-949 |#3| |#2| |#1|)) (T -625)) -((-2095 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -4138 (-644 (-2 (|:| |irr| *10) (|:| -3149 (-566))))))) (-5 *6 (-644 *3)) (-5 *7 (-644 *8)) (-4 *8 (-850)) (-4 *3 (-308)) (-4 *10 (-949 *3 *9 *8)) (-4 *9 (-793)) (-5 *2 (-2 (|:| |polfac| (-644 *10)) (|:| |correct| *3) (|:| |corrfact| (-644 (-1171 *3))))) (-5 *1 (-625 *8 *9 *3 *10)) (-5 *4 (-644 (-1171 *3))))) (-2925 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-771)) (-5 *5 (-644 *3)) (-4 *3 (-308)) (-4 *6 (-850)) (-4 *7 (-793)) (-5 *2 (-112)) (-5 *1 (-625 *6 *7 *3 *8)) (-4 *8 (-949 *3 *7 *6))))) -(-10 -7 (-15 -2925 ((-112) |#3| (-771) (-644 |#3|))) (-15 -2095 ((-3 (-2 (|:| |polfac| (-644 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-644 (-1171 |#3|)))) "failed") |#3| (-644 (-1171 |#3|)) (-2 (|:| |contp| |#3|) (|:| -4138 (-644 (-2 (|:| |irr| |#4|) (|:| -3149 (-566)))))) (-644 |#3|) (-644 |#1|) (-644 |#3|)))) -((-3007 (((-112) $ $) NIL)) (-4330 (((-1134) $) 11)) (-4318 (((-1134) $) 9)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 17) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) -(((-626) (-13 (-1082) (-10 -8 (-15 -4318 ((-1134) $)) (-15 -4330 ((-1134) $))))) (T -626)) -((-4318 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-626)))) (-4330 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-626))))) -(-13 (-1082) (-10 -8 (-15 -4318 ((-1134) $)) (-15 -4330 ((-1134) $)))) -((-3007 (((-112) $ $) NIL)) (-3095 (((-644 |#1|) $) NIL)) (-3012 (($) NIL T CONST)) (-1878 (((-3 $ "failed") $) NIL)) (-3934 (((-112) $) NIL)) (-3000 (($ $) 77)) (-3651 (((-664 |#1| |#2|) $) 60)) (-4117 (((-1157) $) NIL)) (-1713 (($ $) 81)) (-1839 (((-644 (-295 |#2|)) $ $) 42)) (-4035 (((-1119) $) NIL)) (-2561 (($ (-664 |#1| |#2|)) 56)) (-2358 (($ $ $) NIL)) (-3171 (($ $ $) NIL)) (-3783 (((-862) $) 66) (((-1279 |#1| |#2|) $) NIL) (((-1284 |#1| |#2|) $) 74)) (-3117 (((-112) $ $) NIL)) (-4334 (($) 61 T CONST)) (-3408 (((-644 (-2 (|:| |k| (-672 |#1|)) (|:| |c| |#2|))) $) 41)) (-3106 (((-644 (-664 |#1| |#2|)) (-644 |#1|)) 73)) (-2935 (((-644 (-2 (|:| |k| (-893 |#1|)) (|:| |c| |#2|))) $) 46)) (-2947 (((-112) $ $) 62)) (-3065 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ $ $) 52))) -(((-627 |#1| |#2| |#3|) (-13 (-475) (-10 -8 (-15 -2561 ($ (-664 |#1| |#2|))) (-15 -3651 ((-664 |#1| |#2|) $)) (-15 -2935 ((-644 (-2 (|:| |k| (-893 |#1|)) (|:| |c| |#2|))) $)) (-15 -3783 ((-1279 |#1| |#2|) $)) (-15 -3783 ((-1284 |#1| |#2|) $)) (-15 -3000 ($ $)) (-15 -3095 ((-644 |#1|) $)) (-15 -3106 ((-644 (-664 |#1| |#2|)) (-644 |#1|))) (-15 -3408 ((-644 (-2 (|:| |k| (-672 |#1|)) (|:| |c| |#2|))) $)) (-15 -1839 ((-644 (-295 |#2|)) $ $)))) (-850) (-13 (-172) (-717 (-409 (-566)))) (-921)) (T -627)) -((-2561 (*1 *1 *2) (-12 (-5 *2 (-664 *3 *4)) (-4 *3 (-850)) (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-5 *1 (-627 *3 *4 *5)) (-14 *5 (-921)))) (-3651 (*1 *2 *1) (-12 (-5 *2 (-664 *3 *4)) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-850)) (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-14 *5 (-921)))) (-2935 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |k| (-893 *3)) (|:| |c| *4)))) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-850)) (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-14 *5 (-921)))) (-3783 (*1 *2 *1) (-12 (-5 *2 (-1279 *3 *4)) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-850)) (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-14 *5 (-921)))) (-3783 (*1 *2 *1) (-12 (-5 *2 (-1284 *3 *4)) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-850)) (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-14 *5 (-921)))) (-3000 (*1 *1 *1) (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-850)) (-4 *3 (-13 (-172) (-717 (-409 (-566))))) (-14 *4 (-921)))) (-3095 (*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-850)) (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-14 *5 (-921)))) (-3106 (*1 *2 *3) (-12 (-5 *3 (-644 *4)) (-4 *4 (-850)) (-5 *2 (-644 (-664 *4 *5))) (-5 *1 (-627 *4 *5 *6)) (-4 *5 (-13 (-172) (-717 (-409 (-566))))) (-14 *6 (-921)))) (-3408 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |k| (-672 *3)) (|:| |c| *4)))) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-850)) (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-14 *5 (-921)))) (-1839 (*1 *2 *1 *1) (-12 (-5 *2 (-644 (-295 *4))) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-850)) (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-14 *5 (-921))))) -(-13 (-475) (-10 -8 (-15 -2561 ($ (-664 |#1| |#2|))) (-15 -3651 ((-664 |#1| |#2|) $)) (-15 -2935 ((-644 (-2 (|:| |k| (-893 |#1|)) (|:| |c| |#2|))) $)) (-15 -3783 ((-1279 |#1| |#2|) $)) (-15 -3783 ((-1284 |#1| |#2|) $)) (-15 -3000 ($ $)) (-15 -3095 ((-644 |#1|) $)) (-15 -3106 ((-644 (-664 |#1| |#2|)) (-644 |#1|))) (-15 -3408 ((-644 (-2 (|:| |k| (-672 |#1|)) (|:| |c| |#2|))) $)) (-15 -1839 ((-644 (-295 |#2|)) $ $)))) -((-2333 (((-644 (-1145 |#1| (-533 (-864 |#2|)) (-864 |#2|) (-780 |#1| (-864 |#2|)))) (-644 (-780 |#1| (-864 |#2|))) (-112)) 103) (((-644 (-1046 |#1| |#2|)) (-644 (-780 |#1| (-864 |#2|))) (-112)) 77)) (-1896 (((-112) (-644 (-780 |#1| (-864 |#2|)))) 26)) (-3286 (((-644 (-1145 |#1| (-533 (-864 |#2|)) (-864 |#2|) (-780 |#1| (-864 |#2|)))) (-644 (-780 |#1| (-864 |#2|))) (-112)) 102)) (-4207 (((-644 (-1046 |#1| |#2|)) (-644 (-780 |#1| (-864 |#2|))) (-112)) 76)) (-1793 (((-644 (-780 |#1| (-864 |#2|))) (-644 (-780 |#1| (-864 |#2|)))) 30)) (-4095 (((-3 (-644 (-780 |#1| (-864 |#2|))) "failed") (-644 (-780 |#1| (-864 |#2|)))) 29))) -(((-628 |#1| |#2|) (-10 -7 (-15 -1896 ((-112) (-644 (-780 |#1| (-864 |#2|))))) (-15 -4095 ((-3 (-644 (-780 |#1| (-864 |#2|))) "failed") (-644 (-780 |#1| (-864 |#2|))))) (-15 -1793 ((-644 (-780 |#1| (-864 |#2|))) (-644 (-780 |#1| (-864 |#2|))))) (-15 -4207 ((-644 (-1046 |#1| |#2|)) (-644 (-780 |#1| (-864 |#2|))) (-112))) (-15 -3286 ((-644 (-1145 |#1| (-533 (-864 |#2|)) (-864 |#2|) (-780 |#1| (-864 |#2|)))) (-644 (-780 |#1| (-864 |#2|))) (-112))) (-15 -2333 ((-644 (-1046 |#1| |#2|)) (-644 (-780 |#1| (-864 |#2|))) (-112))) (-15 -2333 ((-644 (-1145 |#1| (-533 (-864 |#2|)) (-864 |#2|) (-780 |#1| (-864 |#2|)))) (-644 (-780 |#1| (-864 |#2|))) (-112)))) (-454) (-644 (-1175))) (T -628)) -((-2333 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-780 *5 (-864 *6)))) (-5 *4 (-112)) (-4 *5 (-454)) (-14 *6 (-644 (-1175))) (-5 *2 (-644 (-1145 *5 (-533 (-864 *6)) (-864 *6) (-780 *5 (-864 *6))))) (-5 *1 (-628 *5 *6)))) (-2333 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-780 *5 (-864 *6)))) (-5 *4 (-112)) (-4 *5 (-454)) (-14 *6 (-644 (-1175))) (-5 *2 (-644 (-1046 *5 *6))) (-5 *1 (-628 *5 *6)))) (-3286 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-780 *5 (-864 *6)))) (-5 *4 (-112)) (-4 *5 (-454)) (-14 *6 (-644 (-1175))) (-5 *2 (-644 (-1145 *5 (-533 (-864 *6)) (-864 *6) (-780 *5 (-864 *6))))) (-5 *1 (-628 *5 *6)))) (-4207 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-780 *5 (-864 *6)))) (-5 *4 (-112)) (-4 *5 (-454)) (-14 *6 (-644 (-1175))) (-5 *2 (-644 (-1046 *5 *6))) (-5 *1 (-628 *5 *6)))) (-1793 (*1 *2 *2) (-12 (-5 *2 (-644 (-780 *3 (-864 *4)))) (-4 *3 (-454)) (-14 *4 (-644 (-1175))) (-5 *1 (-628 *3 *4)))) (-4095 (*1 *2 *2) (|partial| -12 (-5 *2 (-644 (-780 *3 (-864 *4)))) (-4 *3 (-454)) (-14 *4 (-644 (-1175))) (-5 *1 (-628 *3 *4)))) (-1896 (*1 *2 *3) (-12 (-5 *3 (-644 (-780 *4 (-864 *5)))) (-4 *4 (-454)) (-14 *5 (-644 (-1175))) (-5 *2 (-112)) (-5 *1 (-628 *4 *5))))) -(-10 -7 (-15 -1896 ((-112) (-644 (-780 |#1| (-864 |#2|))))) (-15 -4095 ((-3 (-644 (-780 |#1| (-864 |#2|))) "failed") (-644 (-780 |#1| (-864 |#2|))))) (-15 -1793 ((-644 (-780 |#1| (-864 |#2|))) (-644 (-780 |#1| (-864 |#2|))))) (-15 -4207 ((-644 (-1046 |#1| |#2|)) (-644 (-780 |#1| (-864 |#2|))) (-112))) (-15 -3286 ((-644 (-1145 |#1| (-533 (-864 |#2|)) (-864 |#2|) (-780 |#1| (-864 |#2|)))) (-644 (-780 |#1| (-864 |#2|))) (-112))) (-15 -2333 ((-644 (-1046 |#1| |#2|)) (-644 (-780 |#1| (-864 |#2|))) (-112))) (-15 -2333 ((-644 (-1145 |#1| (-533 (-864 |#2|)) (-864 |#2|) (-780 |#1| (-864 |#2|)))) (-644 (-780 |#1| (-864 |#2|))) (-112)))) -((-4114 (($ $) 38)) (-2109 (($ $) 21)) (-2240 (($ $) 37)) (-2085 (($ $) 22)) (-4134 (($ $) 36)) (-2129 (($ $) 23)) (-4361 (($) 48)) (-3651 (($ $) 45)) (-2324 (($ $) 17)) (-1880 (($ $ (-1091 $)) 7) (($ $ (-1175)) 6)) (-2561 (($ $) 46)) (-2040 (($ $) 15)) (-2073 (($ $) 16)) (-4144 (($ $) 35)) (-2141 (($ $) 24)) (-4124 (($ $) 34)) (-2118 (($ $) 25)) (-4104 (($ $) 33)) (-2098 (($ $) 26)) (-4177 (($ $) 44)) (-2180 (($ $) 32)) (-4155 (($ $) 43)) (-2153 (($ $) 31)) (-4198 (($ $) 42)) (-2212 (($ $) 30)) (-2976 (($ $) 41)) (-2227 (($ $) 29)) (-4188 (($ $) 40)) (-2196 (($ $) 28)) (-4166 (($ $) 39)) (-2166 (($ $) 27)) (-4092 (($ $) 19)) (-3685 (($ $) 20)) (-3617 (($ $) 18)) (** (($ $ $) 47))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-2743 (((-566) $) NIL (|has| |#1| (-848)))) (-2463 (($) NIL T CONST)) (-3245 (((-3 $ "failed") $) NIL)) (-2528 (((-112) $) NIL (|has| |#1| (-848)))) (-2389 (((-112) $) NIL)) (-2248 ((|#1| $) 13)) (-3233 (((-112) $) NIL (|has| |#1| (-848)))) (-1478 (($ $ $) NIL (|has| |#1| (-848)))) (-2599 (($ $ $) NIL (|has| |#1| (-848)))) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-2260 ((|#3| $) 15)) (-3152 (((-862) $) NIL) (($ (-566)) NIL) (($ |#2|) NIL)) (-2593 (((-771)) 20 T CONST)) (-3044 (((-112) $ $) NIL)) (-1358 (($ $) NIL (|has| |#1| (-848)))) (-4356 (($) NIL T CONST)) (-4366 (($) 12 T CONST)) (-2968 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2914 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2935 (((-112) $ $) NIL (|has| |#1| (-848)))) (-3025 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-621 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-848)) (-6 (-848)) |%noBranch|) (-15 -3025 ($ $ |#3|)) (-15 -3025 ($ |#1| |#3|)) (-15 -2248 (|#1| $)) (-15 -2260 (|#3| $)))) (-38 |#2|) (-172) (|SubsetCategory| (-726) |#2|)) (T -621)) +((-3025 (*1 *1 *1 *2) (-12 (-4 *4 (-172)) (-5 *1 (-621 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-726) *4)))) (-3025 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-621 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-726) *4)))) (-2248 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-38 *3)) (-5 *1 (-621 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-726) *3)))) (-2260 (*1 *2 *1) (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-726) *4)) (-5 *1 (-621 *3 *4 *2)) (-4 *3 (-38 *4))))) +(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-848)) (-6 (-848)) |%noBranch|) (-15 -3025 ($ $ |#3|)) (-15 -3025 ($ |#1| |#3|)) (-15 -2248 (|#1| $)) (-15 -2260 (|#3| $)))) +((-1550 ((|#2| |#2| (-1175) (-1175)) 16))) +(((-622 |#1| |#2|) (-10 -7 (-15 -1550 (|#2| |#2| (-1175) (-1175)))) (-13 (-308) (-147) (-1038 (-566)) (-639 (-566))) (-13 (-1199) (-959) (-29 |#1|))) (T -622)) +((-1550 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-622 *4 *2)) (-4 *2 (-13 (-1199) (-959) (-29 *4)))))) +(-10 -7 (-15 -1550 (|#2| |#2| (-1175) (-1175)))) +((-2988 (((-112) $ $) 64)) (-3230 (((-112) $) 58)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-2161 (($ $) NIL)) (-2345 (((-112) $) NIL)) (-2350 ((|#1| $) 55)) (-3967 (((-3 $ "failed") $ $) NIL)) (-2085 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3946 (((-2 (|:| -2426 $) (|:| -4378 (-409 |#2|))) (-409 |#2|)) 111 (|has| |#1| (-365)))) (-2463 (($) NIL T CONST)) (-2229 (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) 99) (((-3 |#2| "failed") $) 95)) (-4158 (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2933 (($ $ $) NIL (|has| |#1| (-365)))) (-2814 (($ $) 27)) (-3245 (((-3 $ "failed") $) 88)) (-2945 (($ $ $) NIL (|has| |#1| (-365)))) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL (|has| |#1| (-365)))) (-2679 (((-566) $) 22)) (-2389 (((-112) $) NIL)) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-2497 (((-112) $) 40)) (-1746 (($ |#1| (-566)) 24)) (-2794 ((|#1| $) 57)) (-2128 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-365)))) (-2164 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) 101 (|has| |#1| (-365)))) (-3005 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 116 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL (|has| |#1| (-365)))) (-2978 (((-3 $ "failed") $ $) 93)) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-4357 (((-771) $) 115 (|has| |#1| (-365)))) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) 114 (|has| |#1| (-365)))) (-3629 (($ $ (-1 |#2| |#2|)) 75) (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-771)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-3902 (((-566) $) 38)) (-2376 (((-409 |#2|) $) 47)) (-3152 (((-862) $) 69) (($ (-566)) 35) (($ $) NIL) (($ (-409 (-566))) NIL (|has| |#1| (-1038 (-409 (-566))))) (($ |#1|) 34) (($ |#2|) 25)) (-2271 ((|#1| $ (-566)) 72)) (-2633 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2593 (((-771)) 32 T CONST)) (-3044 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-4356 (($) 9 T CONST)) (-4366 (($) 14 T CONST)) (-3497 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-771)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-2914 (((-112) $ $) 21)) (-3012 (($ $) 51) (($ $ $) NIL)) (-3002 (($ $ $) 90)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 29) (($ $ $) 49))) +(((-623 |#1| |#2|) (-13 (-231 |#2|) (-558) (-614 (-409 |#2|)) (-413 |#1|) (-1038 |#2|) (-10 -8 (-15 -2497 ((-112) $)) (-15 -3902 ((-566) $)) (-15 -2679 ((-566) $)) (-15 -2814 ($ $)) (-15 -2794 (|#1| $)) (-15 -2350 (|#1| $)) (-15 -2271 (|#1| $ (-566))) (-15 -1746 ($ |#1| (-566))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-6 (-308)) (-15 -3946 ((-2 (|:| -2426 $) (|:| -4378 (-409 |#2|))) (-409 |#2|)))) |%noBranch|))) (-558) (-1240 |#1|)) (T -623)) +((-2497 (*1 *2 *1) (-12 (-4 *3 (-558)) (-5 *2 (-112)) (-5 *1 (-623 *3 *4)) (-4 *4 (-1240 *3)))) (-3902 (*1 *2 *1) (-12 (-4 *3 (-558)) (-5 *2 (-566)) (-5 *1 (-623 *3 *4)) (-4 *4 (-1240 *3)))) (-2679 (*1 *2 *1) (-12 (-4 *3 (-558)) (-5 *2 (-566)) (-5 *1 (-623 *3 *4)) (-4 *4 (-1240 *3)))) (-2814 (*1 *1 *1) (-12 (-4 *2 (-558)) (-5 *1 (-623 *2 *3)) (-4 *3 (-1240 *2)))) (-2794 (*1 *2 *1) (-12 (-4 *2 (-558)) (-5 *1 (-623 *2 *3)) (-4 *3 (-1240 *2)))) (-2350 (*1 *2 *1) (-12 (-4 *2 (-558)) (-5 *1 (-623 *2 *3)) (-4 *3 (-1240 *2)))) (-2271 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *2 (-558)) (-5 *1 (-623 *2 *4)) (-4 *4 (-1240 *2)))) (-1746 (*1 *1 *2 *3) (-12 (-5 *3 (-566)) (-4 *2 (-558)) (-5 *1 (-623 *2 *4)) (-4 *4 (-1240 *2)))) (-3946 (*1 *2 *3) (-12 (-4 *4 (-365)) (-4 *4 (-558)) (-4 *5 (-1240 *4)) (-5 *2 (-2 (|:| -2426 (-623 *4 *5)) (|:| -4378 (-409 *5)))) (-5 *1 (-623 *4 *5)) (-5 *3 (-409 *5))))) +(-13 (-231 |#2|) (-558) (-614 (-409 |#2|)) (-413 |#1|) (-1038 |#2|) (-10 -8 (-15 -2497 ((-112) $)) (-15 -3902 ((-566) $)) (-15 -2679 ((-566) $)) (-15 -2814 ($ $)) (-15 -2794 (|#1| $)) (-15 -2350 (|#1| $)) (-15 -2271 (|#1| $ (-566))) (-15 -1746 ($ |#1| (-566))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-6 (-308)) (-15 -3946 ((-2 (|:| -2426 $) (|:| -4378 (-409 |#2|))) (-409 |#2|)))) |%noBranch|))) +((-2779 (((-644 |#6|) (-644 |#4|) (-112)) 54)) (-3058 ((|#6| |#6|) 48))) +(((-624 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3058 (|#6| |#6|)) (-15 -2779 ((-644 |#6|) (-644 |#4|) (-112)))) (-454) (-793) (-850) (-1064 |#1| |#2| |#3|) (-1070 |#1| |#2| |#3| |#4|) (-1108 |#1| |#2| |#3| |#4|)) (T -624)) +((-2779 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-644 *10)) (-5 *1 (-624 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1070 *5 *6 *7 *8)) (-4 *10 (-1108 *5 *6 *7 *8)))) (-3058 (*1 *2 *2) (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *1 (-624 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1070 *3 *4 *5 *6)) (-4 *2 (-1108 *3 *4 *5 *6))))) +(-10 -7 (-15 -3058 (|#6| |#6|)) (-15 -2779 ((-644 |#6|) (-644 |#4|) (-112)))) +((-3771 (((-112) |#3| (-771) (-644 |#3|)) 32)) (-2808 (((-3 (-2 (|:| |polfac| (-644 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-644 (-1171 |#3|)))) "failed") |#3| (-644 (-1171 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1616 (-644 (-2 (|:| |irr| |#4|) (|:| -4125 (-566)))))) (-644 |#3|) (-644 |#1|) (-644 |#3|)) 73))) +(((-625 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3771 ((-112) |#3| (-771) (-644 |#3|))) (-15 -2808 ((-3 (-2 (|:| |polfac| (-644 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-644 (-1171 |#3|)))) "failed") |#3| (-644 (-1171 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1616 (-644 (-2 (|:| |irr| |#4|) (|:| -4125 (-566)))))) (-644 |#3|) (-644 |#1|) (-644 |#3|)))) (-850) (-793) (-308) (-949 |#3| |#2| |#1|)) (T -625)) +((-2808 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1616 (-644 (-2 (|:| |irr| *10) (|:| -4125 (-566))))))) (-5 *6 (-644 *3)) (-5 *7 (-644 *8)) (-4 *8 (-850)) (-4 *3 (-308)) (-4 *10 (-949 *3 *9 *8)) (-4 *9 (-793)) (-5 *2 (-2 (|:| |polfac| (-644 *10)) (|:| |correct| *3) (|:| |corrfact| (-644 (-1171 *3))))) (-5 *1 (-625 *8 *9 *3 *10)) (-5 *4 (-644 (-1171 *3))))) (-3771 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-771)) (-5 *5 (-644 *3)) (-4 *3 (-308)) (-4 *6 (-850)) (-4 *7 (-793)) (-5 *2 (-112)) (-5 *1 (-625 *6 *7 *3 *8)) (-4 *8 (-949 *3 *7 *6))))) +(-10 -7 (-15 -3771 ((-112) |#3| (-771) (-644 |#3|))) (-15 -2808 ((-3 (-2 (|:| |polfac| (-644 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-644 (-1171 |#3|)))) "failed") |#3| (-644 (-1171 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1616 (-644 (-2 (|:| |irr| |#4|) (|:| -4125 (-566)))))) (-644 |#3|) (-644 |#1|) (-644 |#3|)))) +((-2988 (((-112) $ $) NIL)) (-3124 (((-1134) $) 11)) (-3114 (((-1134) $) 9)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 17) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) +(((-626) (-13 (-1082) (-10 -8 (-15 -3114 ((-1134) $)) (-15 -3124 ((-1134) $))))) (T -626)) +((-3114 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-626)))) (-3124 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-626))))) +(-13 (-1082) (-10 -8 (-15 -3114 ((-1134) $)) (-15 -3124 ((-1134) $)))) +((-2988 (((-112) $ $) NIL)) (-4111 (((-644 |#1|) $) NIL)) (-2463 (($) NIL T CONST)) (-3245 (((-3 $ "failed") $) NIL)) (-2389 (((-112) $) NIL)) (-2795 (($ $) 77)) (-3619 (((-664 |#1| |#2|) $) 60)) (-3380 (((-1157) $) NIL)) (-2748 (($ $) 81)) (-3379 (((-644 (-295 |#2|)) $ $) 42)) (-4072 (((-1119) $) NIL)) (-3521 (($ (-664 |#1| |#2|)) 56)) (-3357 (($ $ $) NIL)) (-2527 (($ $ $) NIL)) (-3152 (((-862) $) 66) (((-1279 |#1| |#2|) $) NIL) (((-1284 |#1| |#2|) $) 74)) (-3044 (((-112) $ $) NIL)) (-4366 (($) 61 T CONST)) (-3982 (((-644 (-2 (|:| |k| (-672 |#1|)) (|:| |c| |#2|))) $) 41)) (-3111 (((-644 (-664 |#1| |#2|)) (-644 |#1|)) 73)) (-2203 (((-644 (-2 (|:| |k| (-893 |#1|)) (|:| |c| |#2|))) $) 46)) (-2914 (((-112) $ $) 62)) (-3025 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ $ $) 52))) +(((-627 |#1| |#2| |#3|) (-13 (-475) (-10 -8 (-15 -3521 ($ (-664 |#1| |#2|))) (-15 -3619 ((-664 |#1| |#2|) $)) (-15 -2203 ((-644 (-2 (|:| |k| (-893 |#1|)) (|:| |c| |#2|))) $)) (-15 -3152 ((-1279 |#1| |#2|) $)) (-15 -3152 ((-1284 |#1| |#2|) $)) (-15 -2795 ($ $)) (-15 -4111 ((-644 |#1|) $)) (-15 -3111 ((-644 (-664 |#1| |#2|)) (-644 |#1|))) (-15 -3982 ((-644 (-2 (|:| |k| (-672 |#1|)) (|:| |c| |#2|))) $)) (-15 -3379 ((-644 (-295 |#2|)) $ $)))) (-850) (-13 (-172) (-717 (-409 (-566)))) (-921)) (T -627)) +((-3521 (*1 *1 *2) (-12 (-5 *2 (-664 *3 *4)) (-4 *3 (-850)) (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-5 *1 (-627 *3 *4 *5)) (-14 *5 (-921)))) (-3619 (*1 *2 *1) (-12 (-5 *2 (-664 *3 *4)) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-850)) (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-14 *5 (-921)))) (-2203 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |k| (-893 *3)) (|:| |c| *4)))) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-850)) (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-14 *5 (-921)))) (-3152 (*1 *2 *1) (-12 (-5 *2 (-1279 *3 *4)) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-850)) (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-14 *5 (-921)))) (-3152 (*1 *2 *1) (-12 (-5 *2 (-1284 *3 *4)) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-850)) (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-14 *5 (-921)))) (-2795 (*1 *1 *1) (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-850)) (-4 *3 (-13 (-172) (-717 (-409 (-566))))) (-14 *4 (-921)))) (-4111 (*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-850)) (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-14 *5 (-921)))) (-3111 (*1 *2 *3) (-12 (-5 *3 (-644 *4)) (-4 *4 (-850)) (-5 *2 (-644 (-664 *4 *5))) (-5 *1 (-627 *4 *5 *6)) (-4 *5 (-13 (-172) (-717 (-409 (-566))))) (-14 *6 (-921)))) (-3982 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |k| (-672 *3)) (|:| |c| *4)))) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-850)) (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-14 *5 (-921)))) (-3379 (*1 *2 *1 *1) (-12 (-5 *2 (-644 (-295 *4))) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-850)) (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-14 *5 (-921))))) +(-13 (-475) (-10 -8 (-15 -3521 ($ (-664 |#1| |#2|))) (-15 -3619 ((-664 |#1| |#2|) $)) (-15 -2203 ((-644 (-2 (|:| |k| (-893 |#1|)) (|:| |c| |#2|))) $)) (-15 -3152 ((-1279 |#1| |#2|) $)) (-15 -3152 ((-1284 |#1| |#2|) $)) (-15 -2795 ($ $)) (-15 -4111 ((-644 |#1|) $)) (-15 -3111 ((-644 (-664 |#1| |#2|)) (-644 |#1|))) (-15 -3982 ((-644 (-2 (|:| |k| (-672 |#1|)) (|:| |c| |#2|))) $)) (-15 -3379 ((-644 (-295 |#2|)) $ $)))) +((-2779 (((-644 (-1145 |#1| (-533 (-864 |#2|)) (-864 |#2|) (-780 |#1| (-864 |#2|)))) (-644 (-780 |#1| (-864 |#2|))) (-112)) 103) (((-644 (-1046 |#1| |#2|)) (-644 (-780 |#1| (-864 |#2|))) (-112)) 77)) (-2425 (((-112) (-644 (-780 |#1| (-864 |#2|)))) 26)) (-4053 (((-644 (-1145 |#1| (-533 (-864 |#2|)) (-864 |#2|) (-780 |#1| (-864 |#2|)))) (-644 (-780 |#1| (-864 |#2|))) (-112)) 102)) (-3887 (((-644 (-1046 |#1| |#2|)) (-644 (-780 |#1| (-864 |#2|))) (-112)) 76)) (-2542 (((-644 (-780 |#1| (-864 |#2|))) (-644 (-780 |#1| (-864 |#2|)))) 30)) (-3160 (((-3 (-644 (-780 |#1| (-864 |#2|))) "failed") (-644 (-780 |#1| (-864 |#2|)))) 29))) +(((-628 |#1| |#2|) (-10 -7 (-15 -2425 ((-112) (-644 (-780 |#1| (-864 |#2|))))) (-15 -3160 ((-3 (-644 (-780 |#1| (-864 |#2|))) "failed") (-644 (-780 |#1| (-864 |#2|))))) (-15 -2542 ((-644 (-780 |#1| (-864 |#2|))) (-644 (-780 |#1| (-864 |#2|))))) (-15 -3887 ((-644 (-1046 |#1| |#2|)) (-644 (-780 |#1| (-864 |#2|))) (-112))) (-15 -4053 ((-644 (-1145 |#1| (-533 (-864 |#2|)) (-864 |#2|) (-780 |#1| (-864 |#2|)))) (-644 (-780 |#1| (-864 |#2|))) (-112))) (-15 -2779 ((-644 (-1046 |#1| |#2|)) (-644 (-780 |#1| (-864 |#2|))) (-112))) (-15 -2779 ((-644 (-1145 |#1| (-533 (-864 |#2|)) (-864 |#2|) (-780 |#1| (-864 |#2|)))) (-644 (-780 |#1| (-864 |#2|))) (-112)))) (-454) (-644 (-1175))) (T -628)) +((-2779 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-780 *5 (-864 *6)))) (-5 *4 (-112)) (-4 *5 (-454)) (-14 *6 (-644 (-1175))) (-5 *2 (-644 (-1145 *5 (-533 (-864 *6)) (-864 *6) (-780 *5 (-864 *6))))) (-5 *1 (-628 *5 *6)))) (-2779 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-780 *5 (-864 *6)))) (-5 *4 (-112)) (-4 *5 (-454)) (-14 *6 (-644 (-1175))) (-5 *2 (-644 (-1046 *5 *6))) (-5 *1 (-628 *5 *6)))) (-4053 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-780 *5 (-864 *6)))) (-5 *4 (-112)) (-4 *5 (-454)) (-14 *6 (-644 (-1175))) (-5 *2 (-644 (-1145 *5 (-533 (-864 *6)) (-864 *6) (-780 *5 (-864 *6))))) (-5 *1 (-628 *5 *6)))) (-3887 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-780 *5 (-864 *6)))) (-5 *4 (-112)) (-4 *5 (-454)) (-14 *6 (-644 (-1175))) (-5 *2 (-644 (-1046 *5 *6))) (-5 *1 (-628 *5 *6)))) (-2542 (*1 *2 *2) (-12 (-5 *2 (-644 (-780 *3 (-864 *4)))) (-4 *3 (-454)) (-14 *4 (-644 (-1175))) (-5 *1 (-628 *3 *4)))) (-3160 (*1 *2 *2) (|partial| -12 (-5 *2 (-644 (-780 *3 (-864 *4)))) (-4 *3 (-454)) (-14 *4 (-644 (-1175))) (-5 *1 (-628 *3 *4)))) (-2425 (*1 *2 *3) (-12 (-5 *3 (-644 (-780 *4 (-864 *5)))) (-4 *4 (-454)) (-14 *5 (-644 (-1175))) (-5 *2 (-112)) (-5 *1 (-628 *4 *5))))) +(-10 -7 (-15 -2425 ((-112) (-644 (-780 |#1| (-864 |#2|))))) (-15 -3160 ((-3 (-644 (-780 |#1| (-864 |#2|))) "failed") (-644 (-780 |#1| (-864 |#2|))))) (-15 -2542 ((-644 (-780 |#1| (-864 |#2|))) (-644 (-780 |#1| (-864 |#2|))))) (-15 -3887 ((-644 (-1046 |#1| |#2|)) (-644 (-780 |#1| (-864 |#2|))) (-112))) (-15 -4053 ((-644 (-1145 |#1| (-533 (-864 |#2|)) (-864 |#2|) (-780 |#1| (-864 |#2|)))) (-644 (-780 |#1| (-864 |#2|))) (-112))) (-15 -2779 ((-644 (-1046 |#1| |#2|)) (-644 (-780 |#1| (-864 |#2|))) (-112))) (-15 -2779 ((-644 (-1145 |#1| (-533 (-864 |#2|)) (-864 |#2|) (-780 |#1| (-864 |#2|)))) (-644 (-780 |#1| (-864 |#2|))) (-112)))) +((-3963 (($ $) 38)) (-3630 (($ $) 21)) (-3941 (($ $) 37)) (-3602 (($ $) 22)) (-3986 (($ $) 36)) (-3656 (($ $) 23)) (-2281 (($) 48)) (-3619 (($ $) 45)) (-3301 (($ $) 17)) (-3428 (($ $ (-1091 $)) 7) (($ $ (-1175)) 6)) (-3521 (($ $) 46)) (-3552 (($ $) 15)) (-3590 (($ $) 16)) (-3996 (($ $) 35)) (-3670 (($ $) 24)) (-3976 (($ $) 34)) (-3643 (($ $) 25)) (-3952 (($ $) 33)) (-3618 (($ $) 26)) (-4032 (($ $) 44)) (-3892 (($ $) 32)) (-4008 (($ $) 43)) (-3684 (($ $) 31)) (-4057 (($ $) 42)) (-3917 (($ $) 30)) (-3964 (($ $) 41)) (-3929 (($ $) 29)) (-4044 (($ $) 40)) (-3904 (($ $) 28)) (-4020 (($ $) 39)) (-3879 (($ $) 27)) (-2884 (($ $) 19)) (-4106 (($ $) 20)) (-1802 (($ $) 18)) (** (($ $ $) 47))) (((-629) (-140)) (T -629)) -((-3685 (*1 *1 *1) (-4 *1 (-629))) (-4092 (*1 *1 *1) (-4 *1 (-629))) (-3617 (*1 *1 *1) (-4 *1 (-629))) (-2324 (*1 *1 *1) (-4 *1 (-629))) (-2073 (*1 *1 *1) (-4 *1 (-629))) (-2040 (*1 *1 *1) (-4 *1 (-629)))) -(-13 (-959) (-1199) (-10 -8 (-15 -3685 ($ $)) (-15 -4092 ($ $)) (-15 -3617 ($ $)) (-15 -2324 ($ $)) (-15 -2073 ($ $)) (-15 -2040 ($ $)))) +((-4106 (*1 *1 *1) (-4 *1 (-629))) (-2884 (*1 *1 *1) (-4 *1 (-629))) (-1802 (*1 *1 *1) (-4 *1 (-629))) (-3301 (*1 *1 *1) (-4 *1 (-629))) (-3590 (*1 *1 *1) (-4 *1 (-629))) (-3552 (*1 *1 *1) (-4 *1 (-629)))) +(-13 (-959) (-1199) (-10 -8 (-15 -4106 ($ $)) (-15 -2884 ($ $)) (-15 -1802 ($ $)) (-15 -3301 ($ $)) (-15 -3590 ($ $)) (-15 -3552 ($ $)))) (((-35) . T) ((-95) . T) ((-285) . T) ((-495) . T) ((-959) . T) ((-1199) . T) ((-1202) . T)) -((-3659 (((-114) (-114)) 88)) (-2324 ((|#2| |#2|) 28)) (-1880 ((|#2| |#2| (-1091 |#2|)) 84) ((|#2| |#2| (-1175)) 50)) (-2040 ((|#2| |#2|) 27)) (-2073 ((|#2| |#2|) 29)) (-2825 (((-112) (-114)) 33)) (-4092 ((|#2| |#2|) 24)) (-3685 ((|#2| |#2|) 26)) (-3617 ((|#2| |#2|) 25))) -(((-630 |#1| |#2|) (-10 -7 (-15 -2825 ((-112) (-114))) (-15 -3659 ((-114) (-114))) (-15 -3685 (|#2| |#2|)) (-15 -4092 (|#2| |#2|)) (-15 -3617 (|#2| |#2|)) (-15 -2324 (|#2| |#2|)) (-15 -2040 (|#2| |#2|)) (-15 -2073 (|#2| |#2|)) (-15 -1880 (|#2| |#2| (-1175))) (-15 -1880 (|#2| |#2| (-1091 |#2|)))) (-558) (-13 (-432 |#1|) (-1002) (-1199))) (T -630)) -((-1880 (*1 *2 *2 *3) (-12 (-5 *3 (-1091 *2)) (-4 *2 (-13 (-432 *4) (-1002) (-1199))) (-4 *4 (-558)) (-5 *1 (-630 *4 *2)))) (-1880 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-558)) (-5 *1 (-630 *4 *2)) (-4 *2 (-13 (-432 *4) (-1002) (-1199))))) (-2073 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-630 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002) (-1199))))) (-2040 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-630 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002) (-1199))))) (-2324 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-630 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002) (-1199))))) (-3617 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-630 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002) (-1199))))) (-4092 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-630 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002) (-1199))))) (-3685 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-630 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002) (-1199))))) (-3659 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-558)) (-5 *1 (-630 *3 *4)) (-4 *4 (-13 (-432 *3) (-1002) (-1199))))) (-2825 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-558)) (-5 *2 (-112)) (-5 *1 (-630 *4 *5)) (-4 *5 (-13 (-432 *4) (-1002) (-1199)))))) -(-10 -7 (-15 -2825 ((-112) (-114))) (-15 -3659 ((-114) (-114))) (-15 -3685 (|#2| |#2|)) (-15 -4092 (|#2| |#2|)) (-15 -3617 (|#2| |#2|)) (-15 -2324 (|#2| |#2|)) (-15 -2040 (|#2| |#2|)) (-15 -2073 (|#2| |#2|)) (-15 -1880 (|#2| |#2| (-1175))) (-15 -1880 (|#2| |#2| (-1091 |#2|)))) -((-2936 (((-483 |#1| |#2|) (-247 |#1| |#2|)) 67)) (-1525 (((-644 (-247 |#1| |#2|)) (-644 (-483 |#1| |#2|))) 93)) (-2528 (((-483 |#1| |#2|) (-644 (-483 |#1| |#2|)) (-864 |#1|)) 95) (((-483 |#1| |#2|) (-644 (-483 |#1| |#2|)) (-644 (-483 |#1| |#2|)) (-864 |#1|)) 94)) (-2627 (((-2 (|:| |gblist| (-644 (-247 |#1| |#2|))) (|:| |gvlist| (-644 (-566)))) (-644 (-483 |#1| |#2|))) 138)) (-1901 (((-644 (-483 |#1| |#2|)) (-864 |#1|) (-644 (-483 |#1| |#2|)) (-644 (-483 |#1| |#2|))) 108)) (-3728 (((-2 (|:| |glbase| (-644 (-247 |#1| |#2|))) (|:| |glval| (-644 (-566)))) (-644 (-247 |#1| |#2|))) 148)) (-4059 (((-1264 |#2|) (-483 |#1| |#2|) (-644 (-483 |#1| |#2|))) 72)) (-4128 (((-644 (-483 |#1| |#2|)) (-644 (-483 |#1| |#2|))) 48)) (-2567 (((-247 |#1| |#2|) (-247 |#1| |#2|) (-644 (-247 |#1| |#2|))) 64)) (-3759 (((-247 |#1| |#2|) (-644 |#2|) (-247 |#1| |#2|) (-644 (-247 |#1| |#2|))) 116))) -(((-631 |#1| |#2|) (-10 -7 (-15 -2627 ((-2 (|:| |gblist| (-644 (-247 |#1| |#2|))) (|:| |gvlist| (-644 (-566)))) (-644 (-483 |#1| |#2|)))) (-15 -3728 ((-2 (|:| |glbase| (-644 (-247 |#1| |#2|))) (|:| |glval| (-644 (-566)))) (-644 (-247 |#1| |#2|)))) (-15 -1525 ((-644 (-247 |#1| |#2|)) (-644 (-483 |#1| |#2|)))) (-15 -2528 ((-483 |#1| |#2|) (-644 (-483 |#1| |#2|)) (-644 (-483 |#1| |#2|)) (-864 |#1|))) (-15 -2528 ((-483 |#1| |#2|) (-644 (-483 |#1| |#2|)) (-864 |#1|))) (-15 -4128 ((-644 (-483 |#1| |#2|)) (-644 (-483 |#1| |#2|)))) (-15 -4059 ((-1264 |#2|) (-483 |#1| |#2|) (-644 (-483 |#1| |#2|)))) (-15 -3759 ((-247 |#1| |#2|) (-644 |#2|) (-247 |#1| |#2|) (-644 (-247 |#1| |#2|)))) (-15 -1901 ((-644 (-483 |#1| |#2|)) (-864 |#1|) (-644 (-483 |#1| |#2|)) (-644 (-483 |#1| |#2|)))) (-15 -2567 ((-247 |#1| |#2|) (-247 |#1| |#2|) (-644 (-247 |#1| |#2|)))) (-15 -2936 ((-483 |#1| |#2|) (-247 |#1| |#2|)))) (-644 (-1175)) (-454)) (T -631)) -((-2936 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-644 (-1175))) (-4 *5 (-454)) (-5 *2 (-483 *4 *5)) (-5 *1 (-631 *4 *5)))) (-2567 (*1 *2 *2 *3) (-12 (-5 *3 (-644 (-247 *4 *5))) (-5 *2 (-247 *4 *5)) (-14 *4 (-644 (-1175))) (-4 *5 (-454)) (-5 *1 (-631 *4 *5)))) (-1901 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-644 (-483 *4 *5))) (-5 *3 (-864 *4)) (-14 *4 (-644 (-1175))) (-4 *5 (-454)) (-5 *1 (-631 *4 *5)))) (-3759 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-644 *6)) (-5 *4 (-644 (-247 *5 *6))) (-4 *6 (-454)) (-5 *2 (-247 *5 *6)) (-14 *5 (-644 (-1175))) (-5 *1 (-631 *5 *6)))) (-4059 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-483 *5 *6))) (-5 *3 (-483 *5 *6)) (-14 *5 (-644 (-1175))) (-4 *6 (-454)) (-5 *2 (-1264 *6)) (-5 *1 (-631 *5 *6)))) (-4128 (*1 *2 *2) (-12 (-5 *2 (-644 (-483 *3 *4))) (-14 *3 (-644 (-1175))) (-4 *4 (-454)) (-5 *1 (-631 *3 *4)))) (-2528 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-483 *5 *6))) (-5 *4 (-864 *5)) (-14 *5 (-644 (-1175))) (-5 *2 (-483 *5 *6)) (-5 *1 (-631 *5 *6)) (-4 *6 (-454)))) (-2528 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-644 (-483 *5 *6))) (-5 *4 (-864 *5)) (-14 *5 (-644 (-1175))) (-5 *2 (-483 *5 *6)) (-5 *1 (-631 *5 *6)) (-4 *6 (-454)))) (-1525 (*1 *2 *3) (-12 (-5 *3 (-644 (-483 *4 *5))) (-14 *4 (-644 (-1175))) (-4 *5 (-454)) (-5 *2 (-644 (-247 *4 *5))) (-5 *1 (-631 *4 *5)))) (-3728 (*1 *2 *3) (-12 (-14 *4 (-644 (-1175))) (-4 *5 (-454)) (-5 *2 (-2 (|:| |glbase| (-644 (-247 *4 *5))) (|:| |glval| (-644 (-566))))) (-5 *1 (-631 *4 *5)) (-5 *3 (-644 (-247 *4 *5))))) (-2627 (*1 *2 *3) (-12 (-5 *3 (-644 (-483 *4 *5))) (-14 *4 (-644 (-1175))) (-4 *5 (-454)) (-5 *2 (-2 (|:| |gblist| (-644 (-247 *4 *5))) (|:| |gvlist| (-644 (-566))))) (-5 *1 (-631 *4 *5))))) -(-10 -7 (-15 -2627 ((-2 (|:| |gblist| (-644 (-247 |#1| |#2|))) (|:| |gvlist| (-644 (-566)))) (-644 (-483 |#1| |#2|)))) (-15 -3728 ((-2 (|:| |glbase| (-644 (-247 |#1| |#2|))) (|:| |glval| (-644 (-566)))) (-644 (-247 |#1| |#2|)))) (-15 -1525 ((-644 (-247 |#1| |#2|)) (-644 (-483 |#1| |#2|)))) (-15 -2528 ((-483 |#1| |#2|) (-644 (-483 |#1| |#2|)) (-644 (-483 |#1| |#2|)) (-864 |#1|))) (-15 -2528 ((-483 |#1| |#2|) (-644 (-483 |#1| |#2|)) (-864 |#1|))) (-15 -4128 ((-644 (-483 |#1| |#2|)) (-644 (-483 |#1| |#2|)))) (-15 -4059 ((-1264 |#2|) (-483 |#1| |#2|) (-644 (-483 |#1| |#2|)))) (-15 -3759 ((-247 |#1| |#2|) (-644 |#2|) (-247 |#1| |#2|) (-644 (-247 |#1| |#2|)))) (-15 -1901 ((-644 (-483 |#1| |#2|)) (-864 |#1|) (-644 (-483 |#1| |#2|)) (-644 (-483 |#1| |#2|)))) (-15 -2567 ((-247 |#1| |#2|) (-247 |#1| |#2|) (-644 (-247 |#1| |#2|)))) (-15 -2936 ((-483 |#1| |#2|) (-247 |#1| |#2|)))) -((-3007 (((-112) $ $) NIL (-2809 (|has| (-52) (-1099)) (|has| (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) (-1099))))) (-4254 (($) NIL) (($ (-644 (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))))) NIL)) (-3734 (((-1269) $ (-1157) (-1157)) NIL (|has| $ (-6 -4415)))) (-2256 (((-112) $ (-771)) NIL)) (-3923 (((-52) $ (-1157) (-52)) 16) (((-52) $ (-1175) (-52)) 17)) (-4016 (($ (-1 (-112) (-2 (|:| -2004 (-1157)) (|:| -3867 (-52)))) $) NIL (|has| $ (-6 -4414)))) (-2701 (($ (-1 (-112) (-2 (|:| -2004 (-1157)) (|:| -3867 (-52)))) $) NIL (|has| $ (-6 -4414)))) (-2434 (((-3 (-52) "failed") (-1157) $) NIL)) (-3012 (($) NIL T CONST)) (-2031 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) (-1099))))) (-2956 (($ (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) $) NIL (|has| $ (-6 -4414))) (($ (-1 (-112) (-2 (|:| -2004 (-1157)) (|:| -3867 (-52)))) $) NIL (|has| $ (-6 -4414))) (((-3 (-52) "failed") (-1157) $) NIL)) (-2665 (($ (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) (-1099)))) (($ (-1 (-112) (-2 (|:| -2004 (-1157)) (|:| -3867 (-52)))) $) NIL (|has| $ (-6 -4414)))) (-1676 (((-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) (-1 (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) (-2 (|:| -2004 (-1157)) (|:| -3867 (-52)))) $ (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) (-2 (|:| -2004 (-1157)) (|:| -3867 (-52)))) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) (-1099)))) (((-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) (-1 (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) (-2 (|:| -2004 (-1157)) (|:| -3867 (-52)))) $ (-2 (|:| -2004 (-1157)) (|:| -3867 (-52)))) NIL (|has| $ (-6 -4414))) (((-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) (-1 (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) (-2 (|:| -2004 (-1157)) (|:| -3867 (-52)))) $) NIL (|has| $ (-6 -4414)))) (-2920 (((-52) $ (-1157) (-52)) NIL (|has| $ (-6 -4415)))) (-2855 (((-52) $ (-1157)) NIL)) (-3979 (((-644 (-2 (|:| -2004 (-1157)) (|:| -3867 (-52)))) $) NIL (|has| $ (-6 -4414))) (((-644 (-52)) $) NIL (|has| $ (-6 -4414)))) (-3468 (($ $) NIL)) (-2404 (((-112) $ (-771)) NIL)) (-3854 (((-1157) $) NIL (|has| (-1157) (-850)))) (-2329 (((-644 (-2 (|:| -2004 (-1157)) (|:| -3867 (-52)))) $) NIL (|has| $ (-6 -4414))) (((-644 (-52)) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) (-1099)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-52) (-1099))))) (-2712 (((-1157) $) NIL (|has| (-1157) (-850)))) (-2908 (($ (-1 (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) (-2 (|:| -2004 (-1157)) (|:| -3867 (-52)))) $) NIL (|has| $ (-6 -4415))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4415)))) (-1301 (($ (-1 (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) (-2 (|:| -2004 (-1157)) (|:| -3867 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1746 (($ (-390)) 9)) (-2603 (((-112) $ (-771)) NIL)) (-4117 (((-1157) $) NIL (-2809 (|has| (-52) (-1099)) (|has| (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) (-1099))))) (-4103 (((-644 (-1157)) $) NIL)) (-2876 (((-112) (-1157) $) NIL)) (-4039 (((-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) $) NIL)) (-3406 (($ (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) $) NIL)) (-4074 (((-644 (-1157)) $) NIL)) (-3792 (((-112) (-1157) $) NIL)) (-4035 (((-1119) $) NIL (-2809 (|has| (-52) (-1099)) (|has| (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) (-1099))))) (-1998 (((-52) $) NIL (|has| (-1157) (-850)))) (-2006 (((-3 (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) "failed") (-1 (-112) (-2 (|:| -2004 (-1157)) (|:| -3867 (-52)))) $) NIL)) (-4030 (($ $ (-52)) NIL (|has| $ (-6 -4415)))) (-2539 (((-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) $) NIL)) (-2692 (((-112) (-1 (-112) (-2 (|:| -2004 (-1157)) (|:| -3867 (-52)))) $) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 (-2 (|:| -2004 (-1157)) (|:| -3867 (-52)))))) NIL (-12 (|has| (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) (-310 (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))))) (|has| (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) (-1099)))) (($ $ (-295 (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))))) NIL (-12 (|has| (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) (-310 (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))))) (|has| (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) (-1099)))) (($ $ (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) (-2 (|:| -2004 (-1157)) (|:| -3867 (-52)))) NIL (-12 (|has| (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) (-310 (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))))) (|has| (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) (-1099)))) (($ $ (-644 (-2 (|:| -2004 (-1157)) (|:| -3867 (-52)))) (-644 (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))))) NIL (-12 (|has| (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) (-310 (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))))) (|has| (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) (-1099)))) (($ $ (-644 (-52)) (-644 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1099)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1099)))) (($ $ (-295 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1099)))) (($ $ (-644 (-295 (-52)))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1099))))) (-1932 (((-112) $ $) NIL)) (-4156 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-52) (-1099))))) (-2993 (((-644 (-52)) $) NIL)) (-3467 (((-112) $) NIL)) (-1494 (($) NIL)) (-4390 (((-52) $ (-1157)) 14) (((-52) $ (-1157) (-52)) NIL) (((-52) $ (-1175)) 15)) (-3481 (($) NIL) (($ (-644 (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))))) NIL)) (-4045 (((-771) (-1 (-112) (-2 (|:| -2004 (-1157)) (|:| -3867 (-52)))) $) NIL (|has| $ (-6 -4414))) (((-771) (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) (-1099)))) (((-771) (-52) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-52) (-1099)))) (((-771) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4414)))) (-3940 (($ $) NIL)) (-1348 (((-538) $) NIL (|has| (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) (-614 (-538))))) (-3796 (($ (-644 (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))))) NIL)) (-3783 (((-862) $) NIL (-2809 (|has| (-52) (-613 (-862))) (|has| (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) (-613 (-862)))))) (-3117 (((-112) $ $) NIL (-2809 (|has| (-52) (-1099)) (|has| (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) (-1099))))) (-1748 (($ (-644 (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))))) NIL)) (-1894 (((-112) (-1 (-112) (-2 (|:| -2004 (-1157)) (|:| -3867 (-52)))) $) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) NIL (-2809 (|has| (-52) (-1099)) (|has| (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) (-1099))))) (-3018 (((-771) $) NIL (|has| $ (-6 -4414))))) -(((-632) (-13 (-1190 (-1157) (-52)) (-10 -8 (-15 -1746 ($ (-390))) (-15 -3468 ($ $)) (-15 -4390 ((-52) $ (-1175))) (-15 -3923 ((-52) $ (-1175) (-52)))))) (T -632)) -((-1746 (*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-632)))) (-3468 (*1 *1 *1) (-5 *1 (-632))) (-4390 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-52)) (-5 *1 (-632)))) (-3923 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1175)) (-5 *1 (-632))))) -(-13 (-1190 (-1157) (-52)) (-10 -8 (-15 -1746 ($ (-390))) (-15 -3468 ($ $)) (-15 -4390 ((-52) $ (-1175))) (-15 -3923 ((-52) $ (-1175) (-52))))) -((-3065 (($ $ |#2|) 10))) -(((-633 |#1| |#2|) (-10 -8 (-15 -3065 (|#1| |#1| |#2|))) (-634 |#2|) (-172)) (T -633)) -NIL -(-10 -8 (-15 -3065 (|#1| |#1| |#2|))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-4175 (((-3 $ "failed") $ $) 20)) (-3012 (($) 18 T CONST)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3796 (($ $ $) 34)) (-3783 (((-862) $) 12)) (-3117 (((-112) $ $) 9)) (-2479 (($) 19 T CONST)) (-2947 (((-112) $ $) 6)) (-3065 (($ $ |#1|) 33 (|has| |#1| (-365)))) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +((-1566 (((-114) (-114)) 88)) (-3301 ((|#2| |#2|) 28)) (-3428 ((|#2| |#2| (-1091 |#2|)) 84) ((|#2| |#2| (-1175)) 50)) (-3552 ((|#2| |#2|) 27)) (-3590 ((|#2| |#2|) 29)) (-3515 (((-112) (-114)) 33)) (-2884 ((|#2| |#2|) 24)) (-4106 ((|#2| |#2|) 26)) (-1802 ((|#2| |#2|) 25))) +(((-630 |#1| |#2|) (-10 -7 (-15 -3515 ((-112) (-114))) (-15 -1566 ((-114) (-114))) (-15 -4106 (|#2| |#2|)) (-15 -2884 (|#2| |#2|)) (-15 -1802 (|#2| |#2|)) (-15 -3301 (|#2| |#2|)) (-15 -3552 (|#2| |#2|)) (-15 -3590 (|#2| |#2|)) (-15 -3428 (|#2| |#2| (-1175))) (-15 -3428 (|#2| |#2| (-1091 |#2|)))) (-558) (-13 (-432 |#1|) (-1002) (-1199))) (T -630)) +((-3428 (*1 *2 *2 *3) (-12 (-5 *3 (-1091 *2)) (-4 *2 (-13 (-432 *4) (-1002) (-1199))) (-4 *4 (-558)) (-5 *1 (-630 *4 *2)))) (-3428 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-558)) (-5 *1 (-630 *4 *2)) (-4 *2 (-13 (-432 *4) (-1002) (-1199))))) (-3590 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-630 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002) (-1199))))) (-3552 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-630 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002) (-1199))))) (-3301 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-630 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002) (-1199))))) (-1802 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-630 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002) (-1199))))) (-2884 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-630 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002) (-1199))))) (-4106 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-630 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002) (-1199))))) (-1566 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-558)) (-5 *1 (-630 *3 *4)) (-4 *4 (-13 (-432 *3) (-1002) (-1199))))) (-3515 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-558)) (-5 *2 (-112)) (-5 *1 (-630 *4 *5)) (-4 *5 (-13 (-432 *4) (-1002) (-1199)))))) +(-10 -7 (-15 -3515 ((-112) (-114))) (-15 -1566 ((-114) (-114))) (-15 -4106 (|#2| |#2|)) (-15 -2884 (|#2| |#2|)) (-15 -1802 (|#2| |#2|)) (-15 -3301 (|#2| |#2|)) (-15 -3552 (|#2| |#2|)) (-15 -3590 (|#2| |#2|)) (-15 -3428 (|#2| |#2| (-1175))) (-15 -3428 (|#2| |#2| (-1091 |#2|)))) +((-2268 (((-483 |#1| |#2|) (-247 |#1| |#2|)) 67)) (-3518 (((-644 (-247 |#1| |#2|)) (-644 (-483 |#1| |#2|))) 93)) (-2320 (((-483 |#1| |#2|) (-644 (-483 |#1| |#2|)) (-864 |#1|)) 95) (((-483 |#1| |#2|) (-644 (-483 |#1| |#2|)) (-644 (-483 |#1| |#2|)) (-864 |#1|)) 94)) (-3839 (((-2 (|:| |gblist| (-644 (-247 |#1| |#2|))) (|:| |gvlist| (-644 (-566)))) (-644 (-483 |#1| |#2|))) 138)) (-1678 (((-644 (-483 |#1| |#2|)) (-864 |#1|) (-644 (-483 |#1| |#2|)) (-644 (-483 |#1| |#2|))) 108)) (-2602 (((-2 (|:| |glbase| (-644 (-247 |#1| |#2|))) (|:| |glval| (-644 (-566)))) (-644 (-247 |#1| |#2|))) 148)) (-1547 (((-1264 |#2|) (-483 |#1| |#2|) (-644 (-483 |#1| |#2|))) 72)) (-3165 (((-644 (-483 |#1| |#2|)) (-644 (-483 |#1| |#2|))) 48)) (-4055 (((-247 |#1| |#2|) (-247 |#1| |#2|) (-644 (-247 |#1| |#2|))) 64)) (-2645 (((-247 |#1| |#2|) (-644 |#2|) (-247 |#1| |#2|) (-644 (-247 |#1| |#2|))) 116))) +(((-631 |#1| |#2|) (-10 -7 (-15 -3839 ((-2 (|:| |gblist| (-644 (-247 |#1| |#2|))) (|:| |gvlist| (-644 (-566)))) (-644 (-483 |#1| |#2|)))) (-15 -2602 ((-2 (|:| |glbase| (-644 (-247 |#1| |#2|))) (|:| |glval| (-644 (-566)))) (-644 (-247 |#1| |#2|)))) (-15 -3518 ((-644 (-247 |#1| |#2|)) (-644 (-483 |#1| |#2|)))) (-15 -2320 ((-483 |#1| |#2|) (-644 (-483 |#1| |#2|)) (-644 (-483 |#1| |#2|)) (-864 |#1|))) (-15 -2320 ((-483 |#1| |#2|) (-644 (-483 |#1| |#2|)) (-864 |#1|))) (-15 -3165 ((-644 (-483 |#1| |#2|)) (-644 (-483 |#1| |#2|)))) (-15 -1547 ((-1264 |#2|) (-483 |#1| |#2|) (-644 (-483 |#1| |#2|)))) (-15 -2645 ((-247 |#1| |#2|) (-644 |#2|) (-247 |#1| |#2|) (-644 (-247 |#1| |#2|)))) (-15 -1678 ((-644 (-483 |#1| |#2|)) (-864 |#1|) (-644 (-483 |#1| |#2|)) (-644 (-483 |#1| |#2|)))) (-15 -4055 ((-247 |#1| |#2|) (-247 |#1| |#2|) (-644 (-247 |#1| |#2|)))) (-15 -2268 ((-483 |#1| |#2|) (-247 |#1| |#2|)))) (-644 (-1175)) (-454)) (T -631)) +((-2268 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-644 (-1175))) (-4 *5 (-454)) (-5 *2 (-483 *4 *5)) (-5 *1 (-631 *4 *5)))) (-4055 (*1 *2 *2 *3) (-12 (-5 *3 (-644 (-247 *4 *5))) (-5 *2 (-247 *4 *5)) (-14 *4 (-644 (-1175))) (-4 *5 (-454)) (-5 *1 (-631 *4 *5)))) (-1678 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-644 (-483 *4 *5))) (-5 *3 (-864 *4)) (-14 *4 (-644 (-1175))) (-4 *5 (-454)) (-5 *1 (-631 *4 *5)))) (-2645 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-644 *6)) (-5 *4 (-644 (-247 *5 *6))) (-4 *6 (-454)) (-5 *2 (-247 *5 *6)) (-14 *5 (-644 (-1175))) (-5 *1 (-631 *5 *6)))) (-1547 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-483 *5 *6))) (-5 *3 (-483 *5 *6)) (-14 *5 (-644 (-1175))) (-4 *6 (-454)) (-5 *2 (-1264 *6)) (-5 *1 (-631 *5 *6)))) (-3165 (*1 *2 *2) (-12 (-5 *2 (-644 (-483 *3 *4))) (-14 *3 (-644 (-1175))) (-4 *4 (-454)) (-5 *1 (-631 *3 *4)))) (-2320 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-483 *5 *6))) (-5 *4 (-864 *5)) (-14 *5 (-644 (-1175))) (-5 *2 (-483 *5 *6)) (-5 *1 (-631 *5 *6)) (-4 *6 (-454)))) (-2320 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-644 (-483 *5 *6))) (-5 *4 (-864 *5)) (-14 *5 (-644 (-1175))) (-5 *2 (-483 *5 *6)) (-5 *1 (-631 *5 *6)) (-4 *6 (-454)))) (-3518 (*1 *2 *3) (-12 (-5 *3 (-644 (-483 *4 *5))) (-14 *4 (-644 (-1175))) (-4 *5 (-454)) (-5 *2 (-644 (-247 *4 *5))) (-5 *1 (-631 *4 *5)))) (-2602 (*1 *2 *3) (-12 (-14 *4 (-644 (-1175))) (-4 *5 (-454)) (-5 *2 (-2 (|:| |glbase| (-644 (-247 *4 *5))) (|:| |glval| (-644 (-566))))) (-5 *1 (-631 *4 *5)) (-5 *3 (-644 (-247 *4 *5))))) (-3839 (*1 *2 *3) (-12 (-5 *3 (-644 (-483 *4 *5))) (-14 *4 (-644 (-1175))) (-4 *5 (-454)) (-5 *2 (-2 (|:| |gblist| (-644 (-247 *4 *5))) (|:| |gvlist| (-644 (-566))))) (-5 *1 (-631 *4 *5))))) +(-10 -7 (-15 -3839 ((-2 (|:| |gblist| (-644 (-247 |#1| |#2|))) (|:| |gvlist| (-644 (-566)))) (-644 (-483 |#1| |#2|)))) (-15 -2602 ((-2 (|:| |glbase| (-644 (-247 |#1| |#2|))) (|:| |glval| (-644 (-566)))) (-644 (-247 |#1| |#2|)))) (-15 -3518 ((-644 (-247 |#1| |#2|)) (-644 (-483 |#1| |#2|)))) (-15 -2320 ((-483 |#1| |#2|) (-644 (-483 |#1| |#2|)) (-644 (-483 |#1| |#2|)) (-864 |#1|))) (-15 -2320 ((-483 |#1| |#2|) (-644 (-483 |#1| |#2|)) (-864 |#1|))) (-15 -3165 ((-644 (-483 |#1| |#2|)) (-644 (-483 |#1| |#2|)))) (-15 -1547 ((-1264 |#2|) (-483 |#1| |#2|) (-644 (-483 |#1| |#2|)))) (-15 -2645 ((-247 |#1| |#2|) (-644 |#2|) (-247 |#1| |#2|) (-644 (-247 |#1| |#2|)))) (-15 -1678 ((-644 (-483 |#1| |#2|)) (-864 |#1|) (-644 (-483 |#1| |#2|)) (-644 (-483 |#1| |#2|)))) (-15 -4055 ((-247 |#1| |#2|) (-247 |#1| |#2|) (-644 (-247 |#1| |#2|)))) (-15 -2268 ((-483 |#1| |#2|) (-247 |#1| |#2|)))) +((-2988 (((-112) $ $) NIL (-2768 (|has| (-52) (-1099)) (|has| (-2 (|:| -2674 (-1157)) (|:| -2636 (-52))) (-1099))))) (-1849 (($) NIL) (($ (-644 (-2 (|:| -2674 (-1157)) (|:| -2636 (-52))))) NIL)) (-1944 (((-1269) $ (-1157) (-1157)) NIL (|has| $ (-6 -4415)))) (-1504 (((-112) $ (-771)) NIL)) (-1456 (((-52) $ (-1157) (-52)) 16) (((-52) $ (-1175) (-52)) 17)) (-2995 (($ (-1 (-112) (-2 (|:| -2674 (-1157)) (|:| -2636 (-52)))) $) NIL (|has| $ (-6 -4414)))) (-3678 (($ (-1 (-112) (-2 (|:| -2674 (-1157)) (|:| -2636 (-52)))) $) NIL (|has| $ (-6 -4414)))) (-3070 (((-3 (-52) "failed") (-1157) $) NIL)) (-2463 (($) NIL T CONST)) (-3942 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 (-1157)) (|:| -2636 (-52))) (-1099))))) (-3512 (($ (-2 (|:| -2674 (-1157)) (|:| -2636 (-52))) $) NIL (|has| $ (-6 -4414))) (($ (-1 (-112) (-2 (|:| -2674 (-1157)) (|:| -2636 (-52)))) $) NIL (|has| $ (-6 -4414))) (((-3 (-52) "failed") (-1157) $) NIL)) (-2622 (($ (-2 (|:| -2674 (-1157)) (|:| -2636 (-52))) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 (-1157)) (|:| -2636 (-52))) (-1099)))) (($ (-1 (-112) (-2 (|:| -2674 (-1157)) (|:| -2636 (-52)))) $) NIL (|has| $ (-6 -4414)))) (-2873 (((-2 (|:| -2674 (-1157)) (|:| -2636 (-52))) (-1 (-2 (|:| -2674 (-1157)) (|:| -2636 (-52))) (-2 (|:| -2674 (-1157)) (|:| -2636 (-52))) (-2 (|:| -2674 (-1157)) (|:| -2636 (-52)))) $ (-2 (|:| -2674 (-1157)) (|:| -2636 (-52))) (-2 (|:| -2674 (-1157)) (|:| -2636 (-52)))) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 (-1157)) (|:| -2636 (-52))) (-1099)))) (((-2 (|:| -2674 (-1157)) (|:| -2636 (-52))) (-1 (-2 (|:| -2674 (-1157)) (|:| -2636 (-52))) (-2 (|:| -2674 (-1157)) (|:| -2636 (-52))) (-2 (|:| -2674 (-1157)) (|:| -2636 (-52)))) $ (-2 (|:| -2674 (-1157)) (|:| -2636 (-52)))) NIL (|has| $ (-6 -4414))) (((-2 (|:| -2674 (-1157)) (|:| -2636 (-52))) (-1 (-2 (|:| -2674 (-1157)) (|:| -2636 (-52))) (-2 (|:| -2674 (-1157)) (|:| -2636 (-52))) (-2 (|:| -2674 (-1157)) (|:| -2636 (-52)))) $) NIL (|has| $ (-6 -4414)))) (-3897 (((-52) $ (-1157) (-52)) NIL (|has| $ (-6 -4415)))) (-3829 (((-52) $ (-1157)) NIL)) (-1683 (((-644 (-2 (|:| -2674 (-1157)) (|:| -2636 (-52)))) $) NIL (|has| $ (-6 -4414))) (((-644 (-52)) $) NIL (|has| $ (-6 -4414)))) (-2970 (($ $) NIL)) (-3456 (((-112) $ (-771)) NIL)) (-2296 (((-1157) $) NIL (|has| (-1157) (-850)))) (-3491 (((-644 (-2 (|:| -2674 (-1157)) (|:| -2636 (-52)))) $) NIL (|has| $ (-6 -4414))) (((-644 (-52)) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) (-2 (|:| -2674 (-1157)) (|:| -2636 (-52))) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 (-1157)) (|:| -2636 (-52))) (-1099)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-52) (-1099))))) (-4050 (((-1157) $) NIL (|has| (-1157) (-850)))) (-3885 (($ (-1 (-2 (|:| -2674 (-1157)) (|:| -2636 (-52))) (-2 (|:| -2674 (-1157)) (|:| -2636 (-52)))) $) NIL (|has| $ (-6 -4415))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4415)))) (-2319 (($ (-1 (-2 (|:| -2674 (-1157)) (|:| -2636 (-52))) (-2 (|:| -2674 (-1157)) (|:| -2636 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1777 (($ (-390)) 9)) (-3267 (((-112) $ (-771)) NIL)) (-3380 (((-1157) $) NIL (-2768 (|has| (-52) (-1099)) (|has| (-2 (|:| -2674 (-1157)) (|:| -2636 (-52))) (-1099))))) (-4052 (((-644 (-1157)) $) NIL)) (-1826 (((-112) (-1157) $) NIL)) (-3278 (((-2 (|:| -2674 (-1157)) (|:| -2636 (-52))) $) NIL)) (-3888 (($ (-2 (|:| -2674 (-1157)) (|:| -2636 (-52))) $) NIL)) (-3725 (((-644 (-1157)) $) NIL)) (-1644 (((-112) (-1157) $) NIL)) (-4072 (((-1119) $) NIL (-2768 (|has| (-52) (-1099)) (|has| (-2 (|:| -2674 (-1157)) (|:| -2636 (-52))) (-1099))))) (-3908 (((-52) $) NIL (|has| (-1157) (-850)))) (-3668 (((-3 (-2 (|:| -2674 (-1157)) (|:| -2636 (-52))) "failed") (-1 (-112) (-2 (|:| -2674 (-1157)) (|:| -2636 (-52)))) $) NIL)) (-3787 (($ $ (-52)) NIL (|has| $ (-6 -4415)))) (-1973 (((-2 (|:| -2674 (-1157)) (|:| -2636 (-52))) $) NIL)) (-2823 (((-112) (-1 (-112) (-2 (|:| -2674 (-1157)) (|:| -2636 (-52)))) $) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 (-2 (|:| -2674 (-1157)) (|:| -2636 (-52)))))) NIL (-12 (|has| (-2 (|:| -2674 (-1157)) (|:| -2636 (-52))) (-310 (-2 (|:| -2674 (-1157)) (|:| -2636 (-52))))) (|has| (-2 (|:| -2674 (-1157)) (|:| -2636 (-52))) (-1099)))) (($ $ (-295 (-2 (|:| -2674 (-1157)) (|:| -2636 (-52))))) NIL (-12 (|has| (-2 (|:| -2674 (-1157)) (|:| -2636 (-52))) (-310 (-2 (|:| -2674 (-1157)) (|:| -2636 (-52))))) (|has| (-2 (|:| -2674 (-1157)) (|:| -2636 (-52))) (-1099)))) (($ $ (-2 (|:| -2674 (-1157)) (|:| -2636 (-52))) (-2 (|:| -2674 (-1157)) (|:| -2636 (-52)))) NIL (-12 (|has| (-2 (|:| -2674 (-1157)) (|:| -2636 (-52))) (-310 (-2 (|:| -2674 (-1157)) (|:| -2636 (-52))))) (|has| (-2 (|:| -2674 (-1157)) (|:| -2636 (-52))) (-1099)))) (($ $ (-644 (-2 (|:| -2674 (-1157)) (|:| -2636 (-52)))) (-644 (-2 (|:| -2674 (-1157)) (|:| -2636 (-52))))) NIL (-12 (|has| (-2 (|:| -2674 (-1157)) (|:| -2636 (-52))) (-310 (-2 (|:| -2674 (-1157)) (|:| -2636 (-52))))) (|has| (-2 (|:| -2674 (-1157)) (|:| -2636 (-52))) (-1099)))) (($ $ (-644 (-52)) (-644 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1099)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1099)))) (($ $ (-295 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1099)))) (($ $ (-644 (-295 (-52)))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1099))))) (-3814 (((-112) $ $) NIL)) (-2847 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-52) (-1099))))) (-3486 (((-644 (-52)) $) NIL)) (-2872 (((-112) $) NIL)) (-3493 (($) NIL)) (-1309 (((-52) $ (-1157)) 14) (((-52) $ (-1157) (-52)) NIL) (((-52) $ (-1175)) 15)) (-1792 (($) NIL) (($ (-644 (-2 (|:| -2674 (-1157)) (|:| -2636 (-52))))) NIL)) (-4083 (((-771) (-1 (-112) (-2 (|:| -2674 (-1157)) (|:| -2636 (-52)))) $) NIL (|has| $ (-6 -4414))) (((-771) (-2 (|:| -2674 (-1157)) (|:| -2636 (-52))) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 (-1157)) (|:| -2636 (-52))) (-1099)))) (((-771) (-52) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-52) (-1099)))) (((-771) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4414)))) (-1480 (($ $) NIL)) (-2376 (((-538) $) NIL (|has| (-2 (|:| -2674 (-1157)) (|:| -2636 (-52))) (-614 (-538))))) (-1340 (($ (-644 (-2 (|:| -2674 (-1157)) (|:| -2636 (-52))))) NIL)) (-3152 (((-862) $) NIL (-2768 (|has| (-52) (-613 (-862))) (|has| (-2 (|:| -2674 (-1157)) (|:| -2636 (-52))) (-613 (-862)))))) (-3044 (((-112) $ $) NIL (-2768 (|has| (-52) (-1099)) (|has| (-2 (|:| -2674 (-1157)) (|:| -2636 (-52))) (-1099))))) (-2948 (($ (-644 (-2 (|:| -2674 (-1157)) (|:| -2636 (-52))))) NIL)) (-2210 (((-112) (-1 (-112) (-2 (|:| -2674 (-1157)) (|:| -2636 (-52)))) $) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) NIL (-2768 (|has| (-52) (-1099)) (|has| (-2 (|:| -2674 (-1157)) (|:| -2636 (-52))) (-1099))))) (-3000 (((-771) $) NIL (|has| $ (-6 -4414))))) +(((-632) (-13 (-1190 (-1157) (-52)) (-10 -8 (-15 -1777 ($ (-390))) (-15 -2970 ($ $)) (-15 -1309 ((-52) $ (-1175))) (-15 -1456 ((-52) $ (-1175) (-52)))))) (T -632)) +((-1777 (*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-632)))) (-2970 (*1 *1 *1) (-5 *1 (-632))) (-1309 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-52)) (-5 *1 (-632)))) (-1456 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1175)) (-5 *1 (-632))))) +(-13 (-1190 (-1157) (-52)) (-10 -8 (-15 -1777 ($ (-390))) (-15 -2970 ($ $)) (-15 -1309 ((-52) $ (-1175))) (-15 -1456 ((-52) $ (-1175) (-52))))) +((-3025 (($ $ |#2|) 10))) +(((-633 |#1| |#2|) (-10 -8 (-15 -3025 (|#1| |#1| |#2|))) (-634 |#2|) (-172)) (T -633)) +NIL +(-10 -8 (-15 -3025 (|#1| |#1| |#2|))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-3967 (((-3 $ "failed") $ $) 20)) (-2463 (($) 18 T CONST)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-1340 (($ $ $) 34)) (-3152 (((-862) $) 12)) (-3044 (((-112) $ $) 9)) (-4356 (($) 19 T CONST)) (-2914 (((-112) $ $) 6)) (-3025 (($ $ |#1|) 33 (|has| |#1| (-365)))) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) (((-634 |#1|) (-140) (-172)) (T -634)) -((-3796 (*1 *1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-172)))) (-3065 (*1 *1 *1 *2) (-12 (-4 *1 (-634 *2)) (-4 *2 (-172)) (-4 *2 (-365))))) -(-13 (-717 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3796 ($ $ $)) (IF (|has| |t#1| (-365)) (-15 -3065 ($ $ |t#1|)) |%noBranch|))) +((-1340 (*1 *1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-172)))) (-3025 (*1 *1 *1 *2) (-12 (-4 *1 (-634 *2)) (-4 *2 (-172)) (-4 *2 (-365))))) +(-13 (-717 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -1340 ($ $ $)) (IF (|has| |t#1| (-365)) (-15 -3025 ($ $ |t#1|)) |%noBranch|))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-648 |#1|) . T) ((-640 |#1|) . T) ((-717 |#1|) . T) ((-1051 |#1|) . T) ((-1056 |#1|) . T) ((-1099) . T)) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-3002 (((-3 $ "failed")) NIL (-2809 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-4175 (((-3 $ "failed") $ $) NIL)) (-4085 (((-1264 (-689 |#1|))) NIL (|has| |#2| (-419 |#1|))) (((-1264 (-689 |#1|)) (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-2092 (((-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-3012 (($) NIL T CONST)) (-4119 (((-3 (-2 (|:| |particular| $) (|:| -2365 (-644 $))) "failed")) NIL (-2809 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-1446 (((-3 $ "failed")) NIL (-2809 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-3058 (((-689 |#1|)) NIL (|has| |#2| (-419 |#1|))) (((-689 |#1|) (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-2468 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-4298 (((-689 |#1|) $) NIL (|has| |#2| (-419 |#1|))) (((-689 |#1|) $ (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-2715 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-2727 (((-1171 (-952 |#1|))) NIL (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-365))))) (-3942 (($ $ (-921)) NIL)) (-1670 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-3757 (((-1171 |#1|) $) NIL (-2809 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-2072 ((|#1|) NIL (|has| |#2| (-419 |#1|))) ((|#1| (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-2410 (((-1171 |#1|) $) NIL (|has| |#2| (-369 |#1|)))) (-3036 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2392 (($ (-1264 |#1|)) NIL (|has| |#2| (-419 |#1|))) (($ (-1264 |#1|) (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-1878 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-4313 (((-921)) NIL (|has| |#2| (-369 |#1|)))) (-2658 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2322 (($ $ (-921)) NIL)) (-1652 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1543 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2763 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2906 (((-3 (-2 (|:| |particular| $) (|:| -2365 (-644 $))) "failed")) NIL (-2809 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-1710 (((-3 $ "failed")) NIL (-2809 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-1371 (((-689 |#1|)) NIL (|has| |#2| (-419 |#1|))) (((-689 |#1|) (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-3307 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-3131 (((-689 |#1|) $) NIL (|has| |#2| (-419 |#1|))) (((-689 |#1|) $ (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-2305 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-2537 (((-1171 (-952 |#1|))) NIL (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-365))))) (-2437 (($ $ (-921)) NIL)) (-3473 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-4108 (((-1171 |#1|) $) NIL (-2809 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-1950 ((|#1|) NIL (|has| |#2| (-419 |#1|))) ((|#1| (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-1974 (((-1171 |#1|) $) NIL (|has| |#2| (-369 |#1|)))) (-3390 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-4117 (((-1157) $) NIL)) (-3170 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3326 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2829 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-4035 (((-1119) $) NIL)) (-1976 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-4390 ((|#1| $ (-566)) NIL (|has| |#2| (-419 |#1|)))) (-2154 (((-689 |#1|) (-1264 $)) NIL (|has| |#2| (-419 |#1|))) (((-1264 |#1|) $) NIL (|has| |#2| (-419 |#1|))) (((-689 |#1|) (-1264 $) (-1264 $)) NIL (|has| |#2| (-369 |#1|))) (((-1264 |#1|) $ (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-1348 (($ (-1264 |#1|)) NIL (|has| |#2| (-419 |#1|))) (((-1264 |#1|) $) NIL (|has| |#2| (-419 |#1|)))) (-3453 (((-644 (-952 |#1|))) NIL (|has| |#2| (-419 |#1|))) (((-644 (-952 |#1|)) (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-3171 (($ $ $) NIL)) (-2638 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3783 (((-862) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-3117 (((-112) $ $) NIL)) (-2365 (((-1264 $)) NIL (|has| |#2| (-419 |#1|)))) (-3023 (((-644 (-1264 |#1|))) NIL (-2809 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-2320 (($ $ $ $) NIL)) (-3232 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1948 (($ (-689 |#1|) $) NIL (|has| |#2| (-419 |#1|)))) (-3027 (($ $ $) NIL)) (-2653 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1843 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1938 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2479 (($) 19 T CONST)) (-2947 (((-112) $ $) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-921)) 20)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-635 |#1| |#2|) (-13 (-744 |#1|) (-613 |#2|) (-10 -8 (-15 -3783 ($ |#2|)) (IF (|has| |#2| (-419 |#1|)) (-6 (-419 |#1|)) |%noBranch|) (IF (|has| |#2| (-369 |#1|)) (-6 (-369 |#1|)) |%noBranch|))) (-172) (-744 |#1|)) (T -635)) -((-3783 (*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-635 *3 *2)) (-4 *2 (-744 *3))))) -(-13 (-744 |#1|) (-613 |#2|) (-10 -8 (-15 -3783 ($ |#2|)) (IF (|has| |#2| (-419 |#1|)) (-6 (-419 |#1|)) |%noBranch|) (IF (|has| |#2| (-369 |#1|)) (-6 (-369 |#1|)) |%noBranch|))) -((-3183 (((-3 (-843 |#2|) "failed") |#2| (-295 |#2|) (-1157)) 106) (((-3 (-843 |#2|) (-2 (|:| |leftHandLimit| (-3 (-843 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-843 |#2|) "failed"))) "failed") |#2| (-295 (-843 |#2|))) 131)) (-4382 (((-3 (-833 |#2|) "failed") |#2| (-295 (-833 |#2|))) 136))) -(((-636 |#1| |#2|) (-10 -7 (-15 -3183 ((-3 (-843 |#2|) (-2 (|:| |leftHandLimit| (-3 (-843 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-843 |#2|) "failed"))) "failed") |#2| (-295 (-843 |#2|)))) (-15 -4382 ((-3 (-833 |#2|) "failed") |#2| (-295 (-833 |#2|)))) (-15 -3183 ((-3 (-843 |#2|) "failed") |#2| (-295 |#2|) (-1157)))) (-13 (-454) (-1038 (-566)) (-639 (-566))) (-13 (-27) (-1199) (-432 |#1|))) (T -636)) -((-3183 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-295 *3)) (-5 *5 (-1157)) (-4 *3 (-13 (-27) (-1199) (-432 *6))) (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-843 *3)) (-5 *1 (-636 *6 *3)))) (-4382 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-295 (-833 *3))) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-833 *3)) (-5 *1 (-636 *5 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5))))) (-3183 (*1 *2 *3 *4) (-12 (-5 *4 (-295 (-843 *3))) (-4 *3 (-13 (-27) (-1199) (-432 *5))) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-3 (-843 *3) (-2 (|:| |leftHandLimit| (-3 (-843 *3) "failed")) (|:| |rightHandLimit| (-3 (-843 *3) "failed"))) "failed")) (-5 *1 (-636 *5 *3))))) -(-10 -7 (-15 -3183 ((-3 (-843 |#2|) (-2 (|:| |leftHandLimit| (-3 (-843 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-843 |#2|) "failed"))) "failed") |#2| (-295 (-843 |#2|)))) (-15 -4382 ((-3 (-833 |#2|) "failed") |#2| (-295 (-833 |#2|)))) (-15 -3183 ((-3 (-843 |#2|) "failed") |#2| (-295 |#2|) (-1157)))) -((-3183 (((-3 (-843 (-409 (-952 |#1|))) "failed") (-409 (-952 |#1|)) (-295 (-409 (-952 |#1|))) (-1157)) 86) (((-3 (-843 (-409 (-952 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-843 (-409 (-952 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-843 (-409 (-952 |#1|))) "failed"))) "failed") (-409 (-952 |#1|)) (-295 (-409 (-952 |#1|)))) 20) (((-3 (-843 (-409 (-952 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-843 (-409 (-952 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-843 (-409 (-952 |#1|))) "failed"))) "failed") (-409 (-952 |#1|)) (-295 (-843 (-952 |#1|)))) 35)) (-4382 (((-833 (-409 (-952 |#1|))) (-409 (-952 |#1|)) (-295 (-409 (-952 |#1|)))) 23) (((-833 (-409 (-952 |#1|))) (-409 (-952 |#1|)) (-295 (-833 (-952 |#1|)))) 43))) -(((-637 |#1|) (-10 -7 (-15 -3183 ((-3 (-843 (-409 (-952 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-843 (-409 (-952 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-843 (-409 (-952 |#1|))) "failed"))) "failed") (-409 (-952 |#1|)) (-295 (-843 (-952 |#1|))))) (-15 -3183 ((-3 (-843 (-409 (-952 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-843 (-409 (-952 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-843 (-409 (-952 |#1|))) "failed"))) "failed") (-409 (-952 |#1|)) (-295 (-409 (-952 |#1|))))) (-15 -4382 ((-833 (-409 (-952 |#1|))) (-409 (-952 |#1|)) (-295 (-833 (-952 |#1|))))) (-15 -4382 ((-833 (-409 (-952 |#1|))) (-409 (-952 |#1|)) (-295 (-409 (-952 |#1|))))) (-15 -3183 ((-3 (-843 (-409 (-952 |#1|))) "failed") (-409 (-952 |#1|)) (-295 (-409 (-952 |#1|))) (-1157)))) (-454)) (T -637)) -((-3183 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-295 (-409 (-952 *6)))) (-5 *5 (-1157)) (-5 *3 (-409 (-952 *6))) (-4 *6 (-454)) (-5 *2 (-843 *3)) (-5 *1 (-637 *6)))) (-4382 (*1 *2 *3 *4) (-12 (-5 *4 (-295 (-409 (-952 *5)))) (-5 *3 (-409 (-952 *5))) (-4 *5 (-454)) (-5 *2 (-833 *3)) (-5 *1 (-637 *5)))) (-4382 (*1 *2 *3 *4) (-12 (-5 *4 (-295 (-833 (-952 *5)))) (-4 *5 (-454)) (-5 *2 (-833 (-409 (-952 *5)))) (-5 *1 (-637 *5)) (-5 *3 (-409 (-952 *5))))) (-3183 (*1 *2 *3 *4) (-12 (-5 *4 (-295 (-409 (-952 *5)))) (-5 *3 (-409 (-952 *5))) (-4 *5 (-454)) (-5 *2 (-3 (-843 *3) (-2 (|:| |leftHandLimit| (-3 (-843 *3) "failed")) (|:| |rightHandLimit| (-3 (-843 *3) "failed"))) "failed")) (-5 *1 (-637 *5)))) (-3183 (*1 *2 *3 *4) (-12 (-5 *4 (-295 (-843 (-952 *5)))) (-4 *5 (-454)) (-5 *2 (-3 (-843 (-409 (-952 *5))) (-2 (|:| |leftHandLimit| (-3 (-843 (-409 (-952 *5))) "failed")) (|:| |rightHandLimit| (-3 (-843 (-409 (-952 *5))) "failed"))) "failed")) (-5 *1 (-637 *5)) (-5 *3 (-409 (-952 *5)))))) -(-10 -7 (-15 -3183 ((-3 (-843 (-409 (-952 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-843 (-409 (-952 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-843 (-409 (-952 |#1|))) "failed"))) "failed") (-409 (-952 |#1|)) (-295 (-843 (-952 |#1|))))) (-15 -3183 ((-3 (-843 (-409 (-952 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-843 (-409 (-952 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-843 (-409 (-952 |#1|))) "failed"))) "failed") (-409 (-952 |#1|)) (-295 (-409 (-952 |#1|))))) (-15 -4382 ((-833 (-409 (-952 |#1|))) (-409 (-952 |#1|)) (-295 (-833 (-952 |#1|))))) (-15 -4382 ((-833 (-409 (-952 |#1|))) (-409 (-952 |#1|)) (-295 (-409 (-952 |#1|))))) (-15 -3183 ((-3 (-843 (-409 (-952 |#1|))) "failed") (-409 (-952 |#1|)) (-295 (-409 (-952 |#1|))) (-1157)))) -((-2448 (((-3 (-1264 (-409 |#1|)) "failed") (-1264 |#2|) |#2|) 64 (-2418 (|has| |#1| (-365)))) (((-3 (-1264 |#1|) "failed") (-1264 |#2|) |#2|) 49 (|has| |#1| (-365)))) (-2887 (((-112) (-1264 |#2|)) 33)) (-2493 (((-3 (-1264 |#1|) "failed") (-1264 |#2|)) 40))) -(((-638 |#1| |#2|) (-10 -7 (-15 -2887 ((-112) (-1264 |#2|))) (-15 -2493 ((-3 (-1264 |#1|) "failed") (-1264 |#2|))) (IF (|has| |#1| (-365)) (-15 -2448 ((-3 (-1264 |#1|) "failed") (-1264 |#2|) |#2|)) (-15 -2448 ((-3 (-1264 (-409 |#1|)) "failed") (-1264 |#2|) |#2|)))) (-558) (-639 |#1|)) (T -638)) -((-2448 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1264 *4)) (-4 *4 (-639 *5)) (-2418 (-4 *5 (-365))) (-4 *5 (-558)) (-5 *2 (-1264 (-409 *5))) (-5 *1 (-638 *5 *4)))) (-2448 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1264 *4)) (-4 *4 (-639 *5)) (-4 *5 (-365)) (-4 *5 (-558)) (-5 *2 (-1264 *5)) (-5 *1 (-638 *5 *4)))) (-2493 (*1 *2 *3) (|partial| -12 (-5 *3 (-1264 *5)) (-4 *5 (-639 *4)) (-4 *4 (-558)) (-5 *2 (-1264 *4)) (-5 *1 (-638 *4 *5)))) (-2887 (*1 *2 *3) (-12 (-5 *3 (-1264 *5)) (-4 *5 (-639 *4)) (-4 *4 (-558)) (-5 *2 (-112)) (-5 *1 (-638 *4 *5))))) -(-10 -7 (-15 -2887 ((-112) (-1264 |#2|))) (-15 -2493 ((-3 (-1264 |#1|) "failed") (-1264 |#2|))) (IF (|has| |#1| (-365)) (-15 -2448 ((-3 (-1264 |#1|) "failed") (-1264 |#2|) |#2|)) (-15 -2448 ((-3 (-1264 (-409 |#1|)) "failed") (-1264 |#2|) |#2|)))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-4175 (((-3 $ "failed") $ $) 20)) (-3012 (($) 18 T CONST)) (-3577 (((-689 |#1|) (-689 $)) 40) (((-2 (|:| -4227 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) 39)) (-1878 (((-3 $ "failed") $) 37)) (-3934 (((-112) $) 35)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3783 (((-862) $) 12) (($ (-566)) 33)) (-2107 (((-771)) 32 T CONST)) (-3117 (((-112) $ $) 9)) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-2947 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-2896 (((-3 $ "failed")) NIL (-2768 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-3967 (((-3 $ "failed") $ $) NIL)) (-2336 (((-1264 (-689 |#1|))) NIL (|has| |#2| (-419 |#1|))) (((-1264 (-689 |#1|)) (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-3717 (((-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-2463 (($) NIL T CONST)) (-3574 (((-3 (-2 (|:| |particular| $) (|:| -2875 (-644 $))) "failed")) NIL (-2768 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-1469 (((-3 $ "failed")) NIL (-2768 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-2411 (((-689 |#1|)) NIL (|has| |#2| (-419 |#1|))) (((-689 |#1|) (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-4373 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-2800 (((-689 |#1|) $) NIL (|has| |#2| (-419 |#1|))) (((-689 |#1|) $ (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-4392 (((-3 $ "failed") $) NIL (-2768 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-3031 (((-1171 (-952 |#1|))) NIL (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-365))))) (-1856 (($ $ (-921)) NIL)) (-4039 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-3648 (((-1171 |#1|) $) NIL (-2768 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-2597 ((|#1|) NIL (|has| |#2| (-419 |#1|))) ((|#1| (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-2765 (((-1171 |#1|) $) NIL (|has| |#2| (-369 |#1|)))) (-4029 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1563 (($ (-1264 |#1|)) NIL (|has| |#2| (-419 |#1|))) (($ (-1264 |#1|) (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-3245 (((-3 $ "failed") $) NIL (-2768 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-2755 (((-921)) NIL (|has| |#2| (-369 |#1|)))) (-3793 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-4090 (($ $ (-921)) NIL)) (-4240 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2057 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2158 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1476 (((-3 (-2 (|:| |particular| $) (|:| -2875 (-644 $))) "failed")) NIL (-2768 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-1731 (((-3 $ "failed")) NIL (-2768 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-2734 (((-689 |#1|)) NIL (|has| |#2| (-419 |#1|))) (((-689 |#1|) (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-2366 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-3769 (((-689 |#1|) $) NIL (|has| |#2| (-419 |#1|))) (((-689 |#1|) $ (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-2851 (((-3 $ "failed") $) NIL (-2768 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-1793 (((-1171 (-952 |#1|))) NIL (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-365))))) (-3270 (($ $ (-921)) NIL)) (-2241 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-1910 (((-1171 |#1|) $) NIL (-2768 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-2990 ((|#1|) NIL (|has| |#2| (-419 |#1|))) ((|#1| (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-3548 (((-1171 |#1|) $) NIL (|has| |#2| (-369 |#1|)))) (-2974 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3380 (((-1157) $) NIL)) (-2402 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1459 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3846 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-4072 (((-1119) $) NIL)) (-3795 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1309 ((|#1| $ (-566)) NIL (|has| |#2| (-419 |#1|)))) (-3350 (((-689 |#1|) (-1264 $)) NIL (|has| |#2| (-419 |#1|))) (((-1264 |#1|) $) NIL (|has| |#2| (-419 |#1|))) (((-689 |#1|) (-1264 $) (-1264 $)) NIL (|has| |#2| (-369 |#1|))) (((-1264 |#1|) $ (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-2376 (($ (-1264 |#1|)) NIL (|has| |#2| (-419 |#1|))) (((-1264 |#1|) $) NIL (|has| |#2| (-419 |#1|)))) (-2861 (((-644 (-952 |#1|))) NIL (|has| |#2| (-419 |#1|))) (((-644 (-952 |#1|)) (-1264 $)) NIL (|has| |#2| (-369 |#1|)))) (-2527 (($ $ $) NIL)) (-2512 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3152 (((-862) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-3044 (((-112) $ $) NIL)) (-2875 (((-1264 $)) NIL (|has| |#2| (-419 |#1|)))) (-2243 (((-644 (-1264 |#1|))) NIL (-2768 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-3876 (($ $ $ $) NIL)) (-2468 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3847 (($ (-689 |#1|) $) NIL (|has| |#2| (-419 |#1|)))) (-1471 (($ $ $) NIL)) (-1465 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3692 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-4369 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-4356 (($) 19 T CONST)) (-2914 (((-112) $ $) NIL)) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-921)) 20)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-635 |#1| |#2|) (-13 (-744 |#1|) (-613 |#2|) (-10 -8 (-15 -3152 ($ |#2|)) (IF (|has| |#2| (-419 |#1|)) (-6 (-419 |#1|)) |%noBranch|) (IF (|has| |#2| (-369 |#1|)) (-6 (-369 |#1|)) |%noBranch|))) (-172) (-744 |#1|)) (T -635)) +((-3152 (*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-635 *3 *2)) (-4 *2 (-744 *3))))) +(-13 (-744 |#1|) (-613 |#2|) (-10 -8 (-15 -3152 ($ |#2|)) (IF (|has| |#2| (-419 |#1|)) (-6 (-419 |#1|)) |%noBranch|) (IF (|has| |#2| (-369 |#1|)) (-6 (-369 |#1|)) |%noBranch|))) +((-4375 (((-3 (-843 |#2|) "failed") |#2| (-295 |#2|) (-1157)) 106) (((-3 (-843 |#2|) (-2 (|:| |leftHandLimit| (-3 (-843 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-843 |#2|) "failed"))) "failed") |#2| (-295 (-843 |#2|))) 131)) (-3820 (((-3 (-833 |#2|) "failed") |#2| (-295 (-833 |#2|))) 136))) +(((-636 |#1| |#2|) (-10 -7 (-15 -4375 ((-3 (-843 |#2|) (-2 (|:| |leftHandLimit| (-3 (-843 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-843 |#2|) "failed"))) "failed") |#2| (-295 (-843 |#2|)))) (-15 -3820 ((-3 (-833 |#2|) "failed") |#2| (-295 (-833 |#2|)))) (-15 -4375 ((-3 (-843 |#2|) "failed") |#2| (-295 |#2|) (-1157)))) (-13 (-454) (-1038 (-566)) (-639 (-566))) (-13 (-27) (-1199) (-432 |#1|))) (T -636)) +((-4375 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-295 *3)) (-5 *5 (-1157)) (-4 *3 (-13 (-27) (-1199) (-432 *6))) (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-843 *3)) (-5 *1 (-636 *6 *3)))) (-3820 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-295 (-833 *3))) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-833 *3)) (-5 *1 (-636 *5 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5))))) (-4375 (*1 *2 *3 *4) (-12 (-5 *4 (-295 (-843 *3))) (-4 *3 (-13 (-27) (-1199) (-432 *5))) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-3 (-843 *3) (-2 (|:| |leftHandLimit| (-3 (-843 *3) "failed")) (|:| |rightHandLimit| (-3 (-843 *3) "failed"))) "failed")) (-5 *1 (-636 *5 *3))))) +(-10 -7 (-15 -4375 ((-3 (-843 |#2|) (-2 (|:| |leftHandLimit| (-3 (-843 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-843 |#2|) "failed"))) "failed") |#2| (-295 (-843 |#2|)))) (-15 -3820 ((-3 (-833 |#2|) "failed") |#2| (-295 (-833 |#2|)))) (-15 -4375 ((-3 (-843 |#2|) "failed") |#2| (-295 |#2|) (-1157)))) +((-4375 (((-3 (-843 (-409 (-952 |#1|))) "failed") (-409 (-952 |#1|)) (-295 (-409 (-952 |#1|))) (-1157)) 86) (((-3 (-843 (-409 (-952 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-843 (-409 (-952 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-843 (-409 (-952 |#1|))) "failed"))) "failed") (-409 (-952 |#1|)) (-295 (-409 (-952 |#1|)))) 20) (((-3 (-843 (-409 (-952 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-843 (-409 (-952 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-843 (-409 (-952 |#1|))) "failed"))) "failed") (-409 (-952 |#1|)) (-295 (-843 (-952 |#1|)))) 35)) (-3820 (((-833 (-409 (-952 |#1|))) (-409 (-952 |#1|)) (-295 (-409 (-952 |#1|)))) 23) (((-833 (-409 (-952 |#1|))) (-409 (-952 |#1|)) (-295 (-833 (-952 |#1|)))) 43))) +(((-637 |#1|) (-10 -7 (-15 -4375 ((-3 (-843 (-409 (-952 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-843 (-409 (-952 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-843 (-409 (-952 |#1|))) "failed"))) "failed") (-409 (-952 |#1|)) (-295 (-843 (-952 |#1|))))) (-15 -4375 ((-3 (-843 (-409 (-952 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-843 (-409 (-952 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-843 (-409 (-952 |#1|))) "failed"))) "failed") (-409 (-952 |#1|)) (-295 (-409 (-952 |#1|))))) (-15 -3820 ((-833 (-409 (-952 |#1|))) (-409 (-952 |#1|)) (-295 (-833 (-952 |#1|))))) (-15 -3820 ((-833 (-409 (-952 |#1|))) (-409 (-952 |#1|)) (-295 (-409 (-952 |#1|))))) (-15 -4375 ((-3 (-843 (-409 (-952 |#1|))) "failed") (-409 (-952 |#1|)) (-295 (-409 (-952 |#1|))) (-1157)))) (-454)) (T -637)) +((-4375 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-295 (-409 (-952 *6)))) (-5 *5 (-1157)) (-5 *3 (-409 (-952 *6))) (-4 *6 (-454)) (-5 *2 (-843 *3)) (-5 *1 (-637 *6)))) (-3820 (*1 *2 *3 *4) (-12 (-5 *4 (-295 (-409 (-952 *5)))) (-5 *3 (-409 (-952 *5))) (-4 *5 (-454)) (-5 *2 (-833 *3)) (-5 *1 (-637 *5)))) (-3820 (*1 *2 *3 *4) (-12 (-5 *4 (-295 (-833 (-952 *5)))) (-4 *5 (-454)) (-5 *2 (-833 (-409 (-952 *5)))) (-5 *1 (-637 *5)) (-5 *3 (-409 (-952 *5))))) (-4375 (*1 *2 *3 *4) (-12 (-5 *4 (-295 (-409 (-952 *5)))) (-5 *3 (-409 (-952 *5))) (-4 *5 (-454)) (-5 *2 (-3 (-843 *3) (-2 (|:| |leftHandLimit| (-3 (-843 *3) "failed")) (|:| |rightHandLimit| (-3 (-843 *3) "failed"))) "failed")) (-5 *1 (-637 *5)))) (-4375 (*1 *2 *3 *4) (-12 (-5 *4 (-295 (-843 (-952 *5)))) (-4 *5 (-454)) (-5 *2 (-3 (-843 (-409 (-952 *5))) (-2 (|:| |leftHandLimit| (-3 (-843 (-409 (-952 *5))) "failed")) (|:| |rightHandLimit| (-3 (-843 (-409 (-952 *5))) "failed"))) "failed")) (-5 *1 (-637 *5)) (-5 *3 (-409 (-952 *5)))))) +(-10 -7 (-15 -4375 ((-3 (-843 (-409 (-952 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-843 (-409 (-952 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-843 (-409 (-952 |#1|))) "failed"))) "failed") (-409 (-952 |#1|)) (-295 (-843 (-952 |#1|))))) (-15 -4375 ((-3 (-843 (-409 (-952 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-843 (-409 (-952 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-843 (-409 (-952 |#1|))) "failed"))) "failed") (-409 (-952 |#1|)) (-295 (-409 (-952 |#1|))))) (-15 -3820 ((-833 (-409 (-952 |#1|))) (-409 (-952 |#1|)) (-295 (-833 (-952 |#1|))))) (-15 -3820 ((-833 (-409 (-952 |#1|))) (-409 (-952 |#1|)) (-295 (-409 (-952 |#1|))))) (-15 -4375 ((-3 (-843 (-409 (-952 |#1|))) "failed") (-409 (-952 |#1|)) (-295 (-409 (-952 |#1|))) (-1157)))) +((-3022 (((-3 (-1264 (-409 |#1|)) "failed") (-1264 |#2|) |#2|) 64 (-2404 (|has| |#1| (-365)))) (((-3 (-1264 |#1|) "failed") (-1264 |#2|) |#2|) 49 (|has| |#1| (-365)))) (-3395 (((-112) (-1264 |#2|)) 33)) (-1761 (((-3 (-1264 |#1|) "failed") (-1264 |#2|)) 40))) +(((-638 |#1| |#2|) (-10 -7 (-15 -3395 ((-112) (-1264 |#2|))) (-15 -1761 ((-3 (-1264 |#1|) "failed") (-1264 |#2|))) (IF (|has| |#1| (-365)) (-15 -3022 ((-3 (-1264 |#1|) "failed") (-1264 |#2|) |#2|)) (-15 -3022 ((-3 (-1264 (-409 |#1|)) "failed") (-1264 |#2|) |#2|)))) (-558) (-639 |#1|)) (T -638)) +((-3022 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1264 *4)) (-4 *4 (-639 *5)) (-2404 (-4 *5 (-365))) (-4 *5 (-558)) (-5 *2 (-1264 (-409 *5))) (-5 *1 (-638 *5 *4)))) (-3022 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1264 *4)) (-4 *4 (-639 *5)) (-4 *5 (-365)) (-4 *5 (-558)) (-5 *2 (-1264 *5)) (-5 *1 (-638 *5 *4)))) (-1761 (*1 *2 *3) (|partial| -12 (-5 *3 (-1264 *5)) (-4 *5 (-639 *4)) (-4 *4 (-558)) (-5 *2 (-1264 *4)) (-5 *1 (-638 *4 *5)))) (-3395 (*1 *2 *3) (-12 (-5 *3 (-1264 *5)) (-4 *5 (-639 *4)) (-4 *4 (-558)) (-5 *2 (-112)) (-5 *1 (-638 *4 *5))))) +(-10 -7 (-15 -3395 ((-112) (-1264 |#2|))) (-15 -1761 ((-3 (-1264 |#1|) "failed") (-1264 |#2|))) (IF (|has| |#1| (-365)) (-15 -3022 ((-3 (-1264 |#1|) "failed") (-1264 |#2|) |#2|)) (-15 -3022 ((-3 (-1264 (-409 |#1|)) "failed") (-1264 |#2|) |#2|)))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-3967 (((-3 $ "failed") $ $) 20)) (-2463 (($) 18 T CONST)) (-4089 (((-689 |#1|) (-689 $)) 40) (((-2 (|:| -3361 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) 39)) (-3245 (((-3 $ "failed") $) 37)) (-2389 (((-112) $) 35)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3152 (((-862) $) 12) (($ (-566)) 33)) (-2593 (((-771)) 32 T CONST)) (-3044 (((-112) $ $) 9)) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-2914 (((-112) $ $) 6)) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) (((-639 |#1|) (-140) (-1049)) (T -639)) -((-3577 (*1 *2 *3) (-12 (-5 *3 (-689 *1)) (-4 *1 (-639 *4)) (-4 *4 (-1049)) (-5 *2 (-689 *4)))) (-3577 (*1 *2 *3 *4) (-12 (-5 *3 (-689 *1)) (-5 *4 (-1264 *1)) (-4 *1 (-639 *5)) (-4 *5 (-1049)) (-5 *2 (-2 (|:| -4227 (-689 *5)) (|:| |vec| (-1264 *5))))))) -(-13 (-1049) (-10 -8 (-15 -3577 ((-689 |t#1|) (-689 $))) (-15 -3577 ((-2 (|:| -4227 (-689 |t#1|)) (|:| |vec| (-1264 |t#1|))) (-689 $) (-1264 $))))) +((-4089 (*1 *2 *3) (-12 (-5 *3 (-689 *1)) (-4 *1 (-639 *4)) (-4 *4 (-1049)) (-5 *2 (-689 *4)))) (-4089 (*1 *2 *3 *4) (-12 (-5 *3 (-689 *1)) (-5 *4 (-1264 *1)) (-4 *1 (-639 *5)) (-4 *5 (-1049)) (-5 *2 (-2 (|:| -3361 (-689 *5)) (|:| |vec| (-1264 *5))))))) +(-13 (-1049) (-10 -8 (-15 -4089 ((-689 |t#1|) (-689 $))) (-15 -4089 ((-2 (|:| -3361 (-689 |t#1|)) (|:| |vec| (-1264 |t#1|))) (-689 $) (-1264 $))))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-616 (-566)) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-726) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 15)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3783 (((-862) $) 12)) (-3117 (((-112) $ $) 9)) (-2479 (($) 16 T CONST)) (-2947 (((-112) $ $) 6)) (* (($ |#1| $) 14) (($ $ |#1|) 19))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 15)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3152 (((-862) $) 12)) (-3044 (((-112) $ $) 9)) (-4356 (($) 16 T CONST)) (-2914 (((-112) $ $) 6)) (* (($ |#1| $) 14) (($ $ |#1|) 19))) (((-640 |#1|) (-140) (-1057)) (T -640)) NIL (-13 (-646 |t#1|) (-1051 |t#1|)) (((-102) . T) ((-613 (-862)) . T) ((-646 |#1|) . T) ((-1051 |#1|) . T) ((-1099) . T)) -((-4066 ((|#2| (-644 |#1|) (-644 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-644 |#1|) (-644 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-644 |#1|) (-644 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-644 |#1|) (-644 |#2|) |#2|) 17) ((|#2| (-644 |#1|) (-644 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-644 |#1|) (-644 |#2|)) 12))) -(((-641 |#1| |#2|) (-10 -7 (-15 -4066 ((-1 |#2| |#1|) (-644 |#1|) (-644 |#2|))) (-15 -4066 (|#2| (-644 |#1|) (-644 |#2|) |#1|)) (-15 -4066 ((-1 |#2| |#1|) (-644 |#1|) (-644 |#2|) |#2|)) (-15 -4066 (|#2| (-644 |#1|) (-644 |#2|) |#1| |#2|)) (-15 -4066 ((-1 |#2| |#1|) (-644 |#1|) (-644 |#2|) (-1 |#2| |#1|))) (-15 -4066 (|#2| (-644 |#1|) (-644 |#2|) |#1| (-1 |#2| |#1|)))) (-1099) (-1214)) (T -641)) -((-4066 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-644 *5)) (-5 *4 (-644 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1099)) (-4 *2 (-1214)) (-5 *1 (-641 *5 *2)))) (-4066 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-644 *5)) (-5 *4 (-644 *6)) (-4 *5 (-1099)) (-4 *6 (-1214)) (-5 *1 (-641 *5 *6)))) (-4066 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-644 *5)) (-5 *4 (-644 *2)) (-4 *5 (-1099)) (-4 *2 (-1214)) (-5 *1 (-641 *5 *2)))) (-4066 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-644 *6)) (-5 *4 (-644 *5)) (-4 *6 (-1099)) (-4 *5 (-1214)) (-5 *2 (-1 *5 *6)) (-5 *1 (-641 *6 *5)))) (-4066 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-644 *5)) (-5 *4 (-644 *2)) (-4 *5 (-1099)) (-4 *2 (-1214)) (-5 *1 (-641 *5 *2)))) (-4066 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *5)) (-5 *4 (-644 *6)) (-4 *5 (-1099)) (-4 *6 (-1214)) (-5 *2 (-1 *6 *5)) (-5 *1 (-641 *5 *6))))) -(-10 -7 (-15 -4066 ((-1 |#2| |#1|) (-644 |#1|) (-644 |#2|))) (-15 -4066 (|#2| (-644 |#1|) (-644 |#2|) |#1|)) (-15 -4066 ((-1 |#2| |#1|) (-644 |#1|) (-644 |#2|) |#2|)) (-15 -4066 (|#2| (-644 |#1|) (-644 |#2|) |#1| |#2|)) (-15 -4066 ((-1 |#2| |#1|) (-644 |#1|) (-644 |#2|) (-1 |#2| |#1|))) (-15 -4066 (|#2| (-644 |#1|) (-644 |#2|) |#1| (-1 |#2| |#1|)))) -((-3795 (((-644 |#2|) (-1 |#2| |#1| |#2|) (-644 |#1|) |#2|) 16)) (-1676 ((|#2| (-1 |#2| |#1| |#2|) (-644 |#1|) |#2|) 18)) (-1301 (((-644 |#2|) (-1 |#2| |#1|) (-644 |#1|)) 13))) -(((-642 |#1| |#2|) (-10 -7 (-15 -3795 ((-644 |#2|) (-1 |#2| |#1| |#2|) (-644 |#1|) |#2|)) (-15 -1676 (|#2| (-1 |#2| |#1| |#2|) (-644 |#1|) |#2|)) (-15 -1301 ((-644 |#2|) (-1 |#2| |#1|) (-644 |#1|)))) (-1214) (-1214)) (T -642)) -((-1301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-644 *5)) (-4 *5 (-1214)) (-4 *6 (-1214)) (-5 *2 (-644 *6)) (-5 *1 (-642 *5 *6)))) (-1676 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-644 *5)) (-4 *5 (-1214)) (-4 *2 (-1214)) (-5 *1 (-642 *5 *2)))) (-3795 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-644 *6)) (-4 *6 (-1214)) (-4 *5 (-1214)) (-5 *2 (-644 *5)) (-5 *1 (-642 *6 *5))))) -(-10 -7 (-15 -3795 ((-644 |#2|) (-1 |#2| |#1| |#2|) (-644 |#1|) |#2|)) (-15 -1676 (|#2| (-1 |#2| |#1| |#2|) (-644 |#1|) |#2|)) (-15 -1301 ((-644 |#2|) (-1 |#2| |#1|) (-644 |#1|)))) -((-1301 (((-644 |#3|) (-1 |#3| |#1| |#2|) (-644 |#1|) (-644 |#2|)) 21))) -(((-643 |#1| |#2| |#3|) (-10 -7 (-15 -1301 ((-644 |#3|) (-1 |#3| |#1| |#2|) (-644 |#1|) (-644 |#2|)))) (-1214) (-1214) (-1214)) (T -643)) -((-1301 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-644 *6)) (-5 *5 (-644 *7)) (-4 *6 (-1214)) (-4 *7 (-1214)) (-4 *8 (-1214)) (-5 *2 (-644 *8)) (-5 *1 (-643 *6 *7 *8))))) -(-10 -7 (-15 -1301 ((-644 |#3|) (-1 |#3| |#1| |#2|) (-644 |#1|) (-644 |#2|)))) -((-3007 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2233 ((|#1| $) NIL)) (-2593 ((|#1| $) NIL)) (-2223 (($ $) NIL)) (-3734 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4415)))) (-2807 (($ $ (-566)) NIL (|has| $ (-6 -4415)))) (-2644 (((-112) $) NIL (|has| |#1| (-850))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1944 (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-850)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4415)))) (-1510 (($ $) NIL (|has| |#1| (-850))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2256 (((-112) $ (-771)) NIL)) (-3396 ((|#1| $ |#1|) NIL (|has| $ (-6 -4415)))) (-4107 (($ $ $) NIL (|has| $ (-6 -4415)))) (-3178 ((|#1| $ |#1|) NIL (|has| $ (-6 -4415)))) (-2905 ((|#1| $ |#1|) NIL (|has| $ (-6 -4415)))) (-3923 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4415))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4415))) (($ $ "rest" $) NIL (|has| $ (-6 -4415))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4415))) ((|#1| $ (-1231 (-566)) |#1|) NIL (|has| $ (-6 -4415))) ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4415)))) (-3800 (($ $ (-644 $)) NIL (|has| $ (-6 -4415)))) (-1933 (($ $ $) 37 (|has| |#1| (-1099)))) (-1925 (($ $ $) 41 (|has| |#1| (-1099)))) (-1913 (($ $ $) 44 (|has| |#1| (-1099)))) (-4016 (($ (-1 (-112) |#1|) $) NIL)) (-2701 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2582 ((|#1| $) NIL)) (-3012 (($) NIL T CONST)) (-3413 (($ $) NIL (|has| $ (-6 -4415)))) (-1377 (($ $) NIL)) (-2010 (($ $) 23) (($ $ (-771)) NIL)) (-3657 (($ $) NIL (|has| |#1| (-1099)))) (-2031 (($ $) 36 (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2956 (($ |#1| $) NIL (|has| |#1| (-1099))) (($ (-1 (-112) |#1|) $) NIL)) (-2665 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-1676 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2920 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4415)))) (-2855 ((|#1| $ (-566)) NIL)) (-1902 (((-112) $) NIL)) (-4000 (((-566) |#1| $ (-566)) NIL (|has| |#1| (-1099))) (((-566) |#1| $) NIL (|has| |#1| (-1099))) (((-566) (-1 (-112) |#1|) $) NIL)) (-3979 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-2407 (((-112) $) 11)) (-4009 (((-644 $) $) NIL)) (-3891 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3594 (($) 9)) (-4265 (($ (-771) |#1|) NIL)) (-2404 (((-112) $ (-771)) NIL)) (-3854 (((-566) $) NIL (|has| (-566) (-850)))) (-2097 (($ $ $) NIL (|has| |#1| (-850)))) (-3463 (($ $ $) NIL (|has| |#1| (-850))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3298 (($ $ $) NIL (|has| |#1| (-850))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2329 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) 40 (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2712 (((-566) $) NIL (|has| (-566) (-850)))) (-3962 (($ $ $) NIL (|has| |#1| (-850)))) (-2908 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1881 (($ |#1|) NIL)) (-2603 (((-112) $ (-771)) NIL)) (-3701 (((-644 |#1|) $) NIL)) (-3438 (((-112) $) NIL)) (-4117 (((-1157) $) NIL (|has| |#1| (-1099)))) (-2686 ((|#1| $) NIL) (($ $ (-771)) NIL)) (-3406 (($ $ $ (-566)) NIL) (($ |#1| $ (-566)) NIL)) (-4276 (($ $ $ (-566)) NIL) (($ |#1| $ (-566)) NIL)) (-4074 (((-644 (-566)) $) NIL)) (-3792 (((-112) (-566) $) NIL)) (-4035 (((-1119) $) NIL (|has| |#1| (-1099)))) (-1998 ((|#1| $) 20) (($ $ (-771)) NIL)) (-2006 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4030 (($ $ |#1|) NIL (|has| $ (-6 -4415)))) (-2373 (((-112) $) NIL)) (-2692 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) NIL)) (-4156 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2993 (((-644 |#1|) $) NIL)) (-3467 (((-112) $) 39)) (-1494 (($) 38)) (-4390 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1231 (-566))) NIL) ((|#1| $ (-566)) 42) ((|#1| $ (-566) |#1|) NIL)) (-1416 (((-566) $ $) NIL)) (-1772 (($ $ (-1231 (-566))) NIL) (($ $ (-566)) NIL)) (-2187 (($ $ (-1231 (-566))) NIL) (($ $ (-566)) NIL)) (-3494 (((-112) $) NIL)) (-4272 (($ $) NIL)) (-1844 (($ $) NIL (|has| $ (-6 -4415)))) (-2833 (((-771) $) NIL)) (-2369 (($ $) NIL)) (-4045 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-1297 (($ $ $ (-566)) NIL (|has| $ (-6 -4415)))) (-3940 (($ $) NIL)) (-1348 (((-538) $) 53 (|has| |#1| (-614 (-538))))) (-3796 (($ (-644 |#1|)) NIL)) (-1827 (($ |#1| $) 12)) (-3480 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3721 (($ $ $) 35) (($ |#1| $) 43) (($ (-644 $)) NIL) (($ $ |#1|) NIL)) (-3783 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-2462 (((-644 $) $) NIL)) (-4288 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3117 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2194 (($ $ $) 13)) (-1894 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2452 (((-1157) $) 31 (|has| |#1| (-828))) (((-1157) $ (-112)) 32 (|has| |#1| (-828))) (((-1269) (-822) $) 33 (|has| |#1| (-828))) (((-1269) (-822) $ (-112)) 34 (|has| |#1| (-828)))) (-3009 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2984 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2947 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2995 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2969 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3018 (((-771) $) NIL (|has| $ (-6 -4414))))) -(((-644 |#1|) (-13 (-666 |#1|) (-10 -8 (-15 -3594 ($)) (-15 -2407 ((-112) $)) (-15 -1827 ($ |#1| $)) (-15 -2194 ($ $ $)) (IF (|has| |#1| (-1099)) (PROGN (-15 -1933 ($ $ $)) (-15 -1925 ($ $ $)) (-15 -1913 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-828)) (-6 (-828)) |%noBranch|))) (-1214)) (T -644)) -((-3594 (*1 *1) (-12 (-5 *1 (-644 *2)) (-4 *2 (-1214)))) (-2407 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-644 *3)) (-4 *3 (-1214)))) (-1827 (*1 *1 *2 *1) (-12 (-5 *1 (-644 *2)) (-4 *2 (-1214)))) (-2194 (*1 *1 *1 *1) (-12 (-5 *1 (-644 *2)) (-4 *2 (-1214)))) (-1933 (*1 *1 *1 *1) (-12 (-5 *1 (-644 *2)) (-4 *2 (-1099)) (-4 *2 (-1214)))) (-1925 (*1 *1 *1 *1) (-12 (-5 *1 (-644 *2)) (-4 *2 (-1099)) (-4 *2 (-1214)))) (-1913 (*1 *1 *1 *1) (-12 (-5 *1 (-644 *2)) (-4 *2 (-1099)) (-4 *2 (-1214))))) -(-13 (-666 |#1|) (-10 -8 (-15 -3594 ($)) (-15 -2407 ((-112) $)) (-15 -1827 ($ |#1| $)) (-15 -2194 ($ $ $)) (IF (|has| |#1| (-1099)) (PROGN (-15 -1933 ($ $ $)) (-15 -1925 ($ $ $)) (-15 -1913 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-828)) (-6 (-828)) |%noBranch|))) -((-3007 (((-112) $ $) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 11) (($ (-1180)) NIL) (((-1180) $) NIL) ((|#1| $) 8)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) +((-1981 ((|#2| (-644 |#1|) (-644 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-644 |#1|) (-644 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-644 |#1|) (-644 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-644 |#1|) (-644 |#2|) |#2|) 17) ((|#2| (-644 |#1|) (-644 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-644 |#1|) (-644 |#2|)) 12))) +(((-641 |#1| |#2|) (-10 -7 (-15 -1981 ((-1 |#2| |#1|) (-644 |#1|) (-644 |#2|))) (-15 -1981 (|#2| (-644 |#1|) (-644 |#2|) |#1|)) (-15 -1981 ((-1 |#2| |#1|) (-644 |#1|) (-644 |#2|) |#2|)) (-15 -1981 (|#2| (-644 |#1|) (-644 |#2|) |#1| |#2|)) (-15 -1981 ((-1 |#2| |#1|) (-644 |#1|) (-644 |#2|) (-1 |#2| |#1|))) (-15 -1981 (|#2| (-644 |#1|) (-644 |#2|) |#1| (-1 |#2| |#1|)))) (-1099) (-1214)) (T -641)) +((-1981 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-644 *5)) (-5 *4 (-644 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1099)) (-4 *2 (-1214)) (-5 *1 (-641 *5 *2)))) (-1981 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-644 *5)) (-5 *4 (-644 *6)) (-4 *5 (-1099)) (-4 *6 (-1214)) (-5 *1 (-641 *5 *6)))) (-1981 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-644 *5)) (-5 *4 (-644 *2)) (-4 *5 (-1099)) (-4 *2 (-1214)) (-5 *1 (-641 *5 *2)))) (-1981 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-644 *6)) (-5 *4 (-644 *5)) (-4 *6 (-1099)) (-4 *5 (-1214)) (-5 *2 (-1 *5 *6)) (-5 *1 (-641 *6 *5)))) (-1981 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-644 *5)) (-5 *4 (-644 *2)) (-4 *5 (-1099)) (-4 *2 (-1214)) (-5 *1 (-641 *5 *2)))) (-1981 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *5)) (-5 *4 (-644 *6)) (-4 *5 (-1099)) (-4 *6 (-1214)) (-5 *2 (-1 *6 *5)) (-5 *1 (-641 *5 *6))))) +(-10 -7 (-15 -1981 ((-1 |#2| |#1|) (-644 |#1|) (-644 |#2|))) (-15 -1981 (|#2| (-644 |#1|) (-644 |#2|) |#1|)) (-15 -1981 ((-1 |#2| |#1|) (-644 |#1|) (-644 |#2|) |#2|)) (-15 -1981 (|#2| (-644 |#1|) (-644 |#2|) |#1| |#2|)) (-15 -1981 ((-1 |#2| |#1|) (-644 |#1|) (-644 |#2|) (-1 |#2| |#1|))) (-15 -1981 (|#2| (-644 |#1|) (-644 |#2|) |#1| (-1 |#2| |#1|)))) +((-1960 (((-644 |#2|) (-1 |#2| |#1| |#2|) (-644 |#1|) |#2|) 16)) (-2873 ((|#2| (-1 |#2| |#1| |#2|) (-644 |#1|) |#2|) 18)) (-2319 (((-644 |#2|) (-1 |#2| |#1|) (-644 |#1|)) 13))) +(((-642 |#1| |#2|) (-10 -7 (-15 -1960 ((-644 |#2|) (-1 |#2| |#1| |#2|) (-644 |#1|) |#2|)) (-15 -2873 (|#2| (-1 |#2| |#1| |#2|) (-644 |#1|) |#2|)) (-15 -2319 ((-644 |#2|) (-1 |#2| |#1|) (-644 |#1|)))) (-1214) (-1214)) (T -642)) +((-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-644 *5)) (-4 *5 (-1214)) (-4 *6 (-1214)) (-5 *2 (-644 *6)) (-5 *1 (-642 *5 *6)))) (-2873 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-644 *5)) (-4 *5 (-1214)) (-4 *2 (-1214)) (-5 *1 (-642 *5 *2)))) (-1960 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-644 *6)) (-4 *6 (-1214)) (-4 *5 (-1214)) (-5 *2 (-644 *5)) (-5 *1 (-642 *6 *5))))) +(-10 -7 (-15 -1960 ((-644 |#2|) (-1 |#2| |#1| |#2|) (-644 |#1|) |#2|)) (-15 -2873 (|#2| (-1 |#2| |#1| |#2|) (-644 |#1|) |#2|)) (-15 -2319 ((-644 |#2|) (-1 |#2| |#1|) (-644 |#1|)))) +((-2319 (((-644 |#3|) (-1 |#3| |#1| |#2|) (-644 |#1|) (-644 |#2|)) 21))) +(((-643 |#1| |#2| |#3|) (-10 -7 (-15 -2319 ((-644 |#3|) (-1 |#3| |#1| |#2|) (-644 |#1|) (-644 |#2|)))) (-1214) (-1214) (-1214)) (T -643)) +((-2319 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-644 *6)) (-5 *5 (-644 *7)) (-4 *6 (-1214)) (-4 *7 (-1214)) (-4 *8 (-1214)) (-5 *2 (-644 *8)) (-5 *1 (-643 *6 *7 *8))))) +(-10 -7 (-15 -2319 ((-644 |#3|) (-1 |#3| |#1| |#2|) (-644 |#1|) (-644 |#2|)))) +((-2988 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2876 ((|#1| $) NIL)) (-3541 ((|#1| $) NIL)) (-3214 (($ $) NIL)) (-1944 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4415)))) (-4258 (($ $ (-566)) NIL (|has| $ (-6 -4415)))) (-3054 (((-112) $) NIL (|has| |#1| (-850))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3628 (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-850)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4415)))) (-2671 (($ $) NIL (|has| |#1| (-850))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1504 (((-112) $ (-771)) NIL)) (-2191 ((|#1| $ |#1|) NIL (|has| $ (-6 -4415)))) (-1813 (($ $ $) NIL (|has| $ (-6 -4415)))) (-1948 ((|#1| $ |#1|) NIL (|has| $ (-6 -4415)))) (-1381 ((|#1| $ |#1|) NIL (|has| $ (-6 -4415)))) (-1456 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4415))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4415))) (($ $ "rest" $) NIL (|has| $ (-6 -4415))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4415))) ((|#1| $ (-1231 (-566)) |#1|) NIL (|has| $ (-6 -4415))) ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4415)))) (-4202 (($ $ (-644 $)) NIL (|has| $ (-6 -4415)))) (-3834 (($ $ $) 37 (|has| |#1| (-1099)))) (-3821 (($ $ $) 41 (|has| |#1| (-1099)))) (-3806 (($ $ $) 44 (|has| |#1| (-1099)))) (-2995 (($ (-1 (-112) |#1|) $) NIL)) (-3678 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-3531 ((|#1| $) NIL)) (-2463 (($) NIL T CONST)) (-3166 (($ $) NIL (|has| $ (-6 -4415)))) (-3683 (($ $) NIL)) (-3919 (($ $) 23) (($ $ (-771)) NIL)) (-3322 (($ $) NIL (|has| |#1| (-1099)))) (-3942 (($ $) 36 (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3512 (($ |#1| $) NIL (|has| |#1| (-1099))) (($ (-1 (-112) |#1|) $) NIL)) (-2622 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2873 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3897 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4415)))) (-3829 ((|#1| $ (-566)) NIL)) (-1781 (((-112) $) NIL)) (-1569 (((-566) |#1| $ (-566)) NIL (|has| |#1| (-1099))) (((-566) |#1| $) NIL (|has| |#1| (-1099))) (((-566) (-1 (-112) |#1|) $) NIL)) (-1683 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-2391 (((-112) $) 11)) (-3431 (((-644 $) $) NIL)) (-1507 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3564 (($) 9 T CONST)) (-1860 (($ (-771) |#1|) NIL)) (-3456 (((-112) $ (-771)) NIL)) (-2296 (((-566) $) NIL (|has| (-566) (-850)))) (-1478 (($ $ $) NIL (|has| |#1| (-850)))) (-3674 (($ $ $) NIL (|has| |#1| (-850))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2696 (($ $ $) NIL (|has| |#1| (-850))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3491 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) 40 (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-4050 (((-566) $) NIL (|has| (-566) (-850)))) (-2599 (($ $ $) NIL (|has| |#1| (-850)))) (-3885 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3770 (($ |#1|) NIL)) (-3267 (((-112) $ (-771)) NIL)) (-1458 (((-644 |#1|) $) NIL)) (-3860 (((-112) $) NIL)) (-3380 (((-1157) $) NIL (|has| |#1| (-1099)))) (-2641 ((|#1| $) NIL) (($ $ (-771)) NIL)) (-3888 (($ $ $ (-566)) NIL) (($ |#1| $ (-566)) NIL)) (-1859 (($ $ $ (-566)) NIL) (($ |#1| $ (-566)) NIL)) (-3725 (((-644 (-566)) $) NIL)) (-1644 (((-112) (-566) $) NIL)) (-4072 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3908 ((|#1| $) 20) (($ $ (-771)) NIL)) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3787 (($ $ |#1|) NIL (|has| $ (-6 -4415)))) (-3254 (((-112) $) NIL)) (-2823 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) NIL)) (-2847 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3486 (((-644 |#1|) $) NIL)) (-2872 (((-112) $) 39)) (-3493 (($) 38)) (-1309 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1231 (-566))) NIL) ((|#1| $ (-566)) 42) ((|#1| $ (-566) |#1|) NIL)) (-1696 (((-566) $ $) NIL)) (-1308 (($ $ (-1231 (-566))) NIL) (($ $ (-566)) NIL)) (-2166 (($ $ (-1231 (-566))) NIL) (($ $ (-566)) NIL)) (-3786 (((-112) $) NIL)) (-4018 (($ $) NIL)) (-3810 (($ $) NIL (|has| $ (-6 -4415)))) (-2916 (((-771) $) NIL)) (-1922 (($ $) NIL)) (-4083 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2661 (($ $ $ (-566)) NIL (|has| $ (-6 -4415)))) (-1480 (($ $) NIL)) (-2376 (((-538) $) 53 (|has| |#1| (-614 (-538))))) (-1340 (($ (-644 |#1|)) NIL)) (-2508 (($ |#1| $) 12)) (-1690 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4386 (($ $ $) 35) (($ |#1| $) 43) (($ (-644 $)) NIL) (($ $ |#1|) NIL)) (-3152 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-1926 (((-644 $) $) NIL)) (-4385 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3044 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2152 (($ $ $) 13)) (-2210 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2226 (((-1157) $) 31 (|has| |#1| (-828))) (((-1157) $ (-112)) 32 (|has| |#1| (-828))) (((-1269) (-822) $) 33 (|has| |#1| (-828))) (((-1269) (-822) $ (-112)) 34 (|has| |#1| (-828)))) (-2968 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2914 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2956 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2935 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3000 (((-771) $) NIL (|has| $ (-6 -4414))))) +(((-644 |#1|) (-13 (-666 |#1|) (-10 -8 (-15 -3564 ($) -1623) (-15 -2391 ((-112) $)) (-15 -2508 ($ |#1| $)) (-15 -2152 ($ $ $)) (IF (|has| |#1| (-1099)) (PROGN (-15 -3834 ($ $ $)) (-15 -3821 ($ $ $)) (-15 -3806 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-828)) (-6 (-828)) |%noBranch|))) (-1214)) (T -644)) +((-3564 (*1 *1) (-12 (-5 *1 (-644 *2)) (-4 *2 (-1214)))) (-2391 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-644 *3)) (-4 *3 (-1214)))) (-2508 (*1 *1 *2 *1) (-12 (-5 *1 (-644 *2)) (-4 *2 (-1214)))) (-2152 (*1 *1 *1 *1) (-12 (-5 *1 (-644 *2)) (-4 *2 (-1214)))) (-3834 (*1 *1 *1 *1) (-12 (-5 *1 (-644 *2)) (-4 *2 (-1099)) (-4 *2 (-1214)))) (-3821 (*1 *1 *1 *1) (-12 (-5 *1 (-644 *2)) (-4 *2 (-1099)) (-4 *2 (-1214)))) (-3806 (*1 *1 *1 *1) (-12 (-5 *1 (-644 *2)) (-4 *2 (-1099)) (-4 *2 (-1214))))) +(-13 (-666 |#1|) (-10 -8 (-15 -3564 ($) -1623) (-15 -2391 ((-112) $)) (-15 -2508 ($ |#1| $)) (-15 -2152 ($ $ $)) (IF (|has| |#1| (-1099)) (PROGN (-15 -3834 ($ $ $)) (-15 -3821 ($ $ $)) (-15 -3806 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-828)) (-6 (-828)) |%noBranch|))) +((-2988 (((-112) $ $) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 11) (($ (-1180)) NIL) (((-1180) $) NIL) ((|#1| $) 8)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) (((-645 |#1|) (-13 (-1082) (-613 |#1|)) (-1099)) (T -645)) NIL (-13 (-1082) (-613 |#1|)) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 15)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3783 (((-862) $) 12)) (-3117 (((-112) $ $) 9)) (-2479 (($) 16 T CONST)) (-2947 (((-112) $ $) 6)) (* (($ |#1| $) 14))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 15)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3152 (((-862) $) 12)) (-3044 (((-112) $ $) 9)) (-4356 (($) 16 T CONST)) (-2914 (((-112) $ $) 6)) (* (($ |#1| $) 14))) (((-646 |#1|) (-140) (-1057)) (T -646)) -((-2479 (*1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1057)))) (-1788 (*1 *2 *1) (-12 (-4 *1 (-646 *3)) (-4 *3 (-1057)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1057))))) -(-13 (-1099) (-10 -8 (-15 (-2479) ($) -3704) (-15 -1788 ((-112) $)) (-15 * ($ |t#1| $)))) +((-4356 (*1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1057)))) (-3230 (*1 *2 *1) (-12 (-4 *1 (-646 *3)) (-4 *3 (-1057)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1057))))) +(-13 (-1099) (-10 -8 (-15 (-4356) ($) -1623) (-15 -3230 ((-112) $)) (-15 * ($ |t#1| $)))) (((-102) . T) ((-613 (-862)) . T) ((-1099) . T)) -((-3007 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2022 (($ |#1| |#1| $) 46)) (-2256 (((-112) $ (-771)) NIL)) (-4016 (($ (-1 (-112) |#1|) $) 62 (|has| $ (-6 -4414)))) (-2701 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-3012 (($) NIL T CONST)) (-3657 (($ $) 48)) (-2031 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2956 (($ |#1| $) 59 (|has| $ (-6 -4414))) (($ (-1 (-112) |#1|) $) 61 (|has| $ (-6 -4414)))) (-2665 (($ |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-1676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4414)))) (-3979 (((-644 |#1|) $) 9 (|has| $ (-6 -4414)))) (-2404 (((-112) $ (-771)) NIL)) (-2329 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2908 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#1| |#1|) $) 37)) (-2603 (((-112) $ (-771)) NIL)) (-4117 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4039 ((|#1| $) 50)) (-3406 (($ |#1| $) 29) (($ |#1| $ (-771)) 45)) (-4035 (((-1119) $) NIL (|has| |#1| (-1099)))) (-2006 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2539 ((|#1| $) 53)) (-2692 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) NIL)) (-3467 (((-112) $) 23)) (-1494 (($) 28)) (-2860 (((-112) $) 57)) (-3014 (((-644 (-2 (|:| -3867 |#1|) (|:| -4045 (-771)))) $) 69)) (-3481 (($) 26) (($ (-644 |#1|)) 19)) (-4045 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) 66 (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3940 (($ $) 20)) (-1348 (((-538) $) 34 (|has| |#1| (-614 (-538))))) (-3796 (($ (-644 |#1|)) NIL)) (-3783 (((-862) $) 14 (|has| |#1| (-613 (-862))))) (-3117 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1748 (($ (-644 |#1|)) 24)) (-1894 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) 71 (|has| |#1| (-1099)))) (-3018 (((-771) $) 17 (|has| $ (-6 -4414))))) -(((-647 |#1|) (-13 (-695 |#1|) (-10 -8 (-6 -4414) (-15 -2860 ((-112) $)) (-15 -2022 ($ |#1| |#1| $)))) (-1099)) (T -647)) -((-2860 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-647 *3)) (-4 *3 (-1099)))) (-2022 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-647 *2)) (-4 *2 (-1099))))) -(-13 (-695 |#1|) (-10 -8 (-6 -4414) (-15 -2860 ((-112) $)) (-15 -2022 ($ |#1| |#1| $)))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-4175 (((-3 $ "failed") $ $) 20)) (-3012 (($) 18 T CONST)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3783 (((-862) $) 12)) (-3117 (((-112) $ $) 9)) (-2479 (($) 19 T CONST)) (-2947 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ |#1| $) 27))) +((-2988 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3931 (($ |#1| |#1| $) 46)) (-1504 (((-112) $ (-771)) NIL)) (-2995 (($ (-1 (-112) |#1|) $) 62 (|has| $ (-6 -4414)))) (-3678 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2463 (($) NIL T CONST)) (-3322 (($ $) 48)) (-3942 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3512 (($ |#1| $) 59 (|has| $ (-6 -4414))) (($ (-1 (-112) |#1|) $) 61 (|has| $ (-6 -4414)))) (-2622 (($ |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2873 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4414)))) (-1683 (((-644 |#1|) $) 9 (|has| $ (-6 -4414)))) (-3456 (((-112) $ (-771)) NIL)) (-3491 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3885 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#1| |#1|) $) 37)) (-3267 (((-112) $ (-771)) NIL)) (-3380 (((-1157) $) NIL (|has| |#1| (-1099)))) (-3278 ((|#1| $) 50)) (-3888 (($ |#1| $) 29) (($ |#1| $ (-771)) 45)) (-4072 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1973 ((|#1| $) 53)) (-2823 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) NIL)) (-2872 (((-112) $) 23)) (-3493 (($) 28)) (-1680 (((-112) $) 57)) (-1352 (((-644 (-2 (|:| -2636 |#1|) (|:| -4083 (-771)))) $) 69)) (-1792 (($) 26) (($ (-644 |#1|)) 19)) (-4083 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) 66 (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-1480 (($ $) 20)) (-2376 (((-538) $) 34 (|has| |#1| (-614 (-538))))) (-1340 (($ (-644 |#1|)) NIL)) (-3152 (((-862) $) 14 (|has| |#1| (-613 (-862))))) (-3044 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2948 (($ (-644 |#1|)) 24)) (-2210 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) 71 (|has| |#1| (-1099)))) (-3000 (((-771) $) 17 (|has| $ (-6 -4414))))) +(((-647 |#1|) (-13 (-695 |#1|) (-10 -8 (-6 -4414) (-15 -1680 ((-112) $)) (-15 -3931 ($ |#1| |#1| $)))) (-1099)) (T -647)) +((-1680 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-647 *3)) (-4 *3 (-1099)))) (-3931 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-647 *2)) (-4 *2 (-1099))))) +(-13 (-695 |#1|) (-10 -8 (-6 -4414) (-15 -1680 ((-112) $)) (-15 -3931 ($ |#1| |#1| $)))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-3967 (((-3 $ "failed") $ $) 20)) (-2463 (($) 18 T CONST)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3152 (((-862) $) 12)) (-3044 (((-112) $ $) 9)) (-4356 (($) 19 T CONST)) (-2914 (((-112) $ $) 6)) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ |#1| $) 27))) (((-648 |#1|) (-140) (-1057)) (T -648)) NIL (-13 (-21) (-646 |t#1|)) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-1099) . T)) -((-3007 (((-112) $ $) NIL)) (-1970 (((-771) $) 17)) (-3765 (($ $ |#1|) 69)) (-3413 (($ $) 39)) (-1377 (($ $) 37)) (-4307 (((-3 |#1| "failed") $) 61)) (-4205 ((|#1| $) NIL)) (-3239 (($ |#1| |#2| $) 79) (($ $ $) 81)) (-3416 (((-862) $ (-1 (-862) (-862) (-862)) (-1 (-862) (-862) (-862)) (-566)) 56)) (-3946 ((|#1| $ (-566)) 35)) (-3712 ((|#2| $ (-566)) 34)) (-1657 (($ (-1 |#1| |#1|) $) 41)) (-3352 (($ (-1 |#2| |#2|) $) 47)) (-1516 (($) 11)) (-1569 (($ |#1| |#2|) 24)) (-3805 (($ (-644 (-2 (|:| |gen| |#1|) (|:| -2561 |#2|)))) 25)) (-1791 (((-644 (-2 (|:| |gen| |#1|) (|:| -2561 |#2|))) $) 14)) (-2170 (($ |#1| $) 71)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-1679 (((-112) $ $) 76)) (-3783 (((-862) $) 21) (($ |#1|) 18)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) 27))) -(((-649 |#1| |#2| |#3|) (-13 (-1099) (-1038 |#1|) (-10 -8 (-15 -3416 ((-862) $ (-1 (-862) (-862) (-862)) (-1 (-862) (-862) (-862)) (-566))) (-15 -1791 ((-644 (-2 (|:| |gen| |#1|) (|:| -2561 |#2|))) $)) (-15 -1569 ($ |#1| |#2|)) (-15 -3805 ($ (-644 (-2 (|:| |gen| |#1|) (|:| -2561 |#2|))))) (-15 -3712 (|#2| $ (-566))) (-15 -3946 (|#1| $ (-566))) (-15 -1377 ($ $)) (-15 -3413 ($ $)) (-15 -1970 ((-771) $)) (-15 -1516 ($)) (-15 -3765 ($ $ |#1|)) (-15 -2170 ($ |#1| $)) (-15 -3239 ($ |#1| |#2| $)) (-15 -3239 ($ $ $)) (-15 -1679 ((-112) $ $)) (-15 -3352 ($ (-1 |#2| |#2|) $)) (-15 -1657 ($ (-1 |#1| |#1|) $)))) (-1099) (-23) |#2|) (T -649)) -((-3416 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-862) (-862) (-862))) (-5 *4 (-566)) (-5 *2 (-862)) (-5 *1 (-649 *5 *6 *7)) (-4 *5 (-1099)) (-4 *6 (-23)) (-14 *7 *6))) (-1791 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -2561 *4)))) (-5 *1 (-649 *3 *4 *5)) (-4 *3 (-1099)) (-4 *4 (-23)) (-14 *5 *4))) (-1569 (*1 *1 *2 *3) (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23)) (-14 *4 *3))) (-3805 (*1 *1 *2) (-12 (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -2561 *4)))) (-4 *3 (-1099)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-649 *3 *4 *5)))) (-3712 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *2 (-23)) (-5 *1 (-649 *4 *2 *5)) (-4 *4 (-1099)) (-14 *5 *2))) (-3946 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *2 (-1099)) (-5 *1 (-649 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-1377 (*1 *1 *1) (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23)) (-14 *4 *3))) (-3413 (*1 *1 *1) (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23)) (-14 *4 *3))) (-1970 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-649 *3 *4 *5)) (-4 *3 (-1099)) (-4 *4 (-23)) (-14 *5 *4))) (-1516 (*1 *1) (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23)) (-14 *4 *3))) (-3765 (*1 *1 *1 *2) (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23)) (-14 *4 *3))) (-2170 (*1 *1 *2 *1) (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23)) (-14 *4 *3))) (-3239 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23)) (-14 *4 *3))) (-3239 (*1 *1 *1 *1) (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23)) (-14 *4 *3))) (-1679 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-649 *3 *4 *5)) (-4 *3 (-1099)) (-4 *4 (-23)) (-14 *5 *4))) (-3352 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-649 *3 *4 *5)) (-4 *3 (-1099)))) (-1657 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1099)) (-5 *1 (-649 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(-13 (-1099) (-1038 |#1|) (-10 -8 (-15 -3416 ((-862) $ (-1 (-862) (-862) (-862)) (-1 (-862) (-862) (-862)) (-566))) (-15 -1791 ((-644 (-2 (|:| |gen| |#1|) (|:| -2561 |#2|))) $)) (-15 -1569 ($ |#1| |#2|)) (-15 -3805 ($ (-644 (-2 (|:| |gen| |#1|) (|:| -2561 |#2|))))) (-15 -3712 (|#2| $ (-566))) (-15 -3946 (|#1| $ (-566))) (-15 -1377 ($ $)) (-15 -3413 ($ $)) (-15 -1970 ((-771) $)) (-15 -1516 ($)) (-15 -3765 ($ $ |#1|)) (-15 -2170 ($ |#1| $)) (-15 -3239 ($ |#1| |#2| $)) (-15 -3239 ($ $ $)) (-15 -1679 ((-112) $ $)) (-15 -3352 ($ (-1 |#2| |#2|) $)) (-15 -1657 ($ (-1 |#1| |#1|) $)))) -((-2712 (((-566) $) 31)) (-4276 (($ |#2| $ (-566)) 27) (($ $ $ (-566)) NIL)) (-4074 (((-644 (-566)) $) 12)) (-3792 (((-112) (-566) $) 18)) (-3721 (($ $ |#2|) 24) (($ |#2| $) 25) (($ $ $) NIL) (($ (-644 $)) NIL))) -(((-650 |#1| |#2|) (-10 -8 (-15 -4276 (|#1| |#1| |#1| (-566))) (-15 -4276 (|#1| |#2| |#1| (-566))) (-15 -3721 (|#1| (-644 |#1|))) (-15 -3721 (|#1| |#1| |#1|)) (-15 -3721 (|#1| |#2| |#1|)) (-15 -3721 (|#1| |#1| |#2|)) (-15 -2712 ((-566) |#1|)) (-15 -4074 ((-644 (-566)) |#1|)) (-15 -3792 ((-112) (-566) |#1|))) (-651 |#2|) (-1214)) (T -650)) -NIL -(-10 -8 (-15 -4276 (|#1| |#1| |#1| (-566))) (-15 -4276 (|#1| |#2| |#1| (-566))) (-15 -3721 (|#1| (-644 |#1|))) (-15 -3721 (|#1| |#1| |#1|)) (-15 -3721 (|#1| |#2| |#1|)) (-15 -3721 (|#1| |#1| |#2|)) (-15 -2712 ((-566) |#1|)) (-15 -4074 ((-644 (-566)) |#1|)) (-15 -3792 ((-112) (-566) |#1|))) -((-3007 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-3734 (((-1269) $ (-566) (-566)) 41 (|has| $ (-6 -4415)))) (-2256 (((-112) $ (-771)) 8)) (-3923 ((|#1| $ (-566) |#1|) 53 (|has| $ (-6 -4415))) ((|#1| $ (-1231 (-566)) |#1|) 59 (|has| $ (-6 -4415)))) (-2701 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4414)))) (-3012 (($) 7 T CONST)) (-2031 (($ $) 79 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2665 (($ |#1| $) 78 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4414)))) (-1676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4414)))) (-2920 ((|#1| $ (-566) |#1|) 54 (|has| $ (-6 -4415)))) (-2855 ((|#1| $ (-566)) 52)) (-3979 (((-644 |#1|) $) 31 (|has| $ (-6 -4414)))) (-4265 (($ (-771) |#1|) 70)) (-2404 (((-112) $ (-771)) 9)) (-3854 (((-566) $) 44 (|has| (-566) (-850)))) (-2329 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2712 (((-566) $) 45 (|has| (-566) (-850)))) (-2908 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2603 (((-112) $ (-771)) 10)) (-4117 (((-1157) $) 22 (|has| |#1| (-1099)))) (-4276 (($ |#1| $ (-566)) 61) (($ $ $ (-566)) 60)) (-4074 (((-644 (-566)) $) 47)) (-3792 (((-112) (-566) $) 48)) (-4035 (((-1119) $) 21 (|has| |#1| (-1099)))) (-1998 ((|#1| $) 43 (|has| (-566) (-850)))) (-2006 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-4030 (($ $ |#1|) 42 (|has| $ (-6 -4415)))) (-2692 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) 14)) (-4156 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2993 (((-644 |#1|) $) 49)) (-3467 (((-112) $) 11)) (-1494 (($) 12)) (-4390 ((|#1| $ (-566) |#1|) 51) ((|#1| $ (-566)) 50) (($ $ (-1231 (-566))) 64)) (-2187 (($ $ (-566)) 63) (($ $ (-1231 (-566))) 62)) (-4045 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-3940 (($ $) 13)) (-1348 (((-538) $) 80 (|has| |#1| (-614 (-538))))) (-3796 (($ (-644 |#1|)) 71)) (-3721 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-644 $)) 66)) (-3783 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-3117 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-1894 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3018 (((-771) $) 6 (|has| $ (-6 -4414))))) +((-2988 (((-112) $ $) NIL)) (-3870 (((-771) $) 17)) (-3097 (($ $ |#1|) 69)) (-3166 (($ $) 39)) (-3683 (($ $) 37)) (-2229 (((-3 |#1| "failed") $) 61)) (-4158 ((|#1| $) NIL)) (-4243 (($ |#1| |#2| $) 79) (($ $ $) 81)) (-3503 (((-862) $ (-1 (-862) (-862) (-862)) (-1 (-862) (-862) (-862)) (-566)) 56)) (-2121 ((|#1| $ (-566)) 35)) (-2707 ((|#2| $ (-566)) 34)) (-3499 (($ (-1 |#1| |#1|) $) 41)) (-3480 (($ (-1 |#2| |#2|) $) 47)) (-3871 (($) 11)) (-3687 (($ |#1| |#2|) 24)) (-1341 (($ (-644 (-2 (|:| |gen| |#1|) (|:| -3521 |#2|)))) 25)) (-2351 (((-644 (-2 (|:| |gen| |#1|) (|:| -3521 |#2|))) $) 14)) (-2486 (($ |#1| $) 71)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-1502 (((-112) $ $) 76)) (-3152 (((-862) $) 21) (($ |#1|) 18)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) 27))) +(((-649 |#1| |#2| |#3|) (-13 (-1099) (-1038 |#1|) (-10 -8 (-15 -3503 ((-862) $ (-1 (-862) (-862) (-862)) (-1 (-862) (-862) (-862)) (-566))) (-15 -2351 ((-644 (-2 (|:| |gen| |#1|) (|:| -3521 |#2|))) $)) (-15 -3687 ($ |#1| |#2|)) (-15 -1341 ($ (-644 (-2 (|:| |gen| |#1|) (|:| -3521 |#2|))))) (-15 -2707 (|#2| $ (-566))) (-15 -2121 (|#1| $ (-566))) (-15 -3683 ($ $)) (-15 -3166 ($ $)) (-15 -3870 ((-771) $)) (-15 -3871 ($)) (-15 -3097 ($ $ |#1|)) (-15 -2486 ($ |#1| $)) (-15 -4243 ($ |#1| |#2| $)) (-15 -4243 ($ $ $)) (-15 -1502 ((-112) $ $)) (-15 -3480 ($ (-1 |#2| |#2|) $)) (-15 -3499 ($ (-1 |#1| |#1|) $)))) (-1099) (-23) |#2|) (T -649)) +((-3503 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-862) (-862) (-862))) (-5 *4 (-566)) (-5 *2 (-862)) (-5 *1 (-649 *5 *6 *7)) (-4 *5 (-1099)) (-4 *6 (-23)) (-14 *7 *6))) (-2351 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -3521 *4)))) (-5 *1 (-649 *3 *4 *5)) (-4 *3 (-1099)) (-4 *4 (-23)) (-14 *5 *4))) (-3687 (*1 *1 *2 *3) (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23)) (-14 *4 *3))) (-1341 (*1 *1 *2) (-12 (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -3521 *4)))) (-4 *3 (-1099)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-649 *3 *4 *5)))) (-2707 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *2 (-23)) (-5 *1 (-649 *4 *2 *5)) (-4 *4 (-1099)) (-14 *5 *2))) (-2121 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *2 (-1099)) (-5 *1 (-649 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-3683 (*1 *1 *1) (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23)) (-14 *4 *3))) (-3166 (*1 *1 *1) (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23)) (-14 *4 *3))) (-3870 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-649 *3 *4 *5)) (-4 *3 (-1099)) (-4 *4 (-23)) (-14 *5 *4))) (-3871 (*1 *1) (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23)) (-14 *4 *3))) (-3097 (*1 *1 *1 *2) (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23)) (-14 *4 *3))) (-2486 (*1 *1 *2 *1) (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23)) (-14 *4 *3))) (-4243 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23)) (-14 *4 *3))) (-4243 (*1 *1 *1 *1) (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23)) (-14 *4 *3))) (-1502 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-649 *3 *4 *5)) (-4 *3 (-1099)) (-4 *4 (-23)) (-14 *5 *4))) (-3480 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-649 *3 *4 *5)) (-4 *3 (-1099)))) (-3499 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1099)) (-5 *1 (-649 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) +(-13 (-1099) (-1038 |#1|) (-10 -8 (-15 -3503 ((-862) $ (-1 (-862) (-862) (-862)) (-1 (-862) (-862) (-862)) (-566))) (-15 -2351 ((-644 (-2 (|:| |gen| |#1|) (|:| -3521 |#2|))) $)) (-15 -3687 ($ |#1| |#2|)) (-15 -1341 ($ (-644 (-2 (|:| |gen| |#1|) (|:| -3521 |#2|))))) (-15 -2707 (|#2| $ (-566))) (-15 -2121 (|#1| $ (-566))) (-15 -3683 ($ $)) (-15 -3166 ($ $)) (-15 -3870 ((-771) $)) (-15 -3871 ($)) (-15 -3097 ($ $ |#1|)) (-15 -2486 ($ |#1| $)) (-15 -4243 ($ |#1| |#2| $)) (-15 -4243 ($ $ $)) (-15 -1502 ((-112) $ $)) (-15 -3480 ($ (-1 |#2| |#2|) $)) (-15 -3499 ($ (-1 |#1| |#1|) $)))) +((-4050 (((-566) $) 31)) (-1859 (($ |#2| $ (-566)) 27) (($ $ $ (-566)) NIL)) (-3725 (((-644 (-566)) $) 12)) (-1644 (((-112) (-566) $) 18)) (-4386 (($ $ |#2|) 24) (($ |#2| $) 25) (($ $ $) NIL) (($ (-644 $)) NIL))) +(((-650 |#1| |#2|) (-10 -8 (-15 -1859 (|#1| |#1| |#1| (-566))) (-15 -1859 (|#1| |#2| |#1| (-566))) (-15 -4386 (|#1| (-644 |#1|))) (-15 -4386 (|#1| |#1| |#1|)) (-15 -4386 (|#1| |#2| |#1|)) (-15 -4386 (|#1| |#1| |#2|)) (-15 -4050 ((-566) |#1|)) (-15 -3725 ((-644 (-566)) |#1|)) (-15 -1644 ((-112) (-566) |#1|))) (-651 |#2|) (-1214)) (T -650)) +NIL +(-10 -8 (-15 -1859 (|#1| |#1| |#1| (-566))) (-15 -1859 (|#1| |#2| |#1| (-566))) (-15 -4386 (|#1| (-644 |#1|))) (-15 -4386 (|#1| |#1| |#1|)) (-15 -4386 (|#1| |#2| |#1|)) (-15 -4386 (|#1| |#1| |#2|)) (-15 -4050 ((-566) |#1|)) (-15 -3725 ((-644 (-566)) |#1|)) (-15 -1644 ((-112) (-566) |#1|))) +((-2988 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-1944 (((-1269) $ (-566) (-566)) 41 (|has| $ (-6 -4415)))) (-1504 (((-112) $ (-771)) 8)) (-1456 ((|#1| $ (-566) |#1|) 53 (|has| $ (-6 -4415))) ((|#1| $ (-1231 (-566)) |#1|) 59 (|has| $ (-6 -4415)))) (-3678 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4414)))) (-2463 (($) 7 T CONST)) (-3942 (($ $) 79 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2622 (($ |#1| $) 78 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4414)))) (-2873 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4414)))) (-3897 ((|#1| $ (-566) |#1|) 54 (|has| $ (-6 -4415)))) (-3829 ((|#1| $ (-566)) 52)) (-1683 (((-644 |#1|) $) 31 (|has| $ (-6 -4414)))) (-1860 (($ (-771) |#1|) 70)) (-3456 (((-112) $ (-771)) 9)) (-2296 (((-566) $) 44 (|has| (-566) (-850)))) (-3491 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-4050 (((-566) $) 45 (|has| (-566) (-850)))) (-3885 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3267 (((-112) $ (-771)) 10)) (-3380 (((-1157) $) 22 (|has| |#1| (-1099)))) (-1859 (($ |#1| $ (-566)) 61) (($ $ $ (-566)) 60)) (-3725 (((-644 (-566)) $) 47)) (-1644 (((-112) (-566) $) 48)) (-4072 (((-1119) $) 21 (|has| |#1| (-1099)))) (-3908 ((|#1| $) 43 (|has| (-566) (-850)))) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-3787 (($ $ |#1|) 42 (|has| $ (-6 -4415)))) (-2823 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) 14)) (-2847 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3486 (((-644 |#1|) $) 49)) (-2872 (((-112) $) 11)) (-3493 (($) 12)) (-1309 ((|#1| $ (-566) |#1|) 51) ((|#1| $ (-566)) 50) (($ $ (-1231 (-566))) 64)) (-2166 (($ $ (-566)) 63) (($ $ (-1231 (-566))) 62)) (-4083 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-1480 (($ $) 13)) (-2376 (((-538) $) 80 (|has| |#1| (-614 (-538))))) (-1340 (($ (-644 |#1|)) 71)) (-4386 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-644 $)) 66)) (-3152 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-3044 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-2210 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3000 (((-771) $) 6 (|has| $ (-6 -4414))))) (((-651 |#1|) (-140) (-1214)) (T -651)) -((-4265 (*1 *1 *2 *3) (-12 (-5 *2 (-771)) (-4 *1 (-651 *3)) (-4 *3 (-1214)))) (-3721 (*1 *1 *1 *2) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1214)))) (-3721 (*1 *1 *2 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1214)))) (-3721 (*1 *1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1214)))) (-3721 (*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-651 *3)) (-4 *3 (-1214)))) (-1301 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-651 *3)) (-4 *3 (-1214)))) (-4390 (*1 *1 *1 *2) (-12 (-5 *2 (-1231 (-566))) (-4 *1 (-651 *3)) (-4 *3 (-1214)))) (-2187 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-651 *3)) (-4 *3 (-1214)))) (-2187 (*1 *1 *1 *2) (-12 (-5 *2 (-1231 (-566))) (-4 *1 (-651 *3)) (-4 *3 (-1214)))) (-4276 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *1 (-651 *2)) (-4 *2 (-1214)))) (-4276 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-651 *3)) (-4 *3 (-1214)))) (-3923 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1231 (-566))) (|has| *1 (-6 -4415)) (-4 *1 (-651 *2)) (-4 *2 (-1214))))) -(-13 (-604 (-566) |t#1|) (-151 |t#1|) (-10 -8 (-15 -4265 ($ (-771) |t#1|)) (-15 -3721 ($ $ |t#1|)) (-15 -3721 ($ |t#1| $)) (-15 -3721 ($ $ $)) (-15 -3721 ($ (-644 $))) (-15 -1301 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4390 ($ $ (-1231 (-566)))) (-15 -2187 ($ $ (-566))) (-15 -2187 ($ $ (-1231 (-566)))) (-15 -4276 ($ |t#1| $ (-566))) (-15 -4276 ($ $ $ (-566))) (IF (|has| $ (-6 -4415)) (-15 -3923 (|t#1| $ (-1231 (-566)) |t#1|)) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2809 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-151 |#1|) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-287 #0=(-566) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-604 #0# |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1099) |has| |#1| (-1099)) ((-1214) . T)) -((-1957 (((-3 |#2| "failed") |#3| |#2| (-1175) |#2| (-644 |#2|)) 174) (((-3 (-2 (|:| |particular| |#2|) (|:| -2365 (-644 |#2|))) "failed") |#3| |#2| (-1175)) 44))) -(((-652 |#1| |#2| |#3|) (-10 -7 (-15 -1957 ((-3 (-2 (|:| |particular| |#2|) (|:| -2365 (-644 |#2|))) "failed") |#3| |#2| (-1175))) (-15 -1957 ((-3 |#2| "failed") |#3| |#2| (-1175) |#2| (-644 |#2|)))) (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147)) (-13 (-29 |#1|) (-1199) (-959)) (-656 |#2|)) (T -652)) -((-1957 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1175)) (-5 *5 (-644 *2)) (-4 *2 (-13 (-29 *6) (-1199) (-959))) (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *1 (-652 *6 *2 *3)) (-4 *3 (-656 *2)))) (-1957 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1175)) (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-4 *4 (-13 (-29 *6) (-1199) (-959))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2365 (-644 *4)))) (-5 *1 (-652 *6 *4 *3)) (-4 *3 (-656 *4))))) -(-10 -7 (-15 -1957 ((-3 (-2 (|:| |particular| |#2|) (|:| -2365 (-644 |#2|))) "failed") |#3| |#2| (-1175))) (-15 -1957 ((-3 |#2| "failed") |#3| |#2| (-1175) |#2| (-644 |#2|)))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-3070 (($ $) NIL (|has| |#1| (-365)))) (-3216 (($ $ $) NIL (|has| |#1| (-365)))) (-2553 (($ $ (-771)) NIL (|has| |#1| (-365)))) (-4175 (((-3 $ "failed") $ $) NIL)) (-3012 (($) NIL T CONST)) (-3982 (($ $ $) NIL (|has| |#1| (-365)))) (-2135 (($ $ $) NIL (|has| |#1| (-365)))) (-3560 (($ $ $) NIL (|has| |#1| (-365)))) (-1600 (($ $ $) NIL (|has| |#1| (-365)))) (-3768 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-365)))) (-3911 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-1794 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL (|has| |#1| (-365)))) (-4307 (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) NIL)) (-4205 (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) NIL)) (-1786 (($ $) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-4075 (($ $) NIL (|has| |#1| (-454)))) (-3934 (((-112) $) NIL)) (-3840 (($ |#1| (-771)) NIL)) (-1952 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL (|has| |#1| (-558)))) (-1628 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL (|has| |#1| (-558)))) (-3760 (((-771) $) NIL)) (-4133 (($ $ $) NIL (|has| |#1| (-365)))) (-4356 (($ $ $) NIL (|has| |#1| (-365)))) (-1850 (($ $ $) NIL (|has| |#1| (-365)))) (-3705 (($ $ $) NIL (|has| |#1| (-365)))) (-3119 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-365)))) (-3294 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-1726 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL (|has| |#1| (-365)))) (-1763 ((|#1| $) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-2994 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558)))) (-4390 ((|#1| $ |#1|) NIL)) (-3724 (($ $ $) NIL (|has| |#1| (-365)))) (-3636 (((-771) $) NIL)) (-2483 ((|#1| $) NIL (|has| |#1| (-454)))) (-3783 (((-862) $) NIL) (($ (-566)) NIL) (($ (-409 (-566))) NIL (|has| |#1| (-1038 (-409 (-566))))) (($ |#1|) NIL)) (-4170 (((-644 |#1|) $) NIL)) (-2649 ((|#1| $ (-771)) NIL)) (-2107 (((-771)) NIL T CONST)) (-3117 (((-112) $ $) NIL)) (-1948 ((|#1| $ |#1| |#1|) NIL)) (-2279 (($ $) NIL)) (-2479 (($) NIL T CONST)) (-4334 (($) NIL T CONST)) (-2875 (($) NIL)) (-2947 (((-112) $ $) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +((-1860 (*1 *1 *2 *3) (-12 (-5 *2 (-771)) (-4 *1 (-651 *3)) (-4 *3 (-1214)))) (-4386 (*1 *1 *1 *2) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1214)))) (-4386 (*1 *1 *2 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1214)))) (-4386 (*1 *1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1214)))) (-4386 (*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-651 *3)) (-4 *3 (-1214)))) (-2319 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-651 *3)) (-4 *3 (-1214)))) (-1309 (*1 *1 *1 *2) (-12 (-5 *2 (-1231 (-566))) (-4 *1 (-651 *3)) (-4 *3 (-1214)))) (-2166 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-651 *3)) (-4 *3 (-1214)))) (-2166 (*1 *1 *1 *2) (-12 (-5 *2 (-1231 (-566))) (-4 *1 (-651 *3)) (-4 *3 (-1214)))) (-1859 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *1 (-651 *2)) (-4 *2 (-1214)))) (-1859 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-651 *3)) (-4 *3 (-1214)))) (-1456 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1231 (-566))) (|has| *1 (-6 -4415)) (-4 *1 (-651 *2)) (-4 *2 (-1214))))) +(-13 (-604 (-566) |t#1|) (-151 |t#1|) (-10 -8 (-15 -1860 ($ (-771) |t#1|)) (-15 -4386 ($ $ |t#1|)) (-15 -4386 ($ |t#1| $)) (-15 -4386 ($ $ $)) (-15 -4386 ($ (-644 $))) (-15 -2319 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1309 ($ $ (-1231 (-566)))) (-15 -2166 ($ $ (-566))) (-15 -2166 ($ $ (-1231 (-566)))) (-15 -1859 ($ |t#1| $ (-566))) (-15 -1859 ($ $ $ (-566))) (IF (|has| $ (-6 -4415)) (-15 -1456 (|t#1| $ (-1231 (-566)) |t#1|)) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2768 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-151 |#1|) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-287 #0=(-566) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-604 #0# |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1099) |has| |#1| (-1099)) ((-1214) . T)) +((-2423 (((-3 |#2| "failed") |#3| |#2| (-1175) |#2| (-644 |#2|)) 174) (((-3 (-2 (|:| |particular| |#2|) (|:| -2875 (-644 |#2|))) "failed") |#3| |#2| (-1175)) 44))) +(((-652 |#1| |#2| |#3|) (-10 -7 (-15 -2423 ((-3 (-2 (|:| |particular| |#2|) (|:| -2875 (-644 |#2|))) "failed") |#3| |#2| (-1175))) (-15 -2423 ((-3 |#2| "failed") |#3| |#2| (-1175) |#2| (-644 |#2|)))) (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147)) (-13 (-29 |#1|) (-1199) (-959)) (-656 |#2|)) (T -652)) +((-2423 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1175)) (-5 *5 (-644 *2)) (-4 *2 (-13 (-29 *6) (-1199) (-959))) (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *1 (-652 *6 *2 *3)) (-4 *3 (-656 *2)))) (-2423 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1175)) (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-4 *4 (-13 (-29 *6) (-1199) (-959))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2875 (-644 *4)))) (-5 *1 (-652 *6 *4 *3)) (-4 *3 (-656 *4))))) +(-10 -7 (-15 -2423 ((-3 (-2 (|:| |particular| |#2|) (|:| -2875 (-644 |#2|))) "failed") |#3| |#2| (-1175))) (-15 -2423 ((-3 |#2| "failed") |#3| |#2| (-1175) |#2| (-644 |#2|)))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-4181 (($ $) NIL (|has| |#1| (-365)))) (-3396 (($ $ $) NIL (|has| |#1| (-365)))) (-3889 (($ $ (-771)) NIL (|has| |#1| (-365)))) (-3967 (((-3 $ "failed") $ $) NIL)) (-2463 (($) NIL T CONST)) (-3615 (($ $ $) NIL (|has| |#1| (-365)))) (-2387 (($ $ $) NIL (|has| |#1| (-365)))) (-3081 (($ $ $) NIL (|has| |#1| (-365)))) (-2850 (($ $ $) NIL (|has| |#1| (-365)))) (-2190 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL (|has| |#1| (-365)))) (-3985 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-2619 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL (|has| |#1| (-365)))) (-2229 (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) NIL)) (-4158 (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) NIL)) (-2814 (($ $) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-2616 (($ $) NIL (|has| |#1| (-454)))) (-2389 (((-112) $) NIL)) (-1746 (($ |#1| (-771)) NIL)) (-3093 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL (|has| |#1| (-558)))) (-3567 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL (|has| |#1| (-558)))) (-2749 (((-771) $) NIL)) (-2488 (($ $ $) NIL (|has| |#1| (-365)))) (-3148 (($ $ $) NIL (|has| |#1| (-365)))) (-2047 (($ $ $) NIL (|has| |#1| (-365)))) (-2123 (($ $ $) NIL (|has| |#1| (-365)))) (-1916 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL (|has| |#1| (-365)))) (-3483 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-2578 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL (|has| |#1| (-365)))) (-2794 ((|#1| $) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-2978 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558)))) (-1309 ((|#1| $ |#1|) NIL)) (-3334 (($ $ $) NIL (|has| |#1| (-365)))) (-3902 (((-771) $) NIL)) (-3173 ((|#1| $) NIL (|has| |#1| (-454)))) (-3152 (((-862) $) NIL) (($ (-566)) NIL) (($ (-409 (-566))) NIL (|has| |#1| (-1038 (-409 (-566))))) (($ |#1|) NIL)) (-1643 (((-644 |#1|) $) NIL)) (-2271 ((|#1| $ (-771)) NIL)) (-2593 (((-771)) NIL T CONST)) (-3044 (((-112) $ $) NIL)) (-3847 ((|#1| $ |#1| |#1|) NIL)) (-3045 (($ $) NIL)) (-4356 (($) NIL T CONST)) (-4366 (($) NIL T CONST)) (-3497 (($) NIL)) (-2914 (((-112) $ $) NIL)) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) (((-653 |#1|) (-656 |#1|) (-233)) (T -653)) NIL (-656 |#1|) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-3070 (($ $) NIL (|has| |#1| (-365)))) (-3216 (($ $ $) NIL (|has| |#1| (-365)))) (-2553 (($ $ (-771)) NIL (|has| |#1| (-365)))) (-4175 (((-3 $ "failed") $ $) NIL)) (-3012 (($) NIL T CONST)) (-3982 (($ $ $) NIL (|has| |#1| (-365)))) (-2135 (($ $ $) NIL (|has| |#1| (-365)))) (-3560 (($ $ $) NIL (|has| |#1| (-365)))) (-1600 (($ $ $) NIL (|has| |#1| (-365)))) (-3768 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-365)))) (-3911 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-1794 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL (|has| |#1| (-365)))) (-4307 (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) NIL)) (-4205 (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) NIL)) (-1786 (($ $) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-4075 (($ $) NIL (|has| |#1| (-454)))) (-3934 (((-112) $) NIL)) (-3840 (($ |#1| (-771)) NIL)) (-1952 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL (|has| |#1| (-558)))) (-1628 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL (|has| |#1| (-558)))) (-3760 (((-771) $) NIL)) (-4133 (($ $ $) NIL (|has| |#1| (-365)))) (-4356 (($ $ $) NIL (|has| |#1| (-365)))) (-1850 (($ $ $) NIL (|has| |#1| (-365)))) (-3705 (($ $ $) NIL (|has| |#1| (-365)))) (-3119 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-365)))) (-3294 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-1726 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL (|has| |#1| (-365)))) (-1763 ((|#1| $) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-2994 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558)))) (-4390 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-3724 (($ $ $) NIL (|has| |#1| (-365)))) (-3636 (((-771) $) NIL)) (-2483 ((|#1| $) NIL (|has| |#1| (-454)))) (-3783 (((-862) $) NIL) (($ (-566)) NIL) (($ (-409 (-566))) NIL (|has| |#1| (-1038 (-409 (-566))))) (($ |#1|) NIL)) (-4170 (((-644 |#1|) $) NIL)) (-2649 ((|#1| $ (-771)) NIL)) (-2107 (((-771)) NIL T CONST)) (-3117 (((-112) $ $) NIL)) (-1948 ((|#1| $ |#1| |#1|) NIL)) (-2279 (($ $) NIL)) (-2479 (($) NIL T CONST)) (-4334 (($) NIL T CONST)) (-2875 (($) NIL)) (-2947 (((-112) $ $) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-654 |#1| |#2|) (-13 (-656 |#1|) (-287 |#2| |#2|)) (-233) (-13 (-648 |#1|) (-10 -8 (-15 -3561 ($ $))))) (T -654)) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-4181 (($ $) NIL (|has| |#1| (-365)))) (-3396 (($ $ $) NIL (|has| |#1| (-365)))) (-3889 (($ $ (-771)) NIL (|has| |#1| (-365)))) (-3967 (((-3 $ "failed") $ $) NIL)) (-2463 (($) NIL T CONST)) (-3615 (($ $ $) NIL (|has| |#1| (-365)))) (-2387 (($ $ $) NIL (|has| |#1| (-365)))) (-3081 (($ $ $) NIL (|has| |#1| (-365)))) (-2850 (($ $ $) NIL (|has| |#1| (-365)))) (-2190 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL (|has| |#1| (-365)))) (-3985 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-2619 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL (|has| |#1| (-365)))) (-2229 (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) NIL)) (-4158 (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) NIL)) (-2814 (($ $) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-2616 (($ $) NIL (|has| |#1| (-454)))) (-2389 (((-112) $) NIL)) (-1746 (($ |#1| (-771)) NIL)) (-3093 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL (|has| |#1| (-558)))) (-3567 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL (|has| |#1| (-558)))) (-2749 (((-771) $) NIL)) (-2488 (($ $ $) NIL (|has| |#1| (-365)))) (-3148 (($ $ $) NIL (|has| |#1| (-365)))) (-2047 (($ $ $) NIL (|has| |#1| (-365)))) (-2123 (($ $ $) NIL (|has| |#1| (-365)))) (-1916 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL (|has| |#1| (-365)))) (-3483 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-2578 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL (|has| |#1| (-365)))) (-2794 ((|#1| $) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-2978 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558)))) (-1309 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-3334 (($ $ $) NIL (|has| |#1| (-365)))) (-3902 (((-771) $) NIL)) (-3173 ((|#1| $) NIL (|has| |#1| (-454)))) (-3152 (((-862) $) NIL) (($ (-566)) NIL) (($ (-409 (-566))) NIL (|has| |#1| (-1038 (-409 (-566))))) (($ |#1|) NIL)) (-1643 (((-644 |#1|) $) NIL)) (-2271 ((|#1| $ (-771)) NIL)) (-2593 (((-771)) NIL T CONST)) (-3044 (((-112) $ $) NIL)) (-3847 ((|#1| $ |#1| |#1|) NIL)) (-3045 (($ $) NIL)) (-4356 (($) NIL T CONST)) (-4366 (($) NIL T CONST)) (-3497 (($) NIL)) (-2914 (((-112) $ $) NIL)) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-654 |#1| |#2|) (-13 (-656 |#1|) (-287 |#2| |#2|)) (-233) (-13 (-648 |#1|) (-10 -8 (-15 -3629 ($ $))))) (T -654)) NIL (-13 (-656 |#1|) (-287 |#2| |#2|)) -((-3070 (($ $) 29)) (-2279 (($ $) 27)) (-2875 (($) 13))) -(((-655 |#1| |#2|) (-10 -8 (-15 -3070 (|#1| |#1|)) (-15 -2279 (|#1| |#1|)) (-15 -2875 (|#1|))) (-656 |#2|) (-1049)) (T -655)) +((-4181 (($ $) 29)) (-3045 (($ $) 27)) (-3497 (($) 13))) +(((-655 |#1| |#2|) (-10 -8 (-15 -4181 (|#1| |#1|)) (-15 -3045 (|#1| |#1|)) (-15 -3497 (|#1|))) (-656 |#2|) (-1049)) (T -655)) NIL -(-10 -8 (-15 -3070 (|#1| |#1|)) (-15 -2279 (|#1| |#1|)) (-15 -2875 (|#1|))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-3070 (($ $) 87 (|has| |#1| (-365)))) (-3216 (($ $ $) 89 (|has| |#1| (-365)))) (-2553 (($ $ (-771)) 88 (|has| |#1| (-365)))) (-4175 (((-3 $ "failed") $ $) 20)) (-3012 (($) 18 T CONST)) (-3982 (($ $ $) 50 (|has| |#1| (-365)))) (-2135 (($ $ $) 51 (|has| |#1| (-365)))) (-3560 (($ $ $) 53 (|has| |#1| (-365)))) (-1600 (($ $ $) 48 (|has| |#1| (-365)))) (-3768 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 47 (|has| |#1| (-365)))) (-3911 (((-3 $ "failed") $ $) 49 (|has| |#1| (-365)))) (-1794 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) 52 (|has| |#1| (-365)))) (-4307 (((-3 (-566) "failed") $) 80 (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) 77 (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) 74)) (-4205 (((-566) $) 79 (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) 76 (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) 75)) (-1786 (($ $) 69)) (-1878 (((-3 $ "failed") $) 37)) (-4075 (($ $) 60 (|has| |#1| (-454)))) (-3934 (((-112) $) 35)) (-3840 (($ |#1| (-771)) 67)) (-1952 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) 62 (|has| |#1| (-558)))) (-1628 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) 63 (|has| |#1| (-558)))) (-3760 (((-771) $) 71)) (-4133 (($ $ $) 57 (|has| |#1| (-365)))) (-4356 (($ $ $) 58 (|has| |#1| (-365)))) (-1850 (($ $ $) 46 (|has| |#1| (-365)))) (-3705 (($ $ $) 55 (|has| |#1| (-365)))) (-3119 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 54 (|has| |#1| (-365)))) (-3294 (((-3 $ "failed") $ $) 56 (|has| |#1| (-365)))) (-1726 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) 59 (|has| |#1| (-365)))) (-1763 ((|#1| $) 70)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-2994 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-558)))) (-4390 ((|#1| $ |#1|) 92)) (-3724 (($ $ $) 86 (|has| |#1| (-365)))) (-3636 (((-771) $) 72)) (-2483 ((|#1| $) 61 (|has| |#1| (-454)))) (-3783 (((-862) $) 12) (($ (-566)) 33) (($ (-409 (-566))) 78 (|has| |#1| (-1038 (-409 (-566))))) (($ |#1|) 73)) (-4170 (((-644 |#1|) $) 66)) (-2649 ((|#1| $ (-771)) 68)) (-2107 (((-771)) 32 T CONST)) (-3117 (((-112) $ $) 9)) (-1948 ((|#1| $ |#1| |#1|) 65)) (-2279 (($ $) 90)) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-2875 (($) 91)) (-2947 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) +(-10 -8 (-15 -4181 (|#1| |#1|)) (-15 -3045 (|#1| |#1|)) (-15 -3497 (|#1|))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-4181 (($ $) 87 (|has| |#1| (-365)))) (-3396 (($ $ $) 89 (|has| |#1| (-365)))) (-3889 (($ $ (-771)) 88 (|has| |#1| (-365)))) (-3967 (((-3 $ "failed") $ $) 20)) (-2463 (($) 18 T CONST)) (-3615 (($ $ $) 50 (|has| |#1| (-365)))) (-2387 (($ $ $) 51 (|has| |#1| (-365)))) (-3081 (($ $ $) 53 (|has| |#1| (-365)))) (-2850 (($ $ $) 48 (|has| |#1| (-365)))) (-2190 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) 47 (|has| |#1| (-365)))) (-3985 (((-3 $ "failed") $ $) 49 (|has| |#1| (-365)))) (-2619 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) 52 (|has| |#1| (-365)))) (-2229 (((-3 (-566) "failed") $) 80 (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) 77 (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) 74)) (-4158 (((-566) $) 79 (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) 76 (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) 75)) (-2814 (($ $) 69)) (-3245 (((-3 $ "failed") $) 37)) (-2616 (($ $) 60 (|has| |#1| (-454)))) (-2389 (((-112) $) 35)) (-1746 (($ |#1| (-771)) 67)) (-3093 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) 62 (|has| |#1| (-558)))) (-3567 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) 63 (|has| |#1| (-558)))) (-2749 (((-771) $) 71)) (-2488 (($ $ $) 57 (|has| |#1| (-365)))) (-3148 (($ $ $) 58 (|has| |#1| (-365)))) (-2047 (($ $ $) 46 (|has| |#1| (-365)))) (-2123 (($ $ $) 55 (|has| |#1| (-365)))) (-1916 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) 54 (|has| |#1| (-365)))) (-3483 (((-3 $ "failed") $ $) 56 (|has| |#1| (-365)))) (-2578 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) 59 (|has| |#1| (-365)))) (-2794 ((|#1| $) 70)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-2978 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-558)))) (-1309 ((|#1| $ |#1|) 92)) (-3334 (($ $ $) 86 (|has| |#1| (-365)))) (-3902 (((-771) $) 72)) (-3173 ((|#1| $) 61 (|has| |#1| (-454)))) (-3152 (((-862) $) 12) (($ (-566)) 33) (($ (-409 (-566))) 78 (|has| |#1| (-1038 (-409 (-566))))) (($ |#1|) 73)) (-1643 (((-644 |#1|) $) 66)) (-2271 ((|#1| $ (-771)) 68)) (-2593 (((-771)) 32 T CONST)) (-3044 (((-112) $ $) 9)) (-3847 ((|#1| $ |#1| |#1|) 65)) (-3045 (($ $) 90)) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-3497 (($) 91)) (-2914 (((-112) $ $) 6)) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) (((-656 |#1|) (-140) (-1049)) (T -656)) -((-2875 (*1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1049)))) (-2279 (*1 *1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1049)))) (-3216 (*1 *1 *1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) (-2553 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-656 *3)) (-4 *3 (-1049)) (-4 *3 (-365)))) (-3070 (*1 *1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) (-3724 (*1 *1 *1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1049)) (-4 *2 (-365))))) -(-13 (-852 |t#1|) (-287 |t#1| |t#1|) (-10 -8 (-15 -2875 ($)) (-15 -2279 ($ $)) (IF (|has| |t#1| (-365)) (PROGN (-15 -3216 ($ $ $)) (-15 -2553 ($ $ (-771))) (-15 -3070 ($ $)) (-15 -3724 ($ $ $))) |%noBranch|))) +((-3497 (*1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1049)))) (-3045 (*1 *1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1049)))) (-3396 (*1 *1 *1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) (-3889 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-656 *3)) (-4 *3 (-1049)) (-4 *3 (-365)))) (-4181 (*1 *1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) (-3334 (*1 *1 *1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1049)) (-4 *2 (-365))))) +(-13 (-852 |t#1|) (-287 |t#1| |t#1|) (-10 -8 (-15 -3497 ($)) (-15 -3045 ($ $)) (IF (|has| |t#1| (-365)) (PROGN (-15 -3396 ($ $ $)) (-15 -3889 ($ $ (-771))) (-15 -4181 ($ $)) (-15 -3334 ($ $ $))) |%noBranch|))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-616 #0=(-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((-616 (-566)) . T) ((-616 |#1|) . T) ((-613 (-862)) . T) ((-287 |#1| |#1|) . T) ((-413 |#1|) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-640 |#1|) |has| |#1| (-172)) ((-717 |#1|) |has| |#1| (-172)) ((-726) . T) ((-1038 #0#) |has| |#1| (-1038 (-409 (-566)))) ((-1038 (-566)) |has| |#1| (-1038 (-566))) ((-1038 |#1|) . T) ((-1051 |#1|) . T) ((-1056 |#1|) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-852 |#1|) . T)) -((-3913 (((-644 (-653 (-409 |#2|))) (-653 (-409 |#2|))) 87 (|has| |#1| (-27)))) (-3719 (((-644 (-653 (-409 |#2|))) (-653 (-409 |#2|))) 86 (|has| |#1| (-27))) (((-644 (-653 (-409 |#2|))) (-653 (-409 |#2|)) (-1 (-644 |#1|) |#2|)) 19))) -(((-657 |#1| |#2|) (-10 -7 (-15 -3719 ((-644 (-653 (-409 |#2|))) (-653 (-409 |#2|)) (-1 (-644 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3719 ((-644 (-653 (-409 |#2|))) (-653 (-409 |#2|)))) (-15 -3913 ((-644 (-653 (-409 |#2|))) (-653 (-409 |#2|))))) |%noBranch|)) (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566)))) (-1240 |#1|)) (T -657)) -((-3913 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-4 *5 (-1240 *4)) (-5 *2 (-644 (-653 (-409 *5)))) (-5 *1 (-657 *4 *5)) (-5 *3 (-653 (-409 *5))))) (-3719 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-4 *5 (-1240 *4)) (-5 *2 (-644 (-653 (-409 *5)))) (-5 *1 (-657 *4 *5)) (-5 *3 (-653 (-409 *5))))) (-3719 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-644 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-4 *6 (-1240 *5)) (-5 *2 (-644 (-653 (-409 *6)))) (-5 *1 (-657 *5 *6)) (-5 *3 (-653 (-409 *6)))))) -(-10 -7 (-15 -3719 ((-644 (-653 (-409 |#2|))) (-653 (-409 |#2|)) (-1 (-644 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3719 ((-644 (-653 (-409 |#2|))) (-653 (-409 |#2|)))) (-15 -3913 ((-644 (-653 (-409 |#2|))) (-653 (-409 |#2|))))) |%noBranch|)) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-3070 (($ $) NIL (|has| |#1| (-365)))) (-3216 (($ $ $) 28 (|has| |#1| (-365)))) (-2553 (($ $ (-771)) 31 (|has| |#1| (-365)))) (-4175 (((-3 $ "failed") $ $) NIL)) (-3012 (($) NIL T CONST)) (-3982 (($ $ $) NIL (|has| |#1| (-365)))) (-2135 (($ $ $) NIL (|has| |#1| (-365)))) (-3560 (($ $ $) NIL (|has| |#1| (-365)))) (-1600 (($ $ $) NIL (|has| |#1| (-365)))) (-3768 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-365)))) (-3911 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-1794 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL (|has| |#1| (-365)))) (-4307 (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) NIL)) (-4205 (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) NIL)) (-1786 (($ $) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-4075 (($ $) NIL (|has| |#1| (-454)))) (-3934 (((-112) $) NIL)) (-3840 (($ |#1| (-771)) NIL)) (-1952 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL (|has| |#1| (-558)))) (-1628 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL (|has| |#1| (-558)))) (-3760 (((-771) $) NIL)) (-4133 (($ $ $) NIL (|has| |#1| (-365)))) (-4356 (($ $ $) NIL (|has| |#1| (-365)))) (-1850 (($ $ $) NIL (|has| |#1| (-365)))) (-3705 (($ $ $) NIL (|has| |#1| (-365)))) (-3119 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-365)))) (-3294 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-1726 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL (|has| |#1| (-365)))) (-1763 ((|#1| $) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-2994 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558)))) (-4390 ((|#1| $ |#1|) 24)) (-3724 (($ $ $) 33 (|has| |#1| (-365)))) (-3636 (((-771) $) NIL)) (-2483 ((|#1| $) NIL (|has| |#1| (-454)))) (-3783 (((-862) $) 20) (($ (-566)) NIL) (($ (-409 (-566))) NIL (|has| |#1| (-1038 (-409 (-566))))) (($ |#1|) NIL)) (-4170 (((-644 |#1|) $) NIL)) (-2649 ((|#1| $ (-771)) NIL)) (-2107 (((-771)) NIL T CONST)) (-3117 (((-112) $ $) NIL)) (-1948 ((|#1| $ |#1| |#1|) 23)) (-2279 (($ $) NIL)) (-2479 (($) 21 T CONST)) (-4334 (($) 8 T CONST)) (-2875 (($) NIL)) (-2947 (((-112) $ $) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +((-4178 (((-644 (-653 (-409 |#2|))) (-653 (-409 |#2|))) 87 (|has| |#1| (-27)))) (-1624 (((-644 (-653 (-409 |#2|))) (-653 (-409 |#2|))) 86 (|has| |#1| (-27))) (((-644 (-653 (-409 |#2|))) (-653 (-409 |#2|)) (-1 (-644 |#1|) |#2|)) 19))) +(((-657 |#1| |#2|) (-10 -7 (-15 -1624 ((-644 (-653 (-409 |#2|))) (-653 (-409 |#2|)) (-1 (-644 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1624 ((-644 (-653 (-409 |#2|))) (-653 (-409 |#2|)))) (-15 -4178 ((-644 (-653 (-409 |#2|))) (-653 (-409 |#2|))))) |%noBranch|)) (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566)))) (-1240 |#1|)) (T -657)) +((-4178 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-4 *5 (-1240 *4)) (-5 *2 (-644 (-653 (-409 *5)))) (-5 *1 (-657 *4 *5)) (-5 *3 (-653 (-409 *5))))) (-1624 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-4 *5 (-1240 *4)) (-5 *2 (-644 (-653 (-409 *5)))) (-5 *1 (-657 *4 *5)) (-5 *3 (-653 (-409 *5))))) (-1624 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-644 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-4 *6 (-1240 *5)) (-5 *2 (-644 (-653 (-409 *6)))) (-5 *1 (-657 *5 *6)) (-5 *3 (-653 (-409 *6)))))) +(-10 -7 (-15 -1624 ((-644 (-653 (-409 |#2|))) (-653 (-409 |#2|)) (-1 (-644 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1624 ((-644 (-653 (-409 |#2|))) (-653 (-409 |#2|)))) (-15 -4178 ((-644 (-653 (-409 |#2|))) (-653 (-409 |#2|))))) |%noBranch|)) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-4181 (($ $) NIL (|has| |#1| (-365)))) (-3396 (($ $ $) 28 (|has| |#1| (-365)))) (-3889 (($ $ (-771)) 31 (|has| |#1| (-365)))) (-3967 (((-3 $ "failed") $ $) NIL)) (-2463 (($) NIL T CONST)) (-3615 (($ $ $) NIL (|has| |#1| (-365)))) (-2387 (($ $ $) NIL (|has| |#1| (-365)))) (-3081 (($ $ $) NIL (|has| |#1| (-365)))) (-2850 (($ $ $) NIL (|has| |#1| (-365)))) (-2190 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL (|has| |#1| (-365)))) (-3985 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-2619 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL (|has| |#1| (-365)))) (-2229 (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) NIL)) (-4158 (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) NIL)) (-2814 (($ $) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-2616 (($ $) NIL (|has| |#1| (-454)))) (-2389 (((-112) $) NIL)) (-1746 (($ |#1| (-771)) NIL)) (-3093 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL (|has| |#1| (-558)))) (-3567 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL (|has| |#1| (-558)))) (-2749 (((-771) $) NIL)) (-2488 (($ $ $) NIL (|has| |#1| (-365)))) (-3148 (($ $ $) NIL (|has| |#1| (-365)))) (-2047 (($ $ $) NIL (|has| |#1| (-365)))) (-2123 (($ $ $) NIL (|has| |#1| (-365)))) (-1916 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL (|has| |#1| (-365)))) (-3483 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-2578 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL (|has| |#1| (-365)))) (-2794 ((|#1| $) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-2978 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558)))) (-1309 ((|#1| $ |#1|) 24)) (-3334 (($ $ $) 33 (|has| |#1| (-365)))) (-3902 (((-771) $) NIL)) (-3173 ((|#1| $) NIL (|has| |#1| (-454)))) (-3152 (((-862) $) 20) (($ (-566)) NIL) (($ (-409 (-566))) NIL (|has| |#1| (-1038 (-409 (-566))))) (($ |#1|) NIL)) (-1643 (((-644 |#1|) $) NIL)) (-2271 ((|#1| $ (-771)) NIL)) (-2593 (((-771)) NIL T CONST)) (-3044 (((-112) $ $) NIL)) (-3847 ((|#1| $ |#1| |#1|) 23)) (-3045 (($ $) NIL)) (-4356 (($) 21 T CONST)) (-4366 (($) 8 T CONST)) (-3497 (($) NIL)) (-2914 (((-112) $ $) NIL)) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) (((-658 |#1| |#2|) (-656 |#1|) (-1049) (-1 |#1| |#1|)) (T -658)) NIL (-656 |#1|) -((-3216 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 70)) (-2553 ((|#2| |#2| (-771) (-1 |#1| |#1|)) 48)) (-3724 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 72))) -(((-659 |#1| |#2|) (-10 -7 (-15 -3216 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2553 (|#2| |#2| (-771) (-1 |#1| |#1|))) (-15 -3724 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-365) (-656 |#1|)) (T -659)) -((-3724 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-365)) (-5 *1 (-659 *4 *2)) (-4 *2 (-656 *4)))) (-2553 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-771)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) (-5 *1 (-659 *5 *2)) (-4 *2 (-656 *5)))) (-3216 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-365)) (-5 *1 (-659 *4 *2)) (-4 *2 (-656 *4))))) -(-10 -7 (-15 -3216 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2553 (|#2| |#2| (-771) (-1 |#1| |#1|))) (-15 -3724 (|#2| |#2| |#2| (-1 |#1| |#1|)))) -((-3075 (($ $ $) 9))) -(((-660 |#1|) (-10 -8 (-15 -3075 (|#1| |#1| |#1|))) (-661)) (T -660)) -NIL -(-10 -8 (-15 -3075 (|#1| |#1| |#1|))) -((-3007 (((-112) $ $) 7)) (-3029 (($ $) 10)) (-3075 (($ $ $) 8)) (-2947 (((-112) $ $) 6)) (-3063 (($ $ $) 9))) +((-3396 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 70)) (-3889 ((|#2| |#2| (-771) (-1 |#1| |#1|)) 48)) (-3334 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 72))) +(((-659 |#1| |#2|) (-10 -7 (-15 -3396 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3889 (|#2| |#2| (-771) (-1 |#1| |#1|))) (-15 -3334 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-365) (-656 |#1|)) (T -659)) +((-3334 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-365)) (-5 *1 (-659 *4 *2)) (-4 *2 (-656 *4)))) (-3889 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-771)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) (-5 *1 (-659 *5 *2)) (-4 *2 (-656 *5)))) (-3396 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-365)) (-5 *1 (-659 *4 *2)) (-4 *2 (-656 *4))))) +(-10 -7 (-15 -3396 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3889 (|#2| |#2| (-771) (-1 |#1| |#1|))) (-15 -3334 (|#2| |#2| |#2| (-1 |#1| |#1|)))) +((-3055 (($ $ $) 9))) +(((-660 |#1|) (-10 -8 (-15 -3055 (|#1| |#1| |#1|))) (-661)) (T -660)) +NIL +(-10 -8 (-15 -3055 (|#1| |#1| |#1|))) +((-2988 (((-112) $ $) 7)) (-3010 (($ $) 10)) (-3055 (($ $ $) 8)) (-2914 (((-112) $ $) 6)) (-3043 (($ $ $) 9))) (((-661) (-140)) (T -661)) -((-3029 (*1 *1 *1) (-4 *1 (-661))) (-3063 (*1 *1 *1 *1) (-4 *1 (-661))) (-3075 (*1 *1 *1 *1) (-4 *1 (-661)))) -(-13 (-102) (-10 -8 (-15 -3029 ($ $)) (-15 -3063 ($ $ $)) (-15 -3075 ($ $ $)))) +((-3010 (*1 *1 *1) (-4 *1 (-661))) (-3043 (*1 *1 *1 *1) (-4 *1 (-661))) (-3055 (*1 *1 *1 *1) (-4 *1 (-661)))) +(-13 (-102) (-10 -8 (-15 -3010 ($ $)) (-15 -3043 ($ $ $)) (-15 -3055 ($ $ $)))) (((-102) . T)) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) 15)) (-4175 (((-3 $ "failed") $ $) NIL)) (-3012 (($) NIL T CONST)) (-4326 ((|#1| $) 23)) (-2097 (($ $ $) NIL (|has| |#1| (-791)))) (-3962 (($ $ $) NIL (|has| |#1| (-791)))) (-4117 (((-1157) $) 48)) (-4035 (((-1119) $) NIL)) (-4339 ((|#3| $) 24)) (-3783 (((-862) $) 43)) (-3117 (((-112) $ $) 22)) (-2479 (($) 10 T CONST)) (-3009 (((-112) $ $) NIL (|has| |#1| (-791)))) (-2984 (((-112) $ $) NIL (|has| |#1| (-791)))) (-2947 (((-112) $ $) 20)) (-2995 (((-112) $ $) NIL (|has| |#1| (-791)))) (-2969 (((-112) $ $) 26 (|has| |#1| (-791)))) (-3065 (($ $ |#3|) 36) (($ |#1| |#3|) 37)) (-3053 (($ $) 17) (($ $ $) NIL)) (-3041 (($ $ $) 29)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 32) (($ |#2| $) 34) (($ $ |#2|) NIL))) -(((-662 |#1| |#2| |#3|) (-13 (-717 |#2|) (-10 -8 (IF (|has| |#1| (-791)) (-6 (-791)) |%noBranch|) (-15 -3065 ($ $ |#3|)) (-15 -3065 ($ |#1| |#3|)) (-15 -4326 (|#1| $)) (-15 -4339 (|#3| $)))) (-717 |#2|) (-172) (|SubsetCategory| (-726) |#2|)) (T -662)) -((-3065 (*1 *1 *1 *2) (-12 (-4 *4 (-172)) (-5 *1 (-662 *3 *4 *2)) (-4 *3 (-717 *4)) (-4 *2 (|SubsetCategory| (-726) *4)))) (-3065 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-662 *2 *4 *3)) (-4 *2 (-717 *4)) (-4 *3 (|SubsetCategory| (-726) *4)))) (-4326 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-717 *3)) (-5 *1 (-662 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-726) *3)))) (-4339 (*1 *2 *1) (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-726) *4)) (-5 *1 (-662 *3 *4 *2)) (-4 *3 (-717 *4))))) -(-13 (-717 |#2|) (-10 -8 (IF (|has| |#1| (-791)) (-6 (-791)) |%noBranch|) (-15 -3065 ($ $ |#3|)) (-15 -3065 ($ |#1| |#3|)) (-15 -4326 (|#1| $)) (-15 -4339 (|#3| $)))) -((-4190 (((-3 (-644 (-1171 |#1|)) "failed") (-644 (-1171 |#1|)) (-1171 |#1|)) 33))) -(((-663 |#1|) (-10 -7 (-15 -4190 ((-3 (-644 (-1171 |#1|)) "failed") (-644 (-1171 |#1|)) (-1171 |#1|)))) (-909)) (T -663)) -((-4190 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-644 (-1171 *4))) (-5 *3 (-1171 *4)) (-4 *4 (-909)) (-5 *1 (-663 *4))))) -(-10 -7 (-15 -4190 ((-3 (-644 (-1171 |#1|)) "failed") (-644 (-1171 |#1|)) (-1171 |#1|)))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-3095 (((-644 |#1|) $) 84)) (-3684 (($ $ (-771)) 94)) (-4175 (((-3 $ "failed") $ $) NIL)) (-3012 (($) NIL T CONST)) (-2374 (((-1288 |#1| |#2|) (-1288 |#1| |#2|) $) 50)) (-4307 (((-3 (-672 |#1|) "failed") $) NIL)) (-4205 (((-672 |#1|) $) NIL)) (-1786 (($ $) 93)) (-2614 (((-771) $) NIL)) (-2288 (((-644 $) $) NIL)) (-3264 (((-112) $) NIL)) (-3319 (($ (-672 |#1|) |#2|) 70)) (-3000 (($ $) 89)) (-1301 (($ (-1 |#2| |#2|) $) NIL)) (-2274 (((-1288 |#1| |#2|) (-1288 |#1| |#2|) $) 49)) (-3849 (((-2 (|:| |k| (-672 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1749 (((-672 |#1|) $) NIL)) (-1763 ((|#2| $) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-2055 (($ $ |#1| $) 32) (($ $ (-644 |#1|) (-644 $)) 34)) (-3636 (((-771) $) 91)) (-3796 (($ $ $) 20) (($ (-672 |#1|) (-672 |#1|)) 79) (($ (-672 |#1|) $) 77) (($ $ (-672 |#1|)) 78)) (-3783 (((-862) $) NIL) (($ |#1|) 76) (((-1279 |#1| |#2|) $) 60) (((-1288 |#1| |#2|) $) 43) (($ (-672 |#1|)) 27)) (-4170 (((-644 |#2|) $) NIL)) (-2649 ((|#2| $ (-672 |#1|)) NIL)) (-1364 ((|#2| (-1288 |#1| |#2|) $) 45)) (-3117 (((-112) $ $) NIL)) (-2479 (($) 23 T CONST)) (-2935 (((-644 (-2 (|:| |k| (-672 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2125 (((-3 $ "failed") (-1279 |#1| |#2|)) 62)) (-3387 (($ (-672 |#1|)) 14)) (-2947 (((-112) $ $) 46)) (-3065 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3053 (($ $) 68) (($ $ $) NIL)) (-3041 (($ $ $) 31)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ |#2| $) 30) (($ $ |#2|) NIL) (($ |#2| (-672 |#1|)) NIL))) -(((-664 |#1| |#2|) (-13 (-376 |#1| |#2|) (-384 |#2| (-672 |#1|)) (-10 -8 (-15 -2125 ((-3 $ "failed") (-1279 |#1| |#2|))) (-15 -3796 ($ (-672 |#1|) (-672 |#1|))) (-15 -3796 ($ (-672 |#1|) $)) (-15 -3796 ($ $ (-672 |#1|))))) (-850) (-172)) (T -664)) -((-2125 (*1 *1 *2) (|partial| -12 (-5 *2 (-1279 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)) (-5 *1 (-664 *3 *4)))) (-3796 (*1 *1 *2 *2) (-12 (-5 *2 (-672 *3)) (-4 *3 (-850)) (-5 *1 (-664 *3 *4)) (-4 *4 (-172)))) (-3796 (*1 *1 *2 *1) (-12 (-5 *2 (-672 *3)) (-4 *3 (-850)) (-5 *1 (-664 *3 *4)) (-4 *4 (-172)))) (-3796 (*1 *1 *1 *2) (-12 (-5 *2 (-672 *3)) (-4 *3 (-850)) (-5 *1 (-664 *3 *4)) (-4 *4 (-172))))) -(-13 (-376 |#1| |#2|) (-384 |#2| (-672 |#1|)) (-10 -8 (-15 -2125 ((-3 $ "failed") (-1279 |#1| |#2|))) (-15 -3796 ($ (-672 |#1|) (-672 |#1|))) (-15 -3796 ($ (-672 |#1|) $)) (-15 -3796 ($ $ (-672 |#1|))))) -((-2644 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 61)) (-1944 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-4016 (($ (-1 (-112) |#2|) $) 29)) (-3413 (($ $) 67)) (-3657 (($ $) 78)) (-2956 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 43)) (-1676 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 62) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 64)) (-4000 (((-566) |#2| $ (-566)) 75) (((-566) |#2| $) NIL) (((-566) (-1 (-112) |#2|) $) 56)) (-4265 (($ (-771) |#2|) 65)) (-3463 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 31)) (-3298 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-1301 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 66)) (-1881 (($ |#2|) 15)) (-3406 (($ $ $ (-566)) 42) (($ |#2| $ (-566)) 40)) (-2006 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 53)) (-1772 (($ $ (-1231 (-566))) 51) (($ $ (-566)) 44)) (-1297 (($ $ $ (-566)) 74)) (-3940 (($ $) 72)) (-2969 (((-112) $ $) 80))) -(((-665 |#1| |#2|) (-10 -8 (-15 -1881 (|#1| |#2|)) (-15 -1772 (|#1| |#1| (-566))) (-15 -1772 (|#1| |#1| (-1231 (-566)))) (-15 -2956 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3406 (|#1| |#2| |#1| (-566))) (-15 -3406 (|#1| |#1| |#1| (-566))) (-15 -3463 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4016 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2956 (|#1| |#2| |#1|)) (-15 -3657 (|#1| |#1|)) (-15 -3463 (|#1| |#1| |#1|)) (-15 -3298 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2644 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4000 ((-566) (-1 (-112) |#2|) |#1|)) (-15 -4000 ((-566) |#2| |#1|)) (-15 -4000 ((-566) |#2| |#1| (-566))) (-15 -3298 (|#1| |#1| |#1|)) (-15 -2644 ((-112) |#1|)) (-15 -1297 (|#1| |#1| |#1| (-566))) (-15 -3413 (|#1| |#1|)) (-15 -1944 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1944 (|#1| |#1|)) (-15 -2969 ((-112) |#1| |#1|)) (-15 -1676 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1676 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1676 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2006 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4265 (|#1| (-771) |#2|)) (-15 -1301 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1301 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3940 (|#1| |#1|))) (-666 |#2|) (-1214)) (T -665)) -NIL -(-10 -8 (-15 -1881 (|#1| |#2|)) (-15 -1772 (|#1| |#1| (-566))) (-15 -1772 (|#1| |#1| (-1231 (-566)))) (-15 -2956 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3406 (|#1| |#2| |#1| (-566))) (-15 -3406 (|#1| |#1| |#1| (-566))) (-15 -3463 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4016 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2956 (|#1| |#2| |#1|)) (-15 -3657 (|#1| |#1|)) (-15 -3463 (|#1| |#1| |#1|)) (-15 -3298 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2644 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4000 ((-566) (-1 (-112) |#2|) |#1|)) (-15 -4000 ((-566) |#2| |#1|)) (-15 -4000 ((-566) |#2| |#1| (-566))) (-15 -3298 (|#1| |#1| |#1|)) (-15 -2644 ((-112) |#1|)) (-15 -1297 (|#1| |#1| |#1| (-566))) (-15 -3413 (|#1| |#1|)) (-15 -1944 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1944 (|#1| |#1|)) (-15 -2969 ((-112) |#1| |#1|)) (-15 -1676 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1676 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1676 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2006 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4265 (|#1| (-771) |#2|)) (-15 -1301 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1301 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3940 (|#1| |#1|))) -((-3007 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2233 ((|#1| $) 49)) (-2593 ((|#1| $) 66)) (-2223 (($ $) 68)) (-3734 (((-1269) $ (-566) (-566)) 98 (|has| $ (-6 -4415)))) (-2807 (($ $ (-566)) 53 (|has| $ (-6 -4415)))) (-2644 (((-112) $) 143 (|has| |#1| (-850))) (((-112) (-1 (-112) |#1| |#1|) $) 137)) (-1944 (($ $) 147 (-12 (|has| |#1| (-850)) (|has| $ (-6 -4415)))) (($ (-1 (-112) |#1| |#1|) $) 146 (|has| $ (-6 -4415)))) (-1510 (($ $) 142 (|has| |#1| (-850))) (($ (-1 (-112) |#1| |#1|) $) 136)) (-2256 (((-112) $ (-771)) 8)) (-3396 ((|#1| $ |#1|) 40 (|has| $ (-6 -4415)))) (-4107 (($ $ $) 57 (|has| $ (-6 -4415)))) (-3178 ((|#1| $ |#1|) 55 (|has| $ (-6 -4415)))) (-2905 ((|#1| $ |#1|) 59 (|has| $ (-6 -4415)))) (-3923 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4415))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4415))) (($ $ "rest" $) 56 (|has| $ (-6 -4415))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4415))) ((|#1| $ (-1231 (-566)) |#1|) 118 (|has| $ (-6 -4415))) ((|#1| $ (-566) |#1|) 87 (|has| $ (-6 -4415)))) (-3800 (($ $ (-644 $)) 42 (|has| $ (-6 -4415)))) (-4016 (($ (-1 (-112) |#1|) $) 130)) (-2701 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4414)))) (-2582 ((|#1| $) 67)) (-3012 (($) 7 T CONST)) (-3413 (($ $) 145 (|has| $ (-6 -4415)))) (-1377 (($ $) 135)) (-2010 (($ $) 74) (($ $ (-771)) 72)) (-3657 (($ $) 132 (|has| |#1| (-1099)))) (-2031 (($ $) 100 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2956 (($ |#1| $) 131 (|has| |#1| (-1099))) (($ (-1 (-112) |#1|) $) 126)) (-2665 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4414))) (($ |#1| $) 101 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-1676 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2920 ((|#1| $ (-566) |#1|) 86 (|has| $ (-6 -4415)))) (-2855 ((|#1| $ (-566)) 88)) (-1902 (((-112) $) 84)) (-4000 (((-566) |#1| $ (-566)) 140 (|has| |#1| (-1099))) (((-566) |#1| $) 139 (|has| |#1| (-1099))) (((-566) (-1 (-112) |#1|) $) 138)) (-3979 (((-644 |#1|) $) 31 (|has| $ (-6 -4414)))) (-4009 (((-644 $) $) 51)) (-3891 (((-112) $ $) 43 (|has| |#1| (-1099)))) (-4265 (($ (-771) |#1|) 109)) (-2404 (((-112) $ (-771)) 9)) (-3854 (((-566) $) 96 (|has| (-566) (-850)))) (-2097 (($ $ $) 148 (|has| |#1| (-850)))) (-3463 (($ $ $) 133 (|has| |#1| (-850))) (($ (-1 (-112) |#1| |#1|) $ $) 129)) (-3298 (($ $ $) 141 (|has| |#1| (-850))) (($ (-1 (-112) |#1| |#1|) $ $) 134)) (-2329 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2712 (((-566) $) 95 (|has| (-566) (-850)))) (-3962 (($ $ $) 149 (|has| |#1| (-850)))) (-2908 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-1881 (($ |#1|) 123)) (-2603 (((-112) $ (-771)) 10)) (-3701 (((-644 |#1|) $) 46)) (-3438 (((-112) $) 50)) (-4117 (((-1157) $) 22 (|has| |#1| (-1099)))) (-2686 ((|#1| $) 71) (($ $ (-771)) 69)) (-3406 (($ $ $ (-566)) 128) (($ |#1| $ (-566)) 127)) (-4276 (($ $ $ (-566)) 117) (($ |#1| $ (-566)) 116)) (-4074 (((-644 (-566)) $) 93)) (-3792 (((-112) (-566) $) 92)) (-4035 (((-1119) $) 21 (|has| |#1| (-1099)))) (-1998 ((|#1| $) 77) (($ $ (-771)) 75)) (-2006 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-4030 (($ $ |#1|) 97 (|has| $ (-6 -4415)))) (-2373 (((-112) $) 85)) (-2692 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) 14)) (-4156 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2993 (((-644 |#1|) $) 91)) (-3467 (((-112) $) 11)) (-1494 (($) 12)) (-4390 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1231 (-566))) 113) ((|#1| $ (-566)) 90) ((|#1| $ (-566) |#1|) 89)) (-1416 (((-566) $ $) 45)) (-1772 (($ $ (-1231 (-566))) 125) (($ $ (-566)) 124)) (-2187 (($ $ (-1231 (-566))) 115) (($ $ (-566)) 114)) (-3494 (((-112) $) 47)) (-4272 (($ $) 63)) (-1844 (($ $) 60 (|has| $ (-6 -4415)))) (-2833 (((-771) $) 64)) (-2369 (($ $) 65)) (-4045 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-1297 (($ $ $ (-566)) 144 (|has| $ (-6 -4415)))) (-3940 (($ $) 13)) (-1348 (((-538) $) 99 (|has| |#1| (-614 (-538))))) (-3796 (($ (-644 |#1|)) 108)) (-3480 (($ $ $) 62) (($ $ |#1|) 61)) (-3721 (($ $ $) 79) (($ |#1| $) 78) (($ (-644 $)) 111) (($ $ |#1|) 110)) (-3783 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-2462 (((-644 $) $) 52)) (-4288 (((-112) $ $) 44 (|has| |#1| (-1099)))) (-3117 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-1894 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-3009 (((-112) $ $) 151 (|has| |#1| (-850)))) (-2984 (((-112) $ $) 152 (|has| |#1| (-850)))) (-2947 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-2995 (((-112) $ $) 150 (|has| |#1| (-850)))) (-2969 (((-112) $ $) 153 (|has| |#1| (-850)))) (-3018 (((-771) $) 6 (|has| $ (-6 -4414))))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) 15)) (-3967 (((-3 $ "failed") $ $) NIL)) (-2463 (($) NIL T CONST)) (-2248 ((|#1| $) 23)) (-1478 (($ $ $) NIL (|has| |#1| (-791)))) (-2599 (($ $ $) NIL (|has| |#1| (-791)))) (-3380 (((-1157) $) 48)) (-4072 (((-1119) $) NIL)) (-2260 ((|#3| $) 24)) (-3152 (((-862) $) 43)) (-3044 (((-112) $ $) 22)) (-4356 (($) 10 T CONST)) (-2968 (((-112) $ $) NIL (|has| |#1| (-791)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-791)))) (-2914 (((-112) $ $) 20)) (-2956 (((-112) $ $) NIL (|has| |#1| (-791)))) (-2935 (((-112) $ $) 26 (|has| |#1| (-791)))) (-3025 (($ $ |#3|) 36) (($ |#1| |#3|) 37)) (-3012 (($ $) 17) (($ $ $) NIL)) (-3002 (($ $ $) 29)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 32) (($ |#2| $) 34) (($ $ |#2|) NIL))) +(((-662 |#1| |#2| |#3|) (-13 (-717 |#2|) (-10 -8 (IF (|has| |#1| (-791)) (-6 (-791)) |%noBranch|) (-15 -3025 ($ $ |#3|)) (-15 -3025 ($ |#1| |#3|)) (-15 -2248 (|#1| $)) (-15 -2260 (|#3| $)))) (-717 |#2|) (-172) (|SubsetCategory| (-726) |#2|)) (T -662)) +((-3025 (*1 *1 *1 *2) (-12 (-4 *4 (-172)) (-5 *1 (-662 *3 *4 *2)) (-4 *3 (-717 *4)) (-4 *2 (|SubsetCategory| (-726) *4)))) (-3025 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-662 *2 *4 *3)) (-4 *2 (-717 *4)) (-4 *3 (|SubsetCategory| (-726) *4)))) (-2248 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-717 *3)) (-5 *1 (-662 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-726) *3)))) (-2260 (*1 *2 *1) (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-726) *4)) (-5 *1 (-662 *3 *4 *2)) (-4 *3 (-717 *4))))) +(-13 (-717 |#2|) (-10 -8 (IF (|has| |#1| (-791)) (-6 (-791)) |%noBranch|) (-15 -3025 ($ $ |#3|)) (-15 -3025 ($ |#1| |#3|)) (-15 -2248 (|#1| $)) (-15 -2260 (|#3| $)))) +((-2741 (((-3 (-644 (-1171 |#1|)) "failed") (-644 (-1171 |#1|)) (-1171 |#1|)) 33))) +(((-663 |#1|) (-10 -7 (-15 -2741 ((-3 (-644 (-1171 |#1|)) "failed") (-644 (-1171 |#1|)) (-1171 |#1|)))) (-909)) (T -663)) +((-2741 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-644 (-1171 *4))) (-5 *3 (-1171 *4)) (-4 *4 (-909)) (-5 *1 (-663 *4))))) +(-10 -7 (-15 -2741 ((-3 (-644 (-1171 |#1|)) "failed") (-644 (-1171 |#1|)) (-1171 |#1|)))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-4111 (((-644 |#1|) $) 84)) (-3990 (($ $ (-771)) 94)) (-3967 (((-3 $ "failed") $ $) NIL)) (-2463 (($) NIL T CONST)) (-3356 (((-1288 |#1| |#2|) (-1288 |#1| |#2|) $) 50)) (-2229 (((-3 (-672 |#1|) "failed") $) NIL)) (-4158 (((-672 |#1|) $) NIL)) (-2814 (($ $) 93)) (-3039 (((-771) $) NIL)) (-1587 (((-644 $) $) NIL)) (-2497 (((-112) $) NIL)) (-4325 (($ (-672 |#1|) |#2|) 70)) (-2795 (($ $) 89)) (-2319 (($ (-1 |#2| |#2|) $) NIL)) (-3722 (((-1288 |#1| |#2|) (-1288 |#1| |#2|) $) 49)) (-1978 (((-2 (|:| |k| (-672 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2784 (((-672 |#1|) $) NIL)) (-2794 ((|#2| $) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-2023 (($ $ |#1| $) 32) (($ $ (-644 |#1|) (-644 $)) 34)) (-3902 (((-771) $) 91)) (-1340 (($ $ $) 20) (($ (-672 |#1|) (-672 |#1|)) 79) (($ (-672 |#1|) $) 77) (($ $ (-672 |#1|)) 78)) (-3152 (((-862) $) NIL) (($ |#1|) 76) (((-1279 |#1| |#2|) $) 60) (((-1288 |#1| |#2|) $) 43) (($ (-672 |#1|)) 27)) (-1643 (((-644 |#2|) $) NIL)) (-2271 ((|#2| $ (-672 |#1|)) NIL)) (-2397 ((|#2| (-1288 |#1| |#2|) $) 45)) (-3044 (((-112) $ $) NIL)) (-4356 (($) 23 T CONST)) (-2203 (((-644 (-2 (|:| |k| (-672 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2694 (((-3 $ "failed") (-1279 |#1| |#2|)) 62)) (-2740 (($ (-672 |#1|)) 14)) (-2914 (((-112) $ $) 46)) (-3025 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3012 (($ $) 68) (($ $ $) NIL)) (-3002 (($ $ $) 31)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ |#2| $) 30) (($ $ |#2|) NIL) (($ |#2| (-672 |#1|)) NIL))) +(((-664 |#1| |#2|) (-13 (-376 |#1| |#2|) (-384 |#2| (-672 |#1|)) (-10 -8 (-15 -2694 ((-3 $ "failed") (-1279 |#1| |#2|))) (-15 -1340 ($ (-672 |#1|) (-672 |#1|))) (-15 -1340 ($ (-672 |#1|) $)) (-15 -1340 ($ $ (-672 |#1|))))) (-850) (-172)) (T -664)) +((-2694 (*1 *1 *2) (|partial| -12 (-5 *2 (-1279 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)) (-5 *1 (-664 *3 *4)))) (-1340 (*1 *1 *2 *2) (-12 (-5 *2 (-672 *3)) (-4 *3 (-850)) (-5 *1 (-664 *3 *4)) (-4 *4 (-172)))) (-1340 (*1 *1 *2 *1) (-12 (-5 *2 (-672 *3)) (-4 *3 (-850)) (-5 *1 (-664 *3 *4)) (-4 *4 (-172)))) (-1340 (*1 *1 *1 *2) (-12 (-5 *2 (-672 *3)) (-4 *3 (-850)) (-5 *1 (-664 *3 *4)) (-4 *4 (-172))))) +(-13 (-376 |#1| |#2|) (-384 |#2| (-672 |#1|)) (-10 -8 (-15 -2694 ((-3 $ "failed") (-1279 |#1| |#2|))) (-15 -1340 ($ (-672 |#1|) (-672 |#1|))) (-15 -1340 ($ (-672 |#1|) $)) (-15 -1340 ($ $ (-672 |#1|))))) +((-3054 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 61)) (-3628 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-2995 (($ (-1 (-112) |#2|) $) 29)) (-3166 (($ $) 67)) (-3322 (($ $) 78)) (-3512 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 43)) (-2873 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 62) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 64)) (-1569 (((-566) |#2| $ (-566)) 75) (((-566) |#2| $) NIL) (((-566) (-1 (-112) |#2|) $) 56)) (-1860 (($ (-771) |#2|) 65)) (-3674 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 31)) (-2696 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-2319 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 66)) (-3770 (($ |#2|) 15)) (-3888 (($ $ $ (-566)) 42) (($ |#2| $ (-566)) 40)) (-3668 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 53)) (-1308 (($ $ (-1231 (-566))) 51) (($ $ (-566)) 44)) (-2661 (($ $ $ (-566)) 74)) (-1480 (($ $) 72)) (-2935 (((-112) $ $) 80))) +(((-665 |#1| |#2|) (-10 -8 (-15 -3770 (|#1| |#2|)) (-15 -1308 (|#1| |#1| (-566))) (-15 -1308 (|#1| |#1| (-1231 (-566)))) (-15 -3512 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3888 (|#1| |#2| |#1| (-566))) (-15 -3888 (|#1| |#1| |#1| (-566))) (-15 -3674 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2995 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3512 (|#1| |#2| |#1|)) (-15 -3322 (|#1| |#1|)) (-15 -3674 (|#1| |#1| |#1|)) (-15 -2696 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3054 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1569 ((-566) (-1 (-112) |#2|) |#1|)) (-15 -1569 ((-566) |#2| |#1|)) (-15 -1569 ((-566) |#2| |#1| (-566))) (-15 -2696 (|#1| |#1| |#1|)) (-15 -3054 ((-112) |#1|)) (-15 -2661 (|#1| |#1| |#1| (-566))) (-15 -3166 (|#1| |#1|)) (-15 -3628 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3628 (|#1| |#1|)) (-15 -2935 ((-112) |#1| |#1|)) (-15 -2873 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2873 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2873 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3668 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1860 (|#1| (-771) |#2|)) (-15 -2319 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2319 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1480 (|#1| |#1|))) (-666 |#2|) (-1214)) (T -665)) +NIL +(-10 -8 (-15 -3770 (|#1| |#2|)) (-15 -1308 (|#1| |#1| (-566))) (-15 -1308 (|#1| |#1| (-1231 (-566)))) (-15 -3512 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3888 (|#1| |#2| |#1| (-566))) (-15 -3888 (|#1| |#1| |#1| (-566))) (-15 -3674 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2995 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3512 (|#1| |#2| |#1|)) (-15 -3322 (|#1| |#1|)) (-15 -3674 (|#1| |#1| |#1|)) (-15 -2696 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3054 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1569 ((-566) (-1 (-112) |#2|) |#1|)) (-15 -1569 ((-566) |#2| |#1|)) (-15 -1569 ((-566) |#2| |#1| (-566))) (-15 -2696 (|#1| |#1| |#1|)) (-15 -3054 ((-112) |#1|)) (-15 -2661 (|#1| |#1| |#1| (-566))) (-15 -3166 (|#1| |#1|)) (-15 -3628 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3628 (|#1| |#1|)) (-15 -2935 ((-112) |#1| |#1|)) (-15 -2873 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2873 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2873 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3668 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1860 (|#1| (-771) |#2|)) (-15 -2319 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2319 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1480 (|#1| |#1|))) +((-2988 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2876 ((|#1| $) 49)) (-3541 ((|#1| $) 66)) (-3214 (($ $) 68)) (-1944 (((-1269) $ (-566) (-566)) 98 (|has| $ (-6 -4415)))) (-4258 (($ $ (-566)) 53 (|has| $ (-6 -4415)))) (-3054 (((-112) $) 143 (|has| |#1| (-850))) (((-112) (-1 (-112) |#1| |#1|) $) 137)) (-3628 (($ $) 147 (-12 (|has| |#1| (-850)) (|has| $ (-6 -4415)))) (($ (-1 (-112) |#1| |#1|) $) 146 (|has| $ (-6 -4415)))) (-2671 (($ $) 142 (|has| |#1| (-850))) (($ (-1 (-112) |#1| |#1|) $) 136)) (-1504 (((-112) $ (-771)) 8)) (-2191 ((|#1| $ |#1|) 40 (|has| $ (-6 -4415)))) (-1813 (($ $ $) 57 (|has| $ (-6 -4415)))) (-1948 ((|#1| $ |#1|) 55 (|has| $ (-6 -4415)))) (-1381 ((|#1| $ |#1|) 59 (|has| $ (-6 -4415)))) (-1456 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4415))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4415))) (($ $ "rest" $) 56 (|has| $ (-6 -4415))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4415))) ((|#1| $ (-1231 (-566)) |#1|) 118 (|has| $ (-6 -4415))) ((|#1| $ (-566) |#1|) 87 (|has| $ (-6 -4415)))) (-4202 (($ $ (-644 $)) 42 (|has| $ (-6 -4415)))) (-2995 (($ (-1 (-112) |#1|) $) 130)) (-3678 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4414)))) (-3531 ((|#1| $) 67)) (-2463 (($) 7 T CONST)) (-3166 (($ $) 145 (|has| $ (-6 -4415)))) (-3683 (($ $) 135)) (-3919 (($ $) 74) (($ $ (-771)) 72)) (-3322 (($ $) 132 (|has| |#1| (-1099)))) (-3942 (($ $) 100 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-3512 (($ |#1| $) 131 (|has| |#1| (-1099))) (($ (-1 (-112) |#1|) $) 126)) (-2622 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4414))) (($ |#1| $) 101 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2873 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-3897 ((|#1| $ (-566) |#1|) 86 (|has| $ (-6 -4415)))) (-3829 ((|#1| $ (-566)) 88)) (-1781 (((-112) $) 84)) (-1569 (((-566) |#1| $ (-566)) 140 (|has| |#1| (-1099))) (((-566) |#1| $) 139 (|has| |#1| (-1099))) (((-566) (-1 (-112) |#1|) $) 138)) (-1683 (((-644 |#1|) $) 31 (|has| $ (-6 -4414)))) (-3431 (((-644 $) $) 51)) (-1507 (((-112) $ $) 43 (|has| |#1| (-1099)))) (-1860 (($ (-771) |#1|) 109)) (-3456 (((-112) $ (-771)) 9)) (-2296 (((-566) $) 96 (|has| (-566) (-850)))) (-1478 (($ $ $) 148 (|has| |#1| (-850)))) (-3674 (($ $ $) 133 (|has| |#1| (-850))) (($ (-1 (-112) |#1| |#1|) $ $) 129)) (-2696 (($ $ $) 141 (|has| |#1| (-850))) (($ (-1 (-112) |#1| |#1|) $ $) 134)) (-3491 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-4050 (((-566) $) 95 (|has| (-566) (-850)))) (-2599 (($ $ $) 149 (|has| |#1| (-850)))) (-3885 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-3770 (($ |#1|) 123)) (-3267 (((-112) $ (-771)) 10)) (-1458 (((-644 |#1|) $) 46)) (-3860 (((-112) $) 50)) (-3380 (((-1157) $) 22 (|has| |#1| (-1099)))) (-2641 ((|#1| $) 71) (($ $ (-771)) 69)) (-3888 (($ $ $ (-566)) 128) (($ |#1| $ (-566)) 127)) (-1859 (($ $ $ (-566)) 117) (($ |#1| $ (-566)) 116)) (-3725 (((-644 (-566)) $) 93)) (-1644 (((-112) (-566) $) 92)) (-4072 (((-1119) $) 21 (|has| |#1| (-1099)))) (-3908 ((|#1| $) 77) (($ $ (-771)) 75)) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-3787 (($ $ |#1|) 97 (|has| $ (-6 -4415)))) (-3254 (((-112) $) 85)) (-2823 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) 14)) (-2847 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3486 (((-644 |#1|) $) 91)) (-2872 (((-112) $) 11)) (-3493 (($) 12)) (-1309 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1231 (-566))) 113) ((|#1| $ (-566)) 90) ((|#1| $ (-566) |#1|) 89)) (-1696 (((-566) $ $) 45)) (-1308 (($ $ (-1231 (-566))) 125) (($ $ (-566)) 124)) (-2166 (($ $ (-1231 (-566))) 115) (($ $ (-566)) 114)) (-3786 (((-112) $) 47)) (-4018 (($ $) 63)) (-3810 (($ $) 60 (|has| $ (-6 -4415)))) (-2916 (((-771) $) 64)) (-1922 (($ $) 65)) (-4083 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2661 (($ $ $ (-566)) 144 (|has| $ (-6 -4415)))) (-1480 (($ $) 13)) (-2376 (((-538) $) 99 (|has| |#1| (-614 (-538))))) (-1340 (($ (-644 |#1|)) 108)) (-1690 (($ $ $) 62) (($ $ |#1|) 61)) (-4386 (($ $ $) 79) (($ |#1| $) 78) (($ (-644 $)) 111) (($ $ |#1|) 110)) (-3152 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-1926 (((-644 $) $) 52)) (-4385 (((-112) $ $) 44 (|has| |#1| (-1099)))) (-3044 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-2210 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-2968 (((-112) $ $) 151 (|has| |#1| (-850)))) (-2946 (((-112) $ $) 152 (|has| |#1| (-850)))) (-2914 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-2956 (((-112) $ $) 150 (|has| |#1| (-850)))) (-2935 (((-112) $ $) 153 (|has| |#1| (-850)))) (-3000 (((-771) $) 6 (|has| $ (-6 -4414))))) (((-666 |#1|) (-140) (-1214)) (T -666)) -((-1881 (*1 *1 *2) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1214))))) -(-13 (-1148 |t#1|) (-375 |t#1|) (-283 |t#1|) (-10 -8 (-15 -1881 ($ |t#1|)))) -(((-34) . T) ((-102) -2809 (|has| |#1| (-1099)) (|has| |#1| (-850))) ((-613 (-862)) -2809 (|has| |#1| (-1099)) (|has| |#1| (-850)) (|has| |#1| (-613 (-862)))) ((-151 |#1|) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-287 #0=(-566) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-283 |#1|) . T) ((-375 |#1|) . T) ((-491 |#1|) . T) ((-604 #0# |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-651 |#1|) . T) ((-850) |has| |#1| (-850)) ((-1010 |#1|) . T) ((-1099) -2809 (|has| |#1| (-1099)) (|has| |#1| (-850))) ((-1148 |#1|) . T) ((-1214) . T) ((-1252 |#1|) . T)) -((-1957 (((-644 (-2 (|:| |particular| (-3 (-1264 |#1|) "failed")) (|:| -2365 (-644 (-1264 |#1|))))) (-644 (-644 |#1|)) (-644 (-1264 |#1|))) 22) (((-644 (-2 (|:| |particular| (-3 (-1264 |#1|) "failed")) (|:| -2365 (-644 (-1264 |#1|))))) (-689 |#1|) (-644 (-1264 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1264 |#1|) "failed")) (|:| -2365 (-644 (-1264 |#1|)))) (-644 (-644 |#1|)) (-1264 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1264 |#1|) "failed")) (|:| -2365 (-644 (-1264 |#1|)))) (-689 |#1|) (-1264 |#1|)) 14)) (-4313 (((-771) (-689 |#1|) (-1264 |#1|)) 30)) (-3132 (((-3 (-1264 |#1|) "failed") (-689 |#1|) (-1264 |#1|)) 24)) (-2557 (((-112) (-689 |#1|) (-1264 |#1|)) 27))) -(((-667 |#1|) (-10 -7 (-15 -1957 ((-2 (|:| |particular| (-3 (-1264 |#1|) "failed")) (|:| -2365 (-644 (-1264 |#1|)))) (-689 |#1|) (-1264 |#1|))) (-15 -1957 ((-2 (|:| |particular| (-3 (-1264 |#1|) "failed")) (|:| -2365 (-644 (-1264 |#1|)))) (-644 (-644 |#1|)) (-1264 |#1|))) (-15 -1957 ((-644 (-2 (|:| |particular| (-3 (-1264 |#1|) "failed")) (|:| -2365 (-644 (-1264 |#1|))))) (-689 |#1|) (-644 (-1264 |#1|)))) (-15 -1957 ((-644 (-2 (|:| |particular| (-3 (-1264 |#1|) "failed")) (|:| -2365 (-644 (-1264 |#1|))))) (-644 (-644 |#1|)) (-644 (-1264 |#1|)))) (-15 -3132 ((-3 (-1264 |#1|) "failed") (-689 |#1|) (-1264 |#1|))) (-15 -2557 ((-112) (-689 |#1|) (-1264 |#1|))) (-15 -4313 ((-771) (-689 |#1|) (-1264 |#1|)))) (-365)) (T -667)) -((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-689 *5)) (-5 *4 (-1264 *5)) (-4 *5 (-365)) (-5 *2 (-771)) (-5 *1 (-667 *5)))) (-2557 (*1 *2 *3 *4) (-12 (-5 *3 (-689 *5)) (-5 *4 (-1264 *5)) (-4 *5 (-365)) (-5 *2 (-112)) (-5 *1 (-667 *5)))) (-3132 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1264 *4)) (-5 *3 (-689 *4)) (-4 *4 (-365)) (-5 *1 (-667 *4)))) (-1957 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-644 *5))) (-4 *5 (-365)) (-5 *2 (-644 (-2 (|:| |particular| (-3 (-1264 *5) "failed")) (|:| -2365 (-644 (-1264 *5)))))) (-5 *1 (-667 *5)) (-5 *4 (-644 (-1264 *5))))) (-1957 (*1 *2 *3 *4) (-12 (-5 *3 (-689 *5)) (-4 *5 (-365)) (-5 *2 (-644 (-2 (|:| |particular| (-3 (-1264 *5) "failed")) (|:| -2365 (-644 (-1264 *5)))))) (-5 *1 (-667 *5)) (-5 *4 (-644 (-1264 *5))))) (-1957 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-644 *5))) (-4 *5 (-365)) (-5 *2 (-2 (|:| |particular| (-3 (-1264 *5) "failed")) (|:| -2365 (-644 (-1264 *5))))) (-5 *1 (-667 *5)) (-5 *4 (-1264 *5)))) (-1957 (*1 *2 *3 *4) (-12 (-5 *3 (-689 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |particular| (-3 (-1264 *5) "failed")) (|:| -2365 (-644 (-1264 *5))))) (-5 *1 (-667 *5)) (-5 *4 (-1264 *5))))) -(-10 -7 (-15 -1957 ((-2 (|:| |particular| (-3 (-1264 |#1|) "failed")) (|:| -2365 (-644 (-1264 |#1|)))) (-689 |#1|) (-1264 |#1|))) (-15 -1957 ((-2 (|:| |particular| (-3 (-1264 |#1|) "failed")) (|:| -2365 (-644 (-1264 |#1|)))) (-644 (-644 |#1|)) (-1264 |#1|))) (-15 -1957 ((-644 (-2 (|:| |particular| (-3 (-1264 |#1|) "failed")) (|:| -2365 (-644 (-1264 |#1|))))) (-689 |#1|) (-644 (-1264 |#1|)))) (-15 -1957 ((-644 (-2 (|:| |particular| (-3 (-1264 |#1|) "failed")) (|:| -2365 (-644 (-1264 |#1|))))) (-644 (-644 |#1|)) (-644 (-1264 |#1|)))) (-15 -3132 ((-3 (-1264 |#1|) "failed") (-689 |#1|) (-1264 |#1|))) (-15 -2557 ((-112) (-689 |#1|) (-1264 |#1|))) (-15 -4313 ((-771) (-689 |#1|) (-1264 |#1|)))) -((-1957 (((-644 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2365 (-644 |#3|)))) |#4| (-644 |#3|)) 66) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2365 (-644 |#3|))) |#4| |#3|) 60)) (-4313 (((-771) |#4| |#3|) 18)) (-3132 (((-3 |#3| "failed") |#4| |#3|) 21)) (-2557 (((-112) |#4| |#3|) 14))) -(((-668 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1957 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2365 (-644 |#3|))) |#4| |#3|)) (-15 -1957 ((-644 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2365 (-644 |#3|)))) |#4| (-644 |#3|))) (-15 -3132 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2557 ((-112) |#4| |#3|)) (-15 -4313 ((-771) |#4| |#3|))) (-365) (-13 (-375 |#1|) (-10 -7 (-6 -4415))) (-13 (-375 |#1|) (-10 -7 (-6 -4415))) (-687 |#1| |#2| |#3|)) (T -668)) -((-4313 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4415)))) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4415)))) (-5 *2 (-771)) (-5 *1 (-668 *5 *6 *4 *3)) (-4 *3 (-687 *5 *6 *4)))) (-2557 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4415)))) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4415)))) (-5 *2 (-112)) (-5 *1 (-668 *5 *6 *4 *3)) (-4 *3 (-687 *5 *6 *4)))) (-3132 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-365)) (-4 *5 (-13 (-375 *4) (-10 -7 (-6 -4415)))) (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4415)))) (-5 *1 (-668 *4 *5 *2 *3)) (-4 *3 (-687 *4 *5 *2)))) (-1957 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4415)))) (-4 *7 (-13 (-375 *5) (-10 -7 (-6 -4415)))) (-5 *2 (-644 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2365 (-644 *7))))) (-5 *1 (-668 *5 *6 *7 *3)) (-5 *4 (-644 *7)) (-4 *3 (-687 *5 *6 *7)))) (-1957 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4415)))) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4415)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2365 (-644 *4)))) (-5 *1 (-668 *5 *6 *4 *3)) (-4 *3 (-687 *5 *6 *4))))) -(-10 -7 (-15 -1957 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2365 (-644 |#3|))) |#4| |#3|)) (-15 -1957 ((-644 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2365 (-644 |#3|)))) |#4| (-644 |#3|))) (-15 -3132 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2557 ((-112) |#4| |#3|)) (-15 -4313 ((-771) |#4| |#3|))) -((-1725 (((-2 (|:| |particular| (-3 (-1264 (-409 |#4|)) "failed")) (|:| -2365 (-644 (-1264 (-409 |#4|))))) (-644 |#4|) (-644 |#3|)) 52))) -(((-669 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1725 ((-2 (|:| |particular| (-3 (-1264 (-409 |#4|)) "failed")) (|:| -2365 (-644 (-1264 (-409 |#4|))))) (-644 |#4|) (-644 |#3|)))) (-558) (-793) (-850) (-949 |#1| |#2| |#3|)) (T -669)) -((-1725 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 *7)) (-4 *7 (-850)) (-4 *8 (-949 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-793)) (-5 *2 (-2 (|:| |particular| (-3 (-1264 (-409 *8)) "failed")) (|:| -2365 (-644 (-1264 (-409 *8)))))) (-5 *1 (-669 *5 *6 *7 *8))))) -(-10 -7 (-15 -1725 ((-2 (|:| |particular| (-3 (-1264 (-409 |#4|)) "failed")) (|:| -2365 (-644 (-1264 (-409 |#4|))))) (-644 |#4|) (-644 |#3|)))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-3002 (((-3 $ "failed")) NIL (|has| |#2| (-558)))) (-3837 ((|#2| $) NIL)) (-2143 (((-112) $) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-4085 (((-1264 (-689 |#2|))) NIL) (((-1264 (-689 |#2|)) (-1264 $)) NIL)) (-1743 (((-112) $) NIL)) (-2092 (((-1264 $)) 44)) (-2256 (((-112) $ (-771)) NIL)) (-3808 (($ |#2|) NIL)) (-3012 (($) NIL T CONST)) (-4137 (($ $) NIL (|has| |#2| (-308)))) (-4379 (((-240 |#1| |#2|) $ (-566)) NIL)) (-4119 (((-3 (-2 (|:| |particular| $) (|:| -2365 (-644 $))) "failed")) NIL (|has| |#2| (-558)))) (-1446 (((-3 $ "failed")) NIL (|has| |#2| (-558)))) (-3058 (((-689 |#2|)) NIL) (((-689 |#2|) (-1264 $)) NIL)) (-2468 ((|#2| $) NIL)) (-4298 (((-689 |#2|) $) NIL) (((-689 |#2|) $ (-1264 $)) NIL)) (-2715 (((-3 $ "failed") $) NIL (|has| |#2| (-558)))) (-2727 (((-1171 (-952 |#2|))) NIL (|has| |#2| (-365)))) (-3942 (($ $ (-921)) NIL)) (-1670 ((|#2| $) NIL)) (-3757 (((-1171 |#2|) $) NIL (|has| |#2| (-558)))) (-2072 ((|#2|) NIL) ((|#2| (-1264 $)) NIL)) (-2410 (((-1171 |#2|) $) NIL)) (-3036 (((-112)) NIL)) (-4307 (((-3 (-566) "failed") $) NIL (|has| |#2| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#2| (-1038 (-409 (-566))))) (((-3 |#2| "failed") $) NIL)) (-4205 (((-566) $) NIL (|has| |#2| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#2| (-1038 (-409 (-566))))) ((|#2| $) NIL)) (-2392 (($ (-1264 |#2|)) NIL) (($ (-1264 |#2|) (-1264 $)) NIL)) (-3577 (((-689 (-566)) (-689 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -4227 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 $) (-1264 $)) NIL) (((-689 |#2|) (-689 $)) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-4313 (((-771) $) NIL (|has| |#2| (-558))) (((-921)) 45)) (-2855 ((|#2| $ (-566) (-566)) NIL)) (-2658 (((-112)) NIL)) (-2322 (($ $ (-921)) NIL)) (-3979 (((-644 |#2|) $) NIL (|has| $ (-6 -4414)))) (-3934 (((-112) $) NIL)) (-3864 (((-771) $) NIL (|has| |#2| (-558)))) (-1601 (((-644 (-240 |#1| |#2|)) $) NIL (|has| |#2| (-558)))) (-1380 (((-771) $) NIL)) (-1652 (((-112)) NIL)) (-1391 (((-771) $) NIL)) (-2404 (((-112) $ (-771)) NIL)) (-3310 ((|#2| $) NIL (|has| |#2| (-6 (-4416 "*"))))) (-1368 (((-566) $) NIL)) (-3832 (((-566) $) NIL)) (-2329 (((-644 |#2|) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099))))) (-1821 (((-566) $) NIL)) (-1809 (((-566) $) NIL)) (-3163 (($ (-644 (-644 |#2|))) NIL)) (-2908 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2909 (((-644 (-644 |#2|)) $) NIL)) (-1543 (((-112)) NIL)) (-2763 (((-112)) NIL)) (-2603 (((-112) $ (-771)) NIL)) (-2906 (((-3 (-2 (|:| |particular| $) (|:| -2365 (-644 $))) "failed")) NIL (|has| |#2| (-558)))) (-1710 (((-3 $ "failed")) NIL (|has| |#2| (-558)))) (-1371 (((-689 |#2|)) NIL) (((-689 |#2|) (-1264 $)) NIL)) (-3307 ((|#2| $) NIL)) (-3131 (((-689 |#2|) $) NIL) (((-689 |#2|) $ (-1264 $)) NIL)) (-2305 (((-3 $ "failed") $) NIL (|has| |#2| (-558)))) (-2537 (((-1171 (-952 |#2|))) NIL (|has| |#2| (-365)))) (-2437 (($ $ (-921)) NIL)) (-3473 ((|#2| $) NIL)) (-4108 (((-1171 |#2|) $) NIL (|has| |#2| (-558)))) (-1950 ((|#2|) NIL) ((|#2| (-1264 $)) NIL)) (-1974 (((-1171 |#2|) $) NIL)) (-3390 (((-112)) NIL)) (-4117 (((-1157) $) NIL)) (-3170 (((-112)) NIL)) (-3326 (((-112)) NIL)) (-2829 (((-112)) NIL)) (-4264 (((-3 $ "failed") $) NIL (|has| |#2| (-365)))) (-4035 (((-1119) $) NIL)) (-1976 (((-112)) NIL)) (-2994 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-558)))) (-2692 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-1932 (((-112) $ $) NIL)) (-3467 (((-112) $) NIL)) (-1494 (($) NIL)) (-4390 ((|#2| $ (-566) (-566) |#2|) NIL) ((|#2| $ (-566) (-566)) 30) ((|#2| $ (-566)) NIL)) (-3561 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-771)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-2812 ((|#2| $) NIL)) (-4098 (($ (-644 |#2|)) NIL)) (-2652 (((-112) $) NIL)) (-3733 (((-240 |#1| |#2|) $) NIL)) (-4383 ((|#2| $) NIL (|has| |#2| (-6 (-4416 "*"))))) (-4045 (((-771) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414))) (((-771) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099))))) (-3940 (($ $) NIL)) (-2154 (((-689 |#2|) (-1264 $)) NIL) (((-1264 |#2|) $) NIL) (((-689 |#2|) (-1264 $) (-1264 $)) NIL) (((-1264 |#2|) $ (-1264 $)) 33)) (-1348 (($ (-1264 |#2|)) NIL) (((-1264 |#2|) $) NIL)) (-3453 (((-644 (-952 |#2|))) NIL) (((-644 (-952 |#2|)) (-1264 $)) NIL)) (-3171 (($ $ $) NIL)) (-2638 (((-112)) NIL)) (-2306 (((-240 |#1| |#2|) $ (-566)) NIL)) (-3783 (((-862) $) NIL) (($ (-566)) NIL) (($ (-409 (-566))) NIL (|has| |#2| (-1038 (-409 (-566))))) (($ |#2|) NIL) (((-689 |#2|) $) NIL)) (-2107 (((-771)) NIL T CONST)) (-3117 (((-112) $ $) NIL)) (-2365 (((-1264 $)) 43)) (-3023 (((-644 (-1264 |#2|))) NIL (|has| |#2| (-558)))) (-2320 (($ $ $ $) NIL)) (-3232 (((-112)) NIL)) (-1948 (($ (-689 |#2|) $) NIL)) (-1894 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414)))) (-3098 (((-112) $) NIL)) (-3027 (($ $ $) NIL)) (-2653 (((-112)) NIL)) (-1843 (((-112)) NIL)) (-1938 (((-112)) NIL)) (-2479 (($) NIL T CONST)) (-4334 (($) NIL T CONST)) (-2875 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-771)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-2947 (((-112) $ $) NIL)) (-3065 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL (|has| |#2| (-365)))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-240 |#1| |#2|) $ (-240 |#1| |#2|)) NIL) (((-240 |#1| |#2|) (-240 |#1| |#2|) $) NIL)) (-3018 (((-771) $) NIL (|has| $ (-6 -4414))))) +((-3770 (*1 *1 *2) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1214))))) +(-13 (-1148 |t#1|) (-375 |t#1|) (-283 |t#1|) (-10 -8 (-15 -3770 ($ |t#1|)))) +(((-34) . T) ((-102) -2768 (|has| |#1| (-1099)) (|has| |#1| (-850))) ((-613 (-862)) -2768 (|has| |#1| (-1099)) (|has| |#1| (-850)) (|has| |#1| (-613 (-862)))) ((-151 |#1|) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-287 #0=(-566) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-283 |#1|) . T) ((-375 |#1|) . T) ((-491 |#1|) . T) ((-604 #0# |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-651 |#1|) . T) ((-850) |has| |#1| (-850)) ((-1010 |#1|) . T) ((-1099) -2768 (|has| |#1| (-1099)) (|has| |#1| (-850))) ((-1148 |#1|) . T) ((-1214) . T) ((-1252 |#1|) . T)) +((-2423 (((-644 (-2 (|:| |particular| (-3 (-1264 |#1|) "failed")) (|:| -2875 (-644 (-1264 |#1|))))) (-644 (-644 |#1|)) (-644 (-1264 |#1|))) 22) (((-644 (-2 (|:| |particular| (-3 (-1264 |#1|) "failed")) (|:| -2875 (-644 (-1264 |#1|))))) (-689 |#1|) (-644 (-1264 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1264 |#1|) "failed")) (|:| -2875 (-644 (-1264 |#1|)))) (-644 (-644 |#1|)) (-1264 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1264 |#1|) "failed")) (|:| -2875 (-644 (-1264 |#1|)))) (-689 |#1|) (-1264 |#1|)) 14)) (-2755 (((-771) (-689 |#1|) (-1264 |#1|)) 30)) (-3894 (((-3 (-1264 |#1|) "failed") (-689 |#1|) (-1264 |#1|)) 24)) (-4264 (((-112) (-689 |#1|) (-1264 |#1|)) 27))) +(((-667 |#1|) (-10 -7 (-15 -2423 ((-2 (|:| |particular| (-3 (-1264 |#1|) "failed")) (|:| -2875 (-644 (-1264 |#1|)))) (-689 |#1|) (-1264 |#1|))) (-15 -2423 ((-2 (|:| |particular| (-3 (-1264 |#1|) "failed")) (|:| -2875 (-644 (-1264 |#1|)))) (-644 (-644 |#1|)) (-1264 |#1|))) (-15 -2423 ((-644 (-2 (|:| |particular| (-3 (-1264 |#1|) "failed")) (|:| -2875 (-644 (-1264 |#1|))))) (-689 |#1|) (-644 (-1264 |#1|)))) (-15 -2423 ((-644 (-2 (|:| |particular| (-3 (-1264 |#1|) "failed")) (|:| -2875 (-644 (-1264 |#1|))))) (-644 (-644 |#1|)) (-644 (-1264 |#1|)))) (-15 -3894 ((-3 (-1264 |#1|) "failed") (-689 |#1|) (-1264 |#1|))) (-15 -4264 ((-112) (-689 |#1|) (-1264 |#1|))) (-15 -2755 ((-771) (-689 |#1|) (-1264 |#1|)))) (-365)) (T -667)) +((-2755 (*1 *2 *3 *4) (-12 (-5 *3 (-689 *5)) (-5 *4 (-1264 *5)) (-4 *5 (-365)) (-5 *2 (-771)) (-5 *1 (-667 *5)))) (-4264 (*1 *2 *3 *4) (-12 (-5 *3 (-689 *5)) (-5 *4 (-1264 *5)) (-4 *5 (-365)) (-5 *2 (-112)) (-5 *1 (-667 *5)))) (-3894 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1264 *4)) (-5 *3 (-689 *4)) (-4 *4 (-365)) (-5 *1 (-667 *4)))) (-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-644 *5))) (-4 *5 (-365)) (-5 *2 (-644 (-2 (|:| |particular| (-3 (-1264 *5) "failed")) (|:| -2875 (-644 (-1264 *5)))))) (-5 *1 (-667 *5)) (-5 *4 (-644 (-1264 *5))))) (-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-689 *5)) (-4 *5 (-365)) (-5 *2 (-644 (-2 (|:| |particular| (-3 (-1264 *5) "failed")) (|:| -2875 (-644 (-1264 *5)))))) (-5 *1 (-667 *5)) (-5 *4 (-644 (-1264 *5))))) (-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-644 *5))) (-4 *5 (-365)) (-5 *2 (-2 (|:| |particular| (-3 (-1264 *5) "failed")) (|:| -2875 (-644 (-1264 *5))))) (-5 *1 (-667 *5)) (-5 *4 (-1264 *5)))) (-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-689 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |particular| (-3 (-1264 *5) "failed")) (|:| -2875 (-644 (-1264 *5))))) (-5 *1 (-667 *5)) (-5 *4 (-1264 *5))))) +(-10 -7 (-15 -2423 ((-2 (|:| |particular| (-3 (-1264 |#1|) "failed")) (|:| -2875 (-644 (-1264 |#1|)))) (-689 |#1|) (-1264 |#1|))) (-15 -2423 ((-2 (|:| |particular| (-3 (-1264 |#1|) "failed")) (|:| -2875 (-644 (-1264 |#1|)))) (-644 (-644 |#1|)) (-1264 |#1|))) (-15 -2423 ((-644 (-2 (|:| |particular| (-3 (-1264 |#1|) "failed")) (|:| -2875 (-644 (-1264 |#1|))))) (-689 |#1|) (-644 (-1264 |#1|)))) (-15 -2423 ((-644 (-2 (|:| |particular| (-3 (-1264 |#1|) "failed")) (|:| -2875 (-644 (-1264 |#1|))))) (-644 (-644 |#1|)) (-644 (-1264 |#1|)))) (-15 -3894 ((-3 (-1264 |#1|) "failed") (-689 |#1|) (-1264 |#1|))) (-15 -4264 ((-112) (-689 |#1|) (-1264 |#1|))) (-15 -2755 ((-771) (-689 |#1|) (-1264 |#1|)))) +((-2423 (((-644 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2875 (-644 |#3|)))) |#4| (-644 |#3|)) 66) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2875 (-644 |#3|))) |#4| |#3|) 60)) (-2755 (((-771) |#4| |#3|) 18)) (-3894 (((-3 |#3| "failed") |#4| |#3|) 21)) (-4264 (((-112) |#4| |#3|) 14))) +(((-668 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2423 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2875 (-644 |#3|))) |#4| |#3|)) (-15 -2423 ((-644 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2875 (-644 |#3|)))) |#4| (-644 |#3|))) (-15 -3894 ((-3 |#3| "failed") |#4| |#3|)) (-15 -4264 ((-112) |#4| |#3|)) (-15 -2755 ((-771) |#4| |#3|))) (-365) (-13 (-375 |#1|) (-10 -7 (-6 -4415))) (-13 (-375 |#1|) (-10 -7 (-6 -4415))) (-687 |#1| |#2| |#3|)) (T -668)) +((-2755 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4415)))) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4415)))) (-5 *2 (-771)) (-5 *1 (-668 *5 *6 *4 *3)) (-4 *3 (-687 *5 *6 *4)))) (-4264 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4415)))) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4415)))) (-5 *2 (-112)) (-5 *1 (-668 *5 *6 *4 *3)) (-4 *3 (-687 *5 *6 *4)))) (-3894 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-365)) (-4 *5 (-13 (-375 *4) (-10 -7 (-6 -4415)))) (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4415)))) (-5 *1 (-668 *4 *5 *2 *3)) (-4 *3 (-687 *4 *5 *2)))) (-2423 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4415)))) (-4 *7 (-13 (-375 *5) (-10 -7 (-6 -4415)))) (-5 *2 (-644 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2875 (-644 *7))))) (-5 *1 (-668 *5 *6 *7 *3)) (-5 *4 (-644 *7)) (-4 *3 (-687 *5 *6 *7)))) (-2423 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4415)))) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4415)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2875 (-644 *4)))) (-5 *1 (-668 *5 *6 *4 *3)) (-4 *3 (-687 *5 *6 *4))))) +(-10 -7 (-15 -2423 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2875 (-644 |#3|))) |#4| |#3|)) (-15 -2423 ((-644 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2875 (-644 |#3|)))) |#4| (-644 |#3|))) (-15 -3894 ((-3 |#3| "failed") |#4| |#3|)) (-15 -4264 ((-112) |#4| |#3|)) (-15 -2755 ((-771) |#4| |#3|))) +((-3691 (((-2 (|:| |particular| (-3 (-1264 (-409 |#4|)) "failed")) (|:| -2875 (-644 (-1264 (-409 |#4|))))) (-644 |#4|) (-644 |#3|)) 52))) +(((-669 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3691 ((-2 (|:| |particular| (-3 (-1264 (-409 |#4|)) "failed")) (|:| -2875 (-644 (-1264 (-409 |#4|))))) (-644 |#4|) (-644 |#3|)))) (-558) (-793) (-850) (-949 |#1| |#2| |#3|)) (T -669)) +((-3691 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 *7)) (-4 *7 (-850)) (-4 *8 (-949 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-793)) (-5 *2 (-2 (|:| |particular| (-3 (-1264 (-409 *8)) "failed")) (|:| -2875 (-644 (-1264 (-409 *8)))))) (-5 *1 (-669 *5 *6 *7 *8))))) +(-10 -7 (-15 -3691 ((-2 (|:| |particular| (-3 (-1264 (-409 |#4|)) "failed")) (|:| -2875 (-644 (-1264 (-409 |#4|))))) (-644 |#4|) (-644 |#3|)))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-2896 (((-3 $ "failed")) NIL (|has| |#2| (-558)))) (-3833 ((|#2| $) NIL)) (-1791 (((-112) $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-2336 (((-1264 (-689 |#2|))) NIL) (((-1264 (-689 |#2|)) (-1264 $)) NIL)) (-3768 (((-112) $) NIL)) (-3717 (((-1264 $)) 44)) (-1504 (((-112) $ (-771)) NIL)) (-3520 (($ |#2|) NIL)) (-2463 (($) NIL T CONST)) (-1521 (($ $) NIL (|has| |#2| (-308)))) (-1721 (((-240 |#1| |#2|) $ (-566)) NIL)) (-3574 (((-3 (-2 (|:| |particular| $) (|:| -2875 (-644 $))) "failed")) NIL (|has| |#2| (-558)))) (-1469 (((-3 $ "failed")) NIL (|has| |#2| (-558)))) (-2411 (((-689 |#2|)) NIL) (((-689 |#2|) (-1264 $)) NIL)) (-4373 ((|#2| $) NIL)) (-2800 (((-689 |#2|) $) NIL) (((-689 |#2|) $ (-1264 $)) NIL)) (-4392 (((-3 $ "failed") $) NIL (|has| |#2| (-558)))) (-3031 (((-1171 (-952 |#2|))) NIL (|has| |#2| (-365)))) (-1856 (($ $ (-921)) NIL)) (-4039 ((|#2| $) NIL)) (-3648 (((-1171 |#2|) $) NIL (|has| |#2| (-558)))) (-2597 ((|#2|) NIL) ((|#2| (-1264 $)) NIL)) (-2765 (((-1171 |#2|) $) NIL)) (-4029 (((-112)) NIL)) (-2229 (((-3 (-566) "failed") $) NIL (|has| |#2| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#2| (-1038 (-409 (-566))))) (((-3 |#2| "failed") $) NIL)) (-4158 (((-566) $) NIL (|has| |#2| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#2| (-1038 (-409 (-566))))) ((|#2| $) NIL)) (-1563 (($ (-1264 |#2|)) NIL) (($ (-1264 |#2|) (-1264 $)) NIL)) (-4089 (((-689 (-566)) (-689 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -3361 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 $) (-1264 $)) NIL) (((-689 |#2|) (-689 $)) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-2755 (((-771) $) NIL (|has| |#2| (-558))) (((-921)) 45)) (-3829 ((|#2| $ (-566) (-566)) NIL)) (-3793 (((-112)) NIL)) (-4090 (($ $ (-921)) NIL)) (-1683 (((-644 |#2|) $) NIL (|has| $ (-6 -4414)))) (-2389 (((-112) $) NIL)) (-1908 (((-771) $) NIL (|has| |#2| (-558)))) (-2950 (((-644 (-240 |#1| |#2|)) $) NIL (|has| |#2| (-558)))) (-3811 (((-771) $) NIL)) (-4240 (((-112)) NIL)) (-3824 (((-771) $) NIL)) (-3456 (((-112) $ (-771)) NIL)) (-1444 ((|#2| $) NIL (|has| |#2| (-6 (-4416 "*"))))) (-2531 (((-566) $) NIL)) (-3688 (((-566) $) NIL)) (-3491 (((-644 |#2|) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099))))) (-2422 (((-566) $) NIL)) (-3632 (((-566) $) NIL)) (-4184 (($ (-644 (-644 |#2|))) NIL)) (-3885 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-1723 (((-644 (-644 |#2|)) $) NIL)) (-2057 (((-112)) NIL)) (-2158 (((-112)) NIL)) (-3267 (((-112) $ (-771)) NIL)) (-1476 (((-3 (-2 (|:| |particular| $) (|:| -2875 (-644 $))) "failed")) NIL (|has| |#2| (-558)))) (-1731 (((-3 $ "failed")) NIL (|has| |#2| (-558)))) (-2734 (((-689 |#2|)) NIL) (((-689 |#2|) (-1264 $)) NIL)) (-2366 ((|#2| $) NIL)) (-3769 (((-689 |#2|) $) NIL) (((-689 |#2|) $ (-1264 $)) NIL)) (-2851 (((-3 $ "failed") $) NIL (|has| |#2| (-558)))) (-1793 (((-1171 (-952 |#2|))) NIL (|has| |#2| (-365)))) (-3270 (($ $ (-921)) NIL)) (-2241 ((|#2| $) NIL)) (-1910 (((-1171 |#2|) $) NIL (|has| |#2| (-558)))) (-2990 ((|#2|) NIL) ((|#2| (-1264 $)) NIL)) (-3548 (((-1171 |#2|) $) NIL)) (-2974 (((-112)) NIL)) (-3380 (((-1157) $) NIL)) (-2402 (((-112)) NIL)) (-1459 (((-112)) NIL)) (-3846 (((-112)) NIL)) (-1542 (((-3 $ "failed") $) NIL (|has| |#2| (-365)))) (-4072 (((-1119) $) NIL)) (-3795 (((-112)) NIL)) (-2978 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-558)))) (-2823 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-3814 (((-112) $ $) NIL)) (-2872 (((-112) $) NIL)) (-3493 (($) NIL)) (-1309 ((|#2| $ (-566) (-566) |#2|) NIL) ((|#2| $ (-566) (-566)) 30) ((|#2| $ (-566)) NIL)) (-3629 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-771)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-3429 ((|#2| $) NIL)) (-2253 (($ (-644 |#2|)) NIL)) (-1370 (((-112) $) NIL)) (-3065 (((-240 |#1| |#2|) $) NIL)) (-3943 ((|#2| $) NIL (|has| |#2| (-6 (-4416 "*"))))) (-4083 (((-771) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414))) (((-771) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099))))) (-1480 (($ $) NIL)) (-3350 (((-689 |#2|) (-1264 $)) NIL) (((-1264 |#2|) $) NIL) (((-689 |#2|) (-1264 $) (-1264 $)) NIL) (((-1264 |#2|) $ (-1264 $)) 33)) (-2376 (($ (-1264 |#2|)) NIL) (((-1264 |#2|) $) NIL)) (-2861 (((-644 (-952 |#2|))) NIL) (((-644 (-952 |#2|)) (-1264 $)) NIL)) (-2527 (($ $ $) NIL)) (-2512 (((-112)) NIL)) (-2986 (((-240 |#1| |#2|) $ (-566)) NIL)) (-3152 (((-862) $) NIL) (($ (-566)) NIL) (($ (-409 (-566))) NIL (|has| |#2| (-1038 (-409 (-566))))) (($ |#2|) NIL) (((-689 |#2|) $) NIL)) (-2593 (((-771)) NIL T CONST)) (-3044 (((-112) $ $) NIL)) (-2875 (((-1264 $)) 43)) (-2243 (((-644 (-1264 |#2|))) NIL (|has| |#2| (-558)))) (-3876 (($ $ $ $) NIL)) (-2468 (((-112)) NIL)) (-3847 (($ (-689 |#2|) $) NIL)) (-2210 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414)))) (-1950 (((-112) $) NIL)) (-1471 (($ $ $) NIL)) (-1465 (((-112)) NIL)) (-3692 (((-112)) NIL)) (-4369 (((-112)) NIL)) (-4356 (($) NIL T CONST)) (-4366 (($) NIL T CONST)) (-3497 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-771)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-2914 (((-112) $ $) NIL)) (-3025 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL (|has| |#2| (-365)))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-240 |#1| |#2|) $ (-240 |#1| |#2|)) NIL) (((-240 |#1| |#2|) (-240 |#1| |#2|) $) NIL)) (-3000 (((-771) $) NIL (|has| $ (-6 -4414))))) (((-670 |#1| |#2|) (-13 (-1122 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-613 (-689 |#2|)) (-419 |#2|)) (-921) (-172)) (T -670)) NIL (-13 (-1122 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-613 (-689 |#2|)) (-419 |#2|)) -((-3007 (((-112) $ $) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-1973 (((-644 (-1134)) $) 10)) (-3783 (((-862) $) 16) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) -(((-671) (-13 (-1082) (-10 -8 (-15 -1973 ((-644 (-1134)) $))))) (T -671)) -((-1973 (*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-671))))) -(-13 (-1082) (-10 -8 (-15 -1973 ((-644 (-1134)) $)))) -((-3007 (((-112) $ $) NIL)) (-3095 (((-644 |#1|) $) NIL)) (-4392 (($ $) 67)) (-3032 (((-112) $) NIL)) (-4307 (((-3 |#1| "failed") $) NIL)) (-4205 ((|#1| $) NIL)) (-2097 (($ $ $) NIL)) (-3962 (($ $ $) NIL)) (-2952 (((-3 $ "failed") (-819 |#1|)) 27)) (-2070 (((-112) (-819 |#1|)) 17)) (-4004 (($ (-819 |#1|)) 28)) (-2576 (((-112) $ $) 36)) (-4149 (((-921) $) 43)) (-4380 (($ $) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3719 (((-644 $) (-819 |#1|)) 19)) (-3783 (((-862) $) 51) (($ |#1|) 40) (((-819 |#1|) $) 47) (((-677 |#1|) $) 52)) (-3117 (((-112) $ $) NIL)) (-4278 (((-59 (-644 $)) (-644 |#1|) (-921)) 72)) (-2919 (((-644 $) (-644 |#1|) (-921)) 76)) (-3009 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2947 (((-112) $ $) 68)) (-2995 (((-112) $ $) NIL)) (-2969 (((-112) $ $) 46))) -(((-672 |#1|) (-13 (-850) (-1038 |#1|) (-10 -8 (-15 -3032 ((-112) $)) (-15 -4380 ($ $)) (-15 -4392 ($ $)) (-15 -4149 ((-921) $)) (-15 -2576 ((-112) $ $)) (-15 -3783 ((-819 |#1|) $)) (-15 -3783 ((-677 |#1|) $)) (-15 -3719 ((-644 $) (-819 |#1|))) (-15 -2070 ((-112) (-819 |#1|))) (-15 -4004 ($ (-819 |#1|))) (-15 -2952 ((-3 $ "failed") (-819 |#1|))) (-15 -3095 ((-644 |#1|) $)) (-15 -4278 ((-59 (-644 $)) (-644 |#1|) (-921))) (-15 -2919 ((-644 $) (-644 |#1|) (-921))))) (-850)) (T -672)) -((-3032 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-672 *3)) (-4 *3 (-850)))) (-4380 (*1 *1 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-850)))) (-4392 (*1 *1 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-850)))) (-4149 (*1 *2 *1) (-12 (-5 *2 (-921)) (-5 *1 (-672 *3)) (-4 *3 (-850)))) (-2576 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-672 *3)) (-4 *3 (-850)))) (-3783 (*1 *2 *1) (-12 (-5 *2 (-819 *3)) (-5 *1 (-672 *3)) (-4 *3 (-850)))) (-3783 (*1 *2 *1) (-12 (-5 *2 (-677 *3)) (-5 *1 (-672 *3)) (-4 *3 (-850)))) (-3719 (*1 *2 *3) (-12 (-5 *3 (-819 *4)) (-4 *4 (-850)) (-5 *2 (-644 (-672 *4))) (-5 *1 (-672 *4)))) (-2070 (*1 *2 *3) (-12 (-5 *3 (-819 *4)) (-4 *4 (-850)) (-5 *2 (-112)) (-5 *1 (-672 *4)))) (-4004 (*1 *1 *2) (-12 (-5 *2 (-819 *3)) (-4 *3 (-850)) (-5 *1 (-672 *3)))) (-2952 (*1 *1 *2) (|partial| -12 (-5 *2 (-819 *3)) (-4 *3 (-850)) (-5 *1 (-672 *3)))) (-3095 (*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-672 *3)) (-4 *3 (-850)))) (-4278 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *5)) (-5 *4 (-921)) (-4 *5 (-850)) (-5 *2 (-59 (-644 (-672 *5)))) (-5 *1 (-672 *5)))) (-2919 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *5)) (-5 *4 (-921)) (-4 *5 (-850)) (-5 *2 (-644 (-672 *5))) (-5 *1 (-672 *5))))) -(-13 (-850) (-1038 |#1|) (-10 -8 (-15 -3032 ((-112) $)) (-15 -4380 ($ $)) (-15 -4392 ($ $)) (-15 -4149 ((-921) $)) (-15 -2576 ((-112) $ $)) (-15 -3783 ((-819 |#1|) $)) (-15 -3783 ((-677 |#1|) $)) (-15 -3719 ((-644 $) (-819 |#1|))) (-15 -2070 ((-112) (-819 |#1|))) (-15 -4004 ($ (-819 |#1|))) (-15 -2952 ((-3 $ "failed") (-819 |#1|))) (-15 -3095 ((-644 |#1|) $)) (-15 -4278 ((-59 (-644 $)) (-644 |#1|) (-921))) (-15 -2919 ((-644 $) (-644 |#1|) (-921))))) -((-2233 ((|#2| $) 103)) (-2223 (($ $) 124)) (-2256 (((-112) $ (-771)) 35)) (-2010 (($ $) 112) (($ $ (-771)) 115)) (-1902 (((-112) $) 125)) (-4009 (((-644 $) $) 99)) (-3891 (((-112) $ $) 95)) (-2404 (((-112) $ (-771)) 33)) (-3854 (((-566) $) 69)) (-2712 (((-566) $) 68)) (-2603 (((-112) $ (-771)) 31)) (-3438 (((-112) $) 101)) (-2686 ((|#2| $) 116) (($ $ (-771)) 120)) (-4276 (($ $ $ (-566)) 86) (($ |#2| $ (-566)) 85)) (-4074 (((-644 (-566)) $) 67)) (-3792 (((-112) (-566) $) 61)) (-1998 ((|#2| $) NIL) (($ $ (-771)) 111)) (-3874 (($ $ (-566)) 128)) (-2373 (((-112) $) 127)) (-2692 (((-112) (-1 (-112) |#2|) $) 44)) (-2993 (((-644 |#2|) $) 48)) (-4390 ((|#2| $ "value") NIL) ((|#2| $ "first") 110) (($ $ "rest") 114) ((|#2| $ "last") 123) (($ $ (-1231 (-566))) 82) ((|#2| $ (-566)) 59) ((|#2| $ (-566) |#2|) 60)) (-1416 (((-566) $ $) 94)) (-2187 (($ $ (-1231 (-566))) 81) (($ $ (-566)) 75)) (-3494 (((-112) $) 90)) (-4272 (($ $) 108)) (-2833 (((-771) $) 107)) (-2369 (($ $) 106)) (-3796 (($ (-644 |#2|)) 55)) (-2770 (($ $) 129)) (-2462 (((-644 $) $) 93)) (-4288 (((-112) $ $) 92)) (-1894 (((-112) (-1 (-112) |#2|) $) 43)) (-2947 (((-112) $ $) 20)) (-3018 (((-771) $) 41))) -(((-673 |#1| |#2|) (-10 -8 (-15 -2770 (|#1| |#1|)) (-15 -3874 (|#1| |#1| (-566))) (-15 -1902 ((-112) |#1|)) (-15 -2373 ((-112) |#1|)) (-15 -4390 (|#2| |#1| (-566) |#2|)) (-15 -4390 (|#2| |#1| (-566))) (-15 -2993 ((-644 |#2|) |#1|)) (-15 -3792 ((-112) (-566) |#1|)) (-15 -4074 ((-644 (-566)) |#1|)) (-15 -2712 ((-566) |#1|)) (-15 -3854 ((-566) |#1|)) (-15 -3796 (|#1| (-644 |#2|))) (-15 -4390 (|#1| |#1| (-1231 (-566)))) (-15 -2187 (|#1| |#1| (-566))) (-15 -2187 (|#1| |#1| (-1231 (-566)))) (-15 -4276 (|#1| |#2| |#1| (-566))) (-15 -4276 (|#1| |#1| |#1| (-566))) (-15 -4272 (|#1| |#1|)) (-15 -2833 ((-771) |#1|)) (-15 -2369 (|#1| |#1|)) (-15 -2223 (|#1| |#1|)) (-15 -2686 (|#1| |#1| (-771))) (-15 -4390 (|#2| |#1| "last")) (-15 -2686 (|#2| |#1|)) (-15 -2010 (|#1| |#1| (-771))) (-15 -4390 (|#1| |#1| "rest")) (-15 -2010 (|#1| |#1|)) (-15 -1998 (|#1| |#1| (-771))) (-15 -4390 (|#2| |#1| "first")) (-15 -1998 (|#2| |#1|)) (-15 -3891 ((-112) |#1| |#1|)) (-15 -4288 ((-112) |#1| |#1|)) (-15 -1416 ((-566) |#1| |#1|)) (-15 -3494 ((-112) |#1|)) (-15 -4390 (|#2| |#1| "value")) (-15 -2233 (|#2| |#1|)) (-15 -3438 ((-112) |#1|)) (-15 -4009 ((-644 |#1|) |#1|)) (-15 -2462 ((-644 |#1|) |#1|)) (-15 -2947 ((-112) |#1| |#1|)) (-15 -2692 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1894 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3018 ((-771) |#1|)) (-15 -2256 ((-112) |#1| (-771))) (-15 -2404 ((-112) |#1| (-771))) (-15 -2603 ((-112) |#1| (-771)))) (-674 |#2|) (-1214)) (T -673)) -NIL -(-10 -8 (-15 -2770 (|#1| |#1|)) (-15 -3874 (|#1| |#1| (-566))) (-15 -1902 ((-112) |#1|)) (-15 -2373 ((-112) |#1|)) (-15 -4390 (|#2| |#1| (-566) |#2|)) (-15 -4390 (|#2| |#1| (-566))) (-15 -2993 ((-644 |#2|) |#1|)) (-15 -3792 ((-112) (-566) |#1|)) (-15 -4074 ((-644 (-566)) |#1|)) (-15 -2712 ((-566) |#1|)) (-15 -3854 ((-566) |#1|)) (-15 -3796 (|#1| (-644 |#2|))) (-15 -4390 (|#1| |#1| (-1231 (-566)))) (-15 -2187 (|#1| |#1| (-566))) (-15 -2187 (|#1| |#1| (-1231 (-566)))) (-15 -4276 (|#1| |#2| |#1| (-566))) (-15 -4276 (|#1| |#1| |#1| (-566))) (-15 -4272 (|#1| |#1|)) (-15 -2833 ((-771) |#1|)) (-15 -2369 (|#1| |#1|)) (-15 -2223 (|#1| |#1|)) (-15 -2686 (|#1| |#1| (-771))) (-15 -4390 (|#2| |#1| "last")) (-15 -2686 (|#2| |#1|)) (-15 -2010 (|#1| |#1| (-771))) (-15 -4390 (|#1| |#1| "rest")) (-15 -2010 (|#1| |#1|)) (-15 -1998 (|#1| |#1| (-771))) (-15 -4390 (|#2| |#1| "first")) (-15 -1998 (|#2| |#1|)) (-15 -3891 ((-112) |#1| |#1|)) (-15 -4288 ((-112) |#1| |#1|)) (-15 -1416 ((-566) |#1| |#1|)) (-15 -3494 ((-112) |#1|)) (-15 -4390 (|#2| |#1| "value")) (-15 -2233 (|#2| |#1|)) (-15 -3438 ((-112) |#1|)) (-15 -4009 ((-644 |#1|) |#1|)) (-15 -2462 ((-644 |#1|) |#1|)) (-15 -2947 ((-112) |#1| |#1|)) (-15 -2692 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1894 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3018 ((-771) |#1|)) (-15 -2256 ((-112) |#1| (-771))) (-15 -2404 ((-112) |#1| (-771))) (-15 -2603 ((-112) |#1| (-771)))) -((-3007 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2233 ((|#1| $) 49)) (-2593 ((|#1| $) 66)) (-2223 (($ $) 68)) (-3734 (((-1269) $ (-566) (-566)) 98 (|has| $ (-6 -4415)))) (-2807 (($ $ (-566)) 53 (|has| $ (-6 -4415)))) (-2256 (((-112) $ (-771)) 8)) (-3396 ((|#1| $ |#1|) 40 (|has| $ (-6 -4415)))) (-4107 (($ $ $) 57 (|has| $ (-6 -4415)))) (-3178 ((|#1| $ |#1|) 55 (|has| $ (-6 -4415)))) (-2905 ((|#1| $ |#1|) 59 (|has| $ (-6 -4415)))) (-3923 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4415))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4415))) (($ $ "rest" $) 56 (|has| $ (-6 -4415))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4415))) ((|#1| $ (-1231 (-566)) |#1|) 118 (|has| $ (-6 -4415))) ((|#1| $ (-566) |#1|) 87 (|has| $ (-6 -4415)))) (-3800 (($ $ (-644 $)) 42 (|has| $ (-6 -4415)))) (-2701 (($ (-1 (-112) |#1|) $) 103)) (-2582 ((|#1| $) 67)) (-3012 (($) 7 T CONST)) (-2768 (($ $) 125)) (-2010 (($ $) 74) (($ $ (-771)) 72)) (-2031 (($ $) 100 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2665 (($ |#1| $) 101 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414)))) (($ (-1 (-112) |#1|) $) 104)) (-1676 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2920 ((|#1| $ (-566) |#1|) 86 (|has| $ (-6 -4415)))) (-2855 ((|#1| $ (-566)) 88)) (-1902 (((-112) $) 84)) (-3979 (((-644 |#1|) $) 31 (|has| $ (-6 -4414)))) (-3767 (((-771) $) 124)) (-4009 (((-644 $) $) 51)) (-3891 (((-112) $ $) 43 (|has| |#1| (-1099)))) (-4265 (($ (-771) |#1|) 109)) (-2404 (((-112) $ (-771)) 9)) (-3854 (((-566) $) 96 (|has| (-566) (-850)))) (-2329 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2712 (((-566) $) 95 (|has| (-566) (-850)))) (-2908 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-2603 (((-112) $ (-771)) 10)) (-3701 (((-644 |#1|) $) 46)) (-3438 (((-112) $) 50)) (-3567 (($ $) 127)) (-3465 (((-112) $) 128)) (-4117 (((-1157) $) 22 (|has| |#1| (-1099)))) (-2686 ((|#1| $) 71) (($ $ (-771)) 69)) (-4276 (($ $ $ (-566)) 117) (($ |#1| $ (-566)) 116)) (-4074 (((-644 (-566)) $) 93)) (-3792 (((-112) (-566) $) 92)) (-4035 (((-1119) $) 21 (|has| |#1| (-1099)))) (-3921 ((|#1| $) 126)) (-1998 ((|#1| $) 77) (($ $ (-771)) 75)) (-2006 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-4030 (($ $ |#1|) 97 (|has| $ (-6 -4415)))) (-3874 (($ $ (-566)) 123)) (-2373 (((-112) $) 85)) (-1929 (((-112) $) 129)) (-2267 (((-112) $) 130)) (-2692 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) 14)) (-4156 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2993 (((-644 |#1|) $) 91)) (-3467 (((-112) $) 11)) (-1494 (($) 12)) (-4390 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1231 (-566))) 113) ((|#1| $ (-566)) 90) ((|#1| $ (-566) |#1|) 89)) (-1416 (((-566) $ $) 45)) (-2187 (($ $ (-1231 (-566))) 115) (($ $ (-566)) 114)) (-3494 (((-112) $) 47)) (-4272 (($ $) 63)) (-1844 (($ $) 60 (|has| $ (-6 -4415)))) (-2833 (((-771) $) 64)) (-2369 (($ $) 65)) (-4045 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-3940 (($ $) 13)) (-1348 (((-538) $) 99 (|has| |#1| (-614 (-538))))) (-3796 (($ (-644 |#1|)) 108)) (-3480 (($ $ $) 62 (|has| $ (-6 -4415))) (($ $ |#1|) 61 (|has| $ (-6 -4415)))) (-3721 (($ $ $) 79) (($ |#1| $) 78) (($ (-644 $)) 111) (($ $ |#1|) 110)) (-2770 (($ $) 122)) (-3783 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-2462 (((-644 $) $) 52)) (-4288 (((-112) $ $) 44 (|has| |#1| (-1099)))) (-3117 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-1894 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3018 (((-771) $) 6 (|has| $ (-6 -4414))))) +((-2988 (((-112) $ $) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3455 (((-644 (-1134)) $) 10)) (-3152 (((-862) $) 16) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) +(((-671) (-13 (-1082) (-10 -8 (-15 -3455 ((-644 (-1134)) $))))) (T -671)) +((-3455 (*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-671))))) +(-13 (-1082) (-10 -8 (-15 -3455 ((-644 (-1134)) $)))) +((-2988 (((-112) $ $) NIL)) (-4111 (((-644 |#1|) $) NIL)) (-1966 (($ $) 67)) (-1748 (((-112) $) NIL)) (-2229 (((-3 |#1| "failed") $) NIL)) (-4158 ((|#1| $) NIL)) (-1478 (($ $ $) NIL)) (-2599 (($ $ $) NIL)) (-3101 (((-3 $ "failed") (-819 |#1|)) 27)) (-2517 (((-112) (-819 |#1|)) 17)) (-4173 (($ (-819 |#1|)) 28)) (-2585 (((-112) $ $) 36)) (-2440 (((-921) $) 43)) (-1953 (($ $) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-1624 (((-644 $) (-819 |#1|)) 19)) (-3152 (((-862) $) 51) (($ |#1|) 40) (((-819 |#1|) $) 47) (((-677 |#1|) $) 52)) (-3044 (((-112) $ $) NIL)) (-3202 (((-59 (-644 $)) (-644 |#1|) (-921)) 72)) (-3219 (((-644 $) (-644 |#1|) (-921)) 76)) (-2968 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2914 (((-112) $ $) 68)) (-2956 (((-112) $ $) NIL)) (-2935 (((-112) $ $) 46))) +(((-672 |#1|) (-13 (-850) (-1038 |#1|) (-10 -8 (-15 -1748 ((-112) $)) (-15 -1953 ($ $)) (-15 -1966 ($ $)) (-15 -2440 ((-921) $)) (-15 -2585 ((-112) $ $)) (-15 -3152 ((-819 |#1|) $)) (-15 -3152 ((-677 |#1|) $)) (-15 -1624 ((-644 $) (-819 |#1|))) (-15 -2517 ((-112) (-819 |#1|))) (-15 -4173 ($ (-819 |#1|))) (-15 -3101 ((-3 $ "failed") (-819 |#1|))) (-15 -4111 ((-644 |#1|) $)) (-15 -3202 ((-59 (-644 $)) (-644 |#1|) (-921))) (-15 -3219 ((-644 $) (-644 |#1|) (-921))))) (-850)) (T -672)) +((-1748 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-672 *3)) (-4 *3 (-850)))) (-1953 (*1 *1 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-850)))) (-1966 (*1 *1 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-850)))) (-2440 (*1 *2 *1) (-12 (-5 *2 (-921)) (-5 *1 (-672 *3)) (-4 *3 (-850)))) (-2585 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-672 *3)) (-4 *3 (-850)))) (-3152 (*1 *2 *1) (-12 (-5 *2 (-819 *3)) (-5 *1 (-672 *3)) (-4 *3 (-850)))) (-3152 (*1 *2 *1) (-12 (-5 *2 (-677 *3)) (-5 *1 (-672 *3)) (-4 *3 (-850)))) (-1624 (*1 *2 *3) (-12 (-5 *3 (-819 *4)) (-4 *4 (-850)) (-5 *2 (-644 (-672 *4))) (-5 *1 (-672 *4)))) (-2517 (*1 *2 *3) (-12 (-5 *3 (-819 *4)) (-4 *4 (-850)) (-5 *2 (-112)) (-5 *1 (-672 *4)))) (-4173 (*1 *1 *2) (-12 (-5 *2 (-819 *3)) (-4 *3 (-850)) (-5 *1 (-672 *3)))) (-3101 (*1 *1 *2) (|partial| -12 (-5 *2 (-819 *3)) (-4 *3 (-850)) (-5 *1 (-672 *3)))) (-4111 (*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-672 *3)) (-4 *3 (-850)))) (-3202 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *5)) (-5 *4 (-921)) (-4 *5 (-850)) (-5 *2 (-59 (-644 (-672 *5)))) (-5 *1 (-672 *5)))) (-3219 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *5)) (-5 *4 (-921)) (-4 *5 (-850)) (-5 *2 (-644 (-672 *5))) (-5 *1 (-672 *5))))) +(-13 (-850) (-1038 |#1|) (-10 -8 (-15 -1748 ((-112) $)) (-15 -1953 ($ $)) (-15 -1966 ($ $)) (-15 -2440 ((-921) $)) (-15 -2585 ((-112) $ $)) (-15 -3152 ((-819 |#1|) $)) (-15 -3152 ((-677 |#1|) $)) (-15 -1624 ((-644 $) (-819 |#1|))) (-15 -2517 ((-112) (-819 |#1|))) (-15 -4173 ($ (-819 |#1|))) (-15 -3101 ((-3 $ "failed") (-819 |#1|))) (-15 -4111 ((-644 |#1|) $)) (-15 -3202 ((-59 (-644 $)) (-644 |#1|) (-921))) (-15 -3219 ((-644 $) (-644 |#1|) (-921))))) +((-2876 ((|#2| $) 103)) (-3214 (($ $) 124)) (-1504 (((-112) $ (-771)) 35)) (-3919 (($ $) 112) (($ $ (-771)) 115)) (-1781 (((-112) $) 125)) (-3431 (((-644 $) $) 99)) (-1507 (((-112) $ $) 95)) (-3456 (((-112) $ (-771)) 33)) (-2296 (((-566) $) 69)) (-4050 (((-566) $) 68)) (-3267 (((-112) $ (-771)) 31)) (-3860 (((-112) $) 101)) (-2641 ((|#2| $) 116) (($ $ (-771)) 120)) (-1859 (($ $ $ (-566)) 86) (($ |#2| $ (-566)) 85)) (-3725 (((-644 (-566)) $) 67)) (-1644 (((-112) (-566) $) 61)) (-3908 ((|#2| $) NIL) (($ $ (-771)) 111)) (-3369 (($ $ (-566)) 128)) (-3254 (((-112) $) 127)) (-2823 (((-112) (-1 (-112) |#2|) $) 44)) (-3486 (((-644 |#2|) $) 48)) (-1309 ((|#2| $ "value") NIL) ((|#2| $ "first") 110) (($ $ "rest") 114) ((|#2| $ "last") 123) (($ $ (-1231 (-566))) 82) ((|#2| $ (-566)) 59) ((|#2| $ (-566) |#2|) 60)) (-1696 (((-566) $ $) 94)) (-2166 (($ $ (-1231 (-566))) 81) (($ $ (-566)) 75)) (-3786 (((-112) $) 90)) (-4018 (($ $) 108)) (-2916 (((-771) $) 107)) (-1922 (($ $) 106)) (-1340 (($ (-644 |#2|)) 55)) (-1687 (($ $) 129)) (-1926 (((-644 $) $) 93)) (-4385 (((-112) $ $) 92)) (-2210 (((-112) (-1 (-112) |#2|) $) 43)) (-2914 (((-112) $ $) 20)) (-3000 (((-771) $) 41))) +(((-673 |#1| |#2|) (-10 -8 (-15 -1687 (|#1| |#1|)) (-15 -3369 (|#1| |#1| (-566))) (-15 -1781 ((-112) |#1|)) (-15 -3254 ((-112) |#1|)) (-15 -1309 (|#2| |#1| (-566) |#2|)) (-15 -1309 (|#2| |#1| (-566))) (-15 -3486 ((-644 |#2|) |#1|)) (-15 -1644 ((-112) (-566) |#1|)) (-15 -3725 ((-644 (-566)) |#1|)) (-15 -4050 ((-566) |#1|)) (-15 -2296 ((-566) |#1|)) (-15 -1340 (|#1| (-644 |#2|))) (-15 -1309 (|#1| |#1| (-1231 (-566)))) (-15 -2166 (|#1| |#1| (-566))) (-15 -2166 (|#1| |#1| (-1231 (-566)))) (-15 -1859 (|#1| |#2| |#1| (-566))) (-15 -1859 (|#1| |#1| |#1| (-566))) (-15 -4018 (|#1| |#1|)) (-15 -2916 ((-771) |#1|)) (-15 -1922 (|#1| |#1|)) (-15 -3214 (|#1| |#1|)) (-15 -2641 (|#1| |#1| (-771))) (-15 -1309 (|#2| |#1| "last")) (-15 -2641 (|#2| |#1|)) (-15 -3919 (|#1| |#1| (-771))) (-15 -1309 (|#1| |#1| "rest")) (-15 -3919 (|#1| |#1|)) (-15 -3908 (|#1| |#1| (-771))) (-15 -1309 (|#2| |#1| "first")) (-15 -3908 (|#2| |#1|)) (-15 -1507 ((-112) |#1| |#1|)) (-15 -4385 ((-112) |#1| |#1|)) (-15 -1696 ((-566) |#1| |#1|)) (-15 -3786 ((-112) |#1|)) (-15 -1309 (|#2| |#1| "value")) (-15 -2876 (|#2| |#1|)) (-15 -3860 ((-112) |#1|)) (-15 -3431 ((-644 |#1|) |#1|)) (-15 -1926 ((-644 |#1|) |#1|)) (-15 -2914 ((-112) |#1| |#1|)) (-15 -2823 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2210 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3000 ((-771) |#1|)) (-15 -1504 ((-112) |#1| (-771))) (-15 -3456 ((-112) |#1| (-771))) (-15 -3267 ((-112) |#1| (-771)))) (-674 |#2|) (-1214)) (T -673)) +NIL +(-10 -8 (-15 -1687 (|#1| |#1|)) (-15 -3369 (|#1| |#1| (-566))) (-15 -1781 ((-112) |#1|)) (-15 -3254 ((-112) |#1|)) (-15 -1309 (|#2| |#1| (-566) |#2|)) (-15 -1309 (|#2| |#1| (-566))) (-15 -3486 ((-644 |#2|) |#1|)) (-15 -1644 ((-112) (-566) |#1|)) (-15 -3725 ((-644 (-566)) |#1|)) (-15 -4050 ((-566) |#1|)) (-15 -2296 ((-566) |#1|)) (-15 -1340 (|#1| (-644 |#2|))) (-15 -1309 (|#1| |#1| (-1231 (-566)))) (-15 -2166 (|#1| |#1| (-566))) (-15 -2166 (|#1| |#1| (-1231 (-566)))) (-15 -1859 (|#1| |#2| |#1| (-566))) (-15 -1859 (|#1| |#1| |#1| (-566))) (-15 -4018 (|#1| |#1|)) (-15 -2916 ((-771) |#1|)) (-15 -1922 (|#1| |#1|)) (-15 -3214 (|#1| |#1|)) (-15 -2641 (|#1| |#1| (-771))) (-15 -1309 (|#2| |#1| "last")) (-15 -2641 (|#2| |#1|)) (-15 -3919 (|#1| |#1| (-771))) (-15 -1309 (|#1| |#1| "rest")) (-15 -3919 (|#1| |#1|)) (-15 -3908 (|#1| |#1| (-771))) (-15 -1309 (|#2| |#1| "first")) (-15 -3908 (|#2| |#1|)) (-15 -1507 ((-112) |#1| |#1|)) (-15 -4385 ((-112) |#1| |#1|)) (-15 -1696 ((-566) |#1| |#1|)) (-15 -3786 ((-112) |#1|)) (-15 -1309 (|#2| |#1| "value")) (-15 -2876 (|#2| |#1|)) (-15 -3860 ((-112) |#1|)) (-15 -3431 ((-644 |#1|) |#1|)) (-15 -1926 ((-644 |#1|) |#1|)) (-15 -2914 ((-112) |#1| |#1|)) (-15 -2823 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2210 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3000 ((-771) |#1|)) (-15 -1504 ((-112) |#1| (-771))) (-15 -3456 ((-112) |#1| (-771))) (-15 -3267 ((-112) |#1| (-771)))) +((-2988 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2876 ((|#1| $) 49)) (-3541 ((|#1| $) 66)) (-3214 (($ $) 68)) (-1944 (((-1269) $ (-566) (-566)) 98 (|has| $ (-6 -4415)))) (-4258 (($ $ (-566)) 53 (|has| $ (-6 -4415)))) (-1504 (((-112) $ (-771)) 8)) (-2191 ((|#1| $ |#1|) 40 (|has| $ (-6 -4415)))) (-1813 (($ $ $) 57 (|has| $ (-6 -4415)))) (-1948 ((|#1| $ |#1|) 55 (|has| $ (-6 -4415)))) (-1381 ((|#1| $ |#1|) 59 (|has| $ (-6 -4415)))) (-1456 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4415))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4415))) (($ $ "rest" $) 56 (|has| $ (-6 -4415))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4415))) ((|#1| $ (-1231 (-566)) |#1|) 118 (|has| $ (-6 -4415))) ((|#1| $ (-566) |#1|) 87 (|has| $ (-6 -4415)))) (-4202 (($ $ (-644 $)) 42 (|has| $ (-6 -4415)))) (-3678 (($ (-1 (-112) |#1|) $) 103)) (-3531 ((|#1| $) 67)) (-2463 (($) 7 T CONST)) (-1466 (($ $) 125)) (-3919 (($ $) 74) (($ $ (-771)) 72)) (-3942 (($ $) 100 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2622 (($ |#1| $) 101 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414)))) (($ (-1 (-112) |#1|) $) 104)) (-2873 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-3897 ((|#1| $ (-566) |#1|) 86 (|has| $ (-6 -4415)))) (-3829 ((|#1| $ (-566)) 88)) (-1781 (((-112) $) 84)) (-1683 (((-644 |#1|) $) 31 (|has| $ (-6 -4414)))) (-2067 (((-771) $) 124)) (-3431 (((-644 $) $) 51)) (-1507 (((-112) $ $) 43 (|has| |#1| (-1099)))) (-1860 (($ (-771) |#1|) 109)) (-3456 (((-112) $ (-771)) 9)) (-2296 (((-566) $) 96 (|has| (-566) (-850)))) (-3491 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-4050 (((-566) $) 95 (|has| (-566) (-850)))) (-3885 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-3267 (((-112) $ (-771)) 10)) (-1458 (((-644 |#1|) $) 46)) (-3860 (((-112) $) 50)) (-2551 (($ $) 127)) (-2684 (((-112) $) 128)) (-3380 (((-1157) $) 22 (|has| |#1| (-1099)))) (-2641 ((|#1| $) 71) (($ $ (-771)) 69)) (-1859 (($ $ $ (-566)) 117) (($ |#1| $ (-566)) 116)) (-3725 (((-644 (-566)) $) 93)) (-1644 (((-112) (-566) $) 92)) (-4072 (((-1119) $) 21 (|has| |#1| (-1099)))) (-3600 ((|#1| $) 126)) (-3908 ((|#1| $) 77) (($ $ (-771)) 75)) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-3787 (($ $ |#1|) 97 (|has| $ (-6 -4415)))) (-3369 (($ $ (-566)) 123)) (-3254 (((-112) $) 85)) (-1659 (((-112) $) 129)) (-3176 (((-112) $) 130)) (-2823 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) 14)) (-2847 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3486 (((-644 |#1|) $) 91)) (-2872 (((-112) $) 11)) (-3493 (($) 12)) (-1309 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1231 (-566))) 113) ((|#1| $ (-566)) 90) ((|#1| $ (-566) |#1|) 89)) (-1696 (((-566) $ $) 45)) (-2166 (($ $ (-1231 (-566))) 115) (($ $ (-566)) 114)) (-3786 (((-112) $) 47)) (-4018 (($ $) 63)) (-3810 (($ $) 60 (|has| $ (-6 -4415)))) (-2916 (((-771) $) 64)) (-1922 (($ $) 65)) (-4083 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-1480 (($ $) 13)) (-2376 (((-538) $) 99 (|has| |#1| (-614 (-538))))) (-1340 (($ (-644 |#1|)) 108)) (-1690 (($ $ $) 62 (|has| $ (-6 -4415))) (($ $ |#1|) 61 (|has| $ (-6 -4415)))) (-4386 (($ $ $) 79) (($ |#1| $) 78) (($ (-644 $)) 111) (($ $ |#1|) 110)) (-1687 (($ $) 122)) (-3152 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-1926 (((-644 $) $) 52)) (-4385 (((-112) $ $) 44 (|has| |#1| (-1099)))) (-3044 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-2210 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3000 (((-771) $) 6 (|has| $ (-6 -4414))))) (((-674 |#1|) (-140) (-1214)) (T -674)) -((-2665 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-674 *3)) (-4 *3 (-1214)))) (-2701 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-674 *3)) (-4 *3 (-1214)))) (-2267 (*1 *2 *1) (-12 (-4 *1 (-674 *3)) (-4 *3 (-1214)) (-5 *2 (-112)))) (-1929 (*1 *2 *1) (-12 (-4 *1 (-674 *3)) (-4 *3 (-1214)) (-5 *2 (-112)))) (-3465 (*1 *2 *1) (-12 (-4 *1 (-674 *3)) (-4 *3 (-1214)) (-5 *2 (-112)))) (-3567 (*1 *1 *1) (-12 (-4 *1 (-674 *2)) (-4 *2 (-1214)))) (-3921 (*1 *2 *1) (-12 (-4 *1 (-674 *2)) (-4 *2 (-1214)))) (-2768 (*1 *1 *1) (-12 (-4 *1 (-674 *2)) (-4 *2 (-1214)))) (-3767 (*1 *2 *1) (-12 (-4 *1 (-674 *3)) (-4 *3 (-1214)) (-5 *2 (-771)))) (-3874 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-674 *3)) (-4 *3 (-1214)))) (-2770 (*1 *1 *1) (-12 (-4 *1 (-674 *2)) (-4 *2 (-1214))))) -(-13 (-1148 |t#1|) (-10 -8 (-15 -2665 ($ (-1 (-112) |t#1|) $)) (-15 -2701 ($ (-1 (-112) |t#1|) $)) (-15 -2267 ((-112) $)) (-15 -1929 ((-112) $)) (-15 -3465 ((-112) $)) (-15 -3567 ($ $)) (-15 -3921 (|t#1| $)) (-15 -2768 ($ $)) (-15 -3767 ((-771) $)) (-15 -3874 ($ $ (-566))) (-15 -2770 ($ $)))) -(((-34) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2809 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-151 |#1|) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-287 #0=(-566) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-604 #0# |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-651 |#1|) . T) ((-1010 |#1|) . T) ((-1099) |has| |#1| (-1099)) ((-1148 |#1|) . T) ((-1214) . T) ((-1252 |#1|) . T)) -((-3007 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1556 (($ (-771) (-771) (-771)) 55 (|has| |#1| (-1049)))) (-2256 (((-112) $ (-771)) NIL)) (-4309 ((|#1| $ (-771) (-771) (-771) |#1|) 49)) (-3012 (($) NIL T CONST)) (-3239 (($ $ $) 60 (|has| |#1| (-1049)))) (-3979 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-2404 (((-112) $ (-771)) NIL)) (-2329 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-1908 (((-1264 (-771)) $) 12)) (-3937 (($ (-1175) $ $) 37)) (-2908 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#1| |#1|) $) NIL)) (-2603 (((-112) $ (-771)) NIL)) (-4117 (((-1157) $) NIL (|has| |#1| (-1099)))) (-3405 (($ (-771)) 57 (|has| |#1| (-1049)))) (-4035 (((-1119) $) NIL (|has| |#1| (-1099)))) (-2692 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) NIL)) (-3467 (((-112) $) NIL)) (-1494 (($) NIL)) (-4390 ((|#1| $ (-771) (-771) (-771)) 46)) (-4045 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3940 (($ $) NIL)) (-3796 (($ (-644 (-644 (-644 |#1|)))) 70)) (-3783 (($ (-958 (-958 (-958 |#1|)))) 23) (((-958 (-958 (-958 |#1|))) $) 19) (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-3117 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1894 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3018 (((-771) $) NIL (|has| $ (-6 -4414))))) -(((-675 |#1|) (-13 (-491 |#1|) (-10 -8 (IF (|has| |#1| (-1049)) (PROGN (-15 -1556 ($ (-771) (-771) (-771))) (-15 -3405 ($ (-771))) (-15 -3239 ($ $ $))) |%noBranch|) (-15 -3796 ($ (-644 (-644 (-644 |#1|))))) (-15 -4390 (|#1| $ (-771) (-771) (-771))) (-15 -4309 (|#1| $ (-771) (-771) (-771) |#1|)) (-15 -3783 ($ (-958 (-958 (-958 |#1|))))) (-15 -3783 ((-958 (-958 (-958 |#1|))) $)) (-15 -3937 ($ (-1175) $ $)) (-15 -1908 ((-1264 (-771)) $)))) (-1099)) (T -675)) -((-1556 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-771)) (-5 *1 (-675 *3)) (-4 *3 (-1049)) (-4 *3 (-1099)))) (-3405 (*1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-675 *3)) (-4 *3 (-1049)) (-4 *3 (-1099)))) (-3239 (*1 *1 *1 *1) (-12 (-5 *1 (-675 *2)) (-4 *2 (-1049)) (-4 *2 (-1099)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 (-644 *3)))) (-4 *3 (-1099)) (-5 *1 (-675 *3)))) (-4390 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-771)) (-5 *1 (-675 *2)) (-4 *2 (-1099)))) (-4309 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-675 *2)) (-4 *2 (-1099)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-958 (-958 (-958 *3)))) (-4 *3 (-1099)) (-5 *1 (-675 *3)))) (-3783 (*1 *2 *1) (-12 (-5 *2 (-958 (-958 (-958 *3)))) (-5 *1 (-675 *3)) (-4 *3 (-1099)))) (-3937 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-675 *3)) (-4 *3 (-1099)))) (-1908 (*1 *2 *1) (-12 (-5 *2 (-1264 (-771))) (-5 *1 (-675 *3)) (-4 *3 (-1099))))) -(-13 (-491 |#1|) (-10 -8 (IF (|has| |#1| (-1049)) (PROGN (-15 -1556 ($ (-771) (-771) (-771))) (-15 -3405 ($ (-771))) (-15 -3239 ($ $ $))) |%noBranch|) (-15 -3796 ($ (-644 (-644 (-644 |#1|))))) (-15 -4390 (|#1| $ (-771) (-771) (-771))) (-15 -4309 (|#1| $ (-771) (-771) (-771) |#1|)) (-15 -3783 ($ (-958 (-958 (-958 |#1|))))) (-15 -3783 ((-958 (-958 (-958 |#1|))) $)) (-15 -3937 ($ (-1175) $ $)) (-15 -1908 ((-1264 (-771)) $)))) -((-3007 (((-112) $ $) NIL)) (-4117 (((-1157) $) NIL)) (-3558 (((-485) $) 10)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 19) (($ (-1180)) NIL) (((-1180) $) NIL)) (-1382 (((-1134) $) 12)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) -(((-676) (-13 (-1082) (-10 -8 (-15 -3558 ((-485) $)) (-15 -1382 ((-1134) $))))) (T -676)) -((-3558 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-676)))) (-1382 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-676))))) -(-13 (-1082) (-10 -8 (-15 -3558 ((-485) $)) (-15 -1382 ((-1134) $)))) -((-3007 (((-112) $ $) NIL)) (-3095 (((-644 |#1|) $) 15)) (-4392 (($ $) 19)) (-3032 (((-112) $) 20)) (-4307 (((-3 |#1| "failed") $) 23)) (-4205 ((|#1| $) 21)) (-2010 (($ $) 37)) (-3000 (($ $) 25)) (-2097 (($ $ $) NIL)) (-3962 (($ $ $) NIL)) (-2576 (((-112) $ $) 47)) (-4149 (((-921) $) 40)) (-4380 (($ $) 18)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-1998 ((|#1| $) 36)) (-3783 (((-862) $) 32) (($ |#1|) 24) (((-819 |#1|) $) 28)) (-3117 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2947 (((-112) $ $) 13)) (-2995 (((-112) $ $) NIL)) (-2969 (((-112) $ $) 44)) (* (($ $ $) 35))) -(((-677 |#1|) (-13 (-850) (-1038 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3783 ((-819 |#1|) $)) (-15 -1998 (|#1| $)) (-15 -4380 ($ $)) (-15 -4149 ((-921) $)) (-15 -2576 ((-112) $ $)) (-15 -3000 ($ $)) (-15 -2010 ($ $)) (-15 -3032 ((-112) $)) (-15 -4392 ($ $)) (-15 -3095 ((-644 |#1|) $)))) (-850)) (T -677)) -((* (*1 *1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-850)))) (-3783 (*1 *2 *1) (-12 (-5 *2 (-819 *3)) (-5 *1 (-677 *3)) (-4 *3 (-850)))) (-1998 (*1 *2 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-850)))) (-4380 (*1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-850)))) (-4149 (*1 *2 *1) (-12 (-5 *2 (-921)) (-5 *1 (-677 *3)) (-4 *3 (-850)))) (-2576 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-677 *3)) (-4 *3 (-850)))) (-3000 (*1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-850)))) (-2010 (*1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-850)))) (-3032 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-677 *3)) (-4 *3 (-850)))) (-4392 (*1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-850)))) (-3095 (*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-677 *3)) (-4 *3 (-850))))) -(-13 (-850) (-1038 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3783 ((-819 |#1|) $)) (-15 -1998 (|#1| $)) (-15 -4380 ($ $)) (-15 -4149 ((-921) $)) (-15 -2576 ((-112) $ $)) (-15 -3000 ($ $)) (-15 -2010 ($ $)) (-15 -3032 ((-112) $)) (-15 -4392 ($ $)) (-15 -3095 ((-644 |#1|) $)))) -((-2264 ((|#1| (-1 |#1| (-771) |#1|) (-771) |#1|) 14)) (-2480 ((|#1| (-1 |#1| |#1|) (-771) |#1|) 12))) -(((-678 |#1|) (-10 -7 (-15 -2480 (|#1| (-1 |#1| |#1|) (-771) |#1|)) (-15 -2264 (|#1| (-1 |#1| (-771) |#1|) (-771) |#1|))) (-1099)) (T -678)) -((-2264 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-771) *2)) (-5 *4 (-771)) (-4 *2 (-1099)) (-5 *1 (-678 *2)))) (-2480 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-771)) (-4 *2 (-1099)) (-5 *1 (-678 *2))))) -(-10 -7 (-15 -2480 (|#1| (-1 |#1| |#1|) (-771) |#1|)) (-15 -2264 (|#1| (-1 |#1| (-771) |#1|) (-771) |#1|))) -((-4034 ((|#2| |#1| |#2|) 9)) (-2139 ((|#1| |#1| |#2|) 8))) -(((-679 |#1| |#2|) (-10 -7 (-15 -2139 (|#1| |#1| |#2|)) (-15 -4034 (|#2| |#1| |#2|))) (-1099) (-1099)) (T -679)) -((-4034 (*1 *2 *3 *2) (-12 (-5 *1 (-679 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1099)))) (-2139 (*1 *2 *2 *3) (-12 (-5 *1 (-679 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099))))) -(-10 -7 (-15 -2139 (|#1| |#1| |#2|)) (-15 -4034 (|#2| |#1| |#2|))) -((-1829 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) -(((-680 |#1| |#2| |#3|) (-10 -7 (-15 -1829 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1099) (-1099) (-1099)) (T -680)) -((-1829 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *2 (-1099)) (-5 *1 (-680 *5 *6 *2))))) -(-10 -7 (-15 -1829 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) -((-3007 (((-112) $ $) NIL)) (-3852 (((-1213) $) 21)) (-3802 (((-644 (-1213)) $) 19)) (-1484 (($ (-644 (-1213)) (-1213)) 14)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 29) (($ (-1180)) NIL) (((-1180) $) NIL) (((-1213) $) 22) (($ (-1117)) 10)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) -(((-681) (-13 (-1082) (-613 (-1213)) (-10 -8 (-15 -3783 ($ (-1117))) (-15 -1484 ($ (-644 (-1213)) (-1213))) (-15 -3802 ((-644 (-1213)) $)) (-15 -3852 ((-1213) $))))) (T -681)) -((-3783 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-681)))) (-1484 (*1 *1 *2 *3) (-12 (-5 *2 (-644 (-1213))) (-5 *3 (-1213)) (-5 *1 (-681)))) (-3802 (*1 *2 *1) (-12 (-5 *2 (-644 (-1213))) (-5 *1 (-681)))) (-3852 (*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-681))))) -(-13 (-1082) (-613 (-1213)) (-10 -8 (-15 -3783 ($ (-1117))) (-15 -1484 ($ (-644 (-1213)) (-1213))) (-15 -3802 ((-644 (-1213)) $)) (-15 -3852 ((-1213) $)))) -((-2264 (((-1 |#1| (-771) |#1|) (-1 |#1| (-771) |#1|)) 29)) (-3793 (((-1 |#1|) |#1|) 8)) (-4234 ((|#1| |#1|) 23)) (-2968 (((-644 |#1|) (-1 (-644 |#1|) (-644 |#1|)) (-566)) 22) ((|#1| (-1 |#1| |#1|)) 11)) (-3783 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-771)) 26))) -(((-682 |#1|) (-10 -7 (-15 -3793 ((-1 |#1|) |#1|)) (-15 -3783 ((-1 |#1|) |#1|)) (-15 -2968 (|#1| (-1 |#1| |#1|))) (-15 -2968 ((-644 |#1|) (-1 (-644 |#1|) (-644 |#1|)) (-566))) (-15 -4234 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-771))) (-15 -2264 ((-1 |#1| (-771) |#1|) (-1 |#1| (-771) |#1|)))) (-1099)) (T -682)) -((-2264 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-771) *3)) (-4 *3 (-1099)) (-5 *1 (-682 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-771)) (-4 *4 (-1099)) (-5 *1 (-682 *4)))) (-4234 (*1 *2 *2) (-12 (-5 *1 (-682 *2)) (-4 *2 (-1099)))) (-2968 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-644 *5) (-644 *5))) (-5 *4 (-566)) (-5 *2 (-644 *5)) (-5 *1 (-682 *5)) (-4 *5 (-1099)))) (-2968 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-682 *2)) (-4 *2 (-1099)))) (-3783 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-682 *3)) (-4 *3 (-1099)))) (-3793 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-682 *3)) (-4 *3 (-1099))))) -(-10 -7 (-15 -3793 ((-1 |#1|) |#1|)) (-15 -3783 ((-1 |#1|) |#1|)) (-15 -2968 (|#1| (-1 |#1| |#1|))) (-15 -2968 ((-644 |#1|) (-1 (-644 |#1|) (-644 |#1|)) (-566))) (-15 -4234 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-771))) (-15 -2264 ((-1 |#1| (-771) |#1|) (-1 |#1| (-771) |#1|)))) -((-3677 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2713 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-3704 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-2465 (((-1 |#2| |#1|) |#2|) 11))) -(((-683 |#1| |#2|) (-10 -7 (-15 -2465 ((-1 |#2| |#1|) |#2|)) (-15 -2713 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3704 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3677 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1099) (-1099)) (T -683)) -((-3677 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-5 *2 (-1 *5 *4)) (-5 *1 (-683 *4 *5)))) (-3704 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1099)) (-5 *2 (-1 *5 *4)) (-5 *1 (-683 *4 *5)) (-4 *4 (-1099)))) (-2713 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-5 *2 (-1 *5)) (-5 *1 (-683 *4 *5)))) (-2465 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-683 *4 *3)) (-4 *4 (-1099)) (-4 *3 (-1099))))) -(-10 -7 (-15 -2465 ((-1 |#2| |#1|) |#2|)) (-15 -2713 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3704 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3677 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) -((-1742 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-2481 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-4023 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-3932 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-4347 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) -(((-684 |#1| |#2| |#3|) (-10 -7 (-15 -2481 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -4023 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3932 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -4347 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -1742 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1099) (-1099) (-1099)) (T -684)) -((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-1 *7 *5)) (-5 *1 (-684 *5 *6 *7)))) (-1742 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-684 *4 *5 *6)))) (-4347 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-684 *4 *5 *6)) (-4 *4 (-1099)))) (-3932 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1099)) (-4 *6 (-1099)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-684 *4 *5 *6)) (-4 *5 (-1099)))) (-4023 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-5 *2 (-1 *6 *5)) (-5 *1 (-684 *4 *5 *6)))) (-2481 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1099)) (-4 *4 (-1099)) (-4 *6 (-1099)) (-5 *2 (-1 *6 *5)) (-5 *1 (-684 *5 *4 *6))))) -(-10 -7 (-15 -2481 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -4023 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3932 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -4347 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -1742 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) -((-1676 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-1301 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) -(((-685 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1301 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1301 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -1676 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1049) (-375 |#1|) (-375 |#1|) (-687 |#1| |#2| |#3|) (-1049) (-375 |#5|) (-375 |#5|) (-687 |#5| |#6| |#7|)) (T -685)) -((-1676 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1049)) (-4 *2 (-1049)) (-4 *6 (-375 *5)) (-4 *7 (-375 *5)) (-4 *8 (-375 *2)) (-4 *9 (-375 *2)) (-5 *1 (-685 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-687 *5 *6 *7)) (-4 *10 (-687 *2 *8 *9)))) (-1301 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1049)) (-4 *8 (-1049)) (-4 *6 (-375 *5)) (-4 *7 (-375 *5)) (-4 *2 (-687 *8 *9 *10)) (-5 *1 (-685 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-687 *5 *6 *7)) (-4 *9 (-375 *8)) (-4 *10 (-375 *8)))) (-1301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1049)) (-4 *8 (-1049)) (-4 *6 (-375 *5)) (-4 *7 (-375 *5)) (-4 *2 (-687 *8 *9 *10)) (-5 *1 (-685 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-687 *5 *6 *7)) (-4 *9 (-375 *8)) (-4 *10 (-375 *8))))) -(-10 -7 (-15 -1301 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1301 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -1676 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) -((-2149 (($ (-771) (-771)) 43)) (-1458 (($ $ $) 71)) (-1560 (($ |#3|) 66) (($ $) 67)) (-2143 (((-112) $) 38)) (-3025 (($ $ (-566) (-566)) 82)) (-1355 (($ $ (-566) (-566)) 83)) (-1979 (($ $ (-566) (-566) (-566) (-566)) 88)) (-1697 (($ $) 69)) (-1743 (((-112) $) 15)) (-4168 (($ $ (-566) (-566) $) 89)) (-3923 ((|#2| $ (-566) (-566) |#2|) NIL) (($ $ (-644 (-566)) (-644 (-566)) $) 87)) (-3808 (($ (-771) |#2|) 53)) (-3163 (($ (-644 (-644 |#2|))) 51)) (-2909 (((-644 (-644 |#2|)) $) 78)) (-4140 (($ $ $) 70)) (-2994 (((-3 $ "failed") $ |#2|) 121)) (-4390 ((|#2| $ (-566) (-566)) NIL) ((|#2| $ (-566) (-566) |#2|) NIL) (($ $ (-644 (-566)) (-644 (-566))) 86)) (-4098 (($ (-644 |#2|)) 54) (($ (-644 $)) 56)) (-2652 (((-112) $) 28)) (-3783 (($ |#4|) 61) (((-862) $) NIL)) (-3098 (((-112) $) 40)) (-3065 (($ $ |#2|) 123)) (-3053 (($ $ $) 93) (($ $) 96)) (-3041 (($ $ $) 91)) (** (($ $ (-771)) 110) (($ $ (-566)) 128)) (* (($ $ $) 102) (($ |#2| $) 98) (($ $ |#2|) 99) (($ (-566) $) 101) ((|#4| $ |#4|) 114) ((|#3| |#3| $) 118))) -(((-686 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3783 ((-862) |#1|)) (-15 ** (|#1| |#1| (-566))) (-15 -3065 (|#1| |#1| |#2|)) (-15 -2994 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-771))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3053 (|#1| |#1|)) (-15 -3053 (|#1| |#1| |#1|)) (-15 -3041 (|#1| |#1| |#1|)) (-15 -4168 (|#1| |#1| (-566) (-566) |#1|)) (-15 -1979 (|#1| |#1| (-566) (-566) (-566) (-566))) (-15 -1355 (|#1| |#1| (-566) (-566))) (-15 -3025 (|#1| |#1| (-566) (-566))) (-15 -3923 (|#1| |#1| (-644 (-566)) (-644 (-566)) |#1|)) (-15 -4390 (|#1| |#1| (-644 (-566)) (-644 (-566)))) (-15 -2909 ((-644 (-644 |#2|)) |#1|)) (-15 -1458 (|#1| |#1| |#1|)) (-15 -4140 (|#1| |#1| |#1|)) (-15 -1697 (|#1| |#1|)) (-15 -1560 (|#1| |#1|)) (-15 -1560 (|#1| |#3|)) (-15 -3783 (|#1| |#4|)) (-15 -4098 (|#1| (-644 |#1|))) (-15 -4098 (|#1| (-644 |#2|))) (-15 -3808 (|#1| (-771) |#2|)) (-15 -3163 (|#1| (-644 (-644 |#2|)))) (-15 -2149 (|#1| (-771) (-771))) (-15 -3098 ((-112) |#1|)) (-15 -2143 ((-112) |#1|)) (-15 -2652 ((-112) |#1|)) (-15 -1743 ((-112) |#1|)) (-15 -3923 (|#2| |#1| (-566) (-566) |#2|)) (-15 -4390 (|#2| |#1| (-566) (-566) |#2|)) (-15 -4390 (|#2| |#1| (-566) (-566)))) (-687 |#2| |#3| |#4|) (-1049) (-375 |#2|) (-375 |#2|)) (T -686)) -NIL -(-10 -8 (-15 -3783 ((-862) |#1|)) (-15 ** (|#1| |#1| (-566))) (-15 -3065 (|#1| |#1| |#2|)) (-15 -2994 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-771))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3053 (|#1| |#1|)) (-15 -3053 (|#1| |#1| |#1|)) (-15 -3041 (|#1| |#1| |#1|)) (-15 -4168 (|#1| |#1| (-566) (-566) |#1|)) (-15 -1979 (|#1| |#1| (-566) (-566) (-566) (-566))) (-15 -1355 (|#1| |#1| (-566) (-566))) (-15 -3025 (|#1| |#1| (-566) (-566))) (-15 -3923 (|#1| |#1| (-644 (-566)) (-644 (-566)) |#1|)) (-15 -4390 (|#1| |#1| (-644 (-566)) (-644 (-566)))) (-15 -2909 ((-644 (-644 |#2|)) |#1|)) (-15 -1458 (|#1| |#1| |#1|)) (-15 -4140 (|#1| |#1| |#1|)) (-15 -1697 (|#1| |#1|)) (-15 -1560 (|#1| |#1|)) (-15 -1560 (|#1| |#3|)) (-15 -3783 (|#1| |#4|)) (-15 -4098 (|#1| (-644 |#1|))) (-15 -4098 (|#1| (-644 |#2|))) (-15 -3808 (|#1| (-771) |#2|)) (-15 -3163 (|#1| (-644 (-644 |#2|)))) (-15 -2149 (|#1| (-771) (-771))) (-15 -3098 ((-112) |#1|)) (-15 -2143 ((-112) |#1|)) (-15 -2652 ((-112) |#1|)) (-15 -1743 ((-112) |#1|)) (-15 -3923 (|#2| |#1| (-566) (-566) |#2|)) (-15 -4390 (|#2| |#1| (-566) (-566) |#2|)) (-15 -4390 (|#2| |#1| (-566) (-566)))) -((-3007 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2149 (($ (-771) (-771)) 98)) (-1458 (($ $ $) 88)) (-1560 (($ |#2|) 92) (($ $) 91)) (-2143 (((-112) $) 100)) (-3025 (($ $ (-566) (-566)) 84)) (-1355 (($ $ (-566) (-566)) 83)) (-1979 (($ $ (-566) (-566) (-566) (-566)) 82)) (-1697 (($ $) 90)) (-1743 (((-112) $) 102)) (-2256 (((-112) $ (-771)) 8)) (-4168 (($ $ (-566) (-566) $) 81)) (-3923 ((|#1| $ (-566) (-566) |#1|) 45) (($ $ (-644 (-566)) (-644 (-566)) $) 85)) (-1708 (($ $ (-566) |#2|) 43)) (-2521 (($ $ (-566) |#3|) 42)) (-3808 (($ (-771) |#1|) 96)) (-3012 (($) 7 T CONST)) (-4137 (($ $) 68 (|has| |#1| (-308)))) (-4379 ((|#2| $ (-566)) 47)) (-4313 (((-771) $) 67 (|has| |#1| (-558)))) (-2920 ((|#1| $ (-566) (-566) |#1|) 44)) (-2855 ((|#1| $ (-566) (-566)) 49)) (-3979 (((-644 |#1|) $) 31)) (-3864 (((-771) $) 66 (|has| |#1| (-558)))) (-1601 (((-644 |#3|) $) 65 (|has| |#1| (-558)))) (-1380 (((-771) $) 52)) (-4265 (($ (-771) (-771) |#1|) 58)) (-1391 (((-771) $) 51)) (-2404 (((-112) $ (-771)) 9)) (-3310 ((|#1| $) 63 (|has| |#1| (-6 (-4416 "*"))))) (-1368 (((-566) $) 56)) (-3832 (((-566) $) 54)) (-2329 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-1821 (((-566) $) 55)) (-1809 (((-566) $) 53)) (-3163 (($ (-644 (-644 |#1|))) 97)) (-2908 (($ (-1 |#1| |#1|) $) 35)) (-1301 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-2909 (((-644 (-644 |#1|)) $) 87)) (-2603 (((-112) $ (-771)) 10)) (-4117 (((-1157) $) 22 (|has| |#1| (-1099)))) (-4264 (((-3 $ "failed") $) 62 (|has| |#1| (-365)))) (-4140 (($ $ $) 89)) (-4035 (((-1119) $) 21 (|has| |#1| (-1099)))) (-4030 (($ $ |#1|) 57)) (-2994 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-558)))) (-2692 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) 14)) (-3467 (((-112) $) 11)) (-1494 (($) 12)) (-4390 ((|#1| $ (-566) (-566)) 50) ((|#1| $ (-566) (-566) |#1|) 48) (($ $ (-644 (-566)) (-644 (-566))) 86)) (-4098 (($ (-644 |#1|)) 95) (($ (-644 $)) 94)) (-2652 (((-112) $) 101)) (-4383 ((|#1| $) 64 (|has| |#1| (-6 (-4416 "*"))))) (-4045 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-3940 (($ $) 13)) (-2306 ((|#3| $ (-566)) 46)) (-3783 (($ |#3|) 93) (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-3117 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-1894 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-3098 (((-112) $) 99)) (-2947 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3065 (($ $ |#1|) 69 (|has| |#1| (-365)))) (-3053 (($ $ $) 79) (($ $) 78)) (-3041 (($ $ $) 80)) (** (($ $ (-771)) 71) (($ $ (-566)) 61 (|has| |#1| (-365)))) (* (($ $ $) 77) (($ |#1| $) 76) (($ $ |#1|) 75) (($ (-566) $) 74) ((|#3| $ |#3|) 73) ((|#2| |#2| $) 72)) (-3018 (((-771) $) 6 (|has| $ (-6 -4414))))) +((-2622 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-674 *3)) (-4 *3 (-1214)))) (-3678 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-674 *3)) (-4 *3 (-1214)))) (-3176 (*1 *2 *1) (-12 (-4 *1 (-674 *3)) (-4 *3 (-1214)) (-5 *2 (-112)))) (-1659 (*1 *2 *1) (-12 (-4 *1 (-674 *3)) (-4 *3 (-1214)) (-5 *2 (-112)))) (-2684 (*1 *2 *1) (-12 (-4 *1 (-674 *3)) (-4 *3 (-1214)) (-5 *2 (-112)))) (-2551 (*1 *1 *1) (-12 (-4 *1 (-674 *2)) (-4 *2 (-1214)))) (-3600 (*1 *2 *1) (-12 (-4 *1 (-674 *2)) (-4 *2 (-1214)))) (-1466 (*1 *1 *1) (-12 (-4 *1 (-674 *2)) (-4 *2 (-1214)))) (-2067 (*1 *2 *1) (-12 (-4 *1 (-674 *3)) (-4 *3 (-1214)) (-5 *2 (-771)))) (-3369 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-674 *3)) (-4 *3 (-1214)))) (-1687 (*1 *1 *1) (-12 (-4 *1 (-674 *2)) (-4 *2 (-1214))))) +(-13 (-1148 |t#1|) (-10 -8 (-15 -2622 ($ (-1 (-112) |t#1|) $)) (-15 -3678 ($ (-1 (-112) |t#1|) $)) (-15 -3176 ((-112) $)) (-15 -1659 ((-112) $)) (-15 -2684 ((-112) $)) (-15 -2551 ($ $)) (-15 -3600 (|t#1| $)) (-15 -1466 ($ $)) (-15 -2067 ((-771) $)) (-15 -3369 ($ $ (-566))) (-15 -1687 ($ $)))) +(((-34) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2768 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-151 |#1|) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-287 #0=(-566) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-604 #0# |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-651 |#1|) . T) ((-1010 |#1|) . T) ((-1099) |has| |#1| (-1099)) ((-1148 |#1|) . T) ((-1214) . T) ((-1252 |#1|) . T)) +((-2988 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1862 (($ (-771) (-771) (-771)) 55 (|has| |#1| (-1049)))) (-1504 (((-112) $ (-771)) NIL)) (-2458 ((|#1| $ (-771) (-771) (-771) |#1|) 49)) (-2463 (($) NIL T CONST)) (-4243 (($ $ $) 60 (|has| |#1| (-1049)))) (-1683 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-3456 (((-112) $ (-771)) NIL)) (-3491 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2143 (((-1264 (-771)) $) 12)) (-1420 (($ (-1175) $ $) 37)) (-3885 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#1| |#1|) $) NIL)) (-3267 (((-112) $ (-771)) NIL)) (-3380 (((-1157) $) NIL (|has| |#1| (-1099)))) (-3775 (($ (-771)) 57 (|has| |#1| (-1049)))) (-4072 (((-1119) $) NIL (|has| |#1| (-1099)))) (-2823 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) NIL)) (-2872 (((-112) $) NIL)) (-3493 (($) NIL)) (-1309 ((|#1| $ (-771) (-771) (-771)) 46)) (-4083 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-1480 (($ $) NIL)) (-1340 (($ (-644 (-644 (-644 |#1|)))) 70)) (-3152 (($ (-958 (-958 (-958 |#1|)))) 23) (((-958 (-958 (-958 |#1|))) $) 19) (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-3044 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2210 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3000 (((-771) $) NIL (|has| $ (-6 -4414))))) +(((-675 |#1|) (-13 (-491 |#1|) (-10 -8 (IF (|has| |#1| (-1049)) (PROGN (-15 -1862 ($ (-771) (-771) (-771))) (-15 -3775 ($ (-771))) (-15 -4243 ($ $ $))) |%noBranch|) (-15 -1340 ($ (-644 (-644 (-644 |#1|))))) (-15 -1309 (|#1| $ (-771) (-771) (-771))) (-15 -2458 (|#1| $ (-771) (-771) (-771) |#1|)) (-15 -3152 ($ (-958 (-958 (-958 |#1|))))) (-15 -3152 ((-958 (-958 (-958 |#1|))) $)) (-15 -1420 ($ (-1175) $ $)) (-15 -2143 ((-1264 (-771)) $)))) (-1099)) (T -675)) +((-1862 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-771)) (-5 *1 (-675 *3)) (-4 *3 (-1049)) (-4 *3 (-1099)))) (-3775 (*1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-675 *3)) (-4 *3 (-1049)) (-4 *3 (-1099)))) (-4243 (*1 *1 *1 *1) (-12 (-5 *1 (-675 *2)) (-4 *2 (-1049)) (-4 *2 (-1099)))) (-1340 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 (-644 *3)))) (-4 *3 (-1099)) (-5 *1 (-675 *3)))) (-1309 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-771)) (-5 *1 (-675 *2)) (-4 *2 (-1099)))) (-2458 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-675 *2)) (-4 *2 (-1099)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-958 (-958 (-958 *3)))) (-4 *3 (-1099)) (-5 *1 (-675 *3)))) (-3152 (*1 *2 *1) (-12 (-5 *2 (-958 (-958 (-958 *3)))) (-5 *1 (-675 *3)) (-4 *3 (-1099)))) (-1420 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-675 *3)) (-4 *3 (-1099)))) (-2143 (*1 *2 *1) (-12 (-5 *2 (-1264 (-771))) (-5 *1 (-675 *3)) (-4 *3 (-1099))))) +(-13 (-491 |#1|) (-10 -8 (IF (|has| |#1| (-1049)) (PROGN (-15 -1862 ($ (-771) (-771) (-771))) (-15 -3775 ($ (-771))) (-15 -4243 ($ $ $))) |%noBranch|) (-15 -1340 ($ (-644 (-644 (-644 |#1|))))) (-15 -1309 (|#1| $ (-771) (-771) (-771))) (-15 -2458 (|#1| $ (-771) (-771) (-771) |#1|)) (-15 -3152 ($ (-958 (-958 (-958 |#1|))))) (-15 -3152 ((-958 (-958 (-958 |#1|))) $)) (-15 -1420 ($ (-1175) $ $)) (-15 -2143 ((-1264 (-771)) $)))) +((-2988 (((-112) $ $) NIL)) (-3380 (((-1157) $) NIL)) (-2842 (((-485) $) 10)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 19) (($ (-1180)) NIL) (((-1180) $) NIL)) (-1377 (((-1134) $) 12)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) +(((-676) (-13 (-1082) (-10 -8 (-15 -2842 ((-485) $)) (-15 -1377 ((-1134) $))))) (T -676)) +((-2842 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-676)))) (-1377 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-676))))) +(-13 (-1082) (-10 -8 (-15 -2842 ((-485) $)) (-15 -1377 ((-1134) $)))) +((-2988 (((-112) $ $) NIL)) (-4111 (((-644 |#1|) $) 15)) (-1966 (($ $) 19)) (-1748 (((-112) $) 20)) (-2229 (((-3 |#1| "failed") $) 23)) (-4158 ((|#1| $) 21)) (-3919 (($ $) 37)) (-2795 (($ $) 25)) (-1478 (($ $ $) NIL)) (-2599 (($ $ $) NIL)) (-2585 (((-112) $ $) 47)) (-2440 (((-921) $) 40)) (-1953 (($ $) 18)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3908 ((|#1| $) 36)) (-3152 (((-862) $) 32) (($ |#1|) 24) (((-819 |#1|) $) 28)) (-3044 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2914 (((-112) $ $) 13)) (-2956 (((-112) $ $) NIL)) (-2935 (((-112) $ $) 44)) (* (($ $ $) 35))) +(((-677 |#1|) (-13 (-850) (-1038 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3152 ((-819 |#1|) $)) (-15 -3908 (|#1| $)) (-15 -1953 ($ $)) (-15 -2440 ((-921) $)) (-15 -2585 ((-112) $ $)) (-15 -2795 ($ $)) (-15 -3919 ($ $)) (-15 -1748 ((-112) $)) (-15 -1966 ($ $)) (-15 -4111 ((-644 |#1|) $)))) (-850)) (T -677)) +((* (*1 *1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-850)))) (-3152 (*1 *2 *1) (-12 (-5 *2 (-819 *3)) (-5 *1 (-677 *3)) (-4 *3 (-850)))) (-3908 (*1 *2 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-850)))) (-1953 (*1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-850)))) (-2440 (*1 *2 *1) (-12 (-5 *2 (-921)) (-5 *1 (-677 *3)) (-4 *3 (-850)))) (-2585 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-677 *3)) (-4 *3 (-850)))) (-2795 (*1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-850)))) (-3919 (*1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-850)))) (-1748 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-677 *3)) (-4 *3 (-850)))) (-1966 (*1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-850)))) (-4111 (*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-677 *3)) (-4 *3 (-850))))) +(-13 (-850) (-1038 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3152 ((-819 |#1|) $)) (-15 -3908 (|#1| $)) (-15 -1953 ($ $)) (-15 -2440 ((-921) $)) (-15 -2585 ((-112) $ $)) (-15 -2795 ($ $)) (-15 -3919 ($ $)) (-15 -1748 ((-112) $)) (-15 -1966 ($ $)) (-15 -4111 ((-644 |#1|) $)))) +((-4214 ((|#1| (-1 |#1| (-771) |#1|) (-771) |#1|) 14)) (-3446 ((|#1| (-1 |#1| |#1|) (-771) |#1|) 12))) +(((-678 |#1|) (-10 -7 (-15 -3446 (|#1| (-1 |#1| |#1|) (-771) |#1|)) (-15 -4214 (|#1| (-1 |#1| (-771) |#1|) (-771) |#1|))) (-1099)) (T -678)) +((-4214 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-771) *2)) (-5 *4 (-771)) (-4 *2 (-1099)) (-5 *1 (-678 *2)))) (-3446 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-771)) (-4 *2 (-1099)) (-5 *1 (-678 *2))))) +(-10 -7 (-15 -3446 (|#1| (-1 |#1| |#1|) (-771) |#1|)) (-15 -4214 (|#1| (-1 |#1| (-771) |#1|) (-771) |#1|))) +((-1945 ((|#2| |#1| |#2|) 9)) (-3150 ((|#1| |#1| |#2|) 8))) +(((-679 |#1| |#2|) (-10 -7 (-15 -3150 (|#1| |#1| |#2|)) (-15 -1945 (|#2| |#1| |#2|))) (-1099) (-1099)) (T -679)) +((-1945 (*1 *2 *3 *2) (-12 (-5 *1 (-679 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1099)))) (-3150 (*1 *2 *2 *3) (-12 (-5 *1 (-679 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099))))) +(-10 -7 (-15 -3150 (|#1| |#1| |#2|)) (-15 -1945 (|#2| |#1| |#2|))) +((-3718 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) +(((-680 |#1| |#2| |#3|) (-10 -7 (-15 -3718 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1099) (-1099) (-1099)) (T -680)) +((-3718 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *2 (-1099)) (-5 *1 (-680 *5 *6 *2))))) +(-10 -7 (-15 -3718 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) +((-2988 (((-112) $ $) NIL)) (-1385 (((-1213) $) 21)) (-1344 (((-644 (-1213)) $) 19)) (-3926 (($ (-644 (-1213)) (-1213)) 14)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 29) (($ (-1180)) NIL) (((-1180) $) NIL) (((-1213) $) 22) (($ (-1117)) 10)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) +(((-681) (-13 (-1082) (-613 (-1213)) (-10 -8 (-15 -3152 ($ (-1117))) (-15 -3926 ($ (-644 (-1213)) (-1213))) (-15 -1344 ((-644 (-1213)) $)) (-15 -1385 ((-1213) $))))) (T -681)) +((-3152 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-681)))) (-3926 (*1 *1 *2 *3) (-12 (-5 *2 (-644 (-1213))) (-5 *3 (-1213)) (-5 *1 (-681)))) (-1344 (*1 *2 *1) (-12 (-5 *2 (-644 (-1213))) (-5 *1 (-681)))) (-1385 (*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-681))))) +(-13 (-1082) (-613 (-1213)) (-10 -8 (-15 -3152 ($ (-1117))) (-15 -3926 ($ (-644 (-1213)) (-1213))) (-15 -1344 ((-644 (-1213)) $)) (-15 -1385 ((-1213) $)))) +((-4214 (((-1 |#1| (-771) |#1|) (-1 |#1| (-771) |#1|)) 29)) (-1744 (((-1 |#1|) |#1|) 8)) (-1828 ((|#1| |#1|) 23)) (-2216 (((-644 |#1|) (-1 (-644 |#1|) (-644 |#1|)) (-566)) 22) ((|#1| (-1 |#1| |#1|)) 11)) (-3152 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-771)) 26))) +(((-682 |#1|) (-10 -7 (-15 -1744 ((-1 |#1|) |#1|)) (-15 -3152 ((-1 |#1|) |#1|)) (-15 -2216 (|#1| (-1 |#1| |#1|))) (-15 -2216 ((-644 |#1|) (-1 (-644 |#1|) (-644 |#1|)) (-566))) (-15 -1828 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-771))) (-15 -4214 ((-1 |#1| (-771) |#1|) (-1 |#1| (-771) |#1|)))) (-1099)) (T -682)) +((-4214 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-771) *3)) (-4 *3 (-1099)) (-5 *1 (-682 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-771)) (-4 *4 (-1099)) (-5 *1 (-682 *4)))) (-1828 (*1 *2 *2) (-12 (-5 *1 (-682 *2)) (-4 *2 (-1099)))) (-2216 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-644 *5) (-644 *5))) (-5 *4 (-566)) (-5 *2 (-644 *5)) (-5 *1 (-682 *5)) (-4 *5 (-1099)))) (-2216 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-682 *2)) (-4 *2 (-1099)))) (-3152 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-682 *3)) (-4 *3 (-1099)))) (-1744 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-682 *3)) (-4 *3 (-1099))))) +(-10 -7 (-15 -1744 ((-1 |#1|) |#1|)) (-15 -3152 ((-1 |#1|) |#1|)) (-15 -2216 (|#1| (-1 |#1| |#1|))) (-15 -2216 ((-644 |#1|) (-1 (-644 |#1|) (-644 |#1|)) (-566))) (-15 -1828 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-771))) (-15 -4214 ((-1 |#1| (-771) |#1|) (-1 |#1| (-771) |#1|)))) +((-1417 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-4193 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-1623 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-4182 (((-1 |#2| |#1|) |#2|) 11))) +(((-683 |#1| |#2|) (-10 -7 (-15 -4182 ((-1 |#2| |#1|) |#2|)) (-15 -4193 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1623 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -1417 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1099) (-1099)) (T -683)) +((-1417 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-5 *2 (-1 *5 *4)) (-5 *1 (-683 *4 *5)))) (-1623 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1099)) (-5 *2 (-1 *5 *4)) (-5 *1 (-683 *4 *5)) (-4 *4 (-1099)))) (-4193 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-5 *2 (-1 *5)) (-5 *1 (-683 *4 *5)))) (-4182 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-683 *4 *3)) (-4 *4 (-1099)) (-4 *3 (-1099))))) +(-10 -7 (-15 -4182 ((-1 |#2| |#1|) |#2|)) (-15 -4193 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1623 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -1417 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) +((-3646 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-2961 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-2381 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-2186 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-1461 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) +(((-684 |#1| |#2| |#3|) (-10 -7 (-15 -2961 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2381 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2186 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -1461 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3646 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1099) (-1099) (-1099)) (T -684)) +((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-1 *7 *5)) (-5 *1 (-684 *5 *6 *7)))) (-3646 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-684 *4 *5 *6)))) (-1461 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-684 *4 *5 *6)) (-4 *4 (-1099)))) (-2186 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1099)) (-4 *6 (-1099)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-684 *4 *5 *6)) (-4 *5 (-1099)))) (-2381 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-5 *2 (-1 *6 *5)) (-5 *1 (-684 *4 *5 *6)))) (-2961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1099)) (-4 *4 (-1099)) (-4 *6 (-1099)) (-5 *2 (-1 *6 *5)) (-5 *1 (-684 *5 *4 *6))))) +(-10 -7 (-15 -2961 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2381 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2186 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -1461 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3646 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) +((-2873 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-2319 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) +(((-685 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2319 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2319 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2873 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1049) (-375 |#1|) (-375 |#1|) (-687 |#1| |#2| |#3|) (-1049) (-375 |#5|) (-375 |#5|) (-687 |#5| |#6| |#7|)) (T -685)) +((-2873 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1049)) (-4 *2 (-1049)) (-4 *6 (-375 *5)) (-4 *7 (-375 *5)) (-4 *8 (-375 *2)) (-4 *9 (-375 *2)) (-5 *1 (-685 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-687 *5 *6 *7)) (-4 *10 (-687 *2 *8 *9)))) (-2319 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1049)) (-4 *8 (-1049)) (-4 *6 (-375 *5)) (-4 *7 (-375 *5)) (-4 *2 (-687 *8 *9 *10)) (-5 *1 (-685 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-687 *5 *6 *7)) (-4 *9 (-375 *8)) (-4 *10 (-375 *8)))) (-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1049)) (-4 *8 (-1049)) (-4 *6 (-375 *5)) (-4 *7 (-375 *5)) (-4 *2 (-687 *8 *9 *10)) (-5 *1 (-685 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-687 *5 *6 *7)) (-4 *9 (-375 *8)) (-4 *10 (-375 *8))))) +(-10 -7 (-15 -2319 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2319 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2873 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) +((-2819 (($ (-771) (-771)) 43)) (-4383 (($ $ $) 71)) (-4160 (($ |#3|) 66) (($ $) 67)) (-1791 (((-112) $) 38)) (-2485 (($ $ (-566) (-566)) 82)) (-2106 (($ $ (-566) (-566)) 83)) (-2897 (($ $ (-566) (-566) (-566) (-566)) 88)) (-2754 (($ $) 69)) (-3768 (((-112) $) 15)) (-1418 (($ $ (-566) (-566) $) 89)) (-1456 ((|#2| $ (-566) (-566) |#2|) NIL) (($ $ (-644 (-566)) (-644 (-566)) $) 87)) (-3520 (($ (-771) |#2|) 53)) (-4184 (($ (-644 (-644 |#2|))) 51)) (-1723 (((-644 (-644 |#2|)) $) 78)) (-1798 (($ $ $) 70)) (-2978 (((-3 $ "failed") $ |#2|) 121)) (-1309 ((|#2| $ (-566) (-566)) NIL) ((|#2| $ (-566) (-566) |#2|) NIL) (($ $ (-644 (-566)) (-644 (-566))) 86)) (-2253 (($ (-644 |#2|)) 54) (($ (-644 $)) 56)) (-1370 (((-112) $) 28)) (-3152 (($ |#4|) 61) (((-862) $) NIL)) (-1950 (((-112) $) 40)) (-3025 (($ $ |#2|) 123)) (-3012 (($ $ $) 93) (($ $) 96)) (-3002 (($ $ $) 91)) (** (($ $ (-771)) 110) (($ $ (-566)) 128)) (* (($ $ $) 102) (($ |#2| $) 98) (($ $ |#2|) 99) (($ (-566) $) 101) ((|#4| $ |#4|) 114) ((|#3| |#3| $) 118))) +(((-686 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3152 ((-862) |#1|)) (-15 ** (|#1| |#1| (-566))) (-15 -3025 (|#1| |#1| |#2|)) (-15 -2978 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-771))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3012 (|#1| |#1|)) (-15 -3012 (|#1| |#1| |#1|)) (-15 -3002 (|#1| |#1| |#1|)) (-15 -1418 (|#1| |#1| (-566) (-566) |#1|)) (-15 -2897 (|#1| |#1| (-566) (-566) (-566) (-566))) (-15 -2106 (|#1| |#1| (-566) (-566))) (-15 -2485 (|#1| |#1| (-566) (-566))) (-15 -1456 (|#1| |#1| (-644 (-566)) (-644 (-566)) |#1|)) (-15 -1309 (|#1| |#1| (-644 (-566)) (-644 (-566)))) (-15 -1723 ((-644 (-644 |#2|)) |#1|)) (-15 -4383 (|#1| |#1| |#1|)) (-15 -1798 (|#1| |#1| |#1|)) (-15 -2754 (|#1| |#1|)) (-15 -4160 (|#1| |#1|)) (-15 -4160 (|#1| |#3|)) (-15 -3152 (|#1| |#4|)) (-15 -2253 (|#1| (-644 |#1|))) (-15 -2253 (|#1| (-644 |#2|))) (-15 -3520 (|#1| (-771) |#2|)) (-15 -4184 (|#1| (-644 (-644 |#2|)))) (-15 -2819 (|#1| (-771) (-771))) (-15 -1950 ((-112) |#1|)) (-15 -1791 ((-112) |#1|)) (-15 -1370 ((-112) |#1|)) (-15 -3768 ((-112) |#1|)) (-15 -1456 (|#2| |#1| (-566) (-566) |#2|)) (-15 -1309 (|#2| |#1| (-566) (-566) |#2|)) (-15 -1309 (|#2| |#1| (-566) (-566)))) (-687 |#2| |#3| |#4|) (-1049) (-375 |#2|) (-375 |#2|)) (T -686)) +NIL +(-10 -8 (-15 -3152 ((-862) |#1|)) (-15 ** (|#1| |#1| (-566))) (-15 -3025 (|#1| |#1| |#2|)) (-15 -2978 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-771))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3012 (|#1| |#1|)) (-15 -3012 (|#1| |#1| |#1|)) (-15 -3002 (|#1| |#1| |#1|)) (-15 -1418 (|#1| |#1| (-566) (-566) |#1|)) (-15 -2897 (|#1| |#1| (-566) (-566) (-566) (-566))) (-15 -2106 (|#1| |#1| (-566) (-566))) (-15 -2485 (|#1| |#1| (-566) (-566))) (-15 -1456 (|#1| |#1| (-644 (-566)) (-644 (-566)) |#1|)) (-15 -1309 (|#1| |#1| (-644 (-566)) (-644 (-566)))) (-15 -1723 ((-644 (-644 |#2|)) |#1|)) (-15 -4383 (|#1| |#1| |#1|)) (-15 -1798 (|#1| |#1| |#1|)) (-15 -2754 (|#1| |#1|)) (-15 -4160 (|#1| |#1|)) (-15 -4160 (|#1| |#3|)) (-15 -3152 (|#1| |#4|)) (-15 -2253 (|#1| (-644 |#1|))) (-15 -2253 (|#1| (-644 |#2|))) (-15 -3520 (|#1| (-771) |#2|)) (-15 -4184 (|#1| (-644 (-644 |#2|)))) (-15 -2819 (|#1| (-771) (-771))) (-15 -1950 ((-112) |#1|)) (-15 -1791 ((-112) |#1|)) (-15 -1370 ((-112) |#1|)) (-15 -3768 ((-112) |#1|)) (-15 -1456 (|#2| |#1| (-566) (-566) |#2|)) (-15 -1309 (|#2| |#1| (-566) (-566) |#2|)) (-15 -1309 (|#2| |#1| (-566) (-566)))) +((-2988 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2819 (($ (-771) (-771)) 98)) (-4383 (($ $ $) 88)) (-4160 (($ |#2|) 92) (($ $) 91)) (-1791 (((-112) $) 100)) (-2485 (($ $ (-566) (-566)) 84)) (-2106 (($ $ (-566) (-566)) 83)) (-2897 (($ $ (-566) (-566) (-566) (-566)) 82)) (-2754 (($ $) 90)) (-3768 (((-112) $) 102)) (-1504 (((-112) $ (-771)) 8)) (-1418 (($ $ (-566) (-566) $) 81)) (-1456 ((|#1| $ (-566) (-566) |#1|) 45) (($ $ (-644 (-566)) (-644 (-566)) $) 85)) (-1499 (($ $ (-566) |#2|) 43)) (-2837 (($ $ (-566) |#3|) 42)) (-3520 (($ (-771) |#1|) 96)) (-2463 (($) 7 T CONST)) (-1521 (($ $) 68 (|has| |#1| (-308)))) (-1721 ((|#2| $ (-566)) 47)) (-2755 (((-771) $) 67 (|has| |#1| (-558)))) (-3897 ((|#1| $ (-566) (-566) |#1|) 44)) (-3829 ((|#1| $ (-566) (-566)) 49)) (-1683 (((-644 |#1|) $) 31)) (-1908 (((-771) $) 66 (|has| |#1| (-558)))) (-2950 (((-644 |#3|) $) 65 (|has| |#1| (-558)))) (-3811 (((-771) $) 52)) (-1860 (($ (-771) (-771) |#1|) 58)) (-3824 (((-771) $) 51)) (-3456 (((-112) $ (-771)) 9)) (-1444 ((|#1| $) 63 (|has| |#1| (-6 (-4416 "*"))))) (-2531 (((-566) $) 56)) (-3688 (((-566) $) 54)) (-3491 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2422 (((-566) $) 55)) (-3632 (((-566) $) 53)) (-4184 (($ (-644 (-644 |#1|))) 97)) (-3885 (($ (-1 |#1| |#1|) $) 35)) (-2319 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-1723 (((-644 (-644 |#1|)) $) 87)) (-3267 (((-112) $ (-771)) 10)) (-3380 (((-1157) $) 22 (|has| |#1| (-1099)))) (-1542 (((-3 $ "failed") $) 62 (|has| |#1| (-365)))) (-1798 (($ $ $) 89)) (-4072 (((-1119) $) 21 (|has| |#1| (-1099)))) (-3787 (($ $ |#1|) 57)) (-2978 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-558)))) (-2823 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) 14)) (-2872 (((-112) $) 11)) (-3493 (($) 12)) (-1309 ((|#1| $ (-566) (-566)) 50) ((|#1| $ (-566) (-566) |#1|) 48) (($ $ (-644 (-566)) (-644 (-566))) 86)) (-2253 (($ (-644 |#1|)) 95) (($ (-644 $)) 94)) (-1370 (((-112) $) 101)) (-3943 ((|#1| $) 64 (|has| |#1| (-6 (-4416 "*"))))) (-4083 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-1480 (($ $) 13)) (-2986 ((|#3| $ (-566)) 46)) (-3152 (($ |#3|) 93) (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-3044 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-2210 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-1950 (((-112) $) 99)) (-2914 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3025 (($ $ |#1|) 69 (|has| |#1| (-365)))) (-3012 (($ $ $) 79) (($ $) 78)) (-3002 (($ $ $) 80)) (** (($ $ (-771)) 71) (($ $ (-566)) 61 (|has| |#1| (-365)))) (* (($ $ $) 77) (($ |#1| $) 76) (($ $ |#1|) 75) (($ (-566) $) 74) ((|#3| $ |#3|) 73) ((|#2| |#2| $) 72)) (-3000 (((-771) $) 6 (|has| $ (-6 -4414))))) (((-687 |#1| |#2| |#3|) (-140) (-1049) (-375 |t#1|) (-375 |t#1|)) (T -687)) -((-1743 (*1 *2 *1) (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-112)))) (-2652 (*1 *2 *1) (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-112)))) (-2143 (*1 *2 *1) (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-112)))) (-3098 (*1 *2 *1) (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-112)))) (-2149 (*1 *1 *2 *2) (-12 (-5 *2 (-771)) (-4 *3 (-1049)) (-4 *1 (-687 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3163 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1049)) (-4 *1 (-687 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3808 (*1 *1 *2 *3) (-12 (-5 *2 (-771)) (-4 *3 (-1049)) (-4 *1 (-687 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-4098 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1049)) (-4 *1 (-687 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-4098 (*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *3 (-1049)) (-4 *1 (-687 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3783 (*1 *1 *2) (-12 (-4 *3 (-1049)) (-4 *1 (-687 *3 *4 *2)) (-4 *4 (-375 *3)) (-4 *2 (-375 *3)))) (-1560 (*1 *1 *2) (-12 (-4 *3 (-1049)) (-4 *1 (-687 *3 *2 *4)) (-4 *2 (-375 *3)) (-4 *4 (-375 *3)))) (-1560 (*1 *1 *1) (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-1697 (*1 *1 *1) (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-4140 (*1 *1 *1 *1) (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-1458 (*1 *1 *1 *1) (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-2909 (*1 *2 *1) (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-644 (-644 *3))))) (-4390 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-644 (-566))) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3923 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-644 (-566))) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3025 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-566)) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-1355 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-566)) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-1979 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-566)) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-4168 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-566)) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3041 (*1 *1 *1 *1) (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-3053 (*1 *1 *1 *1) (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-3053 (*1 *1 *1) (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-566)) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-687 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *2 (-375 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-687 *3 *2 *4)) (-4 *3 (-1049)) (-4 *2 (-375 *3)) (-4 *4 (-375 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2994 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-558)))) (-3065 (*1 *1 *1 *2) (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-365)))) (-4137 (*1 *1 *1) (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-308)))) (-4313 (*1 *2 *1) (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-558)) (-5 *2 (-771)))) (-3864 (*1 *2 *1) (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-558)) (-5 *2 (-771)))) (-1601 (*1 *2 *1) (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-558)) (-5 *2 (-644 *5)))) (-4383 (*1 *2 *1) (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (|has| *2 (-6 (-4416 "*"))) (-4 *2 (-1049)))) (-3310 (*1 *2 *1) (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (|has| *2 (-6 (-4416 "*"))) (-4 *2 (-1049)))) (-4264 (*1 *1 *1) (|partial| -12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-365)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-365))))) -(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4415) (-6 -4414) (-15 -1743 ((-112) $)) (-15 -2652 ((-112) $)) (-15 -2143 ((-112) $)) (-15 -3098 ((-112) $)) (-15 -2149 ($ (-771) (-771))) (-15 -3163 ($ (-644 (-644 |t#1|)))) (-15 -3808 ($ (-771) |t#1|)) (-15 -4098 ($ (-644 |t#1|))) (-15 -4098 ($ (-644 $))) (-15 -3783 ($ |t#3|)) (-15 -1560 ($ |t#2|)) (-15 -1560 ($ $)) (-15 -1697 ($ $)) (-15 -4140 ($ $ $)) (-15 -1458 ($ $ $)) (-15 -2909 ((-644 (-644 |t#1|)) $)) (-15 -4390 ($ $ (-644 (-566)) (-644 (-566)))) (-15 -3923 ($ $ (-644 (-566)) (-644 (-566)) $)) (-15 -3025 ($ $ (-566) (-566))) (-15 -1355 ($ $ (-566) (-566))) (-15 -1979 ($ $ (-566) (-566) (-566) (-566))) (-15 -4168 ($ $ (-566) (-566) $)) (-15 -3041 ($ $ $)) (-15 -3053 ($ $ $)) (-15 -3053 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-566) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-771))) (IF (|has| |t#1| (-558)) (-15 -2994 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-365)) (-15 -3065 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-308)) (-15 -4137 ($ $)) |%noBranch|) (IF (|has| |t#1| (-558)) (PROGN (-15 -4313 ((-771) $)) (-15 -3864 ((-771) $)) (-15 -1601 ((-644 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4416 "*"))) (PROGN (-15 -4383 (|t#1| $)) (-15 -3310 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-365)) (PROGN (-15 -4264 ((-3 $ "failed") $)) (-15 ** ($ $ (-566)))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2809 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1099) |has| |#1| (-1099)) ((-57 |#1| |#2| |#3|) . T) ((-1214) . T)) -((-4137 ((|#4| |#4|) 97 (|has| |#1| (-308)))) (-4313 (((-771) |#4|) 125 (|has| |#1| (-558)))) (-3864 (((-771) |#4|) 101 (|has| |#1| (-558)))) (-1601 (((-644 |#3|) |#4|) 108 (|has| |#1| (-558)))) (-1582 (((-2 (|:| -2275 |#1|) (|:| -2513 |#1|)) |#1| |#1|) 140 (|has| |#1| (-308)))) (-3310 ((|#1| |#4|) 57)) (-1445 (((-3 |#4| "failed") |#4|) 89 (|has| |#1| (-558)))) (-4264 (((-3 |#4| "failed") |#4|) 105 (|has| |#1| (-365)))) (-1373 ((|#4| |#4|) 93 (|has| |#1| (-558)))) (-3769 ((|#4| |#4| |#1| (-566) (-566)) 65)) (-2591 ((|#4| |#4| (-566) (-566)) 60)) (-1709 ((|#4| |#4| |#1| (-566) (-566)) 70)) (-4383 ((|#1| |#4|) 103)) (-2279 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 94 (|has| |#1| (-558))))) -(((-688 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4383 (|#1| |#4|)) (-15 -3310 (|#1| |#4|)) (-15 -2591 (|#4| |#4| (-566) (-566))) (-15 -3769 (|#4| |#4| |#1| (-566) (-566))) (-15 -1709 (|#4| |#4| |#1| (-566) (-566))) (IF (|has| |#1| (-558)) (PROGN (-15 -4313 ((-771) |#4|)) (-15 -3864 ((-771) |#4|)) (-15 -1601 ((-644 |#3|) |#4|)) (-15 -1373 (|#4| |#4|)) (-15 -1445 ((-3 |#4| "failed") |#4|)) (-15 -2279 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-308)) (PROGN (-15 -4137 (|#4| |#4|)) (-15 -1582 ((-2 (|:| -2275 |#1|) (|:| -2513 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -4264 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-172) (-375 |#1|) (-375 |#1|) (-687 |#1| |#2| |#3|)) (T -688)) -((-4264 (*1 *2 *2) (|partial| -12 (-4 *3 (-365)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-688 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5)))) (-1582 (*1 *2 *3 *3) (-12 (-4 *3 (-308)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-2 (|:| -2275 *3) (|:| -2513 *3))) (-5 *1 (-688 *3 *4 *5 *6)) (-4 *6 (-687 *3 *4 *5)))) (-4137 (*1 *2 *2) (-12 (-4 *3 (-308)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-688 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5)))) (-2279 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-688 *4 *5 *6 *3)) (-4 *3 (-687 *4 *5 *6)))) (-1445 (*1 *2 *2) (|partial| -12 (-4 *3 (-558)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-688 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5)))) (-1373 (*1 *2 *2) (-12 (-4 *3 (-558)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-688 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5)))) (-1601 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-644 *6)) (-5 *1 (-688 *4 *5 *6 *3)) (-4 *3 (-687 *4 *5 *6)))) (-3864 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-771)) (-5 *1 (-688 *4 *5 *6 *3)) (-4 *3 (-687 *4 *5 *6)))) (-4313 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-771)) (-5 *1 (-688 *4 *5 *6 *3)) (-4 *3 (-687 *4 *5 *6)))) (-1709 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-566)) (-4 *3 (-172)) (-4 *5 (-375 *3)) (-4 *6 (-375 *3)) (-5 *1 (-688 *3 *5 *6 *2)) (-4 *2 (-687 *3 *5 *6)))) (-3769 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-566)) (-4 *3 (-172)) (-4 *5 (-375 *3)) (-4 *6 (-375 *3)) (-5 *1 (-688 *3 *5 *6 *2)) (-4 *2 (-687 *3 *5 *6)))) (-2591 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-566)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *1 (-688 *4 *5 *6 *2)) (-4 *2 (-687 *4 *5 *6)))) (-3310 (*1 *2 *3) (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-172)) (-5 *1 (-688 *2 *4 *5 *3)) (-4 *3 (-687 *2 *4 *5)))) (-4383 (*1 *2 *3) (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-172)) (-5 *1 (-688 *2 *4 *5 *3)) (-4 *3 (-687 *2 *4 *5))))) -(-10 -7 (-15 -4383 (|#1| |#4|)) (-15 -3310 (|#1| |#4|)) (-15 -2591 (|#4| |#4| (-566) (-566))) (-15 -3769 (|#4| |#4| |#1| (-566) (-566))) (-15 -1709 (|#4| |#4| |#1| (-566) (-566))) (IF (|has| |#1| (-558)) (PROGN (-15 -4313 ((-771) |#4|)) (-15 -3864 ((-771) |#4|)) (-15 -1601 ((-644 |#3|) |#4|)) (-15 -1373 (|#4| |#4|)) (-15 -1445 ((-3 |#4| "failed") |#4|)) (-15 -2279 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-308)) (PROGN (-15 -4137 (|#4| |#4|)) (-15 -1582 ((-2 (|:| -2275 |#1|) (|:| -2513 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -4264 ((-3 |#4| "failed") |#4|)) |%noBranch|)) -((-3007 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2149 (($ (-771) (-771)) 64)) (-1458 (($ $ $) NIL)) (-1560 (($ (-1264 |#1|)) NIL) (($ $) NIL)) (-2143 (((-112) $) NIL)) (-3025 (($ $ (-566) (-566)) 22)) (-1355 (($ $ (-566) (-566)) NIL)) (-1979 (($ $ (-566) (-566) (-566) (-566)) NIL)) (-1697 (($ $) NIL)) (-1743 (((-112) $) NIL)) (-2256 (((-112) $ (-771)) NIL)) (-4168 (($ $ (-566) (-566) $) NIL)) (-3923 ((|#1| $ (-566) (-566) |#1|) NIL) (($ $ (-644 (-566)) (-644 (-566)) $) NIL)) (-1708 (($ $ (-566) (-1264 |#1|)) NIL)) (-2521 (($ $ (-566) (-1264 |#1|)) NIL)) (-3808 (($ (-771) |#1|) 37)) (-3012 (($) NIL T CONST)) (-4137 (($ $) 46 (|has| |#1| (-308)))) (-4379 (((-1264 |#1|) $ (-566)) NIL)) (-4313 (((-771) $) 48 (|has| |#1| (-558)))) (-2920 ((|#1| $ (-566) (-566) |#1|) 69)) (-2855 ((|#1| $ (-566) (-566)) NIL)) (-3979 (((-644 |#1|) $) NIL)) (-3864 (((-771) $) 50 (|has| |#1| (-558)))) (-1601 (((-644 (-1264 |#1|)) $) 53 (|has| |#1| (-558)))) (-1380 (((-771) $) 32)) (-4265 (($ (-771) (-771) |#1|) 28)) (-1391 (((-771) $) 33)) (-2404 (((-112) $ (-771)) NIL)) (-3310 ((|#1| $) 44 (|has| |#1| (-6 (-4416 "*"))))) (-1368 (((-566) $) 10)) (-3832 (((-566) $) 11)) (-2329 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-1821 (((-566) $) 14)) (-1809 (((-566) $) 65)) (-3163 (($ (-644 (-644 |#1|))) NIL)) (-2908 (($ (-1 |#1| |#1|) $) NIL)) (-1301 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2909 (((-644 (-644 |#1|)) $) 76)) (-2603 (((-112) $ (-771)) NIL)) (-4117 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4264 (((-3 $ "failed") $) 60 (|has| |#1| (-365)))) (-4140 (($ $ $) NIL)) (-4035 (((-1119) $) NIL (|has| |#1| (-1099)))) (-4030 (($ $ |#1|) NIL)) (-2994 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558)))) (-2692 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) NIL)) (-3467 (((-112) $) NIL)) (-1494 (($) NIL)) (-4390 ((|#1| $ (-566) (-566)) NIL) ((|#1| $ (-566) (-566) |#1|) NIL) (($ $ (-644 (-566)) (-644 (-566))) NIL)) (-4098 (($ (-644 |#1|)) NIL) (($ (-644 $)) NIL) (($ (-1264 |#1|)) 70)) (-2652 (((-112) $) NIL)) (-4383 ((|#1| $) 42 (|has| |#1| (-6 (-4416 "*"))))) (-4045 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3940 (($ $) NIL)) (-1348 (((-538) $) 80 (|has| |#1| (-614 (-538))))) (-2306 (((-1264 |#1|) $ (-566)) NIL)) (-3783 (($ (-1264 |#1|)) NIL) (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-3117 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1894 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-3098 (((-112) $) NIL)) (-2947 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3065 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3053 (($ $ $) NIL) (($ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-771)) 38) (($ $ (-566)) 62 (|has| |#1| (-365)))) (* (($ $ $) 24) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-566) $) NIL) (((-1264 |#1|) $ (-1264 |#1|)) NIL) (((-1264 |#1|) (-1264 |#1|) $) NIL)) (-3018 (((-771) $) NIL (|has| $ (-6 -4414))))) -(((-689 |#1|) (-13 (-687 |#1| (-1264 |#1|) (-1264 |#1|)) (-10 -8 (-15 -4098 ($ (-1264 |#1|))) (IF (|has| |#1| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -4264 ((-3 $ "failed") $)) |%noBranch|))) (-1049)) (T -689)) -((-4264 (*1 *1 *1) (|partial| -12 (-5 *1 (-689 *2)) (-4 *2 (-365)) (-4 *2 (-1049)))) (-4098 (*1 *1 *2) (-12 (-5 *2 (-1264 *3)) (-4 *3 (-1049)) (-5 *1 (-689 *3))))) -(-13 (-687 |#1| (-1264 |#1|) (-1264 |#1|)) (-10 -8 (-15 -4098 ($ (-1264 |#1|))) (IF (|has| |#1| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -4264 ((-3 $ "failed") $)) |%noBranch|))) -((-2015 (((-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|)) 37)) (-3466 (((-689 |#1|) (-689 |#1|) (-689 |#1|) |#1|) 34)) (-1801 (((-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|) (-771)) 43)) (-2299 (((-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|)) 27)) (-3866 (((-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|)) 31) (((-689 |#1|) (-689 |#1|) (-689 |#1|)) 29)) (-4178 (((-689 |#1|) (-689 |#1|) |#1| (-689 |#1|)) 33)) (-2910 (((-689 |#1|) (-689 |#1|) (-689 |#1|)) 25)) (** (((-689 |#1|) (-689 |#1|) (-771)) 46))) -(((-690 |#1|) (-10 -7 (-15 -2910 ((-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -2299 ((-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -3866 ((-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -3866 ((-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -4178 ((-689 |#1|) (-689 |#1|) |#1| (-689 |#1|))) (-15 -3466 ((-689 |#1|) (-689 |#1|) (-689 |#1|) |#1|)) (-15 -2015 ((-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -1801 ((-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|) (-771))) (-15 ** ((-689 |#1|) (-689 |#1|) (-771)))) (-1049)) (T -690)) -((** (*1 *2 *2 *3) (-12 (-5 *2 (-689 *4)) (-5 *3 (-771)) (-4 *4 (-1049)) (-5 *1 (-690 *4)))) (-1801 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-689 *4)) (-5 *3 (-771)) (-4 *4 (-1049)) (-5 *1 (-690 *4)))) (-2015 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-690 *3)))) (-3466 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-690 *3)))) (-4178 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-690 *3)))) (-3866 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-690 *3)))) (-3866 (*1 *2 *2 *2) (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-690 *3)))) (-2299 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-690 *3)))) (-2910 (*1 *2 *2 *2) (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-690 *3))))) -(-10 -7 (-15 -2910 ((-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -2299 ((-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -3866 ((-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -3866 ((-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -4178 ((-689 |#1|) (-689 |#1|) |#1| (-689 |#1|))) (-15 -3466 ((-689 |#1|) (-689 |#1|) (-689 |#1|) |#1|)) (-15 -2015 ((-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -1801 ((-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|) (-771))) (-15 ** ((-689 |#1|) (-689 |#1|) (-771)))) -((-4307 (((-3 |#1| "failed") $) 18)) (-4205 ((|#1| $) NIL)) (-3422 (($) 7 T CONST)) (-2911 (($ |#1|) 8)) (-3783 (($ |#1|) 16) (((-862) $) 23)) (-2467 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -3422)) 11)) (-3968 ((|#1| $) 15))) -(((-691 |#1|) (-13 (-1259) (-1038 |#1|) (-613 (-862)) (-10 -8 (-15 -2911 ($ |#1|)) (-15 -2467 ((-112) $ (|[\|\|]| |#1|))) (-15 -2467 ((-112) $ (|[\|\|]| -3422))) (-15 -3968 (|#1| $)) (-15 -3422 ($) -3704))) (-613 (-862))) (T -691)) -((-2911 (*1 *1 *2) (-12 (-5 *1 (-691 *2)) (-4 *2 (-613 (-862))))) (-2467 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-613 (-862))) (-5 *2 (-112)) (-5 *1 (-691 *4)))) (-2467 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3422)) (-5 *2 (-112)) (-5 *1 (-691 *4)) (-4 *4 (-613 (-862))))) (-3968 (*1 *2 *1) (-12 (-5 *1 (-691 *2)) (-4 *2 (-613 (-862))))) (-3422 (*1 *1) (-12 (-5 *1 (-691 *2)) (-4 *2 (-613 (-862)))))) -(-13 (-1259) (-1038 |#1|) (-613 (-862)) (-10 -8 (-15 -2911 ($ |#1|)) (-15 -2467 ((-112) $ (|[\|\|]| |#1|))) (-15 -2467 ((-112) $ (|[\|\|]| -3422))) (-15 -3968 (|#1| $)) (-15 -3422 ($) -3704))) -((-1980 ((|#2| |#2| |#4|) 33)) (-1499 (((-689 |#2|) |#3| |#4|) 39)) (-4011 (((-689 |#2|) |#2| |#4|) 38)) (-2272 (((-1264 |#2|) |#2| |#4|) 16)) (-1693 ((|#2| |#3| |#4|) 32)) (-2254 (((-689 |#2|) |#3| |#4| (-771) (-771)) 50)) (-3824 (((-689 |#2|) |#2| |#4| (-771)) 49))) -(((-692 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2272 ((-1264 |#2|) |#2| |#4|)) (-15 -1693 (|#2| |#3| |#4|)) (-15 -1980 (|#2| |#2| |#4|)) (-15 -4011 ((-689 |#2|) |#2| |#4|)) (-15 -3824 ((-689 |#2|) |#2| |#4| (-771))) (-15 -1499 ((-689 |#2|) |#3| |#4|)) (-15 -2254 ((-689 |#2|) |#3| |#4| (-771) (-771)))) (-1099) (-900 |#1|) (-375 |#2|) (-13 (-375 |#1|) (-10 -7 (-6 -4414)))) (T -692)) -((-2254 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-771)) (-4 *6 (-1099)) (-4 *7 (-900 *6)) (-5 *2 (-689 *7)) (-5 *1 (-692 *6 *7 *3 *4)) (-4 *3 (-375 *7)) (-4 *4 (-13 (-375 *6) (-10 -7 (-6 -4414)))))) (-1499 (*1 *2 *3 *4) (-12 (-4 *5 (-1099)) (-4 *6 (-900 *5)) (-5 *2 (-689 *6)) (-5 *1 (-692 *5 *6 *3 *4)) (-4 *3 (-375 *6)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4414)))))) (-3824 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-771)) (-4 *6 (-1099)) (-4 *3 (-900 *6)) (-5 *2 (-689 *3)) (-5 *1 (-692 *6 *3 *7 *4)) (-4 *7 (-375 *3)) (-4 *4 (-13 (-375 *6) (-10 -7 (-6 -4414)))))) (-4011 (*1 *2 *3 *4) (-12 (-4 *5 (-1099)) (-4 *3 (-900 *5)) (-5 *2 (-689 *3)) (-5 *1 (-692 *5 *3 *6 *4)) (-4 *6 (-375 *3)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4414)))))) (-1980 (*1 *2 *2 *3) (-12 (-4 *4 (-1099)) (-4 *2 (-900 *4)) (-5 *1 (-692 *4 *2 *5 *3)) (-4 *5 (-375 *2)) (-4 *3 (-13 (-375 *4) (-10 -7 (-6 -4414)))))) (-1693 (*1 *2 *3 *4) (-12 (-4 *5 (-1099)) (-4 *2 (-900 *5)) (-5 *1 (-692 *5 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4414)))))) (-2272 (*1 *2 *3 *4) (-12 (-4 *5 (-1099)) (-4 *3 (-900 *5)) (-5 *2 (-1264 *3)) (-5 *1 (-692 *5 *3 *6 *4)) (-4 *6 (-375 *3)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4414))))))) -(-10 -7 (-15 -2272 ((-1264 |#2|) |#2| |#4|)) (-15 -1693 (|#2| |#3| |#4|)) (-15 -1980 (|#2| |#2| |#4|)) (-15 -4011 ((-689 |#2|) |#2| |#4|)) (-15 -3824 ((-689 |#2|) |#2| |#4| (-771))) (-15 -1499 ((-689 |#2|) |#3| |#4|)) (-15 -2254 ((-689 |#2|) |#3| |#4| (-771) (-771)))) -((-3830 (((-2 (|:| |num| (-689 |#1|)) (|:| |den| |#1|)) (-689 |#2|)) 20)) (-4297 ((|#1| (-689 |#2|)) 9)) (-3738 (((-689 |#1|) (-689 |#2|)) 18))) -(((-693 |#1| |#2|) (-10 -7 (-15 -4297 (|#1| (-689 |#2|))) (-15 -3738 ((-689 |#1|) (-689 |#2|))) (-15 -3830 ((-2 (|:| |num| (-689 |#1|)) (|:| |den| |#1|)) (-689 |#2|)))) (-558) (-992 |#1|)) (T -693)) -((-3830 (*1 *2 *3) (-12 (-5 *3 (-689 *5)) (-4 *5 (-992 *4)) (-4 *4 (-558)) (-5 *2 (-2 (|:| |num| (-689 *4)) (|:| |den| *4))) (-5 *1 (-693 *4 *5)))) (-3738 (*1 *2 *3) (-12 (-5 *3 (-689 *5)) (-4 *5 (-992 *4)) (-4 *4 (-558)) (-5 *2 (-689 *4)) (-5 *1 (-693 *4 *5)))) (-4297 (*1 *2 *3) (-12 (-5 *3 (-689 *4)) (-4 *4 (-992 *2)) (-4 *2 (-558)) (-5 *1 (-693 *2 *4))))) -(-10 -7 (-15 -4297 (|#1| (-689 |#2|))) (-15 -3738 ((-689 |#1|) (-689 |#2|))) (-15 -3830 ((-2 (|:| |num| (-689 |#1|)) (|:| |den| |#1|)) (-689 |#2|)))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-3991 (($ $) NIL)) (-2388 (((-112) $) NIL)) (-1872 (((-689 (-699))) NIL) (((-689 (-699)) (-1264 $)) NIL)) (-3837 (((-699) $) NIL)) (-4114 (($ $) NIL (|has| (-699) (-1199)))) (-2109 (($ $) NIL (|has| (-699) (-1199)))) (-3778 (((-1187 (-921) (-771)) (-566)) NIL (|has| (-699) (-351)))) (-4175 (((-3 $ "failed") $ $) NIL)) (-1477 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| (-699) (-308)) (|has| (-699) (-909))))) (-1550 (($ $) NIL (-2809 (-12 (|has| (-699) (-308)) (|has| (-699) (-909))) (|has| (-699) (-365))))) (-3184 (((-420 $) $) NIL (-2809 (-12 (|has| (-699) (-308)) (|has| (-699) (-909))) (|has| (-699) (-365))))) (-3731 (($ $) NIL (-12 (|has| (-699) (-1002)) (|has| (-699) (-1199))))) (-3717 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (-12 (|has| (-699) (-308)) (|has| (-699) (-909))))) (-2837 (((-112) $ $) NIL (|has| (-699) (-308)))) (-1970 (((-771)) NIL (|has| (-699) (-370)))) (-2240 (($ $) NIL (|has| (-699) (-1199)))) (-2085 (($ $) NIL (|has| (-699) (-1199)))) (-4134 (($ $) NIL (|has| (-699) (-1199)))) (-2129 (($ $) NIL (|has| (-699) (-1199)))) (-3012 (($) NIL T CONST)) (-4307 (((-3 (-566) "failed") $) NIL) (((-3 (-699) "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL (|has| (-699) (-1038 (-409 (-566)))))) (-4205 (((-566) $) NIL) (((-699) $) NIL) (((-409 (-566)) $) NIL (|has| (-699) (-1038 (-409 (-566)))))) (-2392 (($ (-1264 (-699))) NIL) (($ (-1264 (-699)) (-1264 $)) NIL)) (-1910 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-699) (-351)))) (-2946 (($ $ $) NIL (|has| (-699) (-308)))) (-4360 (((-689 (-699)) $) NIL) (((-689 (-699)) $ (-1264 $)) NIL)) (-3577 (((-689 (-699)) (-689 $)) NIL) (((-2 (|:| -4227 (-689 (-699))) (|:| |vec| (-1264 (-699)))) (-689 $) (-1264 $)) NIL) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| (-699) (-639 (-566)))) (((-689 (-566)) (-689 $)) NIL (|has| (-699) (-639 (-566))))) (-1676 (((-3 $ "failed") (-409 (-1171 (-699)))) NIL (|has| (-699) (-365))) (($ (-1171 (-699))) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-3742 (((-699) $) 29)) (-1521 (((-3 (-409 (-566)) "failed") $) NIL (|has| (-699) (-547)))) (-1942 (((-112) $) NIL (|has| (-699) (-547)))) (-4204 (((-409 (-566)) $) NIL (|has| (-699) (-547)))) (-4313 (((-921)) NIL)) (-1552 (($) NIL (|has| (-699) (-370)))) (-2957 (($ $ $) NIL (|has| (-699) (-308)))) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL (|has| (-699) (-308)))) (-2781 (($) NIL (|has| (-699) (-351)))) (-3506 (((-112) $) NIL (|has| (-699) (-351)))) (-3369 (($ $) NIL (|has| (-699) (-351))) (($ $ (-771)) NIL (|has| (-699) (-351)))) (-3268 (((-112) $) NIL (-2809 (-12 (|has| (-699) (-308)) (|has| (-699) (-909))) (|has| (-699) (-365))))) (-1777 (((-2 (|:| |r| (-699)) (|:| |phi| (-699))) $) NIL (-12 (|has| (-699) (-1059)) (|has| (-699) (-1199))))) (-4361 (($) NIL (|has| (-699) (-1199)))) (-2062 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (|has| (-699) (-886 (-381)))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (|has| (-699) (-886 (-566))))) (-3254 (((-833 (-921)) $) NIL (|has| (-699) (-351))) (((-921) $) NIL (|has| (-699) (-351)))) (-3934 (((-112) $) NIL)) (-2140 (($ $ (-566)) NIL (-12 (|has| (-699) (-1002)) (|has| (-699) (-1199))))) (-1577 (((-699) $) NIL)) (-4363 (((-3 $ "failed") $) NIL (|has| (-699) (-351)))) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| (-699) (-308)))) (-1627 (((-1171 (-699)) $) NIL (|has| (-699) (-365)))) (-2097 (($ $ $) NIL)) (-3962 (($ $ $) NIL)) (-1301 (($ (-1 (-699) (-699)) $) NIL)) (-3681 (((-921) $) NIL (|has| (-699) (-370)))) (-3651 (($ $) NIL (|has| (-699) (-1199)))) (-1662 (((-1171 (-699)) $) NIL)) (-2167 (($ (-644 $)) NIL (|has| (-699) (-308))) (($ $ $) NIL (|has| (-699) (-308)))) (-4117 (((-1157) $) NIL)) (-1713 (($ $) NIL (|has| (-699) (-365)))) (-1761 (($) NIL (|has| (-699) (-351)) CONST)) (-2178 (($ (-921)) NIL (|has| (-699) (-370)))) (-3536 (($) NIL)) (-3753 (((-699) $) 31)) (-4035 (((-1119) $) NIL)) (-3441 (($) NIL)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| (-699) (-308)))) (-2214 (($ (-644 $)) NIL (|has| (-699) (-308))) (($ $ $) NIL (|has| (-699) (-308)))) (-1548 (((-644 (-2 (|:| -3719 (-566)) (|:| -2852 (-566))))) NIL (|has| (-699) (-351)))) (-4303 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| (-699) (-308)) (|has| (-699) (-909))))) (-3240 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| (-699) (-308)) (|has| (-699) (-909))))) (-3719 (((-420 $) $) NIL (-2809 (-12 (|has| (-699) (-308)) (|has| (-699) (-909))) (|has| (-699) (-365))))) (-3148 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-699) (-308))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| (-699) (-308)))) (-2994 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-699)) NIL (|has| (-699) (-558)))) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| (-699) (-308)))) (-2561 (($ $) NIL (|has| (-699) (-1199)))) (-2055 (($ $ (-1175) (-699)) NIL (|has| (-699) (-516 (-1175) (-699)))) (($ $ (-644 (-1175)) (-644 (-699))) NIL (|has| (-699) (-516 (-1175) (-699)))) (($ $ (-644 (-295 (-699)))) NIL (|has| (-699) (-310 (-699)))) (($ $ (-295 (-699))) NIL (|has| (-699) (-310 (-699)))) (($ $ (-699) (-699)) NIL (|has| (-699) (-310 (-699)))) (($ $ (-644 (-699)) (-644 (-699))) NIL (|has| (-699) (-310 (-699))))) (-3039 (((-771) $) NIL (|has| (-699) (-308)))) (-4390 (($ $ (-699)) NIL (|has| (-699) (-287 (-699) (-699))))) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL (|has| (-699) (-308)))) (-3652 (((-699)) NIL) (((-699) (-1264 $)) NIL)) (-1437 (((-3 (-771) "failed") $ $) NIL (|has| (-699) (-351))) (((-771) $) NIL (|has| (-699) (-351)))) (-3561 (($ $ (-1 (-699) (-699))) NIL) (($ $ (-1 (-699) (-699)) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-699) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-699) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-699) (-900 (-1175)))) (($ $ (-1175)) NIL (|has| (-699) (-900 (-1175)))) (($ $ (-771)) NIL (|has| (-699) (-233))) (($ $) NIL (|has| (-699) (-233)))) (-3213 (((-689 (-699)) (-1264 $) (-1 (-699) (-699))) NIL (|has| (-699) (-365)))) (-1616 (((-1171 (-699))) NIL)) (-4144 (($ $) NIL (|has| (-699) (-1199)))) (-2141 (($ $) NIL (|has| (-699) (-1199)))) (-3974 (($) NIL (|has| (-699) (-351)))) (-4124 (($ $) NIL (|has| (-699) (-1199)))) (-2118 (($ $) NIL (|has| (-699) (-1199)))) (-4104 (($ $) NIL (|has| (-699) (-1199)))) (-2098 (($ $) NIL (|has| (-699) (-1199)))) (-2154 (((-689 (-699)) (-1264 $)) NIL) (((-1264 (-699)) $) NIL) (((-689 (-699)) (-1264 $) (-1264 $)) NIL) (((-1264 (-699)) $ (-1264 $)) NIL)) (-1348 (((-538) $) NIL (|has| (-699) (-614 (-538)))) (((-169 (-225)) $) NIL (|has| (-699) (-1022))) (((-169 (-381)) $) NIL (|has| (-699) (-1022))) (((-892 (-381)) $) NIL (|has| (-699) (-614 (-892 (-381))))) (((-892 (-566)) $) NIL (|has| (-699) (-614 (-892 (-566))))) (($ (-1171 (-699))) NIL) (((-1171 (-699)) $) NIL) (($ (-1264 (-699))) NIL) (((-1264 (-699)) $) NIL)) (-2358 (($ $) NIL)) (-1656 (((-3 (-1264 $) "failed") (-689 $)) NIL (-2809 (-12 (|has| (-699) (-308)) (|has| $ (-145)) (|has| (-699) (-909))) (|has| (-699) (-351))))) (-3638 (($ (-699) (-699)) 12)) (-3783 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-566)) NIL) (($ (-699)) NIL) (($ (-169 (-381))) 13) (($ (-169 (-566))) 19) (($ (-169 (-699))) 28) (($ (-169 (-701))) 25) (((-169 (-381)) $) 33) (($ (-409 (-566))) NIL (-2809 (|has| (-699) (-1038 (-409 (-566)))) (|has| (-699) (-365))))) (-3144 (($ $) NIL (|has| (-699) (-351))) (((-3 $ "failed") $) NIL (-2809 (-12 (|has| (-699) (-308)) (|has| $ (-145)) (|has| (-699) (-909))) (|has| (-699) (-145))))) (-1820 (((-1171 (-699)) $) NIL)) (-2107 (((-771)) NIL T CONST)) (-3117 (((-112) $ $) NIL)) (-2365 (((-1264 $)) NIL)) (-4177 (($ $) NIL (|has| (-699) (-1199)))) (-2180 (($ $) NIL (|has| (-699) (-1199)))) (-2695 (((-112) $ $) NIL)) (-4155 (($ $) NIL (|has| (-699) (-1199)))) (-2153 (($ $) NIL (|has| (-699) (-1199)))) (-4198 (($ $) NIL (|has| (-699) (-1199)))) (-2212 (($ $) NIL (|has| (-699) (-1199)))) (-2428 (((-699) $) NIL (|has| (-699) (-1199)))) (-2976 (($ $) NIL (|has| (-699) (-1199)))) (-2227 (($ $) NIL (|has| (-699) (-1199)))) (-4188 (($ $) NIL (|has| (-699) (-1199)))) (-2196 (($ $) NIL (|has| (-699) (-1199)))) (-4166 (($ $) NIL (|has| (-699) (-1199)))) (-2166 (($ $) NIL (|has| (-699) (-1199)))) (-2086 (($ $) NIL (|has| (-699) (-1059)))) (-2479 (($) NIL T CONST)) (-4334 (($) NIL T CONST)) (-2875 (($ $ (-1 (-699) (-699))) NIL) (($ $ (-1 (-699) (-699)) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-699) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-699) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-699) (-900 (-1175)))) (($ $ (-1175)) NIL (|has| (-699) (-900 (-1175)))) (($ $ (-771)) NIL (|has| (-699) (-233))) (($ $) NIL (|has| (-699) (-233)))) (-3009 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL)) (-2995 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-3065 (($ $ $) NIL (|has| (-699) (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ $) NIL (|has| (-699) (-1199))) (($ $ (-409 (-566))) NIL (-12 (|has| (-699) (-1002)) (|has| (-699) (-1199)))) (($ $ (-566)) NIL (|has| (-699) (-365)))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ (-699) $) NIL) (($ $ (-699)) NIL) (($ (-409 (-566)) $) NIL (|has| (-699) (-365))) (($ $ (-409 (-566))) NIL (|has| (-699) (-365))))) -(((-694) (-13 (-389) (-166 (-699)) (-10 -8 (-15 -3783 ($ (-169 (-381)))) (-15 -3783 ($ (-169 (-566)))) (-15 -3783 ($ (-169 (-699)))) (-15 -3783 ($ (-169 (-701)))) (-15 -3783 ((-169 (-381)) $))))) (T -694)) -((-3783 (*1 *1 *2) (-12 (-5 *2 (-169 (-381))) (-5 *1 (-694)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-169 (-566))) (-5 *1 (-694)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-169 (-699))) (-5 *1 (-694)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-169 (-701))) (-5 *1 (-694)))) (-3783 (*1 *2 *1) (-12 (-5 *2 (-169 (-381))) (-5 *1 (-694))))) -(-13 (-389) (-166 (-699)) (-10 -8 (-15 -3783 ($ (-169 (-381)))) (-15 -3783 ($ (-169 (-566)))) (-15 -3783 ($ (-169 (-699)))) (-15 -3783 ($ (-169 (-701)))) (-15 -3783 ((-169 (-381)) $)))) -((-3007 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2256 (((-112) $ (-771)) 8)) (-4016 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4414)))) (-2701 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4414)))) (-3012 (($) 7 T CONST)) (-3657 (($ $) 63)) (-2031 (($ $) 59 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2956 (($ |#1| $) 48 (|has| $ (-6 -4414))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4414)))) (-2665 (($ |#1| $) 58 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4414)))) (-1676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4414)))) (-3979 (((-644 |#1|) $) 31 (|has| $ (-6 -4414)))) (-2404 (((-112) $ (-771)) 9)) (-2329 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2908 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#1| |#1|) $) 36)) (-2603 (((-112) $ (-771)) 10)) (-4117 (((-1157) $) 22 (|has| |#1| (-1099)))) (-4039 ((|#1| $) 40)) (-3406 (($ |#1| $) 41) (($ |#1| $ (-771)) 64)) (-4035 (((-1119) $) 21 (|has| |#1| (-1099)))) (-2006 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2539 ((|#1| $) 42)) (-2692 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) 14)) (-3467 (((-112) $) 11)) (-1494 (($) 12)) (-3014 (((-644 (-2 (|:| -3867 |#1|) (|:| -4045 (-771)))) $) 62)) (-3481 (($) 50) (($ (-644 |#1|)) 49)) (-4045 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-3940 (($ $) 13)) (-1348 (((-538) $) 60 (|has| |#1| (-614 (-538))))) (-3796 (($ (-644 |#1|)) 51)) (-3783 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-3117 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-1748 (($ (-644 |#1|)) 43)) (-1894 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3018 (((-771) $) 6 (|has| $ (-6 -4414))))) +((-3768 (*1 *2 *1) (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-112)))) (-1370 (*1 *2 *1) (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-112)))) (-1791 (*1 *2 *1) (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-112)))) (-1950 (*1 *2 *1) (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-112)))) (-2819 (*1 *1 *2 *2) (-12 (-5 *2 (-771)) (-4 *3 (-1049)) (-4 *1 (-687 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-4184 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1049)) (-4 *1 (-687 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3520 (*1 *1 *2 *3) (-12 (-5 *2 (-771)) (-4 *3 (-1049)) (-4 *1 (-687 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2253 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1049)) (-4 *1 (-687 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2253 (*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *3 (-1049)) (-4 *1 (-687 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3152 (*1 *1 *2) (-12 (-4 *3 (-1049)) (-4 *1 (-687 *3 *4 *2)) (-4 *4 (-375 *3)) (-4 *2 (-375 *3)))) (-4160 (*1 *1 *2) (-12 (-4 *3 (-1049)) (-4 *1 (-687 *3 *2 *4)) (-4 *2 (-375 *3)) (-4 *4 (-375 *3)))) (-4160 (*1 *1 *1) (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-2754 (*1 *1 *1) (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-1798 (*1 *1 *1 *1) (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-4383 (*1 *1 *1 *1) (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-1723 (*1 *2 *1) (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-644 (-644 *3))))) (-1309 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-644 (-566))) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-1456 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-644 (-566))) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2485 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-566)) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2106 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-566)) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2897 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-566)) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-1418 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-566)) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3002 (*1 *1 *1 *1) (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-3012 (*1 *1 *1 *1) (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-3012 (*1 *1 *1) (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-566)) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-687 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *2 (-375 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-687 *3 *2 *4)) (-4 *3 (-1049)) (-4 *2 (-375 *3)) (-4 *4 (-375 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2978 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-558)))) (-3025 (*1 *1 *1 *2) (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-365)))) (-1521 (*1 *1 *1) (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-308)))) (-2755 (*1 *2 *1) (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-558)) (-5 *2 (-771)))) (-1908 (*1 *2 *1) (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-558)) (-5 *2 (-771)))) (-2950 (*1 *2 *1) (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-558)) (-5 *2 (-644 *5)))) (-3943 (*1 *2 *1) (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (|has| *2 (-6 (-4416 "*"))) (-4 *2 (-1049)))) (-1444 (*1 *2 *1) (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (|has| *2 (-6 (-4416 "*"))) (-4 *2 (-1049)))) (-1542 (*1 *1 *1) (|partial| -12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-365)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-365))))) +(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4415) (-6 -4414) (-15 -3768 ((-112) $)) (-15 -1370 ((-112) $)) (-15 -1791 ((-112) $)) (-15 -1950 ((-112) $)) (-15 -2819 ($ (-771) (-771))) (-15 -4184 ($ (-644 (-644 |t#1|)))) (-15 -3520 ($ (-771) |t#1|)) (-15 -2253 ($ (-644 |t#1|))) (-15 -2253 ($ (-644 $))) (-15 -3152 ($ |t#3|)) (-15 -4160 ($ |t#2|)) (-15 -4160 ($ $)) (-15 -2754 ($ $)) (-15 -1798 ($ $ $)) (-15 -4383 ($ $ $)) (-15 -1723 ((-644 (-644 |t#1|)) $)) (-15 -1309 ($ $ (-644 (-566)) (-644 (-566)))) (-15 -1456 ($ $ (-644 (-566)) (-644 (-566)) $)) (-15 -2485 ($ $ (-566) (-566))) (-15 -2106 ($ $ (-566) (-566))) (-15 -2897 ($ $ (-566) (-566) (-566) (-566))) (-15 -1418 ($ $ (-566) (-566) $)) (-15 -3002 ($ $ $)) (-15 -3012 ($ $ $)) (-15 -3012 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-566) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-771))) (IF (|has| |t#1| (-558)) (-15 -2978 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-365)) (-15 -3025 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-308)) (-15 -1521 ($ $)) |%noBranch|) (IF (|has| |t#1| (-558)) (PROGN (-15 -2755 ((-771) $)) (-15 -1908 ((-771) $)) (-15 -2950 ((-644 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4416 "*"))) (PROGN (-15 -3943 (|t#1| $)) (-15 -1444 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-365)) (PROGN (-15 -1542 ((-3 $ "failed") $)) (-15 ** ($ $ (-566)))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2768 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1099) |has| |#1| (-1099)) ((-57 |#1| |#2| |#3|) . T) ((-1214) . T)) +((-1521 ((|#4| |#4|) 97 (|has| |#1| (-308)))) (-2755 (((-771) |#4|) 125 (|has| |#1| (-558)))) (-1908 (((-771) |#4|) 101 (|has| |#1| (-558)))) (-2950 (((-644 |#3|) |#4|) 108 (|has| |#1| (-558)))) (-2554 (((-2 (|:| -2631 |#1|) (|:| -3264 |#1|)) |#1| |#1|) 140 (|has| |#1| (-308)))) (-1444 ((|#1| |#4|) 57)) (-2605 (((-3 |#4| "failed") |#4|) 89 (|has| |#1| (-558)))) (-1542 (((-3 |#4| "failed") |#4|) 105 (|has| |#1| (-365)))) (-1384 ((|#4| |#4|) 93 (|has| |#1| (-558)))) (-2266 ((|#4| |#4| |#1| (-566) (-566)) 65)) (-1536 ((|#4| |#4| (-566) (-566)) 60)) (-1619 ((|#4| |#4| |#1| (-566) (-566)) 70)) (-3943 ((|#1| |#4|) 103)) (-3045 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 94 (|has| |#1| (-558))))) +(((-688 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3943 (|#1| |#4|)) (-15 -1444 (|#1| |#4|)) (-15 -1536 (|#4| |#4| (-566) (-566))) (-15 -2266 (|#4| |#4| |#1| (-566) (-566))) (-15 -1619 (|#4| |#4| |#1| (-566) (-566))) (IF (|has| |#1| (-558)) (PROGN (-15 -2755 ((-771) |#4|)) (-15 -1908 ((-771) |#4|)) (-15 -2950 ((-644 |#3|) |#4|)) (-15 -1384 (|#4| |#4|)) (-15 -2605 ((-3 |#4| "failed") |#4|)) (-15 -3045 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-308)) (PROGN (-15 -1521 (|#4| |#4|)) (-15 -2554 ((-2 (|:| -2631 |#1|) (|:| -3264 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -1542 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-172) (-375 |#1|) (-375 |#1|) (-687 |#1| |#2| |#3|)) (T -688)) +((-1542 (*1 *2 *2) (|partial| -12 (-4 *3 (-365)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-688 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5)))) (-2554 (*1 *2 *3 *3) (-12 (-4 *3 (-308)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-2 (|:| -2631 *3) (|:| -3264 *3))) (-5 *1 (-688 *3 *4 *5 *6)) (-4 *6 (-687 *3 *4 *5)))) (-1521 (*1 *2 *2) (-12 (-4 *3 (-308)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-688 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5)))) (-3045 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-688 *4 *5 *6 *3)) (-4 *3 (-687 *4 *5 *6)))) (-2605 (*1 *2 *2) (|partial| -12 (-4 *3 (-558)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-688 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5)))) (-1384 (*1 *2 *2) (-12 (-4 *3 (-558)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-688 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5)))) (-2950 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-644 *6)) (-5 *1 (-688 *4 *5 *6 *3)) (-4 *3 (-687 *4 *5 *6)))) (-1908 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-771)) (-5 *1 (-688 *4 *5 *6 *3)) (-4 *3 (-687 *4 *5 *6)))) (-2755 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-771)) (-5 *1 (-688 *4 *5 *6 *3)) (-4 *3 (-687 *4 *5 *6)))) (-1619 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-566)) (-4 *3 (-172)) (-4 *5 (-375 *3)) (-4 *6 (-375 *3)) (-5 *1 (-688 *3 *5 *6 *2)) (-4 *2 (-687 *3 *5 *6)))) (-2266 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-566)) (-4 *3 (-172)) (-4 *5 (-375 *3)) (-4 *6 (-375 *3)) (-5 *1 (-688 *3 *5 *6 *2)) (-4 *2 (-687 *3 *5 *6)))) (-1536 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-566)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *1 (-688 *4 *5 *6 *2)) (-4 *2 (-687 *4 *5 *6)))) (-1444 (*1 *2 *3) (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-172)) (-5 *1 (-688 *2 *4 *5 *3)) (-4 *3 (-687 *2 *4 *5)))) (-3943 (*1 *2 *3) (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-172)) (-5 *1 (-688 *2 *4 *5 *3)) (-4 *3 (-687 *2 *4 *5))))) +(-10 -7 (-15 -3943 (|#1| |#4|)) (-15 -1444 (|#1| |#4|)) (-15 -1536 (|#4| |#4| (-566) (-566))) (-15 -2266 (|#4| |#4| |#1| (-566) (-566))) (-15 -1619 (|#4| |#4| |#1| (-566) (-566))) (IF (|has| |#1| (-558)) (PROGN (-15 -2755 ((-771) |#4|)) (-15 -1908 ((-771) |#4|)) (-15 -2950 ((-644 |#3|) |#4|)) (-15 -1384 (|#4| |#4|)) (-15 -2605 ((-3 |#4| "failed") |#4|)) (-15 -3045 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-308)) (PROGN (-15 -1521 (|#4| |#4|)) (-15 -2554 ((-2 (|:| -2631 |#1|) (|:| -3264 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -1542 ((-3 |#4| "failed") |#4|)) |%noBranch|)) +((-2988 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2819 (($ (-771) (-771)) 64)) (-4383 (($ $ $) NIL)) (-4160 (($ (-1264 |#1|)) NIL) (($ $) NIL)) (-1791 (((-112) $) NIL)) (-2485 (($ $ (-566) (-566)) 22)) (-2106 (($ $ (-566) (-566)) NIL)) (-2897 (($ $ (-566) (-566) (-566) (-566)) NIL)) (-2754 (($ $) NIL)) (-3768 (((-112) $) NIL)) (-1504 (((-112) $ (-771)) NIL)) (-1418 (($ $ (-566) (-566) $) NIL)) (-1456 ((|#1| $ (-566) (-566) |#1|) NIL) (($ $ (-644 (-566)) (-644 (-566)) $) NIL)) (-1499 (($ $ (-566) (-1264 |#1|)) NIL)) (-2837 (($ $ (-566) (-1264 |#1|)) NIL)) (-3520 (($ (-771) |#1|) 37)) (-2463 (($) NIL T CONST)) (-1521 (($ $) 46 (|has| |#1| (-308)))) (-1721 (((-1264 |#1|) $ (-566)) NIL)) (-2755 (((-771) $) 48 (|has| |#1| (-558)))) (-3897 ((|#1| $ (-566) (-566) |#1|) 69)) (-3829 ((|#1| $ (-566) (-566)) NIL)) (-1683 (((-644 |#1|) $) NIL)) (-1908 (((-771) $) 50 (|has| |#1| (-558)))) (-2950 (((-644 (-1264 |#1|)) $) 53 (|has| |#1| (-558)))) (-3811 (((-771) $) 32)) (-1860 (($ (-771) (-771) |#1|) 28)) (-3824 (((-771) $) 33)) (-3456 (((-112) $ (-771)) NIL)) (-1444 ((|#1| $) 44 (|has| |#1| (-6 (-4416 "*"))))) (-2531 (((-566) $) 10)) (-3688 (((-566) $) 11)) (-3491 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2422 (((-566) $) 14)) (-3632 (((-566) $) 65)) (-4184 (($ (-644 (-644 |#1|))) NIL)) (-3885 (($ (-1 |#1| |#1|) $) NIL)) (-2319 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1723 (((-644 (-644 |#1|)) $) 76)) (-3267 (((-112) $ (-771)) NIL)) (-3380 (((-1157) $) NIL (|has| |#1| (-1099)))) (-1542 (((-3 $ "failed") $) 60 (|has| |#1| (-365)))) (-1798 (($ $ $) NIL)) (-4072 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3787 (($ $ |#1|) NIL)) (-2978 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558)))) (-2823 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) NIL)) (-2872 (((-112) $) NIL)) (-3493 (($) NIL)) (-1309 ((|#1| $ (-566) (-566)) NIL) ((|#1| $ (-566) (-566) |#1|) NIL) (($ $ (-644 (-566)) (-644 (-566))) NIL)) (-2253 (($ (-644 |#1|)) NIL) (($ (-644 $)) NIL) (($ (-1264 |#1|)) 70)) (-1370 (((-112) $) NIL)) (-3943 ((|#1| $) 42 (|has| |#1| (-6 (-4416 "*"))))) (-4083 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-1480 (($ $) NIL)) (-2376 (((-538) $) 80 (|has| |#1| (-614 (-538))))) (-2986 (((-1264 |#1|) $ (-566)) NIL)) (-3152 (($ (-1264 |#1|)) NIL) (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-3044 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2210 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-1950 (((-112) $) NIL)) (-2914 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3025 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3012 (($ $ $) NIL) (($ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-771)) 38) (($ $ (-566)) 62 (|has| |#1| (-365)))) (* (($ $ $) 24) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-566) $) NIL) (((-1264 |#1|) $ (-1264 |#1|)) NIL) (((-1264 |#1|) (-1264 |#1|) $) NIL)) (-3000 (((-771) $) NIL (|has| $ (-6 -4414))))) +(((-689 |#1|) (-13 (-687 |#1| (-1264 |#1|) (-1264 |#1|)) (-10 -8 (-15 -2253 ($ (-1264 |#1|))) (IF (|has| |#1| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -1542 ((-3 $ "failed") $)) |%noBranch|))) (-1049)) (T -689)) +((-1542 (*1 *1 *1) (|partial| -12 (-5 *1 (-689 *2)) (-4 *2 (-365)) (-4 *2 (-1049)))) (-2253 (*1 *1 *2) (-12 (-5 *2 (-1264 *3)) (-4 *3 (-1049)) (-5 *1 (-689 *3))))) +(-13 (-687 |#1| (-1264 |#1|) (-1264 |#1|)) (-10 -8 (-15 -2253 ($ (-1264 |#1|))) (IF (|has| |#1| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -1542 ((-3 $ "failed") $)) |%noBranch|))) +((-2137 (((-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|)) 37)) (-2760 (((-689 |#1|) (-689 |#1|) (-689 |#1|) |#1|) 34)) (-4165 (((-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|) (-771)) 43)) (-3411 (((-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|)) 27)) (-4023 (((-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|)) 31) (((-689 |#1|) (-689 |#1|) (-689 |#1|)) 29)) (-4191 (((-689 |#1|) (-689 |#1|) |#1| (-689 |#1|)) 33)) (-1821 (((-689 |#1|) (-689 |#1|) (-689 |#1|)) 25)) (** (((-689 |#1|) (-689 |#1|) (-771)) 46))) +(((-690 |#1|) (-10 -7 (-15 -1821 ((-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -3411 ((-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -4023 ((-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -4023 ((-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -4191 ((-689 |#1|) (-689 |#1|) |#1| (-689 |#1|))) (-15 -2760 ((-689 |#1|) (-689 |#1|) (-689 |#1|) |#1|)) (-15 -2137 ((-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -4165 ((-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|) (-771))) (-15 ** ((-689 |#1|) (-689 |#1|) (-771)))) (-1049)) (T -690)) +((** (*1 *2 *2 *3) (-12 (-5 *2 (-689 *4)) (-5 *3 (-771)) (-4 *4 (-1049)) (-5 *1 (-690 *4)))) (-4165 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-689 *4)) (-5 *3 (-771)) (-4 *4 (-1049)) (-5 *1 (-690 *4)))) (-2137 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-690 *3)))) (-2760 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-690 *3)))) (-4191 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-690 *3)))) (-4023 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-690 *3)))) (-4023 (*1 *2 *2 *2) (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-690 *3)))) (-3411 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-690 *3)))) (-1821 (*1 *2 *2 *2) (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-690 *3))))) +(-10 -7 (-15 -1821 ((-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -3411 ((-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -4023 ((-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -4023 ((-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -4191 ((-689 |#1|) (-689 |#1|) |#1| (-689 |#1|))) (-15 -2760 ((-689 |#1|) (-689 |#1|) (-689 |#1|) |#1|)) (-15 -2137 ((-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -4165 ((-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|) (-771))) (-15 ** ((-689 |#1|) (-689 |#1|) (-771)))) +((-2229 (((-3 |#1| "failed") $) 18)) (-4158 ((|#1| $) NIL)) (-4107 (($) 7 T CONST)) (-1918 (($ |#1|) 8)) (-3152 (($ |#1|) 16) (((-862) $) 23)) (-4344 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -4107)) 11)) (-1513 ((|#1| $) 15))) +(((-691 |#1|) (-13 (-1259) (-1038 |#1|) (-613 (-862)) (-10 -8 (-15 -1918 ($ |#1|)) (-15 -4344 ((-112) $ (|[\|\|]| |#1|))) (-15 -4344 ((-112) $ (|[\|\|]| -4107))) (-15 -1513 (|#1| $)) (-15 -4107 ($) -1623))) (-613 (-862))) (T -691)) +((-1918 (*1 *1 *2) (-12 (-5 *1 (-691 *2)) (-4 *2 (-613 (-862))))) (-4344 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-613 (-862))) (-5 *2 (-112)) (-5 *1 (-691 *4)))) (-4344 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -4107)) (-5 *2 (-112)) (-5 *1 (-691 *4)) (-4 *4 (-613 (-862))))) (-1513 (*1 *2 *1) (-12 (-5 *1 (-691 *2)) (-4 *2 (-613 (-862))))) (-4107 (*1 *1) (-12 (-5 *1 (-691 *2)) (-4 *2 (-613 (-862)))))) +(-13 (-1259) (-1038 |#1|) (-613 (-862)) (-10 -8 (-15 -1918 ($ |#1|)) (-15 -4344 ((-112) $ (|[\|\|]| |#1|))) (-15 -4344 ((-112) $ (|[\|\|]| -4107))) (-15 -1513 (|#1| $)) (-15 -4107 ($) -1623))) +((-3029 ((|#2| |#2| |#4|) 33)) (-2757 (((-689 |#2|) |#3| |#4|) 39)) (-3649 (((-689 |#2|) |#2| |#4|) 38)) (-3580 (((-1264 |#2|) |#2| |#4|) 16)) (-3601 ((|#2| |#3| |#4|) 32)) (-1342 (((-689 |#2|) |#3| |#4| (-771) (-771)) 50)) (-2522 (((-689 |#2|) |#2| |#4| (-771)) 49))) +(((-692 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3580 ((-1264 |#2|) |#2| |#4|)) (-15 -3601 (|#2| |#3| |#4|)) (-15 -3029 (|#2| |#2| |#4|)) (-15 -3649 ((-689 |#2|) |#2| |#4|)) (-15 -2522 ((-689 |#2|) |#2| |#4| (-771))) (-15 -2757 ((-689 |#2|) |#3| |#4|)) (-15 -1342 ((-689 |#2|) |#3| |#4| (-771) (-771)))) (-1099) (-900 |#1|) (-375 |#2|) (-13 (-375 |#1|) (-10 -7 (-6 -4414)))) (T -692)) +((-1342 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-771)) (-4 *6 (-1099)) (-4 *7 (-900 *6)) (-5 *2 (-689 *7)) (-5 *1 (-692 *6 *7 *3 *4)) (-4 *3 (-375 *7)) (-4 *4 (-13 (-375 *6) (-10 -7 (-6 -4414)))))) (-2757 (*1 *2 *3 *4) (-12 (-4 *5 (-1099)) (-4 *6 (-900 *5)) (-5 *2 (-689 *6)) (-5 *1 (-692 *5 *6 *3 *4)) (-4 *3 (-375 *6)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4414)))))) (-2522 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-771)) (-4 *6 (-1099)) (-4 *3 (-900 *6)) (-5 *2 (-689 *3)) (-5 *1 (-692 *6 *3 *7 *4)) (-4 *7 (-375 *3)) (-4 *4 (-13 (-375 *6) (-10 -7 (-6 -4414)))))) (-3649 (*1 *2 *3 *4) (-12 (-4 *5 (-1099)) (-4 *3 (-900 *5)) (-5 *2 (-689 *3)) (-5 *1 (-692 *5 *3 *6 *4)) (-4 *6 (-375 *3)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4414)))))) (-3029 (*1 *2 *2 *3) (-12 (-4 *4 (-1099)) (-4 *2 (-900 *4)) (-5 *1 (-692 *4 *2 *5 *3)) (-4 *5 (-375 *2)) (-4 *3 (-13 (-375 *4) (-10 -7 (-6 -4414)))))) (-3601 (*1 *2 *3 *4) (-12 (-4 *5 (-1099)) (-4 *2 (-900 *5)) (-5 *1 (-692 *5 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4414)))))) (-3580 (*1 *2 *3 *4) (-12 (-4 *5 (-1099)) (-4 *3 (-900 *5)) (-5 *2 (-1264 *3)) (-5 *1 (-692 *5 *3 *6 *4)) (-4 *6 (-375 *3)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4414))))))) +(-10 -7 (-15 -3580 ((-1264 |#2|) |#2| |#4|)) (-15 -3601 (|#2| |#3| |#4|)) (-15 -3029 (|#2| |#2| |#4|)) (-15 -3649 ((-689 |#2|) |#2| |#4|)) (-15 -2522 ((-689 |#2|) |#2| |#4| (-771))) (-15 -2757 ((-689 |#2|) |#3| |#4|)) (-15 -1342 ((-689 |#2|) |#3| |#4| (-771) (-771)))) +((-4367 (((-2 (|:| |num| (-689 |#1|)) (|:| |den| |#1|)) (-689 |#2|)) 20)) (-2693 ((|#1| (-689 |#2|)) 9)) (-2386 (((-689 |#1|) (-689 |#2|)) 18))) +(((-693 |#1| |#2|) (-10 -7 (-15 -2693 (|#1| (-689 |#2|))) (-15 -2386 ((-689 |#1|) (-689 |#2|))) (-15 -4367 ((-2 (|:| |num| (-689 |#1|)) (|:| |den| |#1|)) (-689 |#2|)))) (-558) (-992 |#1|)) (T -693)) +((-4367 (*1 *2 *3) (-12 (-5 *3 (-689 *5)) (-4 *5 (-992 *4)) (-4 *4 (-558)) (-5 *2 (-2 (|:| |num| (-689 *4)) (|:| |den| *4))) (-5 *1 (-693 *4 *5)))) (-2386 (*1 *2 *3) (-12 (-5 *3 (-689 *5)) (-4 *5 (-992 *4)) (-4 *4 (-558)) (-5 *2 (-689 *4)) (-5 *1 (-693 *4 *5)))) (-2693 (*1 *2 *3) (-12 (-5 *3 (-689 *4)) (-4 *4 (-992 *2)) (-4 *2 (-558)) (-5 *1 (-693 *2 *4))))) +(-10 -7 (-15 -2693 (|#1| (-689 |#2|))) (-15 -2386 ((-689 |#1|) (-689 |#2|))) (-15 -4367 ((-2 (|:| |num| (-689 |#1|)) (|:| |den| |#1|)) (-689 |#2|)))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-2161 (($ $) NIL)) (-2345 (((-112) $) NIL)) (-3899 (((-689 (-699))) NIL) (((-689 (-699)) (-1264 $)) NIL)) (-3833 (((-699) $) NIL)) (-3963 (($ $) NIL (|has| (-699) (-1199)))) (-3630 (($ $) NIL (|has| (-699) (-1199)))) (-2894 (((-1187 (-921) (-771)) (-566)) NIL (|has| (-699) (-351)))) (-3967 (((-3 $ "failed") $ $) NIL)) (-2292 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| (-699) (-308)) (|has| (-699) (-909))))) (-1378 (($ $) NIL (-2768 (-12 (|has| (-699) (-308)) (|has| (-699) (-909))) (|has| (-699) (-365))))) (-1364 (((-420 $) $) NIL (-2768 (-12 (|has| (-699) (-308)) (|has| (-699) (-909))) (|has| (-699) (-365))))) (-1635 (($ $) NIL (-12 (|has| (-699) (-1002)) (|has| (-699) (-1199))))) (-4066 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (-12 (|has| (-699) (-308)) (|has| (-699) (-909))))) (-2085 (((-112) $ $) NIL (|has| (-699) (-308)))) (-3870 (((-771)) NIL (|has| (-699) (-370)))) (-3941 (($ $) NIL (|has| (-699) (-1199)))) (-3602 (($ $) NIL (|has| (-699) (-1199)))) (-3986 (($ $) NIL (|has| (-699) (-1199)))) (-3656 (($ $) NIL (|has| (-699) (-1199)))) (-2463 (($) NIL T CONST)) (-2229 (((-3 (-566) "failed") $) NIL) (((-3 (-699) "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL (|has| (-699) (-1038 (-409 (-566)))))) (-4158 (((-566) $) NIL) (((-699) $) NIL) (((-409 (-566)) $) NIL (|has| (-699) (-1038 (-409 (-566)))))) (-1563 (($ (-1264 (-699))) NIL) (($ (-1264 (-699)) (-1264 $)) NIL)) (-2347 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-699) (-351)))) (-2933 (($ $ $) NIL (|has| (-699) (-308)))) (-3578 (((-689 (-699)) $) NIL) (((-689 (-699)) $ (-1264 $)) NIL)) (-4089 (((-689 (-699)) (-689 $)) NIL) (((-2 (|:| -3361 (-689 (-699))) (|:| |vec| (-1264 (-699)))) (-689 $) (-1264 $)) NIL) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| (-699) (-639 (-566)))) (((-689 (-566)) (-689 $)) NIL (|has| (-699) (-639 (-566))))) (-2873 (((-3 $ "failed") (-409 (-1171 (-699)))) NIL (|has| (-699) (-365))) (($ (-1171 (-699))) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-1646 (((-699) $) 29)) (-4391 (((-3 (-409 (-566)) "failed") $) NIL (|has| (-699) (-547)))) (-3407 (((-112) $) NIL (|has| (-699) (-547)))) (-1786 (((-409 (-566)) $) NIL (|has| (-699) (-547)))) (-2755 (((-921)) NIL)) (-2715 (($) NIL (|has| (-699) (-370)))) (-2945 (($ $ $) NIL (|has| (-699) (-308)))) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL (|has| (-699) (-308)))) (-3359 (($) NIL (|has| (-699) (-351)))) (-2466 (((-112) $) NIL (|has| (-699) (-351)))) (-1574 (($ $) NIL (|has| (-699) (-351))) (($ $ (-771)) NIL (|has| (-699) (-351)))) (-1615 (((-112) $) NIL (-2768 (-12 (|has| (-699) (-308)) (|has| (-699) (-909))) (|has| (-699) (-365))))) (-3540 (((-2 (|:| |r| (-699)) (|:| |phi| (-699))) $) NIL (-12 (|has| (-699) (-1059)) (|has| (-699) (-1199))))) (-2281 (($) NIL (|has| (-699) (-1199)))) (-2926 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (|has| (-699) (-886 (-381)))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (|has| (-699) (-886 (-566))))) (-2679 (((-833 (-921)) $) NIL (|has| (-699) (-351))) (((-921) $) NIL (|has| (-699) (-351)))) (-2389 (((-112) $) NIL)) (-1575 (($ $ (-566)) NIL (-12 (|has| (-699) (-1002)) (|has| (-699) (-1199))))) (-2064 (((-699) $) NIL)) (-2621 (((-3 $ "failed") $) NIL (|has| (-699) (-351)))) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| (-699) (-308)))) (-3468 (((-1171 (-699)) $) NIL (|has| (-699) (-365)))) (-1478 (($ $ $) NIL)) (-2599 (($ $ $) NIL)) (-2319 (($ (-1 (-699) (-699)) $) NIL)) (-1866 (((-921) $) NIL (|has| (-699) (-370)))) (-3619 (($ $) NIL (|has| (-699) (-1199)))) (-2860 (((-1171 (-699)) $) NIL)) (-2128 (($ (-644 $)) NIL (|has| (-699) (-308))) (($ $ $) NIL (|has| (-699) (-308)))) (-3380 (((-1157) $) NIL)) (-2748 (($ $) NIL (|has| (-699) (-365)))) (-3289 (($) NIL (|has| (-699) (-351)) CONST)) (-2835 (($ (-921)) NIL (|has| (-699) (-370)))) (-1511 (($) NIL)) (-1657 (((-699) $) 31)) (-4072 (((-1119) $) NIL)) (-3302 (($) NIL)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| (-699) (-308)))) (-2164 (($ (-644 $)) NIL (|has| (-699) (-308))) (($ $ $) NIL (|has| (-699) (-308)))) (-2442 (((-644 (-2 (|:| -1624 (-566)) (|:| -2201 (-566))))) NIL (|has| (-699) (-351)))) (-2010 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| (-699) (-308)) (|has| (-699) (-909))))) (-1893 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| (-699) (-308)) (|has| (-699) (-909))))) (-1624 (((-420 $) $) NIL (-2768 (-12 (|has| (-699) (-308)) (|has| (-699) (-909))) (|has| (-699) (-365))))) (-3005 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-699) (-308))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL (|has| (-699) (-308)))) (-2978 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-699)) NIL (|has| (-699) (-558)))) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| (-699) (-308)))) (-3521 (($ $) NIL (|has| (-699) (-1199)))) (-2023 (($ $ (-1175) (-699)) NIL (|has| (-699) (-516 (-1175) (-699)))) (($ $ (-644 (-1175)) (-644 (-699))) NIL (|has| (-699) (-516 (-1175) (-699)))) (($ $ (-644 (-295 (-699)))) NIL (|has| (-699) (-310 (-699)))) (($ $ (-295 (-699))) NIL (|has| (-699) (-310 (-699)))) (($ $ (-699) (-699)) NIL (|has| (-699) (-310 (-699)))) (($ $ (-644 (-699)) (-644 (-699))) NIL (|has| (-699) (-310 (-699))))) (-4357 (((-771) $) NIL (|has| (-699) (-308)))) (-1309 (($ $ (-699)) NIL (|has| (-699) (-287 (-699) (-699))))) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL (|has| (-699) (-308)))) (-4068 (((-699)) NIL) (((-699) (-1264 $)) NIL)) (-3169 (((-3 (-771) "failed") $ $) NIL (|has| (-699) (-351))) (((-771) $) NIL (|has| (-699) (-351)))) (-3629 (($ $ (-1 (-699) (-699))) NIL) (($ $ (-1 (-699) (-699)) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-699) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-699) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-699) (-900 (-1175)))) (($ $ (-1175)) NIL (|has| (-699) (-900 (-1175)))) (($ $ (-771)) NIL (|has| (-699) (-233))) (($ $) NIL (|has| (-699) (-233)))) (-3225 (((-689 (-699)) (-1264 $) (-1 (-699) (-699))) NIL (|has| (-699) (-365)))) (-1705 (((-1171 (-699))) NIL)) (-3996 (($ $) NIL (|has| (-699) (-1199)))) (-3670 (($ $) NIL (|has| (-699) (-1199)))) (-4122 (($) NIL (|has| (-699) (-351)))) (-3976 (($ $) NIL (|has| (-699) (-1199)))) (-3643 (($ $) NIL (|has| (-699) (-1199)))) (-3952 (($ $) NIL (|has| (-699) (-1199)))) (-3618 (($ $) NIL (|has| (-699) (-1199)))) (-3350 (((-689 (-699)) (-1264 $)) NIL) (((-1264 (-699)) $) NIL) (((-689 (-699)) (-1264 $) (-1264 $)) NIL) (((-1264 (-699)) $ (-1264 $)) NIL)) (-2376 (((-538) $) NIL (|has| (-699) (-614 (-538)))) (((-169 (-225)) $) NIL (|has| (-699) (-1022))) (((-169 (-381)) $) NIL (|has| (-699) (-1022))) (((-892 (-381)) $) NIL (|has| (-699) (-614 (-892 (-381))))) (((-892 (-566)) $) NIL (|has| (-699) (-614 (-892 (-566))))) (($ (-1171 (-699))) NIL) (((-1171 (-699)) $) NIL) (($ (-1264 (-699))) NIL) (((-1264 (-699)) $) NIL)) (-3357 (($ $) NIL)) (-3391 (((-3 (-1264 $) "failed") (-689 $)) NIL (-2768 (-12 (|has| (-699) (-308)) (|has| $ (-145)) (|has| (-699) (-909))) (|has| (-699) (-351))))) (-3608 (($ (-699) (-699)) 12)) (-3152 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-566)) NIL) (($ (-699)) NIL) (($ (-169 (-381))) 13) (($ (-169 (-566))) 19) (($ (-169 (-699))) 28) (($ (-169 (-701))) 25) (((-169 (-381)) $) 33) (($ (-409 (-566))) NIL (-2768 (|has| (-699) (-1038 (-409 (-566)))) (|has| (-699) (-365))))) (-2633 (($ $) NIL (|has| (-699) (-351))) (((-3 $ "failed") $) NIL (-2768 (-12 (|has| (-699) (-308)) (|has| $ (-145)) (|has| (-699) (-909))) (|has| (-699) (-145))))) (-2318 (((-1171 (-699)) $) NIL)) (-2593 (((-771)) NIL T CONST)) (-3044 (((-112) $ $) NIL)) (-2875 (((-1264 $)) NIL)) (-4032 (($ $) NIL (|has| (-699) (-1199)))) (-3892 (($ $) NIL (|has| (-699) (-1199)))) (-3014 (((-112) $ $) NIL)) (-4008 (($ $) NIL (|has| (-699) (-1199)))) (-3684 (($ $) NIL (|has| (-699) (-1199)))) (-4057 (($ $) NIL (|has| (-699) (-1199)))) (-3917 (($ $) NIL (|has| (-699) (-1199)))) (-1684 (((-699) $) NIL (|has| (-699) (-1199)))) (-3964 (($ $) NIL (|has| (-699) (-1199)))) (-3929 (($ $) NIL (|has| (-699) (-1199)))) (-4044 (($ $) NIL (|has| (-699) (-1199)))) (-3904 (($ $) NIL (|has| (-699) (-1199)))) (-4020 (($ $) NIL (|has| (-699) (-1199)))) (-3879 (($ $) NIL (|has| (-699) (-1199)))) (-1358 (($ $) NIL (|has| (-699) (-1059)))) (-4356 (($) NIL T CONST)) (-4366 (($) NIL T CONST)) (-3497 (($ $ (-1 (-699) (-699))) NIL) (($ $ (-1 (-699) (-699)) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-699) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-699) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-699) (-900 (-1175)))) (($ $ (-1175)) NIL (|has| (-699) (-900 (-1175)))) (($ $ (-771)) NIL (|has| (-699) (-233))) (($ $) NIL (|has| (-699) (-233)))) (-2968 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2935 (((-112) $ $) NIL)) (-3025 (($ $ $) NIL (|has| (-699) (-365)))) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ $) NIL (|has| (-699) (-1199))) (($ $ (-409 (-566))) NIL (-12 (|has| (-699) (-1002)) (|has| (-699) (-1199)))) (($ $ (-566)) NIL (|has| (-699) (-365)))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ (-699) $) NIL) (($ $ (-699)) NIL) (($ (-409 (-566)) $) NIL (|has| (-699) (-365))) (($ $ (-409 (-566))) NIL (|has| (-699) (-365))))) +(((-694) (-13 (-389) (-166 (-699)) (-10 -8 (-15 -3152 ($ (-169 (-381)))) (-15 -3152 ($ (-169 (-566)))) (-15 -3152 ($ (-169 (-699)))) (-15 -3152 ($ (-169 (-701)))) (-15 -3152 ((-169 (-381)) $))))) (T -694)) +((-3152 (*1 *1 *2) (-12 (-5 *2 (-169 (-381))) (-5 *1 (-694)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-169 (-566))) (-5 *1 (-694)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-169 (-699))) (-5 *1 (-694)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-169 (-701))) (-5 *1 (-694)))) (-3152 (*1 *2 *1) (-12 (-5 *2 (-169 (-381))) (-5 *1 (-694))))) +(-13 (-389) (-166 (-699)) (-10 -8 (-15 -3152 ($ (-169 (-381)))) (-15 -3152 ($ (-169 (-566)))) (-15 -3152 ($ (-169 (-699)))) (-15 -3152 ($ (-169 (-701)))) (-15 -3152 ((-169 (-381)) $)))) +((-2988 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-1504 (((-112) $ (-771)) 8)) (-2995 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4414)))) (-3678 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4414)))) (-2463 (($) 7 T CONST)) (-3322 (($ $) 63)) (-3942 (($ $) 59 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-3512 (($ |#1| $) 48 (|has| $ (-6 -4414))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4414)))) (-2622 (($ |#1| $) 58 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4414)))) (-2873 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4414)))) (-1683 (((-644 |#1|) $) 31 (|has| $ (-6 -4414)))) (-3456 (((-112) $ (-771)) 9)) (-3491 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-3885 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#1| |#1|) $) 36)) (-3267 (((-112) $ (-771)) 10)) (-3380 (((-1157) $) 22 (|has| |#1| (-1099)))) (-3278 ((|#1| $) 40)) (-3888 (($ |#1| $) 41) (($ |#1| $ (-771)) 64)) (-4072 (((-1119) $) 21 (|has| |#1| (-1099)))) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1973 ((|#1| $) 42)) (-2823 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) 14)) (-2872 (((-112) $) 11)) (-3493 (($) 12)) (-1352 (((-644 (-2 (|:| -2636 |#1|) (|:| -4083 (-771)))) $) 62)) (-1792 (($) 50) (($ (-644 |#1|)) 49)) (-4083 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-1480 (($ $) 13)) (-2376 (((-538) $) 60 (|has| |#1| (-614 (-538))))) (-1340 (($ (-644 |#1|)) 51)) (-3152 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-3044 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-2948 (($ (-644 |#1|)) 43)) (-2210 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3000 (((-771) $) 6 (|has| $ (-6 -4414))))) (((-695 |#1|) (-140) (-1099)) (T -695)) -((-3406 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-771)) (-4 *1 (-695 *2)) (-4 *2 (-1099)))) (-3657 (*1 *1 *1) (-12 (-4 *1 (-695 *2)) (-4 *2 (-1099)))) (-3014 (*1 *2 *1) (-12 (-4 *1 (-695 *3)) (-4 *3 (-1099)) (-5 *2 (-644 (-2 (|:| -3867 *3) (|:| -4045 (-771)))))))) -(-13 (-235 |t#1|) (-10 -8 (-15 -3406 ($ |t#1| $ (-771))) (-15 -3657 ($ $)) (-15 -3014 ((-644 (-2 (|:| -3867 |t#1|) (|:| -4045 (-771)))) $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2809 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-151 |#1|) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-235 |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1099) |has| |#1| (-1099)) ((-1214) . T)) -((-3179 (((-644 |#1|) (-644 (-2 (|:| -3719 |#1|) (|:| -3636 (-566)))) (-566)) 66)) (-2482 ((|#1| |#1| (-566)) 62)) (-2214 ((|#1| |#1| |#1| (-566)) 46)) (-3719 (((-644 |#1|) |#1| (-566)) 49)) (-3988 ((|#1| |#1| (-566) |#1| (-566)) 40)) (-4024 (((-644 (-2 (|:| -3719 |#1|) (|:| -3636 (-566)))) |#1| (-566)) 61))) -(((-696 |#1|) (-10 -7 (-15 -2214 (|#1| |#1| |#1| (-566))) (-15 -2482 (|#1| |#1| (-566))) (-15 -3719 ((-644 |#1|) |#1| (-566))) (-15 -4024 ((-644 (-2 (|:| -3719 |#1|) (|:| -3636 (-566)))) |#1| (-566))) (-15 -3179 ((-644 |#1|) (-644 (-2 (|:| -3719 |#1|) (|:| -3636 (-566)))) (-566))) (-15 -3988 (|#1| |#1| (-566) |#1| (-566)))) (-1240 (-566))) (T -696)) -((-3988 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-696 *2)) (-4 *2 (-1240 *3)))) (-3179 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-2 (|:| -3719 *5) (|:| -3636 (-566))))) (-5 *4 (-566)) (-4 *5 (-1240 *4)) (-5 *2 (-644 *5)) (-5 *1 (-696 *5)))) (-4024 (*1 *2 *3 *4) (-12 (-5 *4 (-566)) (-5 *2 (-644 (-2 (|:| -3719 *3) (|:| -3636 *4)))) (-5 *1 (-696 *3)) (-4 *3 (-1240 *4)))) (-3719 (*1 *2 *3 *4) (-12 (-5 *4 (-566)) (-5 *2 (-644 *3)) (-5 *1 (-696 *3)) (-4 *3 (-1240 *4)))) (-2482 (*1 *2 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-696 *2)) (-4 *2 (-1240 *3)))) (-2214 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-696 *2)) (-4 *2 (-1240 *3))))) -(-10 -7 (-15 -2214 (|#1| |#1| |#1| (-566))) (-15 -2482 (|#1| |#1| (-566))) (-15 -3719 ((-644 |#1|) |#1| (-566))) (-15 -4024 ((-644 (-2 (|:| -3719 |#1|) (|:| -3636 (-566)))) |#1| (-566))) (-15 -3179 ((-644 |#1|) (-644 (-2 (|:| -3719 |#1|) (|:| -3636 (-566)))) (-566))) (-15 -3988 (|#1| |#1| (-566) |#1| (-566)))) -((-3945 (((-1 (-943 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))) 17)) (-2805 (((-1132 (-225)) (-1132 (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-225)) (-1093 (-225)) (-644 (-264))) 56) (((-1132 (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-225)) (-1093 (-225)) (-644 (-264))) 58) (((-1132 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1093 (-225)) (-1093 (-225)) (-644 (-264))) 60)) (-1594 (((-1132 (-225)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-644 (-264))) NIL)) (-3781 (((-1132 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1093 (-225)) (-1093 (-225)) (-644 (-264))) 61))) -(((-697) (-10 -7 (-15 -2805 ((-1132 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1093 (-225)) (-1093 (-225)) (-644 (-264)))) (-15 -2805 ((-1132 (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-225)) (-1093 (-225)) (-644 (-264)))) (-15 -2805 ((-1132 (-225)) (-1132 (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-225)) (-1093 (-225)) (-644 (-264)))) (-15 -3781 ((-1132 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1093 (-225)) (-1093 (-225)) (-644 (-264)))) (-15 -1594 ((-1132 (-225)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-644 (-264)))) (-15 -3945 ((-1 (-943 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))) (T -697)) -((-3945 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1 (-225) (-225) (-225) (-225))) (-5 *2 (-1 (-943 (-225)) (-225) (-225))) (-5 *1 (-697)))) (-1594 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-317 (-566))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1093 (-225))) (-5 *6 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-697)))) (-3781 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) (-5 *5 (-1093 (-225))) (-5 *6 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-697)))) (-2805 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1132 (-225))) (-5 *3 (-1 (-943 (-225)) (-225) (-225))) (-5 *4 (-1093 (-225))) (-5 *5 (-644 (-264))) (-5 *1 (-697)))) (-2805 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-943 (-225)) (-225) (-225))) (-5 *4 (-1093 (-225))) (-5 *5 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-697)))) (-2805 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) (-5 *5 (-1093 (-225))) (-5 *6 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-697))))) -(-10 -7 (-15 -2805 ((-1132 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1093 (-225)) (-1093 (-225)) (-644 (-264)))) (-15 -2805 ((-1132 (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-225)) (-1093 (-225)) (-644 (-264)))) (-15 -2805 ((-1132 (-225)) (-1132 (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-225)) (-1093 (-225)) (-644 (-264)))) (-15 -3781 ((-1132 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1093 (-225)) (-1093 (-225)) (-644 (-264)))) (-15 -1594 ((-1132 (-225)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-644 (-264)))) (-15 -3945 ((-1 (-943 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))))) -((-3719 (((-420 (-1171 |#4|)) (-1171 |#4|)) 86) (((-420 |#4|) |#4|) 270))) -(((-698 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3719 ((-420 |#4|) |#4|)) (-15 -3719 ((-420 (-1171 |#4|)) (-1171 |#4|)))) (-850) (-793) (-351) (-949 |#3| |#2| |#1|)) (T -698)) -((-3719 (*1 *2 *3) (-12 (-4 *4 (-850)) (-4 *5 (-793)) (-4 *6 (-351)) (-4 *7 (-949 *6 *5 *4)) (-5 *2 (-420 (-1171 *7))) (-5 *1 (-698 *4 *5 *6 *7)) (-5 *3 (-1171 *7)))) (-3719 (*1 *2 *3) (-12 (-4 *4 (-850)) (-4 *5 (-793)) (-4 *6 (-351)) (-5 *2 (-420 *3)) (-5 *1 (-698 *4 *5 *6 *3)) (-4 *3 (-949 *6 *5 *4))))) -(-10 -7 (-15 -3719 ((-420 |#4|) |#4|)) (-15 -3719 ((-420 (-1171 |#4|)) (-1171 |#4|)))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) 100)) (-1515 (((-566) $) 34)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-3991 (($ $) NIL)) (-2388 (((-112) $) NIL)) (-2587 (($ $) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-1550 (($ $) NIL)) (-3184 (((-420 $) $) NIL)) (-3731 (($ $) NIL)) (-2837 (((-112) $ $) NIL)) (-4364 (((-566) $) NIL)) (-3012 (($) NIL T CONST)) (-2514 (($ $) NIL)) (-4307 (((-3 (-566) "failed") $) 89) (((-3 (-409 (-566)) "failed") $) 28) (((-3 (-381) "failed") $) 86)) (-4205 (((-566) $) 91) (((-409 (-566)) $) 83) (((-381) $) 84)) (-2946 (($ $ $) 112)) (-1878 (((-3 $ "failed") $) 103)) (-2957 (($ $ $) 111)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL)) (-3268 (((-112) $) NIL)) (-1951 (((-921)) 93) (((-921) (-921)) 92)) (-1897 (((-112) $) NIL)) (-2062 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL)) (-3254 (((-566) $) NIL)) (-3934 (((-112) $) NIL)) (-2140 (($ $ (-566)) NIL)) (-1577 (($ $) NIL)) (-2117 (((-112) $) NIL)) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1541 (((-566) (-566)) 97) (((-566)) 98)) (-2097 (($ $ $) NIL) (($) NIL (-12 (-2418 (|has| $ (-6 -4397))) (-2418 (|has| $ (-6 -4405)))))) (-2113 (((-566) (-566)) 95) (((-566)) 96)) (-3962 (($ $ $) NIL) (($) NIL (-12 (-2418 (|has| $ (-6 -4397))) (-2418 (|has| $ (-6 -4405)))))) (-1729 (((-566) $) 17)) (-2167 (($ $ $) NIL) (($ (-644 $)) NIL)) (-4117 (((-1157) $) NIL)) (-1713 (($ $) 107)) (-3267 (((-921) (-566)) NIL (|has| $ (-6 -4405)))) (-4035 (((-1119) $) NIL)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2214 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2938 (($ $) NIL)) (-3470 (($ $) NIL)) (-2985 (($ (-566) (-566)) NIL) (($ (-566) (-566) (-921)) NIL)) (-3719 (((-420 $) $) NIL)) (-3148 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2994 (((-3 $ "failed") $ $) 108)) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2852 (((-566) $) 24)) (-3039 (((-771) $) NIL)) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) 110)) (-4163 (((-921)) NIL) (((-921) (-921)) NIL (|has| $ (-6 -4405)))) (-1927 (((-921) (-566)) NIL (|has| $ (-6 -4405)))) (-1348 (((-381) $) NIL) (((-225) $) NIL) (((-892 (-381)) $) NIL)) (-3783 (((-862) $) 68) (($ (-566)) 79) (($ $) NIL) (($ (-409 (-566))) 82) (($ (-566)) 79) (($ (-409 (-566))) 82) (($ (-381)) 76) (((-381) $) 66) (($ (-701)) 71)) (-2107 (((-771)) 122 T CONST)) (-3861 (($ (-566) (-566) (-921)) 59)) (-2948 (($ $) NIL)) (-4099 (((-921)) NIL) (((-921) (-921)) NIL (|has| $ (-6 -4405)))) (-3117 (((-112) $ $) NIL)) (-2719 (((-921)) 46) (((-921) (-921)) 94)) (-2695 (((-112) $ $) NIL)) (-2086 (($ $) NIL)) (-2479 (($) 37 T CONST)) (-4334 (($) 18 T CONST)) (-3009 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2947 (((-112) $ $) 99)) (-2995 (((-112) $ $) NIL)) (-2969 (((-112) $ $) 121)) (-3065 (($ $ $) 81)) (-3053 (($ $) 118) (($ $ $) 119)) (-3041 (($ $ $) 117)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL) (($ $ (-409 (-566))) 106)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 113) (($ $ $) 104) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL))) -(((-699) (-13 (-406) (-389) (-365) (-1038 (-381)) (-1038 (-409 (-566))) (-147) (-10 -8 (-15 -1951 ((-921) (-921))) (-15 -1951 ((-921))) (-15 -2719 ((-921) (-921))) (-15 -2113 ((-566) (-566))) (-15 -2113 ((-566))) (-15 -1541 ((-566) (-566))) (-15 -1541 ((-566))) (-15 -3783 ((-381) $)) (-15 -3783 ($ (-701))) (-15 -1729 ((-566) $)) (-15 -2852 ((-566) $)) (-15 -3861 ($ (-566) (-566) (-921)))))) (T -699)) -((-2852 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-699)))) (-1729 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-699)))) (-1951 (*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-699)))) (-1951 (*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-699)))) (-2719 (*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-699)))) (-2113 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-699)))) (-2113 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-699)))) (-1541 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-699)))) (-1541 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-699)))) (-3783 (*1 *2 *1) (-12 (-5 *2 (-381)) (-5 *1 (-699)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-699)))) (-3861 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-566)) (-5 *3 (-921)) (-5 *1 (-699))))) -(-13 (-406) (-389) (-365) (-1038 (-381)) (-1038 (-409 (-566))) (-147) (-10 -8 (-15 -1951 ((-921) (-921))) (-15 -1951 ((-921))) (-15 -2719 ((-921) (-921))) (-15 -2113 ((-566) (-566))) (-15 -2113 ((-566))) (-15 -1541 ((-566) (-566))) (-15 -1541 ((-566))) (-15 -3783 ((-381) $)) (-15 -3783 ($ (-701))) (-15 -1729 ((-566) $)) (-15 -2852 ((-566) $)) (-15 -3861 ($ (-566) (-566) (-921))))) -((-2949 (((-689 |#1|) (-689 |#1|) |#1| |#1|) 88)) (-4137 (((-689 |#1|) (-689 |#1|) |#1|) 67)) (-3736 (((-689 |#1|) (-689 |#1|) |#1|) 89)) (-4257 (((-689 |#1|) (-689 |#1|)) 68)) (-1582 (((-2 (|:| -2275 |#1|) (|:| -2513 |#1|)) |#1| |#1|) 87))) -(((-700 |#1|) (-10 -7 (-15 -4257 ((-689 |#1|) (-689 |#1|))) (-15 -4137 ((-689 |#1|) (-689 |#1|) |#1|)) (-15 -3736 ((-689 |#1|) (-689 |#1|) |#1|)) (-15 -2949 ((-689 |#1|) (-689 |#1|) |#1| |#1|)) (-15 -1582 ((-2 (|:| -2275 |#1|) (|:| -2513 |#1|)) |#1| |#1|))) (-308)) (T -700)) -((-1582 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2275 *3) (|:| -2513 *3))) (-5 *1 (-700 *3)) (-4 *3 (-308)))) (-2949 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-689 *3)) (-4 *3 (-308)) (-5 *1 (-700 *3)))) (-3736 (*1 *2 *2 *3) (-12 (-5 *2 (-689 *3)) (-4 *3 (-308)) (-5 *1 (-700 *3)))) (-4137 (*1 *2 *2 *3) (-12 (-5 *2 (-689 *3)) (-4 *3 (-308)) (-5 *1 (-700 *3)))) (-4257 (*1 *2 *2) (-12 (-5 *2 (-689 *3)) (-4 *3 (-308)) (-5 *1 (-700 *3))))) -(-10 -7 (-15 -4257 ((-689 |#1|) (-689 |#1|))) (-15 -4137 ((-689 |#1|) (-689 |#1|) |#1|)) (-15 -3736 ((-689 |#1|) (-689 |#1|) |#1|)) (-15 -2949 ((-689 |#1|) (-689 |#1|) |#1| |#1|)) (-15 -1582 ((-2 (|:| -2275 |#1|) (|:| -2513 |#1|)) |#1| |#1|))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-3991 (($ $) NIL)) (-2388 (((-112) $) NIL)) (-1573 (($ $ $) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-3904 (($ $ $ $) NIL)) (-1550 (($ $) NIL)) (-3184 (((-420 $) $) NIL)) (-2837 (((-112) $ $) NIL)) (-4364 (((-566) $) NIL)) (-3136 (($ $ $) NIL)) (-3012 (($) NIL T CONST)) (-4307 (((-3 (-566) "failed") $) 31)) (-4205 (((-566) $) 29)) (-2946 (($ $ $) NIL)) (-3577 (((-689 (-566)) (-689 $)) NIL) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-1521 (((-3 (-409 (-566)) "failed") $) NIL)) (-1942 (((-112) $) NIL)) (-4204 (((-409 (-566)) $) NIL)) (-1552 (($ $) NIL) (($) NIL)) (-2957 (($ $ $) NIL)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL)) (-3268 (((-112) $) NIL)) (-3994 (($ $ $ $) NIL)) (-3680 (($ $ $) NIL)) (-1897 (((-112) $) NIL)) (-2529 (($ $ $) NIL)) (-2062 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL)) (-3934 (((-112) $) NIL)) (-2824 (((-112) $) NIL)) (-4363 (((-3 $ "failed") $) NIL)) (-2117 (((-112) $) NIL)) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3324 (($ $ $ $) NIL)) (-2097 (($ $ $) NIL)) (-3596 (((-921) (-921)) 10) (((-921)) 9)) (-3962 (($ $ $) NIL)) (-3674 (($ $) NIL)) (-4149 (($ $) NIL)) (-2167 (($ (-644 $)) NIL) (($ $ $) NIL)) (-4117 (((-1157) $) NIL)) (-2548 (($ $ $) NIL)) (-1761 (($) NIL T CONST)) (-3892 (($ $) NIL)) (-4035 (((-1119) $) NIL)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2214 (($ (-644 $)) NIL) (($ $ $) NIL)) (-3727 (($ $) NIL)) (-3719 (((-420 $) $) NIL)) (-3148 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2994 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1946 (((-112) $) NIL)) (-3039 (((-771) $) NIL)) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL)) (-3561 (($ $) NIL) (($ $ (-771)) NIL)) (-3238 (($ $) NIL)) (-3940 (($ $) NIL)) (-1348 (((-225) $) NIL) (((-381) $) NIL) (((-892 (-566)) $) NIL) (((-538) $) NIL) (((-566) $) NIL)) (-3783 (((-862) $) NIL) (($ (-566)) 28) (($ $) NIL) (($ (-566)) 28) (((-317 $) (-317 (-566))) 18)) (-2107 (((-771)) NIL T CONST)) (-3162 (((-112) $ $) NIL)) (-3228 (($ $ $) NIL)) (-3117 (((-112) $ $) NIL)) (-2719 (($) NIL)) (-2695 (((-112) $ $) NIL)) (-3313 (($ $ $ $) NIL)) (-2086 (($ $) NIL)) (-2479 (($) NIL T CONST)) (-4334 (($) NIL T CONST)) (-2875 (($ $) NIL) (($ $ (-771)) NIL)) (-3009 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL)) (-2995 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL))) -(((-701) (-13 (-389) (-547) (-10 -8 (-15 -3596 ((-921) (-921))) (-15 -3596 ((-921))) (-15 -3783 ((-317 $) (-317 (-566))))))) (T -701)) -((-3596 (*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-701)))) (-3596 (*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-701)))) (-3783 (*1 *2 *3) (-12 (-5 *3 (-317 (-566))) (-5 *2 (-317 (-701))) (-5 *1 (-701))))) -(-13 (-389) (-547) (-10 -8 (-15 -3596 ((-921) (-921))) (-15 -3596 ((-921))) (-15 -3783 ((-317 $) (-317 (-566)))))) -((-1517 (((-1 |#4| |#2| |#3|) |#1| (-1175) (-1175)) 19)) (-1337 (((-1 |#4| |#2| |#3|) (-1175)) 12))) -(((-702 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1337 ((-1 |#4| |#2| |#3|) (-1175))) (-15 -1517 ((-1 |#4| |#2| |#3|) |#1| (-1175) (-1175)))) (-614 (-538)) (-1214) (-1214) (-1214)) (T -702)) -((-1517 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1175)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-702 *3 *5 *6 *7)) (-4 *3 (-614 (-538))) (-4 *5 (-1214)) (-4 *6 (-1214)) (-4 *7 (-1214)))) (-1337 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-702 *4 *5 *6 *7)) (-4 *4 (-614 (-538))) (-4 *5 (-1214)) (-4 *6 (-1214)) (-4 *7 (-1214))))) -(-10 -7 (-15 -1337 ((-1 |#4| |#2| |#3|) (-1175))) (-15 -1517 ((-1 |#4| |#2| |#3|) |#1| (-1175) (-1175)))) -((-2354 (((-1 (-225) (-225) (-225)) |#1| (-1175) (-1175)) 36) (((-1 (-225) (-225)) |#1| (-1175)) 41))) -(((-703 |#1|) (-10 -7 (-15 -2354 ((-1 (-225) (-225)) |#1| (-1175))) (-15 -2354 ((-1 (-225) (-225) (-225)) |#1| (-1175) (-1175)))) (-614 (-538))) (T -703)) -((-2354 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1175)) (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-703 *3)) (-4 *3 (-614 (-538))))) (-2354 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-5 *2 (-1 (-225) (-225))) (-5 *1 (-703 *3)) (-4 *3 (-614 (-538)))))) -(-10 -7 (-15 -2354 ((-1 (-225) (-225)) |#1| (-1175))) (-15 -2354 ((-1 (-225) (-225) (-225)) |#1| (-1175) (-1175)))) -((-3289 (((-1175) |#1| (-1175) (-644 (-1175))) 10) (((-1175) |#1| (-1175) (-1175) (-1175)) 13) (((-1175) |#1| (-1175) (-1175)) 12) (((-1175) |#1| (-1175)) 11))) -(((-704 |#1|) (-10 -7 (-15 -3289 ((-1175) |#1| (-1175))) (-15 -3289 ((-1175) |#1| (-1175) (-1175))) (-15 -3289 ((-1175) |#1| (-1175) (-1175) (-1175))) (-15 -3289 ((-1175) |#1| (-1175) (-644 (-1175))))) (-614 (-538))) (T -704)) -((-3289 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-644 (-1175))) (-5 *2 (-1175)) (-5 *1 (-704 *3)) (-4 *3 (-614 (-538))))) (-3289 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-704 *3)) (-4 *3 (-614 (-538))))) (-3289 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-704 *3)) (-4 *3 (-614 (-538))))) (-3289 (*1 *2 *3 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-704 *3)) (-4 *3 (-614 (-538)))))) -(-10 -7 (-15 -3289 ((-1175) |#1| (-1175))) (-15 -3289 ((-1175) |#1| (-1175) (-1175))) (-15 -3289 ((-1175) |#1| (-1175) (-1175) (-1175))) (-15 -3289 ((-1175) |#1| (-1175) (-644 (-1175))))) -((-2757 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) -(((-705 |#1| |#2|) (-10 -7 (-15 -2757 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1214) (-1214)) (T -705)) -((-2757 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-705 *3 *4)) (-4 *3 (-1214)) (-4 *4 (-1214))))) -(-10 -7 (-15 -2757 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) -((-3515 (((-1 |#3| |#2|) (-1175)) 11)) (-1517 (((-1 |#3| |#2|) |#1| (-1175)) 21))) -(((-706 |#1| |#2| |#3|) (-10 -7 (-15 -3515 ((-1 |#3| |#2|) (-1175))) (-15 -1517 ((-1 |#3| |#2|) |#1| (-1175)))) (-614 (-538)) (-1214) (-1214)) (T -706)) -((-1517 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-5 *2 (-1 *6 *5)) (-5 *1 (-706 *3 *5 *6)) (-4 *3 (-614 (-538))) (-4 *5 (-1214)) (-4 *6 (-1214)))) (-3515 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1 *6 *5)) (-5 *1 (-706 *4 *5 *6)) (-4 *4 (-614 (-538))) (-4 *5 (-1214)) (-4 *6 (-1214))))) -(-10 -7 (-15 -3515 ((-1 |#3| |#2|) (-1175))) (-15 -1517 ((-1 |#3| |#2|) |#1| (-1175)))) -((-3509 (((-3 (-644 (-1171 |#4|)) "failed") (-1171 |#4|) (-644 |#2|) (-644 (-1171 |#4|)) (-644 |#3|) (-644 |#4|) (-644 (-644 (-2 (|:| -4079 (-771)) (|:| |pcoef| |#4|)))) (-644 (-771)) (-1264 (-644 (-1171 |#3|))) |#3|) 95)) (-1775 (((-3 (-644 (-1171 |#4|)) "failed") (-1171 |#4|) (-644 |#2|) (-644 (-1171 |#3|)) (-644 |#3|) (-644 |#4|) (-644 (-771)) |#3|) 113)) (-4375 (((-3 (-644 (-1171 |#4|)) "failed") (-1171 |#4|) (-644 |#2|) (-644 |#3|) (-644 (-771)) (-644 (-1171 |#4|)) (-1264 (-644 (-1171 |#3|))) |#3|) 47))) -(((-707 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4375 ((-3 (-644 (-1171 |#4|)) "failed") (-1171 |#4|) (-644 |#2|) (-644 |#3|) (-644 (-771)) (-644 (-1171 |#4|)) (-1264 (-644 (-1171 |#3|))) |#3|)) (-15 -1775 ((-3 (-644 (-1171 |#4|)) "failed") (-1171 |#4|) (-644 |#2|) (-644 (-1171 |#3|)) (-644 |#3|) (-644 |#4|) (-644 (-771)) |#3|)) (-15 -3509 ((-3 (-644 (-1171 |#4|)) "failed") (-1171 |#4|) (-644 |#2|) (-644 (-1171 |#4|)) (-644 |#3|) (-644 |#4|) (-644 (-644 (-2 (|:| -4079 (-771)) (|:| |pcoef| |#4|)))) (-644 (-771)) (-1264 (-644 (-1171 |#3|))) |#3|))) (-793) (-850) (-308) (-949 |#3| |#1| |#2|)) (T -707)) -((-3509 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-644 (-1171 *13))) (-5 *3 (-1171 *13)) (-5 *4 (-644 *12)) (-5 *5 (-644 *10)) (-5 *6 (-644 *13)) (-5 *7 (-644 (-644 (-2 (|:| -4079 (-771)) (|:| |pcoef| *13))))) (-5 *8 (-644 (-771))) (-5 *9 (-1264 (-644 (-1171 *10)))) (-4 *12 (-850)) (-4 *10 (-308)) (-4 *13 (-949 *10 *11 *12)) (-4 *11 (-793)) (-5 *1 (-707 *11 *12 *10 *13)))) (-1775 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-644 *11)) (-5 *5 (-644 (-1171 *9))) (-5 *6 (-644 *9)) (-5 *7 (-644 *12)) (-5 *8 (-644 (-771))) (-4 *11 (-850)) (-4 *9 (-308)) (-4 *12 (-949 *9 *10 *11)) (-4 *10 (-793)) (-5 *2 (-644 (-1171 *12))) (-5 *1 (-707 *10 *11 *9 *12)) (-5 *3 (-1171 *12)))) (-4375 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-644 (-1171 *11))) (-5 *3 (-1171 *11)) (-5 *4 (-644 *10)) (-5 *5 (-644 *8)) (-5 *6 (-644 (-771))) (-5 *7 (-1264 (-644 (-1171 *8)))) (-4 *10 (-850)) (-4 *8 (-308)) (-4 *11 (-949 *8 *9 *10)) (-4 *9 (-793)) (-5 *1 (-707 *9 *10 *8 *11))))) -(-10 -7 (-15 -4375 ((-3 (-644 (-1171 |#4|)) "failed") (-1171 |#4|) (-644 |#2|) (-644 |#3|) (-644 (-771)) (-644 (-1171 |#4|)) (-1264 (-644 (-1171 |#3|))) |#3|)) (-15 -1775 ((-3 (-644 (-1171 |#4|)) "failed") (-1171 |#4|) (-644 |#2|) (-644 (-1171 |#3|)) (-644 |#3|) (-644 |#4|) (-644 (-771)) |#3|)) (-15 -3509 ((-3 (-644 (-1171 |#4|)) "failed") (-1171 |#4|) (-644 |#2|) (-644 (-1171 |#4|)) (-644 |#3|) (-644 |#4|) (-644 (-644 (-2 (|:| -4079 (-771)) (|:| |pcoef| |#4|)))) (-644 (-771)) (-1264 (-644 (-1171 |#3|))) |#3|))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-4175 (((-3 $ "failed") $ $) 20)) (-3012 (($) 18 T CONST)) (-1786 (($ $) 48)) (-1878 (((-3 $ "failed") $) 37)) (-3934 (((-112) $) 35)) (-3840 (($ |#1| (-771)) 46)) (-3760 (((-771) $) 50)) (-1763 ((|#1| $) 49)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3636 (((-771) $) 51)) (-3783 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 45 (|has| |#1| (-172)))) (-2649 ((|#1| $ (-771)) 47)) (-2107 (((-771)) 32 T CONST)) (-3117 (((-112) $ $) 9)) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-2947 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 53) (($ |#1| $) 52))) +((-3888 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-771)) (-4 *1 (-695 *2)) (-4 *2 (-1099)))) (-3322 (*1 *1 *1) (-12 (-4 *1 (-695 *2)) (-4 *2 (-1099)))) (-1352 (*1 *2 *1) (-12 (-4 *1 (-695 *3)) (-4 *3 (-1099)) (-5 *2 (-644 (-2 (|:| -2636 *3) (|:| -4083 (-771)))))))) +(-13 (-235 |t#1|) (-10 -8 (-15 -3888 ($ |t#1| $ (-771))) (-15 -3322 ($ $)) (-15 -1352 ((-644 (-2 (|:| -2636 |t#1|) (|:| -4083 (-771)))) $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2768 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-151 |#1|) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-235 |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1099) |has| |#1| (-1099)) ((-1214) . T)) +((-3957 (((-644 |#1|) (-644 (-2 (|:| -1624 |#1|) (|:| -3902 (-566)))) (-566)) 66)) (-3072 ((|#1| |#1| (-566)) 62)) (-2164 ((|#1| |#1| |#1| (-566)) 46)) (-1624 (((-644 |#1|) |#1| (-566)) 49)) (-3067 ((|#1| |#1| (-566) |#1| (-566)) 40)) (-2475 (((-644 (-2 (|:| -1624 |#1|) (|:| -3902 (-566)))) |#1| (-566)) 61))) +(((-696 |#1|) (-10 -7 (-15 -2164 (|#1| |#1| |#1| (-566))) (-15 -3072 (|#1| |#1| (-566))) (-15 -1624 ((-644 |#1|) |#1| (-566))) (-15 -2475 ((-644 (-2 (|:| -1624 |#1|) (|:| -3902 (-566)))) |#1| (-566))) (-15 -3957 ((-644 |#1|) (-644 (-2 (|:| -1624 |#1|) (|:| -3902 (-566)))) (-566))) (-15 -3067 (|#1| |#1| (-566) |#1| (-566)))) (-1240 (-566))) (T -696)) +((-3067 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-696 *2)) (-4 *2 (-1240 *3)))) (-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-2 (|:| -1624 *5) (|:| -3902 (-566))))) (-5 *4 (-566)) (-4 *5 (-1240 *4)) (-5 *2 (-644 *5)) (-5 *1 (-696 *5)))) (-2475 (*1 *2 *3 *4) (-12 (-5 *4 (-566)) (-5 *2 (-644 (-2 (|:| -1624 *3) (|:| -3902 *4)))) (-5 *1 (-696 *3)) (-4 *3 (-1240 *4)))) (-1624 (*1 *2 *3 *4) (-12 (-5 *4 (-566)) (-5 *2 (-644 *3)) (-5 *1 (-696 *3)) (-4 *3 (-1240 *4)))) (-3072 (*1 *2 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-696 *2)) (-4 *2 (-1240 *3)))) (-2164 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-696 *2)) (-4 *2 (-1240 *3))))) +(-10 -7 (-15 -2164 (|#1| |#1| |#1| (-566))) (-15 -3072 (|#1| |#1| (-566))) (-15 -1624 ((-644 |#1|) |#1| (-566))) (-15 -2475 ((-644 (-2 (|:| -1624 |#1|) (|:| -3902 (-566)))) |#1| (-566))) (-15 -3957 ((-644 |#1|) (-644 (-2 (|:| -1624 |#1|) (|:| -3902 (-566)))) (-566))) (-15 -3067 (|#1| |#1| (-566) |#1| (-566)))) +((-2025 (((-1 (-943 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))) 17)) (-4031 (((-1132 (-225)) (-1132 (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-225)) (-1093 (-225)) (-644 (-264))) 56) (((-1132 (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-225)) (-1093 (-225)) (-644 (-264))) 58) (((-1132 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1093 (-225)) (-1093 (-225)) (-644 (-264))) 60)) (-2289 (((-1132 (-225)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-644 (-264))) NIL)) (-3187 (((-1132 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1093 (-225)) (-1093 (-225)) (-644 (-264))) 61))) +(((-697) (-10 -7 (-15 -4031 ((-1132 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1093 (-225)) (-1093 (-225)) (-644 (-264)))) (-15 -4031 ((-1132 (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-225)) (-1093 (-225)) (-644 (-264)))) (-15 -4031 ((-1132 (-225)) (-1132 (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-225)) (-1093 (-225)) (-644 (-264)))) (-15 -3187 ((-1132 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1093 (-225)) (-1093 (-225)) (-644 (-264)))) (-15 -2289 ((-1132 (-225)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-644 (-264)))) (-15 -2025 ((-1 (-943 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))) (T -697)) +((-2025 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1 (-225) (-225) (-225) (-225))) (-5 *2 (-1 (-943 (-225)) (-225) (-225))) (-5 *1 (-697)))) (-2289 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-317 (-566))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1093 (-225))) (-5 *6 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-697)))) (-3187 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) (-5 *5 (-1093 (-225))) (-5 *6 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-697)))) (-4031 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1132 (-225))) (-5 *3 (-1 (-943 (-225)) (-225) (-225))) (-5 *4 (-1093 (-225))) (-5 *5 (-644 (-264))) (-5 *1 (-697)))) (-4031 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-943 (-225)) (-225) (-225))) (-5 *4 (-1093 (-225))) (-5 *5 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-697)))) (-4031 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) (-5 *5 (-1093 (-225))) (-5 *6 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-697))))) +(-10 -7 (-15 -4031 ((-1132 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1093 (-225)) (-1093 (-225)) (-644 (-264)))) (-15 -4031 ((-1132 (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-225)) (-1093 (-225)) (-644 (-264)))) (-15 -4031 ((-1132 (-225)) (-1132 (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-225)) (-1093 (-225)) (-644 (-264)))) (-15 -3187 ((-1132 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1093 (-225)) (-1093 (-225)) (-644 (-264)))) (-15 -2289 ((-1132 (-225)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-644 (-264)))) (-15 -2025 ((-1 (-943 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))))) +((-1624 (((-420 (-1171 |#4|)) (-1171 |#4|)) 86) (((-420 |#4|) |#4|) 270))) +(((-698 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1624 ((-420 |#4|) |#4|)) (-15 -1624 ((-420 (-1171 |#4|)) (-1171 |#4|)))) (-850) (-793) (-351) (-949 |#3| |#2| |#1|)) (T -698)) +((-1624 (*1 *2 *3) (-12 (-4 *4 (-850)) (-4 *5 (-793)) (-4 *6 (-351)) (-4 *7 (-949 *6 *5 *4)) (-5 *2 (-420 (-1171 *7))) (-5 *1 (-698 *4 *5 *6 *7)) (-5 *3 (-1171 *7)))) (-1624 (*1 *2 *3) (-12 (-4 *4 (-850)) (-4 *5 (-793)) (-4 *6 (-351)) (-5 *2 (-420 *3)) (-5 *1 (-698 *4 *5 *6 *3)) (-4 *3 (-949 *6 *5 *4))))) +(-10 -7 (-15 -1624 ((-420 |#4|) |#4|)) (-15 -1624 ((-420 (-1171 |#4|)) (-1171 |#4|)))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) 100)) (-1873 (((-566) $) 34)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-2161 (($ $) NIL)) (-2345 (((-112) $) NIL)) (-2331 (($ $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-1378 (($ $) NIL)) (-1364 (((-420 $) $) NIL)) (-1635 (($ $) NIL)) (-2085 (((-112) $ $) NIL)) (-2743 (((-566) $) NIL)) (-2463 (($) NIL T CONST)) (-3347 (($ $) NIL)) (-2229 (((-3 (-566) "failed") $) 89) (((-3 (-409 (-566)) "failed") $) 28) (((-3 (-381) "failed") $) 86)) (-4158 (((-566) $) 91) (((-409 (-566)) $) 83) (((-381) $) 84)) (-2933 (($ $ $) 112)) (-3245 (((-3 $ "failed") $) 103)) (-2945 (($ $ $) 111)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL)) (-1615 (((-112) $) NIL)) (-3262 (((-921)) 93) (((-921) (-921)) 92)) (-2528 (((-112) $) NIL)) (-2926 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL)) (-2679 (((-566) $) NIL)) (-2389 (((-112) $) NIL)) (-1575 (($ $ (-566)) NIL)) (-2064 (($ $) NIL)) (-3233 (((-112) $) NIL)) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3073 (((-566) (-566)) 97) (((-566)) 98)) (-1478 (($ $ $) NIL) (($) NIL (-12 (-2404 (|has| $ (-6 -4397))) (-2404 (|has| $ (-6 -4405)))))) (-1808 (((-566) (-566)) 95) (((-566)) 96)) (-2599 (($ $ $) NIL) (($) NIL (-12 (-2404 (|has| $ (-6 -4397))) (-2404 (|has| $ (-6 -4405)))))) (-2431 (((-566) $) 17)) (-2128 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3380 (((-1157) $) NIL)) (-2748 (($ $) 107)) (-1485 (((-921) (-566)) NIL (|has| $ (-6 -4405)))) (-4072 (((-1119) $) NIL)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2164 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2487 (($ $) NIL)) (-3143 (($ $) NIL)) (-2938 (($ (-566) (-566)) NIL) (($ (-566) (-566) (-921)) NIL)) (-1624 (((-420 $) $) NIL)) (-3005 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2978 (((-3 $ "failed") $ $) 108)) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2201 (((-566) $) 24)) (-4357 (((-771) $) NIL)) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) 110)) (-2251 (((-921)) NIL) (((-921) (-921)) NIL (|has| $ (-6 -4405)))) (-1460 (((-921) (-566)) NIL (|has| $ (-6 -4405)))) (-2376 (((-381) $) NIL) (((-225) $) NIL) (((-892 (-381)) $) NIL)) (-3152 (((-862) $) 68) (($ (-566)) 79) (($ $) NIL) (($ (-409 (-566))) 82) (($ (-566)) 79) (($ (-409 (-566))) 82) (($ (-381)) 76) (((-381) $) 66) (($ (-701)) 71)) (-2593 (((-771)) 122 T CONST)) (-1699 (($ (-566) (-566) (-921)) 59)) (-3913 (($ $) NIL)) (-2367 (((-921)) NIL) (((-921) (-921)) NIL (|has| $ (-6 -4405)))) (-3044 (((-112) $ $) NIL)) (-2576 (((-921)) 46) (((-921) (-921)) 94)) (-3014 (((-112) $ $) NIL)) (-1358 (($ $) NIL)) (-4356 (($) 37 T CONST)) (-4366 (($) 18 T CONST)) (-2968 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2914 (((-112) $ $) 99)) (-2956 (((-112) $ $) NIL)) (-2935 (((-112) $ $) 121)) (-3025 (($ $ $) 81)) (-3012 (($ $) 118) (($ $ $) 119)) (-3002 (($ $ $) 117)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL) (($ $ (-409 (-566))) 106)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 113) (($ $ $) 104) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL))) +(((-699) (-13 (-406) (-389) (-365) (-1038 (-381)) (-1038 (-409 (-566))) (-147) (-10 -8 (-15 -3262 ((-921) (-921))) (-15 -3262 ((-921))) (-15 -2576 ((-921) (-921))) (-15 -1808 ((-566) (-566))) (-15 -1808 ((-566))) (-15 -3073 ((-566) (-566))) (-15 -3073 ((-566))) (-15 -3152 ((-381) $)) (-15 -3152 ($ (-701))) (-15 -2431 ((-566) $)) (-15 -2201 ((-566) $)) (-15 -1699 ($ (-566) (-566) (-921)))))) (T -699)) +((-2201 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-699)))) (-2431 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-699)))) (-3262 (*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-699)))) (-3262 (*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-699)))) (-2576 (*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-699)))) (-1808 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-699)))) (-1808 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-699)))) (-3073 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-699)))) (-3073 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-699)))) (-3152 (*1 *2 *1) (-12 (-5 *2 (-381)) (-5 *1 (-699)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-699)))) (-1699 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-566)) (-5 *3 (-921)) (-5 *1 (-699))))) +(-13 (-406) (-389) (-365) (-1038 (-381)) (-1038 (-409 (-566))) (-147) (-10 -8 (-15 -3262 ((-921) (-921))) (-15 -3262 ((-921))) (-15 -2576 ((-921) (-921))) (-15 -1808 ((-566) (-566))) (-15 -1808 ((-566))) (-15 -3073 ((-566) (-566))) (-15 -3073 ((-566))) (-15 -3152 ((-381) $)) (-15 -3152 ($ (-701))) (-15 -2431 ((-566) $)) (-15 -2201 ((-566) $)) (-15 -1699 ($ (-566) (-566) (-921))))) +((-4004 (((-689 |#1|) (-689 |#1|) |#1| |#1|) 88)) (-1521 (((-689 |#1|) (-689 |#1|) |#1|) 67)) (-2148 (((-689 |#1|) (-689 |#1|) |#1|) 89)) (-2179 (((-689 |#1|) (-689 |#1|)) 68)) (-2554 (((-2 (|:| -2631 |#1|) (|:| -3264 |#1|)) |#1| |#1|) 87))) +(((-700 |#1|) (-10 -7 (-15 -2179 ((-689 |#1|) (-689 |#1|))) (-15 -1521 ((-689 |#1|) (-689 |#1|) |#1|)) (-15 -2148 ((-689 |#1|) (-689 |#1|) |#1|)) (-15 -4004 ((-689 |#1|) (-689 |#1|) |#1| |#1|)) (-15 -2554 ((-2 (|:| -2631 |#1|) (|:| -3264 |#1|)) |#1| |#1|))) (-308)) (T -700)) +((-2554 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2631 *3) (|:| -3264 *3))) (-5 *1 (-700 *3)) (-4 *3 (-308)))) (-4004 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-689 *3)) (-4 *3 (-308)) (-5 *1 (-700 *3)))) (-2148 (*1 *2 *2 *3) (-12 (-5 *2 (-689 *3)) (-4 *3 (-308)) (-5 *1 (-700 *3)))) (-1521 (*1 *2 *2 *3) (-12 (-5 *2 (-689 *3)) (-4 *3 (-308)) (-5 *1 (-700 *3)))) (-2179 (*1 *2 *2) (-12 (-5 *2 (-689 *3)) (-4 *3 (-308)) (-5 *1 (-700 *3))))) +(-10 -7 (-15 -2179 ((-689 |#1|) (-689 |#1|))) (-15 -1521 ((-689 |#1|) (-689 |#1|) |#1|)) (-15 -2148 ((-689 |#1|) (-689 |#1|) |#1|)) (-15 -4004 ((-689 |#1|) (-689 |#1|) |#1| |#1|)) (-15 -2554 ((-2 (|:| -2631 |#1|) (|:| -3264 |#1|)) |#1| |#1|))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-2161 (($ $) NIL)) (-2345 (((-112) $) NIL)) (-2871 (($ $ $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-1345 (($ $ $ $) NIL)) (-1378 (($ $) NIL)) (-1364 (((-420 $) $) NIL)) (-2085 (((-112) $ $) NIL)) (-2743 (((-566) $) NIL)) (-3764 (($ $ $) NIL)) (-2463 (($) NIL T CONST)) (-2229 (((-3 (-566) "failed") $) 31)) (-4158 (((-566) $) 29)) (-2933 (($ $ $) NIL)) (-4089 (((-689 (-566)) (-689 $)) NIL) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-4391 (((-3 (-409 (-566)) "failed") $) NIL)) (-3407 (((-112) $) NIL)) (-1786 (((-409 (-566)) $) NIL)) (-2715 (($ $) NIL) (($) NIL)) (-2945 (($ $ $) NIL)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL)) (-1615 (((-112) $) NIL)) (-2501 (($ $ $ $) NIL)) (-1732 (($ $ $) NIL)) (-2528 (((-112) $) NIL)) (-2413 (($ $ $) NIL)) (-2926 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL)) (-2389 (((-112) $) NIL)) (-3419 (((-112) $) NIL)) (-2621 (((-3 $ "failed") $) NIL)) (-3233 (((-112) $) NIL)) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2505 (($ $ $ $) NIL)) (-1478 (($ $ $) NIL)) (-3435 (((-921) (-921)) 10) (((-921)) 9)) (-2599 (($ $ $) NIL)) (-3479 (($ $) NIL)) (-2440 (($ $) NIL)) (-2128 (($ (-644 $)) NIL) (($ $ $) NIL)) (-3380 (((-1157) $) NIL)) (-1517 (($ $ $) NIL)) (-3289 (($) NIL T CONST)) (-1847 (($ $) NIL)) (-4072 (((-1119) $) NIL)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2164 (($ (-644 $)) NIL) (($ $ $) NIL)) (-2499 (($ $) NIL)) (-1624 (((-420 $) $) NIL)) (-3005 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2978 (((-3 $ "failed") $ $) NIL)) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2664 (((-112) $) NIL)) (-4357 (((-771) $) NIL)) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL)) (-3629 (($ $) NIL) (($ $ (-771)) NIL)) (-2028 (($ $) NIL)) (-1480 (($ $) NIL)) (-2376 (((-225) $) NIL) (((-381) $) NIL) (((-892 (-566)) $) NIL) (((-538) $) NIL) (((-566) $) NIL)) (-3152 (((-862) $) NIL) (($ (-566)) 28) (($ $) NIL) (($ (-566)) 28) (((-317 $) (-317 (-566))) 18)) (-2593 (((-771)) NIL T CONST)) (-2992 (((-112) $ $) NIL)) (-2073 (($ $ $) NIL)) (-3044 (((-112) $ $) NIL)) (-2576 (($) NIL)) (-3014 (((-112) $ $) NIL)) (-1725 (($ $ $ $) NIL)) (-1358 (($ $) NIL)) (-4356 (($) NIL T CONST)) (-4366 (($) NIL T CONST)) (-3497 (($ $) NIL) (($ $ (-771)) NIL)) (-2968 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2935 (((-112) $ $) NIL)) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL))) +(((-701) (-13 (-389) (-547) (-10 -8 (-15 -3435 ((-921) (-921))) (-15 -3435 ((-921))) (-15 -3152 ((-317 $) (-317 (-566))))))) (T -701)) +((-3435 (*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-701)))) (-3435 (*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-701)))) (-3152 (*1 *2 *3) (-12 (-5 *3 (-317 (-566))) (-5 *2 (-317 (-701))) (-5 *1 (-701))))) +(-13 (-389) (-547) (-10 -8 (-15 -3435 ((-921) (-921))) (-15 -3435 ((-921))) (-15 -3152 ((-317 $) (-317 (-566)))))) +((-4000 (((-1 |#4| |#2| |#3|) |#1| (-1175) (-1175)) 19)) (-3758 (((-1 |#4| |#2| |#3|) (-1175)) 12))) +(((-702 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3758 ((-1 |#4| |#2| |#3|) (-1175))) (-15 -4000 ((-1 |#4| |#2| |#3|) |#1| (-1175) (-1175)))) (-614 (-538)) (-1214) (-1214) (-1214)) (T -702)) +((-4000 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1175)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-702 *3 *5 *6 *7)) (-4 *3 (-614 (-538))) (-4 *5 (-1214)) (-4 *6 (-1214)) (-4 *7 (-1214)))) (-3758 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-702 *4 *5 *6 *7)) (-4 *4 (-614 (-538))) (-4 *5 (-1214)) (-4 *6 (-1214)) (-4 *7 (-1214))))) +(-10 -7 (-15 -3758 ((-1 |#4| |#2| |#3|) (-1175))) (-15 -4000 ((-1 |#4| |#2| |#3|) |#1| (-1175) (-1175)))) +((-4300 (((-1 (-225) (-225) (-225)) |#1| (-1175) (-1175)) 43) (((-1 (-225) (-225)) |#1| (-1175)) 48))) +(((-703 |#1|) (-10 -7 (-15 -4300 ((-1 (-225) (-225)) |#1| (-1175))) (-15 -4300 ((-1 (-225) (-225) (-225)) |#1| (-1175) (-1175)))) (-614 (-538))) (T -703)) +((-4300 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1175)) (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-703 *3)) (-4 *3 (-614 (-538))))) (-4300 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-5 *2 (-1 (-225) (-225))) (-5 *1 (-703 *3)) (-4 *3 (-614 (-538)))))) +(-10 -7 (-15 -4300 ((-1 (-225) (-225)) |#1| (-1175))) (-15 -4300 ((-1 (-225) (-225) (-225)) |#1| (-1175) (-1175)))) +((-3204 (((-1175) |#1| (-1175) (-644 (-1175))) 10) (((-1175) |#1| (-1175) (-1175) (-1175)) 13) (((-1175) |#1| (-1175) (-1175)) 12) (((-1175) |#1| (-1175)) 11))) +(((-704 |#1|) (-10 -7 (-15 -3204 ((-1175) |#1| (-1175))) (-15 -3204 ((-1175) |#1| (-1175) (-1175))) (-15 -3204 ((-1175) |#1| (-1175) (-1175) (-1175))) (-15 -3204 ((-1175) |#1| (-1175) (-644 (-1175))))) (-614 (-538))) (T -704)) +((-3204 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-644 (-1175))) (-5 *2 (-1175)) (-5 *1 (-704 *3)) (-4 *3 (-614 (-538))))) (-3204 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-704 *3)) (-4 *3 (-614 (-538))))) (-3204 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-704 *3)) (-4 *3 (-614 (-538))))) (-3204 (*1 *2 *3 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-704 *3)) (-4 *3 (-614 (-538)))))) +(-10 -7 (-15 -3204 ((-1175) |#1| (-1175))) (-15 -3204 ((-1175) |#1| (-1175) (-1175))) (-15 -3204 ((-1175) |#1| (-1175) (-1175) (-1175))) (-15 -3204 ((-1175) |#1| (-1175) (-644 (-1175))))) +((-3749 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) +(((-705 |#1| |#2|) (-10 -7 (-15 -3749 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1214) (-1214)) (T -705)) +((-3749 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-705 *3 *4)) (-4 *3 (-1214)) (-4 *4 (-1214))))) +(-10 -7 (-15 -3749 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) +((-3720 (((-1 |#3| |#2|) (-1175)) 11)) (-4000 (((-1 |#3| |#2|) |#1| (-1175)) 21))) +(((-706 |#1| |#2| |#3|) (-10 -7 (-15 -3720 ((-1 |#3| |#2|) (-1175))) (-15 -4000 ((-1 |#3| |#2|) |#1| (-1175)))) (-614 (-538)) (-1214) (-1214)) (T -706)) +((-4000 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-5 *2 (-1 *6 *5)) (-5 *1 (-706 *3 *5 *6)) (-4 *3 (-614 (-538))) (-4 *5 (-1214)) (-4 *6 (-1214)))) (-3720 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1 *6 *5)) (-5 *1 (-706 *4 *5 *6)) (-4 *4 (-614 (-538))) (-4 *5 (-1214)) (-4 *6 (-1214))))) +(-10 -7 (-15 -3720 ((-1 |#3| |#2|) (-1175))) (-15 -4000 ((-1 |#3| |#2|) |#1| (-1175)))) +((-1497 (((-3 (-644 (-1171 |#4|)) "failed") (-1171 |#4|) (-644 |#2|) (-644 (-1171 |#4|)) (-644 |#3|) (-644 |#4|) (-644 (-644 (-2 (|:| -2994 (-771)) (|:| |pcoef| |#4|)))) (-644 (-771)) (-1264 (-644 (-1171 |#3|))) |#3|) 95)) (-3351 (((-3 (-644 (-1171 |#4|)) "failed") (-1171 |#4|) (-644 |#2|) (-644 (-1171 |#3|)) (-644 |#3|) (-644 |#4|) (-644 (-771)) |#3|) 113)) (-1299 (((-3 (-644 (-1171 |#4|)) "failed") (-1171 |#4|) (-644 |#2|) (-644 |#3|) (-644 (-771)) (-644 (-1171 |#4|)) (-1264 (-644 (-1171 |#3|))) |#3|) 47))) +(((-707 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1299 ((-3 (-644 (-1171 |#4|)) "failed") (-1171 |#4|) (-644 |#2|) (-644 |#3|) (-644 (-771)) (-644 (-1171 |#4|)) (-1264 (-644 (-1171 |#3|))) |#3|)) (-15 -3351 ((-3 (-644 (-1171 |#4|)) "failed") (-1171 |#4|) (-644 |#2|) (-644 (-1171 |#3|)) (-644 |#3|) (-644 |#4|) (-644 (-771)) |#3|)) (-15 -1497 ((-3 (-644 (-1171 |#4|)) "failed") (-1171 |#4|) (-644 |#2|) (-644 (-1171 |#4|)) (-644 |#3|) (-644 |#4|) (-644 (-644 (-2 (|:| -2994 (-771)) (|:| |pcoef| |#4|)))) (-644 (-771)) (-1264 (-644 (-1171 |#3|))) |#3|))) (-793) (-850) (-308) (-949 |#3| |#1| |#2|)) (T -707)) +((-1497 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-644 (-1171 *13))) (-5 *3 (-1171 *13)) (-5 *4 (-644 *12)) (-5 *5 (-644 *10)) (-5 *6 (-644 *13)) (-5 *7 (-644 (-644 (-2 (|:| -2994 (-771)) (|:| |pcoef| *13))))) (-5 *8 (-644 (-771))) (-5 *9 (-1264 (-644 (-1171 *10)))) (-4 *12 (-850)) (-4 *10 (-308)) (-4 *13 (-949 *10 *11 *12)) (-4 *11 (-793)) (-5 *1 (-707 *11 *12 *10 *13)))) (-3351 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-644 *11)) (-5 *5 (-644 (-1171 *9))) (-5 *6 (-644 *9)) (-5 *7 (-644 *12)) (-5 *8 (-644 (-771))) (-4 *11 (-850)) (-4 *9 (-308)) (-4 *12 (-949 *9 *10 *11)) (-4 *10 (-793)) (-5 *2 (-644 (-1171 *12))) (-5 *1 (-707 *10 *11 *9 *12)) (-5 *3 (-1171 *12)))) (-1299 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-644 (-1171 *11))) (-5 *3 (-1171 *11)) (-5 *4 (-644 *10)) (-5 *5 (-644 *8)) (-5 *6 (-644 (-771))) (-5 *7 (-1264 (-644 (-1171 *8)))) (-4 *10 (-850)) (-4 *8 (-308)) (-4 *11 (-949 *8 *9 *10)) (-4 *9 (-793)) (-5 *1 (-707 *9 *10 *8 *11))))) +(-10 -7 (-15 -1299 ((-3 (-644 (-1171 |#4|)) "failed") (-1171 |#4|) (-644 |#2|) (-644 |#3|) (-644 (-771)) (-644 (-1171 |#4|)) (-1264 (-644 (-1171 |#3|))) |#3|)) (-15 -3351 ((-3 (-644 (-1171 |#4|)) "failed") (-1171 |#4|) (-644 |#2|) (-644 (-1171 |#3|)) (-644 |#3|) (-644 |#4|) (-644 (-771)) |#3|)) (-15 -1497 ((-3 (-644 (-1171 |#4|)) "failed") (-1171 |#4|) (-644 |#2|) (-644 (-1171 |#4|)) (-644 |#3|) (-644 |#4|) (-644 (-644 (-2 (|:| -2994 (-771)) (|:| |pcoef| |#4|)))) (-644 (-771)) (-1264 (-644 (-1171 |#3|))) |#3|))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-3967 (((-3 $ "failed") $ $) 20)) (-2463 (($) 18 T CONST)) (-2814 (($ $) 48)) (-3245 (((-3 $ "failed") $) 37)) (-2389 (((-112) $) 35)) (-1746 (($ |#1| (-771)) 46)) (-2749 (((-771) $) 50)) (-2794 ((|#1| $) 49)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3902 (((-771) $) 51)) (-3152 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 45 (|has| |#1| (-172)))) (-2271 ((|#1| $ (-771)) 47)) (-2593 (((-771)) 32 T CONST)) (-3044 (((-112) $ $) 9)) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-2914 (((-112) $ $) 6)) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 53) (($ |#1| $) 52))) (((-708 |#1|) (-140) (-1049)) (T -708)) -((-3636 (*1 *2 *1) (-12 (-4 *1 (-708 *3)) (-4 *3 (-1049)) (-5 *2 (-771)))) (-3760 (*1 *2 *1) (-12 (-4 *1 (-708 *3)) (-4 *3 (-1049)) (-5 *2 (-771)))) (-1763 (*1 *2 *1) (-12 (-4 *1 (-708 *2)) (-4 *2 (-1049)))) (-1786 (*1 *1 *1) (-12 (-4 *1 (-708 *2)) (-4 *2 (-1049)))) (-2649 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-4 *1 (-708 *2)) (-4 *2 (-1049)))) (-3840 (*1 *1 *2 *3) (-12 (-5 *3 (-771)) (-4 *1 (-708 *2)) (-4 *2 (-1049))))) -(-13 (-1049) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -3636 ((-771) $)) (-15 -3760 ((-771) $)) (-15 -1763 (|t#1| $)) (-15 -1786 ($ $)) (-15 -2649 (|t#1| $ (-771))) (-15 -3840 ($ |t#1| (-771))))) +((-3902 (*1 *2 *1) (-12 (-4 *1 (-708 *3)) (-4 *3 (-1049)) (-5 *2 (-771)))) (-2749 (*1 *2 *1) (-12 (-4 *1 (-708 *3)) (-4 *3 (-1049)) (-5 *2 (-771)))) (-2794 (*1 *2 *1) (-12 (-4 *1 (-708 *2)) (-4 *2 (-1049)))) (-2814 (*1 *1 *1) (-12 (-4 *1 (-708 *2)) (-4 *2 (-1049)))) (-2271 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-4 *1 (-708 *2)) (-4 *2 (-1049)))) (-1746 (*1 *1 *2 *3) (-12 (-5 *3 (-771)) (-4 *1 (-708 *2)) (-4 *2 (-1049))))) +(-13 (-1049) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -3902 ((-771) $)) (-15 -2749 ((-771) $)) (-15 -2794 (|t#1| $)) (-15 -2814 ($ $)) (-15 -2271 (|t#1| $ (-771))) (-15 -1746 ($ |t#1| (-771))))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-616 (-566)) . T) ((-616 |#1|) |has| |#1| (-172)) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-640 |#1|) |has| |#1| (-172)) ((-717 |#1|) |has| |#1| (-172)) ((-726) . T) ((-1051 |#1|) . T) ((-1056 |#1|) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) -((-1301 ((|#6| (-1 |#4| |#1|) |#3|) 23))) -(((-709 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1301 (|#6| (-1 |#4| |#1|) |#3|))) (-558) (-1240 |#1|) (-1240 (-409 |#2|)) (-558) (-1240 |#4|) (-1240 (-409 |#5|))) (T -709)) -((-1301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-558)) (-4 *7 (-558)) (-4 *6 (-1240 *5)) (-4 *2 (-1240 (-409 *8))) (-5 *1 (-709 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1240 (-409 *6))) (-4 *8 (-1240 *7))))) -(-10 -7 (-15 -1301 (|#6| (-1 |#4| |#1|) |#3|))) -((-3007 (((-112) $ $) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-1597 (((-1157) (-862)) 39)) (-1675 (((-1269) (-1157)) 32)) (-3209 (((-1157) (-862)) 28)) (-4086 (((-1157) (-862)) 29)) (-3783 (((-862) $) NIL) (((-1157) (-862)) 27)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) -(((-710) (-13 (-1099) (-10 -7 (-15 -3783 ((-1157) (-862))) (-15 -3209 ((-1157) (-862))) (-15 -4086 ((-1157) (-862))) (-15 -1597 ((-1157) (-862))) (-15 -1675 ((-1269) (-1157)))))) (T -710)) -((-3783 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1157)) (-5 *1 (-710)))) (-3209 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1157)) (-5 *1 (-710)))) (-4086 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1157)) (-5 *1 (-710)))) (-1597 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1157)) (-5 *1 (-710)))) (-1675 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-710))))) -(-13 (-1099) (-10 -7 (-15 -3783 ((-1157) (-862))) (-15 -3209 ((-1157) (-862))) (-15 -4086 ((-1157) (-862))) (-15 -1597 ((-1157) (-862))) (-15 -1675 ((-1269) (-1157))))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-3991 (($ $) NIL)) (-2388 (((-112) $) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-1550 (($ $) NIL)) (-3184 (((-420 $) $) NIL)) (-2837 (((-112) $ $) NIL)) (-3012 (($) NIL T CONST)) (-2946 (($ $ $) NIL)) (-1676 (($ |#1| |#2|) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-2957 (($ $ $) NIL)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL)) (-3268 (((-112) $) NIL)) (-3934 (((-112) $) NIL)) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3930 ((|#2| $) NIL)) (-2167 (($ $ $) NIL) (($ (-644 $)) NIL)) (-4117 (((-1157) $) NIL)) (-1713 (($ $) NIL)) (-4035 (((-1119) $) NIL)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2214 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3719 (((-420 $) $) NIL)) (-3148 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2994 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3857 (((-3 $ "failed") $ $) NIL)) (-3039 (((-771) $) NIL)) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL)) (-3783 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) ((|#1| $) NIL)) (-2107 (((-771)) NIL T CONST)) (-3117 (((-112) $ $) NIL)) (-2695 (((-112) $ $) NIL)) (-2479 (($) NIL T CONST)) (-4334 (($) NIL T CONST)) (-2947 (((-112) $ $) NIL)) (-3065 (($ $ $) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL))) -(((-711 |#1| |#2| |#3| |#4| |#5|) (-13 (-365) (-10 -8 (-15 -3930 (|#2| $)) (-15 -3783 (|#1| $)) (-15 -1676 ($ |#1| |#2|)) (-15 -3857 ((-3 $ "failed") $ $)))) (-172) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -711)) -((-3930 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-711 *3 *2 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3783 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1676 (*1 *1 *2 *3) (-12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3857 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-365) (-10 -8 (-15 -3930 (|#2| $)) (-15 -3783 (|#1| $)) (-15 -1676 ($ |#1| |#2|)) (-15 -3857 ((-3 $ "failed") $ $)))) -((-3007 (((-112) $ $) 92)) (-1788 (((-112) $) 36)) (-2293 (((-1264 |#1|) $ (-771)) NIL)) (-3863 (((-644 (-1081)) $) NIL)) (-3841 (($ (-1171 |#1|)) NIL)) (-3683 (((-1171 $) $ (-1081)) NIL) (((-1171 |#1|) $) NIL)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-3991 (($ $) NIL (|has| |#1| (-558)))) (-2388 (((-112) $) NIL (|has| |#1| (-558)))) (-3367 (((-771) $) NIL) (((-771) $ (-644 (-1081))) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $ $) NIL (|has| |#1| (-558)))) (-1477 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-1550 (($ $) NIL (|has| |#1| (-454)))) (-3184 (((-420 $) $) NIL (|has| |#1| (-454)))) (-3717 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-2837 (((-112) $ $) NIL (|has| |#1| (-365)))) (-1970 (((-771)) 56 (|has| |#1| (-370)))) (-2838 (($ $ (-771)) NIL)) (-3827 (($ $ (-771)) NIL)) (-2475 ((|#2| |#2|) 52)) (-1454 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-454)))) (-3012 (($) NIL T CONST)) (-4307 (((-3 |#1| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-1081) "failed") $) NIL)) (-4205 ((|#1| $) NIL) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-1081) $) NIL)) (-2738 (($ $ $ (-1081)) NIL (|has| |#1| (-172))) ((|#1| $ $) NIL (|has| |#1| (-172)))) (-2946 (($ $ $) NIL (|has| |#1| (-365)))) (-1786 (($ $) 40)) (-3577 (((-689 (-566)) (-689 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -4227 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) NIL) (((-689 |#1|) (-689 $)) NIL)) (-1676 (($ |#2|) 50)) (-1878 (((-3 $ "failed") $) 102)) (-1552 (($) 61 (|has| |#1| (-370)))) (-2957 (($ $ $) NIL (|has| |#1| (-365)))) (-3672 (($ $ $) NIL)) (-1324 (($ $ $) NIL (|has| |#1| (-558)))) (-1960 (((-2 (|:| -1364 |#1|) (|:| -2275 $) (|:| -2513 $)) $ $) NIL (|has| |#1| (-558)))) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL (|has| |#1| (-365)))) (-4075 (($ $) NIL (|has| |#1| (-454))) (($ $ (-1081)) NIL (|has| |#1| (-454)))) (-1774 (((-644 $) $) NIL)) (-3268 (((-112) $) NIL (|has| |#1| (-909)))) (-3149 (((-958 $)) 94)) (-3635 (($ $ |#1| (-771) $) NIL)) (-2062 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| (-1081) (-886 (-381))) (|has| |#1| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| (-1081) (-886 (-566))) (|has| |#1| (-886 (-566)))))) (-3254 (((-771) $ $) NIL (|has| |#1| (-558)))) (-3934 (((-112) $) NIL)) (-2614 (((-771) $) NIL)) (-4363 (((-3 $ "failed") $) NIL (|has| |#1| (-1150)))) (-3851 (($ (-1171 |#1|) (-1081)) NIL) (($ (-1171 $) (-1081)) NIL)) (-2955 (($ $ (-771)) NIL)) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-2288 (((-644 $) $) NIL)) (-3264 (((-112) $) NIL)) (-3840 (($ |#1| (-771)) 88) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL)) (-2044 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $ (-1081)) NIL) (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL)) (-3930 ((|#2|) 53)) (-3760 (((-771) $) NIL) (((-771) $ (-1081)) NIL) (((-644 (-771)) $ (-644 (-1081))) NIL)) (-4301 (($ (-1 (-771) (-771)) $) NIL)) (-1301 (($ (-1 |#1| |#1|) $) NIL)) (-1988 (((-1171 |#1|) $) NIL)) (-3169 (((-3 (-1081) "failed") $) NIL)) (-3681 (((-921) $) NIL (|has| |#1| (-370)))) (-1662 ((|#2| $) 49)) (-1749 (($ $) NIL)) (-1763 ((|#1| $) 34)) (-2167 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-4117 (((-1157) $) NIL)) (-2764 (((-2 (|:| -2275 $) (|:| -2513 $)) $ (-771)) NIL)) (-3714 (((-3 (-644 $) "failed") $) NIL)) (-2353 (((-3 (-644 $) "failed") $) NIL)) (-1518 (((-3 (-2 (|:| |var| (-1081)) (|:| -2852 (-771))) "failed") $) NIL)) (-1941 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1761 (($) NIL (|has| |#1| (-1150)) CONST)) (-2178 (($ (-921)) NIL (|has| |#1| (-370)))) (-4035 (((-1119) $) NIL)) (-1723 (((-112) $) NIL)) (-1736 ((|#1| $) NIL)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-454)))) (-2214 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-3293 (($ $) 93 (|has| |#1| (-351)))) (-4303 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-3240 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-3719 (((-420 $) $) NIL (|has| |#1| (-909)))) (-3148 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-365)))) (-2994 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558))) (((-3 $ "failed") $ $) 101 (|has| |#1| (-558)))) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-2055 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-1081) |#1|) NIL) (($ $ (-644 (-1081)) (-644 |#1|)) NIL) (($ $ (-1081) $) NIL) (($ $ (-644 (-1081)) (-644 $)) NIL)) (-3039 (((-771) $) NIL (|has| |#1| (-365)))) (-4390 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-409 $) (-409 $) (-409 $)) NIL (|has| |#1| (-558))) ((|#1| (-409 $) |#1|) NIL (|has| |#1| (-365))) (((-409 $) $ (-409 $)) NIL (|has| |#1| (-558)))) (-1313 (((-3 $ "failed") $ (-771)) NIL)) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) 103 (|has| |#1| (-365)))) (-3652 (($ $ (-1081)) NIL (|has| |#1| (-172))) ((|#1| $) NIL (|has| |#1| (-172)))) (-3561 (($ $ (-1081)) NIL) (($ $ (-644 (-1081))) NIL) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL) (($ $ (-771)) NIL) (($ $) NIL) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3636 (((-771) $) 38) (((-771) $ (-1081)) NIL) (((-644 (-771)) $ (-644 (-1081))) NIL)) (-1348 (((-892 (-381)) $) NIL (-12 (|has| (-1081) (-614 (-892 (-381)))) (|has| |#1| (-614 (-892 (-381)))))) (((-892 (-566)) $) NIL (-12 (|has| (-1081) (-614 (-892 (-566)))) (|has| |#1| (-614 (-892 (-566)))))) (((-538) $) NIL (-12 (|has| (-1081) (-614 (-538))) (|has| |#1| (-614 (-538)))))) (-2483 ((|#1| $) NIL (|has| |#1| (-454))) (($ $ (-1081)) NIL (|has| |#1| (-454)))) (-1656 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-909))))) (-2165 (((-958 $)) 42)) (-4150 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558))) (((-3 (-409 $) "failed") (-409 $) $) NIL (|has| |#1| (-558)))) (-3783 (((-862) $) 71) (($ (-566)) NIL) (($ |#1|) 68) (($ (-1081)) NIL) (($ |#2|) 78) (($ (-409 (-566))) NIL (-2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566)))))) (($ $) NIL (|has| |#1| (-558)))) (-4170 (((-644 |#1|) $) NIL)) (-2649 ((|#1| $ (-771)) 73) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL)) (-3144 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| $ (-145)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-2107 (((-771)) NIL T CONST)) (-3362 (($ $ $ (-771)) NIL (|has| |#1| (-172)))) (-3117 (((-112) $ $) NIL)) (-2695 (((-112) $ $) NIL (|has| |#1| (-558)))) (-2479 (($) 25 T CONST)) (-1369 (((-1264 |#1|) $) 86)) (-2550 (($ (-1264 |#1|)) 60)) (-4334 (($) 8 T CONST)) (-2875 (($ $ (-1081)) NIL) (($ $ (-644 (-1081))) NIL) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL) (($ $ (-771)) NIL) (($ $) NIL) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2945 (((-1264 |#1|) $) NIL)) (-2947 (((-112) $ $) 79)) (-3065 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3053 (($ $) 82) (($ $ $) NIL)) (-3041 (($ $ $) 39)) (** (($ $ (-921)) NIL) (($ $ (-771)) 97)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 67) (($ $ $) 85) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) 65) (($ $ |#1|) NIL))) -(((-712 |#1| |#2|) (-13 (-1240 |#1|) (-616 |#2|) (-10 -8 (-15 -2475 (|#2| |#2|)) (-15 -3930 (|#2|)) (-15 -1676 ($ |#2|)) (-15 -1662 (|#2| $)) (-15 -1369 ((-1264 |#1|) $)) (-15 -2550 ($ (-1264 |#1|))) (-15 -2945 ((-1264 |#1|) $)) (-15 -3149 ((-958 $))) (-15 -2165 ((-958 $))) (IF (|has| |#1| (-351)) (-15 -3293 ($ $)) |%noBranch|) (IF (|has| |#1| (-370)) (-6 (-370)) |%noBranch|))) (-1049) (-1240 |#1|)) (T -712)) -((-2475 (*1 *2 *2) (-12 (-4 *3 (-1049)) (-5 *1 (-712 *3 *2)) (-4 *2 (-1240 *3)))) (-3930 (*1 *2) (-12 (-4 *2 (-1240 *3)) (-5 *1 (-712 *3 *2)) (-4 *3 (-1049)))) (-1676 (*1 *1 *2) (-12 (-4 *3 (-1049)) (-5 *1 (-712 *3 *2)) (-4 *2 (-1240 *3)))) (-1662 (*1 *2 *1) (-12 (-4 *2 (-1240 *3)) (-5 *1 (-712 *3 *2)) (-4 *3 (-1049)))) (-1369 (*1 *2 *1) (-12 (-4 *3 (-1049)) (-5 *2 (-1264 *3)) (-5 *1 (-712 *3 *4)) (-4 *4 (-1240 *3)))) (-2550 (*1 *1 *2) (-12 (-5 *2 (-1264 *3)) (-4 *3 (-1049)) (-5 *1 (-712 *3 *4)) (-4 *4 (-1240 *3)))) (-2945 (*1 *2 *1) (-12 (-4 *3 (-1049)) (-5 *2 (-1264 *3)) (-5 *1 (-712 *3 *4)) (-4 *4 (-1240 *3)))) (-3149 (*1 *2) (-12 (-4 *3 (-1049)) (-5 *2 (-958 (-712 *3 *4))) (-5 *1 (-712 *3 *4)) (-4 *4 (-1240 *3)))) (-2165 (*1 *2) (-12 (-4 *3 (-1049)) (-5 *2 (-958 (-712 *3 *4))) (-5 *1 (-712 *3 *4)) (-4 *4 (-1240 *3)))) (-3293 (*1 *1 *1) (-12 (-4 *2 (-351)) (-4 *2 (-1049)) (-5 *1 (-712 *2 *3)) (-4 *3 (-1240 *2))))) -(-13 (-1240 |#1|) (-616 |#2|) (-10 -8 (-15 -2475 (|#2| |#2|)) (-15 -3930 (|#2|)) (-15 -1676 ($ |#2|)) (-15 -1662 (|#2| $)) (-15 -1369 ((-1264 |#1|) $)) (-15 -2550 ($ (-1264 |#1|))) (-15 -2945 ((-1264 |#1|) $)) (-15 -3149 ((-958 $))) (-15 -2165 ((-958 $))) (IF (|has| |#1| (-351)) (-15 -3293 ($ $)) |%noBranch|) (IF (|has| |#1| (-370)) (-6 (-370)) |%noBranch|))) -((-3007 (((-112) $ $) NIL)) (-2097 (($ $ $) NIL)) (-3962 (($ $ $) NIL)) (-4117 (((-1157) $) NIL)) (-2178 ((|#1| $) 13)) (-4035 (((-1119) $) NIL)) (-2852 ((|#2| $) 12)) (-3796 (($ |#1| |#2|) 16)) (-3783 (((-862) $) NIL) (($ (-2 (|:| -2178 |#1|) (|:| -2852 |#2|))) 15) (((-2 (|:| -2178 |#1|) (|:| -2852 |#2|)) $) 14)) (-3117 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL)) (-2995 (((-112) $ $) NIL)) (-2969 (((-112) $ $) 11))) -(((-713 |#1| |#2| |#3|) (-13 (-850) (-492 (-2 (|:| -2178 |#1|) (|:| -2852 |#2|))) (-10 -8 (-15 -2852 (|#2| $)) (-15 -2178 (|#1| $)) (-15 -3796 ($ |#1| |#2|)))) (-850) (-1099) (-1 (-112) (-2 (|:| -2178 |#1|) (|:| -2852 |#2|)) (-2 (|:| -2178 |#1|) (|:| -2852 |#2|)))) (T -713)) -((-2852 (*1 *2 *1) (-12 (-4 *2 (-1099)) (-5 *1 (-713 *3 *2 *4)) (-4 *3 (-850)) (-14 *4 (-1 (-112) (-2 (|:| -2178 *3) (|:| -2852 *2)) (-2 (|:| -2178 *3) (|:| -2852 *2)))))) (-2178 (*1 *2 *1) (-12 (-4 *2 (-850)) (-5 *1 (-713 *2 *3 *4)) (-4 *3 (-1099)) (-14 *4 (-1 (-112) (-2 (|:| -2178 *2) (|:| -2852 *3)) (-2 (|:| -2178 *2) (|:| -2852 *3)))))) (-3796 (*1 *1 *2 *3) (-12 (-5 *1 (-713 *2 *3 *4)) (-4 *2 (-850)) (-4 *3 (-1099)) (-14 *4 (-1 (-112) (-2 (|:| -2178 *2) (|:| -2852 *3)) (-2 (|:| -2178 *2) (|:| -2852 *3))))))) -(-13 (-850) (-492 (-2 (|:| -2178 |#1|) (|:| -2852 |#2|))) (-10 -8 (-15 -2852 (|#2| $)) (-15 -2178 (|#1| $)) (-15 -3796 ($ |#1| |#2|)))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) 66)) (-4175 (((-3 $ "failed") $ $) NIL)) (-3012 (($) NIL T CONST)) (-4307 (((-3 |#1| "failed") $) 105) (((-3 (-114) "failed") $) 111)) (-4205 ((|#1| $) NIL) (((-114) $) 39)) (-1878 (((-3 $ "failed") $) 106)) (-2318 ((|#2| (-114) |#2|) 93)) (-3934 (((-112) $) NIL)) (-4255 (($ |#1| (-363 (-114))) 14)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3008 (($ $ (-1 |#2| |#2|)) 65)) (-3024 (($ $ (-1 |#2| |#2|)) 44)) (-4390 ((|#2| $ |#2|) 33)) (-2563 ((|#1| |#1|) 121 (|has| |#1| (-172)))) (-3783 (((-862) $) 73) (($ (-566)) 18) (($ |#1|) 17) (($ (-114)) 23)) (-3144 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2107 (((-771)) 37 T CONST)) (-3117 (((-112) $ $) NIL)) (-2279 (($ $) 115 (|has| |#1| (-172))) (($ $ $) 119 (|has| |#1| (-172)))) (-2479 (($) 21 T CONST)) (-4334 (($) 9 T CONST)) (-2947 (((-112) $ $) NIL)) (-3053 (($ $) 48) (($ $ $) NIL)) (-3041 (($ $ $) 83)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ (-114) (-566)) NIL) (($ $ (-566)) 64)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 114) (($ $ $) 53) (($ |#1| $) 112 (|has| |#1| (-172))) (($ $ |#1|) 113 (|has| |#1| (-172))))) -(((-714 |#1| |#2|) (-13 (-1049) (-1038 |#1|) (-1038 (-114)) (-287 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -2279 ($ $)) (-15 -2279 ($ $ $)) (-15 -2563 (|#1| |#1|))) |%noBranch|) (-15 -3024 ($ $ (-1 |#2| |#2|))) (-15 -3008 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-566))) (-15 ** ($ $ (-566))) (-15 -2318 (|#2| (-114) |#2|)) (-15 -4255 ($ |#1| (-363 (-114)))))) (-1049) (-648 |#1|)) (T -714)) -((-2279 (*1 *1 *1) (-12 (-4 *2 (-172)) (-4 *2 (-1049)) (-5 *1 (-714 *2 *3)) (-4 *3 (-648 *2)))) (-2279 (*1 *1 *1 *1) (-12 (-4 *2 (-172)) (-4 *2 (-1049)) (-5 *1 (-714 *2 *3)) (-4 *3 (-648 *2)))) (-2563 (*1 *2 *2) (-12 (-4 *2 (-172)) (-4 *2 (-1049)) (-5 *1 (-714 *2 *3)) (-4 *3 (-648 *2)))) (-3024 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-648 *3)) (-4 *3 (-1049)) (-5 *1 (-714 *3 *4)))) (-3008 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-648 *3)) (-4 *3 (-1049)) (-5 *1 (-714 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-566)) (-4 *4 (-1049)) (-5 *1 (-714 *4 *5)) (-4 *5 (-648 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-4 *3 (-1049)) (-5 *1 (-714 *3 *4)) (-4 *4 (-648 *3)))) (-2318 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-4 *4 (-1049)) (-5 *1 (-714 *4 *2)) (-4 *2 (-648 *4)))) (-4255 (*1 *1 *2 *3) (-12 (-5 *3 (-363 (-114))) (-4 *2 (-1049)) (-5 *1 (-714 *2 *4)) (-4 *4 (-648 *2))))) -(-13 (-1049) (-1038 |#1|) (-1038 (-114)) (-287 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -2279 ($ $)) (-15 -2279 ($ $ $)) (-15 -2563 (|#1| |#1|))) |%noBranch|) (-15 -3024 ($ $ (-1 |#2| |#2|))) (-15 -3008 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-566))) (-15 ** ($ $ (-566))) (-15 -2318 (|#2| (-114) |#2|)) (-15 -4255 ($ |#1| (-363 (-114)))))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) 33)) (-4175 (((-3 $ "failed") $ $) NIL)) (-3012 (($) NIL T CONST)) (-1676 (($ |#1| |#2|) 25)) (-1878 (((-3 $ "failed") $) 51)) (-3934 (((-112) $) 35)) (-3930 ((|#2| $) 12)) (-4117 (((-1157) $) NIL)) (-1713 (($ $) 52)) (-4035 (((-1119) $) NIL)) (-3857 (((-3 $ "failed") $ $) 50)) (-3783 (((-862) $) 24) (($ (-566)) 19) ((|#1| $) 13)) (-2107 (((-771)) 28 T CONST)) (-3117 (((-112) $ $) NIL)) (-2479 (($) 16 T CONST)) (-4334 (($) 30 T CONST)) (-2947 (((-112) $ $) 41)) (-3053 (($ $) 46) (($ $ $) 40)) (-3041 (($ $ $) 43)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 21) (($ $ $) 20))) -(((-715 |#1| |#2| |#3| |#4| |#5|) (-13 (-1049) (-10 -8 (-15 -3930 (|#2| $)) (-15 -3783 (|#1| $)) (-15 -1676 ($ |#1| |#2|)) (-15 -3857 ((-3 $ "failed") $ $)) (-15 -1878 ((-3 $ "failed") $)) (-15 -1713 ($ $)))) (-172) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -715)) -((-1878 (*1 *1 *1) (|partial| -12 (-5 *1 (-715 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3930 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-715 *3 *2 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3783 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-715 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1676 (*1 *1 *2 *3) (-12 (-5 *1 (-715 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3857 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-715 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1713 (*1 *1 *1) (-12 (-5 *1 (-715 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-1049) (-10 -8 (-15 -3930 (|#2| $)) (-15 -3783 (|#1| $)) (-15 -1676 ($ |#1| |#2|)) (-15 -3857 ((-3 $ "failed") $ $)) (-15 -1878 ((-3 $ "failed") $)) (-15 -1713 ($ $)))) +((-2319 ((|#6| (-1 |#4| |#1|) |#3|) 23))) +(((-709 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2319 (|#6| (-1 |#4| |#1|) |#3|))) (-558) (-1240 |#1|) (-1240 (-409 |#2|)) (-558) (-1240 |#4|) (-1240 (-409 |#5|))) (T -709)) +((-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-558)) (-4 *7 (-558)) (-4 *6 (-1240 *5)) (-4 *2 (-1240 (-409 *8))) (-5 *1 (-709 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1240 (-409 *6))) (-4 *8 (-1240 *7))))) +(-10 -7 (-15 -2319 (|#6| (-1 |#4| |#1|) |#3|))) +((-2988 (((-112) $ $) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-2494 (((-1157) (-862)) 39)) (-1710 (((-1269) (-1157)) 32)) (-1819 (((-1157) (-862)) 28)) (-2451 (((-1157) (-862)) 29)) (-3152 (((-862) $) NIL) (((-1157) (-862)) 27)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) +(((-710) (-13 (-1099) (-10 -7 (-15 -3152 ((-1157) (-862))) (-15 -1819 ((-1157) (-862))) (-15 -2451 ((-1157) (-862))) (-15 -2494 ((-1157) (-862))) (-15 -1710 ((-1269) (-1157)))))) (T -710)) +((-3152 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1157)) (-5 *1 (-710)))) (-1819 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1157)) (-5 *1 (-710)))) (-2451 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1157)) (-5 *1 (-710)))) (-2494 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1157)) (-5 *1 (-710)))) (-1710 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-710))))) +(-13 (-1099) (-10 -7 (-15 -3152 ((-1157) (-862))) (-15 -1819 ((-1157) (-862))) (-15 -2451 ((-1157) (-862))) (-15 -2494 ((-1157) (-862))) (-15 -1710 ((-1269) (-1157))))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-2161 (($ $) NIL)) (-2345 (((-112) $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-1378 (($ $) NIL)) (-1364 (((-420 $) $) NIL)) (-2085 (((-112) $ $) NIL)) (-2463 (($) NIL T CONST)) (-2933 (($ $ $) NIL)) (-2873 (($ |#1| |#2|) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-2945 (($ $ $) NIL)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL)) (-1615 (((-112) $) NIL)) (-2389 (((-112) $) NIL)) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3206 ((|#2| $) NIL)) (-2128 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3380 (((-1157) $) NIL)) (-2748 (($ $) NIL)) (-4072 (((-1119) $) NIL)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2164 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1624 (((-420 $) $) NIL)) (-3005 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2978 (((-3 $ "failed") $ $) NIL)) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1371 (((-3 $ "failed") $ $) NIL)) (-4357 (((-771) $) NIL)) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL)) (-3152 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) ((|#1| $) NIL)) (-2593 (((-771)) NIL T CONST)) (-3044 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-4356 (($) NIL T CONST)) (-4366 (($) NIL T CONST)) (-2914 (((-112) $ $) NIL)) (-3025 (($ $ $) NIL)) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL))) +(((-711 |#1| |#2| |#3| |#4| |#5|) (-13 (-365) (-10 -8 (-15 -3206 (|#2| $)) (-15 -3152 (|#1| $)) (-15 -2873 ($ |#1| |#2|)) (-15 -1371 ((-3 $ "failed") $ $)))) (-172) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -711)) +((-3206 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-711 *3 *2 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3152 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2873 (*1 *1 *2 *3) (-12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1371 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-365) (-10 -8 (-15 -3206 (|#2| $)) (-15 -3152 (|#1| $)) (-15 -2873 ($ |#1| |#2|)) (-15 -1371 ((-3 $ "failed") $ $)))) +((-2988 (((-112) $ $) 92)) (-3230 (((-112) $) 36)) (-4036 (((-1264 |#1|) $ (-771)) NIL)) (-1771 (((-644 (-1081)) $) NIL)) (-3732 (($ (-1171 |#1|)) NIL)) (-1590 (((-1171 $) $ (-1081)) NIL) (((-1171 |#1|) $) NIL)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-2161 (($ $) NIL (|has| |#1| (-558)))) (-2345 (((-112) $) NIL (|has| |#1| (-558)))) (-1357 (((-771) $) NIL) (((-771) $ (-644 (-1081))) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-1890 (($ $ $) NIL (|has| |#1| (-558)))) (-2292 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-1378 (($ $) NIL (|has| |#1| (-454)))) (-1364 (((-420 $) $) NIL (|has| |#1| (-454)))) (-4066 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-2085 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3870 (((-771)) 56 (|has| |#1| (-370)))) (-2197 (($ $ (-771)) NIL)) (-1583 (($ $ (-771)) NIL)) (-3704 ((|#2| |#2|) 52)) (-3946 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-454)))) (-2463 (($) NIL T CONST)) (-2229 (((-3 |#1| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-1081) "failed") $) NIL)) (-4158 ((|#1| $) NIL) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-1081) $) NIL)) (-2610 (($ $ $ (-1081)) NIL (|has| |#1| (-172))) ((|#1| $ $) NIL (|has| |#1| (-172)))) (-2933 (($ $ $) NIL (|has| |#1| (-365)))) (-2814 (($ $) 40)) (-4089 (((-689 (-566)) (-689 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -3361 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) NIL) (((-689 |#1|) (-689 $)) NIL)) (-2873 (($ |#2|) 50)) (-3245 (((-3 $ "failed") $) 102)) (-2715 (($) 61 (|has| |#1| (-370)))) (-2945 (($ $ $) NIL (|has| |#1| (-365)))) (-2218 (($ $ $) NIL)) (-4058 (($ $ $) NIL (|has| |#1| (-558)))) (-1514 (((-2 (|:| -2397 |#1|) (|:| -2631 $) (|:| -3264 $)) $ $) NIL (|has| |#1| (-558)))) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL (|has| |#1| (-365)))) (-2616 (($ $) NIL (|has| |#1| (-454))) (($ $ (-1081)) NIL (|has| |#1| (-454)))) (-2804 (((-644 $) $) NIL)) (-1615 (((-112) $) NIL (|has| |#1| (-909)))) (-4125 (((-958 $)) 94)) (-1896 (($ $ |#1| (-771) $) NIL)) (-2926 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| (-1081) (-886 (-381))) (|has| |#1| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| (-1081) (-886 (-566))) (|has| |#1| (-886 (-566)))))) (-2679 (((-771) $ $) NIL (|has| |#1| (-558)))) (-2389 (((-112) $) NIL)) (-3039 (((-771) $) NIL)) (-2621 (((-3 $ "failed") $) NIL (|has| |#1| (-1150)))) (-1757 (($ (-1171 |#1|) (-1081)) NIL) (($ (-1171 $) (-1081)) NIL)) (-3394 (($ $ (-771)) NIL)) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-1587 (((-644 $) $) NIL)) (-2497 (((-112) $) NIL)) (-1746 (($ |#1| (-771)) 88) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL)) (-2815 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $ (-1081)) NIL) (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL)) (-3206 ((|#2|) 53)) (-2749 (((-771) $) NIL) (((-771) $ (-1081)) NIL) (((-644 (-771)) $ (-644 (-1081))) NIL)) (-3021 (($ (-1 (-771) (-771)) $) NIL)) (-2319 (($ (-1 |#1| |#1|) $) NIL)) (-2513 (((-1171 |#1|) $) NIL)) (-2297 (((-3 (-1081) "failed") $) NIL)) (-1866 (((-921) $) NIL (|has| |#1| (-370)))) (-2860 ((|#2| $) 49)) (-2784 (($ $) NIL)) (-2794 ((|#1| $) 34)) (-2128 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-3380 (((-1157) $) NIL)) (-2307 (((-2 (|:| -2631 $) (|:| -3264 $)) $ (-771)) NIL)) (-3738 (((-3 (-644 $) "failed") $) NIL)) (-4199 (((-3 (-644 $) "failed") $) NIL)) (-4108 (((-3 (-2 (|:| |var| (-1081)) (|:| -2201 (-771))) "failed") $) NIL)) (-3313 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3289 (($) NIL (|has| |#1| (-1150)) CONST)) (-2835 (($ (-921)) NIL (|has| |#1| (-370)))) (-4072 (((-1119) $) NIL)) (-2761 (((-112) $) NIL)) (-2773 ((|#1| $) NIL)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-454)))) (-2164 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-3397 (($ $) 93 (|has| |#1| (-351)))) (-2010 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-1893 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-1624 (((-420 $) $) NIL (|has| |#1| (-909)))) (-3005 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL (|has| |#1| (-365)))) (-2978 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558))) (((-3 $ "failed") $ $) 101 (|has| |#1| (-558)))) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-2023 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-1081) |#1|) NIL) (($ $ (-644 (-1081)) (-644 |#1|)) NIL) (($ $ (-1081) $) NIL) (($ $ (-644 (-1081)) (-644 $)) NIL)) (-4357 (((-771) $) NIL (|has| |#1| (-365)))) (-1309 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-409 $) (-409 $) (-409 $)) NIL (|has| |#1| (-558))) ((|#1| (-409 $) |#1|) NIL (|has| |#1| (-365))) (((-409 $) $ (-409 $)) NIL (|has| |#1| (-558)))) (-2382 (((-3 $ "failed") $ (-771)) NIL)) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) 103 (|has| |#1| (-365)))) (-4068 (($ $ (-1081)) NIL (|has| |#1| (-172))) ((|#1| $) NIL (|has| |#1| (-172)))) (-3629 (($ $ (-1081)) NIL) (($ $ (-644 (-1081))) NIL) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL) (($ $ (-771)) NIL) (($ $) NIL) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3902 (((-771) $) 38) (((-771) $ (-1081)) NIL) (((-644 (-771)) $ (-644 (-1081))) NIL)) (-2376 (((-892 (-381)) $) NIL (-12 (|has| (-1081) (-614 (-892 (-381)))) (|has| |#1| (-614 (-892 (-381)))))) (((-892 (-566)) $) NIL (-12 (|has| (-1081) (-614 (-892 (-566)))) (|has| |#1| (-614 (-892 (-566)))))) (((-538) $) NIL (-12 (|has| (-1081) (-614 (-538))) (|has| |#1| (-614 (-538)))))) (-3173 ((|#1| $) NIL (|has| |#1| (-454))) (($ $ (-1081)) NIL (|has| |#1| (-454)))) (-3391 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-909))))) (-2113 (((-958 $)) 42)) (-2529 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558))) (((-3 (-409 $) "failed") (-409 $) $) NIL (|has| |#1| (-558)))) (-3152 (((-862) $) 71) (($ (-566)) NIL) (($ |#1|) 68) (($ (-1081)) NIL) (($ |#2|) 78) (($ (-409 (-566))) NIL (-2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566)))))) (($ $) NIL (|has| |#1| (-558)))) (-1643 (((-644 |#1|) $) NIL)) (-2271 ((|#1| $ (-771)) 73) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL)) (-2633 (((-3 $ "failed") $) NIL (-2768 (-12 (|has| $ (-145)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-2593 (((-771)) NIL T CONST)) (-2021 (($ $ $ (-771)) NIL (|has| |#1| (-172)))) (-3044 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL (|has| |#1| (-558)))) (-4356 (($) 25 T CONST)) (-1405 (((-1264 |#1|) $) 86)) (-1717 (($ (-1264 |#1|)) 60)) (-4366 (($) 8 T CONST)) (-3497 (($ $ (-1081)) NIL) (($ $ (-644 (-1081))) NIL) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL) (($ $ (-771)) NIL) (($ $) NIL) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3798 (((-1264 |#1|) $) NIL)) (-2914 (((-112) $ $) 79)) (-3025 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3012 (($ $) 82) (($ $ $) NIL)) (-3002 (($ $ $) 39)) (** (($ $ (-921)) NIL) (($ $ (-771)) 97)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 67) (($ $ $) 85) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) 65) (($ $ |#1|) NIL))) +(((-712 |#1| |#2|) (-13 (-1240 |#1|) (-616 |#2|) (-10 -8 (-15 -3704 (|#2| |#2|)) (-15 -3206 (|#2|)) (-15 -2873 ($ |#2|)) (-15 -2860 (|#2| $)) (-15 -1405 ((-1264 |#1|) $)) (-15 -1717 ($ (-1264 |#1|))) (-15 -3798 ((-1264 |#1|) $)) (-15 -4125 ((-958 $))) (-15 -2113 ((-958 $))) (IF (|has| |#1| (-351)) (-15 -3397 ($ $)) |%noBranch|) (IF (|has| |#1| (-370)) (-6 (-370)) |%noBranch|))) (-1049) (-1240 |#1|)) (T -712)) +((-3704 (*1 *2 *2) (-12 (-4 *3 (-1049)) (-5 *1 (-712 *3 *2)) (-4 *2 (-1240 *3)))) (-3206 (*1 *2) (-12 (-4 *2 (-1240 *3)) (-5 *1 (-712 *3 *2)) (-4 *3 (-1049)))) (-2873 (*1 *1 *2) (-12 (-4 *3 (-1049)) (-5 *1 (-712 *3 *2)) (-4 *2 (-1240 *3)))) (-2860 (*1 *2 *1) (-12 (-4 *2 (-1240 *3)) (-5 *1 (-712 *3 *2)) (-4 *3 (-1049)))) (-1405 (*1 *2 *1) (-12 (-4 *3 (-1049)) (-5 *2 (-1264 *3)) (-5 *1 (-712 *3 *4)) (-4 *4 (-1240 *3)))) (-1717 (*1 *1 *2) (-12 (-5 *2 (-1264 *3)) (-4 *3 (-1049)) (-5 *1 (-712 *3 *4)) (-4 *4 (-1240 *3)))) (-3798 (*1 *2 *1) (-12 (-4 *3 (-1049)) (-5 *2 (-1264 *3)) (-5 *1 (-712 *3 *4)) (-4 *4 (-1240 *3)))) (-4125 (*1 *2) (-12 (-4 *3 (-1049)) (-5 *2 (-958 (-712 *3 *4))) (-5 *1 (-712 *3 *4)) (-4 *4 (-1240 *3)))) (-2113 (*1 *2) (-12 (-4 *3 (-1049)) (-5 *2 (-958 (-712 *3 *4))) (-5 *1 (-712 *3 *4)) (-4 *4 (-1240 *3)))) (-3397 (*1 *1 *1) (-12 (-4 *2 (-351)) (-4 *2 (-1049)) (-5 *1 (-712 *2 *3)) (-4 *3 (-1240 *2))))) +(-13 (-1240 |#1|) (-616 |#2|) (-10 -8 (-15 -3704 (|#2| |#2|)) (-15 -3206 (|#2|)) (-15 -2873 ($ |#2|)) (-15 -2860 (|#2| $)) (-15 -1405 ((-1264 |#1|) $)) (-15 -1717 ($ (-1264 |#1|))) (-15 -3798 ((-1264 |#1|) $)) (-15 -4125 ((-958 $))) (-15 -2113 ((-958 $))) (IF (|has| |#1| (-351)) (-15 -3397 ($ $)) |%noBranch|) (IF (|has| |#1| (-370)) (-6 (-370)) |%noBranch|))) +((-2988 (((-112) $ $) NIL)) (-1478 (($ $ $) NIL)) (-2599 (($ $ $) NIL)) (-3380 (((-1157) $) NIL)) (-2835 ((|#1| $) 13)) (-4072 (((-1119) $) NIL)) (-2201 ((|#2| $) 12)) (-1340 (($ |#1| |#2|) 16)) (-3152 (((-862) $) NIL) (($ (-2 (|:| -2835 |#1|) (|:| -2201 |#2|))) 15) (((-2 (|:| -2835 |#1|) (|:| -2201 |#2|)) $) 14)) (-3044 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2935 (((-112) $ $) 11))) +(((-713 |#1| |#2| |#3|) (-13 (-850) (-492 (-2 (|:| -2835 |#1|) (|:| -2201 |#2|))) (-10 -8 (-15 -2201 (|#2| $)) (-15 -2835 (|#1| $)) (-15 -1340 ($ |#1| |#2|)))) (-850) (-1099) (-1 (-112) (-2 (|:| -2835 |#1|) (|:| -2201 |#2|)) (-2 (|:| -2835 |#1|) (|:| -2201 |#2|)))) (T -713)) +((-2201 (*1 *2 *1) (-12 (-4 *2 (-1099)) (-5 *1 (-713 *3 *2 *4)) (-4 *3 (-850)) (-14 *4 (-1 (-112) (-2 (|:| -2835 *3) (|:| -2201 *2)) (-2 (|:| -2835 *3) (|:| -2201 *2)))))) (-2835 (*1 *2 *1) (-12 (-4 *2 (-850)) (-5 *1 (-713 *2 *3 *4)) (-4 *3 (-1099)) (-14 *4 (-1 (-112) (-2 (|:| -2835 *2) (|:| -2201 *3)) (-2 (|:| -2835 *2) (|:| -2201 *3)))))) (-1340 (*1 *1 *2 *3) (-12 (-5 *1 (-713 *2 *3 *4)) (-4 *2 (-850)) (-4 *3 (-1099)) (-14 *4 (-1 (-112) (-2 (|:| -2835 *2) (|:| -2201 *3)) (-2 (|:| -2835 *2) (|:| -2201 *3))))))) +(-13 (-850) (-492 (-2 (|:| -2835 |#1|) (|:| -2201 |#2|))) (-10 -8 (-15 -2201 (|#2| $)) (-15 -2835 (|#1| $)) (-15 -1340 ($ |#1| |#2|)))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) 66)) (-3967 (((-3 $ "failed") $ $) NIL)) (-2463 (($) NIL T CONST)) (-2229 (((-3 |#1| "failed") $) 105) (((-3 (-114) "failed") $) 111)) (-4158 ((|#1| $) NIL) (((-114) $) 39)) (-3245 (((-3 $ "failed") $) 106)) (-3448 ((|#2| (-114) |#2|) 93)) (-2389 (((-112) $) NIL)) (-1985 (($ |#1| (-363 (-114))) 14)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-2122 (($ $ (-1 |#2| |#2|)) 65)) (-2359 (($ $ (-1 |#2| |#2|)) 44)) (-1309 ((|#2| $ |#2|) 33)) (-1772 ((|#1| |#1|) 121 (|has| |#1| (-172)))) (-3152 (((-862) $) 73) (($ (-566)) 18) (($ |#1|) 17) (($ (-114)) 23)) (-2633 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2593 (((-771)) 37 T CONST)) (-3044 (((-112) $ $) NIL)) (-3045 (($ $) 115 (|has| |#1| (-172))) (($ $ $) 119 (|has| |#1| (-172)))) (-4356 (($) 21 T CONST)) (-4366 (($) 9 T CONST)) (-2914 (((-112) $ $) NIL)) (-3012 (($ $) 48) (($ $ $) NIL)) (-3002 (($ $ $) 83)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ (-114) (-566)) NIL) (($ $ (-566)) 64)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 114) (($ $ $) 53) (($ |#1| $) 112 (|has| |#1| (-172))) (($ $ |#1|) 113 (|has| |#1| (-172))))) +(((-714 |#1| |#2|) (-13 (-1049) (-1038 |#1|) (-1038 (-114)) (-287 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -3045 ($ $)) (-15 -3045 ($ $ $)) (-15 -1772 (|#1| |#1|))) |%noBranch|) (-15 -2359 ($ $ (-1 |#2| |#2|))) (-15 -2122 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-566))) (-15 ** ($ $ (-566))) (-15 -3448 (|#2| (-114) |#2|)) (-15 -1985 ($ |#1| (-363 (-114)))))) (-1049) (-648 |#1|)) (T -714)) +((-3045 (*1 *1 *1) (-12 (-4 *2 (-172)) (-4 *2 (-1049)) (-5 *1 (-714 *2 *3)) (-4 *3 (-648 *2)))) (-3045 (*1 *1 *1 *1) (-12 (-4 *2 (-172)) (-4 *2 (-1049)) (-5 *1 (-714 *2 *3)) (-4 *3 (-648 *2)))) (-1772 (*1 *2 *2) (-12 (-4 *2 (-172)) (-4 *2 (-1049)) (-5 *1 (-714 *2 *3)) (-4 *3 (-648 *2)))) (-2359 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-648 *3)) (-4 *3 (-1049)) (-5 *1 (-714 *3 *4)))) (-2122 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-648 *3)) (-4 *3 (-1049)) (-5 *1 (-714 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-566)) (-4 *4 (-1049)) (-5 *1 (-714 *4 *5)) (-4 *5 (-648 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-4 *3 (-1049)) (-5 *1 (-714 *3 *4)) (-4 *4 (-648 *3)))) (-3448 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-4 *4 (-1049)) (-5 *1 (-714 *4 *2)) (-4 *2 (-648 *4)))) (-1985 (*1 *1 *2 *3) (-12 (-5 *3 (-363 (-114))) (-4 *2 (-1049)) (-5 *1 (-714 *2 *4)) (-4 *4 (-648 *2))))) +(-13 (-1049) (-1038 |#1|) (-1038 (-114)) (-287 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -3045 ($ $)) (-15 -3045 ($ $ $)) (-15 -1772 (|#1| |#1|))) |%noBranch|) (-15 -2359 ($ $ (-1 |#2| |#2|))) (-15 -2122 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-566))) (-15 ** ($ $ (-566))) (-15 -3448 (|#2| (-114) |#2|)) (-15 -1985 ($ |#1| (-363 (-114)))))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) 33)) (-3967 (((-3 $ "failed") $ $) NIL)) (-2463 (($) NIL T CONST)) (-2873 (($ |#1| |#2|) 25)) (-3245 (((-3 $ "failed") $) 51)) (-2389 (((-112) $) 35)) (-3206 ((|#2| $) 12)) (-3380 (((-1157) $) NIL)) (-2748 (($ $) 52)) (-4072 (((-1119) $) NIL)) (-1371 (((-3 $ "failed") $ $) 50)) (-3152 (((-862) $) 24) (($ (-566)) 19) ((|#1| $) 13)) (-2593 (((-771)) 28 T CONST)) (-3044 (((-112) $ $) NIL)) (-4356 (($) 16 T CONST)) (-4366 (($) 30 T CONST)) (-2914 (((-112) $ $) 41)) (-3012 (($ $) 46) (($ $ $) 40)) (-3002 (($ $ $) 43)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 21) (($ $ $) 20))) +(((-715 |#1| |#2| |#3| |#4| |#5|) (-13 (-1049) (-10 -8 (-15 -3206 (|#2| $)) (-15 -3152 (|#1| $)) (-15 -2873 ($ |#1| |#2|)) (-15 -1371 ((-3 $ "failed") $ $)) (-15 -3245 ((-3 $ "failed") $)) (-15 -2748 ($ $)))) (-172) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -715)) +((-3245 (*1 *1 *1) (|partial| -12 (-5 *1 (-715 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3206 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-715 *3 *2 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3152 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-715 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2873 (*1 *1 *2 *3) (-12 (-5 *1 (-715 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1371 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-715 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2748 (*1 *1 *1) (-12 (-5 *1 (-715 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-1049) (-10 -8 (-15 -3206 (|#2| $)) (-15 -3152 (|#1| $)) (-15 -2873 ($ |#1| |#2|)) (-15 -1371 ((-3 $ "failed") $ $)) (-15 -3245 ((-3 $ "failed") $)) (-15 -2748 ($ $)))) ((* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) (((-716 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-921) |#1|))) (-717 |#2|) (-172)) (T -716)) NIL (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-921) |#1|))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-4175 (((-3 $ "failed") $ $) 20)) (-3012 (($) 18 T CONST)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3783 (((-862) $) 12)) (-3117 (((-112) $ $) 9)) (-2479 (($) 19 T CONST)) (-2947 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-3967 (((-3 $ "failed") $ $) 20)) (-2463 (($) 18 T CONST)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3152 (((-862) $) 12)) (-3044 (((-112) $ $) 9)) (-4356 (($) 19 T CONST)) (-2914 (((-112) $ $) 6)) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) (((-717 |#1|) (-140) (-172)) (T -717)) NIL (-13 (-111 |t#1| |t#1|) (-640 |t#1|)) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-648 |#1|) . T) ((-640 |#1|) . T) ((-1051 |#1|) . T) ((-1056 |#1|) . T) ((-1099) . T)) -((-3007 (((-112) $ $) NIL)) (-3136 (($ |#1|) 17) (($ $ |#1|) 20)) (-1389 (($ |#1|) 18) (($ $ |#1|) 21)) (-3012 (($) NIL T CONST)) (-1878 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-3934 (((-112) $) NIL)) (-1959 (($ |#1| |#1| |#1| |#1|) 8)) (-4117 (((-1157) $) NIL)) (-1713 (($ $) 16)) (-4035 (((-1119) $) NIL)) (-2055 ((|#1| $ |#1|) 24) (((-833 |#1|) $ (-833 |#1|)) 32)) (-2358 (($ $ $) NIL)) (-3171 (($ $ $) NIL)) (-3783 (((-862) $) 39)) (-3117 (((-112) $ $) NIL)) (-4334 (($) 9 T CONST)) (-2947 (((-112) $ $) 48)) (-3065 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ $ $) 14))) -(((-718 |#1|) (-13 (-475) (-10 -8 (-15 -1959 ($ |#1| |#1| |#1| |#1|)) (-15 -3136 ($ |#1|)) (-15 -1389 ($ |#1|)) (-15 -1878 ($)) (-15 -3136 ($ $ |#1|)) (-15 -1389 ($ $ |#1|)) (-15 -1878 ($ $)) (-15 -2055 (|#1| $ |#1|)) (-15 -2055 ((-833 |#1|) $ (-833 |#1|))))) (-365)) (T -718)) -((-1959 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365)))) (-3136 (*1 *1 *2) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365)))) (-1389 (*1 *1 *2) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365)))) (-1878 (*1 *1) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365)))) (-3136 (*1 *1 *1 *2) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365)))) (-1389 (*1 *1 *1 *2) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365)))) (-1878 (*1 *1 *1) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365)))) (-2055 (*1 *2 *1 *2) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365)))) (-2055 (*1 *2 *1 *2) (-12 (-5 *2 (-833 *3)) (-4 *3 (-365)) (-5 *1 (-718 *3))))) -(-13 (-475) (-10 -8 (-15 -1959 ($ |#1| |#1| |#1| |#1|)) (-15 -3136 ($ |#1|)) (-15 -1389 ($ |#1|)) (-15 -1878 ($)) (-15 -3136 ($ $ |#1|)) (-15 -1389 ($ $ |#1|)) (-15 -1878 ($ $)) (-15 -2055 (|#1| $ |#1|)) (-15 -2055 ((-833 |#1|) $ (-833 |#1|))))) -((-3942 (($ $ (-921)) 21)) (-2437 (($ $ (-921)) 22)) (** (($ $ (-921)) 10))) -(((-719 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-921))) (-15 -2437 (|#1| |#1| (-921))) (-15 -3942 (|#1| |#1| (-921)))) (-720)) (T -719)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-921))) (-15 -2437 (|#1| |#1| (-921))) (-15 -3942 (|#1| |#1| (-921)))) -((-3007 (((-112) $ $) 7)) (-3942 (($ $ (-921)) 16)) (-2437 (($ $ (-921)) 15)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3783 (((-862) $) 12)) (-3117 (((-112) $ $) 9)) (-2947 (((-112) $ $) 6)) (** (($ $ (-921)) 14)) (* (($ $ $) 17))) +((-2988 (((-112) $ $) NIL)) (-3764 (($ |#1|) 17) (($ $ |#1|) 20)) (-2406 (($ |#1|) 18) (($ $ |#1|) 21)) (-2463 (($) NIL T CONST)) (-3245 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-2389 (((-112) $) NIL)) (-1408 (($ |#1| |#1| |#1| |#1|) 8)) (-3380 (((-1157) $) NIL)) (-2748 (($ $) 16)) (-4072 (((-1119) $) NIL)) (-2023 ((|#1| $ |#1|) 24) (((-833 |#1|) $ (-833 |#1|)) 32)) (-3357 (($ $ $) NIL)) (-2527 (($ $ $) NIL)) (-3152 (((-862) $) 39)) (-3044 (((-112) $ $) NIL)) (-4366 (($) 9 T CONST)) (-2914 (((-112) $ $) 48)) (-3025 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ $ $) 14))) +(((-718 |#1|) (-13 (-475) (-10 -8 (-15 -1408 ($ |#1| |#1| |#1| |#1|)) (-15 -3764 ($ |#1|)) (-15 -2406 ($ |#1|)) (-15 -3245 ($)) (-15 -3764 ($ $ |#1|)) (-15 -2406 ($ $ |#1|)) (-15 -3245 ($ $)) (-15 -2023 (|#1| $ |#1|)) (-15 -2023 ((-833 |#1|) $ (-833 |#1|))))) (-365)) (T -718)) +((-1408 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365)))) (-3764 (*1 *1 *2) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365)))) (-2406 (*1 *1 *2) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365)))) (-3245 (*1 *1) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365)))) (-3764 (*1 *1 *1 *2) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365)))) (-2406 (*1 *1 *1 *2) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365)))) (-3245 (*1 *1 *1) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365)))) (-2023 (*1 *2 *1 *2) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365)))) (-2023 (*1 *2 *1 *2) (-12 (-5 *2 (-833 *3)) (-4 *3 (-365)) (-5 *1 (-718 *3))))) +(-13 (-475) (-10 -8 (-15 -1408 ($ |#1| |#1| |#1| |#1|)) (-15 -3764 ($ |#1|)) (-15 -2406 ($ |#1|)) (-15 -3245 ($)) (-15 -3764 ($ $ |#1|)) (-15 -2406 ($ $ |#1|)) (-15 -3245 ($ $)) (-15 -2023 (|#1| $ |#1|)) (-15 -2023 ((-833 |#1|) $ (-833 |#1|))))) +((-1856 (($ $ (-921)) 21)) (-3270 (($ $ (-921)) 22)) (** (($ $ (-921)) 10))) +(((-719 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-921))) (-15 -3270 (|#1| |#1| (-921))) (-15 -1856 (|#1| |#1| (-921)))) (-720)) (T -719)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-921))) (-15 -3270 (|#1| |#1| (-921))) (-15 -1856 (|#1| |#1| (-921)))) +((-2988 (((-112) $ $) 7)) (-1856 (($ $ (-921)) 16)) (-3270 (($ $ (-921)) 15)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3152 (((-862) $) 12)) (-3044 (((-112) $ $) 9)) (-2914 (((-112) $ $) 6)) (** (($ $ (-921)) 14)) (* (($ $ $) 17))) (((-720) (-140)) (T -720)) -((* (*1 *1 *1 *1) (-4 *1 (-720))) (-3942 (*1 *1 *1 *2) (-12 (-4 *1 (-720)) (-5 *2 (-921)))) (-2437 (*1 *1 *1 *2) (-12 (-4 *1 (-720)) (-5 *2 (-921)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-720)) (-5 *2 (-921))))) -(-13 (-1099) (-10 -8 (-15 * ($ $ $)) (-15 -3942 ($ $ (-921))) (-15 -2437 ($ $ (-921))) (-15 ** ($ $ (-921))))) +((* (*1 *1 *1 *1) (-4 *1 (-720))) (-1856 (*1 *1 *1 *2) (-12 (-4 *1 (-720)) (-5 *2 (-921)))) (-3270 (*1 *1 *1 *2) (-12 (-4 *1 (-720)) (-5 *2 (-921)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-720)) (-5 *2 (-921))))) +(-13 (-1099) (-10 -8 (-15 * ($ $ $)) (-15 -1856 ($ $ (-921))) (-15 -3270 ($ $ (-921))) (-15 ** ($ $ (-921))))) (((-102) . T) ((-613 (-862)) . T) ((-1099) . T)) -((-3942 (($ $ (-921)) NIL) (($ $ (-771)) 21)) (-3934 (((-112) $) 10)) (-2437 (($ $ (-921)) NIL) (($ $ (-771)) 22)) (** (($ $ (-921)) NIL) (($ $ (-771)) 16))) -(((-721 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-771))) (-15 -2437 (|#1| |#1| (-771))) (-15 -3942 (|#1| |#1| (-771))) (-15 -3934 ((-112) |#1|)) (-15 ** (|#1| |#1| (-921))) (-15 -2437 (|#1| |#1| (-921))) (-15 -3942 (|#1| |#1| (-921)))) (-722)) (T -721)) +((-1856 (($ $ (-921)) NIL) (($ $ (-771)) 21)) (-2389 (((-112) $) 10)) (-3270 (($ $ (-921)) NIL) (($ $ (-771)) 22)) (** (($ $ (-921)) NIL) (($ $ (-771)) 16))) +(((-721 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-771))) (-15 -3270 (|#1| |#1| (-771))) (-15 -1856 (|#1| |#1| (-771))) (-15 -2389 ((-112) |#1|)) (-15 ** (|#1| |#1| (-921))) (-15 -3270 (|#1| |#1| (-921))) (-15 -1856 (|#1| |#1| (-921)))) (-722)) (T -721)) NIL -(-10 -8 (-15 ** (|#1| |#1| (-771))) (-15 -2437 (|#1| |#1| (-771))) (-15 -3942 (|#1| |#1| (-771))) (-15 -3934 ((-112) |#1|)) (-15 ** (|#1| |#1| (-921))) (-15 -2437 (|#1| |#1| (-921))) (-15 -3942 (|#1| |#1| (-921)))) -((-3007 (((-112) $ $) 7)) (-2715 (((-3 $ "failed") $) 18)) (-3942 (($ $ (-921)) 16) (($ $ (-771)) 23)) (-1878 (((-3 $ "failed") $) 20)) (-3934 (((-112) $) 24)) (-2305 (((-3 $ "failed") $) 19)) (-2437 (($ $ (-921)) 15) (($ $ (-771)) 22)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3783 (((-862) $) 12)) (-3117 (((-112) $ $) 9)) (-4334 (($) 25 T CONST)) (-2947 (((-112) $ $) 6)) (** (($ $ (-921)) 14) (($ $ (-771)) 21)) (* (($ $ $) 17))) +(-10 -8 (-15 ** (|#1| |#1| (-771))) (-15 -3270 (|#1| |#1| (-771))) (-15 -1856 (|#1| |#1| (-771))) (-15 -2389 ((-112) |#1|)) (-15 ** (|#1| |#1| (-921))) (-15 -3270 (|#1| |#1| (-921))) (-15 -1856 (|#1| |#1| (-921)))) +((-2988 (((-112) $ $) 7)) (-4392 (((-3 $ "failed") $) 18)) (-1856 (($ $ (-921)) 16) (($ $ (-771)) 23)) (-3245 (((-3 $ "failed") $) 20)) (-2389 (((-112) $) 24)) (-2851 (((-3 $ "failed") $) 19)) (-3270 (($ $ (-921)) 15) (($ $ (-771)) 22)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3152 (((-862) $) 12)) (-3044 (((-112) $ $) 9)) (-4366 (($) 25 T CONST)) (-2914 (((-112) $ $) 6)) (** (($ $ (-921)) 14) (($ $ (-771)) 21)) (* (($ $ $) 17))) (((-722) (-140)) (T -722)) -((-4334 (*1 *1) (-4 *1 (-722))) (-3934 (*1 *2 *1) (-12 (-4 *1 (-722)) (-5 *2 (-112)))) (-3942 (*1 *1 *1 *2) (-12 (-4 *1 (-722)) (-5 *2 (-771)))) (-2437 (*1 *1 *1 *2) (-12 (-4 *1 (-722)) (-5 *2 (-771)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-722)) (-5 *2 (-771)))) (-1878 (*1 *1 *1) (|partial| -4 *1 (-722))) (-2305 (*1 *1 *1) (|partial| -4 *1 (-722))) (-2715 (*1 *1 *1) (|partial| -4 *1 (-722)))) -(-13 (-720) (-10 -8 (-15 (-4334) ($) -3704) (-15 -3934 ((-112) $)) (-15 -3942 ($ $ (-771))) (-15 -2437 ($ $ (-771))) (-15 ** ($ $ (-771))) (-15 -1878 ((-3 $ "failed") $)) (-15 -2305 ((-3 $ "failed") $)) (-15 -2715 ((-3 $ "failed") $)))) +((-4366 (*1 *1) (-4 *1 (-722))) (-2389 (*1 *2 *1) (-12 (-4 *1 (-722)) (-5 *2 (-112)))) (-1856 (*1 *1 *1 *2) (-12 (-4 *1 (-722)) (-5 *2 (-771)))) (-3270 (*1 *1 *1 *2) (-12 (-4 *1 (-722)) (-5 *2 (-771)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-722)) (-5 *2 (-771)))) (-3245 (*1 *1 *1) (|partial| -4 *1 (-722))) (-2851 (*1 *1 *1) (|partial| -4 *1 (-722))) (-4392 (*1 *1 *1) (|partial| -4 *1 (-722)))) +(-13 (-720) (-10 -8 (-15 (-4366) ($) -1623) (-15 -2389 ((-112) $)) (-15 -1856 ($ $ (-771))) (-15 -3270 ($ $ (-771))) (-15 ** ($ $ (-771))) (-15 -3245 ((-3 $ "failed") $)) (-15 -2851 ((-3 $ "failed") $)) (-15 -4392 ((-3 $ "failed") $)))) (((-102) . T) ((-613 (-862)) . T) ((-720) . T) ((-1099) . T)) -((-1970 (((-771)) 42)) (-4307 (((-3 (-566) "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-4205 (((-566) $) NIL) (((-409 (-566)) $) NIL) ((|#2| $) 23)) (-1676 (($ |#3|) NIL) (((-3 $ "failed") (-409 |#3|)) 53)) (-1878 (((-3 $ "failed") $) 73)) (-1552 (($) 47)) (-1577 ((|#2| $) 21)) (-3441 (($) 18)) (-3561 (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-1 |#2| |#2|)) 61) (($ $ (-644 (-1175)) (-644 (-771))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175)) NIL) (($ $ (-771)) NIL) (($ $) NIL)) (-3213 (((-689 |#2|) (-1264 $) (-1 |#2| |#2|)) 68)) (-1348 (((-1264 |#2|) $) NIL) (($ (-1264 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-1820 ((|#3| $) 39)) (-2365 (((-1264 $)) 36))) -(((-723 |#1| |#2| |#3|) (-10 -8 (-15 -3561 (|#1| |#1|)) (-15 -3561 (|#1| |#1| (-771))) (-15 -3561 (|#1| |#1| (-1175))) (-15 -3561 (|#1| |#1| (-644 (-1175)))) (-15 -3561 (|#1| |#1| (-1175) (-771))) (-15 -3561 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -1552 (|#1|)) (-15 -1970 ((-771))) (-15 -3561 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3561 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -3213 ((-689 |#2|) (-1264 |#1|) (-1 |#2| |#2|))) (-15 -1676 ((-3 |#1| "failed") (-409 |#3|))) (-15 -1348 (|#1| |#3|)) (-15 -1676 (|#1| |#3|)) (-15 -3441 (|#1|)) (-15 -4307 ((-3 |#2| "failed") |#1|)) (-15 -4205 (|#2| |#1|)) (-15 -4205 ((-409 (-566)) |#1|)) (-15 -4307 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -4205 ((-566) |#1|)) (-15 -4307 ((-3 (-566) "failed") |#1|)) (-15 -1348 (|#3| |#1|)) (-15 -1348 (|#1| (-1264 |#2|))) (-15 -1348 ((-1264 |#2|) |#1|)) (-15 -2365 ((-1264 |#1|))) (-15 -1820 (|#3| |#1|)) (-15 -1577 (|#2| |#1|)) (-15 -1878 ((-3 |#1| "failed") |#1|))) (-724 |#2| |#3|) (-172) (-1240 |#2|)) (T -723)) -((-1970 (*1 *2) (-12 (-4 *4 (-172)) (-4 *5 (-1240 *4)) (-5 *2 (-771)) (-5 *1 (-723 *3 *4 *5)) (-4 *3 (-724 *4 *5))))) -(-10 -8 (-15 -3561 (|#1| |#1|)) (-15 -3561 (|#1| |#1| (-771))) (-15 -3561 (|#1| |#1| (-1175))) (-15 -3561 (|#1| |#1| (-644 (-1175)))) (-15 -3561 (|#1| |#1| (-1175) (-771))) (-15 -3561 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -1552 (|#1|)) (-15 -1970 ((-771))) (-15 -3561 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3561 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -3213 ((-689 |#2|) (-1264 |#1|) (-1 |#2| |#2|))) (-15 -1676 ((-3 |#1| "failed") (-409 |#3|))) (-15 -1348 (|#1| |#3|)) (-15 -1676 (|#1| |#3|)) (-15 -3441 (|#1|)) (-15 -4307 ((-3 |#2| "failed") |#1|)) (-15 -4205 (|#2| |#1|)) (-15 -4205 ((-409 (-566)) |#1|)) (-15 -4307 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -4205 ((-566) |#1|)) (-15 -4307 ((-3 (-566) "failed") |#1|)) (-15 -1348 (|#3| |#1|)) (-15 -1348 (|#1| (-1264 |#2|))) (-15 -1348 ((-1264 |#2|) |#1|)) (-15 -2365 ((-1264 |#1|))) (-15 -1820 (|#3| |#1|)) (-15 -1577 (|#2| |#1|)) (-15 -1878 ((-3 |#1| "failed") |#1|))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) 102 (|has| |#1| (-365)))) (-3991 (($ $) 103 (|has| |#1| (-365)))) (-2388 (((-112) $) 105 (|has| |#1| (-365)))) (-1872 (((-689 |#1|) (-1264 $)) 53) (((-689 |#1|)) 68)) (-3837 ((|#1| $) 59)) (-3778 (((-1187 (-921) (-771)) (-566)) 155 (|has| |#1| (-351)))) (-4175 (((-3 $ "failed") $ $) 20)) (-1550 (($ $) 122 (|has| |#1| (-365)))) (-3184 (((-420 $) $) 123 (|has| |#1| (-365)))) (-2837 (((-112) $ $) 113 (|has| |#1| (-365)))) (-1970 (((-771)) 96 (|has| |#1| (-370)))) (-3012 (($) 18 T CONST)) (-4307 (((-3 (-566) "failed") $) 178 (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) 176 (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) 173)) (-4205 (((-566) $) 177 (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) 175 (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) 174)) (-2392 (($ (-1264 |#1|) (-1264 $)) 55) (($ (-1264 |#1|)) 71)) (-1910 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| |#1| (-351)))) (-2946 (($ $ $) 117 (|has| |#1| (-365)))) (-4360 (((-689 |#1|) $ (-1264 $)) 60) (((-689 |#1|) $) 66)) (-3577 (((-689 (-566)) (-689 $)) 172 (|has| |#1| (-639 (-566)))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) 171 (|has| |#1| (-639 (-566)))) (((-2 (|:| -4227 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) 170) (((-689 |#1|) (-689 $)) 169)) (-1676 (($ |#2|) 166) (((-3 $ "failed") (-409 |#2|)) 163 (|has| |#1| (-365)))) (-1878 (((-3 $ "failed") $) 37)) (-4313 (((-921)) 61)) (-1552 (($) 99 (|has| |#1| (-370)))) (-2957 (($ $ $) 116 (|has| |#1| (-365)))) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) 111 (|has| |#1| (-365)))) (-2781 (($) 157 (|has| |#1| (-351)))) (-3506 (((-112) $) 158 (|has| |#1| (-351)))) (-3369 (($ $ (-771)) 149 (|has| |#1| (-351))) (($ $) 148 (|has| |#1| (-351)))) (-3268 (((-112) $) 124 (|has| |#1| (-365)))) (-3254 (((-921) $) 160 (|has| |#1| (-351))) (((-833 (-921)) $) 146 (|has| |#1| (-351)))) (-3934 (((-112) $) 35)) (-1577 ((|#1| $) 58)) (-4363 (((-3 $ "failed") $) 150 (|has| |#1| (-351)))) (-3775 (((-3 (-644 $) "failed") (-644 $) $) 120 (|has| |#1| (-365)))) (-1627 ((|#2| $) 51 (|has| |#1| (-365)))) (-3681 (((-921) $) 98 (|has| |#1| (-370)))) (-1662 ((|#2| $) 164)) (-2167 (($ (-644 $)) 109 (|has| |#1| (-365))) (($ $ $) 108 (|has| |#1| (-365)))) (-4117 (((-1157) $) 10)) (-1713 (($ $) 125 (|has| |#1| (-365)))) (-1761 (($) 151 (|has| |#1| (-351)) CONST)) (-2178 (($ (-921)) 97 (|has| |#1| (-370)))) (-4035 (((-1119) $) 11)) (-3441 (($) 168)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) 110 (|has| |#1| (-365)))) (-2214 (($ (-644 $)) 107 (|has| |#1| (-365))) (($ $ $) 106 (|has| |#1| (-365)))) (-1548 (((-644 (-2 (|:| -3719 (-566)) (|:| -2852 (-566))))) 154 (|has| |#1| (-351)))) (-3719 (((-420 $) $) 121 (|has| |#1| (-365)))) (-3148 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 118 (|has| |#1| (-365)))) (-2994 (((-3 $ "failed") $ $) 101 (|has| |#1| (-365)))) (-3161 (((-3 (-644 $) "failed") (-644 $) $) 112 (|has| |#1| (-365)))) (-3039 (((-771) $) 114 (|has| |#1| (-365)))) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) 115 (|has| |#1| (-365)))) (-3652 ((|#1| (-1264 $)) 54) ((|#1|) 67)) (-1437 (((-771) $) 159 (|has| |#1| (-351))) (((-3 (-771) "failed") $ $) 147 (|has| |#1| (-351)))) (-3561 (($ $) 145 (-2809 (-2432 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-771)) 143 (-2809 (-2432 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-1175)) 141 (-2432 (|has| |#1| (-900 (-1175))) (|has| |#1| (-365)))) (($ $ (-644 (-1175))) 140 (-2432 (|has| |#1| (-900 (-1175))) (|has| |#1| (-365)))) (($ $ (-1175) (-771)) 139 (-2432 (|has| |#1| (-900 (-1175))) (|has| |#1| (-365)))) (($ $ (-644 (-1175)) (-644 (-771))) 138 (-2432 (|has| |#1| (-900 (-1175))) (|has| |#1| (-365)))) (($ $ (-1 |#1| |#1|) (-771)) 131 (|has| |#1| (-365))) (($ $ (-1 |#1| |#1|)) 130 (|has| |#1| (-365)))) (-3213 (((-689 |#1|) (-1264 $) (-1 |#1| |#1|)) 162 (|has| |#1| (-365)))) (-1616 ((|#2|) 167)) (-3974 (($) 156 (|has| |#1| (-351)))) (-2154 (((-1264 |#1|) $ (-1264 $)) 57) (((-689 |#1|) (-1264 $) (-1264 $)) 56) (((-1264 |#1|) $) 73) (((-689 |#1|) (-1264 $)) 72)) (-1348 (((-1264 |#1|) $) 70) (($ (-1264 |#1|)) 69) ((|#2| $) 179) (($ |#2|) 165)) (-1656 (((-3 (-1264 $) "failed") (-689 $)) 153 (|has| |#1| (-351)))) (-3783 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 44) (($ $) 100 (|has| |#1| (-365))) (($ (-409 (-566))) 95 (-2809 (|has| |#1| (-365)) (|has| |#1| (-1038 (-409 (-566))))))) (-3144 (($ $) 152 (|has| |#1| (-351))) (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-1820 ((|#2| $) 52)) (-2107 (((-771)) 32 T CONST)) (-3117 (((-112) $ $) 9)) (-2365 (((-1264 $)) 74)) (-2695 (((-112) $ $) 104 (|has| |#1| (-365)))) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-2875 (($ $) 144 (-2809 (-2432 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-771)) 142 (-2809 (-2432 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-1175)) 137 (-2432 (|has| |#1| (-900 (-1175))) (|has| |#1| (-365)))) (($ $ (-644 (-1175))) 136 (-2432 (|has| |#1| (-900 (-1175))) (|has| |#1| (-365)))) (($ $ (-1175) (-771)) 135 (-2432 (|has| |#1| (-900 (-1175))) (|has| |#1| (-365)))) (($ $ (-644 (-1175)) (-644 (-771))) 134 (-2432 (|has| |#1| (-900 (-1175))) (|has| |#1| (-365)))) (($ $ (-1 |#1| |#1|) (-771)) 133 (|has| |#1| (-365))) (($ $ (-1 |#1| |#1|)) 132 (|has| |#1| (-365)))) (-2947 (((-112) $ $) 6)) (-3065 (($ $ $) 129 (|has| |#1| (-365)))) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 126 (|has| |#1| (-365)))) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-409 (-566)) $) 128 (|has| |#1| (-365))) (($ $ (-409 (-566))) 127 (|has| |#1| (-365))))) +((-3870 (((-771)) 42)) (-2229 (((-3 (-566) "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-4158 (((-566) $) NIL) (((-409 (-566)) $) NIL) ((|#2| $) 23)) (-2873 (($ |#3|) NIL) (((-3 $ "failed") (-409 |#3|)) 53)) (-3245 (((-3 $ "failed") $) 73)) (-2715 (($) 47)) (-2064 ((|#2| $) 21)) (-3302 (($) 18)) (-3629 (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-1 |#2| |#2|)) 61) (($ $ (-644 (-1175)) (-644 (-771))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175)) NIL) (($ $ (-771)) NIL) (($ $) NIL)) (-3225 (((-689 |#2|) (-1264 $) (-1 |#2| |#2|)) 68)) (-2376 (((-1264 |#2|) $) NIL) (($ (-1264 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-2318 ((|#3| $) 39)) (-2875 (((-1264 $)) 36))) +(((-723 |#1| |#2| |#3|) (-10 -8 (-15 -3629 (|#1| |#1|)) (-15 -3629 (|#1| |#1| (-771))) (-15 -3629 (|#1| |#1| (-1175))) (-15 -3629 (|#1| |#1| (-644 (-1175)))) (-15 -3629 (|#1| |#1| (-1175) (-771))) (-15 -3629 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -2715 (|#1|)) (-15 -3870 ((-771))) (-15 -3629 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3629 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -3225 ((-689 |#2|) (-1264 |#1|) (-1 |#2| |#2|))) (-15 -2873 ((-3 |#1| "failed") (-409 |#3|))) (-15 -2376 (|#1| |#3|)) (-15 -2873 (|#1| |#3|)) (-15 -3302 (|#1|)) (-15 -2229 ((-3 |#2| "failed") |#1|)) (-15 -4158 (|#2| |#1|)) (-15 -4158 ((-409 (-566)) |#1|)) (-15 -2229 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -4158 ((-566) |#1|)) (-15 -2229 ((-3 (-566) "failed") |#1|)) (-15 -2376 (|#3| |#1|)) (-15 -2376 (|#1| (-1264 |#2|))) (-15 -2376 ((-1264 |#2|) |#1|)) (-15 -2875 ((-1264 |#1|))) (-15 -2318 (|#3| |#1|)) (-15 -2064 (|#2| |#1|)) (-15 -3245 ((-3 |#1| "failed") |#1|))) (-724 |#2| |#3|) (-172) (-1240 |#2|)) (T -723)) +((-3870 (*1 *2) (-12 (-4 *4 (-172)) (-4 *5 (-1240 *4)) (-5 *2 (-771)) (-5 *1 (-723 *3 *4 *5)) (-4 *3 (-724 *4 *5))))) +(-10 -8 (-15 -3629 (|#1| |#1|)) (-15 -3629 (|#1| |#1| (-771))) (-15 -3629 (|#1| |#1| (-1175))) (-15 -3629 (|#1| |#1| (-644 (-1175)))) (-15 -3629 (|#1| |#1| (-1175) (-771))) (-15 -3629 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -2715 (|#1|)) (-15 -3870 ((-771))) (-15 -3629 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3629 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -3225 ((-689 |#2|) (-1264 |#1|) (-1 |#2| |#2|))) (-15 -2873 ((-3 |#1| "failed") (-409 |#3|))) (-15 -2376 (|#1| |#3|)) (-15 -2873 (|#1| |#3|)) (-15 -3302 (|#1|)) (-15 -2229 ((-3 |#2| "failed") |#1|)) (-15 -4158 (|#2| |#1|)) (-15 -4158 ((-409 (-566)) |#1|)) (-15 -2229 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -4158 ((-566) |#1|)) (-15 -2229 ((-3 (-566) "failed") |#1|)) (-15 -2376 (|#3| |#1|)) (-15 -2376 (|#1| (-1264 |#2|))) (-15 -2376 ((-1264 |#2|) |#1|)) (-15 -2875 ((-1264 |#1|))) (-15 -2318 (|#3| |#1|)) (-15 -2064 (|#2| |#1|)) (-15 -3245 ((-3 |#1| "failed") |#1|))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) 102 (|has| |#1| (-365)))) (-2161 (($ $) 103 (|has| |#1| (-365)))) (-2345 (((-112) $) 105 (|has| |#1| (-365)))) (-3899 (((-689 |#1|) (-1264 $)) 53) (((-689 |#1|)) 68)) (-3833 ((|#1| $) 59)) (-2894 (((-1187 (-921) (-771)) (-566)) 155 (|has| |#1| (-351)))) (-3967 (((-3 $ "failed") $ $) 20)) (-1378 (($ $) 122 (|has| |#1| (-365)))) (-1364 (((-420 $) $) 123 (|has| |#1| (-365)))) (-2085 (((-112) $ $) 113 (|has| |#1| (-365)))) (-3870 (((-771)) 96 (|has| |#1| (-370)))) (-2463 (($) 18 T CONST)) (-2229 (((-3 (-566) "failed") $) 178 (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) 176 (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) 173)) (-4158 (((-566) $) 177 (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) 175 (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) 174)) (-1563 (($ (-1264 |#1|) (-1264 $)) 55) (($ (-1264 |#1|)) 71)) (-2347 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| |#1| (-351)))) (-2933 (($ $ $) 117 (|has| |#1| (-365)))) (-3578 (((-689 |#1|) $ (-1264 $)) 60) (((-689 |#1|) $) 66)) (-4089 (((-689 (-566)) (-689 $)) 172 (|has| |#1| (-639 (-566)))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) 171 (|has| |#1| (-639 (-566)))) (((-2 (|:| -3361 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) 170) (((-689 |#1|) (-689 $)) 169)) (-2873 (($ |#2|) 166) (((-3 $ "failed") (-409 |#2|)) 163 (|has| |#1| (-365)))) (-3245 (((-3 $ "failed") $) 37)) (-2755 (((-921)) 61)) (-2715 (($) 99 (|has| |#1| (-370)))) (-2945 (($ $ $) 116 (|has| |#1| (-365)))) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) 111 (|has| |#1| (-365)))) (-3359 (($) 157 (|has| |#1| (-351)))) (-2466 (((-112) $) 158 (|has| |#1| (-351)))) (-1574 (($ $ (-771)) 149 (|has| |#1| (-351))) (($ $) 148 (|has| |#1| (-351)))) (-1615 (((-112) $) 124 (|has| |#1| (-365)))) (-2679 (((-921) $) 160 (|has| |#1| (-351))) (((-833 (-921)) $) 146 (|has| |#1| (-351)))) (-2389 (((-112) $) 35)) (-2064 ((|#1| $) 58)) (-2621 (((-3 $ "failed") $) 150 (|has| |#1| (-351)))) (-3816 (((-3 (-644 $) "failed") (-644 $) $) 120 (|has| |#1| (-365)))) (-3468 ((|#2| $) 51 (|has| |#1| (-365)))) (-1866 (((-921) $) 98 (|has| |#1| (-370)))) (-2860 ((|#2| $) 164)) (-2128 (($ (-644 $)) 109 (|has| |#1| (-365))) (($ $ $) 108 (|has| |#1| (-365)))) (-3380 (((-1157) $) 10)) (-2748 (($ $) 125 (|has| |#1| (-365)))) (-3289 (($) 151 (|has| |#1| (-351)) CONST)) (-2835 (($ (-921)) 97 (|has| |#1| (-370)))) (-4072 (((-1119) $) 11)) (-3302 (($) 168)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) 110 (|has| |#1| (-365)))) (-2164 (($ (-644 $)) 107 (|has| |#1| (-365))) (($ $ $) 106 (|has| |#1| (-365)))) (-2442 (((-644 (-2 (|:| -1624 (-566)) (|:| -2201 (-566))))) 154 (|has| |#1| (-351)))) (-1624 (((-420 $) $) 121 (|has| |#1| (-365)))) (-3005 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) 118 (|has| |#1| (-365)))) (-2978 (((-3 $ "failed") $ $) 101 (|has| |#1| (-365)))) (-2915 (((-3 (-644 $) "failed") (-644 $) $) 112 (|has| |#1| (-365)))) (-4357 (((-771) $) 114 (|has| |#1| (-365)))) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) 115 (|has| |#1| (-365)))) (-4068 ((|#1| (-1264 $)) 54) ((|#1|) 67)) (-3169 (((-771) $) 159 (|has| |#1| (-351))) (((-3 (-771) "failed") $ $) 147 (|has| |#1| (-351)))) (-3629 (($ $) 145 (-2768 (-2415 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-771)) 143 (-2768 (-2415 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-1175)) 141 (-2415 (|has| |#1| (-900 (-1175))) (|has| |#1| (-365)))) (($ $ (-644 (-1175))) 140 (-2415 (|has| |#1| (-900 (-1175))) (|has| |#1| (-365)))) (($ $ (-1175) (-771)) 139 (-2415 (|has| |#1| (-900 (-1175))) (|has| |#1| (-365)))) (($ $ (-644 (-1175)) (-644 (-771))) 138 (-2415 (|has| |#1| (-900 (-1175))) (|has| |#1| (-365)))) (($ $ (-1 |#1| |#1|) (-771)) 131 (|has| |#1| (-365))) (($ $ (-1 |#1| |#1|)) 130 (|has| |#1| (-365)))) (-3225 (((-689 |#1|) (-1264 $) (-1 |#1| |#1|)) 162 (|has| |#1| (-365)))) (-1705 ((|#2|) 167)) (-4122 (($) 156 (|has| |#1| (-351)))) (-3350 (((-1264 |#1|) $ (-1264 $)) 57) (((-689 |#1|) (-1264 $) (-1264 $)) 56) (((-1264 |#1|) $) 73) (((-689 |#1|) (-1264 $)) 72)) (-2376 (((-1264 |#1|) $) 70) (($ (-1264 |#1|)) 69) ((|#2| $) 179) (($ |#2|) 165)) (-3391 (((-3 (-1264 $) "failed") (-689 $)) 153 (|has| |#1| (-351)))) (-3152 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 44) (($ $) 100 (|has| |#1| (-365))) (($ (-409 (-566))) 95 (-2768 (|has| |#1| (-365)) (|has| |#1| (-1038 (-409 (-566))))))) (-2633 (($ $) 152 (|has| |#1| (-351))) (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-2318 ((|#2| $) 52)) (-2593 (((-771)) 32 T CONST)) (-3044 (((-112) $ $) 9)) (-2875 (((-1264 $)) 74)) (-3014 (((-112) $ $) 104 (|has| |#1| (-365)))) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-3497 (($ $) 144 (-2768 (-2415 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-771)) 142 (-2768 (-2415 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-1175)) 137 (-2415 (|has| |#1| (-900 (-1175))) (|has| |#1| (-365)))) (($ $ (-644 (-1175))) 136 (-2415 (|has| |#1| (-900 (-1175))) (|has| |#1| (-365)))) (($ $ (-1175) (-771)) 135 (-2415 (|has| |#1| (-900 (-1175))) (|has| |#1| (-365)))) (($ $ (-644 (-1175)) (-644 (-771))) 134 (-2415 (|has| |#1| (-900 (-1175))) (|has| |#1| (-365)))) (($ $ (-1 |#1| |#1|) (-771)) 133 (|has| |#1| (-365))) (($ $ (-1 |#1| |#1|)) 132 (|has| |#1| (-365)))) (-2914 (((-112) $ $) 6)) (-3025 (($ $ $) 129 (|has| |#1| (-365)))) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 126 (|has| |#1| (-365)))) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-409 (-566)) $) 128 (|has| |#1| (-365))) (($ $ (-409 (-566))) 127 (|has| |#1| (-365))))) (((-724 |#1| |#2|) (-140) (-172) (-1240 |t#1|)) (T -724)) -((-3441 (*1 *1) (-12 (-4 *2 (-172)) (-4 *1 (-724 *2 *3)) (-4 *3 (-1240 *2)))) (-1616 (*1 *2) (-12 (-4 *1 (-724 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1240 *3)))) (-1676 (*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-724 *3 *2)) (-4 *2 (-1240 *3)))) (-1348 (*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-724 *3 *2)) (-4 *2 (-1240 *3)))) (-1662 (*1 *2 *1) (-12 (-4 *1 (-724 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1240 *3)))) (-1676 (*1 *1 *2) (|partial| -12 (-5 *2 (-409 *4)) (-4 *4 (-1240 *3)) (-4 *3 (-365)) (-4 *3 (-172)) (-4 *1 (-724 *3 *4)))) (-3213 (*1 *2 *3 *4) (-12 (-5 *3 (-1264 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) (-4 *1 (-724 *5 *6)) (-4 *5 (-172)) (-4 *6 (-1240 *5)) (-5 *2 (-689 *5))))) -(-13 (-411 |t#1| |t#2|) (-172) (-614 |t#2|) (-413 |t#1|) (-379 |t#1|) (-10 -8 (-15 -3441 ($)) (-15 -1616 (|t#2|)) (-15 -1676 ($ |t#2|)) (-15 -1348 ($ |t#2|)) (-15 -1662 (|t#2| $)) (IF (|has| |t#1| (-370)) (-6 (-370)) |%noBranch|) (IF (|has| |t#1| (-365)) (PROGN (-6 (-365)) (-6 (-231 |t#1|)) (-15 -1676 ((-3 $ "failed") (-409 |t#2|))) (-15 -3213 ((-689 |t#1|) (-1264 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-351)) (-6 (-351)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-38 |#1|) . T) ((-38 $) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-102) . T) ((-111 #0# #0#) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2809 (|has| |#1| (-351)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-616 #0#) -2809 (|has| |#1| (-1038 (-409 (-566)))) (|has| |#1| (-351)) (|has| |#1| (-365))) ((-616 (-566)) . T) ((-616 |#1|) . T) ((-616 $) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-613 (-862)) . T) ((-172) . T) ((-614 |#2|) . T) ((-231 |#1|) |has| |#1| (-365)) ((-233) -2809 (|has| |#1| (-351)) (-12 (|has| |#1| (-233)) (|has| |#1| (-365)))) ((-243) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-291) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-308) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-365) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-404) |has| |#1| (-351)) ((-370) -2809 (|has| |#1| (-370)) (|has| |#1| (-351))) ((-351) |has| |#1| (-351)) ((-372 |#1| |#2|) . T) ((-411 |#1| |#2|) . T) ((-379 |#1|) . T) ((-413 |#1|) . T) ((-454) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-558) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-646 #0#) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #0#) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #0#) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-640 |#1|) . T) ((-640 $) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-639 (-566)) |has| |#1| (-639 (-566))) ((-639 |#1|) . T) ((-717 #0#) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-717 |#1|) . T) ((-717 $) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-726) . T) ((-900 (-1175)) -12 (|has| |#1| (-365)) (|has| |#1| (-900 (-1175)))) ((-920) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-1038 (-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((-1038 (-566)) |has| |#1| (-1038 (-566))) ((-1038 |#1|) . T) ((-1051 #0#) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-1051 |#1|) . T) ((-1051 $) . T) ((-1056 #0#) -2809 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-1056 |#1|) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1150) |has| |#1| (-351)) ((-1218) -2809 (|has| |#1| (-351)) (|has| |#1| (-365)))) -((-3012 (($) 11)) (-1878 (((-3 $ "failed") $) 14)) (-3934 (((-112) $) 10)) (** (($ $ (-921)) NIL) (($ $ (-771)) 20))) -(((-725 |#1|) (-10 -8 (-15 -1878 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-771))) (-15 -3934 ((-112) |#1|)) (-15 -3012 (|#1|)) (-15 ** (|#1| |#1| (-921)))) (-726)) (T -725)) -NIL -(-10 -8 (-15 -1878 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-771))) (-15 -3934 ((-112) |#1|)) (-15 -3012 (|#1|)) (-15 ** (|#1| |#1| (-921)))) -((-3007 (((-112) $ $) 7)) (-3012 (($) 19 T CONST)) (-1878 (((-3 $ "failed") $) 16)) (-3934 (((-112) $) 18)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3783 (((-862) $) 12)) (-3117 (((-112) $ $) 9)) (-4334 (($) 20 T CONST)) (-2947 (((-112) $ $) 6)) (** (($ $ (-921)) 14) (($ $ (-771)) 17)) (* (($ $ $) 15))) +((-3302 (*1 *1) (-12 (-4 *2 (-172)) (-4 *1 (-724 *2 *3)) (-4 *3 (-1240 *2)))) (-1705 (*1 *2) (-12 (-4 *1 (-724 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1240 *3)))) (-2873 (*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-724 *3 *2)) (-4 *2 (-1240 *3)))) (-2376 (*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-724 *3 *2)) (-4 *2 (-1240 *3)))) (-2860 (*1 *2 *1) (-12 (-4 *1 (-724 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1240 *3)))) (-2873 (*1 *1 *2) (|partial| -12 (-5 *2 (-409 *4)) (-4 *4 (-1240 *3)) (-4 *3 (-365)) (-4 *3 (-172)) (-4 *1 (-724 *3 *4)))) (-3225 (*1 *2 *3 *4) (-12 (-5 *3 (-1264 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) (-4 *1 (-724 *5 *6)) (-4 *5 (-172)) (-4 *6 (-1240 *5)) (-5 *2 (-689 *5))))) +(-13 (-411 |t#1| |t#2|) (-172) (-614 |t#2|) (-413 |t#1|) (-379 |t#1|) (-10 -8 (-15 -3302 ($)) (-15 -1705 (|t#2|)) (-15 -2873 ($ |t#2|)) (-15 -2376 ($ |t#2|)) (-15 -2860 (|t#2| $)) (IF (|has| |t#1| (-370)) (-6 (-370)) |%noBranch|) (IF (|has| |t#1| (-365)) (PROGN (-6 (-365)) (-6 (-231 |t#1|)) (-15 -2873 ((-3 $ "failed") (-409 |t#2|))) (-15 -3225 ((-689 |t#1|) (-1264 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-351)) (-6 (-351)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) -2768 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-38 |#1|) . T) ((-38 $) -2768 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-102) . T) ((-111 #0# #0#) -2768 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2768 (|has| |#1| (-351)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-616 #0#) -2768 (|has| |#1| (-1038 (-409 (-566)))) (|has| |#1| (-351)) (|has| |#1| (-365))) ((-616 (-566)) . T) ((-616 |#1|) . T) ((-616 $) -2768 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-613 (-862)) . T) ((-172) . T) ((-614 |#2|) . T) ((-231 |#1|) |has| |#1| (-365)) ((-233) -2768 (|has| |#1| (-351)) (-12 (|has| |#1| (-233)) (|has| |#1| (-365)))) ((-243) -2768 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-291) -2768 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-308) -2768 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-365) -2768 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-404) |has| |#1| (-351)) ((-370) -2768 (|has| |#1| (-370)) (|has| |#1| (-351))) ((-351) |has| |#1| (-351)) ((-372 |#1| |#2|) . T) ((-411 |#1| |#2|) . T) ((-379 |#1|) . T) ((-413 |#1|) . T) ((-454) -2768 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-558) -2768 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-646 #0#) -2768 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #0#) -2768 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #0#) -2768 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-640 |#1|) . T) ((-640 $) -2768 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-639 (-566)) |has| |#1| (-639 (-566))) ((-639 |#1|) . T) ((-717 #0#) -2768 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-717 |#1|) . T) ((-717 $) -2768 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-726) . T) ((-900 (-1175)) -12 (|has| |#1| (-365)) (|has| |#1| (-900 (-1175)))) ((-920) -2768 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-1038 (-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((-1038 (-566)) |has| |#1| (-1038 (-566))) ((-1038 |#1|) . T) ((-1051 #0#) -2768 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-1051 |#1|) . T) ((-1051 $) . T) ((-1056 #0#) -2768 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-1056 |#1|) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1150) |has| |#1| (-351)) ((-1218) -2768 (|has| |#1| (-351)) (|has| |#1| (-365)))) +((-2463 (($) 11)) (-3245 (((-3 $ "failed") $) 14)) (-2389 (((-112) $) 10)) (** (($ $ (-921)) NIL) (($ $ (-771)) 20))) +(((-725 |#1|) (-10 -8 (-15 -3245 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-771))) (-15 -2389 ((-112) |#1|)) (-15 -2463 (|#1|)) (-15 ** (|#1| |#1| (-921)))) (-726)) (T -725)) +NIL +(-10 -8 (-15 -3245 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-771))) (-15 -2389 ((-112) |#1|)) (-15 -2463 (|#1|)) (-15 ** (|#1| |#1| (-921)))) +((-2988 (((-112) $ $) 7)) (-2463 (($) 19 T CONST)) (-3245 (((-3 $ "failed") $) 16)) (-2389 (((-112) $) 18)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3152 (((-862) $) 12)) (-3044 (((-112) $ $) 9)) (-4366 (($) 20 T CONST)) (-2914 (((-112) $ $) 6)) (** (($ $ (-921)) 14) (($ $ (-771)) 17)) (* (($ $ $) 15))) (((-726) (-140)) (T -726)) -((-4334 (*1 *1) (-4 *1 (-726))) (-3012 (*1 *1) (-4 *1 (-726))) (-3934 (*1 *2 *1) (-12 (-4 *1 (-726)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-726)) (-5 *2 (-771)))) (-1878 (*1 *1 *1) (|partial| -4 *1 (-726)))) -(-13 (-1111) (-10 -8 (-15 (-4334) ($) -3704) (-15 -3012 ($) -3704) (-15 -3934 ((-112) $)) (-15 ** ($ $ (-771))) (-15 -1878 ((-3 $ "failed") $)))) +((-4366 (*1 *1) (-4 *1 (-726))) (-2463 (*1 *1) (-4 *1 (-726))) (-2389 (*1 *2 *1) (-12 (-4 *1 (-726)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-726)) (-5 *2 (-771)))) (-3245 (*1 *1 *1) (|partial| -4 *1 (-726)))) +(-13 (-1111) (-10 -8 (-15 (-4366) ($) -1623) (-15 -2463 ($) -1623) (-15 -2389 ((-112) $)) (-15 ** ($ $ (-771))) (-15 -3245 ((-3 $ "failed") $)))) (((-102) . T) ((-613 (-862)) . T) ((-1111) . T) ((-1099) . T)) -((-3321 (((-2 (|:| -1486 (-420 |#2|)) (|:| |special| (-420 |#2|))) |#2| (-1 |#2| |#2|)) 39)) (-1815 (((-2 (|:| -1486 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2277 ((|#2| (-409 |#2|) (-1 |#2| |#2|)) 13)) (-3475 (((-2 (|:| |poly| |#2|) (|:| -1486 (-409 |#2|)) (|:| |special| (-409 |#2|))) (-409 |#2|) (-1 |#2| |#2|)) 48))) -(((-727 |#1| |#2|) (-10 -7 (-15 -1815 ((-2 (|:| -1486 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3321 ((-2 (|:| -1486 (-420 |#2|)) (|:| |special| (-420 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2277 (|#2| (-409 |#2|) (-1 |#2| |#2|))) (-15 -3475 ((-2 (|:| |poly| |#2|) (|:| -1486 (-409 |#2|)) (|:| |special| (-409 |#2|))) (-409 |#2|) (-1 |#2| |#2|)))) (-365) (-1240 |#1|)) (T -727)) -((-3475 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1240 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |poly| *6) (|:| -1486 (-409 *6)) (|:| |special| (-409 *6)))) (-5 *1 (-727 *5 *6)) (-5 *3 (-409 *6)))) (-2277 (*1 *2 *3 *4) (-12 (-5 *3 (-409 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1240 *5)) (-5 *1 (-727 *5 *2)) (-4 *5 (-365)))) (-3321 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1240 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| -1486 (-420 *3)) (|:| |special| (-420 *3)))) (-5 *1 (-727 *5 *3)))) (-1815 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1240 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| -1486 *3) (|:| |special| *3))) (-5 *1 (-727 *5 *3))))) -(-10 -7 (-15 -1815 ((-2 (|:| -1486 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3321 ((-2 (|:| -1486 (-420 |#2|)) (|:| |special| (-420 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2277 (|#2| (-409 |#2|) (-1 |#2| |#2|))) (-15 -3475 ((-2 (|:| |poly| |#2|) (|:| -1486 (-409 |#2|)) (|:| |special| (-409 |#2|))) (-409 |#2|) (-1 |#2| |#2|)))) -((-3907 ((|#7| (-644 |#5|) |#6|) NIL)) (-1301 ((|#7| (-1 |#5| |#4|) |#6|) 27))) -(((-728 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1301 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3907 (|#7| (-644 |#5|) |#6|))) (-850) (-793) (-793) (-1049) (-1049) (-949 |#4| |#2| |#1|) (-949 |#5| |#3| |#1|)) (T -728)) -((-3907 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *9)) (-4 *9 (-1049)) (-4 *5 (-850)) (-4 *6 (-793)) (-4 *8 (-1049)) (-4 *2 (-949 *9 *7 *5)) (-5 *1 (-728 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-793)) (-4 *4 (-949 *8 *6 *5)))) (-1301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1049)) (-4 *9 (-1049)) (-4 *5 (-850)) (-4 *6 (-793)) (-4 *2 (-949 *9 *7 *5)) (-5 *1 (-728 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-793)) (-4 *4 (-949 *8 *6 *5))))) -(-10 -7 (-15 -1301 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3907 (|#7| (-644 |#5|) |#6|))) -((-1301 ((|#7| (-1 |#2| |#1|) |#6|) 28))) -(((-729 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1301 (|#7| (-1 |#2| |#1|) |#6|))) (-850) (-850) (-793) (-793) (-1049) (-949 |#5| |#3| |#1|) (-949 |#5| |#4| |#2|)) (T -729)) -((-1301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-850)) (-4 *6 (-850)) (-4 *7 (-793)) (-4 *9 (-1049)) (-4 *2 (-949 *9 *8 *6)) (-5 *1 (-729 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-793)) (-4 *4 (-949 *9 *7 *5))))) -(-10 -7 (-15 -1301 (|#7| (-1 |#2| |#1|) |#6|))) -((-3719 (((-420 |#4|) |#4|) 42))) -(((-730 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3719 ((-420 |#4|) |#4|))) (-793) (-13 (-850) (-10 -8 (-15 -1348 ((-1175) $)) (-15 -1385 ((-3 $ "failed") (-1175))))) (-308) (-949 (-952 |#3|) |#1| |#2|)) (T -730)) -((-3719 (*1 *2 *3) (-12 (-4 *4 (-793)) (-4 *5 (-13 (-850) (-10 -8 (-15 -1348 ((-1175) $)) (-15 -1385 ((-3 $ "failed") (-1175)))))) (-4 *6 (-308)) (-5 *2 (-420 *3)) (-5 *1 (-730 *4 *5 *6 *3)) (-4 *3 (-949 (-952 *6) *4 *5))))) -(-10 -7 (-15 -3719 ((-420 |#4|) |#4|))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-3863 (((-644 (-864 |#1|)) $) NIL)) (-3683 (((-1171 $) $ (-864 |#1|)) NIL) (((-1171 |#2|) $) NIL)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#2| (-558)))) (-3991 (($ $) NIL (|has| |#2| (-558)))) (-2388 (((-112) $) NIL (|has| |#2| (-558)))) (-3367 (((-771) $) NIL) (((-771) $ (-644 (-864 |#1|))) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-1477 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-1550 (($ $) NIL (|has| |#2| (-454)))) (-3184 (((-420 $) $) NIL (|has| |#2| (-454)))) (-3717 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-3012 (($) NIL T CONST)) (-4307 (((-3 |#2| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#2| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#2| (-1038 (-566)))) (((-3 (-864 |#1|) "failed") $) NIL)) (-4205 ((|#2| $) NIL) (((-409 (-566)) $) NIL (|has| |#2| (-1038 (-409 (-566))))) (((-566) $) NIL (|has| |#2| (-1038 (-566)))) (((-864 |#1|) $) NIL)) (-2738 (($ $ $ (-864 |#1|)) NIL (|has| |#2| (-172)))) (-1786 (($ $) NIL)) (-3577 (((-689 (-566)) (-689 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -4227 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 $) (-1264 $)) NIL) (((-689 |#2|) (-689 $)) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-4075 (($ $) NIL (|has| |#2| (-454))) (($ $ (-864 |#1|)) NIL (|has| |#2| (-454)))) (-1774 (((-644 $) $) NIL)) (-3268 (((-112) $) NIL (|has| |#2| (-909)))) (-3635 (($ $ |#2| (-533 (-864 |#1|)) $) NIL)) (-2062 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| (-864 |#1|) (-886 (-381))) (|has| |#2| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| (-864 |#1|) (-886 (-566))) (|has| |#2| (-886 (-566)))))) (-3934 (((-112) $) NIL)) (-2614 (((-771) $) NIL)) (-3851 (($ (-1171 |#2|) (-864 |#1|)) NIL) (($ (-1171 $) (-864 |#1|)) NIL)) (-2288 (((-644 $) $) NIL)) (-3264 (((-112) $) NIL)) (-3840 (($ |#2| (-533 (-864 |#1|))) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-2044 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $ (-864 |#1|)) NIL)) (-3760 (((-533 (-864 |#1|)) $) NIL) (((-771) $ (-864 |#1|)) NIL) (((-644 (-771)) $ (-644 (-864 |#1|))) NIL)) (-4301 (($ (-1 (-533 (-864 |#1|)) (-533 (-864 |#1|))) $) NIL)) (-1301 (($ (-1 |#2| |#2|) $) NIL)) (-3169 (((-3 (-864 |#1|) "failed") $) NIL)) (-1749 (($ $) NIL)) (-1763 ((|#2| $) NIL)) (-2167 (($ (-644 $)) NIL (|has| |#2| (-454))) (($ $ $) NIL (|has| |#2| (-454)))) (-4117 (((-1157) $) NIL)) (-3714 (((-3 (-644 $) "failed") $) NIL)) (-2353 (((-3 (-644 $) "failed") $) NIL)) (-1518 (((-3 (-2 (|:| |var| (-864 |#1|)) (|:| -2852 (-771))) "failed") $) NIL)) (-4035 (((-1119) $) NIL)) (-1723 (((-112) $) NIL)) (-1736 ((|#2| $) NIL)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#2| (-454)))) (-2214 (($ (-644 $)) NIL (|has| |#2| (-454))) (($ $ $) NIL (|has| |#2| (-454)))) (-4303 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-3240 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-3719 (((-420 $) $) NIL (|has| |#2| (-909)))) (-2994 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-558))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-558)))) (-2055 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-864 |#1|) |#2|) NIL) (($ $ (-644 (-864 |#1|)) (-644 |#2|)) NIL) (($ $ (-864 |#1|) $) NIL) (($ $ (-644 (-864 |#1|)) (-644 $)) NIL)) (-3652 (($ $ (-864 |#1|)) NIL (|has| |#2| (-172)))) (-3561 (($ $ (-864 |#1|)) NIL) (($ $ (-644 (-864 |#1|))) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-3636 (((-533 (-864 |#1|)) $) NIL) (((-771) $ (-864 |#1|)) NIL) (((-644 (-771)) $ (-644 (-864 |#1|))) NIL)) (-1348 (((-892 (-381)) $) NIL (-12 (|has| (-864 |#1|) (-614 (-892 (-381)))) (|has| |#2| (-614 (-892 (-381)))))) (((-892 (-566)) $) NIL (-12 (|has| (-864 |#1|) (-614 (-892 (-566)))) (|has| |#2| (-614 (-892 (-566)))))) (((-538) $) NIL (-12 (|has| (-864 |#1|) (-614 (-538))) (|has| |#2| (-614 (-538)))))) (-2483 ((|#2| $) NIL (|has| |#2| (-454))) (($ $ (-864 |#1|)) NIL (|has| |#2| (-454)))) (-1656 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-909))))) (-3783 (((-862) $) NIL) (($ (-566)) NIL) (($ |#2|) NIL) (($ (-864 |#1|)) NIL) (($ $) NIL (|has| |#2| (-558))) (($ (-409 (-566))) NIL (-2809 (|has| |#2| (-38 (-409 (-566)))) (|has| |#2| (-1038 (-409 (-566))))))) (-4170 (((-644 |#2|) $) NIL)) (-2649 ((|#2| $ (-533 (-864 |#1|))) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-3144 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| $ (-145)) (|has| |#2| (-909))) (|has| |#2| (-145))))) (-2107 (((-771)) NIL T CONST)) (-3362 (($ $ $ (-771)) NIL (|has| |#2| (-172)))) (-3117 (((-112) $ $) NIL)) (-2695 (((-112) $ $) NIL (|has| |#2| (-558)))) (-2479 (($) NIL T CONST)) (-4334 (($) NIL T CONST)) (-2875 (($ $ (-864 |#1|)) NIL) (($ $ (-644 (-864 |#1|))) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-2947 (((-112) $ $) NIL)) (-3065 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL (|has| |#2| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#2| (-38 (-409 (-566))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +((-2211 (((-2 (|:| -2548 (-420 |#2|)) (|:| |special| (-420 |#2|))) |#2| (-1 |#2| |#2|)) 39)) (-3011 (((-2 (|:| -2548 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2822 ((|#2| (-409 |#2|) (-1 |#2| |#2|)) 13)) (-2461 (((-2 (|:| |poly| |#2|) (|:| -2548 (-409 |#2|)) (|:| |special| (-409 |#2|))) (-409 |#2|) (-1 |#2| |#2|)) 48))) +(((-727 |#1| |#2|) (-10 -7 (-15 -3011 ((-2 (|:| -2548 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2211 ((-2 (|:| -2548 (-420 |#2|)) (|:| |special| (-420 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2822 (|#2| (-409 |#2|) (-1 |#2| |#2|))) (-15 -2461 ((-2 (|:| |poly| |#2|) (|:| -2548 (-409 |#2|)) (|:| |special| (-409 |#2|))) (-409 |#2|) (-1 |#2| |#2|)))) (-365) (-1240 |#1|)) (T -727)) +((-2461 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1240 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |poly| *6) (|:| -2548 (-409 *6)) (|:| |special| (-409 *6)))) (-5 *1 (-727 *5 *6)) (-5 *3 (-409 *6)))) (-2822 (*1 *2 *3 *4) (-12 (-5 *3 (-409 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1240 *5)) (-5 *1 (-727 *5 *2)) (-4 *5 (-365)))) (-2211 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1240 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| -2548 (-420 *3)) (|:| |special| (-420 *3)))) (-5 *1 (-727 *5 *3)))) (-3011 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1240 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| -2548 *3) (|:| |special| *3))) (-5 *1 (-727 *5 *3))))) +(-10 -7 (-15 -3011 ((-2 (|:| -2548 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2211 ((-2 (|:| -2548 (-420 |#2|)) (|:| |special| (-420 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2822 (|#2| (-409 |#2|) (-1 |#2| |#2|))) (-15 -2461 ((-2 (|:| |poly| |#2|) (|:| -2548 (-409 |#2|)) (|:| |special| (-409 |#2|))) (-409 |#2|) (-1 |#2| |#2|)))) +((-1448 ((|#7| (-644 |#5|) |#6|) NIL)) (-2319 ((|#7| (-1 |#5| |#4|) |#6|) 27))) +(((-728 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2319 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -1448 (|#7| (-644 |#5|) |#6|))) (-850) (-793) (-793) (-1049) (-1049) (-949 |#4| |#2| |#1|) (-949 |#5| |#3| |#1|)) (T -728)) +((-1448 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *9)) (-4 *9 (-1049)) (-4 *5 (-850)) (-4 *6 (-793)) (-4 *8 (-1049)) (-4 *2 (-949 *9 *7 *5)) (-5 *1 (-728 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-793)) (-4 *4 (-949 *8 *6 *5)))) (-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1049)) (-4 *9 (-1049)) (-4 *5 (-850)) (-4 *6 (-793)) (-4 *2 (-949 *9 *7 *5)) (-5 *1 (-728 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-793)) (-4 *4 (-949 *8 *6 *5))))) +(-10 -7 (-15 -2319 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -1448 (|#7| (-644 |#5|) |#6|))) +((-2319 ((|#7| (-1 |#2| |#1|) |#6|) 28))) +(((-729 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2319 (|#7| (-1 |#2| |#1|) |#6|))) (-850) (-850) (-793) (-793) (-1049) (-949 |#5| |#3| |#1|) (-949 |#5| |#4| |#2|)) (T -729)) +((-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-850)) (-4 *6 (-850)) (-4 *7 (-793)) (-4 *9 (-1049)) (-4 *2 (-949 *9 *8 *6)) (-5 *1 (-729 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-793)) (-4 *4 (-949 *9 *7 *5))))) +(-10 -7 (-15 -2319 (|#7| (-1 |#2| |#1|) |#6|))) +((-1624 (((-420 |#4|) |#4|) 42))) +(((-730 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1624 ((-420 |#4|) |#4|))) (-793) (-13 (-850) (-10 -8 (-15 -2376 ((-1175) $)) (-15 -4347 ((-3 $ "failed") (-1175))))) (-308) (-949 (-952 |#3|) |#1| |#2|)) (T -730)) +((-1624 (*1 *2 *3) (-12 (-4 *4 (-793)) (-4 *5 (-13 (-850) (-10 -8 (-15 -2376 ((-1175) $)) (-15 -4347 ((-3 $ "failed") (-1175)))))) (-4 *6 (-308)) (-5 *2 (-420 *3)) (-5 *1 (-730 *4 *5 *6 *3)) (-4 *3 (-949 (-952 *6) *4 *5))))) +(-10 -7 (-15 -1624 ((-420 |#4|) |#4|))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-1771 (((-644 (-864 |#1|)) $) NIL)) (-1590 (((-1171 $) $ (-864 |#1|)) NIL) (((-1171 |#2|) $) NIL)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#2| (-558)))) (-2161 (($ $) NIL (|has| |#2| (-558)))) (-2345 (((-112) $) NIL (|has| |#2| (-558)))) (-1357 (((-771) $) NIL) (((-771) $ (-644 (-864 |#1|))) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-2292 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-1378 (($ $) NIL (|has| |#2| (-454)))) (-1364 (((-420 $) $) NIL (|has| |#2| (-454)))) (-4066 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-2463 (($) NIL T CONST)) (-2229 (((-3 |#2| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#2| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#2| (-1038 (-566)))) (((-3 (-864 |#1|) "failed") $) NIL)) (-4158 ((|#2| $) NIL) (((-409 (-566)) $) NIL (|has| |#2| (-1038 (-409 (-566))))) (((-566) $) NIL (|has| |#2| (-1038 (-566)))) (((-864 |#1|) $) NIL)) (-2610 (($ $ $ (-864 |#1|)) NIL (|has| |#2| (-172)))) (-2814 (($ $) NIL)) (-4089 (((-689 (-566)) (-689 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -3361 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 $) (-1264 $)) NIL) (((-689 |#2|) (-689 $)) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-2616 (($ $) NIL (|has| |#2| (-454))) (($ $ (-864 |#1|)) NIL (|has| |#2| (-454)))) (-2804 (((-644 $) $) NIL)) (-1615 (((-112) $) NIL (|has| |#2| (-909)))) (-1896 (($ $ |#2| (-533 (-864 |#1|)) $) NIL)) (-2926 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| (-864 |#1|) (-886 (-381))) (|has| |#2| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| (-864 |#1|) (-886 (-566))) (|has| |#2| (-886 (-566)))))) (-2389 (((-112) $) NIL)) (-3039 (((-771) $) NIL)) (-1757 (($ (-1171 |#2|) (-864 |#1|)) NIL) (($ (-1171 $) (-864 |#1|)) NIL)) (-1587 (((-644 $) $) NIL)) (-2497 (((-112) $) NIL)) (-1746 (($ |#2| (-533 (-864 |#1|))) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-2815 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $ (-864 |#1|)) NIL)) (-2749 (((-533 (-864 |#1|)) $) NIL) (((-771) $ (-864 |#1|)) NIL) (((-644 (-771)) $ (-644 (-864 |#1|))) NIL)) (-3021 (($ (-1 (-533 (-864 |#1|)) (-533 (-864 |#1|))) $) NIL)) (-2319 (($ (-1 |#2| |#2|) $) NIL)) (-2297 (((-3 (-864 |#1|) "failed") $) NIL)) (-2784 (($ $) NIL)) (-2794 ((|#2| $) NIL)) (-2128 (($ (-644 $)) NIL (|has| |#2| (-454))) (($ $ $) NIL (|has| |#2| (-454)))) (-3380 (((-1157) $) NIL)) (-3738 (((-3 (-644 $) "failed") $) NIL)) (-4199 (((-3 (-644 $) "failed") $) NIL)) (-4108 (((-3 (-2 (|:| |var| (-864 |#1|)) (|:| -2201 (-771))) "failed") $) NIL)) (-4072 (((-1119) $) NIL)) (-2761 (((-112) $) NIL)) (-2773 ((|#2| $) NIL)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#2| (-454)))) (-2164 (($ (-644 $)) NIL (|has| |#2| (-454))) (($ $ $) NIL (|has| |#2| (-454)))) (-2010 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-1893 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-1624 (((-420 $) $) NIL (|has| |#2| (-909)))) (-2978 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-558))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-558)))) (-2023 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-864 |#1|) |#2|) NIL) (($ $ (-644 (-864 |#1|)) (-644 |#2|)) NIL) (($ $ (-864 |#1|) $) NIL) (($ $ (-644 (-864 |#1|)) (-644 $)) NIL)) (-4068 (($ $ (-864 |#1|)) NIL (|has| |#2| (-172)))) (-3629 (($ $ (-864 |#1|)) NIL) (($ $ (-644 (-864 |#1|))) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-3902 (((-533 (-864 |#1|)) $) NIL) (((-771) $ (-864 |#1|)) NIL) (((-644 (-771)) $ (-644 (-864 |#1|))) NIL)) (-2376 (((-892 (-381)) $) NIL (-12 (|has| (-864 |#1|) (-614 (-892 (-381)))) (|has| |#2| (-614 (-892 (-381)))))) (((-892 (-566)) $) NIL (-12 (|has| (-864 |#1|) (-614 (-892 (-566)))) (|has| |#2| (-614 (-892 (-566)))))) (((-538) $) NIL (-12 (|has| (-864 |#1|) (-614 (-538))) (|has| |#2| (-614 (-538)))))) (-3173 ((|#2| $) NIL (|has| |#2| (-454))) (($ $ (-864 |#1|)) NIL (|has| |#2| (-454)))) (-3391 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-909))))) (-3152 (((-862) $) NIL) (($ (-566)) NIL) (($ |#2|) NIL) (($ (-864 |#1|)) NIL) (($ $) NIL (|has| |#2| (-558))) (($ (-409 (-566))) NIL (-2768 (|has| |#2| (-38 (-409 (-566)))) (|has| |#2| (-1038 (-409 (-566))))))) (-1643 (((-644 |#2|) $) NIL)) (-2271 ((|#2| $ (-533 (-864 |#1|))) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-2633 (((-3 $ "failed") $) NIL (-2768 (-12 (|has| $ (-145)) (|has| |#2| (-909))) (|has| |#2| (-145))))) (-2593 (((-771)) NIL T CONST)) (-2021 (($ $ $ (-771)) NIL (|has| |#2| (-172)))) (-3044 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL (|has| |#2| (-558)))) (-4356 (($) NIL T CONST)) (-4366 (($) NIL T CONST)) (-3497 (($ $ (-864 |#1|)) NIL) (($ $ (-644 (-864 |#1|))) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-2914 (((-112) $ $) NIL)) (-3025 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL (|has| |#2| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#2| (-38 (-409 (-566))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) (((-731 |#1| |#2|) (-949 |#2| (-533 (-864 |#1|)) (-864 |#1|)) (-644 (-1175)) (-1049)) (T -731)) NIL (-949 |#2| (-533 (-864 |#1|)) (-864 |#1|)) -((-1861 (((-2 (|:| -2660 (-952 |#3|)) (|:| -1544 (-952 |#3|))) |#4|) 14)) (-4125 ((|#4| |#4| |#2|) 33)) (-4273 ((|#4| (-409 (-952 |#3|)) |#2|) 64)) (-1848 ((|#4| (-1171 (-952 |#3|)) |#2|) 77)) (-1814 ((|#4| (-1171 |#4|) |#2|) 51)) (-2209 ((|#4| |#4| |#2|) 54)) (-3719 (((-420 |#4|) |#4|) 40))) -(((-732 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1861 ((-2 (|:| -2660 (-952 |#3|)) (|:| -1544 (-952 |#3|))) |#4|)) (-15 -2209 (|#4| |#4| |#2|)) (-15 -1814 (|#4| (-1171 |#4|) |#2|)) (-15 -4125 (|#4| |#4| |#2|)) (-15 -1848 (|#4| (-1171 (-952 |#3|)) |#2|)) (-15 -4273 (|#4| (-409 (-952 |#3|)) |#2|)) (-15 -3719 ((-420 |#4|) |#4|))) (-793) (-13 (-850) (-10 -8 (-15 -1348 ((-1175) $)))) (-558) (-949 (-409 (-952 |#3|)) |#1| |#2|)) (T -732)) -((-3719 (*1 *2 *3) (-12 (-4 *4 (-793)) (-4 *5 (-13 (-850) (-10 -8 (-15 -1348 ((-1175) $))))) (-4 *6 (-558)) (-5 *2 (-420 *3)) (-5 *1 (-732 *4 *5 *6 *3)) (-4 *3 (-949 (-409 (-952 *6)) *4 *5)))) (-4273 (*1 *2 *3 *4) (-12 (-4 *6 (-558)) (-4 *2 (-949 *3 *5 *4)) (-5 *1 (-732 *5 *4 *6 *2)) (-5 *3 (-409 (-952 *6))) (-4 *5 (-793)) (-4 *4 (-13 (-850) (-10 -8 (-15 -1348 ((-1175) $))))))) (-1848 (*1 *2 *3 *4) (-12 (-5 *3 (-1171 (-952 *6))) (-4 *6 (-558)) (-4 *2 (-949 (-409 (-952 *6)) *5 *4)) (-5 *1 (-732 *5 *4 *6 *2)) (-4 *5 (-793)) (-4 *4 (-13 (-850) (-10 -8 (-15 -1348 ((-1175) $))))))) (-4125 (*1 *2 *2 *3) (-12 (-4 *4 (-793)) (-4 *3 (-13 (-850) (-10 -8 (-15 -1348 ((-1175) $))))) (-4 *5 (-558)) (-5 *1 (-732 *4 *3 *5 *2)) (-4 *2 (-949 (-409 (-952 *5)) *4 *3)))) (-1814 (*1 *2 *3 *4) (-12 (-5 *3 (-1171 *2)) (-4 *2 (-949 (-409 (-952 *6)) *5 *4)) (-5 *1 (-732 *5 *4 *6 *2)) (-4 *5 (-793)) (-4 *4 (-13 (-850) (-10 -8 (-15 -1348 ((-1175) $))))) (-4 *6 (-558)))) (-2209 (*1 *2 *2 *3) (-12 (-4 *4 (-793)) (-4 *3 (-13 (-850) (-10 -8 (-15 -1348 ((-1175) $))))) (-4 *5 (-558)) (-5 *1 (-732 *4 *3 *5 *2)) (-4 *2 (-949 (-409 (-952 *5)) *4 *3)))) (-1861 (*1 *2 *3) (-12 (-4 *4 (-793)) (-4 *5 (-13 (-850) (-10 -8 (-15 -1348 ((-1175) $))))) (-4 *6 (-558)) (-5 *2 (-2 (|:| -2660 (-952 *6)) (|:| -1544 (-952 *6)))) (-5 *1 (-732 *4 *5 *6 *3)) (-4 *3 (-949 (-409 (-952 *6)) *4 *5))))) -(-10 -7 (-15 -1861 ((-2 (|:| -2660 (-952 |#3|)) (|:| -1544 (-952 |#3|))) |#4|)) (-15 -2209 (|#4| |#4| |#2|)) (-15 -1814 (|#4| (-1171 |#4|) |#2|)) (-15 -4125 (|#4| |#4| |#2|)) (-15 -1848 (|#4| (-1171 (-952 |#3|)) |#2|)) (-15 -4273 (|#4| (-409 (-952 |#3|)) |#2|)) (-15 -3719 ((-420 |#4|) |#4|))) -((-3719 (((-420 |#4|) |#4|) 54))) -(((-733 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3719 ((-420 |#4|) |#4|))) (-793) (-850) (-13 (-308) (-147)) (-949 (-409 |#3|) |#1| |#2|)) (T -733)) -((-3719 (*1 *2 *3) (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-13 (-308) (-147))) (-5 *2 (-420 *3)) (-5 *1 (-733 *4 *5 *6 *3)) (-4 *3 (-949 (-409 *6) *4 *5))))) -(-10 -7 (-15 -3719 ((-420 |#4|) |#4|))) -((-1301 (((-735 |#2| |#3|) (-1 |#2| |#1|) (-735 |#1| |#3|)) 18))) -(((-734 |#1| |#2| |#3|) (-10 -7 (-15 -1301 ((-735 |#2| |#3|) (-1 |#2| |#1|) (-735 |#1| |#3|)))) (-1049) (-1049) (-726)) (T -734)) -((-1301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-735 *5 *7)) (-4 *5 (-1049)) (-4 *6 (-1049)) (-4 *7 (-726)) (-5 *2 (-735 *6 *7)) (-5 *1 (-734 *5 *6 *7))))) -(-10 -7 (-15 -1301 ((-735 |#2| |#3|) (-1 |#2| |#1|) (-735 |#1| |#3|)))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) 38)) (-2775 (((-644 (-2 (|:| -1364 |#1|) (|:| -3319 |#2|))) $) 39)) (-4175 (((-3 $ "failed") $ $) NIL)) (-1970 (((-771)) 22 (-12 (|has| |#2| (-370)) (|has| |#1| (-370))))) (-3012 (($) NIL T CONST)) (-4307 (((-3 |#2| "failed") $) 78) (((-3 |#1| "failed") $) 81)) (-4205 ((|#2| $) NIL) ((|#1| $) NIL)) (-1786 (($ $) 104 (|has| |#2| (-850)))) (-1878 (((-3 $ "failed") $) 87)) (-1552 (($) 50 (-12 (|has| |#2| (-370)) (|has| |#1| (-370))))) (-3934 (((-112) $) NIL)) (-2614 (((-771) $) 72)) (-2288 (((-644 $) $) 54)) (-3264 (((-112) $) NIL)) (-3840 (($ |#1| |#2|) 17)) (-1301 (($ (-1 |#1| |#1|) $) 70)) (-3681 (((-921) $) 45 (-12 (|has| |#2| (-370)) (|has| |#1| (-370))))) (-1749 ((|#2| $) 103 (|has| |#2| (-850)))) (-1763 ((|#1| $) 102 (|has| |#2| (-850)))) (-4117 (((-1157) $) NIL)) (-2178 (($ (-921)) 37 (-12 (|has| |#2| (-370)) (|has| |#1| (-370))))) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 101) (($ (-566)) 61) (($ |#2|) 57) (($ |#1|) 58) (($ (-644 (-2 (|:| -1364 |#1|) (|:| -3319 |#2|)))) 11)) (-4170 (((-644 |#1|) $) 56)) (-2649 ((|#1| $ |#2|) 117)) (-3144 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2107 (((-771)) NIL T CONST)) (-3117 (((-112) $ $) NIL)) (-2479 (($) 12 T CONST)) (-4334 (($) 46 T CONST)) (-2947 (((-112) $ $) 107)) (-3053 (($ $) 63) (($ $ $) NIL)) (-3041 (($ $ $) 35)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 68) (($ $ $) 120) (($ |#1| $) 65 (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) -(((-735 |#1| |#2|) (-13 (-1049) (-1038 |#2|) (-1038 |#1|) (-10 -8 (-15 -3840 ($ |#1| |#2|)) (-15 -2649 (|#1| $ |#2|)) (-15 -3783 ($ (-644 (-2 (|:| -1364 |#1|) (|:| -3319 |#2|))))) (-15 -2775 ((-644 (-2 (|:| -1364 |#1|) (|:| -3319 |#2|))) $)) (-15 -1301 ($ (-1 |#1| |#1|) $)) (-15 -3264 ((-112) $)) (-15 -4170 ((-644 |#1|) $)) (-15 -2288 ((-644 $) $)) (-15 -2614 ((-771) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-370)) (IF (|has| |#2| (-370)) (-6 (-370)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-850)) (PROGN (-15 -1749 (|#2| $)) (-15 -1763 (|#1| $)) (-15 -1786 ($ $))) |%noBranch|))) (-1049) (-726)) (T -735)) -((-3840 (*1 *1 *2 *3) (-12 (-5 *1 (-735 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-726)))) (-2649 (*1 *2 *1 *3) (-12 (-4 *2 (-1049)) (-5 *1 (-735 *2 *3)) (-4 *3 (-726)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-644 (-2 (|:| -1364 *3) (|:| -3319 *4)))) (-4 *3 (-1049)) (-4 *4 (-726)) (-5 *1 (-735 *3 *4)))) (-2775 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| -1364 *3) (|:| -3319 *4)))) (-5 *1 (-735 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-726)))) (-1301 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1049)) (-5 *1 (-735 *3 *4)) (-4 *4 (-726)))) (-3264 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-735 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-726)))) (-4170 (*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-735 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-726)))) (-2288 (*1 *2 *1) (-12 (-5 *2 (-644 (-735 *3 *4))) (-5 *1 (-735 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-726)))) (-2614 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-735 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-726)))) (-1749 (*1 *2 *1) (-12 (-4 *2 (-726)) (-4 *2 (-850)) (-5 *1 (-735 *3 *2)) (-4 *3 (-1049)))) (-1763 (*1 *2 *1) (-12 (-4 *2 (-1049)) (-5 *1 (-735 *2 *3)) (-4 *3 (-850)) (-4 *3 (-726)))) (-1786 (*1 *1 *1) (-12 (-5 *1 (-735 *2 *3)) (-4 *3 (-850)) (-4 *2 (-1049)) (-4 *3 (-726))))) -(-13 (-1049) (-1038 |#2|) (-1038 |#1|) (-10 -8 (-15 -3840 ($ |#1| |#2|)) (-15 -2649 (|#1| $ |#2|)) (-15 -3783 ($ (-644 (-2 (|:| -1364 |#1|) (|:| -3319 |#2|))))) (-15 -2775 ((-644 (-2 (|:| -1364 |#1|) (|:| -3319 |#2|))) $)) (-15 -1301 ($ (-1 |#1| |#1|) $)) (-15 -3264 ((-112) $)) (-15 -4170 ((-644 |#1|) $)) (-15 -2288 ((-644 $) $)) (-15 -2614 ((-771) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-370)) (IF (|has| |#2| (-370)) (-6 (-370)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-850)) (PROGN (-15 -1749 (|#2| $)) (-15 -1763 (|#1| $)) (-15 -1786 ($ $))) |%noBranch|))) -((-3007 (((-112) $ $) 19)) (-1756 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-2204 (($ $ $) 73)) (-2904 (((-112) $ $) 74)) (-2256 (((-112) $ (-771)) 8)) (-3700 (($ (-644 |#1|)) 69) (($) 68)) (-4016 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4414)))) (-2701 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4414)))) (-3012 (($) 7 T CONST)) (-3657 (($ $) 63)) (-2031 (($ $) 59 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2956 (($ |#1| $) 48 (|has| $ (-6 -4414))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4414)))) (-2665 (($ |#1| $) 58 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4414)))) (-1676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4414)))) (-3979 (((-644 |#1|) $) 31 (|has| $ (-6 -4414)))) (-2376 (((-112) $ $) 65)) (-2404 (((-112) $ (-771)) 9)) (-2329 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2908 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#1| |#1|) $) 36)) (-2603 (((-112) $ (-771)) 10)) (-4117 (((-1157) $) 22)) (-4018 (($ $ $) 70)) (-4039 ((|#1| $) 40)) (-3406 (($ |#1| $) 41) (($ |#1| $ (-771)) 64)) (-4035 (((-1119) $) 21)) (-2006 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2539 ((|#1| $) 42)) (-2692 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) 14)) (-3467 (((-112) $) 11)) (-1494 (($) 12)) (-3014 (((-644 (-2 (|:| -3867 |#1|) (|:| -4045 (-771)))) $) 62)) (-4340 (($ $ |#1|) 72) (($ $ $) 71)) (-3481 (($) 50) (($ (-644 |#1|)) 49)) (-4045 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-3940 (($ $) 13)) (-1348 (((-538) $) 60 (|has| |#1| (-614 (-538))))) (-3796 (($ (-644 |#1|)) 51)) (-3783 (((-862) $) 18)) (-3788 (($ (-644 |#1|)) 67) (($) 66)) (-3117 (((-112) $ $) 23)) (-1748 (($ (-644 |#1|)) 43)) (-1894 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) 20)) (-3018 (((-771) $) 6 (|has| $ (-6 -4414))))) +((-2214 (((-2 (|:| -3920 (-952 |#3|)) (|:| -2156 (-952 |#3|))) |#4|) 14)) (-2890 ((|#4| |#4| |#2|) 33)) (-4126 ((|#4| (-409 (-952 |#3|)) |#2|) 64)) (-3063 ((|#4| (-1171 (-952 |#3|)) |#2|) 77)) (-2913 ((|#4| (-1171 |#4|) |#2|) 51)) (-2685 ((|#4| |#4| |#2|) 54)) (-1624 (((-420 |#4|) |#4|) 40))) +(((-732 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2214 ((-2 (|:| -3920 (-952 |#3|)) (|:| -2156 (-952 |#3|))) |#4|)) (-15 -2685 (|#4| |#4| |#2|)) (-15 -2913 (|#4| (-1171 |#4|) |#2|)) (-15 -2890 (|#4| |#4| |#2|)) (-15 -3063 (|#4| (-1171 (-952 |#3|)) |#2|)) (-15 -4126 (|#4| (-409 (-952 |#3|)) |#2|)) (-15 -1624 ((-420 |#4|) |#4|))) (-793) (-13 (-850) (-10 -8 (-15 -2376 ((-1175) $)))) (-558) (-949 (-409 (-952 |#3|)) |#1| |#2|)) (T -732)) +((-1624 (*1 *2 *3) (-12 (-4 *4 (-793)) (-4 *5 (-13 (-850) (-10 -8 (-15 -2376 ((-1175) $))))) (-4 *6 (-558)) (-5 *2 (-420 *3)) (-5 *1 (-732 *4 *5 *6 *3)) (-4 *3 (-949 (-409 (-952 *6)) *4 *5)))) (-4126 (*1 *2 *3 *4) (-12 (-4 *6 (-558)) (-4 *2 (-949 *3 *5 *4)) (-5 *1 (-732 *5 *4 *6 *2)) (-5 *3 (-409 (-952 *6))) (-4 *5 (-793)) (-4 *4 (-13 (-850) (-10 -8 (-15 -2376 ((-1175) $))))))) (-3063 (*1 *2 *3 *4) (-12 (-5 *3 (-1171 (-952 *6))) (-4 *6 (-558)) (-4 *2 (-949 (-409 (-952 *6)) *5 *4)) (-5 *1 (-732 *5 *4 *6 *2)) (-4 *5 (-793)) (-4 *4 (-13 (-850) (-10 -8 (-15 -2376 ((-1175) $))))))) (-2890 (*1 *2 *2 *3) (-12 (-4 *4 (-793)) (-4 *3 (-13 (-850) (-10 -8 (-15 -2376 ((-1175) $))))) (-4 *5 (-558)) (-5 *1 (-732 *4 *3 *5 *2)) (-4 *2 (-949 (-409 (-952 *5)) *4 *3)))) (-2913 (*1 *2 *3 *4) (-12 (-5 *3 (-1171 *2)) (-4 *2 (-949 (-409 (-952 *6)) *5 *4)) (-5 *1 (-732 *5 *4 *6 *2)) (-4 *5 (-793)) (-4 *4 (-13 (-850) (-10 -8 (-15 -2376 ((-1175) $))))) (-4 *6 (-558)))) (-2685 (*1 *2 *2 *3) (-12 (-4 *4 (-793)) (-4 *3 (-13 (-850) (-10 -8 (-15 -2376 ((-1175) $))))) (-4 *5 (-558)) (-5 *1 (-732 *4 *3 *5 *2)) (-4 *2 (-949 (-409 (-952 *5)) *4 *3)))) (-2214 (*1 *2 *3) (-12 (-4 *4 (-793)) (-4 *5 (-13 (-850) (-10 -8 (-15 -2376 ((-1175) $))))) (-4 *6 (-558)) (-5 *2 (-2 (|:| -3920 (-952 *6)) (|:| -2156 (-952 *6)))) (-5 *1 (-732 *4 *5 *6 *3)) (-4 *3 (-949 (-409 (-952 *6)) *4 *5))))) +(-10 -7 (-15 -2214 ((-2 (|:| -3920 (-952 |#3|)) (|:| -2156 (-952 |#3|))) |#4|)) (-15 -2685 (|#4| |#4| |#2|)) (-15 -2913 (|#4| (-1171 |#4|) |#2|)) (-15 -2890 (|#4| |#4| |#2|)) (-15 -3063 (|#4| (-1171 (-952 |#3|)) |#2|)) (-15 -4126 (|#4| (-409 (-952 |#3|)) |#2|)) (-15 -1624 ((-420 |#4|) |#4|))) +((-1624 (((-420 |#4|) |#4|) 54))) +(((-733 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1624 ((-420 |#4|) |#4|))) (-793) (-850) (-13 (-308) (-147)) (-949 (-409 |#3|) |#1| |#2|)) (T -733)) +((-1624 (*1 *2 *3) (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-13 (-308) (-147))) (-5 *2 (-420 *3)) (-5 *1 (-733 *4 *5 *6 *3)) (-4 *3 (-949 (-409 *6) *4 *5))))) +(-10 -7 (-15 -1624 ((-420 |#4|) |#4|))) +((-2319 (((-735 |#2| |#3|) (-1 |#2| |#1|) (-735 |#1| |#3|)) 18))) +(((-734 |#1| |#2| |#3|) (-10 -7 (-15 -2319 ((-735 |#2| |#3|) (-1 |#2| |#1|) (-735 |#1| |#3|)))) (-1049) (-1049) (-726)) (T -734)) +((-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-735 *5 *7)) (-4 *5 (-1049)) (-4 *6 (-1049)) (-4 *7 (-726)) (-5 *2 (-735 *6 *7)) (-5 *1 (-734 *5 *6 *7))))) +(-10 -7 (-15 -2319 ((-735 |#2| |#3|) (-1 |#2| |#1|) (-735 |#1| |#3|)))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) 38)) (-4152 (((-644 (-2 (|:| -2397 |#1|) (|:| -4325 |#2|))) $) 39)) (-3967 (((-3 $ "failed") $ $) NIL)) (-3870 (((-771)) 22 (-12 (|has| |#2| (-370)) (|has| |#1| (-370))))) (-2463 (($) NIL T CONST)) (-2229 (((-3 |#2| "failed") $) 78) (((-3 |#1| "failed") $) 81)) (-4158 ((|#2| $) NIL) ((|#1| $) NIL)) (-2814 (($ $) 104 (|has| |#2| (-850)))) (-3245 (((-3 $ "failed") $) 87)) (-2715 (($) 50 (-12 (|has| |#2| (-370)) (|has| |#1| (-370))))) (-2389 (((-112) $) NIL)) (-3039 (((-771) $) 72)) (-1587 (((-644 $) $) 54)) (-2497 (((-112) $) NIL)) (-1746 (($ |#1| |#2|) 17)) (-2319 (($ (-1 |#1| |#1|) $) 70)) (-1866 (((-921) $) 45 (-12 (|has| |#2| (-370)) (|has| |#1| (-370))))) (-2784 ((|#2| $) 103 (|has| |#2| (-850)))) (-2794 ((|#1| $) 102 (|has| |#2| (-850)))) (-3380 (((-1157) $) NIL)) (-2835 (($ (-921)) 37 (-12 (|has| |#2| (-370)) (|has| |#1| (-370))))) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 101) (($ (-566)) 61) (($ |#2|) 57) (($ |#1|) 58) (($ (-644 (-2 (|:| -2397 |#1|) (|:| -4325 |#2|)))) 11)) (-1643 (((-644 |#1|) $) 56)) (-2271 ((|#1| $ |#2|) 117)) (-2633 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2593 (((-771)) NIL T CONST)) (-3044 (((-112) $ $) NIL)) (-4356 (($) 12 T CONST)) (-4366 (($) 46 T CONST)) (-2914 (((-112) $ $) 107)) (-3012 (($ $) 63) (($ $ $) NIL)) (-3002 (($ $ $) 35)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 68) (($ $ $) 120) (($ |#1| $) 65 (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) +(((-735 |#1| |#2|) (-13 (-1049) (-1038 |#2|) (-1038 |#1|) (-10 -8 (-15 -1746 ($ |#1| |#2|)) (-15 -2271 (|#1| $ |#2|)) (-15 -3152 ($ (-644 (-2 (|:| -2397 |#1|) (|:| -4325 |#2|))))) (-15 -4152 ((-644 (-2 (|:| -2397 |#1|) (|:| -4325 |#2|))) $)) (-15 -2319 ($ (-1 |#1| |#1|) $)) (-15 -2497 ((-112) $)) (-15 -1643 ((-644 |#1|) $)) (-15 -1587 ((-644 $) $)) (-15 -3039 ((-771) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-370)) (IF (|has| |#2| (-370)) (-6 (-370)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-850)) (PROGN (-15 -2784 (|#2| $)) (-15 -2794 (|#1| $)) (-15 -2814 ($ $))) |%noBranch|))) (-1049) (-726)) (T -735)) +((-1746 (*1 *1 *2 *3) (-12 (-5 *1 (-735 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-726)))) (-2271 (*1 *2 *1 *3) (-12 (-4 *2 (-1049)) (-5 *1 (-735 *2 *3)) (-4 *3 (-726)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-644 (-2 (|:| -2397 *3) (|:| -4325 *4)))) (-4 *3 (-1049)) (-4 *4 (-726)) (-5 *1 (-735 *3 *4)))) (-4152 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| -2397 *3) (|:| -4325 *4)))) (-5 *1 (-735 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-726)))) (-2319 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1049)) (-5 *1 (-735 *3 *4)) (-4 *4 (-726)))) (-2497 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-735 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-726)))) (-1643 (*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-735 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-726)))) (-1587 (*1 *2 *1) (-12 (-5 *2 (-644 (-735 *3 *4))) (-5 *1 (-735 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-726)))) (-3039 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-735 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-726)))) (-2784 (*1 *2 *1) (-12 (-4 *2 (-726)) (-4 *2 (-850)) (-5 *1 (-735 *3 *2)) (-4 *3 (-1049)))) (-2794 (*1 *2 *1) (-12 (-4 *2 (-1049)) (-5 *1 (-735 *2 *3)) (-4 *3 (-850)) (-4 *3 (-726)))) (-2814 (*1 *1 *1) (-12 (-5 *1 (-735 *2 *3)) (-4 *3 (-850)) (-4 *2 (-1049)) (-4 *3 (-726))))) +(-13 (-1049) (-1038 |#2|) (-1038 |#1|) (-10 -8 (-15 -1746 ($ |#1| |#2|)) (-15 -2271 (|#1| $ |#2|)) (-15 -3152 ($ (-644 (-2 (|:| -2397 |#1|) (|:| -4325 |#2|))))) (-15 -4152 ((-644 (-2 (|:| -2397 |#1|) (|:| -4325 |#2|))) $)) (-15 -2319 ($ (-1 |#1| |#1|) $)) (-15 -2497 ((-112) $)) (-15 -1643 ((-644 |#1|) $)) (-15 -1587 ((-644 $) $)) (-15 -3039 ((-771) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-370)) (IF (|has| |#2| (-370)) (-6 (-370)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-850)) (PROGN (-15 -2784 (|#2| $)) (-15 -2794 (|#1| $)) (-15 -2814 ($ $))) |%noBranch|))) +((-2988 (((-112) $ $) 19)) (-1775 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-3495 (($ $ $) 73)) (-2515 (((-112) $ $) 74)) (-1504 (((-112) $ (-771)) 8)) (-3690 (($ (-644 |#1|)) 69) (($) 68)) (-2995 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4414)))) (-3678 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4414)))) (-2463 (($) 7 T CONST)) (-3322 (($ $) 63)) (-3942 (($ $) 59 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-3512 (($ |#1| $) 48 (|has| $ (-6 -4414))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4414)))) (-2622 (($ |#1| $) 58 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4414)))) (-2873 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4414)))) (-1683 (((-644 |#1|) $) 31 (|has| $ (-6 -4414)))) (-3546 (((-112) $ $) 65)) (-3456 (((-112) $ (-771)) 9)) (-3491 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-3885 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#1| |#1|) $) 36)) (-3267 (((-112) $ (-771)) 10)) (-3380 (((-1157) $) 22)) (-1997 (($ $ $) 70)) (-3278 ((|#1| $) 40)) (-3888 (($ |#1| $) 41) (($ |#1| $ (-771)) 64)) (-4072 (((-1119) $) 21)) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1973 ((|#1| $) 42)) (-2823 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) 14)) (-2872 (((-112) $) 11)) (-3493 (($) 12)) (-1352 (((-644 (-2 (|:| -2636 |#1|) (|:| -4083 (-771)))) $) 62)) (-2048 (($ $ |#1|) 72) (($ $ $) 71)) (-1792 (($) 50) (($ (-644 |#1|)) 49)) (-4083 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-1480 (($ $) 13)) (-2376 (((-538) $) 60 (|has| |#1| (-614 (-538))))) (-1340 (($ (-644 |#1|)) 51)) (-3152 (((-862) $) 18)) (-1692 (($ (-644 |#1|)) 67) (($) 66)) (-3044 (((-112) $ $) 23)) (-2948 (($ (-644 |#1|)) 43)) (-2210 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) 20)) (-3000 (((-771) $) 6 (|has| $ (-6 -4414))))) (((-736 |#1|) (-140) (-1099)) (T -736)) NIL (-13 (-695 |t#1|) (-1097 |t#1|)) (((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-613 (-862)) . T) ((-151 |#1|) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-235 |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-695 |#1|) . T) ((-1097 |#1|) . T) ((-1099) . T) ((-1214) . T)) -((-3007 (((-112) $ $) NIL)) (-1756 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 95)) (-2204 (($ $ $) 99)) (-2904 (((-112) $ $) 107)) (-2256 (((-112) $ (-771)) NIL)) (-3700 (($ (-644 |#1|)) 26) (($) 17)) (-4016 (($ (-1 (-112) |#1|) $) 83 (|has| $ (-6 -4414)))) (-2701 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-3012 (($) NIL T CONST)) (-3657 (($ $) 85)) (-2031 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2956 (($ |#1| $) 70 (|has| $ (-6 -4414))) (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4414))) (($ |#1| $ (-566)) 75) (($ (-1 (-112) |#1|) $ (-566)) 78)) (-2665 (($ |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (($ |#1| $ (-566)) 80) (($ (-1 (-112) |#1|) $ (-566)) 81)) (-1676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4414)))) (-3979 (((-644 |#1|) $) 32 (|has| $ (-6 -4414)))) (-2376 (((-112) $ $) 106)) (-1498 (($) 15) (($ |#1|) 28) (($ (-644 |#1|)) 23)) (-2404 (((-112) $ (-771)) NIL)) (-2329 (((-644 |#1|) $) 38)) (-1916 (((-112) |#1| $) 65 (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2908 (($ (-1 |#1| |#1|) $) 88 (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#1| |#1|) $) 89)) (-2603 (((-112) $ (-771)) NIL)) (-4117 (((-1157) $) NIL)) (-4018 (($ $ $) 97)) (-4039 ((|#1| $) 62)) (-3406 (($ |#1| $) 63) (($ |#1| $ (-771)) 86)) (-4035 (((-1119) $) NIL)) (-2006 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2539 ((|#1| $) 61)) (-2692 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) NIL)) (-3467 (((-112) $) 56)) (-1494 (($) 14)) (-3014 (((-644 (-2 (|:| -3867 |#1|) (|:| -4045 (-771)))) $) 55)) (-4340 (($ $ |#1|) NIL) (($ $ $) 98)) (-3481 (($) 16) (($ (-644 |#1|)) 25)) (-4045 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) 68 (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3940 (($ $) 79)) (-1348 (((-538) $) 36 (|has| |#1| (-614 (-538))))) (-3796 (($ (-644 |#1|)) 22)) (-3783 (((-862) $) 49)) (-3788 (($ (-644 |#1|)) 27) (($) 18)) (-3117 (((-112) $ $) NIL)) (-1748 (($ (-644 |#1|)) 24)) (-1894 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) 103)) (-3018 (((-771) $) 67 (|has| $ (-6 -4414))))) -(((-737 |#1|) (-13 (-736 |#1|) (-10 -8 (-6 -4414) (-6 -4415) (-15 -1498 ($)) (-15 -1498 ($ |#1|)) (-15 -1498 ($ (-644 |#1|))) (-15 -2329 ((-644 |#1|) $)) (-15 -2665 ($ |#1| $ (-566))) (-15 -2665 ($ (-1 (-112) |#1|) $ (-566))) (-15 -2956 ($ |#1| $ (-566))) (-15 -2956 ($ (-1 (-112) |#1|) $ (-566))))) (-1099)) (T -737)) -((-1498 (*1 *1) (-12 (-5 *1 (-737 *2)) (-4 *2 (-1099)))) (-1498 (*1 *1 *2) (-12 (-5 *1 (-737 *2)) (-4 *2 (-1099)))) (-1498 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-737 *3)))) (-2329 (*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-737 *3)) (-4 *3 (-1099)))) (-2665 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *1 (-737 *2)) (-4 *2 (-1099)))) (-2665 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-566)) (-4 *4 (-1099)) (-5 *1 (-737 *4)))) (-2956 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *1 (-737 *2)) (-4 *2 (-1099)))) (-2956 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-566)) (-4 *4 (-1099)) (-5 *1 (-737 *4))))) -(-13 (-736 |#1|) (-10 -8 (-6 -4414) (-6 -4415) (-15 -1498 ($)) (-15 -1498 ($ |#1|)) (-15 -1498 ($ (-644 |#1|))) (-15 -2329 ((-644 |#1|) $)) (-15 -2665 ($ |#1| $ (-566))) (-15 -2665 ($ (-1 (-112) |#1|) $ (-566))) (-15 -2956 ($ |#1| $ (-566))) (-15 -2956 ($ (-1 (-112) |#1|) $ (-566))))) -((-2728 (((-1269) (-1157)) 8))) -(((-738) (-10 -7 (-15 -2728 ((-1269) (-1157))))) (T -738)) -((-2728 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-738))))) -(-10 -7 (-15 -2728 ((-1269) (-1157)))) -((-1432 (((-644 |#1|) (-644 |#1|) (-644 |#1|)) 15))) -(((-739 |#1|) (-10 -7 (-15 -1432 ((-644 |#1|) (-644 |#1|) (-644 |#1|)))) (-850)) (T -739)) -((-1432 (*1 *2 *2 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-850)) (-5 *1 (-739 *3))))) -(-10 -7 (-15 -1432 ((-644 |#1|) (-644 |#1|) (-644 |#1|)))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-3863 (((-644 |#2|) $) 148)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) 141 (|has| |#1| (-558)))) (-3991 (($ $) 140 (|has| |#1| (-558)))) (-2388 (((-112) $) 138 (|has| |#1| (-558)))) (-4114 (($ $) 97 (|has| |#1| (-38 (-409 (-566)))))) (-2109 (($ $) 80 (|has| |#1| (-38 (-409 (-566)))))) (-4175 (((-3 $ "failed") $ $) 20)) (-3731 (($ $) 79 (|has| |#1| (-38 (-409 (-566)))))) (-2240 (($ $) 96 (|has| |#1| (-38 (-409 (-566)))))) (-2085 (($ $) 81 (|has| |#1| (-38 (-409 (-566)))))) (-4134 (($ $) 95 (|has| |#1| (-38 (-409 (-566)))))) (-2129 (($ $) 82 (|has| |#1| (-38 (-409 (-566)))))) (-3012 (($) 18 T CONST)) (-1786 (($ $) 132)) (-1878 (((-3 $ "failed") $) 37)) (-4386 (((-952 |#1|) $ (-771)) 110) (((-952 |#1|) $ (-771) (-771)) 109)) (-2158 (((-112) $) 149)) (-4361 (($) 107 (|has| |#1| (-38 (-409 (-566)))))) (-3254 (((-771) $ |#2|) 112) (((-771) $ |#2| (-771)) 111)) (-3934 (((-112) $) 35)) (-2140 (($ $ (-566)) 78 (|has| |#1| (-38 (-409 (-566)))))) (-3264 (((-112) $) 130)) (-3840 (($ $ (-644 |#2|) (-644 (-533 |#2|))) 147) (($ $ |#2| (-533 |#2|)) 146) (($ |#1| (-533 |#2|)) 131) (($ $ |#2| (-771)) 114) (($ $ (-644 |#2|) (-644 (-771))) 113)) (-1301 (($ (-1 |#1| |#1|) $) 129)) (-3651 (($ $) 104 (|has| |#1| (-38 (-409 (-566)))))) (-1749 (($ $) 127)) (-1763 ((|#1| $) 126)) (-4117 (((-1157) $) 10)) (-1941 (($ $ |#2|) 108 (|has| |#1| (-38 (-409 (-566)))))) (-4035 (((-1119) $) 11)) (-3874 (($ $ (-771)) 115)) (-2994 (((-3 $ "failed") $ $) 142 (|has| |#1| (-558)))) (-2561 (($ $) 105 (|has| |#1| (-38 (-409 (-566)))))) (-2055 (($ $ |#2| $) 123) (($ $ (-644 |#2|) (-644 $)) 122) (($ $ (-644 (-295 $))) 121) (($ $ (-295 $)) 120) (($ $ $ $) 119) (($ $ (-644 $) (-644 $)) 118)) (-3561 (($ $ |#2|) 46) (($ $ (-644 |#2|)) 45) (($ $ |#2| (-771)) 44) (($ $ (-644 |#2|) (-644 (-771))) 43)) (-3636 (((-533 |#2|) $) 128)) (-4144 (($ $) 94 (|has| |#1| (-38 (-409 (-566)))))) (-2141 (($ $) 83 (|has| |#1| (-38 (-409 (-566)))))) (-4124 (($ $) 93 (|has| |#1| (-38 (-409 (-566)))))) (-2118 (($ $) 84 (|has| |#1| (-38 (-409 (-566)))))) (-4104 (($ $) 92 (|has| |#1| (-38 (-409 (-566)))))) (-2098 (($ $) 85 (|has| |#1| (-38 (-409 (-566)))))) (-2770 (($ $) 150)) (-3783 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 145 (|has| |#1| (-172))) (($ $) 143 (|has| |#1| (-558))) (($ (-409 (-566))) 135 (|has| |#1| (-38 (-409 (-566)))))) (-2649 ((|#1| $ (-533 |#2|)) 133) (($ $ |#2| (-771)) 117) (($ $ (-644 |#2|) (-644 (-771))) 116)) (-3144 (((-3 $ "failed") $) 144 (|has| |#1| (-145)))) (-2107 (((-771)) 32 T CONST)) (-3117 (((-112) $ $) 9)) (-4177 (($ $) 103 (|has| |#1| (-38 (-409 (-566)))))) (-2180 (($ $) 91 (|has| |#1| (-38 (-409 (-566)))))) (-2695 (((-112) $ $) 139 (|has| |#1| (-558)))) (-4155 (($ $) 102 (|has| |#1| (-38 (-409 (-566)))))) (-2153 (($ $) 90 (|has| |#1| (-38 (-409 (-566)))))) (-4198 (($ $) 101 (|has| |#1| (-38 (-409 (-566)))))) (-2212 (($ $) 89 (|has| |#1| (-38 (-409 (-566)))))) (-2976 (($ $) 100 (|has| |#1| (-38 (-409 (-566)))))) (-2227 (($ $) 88 (|has| |#1| (-38 (-409 (-566)))))) (-4188 (($ $) 99 (|has| |#1| (-38 (-409 (-566)))))) (-2196 (($ $) 87 (|has| |#1| (-38 (-409 (-566)))))) (-4166 (($ $) 98 (|has| |#1| (-38 (-409 (-566)))))) (-2166 (($ $) 86 (|has| |#1| (-38 (-409 (-566)))))) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-2875 (($ $ |#2|) 42) (($ $ (-644 |#2|)) 41) (($ $ |#2| (-771)) 40) (($ $ (-644 |#2|) (-644 (-771))) 39)) (-2947 (((-112) $ $) 6)) (-3065 (($ $ |#1|) 134 (|has| |#1| (-365)))) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ $) 106 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 77 (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 137 (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) 136 (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) 125) (($ $ |#1|) 124))) +((-2988 (((-112) $ $) NIL)) (-1775 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 95)) (-3495 (($ $ $) 99)) (-2515 (((-112) $ $) 107)) (-1504 (((-112) $ (-771)) NIL)) (-3690 (($ (-644 |#1|)) 26) (($) 17)) (-2995 (($ (-1 (-112) |#1|) $) 83 (|has| $ (-6 -4414)))) (-3678 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2463 (($) NIL T CONST)) (-3322 (($ $) 85)) (-3942 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3512 (($ |#1| $) 70 (|has| $ (-6 -4414))) (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4414))) (($ |#1| $ (-566)) 75) (($ (-1 (-112) |#1|) $ (-566)) 78)) (-2622 (($ |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (($ |#1| $ (-566)) 80) (($ (-1 (-112) |#1|) $ (-566)) 81)) (-2873 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4414)))) (-1683 (((-644 |#1|) $) 32 (|has| $ (-6 -4414)))) (-3546 (((-112) $ $) 106)) (-2670 (($) 15) (($ |#1|) 28) (($ (-644 |#1|)) 23)) (-3456 (((-112) $ (-771)) NIL)) (-3491 (((-644 |#1|) $) 38)) (-1602 (((-112) |#1| $) 65 (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3885 (($ (-1 |#1| |#1|) $) 88 (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#1| |#1|) $) 89)) (-3267 (((-112) $ (-771)) NIL)) (-3380 (((-1157) $) NIL)) (-1997 (($ $ $) 97)) (-3278 ((|#1| $) 62)) (-3888 (($ |#1| $) 63) (($ |#1| $ (-771)) 86)) (-4072 (((-1119) $) NIL)) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1973 ((|#1| $) 61)) (-2823 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) NIL)) (-2872 (((-112) $) 56)) (-3493 (($) 14)) (-1352 (((-644 (-2 (|:| -2636 |#1|) (|:| -4083 (-771)))) $) 55)) (-2048 (($ $ |#1|) NIL) (($ $ $) 98)) (-1792 (($) 16) (($ (-644 |#1|)) 25)) (-4083 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) 68 (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-1480 (($ $) 79)) (-2376 (((-538) $) 36 (|has| |#1| (-614 (-538))))) (-1340 (($ (-644 |#1|)) 22)) (-3152 (((-862) $) 49)) (-1692 (($ (-644 |#1|)) 27) (($) 18)) (-3044 (((-112) $ $) NIL)) (-2948 (($ (-644 |#1|)) 24)) (-2210 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) 103)) (-3000 (((-771) $) 67 (|has| $ (-6 -4414))))) +(((-737 |#1|) (-13 (-736 |#1|) (-10 -8 (-6 -4414) (-6 -4415) (-15 -2670 ($)) (-15 -2670 ($ |#1|)) (-15 -2670 ($ (-644 |#1|))) (-15 -3491 ((-644 |#1|) $)) (-15 -2622 ($ |#1| $ (-566))) (-15 -2622 ($ (-1 (-112) |#1|) $ (-566))) (-15 -3512 ($ |#1| $ (-566))) (-15 -3512 ($ (-1 (-112) |#1|) $ (-566))))) (-1099)) (T -737)) +((-2670 (*1 *1) (-12 (-5 *1 (-737 *2)) (-4 *2 (-1099)))) (-2670 (*1 *1 *2) (-12 (-5 *1 (-737 *2)) (-4 *2 (-1099)))) (-2670 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-737 *3)))) (-3491 (*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-737 *3)) (-4 *3 (-1099)))) (-2622 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *1 (-737 *2)) (-4 *2 (-1099)))) (-2622 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-566)) (-4 *4 (-1099)) (-5 *1 (-737 *4)))) (-3512 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *1 (-737 *2)) (-4 *2 (-1099)))) (-3512 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-566)) (-4 *4 (-1099)) (-5 *1 (-737 *4))))) +(-13 (-736 |#1|) (-10 -8 (-6 -4414) (-6 -4415) (-15 -2670 ($)) (-15 -2670 ($ |#1|)) (-15 -2670 ($ (-644 |#1|))) (-15 -3491 ((-644 |#1|) $)) (-15 -2622 ($ |#1| $ (-566))) (-15 -2622 ($ (-1 (-112) |#1|) $ (-566))) (-15 -3512 ($ |#1| $ (-566))) (-15 -3512 ($ (-1 (-112) |#1|) $ (-566))))) +((-3713 (((-1269) (-1157)) 8))) +(((-738) (-10 -7 (-15 -3713 ((-1269) (-1157))))) (T -738)) +((-3713 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-738))))) +(-10 -7 (-15 -3713 ((-1269) (-1157)))) +((-2706 (((-644 |#1|) (-644 |#1|) (-644 |#1|)) 15))) +(((-739 |#1|) (-10 -7 (-15 -2706 ((-644 |#1|) (-644 |#1|) (-644 |#1|)))) (-850)) (T -739)) +((-2706 (*1 *2 *2 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-850)) (-5 *1 (-739 *3))))) +(-10 -7 (-15 -2706 ((-644 |#1|) (-644 |#1|) (-644 |#1|)))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-1771 (((-644 |#2|) $) 148)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) 141 (|has| |#1| (-558)))) (-2161 (($ $) 140 (|has| |#1| (-558)))) (-2345 (((-112) $) 138 (|has| |#1| (-558)))) (-3963 (($ $) 97 (|has| |#1| (-38 (-409 (-566)))))) (-3630 (($ $) 80 (|has| |#1| (-38 (-409 (-566)))))) (-3967 (((-3 $ "failed") $ $) 20)) (-1635 (($ $) 79 (|has| |#1| (-38 (-409 (-566)))))) (-3941 (($ $) 96 (|has| |#1| (-38 (-409 (-566)))))) (-3602 (($ $) 81 (|has| |#1| (-38 (-409 (-566)))))) (-3986 (($ $) 95 (|has| |#1| (-38 (-409 (-566)))))) (-3656 (($ $) 82 (|has| |#1| (-38 (-409 (-566)))))) (-2463 (($) 18 T CONST)) (-2814 (($ $) 132)) (-3245 (((-3 $ "failed") $) 37)) (-2016 (((-952 |#1|) $ (-771)) 110) (((-952 |#1|) $ (-771) (-771)) 109)) (-3772 (((-112) $) 149)) (-2281 (($) 107 (|has| |#1| (-38 (-409 (-566)))))) (-2679 (((-771) $ |#2|) 112) (((-771) $ |#2| (-771)) 111)) (-2389 (((-112) $) 35)) (-1575 (($ $ (-566)) 78 (|has| |#1| (-38 (-409 (-566)))))) (-2497 (((-112) $) 130)) (-1746 (($ $ (-644 |#2|) (-644 (-533 |#2|))) 147) (($ $ |#2| (-533 |#2|)) 146) (($ |#1| (-533 |#2|)) 131) (($ $ |#2| (-771)) 114) (($ $ (-644 |#2|) (-644 (-771))) 113)) (-2319 (($ (-1 |#1| |#1|) $) 129)) (-3619 (($ $) 104 (|has| |#1| (-38 (-409 (-566)))))) (-2784 (($ $) 127)) (-2794 ((|#1| $) 126)) (-3380 (((-1157) $) 10)) (-3313 (($ $ |#2|) 108 (|has| |#1| (-38 (-409 (-566)))))) (-4072 (((-1119) $) 11)) (-3369 (($ $ (-771)) 115)) (-2978 (((-3 $ "failed") $ $) 142 (|has| |#1| (-558)))) (-3521 (($ $) 105 (|has| |#1| (-38 (-409 (-566)))))) (-2023 (($ $ |#2| $) 123) (($ $ (-644 |#2|) (-644 $)) 122) (($ $ (-644 (-295 $))) 121) (($ $ (-295 $)) 120) (($ $ $ $) 119) (($ $ (-644 $) (-644 $)) 118)) (-3629 (($ $ |#2|) 46) (($ $ (-644 |#2|)) 45) (($ $ |#2| (-771)) 44) (($ $ (-644 |#2|) (-644 (-771))) 43)) (-3902 (((-533 |#2|) $) 128)) (-3996 (($ $) 94 (|has| |#1| (-38 (-409 (-566)))))) (-3670 (($ $) 83 (|has| |#1| (-38 (-409 (-566)))))) (-3976 (($ $) 93 (|has| |#1| (-38 (-409 (-566)))))) (-3643 (($ $) 84 (|has| |#1| (-38 (-409 (-566)))))) (-3952 (($ $) 92 (|has| |#1| (-38 (-409 (-566)))))) (-3618 (($ $) 85 (|has| |#1| (-38 (-409 (-566)))))) (-1687 (($ $) 150)) (-3152 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 145 (|has| |#1| (-172))) (($ $) 143 (|has| |#1| (-558))) (($ (-409 (-566))) 135 (|has| |#1| (-38 (-409 (-566)))))) (-2271 ((|#1| $ (-533 |#2|)) 133) (($ $ |#2| (-771)) 117) (($ $ (-644 |#2|) (-644 (-771))) 116)) (-2633 (((-3 $ "failed") $) 144 (|has| |#1| (-145)))) (-2593 (((-771)) 32 T CONST)) (-3044 (((-112) $ $) 9)) (-4032 (($ $) 103 (|has| |#1| (-38 (-409 (-566)))))) (-3892 (($ $) 91 (|has| |#1| (-38 (-409 (-566)))))) (-3014 (((-112) $ $) 139 (|has| |#1| (-558)))) (-4008 (($ $) 102 (|has| |#1| (-38 (-409 (-566)))))) (-3684 (($ $) 90 (|has| |#1| (-38 (-409 (-566)))))) (-4057 (($ $) 101 (|has| |#1| (-38 (-409 (-566)))))) (-3917 (($ $) 89 (|has| |#1| (-38 (-409 (-566)))))) (-3964 (($ $) 100 (|has| |#1| (-38 (-409 (-566)))))) (-3929 (($ $) 88 (|has| |#1| (-38 (-409 (-566)))))) (-4044 (($ $) 99 (|has| |#1| (-38 (-409 (-566)))))) (-3904 (($ $) 87 (|has| |#1| (-38 (-409 (-566)))))) (-4020 (($ $) 98 (|has| |#1| (-38 (-409 (-566)))))) (-3879 (($ $) 86 (|has| |#1| (-38 (-409 (-566)))))) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-3497 (($ $ |#2|) 42) (($ $ (-644 |#2|)) 41) (($ $ |#2| (-771)) 40) (($ $ (-644 |#2|) (-644 (-771))) 39)) (-2914 (((-112) $ $) 6)) (-3025 (($ $ |#1|) 134 (|has| |#1| (-365)))) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ $) 106 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 77 (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 137 (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) 136 (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) 125) (($ $ |#1|) 124))) (((-740 |#1| |#2|) (-140) (-1049) (-850)) (T -740)) -((-2649 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-771)) (-4 *1 (-740 *4 *2)) (-4 *4 (-1049)) (-4 *2 (-850)))) (-2649 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 *5)) (-5 *3 (-644 (-771))) (-4 *1 (-740 *4 *5)) (-4 *4 (-1049)) (-4 *5 (-850)))) (-3874 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-740 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-850)))) (-3840 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-771)) (-4 *1 (-740 *4 *2)) (-4 *4 (-1049)) (-4 *2 (-850)))) (-3840 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 *5)) (-5 *3 (-644 (-771))) (-4 *1 (-740 *4 *5)) (-4 *4 (-1049)) (-4 *5 (-850)))) (-3254 (*1 *2 *1 *3) (-12 (-4 *1 (-740 *4 *3)) (-4 *4 (-1049)) (-4 *3 (-850)) (-5 *2 (-771)))) (-3254 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-771)) (-4 *1 (-740 *4 *3)) (-4 *4 (-1049)) (-4 *3 (-850)))) (-4386 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-4 *1 (-740 *4 *5)) (-4 *4 (-1049)) (-4 *5 (-850)) (-5 *2 (-952 *4)))) (-4386 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-771)) (-4 *1 (-740 *4 *5)) (-4 *4 (-1049)) (-4 *5 (-850)) (-5 *2 (-952 *4)))) (-1941 (*1 *1 *1 *2) (-12 (-4 *1 (-740 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-850)) (-4 *3 (-38 (-409 (-566))))))) -(-13 (-900 |t#2|) (-973 |t#1| (-533 |t#2|) |t#2|) (-516 |t#2| $) (-310 $) (-10 -8 (-15 -2649 ($ $ |t#2| (-771))) (-15 -2649 ($ $ (-644 |t#2|) (-644 (-771)))) (-15 -3874 ($ $ (-771))) (-15 -3840 ($ $ |t#2| (-771))) (-15 -3840 ($ $ (-644 |t#2|) (-644 (-771)))) (-15 -3254 ((-771) $ |t#2|)) (-15 -3254 ((-771) $ |t#2| (-771))) (-15 -4386 ((-952 |t#1|) $ (-771))) (-15 -4386 ((-952 |t#1|) $ (-771) (-771))) (IF (|has| |t#1| (-38 (-409 (-566)))) (PROGN (-15 -1941 ($ $ |t#2|)) (-6 (-1002)) (-6 (-1199))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-533 |#2|)) . T) ((-25) . T) ((-38 #1=(-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-558)) ((-35) |has| |#1| (-38 (-409 (-566)))) ((-95) |has| |#1| (-38 (-409 (-566)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-409 (-566)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2809 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #1#) |has| |#1| (-38 (-409 (-566)))) ((-616 (-566)) . T) ((-616 |#1|) |has| |#1| (-172)) ((-616 $) |has| |#1| (-558)) ((-613 (-862)) . T) ((-172) -2809 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-285) |has| |#1| (-38 (-409 (-566)))) ((-291) |has| |#1| (-558)) ((-310 $) . T) ((-495) |has| |#1| (-38 (-409 (-566)))) ((-516 |#2| $) . T) ((-516 $ $) . T) ((-558) |has| |#1| (-558)) ((-646 #1#) |has| |#1| (-38 (-409 (-566)))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #1#) |has| |#1| (-38 (-409 (-566)))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #1#) |has| |#1| (-38 (-409 (-566)))) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) |has| |#1| (-558)) ((-717 #1#) |has| |#1| (-38 (-409 (-566)))) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) |has| |#1| (-558)) ((-726) . T) ((-900 |#2|) . T) ((-973 |#1| #0# |#2|) . T) ((-1002) |has| |#1| (-38 (-409 (-566)))) ((-1051 #1#) |has| |#1| (-38 (-409 (-566)))) ((-1051 |#1|) . T) ((-1051 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-1056 #1#) |has| |#1| (-38 (-409 (-566)))) ((-1056 |#1|) . T) ((-1056 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1199) |has| |#1| (-38 (-409 (-566)))) ((-1202) |has| |#1| (-38 (-409 (-566))))) -((-3719 (((-420 (-1171 |#4|)) (-1171 |#4|)) 30) (((-420 |#4|) |#4|) 26))) -(((-741 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3719 ((-420 |#4|) |#4|)) (-15 -3719 ((-420 (-1171 |#4|)) (-1171 |#4|)))) (-850) (-793) (-13 (-308) (-147)) (-949 |#3| |#2| |#1|)) (T -741)) -((-3719 (*1 *2 *3) (-12 (-4 *4 (-850)) (-4 *5 (-793)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-949 *6 *5 *4)) (-5 *2 (-420 (-1171 *7))) (-5 *1 (-741 *4 *5 *6 *7)) (-5 *3 (-1171 *7)))) (-3719 (*1 *2 *3) (-12 (-4 *4 (-850)) (-4 *5 (-793)) (-4 *6 (-13 (-308) (-147))) (-5 *2 (-420 *3)) (-5 *1 (-741 *4 *5 *6 *3)) (-4 *3 (-949 *6 *5 *4))))) -(-10 -7 (-15 -3719 ((-420 |#4|) |#4|)) (-15 -3719 ((-420 (-1171 |#4|)) (-1171 |#4|)))) -((-2463 (((-420 |#4|) |#4| |#2|) 142)) (-2716 (((-420 |#4|) |#4|) NIL)) (-3184 (((-420 (-1171 |#4|)) (-1171 |#4|)) 127) (((-420 |#4|) |#4|) 52)) (-2257 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-644 (-2 (|:| -3719 (-1171 |#4|)) (|:| -2852 (-566)))))) (-1171 |#4|) (-644 |#2|) (-644 (-644 |#3|))) 81)) (-1928 (((-1171 |#3|) (-1171 |#3|) (-566)) 168)) (-2000 (((-644 (-771)) (-1171 |#4|) (-644 |#2|) (-771)) 75)) (-1662 (((-3 (-644 (-1171 |#4|)) "failed") (-1171 |#4|) (-1171 |#3|) (-1171 |#3|) |#4| (-644 |#2|) (-644 (-771)) (-644 |#3|)) 79)) (-1964 (((-2 (|:| |upol| (-1171 |#3|)) (|:| |Lval| (-644 |#3|)) (|:| |Lfact| (-644 (-2 (|:| -3719 (-1171 |#3|)) (|:| -2852 (-566))))) (|:| |ctpol| |#3|)) (-1171 |#4|) (-644 |#2|) (-644 (-644 |#3|))) 27)) (-2030 (((-2 (|:| -2495 (-1171 |#4|)) (|:| |polval| (-1171 |#3|))) (-1171 |#4|) (-1171 |#3|) (-566)) 72)) (-2810 (((-566) (-644 (-2 (|:| -3719 (-1171 |#3|)) (|:| -2852 (-566))))) 164)) (-3524 ((|#4| (-566) (-420 |#4|)) 73)) (-3260 (((-112) (-644 (-2 (|:| -3719 (-1171 |#3|)) (|:| -2852 (-566)))) (-644 (-2 (|:| -3719 (-1171 |#3|)) (|:| -2852 (-566))))) NIL))) -(((-742 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3184 ((-420 |#4|) |#4|)) (-15 -3184 ((-420 (-1171 |#4|)) (-1171 |#4|))) (-15 -2716 ((-420 |#4|) |#4|)) (-15 -2810 ((-566) (-644 (-2 (|:| -3719 (-1171 |#3|)) (|:| -2852 (-566)))))) (-15 -2463 ((-420 |#4|) |#4| |#2|)) (-15 -2030 ((-2 (|:| -2495 (-1171 |#4|)) (|:| |polval| (-1171 |#3|))) (-1171 |#4|) (-1171 |#3|) (-566))) (-15 -2257 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-644 (-2 (|:| -3719 (-1171 |#4|)) (|:| -2852 (-566)))))) (-1171 |#4|) (-644 |#2|) (-644 (-644 |#3|)))) (-15 -1964 ((-2 (|:| |upol| (-1171 |#3|)) (|:| |Lval| (-644 |#3|)) (|:| |Lfact| (-644 (-2 (|:| -3719 (-1171 |#3|)) (|:| -2852 (-566))))) (|:| |ctpol| |#3|)) (-1171 |#4|) (-644 |#2|) (-644 (-644 |#3|)))) (-15 -3524 (|#4| (-566) (-420 |#4|))) (-15 -3260 ((-112) (-644 (-2 (|:| -3719 (-1171 |#3|)) (|:| -2852 (-566)))) (-644 (-2 (|:| -3719 (-1171 |#3|)) (|:| -2852 (-566)))))) (-15 -1662 ((-3 (-644 (-1171 |#4|)) "failed") (-1171 |#4|) (-1171 |#3|) (-1171 |#3|) |#4| (-644 |#2|) (-644 (-771)) (-644 |#3|))) (-15 -2000 ((-644 (-771)) (-1171 |#4|) (-644 |#2|) (-771))) (-15 -1928 ((-1171 |#3|) (-1171 |#3|) (-566)))) (-793) (-850) (-308) (-949 |#3| |#1| |#2|)) (T -742)) -((-1928 (*1 *2 *2 *3) (-12 (-5 *2 (-1171 *6)) (-5 *3 (-566)) (-4 *6 (-308)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-742 *4 *5 *6 *7)) (-4 *7 (-949 *6 *4 *5)))) (-2000 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1171 *9)) (-5 *4 (-644 *7)) (-4 *7 (-850)) (-4 *9 (-949 *8 *6 *7)) (-4 *6 (-793)) (-4 *8 (-308)) (-5 *2 (-644 (-771))) (-5 *1 (-742 *6 *7 *8 *9)) (-5 *5 (-771)))) (-1662 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1171 *11)) (-5 *6 (-644 *10)) (-5 *7 (-644 (-771))) (-5 *8 (-644 *11)) (-4 *10 (-850)) (-4 *11 (-308)) (-4 *9 (-793)) (-4 *5 (-949 *11 *9 *10)) (-5 *2 (-644 (-1171 *5))) (-5 *1 (-742 *9 *10 *11 *5)) (-5 *3 (-1171 *5)))) (-3260 (*1 *2 *3 *3) (-12 (-5 *3 (-644 (-2 (|:| -3719 (-1171 *6)) (|:| -2852 (-566))))) (-4 *6 (-308)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)) (-5 *1 (-742 *4 *5 *6 *7)) (-4 *7 (-949 *6 *4 *5)))) (-3524 (*1 *2 *3 *4) (-12 (-5 *3 (-566)) (-5 *4 (-420 *2)) (-4 *2 (-949 *7 *5 *6)) (-5 *1 (-742 *5 *6 *7 *2)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-308)))) (-1964 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1171 *9)) (-5 *4 (-644 *7)) (-5 *5 (-644 (-644 *8))) (-4 *7 (-850)) (-4 *8 (-308)) (-4 *9 (-949 *8 *6 *7)) (-4 *6 (-793)) (-5 *2 (-2 (|:| |upol| (-1171 *8)) (|:| |Lval| (-644 *8)) (|:| |Lfact| (-644 (-2 (|:| -3719 (-1171 *8)) (|:| -2852 (-566))))) (|:| |ctpol| *8))) (-5 *1 (-742 *6 *7 *8 *9)))) (-2257 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-644 *7)) (-5 *5 (-644 (-644 *8))) (-4 *7 (-850)) (-4 *8 (-308)) (-4 *6 (-793)) (-4 *9 (-949 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-644 (-2 (|:| -3719 (-1171 *9)) (|:| -2852 (-566))))))) (-5 *1 (-742 *6 *7 *8 *9)) (-5 *3 (-1171 *9)))) (-2030 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-566)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-308)) (-4 *9 (-949 *8 *6 *7)) (-5 *2 (-2 (|:| -2495 (-1171 *9)) (|:| |polval| (-1171 *8)))) (-5 *1 (-742 *6 *7 *8 *9)) (-5 *3 (-1171 *9)) (-5 *4 (-1171 *8)))) (-2463 (*1 *2 *3 *4) (-12 (-4 *5 (-793)) (-4 *4 (-850)) (-4 *6 (-308)) (-5 *2 (-420 *3)) (-5 *1 (-742 *5 *4 *6 *3)) (-4 *3 (-949 *6 *5 *4)))) (-2810 (*1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| -3719 (-1171 *6)) (|:| -2852 (-566))))) (-4 *6 (-308)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-566)) (-5 *1 (-742 *4 *5 *6 *7)) (-4 *7 (-949 *6 *4 *5)))) (-2716 (*1 *2 *3) (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-308)) (-5 *2 (-420 *3)) (-5 *1 (-742 *4 *5 *6 *3)) (-4 *3 (-949 *6 *4 *5)))) (-3184 (*1 *2 *3) (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-308)) (-4 *7 (-949 *6 *4 *5)) (-5 *2 (-420 (-1171 *7))) (-5 *1 (-742 *4 *5 *6 *7)) (-5 *3 (-1171 *7)))) (-3184 (*1 *2 *3) (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-308)) (-5 *2 (-420 *3)) (-5 *1 (-742 *4 *5 *6 *3)) (-4 *3 (-949 *6 *4 *5))))) -(-10 -7 (-15 -3184 ((-420 |#4|) |#4|)) (-15 -3184 ((-420 (-1171 |#4|)) (-1171 |#4|))) (-15 -2716 ((-420 |#4|) |#4|)) (-15 -2810 ((-566) (-644 (-2 (|:| -3719 (-1171 |#3|)) (|:| -2852 (-566)))))) (-15 -2463 ((-420 |#4|) |#4| |#2|)) (-15 -2030 ((-2 (|:| -2495 (-1171 |#4|)) (|:| |polval| (-1171 |#3|))) (-1171 |#4|) (-1171 |#3|) (-566))) (-15 -2257 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-644 (-2 (|:| -3719 (-1171 |#4|)) (|:| -2852 (-566)))))) (-1171 |#4|) (-644 |#2|) (-644 (-644 |#3|)))) (-15 -1964 ((-2 (|:| |upol| (-1171 |#3|)) (|:| |Lval| (-644 |#3|)) (|:| |Lfact| (-644 (-2 (|:| -3719 (-1171 |#3|)) (|:| -2852 (-566))))) (|:| |ctpol| |#3|)) (-1171 |#4|) (-644 |#2|) (-644 (-644 |#3|)))) (-15 -3524 (|#4| (-566) (-420 |#4|))) (-15 -3260 ((-112) (-644 (-2 (|:| -3719 (-1171 |#3|)) (|:| -2852 (-566)))) (-644 (-2 (|:| -3719 (-1171 |#3|)) (|:| -2852 (-566)))))) (-15 -1662 ((-3 (-644 (-1171 |#4|)) "failed") (-1171 |#4|) (-1171 |#3|) (-1171 |#3|) |#4| (-644 |#2|) (-644 (-771)) (-644 |#3|))) (-15 -2000 ((-644 (-771)) (-1171 |#4|) (-644 |#2|) (-771))) (-15 -1928 ((-1171 |#3|) (-1171 |#3|) (-566)))) -((-2322 (($ $ (-921)) 17))) -(((-743 |#1| |#2|) (-10 -8 (-15 -2322 (|#1| |#1| (-921)))) (-744 |#2|) (-172)) (T -743)) -NIL -(-10 -8 (-15 -2322 (|#1| |#1| (-921)))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-4175 (((-3 $ "failed") $ $) 20)) (-3012 (($) 18 T CONST)) (-3942 (($ $ (-921)) 31)) (-2322 (($ $ (-921)) 38)) (-2437 (($ $ (-921)) 32)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3171 (($ $ $) 28)) (-3783 (((-862) $) 12)) (-3117 (((-112) $ $) 9)) (-2320 (($ $ $ $) 29)) (-3027 (($ $ $) 27)) (-2479 (($) 19 T CONST)) (-2947 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 33)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) +((-2271 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-771)) (-4 *1 (-740 *4 *2)) (-4 *4 (-1049)) (-4 *2 (-850)))) (-2271 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 *5)) (-5 *3 (-644 (-771))) (-4 *1 (-740 *4 *5)) (-4 *4 (-1049)) (-4 *5 (-850)))) (-3369 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-740 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-850)))) (-1746 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-771)) (-4 *1 (-740 *4 *2)) (-4 *4 (-1049)) (-4 *2 (-850)))) (-1746 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 *5)) (-5 *3 (-644 (-771))) (-4 *1 (-740 *4 *5)) (-4 *4 (-1049)) (-4 *5 (-850)))) (-2679 (*1 *2 *1 *3) (-12 (-4 *1 (-740 *4 *3)) (-4 *4 (-1049)) (-4 *3 (-850)) (-5 *2 (-771)))) (-2679 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-771)) (-4 *1 (-740 *4 *3)) (-4 *4 (-1049)) (-4 *3 (-850)))) (-2016 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-4 *1 (-740 *4 *5)) (-4 *4 (-1049)) (-4 *5 (-850)) (-5 *2 (-952 *4)))) (-2016 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-771)) (-4 *1 (-740 *4 *5)) (-4 *4 (-1049)) (-4 *5 (-850)) (-5 *2 (-952 *4)))) (-3313 (*1 *1 *1 *2) (-12 (-4 *1 (-740 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-850)) (-4 *3 (-38 (-409 (-566))))))) +(-13 (-900 |t#2|) (-973 |t#1| (-533 |t#2|) |t#2|) (-516 |t#2| $) (-310 $) (-10 -8 (-15 -2271 ($ $ |t#2| (-771))) (-15 -2271 ($ $ (-644 |t#2|) (-644 (-771)))) (-15 -3369 ($ $ (-771))) (-15 -1746 ($ $ |t#2| (-771))) (-15 -1746 ($ $ (-644 |t#2|) (-644 (-771)))) (-15 -2679 ((-771) $ |t#2|)) (-15 -2679 ((-771) $ |t#2| (-771))) (-15 -2016 ((-952 |t#1|) $ (-771))) (-15 -2016 ((-952 |t#1|) $ (-771) (-771))) (IF (|has| |t#1| (-38 (-409 (-566)))) (PROGN (-15 -3313 ($ $ |t#2|)) (-6 (-1002)) (-6 (-1199))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-533 |#2|)) . T) ((-25) . T) ((-38 #1=(-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-558)) ((-35) |has| |#1| (-38 (-409 (-566)))) ((-95) |has| |#1| (-38 (-409 (-566)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-409 (-566)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2768 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #1#) |has| |#1| (-38 (-409 (-566)))) ((-616 (-566)) . T) ((-616 |#1|) |has| |#1| (-172)) ((-616 $) |has| |#1| (-558)) ((-613 (-862)) . T) ((-172) -2768 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-285) |has| |#1| (-38 (-409 (-566)))) ((-291) |has| |#1| (-558)) ((-310 $) . T) ((-495) |has| |#1| (-38 (-409 (-566)))) ((-516 |#2| $) . T) ((-516 $ $) . T) ((-558) |has| |#1| (-558)) ((-646 #1#) |has| |#1| (-38 (-409 (-566)))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #1#) |has| |#1| (-38 (-409 (-566)))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #1#) |has| |#1| (-38 (-409 (-566)))) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) |has| |#1| (-558)) ((-717 #1#) |has| |#1| (-38 (-409 (-566)))) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) |has| |#1| (-558)) ((-726) . T) ((-900 |#2|) . T) ((-973 |#1| #0# |#2|) . T) ((-1002) |has| |#1| (-38 (-409 (-566)))) ((-1051 #1#) |has| |#1| (-38 (-409 (-566)))) ((-1051 |#1|) . T) ((-1051 $) -2768 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-1056 #1#) |has| |#1| (-38 (-409 (-566)))) ((-1056 |#1|) . T) ((-1056 $) -2768 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1199) |has| |#1| (-38 (-409 (-566)))) ((-1202) |has| |#1| (-38 (-409 (-566))))) +((-1624 (((-420 (-1171 |#4|)) (-1171 |#4|)) 30) (((-420 |#4|) |#4|) 26))) +(((-741 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1624 ((-420 |#4|) |#4|)) (-15 -1624 ((-420 (-1171 |#4|)) (-1171 |#4|)))) (-850) (-793) (-13 (-308) (-147)) (-949 |#3| |#2| |#1|)) (T -741)) +((-1624 (*1 *2 *3) (-12 (-4 *4 (-850)) (-4 *5 (-793)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-949 *6 *5 *4)) (-5 *2 (-420 (-1171 *7))) (-5 *1 (-741 *4 *5 *6 *7)) (-5 *3 (-1171 *7)))) (-1624 (*1 *2 *3) (-12 (-4 *4 (-850)) (-4 *5 (-793)) (-4 *6 (-13 (-308) (-147))) (-5 *2 (-420 *3)) (-5 *1 (-741 *4 *5 *6 *3)) (-4 *3 (-949 *6 *5 *4))))) +(-10 -7 (-15 -1624 ((-420 |#4|) |#4|)) (-15 -1624 ((-420 (-1171 |#4|)) (-1171 |#4|)))) +((-3956 (((-420 |#4|) |#4| |#2|) 142)) (-1373 (((-420 |#4|) |#4|) NIL)) (-1364 (((-420 (-1171 |#4|)) (-1171 |#4|)) 127) (((-420 |#4|) |#4|) 52)) (-1625 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-644 (-2 (|:| -1624 (-1171 |#4|)) (|:| -2201 (-566)))))) (-1171 |#4|) (-644 |#2|) (-644 (-644 |#3|))) 81)) (-1567 (((-1171 |#3|) (-1171 |#3|) (-566)) 168)) (-3121 (((-644 (-771)) (-1171 |#4|) (-644 |#2|) (-771)) 75)) (-2860 (((-3 (-644 (-1171 |#4|)) "failed") (-1171 |#4|) (-1171 |#3|) (-1171 |#3|) |#4| (-644 |#2|) (-644 (-771)) (-644 |#3|)) 79)) (-3836 (((-2 (|:| |upol| (-1171 |#3|)) (|:| |Lval| (-644 |#3|)) (|:| |Lfact| (-644 (-2 (|:| -1624 (-1171 |#3|)) (|:| -2201 (-566))))) (|:| |ctpol| |#3|)) (-1171 |#4|) (-644 |#2|) (-644 (-644 |#3|))) 27)) (-4022 (((-2 (|:| -3877 (-1171 |#4|)) (|:| |polval| (-1171 |#3|))) (-1171 |#4|) (-1171 |#3|) (-566)) 72)) (-1353 (((-566) (-644 (-2 (|:| -1624 (-1171 |#3|)) (|:| -2201 (-566))))) 164)) (-2725 ((|#4| (-566) (-420 |#4|)) 73)) (-2124 (((-112) (-644 (-2 (|:| -1624 (-1171 |#3|)) (|:| -2201 (-566)))) (-644 (-2 (|:| -1624 (-1171 |#3|)) (|:| -2201 (-566))))) NIL))) +(((-742 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1364 ((-420 |#4|) |#4|)) (-15 -1364 ((-420 (-1171 |#4|)) (-1171 |#4|))) (-15 -1373 ((-420 |#4|) |#4|)) (-15 -1353 ((-566) (-644 (-2 (|:| -1624 (-1171 |#3|)) (|:| -2201 (-566)))))) (-15 -3956 ((-420 |#4|) |#4| |#2|)) (-15 -4022 ((-2 (|:| -3877 (-1171 |#4|)) (|:| |polval| (-1171 |#3|))) (-1171 |#4|) (-1171 |#3|) (-566))) (-15 -1625 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-644 (-2 (|:| -1624 (-1171 |#4|)) (|:| -2201 (-566)))))) (-1171 |#4|) (-644 |#2|) (-644 (-644 |#3|)))) (-15 -3836 ((-2 (|:| |upol| (-1171 |#3|)) (|:| |Lval| (-644 |#3|)) (|:| |Lfact| (-644 (-2 (|:| -1624 (-1171 |#3|)) (|:| -2201 (-566))))) (|:| |ctpol| |#3|)) (-1171 |#4|) (-644 |#2|) (-644 (-644 |#3|)))) (-15 -2725 (|#4| (-566) (-420 |#4|))) (-15 -2124 ((-112) (-644 (-2 (|:| -1624 (-1171 |#3|)) (|:| -2201 (-566)))) (-644 (-2 (|:| -1624 (-1171 |#3|)) (|:| -2201 (-566)))))) (-15 -2860 ((-3 (-644 (-1171 |#4|)) "failed") (-1171 |#4|) (-1171 |#3|) (-1171 |#3|) |#4| (-644 |#2|) (-644 (-771)) (-644 |#3|))) (-15 -3121 ((-644 (-771)) (-1171 |#4|) (-644 |#2|) (-771))) (-15 -1567 ((-1171 |#3|) (-1171 |#3|) (-566)))) (-793) (-850) (-308) (-949 |#3| |#1| |#2|)) (T -742)) +((-1567 (*1 *2 *2 *3) (-12 (-5 *2 (-1171 *6)) (-5 *3 (-566)) (-4 *6 (-308)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-742 *4 *5 *6 *7)) (-4 *7 (-949 *6 *4 *5)))) (-3121 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1171 *9)) (-5 *4 (-644 *7)) (-4 *7 (-850)) (-4 *9 (-949 *8 *6 *7)) (-4 *6 (-793)) (-4 *8 (-308)) (-5 *2 (-644 (-771))) (-5 *1 (-742 *6 *7 *8 *9)) (-5 *5 (-771)))) (-2860 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1171 *11)) (-5 *6 (-644 *10)) (-5 *7 (-644 (-771))) (-5 *8 (-644 *11)) (-4 *10 (-850)) (-4 *11 (-308)) (-4 *9 (-793)) (-4 *5 (-949 *11 *9 *10)) (-5 *2 (-644 (-1171 *5))) (-5 *1 (-742 *9 *10 *11 *5)) (-5 *3 (-1171 *5)))) (-2124 (*1 *2 *3 *3) (-12 (-5 *3 (-644 (-2 (|:| -1624 (-1171 *6)) (|:| -2201 (-566))))) (-4 *6 (-308)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)) (-5 *1 (-742 *4 *5 *6 *7)) (-4 *7 (-949 *6 *4 *5)))) (-2725 (*1 *2 *3 *4) (-12 (-5 *3 (-566)) (-5 *4 (-420 *2)) (-4 *2 (-949 *7 *5 *6)) (-5 *1 (-742 *5 *6 *7 *2)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-308)))) (-3836 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1171 *9)) (-5 *4 (-644 *7)) (-5 *5 (-644 (-644 *8))) (-4 *7 (-850)) (-4 *8 (-308)) (-4 *9 (-949 *8 *6 *7)) (-4 *6 (-793)) (-5 *2 (-2 (|:| |upol| (-1171 *8)) (|:| |Lval| (-644 *8)) (|:| |Lfact| (-644 (-2 (|:| -1624 (-1171 *8)) (|:| -2201 (-566))))) (|:| |ctpol| *8))) (-5 *1 (-742 *6 *7 *8 *9)))) (-1625 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-644 *7)) (-5 *5 (-644 (-644 *8))) (-4 *7 (-850)) (-4 *8 (-308)) (-4 *6 (-793)) (-4 *9 (-949 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-644 (-2 (|:| -1624 (-1171 *9)) (|:| -2201 (-566))))))) (-5 *1 (-742 *6 *7 *8 *9)) (-5 *3 (-1171 *9)))) (-4022 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-566)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-308)) (-4 *9 (-949 *8 *6 *7)) (-5 *2 (-2 (|:| -3877 (-1171 *9)) (|:| |polval| (-1171 *8)))) (-5 *1 (-742 *6 *7 *8 *9)) (-5 *3 (-1171 *9)) (-5 *4 (-1171 *8)))) (-3956 (*1 *2 *3 *4) (-12 (-4 *5 (-793)) (-4 *4 (-850)) (-4 *6 (-308)) (-5 *2 (-420 *3)) (-5 *1 (-742 *5 *4 *6 *3)) (-4 *3 (-949 *6 *5 *4)))) (-1353 (*1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| -1624 (-1171 *6)) (|:| -2201 (-566))))) (-4 *6 (-308)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-566)) (-5 *1 (-742 *4 *5 *6 *7)) (-4 *7 (-949 *6 *4 *5)))) (-1373 (*1 *2 *3) (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-308)) (-5 *2 (-420 *3)) (-5 *1 (-742 *4 *5 *6 *3)) (-4 *3 (-949 *6 *4 *5)))) (-1364 (*1 *2 *3) (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-308)) (-4 *7 (-949 *6 *4 *5)) (-5 *2 (-420 (-1171 *7))) (-5 *1 (-742 *4 *5 *6 *7)) (-5 *3 (-1171 *7)))) (-1364 (*1 *2 *3) (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-308)) (-5 *2 (-420 *3)) (-5 *1 (-742 *4 *5 *6 *3)) (-4 *3 (-949 *6 *4 *5))))) +(-10 -7 (-15 -1364 ((-420 |#4|) |#4|)) (-15 -1364 ((-420 (-1171 |#4|)) (-1171 |#4|))) (-15 -1373 ((-420 |#4|) |#4|)) (-15 -1353 ((-566) (-644 (-2 (|:| -1624 (-1171 |#3|)) (|:| -2201 (-566)))))) (-15 -3956 ((-420 |#4|) |#4| |#2|)) (-15 -4022 ((-2 (|:| -3877 (-1171 |#4|)) (|:| |polval| (-1171 |#3|))) (-1171 |#4|) (-1171 |#3|) (-566))) (-15 -1625 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-644 (-2 (|:| -1624 (-1171 |#4|)) (|:| -2201 (-566)))))) (-1171 |#4|) (-644 |#2|) (-644 (-644 |#3|)))) (-15 -3836 ((-2 (|:| |upol| (-1171 |#3|)) (|:| |Lval| (-644 |#3|)) (|:| |Lfact| (-644 (-2 (|:| -1624 (-1171 |#3|)) (|:| -2201 (-566))))) (|:| |ctpol| |#3|)) (-1171 |#4|) (-644 |#2|) (-644 (-644 |#3|)))) (-15 -2725 (|#4| (-566) (-420 |#4|))) (-15 -2124 ((-112) (-644 (-2 (|:| -1624 (-1171 |#3|)) (|:| -2201 (-566)))) (-644 (-2 (|:| -1624 (-1171 |#3|)) (|:| -2201 (-566)))))) (-15 -2860 ((-3 (-644 (-1171 |#4|)) "failed") (-1171 |#4|) (-1171 |#3|) (-1171 |#3|) |#4| (-644 |#2|) (-644 (-771)) (-644 |#3|))) (-15 -3121 ((-644 (-771)) (-1171 |#4|) (-644 |#2|) (-771))) (-15 -1567 ((-1171 |#3|) (-1171 |#3|) (-566)))) +((-4090 (($ $ (-921)) 17))) +(((-743 |#1| |#2|) (-10 -8 (-15 -4090 (|#1| |#1| (-921)))) (-744 |#2|) (-172)) (T -743)) +NIL +(-10 -8 (-15 -4090 (|#1| |#1| (-921)))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-3967 (((-3 $ "failed") $ $) 20)) (-2463 (($) 18 T CONST)) (-1856 (($ $ (-921)) 31)) (-4090 (($ $ (-921)) 38)) (-3270 (($ $ (-921)) 32)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-2527 (($ $ $) 28)) (-3152 (((-862) $) 12)) (-3044 (((-112) $ $) 9)) (-3876 (($ $ $ $) 29)) (-1471 (($ $ $) 27)) (-4356 (($) 19 T CONST)) (-2914 (((-112) $ $) 6)) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 33)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) (((-744 |#1|) (-140) (-172)) (T -744)) -((-2322 (*1 *1 *1 *2) (-12 (-5 *2 (-921)) (-4 *1 (-744 *3)) (-4 *3 (-172))))) -(-13 (-761) (-717 |t#1|) (-10 -8 (-15 -2322 ($ $ (-921))))) +((-4090 (*1 *1 *1 *2) (-12 (-5 *2 (-921)) (-4 *1 (-744 *3)) (-4 *3 (-172))))) +(-13 (-761) (-717 |t#1|) (-10 -8 (-15 -4090 ($ $ (-921))))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-648 |#1|) . T) ((-640 |#1|) . T) ((-717 |#1|) . T) ((-720) . T) ((-761) . T) ((-1051 |#1|) . T) ((-1056 |#1|) . T) ((-1099) . T)) -((-4316 (((-1035) (-689 (-225)) (-566) (-112) (-566)) 25)) (-1341 (((-1035) (-689 (-225)) (-566) (-112) (-566)) 24))) -(((-745) (-10 -7 (-15 -1341 ((-1035) (-689 (-225)) (-566) (-112) (-566))) (-15 -4316 ((-1035) (-689 (-225)) (-566) (-112) (-566))))) (T -745)) -((-4316 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *5 (-112)) (-5 *2 (-1035)) (-5 *1 (-745)))) (-1341 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *5 (-112)) (-5 *2 (-1035)) (-5 *1 (-745))))) -(-10 -7 (-15 -1341 ((-1035) (-689 (-225)) (-566) (-112) (-566))) (-15 -4316 ((-1035) (-689 (-225)) (-566) (-112) (-566)))) -((-2618 (((-1035) (-566) (-566) (-566) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-74 FCN)))) 43)) (-4231 (((-1035) (-566) (-566) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-81 FCN)))) 39)) (-1629 (((-1035) (-225) (-225) (-225) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2371)))) 32))) -(((-746) (-10 -7 (-15 -1629 ((-1035) (-225) (-225) (-225) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2371))))) (-15 -4231 ((-1035) (-566) (-566) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-81 FCN))))) (-15 -2618 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-74 FCN))))))) (T -746)) -((-2618 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1035)) (-5 *1 (-746)))) (-4231 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1035)) (-5 *1 (-746)))) (-1629 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2371)))) (-5 *2 (-1035)) (-5 *1 (-746))))) -(-10 -7 (-15 -1629 ((-1035) (-225) (-225) (-225) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2371))))) (-15 -4231 ((-1035) (-566) (-566) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-81 FCN))))) (-15 -2618 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-74 FCN)))))) -((-3296 (((-1035) (-566) (-566) (-689 (-225)) (-566)) 34)) (-1986 (((-1035) (-566) (-566) (-689 (-225)) (-566)) 33)) (-1802 (((-1035) (-566) (-689 (-225)) (-566)) 32)) (-1611 (((-1035) (-566) (-689 (-225)) (-566)) 31)) (-1581 (((-1035) (-566) (-566) (-1157) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566)) 30)) (-2412 (((-1035) (-566) (-566) (-1157) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566)) 29)) (-2890 (((-1035) (-566) (-566) (-1157) (-689 (-225)) (-689 (-225)) (-566)) 28)) (-3445 (((-1035) (-566) (-566) (-1157) (-689 (-225)) (-689 (-225)) (-566)) 27)) (-3508 (((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566)) 24)) (-3077 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566)) 23)) (-3172 (((-1035) (-566) (-689 (-225)) (-566)) 22)) (-3215 (((-1035) (-566) (-689 (-225)) (-566)) 21))) -(((-747) (-10 -7 (-15 -3215 ((-1035) (-566) (-689 (-225)) (-566))) (-15 -3172 ((-1035) (-566) (-689 (-225)) (-566))) (-15 -3077 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3508 ((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3445 ((-1035) (-566) (-566) (-1157) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2890 ((-1035) (-566) (-566) (-1157) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2412 ((-1035) (-566) (-566) (-1157) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -1581 ((-1035) (-566) (-566) (-1157) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -1611 ((-1035) (-566) (-689 (-225)) (-566))) (-15 -1802 ((-1035) (-566) (-689 (-225)) (-566))) (-15 -1986 ((-1035) (-566) (-566) (-689 (-225)) (-566))) (-15 -3296 ((-1035) (-566) (-566) (-689 (-225)) (-566))))) (T -747)) -((-3296 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-747)))) (-1986 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-747)))) (-1802 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-747)))) (-1611 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-747)))) (-1581 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-566)) (-5 *4 (-1157)) (-5 *5 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-747)))) (-2412 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-566)) (-5 *4 (-1157)) (-5 *5 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-747)))) (-2890 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-566)) (-5 *4 (-1157)) (-5 *5 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-747)))) (-3445 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-566)) (-5 *4 (-1157)) (-5 *5 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-747)))) (-3508 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-747)))) (-3077 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-747)))) (-3172 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-747)))) (-3215 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-747))))) -(-10 -7 (-15 -3215 ((-1035) (-566) (-689 (-225)) (-566))) (-15 -3172 ((-1035) (-566) (-689 (-225)) (-566))) (-15 -3077 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3508 ((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3445 ((-1035) (-566) (-566) (-1157) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2890 ((-1035) (-566) (-566) (-1157) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2412 ((-1035) (-566) (-566) (-1157) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -1581 ((-1035) (-566) (-566) (-1157) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -1611 ((-1035) (-566) (-689 (-225)) (-566))) (-15 -1802 ((-1035) (-566) (-689 (-225)) (-566))) (-15 -1986 ((-1035) (-566) (-566) (-689 (-225)) (-566))) (-15 -3296 ((-1035) (-566) (-566) (-689 (-225)) (-566)))) -((-3743 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566) (-225) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-78 FUNCTN)))) 52)) (-2363 (((-1035) (-689 (-225)) (-689 (-225)) (-566) (-566)) 51)) (-4012 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-78 FUNCTN)))) 50)) (-1776 (((-1035) (-225) (-225) (-566) (-566) (-566) (-566)) 46)) (-2814 (((-1035) (-225) (-225) (-566) (-225) (-566) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G)))) 45)) (-3813 (((-1035) (-225) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G)))) 44)) (-2954 (((-1035) (-225) (-225) (-225) (-225) (-566) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G)))) 43)) (-3343 (((-1035) (-225) (-225) (-225) (-566) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G)))) 42)) (-4043 (((-1035) (-225) (-566) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2371)))) 38)) (-2449 (((-1035) (-225) (-225) (-566) (-689 (-225)) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2371)))) 37)) (-2992 (((-1035) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2371)))) 33)) (-1379 (((-1035) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2371)))) 32))) -(((-748) (-10 -7 (-15 -1379 ((-1035) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2371))))) (-15 -2992 ((-1035) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2371))))) (-15 -2449 ((-1035) (-225) (-225) (-566) (-689 (-225)) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2371))))) (-15 -4043 ((-1035) (-225) (-566) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2371))))) (-15 -3343 ((-1035) (-225) (-225) (-225) (-566) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G))))) (-15 -2954 ((-1035) (-225) (-225) (-225) (-225) (-566) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G))))) (-15 -3813 ((-1035) (-225) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G))))) (-15 -2814 ((-1035) (-225) (-225) (-566) (-225) (-566) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G))))) (-15 -1776 ((-1035) (-225) (-225) (-566) (-566) (-566) (-566))) (-15 -4012 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-78 FUNCTN))))) (-15 -2363 ((-1035) (-689 (-225)) (-689 (-225)) (-566) (-566))) (-15 -3743 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566) (-225) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-78 FUNCTN))))))) (T -748)) -((-3743 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1035)) (-5 *1 (-748)))) (-2363 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-748)))) (-4012 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1035)) (-5 *1 (-748)))) (-1776 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-748)))) (-2814 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G)))) (-5 *2 (-1035)) (-5 *1 (-748)))) (-3813 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G)))) (-5 *2 (-1035)) (-5 *1 (-748)))) (-2954 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G)))) (-5 *2 (-1035)) (-5 *1 (-748)))) (-3343 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G)))) (-5 *2 (-1035)) (-5 *1 (-748)))) (-4043 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2371)))) (-5 *2 (-1035)) (-5 *1 (-748)))) (-2449 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-566)) (-5 *5 (-689 (-225))) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2371)))) (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-748)))) (-2992 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2371)))) (-5 *2 (-1035)) (-5 *1 (-748)))) (-1379 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2371)))) (-5 *2 (-1035)) (-5 *1 (-748))))) -(-10 -7 (-15 -1379 ((-1035) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2371))))) (-15 -2992 ((-1035) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2371))))) (-15 -2449 ((-1035) (-225) (-225) (-566) (-689 (-225)) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2371))))) (-15 -4043 ((-1035) (-225) (-566) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2371))))) (-15 -3343 ((-1035) (-225) (-225) (-225) (-566) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G))))) (-15 -2954 ((-1035) (-225) (-225) (-225) (-225) (-566) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G))))) (-15 -3813 ((-1035) (-225) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G))))) (-15 -2814 ((-1035) (-225) (-225) (-566) (-225) (-566) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G))))) (-15 -1776 ((-1035) (-225) (-225) (-566) (-566) (-566) (-566))) (-15 -4012 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-78 FUNCTN))))) (-15 -2363 ((-1035) (-689 (-225)) (-689 (-225)) (-566) (-566))) (-15 -3743 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566) (-225) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-78 FUNCTN)))))) -((-2080 (((-1035) (-566) (-566) (-566) (-566) (-225) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-390)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-3175 (((-1035) (-689 (-225)) (-566) (-566) (-225) (-566) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-87 BDYVAL))) (-390) (-390)) 69) (((-1035) (-689 (-225)) (-566) (-566) (-225) (-566) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-87 BDYVAL)))) 68)) (-1787 (((-1035) (-225) (-225) (-566) (-225) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-390)) (|:| |fp| (-85 FCNG)))) 57)) (-2760 (((-1035) (-689 (-225)) (-689 (-225)) (-566) (-225) (-225) (-225) (-566) (-566) (-566) (-689 (-225)) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN)))) 50)) (-2308 (((-1035) (-225) (-566) (-566) (-1157) (-566) (-225) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT)))) 49)) (-3135 (((-1035) (-225) (-566) (-566) (-225) (-1157) (-225) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT)))) 45)) (-4333 (((-1035) (-225) (-566) (-566) (-225) (-225) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN)))) 42)) (-3822 (((-1035) (-225) (-566) (-566) (-566) (-225) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT)))) 38))) -(((-749) (-10 -7 (-15 -3822 ((-1035) (-225) (-566) (-566) (-566) (-225) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT))))) (-15 -4333 ((-1035) (-225) (-566) (-566) (-225) (-225) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN))))) (-15 -3135 ((-1035) (-225) (-566) (-566) (-225) (-1157) (-225) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT))))) (-15 -2308 ((-1035) (-225) (-566) (-566) (-1157) (-566) (-225) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT))))) (-15 -2760 ((-1035) (-689 (-225)) (-689 (-225)) (-566) (-225) (-225) (-225) (-566) (-566) (-566) (-689 (-225)) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN))))) (-15 -1787 ((-1035) (-225) (-225) (-566) (-225) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-390)) (|:| |fp| (-85 FCNG))))) (-15 -3175 ((-1035) (-689 (-225)) (-566) (-566) (-225) (-566) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-87 BDYVAL))))) (-15 -3175 ((-1035) (-689 (-225)) (-566) (-566) (-225) (-566) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-87 BDYVAL))) (-390) (-390))) (-15 -2080 ((-1035) (-566) (-566) (-566) (-566) (-225) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-390)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -749)) -((-2080 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-749)))) (-3175 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-390)) (-5 *2 (-1035)) (-5 *1 (-749)))) (-3175 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1035)) (-5 *1 (-749)))) (-1787 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-566)) (-5 *5 (-689 (-225))) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-749)))) (-2760 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1035)) (-5 *1 (-749)))) (-2308 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-566)) (-5 *5 (-1157)) (-5 *6 (-689 (-225))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-390)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-749)))) (-3135 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-566)) (-5 *5 (-1157)) (-5 *6 (-689 (-225))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-749)))) (-4333 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-566)) (-5 *5 (-689 (-225))) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN)))) (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-749)))) (-3822 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-566)) (-5 *5 (-689 (-225))) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-749))))) -(-10 -7 (-15 -3822 ((-1035) (-225) (-566) (-566) (-566) (-225) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT))))) (-15 -4333 ((-1035) (-225) (-566) (-566) (-225) (-225) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN))))) (-15 -3135 ((-1035) (-225) (-566) (-566) (-225) (-1157) (-225) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT))))) (-15 -2308 ((-1035) (-225) (-566) (-566) (-1157) (-566) (-225) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT))))) (-15 -2760 ((-1035) (-689 (-225)) (-689 (-225)) (-566) (-225) (-225) (-225) (-566) (-566) (-566) (-689 (-225)) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN))))) (-15 -1787 ((-1035) (-225) (-225) (-566) (-225) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-390)) (|:| |fp| (-85 FCNG))))) (-15 -3175 ((-1035) (-689 (-225)) (-566) (-566) (-225) (-566) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-87 BDYVAL))))) (-15 -3175 ((-1035) (-689 (-225)) (-566) (-566) (-225) (-566) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-87 BDYVAL))) (-390) (-390))) (-15 -2080 ((-1035) (-566) (-566) (-566) (-566) (-225) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-390)) (|:| |fp| (-76 G JACOBG JACGEP)))))) -((-2907 (((-1035) (-225) (-225) (-566) (-566) (-689 (-225)) (-689 (-225)) (-225) (-225) (-566) (-566) (-689 (-225)) (-689 (-225)) (-225) (-225) (-566) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566) (-566) (-675 (-225)) (-566)) 45)) (-4132 (((-1035) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-1157) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-390)) (|:| |fp| (-83 BNDY)))) 41)) (-2806 (((-1035) (-566) (-566) (-566) (-566) (-225) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566)) 23))) -(((-750) (-10 -7 (-15 -2806 ((-1035) (-566) (-566) (-566) (-566) (-225) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -4132 ((-1035) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-1157) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-390)) (|:| |fp| (-83 BNDY))))) (-15 -2907 ((-1035) (-225) (-225) (-566) (-566) (-689 (-225)) (-689 (-225)) (-225) (-225) (-566) (-566) (-689 (-225)) (-689 (-225)) (-225) (-225) (-566) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566) (-566) (-675 (-225)) (-566))))) (T -750)) -((-2907 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-566)) (-5 *5 (-689 (-225))) (-5 *6 (-675 (-225))) (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-750)))) (-4132 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *5 (-1157)) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1035)) (-5 *1 (-750)))) (-2806 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-750))))) -(-10 -7 (-15 -2806 ((-1035) (-566) (-566) (-566) (-566) (-225) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -4132 ((-1035) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-1157) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-390)) (|:| |fp| (-83 BNDY))))) (-15 -2907 ((-1035) (-225) (-225) (-566) (-566) (-689 (-225)) (-689 (-225)) (-225) (-225) (-566) (-566) (-689 (-225)) (-689 (-225)) (-225) (-225) (-566) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566) (-566) (-675 (-225)) (-566)))) -((-3664 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-225) (-689 (-225)) (-225) (-225) (-566)) 35)) (-2429 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-566) (-225) (-225) (-566)) 34)) (-3855 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-566)) (-689 (-225)) (-225) (-225) (-566)) 33)) (-4100 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566)) 29)) (-2661 (((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566)) 28)) (-4232 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-225) (-225) (-566)) 27)) (-1350 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-689 (-225)) (-566)) 24)) (-2696 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-689 (-225)) (-566)) 23)) (-4162 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566)) 22)) (-3323 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566) (-566) (-566)) 21))) -(((-751) (-10 -7 (-15 -3323 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566) (-566) (-566))) (-15 -4162 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2696 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-689 (-225)) (-566))) (-15 -1350 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-689 (-225)) (-566))) (-15 -4232 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-225) (-225) (-566))) (-15 -2661 ((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -4100 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3855 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-566)) (-689 (-225)) (-225) (-225) (-566))) (-15 -2429 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-566) (-225) (-225) (-566))) (-15 -3664 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-225) (-689 (-225)) (-225) (-225) (-566))))) (T -751)) -((-3664 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) (-5 *2 (-1035)) (-5 *1 (-751)))) (-2429 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) (-5 *2 (-1035)) (-5 *1 (-751)))) (-3855 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-689 (-225))) (-5 *5 (-689 (-566))) (-5 *6 (-225)) (-5 *3 (-566)) (-5 *2 (-1035)) (-5 *1 (-751)))) (-4100 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-751)))) (-2661 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-751)))) (-4232 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) (-5 *2 (-1035)) (-5 *1 (-751)))) (-1350 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-751)))) (-2696 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-751)))) (-4162 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-751)))) (-3323 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-751))))) -(-10 -7 (-15 -3323 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566) (-566) (-566))) (-15 -4162 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2696 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-689 (-225)) (-566))) (-15 -1350 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-689 (-225)) (-566))) (-15 -4232 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-225) (-225) (-566))) (-15 -2661 ((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -4100 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3855 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-566)) (-689 (-225)) (-225) (-225) (-566))) (-15 -2429 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-566) (-225) (-225) (-566))) (-15 -3664 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-225) (-689 (-225)) (-225) (-225) (-566)))) -((-1506 (((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-566) (-566) (-566)) 45)) (-4153 (((-1035) (-566) (-566) (-566) (-225) (-689 (-225)) (-689 (-225)) (-566)) 44)) (-2522 (((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-566) (-566)) 43)) (-2817 (((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566)) 42)) (-2604 (((-1035) (-1157) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-566)) 41)) (-2232 (((-1035) (-1157) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-689 (-566)) (-566)) 40)) (-1329 (((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-566)) (-566) (-566) (-566) (-225) (-689 (-225)) (-566)) 39)) (-4210 (((-1035) (-1157) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-566))) 38)) (-1330 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566)) 35)) (-3278 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566)) 34)) (-1615 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566)) 33)) (-2922 (((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566)) 32)) (-3687 (((-1035) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-225) (-566)) 31)) (-3483 (((-1035) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-225) (-566) (-566) (-566)) 30)) (-3105 (((-1035) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-566) (-566) (-566)) 29)) (-1505 (((-1035) (-566) (-566) (-566) (-225) (-225) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-566) (-689 (-566)) (-566) (-566) (-566)) 28)) (-1735 (((-1035) (-566) (-689 (-225)) (-225) (-566)) 24)) (-4311 (((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566)) 21))) -(((-752) (-10 -7 (-15 -4311 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -1735 ((-1035) (-566) (-689 (-225)) (-225) (-566))) (-15 -1505 ((-1035) (-566) (-566) (-566) (-225) (-225) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-566) (-689 (-566)) (-566) (-566) (-566))) (-15 -3105 ((-1035) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-566) (-566) (-566))) (-15 -3483 ((-1035) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-225) (-566) (-566) (-566))) (-15 -3687 ((-1035) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-225) (-566))) (-15 -2922 ((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -1615 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566))) (-15 -3278 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566))) (-15 -1330 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -4210 ((-1035) (-1157) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-566)))) (-15 -1329 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-566)) (-566) (-566) (-566) (-225) (-689 (-225)) (-566))) (-15 -2232 ((-1035) (-1157) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-689 (-566)) (-566))) (-15 -2604 ((-1035) (-1157) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2817 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2522 ((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-566) (-566))) (-15 -4153 ((-1035) (-566) (-566) (-566) (-225) (-689 (-225)) (-689 (-225)) (-566))) (-15 -1506 ((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-566) (-566) (-566))))) (T -752)) -((-1506 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-752)))) (-4153 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-752)))) (-2522 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-752)))) (-2817 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-752)))) (-2604 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1157)) (-5 *4 (-566)) (-5 *5 (-689 (-225))) (-5 *6 (-225)) (-5 *2 (-1035)) (-5 *1 (-752)))) (-2232 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1157)) (-5 *5 (-689 (-225))) (-5 *6 (-225)) (-5 *7 (-689 (-566))) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-752)))) (-1329 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-689 (-225))) (-5 *5 (-689 (-566))) (-5 *6 (-225)) (-5 *3 (-566)) (-5 *2 (-1035)) (-5 *1 (-752)))) (-4210 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1157)) (-5 *5 (-689 (-225))) (-5 *6 (-225)) (-5 *7 (-689 (-566))) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-752)))) (-1330 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-752)))) (-3278 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) (-5 *2 (-1035)) (-5 *1 (-752)))) (-1615 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) (-5 *2 (-1035)) (-5 *1 (-752)))) (-2922 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-752)))) (-3687 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-752)))) (-3483 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-752)))) (-3105 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-752)))) (-1505 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-689 (-225))) (-5 *6 (-689 (-566))) (-5 *3 (-566)) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-752)))) (-1735 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) (-5 *2 (-1035)) (-5 *1 (-752)))) (-4311 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-752))))) -(-10 -7 (-15 -4311 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -1735 ((-1035) (-566) (-689 (-225)) (-225) (-566))) (-15 -1505 ((-1035) (-566) (-566) (-566) (-225) (-225) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-566) (-689 (-566)) (-566) (-566) (-566))) (-15 -3105 ((-1035) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-566) (-566) (-566))) (-15 -3483 ((-1035) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-225) (-566) (-566) (-566))) (-15 -3687 ((-1035) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-225) (-566))) (-15 -2922 ((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -1615 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566))) (-15 -3278 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566))) (-15 -1330 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -4210 ((-1035) (-1157) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-566)))) (-15 -1329 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-566)) (-566) (-566) (-566) (-225) (-689 (-225)) (-566))) (-15 -2232 ((-1035) (-1157) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-689 (-566)) (-566))) (-15 -2604 ((-1035) (-1157) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2817 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2522 ((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-566) (-566))) (-15 -4153 ((-1035) (-566) (-566) (-566) (-225) (-689 (-225)) (-689 (-225)) (-566))) (-15 -1506 ((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-566) (-566) (-566)))) -((-1911 (((-1035) (-566) (-566) (-566) (-225) (-689 (-225)) (-566) (-689 (-225)) (-566)) 63)) (-1376 (((-1035) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-566) (-112) (-225) (-566) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-566) (-566) (-566) (-566) (-566) (-225) (-225) (-225) (-566) (-566) (-566) (-566) (-566) (-689 (-566)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-77 OBJFUN)))) 62)) (-4068 (((-1035) (-566) (-566) (-566) (-566) (-566) (-566) (-566) (-566) (-225) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-112) (-112) (-112) (-566) (-566) (-689 (-225)) (-689 (-566)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-65 QPHESS)))) 58)) (-2743 (((-1035) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-112) (-566) (-566) (-689 (-225)) (-566)) 51)) (-1664 (((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-66 FUNCT1)))) 50)) (-1430 (((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-63 LSFUN2)))) 46)) (-2836 (((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-79 LSFUN1)))) 42)) (-3005 (((-1035) (-566) (-225) (-225) (-566) (-225) (-112) (-225) (-225) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-77 OBJFUN)))) 38))) -(((-753) (-10 -7 (-15 -3005 ((-1035) (-566) (-225) (-225) (-566) (-225) (-112) (-225) (-225) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-77 OBJFUN))))) (-15 -2836 ((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-79 LSFUN1))))) (-15 -1430 ((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-63 LSFUN2))))) (-15 -1664 ((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-66 FUNCT1))))) (-15 -2743 ((-1035) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-112) (-566) (-566) (-689 (-225)) (-566))) (-15 -4068 ((-1035) (-566) (-566) (-566) (-566) (-566) (-566) (-566) (-566) (-225) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-112) (-112) (-112) (-566) (-566) (-689 (-225)) (-689 (-566)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-65 QPHESS))))) (-15 -1376 ((-1035) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-566) (-112) (-225) (-566) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-566) (-566) (-566) (-566) (-566) (-225) (-225) (-225) (-566) (-566) (-566) (-566) (-566) (-689 (-566)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-77 OBJFUN))))) (-15 -1911 ((-1035) (-566) (-566) (-566) (-225) (-689 (-225)) (-566) (-689 (-225)) (-566))))) (T -753)) -((-1911 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-753)))) (-1376 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-689 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) (-5 *7 (-689 (-566))) (-5 *8 (-3 (|:| |fn| (-390)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-390)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-566)) (-5 *2 (-1035)) (-5 *1 (-753)))) (-4068 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-689 (-225))) (-5 *6 (-112)) (-5 *7 (-689 (-566))) (-5 *8 (-3 (|:| |fn| (-390)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-566)) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-753)))) (-2743 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-112)) (-5 *2 (-1035)) (-5 *1 (-753)))) (-1664 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1035)) (-5 *1 (-753)))) (-1430 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1035)) (-5 *1 (-753)))) (-2836 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1035)) (-5 *1 (-753)))) (-3005 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-566)) (-5 *5 (-112)) (-5 *6 (-689 (-225))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-753))))) -(-10 -7 (-15 -3005 ((-1035) (-566) (-225) (-225) (-566) (-225) (-112) (-225) (-225) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-77 OBJFUN))))) (-15 -2836 ((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-79 LSFUN1))))) (-15 -1430 ((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-63 LSFUN2))))) (-15 -1664 ((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-66 FUNCT1))))) (-15 -2743 ((-1035) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-112) (-566) (-566) (-689 (-225)) (-566))) (-15 -4068 ((-1035) (-566) (-566) (-566) (-566) (-566) (-566) (-566) (-566) (-225) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-112) (-112) (-112) (-566) (-566) (-689 (-225)) (-689 (-566)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-65 QPHESS))))) (-15 -1376 ((-1035) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-566) (-112) (-225) (-566) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-566) (-566) (-566) (-566) (-566) (-225) (-225) (-225) (-566) (-566) (-566) (-566) (-566) (-689 (-566)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-77 OBJFUN))))) (-15 -1911 ((-1035) (-566) (-566) (-566) (-225) (-689 (-225)) (-566) (-689 (-225)) (-566)))) -((-2788 (((-1035) (-1157) (-566) (-566) (-566) (-566) (-689 (-169 (-225))) (-689 (-169 (-225))) (-566)) 47)) (-1319 (((-1035) (-1157) (-1157) (-566) (-566) (-689 (-169 (-225))) (-566) (-689 (-169 (-225))) (-566) (-566) (-689 (-169 (-225))) (-566)) 46)) (-2847 (((-1035) (-566) (-566) (-566) (-689 (-169 (-225))) (-566)) 45)) (-2516 (((-1035) (-1157) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566)) 40)) (-2134 (((-1035) (-1157) (-1157) (-566) (-566) (-689 (-225)) (-566) (-689 (-225)) (-566) (-566) (-689 (-225)) (-566)) 39)) (-2863 (((-1035) (-566) (-566) (-566) (-689 (-225)) (-566)) 36)) (-3928 (((-1035) (-566) (-689 (-225)) (-566) (-689 (-566)) (-566)) 35)) (-4120 (((-1035) (-566) (-566) (-566) (-566) (-644 (-112)) (-689 (-225)) (-689 (-566)) (-689 (-566)) (-225) (-225) (-566)) 34)) (-1538 (((-1035) (-566) (-566) (-566) (-689 (-566)) (-689 (-566)) (-689 (-566)) (-689 (-566)) (-112) (-225) (-112) (-689 (-566)) (-689 (-225)) (-566)) 33)) (-3514 (((-1035) (-566) (-566) (-566) (-566) (-225) (-112) (-112) (-644 (-112)) (-689 (-225)) (-689 (-566)) (-689 (-566)) (-566)) 32))) -(((-754) (-10 -7 (-15 -3514 ((-1035) (-566) (-566) (-566) (-566) (-225) (-112) (-112) (-644 (-112)) (-689 (-225)) (-689 (-566)) (-689 (-566)) (-566))) (-15 -1538 ((-1035) (-566) (-566) (-566) (-689 (-566)) (-689 (-566)) (-689 (-566)) (-689 (-566)) (-112) (-225) (-112) (-689 (-566)) (-689 (-225)) (-566))) (-15 -4120 ((-1035) (-566) (-566) (-566) (-566) (-644 (-112)) (-689 (-225)) (-689 (-566)) (-689 (-566)) (-225) (-225) (-566))) (-15 -3928 ((-1035) (-566) (-689 (-225)) (-566) (-689 (-566)) (-566))) (-15 -2863 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-566))) (-15 -2134 ((-1035) (-1157) (-1157) (-566) (-566) (-689 (-225)) (-566) (-689 (-225)) (-566) (-566) (-689 (-225)) (-566))) (-15 -2516 ((-1035) (-1157) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2847 ((-1035) (-566) (-566) (-566) (-689 (-169 (-225))) (-566))) (-15 -1319 ((-1035) (-1157) (-1157) (-566) (-566) (-689 (-169 (-225))) (-566) (-689 (-169 (-225))) (-566) (-566) (-689 (-169 (-225))) (-566))) (-15 -2788 ((-1035) (-1157) (-566) (-566) (-566) (-566) (-689 (-169 (-225))) (-689 (-169 (-225))) (-566))))) (T -754)) -((-2788 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1157)) (-5 *4 (-566)) (-5 *5 (-689 (-169 (-225)))) (-5 *2 (-1035)) (-5 *1 (-754)))) (-1319 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1157)) (-5 *4 (-566)) (-5 *5 (-689 (-169 (-225)))) (-5 *2 (-1035)) (-5 *1 (-754)))) (-2847 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-169 (-225)))) (-5 *2 (-1035)) (-5 *1 (-754)))) (-2516 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1157)) (-5 *4 (-566)) (-5 *5 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-754)))) (-2134 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1157)) (-5 *4 (-566)) (-5 *5 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-754)))) (-2863 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-754)))) (-3928 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-689 (-225))) (-5 *5 (-689 (-566))) (-5 *3 (-566)) (-5 *2 (-1035)) (-5 *1 (-754)))) (-4120 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-644 (-112))) (-5 *5 (-689 (-225))) (-5 *6 (-689 (-566))) (-5 *7 (-225)) (-5 *3 (-566)) (-5 *2 (-1035)) (-5 *1 (-754)))) (-1538 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-689 (-566))) (-5 *5 (-112)) (-5 *7 (-689 (-225))) (-5 *3 (-566)) (-5 *6 (-225)) (-5 *2 (-1035)) (-5 *1 (-754)))) (-3514 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-644 (-112))) (-5 *7 (-689 (-225))) (-5 *8 (-689 (-566))) (-5 *3 (-566)) (-5 *4 (-225)) (-5 *5 (-112)) (-5 *2 (-1035)) (-5 *1 (-754))))) -(-10 -7 (-15 -3514 ((-1035) (-566) (-566) (-566) (-566) (-225) (-112) (-112) (-644 (-112)) (-689 (-225)) (-689 (-566)) (-689 (-566)) (-566))) (-15 -1538 ((-1035) (-566) (-566) (-566) (-689 (-566)) (-689 (-566)) (-689 (-566)) (-689 (-566)) (-112) (-225) (-112) (-689 (-566)) (-689 (-225)) (-566))) (-15 -4120 ((-1035) (-566) (-566) (-566) (-566) (-644 (-112)) (-689 (-225)) (-689 (-566)) (-689 (-566)) (-225) (-225) (-566))) (-15 -3928 ((-1035) (-566) (-689 (-225)) (-566) (-689 (-566)) (-566))) (-15 -2863 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-566))) (-15 -2134 ((-1035) (-1157) (-1157) (-566) (-566) (-689 (-225)) (-566) (-689 (-225)) (-566) (-566) (-689 (-225)) (-566))) (-15 -2516 ((-1035) (-1157) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2847 ((-1035) (-566) (-566) (-566) (-689 (-169 (-225))) (-566))) (-15 -1319 ((-1035) (-1157) (-1157) (-566) (-566) (-689 (-169 (-225))) (-566) (-689 (-169 (-225))) (-566) (-566) (-689 (-169 (-225))) (-566))) (-15 -2788 ((-1035) (-1157) (-566) (-566) (-566) (-566) (-689 (-169 (-225))) (-689 (-169 (-225))) (-566)))) -((-2773 (((-1035) (-566) (-566) (-566) (-566) (-566) (-112) (-566) (-112) (-566) (-689 (-169 (-225))) (-689 (-169 (-225))) (-566)) 80)) (-2263 (((-1035) (-566) (-566) (-566) (-566) (-566) (-112) (-566) (-112) (-566) (-689 (-225)) (-689 (-225)) (-566)) 69)) (-1822 (((-1035) (-566) (-566) (-225) (-566) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-390)) (|:| |fp| (-68 IMAGE))) (-390)) 56) (((-1035) (-566) (-566) (-225) (-566) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-390)) (|:| |fp| (-68 IMAGE)))) 55)) (-2211 (((-1035) (-566) (-566) (-566) (-225) (-112) (-566) (-689 (-225)) (-689 (-225)) (-566)) 37)) (-3003 (((-1035) (-566) (-566) (-225) (-225) (-566) (-566) (-689 (-225)) (-566)) 33)) (-3533 (((-1035) (-689 (-225)) (-566) (-689 (-225)) (-566) (-566) (-566) (-566) (-566)) 30)) (-4393 (((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566)) 29)) (-3275 (((-1035) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566)) 28)) (-3699 (((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566)) 27)) (-1972 (((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-566)) 26)) (-1877 (((-1035) (-566) (-566) (-689 (-225)) (-566)) 25)) (-3084 (((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566)) 24)) (-2698 (((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566)) 23)) (-3225 (((-1035) (-689 (-225)) (-566) (-566) (-566) (-566)) 22)) (-3303 (((-1035) (-566) (-566) (-689 (-225)) (-566)) 21))) -(((-755) (-10 -7 (-15 -3303 ((-1035) (-566) (-566) (-689 (-225)) (-566))) (-15 -3225 ((-1035) (-689 (-225)) (-566) (-566) (-566) (-566))) (-15 -2698 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3084 ((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -1877 ((-1035) (-566) (-566) (-689 (-225)) (-566))) (-15 -1972 ((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-566))) (-15 -3699 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3275 ((-1035) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -4393 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3533 ((-1035) (-689 (-225)) (-566) (-689 (-225)) (-566) (-566) (-566) (-566) (-566))) (-15 -3003 ((-1035) (-566) (-566) (-225) (-225) (-566) (-566) (-689 (-225)) (-566))) (-15 -2211 ((-1035) (-566) (-566) (-566) (-225) (-112) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -1822 ((-1035) (-566) (-566) (-225) (-566) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-390)) (|:| |fp| (-68 IMAGE))))) (-15 -1822 ((-1035) (-566) (-566) (-225) (-566) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-390)) (|:| |fp| (-68 IMAGE))) (-390))) (-15 -2263 ((-1035) (-566) (-566) (-566) (-566) (-566) (-112) (-566) (-112) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2773 ((-1035) (-566) (-566) (-566) (-566) (-566) (-112) (-566) (-112) (-566) (-689 (-169 (-225))) (-689 (-169 (-225))) (-566))))) (T -755)) -((-2773 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-566)) (-5 *4 (-112)) (-5 *5 (-689 (-169 (-225)))) (-5 *2 (-1035)) (-5 *1 (-755)))) (-2263 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-566)) (-5 *4 (-112)) (-5 *5 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-755)))) (-1822 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-390)) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-755)))) (-1822 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-755)))) (-2211 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-566)) (-5 *5 (-112)) (-5 *6 (-689 (-225))) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-755)))) (-3003 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-755)))) (-3533 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-755)))) (-4393 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-755)))) (-3275 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-755)))) (-3699 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-755)))) (-1972 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-755)))) (-1877 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-755)))) (-3084 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-755)))) (-2698 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-755)))) (-3225 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-755)))) (-3303 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-755))))) -(-10 -7 (-15 -3303 ((-1035) (-566) (-566) (-689 (-225)) (-566))) (-15 -3225 ((-1035) (-689 (-225)) (-566) (-566) (-566) (-566))) (-15 -2698 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3084 ((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -1877 ((-1035) (-566) (-566) (-689 (-225)) (-566))) (-15 -1972 ((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-566))) (-15 -3699 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3275 ((-1035) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -4393 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3533 ((-1035) (-689 (-225)) (-566) (-689 (-225)) (-566) (-566) (-566) (-566) (-566))) (-15 -3003 ((-1035) (-566) (-566) (-225) (-225) (-566) (-566) (-689 (-225)) (-566))) (-15 -2211 ((-1035) (-566) (-566) (-566) (-225) (-112) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -1822 ((-1035) (-566) (-566) (-225) (-566) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-390)) (|:| |fp| (-68 IMAGE))))) (-15 -1822 ((-1035) (-566) (-566) (-225) (-566) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-390)) (|:| |fp| (-68 IMAGE))) (-390))) (-15 -2263 ((-1035) (-566) (-566) (-566) (-566) (-566) (-112) (-566) (-112) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2773 ((-1035) (-566) (-566) (-566) (-566) (-566) (-112) (-566) (-112) (-566) (-689 (-169 (-225))) (-689 (-169 (-225))) (-566)))) -((-2488 (((-1035) (-566) (-566) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-70 APROD)))) 64)) (-3643 (((-1035) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-566)) (-566) (-689 (-225)) (-566) (-566) (-566) (-566)) 60)) (-4372 (((-1035) (-566) (-689 (-225)) (-112) (-225) (-566) (-566) (-566) (-566) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-390)) (|:| |fp| (-73 MSOLVE)))) 59)) (-2581 (((-1035) (-566) (-566) (-689 (-225)) (-566) (-689 (-566)) (-566) (-689 (-566)) (-689 (-225)) (-689 (-566)) (-689 (-566)) (-689 (-225)) (-689 (-225)) (-689 (-566)) (-566)) 37)) (-4385 (((-1035) (-566) (-566) (-566) (-225) (-566) (-689 (-225)) (-689 (-225)) (-566)) 36)) (-3318 (((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566)) 33)) (-3958 (((-1035) (-566) (-689 (-225)) (-566) (-689 (-566)) (-689 (-566)) (-566) (-689 (-566)) (-689 (-225))) 32)) (-4321 (((-1035) (-689 (-225)) (-566) (-689 (-225)) (-566) (-566) (-566)) 28)) (-3123 (((-1035) (-566) (-689 (-225)) (-566) (-689 (-225)) (-566)) 27)) (-3393 (((-1035) (-566) (-689 (-225)) (-566) (-689 (-225)) (-566)) 26)) (-3026 (((-1035) (-566) (-689 (-169 (-225))) (-566) (-566) (-566) (-566) (-689 (-169 (-225))) (-566)) 22))) -(((-756) (-10 -7 (-15 -3026 ((-1035) (-566) (-689 (-169 (-225))) (-566) (-566) (-566) (-566) (-689 (-169 (-225))) (-566))) (-15 -3393 ((-1035) (-566) (-689 (-225)) (-566) (-689 (-225)) (-566))) (-15 -3123 ((-1035) (-566) (-689 (-225)) (-566) (-689 (-225)) (-566))) (-15 -4321 ((-1035) (-689 (-225)) (-566) (-689 (-225)) (-566) (-566) (-566))) (-15 -3958 ((-1035) (-566) (-689 (-225)) (-566) (-689 (-566)) (-689 (-566)) (-566) (-689 (-566)) (-689 (-225)))) (-15 -3318 ((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -4385 ((-1035) (-566) (-566) (-566) (-225) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2581 ((-1035) (-566) (-566) (-689 (-225)) (-566) (-689 (-566)) (-566) (-689 (-566)) (-689 (-225)) (-689 (-566)) (-689 (-566)) (-689 (-225)) (-689 (-225)) (-689 (-566)) (-566))) (-15 -4372 ((-1035) (-566) (-689 (-225)) (-112) (-225) (-566) (-566) (-566) (-566) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-390)) (|:| |fp| (-73 MSOLVE))))) (-15 -3643 ((-1035) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-566)) (-566) (-689 (-225)) (-566) (-566) (-566) (-566))) (-15 -2488 ((-1035) (-566) (-566) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-70 APROD))))))) (T -756)) -((-2488 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-70 APROD)))) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-756)))) (-3643 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-689 (-225))) (-5 *5 (-689 (-566))) (-5 *3 (-566)) (-5 *2 (-1035)) (-5 *1 (-756)))) (-4372 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-390)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1035)) (-5 *1 (-756)))) (-2581 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-689 (-225))) (-5 *5 (-689 (-566))) (-5 *3 (-566)) (-5 *2 (-1035)) (-5 *1 (-756)))) (-4385 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-756)))) (-3318 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-756)))) (-3958 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-689 (-225))) (-5 *5 (-689 (-566))) (-5 *3 (-566)) (-5 *2 (-1035)) (-5 *1 (-756)))) (-4321 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-756)))) (-3123 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-756)))) (-3393 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-756)))) (-3026 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-169 (-225)))) (-5 *2 (-1035)) (-5 *1 (-756))))) -(-10 -7 (-15 -3026 ((-1035) (-566) (-689 (-169 (-225))) (-566) (-566) (-566) (-566) (-689 (-169 (-225))) (-566))) (-15 -3393 ((-1035) (-566) (-689 (-225)) (-566) (-689 (-225)) (-566))) (-15 -3123 ((-1035) (-566) (-689 (-225)) (-566) (-689 (-225)) (-566))) (-15 -4321 ((-1035) (-689 (-225)) (-566) (-689 (-225)) (-566) (-566) (-566))) (-15 -3958 ((-1035) (-566) (-689 (-225)) (-566) (-689 (-566)) (-689 (-566)) (-566) (-689 (-566)) (-689 (-225)))) (-15 -3318 ((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -4385 ((-1035) (-566) (-566) (-566) (-225) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2581 ((-1035) (-566) (-566) (-689 (-225)) (-566) (-689 (-566)) (-566) (-689 (-566)) (-689 (-225)) (-689 (-566)) (-689 (-566)) (-689 (-225)) (-689 (-225)) (-689 (-566)) (-566))) (-15 -4372 ((-1035) (-566) (-689 (-225)) (-112) (-225) (-566) (-566) (-566) (-566) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-390)) (|:| |fp| (-73 MSOLVE))))) (-15 -3643 ((-1035) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-566)) (-566) (-689 (-225)) (-566) (-566) (-566) (-566))) (-15 -2488 ((-1035) (-566) (-566) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-70 APROD)))))) -((-2769 (((-1035) (-1157) (-566) (-566) (-689 (-225)) (-566) (-566) (-689 (-225))) 29)) (-3372 (((-1035) (-1157) (-566) (-566) (-689 (-225))) 28)) (-4091 (((-1035) (-1157) (-566) (-566) (-689 (-225)) (-566) (-689 (-566)) (-566) (-689 (-225))) 27)) (-3449 (((-1035) (-566) (-566) (-566) (-689 (-225))) 21))) -(((-757) (-10 -7 (-15 -3449 ((-1035) (-566) (-566) (-566) (-689 (-225)))) (-15 -4091 ((-1035) (-1157) (-566) (-566) (-689 (-225)) (-566) (-689 (-566)) (-566) (-689 (-225)))) (-15 -3372 ((-1035) (-1157) (-566) (-566) (-689 (-225)))) (-15 -2769 ((-1035) (-1157) (-566) (-566) (-689 (-225)) (-566) (-566) (-689 (-225)))))) (T -757)) -((-2769 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1157)) (-5 *4 (-566)) (-5 *5 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-757)))) (-3372 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1157)) (-5 *4 (-566)) (-5 *5 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-757)))) (-4091 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1157)) (-5 *5 (-689 (-225))) (-5 *6 (-689 (-566))) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-757)))) (-3449 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-757))))) -(-10 -7 (-15 -3449 ((-1035) (-566) (-566) (-566) (-689 (-225)))) (-15 -4091 ((-1035) (-1157) (-566) (-566) (-689 (-225)) (-566) (-689 (-566)) (-566) (-689 (-225)))) (-15 -3372 ((-1035) (-1157) (-566) (-566) (-689 (-225)))) (-15 -2769 ((-1035) (-1157) (-566) (-566) (-689 (-225)) (-566) (-566) (-689 (-225))))) -((-2398 (((-1035) (-225) (-225) (-225) (-225) (-566)) 62)) (-3716 (((-1035) (-225) (-225) (-225) (-566)) 61)) (-1924 (((-1035) (-225) (-225) (-225) (-566)) 60)) (-3794 (((-1035) (-225) (-225) (-566)) 59)) (-3828 (((-1035) (-225) (-566)) 58)) (-2001 (((-1035) (-225) (-566)) 57)) (-4387 (((-1035) (-225) (-566)) 56)) (-3245 (((-1035) (-225) (-566)) 55)) (-1813 (((-1035) (-225) (-566)) 54)) (-3446 (((-1035) (-225) (-566)) 53)) (-1934 (((-1035) (-225) (-169 (-225)) (-566) (-1157) (-566)) 52)) (-2259 (((-1035) (-225) (-169 (-225)) (-566) (-1157) (-566)) 51)) (-2643 (((-1035) (-225) (-566)) 50)) (-3722 (((-1035) (-225) (-566)) 49)) (-2501 (((-1035) (-225) (-566)) 48)) (-3064 (((-1035) (-225) (-566)) 47)) (-4312 (((-1035) (-566) (-225) (-169 (-225)) (-566) (-1157) (-566)) 46)) (-3388 (((-1035) (-1157) (-169 (-225)) (-1157) (-566)) 45)) (-2602 (((-1035) (-1157) (-169 (-225)) (-1157) (-566)) 44)) (-1733 (((-1035) (-225) (-169 (-225)) (-566) (-1157) (-566)) 43)) (-3022 (((-1035) (-225) (-169 (-225)) (-566) (-1157) (-566)) 42)) (-2878 (((-1035) (-225) (-566)) 39)) (-1834 (((-1035) (-225) (-566)) 38)) (-1732 (((-1035) (-225) (-566)) 37)) (-4277 (((-1035) (-225) (-566)) 36)) (-2485 (((-1035) (-225) (-566)) 35)) (-1480 (((-1035) (-225) (-566)) 34)) (-1634 (((-1035) (-225) (-566)) 33)) (-2983 (((-1035) (-225) (-566)) 32)) (-3612 (((-1035) (-225) (-566)) 31)) (-1459 (((-1035) (-225) (-566)) 30)) (-3914 (((-1035) (-225) (-225) (-225) (-566)) 29)) (-2900 (((-1035) (-225) (-566)) 28)) (-4007 (((-1035) (-225) (-566)) 27)) (-4029 (((-1035) (-225) (-566)) 26)) (-3358 (((-1035) (-225) (-566)) 25)) (-1823 (((-1035) (-225) (-566)) 24)) (-1421 (((-1035) (-169 (-225)) (-566)) 21))) -(((-758) (-10 -7 (-15 -1421 ((-1035) (-169 (-225)) (-566))) (-15 -1823 ((-1035) (-225) (-566))) (-15 -3358 ((-1035) (-225) (-566))) (-15 -4029 ((-1035) (-225) (-566))) (-15 -4007 ((-1035) (-225) (-566))) (-15 -2900 ((-1035) (-225) (-566))) (-15 -3914 ((-1035) (-225) (-225) (-225) (-566))) (-15 -1459 ((-1035) (-225) (-566))) (-15 -3612 ((-1035) (-225) (-566))) (-15 -2983 ((-1035) (-225) (-566))) (-15 -1634 ((-1035) (-225) (-566))) (-15 -1480 ((-1035) (-225) (-566))) (-15 -2485 ((-1035) (-225) (-566))) (-15 -4277 ((-1035) (-225) (-566))) (-15 -1732 ((-1035) (-225) (-566))) (-15 -1834 ((-1035) (-225) (-566))) (-15 -2878 ((-1035) (-225) (-566))) (-15 -3022 ((-1035) (-225) (-169 (-225)) (-566) (-1157) (-566))) (-15 -1733 ((-1035) (-225) (-169 (-225)) (-566) (-1157) (-566))) (-15 -2602 ((-1035) (-1157) (-169 (-225)) (-1157) (-566))) (-15 -3388 ((-1035) (-1157) (-169 (-225)) (-1157) (-566))) (-15 -4312 ((-1035) (-566) (-225) (-169 (-225)) (-566) (-1157) (-566))) (-15 -3064 ((-1035) (-225) (-566))) (-15 -2501 ((-1035) (-225) (-566))) (-15 -3722 ((-1035) (-225) (-566))) (-15 -2643 ((-1035) (-225) (-566))) (-15 -2259 ((-1035) (-225) (-169 (-225)) (-566) (-1157) (-566))) (-15 -1934 ((-1035) (-225) (-169 (-225)) (-566) (-1157) (-566))) (-15 -3446 ((-1035) (-225) (-566))) (-15 -1813 ((-1035) (-225) (-566))) (-15 -3245 ((-1035) (-225) (-566))) (-15 -4387 ((-1035) (-225) (-566))) (-15 -2001 ((-1035) (-225) (-566))) (-15 -3828 ((-1035) (-225) (-566))) (-15 -3794 ((-1035) (-225) (-225) (-566))) (-15 -1924 ((-1035) (-225) (-225) (-225) (-566))) (-15 -3716 ((-1035) (-225) (-225) (-225) (-566))) (-15 -2398 ((-1035) (-225) (-225) (-225) (-225) (-566))))) (T -758)) -((-2398 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-3716 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-1924 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-3794 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-3828 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-2001 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-4387 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-3245 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-1813 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-3446 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-1934 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-566)) (-5 *6 (-1157)) (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-2259 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-566)) (-5 *6 (-1157)) (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-2643 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-3722 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-2501 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-3064 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-4312 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-566)) (-5 *5 (-169 (-225))) (-5 *6 (-1157)) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-3388 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1157)) (-5 *4 (-169 (-225))) (-5 *5 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-2602 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1157)) (-5 *4 (-169 (-225))) (-5 *5 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-1733 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-566)) (-5 *6 (-1157)) (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-3022 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-566)) (-5 *6 (-1157)) (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-2878 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-1834 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-1732 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-4277 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-2485 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-1480 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-1634 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-2983 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-1459 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-3914 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-2900 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-4007 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-4029 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-3358 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-1823 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-1421 (*1 *2 *3 *4) (-12 (-5 *3 (-169 (-225))) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) -(-10 -7 (-15 -1421 ((-1035) (-169 (-225)) (-566))) (-15 -1823 ((-1035) (-225) (-566))) (-15 -3358 ((-1035) (-225) (-566))) (-15 -4029 ((-1035) (-225) (-566))) (-15 -4007 ((-1035) (-225) (-566))) (-15 -2900 ((-1035) (-225) (-566))) (-15 -3914 ((-1035) (-225) (-225) (-225) (-566))) (-15 -1459 ((-1035) (-225) (-566))) (-15 -3612 ((-1035) (-225) (-566))) (-15 -2983 ((-1035) (-225) (-566))) (-15 -1634 ((-1035) (-225) (-566))) (-15 -1480 ((-1035) (-225) (-566))) (-15 -2485 ((-1035) (-225) (-566))) (-15 -4277 ((-1035) (-225) (-566))) (-15 -1732 ((-1035) (-225) (-566))) (-15 -1834 ((-1035) (-225) (-566))) (-15 -2878 ((-1035) (-225) (-566))) (-15 -3022 ((-1035) (-225) (-169 (-225)) (-566) (-1157) (-566))) (-15 -1733 ((-1035) (-225) (-169 (-225)) (-566) (-1157) (-566))) (-15 -2602 ((-1035) (-1157) (-169 (-225)) (-1157) (-566))) (-15 -3388 ((-1035) (-1157) (-169 (-225)) (-1157) (-566))) (-15 -4312 ((-1035) (-566) (-225) (-169 (-225)) (-566) (-1157) (-566))) (-15 -3064 ((-1035) (-225) (-566))) (-15 -2501 ((-1035) (-225) (-566))) (-15 -3722 ((-1035) (-225) (-566))) (-15 -2643 ((-1035) (-225) (-566))) (-15 -2259 ((-1035) (-225) (-169 (-225)) (-566) (-1157) (-566))) (-15 -1934 ((-1035) (-225) (-169 (-225)) (-566) (-1157) (-566))) (-15 -3446 ((-1035) (-225) (-566))) (-15 -1813 ((-1035) (-225) (-566))) (-15 -3245 ((-1035) (-225) (-566))) (-15 -4387 ((-1035) (-225) (-566))) (-15 -2001 ((-1035) (-225) (-566))) (-15 -3828 ((-1035) (-225) (-566))) (-15 -3794 ((-1035) (-225) (-225) (-566))) (-15 -1924 ((-1035) (-225) (-225) (-225) (-566))) (-15 -3716 ((-1035) (-225) (-225) (-225) (-566))) (-15 -2398 ((-1035) (-225) (-225) (-225) (-225) (-566)))) -((-2063 (((-1269)) 21)) (-1731 (((-1157)) 32)) (-4154 (((-1157)) 31)) (-3880 (((-1103) (-1175) (-689 (-566))) 46) (((-1103) (-1175) (-689 (-225))) 42)) (-2536 (((-112)) 19)) (-2962 (((-1157) (-1157)) 35))) -(((-759) (-10 -7 (-15 -4154 ((-1157))) (-15 -1731 ((-1157))) (-15 -2962 ((-1157) (-1157))) (-15 -3880 ((-1103) (-1175) (-689 (-225)))) (-15 -3880 ((-1103) (-1175) (-689 (-566)))) (-15 -2536 ((-112))) (-15 -2063 ((-1269))))) (T -759)) -((-2063 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-759)))) (-2536 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-759)))) (-3880 (*1 *2 *3 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-689 (-566))) (-5 *2 (-1103)) (-5 *1 (-759)))) (-3880 (*1 *2 *3 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-689 (-225))) (-5 *2 (-1103)) (-5 *1 (-759)))) (-2962 (*1 *2 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-759)))) (-1731 (*1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-759)))) (-4154 (*1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-759))))) -(-10 -7 (-15 -4154 ((-1157))) (-15 -1731 ((-1157))) (-15 -2962 ((-1157) (-1157))) (-15 -3880 ((-1103) (-1175) (-689 (-225)))) (-15 -3880 ((-1103) (-1175) (-689 (-566)))) (-15 -2536 ((-112))) (-15 -2063 ((-1269)))) -((-3171 (($ $ $) 10)) (-2320 (($ $ $ $) 9)) (-3027 (($ $ $) 12))) -(((-760 |#1|) (-10 -8 (-15 -3027 (|#1| |#1| |#1|)) (-15 -3171 (|#1| |#1| |#1|)) (-15 -2320 (|#1| |#1| |#1| |#1|))) (-761)) (T -760)) -NIL -(-10 -8 (-15 -3027 (|#1| |#1| |#1|)) (-15 -3171 (|#1| |#1| |#1|)) (-15 -2320 (|#1| |#1| |#1| |#1|))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-4175 (((-3 $ "failed") $ $) 20)) (-3012 (($) 18 T CONST)) (-3942 (($ $ (-921)) 31)) (-2437 (($ $ (-921)) 32)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3171 (($ $ $) 28)) (-3783 (((-862) $) 12)) (-3117 (((-112) $ $) 9)) (-2320 (($ $ $ $) 29)) (-3027 (($ $ $) 27)) (-2479 (($) 19 T CONST)) (-2947 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 33)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 30))) +((-1883 (((-1035) (-689 (-225)) (-566) (-112) (-566)) 25)) (-1481 (((-1035) (-689 (-225)) (-566) (-112) (-566)) 24))) +(((-745) (-10 -7 (-15 -1481 ((-1035) (-689 (-225)) (-566) (-112) (-566))) (-15 -1883 ((-1035) (-689 (-225)) (-566) (-112) (-566))))) (T -745)) +((-1883 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *5 (-112)) (-5 *2 (-1035)) (-5 *1 (-745)))) (-1481 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *5 (-112)) (-5 *2 (-1035)) (-5 *1 (-745))))) +(-10 -7 (-15 -1481 ((-1035) (-689 (-225)) (-566) (-112) (-566))) (-15 -1883 ((-1035) (-689 (-225)) (-566) (-112) (-566)))) +((-2223 (((-1035) (-566) (-566) (-566) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-74 FCN)))) 43)) (-3673 (((-1035) (-566) (-566) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-81 FCN)))) 39)) (-3697 (((-1035) (-225) (-225) (-225) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2352)))) 32))) +(((-746) (-10 -7 (-15 -3697 ((-1035) (-225) (-225) (-225) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2352))))) (-15 -3673 ((-1035) (-566) (-566) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-81 FCN))))) (-15 -2223 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-74 FCN))))))) (T -746)) +((-2223 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1035)) (-5 *1 (-746)))) (-3673 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1035)) (-5 *1 (-746)))) (-3697 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2352)))) (-5 *2 (-1035)) (-5 *1 (-746))))) +(-10 -7 (-15 -3697 ((-1035) (-225) (-225) (-225) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2352))))) (-15 -3673 ((-1035) (-566) (-566) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-81 FCN))))) (-15 -2223 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-74 FCN)))))) +((-3711 (((-1035) (-566) (-566) (-689 (-225)) (-566)) 34)) (-4078 (((-1035) (-566) (-566) (-689 (-225)) (-566)) 33)) (-4255 (((-1035) (-566) (-689 (-225)) (-566)) 32)) (-1332 (((-1035) (-566) (-689 (-225)) (-566)) 31)) (-2470 (((-1035) (-566) (-566) (-1157) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566)) 30)) (-2976 (((-1035) (-566) (-566) (-1157) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566)) 29)) (-3604 (((-1035) (-566) (-566) (-1157) (-689 (-225)) (-689 (-225)) (-566)) 28)) (-3246 (((-1035) (-566) (-566) (-1157) (-689 (-225)) (-689 (-225)) (-566)) 27)) (-2637 (((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566)) 24)) (-3559 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566)) 23)) (-2624 (((-1035) (-566) (-689 (-225)) (-566)) 22)) (-3312 (((-1035) (-566) (-689 (-225)) (-566)) 21))) +(((-747) (-10 -7 (-15 -3312 ((-1035) (-566) (-689 (-225)) (-566))) (-15 -2624 ((-1035) (-566) (-689 (-225)) (-566))) (-15 -3559 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2637 ((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3246 ((-1035) (-566) (-566) (-1157) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3604 ((-1035) (-566) (-566) (-1157) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2976 ((-1035) (-566) (-566) (-1157) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2470 ((-1035) (-566) (-566) (-1157) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -1332 ((-1035) (-566) (-689 (-225)) (-566))) (-15 -4255 ((-1035) (-566) (-689 (-225)) (-566))) (-15 -4078 ((-1035) (-566) (-566) (-689 (-225)) (-566))) (-15 -3711 ((-1035) (-566) (-566) (-689 (-225)) (-566))))) (T -747)) +((-3711 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-747)))) (-4078 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-747)))) (-4255 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-747)))) (-1332 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-747)))) (-2470 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-566)) (-5 *4 (-1157)) (-5 *5 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-747)))) (-2976 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-566)) (-5 *4 (-1157)) (-5 *5 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-747)))) (-3604 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-566)) (-5 *4 (-1157)) (-5 *5 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-747)))) (-3246 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-566)) (-5 *4 (-1157)) (-5 *5 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-747)))) (-2637 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-747)))) (-3559 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-747)))) (-2624 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-747)))) (-3312 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-747))))) +(-10 -7 (-15 -3312 ((-1035) (-566) (-689 (-225)) (-566))) (-15 -2624 ((-1035) (-566) (-689 (-225)) (-566))) (-15 -3559 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2637 ((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3246 ((-1035) (-566) (-566) (-1157) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3604 ((-1035) (-566) (-566) (-1157) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2976 ((-1035) (-566) (-566) (-1157) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2470 ((-1035) (-566) (-566) (-1157) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -1332 ((-1035) (-566) (-689 (-225)) (-566))) (-15 -4255 ((-1035) (-566) (-689 (-225)) (-566))) (-15 -4078 ((-1035) (-566) (-566) (-689 (-225)) (-566))) (-15 -3711 ((-1035) (-566) (-566) (-689 (-225)) (-566)))) +((-1596 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566) (-225) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-78 FUNCTN)))) 52)) (-2687 (((-1035) (-689 (-225)) (-689 (-225)) (-566) (-566)) 51)) (-3784 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-78 FUNCTN)))) 50)) (-3444 (((-1035) (-225) (-225) (-566) (-566) (-566) (-566)) 46)) (-1898 (((-1035) (-225) (-225) (-566) (-225) (-566) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G)))) 45)) (-2742 (((-1035) (-225) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G)))) 44)) (-3288 (((-1035) (-225) (-225) (-225) (-225) (-566) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G)))) 43)) (-3878 (((-1035) (-225) (-225) (-225) (-566) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G)))) 42)) (-2572 (((-1035) (-225) (-566) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2352)))) 38)) (-3122 (((-1035) (-225) (-225) (-566) (-689 (-225)) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2352)))) 37)) (-3367 (((-1035) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2352)))) 33)) (-2202 (((-1035) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2352)))) 32))) +(((-748) (-10 -7 (-15 -2202 ((-1035) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2352))))) (-15 -3367 ((-1035) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2352))))) (-15 -3122 ((-1035) (-225) (-225) (-566) (-689 (-225)) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2352))))) (-15 -2572 ((-1035) (-225) (-566) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2352))))) (-15 -3878 ((-1035) (-225) (-225) (-225) (-566) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G))))) (-15 -3288 ((-1035) (-225) (-225) (-225) (-225) (-566) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G))))) (-15 -2742 ((-1035) (-225) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G))))) (-15 -1898 ((-1035) (-225) (-225) (-566) (-225) (-566) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G))))) (-15 -3444 ((-1035) (-225) (-225) (-566) (-566) (-566) (-566))) (-15 -3784 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-78 FUNCTN))))) (-15 -2687 ((-1035) (-689 (-225)) (-689 (-225)) (-566) (-566))) (-15 -1596 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566) (-225) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-78 FUNCTN))))))) (T -748)) +((-1596 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1035)) (-5 *1 (-748)))) (-2687 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-748)))) (-3784 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1035)) (-5 *1 (-748)))) (-3444 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-748)))) (-1898 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G)))) (-5 *2 (-1035)) (-5 *1 (-748)))) (-2742 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G)))) (-5 *2 (-1035)) (-5 *1 (-748)))) (-3288 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G)))) (-5 *2 (-1035)) (-5 *1 (-748)))) (-3878 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G)))) (-5 *2 (-1035)) (-5 *1 (-748)))) (-2572 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2352)))) (-5 *2 (-1035)) (-5 *1 (-748)))) (-3122 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-566)) (-5 *5 (-689 (-225))) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2352)))) (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-748)))) (-3367 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2352)))) (-5 *2 (-1035)) (-5 *1 (-748)))) (-2202 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2352)))) (-5 *2 (-1035)) (-5 *1 (-748))))) +(-10 -7 (-15 -2202 ((-1035) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2352))))) (-15 -3367 ((-1035) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2352))))) (-15 -3122 ((-1035) (-225) (-225) (-566) (-689 (-225)) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2352))))) (-15 -2572 ((-1035) (-225) (-566) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2352))))) (-15 -3878 ((-1035) (-225) (-225) (-225) (-566) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G))))) (-15 -3288 ((-1035) (-225) (-225) (-225) (-225) (-566) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G))))) (-15 -2742 ((-1035) (-225) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G))))) (-15 -1898 ((-1035) (-225) (-225) (-566) (-225) (-566) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G))))) (-15 -3444 ((-1035) (-225) (-225) (-566) (-566) (-566) (-566))) (-15 -3784 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-78 FUNCTN))))) (-15 -2687 ((-1035) (-689 (-225)) (-689 (-225)) (-566) (-566))) (-15 -1596 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566) (-225) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-78 FUNCTN)))))) +((-3969 (((-1035) (-566) (-566) (-566) (-566) (-225) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-390)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-1622 (((-1035) (-689 (-225)) (-566) (-566) (-225) (-566) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-87 BDYVAL))) (-390) (-390)) 69) (((-1035) (-689 (-225)) (-566) (-566) (-225) (-566) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-87 BDYVAL)))) 68)) (-3138 (((-1035) (-225) (-225) (-566) (-225) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-390)) (|:| |fp| (-85 FCNG)))) 57)) (-3076 (((-1035) (-689 (-225)) (-689 (-225)) (-566) (-225) (-225) (-225) (-566) (-566) (-566) (-689 (-225)) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN)))) 50)) (-3172 (((-1035) (-225) (-566) (-566) (-1157) (-566) (-225) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT)))) 49)) (-4239 (((-1035) (-225) (-566) (-566) (-225) (-1157) (-225) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT)))) 45)) (-2829 (((-1035) (-225) (-566) (-566) (-225) (-225) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN)))) 42)) (-2340 (((-1035) (-225) (-566) (-566) (-566) (-225) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT)))) 38))) +(((-749) (-10 -7 (-15 -2340 ((-1035) (-225) (-566) (-566) (-566) (-225) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT))))) (-15 -2829 ((-1035) (-225) (-566) (-566) (-225) (-225) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN))))) (-15 -4239 ((-1035) (-225) (-566) (-566) (-225) (-1157) (-225) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT))))) (-15 -3172 ((-1035) (-225) (-566) (-566) (-1157) (-566) (-225) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT))))) (-15 -3076 ((-1035) (-689 (-225)) (-689 (-225)) (-566) (-225) (-225) (-225) (-566) (-566) (-566) (-689 (-225)) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN))))) (-15 -3138 ((-1035) (-225) (-225) (-566) (-225) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-390)) (|:| |fp| (-85 FCNG))))) (-15 -1622 ((-1035) (-689 (-225)) (-566) (-566) (-225) (-566) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-87 BDYVAL))))) (-15 -1622 ((-1035) (-689 (-225)) (-566) (-566) (-225) (-566) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-87 BDYVAL))) (-390) (-390))) (-15 -3969 ((-1035) (-566) (-566) (-566) (-566) (-225) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-390)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -749)) +((-3969 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-749)))) (-1622 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-390)) (-5 *2 (-1035)) (-5 *1 (-749)))) (-1622 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1035)) (-5 *1 (-749)))) (-3138 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-566)) (-5 *5 (-689 (-225))) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-749)))) (-3076 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1035)) (-5 *1 (-749)))) (-3172 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-566)) (-5 *5 (-1157)) (-5 *6 (-689 (-225))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-390)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-749)))) (-4239 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-566)) (-5 *5 (-1157)) (-5 *6 (-689 (-225))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-749)))) (-2829 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-566)) (-5 *5 (-689 (-225))) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN)))) (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-749)))) (-2340 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-566)) (-5 *5 (-689 (-225))) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-749))))) +(-10 -7 (-15 -2340 ((-1035) (-225) (-566) (-566) (-566) (-225) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT))))) (-15 -2829 ((-1035) (-225) (-566) (-566) (-225) (-225) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN))))) (-15 -4239 ((-1035) (-225) (-566) (-566) (-225) (-1157) (-225) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT))))) (-15 -3172 ((-1035) (-225) (-566) (-566) (-1157) (-566) (-225) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT))))) (-15 -3076 ((-1035) (-689 (-225)) (-689 (-225)) (-566) (-225) (-225) (-225) (-566) (-566) (-566) (-689 (-225)) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN))))) (-15 -3138 ((-1035) (-225) (-225) (-566) (-225) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-390)) (|:| |fp| (-85 FCNG))))) (-15 -1622 ((-1035) (-689 (-225)) (-566) (-566) (-225) (-566) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-87 BDYVAL))))) (-15 -1622 ((-1035) (-689 (-225)) (-566) (-566) (-225) (-566) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-87 BDYVAL))) (-390) (-390))) (-15 -3969 ((-1035) (-566) (-566) (-566) (-566) (-225) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-390)) (|:| |fp| (-76 G JACOBG JACGEP)))))) +((-1609 (((-1035) (-225) (-225) (-566) (-566) (-689 (-225)) (-689 (-225)) (-225) (-225) (-566) (-566) (-689 (-225)) (-689 (-225)) (-225) (-225) (-566) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566) (-566) (-675 (-225)) (-566)) 45)) (-2383 (((-1035) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-1157) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-390)) (|:| |fp| (-83 BNDY)))) 41)) (-4148 (((-1035) (-566) (-566) (-566) (-566) (-225) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566)) 23))) +(((-750) (-10 -7 (-15 -4148 ((-1035) (-566) (-566) (-566) (-566) (-225) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2383 ((-1035) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-1157) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-390)) (|:| |fp| (-83 BNDY))))) (-15 -1609 ((-1035) (-225) (-225) (-566) (-566) (-689 (-225)) (-689 (-225)) (-225) (-225) (-566) (-566) (-689 (-225)) (-689 (-225)) (-225) (-225) (-566) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566) (-566) (-675 (-225)) (-566))))) (T -750)) +((-1609 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-566)) (-5 *5 (-689 (-225))) (-5 *6 (-675 (-225))) (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-750)))) (-2383 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *5 (-1157)) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1035)) (-5 *1 (-750)))) (-4148 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-750))))) +(-10 -7 (-15 -4148 ((-1035) (-566) (-566) (-566) (-566) (-225) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2383 ((-1035) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-1157) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-390)) (|:| |fp| (-83 BNDY))))) (-15 -1609 ((-1035) (-225) (-225) (-566) (-566) (-689 (-225)) (-689 (-225)) (-225) (-225) (-566) (-566) (-689 (-225)) (-689 (-225)) (-225) (-225) (-566) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566) (-566) (-675 (-225)) (-566)))) +((-2574 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-225) (-689 (-225)) (-225) (-225) (-566)) 35)) (-1787 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-566) (-225) (-225) (-566)) 34)) (-2412 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-566)) (-689 (-225)) (-225) (-225) (-566)) 33)) (-2471 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566)) 29)) (-4033 (((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566)) 28)) (-3776 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-225) (-225) (-566)) 27)) (-4064 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-689 (-225)) (-566)) 24)) (-3096 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-689 (-225)) (-566)) 23)) (-2149 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566)) 22)) (-2417 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566) (-566) (-566)) 21))) +(((-751) (-10 -7 (-15 -2417 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566) (-566) (-566))) (-15 -2149 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3096 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-689 (-225)) (-566))) (-15 -4064 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-689 (-225)) (-566))) (-15 -3776 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-225) (-225) (-566))) (-15 -4033 ((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2471 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2412 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-566)) (-689 (-225)) (-225) (-225) (-566))) (-15 -1787 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-566) (-225) (-225) (-566))) (-15 -2574 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-225) (-689 (-225)) (-225) (-225) (-566))))) (T -751)) +((-2574 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) (-5 *2 (-1035)) (-5 *1 (-751)))) (-1787 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) (-5 *2 (-1035)) (-5 *1 (-751)))) (-2412 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-689 (-225))) (-5 *5 (-689 (-566))) (-5 *6 (-225)) (-5 *3 (-566)) (-5 *2 (-1035)) (-5 *1 (-751)))) (-2471 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-751)))) (-4033 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-751)))) (-3776 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) (-5 *2 (-1035)) (-5 *1 (-751)))) (-4064 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-751)))) (-3096 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-751)))) (-2149 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-751)))) (-2417 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-751))))) +(-10 -7 (-15 -2417 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566) (-566) (-566))) (-15 -2149 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3096 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-689 (-225)) (-566))) (-15 -4064 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-689 (-225)) (-566))) (-15 -3776 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-225) (-225) (-566))) (-15 -4033 ((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2471 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2412 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-566)) (-689 (-225)) (-225) (-225) (-566))) (-15 -1787 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-566) (-225) (-225) (-566))) (-15 -2574 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-225) (-689 (-225)) (-225) (-225) (-566)))) +((-2262 (((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-566) (-566) (-566)) 45)) (-4285 (((-1035) (-566) (-566) (-566) (-225) (-689 (-225)) (-689 (-225)) (-566)) 44)) (-2959 (((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-566) (-566)) 43)) (-4081 (((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566)) 42)) (-3358 (((-1035) (-1157) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-566)) 41)) (-1929 (((-1035) (-1157) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-689 (-566)) (-566)) 40)) (-3304 (((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-566)) (-566) (-566) (-566) (-225) (-689 (-225)) (-566)) 39)) (-4207 (((-1035) (-1157) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-566))) 38)) (-3415 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566)) 35)) (-1496 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566)) 34)) (-1601 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566)) 33)) (-3422 (((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566)) 32)) (-4301 (((-1035) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-225) (-566)) 31)) (-2003 (((-1035) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-225) (-566) (-566) (-566)) 30)) (-4263 (((-1035) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-566) (-566) (-566)) 29)) (-2174 (((-1035) (-566) (-566) (-566) (-225) (-225) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-566) (-689 (-566)) (-566) (-566) (-566)) 28)) (-4287 (((-1035) (-566) (-689 (-225)) (-225) (-566)) 24)) (-1428 (((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566)) 21))) +(((-752) (-10 -7 (-15 -1428 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -4287 ((-1035) (-566) (-689 (-225)) (-225) (-566))) (-15 -2174 ((-1035) (-566) (-566) (-566) (-225) (-225) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-566) (-689 (-566)) (-566) (-566) (-566))) (-15 -4263 ((-1035) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-566) (-566) (-566))) (-15 -2003 ((-1035) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-225) (-566) (-566) (-566))) (-15 -4301 ((-1035) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-225) (-566))) (-15 -3422 ((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -1601 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566))) (-15 -1496 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566))) (-15 -3415 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -4207 ((-1035) (-1157) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-566)))) (-15 -3304 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-566)) (-566) (-566) (-566) (-225) (-689 (-225)) (-566))) (-15 -1929 ((-1035) (-1157) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-689 (-566)) (-566))) (-15 -3358 ((-1035) (-1157) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -4081 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2959 ((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-566) (-566))) (-15 -4285 ((-1035) (-566) (-566) (-566) (-225) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2262 ((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-566) (-566) (-566))))) (T -752)) +((-2262 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-752)))) (-4285 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-752)))) (-2959 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-752)))) (-4081 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-752)))) (-3358 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1157)) (-5 *4 (-566)) (-5 *5 (-689 (-225))) (-5 *6 (-225)) (-5 *2 (-1035)) (-5 *1 (-752)))) (-1929 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1157)) (-5 *5 (-689 (-225))) (-5 *6 (-225)) (-5 *7 (-689 (-566))) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-752)))) (-3304 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-689 (-225))) (-5 *5 (-689 (-566))) (-5 *6 (-225)) (-5 *3 (-566)) (-5 *2 (-1035)) (-5 *1 (-752)))) (-4207 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1157)) (-5 *5 (-689 (-225))) (-5 *6 (-225)) (-5 *7 (-689 (-566))) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-752)))) (-3415 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-752)))) (-1496 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) (-5 *2 (-1035)) (-5 *1 (-752)))) (-1601 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) (-5 *2 (-1035)) (-5 *1 (-752)))) (-3422 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-752)))) (-4301 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-752)))) (-2003 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-752)))) (-4263 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-752)))) (-2174 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-689 (-225))) (-5 *6 (-689 (-566))) (-5 *3 (-566)) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-752)))) (-4287 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) (-5 *2 (-1035)) (-5 *1 (-752)))) (-1428 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-752))))) +(-10 -7 (-15 -1428 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -4287 ((-1035) (-566) (-689 (-225)) (-225) (-566))) (-15 -2174 ((-1035) (-566) (-566) (-566) (-225) (-225) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-566) (-689 (-566)) (-566) (-566) (-566))) (-15 -4263 ((-1035) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-566) (-566) (-566))) (-15 -2003 ((-1035) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-225) (-566) (-566) (-566))) (-15 -4301 ((-1035) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-225) (-566))) (-15 -3422 ((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -1601 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566))) (-15 -1496 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566))) (-15 -3415 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -4207 ((-1035) (-1157) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-566)))) (-15 -3304 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-566)) (-566) (-566) (-566) (-225) (-689 (-225)) (-566))) (-15 -1929 ((-1035) (-1157) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-689 (-566)) (-566))) (-15 -3358 ((-1035) (-1157) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -4081 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2959 ((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-566) (-566))) (-15 -4285 ((-1035) (-566) (-566) (-566) (-225) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2262 ((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-566) (-566) (-566)))) +((-2452 (((-1035) (-566) (-566) (-566) (-225) (-689 (-225)) (-566) (-689 (-225)) (-566)) 63)) (-2750 (((-1035) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-566) (-112) (-225) (-566) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-566) (-566) (-566) (-566) (-566) (-225) (-225) (-225) (-566) (-566) (-566) (-566) (-566) (-689 (-566)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-77 OBJFUN)))) 62)) (-4311 (((-1035) (-566) (-566) (-566) (-566) (-566) (-566) (-566) (-566) (-225) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-112) (-112) (-112) (-566) (-566) (-689 (-225)) (-689 (-566)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-65 QPHESS)))) 58)) (-4355 (((-1035) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-112) (-566) (-566) (-689 (-225)) (-566)) 51)) (-1817 (((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-66 FUNCT1)))) 50)) (-3723 (((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-63 LSFUN2)))) 46)) (-3194 (((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-79 LSFUN1)))) 42)) (-1939 (((-1035) (-566) (-225) (-225) (-566) (-225) (-112) (-225) (-225) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-77 OBJFUN)))) 38))) +(((-753) (-10 -7 (-15 -1939 ((-1035) (-566) (-225) (-225) (-566) (-225) (-112) (-225) (-225) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-77 OBJFUN))))) (-15 -3194 ((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-79 LSFUN1))))) (-15 -3723 ((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-63 LSFUN2))))) (-15 -1817 ((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-66 FUNCT1))))) (-15 -4355 ((-1035) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-112) (-566) (-566) (-689 (-225)) (-566))) (-15 -4311 ((-1035) (-566) (-566) (-566) (-566) (-566) (-566) (-566) (-566) (-225) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-112) (-112) (-112) (-566) (-566) (-689 (-225)) (-689 (-566)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-65 QPHESS))))) (-15 -2750 ((-1035) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-566) (-112) (-225) (-566) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-566) (-566) (-566) (-566) (-566) (-225) (-225) (-225) (-566) (-566) (-566) (-566) (-566) (-689 (-566)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-77 OBJFUN))))) (-15 -2452 ((-1035) (-566) (-566) (-566) (-225) (-689 (-225)) (-566) (-689 (-225)) (-566))))) (T -753)) +((-2452 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-753)))) (-2750 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-689 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) (-5 *7 (-689 (-566))) (-5 *8 (-3 (|:| |fn| (-390)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-390)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-566)) (-5 *2 (-1035)) (-5 *1 (-753)))) (-4311 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-689 (-225))) (-5 *6 (-112)) (-5 *7 (-689 (-566))) (-5 *8 (-3 (|:| |fn| (-390)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-566)) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-753)))) (-4355 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-112)) (-5 *2 (-1035)) (-5 *1 (-753)))) (-1817 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1035)) (-5 *1 (-753)))) (-3723 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1035)) (-5 *1 (-753)))) (-3194 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1035)) (-5 *1 (-753)))) (-1939 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-566)) (-5 *5 (-112)) (-5 *6 (-689 (-225))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-753))))) +(-10 -7 (-15 -1939 ((-1035) (-566) (-225) (-225) (-566) (-225) (-112) (-225) (-225) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-77 OBJFUN))))) (-15 -3194 ((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-79 LSFUN1))))) (-15 -3723 ((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-63 LSFUN2))))) (-15 -1817 ((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-66 FUNCT1))))) (-15 -4355 ((-1035) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-112) (-566) (-566) (-689 (-225)) (-566))) (-15 -4311 ((-1035) (-566) (-566) (-566) (-566) (-566) (-566) (-566) (-566) (-225) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-112) (-112) (-112) (-566) (-566) (-689 (-225)) (-689 (-566)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-65 QPHESS))))) (-15 -2750 ((-1035) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-566) (-112) (-225) (-566) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-566) (-566) (-566) (-566) (-566) (-225) (-225) (-225) (-566) (-566) (-566) (-566) (-566) (-689 (-566)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-77 OBJFUN))))) (-15 -2452 ((-1035) (-566) (-566) (-566) (-225) (-689 (-225)) (-566) (-689 (-225)) (-566)))) +((-2807 (((-1035) (-1157) (-566) (-566) (-566) (-566) (-689 (-169 (-225))) (-689 (-169 (-225))) (-566)) 47)) (-1738 (((-1035) (-1157) (-1157) (-566) (-566) (-689 (-169 (-225))) (-566) (-689 (-169 (-225))) (-566) (-566) (-689 (-169 (-225))) (-566)) 46)) (-1867 (((-1035) (-566) (-566) (-566) (-689 (-169 (-225))) (-566)) 45)) (-3536 (((-1035) (-1157) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566)) 40)) (-2283 (((-1035) (-1157) (-1157) (-566) (-566) (-689 (-225)) (-566) (-689 (-225)) (-566) (-566) (-689 (-225)) (-566)) 39)) (-3854 (((-1035) (-566) (-566) (-566) (-689 (-225)) (-566)) 36)) (-3015 (((-1035) (-566) (-689 (-225)) (-566) (-689 (-566)) (-566)) 35)) (-3694 (((-1035) (-566) (-566) (-566) (-566) (-644 (-112)) (-689 (-225)) (-689 (-566)) (-689 (-566)) (-225) (-225) (-566)) 34)) (-2476 (((-1035) (-566) (-566) (-566) (-689 (-566)) (-689 (-566)) (-689 (-566)) (-689 (-566)) (-112) (-225) (-112) (-689 (-566)) (-689 (-225)) (-566)) 33)) (-3606 (((-1035) (-566) (-566) (-566) (-566) (-225) (-112) (-112) (-644 (-112)) (-689 (-225)) (-689 (-566)) (-689 (-566)) (-566)) 32))) +(((-754) (-10 -7 (-15 -3606 ((-1035) (-566) (-566) (-566) (-566) (-225) (-112) (-112) (-644 (-112)) (-689 (-225)) (-689 (-566)) (-689 (-566)) (-566))) (-15 -2476 ((-1035) (-566) (-566) (-566) (-689 (-566)) (-689 (-566)) (-689 (-566)) (-689 (-566)) (-112) (-225) (-112) (-689 (-566)) (-689 (-225)) (-566))) (-15 -3694 ((-1035) (-566) (-566) (-566) (-566) (-644 (-112)) (-689 (-225)) (-689 (-566)) (-689 (-566)) (-225) (-225) (-566))) (-15 -3015 ((-1035) (-566) (-689 (-225)) (-566) (-689 (-566)) (-566))) (-15 -3854 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-566))) (-15 -2283 ((-1035) (-1157) (-1157) (-566) (-566) (-689 (-225)) (-566) (-689 (-225)) (-566) (-566) (-689 (-225)) (-566))) (-15 -3536 ((-1035) (-1157) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -1867 ((-1035) (-566) (-566) (-566) (-689 (-169 (-225))) (-566))) (-15 -1738 ((-1035) (-1157) (-1157) (-566) (-566) (-689 (-169 (-225))) (-566) (-689 (-169 (-225))) (-566) (-566) (-689 (-169 (-225))) (-566))) (-15 -2807 ((-1035) (-1157) (-566) (-566) (-566) (-566) (-689 (-169 (-225))) (-689 (-169 (-225))) (-566))))) (T -754)) +((-2807 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1157)) (-5 *4 (-566)) (-5 *5 (-689 (-169 (-225)))) (-5 *2 (-1035)) (-5 *1 (-754)))) (-1738 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1157)) (-5 *4 (-566)) (-5 *5 (-689 (-169 (-225)))) (-5 *2 (-1035)) (-5 *1 (-754)))) (-1867 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-169 (-225)))) (-5 *2 (-1035)) (-5 *1 (-754)))) (-3536 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1157)) (-5 *4 (-566)) (-5 *5 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-754)))) (-2283 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1157)) (-5 *4 (-566)) (-5 *5 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-754)))) (-3854 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-754)))) (-3015 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-689 (-225))) (-5 *5 (-689 (-566))) (-5 *3 (-566)) (-5 *2 (-1035)) (-5 *1 (-754)))) (-3694 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-644 (-112))) (-5 *5 (-689 (-225))) (-5 *6 (-689 (-566))) (-5 *7 (-225)) (-5 *3 (-566)) (-5 *2 (-1035)) (-5 *1 (-754)))) (-2476 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-689 (-566))) (-5 *5 (-112)) (-5 *7 (-689 (-225))) (-5 *3 (-566)) (-5 *6 (-225)) (-5 *2 (-1035)) (-5 *1 (-754)))) (-3606 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-644 (-112))) (-5 *7 (-689 (-225))) (-5 *8 (-689 (-566))) (-5 *3 (-566)) (-5 *4 (-225)) (-5 *5 (-112)) (-5 *2 (-1035)) (-5 *1 (-754))))) +(-10 -7 (-15 -3606 ((-1035) (-566) (-566) (-566) (-566) (-225) (-112) (-112) (-644 (-112)) (-689 (-225)) (-689 (-566)) (-689 (-566)) (-566))) (-15 -2476 ((-1035) (-566) (-566) (-566) (-689 (-566)) (-689 (-566)) (-689 (-566)) (-689 (-566)) (-112) (-225) (-112) (-689 (-566)) (-689 (-225)) (-566))) (-15 -3694 ((-1035) (-566) (-566) (-566) (-566) (-644 (-112)) (-689 (-225)) (-689 (-566)) (-689 (-566)) (-225) (-225) (-566))) (-15 -3015 ((-1035) (-566) (-689 (-225)) (-566) (-689 (-566)) (-566))) (-15 -3854 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-566))) (-15 -2283 ((-1035) (-1157) (-1157) (-566) (-566) (-689 (-225)) (-566) (-689 (-225)) (-566) (-566) (-689 (-225)) (-566))) (-15 -3536 ((-1035) (-1157) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -1867 ((-1035) (-566) (-566) (-566) (-689 (-169 (-225))) (-566))) (-15 -1738 ((-1035) (-1157) (-1157) (-566) (-566) (-689 (-169 (-225))) (-566) (-689 (-169 (-225))) (-566) (-566) (-689 (-169 (-225))) (-566))) (-15 -2807 ((-1035) (-1157) (-566) (-566) (-566) (-566) (-689 (-169 (-225))) (-689 (-169 (-225))) (-566)))) +((-3921 (((-1035) (-566) (-566) (-566) (-566) (-566) (-112) (-566) (-112) (-566) (-689 (-169 (-225))) (-689 (-169 (-225))) (-566)) 80)) (-4114 (((-1035) (-566) (-566) (-566) (-566) (-566) (-112) (-566) (-112) (-566) (-689 (-225)) (-689 (-225)) (-566)) 69)) (-2526 (((-1035) (-566) (-566) (-225) (-566) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-390)) (|:| |fp| (-68 IMAGE))) (-390)) 56) (((-1035) (-566) (-566) (-225) (-566) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-390)) (|:| |fp| (-68 IMAGE)))) 55)) (-2885 (((-1035) (-566) (-566) (-566) (-225) (-112) (-566) (-689 (-225)) (-689 (-225)) (-566)) 37)) (-2984 (((-1035) (-566) (-566) (-225) (-225) (-566) (-566) (-689 (-225)) (-566)) 33)) (-2447 (((-1035) (-689 (-225)) (-566) (-689 (-225)) (-566) (-566) (-566) (-566) (-566)) 30)) (-3441 (((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566)) 29)) (-2454 (((-1035) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566)) 28)) (-3050 (((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566)) 27)) (-3340 (((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-566)) 26)) (-1297 (((-1035) (-566) (-566) (-689 (-225)) (-566)) 25)) (-2908 (((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566)) 24)) (-2075 (((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566)) 23)) (-2966 (((-1035) (-689 (-225)) (-566) (-566) (-566) (-566)) 22)) (-3179 (((-1035) (-566) (-566) (-689 (-225)) (-566)) 21))) +(((-755) (-10 -7 (-15 -3179 ((-1035) (-566) (-566) (-689 (-225)) (-566))) (-15 -2966 ((-1035) (-689 (-225)) (-566) (-566) (-566) (-566))) (-15 -2075 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2908 ((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -1297 ((-1035) (-566) (-566) (-689 (-225)) (-566))) (-15 -3340 ((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-566))) (-15 -3050 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2454 ((-1035) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3441 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2447 ((-1035) (-689 (-225)) (-566) (-689 (-225)) (-566) (-566) (-566) (-566) (-566))) (-15 -2984 ((-1035) (-566) (-566) (-225) (-225) (-566) (-566) (-689 (-225)) (-566))) (-15 -2885 ((-1035) (-566) (-566) (-566) (-225) (-112) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2526 ((-1035) (-566) (-566) (-225) (-566) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-390)) (|:| |fp| (-68 IMAGE))))) (-15 -2526 ((-1035) (-566) (-566) (-225) (-566) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-390)) (|:| |fp| (-68 IMAGE))) (-390))) (-15 -4114 ((-1035) (-566) (-566) (-566) (-566) (-566) (-112) (-566) (-112) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3921 ((-1035) (-566) (-566) (-566) (-566) (-566) (-112) (-566) (-112) (-566) (-689 (-169 (-225))) (-689 (-169 (-225))) (-566))))) (T -755)) +((-3921 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-566)) (-5 *4 (-112)) (-5 *5 (-689 (-169 (-225)))) (-5 *2 (-1035)) (-5 *1 (-755)))) (-4114 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-566)) (-5 *4 (-112)) (-5 *5 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-755)))) (-2526 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-390)) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-755)))) (-2526 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-755)))) (-2885 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-566)) (-5 *5 (-112)) (-5 *6 (-689 (-225))) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-755)))) (-2984 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-755)))) (-2447 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-755)))) (-3441 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-755)))) (-2454 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-755)))) (-3050 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-755)))) (-3340 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-755)))) (-1297 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-755)))) (-2908 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-755)))) (-2075 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-755)))) (-2966 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-755)))) (-3179 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-755))))) +(-10 -7 (-15 -3179 ((-1035) (-566) (-566) (-689 (-225)) (-566))) (-15 -2966 ((-1035) (-689 (-225)) (-566) (-566) (-566) (-566))) (-15 -2075 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2908 ((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -1297 ((-1035) (-566) (-566) (-689 (-225)) (-566))) (-15 -3340 ((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-566))) (-15 -3050 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2454 ((-1035) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3441 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2447 ((-1035) (-689 (-225)) (-566) (-689 (-225)) (-566) (-566) (-566) (-566) (-566))) (-15 -2984 ((-1035) (-566) (-566) (-225) (-225) (-566) (-566) (-689 (-225)) (-566))) (-15 -2885 ((-1035) (-566) (-566) (-566) (-225) (-112) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2526 ((-1035) (-566) (-566) (-225) (-566) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-390)) (|:| |fp| (-68 IMAGE))))) (-15 -2526 ((-1035) (-566) (-566) (-225) (-566) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-390)) (|:| |fp| (-68 IMAGE))) (-390))) (-15 -4114 ((-1035) (-566) (-566) (-566) (-566) (-566) (-112) (-566) (-112) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3921 ((-1035) (-566) (-566) (-566) (-566) (-566) (-112) (-566) (-112) (-566) (-689 (-169 (-225))) (-689 (-169 (-225))) (-566)))) +((-2443 (((-1035) (-566) (-566) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-70 APROD)))) 64)) (-1483 (((-1035) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-566)) (-566) (-689 (-225)) (-566) (-566) (-566) (-566)) 60)) (-2282 (((-1035) (-566) (-689 (-225)) (-112) (-225) (-566) (-566) (-566) (-566) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-390)) (|:| |fp| (-73 MSOLVE)))) 59)) (-3113 (((-1035) (-566) (-566) (-689 (-225)) (-566) (-689 (-566)) (-566) (-689 (-566)) (-689 (-225)) (-689 (-566)) (-689 (-566)) (-689 (-225)) (-689 (-225)) (-689 (-566)) (-566)) 37)) (-4171 (((-1035) (-566) (-566) (-566) (-225) (-566) (-689 (-225)) (-689 (-225)) (-566)) 36)) (-2004 (((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566)) 33)) (-3866 (((-1035) (-566) (-689 (-225)) (-566) (-689 (-566)) (-689 (-566)) (-566) (-689 (-566)) (-689 (-225))) 32)) (-4219 (((-1035) (-689 (-225)) (-566) (-689 (-225)) (-566) (-566) (-566)) 28)) (-2363 (((-1035) (-566) (-689 (-225)) (-566) (-689 (-225)) (-566)) 27)) (-3181 (((-1035) (-566) (-689 (-225)) (-566) (-689 (-225)) (-566)) 26)) (-1367 (((-1035) (-566) (-689 (-169 (-225))) (-566) (-566) (-566) (-566) (-689 (-169 (-225))) (-566)) 22))) +(((-756) (-10 -7 (-15 -1367 ((-1035) (-566) (-689 (-169 (-225))) (-566) (-566) (-566) (-566) (-689 (-169 (-225))) (-566))) (-15 -3181 ((-1035) (-566) (-689 (-225)) (-566) (-689 (-225)) (-566))) (-15 -2363 ((-1035) (-566) (-689 (-225)) (-566) (-689 (-225)) (-566))) (-15 -4219 ((-1035) (-689 (-225)) (-566) (-689 (-225)) (-566) (-566) (-566))) (-15 -3866 ((-1035) (-566) (-689 (-225)) (-566) (-689 (-566)) (-689 (-566)) (-566) (-689 (-566)) (-689 (-225)))) (-15 -2004 ((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -4171 ((-1035) (-566) (-566) (-566) (-225) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3113 ((-1035) (-566) (-566) (-689 (-225)) (-566) (-689 (-566)) (-566) (-689 (-566)) (-689 (-225)) (-689 (-566)) (-689 (-566)) (-689 (-225)) (-689 (-225)) (-689 (-566)) (-566))) (-15 -2282 ((-1035) (-566) (-689 (-225)) (-112) (-225) (-566) (-566) (-566) (-566) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-390)) (|:| |fp| (-73 MSOLVE))))) (-15 -1483 ((-1035) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-566)) (-566) (-689 (-225)) (-566) (-566) (-566) (-566))) (-15 -2443 ((-1035) (-566) (-566) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-70 APROD))))))) (T -756)) +((-2443 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-70 APROD)))) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-756)))) (-1483 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-689 (-225))) (-5 *5 (-689 (-566))) (-5 *3 (-566)) (-5 *2 (-1035)) (-5 *1 (-756)))) (-2282 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-390)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1035)) (-5 *1 (-756)))) (-3113 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-689 (-225))) (-5 *5 (-689 (-566))) (-5 *3 (-566)) (-5 *2 (-1035)) (-5 *1 (-756)))) (-4171 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-756)))) (-2004 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-756)))) (-3866 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-689 (-225))) (-5 *5 (-689 (-566))) (-5 *3 (-566)) (-5 *2 (-1035)) (-5 *1 (-756)))) (-4219 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-756)))) (-2363 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-756)))) (-3181 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-756)))) (-1367 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-169 (-225)))) (-5 *2 (-1035)) (-5 *1 (-756))))) +(-10 -7 (-15 -1367 ((-1035) (-566) (-689 (-169 (-225))) (-566) (-566) (-566) (-566) (-689 (-169 (-225))) (-566))) (-15 -3181 ((-1035) (-566) (-689 (-225)) (-566) (-689 (-225)) (-566))) (-15 -2363 ((-1035) (-566) (-689 (-225)) (-566) (-689 (-225)) (-566))) (-15 -4219 ((-1035) (-689 (-225)) (-566) (-689 (-225)) (-566) (-566) (-566))) (-15 -3866 ((-1035) (-566) (-689 (-225)) (-566) (-689 (-566)) (-689 (-566)) (-566) (-689 (-566)) (-689 (-225)))) (-15 -2004 ((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -4171 ((-1035) (-566) (-566) (-566) (-225) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3113 ((-1035) (-566) (-566) (-689 (-225)) (-566) (-689 (-566)) (-566) (-689 (-566)) (-689 (-225)) (-689 (-566)) (-689 (-566)) (-689 (-225)) (-689 (-225)) (-689 (-566)) (-566))) (-15 -2282 ((-1035) (-566) (-689 (-225)) (-112) (-225) (-566) (-566) (-566) (-566) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-390)) (|:| |fp| (-73 MSOLVE))))) (-15 -1483 ((-1035) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-566)) (-566) (-689 (-225)) (-566) (-566) (-566) (-566))) (-15 -2443 ((-1035) (-566) (-566) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-70 APROD)))))) +((-1598 (((-1035) (-1157) (-566) (-566) (-689 (-225)) (-566) (-566) (-689 (-225))) 29)) (-1902 (((-1035) (-1157) (-566) (-566) (-689 (-225))) 28)) (-2783 (((-1035) (-1157) (-566) (-566) (-689 (-225)) (-566) (-689 (-566)) (-566) (-689 (-225))) 27)) (-3702 (((-1035) (-566) (-566) (-566) (-689 (-225))) 21))) +(((-757) (-10 -7 (-15 -3702 ((-1035) (-566) (-566) (-566) (-689 (-225)))) (-15 -2783 ((-1035) (-1157) (-566) (-566) (-689 (-225)) (-566) (-689 (-566)) (-566) (-689 (-225)))) (-15 -1902 ((-1035) (-1157) (-566) (-566) (-689 (-225)))) (-15 -1598 ((-1035) (-1157) (-566) (-566) (-689 (-225)) (-566) (-566) (-689 (-225)))))) (T -757)) +((-1598 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1157)) (-5 *4 (-566)) (-5 *5 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-757)))) (-1902 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1157)) (-5 *4 (-566)) (-5 *5 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-757)))) (-2783 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1157)) (-5 *5 (-689 (-225))) (-5 *6 (-689 (-566))) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-757)))) (-3702 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-757))))) +(-10 -7 (-15 -3702 ((-1035) (-566) (-566) (-566) (-689 (-225)))) (-15 -2783 ((-1035) (-1157) (-566) (-566) (-689 (-225)) (-566) (-689 (-566)) (-566) (-689 (-225)))) (-15 -1902 ((-1035) (-1157) (-566) (-566) (-689 (-225)))) (-15 -1598 ((-1035) (-1157) (-566) (-566) (-689 (-225)) (-566) (-566) (-689 (-225))))) +((-4132 (((-1035) (-225) (-225) (-225) (-225) (-566)) 62)) (-3948 (((-1035) (-225) (-225) (-225) (-566)) 61)) (-2495 (((-1035) (-225) (-225) (-225) (-566)) 60)) (-1868 (((-1035) (-225) (-225) (-566)) 59)) (-1662 (((-1035) (-225) (-566)) 58)) (-3201 (((-1035) (-225) (-566)) 57)) (-4268 (((-1035) (-225) (-566)) 56)) (-4323 (((-1035) (-225) (-566)) 55)) (-2810 (((-1035) (-225) (-566)) 54)) (-3348 (((-1035) (-225) (-566)) 53)) (-3927 (((-1035) (-225) (-169 (-225)) (-566) (-1157) (-566)) 52)) (-1816 (((-1035) (-225) (-169 (-225)) (-566) (-1157) (-566)) 51)) (-2944 (((-1035) (-225) (-566)) 50)) (-3139 (((-1035) (-225) (-566)) 49)) (-1544 (((-1035) (-225) (-566)) 48)) (-1742 (((-1035) (-225) (-566)) 47)) (-1548 (((-1035) (-566) (-225) (-169 (-225)) (-566) (-1157) (-566)) 46)) (-2862 (((-1035) (-1157) (-169 (-225)) (-1157) (-566)) 45)) (-1301 (((-1035) (-1157) (-169 (-225)) (-1157) (-566)) 44)) (-4179 (((-1035) (-225) (-169 (-225)) (-566) (-1157) (-566)) 43)) (-2154 (((-1035) (-225) (-169 (-225)) (-566) (-1157) (-566)) 42)) (-3789 (((-1035) (-225) (-566)) 39)) (-4163 (((-1035) (-225) (-566)) 38)) (-4067 (((-1035) (-225) (-566)) 37)) (-4376 (((-1035) (-225) (-566)) 36)) (-2180 (((-1035) (-225) (-566)) 35)) (-1747 (((-1035) (-225) (-566)) 34)) (-2923 (((-1035) (-225) (-566)) 33)) (-4118 (((-1035) (-225) (-566)) 32)) (-2537 (((-1035) (-225) (-566)) 31)) (-1350 (((-1035) (-225) (-566)) 30)) (-4276 (((-1035) (-225) (-225) (-225) (-566)) 29)) (-2062 (((-1035) (-225) (-566)) 28)) (-3229 (((-1035) (-225) (-566)) 27)) (-3461 (((-1035) (-225) (-566)) 26)) (-2932 (((-1035) (-225) (-566)) 25)) (-1391 (((-1035) (-225) (-566)) 24)) (-4015 (((-1035) (-169 (-225)) (-566)) 21))) +(((-758) (-10 -7 (-15 -4015 ((-1035) (-169 (-225)) (-566))) (-15 -1391 ((-1035) (-225) (-566))) (-15 -2932 ((-1035) (-225) (-566))) (-15 -3461 ((-1035) (-225) (-566))) (-15 -3229 ((-1035) (-225) (-566))) (-15 -2062 ((-1035) (-225) (-566))) (-15 -4276 ((-1035) (-225) (-225) (-225) (-566))) (-15 -1350 ((-1035) (-225) (-566))) (-15 -2537 ((-1035) (-225) (-566))) (-15 -4118 ((-1035) (-225) (-566))) (-15 -2923 ((-1035) (-225) (-566))) (-15 -1747 ((-1035) (-225) (-566))) (-15 -2180 ((-1035) (-225) (-566))) (-15 -4376 ((-1035) (-225) (-566))) (-15 -4067 ((-1035) (-225) (-566))) (-15 -4163 ((-1035) (-225) (-566))) (-15 -3789 ((-1035) (-225) (-566))) (-15 -2154 ((-1035) (-225) (-169 (-225)) (-566) (-1157) (-566))) (-15 -4179 ((-1035) (-225) (-169 (-225)) (-566) (-1157) (-566))) (-15 -1301 ((-1035) (-1157) (-169 (-225)) (-1157) (-566))) (-15 -2862 ((-1035) (-1157) (-169 (-225)) (-1157) (-566))) (-15 -1548 ((-1035) (-566) (-225) (-169 (-225)) (-566) (-1157) (-566))) (-15 -1742 ((-1035) (-225) (-566))) (-15 -1544 ((-1035) (-225) (-566))) (-15 -3139 ((-1035) (-225) (-566))) (-15 -2944 ((-1035) (-225) (-566))) (-15 -1816 ((-1035) (-225) (-169 (-225)) (-566) (-1157) (-566))) (-15 -3927 ((-1035) (-225) (-169 (-225)) (-566) (-1157) (-566))) (-15 -3348 ((-1035) (-225) (-566))) (-15 -2810 ((-1035) (-225) (-566))) (-15 -4323 ((-1035) (-225) (-566))) (-15 -4268 ((-1035) (-225) (-566))) (-15 -3201 ((-1035) (-225) (-566))) (-15 -1662 ((-1035) (-225) (-566))) (-15 -1868 ((-1035) (-225) (-225) (-566))) (-15 -2495 ((-1035) (-225) (-225) (-225) (-566))) (-15 -3948 ((-1035) (-225) (-225) (-225) (-566))) (-15 -4132 ((-1035) (-225) (-225) (-225) (-225) (-566))))) (T -758)) +((-4132 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-3948 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-2495 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-1868 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-1662 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-3201 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-4268 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-4323 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-2810 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-3348 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-3927 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-566)) (-5 *6 (-1157)) (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-1816 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-566)) (-5 *6 (-1157)) (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-2944 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-3139 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-1544 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-1742 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-1548 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-566)) (-5 *5 (-169 (-225))) (-5 *6 (-1157)) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-2862 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1157)) (-5 *4 (-169 (-225))) (-5 *5 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-1301 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1157)) (-5 *4 (-169 (-225))) (-5 *5 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-4179 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-566)) (-5 *6 (-1157)) (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-2154 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-566)) (-5 *6 (-1157)) (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-3789 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-4163 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-4067 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-4376 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-2180 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-1747 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-2923 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-4118 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-2537 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-1350 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-4276 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-2062 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-3229 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-3461 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-2932 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-4015 (*1 *2 *3 *4) (-12 (-5 *3 (-169 (-225))) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(-10 -7 (-15 -4015 ((-1035) (-169 (-225)) (-566))) (-15 -1391 ((-1035) (-225) (-566))) (-15 -2932 ((-1035) (-225) (-566))) (-15 -3461 ((-1035) (-225) (-566))) (-15 -3229 ((-1035) (-225) (-566))) (-15 -2062 ((-1035) (-225) (-566))) (-15 -4276 ((-1035) (-225) (-225) (-225) (-566))) (-15 -1350 ((-1035) (-225) (-566))) (-15 -2537 ((-1035) (-225) (-566))) (-15 -4118 ((-1035) (-225) (-566))) (-15 -2923 ((-1035) (-225) (-566))) (-15 -1747 ((-1035) (-225) (-566))) (-15 -2180 ((-1035) (-225) (-566))) (-15 -4376 ((-1035) (-225) (-566))) (-15 -4067 ((-1035) (-225) (-566))) (-15 -4163 ((-1035) (-225) (-566))) (-15 -3789 ((-1035) (-225) (-566))) (-15 -2154 ((-1035) (-225) (-169 (-225)) (-566) (-1157) (-566))) (-15 -4179 ((-1035) (-225) (-169 (-225)) (-566) (-1157) (-566))) (-15 -1301 ((-1035) (-1157) (-169 (-225)) (-1157) (-566))) (-15 -2862 ((-1035) (-1157) (-169 (-225)) (-1157) (-566))) (-15 -1548 ((-1035) (-566) (-225) (-169 (-225)) (-566) (-1157) (-566))) (-15 -1742 ((-1035) (-225) (-566))) (-15 -1544 ((-1035) (-225) (-566))) (-15 -3139 ((-1035) (-225) (-566))) (-15 -2944 ((-1035) (-225) (-566))) (-15 -1816 ((-1035) (-225) (-169 (-225)) (-566) (-1157) (-566))) (-15 -3927 ((-1035) (-225) (-169 (-225)) (-566) (-1157) (-566))) (-15 -3348 ((-1035) (-225) (-566))) (-15 -2810 ((-1035) (-225) (-566))) (-15 -4323 ((-1035) (-225) (-566))) (-15 -4268 ((-1035) (-225) (-566))) (-15 -3201 ((-1035) (-225) (-566))) (-15 -1662 ((-1035) (-225) (-566))) (-15 -1868 ((-1035) (-225) (-225) (-566))) (-15 -2495 ((-1035) (-225) (-225) (-225) (-566))) (-15 -3948 ((-1035) (-225) (-225) (-225) (-566))) (-15 -4132 ((-1035) (-225) (-225) (-225) (-225) (-566)))) +((-3024 (((-1269)) 21)) (-3975 (((-1157)) 32)) (-2744 (((-1157)) 31)) (-2817 (((-1103) (-1175) (-689 (-566))) 46) (((-1103) (-1175) (-689 (-225))) 42)) (-2899 (((-112)) 19)) (-2799 (((-1157) (-1157)) 35))) +(((-759) (-10 -7 (-15 -2744 ((-1157))) (-15 -3975 ((-1157))) (-15 -2799 ((-1157) (-1157))) (-15 -2817 ((-1103) (-1175) (-689 (-225)))) (-15 -2817 ((-1103) (-1175) (-689 (-566)))) (-15 -2899 ((-112))) (-15 -3024 ((-1269))))) (T -759)) +((-3024 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-759)))) (-2899 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-759)))) (-2817 (*1 *2 *3 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-689 (-566))) (-5 *2 (-1103)) (-5 *1 (-759)))) (-2817 (*1 *2 *3 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-689 (-225))) (-5 *2 (-1103)) (-5 *1 (-759)))) (-2799 (*1 *2 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-759)))) (-3975 (*1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-759)))) (-2744 (*1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-759))))) +(-10 -7 (-15 -2744 ((-1157))) (-15 -3975 ((-1157))) (-15 -2799 ((-1157) (-1157))) (-15 -2817 ((-1103) (-1175) (-689 (-225)))) (-15 -2817 ((-1103) (-1175) (-689 (-566)))) (-15 -2899 ((-112))) (-15 -3024 ((-1269)))) +((-2527 (($ $ $) 10)) (-3876 (($ $ $ $) 9)) (-1471 (($ $ $) 12))) +(((-760 |#1|) (-10 -8 (-15 -1471 (|#1| |#1| |#1|)) (-15 -2527 (|#1| |#1| |#1|)) (-15 -3876 (|#1| |#1| |#1| |#1|))) (-761)) (T -760)) +NIL +(-10 -8 (-15 -1471 (|#1| |#1| |#1|)) (-15 -2527 (|#1| |#1| |#1|)) (-15 -3876 (|#1| |#1| |#1| |#1|))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-3967 (((-3 $ "failed") $ $) 20)) (-2463 (($) 18 T CONST)) (-1856 (($ $ (-921)) 31)) (-3270 (($ $ (-921)) 32)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-2527 (($ $ $) 28)) (-3152 (((-862) $) 12)) (-3044 (((-112) $ $) 9)) (-3876 (($ $ $ $) 29)) (-1471 (($ $ $) 27)) (-4356 (($) 19 T CONST)) (-2914 (((-112) $ $) 6)) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 33)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 30))) (((-761) (-140)) (T -761)) -((-2320 (*1 *1 *1 *1 *1) (-4 *1 (-761))) (-3171 (*1 *1 *1 *1) (-4 *1 (-761))) (-3027 (*1 *1 *1 *1) (-4 *1 (-761)))) -(-13 (-21) (-720) (-10 -8 (-15 -2320 ($ $ $ $)) (-15 -3171 ($ $ $)) (-15 -3027 ($ $ $)))) +((-3876 (*1 *1 *1 *1 *1) (-4 *1 (-761))) (-2527 (*1 *1 *1 *1) (-4 *1 (-761))) (-1471 (*1 *1 *1 *1) (-4 *1 (-761)))) +(-13 (-21) (-720) (-10 -8 (-15 -3876 ($ $ $ $)) (-15 -2527 ($ $ $)) (-15 -1471 ($ $ $)))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-720) . T) ((-1099) . T)) -((-3783 (((-862) $) NIL) (($ (-566)) 10))) -(((-762 |#1|) (-10 -8 (-15 -3783 (|#1| (-566))) (-15 -3783 ((-862) |#1|))) (-763)) (T -762)) +((-3152 (((-862) $) NIL) (($ (-566)) 10))) +(((-762 |#1|) (-10 -8 (-15 -3152 (|#1| (-566))) (-15 -3152 ((-862) |#1|))) (-763)) (T -762)) NIL -(-10 -8 (-15 -3783 (|#1| (-566))) (-15 -3783 ((-862) |#1|))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-4175 (((-3 $ "failed") $ $) 20)) (-3012 (($) 18 T CONST)) (-2715 (((-3 $ "failed") $) 43)) (-3942 (($ $ (-921)) 31) (($ $ (-771)) 38)) (-1878 (((-3 $ "failed") $) 41)) (-3934 (((-112) $) 37)) (-2305 (((-3 $ "failed") $) 42)) (-2437 (($ $ (-921)) 32) (($ $ (-771)) 39)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3171 (($ $ $) 28)) (-3783 (((-862) $) 12) (($ (-566)) 34)) (-2107 (((-771)) 35 T CONST)) (-3117 (((-112) $ $) 9)) (-2320 (($ $ $ $) 29)) (-3027 (($ $ $) 27)) (-2479 (($) 19 T CONST)) (-4334 (($) 36 T CONST)) (-2947 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 33) (($ $ (-771)) 40)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 30))) +(-10 -8 (-15 -3152 (|#1| (-566))) (-15 -3152 ((-862) |#1|))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-3967 (((-3 $ "failed") $ $) 20)) (-2463 (($) 18 T CONST)) (-4392 (((-3 $ "failed") $) 43)) (-1856 (($ $ (-921)) 31) (($ $ (-771)) 38)) (-3245 (((-3 $ "failed") $) 41)) (-2389 (((-112) $) 37)) (-2851 (((-3 $ "failed") $) 42)) (-3270 (($ $ (-921)) 32) (($ $ (-771)) 39)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-2527 (($ $ $) 28)) (-3152 (((-862) $) 12) (($ (-566)) 34)) (-2593 (((-771)) 35 T CONST)) (-3044 (((-112) $ $) 9)) (-3876 (($ $ $ $) 29)) (-1471 (($ $ $) 27)) (-4356 (($) 19 T CONST)) (-4366 (($) 36 T CONST)) (-2914 (((-112) $ $) 6)) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 33) (($ $ (-771)) 40)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 30))) (((-763) (-140)) (T -763)) -((-2107 (*1 *2) (-12 (-4 *1 (-763)) (-5 *2 (-771)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-763))))) -(-13 (-761) (-722) (-10 -8 (-15 -2107 ((-771)) -3704) (-15 -3783 ($ (-566))))) +((-2593 (*1 *2) (-12 (-4 *1 (-763)) (-5 *2 (-771)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-763))))) +(-13 (-761) (-722) (-10 -8 (-15 -2593 ((-771)) -1623) (-15 -3152 ($ (-566))))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-720) . T) ((-722) . T) ((-761) . T) ((-1099) . T)) -((-3450 (((-644 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-566)) (|:| |outvect| (-644 (-689 (-169 |#1|)))))) (-689 (-169 (-409 (-566)))) |#1|) 33)) (-4152 (((-644 (-169 |#1|)) (-689 (-169 (-409 (-566)))) |#1|) 23)) (-1820 (((-952 (-169 (-409 (-566)))) (-689 (-169 (-409 (-566)))) (-1175)) 20) (((-952 (-169 (-409 (-566)))) (-689 (-169 (-409 (-566))))) 19))) -(((-764 |#1|) (-10 -7 (-15 -1820 ((-952 (-169 (-409 (-566)))) (-689 (-169 (-409 (-566)))))) (-15 -1820 ((-952 (-169 (-409 (-566)))) (-689 (-169 (-409 (-566)))) (-1175))) (-15 -4152 ((-644 (-169 |#1|)) (-689 (-169 (-409 (-566)))) |#1|)) (-15 -3450 ((-644 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-566)) (|:| |outvect| (-644 (-689 (-169 |#1|)))))) (-689 (-169 (-409 (-566)))) |#1|))) (-13 (-365) (-848))) (T -764)) -((-3450 (*1 *2 *3 *4) (-12 (-5 *3 (-689 (-169 (-409 (-566))))) (-5 *2 (-644 (-2 (|:| |outval| (-169 *4)) (|:| |outmult| (-566)) (|:| |outvect| (-644 (-689 (-169 *4))))))) (-5 *1 (-764 *4)) (-4 *4 (-13 (-365) (-848))))) (-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-689 (-169 (-409 (-566))))) (-5 *2 (-644 (-169 *4))) (-5 *1 (-764 *4)) (-4 *4 (-13 (-365) (-848))))) (-1820 (*1 *2 *3 *4) (-12 (-5 *3 (-689 (-169 (-409 (-566))))) (-5 *4 (-1175)) (-5 *2 (-952 (-169 (-409 (-566))))) (-5 *1 (-764 *5)) (-4 *5 (-13 (-365) (-848))))) (-1820 (*1 *2 *3) (-12 (-5 *3 (-689 (-169 (-409 (-566))))) (-5 *2 (-952 (-169 (-409 (-566))))) (-5 *1 (-764 *4)) (-4 *4 (-13 (-365) (-848)))))) -(-10 -7 (-15 -1820 ((-952 (-169 (-409 (-566)))) (-689 (-169 (-409 (-566)))))) (-15 -1820 ((-952 (-169 (-409 (-566)))) (-689 (-169 (-409 (-566)))) (-1175))) (-15 -4152 ((-644 (-169 |#1|)) (-689 (-169 (-409 (-566)))) |#1|)) (-15 -3450 ((-644 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-566)) (|:| |outvect| (-644 (-689 (-169 |#1|)))))) (-689 (-169 (-409 (-566)))) |#1|))) -((-3503 (((-174 (-566)) |#1|) 27))) -(((-765 |#1|) (-10 -7 (-15 -3503 ((-174 (-566)) |#1|))) (-406)) (T -765)) -((-3503 (*1 *2 *3) (-12 (-5 *2 (-174 (-566))) (-5 *1 (-765 *3)) (-4 *3 (-406))))) -(-10 -7 (-15 -3503 ((-174 (-566)) |#1|))) -((-4133 ((|#1| |#1| |#1|) 28)) (-4356 ((|#1| |#1| |#1|) 27)) (-1850 ((|#1| |#1| |#1|) 38)) (-3705 ((|#1| |#1| |#1|) 34)) (-3294 (((-3 |#1| "failed") |#1| |#1|) 31)) (-1726 (((-2 (|:| -2275 |#1|) (|:| -2513 |#1|)) |#1| |#1|) 26))) -(((-766 |#1| |#2|) (-10 -7 (-15 -1726 ((-2 (|:| -2275 |#1|) (|:| -2513 |#1|)) |#1| |#1|)) (-15 -4356 (|#1| |#1| |#1|)) (-15 -4133 (|#1| |#1| |#1|)) (-15 -3294 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3705 (|#1| |#1| |#1|)) (-15 -1850 (|#1| |#1| |#1|))) (-708 |#2|) (-365)) (T -766)) -((-1850 (*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-766 *2 *3)) (-4 *2 (-708 *3)))) (-3705 (*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-766 *2 *3)) (-4 *2 (-708 *3)))) (-3294 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-365)) (-5 *1 (-766 *2 *3)) (-4 *2 (-708 *3)))) (-4133 (*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-766 *2 *3)) (-4 *2 (-708 *3)))) (-4356 (*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-766 *2 *3)) (-4 *2 (-708 *3)))) (-1726 (*1 *2 *3 *3) (-12 (-4 *4 (-365)) (-5 *2 (-2 (|:| -2275 *3) (|:| -2513 *3))) (-5 *1 (-766 *3 *4)) (-4 *3 (-708 *4))))) -(-10 -7 (-15 -1726 ((-2 (|:| -2275 |#1|) (|:| -2513 |#1|)) |#1| |#1|)) (-15 -4356 (|#1| |#1| |#1|)) (-15 -4133 (|#1| |#1| |#1|)) (-15 -3294 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3705 (|#1| |#1| |#1|)) (-15 -1850 (|#1| |#1| |#1|))) -((-3203 (((-691 (-1222)) $ (-1222)) 26)) (-3901 (((-691 (-551)) $ (-551)) 25)) (-3771 (((-771) $ (-128)) 27)) (-4378 (((-691 (-129)) $ (-129)) 24)) (-2771 (((-691 (-1222)) $) 12)) (-3335 (((-691 (-1220)) $) 8)) (-1492 (((-691 (-1219)) $) 10)) (-2708 (((-691 (-551)) $) 13)) (-4058 (((-691 (-549)) $) 9)) (-2568 (((-691 (-548)) $) 11)) (-3619 (((-771) $ (-128)) 7)) (-1992 (((-691 (-129)) $) 14)) (-1890 (((-112) $) 31)) (-3754 (((-691 $) |#1| (-954)) 32)) (-1596 (($ $) 6))) +((-2589 (((-644 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-566)) (|:| |outvect| (-644 (-689 (-169 |#1|)))))) (-689 (-169 (-409 (-566)))) |#1|) 33)) (-3650 (((-644 (-169 |#1|)) (-689 (-169 (-409 (-566)))) |#1|) 23)) (-2318 (((-952 (-169 (-409 (-566)))) (-689 (-169 (-409 (-566)))) (-1175)) 20) (((-952 (-169 (-409 (-566)))) (-689 (-169 (-409 (-566))))) 19))) +(((-764 |#1|) (-10 -7 (-15 -2318 ((-952 (-169 (-409 (-566)))) (-689 (-169 (-409 (-566)))))) (-15 -2318 ((-952 (-169 (-409 (-566)))) (-689 (-169 (-409 (-566)))) (-1175))) (-15 -3650 ((-644 (-169 |#1|)) (-689 (-169 (-409 (-566)))) |#1|)) (-15 -2589 ((-644 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-566)) (|:| |outvect| (-644 (-689 (-169 |#1|)))))) (-689 (-169 (-409 (-566)))) |#1|))) (-13 (-365) (-848))) (T -764)) +((-2589 (*1 *2 *3 *4) (-12 (-5 *3 (-689 (-169 (-409 (-566))))) (-5 *2 (-644 (-2 (|:| |outval| (-169 *4)) (|:| |outmult| (-566)) (|:| |outvect| (-644 (-689 (-169 *4))))))) (-5 *1 (-764 *4)) (-4 *4 (-13 (-365) (-848))))) (-3650 (*1 *2 *3 *4) (-12 (-5 *3 (-689 (-169 (-409 (-566))))) (-5 *2 (-644 (-169 *4))) (-5 *1 (-764 *4)) (-4 *4 (-13 (-365) (-848))))) (-2318 (*1 *2 *3 *4) (-12 (-5 *3 (-689 (-169 (-409 (-566))))) (-5 *4 (-1175)) (-5 *2 (-952 (-169 (-409 (-566))))) (-5 *1 (-764 *5)) (-4 *5 (-13 (-365) (-848))))) (-2318 (*1 *2 *3) (-12 (-5 *3 (-689 (-169 (-409 (-566))))) (-5 *2 (-952 (-169 (-409 (-566))))) (-5 *1 (-764 *4)) (-4 *4 (-13 (-365) (-848)))))) +(-10 -7 (-15 -2318 ((-952 (-169 (-409 (-566)))) (-689 (-169 (-409 (-566)))))) (-15 -2318 ((-952 (-169 (-409 (-566)))) (-689 (-169 (-409 (-566)))) (-1175))) (-15 -3650 ((-644 (-169 |#1|)) (-689 (-169 (-409 (-566)))) |#1|)) (-15 -2589 ((-644 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-566)) (|:| |outvect| (-644 (-689 (-169 |#1|)))))) (-689 (-169 (-409 (-566)))) |#1|))) +((-2146 (((-174 (-566)) |#1|) 27))) +(((-765 |#1|) (-10 -7 (-15 -2146 ((-174 (-566)) |#1|))) (-406)) (T -765)) +((-2146 (*1 *2 *3) (-12 (-5 *2 (-174 (-566))) (-5 *1 (-765 *3)) (-4 *3 (-406))))) +(-10 -7 (-15 -2146 ((-174 (-566)) |#1|))) +((-2488 ((|#1| |#1| |#1|) 28)) (-3148 ((|#1| |#1| |#1|) 27)) (-2047 ((|#1| |#1| |#1|) 38)) (-2123 ((|#1| |#1| |#1|) 34)) (-3483 (((-3 |#1| "failed") |#1| |#1|) 31)) (-2578 (((-2 (|:| -2631 |#1|) (|:| -3264 |#1|)) |#1| |#1|) 26))) +(((-766 |#1| |#2|) (-10 -7 (-15 -2578 ((-2 (|:| -2631 |#1|) (|:| -3264 |#1|)) |#1| |#1|)) (-15 -3148 (|#1| |#1| |#1|)) (-15 -2488 (|#1| |#1| |#1|)) (-15 -3483 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2123 (|#1| |#1| |#1|)) (-15 -2047 (|#1| |#1| |#1|))) (-708 |#2|) (-365)) (T -766)) +((-2047 (*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-766 *2 *3)) (-4 *2 (-708 *3)))) (-2123 (*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-766 *2 *3)) (-4 *2 (-708 *3)))) (-3483 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-365)) (-5 *1 (-766 *2 *3)) (-4 *2 (-708 *3)))) (-2488 (*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-766 *2 *3)) (-4 *2 (-708 *3)))) (-3148 (*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-766 *2 *3)) (-4 *2 (-708 *3)))) (-2578 (*1 *2 *3 *3) (-12 (-4 *4 (-365)) (-5 *2 (-2 (|:| -2631 *3) (|:| -3264 *3))) (-5 *1 (-766 *3 *4)) (-4 *3 (-708 *4))))) +(-10 -7 (-15 -2578 ((-2 (|:| -2631 |#1|) (|:| -3264 |#1|)) |#1| |#1|)) (-15 -3148 (|#1| |#1| |#1|)) (-15 -2488 (|#1| |#1| |#1|)) (-15 -3483 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2123 (|#1| |#1| |#1|)) (-15 -2047 (|#1| |#1| |#1|))) +((-2581 (((-691 (-1222)) $ (-1222)) 26)) (-4248 (((-691 (-551)) $ (-551)) 25)) (-1311 (((-771) $ (-128)) 27)) (-1606 (((-691 (-129)) $ (-129)) 24)) (-1753 (((-691 (-1222)) $) 12)) (-2438 (((-691 (-1220)) $) 8)) (-3300 (((-691 (-1219)) $) 10)) (-1844 (((-691 (-551)) $) 13)) (-1426 (((-691 (-549)) $) 9)) (-4154 (((-691 (-548)) $) 11)) (-1982 (((-771) $ (-128)) 7)) (-1938 (((-691 (-129)) $) 14)) (-3133 (((-112) $) 31)) (-3306 (((-691 $) |#1| (-954)) 32)) (-2405 (($ $) 6))) (((-767 |#1|) (-140) (-1099)) (T -767)) -((-3754 (*1 *2 *3 *4) (-12 (-5 *4 (-954)) (-4 *3 (-1099)) (-5 *2 (-691 *1)) (-4 *1 (-767 *3)))) (-1890 (*1 *2 *1) (-12 (-4 *1 (-767 *3)) (-4 *3 (-1099)) (-5 *2 (-112))))) -(-13 (-578) (-10 -8 (-15 -3754 ((-691 $) |t#1| (-954))) (-15 -1890 ((-112) $)))) +((-3306 (*1 *2 *3 *4) (-12 (-5 *4 (-954)) (-4 *3 (-1099)) (-5 *2 (-691 *1)) (-4 *1 (-767 *3)))) (-3133 (*1 *2 *1) (-12 (-4 *1 (-767 *3)) (-4 *3 (-1099)) (-5 *2 (-112))))) +(-13 (-578) (-10 -8 (-15 -3306 ((-691 $) |t#1| (-954))) (-15 -3133 ((-112) $)))) (((-173) . T) ((-529) . T) ((-578) . T) ((-860) . T)) -((-4266 (((-2 (|:| -2365 (-689 (-566))) (|:| |basisDen| (-566)) (|:| |basisInv| (-689 (-566)))) (-566)) 71)) (-2444 (((-2 (|:| -2365 (-689 (-566))) (|:| |basisDen| (-566)) (|:| |basisInv| (-689 (-566))))) 69)) (-3652 (((-566)) 85))) -(((-768 |#1| |#2|) (-10 -7 (-15 -3652 ((-566))) (-15 -2444 ((-2 (|:| -2365 (-689 (-566))) (|:| |basisDen| (-566)) (|:| |basisInv| (-689 (-566)))))) (-15 -4266 ((-2 (|:| -2365 (-689 (-566))) (|:| |basisDen| (-566)) (|:| |basisInv| (-689 (-566)))) (-566)))) (-1240 (-566)) (-411 (-566) |#1|)) (T -768)) -((-4266 (*1 *2 *3) (-12 (-5 *3 (-566)) (-4 *4 (-1240 *3)) (-5 *2 (-2 (|:| -2365 (-689 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-689 *3)))) (-5 *1 (-768 *4 *5)) (-4 *5 (-411 *3 *4)))) (-2444 (*1 *2) (-12 (-4 *3 (-1240 (-566))) (-5 *2 (-2 (|:| -2365 (-689 (-566))) (|:| |basisDen| (-566)) (|:| |basisInv| (-689 (-566))))) (-5 *1 (-768 *3 *4)) (-4 *4 (-411 (-566) *3)))) (-3652 (*1 *2) (-12 (-4 *3 (-1240 *2)) (-5 *2 (-566)) (-5 *1 (-768 *3 *4)) (-4 *4 (-411 *2 *3))))) -(-10 -7 (-15 -3652 ((-566))) (-15 -2444 ((-2 (|:| -2365 (-689 (-566))) (|:| |basisDen| (-566)) (|:| |basisInv| (-689 (-566)))))) (-15 -4266 ((-2 (|:| -2365 (-689 (-566))) (|:| |basisDen| (-566)) (|:| |basisInv| (-689 (-566)))) (-566)))) -((-3007 (((-112) $ $) NIL)) (-4205 (((-3 (|:| |nia| (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -2446 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $) 21)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 20) (($ (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 13) (($ (-2 (|:| |fn| (-317 (-225))) (|:| -2446 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -2446 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) 18)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) -(((-769) (-13 (-1099) (-10 -8 (-15 -3783 ($ (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3783 ($ (-2 (|:| |fn| (-317 (-225))) (|:| -2446 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3783 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -2446 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (-15 -4205 ((-3 (|:| |nia| (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -2446 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $))))) (T -769)) -((-3783 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-769)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-317 (-225))) (|:| -2446 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-769)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -2446 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-5 *1 (-769)))) (-4205 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -2446 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-5 *1 (-769))))) -(-13 (-1099) (-10 -8 (-15 -3783 ($ (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3783 ($ (-2 (|:| |fn| (-317 (-225))) (|:| -2446 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3783 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -2446 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (-15 -4205 ((-3 (|:| |nia| (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -2446 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $)))) -((-3929 (((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-952 |#1|))) 18) (((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-952 |#1|)) (-644 (-1175))) 17)) (-1957 (((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-952 |#1|))) 20) (((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-952 |#1|)) (-644 (-1175))) 19))) -(((-770 |#1|) (-10 -7 (-15 -3929 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-952 |#1|)) (-644 (-1175)))) (-15 -3929 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-952 |#1|)))) (-15 -1957 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-952 |#1|)) (-644 (-1175)))) (-15 -1957 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-952 |#1|))))) (-558)) (T -770)) -((-1957 (*1 *2 *3) (-12 (-5 *3 (-644 (-952 *4))) (-4 *4 (-558)) (-5 *2 (-644 (-644 (-295 (-409 (-952 *4)))))) (-5 *1 (-770 *4)))) (-1957 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-644 (-1175))) (-4 *5 (-558)) (-5 *2 (-644 (-644 (-295 (-409 (-952 *5)))))) (-5 *1 (-770 *5)))) (-3929 (*1 *2 *3) (-12 (-5 *3 (-644 (-952 *4))) (-4 *4 (-558)) (-5 *2 (-644 (-644 (-295 (-409 (-952 *4)))))) (-5 *1 (-770 *4)))) (-3929 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-644 (-1175))) (-4 *5 (-558)) (-5 *2 (-644 (-644 (-295 (-409 (-952 *5)))))) (-5 *1 (-770 *5))))) -(-10 -7 (-15 -3929 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-952 |#1|)) (-644 (-1175)))) (-15 -3929 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-952 |#1|)))) (-15 -1957 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-952 |#1|)) (-644 (-1175)))) (-15 -1957 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-952 |#1|))))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-2660 (($ $ $) 10)) (-4175 (((-3 $ "failed") $ $) 15)) (-3136 (($ $ (-566)) 11)) (-3012 (($) NIL T CONST)) (-2946 (($ $ $) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-1552 (($ $) NIL)) (-2957 (($ $ $) NIL)) (-3934 (((-112) $) NIL)) (-2097 (($ $ $) NIL)) (-3962 (($ $ $) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-2214 (($ $ $) NIL)) (-2994 (((-3 $ "failed") $ $) NIL)) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL)) (-3783 (((-862) $) NIL)) (-3117 (((-112) $ $) NIL)) (-2479 (($) 6 T CONST)) (-4334 (($) NIL T CONST)) (-3009 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL)) (-2995 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-771)) NIL) (($ $ (-921)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ $ $) NIL))) -(((-771) (-13 (-793) (-726) (-10 -8 (-15 -2957 ($ $ $)) (-15 -2946 ($ $ $)) (-15 -2214 ($ $ $)) (-15 -1685 ((-2 (|:| -2275 $) (|:| -2513 $)) $ $)) (-15 -2994 ((-3 $ "failed") $ $)) (-15 -3136 ($ $ (-566))) (-15 -1552 ($ $)) (-6 (-4416 "*"))))) (T -771)) -((-2957 (*1 *1 *1 *1) (-5 *1 (-771))) (-2946 (*1 *1 *1 *1) (-5 *1 (-771))) (-2214 (*1 *1 *1 *1) (-5 *1 (-771))) (-1685 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2275 (-771)) (|:| -2513 (-771)))) (-5 *1 (-771)))) (-2994 (*1 *1 *1 *1) (|partial| -5 *1 (-771))) (-3136 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-771)))) (-1552 (*1 *1 *1) (-5 *1 (-771)))) -(-13 (-793) (-726) (-10 -8 (-15 -2957 ($ $ $)) (-15 -2946 ($ $ $)) (-15 -2214 ($ $ $)) (-15 -1685 ((-2 (|:| -2275 $) (|:| -2513 $)) $ $)) (-15 -2994 ((-3 $ "failed") $ $)) (-15 -3136 ($ $ (-566))) (-15 -1552 ($ $)) (-6 (-4416 "*")))) +((-1637 (((-2 (|:| -2875 (-689 (-566))) (|:| |basisDen| (-566)) (|:| |basisInv| (-689 (-566)))) (-566)) 71)) (-2736 (((-2 (|:| -2875 (-689 (-566))) (|:| |basisDen| (-566)) (|:| |basisInv| (-689 (-566))))) 69)) (-4068 (((-566)) 85))) +(((-768 |#1| |#2|) (-10 -7 (-15 -4068 ((-566))) (-15 -2736 ((-2 (|:| -2875 (-689 (-566))) (|:| |basisDen| (-566)) (|:| |basisInv| (-689 (-566)))))) (-15 -1637 ((-2 (|:| -2875 (-689 (-566))) (|:| |basisDen| (-566)) (|:| |basisInv| (-689 (-566)))) (-566)))) (-1240 (-566)) (-411 (-566) |#1|)) (T -768)) +((-1637 (*1 *2 *3) (-12 (-5 *3 (-566)) (-4 *4 (-1240 *3)) (-5 *2 (-2 (|:| -2875 (-689 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-689 *3)))) (-5 *1 (-768 *4 *5)) (-4 *5 (-411 *3 *4)))) (-2736 (*1 *2) (-12 (-4 *3 (-1240 (-566))) (-5 *2 (-2 (|:| -2875 (-689 (-566))) (|:| |basisDen| (-566)) (|:| |basisInv| (-689 (-566))))) (-5 *1 (-768 *3 *4)) (-4 *4 (-411 (-566) *3)))) (-4068 (*1 *2) (-12 (-4 *3 (-1240 *2)) (-5 *2 (-566)) (-5 *1 (-768 *3 *4)) (-4 *4 (-411 *2 *3))))) +(-10 -7 (-15 -4068 ((-566))) (-15 -2736 ((-2 (|:| -2875 (-689 (-566))) (|:| |basisDen| (-566)) (|:| |basisInv| (-689 (-566)))))) (-15 -1637 ((-2 (|:| -2875 (-689 (-566))) (|:| |basisDen| (-566)) (|:| |basisInv| (-689 (-566)))) (-566)))) +((-2988 (((-112) $ $) NIL)) (-4158 (((-3 (|:| |nia| (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -2821 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $) 21)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 20) (($ (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 13) (($ (-2 (|:| |fn| (-317 (-225))) (|:| -2821 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -2821 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) 18)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) +(((-769) (-13 (-1099) (-10 -8 (-15 -3152 ($ (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3152 ($ (-2 (|:| |fn| (-317 (-225))) (|:| -2821 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3152 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -2821 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (-15 -4158 ((-3 (|:| |nia| (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -2821 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $))))) (T -769)) +((-3152 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-769)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-317 (-225))) (|:| -2821 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-769)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -2821 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-5 *1 (-769)))) (-4158 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -2821 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-5 *1 (-769))))) +(-13 (-1099) (-10 -8 (-15 -3152 ($ (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3152 ($ (-2 (|:| |fn| (-317 (-225))) (|:| -2821 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3152 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -2821 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (-15 -4158 ((-3 (|:| |nia| (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -2821 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $)))) +((-3115 (((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-952 |#1|))) 18) (((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-952 |#1|)) (-644 (-1175))) 17)) (-2423 (((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-952 |#1|))) 20) (((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-952 |#1|)) (-644 (-1175))) 19))) +(((-770 |#1|) (-10 -7 (-15 -3115 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-952 |#1|)) (-644 (-1175)))) (-15 -3115 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-952 |#1|)))) (-15 -2423 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-952 |#1|)) (-644 (-1175)))) (-15 -2423 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-952 |#1|))))) (-558)) (T -770)) +((-2423 (*1 *2 *3) (-12 (-5 *3 (-644 (-952 *4))) (-4 *4 (-558)) (-5 *2 (-644 (-644 (-295 (-409 (-952 *4)))))) (-5 *1 (-770 *4)))) (-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-644 (-1175))) (-4 *5 (-558)) (-5 *2 (-644 (-644 (-295 (-409 (-952 *5)))))) (-5 *1 (-770 *5)))) (-3115 (*1 *2 *3) (-12 (-5 *3 (-644 (-952 *4))) (-4 *4 (-558)) (-5 *2 (-644 (-644 (-295 (-409 (-952 *4)))))) (-5 *1 (-770 *4)))) (-3115 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-644 (-1175))) (-4 *5 (-558)) (-5 *2 (-644 (-644 (-295 (-409 (-952 *5)))))) (-5 *1 (-770 *5))))) +(-10 -7 (-15 -3115 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-952 |#1|)) (-644 (-1175)))) (-15 -3115 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-952 |#1|)))) (-15 -2423 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-952 |#1|)) (-644 (-1175)))) (-15 -2423 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-952 |#1|))))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-3920 (($ $ $) 10)) (-3967 (((-3 $ "failed") $ $) 15)) (-3764 (($ $ (-566)) 11)) (-2463 (($) NIL T CONST)) (-2933 (($ $ $) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-2715 (($ $) NIL)) (-2945 (($ $ $) NIL)) (-2389 (((-112) $) NIL)) (-1478 (($ $ $) NIL)) (-2599 (($ $ $) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-2164 (($ $ $) NIL)) (-2978 (((-3 $ "failed") $ $) NIL)) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL)) (-3152 (((-862) $) NIL)) (-3044 (((-112) $ $) NIL)) (-4356 (($) 6 T CONST)) (-4366 (($) NIL T CONST)) (-2968 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2935 (((-112) $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-771)) NIL) (($ $ (-921)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ $ $) NIL))) +(((-771) (-13 (-793) (-726) (-10 -8 (-15 -2945 ($ $ $)) (-15 -2933 ($ $ $)) (-15 -2164 ($ $ $)) (-15 -4100 ((-2 (|:| -2631 $) (|:| -3264 $)) $ $)) (-15 -2978 ((-3 $ "failed") $ $)) (-15 -3764 ($ $ (-566))) (-15 -2715 ($ $)) (-6 (-4416 "*"))))) (T -771)) +((-2945 (*1 *1 *1 *1) (-5 *1 (-771))) (-2933 (*1 *1 *1 *1) (-5 *1 (-771))) (-2164 (*1 *1 *1 *1) (-5 *1 (-771))) (-4100 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2631 (-771)) (|:| -3264 (-771)))) (-5 *1 (-771)))) (-2978 (*1 *1 *1 *1) (|partial| -5 *1 (-771))) (-3764 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-771)))) (-2715 (*1 *1 *1) (-5 *1 (-771)))) +(-13 (-793) (-726) (-10 -8 (-15 -2945 ($ $ $)) (-15 -2933 ($ $ $)) (-15 -2164 ($ $ $)) (-15 -4100 ((-2 (|:| -2631 $) (|:| -3264 $)) $ $)) (-15 -2978 ((-3 $ "failed") $ $)) (-15 -3764 ($ $ (-566))) (-15 -2715 ($ $)) (-6 (-4416 "*")))) ((|Integer|) (>= |#1| 0)) -((-1957 (((-3 |#2| "failed") |#2| |#2| (-114) (-1175)) 37))) -(((-772 |#1| |#2|) (-10 -7 (-15 -1957 ((-3 |#2| "failed") |#2| |#2| (-114) (-1175)))) (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147)) (-13 (-29 |#1|) (-1199) (-959))) (T -772)) -((-1957 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1175)) (-4 *5 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *1 (-772 *5 *2)) (-4 *2 (-13 (-29 *5) (-1199) (-959)))))) -(-10 -7 (-15 -1957 ((-3 |#2| "failed") |#2| |#2| (-114) (-1175)))) -((-3783 (((-774) |#1|) 8))) -(((-773 |#1|) (-10 -7 (-15 -3783 ((-774) |#1|))) (-1214)) (T -773)) -((-3783 (*1 *2 *3) (-12 (-5 *2 (-774)) (-5 *1 (-773 *3)) (-4 *3 (-1214))))) -(-10 -7 (-15 -3783 ((-774) |#1|))) -((-3007 (((-112) $ $) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 7)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) 9))) +((-2423 (((-3 |#2| "failed") |#2| |#2| (-114) (-1175)) 37))) +(((-772 |#1| |#2|) (-10 -7 (-15 -2423 ((-3 |#2| "failed") |#2| |#2| (-114) (-1175)))) (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147)) (-13 (-29 |#1|) (-1199) (-959))) (T -772)) +((-2423 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1175)) (-4 *5 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *1 (-772 *5 *2)) (-4 *2 (-13 (-29 *5) (-1199) (-959)))))) +(-10 -7 (-15 -2423 ((-3 |#2| "failed") |#2| |#2| (-114) (-1175)))) +((-3152 (((-774) |#1|) 8))) +(((-773 |#1|) (-10 -7 (-15 -3152 ((-774) |#1|))) (-1214)) (T -773)) +((-3152 (*1 *2 *3) (-12 (-5 *2 (-774)) (-5 *1 (-773 *3)) (-4 *3 (-1214))))) +(-10 -7 (-15 -3152 ((-774) |#1|))) +((-2988 (((-112) $ $) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 7)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) 9))) (((-774) (-1099)) (T -774)) NIL (-1099) -((-1577 ((|#2| |#4|) 35))) -(((-775 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1577 (|#2| |#4|))) (-454) (-1240 |#1|) (-724 |#1| |#2|) (-1240 |#3|)) (T -775)) -((-1577 (*1 *2 *3) (-12 (-4 *4 (-454)) (-4 *5 (-724 *4 *2)) (-4 *2 (-1240 *4)) (-5 *1 (-775 *4 *2 *5 *3)) (-4 *3 (-1240 *5))))) -(-10 -7 (-15 -1577 (|#2| |#4|))) -((-1878 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57)) (-3436 (((-1269) (-1157) (-1157) |#4| |#5|) 33)) (-2238 ((|#4| |#4| |#5|) 74)) (-4017 (((-644 (-2 (|:| |val| |#4|) (|:| -3570 |#5|))) |#4| |#5|) 79)) (-3656 (((-644 (-2 (|:| |val| (-112)) (|:| -3570 |#5|))) |#4| |#5|) 16))) -(((-776 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1878 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2238 (|#4| |#4| |#5|)) (-15 -4017 ((-644 (-2 (|:| |val| |#4|) (|:| -3570 |#5|))) |#4| |#5|)) (-15 -3436 ((-1269) (-1157) (-1157) |#4| |#5|)) (-15 -3656 ((-644 (-2 (|:| |val| (-112)) (|:| -3570 |#5|))) |#4| |#5|))) (-454) (-793) (-850) (-1064 |#1| |#2| |#3|) (-1070 |#1| |#2| |#3| |#4|)) (T -776)) -((-3656 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -3570 *4)))) (-5 *1 (-776 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-3436 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1157)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) (-4 *4 (-1064 *6 *7 *8)) (-5 *2 (-1269)) (-5 *1 (-776 *6 *7 *8 *4 *5)) (-4 *5 (-1070 *6 *7 *8 *4)))) (-4017 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -3570 *4)))) (-5 *1 (-776 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-2238 (*1 *2 *2 *3) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *2 (-1064 *4 *5 *6)) (-5 *1 (-776 *4 *5 *6 *2 *3)) (-4 *3 (-1070 *4 *5 *6 *2)))) (-1878 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-776 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))) -(-10 -7 (-15 -1878 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2238 (|#4| |#4| |#5|)) (-15 -4017 ((-644 (-2 (|:| |val| |#4|) (|:| -3570 |#5|))) |#4| |#5|)) (-15 -3436 ((-1269) (-1157) (-1157) |#4| |#5|)) (-15 -3656 ((-644 (-2 (|:| |val| (-112)) (|:| -3570 |#5|))) |#4| |#5|))) -((-4307 (((-3 (-1171 (-1171 |#1|)) "failed") |#4|) 53)) (-1691 (((-644 |#4|) |#4|) 24)) (-2699 ((|#4| |#4|) 19))) -(((-777 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1691 ((-644 |#4|) |#4|)) (-15 -4307 ((-3 (-1171 (-1171 |#1|)) "failed") |#4|)) (-15 -2699 (|#4| |#4|))) (-351) (-330 |#1|) (-1240 |#2|) (-1240 |#3|) (-921)) (T -777)) -((-2699 (*1 *2 *2) (-12 (-4 *3 (-351)) (-4 *4 (-330 *3)) (-4 *5 (-1240 *4)) (-5 *1 (-777 *3 *4 *5 *2 *6)) (-4 *2 (-1240 *5)) (-14 *6 (-921)))) (-4307 (*1 *2 *3) (|partial| -12 (-4 *4 (-351)) (-4 *5 (-330 *4)) (-4 *6 (-1240 *5)) (-5 *2 (-1171 (-1171 *4))) (-5 *1 (-777 *4 *5 *6 *3 *7)) (-4 *3 (-1240 *6)) (-14 *7 (-921)))) (-1691 (*1 *2 *3) (-12 (-4 *4 (-351)) (-4 *5 (-330 *4)) (-4 *6 (-1240 *5)) (-5 *2 (-644 *3)) (-5 *1 (-777 *4 *5 *6 *3 *7)) (-4 *3 (-1240 *6)) (-14 *7 (-921))))) -(-10 -7 (-15 -1691 ((-644 |#4|) |#4|)) (-15 -4307 ((-3 (-1171 (-1171 |#1|)) "failed") |#4|)) (-15 -2699 (|#4| |#4|))) -((-1869 (((-2 (|:| |deter| (-644 (-1171 |#5|))) (|:| |dterm| (-644 (-644 (-2 (|:| -4079 (-771)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-644 |#1|)) (|:| |nlead| (-644 |#5|))) (-1171 |#5|) (-644 |#1|) (-644 |#5|)) 75)) (-3618 (((-644 (-771)) |#1|) 20))) -(((-778 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1869 ((-2 (|:| |deter| (-644 (-1171 |#5|))) (|:| |dterm| (-644 (-644 (-2 (|:| -4079 (-771)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-644 |#1|)) (|:| |nlead| (-644 |#5|))) (-1171 |#5|) (-644 |#1|) (-644 |#5|))) (-15 -3618 ((-644 (-771)) |#1|))) (-1240 |#4|) (-793) (-850) (-308) (-949 |#4| |#2| |#3|)) (T -778)) -((-3618 (*1 *2 *3) (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-308)) (-5 *2 (-644 (-771))) (-5 *1 (-778 *3 *4 *5 *6 *7)) (-4 *3 (-1240 *6)) (-4 *7 (-949 *6 *4 *5)))) (-1869 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1240 *9)) (-4 *7 (-793)) (-4 *8 (-850)) (-4 *9 (-308)) (-4 *10 (-949 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-644 (-1171 *10))) (|:| |dterm| (-644 (-644 (-2 (|:| -4079 (-771)) (|:| |pcoef| *10))))) (|:| |nfacts| (-644 *6)) (|:| |nlead| (-644 *10)))) (-5 *1 (-778 *6 *7 *8 *9 *10)) (-5 *3 (-1171 *10)) (-5 *4 (-644 *6)) (-5 *5 (-644 *10))))) -(-10 -7 (-15 -1869 ((-2 (|:| |deter| (-644 (-1171 |#5|))) (|:| |dterm| (-644 (-644 (-2 (|:| -4079 (-771)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-644 |#1|)) (|:| |nlead| (-644 |#5|))) (-1171 |#5|) (-644 |#1|) (-644 |#5|))) (-15 -3618 ((-644 (-771)) |#1|))) -((-2352 (((-644 (-2 (|:| |outval| |#1|) (|:| |outmult| (-566)) (|:| |outvect| (-644 (-689 |#1|))))) (-689 (-409 (-566))) |#1|) 31)) (-2012 (((-644 |#1|) (-689 (-409 (-566))) |#1|) 21)) (-1820 (((-952 (-409 (-566))) (-689 (-409 (-566))) (-1175)) 18) (((-952 (-409 (-566))) (-689 (-409 (-566)))) 17))) -(((-779 |#1|) (-10 -7 (-15 -1820 ((-952 (-409 (-566))) (-689 (-409 (-566))))) (-15 -1820 ((-952 (-409 (-566))) (-689 (-409 (-566))) (-1175))) (-15 -2012 ((-644 |#1|) (-689 (-409 (-566))) |#1|)) (-15 -2352 ((-644 (-2 (|:| |outval| |#1|) (|:| |outmult| (-566)) (|:| |outvect| (-644 (-689 |#1|))))) (-689 (-409 (-566))) |#1|))) (-13 (-365) (-848))) (T -779)) -((-2352 (*1 *2 *3 *4) (-12 (-5 *3 (-689 (-409 (-566)))) (-5 *2 (-644 (-2 (|:| |outval| *4) (|:| |outmult| (-566)) (|:| |outvect| (-644 (-689 *4)))))) (-5 *1 (-779 *4)) (-4 *4 (-13 (-365) (-848))))) (-2012 (*1 *2 *3 *4) (-12 (-5 *3 (-689 (-409 (-566)))) (-5 *2 (-644 *4)) (-5 *1 (-779 *4)) (-4 *4 (-13 (-365) (-848))))) (-1820 (*1 *2 *3 *4) (-12 (-5 *3 (-689 (-409 (-566)))) (-5 *4 (-1175)) (-5 *2 (-952 (-409 (-566)))) (-5 *1 (-779 *5)) (-4 *5 (-13 (-365) (-848))))) (-1820 (*1 *2 *3) (-12 (-5 *3 (-689 (-409 (-566)))) (-5 *2 (-952 (-409 (-566)))) (-5 *1 (-779 *4)) (-4 *4 (-13 (-365) (-848)))))) -(-10 -7 (-15 -1820 ((-952 (-409 (-566))) (-689 (-409 (-566))))) (-15 -1820 ((-952 (-409 (-566))) (-689 (-409 (-566))) (-1175))) (-15 -2012 ((-644 |#1|) (-689 (-409 (-566))) |#1|)) (-15 -2352 ((-644 (-2 (|:| |outval| |#1|) (|:| |outmult| (-566)) (|:| |outvect| (-644 (-689 |#1|))))) (-689 (-409 (-566))) |#1|))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) 36)) (-3863 (((-644 |#2|) $) NIL)) (-3683 (((-1171 $) $ |#2|) NIL) (((-1171 |#1|) $) NIL)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-3991 (($ $) NIL (|has| |#1| (-558)))) (-2388 (((-112) $) NIL (|has| |#1| (-558)))) (-3367 (((-771) $) NIL) (((-771) $ (-644 |#2|)) NIL)) (-2223 (($ $) 30)) (-2459 (((-112) $ $) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $ $) 110 (|has| |#1| (-558)))) (-3856 (((-644 $) $ $) 123 (|has| |#1| (-558)))) (-1477 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-1550 (($ $) NIL (|has| |#1| (-454)))) (-3184 (((-420 $) $) NIL (|has| |#1| (-454)))) (-3717 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-3012 (($) NIL T CONST)) (-4307 (((-3 |#1| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-952 (-409 (-566)))) NIL (-12 (|has| |#1| (-38 (-409 (-566)))) (|has| |#2| (-614 (-1175))))) (((-3 $ "failed") (-952 (-566))) NIL (-2809 (-12 (|has| |#1| (-38 (-566))) (|has| |#2| (-614 (-1175))) (-2418 (|has| |#1| (-38 (-409 (-566)))))) (-12 (|has| |#1| (-38 (-409 (-566)))) (|has| |#2| (-614 (-1175)))))) (((-3 $ "failed") (-952 |#1|)) NIL (-2809 (-12 (|has| |#2| (-614 (-1175))) (-2418 (|has| |#1| (-38 (-409 (-566))))) (-2418 (|has| |#1| (-38 (-566))))) (-12 (|has| |#1| (-38 (-566))) (|has| |#2| (-614 (-1175))) (-2418 (|has| |#1| (-38 (-409 (-566))))) (-2418 (|has| |#1| (-547)))) (-12 (|has| |#1| (-38 (-409 (-566)))) (|has| |#2| (-614 (-1175))) (-2418 (|has| |#1| (-992 (-566))))))) (((-3 (-1124 |#1| |#2|) "failed") $) 21)) (-4205 ((|#1| $) NIL) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-566) $) NIL (|has| |#1| (-1038 (-566)))) ((|#2| $) NIL) (($ (-952 (-409 (-566)))) NIL (-12 (|has| |#1| (-38 (-409 (-566)))) (|has| |#2| (-614 (-1175))))) (($ (-952 (-566))) NIL (-2809 (-12 (|has| |#1| (-38 (-566))) (|has| |#2| (-614 (-1175))) (-2418 (|has| |#1| (-38 (-409 (-566)))))) (-12 (|has| |#1| (-38 (-409 (-566)))) (|has| |#2| (-614 (-1175)))))) (($ (-952 |#1|)) NIL (-2809 (-12 (|has| |#2| (-614 (-1175))) (-2418 (|has| |#1| (-38 (-409 (-566))))) (-2418 (|has| |#1| (-38 (-566))))) (-12 (|has| |#1| (-38 (-566))) (|has| |#2| (-614 (-1175))) (-2418 (|has| |#1| (-38 (-409 (-566))))) (-2418 (|has| |#1| (-547)))) (-12 (|has| |#1| (-38 (-409 (-566)))) (|has| |#2| (-614 (-1175))) (-2418 (|has| |#1| (-992 (-566))))))) (((-1124 |#1| |#2|) $) NIL)) (-2738 (($ $ $ |#2|) NIL (|has| |#1| (-172))) (($ $ $) 121 (|has| |#1| (-558)))) (-1786 (($ $) NIL) (($ $ |#2|) NIL)) (-3577 (((-689 (-566)) (-689 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -4227 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) NIL) (((-689 |#1|) (-689 $)) NIL)) (-1464 (((-112) $ $) NIL) (((-112) $ (-644 $)) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-2857 (((-112) $) NIL)) (-1960 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) 81)) (-2327 (($ $) 136 (|has| |#1| (-454)))) (-4075 (($ $) NIL (|has| |#1| (-454))) (($ $ |#2|) NIL (|has| |#1| (-454)))) (-1774 (((-644 $) $) NIL)) (-3268 (((-112) $) NIL (|has| |#1| (-909)))) (-2628 (($ $) NIL (|has| |#1| (-558)))) (-3233 (($ $) NIL (|has| |#1| (-558)))) (-3565 (($ $ $) 76) (($ $ $ |#2|) NIL)) (-2750 (($ $ $) 79) (($ $ $ |#2|) NIL)) (-3635 (($ $ |#1| (-533 |#2|) $) NIL)) (-2062 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| |#1| (-886 (-381))) (|has| |#2| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| |#1| (-886 (-566))) (|has| |#2| (-886 (-566)))))) (-3934 (((-112) $) 57)) (-2614 (((-771) $) NIL)) (-2111 (((-112) $ $) NIL) (((-112) $ (-644 $)) NIL)) (-3229 (($ $ $ $ $) 107 (|has| |#1| (-558)))) (-1489 ((|#2| $) 22)) (-3851 (($ (-1171 |#1|) |#2|) NIL) (($ (-1171 $) |#2|) NIL)) (-2288 (((-644 $) $) NIL)) (-3264 (((-112) $) NIL)) (-3840 (($ |#1| (-533 |#2|)) NIL) (($ $ |#2| (-771)) 38) (($ $ (-644 |#2|) (-644 (-771))) NIL)) (-2532 (($ $ $) 63)) (-2044 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $ |#2|) NIL)) (-1314 (((-112) $) NIL)) (-3760 (((-533 |#2|) $) NIL) (((-771) $ |#2|) NIL) (((-644 (-771)) $ (-644 |#2|)) NIL)) (-3482 (((-771) $) 23)) (-4301 (($ (-1 (-533 |#2|) (-533 |#2|)) $) NIL)) (-1301 (($ (-1 |#1| |#1|) $) NIL)) (-3169 (((-3 |#2| "failed") $) NIL)) (-1705 (($ $) NIL (|has| |#1| (-454)))) (-3165 (($ $) NIL (|has| |#1| (-454)))) (-4025 (((-644 $) $) NIL)) (-3737 (($ $) 39)) (-4167 (($ $) NIL (|has| |#1| (-454)))) (-3803 (((-644 $) $) 43)) (-3568 (($ $) 41)) (-1749 (($ $) NIL)) (-1763 ((|#1| $) NIL) (($ $ |#2|) 48)) (-2167 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-4252 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4369 (-771))) $ $) 96)) (-1953 (((-2 (|:| -1364 $) (|:| |gap| (-771)) (|:| -2275 $) (|:| -2513 $)) $ $) 78) (((-2 (|:| -1364 $) (|:| |gap| (-771)) (|:| -2275 $) (|:| -2513 $)) $ $ |#2|) NIL)) (-2767 (((-2 (|:| -1364 $) (|:| |gap| (-771)) (|:| -2513 $)) $ $) NIL) (((-2 (|:| -1364 $) (|:| |gap| (-771)) (|:| -2513 $)) $ $ |#2|) NIL)) (-4388 (($ $ $) 83) (($ $ $ |#2|) NIL)) (-2940 (($ $ $) 86) (($ $ $ |#2|) NIL)) (-4117 (((-1157) $) NIL)) (-1558 (($ $ $) 125 (|has| |#1| (-558)))) (-4253 (((-644 $) $) 32)) (-3714 (((-3 (-644 $) "failed") $) NIL)) (-2353 (((-3 (-644 $) "failed") $) NIL)) (-1518 (((-3 (-2 (|:| |var| |#2|) (|:| -2852 (-771))) "failed") $) NIL)) (-1694 (((-112) $ $) NIL) (((-112) $ (-644 $)) NIL)) (-1871 (($ $ $) NIL)) (-1761 (($ $) 24)) (-2897 (((-112) $ $) NIL)) (-3351 (((-112) $ $) NIL) (((-112) $ (-644 $)) NIL)) (-3544 (($ $ $) NIL)) (-3558 (($ $) 26)) (-4035 (((-1119) $) NIL)) (-1621 (((-2 (|:| -2214 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-558)))) (-2469 (((-2 (|:| -2214 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-558)))) (-1723 (((-112) $) 56)) (-1736 ((|#1| $) 58)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-454)))) (-2214 ((|#1| |#1| $) 133 (|has| |#1| (-454))) (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-4303 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-3240 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-3719 (((-420 $) $) NIL (|has| |#1| (-909)))) (-2216 (((-2 (|:| -2214 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-558)))) (-2994 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558))) (((-3 $ "failed") $ $) 98 (|has| |#1| (-558)))) (-4164 (($ $ |#1|) 129 (|has| |#1| (-558))) (($ $ $) NIL (|has| |#1| (-558)))) (-4044 (($ $ |#1|) 128 (|has| |#1| (-558))) (($ $ $) NIL (|has| |#1| (-558)))) (-2055 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-644 |#2|) (-644 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-644 |#2|) (-644 $)) NIL)) (-3652 (($ $ |#2|) NIL (|has| |#1| (-172)))) (-3561 (($ $ |#2|) NIL) (($ $ (-644 |#2|)) NIL) (($ $ |#2| (-771)) NIL) (($ $ (-644 |#2|) (-644 (-771))) NIL)) (-3636 (((-533 |#2|) $) NIL) (((-771) $ |#2|) 45) (((-644 (-771)) $ (-644 |#2|)) NIL)) (-1620 (($ $) NIL)) (-3276 (($ $) 35)) (-1348 (((-892 (-381)) $) NIL (-12 (|has| |#1| (-614 (-892 (-381)))) (|has| |#2| (-614 (-892 (-381)))))) (((-892 (-566)) $) NIL (-12 (|has| |#1| (-614 (-892 (-566)))) (|has| |#2| (-614 (-892 (-566)))))) (((-538) $) NIL (-12 (|has| |#1| (-614 (-538))) (|has| |#2| (-614 (-538))))) (($ (-952 (-409 (-566)))) NIL (-12 (|has| |#1| (-38 (-409 (-566)))) (|has| |#2| (-614 (-1175))))) (($ (-952 (-566))) NIL (-2809 (-12 (|has| |#1| (-38 (-566))) (|has| |#2| (-614 (-1175))) (-2418 (|has| |#1| (-38 (-409 (-566)))))) (-12 (|has| |#1| (-38 (-409 (-566)))) (|has| |#2| (-614 (-1175)))))) (($ (-952 |#1|)) NIL (|has| |#2| (-614 (-1175)))) (((-1157) $) NIL (-12 (|has| |#1| (-1038 (-566))) (|has| |#2| (-614 (-1175))))) (((-952 |#1|) $) NIL (|has| |#2| (-614 (-1175))))) (-2483 ((|#1| $) 132 (|has| |#1| (-454))) (($ $ |#2|) NIL (|has| |#1| (-454)))) (-1656 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-909))))) (-3783 (((-862) $) NIL) (($ (-566)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-952 |#1|) $) NIL (|has| |#2| (-614 (-1175)))) (((-1124 |#1| |#2|) $) 18) (($ (-1124 |#1| |#2|)) 19) (($ (-409 (-566))) NIL (-2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566)))))) (($ $) NIL (|has| |#1| (-558)))) (-4170 (((-644 |#1|) $) NIL)) (-2649 ((|#1| $ (-533 |#2|)) NIL) (($ $ |#2| (-771)) 47) (($ $ (-644 |#2|) (-644 (-771))) NIL)) (-3144 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| $ (-145)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-2107 (((-771)) NIL T CONST)) (-3362 (($ $ $ (-771)) NIL (|has| |#1| (-172)))) (-3117 (((-112) $ $) NIL)) (-2695 (((-112) $ $) NIL (|has| |#1| (-558)))) (-2479 (($) 13 T CONST)) (-2784 (((-3 (-112) "failed") $ $) NIL)) (-4334 (($) 37 T CONST)) (-4121 (($ $ $ $ (-771)) 105 (|has| |#1| (-558)))) (-2608 (($ $ $ (-771)) 104 (|has| |#1| (-558)))) (-2875 (($ $ |#2|) NIL) (($ $ (-644 |#2|)) NIL) (($ $ |#2| (-771)) NIL) (($ $ (-644 |#2|) (-644 (-771))) NIL)) (-2947 (((-112) $ $) NIL)) (-3065 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3053 (($ $) NIL) (($ $ $) 75)) (-3041 (($ $ $) 85)) (** (($ $ (-921)) NIL) (($ $ (-771)) 70)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 62) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) 61) (($ $ |#1|) NIL))) +((-2064 ((|#2| |#4|) 35))) +(((-775 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2064 (|#2| |#4|))) (-454) (-1240 |#1|) (-724 |#1| |#2|) (-1240 |#3|)) (T -775)) +((-2064 (*1 *2 *3) (-12 (-4 *4 (-454)) (-4 *5 (-724 *4 *2)) (-4 *2 (-1240 *4)) (-5 *1 (-775 *4 *2 *5 *3)) (-4 *3 (-1240 *5))))) +(-10 -7 (-15 -2064 (|#2| |#4|))) +((-3245 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57)) (-1741 (((-1269) (-1157) (-1157) |#4| |#5|) 33)) (-2301 ((|#4| |#4| |#5|) 74)) (-3109 (((-644 (-2 (|:| |val| |#4|) (|:| -1470 |#5|))) |#4| |#5|) 79)) (-3232 (((-644 (-2 (|:| |val| (-112)) (|:| -1470 |#5|))) |#4| |#5|) 16))) +(((-776 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3245 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2301 (|#4| |#4| |#5|)) (-15 -3109 ((-644 (-2 (|:| |val| |#4|) (|:| -1470 |#5|))) |#4| |#5|)) (-15 -1741 ((-1269) (-1157) (-1157) |#4| |#5|)) (-15 -3232 ((-644 (-2 (|:| |val| (-112)) (|:| -1470 |#5|))) |#4| |#5|))) (-454) (-793) (-850) (-1064 |#1| |#2| |#3|) (-1070 |#1| |#2| |#3| |#4|)) (T -776)) +((-3232 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -1470 *4)))) (-5 *1 (-776 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-1741 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1157)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) (-4 *4 (-1064 *6 *7 *8)) (-5 *2 (-1269)) (-5 *1 (-776 *6 *7 *8 *4 *5)) (-4 *5 (-1070 *6 *7 *8 *4)))) (-3109 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -1470 *4)))) (-5 *1 (-776 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-2301 (*1 *2 *2 *3) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *2 (-1064 *4 *5 *6)) (-5 *1 (-776 *4 *5 *6 *2 *3)) (-4 *3 (-1070 *4 *5 *6 *2)))) (-3245 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-776 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))) +(-10 -7 (-15 -3245 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2301 (|#4| |#4| |#5|)) (-15 -3109 ((-644 (-2 (|:| |val| |#4|) (|:| -1470 |#5|))) |#4| |#5|)) (-15 -1741 ((-1269) (-1157) (-1157) |#4| |#5|)) (-15 -3232 ((-644 (-2 (|:| |val| (-112)) (|:| -1470 |#5|))) |#4| |#5|))) +((-2229 (((-3 (-1171 (-1171 |#1|)) "failed") |#4|) 53)) (-3352 (((-644 |#4|) |#4|) 24)) (-2198 ((|#4| |#4|) 19))) +(((-777 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3352 ((-644 |#4|) |#4|)) (-15 -2229 ((-3 (-1171 (-1171 |#1|)) "failed") |#4|)) (-15 -2198 (|#4| |#4|))) (-351) (-330 |#1|) (-1240 |#2|) (-1240 |#3|) (-921)) (T -777)) +((-2198 (*1 *2 *2) (-12 (-4 *3 (-351)) (-4 *4 (-330 *3)) (-4 *5 (-1240 *4)) (-5 *1 (-777 *3 *4 *5 *2 *6)) (-4 *2 (-1240 *5)) (-14 *6 (-921)))) (-2229 (*1 *2 *3) (|partial| -12 (-4 *4 (-351)) (-4 *5 (-330 *4)) (-4 *6 (-1240 *5)) (-5 *2 (-1171 (-1171 *4))) (-5 *1 (-777 *4 *5 *6 *3 *7)) (-4 *3 (-1240 *6)) (-14 *7 (-921)))) (-3352 (*1 *2 *3) (-12 (-4 *4 (-351)) (-4 *5 (-330 *4)) (-4 *6 (-1240 *5)) (-5 *2 (-644 *3)) (-5 *1 (-777 *4 *5 *6 *3 *7)) (-4 *3 (-1240 *6)) (-14 *7 (-921))))) +(-10 -7 (-15 -3352 ((-644 |#4|) |#4|)) (-15 -2229 ((-3 (-1171 (-1171 |#1|)) "failed") |#4|)) (-15 -2198 (|#4| |#4|))) +((-1719 (((-2 (|:| |deter| (-644 (-1171 |#5|))) (|:| |dterm| (-644 (-644 (-2 (|:| -2994 (-771)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-644 |#1|)) (|:| |nlead| (-644 |#5|))) (-1171 |#5|) (-644 |#1|) (-644 |#5|)) 75)) (-1895 (((-644 (-771)) |#1|) 20))) +(((-778 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1719 ((-2 (|:| |deter| (-644 (-1171 |#5|))) (|:| |dterm| (-644 (-644 (-2 (|:| -2994 (-771)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-644 |#1|)) (|:| |nlead| (-644 |#5|))) (-1171 |#5|) (-644 |#1|) (-644 |#5|))) (-15 -1895 ((-644 (-771)) |#1|))) (-1240 |#4|) (-793) (-850) (-308) (-949 |#4| |#2| |#3|)) (T -778)) +((-1895 (*1 *2 *3) (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-308)) (-5 *2 (-644 (-771))) (-5 *1 (-778 *3 *4 *5 *6 *7)) (-4 *3 (-1240 *6)) (-4 *7 (-949 *6 *4 *5)))) (-1719 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1240 *9)) (-4 *7 (-793)) (-4 *8 (-850)) (-4 *9 (-308)) (-4 *10 (-949 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-644 (-1171 *10))) (|:| |dterm| (-644 (-644 (-2 (|:| -2994 (-771)) (|:| |pcoef| *10))))) (|:| |nfacts| (-644 *6)) (|:| |nlead| (-644 *10)))) (-5 *1 (-778 *6 *7 *8 *9 *10)) (-5 *3 (-1171 *10)) (-5 *4 (-644 *6)) (-5 *5 (-644 *10))))) +(-10 -7 (-15 -1719 ((-2 (|:| |deter| (-644 (-1171 |#5|))) (|:| |dterm| (-644 (-644 (-2 (|:| -2994 (-771)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-644 |#1|)) (|:| |nlead| (-644 |#5|))) (-1171 |#5|) (-644 |#1|) (-644 |#5|))) (-15 -1895 ((-644 (-771)) |#1|))) +((-4095 (((-644 (-2 (|:| |outval| |#1|) (|:| |outmult| (-566)) (|:| |outvect| (-644 (-689 |#1|))))) (-689 (-409 (-566))) |#1|) 31)) (-3033 (((-644 |#1|) (-689 (-409 (-566))) |#1|) 21)) (-2318 (((-952 (-409 (-566))) (-689 (-409 (-566))) (-1175)) 18) (((-952 (-409 (-566))) (-689 (-409 (-566)))) 17))) +(((-779 |#1|) (-10 -7 (-15 -2318 ((-952 (-409 (-566))) (-689 (-409 (-566))))) (-15 -2318 ((-952 (-409 (-566))) (-689 (-409 (-566))) (-1175))) (-15 -3033 ((-644 |#1|) (-689 (-409 (-566))) |#1|)) (-15 -4095 ((-644 (-2 (|:| |outval| |#1|) (|:| |outmult| (-566)) (|:| |outvect| (-644 (-689 |#1|))))) (-689 (-409 (-566))) |#1|))) (-13 (-365) (-848))) (T -779)) +((-4095 (*1 *2 *3 *4) (-12 (-5 *3 (-689 (-409 (-566)))) (-5 *2 (-644 (-2 (|:| |outval| *4) (|:| |outmult| (-566)) (|:| |outvect| (-644 (-689 *4)))))) (-5 *1 (-779 *4)) (-4 *4 (-13 (-365) (-848))))) (-3033 (*1 *2 *3 *4) (-12 (-5 *3 (-689 (-409 (-566)))) (-5 *2 (-644 *4)) (-5 *1 (-779 *4)) (-4 *4 (-13 (-365) (-848))))) (-2318 (*1 *2 *3 *4) (-12 (-5 *3 (-689 (-409 (-566)))) (-5 *4 (-1175)) (-5 *2 (-952 (-409 (-566)))) (-5 *1 (-779 *5)) (-4 *5 (-13 (-365) (-848))))) (-2318 (*1 *2 *3) (-12 (-5 *3 (-689 (-409 (-566)))) (-5 *2 (-952 (-409 (-566)))) (-5 *1 (-779 *4)) (-4 *4 (-13 (-365) (-848)))))) +(-10 -7 (-15 -2318 ((-952 (-409 (-566))) (-689 (-409 (-566))))) (-15 -2318 ((-952 (-409 (-566))) (-689 (-409 (-566))) (-1175))) (-15 -3033 ((-644 |#1|) (-689 (-409 (-566))) |#1|)) (-15 -4095 ((-644 (-2 (|:| |outval| |#1|) (|:| |outmult| (-566)) (|:| |outvect| (-644 (-689 |#1|))))) (-689 (-409 (-566))) |#1|))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) 36)) (-1771 (((-644 |#2|) $) NIL)) (-1590 (((-1171 $) $ |#2|) NIL) (((-1171 |#1|) $) NIL)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-2161 (($ $) NIL (|has| |#1| (-558)))) (-2345 (((-112) $) NIL (|has| |#1| (-558)))) (-1357 (((-771) $) NIL) (((-771) $ (-644 |#2|)) NIL)) (-3214 (($ $) 30)) (-1632 (((-112) $ $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-1890 (($ $ $) 110 (|has| |#1| (-558)))) (-2514 (((-644 $) $ $) 123 (|has| |#1| (-558)))) (-2292 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-1378 (($ $) NIL (|has| |#1| (-454)))) (-1364 (((-420 $) $) NIL (|has| |#1| (-454)))) (-4066 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-2463 (($) NIL T CONST)) (-2229 (((-3 |#1| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-952 (-409 (-566)))) NIL (-12 (|has| |#1| (-38 (-409 (-566)))) (|has| |#2| (-614 (-1175))))) (((-3 $ "failed") (-952 (-566))) NIL (-2768 (-12 (|has| |#1| (-38 (-566))) (|has| |#2| (-614 (-1175))) (-2404 (|has| |#1| (-38 (-409 (-566)))))) (-12 (|has| |#1| (-38 (-409 (-566)))) (|has| |#2| (-614 (-1175)))))) (((-3 $ "failed") (-952 |#1|)) NIL (-2768 (-12 (|has| |#2| (-614 (-1175))) (-2404 (|has| |#1| (-38 (-409 (-566))))) (-2404 (|has| |#1| (-38 (-566))))) (-12 (|has| |#1| (-38 (-566))) (|has| |#2| (-614 (-1175))) (-2404 (|has| |#1| (-38 (-409 (-566))))) (-2404 (|has| |#1| (-547)))) (-12 (|has| |#1| (-38 (-409 (-566)))) (|has| |#2| (-614 (-1175))) (-2404 (|has| |#1| (-992 (-566))))))) (((-3 (-1124 |#1| |#2|) "failed") $) 21)) (-4158 ((|#1| $) NIL) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-566) $) NIL (|has| |#1| (-1038 (-566)))) ((|#2| $) NIL) (($ (-952 (-409 (-566)))) NIL (-12 (|has| |#1| (-38 (-409 (-566)))) (|has| |#2| (-614 (-1175))))) (($ (-952 (-566))) NIL (-2768 (-12 (|has| |#1| (-38 (-566))) (|has| |#2| (-614 (-1175))) (-2404 (|has| |#1| (-38 (-409 (-566)))))) (-12 (|has| |#1| (-38 (-409 (-566)))) (|has| |#2| (-614 (-1175)))))) (($ (-952 |#1|)) NIL (-2768 (-12 (|has| |#2| (-614 (-1175))) (-2404 (|has| |#1| (-38 (-409 (-566))))) (-2404 (|has| |#1| (-38 (-566))))) (-12 (|has| |#1| (-38 (-566))) (|has| |#2| (-614 (-1175))) (-2404 (|has| |#1| (-38 (-409 (-566))))) (-2404 (|has| |#1| (-547)))) (-12 (|has| |#1| (-38 (-409 (-566)))) (|has| |#2| (-614 (-1175))) (-2404 (|has| |#1| (-992 (-566))))))) (((-1124 |#1| |#2|) $) NIL)) (-2610 (($ $ $ |#2|) NIL (|has| |#1| (-172))) (($ $ $) 121 (|has| |#1| (-558)))) (-2814 (($ $) NIL) (($ $ |#2|) NIL)) (-4089 (((-689 (-566)) (-689 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -3361 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) NIL) (((-689 |#1|) (-689 $)) NIL)) (-3599 (((-112) $ $) NIL) (((-112) $ (-644 $)) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-1393 (((-112) $) NIL)) (-1514 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) 81)) (-3269 (($ $) 136 (|has| |#1| (-454)))) (-2616 (($ $) NIL (|has| |#1| (-454))) (($ $ |#2|) NIL (|has| |#1| (-454)))) (-2804 (((-644 $) $) NIL)) (-1615 (((-112) $) NIL (|has| |#1| (-909)))) (-3960 (($ $) NIL (|has| |#1| (-558)))) (-1363 (($ $) NIL (|has| |#1| (-558)))) (-2314 (($ $ $) 76) (($ $ $ |#2|) NIL)) (-4117 (($ $ $) 79) (($ $ $ |#2|) NIL)) (-1896 (($ $ |#1| (-533 |#2|) $) NIL)) (-2926 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| |#1| (-886 (-381))) (|has| |#2| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| |#1| (-886 (-566))) (|has| |#2| (-886 (-566)))))) (-2389 (((-112) $) 57)) (-3039 (((-771) $) NIL)) (-1640 (((-112) $ $) NIL) (((-112) $ (-644 $)) NIL)) (-2196 (($ $ $ $ $) 107 (|has| |#1| (-558)))) (-4296 ((|#2| $) 22)) (-1757 (($ (-1171 |#1|) |#2|) NIL) (($ (-1171 $) |#2|) NIL)) (-1587 (((-644 $) $) NIL)) (-2497 (((-112) $) NIL)) (-1746 (($ |#1| (-533 |#2|)) NIL) (($ $ |#2| (-771)) 38) (($ $ (-644 |#2|) (-644 (-771))) NIL)) (-1492 (($ $ $) 63)) (-2815 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $ |#2|) NIL)) (-2520 (((-112) $) NIL)) (-2749 (((-533 |#2|) $) NIL) (((-771) $ |#2|) NIL) (((-644 (-771)) $ (-644 |#2|)) NIL)) (-1904 (((-771) $) 23)) (-3021 (($ (-1 (-533 |#2|) (-533 |#2|)) $) NIL)) (-2319 (($ (-1 |#1| |#1|) $) NIL)) (-2297 (((-3 |#2| "failed") $) NIL)) (-2410 (($ $) NIL (|has| |#1| (-454)))) (-3195 (($ $) NIL (|has| |#1| (-454)))) (-2580 (((-644 $) $) NIL)) (-2261 (($ $) 39)) (-2556 (($ $) NIL (|has| |#1| (-454)))) (-4314 (((-644 $) $) 43)) (-1437 (($ $) 41)) (-2784 (($ $) NIL)) (-2794 ((|#1| $) NIL) (($ $ |#2|) 48)) (-2128 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-1903 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1956 (-771))) $ $) 96)) (-1980 (((-2 (|:| -2397 $) (|:| |gap| (-771)) (|:| -2631 $) (|:| -3264 $)) $ $) 78) (((-2 (|:| -2397 $) (|:| |gap| (-771)) (|:| -2631 $) (|:| -3264 $)) $ $ |#2|) NIL)) (-1380 (((-2 (|:| -2397 $) (|:| |gap| (-771)) (|:| -3264 $)) $ $) NIL) (((-2 (|:| -2397 $) (|:| |gap| (-771)) (|:| -3264 $)) $ $ |#2|) NIL)) (-3135 (($ $ $) 83) (($ $ $ |#2|) NIL)) (-1415 (($ $ $) 86) (($ $ $ |#2|) NIL)) (-3380 (((-1157) $) NIL)) (-3940 (($ $ $) 125 (|has| |#1| (-558)))) (-1992 (((-644 $) $) 32)) (-3738 (((-3 (-644 $) "failed") $) NIL)) (-4199 (((-3 (-644 $) "failed") $) NIL)) (-4108 (((-3 (-2 (|:| |var| |#2|) (|:| -2201 (-771))) "failed") $) NIL)) (-2543 (((-112) $ $) NIL) (((-112) $ (-644 $)) NIL)) (-1906 (($ $ $) NIL)) (-3289 (($ $) 24)) (-3077 (((-112) $ $) NIL)) (-3374 (((-112) $ $) NIL) (((-112) $ (-644 $)) NIL)) (-4074 (($ $ $) NIL)) (-2842 (($ $) 26)) (-4072 (((-1119) $) NIL)) (-4092 (((-2 (|:| -2164 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-558)))) (-3220 (((-2 (|:| -2164 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-558)))) (-2761 (((-112) $) 56)) (-2773 ((|#1| $) 58)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-454)))) (-2164 ((|#1| |#1| $) 133 (|has| |#1| (-454))) (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-2010 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-1893 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-1624 (((-420 $) $) NIL (|has| |#1| (-909)))) (-3188 (((-2 (|:| -2164 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-558)))) (-2978 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558))) (((-3 $ "failed") $ $) 98 (|has| |#1| (-558)))) (-2355 (($ $ |#1|) 129 (|has| |#1| (-558))) (($ $ $) NIL (|has| |#1| (-558)))) (-2672 (($ $ |#1|) 128 (|has| |#1| (-558))) (($ $ $) NIL (|has| |#1| (-558)))) (-2023 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-644 |#2|) (-644 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-644 |#2|) (-644 $)) NIL)) (-4068 (($ $ |#2|) NIL (|has| |#1| (-172)))) (-3629 (($ $ |#2|) NIL) (($ $ (-644 |#2|)) NIL) (($ $ |#2| (-771)) NIL) (($ $ (-644 |#2|) (-644 (-771))) NIL)) (-3902 (((-533 |#2|) $) NIL) (((-771) $ |#2|) 45) (((-644 (-771)) $ (-644 |#2|)) NIL)) (-3974 (($ $) NIL)) (-2562 (($ $) 35)) (-2376 (((-892 (-381)) $) NIL (-12 (|has| |#1| (-614 (-892 (-381)))) (|has| |#2| (-614 (-892 (-381)))))) (((-892 (-566)) $) NIL (-12 (|has| |#1| (-614 (-892 (-566)))) (|has| |#2| (-614 (-892 (-566)))))) (((-538) $) NIL (-12 (|has| |#1| (-614 (-538))) (|has| |#2| (-614 (-538))))) (($ (-952 (-409 (-566)))) NIL (-12 (|has| |#1| (-38 (-409 (-566)))) (|has| |#2| (-614 (-1175))))) (($ (-952 (-566))) NIL (-2768 (-12 (|has| |#1| (-38 (-566))) (|has| |#2| (-614 (-1175))) (-2404 (|has| |#1| (-38 (-409 (-566)))))) (-12 (|has| |#1| (-38 (-409 (-566)))) (|has| |#2| (-614 (-1175)))))) (($ (-952 |#1|)) NIL (|has| |#2| (-614 (-1175)))) (((-1157) $) NIL (-12 (|has| |#1| (-1038 (-566))) (|has| |#2| (-614 (-1175))))) (((-952 |#1|) $) NIL (|has| |#2| (-614 (-1175))))) (-3173 ((|#1| $) 132 (|has| |#1| (-454))) (($ $ |#2|) NIL (|has| |#1| (-454)))) (-3391 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-909))))) (-3152 (((-862) $) NIL) (($ (-566)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-952 |#1|) $) NIL (|has| |#2| (-614 (-1175)))) (((-1124 |#1| |#2|) $) 18) (($ (-1124 |#1| |#2|)) 19) (($ (-409 (-566))) NIL (-2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566)))))) (($ $) NIL (|has| |#1| (-558)))) (-1643 (((-644 |#1|) $) NIL)) (-2271 ((|#1| $ (-533 |#2|)) NIL) (($ $ |#2| (-771)) 47) (($ $ (-644 |#2|) (-644 (-771))) NIL)) (-2633 (((-3 $ "failed") $) NIL (-2768 (-12 (|has| $ (-145)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-2593 (((-771)) NIL T CONST)) (-2021 (($ $ $ (-771)) NIL (|has| |#1| (-172)))) (-3044 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL (|has| |#1| (-558)))) (-4356 (($) 13 T CONST)) (-3677 (((-3 (-112) "failed") $ $) NIL)) (-4366 (($) 37 T CONST)) (-3797 (($ $ $ $ (-771)) 105 (|has| |#1| (-558)))) (-2608 (($ $ $ (-771)) 104 (|has| |#1| (-558)))) (-3497 (($ $ |#2|) NIL) (($ $ (-644 |#2|)) NIL) (($ $ |#2| (-771)) NIL) (($ $ (-644 |#2|) (-644 (-771))) NIL)) (-2914 (((-112) $ $) NIL)) (-3025 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3012 (($ $) NIL) (($ $ $) 75)) (-3002 (($ $ $) 85)) (** (($ $ (-921)) NIL) (($ $ (-771)) 70)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 62) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) 61) (($ $ |#1|) NIL))) (((-780 |#1| |#2|) (-13 (-1064 |#1| (-533 |#2|) |#2|) (-613 (-1124 |#1| |#2|)) (-1038 (-1124 |#1| |#2|))) (-1049) (-850)) (T -780)) NIL (-13 (-1064 |#1| (-533 |#2|) |#2|) (-613 (-1124 |#1| |#2|)) (-1038 (-1124 |#1| |#2|))) -((-1301 (((-782 |#2|) (-1 |#2| |#1|) (-782 |#1|)) 13))) -(((-781 |#1| |#2|) (-10 -7 (-15 -1301 ((-782 |#2|) (-1 |#2| |#1|) (-782 |#1|)))) (-1049) (-1049)) (T -781)) -((-1301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-782 *5)) (-4 *5 (-1049)) (-4 *6 (-1049)) (-5 *2 (-782 *6)) (-5 *1 (-781 *5 *6))))) -(-10 -7 (-15 -1301 ((-782 |#2|) (-1 |#2| |#1|) (-782 |#1|)))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) 12)) (-2293 (((-1264 |#1|) $ (-771)) NIL)) (-3863 (((-644 (-1081)) $) NIL)) (-3841 (($ (-1171 |#1|)) NIL)) (-3683 (((-1171 $) $ (-1081)) NIL) (((-1171 |#1|) $) NIL)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-3991 (($ $) NIL (|has| |#1| (-558)))) (-2388 (((-112) $) NIL (|has| |#1| (-558)))) (-3367 (((-771) $) NIL) (((-771) $ (-644 (-1081))) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-3790 (((-644 $) $ $) 54 (|has| |#1| (-558)))) (-4206 (($ $ $) 50 (|has| |#1| (-558)))) (-1477 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-1550 (($ $) NIL (|has| |#1| (-454)))) (-3184 (((-420 $) $) NIL (|has| |#1| (-454)))) (-3717 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-2837 (((-112) $ $) NIL (|has| |#1| (-365)))) (-2838 (($ $ (-771)) NIL)) (-3827 (($ $ (-771)) NIL)) (-1454 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-454)))) (-3012 (($) NIL T CONST)) (-4307 (((-3 |#1| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-1081) "failed") $) NIL) (((-3 (-1171 |#1|) "failed") $) 10)) (-4205 ((|#1| $) NIL) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-1081) $) NIL) (((-1171 |#1|) $) NIL)) (-2738 (($ $ $ (-1081)) NIL (|has| |#1| (-172))) ((|#1| $ $) 58 (|has| |#1| (-172)))) (-2946 (($ $ $) NIL (|has| |#1| (-365)))) (-1786 (($ $) NIL)) (-3577 (((-689 (-566)) (-689 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -4227 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) NIL) (((-689 |#1|) (-689 $)) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-2957 (($ $ $) NIL (|has| |#1| (-365)))) (-3672 (($ $ $) NIL)) (-1324 (($ $ $) 87 (|has| |#1| (-558)))) (-1960 (((-2 (|:| -1364 |#1|) (|:| -2275 $) (|:| -2513 $)) $ $) 86 (|has| |#1| (-558)))) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL (|has| |#1| (-365)))) (-4075 (($ $) NIL (|has| |#1| (-454))) (($ $ (-1081)) NIL (|has| |#1| (-454)))) (-1774 (((-644 $) $) NIL)) (-3268 (((-112) $) NIL (|has| |#1| (-909)))) (-3635 (($ $ |#1| (-771) $) NIL)) (-2062 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| (-1081) (-886 (-381))) (|has| |#1| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| (-1081) (-886 (-566))) (|has| |#1| (-886 (-566)))))) (-3254 (((-771) $ $) NIL (|has| |#1| (-558)))) (-3934 (((-112) $) NIL)) (-2614 (((-771) $) NIL)) (-4363 (((-3 $ "failed") $) NIL (|has| |#1| (-1150)))) (-3851 (($ (-1171 |#1|) (-1081)) NIL) (($ (-1171 $) (-1081)) NIL)) (-2955 (($ $ (-771)) NIL)) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-2288 (((-644 $) $) NIL)) (-3264 (((-112) $) NIL)) (-3840 (($ |#1| (-771)) NIL) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL)) (-2532 (($ $ $) 27)) (-2044 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $ (-1081)) NIL) (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL)) (-3760 (((-771) $) NIL) (((-771) $ (-1081)) NIL) (((-644 (-771)) $ (-644 (-1081))) NIL)) (-4301 (($ (-1 (-771) (-771)) $) NIL)) (-1301 (($ (-1 |#1| |#1|) $) NIL)) (-1988 (((-1171 |#1|) $) NIL)) (-3169 (((-3 (-1081) "failed") $) NIL)) (-1749 (($ $) NIL)) (-1763 ((|#1| $) NIL)) (-2167 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-4252 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4369 (-771))) $ $) 37)) (-3004 (($ $ $) 41)) (-3134 (($ $ $) 47)) (-1953 (((-2 (|:| -1364 |#1|) (|:| |gap| (-771)) (|:| -2275 $) (|:| -2513 $)) $ $) 46)) (-4117 (((-1157) $) NIL)) (-1558 (($ $ $) 56 (|has| |#1| (-558)))) (-2764 (((-2 (|:| -2275 $) (|:| -2513 $)) $ (-771)) NIL)) (-3714 (((-3 (-644 $) "failed") $) NIL)) (-2353 (((-3 (-644 $) "failed") $) NIL)) (-1518 (((-3 (-2 (|:| |var| (-1081)) (|:| -2852 (-771))) "failed") $) NIL)) (-1941 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1761 (($) NIL (|has| |#1| (-1150)) CONST)) (-4035 (((-1119) $) NIL)) (-1621 (((-2 (|:| -2214 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-558)))) (-2469 (((-2 (|:| -2214 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-558)))) (-3353 (((-2 (|:| -2738 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-558)))) (-2531 (((-2 (|:| -2738 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-558)))) (-1723 (((-112) $) 13)) (-1736 ((|#1| $) NIL)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-454)))) (-2214 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-2872 (($ $ (-771) |#1| $) 26)) (-4303 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-3240 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-3719 (((-420 $) $) NIL (|has| |#1| (-909)))) (-2216 (((-2 (|:| -2214 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-558)))) (-1806 (((-2 (|:| -2738 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-558)))) (-3148 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-365)))) (-2994 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-2055 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-1081) |#1|) NIL) (($ $ (-644 (-1081)) (-644 |#1|)) NIL) (($ $ (-1081) $) NIL) (($ $ (-644 (-1081)) (-644 $)) NIL)) (-3039 (((-771) $) NIL (|has| |#1| (-365)))) (-4390 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-409 $) (-409 $) (-409 $)) NIL (|has| |#1| (-558))) ((|#1| (-409 $) |#1|) NIL (|has| |#1| (-365))) (((-409 $) $ (-409 $)) NIL (|has| |#1| (-558)))) (-1313 (((-3 $ "failed") $ (-771)) NIL)) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL (|has| |#1| (-365)))) (-3652 (($ $ (-1081)) NIL (|has| |#1| (-172))) ((|#1| $) NIL (|has| |#1| (-172)))) (-3561 (($ $ (-1081)) NIL) (($ $ (-644 (-1081))) NIL) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL) (($ $ (-771)) NIL) (($ $) NIL) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3636 (((-771) $) NIL) (((-771) $ (-1081)) NIL) (((-644 (-771)) $ (-644 (-1081))) NIL)) (-1348 (((-892 (-381)) $) NIL (-12 (|has| (-1081) (-614 (-892 (-381)))) (|has| |#1| (-614 (-892 (-381)))))) (((-892 (-566)) $) NIL (-12 (|has| (-1081) (-614 (-892 (-566)))) (|has| |#1| (-614 (-892 (-566)))))) (((-538) $) NIL (-12 (|has| (-1081) (-614 (-538))) (|has| |#1| (-614 (-538)))))) (-2483 ((|#1| $) NIL (|has| |#1| (-454))) (($ $ (-1081)) NIL (|has| |#1| (-454)))) (-1656 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-909))))) (-4150 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558))) (((-3 (-409 $) "failed") (-409 $) $) NIL (|has| |#1| (-558)))) (-3783 (((-862) $) NIL) (($ (-566)) NIL) (($ |#1|) NIL) (($ (-1081)) NIL) (((-1171 |#1|) $) 7) (($ (-1171 |#1|)) 8) (($ (-409 (-566))) NIL (-2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566)))))) (($ $) NIL (|has| |#1| (-558)))) (-4170 (((-644 |#1|) $) NIL)) (-2649 ((|#1| $ (-771)) NIL) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL)) (-3144 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| $ (-145)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-2107 (((-771)) NIL T CONST)) (-3362 (($ $ $ (-771)) NIL (|has| |#1| (-172)))) (-3117 (((-112) $ $) NIL)) (-2695 (((-112) $ $) NIL (|has| |#1| (-558)))) (-2479 (($) 28 T CONST)) (-4334 (($) 32 T CONST)) (-2875 (($ $ (-1081)) NIL) (($ $ (-644 (-1081))) NIL) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL) (($ $ (-771)) NIL) (($ $) NIL) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2947 (((-112) $ $) NIL)) (-3065 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3053 (($ $) 40) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) 31) (($ $ |#1|) NIL))) -(((-782 |#1|) (-13 (-1240 |#1|) (-613 (-1171 |#1|)) (-1038 (-1171 |#1|)) (-10 -8 (-15 -2872 ($ $ (-771) |#1| $)) (-15 -2532 ($ $ $)) (-15 -4252 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4369 (-771))) $ $)) (-15 -3004 ($ $ $)) (-15 -1953 ((-2 (|:| -1364 |#1|) (|:| |gap| (-771)) (|:| -2275 $) (|:| -2513 $)) $ $)) (-15 -3134 ($ $ $)) (IF (|has| |#1| (-558)) (PROGN (-15 -3790 ((-644 $) $ $)) (-15 -1558 ($ $ $)) (-15 -2216 ((-2 (|:| -2214 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2469 ((-2 (|:| -2214 $) (|:| |coef1| $)) $ $)) (-15 -1621 ((-2 (|:| -2214 $) (|:| |coef2| $)) $ $)) (-15 -1806 ((-2 (|:| -2738 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2531 ((-2 (|:| -2738 |#1|) (|:| |coef1| $)) $ $)) (-15 -3353 ((-2 (|:| -2738 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1049)) (T -782)) -((-2872 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-771)) (-5 *1 (-782 *3)) (-4 *3 (-1049)))) (-2532 (*1 *1 *1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-1049)))) (-4252 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-782 *3)) (|:| |polden| *3) (|:| -4369 (-771)))) (-5 *1 (-782 *3)) (-4 *3 (-1049)))) (-3004 (*1 *1 *1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-1049)))) (-1953 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1364 *3) (|:| |gap| (-771)) (|:| -2275 (-782 *3)) (|:| -2513 (-782 *3)))) (-5 *1 (-782 *3)) (-4 *3 (-1049)))) (-3134 (*1 *1 *1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-1049)))) (-3790 (*1 *2 *1 *1) (-12 (-5 *2 (-644 (-782 *3))) (-5 *1 (-782 *3)) (-4 *3 (-558)) (-4 *3 (-1049)))) (-1558 (*1 *1 *1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-558)) (-4 *2 (-1049)))) (-2216 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2214 (-782 *3)) (|:| |coef1| (-782 *3)) (|:| |coef2| (-782 *3)))) (-5 *1 (-782 *3)) (-4 *3 (-558)) (-4 *3 (-1049)))) (-2469 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2214 (-782 *3)) (|:| |coef1| (-782 *3)))) (-5 *1 (-782 *3)) (-4 *3 (-558)) (-4 *3 (-1049)))) (-1621 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2214 (-782 *3)) (|:| |coef2| (-782 *3)))) (-5 *1 (-782 *3)) (-4 *3 (-558)) (-4 *3 (-1049)))) (-1806 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2738 *3) (|:| |coef1| (-782 *3)) (|:| |coef2| (-782 *3)))) (-5 *1 (-782 *3)) (-4 *3 (-558)) (-4 *3 (-1049)))) (-2531 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2738 *3) (|:| |coef1| (-782 *3)))) (-5 *1 (-782 *3)) (-4 *3 (-558)) (-4 *3 (-1049)))) (-3353 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2738 *3) (|:| |coef2| (-782 *3)))) (-5 *1 (-782 *3)) (-4 *3 (-558)) (-4 *3 (-1049))))) -(-13 (-1240 |#1|) (-613 (-1171 |#1|)) (-1038 (-1171 |#1|)) (-10 -8 (-15 -2872 ($ $ (-771) |#1| $)) (-15 -2532 ($ $ $)) (-15 -4252 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4369 (-771))) $ $)) (-15 -3004 ($ $ $)) (-15 -1953 ((-2 (|:| -1364 |#1|) (|:| |gap| (-771)) (|:| -2275 $) (|:| -2513 $)) $ $)) (-15 -3134 ($ $ $)) (IF (|has| |#1| (-558)) (PROGN (-15 -3790 ((-644 $) $ $)) (-15 -1558 ($ $ $)) (-15 -2216 ((-2 (|:| -2214 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2469 ((-2 (|:| -2214 $) (|:| |coef1| $)) $ $)) (-15 -1621 ((-2 (|:| -2214 $) (|:| |coef2| $)) $ $)) (-15 -1806 ((-2 (|:| -2738 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2531 ((-2 (|:| -2738 |#1|) (|:| |coef1| $)) $ $)) (-15 -3353 ((-2 (|:| -2738 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) -((-4005 ((|#1| (-771) |#1|) 33 (|has| |#1| (-38 (-409 (-566)))))) (-2184 ((|#1| (-771) |#1|) 23)) (-3102 ((|#1| (-771) |#1|) 35 (|has| |#1| (-38 (-409 (-566))))))) -(((-783 |#1|) (-10 -7 (-15 -2184 (|#1| (-771) |#1|)) (IF (|has| |#1| (-38 (-409 (-566)))) (PROGN (-15 -3102 (|#1| (-771) |#1|)) (-15 -4005 (|#1| (-771) |#1|))) |%noBranch|)) (-172)) (T -783)) -((-4005 (*1 *2 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-783 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-172)))) (-3102 (*1 *2 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-783 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-172)))) (-2184 (*1 *2 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-783 *2)) (-4 *2 (-172))))) -(-10 -7 (-15 -2184 (|#1| (-771) |#1|)) (IF (|has| |#1| (-38 (-409 (-566)))) (PROGN (-15 -3102 (|#1| (-771) |#1|)) (-15 -4005 (|#1| (-771) |#1|))) |%noBranch|)) -((-3007 (((-112) $ $) 7)) (-2584 (((-644 (-2 (|:| -1651 $) (|:| -3501 (-644 |#4|)))) (-644 |#4|)) 86)) (-2333 (((-644 $) (-644 |#4|)) 87) (((-644 $) (-644 |#4|) (-112)) 112)) (-3863 (((-644 |#3|) $) 34)) (-2368 (((-112) $) 27)) (-4070 (((-112) $) 18 (|has| |#1| (-558)))) (-3624 (((-112) |#4| $) 102) (((-112) $) 98)) (-1374 ((|#4| |#4| $) 93)) (-1550 (((-644 (-2 (|:| |val| |#4|) (|:| -3570 $))) |#4| $) 127)) (-1510 (((-2 (|:| |under| $) (|:| -3470 $) (|:| |upper| $)) $ |#3|) 28)) (-2256 (((-112) $ (-771)) 45)) (-2701 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4414))) (((-3 |#4| "failed") $ |#3|) 80)) (-3012 (($) 46 T CONST)) (-3779 (((-112) $) 23 (|has| |#1| (-558)))) (-2540 (((-112) $ $) 25 (|has| |#1| (-558)))) (-4093 (((-112) $ $) 24 (|has| |#1| (-558)))) (-3741 (((-112) $) 26 (|has| |#1| (-558)))) (-2506 (((-644 |#4|) (-644 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2026 (((-644 |#4|) (-644 |#4|) $) 19 (|has| |#1| (-558)))) (-4306 (((-644 |#4|) (-644 |#4|) $) 20 (|has| |#1| (-558)))) (-4307 (((-3 $ "failed") (-644 |#4|)) 37)) (-4205 (($ (-644 |#4|)) 36)) (-2010 (((-3 $ "failed") $) 83)) (-2100 ((|#4| |#4| $) 90)) (-2031 (($ $) 69 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414))))) (-2665 (($ |#4| $) 68 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4414)))) (-2513 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-558)))) (-1464 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-1401 ((|#4| |#4| $) 88)) (-1676 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4414))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4414))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-3692 (((-2 (|:| -1651 (-644 |#4|)) (|:| -3501 (-644 |#4|))) $) 106)) (-3987 (((-112) |#4| $) 137)) (-1906 (((-112) |#4| $) 134)) (-1530 (((-112) |#4| $) 138) (((-112) $) 135)) (-3979 (((-644 |#4|) $) 53 (|has| $ (-6 -4414)))) (-2111 (((-112) |#4| $) 105) (((-112) $) 104)) (-1489 ((|#3| $) 35)) (-2404 (((-112) $ (-771)) 44)) (-2329 (((-644 |#4|) $) 54 (|has| $ (-6 -4414)))) (-1916 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414))))) (-2908 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#4| |#4|) $) 48)) (-2189 (((-644 |#3|) $) 33)) (-3953 (((-112) |#3| $) 32)) (-2603 (((-112) $ (-771)) 43)) (-4117 (((-1157) $) 10)) (-1532 (((-3 |#4| (-644 $)) |#4| |#4| $) 129)) (-1558 (((-644 (-2 (|:| |val| |#4|) (|:| -3570 $))) |#4| |#4| $) 128)) (-2686 (((-3 |#4| "failed") $) 84)) (-3758 (((-644 $) |#4| $) 130)) (-1613 (((-3 (-112) (-644 $)) |#4| $) 133)) (-1714 (((-644 (-2 (|:| |val| (-112)) (|:| -3570 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-4018 (((-644 $) |#4| $) 126) (((-644 $) (-644 |#4|) $) 125) (((-644 $) (-644 |#4|) (-644 $)) 124) (((-644 $) |#4| (-644 $)) 123)) (-2096 (($ |#4| $) 118) (($ (-644 |#4|) $) 117)) (-2851 (((-644 |#4|) $) 108)) (-1694 (((-112) |#4| $) 100) (((-112) $) 96)) (-1871 ((|#4| |#4| $) 91)) (-2897 (((-112) $ $) 111)) (-3112 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-558)))) (-3351 (((-112) |#4| $) 101) (((-112) $) 97)) (-3544 ((|#4| |#4| $) 92)) (-4035 (((-1119) $) 11)) (-1998 (((-3 |#4| "failed") $) 85)) (-2006 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2060 (((-3 $ "failed") $ |#4|) 79)) (-3874 (($ $ |#4|) 78) (((-644 $) |#4| $) 116) (((-644 $) |#4| (-644 $)) 115) (((-644 $) (-644 |#4|) $) 114) (((-644 $) (-644 |#4|) (-644 $)) 113)) (-2692 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 |#4|) (-644 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-644 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))) (-1932 (((-112) $ $) 39)) (-3467 (((-112) $) 42)) (-1494 (($) 41)) (-3636 (((-771) $) 107)) (-4045 (((-771) |#4| $) 55 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414)))) (((-771) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4414)))) (-3940 (($ $) 40)) (-1348 (((-538) $) 70 (|has| |#4| (-614 (-538))))) (-3796 (($ (-644 |#4|)) 61)) (-2325 (($ $ |#3|) 29)) (-4106 (($ $ |#3|) 31)) (-3973 (($ $) 89)) (-3080 (($ $ |#3|) 30)) (-3783 (((-862) $) 12) (((-644 |#4|) $) 38)) (-2028 (((-771) $) 77 (|has| |#3| (-370)))) (-3117 (((-112) $ $) 9)) (-3706 (((-3 (-2 (|:| |bas| $) (|:| -1825 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -1825 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3772 (((-112) $ (-1 (-112) |#4| (-644 |#4|))) 99)) (-3089 (((-644 $) |#4| $) 122) (((-644 $) |#4| (-644 $)) 121) (((-644 $) (-644 |#4|) $) 120) (((-644 $) (-644 |#4|) (-644 $)) 119)) (-1894 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4414)))) (-4180 (((-644 |#3|) $) 82)) (-1571 (((-112) |#4| $) 136)) (-1423 (((-112) |#3| $) 81)) (-2947 (((-112) $ $) 6)) (-3018 (((-771) $) 47 (|has| $ (-6 -4414))))) +((-2319 (((-782 |#2|) (-1 |#2| |#1|) (-782 |#1|)) 13))) +(((-781 |#1| |#2|) (-10 -7 (-15 -2319 ((-782 |#2|) (-1 |#2| |#1|) (-782 |#1|)))) (-1049) (-1049)) (T -781)) +((-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-782 *5)) (-4 *5 (-1049)) (-4 *6 (-1049)) (-5 *2 (-782 *6)) (-5 *1 (-781 *5 *6))))) +(-10 -7 (-15 -2319 ((-782 |#2|) (-1 |#2| |#1|) (-782 |#1|)))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) 12)) (-4036 (((-1264 |#1|) $ (-771)) NIL)) (-1771 (((-644 (-1081)) $) NIL)) (-3732 (($ (-1171 |#1|)) NIL)) (-1590 (((-1171 $) $ (-1081)) NIL) (((-1171 |#1|) $) NIL)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-2161 (($ $) NIL (|has| |#1| (-558)))) (-2345 (((-112) $) NIL (|has| |#1| (-558)))) (-1357 (((-771) $) NIL) (((-771) $ (-644 (-1081))) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-1400 (((-644 $) $ $) 54 (|has| |#1| (-558)))) (-1890 (($ $ $) 50 (|has| |#1| (-558)))) (-2292 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-1378 (($ $) NIL (|has| |#1| (-454)))) (-1364 (((-420 $) $) NIL (|has| |#1| (-454)))) (-4066 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-2085 (((-112) $ $) NIL (|has| |#1| (-365)))) (-2197 (($ $ (-771)) NIL)) (-1583 (($ $ (-771)) NIL)) (-3946 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-454)))) (-2463 (($) NIL T CONST)) (-2229 (((-3 |#1| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-1081) "failed") $) NIL) (((-3 (-1171 |#1|) "failed") $) 10)) (-4158 ((|#1| $) NIL) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-1081) $) NIL) (((-1171 |#1|) $) NIL)) (-2610 (($ $ $ (-1081)) NIL (|has| |#1| (-172))) ((|#1| $ $) 58 (|has| |#1| (-172)))) (-2933 (($ $ $) NIL (|has| |#1| (-365)))) (-2814 (($ $) NIL)) (-4089 (((-689 (-566)) (-689 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -3361 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) NIL) (((-689 |#1|) (-689 $)) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-2945 (($ $ $) NIL (|has| |#1| (-365)))) (-2218 (($ $ $) NIL)) (-4058 (($ $ $) 87 (|has| |#1| (-558)))) (-1514 (((-2 (|:| -2397 |#1|) (|:| -2631 $) (|:| -3264 $)) $ $) 86 (|has| |#1| (-558)))) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL (|has| |#1| (-365)))) (-2616 (($ $) NIL (|has| |#1| (-454))) (($ $ (-1081)) NIL (|has| |#1| (-454)))) (-2804 (((-644 $) $) NIL)) (-1615 (((-112) $) NIL (|has| |#1| (-909)))) (-1896 (($ $ |#1| (-771) $) NIL)) (-2926 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| (-1081) (-886 (-381))) (|has| |#1| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| (-1081) (-886 (-566))) (|has| |#1| (-886 (-566)))))) (-2679 (((-771) $ $) NIL (|has| |#1| (-558)))) (-2389 (((-112) $) NIL)) (-3039 (((-771) $) NIL)) (-2621 (((-3 $ "failed") $) NIL (|has| |#1| (-1150)))) (-1757 (($ (-1171 |#1|) (-1081)) NIL) (($ (-1171 $) (-1081)) NIL)) (-3394 (($ $ (-771)) NIL)) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-1587 (((-644 $) $) NIL)) (-2497 (((-112) $) NIL)) (-1746 (($ |#1| (-771)) NIL) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL)) (-1492 (($ $ $) 27)) (-2815 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $ (-1081)) NIL) (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL)) (-2749 (((-771) $) NIL) (((-771) $ (-1081)) NIL) (((-644 (-771)) $ (-644 (-1081))) NIL)) (-3021 (($ (-1 (-771) (-771)) $) NIL)) (-2319 (($ (-1 |#1| |#1|) $) NIL)) (-2513 (((-1171 |#1|) $) NIL)) (-2297 (((-3 (-1081) "failed") $) NIL)) (-2784 (($ $) NIL)) (-2794 ((|#1| $) NIL)) (-2128 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-1903 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1956 (-771))) $ $) 37)) (-3080 (($ $ $) 41)) (-4139 (($ $ $) 47)) (-1980 (((-2 (|:| -2397 |#1|) (|:| |gap| (-771)) (|:| -2631 $) (|:| -3264 $)) $ $) 46)) (-3380 (((-1157) $) NIL)) (-3940 (($ $ $) 56 (|has| |#1| (-558)))) (-2307 (((-2 (|:| -2631 $) (|:| -3264 $)) $ (-771)) NIL)) (-3738 (((-3 (-644 $) "failed") $) NIL)) (-4199 (((-3 (-644 $) "failed") $) NIL)) (-4108 (((-3 (-2 (|:| |var| (-1081)) (|:| -2201 (-771))) "failed") $) NIL)) (-3313 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3289 (($) NIL (|has| |#1| (-1150)) CONST)) (-4072 (((-1119) $) NIL)) (-4092 (((-2 (|:| -2164 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-558)))) (-3220 (((-2 (|:| -2164 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-558)))) (-3591 (((-2 (|:| -2610 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-558)))) (-2625 (((-2 (|:| -2610 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-558)))) (-2761 (((-112) $) 13)) (-2773 ((|#1| $) NIL)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-454)))) (-2164 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-3252 (($ $ (-771) |#1| $) 26)) (-2010 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-1893 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-1624 (((-420 $) $) NIL (|has| |#1| (-909)))) (-3188 (((-2 (|:| -2164 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-558)))) (-3354 (((-2 (|:| -2610 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-558)))) (-3005 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL (|has| |#1| (-365)))) (-2978 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-2023 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-1081) |#1|) NIL) (($ $ (-644 (-1081)) (-644 |#1|)) NIL) (($ $ (-1081) $) NIL) (($ $ (-644 (-1081)) (-644 $)) NIL)) (-4357 (((-771) $) NIL (|has| |#1| (-365)))) (-1309 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-409 $) (-409 $) (-409 $)) NIL (|has| |#1| (-558))) ((|#1| (-409 $) |#1|) NIL (|has| |#1| (-365))) (((-409 $) $ (-409 $)) NIL (|has| |#1| (-558)))) (-2382 (((-3 $ "failed") $ (-771)) NIL)) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL (|has| |#1| (-365)))) (-4068 (($ $ (-1081)) NIL (|has| |#1| (-172))) ((|#1| $) NIL (|has| |#1| (-172)))) (-3629 (($ $ (-1081)) NIL) (($ $ (-644 (-1081))) NIL) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL) (($ $ (-771)) NIL) (($ $) NIL) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3902 (((-771) $) NIL) (((-771) $ (-1081)) NIL) (((-644 (-771)) $ (-644 (-1081))) NIL)) (-2376 (((-892 (-381)) $) NIL (-12 (|has| (-1081) (-614 (-892 (-381)))) (|has| |#1| (-614 (-892 (-381)))))) (((-892 (-566)) $) NIL (-12 (|has| (-1081) (-614 (-892 (-566)))) (|has| |#1| (-614 (-892 (-566)))))) (((-538) $) NIL (-12 (|has| (-1081) (-614 (-538))) (|has| |#1| (-614 (-538)))))) (-3173 ((|#1| $) NIL (|has| |#1| (-454))) (($ $ (-1081)) NIL (|has| |#1| (-454)))) (-3391 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-909))))) (-2529 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558))) (((-3 (-409 $) "failed") (-409 $) $) NIL (|has| |#1| (-558)))) (-3152 (((-862) $) NIL) (($ (-566)) NIL) (($ |#1|) NIL) (($ (-1081)) NIL) (((-1171 |#1|) $) 7) (($ (-1171 |#1|)) 8) (($ (-409 (-566))) NIL (-2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566)))))) (($ $) NIL (|has| |#1| (-558)))) (-1643 (((-644 |#1|) $) NIL)) (-2271 ((|#1| $ (-771)) NIL) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL)) (-2633 (((-3 $ "failed") $) NIL (-2768 (-12 (|has| $ (-145)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-2593 (((-771)) NIL T CONST)) (-2021 (($ $ $ (-771)) NIL (|has| |#1| (-172)))) (-3044 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL (|has| |#1| (-558)))) (-4356 (($) 28 T CONST)) (-4366 (($) 32 T CONST)) (-3497 (($ $ (-1081)) NIL) (($ $ (-644 (-1081))) NIL) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL) (($ $ (-771)) NIL) (($ $) NIL) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2914 (((-112) $ $) NIL)) (-3025 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3012 (($ $) 40) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) 31) (($ $ |#1|) NIL))) +(((-782 |#1|) (-13 (-1240 |#1|) (-613 (-1171 |#1|)) (-1038 (-1171 |#1|)) (-10 -8 (-15 -3252 ($ $ (-771) |#1| $)) (-15 -1492 ($ $ $)) (-15 -1903 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1956 (-771))) $ $)) (-15 -3080 ($ $ $)) (-15 -1980 ((-2 (|:| -2397 |#1|) (|:| |gap| (-771)) (|:| -2631 $) (|:| -3264 $)) $ $)) (-15 -4139 ($ $ $)) (IF (|has| |#1| (-558)) (PROGN (-15 -1400 ((-644 $) $ $)) (-15 -3940 ($ $ $)) (-15 -3188 ((-2 (|:| -2164 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3220 ((-2 (|:| -2164 $) (|:| |coef1| $)) $ $)) (-15 -4092 ((-2 (|:| -2164 $) (|:| |coef2| $)) $ $)) (-15 -3354 ((-2 (|:| -2610 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2625 ((-2 (|:| -2610 |#1|) (|:| |coef1| $)) $ $)) (-15 -3591 ((-2 (|:| -2610 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1049)) (T -782)) +((-3252 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-771)) (-5 *1 (-782 *3)) (-4 *3 (-1049)))) (-1492 (*1 *1 *1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-1049)))) (-1903 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-782 *3)) (|:| |polden| *3) (|:| -1956 (-771)))) (-5 *1 (-782 *3)) (-4 *3 (-1049)))) (-3080 (*1 *1 *1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-1049)))) (-1980 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2397 *3) (|:| |gap| (-771)) (|:| -2631 (-782 *3)) (|:| -3264 (-782 *3)))) (-5 *1 (-782 *3)) (-4 *3 (-1049)))) (-4139 (*1 *1 *1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-1049)))) (-1400 (*1 *2 *1 *1) (-12 (-5 *2 (-644 (-782 *3))) (-5 *1 (-782 *3)) (-4 *3 (-558)) (-4 *3 (-1049)))) (-3940 (*1 *1 *1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-558)) (-4 *2 (-1049)))) (-3188 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2164 (-782 *3)) (|:| |coef1| (-782 *3)) (|:| |coef2| (-782 *3)))) (-5 *1 (-782 *3)) (-4 *3 (-558)) (-4 *3 (-1049)))) (-3220 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2164 (-782 *3)) (|:| |coef1| (-782 *3)))) (-5 *1 (-782 *3)) (-4 *3 (-558)) (-4 *3 (-1049)))) (-4092 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2164 (-782 *3)) (|:| |coef2| (-782 *3)))) (-5 *1 (-782 *3)) (-4 *3 (-558)) (-4 *3 (-1049)))) (-3354 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2610 *3) (|:| |coef1| (-782 *3)) (|:| |coef2| (-782 *3)))) (-5 *1 (-782 *3)) (-4 *3 (-558)) (-4 *3 (-1049)))) (-2625 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2610 *3) (|:| |coef1| (-782 *3)))) (-5 *1 (-782 *3)) (-4 *3 (-558)) (-4 *3 (-1049)))) (-3591 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2610 *3) (|:| |coef2| (-782 *3)))) (-5 *1 (-782 *3)) (-4 *3 (-558)) (-4 *3 (-1049))))) +(-13 (-1240 |#1|) (-613 (-1171 |#1|)) (-1038 (-1171 |#1|)) (-10 -8 (-15 -3252 ($ $ (-771) |#1| $)) (-15 -1492 ($ $ $)) (-15 -1903 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1956 (-771))) $ $)) (-15 -3080 ($ $ $)) (-15 -1980 ((-2 (|:| -2397 |#1|) (|:| |gap| (-771)) (|:| -2631 $) (|:| -3264 $)) $ $)) (-15 -4139 ($ $ $)) (IF (|has| |#1| (-558)) (PROGN (-15 -1400 ((-644 $) $ $)) (-15 -3940 ($ $ $)) (-15 -3188 ((-2 (|:| -2164 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3220 ((-2 (|:| -2164 $) (|:| |coef1| $)) $ $)) (-15 -4092 ((-2 (|:| -2164 $) (|:| |coef2| $)) $ $)) (-15 -3354 ((-2 (|:| -2610 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2625 ((-2 (|:| -2610 |#1|) (|:| |coef1| $)) $ $)) (-15 -3591 ((-2 (|:| -2610 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) +((-4260 ((|#1| (-771) |#1|) 33 (|has| |#1| (-38 (-409 (-566)))))) (-1394 ((|#1| (-771) |#1|) 23)) (-4040 ((|#1| (-771) |#1|) 35 (|has| |#1| (-38 (-409 (-566))))))) +(((-783 |#1|) (-10 -7 (-15 -1394 (|#1| (-771) |#1|)) (IF (|has| |#1| (-38 (-409 (-566)))) (PROGN (-15 -4040 (|#1| (-771) |#1|)) (-15 -4260 (|#1| (-771) |#1|))) |%noBranch|)) (-172)) (T -783)) +((-4260 (*1 *2 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-783 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-172)))) (-4040 (*1 *2 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-783 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-172)))) (-1394 (*1 *2 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-783 *2)) (-4 *2 (-172))))) +(-10 -7 (-15 -1394 (|#1| (-771) |#1|)) (IF (|has| |#1| (-38 (-409 (-566)))) (PROGN (-15 -4040 (|#1| (-771) |#1|)) (-15 -4260 (|#1| (-771) |#1|))) |%noBranch|)) +((-2988 (((-112) $ $) 7)) (-2107 (((-644 (-2 (|:| -1685 $) (|:| -3292 (-644 |#4|)))) (-644 |#4|)) 86)) (-2779 (((-644 $) (-644 |#4|)) 87) (((-644 $) (-644 |#4|) (-112)) 112)) (-1771 (((-644 |#3|) $) 34)) (-3071 (((-112) $) 27)) (-3274 (((-112) $) 18 (|has| |#1| (-558)))) (-2267 (((-112) |#4| $) 102) (((-112) $) 98)) (-1411 ((|#4| |#4| $) 93)) (-1378 (((-644 (-2 (|:| |val| |#4|) (|:| -1470 $))) |#4| $) 127)) (-2671 (((-2 (|:| |under| $) (|:| -3143 $) (|:| |upper| $)) $ |#3|) 28)) (-1504 (((-112) $ (-771)) 45)) (-3678 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4414))) (((-3 |#4| "failed") $ |#3|) 80)) (-2463 (($) 46 T CONST)) (-3036 (((-112) $) 23 (|has| |#1| (-558)))) (-1963 (((-112) $ $) 25 (|has| |#1| (-558)))) (-2983 (((-112) $ $) 24 (|has| |#1| (-558)))) (-1477 (((-112) $) 26 (|has| |#1| (-558)))) (-3930 (((-644 |#4|) (-644 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1789 (((-644 |#4|) (-644 |#4|) $) 19 (|has| |#1| (-558)))) (-2228 (((-644 |#4|) (-644 |#4|) $) 20 (|has| |#1| (-558)))) (-2229 (((-3 $ "failed") (-644 |#4|)) 37)) (-4158 (($ (-644 |#4|)) 36)) (-3919 (((-3 $ "failed") $) 83)) (-3110 ((|#4| |#4| $) 90)) (-3942 (($ $) 69 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414))))) (-2622 (($ |#4| $) 68 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4414)))) (-3264 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-558)))) (-3599 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-2690 ((|#4| |#4| $) 88)) (-2873 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4414))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4414))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-3476 (((-2 (|:| -1685 (-644 |#4|)) (|:| -3292 (-644 |#4|))) $) 106)) (-2969 (((-112) |#4| $) 137)) (-1951 (((-112) |#4| $) 134)) (-2775 (((-112) |#4| $) 138) (((-112) $) 135)) (-1683 (((-644 |#4|) $) 53 (|has| $ (-6 -4414)))) (-1640 (((-112) |#4| $) 105) (((-112) $) 104)) (-4296 ((|#3| $) 35)) (-3456 (((-112) $ (-771)) 44)) (-3491 (((-644 |#4|) $) 54 (|has| $ (-6 -4414)))) (-1602 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414))))) (-3885 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#4| |#4|) $) 48)) (-1785 (((-644 |#3|) $) 33)) (-1579 (((-112) |#3| $) 32)) (-3267 (((-112) $ (-771)) 43)) (-3380 (((-1157) $) 10)) (-3006 (((-3 |#4| (-644 $)) |#4| |#4| $) 129)) (-3940 (((-644 (-2 (|:| |val| |#4|) (|:| -1470 $))) |#4| |#4| $) 128)) (-2641 (((-3 |#4| "failed") $) 84)) (-2568 (((-644 $) |#4| $) 130)) (-1493 (((-3 (-112) (-644 $)) |#4| $) 133)) (-3835 (((-644 (-2 (|:| |val| (-112)) (|:| -1470 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-1997 (((-644 $) |#4| $) 126) (((-644 $) (-644 |#4|) $) 125) (((-644 $) (-644 |#4|) (-644 $)) 124) (((-644 $) |#4| (-644 $)) 123)) (-2921 (($ |#4| $) 118) (($ (-644 |#4|) $) 117)) (-2133 (((-644 |#4|) $) 108)) (-2543 (((-112) |#4| $) 100) (((-112) $) 96)) (-1906 ((|#4| |#4| $) 91)) (-3077 (((-112) $ $) 111)) (-2594 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-558)))) (-3374 (((-112) |#4| $) 101) (((-112) $) 97)) (-4074 ((|#4| |#4| $) 92)) (-4072 (((-1119) $) 11)) (-3908 (((-3 |#4| "failed") $) 85)) (-3668 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2718 (((-3 $ "failed") $ |#4|) 79)) (-3369 (($ $ |#4|) 78) (((-644 $) |#4| $) 116) (((-644 $) |#4| (-644 $)) 115) (((-644 $) (-644 |#4|) $) 114) (((-644 $) (-644 |#4|) (-644 $)) 113)) (-2823 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 |#4|) (-644 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-644 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))) (-3814 (((-112) $ $) 39)) (-2872 (((-112) $) 42)) (-3493 (($) 41)) (-3902 (((-771) $) 107)) (-4083 (((-771) |#4| $) 55 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414)))) (((-771) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4414)))) (-1480 (($ $) 40)) (-2376 (((-538) $) 70 (|has| |#4| (-614 (-538))))) (-1340 (($ (-644 |#4|)) 61)) (-4305 (($ $ |#3|) 29)) (-1702 (($ $ |#3|) 31)) (-4017 (($ $) 89)) (-3809 (($ $ |#3|) 30)) (-3152 (((-862) $) 12) (((-644 |#4|) $) 38)) (-3909 (((-771) $) 77 (|has| |#3| (-370)))) (-3044 (((-112) $ $) 9)) (-2236 (((-3 (-2 (|:| |bas| $) (|:| -3712 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3712 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3622 (((-112) $ (-1 (-112) |#4| (-644 |#4|))) 99)) (-3998 (((-644 $) |#4| $) 122) (((-644 $) |#4| (-644 $)) 121) (((-644 $) (-644 |#4|) $) 120) (((-644 $) (-644 |#4|) (-644 $)) 119)) (-2210 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4414)))) (-4382 (((-644 |#3|) $) 82)) (-2676 (((-112) |#4| $) 136)) (-4217 (((-112) |#3| $) 81)) (-2914 (((-112) $ $) 6)) (-3000 (((-771) $) 47 (|has| $ (-6 -4414))))) (((-784 |#1| |#2| |#3| |#4|) (-140) (-454) (-793) (-850) (-1064 |t#1| |t#2| |t#3|)) (T -784)) NIL (-13 (-1070 |t#1| |t#2| |t#3| |t#4|)) (((-34) . T) ((-102) . T) ((-613 (-644 |#4|)) . T) ((-613 (-862)) . T) ((-151 |#4|) . T) ((-614 (-538)) |has| |#4| (-614 (-538))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))) ((-491 |#4|) . T) ((-516 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))) ((-976 |#1| |#2| |#3| |#4|) . T) ((-1070 |#1| |#2| |#3| |#4|) . T) ((-1099) . T) ((-1207 |#1| |#2| |#3| |#4|) . T) ((-1214) . T)) -((-3442 (((-3 (-381) "failed") (-317 |#1|) (-921)) 62 (-12 (|has| |#1| (-558)) (|has| |#1| (-850)))) (((-3 (-381) "failed") (-317 |#1|)) 54 (-12 (|has| |#1| (-558)) (|has| |#1| (-850)))) (((-3 (-381) "failed") (-409 (-952 |#1|)) (-921)) 41 (|has| |#1| (-558))) (((-3 (-381) "failed") (-409 (-952 |#1|))) 40 (|has| |#1| (-558))) (((-3 (-381) "failed") (-952 |#1|) (-921)) 31 (|has| |#1| (-1049))) (((-3 (-381) "failed") (-952 |#1|)) 30 (|has| |#1| (-1049)))) (-1442 (((-381) (-317 |#1|) (-921)) 99 (-12 (|has| |#1| (-558)) (|has| |#1| (-850)))) (((-381) (-317 |#1|)) 94 (-12 (|has| |#1| (-558)) (|has| |#1| (-850)))) (((-381) (-409 (-952 |#1|)) (-921)) 91 (|has| |#1| (-558))) (((-381) (-409 (-952 |#1|))) 90 (|has| |#1| (-558))) (((-381) (-952 |#1|) (-921)) 86 (|has| |#1| (-1049))) (((-381) (-952 |#1|)) 85 (|has| |#1| (-1049))) (((-381) |#1| (-921)) 76) (((-381) |#1|) 22)) (-1766 (((-3 (-169 (-381)) "failed") (-317 (-169 |#1|)) (-921)) 71 (-12 (|has| |#1| (-558)) (|has| |#1| (-850)))) (((-3 (-169 (-381)) "failed") (-317 (-169 |#1|))) 70 (-12 (|has| |#1| (-558)) (|has| |#1| (-850)))) (((-3 (-169 (-381)) "failed") (-317 |#1|) (-921)) 63 (-12 (|has| |#1| (-558)) (|has| |#1| (-850)))) (((-3 (-169 (-381)) "failed") (-317 |#1|)) 61 (-12 (|has| |#1| (-558)) (|has| |#1| (-850)))) (((-3 (-169 (-381)) "failed") (-409 (-952 (-169 |#1|))) (-921)) 46 (|has| |#1| (-558))) (((-3 (-169 (-381)) "failed") (-409 (-952 (-169 |#1|)))) 45 (|has| |#1| (-558))) (((-3 (-169 (-381)) "failed") (-409 (-952 |#1|)) (-921)) 39 (|has| |#1| (-558))) (((-3 (-169 (-381)) "failed") (-409 (-952 |#1|))) 38 (|has| |#1| (-558))) (((-3 (-169 (-381)) "failed") (-952 |#1|) (-921)) 28 (|has| |#1| (-1049))) (((-3 (-169 (-381)) "failed") (-952 |#1|)) 26 (|has| |#1| (-1049))) (((-3 (-169 (-381)) "failed") (-952 (-169 |#1|)) (-921)) 18 (|has| |#1| (-172))) (((-3 (-169 (-381)) "failed") (-952 (-169 |#1|))) 15 (|has| |#1| (-172)))) (-3625 (((-169 (-381)) (-317 (-169 |#1|)) (-921)) 102 (-12 (|has| |#1| (-558)) (|has| |#1| (-850)))) (((-169 (-381)) (-317 (-169 |#1|))) 101 (-12 (|has| |#1| (-558)) (|has| |#1| (-850)))) (((-169 (-381)) (-317 |#1|) (-921)) 100 (-12 (|has| |#1| (-558)) (|has| |#1| (-850)))) (((-169 (-381)) (-317 |#1|)) 98 (-12 (|has| |#1| (-558)) (|has| |#1| (-850)))) (((-169 (-381)) (-409 (-952 (-169 |#1|))) (-921)) 93 (|has| |#1| (-558))) (((-169 (-381)) (-409 (-952 (-169 |#1|)))) 92 (|has| |#1| (-558))) (((-169 (-381)) (-409 (-952 |#1|)) (-921)) 89 (|has| |#1| (-558))) (((-169 (-381)) (-409 (-952 |#1|))) 88 (|has| |#1| (-558))) (((-169 (-381)) (-952 |#1|) (-921)) 84 (|has| |#1| (-1049))) (((-169 (-381)) (-952 |#1|)) 83 (|has| |#1| (-1049))) (((-169 (-381)) (-952 (-169 |#1|)) (-921)) 78 (|has| |#1| (-172))) (((-169 (-381)) (-952 (-169 |#1|))) 77 (|has| |#1| (-172))) (((-169 (-381)) (-169 |#1|) (-921)) 80 (|has| |#1| (-172))) (((-169 (-381)) (-169 |#1|)) 79 (|has| |#1| (-172))) (((-169 (-381)) |#1| (-921)) 27) (((-169 (-381)) |#1|) 25))) -(((-785 |#1|) (-10 -7 (-15 -1442 ((-381) |#1|)) (-15 -1442 ((-381) |#1| (-921))) (-15 -3625 ((-169 (-381)) |#1|)) (-15 -3625 ((-169 (-381)) |#1| (-921))) (IF (|has| |#1| (-172)) (PROGN (-15 -3625 ((-169 (-381)) (-169 |#1|))) (-15 -3625 ((-169 (-381)) (-169 |#1|) (-921))) (-15 -3625 ((-169 (-381)) (-952 (-169 |#1|)))) (-15 -3625 ((-169 (-381)) (-952 (-169 |#1|)) (-921)))) |%noBranch|) (IF (|has| |#1| (-1049)) (PROGN (-15 -1442 ((-381) (-952 |#1|))) (-15 -1442 ((-381) (-952 |#1|) (-921))) (-15 -3625 ((-169 (-381)) (-952 |#1|))) (-15 -3625 ((-169 (-381)) (-952 |#1|) (-921)))) |%noBranch|) (IF (|has| |#1| (-558)) (PROGN (-15 -1442 ((-381) (-409 (-952 |#1|)))) (-15 -1442 ((-381) (-409 (-952 |#1|)) (-921))) (-15 -3625 ((-169 (-381)) (-409 (-952 |#1|)))) (-15 -3625 ((-169 (-381)) (-409 (-952 |#1|)) (-921))) (-15 -3625 ((-169 (-381)) (-409 (-952 (-169 |#1|))))) (-15 -3625 ((-169 (-381)) (-409 (-952 (-169 |#1|))) (-921))) (IF (|has| |#1| (-850)) (PROGN (-15 -1442 ((-381) (-317 |#1|))) (-15 -1442 ((-381) (-317 |#1|) (-921))) (-15 -3625 ((-169 (-381)) (-317 |#1|))) (-15 -3625 ((-169 (-381)) (-317 |#1|) (-921))) (-15 -3625 ((-169 (-381)) (-317 (-169 |#1|)))) (-15 -3625 ((-169 (-381)) (-317 (-169 |#1|)) (-921)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-15 -1766 ((-3 (-169 (-381)) "failed") (-952 (-169 |#1|)))) (-15 -1766 ((-3 (-169 (-381)) "failed") (-952 (-169 |#1|)) (-921)))) |%noBranch|) (IF (|has| |#1| (-1049)) (PROGN (-15 -3442 ((-3 (-381) "failed") (-952 |#1|))) (-15 -3442 ((-3 (-381) "failed") (-952 |#1|) (-921))) (-15 -1766 ((-3 (-169 (-381)) "failed") (-952 |#1|))) (-15 -1766 ((-3 (-169 (-381)) "failed") (-952 |#1|) (-921)))) |%noBranch|) (IF (|has| |#1| (-558)) (PROGN (-15 -3442 ((-3 (-381) "failed") (-409 (-952 |#1|)))) (-15 -3442 ((-3 (-381) "failed") (-409 (-952 |#1|)) (-921))) (-15 -1766 ((-3 (-169 (-381)) "failed") (-409 (-952 |#1|)))) (-15 -1766 ((-3 (-169 (-381)) "failed") (-409 (-952 |#1|)) (-921))) (-15 -1766 ((-3 (-169 (-381)) "failed") (-409 (-952 (-169 |#1|))))) (-15 -1766 ((-3 (-169 (-381)) "failed") (-409 (-952 (-169 |#1|))) (-921))) (IF (|has| |#1| (-850)) (PROGN (-15 -3442 ((-3 (-381) "failed") (-317 |#1|))) (-15 -3442 ((-3 (-381) "failed") (-317 |#1|) (-921))) (-15 -1766 ((-3 (-169 (-381)) "failed") (-317 |#1|))) (-15 -1766 ((-3 (-169 (-381)) "failed") (-317 |#1|) (-921))) (-15 -1766 ((-3 (-169 (-381)) "failed") (-317 (-169 |#1|)))) (-15 -1766 ((-3 (-169 (-381)) "failed") (-317 (-169 |#1|)) (-921)))) |%noBranch|)) |%noBranch|)) (-614 (-381))) (T -785)) -((-1766 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-317 (-169 *5))) (-5 *4 (-921)) (-4 *5 (-558)) (-4 *5 (-850)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) (-1766 (*1 *2 *3) (|partial| -12 (-5 *3 (-317 (-169 *4))) (-4 *4 (-558)) (-4 *4 (-850)) (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) (-1766 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-317 *5)) (-5 *4 (-921)) (-4 *5 (-558)) (-4 *5 (-850)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) (-1766 (*1 *2 *3) (|partial| -12 (-5 *3 (-317 *4)) (-4 *4 (-558)) (-4 *4 (-850)) (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) (-3442 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-317 *5)) (-5 *4 (-921)) (-4 *5 (-558)) (-4 *5 (-850)) (-4 *5 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *5)))) (-3442 (*1 *2 *3) (|partial| -12 (-5 *3 (-317 *4)) (-4 *4 (-558)) (-4 *4 (-850)) (-4 *4 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *4)))) (-1766 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-409 (-952 (-169 *5)))) (-5 *4 (-921)) (-4 *5 (-558)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) (-1766 (*1 *2 *3) (|partial| -12 (-5 *3 (-409 (-952 (-169 *4)))) (-4 *4 (-558)) (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) (-1766 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-921)) (-4 *5 (-558)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) (-1766 (*1 *2 *3) (|partial| -12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-558)) (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) (-3442 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-921)) (-4 *5 (-558)) (-4 *5 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *5)))) (-3442 (*1 *2 *3) (|partial| -12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-558)) (-4 *4 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *4)))) (-1766 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-952 *5)) (-5 *4 (-921)) (-4 *5 (-1049)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) (-1766 (*1 *2 *3) (|partial| -12 (-5 *3 (-952 *4)) (-4 *4 (-1049)) (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) (-3442 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-952 *5)) (-5 *4 (-921)) (-4 *5 (-1049)) (-4 *5 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *5)))) (-3442 (*1 *2 *3) (|partial| -12 (-5 *3 (-952 *4)) (-4 *4 (-1049)) (-4 *4 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *4)))) (-1766 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-952 (-169 *5))) (-5 *4 (-921)) (-4 *5 (-172)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) (-1766 (*1 *2 *3) (|partial| -12 (-5 *3 (-952 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) (-3625 (*1 *2 *3 *4) (-12 (-5 *3 (-317 (-169 *5))) (-5 *4 (-921)) (-4 *5 (-558)) (-4 *5 (-850)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) (-3625 (*1 *2 *3) (-12 (-5 *3 (-317 (-169 *4))) (-4 *4 (-558)) (-4 *4 (-850)) (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) (-3625 (*1 *2 *3 *4) (-12 (-5 *3 (-317 *5)) (-5 *4 (-921)) (-4 *5 (-558)) (-4 *5 (-850)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) (-3625 (*1 *2 *3) (-12 (-5 *3 (-317 *4)) (-4 *4 (-558)) (-4 *4 (-850)) (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) (-1442 (*1 *2 *3 *4) (-12 (-5 *3 (-317 *5)) (-5 *4 (-921)) (-4 *5 (-558)) (-4 *5 (-850)) (-4 *5 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *5)))) (-1442 (*1 *2 *3) (-12 (-5 *3 (-317 *4)) (-4 *4 (-558)) (-4 *4 (-850)) (-4 *4 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *4)))) (-3625 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-952 (-169 *5)))) (-5 *4 (-921)) (-4 *5 (-558)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) (-3625 (*1 *2 *3) (-12 (-5 *3 (-409 (-952 (-169 *4)))) (-4 *4 (-558)) (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) (-3625 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-921)) (-4 *5 (-558)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) (-3625 (*1 *2 *3) (-12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-558)) (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) (-1442 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-921)) (-4 *5 (-558)) (-4 *5 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *5)))) (-1442 (*1 *2 *3) (-12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-558)) (-4 *4 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *4)))) (-3625 (*1 *2 *3 *4) (-12 (-5 *3 (-952 *5)) (-5 *4 (-921)) (-4 *5 (-1049)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) (-3625 (*1 *2 *3) (-12 (-5 *3 (-952 *4)) (-4 *4 (-1049)) (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) (-1442 (*1 *2 *3 *4) (-12 (-5 *3 (-952 *5)) (-5 *4 (-921)) (-4 *5 (-1049)) (-4 *5 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *5)))) (-1442 (*1 *2 *3) (-12 (-5 *3 (-952 *4)) (-4 *4 (-1049)) (-4 *4 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *4)))) (-3625 (*1 *2 *3 *4) (-12 (-5 *3 (-952 (-169 *5))) (-5 *4 (-921)) (-4 *5 (-172)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) (-3625 (*1 *2 *3) (-12 (-5 *3 (-952 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) (-3625 (*1 *2 *3 *4) (-12 (-5 *3 (-169 *5)) (-5 *4 (-921)) (-4 *5 (-172)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) (-3625 (*1 *2 *3) (-12 (-5 *3 (-169 *4)) (-4 *4 (-172)) (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) (-3625 (*1 *2 *3 *4) (-12 (-5 *4 (-921)) (-5 *2 (-169 (-381))) (-5 *1 (-785 *3)) (-4 *3 (-614 (-381))))) (-3625 (*1 *2 *3) (-12 (-5 *2 (-169 (-381))) (-5 *1 (-785 *3)) (-4 *3 (-614 (-381))))) (-1442 (*1 *2 *3 *4) (-12 (-5 *4 (-921)) (-5 *2 (-381)) (-5 *1 (-785 *3)) (-4 *3 (-614 *2)))) (-1442 (*1 *2 *3) (-12 (-5 *2 (-381)) (-5 *1 (-785 *3)) (-4 *3 (-614 *2))))) -(-10 -7 (-15 -1442 ((-381) |#1|)) (-15 -1442 ((-381) |#1| (-921))) (-15 -3625 ((-169 (-381)) |#1|)) (-15 -3625 ((-169 (-381)) |#1| (-921))) (IF (|has| |#1| (-172)) (PROGN (-15 -3625 ((-169 (-381)) (-169 |#1|))) (-15 -3625 ((-169 (-381)) (-169 |#1|) (-921))) (-15 -3625 ((-169 (-381)) (-952 (-169 |#1|)))) (-15 -3625 ((-169 (-381)) (-952 (-169 |#1|)) (-921)))) |%noBranch|) (IF (|has| |#1| (-1049)) (PROGN (-15 -1442 ((-381) (-952 |#1|))) (-15 -1442 ((-381) (-952 |#1|) (-921))) (-15 -3625 ((-169 (-381)) (-952 |#1|))) (-15 -3625 ((-169 (-381)) (-952 |#1|) (-921)))) |%noBranch|) (IF (|has| |#1| (-558)) (PROGN (-15 -1442 ((-381) (-409 (-952 |#1|)))) (-15 -1442 ((-381) (-409 (-952 |#1|)) (-921))) (-15 -3625 ((-169 (-381)) (-409 (-952 |#1|)))) (-15 -3625 ((-169 (-381)) (-409 (-952 |#1|)) (-921))) (-15 -3625 ((-169 (-381)) (-409 (-952 (-169 |#1|))))) (-15 -3625 ((-169 (-381)) (-409 (-952 (-169 |#1|))) (-921))) (IF (|has| |#1| (-850)) (PROGN (-15 -1442 ((-381) (-317 |#1|))) (-15 -1442 ((-381) (-317 |#1|) (-921))) (-15 -3625 ((-169 (-381)) (-317 |#1|))) (-15 -3625 ((-169 (-381)) (-317 |#1|) (-921))) (-15 -3625 ((-169 (-381)) (-317 (-169 |#1|)))) (-15 -3625 ((-169 (-381)) (-317 (-169 |#1|)) (-921)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-15 -1766 ((-3 (-169 (-381)) "failed") (-952 (-169 |#1|)))) (-15 -1766 ((-3 (-169 (-381)) "failed") (-952 (-169 |#1|)) (-921)))) |%noBranch|) (IF (|has| |#1| (-1049)) (PROGN (-15 -3442 ((-3 (-381) "failed") (-952 |#1|))) (-15 -3442 ((-3 (-381) "failed") (-952 |#1|) (-921))) (-15 -1766 ((-3 (-169 (-381)) "failed") (-952 |#1|))) (-15 -1766 ((-3 (-169 (-381)) "failed") (-952 |#1|) (-921)))) |%noBranch|) (IF (|has| |#1| (-558)) (PROGN (-15 -3442 ((-3 (-381) "failed") (-409 (-952 |#1|)))) (-15 -3442 ((-3 (-381) "failed") (-409 (-952 |#1|)) (-921))) (-15 -1766 ((-3 (-169 (-381)) "failed") (-409 (-952 |#1|)))) (-15 -1766 ((-3 (-169 (-381)) "failed") (-409 (-952 |#1|)) (-921))) (-15 -1766 ((-3 (-169 (-381)) "failed") (-409 (-952 (-169 |#1|))))) (-15 -1766 ((-3 (-169 (-381)) "failed") (-409 (-952 (-169 |#1|))) (-921))) (IF (|has| |#1| (-850)) (PROGN (-15 -3442 ((-3 (-381) "failed") (-317 |#1|))) (-15 -3442 ((-3 (-381) "failed") (-317 |#1|) (-921))) (-15 -1766 ((-3 (-169 (-381)) "failed") (-317 |#1|))) (-15 -1766 ((-3 (-169 (-381)) "failed") (-317 |#1|) (-921))) (-15 -1766 ((-3 (-169 (-381)) "failed") (-317 (-169 |#1|)))) (-15 -1766 ((-3 (-169 (-381)) "failed") (-317 (-169 |#1|)) (-921)))) |%noBranch|)) |%noBranch|)) -((-3609 (((-921) (-1157)) 92)) (-3205 (((-3 (-381) "failed") (-1157)) 36)) (-1903 (((-381) (-1157)) 34)) (-2802 (((-921) (-1157)) 63)) (-3476 (((-1157) (-921)) 75)) (-1473 (((-1157) (-921)) 62))) -(((-786) (-10 -7 (-15 -1473 ((-1157) (-921))) (-15 -2802 ((-921) (-1157))) (-15 -3476 ((-1157) (-921))) (-15 -3609 ((-921) (-1157))) (-15 -1903 ((-381) (-1157))) (-15 -3205 ((-3 (-381) "failed") (-1157))))) (T -786)) -((-3205 (*1 *2 *3) (|partial| -12 (-5 *3 (-1157)) (-5 *2 (-381)) (-5 *1 (-786)))) (-1903 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-381)) (-5 *1 (-786)))) (-3609 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-921)) (-5 *1 (-786)))) (-3476 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1157)) (-5 *1 (-786)))) (-2802 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-921)) (-5 *1 (-786)))) (-1473 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1157)) (-5 *1 (-786))))) -(-10 -7 (-15 -1473 ((-1157) (-921))) (-15 -2802 ((-921) (-1157))) (-15 -3476 ((-1157) (-921))) (-15 -3609 ((-921) (-1157))) (-15 -1903 ((-381) (-1157))) (-15 -3205 ((-3 (-381) "failed") (-1157)))) -((-3007 (((-112) $ $) 7)) (-1936 (((-1035) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) 16) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -2446 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) 14)) (-1338 (((-2 (|:| -1338 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 17) (((-2 (|:| -1338 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -2446 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 15)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3783 (((-862) $) 12)) (-3117 (((-112) $ $) 9)) (-2947 (((-112) $ $) 6))) +((-4190 (((-3 (-381) "failed") (-317 |#1|) (-921)) 62 (-12 (|has| |#1| (-558)) (|has| |#1| (-850)))) (((-3 (-381) "failed") (-317 |#1|)) 54 (-12 (|has| |#1| (-558)) (|has| |#1| (-850)))) (((-3 (-381) "failed") (-409 (-952 |#1|)) (-921)) 41 (|has| |#1| (-558))) (((-3 (-381) "failed") (-409 (-952 |#1|))) 40 (|has| |#1| (-558))) (((-3 (-381) "failed") (-952 |#1|) (-921)) 31 (|has| |#1| (-1049))) (((-3 (-381) "failed") (-952 |#1|)) 30 (|has| |#1| (-1049)))) (-2189 (((-381) (-317 |#1|) (-921)) 99 (-12 (|has| |#1| (-558)) (|has| |#1| (-850)))) (((-381) (-317 |#1|)) 94 (-12 (|has| |#1| (-558)) (|has| |#1| (-850)))) (((-381) (-409 (-952 |#1|)) (-921)) 91 (|has| |#1| (-558))) (((-381) (-409 (-952 |#1|))) 90 (|has| |#1| (-558))) (((-381) (-952 |#1|) (-921)) 86 (|has| |#1| (-1049))) (((-381) (-952 |#1|)) 85 (|has| |#1| (-1049))) (((-381) |#1| (-921)) 76) (((-381) |#1|) 22)) (-1886 (((-3 (-169 (-381)) "failed") (-317 (-169 |#1|)) (-921)) 71 (-12 (|has| |#1| (-558)) (|has| |#1| (-850)))) (((-3 (-169 (-381)) "failed") (-317 (-169 |#1|))) 70 (-12 (|has| |#1| (-558)) (|has| |#1| (-850)))) (((-3 (-169 (-381)) "failed") (-317 |#1|) (-921)) 63 (-12 (|has| |#1| (-558)) (|has| |#1| (-850)))) (((-3 (-169 (-381)) "failed") (-317 |#1|)) 61 (-12 (|has| |#1| (-558)) (|has| |#1| (-850)))) (((-3 (-169 (-381)) "failed") (-409 (-952 (-169 |#1|))) (-921)) 46 (|has| |#1| (-558))) (((-3 (-169 (-381)) "failed") (-409 (-952 (-169 |#1|)))) 45 (|has| |#1| (-558))) (((-3 (-169 (-381)) "failed") (-409 (-952 |#1|)) (-921)) 39 (|has| |#1| (-558))) (((-3 (-169 (-381)) "failed") (-409 (-952 |#1|))) 38 (|has| |#1| (-558))) (((-3 (-169 (-381)) "failed") (-952 |#1|) (-921)) 28 (|has| |#1| (-1049))) (((-3 (-169 (-381)) "failed") (-952 |#1|)) 26 (|has| |#1| (-1049))) (((-3 (-169 (-381)) "failed") (-952 (-169 |#1|)) (-921)) 18 (|has| |#1| (-172))) (((-3 (-169 (-381)) "failed") (-952 (-169 |#1|))) 15 (|has| |#1| (-172)))) (-1529 (((-169 (-381)) (-317 (-169 |#1|)) (-921)) 102 (-12 (|has| |#1| (-558)) (|has| |#1| (-850)))) (((-169 (-381)) (-317 (-169 |#1|))) 101 (-12 (|has| |#1| (-558)) (|has| |#1| (-850)))) (((-169 (-381)) (-317 |#1|) (-921)) 100 (-12 (|has| |#1| (-558)) (|has| |#1| (-850)))) (((-169 (-381)) (-317 |#1|)) 98 (-12 (|has| |#1| (-558)) (|has| |#1| (-850)))) (((-169 (-381)) (-409 (-952 (-169 |#1|))) (-921)) 93 (|has| |#1| (-558))) (((-169 (-381)) (-409 (-952 (-169 |#1|)))) 92 (|has| |#1| (-558))) (((-169 (-381)) (-409 (-952 |#1|)) (-921)) 89 (|has| |#1| (-558))) (((-169 (-381)) (-409 (-952 |#1|))) 88 (|has| |#1| (-558))) (((-169 (-381)) (-952 |#1|) (-921)) 84 (|has| |#1| (-1049))) (((-169 (-381)) (-952 |#1|)) 83 (|has| |#1| (-1049))) (((-169 (-381)) (-952 (-169 |#1|)) (-921)) 78 (|has| |#1| (-172))) (((-169 (-381)) (-952 (-169 |#1|))) 77 (|has| |#1| (-172))) (((-169 (-381)) (-169 |#1|) (-921)) 80 (|has| |#1| (-172))) (((-169 (-381)) (-169 |#1|)) 79 (|has| |#1| (-172))) (((-169 (-381)) |#1| (-921)) 27) (((-169 (-381)) |#1|) 25))) +(((-785 |#1|) (-10 -7 (-15 -2189 ((-381) |#1|)) (-15 -2189 ((-381) |#1| (-921))) (-15 -1529 ((-169 (-381)) |#1|)) (-15 -1529 ((-169 (-381)) |#1| (-921))) (IF (|has| |#1| (-172)) (PROGN (-15 -1529 ((-169 (-381)) (-169 |#1|))) (-15 -1529 ((-169 (-381)) (-169 |#1|) (-921))) (-15 -1529 ((-169 (-381)) (-952 (-169 |#1|)))) (-15 -1529 ((-169 (-381)) (-952 (-169 |#1|)) (-921)))) |%noBranch|) (IF (|has| |#1| (-1049)) (PROGN (-15 -2189 ((-381) (-952 |#1|))) (-15 -2189 ((-381) (-952 |#1|) (-921))) (-15 -1529 ((-169 (-381)) (-952 |#1|))) (-15 -1529 ((-169 (-381)) (-952 |#1|) (-921)))) |%noBranch|) (IF (|has| |#1| (-558)) (PROGN (-15 -2189 ((-381) (-409 (-952 |#1|)))) (-15 -2189 ((-381) (-409 (-952 |#1|)) (-921))) (-15 -1529 ((-169 (-381)) (-409 (-952 |#1|)))) (-15 -1529 ((-169 (-381)) (-409 (-952 |#1|)) (-921))) (-15 -1529 ((-169 (-381)) (-409 (-952 (-169 |#1|))))) (-15 -1529 ((-169 (-381)) (-409 (-952 (-169 |#1|))) (-921))) (IF (|has| |#1| (-850)) (PROGN (-15 -2189 ((-381) (-317 |#1|))) (-15 -2189 ((-381) (-317 |#1|) (-921))) (-15 -1529 ((-169 (-381)) (-317 |#1|))) (-15 -1529 ((-169 (-381)) (-317 |#1|) (-921))) (-15 -1529 ((-169 (-381)) (-317 (-169 |#1|)))) (-15 -1529 ((-169 (-381)) (-317 (-169 |#1|)) (-921)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-15 -1886 ((-3 (-169 (-381)) "failed") (-952 (-169 |#1|)))) (-15 -1886 ((-3 (-169 (-381)) "failed") (-952 (-169 |#1|)) (-921)))) |%noBranch|) (IF (|has| |#1| (-1049)) (PROGN (-15 -4190 ((-3 (-381) "failed") (-952 |#1|))) (-15 -4190 ((-3 (-381) "failed") (-952 |#1|) (-921))) (-15 -1886 ((-3 (-169 (-381)) "failed") (-952 |#1|))) (-15 -1886 ((-3 (-169 (-381)) "failed") (-952 |#1|) (-921)))) |%noBranch|) (IF (|has| |#1| (-558)) (PROGN (-15 -4190 ((-3 (-381) "failed") (-409 (-952 |#1|)))) (-15 -4190 ((-3 (-381) "failed") (-409 (-952 |#1|)) (-921))) (-15 -1886 ((-3 (-169 (-381)) "failed") (-409 (-952 |#1|)))) (-15 -1886 ((-3 (-169 (-381)) "failed") (-409 (-952 |#1|)) (-921))) (-15 -1886 ((-3 (-169 (-381)) "failed") (-409 (-952 (-169 |#1|))))) (-15 -1886 ((-3 (-169 (-381)) "failed") (-409 (-952 (-169 |#1|))) (-921))) (IF (|has| |#1| (-850)) (PROGN (-15 -4190 ((-3 (-381) "failed") (-317 |#1|))) (-15 -4190 ((-3 (-381) "failed") (-317 |#1|) (-921))) (-15 -1886 ((-3 (-169 (-381)) "failed") (-317 |#1|))) (-15 -1886 ((-3 (-169 (-381)) "failed") (-317 |#1|) (-921))) (-15 -1886 ((-3 (-169 (-381)) "failed") (-317 (-169 |#1|)))) (-15 -1886 ((-3 (-169 (-381)) "failed") (-317 (-169 |#1|)) (-921)))) |%noBranch|)) |%noBranch|)) (-614 (-381))) (T -785)) +((-1886 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-317 (-169 *5))) (-5 *4 (-921)) (-4 *5 (-558)) (-4 *5 (-850)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) (-1886 (*1 *2 *3) (|partial| -12 (-5 *3 (-317 (-169 *4))) (-4 *4 (-558)) (-4 *4 (-850)) (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) (-1886 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-317 *5)) (-5 *4 (-921)) (-4 *5 (-558)) (-4 *5 (-850)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) (-1886 (*1 *2 *3) (|partial| -12 (-5 *3 (-317 *4)) (-4 *4 (-558)) (-4 *4 (-850)) (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) (-4190 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-317 *5)) (-5 *4 (-921)) (-4 *5 (-558)) (-4 *5 (-850)) (-4 *5 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *5)))) (-4190 (*1 *2 *3) (|partial| -12 (-5 *3 (-317 *4)) (-4 *4 (-558)) (-4 *4 (-850)) (-4 *4 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *4)))) (-1886 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-409 (-952 (-169 *5)))) (-5 *4 (-921)) (-4 *5 (-558)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) (-1886 (*1 *2 *3) (|partial| -12 (-5 *3 (-409 (-952 (-169 *4)))) (-4 *4 (-558)) (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) (-1886 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-921)) (-4 *5 (-558)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) (-1886 (*1 *2 *3) (|partial| -12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-558)) (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) (-4190 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-921)) (-4 *5 (-558)) (-4 *5 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *5)))) (-4190 (*1 *2 *3) (|partial| -12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-558)) (-4 *4 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *4)))) (-1886 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-952 *5)) (-5 *4 (-921)) (-4 *5 (-1049)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) (-1886 (*1 *2 *3) (|partial| -12 (-5 *3 (-952 *4)) (-4 *4 (-1049)) (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) (-4190 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-952 *5)) (-5 *4 (-921)) (-4 *5 (-1049)) (-4 *5 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *5)))) (-4190 (*1 *2 *3) (|partial| -12 (-5 *3 (-952 *4)) (-4 *4 (-1049)) (-4 *4 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *4)))) (-1886 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-952 (-169 *5))) (-5 *4 (-921)) (-4 *5 (-172)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) (-1886 (*1 *2 *3) (|partial| -12 (-5 *3 (-952 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) (-1529 (*1 *2 *3 *4) (-12 (-5 *3 (-317 (-169 *5))) (-5 *4 (-921)) (-4 *5 (-558)) (-4 *5 (-850)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) (-1529 (*1 *2 *3) (-12 (-5 *3 (-317 (-169 *4))) (-4 *4 (-558)) (-4 *4 (-850)) (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) (-1529 (*1 *2 *3 *4) (-12 (-5 *3 (-317 *5)) (-5 *4 (-921)) (-4 *5 (-558)) (-4 *5 (-850)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) (-1529 (*1 *2 *3) (-12 (-5 *3 (-317 *4)) (-4 *4 (-558)) (-4 *4 (-850)) (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) (-2189 (*1 *2 *3 *4) (-12 (-5 *3 (-317 *5)) (-5 *4 (-921)) (-4 *5 (-558)) (-4 *5 (-850)) (-4 *5 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *5)))) (-2189 (*1 *2 *3) (-12 (-5 *3 (-317 *4)) (-4 *4 (-558)) (-4 *4 (-850)) (-4 *4 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *4)))) (-1529 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-952 (-169 *5)))) (-5 *4 (-921)) (-4 *5 (-558)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) (-1529 (*1 *2 *3) (-12 (-5 *3 (-409 (-952 (-169 *4)))) (-4 *4 (-558)) (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) (-1529 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-921)) (-4 *5 (-558)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) (-1529 (*1 *2 *3) (-12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-558)) (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) (-2189 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-921)) (-4 *5 (-558)) (-4 *5 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *5)))) (-2189 (*1 *2 *3) (-12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-558)) (-4 *4 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *4)))) (-1529 (*1 *2 *3 *4) (-12 (-5 *3 (-952 *5)) (-5 *4 (-921)) (-4 *5 (-1049)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) (-1529 (*1 *2 *3) (-12 (-5 *3 (-952 *4)) (-4 *4 (-1049)) (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) (-2189 (*1 *2 *3 *4) (-12 (-5 *3 (-952 *5)) (-5 *4 (-921)) (-4 *5 (-1049)) (-4 *5 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *5)))) (-2189 (*1 *2 *3) (-12 (-5 *3 (-952 *4)) (-4 *4 (-1049)) (-4 *4 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *4)))) (-1529 (*1 *2 *3 *4) (-12 (-5 *3 (-952 (-169 *5))) (-5 *4 (-921)) (-4 *5 (-172)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) (-1529 (*1 *2 *3) (-12 (-5 *3 (-952 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) (-1529 (*1 *2 *3 *4) (-12 (-5 *3 (-169 *5)) (-5 *4 (-921)) (-4 *5 (-172)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) (-1529 (*1 *2 *3) (-12 (-5 *3 (-169 *4)) (-4 *4 (-172)) (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) (-1529 (*1 *2 *3 *4) (-12 (-5 *4 (-921)) (-5 *2 (-169 (-381))) (-5 *1 (-785 *3)) (-4 *3 (-614 (-381))))) (-1529 (*1 *2 *3) (-12 (-5 *2 (-169 (-381))) (-5 *1 (-785 *3)) (-4 *3 (-614 (-381))))) (-2189 (*1 *2 *3 *4) (-12 (-5 *4 (-921)) (-5 *2 (-381)) (-5 *1 (-785 *3)) (-4 *3 (-614 *2)))) (-2189 (*1 *2 *3) (-12 (-5 *2 (-381)) (-5 *1 (-785 *3)) (-4 *3 (-614 *2))))) +(-10 -7 (-15 -2189 ((-381) |#1|)) (-15 -2189 ((-381) |#1| (-921))) (-15 -1529 ((-169 (-381)) |#1|)) (-15 -1529 ((-169 (-381)) |#1| (-921))) (IF (|has| |#1| (-172)) (PROGN (-15 -1529 ((-169 (-381)) (-169 |#1|))) (-15 -1529 ((-169 (-381)) (-169 |#1|) (-921))) (-15 -1529 ((-169 (-381)) (-952 (-169 |#1|)))) (-15 -1529 ((-169 (-381)) (-952 (-169 |#1|)) (-921)))) |%noBranch|) (IF (|has| |#1| (-1049)) (PROGN (-15 -2189 ((-381) (-952 |#1|))) (-15 -2189 ((-381) (-952 |#1|) (-921))) (-15 -1529 ((-169 (-381)) (-952 |#1|))) (-15 -1529 ((-169 (-381)) (-952 |#1|) (-921)))) |%noBranch|) (IF (|has| |#1| (-558)) (PROGN (-15 -2189 ((-381) (-409 (-952 |#1|)))) (-15 -2189 ((-381) (-409 (-952 |#1|)) (-921))) (-15 -1529 ((-169 (-381)) (-409 (-952 |#1|)))) (-15 -1529 ((-169 (-381)) (-409 (-952 |#1|)) (-921))) (-15 -1529 ((-169 (-381)) (-409 (-952 (-169 |#1|))))) (-15 -1529 ((-169 (-381)) (-409 (-952 (-169 |#1|))) (-921))) (IF (|has| |#1| (-850)) (PROGN (-15 -2189 ((-381) (-317 |#1|))) (-15 -2189 ((-381) (-317 |#1|) (-921))) (-15 -1529 ((-169 (-381)) (-317 |#1|))) (-15 -1529 ((-169 (-381)) (-317 |#1|) (-921))) (-15 -1529 ((-169 (-381)) (-317 (-169 |#1|)))) (-15 -1529 ((-169 (-381)) (-317 (-169 |#1|)) (-921)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-15 -1886 ((-3 (-169 (-381)) "failed") (-952 (-169 |#1|)))) (-15 -1886 ((-3 (-169 (-381)) "failed") (-952 (-169 |#1|)) (-921)))) |%noBranch|) (IF (|has| |#1| (-1049)) (PROGN (-15 -4190 ((-3 (-381) "failed") (-952 |#1|))) (-15 -4190 ((-3 (-381) "failed") (-952 |#1|) (-921))) (-15 -1886 ((-3 (-169 (-381)) "failed") (-952 |#1|))) (-15 -1886 ((-3 (-169 (-381)) "failed") (-952 |#1|) (-921)))) |%noBranch|) (IF (|has| |#1| (-558)) (PROGN (-15 -4190 ((-3 (-381) "failed") (-409 (-952 |#1|)))) (-15 -4190 ((-3 (-381) "failed") (-409 (-952 |#1|)) (-921))) (-15 -1886 ((-3 (-169 (-381)) "failed") (-409 (-952 |#1|)))) (-15 -1886 ((-3 (-169 (-381)) "failed") (-409 (-952 |#1|)) (-921))) (-15 -1886 ((-3 (-169 (-381)) "failed") (-409 (-952 (-169 |#1|))))) (-15 -1886 ((-3 (-169 (-381)) "failed") (-409 (-952 (-169 |#1|))) (-921))) (IF (|has| |#1| (-850)) (PROGN (-15 -4190 ((-3 (-381) "failed") (-317 |#1|))) (-15 -4190 ((-3 (-381) "failed") (-317 |#1|) (-921))) (-15 -1886 ((-3 (-169 (-381)) "failed") (-317 |#1|))) (-15 -1886 ((-3 (-169 (-381)) "failed") (-317 |#1|) (-921))) (-15 -1886 ((-3 (-169 (-381)) "failed") (-317 (-169 |#1|)))) (-15 -1886 ((-3 (-169 (-381)) "failed") (-317 (-169 |#1|)) (-921)))) |%noBranch|)) |%noBranch|)) +((-2231 (((-921) (-1157)) 92)) (-1546 (((-3 (-381) "failed") (-1157)) 36)) (-1875 (((-381) (-1157)) 34)) (-1840 (((-921) (-1157)) 63)) (-2557 (((-1157) (-921)) 75)) (-3183 (((-1157) (-921)) 62))) +(((-786) (-10 -7 (-15 -3183 ((-1157) (-921))) (-15 -1840 ((-921) (-1157))) (-15 -2557 ((-1157) (-921))) (-15 -2231 ((-921) (-1157))) (-15 -1875 ((-381) (-1157))) (-15 -1546 ((-3 (-381) "failed") (-1157))))) (T -786)) +((-1546 (*1 *2 *3) (|partial| -12 (-5 *3 (-1157)) (-5 *2 (-381)) (-5 *1 (-786)))) (-1875 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-381)) (-5 *1 (-786)))) (-2231 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-921)) (-5 *1 (-786)))) (-2557 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1157)) (-5 *1 (-786)))) (-1840 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-921)) (-5 *1 (-786)))) (-3183 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1157)) (-5 *1 (-786))))) +(-10 -7 (-15 -3183 ((-1157) (-921))) (-15 -1840 ((-921) (-1157))) (-15 -2557 ((-1157) (-921))) (-15 -2231 ((-921) (-1157))) (-15 -1875 ((-381) (-1157))) (-15 -1546 ((-3 (-381) "failed") (-1157)))) +((-2988 (((-112) $ $) 7)) (-4167 (((-1035) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) 16) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -2821 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) 14)) (-2659 (((-2 (|:| -2659 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 17) (((-2 (|:| -2659 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -2821 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 15)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3152 (((-862) $) 12)) (-3044 (((-112) $ $) 9)) (-2914 (((-112) $ $) 6))) (((-787) (-140)) (T -787)) -((-1338 (*1 *2 *3 *4) (-12 (-4 *1 (-787)) (-5 *3 (-1062)) (-5 *4 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -1338 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035)))))) (-1936 (*1 *2 *3 *2) (-12 (-4 *1 (-787)) (-5 *2 (-1035)) (-5 *3 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-1338 (*1 *2 *3 *4) (-12 (-4 *1 (-787)) (-5 *3 (-1062)) (-5 *4 (-2 (|:| |fn| (-317 (-225))) (|:| -2446 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -1338 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035)))))) (-1936 (*1 *2 *3 *2) (-12 (-4 *1 (-787)) (-5 *2 (-1035)) (-5 *3 (-2 (|:| |fn| (-317 (-225))) (|:| -2446 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) -(-13 (-1099) (-10 -7 (-15 -1338 ((-2 (|:| -1338 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1936 ((-1035) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035))) (-15 -1338 ((-2 (|:| -1338 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -2446 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1936 ((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -2446 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035))))) +((-2659 (*1 *2 *3 *4) (-12 (-4 *1 (-787)) (-5 *3 (-1062)) (-5 *4 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -2659 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035)))))) (-4167 (*1 *2 *3 *2) (-12 (-4 *1 (-787)) (-5 *2 (-1035)) (-5 *3 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-2659 (*1 *2 *3 *4) (-12 (-4 *1 (-787)) (-5 *3 (-1062)) (-5 *4 (-2 (|:| |fn| (-317 (-225))) (|:| -2821 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -2659 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035)))))) (-4167 (*1 *2 *3 *2) (-12 (-4 *1 (-787)) (-5 *2 (-1035)) (-5 *3 (-2 (|:| |fn| (-317 (-225))) (|:| -2821 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) +(-13 (-1099) (-10 -7 (-15 -2659 ((-2 (|:| -2659 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4167 ((-1035) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035))) (-15 -2659 ((-2 (|:| -2659 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -2821 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4167 ((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -2821 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035))))) (((-102) . T) ((-613 (-862)) . T) ((-1099) . T)) -((-2986 (((-1269) (-1264 (-381)) (-566) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3859 (-381))) (-381) (-1264 (-381)) (-1 (-1269) (-1264 (-381)) (-1264 (-381)) (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381))) 55) (((-1269) (-1264 (-381)) (-566) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3859 (-381))) (-381) (-1264 (-381)) (-1 (-1269) (-1264 (-381)) (-1264 (-381)) (-381))) 52)) (-3688 (((-1269) (-1264 (-381)) (-566) (-381) (-381) (-566) (-1 (-1269) (-1264 (-381)) (-1264 (-381)) (-381))) 61)) (-1898 (((-1269) (-1264 (-381)) (-566) (-381) (-381) (-381) (-381) (-566) (-1 (-1269) (-1264 (-381)) (-1264 (-381)) (-381))) 50)) (-3917 (((-1269) (-1264 (-381)) (-566) (-381) (-381) (-1 (-1269) (-1264 (-381)) (-1264 (-381)) (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381))) 63) (((-1269) (-1264 (-381)) (-566) (-381) (-381) (-1 (-1269) (-1264 (-381)) (-1264 (-381)) (-381))) 62))) -(((-788) (-10 -7 (-15 -3917 ((-1269) (-1264 (-381)) (-566) (-381) (-381) (-1 (-1269) (-1264 (-381)) (-1264 (-381)) (-381)))) (-15 -3917 ((-1269) (-1264 (-381)) (-566) (-381) (-381) (-1 (-1269) (-1264 (-381)) (-1264 (-381)) (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381)))) (-15 -1898 ((-1269) (-1264 (-381)) (-566) (-381) (-381) (-381) (-381) (-566) (-1 (-1269) (-1264 (-381)) (-1264 (-381)) (-381)))) (-15 -2986 ((-1269) (-1264 (-381)) (-566) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3859 (-381))) (-381) (-1264 (-381)) (-1 (-1269) (-1264 (-381)) (-1264 (-381)) (-381)))) (-15 -2986 ((-1269) (-1264 (-381)) (-566) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3859 (-381))) (-381) (-1264 (-381)) (-1 (-1269) (-1264 (-381)) (-1264 (-381)) (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381)))) (-15 -3688 ((-1269) (-1264 (-381)) (-566) (-381) (-381) (-566) (-1 (-1269) (-1264 (-381)) (-1264 (-381)) (-381)))))) (T -788)) -((-3688 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-566)) (-5 *6 (-1 (-1269) (-1264 *5) (-1264 *5) (-381))) (-5 *3 (-1264 (-381))) (-5 *5 (-381)) (-5 *2 (-1269)) (-5 *1 (-788)))) (-2986 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-566)) (-5 *6 (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3859 (-381)))) (-5 *7 (-1 (-1269) (-1264 *5) (-1264 *5) (-381))) (-5 *3 (-1264 (-381))) (-5 *5 (-381)) (-5 *2 (-1269)) (-5 *1 (-788)))) (-2986 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-566)) (-5 *6 (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3859 (-381)))) (-5 *7 (-1 (-1269) (-1264 *5) (-1264 *5) (-381))) (-5 *3 (-1264 (-381))) (-5 *5 (-381)) (-5 *2 (-1269)) (-5 *1 (-788)))) (-1898 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-566)) (-5 *6 (-1 (-1269) (-1264 *5) (-1264 *5) (-381))) (-5 *3 (-1264 (-381))) (-5 *5 (-381)) (-5 *2 (-1269)) (-5 *1 (-788)))) (-3917 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-566)) (-5 *6 (-1 (-1269) (-1264 *5) (-1264 *5) (-381))) (-5 *3 (-1264 (-381))) (-5 *5 (-381)) (-5 *2 (-1269)) (-5 *1 (-788)))) (-3917 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-566)) (-5 *6 (-1 (-1269) (-1264 *5) (-1264 *5) (-381))) (-5 *3 (-1264 (-381))) (-5 *5 (-381)) (-5 *2 (-1269)) (-5 *1 (-788))))) -(-10 -7 (-15 -3917 ((-1269) (-1264 (-381)) (-566) (-381) (-381) (-1 (-1269) (-1264 (-381)) (-1264 (-381)) (-381)))) (-15 -3917 ((-1269) (-1264 (-381)) (-566) (-381) (-381) (-1 (-1269) (-1264 (-381)) (-1264 (-381)) (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381)))) (-15 -1898 ((-1269) (-1264 (-381)) (-566) (-381) (-381) (-381) (-381) (-566) (-1 (-1269) (-1264 (-381)) (-1264 (-381)) (-381)))) (-15 -2986 ((-1269) (-1264 (-381)) (-566) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3859 (-381))) (-381) (-1264 (-381)) (-1 (-1269) (-1264 (-381)) (-1264 (-381)) (-381)))) (-15 -2986 ((-1269) (-1264 (-381)) (-566) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3859 (-381))) (-381) (-1264 (-381)) (-1 (-1269) (-1264 (-381)) (-1264 (-381)) (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381)))) (-15 -3688 ((-1269) (-1264 (-381)) (-566) (-381) (-381) (-566) (-1 (-1269) (-1264 (-381)) (-1264 (-381)) (-381))))) -((-2059 (((-2 (|:| -2233 (-381)) (|:| -1465 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566)) 66)) (-3818 (((-2 (|:| -2233 (-381)) (|:| -1465 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566)) 42)) (-1326 (((-2 (|:| -2233 (-381)) (|:| -1465 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566)) 65)) (-1940 (((-2 (|:| -2233 (-381)) (|:| -1465 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566)) 40)) (-1782 (((-2 (|:| -2233 (-381)) (|:| -1465 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566)) 64)) (-4192 (((-2 (|:| -2233 (-381)) (|:| -1465 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566)) 26)) (-3398 (((-2 (|:| -2233 (-381)) (|:| -1465 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566) (-566)) 43)) (-4238 (((-2 (|:| -2233 (-381)) (|:| -1465 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566) (-566)) 41)) (-2331 (((-2 (|:| -2233 (-381)) (|:| -1465 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566) (-566)) 39))) -(((-789) (-10 -7 (-15 -2331 ((-2 (|:| -2233 (-381)) (|:| -1465 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566) (-566))) (-15 -4238 ((-2 (|:| -2233 (-381)) (|:| -1465 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566) (-566))) (-15 -3398 ((-2 (|:| -2233 (-381)) (|:| -1465 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566) (-566))) (-15 -4192 ((-2 (|:| -2233 (-381)) (|:| -1465 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566))) (-15 -1940 ((-2 (|:| -2233 (-381)) (|:| -1465 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566))) (-15 -3818 ((-2 (|:| -2233 (-381)) (|:| -1465 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566))) (-15 -1782 ((-2 (|:| -2233 (-381)) (|:| -1465 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566))) (-15 -1326 ((-2 (|:| -2233 (-381)) (|:| -1465 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566))) (-15 -2059 ((-2 (|:| -2233 (-381)) (|:| -1465 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566))))) (T -789)) -((-2059 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2233 *4) (|:| -1465 *4) (|:| |totalpts| (-566)) (|:| |success| (-112)))) (-5 *1 (-789)) (-5 *5 (-566)))) (-1326 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2233 *4) (|:| -1465 *4) (|:| |totalpts| (-566)) (|:| |success| (-112)))) (-5 *1 (-789)) (-5 *5 (-566)))) (-1782 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2233 *4) (|:| -1465 *4) (|:| |totalpts| (-566)) (|:| |success| (-112)))) (-5 *1 (-789)) (-5 *5 (-566)))) (-3818 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2233 *4) (|:| -1465 *4) (|:| |totalpts| (-566)) (|:| |success| (-112)))) (-5 *1 (-789)) (-5 *5 (-566)))) (-1940 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2233 *4) (|:| -1465 *4) (|:| |totalpts| (-566)) (|:| |success| (-112)))) (-5 *1 (-789)) (-5 *5 (-566)))) (-4192 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2233 *4) (|:| -1465 *4) (|:| |totalpts| (-566)) (|:| |success| (-112)))) (-5 *1 (-789)) (-5 *5 (-566)))) (-3398 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2233 *4) (|:| -1465 *4) (|:| |totalpts| (-566)) (|:| |success| (-112)))) (-5 *1 (-789)) (-5 *5 (-566)))) (-4238 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2233 *4) (|:| -1465 *4) (|:| |totalpts| (-566)) (|:| |success| (-112)))) (-5 *1 (-789)) (-5 *5 (-566)))) (-2331 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2233 *4) (|:| -1465 *4) (|:| |totalpts| (-566)) (|:| |success| (-112)))) (-5 *1 (-789)) (-5 *5 (-566))))) -(-10 -7 (-15 -2331 ((-2 (|:| -2233 (-381)) (|:| -1465 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566) (-566))) (-15 -4238 ((-2 (|:| -2233 (-381)) (|:| -1465 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566) (-566))) (-15 -3398 ((-2 (|:| -2233 (-381)) (|:| -1465 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566) (-566))) (-15 -4192 ((-2 (|:| -2233 (-381)) (|:| -1465 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566))) (-15 -1940 ((-2 (|:| -2233 (-381)) (|:| -1465 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566))) (-15 -3818 ((-2 (|:| -2233 (-381)) (|:| -1465 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566))) (-15 -1782 ((-2 (|:| -2233 (-381)) (|:| -1465 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566))) (-15 -1326 ((-2 (|:| -2233 (-381)) (|:| -1465 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566))) (-15 -2059 ((-2 (|:| -2233 (-381)) (|:| -1465 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566)))) -((-2380 (((-1209 |#1|) |#1| (-225) (-566)) 69))) -(((-790 |#1|) (-10 -7 (-15 -2380 ((-1209 |#1|) |#1| (-225) (-566)))) (-974)) (T -790)) -((-2380 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-225)) (-5 *5 (-566)) (-5 *2 (-1209 *3)) (-5 *1 (-790 *3)) (-4 *3 (-974))))) -(-10 -7 (-15 -2380 ((-1209 |#1|) |#1| (-225) (-566)))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 25)) (-4175 (((-3 $ "failed") $ $) 27)) (-3012 (($) 24 T CONST)) (-2097 (($ $ $) 14)) (-3962 (($ $ $) 15)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3783 (((-862) $) 12)) (-3117 (((-112) $ $) 9)) (-2479 (($) 23 T CONST)) (-3009 (((-112) $ $) 17)) (-2984 (((-112) $ $) 18)) (-2947 (((-112) $ $) 6)) (-2995 (((-112) $ $) 16)) (-2969 (((-112) $ $) 19)) (-3053 (($ $ $) 31) (($ $) 30)) (-3041 (($ $ $) 21)) (* (($ (-921) $) 22) (($ (-771) $) 26) (($ (-566) $) 29))) +((-4209 (((-1269) (-1264 (-381)) (-566) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3655 (-381))) (-381) (-1264 (-381)) (-1 (-1269) (-1264 (-381)) (-1264 (-381)) (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381))) 55) (((-1269) (-1264 (-381)) (-566) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3655 (-381))) (-381) (-1264 (-381)) (-1 (-1269) (-1264 (-381)) (-1264 (-381)) (-381))) 52)) (-1306 (((-1269) (-1264 (-381)) (-566) (-381) (-381) (-566) (-1 (-1269) (-1264 (-381)) (-1264 (-381)) (-381))) 61)) (-2606 (((-1269) (-1264 (-381)) (-566) (-381) (-381) (-381) (-381) (-566) (-1 (-1269) (-1264 (-381)) (-1264 (-381)) (-381))) 50)) (-1354 (((-1269) (-1264 (-381)) (-566) (-381) (-381) (-1 (-1269) (-1264 (-381)) (-1264 (-381)) (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381))) 63) (((-1269) (-1264 (-381)) (-566) (-381) (-381) (-1 (-1269) (-1264 (-381)) (-1264 (-381)) (-381))) 62))) +(((-788) (-10 -7 (-15 -1354 ((-1269) (-1264 (-381)) (-566) (-381) (-381) (-1 (-1269) (-1264 (-381)) (-1264 (-381)) (-381)))) (-15 -1354 ((-1269) (-1264 (-381)) (-566) (-381) (-381) (-1 (-1269) (-1264 (-381)) (-1264 (-381)) (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381)))) (-15 -2606 ((-1269) (-1264 (-381)) (-566) (-381) (-381) (-381) (-381) (-566) (-1 (-1269) (-1264 (-381)) (-1264 (-381)) (-381)))) (-15 -4209 ((-1269) (-1264 (-381)) (-566) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3655 (-381))) (-381) (-1264 (-381)) (-1 (-1269) (-1264 (-381)) (-1264 (-381)) (-381)))) (-15 -4209 ((-1269) (-1264 (-381)) (-566) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3655 (-381))) (-381) (-1264 (-381)) (-1 (-1269) (-1264 (-381)) (-1264 (-381)) (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381)))) (-15 -1306 ((-1269) (-1264 (-381)) (-566) (-381) (-381) (-566) (-1 (-1269) (-1264 (-381)) (-1264 (-381)) (-381)))))) (T -788)) +((-1306 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-566)) (-5 *6 (-1 (-1269) (-1264 *5) (-1264 *5) (-381))) (-5 *3 (-1264 (-381))) (-5 *5 (-381)) (-5 *2 (-1269)) (-5 *1 (-788)))) (-4209 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-566)) (-5 *6 (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3655 (-381)))) (-5 *7 (-1 (-1269) (-1264 *5) (-1264 *5) (-381))) (-5 *3 (-1264 (-381))) (-5 *5 (-381)) (-5 *2 (-1269)) (-5 *1 (-788)))) (-4209 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-566)) (-5 *6 (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3655 (-381)))) (-5 *7 (-1 (-1269) (-1264 *5) (-1264 *5) (-381))) (-5 *3 (-1264 (-381))) (-5 *5 (-381)) (-5 *2 (-1269)) (-5 *1 (-788)))) (-2606 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-566)) (-5 *6 (-1 (-1269) (-1264 *5) (-1264 *5) (-381))) (-5 *3 (-1264 (-381))) (-5 *5 (-381)) (-5 *2 (-1269)) (-5 *1 (-788)))) (-1354 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-566)) (-5 *6 (-1 (-1269) (-1264 *5) (-1264 *5) (-381))) (-5 *3 (-1264 (-381))) (-5 *5 (-381)) (-5 *2 (-1269)) (-5 *1 (-788)))) (-1354 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-566)) (-5 *6 (-1 (-1269) (-1264 *5) (-1264 *5) (-381))) (-5 *3 (-1264 (-381))) (-5 *5 (-381)) (-5 *2 (-1269)) (-5 *1 (-788))))) +(-10 -7 (-15 -1354 ((-1269) (-1264 (-381)) (-566) (-381) (-381) (-1 (-1269) (-1264 (-381)) (-1264 (-381)) (-381)))) (-15 -1354 ((-1269) (-1264 (-381)) (-566) (-381) (-381) (-1 (-1269) (-1264 (-381)) (-1264 (-381)) (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381)))) (-15 -2606 ((-1269) (-1264 (-381)) (-566) (-381) (-381) (-381) (-381) (-566) (-1 (-1269) (-1264 (-381)) (-1264 (-381)) (-381)))) (-15 -4209 ((-1269) (-1264 (-381)) (-566) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3655 (-381))) (-381) (-1264 (-381)) (-1 (-1269) (-1264 (-381)) (-1264 (-381)) (-381)))) (-15 -4209 ((-1269) (-1264 (-381)) (-566) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3655 (-381))) (-381) (-1264 (-381)) (-1 (-1269) (-1264 (-381)) (-1264 (-381)) (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381)) (-1264 (-381)))) (-15 -1306 ((-1269) (-1264 (-381)) (-566) (-381) (-381) (-566) (-1 (-1269) (-1264 (-381)) (-1264 (-381)) (-381))))) +((-3858 (((-2 (|:| -2876 (-381)) (|:| -1425 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566)) 66)) (-3120 (((-2 (|:| -2876 (-381)) (|:| -1425 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566)) 42)) (-4266 (((-2 (|:| -2876 (-381)) (|:| -1425 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566)) 65)) (-3203 (((-2 (|:| -2876 (-381)) (|:| -1425 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566)) 40)) (-2752 (((-2 (|:| -2876 (-381)) (|:| -1425 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566)) 64)) (-2985 (((-2 (|:| -2876 (-381)) (|:| -1425 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566)) 26)) (-4149 (((-2 (|:| -2876 (-381)) (|:| -1425 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566) (-566)) 43)) (-2971 (((-2 (|:| -2876 (-381)) (|:| -1425 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566) (-566)) 41)) (-2553 (((-2 (|:| -2876 (-381)) (|:| -1425 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566) (-566)) 39))) +(((-789) (-10 -7 (-15 -2553 ((-2 (|:| -2876 (-381)) (|:| -1425 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566) (-566))) (-15 -2971 ((-2 (|:| -2876 (-381)) (|:| -1425 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566) (-566))) (-15 -4149 ((-2 (|:| -2876 (-381)) (|:| -1425 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566) (-566))) (-15 -2985 ((-2 (|:| -2876 (-381)) (|:| -1425 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566))) (-15 -3203 ((-2 (|:| -2876 (-381)) (|:| -1425 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566))) (-15 -3120 ((-2 (|:| -2876 (-381)) (|:| -1425 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566))) (-15 -2752 ((-2 (|:| -2876 (-381)) (|:| -1425 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566))) (-15 -4266 ((-2 (|:| -2876 (-381)) (|:| -1425 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566))) (-15 -3858 ((-2 (|:| -2876 (-381)) (|:| -1425 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566))))) (T -789)) +((-3858 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2876 *4) (|:| -1425 *4) (|:| |totalpts| (-566)) (|:| |success| (-112)))) (-5 *1 (-789)) (-5 *5 (-566)))) (-4266 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2876 *4) (|:| -1425 *4) (|:| |totalpts| (-566)) (|:| |success| (-112)))) (-5 *1 (-789)) (-5 *5 (-566)))) (-2752 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2876 *4) (|:| -1425 *4) (|:| |totalpts| (-566)) (|:| |success| (-112)))) (-5 *1 (-789)) (-5 *5 (-566)))) (-3120 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2876 *4) (|:| -1425 *4) (|:| |totalpts| (-566)) (|:| |success| (-112)))) (-5 *1 (-789)) (-5 *5 (-566)))) (-3203 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2876 *4) (|:| -1425 *4) (|:| |totalpts| (-566)) (|:| |success| (-112)))) (-5 *1 (-789)) (-5 *5 (-566)))) (-2985 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2876 *4) (|:| -1425 *4) (|:| |totalpts| (-566)) (|:| |success| (-112)))) (-5 *1 (-789)) (-5 *5 (-566)))) (-4149 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2876 *4) (|:| -1425 *4) (|:| |totalpts| (-566)) (|:| |success| (-112)))) (-5 *1 (-789)) (-5 *5 (-566)))) (-2971 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2876 *4) (|:| -1425 *4) (|:| |totalpts| (-566)) (|:| |success| (-112)))) (-5 *1 (-789)) (-5 *5 (-566)))) (-2553 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2876 *4) (|:| -1425 *4) (|:| |totalpts| (-566)) (|:| |success| (-112)))) (-5 *1 (-789)) (-5 *5 (-566))))) +(-10 -7 (-15 -2553 ((-2 (|:| -2876 (-381)) (|:| -1425 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566) (-566))) (-15 -2971 ((-2 (|:| -2876 (-381)) (|:| -1425 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566) (-566))) (-15 -4149 ((-2 (|:| -2876 (-381)) (|:| -1425 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566) (-566))) (-15 -2985 ((-2 (|:| -2876 (-381)) (|:| -1425 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566))) (-15 -3203 ((-2 (|:| -2876 (-381)) (|:| -1425 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566))) (-15 -3120 ((-2 (|:| -2876 (-381)) (|:| -1425 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566))) (-15 -2752 ((-2 (|:| -2876 (-381)) (|:| -1425 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566))) (-15 -4266 ((-2 (|:| -2876 (-381)) (|:| -1425 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566))) (-15 -3858 ((-2 (|:| -2876 (-381)) (|:| -1425 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566)))) +((-2772 (((-1209 |#1|) |#1| (-225) (-566)) 69))) +(((-790 |#1|) (-10 -7 (-15 -2772 ((-1209 |#1|) |#1| (-225) (-566)))) (-974)) (T -790)) +((-2772 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-225)) (-5 *5 (-566)) (-5 *2 (-1209 *3)) (-5 *1 (-790 *3)) (-4 *3 (-974))))) +(-10 -7 (-15 -2772 ((-1209 |#1|) |#1| (-225) (-566)))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 25)) (-3967 (((-3 $ "failed") $ $) 27)) (-2463 (($) 24 T CONST)) (-1478 (($ $ $) 14)) (-2599 (($ $ $) 15)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3152 (((-862) $) 12)) (-3044 (((-112) $ $) 9)) (-4356 (($) 23 T CONST)) (-2968 (((-112) $ $) 17)) (-2946 (((-112) $ $) 18)) (-2914 (((-112) $ $) 6)) (-2956 (((-112) $ $) 16)) (-2935 (((-112) $ $) 19)) (-3012 (($ $ $) 31) (($ $) 30)) (-3002 (($ $ $) 21)) (* (($ (-921) $) 22) (($ (-771) $) 26) (($ (-566) $) 29))) (((-791) (-140)) (T -791)) NIL (-13 (-795) (-21)) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-792) . T) ((-794) . T) ((-795) . T) ((-850) . T) ((-1099) . T)) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 25)) (-3012 (($) 24 T CONST)) (-2097 (($ $ $) 14)) (-3962 (($ $ $) 15)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3783 (((-862) $) 12)) (-3117 (((-112) $ $) 9)) (-2479 (($) 23 T CONST)) (-3009 (((-112) $ $) 17)) (-2984 (((-112) $ $) 18)) (-2947 (((-112) $ $) 6)) (-2995 (((-112) $ $) 16)) (-2969 (((-112) $ $) 19)) (-3041 (($ $ $) 21)) (* (($ (-921) $) 22) (($ (-771) $) 26))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 25)) (-2463 (($) 24 T CONST)) (-1478 (($ $ $) 14)) (-2599 (($ $ $) 15)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3152 (((-862) $) 12)) (-3044 (((-112) $ $) 9)) (-4356 (($) 23 T CONST)) (-2968 (((-112) $ $) 17)) (-2946 (((-112) $ $) 18)) (-2914 (((-112) $ $) 6)) (-2956 (((-112) $ $) 16)) (-2935 (((-112) $ $) 19)) (-3002 (($ $ $) 21)) (* (($ (-921) $) 22) (($ (-771) $) 26))) (((-792) (-140)) (T -792)) NIL (-13 (-794) (-23)) (((-23) . T) ((-25) . T) ((-102) . T) ((-613 (-862)) . T) ((-794) . T) ((-850) . T) ((-1099) . T)) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 25)) (-2660 (($ $ $) 28)) (-4175 (((-3 $ "failed") $ $) 27)) (-3012 (($) 24 T CONST)) (-2097 (($ $ $) 14)) (-3962 (($ $ $) 15)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3783 (((-862) $) 12)) (-3117 (((-112) $ $) 9)) (-2479 (($) 23 T CONST)) (-3009 (((-112) $ $) 17)) (-2984 (((-112) $ $) 18)) (-2947 (((-112) $ $) 6)) (-2995 (((-112) $ $) 16)) (-2969 (((-112) $ $) 19)) (-3041 (($ $ $) 21)) (* (($ (-921) $) 22) (($ (-771) $) 26))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 25)) (-3920 (($ $ $) 28)) (-3967 (((-3 $ "failed") $ $) 27)) (-2463 (($) 24 T CONST)) (-1478 (($ $ $) 14)) (-2599 (($ $ $) 15)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3152 (((-862) $) 12)) (-3044 (((-112) $ $) 9)) (-4356 (($) 23 T CONST)) (-2968 (((-112) $ $) 17)) (-2946 (((-112) $ $) 18)) (-2914 (((-112) $ $) 6)) (-2956 (((-112) $ $) 16)) (-2935 (((-112) $ $) 19)) (-3002 (($ $ $) 21)) (* (($ (-921) $) 22) (($ (-771) $) 26))) (((-793) (-140)) (T -793)) -((-2660 (*1 *1 *1 *1) (-4 *1 (-793)))) -(-13 (-795) (-10 -8 (-15 -2660 ($ $ $)))) +((-3920 (*1 *1 *1 *1) (-4 *1 (-793)))) +(-13 (-795) (-10 -8 (-15 -3920 ($ $ $)))) (((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-862)) . T) ((-792) . T) ((-794) . T) ((-795) . T) ((-850) . T) ((-1099) . T)) -((-3007 (((-112) $ $) 7)) (-2097 (($ $ $) 14)) (-3962 (($ $ $) 15)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3783 (((-862) $) 12)) (-3117 (((-112) $ $) 9)) (-3009 (((-112) $ $) 17)) (-2984 (((-112) $ $) 18)) (-2947 (((-112) $ $) 6)) (-2995 (((-112) $ $) 16)) (-2969 (((-112) $ $) 19)) (-3041 (($ $ $) 21)) (* (($ (-921) $) 22))) +((-2988 (((-112) $ $) 7)) (-1478 (($ $ $) 14)) (-2599 (($ $ $) 15)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3152 (((-862) $) 12)) (-3044 (((-112) $ $) 9)) (-2968 (((-112) $ $) 17)) (-2946 (((-112) $ $) 18)) (-2914 (((-112) $ $) 6)) (-2956 (((-112) $ $) 16)) (-2935 (((-112) $ $) 19)) (-3002 (($ $ $) 21)) (* (($ (-921) $) 22))) (((-794) (-140)) (T -794)) NIL (-13 (-850) (-25)) (((-25) . T) ((-102) . T) ((-613 (-862)) . T) ((-850) . T) ((-1099) . T)) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 25)) (-4175 (((-3 $ "failed") $ $) 27)) (-3012 (($) 24 T CONST)) (-2097 (($ $ $) 14)) (-3962 (($ $ $) 15)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3783 (((-862) $) 12)) (-3117 (((-112) $ $) 9)) (-2479 (($) 23 T CONST)) (-3009 (((-112) $ $) 17)) (-2984 (((-112) $ $) 18)) (-2947 (((-112) $ $) 6)) (-2995 (((-112) $ $) 16)) (-2969 (((-112) $ $) 19)) (-3041 (($ $ $) 21)) (* (($ (-921) $) 22) (($ (-771) $) 26))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 25)) (-3967 (((-3 $ "failed") $ $) 27)) (-2463 (($) 24 T CONST)) (-1478 (($ $ $) 14)) (-2599 (($ $ $) 15)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3152 (((-862) $) 12)) (-3044 (((-112) $ $) 9)) (-4356 (($) 23 T CONST)) (-2968 (((-112) $ $) 17)) (-2946 (((-112) $ $) 18)) (-2914 (((-112) $ $) 6)) (-2956 (((-112) $ $) 16)) (-2935 (((-112) $ $) 19)) (-3002 (($ $ $) 21)) (* (($ (-921) $) 22) (($ (-771) $) 26))) (((-795) (-140)) (T -795)) NIL (-13 (-792) (-131)) (((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-862)) . T) ((-792) . T) ((-794) . T) ((-850) . T) ((-1099) . T)) -((-1788 (((-112) $) 42)) (-4307 (((-3 (-566) "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-4205 (((-566) $) NIL) (((-409 (-566)) $) NIL) ((|#2| $) 43)) (-1521 (((-3 (-409 (-566)) "failed") $) 78)) (-1942 (((-112) $) 72)) (-4204 (((-409 (-566)) $) 76)) (-1577 ((|#2| $) 26)) (-1301 (($ (-1 |#2| |#2|) $) 23)) (-1713 (($ $) 58)) (-1348 (((-538) $) 67)) (-2358 (($ $) 21)) (-3783 (((-862) $) 53) (($ (-566)) 40) (($ |#2|) 38) (($ (-409 (-566))) NIL)) (-2107 (((-771)) 10)) (-2086 ((|#2| $) 71)) (-2947 (((-112) $ $) 30)) (-2969 (((-112) $ $) 69)) (-3053 (($ $) 32) (($ $ $) NIL)) (-3041 (($ $ $) 31)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 36) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 33))) -(((-796 |#1| |#2|) (-10 -8 (-15 -2969 ((-112) |#1| |#1|)) (-15 -1348 ((-538) |#1|)) (-15 -1713 (|#1| |#1|)) (-15 -1521 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -4204 ((-409 (-566)) |#1|)) (-15 -1942 ((-112) |#1|)) (-15 -2086 (|#2| |#1|)) (-15 -1577 (|#2| |#1|)) (-15 -2358 (|#1| |#1|)) (-15 -1301 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4307 ((-3 |#2| "failed") |#1|)) (-15 -4205 (|#2| |#1|)) (-15 -4205 ((-409 (-566)) |#1|)) (-15 -4307 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -3783 (|#1| (-409 (-566)))) (-15 -4205 ((-566) |#1|)) (-15 -4307 ((-3 (-566) "failed") |#1|)) (-15 -3783 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2107 ((-771))) (-15 -3783 (|#1| (-566))) (-15 * (|#1| |#1| |#1|)) (-15 -3053 (|#1| |#1| |#1|)) (-15 -3053 (|#1| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 -1788 ((-112) |#1|)) (-15 * (|#1| (-921) |#1|)) (-15 -3041 (|#1| |#1| |#1|)) (-15 -3783 ((-862) |#1|)) (-15 -2947 ((-112) |#1| |#1|))) (-797 |#2|) (-172)) (T -796)) -((-2107 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-771)) (-5 *1 (-796 *3 *4)) (-4 *3 (-797 *4))))) -(-10 -8 (-15 -2969 ((-112) |#1| |#1|)) (-15 -1348 ((-538) |#1|)) (-15 -1713 (|#1| |#1|)) (-15 -1521 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -4204 ((-409 (-566)) |#1|)) (-15 -1942 ((-112) |#1|)) (-15 -2086 (|#2| |#1|)) (-15 -1577 (|#2| |#1|)) (-15 -2358 (|#1| |#1|)) (-15 -1301 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4307 ((-3 |#2| "failed") |#1|)) (-15 -4205 (|#2| |#1|)) (-15 -4205 ((-409 (-566)) |#1|)) (-15 -4307 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -3783 (|#1| (-409 (-566)))) (-15 -4205 ((-566) |#1|)) (-15 -4307 ((-3 (-566) "failed") |#1|)) (-15 -3783 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2107 ((-771))) (-15 -3783 (|#1| (-566))) (-15 * (|#1| |#1| |#1|)) (-15 -3053 (|#1| |#1| |#1|)) (-15 -3053 (|#1| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 -1788 ((-112) |#1|)) (-15 * (|#1| (-921) |#1|)) (-15 -3041 (|#1| |#1| |#1|)) (-15 -3783 ((-862) |#1|)) (-15 -2947 ((-112) |#1| |#1|))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-4175 (((-3 $ "failed") $ $) 20)) (-1970 (((-771)) 58 (|has| |#1| (-370)))) (-3012 (($) 18 T CONST)) (-4307 (((-3 (-566) "failed") $) 100 (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) 97 (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) 94)) (-4205 (((-566) $) 99 (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) 96 (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) 95)) (-1878 (((-3 $ "failed") $) 37)) (-3742 ((|#1| $) 84)) (-1521 (((-3 (-409 (-566)) "failed") $) 71 (|has| |#1| (-547)))) (-1942 (((-112) $) 73 (|has| |#1| (-547)))) (-4204 (((-409 (-566)) $) 72 (|has| |#1| (-547)))) (-1552 (($) 61 (|has| |#1| (-370)))) (-3934 (((-112) $) 35)) (-3984 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 75)) (-1577 ((|#1| $) 76)) (-2097 (($ $ $) 67 (|has| |#1| (-850)))) (-3962 (($ $ $) 66 (|has| |#1| (-850)))) (-1301 (($ (-1 |#1| |#1|) $) 86)) (-3681 (((-921) $) 60 (|has| |#1| (-370)))) (-4117 (((-1157) $) 10)) (-1713 (($ $) 70 (|has| |#1| (-365)))) (-2178 (($ (-921)) 59 (|has| |#1| (-370)))) (-2619 ((|#1| $) 81)) (-1302 ((|#1| $) 82)) (-1832 ((|#1| $) 83)) (-1513 ((|#1| $) 77)) (-1519 ((|#1| $) 78)) (-3381 ((|#1| $) 79)) (-1667 ((|#1| $) 80)) (-4035 (((-1119) $) 11)) (-2055 (($ $ (-644 |#1|) (-644 |#1|)) 92 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 91 (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) 90 (|has| |#1| (-310 |#1|))) (($ $ (-644 (-295 |#1|))) 89 (|has| |#1| (-310 |#1|))) (($ $ (-644 (-1175)) (-644 |#1|)) 88 (|has| |#1| (-516 (-1175) |#1|))) (($ $ (-1175) |#1|) 87 (|has| |#1| (-516 (-1175) |#1|)))) (-4390 (($ $ |#1|) 93 (|has| |#1| (-287 |#1| |#1|)))) (-1348 (((-538) $) 68 (|has| |#1| (-614 (-538))))) (-2358 (($ $) 85)) (-3783 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 44) (($ (-409 (-566))) 98 (|has| |#1| (-1038 (-409 (-566)))))) (-3144 (((-3 $ "failed") $) 69 (|has| |#1| (-145)))) (-2107 (((-771)) 32 T CONST)) (-3117 (((-112) $ $) 9)) (-2086 ((|#1| $) 74 (|has| |#1| (-1059)))) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-3009 (((-112) $ $) 64 (|has| |#1| (-850)))) (-2984 (((-112) $ $) 63 (|has| |#1| (-850)))) (-2947 (((-112) $ $) 6)) (-2995 (((-112) $ $) 65 (|has| |#1| (-850)))) (-2969 (((-112) $ $) 62 (|has| |#1| (-850)))) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +((-3230 (((-112) $) 42)) (-2229 (((-3 (-566) "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-4158 (((-566) $) NIL) (((-409 (-566)) $) NIL) ((|#2| $) 43)) (-4391 (((-3 (-409 (-566)) "failed") $) 78)) (-3407 (((-112) $) 72)) (-1786 (((-409 (-566)) $) 76)) (-2064 ((|#2| $) 26)) (-2319 (($ (-1 |#2| |#2|) $) 23)) (-2748 (($ $) 58)) (-2376 (((-538) $) 67)) (-3357 (($ $) 21)) (-3152 (((-862) $) 53) (($ (-566)) 40) (($ |#2|) 38) (($ (-409 (-566))) NIL)) (-2593 (((-771)) 10)) (-1358 ((|#2| $) 71)) (-2914 (((-112) $ $) 30)) (-2935 (((-112) $ $) 69)) (-3012 (($ $) 32) (($ $ $) NIL)) (-3002 (($ $ $) 31)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 36) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 33))) +(((-796 |#1| |#2|) (-10 -8 (-15 -2935 ((-112) |#1| |#1|)) (-15 -2376 ((-538) |#1|)) (-15 -2748 (|#1| |#1|)) (-15 -4391 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -1786 ((-409 (-566)) |#1|)) (-15 -3407 ((-112) |#1|)) (-15 -1358 (|#2| |#1|)) (-15 -2064 (|#2| |#1|)) (-15 -3357 (|#1| |#1|)) (-15 -2319 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2229 ((-3 |#2| "failed") |#1|)) (-15 -4158 (|#2| |#1|)) (-15 -4158 ((-409 (-566)) |#1|)) (-15 -2229 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -3152 (|#1| (-409 (-566)))) (-15 -4158 ((-566) |#1|)) (-15 -2229 ((-3 (-566) "failed") |#1|)) (-15 -3152 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2593 ((-771))) (-15 -3152 (|#1| (-566))) (-15 * (|#1| |#1| |#1|)) (-15 -3012 (|#1| |#1| |#1|)) (-15 -3012 (|#1| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 -3230 ((-112) |#1|)) (-15 * (|#1| (-921) |#1|)) (-15 -3002 (|#1| |#1| |#1|)) (-15 -3152 ((-862) |#1|)) (-15 -2914 ((-112) |#1| |#1|))) (-797 |#2|) (-172)) (T -796)) +((-2593 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-771)) (-5 *1 (-796 *3 *4)) (-4 *3 (-797 *4))))) +(-10 -8 (-15 -2935 ((-112) |#1| |#1|)) (-15 -2376 ((-538) |#1|)) (-15 -2748 (|#1| |#1|)) (-15 -4391 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -1786 ((-409 (-566)) |#1|)) (-15 -3407 ((-112) |#1|)) (-15 -1358 (|#2| |#1|)) (-15 -2064 (|#2| |#1|)) (-15 -3357 (|#1| |#1|)) (-15 -2319 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2229 ((-3 |#2| "failed") |#1|)) (-15 -4158 (|#2| |#1|)) (-15 -4158 ((-409 (-566)) |#1|)) (-15 -2229 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -3152 (|#1| (-409 (-566)))) (-15 -4158 ((-566) |#1|)) (-15 -2229 ((-3 (-566) "failed") |#1|)) (-15 -3152 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2593 ((-771))) (-15 -3152 (|#1| (-566))) (-15 * (|#1| |#1| |#1|)) (-15 -3012 (|#1| |#1| |#1|)) (-15 -3012 (|#1| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 -3230 ((-112) |#1|)) (-15 * (|#1| (-921) |#1|)) (-15 -3002 (|#1| |#1| |#1|)) (-15 -3152 ((-862) |#1|)) (-15 -2914 ((-112) |#1| |#1|))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-3967 (((-3 $ "failed") $ $) 20)) (-3870 (((-771)) 58 (|has| |#1| (-370)))) (-2463 (($) 18 T CONST)) (-2229 (((-3 (-566) "failed") $) 100 (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) 97 (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) 94)) (-4158 (((-566) $) 99 (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) 96 (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) 95)) (-3245 (((-3 $ "failed") $) 37)) (-1646 ((|#1| $) 84)) (-4391 (((-3 (-409 (-566)) "failed") $) 71 (|has| |#1| (-547)))) (-3407 (((-112) $) 73 (|has| |#1| (-547)))) (-1786 (((-409 (-566)) $) 72 (|has| |#1| (-547)))) (-2715 (($) 61 (|has| |#1| (-370)))) (-2389 (((-112) $) 35)) (-2639 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 75)) (-2064 ((|#1| $) 76)) (-1478 (($ $ $) 67 (|has| |#1| (-850)))) (-2599 (($ $ $) 66 (|has| |#1| (-850)))) (-2319 (($ (-1 |#1| |#1|) $) 86)) (-1866 (((-921) $) 60 (|has| |#1| (-370)))) (-3380 (((-1157) $) 10)) (-2748 (($ $) 70 (|has| |#1| (-365)))) (-2835 (($ (-921)) 59 (|has| |#1| (-370)))) (-2313 ((|#1| $) 81)) (-2455 ((|#1| $) 82)) (-3934 ((|#1| $) 83)) (-1664 ((|#1| $) 77)) (-4220 ((|#1| $) 78)) (-3308 ((|#1| $) 79)) (-3792 ((|#1| $) 80)) (-4072 (((-1119) $) 11)) (-2023 (($ $ (-644 |#1|) (-644 |#1|)) 92 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 91 (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) 90 (|has| |#1| (-310 |#1|))) (($ $ (-644 (-295 |#1|))) 89 (|has| |#1| (-310 |#1|))) (($ $ (-644 (-1175)) (-644 |#1|)) 88 (|has| |#1| (-516 (-1175) |#1|))) (($ $ (-1175) |#1|) 87 (|has| |#1| (-516 (-1175) |#1|)))) (-1309 (($ $ |#1|) 93 (|has| |#1| (-287 |#1| |#1|)))) (-2376 (((-538) $) 68 (|has| |#1| (-614 (-538))))) (-3357 (($ $) 85)) (-3152 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 44) (($ (-409 (-566))) 98 (|has| |#1| (-1038 (-409 (-566)))))) (-2633 (((-3 $ "failed") $) 69 (|has| |#1| (-145)))) (-2593 (((-771)) 32 T CONST)) (-3044 (((-112) $ $) 9)) (-1358 ((|#1| $) 74 (|has| |#1| (-1059)))) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-2968 (((-112) $ $) 64 (|has| |#1| (-850)))) (-2946 (((-112) $ $) 63 (|has| |#1| (-850)))) (-2914 (((-112) $ $) 6)) (-2956 (((-112) $ $) 65 (|has| |#1| (-850)))) (-2935 (((-112) $ $) 62 (|has| |#1| (-850)))) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) (((-797 |#1|) (-140) (-172)) (T -797)) -((-2358 (*1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) (-3742 (*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) (-1832 (*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) (-1302 (*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) (-2619 (*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) (-1667 (*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) (-3381 (*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) (-1519 (*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) (-1513 (*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) (-1577 (*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) (-3984 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) (-2086 (*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)) (-4 *2 (-1059)))) (-1942 (*1 *2 *1) (-12 (-4 *1 (-797 *3)) (-4 *3 (-172)) (-4 *3 (-547)) (-5 *2 (-112)))) (-4204 (*1 *2 *1) (-12 (-4 *1 (-797 *3)) (-4 *3 (-172)) (-4 *3 (-547)) (-5 *2 (-409 (-566))))) (-1521 (*1 *2 *1) (|partial| -12 (-4 *1 (-797 *3)) (-4 *3 (-172)) (-4 *3 (-547)) (-5 *2 (-409 (-566))))) (-1713 (*1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)) (-4 *2 (-365))))) -(-13 (-38 |t#1|) (-413 |t#1|) (-340 |t#1|) (-10 -8 (-15 -2358 ($ $)) (-15 -3742 (|t#1| $)) (-15 -1832 (|t#1| $)) (-15 -1302 (|t#1| $)) (-15 -2619 (|t#1| $)) (-15 -1667 (|t#1| $)) (-15 -3381 (|t#1| $)) (-15 -1519 (|t#1| $)) (-15 -1513 (|t#1| $)) (-15 -1577 (|t#1| $)) (-15 -3984 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-370)) (-6 (-370)) |%noBranch|) (IF (|has| |t#1| (-850)) (-6 (-850)) |%noBranch|) (IF (|has| |t#1| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1059)) (-15 -2086 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-547)) (PROGN (-15 -1942 ((-112) $)) (-15 -4204 ((-409 (-566)) $)) (-15 -1521 ((-3 (-409 (-566)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-365)) (-15 -1713 ($ $)) |%noBranch|))) +((-3357 (*1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) (-1646 (*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) (-3934 (*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) (-2455 (*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) (-2313 (*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) (-3792 (*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) (-3308 (*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) (-4220 (*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) (-1664 (*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) (-2064 (*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) (-2639 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) (-1358 (*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)) (-4 *2 (-1059)))) (-3407 (*1 *2 *1) (-12 (-4 *1 (-797 *3)) (-4 *3 (-172)) (-4 *3 (-547)) (-5 *2 (-112)))) (-1786 (*1 *2 *1) (-12 (-4 *1 (-797 *3)) (-4 *3 (-172)) (-4 *3 (-547)) (-5 *2 (-409 (-566))))) (-4391 (*1 *2 *1) (|partial| -12 (-4 *1 (-797 *3)) (-4 *3 (-172)) (-4 *3 (-547)) (-5 *2 (-409 (-566))))) (-2748 (*1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)) (-4 *2 (-365))))) +(-13 (-38 |t#1|) (-413 |t#1|) (-340 |t#1|) (-10 -8 (-15 -3357 ($ $)) (-15 -1646 (|t#1| $)) (-15 -3934 (|t#1| $)) (-15 -2455 (|t#1| $)) (-15 -2313 (|t#1| $)) (-15 -3792 (|t#1| $)) (-15 -3308 (|t#1| $)) (-15 -4220 (|t#1| $)) (-15 -1664 (|t#1| $)) (-15 -2064 (|t#1| $)) (-15 -2639 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-370)) (-6 (-370)) |%noBranch|) (IF (|has| |t#1| (-850)) (-6 (-850)) |%noBranch|) (IF (|has| |t#1| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1059)) (-15 -1358 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-547)) (PROGN (-15 -3407 ((-112) $)) (-15 -1786 ((-409 (-566)) $)) (-15 -4391 ((-3 (-409 (-566)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-365)) (-15 -2748 ($ $)) |%noBranch|))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #0=(-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((-616 (-566)) . T) ((-616 |#1|) . T) ((-613 (-862)) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-370) |has| |#1| (-370)) ((-340 |#1|) . T) ((-413 |#1|) . T) ((-516 (-1175) |#1|) |has| |#1| (-516 (-1175) |#1|)) ((-516 |#1| |#1|) |has| |#1| (-310 |#1|)) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-640 |#1|) . T) ((-717 |#1|) . T) ((-726) . T) ((-850) |has| |#1| (-850)) ((-1038 #0#) |has| |#1| (-1038 (-409 (-566)))) ((-1038 (-566)) |has| |#1| (-1038 (-566))) ((-1038 |#1|) . T) ((-1051 |#1|) . T) ((-1056 |#1|) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) -((-1301 ((|#3| (-1 |#4| |#2|) |#1|) 20))) -(((-798 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1301 (|#3| (-1 |#4| |#2|) |#1|))) (-797 |#2|) (-172) (-797 |#4|) (-172)) (T -798)) -((-1301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-797 *6)) (-5 *1 (-798 *4 *5 *2 *6)) (-4 *4 (-797 *5))))) -(-10 -7 (-15 -1301 (|#3| (-1 |#4| |#2|) |#1|))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-1970 (((-771)) NIL (|has| |#1| (-370)))) (-3012 (($) NIL T CONST)) (-4307 (((-3 |#1| "failed") $) NIL) (((-3 (-999 |#1|) "failed") $) 35) (((-3 (-566) "failed") $) NIL (-2809 (|has| (-999 |#1|) (-1038 (-566))) (|has| |#1| (-1038 (-566))))) (((-3 (-409 (-566)) "failed") $) NIL (-2809 (|has| (-999 |#1|) (-1038 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))))) (-4205 ((|#1| $) NIL) (((-999 |#1|) $) 33) (((-566) $) NIL (-2809 (|has| (-999 |#1|) (-1038 (-566))) (|has| |#1| (-1038 (-566))))) (((-409 (-566)) $) NIL (-2809 (|has| (-999 |#1|) (-1038 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))))) (-1878 (((-3 $ "failed") $) NIL)) (-3742 ((|#1| $) 16)) (-1521 (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-547)))) (-1942 (((-112) $) NIL (|has| |#1| (-547)))) (-4204 (((-409 (-566)) $) NIL (|has| |#1| (-547)))) (-1552 (($) NIL (|has| |#1| (-370)))) (-3934 (((-112) $) NIL)) (-3984 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-999 |#1|) (-999 |#1|)) 29)) (-1577 ((|#1| $) NIL)) (-2097 (($ $ $) NIL (|has| |#1| (-850)))) (-3962 (($ $ $) NIL (|has| |#1| (-850)))) (-1301 (($ (-1 |#1| |#1|) $) NIL)) (-3681 (((-921) $) NIL (|has| |#1| (-370)))) (-4117 (((-1157) $) NIL)) (-1713 (($ $) NIL (|has| |#1| (-365)))) (-2178 (($ (-921)) NIL (|has| |#1| (-370)))) (-2619 ((|#1| $) 22)) (-1302 ((|#1| $) 20)) (-1832 ((|#1| $) 18)) (-1513 ((|#1| $) 26)) (-1519 ((|#1| $) 25)) (-3381 ((|#1| $) 24)) (-1667 ((|#1| $) 23)) (-4035 (((-1119) $) NIL)) (-2055 (($ $ (-644 |#1|) (-644 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-644 (-295 |#1|))) NIL (|has| |#1| (-310 |#1|))) (($ $ (-644 (-1175)) (-644 |#1|)) NIL (|has| |#1| (-516 (-1175) |#1|))) (($ $ (-1175) |#1|) NIL (|has| |#1| (-516 (-1175) |#1|)))) (-4390 (($ $ |#1|) NIL (|has| |#1| (-287 |#1| |#1|)))) (-1348 (((-538) $) NIL (|has| |#1| (-614 (-538))))) (-2358 (($ $) NIL)) (-3783 (((-862) $) NIL) (($ (-566)) NIL) (($ |#1|) NIL) (($ (-999 |#1|)) 30) (($ (-409 (-566))) NIL (-2809 (|has| (-999 |#1|) (-1038 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))))) (-3144 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2107 (((-771)) NIL T CONST)) (-3117 (((-112) $ $) NIL)) (-2086 ((|#1| $) NIL (|has| |#1| (-1059)))) (-2479 (($) 8 T CONST)) (-4334 (($) 12 T CONST)) (-3009 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2984 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2947 (((-112) $ $) NIL)) (-2995 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2969 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-799 |#1|) (-13 (-797 |#1|) (-413 (-999 |#1|)) (-10 -8 (-15 -3984 ($ (-999 |#1|) (-999 |#1|))))) (-172)) (T -799)) -((-3984 (*1 *1 *2 *2) (-12 (-5 *2 (-999 *3)) (-4 *3 (-172)) (-5 *1 (-799 *3))))) -(-13 (-797 |#1|) (-413 (-999 |#1|)) (-10 -8 (-15 -3984 ($ (-999 |#1|) (-999 |#1|))))) -((-3007 (((-112) $ $) 7)) (-1338 (((-2 (|:| -1338 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 15)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3783 (((-862) $) 12)) (-3117 (((-112) $ $) 9)) (-2083 (((-1035) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 14)) (-2947 (((-112) $ $) 6))) +((-2319 ((|#3| (-1 |#4| |#2|) |#1|) 20))) +(((-798 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2319 (|#3| (-1 |#4| |#2|) |#1|))) (-797 |#2|) (-172) (-797 |#4|) (-172)) (T -798)) +((-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-797 *6)) (-5 *1 (-798 *4 *5 *2 *6)) (-4 *4 (-797 *5))))) +(-10 -7 (-15 -2319 (|#3| (-1 |#4| |#2|) |#1|))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-3870 (((-771)) NIL (|has| |#1| (-370)))) (-2463 (($) NIL T CONST)) (-2229 (((-3 |#1| "failed") $) NIL) (((-3 (-999 |#1|) "failed") $) 35) (((-3 (-566) "failed") $) NIL (-2768 (|has| (-999 |#1|) (-1038 (-566))) (|has| |#1| (-1038 (-566))))) (((-3 (-409 (-566)) "failed") $) NIL (-2768 (|has| (-999 |#1|) (-1038 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))))) (-4158 ((|#1| $) NIL) (((-999 |#1|) $) 33) (((-566) $) NIL (-2768 (|has| (-999 |#1|) (-1038 (-566))) (|has| |#1| (-1038 (-566))))) (((-409 (-566)) $) NIL (-2768 (|has| (-999 |#1|) (-1038 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))))) (-3245 (((-3 $ "failed") $) NIL)) (-1646 ((|#1| $) 16)) (-4391 (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-547)))) (-3407 (((-112) $) NIL (|has| |#1| (-547)))) (-1786 (((-409 (-566)) $) NIL (|has| |#1| (-547)))) (-2715 (($) NIL (|has| |#1| (-370)))) (-2389 (((-112) $) NIL)) (-2639 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-999 |#1|) (-999 |#1|)) 29)) (-2064 ((|#1| $) NIL)) (-1478 (($ $ $) NIL (|has| |#1| (-850)))) (-2599 (($ $ $) NIL (|has| |#1| (-850)))) (-2319 (($ (-1 |#1| |#1|) $) NIL)) (-1866 (((-921) $) NIL (|has| |#1| (-370)))) (-3380 (((-1157) $) NIL)) (-2748 (($ $) NIL (|has| |#1| (-365)))) (-2835 (($ (-921)) NIL (|has| |#1| (-370)))) (-2313 ((|#1| $) 22)) (-2455 ((|#1| $) 20)) (-3934 ((|#1| $) 18)) (-1664 ((|#1| $) 26)) (-4220 ((|#1| $) 25)) (-3308 ((|#1| $) 24)) (-3792 ((|#1| $) 23)) (-4072 (((-1119) $) NIL)) (-2023 (($ $ (-644 |#1|) (-644 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-644 (-295 |#1|))) NIL (|has| |#1| (-310 |#1|))) (($ $ (-644 (-1175)) (-644 |#1|)) NIL (|has| |#1| (-516 (-1175) |#1|))) (($ $ (-1175) |#1|) NIL (|has| |#1| (-516 (-1175) |#1|)))) (-1309 (($ $ |#1|) NIL (|has| |#1| (-287 |#1| |#1|)))) (-2376 (((-538) $) NIL (|has| |#1| (-614 (-538))))) (-3357 (($ $) NIL)) (-3152 (((-862) $) NIL) (($ (-566)) NIL) (($ |#1|) NIL) (($ (-999 |#1|)) 30) (($ (-409 (-566))) NIL (-2768 (|has| (-999 |#1|) (-1038 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))))) (-2633 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2593 (((-771)) NIL T CONST)) (-3044 (((-112) $ $) NIL)) (-1358 ((|#1| $) NIL (|has| |#1| (-1059)))) (-4356 (($) 8 T CONST)) (-4366 (($) 12 T CONST)) (-2968 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2914 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2935 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-799 |#1|) (-13 (-797 |#1|) (-413 (-999 |#1|)) (-10 -8 (-15 -2639 ($ (-999 |#1|) (-999 |#1|))))) (-172)) (T -799)) +((-2639 (*1 *1 *2 *2) (-12 (-5 *2 (-999 *3)) (-4 *3 (-172)) (-5 *1 (-799 *3))))) +(-13 (-797 |#1|) (-413 (-999 |#1|)) (-10 -8 (-15 -2639 ($ (-999 |#1|) (-999 |#1|))))) +((-2988 (((-112) $ $) 7)) (-2659 (((-2 (|:| -2659 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 15)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3152 (((-862) $) 12)) (-3044 (((-112) $ $) 9)) (-4293 (((-1035) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 14)) (-2914 (((-112) $ $) 6))) (((-800) (-140)) (T -800)) -((-1338 (*1 *2 *3 *4) (-12 (-4 *1 (-800)) (-5 *3 (-1062)) (-5 *4 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -1338 (-381)) (|:| |explanations| (-1157)))))) (-2083 (*1 *2 *3) (-12 (-4 *1 (-800)) (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-1035))))) -(-13 (-1099) (-10 -7 (-15 -1338 ((-2 (|:| -1338 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2083 ((-1035) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) +((-2659 (*1 *2 *3 *4) (-12 (-4 *1 (-800)) (-5 *3 (-1062)) (-5 *4 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -2659 (-381)) (|:| |explanations| (-1157)))))) (-4293 (*1 *2 *3) (-12 (-4 *1 (-800)) (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-1035))))) +(-13 (-1099) (-10 -7 (-15 -2659 ((-2 (|:| -2659 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4293 ((-1035) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (((-102) . T) ((-613 (-862)) . T) ((-1099) . T)) -((-1660 (((-2 (|:| |particular| |#2|) (|:| -2365 (-644 |#2|))) |#3| |#2| (-1175)) 19))) -(((-801 |#1| |#2| |#3|) (-10 -7 (-15 -1660 ((-2 (|:| |particular| |#2|) (|:| -2365 (-644 |#2|))) |#3| |#2| (-1175)))) (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147)) (-13 (-29 |#1|) (-1199) (-959)) (-656 |#2|)) (T -801)) -((-1660 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1175)) (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-4 *4 (-13 (-29 *6) (-1199) (-959))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2365 (-644 *4)))) (-5 *1 (-801 *6 *4 *3)) (-4 *3 (-656 *4))))) -(-10 -7 (-15 -1660 ((-2 (|:| |particular| |#2|) (|:| -2365 (-644 |#2|))) |#3| |#2| (-1175)))) -((-1957 (((-3 |#2| "failed") |#2| (-114) (-295 |#2|) (-644 |#2|)) 28) (((-3 |#2| "failed") (-295 |#2|) (-114) (-295 |#2|) (-644 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -2365 (-644 |#2|))) |#2| "failed") |#2| (-114) (-1175)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -2365 (-644 |#2|))) |#2| "failed") (-295 |#2|) (-114) (-1175)) 18) (((-3 (-2 (|:| |particular| (-1264 |#2|)) (|:| -2365 (-644 (-1264 |#2|)))) "failed") (-644 |#2|) (-644 (-114)) (-1175)) 24) (((-3 (-2 (|:| |particular| (-1264 |#2|)) (|:| -2365 (-644 (-1264 |#2|)))) "failed") (-644 (-295 |#2|)) (-644 (-114)) (-1175)) 26) (((-3 (-644 (-1264 |#2|)) "failed") (-689 |#2|) (-1175)) 37) (((-3 (-2 (|:| |particular| (-1264 |#2|)) (|:| -2365 (-644 (-1264 |#2|)))) "failed") (-689 |#2|) (-1264 |#2|) (-1175)) 35))) -(((-802 |#1| |#2|) (-10 -7 (-15 -1957 ((-3 (-2 (|:| |particular| (-1264 |#2|)) (|:| -2365 (-644 (-1264 |#2|)))) "failed") (-689 |#2|) (-1264 |#2|) (-1175))) (-15 -1957 ((-3 (-644 (-1264 |#2|)) "failed") (-689 |#2|) (-1175))) (-15 -1957 ((-3 (-2 (|:| |particular| (-1264 |#2|)) (|:| -2365 (-644 (-1264 |#2|)))) "failed") (-644 (-295 |#2|)) (-644 (-114)) (-1175))) (-15 -1957 ((-3 (-2 (|:| |particular| (-1264 |#2|)) (|:| -2365 (-644 (-1264 |#2|)))) "failed") (-644 |#2|) (-644 (-114)) (-1175))) (-15 -1957 ((-3 (-2 (|:| |particular| |#2|) (|:| -2365 (-644 |#2|))) |#2| "failed") (-295 |#2|) (-114) (-1175))) (-15 -1957 ((-3 (-2 (|:| |particular| |#2|) (|:| -2365 (-644 |#2|))) |#2| "failed") |#2| (-114) (-1175))) (-15 -1957 ((-3 |#2| "failed") (-295 |#2|) (-114) (-295 |#2|) (-644 |#2|))) (-15 -1957 ((-3 |#2| "failed") |#2| (-114) (-295 |#2|) (-644 |#2|)))) (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147)) (-13 (-29 |#1|) (-1199) (-959))) (T -802)) -((-1957 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-295 *2)) (-5 *5 (-644 *2)) (-4 *2 (-13 (-29 *6) (-1199) (-959))) (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *1 (-802 *6 *2)))) (-1957 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-295 *2)) (-5 *4 (-114)) (-5 *5 (-644 *2)) (-4 *2 (-13 (-29 *6) (-1199) (-959))) (-5 *1 (-802 *6 *2)) (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))))) (-1957 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-5 *5 (-1175)) (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2365 (-644 *3))) *3 "failed")) (-5 *1 (-802 *6 *3)) (-4 *3 (-13 (-29 *6) (-1199) (-959))))) (-1957 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-295 *7)) (-5 *4 (-114)) (-5 *5 (-1175)) (-4 *7 (-13 (-29 *6) (-1199) (-959))) (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2365 (-644 *7))) *7 "failed")) (-5 *1 (-802 *6 *7)))) (-1957 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-644 *7)) (-5 *4 (-644 (-114))) (-5 *5 (-1175)) (-4 *7 (-13 (-29 *6) (-1199) (-959))) (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *2 (-2 (|:| |particular| (-1264 *7)) (|:| -2365 (-644 (-1264 *7))))) (-5 *1 (-802 *6 *7)))) (-1957 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-644 (-295 *7))) (-5 *4 (-644 (-114))) (-5 *5 (-1175)) (-4 *7 (-13 (-29 *6) (-1199) (-959))) (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *2 (-2 (|:| |particular| (-1264 *7)) (|:| -2365 (-644 (-1264 *7))))) (-5 *1 (-802 *6 *7)))) (-1957 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-689 *6)) (-5 *4 (-1175)) (-4 *6 (-13 (-29 *5) (-1199) (-959))) (-4 *5 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *2 (-644 (-1264 *6))) (-5 *1 (-802 *5 *6)))) (-1957 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-689 *7)) (-5 *5 (-1175)) (-4 *7 (-13 (-29 *6) (-1199) (-959))) (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *2 (-2 (|:| |particular| (-1264 *7)) (|:| -2365 (-644 (-1264 *7))))) (-5 *1 (-802 *6 *7)) (-5 *4 (-1264 *7))))) -(-10 -7 (-15 -1957 ((-3 (-2 (|:| |particular| (-1264 |#2|)) (|:| -2365 (-644 (-1264 |#2|)))) "failed") (-689 |#2|) (-1264 |#2|) (-1175))) (-15 -1957 ((-3 (-644 (-1264 |#2|)) "failed") (-689 |#2|) (-1175))) (-15 -1957 ((-3 (-2 (|:| |particular| (-1264 |#2|)) (|:| -2365 (-644 (-1264 |#2|)))) "failed") (-644 (-295 |#2|)) (-644 (-114)) (-1175))) (-15 -1957 ((-3 (-2 (|:| |particular| (-1264 |#2|)) (|:| -2365 (-644 (-1264 |#2|)))) "failed") (-644 |#2|) (-644 (-114)) (-1175))) (-15 -1957 ((-3 (-2 (|:| |particular| |#2|) (|:| -2365 (-644 |#2|))) |#2| "failed") (-295 |#2|) (-114) (-1175))) (-15 -1957 ((-3 (-2 (|:| |particular| |#2|) (|:| -2365 (-644 |#2|))) |#2| "failed") |#2| (-114) (-1175))) (-15 -1957 ((-3 |#2| "failed") (-295 |#2|) (-114) (-295 |#2|) (-644 |#2|))) (-15 -1957 ((-3 |#2| "failed") |#2| (-114) (-295 |#2|) (-644 |#2|)))) -((-3173 (($) 9)) (-2222 (((-3 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 31)) (-4103 (((-644 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $) 28)) (-3406 (($ (-2 (|:| -2004 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3867 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))))) 25)) (-1883 (($ (-644 (-2 (|:| -2004 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3867 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))))) 23)) (-3900 (((-1269)) 12))) -(((-803) (-10 -8 (-15 -3173 ($)) (-15 -3900 ((-1269))) (-15 -4103 ((-644 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -1883 ($ (-644 (-2 (|:| -2004 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3867 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))))))) (-15 -3406 ($ (-2 (|:| -2004 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3867 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))))) (-15 -2222 ((-3 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -803)) -((-2222 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))) (-5 *1 (-803)))) (-3406 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2004 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3867 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))))) (-5 *1 (-803)))) (-1883 (*1 *1 *2) (-12 (-5 *2 (-644 (-2 (|:| -2004 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3867 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))))) (-5 *1 (-803)))) (-4103 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-5 *1 (-803)))) (-3900 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-803)))) (-3173 (*1 *1) (-5 *1 (-803)))) -(-10 -8 (-15 -3173 ($)) (-15 -3900 ((-1269))) (-15 -4103 ((-644 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -1883 ($ (-644 (-2 (|:| -2004 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3867 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))))))) (-15 -3406 ($ (-2 (|:| -2004 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3867 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))))) (-15 -2222 ((-3 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) -((-3903 ((|#2| |#2| (-1175)) 17)) (-3888 ((|#2| |#2| (-1175)) 56)) (-3056 (((-1 |#2| |#2|) (-1175)) 11))) -(((-804 |#1| |#2|) (-10 -7 (-15 -3903 (|#2| |#2| (-1175))) (-15 -3888 (|#2| |#2| (-1175))) (-15 -3056 ((-1 |#2| |#2|) (-1175)))) (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147)) (-13 (-29 |#1|) (-1199) (-959))) (T -804)) -((-3056 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *2 (-1 *5 *5)) (-5 *1 (-804 *4 *5)) (-4 *5 (-13 (-29 *4) (-1199) (-959))))) (-3888 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *1 (-804 *4 *2)) (-4 *2 (-13 (-29 *4) (-1199) (-959))))) (-3903 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *1 (-804 *4 *2)) (-4 *2 (-13 (-29 *4) (-1199) (-959)))))) -(-10 -7 (-15 -3903 (|#2| |#2| (-1175))) (-15 -3888 (|#2| |#2| (-1175))) (-15 -3056 ((-1 |#2| |#2|) (-1175)))) -((-1957 (((-1035) (-1264 (-317 (-381))) (-381) (-381) (-644 (-381)) (-317 (-381)) (-644 (-381)) (-381) (-381)) 131) (((-1035) (-1264 (-317 (-381))) (-381) (-381) (-644 (-381)) (-317 (-381)) (-644 (-381)) (-381)) 132) (((-1035) (-1264 (-317 (-381))) (-381) (-381) (-644 (-381)) (-644 (-381)) (-381)) 134) (((-1035) (-1264 (-317 (-381))) (-381) (-381) (-644 (-381)) (-317 (-381)) (-381)) 136) (((-1035) (-1264 (-317 (-381))) (-381) (-381) (-644 (-381)) (-381)) 137) (((-1035) (-1264 (-317 (-381))) (-381) (-381) (-644 (-381))) 139) (((-1035) (-808) (-1062)) 123) (((-1035) (-808)) 124)) (-1338 (((-2 (|:| -1338 (-381)) (|:| -2640 (-1157)) (|:| |explanations| (-644 (-1157)))) (-808) (-1062)) 83) (((-2 (|:| -1338 (-381)) (|:| -2640 (-1157)) (|:| |explanations| (-644 (-1157)))) (-808)) 85))) -(((-805) (-10 -7 (-15 -1957 ((-1035) (-808))) (-15 -1957 ((-1035) (-808) (-1062))) (-15 -1957 ((-1035) (-1264 (-317 (-381))) (-381) (-381) (-644 (-381)))) (-15 -1957 ((-1035) (-1264 (-317 (-381))) (-381) (-381) (-644 (-381)) (-381))) (-15 -1957 ((-1035) (-1264 (-317 (-381))) (-381) (-381) (-644 (-381)) (-317 (-381)) (-381))) (-15 -1957 ((-1035) (-1264 (-317 (-381))) (-381) (-381) (-644 (-381)) (-644 (-381)) (-381))) (-15 -1957 ((-1035) (-1264 (-317 (-381))) (-381) (-381) (-644 (-381)) (-317 (-381)) (-644 (-381)) (-381))) (-15 -1957 ((-1035) (-1264 (-317 (-381))) (-381) (-381) (-644 (-381)) (-317 (-381)) (-644 (-381)) (-381) (-381))) (-15 -1338 ((-2 (|:| -1338 (-381)) (|:| -2640 (-1157)) (|:| |explanations| (-644 (-1157)))) (-808))) (-15 -1338 ((-2 (|:| -1338 (-381)) (|:| -2640 (-1157)) (|:| |explanations| (-644 (-1157)))) (-808) (-1062))))) (T -805)) -((-1338 (*1 *2 *3 *4) (-12 (-5 *3 (-808)) (-5 *4 (-1062)) (-5 *2 (-2 (|:| -1338 (-381)) (|:| -2640 (-1157)) (|:| |explanations| (-644 (-1157))))) (-5 *1 (-805)))) (-1338 (*1 *2 *3) (-12 (-5 *3 (-808)) (-5 *2 (-2 (|:| -1338 (-381)) (|:| -2640 (-1157)) (|:| |explanations| (-644 (-1157))))) (-5 *1 (-805)))) (-1957 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1264 (-317 *4))) (-5 *5 (-644 (-381))) (-5 *6 (-317 (-381))) (-5 *4 (-381)) (-5 *2 (-1035)) (-5 *1 (-805)))) (-1957 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1264 (-317 *4))) (-5 *5 (-644 (-381))) (-5 *6 (-317 (-381))) (-5 *4 (-381)) (-5 *2 (-1035)) (-5 *1 (-805)))) (-1957 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1264 (-317 (-381)))) (-5 *4 (-381)) (-5 *5 (-644 *4)) (-5 *2 (-1035)) (-5 *1 (-805)))) (-1957 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1264 (-317 *4))) (-5 *5 (-644 (-381))) (-5 *6 (-317 (-381))) (-5 *4 (-381)) (-5 *2 (-1035)) (-5 *1 (-805)))) (-1957 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1264 (-317 (-381)))) (-5 *4 (-381)) (-5 *5 (-644 *4)) (-5 *2 (-1035)) (-5 *1 (-805)))) (-1957 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1264 (-317 (-381)))) (-5 *4 (-381)) (-5 *5 (-644 *4)) (-5 *2 (-1035)) (-5 *1 (-805)))) (-1957 (*1 *2 *3 *4) (-12 (-5 *3 (-808)) (-5 *4 (-1062)) (-5 *2 (-1035)) (-5 *1 (-805)))) (-1957 (*1 *2 *3) (-12 (-5 *3 (-808)) (-5 *2 (-1035)) (-5 *1 (-805))))) -(-10 -7 (-15 -1957 ((-1035) (-808))) (-15 -1957 ((-1035) (-808) (-1062))) (-15 -1957 ((-1035) (-1264 (-317 (-381))) (-381) (-381) (-644 (-381)))) (-15 -1957 ((-1035) (-1264 (-317 (-381))) (-381) (-381) (-644 (-381)) (-381))) (-15 -1957 ((-1035) (-1264 (-317 (-381))) (-381) (-381) (-644 (-381)) (-317 (-381)) (-381))) (-15 -1957 ((-1035) (-1264 (-317 (-381))) (-381) (-381) (-644 (-381)) (-644 (-381)) (-381))) (-15 -1957 ((-1035) (-1264 (-317 (-381))) (-381) (-381) (-644 (-381)) (-317 (-381)) (-644 (-381)) (-381))) (-15 -1957 ((-1035) (-1264 (-317 (-381))) (-381) (-381) (-644 (-381)) (-317 (-381)) (-644 (-381)) (-381) (-381))) (-15 -1338 ((-2 (|:| -1338 (-381)) (|:| -2640 (-1157)) (|:| |explanations| (-644 (-1157)))) (-808))) (-15 -1338 ((-2 (|:| -1338 (-381)) (|:| -2640 (-1157)) (|:| |explanations| (-644 (-1157)))) (-808) (-1062)))) -((-3983 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2365 (-644 |#4|))) (-653 |#4|) |#4|) 35))) -(((-806 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3983 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2365 (-644 |#4|))) (-653 |#4|) |#4|))) (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566)))) (-1240 |#1|) (-1240 (-409 |#2|)) (-344 |#1| |#2| |#3|)) (T -806)) -((-3983 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *4)) (-4 *4 (-344 *5 *6 *7)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-4 *6 (-1240 *5)) (-4 *7 (-1240 (-409 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2365 (-644 *4)))) (-5 *1 (-806 *5 *6 *7 *4))))) -(-10 -7 (-15 -3983 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2365 (-644 |#4|))) (-653 |#4|) |#4|))) -((-3830 (((-2 (|:| -2470 |#3|) (|:| |rh| (-644 (-409 |#2|)))) |#4| (-644 (-409 |#2|))) 53)) (-2600 (((-644 (-2 (|:| -1320 |#2|) (|:| -3191 |#2|))) |#4| |#2|) 62) (((-644 (-2 (|:| -1320 |#2|) (|:| -3191 |#2|))) |#4|) 61) (((-644 (-2 (|:| -1320 |#2|) (|:| -3191 |#2|))) |#3| |#2|) 20) (((-644 (-2 (|:| -1320 |#2|) (|:| -3191 |#2|))) |#3|) 21)) (-1753 ((|#2| |#4| |#1|) 63) ((|#2| |#3| |#1|) 28)) (-1561 ((|#2| |#3| (-644 (-409 |#2|))) 113) (((-3 |#2| "failed") |#3| (-409 |#2|)) 109))) -(((-807 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1561 ((-3 |#2| "failed") |#3| (-409 |#2|))) (-15 -1561 (|#2| |#3| (-644 (-409 |#2|)))) (-15 -2600 ((-644 (-2 (|:| -1320 |#2|) (|:| -3191 |#2|))) |#3|)) (-15 -2600 ((-644 (-2 (|:| -1320 |#2|) (|:| -3191 |#2|))) |#3| |#2|)) (-15 -1753 (|#2| |#3| |#1|)) (-15 -2600 ((-644 (-2 (|:| -1320 |#2|) (|:| -3191 |#2|))) |#4|)) (-15 -2600 ((-644 (-2 (|:| -1320 |#2|) (|:| -3191 |#2|))) |#4| |#2|)) (-15 -1753 (|#2| |#4| |#1|)) (-15 -3830 ((-2 (|:| -2470 |#3|) (|:| |rh| (-644 (-409 |#2|)))) |#4| (-644 (-409 |#2|))))) (-13 (-365) (-147) (-1038 (-409 (-566)))) (-1240 |#1|) (-656 |#2|) (-656 (-409 |#2|))) (T -807)) -((-3830 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *6 (-1240 *5)) (-5 *2 (-2 (|:| -2470 *7) (|:| |rh| (-644 (-409 *6))))) (-5 *1 (-807 *5 *6 *7 *3)) (-5 *4 (-644 (-409 *6))) (-4 *7 (-656 *6)) (-4 *3 (-656 (-409 *6))))) (-1753 (*1 *2 *3 *4) (-12 (-4 *2 (-1240 *4)) (-5 *1 (-807 *4 *2 *5 *3)) (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *5 (-656 *2)) (-4 *3 (-656 (-409 *2))))) (-2600 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *4 (-1240 *5)) (-5 *2 (-644 (-2 (|:| -1320 *4) (|:| -3191 *4)))) (-5 *1 (-807 *5 *4 *6 *3)) (-4 *6 (-656 *4)) (-4 *3 (-656 (-409 *4))))) (-2600 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *5 (-1240 *4)) (-5 *2 (-644 (-2 (|:| -1320 *5) (|:| -3191 *5)))) (-5 *1 (-807 *4 *5 *6 *3)) (-4 *6 (-656 *5)) (-4 *3 (-656 (-409 *5))))) (-1753 (*1 *2 *3 *4) (-12 (-4 *2 (-1240 *4)) (-5 *1 (-807 *4 *2 *3 *5)) (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *3 (-656 *2)) (-4 *5 (-656 (-409 *2))))) (-2600 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *4 (-1240 *5)) (-5 *2 (-644 (-2 (|:| -1320 *4) (|:| -3191 *4)))) (-5 *1 (-807 *5 *4 *3 *6)) (-4 *3 (-656 *4)) (-4 *6 (-656 (-409 *4))))) (-2600 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *5 (-1240 *4)) (-5 *2 (-644 (-2 (|:| -1320 *5) (|:| -3191 *5)))) (-5 *1 (-807 *4 *5 *3 *6)) (-4 *3 (-656 *5)) (-4 *6 (-656 (-409 *5))))) (-1561 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-409 *2))) (-4 *2 (-1240 *5)) (-5 *1 (-807 *5 *2 *3 *6)) (-4 *5 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *3 (-656 *2)) (-4 *6 (-656 (-409 *2))))) (-1561 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-409 *2)) (-4 *2 (-1240 *5)) (-5 *1 (-807 *5 *2 *3 *6)) (-4 *5 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *3 (-656 *2)) (-4 *6 (-656 *4))))) -(-10 -7 (-15 -1561 ((-3 |#2| "failed") |#3| (-409 |#2|))) (-15 -1561 (|#2| |#3| (-644 (-409 |#2|)))) (-15 -2600 ((-644 (-2 (|:| -1320 |#2|) (|:| -3191 |#2|))) |#3|)) (-15 -2600 ((-644 (-2 (|:| -1320 |#2|) (|:| -3191 |#2|))) |#3| |#2|)) (-15 -1753 (|#2| |#3| |#1|)) (-15 -2600 ((-644 (-2 (|:| -1320 |#2|) (|:| -3191 |#2|))) |#4|)) (-15 -2600 ((-644 (-2 (|:| -1320 |#2|) (|:| -3191 |#2|))) |#4| |#2|)) (-15 -1753 (|#2| |#4| |#1|)) (-15 -3830 ((-2 (|:| -2470 |#3|) (|:| |rh| (-644 (-409 |#2|)))) |#4| (-644 (-409 |#2|))))) -((-3007 (((-112) $ $) NIL)) (-4205 (((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $) 13)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 15) (($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 12)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) -(((-808) (-13 (-1099) (-10 -8 (-15 -3783 ($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4205 ((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $))))) (T -808)) -((-3783 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-808)))) (-4205 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-808))))) -(-13 (-1099) (-10 -8 (-15 -3783 ($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4205 ((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $)))) -((-3747 (((-644 (-2 (|:| |frac| (-409 |#2|)) (|:| -2470 |#3|))) |#3| (-1 (-644 |#2|) |#2| (-1171 |#2|)) (-1 (-420 |#2|) |#2|)) 157)) (-2549 (((-644 (-2 (|:| |poly| |#2|) (|:| -2470 |#3|))) |#3| (-1 (-644 |#1|) |#2|)) 56)) (-1554 (((-644 (-2 (|:| |deg| (-771)) (|:| -2470 |#2|))) |#3|) 127)) (-4208 ((|#2| |#3|) 45)) (-3201 (((-644 (-2 (|:| -3704 |#1|) (|:| -2470 |#3|))) |#3| (-1 (-644 |#1|) |#2|)) 105)) (-3125 ((|#3| |#3| (-409 |#2|)) 76) ((|#3| |#3| |#2|) 102))) -(((-809 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4208 (|#2| |#3|)) (-15 -1554 ((-644 (-2 (|:| |deg| (-771)) (|:| -2470 |#2|))) |#3|)) (-15 -3201 ((-644 (-2 (|:| -3704 |#1|) (|:| -2470 |#3|))) |#3| (-1 (-644 |#1|) |#2|))) (-15 -2549 ((-644 (-2 (|:| |poly| |#2|) (|:| -2470 |#3|))) |#3| (-1 (-644 |#1|) |#2|))) (-15 -3747 ((-644 (-2 (|:| |frac| (-409 |#2|)) (|:| -2470 |#3|))) |#3| (-1 (-644 |#2|) |#2| (-1171 |#2|)) (-1 (-420 |#2|) |#2|))) (-15 -3125 (|#3| |#3| |#2|)) (-15 -3125 (|#3| |#3| (-409 |#2|)))) (-13 (-365) (-147) (-1038 (-409 (-566)))) (-1240 |#1|) (-656 |#2|) (-656 (-409 |#2|))) (T -809)) -((-3125 (*1 *2 *2 *3) (-12 (-5 *3 (-409 *5)) (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *5 (-1240 *4)) (-5 *1 (-809 *4 *5 *2 *6)) (-4 *2 (-656 *5)) (-4 *6 (-656 *3)))) (-3125 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *3 (-1240 *4)) (-5 *1 (-809 *4 *3 *2 *5)) (-4 *2 (-656 *3)) (-4 *5 (-656 (-409 *3))))) (-3747 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-644 *7) *7 (-1171 *7))) (-5 *5 (-1 (-420 *7) *7)) (-4 *7 (-1240 *6)) (-4 *6 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-5 *2 (-644 (-2 (|:| |frac| (-409 *7)) (|:| -2470 *3)))) (-5 *1 (-809 *6 *7 *3 *8)) (-4 *3 (-656 *7)) (-4 *8 (-656 (-409 *7))))) (-2549 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-644 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *6 (-1240 *5)) (-5 *2 (-644 (-2 (|:| |poly| *6) (|:| -2470 *3)))) (-5 *1 (-809 *5 *6 *3 *7)) (-4 *3 (-656 *6)) (-4 *7 (-656 (-409 *6))))) (-3201 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-644 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *6 (-1240 *5)) (-5 *2 (-644 (-2 (|:| -3704 *5) (|:| -2470 *3)))) (-5 *1 (-809 *5 *6 *3 *7)) (-4 *3 (-656 *6)) (-4 *7 (-656 (-409 *6))))) (-1554 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *5 (-1240 *4)) (-5 *2 (-644 (-2 (|:| |deg| (-771)) (|:| -2470 *5)))) (-5 *1 (-809 *4 *5 *3 *6)) (-4 *3 (-656 *5)) (-4 *6 (-656 (-409 *5))))) (-4208 (*1 *2 *3) (-12 (-4 *2 (-1240 *4)) (-5 *1 (-809 *4 *2 *3 *5)) (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *3 (-656 *2)) (-4 *5 (-656 (-409 *2)))))) -(-10 -7 (-15 -4208 (|#2| |#3|)) (-15 -1554 ((-644 (-2 (|:| |deg| (-771)) (|:| -2470 |#2|))) |#3|)) (-15 -3201 ((-644 (-2 (|:| -3704 |#1|) (|:| -2470 |#3|))) |#3| (-1 (-644 |#1|) |#2|))) (-15 -2549 ((-644 (-2 (|:| |poly| |#2|) (|:| -2470 |#3|))) |#3| (-1 (-644 |#1|) |#2|))) (-15 -3747 ((-644 (-2 (|:| |frac| (-409 |#2|)) (|:| -2470 |#3|))) |#3| (-1 (-644 |#2|) |#2| (-1171 |#2|)) (-1 (-420 |#2|) |#2|))) (-15 -3125 (|#3| |#3| |#2|)) (-15 -3125 (|#3| |#3| (-409 |#2|)))) -((-4055 (((-2 (|:| -2365 (-644 (-409 |#2|))) (|:| -4227 (-689 |#1|))) (-654 |#2| (-409 |#2|)) (-644 (-409 |#2|))) 149) (((-2 (|:| |particular| (-3 (-409 |#2|) "failed")) (|:| -2365 (-644 (-409 |#2|)))) (-654 |#2| (-409 |#2|)) (-409 |#2|)) 148) (((-2 (|:| -2365 (-644 (-409 |#2|))) (|:| -4227 (-689 |#1|))) (-653 (-409 |#2|)) (-644 (-409 |#2|))) 143) (((-2 (|:| |particular| (-3 (-409 |#2|) "failed")) (|:| -2365 (-644 (-409 |#2|)))) (-653 (-409 |#2|)) (-409 |#2|)) 141)) (-1393 ((|#2| (-654 |#2| (-409 |#2|))) 89) ((|#2| (-653 (-409 |#2|))) 92))) -(((-810 |#1| |#2|) (-10 -7 (-15 -4055 ((-2 (|:| |particular| (-3 (-409 |#2|) "failed")) (|:| -2365 (-644 (-409 |#2|)))) (-653 (-409 |#2|)) (-409 |#2|))) (-15 -4055 ((-2 (|:| -2365 (-644 (-409 |#2|))) (|:| -4227 (-689 |#1|))) (-653 (-409 |#2|)) (-644 (-409 |#2|)))) (-15 -4055 ((-2 (|:| |particular| (-3 (-409 |#2|) "failed")) (|:| -2365 (-644 (-409 |#2|)))) (-654 |#2| (-409 |#2|)) (-409 |#2|))) (-15 -4055 ((-2 (|:| -2365 (-644 (-409 |#2|))) (|:| -4227 (-689 |#1|))) (-654 |#2| (-409 |#2|)) (-644 (-409 |#2|)))) (-15 -1393 (|#2| (-653 (-409 |#2|)))) (-15 -1393 (|#2| (-654 |#2| (-409 |#2|))))) (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566)))) (-1240 |#1|)) (T -810)) -((-1393 (*1 *2 *3) (-12 (-5 *3 (-654 *2 (-409 *2))) (-4 *2 (-1240 *4)) (-5 *1 (-810 *4 *2)) (-4 *4 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))))) (-1393 (*1 *2 *3) (-12 (-5 *3 (-653 (-409 *2))) (-4 *2 (-1240 *4)) (-5 *1 (-810 *4 *2)) (-4 *4 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))))) (-4055 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *6 (-409 *6))) (-4 *6 (-1240 *5)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-5 *2 (-2 (|:| -2365 (-644 (-409 *6))) (|:| -4227 (-689 *5)))) (-5 *1 (-810 *5 *6)) (-5 *4 (-644 (-409 *6))))) (-4055 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *6 (-409 *6))) (-5 *4 (-409 *6)) (-4 *6 (-1240 *5)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2365 (-644 *4)))) (-5 *1 (-810 *5 *6)))) (-4055 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-409 *6))) (-4 *6 (-1240 *5)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-5 *2 (-2 (|:| -2365 (-644 (-409 *6))) (|:| -4227 (-689 *5)))) (-5 *1 (-810 *5 *6)) (-5 *4 (-644 (-409 *6))))) (-4055 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-409 *6))) (-5 *4 (-409 *6)) (-4 *6 (-1240 *5)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2365 (-644 *4)))) (-5 *1 (-810 *5 *6))))) -(-10 -7 (-15 -4055 ((-2 (|:| |particular| (-3 (-409 |#2|) "failed")) (|:| -2365 (-644 (-409 |#2|)))) (-653 (-409 |#2|)) (-409 |#2|))) (-15 -4055 ((-2 (|:| -2365 (-644 (-409 |#2|))) (|:| -4227 (-689 |#1|))) (-653 (-409 |#2|)) (-644 (-409 |#2|)))) (-15 -4055 ((-2 (|:| |particular| (-3 (-409 |#2|) "failed")) (|:| -2365 (-644 (-409 |#2|)))) (-654 |#2| (-409 |#2|)) (-409 |#2|))) (-15 -4055 ((-2 (|:| -2365 (-644 (-409 |#2|))) (|:| -4227 (-689 |#1|))) (-654 |#2| (-409 |#2|)) (-644 (-409 |#2|)))) (-15 -1393 (|#2| (-653 (-409 |#2|)))) (-15 -1393 (|#2| (-654 |#2| (-409 |#2|))))) -((-3309 (((-2 (|:| -4227 (-689 |#2|)) (|:| |vec| (-1264 |#1|))) |#5| |#4|) 52))) -(((-811 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3309 ((-2 (|:| -4227 (-689 |#2|)) (|:| |vec| (-1264 |#1|))) |#5| |#4|))) (-365) (-656 |#1|) (-1240 |#1|) (-724 |#1| |#3|) (-656 |#4|)) (T -811)) -((-3309 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *7 (-1240 *5)) (-4 *4 (-724 *5 *7)) (-5 *2 (-2 (|:| -4227 (-689 *6)) (|:| |vec| (-1264 *5)))) (-5 *1 (-811 *5 *6 *7 *4 *3)) (-4 *6 (-656 *5)) (-4 *3 (-656 *4))))) -(-10 -7 (-15 -3309 ((-2 (|:| -4227 (-689 |#2|)) (|:| |vec| (-1264 |#1|))) |#5| |#4|))) -((-3747 (((-644 (-2 (|:| |frac| (-409 |#2|)) (|:| -2470 (-654 |#2| (-409 |#2|))))) (-654 |#2| (-409 |#2|)) (-1 (-420 |#2|) |#2|)) 47)) (-1824 (((-644 (-409 |#2|)) (-654 |#2| (-409 |#2|)) (-1 (-420 |#2|) |#2|)) 171 (|has| |#1| (-27))) (((-644 (-409 |#2|)) (-654 |#2| (-409 |#2|))) 168 (|has| |#1| (-27))) (((-644 (-409 |#2|)) (-653 (-409 |#2|)) (-1 (-420 |#2|) |#2|)) 172 (|has| |#1| (-27))) (((-644 (-409 |#2|)) (-653 (-409 |#2|))) 170 (|has| |#1| (-27))) (((-644 (-409 |#2|)) (-654 |#2| (-409 |#2|)) (-1 (-644 |#1|) |#2|) (-1 (-420 |#2|) |#2|)) 38) (((-644 (-409 |#2|)) (-654 |#2| (-409 |#2|)) (-1 (-644 |#1|) |#2|)) 39) (((-644 (-409 |#2|)) (-653 (-409 |#2|)) (-1 (-644 |#1|) |#2|) (-1 (-420 |#2|) |#2|)) 36) (((-644 (-409 |#2|)) (-653 (-409 |#2|)) (-1 (-644 |#1|) |#2|)) 37)) (-2549 (((-644 (-2 (|:| |poly| |#2|) (|:| -2470 (-654 |#2| (-409 |#2|))))) (-654 |#2| (-409 |#2|)) (-1 (-644 |#1|) |#2|)) 99))) -(((-812 |#1| |#2|) (-10 -7 (-15 -1824 ((-644 (-409 |#2|)) (-653 (-409 |#2|)) (-1 (-644 |#1|) |#2|))) (-15 -1824 ((-644 (-409 |#2|)) (-653 (-409 |#2|)) (-1 (-644 |#1|) |#2|) (-1 (-420 |#2|) |#2|))) (-15 -1824 ((-644 (-409 |#2|)) (-654 |#2| (-409 |#2|)) (-1 (-644 |#1|) |#2|))) (-15 -1824 ((-644 (-409 |#2|)) (-654 |#2| (-409 |#2|)) (-1 (-644 |#1|) |#2|) (-1 (-420 |#2|) |#2|))) (-15 -3747 ((-644 (-2 (|:| |frac| (-409 |#2|)) (|:| -2470 (-654 |#2| (-409 |#2|))))) (-654 |#2| (-409 |#2|)) (-1 (-420 |#2|) |#2|))) (-15 -2549 ((-644 (-2 (|:| |poly| |#2|) (|:| -2470 (-654 |#2| (-409 |#2|))))) (-654 |#2| (-409 |#2|)) (-1 (-644 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1824 ((-644 (-409 |#2|)) (-653 (-409 |#2|)))) (-15 -1824 ((-644 (-409 |#2|)) (-653 (-409 |#2|)) (-1 (-420 |#2|) |#2|))) (-15 -1824 ((-644 (-409 |#2|)) (-654 |#2| (-409 |#2|)))) (-15 -1824 ((-644 (-409 |#2|)) (-654 |#2| (-409 |#2|)) (-1 (-420 |#2|) |#2|)))) |%noBranch|)) (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566)))) (-1240 |#1|)) (T -812)) -((-1824 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *6 (-409 *6))) (-5 *4 (-1 (-420 *6) *6)) (-4 *6 (-1240 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-5 *2 (-644 (-409 *6))) (-5 *1 (-812 *5 *6)))) (-1824 (*1 *2 *3) (-12 (-5 *3 (-654 *5 (-409 *5))) (-4 *5 (-1240 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-5 *2 (-644 (-409 *5))) (-5 *1 (-812 *4 *5)))) (-1824 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-409 *6))) (-5 *4 (-1 (-420 *6) *6)) (-4 *6 (-1240 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-5 *2 (-644 (-409 *6))) (-5 *1 (-812 *5 *6)))) (-1824 (*1 *2 *3) (-12 (-5 *3 (-653 (-409 *5))) (-4 *5 (-1240 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-5 *2 (-644 (-409 *5))) (-5 *1 (-812 *4 *5)))) (-2549 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-644 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-4 *6 (-1240 *5)) (-5 *2 (-644 (-2 (|:| |poly| *6) (|:| -2470 (-654 *6 (-409 *6)))))) (-5 *1 (-812 *5 *6)) (-5 *3 (-654 *6 (-409 *6))))) (-3747 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-420 *6) *6)) (-4 *6 (-1240 *5)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-5 *2 (-644 (-2 (|:| |frac| (-409 *6)) (|:| -2470 (-654 *6 (-409 *6)))))) (-5 *1 (-812 *5 *6)) (-5 *3 (-654 *6 (-409 *6))))) (-1824 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 *7 (-409 *7))) (-5 *4 (-1 (-644 *6) *7)) (-5 *5 (-1 (-420 *7) *7)) (-4 *6 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-4 *7 (-1240 *6)) (-5 *2 (-644 (-409 *7))) (-5 *1 (-812 *6 *7)))) (-1824 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *6 (-409 *6))) (-5 *4 (-1 (-644 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-4 *6 (-1240 *5)) (-5 *2 (-644 (-409 *6))) (-5 *1 (-812 *5 *6)))) (-1824 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-653 (-409 *7))) (-5 *4 (-1 (-644 *6) *7)) (-5 *5 (-1 (-420 *7) *7)) (-4 *6 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-4 *7 (-1240 *6)) (-5 *2 (-644 (-409 *7))) (-5 *1 (-812 *6 *7)))) (-1824 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-409 *6))) (-5 *4 (-1 (-644 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-4 *6 (-1240 *5)) (-5 *2 (-644 (-409 *6))) (-5 *1 (-812 *5 *6))))) -(-10 -7 (-15 -1824 ((-644 (-409 |#2|)) (-653 (-409 |#2|)) (-1 (-644 |#1|) |#2|))) (-15 -1824 ((-644 (-409 |#2|)) (-653 (-409 |#2|)) (-1 (-644 |#1|) |#2|) (-1 (-420 |#2|) |#2|))) (-15 -1824 ((-644 (-409 |#2|)) (-654 |#2| (-409 |#2|)) (-1 (-644 |#1|) |#2|))) (-15 -1824 ((-644 (-409 |#2|)) (-654 |#2| (-409 |#2|)) (-1 (-644 |#1|) |#2|) (-1 (-420 |#2|) |#2|))) (-15 -3747 ((-644 (-2 (|:| |frac| (-409 |#2|)) (|:| -2470 (-654 |#2| (-409 |#2|))))) (-654 |#2| (-409 |#2|)) (-1 (-420 |#2|) |#2|))) (-15 -2549 ((-644 (-2 (|:| |poly| |#2|) (|:| -2470 (-654 |#2| (-409 |#2|))))) (-654 |#2| (-409 |#2|)) (-1 (-644 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1824 ((-644 (-409 |#2|)) (-653 (-409 |#2|)))) (-15 -1824 ((-644 (-409 |#2|)) (-653 (-409 |#2|)) (-1 (-420 |#2|) |#2|))) (-15 -1824 ((-644 (-409 |#2|)) (-654 |#2| (-409 |#2|)))) (-15 -1824 ((-644 (-409 |#2|)) (-654 |#2| (-409 |#2|)) (-1 (-420 |#2|) |#2|)))) |%noBranch|)) -((-3999 (((-2 (|:| -4227 (-689 |#2|)) (|:| |vec| (-1264 |#1|))) (-689 |#2|) (-1264 |#1|)) 110) (((-2 (|:| A (-689 |#1|)) (|:| |eqs| (-644 (-2 (|:| C (-689 |#1|)) (|:| |g| (-1264 |#1|)) (|:| -2470 |#2|) (|:| |rh| |#1|))))) (-689 |#1|) (-1264 |#1|)) 15)) (-3929 (((-2 (|:| |particular| (-3 (-1264 |#1|) "failed")) (|:| -2365 (-644 (-1264 |#1|)))) (-689 |#2|) (-1264 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2365 (-644 |#1|))) |#2| |#1|)) 116)) (-1957 (((-3 (-2 (|:| |particular| (-1264 |#1|)) (|:| -2365 (-689 |#1|))) "failed") (-689 |#1|) (-1264 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2365 (-644 |#1|))) "failed") |#2| |#1|)) 52))) -(((-813 |#1| |#2|) (-10 -7 (-15 -3999 ((-2 (|:| A (-689 |#1|)) (|:| |eqs| (-644 (-2 (|:| C (-689 |#1|)) (|:| |g| (-1264 |#1|)) (|:| -2470 |#2|) (|:| |rh| |#1|))))) (-689 |#1|) (-1264 |#1|))) (-15 -3999 ((-2 (|:| -4227 (-689 |#2|)) (|:| |vec| (-1264 |#1|))) (-689 |#2|) (-1264 |#1|))) (-15 -1957 ((-3 (-2 (|:| |particular| (-1264 |#1|)) (|:| -2365 (-689 |#1|))) "failed") (-689 |#1|) (-1264 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2365 (-644 |#1|))) "failed") |#2| |#1|))) (-15 -3929 ((-2 (|:| |particular| (-3 (-1264 |#1|) "failed")) (|:| -2365 (-644 (-1264 |#1|)))) (-689 |#2|) (-1264 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2365 (-644 |#1|))) |#2| |#1|)))) (-365) (-656 |#1|)) (T -813)) -((-3929 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-689 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2365 (-644 *6))) *7 *6)) (-4 *6 (-365)) (-4 *7 (-656 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1264 *6) "failed")) (|:| -2365 (-644 (-1264 *6))))) (-5 *1 (-813 *6 *7)) (-5 *4 (-1264 *6)))) (-1957 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2365 (-644 *6))) "failed") *7 *6)) (-4 *6 (-365)) (-4 *7 (-656 *6)) (-5 *2 (-2 (|:| |particular| (-1264 *6)) (|:| -2365 (-689 *6)))) (-5 *1 (-813 *6 *7)) (-5 *3 (-689 *6)) (-5 *4 (-1264 *6)))) (-3999 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-656 *5)) (-5 *2 (-2 (|:| -4227 (-689 *6)) (|:| |vec| (-1264 *5)))) (-5 *1 (-813 *5 *6)) (-5 *3 (-689 *6)) (-5 *4 (-1264 *5)))) (-3999 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-5 *2 (-2 (|:| A (-689 *5)) (|:| |eqs| (-644 (-2 (|:| C (-689 *5)) (|:| |g| (-1264 *5)) (|:| -2470 *6) (|:| |rh| *5)))))) (-5 *1 (-813 *5 *6)) (-5 *3 (-689 *5)) (-5 *4 (-1264 *5)) (-4 *6 (-656 *5))))) -(-10 -7 (-15 -3999 ((-2 (|:| A (-689 |#1|)) (|:| |eqs| (-644 (-2 (|:| C (-689 |#1|)) (|:| |g| (-1264 |#1|)) (|:| -2470 |#2|) (|:| |rh| |#1|))))) (-689 |#1|) (-1264 |#1|))) (-15 -3999 ((-2 (|:| -4227 (-689 |#2|)) (|:| |vec| (-1264 |#1|))) (-689 |#2|) (-1264 |#1|))) (-15 -1957 ((-3 (-2 (|:| |particular| (-1264 |#1|)) (|:| -2365 (-689 |#1|))) "failed") (-689 |#1|) (-1264 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2365 (-644 |#1|))) "failed") |#2| |#1|))) (-15 -3929 ((-2 (|:| |particular| (-3 (-1264 |#1|) "failed")) (|:| -2365 (-644 (-1264 |#1|)))) (-689 |#2|) (-1264 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2365 (-644 |#1|))) |#2| |#1|)))) -((-2926 (((-689 |#1|) (-644 |#1|) (-771)) 14) (((-689 |#1|) (-644 |#1|)) 15)) (-3954 (((-3 (-1264 |#1|) "failed") |#2| |#1| (-644 |#1|)) 39)) (-3132 (((-3 |#1| "failed") |#2| |#1| (-644 |#1|) (-1 |#1| |#1|)) 46))) -(((-814 |#1| |#2|) (-10 -7 (-15 -2926 ((-689 |#1|) (-644 |#1|))) (-15 -2926 ((-689 |#1|) (-644 |#1|) (-771))) (-15 -3954 ((-3 (-1264 |#1|) "failed") |#2| |#1| (-644 |#1|))) (-15 -3132 ((-3 |#1| "failed") |#2| |#1| (-644 |#1|) (-1 |#1| |#1|)))) (-365) (-656 |#1|)) (T -814)) -((-3132 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-644 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-365)) (-5 *1 (-814 *2 *3)) (-4 *3 (-656 *2)))) (-3954 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-644 *4)) (-4 *4 (-365)) (-5 *2 (-1264 *4)) (-5 *1 (-814 *4 *3)) (-4 *3 (-656 *4)))) (-2926 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *5)) (-5 *4 (-771)) (-4 *5 (-365)) (-5 *2 (-689 *5)) (-5 *1 (-814 *5 *6)) (-4 *6 (-656 *5)))) (-2926 (*1 *2 *3) (-12 (-5 *3 (-644 *4)) (-4 *4 (-365)) (-5 *2 (-689 *4)) (-5 *1 (-814 *4 *5)) (-4 *5 (-656 *4))))) -(-10 -7 (-15 -2926 ((-689 |#1|) (-644 |#1|))) (-15 -2926 ((-689 |#1|) (-644 |#1|) (-771))) (-15 -3954 ((-3 (-1264 |#1|) "failed") |#2| |#1| (-644 |#1|))) (-15 -3132 ((-3 |#1| "failed") |#2| |#1| (-644 |#1|) (-1 |#1| |#1|)))) -((-3007 (((-112) $ $) NIL (|has| |#2| (-1099)))) (-1788 (((-112) $) NIL (|has| |#2| (-131)))) (-4348 (($ (-921)) NIL (|has| |#2| (-1049)))) (-3734 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4415)))) (-2660 (($ $ $) NIL (|has| |#2| (-793)))) (-4175 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-2256 (((-112) $ (-771)) NIL)) (-1970 (((-771)) NIL (|has| |#2| (-370)))) (-4364 (((-566) $) NIL (|has| |#2| (-848)))) (-3923 ((|#2| $ (-566) |#2|) NIL (|has| $ (-6 -4415)))) (-3012 (($) NIL T CONST)) (-4307 (((-3 (-566) "failed") $) NIL (-12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099)))) (((-3 (-409 (-566)) "failed") $) NIL (-12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1099)))) (-4205 (((-566) $) NIL (-12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099)))) (((-409 (-566)) $) NIL (-12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) ((|#2| $) NIL (|has| |#2| (-1099)))) (-3577 (((-689 (-566)) (-689 $)) NIL (-12 (|has| |#2| (-639 (-566))) (|has| |#2| (-1049)))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (-12 (|has| |#2| (-639 (-566))) (|has| |#2| (-1049)))) (((-2 (|:| -4227 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 $) (-1264 $)) NIL (|has| |#2| (-1049))) (((-689 |#2|) (-689 $)) NIL (|has| |#2| (-1049)))) (-1878 (((-3 $ "failed") $) NIL (|has| |#2| (-726)))) (-1552 (($) NIL (|has| |#2| (-370)))) (-2920 ((|#2| $ (-566) |#2|) NIL (|has| $ (-6 -4415)))) (-2855 ((|#2| $ (-566)) NIL)) (-1897 (((-112) $) NIL (|has| |#2| (-848)))) (-3979 (((-644 |#2|) $) NIL (|has| $ (-6 -4414)))) (-3934 (((-112) $) NIL (|has| |#2| (-726)))) (-2117 (((-112) $) NIL (|has| |#2| (-848)))) (-2404 (((-112) $ (-771)) NIL)) (-3854 (((-566) $) NIL (|has| (-566) (-850)))) (-2097 (($ $ $) NIL (-2809 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-2329 (((-644 |#2|) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099))))) (-2712 (((-566) $) NIL (|has| (-566) (-850)))) (-3962 (($ $ $) NIL (-2809 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-2908 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#2| |#2|) $) NIL)) (-3681 (((-921) $) NIL (|has| |#2| (-370)))) (-2603 (((-112) $ (-771)) NIL)) (-4117 (((-1157) $) NIL (|has| |#2| (-1099)))) (-4074 (((-644 (-566)) $) NIL)) (-3792 (((-112) (-566) $) NIL)) (-2178 (($ (-921)) NIL (|has| |#2| (-370)))) (-4035 (((-1119) $) NIL (|has| |#2| (-1099)))) (-1998 ((|#2| $) NIL (|has| (-566) (-850)))) (-4030 (($ $ |#2|) NIL (|has| $ (-6 -4415)))) (-2692 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-1932 (((-112) $ $) NIL)) (-4156 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099))))) (-2993 (((-644 |#2|) $) NIL)) (-3467 (((-112) $) NIL)) (-1494 (($) NIL)) (-4390 ((|#2| $ (-566) |#2|) NIL) ((|#2| $ (-566)) NIL)) (-4280 ((|#2| $ $) NIL (|has| |#2| (-1049)))) (-3764 (($ (-1264 |#2|)) NIL)) (-3164 (((-134)) NIL (|has| |#2| (-365)))) (-3561 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-771)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-1175)) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1 |#2| |#2|) (-771)) NIL (|has| |#2| (-1049))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1049)))) (-4045 (((-771) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414))) (((-771) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099))))) (-3940 (($ $) NIL)) (-3783 (((-1264 |#2|) $) NIL) (($ (-566)) NIL (-2809 (-12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099))) (|has| |#2| (-1049)))) (($ (-409 (-566))) NIL (-12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) (($ |#2|) NIL (|has| |#2| (-1099))) (((-862) $) NIL (|has| |#2| (-613 (-862))))) (-2107 (((-771)) NIL (|has| |#2| (-1049)) CONST)) (-3117 (((-112) $ $) NIL (|has| |#2| (-1099)))) (-1894 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414)))) (-2086 (($ $) NIL (|has| |#2| (-848)))) (-2479 (($) NIL (|has| |#2| (-131)) CONST)) (-4334 (($) NIL (|has| |#2| (-726)) CONST)) (-2875 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-771)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-1175)) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1 |#2| |#2|) (-771)) NIL (|has| |#2| (-1049))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1049)))) (-3009 (((-112) $ $) NIL (-2809 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-2984 (((-112) $ $) NIL (-2809 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-2947 (((-112) $ $) NIL (|has| |#2| (-1099)))) (-2995 (((-112) $ $) NIL (-2809 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-2969 (((-112) $ $) 11 (-2809 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-3065 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3053 (($ $ $) NIL (|has| |#2| (-1049))) (($ $) NIL (|has| |#2| (-1049)))) (-3041 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-771)) NIL (|has| |#2| (-726))) (($ $ (-921)) NIL (|has| |#2| (-726)))) (* (($ (-566) $) NIL (|has| |#2| (-1049))) (($ $ $) NIL (|has| |#2| (-726))) (($ $ |#2|) NIL (|has| |#2| (-726))) (($ |#2| $) NIL (|has| |#2| (-726))) (($ (-771) $) NIL (|has| |#2| (-131))) (($ (-921) $) NIL (|has| |#2| (-25)))) (-3018 (((-771) $) NIL (|has| $ (-6 -4414))))) +((-2647 (((-2 (|:| |particular| |#2|) (|:| -2875 (-644 |#2|))) |#3| |#2| (-1175)) 19))) +(((-801 |#1| |#2| |#3|) (-10 -7 (-15 -2647 ((-2 (|:| |particular| |#2|) (|:| -2875 (-644 |#2|))) |#3| |#2| (-1175)))) (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147)) (-13 (-29 |#1|) (-1199) (-959)) (-656 |#2|)) (T -801)) +((-2647 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1175)) (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-4 *4 (-13 (-29 *6) (-1199) (-959))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2875 (-644 *4)))) (-5 *1 (-801 *6 *4 *3)) (-4 *3 (-656 *4))))) +(-10 -7 (-15 -2647 ((-2 (|:| |particular| |#2|) (|:| -2875 (-644 |#2|))) |#3| |#2| (-1175)))) +((-2423 (((-3 |#2| "failed") |#2| (-114) (-295 |#2|) (-644 |#2|)) 28) (((-3 |#2| "failed") (-295 |#2|) (-114) (-295 |#2|) (-644 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -2875 (-644 |#2|))) |#2| "failed") |#2| (-114) (-1175)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -2875 (-644 |#2|))) |#2| "failed") (-295 |#2|) (-114) (-1175)) 18) (((-3 (-2 (|:| |particular| (-1264 |#2|)) (|:| -2875 (-644 (-1264 |#2|)))) "failed") (-644 |#2|) (-644 (-114)) (-1175)) 24) (((-3 (-2 (|:| |particular| (-1264 |#2|)) (|:| -2875 (-644 (-1264 |#2|)))) "failed") (-644 (-295 |#2|)) (-644 (-114)) (-1175)) 26) (((-3 (-644 (-1264 |#2|)) "failed") (-689 |#2|) (-1175)) 37) (((-3 (-2 (|:| |particular| (-1264 |#2|)) (|:| -2875 (-644 (-1264 |#2|)))) "failed") (-689 |#2|) (-1264 |#2|) (-1175)) 35))) +(((-802 |#1| |#2|) (-10 -7 (-15 -2423 ((-3 (-2 (|:| |particular| (-1264 |#2|)) (|:| -2875 (-644 (-1264 |#2|)))) "failed") (-689 |#2|) (-1264 |#2|) (-1175))) (-15 -2423 ((-3 (-644 (-1264 |#2|)) "failed") (-689 |#2|) (-1175))) (-15 -2423 ((-3 (-2 (|:| |particular| (-1264 |#2|)) (|:| -2875 (-644 (-1264 |#2|)))) "failed") (-644 (-295 |#2|)) (-644 (-114)) (-1175))) (-15 -2423 ((-3 (-2 (|:| |particular| (-1264 |#2|)) (|:| -2875 (-644 (-1264 |#2|)))) "failed") (-644 |#2|) (-644 (-114)) (-1175))) (-15 -2423 ((-3 (-2 (|:| |particular| |#2|) (|:| -2875 (-644 |#2|))) |#2| "failed") (-295 |#2|) (-114) (-1175))) (-15 -2423 ((-3 (-2 (|:| |particular| |#2|) (|:| -2875 (-644 |#2|))) |#2| "failed") |#2| (-114) (-1175))) (-15 -2423 ((-3 |#2| "failed") (-295 |#2|) (-114) (-295 |#2|) (-644 |#2|))) (-15 -2423 ((-3 |#2| "failed") |#2| (-114) (-295 |#2|) (-644 |#2|)))) (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147)) (-13 (-29 |#1|) (-1199) (-959))) (T -802)) +((-2423 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-295 *2)) (-5 *5 (-644 *2)) (-4 *2 (-13 (-29 *6) (-1199) (-959))) (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *1 (-802 *6 *2)))) (-2423 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-295 *2)) (-5 *4 (-114)) (-5 *5 (-644 *2)) (-4 *2 (-13 (-29 *6) (-1199) (-959))) (-5 *1 (-802 *6 *2)) (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))))) (-2423 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-5 *5 (-1175)) (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2875 (-644 *3))) *3 "failed")) (-5 *1 (-802 *6 *3)) (-4 *3 (-13 (-29 *6) (-1199) (-959))))) (-2423 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-295 *7)) (-5 *4 (-114)) (-5 *5 (-1175)) (-4 *7 (-13 (-29 *6) (-1199) (-959))) (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2875 (-644 *7))) *7 "failed")) (-5 *1 (-802 *6 *7)))) (-2423 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-644 *7)) (-5 *4 (-644 (-114))) (-5 *5 (-1175)) (-4 *7 (-13 (-29 *6) (-1199) (-959))) (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *2 (-2 (|:| |particular| (-1264 *7)) (|:| -2875 (-644 (-1264 *7))))) (-5 *1 (-802 *6 *7)))) (-2423 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-644 (-295 *7))) (-5 *4 (-644 (-114))) (-5 *5 (-1175)) (-4 *7 (-13 (-29 *6) (-1199) (-959))) (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *2 (-2 (|:| |particular| (-1264 *7)) (|:| -2875 (-644 (-1264 *7))))) (-5 *1 (-802 *6 *7)))) (-2423 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-689 *6)) (-5 *4 (-1175)) (-4 *6 (-13 (-29 *5) (-1199) (-959))) (-4 *5 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *2 (-644 (-1264 *6))) (-5 *1 (-802 *5 *6)))) (-2423 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-689 *7)) (-5 *5 (-1175)) (-4 *7 (-13 (-29 *6) (-1199) (-959))) (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *2 (-2 (|:| |particular| (-1264 *7)) (|:| -2875 (-644 (-1264 *7))))) (-5 *1 (-802 *6 *7)) (-5 *4 (-1264 *7))))) +(-10 -7 (-15 -2423 ((-3 (-2 (|:| |particular| (-1264 |#2|)) (|:| -2875 (-644 (-1264 |#2|)))) "failed") (-689 |#2|) (-1264 |#2|) (-1175))) (-15 -2423 ((-3 (-644 (-1264 |#2|)) "failed") (-689 |#2|) (-1175))) (-15 -2423 ((-3 (-2 (|:| |particular| (-1264 |#2|)) (|:| -2875 (-644 (-1264 |#2|)))) "failed") (-644 (-295 |#2|)) (-644 (-114)) (-1175))) (-15 -2423 ((-3 (-2 (|:| |particular| (-1264 |#2|)) (|:| -2875 (-644 (-1264 |#2|)))) "failed") (-644 |#2|) (-644 (-114)) (-1175))) (-15 -2423 ((-3 (-2 (|:| |particular| |#2|) (|:| -2875 (-644 |#2|))) |#2| "failed") (-295 |#2|) (-114) (-1175))) (-15 -2423 ((-3 (-2 (|:| |particular| |#2|) (|:| -2875 (-644 |#2|))) |#2| "failed") |#2| (-114) (-1175))) (-15 -2423 ((-3 |#2| "failed") (-295 |#2|) (-114) (-295 |#2|) (-644 |#2|))) (-15 -2423 ((-3 |#2| "failed") |#2| (-114) (-295 |#2|) (-644 |#2|)))) +((-1491 (($) 9)) (-2565 (((-3 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 31)) (-4052 (((-644 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $) 28)) (-3888 (($ (-2 (|:| -2674 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2636 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))))) 25)) (-3634 (($ (-644 (-2 (|:| -2674 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2636 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))))) 23)) (-4155 (((-1269)) 12))) +(((-803) (-10 -8 (-15 -1491 ($)) (-15 -4155 ((-1269))) (-15 -4052 ((-644 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -3634 ($ (-644 (-2 (|:| -2674 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2636 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))))))) (-15 -3888 ($ (-2 (|:| -2674 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2636 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))))) (-15 -2565 ((-3 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -803)) +((-2565 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))) (-5 *1 (-803)))) (-3888 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2674 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2636 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))))) (-5 *1 (-803)))) (-3634 (*1 *1 *2) (-12 (-5 *2 (-644 (-2 (|:| -2674 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2636 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))))) (-5 *1 (-803)))) (-4052 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-5 *1 (-803)))) (-4155 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-803)))) (-1491 (*1 *1) (-5 *1 (-803)))) +(-10 -8 (-15 -1491 ($)) (-15 -4155 ((-1269))) (-15 -4052 ((-644 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -3634 ($ (-644 (-2 (|:| -2674 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2636 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))))))) (-15 -3888 ($ (-2 (|:| -2674 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2636 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))))) (-15 -2565 ((-3 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) +((-2590 ((|#2| |#2| (-1175)) 17)) (-2394 ((|#2| |#2| (-1175)) 56)) (-2195 (((-1 |#2| |#2|) (-1175)) 11))) +(((-804 |#1| |#2|) (-10 -7 (-15 -2590 (|#2| |#2| (-1175))) (-15 -2394 (|#2| |#2| (-1175))) (-15 -2195 ((-1 |#2| |#2|) (-1175)))) (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147)) (-13 (-29 |#1|) (-1199) (-959))) (T -804)) +((-2195 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *2 (-1 *5 *5)) (-5 *1 (-804 *4 *5)) (-4 *5 (-13 (-29 *4) (-1199) (-959))))) (-2394 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *1 (-804 *4 *2)) (-4 *2 (-13 (-29 *4) (-1199) (-959))))) (-2590 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *1 (-804 *4 *2)) (-4 *2 (-13 (-29 *4) (-1199) (-959)))))) +(-10 -7 (-15 -2590 (|#2| |#2| (-1175))) (-15 -2394 (|#2| |#2| (-1175))) (-15 -2195 ((-1 |#2| |#2|) (-1175)))) +((-2423 (((-1035) (-1264 (-317 (-381))) (-381) (-381) (-644 (-381)) (-317 (-381)) (-644 (-381)) (-381) (-381)) 131) (((-1035) (-1264 (-317 (-381))) (-381) (-381) (-644 (-381)) (-317 (-381)) (-644 (-381)) (-381)) 132) (((-1035) (-1264 (-317 (-381))) (-381) (-381) (-644 (-381)) (-644 (-381)) (-381)) 134) (((-1035) (-1264 (-317 (-381))) (-381) (-381) (-644 (-381)) (-317 (-381)) (-381)) 136) (((-1035) (-1264 (-317 (-381))) (-381) (-381) (-644 (-381)) (-381)) 137) (((-1035) (-1264 (-317 (-381))) (-381) (-381) (-644 (-381))) 139) (((-1035) (-808) (-1062)) 123) (((-1035) (-808)) 124)) (-2659 (((-2 (|:| -2659 (-381)) (|:| -1368 (-1157)) (|:| |explanations| (-644 (-1157)))) (-808) (-1062)) 83) (((-2 (|:| -2659 (-381)) (|:| -1368 (-1157)) (|:| |explanations| (-644 (-1157)))) (-808)) 85))) +(((-805) (-10 -7 (-15 -2423 ((-1035) (-808))) (-15 -2423 ((-1035) (-808) (-1062))) (-15 -2423 ((-1035) (-1264 (-317 (-381))) (-381) (-381) (-644 (-381)))) (-15 -2423 ((-1035) (-1264 (-317 (-381))) (-381) (-381) (-644 (-381)) (-381))) (-15 -2423 ((-1035) (-1264 (-317 (-381))) (-381) (-381) (-644 (-381)) (-317 (-381)) (-381))) (-15 -2423 ((-1035) (-1264 (-317 (-381))) (-381) (-381) (-644 (-381)) (-644 (-381)) (-381))) (-15 -2423 ((-1035) (-1264 (-317 (-381))) (-381) (-381) (-644 (-381)) (-317 (-381)) (-644 (-381)) (-381))) (-15 -2423 ((-1035) (-1264 (-317 (-381))) (-381) (-381) (-644 (-381)) (-317 (-381)) (-644 (-381)) (-381) (-381))) (-15 -2659 ((-2 (|:| -2659 (-381)) (|:| -1368 (-1157)) (|:| |explanations| (-644 (-1157)))) (-808))) (-15 -2659 ((-2 (|:| -2659 (-381)) (|:| -1368 (-1157)) (|:| |explanations| (-644 (-1157)))) (-808) (-1062))))) (T -805)) +((-2659 (*1 *2 *3 *4) (-12 (-5 *3 (-808)) (-5 *4 (-1062)) (-5 *2 (-2 (|:| -2659 (-381)) (|:| -1368 (-1157)) (|:| |explanations| (-644 (-1157))))) (-5 *1 (-805)))) (-2659 (*1 *2 *3) (-12 (-5 *3 (-808)) (-5 *2 (-2 (|:| -2659 (-381)) (|:| -1368 (-1157)) (|:| |explanations| (-644 (-1157))))) (-5 *1 (-805)))) (-2423 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1264 (-317 *4))) (-5 *5 (-644 (-381))) (-5 *6 (-317 (-381))) (-5 *4 (-381)) (-5 *2 (-1035)) (-5 *1 (-805)))) (-2423 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1264 (-317 *4))) (-5 *5 (-644 (-381))) (-5 *6 (-317 (-381))) (-5 *4 (-381)) (-5 *2 (-1035)) (-5 *1 (-805)))) (-2423 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1264 (-317 (-381)))) (-5 *4 (-381)) (-5 *5 (-644 *4)) (-5 *2 (-1035)) (-5 *1 (-805)))) (-2423 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1264 (-317 *4))) (-5 *5 (-644 (-381))) (-5 *6 (-317 (-381))) (-5 *4 (-381)) (-5 *2 (-1035)) (-5 *1 (-805)))) (-2423 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1264 (-317 (-381)))) (-5 *4 (-381)) (-5 *5 (-644 *4)) (-5 *2 (-1035)) (-5 *1 (-805)))) (-2423 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1264 (-317 (-381)))) (-5 *4 (-381)) (-5 *5 (-644 *4)) (-5 *2 (-1035)) (-5 *1 (-805)))) (-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-808)) (-5 *4 (-1062)) (-5 *2 (-1035)) (-5 *1 (-805)))) (-2423 (*1 *2 *3) (-12 (-5 *3 (-808)) (-5 *2 (-1035)) (-5 *1 (-805))))) +(-10 -7 (-15 -2423 ((-1035) (-808))) (-15 -2423 ((-1035) (-808) (-1062))) (-15 -2423 ((-1035) (-1264 (-317 (-381))) (-381) (-381) (-644 (-381)))) (-15 -2423 ((-1035) (-1264 (-317 (-381))) (-381) (-381) (-644 (-381)) (-381))) (-15 -2423 ((-1035) (-1264 (-317 (-381))) (-381) (-381) (-644 (-381)) (-317 (-381)) (-381))) (-15 -2423 ((-1035) (-1264 (-317 (-381))) (-381) (-381) (-644 (-381)) (-644 (-381)) (-381))) (-15 -2423 ((-1035) (-1264 (-317 (-381))) (-381) (-381) (-644 (-381)) (-317 (-381)) (-644 (-381)) (-381))) (-15 -2423 ((-1035) (-1264 (-317 (-381))) (-381) (-381) (-644 (-381)) (-317 (-381)) (-644 (-381)) (-381) (-381))) (-15 -2659 ((-2 (|:| -2659 (-381)) (|:| -1368 (-1157)) (|:| |explanations| (-644 (-1157)))) (-808))) (-15 -2659 ((-2 (|:| -2659 (-381)) (|:| -1368 (-1157)) (|:| |explanations| (-644 (-1157)))) (-808) (-1062)))) +((-3731 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2875 (-644 |#4|))) (-653 |#4|) |#4|) 35))) +(((-806 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3731 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2875 (-644 |#4|))) (-653 |#4|) |#4|))) (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566)))) (-1240 |#1|) (-1240 (-409 |#2|)) (-344 |#1| |#2| |#3|)) (T -806)) +((-3731 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *4)) (-4 *4 (-344 *5 *6 *7)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-4 *6 (-1240 *5)) (-4 *7 (-1240 (-409 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2875 (-644 *4)))) (-5 *1 (-806 *5 *6 *7 *4))))) +(-10 -7 (-15 -3731 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2875 (-644 |#4|))) (-653 |#4|) |#4|))) +((-4367 (((-2 (|:| -3434 |#3|) (|:| |rh| (-644 (-409 |#2|)))) |#4| (-644 (-409 |#2|))) 53)) (-4210 (((-644 (-2 (|:| -4290 |#2|) (|:| -1335 |#2|))) |#4| |#2|) 62) (((-644 (-2 (|:| -4290 |#2|) (|:| -1335 |#2|))) |#4|) 61) (((-644 (-2 (|:| -4290 |#2|) (|:| -1335 |#2|))) |#3| |#2|) 20) (((-644 (-2 (|:| -4290 |#2|) (|:| -1335 |#2|))) |#3|) 21)) (-2109 ((|#2| |#4| |#1|) 63) ((|#2| |#3| |#1|) 28)) (-4247 ((|#2| |#3| (-644 (-409 |#2|))) 113) (((-3 |#2| "failed") |#3| (-409 |#2|)) 109))) +(((-807 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4247 ((-3 |#2| "failed") |#3| (-409 |#2|))) (-15 -4247 (|#2| |#3| (-644 (-409 |#2|)))) (-15 -4210 ((-644 (-2 (|:| -4290 |#2|) (|:| -1335 |#2|))) |#3|)) (-15 -4210 ((-644 (-2 (|:| -4290 |#2|) (|:| -1335 |#2|))) |#3| |#2|)) (-15 -2109 (|#2| |#3| |#1|)) (-15 -4210 ((-644 (-2 (|:| -4290 |#2|) (|:| -1335 |#2|))) |#4|)) (-15 -4210 ((-644 (-2 (|:| -4290 |#2|) (|:| -1335 |#2|))) |#4| |#2|)) (-15 -2109 (|#2| |#4| |#1|)) (-15 -4367 ((-2 (|:| -3434 |#3|) (|:| |rh| (-644 (-409 |#2|)))) |#4| (-644 (-409 |#2|))))) (-13 (-365) (-147) (-1038 (-409 (-566)))) (-1240 |#1|) (-656 |#2|) (-656 (-409 |#2|))) (T -807)) +((-4367 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *6 (-1240 *5)) (-5 *2 (-2 (|:| -3434 *7) (|:| |rh| (-644 (-409 *6))))) (-5 *1 (-807 *5 *6 *7 *3)) (-5 *4 (-644 (-409 *6))) (-4 *7 (-656 *6)) (-4 *3 (-656 (-409 *6))))) (-2109 (*1 *2 *3 *4) (-12 (-4 *2 (-1240 *4)) (-5 *1 (-807 *4 *2 *5 *3)) (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *5 (-656 *2)) (-4 *3 (-656 (-409 *2))))) (-4210 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *4 (-1240 *5)) (-5 *2 (-644 (-2 (|:| -4290 *4) (|:| -1335 *4)))) (-5 *1 (-807 *5 *4 *6 *3)) (-4 *6 (-656 *4)) (-4 *3 (-656 (-409 *4))))) (-4210 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *5 (-1240 *4)) (-5 *2 (-644 (-2 (|:| -4290 *5) (|:| -1335 *5)))) (-5 *1 (-807 *4 *5 *6 *3)) (-4 *6 (-656 *5)) (-4 *3 (-656 (-409 *5))))) (-2109 (*1 *2 *3 *4) (-12 (-4 *2 (-1240 *4)) (-5 *1 (-807 *4 *2 *3 *5)) (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *3 (-656 *2)) (-4 *5 (-656 (-409 *2))))) (-4210 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *4 (-1240 *5)) (-5 *2 (-644 (-2 (|:| -4290 *4) (|:| -1335 *4)))) (-5 *1 (-807 *5 *4 *3 *6)) (-4 *3 (-656 *4)) (-4 *6 (-656 (-409 *4))))) (-4210 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *5 (-1240 *4)) (-5 *2 (-644 (-2 (|:| -4290 *5) (|:| -1335 *5)))) (-5 *1 (-807 *4 *5 *3 *6)) (-4 *3 (-656 *5)) (-4 *6 (-656 (-409 *5))))) (-4247 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-409 *2))) (-4 *2 (-1240 *5)) (-5 *1 (-807 *5 *2 *3 *6)) (-4 *5 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *3 (-656 *2)) (-4 *6 (-656 (-409 *2))))) (-4247 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-409 *2)) (-4 *2 (-1240 *5)) (-5 *1 (-807 *5 *2 *3 *6)) (-4 *5 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *3 (-656 *2)) (-4 *6 (-656 *4))))) +(-10 -7 (-15 -4247 ((-3 |#2| "failed") |#3| (-409 |#2|))) (-15 -4247 (|#2| |#3| (-644 (-409 |#2|)))) (-15 -4210 ((-644 (-2 (|:| -4290 |#2|) (|:| -1335 |#2|))) |#3|)) (-15 -4210 ((-644 (-2 (|:| -4290 |#2|) (|:| -1335 |#2|))) |#3| |#2|)) (-15 -2109 (|#2| |#3| |#1|)) (-15 -4210 ((-644 (-2 (|:| -4290 |#2|) (|:| -1335 |#2|))) |#4|)) (-15 -4210 ((-644 (-2 (|:| -4290 |#2|) (|:| -1335 |#2|))) |#4| |#2|)) (-15 -2109 (|#2| |#4| |#1|)) (-15 -4367 ((-2 (|:| -3434 |#3|) (|:| |rh| (-644 (-409 |#2|)))) |#4| (-644 (-409 |#2|))))) +((-2988 (((-112) $ $) NIL)) (-4158 (((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $) 13)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 15) (($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 12)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) +(((-808) (-13 (-1099) (-10 -8 (-15 -3152 ($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4158 ((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $))))) (T -808)) +((-3152 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-808)))) (-4158 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-808))))) +(-13 (-1099) (-10 -8 (-15 -3152 ($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4158 ((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $)))) +((-3932 (((-644 (-2 (|:| |frac| (-409 |#2|)) (|:| -3434 |#3|))) |#3| (-1 (-644 |#2|) |#2| (-1171 |#2|)) (-1 (-420 |#2|) |#2|)) 157)) (-1626 (((-644 (-2 (|:| |poly| |#2|) (|:| -3434 |#3|))) |#3| (-1 (-644 |#1|) |#2|)) 56)) (-1681 (((-644 (-2 (|:| |deg| (-771)) (|:| -3434 |#2|))) |#3|) 127)) (-4007 ((|#2| |#3|) 45)) (-2409 (((-644 (-2 (|:| -1623 |#1|) (|:| -3434 |#3|))) |#3| (-1 (-644 |#1|) |#2|)) 105)) (-2479 ((|#3| |#3| (-409 |#2|)) 76) ((|#3| |#3| |#2|) 102))) +(((-809 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4007 (|#2| |#3|)) (-15 -1681 ((-644 (-2 (|:| |deg| (-771)) (|:| -3434 |#2|))) |#3|)) (-15 -2409 ((-644 (-2 (|:| -1623 |#1|) (|:| -3434 |#3|))) |#3| (-1 (-644 |#1|) |#2|))) (-15 -1626 ((-644 (-2 (|:| |poly| |#2|) (|:| -3434 |#3|))) |#3| (-1 (-644 |#1|) |#2|))) (-15 -3932 ((-644 (-2 (|:| |frac| (-409 |#2|)) (|:| -3434 |#3|))) |#3| (-1 (-644 |#2|) |#2| (-1171 |#2|)) (-1 (-420 |#2|) |#2|))) (-15 -2479 (|#3| |#3| |#2|)) (-15 -2479 (|#3| |#3| (-409 |#2|)))) (-13 (-365) (-147) (-1038 (-409 (-566)))) (-1240 |#1|) (-656 |#2|) (-656 (-409 |#2|))) (T -809)) +((-2479 (*1 *2 *2 *3) (-12 (-5 *3 (-409 *5)) (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *5 (-1240 *4)) (-5 *1 (-809 *4 *5 *2 *6)) (-4 *2 (-656 *5)) (-4 *6 (-656 *3)))) (-2479 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *3 (-1240 *4)) (-5 *1 (-809 *4 *3 *2 *5)) (-4 *2 (-656 *3)) (-4 *5 (-656 (-409 *3))))) (-3932 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-644 *7) *7 (-1171 *7))) (-5 *5 (-1 (-420 *7) *7)) (-4 *7 (-1240 *6)) (-4 *6 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-5 *2 (-644 (-2 (|:| |frac| (-409 *7)) (|:| -3434 *3)))) (-5 *1 (-809 *6 *7 *3 *8)) (-4 *3 (-656 *7)) (-4 *8 (-656 (-409 *7))))) (-1626 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-644 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *6 (-1240 *5)) (-5 *2 (-644 (-2 (|:| |poly| *6) (|:| -3434 *3)))) (-5 *1 (-809 *5 *6 *3 *7)) (-4 *3 (-656 *6)) (-4 *7 (-656 (-409 *6))))) (-2409 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-644 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *6 (-1240 *5)) (-5 *2 (-644 (-2 (|:| -1623 *5) (|:| -3434 *3)))) (-5 *1 (-809 *5 *6 *3 *7)) (-4 *3 (-656 *6)) (-4 *7 (-656 (-409 *6))))) (-1681 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *5 (-1240 *4)) (-5 *2 (-644 (-2 (|:| |deg| (-771)) (|:| -3434 *5)))) (-5 *1 (-809 *4 *5 *3 *6)) (-4 *3 (-656 *5)) (-4 *6 (-656 (-409 *5))))) (-4007 (*1 *2 *3) (-12 (-4 *2 (-1240 *4)) (-5 *1 (-809 *4 *2 *3 *5)) (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *3 (-656 *2)) (-4 *5 (-656 (-409 *2)))))) +(-10 -7 (-15 -4007 (|#2| |#3|)) (-15 -1681 ((-644 (-2 (|:| |deg| (-771)) (|:| -3434 |#2|))) |#3|)) (-15 -2409 ((-644 (-2 (|:| -1623 |#1|) (|:| -3434 |#3|))) |#3| (-1 (-644 |#1|) |#2|))) (-15 -1626 ((-644 (-2 (|:| |poly| |#2|) (|:| -3434 |#3|))) |#3| (-1 (-644 |#1|) |#2|))) (-15 -3932 ((-644 (-2 (|:| |frac| (-409 |#2|)) (|:| -3434 |#3|))) |#3| (-1 (-644 |#2|) |#2| (-1171 |#2|)) (-1 (-420 |#2|) |#2|))) (-15 -2479 (|#3| |#3| |#2|)) (-15 -2479 (|#3| |#3| (-409 |#2|)))) +((-2445 (((-2 (|:| -2875 (-644 (-409 |#2|))) (|:| -3361 (-689 |#1|))) (-654 |#2| (-409 |#2|)) (-644 (-409 |#2|))) 149) (((-2 (|:| |particular| (-3 (-409 |#2|) "failed")) (|:| -2875 (-644 (-409 |#2|)))) (-654 |#2| (-409 |#2|)) (-409 |#2|)) 148) (((-2 (|:| -2875 (-644 (-409 |#2|))) (|:| -3361 (-689 |#1|))) (-653 (-409 |#2|)) (-644 (-409 |#2|))) 143) (((-2 (|:| |particular| (-3 (-409 |#2|) "failed")) (|:| -2875 (-644 (-409 |#2|)))) (-653 (-409 |#2|)) (-409 |#2|)) 141)) (-3190 ((|#2| (-654 |#2| (-409 |#2|))) 89) ((|#2| (-653 (-409 |#2|))) 92))) +(((-810 |#1| |#2|) (-10 -7 (-15 -2445 ((-2 (|:| |particular| (-3 (-409 |#2|) "failed")) (|:| -2875 (-644 (-409 |#2|)))) (-653 (-409 |#2|)) (-409 |#2|))) (-15 -2445 ((-2 (|:| -2875 (-644 (-409 |#2|))) (|:| -3361 (-689 |#1|))) (-653 (-409 |#2|)) (-644 (-409 |#2|)))) (-15 -2445 ((-2 (|:| |particular| (-3 (-409 |#2|) "failed")) (|:| -2875 (-644 (-409 |#2|)))) (-654 |#2| (-409 |#2|)) (-409 |#2|))) (-15 -2445 ((-2 (|:| -2875 (-644 (-409 |#2|))) (|:| -3361 (-689 |#1|))) (-654 |#2| (-409 |#2|)) (-644 (-409 |#2|)))) (-15 -3190 (|#2| (-653 (-409 |#2|)))) (-15 -3190 (|#2| (-654 |#2| (-409 |#2|))))) (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566)))) (-1240 |#1|)) (T -810)) +((-3190 (*1 *2 *3) (-12 (-5 *3 (-654 *2 (-409 *2))) (-4 *2 (-1240 *4)) (-5 *1 (-810 *4 *2)) (-4 *4 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))))) (-3190 (*1 *2 *3) (-12 (-5 *3 (-653 (-409 *2))) (-4 *2 (-1240 *4)) (-5 *1 (-810 *4 *2)) (-4 *4 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))))) (-2445 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *6 (-409 *6))) (-4 *6 (-1240 *5)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-5 *2 (-2 (|:| -2875 (-644 (-409 *6))) (|:| -3361 (-689 *5)))) (-5 *1 (-810 *5 *6)) (-5 *4 (-644 (-409 *6))))) (-2445 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *6 (-409 *6))) (-5 *4 (-409 *6)) (-4 *6 (-1240 *5)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2875 (-644 *4)))) (-5 *1 (-810 *5 *6)))) (-2445 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-409 *6))) (-4 *6 (-1240 *5)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-5 *2 (-2 (|:| -2875 (-644 (-409 *6))) (|:| -3361 (-689 *5)))) (-5 *1 (-810 *5 *6)) (-5 *4 (-644 (-409 *6))))) (-2445 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-409 *6))) (-5 *4 (-409 *6)) (-4 *6 (-1240 *5)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2875 (-644 *4)))) (-5 *1 (-810 *5 *6))))) +(-10 -7 (-15 -2445 ((-2 (|:| |particular| (-3 (-409 |#2|) "failed")) (|:| -2875 (-644 (-409 |#2|)))) (-653 (-409 |#2|)) (-409 |#2|))) (-15 -2445 ((-2 (|:| -2875 (-644 (-409 |#2|))) (|:| -3361 (-689 |#1|))) (-653 (-409 |#2|)) (-644 (-409 |#2|)))) (-15 -2445 ((-2 (|:| |particular| (-3 (-409 |#2|) "failed")) (|:| -2875 (-644 (-409 |#2|)))) (-654 |#2| (-409 |#2|)) (-409 |#2|))) (-15 -2445 ((-2 (|:| -2875 (-644 (-409 |#2|))) (|:| -3361 (-689 |#1|))) (-654 |#2| (-409 |#2|)) (-644 (-409 |#2|)))) (-15 -3190 (|#2| (-653 (-409 |#2|)))) (-15 -3190 (|#2| (-654 |#2| (-409 |#2|))))) +((-2575 (((-2 (|:| -3361 (-689 |#2|)) (|:| |vec| (-1264 |#1|))) |#5| |#4|) 52))) +(((-811 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2575 ((-2 (|:| -3361 (-689 |#2|)) (|:| |vec| (-1264 |#1|))) |#5| |#4|))) (-365) (-656 |#1|) (-1240 |#1|) (-724 |#1| |#3|) (-656 |#4|)) (T -811)) +((-2575 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *7 (-1240 *5)) (-4 *4 (-724 *5 *7)) (-5 *2 (-2 (|:| -3361 (-689 *6)) (|:| |vec| (-1264 *5)))) (-5 *1 (-811 *5 *6 *7 *4 *3)) (-4 *6 (-656 *5)) (-4 *3 (-656 *4))))) +(-10 -7 (-15 -2575 ((-2 (|:| -3361 (-689 |#2|)) (|:| |vec| (-1264 |#1|))) |#5| |#4|))) +((-3932 (((-644 (-2 (|:| |frac| (-409 |#2|)) (|:| -3434 (-654 |#2| (-409 |#2|))))) (-654 |#2| (-409 |#2|)) (-1 (-420 |#2|) |#2|)) 47)) (-1501 (((-644 (-409 |#2|)) (-654 |#2| (-409 |#2|)) (-1 (-420 |#2|) |#2|)) 171 (|has| |#1| (-27))) (((-644 (-409 |#2|)) (-654 |#2| (-409 |#2|))) 168 (|has| |#1| (-27))) (((-644 (-409 |#2|)) (-653 (-409 |#2|)) (-1 (-420 |#2|) |#2|)) 172 (|has| |#1| (-27))) (((-644 (-409 |#2|)) (-653 (-409 |#2|))) 170 (|has| |#1| (-27))) (((-644 (-409 |#2|)) (-654 |#2| (-409 |#2|)) (-1 (-644 |#1|) |#2|) (-1 (-420 |#2|) |#2|)) 38) (((-644 (-409 |#2|)) (-654 |#2| (-409 |#2|)) (-1 (-644 |#1|) |#2|)) 39) (((-644 (-409 |#2|)) (-653 (-409 |#2|)) (-1 (-644 |#1|) |#2|) (-1 (-420 |#2|) |#2|)) 36) (((-644 (-409 |#2|)) (-653 (-409 |#2|)) (-1 (-644 |#1|) |#2|)) 37)) (-1626 (((-644 (-2 (|:| |poly| |#2|) (|:| -3434 (-654 |#2| (-409 |#2|))))) (-654 |#2| (-409 |#2|)) (-1 (-644 |#1|) |#2|)) 99))) +(((-812 |#1| |#2|) (-10 -7 (-15 -1501 ((-644 (-409 |#2|)) (-653 (-409 |#2|)) (-1 (-644 |#1|) |#2|))) (-15 -1501 ((-644 (-409 |#2|)) (-653 (-409 |#2|)) (-1 (-644 |#1|) |#2|) (-1 (-420 |#2|) |#2|))) (-15 -1501 ((-644 (-409 |#2|)) (-654 |#2| (-409 |#2|)) (-1 (-644 |#1|) |#2|))) (-15 -1501 ((-644 (-409 |#2|)) (-654 |#2| (-409 |#2|)) (-1 (-644 |#1|) |#2|) (-1 (-420 |#2|) |#2|))) (-15 -3932 ((-644 (-2 (|:| |frac| (-409 |#2|)) (|:| -3434 (-654 |#2| (-409 |#2|))))) (-654 |#2| (-409 |#2|)) (-1 (-420 |#2|) |#2|))) (-15 -1626 ((-644 (-2 (|:| |poly| |#2|) (|:| -3434 (-654 |#2| (-409 |#2|))))) (-654 |#2| (-409 |#2|)) (-1 (-644 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1501 ((-644 (-409 |#2|)) (-653 (-409 |#2|)))) (-15 -1501 ((-644 (-409 |#2|)) (-653 (-409 |#2|)) (-1 (-420 |#2|) |#2|))) (-15 -1501 ((-644 (-409 |#2|)) (-654 |#2| (-409 |#2|)))) (-15 -1501 ((-644 (-409 |#2|)) (-654 |#2| (-409 |#2|)) (-1 (-420 |#2|) |#2|)))) |%noBranch|)) (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566)))) (-1240 |#1|)) (T -812)) +((-1501 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *6 (-409 *6))) (-5 *4 (-1 (-420 *6) *6)) (-4 *6 (-1240 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-5 *2 (-644 (-409 *6))) (-5 *1 (-812 *5 *6)))) (-1501 (*1 *2 *3) (-12 (-5 *3 (-654 *5 (-409 *5))) (-4 *5 (-1240 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-5 *2 (-644 (-409 *5))) (-5 *1 (-812 *4 *5)))) (-1501 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-409 *6))) (-5 *4 (-1 (-420 *6) *6)) (-4 *6 (-1240 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-5 *2 (-644 (-409 *6))) (-5 *1 (-812 *5 *6)))) (-1501 (*1 *2 *3) (-12 (-5 *3 (-653 (-409 *5))) (-4 *5 (-1240 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-5 *2 (-644 (-409 *5))) (-5 *1 (-812 *4 *5)))) (-1626 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-644 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-4 *6 (-1240 *5)) (-5 *2 (-644 (-2 (|:| |poly| *6) (|:| -3434 (-654 *6 (-409 *6)))))) (-5 *1 (-812 *5 *6)) (-5 *3 (-654 *6 (-409 *6))))) (-3932 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-420 *6) *6)) (-4 *6 (-1240 *5)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-5 *2 (-644 (-2 (|:| |frac| (-409 *6)) (|:| -3434 (-654 *6 (-409 *6)))))) (-5 *1 (-812 *5 *6)) (-5 *3 (-654 *6 (-409 *6))))) (-1501 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 *7 (-409 *7))) (-5 *4 (-1 (-644 *6) *7)) (-5 *5 (-1 (-420 *7) *7)) (-4 *6 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-4 *7 (-1240 *6)) (-5 *2 (-644 (-409 *7))) (-5 *1 (-812 *6 *7)))) (-1501 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *6 (-409 *6))) (-5 *4 (-1 (-644 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-4 *6 (-1240 *5)) (-5 *2 (-644 (-409 *6))) (-5 *1 (-812 *5 *6)))) (-1501 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-653 (-409 *7))) (-5 *4 (-1 (-644 *6) *7)) (-5 *5 (-1 (-420 *7) *7)) (-4 *6 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-4 *7 (-1240 *6)) (-5 *2 (-644 (-409 *7))) (-5 *1 (-812 *6 *7)))) (-1501 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-409 *6))) (-5 *4 (-1 (-644 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-4 *6 (-1240 *5)) (-5 *2 (-644 (-409 *6))) (-5 *1 (-812 *5 *6))))) +(-10 -7 (-15 -1501 ((-644 (-409 |#2|)) (-653 (-409 |#2|)) (-1 (-644 |#1|) |#2|))) (-15 -1501 ((-644 (-409 |#2|)) (-653 (-409 |#2|)) (-1 (-644 |#1|) |#2|) (-1 (-420 |#2|) |#2|))) (-15 -1501 ((-644 (-409 |#2|)) (-654 |#2| (-409 |#2|)) (-1 (-644 |#1|) |#2|))) (-15 -1501 ((-644 (-409 |#2|)) (-654 |#2| (-409 |#2|)) (-1 (-644 |#1|) |#2|) (-1 (-420 |#2|) |#2|))) (-15 -3932 ((-644 (-2 (|:| |frac| (-409 |#2|)) (|:| -3434 (-654 |#2| (-409 |#2|))))) (-654 |#2| (-409 |#2|)) (-1 (-420 |#2|) |#2|))) (-15 -1626 ((-644 (-2 (|:| |poly| |#2|) (|:| -3434 (-654 |#2| (-409 |#2|))))) (-654 |#2| (-409 |#2|)) (-1 (-644 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1501 ((-644 (-409 |#2|)) (-653 (-409 |#2|)))) (-15 -1501 ((-644 (-409 |#2|)) (-653 (-409 |#2|)) (-1 (-420 |#2|) |#2|))) (-15 -1501 ((-644 (-409 |#2|)) (-654 |#2| (-409 |#2|)))) (-15 -1501 ((-644 (-409 |#2|)) (-654 |#2| (-409 |#2|)) (-1 (-420 |#2|) |#2|)))) |%noBranch|)) +((-1834 (((-2 (|:| -3361 (-689 |#2|)) (|:| |vec| (-1264 |#1|))) (-689 |#2|) (-1264 |#1|)) 110) (((-2 (|:| A (-689 |#1|)) (|:| |eqs| (-644 (-2 (|:| C (-689 |#1|)) (|:| |g| (-1264 |#1|)) (|:| -3434 |#2|) (|:| |rh| |#1|))))) (-689 |#1|) (-1264 |#1|)) 15)) (-3115 (((-2 (|:| |particular| (-3 (-1264 |#1|) "failed")) (|:| -2875 (-644 (-1264 |#1|)))) (-689 |#2|) (-1264 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2875 (-644 |#1|))) |#2| |#1|)) 116)) (-2423 (((-3 (-2 (|:| |particular| (-1264 |#1|)) (|:| -2875 (-689 |#1|))) "failed") (-689 |#1|) (-1264 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2875 (-644 |#1|))) "failed") |#2| |#1|)) 52))) +(((-813 |#1| |#2|) (-10 -7 (-15 -1834 ((-2 (|:| A (-689 |#1|)) (|:| |eqs| (-644 (-2 (|:| C (-689 |#1|)) (|:| |g| (-1264 |#1|)) (|:| -3434 |#2|) (|:| |rh| |#1|))))) (-689 |#1|) (-1264 |#1|))) (-15 -1834 ((-2 (|:| -3361 (-689 |#2|)) (|:| |vec| (-1264 |#1|))) (-689 |#2|) (-1264 |#1|))) (-15 -2423 ((-3 (-2 (|:| |particular| (-1264 |#1|)) (|:| -2875 (-689 |#1|))) "failed") (-689 |#1|) (-1264 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2875 (-644 |#1|))) "failed") |#2| |#1|))) (-15 -3115 ((-2 (|:| |particular| (-3 (-1264 |#1|) "failed")) (|:| -2875 (-644 (-1264 |#1|)))) (-689 |#2|) (-1264 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2875 (-644 |#1|))) |#2| |#1|)))) (-365) (-656 |#1|)) (T -813)) +((-3115 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-689 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2875 (-644 *6))) *7 *6)) (-4 *6 (-365)) (-4 *7 (-656 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1264 *6) "failed")) (|:| -2875 (-644 (-1264 *6))))) (-5 *1 (-813 *6 *7)) (-5 *4 (-1264 *6)))) (-2423 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2875 (-644 *6))) "failed") *7 *6)) (-4 *6 (-365)) (-4 *7 (-656 *6)) (-5 *2 (-2 (|:| |particular| (-1264 *6)) (|:| -2875 (-689 *6)))) (-5 *1 (-813 *6 *7)) (-5 *3 (-689 *6)) (-5 *4 (-1264 *6)))) (-1834 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-656 *5)) (-5 *2 (-2 (|:| -3361 (-689 *6)) (|:| |vec| (-1264 *5)))) (-5 *1 (-813 *5 *6)) (-5 *3 (-689 *6)) (-5 *4 (-1264 *5)))) (-1834 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-5 *2 (-2 (|:| A (-689 *5)) (|:| |eqs| (-644 (-2 (|:| C (-689 *5)) (|:| |g| (-1264 *5)) (|:| -3434 *6) (|:| |rh| *5)))))) (-5 *1 (-813 *5 *6)) (-5 *3 (-689 *5)) (-5 *4 (-1264 *5)) (-4 *6 (-656 *5))))) +(-10 -7 (-15 -1834 ((-2 (|:| A (-689 |#1|)) (|:| |eqs| (-644 (-2 (|:| C (-689 |#1|)) (|:| |g| (-1264 |#1|)) (|:| -3434 |#2|) (|:| |rh| |#1|))))) (-689 |#1|) (-1264 |#1|))) (-15 -1834 ((-2 (|:| -3361 (-689 |#2|)) (|:| |vec| (-1264 |#1|))) (-689 |#2|) (-1264 |#1|))) (-15 -2423 ((-3 (-2 (|:| |particular| (-1264 |#1|)) (|:| -2875 (-689 |#1|))) "failed") (-689 |#1|) (-1264 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2875 (-644 |#1|))) "failed") |#2| |#1|))) (-15 -3115 ((-2 (|:| |particular| (-3 (-1264 |#1|) "failed")) (|:| -2875 (-644 (-1264 |#1|)))) (-689 |#2|) (-1264 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2875 (-644 |#1|))) |#2| |#1|)))) +((-2678 (((-689 |#1|) (-644 |#1|) (-771)) 14) (((-689 |#1|) (-644 |#1|)) 15)) (-1693 (((-3 (-1264 |#1|) "failed") |#2| |#1| (-644 |#1|)) 39)) (-3894 (((-3 |#1| "failed") |#2| |#1| (-644 |#1|) (-1 |#1| |#1|)) 46))) +(((-814 |#1| |#2|) (-10 -7 (-15 -2678 ((-689 |#1|) (-644 |#1|))) (-15 -2678 ((-689 |#1|) (-644 |#1|) (-771))) (-15 -1693 ((-3 (-1264 |#1|) "failed") |#2| |#1| (-644 |#1|))) (-15 -3894 ((-3 |#1| "failed") |#2| |#1| (-644 |#1|) (-1 |#1| |#1|)))) (-365) (-656 |#1|)) (T -814)) +((-3894 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-644 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-365)) (-5 *1 (-814 *2 *3)) (-4 *3 (-656 *2)))) (-1693 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-644 *4)) (-4 *4 (-365)) (-5 *2 (-1264 *4)) (-5 *1 (-814 *4 *3)) (-4 *3 (-656 *4)))) (-2678 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *5)) (-5 *4 (-771)) (-4 *5 (-365)) (-5 *2 (-689 *5)) (-5 *1 (-814 *5 *6)) (-4 *6 (-656 *5)))) (-2678 (*1 *2 *3) (-12 (-5 *3 (-644 *4)) (-4 *4 (-365)) (-5 *2 (-689 *4)) (-5 *1 (-814 *4 *5)) (-4 *5 (-656 *4))))) +(-10 -7 (-15 -2678 ((-689 |#1|) (-644 |#1|))) (-15 -2678 ((-689 |#1|) (-644 |#1|) (-771))) (-15 -1693 ((-3 (-1264 |#1|) "failed") |#2| |#1| (-644 |#1|))) (-15 -3894 ((-3 |#1| "failed") |#2| |#1| (-644 |#1|) (-1 |#1| |#1|)))) +((-2988 (((-112) $ $) NIL (|has| |#2| (-1099)))) (-3230 (((-112) $) NIL (|has| |#2| (-131)))) (-1570 (($ (-921)) NIL (|has| |#2| (-1049)))) (-1944 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4415)))) (-3920 (($ $ $) NIL (|has| |#2| (-793)))) (-3967 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-1504 (((-112) $ (-771)) NIL)) (-3870 (((-771)) NIL (|has| |#2| (-370)))) (-2743 (((-566) $) NIL (|has| |#2| (-848)))) (-1456 ((|#2| $ (-566) |#2|) NIL (|has| $ (-6 -4415)))) (-2463 (($) NIL T CONST)) (-2229 (((-3 (-566) "failed") $) NIL (-12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099)))) (((-3 (-409 (-566)) "failed") $) NIL (-12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1099)))) (-4158 (((-566) $) NIL (-12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099)))) (((-409 (-566)) $) NIL (-12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) ((|#2| $) NIL (|has| |#2| (-1099)))) (-4089 (((-689 (-566)) (-689 $)) NIL (-12 (|has| |#2| (-639 (-566))) (|has| |#2| (-1049)))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (-12 (|has| |#2| (-639 (-566))) (|has| |#2| (-1049)))) (((-2 (|:| -3361 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 $) (-1264 $)) NIL (|has| |#2| (-1049))) (((-689 |#2|) (-689 $)) NIL (|has| |#2| (-1049)))) (-3245 (((-3 $ "failed") $) NIL (|has| |#2| (-726)))) (-2715 (($) NIL (|has| |#2| (-370)))) (-3897 ((|#2| $ (-566) |#2|) NIL (|has| $ (-6 -4415)))) (-3829 ((|#2| $ (-566)) NIL)) (-2528 (((-112) $) NIL (|has| |#2| (-848)))) (-1683 (((-644 |#2|) $) NIL (|has| $ (-6 -4414)))) (-2389 (((-112) $) NIL (|has| |#2| (-726)))) (-3233 (((-112) $) NIL (|has| |#2| (-848)))) (-3456 (((-112) $ (-771)) NIL)) (-2296 (((-566) $) NIL (|has| (-566) (-850)))) (-1478 (($ $ $) NIL (-2768 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-3491 (((-644 |#2|) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099))))) (-4050 (((-566) $) NIL (|has| (-566) (-850)))) (-2599 (($ $ $) NIL (-2768 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-3885 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#2| |#2|) $) NIL)) (-1866 (((-921) $) NIL (|has| |#2| (-370)))) (-3267 (((-112) $ (-771)) NIL)) (-3380 (((-1157) $) NIL (|has| |#2| (-1099)))) (-3725 (((-644 (-566)) $) NIL)) (-1644 (((-112) (-566) $) NIL)) (-2835 (($ (-921)) NIL (|has| |#2| (-370)))) (-4072 (((-1119) $) NIL (|has| |#2| (-1099)))) (-3908 ((|#2| $) NIL (|has| (-566) (-850)))) (-3787 (($ $ |#2|) NIL (|has| $ (-6 -4415)))) (-2823 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-3814 (((-112) $ $) NIL)) (-2847 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099))))) (-3486 (((-644 |#2|) $) NIL)) (-2872 (((-112) $) NIL)) (-3493 (($) NIL)) (-1309 ((|#2| $ (-566) |#2|) NIL) ((|#2| $ (-566)) NIL)) (-3386 ((|#2| $ $) NIL (|has| |#2| (-1049)))) (-1668 (($ (-1264 |#2|)) NIL)) (-3126 (((-134)) NIL (|has| |#2| (-365)))) (-3629 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-771)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-1175)) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1 |#2| |#2|) (-771)) NIL (|has| |#2| (-1049))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1049)))) (-4083 (((-771) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414))) (((-771) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099))))) (-1480 (($ $) NIL)) (-3152 (((-1264 |#2|) $) NIL) (($ (-566)) NIL (-2768 (-12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099))) (|has| |#2| (-1049)))) (($ (-409 (-566))) NIL (-12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) (($ |#2|) NIL (|has| |#2| (-1099))) (((-862) $) NIL (|has| |#2| (-613 (-862))))) (-2593 (((-771)) NIL (|has| |#2| (-1049)) CONST)) (-3044 (((-112) $ $) NIL (|has| |#2| (-1099)))) (-2210 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414)))) (-1358 (($ $) NIL (|has| |#2| (-848)))) (-4356 (($) NIL (|has| |#2| (-131)) CONST)) (-4366 (($) NIL (|has| |#2| (-726)) CONST)) (-3497 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-771)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-1175)) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1 |#2| |#2|) (-771)) NIL (|has| |#2| (-1049))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1049)))) (-2968 (((-112) $ $) NIL (-2768 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-2946 (((-112) $ $) NIL (-2768 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-2914 (((-112) $ $) NIL (|has| |#2| (-1099)))) (-2956 (((-112) $ $) NIL (-2768 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-2935 (((-112) $ $) 11 (-2768 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-3025 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3012 (($ $ $) NIL (|has| |#2| (-1049))) (($ $) NIL (|has| |#2| (-1049)))) (-3002 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-771)) NIL (|has| |#2| (-726))) (($ $ (-921)) NIL (|has| |#2| (-726)))) (* (($ (-566) $) NIL (|has| |#2| (-1049))) (($ $ $) NIL (|has| |#2| (-726))) (($ $ |#2|) NIL (|has| |#2| (-726))) (($ |#2| $) NIL (|has| |#2| (-726))) (($ (-771) $) NIL (|has| |#2| (-131))) (($ (-921) $) NIL (|has| |#2| (-25)))) (-3000 (((-771) $) NIL (|has| $ (-6 -4414))))) (((-815 |#1| |#2| |#3|) (-238 |#1| |#2|) (-771) (-793) (-1 (-112) (-1264 |#2|) (-1264 |#2|))) (T -815)) NIL (-238 |#1| |#2|) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-2430 (((-644 (-771)) $) NIL) (((-644 (-771)) $ (-1175)) NIL)) (-1617 (((-771) $) NIL) (((-771) $ (-1175)) NIL)) (-3863 (((-644 (-818 (-1175))) $) NIL)) (-3683 (((-1171 $) $ (-818 (-1175))) NIL) (((-1171 |#1|) $) NIL)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-3991 (($ $) NIL (|has| |#1| (-558)))) (-2388 (((-112) $) NIL (|has| |#1| (-558)))) (-3367 (((-771) $) NIL) (((-771) $ (-644 (-818 (-1175)))) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-1477 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-1550 (($ $) NIL (|has| |#1| (-454)))) (-3184 (((-420 $) $) NIL (|has| |#1| (-454)))) (-3717 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-1644 (($ $) NIL)) (-3012 (($) NIL T CONST)) (-4307 (((-3 |#1| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-818 (-1175)) "failed") $) NIL) (((-3 (-1175) "failed") $) NIL) (((-3 (-1124 |#1| (-1175)) "failed") $) NIL)) (-4205 ((|#1| $) NIL) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-818 (-1175)) $) NIL) (((-1175) $) NIL) (((-1124 |#1| (-1175)) $) NIL)) (-2738 (($ $ $ (-818 (-1175))) NIL (|has| |#1| (-172)))) (-1786 (($ $) NIL)) (-3577 (((-689 (-566)) (-689 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -4227 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) NIL) (((-689 |#1|) (-689 $)) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-4075 (($ $) NIL (|has| |#1| (-454))) (($ $ (-818 (-1175))) NIL (|has| |#1| (-454)))) (-1774 (((-644 $) $) NIL)) (-3268 (((-112) $) NIL (|has| |#1| (-909)))) (-3635 (($ $ |#1| (-533 (-818 (-1175))) $) NIL)) (-2062 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| (-818 (-1175)) (-886 (-381))) (|has| |#1| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| (-818 (-1175)) (-886 (-566))) (|has| |#1| (-886 (-566)))))) (-3254 (((-771) $ (-1175)) NIL) (((-771) $) NIL)) (-3934 (((-112) $) NIL)) (-2614 (((-771) $) NIL)) (-3851 (($ (-1171 |#1|) (-818 (-1175))) NIL) (($ (-1171 $) (-818 (-1175))) NIL)) (-2288 (((-644 $) $) NIL)) (-3264 (((-112) $) NIL)) (-3840 (($ |#1| (-533 (-818 (-1175)))) NIL) (($ $ (-818 (-1175)) (-771)) NIL) (($ $ (-644 (-818 (-1175))) (-644 (-771))) NIL)) (-2044 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $ (-818 (-1175))) NIL)) (-3760 (((-533 (-818 (-1175))) $) NIL) (((-771) $ (-818 (-1175))) NIL) (((-644 (-771)) $ (-644 (-818 (-1175)))) NIL)) (-4301 (($ (-1 (-533 (-818 (-1175))) (-533 (-818 (-1175)))) $) NIL)) (-1301 (($ (-1 |#1| |#1|) $) NIL)) (-4151 (((-1 $ (-771)) (-1175)) NIL) (((-1 $ (-771)) $) NIL (|has| |#1| (-233)))) (-3169 (((-3 (-818 (-1175)) "failed") $) NIL)) (-1749 (($ $) NIL)) (-1763 ((|#1| $) NIL)) (-2886 (((-818 (-1175)) $) NIL)) (-2167 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-4117 (((-1157) $) NIL)) (-3843 (((-112) $) NIL)) (-3714 (((-3 (-644 $) "failed") $) NIL)) (-2353 (((-3 (-644 $) "failed") $) NIL)) (-1518 (((-3 (-2 (|:| |var| (-818 (-1175))) (|:| -2852 (-771))) "failed") $) NIL)) (-2780 (($ $) NIL)) (-4035 (((-1119) $) NIL)) (-1723 (((-112) $) NIL)) (-1736 ((|#1| $) NIL)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-454)))) (-2214 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-4303 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-3240 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-3719 (((-420 $) $) NIL (|has| |#1| (-909)))) (-2994 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-2055 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-818 (-1175)) |#1|) NIL) (($ $ (-644 (-818 (-1175))) (-644 |#1|)) NIL) (($ $ (-818 (-1175)) $) NIL) (($ $ (-644 (-818 (-1175))) (-644 $)) NIL) (($ $ (-1175) $) NIL (|has| |#1| (-233))) (($ $ (-644 (-1175)) (-644 $)) NIL (|has| |#1| (-233))) (($ $ (-1175) |#1|) NIL (|has| |#1| (-233))) (($ $ (-644 (-1175)) (-644 |#1|)) NIL (|has| |#1| (-233)))) (-3652 (($ $ (-818 (-1175))) NIL (|has| |#1| (-172)))) (-3561 (($ $ (-818 (-1175))) NIL) (($ $ (-644 (-818 (-1175)))) NIL) (($ $ (-818 (-1175)) (-771)) NIL) (($ $ (-644 (-818 (-1175))) (-644 (-771))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4110 (((-644 (-1175)) $) NIL)) (-3636 (((-533 (-818 (-1175))) $) NIL) (((-771) $ (-818 (-1175))) NIL) (((-644 (-771)) $ (-644 (-818 (-1175)))) NIL) (((-771) $ (-1175)) NIL)) (-1348 (((-892 (-381)) $) NIL (-12 (|has| (-818 (-1175)) (-614 (-892 (-381)))) (|has| |#1| (-614 (-892 (-381)))))) (((-892 (-566)) $) NIL (-12 (|has| (-818 (-1175)) (-614 (-892 (-566)))) (|has| |#1| (-614 (-892 (-566)))))) (((-538) $) NIL (-12 (|has| (-818 (-1175)) (-614 (-538))) (|has| |#1| (-614 (-538)))))) (-2483 ((|#1| $) NIL (|has| |#1| (-454))) (($ $ (-818 (-1175))) NIL (|has| |#1| (-454)))) (-1656 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-909))))) (-3783 (((-862) $) NIL) (($ (-566)) NIL) (($ |#1|) NIL) (($ (-818 (-1175))) NIL) (($ (-1175)) NIL) (($ (-1124 |#1| (-1175))) NIL) (($ (-409 (-566))) NIL (-2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566)))))) (($ $) NIL (|has| |#1| (-558)))) (-4170 (((-644 |#1|) $) NIL)) (-2649 ((|#1| $ (-533 (-818 (-1175)))) NIL) (($ $ (-818 (-1175)) (-771)) NIL) (($ $ (-644 (-818 (-1175))) (-644 (-771))) NIL)) (-3144 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| $ (-145)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-2107 (((-771)) NIL T CONST)) (-3362 (($ $ $ (-771)) NIL (|has| |#1| (-172)))) (-3117 (((-112) $ $) NIL)) (-2695 (((-112) $ $) NIL (|has| |#1| (-558)))) (-2479 (($) NIL T CONST)) (-4334 (($) NIL T CONST)) (-2875 (($ $ (-818 (-1175))) NIL) (($ $ (-644 (-818 (-1175)))) NIL) (($ $ (-818 (-1175)) (-771)) NIL) (($ $ (-644 (-818 (-1175))) (-644 (-771))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2947 (((-112) $ $) NIL)) (-3065 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-1825 (((-644 (-771)) $) NIL) (((-644 (-771)) $ (-1175)) NIL)) (-1784 (((-771) $) NIL) (((-771) $ (-1175)) NIL)) (-1771 (((-644 (-818 (-1175))) $) NIL)) (-1590 (((-1171 $) $ (-818 (-1175))) NIL) (((-1171 |#1|) $) NIL)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-2161 (($ $) NIL (|has| |#1| (-558)))) (-2345 (((-112) $) NIL (|has| |#1| (-558)))) (-1357 (((-771) $) NIL) (((-771) $ (-644 (-818 (-1175)))) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-2292 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-1378 (($ $) NIL (|has| |#1| (-454)))) (-1364 (((-420 $) $) NIL (|has| |#1| (-454)))) (-4066 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-1559 (($ $) NIL)) (-2463 (($) NIL T CONST)) (-2229 (((-3 |#1| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-818 (-1175)) "failed") $) NIL) (((-3 (-1175) "failed") $) NIL) (((-3 (-1124 |#1| (-1175)) "failed") $) NIL)) (-4158 ((|#1| $) NIL) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-818 (-1175)) $) NIL) (((-1175) $) NIL) (((-1124 |#1| (-1175)) $) NIL)) (-2610 (($ $ $ (-818 (-1175))) NIL (|has| |#1| (-172)))) (-2814 (($ $) NIL)) (-4089 (((-689 (-566)) (-689 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -3361 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) NIL) (((-689 |#1|) (-689 $)) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-2616 (($ $) NIL (|has| |#1| (-454))) (($ $ (-818 (-1175))) NIL (|has| |#1| (-454)))) (-2804 (((-644 $) $) NIL)) (-1615 (((-112) $) NIL (|has| |#1| (-909)))) (-1896 (($ $ |#1| (-533 (-818 (-1175))) $) NIL)) (-2926 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| (-818 (-1175)) (-886 (-381))) (|has| |#1| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| (-818 (-1175)) (-886 (-566))) (|has| |#1| (-886 (-566)))))) (-2679 (((-771) $ (-1175)) NIL) (((-771) $) NIL)) (-2389 (((-112) $) NIL)) (-3039 (((-771) $) NIL)) (-1757 (($ (-1171 |#1|) (-818 (-1175))) NIL) (($ (-1171 $) (-818 (-1175))) NIL)) (-1587 (((-644 $) $) NIL)) (-2497 (((-112) $) NIL)) (-1746 (($ |#1| (-533 (-818 (-1175)))) NIL) (($ $ (-818 (-1175)) (-771)) NIL) (($ $ (-644 (-818 (-1175))) (-644 (-771))) NIL)) (-2815 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $ (-818 (-1175))) NIL)) (-2749 (((-533 (-818 (-1175))) $) NIL) (((-771) $ (-818 (-1175))) NIL) (((-644 (-771)) $ (-644 (-818 (-1175)))) NIL)) (-3021 (($ (-1 (-533 (-818 (-1175))) (-533 (-818 (-1175)))) $) NIL)) (-2319 (($ (-1 |#1| |#1|) $) NIL)) (-1545 (((-1 $ (-771)) (-1175)) NIL) (((-1 $ (-771)) $) NIL (|has| |#1| (-233)))) (-2297 (((-3 (-818 (-1175)) "failed") $) NIL)) (-2784 (($ $) NIL)) (-2794 ((|#1| $) NIL)) (-1528 (((-818 (-1175)) $) NIL)) (-2128 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-3380 (((-1157) $) NIL)) (-2663 (((-112) $) NIL)) (-3738 (((-3 (-644 $) "failed") $) NIL)) (-4199 (((-3 (-644 $) "failed") $) NIL)) (-4108 (((-3 (-2 (|:| |var| (-818 (-1175))) (|:| -2201 (-771))) "failed") $) NIL)) (-3779 (($ $) NIL)) (-4072 (((-1119) $) NIL)) (-2761 (((-112) $) NIL)) (-2773 ((|#1| $) NIL)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-454)))) (-2164 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-2010 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-1893 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-1624 (((-420 $) $) NIL (|has| |#1| (-909)))) (-2978 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-2023 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-818 (-1175)) |#1|) NIL) (($ $ (-644 (-818 (-1175))) (-644 |#1|)) NIL) (($ $ (-818 (-1175)) $) NIL) (($ $ (-644 (-818 (-1175))) (-644 $)) NIL) (($ $ (-1175) $) NIL (|has| |#1| (-233))) (($ $ (-644 (-1175)) (-644 $)) NIL (|has| |#1| (-233))) (($ $ (-1175) |#1|) NIL (|has| |#1| (-233))) (($ $ (-644 (-1175)) (-644 |#1|)) NIL (|has| |#1| (-233)))) (-4068 (($ $ (-818 (-1175))) NIL (|has| |#1| (-172)))) (-3629 (($ $ (-818 (-1175))) NIL) (($ $ (-644 (-818 (-1175)))) NIL) (($ $ (-818 (-1175)) (-771)) NIL) (($ $ (-644 (-818 (-1175))) (-644 (-771))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4037 (((-644 (-1175)) $) NIL)) (-3902 (((-533 (-818 (-1175))) $) NIL) (((-771) $ (-818 (-1175))) NIL) (((-644 (-771)) $ (-644 (-818 (-1175)))) NIL) (((-771) $ (-1175)) NIL)) (-2376 (((-892 (-381)) $) NIL (-12 (|has| (-818 (-1175)) (-614 (-892 (-381)))) (|has| |#1| (-614 (-892 (-381)))))) (((-892 (-566)) $) NIL (-12 (|has| (-818 (-1175)) (-614 (-892 (-566)))) (|has| |#1| (-614 (-892 (-566)))))) (((-538) $) NIL (-12 (|has| (-818 (-1175)) (-614 (-538))) (|has| |#1| (-614 (-538)))))) (-3173 ((|#1| $) NIL (|has| |#1| (-454))) (($ $ (-818 (-1175))) NIL (|has| |#1| (-454)))) (-3391 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-909))))) (-3152 (((-862) $) NIL) (($ (-566)) NIL) (($ |#1|) NIL) (($ (-818 (-1175))) NIL) (($ (-1175)) NIL) (($ (-1124 |#1| (-1175))) NIL) (($ (-409 (-566))) NIL (-2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566)))))) (($ $) NIL (|has| |#1| (-558)))) (-1643 (((-644 |#1|) $) NIL)) (-2271 ((|#1| $ (-533 (-818 (-1175)))) NIL) (($ $ (-818 (-1175)) (-771)) NIL) (($ $ (-644 (-818 (-1175))) (-644 (-771))) NIL)) (-2633 (((-3 $ "failed") $) NIL (-2768 (-12 (|has| $ (-145)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-2593 (((-771)) NIL T CONST)) (-2021 (($ $ $ (-771)) NIL (|has| |#1| (-172)))) (-3044 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL (|has| |#1| (-558)))) (-4356 (($) NIL T CONST)) (-4366 (($) NIL T CONST)) (-3497 (($ $ (-818 (-1175))) NIL) (($ $ (-644 (-818 (-1175)))) NIL) (($ $ (-818 (-1175)) (-771)) NIL) (($ $ (-644 (-818 (-1175))) (-644 (-771))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2914 (((-112) $ $) NIL)) (-3025 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) (((-816 |#1|) (-13 (-254 |#1| (-1175) (-818 (-1175)) (-533 (-818 (-1175)))) (-1038 (-1124 |#1| (-1175)))) (-1049)) (T -816)) NIL (-13 (-254 |#1| (-1175) (-818 (-1175)) (-533 (-818 (-1175)))) (-1038 (-1124 |#1| (-1175)))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#2| (-365)))) (-3991 (($ $) NIL (|has| |#2| (-365)))) (-2388 (((-112) $) NIL (|has| |#2| (-365)))) (-4175 (((-3 $ "failed") $ $) NIL)) (-1550 (($ $) NIL (|has| |#2| (-365)))) (-3184 (((-420 $) $) NIL (|has| |#2| (-365)))) (-2837 (((-112) $ $) NIL (|has| |#2| (-365)))) (-3012 (($) NIL T CONST)) (-2946 (($ $ $) NIL (|has| |#2| (-365)))) (-1878 (((-3 $ "failed") $) NIL)) (-2957 (($ $ $) NIL (|has| |#2| (-365)))) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL (|has| |#2| (-365)))) (-3268 (((-112) $) NIL (|has| |#2| (-365)))) (-3934 (((-112) $) NIL)) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#2| (-365)))) (-2167 (($ (-644 $)) NIL (|has| |#2| (-365))) (($ $ $) NIL (|has| |#2| (-365)))) (-4117 (((-1157) $) NIL)) (-1713 (($ $) 20 (|has| |#2| (-365)))) (-4035 (((-1119) $) NIL)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#2| (-365)))) (-2214 (($ (-644 $)) NIL (|has| |#2| (-365))) (($ $ $) NIL (|has| |#2| (-365)))) (-3719 (((-420 $) $) NIL (|has| |#2| (-365)))) (-3148 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#2| (-365)))) (-2994 (((-3 $ "failed") $ $) NIL (|has| |#2| (-365)))) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#2| (-365)))) (-3039 (((-771) $) NIL (|has| |#2| (-365)))) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL (|has| |#2| (-365)))) (-3561 (($ $ (-771)) NIL) (($ $) 13)) (-3783 (((-862) $) NIL) (($ (-566)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-409 (-566))) NIL (|has| |#2| (-365))) (($ $) NIL (|has| |#2| (-365)))) (-2107 (((-771)) NIL T CONST)) (-3117 (((-112) $ $) NIL)) (-2695 (((-112) $ $) NIL (|has| |#2| (-365)))) (-2479 (($) NIL T CONST)) (-4334 (($) NIL T CONST)) (-2875 (($ $ (-771)) NIL) (($ $) NIL)) (-2947 (((-112) $ $) NIL)) (-3065 (($ $ $) 15 (|has| |#2| (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-771)) NIL) (($ $ (-921)) NIL) (($ $ (-566)) 18 (|has| |#2| (-365)))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-409 (-566)) $) NIL (|has| |#2| (-365))) (($ $ (-409 (-566))) NIL (|has| |#2| (-365))))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#2| (-365)))) (-2161 (($ $) NIL (|has| |#2| (-365)))) (-2345 (((-112) $) NIL (|has| |#2| (-365)))) (-3967 (((-3 $ "failed") $ $) NIL)) (-1378 (($ $) NIL (|has| |#2| (-365)))) (-1364 (((-420 $) $) NIL (|has| |#2| (-365)))) (-2085 (((-112) $ $) NIL (|has| |#2| (-365)))) (-2463 (($) NIL T CONST)) (-2933 (($ $ $) NIL (|has| |#2| (-365)))) (-3245 (((-3 $ "failed") $) NIL)) (-2945 (($ $ $) NIL (|has| |#2| (-365)))) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL (|has| |#2| (-365)))) (-1615 (((-112) $) NIL (|has| |#2| (-365)))) (-2389 (((-112) $) NIL)) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#2| (-365)))) (-2128 (($ (-644 $)) NIL (|has| |#2| (-365))) (($ $ $) NIL (|has| |#2| (-365)))) (-3380 (((-1157) $) NIL)) (-2748 (($ $) 20 (|has| |#2| (-365)))) (-4072 (((-1119) $) NIL)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#2| (-365)))) (-2164 (($ (-644 $)) NIL (|has| |#2| (-365))) (($ $ $) NIL (|has| |#2| (-365)))) (-1624 (((-420 $) $) NIL (|has| |#2| (-365)))) (-3005 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL (|has| |#2| (-365)))) (-2978 (((-3 $ "failed") $ $) NIL (|has| |#2| (-365)))) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#2| (-365)))) (-4357 (((-771) $) NIL (|has| |#2| (-365)))) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL (|has| |#2| (-365)))) (-3629 (($ $ (-771)) NIL) (($ $) 13)) (-3152 (((-862) $) NIL) (($ (-566)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-409 (-566))) NIL (|has| |#2| (-365))) (($ $) NIL (|has| |#2| (-365)))) (-2593 (((-771)) NIL T CONST)) (-3044 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL (|has| |#2| (-365)))) (-4356 (($) NIL T CONST)) (-4366 (($) NIL T CONST)) (-3497 (($ $ (-771)) NIL) (($ $) NIL)) (-2914 (((-112) $ $) NIL)) (-3025 (($ $ $) 15 (|has| |#2| (-365)))) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-771)) NIL) (($ $ (-921)) NIL) (($ $ (-566)) 18 (|has| |#2| (-365)))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-409 (-566)) $) NIL (|has| |#2| (-365))) (($ $ (-409 (-566))) NIL (|has| |#2| (-365))))) (((-817 |#1| |#2| |#3|) (-13 (-111 $ $) (-233) (-492 |#2|) (-10 -7 (IF (|has| |#2| (-365)) (-6 (-365)) |%noBranch|))) (-1099) (-900 |#1|) |#1|) (T -817)) NIL (-13 (-111 $ $) (-233) (-492 |#2|) (-10 -7 (IF (|has| |#2| (-365)) (-6 (-365)) |%noBranch|))) -((-3007 (((-112) $ $) NIL)) (-1617 (((-771) $) NIL)) (-1385 ((|#1| $) 10)) (-4307 (((-3 |#1| "failed") $) NIL)) (-4205 ((|#1| $) NIL)) (-3254 (((-771) $) 11)) (-2097 (($ $ $) NIL)) (-3962 (($ $ $) NIL)) (-4151 (($ |#1| (-771)) 9)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3561 (($ $) NIL) (($ $ (-771)) NIL)) (-3783 (((-862) $) NIL) (($ |#1|) NIL)) (-3117 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL)) (-2995 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL))) +((-2988 (((-112) $ $) NIL)) (-1784 (((-771) $) NIL)) (-4347 ((|#1| $) 10)) (-2229 (((-3 |#1| "failed") $) NIL)) (-4158 ((|#1| $) NIL)) (-2679 (((-771) $) 11)) (-1478 (($ $ $) NIL)) (-2599 (($ $ $) NIL)) (-1545 (($ |#1| (-771)) 9)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3629 (($ $) NIL) (($ $ (-771)) NIL)) (-3152 (((-862) $) NIL) (($ |#1|) NIL)) (-3044 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2935 (((-112) $ $) NIL))) (((-818 |#1|) (-267 |#1|) (-850)) (T -818)) NIL (-267 |#1|) -((-3007 (((-112) $ $) NIL)) (-3095 (((-644 |#1|) $) 38)) (-1970 (((-771) $) NIL)) (-3012 (($) NIL T CONST)) (-2374 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 28)) (-4307 (((-3 |#1| "failed") $) NIL)) (-4205 ((|#1| $) NIL)) (-2010 (($ $) 42)) (-1878 (((-3 $ "failed") $) NIL)) (-1399 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-3934 (((-112) $) NIL)) (-3946 ((|#1| $ (-566)) NIL)) (-3712 (((-771) $ (-566)) NIL)) (-3000 (($ $) 54)) (-2097 (($ $ $) NIL)) (-3962 (($ $ $) NIL)) (-2274 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 25)) (-2576 (((-112) $ $) 51)) (-4149 (((-771) $) 34)) (-4117 (((-1157) $) NIL)) (-1810 (($ $ $) NIL)) (-2301 (($ $ $) NIL)) (-4035 (((-1119) $) NIL)) (-1998 ((|#1| $) 41)) (-4138 (((-644 (-2 (|:| |gen| |#1|) (|:| -2561 (-771)))) $) NIL)) (-2982 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-3783 (((-862) $) NIL) (($ |#1|) NIL)) (-3117 (((-112) $ $) NIL)) (-4334 (($) 20 T CONST)) (-3009 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL)) (-2995 (((-112) $ $) NIL)) (-2969 (((-112) $ $) 53)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ |#1| (-771)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-819 |#1|) (-13 (-846) (-1038 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-771))) (-15 -1998 (|#1| $)) (-15 -2010 ($ $)) (-15 -3000 ($ $)) (-15 -2576 ((-112) $ $)) (-15 -2301 ($ $ $)) (-15 -1810 ($ $ $)) (-15 -2274 ((-3 $ "failed") $ $)) (-15 -2374 ((-3 $ "failed") $ $)) (-15 -2274 ((-3 $ "failed") $ |#1|)) (-15 -2374 ((-3 $ "failed") $ |#1|)) (-15 -2982 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1399 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1970 ((-771) $)) (-15 -3712 ((-771) $ (-566))) (-15 -3946 (|#1| $ (-566))) (-15 -4138 ((-644 (-2 (|:| |gen| |#1|) (|:| -2561 (-771)))) $)) (-15 -4149 ((-771) $)) (-15 -3095 ((-644 |#1|) $)))) (-850)) (T -819)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-771)) (-5 *1 (-819 *2)) (-4 *2 (-850)))) (-1998 (*1 *2 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) (-2010 (*1 *1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) (-3000 (*1 *1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) (-2576 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-819 *3)) (-4 *3 (-850)))) (-2301 (*1 *1 *1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) (-1810 (*1 *1 *1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) (-2274 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) (-2374 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) (-2274 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) (-2374 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) (-2982 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-819 *3)) (|:| |rm| (-819 *3)))) (-5 *1 (-819 *3)) (-4 *3 (-850)))) (-1399 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-819 *3)) (|:| |mm| (-819 *3)) (|:| |rm| (-819 *3)))) (-5 *1 (-819 *3)) (-4 *3 (-850)))) (-1970 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-819 *3)) (-4 *3 (-850)))) (-3712 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *2 (-771)) (-5 *1 (-819 *4)) (-4 *4 (-850)))) (-3946 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *1 (-819 *2)) (-4 *2 (-850)))) (-4138 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -2561 (-771))))) (-5 *1 (-819 *3)) (-4 *3 (-850)))) (-4149 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-819 *3)) (-4 *3 (-850)))) (-3095 (*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-819 *3)) (-4 *3 (-850))))) -(-13 (-846) (-1038 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-771))) (-15 -1998 (|#1| $)) (-15 -2010 ($ $)) (-15 -3000 ($ $)) (-15 -2576 ((-112) $ $)) (-15 -2301 ($ $ $)) (-15 -1810 ($ $ $)) (-15 -2274 ((-3 $ "failed") $ $)) (-15 -2374 ((-3 $ "failed") $ $)) (-15 -2274 ((-3 $ "failed") $ |#1|)) (-15 -2374 ((-3 $ "failed") $ |#1|)) (-15 -2982 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1399 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1970 ((-771) $)) (-15 -3712 ((-771) $ (-566))) (-15 -3946 (|#1| $ (-566))) (-15 -4138 ((-644 (-2 (|:| |gen| |#1|) (|:| -2561 (-771)))) $)) (-15 -4149 ((-771) $)) (-15 -3095 ((-644 |#1|) $)))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) 47)) (-3991 (($ $) 46)) (-2388 (((-112) $) 44)) (-4175 (((-3 $ "failed") $ $) 20)) (-4364 (((-566) $) 59)) (-3012 (($) 18 T CONST)) (-1878 (((-3 $ "failed") $) 37)) (-1897 (((-112) $) 57)) (-3934 (((-112) $) 35)) (-2117 (((-112) $) 58)) (-2097 (($ $ $) 56)) (-3962 (($ $ $) 55)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-2994 (((-3 $ "failed") $ $) 48)) (-3783 (((-862) $) 12) (($ (-566)) 33) (($ $) 49)) (-2107 (((-771)) 32 T CONST)) (-3117 (((-112) $ $) 9)) (-2695 (((-112) $ $) 45)) (-2086 (($ $) 60)) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-3009 (((-112) $ $) 53)) (-2984 (((-112) $ $) 52)) (-2947 (((-112) $ $) 6)) (-2995 (((-112) $ $) 54)) (-2969 (((-112) $ $) 51)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) +((-2988 (((-112) $ $) NIL)) (-4111 (((-644 |#1|) $) 38)) (-3870 (((-771) $) NIL)) (-2463 (($) NIL T CONST)) (-3356 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 28)) (-2229 (((-3 |#1| "failed") $) NIL)) (-4158 ((|#1| $) NIL)) (-3919 (($ $) 42)) (-3245 (((-3 $ "failed") $) NIL)) (-4298 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-2389 (((-112) $) NIL)) (-2121 ((|#1| $ (-566)) NIL)) (-2707 (((-771) $ (-566)) NIL)) (-2795 (($ $) 54)) (-1478 (($ $ $) NIL)) (-2599 (($ $ $) NIL)) (-3722 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 25)) (-2585 (((-112) $ $) 51)) (-2440 (((-771) $) 34)) (-3380 (((-1157) $) NIL)) (-3740 (($ $ $) NIL)) (-3625 (($ $ $) NIL)) (-4072 (((-1119) $) NIL)) (-3908 ((|#1| $) 41)) (-1616 (((-644 (-2 (|:| |gen| |#1|) (|:| -3521 (-771)))) $) NIL)) (-2967 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-3152 (((-862) $) NIL) (($ |#1|) NIL)) (-3044 (((-112) $ $) NIL)) (-4366 (($) 20 T CONST)) (-2968 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2935 (((-112) $ $) 53)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ |#1| (-771)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-819 |#1|) (-13 (-846) (-1038 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-771))) (-15 -3908 (|#1| $)) (-15 -3919 ($ $)) (-15 -2795 ($ $)) (-15 -2585 ((-112) $ $)) (-15 -3625 ($ $ $)) (-15 -3740 ($ $ $)) (-15 -3722 ((-3 $ "failed") $ $)) (-15 -3356 ((-3 $ "failed") $ $)) (-15 -3722 ((-3 $ "failed") $ |#1|)) (-15 -3356 ((-3 $ "failed") $ |#1|)) (-15 -2967 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4298 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3870 ((-771) $)) (-15 -2707 ((-771) $ (-566))) (-15 -2121 (|#1| $ (-566))) (-15 -1616 ((-644 (-2 (|:| |gen| |#1|) (|:| -3521 (-771)))) $)) (-15 -2440 ((-771) $)) (-15 -4111 ((-644 |#1|) $)))) (-850)) (T -819)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-771)) (-5 *1 (-819 *2)) (-4 *2 (-850)))) (-3908 (*1 *2 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) (-3919 (*1 *1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) (-2795 (*1 *1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) (-2585 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-819 *3)) (-4 *3 (-850)))) (-3625 (*1 *1 *1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) (-3740 (*1 *1 *1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) (-3722 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) (-3356 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) (-3722 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) (-3356 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) (-2967 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-819 *3)) (|:| |rm| (-819 *3)))) (-5 *1 (-819 *3)) (-4 *3 (-850)))) (-4298 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-819 *3)) (|:| |mm| (-819 *3)) (|:| |rm| (-819 *3)))) (-5 *1 (-819 *3)) (-4 *3 (-850)))) (-3870 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-819 *3)) (-4 *3 (-850)))) (-2707 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *2 (-771)) (-5 *1 (-819 *4)) (-4 *4 (-850)))) (-2121 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *1 (-819 *2)) (-4 *2 (-850)))) (-1616 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -3521 (-771))))) (-5 *1 (-819 *3)) (-4 *3 (-850)))) (-2440 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-819 *3)) (-4 *3 (-850)))) (-4111 (*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-819 *3)) (-4 *3 (-850))))) +(-13 (-846) (-1038 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-771))) (-15 -3908 (|#1| $)) (-15 -3919 ($ $)) (-15 -2795 ($ $)) (-15 -2585 ((-112) $ $)) (-15 -3625 ($ $ $)) (-15 -3740 ($ $ $)) (-15 -3722 ((-3 $ "failed") $ $)) (-15 -3356 ((-3 $ "failed") $ $)) (-15 -3722 ((-3 $ "failed") $ |#1|)) (-15 -3356 ((-3 $ "failed") $ |#1|)) (-15 -2967 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4298 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3870 ((-771) $)) (-15 -2707 ((-771) $ (-566))) (-15 -2121 (|#1| $ (-566))) (-15 -1616 ((-644 (-2 (|:| |gen| |#1|) (|:| -3521 (-771)))) $)) (-15 -2440 ((-771) $)) (-15 -4111 ((-644 |#1|) $)))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) 47)) (-2161 (($ $) 46)) (-2345 (((-112) $) 44)) (-3967 (((-3 $ "failed") $ $) 20)) (-2743 (((-566) $) 59)) (-2463 (($) 18 T CONST)) (-3245 (((-3 $ "failed") $) 37)) (-2528 (((-112) $) 57)) (-2389 (((-112) $) 35)) (-3233 (((-112) $) 58)) (-1478 (($ $ $) 56)) (-2599 (($ $ $) 55)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-2978 (((-3 $ "failed") $ $) 48)) (-3152 (((-862) $) 12) (($ (-566)) 33) (($ $) 49)) (-2593 (((-771)) 32 T CONST)) (-3044 (((-112) $ $) 9)) (-3014 (((-112) $ $) 45)) (-1358 (($ $) 60)) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-2968 (((-112) $ $) 53)) (-2946 (((-112) $ $) 52)) (-2914 (((-112) $ $) 6)) (-2956 (((-112) $ $) 54)) (-2935 (((-112) $ $) 51)) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) (((-820) (-140)) (T -820)) NIL (-13 (-558) (-848)) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-616 (-566)) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-291) . T) ((-558) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-640 $) . T) ((-717 $) . T) ((-726) . T) ((-791) . T) ((-792) . T) ((-794) . T) ((-795) . T) ((-848) . T) ((-850) . T) ((-1051 $) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) -((-4080 (($ (-1119)) 7)) (-1447 (((-112) $ (-1157) (-1119)) 15)) (-3107 (((-822) $) 12)) (-1655 (((-822) $) 11)) (-2789 (((-1269) $) 9)) (-2971 (((-112) $ (-1119)) 16))) -(((-821) (-10 -8 (-15 -4080 ($ (-1119))) (-15 -2789 ((-1269) $)) (-15 -1655 ((-822) $)) (-15 -3107 ((-822) $)) (-15 -1447 ((-112) $ (-1157) (-1119))) (-15 -2971 ((-112) $ (-1119))))) (T -821)) -((-2971 (*1 *2 *1 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-112)) (-5 *1 (-821)))) (-1447 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1157)) (-5 *4 (-1119)) (-5 *2 (-112)) (-5 *1 (-821)))) (-3107 (*1 *2 *1) (-12 (-5 *2 (-822)) (-5 *1 (-821)))) (-1655 (*1 *2 *1) (-12 (-5 *2 (-822)) (-5 *1 (-821)))) (-2789 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-821)))) (-4080 (*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-821))))) -(-10 -8 (-15 -4080 ($ (-1119))) (-15 -2789 ((-1269) $)) (-15 -1655 ((-822) $)) (-15 -3107 ((-822) $)) (-15 -1447 ((-112) $ (-1157) (-1119))) (-15 -2971 ((-112) $ (-1119)))) -((-2168 (((-1269) $ (-823)) 12)) (-2752 (((-1269) $ (-1175)) 32)) (-3591 (((-1269) $ (-1157) (-1157)) 34)) (-3679 (((-1269) $ (-1157)) 33)) (-2648 (((-1269) $) 19)) (-2544 (((-1269) $ (-566)) 28)) (-3115 (((-1269) $ (-225)) 30)) (-3670 (((-1269) $) 18)) (-3404 (((-1269) $) 26)) (-1716 (((-1269) $) 25)) (-2148 (((-1269) $) 23)) (-4173 (((-1269) $) 24)) (-1450 (((-1269) $) 22)) (-2179 (((-1269) $) 21)) (-2226 (((-1269) $) 20)) (-3048 (((-1269) $) 16)) (-3331 (((-1269) $) 17)) (-3693 (((-1269) $) 15)) (-2424 (((-1269) $) 14)) (-3237 (((-1269) $) 13)) (-3096 (($ (-1157) (-823)) 9)) (-2562 (($ (-1157) (-1157) (-823)) 8)) (-1400 (((-1175) $) 51)) (-3071 (((-1175) $) 55)) (-2684 (((-2 (|:| |cd| (-1157)) (|:| -2640 (-1157))) $) 54)) (-2740 (((-1157) $) 52)) (-2310 (((-1269) $) 41)) (-1584 (((-566) $) 49)) (-3247 (((-225) $) 50)) (-4126 (((-1269) $) 40)) (-1396 (((-1269) $) 48)) (-1418 (((-1269) $) 47)) (-2221 (((-1269) $) 45)) (-3887 (((-1269) $) 46)) (-1402 (((-1269) $) 44)) (-3614 (((-1269) $) 43)) (-3862 (((-1269) $) 42)) (-2545 (((-1269) $) 38)) (-3576 (((-1269) $) 39)) (-1835 (((-1269) $) 37)) (-2688 (((-1269) $) 36)) (-3291 (((-1269) $) 35)) (-3199 (((-1269) $) 11))) -(((-822) (-10 -8 (-15 -2562 ($ (-1157) (-1157) (-823))) (-15 -3096 ($ (-1157) (-823))) (-15 -3199 ((-1269) $)) (-15 -2168 ((-1269) $ (-823))) (-15 -3237 ((-1269) $)) (-15 -2424 ((-1269) $)) (-15 -3693 ((-1269) $)) (-15 -3048 ((-1269) $)) (-15 -3331 ((-1269) $)) (-15 -3670 ((-1269) $)) (-15 -2648 ((-1269) $)) (-15 -2226 ((-1269) $)) (-15 -2179 ((-1269) $)) (-15 -1450 ((-1269) $)) (-15 -2148 ((-1269) $)) (-15 -4173 ((-1269) $)) (-15 -1716 ((-1269) $)) (-15 -3404 ((-1269) $)) (-15 -2544 ((-1269) $ (-566))) (-15 -3115 ((-1269) $ (-225))) (-15 -2752 ((-1269) $ (-1175))) (-15 -3679 ((-1269) $ (-1157))) (-15 -3591 ((-1269) $ (-1157) (-1157))) (-15 -3291 ((-1269) $)) (-15 -2688 ((-1269) $)) (-15 -1835 ((-1269) $)) (-15 -2545 ((-1269) $)) (-15 -3576 ((-1269) $)) (-15 -4126 ((-1269) $)) (-15 -2310 ((-1269) $)) (-15 -3862 ((-1269) $)) (-15 -3614 ((-1269) $)) (-15 -1402 ((-1269) $)) (-15 -2221 ((-1269) $)) (-15 -3887 ((-1269) $)) (-15 -1418 ((-1269) $)) (-15 -1396 ((-1269) $)) (-15 -1584 ((-566) $)) (-15 -3247 ((-225) $)) (-15 -1400 ((-1175) $)) (-15 -2740 ((-1157) $)) (-15 -2684 ((-2 (|:| |cd| (-1157)) (|:| -2640 (-1157))) $)) (-15 -3071 ((-1175) $)))) (T -822)) -((-3071 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-822)))) (-2684 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1157)) (|:| -2640 (-1157)))) (-5 *1 (-822)))) (-2740 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-822)))) (-1400 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-822)))) (-3247 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-822)))) (-1584 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-822)))) (-1396 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-1418 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-3887 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-2221 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-1402 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-3614 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-3862 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-2310 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-4126 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-3576 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-2545 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-1835 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-2688 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-3291 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-3591 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-822)))) (-3679 (*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-822)))) (-2752 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1269)) (-5 *1 (-822)))) (-3115 (*1 *2 *1 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1269)) (-5 *1 (-822)))) (-2544 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *2 (-1269)) (-5 *1 (-822)))) (-3404 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-1716 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-4173 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-2148 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-1450 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-2179 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-2226 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-2648 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-3670 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-3331 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-3048 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-3693 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-2424 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-3237 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-2168 (*1 *2 *1 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1269)) (-5 *1 (-822)))) (-3199 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-3096 (*1 *1 *2 *3) (-12 (-5 *2 (-1157)) (-5 *3 (-823)) (-5 *1 (-822)))) (-2562 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1157)) (-5 *3 (-823)) (-5 *1 (-822))))) -(-10 -8 (-15 -2562 ($ (-1157) (-1157) (-823))) (-15 -3096 ($ (-1157) (-823))) (-15 -3199 ((-1269) $)) (-15 -2168 ((-1269) $ (-823))) (-15 -3237 ((-1269) $)) (-15 -2424 ((-1269) $)) (-15 -3693 ((-1269) $)) (-15 -3048 ((-1269) $)) (-15 -3331 ((-1269) $)) (-15 -3670 ((-1269) $)) (-15 -2648 ((-1269) $)) (-15 -2226 ((-1269) $)) (-15 -2179 ((-1269) $)) (-15 -1450 ((-1269) $)) (-15 -2148 ((-1269) $)) (-15 -4173 ((-1269) $)) (-15 -1716 ((-1269) $)) (-15 -3404 ((-1269) $)) (-15 -2544 ((-1269) $ (-566))) (-15 -3115 ((-1269) $ (-225))) (-15 -2752 ((-1269) $ (-1175))) (-15 -3679 ((-1269) $ (-1157))) (-15 -3591 ((-1269) $ (-1157) (-1157))) (-15 -3291 ((-1269) $)) (-15 -2688 ((-1269) $)) (-15 -1835 ((-1269) $)) (-15 -2545 ((-1269) $)) (-15 -3576 ((-1269) $)) (-15 -4126 ((-1269) $)) (-15 -2310 ((-1269) $)) (-15 -3862 ((-1269) $)) (-15 -3614 ((-1269) $)) (-15 -1402 ((-1269) $)) (-15 -2221 ((-1269) $)) (-15 -3887 ((-1269) $)) (-15 -1418 ((-1269) $)) (-15 -1396 ((-1269) $)) (-15 -1584 ((-566) $)) (-15 -3247 ((-225) $)) (-15 -1400 ((-1175) $)) (-15 -2740 ((-1157) $)) (-15 -2684 ((-2 (|:| |cd| (-1157)) (|:| -2640 (-1157))) $)) (-15 -3071 ((-1175) $))) -((-3007 (((-112) $ $) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 13)) (-3117 (((-112) $ $) NIL)) (-3474 (($) 16)) (-3616 (($) 14)) (-2036 (($) 17)) (-1830 (($) 15)) (-2947 (((-112) $ $) 9))) -(((-823) (-13 (-1099) (-10 -8 (-15 -3616 ($)) (-15 -3474 ($)) (-15 -2036 ($)) (-15 -1830 ($))))) (T -823)) -((-3616 (*1 *1) (-5 *1 (-823))) (-3474 (*1 *1) (-5 *1 (-823))) (-2036 (*1 *1) (-5 *1 (-823))) (-1830 (*1 *1) (-5 *1 (-823)))) -(-13 (-1099) (-10 -8 (-15 -3616 ($)) (-15 -3474 ($)) (-15 -2036 ($)) (-15 -1830 ($)))) -((-3007 (((-112) $ $) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 23) (($ (-1175)) 19)) (-3117 (((-112) $ $) NIL)) (-3944 (((-112) $) 10)) (-2717 (((-112) $) 9)) (-1565 (((-112) $) 11)) (-2339 (((-112) $) 8)) (-2947 (((-112) $ $) 21))) -(((-824) (-13 (-1099) (-10 -8 (-15 -3783 ($ (-1175))) (-15 -2339 ((-112) $)) (-15 -2717 ((-112) $)) (-15 -3944 ((-112) $)) (-15 -1565 ((-112) $))))) (T -824)) -((-3783 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-824)))) (-2339 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-824)))) (-2717 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-824)))) (-3944 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-824)))) (-1565 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-824))))) -(-13 (-1099) (-10 -8 (-15 -3783 ($ (-1175))) (-15 -2339 ((-112) $)) (-15 -2717 ((-112) $)) (-15 -3944 ((-112) $)) (-15 -1565 ((-112) $)))) -((-3007 (((-112) $ $) NIL)) (-2027 (($ (-824) (-644 (-1175))) 32)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3639 (((-824) $) 33)) (-1546 (((-644 (-1175)) $) 34)) (-3783 (((-862) $) 31)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) -(((-825) (-13 (-1099) (-10 -8 (-15 -3639 ((-824) $)) (-15 -1546 ((-644 (-1175)) $)) (-15 -2027 ($ (-824) (-644 (-1175))))))) (T -825)) -((-3639 (*1 *2 *1) (-12 (-5 *2 (-824)) (-5 *1 (-825)))) (-1546 (*1 *2 *1) (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-825)))) (-2027 (*1 *1 *2 *3) (-12 (-5 *2 (-824)) (-5 *3 (-644 (-1175))) (-5 *1 (-825))))) -(-13 (-1099) (-10 -8 (-15 -3639 ((-824) $)) (-15 -1546 ((-644 (-1175)) $)) (-15 -2027 ($ (-824) (-644 (-1175)))))) -((-2452 (((-1269) (-822) (-317 |#1|) (-112)) 24) (((-1269) (-822) (-317 |#1|)) 90) (((-1157) (-317 |#1|) (-112)) 89) (((-1157) (-317 |#1|)) 88))) -(((-826 |#1|) (-10 -7 (-15 -2452 ((-1157) (-317 |#1|))) (-15 -2452 ((-1157) (-317 |#1|) (-112))) (-15 -2452 ((-1269) (-822) (-317 |#1|))) (-15 -2452 ((-1269) (-822) (-317 |#1|) (-112)))) (-13 (-828) (-1049))) (T -826)) -((-2452 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-822)) (-5 *4 (-317 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-828) (-1049))) (-5 *2 (-1269)) (-5 *1 (-826 *6)))) (-2452 (*1 *2 *3 *4) (-12 (-5 *3 (-822)) (-5 *4 (-317 *5)) (-4 *5 (-13 (-828) (-1049))) (-5 *2 (-1269)) (-5 *1 (-826 *5)))) (-2452 (*1 *2 *3 *4) (-12 (-5 *3 (-317 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-828) (-1049))) (-5 *2 (-1157)) (-5 *1 (-826 *5)))) (-2452 (*1 *2 *3) (-12 (-5 *3 (-317 *4)) (-4 *4 (-13 (-828) (-1049))) (-5 *2 (-1157)) (-5 *1 (-826 *4))))) -(-10 -7 (-15 -2452 ((-1157) (-317 |#1|))) (-15 -2452 ((-1157) (-317 |#1|) (-112))) (-15 -2452 ((-1269) (-822) (-317 |#1|))) (-15 -2452 ((-1269) (-822) (-317 |#1|) (-112)))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-3012 (($) NIL T CONST)) (-1786 (($ $) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-3847 ((|#1| $) 10)) (-1684 (($ |#1|) 9)) (-3934 (((-112) $) NIL)) (-3840 (($ |#2| (-771)) NIL)) (-3760 (((-771) $) NIL)) (-1763 ((|#2| $) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3561 (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-3636 (((-771) $) NIL)) (-3783 (((-862) $) 17) (($ (-566)) NIL) (($ |#2|) NIL (|has| |#2| (-172)))) (-2649 ((|#2| $ (-771)) NIL)) (-2107 (((-771)) NIL T CONST)) (-3117 (((-112) $ $) NIL)) (-2479 (($) NIL T CONST)) (-4334 (($) NIL T CONST)) (-2875 (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-2947 (((-112) $ $) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-827 |#1| |#2|) (-13 (-708 |#2|) (-10 -8 (IF (|has| |#1| (-233)) (-6 (-233)) |%noBranch|) (-15 -1684 ($ |#1|)) (-15 -3847 (|#1| $)))) (-708 |#2|) (-1049)) (T -827)) -((-1684 (*1 *1 *2) (-12 (-4 *3 (-1049)) (-5 *1 (-827 *2 *3)) (-4 *2 (-708 *3)))) (-3847 (*1 *2 *1) (-12 (-4 *2 (-708 *3)) (-5 *1 (-827 *2 *3)) (-4 *3 (-1049))))) -(-13 (-708 |#2|) (-10 -8 (IF (|has| |#1| (-233)) (-6 (-233)) |%noBranch|) (-15 -1684 ($ |#1|)) (-15 -3847 (|#1| $)))) -((-2452 (((-1269) (-822) $ (-112)) 9) (((-1269) (-822) $) 8) (((-1157) $ (-112)) 7) (((-1157) $) 6))) +((-3089 (($ (-1119)) 7)) (-1611 (((-112) $ (-1157) (-1119)) 15)) (-3212 (((-822) $) 12)) (-3285 (((-822) $) 11)) (-2940 (((-1269) $) 9)) (-2457 (((-112) $ (-1119)) 16))) +(((-821) (-10 -8 (-15 -3089 ($ (-1119))) (-15 -2940 ((-1269) $)) (-15 -3285 ((-822) $)) (-15 -3212 ((-822) $)) (-15 -1611 ((-112) $ (-1157) (-1119))) (-15 -2457 ((-112) $ (-1119))))) (T -821)) +((-2457 (*1 *2 *1 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-112)) (-5 *1 (-821)))) (-1611 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1157)) (-5 *4 (-1119)) (-5 *2 (-112)) (-5 *1 (-821)))) (-3212 (*1 *2 *1) (-12 (-5 *2 (-822)) (-5 *1 (-821)))) (-3285 (*1 *2 *1) (-12 (-5 *2 (-822)) (-5 *1 (-821)))) (-2940 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-821)))) (-3089 (*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-821))))) +(-10 -8 (-15 -3089 ($ (-1119))) (-15 -2940 ((-1269) $)) (-15 -3285 ((-822) $)) (-15 -3212 ((-822) $)) (-15 -1611 ((-112) $ (-1157) (-1119))) (-15 -2457 ((-112) $ (-1119)))) +((-2245 (((-1269) $ (-823)) 12)) (-3605 (((-1269) $ (-1175)) 32)) (-1313 (((-1269) $ (-1157) (-1157)) 34)) (-1654 (((-1269) $ (-1157)) 33)) (-2159 (((-1269) $) 19)) (-2358 (((-1269) $ (-566)) 28)) (-2820 (((-1269) $ (-225)) 30)) (-2001 (((-1269) $) 18)) (-3439 (((-1269) $) 26)) (-4071 (((-1269) $) 25)) (-4211 (((-1269) $) 23)) (-1855 (((-1269) $) 24)) (-1835 (((-1269) $) 22)) (-3938 (((-1269) $) 21)) (-1540 (((-1269) $) 20)) (-2758 (((-1269) $) 16)) (-3841 (((-1269) $) 17)) (-3584 (((-1269) $) 15)) (-1509 (((-1269) $) 14)) (-1779 (((-1269) $) 13)) (-1515 (($ (-1157) (-823)) 9)) (-1694 (($ (-1157) (-1157) (-823)) 8)) (-3405 (((-1175) $) 51)) (-4279 (((-1175) $) 55)) (-2380 (((-2 (|:| |cd| (-1157)) (|:| -1368 (-1157))) $) 54)) (-1571 (((-1157) $) 52)) (-2181 (((-1269) $) 41)) (-1523 (((-566) $) 49)) (-3256 (((-225) $) 50)) (-2987 (((-1269) $) 40)) (-2304 (((-1269) $) 48)) (-1899 (((-1269) $) 47)) (-2483 (((-1269) $) 45)) (-2258 (((-1269) $) 46)) (-2167 (((-1269) $) 44)) (-1482 (((-1269) $) 43)) (-1810 (((-1269) $) 42)) (-2474 (((-1269) $) 38)) (-3994 (((-1269) $) 39)) (-4261 (((-1269) $) 37)) (-3730 (((-1269) $) 36)) (-1336 (((-1269) $) 35)) (-2193 (((-1269) $) 11))) +(((-822) (-10 -8 (-15 -1694 ($ (-1157) (-1157) (-823))) (-15 -1515 ($ (-1157) (-823))) (-15 -2193 ((-1269) $)) (-15 -2245 ((-1269) $ (-823))) (-15 -1779 ((-1269) $)) (-15 -1509 ((-1269) $)) (-15 -3584 ((-1269) $)) (-15 -2758 ((-1269) $)) (-15 -3841 ((-1269) $)) (-15 -2001 ((-1269) $)) (-15 -2159 ((-1269) $)) (-15 -1540 ((-1269) $)) (-15 -3938 ((-1269) $)) (-15 -1835 ((-1269) $)) (-15 -4211 ((-1269) $)) (-15 -1855 ((-1269) $)) (-15 -4071 ((-1269) $)) (-15 -3439 ((-1269) $)) (-15 -2358 ((-1269) $ (-566))) (-15 -2820 ((-1269) $ (-225))) (-15 -3605 ((-1269) $ (-1175))) (-15 -1654 ((-1269) $ (-1157))) (-15 -1313 ((-1269) $ (-1157) (-1157))) (-15 -1336 ((-1269) $)) (-15 -3730 ((-1269) $)) (-15 -4261 ((-1269) $)) (-15 -2474 ((-1269) $)) (-15 -3994 ((-1269) $)) (-15 -2987 ((-1269) $)) (-15 -2181 ((-1269) $)) (-15 -1810 ((-1269) $)) (-15 -1482 ((-1269) $)) (-15 -2167 ((-1269) $)) (-15 -2483 ((-1269) $)) (-15 -2258 ((-1269) $)) (-15 -1899 ((-1269) $)) (-15 -2304 ((-1269) $)) (-15 -1523 ((-566) $)) (-15 -3256 ((-225) $)) (-15 -3405 ((-1175) $)) (-15 -1571 ((-1157) $)) (-15 -2380 ((-2 (|:| |cd| (-1157)) (|:| -1368 (-1157))) $)) (-15 -4279 ((-1175) $)))) (T -822)) +((-4279 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-822)))) (-2380 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1157)) (|:| -1368 (-1157)))) (-5 *1 (-822)))) (-1571 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-822)))) (-3405 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-822)))) (-3256 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-822)))) (-1523 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-822)))) (-2304 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-1899 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-2258 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-2483 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-2167 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-1482 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-1810 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-2181 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-2987 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-3994 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-2474 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-4261 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-3730 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-1336 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-1313 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-822)))) (-1654 (*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-822)))) (-3605 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1269)) (-5 *1 (-822)))) (-2820 (*1 *2 *1 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1269)) (-5 *1 (-822)))) (-2358 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *2 (-1269)) (-5 *1 (-822)))) (-3439 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-4071 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-1855 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-4211 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-1835 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-3938 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-1540 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-2159 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-2001 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-3841 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-2758 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-3584 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-1509 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-1779 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-2245 (*1 *2 *1 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1269)) (-5 *1 (-822)))) (-2193 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822)))) (-1515 (*1 *1 *2 *3) (-12 (-5 *2 (-1157)) (-5 *3 (-823)) (-5 *1 (-822)))) (-1694 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1157)) (-5 *3 (-823)) (-5 *1 (-822))))) +(-10 -8 (-15 -1694 ($ (-1157) (-1157) (-823))) (-15 -1515 ($ (-1157) (-823))) (-15 -2193 ((-1269) $)) (-15 -2245 ((-1269) $ (-823))) (-15 -1779 ((-1269) $)) (-15 -1509 ((-1269) $)) (-15 -3584 ((-1269) $)) (-15 -2758 ((-1269) $)) (-15 -3841 ((-1269) $)) (-15 -2001 ((-1269) $)) (-15 -2159 ((-1269) $)) (-15 -1540 ((-1269) $)) (-15 -3938 ((-1269) $)) (-15 -1835 ((-1269) $)) (-15 -4211 ((-1269) $)) (-15 -1855 ((-1269) $)) (-15 -4071 ((-1269) $)) (-15 -3439 ((-1269) $)) (-15 -2358 ((-1269) $ (-566))) (-15 -2820 ((-1269) $ (-225))) (-15 -3605 ((-1269) $ (-1175))) (-15 -1654 ((-1269) $ (-1157))) (-15 -1313 ((-1269) $ (-1157) (-1157))) (-15 -1336 ((-1269) $)) (-15 -3730 ((-1269) $)) (-15 -4261 ((-1269) $)) (-15 -2474 ((-1269) $)) (-15 -3994 ((-1269) $)) (-15 -2987 ((-1269) $)) (-15 -2181 ((-1269) $)) (-15 -1810 ((-1269) $)) (-15 -1482 ((-1269) $)) (-15 -2167 ((-1269) $)) (-15 -2483 ((-1269) $)) (-15 -2258 ((-1269) $)) (-15 -1899 ((-1269) $)) (-15 -2304 ((-1269) $)) (-15 -1523 ((-566) $)) (-15 -3256 ((-225) $)) (-15 -3405 ((-1175) $)) (-15 -1571 ((-1157) $)) (-15 -2380 ((-2 (|:| |cd| (-1157)) (|:| -1368 (-1157))) $)) (-15 -4279 ((-1175) $))) +((-2988 (((-112) $ $) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 13)) (-3044 (((-112) $ $) NIL)) (-2357 (($) 16)) (-1701 (($) 14)) (-3283 (($) 17)) (-1822 (($) 15)) (-2914 (((-112) $ $) 9))) +(((-823) (-13 (-1099) (-10 -8 (-15 -1701 ($)) (-15 -2357 ($)) (-15 -3283 ($)) (-15 -1822 ($))))) (T -823)) +((-1701 (*1 *1) (-5 *1 (-823))) (-2357 (*1 *1) (-5 *1 (-823))) (-3283 (*1 *1) (-5 *1 (-823))) (-1822 (*1 *1) (-5 *1 (-823)))) +(-13 (-1099) (-10 -8 (-15 -1701 ($)) (-15 -2357 ($)) (-15 -3283 ($)) (-15 -1822 ($)))) +((-2988 (((-112) $ $) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 23) (($ (-1175)) 19)) (-3044 (((-112) $ $) NIL)) (-1940 (((-112) $) 10)) (-3331 (((-112) $) 9)) (-3281 (((-112) $) 11)) (-2206 (((-112) $) 8)) (-2914 (((-112) $ $) 21))) +(((-824) (-13 (-1099) (-10 -8 (-15 -3152 ($ (-1175))) (-15 -2206 ((-112) $)) (-15 -3331 ((-112) $)) (-15 -1940 ((-112) $)) (-15 -3281 ((-112) $))))) (T -824)) +((-3152 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-824)))) (-2206 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-824)))) (-3331 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-824)))) (-1940 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-824)))) (-3281 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-824))))) +(-13 (-1099) (-10 -8 (-15 -3152 ($ (-1175))) (-15 -2206 ((-112) $)) (-15 -3331 ((-112) $)) (-15 -1940 ((-112) $)) (-15 -3281 ((-112) $)))) +((-2988 (((-112) $ $) NIL)) (-3781 (($ (-824) (-644 (-1175))) 32)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-4102 (((-824) $) 33)) (-2338 (((-644 (-1175)) $) 34)) (-3152 (((-862) $) 31)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) +(((-825) (-13 (-1099) (-10 -8 (-15 -4102 ((-824) $)) (-15 -2338 ((-644 (-1175)) $)) (-15 -3781 ($ (-824) (-644 (-1175))))))) (T -825)) +((-4102 (*1 *2 *1) (-12 (-5 *2 (-824)) (-5 *1 (-825)))) (-2338 (*1 *2 *1) (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-825)))) (-3781 (*1 *1 *2 *3) (-12 (-5 *2 (-824)) (-5 *3 (-644 (-1175))) (-5 *1 (-825))))) +(-13 (-1099) (-10 -8 (-15 -4102 ((-824) $)) (-15 -2338 ((-644 (-1175)) $)) (-15 -3781 ($ (-824) (-644 (-1175)))))) +((-2226 (((-1269) (-822) (-317 |#1|) (-112)) 24) (((-1269) (-822) (-317 |#1|)) 90) (((-1157) (-317 |#1|) (-112)) 89) (((-1157) (-317 |#1|)) 88))) +(((-826 |#1|) (-10 -7 (-15 -2226 ((-1157) (-317 |#1|))) (-15 -2226 ((-1157) (-317 |#1|) (-112))) (-15 -2226 ((-1269) (-822) (-317 |#1|))) (-15 -2226 ((-1269) (-822) (-317 |#1|) (-112)))) (-13 (-828) (-1049))) (T -826)) +((-2226 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-822)) (-5 *4 (-317 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-828) (-1049))) (-5 *2 (-1269)) (-5 *1 (-826 *6)))) (-2226 (*1 *2 *3 *4) (-12 (-5 *3 (-822)) (-5 *4 (-317 *5)) (-4 *5 (-13 (-828) (-1049))) (-5 *2 (-1269)) (-5 *1 (-826 *5)))) (-2226 (*1 *2 *3 *4) (-12 (-5 *3 (-317 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-828) (-1049))) (-5 *2 (-1157)) (-5 *1 (-826 *5)))) (-2226 (*1 *2 *3) (-12 (-5 *3 (-317 *4)) (-4 *4 (-13 (-828) (-1049))) (-5 *2 (-1157)) (-5 *1 (-826 *4))))) +(-10 -7 (-15 -2226 ((-1157) (-317 |#1|))) (-15 -2226 ((-1157) (-317 |#1|) (-112))) (-15 -2226 ((-1269) (-822) (-317 |#1|))) (-15 -2226 ((-1269) (-822) (-317 |#1|) (-112)))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-2463 (($) NIL T CONST)) (-2814 (($ $) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-3001 ((|#1| $) 10)) (-1707 (($ |#1|) 9)) (-2389 (((-112) $) NIL)) (-1746 (($ |#2| (-771)) NIL)) (-2749 (((-771) $) NIL)) (-2794 ((|#2| $) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3629 (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-3902 (((-771) $) NIL)) (-3152 (((-862) $) 17) (($ (-566)) NIL) (($ |#2|) NIL (|has| |#2| (-172)))) (-2271 ((|#2| $ (-771)) NIL)) (-2593 (((-771)) NIL T CONST)) (-3044 (((-112) $ $) NIL)) (-4356 (($) NIL T CONST)) (-4366 (($) NIL T CONST)) (-3497 (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-2914 (((-112) $ $) NIL)) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-827 |#1| |#2|) (-13 (-708 |#2|) (-10 -8 (IF (|has| |#1| (-233)) (-6 (-233)) |%noBranch|) (-15 -1707 ($ |#1|)) (-15 -3001 (|#1| $)))) (-708 |#2|) (-1049)) (T -827)) +((-1707 (*1 *1 *2) (-12 (-4 *3 (-1049)) (-5 *1 (-827 *2 *3)) (-4 *2 (-708 *3)))) (-3001 (*1 *2 *1) (-12 (-4 *2 (-708 *3)) (-5 *1 (-827 *2 *3)) (-4 *3 (-1049))))) +(-13 (-708 |#2|) (-10 -8 (IF (|has| |#1| (-233)) (-6 (-233)) |%noBranch|) (-15 -1707 ($ |#1|)) (-15 -3001 (|#1| $)))) +((-2226 (((-1269) (-822) $ (-112)) 9) (((-1269) (-822) $) 8) (((-1157) $ (-112)) 7) (((-1157) $) 6))) (((-828) (-140)) (T -828)) -((-2452 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-828)) (-5 *3 (-822)) (-5 *4 (-112)) (-5 *2 (-1269)))) (-2452 (*1 *2 *3 *1) (-12 (-4 *1 (-828)) (-5 *3 (-822)) (-5 *2 (-1269)))) (-2452 (*1 *2 *1 *3) (-12 (-4 *1 (-828)) (-5 *3 (-112)) (-5 *2 (-1157)))) (-2452 (*1 *2 *1) (-12 (-4 *1 (-828)) (-5 *2 (-1157))))) -(-13 (-10 -8 (-15 -2452 ((-1157) $)) (-15 -2452 ((-1157) $ (-112))) (-15 -2452 ((-1269) (-822) $)) (-15 -2452 ((-1269) (-822) $ (-112))))) -((-2927 (((-313) (-1157) (-1157)) 12)) (-1360 (((-112) (-1157) (-1157)) 34)) (-2697 (((-112) (-1157)) 33)) (-3885 (((-52) (-1157)) 25)) (-1344 (((-52) (-1157)) 23)) (-2791 (((-52) (-822)) 17)) (-3972 (((-644 (-1157)) (-1157)) 28)) (-2121 (((-644 (-1157))) 27))) -(((-829) (-10 -7 (-15 -2791 ((-52) (-822))) (-15 -1344 ((-52) (-1157))) (-15 -3885 ((-52) (-1157))) (-15 -2121 ((-644 (-1157)))) (-15 -3972 ((-644 (-1157)) (-1157))) (-15 -2697 ((-112) (-1157))) (-15 -1360 ((-112) (-1157) (-1157))) (-15 -2927 ((-313) (-1157) (-1157))))) (T -829)) -((-2927 (*1 *2 *3 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-313)) (-5 *1 (-829)))) (-1360 (*1 *2 *3 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-112)) (-5 *1 (-829)))) (-2697 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-112)) (-5 *1 (-829)))) (-3972 (*1 *2 *3) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-829)) (-5 *3 (-1157)))) (-2121 (*1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-829)))) (-3885 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-52)) (-5 *1 (-829)))) (-1344 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-52)) (-5 *1 (-829)))) (-2791 (*1 *2 *3) (-12 (-5 *3 (-822)) (-5 *2 (-52)) (-5 *1 (-829))))) -(-10 -7 (-15 -2791 ((-52) (-822))) (-15 -1344 ((-52) (-1157))) (-15 -3885 ((-52) (-1157))) (-15 -2121 ((-644 (-1157)))) (-15 -3972 ((-644 (-1157)) (-1157))) (-15 -2697 ((-112) (-1157))) (-15 -1360 ((-112) (-1157) (-1157))) (-15 -2927 ((-313) (-1157) (-1157)))) -((-3007 (((-112) $ $) 19)) (-1756 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-2204 (($ $ $) 73)) (-2904 (((-112) $ $) 74)) (-2256 (((-112) $ (-771)) 8)) (-3700 (($ (-644 |#1|)) 69) (($) 68)) (-4016 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4414)))) (-2701 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4414)))) (-3012 (($) 7 T CONST)) (-3657 (($ $) 63)) (-2031 (($ $) 59 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2956 (($ |#1| $) 48 (|has| $ (-6 -4414))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4414)))) (-2665 (($ |#1| $) 58 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4414)))) (-1676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4414)))) (-3979 (((-644 |#1|) $) 31 (|has| $ (-6 -4414)))) (-2376 (((-112) $ $) 65)) (-2404 (((-112) $ (-771)) 9)) (-2097 ((|#1| $) 79)) (-3463 (($ $ $) 82)) (-3298 (($ $ $) 81)) (-2329 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-3962 ((|#1| $) 80)) (-2908 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#1| |#1|) $) 36)) (-2603 (((-112) $ (-771)) 10)) (-4117 (((-1157) $) 22)) (-4018 (($ $ $) 70)) (-4039 ((|#1| $) 40)) (-3406 (($ |#1| $) 41) (($ |#1| $ (-771)) 64)) (-4035 (((-1119) $) 21)) (-2006 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2539 ((|#1| $) 42)) (-2692 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) 14)) (-3467 (((-112) $) 11)) (-1494 (($) 12)) (-3014 (((-644 (-2 (|:| -3867 |#1|) (|:| -4045 (-771)))) $) 62)) (-4340 (($ $ |#1|) 72) (($ $ $) 71)) (-3481 (($) 50) (($ (-644 |#1|)) 49)) (-4045 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-3940 (($ $) 13)) (-1348 (((-538) $) 60 (|has| |#1| (-614 (-538))))) (-3796 (($ (-644 |#1|)) 51)) (-3783 (((-862) $) 18)) (-3788 (($ (-644 |#1|)) 67) (($) 66)) (-3117 (((-112) $ $) 23)) (-1748 (($ (-644 |#1|)) 43)) (-1894 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) 20)) (-3018 (((-771) $) 6 (|has| $ (-6 -4414))))) +((-2226 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-828)) (-5 *3 (-822)) (-5 *4 (-112)) (-5 *2 (-1269)))) (-2226 (*1 *2 *3 *1) (-12 (-4 *1 (-828)) (-5 *3 (-822)) (-5 *2 (-1269)))) (-2226 (*1 *2 *1 *3) (-12 (-4 *1 (-828)) (-5 *3 (-112)) (-5 *2 (-1157)))) (-2226 (*1 *2 *1) (-12 (-4 *1 (-828)) (-5 *2 (-1157))))) +(-13 (-10 -8 (-15 -2226 ((-1157) $)) (-15 -2226 ((-1157) $ (-112))) (-15 -2226 ((-1269) (-822) $)) (-15 -2226 ((-1269) (-822) $ (-112))))) +((-2764 (((-313) (-1157) (-1157)) 12)) (-2925 (((-112) (-1157) (-1157)) 34)) (-3205 (((-112) (-1157)) 33)) (-2026 (((-52) (-1157)) 25)) (-1769 (((-52) (-1157)) 23)) (-3145 (((-52) (-822)) 17)) (-3901 (((-644 (-1157)) (-1157)) 28)) (-3504 (((-644 (-1157))) 27))) +(((-829) (-10 -7 (-15 -3145 ((-52) (-822))) (-15 -1769 ((-52) (-1157))) (-15 -2026 ((-52) (-1157))) (-15 -3504 ((-644 (-1157)))) (-15 -3901 ((-644 (-1157)) (-1157))) (-15 -3205 ((-112) (-1157))) (-15 -2925 ((-112) (-1157) (-1157))) (-15 -2764 ((-313) (-1157) (-1157))))) (T -829)) +((-2764 (*1 *2 *3 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-313)) (-5 *1 (-829)))) (-2925 (*1 *2 *3 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-112)) (-5 *1 (-829)))) (-3205 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-112)) (-5 *1 (-829)))) (-3901 (*1 *2 *3) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-829)) (-5 *3 (-1157)))) (-3504 (*1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-829)))) (-2026 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-52)) (-5 *1 (-829)))) (-1769 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-52)) (-5 *1 (-829)))) (-3145 (*1 *2 *3) (-12 (-5 *3 (-822)) (-5 *2 (-52)) (-5 *1 (-829))))) +(-10 -7 (-15 -3145 ((-52) (-822))) (-15 -1769 ((-52) (-1157))) (-15 -2026 ((-52) (-1157))) (-15 -3504 ((-644 (-1157)))) (-15 -3901 ((-644 (-1157)) (-1157))) (-15 -3205 ((-112) (-1157))) (-15 -2925 ((-112) (-1157) (-1157))) (-15 -2764 ((-313) (-1157) (-1157)))) +((-2988 (((-112) $ $) 19)) (-1775 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-3495 (($ $ $) 73)) (-2515 (((-112) $ $) 74)) (-1504 (((-112) $ (-771)) 8)) (-3690 (($ (-644 |#1|)) 69) (($) 68)) (-2995 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4414)))) (-3678 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4414)))) (-2463 (($) 7 T CONST)) (-3322 (($ $) 63)) (-3942 (($ $) 59 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-3512 (($ |#1| $) 48 (|has| $ (-6 -4414))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4414)))) (-2622 (($ |#1| $) 58 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4414)))) (-2873 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4414)))) (-1683 (((-644 |#1|) $) 31 (|has| $ (-6 -4414)))) (-3546 (((-112) $ $) 65)) (-3456 (((-112) $ (-771)) 9)) (-1478 ((|#1| $) 79)) (-3674 (($ $ $) 82)) (-2696 (($ $ $) 81)) (-3491 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2599 ((|#1| $) 80)) (-3885 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#1| |#1|) $) 36)) (-3267 (((-112) $ (-771)) 10)) (-3380 (((-1157) $) 22)) (-1997 (($ $ $) 70)) (-3278 ((|#1| $) 40)) (-3888 (($ |#1| $) 41) (($ |#1| $ (-771)) 64)) (-4072 (((-1119) $) 21)) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1973 ((|#1| $) 42)) (-2823 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) 14)) (-2872 (((-112) $) 11)) (-3493 (($) 12)) (-1352 (((-644 (-2 (|:| -2636 |#1|) (|:| -4083 (-771)))) $) 62)) (-2048 (($ $ |#1|) 72) (($ $ $) 71)) (-1792 (($) 50) (($ (-644 |#1|)) 49)) (-4083 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-1480 (($ $) 13)) (-2376 (((-538) $) 60 (|has| |#1| (-614 (-538))))) (-1340 (($ (-644 |#1|)) 51)) (-3152 (((-862) $) 18)) (-1692 (($ (-644 |#1|)) 67) (($) 66)) (-3044 (((-112) $ $) 23)) (-2948 (($ (-644 |#1|)) 43)) (-2210 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) 20)) (-3000 (((-771) $) 6 (|has| $ (-6 -4414))))) (((-830 |#1|) (-140) (-850)) (T -830)) -((-2097 (*1 *2 *1) (-12 (-4 *1 (-830 *2)) (-4 *2 (-850))))) -(-13 (-736 |t#1|) (-968 |t#1|) (-10 -8 (-15 -2097 (|t#1| $)))) +((-1478 (*1 *2 *1) (-12 (-4 *1 (-830 *2)) (-4 *2 (-850))))) +(-13 (-736 |t#1|) (-968 |t#1|) (-10 -8 (-15 -1478 (|t#1| $)))) (((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-613 (-862)) . T) ((-151 |#1|) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-235 |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-695 |#1|) . T) ((-736 |#1|) . T) ((-968 |#1|) . T) ((-1097 |#1|) . T) ((-1099) . T) ((-1214) . T)) -((-2676 (((-1269) (-1119) (-1119)) 48)) (-3210 (((-1269) (-821) (-52)) 45)) (-3419 (((-52) (-821)) 16))) -(((-831) (-10 -7 (-15 -3419 ((-52) (-821))) (-15 -3210 ((-1269) (-821) (-52))) (-15 -2676 ((-1269) (-1119) (-1119))))) (T -831)) -((-2676 (*1 *2 *3 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-1269)) (-5 *1 (-831)))) (-3210 (*1 *2 *3 *4) (-12 (-5 *3 (-821)) (-5 *4 (-52)) (-5 *2 (-1269)) (-5 *1 (-831)))) (-3419 (*1 *2 *3) (-12 (-5 *3 (-821)) (-5 *2 (-52)) (-5 *1 (-831))))) -(-10 -7 (-15 -3419 ((-52) (-821))) (-15 -3210 ((-1269) (-821) (-52))) (-15 -2676 ((-1269) (-1119) (-1119)))) -((-1301 (((-833 |#2|) (-1 |#2| |#1|) (-833 |#1|) (-833 |#2|)) 12) (((-833 |#2|) (-1 |#2| |#1|) (-833 |#1|)) 13))) -(((-832 |#1| |#2|) (-10 -7 (-15 -1301 ((-833 |#2|) (-1 |#2| |#1|) (-833 |#1|))) (-15 -1301 ((-833 |#2|) (-1 |#2| |#1|) (-833 |#1|) (-833 |#2|)))) (-1099) (-1099)) (T -832)) -((-1301 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-833 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-833 *5)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-5 *1 (-832 *5 *6)))) (-1301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-833 *5)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-5 *2 (-833 *6)) (-5 *1 (-832 *5 *6))))) -(-10 -7 (-15 -1301 ((-833 |#2|) (-1 |#2| |#1|) (-833 |#1|))) (-15 -1301 ((-833 |#2|) (-1 |#2| |#1|) (-833 |#1|) (-833 |#2|)))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL (|has| |#1| (-21)))) (-4175 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-4364 (((-566) $) NIL (|has| |#1| (-848)))) (-3012 (($) NIL (|has| |#1| (-21)) CONST)) (-4307 (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) 15)) (-4205 (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) 9)) (-1878 (((-3 $ "failed") $) 42 (|has| |#1| (-848)))) (-1521 (((-3 (-409 (-566)) "failed") $) 52 (|has| |#1| (-547)))) (-1942 (((-112) $) 46 (|has| |#1| (-547)))) (-4204 (((-409 (-566)) $) 49 (|has| |#1| (-547)))) (-1897 (((-112) $) NIL (|has| |#1| (-848)))) (-3934 (((-112) $) NIL (|has| |#1| (-848)))) (-2117 (((-112) $) NIL (|has| |#1| (-848)))) (-2097 (($ $ $) NIL (|has| |#1| (-848)))) (-3962 (($ $ $) NIL (|has| |#1| (-848)))) (-4117 (((-1157) $) NIL)) (-4373 (($) 13)) (-3961 (((-112) $) 12)) (-4035 (((-1119) $) NIL)) (-1997 (((-112) $) 11)) (-3783 (((-862) $) 18) (($ (-409 (-566))) NIL (|has| |#1| (-1038 (-409 (-566))))) (($ |#1|) 8) (($ (-566)) NIL (-2809 (|has| |#1| (-848)) (|has| |#1| (-1038 (-566)))))) (-2107 (((-771)) 36 (|has| |#1| (-848)) CONST)) (-3117 (((-112) $ $) 54)) (-2086 (($ $) NIL (|has| |#1| (-848)))) (-2479 (($) 23 (|has| |#1| (-21)) CONST)) (-4334 (($) 33 (|has| |#1| (-848)) CONST)) (-3009 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2984 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2947 (((-112) $ $) 21)) (-2995 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2969 (((-112) $ $) 45 (|has| |#1| (-848)))) (-3053 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 29 (|has| |#1| (-21)))) (-3041 (($ $ $) 31 (|has| |#1| (-21)))) (** (($ $ (-921)) NIL (|has| |#1| (-848))) (($ $ (-771)) NIL (|has| |#1| (-848)))) (* (($ $ $) 39 (|has| |#1| (-848))) (($ (-566) $) 27 (|has| |#1| (-21))) (($ (-771) $) NIL (|has| |#1| (-21))) (($ (-921) $) NIL (|has| |#1| (-21))))) -(((-833 |#1|) (-13 (-1099) (-413 |#1|) (-10 -8 (-15 -4373 ($)) (-15 -1997 ((-112) $)) (-15 -3961 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-848)) (-6 (-848)) |%noBranch|) (IF (|has| |#1| (-547)) (PROGN (-15 -1942 ((-112) $)) (-15 -4204 ((-409 (-566)) $)) (-15 -1521 ((-3 (-409 (-566)) "failed") $))) |%noBranch|))) (-1099)) (T -833)) -((-4373 (*1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-1099)))) (-1997 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-833 *3)) (-4 *3 (-1099)))) (-3961 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-833 *3)) (-4 *3 (-1099)))) (-1942 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-833 *3)) (-4 *3 (-547)) (-4 *3 (-1099)))) (-4204 (*1 *2 *1) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-833 *3)) (-4 *3 (-547)) (-4 *3 (-1099)))) (-1521 (*1 *2 *1) (|partial| -12 (-5 *2 (-409 (-566))) (-5 *1 (-833 *3)) (-4 *3 (-547)) (-4 *3 (-1099))))) -(-13 (-1099) (-413 |#1|) (-10 -8 (-15 -4373 ($)) (-15 -1997 ((-112) $)) (-15 -3961 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-848)) (-6 (-848)) |%noBranch|) (IF (|has| |#1| (-547)) (PROGN (-15 -1942 ((-112) $)) (-15 -4204 ((-409 (-566)) $)) (-15 -1521 ((-3 (-409 (-566)) "failed") $))) |%noBranch|))) -((-2572 (((-112) $ |#2|) 14)) (-3783 (((-862) $) 11))) -(((-834 |#1| |#2|) (-10 -8 (-15 -2572 ((-112) |#1| |#2|)) (-15 -3783 ((-862) |#1|))) (-835 |#2|) (-1099)) (T -834)) -NIL -(-10 -8 (-15 -2572 ((-112) |#1| |#2|)) (-15 -3783 ((-862) |#1|))) -((-3007 (((-112) $ $) 7)) (-2640 ((|#1| $) 16)) (-4117 (((-1157) $) 10)) (-2572 (((-112) $ |#1|) 14)) (-4035 (((-1119) $) 11)) (-3783 (((-862) $) 12)) (-3117 (((-112) $ $) 9)) (-2347 (((-55) $) 15)) (-2947 (((-112) $ $) 6))) +((-2939 (((-1269) (-1119) (-1119)) 48)) (-4215 (((-1269) (-821) (-52)) 45)) (-2650 (((-52) (-821)) 16))) +(((-831) (-10 -7 (-15 -2650 ((-52) (-821))) (-15 -4215 ((-1269) (-821) (-52))) (-15 -2939 ((-1269) (-1119) (-1119))))) (T -831)) +((-2939 (*1 *2 *3 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-1269)) (-5 *1 (-831)))) (-4215 (*1 *2 *3 *4) (-12 (-5 *3 (-821)) (-5 *4 (-52)) (-5 *2 (-1269)) (-5 *1 (-831)))) (-2650 (*1 *2 *3) (-12 (-5 *3 (-821)) (-5 *2 (-52)) (-5 *1 (-831))))) +(-10 -7 (-15 -2650 ((-52) (-821))) (-15 -4215 ((-1269) (-821) (-52))) (-15 -2939 ((-1269) (-1119) (-1119)))) +((-2319 (((-833 |#2|) (-1 |#2| |#1|) (-833 |#1|) (-833 |#2|)) 12) (((-833 |#2|) (-1 |#2| |#1|) (-833 |#1|)) 13))) +(((-832 |#1| |#2|) (-10 -7 (-15 -2319 ((-833 |#2|) (-1 |#2| |#1|) (-833 |#1|))) (-15 -2319 ((-833 |#2|) (-1 |#2| |#1|) (-833 |#1|) (-833 |#2|)))) (-1099) (-1099)) (T -832)) +((-2319 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-833 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-833 *5)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-5 *1 (-832 *5 *6)))) (-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-833 *5)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-5 *2 (-833 *6)) (-5 *1 (-832 *5 *6))))) +(-10 -7 (-15 -2319 ((-833 |#2|) (-1 |#2| |#1|) (-833 |#1|))) (-15 -2319 ((-833 |#2|) (-1 |#2| |#1|) (-833 |#1|) (-833 |#2|)))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL (|has| |#1| (-21)))) (-3967 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2743 (((-566) $) NIL (|has| |#1| (-848)))) (-2463 (($) NIL (|has| |#1| (-21)) CONST)) (-2229 (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) 15)) (-4158 (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) 9)) (-3245 (((-3 $ "failed") $) 42 (|has| |#1| (-848)))) (-4391 (((-3 (-409 (-566)) "failed") $) 52 (|has| |#1| (-547)))) (-3407 (((-112) $) 46 (|has| |#1| (-547)))) (-1786 (((-409 (-566)) $) 49 (|has| |#1| (-547)))) (-2528 (((-112) $) NIL (|has| |#1| (-848)))) (-2389 (((-112) $) NIL (|has| |#1| (-848)))) (-3233 (((-112) $) NIL (|has| |#1| (-848)))) (-1478 (($ $ $) NIL (|has| |#1| (-848)))) (-2599 (($ $ $) NIL (|has| |#1| (-848)))) (-3380 (((-1157) $) NIL)) (-2293 (($) 13)) (-4147 (((-112) $) 12)) (-4072 (((-1119) $) NIL)) (-4156 (((-112) $) 11)) (-3152 (((-862) $) 18) (($ (-409 (-566))) NIL (|has| |#1| (-1038 (-409 (-566))))) (($ |#1|) 8) (($ (-566)) NIL (-2768 (|has| |#1| (-848)) (|has| |#1| (-1038 (-566)))))) (-2593 (((-771)) 36 (|has| |#1| (-848)) CONST)) (-3044 (((-112) $ $) 54)) (-1358 (($ $) NIL (|has| |#1| (-848)))) (-4356 (($) 23 (|has| |#1| (-21)) CONST)) (-4366 (($) 33 (|has| |#1| (-848)) CONST)) (-2968 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2914 (((-112) $ $) 21)) (-2956 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2935 (((-112) $ $) 45 (|has| |#1| (-848)))) (-3012 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 29 (|has| |#1| (-21)))) (-3002 (($ $ $) 31 (|has| |#1| (-21)))) (** (($ $ (-921)) NIL (|has| |#1| (-848))) (($ $ (-771)) NIL (|has| |#1| (-848)))) (* (($ $ $) 39 (|has| |#1| (-848))) (($ (-566) $) 27 (|has| |#1| (-21))) (($ (-771) $) NIL (|has| |#1| (-21))) (($ (-921) $) NIL (|has| |#1| (-21))))) +(((-833 |#1|) (-13 (-1099) (-413 |#1|) (-10 -8 (-15 -2293 ($)) (-15 -4156 ((-112) $)) (-15 -4147 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-848)) (-6 (-848)) |%noBranch|) (IF (|has| |#1| (-547)) (PROGN (-15 -3407 ((-112) $)) (-15 -1786 ((-409 (-566)) $)) (-15 -4391 ((-3 (-409 (-566)) "failed") $))) |%noBranch|))) (-1099)) (T -833)) +((-2293 (*1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-1099)))) (-4156 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-833 *3)) (-4 *3 (-1099)))) (-4147 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-833 *3)) (-4 *3 (-1099)))) (-3407 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-833 *3)) (-4 *3 (-547)) (-4 *3 (-1099)))) (-1786 (*1 *2 *1) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-833 *3)) (-4 *3 (-547)) (-4 *3 (-1099)))) (-4391 (*1 *2 *1) (|partial| -12 (-5 *2 (-409 (-566))) (-5 *1 (-833 *3)) (-4 *3 (-547)) (-4 *3 (-1099))))) +(-13 (-1099) (-413 |#1|) (-10 -8 (-15 -2293 ($)) (-15 -4156 ((-112) $)) (-15 -4147 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-848)) (-6 (-848)) |%noBranch|) (IF (|has| |#1| (-547)) (PROGN (-15 -3407 ((-112) $)) (-15 -1786 ((-409 (-566)) $)) (-15 -4391 ((-3 (-409 (-566)) "failed") $))) |%noBranch|))) +((-3335 (((-112) $ |#2|) 14)) (-3152 (((-862) $) 11))) +(((-834 |#1| |#2|) (-10 -8 (-15 -3335 ((-112) |#1| |#2|)) (-15 -3152 ((-862) |#1|))) (-835 |#2|) (-1099)) (T -834)) +NIL +(-10 -8 (-15 -3335 ((-112) |#1| |#2|)) (-15 -3152 ((-862) |#1|))) +((-2988 (((-112) $ $) 7)) (-1368 ((|#1| $) 16)) (-3380 (((-1157) $) 10)) (-3335 (((-112) $ |#1|) 14)) (-4072 (((-1119) $) 11)) (-3152 (((-862) $) 12)) (-3044 (((-112) $ $) 9)) (-1752 (((-55) $) 15)) (-2914 (((-112) $ $) 6))) (((-835 |#1|) (-140) (-1099)) (T -835)) -((-2640 (*1 *2 *1) (-12 (-4 *1 (-835 *2)) (-4 *2 (-1099)))) (-2347 (*1 *2 *1) (-12 (-4 *1 (-835 *3)) (-4 *3 (-1099)) (-5 *2 (-55)))) (-2572 (*1 *2 *1 *3) (-12 (-4 *1 (-835 *3)) (-4 *3 (-1099)) (-5 *2 (-112))))) -(-13 (-1099) (-10 -8 (-15 -2640 (|t#1| $)) (-15 -2347 ((-55) $)) (-15 -2572 ((-112) $ |t#1|)))) +((-1368 (*1 *2 *1) (-12 (-4 *1 (-835 *2)) (-4 *2 (-1099)))) (-1752 (*1 *2 *1) (-12 (-4 *1 (-835 *3)) (-4 *3 (-1099)) (-5 *2 (-55)))) (-3335 (*1 *2 *1 *3) (-12 (-4 *1 (-835 *3)) (-4 *3 (-1099)) (-5 *2 (-112))))) +(-13 (-1099) (-10 -8 (-15 -1368 (|t#1| $)) (-15 -1752 ((-55) $)) (-15 -3335 ((-112) $ |t#1|)))) (((-102) . T) ((-613 (-862)) . T) ((-1099) . T)) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-3012 (($) NIL T CONST)) (-4307 (((-3 |#1| "failed") $) NIL) (((-3 (-114) "failed") $) NIL)) (-4205 ((|#1| $) NIL) (((-114) $) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-2318 ((|#1| (-114) |#1|) NIL)) (-3934 (((-112) $) NIL)) (-4255 (($ |#1| (-363 (-114))) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3008 (($ $ (-1 |#1| |#1|)) NIL)) (-3024 (($ $ (-1 |#1| |#1|)) NIL)) (-4390 ((|#1| $ |#1|) NIL)) (-2563 ((|#1| |#1|) NIL (|has| |#1| (-172)))) (-3783 (((-862) $) NIL) (($ (-566)) NIL) (($ |#1|) NIL) (($ (-114)) NIL)) (-3144 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2107 (((-771)) NIL T CONST)) (-3117 (((-112) $ $) NIL)) (-2279 (($ $) NIL (|has| |#1| (-172))) (($ $ $) NIL (|has| |#1| (-172)))) (-2479 (($) NIL T CONST)) (-4334 (($) NIL T CONST)) (-2947 (((-112) $ $) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ (-114) (-566)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) -(((-836 |#1|) (-13 (-1049) (-1038 |#1|) (-1038 (-114)) (-287 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -2279 ($ $)) (-15 -2279 ($ $ $)) (-15 -2563 (|#1| |#1|))) |%noBranch|) (-15 -3024 ($ $ (-1 |#1| |#1|))) (-15 -3008 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-566))) (-15 ** ($ $ (-566))) (-15 -2318 (|#1| (-114) |#1|)) (-15 -4255 ($ |#1| (-363 (-114)))))) (-1049)) (T -836)) -((-2279 (*1 *1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-172)) (-4 *2 (-1049)))) (-2279 (*1 *1 *1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-172)) (-4 *2 (-1049)))) (-2563 (*1 *2 *2) (-12 (-5 *1 (-836 *2)) (-4 *2 (-172)) (-4 *2 (-1049)))) (-3024 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1049)) (-5 *1 (-836 *3)))) (-3008 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1049)) (-5 *1 (-836 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-566)) (-5 *1 (-836 *4)) (-4 *4 (-1049)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-836 *3)) (-4 *3 (-1049)))) (-2318 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-836 *2)) (-4 *2 (-1049)))) (-4255 (*1 *1 *2 *3) (-12 (-5 *3 (-363 (-114))) (-5 *1 (-836 *2)) (-4 *2 (-1049))))) -(-13 (-1049) (-1038 |#1|) (-1038 (-114)) (-287 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -2279 ($ $)) (-15 -2279 ($ $ $)) (-15 -2563 (|#1| |#1|))) |%noBranch|) (-15 -3024 ($ $ (-1 |#1| |#1|))) (-15 -3008 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-566))) (-15 ** ($ $ (-566))) (-15 -2318 (|#1| (-114) |#1|)) (-15 -4255 ($ |#1| (-363 (-114)))))) -((-3300 (((-214 (-504)) (-1157)) 9))) -(((-837) (-10 -7 (-15 -3300 ((-214 (-504)) (-1157))))) (T -837)) -((-3300 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-214 (-504))) (-5 *1 (-837))))) -(-10 -7 (-15 -3300 ((-214 (-504)) (-1157)))) -((-3007 (((-112) $ $) NIL)) (-3030 (((-1117) $) 10)) (-2640 (((-508) $) 9)) (-4117 (((-1157) $) NIL)) (-2572 (((-112) $ (-508)) NIL)) (-4035 (((-1119) $) NIL)) (-3796 (($ (-508) (-1117)) 8)) (-3783 (((-862) $) 25)) (-3117 (((-112) $ $) NIL)) (-2347 (((-55) $) 20)) (-2947 (((-112) $ $) 12))) -(((-838) (-13 (-835 (-508)) (-10 -8 (-15 -3030 ((-1117) $)) (-15 -3796 ($ (-508) (-1117)))))) (T -838)) -((-3030 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-838)))) (-3796 (*1 *1 *2 *3) (-12 (-5 *2 (-508)) (-5 *3 (-1117)) (-5 *1 (-838))))) -(-13 (-835 (-508)) (-10 -8 (-15 -3030 ((-1117) $)) (-15 -3796 ($ (-508) (-1117))))) -((-3007 (((-112) $ $) 7)) (-4082 (((-1035) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1761 (-644 (-225))))) 15) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -1761 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 14)) (-1338 (((-2 (|:| -1338 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -1761 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 17) (((-2 (|:| -1338 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1761 (-644 (-225))))) 16)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3783 (((-862) $) 12)) (-3117 (((-112) $ $) 9)) (-2947 (((-112) $ $) 6))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-2463 (($) NIL T CONST)) (-2229 (((-3 |#1| "failed") $) NIL) (((-3 (-114) "failed") $) NIL)) (-4158 ((|#1| $) NIL) (((-114) $) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-3448 ((|#1| (-114) |#1|) NIL)) (-2389 (((-112) $) NIL)) (-1985 (($ |#1| (-363 (-114))) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-2122 (($ $ (-1 |#1| |#1|)) NIL)) (-2359 (($ $ (-1 |#1| |#1|)) NIL)) (-1309 ((|#1| $ |#1|) NIL)) (-1772 ((|#1| |#1|) NIL (|has| |#1| (-172)))) (-3152 (((-862) $) NIL) (($ (-566)) NIL) (($ |#1|) NIL) (($ (-114)) NIL)) (-2633 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2593 (((-771)) NIL T CONST)) (-3044 (((-112) $ $) NIL)) (-3045 (($ $) NIL (|has| |#1| (-172))) (($ $ $) NIL (|has| |#1| (-172)))) (-4356 (($) NIL T CONST)) (-4366 (($) NIL T CONST)) (-2914 (((-112) $ $) NIL)) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ (-114) (-566)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) +(((-836 |#1|) (-13 (-1049) (-1038 |#1|) (-1038 (-114)) (-287 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -3045 ($ $)) (-15 -3045 ($ $ $)) (-15 -1772 (|#1| |#1|))) |%noBranch|) (-15 -2359 ($ $ (-1 |#1| |#1|))) (-15 -2122 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-566))) (-15 ** ($ $ (-566))) (-15 -3448 (|#1| (-114) |#1|)) (-15 -1985 ($ |#1| (-363 (-114)))))) (-1049)) (T -836)) +((-3045 (*1 *1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-172)) (-4 *2 (-1049)))) (-3045 (*1 *1 *1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-172)) (-4 *2 (-1049)))) (-1772 (*1 *2 *2) (-12 (-5 *1 (-836 *2)) (-4 *2 (-172)) (-4 *2 (-1049)))) (-2359 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1049)) (-5 *1 (-836 *3)))) (-2122 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1049)) (-5 *1 (-836 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-566)) (-5 *1 (-836 *4)) (-4 *4 (-1049)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-836 *3)) (-4 *3 (-1049)))) (-3448 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-836 *2)) (-4 *2 (-1049)))) (-1985 (*1 *1 *2 *3) (-12 (-5 *3 (-363 (-114))) (-5 *1 (-836 *2)) (-4 *2 (-1049))))) +(-13 (-1049) (-1038 |#1|) (-1038 (-114)) (-287 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -3045 ($ $)) (-15 -3045 ($ $ $)) (-15 -1772 (|#1| |#1|))) |%noBranch|) (-15 -2359 ($ $ (-1 |#1| |#1|))) (-15 -2122 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-566))) (-15 ** ($ $ (-566))) (-15 -3448 (|#1| (-114) |#1|)) (-15 -1985 ($ |#1| (-363 (-114)))))) +((-2895 (((-214 (-504)) (-1157)) 9))) +(((-837) (-10 -7 (-15 -2895 ((-214 (-504)) (-1157))))) (T -837)) +((-2895 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-214 (-504))) (-5 *1 (-837))))) +(-10 -7 (-15 -2895 ((-214 (-504)) (-1157)))) +((-2988 (((-112) $ $) NIL)) (-2831 (((-1117) $) 10)) (-1368 (((-508) $) 9)) (-3380 (((-1157) $) NIL)) (-3335 (((-112) $ (-508)) NIL)) (-4072 (((-1119) $) NIL)) (-1340 (($ (-508) (-1117)) 8)) (-3152 (((-862) $) 25)) (-3044 (((-112) $ $) NIL)) (-1752 (((-55) $) 20)) (-2914 (((-112) $ $) 12))) +(((-838) (-13 (-835 (-508)) (-10 -8 (-15 -2831 ((-1117) $)) (-15 -1340 ($ (-508) (-1117)))))) (T -838)) +((-2831 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-838)))) (-1340 (*1 *1 *2 *3) (-12 (-5 *2 (-508)) (-5 *3 (-1117)) (-5 *1 (-838))))) +(-13 (-835 (-508)) (-10 -8 (-15 -2831 ((-1117) $)) (-15 -1340 ($ (-508) (-1117))))) +((-2988 (((-112) $ $) 7)) (-2035 (((-1035) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3289 (-644 (-225))))) 15) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -3289 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 14)) (-2659 (((-2 (|:| -2659 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -3289 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 17) (((-2 (|:| -2659 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3289 (-644 (-225))))) 16)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3152 (((-862) $) 12)) (-3044 (((-112) $ $) 9)) (-2914 (((-112) $ $) 6))) (((-839) (-140)) (T -839)) -((-1338 (*1 *2 *3 *4) (-12 (-4 *1 (-839)) (-5 *3 (-1062)) (-5 *4 (-2 (|:| |fn| (-317 (-225))) (|:| -1761 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (-5 *2 (-2 (|:| -1338 (-381)) (|:| |explanations| (-1157)))))) (-1338 (*1 *2 *3 *4) (-12 (-4 *1 (-839)) (-5 *3 (-1062)) (-5 *4 (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1761 (-644 (-225))))) (-5 *2 (-2 (|:| -1338 (-381)) (|:| |explanations| (-1157)))))) (-4082 (*1 *2 *3) (-12 (-4 *1 (-839)) (-5 *3 (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1761 (-644 (-225))))) (-5 *2 (-1035)))) (-4082 (*1 *2 *3) (-12 (-4 *1 (-839)) (-5 *3 (-2 (|:| |fn| (-317 (-225))) (|:| -1761 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (-5 *2 (-1035))))) -(-13 (-1099) (-10 -7 (-15 -1338 ((-2 (|:| -1338 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -1761 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225))))))) (-15 -1338 ((-2 (|:| -1338 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1761 (-644 (-225)))))) (-15 -4082 ((-1035) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1761 (-644 (-225)))))) (-15 -4082 ((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -1761 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225))))))))) +((-2659 (*1 *2 *3 *4) (-12 (-4 *1 (-839)) (-5 *3 (-1062)) (-5 *4 (-2 (|:| |fn| (-317 (-225))) (|:| -3289 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (-5 *2 (-2 (|:| -2659 (-381)) (|:| |explanations| (-1157)))))) (-2659 (*1 *2 *3 *4) (-12 (-4 *1 (-839)) (-5 *3 (-1062)) (-5 *4 (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3289 (-644 (-225))))) (-5 *2 (-2 (|:| -2659 (-381)) (|:| |explanations| (-1157)))))) (-2035 (*1 *2 *3) (-12 (-4 *1 (-839)) (-5 *3 (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3289 (-644 (-225))))) (-5 *2 (-1035)))) (-2035 (*1 *2 *3) (-12 (-4 *1 (-839)) (-5 *3 (-2 (|:| |fn| (-317 (-225))) (|:| -3289 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (-5 *2 (-1035))))) +(-13 (-1099) (-10 -7 (-15 -2659 ((-2 (|:| -2659 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -3289 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225))))))) (-15 -2659 ((-2 (|:| -2659 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3289 (-644 (-225)))))) (-15 -2035 ((-1035) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3289 (-644 (-225)))))) (-15 -2035 ((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -3289 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225))))))))) (((-102) . T) ((-613 (-862)) . T) ((-1099) . T)) -((-3605 (((-1035) (-644 (-317 (-381))) (-644 (-381))) 169) (((-1035) (-317 (-381)) (-644 (-381))) 167) (((-1035) (-317 (-381)) (-644 (-381)) (-644 (-843 (-381))) (-644 (-843 (-381)))) 165) (((-1035) (-317 (-381)) (-644 (-381)) (-644 (-843 (-381))) (-644 (-317 (-381))) (-644 (-843 (-381)))) 163) (((-1035) (-841)) 128) (((-1035) (-841) (-1062)) 127)) (-1338 (((-2 (|:| -1338 (-381)) (|:| -2640 (-1157)) (|:| |explanations| (-644 (-1157)))) (-841) (-1062)) 88) (((-2 (|:| -1338 (-381)) (|:| -2640 (-1157)) (|:| |explanations| (-644 (-1157)))) (-841)) 90)) (-2045 (((-1035) (-644 (-317 (-381))) (-644 (-381))) 170) (((-1035) (-841)) 153))) -(((-840) (-10 -7 (-15 -1338 ((-2 (|:| -1338 (-381)) (|:| -2640 (-1157)) (|:| |explanations| (-644 (-1157)))) (-841))) (-15 -1338 ((-2 (|:| -1338 (-381)) (|:| -2640 (-1157)) (|:| |explanations| (-644 (-1157)))) (-841) (-1062))) (-15 -3605 ((-1035) (-841) (-1062))) (-15 -3605 ((-1035) (-841))) (-15 -2045 ((-1035) (-841))) (-15 -3605 ((-1035) (-317 (-381)) (-644 (-381)) (-644 (-843 (-381))) (-644 (-317 (-381))) (-644 (-843 (-381))))) (-15 -3605 ((-1035) (-317 (-381)) (-644 (-381)) (-644 (-843 (-381))) (-644 (-843 (-381))))) (-15 -3605 ((-1035) (-317 (-381)) (-644 (-381)))) (-15 -3605 ((-1035) (-644 (-317 (-381))) (-644 (-381)))) (-15 -2045 ((-1035) (-644 (-317 (-381))) (-644 (-381)))))) (T -840)) -((-2045 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-317 (-381)))) (-5 *4 (-644 (-381))) (-5 *2 (-1035)) (-5 *1 (-840)))) (-3605 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-317 (-381)))) (-5 *4 (-644 (-381))) (-5 *2 (-1035)) (-5 *1 (-840)))) (-3605 (*1 *2 *3 *4) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-644 (-381))) (-5 *2 (-1035)) (-5 *1 (-840)))) (-3605 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-644 (-381))) (-5 *5 (-644 (-843 (-381)))) (-5 *2 (-1035)) (-5 *1 (-840)))) (-3605 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-644 (-381))) (-5 *5 (-644 (-843 (-381)))) (-5 *6 (-644 (-317 (-381)))) (-5 *3 (-317 (-381))) (-5 *2 (-1035)) (-5 *1 (-840)))) (-2045 (*1 *2 *3) (-12 (-5 *3 (-841)) (-5 *2 (-1035)) (-5 *1 (-840)))) (-3605 (*1 *2 *3) (-12 (-5 *3 (-841)) (-5 *2 (-1035)) (-5 *1 (-840)))) (-3605 (*1 *2 *3 *4) (-12 (-5 *3 (-841)) (-5 *4 (-1062)) (-5 *2 (-1035)) (-5 *1 (-840)))) (-1338 (*1 *2 *3 *4) (-12 (-5 *3 (-841)) (-5 *4 (-1062)) (-5 *2 (-2 (|:| -1338 (-381)) (|:| -2640 (-1157)) (|:| |explanations| (-644 (-1157))))) (-5 *1 (-840)))) (-1338 (*1 *2 *3) (-12 (-5 *3 (-841)) (-5 *2 (-2 (|:| -1338 (-381)) (|:| -2640 (-1157)) (|:| |explanations| (-644 (-1157))))) (-5 *1 (-840))))) -(-10 -7 (-15 -1338 ((-2 (|:| -1338 (-381)) (|:| -2640 (-1157)) (|:| |explanations| (-644 (-1157)))) (-841))) (-15 -1338 ((-2 (|:| -1338 (-381)) (|:| -2640 (-1157)) (|:| |explanations| (-644 (-1157)))) (-841) (-1062))) (-15 -3605 ((-1035) (-841) (-1062))) (-15 -3605 ((-1035) (-841))) (-15 -2045 ((-1035) (-841))) (-15 -3605 ((-1035) (-317 (-381)) (-644 (-381)) (-644 (-843 (-381))) (-644 (-317 (-381))) (-644 (-843 (-381))))) (-15 -3605 ((-1035) (-317 (-381)) (-644 (-381)) (-644 (-843 (-381))) (-644 (-843 (-381))))) (-15 -3605 ((-1035) (-317 (-381)) (-644 (-381)))) (-15 -3605 ((-1035) (-644 (-317 (-381))) (-644 (-381)))) (-15 -2045 ((-1035) (-644 (-317 (-381))) (-644 (-381))))) -((-3007 (((-112) $ $) NIL)) (-4205 (((-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -1761 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1761 (-644 (-225)))))) $) 21)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 20) (($ (-2 (|:| |fn| (-317 (-225))) (|:| -1761 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 14) (($ (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1761 (-644 (-225))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -1761 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1761 (-644 (-225))))))) 18)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) -(((-841) (-13 (-1099) (-10 -8 (-15 -3783 ($ (-2 (|:| |fn| (-317 (-225))) (|:| -1761 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225))))))) (-15 -3783 ($ (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1761 (-644 (-225)))))) (-15 -3783 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -1761 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1761 (-644 (-225)))))))) (-15 -4205 ((-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -1761 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1761 (-644 (-225)))))) $))))) (T -841)) -((-3783 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-317 (-225))) (|:| -1761 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (-5 *1 (-841)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1761 (-644 (-225))))) (-5 *1 (-841)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -1761 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1761 (-644 (-225))))))) (-5 *1 (-841)))) (-4205 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -1761 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1761 (-644 (-225))))))) (-5 *1 (-841))))) -(-13 (-1099) (-10 -8 (-15 -3783 ($ (-2 (|:| |fn| (-317 (-225))) (|:| -1761 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225))))))) (-15 -3783 ($ (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1761 (-644 (-225)))))) (-15 -3783 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -1761 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1761 (-644 (-225)))))))) (-15 -4205 ((-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -1761 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1761 (-644 (-225)))))) $)))) -((-1301 (((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|) (-843 |#2|) (-843 |#2|)) 13) (((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|)) 14))) -(((-842 |#1| |#2|) (-10 -7 (-15 -1301 ((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|))) (-15 -1301 ((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|) (-843 |#2|) (-843 |#2|)))) (-1099) (-1099)) (T -842)) -((-1301 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-843 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-843 *5)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-5 *1 (-842 *5 *6)))) (-1301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-843 *5)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-5 *2 (-843 *6)) (-5 *1 (-842 *5 *6))))) -(-10 -7 (-15 -1301 ((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|))) (-15 -1301 ((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|) (-843 |#2|) (-843 |#2|)))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL (|has| |#1| (-21)))) (-2122 (((-1119) $) 31)) (-4175 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-4364 (((-566) $) NIL (|has| |#1| (-848)))) (-3012 (($) NIL (|has| |#1| (-21)) CONST)) (-4307 (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) 18)) (-4205 (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) 9)) (-1878 (((-3 $ "failed") $) 58 (|has| |#1| (-848)))) (-1521 (((-3 (-409 (-566)) "failed") $) 65 (|has| |#1| (-547)))) (-1942 (((-112) $) 60 (|has| |#1| (-547)))) (-4204 (((-409 (-566)) $) 63 (|has| |#1| (-547)))) (-1897 (((-112) $) NIL (|has| |#1| (-848)))) (-2931 (($) 14)) (-3934 (((-112) $) NIL (|has| |#1| (-848)))) (-2117 (((-112) $) NIL (|has| |#1| (-848)))) (-2942 (($) 16)) (-2097 (($ $ $) NIL (|has| |#1| (-848)))) (-3962 (($ $ $) NIL (|has| |#1| (-848)))) (-4117 (((-1157) $) NIL)) (-3961 (((-112) $) 12)) (-4035 (((-1119) $) NIL)) (-1997 (((-112) $) 11)) (-3783 (((-862) $) 24) (($ (-409 (-566))) NIL (|has| |#1| (-1038 (-409 (-566))))) (($ |#1|) 8) (($ (-566)) NIL (-2809 (|has| |#1| (-848)) (|has| |#1| (-1038 (-566)))))) (-2107 (((-771)) 51 (|has| |#1| (-848)) CONST)) (-3117 (((-112) $ $) NIL)) (-2086 (($ $) NIL (|has| |#1| (-848)))) (-2479 (($) 37 (|has| |#1| (-21)) CONST)) (-4334 (($) 48 (|has| |#1| (-848)) CONST)) (-3009 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2984 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2947 (((-112) $ $) 35)) (-2995 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2969 (((-112) $ $) 59 (|has| |#1| (-848)))) (-3053 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 44 (|has| |#1| (-21)))) (-3041 (($ $ $) 46 (|has| |#1| (-21)))) (** (($ $ (-921)) NIL (|has| |#1| (-848))) (($ $ (-771)) NIL (|has| |#1| (-848)))) (* (($ $ $) 55 (|has| |#1| (-848))) (($ (-566) $) 42 (|has| |#1| (-21))) (($ (-771) $) NIL (|has| |#1| (-21))) (($ (-921) $) NIL (|has| |#1| (-21))))) -(((-843 |#1|) (-13 (-1099) (-413 |#1|) (-10 -8 (-15 -2931 ($)) (-15 -2942 ($)) (-15 -1997 ((-112) $)) (-15 -3961 ((-112) $)) (-15 -2122 ((-1119) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-848)) (-6 (-848)) |%noBranch|) (IF (|has| |#1| (-547)) (PROGN (-15 -1942 ((-112) $)) (-15 -4204 ((-409 (-566)) $)) (-15 -1521 ((-3 (-409 (-566)) "failed") $))) |%noBranch|))) (-1099)) (T -843)) -((-2931 (*1 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-1099)))) (-2942 (*1 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-1099)))) (-1997 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-1099)))) (-3961 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-1099)))) (-2122 (*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-843 *3)) (-4 *3 (-1099)))) (-1942 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-547)) (-4 *3 (-1099)))) (-4204 (*1 *2 *1) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-843 *3)) (-4 *3 (-547)) (-4 *3 (-1099)))) (-1521 (*1 *2 *1) (|partial| -12 (-5 *2 (-409 (-566))) (-5 *1 (-843 *3)) (-4 *3 (-547)) (-4 *3 (-1099))))) -(-13 (-1099) (-413 |#1|) (-10 -8 (-15 -2931 ($)) (-15 -2942 ($)) (-15 -1997 ((-112) $)) (-15 -3961 ((-112) $)) (-15 -2122 ((-1119) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-848)) (-6 (-848)) |%noBranch|) (IF (|has| |#1| (-547)) (PROGN (-15 -1942 ((-112) $)) (-15 -4204 ((-409 (-566)) $)) (-15 -1521 ((-3 (-409 (-566)) "failed") $))) |%noBranch|))) -((-3007 (((-112) $ $) 7)) (-1970 (((-771)) 23)) (-1552 (($) 26)) (-2097 (($ $ $) 14) (($) 22 T CONST)) (-3962 (($ $ $) 15) (($) 21 T CONST)) (-3681 (((-921) $) 25)) (-4117 (((-1157) $) 10)) (-2178 (($ (-921)) 24)) (-4035 (((-1119) $) 11)) (-3783 (((-862) $) 12)) (-3117 (((-112) $ $) 9)) (-3009 (((-112) $ $) 17)) (-2984 (((-112) $ $) 18)) (-2947 (((-112) $ $) 6)) (-2995 (((-112) $ $) 16)) (-2969 (((-112) $ $) 19))) +((-3576 (((-1035) (-644 (-317 (-381))) (-644 (-381))) 169) (((-1035) (-317 (-381)) (-644 (-381))) 167) (((-1035) (-317 (-381)) (-644 (-381)) (-644 (-843 (-381))) (-644 (-843 (-381)))) 165) (((-1035) (-317 (-381)) (-644 (-381)) (-644 (-843 (-381))) (-644 (-317 (-381))) (-644 (-843 (-381)))) 163) (((-1035) (-841)) 128) (((-1035) (-841) (-1062)) 127)) (-2659 (((-2 (|:| -2659 (-381)) (|:| -1368 (-1157)) (|:| |explanations| (-644 (-1157)))) (-841) (-1062)) 88) (((-2 (|:| -2659 (-381)) (|:| -1368 (-1157)) (|:| |explanations| (-644 (-1157)))) (-841)) 90)) (-2918 (((-1035) (-644 (-317 (-381))) (-644 (-381))) 170) (((-1035) (-841)) 153))) +(((-840) (-10 -7 (-15 -2659 ((-2 (|:| -2659 (-381)) (|:| -1368 (-1157)) (|:| |explanations| (-644 (-1157)))) (-841))) (-15 -2659 ((-2 (|:| -2659 (-381)) (|:| -1368 (-1157)) (|:| |explanations| (-644 (-1157)))) (-841) (-1062))) (-15 -3576 ((-1035) (-841) (-1062))) (-15 -3576 ((-1035) (-841))) (-15 -2918 ((-1035) (-841))) (-15 -3576 ((-1035) (-317 (-381)) (-644 (-381)) (-644 (-843 (-381))) (-644 (-317 (-381))) (-644 (-843 (-381))))) (-15 -3576 ((-1035) (-317 (-381)) (-644 (-381)) (-644 (-843 (-381))) (-644 (-843 (-381))))) (-15 -3576 ((-1035) (-317 (-381)) (-644 (-381)))) (-15 -3576 ((-1035) (-644 (-317 (-381))) (-644 (-381)))) (-15 -2918 ((-1035) (-644 (-317 (-381))) (-644 (-381)))))) (T -840)) +((-2918 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-317 (-381)))) (-5 *4 (-644 (-381))) (-5 *2 (-1035)) (-5 *1 (-840)))) (-3576 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-317 (-381)))) (-5 *4 (-644 (-381))) (-5 *2 (-1035)) (-5 *1 (-840)))) (-3576 (*1 *2 *3 *4) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-644 (-381))) (-5 *2 (-1035)) (-5 *1 (-840)))) (-3576 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-644 (-381))) (-5 *5 (-644 (-843 (-381)))) (-5 *2 (-1035)) (-5 *1 (-840)))) (-3576 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-644 (-381))) (-5 *5 (-644 (-843 (-381)))) (-5 *6 (-644 (-317 (-381)))) (-5 *3 (-317 (-381))) (-5 *2 (-1035)) (-5 *1 (-840)))) (-2918 (*1 *2 *3) (-12 (-5 *3 (-841)) (-5 *2 (-1035)) (-5 *1 (-840)))) (-3576 (*1 *2 *3) (-12 (-5 *3 (-841)) (-5 *2 (-1035)) (-5 *1 (-840)))) (-3576 (*1 *2 *3 *4) (-12 (-5 *3 (-841)) (-5 *4 (-1062)) (-5 *2 (-1035)) (-5 *1 (-840)))) (-2659 (*1 *2 *3 *4) (-12 (-5 *3 (-841)) (-5 *4 (-1062)) (-5 *2 (-2 (|:| -2659 (-381)) (|:| -1368 (-1157)) (|:| |explanations| (-644 (-1157))))) (-5 *1 (-840)))) (-2659 (*1 *2 *3) (-12 (-5 *3 (-841)) (-5 *2 (-2 (|:| -2659 (-381)) (|:| -1368 (-1157)) (|:| |explanations| (-644 (-1157))))) (-5 *1 (-840))))) +(-10 -7 (-15 -2659 ((-2 (|:| -2659 (-381)) (|:| -1368 (-1157)) (|:| |explanations| (-644 (-1157)))) (-841))) (-15 -2659 ((-2 (|:| -2659 (-381)) (|:| -1368 (-1157)) (|:| |explanations| (-644 (-1157)))) (-841) (-1062))) (-15 -3576 ((-1035) (-841) (-1062))) (-15 -3576 ((-1035) (-841))) (-15 -2918 ((-1035) (-841))) (-15 -3576 ((-1035) (-317 (-381)) (-644 (-381)) (-644 (-843 (-381))) (-644 (-317 (-381))) (-644 (-843 (-381))))) (-15 -3576 ((-1035) (-317 (-381)) (-644 (-381)) (-644 (-843 (-381))) (-644 (-843 (-381))))) (-15 -3576 ((-1035) (-317 (-381)) (-644 (-381)))) (-15 -3576 ((-1035) (-644 (-317 (-381))) (-644 (-381)))) (-15 -2918 ((-1035) (-644 (-317 (-381))) (-644 (-381))))) +((-2988 (((-112) $ $) NIL)) (-4158 (((-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -3289 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3289 (-644 (-225)))))) $) 21)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 20) (($ (-2 (|:| |fn| (-317 (-225))) (|:| -3289 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 14) (($ (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3289 (-644 (-225))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -3289 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3289 (-644 (-225))))))) 18)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) +(((-841) (-13 (-1099) (-10 -8 (-15 -3152 ($ (-2 (|:| |fn| (-317 (-225))) (|:| -3289 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225))))))) (-15 -3152 ($ (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3289 (-644 (-225)))))) (-15 -3152 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -3289 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3289 (-644 (-225)))))))) (-15 -4158 ((-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -3289 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3289 (-644 (-225)))))) $))))) (T -841)) +((-3152 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-317 (-225))) (|:| -3289 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (-5 *1 (-841)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3289 (-644 (-225))))) (-5 *1 (-841)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -3289 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3289 (-644 (-225))))))) (-5 *1 (-841)))) (-4158 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -3289 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3289 (-644 (-225))))))) (-5 *1 (-841))))) +(-13 (-1099) (-10 -8 (-15 -3152 ($ (-2 (|:| |fn| (-317 (-225))) (|:| -3289 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225))))))) (-15 -3152 ($ (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3289 (-644 (-225)))))) (-15 -3152 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -3289 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3289 (-644 (-225)))))))) (-15 -4158 ((-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -3289 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3289 (-644 (-225)))))) $)))) +((-2319 (((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|) (-843 |#2|) (-843 |#2|)) 13) (((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|)) 14))) +(((-842 |#1| |#2|) (-10 -7 (-15 -2319 ((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|))) (-15 -2319 ((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|) (-843 |#2|) (-843 |#2|)))) (-1099) (-1099)) (T -842)) +((-2319 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-843 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-843 *5)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-5 *1 (-842 *5 *6)))) (-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-843 *5)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-5 *2 (-843 *6)) (-5 *1 (-842 *5 *6))))) +(-10 -7 (-15 -2319 ((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|))) (-15 -2319 ((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|) (-843 |#2|) (-843 |#2|)))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL (|has| |#1| (-21)))) (-3592 (((-1119) $) 31)) (-3967 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2743 (((-566) $) NIL (|has| |#1| (-848)))) (-2463 (($) NIL (|has| |#1| (-21)) CONST)) (-2229 (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) 18)) (-4158 (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) 9)) (-3245 (((-3 $ "failed") $) 58 (|has| |#1| (-848)))) (-4391 (((-3 (-409 (-566)) "failed") $) 65 (|has| |#1| (-547)))) (-3407 (((-112) $) 60 (|has| |#1| (-547)))) (-1786 (((-409 (-566)) $) 63 (|has| |#1| (-547)))) (-2528 (((-112) $) NIL (|has| |#1| (-848)))) (-2909 (($) 14)) (-2389 (((-112) $) NIL (|has| |#1| (-848)))) (-3233 (((-112) $) NIL (|has| |#1| (-848)))) (-2919 (($) 16)) (-1478 (($ $ $) NIL (|has| |#1| (-848)))) (-2599 (($ $ $) NIL (|has| |#1| (-848)))) (-3380 (((-1157) $) NIL)) (-4147 (((-112) $) 12)) (-4072 (((-1119) $) NIL)) (-4156 (((-112) $) 11)) (-3152 (((-862) $) 24) (($ (-409 (-566))) NIL (|has| |#1| (-1038 (-409 (-566))))) (($ |#1|) 8) (($ (-566)) NIL (-2768 (|has| |#1| (-848)) (|has| |#1| (-1038 (-566)))))) (-2593 (((-771)) 51 (|has| |#1| (-848)) CONST)) (-3044 (((-112) $ $) NIL)) (-1358 (($ $) NIL (|has| |#1| (-848)))) (-4356 (($) 37 (|has| |#1| (-21)) CONST)) (-4366 (($) 48 (|has| |#1| (-848)) CONST)) (-2968 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2914 (((-112) $ $) 35)) (-2956 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2935 (((-112) $ $) 59 (|has| |#1| (-848)))) (-3012 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 44 (|has| |#1| (-21)))) (-3002 (($ $ $) 46 (|has| |#1| (-21)))) (** (($ $ (-921)) NIL (|has| |#1| (-848))) (($ $ (-771)) NIL (|has| |#1| (-848)))) (* (($ $ $) 55 (|has| |#1| (-848))) (($ (-566) $) 42 (|has| |#1| (-21))) (($ (-771) $) NIL (|has| |#1| (-21))) (($ (-921) $) NIL (|has| |#1| (-21))))) +(((-843 |#1|) (-13 (-1099) (-413 |#1|) (-10 -8 (-15 -2909 ($)) (-15 -2919 ($)) (-15 -4156 ((-112) $)) (-15 -4147 ((-112) $)) (-15 -3592 ((-1119) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-848)) (-6 (-848)) |%noBranch|) (IF (|has| |#1| (-547)) (PROGN (-15 -3407 ((-112) $)) (-15 -1786 ((-409 (-566)) $)) (-15 -4391 ((-3 (-409 (-566)) "failed") $))) |%noBranch|))) (-1099)) (T -843)) +((-2909 (*1 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-1099)))) (-2919 (*1 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-1099)))) (-4156 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-1099)))) (-4147 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-1099)))) (-3592 (*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-843 *3)) (-4 *3 (-1099)))) (-3407 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-547)) (-4 *3 (-1099)))) (-1786 (*1 *2 *1) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-843 *3)) (-4 *3 (-547)) (-4 *3 (-1099)))) (-4391 (*1 *2 *1) (|partial| -12 (-5 *2 (-409 (-566))) (-5 *1 (-843 *3)) (-4 *3 (-547)) (-4 *3 (-1099))))) +(-13 (-1099) (-413 |#1|) (-10 -8 (-15 -2909 ($)) (-15 -2919 ($)) (-15 -4156 ((-112) $)) (-15 -4147 ((-112) $)) (-15 -3592 ((-1119) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-848)) (-6 (-848)) |%noBranch|) (IF (|has| |#1| (-547)) (PROGN (-15 -3407 ((-112) $)) (-15 -1786 ((-409 (-566)) $)) (-15 -4391 ((-3 (-409 (-566)) "failed") $))) |%noBranch|))) +((-2988 (((-112) $ $) 7)) (-3870 (((-771)) 23)) (-2715 (($) 26)) (-1478 (($ $ $) 14) (($) 22 T CONST)) (-2599 (($ $ $) 15) (($) 21 T CONST)) (-1866 (((-921) $) 25)) (-3380 (((-1157) $) 10)) (-2835 (($ (-921)) 24)) (-4072 (((-1119) $) 11)) (-3152 (((-862) $) 12)) (-3044 (((-112) $ $) 9)) (-2968 (((-112) $ $) 17)) (-2946 (((-112) $ $) 18)) (-2914 (((-112) $ $) 6)) (-2956 (((-112) $ $) 16)) (-2935 (((-112) $ $) 19))) (((-844) (-140)) (T -844)) -((-2097 (*1 *1) (-4 *1 (-844))) (-3962 (*1 *1) (-4 *1 (-844)))) -(-13 (-850) (-370) (-10 -8 (-15 -2097 ($) -3704) (-15 -3962 ($) -3704))) +((-1478 (*1 *1) (-4 *1 (-844))) (-2599 (*1 *1) (-4 *1 (-844)))) +(-13 (-850) (-370) (-10 -8 (-15 -1478 ($) -1623) (-15 -2599 ($) -1623))) (((-102) . T) ((-613 (-862)) . T) ((-370) . T) ((-850) . T) ((-1099) . T)) -((-3395 (((-112) (-1264 |#2|) (-1264 |#2|)) 23)) (-2924 (((-112) (-1264 |#2|) (-1264 |#2|)) 24)) (-2668 (((-112) (-1264 |#2|) (-1264 |#2|)) 20))) -(((-845 |#1| |#2|) (-10 -7 (-15 -2668 ((-112) (-1264 |#2|) (-1264 |#2|))) (-15 -3395 ((-112) (-1264 |#2|) (-1264 |#2|))) (-15 -2924 ((-112) (-1264 |#2|) (-1264 |#2|)))) (-771) (-792)) (T -845)) -((-2924 (*1 *2 *3 *3) (-12 (-5 *3 (-1264 *5)) (-4 *5 (-792)) (-5 *2 (-112)) (-5 *1 (-845 *4 *5)) (-14 *4 (-771)))) (-3395 (*1 *2 *3 *3) (-12 (-5 *3 (-1264 *5)) (-4 *5 (-792)) (-5 *2 (-112)) (-5 *1 (-845 *4 *5)) (-14 *4 (-771)))) (-2668 (*1 *2 *3 *3) (-12 (-5 *3 (-1264 *5)) (-4 *5 (-792)) (-5 *2 (-112)) (-5 *1 (-845 *4 *5)) (-14 *4 (-771))))) -(-10 -7 (-15 -2668 ((-112) (-1264 |#2|) (-1264 |#2|))) (-15 -3395 ((-112) (-1264 |#2|) (-1264 |#2|))) (-15 -2924 ((-112) (-1264 |#2|) (-1264 |#2|)))) -((-3007 (((-112) $ $) 7)) (-3012 (($) 24 T CONST)) (-1878 (((-3 $ "failed") $) 27)) (-3934 (((-112) $) 25)) (-2097 (($ $ $) 14)) (-3962 (($ $ $) 15)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3783 (((-862) $) 12)) (-3117 (((-112) $ $) 9)) (-4334 (($) 23 T CONST)) (-3009 (((-112) $ $) 17)) (-2984 (((-112) $ $) 18)) (-2947 (((-112) $ $) 6)) (-2995 (((-112) $ $) 16)) (-2969 (((-112) $ $) 19)) (** (($ $ (-921)) 22) (($ $ (-771)) 26)) (* (($ $ $) 21))) +((-2077 (((-112) (-1264 |#2|) (-1264 |#2|)) 23)) (-3665 (((-112) (-1264 |#2|) (-1264 |#2|)) 24)) (-3430 (((-112) (-1264 |#2|) (-1264 |#2|)) 20))) +(((-845 |#1| |#2|) (-10 -7 (-15 -3430 ((-112) (-1264 |#2|) (-1264 |#2|))) (-15 -2077 ((-112) (-1264 |#2|) (-1264 |#2|))) (-15 -3665 ((-112) (-1264 |#2|) (-1264 |#2|)))) (-771) (-792)) (T -845)) +((-3665 (*1 *2 *3 *3) (-12 (-5 *3 (-1264 *5)) (-4 *5 (-792)) (-5 *2 (-112)) (-5 *1 (-845 *4 *5)) (-14 *4 (-771)))) (-2077 (*1 *2 *3 *3) (-12 (-5 *3 (-1264 *5)) (-4 *5 (-792)) (-5 *2 (-112)) (-5 *1 (-845 *4 *5)) (-14 *4 (-771)))) (-3430 (*1 *2 *3 *3) (-12 (-5 *3 (-1264 *5)) (-4 *5 (-792)) (-5 *2 (-112)) (-5 *1 (-845 *4 *5)) (-14 *4 (-771))))) +(-10 -7 (-15 -3430 ((-112) (-1264 |#2|) (-1264 |#2|))) (-15 -2077 ((-112) (-1264 |#2|) (-1264 |#2|))) (-15 -3665 ((-112) (-1264 |#2|) (-1264 |#2|)))) +((-2988 (((-112) $ $) 7)) (-2463 (($) 24 T CONST)) (-3245 (((-3 $ "failed") $) 27)) (-2389 (((-112) $) 25)) (-1478 (($ $ $) 14)) (-2599 (($ $ $) 15)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3152 (((-862) $) 12)) (-3044 (((-112) $ $) 9)) (-4366 (($) 23 T CONST)) (-2968 (((-112) $ $) 17)) (-2946 (((-112) $ $) 18)) (-2914 (((-112) $ $) 6)) (-2956 (((-112) $ $) 16)) (-2935 (((-112) $ $) 19)) (** (($ $ (-921)) 22) (($ $ (-771)) 26)) (* (($ $ $) 21))) (((-846) (-140)) (T -846)) NIL (-13 (-857) (-726)) (((-102) . T) ((-613 (-862)) . T) ((-726) . T) ((-857) . T) ((-850) . T) ((-1111) . T) ((-1099) . T)) -((-4364 (((-566) $) 21)) (-1897 (((-112) $) 10)) (-2117 (((-112) $) 12)) (-2086 (($ $) 23))) -(((-847 |#1|) (-10 -8 (-15 -2086 (|#1| |#1|)) (-15 -4364 ((-566) |#1|)) (-15 -2117 ((-112) |#1|)) (-15 -1897 ((-112) |#1|))) (-848)) (T -847)) +((-2743 (((-566) $) 21)) (-2528 (((-112) $) 10)) (-3233 (((-112) $) 12)) (-1358 (($ $) 23))) +(((-847 |#1|) (-10 -8 (-15 -1358 (|#1| |#1|)) (-15 -2743 ((-566) |#1|)) (-15 -3233 ((-112) |#1|)) (-15 -2528 ((-112) |#1|))) (-848)) (T -847)) NIL -(-10 -8 (-15 -2086 (|#1| |#1|)) (-15 -4364 ((-566) |#1|)) (-15 -2117 ((-112) |#1|)) (-15 -1897 ((-112) |#1|))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 25)) (-4175 (((-3 $ "failed") $ $) 27)) (-4364 (((-566) $) 37)) (-3012 (($) 24 T CONST)) (-1878 (((-3 $ "failed") $) 42)) (-1897 (((-112) $) 39)) (-3934 (((-112) $) 44)) (-2117 (((-112) $) 38)) (-2097 (($ $ $) 14)) (-3962 (($ $ $) 15)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3783 (((-862) $) 12) (($ (-566)) 46)) (-2107 (((-771)) 47 T CONST)) (-3117 (((-112) $ $) 9)) (-2086 (($ $) 36)) (-2479 (($) 23 T CONST)) (-4334 (($) 45 T CONST)) (-3009 (((-112) $ $) 17)) (-2984 (((-112) $ $) 18)) (-2947 (((-112) $ $) 6)) (-2995 (((-112) $ $) 16)) (-2969 (((-112) $ $) 19)) (-3053 (($ $ $) 31) (($ $) 30)) (-3041 (($ $ $) 21)) (** (($ $ (-771)) 43) (($ $ (-921)) 40)) (* (($ (-921) $) 22) (($ (-771) $) 26) (($ (-566) $) 29) (($ $ $) 41))) +(-10 -8 (-15 -1358 (|#1| |#1|)) (-15 -2743 ((-566) |#1|)) (-15 -3233 ((-112) |#1|)) (-15 -2528 ((-112) |#1|))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 25)) (-3967 (((-3 $ "failed") $ $) 27)) (-2743 (((-566) $) 37)) (-2463 (($) 24 T CONST)) (-3245 (((-3 $ "failed") $) 42)) (-2528 (((-112) $) 39)) (-2389 (((-112) $) 44)) (-3233 (((-112) $) 38)) (-1478 (($ $ $) 14)) (-2599 (($ $ $) 15)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3152 (((-862) $) 12) (($ (-566)) 46)) (-2593 (((-771)) 47 T CONST)) (-3044 (((-112) $ $) 9)) (-1358 (($ $) 36)) (-4356 (($) 23 T CONST)) (-4366 (($) 45 T CONST)) (-2968 (((-112) $ $) 17)) (-2946 (((-112) $ $) 18)) (-2914 (((-112) $ $) 6)) (-2956 (((-112) $ $) 16)) (-2935 (((-112) $ $) 19)) (-3012 (($ $ $) 31) (($ $) 30)) (-3002 (($ $ $) 21)) (** (($ $ (-771)) 43) (($ $ (-921)) 40)) (* (($ (-921) $) 22) (($ (-771) $) 26) (($ (-566) $) 29) (($ $ $) 41))) (((-848) (-140)) (T -848)) -((-1897 (*1 *2 *1) (-12 (-4 *1 (-848)) (-5 *2 (-112)))) (-2117 (*1 *2 *1) (-12 (-4 *1 (-848)) (-5 *2 (-112)))) (-4364 (*1 *2 *1) (-12 (-4 *1 (-848)) (-5 *2 (-566)))) (-2086 (*1 *1 *1) (-4 *1 (-848)))) -(-13 (-791) (-1049) (-726) (-10 -8 (-15 -1897 ((-112) $)) (-15 -2117 ((-112) $)) (-15 -4364 ((-566) $)) (-15 -2086 ($ $)))) +((-2528 (*1 *2 *1) (-12 (-4 *1 (-848)) (-5 *2 (-112)))) (-3233 (*1 *2 *1) (-12 (-4 *1 (-848)) (-5 *2 (-112)))) (-2743 (*1 *2 *1) (-12 (-4 *1 (-848)) (-5 *2 (-566)))) (-1358 (*1 *1 *1) (-4 *1 (-848)))) +(-13 (-791) (-1049) (-726) (-10 -8 (-15 -2528 ((-112) $)) (-15 -3233 ((-112) $)) (-15 -2743 ((-566) $)) (-15 -1358 ($ $)))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-616 (-566)) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-726) . T) ((-791) . T) ((-792) . T) ((-794) . T) ((-795) . T) ((-850) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) -((-2097 (($ $ $) 12)) (-3962 (($ $ $) 11)) (-3117 (((-112) $ $) 9)) (-3009 (((-112) $ $) 15)) (-2984 (((-112) $ $) 13)) (-2995 (((-112) $ $) 16))) -(((-849 |#1|) (-10 -8 (-15 -2097 (|#1| |#1| |#1|)) (-15 -3962 (|#1| |#1| |#1|)) (-15 -2995 ((-112) |#1| |#1|)) (-15 -3009 ((-112) |#1| |#1|)) (-15 -2984 ((-112) |#1| |#1|)) (-15 -3117 ((-112) |#1| |#1|))) (-850)) (T -849)) +((-1478 (($ $ $) 12)) (-2599 (($ $ $) 11)) (-3044 (((-112) $ $) 9)) (-2968 (((-112) $ $) 15)) (-2946 (((-112) $ $) 13)) (-2956 (((-112) $ $) 16))) +(((-849 |#1|) (-10 -8 (-15 -1478 (|#1| |#1| |#1|)) (-15 -2599 (|#1| |#1| |#1|)) (-15 -2956 ((-112) |#1| |#1|)) (-15 -2968 ((-112) |#1| |#1|)) (-15 -2946 ((-112) |#1| |#1|)) (-15 -3044 ((-112) |#1| |#1|))) (-850)) (T -849)) NIL -(-10 -8 (-15 -2097 (|#1| |#1| |#1|)) (-15 -3962 (|#1| |#1| |#1|)) (-15 -2995 ((-112) |#1| |#1|)) (-15 -3009 ((-112) |#1| |#1|)) (-15 -2984 ((-112) |#1| |#1|)) (-15 -3117 ((-112) |#1| |#1|))) -((-3007 (((-112) $ $) 7)) (-2097 (($ $ $) 14)) (-3962 (($ $ $) 15)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3783 (((-862) $) 12)) (-3117 (((-112) $ $) 9)) (-3009 (((-112) $ $) 17)) (-2984 (((-112) $ $) 18)) (-2947 (((-112) $ $) 6)) (-2995 (((-112) $ $) 16)) (-2969 (((-112) $ $) 19))) +(-10 -8 (-15 -1478 (|#1| |#1| |#1|)) (-15 -2599 (|#1| |#1| |#1|)) (-15 -2956 ((-112) |#1| |#1|)) (-15 -2968 ((-112) |#1| |#1|)) (-15 -2946 ((-112) |#1| |#1|)) (-15 -3044 ((-112) |#1| |#1|))) +((-2988 (((-112) $ $) 7)) (-1478 (($ $ $) 14)) (-2599 (($ $ $) 15)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3152 (((-862) $) 12)) (-3044 (((-112) $ $) 9)) (-2968 (((-112) $ $) 17)) (-2946 (((-112) $ $) 18)) (-2914 (((-112) $ $) 6)) (-2956 (((-112) $ $) 16)) (-2935 (((-112) $ $) 19))) (((-850) (-140)) (T -850)) -((-2969 (*1 *2 *1 *1) (-12 (-4 *1 (-850)) (-5 *2 (-112)))) (-2984 (*1 *2 *1 *1) (-12 (-4 *1 (-850)) (-5 *2 (-112)))) (-3009 (*1 *2 *1 *1) (-12 (-4 *1 (-850)) (-5 *2 (-112)))) (-2995 (*1 *2 *1 *1) (-12 (-4 *1 (-850)) (-5 *2 (-112)))) (-3962 (*1 *1 *1 *1) (-4 *1 (-850))) (-2097 (*1 *1 *1 *1) (-4 *1 (-850)))) -(-13 (-1099) (-10 -8 (-15 -2969 ((-112) $ $)) (-15 -2984 ((-112) $ $)) (-15 -3009 ((-112) $ $)) (-15 -2995 ((-112) $ $)) (-15 -3962 ($ $ $)) (-15 -2097 ($ $ $)))) +((-2935 (*1 *2 *1 *1) (-12 (-4 *1 (-850)) (-5 *2 (-112)))) (-2946 (*1 *2 *1 *1) (-12 (-4 *1 (-850)) (-5 *2 (-112)))) (-2968 (*1 *2 *1 *1) (-12 (-4 *1 (-850)) (-5 *2 (-112)))) (-2956 (*1 *2 *1 *1) (-12 (-4 *1 (-850)) (-5 *2 (-112)))) (-2599 (*1 *1 *1 *1) (-4 *1 (-850))) (-1478 (*1 *1 *1 *1) (-4 *1 (-850)))) +(-13 (-1099) (-10 -8 (-15 -2935 ((-112) $ $)) (-15 -2946 ((-112) $ $)) (-15 -2968 ((-112) $ $)) (-15 -2956 ((-112) $ $)) (-15 -2599 ($ $ $)) (-15 -1478 ($ $ $)))) (((-102) . T) ((-613 (-862)) . T) ((-1099) . T)) -((-3982 (($ $ $) 49)) (-2135 (($ $ $) 48)) (-3560 (($ $ $) 46)) (-1600 (($ $ $) 55)) (-3768 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 50)) (-3911 (((-3 $ "failed") $ $) 53)) (-4307 (((-3 (-566) "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL) (((-3 |#2| "failed") $) 29)) (-4075 (($ $) 39)) (-4133 (($ $ $) 43)) (-4356 (($ $ $) 42)) (-1850 (($ $ $) 51)) (-3705 (($ $ $) 57)) (-3119 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 45)) (-3294 (((-3 $ "failed") $ $) 52)) (-2994 (((-3 $ "failed") $ |#2|) 32)) (-2483 ((|#2| $) 36)) (-3783 (((-862) $) NIL) (($ (-566)) NIL) (($ (-409 (-566))) NIL) (($ |#2|) 13)) (-4170 (((-644 |#2|) $) 21)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 25))) -(((-851 |#1| |#2|) (-10 -8 (-15 -1850 (|#1| |#1| |#1|)) (-15 -3768 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3441 |#1|)) |#1| |#1|)) (-15 -1600 (|#1| |#1| |#1|)) (-15 -3911 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3982 (|#1| |#1| |#1|)) (-15 -2135 (|#1| |#1| |#1|)) (-15 -3560 (|#1| |#1| |#1|)) (-15 -3119 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3441 |#1|)) |#1| |#1|)) (-15 -3705 (|#1| |#1| |#1|)) (-15 -3294 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4133 (|#1| |#1| |#1|)) (-15 -4356 (|#1| |#1| |#1|)) (-15 -4075 (|#1| |#1|)) (-15 -2483 (|#2| |#1|)) (-15 -2994 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4170 ((-644 |#2|) |#1|)) (-15 -3783 (|#1| |#2|)) (-15 -4307 ((-3 |#2| "failed") |#1|)) (-15 -4307 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -3783 (|#1| (-409 (-566)))) (-15 -4307 ((-3 (-566) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3783 (|#1| (-566))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-921) |#1|)) (-15 -3783 ((-862) |#1|))) (-852 |#2|) (-1049)) (T -851)) +((-3615 (($ $ $) 49)) (-2387 (($ $ $) 48)) (-3081 (($ $ $) 46)) (-2850 (($ $ $) 55)) (-2190 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) 50)) (-3985 (((-3 $ "failed") $ $) 53)) (-2229 (((-3 (-566) "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL) (((-3 |#2| "failed") $) 29)) (-2616 (($ $) 39)) (-2488 (($ $ $) 43)) (-3148 (($ $ $) 42)) (-2047 (($ $ $) 51)) (-2123 (($ $ $) 57)) (-1916 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) 45)) (-3483 (((-3 $ "failed") $ $) 52)) (-2978 (((-3 $ "failed") $ |#2|) 32)) (-3173 ((|#2| $) 36)) (-3152 (((-862) $) NIL) (($ (-566)) NIL) (($ (-409 (-566))) NIL) (($ |#2|) 13)) (-1643 (((-644 |#2|) $) 21)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 25))) +(((-851 |#1| |#2|) (-10 -8 (-15 -2047 (|#1| |#1| |#1|)) (-15 -2190 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3302 |#1|)) |#1| |#1|)) (-15 -2850 (|#1| |#1| |#1|)) (-15 -3985 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3615 (|#1| |#1| |#1|)) (-15 -2387 (|#1| |#1| |#1|)) (-15 -3081 (|#1| |#1| |#1|)) (-15 -1916 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3302 |#1|)) |#1| |#1|)) (-15 -2123 (|#1| |#1| |#1|)) (-15 -3483 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2488 (|#1| |#1| |#1|)) (-15 -3148 (|#1| |#1| |#1|)) (-15 -2616 (|#1| |#1|)) (-15 -3173 (|#2| |#1|)) (-15 -2978 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1643 ((-644 |#2|) |#1|)) (-15 -3152 (|#1| |#2|)) (-15 -2229 ((-3 |#2| "failed") |#1|)) (-15 -2229 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -3152 (|#1| (-409 (-566)))) (-15 -2229 ((-3 (-566) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3152 (|#1| (-566))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-921) |#1|)) (-15 -3152 ((-862) |#1|))) (-852 |#2|) (-1049)) (T -851)) NIL -(-10 -8 (-15 -1850 (|#1| |#1| |#1|)) (-15 -3768 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3441 |#1|)) |#1| |#1|)) (-15 -1600 (|#1| |#1| |#1|)) (-15 -3911 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3982 (|#1| |#1| |#1|)) (-15 -2135 (|#1| |#1| |#1|)) (-15 -3560 (|#1| |#1| |#1|)) (-15 -3119 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3441 |#1|)) |#1| |#1|)) (-15 -3705 (|#1| |#1| |#1|)) (-15 -3294 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4133 (|#1| |#1| |#1|)) (-15 -4356 (|#1| |#1| |#1|)) (-15 -4075 (|#1| |#1|)) (-15 -2483 (|#2| |#1|)) (-15 -2994 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4170 ((-644 |#2|) |#1|)) (-15 -3783 (|#1| |#2|)) (-15 -4307 ((-3 |#2| "failed") |#1|)) (-15 -4307 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -3783 (|#1| (-409 (-566)))) (-15 -4307 ((-3 (-566) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3783 (|#1| (-566))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-921) |#1|)) (-15 -3783 ((-862) |#1|))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-4175 (((-3 $ "failed") $ $) 20)) (-3012 (($) 18 T CONST)) (-3982 (($ $ $) 50 (|has| |#1| (-365)))) (-2135 (($ $ $) 51 (|has| |#1| (-365)))) (-3560 (($ $ $) 53 (|has| |#1| (-365)))) (-1600 (($ $ $) 48 (|has| |#1| (-365)))) (-3768 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 47 (|has| |#1| (-365)))) (-3911 (((-3 $ "failed") $ $) 49 (|has| |#1| (-365)))) (-1794 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) 52 (|has| |#1| (-365)))) (-4307 (((-3 (-566) "failed") $) 80 (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) 77 (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) 74)) (-4205 (((-566) $) 79 (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) 76 (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) 75)) (-1786 (($ $) 69)) (-1878 (((-3 $ "failed") $) 37)) (-4075 (($ $) 60 (|has| |#1| (-454)))) (-3934 (((-112) $) 35)) (-3840 (($ |#1| (-771)) 67)) (-1952 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) 62 (|has| |#1| (-558)))) (-1628 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) 63 (|has| |#1| (-558)))) (-3760 (((-771) $) 71)) (-4133 (($ $ $) 57 (|has| |#1| (-365)))) (-4356 (($ $ $) 58 (|has| |#1| (-365)))) (-1850 (($ $ $) 46 (|has| |#1| (-365)))) (-3705 (($ $ $) 55 (|has| |#1| (-365)))) (-3119 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 54 (|has| |#1| (-365)))) (-3294 (((-3 $ "failed") $ $) 56 (|has| |#1| (-365)))) (-1726 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) 59 (|has| |#1| (-365)))) (-1763 ((|#1| $) 70)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-2994 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-558)))) (-3636 (((-771) $) 72)) (-2483 ((|#1| $) 61 (|has| |#1| (-454)))) (-3783 (((-862) $) 12) (($ (-566)) 33) (($ (-409 (-566))) 78 (|has| |#1| (-1038 (-409 (-566))))) (($ |#1|) 73)) (-4170 (((-644 |#1|) $) 66)) (-2649 ((|#1| $ (-771)) 68)) (-2107 (((-771)) 32 T CONST)) (-3117 (((-112) $ $) 9)) (-1948 ((|#1| $ |#1| |#1|) 65)) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-2947 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) +(-10 -8 (-15 -2047 (|#1| |#1| |#1|)) (-15 -2190 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3302 |#1|)) |#1| |#1|)) (-15 -2850 (|#1| |#1| |#1|)) (-15 -3985 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3615 (|#1| |#1| |#1|)) (-15 -2387 (|#1| |#1| |#1|)) (-15 -3081 (|#1| |#1| |#1|)) (-15 -1916 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3302 |#1|)) |#1| |#1|)) (-15 -2123 (|#1| |#1| |#1|)) (-15 -3483 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2488 (|#1| |#1| |#1|)) (-15 -3148 (|#1| |#1| |#1|)) (-15 -2616 (|#1| |#1|)) (-15 -3173 (|#2| |#1|)) (-15 -2978 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1643 ((-644 |#2|) |#1|)) (-15 -3152 (|#1| |#2|)) (-15 -2229 ((-3 |#2| "failed") |#1|)) (-15 -2229 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -3152 (|#1| (-409 (-566)))) (-15 -2229 ((-3 (-566) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3152 (|#1| (-566))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-921) |#1|)) (-15 -3152 ((-862) |#1|))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-3967 (((-3 $ "failed") $ $) 20)) (-2463 (($) 18 T CONST)) (-3615 (($ $ $) 50 (|has| |#1| (-365)))) (-2387 (($ $ $) 51 (|has| |#1| (-365)))) (-3081 (($ $ $) 53 (|has| |#1| (-365)))) (-2850 (($ $ $) 48 (|has| |#1| (-365)))) (-2190 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) 47 (|has| |#1| (-365)))) (-3985 (((-3 $ "failed") $ $) 49 (|has| |#1| (-365)))) (-2619 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) 52 (|has| |#1| (-365)))) (-2229 (((-3 (-566) "failed") $) 80 (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) 77 (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) 74)) (-4158 (((-566) $) 79 (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) 76 (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) 75)) (-2814 (($ $) 69)) (-3245 (((-3 $ "failed") $) 37)) (-2616 (($ $) 60 (|has| |#1| (-454)))) (-2389 (((-112) $) 35)) (-1746 (($ |#1| (-771)) 67)) (-3093 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) 62 (|has| |#1| (-558)))) (-3567 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) 63 (|has| |#1| (-558)))) (-2749 (((-771) $) 71)) (-2488 (($ $ $) 57 (|has| |#1| (-365)))) (-3148 (($ $ $) 58 (|has| |#1| (-365)))) (-2047 (($ $ $) 46 (|has| |#1| (-365)))) (-2123 (($ $ $) 55 (|has| |#1| (-365)))) (-1916 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) 54 (|has| |#1| (-365)))) (-3483 (((-3 $ "failed") $ $) 56 (|has| |#1| (-365)))) (-2578 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) 59 (|has| |#1| (-365)))) (-2794 ((|#1| $) 70)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-2978 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-558)))) (-3902 (((-771) $) 72)) (-3173 ((|#1| $) 61 (|has| |#1| (-454)))) (-3152 (((-862) $) 12) (($ (-566)) 33) (($ (-409 (-566))) 78 (|has| |#1| (-1038 (-409 (-566))))) (($ |#1|) 73)) (-1643 (((-644 |#1|) $) 66)) (-2271 ((|#1| $ (-771)) 68)) (-2593 (((-771)) 32 T CONST)) (-3044 (((-112) $ $) 9)) (-3847 ((|#1| $ |#1| |#1|) 65)) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-2914 (((-112) $ $) 6)) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) (((-852 |#1|) (-140) (-1049)) (T -852)) -((-3636 (*1 *2 *1) (-12 (-4 *1 (-852 *3)) (-4 *3 (-1049)) (-5 *2 (-771)))) (-3760 (*1 *2 *1) (-12 (-4 *1 (-852 *3)) (-4 *3 (-1049)) (-5 *2 (-771)))) (-1763 (*1 *2 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)))) (-1786 (*1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)))) (-2649 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-4 *1 (-852 *2)) (-4 *2 (-1049)))) (-3840 (*1 *1 *2 *3) (-12 (-5 *3 (-771)) (-4 *1 (-852 *2)) (-4 *2 (-1049)))) (-4170 (*1 *2 *1) (-12 (-4 *1 (-852 *3)) (-4 *3 (-1049)) (-5 *2 (-644 *3)))) (-1948 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)))) (-2994 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-558)))) (-1628 (*1 *2 *1 *1) (-12 (-4 *3 (-558)) (-4 *3 (-1049)) (-5 *2 (-2 (|:| -2275 *1) (|:| -2513 *1))) (-4 *1 (-852 *3)))) (-1952 (*1 *2 *1 *1) (-12 (-4 *3 (-558)) (-4 *3 (-1049)) (-5 *2 (-2 (|:| -2275 *1) (|:| -2513 *1))) (-4 *1 (-852 *3)))) (-2483 (*1 *2 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-454)))) (-4075 (*1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-454)))) (-1726 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *3 (-1049)) (-5 *2 (-2 (|:| -2275 *1) (|:| -2513 *1))) (-4 *1 (-852 *3)))) (-4356 (*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) (-4133 (*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) (-3294 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) (-3705 (*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) (-3119 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *3 (-1049)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3441 *1))) (-4 *1 (-852 *3)))) (-3560 (*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) (-1794 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *3 (-1049)) (-5 *2 (-2 (|:| -2275 *1) (|:| -2513 *1))) (-4 *1 (-852 *3)))) (-2135 (*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) (-3982 (*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) (-3911 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) (-1600 (*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) (-3768 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *3 (-1049)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3441 *1))) (-4 *1 (-852 *3)))) (-1850 (*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365))))) -(-13 (-1049) (-111 |t#1| |t#1|) (-413 |t#1|) (-10 -8 (-15 -3636 ((-771) $)) (-15 -3760 ((-771) $)) (-15 -1763 (|t#1| $)) (-15 -1786 ($ $)) (-15 -2649 (|t#1| $ (-771))) (-15 -3840 ($ |t#1| (-771))) (-15 -4170 ((-644 |t#1|) $)) (-15 -1948 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-558)) (PROGN (-15 -2994 ((-3 $ "failed") $ |t#1|)) (-15 -1628 ((-2 (|:| -2275 $) (|:| -2513 $)) $ $)) (-15 -1952 ((-2 (|:| -2275 $) (|:| -2513 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-454)) (PROGN (-15 -2483 (|t#1| $)) (-15 -4075 ($ $))) |%noBranch|) (IF (|has| |t#1| (-365)) (PROGN (-15 -1726 ((-2 (|:| -2275 $) (|:| -2513 $)) $ $)) (-15 -4356 ($ $ $)) (-15 -4133 ($ $ $)) (-15 -3294 ((-3 $ "failed") $ $)) (-15 -3705 ($ $ $)) (-15 -3119 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $)) (-15 -3560 ($ $ $)) (-15 -1794 ((-2 (|:| -2275 $) (|:| -2513 $)) $ $)) (-15 -2135 ($ $ $)) (-15 -3982 ($ $ $)) (-15 -3911 ((-3 $ "failed") $ $)) (-15 -1600 ($ $ $)) (-15 -3768 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $)) (-15 -1850 ($ $ $))) |%noBranch|))) +((-3902 (*1 *2 *1) (-12 (-4 *1 (-852 *3)) (-4 *3 (-1049)) (-5 *2 (-771)))) (-2749 (*1 *2 *1) (-12 (-4 *1 (-852 *3)) (-4 *3 (-1049)) (-5 *2 (-771)))) (-2794 (*1 *2 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)))) (-2814 (*1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)))) (-2271 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-4 *1 (-852 *2)) (-4 *2 (-1049)))) (-1746 (*1 *1 *2 *3) (-12 (-5 *3 (-771)) (-4 *1 (-852 *2)) (-4 *2 (-1049)))) (-1643 (*1 *2 *1) (-12 (-4 *1 (-852 *3)) (-4 *3 (-1049)) (-5 *2 (-644 *3)))) (-3847 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)))) (-2978 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-558)))) (-3567 (*1 *2 *1 *1) (-12 (-4 *3 (-558)) (-4 *3 (-1049)) (-5 *2 (-2 (|:| -2631 *1) (|:| -3264 *1))) (-4 *1 (-852 *3)))) (-3093 (*1 *2 *1 *1) (-12 (-4 *3 (-558)) (-4 *3 (-1049)) (-5 *2 (-2 (|:| -2631 *1) (|:| -3264 *1))) (-4 *1 (-852 *3)))) (-3173 (*1 *2 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-454)))) (-2616 (*1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-454)))) (-2578 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *3 (-1049)) (-5 *2 (-2 (|:| -2631 *1) (|:| -3264 *1))) (-4 *1 (-852 *3)))) (-3148 (*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) (-2488 (*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) (-3483 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) (-2123 (*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) (-1916 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *3 (-1049)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3302 *1))) (-4 *1 (-852 *3)))) (-3081 (*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) (-2619 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *3 (-1049)) (-5 *2 (-2 (|:| -2631 *1) (|:| -3264 *1))) (-4 *1 (-852 *3)))) (-2387 (*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) (-3615 (*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) (-3985 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) (-2850 (*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) (-2190 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *3 (-1049)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3302 *1))) (-4 *1 (-852 *3)))) (-2047 (*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365))))) +(-13 (-1049) (-111 |t#1| |t#1|) (-413 |t#1|) (-10 -8 (-15 -3902 ((-771) $)) (-15 -2749 ((-771) $)) (-15 -2794 (|t#1| $)) (-15 -2814 ($ $)) (-15 -2271 (|t#1| $ (-771))) (-15 -1746 ($ |t#1| (-771))) (-15 -1643 ((-644 |t#1|) $)) (-15 -3847 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-558)) (PROGN (-15 -2978 ((-3 $ "failed") $ |t#1|)) (-15 -3567 ((-2 (|:| -2631 $) (|:| -3264 $)) $ $)) (-15 -3093 ((-2 (|:| -2631 $) (|:| -3264 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-454)) (PROGN (-15 -3173 (|t#1| $)) (-15 -2616 ($ $))) |%noBranch|) (IF (|has| |t#1| (-365)) (PROGN (-15 -2578 ((-2 (|:| -2631 $) (|:| -3264 $)) $ $)) (-15 -3148 ($ $ $)) (-15 -2488 ($ $ $)) (-15 -3483 ((-3 $ "failed") $ $)) (-15 -2123 ($ $ $)) (-15 -1916 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $)) (-15 -3081 ($ $ $)) (-15 -2619 ((-2 (|:| -2631 $) (|:| -3264 $)) $ $)) (-15 -2387 ($ $ $)) (-15 -3615 ($ $ $)) (-15 -3985 ((-3 $ "failed") $ $)) (-15 -2850 ($ $ $)) (-15 -2190 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $)) (-15 -2047 ($ $ $))) |%noBranch|))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-616 #0=(-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((-616 (-566)) . T) ((-616 |#1|) . T) ((-613 (-862)) . T) ((-413 |#1|) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-640 |#1|) |has| |#1| (-172)) ((-717 |#1|) |has| |#1| (-172)) ((-726) . T) ((-1038 #0#) |has| |#1| (-1038 (-409 (-566)))) ((-1038 (-566)) |has| |#1| (-1038 (-566))) ((-1038 |#1|) . T) ((-1051 |#1|) . T) ((-1056 |#1|) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) -((-3282 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-1794 (((-2 (|:| -2275 |#2|) (|:| -2513 |#2|)) |#2| |#2| (-99 |#1|)) 49 (|has| |#1| (-365)))) (-1952 (((-2 (|:| -2275 |#2|) (|:| -2513 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-558)))) (-1628 (((-2 (|:| -2275 |#2|) (|:| -2513 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-558)))) (-1726 (((-2 (|:| -2275 |#2|) (|:| -2513 |#2|)) |#2| |#2| (-99 |#1|)) 48 (|has| |#1| (-365)))) (-1948 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 36))) -(((-853 |#1| |#2|) (-10 -7 (-15 -3282 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -1948 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-558)) (PROGN (-15 -1628 ((-2 (|:| -2275 |#2|) (|:| -2513 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1952 ((-2 (|:| -2275 |#2|) (|:| -2513 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -1726 ((-2 (|:| -2275 |#2|) (|:| -2513 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1794 ((-2 (|:| -2275 |#2|) (|:| -2513 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1049) (-852 |#1|)) (T -853)) -((-1794 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-365)) (-4 *5 (-1049)) (-5 *2 (-2 (|:| -2275 *3) (|:| -2513 *3))) (-5 *1 (-853 *5 *3)) (-4 *3 (-852 *5)))) (-1726 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-365)) (-4 *5 (-1049)) (-5 *2 (-2 (|:| -2275 *3) (|:| -2513 *3))) (-5 *1 (-853 *5 *3)) (-4 *3 (-852 *5)))) (-1952 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-558)) (-4 *5 (-1049)) (-5 *2 (-2 (|:| -2275 *3) (|:| -2513 *3))) (-5 *1 (-853 *5 *3)) (-4 *3 (-852 *5)))) (-1628 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-558)) (-4 *5 (-1049)) (-5 *2 (-2 (|:| -2275 *3) (|:| -2513 *3))) (-5 *1 (-853 *5 *3)) (-4 *3 (-852 *5)))) (-1948 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1049)) (-5 *1 (-853 *2 *3)) (-4 *3 (-852 *2)))) (-3282 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1049)) (-5 *1 (-853 *5 *2)) (-4 *2 (-852 *5))))) -(-10 -7 (-15 -3282 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -1948 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-558)) (PROGN (-15 -1628 ((-2 (|:| -2275 |#2|) (|:| -2513 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1952 ((-2 (|:| -2275 |#2|) (|:| -2513 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -1726 ((-2 (|:| -2275 |#2|) (|:| -2513 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1794 ((-2 (|:| -2275 |#2|) (|:| -2513 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-3012 (($) NIL T CONST)) (-3982 (($ $ $) NIL (|has| |#1| (-365)))) (-2135 (($ $ $) NIL (|has| |#1| (-365)))) (-3560 (($ $ $) NIL (|has| |#1| (-365)))) (-1600 (($ $ $) NIL (|has| |#1| (-365)))) (-3768 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-365)))) (-3911 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-1794 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) 34 (|has| |#1| (-365)))) (-4307 (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) NIL)) (-4205 (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) NIL)) (-1786 (($ $) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-4075 (($ $) NIL (|has| |#1| (-454)))) (-3416 (((-862) $ (-862)) NIL)) (-3934 (((-112) $) NIL)) (-3840 (($ |#1| (-771)) NIL)) (-1952 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) 30 (|has| |#1| (-558)))) (-1628 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) 28 (|has| |#1| (-558)))) (-3760 (((-771) $) NIL)) (-4133 (($ $ $) NIL (|has| |#1| (-365)))) (-4356 (($ $ $) NIL (|has| |#1| (-365)))) (-1850 (($ $ $) NIL (|has| |#1| (-365)))) (-3705 (($ $ $) NIL (|has| |#1| (-365)))) (-3119 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-365)))) (-3294 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-1726 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) 32 (|has| |#1| (-365)))) (-1763 ((|#1| $) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-2994 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558)))) (-3636 (((-771) $) NIL)) (-2483 ((|#1| $) NIL (|has| |#1| (-454)))) (-3783 (((-862) $) NIL) (($ (-566)) NIL) (($ (-409 (-566))) NIL (|has| |#1| (-1038 (-409 (-566))))) (($ |#1|) NIL)) (-4170 (((-644 |#1|) $) NIL)) (-2649 ((|#1| $ (-771)) NIL)) (-2107 (((-771)) NIL T CONST)) (-3117 (((-112) $ $) NIL)) (-1948 ((|#1| $ |#1| |#1|) 15)) (-2479 (($) NIL T CONST)) (-4334 (($) 23 T CONST)) (-2947 (((-112) $ $) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-921)) 19) (($ $ (-771)) 24)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-854 |#1| |#2| |#3|) (-13 (-852 |#1|) (-10 -8 (-15 -3416 ((-862) $ (-862))))) (-1049) (-99 |#1|) (-1 |#1| |#1|)) (T -854)) -((-3416 (*1 *2 *1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-854 *3 *4 *5)) (-4 *3 (-1049)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))) -(-13 (-852 |#1|) (-10 -8 (-15 -3416 ((-862) $ (-862))))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-3012 (($) NIL T CONST)) (-3982 (($ $ $) NIL (|has| |#2| (-365)))) (-2135 (($ $ $) NIL (|has| |#2| (-365)))) (-3560 (($ $ $) NIL (|has| |#2| (-365)))) (-1600 (($ $ $) NIL (|has| |#2| (-365)))) (-3768 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#2| (-365)))) (-3911 (((-3 $ "failed") $ $) NIL (|has| |#2| (-365)))) (-1794 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL (|has| |#2| (-365)))) (-4307 (((-3 (-566) "failed") $) NIL (|has| |#2| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#2| (-1038 (-409 (-566))))) (((-3 |#2| "failed") $) NIL)) (-4205 (((-566) $) NIL (|has| |#2| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#2| (-1038 (-409 (-566))))) ((|#2| $) NIL)) (-1786 (($ $) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-4075 (($ $) NIL (|has| |#2| (-454)))) (-3934 (((-112) $) NIL)) (-3840 (($ |#2| (-771)) 17)) (-1952 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL (|has| |#2| (-558)))) (-1628 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL (|has| |#2| (-558)))) (-3760 (((-771) $) NIL)) (-4133 (($ $ $) NIL (|has| |#2| (-365)))) (-4356 (($ $ $) NIL (|has| |#2| (-365)))) (-1850 (($ $ $) NIL (|has| |#2| (-365)))) (-3705 (($ $ $) NIL (|has| |#2| (-365)))) (-3119 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#2| (-365)))) (-3294 (((-3 $ "failed") $ $) NIL (|has| |#2| (-365)))) (-1726 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL (|has| |#2| (-365)))) (-1763 ((|#2| $) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-2994 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-558)))) (-3636 (((-771) $) NIL)) (-2483 ((|#2| $) NIL (|has| |#2| (-454)))) (-3783 (((-862) $) 24) (($ (-566)) NIL) (($ (-409 (-566))) NIL (|has| |#2| (-1038 (-409 (-566))))) (($ |#2|) NIL) (($ (-1260 |#1|)) 19)) (-4170 (((-644 |#2|) $) NIL)) (-2649 ((|#2| $ (-771)) NIL)) (-2107 (((-771)) NIL T CONST)) (-3117 (((-112) $ $) NIL)) (-1948 ((|#2| $ |#2| |#2|) NIL)) (-2479 (($) NIL T CONST)) (-4334 (($) 13 T CONST)) (-2947 (((-112) $ $) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +((-4282 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-2619 (((-2 (|:| -2631 |#2|) (|:| -3264 |#2|)) |#2| |#2| (-99 |#1|)) 49 (|has| |#1| (-365)))) (-3093 (((-2 (|:| -2631 |#2|) (|:| -3264 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-558)))) (-3567 (((-2 (|:| -2631 |#2|) (|:| -3264 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-558)))) (-2578 (((-2 (|:| -2631 |#2|) (|:| -3264 |#2|)) |#2| |#2| (-99 |#1|)) 48 (|has| |#1| (-365)))) (-3847 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 36))) +(((-853 |#1| |#2|) (-10 -7 (-15 -4282 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -3847 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-558)) (PROGN (-15 -3567 ((-2 (|:| -2631 |#2|) (|:| -3264 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3093 ((-2 (|:| -2631 |#2|) (|:| -3264 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -2578 ((-2 (|:| -2631 |#2|) (|:| -3264 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2619 ((-2 (|:| -2631 |#2|) (|:| -3264 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1049) (-852 |#1|)) (T -853)) +((-2619 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-365)) (-4 *5 (-1049)) (-5 *2 (-2 (|:| -2631 *3) (|:| -3264 *3))) (-5 *1 (-853 *5 *3)) (-4 *3 (-852 *5)))) (-2578 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-365)) (-4 *5 (-1049)) (-5 *2 (-2 (|:| -2631 *3) (|:| -3264 *3))) (-5 *1 (-853 *5 *3)) (-4 *3 (-852 *5)))) (-3093 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-558)) (-4 *5 (-1049)) (-5 *2 (-2 (|:| -2631 *3) (|:| -3264 *3))) (-5 *1 (-853 *5 *3)) (-4 *3 (-852 *5)))) (-3567 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-558)) (-4 *5 (-1049)) (-5 *2 (-2 (|:| -2631 *3) (|:| -3264 *3))) (-5 *1 (-853 *5 *3)) (-4 *3 (-852 *5)))) (-3847 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1049)) (-5 *1 (-853 *2 *3)) (-4 *3 (-852 *2)))) (-4282 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1049)) (-5 *1 (-853 *5 *2)) (-4 *2 (-852 *5))))) +(-10 -7 (-15 -4282 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -3847 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-558)) (PROGN (-15 -3567 ((-2 (|:| -2631 |#2|) (|:| -3264 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3093 ((-2 (|:| -2631 |#2|) (|:| -3264 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -2578 ((-2 (|:| -2631 |#2|) (|:| -3264 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2619 ((-2 (|:| -2631 |#2|) (|:| -3264 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-2463 (($) NIL T CONST)) (-3615 (($ $ $) NIL (|has| |#1| (-365)))) (-2387 (($ $ $) NIL (|has| |#1| (-365)))) (-3081 (($ $ $) NIL (|has| |#1| (-365)))) (-2850 (($ $ $) NIL (|has| |#1| (-365)))) (-2190 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL (|has| |#1| (-365)))) (-3985 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-2619 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) 34 (|has| |#1| (-365)))) (-2229 (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) NIL)) (-4158 (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) NIL)) (-2814 (($ $) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-2616 (($ $) NIL (|has| |#1| (-454)))) (-3503 (((-862) $ (-862)) NIL)) (-2389 (((-112) $) NIL)) (-1746 (($ |#1| (-771)) NIL)) (-3093 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) 30 (|has| |#1| (-558)))) (-3567 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) 28 (|has| |#1| (-558)))) (-2749 (((-771) $) NIL)) (-2488 (($ $ $) NIL (|has| |#1| (-365)))) (-3148 (($ $ $) NIL (|has| |#1| (-365)))) (-2047 (($ $ $) NIL (|has| |#1| (-365)))) (-2123 (($ $ $) NIL (|has| |#1| (-365)))) (-1916 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL (|has| |#1| (-365)))) (-3483 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-2578 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) 32 (|has| |#1| (-365)))) (-2794 ((|#1| $) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-2978 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558)))) (-3902 (((-771) $) NIL)) (-3173 ((|#1| $) NIL (|has| |#1| (-454)))) (-3152 (((-862) $) NIL) (($ (-566)) NIL) (($ (-409 (-566))) NIL (|has| |#1| (-1038 (-409 (-566))))) (($ |#1|) NIL)) (-1643 (((-644 |#1|) $) NIL)) (-2271 ((|#1| $ (-771)) NIL)) (-2593 (((-771)) NIL T CONST)) (-3044 (((-112) $ $) NIL)) (-3847 ((|#1| $ |#1| |#1|) 15)) (-4356 (($) NIL T CONST)) (-4366 (($) 23 T CONST)) (-2914 (((-112) $ $) NIL)) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-921)) 19) (($ $ (-771)) 24)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-854 |#1| |#2| |#3|) (-13 (-852 |#1|) (-10 -8 (-15 -3503 ((-862) $ (-862))))) (-1049) (-99 |#1|) (-1 |#1| |#1|)) (T -854)) +((-3503 (*1 *2 *1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-854 *3 *4 *5)) (-4 *3 (-1049)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))) +(-13 (-852 |#1|) (-10 -8 (-15 -3503 ((-862) $ (-862))))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-2463 (($) NIL T CONST)) (-3615 (($ $ $) NIL (|has| |#2| (-365)))) (-2387 (($ $ $) NIL (|has| |#2| (-365)))) (-3081 (($ $ $) NIL (|has| |#2| (-365)))) (-2850 (($ $ $) NIL (|has| |#2| (-365)))) (-2190 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL (|has| |#2| (-365)))) (-3985 (((-3 $ "failed") $ $) NIL (|has| |#2| (-365)))) (-2619 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL (|has| |#2| (-365)))) (-2229 (((-3 (-566) "failed") $) NIL (|has| |#2| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#2| (-1038 (-409 (-566))))) (((-3 |#2| "failed") $) NIL)) (-4158 (((-566) $) NIL (|has| |#2| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#2| (-1038 (-409 (-566))))) ((|#2| $) NIL)) (-2814 (($ $) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-2616 (($ $) NIL (|has| |#2| (-454)))) (-2389 (((-112) $) NIL)) (-1746 (($ |#2| (-771)) 17)) (-3093 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL (|has| |#2| (-558)))) (-3567 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL (|has| |#2| (-558)))) (-2749 (((-771) $) NIL)) (-2488 (($ $ $) NIL (|has| |#2| (-365)))) (-3148 (($ $ $) NIL (|has| |#2| (-365)))) (-2047 (($ $ $) NIL (|has| |#2| (-365)))) (-2123 (($ $ $) NIL (|has| |#2| (-365)))) (-1916 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL (|has| |#2| (-365)))) (-3483 (((-3 $ "failed") $ $) NIL (|has| |#2| (-365)))) (-2578 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL (|has| |#2| (-365)))) (-2794 ((|#2| $) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-2978 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-558)))) (-3902 (((-771) $) NIL)) (-3173 ((|#2| $) NIL (|has| |#2| (-454)))) (-3152 (((-862) $) 24) (($ (-566)) NIL) (($ (-409 (-566))) NIL (|has| |#2| (-1038 (-409 (-566))))) (($ |#2|) NIL) (($ (-1260 |#1|)) 19)) (-1643 (((-644 |#2|) $) NIL)) (-2271 ((|#2| $ (-771)) NIL)) (-2593 (((-771)) NIL T CONST)) (-3044 (((-112) $ $) NIL)) (-3847 ((|#2| $ |#2| |#2|) NIL)) (-4356 (($) NIL T CONST)) (-4366 (($) 13 T CONST)) (-2914 (((-112) $ $) NIL)) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) (((-855 |#1| |#2| |#3| |#4|) (-13 (-852 |#2|) (-616 (-1260 |#1|))) (-1175) (-1049) (-99 |#2|) (-1 |#2| |#2|)) (T -855)) NIL (-13 (-852 |#2|) (-616 (-1260 |#1|))) -((-3726 ((|#1| (-771) |#1|) 48 (|has| |#1| (-38 (-409 (-566)))))) (-2046 ((|#1| (-771) (-771) |#1|) 39) ((|#1| (-771) |#1|) 27)) (-2280 ((|#1| (-771) |#1|) 43)) (-3523 ((|#1| (-771) |#1|) 41)) (-1509 ((|#1| (-771) |#1|) 40))) -(((-856 |#1|) (-10 -7 (-15 -1509 (|#1| (-771) |#1|)) (-15 -3523 (|#1| (-771) |#1|)) (-15 -2280 (|#1| (-771) |#1|)) (-15 -2046 (|#1| (-771) |#1|)) (-15 -2046 (|#1| (-771) (-771) |#1|)) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -3726 (|#1| (-771) |#1|)) |%noBranch|)) (-172)) (T -856)) -((-3726 (*1 *2 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-856 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-172)))) (-2046 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-856 *2)) (-4 *2 (-172)))) (-2046 (*1 *2 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-856 *2)) (-4 *2 (-172)))) (-2280 (*1 *2 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-856 *2)) (-4 *2 (-172)))) (-3523 (*1 *2 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-856 *2)) (-4 *2 (-172)))) (-1509 (*1 *2 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-856 *2)) (-4 *2 (-172))))) -(-10 -7 (-15 -1509 (|#1| (-771) |#1|)) (-15 -3523 (|#1| (-771) |#1|)) (-15 -2280 (|#1| (-771) |#1|)) (-15 -2046 (|#1| (-771) |#1|)) (-15 -2046 (|#1| (-771) (-771) |#1|)) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -3726 (|#1| (-771) |#1|)) |%noBranch|)) -((-3007 (((-112) $ $) 7)) (-2097 (($ $ $) 14)) (-3962 (($ $ $) 15)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3783 (((-862) $) 12)) (-3117 (((-112) $ $) 9)) (-3009 (((-112) $ $) 17)) (-2984 (((-112) $ $) 18)) (-2947 (((-112) $ $) 6)) (-2995 (((-112) $ $) 16)) (-2969 (((-112) $ $) 19)) (** (($ $ (-921)) 22)) (* (($ $ $) 21))) +((-3565 ((|#1| (-771) |#1|) 48 (|has| |#1| (-38 (-409 (-566)))))) (-3017 ((|#1| (-771) (-771) |#1|) 39) ((|#1| (-771) |#1|) 27)) (-3141 ((|#1| (-771) |#1|) 43)) (-2640 ((|#1| (-771) |#1|) 41)) (-1349 ((|#1| (-771) |#1|) 40))) +(((-856 |#1|) (-10 -7 (-15 -1349 (|#1| (-771) |#1|)) (-15 -2640 (|#1| (-771) |#1|)) (-15 -3141 (|#1| (-771) |#1|)) (-15 -3017 (|#1| (-771) |#1|)) (-15 -3017 (|#1| (-771) (-771) |#1|)) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -3565 (|#1| (-771) |#1|)) |%noBranch|)) (-172)) (T -856)) +((-3565 (*1 *2 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-856 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-172)))) (-3017 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-856 *2)) (-4 *2 (-172)))) (-3017 (*1 *2 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-856 *2)) (-4 *2 (-172)))) (-3141 (*1 *2 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-856 *2)) (-4 *2 (-172)))) (-2640 (*1 *2 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-856 *2)) (-4 *2 (-172)))) (-1349 (*1 *2 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-856 *2)) (-4 *2 (-172))))) +(-10 -7 (-15 -1349 (|#1| (-771) |#1|)) (-15 -2640 (|#1| (-771) |#1|)) (-15 -3141 (|#1| (-771) |#1|)) (-15 -3017 (|#1| (-771) |#1|)) (-15 -3017 (|#1| (-771) (-771) |#1|)) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -3565 (|#1| (-771) |#1|)) |%noBranch|)) +((-2988 (((-112) $ $) 7)) (-1478 (($ $ $) 14)) (-2599 (($ $ $) 15)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3152 (((-862) $) 12)) (-3044 (((-112) $ $) 9)) (-2968 (((-112) $ $) 17)) (-2946 (((-112) $ $) 18)) (-2914 (((-112) $ $) 6)) (-2956 (((-112) $ $) 16)) (-2935 (((-112) $ $) 19)) (** (($ $ (-921)) 22)) (* (($ $ $) 21))) (((-857) (-140)) (T -857)) NIL (-13 (-850) (-1111)) (((-102) . T) ((-613 (-862)) . T) ((-850) . T) ((-1111) . T) ((-1099) . T)) -((-3007 (((-112) $ $) NIL)) (-2233 (((-566) $) 14)) (-2097 (($ $ $) NIL)) (-3962 (($ $ $) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 20) (($ (-566)) 13)) (-3117 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2947 (((-112) $ $) 9)) (-2995 (((-112) $ $) NIL)) (-2969 (((-112) $ $) 11))) -(((-858) (-13 (-850) (-10 -8 (-15 -3783 ($ (-566))) (-15 -2233 ((-566) $))))) (T -858)) -((-3783 (*1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-858)))) (-2233 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-858))))) -(-13 (-850) (-10 -8 (-15 -3783 ($ (-566))) (-15 -2233 ((-566) $)))) -((-3203 (((-691 (-1222)) $ (-1222)) 15)) (-3901 (((-691 (-551)) $ (-551)) 12)) (-3771 (((-771) $ (-128)) 30))) -(((-859 |#1|) (-10 -8 (-15 -3771 ((-771) |#1| (-128))) (-15 -3203 ((-691 (-1222)) |#1| (-1222))) (-15 -3901 ((-691 (-551)) |#1| (-551)))) (-860)) (T -859)) -NIL -(-10 -8 (-15 -3771 ((-771) |#1| (-128))) (-15 -3203 ((-691 (-1222)) |#1| (-1222))) (-15 -3901 ((-691 (-551)) |#1| (-551)))) -((-3203 (((-691 (-1222)) $ (-1222)) 8)) (-3901 (((-691 (-551)) $ (-551)) 9)) (-3771 (((-771) $ (-128)) 7)) (-4378 (((-691 (-129)) $ (-129)) 10)) (-1596 (($ $) 6))) +((-2988 (((-112) $ $) NIL)) (-2876 (((-566) $) 14)) (-1478 (($ $ $) NIL)) (-2599 (($ $ $) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 20) (($ (-566)) 13)) (-3044 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2914 (((-112) $ $) 9)) (-2956 (((-112) $ $) NIL)) (-2935 (((-112) $ $) 11))) +(((-858) (-13 (-850) (-10 -8 (-15 -3152 ($ (-566))) (-15 -2876 ((-566) $))))) (T -858)) +((-3152 (*1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-858)))) (-2876 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-858))))) +(-13 (-850) (-10 -8 (-15 -3152 ($ (-566))) (-15 -2876 ((-566) $)))) +((-2581 (((-691 (-1222)) $ (-1222)) 15)) (-4248 (((-691 (-551)) $ (-551)) 12)) (-1311 (((-771) $ (-128)) 30))) +(((-859 |#1|) (-10 -8 (-15 -1311 ((-771) |#1| (-128))) (-15 -2581 ((-691 (-1222)) |#1| (-1222))) (-15 -4248 ((-691 (-551)) |#1| (-551)))) (-860)) (T -859)) +NIL +(-10 -8 (-15 -1311 ((-771) |#1| (-128))) (-15 -2581 ((-691 (-1222)) |#1| (-1222))) (-15 -4248 ((-691 (-551)) |#1| (-551)))) +((-2581 (((-691 (-1222)) $ (-1222)) 8)) (-4248 (((-691 (-551)) $ (-551)) 9)) (-1311 (((-771) $ (-128)) 7)) (-1606 (((-691 (-129)) $ (-129)) 10)) (-2405 (($ $) 6))) (((-860) (-140)) (T -860)) -((-4378 (*1 *2 *1 *3) (-12 (-4 *1 (-860)) (-5 *2 (-691 (-129))) (-5 *3 (-129)))) (-3901 (*1 *2 *1 *3) (-12 (-4 *1 (-860)) (-5 *2 (-691 (-551))) (-5 *3 (-551)))) (-3203 (*1 *2 *1 *3) (-12 (-4 *1 (-860)) (-5 *2 (-691 (-1222))) (-5 *3 (-1222)))) (-3771 (*1 *2 *1 *3) (-12 (-4 *1 (-860)) (-5 *3 (-128)) (-5 *2 (-771))))) -(-13 (-173) (-10 -8 (-15 -4378 ((-691 (-129)) $ (-129))) (-15 -3901 ((-691 (-551)) $ (-551))) (-15 -3203 ((-691 (-1222)) $ (-1222))) (-15 -3771 ((-771) $ (-128))))) +((-1606 (*1 *2 *1 *3) (-12 (-4 *1 (-860)) (-5 *2 (-691 (-129))) (-5 *3 (-129)))) (-4248 (*1 *2 *1 *3) (-12 (-4 *1 (-860)) (-5 *2 (-691 (-551))) (-5 *3 (-551)))) (-2581 (*1 *2 *1 *3) (-12 (-4 *1 (-860)) (-5 *2 (-691 (-1222))) (-5 *3 (-1222)))) (-1311 (*1 *2 *1 *3) (-12 (-4 *1 (-860)) (-5 *3 (-128)) (-5 *2 (-771))))) +(-13 (-173) (-10 -8 (-15 -1606 ((-691 (-129)) $ (-129))) (-15 -4248 ((-691 (-551)) $ (-551))) (-15 -2581 ((-691 (-1222)) $ (-1222))) (-15 -1311 ((-771) $ (-128))))) (((-173) . T)) -((-3203 (((-691 (-1222)) $ (-1222)) NIL)) (-3901 (((-691 (-551)) $ (-551)) NIL)) (-3771 (((-771) $ (-128)) NIL)) (-4378 (((-691 (-129)) $ (-129)) 22)) (-4172 (($ (-390)) 12) (($ (-1157)) 14)) (-2790 (((-112) $) 19)) (-3783 (((-862) $) 26)) (-1596 (($ $) 23))) -(((-861) (-13 (-860) (-613 (-862)) (-10 -8 (-15 -4172 ($ (-390))) (-15 -4172 ($ (-1157))) (-15 -2790 ((-112) $))))) (T -861)) -((-4172 (*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-861)))) (-4172 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-861)))) (-2790 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861))))) -(-13 (-860) (-613 (-862)) (-10 -8 (-15 -4172 ($ (-390))) (-15 -4172 ($ (-1157))) (-15 -2790 ((-112) $)))) -((-3007 (((-112) $ $) NIL) (($ $ $) 85)) (-3444 (($ $ $) 125)) (-3477 (((-566) $) 31) (((-566)) 36)) (-4113 (($ (-566)) 53)) (-2230 (($ $ $) 54) (($ (-644 $)) 84)) (-3572 (($ $ (-644 $)) 82)) (-4243 (((-566) $) 34)) (-4305 (($ $ $) 73)) (-2744 (($ $) 140) (($ $ $) 141) (($ $ $ $) 142)) (-1845 (((-566) $) 33)) (-4222 (($ $ $) 72)) (-4336 (($ $) 114)) (-2965 (($ $ $) 129)) (-2577 (($ (-644 $)) 61)) (-4160 (($ $ (-644 $)) 79)) (-3870 (($ (-566) (-566)) 55)) (-1751 (($ $) 126) (($ $ $) 127)) (-4392 (($ $ (-566)) 43) (($ $) 46)) (-2946 (($ $ $) 97)) (-4096 (($ $ $) 132)) (-4245 (($ $) 115)) (-2957 (($ $ $) 98)) (-1300 (($ $) 143) (($ $ $) 144) (($ $ $ $) 145)) (-2974 (((-1269) $) 10)) (-3380 (($ $) 118) (($ $ (-771)) 122)) (-2998 (($ $ $) 75)) (-1325 (($ $ $) 74)) (-2486 (($ $ (-644 $)) 110)) (-2350 (($ $ $) 113)) (-2193 (($ (-644 $)) 59)) (-2228 (($ $) 70) (($ (-644 $)) 71)) (-1589 (($ $ $) 123)) (-2820 (($ $) 116)) (-1520 (($ $ $) 128)) (-3416 (($ (-566)) 21) (($ (-1175)) 23) (($ (-1157)) 30) (($ (-225)) 25)) (-2445 (($ $ $) 101)) (-2418 (($ $) 102)) (-1740 (((-1269) (-1157)) 15)) (-1760 (($ (-1157)) 14)) (-3163 (($ (-644 (-644 $))) 58)) (-4380 (($ $ (-566)) 42) (($ $) 45)) (-4117 (((-1157) $) NIL)) (-1481 (($ $ $) 131)) (-3903 (($ $) 146) (($ $ $) 147) (($ $ $ $) 148)) (-3662 (((-112) $) 108)) (-3839 (($ $ (-644 $)) 111) (($ $ $ $) 112)) (-4216 (($ (-566)) 39)) (-2076 (((-566) $) 32) (((-566)) 35)) (-3735 (($ $ $) 40) (($ (-644 $)) 83)) (-4035 (((-1119) $) NIL)) (-2994 (($ $ $) 99)) (-1494 (($) 13)) (-4390 (($ $ (-644 $)) 109)) (-2440 (((-1157) (-1157)) 8)) (-4280 (($ $) 117) (($ $ (-771)) 121)) (-2982 (($ $ $) 96)) (-3561 (($ $ (-771)) 139)) (-1817 (($ (-644 $)) 60)) (-3783 (((-862) $) 19)) (-1320 (($ $ (-566)) 41) (($ $) 44)) (-4021 (($ $) 68) (($ (-644 $)) 69)) (-3788 (($ $) 66) (($ (-644 $)) 67)) (-1630 (($ $) 124)) (-2234 (($ (-644 $)) 65)) (-3228 (($ $ $) 105)) (-3117 (((-112) $ $) NIL)) (-1343 (($ $ $) 130)) (-2432 (($ $ $) 100)) (-3622 (($ $ $) 103) (($ $) 104)) (-3009 (($ $ $) 89)) (-2984 (($ $ $) 87)) (-2947 (((-112) $ $) 16) (($ $ $) 17)) (-2995 (($ $ $) 88)) (-2969 (($ $ $) 86)) (-3065 (($ $ $) 94)) (-3053 (($ $ $) 91) (($ $) 92)) (-3041 (($ $ $) 90)) (** (($ $ $) 95)) (* (($ $ $) 93))) -(((-862) (-13 (-1099) (-10 -8 (-15 -2974 ((-1269) $)) (-15 -1760 ($ (-1157))) (-15 -1740 ((-1269) (-1157))) (-15 -3416 ($ (-566))) (-15 -3416 ($ (-1175))) (-15 -3416 ($ (-1157))) (-15 -3416 ($ (-225))) (-15 -1494 ($)) (-15 -2440 ((-1157) (-1157))) (-15 -3477 ((-566) $)) (-15 -2076 ((-566) $)) (-15 -3477 ((-566))) (-15 -2076 ((-566))) (-15 -1845 ((-566) $)) (-15 -4243 ((-566) $)) (-15 -4216 ($ (-566))) (-15 -4113 ($ (-566))) (-15 -3870 ($ (-566) (-566))) (-15 -4380 ($ $ (-566))) (-15 -4392 ($ $ (-566))) (-15 -1320 ($ $ (-566))) (-15 -4380 ($ $)) (-15 -4392 ($ $)) (-15 -1320 ($ $)) (-15 -3735 ($ $ $)) (-15 -2230 ($ $ $)) (-15 -3735 ($ (-644 $))) (-15 -2230 ($ (-644 $))) (-15 -2486 ($ $ (-644 $))) (-15 -3839 ($ $ (-644 $))) (-15 -3839 ($ $ $ $)) (-15 -2350 ($ $ $)) (-15 -3662 ((-112) $)) (-15 -4390 ($ $ (-644 $))) (-15 -4336 ($ $)) (-15 -1481 ($ $ $)) (-15 -1630 ($ $)) (-15 -3163 ($ (-644 (-644 $)))) (-15 -3444 ($ $ $)) (-15 -1751 ($ $)) (-15 -1751 ($ $ $)) (-15 -1520 ($ $ $)) (-15 -2965 ($ $ $)) (-15 -1343 ($ $ $)) (-15 -4096 ($ $ $)) (-15 -3561 ($ $ (-771))) (-15 -3228 ($ $ $)) (-15 -4222 ($ $ $)) (-15 -4305 ($ $ $)) (-15 -1325 ($ $ $)) (-15 -2998 ($ $ $)) (-15 -4160 ($ $ (-644 $))) (-15 -3572 ($ $ (-644 $))) (-15 -4245 ($ $)) (-15 -4280 ($ $)) (-15 -4280 ($ $ (-771))) (-15 -3380 ($ $)) (-15 -3380 ($ $ (-771))) (-15 -2820 ($ $)) (-15 -1589 ($ $ $)) (-15 -2744 ($ $)) (-15 -2744 ($ $ $)) (-15 -2744 ($ $ $ $)) (-15 -1300 ($ $)) (-15 -1300 ($ $ $)) (-15 -1300 ($ $ $ $)) (-15 -3903 ($ $)) (-15 -3903 ($ $ $)) (-15 -3903 ($ $ $ $)) (-15 -3788 ($ $)) (-15 -3788 ($ (-644 $))) (-15 -4021 ($ $)) (-15 -4021 ($ (-644 $))) (-15 -2228 ($ $)) (-15 -2228 ($ (-644 $))) (-15 -2193 ($ (-644 $))) (-15 -1817 ($ (-644 $))) (-15 -2577 ($ (-644 $))) (-15 -2234 ($ (-644 $))) (-15 -2947 ($ $ $)) (-15 -3007 ($ $ $)) (-15 -2969 ($ $ $)) (-15 -2984 ($ $ $)) (-15 -2995 ($ $ $)) (-15 -3009 ($ $ $)) (-15 -3041 ($ $ $)) (-15 -3053 ($ $ $)) (-15 -3053 ($ $)) (-15 * ($ $ $)) (-15 -3065 ($ $ $)) (-15 ** ($ $ $)) (-15 -2982 ($ $ $)) (-15 -2946 ($ $ $)) (-15 -2957 ($ $ $)) (-15 -2994 ($ $ $)) (-15 -2432 ($ $ $)) (-15 -2445 ($ $ $)) (-15 -2418 ($ $)) (-15 -3622 ($ $ $)) (-15 -3622 ($ $))))) (T -862)) -((-2974 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-862)))) (-1760 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-862)))) (-1740 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-862)))) (-3416 (*1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) (-3416 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-862)))) (-3416 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-862)))) (-3416 (*1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-862)))) (-1494 (*1 *1) (-5 *1 (-862))) (-2440 (*1 *2 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-862)))) (-3477 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) (-2076 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) (-3477 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) (-2076 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) (-1845 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) (-4243 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) (-4216 (*1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) (-4113 (*1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) (-3870 (*1 *1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) (-4380 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) (-4392 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) (-1320 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) (-4380 (*1 *1 *1) (-5 *1 (-862))) (-4392 (*1 *1 *1) (-5 *1 (-862))) (-1320 (*1 *1 *1) (-5 *1 (-862))) (-3735 (*1 *1 *1 *1) (-5 *1 (-862))) (-2230 (*1 *1 *1 *1) (-5 *1 (-862))) (-3735 (*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) (-2230 (*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) (-2486 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) (-3839 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) (-3839 (*1 *1 *1 *1 *1) (-5 *1 (-862))) (-2350 (*1 *1 *1 *1) (-5 *1 (-862))) (-3662 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-862)))) (-4390 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) (-4336 (*1 *1 *1) (-5 *1 (-862))) (-1481 (*1 *1 *1 *1) (-5 *1 (-862))) (-1630 (*1 *1 *1) (-5 *1 (-862))) (-3163 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 (-862)))) (-5 *1 (-862)))) (-3444 (*1 *1 *1 *1) (-5 *1 (-862))) (-1751 (*1 *1 *1) (-5 *1 (-862))) (-1751 (*1 *1 *1 *1) (-5 *1 (-862))) (-1520 (*1 *1 *1 *1) (-5 *1 (-862))) (-2965 (*1 *1 *1 *1) (-5 *1 (-862))) (-1343 (*1 *1 *1 *1) (-5 *1 (-862))) (-4096 (*1 *1 *1 *1) (-5 *1 (-862))) (-3561 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-862)))) (-3228 (*1 *1 *1 *1) (-5 *1 (-862))) (-4222 (*1 *1 *1 *1) (-5 *1 (-862))) (-4305 (*1 *1 *1 *1) (-5 *1 (-862))) (-1325 (*1 *1 *1 *1) (-5 *1 (-862))) (-2998 (*1 *1 *1 *1) (-5 *1 (-862))) (-4160 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) (-3572 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) (-4245 (*1 *1 *1) (-5 *1 (-862))) (-4280 (*1 *1 *1) (-5 *1 (-862))) (-4280 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-862)))) (-3380 (*1 *1 *1) (-5 *1 (-862))) (-3380 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-862)))) (-2820 (*1 *1 *1) (-5 *1 (-862))) (-1589 (*1 *1 *1 *1) (-5 *1 (-862))) (-2744 (*1 *1 *1) (-5 *1 (-862))) (-2744 (*1 *1 *1 *1) (-5 *1 (-862))) (-2744 (*1 *1 *1 *1 *1) (-5 *1 (-862))) (-1300 (*1 *1 *1) (-5 *1 (-862))) (-1300 (*1 *1 *1 *1) (-5 *1 (-862))) (-1300 (*1 *1 *1 *1 *1) (-5 *1 (-862))) (-3903 (*1 *1 *1) (-5 *1 (-862))) (-3903 (*1 *1 *1 *1) (-5 *1 (-862))) (-3903 (*1 *1 *1 *1 *1) (-5 *1 (-862))) (-3788 (*1 *1 *1) (-5 *1 (-862))) (-3788 (*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) (-4021 (*1 *1 *1) (-5 *1 (-862))) (-4021 (*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) (-2228 (*1 *1 *1) (-5 *1 (-862))) (-2228 (*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) (-2193 (*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) (-1817 (*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) (-2577 (*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) (-2234 (*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) (-2947 (*1 *1 *1 *1) (-5 *1 (-862))) (-3007 (*1 *1 *1 *1) (-5 *1 (-862))) (-2969 (*1 *1 *1 *1) (-5 *1 (-862))) (-2984 (*1 *1 *1 *1) (-5 *1 (-862))) (-2995 (*1 *1 *1 *1) (-5 *1 (-862))) (-3009 (*1 *1 *1 *1) (-5 *1 (-862))) (-3041 (*1 *1 *1 *1) (-5 *1 (-862))) (-3053 (*1 *1 *1 *1) (-5 *1 (-862))) (-3053 (*1 *1 *1) (-5 *1 (-862))) (* (*1 *1 *1 *1) (-5 *1 (-862))) (-3065 (*1 *1 *1 *1) (-5 *1 (-862))) (** (*1 *1 *1 *1) (-5 *1 (-862))) (-2982 (*1 *1 *1 *1) (-5 *1 (-862))) (-2946 (*1 *1 *1 *1) (-5 *1 (-862))) (-2957 (*1 *1 *1 *1) (-5 *1 (-862))) (-2994 (*1 *1 *1 *1) (-5 *1 (-862))) (-2432 (*1 *1 *1 *1) (-5 *1 (-862))) (-2445 (*1 *1 *1 *1) (-5 *1 (-862))) (-2418 (*1 *1 *1) (-5 *1 (-862))) (-3622 (*1 *1 *1 *1) (-5 *1 (-862))) (-3622 (*1 *1 *1) (-5 *1 (-862)))) -(-13 (-1099) (-10 -8 (-15 -2974 ((-1269) $)) (-15 -1760 ($ (-1157))) (-15 -1740 ((-1269) (-1157))) (-15 -3416 ($ (-566))) (-15 -3416 ($ (-1175))) (-15 -3416 ($ (-1157))) (-15 -3416 ($ (-225))) (-15 -1494 ($)) (-15 -2440 ((-1157) (-1157))) (-15 -3477 ((-566) $)) (-15 -2076 ((-566) $)) (-15 -3477 ((-566))) (-15 -2076 ((-566))) (-15 -1845 ((-566) $)) (-15 -4243 ((-566) $)) (-15 -4216 ($ (-566))) (-15 -4113 ($ (-566))) (-15 -3870 ($ (-566) (-566))) (-15 -4380 ($ $ (-566))) (-15 -4392 ($ $ (-566))) (-15 -1320 ($ $ (-566))) (-15 -4380 ($ $)) (-15 -4392 ($ $)) (-15 -1320 ($ $)) (-15 -3735 ($ $ $)) (-15 -2230 ($ $ $)) (-15 -3735 ($ (-644 $))) (-15 -2230 ($ (-644 $))) (-15 -2486 ($ $ (-644 $))) (-15 -3839 ($ $ (-644 $))) (-15 -3839 ($ $ $ $)) (-15 -2350 ($ $ $)) (-15 -3662 ((-112) $)) (-15 -4390 ($ $ (-644 $))) (-15 -4336 ($ $)) (-15 -1481 ($ $ $)) (-15 -1630 ($ $)) (-15 -3163 ($ (-644 (-644 $)))) (-15 -3444 ($ $ $)) (-15 -1751 ($ $)) (-15 -1751 ($ $ $)) (-15 -1520 ($ $ $)) (-15 -2965 ($ $ $)) (-15 -1343 ($ $ $)) (-15 -4096 ($ $ $)) (-15 -3561 ($ $ (-771))) (-15 -3228 ($ $ $)) (-15 -4222 ($ $ $)) (-15 -4305 ($ $ $)) (-15 -1325 ($ $ $)) (-15 -2998 ($ $ $)) (-15 -4160 ($ $ (-644 $))) (-15 -3572 ($ $ (-644 $))) (-15 -4245 ($ $)) (-15 -4280 ($ $)) (-15 -4280 ($ $ (-771))) (-15 -3380 ($ $)) (-15 -3380 ($ $ (-771))) (-15 -2820 ($ $)) (-15 -1589 ($ $ $)) (-15 -2744 ($ $)) (-15 -2744 ($ $ $)) (-15 -2744 ($ $ $ $)) (-15 -1300 ($ $)) (-15 -1300 ($ $ $)) (-15 -1300 ($ $ $ $)) (-15 -3903 ($ $)) (-15 -3903 ($ $ $)) (-15 -3903 ($ $ $ $)) (-15 -3788 ($ $)) (-15 -3788 ($ (-644 $))) (-15 -4021 ($ $)) (-15 -4021 ($ (-644 $))) (-15 -2228 ($ $)) (-15 -2228 ($ (-644 $))) (-15 -2193 ($ (-644 $))) (-15 -1817 ($ (-644 $))) (-15 -2577 ($ (-644 $))) (-15 -2234 ($ (-644 $))) (-15 -2947 ($ $ $)) (-15 -3007 ($ $ $)) (-15 -2969 ($ $ $)) (-15 -2984 ($ $ $)) (-15 -2995 ($ $ $)) (-15 -3009 ($ $ $)) (-15 -3041 ($ $ $)) (-15 -3053 ($ $ $)) (-15 -3053 ($ $)) (-15 * ($ $ $)) (-15 -3065 ($ $ $)) (-15 ** ($ $ $)) (-15 -2982 ($ $ $)) (-15 -2946 ($ $ $)) (-15 -2957 ($ $ $)) (-15 -2994 ($ $ $)) (-15 -2432 ($ $ $)) (-15 -2445 ($ $ $)) (-15 -2418 ($ $)) (-15 -3622 ($ $ $)) (-15 -3622 ($ $)))) -((-1588 (((-1269) (-644 (-52))) 24)) (-2533 (((-1269) (-1157) (-862)) 14) (((-1269) (-862)) 9) (((-1269) (-1157)) 11))) -(((-863) (-10 -7 (-15 -2533 ((-1269) (-1157))) (-15 -2533 ((-1269) (-862))) (-15 -2533 ((-1269) (-1157) (-862))) (-15 -1588 ((-1269) (-644 (-52)))))) (T -863)) -((-1588 (*1 *2 *3) (-12 (-5 *3 (-644 (-52))) (-5 *2 (-1269)) (-5 *1 (-863)))) (-2533 (*1 *2 *3 *4) (-12 (-5 *3 (-1157)) (-5 *4 (-862)) (-5 *2 (-1269)) (-5 *1 (-863)))) (-2533 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1269)) (-5 *1 (-863)))) (-2533 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-863))))) -(-10 -7 (-15 -2533 ((-1269) (-1157))) (-15 -2533 ((-1269) (-862))) (-15 -2533 ((-1269) (-1157) (-862))) (-15 -1588 ((-1269) (-644 (-52))))) -((-3007 (((-112) $ $) NIL)) (-1385 (((-3 $ "failed") (-1175)) 39)) (-1970 (((-771)) 32)) (-1552 (($) NIL)) (-2097 (($ $ $) NIL) (($) NIL T CONST)) (-3962 (($ $ $) NIL) (($) NIL T CONST)) (-3681 (((-921) $) 29)) (-4117 (((-1157) $) 46)) (-2178 (($ (-921)) 28)) (-4035 (((-1119) $) NIL)) (-1348 (((-1175) $) 13) (((-538) $) 19) (((-892 (-381)) $) 26) (((-892 (-566)) $) 22)) (-3783 (((-862) $) 16)) (-3117 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2947 (((-112) $ $) 43)) (-2995 (((-112) $ $) NIL)) (-2969 (((-112) $ $) 41))) -(((-864 |#1|) (-13 (-844) (-614 (-1175)) (-614 (-538)) (-614 (-892 (-381))) (-614 (-892 (-566))) (-10 -8 (-15 -1385 ((-3 $ "failed") (-1175))))) (-644 (-1175))) (T -864)) -((-1385 (*1 *1 *2) (|partial| -12 (-5 *2 (-1175)) (-5 *1 (-864 *3)) (-14 *3 (-644 *2))))) -(-13 (-844) (-614 (-1175)) (-614 (-538)) (-614 (-892 (-381))) (-614 (-892 (-566))) (-10 -8 (-15 -1385 ((-3 $ "failed") (-1175))))) -((-3007 (((-112) $ $) NIL)) (-2640 (((-508) $) 9)) (-2329 (((-644 (-441)) $) 13)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 21)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) 16))) -(((-865) (-13 (-1099) (-10 -8 (-15 -2640 ((-508) $)) (-15 -2329 ((-644 (-441)) $))))) (T -865)) -((-2640 (*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-865)))) (-2329 (*1 *2 *1) (-12 (-5 *2 (-644 (-441))) (-5 *1 (-865))))) -(-13 (-1099) (-10 -8 (-15 -2640 ((-508) $)) (-15 -2329 ((-644 (-441)) $)))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-3012 (($) NIL T CONST)) (-1878 (((-3 $ "failed") $) NIL)) (-3934 (((-112) $) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) NIL) (($ (-566)) NIL) (($ (-952 |#1|)) NIL) (((-952 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-172)))) (-2107 (((-771)) NIL T CONST)) (-1592 (((-1269) (-771)) NIL)) (-3117 (((-112) $ $) NIL)) (-2479 (($) NIL T CONST)) (-4334 (($) NIL T CONST)) (-2947 (((-112) $ $) NIL)) (-3065 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) -(((-866 |#1| |#2| |#3| |#4|) (-13 (-1049) (-492 (-952 |#1|)) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -3065 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1592 ((-1269) (-771))))) (-1049) (-644 (-1175)) (-644 (-771)) (-771)) (T -866)) -((-3065 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-866 *2 *3 *4 *5)) (-4 *2 (-365)) (-4 *2 (-1049)) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-771))) (-14 *5 (-771)))) (-1592 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1269)) (-5 *1 (-866 *4 *5 *6 *7)) (-4 *4 (-1049)) (-14 *5 (-644 (-1175))) (-14 *6 (-644 *3)) (-14 *7 *3)))) -(-13 (-1049) (-492 (-952 |#1|)) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -3065 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1592 ((-1269) (-771))))) -((-3689 (((-3 (-174 |#3|) "failed") (-771) (-771) |#2| |#2|) 43)) (-1507 (((-3 (-409 |#3|) "failed") (-771) (-771) |#2| |#2|) 34))) -(((-867 |#1| |#2| |#3|) (-10 -7 (-15 -1507 ((-3 (-409 |#3|) "failed") (-771) (-771) |#2| |#2|)) (-15 -3689 ((-3 (-174 |#3|) "failed") (-771) (-771) |#2| |#2|))) (-365) (-1255 |#1|) (-1240 |#1|)) (T -867)) -((-3689 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-771)) (-4 *5 (-365)) (-5 *2 (-174 *6)) (-5 *1 (-867 *5 *4 *6)) (-4 *4 (-1255 *5)) (-4 *6 (-1240 *5)))) (-1507 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-771)) (-4 *5 (-365)) (-5 *2 (-409 *6)) (-5 *1 (-867 *5 *4 *6)) (-4 *4 (-1255 *5)) (-4 *6 (-1240 *5))))) -(-10 -7 (-15 -1507 ((-3 (-409 |#3|) "failed") (-771) (-771) |#2| |#2|)) (-15 -3689 ((-3 (-174 |#3|) "failed") (-771) (-771) |#2| |#2|))) -((-1507 (((-3 (-409 (-1237 |#2| |#1|)) "failed") (-771) (-771) (-1256 |#1| |#2| |#3|)) 30) (((-3 (-409 (-1237 |#2| |#1|)) "failed") (-771) (-771) (-1256 |#1| |#2| |#3|) (-1256 |#1| |#2| |#3|)) 28))) -(((-868 |#1| |#2| |#3|) (-10 -7 (-15 -1507 ((-3 (-409 (-1237 |#2| |#1|)) "failed") (-771) (-771) (-1256 |#1| |#2| |#3|) (-1256 |#1| |#2| |#3|))) (-15 -1507 ((-3 (-409 (-1237 |#2| |#1|)) "failed") (-771) (-771) (-1256 |#1| |#2| |#3|)))) (-365) (-1175) |#1|) (T -868)) -((-1507 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-771)) (-5 *4 (-1256 *5 *6 *7)) (-4 *5 (-365)) (-14 *6 (-1175)) (-14 *7 *5) (-5 *2 (-409 (-1237 *6 *5))) (-5 *1 (-868 *5 *6 *7)))) (-1507 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-771)) (-5 *4 (-1256 *5 *6 *7)) (-4 *5 (-365)) (-14 *6 (-1175)) (-14 *7 *5) (-5 *2 (-409 (-1237 *6 *5))) (-5 *1 (-868 *5 *6 *7))))) -(-10 -7 (-15 -1507 ((-3 (-409 (-1237 |#2| |#1|)) "failed") (-771) (-771) (-1256 |#1| |#2| |#3|) (-1256 |#1| |#2| |#3|))) (-15 -1507 ((-3 (-409 (-1237 |#2| |#1|)) "failed") (-771) (-771) (-1256 |#1| |#2| |#3|)))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) 47)) (-3991 (($ $) 46)) (-2388 (((-112) $) 44)) (-4175 (((-3 $ "failed") $ $) 20)) (-3731 (($ $ (-566)) 68)) (-2837 (((-112) $ $) 65)) (-3012 (($) 18 T CONST)) (-1751 (($ (-1171 (-566)) (-566)) 67)) (-2946 (($ $ $) 61)) (-1878 (((-3 $ "failed") $) 37)) (-4026 (($ $) 70)) (-2957 (($ $ $) 62)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) 57)) (-3254 (((-771) $) 75)) (-3934 (((-112) $) 35)) (-3775 (((-3 (-644 $) "failed") (-644 $) $) 58)) (-3930 (((-566)) 72)) (-2542 (((-566) $) 71)) (-2167 (($ $ $) 52) (($ (-644 $)) 51)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-2214 (($ $ $) 54) (($ (-644 $)) 53)) (-3148 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3874 (($ $ (-566)) 74)) (-2994 (((-3 $ "failed") $ $) 48)) (-3161 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-3039 (((-771) $) 64)) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) 63)) (-4163 (((-1155 (-566)) $) 76)) (-2770 (($ $) 73)) (-3783 (((-862) $) 12) (($ (-566)) 33) (($ $) 49)) (-2107 (((-771)) 32 T CONST)) (-3117 (((-112) $ $) 9)) (-2695 (((-112) $ $) 45)) (-3628 (((-566) $ (-566)) 69)) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-2947 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) +((-2581 (((-691 (-1222)) $ (-1222)) NIL)) (-4248 (((-691 (-551)) $ (-551)) NIL)) (-1311 (((-771) $ (-128)) NIL)) (-1606 (((-691 (-129)) $ (-129)) 22)) (-1743 (($ (-390)) 12) (($ (-1157)) 14)) (-3040 (((-112) $) 19)) (-3152 (((-862) $) 26)) (-2405 (($ $) 23))) +(((-861) (-13 (-860) (-613 (-862)) (-10 -8 (-15 -1743 ($ (-390))) (-15 -1743 ($ (-1157))) (-15 -3040 ((-112) $))))) (T -861)) +((-1743 (*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-861)))) (-1743 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-861)))) (-3040 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861))))) +(-13 (-860) (-613 (-862)) (-10 -8 (-15 -1743 ($ (-390))) (-15 -1743 ($ (-1157))) (-15 -3040 ((-112) $)))) +((-2988 (((-112) $ $) NIL) (($ $ $) 85)) (-3155 (($ $ $) 125)) (-4169 (((-566) $) 31) (((-566)) 36)) (-4354 (($ (-566)) 53)) (-1745 (($ $ $) 54) (($ (-644 $)) 84)) (-1774 (($ $ (-644 $)) 82)) (-2242 (((-566) $) 34)) (-2390 (($ $ $) 73)) (-4272 (($ $) 140) (($ $ $) 141) (($ $ $ $) 142)) (-2710 (((-566) $) 33)) (-4237 (($ $ $) 72)) (-3822 (($ $) 114)) (-1900 (($ $ $) 129)) (-2682 (($ (-644 $)) 61)) (-2453 (($ $ (-644 $)) 79)) (-4341 (($ (-566) (-566)) 55)) (-3134 (($ $) 126) (($ $ $) 127)) (-1966 (($ $ (-566)) 43) (($ $) 46)) (-2933 (($ $ $) 97)) (-2044 (($ $ $) 132)) (-2450 (($ $) 115)) (-2945 (($ $ $) 98)) (-3527 (($ $) 143) (($ $ $) 144) (($ $ $ $) 145)) (-3595 (((-1269) $) 10)) (-3209 (($ $) 118) (($ $ (-771)) 122)) (-2607 (($ $ $) 75)) (-4168 (($ $ $) 74)) (-3449 (($ $ (-644 $)) 110)) (-3849 (($ $ $) 113)) (-3949 (($ (-644 $)) 59)) (-1633 (($ $) 70) (($ (-644 $)) 71)) (-1911 (($ $ $) 123)) (-4288 (($ $) 116)) (-4312 (($ $ $) 128)) (-3503 (($ (-566)) 21) (($ (-1175)) 23) (($ (-1157)) 30) (($ (-225)) 25)) (-2427 (($ $ $) 101)) (-2404 (($ $) 102)) (-3440 (((-1269) (-1157)) 15)) (-2446 (($ (-1157)) 14)) (-4184 (($ (-644 (-644 $))) 58)) (-1953 (($ $ (-566)) 42) (($ $) 45)) (-3380 (((-1157) $) NIL)) (-2160 (($ $ $) 131)) (-2590 (($ $) 146) (($ $ $) 147) (($ $ $ $) 148)) (-3472 (((-112) $) 108)) (-3616 (($ $ (-644 $)) 111) (($ $ $ $) 112)) (-3569 (($ (-566)) 39)) (-3106 (((-566) $) 32) (((-566)) 35)) (-2040 (($ $ $) 40) (($ (-644 $)) 83)) (-4072 (((-1119) $) NIL)) (-2978 (($ $ $) 99)) (-3493 (($) 13)) (-1309 (($ $ (-644 $)) 109)) (-3533 (((-1157) (-1157)) 8)) (-3386 (($ $) 117) (($ $ (-771)) 121)) (-2967 (($ $ $) 96)) (-3629 (($ $ (-771)) 139)) (-2009 (($ (-644 $)) 60)) (-3152 (((-862) $) 19)) (-4290 (($ $ (-566)) 41) (($ $) 44)) (-2169 (($ $) 68) (($ (-644 $)) 69)) (-1692 (($ $) 66) (($ (-644 $)) 67)) (-3928 (($ $) 124)) (-1921 (($ (-644 $)) 65)) (-2073 (($ $ $) 105)) (-3044 (((-112) $ $) NIL)) (-1655 (($ $ $) 130)) (-2415 (($ $ $) 100)) (-4302 (($ $ $) 103) (($ $) 104)) (-2968 (($ $ $) 89)) (-2946 (($ $ $) 87)) (-2914 (((-112) $ $) 16) (($ $ $) 17)) (-2956 (($ $ $) 88)) (-2935 (($ $ $) 86)) (-3025 (($ $ $) 94)) (-3012 (($ $ $) 91) (($ $) 92)) (-3002 (($ $ $) 90)) (** (($ $ $) 95)) (* (($ $ $) 93))) +(((-862) (-13 (-1099) (-10 -8 (-15 -3595 ((-1269) $)) (-15 -2446 ($ (-1157))) (-15 -3440 ((-1269) (-1157))) (-15 -3503 ($ (-566))) (-15 -3503 ($ (-1175))) (-15 -3503 ($ (-1157))) (-15 -3503 ($ (-225))) (-15 -3493 ($)) (-15 -3533 ((-1157) (-1157))) (-15 -4169 ((-566) $)) (-15 -3106 ((-566) $)) (-15 -4169 ((-566))) (-15 -3106 ((-566))) (-15 -2710 ((-566) $)) (-15 -2242 ((-566) $)) (-15 -3569 ($ (-566))) (-15 -4354 ($ (-566))) (-15 -4341 ($ (-566) (-566))) (-15 -1953 ($ $ (-566))) (-15 -1966 ($ $ (-566))) (-15 -4290 ($ $ (-566))) (-15 -1953 ($ $)) (-15 -1966 ($ $)) (-15 -4290 ($ $)) (-15 -2040 ($ $ $)) (-15 -1745 ($ $ $)) (-15 -2040 ($ (-644 $))) (-15 -1745 ($ (-644 $))) (-15 -3449 ($ $ (-644 $))) (-15 -3616 ($ $ (-644 $))) (-15 -3616 ($ $ $ $)) (-15 -3849 ($ $ $)) (-15 -3472 ((-112) $)) (-15 -1309 ($ $ (-644 $))) (-15 -3822 ($ $)) (-15 -2160 ($ $ $)) (-15 -3928 ($ $)) (-15 -4184 ($ (-644 (-644 $)))) (-15 -3155 ($ $ $)) (-15 -3134 ($ $)) (-15 -3134 ($ $ $)) (-15 -4312 ($ $ $)) (-15 -1900 ($ $ $)) (-15 -1655 ($ $ $)) (-15 -2044 ($ $ $)) (-15 -3629 ($ $ (-771))) (-15 -2073 ($ $ $)) (-15 -4237 ($ $ $)) (-15 -2390 ($ $ $)) (-15 -4168 ($ $ $)) (-15 -2607 ($ $ $)) (-15 -2453 ($ $ (-644 $))) (-15 -1774 ($ $ (-644 $))) (-15 -2450 ($ $)) (-15 -3386 ($ $)) (-15 -3386 ($ $ (-771))) (-15 -3209 ($ $)) (-15 -3209 ($ $ (-771))) (-15 -4288 ($ $)) (-15 -1911 ($ $ $)) (-15 -4272 ($ $)) (-15 -4272 ($ $ $)) (-15 -4272 ($ $ $ $)) (-15 -3527 ($ $)) (-15 -3527 ($ $ $)) (-15 -3527 ($ $ $ $)) (-15 -2590 ($ $)) (-15 -2590 ($ $ $)) (-15 -2590 ($ $ $ $)) (-15 -1692 ($ $)) (-15 -1692 ($ (-644 $))) (-15 -2169 ($ $)) (-15 -2169 ($ (-644 $))) (-15 -1633 ($ $)) (-15 -1633 ($ (-644 $))) (-15 -3949 ($ (-644 $))) (-15 -2009 ($ (-644 $))) (-15 -2682 ($ (-644 $))) (-15 -1921 ($ (-644 $))) (-15 -2914 ($ $ $)) (-15 -2988 ($ $ $)) (-15 -2935 ($ $ $)) (-15 -2946 ($ $ $)) (-15 -2956 ($ $ $)) (-15 -2968 ($ $ $)) (-15 -3002 ($ $ $)) (-15 -3012 ($ $ $)) (-15 -3012 ($ $)) (-15 * ($ $ $)) (-15 -3025 ($ $ $)) (-15 ** ($ $ $)) (-15 -2967 ($ $ $)) (-15 -2933 ($ $ $)) (-15 -2945 ($ $ $)) (-15 -2978 ($ $ $)) (-15 -2415 ($ $ $)) (-15 -2427 ($ $ $)) (-15 -2404 ($ $)) (-15 -4302 ($ $ $)) (-15 -4302 ($ $))))) (T -862)) +((-3595 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-862)))) (-2446 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-862)))) (-3440 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-862)))) (-3503 (*1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) (-3503 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-862)))) (-3503 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-862)))) (-3503 (*1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-862)))) (-3493 (*1 *1) (-5 *1 (-862))) (-3533 (*1 *2 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-862)))) (-4169 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) (-3106 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) (-4169 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) (-3106 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) (-2710 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) (-2242 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) (-4354 (*1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) (-4341 (*1 *1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) (-1953 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) (-1966 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) (-4290 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) (-1953 (*1 *1 *1) (-5 *1 (-862))) (-1966 (*1 *1 *1) (-5 *1 (-862))) (-4290 (*1 *1 *1) (-5 *1 (-862))) (-2040 (*1 *1 *1 *1) (-5 *1 (-862))) (-1745 (*1 *1 *1 *1) (-5 *1 (-862))) (-2040 (*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) (-1745 (*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) (-3449 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) (-3616 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) (-3616 (*1 *1 *1 *1 *1) (-5 *1 (-862))) (-3849 (*1 *1 *1 *1) (-5 *1 (-862))) (-3472 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-862)))) (-1309 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) (-3822 (*1 *1 *1) (-5 *1 (-862))) (-2160 (*1 *1 *1 *1) (-5 *1 (-862))) (-3928 (*1 *1 *1) (-5 *1 (-862))) (-4184 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 (-862)))) (-5 *1 (-862)))) (-3155 (*1 *1 *1 *1) (-5 *1 (-862))) (-3134 (*1 *1 *1) (-5 *1 (-862))) (-3134 (*1 *1 *1 *1) (-5 *1 (-862))) (-4312 (*1 *1 *1 *1) (-5 *1 (-862))) (-1900 (*1 *1 *1 *1) (-5 *1 (-862))) (-1655 (*1 *1 *1 *1) (-5 *1 (-862))) (-2044 (*1 *1 *1 *1) (-5 *1 (-862))) (-3629 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-862)))) (-2073 (*1 *1 *1 *1) (-5 *1 (-862))) (-4237 (*1 *1 *1 *1) (-5 *1 (-862))) (-2390 (*1 *1 *1 *1) (-5 *1 (-862))) (-4168 (*1 *1 *1 *1) (-5 *1 (-862))) (-2607 (*1 *1 *1 *1) (-5 *1 (-862))) (-2453 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) (-1774 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) (-2450 (*1 *1 *1) (-5 *1 (-862))) (-3386 (*1 *1 *1) (-5 *1 (-862))) (-3386 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-862)))) (-3209 (*1 *1 *1) (-5 *1 (-862))) (-3209 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-862)))) (-4288 (*1 *1 *1) (-5 *1 (-862))) (-1911 (*1 *1 *1 *1) (-5 *1 (-862))) (-4272 (*1 *1 *1) (-5 *1 (-862))) (-4272 (*1 *1 *1 *1) (-5 *1 (-862))) (-4272 (*1 *1 *1 *1 *1) (-5 *1 (-862))) (-3527 (*1 *1 *1) (-5 *1 (-862))) (-3527 (*1 *1 *1 *1) (-5 *1 (-862))) (-3527 (*1 *1 *1 *1 *1) (-5 *1 (-862))) (-2590 (*1 *1 *1) (-5 *1 (-862))) (-2590 (*1 *1 *1 *1) (-5 *1 (-862))) (-2590 (*1 *1 *1 *1 *1) (-5 *1 (-862))) (-1692 (*1 *1 *1) (-5 *1 (-862))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) (-2169 (*1 *1 *1) (-5 *1 (-862))) (-2169 (*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) (-1633 (*1 *1 *1) (-5 *1 (-862))) (-1633 (*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) (-3949 (*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) (-2009 (*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) (-2682 (*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) (-1921 (*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) (-2914 (*1 *1 *1 *1) (-5 *1 (-862))) (-2988 (*1 *1 *1 *1) (-5 *1 (-862))) (-2935 (*1 *1 *1 *1) (-5 *1 (-862))) (-2946 (*1 *1 *1 *1) (-5 *1 (-862))) (-2956 (*1 *1 *1 *1) (-5 *1 (-862))) (-2968 (*1 *1 *1 *1) (-5 *1 (-862))) (-3002 (*1 *1 *1 *1) (-5 *1 (-862))) (-3012 (*1 *1 *1 *1) (-5 *1 (-862))) (-3012 (*1 *1 *1) (-5 *1 (-862))) (* (*1 *1 *1 *1) (-5 *1 (-862))) (-3025 (*1 *1 *1 *1) (-5 *1 (-862))) (** (*1 *1 *1 *1) (-5 *1 (-862))) (-2967 (*1 *1 *1 *1) (-5 *1 (-862))) (-2933 (*1 *1 *1 *1) (-5 *1 (-862))) (-2945 (*1 *1 *1 *1) (-5 *1 (-862))) (-2978 (*1 *1 *1 *1) (-5 *1 (-862))) (-2415 (*1 *1 *1 *1) (-5 *1 (-862))) (-2427 (*1 *1 *1 *1) (-5 *1 (-862))) (-2404 (*1 *1 *1) (-5 *1 (-862))) (-4302 (*1 *1 *1 *1) (-5 *1 (-862))) (-4302 (*1 *1 *1) (-5 *1 (-862)))) +(-13 (-1099) (-10 -8 (-15 -3595 ((-1269) $)) (-15 -2446 ($ (-1157))) (-15 -3440 ((-1269) (-1157))) (-15 -3503 ($ (-566))) (-15 -3503 ($ (-1175))) (-15 -3503 ($ (-1157))) (-15 -3503 ($ (-225))) (-15 -3493 ($)) (-15 -3533 ((-1157) (-1157))) (-15 -4169 ((-566) $)) (-15 -3106 ((-566) $)) (-15 -4169 ((-566))) (-15 -3106 ((-566))) (-15 -2710 ((-566) $)) (-15 -2242 ((-566) $)) (-15 -3569 ($ (-566))) (-15 -4354 ($ (-566))) (-15 -4341 ($ (-566) (-566))) (-15 -1953 ($ $ (-566))) (-15 -1966 ($ $ (-566))) (-15 -4290 ($ $ (-566))) (-15 -1953 ($ $)) (-15 -1966 ($ $)) (-15 -4290 ($ $)) (-15 -2040 ($ $ $)) (-15 -1745 ($ $ $)) (-15 -2040 ($ (-644 $))) (-15 -1745 ($ (-644 $))) (-15 -3449 ($ $ (-644 $))) (-15 -3616 ($ $ (-644 $))) (-15 -3616 ($ $ $ $)) (-15 -3849 ($ $ $)) (-15 -3472 ((-112) $)) (-15 -1309 ($ $ (-644 $))) (-15 -3822 ($ $)) (-15 -2160 ($ $ $)) (-15 -3928 ($ $)) (-15 -4184 ($ (-644 (-644 $)))) (-15 -3155 ($ $ $)) (-15 -3134 ($ $)) (-15 -3134 ($ $ $)) (-15 -4312 ($ $ $)) (-15 -1900 ($ $ $)) (-15 -1655 ($ $ $)) (-15 -2044 ($ $ $)) (-15 -3629 ($ $ (-771))) (-15 -2073 ($ $ $)) (-15 -4237 ($ $ $)) (-15 -2390 ($ $ $)) (-15 -4168 ($ $ $)) (-15 -2607 ($ $ $)) (-15 -2453 ($ $ (-644 $))) (-15 -1774 ($ $ (-644 $))) (-15 -2450 ($ $)) (-15 -3386 ($ $)) (-15 -3386 ($ $ (-771))) (-15 -3209 ($ $)) (-15 -3209 ($ $ (-771))) (-15 -4288 ($ $)) (-15 -1911 ($ $ $)) (-15 -4272 ($ $)) (-15 -4272 ($ $ $)) (-15 -4272 ($ $ $ $)) (-15 -3527 ($ $)) (-15 -3527 ($ $ $)) (-15 -3527 ($ $ $ $)) (-15 -2590 ($ $)) (-15 -2590 ($ $ $)) (-15 -2590 ($ $ $ $)) (-15 -1692 ($ $)) (-15 -1692 ($ (-644 $))) (-15 -2169 ($ $)) (-15 -2169 ($ (-644 $))) (-15 -1633 ($ $)) (-15 -1633 ($ (-644 $))) (-15 -3949 ($ (-644 $))) (-15 -2009 ($ (-644 $))) (-15 -2682 ($ (-644 $))) (-15 -1921 ($ (-644 $))) (-15 -2914 ($ $ $)) (-15 -2988 ($ $ $)) (-15 -2935 ($ $ $)) (-15 -2946 ($ $ $)) (-15 -2956 ($ $ $)) (-15 -2968 ($ $ $)) (-15 -3002 ($ $ $)) (-15 -3012 ($ $ $)) (-15 -3012 ($ $)) (-15 * ($ $ $)) (-15 -3025 ($ $ $)) (-15 ** ($ $ $)) (-15 -2967 ($ $ $)) (-15 -2933 ($ $ $)) (-15 -2945 ($ $ $)) (-15 -2978 ($ $ $)) (-15 -2415 ($ $ $)) (-15 -2427 ($ $ $)) (-15 -2404 ($ $)) (-15 -4302 ($ $ $)) (-15 -4302 ($ $)))) +((-3972 (((-1269) (-644 (-52))) 24)) (-3496 (((-1269) (-1157) (-862)) 14) (((-1269) (-862)) 9) (((-1269) (-1157)) 11))) +(((-863) (-10 -7 (-15 -3496 ((-1269) (-1157))) (-15 -3496 ((-1269) (-862))) (-15 -3496 ((-1269) (-1157) (-862))) (-15 -3972 ((-1269) (-644 (-52)))))) (T -863)) +((-3972 (*1 *2 *3) (-12 (-5 *3 (-644 (-52))) (-5 *2 (-1269)) (-5 *1 (-863)))) (-3496 (*1 *2 *3 *4) (-12 (-5 *3 (-1157)) (-5 *4 (-862)) (-5 *2 (-1269)) (-5 *1 (-863)))) (-3496 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1269)) (-5 *1 (-863)))) (-3496 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-863))))) +(-10 -7 (-15 -3496 ((-1269) (-1157))) (-15 -3496 ((-1269) (-862))) (-15 -3496 ((-1269) (-1157) (-862))) (-15 -3972 ((-1269) (-644 (-52))))) +((-2988 (((-112) $ $) NIL)) (-4347 (((-3 $ "failed") (-1175)) 39)) (-3870 (((-771)) 32)) (-2715 (($) NIL)) (-1478 (($ $ $) NIL) (($) NIL T CONST)) (-2599 (($ $ $) NIL) (($) NIL T CONST)) (-1866 (((-921) $) 29)) (-3380 (((-1157) $) 46)) (-2835 (($ (-921)) 28)) (-4072 (((-1119) $) NIL)) (-2376 (((-1175) $) 13) (((-538) $) 19) (((-892 (-381)) $) 26) (((-892 (-566)) $) 22)) (-3152 (((-862) $) 16)) (-3044 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2914 (((-112) $ $) 43)) (-2956 (((-112) $ $) NIL)) (-2935 (((-112) $ $) 41))) +(((-864 |#1|) (-13 (-844) (-614 (-1175)) (-614 (-538)) (-614 (-892 (-381))) (-614 (-892 (-566))) (-10 -8 (-15 -4347 ((-3 $ "failed") (-1175))))) (-644 (-1175))) (T -864)) +((-4347 (*1 *1 *2) (|partial| -12 (-5 *2 (-1175)) (-5 *1 (-864 *3)) (-14 *3 (-644 *2))))) +(-13 (-844) (-614 (-1175)) (-614 (-538)) (-614 (-892 (-381))) (-614 (-892 (-566))) (-10 -8 (-15 -4347 ((-3 $ "failed") (-1175))))) +((-2988 (((-112) $ $) NIL)) (-1368 (((-508) $) 9)) (-3491 (((-644 (-441)) $) 13)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 21)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) 16))) +(((-865) (-13 (-1099) (-10 -8 (-15 -1368 ((-508) $)) (-15 -3491 ((-644 (-441)) $))))) (T -865)) +((-1368 (*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-865)))) (-3491 (*1 *2 *1) (-12 (-5 *2 (-644 (-441))) (-5 *1 (-865))))) +(-13 (-1099) (-10 -8 (-15 -1368 ((-508) $)) (-15 -3491 ((-644 (-441)) $)))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-2463 (($) NIL T CONST)) (-3245 (((-3 $ "failed") $) NIL)) (-2389 (((-112) $) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) NIL) (($ (-566)) NIL) (($ (-952 |#1|)) NIL) (((-952 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-172)))) (-2593 (((-771)) NIL T CONST)) (-2111 (((-1269) (-771)) NIL)) (-3044 (((-112) $ $) NIL)) (-4356 (($) NIL T CONST)) (-4366 (($) NIL T CONST)) (-2914 (((-112) $ $) NIL)) (-3025 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) +(((-866 |#1| |#2| |#3| |#4|) (-13 (-1049) (-492 (-952 |#1|)) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -3025 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2111 ((-1269) (-771))))) (-1049) (-644 (-1175)) (-644 (-771)) (-771)) (T -866)) +((-3025 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-866 *2 *3 *4 *5)) (-4 *2 (-365)) (-4 *2 (-1049)) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-771))) (-14 *5 (-771)))) (-2111 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1269)) (-5 *1 (-866 *4 *5 *6 *7)) (-4 *4 (-1049)) (-14 *5 (-644 (-1175))) (-14 *6 (-644 *3)) (-14 *7 *3)))) +(-13 (-1049) (-492 (-952 |#1|)) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -3025 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2111 ((-1269) (-771))))) +((-3257 (((-3 (-174 |#3|) "failed") (-771) (-771) |#2| |#2|) 43)) (-2365 (((-3 (-409 |#3|) "failed") (-771) (-771) |#2| |#2|) 34))) +(((-867 |#1| |#2| |#3|) (-10 -7 (-15 -2365 ((-3 (-409 |#3|) "failed") (-771) (-771) |#2| |#2|)) (-15 -3257 ((-3 (-174 |#3|) "failed") (-771) (-771) |#2| |#2|))) (-365) (-1255 |#1|) (-1240 |#1|)) (T -867)) +((-3257 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-771)) (-4 *5 (-365)) (-5 *2 (-174 *6)) (-5 *1 (-867 *5 *4 *6)) (-4 *4 (-1255 *5)) (-4 *6 (-1240 *5)))) (-2365 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-771)) (-4 *5 (-365)) (-5 *2 (-409 *6)) (-5 *1 (-867 *5 *4 *6)) (-4 *4 (-1255 *5)) (-4 *6 (-1240 *5))))) +(-10 -7 (-15 -2365 ((-3 (-409 |#3|) "failed") (-771) (-771) |#2| |#2|)) (-15 -3257 ((-3 (-174 |#3|) "failed") (-771) (-771) |#2| |#2|))) +((-2365 (((-3 (-409 (-1237 |#2| |#1|)) "failed") (-771) (-771) (-1256 |#1| |#2| |#3|)) 30) (((-3 (-409 (-1237 |#2| |#1|)) "failed") (-771) (-771) (-1256 |#1| |#2| |#3|) (-1256 |#1| |#2| |#3|)) 28))) +(((-868 |#1| |#2| |#3|) (-10 -7 (-15 -2365 ((-3 (-409 (-1237 |#2| |#1|)) "failed") (-771) (-771) (-1256 |#1| |#2| |#3|) (-1256 |#1| |#2| |#3|))) (-15 -2365 ((-3 (-409 (-1237 |#2| |#1|)) "failed") (-771) (-771) (-1256 |#1| |#2| |#3|)))) (-365) (-1175) |#1|) (T -868)) +((-2365 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-771)) (-5 *4 (-1256 *5 *6 *7)) (-4 *5 (-365)) (-14 *6 (-1175)) (-14 *7 *5) (-5 *2 (-409 (-1237 *6 *5))) (-5 *1 (-868 *5 *6 *7)))) (-2365 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-771)) (-5 *4 (-1256 *5 *6 *7)) (-4 *5 (-365)) (-14 *6 (-1175)) (-14 *7 *5) (-5 *2 (-409 (-1237 *6 *5))) (-5 *1 (-868 *5 *6 *7))))) +(-10 -7 (-15 -2365 ((-3 (-409 (-1237 |#2| |#1|)) "failed") (-771) (-771) (-1256 |#1| |#2| |#3|) (-1256 |#1| |#2| |#3|))) (-15 -2365 ((-3 (-409 (-1237 |#2| |#1|)) "failed") (-771) (-771) (-1256 |#1| |#2| |#3|)))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) 47)) (-2161 (($ $) 46)) (-2345 (((-112) $) 44)) (-3967 (((-3 $ "failed") $ $) 20)) (-1635 (($ $ (-566)) 68)) (-2085 (((-112) $ $) 65)) (-2463 (($) 18 T CONST)) (-3134 (($ (-1171 (-566)) (-566)) 67)) (-2933 (($ $ $) 61)) (-3245 (((-3 $ "failed") $) 37)) (-1406 (($ $) 70)) (-2945 (($ $ $) 62)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) 57)) (-2679 (((-771) $) 75)) (-2389 (((-112) $) 35)) (-3816 (((-3 (-644 $) "failed") (-644 $) $) 58)) (-3206 (((-566)) 72)) (-2168 (((-566) $) 71)) (-2128 (($ $ $) 52) (($ (-644 $)) 51)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-2164 (($ $ $) 54) (($ (-644 $)) 53)) (-3005 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3369 (($ $ (-566)) 74)) (-2978 (((-3 $ "failed") $ $) 48)) (-2915 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-4357 (((-771) $) 64)) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) 63)) (-2251 (((-1155 (-566)) $) 76)) (-1687 (($ $) 73)) (-3152 (((-862) $) 12) (($ (-566)) 33) (($ $) 49)) (-2593 (((-771)) 32 T CONST)) (-3044 (((-112) $ $) 9)) (-3014 (((-112) $ $) 45)) (-3603 (((-566) $ (-566)) 69)) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-2914 (((-112) $ $) 6)) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) (((-869 |#1|) (-140) (-566)) (T -869)) -((-4163 (*1 *2 *1) (-12 (-4 *1 (-869 *3)) (-5 *2 (-1155 (-566))))) (-3254 (*1 *2 *1) (-12 (-4 *1 (-869 *3)) (-5 *2 (-771)))) (-3874 (*1 *1 *1 *2) (-12 (-4 *1 (-869 *3)) (-5 *2 (-566)))) (-2770 (*1 *1 *1) (-4 *1 (-869 *2))) (-3930 (*1 *2) (-12 (-4 *1 (-869 *3)) (-5 *2 (-566)))) (-2542 (*1 *2 *1) (-12 (-4 *1 (-869 *3)) (-5 *2 (-566)))) (-4026 (*1 *1 *1) (-4 *1 (-869 *2))) (-3628 (*1 *2 *1 *2) (-12 (-4 *1 (-869 *3)) (-5 *2 (-566)))) (-3731 (*1 *1 *1 *2) (-12 (-4 *1 (-869 *3)) (-5 *2 (-566)))) (-1751 (*1 *1 *2 *3) (-12 (-5 *2 (-1171 (-566))) (-5 *3 (-566)) (-4 *1 (-869 *4))))) -(-13 (-308) (-147) (-10 -8 (-15 -4163 ((-1155 (-566)) $)) (-15 -3254 ((-771) $)) (-15 -3874 ($ $ (-566))) (-15 -2770 ($ $)) (-15 -3930 ((-566))) (-15 -2542 ((-566) $)) (-15 -4026 ($ $)) (-15 -3628 ((-566) $ (-566))) (-15 -3731 ($ $ (-566))) (-15 -1751 ($ (-1171 (-566)) (-566))))) +((-2251 (*1 *2 *1) (-12 (-4 *1 (-869 *3)) (-5 *2 (-1155 (-566))))) (-2679 (*1 *2 *1) (-12 (-4 *1 (-869 *3)) (-5 *2 (-771)))) (-3369 (*1 *1 *1 *2) (-12 (-4 *1 (-869 *3)) (-5 *2 (-566)))) (-1687 (*1 *1 *1) (-4 *1 (-869 *2))) (-3206 (*1 *2) (-12 (-4 *1 (-869 *3)) (-5 *2 (-566)))) (-2168 (*1 *2 *1) (-12 (-4 *1 (-869 *3)) (-5 *2 (-566)))) (-1406 (*1 *1 *1) (-4 *1 (-869 *2))) (-3603 (*1 *2 *1 *2) (-12 (-4 *1 (-869 *3)) (-5 *2 (-566)))) (-1635 (*1 *1 *1 *2) (-12 (-4 *1 (-869 *3)) (-5 *2 (-566)))) (-3134 (*1 *1 *2 *3) (-12 (-5 *2 (-1171 (-566))) (-5 *3 (-566)) (-4 *1 (-869 *4))))) +(-13 (-308) (-147) (-10 -8 (-15 -2251 ((-1155 (-566)) $)) (-15 -2679 ((-771) $)) (-15 -3369 ($ $ (-566))) (-15 -1687 ($ $)) (-15 -3206 ((-566))) (-15 -2168 ((-566) $)) (-15 -1406 ($ $)) (-15 -3603 ((-566) $ (-566))) (-15 -1635 ($ $ (-566))) (-15 -3134 ($ (-1171 (-566)) (-566))))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-616 (-566)) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-291) . T) ((-308) . T) ((-454) . T) ((-558) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-640 $) . T) ((-717 $) . T) ((-726) . T) ((-920) . T) ((-1051 $) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-3991 (($ $) NIL)) (-2388 (((-112) $) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-3731 (($ $ (-566)) NIL)) (-2837 (((-112) $ $) NIL)) (-3012 (($) NIL T CONST)) (-1751 (($ (-1171 (-566)) (-566)) NIL)) (-2946 (($ $ $) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-4026 (($ $) NIL)) (-2957 (($ $ $) NIL)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL)) (-3254 (((-771) $) NIL)) (-3934 (((-112) $) NIL)) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3930 (((-566)) NIL)) (-2542 (((-566) $) NIL)) (-2167 (($ $ $) NIL) (($ (-644 $)) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2214 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3148 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3874 (($ $ (-566)) NIL)) (-2994 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3039 (((-771) $) NIL)) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL)) (-4163 (((-1155 (-566)) $) NIL)) (-2770 (($ $) NIL)) (-3783 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL)) (-2107 (((-771)) NIL T CONST)) (-3117 (((-112) $ $) NIL)) (-2695 (((-112) $ $) NIL)) (-3628 (((-566) $ (-566)) NIL)) (-2479 (($) NIL T CONST)) (-4334 (($) NIL T CONST)) (-2947 (((-112) $ $) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-2161 (($ $) NIL)) (-2345 (((-112) $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-1635 (($ $ (-566)) NIL)) (-2085 (((-112) $ $) NIL)) (-2463 (($) NIL T CONST)) (-3134 (($ (-1171 (-566)) (-566)) NIL)) (-2933 (($ $ $) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-1406 (($ $) NIL)) (-2945 (($ $ $) NIL)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL)) (-2679 (((-771) $) NIL)) (-2389 (((-112) $) NIL)) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3206 (((-566)) NIL)) (-2168 (((-566) $) NIL)) (-2128 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2164 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3005 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3369 (($ $ (-566)) NIL)) (-2978 (((-3 $ "failed") $ $) NIL)) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-4357 (((-771) $) NIL)) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL)) (-2251 (((-1155 (-566)) $) NIL)) (-1687 (($ $) NIL)) (-3152 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL)) (-2593 (((-771)) NIL T CONST)) (-3044 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-3603 (((-566) $ (-566)) NIL)) (-4356 (($) NIL T CONST)) (-4366 (($) NIL T CONST)) (-2914 (((-112) $ $) NIL)) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL))) (((-870 |#1|) (-869 |#1|) (-566)) (T -870)) NIL (-869 |#1|) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-1515 (((-870 |#1|) $) NIL (|has| (-870 |#1|) (-308)))) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-3991 (($ $) NIL)) (-2388 (((-112) $) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-1477 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-870 |#1|) (-909)))) (-1550 (($ $) NIL)) (-3184 (((-420 $) $) NIL)) (-3717 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| (-870 |#1|) (-909)))) (-2837 (((-112) $ $) NIL)) (-4364 (((-566) $) NIL (|has| (-870 |#1|) (-820)))) (-3012 (($) NIL T CONST)) (-4307 (((-3 (-870 |#1|) "failed") $) NIL) (((-3 (-1175) "failed") $) NIL (|has| (-870 |#1|) (-1038 (-1175)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| (-870 |#1|) (-1038 (-566)))) (((-3 (-566) "failed") $) NIL (|has| (-870 |#1|) (-1038 (-566))))) (-4205 (((-870 |#1|) $) NIL) (((-1175) $) NIL (|has| (-870 |#1|) (-1038 (-1175)))) (((-409 (-566)) $) NIL (|has| (-870 |#1|) (-1038 (-566)))) (((-566) $) NIL (|has| (-870 |#1|) (-1038 (-566))))) (-3569 (($ $) NIL) (($ (-566) $) NIL)) (-2946 (($ $ $) NIL)) (-3577 (((-689 (-566)) (-689 $)) NIL (|has| (-870 |#1|) (-639 (-566)))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| (-870 |#1|) (-639 (-566)))) (((-2 (|:| -4227 (-689 (-870 |#1|))) (|:| |vec| (-1264 (-870 |#1|)))) (-689 $) (-1264 $)) NIL) (((-689 (-870 |#1|)) (-689 $)) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-1552 (($) NIL (|has| (-870 |#1|) (-547)))) (-2957 (($ $ $) NIL)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL)) (-3268 (((-112) $) NIL)) (-1897 (((-112) $) NIL (|has| (-870 |#1|) (-820)))) (-2062 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (|has| (-870 |#1|) (-886 (-566)))) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (|has| (-870 |#1|) (-886 (-381))))) (-3934 (((-112) $) NIL)) (-1493 (($ $) NIL)) (-4326 (((-870 |#1|) $) NIL)) (-4363 (((-3 $ "failed") $) NIL (|has| (-870 |#1|) (-1150)))) (-2117 (((-112) $) NIL (|has| (-870 |#1|) (-820)))) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2097 (($ $ $) NIL (|has| (-870 |#1|) (-850)))) (-3962 (($ $ $) NIL (|has| (-870 |#1|) (-850)))) (-1301 (($ (-1 (-870 |#1|) (-870 |#1|)) $) NIL)) (-2167 (($ $ $) NIL) (($ (-644 $)) NIL)) (-4117 (((-1157) $) NIL)) (-1713 (($ $) NIL)) (-1761 (($) NIL (|has| (-870 |#1|) (-1150)) CONST)) (-4035 (((-1119) $) NIL)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2214 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2938 (($ $) NIL (|has| (-870 |#1|) (-308)))) (-3470 (((-870 |#1|) $) NIL (|has| (-870 |#1|) (-547)))) (-4303 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-870 |#1|) (-909)))) (-3240 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-870 |#1|) (-909)))) (-3719 (((-420 $) $) NIL)) (-3148 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2994 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2055 (($ $ (-644 (-870 |#1|)) (-644 (-870 |#1|))) NIL (|has| (-870 |#1|) (-310 (-870 |#1|)))) (($ $ (-870 |#1|) (-870 |#1|)) NIL (|has| (-870 |#1|) (-310 (-870 |#1|)))) (($ $ (-295 (-870 |#1|))) NIL (|has| (-870 |#1|) (-310 (-870 |#1|)))) (($ $ (-644 (-295 (-870 |#1|)))) NIL (|has| (-870 |#1|) (-310 (-870 |#1|)))) (($ $ (-644 (-1175)) (-644 (-870 |#1|))) NIL (|has| (-870 |#1|) (-516 (-1175) (-870 |#1|)))) (($ $ (-1175) (-870 |#1|)) NIL (|has| (-870 |#1|) (-516 (-1175) (-870 |#1|))))) (-3039 (((-771) $) NIL)) (-4390 (($ $ (-870 |#1|)) NIL (|has| (-870 |#1|) (-287 (-870 |#1|) (-870 |#1|))))) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL)) (-3561 (($ $) NIL (|has| (-870 |#1|) (-233))) (($ $ (-771)) NIL (|has| (-870 |#1|) (-233))) (($ $ (-1175)) NIL (|has| (-870 |#1|) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-870 |#1|) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-870 |#1|) (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-870 |#1|) (-900 (-1175)))) (($ $ (-1 (-870 |#1|) (-870 |#1|)) (-771)) NIL) (($ $ (-1 (-870 |#1|) (-870 |#1|))) NIL)) (-2023 (($ $) NIL)) (-4339 (((-870 |#1|) $) NIL)) (-1348 (((-892 (-566)) $) NIL (|has| (-870 |#1|) (-614 (-892 (-566))))) (((-892 (-381)) $) NIL (|has| (-870 |#1|) (-614 (-892 (-381))))) (((-538) $) NIL (|has| (-870 |#1|) (-614 (-538)))) (((-381) $) NIL (|has| (-870 |#1|) (-1022))) (((-225) $) NIL (|has| (-870 |#1|) (-1022)))) (-3503 (((-174 (-409 (-566))) $) NIL)) (-1656 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| (-870 |#1|) (-909))))) (-3783 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (($ (-870 |#1|)) NIL) (($ (-1175)) NIL (|has| (-870 |#1|) (-1038 (-1175))))) (-3144 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| $ (-145)) (|has| (-870 |#1|) (-909))) (|has| (-870 |#1|) (-145))))) (-2107 (((-771)) NIL T CONST)) (-2948 (((-870 |#1|) $) NIL (|has| (-870 |#1|) (-547)))) (-3117 (((-112) $ $) NIL)) (-2695 (((-112) $ $) NIL)) (-3628 (((-409 (-566)) $ (-566)) NIL)) (-2086 (($ $) NIL (|has| (-870 |#1|) (-820)))) (-2479 (($) NIL T CONST)) (-4334 (($) NIL T CONST)) (-2875 (($ $) NIL (|has| (-870 |#1|) (-233))) (($ $ (-771)) NIL (|has| (-870 |#1|) (-233))) (($ $ (-1175)) NIL (|has| (-870 |#1|) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-870 |#1|) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-870 |#1|) (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-870 |#1|) (-900 (-1175)))) (($ $ (-1 (-870 |#1|) (-870 |#1|)) (-771)) NIL) (($ $ (-1 (-870 |#1|) (-870 |#1|))) NIL)) (-3009 (((-112) $ $) NIL (|has| (-870 |#1|) (-850)))) (-2984 (((-112) $ $) NIL (|has| (-870 |#1|) (-850)))) (-2947 (((-112) $ $) NIL)) (-2995 (((-112) $ $) NIL (|has| (-870 |#1|) (-850)))) (-2969 (((-112) $ $) NIL (|has| (-870 |#1|) (-850)))) (-3065 (($ $ $) NIL) (($ (-870 |#1|) (-870 |#1|)) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ (-870 |#1|) $) NIL) (($ $ (-870 |#1|)) NIL))) -(((-871 |#1|) (-13 (-992 (-870 |#1|)) (-10 -8 (-15 -3628 ((-409 (-566)) $ (-566))) (-15 -3503 ((-174 (-409 (-566))) $)) (-15 -3569 ($ $)) (-15 -3569 ($ (-566) $)))) (-566)) (T -871)) -((-3628 (*1 *2 *1 *3) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-871 *4)) (-14 *4 *3) (-5 *3 (-566)))) (-3503 (*1 *2 *1) (-12 (-5 *2 (-174 (-409 (-566)))) (-5 *1 (-871 *3)) (-14 *3 (-566)))) (-3569 (*1 *1 *1) (-12 (-5 *1 (-871 *2)) (-14 *2 (-566)))) (-3569 (*1 *1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-871 *3)) (-14 *3 *2)))) -(-13 (-992 (-870 |#1|)) (-10 -8 (-15 -3628 ((-409 (-566)) $ (-566))) (-15 -3503 ((-174 (-409 (-566))) $)) (-15 -3569 ($ $)) (-15 -3569 ($ (-566) $)))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-1515 ((|#2| $) NIL (|has| |#2| (-308)))) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-3991 (($ $) NIL)) (-2388 (((-112) $) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-1477 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-1550 (($ $) NIL)) (-3184 (((-420 $) $) NIL)) (-3717 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-2837 (((-112) $ $) NIL)) (-4364 (((-566) $) NIL (|has| |#2| (-820)))) (-3012 (($) NIL T CONST)) (-4307 (((-3 |#2| "failed") $) NIL) (((-3 (-1175) "failed") $) NIL (|has| |#2| (-1038 (-1175)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#2| (-1038 (-566)))) (((-3 (-566) "failed") $) NIL (|has| |#2| (-1038 (-566))))) (-4205 ((|#2| $) NIL) (((-1175) $) NIL (|has| |#2| (-1038 (-1175)))) (((-409 (-566)) $) NIL (|has| |#2| (-1038 (-566)))) (((-566) $) NIL (|has| |#2| (-1038 (-566))))) (-3569 (($ $) 35) (($ (-566) $) 38)) (-2946 (($ $ $) NIL)) (-3577 (((-689 (-566)) (-689 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -4227 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 $) (-1264 $)) NIL) (((-689 |#2|) (-689 $)) NIL)) (-1878 (((-3 $ "failed") $) 64)) (-1552 (($) NIL (|has| |#2| (-547)))) (-2957 (($ $ $) NIL)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL)) (-3268 (((-112) $) NIL)) (-1897 (((-112) $) NIL (|has| |#2| (-820)))) (-2062 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (|has| |#2| (-886 (-566)))) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (|has| |#2| (-886 (-381))))) (-3934 (((-112) $) NIL)) (-1493 (($ $) NIL)) (-4326 ((|#2| $) NIL)) (-4363 (((-3 $ "failed") $) NIL (|has| |#2| (-1150)))) (-2117 (((-112) $) NIL (|has| |#2| (-820)))) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2097 (($ $ $) NIL (|has| |#2| (-850)))) (-3962 (($ $ $) NIL (|has| |#2| (-850)))) (-1301 (($ (-1 |#2| |#2|) $) NIL)) (-2167 (($ $ $) NIL) (($ (-644 $)) NIL)) (-4117 (((-1157) $) NIL)) (-1713 (($ $) 60)) (-1761 (($) NIL (|has| |#2| (-1150)) CONST)) (-4035 (((-1119) $) NIL)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2214 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2938 (($ $) NIL (|has| |#2| (-308)))) (-3470 ((|#2| $) NIL (|has| |#2| (-547)))) (-4303 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-3240 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-3719 (((-420 $) $) NIL)) (-3148 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2994 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2055 (($ $ (-644 |#2|) (-644 |#2|)) NIL (|has| |#2| (-310 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-310 |#2|))) (($ $ (-295 |#2|)) NIL (|has| |#2| (-310 |#2|))) (($ $ (-644 (-295 |#2|))) NIL (|has| |#2| (-310 |#2|))) (($ $ (-644 (-1175)) (-644 |#2|)) NIL (|has| |#2| (-516 (-1175) |#2|))) (($ $ (-1175) |#2|) NIL (|has| |#2| (-516 (-1175) |#2|)))) (-3039 (((-771) $) NIL)) (-4390 (($ $ |#2|) NIL (|has| |#2| (-287 |#2| |#2|)))) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL)) (-3561 (($ $) NIL (|has| |#2| (-233))) (($ $ (-771)) NIL (|has| |#2| (-233))) (($ $ (-1175)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2023 (($ $) NIL)) (-4339 ((|#2| $) NIL)) (-1348 (((-892 (-566)) $) NIL (|has| |#2| (-614 (-892 (-566))))) (((-892 (-381)) $) NIL (|has| |#2| (-614 (-892 (-381))))) (((-538) $) NIL (|has| |#2| (-614 (-538)))) (((-381) $) NIL (|has| |#2| (-1022))) (((-225) $) NIL (|has| |#2| (-1022)))) (-3503 (((-174 (-409 (-566))) $) 78)) (-1656 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-909))))) (-3783 (((-862) $) 108) (($ (-566)) 20) (($ $) NIL) (($ (-409 (-566))) 25) (($ |#2|) 19) (($ (-1175)) NIL (|has| |#2| (-1038 (-1175))))) (-3144 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| $ (-145)) (|has| |#2| (-909))) (|has| |#2| (-145))))) (-2107 (((-771)) NIL T CONST)) (-2948 ((|#2| $) NIL (|has| |#2| (-547)))) (-3117 (((-112) $ $) NIL)) (-2695 (((-112) $ $) NIL)) (-3628 (((-409 (-566)) $ (-566)) 71)) (-2086 (($ $) NIL (|has| |#2| (-820)))) (-2479 (($) 15 T CONST)) (-4334 (($) 17 T CONST)) (-2875 (($ $) NIL (|has| |#2| (-233))) (($ $ (-771)) NIL (|has| |#2| (-233))) (($ $ (-1175)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3009 (((-112) $ $) NIL (|has| |#2| (-850)))) (-2984 (((-112) $ $) NIL (|has| |#2| (-850)))) (-2947 (((-112) $ $) 46)) (-2995 (((-112) $ $) NIL (|has| |#2| (-850)))) (-2969 (((-112) $ $) NIL (|has| |#2| (-850)))) (-3065 (($ $ $) 24) (($ |#2| |#2|) 65)) (-3053 (($ $) 50) (($ $ $) 52)) (-3041 (($ $ $) 48)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) 61)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 53) (($ $ $) 55) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ |#2| $) 66) (($ $ |#2|) NIL))) -(((-872 |#1| |#2|) (-13 (-992 |#2|) (-10 -8 (-15 -3628 ((-409 (-566)) $ (-566))) (-15 -3503 ((-174 (-409 (-566))) $)) (-15 -3569 ($ $)) (-15 -3569 ($ (-566) $)))) (-566) (-869 |#1|)) (T -872)) -((-3628 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-409 (-566))) (-5 *1 (-872 *4 *5)) (-5 *3 (-566)) (-4 *5 (-869 *4)))) (-3503 (*1 *2 *1) (-12 (-14 *3 (-566)) (-5 *2 (-174 (-409 (-566)))) (-5 *1 (-872 *3 *4)) (-4 *4 (-869 *3)))) (-3569 (*1 *1 *1) (-12 (-14 *2 (-566)) (-5 *1 (-872 *2 *3)) (-4 *3 (-869 *2)))) (-3569 (*1 *1 *2 *1) (-12 (-5 *2 (-566)) (-14 *3 *2) (-5 *1 (-872 *3 *4)) (-4 *4 (-869 *3))))) -(-13 (-992 |#2|) (-10 -8 (-15 -3628 ((-409 (-566)) $ (-566))) (-15 -3503 ((-174 (-409 (-566))) $)) (-15 -3569 ($ $)) (-15 -3569 ($ (-566) $)))) -((-3007 (((-112) $ $) NIL (-12 (|has| |#1| (-1099)) (|has| |#2| (-1099))))) (-2582 ((|#2| $) 12)) (-2225 (($ |#1| |#2|) 9)) (-4117 (((-1157) $) NIL (-12 (|has| |#1| (-1099)) (|has| |#2| (-1099))))) (-4035 (((-1119) $) NIL (-12 (|has| |#1| (-1099)) (|has| |#2| (-1099))))) (-1998 ((|#1| $) 11)) (-3796 (($ |#1| |#2|) 10)) (-3783 (((-862) $) 18 (-2809 (-12 (|has| |#1| (-613 (-862))) (|has| |#2| (-613 (-862)))) (-12 (|has| |#1| (-1099)) (|has| |#2| (-1099)))))) (-3117 (((-112) $ $) NIL (-12 (|has| |#1| (-1099)) (|has| |#2| (-1099))))) (-2947 (((-112) $ $) 23 (-12 (|has| |#1| (-1099)) (|has| |#2| (-1099)))))) -(((-873 |#1| |#2|) (-13 (-1214) (-10 -8 (IF (|has| |#1| (-613 (-862))) (IF (|has| |#2| (-613 (-862))) (-6 (-613 (-862))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1099)) (IF (|has| |#2| (-1099)) (-6 (-1099)) |%noBranch|) |%noBranch|) (-15 -2225 ($ |#1| |#2|)) (-15 -3796 ($ |#1| |#2|)) (-15 -1998 (|#1| $)) (-15 -2582 (|#2| $)))) (-1214) (-1214)) (T -873)) -((-2225 (*1 *1 *2 *3) (-12 (-5 *1 (-873 *2 *3)) (-4 *2 (-1214)) (-4 *3 (-1214)))) (-3796 (*1 *1 *2 *3) (-12 (-5 *1 (-873 *2 *3)) (-4 *2 (-1214)) (-4 *3 (-1214)))) (-1998 (*1 *2 *1) (-12 (-4 *2 (-1214)) (-5 *1 (-873 *2 *3)) (-4 *3 (-1214)))) (-2582 (*1 *2 *1) (-12 (-4 *2 (-1214)) (-5 *1 (-873 *3 *2)) (-4 *3 (-1214))))) -(-13 (-1214) (-10 -8 (IF (|has| |#1| (-613 (-862))) (IF (|has| |#2| (-613 (-862))) (-6 (-613 (-862))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1099)) (IF (|has| |#2| (-1099)) (-6 (-1099)) |%noBranch|) |%noBranch|) (-15 -2225 ($ |#1| |#2|)) (-15 -3796 ($ |#1| |#2|)) (-15 -1998 (|#1| $)) (-15 -2582 (|#2| $)))) -((-3007 (((-112) $ $) NIL)) (-4310 (((-566) $) 16)) (-2366 (($ (-157)) 13)) (-2672 (($ (-157)) 14)) (-4117 (((-1157) $) NIL)) (-3745 (((-157) $) 15)) (-4035 (((-1119) $) NIL)) (-2420 (($ (-157)) 11)) (-4105 (($ (-157)) 10)) (-3783 (((-862) $) 24) (($ (-157)) 17)) (-3251 (($ (-157)) 12)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) -(((-874) (-13 (-1099) (-10 -8 (-15 -4105 ($ (-157))) (-15 -2420 ($ (-157))) (-15 -3251 ($ (-157))) (-15 -2366 ($ (-157))) (-15 -2672 ($ (-157))) (-15 -3745 ((-157) $)) (-15 -4310 ((-566) $)) (-15 -3783 ($ (-157)))))) (T -874)) -((-4105 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-874)))) (-2420 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-874)))) (-3251 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-874)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-874)))) (-2672 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-874)))) (-3745 (*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-874)))) (-4310 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-874)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-874))))) -(-13 (-1099) (-10 -8 (-15 -4105 ($ (-157))) (-15 -2420 ($ (-157))) (-15 -3251 ($ (-157))) (-15 -2366 ($ (-157))) (-15 -2672 ($ (-157))) (-15 -3745 ((-157) $)) (-15 -4310 ((-566) $)) (-15 -3783 ($ (-157))))) -((-3783 (((-317 (-566)) (-409 (-952 (-48)))) 23) (((-317 (-566)) (-952 (-48))) 18))) -(((-875) (-10 -7 (-15 -3783 ((-317 (-566)) (-952 (-48)))) (-15 -3783 ((-317 (-566)) (-409 (-952 (-48))))))) (T -875)) -((-3783 (*1 *2 *3) (-12 (-5 *3 (-409 (-952 (-48)))) (-5 *2 (-317 (-566))) (-5 *1 (-875)))) (-3783 (*1 *2 *3) (-12 (-5 *3 (-952 (-48))) (-5 *2 (-317 (-566))) (-5 *1 (-875))))) -(-10 -7 (-15 -3783 ((-317 (-566)) (-952 (-48)))) (-15 -3783 ((-317 (-566)) (-409 (-952 (-48)))))) -((-1301 (((-877 |#2|) (-1 |#2| |#1|) (-877 |#1|)) 15))) -(((-876 |#1| |#2|) (-10 -7 (-15 -1301 ((-877 |#2|) (-1 |#2| |#1|) (-877 |#1|)))) (-1214) (-1214)) (T -876)) -((-1301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-877 *5)) (-4 *5 (-1214)) (-4 *6 (-1214)) (-5 *2 (-877 *6)) (-5 *1 (-876 *5 *6))))) -(-10 -7 (-15 -1301 ((-877 |#2|) (-1 |#2| |#1|) (-877 |#1|)))) -((-1926 (($ |#1| |#1|) 8)) (-2304 ((|#1| $ (-771)) 15))) -(((-877 |#1|) (-10 -8 (-15 -1926 ($ |#1| |#1|)) (-15 -2304 (|#1| $ (-771)))) (-1214)) (T -877)) -((-2304 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *1 (-877 *2)) (-4 *2 (-1214)))) (-1926 (*1 *1 *2 *2) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1214))))) -(-10 -8 (-15 -1926 ($ |#1| |#1|)) (-15 -2304 (|#1| $ (-771)))) -((-1301 (((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|)) 15))) -(((-878 |#1| |#2|) (-10 -7 (-15 -1301 ((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|)))) (-1214) (-1214)) (T -878)) -((-1301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-879 *5)) (-4 *5 (-1214)) (-4 *6 (-1214)) (-5 *2 (-879 *6)) (-5 *1 (-878 *5 *6))))) -(-10 -7 (-15 -1301 ((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|)))) -((-1926 (($ |#1| |#1| |#1|) 8)) (-2304 ((|#1| $ (-771)) 15))) -(((-879 |#1|) (-10 -8 (-15 -1926 ($ |#1| |#1| |#1|)) (-15 -2304 (|#1| $ (-771)))) (-1214)) (T -879)) -((-2304 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *1 (-879 *2)) (-4 *2 (-1214)))) (-1926 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-879 *2)) (-4 *2 (-1214))))) -(-10 -8 (-15 -1926 ($ |#1| |#1| |#1|)) (-15 -2304 (|#1| $ (-771)))) -((-4071 (((-644 (-1180)) (-1157)) 9))) -(((-880) (-10 -7 (-15 -4071 ((-644 (-1180)) (-1157))))) (T -880)) -((-4071 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-644 (-1180))) (-5 *1 (-880))))) -(-10 -7 (-15 -4071 ((-644 (-1180)) (-1157)))) -((-1301 (((-882 |#2|) (-1 |#2| |#1|) (-882 |#1|)) 15))) -(((-881 |#1| |#2|) (-10 -7 (-15 -1301 ((-882 |#2|) (-1 |#2| |#1|) (-882 |#1|)))) (-1214) (-1214)) (T -881)) -((-1301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-882 *5)) (-4 *5 (-1214)) (-4 *6 (-1214)) (-5 *2 (-882 *6)) (-5 *1 (-881 *5 *6))))) -(-10 -7 (-15 -1301 ((-882 |#2|) (-1 |#2| |#1|) (-882 |#1|)))) -((-4083 (($ |#1| |#1| |#1|) 8)) (-2304 ((|#1| $ (-771)) 15))) -(((-882 |#1|) (-10 -8 (-15 -4083 ($ |#1| |#1| |#1|)) (-15 -2304 (|#1| $ (-771)))) (-1214)) (T -882)) -((-2304 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *1 (-882 *2)) (-4 *2 (-1214)))) (-4083 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-882 *2)) (-4 *2 (-1214))))) -(-10 -8 (-15 -4083 ($ |#1| |#1| |#1|)) (-15 -2304 (|#1| $ (-771)))) -((-1322 (((-1155 (-644 (-566))) (-644 (-566)) (-1155 (-644 (-566)))) 48)) (-2119 (((-1155 (-644 (-566))) (-644 (-566)) (-644 (-566))) 44)) (-4049 (((-1155 (-644 (-566))) (-644 (-566))) 58) (((-1155 (-644 (-566))) (-644 (-566)) (-644 (-566))) 56)) (-3571 (((-1155 (-644 (-566))) (-566)) 59)) (-2438 (((-1155 (-644 (-566))) (-566) (-566)) 34) (((-1155 (-644 (-566))) (-566)) 23) (((-1155 (-644 (-566))) (-566) (-566) (-566)) 19)) (-2868 (((-1155 (-644 (-566))) (-1155 (-644 (-566)))) 42)) (-2358 (((-644 (-566)) (-644 (-566))) 41))) -(((-883) (-10 -7 (-15 -2438 ((-1155 (-644 (-566))) (-566) (-566) (-566))) (-15 -2438 ((-1155 (-644 (-566))) (-566))) (-15 -2438 ((-1155 (-644 (-566))) (-566) (-566))) (-15 -2358 ((-644 (-566)) (-644 (-566)))) (-15 -2868 ((-1155 (-644 (-566))) (-1155 (-644 (-566))))) (-15 -2119 ((-1155 (-644 (-566))) (-644 (-566)) (-644 (-566)))) (-15 -1322 ((-1155 (-644 (-566))) (-644 (-566)) (-1155 (-644 (-566))))) (-15 -4049 ((-1155 (-644 (-566))) (-644 (-566)) (-644 (-566)))) (-15 -4049 ((-1155 (-644 (-566))) (-644 (-566)))) (-15 -3571 ((-1155 (-644 (-566))) (-566))))) (T -883)) -((-3571 (*1 *2 *3) (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)) (-5 *3 (-566)))) (-4049 (*1 *2 *3) (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)) (-5 *3 (-644 (-566))))) (-4049 (*1 *2 *3 *3) (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)) (-5 *3 (-644 (-566))))) (-1322 (*1 *2 *3 *2) (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *3 (-644 (-566))) (-5 *1 (-883)))) (-2119 (*1 *2 *3 *3) (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)) (-5 *3 (-644 (-566))))) (-2868 (*1 *2 *2) (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)))) (-2358 (*1 *2 *2) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-883)))) (-2438 (*1 *2 *3 *3) (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)) (-5 *3 (-566)))) (-2438 (*1 *2 *3) (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)) (-5 *3 (-566)))) (-2438 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)) (-5 *3 (-566))))) -(-10 -7 (-15 -2438 ((-1155 (-644 (-566))) (-566) (-566) (-566))) (-15 -2438 ((-1155 (-644 (-566))) (-566))) (-15 -2438 ((-1155 (-644 (-566))) (-566) (-566))) (-15 -2358 ((-644 (-566)) (-644 (-566)))) (-15 -2868 ((-1155 (-644 (-566))) (-1155 (-644 (-566))))) (-15 -2119 ((-1155 (-644 (-566))) (-644 (-566)) (-644 (-566)))) (-15 -1322 ((-1155 (-644 (-566))) (-644 (-566)) (-1155 (-644 (-566))))) (-15 -4049 ((-1155 (-644 (-566))) (-644 (-566)) (-644 (-566)))) (-15 -4049 ((-1155 (-644 (-566))) (-644 (-566)))) (-15 -3571 ((-1155 (-644 (-566))) (-566)))) -((-1348 (((-892 (-381)) $) 9 (|has| |#1| (-614 (-892 (-381))))) (((-892 (-566)) $) 8 (|has| |#1| (-614 (-892 (-566))))))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-1873 (((-870 |#1|) $) NIL (|has| (-870 |#1|) (-308)))) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-2161 (($ $) NIL)) (-2345 (((-112) $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-2292 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-870 |#1|) (-909)))) (-1378 (($ $) NIL)) (-1364 (((-420 $) $) NIL)) (-4066 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| (-870 |#1|) (-909)))) (-2085 (((-112) $ $) NIL)) (-2743 (((-566) $) NIL (|has| (-870 |#1|) (-820)))) (-2463 (($) NIL T CONST)) (-2229 (((-3 (-870 |#1|) "failed") $) NIL) (((-3 (-1175) "failed") $) NIL (|has| (-870 |#1|) (-1038 (-1175)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| (-870 |#1|) (-1038 (-566)))) (((-3 (-566) "failed") $) NIL (|has| (-870 |#1|) (-1038 (-566))))) (-4158 (((-870 |#1|) $) NIL) (((-1175) $) NIL (|has| (-870 |#1|) (-1038 (-1175)))) (((-409 (-566)) $) NIL (|has| (-870 |#1|) (-1038 (-566)))) (((-566) $) NIL (|has| (-870 |#1|) (-1038 (-566))))) (-1556 (($ $) NIL) (($ (-566) $) NIL)) (-2933 (($ $ $) NIL)) (-4089 (((-689 (-566)) (-689 $)) NIL (|has| (-870 |#1|) (-639 (-566)))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| (-870 |#1|) (-639 (-566)))) (((-2 (|:| -3361 (-689 (-870 |#1|))) (|:| |vec| (-1264 (-870 |#1|)))) (-689 $) (-1264 $)) NIL) (((-689 (-870 |#1|)) (-689 $)) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-2715 (($) NIL (|has| (-870 |#1|) (-547)))) (-2945 (($ $ $) NIL)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL)) (-1615 (((-112) $) NIL)) (-2528 (((-112) $) NIL (|has| (-870 |#1|) (-820)))) (-2926 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (|has| (-870 |#1|) (-886 (-566)))) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (|has| (-870 |#1|) (-886 (-381))))) (-2389 (((-112) $) NIL)) (-3406 (($ $) NIL)) (-2248 (((-870 |#1|) $) NIL)) (-2621 (((-3 $ "failed") $) NIL (|has| (-870 |#1|) (-1150)))) (-3233 (((-112) $) NIL (|has| (-870 |#1|) (-820)))) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1478 (($ $ $) NIL (|has| (-870 |#1|) (-850)))) (-2599 (($ $ $) NIL (|has| (-870 |#1|) (-850)))) (-2319 (($ (-1 (-870 |#1|) (-870 |#1|)) $) NIL)) (-2128 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3380 (((-1157) $) NIL)) (-2748 (($ $) NIL)) (-3289 (($) NIL (|has| (-870 |#1|) (-1150)) CONST)) (-4072 (((-1119) $) NIL)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2164 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2487 (($ $) NIL (|has| (-870 |#1|) (-308)))) (-3143 (((-870 |#1|) $) NIL (|has| (-870 |#1|) (-547)))) (-2010 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-870 |#1|) (-909)))) (-1893 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-870 |#1|) (-909)))) (-1624 (((-420 $) $) NIL)) (-3005 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2978 (((-3 $ "failed") $ $) NIL)) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2023 (($ $ (-644 (-870 |#1|)) (-644 (-870 |#1|))) NIL (|has| (-870 |#1|) (-310 (-870 |#1|)))) (($ $ (-870 |#1|) (-870 |#1|)) NIL (|has| (-870 |#1|) (-310 (-870 |#1|)))) (($ $ (-295 (-870 |#1|))) NIL (|has| (-870 |#1|) (-310 (-870 |#1|)))) (($ $ (-644 (-295 (-870 |#1|)))) NIL (|has| (-870 |#1|) (-310 (-870 |#1|)))) (($ $ (-644 (-1175)) (-644 (-870 |#1|))) NIL (|has| (-870 |#1|) (-516 (-1175) (-870 |#1|)))) (($ $ (-1175) (-870 |#1|)) NIL (|has| (-870 |#1|) (-516 (-1175) (-870 |#1|))))) (-4357 (((-771) $) NIL)) (-1309 (($ $ (-870 |#1|)) NIL (|has| (-870 |#1|) (-287 (-870 |#1|) (-870 |#1|))))) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL)) (-3629 (($ $) NIL (|has| (-870 |#1|) (-233))) (($ $ (-771)) NIL (|has| (-870 |#1|) (-233))) (($ $ (-1175)) NIL (|has| (-870 |#1|) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-870 |#1|) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-870 |#1|) (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-870 |#1|) (-900 (-1175)))) (($ $ (-1 (-870 |#1|) (-870 |#1|)) (-771)) NIL) (($ $ (-1 (-870 |#1|) (-870 |#1|))) NIL)) (-1452 (($ $) NIL)) (-2260 (((-870 |#1|) $) NIL)) (-2376 (((-892 (-566)) $) NIL (|has| (-870 |#1|) (-614 (-892 (-566))))) (((-892 (-381)) $) NIL (|has| (-870 |#1|) (-614 (-892 (-381))))) (((-538) $) NIL (|has| (-870 |#1|) (-614 (-538)))) (((-381) $) NIL (|has| (-870 |#1|) (-1022))) (((-225) $) NIL (|has| (-870 |#1|) (-1022)))) (-2146 (((-174 (-409 (-566))) $) NIL)) (-3391 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| (-870 |#1|) (-909))))) (-3152 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (($ (-870 |#1|)) NIL) (($ (-1175)) NIL (|has| (-870 |#1|) (-1038 (-1175))))) (-2633 (((-3 $ "failed") $) NIL (-2768 (-12 (|has| $ (-145)) (|has| (-870 |#1|) (-909))) (|has| (-870 |#1|) (-145))))) (-2593 (((-771)) NIL T CONST)) (-3913 (((-870 |#1|) $) NIL (|has| (-870 |#1|) (-547)))) (-3044 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-3603 (((-409 (-566)) $ (-566)) NIL)) (-1358 (($ $) NIL (|has| (-870 |#1|) (-820)))) (-4356 (($) NIL T CONST)) (-4366 (($) NIL T CONST)) (-3497 (($ $) NIL (|has| (-870 |#1|) (-233))) (($ $ (-771)) NIL (|has| (-870 |#1|) (-233))) (($ $ (-1175)) NIL (|has| (-870 |#1|) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-870 |#1|) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-870 |#1|) (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-870 |#1|) (-900 (-1175)))) (($ $ (-1 (-870 |#1|) (-870 |#1|)) (-771)) NIL) (($ $ (-1 (-870 |#1|) (-870 |#1|))) NIL)) (-2968 (((-112) $ $) NIL (|has| (-870 |#1|) (-850)))) (-2946 (((-112) $ $) NIL (|has| (-870 |#1|) (-850)))) (-2914 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL (|has| (-870 |#1|) (-850)))) (-2935 (((-112) $ $) NIL (|has| (-870 |#1|) (-850)))) (-3025 (($ $ $) NIL) (($ (-870 |#1|) (-870 |#1|)) NIL)) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ (-870 |#1|) $) NIL) (($ $ (-870 |#1|)) NIL))) +(((-871 |#1|) (-13 (-992 (-870 |#1|)) (-10 -8 (-15 -3603 ((-409 (-566)) $ (-566))) (-15 -2146 ((-174 (-409 (-566))) $)) (-15 -1556 ($ $)) (-15 -1556 ($ (-566) $)))) (-566)) (T -871)) +((-3603 (*1 *2 *1 *3) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-871 *4)) (-14 *4 *3) (-5 *3 (-566)))) (-2146 (*1 *2 *1) (-12 (-5 *2 (-174 (-409 (-566)))) (-5 *1 (-871 *3)) (-14 *3 (-566)))) (-1556 (*1 *1 *1) (-12 (-5 *1 (-871 *2)) (-14 *2 (-566)))) (-1556 (*1 *1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-871 *3)) (-14 *3 *2)))) +(-13 (-992 (-870 |#1|)) (-10 -8 (-15 -3603 ((-409 (-566)) $ (-566))) (-15 -2146 ((-174 (-409 (-566))) $)) (-15 -1556 ($ $)) (-15 -1556 ($ (-566) $)))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-1873 ((|#2| $) NIL (|has| |#2| (-308)))) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-2161 (($ $) NIL)) (-2345 (((-112) $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-2292 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-1378 (($ $) NIL)) (-1364 (((-420 $) $) NIL)) (-4066 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-2085 (((-112) $ $) NIL)) (-2743 (((-566) $) NIL (|has| |#2| (-820)))) (-2463 (($) NIL T CONST)) (-2229 (((-3 |#2| "failed") $) NIL) (((-3 (-1175) "failed") $) NIL (|has| |#2| (-1038 (-1175)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#2| (-1038 (-566)))) (((-3 (-566) "failed") $) NIL (|has| |#2| (-1038 (-566))))) (-4158 ((|#2| $) NIL) (((-1175) $) NIL (|has| |#2| (-1038 (-1175)))) (((-409 (-566)) $) NIL (|has| |#2| (-1038 (-566)))) (((-566) $) NIL (|has| |#2| (-1038 (-566))))) (-1556 (($ $) 35) (($ (-566) $) 38)) (-2933 (($ $ $) NIL)) (-4089 (((-689 (-566)) (-689 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -3361 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 $) (-1264 $)) NIL) (((-689 |#2|) (-689 $)) NIL)) (-3245 (((-3 $ "failed") $) 64)) (-2715 (($) NIL (|has| |#2| (-547)))) (-2945 (($ $ $) NIL)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL)) (-1615 (((-112) $) NIL)) (-2528 (((-112) $) NIL (|has| |#2| (-820)))) (-2926 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (|has| |#2| (-886 (-566)))) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (|has| |#2| (-886 (-381))))) (-2389 (((-112) $) NIL)) (-3406 (($ $) NIL)) (-2248 ((|#2| $) NIL)) (-2621 (((-3 $ "failed") $) NIL (|has| |#2| (-1150)))) (-3233 (((-112) $) NIL (|has| |#2| (-820)))) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1478 (($ $ $) NIL (|has| |#2| (-850)))) (-2599 (($ $ $) NIL (|has| |#2| (-850)))) (-2319 (($ (-1 |#2| |#2|) $) NIL)) (-2128 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3380 (((-1157) $) NIL)) (-2748 (($ $) 60)) (-3289 (($) NIL (|has| |#2| (-1150)) CONST)) (-4072 (((-1119) $) NIL)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2164 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2487 (($ $) NIL (|has| |#2| (-308)))) (-3143 ((|#2| $) NIL (|has| |#2| (-547)))) (-2010 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-1893 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-1624 (((-420 $) $) NIL)) (-3005 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2978 (((-3 $ "failed") $ $) NIL)) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2023 (($ $ (-644 |#2|) (-644 |#2|)) NIL (|has| |#2| (-310 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-310 |#2|))) (($ $ (-295 |#2|)) NIL (|has| |#2| (-310 |#2|))) (($ $ (-644 (-295 |#2|))) NIL (|has| |#2| (-310 |#2|))) (($ $ (-644 (-1175)) (-644 |#2|)) NIL (|has| |#2| (-516 (-1175) |#2|))) (($ $ (-1175) |#2|) NIL (|has| |#2| (-516 (-1175) |#2|)))) (-4357 (((-771) $) NIL)) (-1309 (($ $ |#2|) NIL (|has| |#2| (-287 |#2| |#2|)))) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL)) (-3629 (($ $) NIL (|has| |#2| (-233))) (($ $ (-771)) NIL (|has| |#2| (-233))) (($ $ (-1175)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1452 (($ $) NIL)) (-2260 ((|#2| $) NIL)) (-2376 (((-892 (-566)) $) NIL (|has| |#2| (-614 (-892 (-566))))) (((-892 (-381)) $) NIL (|has| |#2| (-614 (-892 (-381))))) (((-538) $) NIL (|has| |#2| (-614 (-538)))) (((-381) $) NIL (|has| |#2| (-1022))) (((-225) $) NIL (|has| |#2| (-1022)))) (-2146 (((-174 (-409 (-566))) $) 78)) (-3391 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-909))))) (-3152 (((-862) $) 108) (($ (-566)) 20) (($ $) NIL) (($ (-409 (-566))) 25) (($ |#2|) 19) (($ (-1175)) NIL (|has| |#2| (-1038 (-1175))))) (-2633 (((-3 $ "failed") $) NIL (-2768 (-12 (|has| $ (-145)) (|has| |#2| (-909))) (|has| |#2| (-145))))) (-2593 (((-771)) NIL T CONST)) (-3913 ((|#2| $) NIL (|has| |#2| (-547)))) (-3044 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-3603 (((-409 (-566)) $ (-566)) 71)) (-1358 (($ $) NIL (|has| |#2| (-820)))) (-4356 (($) 15 T CONST)) (-4366 (($) 17 T CONST)) (-3497 (($ $) NIL (|has| |#2| (-233))) (($ $ (-771)) NIL (|has| |#2| (-233))) (($ $ (-1175)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2968 (((-112) $ $) NIL (|has| |#2| (-850)))) (-2946 (((-112) $ $) NIL (|has| |#2| (-850)))) (-2914 (((-112) $ $) 46)) (-2956 (((-112) $ $) NIL (|has| |#2| (-850)))) (-2935 (((-112) $ $) NIL (|has| |#2| (-850)))) (-3025 (($ $ $) 24) (($ |#2| |#2|) 65)) (-3012 (($ $) 50) (($ $ $) 52)) (-3002 (($ $ $) 48)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) 61)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 53) (($ $ $) 55) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ |#2| $) 66) (($ $ |#2|) NIL))) +(((-872 |#1| |#2|) (-13 (-992 |#2|) (-10 -8 (-15 -3603 ((-409 (-566)) $ (-566))) (-15 -2146 ((-174 (-409 (-566))) $)) (-15 -1556 ($ $)) (-15 -1556 ($ (-566) $)))) (-566) (-869 |#1|)) (T -872)) +((-3603 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-409 (-566))) (-5 *1 (-872 *4 *5)) (-5 *3 (-566)) (-4 *5 (-869 *4)))) (-2146 (*1 *2 *1) (-12 (-14 *3 (-566)) (-5 *2 (-174 (-409 (-566)))) (-5 *1 (-872 *3 *4)) (-4 *4 (-869 *3)))) (-1556 (*1 *1 *1) (-12 (-14 *2 (-566)) (-5 *1 (-872 *2 *3)) (-4 *3 (-869 *2)))) (-1556 (*1 *1 *2 *1) (-12 (-5 *2 (-566)) (-14 *3 *2) (-5 *1 (-872 *3 *4)) (-4 *4 (-869 *3))))) +(-13 (-992 |#2|) (-10 -8 (-15 -3603 ((-409 (-566)) $ (-566))) (-15 -2146 ((-174 (-409 (-566))) $)) (-15 -1556 ($ $)) (-15 -1556 ($ (-566) $)))) +((-2988 (((-112) $ $) NIL (-12 (|has| |#1| (-1099)) (|has| |#2| (-1099))))) (-3531 ((|#2| $) 12)) (-2870 (($ |#1| |#2|) 9)) (-3380 (((-1157) $) NIL (-12 (|has| |#1| (-1099)) (|has| |#2| (-1099))))) (-4072 (((-1119) $) NIL (-12 (|has| |#1| (-1099)) (|has| |#2| (-1099))))) (-3908 ((|#1| $) 11)) (-1340 (($ |#1| |#2|) 10)) (-3152 (((-862) $) 18 (-2768 (-12 (|has| |#1| (-613 (-862))) (|has| |#2| (-613 (-862)))) (-12 (|has| |#1| (-1099)) (|has| |#2| (-1099)))))) (-3044 (((-112) $ $) NIL (-12 (|has| |#1| (-1099)) (|has| |#2| (-1099))))) (-2914 (((-112) $ $) 23 (-12 (|has| |#1| (-1099)) (|has| |#2| (-1099)))))) +(((-873 |#1| |#2|) (-13 (-1214) (-10 -8 (IF (|has| |#1| (-613 (-862))) (IF (|has| |#2| (-613 (-862))) (-6 (-613 (-862))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1099)) (IF (|has| |#2| (-1099)) (-6 (-1099)) |%noBranch|) |%noBranch|) (-15 -2870 ($ |#1| |#2|)) (-15 -1340 ($ |#1| |#2|)) (-15 -3908 (|#1| $)) (-15 -3531 (|#2| $)))) (-1214) (-1214)) (T -873)) +((-2870 (*1 *1 *2 *3) (-12 (-5 *1 (-873 *2 *3)) (-4 *2 (-1214)) (-4 *3 (-1214)))) (-1340 (*1 *1 *2 *3) (-12 (-5 *1 (-873 *2 *3)) (-4 *2 (-1214)) (-4 *3 (-1214)))) (-3908 (*1 *2 *1) (-12 (-4 *2 (-1214)) (-5 *1 (-873 *2 *3)) (-4 *3 (-1214)))) (-3531 (*1 *2 *1) (-12 (-4 *2 (-1214)) (-5 *1 (-873 *3 *2)) (-4 *3 (-1214))))) +(-13 (-1214) (-10 -8 (IF (|has| |#1| (-613 (-862))) (IF (|has| |#2| (-613 (-862))) (-6 (-613 (-862))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1099)) (IF (|has| |#2| (-1099)) (-6 (-1099)) |%noBranch|) |%noBranch|) (-15 -2870 ($ |#1| |#2|)) (-15 -1340 ($ |#1| |#2|)) (-15 -3908 (|#1| $)) (-15 -3531 (|#2| $)))) +((-2988 (((-112) $ $) NIL)) (-1339 (((-566) $) 16)) (-2973 (($ (-157)) 13)) (-2560 (($ (-157)) 14)) (-3380 (((-1157) $) NIL)) (-1820 (((-157) $) 15)) (-4072 (((-1119) $) NIL)) (-3382 (($ (-157)) 11)) (-1589 (($ (-157)) 10)) (-3152 (((-862) $) 24) (($ (-157)) 17)) (-1988 (($ (-157)) 12)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) +(((-874) (-13 (-1099) (-10 -8 (-15 -1589 ($ (-157))) (-15 -3382 ($ (-157))) (-15 -1988 ($ (-157))) (-15 -2973 ($ (-157))) (-15 -2560 ($ (-157))) (-15 -1820 ((-157) $)) (-15 -1339 ((-566) $)) (-15 -3152 ($ (-157)))))) (T -874)) +((-1589 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-874)))) (-3382 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-874)))) (-1988 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-874)))) (-2973 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-874)))) (-2560 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-874)))) (-1820 (*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-874)))) (-1339 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-874)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-874))))) +(-13 (-1099) (-10 -8 (-15 -1589 ($ (-157))) (-15 -3382 ($ (-157))) (-15 -1988 ($ (-157))) (-15 -2973 ($ (-157))) (-15 -2560 ($ (-157))) (-15 -1820 ((-157) $)) (-15 -1339 ((-566) $)) (-15 -3152 ($ (-157))))) +((-3152 (((-317 (-566)) (-409 (-952 (-48)))) 23) (((-317 (-566)) (-952 (-48))) 18))) +(((-875) (-10 -7 (-15 -3152 ((-317 (-566)) (-952 (-48)))) (-15 -3152 ((-317 (-566)) (-409 (-952 (-48))))))) (T -875)) +((-3152 (*1 *2 *3) (-12 (-5 *3 (-409 (-952 (-48)))) (-5 *2 (-317 (-566))) (-5 *1 (-875)))) (-3152 (*1 *2 *3) (-12 (-5 *3 (-952 (-48))) (-5 *2 (-317 (-566))) (-5 *1 (-875))))) +(-10 -7 (-15 -3152 ((-317 (-566)) (-952 (-48)))) (-15 -3152 ((-317 (-566)) (-409 (-952 (-48)))))) +((-2319 (((-877 |#2|) (-1 |#2| |#1|) (-877 |#1|)) 15))) +(((-876 |#1| |#2|) (-10 -7 (-15 -2319 ((-877 |#2|) (-1 |#2| |#1|) (-877 |#1|)))) (-1214) (-1214)) (T -876)) +((-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-877 *5)) (-4 *5 (-1214)) (-4 *6 (-1214)) (-5 *2 (-877 *6)) (-5 *1 (-876 *5 *6))))) +(-10 -7 (-15 -2319 ((-877 |#2|) (-1 |#2| |#1|) (-877 |#1|)))) +((-1376 (($ |#1| |#1|) 8)) (-2751 ((|#1| $ (-771)) 15))) +(((-877 |#1|) (-10 -8 (-15 -1376 ($ |#1| |#1|)) (-15 -2751 (|#1| $ (-771)))) (-1214)) (T -877)) +((-2751 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *1 (-877 *2)) (-4 *2 (-1214)))) (-1376 (*1 *1 *2 *2) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1214))))) +(-10 -8 (-15 -1376 ($ |#1| |#1|)) (-15 -2751 (|#1| $ (-771)))) +((-2319 (((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|)) 15))) +(((-878 |#1| |#2|) (-10 -7 (-15 -2319 ((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|)))) (-1214) (-1214)) (T -878)) +((-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-879 *5)) (-4 *5 (-1214)) (-4 *6 (-1214)) (-5 *2 (-879 *6)) (-5 *1 (-878 *5 *6))))) +(-10 -7 (-15 -2319 ((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|)))) +((-1376 (($ |#1| |#1| |#1|) 8)) (-2751 ((|#1| $ (-771)) 15))) +(((-879 |#1|) (-10 -8 (-15 -1376 ($ |#1| |#1| |#1|)) (-15 -2751 (|#1| $ (-771)))) (-1214)) (T -879)) +((-2751 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *1 (-879 *2)) (-4 *2 (-1214)))) (-1376 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-879 *2)) (-4 *2 (-1214))))) +(-10 -8 (-15 -1376 ($ |#1| |#1| |#1|)) (-15 -2751 (|#1| $ (-771)))) +((-3377 (((-644 (-1180)) (-1157)) 9))) +(((-880) (-10 -7 (-15 -3377 ((-644 (-1180)) (-1157))))) (T -880)) +((-3377 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-644 (-1180))) (-5 *1 (-880))))) +(-10 -7 (-15 -3377 ((-644 (-1180)) (-1157)))) +((-2319 (((-882 |#2|) (-1 |#2| |#1|) (-882 |#1|)) 15))) +(((-881 |#1| |#2|) (-10 -7 (-15 -2319 ((-882 |#2|) (-1 |#2| |#1|) (-882 |#1|)))) (-1214) (-1214)) (T -881)) +((-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-882 *5)) (-4 *5 (-1214)) (-4 *6 (-1214)) (-5 *2 (-882 *6)) (-5 *1 (-881 *5 *6))))) +(-10 -7 (-15 -2319 ((-882 |#2|) (-1 |#2| |#1|) (-882 |#1|)))) +((-2132 (($ |#1| |#1| |#1|) 8)) (-2751 ((|#1| $ (-771)) 15))) +(((-882 |#1|) (-10 -8 (-15 -2132 ($ |#1| |#1| |#1|)) (-15 -2751 (|#1| $ (-771)))) (-1214)) (T -882)) +((-2751 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *1 (-882 *2)) (-4 *2 (-1214)))) (-2132 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-882 *2)) (-4 *2 (-1214))))) +(-10 -8 (-15 -2132 ($ |#1| |#1| |#1|)) (-15 -2751 (|#1| $ (-771)))) +((-1942 (((-1155 (-644 (-566))) (-644 (-566)) (-1155 (-644 (-566)))) 48)) (-3323 (((-1155 (-644 (-566))) (-644 (-566)) (-644 (-566))) 44)) (-3023 (((-1155 (-644 (-566))) (-644 (-566))) 58) (((-1155 (-644 (-566))) (-644 (-566)) (-644 (-566))) 56)) (-1672 (((-1155 (-644 (-566))) (-566)) 59)) (-3373 (((-1155 (-644 (-566))) (-566) (-566)) 34) (((-1155 (-644 (-566))) (-566)) 23) (((-1155 (-644 (-566))) (-566) (-566) (-566)) 19)) (-4157 (((-1155 (-644 (-566))) (-1155 (-644 (-566)))) 42)) (-3357 (((-644 (-566)) (-644 (-566))) 41))) +(((-883) (-10 -7 (-15 -3373 ((-1155 (-644 (-566))) (-566) (-566) (-566))) (-15 -3373 ((-1155 (-644 (-566))) (-566))) (-15 -3373 ((-1155 (-644 (-566))) (-566) (-566))) (-15 -3357 ((-644 (-566)) (-644 (-566)))) (-15 -4157 ((-1155 (-644 (-566))) (-1155 (-644 (-566))))) (-15 -3323 ((-1155 (-644 (-566))) (-644 (-566)) (-644 (-566)))) (-15 -1942 ((-1155 (-644 (-566))) (-644 (-566)) (-1155 (-644 (-566))))) (-15 -3023 ((-1155 (-644 (-566))) (-644 (-566)) (-644 (-566)))) (-15 -3023 ((-1155 (-644 (-566))) (-644 (-566)))) (-15 -1672 ((-1155 (-644 (-566))) (-566))))) (T -883)) +((-1672 (*1 *2 *3) (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)) (-5 *3 (-566)))) (-3023 (*1 *2 *3) (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)) (-5 *3 (-644 (-566))))) (-3023 (*1 *2 *3 *3) (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)) (-5 *3 (-644 (-566))))) (-1942 (*1 *2 *3 *2) (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *3 (-644 (-566))) (-5 *1 (-883)))) (-3323 (*1 *2 *3 *3) (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)) (-5 *3 (-644 (-566))))) (-4157 (*1 *2 *2) (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)))) (-3357 (*1 *2 *2) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-883)))) (-3373 (*1 *2 *3 *3) (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)) (-5 *3 (-566)))) (-3373 (*1 *2 *3) (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)) (-5 *3 (-566)))) (-3373 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)) (-5 *3 (-566))))) +(-10 -7 (-15 -3373 ((-1155 (-644 (-566))) (-566) (-566) (-566))) (-15 -3373 ((-1155 (-644 (-566))) (-566))) (-15 -3373 ((-1155 (-644 (-566))) (-566) (-566))) (-15 -3357 ((-644 (-566)) (-644 (-566)))) (-15 -4157 ((-1155 (-644 (-566))) (-1155 (-644 (-566))))) (-15 -3323 ((-1155 (-644 (-566))) (-644 (-566)) (-644 (-566)))) (-15 -1942 ((-1155 (-644 (-566))) (-644 (-566)) (-1155 (-644 (-566))))) (-15 -3023 ((-1155 (-644 (-566))) (-644 (-566)) (-644 (-566)))) (-15 -3023 ((-1155 (-644 (-566))) (-644 (-566)))) (-15 -1672 ((-1155 (-644 (-566))) (-566)))) +((-2376 (((-892 (-381)) $) 9 (|has| |#1| (-614 (-892 (-381))))) (((-892 (-566)) $) 8 (|has| |#1| (-614 (-892 (-566))))))) (((-884 |#1|) (-140) (-1214)) (T -884)) NIL (-13 (-10 -7 (IF (|has| |t#1| (-614 (-892 (-566)))) (-6 (-614 (-892 (-566)))) |%noBranch|) (IF (|has| |t#1| (-614 (-892 (-381)))) (-6 (-614 (-892 (-381)))) |%noBranch|))) (((-614 (-892 (-381))) |has| |#1| (-614 (-892 (-381)))) ((-614 (-892 (-566))) |has| |#1| (-614 (-892 (-566))))) -((-3007 (((-112) $ $) NIL)) (-4265 (($) 14)) (-3234 (($ (-889 |#1| |#2|) (-889 |#1| |#3|)) 28)) (-4394 (((-889 |#1| |#3|) $) 16)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-2300 (((-112) $) 22)) (-3273 (($) 19)) (-3783 (((-862) $) 31)) (-3117 (((-112) $ $) NIL)) (-3046 (((-889 |#1| |#2|) $) 15)) (-2947 (((-112) $ $) 26))) -(((-885 |#1| |#2| |#3|) (-13 (-1099) (-10 -8 (-15 -2300 ((-112) $)) (-15 -3273 ($)) (-15 -4265 ($)) (-15 -3234 ($ (-889 |#1| |#2|) (-889 |#1| |#3|))) (-15 -3046 ((-889 |#1| |#2|) $)) (-15 -4394 ((-889 |#1| |#3|) $)))) (-1099) (-1099) (-666 |#2|)) (T -885)) -((-2300 (*1 *2 *1) (-12 (-4 *4 (-1099)) (-5 *2 (-112)) (-5 *1 (-885 *3 *4 *5)) (-4 *3 (-1099)) (-4 *5 (-666 *4)))) (-3273 (*1 *1) (-12 (-4 *3 (-1099)) (-5 *1 (-885 *2 *3 *4)) (-4 *2 (-1099)) (-4 *4 (-666 *3)))) (-4265 (*1 *1) (-12 (-4 *3 (-1099)) (-5 *1 (-885 *2 *3 *4)) (-4 *2 (-1099)) (-4 *4 (-666 *3)))) (-3234 (*1 *1 *2 *3) (-12 (-5 *2 (-889 *4 *5)) (-5 *3 (-889 *4 *6)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-666 *5)) (-5 *1 (-885 *4 *5 *6)))) (-3046 (*1 *2 *1) (-12 (-4 *4 (-1099)) (-5 *2 (-889 *3 *4)) (-5 *1 (-885 *3 *4 *5)) (-4 *3 (-1099)) (-4 *5 (-666 *4)))) (-4394 (*1 *2 *1) (-12 (-4 *4 (-1099)) (-5 *2 (-889 *3 *5)) (-5 *1 (-885 *3 *4 *5)) (-4 *3 (-1099)) (-4 *5 (-666 *4))))) -(-13 (-1099) (-10 -8 (-15 -2300 ((-112) $)) (-15 -3273 ($)) (-15 -4265 ($)) (-15 -3234 ($ (-889 |#1| |#2|) (-889 |#1| |#3|))) (-15 -3046 ((-889 |#1| |#2|) $)) (-15 -4394 ((-889 |#1| |#3|) $)))) -((-3007 (((-112) $ $) 7)) (-2062 (((-889 |#1| $) $ (-892 |#1|) (-889 |#1| $)) 14)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3783 (((-862) $) 12)) (-3117 (((-112) $ $) 9)) (-2947 (((-112) $ $) 6))) +((-2988 (((-112) $ $) NIL)) (-1860 (($) 14)) (-1479 (($ (-889 |#1| |#2|) (-889 |#1| |#3|)) 28)) (-2833 (((-889 |#1| |#3|) $) 16)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3519 (((-112) $) 22)) (-3221 (($) 19)) (-3152 (((-862) $) 31)) (-3044 (((-112) $ $) NIL)) (-3765 (((-889 |#1| |#2|) $) 15)) (-2914 (((-112) $ $) 26))) +(((-885 |#1| |#2| |#3|) (-13 (-1099) (-10 -8 (-15 -3519 ((-112) $)) (-15 -3221 ($)) (-15 -1860 ($)) (-15 -1479 ($ (-889 |#1| |#2|) (-889 |#1| |#3|))) (-15 -3765 ((-889 |#1| |#2|) $)) (-15 -2833 ((-889 |#1| |#3|) $)))) (-1099) (-1099) (-666 |#2|)) (T -885)) +((-3519 (*1 *2 *1) (-12 (-4 *4 (-1099)) (-5 *2 (-112)) (-5 *1 (-885 *3 *4 *5)) (-4 *3 (-1099)) (-4 *5 (-666 *4)))) (-3221 (*1 *1) (-12 (-4 *3 (-1099)) (-5 *1 (-885 *2 *3 *4)) (-4 *2 (-1099)) (-4 *4 (-666 *3)))) (-1860 (*1 *1) (-12 (-4 *3 (-1099)) (-5 *1 (-885 *2 *3 *4)) (-4 *2 (-1099)) (-4 *4 (-666 *3)))) (-1479 (*1 *1 *2 *3) (-12 (-5 *2 (-889 *4 *5)) (-5 *3 (-889 *4 *6)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-666 *5)) (-5 *1 (-885 *4 *5 *6)))) (-3765 (*1 *2 *1) (-12 (-4 *4 (-1099)) (-5 *2 (-889 *3 *4)) (-5 *1 (-885 *3 *4 *5)) (-4 *3 (-1099)) (-4 *5 (-666 *4)))) (-2833 (*1 *2 *1) (-12 (-4 *4 (-1099)) (-5 *2 (-889 *3 *5)) (-5 *1 (-885 *3 *4 *5)) (-4 *3 (-1099)) (-4 *5 (-666 *4))))) +(-13 (-1099) (-10 -8 (-15 -3519 ((-112) $)) (-15 -3221 ($)) (-15 -1860 ($)) (-15 -1479 ($ (-889 |#1| |#2|) (-889 |#1| |#3|))) (-15 -3765 ((-889 |#1| |#2|) $)) (-15 -2833 ((-889 |#1| |#3|) $)))) +((-2988 (((-112) $ $) 7)) (-2926 (((-889 |#1| $) $ (-892 |#1|) (-889 |#1| $)) 14)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3152 (((-862) $) 12)) (-3044 (((-112) $ $) 9)) (-2914 (((-112) $ $) 6))) (((-886 |#1|) (-140) (-1099)) (T -886)) -((-2062 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-889 *4 *1)) (-5 *3 (-892 *4)) (-4 *1 (-886 *4)) (-4 *4 (-1099))))) -(-13 (-1099) (-10 -8 (-15 -2062 ((-889 |t#1| $) $ (-892 |t#1|) (-889 |t#1| $))))) +((-2926 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-889 *4 *1)) (-5 *3 (-892 *4)) (-4 *1 (-886 *4)) (-4 *4 (-1099))))) +(-13 (-1099) (-10 -8 (-15 -2926 ((-889 |t#1| $) $ (-892 |t#1|) (-889 |t#1| $))))) (((-102) . T) ((-613 (-862)) . T) ((-1099) . T)) -((-2572 (((-112) (-644 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-2782 (((-889 |#1| |#2|) |#2| |#3|) 45 (-12 (-2418 (|has| |#2| (-1038 (-1175)))) (-2418 (|has| |#2| (-1049))))) (((-644 (-295 (-952 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1049)) (-2418 (|has| |#2| (-1038 (-1175)))))) (((-644 (-295 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1038 (-1175)))) (((-885 |#1| |#2| (-644 |#2|)) (-644 |#2|) |#3|) 21))) -(((-887 |#1| |#2| |#3|) (-10 -7 (-15 -2572 ((-112) |#2| |#3|)) (-15 -2572 ((-112) (-644 |#2|) |#3|)) (-15 -2782 ((-885 |#1| |#2| (-644 |#2|)) (-644 |#2|) |#3|)) (IF (|has| |#2| (-1038 (-1175))) (-15 -2782 ((-644 (-295 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1049)) (-15 -2782 ((-644 (-295 (-952 |#2|))) |#2| |#3|)) (-15 -2782 ((-889 |#1| |#2|) |#2| |#3|))))) (-1099) (-886 |#1|) (-614 (-892 |#1|))) (T -887)) -((-2782 (*1 *2 *3 *4) (-12 (-4 *5 (-1099)) (-5 *2 (-889 *5 *3)) (-5 *1 (-887 *5 *3 *4)) (-2418 (-4 *3 (-1038 (-1175)))) (-2418 (-4 *3 (-1049))) (-4 *3 (-886 *5)) (-4 *4 (-614 (-892 *5))))) (-2782 (*1 *2 *3 *4) (-12 (-4 *5 (-1099)) (-5 *2 (-644 (-295 (-952 *3)))) (-5 *1 (-887 *5 *3 *4)) (-4 *3 (-1049)) (-2418 (-4 *3 (-1038 (-1175)))) (-4 *3 (-886 *5)) (-4 *4 (-614 (-892 *5))))) (-2782 (*1 *2 *3 *4) (-12 (-4 *5 (-1099)) (-5 *2 (-644 (-295 *3))) (-5 *1 (-887 *5 *3 *4)) (-4 *3 (-1038 (-1175))) (-4 *3 (-886 *5)) (-4 *4 (-614 (-892 *5))))) (-2782 (*1 *2 *3 *4) (-12 (-4 *5 (-1099)) (-4 *6 (-886 *5)) (-5 *2 (-885 *5 *6 (-644 *6))) (-5 *1 (-887 *5 *6 *4)) (-5 *3 (-644 *6)) (-4 *4 (-614 (-892 *5))))) (-2572 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *6)) (-4 *6 (-886 *5)) (-4 *5 (-1099)) (-5 *2 (-112)) (-5 *1 (-887 *5 *6 *4)) (-4 *4 (-614 (-892 *5))))) (-2572 (*1 *2 *3 *4) (-12 (-4 *5 (-1099)) (-5 *2 (-112)) (-5 *1 (-887 *5 *3 *4)) (-4 *3 (-886 *5)) (-4 *4 (-614 (-892 *5)))))) -(-10 -7 (-15 -2572 ((-112) |#2| |#3|)) (-15 -2572 ((-112) (-644 |#2|) |#3|)) (-15 -2782 ((-885 |#1| |#2| (-644 |#2|)) (-644 |#2|) |#3|)) (IF (|has| |#2| (-1038 (-1175))) (-15 -2782 ((-644 (-295 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1049)) (-15 -2782 ((-644 (-295 (-952 |#2|))) |#2| |#3|)) (-15 -2782 ((-889 |#1| |#2|) |#2| |#3|))))) -((-1301 (((-889 |#1| |#3|) (-1 |#3| |#2|) (-889 |#1| |#2|)) 22))) -(((-888 |#1| |#2| |#3|) (-10 -7 (-15 -1301 ((-889 |#1| |#3|) (-1 |#3| |#2|) (-889 |#1| |#2|)))) (-1099) (-1099) (-1099)) (T -888)) -((-1301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-889 *5 *6)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-889 *5 *7)) (-5 *1 (-888 *5 *6 *7))))) -(-10 -7 (-15 -1301 ((-889 |#1| |#3|) (-1 |#3| |#2|) (-889 |#1| |#2|)))) -((-3007 (((-112) $ $) NIL)) (-1756 (($ $ $) 40)) (-1799 (((-3 (-112) "failed") $ (-892 |#1|)) 37)) (-4265 (($) 12)) (-4117 (((-1157) $) NIL)) (-3715 (($ (-892 |#1|) |#2| $) 20)) (-4035 (((-1119) $) NIL)) (-1967 (((-3 |#2| "failed") (-892 |#1|) $) 51)) (-2300 (((-112) $) 15)) (-3273 (($) 13)) (-3801 (((-644 (-2 (|:| -2004 (-1175)) (|:| -3867 |#2|))) $) 25)) (-3796 (($ (-644 (-2 (|:| -2004 (-1175)) (|:| -3867 |#2|)))) 23)) (-3783 (((-862) $) 45)) (-3117 (((-112) $ $) NIL)) (-3702 (($ (-892 |#1|) |#2| $ |#2|) 49)) (-1922 (($ (-892 |#1|) |#2| $) 48)) (-2947 (((-112) $ $) 42))) -(((-889 |#1| |#2|) (-13 (-1099) (-10 -8 (-15 -2300 ((-112) $)) (-15 -3273 ($)) (-15 -4265 ($)) (-15 -1756 ($ $ $)) (-15 -1967 ((-3 |#2| "failed") (-892 |#1|) $)) (-15 -1922 ($ (-892 |#1|) |#2| $)) (-15 -3715 ($ (-892 |#1|) |#2| $)) (-15 -3702 ($ (-892 |#1|) |#2| $ |#2|)) (-15 -3801 ((-644 (-2 (|:| -2004 (-1175)) (|:| -3867 |#2|))) $)) (-15 -3796 ($ (-644 (-2 (|:| -2004 (-1175)) (|:| -3867 |#2|))))) (-15 -1799 ((-3 (-112) "failed") $ (-892 |#1|))))) (-1099) (-1099)) (T -889)) -((-2300 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)))) (-3273 (*1 *1) (-12 (-5 *1 (-889 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099)))) (-4265 (*1 *1) (-12 (-5 *1 (-889 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099)))) (-1756 (*1 *1 *1 *1) (-12 (-5 *1 (-889 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099)))) (-1967 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-892 *4)) (-4 *4 (-1099)) (-4 *2 (-1099)) (-5 *1 (-889 *4 *2)))) (-1922 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-892 *4)) (-4 *4 (-1099)) (-5 *1 (-889 *4 *3)) (-4 *3 (-1099)))) (-3715 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-892 *4)) (-4 *4 (-1099)) (-5 *1 (-889 *4 *3)) (-4 *3 (-1099)))) (-3702 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-892 *4)) (-4 *4 (-1099)) (-5 *1 (-889 *4 *3)) (-4 *3 (-1099)))) (-3801 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| -2004 (-1175)) (|:| -3867 *4)))) (-5 *1 (-889 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-644 (-2 (|:| -2004 (-1175)) (|:| -3867 *4)))) (-4 *4 (-1099)) (-5 *1 (-889 *3 *4)) (-4 *3 (-1099)))) (-1799 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-892 *4)) (-4 *4 (-1099)) (-5 *2 (-112)) (-5 *1 (-889 *4 *5)) (-4 *5 (-1099))))) -(-13 (-1099) (-10 -8 (-15 -2300 ((-112) $)) (-15 -3273 ($)) (-15 -4265 ($)) (-15 -1756 ($ $ $)) (-15 -1967 ((-3 |#2| "failed") (-892 |#1|) $)) (-15 -1922 ($ (-892 |#1|) |#2| $)) (-15 -3715 ($ (-892 |#1|) |#2| $)) (-15 -3702 ($ (-892 |#1|) |#2| $ |#2|)) (-15 -3801 ((-644 (-2 (|:| -2004 (-1175)) (|:| -3867 |#2|))) $)) (-15 -3796 ($ (-644 (-2 (|:| -2004 (-1175)) (|:| -3867 |#2|))))) (-15 -1799 ((-3 (-112) "failed") $ (-892 |#1|))))) -((-4293 (((-892 |#1|) (-892 |#1|) (-644 (-1175)) (-1 (-112) (-644 |#2|))) 32) (((-892 |#1|) (-892 |#1|) (-644 (-1 (-112) |#2|))) 46) (((-892 |#1|) (-892 |#1|) (-1 (-112) |#2|)) 35)) (-1799 (((-112) (-644 |#2|) (-892 |#1|)) 42) (((-112) |#2| (-892 |#1|)) 36)) (-1367 (((-1 (-112) |#2|) (-892 |#1|)) 16)) (-3597 (((-644 |#2|) (-892 |#1|)) 24)) (-2683 (((-892 |#1|) (-892 |#1|) |#2|) 20))) -(((-890 |#1| |#2|) (-10 -7 (-15 -4293 ((-892 |#1|) (-892 |#1|) (-1 (-112) |#2|))) (-15 -4293 ((-892 |#1|) (-892 |#1|) (-644 (-1 (-112) |#2|)))) (-15 -4293 ((-892 |#1|) (-892 |#1|) (-644 (-1175)) (-1 (-112) (-644 |#2|)))) (-15 -1367 ((-1 (-112) |#2|) (-892 |#1|))) (-15 -1799 ((-112) |#2| (-892 |#1|))) (-15 -1799 ((-112) (-644 |#2|) (-892 |#1|))) (-15 -2683 ((-892 |#1|) (-892 |#1|) |#2|)) (-15 -3597 ((-644 |#2|) (-892 |#1|)))) (-1099) (-1214)) (T -890)) -((-3597 (*1 *2 *3) (-12 (-5 *3 (-892 *4)) (-4 *4 (-1099)) (-5 *2 (-644 *5)) (-5 *1 (-890 *4 *5)) (-4 *5 (-1214)))) (-2683 (*1 *2 *2 *3) (-12 (-5 *2 (-892 *4)) (-4 *4 (-1099)) (-5 *1 (-890 *4 *3)) (-4 *3 (-1214)))) (-1799 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *6)) (-5 *4 (-892 *5)) (-4 *5 (-1099)) (-4 *6 (-1214)) (-5 *2 (-112)) (-5 *1 (-890 *5 *6)))) (-1799 (*1 *2 *3 *4) (-12 (-5 *4 (-892 *5)) (-4 *5 (-1099)) (-5 *2 (-112)) (-5 *1 (-890 *5 *3)) (-4 *3 (-1214)))) (-1367 (*1 *2 *3) (-12 (-5 *3 (-892 *4)) (-4 *4 (-1099)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-890 *4 *5)) (-4 *5 (-1214)))) (-4293 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-892 *5)) (-5 *3 (-644 (-1175))) (-5 *4 (-1 (-112) (-644 *6))) (-4 *5 (-1099)) (-4 *6 (-1214)) (-5 *1 (-890 *5 *6)))) (-4293 (*1 *2 *2 *3) (-12 (-5 *2 (-892 *4)) (-5 *3 (-644 (-1 (-112) *5))) (-4 *4 (-1099)) (-4 *5 (-1214)) (-5 *1 (-890 *4 *5)))) (-4293 (*1 *2 *2 *3) (-12 (-5 *2 (-892 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1099)) (-4 *5 (-1214)) (-5 *1 (-890 *4 *5))))) -(-10 -7 (-15 -4293 ((-892 |#1|) (-892 |#1|) (-1 (-112) |#2|))) (-15 -4293 ((-892 |#1|) (-892 |#1|) (-644 (-1 (-112) |#2|)))) (-15 -4293 ((-892 |#1|) (-892 |#1|) (-644 (-1175)) (-1 (-112) (-644 |#2|)))) (-15 -1367 ((-1 (-112) |#2|) (-892 |#1|))) (-15 -1799 ((-112) |#2| (-892 |#1|))) (-15 -1799 ((-112) (-644 |#2|) (-892 |#1|))) (-15 -2683 ((-892 |#1|) (-892 |#1|) |#2|)) (-15 -3597 ((-644 |#2|) (-892 |#1|)))) -((-1301 (((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|)) 19))) -(((-891 |#1| |#2|) (-10 -7 (-15 -1301 ((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|)))) (-1099) (-1099)) (T -891)) -((-1301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-892 *5)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-5 *2 (-892 *6)) (-5 *1 (-891 *5 *6))))) -(-10 -7 (-15 -1301 ((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|)))) -((-3007 (((-112) $ $) NIL)) (-1892 (($ $ (-644 (-52))) 74)) (-3863 (((-644 $) $) 138)) (-2013 (((-2 (|:| |var| (-644 (-1175))) (|:| |pred| (-52))) $) 30)) (-2950 (((-112) $) 35)) (-3696 (($ $ (-644 (-1175)) (-52)) 31)) (-2188 (($ $ (-644 (-52))) 73)) (-4307 (((-3 |#1| "failed") $) 71) (((-3 (-1175) "failed") $) 162)) (-4205 ((|#1| $) 68) (((-1175) $) NIL)) (-1334 (($ $) 126)) (-3243 (((-112) $) 55)) (-3868 (((-644 (-52)) $) 50)) (-3359 (($ (-1175) (-112) (-112) (-112)) 75)) (-1351 (((-3 (-644 $) "failed") (-644 $)) 82)) (-3649 (((-112) $) 58)) (-2762 (((-112) $) 57)) (-4117 (((-1157) $) NIL)) (-3714 (((-3 (-644 $) "failed") $) 41)) (-2021 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 48)) (-2114 (((-3 (-2 (|:| |val| $) (|:| -2852 $)) "failed") $) 97)) (-2353 (((-3 (-644 $) "failed") $) 40)) (-3654 (((-3 (-644 $) "failed") $ (-114)) 124) (((-3 (-2 (|:| -1684 (-114)) (|:| |arg| (-644 $))) "failed") $) 107)) (-3633 (((-3 (-644 $) "failed") $) 42)) (-1518 (((-3 (-2 (|:| |val| $) (|:| -2852 (-771))) "failed") $) 45)) (-2205 (((-112) $) 34)) (-4035 (((-1119) $) NIL)) (-2753 (((-112) $) 28)) (-2351 (((-112) $) 52)) (-2120 (((-644 (-52)) $) 130)) (-2554 (((-112) $) 56)) (-4390 (($ (-114) (-644 $)) 104)) (-2266 (((-771) $) 33)) (-3940 (($ $) 72)) (-1348 (($ (-644 $)) 69)) (-1466 (((-112) $) 32)) (-3783 (((-862) $) 63) (($ |#1|) 23) (($ (-1175)) 76)) (-3117 (((-112) $ $) NIL)) (-2683 (($ $ (-52)) 129)) (-2479 (($) 103 T CONST)) (-4334 (($) 83 T CONST)) (-2947 (((-112) $ $) 93)) (-3065 (($ $ $) 117)) (-3041 (($ $ $) 121)) (** (($ $ (-771)) 115) (($ $ $) 64)) (* (($ $ $) 122))) -(((-892 |#1|) (-13 (-1099) (-1038 |#1|) (-1038 (-1175)) (-10 -8 (-15 0 ($) -3704) (-15 1 ($) -3704) (-15 -2353 ((-3 (-644 $) "failed") $)) (-15 -3714 ((-3 (-644 $) "failed") $)) (-15 -3654 ((-3 (-644 $) "failed") $ (-114))) (-15 -3654 ((-3 (-2 (|:| -1684 (-114)) (|:| |arg| (-644 $))) "failed") $)) (-15 -1518 ((-3 (-2 (|:| |val| $) (|:| -2852 (-771))) "failed") $)) (-15 -2021 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3633 ((-3 (-644 $) "failed") $)) (-15 -2114 ((-3 (-2 (|:| |val| $) (|:| -2852 $)) "failed") $)) (-15 -4390 ($ (-114) (-644 $))) (-15 -3041 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-771))) (-15 ** ($ $ $)) (-15 -3065 ($ $ $)) (-15 -2266 ((-771) $)) (-15 -1348 ($ (-644 $))) (-15 -3940 ($ $)) (-15 -2205 ((-112) $)) (-15 -3243 ((-112) $)) (-15 -2950 ((-112) $)) (-15 -1466 ((-112) $)) (-15 -2554 ((-112) $)) (-15 -2762 ((-112) $)) (-15 -3649 ((-112) $)) (-15 -2351 ((-112) $)) (-15 -3868 ((-644 (-52)) $)) (-15 -2188 ($ $ (-644 (-52)))) (-15 -1892 ($ $ (-644 (-52)))) (-15 -3359 ($ (-1175) (-112) (-112) (-112))) (-15 -3696 ($ $ (-644 (-1175)) (-52))) (-15 -2013 ((-2 (|:| |var| (-644 (-1175))) (|:| |pred| (-52))) $)) (-15 -2753 ((-112) $)) (-15 -1334 ($ $)) (-15 -2683 ($ $ (-52))) (-15 -2120 ((-644 (-52)) $)) (-15 -3863 ((-644 $) $)) (-15 -1351 ((-3 (-644 $) "failed") (-644 $))))) (-1099)) (T -892)) -((-2479 (*1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099)))) (-4334 (*1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099)))) (-2353 (*1 *2 *1) (|partial| -12 (-5 *2 (-644 (-892 *3))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-3714 (*1 *2 *1) (|partial| -12 (-5 *2 (-644 (-892 *3))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-3654 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-644 (-892 *4))) (-5 *1 (-892 *4)) (-4 *4 (-1099)))) (-3654 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -1684 (-114)) (|:| |arg| (-644 (-892 *3))))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-1518 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-892 *3)) (|:| -2852 (-771)))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-2021 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-892 *3)) (|:| |den| (-892 *3)))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-3633 (*1 *2 *1) (|partial| -12 (-5 *2 (-644 (-892 *3))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-2114 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-892 *3)) (|:| -2852 (-892 *3)))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-4390 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-644 (-892 *4))) (-5 *1 (-892 *4)) (-4 *4 (-1099)))) (-3041 (*1 *1 *1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099)))) (-3065 (*1 *1 *1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099)))) (-2266 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-1348 (*1 *1 *2) (-12 (-5 *2 (-644 (-892 *3))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-3940 (*1 *1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099)))) (-2205 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-3243 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-2950 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-1466 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-2554 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-2762 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-3649 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-2351 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-3868 (*1 *2 *1) (-12 (-5 *2 (-644 (-52))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-2188 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-52))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-1892 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-52))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-3359 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-112)) (-5 *1 (-892 *4)) (-4 *4 (-1099)))) (-3696 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-1175))) (-5 *3 (-52)) (-5 *1 (-892 *4)) (-4 *4 (-1099)))) (-2013 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-644 (-1175))) (|:| |pred| (-52)))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-2753 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-1334 (*1 *1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099)))) (-2683 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-2120 (*1 *2 *1) (-12 (-5 *2 (-644 (-52))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-3863 (*1 *2 *1) (-12 (-5 *2 (-644 (-892 *3))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-1351 (*1 *2 *2) (|partial| -12 (-5 *2 (-644 (-892 *3))) (-5 *1 (-892 *3)) (-4 *3 (-1099))))) -(-13 (-1099) (-1038 |#1|) (-1038 (-1175)) (-10 -8 (-15 (-2479) ($) -3704) (-15 (-4334) ($) -3704) (-15 -2353 ((-3 (-644 $) "failed") $)) (-15 -3714 ((-3 (-644 $) "failed") $)) (-15 -3654 ((-3 (-644 $) "failed") $ (-114))) (-15 -3654 ((-3 (-2 (|:| -1684 (-114)) (|:| |arg| (-644 $))) "failed") $)) (-15 -1518 ((-3 (-2 (|:| |val| $) (|:| -2852 (-771))) "failed") $)) (-15 -2021 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3633 ((-3 (-644 $) "failed") $)) (-15 -2114 ((-3 (-2 (|:| |val| $) (|:| -2852 $)) "failed") $)) (-15 -4390 ($ (-114) (-644 $))) (-15 -3041 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-771))) (-15 ** ($ $ $)) (-15 -3065 ($ $ $)) (-15 -2266 ((-771) $)) (-15 -1348 ($ (-644 $))) (-15 -3940 ($ $)) (-15 -2205 ((-112) $)) (-15 -3243 ((-112) $)) (-15 -2950 ((-112) $)) (-15 -1466 ((-112) $)) (-15 -2554 ((-112) $)) (-15 -2762 ((-112) $)) (-15 -3649 ((-112) $)) (-15 -2351 ((-112) $)) (-15 -3868 ((-644 (-52)) $)) (-15 -2188 ($ $ (-644 (-52)))) (-15 -1892 ($ $ (-644 (-52)))) (-15 -3359 ($ (-1175) (-112) (-112) (-112))) (-15 -3696 ($ $ (-644 (-1175)) (-52))) (-15 -2013 ((-2 (|:| |var| (-644 (-1175))) (|:| |pred| (-52))) $)) (-15 -2753 ((-112) $)) (-15 -1334 ($ $)) (-15 -2683 ($ $ (-52))) (-15 -2120 ((-644 (-52)) $)) (-15 -3863 ((-644 $) $)) (-15 -1351 ((-3 (-644 $) "failed") (-644 $))))) -((-3007 (((-112) $ $) NIL)) (-3095 (((-644 |#1|) $) 19)) (-3032 (((-112) $) 49)) (-4307 (((-3 (-672 |#1|) "failed") $) 56)) (-4205 (((-672 |#1|) $) 54)) (-2010 (($ $) 23)) (-2097 (($ $ $) NIL)) (-3962 (($ $ $) NIL)) (-4149 (((-771) $) 61)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-1998 (((-672 |#1|) $) 21)) (-3783 (((-862) $) 47) (($ (-672 |#1|)) 26) (((-819 |#1|) $) 36) (($ |#1|) 25)) (-3117 (((-112) $ $) NIL)) (-4334 (($) 9 T CONST)) (-2935 (((-644 (-672 |#1|)) $) 28)) (-3009 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2947 (((-112) $ $) 12)) (-2995 (((-112) $ $) NIL)) (-2969 (((-112) $ $) 67))) -(((-893 |#1|) (-13 (-850) (-1038 (-672 |#1|)) (-10 -8 (-15 1 ($) -3704) (-15 -3783 ((-819 |#1|) $)) (-15 -3783 ($ |#1|)) (-15 -1998 ((-672 |#1|) $)) (-15 -4149 ((-771) $)) (-15 -2935 ((-644 (-672 |#1|)) $)) (-15 -2010 ($ $)) (-15 -3032 ((-112) $)) (-15 -3095 ((-644 |#1|) $)))) (-850)) (T -893)) -((-4334 (*1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-850)))) (-3783 (*1 *2 *1) (-12 (-5 *2 (-819 *3)) (-5 *1 (-893 *3)) (-4 *3 (-850)))) (-3783 (*1 *1 *2) (-12 (-5 *1 (-893 *2)) (-4 *2 (-850)))) (-1998 (*1 *2 *1) (-12 (-5 *2 (-672 *3)) (-5 *1 (-893 *3)) (-4 *3 (-850)))) (-4149 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-893 *3)) (-4 *3 (-850)))) (-2935 (*1 *2 *1) (-12 (-5 *2 (-644 (-672 *3))) (-5 *1 (-893 *3)) (-4 *3 (-850)))) (-2010 (*1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-850)))) (-3032 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-850)))) (-3095 (*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-893 *3)) (-4 *3 (-850))))) -(-13 (-850) (-1038 (-672 |#1|)) (-10 -8 (-15 (-4334) ($) -3704) (-15 -3783 ((-819 |#1|) $)) (-15 -3783 ($ |#1|)) (-15 -1998 ((-672 |#1|) $)) (-15 -4149 ((-771) $)) (-15 -2935 ((-644 (-672 |#1|)) $)) (-15 -2010 ($ $)) (-15 -3032 ((-112) $)) (-15 -3095 ((-644 |#1|) $)))) -((-1919 ((|#1| |#1| |#1|) 19))) -(((-894 |#1| |#2|) (-10 -7 (-15 -1919 (|#1| |#1| |#1|))) (-1240 |#2|) (-1049)) (T -894)) -((-1919 (*1 *2 *2 *2) (-12 (-4 *3 (-1049)) (-5 *1 (-894 *2 *3)) (-4 *2 (-1240 *3))))) -(-10 -7 (-15 -1919 (|#1| |#1| |#1|))) -((-3007 (((-112) $ $) 7)) (-1338 (((-2 (|:| -1338 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))) 15)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3783 (((-862) $) 12)) (-3117 (((-112) $ $) 9)) (-2776 (((-1035) (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))) 14)) (-2947 (((-112) $ $) 6))) +((-3335 (((-112) (-644 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-3464 (((-889 |#1| |#2|) |#2| |#3|) 45 (-12 (-2404 (|has| |#2| (-1038 (-1175)))) (-2404 (|has| |#2| (-1049))))) (((-644 (-295 (-952 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1049)) (-2404 (|has| |#2| (-1038 (-1175)))))) (((-644 (-295 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1038 (-1175)))) (((-885 |#1| |#2| (-644 |#2|)) (-644 |#2|) |#3|) 21))) +(((-887 |#1| |#2| |#3|) (-10 -7 (-15 -3335 ((-112) |#2| |#3|)) (-15 -3335 ((-112) (-644 |#2|) |#3|)) (-15 -3464 ((-885 |#1| |#2| (-644 |#2|)) (-644 |#2|) |#3|)) (IF (|has| |#2| (-1038 (-1175))) (-15 -3464 ((-644 (-295 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1049)) (-15 -3464 ((-644 (-295 (-952 |#2|))) |#2| |#3|)) (-15 -3464 ((-889 |#1| |#2|) |#2| |#3|))))) (-1099) (-886 |#1|) (-614 (-892 |#1|))) (T -887)) +((-3464 (*1 *2 *3 *4) (-12 (-4 *5 (-1099)) (-5 *2 (-889 *5 *3)) (-5 *1 (-887 *5 *3 *4)) (-2404 (-4 *3 (-1038 (-1175)))) (-2404 (-4 *3 (-1049))) (-4 *3 (-886 *5)) (-4 *4 (-614 (-892 *5))))) (-3464 (*1 *2 *3 *4) (-12 (-4 *5 (-1099)) (-5 *2 (-644 (-295 (-952 *3)))) (-5 *1 (-887 *5 *3 *4)) (-4 *3 (-1049)) (-2404 (-4 *3 (-1038 (-1175)))) (-4 *3 (-886 *5)) (-4 *4 (-614 (-892 *5))))) (-3464 (*1 *2 *3 *4) (-12 (-4 *5 (-1099)) (-5 *2 (-644 (-295 *3))) (-5 *1 (-887 *5 *3 *4)) (-4 *3 (-1038 (-1175))) (-4 *3 (-886 *5)) (-4 *4 (-614 (-892 *5))))) (-3464 (*1 *2 *3 *4) (-12 (-4 *5 (-1099)) (-4 *6 (-886 *5)) (-5 *2 (-885 *5 *6 (-644 *6))) (-5 *1 (-887 *5 *6 *4)) (-5 *3 (-644 *6)) (-4 *4 (-614 (-892 *5))))) (-3335 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *6)) (-4 *6 (-886 *5)) (-4 *5 (-1099)) (-5 *2 (-112)) (-5 *1 (-887 *5 *6 *4)) (-4 *4 (-614 (-892 *5))))) (-3335 (*1 *2 *3 *4) (-12 (-4 *5 (-1099)) (-5 *2 (-112)) (-5 *1 (-887 *5 *3 *4)) (-4 *3 (-886 *5)) (-4 *4 (-614 (-892 *5)))))) +(-10 -7 (-15 -3335 ((-112) |#2| |#3|)) (-15 -3335 ((-112) (-644 |#2|) |#3|)) (-15 -3464 ((-885 |#1| |#2| (-644 |#2|)) (-644 |#2|) |#3|)) (IF (|has| |#2| (-1038 (-1175))) (-15 -3464 ((-644 (-295 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1049)) (-15 -3464 ((-644 (-295 (-952 |#2|))) |#2| |#3|)) (-15 -3464 ((-889 |#1| |#2|) |#2| |#3|))))) +((-2319 (((-889 |#1| |#3|) (-1 |#3| |#2|) (-889 |#1| |#2|)) 22))) +(((-888 |#1| |#2| |#3|) (-10 -7 (-15 -2319 ((-889 |#1| |#3|) (-1 |#3| |#2|) (-889 |#1| |#2|)))) (-1099) (-1099) (-1099)) (T -888)) +((-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-889 *5 *6)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-889 *5 *7)) (-5 *1 (-888 *5 *6 *7))))) +(-10 -7 (-15 -2319 ((-889 |#1| |#3|) (-1 |#3| |#2|) (-889 |#1| |#2|)))) +((-2988 (((-112) $ $) NIL)) (-1775 (($ $ $) 40)) (-4091 (((-3 (-112) "failed") $ (-892 |#1|)) 37)) (-1860 (($) 12)) (-3380 (((-1157) $) NIL)) (-3853 (($ (-892 |#1|) |#2| $) 20)) (-4072 (((-1119) $) NIL)) (-4192 (((-3 |#2| "failed") (-892 |#1|) $) 51)) (-3519 (((-112) $) 15)) (-3221 (($) 13)) (-1704 (((-644 (-2 (|:| -2674 (-1175)) (|:| -2636 |#2|))) $) 25)) (-1340 (($ (-644 (-2 (|:| -2674 (-1175)) (|:| -2636 |#2|)))) 23)) (-3152 (((-862) $) 45)) (-3044 (((-112) $ $) NIL)) (-3146 (($ (-892 |#1|) |#2| $ |#2|) 49)) (-2256 (($ (-892 |#1|) |#2| $) 48)) (-2914 (((-112) $ $) 42))) +(((-889 |#1| |#2|) (-13 (-1099) (-10 -8 (-15 -3519 ((-112) $)) (-15 -3221 ($)) (-15 -1860 ($)) (-15 -1775 ($ $ $)) (-15 -4192 ((-3 |#2| "failed") (-892 |#1|) $)) (-15 -2256 ($ (-892 |#1|) |#2| $)) (-15 -3853 ($ (-892 |#1|) |#2| $)) (-15 -3146 ($ (-892 |#1|) |#2| $ |#2|)) (-15 -1704 ((-644 (-2 (|:| -2674 (-1175)) (|:| -2636 |#2|))) $)) (-15 -1340 ($ (-644 (-2 (|:| -2674 (-1175)) (|:| -2636 |#2|))))) (-15 -4091 ((-3 (-112) "failed") $ (-892 |#1|))))) (-1099) (-1099)) (T -889)) +((-3519 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)))) (-3221 (*1 *1) (-12 (-5 *1 (-889 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099)))) (-1860 (*1 *1) (-12 (-5 *1 (-889 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099)))) (-1775 (*1 *1 *1 *1) (-12 (-5 *1 (-889 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099)))) (-4192 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-892 *4)) (-4 *4 (-1099)) (-4 *2 (-1099)) (-5 *1 (-889 *4 *2)))) (-2256 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-892 *4)) (-4 *4 (-1099)) (-5 *1 (-889 *4 *3)) (-4 *3 (-1099)))) (-3853 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-892 *4)) (-4 *4 (-1099)) (-5 *1 (-889 *4 *3)) (-4 *3 (-1099)))) (-3146 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-892 *4)) (-4 *4 (-1099)) (-5 *1 (-889 *4 *3)) (-4 *3 (-1099)))) (-1704 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| -2674 (-1175)) (|:| -2636 *4)))) (-5 *1 (-889 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)))) (-1340 (*1 *1 *2) (-12 (-5 *2 (-644 (-2 (|:| -2674 (-1175)) (|:| -2636 *4)))) (-4 *4 (-1099)) (-5 *1 (-889 *3 *4)) (-4 *3 (-1099)))) (-4091 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-892 *4)) (-4 *4 (-1099)) (-5 *2 (-112)) (-5 *1 (-889 *4 *5)) (-4 *5 (-1099))))) +(-13 (-1099) (-10 -8 (-15 -3519 ((-112) $)) (-15 -3221 ($)) (-15 -1860 ($)) (-15 -1775 ($ $ $)) (-15 -4192 ((-3 |#2| "failed") (-892 |#1|) $)) (-15 -2256 ($ (-892 |#1|) |#2| $)) (-15 -3853 ($ (-892 |#1|) |#2| $)) (-15 -3146 ($ (-892 |#1|) |#2| $ |#2|)) (-15 -1704 ((-644 (-2 (|:| -2674 (-1175)) (|:| -2636 |#2|))) $)) (-15 -1340 ($ (-644 (-2 (|:| -2674 (-1175)) (|:| -2636 |#2|))))) (-15 -4091 ((-3 (-112) "failed") $ (-892 |#1|))))) +((-4159 (((-892 |#1|) (-892 |#1|) (-644 (-1175)) (-1 (-112) (-644 |#2|))) 32) (((-892 |#1|) (-892 |#1|) (-644 (-1 (-112) |#2|))) 46) (((-892 |#1|) (-892 |#1|) (-1 (-112) |#2|)) 35)) (-4091 (((-112) (-644 |#2|) (-892 |#1|)) 42) (((-112) |#2| (-892 |#1|)) 36)) (-2558 (((-1 (-112) |#2|) (-892 |#1|)) 16)) (-3545 (((-644 |#2|) (-892 |#1|)) 24)) (-2277 (((-892 |#1|) (-892 |#1|) |#2|) 20))) +(((-890 |#1| |#2|) (-10 -7 (-15 -4159 ((-892 |#1|) (-892 |#1|) (-1 (-112) |#2|))) (-15 -4159 ((-892 |#1|) (-892 |#1|) (-644 (-1 (-112) |#2|)))) (-15 -4159 ((-892 |#1|) (-892 |#1|) (-644 (-1175)) (-1 (-112) (-644 |#2|)))) (-15 -2558 ((-1 (-112) |#2|) (-892 |#1|))) (-15 -4091 ((-112) |#2| (-892 |#1|))) (-15 -4091 ((-112) (-644 |#2|) (-892 |#1|))) (-15 -2277 ((-892 |#1|) (-892 |#1|) |#2|)) (-15 -3545 ((-644 |#2|) (-892 |#1|)))) (-1099) (-1214)) (T -890)) +((-3545 (*1 *2 *3) (-12 (-5 *3 (-892 *4)) (-4 *4 (-1099)) (-5 *2 (-644 *5)) (-5 *1 (-890 *4 *5)) (-4 *5 (-1214)))) (-2277 (*1 *2 *2 *3) (-12 (-5 *2 (-892 *4)) (-4 *4 (-1099)) (-5 *1 (-890 *4 *3)) (-4 *3 (-1214)))) (-4091 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *6)) (-5 *4 (-892 *5)) (-4 *5 (-1099)) (-4 *6 (-1214)) (-5 *2 (-112)) (-5 *1 (-890 *5 *6)))) (-4091 (*1 *2 *3 *4) (-12 (-5 *4 (-892 *5)) (-4 *5 (-1099)) (-5 *2 (-112)) (-5 *1 (-890 *5 *3)) (-4 *3 (-1214)))) (-2558 (*1 *2 *3) (-12 (-5 *3 (-892 *4)) (-4 *4 (-1099)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-890 *4 *5)) (-4 *5 (-1214)))) (-4159 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-892 *5)) (-5 *3 (-644 (-1175))) (-5 *4 (-1 (-112) (-644 *6))) (-4 *5 (-1099)) (-4 *6 (-1214)) (-5 *1 (-890 *5 *6)))) (-4159 (*1 *2 *2 *3) (-12 (-5 *2 (-892 *4)) (-5 *3 (-644 (-1 (-112) *5))) (-4 *4 (-1099)) (-4 *5 (-1214)) (-5 *1 (-890 *4 *5)))) (-4159 (*1 *2 *2 *3) (-12 (-5 *2 (-892 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1099)) (-4 *5 (-1214)) (-5 *1 (-890 *4 *5))))) +(-10 -7 (-15 -4159 ((-892 |#1|) (-892 |#1|) (-1 (-112) |#2|))) (-15 -4159 ((-892 |#1|) (-892 |#1|) (-644 (-1 (-112) |#2|)))) (-15 -4159 ((-892 |#1|) (-892 |#1|) (-644 (-1175)) (-1 (-112) (-644 |#2|)))) (-15 -2558 ((-1 (-112) |#2|) (-892 |#1|))) (-15 -4091 ((-112) |#2| (-892 |#1|))) (-15 -4091 ((-112) (-644 |#2|) (-892 |#1|))) (-15 -2277 ((-892 |#1|) (-892 |#1|) |#2|)) (-15 -3545 ((-644 |#2|) (-892 |#1|)))) +((-2319 (((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|)) 19))) +(((-891 |#1| |#2|) (-10 -7 (-15 -2319 ((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|)))) (-1099) (-1099)) (T -891)) +((-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-892 *5)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-5 *2 (-892 *6)) (-5 *1 (-891 *5 *6))))) +(-10 -7 (-15 -2319 ((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|)))) +((-2988 (((-112) $ $) NIL)) (-2119 (($ $ (-644 (-52))) 74)) (-1771 (((-644 $) $) 138)) (-1925 (((-2 (|:| |var| (-644 (-1175))) (|:| |pred| (-52))) $) 30)) (-4124 (((-112) $) 35)) (-2721 (($ $ (-644 (-1175)) (-52)) 31)) (-1695 (($ $ (-644 (-52))) 73)) (-2229 (((-3 |#1| "failed") $) 71) (((-3 (-1175) "failed") $) 162)) (-4158 ((|#1| $) 68) (((-1175) $) NIL)) (-2653 (($ $) 126)) (-4131 (((-112) $) 55)) (-4141 (((-644 (-52)) $) 50)) (-3057 (($ (-1175) (-112) (-112) (-112)) 75)) (-4212 (((-3 (-644 $) "failed") (-644 $)) 82)) (-3842 (((-112) $) 58)) (-2096 (((-112) $) 57)) (-3380 (((-1157) $) NIL)) (-3738 (((-3 (-644 $) "failed") $) 41)) (-3060 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 48)) (-4224 (((-3 (-2 (|:| |val| $) (|:| -2201 $)) "failed") $) 97)) (-4199 (((-3 (-644 $) "failed") $) 40)) (-4256 (((-3 (-644 $) "failed") $ (-114)) 124) (((-3 (-2 (|:| -1707 (-114)) (|:| |arg| (-644 $))) "failed") $) 107)) (-1727 (((-3 (-644 $) "failed") $) 42)) (-4108 (((-3 (-2 (|:| |val| $) (|:| -2201 (-771))) "failed") $) 45)) (-3594 (((-112) $) 34)) (-4072 (((-1119) $) NIL)) (-3721 (((-112) $) 28)) (-3977 (((-112) $) 52)) (-3416 (((-644 (-52)) $) 130)) (-4005 (((-112) $) 56)) (-1309 (($ (-114) (-644 $)) 104)) (-2766 (((-771) $) 33)) (-1480 (($ $) 72)) (-2376 (($ (-644 $)) 69)) (-3705 (((-112) $) 32)) (-3152 (((-862) $) 63) (($ |#1|) 23) (($ (-1175)) 76)) (-3044 (((-112) $ $) NIL)) (-2277 (($ $ (-52)) 129)) (-4356 (($) 103 T CONST)) (-4366 (($) 83 T CONST)) (-2914 (((-112) $ $) 93)) (-3025 (($ $ $) 117)) (-3002 (($ $ $) 121)) (** (($ $ (-771)) 115) (($ $ $) 64)) (* (($ $ $) 122))) +(((-892 |#1|) (-13 (-1099) (-1038 |#1|) (-1038 (-1175)) (-10 -8 (-15 0 ($) -1623) (-15 1 ($) -1623) (-15 -4199 ((-3 (-644 $) "failed") $)) (-15 -3738 ((-3 (-644 $) "failed") $)) (-15 -4256 ((-3 (-644 $) "failed") $ (-114))) (-15 -4256 ((-3 (-2 (|:| -1707 (-114)) (|:| |arg| (-644 $))) "failed") $)) (-15 -4108 ((-3 (-2 (|:| |val| $) (|:| -2201 (-771))) "failed") $)) (-15 -3060 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1727 ((-3 (-644 $) "failed") $)) (-15 -4224 ((-3 (-2 (|:| |val| $) (|:| -2201 $)) "failed") $)) (-15 -1309 ($ (-114) (-644 $))) (-15 -3002 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-771))) (-15 ** ($ $ $)) (-15 -3025 ($ $ $)) (-15 -2766 ((-771) $)) (-15 -2376 ($ (-644 $))) (-15 -1480 ($ $)) (-15 -3594 ((-112) $)) (-15 -4131 ((-112) $)) (-15 -4124 ((-112) $)) (-15 -3705 ((-112) $)) (-15 -4005 ((-112) $)) (-15 -2096 ((-112) $)) (-15 -3842 ((-112) $)) (-15 -3977 ((-112) $)) (-15 -4141 ((-644 (-52)) $)) (-15 -1695 ($ $ (-644 (-52)))) (-15 -2119 ($ $ (-644 (-52)))) (-15 -3057 ($ (-1175) (-112) (-112) (-112))) (-15 -2721 ($ $ (-644 (-1175)) (-52))) (-15 -1925 ((-2 (|:| |var| (-644 (-1175))) (|:| |pred| (-52))) $)) (-15 -3721 ((-112) $)) (-15 -2653 ($ $)) (-15 -2277 ($ $ (-52))) (-15 -3416 ((-644 (-52)) $)) (-15 -1771 ((-644 $) $)) (-15 -4212 ((-3 (-644 $) "failed") (-644 $))))) (-1099)) (T -892)) +((-4356 (*1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099)))) (-4366 (*1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099)))) (-4199 (*1 *2 *1) (|partial| -12 (-5 *2 (-644 (-892 *3))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-3738 (*1 *2 *1) (|partial| -12 (-5 *2 (-644 (-892 *3))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-4256 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-644 (-892 *4))) (-5 *1 (-892 *4)) (-4 *4 (-1099)))) (-4256 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -1707 (-114)) (|:| |arg| (-644 (-892 *3))))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-4108 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-892 *3)) (|:| -2201 (-771)))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-3060 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-892 *3)) (|:| |den| (-892 *3)))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-1727 (*1 *2 *1) (|partial| -12 (-5 *2 (-644 (-892 *3))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-4224 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-892 *3)) (|:| -2201 (-892 *3)))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-1309 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-644 (-892 *4))) (-5 *1 (-892 *4)) (-4 *4 (-1099)))) (-3002 (*1 *1 *1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099)))) (-3025 (*1 *1 *1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099)))) (-2766 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-2376 (*1 *1 *2) (-12 (-5 *2 (-644 (-892 *3))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-1480 (*1 *1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099)))) (-3594 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-4131 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-4124 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-3705 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-4005 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-2096 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-3842 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-3977 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-4141 (*1 *2 *1) (-12 (-5 *2 (-644 (-52))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-1695 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-52))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-2119 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-52))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-3057 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-112)) (-5 *1 (-892 *4)) (-4 *4 (-1099)))) (-2721 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-1175))) (-5 *3 (-52)) (-5 *1 (-892 *4)) (-4 *4 (-1099)))) (-1925 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-644 (-1175))) (|:| |pred| (-52)))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-3721 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-2653 (*1 *1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099)))) (-2277 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-3416 (*1 *2 *1) (-12 (-5 *2 (-644 (-52))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-1771 (*1 *2 *1) (-12 (-5 *2 (-644 (-892 *3))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-4212 (*1 *2 *2) (|partial| -12 (-5 *2 (-644 (-892 *3))) (-5 *1 (-892 *3)) (-4 *3 (-1099))))) +(-13 (-1099) (-1038 |#1|) (-1038 (-1175)) (-10 -8 (-15 (-4356) ($) -1623) (-15 (-4366) ($) -1623) (-15 -4199 ((-3 (-644 $) "failed") $)) (-15 -3738 ((-3 (-644 $) "failed") $)) (-15 -4256 ((-3 (-644 $) "failed") $ (-114))) (-15 -4256 ((-3 (-2 (|:| -1707 (-114)) (|:| |arg| (-644 $))) "failed") $)) (-15 -4108 ((-3 (-2 (|:| |val| $) (|:| -2201 (-771))) "failed") $)) (-15 -3060 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1727 ((-3 (-644 $) "failed") $)) (-15 -4224 ((-3 (-2 (|:| |val| $) (|:| -2201 $)) "failed") $)) (-15 -1309 ($ (-114) (-644 $))) (-15 -3002 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-771))) (-15 ** ($ $ $)) (-15 -3025 ($ $ $)) (-15 -2766 ((-771) $)) (-15 -2376 ($ (-644 $))) (-15 -1480 ($ $)) (-15 -3594 ((-112) $)) (-15 -4131 ((-112) $)) (-15 -4124 ((-112) $)) (-15 -3705 ((-112) $)) (-15 -4005 ((-112) $)) (-15 -2096 ((-112) $)) (-15 -3842 ((-112) $)) (-15 -3977 ((-112) $)) (-15 -4141 ((-644 (-52)) $)) (-15 -1695 ($ $ (-644 (-52)))) (-15 -2119 ($ $ (-644 (-52)))) (-15 -3057 ($ (-1175) (-112) (-112) (-112))) (-15 -2721 ($ $ (-644 (-1175)) (-52))) (-15 -1925 ((-2 (|:| |var| (-644 (-1175))) (|:| |pred| (-52))) $)) (-15 -3721 ((-112) $)) (-15 -2653 ($ $)) (-15 -2277 ($ $ (-52))) (-15 -3416 ((-644 (-52)) $)) (-15 -1771 ((-644 $) $)) (-15 -4212 ((-3 (-644 $) "failed") (-644 $))))) +((-2988 (((-112) $ $) NIL)) (-4111 (((-644 |#1|) $) 19)) (-1748 (((-112) $) 49)) (-2229 (((-3 (-672 |#1|) "failed") $) 56)) (-4158 (((-672 |#1|) $) 54)) (-3919 (($ $) 23)) (-1478 (($ $ $) NIL)) (-2599 (($ $ $) NIL)) (-2440 (((-771) $) 61)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3908 (((-672 |#1|) $) 21)) (-3152 (((-862) $) 47) (($ (-672 |#1|)) 26) (((-819 |#1|) $) 36) (($ |#1|) 25)) (-3044 (((-112) $ $) NIL)) (-4366 (($) 9 T CONST)) (-2203 (((-644 (-672 |#1|)) $) 28)) (-2968 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2914 (((-112) $ $) 12)) (-2956 (((-112) $ $) NIL)) (-2935 (((-112) $ $) 67))) +(((-893 |#1|) (-13 (-850) (-1038 (-672 |#1|)) (-10 -8 (-15 1 ($) -1623) (-15 -3152 ((-819 |#1|) $)) (-15 -3152 ($ |#1|)) (-15 -3908 ((-672 |#1|) $)) (-15 -2440 ((-771) $)) (-15 -2203 ((-644 (-672 |#1|)) $)) (-15 -3919 ($ $)) (-15 -1748 ((-112) $)) (-15 -4111 ((-644 |#1|) $)))) (-850)) (T -893)) +((-4366 (*1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-850)))) (-3152 (*1 *2 *1) (-12 (-5 *2 (-819 *3)) (-5 *1 (-893 *3)) (-4 *3 (-850)))) (-3152 (*1 *1 *2) (-12 (-5 *1 (-893 *2)) (-4 *2 (-850)))) (-3908 (*1 *2 *1) (-12 (-5 *2 (-672 *3)) (-5 *1 (-893 *3)) (-4 *3 (-850)))) (-2440 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-893 *3)) (-4 *3 (-850)))) (-2203 (*1 *2 *1) (-12 (-5 *2 (-644 (-672 *3))) (-5 *1 (-893 *3)) (-4 *3 (-850)))) (-3919 (*1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-850)))) (-1748 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-850)))) (-4111 (*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-893 *3)) (-4 *3 (-850))))) +(-13 (-850) (-1038 (-672 |#1|)) (-10 -8 (-15 (-4366) ($) -1623) (-15 -3152 ((-819 |#1|) $)) (-15 -3152 ($ |#1|)) (-15 -3908 ((-672 |#1|) $)) (-15 -2440 ((-771) $)) (-15 -2203 ((-644 (-672 |#1|)) $)) (-15 -3919 ($ $)) (-15 -1748 ((-112) $)) (-15 -4111 ((-644 |#1|) $)))) +((-1964 ((|#1| |#1| |#1|) 19))) +(((-894 |#1| |#2|) (-10 -7 (-15 -1964 (|#1| |#1| |#1|))) (-1240 |#2|) (-1049)) (T -894)) +((-1964 (*1 *2 *2 *2) (-12 (-4 *3 (-1049)) (-5 *1 (-894 *2 *3)) (-4 *2 (-1240 *3))))) +(-10 -7 (-15 -1964 (|#1| |#1| |#1|))) +((-2988 (((-112) $ $) 7)) (-2659 (((-2 (|:| -2659 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))) 15)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3152 (((-862) $) 12)) (-3044 (((-112) $ $) 9)) (-4241 (((-1035) (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))) 14)) (-2914 (((-112) $ $) 6))) (((-895) (-140)) (T -895)) -((-1338 (*1 *2 *3 *4) (-12 (-4 *1 (-895)) (-5 *3 (-1062)) (-5 *4 (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))) (-5 *2 (-2 (|:| -1338 (-381)) (|:| |explanations| (-1157)))))) (-2776 (*1 *2 *3) (-12 (-4 *1 (-895)) (-5 *3 (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))) (-5 *2 (-1035))))) -(-13 (-1099) (-10 -7 (-15 -1338 ((-2 (|:| -1338 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225))))) (-15 -2776 ((-1035) (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225))))))) +((-2659 (*1 *2 *3 *4) (-12 (-4 *1 (-895)) (-5 *3 (-1062)) (-5 *4 (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))) (-5 *2 (-2 (|:| -2659 (-381)) (|:| |explanations| (-1157)))))) (-4241 (*1 *2 *3) (-12 (-4 *1 (-895)) (-5 *3 (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))) (-5 *2 (-1035))))) +(-13 (-1099) (-10 -7 (-15 -2659 ((-2 (|:| -2659 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225))))) (-15 -4241 ((-1035) (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225))))))) (((-102) . T) ((-613 (-862)) . T) ((-1099) . T)) -((-3460 ((|#1| |#1| (-771)) 29)) (-2409 (((-3 |#1| "failed") |#1| |#1|) 26)) (-3475 (((-3 (-2 (|:| -4380 |#1|) (|:| -4392 |#1|)) "failed") |#1| (-771) (-771)) 32) (((-644 |#1|) |#1|) 39))) -(((-896 |#1| |#2|) (-10 -7 (-15 -3475 ((-644 |#1|) |#1|)) (-15 -3475 ((-3 (-2 (|:| -4380 |#1|) (|:| -4392 |#1|)) "failed") |#1| (-771) (-771))) (-15 -2409 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3460 (|#1| |#1| (-771)))) (-1240 |#2|) (-365)) (T -896)) -((-3460 (*1 *2 *2 *3) (-12 (-5 *3 (-771)) (-4 *4 (-365)) (-5 *1 (-896 *2 *4)) (-4 *2 (-1240 *4)))) (-2409 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-365)) (-5 *1 (-896 *2 *3)) (-4 *2 (-1240 *3)))) (-3475 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-771)) (-4 *5 (-365)) (-5 *2 (-2 (|:| -4380 *3) (|:| -4392 *3))) (-5 *1 (-896 *3 *5)) (-4 *3 (-1240 *5)))) (-3475 (*1 *2 *3) (-12 (-4 *4 (-365)) (-5 *2 (-644 *3)) (-5 *1 (-896 *3 *4)) (-4 *3 (-1240 *4))))) -(-10 -7 (-15 -3475 ((-644 |#1|) |#1|)) (-15 -3475 ((-3 (-2 (|:| -4380 |#1|) (|:| -4392 |#1|)) "failed") |#1| (-771) (-771))) (-15 -2409 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3460 (|#1| |#1| (-771)))) -((-1957 (((-1035) (-381) (-381) (-381) (-381) (-771) (-771) (-644 (-317 (-381))) (-644 (-644 (-317 (-381)))) (-1157)) 106) (((-1035) (-381) (-381) (-381) (-381) (-771) (-771) (-644 (-317 (-381))) (-644 (-644 (-317 (-381)))) (-1157) (-225)) 102) (((-1035) (-898) (-1062)) 94) (((-1035) (-898)) 95)) (-1338 (((-2 (|:| -1338 (-381)) (|:| -2640 (-1157)) (|:| |explanations| (-644 (-1157)))) (-898) (-1062)) 65) (((-2 (|:| -1338 (-381)) (|:| -2640 (-1157)) (|:| |explanations| (-644 (-1157)))) (-898)) 67))) -(((-897) (-10 -7 (-15 -1957 ((-1035) (-898))) (-15 -1957 ((-1035) (-898) (-1062))) (-15 -1957 ((-1035) (-381) (-381) (-381) (-381) (-771) (-771) (-644 (-317 (-381))) (-644 (-644 (-317 (-381)))) (-1157) (-225))) (-15 -1957 ((-1035) (-381) (-381) (-381) (-381) (-771) (-771) (-644 (-317 (-381))) (-644 (-644 (-317 (-381)))) (-1157))) (-15 -1338 ((-2 (|:| -1338 (-381)) (|:| -2640 (-1157)) (|:| |explanations| (-644 (-1157)))) (-898))) (-15 -1338 ((-2 (|:| -1338 (-381)) (|:| -2640 (-1157)) (|:| |explanations| (-644 (-1157)))) (-898) (-1062))))) (T -897)) -((-1338 (*1 *2 *3 *4) (-12 (-5 *3 (-898)) (-5 *4 (-1062)) (-5 *2 (-2 (|:| -1338 (-381)) (|:| -2640 (-1157)) (|:| |explanations| (-644 (-1157))))) (-5 *1 (-897)))) (-1338 (*1 *2 *3) (-12 (-5 *3 (-898)) (-5 *2 (-2 (|:| -1338 (-381)) (|:| -2640 (-1157)) (|:| |explanations| (-644 (-1157))))) (-5 *1 (-897)))) (-1957 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-771)) (-5 *6 (-644 (-644 (-317 *3)))) (-5 *7 (-1157)) (-5 *5 (-644 (-317 (-381)))) (-5 *3 (-381)) (-5 *2 (-1035)) (-5 *1 (-897)))) (-1957 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-771)) (-5 *6 (-644 (-644 (-317 *3)))) (-5 *7 (-1157)) (-5 *8 (-225)) (-5 *5 (-644 (-317 (-381)))) (-5 *3 (-381)) (-5 *2 (-1035)) (-5 *1 (-897)))) (-1957 (*1 *2 *3 *4) (-12 (-5 *3 (-898)) (-5 *4 (-1062)) (-5 *2 (-1035)) (-5 *1 (-897)))) (-1957 (*1 *2 *3) (-12 (-5 *3 (-898)) (-5 *2 (-1035)) (-5 *1 (-897))))) -(-10 -7 (-15 -1957 ((-1035) (-898))) (-15 -1957 ((-1035) (-898) (-1062))) (-15 -1957 ((-1035) (-381) (-381) (-381) (-381) (-771) (-771) (-644 (-317 (-381))) (-644 (-644 (-317 (-381)))) (-1157) (-225))) (-15 -1957 ((-1035) (-381) (-381) (-381) (-381) (-771) (-771) (-644 (-317 (-381))) (-644 (-644 (-317 (-381)))) (-1157))) (-15 -1338 ((-2 (|:| -1338 (-381)) (|:| -2640 (-1157)) (|:| |explanations| (-644 (-1157)))) (-898))) (-15 -1338 ((-2 (|:| -1338 (-381)) (|:| -2640 (-1157)) (|:| |explanations| (-644 (-1157)))) (-898) (-1062)))) -((-3007 (((-112) $ $) NIL)) (-4205 (((-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225))) $) 19)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 21) (($ (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))) 18)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) -(((-898) (-13 (-1099) (-10 -8 (-15 -3783 ($ (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225))))) (-15 -4205 ((-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225))) $))))) (T -898)) -((-3783 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))) (-5 *1 (-898)))) (-4205 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))) (-5 *1 (-898))))) -(-13 (-1099) (-10 -8 (-15 -3783 ($ (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225))))) (-15 -4205 ((-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225))) $)))) -((-3561 (($ $ |#2|) NIL) (($ $ (-644 |#2|)) 10) (($ $ |#2| (-771)) 15) (($ $ (-644 |#2|) (-644 (-771))) 18)) (-2875 (($ $ |#2|) 19) (($ $ (-644 |#2|)) 21) (($ $ |#2| (-771)) 22) (($ $ (-644 |#2|) (-644 (-771))) 24))) -(((-899 |#1| |#2|) (-10 -8 (-15 -2875 (|#1| |#1| (-644 |#2|) (-644 (-771)))) (-15 -2875 (|#1| |#1| |#2| (-771))) (-15 -2875 (|#1| |#1| (-644 |#2|))) (-15 -2875 (|#1| |#1| |#2|)) (-15 -3561 (|#1| |#1| (-644 |#2|) (-644 (-771)))) (-15 -3561 (|#1| |#1| |#2| (-771))) (-15 -3561 (|#1| |#1| (-644 |#2|))) (-15 -3561 (|#1| |#1| |#2|))) (-900 |#2|) (-1099)) (T -899)) -NIL -(-10 -8 (-15 -2875 (|#1| |#1| (-644 |#2|) (-644 (-771)))) (-15 -2875 (|#1| |#1| |#2| (-771))) (-15 -2875 (|#1| |#1| (-644 |#2|))) (-15 -2875 (|#1| |#1| |#2|)) (-15 -3561 (|#1| |#1| (-644 |#2|) (-644 (-771)))) (-15 -3561 (|#1| |#1| |#2| (-771))) (-15 -3561 (|#1| |#1| (-644 |#2|))) (-15 -3561 (|#1| |#1| |#2|))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-4175 (((-3 $ "failed") $ $) 20)) (-3012 (($) 18 T CONST)) (-1878 (((-3 $ "failed") $) 37)) (-3934 (((-112) $) 35)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3561 (($ $ |#1|) 46) (($ $ (-644 |#1|)) 45) (($ $ |#1| (-771)) 44) (($ $ (-644 |#1|) (-644 (-771))) 43)) (-3783 (((-862) $) 12) (($ (-566)) 33)) (-2107 (((-771)) 32 T CONST)) (-3117 (((-112) $ $) 9)) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-2875 (($ $ |#1|) 42) (($ $ (-644 |#1|)) 41) (($ $ |#1| (-771)) 40) (($ $ (-644 |#1|) (-644 (-771))) 39)) (-2947 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) +((-3336 ((|#1| |#1| (-771)) 29)) (-3886 (((-3 |#1| "failed") |#1| |#1|) 26)) (-2461 (((-3 (-2 (|:| -1953 |#1|) (|:| -1966 |#1|)) "failed") |#1| (-771) (-771)) 32) (((-644 |#1|) |#1|) 39))) +(((-896 |#1| |#2|) (-10 -7 (-15 -2461 ((-644 |#1|) |#1|)) (-15 -2461 ((-3 (-2 (|:| -1953 |#1|) (|:| -1966 |#1|)) "failed") |#1| (-771) (-771))) (-15 -3886 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3336 (|#1| |#1| (-771)))) (-1240 |#2|) (-365)) (T -896)) +((-3336 (*1 *2 *2 *3) (-12 (-5 *3 (-771)) (-4 *4 (-365)) (-5 *1 (-896 *2 *4)) (-4 *2 (-1240 *4)))) (-3886 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-365)) (-5 *1 (-896 *2 *3)) (-4 *2 (-1240 *3)))) (-2461 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-771)) (-4 *5 (-365)) (-5 *2 (-2 (|:| -1953 *3) (|:| -1966 *3))) (-5 *1 (-896 *3 *5)) (-4 *3 (-1240 *5)))) (-2461 (*1 *2 *3) (-12 (-4 *4 (-365)) (-5 *2 (-644 *3)) (-5 *1 (-896 *3 *4)) (-4 *3 (-1240 *4))))) +(-10 -7 (-15 -2461 ((-644 |#1|) |#1|)) (-15 -2461 ((-3 (-2 (|:| -1953 |#1|) (|:| -1966 |#1|)) "failed") |#1| (-771) (-771))) (-15 -3886 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3336 (|#1| |#1| (-771)))) +((-2423 (((-1035) (-381) (-381) (-381) (-381) (-771) (-771) (-644 (-317 (-381))) (-644 (-644 (-317 (-381)))) (-1157)) 106) (((-1035) (-381) (-381) (-381) (-381) (-771) (-771) (-644 (-317 (-381))) (-644 (-644 (-317 (-381)))) (-1157) (-225)) 102) (((-1035) (-898) (-1062)) 94) (((-1035) (-898)) 95)) (-2659 (((-2 (|:| -2659 (-381)) (|:| -1368 (-1157)) (|:| |explanations| (-644 (-1157)))) (-898) (-1062)) 65) (((-2 (|:| -2659 (-381)) (|:| -1368 (-1157)) (|:| |explanations| (-644 (-1157)))) (-898)) 67))) +(((-897) (-10 -7 (-15 -2423 ((-1035) (-898))) (-15 -2423 ((-1035) (-898) (-1062))) (-15 -2423 ((-1035) (-381) (-381) (-381) (-381) (-771) (-771) (-644 (-317 (-381))) (-644 (-644 (-317 (-381)))) (-1157) (-225))) (-15 -2423 ((-1035) (-381) (-381) (-381) (-381) (-771) (-771) (-644 (-317 (-381))) (-644 (-644 (-317 (-381)))) (-1157))) (-15 -2659 ((-2 (|:| -2659 (-381)) (|:| -1368 (-1157)) (|:| |explanations| (-644 (-1157)))) (-898))) (-15 -2659 ((-2 (|:| -2659 (-381)) (|:| -1368 (-1157)) (|:| |explanations| (-644 (-1157)))) (-898) (-1062))))) (T -897)) +((-2659 (*1 *2 *3 *4) (-12 (-5 *3 (-898)) (-5 *4 (-1062)) (-5 *2 (-2 (|:| -2659 (-381)) (|:| -1368 (-1157)) (|:| |explanations| (-644 (-1157))))) (-5 *1 (-897)))) (-2659 (*1 *2 *3) (-12 (-5 *3 (-898)) (-5 *2 (-2 (|:| -2659 (-381)) (|:| -1368 (-1157)) (|:| |explanations| (-644 (-1157))))) (-5 *1 (-897)))) (-2423 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-771)) (-5 *6 (-644 (-644 (-317 *3)))) (-5 *7 (-1157)) (-5 *5 (-644 (-317 (-381)))) (-5 *3 (-381)) (-5 *2 (-1035)) (-5 *1 (-897)))) (-2423 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-771)) (-5 *6 (-644 (-644 (-317 *3)))) (-5 *7 (-1157)) (-5 *8 (-225)) (-5 *5 (-644 (-317 (-381)))) (-5 *3 (-381)) (-5 *2 (-1035)) (-5 *1 (-897)))) (-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-898)) (-5 *4 (-1062)) (-5 *2 (-1035)) (-5 *1 (-897)))) (-2423 (*1 *2 *3) (-12 (-5 *3 (-898)) (-5 *2 (-1035)) (-5 *1 (-897))))) +(-10 -7 (-15 -2423 ((-1035) (-898))) (-15 -2423 ((-1035) (-898) (-1062))) (-15 -2423 ((-1035) (-381) (-381) (-381) (-381) (-771) (-771) (-644 (-317 (-381))) (-644 (-644 (-317 (-381)))) (-1157) (-225))) (-15 -2423 ((-1035) (-381) (-381) (-381) (-381) (-771) (-771) (-644 (-317 (-381))) (-644 (-644 (-317 (-381)))) (-1157))) (-15 -2659 ((-2 (|:| -2659 (-381)) (|:| -1368 (-1157)) (|:| |explanations| (-644 (-1157)))) (-898))) (-15 -2659 ((-2 (|:| -2659 (-381)) (|:| -1368 (-1157)) (|:| |explanations| (-644 (-1157)))) (-898) (-1062)))) +((-2988 (((-112) $ $) NIL)) (-4158 (((-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225))) $) 19)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 21) (($ (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))) 18)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) +(((-898) (-13 (-1099) (-10 -8 (-15 -3152 ($ (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225))))) (-15 -4158 ((-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225))) $))))) (T -898)) +((-3152 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))) (-5 *1 (-898)))) (-4158 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))) (-5 *1 (-898))))) +(-13 (-1099) (-10 -8 (-15 -3152 ($ (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225))))) (-15 -4158 ((-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225))) $)))) +((-3629 (($ $ |#2|) NIL) (($ $ (-644 |#2|)) 10) (($ $ |#2| (-771)) 15) (($ $ (-644 |#2|) (-644 (-771))) 18)) (-3497 (($ $ |#2|) 19) (($ $ (-644 |#2|)) 21) (($ $ |#2| (-771)) 22) (($ $ (-644 |#2|) (-644 (-771))) 24))) +(((-899 |#1| |#2|) (-10 -8 (-15 -3497 (|#1| |#1| (-644 |#2|) (-644 (-771)))) (-15 -3497 (|#1| |#1| |#2| (-771))) (-15 -3497 (|#1| |#1| (-644 |#2|))) (-15 -3497 (|#1| |#1| |#2|)) (-15 -3629 (|#1| |#1| (-644 |#2|) (-644 (-771)))) (-15 -3629 (|#1| |#1| |#2| (-771))) (-15 -3629 (|#1| |#1| (-644 |#2|))) (-15 -3629 (|#1| |#1| |#2|))) (-900 |#2|) (-1099)) (T -899)) +NIL +(-10 -8 (-15 -3497 (|#1| |#1| (-644 |#2|) (-644 (-771)))) (-15 -3497 (|#1| |#1| |#2| (-771))) (-15 -3497 (|#1| |#1| (-644 |#2|))) (-15 -3497 (|#1| |#1| |#2|)) (-15 -3629 (|#1| |#1| (-644 |#2|) (-644 (-771)))) (-15 -3629 (|#1| |#1| |#2| (-771))) (-15 -3629 (|#1| |#1| (-644 |#2|))) (-15 -3629 (|#1| |#1| |#2|))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-3967 (((-3 $ "failed") $ $) 20)) (-2463 (($) 18 T CONST)) (-3245 (((-3 $ "failed") $) 37)) (-2389 (((-112) $) 35)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3629 (($ $ |#1|) 46) (($ $ (-644 |#1|)) 45) (($ $ |#1| (-771)) 44) (($ $ (-644 |#1|) (-644 (-771))) 43)) (-3152 (((-862) $) 12) (($ (-566)) 33)) (-2593 (((-771)) 32 T CONST)) (-3044 (((-112) $ $) 9)) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-3497 (($ $ |#1|) 42) (($ $ (-644 |#1|)) 41) (($ $ |#1| (-771)) 40) (($ $ (-644 |#1|) (-644 (-771))) 39)) (-2914 (((-112) $ $) 6)) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) (((-900 |#1|) (-140) (-1099)) (T -900)) -((-3561 (*1 *1 *1 *2) (-12 (-4 *1 (-900 *2)) (-4 *2 (-1099)))) (-3561 (*1 *1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *1 (-900 *3)) (-4 *3 (-1099)))) (-3561 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-771)) (-4 *1 (-900 *2)) (-4 *2 (-1099)))) (-3561 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 *4)) (-5 *3 (-644 (-771))) (-4 *1 (-900 *4)) (-4 *4 (-1099)))) (-2875 (*1 *1 *1 *2) (-12 (-4 *1 (-900 *2)) (-4 *2 (-1099)))) (-2875 (*1 *1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *1 (-900 *3)) (-4 *3 (-1099)))) (-2875 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-771)) (-4 *1 (-900 *2)) (-4 *2 (-1099)))) (-2875 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 *4)) (-5 *3 (-644 (-771))) (-4 *1 (-900 *4)) (-4 *4 (-1099))))) -(-13 (-1049) (-10 -8 (-15 -3561 ($ $ |t#1|)) (-15 -3561 ($ $ (-644 |t#1|))) (-15 -3561 ($ $ |t#1| (-771))) (-15 -3561 ($ $ (-644 |t#1|) (-644 (-771)))) (-15 -2875 ($ $ |t#1|)) (-15 -2875 ($ $ (-644 |t#1|))) (-15 -2875 ($ $ |t#1| (-771))) (-15 -2875 ($ $ (-644 |t#1|) (-644 (-771)))))) +((-3629 (*1 *1 *1 *2) (-12 (-4 *1 (-900 *2)) (-4 *2 (-1099)))) (-3629 (*1 *1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *1 (-900 *3)) (-4 *3 (-1099)))) (-3629 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-771)) (-4 *1 (-900 *2)) (-4 *2 (-1099)))) (-3629 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 *4)) (-5 *3 (-644 (-771))) (-4 *1 (-900 *4)) (-4 *4 (-1099)))) (-3497 (*1 *1 *1 *2) (-12 (-4 *1 (-900 *2)) (-4 *2 (-1099)))) (-3497 (*1 *1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *1 (-900 *3)) (-4 *3 (-1099)))) (-3497 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-771)) (-4 *1 (-900 *2)) (-4 *2 (-1099)))) (-3497 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 *4)) (-5 *3 (-644 (-771))) (-4 *1 (-900 *4)) (-4 *4 (-1099))))) +(-13 (-1049) (-10 -8 (-15 -3629 ($ $ |t#1|)) (-15 -3629 ($ $ (-644 |t#1|))) (-15 -3629 ($ $ |t#1| (-771))) (-15 -3629 ($ $ (-644 |t#1|) (-644 (-771)))) (-15 -3497 ($ $ |t#1|)) (-15 -3497 ($ $ (-644 |t#1|))) (-15 -3497 ($ $ |t#1| (-771))) (-15 -3497 ($ $ (-644 |t#1|) (-644 (-771)))))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-616 (-566)) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-726) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) -((-3007 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2233 ((|#1| $) 26)) (-2256 (((-112) $ (-771)) NIL)) (-3396 ((|#1| $ |#1|) NIL (|has| $ (-6 -4415)))) (-2862 (($ $ $) NIL (|has| $ (-6 -4415)))) (-2636 (($ $ $) NIL (|has| $ (-6 -4415)))) (-3923 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4415))) (($ $ "left" $) NIL (|has| $ (-6 -4415))) (($ $ "right" $) NIL (|has| $ (-6 -4415)))) (-3800 (($ $ (-644 $)) NIL (|has| $ (-6 -4415)))) (-3012 (($) NIL T CONST)) (-4392 (($ $) 25)) (-1981 (($ |#1|) 12) (($ $ $) 17)) (-3979 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-4009 (((-644 $) $) NIL)) (-3891 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2404 (((-112) $ (-771)) NIL)) (-2329 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2908 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#1| |#1|) $) NIL)) (-2603 (((-112) $ (-771)) NIL)) (-4380 (($ $) 23)) (-3701 (((-644 |#1|) $) NIL)) (-3438 (((-112) $) 20)) (-4117 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4035 (((-1119) $) NIL (|has| |#1| (-1099)))) (-2692 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) NIL)) (-3467 (((-112) $) NIL)) (-1494 (($) NIL)) (-4390 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1416 (((-566) $ $) NIL)) (-3494 (((-112) $) NIL)) (-4045 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3940 (($ $) NIL)) (-3783 (((-1200 |#1|) $) 9) (((-862) $) 29 (|has| |#1| (-613 (-862))))) (-2462 (((-644 $) $) NIL)) (-4288 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3117 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1894 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) 21 (|has| |#1| (-1099)))) (-3018 (((-771) $) NIL (|has| $ (-6 -4414))))) -(((-901 |#1|) (-13 (-119 |#1|) (-613 (-1200 |#1|)) (-10 -8 (-15 -1981 ($ |#1|)) (-15 -1981 ($ $ $)))) (-1099)) (T -901)) -((-1981 (*1 *1 *2) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1099)))) (-1981 (*1 *1 *1 *1) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1099))))) -(-13 (-119 |#1|) (-613 (-1200 |#1|)) (-10 -8 (-15 -1981 ($ |#1|)) (-15 -1981 ($ $ $)))) -((-2192 ((|#2| (-1141 |#1| |#2|)) 53))) -(((-902 |#1| |#2|) (-10 -7 (-15 -2192 (|#2| (-1141 |#1| |#2|)))) (-921) (-13 (-1049) (-10 -7 (-6 (-4416 "*"))))) (T -902)) -((-2192 (*1 *2 *3) (-12 (-5 *3 (-1141 *4 *2)) (-14 *4 (-921)) (-4 *2 (-13 (-1049) (-10 -7 (-6 (-4416 "*"))))) (-5 *1 (-902 *4 *2))))) -(-10 -7 (-15 -2192 (|#2| (-1141 |#1| |#2|)))) -((-3007 (((-112) $ $) 7)) (-3012 (($) 19 T CONST)) (-1878 (((-3 $ "failed") $) 16)) (-2195 (((-1101 |#1|) $ |#1|) 33)) (-3934 (((-112) $) 18)) (-2097 (($ $ $) 31 (-2809 (|has| |#1| (-850)) (|has| |#1| (-370))))) (-3962 (($ $ $) 30 (-2809 (|has| |#1| (-850)) (|has| |#1| (-370))))) (-4117 (((-1157) $) 10)) (-1713 (($ $) 25)) (-4035 (((-1119) $) 11)) (-2055 ((|#1| $ |#1|) 35)) (-4390 ((|#1| $ |#1|) 34)) (-2804 (($ (-644 (-644 |#1|))) 36)) (-4290 (($ (-644 |#1|)) 37)) (-2358 (($ $ $) 22)) (-3171 (($ $ $) 21)) (-3783 (((-862) $) 12)) (-3117 (((-112) $ $) 9)) (-4334 (($) 20 T CONST)) (-3009 (((-112) $ $) 28 (-2809 (|has| |#1| (-850)) (|has| |#1| (-370))))) (-2984 (((-112) $ $) 27 (-2809 (|has| |#1| (-850)) (|has| |#1| (-370))))) (-2947 (((-112) $ $) 6)) (-2995 (((-112) $ $) 29 (-2809 (|has| |#1| (-850)) (|has| |#1| (-370))))) (-2969 (((-112) $ $) 32)) (-3065 (($ $ $) 24)) (** (($ $ (-921)) 14) (($ $ (-771)) 17) (($ $ (-566)) 23)) (* (($ $ $) 15))) +((-2988 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2876 ((|#1| $) 26)) (-1504 (((-112) $ (-771)) NIL)) (-2191 ((|#1| $ |#1|) NIL (|has| $ (-6 -4415)))) (-1878 (($ $ $) NIL (|has| $ (-6 -4415)))) (-3414 (($ $ $) NIL (|has| $ (-6 -4415)))) (-1456 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4415))) (($ $ "left" $) NIL (|has| $ (-6 -4415))) (($ $ "right" $) NIL (|has| $ (-6 -4415)))) (-4202 (($ $ (-644 $)) NIL (|has| $ (-6 -4415)))) (-2463 (($) NIL T CONST)) (-1966 (($ $) 25)) (-3018 (($ |#1|) 12) (($ $ $) 17)) (-1683 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-3431 (((-644 $) $) NIL)) (-1507 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3456 (((-112) $ (-771)) NIL)) (-3491 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3885 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#1| |#1|) $) NIL)) (-3267 (((-112) $ (-771)) NIL)) (-1953 (($ $) 23)) (-1458 (((-644 |#1|) $) NIL)) (-3860 (((-112) $) 20)) (-3380 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4072 (((-1119) $) NIL (|has| |#1| (-1099)))) (-2823 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) NIL)) (-2872 (((-112) $) NIL)) (-3493 (($) NIL)) (-1309 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1696 (((-566) $ $) NIL)) (-3786 (((-112) $) NIL)) (-4083 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-1480 (($ $) NIL)) (-3152 (((-1200 |#1|) $) 9) (((-862) $) 29 (|has| |#1| (-613 (-862))))) (-1926 (((-644 $) $) NIL)) (-4385 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3044 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2210 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) 21 (|has| |#1| (-1099)))) (-3000 (((-771) $) NIL (|has| $ (-6 -4414))))) +(((-901 |#1|) (-13 (-119 |#1|) (-613 (-1200 |#1|)) (-10 -8 (-15 -3018 ($ |#1|)) (-15 -3018 ($ $ $)))) (-1099)) (T -901)) +((-3018 (*1 *1 *2) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1099)))) (-3018 (*1 *1 *1 *1) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1099))))) +(-13 (-119 |#1|) (-613 (-1200 |#1|)) (-10 -8 (-15 -3018 ($ |#1|)) (-15 -3018 ($ $ $)))) +((-1954 ((|#2| (-1141 |#1| |#2|)) 53))) +(((-902 |#1| |#2|) (-10 -7 (-15 -1954 (|#2| (-1141 |#1| |#2|)))) (-921) (-13 (-1049) (-10 -7 (-6 (-4416 "*"))))) (T -902)) +((-1954 (*1 *2 *3) (-12 (-5 *3 (-1141 *4 *2)) (-14 *4 (-921)) (-4 *2 (-13 (-1049) (-10 -7 (-6 (-4416 "*"))))) (-5 *1 (-902 *4 *2))))) +(-10 -7 (-15 -1954 (|#2| (-1141 |#1| |#2|)))) +((-2988 (((-112) $ $) 7)) (-2463 (($) 19 T CONST)) (-3245 (((-3 $ "failed") $) 16)) (-4069 (((-1101 |#1|) $ |#1|) 33)) (-2389 (((-112) $) 18)) (-1478 (($ $ $) 31 (-2768 (|has| |#1| (-850)) (|has| |#1| (-370))))) (-2599 (($ $ $) 30 (-2768 (|has| |#1| (-850)) (|has| |#1| (-370))))) (-3380 (((-1157) $) 10)) (-2748 (($ $) 25)) (-4072 (((-1119) $) 11)) (-2023 ((|#1| $ |#1|) 35)) (-1309 ((|#1| $ |#1|) 34)) (-3951 (($ (-644 (-644 |#1|))) 36)) (-3344 (($ (-644 |#1|)) 37)) (-3357 (($ $ $) 22)) (-2527 (($ $ $) 21)) (-3152 (((-862) $) 12)) (-3044 (((-112) $ $) 9)) (-4366 (($) 20 T CONST)) (-2968 (((-112) $ $) 28 (-2768 (|has| |#1| (-850)) (|has| |#1| (-370))))) (-2946 (((-112) $ $) 27 (-2768 (|has| |#1| (-850)) (|has| |#1| (-370))))) (-2914 (((-112) $ $) 6)) (-2956 (((-112) $ $) 29 (-2768 (|has| |#1| (-850)) (|has| |#1| (-370))))) (-2935 (((-112) $ $) 32)) (-3025 (($ $ $) 24)) (** (($ $ (-921)) 14) (($ $ (-771)) 17) (($ $ (-566)) 23)) (* (($ $ $) 15))) (((-903 |#1|) (-140) (-1099)) (T -903)) -((-4290 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-4 *1 (-903 *3)))) (-2804 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1099)) (-4 *1 (-903 *3)))) (-2055 (*1 *2 *1 *2) (-12 (-4 *1 (-903 *2)) (-4 *2 (-1099)))) (-4390 (*1 *2 *1 *2) (-12 (-4 *1 (-903 *2)) (-4 *2 (-1099)))) (-2195 (*1 *2 *1 *3) (-12 (-4 *1 (-903 *3)) (-4 *3 (-1099)) (-5 *2 (-1101 *3)))) (-2969 (*1 *2 *1 *1) (-12 (-4 *1 (-903 *3)) (-4 *3 (-1099)) (-5 *2 (-112))))) -(-13 (-475) (-10 -8 (-15 -4290 ($ (-644 |t#1|))) (-15 -2804 ($ (-644 (-644 |t#1|)))) (-15 -2055 (|t#1| $ |t#1|)) (-15 -4390 (|t#1| $ |t#1|)) (-15 -2195 ((-1101 |t#1|) $ |t#1|)) (-15 -2969 ((-112) $ $)) (IF (|has| |t#1| (-850)) (-6 (-850)) |%noBranch|) (IF (|has| |t#1| (-370)) (-6 (-850)) |%noBranch|))) -(((-102) . T) ((-613 (-862)) . T) ((-475) . T) ((-726) . T) ((-850) -2809 (|has| |#1| (-850)) (|has| |#1| (-370))) ((-1111) . T) ((-1099) . T)) -((-3007 (((-112) $ $) NIL)) (-2611 (((-644 (-644 (-771))) $) 165)) (-3301 (((-644 (-771)) (-905 |#1|) $) 193)) (-2823 (((-644 (-771)) (-905 |#1|) $) 194)) (-2133 (((-644 (-905 |#1|)) $) 154)) (-1552 (((-905 |#1|) $ (-566)) 159) (((-905 |#1|) $) 160)) (-3938 (($ (-644 (-905 |#1|))) 167)) (-3254 (((-771) $) 161)) (-2749 (((-1101 (-1101 |#1|)) $) 191)) (-2195 (((-1101 |#1|) $ |#1|) 182) (((-1101 (-1101 |#1|)) $ (-1101 |#1|)) 202) (((-1101 (-644 |#1|)) $ (-644 |#1|)) 205)) (-4203 (((-1101 |#1|) $) 157)) (-1916 (((-112) (-905 |#1|) $) 143)) (-4117 (((-1157) $) NIL)) (-2316 (((-1269) $) 147) (((-1269) $ (-566) (-566)) 206)) (-4035 (((-1119) $) NIL)) (-4308 (((-644 (-905 |#1|)) $) 148)) (-4390 (((-905 |#1|) $ (-771)) 155)) (-3636 (((-771) $) 162)) (-3783 (((-862) $) 179) (((-644 (-905 |#1|)) $) 28) (($ (-644 (-905 |#1|))) 166)) (-3117 (((-112) $ $) NIL)) (-2719 (((-644 |#1|) $) 164)) (-2947 (((-112) $ $) 199)) (-2995 (((-112) $ $) 197)) (-2969 (((-112) $ $) 196))) -(((-904 |#1|) (-13 (-1099) (-10 -8 (-15 -3783 ((-644 (-905 |#1|)) $)) (-15 -4308 ((-644 (-905 |#1|)) $)) (-15 -4390 ((-905 |#1|) $ (-771))) (-15 -1552 ((-905 |#1|) $ (-566))) (-15 -1552 ((-905 |#1|) $)) (-15 -3254 ((-771) $)) (-15 -3636 ((-771) $)) (-15 -2719 ((-644 |#1|) $)) (-15 -2133 ((-644 (-905 |#1|)) $)) (-15 -2611 ((-644 (-644 (-771))) $)) (-15 -3783 ($ (-644 (-905 |#1|)))) (-15 -3938 ($ (-644 (-905 |#1|)))) (-15 -2195 ((-1101 |#1|) $ |#1|)) (-15 -2749 ((-1101 (-1101 |#1|)) $)) (-15 -2195 ((-1101 (-1101 |#1|)) $ (-1101 |#1|))) (-15 -2195 ((-1101 (-644 |#1|)) $ (-644 |#1|))) (-15 -1916 ((-112) (-905 |#1|) $)) (-15 -3301 ((-644 (-771)) (-905 |#1|) $)) (-15 -2823 ((-644 (-771)) (-905 |#1|) $)) (-15 -4203 ((-1101 |#1|) $)) (-15 -2969 ((-112) $ $)) (-15 -2995 ((-112) $ $)) (-15 -2316 ((-1269) $)) (-15 -2316 ((-1269) $ (-566) (-566))))) (-1099)) (T -904)) -((-3783 (*1 *2 *1) (-12 (-5 *2 (-644 (-905 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) (-4308 (*1 *2 *1) (-12 (-5 *2 (-644 (-905 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) (-4390 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *2 (-905 *4)) (-5 *1 (-904 *4)) (-4 *4 (-1099)))) (-1552 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *2 (-905 *4)) (-5 *1 (-904 *4)) (-4 *4 (-1099)))) (-1552 (*1 *2 *1) (-12 (-5 *2 (-905 *3)) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) (-3254 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) (-3636 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) (-2719 (*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) (-2133 (*1 *2 *1) (-12 (-5 *2 (-644 (-905 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) (-2611 (*1 *2 *1) (-12 (-5 *2 (-644 (-644 (-771)))) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-644 (-905 *3))) (-4 *3 (-1099)) (-5 *1 (-904 *3)))) (-3938 (*1 *1 *2) (-12 (-5 *2 (-644 (-905 *3))) (-4 *3 (-1099)) (-5 *1 (-904 *3)))) (-2195 (*1 *2 *1 *3) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) (-2749 (*1 *2 *1) (-12 (-5 *2 (-1101 (-1101 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) (-2195 (*1 *2 *1 *3) (-12 (-4 *4 (-1099)) (-5 *2 (-1101 (-1101 *4))) (-5 *1 (-904 *4)) (-5 *3 (-1101 *4)))) (-2195 (*1 *2 *1 *3) (-12 (-4 *4 (-1099)) (-5 *2 (-1101 (-644 *4))) (-5 *1 (-904 *4)) (-5 *3 (-644 *4)))) (-1916 (*1 *2 *3 *1) (-12 (-5 *3 (-905 *4)) (-4 *4 (-1099)) (-5 *2 (-112)) (-5 *1 (-904 *4)))) (-3301 (*1 *2 *3 *1) (-12 (-5 *3 (-905 *4)) (-4 *4 (-1099)) (-5 *2 (-644 (-771))) (-5 *1 (-904 *4)))) (-2823 (*1 *2 *3 *1) (-12 (-5 *3 (-905 *4)) (-4 *4 (-1099)) (-5 *2 (-644 (-771))) (-5 *1 (-904 *4)))) (-4203 (*1 *2 *1) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) (-2969 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) (-2995 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) (-2316 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) (-2316 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-566)) (-5 *2 (-1269)) (-5 *1 (-904 *4)) (-4 *4 (-1099))))) -(-13 (-1099) (-10 -8 (-15 -3783 ((-644 (-905 |#1|)) $)) (-15 -4308 ((-644 (-905 |#1|)) $)) (-15 -4390 ((-905 |#1|) $ (-771))) (-15 -1552 ((-905 |#1|) $ (-566))) (-15 -1552 ((-905 |#1|) $)) (-15 -3254 ((-771) $)) (-15 -3636 ((-771) $)) (-15 -2719 ((-644 |#1|) $)) (-15 -2133 ((-644 (-905 |#1|)) $)) (-15 -2611 ((-644 (-644 (-771))) $)) (-15 -3783 ($ (-644 (-905 |#1|)))) (-15 -3938 ($ (-644 (-905 |#1|)))) (-15 -2195 ((-1101 |#1|) $ |#1|)) (-15 -2749 ((-1101 (-1101 |#1|)) $)) (-15 -2195 ((-1101 (-1101 |#1|)) $ (-1101 |#1|))) (-15 -2195 ((-1101 (-644 |#1|)) $ (-644 |#1|))) (-15 -1916 ((-112) (-905 |#1|) $)) (-15 -3301 ((-644 (-771)) (-905 |#1|) $)) (-15 -2823 ((-644 (-771)) (-905 |#1|) $)) (-15 -4203 ((-1101 |#1|) $)) (-15 -2969 ((-112) $ $)) (-15 -2995 ((-112) $ $)) (-15 -2316 ((-1269) $)) (-15 -2316 ((-1269) $ (-566) (-566))))) -((-3007 (((-112) $ $) NIL)) (-1510 (((-644 $) (-644 $)) 105)) (-4364 (((-566) $) 86)) (-3012 (($) NIL T CONST)) (-1878 (((-3 $ "failed") $) NIL)) (-3254 (((-771) $) 83)) (-2195 (((-1101 |#1|) $ |#1|) 74)) (-3934 (((-112) $) NIL)) (-2824 (((-112) $) 90)) (-2025 (((-771) $) 87)) (-4203 (((-1101 |#1|) $) 63)) (-2097 (($ $ $) NIL (-2809 (|has| |#1| (-370)) (|has| |#1| (-850))))) (-3962 (($ $ $) NIL (-2809 (|has| |#1| (-370)) (|has| |#1| (-850))))) (-1741 (((-2 (|:| |preimage| (-644 |#1|)) (|:| |image| (-644 |#1|))) $) 58)) (-4117 (((-1157) $) NIL)) (-1713 (($ $) 133)) (-4035 (((-1119) $) NIL)) (-3500 (((-1101 |#1|) $) 141 (|has| |#1| (-370)))) (-1946 (((-112) $) 84)) (-2055 ((|#1| $ |#1|) 72)) (-4390 ((|#1| $ |#1|) 135)) (-3636 (((-771) $) 65)) (-2804 (($ (-644 (-644 |#1|))) 120)) (-1503 (((-971) $) 78)) (-4290 (($ (-644 |#1|)) 35)) (-2358 (($ $ $) NIL)) (-3171 (($ $ $) NIL)) (-4146 (($ (-644 (-644 |#1|))) 60)) (-3461 (($ (-644 (-644 |#1|))) 125)) (-1879 (($ (-644 |#1|)) 137)) (-3783 (((-862) $) 119) (($ (-644 (-644 |#1|))) 93) (($ (-644 |#1|)) 94)) (-3117 (((-112) $ $) NIL)) (-4334 (($) 27 T CONST)) (-3009 (((-112) $ $) NIL (-2809 (|has| |#1| (-370)) (|has| |#1| (-850))))) (-2984 (((-112) $ $) NIL (-2809 (|has| |#1| (-370)) (|has| |#1| (-850))))) (-2947 (((-112) $ $) 70)) (-2995 (((-112) $ $) NIL (-2809 (|has| |#1| (-370)) (|has| |#1| (-850))))) (-2969 (((-112) $ $) 92)) (-3065 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ $ $) 36))) -(((-905 |#1|) (-13 (-903 |#1|) (-10 -8 (-15 -1741 ((-2 (|:| |preimage| (-644 |#1|)) (|:| |image| (-644 |#1|))) $)) (-15 -4146 ($ (-644 (-644 |#1|)))) (-15 -3783 ($ (-644 (-644 |#1|)))) (-15 -3783 ($ (-644 |#1|))) (-15 -3461 ($ (-644 (-644 |#1|)))) (-15 -3636 ((-771) $)) (-15 -4203 ((-1101 |#1|) $)) (-15 -1503 ((-971) $)) (-15 -3254 ((-771) $)) (-15 -2025 ((-771) $)) (-15 -4364 ((-566) $)) (-15 -1946 ((-112) $)) (-15 -2824 ((-112) $)) (-15 -1510 ((-644 $) (-644 $))) (IF (|has| |#1| (-370)) (-15 -3500 ((-1101 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-547)) (-15 -1879 ($ (-644 |#1|))) (IF (|has| |#1| (-370)) (-15 -1879 ($ (-644 |#1|))) |%noBranch|)))) (-1099)) (T -905)) -((-1741 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-644 *3)) (|:| |image| (-644 *3)))) (-5 *1 (-905 *3)) (-4 *3 (-1099)))) (-4146 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1099)) (-5 *1 (-905 *3)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1099)) (-5 *1 (-905 *3)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-905 *3)))) (-3461 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1099)) (-5 *1 (-905 *3)))) (-3636 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-905 *3)) (-4 *3 (-1099)))) (-4203 (*1 *2 *1) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-905 *3)) (-4 *3 (-1099)))) (-1503 (*1 *2 *1) (-12 (-5 *2 (-971)) (-5 *1 (-905 *3)) (-4 *3 (-1099)))) (-3254 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-905 *3)) (-4 *3 (-1099)))) (-2025 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-905 *3)) (-4 *3 (-1099)))) (-4364 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-905 *3)) (-4 *3 (-1099)))) (-1946 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1099)))) (-2824 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1099)))) (-1510 (*1 *2 *2) (-12 (-5 *2 (-644 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1099)))) (-3500 (*1 *2 *1) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-905 *3)) (-4 *3 (-370)) (-4 *3 (-1099)))) (-1879 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-905 *3))))) -(-13 (-903 |#1|) (-10 -8 (-15 -1741 ((-2 (|:| |preimage| (-644 |#1|)) (|:| |image| (-644 |#1|))) $)) (-15 -4146 ($ (-644 (-644 |#1|)))) (-15 -3783 ($ (-644 (-644 |#1|)))) (-15 -3783 ($ (-644 |#1|))) (-15 -3461 ($ (-644 (-644 |#1|)))) (-15 -3636 ((-771) $)) (-15 -4203 ((-1101 |#1|) $)) (-15 -1503 ((-971) $)) (-15 -3254 ((-771) $)) (-15 -2025 ((-771) $)) (-15 -4364 ((-566) $)) (-15 -1946 ((-112) $)) (-15 -2824 ((-112) $)) (-15 -1510 ((-644 $) (-644 $))) (IF (|has| |#1| (-370)) (-15 -3500 ((-1101 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-547)) (-15 -1879 ($ (-644 |#1|))) (IF (|has| |#1| (-370)) (-15 -1879 ($ (-644 |#1|))) |%noBranch|)))) -((-1864 (((-3 (-644 (-1171 |#4|)) "failed") (-644 (-1171 |#4|)) (-1171 |#4|)) 159)) (-1996 ((|#1|) 97)) (-2370 (((-420 (-1171 |#4|)) (-1171 |#4|)) 168)) (-2128 (((-420 (-1171 |#4|)) (-644 |#3|) (-1171 |#4|)) 84)) (-3905 (((-420 (-1171 |#4|)) (-1171 |#4|)) 178)) (-4089 (((-3 (-644 (-1171 |#4|)) "failed") (-644 (-1171 |#4|)) (-1171 |#4|) |#3|) 113))) -(((-906 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1864 ((-3 (-644 (-1171 |#4|)) "failed") (-644 (-1171 |#4|)) (-1171 |#4|))) (-15 -3905 ((-420 (-1171 |#4|)) (-1171 |#4|))) (-15 -2370 ((-420 (-1171 |#4|)) (-1171 |#4|))) (-15 -1996 (|#1|)) (-15 -4089 ((-3 (-644 (-1171 |#4|)) "failed") (-644 (-1171 |#4|)) (-1171 |#4|) |#3|)) (-15 -2128 ((-420 (-1171 |#4|)) (-644 |#3|) (-1171 |#4|)))) (-909) (-793) (-850) (-949 |#1| |#2| |#3|)) (T -906)) -((-2128 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *7)) (-4 *7 (-850)) (-4 *5 (-909)) (-4 *6 (-793)) (-4 *8 (-949 *5 *6 *7)) (-5 *2 (-420 (-1171 *8))) (-5 *1 (-906 *5 *6 *7 *8)) (-5 *4 (-1171 *8)))) (-4089 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-644 (-1171 *7))) (-5 *3 (-1171 *7)) (-4 *7 (-949 *5 *6 *4)) (-4 *5 (-909)) (-4 *6 (-793)) (-4 *4 (-850)) (-5 *1 (-906 *5 *6 *4 *7)))) (-1996 (*1 *2) (-12 (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-909)) (-5 *1 (-906 *2 *3 *4 *5)) (-4 *5 (-949 *2 *3 *4)))) (-2370 (*1 *2 *3) (-12 (-4 *4 (-909)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-949 *4 *5 *6)) (-5 *2 (-420 (-1171 *7))) (-5 *1 (-906 *4 *5 *6 *7)) (-5 *3 (-1171 *7)))) (-3905 (*1 *2 *3) (-12 (-4 *4 (-909)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-949 *4 *5 *6)) (-5 *2 (-420 (-1171 *7))) (-5 *1 (-906 *4 *5 *6 *7)) (-5 *3 (-1171 *7)))) (-1864 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-644 (-1171 *7))) (-5 *3 (-1171 *7)) (-4 *7 (-949 *4 *5 *6)) (-4 *4 (-909)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-906 *4 *5 *6 *7))))) -(-10 -7 (-15 -1864 ((-3 (-644 (-1171 |#4|)) "failed") (-644 (-1171 |#4|)) (-1171 |#4|))) (-15 -3905 ((-420 (-1171 |#4|)) (-1171 |#4|))) (-15 -2370 ((-420 (-1171 |#4|)) (-1171 |#4|))) (-15 -1996 (|#1|)) (-15 -4089 ((-3 (-644 (-1171 |#4|)) "failed") (-644 (-1171 |#4|)) (-1171 |#4|) |#3|)) (-15 -2128 ((-420 (-1171 |#4|)) (-644 |#3|) (-1171 |#4|)))) -((-1864 (((-3 (-644 (-1171 |#2|)) "failed") (-644 (-1171 |#2|)) (-1171 |#2|)) 41)) (-1996 ((|#1|) 75)) (-2370 (((-420 (-1171 |#2|)) (-1171 |#2|)) 124)) (-2128 (((-420 (-1171 |#2|)) (-1171 |#2|)) 108)) (-3905 (((-420 (-1171 |#2|)) (-1171 |#2|)) 135))) -(((-907 |#1| |#2|) (-10 -7 (-15 -1864 ((-3 (-644 (-1171 |#2|)) "failed") (-644 (-1171 |#2|)) (-1171 |#2|))) (-15 -3905 ((-420 (-1171 |#2|)) (-1171 |#2|))) (-15 -2370 ((-420 (-1171 |#2|)) (-1171 |#2|))) (-15 -1996 (|#1|)) (-15 -2128 ((-420 (-1171 |#2|)) (-1171 |#2|)))) (-909) (-1240 |#1|)) (T -907)) -((-2128 (*1 *2 *3) (-12 (-4 *4 (-909)) (-4 *5 (-1240 *4)) (-5 *2 (-420 (-1171 *5))) (-5 *1 (-907 *4 *5)) (-5 *3 (-1171 *5)))) (-1996 (*1 *2) (-12 (-4 *2 (-909)) (-5 *1 (-907 *2 *3)) (-4 *3 (-1240 *2)))) (-2370 (*1 *2 *3) (-12 (-4 *4 (-909)) (-4 *5 (-1240 *4)) (-5 *2 (-420 (-1171 *5))) (-5 *1 (-907 *4 *5)) (-5 *3 (-1171 *5)))) (-3905 (*1 *2 *3) (-12 (-4 *4 (-909)) (-4 *5 (-1240 *4)) (-5 *2 (-420 (-1171 *5))) (-5 *1 (-907 *4 *5)) (-5 *3 (-1171 *5)))) (-1864 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-644 (-1171 *5))) (-5 *3 (-1171 *5)) (-4 *5 (-1240 *4)) (-4 *4 (-909)) (-5 *1 (-907 *4 *5))))) -(-10 -7 (-15 -1864 ((-3 (-644 (-1171 |#2|)) "failed") (-644 (-1171 |#2|)) (-1171 |#2|))) (-15 -3905 ((-420 (-1171 |#2|)) (-1171 |#2|))) (-15 -2370 ((-420 (-1171 |#2|)) (-1171 |#2|))) (-15 -1996 (|#1|)) (-15 -2128 ((-420 (-1171 |#2|)) (-1171 |#2|)))) -((-3717 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) 42)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) 18)) (-3144 (((-3 $ "failed") $) 36))) -(((-908 |#1|) (-10 -8 (-15 -3144 ((-3 |#1| "failed") |#1|)) (-15 -3717 ((-3 (-644 (-1171 |#1|)) "failed") (-644 (-1171 |#1|)) (-1171 |#1|))) (-15 -2197 ((-1171 |#1|) (-1171 |#1|) (-1171 |#1|)))) (-909)) (T -908)) -NIL -(-10 -8 (-15 -3144 ((-3 |#1| "failed") |#1|)) (-15 -3717 ((-3 (-644 (-1171 |#1|)) "failed") (-644 (-1171 |#1|)) (-1171 |#1|))) (-15 -2197 ((-1171 |#1|) (-1171 |#1|) (-1171 |#1|)))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) 47)) (-3991 (($ $) 46)) (-2388 (((-112) $) 44)) (-4175 (((-3 $ "failed") $ $) 20)) (-1477 (((-420 (-1171 $)) (-1171 $)) 66)) (-1550 (($ $) 57)) (-3184 (((-420 $) $) 58)) (-3717 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) 63)) (-3012 (($) 18 T CONST)) (-1878 (((-3 $ "failed") $) 37)) (-3268 (((-112) $) 59)) (-3934 (((-112) $) 35)) (-2167 (($ $ $) 52) (($ (-644 $)) 51)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-2214 (($ $ $) 54) (($ (-644 $)) 53)) (-4303 (((-420 (-1171 $)) (-1171 $)) 64)) (-3240 (((-420 (-1171 $)) (-1171 $)) 65)) (-3719 (((-420 $) $) 56)) (-2994 (((-3 $ "failed") $ $) 48)) (-1656 (((-3 (-1264 $) "failed") (-689 $)) 62 (|has| $ (-145)))) (-3783 (((-862) $) 12) (($ (-566)) 33) (($ $) 49)) (-3144 (((-3 $ "failed") $) 61 (|has| $ (-145)))) (-2107 (((-771)) 32 T CONST)) (-3117 (((-112) $ $) 9)) (-2695 (((-112) $ $) 45)) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-2947 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) +((-3344 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-4 *1 (-903 *3)))) (-3951 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1099)) (-4 *1 (-903 *3)))) (-2023 (*1 *2 *1 *2) (-12 (-4 *1 (-903 *2)) (-4 *2 (-1099)))) (-1309 (*1 *2 *1 *2) (-12 (-4 *1 (-903 *2)) (-4 *2 (-1099)))) (-4069 (*1 *2 *1 *3) (-12 (-4 *1 (-903 *3)) (-4 *3 (-1099)) (-5 *2 (-1101 *3)))) (-2935 (*1 *2 *1 *1) (-12 (-4 *1 (-903 *3)) (-4 *3 (-1099)) (-5 *2 (-112))))) +(-13 (-475) (-10 -8 (-15 -3344 ($ (-644 |t#1|))) (-15 -3951 ($ (-644 (-644 |t#1|)))) (-15 -2023 (|t#1| $ |t#1|)) (-15 -1309 (|t#1| $ |t#1|)) (-15 -4069 ((-1101 |t#1|) $ |t#1|)) (-15 -2935 ((-112) $ $)) (IF (|has| |t#1| (-850)) (-6 (-850)) |%noBranch|) (IF (|has| |t#1| (-370)) (-6 (-850)) |%noBranch|))) +(((-102) . T) ((-613 (-862)) . T) ((-475) . T) ((-726) . T) ((-850) -2768 (|has| |#1| (-850)) (|has| |#1| (-370))) ((-1111) . T) ((-1099) . T)) +((-2988 (((-112) $ $) NIL)) (-2929 (((-644 (-644 (-771))) $) 165)) (-2993 (((-644 (-771)) (-905 |#1|) $) 193)) (-3314 (((-644 (-771)) (-905 |#1|) $) 194)) (-2185 (((-644 (-905 |#1|)) $) 154)) (-2715 (((-905 |#1|) $ (-566)) 159) (((-905 |#1|) $) 160)) (-1551 (($ (-644 (-905 |#1|))) 167)) (-2679 (((-771) $) 161)) (-3553 (((-1101 (-1101 |#1|)) $) 191)) (-4069 (((-1101 |#1|) $ |#1|) 182) (((-1101 (-1101 |#1|)) $ (-1101 |#1|)) 202) (((-1101 (-644 |#1|)) $ (-644 |#1|)) 205)) (-1682 (((-1101 |#1|) $) 157)) (-1602 (((-112) (-905 |#1|) $) 143)) (-3380 (((-1157) $) NIL)) (-1955 (((-1269) $) 147) (((-1269) $ (-566) (-566)) 206)) (-4072 (((-1119) $) NIL)) (-2343 (((-644 (-905 |#1|)) $) 148)) (-1309 (((-905 |#1|) $ (-771)) 155)) (-3902 (((-771) $) 162)) (-3152 (((-862) $) 179) (((-644 (-905 |#1|)) $) 28) (($ (-644 (-905 |#1|))) 166)) (-3044 (((-112) $ $) NIL)) (-2576 (((-644 |#1|) $) 164)) (-2914 (((-112) $ $) 199)) (-2956 (((-112) $ $) 197)) (-2935 (((-112) $ $) 196))) +(((-904 |#1|) (-13 (-1099) (-10 -8 (-15 -3152 ((-644 (-905 |#1|)) $)) (-15 -2343 ((-644 (-905 |#1|)) $)) (-15 -1309 ((-905 |#1|) $ (-771))) (-15 -2715 ((-905 |#1|) $ (-566))) (-15 -2715 ((-905 |#1|) $)) (-15 -2679 ((-771) $)) (-15 -3902 ((-771) $)) (-15 -2576 ((-644 |#1|) $)) (-15 -2185 ((-644 (-905 |#1|)) $)) (-15 -2929 ((-644 (-644 (-771))) $)) (-15 -3152 ($ (-644 (-905 |#1|)))) (-15 -1551 ($ (-644 (-905 |#1|)))) (-15 -4069 ((-1101 |#1|) $ |#1|)) (-15 -3553 ((-1101 (-1101 |#1|)) $)) (-15 -4069 ((-1101 (-1101 |#1|)) $ (-1101 |#1|))) (-15 -4069 ((-1101 (-644 |#1|)) $ (-644 |#1|))) (-15 -1602 ((-112) (-905 |#1|) $)) (-15 -2993 ((-644 (-771)) (-905 |#1|) $)) (-15 -3314 ((-644 (-771)) (-905 |#1|) $)) (-15 -1682 ((-1101 |#1|) $)) (-15 -2935 ((-112) $ $)) (-15 -2956 ((-112) $ $)) (-15 -1955 ((-1269) $)) (-15 -1955 ((-1269) $ (-566) (-566))))) (-1099)) (T -904)) +((-3152 (*1 *2 *1) (-12 (-5 *2 (-644 (-905 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) (-2343 (*1 *2 *1) (-12 (-5 *2 (-644 (-905 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) (-1309 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *2 (-905 *4)) (-5 *1 (-904 *4)) (-4 *4 (-1099)))) (-2715 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *2 (-905 *4)) (-5 *1 (-904 *4)) (-4 *4 (-1099)))) (-2715 (*1 *2 *1) (-12 (-5 *2 (-905 *3)) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) (-2679 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) (-3902 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) (-2576 (*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) (-2185 (*1 *2 *1) (-12 (-5 *2 (-644 (-905 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) (-2929 (*1 *2 *1) (-12 (-5 *2 (-644 (-644 (-771)))) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-644 (-905 *3))) (-4 *3 (-1099)) (-5 *1 (-904 *3)))) (-1551 (*1 *1 *2) (-12 (-5 *2 (-644 (-905 *3))) (-4 *3 (-1099)) (-5 *1 (-904 *3)))) (-4069 (*1 *2 *1 *3) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) (-3553 (*1 *2 *1) (-12 (-5 *2 (-1101 (-1101 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) (-4069 (*1 *2 *1 *3) (-12 (-4 *4 (-1099)) (-5 *2 (-1101 (-1101 *4))) (-5 *1 (-904 *4)) (-5 *3 (-1101 *4)))) (-4069 (*1 *2 *1 *3) (-12 (-4 *4 (-1099)) (-5 *2 (-1101 (-644 *4))) (-5 *1 (-904 *4)) (-5 *3 (-644 *4)))) (-1602 (*1 *2 *3 *1) (-12 (-5 *3 (-905 *4)) (-4 *4 (-1099)) (-5 *2 (-112)) (-5 *1 (-904 *4)))) (-2993 (*1 *2 *3 *1) (-12 (-5 *3 (-905 *4)) (-4 *4 (-1099)) (-5 *2 (-644 (-771))) (-5 *1 (-904 *4)))) (-3314 (*1 *2 *3 *1) (-12 (-5 *3 (-905 *4)) (-4 *4 (-1099)) (-5 *2 (-644 (-771))) (-5 *1 (-904 *4)))) (-1682 (*1 *2 *1) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) (-2935 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) (-2956 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) (-1955 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) (-1955 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-566)) (-5 *2 (-1269)) (-5 *1 (-904 *4)) (-4 *4 (-1099))))) +(-13 (-1099) (-10 -8 (-15 -3152 ((-644 (-905 |#1|)) $)) (-15 -2343 ((-644 (-905 |#1|)) $)) (-15 -1309 ((-905 |#1|) $ (-771))) (-15 -2715 ((-905 |#1|) $ (-566))) (-15 -2715 ((-905 |#1|) $)) (-15 -2679 ((-771) $)) (-15 -3902 ((-771) $)) (-15 -2576 ((-644 |#1|) $)) (-15 -2185 ((-644 (-905 |#1|)) $)) (-15 -2929 ((-644 (-644 (-771))) $)) (-15 -3152 ($ (-644 (-905 |#1|)))) (-15 -1551 ($ (-644 (-905 |#1|)))) (-15 -4069 ((-1101 |#1|) $ |#1|)) (-15 -3553 ((-1101 (-1101 |#1|)) $)) (-15 -4069 ((-1101 (-1101 |#1|)) $ (-1101 |#1|))) (-15 -4069 ((-1101 (-644 |#1|)) $ (-644 |#1|))) (-15 -1602 ((-112) (-905 |#1|) $)) (-15 -2993 ((-644 (-771)) (-905 |#1|) $)) (-15 -3314 ((-644 (-771)) (-905 |#1|) $)) (-15 -1682 ((-1101 |#1|) $)) (-15 -2935 ((-112) $ $)) (-15 -2956 ((-112) $ $)) (-15 -1955 ((-1269) $)) (-15 -1955 ((-1269) $ (-566) (-566))))) +((-2988 (((-112) $ $) NIL)) (-2671 (((-644 $) (-644 $)) 105)) (-2743 (((-566) $) 86)) (-2463 (($) NIL T CONST)) (-3245 (((-3 $ "failed") $) NIL)) (-2679 (((-771) $) 83)) (-4069 (((-1101 |#1|) $ |#1|) 74)) (-2389 (((-112) $) NIL)) (-3419 (((-112) $) 90)) (-1674 (((-771) $) 87)) (-1682 (((-1101 |#1|) $) 63)) (-1478 (($ $ $) NIL (-2768 (|has| |#1| (-370)) (|has| |#1| (-850))))) (-2599 (($ $ $) NIL (-2768 (|has| |#1| (-370)) (|has| |#1| (-850))))) (-3525 (((-2 (|:| |preimage| (-644 |#1|)) (|:| |image| (-644 |#1|))) $) 58)) (-3380 (((-1157) $) NIL)) (-2748 (($ $) 133)) (-4072 (((-1119) $) NIL)) (-3158 (((-1101 |#1|) $) 141 (|has| |#1| (-370)))) (-2664 (((-112) $) 84)) (-2023 ((|#1| $ |#1|) 72)) (-1309 ((|#1| $ |#1|) 135)) (-3902 (((-771) $) 65)) (-3951 (($ (-644 (-644 |#1|))) 120)) (-1946 (((-971) $) 78)) (-3344 (($ (-644 |#1|)) 35)) (-3357 (($ $ $) NIL)) (-2527 (($ $ $) NIL)) (-3905 (($ (-644 (-644 |#1|))) 60)) (-3451 (($ (-644 (-644 |#1|))) 125)) (-3337 (($ (-644 |#1|)) 137)) (-3152 (((-862) $) 119) (($ (-644 (-644 |#1|))) 93) (($ (-644 |#1|)) 94)) (-3044 (((-112) $ $) NIL)) (-4366 (($) 27 T CONST)) (-2968 (((-112) $ $) NIL (-2768 (|has| |#1| (-370)) (|has| |#1| (-850))))) (-2946 (((-112) $ $) NIL (-2768 (|has| |#1| (-370)) (|has| |#1| (-850))))) (-2914 (((-112) $ $) 70)) (-2956 (((-112) $ $) NIL (-2768 (|has| |#1| (-370)) (|has| |#1| (-850))))) (-2935 (((-112) $ $) 92)) (-3025 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ $ $) 36))) +(((-905 |#1|) (-13 (-903 |#1|) (-10 -8 (-15 -3525 ((-2 (|:| |preimage| (-644 |#1|)) (|:| |image| (-644 |#1|))) $)) (-15 -3905 ($ (-644 (-644 |#1|)))) (-15 -3152 ($ (-644 (-644 |#1|)))) (-15 -3152 ($ (-644 |#1|))) (-15 -3451 ($ (-644 (-644 |#1|)))) (-15 -3902 ((-771) $)) (-15 -1682 ((-1101 |#1|) $)) (-15 -1946 ((-971) $)) (-15 -2679 ((-771) $)) (-15 -1674 ((-771) $)) (-15 -2743 ((-566) $)) (-15 -2664 ((-112) $)) (-15 -3419 ((-112) $)) (-15 -2671 ((-644 $) (-644 $))) (IF (|has| |#1| (-370)) (-15 -3158 ((-1101 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-547)) (-15 -3337 ($ (-644 |#1|))) (IF (|has| |#1| (-370)) (-15 -3337 ($ (-644 |#1|))) |%noBranch|)))) (-1099)) (T -905)) +((-3525 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-644 *3)) (|:| |image| (-644 *3)))) (-5 *1 (-905 *3)) (-4 *3 (-1099)))) (-3905 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1099)) (-5 *1 (-905 *3)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1099)) (-5 *1 (-905 *3)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-905 *3)))) (-3451 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1099)) (-5 *1 (-905 *3)))) (-3902 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-905 *3)) (-4 *3 (-1099)))) (-1682 (*1 *2 *1) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-905 *3)) (-4 *3 (-1099)))) (-1946 (*1 *2 *1) (-12 (-5 *2 (-971)) (-5 *1 (-905 *3)) (-4 *3 (-1099)))) (-2679 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-905 *3)) (-4 *3 (-1099)))) (-1674 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-905 *3)) (-4 *3 (-1099)))) (-2743 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-905 *3)) (-4 *3 (-1099)))) (-2664 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1099)))) (-3419 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1099)))) (-2671 (*1 *2 *2) (-12 (-5 *2 (-644 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1099)))) (-3158 (*1 *2 *1) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-905 *3)) (-4 *3 (-370)) (-4 *3 (-1099)))) (-3337 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-905 *3))))) +(-13 (-903 |#1|) (-10 -8 (-15 -3525 ((-2 (|:| |preimage| (-644 |#1|)) (|:| |image| (-644 |#1|))) $)) (-15 -3905 ($ (-644 (-644 |#1|)))) (-15 -3152 ($ (-644 (-644 |#1|)))) (-15 -3152 ($ (-644 |#1|))) (-15 -3451 ($ (-644 (-644 |#1|)))) (-15 -3902 ((-771) $)) (-15 -1682 ((-1101 |#1|) $)) (-15 -1946 ((-971) $)) (-15 -2679 ((-771) $)) (-15 -1674 ((-771) $)) (-15 -2743 ((-566) $)) (-15 -2664 ((-112) $)) (-15 -3419 ((-112) $)) (-15 -2671 ((-644 $) (-644 $))) (IF (|has| |#1| (-370)) (-15 -3158 ((-1101 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-547)) (-15 -3337 ($ (-644 |#1|))) (IF (|has| |#1| (-370)) (-15 -3337 ($ (-644 |#1|))) |%noBranch|)))) +((-2496 (((-3 (-644 (-1171 |#4|)) "failed") (-644 (-1171 |#4|)) (-1171 |#4|)) 159)) (-4054 ((|#1|) 97)) (-2005 (((-420 (-1171 |#4|)) (-1171 |#4|)) 168)) (-2981 (((-420 (-1171 |#4|)) (-644 |#3|) (-1171 |#4|)) 84)) (-3315 (((-420 (-1171 |#4|)) (-1171 |#4|)) 178)) (-1541 (((-3 (-644 (-1171 |#4|)) "failed") (-644 (-1171 |#4|)) (-1171 |#4|) |#3|) 113))) +(((-906 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2496 ((-3 (-644 (-1171 |#4|)) "failed") (-644 (-1171 |#4|)) (-1171 |#4|))) (-15 -3315 ((-420 (-1171 |#4|)) (-1171 |#4|))) (-15 -2005 ((-420 (-1171 |#4|)) (-1171 |#4|))) (-15 -4054 (|#1|)) (-15 -1541 ((-3 (-644 (-1171 |#4|)) "failed") (-644 (-1171 |#4|)) (-1171 |#4|) |#3|)) (-15 -2981 ((-420 (-1171 |#4|)) (-644 |#3|) (-1171 |#4|)))) (-909) (-793) (-850) (-949 |#1| |#2| |#3|)) (T -906)) +((-2981 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *7)) (-4 *7 (-850)) (-4 *5 (-909)) (-4 *6 (-793)) (-4 *8 (-949 *5 *6 *7)) (-5 *2 (-420 (-1171 *8))) (-5 *1 (-906 *5 *6 *7 *8)) (-5 *4 (-1171 *8)))) (-1541 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-644 (-1171 *7))) (-5 *3 (-1171 *7)) (-4 *7 (-949 *5 *6 *4)) (-4 *5 (-909)) (-4 *6 (-793)) (-4 *4 (-850)) (-5 *1 (-906 *5 *6 *4 *7)))) (-4054 (*1 *2) (-12 (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-909)) (-5 *1 (-906 *2 *3 *4 *5)) (-4 *5 (-949 *2 *3 *4)))) (-2005 (*1 *2 *3) (-12 (-4 *4 (-909)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-949 *4 *5 *6)) (-5 *2 (-420 (-1171 *7))) (-5 *1 (-906 *4 *5 *6 *7)) (-5 *3 (-1171 *7)))) (-3315 (*1 *2 *3) (-12 (-4 *4 (-909)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-949 *4 *5 *6)) (-5 *2 (-420 (-1171 *7))) (-5 *1 (-906 *4 *5 *6 *7)) (-5 *3 (-1171 *7)))) (-2496 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-644 (-1171 *7))) (-5 *3 (-1171 *7)) (-4 *7 (-949 *4 *5 *6)) (-4 *4 (-909)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-906 *4 *5 *6 *7))))) +(-10 -7 (-15 -2496 ((-3 (-644 (-1171 |#4|)) "failed") (-644 (-1171 |#4|)) (-1171 |#4|))) (-15 -3315 ((-420 (-1171 |#4|)) (-1171 |#4|))) (-15 -2005 ((-420 (-1171 |#4|)) (-1171 |#4|))) (-15 -4054 (|#1|)) (-15 -1541 ((-3 (-644 (-1171 |#4|)) "failed") (-644 (-1171 |#4|)) (-1171 |#4|) |#3|)) (-15 -2981 ((-420 (-1171 |#4|)) (-644 |#3|) (-1171 |#4|)))) +((-2496 (((-3 (-644 (-1171 |#2|)) "failed") (-644 (-1171 |#2|)) (-1171 |#2|)) 41)) (-4054 ((|#1|) 75)) (-2005 (((-420 (-1171 |#2|)) (-1171 |#2|)) 124)) (-2981 (((-420 (-1171 |#2|)) (-1171 |#2|)) 108)) (-3315 (((-420 (-1171 |#2|)) (-1171 |#2|)) 135))) +(((-907 |#1| |#2|) (-10 -7 (-15 -2496 ((-3 (-644 (-1171 |#2|)) "failed") (-644 (-1171 |#2|)) (-1171 |#2|))) (-15 -3315 ((-420 (-1171 |#2|)) (-1171 |#2|))) (-15 -2005 ((-420 (-1171 |#2|)) (-1171 |#2|))) (-15 -4054 (|#1|)) (-15 -2981 ((-420 (-1171 |#2|)) (-1171 |#2|)))) (-909) (-1240 |#1|)) (T -907)) +((-2981 (*1 *2 *3) (-12 (-4 *4 (-909)) (-4 *5 (-1240 *4)) (-5 *2 (-420 (-1171 *5))) (-5 *1 (-907 *4 *5)) (-5 *3 (-1171 *5)))) (-4054 (*1 *2) (-12 (-4 *2 (-909)) (-5 *1 (-907 *2 *3)) (-4 *3 (-1240 *2)))) (-2005 (*1 *2 *3) (-12 (-4 *4 (-909)) (-4 *5 (-1240 *4)) (-5 *2 (-420 (-1171 *5))) (-5 *1 (-907 *4 *5)) (-5 *3 (-1171 *5)))) (-3315 (*1 *2 *3) (-12 (-4 *4 (-909)) (-4 *5 (-1240 *4)) (-5 *2 (-420 (-1171 *5))) (-5 *1 (-907 *4 *5)) (-5 *3 (-1171 *5)))) (-2496 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-644 (-1171 *5))) (-5 *3 (-1171 *5)) (-4 *5 (-1240 *4)) (-4 *4 (-909)) (-5 *1 (-907 *4 *5))))) +(-10 -7 (-15 -2496 ((-3 (-644 (-1171 |#2|)) "failed") (-644 (-1171 |#2|)) (-1171 |#2|))) (-15 -3315 ((-420 (-1171 |#2|)) (-1171 |#2|))) (-15 -2005 ((-420 (-1171 |#2|)) (-1171 |#2|))) (-15 -4054 (|#1|)) (-15 -2981 ((-420 (-1171 |#2|)) (-1171 |#2|)))) +((-4066 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) 42)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) 18)) (-2633 (((-3 $ "failed") $) 36))) +(((-908 |#1|) (-10 -8 (-15 -2633 ((-3 |#1| "failed") |#1|)) (-15 -4066 ((-3 (-644 (-1171 |#1|)) "failed") (-644 (-1171 |#1|)) (-1171 |#1|))) (-15 -4170 ((-1171 |#1|) (-1171 |#1|) (-1171 |#1|)))) (-909)) (T -908)) +NIL +(-10 -8 (-15 -2633 ((-3 |#1| "failed") |#1|)) (-15 -4066 ((-3 (-644 (-1171 |#1|)) "failed") (-644 (-1171 |#1|)) (-1171 |#1|))) (-15 -4170 ((-1171 |#1|) (-1171 |#1|) (-1171 |#1|)))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) 47)) (-2161 (($ $) 46)) (-2345 (((-112) $) 44)) (-3967 (((-3 $ "failed") $ $) 20)) (-2292 (((-420 (-1171 $)) (-1171 $)) 66)) (-1378 (($ $) 57)) (-1364 (((-420 $) $) 58)) (-4066 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) 63)) (-2463 (($) 18 T CONST)) (-3245 (((-3 $ "failed") $) 37)) (-1615 (((-112) $) 59)) (-2389 (((-112) $) 35)) (-2128 (($ $ $) 52) (($ (-644 $)) 51)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-2164 (($ $ $) 54) (($ (-644 $)) 53)) (-2010 (((-420 (-1171 $)) (-1171 $)) 64)) (-1893 (((-420 (-1171 $)) (-1171 $)) 65)) (-1624 (((-420 $) $) 56)) (-2978 (((-3 $ "failed") $ $) 48)) (-3391 (((-3 (-1264 $) "failed") (-689 $)) 62 (|has| $ (-145)))) (-3152 (((-862) $) 12) (($ (-566)) 33) (($ $) 49)) (-2633 (((-3 $ "failed") $) 61 (|has| $ (-145)))) (-2593 (((-771)) 32 T CONST)) (-3044 (((-112) $ $) 9)) (-3014 (((-112) $ $) 45)) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-2914 (((-112) $ $) 6)) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) (((-909) (-140)) (T -909)) -((-2197 (*1 *2 *2 *2) (-12 (-5 *2 (-1171 *1)) (-4 *1 (-909)))) (-1477 (*1 *2 *3) (-12 (-4 *1 (-909)) (-5 *2 (-420 (-1171 *1))) (-5 *3 (-1171 *1)))) (-3240 (*1 *2 *3) (-12 (-4 *1 (-909)) (-5 *2 (-420 (-1171 *1))) (-5 *3 (-1171 *1)))) (-4303 (*1 *2 *3) (-12 (-4 *1 (-909)) (-5 *2 (-420 (-1171 *1))) (-5 *3 (-1171 *1)))) (-3717 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-644 (-1171 *1))) (-5 *3 (-1171 *1)) (-4 *1 (-909)))) (-1656 (*1 *2 *3) (|partial| -12 (-5 *3 (-689 *1)) (-4 *1 (-145)) (-4 *1 (-909)) (-5 *2 (-1264 *1)))) (-3144 (*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-909))))) -(-13 (-1218) (-10 -8 (-15 -1477 ((-420 (-1171 $)) (-1171 $))) (-15 -3240 ((-420 (-1171 $)) (-1171 $))) (-15 -4303 ((-420 (-1171 $)) (-1171 $))) (-15 -2197 ((-1171 $) (-1171 $) (-1171 $))) (-15 -3717 ((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $))) (IF (|has| $ (-145)) (PROGN (-15 -1656 ((-3 (-1264 $) "failed") (-689 $))) (-15 -3144 ((-3 $ "failed") $))) |%noBranch|))) +((-4170 (*1 *2 *2 *2) (-12 (-5 *2 (-1171 *1)) (-4 *1 (-909)))) (-2292 (*1 *2 *3) (-12 (-4 *1 (-909)) (-5 *2 (-420 (-1171 *1))) (-5 *3 (-1171 *1)))) (-1893 (*1 *2 *3) (-12 (-4 *1 (-909)) (-5 *2 (-420 (-1171 *1))) (-5 *3 (-1171 *1)))) (-2010 (*1 *2 *3) (-12 (-4 *1 (-909)) (-5 *2 (-420 (-1171 *1))) (-5 *3 (-1171 *1)))) (-4066 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-644 (-1171 *1))) (-5 *3 (-1171 *1)) (-4 *1 (-909)))) (-3391 (*1 *2 *3) (|partial| -12 (-5 *3 (-689 *1)) (-4 *1 (-145)) (-4 *1 (-909)) (-5 *2 (-1264 *1)))) (-2633 (*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-909))))) +(-13 (-1218) (-10 -8 (-15 -2292 ((-420 (-1171 $)) (-1171 $))) (-15 -1893 ((-420 (-1171 $)) (-1171 $))) (-15 -2010 ((-420 (-1171 $)) (-1171 $))) (-15 -4170 ((-1171 $) (-1171 $) (-1171 $))) (-15 -4066 ((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $))) (IF (|has| $ (-145)) (PROGN (-15 -3391 ((-3 (-1264 $) "failed") (-689 $))) (-15 -2633 ((-3 $ "failed") $))) |%noBranch|))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-616 (-566)) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-291) . T) ((-454) . T) ((-558) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-640 $) . T) ((-717 $) . T) ((-726) . T) ((-1051 $) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1218) . T)) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-3991 (($ $) NIL)) (-2388 (((-112) $) NIL)) (-2131 (((-112) $) NIL)) (-3193 (((-771)) NIL)) (-3837 (($ $ (-921)) NIL (|has| $ (-370))) (($ $) NIL)) (-3778 (((-1187 (-921) (-771)) (-566)) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-1550 (($ $) NIL)) (-3184 (((-420 $) $) NIL)) (-2837 (((-112) $ $) NIL)) (-1970 (((-771)) NIL)) (-3012 (($) NIL T CONST)) (-4307 (((-3 $ "failed") $) NIL)) (-4205 (($ $) NIL)) (-2392 (($ (-1264 $)) NIL)) (-1910 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2946 (($ $ $) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-1552 (($) NIL)) (-2957 (($ $ $) NIL)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL)) (-2781 (($) NIL)) (-3506 (((-112) $) NIL)) (-3369 (($ $) NIL) (($ $ (-771)) NIL)) (-3268 (((-112) $) NIL)) (-3254 (((-833 (-921)) $) NIL) (((-921) $) NIL)) (-3934 (((-112) $) NIL)) (-3611 (($) NIL (|has| $ (-370)))) (-1784 (((-112) $) NIL (|has| $ (-370)))) (-1577 (($ $ (-921)) NIL (|has| $ (-370))) (($ $) NIL)) (-4363 (((-3 $ "failed") $) NIL)) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1627 (((-1171 $) $ (-921)) NIL (|has| $ (-370))) (((-1171 $) $) NIL)) (-3681 (((-921) $) NIL)) (-2372 (((-1171 $) $) NIL (|has| $ (-370)))) (-1526 (((-3 (-1171 $) "failed") $ $) NIL (|has| $ (-370))) (((-1171 $) $) NIL (|has| $ (-370)))) (-3158 (($ $ (-1171 $)) NIL (|has| $ (-370)))) (-2167 (($ $ $) NIL) (($ (-644 $)) NIL)) (-4117 (((-1157) $) NIL)) (-1713 (($ $) NIL)) (-1761 (($) NIL T CONST)) (-2178 (($ (-921)) NIL)) (-1778 (((-112) $) NIL)) (-4035 (((-1119) $) NIL)) (-3441 (($) NIL (|has| $ (-370)))) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2214 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1548 (((-644 (-2 (|:| -3719 (-566)) (|:| -2852 (-566))))) NIL)) (-3719 (((-420 $) $) NIL)) (-3129 (((-921)) NIL) (((-833 (-921))) NIL)) (-3148 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2994 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3039 (((-771) $) NIL)) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL)) (-1437 (((-3 (-771) "failed") $ $) NIL) (((-771) $) NIL)) (-3164 (((-134)) NIL)) (-3561 (($ $ (-771)) NIL) (($ $) NIL)) (-3636 (((-921) $) NIL) (((-833 (-921)) $) NIL)) (-1616 (((-1171 $)) NIL)) (-3974 (($) NIL)) (-3458 (($) NIL (|has| $ (-370)))) (-2154 (((-689 $) (-1264 $)) NIL) (((-1264 $) $) NIL)) (-1348 (((-566) $) NIL)) (-1656 (((-3 (-1264 $) "failed") (-689 $)) NIL)) (-3783 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL)) (-3144 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-2107 (((-771)) NIL T CONST)) (-3117 (((-112) $ $) NIL)) (-2365 (((-1264 $) (-921)) NIL) (((-1264 $)) NIL)) (-2695 (((-112) $ $) NIL)) (-1423 (((-112) $) NIL)) (-2479 (($) NIL T CONST)) (-4334 (($) NIL T CONST)) (-2699 (($ $ (-771)) NIL (|has| $ (-370))) (($ $) NIL (|has| $ (-370)))) (-2875 (($ $ (-771)) NIL) (($ $) NIL)) (-2947 (((-112) $ $) NIL)) (-3065 (($ $ $) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-2161 (($ $) NIL)) (-2345 (((-112) $) NIL)) (-1972 (((-112) $) NIL)) (-2818 (((-771)) NIL)) (-3833 (($ $ (-921)) NIL (|has| $ (-370))) (($ $) NIL)) (-2894 (((-1187 (-921) (-771)) (-566)) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-1378 (($ $) NIL)) (-1364 (((-420 $) $) NIL)) (-2085 (((-112) $ $) NIL)) (-3870 (((-771)) NIL)) (-2463 (($) NIL T CONST)) (-2229 (((-3 $ "failed") $) NIL)) (-4158 (($ $) NIL)) (-1563 (($ (-1264 $)) NIL)) (-2347 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2933 (($ $ $) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-2715 (($) NIL)) (-2945 (($ $ $) NIL)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL)) (-3359 (($) NIL)) (-2466 (((-112) $) NIL)) (-1574 (($ $) NIL) (($ $ (-771)) NIL)) (-1615 (((-112) $) NIL)) (-2679 (((-833 (-921)) $) NIL) (((-921) $) NIL)) (-2389 (((-112) $) NIL)) (-2437 (($) NIL (|has| $ (-370)))) (-2953 (((-112) $) NIL (|has| $ (-370)))) (-2064 (($ $ (-921)) NIL (|has| $ (-370))) (($ $) NIL)) (-2621 (((-3 $ "failed") $) NIL)) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3468 (((-1171 $) $ (-921)) NIL (|has| $ (-370))) (((-1171 $) $) NIL)) (-1866 (((-921) $) NIL)) (-2099 (((-1171 $) $) NIL (|has| $ (-370)))) (-3624 (((-3 (-1171 $) "failed") $ $) NIL (|has| $ (-370))) (((-1171 $) $) NIL (|has| $ (-370)))) (-3844 (($ $ (-1171 $)) NIL (|has| $ (-370)))) (-2128 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3380 (((-1157) $) NIL)) (-2748 (($ $) NIL)) (-3289 (($) NIL T CONST)) (-2835 (($ (-921)) NIL)) (-3653 (((-112) $) NIL)) (-4072 (((-1119) $) NIL)) (-3302 (($) NIL (|has| $ (-370)))) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2164 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2442 (((-644 (-2 (|:| -1624 (-566)) (|:| -2201 (-566))))) NIL)) (-1624 (((-420 $) $) NIL)) (-1686 (((-921)) NIL) (((-833 (-921))) NIL)) (-3005 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2978 (((-3 $ "failed") $ $) NIL)) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-4357 (((-771) $) NIL)) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL)) (-3169 (((-3 (-771) "failed") $ $) NIL) (((-771) $) NIL)) (-3126 (((-134)) NIL)) (-3629 (($ $ (-771)) NIL) (($ $) NIL)) (-3902 (((-921) $) NIL) (((-833 (-921)) $) NIL)) (-1705 (((-1171 $)) NIL)) (-4122 (($) NIL)) (-2110 (($) NIL (|has| $ (-370)))) (-3350 (((-689 $) (-1264 $)) NIL) (((-1264 $) $) NIL)) (-2376 (((-566) $) NIL)) (-3391 (((-3 (-1264 $) "failed") (-689 $)) NIL)) (-3152 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL)) (-2633 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-2593 (((-771)) NIL T CONST)) (-3044 (((-112) $ $) NIL)) (-2875 (((-1264 $) (-921)) NIL) (((-1264 $)) NIL)) (-3014 (((-112) $ $) NIL)) (-4217 (((-112) $) NIL)) (-4356 (($) NIL T CONST)) (-4366 (($) NIL T CONST)) (-2198 (($ $ (-771)) NIL (|has| $ (-370))) (($ $) NIL (|has| $ (-370)))) (-3497 (($ $ (-771)) NIL) (($ $) NIL)) (-2914 (((-112) $ $) NIL)) (-3025 (($ $ $) NIL)) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL))) (((-910 |#1|) (-13 (-351) (-330 $) (-614 (-566))) (-921)) (T -910)) NIL (-13 (-351) (-330 $) (-614 (-566))) -((-1456 (((-3 (-2 (|:| -3254 (-771)) (|:| -3289 |#5|)) "failed") (-338 |#2| |#3| |#4| |#5|)) 77)) (-3427 (((-112) (-338 |#2| |#3| |#4| |#5|)) 17)) (-3254 (((-3 (-771) "failed") (-338 |#2| |#3| |#4| |#5|)) 15))) -(((-911 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3254 ((-3 (-771) "failed") (-338 |#2| |#3| |#4| |#5|))) (-15 -3427 ((-112) (-338 |#2| |#3| |#4| |#5|))) (-15 -1456 ((-3 (-2 (|:| -3254 (-771)) (|:| -3289 |#5|)) "failed") (-338 |#2| |#3| |#4| |#5|)))) (-13 (-558) (-1038 (-566))) (-432 |#1|) (-1240 |#2|) (-1240 (-409 |#3|)) (-344 |#2| |#3| |#4|)) (T -911)) -((-1456 (*1 *2 *3) (|partial| -12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-432 *4)) (-4 *6 (-1240 *5)) (-4 *7 (-1240 (-409 *6))) (-4 *8 (-344 *5 *6 *7)) (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *2 (-2 (|:| -3254 (-771)) (|:| -3289 *8))) (-5 *1 (-911 *4 *5 *6 *7 *8)))) (-3427 (*1 *2 *3) (-12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-432 *4)) (-4 *6 (-1240 *5)) (-4 *7 (-1240 (-409 *6))) (-4 *8 (-344 *5 *6 *7)) (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *2 (-112)) (-5 *1 (-911 *4 *5 *6 *7 *8)))) (-3254 (*1 *2 *3) (|partial| -12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-432 *4)) (-4 *6 (-1240 *5)) (-4 *7 (-1240 (-409 *6))) (-4 *8 (-344 *5 *6 *7)) (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *2 (-771)) (-5 *1 (-911 *4 *5 *6 *7 *8))))) -(-10 -7 (-15 -3254 ((-3 (-771) "failed") (-338 |#2| |#3| |#4| |#5|))) (-15 -3427 ((-112) (-338 |#2| |#3| |#4| |#5|))) (-15 -1456 ((-3 (-2 (|:| -3254 (-771)) (|:| -3289 |#5|)) "failed") (-338 |#2| |#3| |#4| |#5|)))) -((-1456 (((-3 (-2 (|:| -3254 (-771)) (|:| -3289 |#3|)) "failed") (-338 (-409 (-566)) |#1| |#2| |#3|)) 64)) (-3427 (((-112) (-338 (-409 (-566)) |#1| |#2| |#3|)) 16)) (-3254 (((-3 (-771) "failed") (-338 (-409 (-566)) |#1| |#2| |#3|)) 14))) -(((-912 |#1| |#2| |#3|) (-10 -7 (-15 -3254 ((-3 (-771) "failed") (-338 (-409 (-566)) |#1| |#2| |#3|))) (-15 -3427 ((-112) (-338 (-409 (-566)) |#1| |#2| |#3|))) (-15 -1456 ((-3 (-2 (|:| -3254 (-771)) (|:| -3289 |#3|)) "failed") (-338 (-409 (-566)) |#1| |#2| |#3|)))) (-1240 (-409 (-566))) (-1240 (-409 |#1|)) (-344 (-409 (-566)) |#1| |#2|)) (T -912)) -((-1456 (*1 *2 *3) (|partial| -12 (-5 *3 (-338 (-409 (-566)) *4 *5 *6)) (-4 *4 (-1240 (-409 (-566)))) (-4 *5 (-1240 (-409 *4))) (-4 *6 (-344 (-409 (-566)) *4 *5)) (-5 *2 (-2 (|:| -3254 (-771)) (|:| -3289 *6))) (-5 *1 (-912 *4 *5 *6)))) (-3427 (*1 *2 *3) (-12 (-5 *3 (-338 (-409 (-566)) *4 *5 *6)) (-4 *4 (-1240 (-409 (-566)))) (-4 *5 (-1240 (-409 *4))) (-4 *6 (-344 (-409 (-566)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-912 *4 *5 *6)))) (-3254 (*1 *2 *3) (|partial| -12 (-5 *3 (-338 (-409 (-566)) *4 *5 *6)) (-4 *4 (-1240 (-409 (-566)))) (-4 *5 (-1240 (-409 *4))) (-4 *6 (-344 (-409 (-566)) *4 *5)) (-5 *2 (-771)) (-5 *1 (-912 *4 *5 *6))))) -(-10 -7 (-15 -3254 ((-3 (-771) "failed") (-338 (-409 (-566)) |#1| |#2| |#3|))) (-15 -3427 ((-112) (-338 (-409 (-566)) |#1| |#2| |#3|))) (-15 -1456 ((-3 (-2 (|:| -3254 (-771)) (|:| -3289 |#3|)) "failed") (-338 (-409 (-566)) |#1| |#2| |#3|)))) -((-2677 ((|#2| |#2|) 26)) (-1859 (((-566) (-644 (-2 (|:| |den| (-566)) (|:| |gcdnum| (-566))))) 15)) (-3770 (((-921) (-566)) 38)) (-3756 (((-566) |#2|) 45)) (-2241 (((-566) |#2|) 21) (((-2 (|:| |den| (-566)) (|:| |gcdnum| (-566))) |#1|) 20))) -(((-913 |#1| |#2|) (-10 -7 (-15 -3770 ((-921) (-566))) (-15 -2241 ((-2 (|:| |den| (-566)) (|:| |gcdnum| (-566))) |#1|)) (-15 -2241 ((-566) |#2|)) (-15 -1859 ((-566) (-644 (-2 (|:| |den| (-566)) (|:| |gcdnum| (-566)))))) (-15 -3756 ((-566) |#2|)) (-15 -2677 (|#2| |#2|))) (-1240 (-409 (-566))) (-1240 (-409 |#1|))) (T -913)) -((-2677 (*1 *2 *2) (-12 (-4 *3 (-1240 (-409 (-566)))) (-5 *1 (-913 *3 *2)) (-4 *2 (-1240 (-409 *3))))) (-3756 (*1 *2 *3) (-12 (-4 *4 (-1240 (-409 *2))) (-5 *2 (-566)) (-5 *1 (-913 *4 *3)) (-4 *3 (-1240 (-409 *4))))) (-1859 (*1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| |den| (-566)) (|:| |gcdnum| (-566))))) (-4 *4 (-1240 (-409 *2))) (-5 *2 (-566)) (-5 *1 (-913 *4 *5)) (-4 *5 (-1240 (-409 *4))))) (-2241 (*1 *2 *3) (-12 (-4 *4 (-1240 (-409 *2))) (-5 *2 (-566)) (-5 *1 (-913 *4 *3)) (-4 *3 (-1240 (-409 *4))))) (-2241 (*1 *2 *3) (-12 (-4 *3 (-1240 (-409 (-566)))) (-5 *2 (-2 (|:| |den| (-566)) (|:| |gcdnum| (-566)))) (-5 *1 (-913 *3 *4)) (-4 *4 (-1240 (-409 *3))))) (-3770 (*1 *2 *3) (-12 (-5 *3 (-566)) (-4 *4 (-1240 (-409 *3))) (-5 *2 (-921)) (-5 *1 (-913 *4 *5)) (-4 *5 (-1240 (-409 *4)))))) -(-10 -7 (-15 -3770 ((-921) (-566))) (-15 -2241 ((-2 (|:| |den| (-566)) (|:| |gcdnum| (-566))) |#1|)) (-15 -2241 ((-566) |#2|)) (-15 -1859 ((-566) (-644 (-2 (|:| |den| (-566)) (|:| |gcdnum| (-566)))))) (-15 -3756 ((-566) |#2|)) (-15 -2677 (|#2| |#2|))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-1515 ((|#1| $) 100)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-3991 (($ $) NIL)) (-2388 (((-112) $) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-1550 (($ $) NIL)) (-3184 (((-420 $) $) NIL)) (-2837 (((-112) $ $) NIL)) (-3012 (($) NIL T CONST)) (-2946 (($ $ $) NIL)) (-1878 (((-3 $ "failed") $) 94)) (-2957 (($ $ $) NIL)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL)) (-3268 (((-112) $) NIL)) (-2361 (($ |#1| (-420 |#1|)) 92)) (-1553 (((-1171 |#1|) |#1| |#1|) 53)) (-3804 (($ $) 61)) (-3934 (((-112) $) NIL)) (-1808 (((-566) $) 97)) (-3563 (($ $ (-566)) 99)) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2167 (($ $ $) NIL) (($ (-644 $)) NIL)) (-4117 (((-1157) $) NIL)) (-1713 (($ $) NIL)) (-4035 (((-1119) $) NIL)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2214 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1623 ((|#1| $) 96)) (-3073 (((-420 |#1|) $) 95)) (-3719 (((-420 $) $) NIL)) (-3148 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2994 (((-3 $ "failed") $ $) 93)) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3039 (((-771) $) NIL)) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL)) (-1968 (($ $) 50)) (-3783 (((-862) $) 124) (($ (-566)) 73) (($ $) NIL) (($ (-409 (-566))) NIL) (($ |#1|) 41) (((-409 |#1|) $) 78) (($ (-409 (-420 |#1|))) 86)) (-2107 (((-771)) 71 T CONST)) (-3117 (((-112) $ $) NIL)) (-2695 (((-112) $ $) NIL)) (-2479 (($) 26 T CONST)) (-4334 (($) 15 T CONST)) (-2947 (((-112) $ $) 87)) (-3065 (($ $ $) NIL)) (-3053 (($ $) 108) (($ $ $) NIL)) (-3041 (($ $ $) 49)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 110) (($ $ $) 48) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ |#1| $) 109) (($ $ |#1|) NIL))) -(((-914 |#1|) (-13 (-365) (-38 |#1|) (-10 -8 (-15 -3783 ((-409 |#1|) $)) (-15 -3783 ($ (-409 (-420 |#1|)))) (-15 -1968 ($ $)) (-15 -3073 ((-420 |#1|) $)) (-15 -1623 (|#1| $)) (-15 -3563 ($ $ (-566))) (-15 -1808 ((-566) $)) (-15 -1553 ((-1171 |#1|) |#1| |#1|)) (-15 -3804 ($ $)) (-15 -2361 ($ |#1| (-420 |#1|))) (-15 -1515 (|#1| $)))) (-308)) (T -914)) -((-3783 (*1 *2 *1) (-12 (-5 *2 (-409 *3)) (-5 *1 (-914 *3)) (-4 *3 (-308)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-409 (-420 *3))) (-4 *3 (-308)) (-5 *1 (-914 *3)))) (-1968 (*1 *1 *1) (-12 (-5 *1 (-914 *2)) (-4 *2 (-308)))) (-3073 (*1 *2 *1) (-12 (-5 *2 (-420 *3)) (-5 *1 (-914 *3)) (-4 *3 (-308)))) (-1623 (*1 *2 *1) (-12 (-5 *1 (-914 *2)) (-4 *2 (-308)))) (-3563 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-914 *3)) (-4 *3 (-308)))) (-1808 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-914 *3)) (-4 *3 (-308)))) (-1553 (*1 *2 *3 *3) (-12 (-5 *2 (-1171 *3)) (-5 *1 (-914 *3)) (-4 *3 (-308)))) (-3804 (*1 *1 *1) (-12 (-5 *1 (-914 *2)) (-4 *2 (-308)))) (-2361 (*1 *1 *2 *3) (-12 (-5 *3 (-420 *2)) (-4 *2 (-308)) (-5 *1 (-914 *2)))) (-1515 (*1 *2 *1) (-12 (-5 *1 (-914 *2)) (-4 *2 (-308))))) -(-13 (-365) (-38 |#1|) (-10 -8 (-15 -3783 ((-409 |#1|) $)) (-15 -3783 ($ (-409 (-420 |#1|)))) (-15 -1968 ($ $)) (-15 -3073 ((-420 |#1|) $)) (-15 -1623 (|#1| $)) (-15 -3563 ($ $ (-566))) (-15 -1808 ((-566) $)) (-15 -1553 ((-1171 |#1|) |#1| |#1|)) (-15 -3804 ($ $)) (-15 -2361 ($ |#1| (-420 |#1|))) (-15 -1515 (|#1| $)))) -((-2361 (((-52) (-952 |#1|) (-420 (-952 |#1|)) (-1175)) 17) (((-52) (-409 (-952 |#1|)) (-1175)) 18))) -(((-915 |#1|) (-10 -7 (-15 -2361 ((-52) (-409 (-952 |#1|)) (-1175))) (-15 -2361 ((-52) (-952 |#1|) (-420 (-952 |#1|)) (-1175)))) (-13 (-308) (-147))) (T -915)) -((-2361 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-420 (-952 *6))) (-5 *5 (-1175)) (-5 *3 (-952 *6)) (-4 *6 (-13 (-308) (-147))) (-5 *2 (-52)) (-5 *1 (-915 *6)))) (-2361 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-1175)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-52)) (-5 *1 (-915 *5))))) -(-10 -7 (-15 -2361 ((-52) (-409 (-952 |#1|)) (-1175))) (-15 -2361 ((-52) (-952 |#1|) (-420 (-952 |#1|)) (-1175)))) -((-2669 ((|#4| (-644 |#4|)) 149) (((-1171 |#4|) (-1171 |#4|) (-1171 |#4|)) 86) ((|#4| |#4| |#4|) 148)) (-2214 (((-1171 |#4|) (-644 (-1171 |#4|))) 142) (((-1171 |#4|) (-1171 |#4|) (-1171 |#4|)) 63) ((|#4| (-644 |#4|)) 71) ((|#4| |#4| |#4|) 109))) -(((-916 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2214 (|#4| |#4| |#4|)) (-15 -2214 (|#4| (-644 |#4|))) (-15 -2214 ((-1171 |#4|) (-1171 |#4|) (-1171 |#4|))) (-15 -2214 ((-1171 |#4|) (-644 (-1171 |#4|)))) (-15 -2669 (|#4| |#4| |#4|)) (-15 -2669 ((-1171 |#4|) (-1171 |#4|) (-1171 |#4|))) (-15 -2669 (|#4| (-644 |#4|)))) (-793) (-850) (-308) (-949 |#3| |#1| |#2|)) (T -916)) -((-2669 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-949 *6 *4 *5)) (-5 *1 (-916 *4 *5 *6 *2)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-308)))) (-2669 (*1 *2 *2 *2) (-12 (-5 *2 (-1171 *6)) (-4 *6 (-949 *5 *3 *4)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *5 (-308)) (-5 *1 (-916 *3 *4 *5 *6)))) (-2669 (*1 *2 *2 *2) (-12 (-4 *3 (-793)) (-4 *4 (-850)) (-4 *5 (-308)) (-5 *1 (-916 *3 *4 *5 *2)) (-4 *2 (-949 *5 *3 *4)))) (-2214 (*1 *2 *3) (-12 (-5 *3 (-644 (-1171 *7))) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-308)) (-5 *2 (-1171 *7)) (-5 *1 (-916 *4 *5 *6 *7)) (-4 *7 (-949 *6 *4 *5)))) (-2214 (*1 *2 *2 *2) (-12 (-5 *2 (-1171 *6)) (-4 *6 (-949 *5 *3 *4)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *5 (-308)) (-5 *1 (-916 *3 *4 *5 *6)))) (-2214 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-949 *6 *4 *5)) (-5 *1 (-916 *4 *5 *6 *2)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-308)))) (-2214 (*1 *2 *2 *2) (-12 (-4 *3 (-793)) (-4 *4 (-850)) (-4 *5 (-308)) (-5 *1 (-916 *3 *4 *5 *2)) (-4 *2 (-949 *5 *3 *4))))) -(-10 -7 (-15 -2214 (|#4| |#4| |#4|)) (-15 -2214 (|#4| (-644 |#4|))) (-15 -2214 ((-1171 |#4|) (-1171 |#4|) (-1171 |#4|))) (-15 -2214 ((-1171 |#4|) (-644 (-1171 |#4|)))) (-15 -2669 (|#4| |#4| |#4|)) (-15 -2669 ((-1171 |#4|) (-1171 |#4|) (-1171 |#4|))) (-15 -2669 (|#4| (-644 |#4|)))) -((-2508 (((-904 (-566)) (-971)) 38) (((-904 (-566)) (-644 (-566))) 35)) (-1370 (((-904 (-566)) (-644 (-566))) 70) (((-904 (-566)) (-921)) 71)) (-1500 (((-904 (-566))) 39)) (-2917 (((-904 (-566))) 55) (((-904 (-566)) (-644 (-566))) 54)) (-1692 (((-904 (-566))) 53) (((-904 (-566)) (-644 (-566))) 52)) (-3931 (((-904 (-566))) 51) (((-904 (-566)) (-644 (-566))) 50)) (-3258 (((-904 (-566))) 49) (((-904 (-566)) (-644 (-566))) 48)) (-1336 (((-904 (-566))) 47) (((-904 (-566)) (-644 (-566))) 46)) (-1415 (((-904 (-566))) 57) (((-904 (-566)) (-644 (-566))) 56)) (-3630 (((-904 (-566)) (-644 (-566))) 75) (((-904 (-566)) (-921)) 77)) (-1833 (((-904 (-566)) (-644 (-566))) 72) (((-904 (-566)) (-921)) 73)) (-2375 (((-904 (-566)) (-644 (-566))) 68) (((-904 (-566)) (-921)) 69)) (-3031 (((-904 (-566)) (-644 (-921))) 60))) -(((-917) (-10 -7 (-15 -1370 ((-904 (-566)) (-921))) (-15 -1370 ((-904 (-566)) (-644 (-566)))) (-15 -2375 ((-904 (-566)) (-921))) (-15 -2375 ((-904 (-566)) (-644 (-566)))) (-15 -3031 ((-904 (-566)) (-644 (-921)))) (-15 -1833 ((-904 (-566)) (-921))) (-15 -1833 ((-904 (-566)) (-644 (-566)))) (-15 -3630 ((-904 (-566)) (-921))) (-15 -3630 ((-904 (-566)) (-644 (-566)))) (-15 -1336 ((-904 (-566)) (-644 (-566)))) (-15 -1336 ((-904 (-566)))) (-15 -3258 ((-904 (-566)) (-644 (-566)))) (-15 -3258 ((-904 (-566)))) (-15 -3931 ((-904 (-566)) (-644 (-566)))) (-15 -3931 ((-904 (-566)))) (-15 -1692 ((-904 (-566)) (-644 (-566)))) (-15 -1692 ((-904 (-566)))) (-15 -2917 ((-904 (-566)) (-644 (-566)))) (-15 -2917 ((-904 (-566)))) (-15 -1415 ((-904 (-566)) (-644 (-566)))) (-15 -1415 ((-904 (-566)))) (-15 -1500 ((-904 (-566)))) (-15 -2508 ((-904 (-566)) (-644 (-566)))) (-15 -2508 ((-904 (-566)) (-971))))) (T -917)) -((-2508 (*1 *2 *3) (-12 (-5 *3 (-971)) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-2508 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-1500 (*1 *2) (-12 (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-1415 (*1 *2) (-12 (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-1415 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-2917 (*1 *2) (-12 (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-2917 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-1692 (*1 *2) (-12 (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-1692 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-3931 (*1 *2) (-12 (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-3931 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-3258 (*1 *2) (-12 (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-3258 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-1336 (*1 *2) (-12 (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-1336 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-3630 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-3630 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-1833 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-1833 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-3031 (*1 *2 *3) (-12 (-5 *3 (-644 (-921))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-2375 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-2375 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-1370 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-1370 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-904 (-566))) (-5 *1 (-917))))) -(-10 -7 (-15 -1370 ((-904 (-566)) (-921))) (-15 -1370 ((-904 (-566)) (-644 (-566)))) (-15 -2375 ((-904 (-566)) (-921))) (-15 -2375 ((-904 (-566)) (-644 (-566)))) (-15 -3031 ((-904 (-566)) (-644 (-921)))) (-15 -1833 ((-904 (-566)) (-921))) (-15 -1833 ((-904 (-566)) (-644 (-566)))) (-15 -3630 ((-904 (-566)) (-921))) (-15 -3630 ((-904 (-566)) (-644 (-566)))) (-15 -1336 ((-904 (-566)) (-644 (-566)))) (-15 -1336 ((-904 (-566)))) (-15 -3258 ((-904 (-566)) (-644 (-566)))) (-15 -3258 ((-904 (-566)))) (-15 -3931 ((-904 (-566)) (-644 (-566)))) (-15 -3931 ((-904 (-566)))) (-15 -1692 ((-904 (-566)) (-644 (-566)))) (-15 -1692 ((-904 (-566)))) (-15 -2917 ((-904 (-566)) (-644 (-566)))) (-15 -2917 ((-904 (-566)))) (-15 -1415 ((-904 (-566)) (-644 (-566)))) (-15 -1415 ((-904 (-566)))) (-15 -1500 ((-904 (-566)))) (-15 -2508 ((-904 (-566)) (-644 (-566)))) (-15 -2508 ((-904 (-566)) (-971)))) -((-3943 (((-644 (-952 |#1|)) (-644 (-952 |#1|)) (-644 (-1175))) 14)) (-3703 (((-644 (-952 |#1|)) (-644 (-952 |#1|)) (-644 (-1175))) 13))) -(((-918 |#1|) (-10 -7 (-15 -3703 ((-644 (-952 |#1|)) (-644 (-952 |#1|)) (-644 (-1175)))) (-15 -3943 ((-644 (-952 |#1|)) (-644 (-952 |#1|)) (-644 (-1175))))) (-454)) (T -918)) -((-3943 (*1 *2 *2 *3) (-12 (-5 *2 (-644 (-952 *4))) (-5 *3 (-644 (-1175))) (-4 *4 (-454)) (-5 *1 (-918 *4)))) (-3703 (*1 *2 *2 *3) (-12 (-5 *2 (-644 (-952 *4))) (-5 *3 (-644 (-1175))) (-4 *4 (-454)) (-5 *1 (-918 *4))))) -(-10 -7 (-15 -3703 ((-644 (-952 |#1|)) (-644 (-952 |#1|)) (-644 (-1175)))) (-15 -3943 ((-644 (-952 |#1|)) (-644 (-952 |#1|)) (-644 (-1175))))) -((-3783 (((-317 |#1|) (-479)) 16))) -(((-919 |#1|) (-10 -7 (-15 -3783 ((-317 |#1|) (-479)))) (-558)) (T -919)) -((-3783 (*1 *2 *3) (-12 (-5 *3 (-479)) (-5 *2 (-317 *4)) (-5 *1 (-919 *4)) (-4 *4 (-558))))) -(-10 -7 (-15 -3783 ((-317 |#1|) (-479)))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) 47)) (-3991 (($ $) 46)) (-2388 (((-112) $) 44)) (-4175 (((-3 $ "failed") $ $) 20)) (-3012 (($) 18 T CONST)) (-1878 (((-3 $ "failed") $) 37)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) 57)) (-3934 (((-112) $) 35)) (-2167 (($ $ $) 52) (($ (-644 $)) 51)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-2214 (($ $ $) 54) (($ (-644 $)) 53)) (-2994 (((-3 $ "failed") $ $) 48)) (-3161 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-3783 (((-862) $) 12) (($ (-566)) 33) (($ $) 49)) (-2107 (((-771)) 32 T CONST)) (-3117 (((-112) $ $) 9)) (-2695 (((-112) $ $) 45)) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-2947 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) +((-4174 (((-3 (-2 (|:| -2679 (-771)) (|:| -3204 |#5|)) "failed") (-338 |#2| |#3| |#4| |#5|)) 77)) (-2105 (((-112) (-338 |#2| |#3| |#4| |#5|)) 17)) (-2679 (((-3 (-771) "failed") (-338 |#2| |#3| |#4| |#5|)) 15))) +(((-911 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2679 ((-3 (-771) "failed") (-338 |#2| |#3| |#4| |#5|))) (-15 -2105 ((-112) (-338 |#2| |#3| |#4| |#5|))) (-15 -4174 ((-3 (-2 (|:| -2679 (-771)) (|:| -3204 |#5|)) "failed") (-338 |#2| |#3| |#4| |#5|)))) (-13 (-558) (-1038 (-566))) (-432 |#1|) (-1240 |#2|) (-1240 (-409 |#3|)) (-344 |#2| |#3| |#4|)) (T -911)) +((-4174 (*1 *2 *3) (|partial| -12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-432 *4)) (-4 *6 (-1240 *5)) (-4 *7 (-1240 (-409 *6))) (-4 *8 (-344 *5 *6 *7)) (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *2 (-2 (|:| -2679 (-771)) (|:| -3204 *8))) (-5 *1 (-911 *4 *5 *6 *7 *8)))) (-2105 (*1 *2 *3) (-12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-432 *4)) (-4 *6 (-1240 *5)) (-4 *7 (-1240 (-409 *6))) (-4 *8 (-344 *5 *6 *7)) (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *2 (-112)) (-5 *1 (-911 *4 *5 *6 *7 *8)))) (-2679 (*1 *2 *3) (|partial| -12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-432 *4)) (-4 *6 (-1240 *5)) (-4 *7 (-1240 (-409 *6))) (-4 *8 (-344 *5 *6 *7)) (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *2 (-771)) (-5 *1 (-911 *4 *5 *6 *7 *8))))) +(-10 -7 (-15 -2679 ((-3 (-771) "failed") (-338 |#2| |#3| |#4| |#5|))) (-15 -2105 ((-112) (-338 |#2| |#3| |#4| |#5|))) (-15 -4174 ((-3 (-2 (|:| -2679 (-771)) (|:| -3204 |#5|)) "failed") (-338 |#2| |#3| |#4| |#5|)))) +((-4174 (((-3 (-2 (|:| -2679 (-771)) (|:| -3204 |#3|)) "failed") (-338 (-409 (-566)) |#1| |#2| |#3|)) 64)) (-2105 (((-112) (-338 (-409 (-566)) |#1| |#2| |#3|)) 16)) (-2679 (((-3 (-771) "failed") (-338 (-409 (-566)) |#1| |#2| |#3|)) 14))) +(((-912 |#1| |#2| |#3|) (-10 -7 (-15 -2679 ((-3 (-771) "failed") (-338 (-409 (-566)) |#1| |#2| |#3|))) (-15 -2105 ((-112) (-338 (-409 (-566)) |#1| |#2| |#3|))) (-15 -4174 ((-3 (-2 (|:| -2679 (-771)) (|:| -3204 |#3|)) "failed") (-338 (-409 (-566)) |#1| |#2| |#3|)))) (-1240 (-409 (-566))) (-1240 (-409 |#1|)) (-344 (-409 (-566)) |#1| |#2|)) (T -912)) +((-4174 (*1 *2 *3) (|partial| -12 (-5 *3 (-338 (-409 (-566)) *4 *5 *6)) (-4 *4 (-1240 (-409 (-566)))) (-4 *5 (-1240 (-409 *4))) (-4 *6 (-344 (-409 (-566)) *4 *5)) (-5 *2 (-2 (|:| -2679 (-771)) (|:| -3204 *6))) (-5 *1 (-912 *4 *5 *6)))) (-2105 (*1 *2 *3) (-12 (-5 *3 (-338 (-409 (-566)) *4 *5 *6)) (-4 *4 (-1240 (-409 (-566)))) (-4 *5 (-1240 (-409 *4))) (-4 *6 (-344 (-409 (-566)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-912 *4 *5 *6)))) (-2679 (*1 *2 *3) (|partial| -12 (-5 *3 (-338 (-409 (-566)) *4 *5 *6)) (-4 *4 (-1240 (-409 (-566)))) (-4 *5 (-1240 (-409 *4))) (-4 *6 (-344 (-409 (-566)) *4 *5)) (-5 *2 (-771)) (-5 *1 (-912 *4 *5 *6))))) +(-10 -7 (-15 -2679 ((-3 (-771) "failed") (-338 (-409 (-566)) |#1| |#2| |#3|))) (-15 -2105 ((-112) (-338 (-409 (-566)) |#1| |#2| |#3|))) (-15 -4174 ((-3 (-2 (|:| -2679 (-771)) (|:| -3204 |#3|)) "failed") (-338 (-409 (-566)) |#1| |#2| |#3|)))) +((-3038 ((|#2| |#2|) 26)) (-2006 (((-566) (-644 (-2 (|:| |den| (-566)) (|:| |gcdnum| (-566))))) 15)) (-2393 (((-921) (-566)) 38)) (-3537 (((-566) |#2|) 45)) (-2519 (((-566) |#2|) 21) (((-2 (|:| |den| (-566)) (|:| |gcdnum| (-566))) |#1|) 20))) +(((-913 |#1| |#2|) (-10 -7 (-15 -2393 ((-921) (-566))) (-15 -2519 ((-2 (|:| |den| (-566)) (|:| |gcdnum| (-566))) |#1|)) (-15 -2519 ((-566) |#2|)) (-15 -2006 ((-566) (-644 (-2 (|:| |den| (-566)) (|:| |gcdnum| (-566)))))) (-15 -3537 ((-566) |#2|)) (-15 -3038 (|#2| |#2|))) (-1240 (-409 (-566))) (-1240 (-409 |#1|))) (T -913)) +((-3038 (*1 *2 *2) (-12 (-4 *3 (-1240 (-409 (-566)))) (-5 *1 (-913 *3 *2)) (-4 *2 (-1240 (-409 *3))))) (-3537 (*1 *2 *3) (-12 (-4 *4 (-1240 (-409 *2))) (-5 *2 (-566)) (-5 *1 (-913 *4 *3)) (-4 *3 (-1240 (-409 *4))))) (-2006 (*1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| |den| (-566)) (|:| |gcdnum| (-566))))) (-4 *4 (-1240 (-409 *2))) (-5 *2 (-566)) (-5 *1 (-913 *4 *5)) (-4 *5 (-1240 (-409 *4))))) (-2519 (*1 *2 *3) (-12 (-4 *4 (-1240 (-409 *2))) (-5 *2 (-566)) (-5 *1 (-913 *4 *3)) (-4 *3 (-1240 (-409 *4))))) (-2519 (*1 *2 *3) (-12 (-4 *3 (-1240 (-409 (-566)))) (-5 *2 (-2 (|:| |den| (-566)) (|:| |gcdnum| (-566)))) (-5 *1 (-913 *3 *4)) (-4 *4 (-1240 (-409 *3))))) (-2393 (*1 *2 *3) (-12 (-5 *3 (-566)) (-4 *4 (-1240 (-409 *3))) (-5 *2 (-921)) (-5 *1 (-913 *4 *5)) (-4 *5 (-1240 (-409 *4)))))) +(-10 -7 (-15 -2393 ((-921) (-566))) (-15 -2519 ((-2 (|:| |den| (-566)) (|:| |gcdnum| (-566))) |#1|)) (-15 -2519 ((-566) |#2|)) (-15 -2006 ((-566) (-644 (-2 (|:| |den| (-566)) (|:| |gcdnum| (-566)))))) (-15 -3537 ((-566) |#2|)) (-15 -3038 (|#2| |#2|))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-1873 ((|#1| $) 100)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-2161 (($ $) NIL)) (-2345 (((-112) $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-1378 (($ $) NIL)) (-1364 (((-420 $) $) NIL)) (-2085 (((-112) $ $) NIL)) (-2463 (($) NIL T CONST)) (-2933 (($ $ $) NIL)) (-3245 (((-3 $ "failed") $) 94)) (-2945 (($ $ $) NIL)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL)) (-1615 (((-112) $) NIL)) (-3714 (($ |#1| (-420 |#1|)) 92)) (-1594 (((-1171 |#1|) |#1| |#1|) 53)) (-1302 (($ $) 61)) (-2389 (((-112) $) NIL)) (-3523 (((-566) $) 97)) (-2058 (($ $ (-566)) 99)) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2128 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3380 (((-1157) $) NIL)) (-2748 (($ $) NIL)) (-4072 (((-1119) $) NIL)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2164 (($ $ $) NIL) (($ (-644 $)) NIL)) (-4295 ((|#1| $) 96)) (-3248 (((-420 |#1|) $) 95)) (-1624 (((-420 $) $) NIL)) (-3005 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2978 (((-3 $ "failed") $ $) 93)) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-4357 (((-771) $) NIL)) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL)) (-4292 (($ $) 50)) (-3152 (((-862) $) 124) (($ (-566)) 73) (($ $) NIL) (($ (-409 (-566))) NIL) (($ |#1|) 41) (((-409 |#1|) $) 78) (($ (-409 (-420 |#1|))) 86)) (-2593 (((-771)) 71 T CONST)) (-3044 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-4356 (($) 26 T CONST)) (-4366 (($) 15 T CONST)) (-2914 (((-112) $ $) 87)) (-3025 (($ $ $) NIL)) (-3012 (($ $) 108) (($ $ $) NIL)) (-3002 (($ $ $) 49)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 110) (($ $ $) 48) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ |#1| $) 109) (($ $ |#1|) NIL))) +(((-914 |#1|) (-13 (-365) (-38 |#1|) (-10 -8 (-15 -3152 ((-409 |#1|) $)) (-15 -3152 ($ (-409 (-420 |#1|)))) (-15 -4292 ($ $)) (-15 -3248 ((-420 |#1|) $)) (-15 -4295 (|#1| $)) (-15 -2058 ($ $ (-566))) (-15 -3523 ((-566) $)) (-15 -1594 ((-1171 |#1|) |#1| |#1|)) (-15 -1302 ($ $)) (-15 -3714 ($ |#1| (-420 |#1|))) (-15 -1873 (|#1| $)))) (-308)) (T -914)) +((-3152 (*1 *2 *1) (-12 (-5 *2 (-409 *3)) (-5 *1 (-914 *3)) (-4 *3 (-308)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-409 (-420 *3))) (-4 *3 (-308)) (-5 *1 (-914 *3)))) (-4292 (*1 *1 *1) (-12 (-5 *1 (-914 *2)) (-4 *2 (-308)))) (-3248 (*1 *2 *1) (-12 (-5 *2 (-420 *3)) (-5 *1 (-914 *3)) (-4 *3 (-308)))) (-4295 (*1 *2 *1) (-12 (-5 *1 (-914 *2)) (-4 *2 (-308)))) (-2058 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-914 *3)) (-4 *3 (-308)))) (-3523 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-914 *3)) (-4 *3 (-308)))) (-1594 (*1 *2 *3 *3) (-12 (-5 *2 (-1171 *3)) (-5 *1 (-914 *3)) (-4 *3 (-308)))) (-1302 (*1 *1 *1) (-12 (-5 *1 (-914 *2)) (-4 *2 (-308)))) (-3714 (*1 *1 *2 *3) (-12 (-5 *3 (-420 *2)) (-4 *2 (-308)) (-5 *1 (-914 *2)))) (-1873 (*1 *2 *1) (-12 (-5 *1 (-914 *2)) (-4 *2 (-308))))) +(-13 (-365) (-38 |#1|) (-10 -8 (-15 -3152 ((-409 |#1|) $)) (-15 -3152 ($ (-409 (-420 |#1|)))) (-15 -4292 ($ $)) (-15 -3248 ((-420 |#1|) $)) (-15 -4295 (|#1| $)) (-15 -2058 ($ $ (-566))) (-15 -3523 ((-566) $)) (-15 -1594 ((-1171 |#1|) |#1| |#1|)) (-15 -1302 ($ $)) (-15 -3714 ($ |#1| (-420 |#1|))) (-15 -1873 (|#1| $)))) +((-3714 (((-52) (-952 |#1|) (-420 (-952 |#1|)) (-1175)) 17) (((-52) (-409 (-952 |#1|)) (-1175)) 18))) +(((-915 |#1|) (-10 -7 (-15 -3714 ((-52) (-409 (-952 |#1|)) (-1175))) (-15 -3714 ((-52) (-952 |#1|) (-420 (-952 |#1|)) (-1175)))) (-13 (-308) (-147))) (T -915)) +((-3714 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-420 (-952 *6))) (-5 *5 (-1175)) (-5 *3 (-952 *6)) (-4 *6 (-13 (-308) (-147))) (-5 *2 (-52)) (-5 *1 (-915 *6)))) (-3714 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-1175)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-52)) (-5 *1 (-915 *5))))) +(-10 -7 (-15 -3714 ((-52) (-409 (-952 |#1|)) (-1175))) (-15 -3714 ((-52) (-952 |#1|) (-420 (-952 |#1|)) (-1175)))) +((-3547 ((|#4| (-644 |#4|)) 149) (((-1171 |#4|) (-1171 |#4|) (-1171 |#4|)) 86) ((|#4| |#4| |#4|) 148)) (-2164 (((-1171 |#4|) (-644 (-1171 |#4|))) 142) (((-1171 |#4|) (-1171 |#4|) (-1171 |#4|)) 63) ((|#4| (-644 |#4|)) 71) ((|#4| |#4| |#4|) 109))) +(((-916 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2164 (|#4| |#4| |#4|)) (-15 -2164 (|#4| (-644 |#4|))) (-15 -2164 ((-1171 |#4|) (-1171 |#4|) (-1171 |#4|))) (-15 -2164 ((-1171 |#4|) (-644 (-1171 |#4|)))) (-15 -3547 (|#4| |#4| |#4|)) (-15 -3547 ((-1171 |#4|) (-1171 |#4|) (-1171 |#4|))) (-15 -3547 (|#4| (-644 |#4|)))) (-793) (-850) (-308) (-949 |#3| |#1| |#2|)) (T -916)) +((-3547 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-949 *6 *4 *5)) (-5 *1 (-916 *4 *5 *6 *2)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-308)))) (-3547 (*1 *2 *2 *2) (-12 (-5 *2 (-1171 *6)) (-4 *6 (-949 *5 *3 *4)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *5 (-308)) (-5 *1 (-916 *3 *4 *5 *6)))) (-3547 (*1 *2 *2 *2) (-12 (-4 *3 (-793)) (-4 *4 (-850)) (-4 *5 (-308)) (-5 *1 (-916 *3 *4 *5 *2)) (-4 *2 (-949 *5 *3 *4)))) (-2164 (*1 *2 *3) (-12 (-5 *3 (-644 (-1171 *7))) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-308)) (-5 *2 (-1171 *7)) (-5 *1 (-916 *4 *5 *6 *7)) (-4 *7 (-949 *6 *4 *5)))) (-2164 (*1 *2 *2 *2) (-12 (-5 *2 (-1171 *6)) (-4 *6 (-949 *5 *3 *4)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *5 (-308)) (-5 *1 (-916 *3 *4 *5 *6)))) (-2164 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-949 *6 *4 *5)) (-5 *1 (-916 *4 *5 *6 *2)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-308)))) (-2164 (*1 *2 *2 *2) (-12 (-4 *3 (-793)) (-4 *4 (-850)) (-4 *5 (-308)) (-5 *1 (-916 *3 *4 *5 *2)) (-4 *2 (-949 *5 *3 *4))))) +(-10 -7 (-15 -2164 (|#4| |#4| |#4|)) (-15 -2164 (|#4| (-644 |#4|))) (-15 -2164 ((-1171 |#4|) (-1171 |#4|) (-1171 |#4|))) (-15 -2164 ((-1171 |#4|) (-644 (-1171 |#4|)))) (-15 -3547 (|#4| |#4| |#4|)) (-15 -3547 ((-1171 |#4|) (-1171 |#4|) (-1171 |#4|))) (-15 -3547 (|#4| (-644 |#4|)))) +((-4127 (((-904 (-566)) (-971)) 38) (((-904 (-566)) (-644 (-566))) 35)) (-2630 (((-904 (-566)) (-644 (-566))) 70) (((-904 (-566)) (-921)) 71)) (-2856 (((-904 (-566))) 39)) (-4269 (((-904 (-566))) 55) (((-904 (-566)) (-644 (-566))) 54)) (-3481 (((-904 (-566))) 53) (((-904 (-566)) (-644 (-566))) 52)) (-2097 (((-904 (-566))) 51) (((-904 (-566)) (-644 (-566))) 50)) (-3118 (((-904 (-566))) 49) (((-904 (-566)) (-644 (-566))) 48)) (-2321 (((-904 (-566))) 47) (((-904 (-566)) (-644 (-566))) 46)) (-1582 (((-904 (-566))) 57) (((-904 (-566)) (-644 (-566))) 56)) (-1412 (((-904 (-566)) (-644 (-566))) 75) (((-904 (-566)) (-921)) 77)) (-4049 (((-904 (-566)) (-644 (-566))) 72) (((-904 (-566)) (-921)) 73)) (-3462 (((-904 (-566)) (-644 (-566))) 68) (((-904 (-566)) (-921)) 69)) (-1669 (((-904 (-566)) (-644 (-921))) 60))) +(((-917) (-10 -7 (-15 -2630 ((-904 (-566)) (-921))) (-15 -2630 ((-904 (-566)) (-644 (-566)))) (-15 -3462 ((-904 (-566)) (-921))) (-15 -3462 ((-904 (-566)) (-644 (-566)))) (-15 -1669 ((-904 (-566)) (-644 (-921)))) (-15 -4049 ((-904 (-566)) (-921))) (-15 -4049 ((-904 (-566)) (-644 (-566)))) (-15 -1412 ((-904 (-566)) (-921))) (-15 -1412 ((-904 (-566)) (-644 (-566)))) (-15 -2321 ((-904 (-566)) (-644 (-566)))) (-15 -2321 ((-904 (-566)))) (-15 -3118 ((-904 (-566)) (-644 (-566)))) (-15 -3118 ((-904 (-566)))) (-15 -2097 ((-904 (-566)) (-644 (-566)))) (-15 -2097 ((-904 (-566)))) (-15 -3481 ((-904 (-566)) (-644 (-566)))) (-15 -3481 ((-904 (-566)))) (-15 -4269 ((-904 (-566)) (-644 (-566)))) (-15 -4269 ((-904 (-566)))) (-15 -1582 ((-904 (-566)) (-644 (-566)))) (-15 -1582 ((-904 (-566)))) (-15 -2856 ((-904 (-566)))) (-15 -4127 ((-904 (-566)) (-644 (-566)))) (-15 -4127 ((-904 (-566)) (-971))))) (T -917)) +((-4127 (*1 *2 *3) (-12 (-5 *3 (-971)) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-4127 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-2856 (*1 *2) (-12 (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-1582 (*1 *2) (-12 (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-1582 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-4269 (*1 *2) (-12 (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-4269 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-3481 (*1 *2) (-12 (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-3481 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-2097 (*1 *2) (-12 (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-2097 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-3118 (*1 *2) (-12 (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-3118 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-2321 (*1 *2) (-12 (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-2321 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-1412 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-1412 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-4049 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-4049 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-1669 (*1 *2 *3) (-12 (-5 *3 (-644 (-921))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-3462 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-3462 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-2630 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-2630 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-904 (-566))) (-5 *1 (-917))))) +(-10 -7 (-15 -2630 ((-904 (-566)) (-921))) (-15 -2630 ((-904 (-566)) (-644 (-566)))) (-15 -3462 ((-904 (-566)) (-921))) (-15 -3462 ((-904 (-566)) (-644 (-566)))) (-15 -1669 ((-904 (-566)) (-644 (-921)))) (-15 -4049 ((-904 (-566)) (-921))) (-15 -4049 ((-904 (-566)) (-644 (-566)))) (-15 -1412 ((-904 (-566)) (-921))) (-15 -1412 ((-904 (-566)) (-644 (-566)))) (-15 -2321 ((-904 (-566)) (-644 (-566)))) (-15 -2321 ((-904 (-566)))) (-15 -3118 ((-904 (-566)) (-644 (-566)))) (-15 -3118 ((-904 (-566)))) (-15 -2097 ((-904 (-566)) (-644 (-566)))) (-15 -2097 ((-904 (-566)))) (-15 -3481 ((-904 (-566)) (-644 (-566)))) (-15 -3481 ((-904 (-566)))) (-15 -4269 ((-904 (-566)) (-644 (-566)))) (-15 -4269 ((-904 (-566)))) (-15 -1582 ((-904 (-566)) (-644 (-566)))) (-15 -1582 ((-904 (-566)))) (-15 -2856 ((-904 (-566)))) (-15 -4127 ((-904 (-566)) (-644 (-566)))) (-15 -4127 ((-904 (-566)) (-971)))) +((-1936 (((-644 (-952 |#1|)) (-644 (-952 |#1|)) (-644 (-1175))) 14)) (-2027 (((-644 (-952 |#1|)) (-644 (-952 |#1|)) (-644 (-1175))) 13))) +(((-918 |#1|) (-10 -7 (-15 -2027 ((-644 (-952 |#1|)) (-644 (-952 |#1|)) (-644 (-1175)))) (-15 -1936 ((-644 (-952 |#1|)) (-644 (-952 |#1|)) (-644 (-1175))))) (-454)) (T -918)) +((-1936 (*1 *2 *2 *3) (-12 (-5 *2 (-644 (-952 *4))) (-5 *3 (-644 (-1175))) (-4 *4 (-454)) (-5 *1 (-918 *4)))) (-2027 (*1 *2 *2 *3) (-12 (-5 *2 (-644 (-952 *4))) (-5 *3 (-644 (-1175))) (-4 *4 (-454)) (-5 *1 (-918 *4))))) +(-10 -7 (-15 -2027 ((-644 (-952 |#1|)) (-644 (-952 |#1|)) (-644 (-1175)))) (-15 -1936 ((-644 (-952 |#1|)) (-644 (-952 |#1|)) (-644 (-1175))))) +((-3152 (((-317 |#1|) (-479)) 16))) +(((-919 |#1|) (-10 -7 (-15 -3152 ((-317 |#1|) (-479)))) (-558)) (T -919)) +((-3152 (*1 *2 *3) (-12 (-5 *3 (-479)) (-5 *2 (-317 *4)) (-5 *1 (-919 *4)) (-4 *4 (-558))))) +(-10 -7 (-15 -3152 ((-317 |#1|) (-479)))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) 47)) (-2161 (($ $) 46)) (-2345 (((-112) $) 44)) (-3967 (((-3 $ "failed") $ $) 20)) (-2463 (($) 18 T CONST)) (-3245 (((-3 $ "failed") $) 37)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) 57)) (-2389 (((-112) $) 35)) (-2128 (($ $ $) 52) (($ (-644 $)) 51)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-2164 (($ $ $) 54) (($ (-644 $)) 53)) (-2978 (((-3 $ "failed") $ $) 48)) (-2915 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-3152 (((-862) $) 12) (($ (-566)) 33) (($ $) 49)) (-2593 (((-771)) 32 T CONST)) (-3044 (((-112) $ $) 9)) (-3014 (((-112) $ $) 45)) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-2914 (((-112) $ $) 6)) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) (((-920) (-140)) (T -920)) -((-2357 (*1 *2 *3) (-12 (-4 *1 (-920)) (-5 *2 (-2 (|:| -1364 (-644 *1)) (|:| -3441 *1))) (-5 *3 (-644 *1)))) (-3161 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-644 *1)) (-4 *1 (-920))))) -(-13 (-454) (-10 -8 (-15 -2357 ((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $))) (-15 -3161 ((-3 (-644 $) "failed") (-644 $) $)))) +((-3255 (*1 *2 *3) (-12 (-4 *1 (-920)) (-5 *2 (-2 (|:| -2397 (-644 *1)) (|:| -3302 *1))) (-5 *3 (-644 *1)))) (-2915 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-644 *1)) (-4 *1 (-920))))) +(-13 (-454) (-10 -8 (-15 -3255 ((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $))) (-15 -2915 ((-3 (-644 $) "failed") (-644 $) $)))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-616 (-566)) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-291) . T) ((-454) . T) ((-558) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-640 $) . T) ((-717 $) . T) ((-726) . T) ((-1051 $) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) -((-3007 (((-112) $ $) NIL)) (-3012 (($) NIL T CONST)) (-1878 (((-3 $ "failed") $) NIL)) (-3934 (((-112) $) NIL)) (-2097 (($ $ $) NIL)) (-3962 (($ $ $) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-2214 (($ $ $) NIL)) (-3783 (((-862) $) NIL)) (-3117 (((-112) $ $) NIL)) (-4334 (($) NIL T CONST)) (-3009 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL)) (-2995 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-771)) NIL) (($ $ (-921)) NIL)) (* (($ (-921) $) NIL) (($ $ $) NIL))) -(((-921) (-13 (-794) (-726) (-10 -8 (-15 -2214 ($ $ $)) (-6 (-4416 "*"))))) (T -921)) -((-2214 (*1 *1 *1 *1) (-5 *1 (-921)))) -(-13 (-794) (-726) (-10 -8 (-15 -2214 ($ $ $)) (-6 (-4416 "*")))) +((-2988 (((-112) $ $) NIL)) (-2463 (($) NIL T CONST)) (-3245 (((-3 $ "failed") $) NIL)) (-2389 (((-112) $) NIL)) (-1478 (($ $ $) NIL)) (-2599 (($ $ $) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-2164 (($ $ $) NIL)) (-3152 (((-862) $) NIL)) (-3044 (((-112) $ $) NIL)) (-4366 (($) NIL T CONST)) (-2968 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2935 (((-112) $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-771)) NIL) (($ $ (-921)) NIL)) (* (($ (-921) $) NIL) (($ $ $) NIL))) +(((-921) (-13 (-794) (-726) (-10 -8 (-15 -2164 ($ $ $)) (-6 (-4416 "*"))))) (T -921)) +((-2164 (*1 *1 *1 *1) (-5 *1 (-921)))) +(-13 (-794) (-726) (-10 -8 (-15 -2164 ($ $ $)) (-6 (-4416 "*")))) ((|NonNegativeInteger|) (> |#1| 0)) -((-2560 ((|#2| (-644 |#1|) (-644 |#1|)) 29))) -(((-922 |#1| |#2|) (-10 -7 (-15 -2560 (|#2| (-644 |#1|) (-644 |#1|)))) (-365) (-1240 |#1|)) (T -922)) -((-2560 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *4)) (-4 *4 (-365)) (-4 *2 (-1240 *4)) (-5 *1 (-922 *4 *2))))) -(-10 -7 (-15 -2560 (|#2| (-644 |#1|) (-644 |#1|)))) -((-2390 (((-1171 |#2|) (-644 |#2|) (-644 |#2|)) 17) (((-1237 |#1| |#2|) (-1237 |#1| |#2|) (-644 |#2|) (-644 |#2|)) 13))) -(((-923 |#1| |#2|) (-10 -7 (-15 -2390 ((-1237 |#1| |#2|) (-1237 |#1| |#2|) (-644 |#2|) (-644 |#2|))) (-15 -2390 ((-1171 |#2|) (-644 |#2|) (-644 |#2|)))) (-1175) (-365)) (T -923)) -((-2390 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *5)) (-4 *5 (-365)) (-5 *2 (-1171 *5)) (-5 *1 (-923 *4 *5)) (-14 *4 (-1175)))) (-2390 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1237 *4 *5)) (-5 *3 (-644 *5)) (-14 *4 (-1175)) (-4 *5 (-365)) (-5 *1 (-923 *4 *5))))) -(-10 -7 (-15 -2390 ((-1237 |#1| |#2|) (-1237 |#1| |#2|) (-644 |#2|) (-644 |#2|))) (-15 -2390 ((-1171 |#2|) (-644 |#2|) (-644 |#2|)))) -((-2287 (((-566) (-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2365 (-644 (-1264 (-409 (-952 |#1|))))))))) (-1157)) 177)) (-4286 ((|#4| |#4|) 196)) (-3886 (((-644 (-409 (-952 |#1|))) (-644 (-1175))) 149)) (-3020 (((-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2365 (-644 (-1264 (-409 (-952 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))) (-689 |#4|) (-644 (-409 (-952 |#1|))) (-644 (-644 |#4|)) (-771) (-771) (-566)) 88)) (-2332 (((-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2365 (-644 (-1264 (-409 (-952 |#1|)))))) (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2365 (-644 (-1264 (-409 (-952 |#1|)))))) (-644 |#4|)) 69)) (-1514 (((-689 |#4|) (-689 |#4|) (-644 |#4|)) 65)) (-2923 (((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2365 (-644 (-1264 (-409 (-952 |#1|))))))))) (-1157)) 189)) (-2213 (((-566) (-689 |#4|) (-921) (-1157)) 169) (((-566) (-689 |#4|) (-644 (-1175)) (-921) (-1157)) 168) (((-566) (-689 |#4|) (-644 |#4|) (-921) (-1157)) 167) (((-566) (-689 |#4|) (-1157)) 157) (((-566) (-689 |#4|) (-644 (-1175)) (-1157)) 156) (((-566) (-689 |#4|) (-644 |#4|) (-1157)) 155) (((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2365 (-644 (-1264 (-409 (-952 |#1|))))))))) (-689 |#4|) (-921)) 154) (((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2365 (-644 (-1264 (-409 (-952 |#1|))))))))) (-689 |#4|) (-644 (-1175)) (-921)) 153) (((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2365 (-644 (-1264 (-409 (-952 |#1|))))))))) (-689 |#4|) (-644 |#4|) (-921)) 152) (((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2365 (-644 (-1264 (-409 (-952 |#1|))))))))) (-689 |#4|)) 151) (((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2365 (-644 (-1264 (-409 (-952 |#1|))))))))) (-689 |#4|) (-644 (-1175))) 150) (((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2365 (-644 (-1264 (-409 (-952 |#1|))))))))) (-689 |#4|) (-644 |#4|)) 146)) (-4368 ((|#4| (-952 |#1|)) 80)) (-2218 (((-112) (-644 |#4|) (-644 (-644 |#4|))) 193)) (-2326 (((-644 (-644 (-566))) (-566) (-566)) 162)) (-1969 (((-644 (-644 |#4|)) (-644 (-644 |#4|))) 107)) (-3713 (((-771) (-644 (-2 (|:| -4313 (-771)) (|:| |eqns| (-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (|:| |fgb| (-644 |#4|))))) 102)) (-2157 (((-771) (-644 (-2 (|:| -4313 (-771)) (|:| |eqns| (-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (|:| |fgb| (-644 |#4|))))) 101)) (-2078 (((-112) (-644 (-952 |#1|))) 19) (((-112) (-644 |#4|)) 15)) (-4169 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-644 |#4|)) (|:| |n0| (-644 |#4|))) (-644 |#4|) (-644 |#4|)) 84)) (-2639 (((-644 |#4|) |#4|) 57)) (-1914 (((-644 (-409 (-952 |#1|))) (-644 |#4|)) 145) (((-689 (-409 (-952 |#1|))) (-689 |#4|)) 66) (((-409 (-952 |#1|)) |#4|) 142)) (-2944 (((-2 (|:| |rgl| (-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2365 (-644 (-1264 (-409 (-952 |#1|)))))))))) (|:| |rgsz| (-566))) (-689 |#4|) (-644 (-409 (-952 |#1|))) (-771) (-1157) (-566)) 113)) (-3391 (((-644 (-2 (|:| -4313 (-771)) (|:| |eqns| (-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (|:| |fgb| (-644 |#4|)))) (-689 |#4|) (-771)) 100)) (-2362 (((-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566))))) (-689 |#4|) (-771)) 124)) (-2774 (((-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2365 (-644 (-1264 (-409 (-952 |#1|)))))) (-2 (|:| -4227 (-689 (-409 (-952 |#1|)))) (|:| |vec| (-644 (-409 (-952 |#1|)))) (|:| -4313 (-771)) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566))))) 56))) -(((-924 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2213 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2365 (-644 (-1264 (-409 (-952 |#1|))))))))) (-689 |#4|) (-644 |#4|))) (-15 -2213 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2365 (-644 (-1264 (-409 (-952 |#1|))))))))) (-689 |#4|) (-644 (-1175)))) (-15 -2213 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2365 (-644 (-1264 (-409 (-952 |#1|))))))))) (-689 |#4|))) (-15 -2213 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2365 (-644 (-1264 (-409 (-952 |#1|))))))))) (-689 |#4|) (-644 |#4|) (-921))) (-15 -2213 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2365 (-644 (-1264 (-409 (-952 |#1|))))))))) (-689 |#4|) (-644 (-1175)) (-921))) (-15 -2213 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2365 (-644 (-1264 (-409 (-952 |#1|))))))))) (-689 |#4|) (-921))) (-15 -2213 ((-566) (-689 |#4|) (-644 |#4|) (-1157))) (-15 -2213 ((-566) (-689 |#4|) (-644 (-1175)) (-1157))) (-15 -2213 ((-566) (-689 |#4|) (-1157))) (-15 -2213 ((-566) (-689 |#4|) (-644 |#4|) (-921) (-1157))) (-15 -2213 ((-566) (-689 |#4|) (-644 (-1175)) (-921) (-1157))) (-15 -2213 ((-566) (-689 |#4|) (-921) (-1157))) (-15 -2287 ((-566) (-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2365 (-644 (-1264 (-409 (-952 |#1|))))))))) (-1157))) (-15 -2923 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2365 (-644 (-1264 (-409 (-952 |#1|))))))))) (-1157))) (-15 -2944 ((-2 (|:| |rgl| (-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2365 (-644 (-1264 (-409 (-952 |#1|)))))))))) (|:| |rgsz| (-566))) (-689 |#4|) (-644 (-409 (-952 |#1|))) (-771) (-1157) (-566))) (-15 -1914 ((-409 (-952 |#1|)) |#4|)) (-15 -1914 ((-689 (-409 (-952 |#1|))) (-689 |#4|))) (-15 -1914 ((-644 (-409 (-952 |#1|))) (-644 |#4|))) (-15 -3886 ((-644 (-409 (-952 |#1|))) (-644 (-1175)))) (-15 -4368 (|#4| (-952 |#1|))) (-15 -4169 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-644 |#4|)) (|:| |n0| (-644 |#4|))) (-644 |#4|) (-644 |#4|))) (-15 -3391 ((-644 (-2 (|:| -4313 (-771)) (|:| |eqns| (-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (|:| |fgb| (-644 |#4|)))) (-689 |#4|) (-771))) (-15 -2332 ((-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2365 (-644 (-1264 (-409 (-952 |#1|)))))) (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2365 (-644 (-1264 (-409 (-952 |#1|)))))) (-644 |#4|))) (-15 -2774 ((-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2365 (-644 (-1264 (-409 (-952 |#1|)))))) (-2 (|:| -4227 (-689 (-409 (-952 |#1|)))) (|:| |vec| (-644 (-409 (-952 |#1|)))) (|:| -4313 (-771)) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (-15 -2639 ((-644 |#4|) |#4|)) (-15 -2157 ((-771) (-644 (-2 (|:| -4313 (-771)) (|:| |eqns| (-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (|:| |fgb| (-644 |#4|)))))) (-15 -3713 ((-771) (-644 (-2 (|:| -4313 (-771)) (|:| |eqns| (-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (|:| |fgb| (-644 |#4|)))))) (-15 -1969 ((-644 (-644 |#4|)) (-644 (-644 |#4|)))) (-15 -2326 ((-644 (-644 (-566))) (-566) (-566))) (-15 -2218 ((-112) (-644 |#4|) (-644 (-644 |#4|)))) (-15 -2362 ((-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566))))) (-689 |#4|) (-771))) (-15 -1514 ((-689 |#4|) (-689 |#4|) (-644 |#4|))) (-15 -3020 ((-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2365 (-644 (-1264 (-409 (-952 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))) (-689 |#4|) (-644 (-409 (-952 |#1|))) (-644 (-644 |#4|)) (-771) (-771) (-566))) (-15 -4286 (|#4| |#4|)) (-15 -2078 ((-112) (-644 |#4|))) (-15 -2078 ((-112) (-644 (-952 |#1|))))) (-13 (-308) (-147)) (-13 (-850) (-614 (-1175))) (-793) (-949 |#1| |#3| |#2|)) (T -924)) -((-2078 (*1 *2 *3) (-12 (-5 *3 (-644 (-952 *4))) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-112)) (-5 *1 (-924 *4 *5 *6 *7)) (-4 *7 (-949 *4 *6 *5)))) (-2078 (*1 *2 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-949 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-112)) (-5 *1 (-924 *4 *5 *6 *7)))) (-4286 (*1 *2 *2) (-12 (-4 *3 (-13 (-308) (-147))) (-4 *4 (-13 (-850) (-614 (-1175)))) (-4 *5 (-793)) (-5 *1 (-924 *3 *4 *5 *2)) (-4 *2 (-949 *3 *5 *4)))) (-3020 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566))))) (-5 *4 (-689 *12)) (-5 *5 (-644 (-409 (-952 *9)))) (-5 *6 (-644 (-644 *12))) (-5 *7 (-771)) (-5 *8 (-566)) (-4 *9 (-13 (-308) (-147))) (-4 *12 (-949 *9 *11 *10)) (-4 *10 (-13 (-850) (-614 (-1175)))) (-4 *11 (-793)) (-5 *2 (-2 (|:| |eqzro| (-644 *12)) (|:| |neqzro| (-644 *12)) (|:| |wcond| (-644 (-952 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 *9)))) (|:| -2365 (-644 (-1264 (-409 (-952 *9))))))))) (-5 *1 (-924 *9 *10 *11 *12)))) (-1514 (*1 *2 *2 *3) (-12 (-5 *2 (-689 *7)) (-5 *3 (-644 *7)) (-4 *7 (-949 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *1 (-924 *4 *5 *6 *7)))) (-2362 (*1 *2 *3 *4) (-12 (-5 *3 (-689 *8)) (-5 *4 (-771)) (-4 *8 (-949 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-850) (-614 (-1175)))) (-4 *7 (-793)) (-5 *2 (-644 (-2 (|:| |det| *8) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (-5 *1 (-924 *5 *6 *7 *8)))) (-2218 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-644 *8))) (-5 *3 (-644 *8)) (-4 *8 (-949 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-850) (-614 (-1175)))) (-4 *7 (-793)) (-5 *2 (-112)) (-5 *1 (-924 *5 *6 *7 *8)))) (-2326 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-644 (-644 (-566)))) (-5 *1 (-924 *4 *5 *6 *7)) (-5 *3 (-566)) (-4 *7 (-949 *4 *6 *5)))) (-1969 (*1 *2 *2) (-12 (-5 *2 (-644 (-644 *6))) (-4 *6 (-949 *3 *5 *4)) (-4 *3 (-13 (-308) (-147))) (-4 *4 (-13 (-850) (-614 (-1175)))) (-4 *5 (-793)) (-5 *1 (-924 *3 *4 *5 *6)))) (-3713 (*1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| -4313 (-771)) (|:| |eqns| (-644 (-2 (|:| |det| *7) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (|:| |fgb| (-644 *7))))) (-4 *7 (-949 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-771)) (-5 *1 (-924 *4 *5 *6 *7)))) (-2157 (*1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| -4313 (-771)) (|:| |eqns| (-644 (-2 (|:| |det| *7) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (|:| |fgb| (-644 *7))))) (-4 *7 (-949 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-771)) (-5 *1 (-924 *4 *5 *6 *7)))) (-2639 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-644 *3)) (-5 *1 (-924 *4 *5 *6 *3)) (-4 *3 (-949 *4 *6 *5)))) (-2774 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4227 (-689 (-409 (-952 *4)))) (|:| |vec| (-644 (-409 (-952 *4)))) (|:| -4313 (-771)) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566))))) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-2 (|:| |partsol| (-1264 (-409 (-952 *4)))) (|:| -2365 (-644 (-1264 (-409 (-952 *4))))))) (-5 *1 (-924 *4 *5 *6 *7)) (-4 *7 (-949 *4 *6 *5)))) (-2332 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1264 (-409 (-952 *4)))) (|:| -2365 (-644 (-1264 (-409 (-952 *4))))))) (-5 *3 (-644 *7)) (-4 *4 (-13 (-308) (-147))) (-4 *7 (-949 *4 *6 *5)) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *1 (-924 *4 *5 *6 *7)))) (-3391 (*1 *2 *3 *4) (-12 (-5 *3 (-689 *8)) (-4 *8 (-949 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-850) (-614 (-1175)))) (-4 *7 (-793)) (-5 *2 (-644 (-2 (|:| -4313 (-771)) (|:| |eqns| (-644 (-2 (|:| |det| *8) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (|:| |fgb| (-644 *8))))) (-5 *1 (-924 *5 *6 *7 *8)) (-5 *4 (-771)))) (-4169 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-4 *7 (-949 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-644 *7)) (|:| |n0| (-644 *7)))) (-5 *1 (-924 *4 *5 *6 *7)) (-5 *3 (-644 *7)))) (-4368 (*1 *2 *3) (-12 (-5 *3 (-952 *4)) (-4 *4 (-13 (-308) (-147))) (-4 *2 (-949 *4 *6 *5)) (-5 *1 (-924 *4 *5 *6 *2)) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)))) (-3886 (*1 *2 *3) (-12 (-5 *3 (-644 (-1175))) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-644 (-409 (-952 *4)))) (-5 *1 (-924 *4 *5 *6 *7)) (-4 *7 (-949 *4 *6 *5)))) (-1914 (*1 *2 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-949 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-644 (-409 (-952 *4)))) (-5 *1 (-924 *4 *5 *6 *7)))) (-1914 (*1 *2 *3) (-12 (-5 *3 (-689 *7)) (-4 *7 (-949 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-689 (-409 (-952 *4)))) (-5 *1 (-924 *4 *5 *6 *7)))) (-1914 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-409 (-952 *4))) (-5 *1 (-924 *4 *5 *6 *3)) (-4 *3 (-949 *4 *6 *5)))) (-2944 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-689 *11)) (-5 *4 (-644 (-409 (-952 *8)))) (-5 *5 (-771)) (-5 *6 (-1157)) (-4 *8 (-13 (-308) (-147))) (-4 *11 (-949 *8 *10 *9)) (-4 *9 (-13 (-850) (-614 (-1175)))) (-4 *10 (-793)) (-5 *2 (-2 (|:| |rgl| (-644 (-2 (|:| |eqzro| (-644 *11)) (|:| |neqzro| (-644 *11)) (|:| |wcond| (-644 (-952 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 *8)))) (|:| -2365 (-644 (-1264 (-409 (-952 *8)))))))))) (|:| |rgsz| (-566)))) (-5 *1 (-924 *8 *9 *10 *11)) (-5 *7 (-566)))) (-2923 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-644 (-2 (|:| |eqzro| (-644 *7)) (|:| |neqzro| (-644 *7)) (|:| |wcond| (-644 (-952 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 *4)))) (|:| -2365 (-644 (-1264 (-409 (-952 *4)))))))))) (-5 *1 (-924 *4 *5 *6 *7)) (-4 *7 (-949 *4 *6 *5)))) (-2287 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-2 (|:| |eqzro| (-644 *8)) (|:| |neqzro| (-644 *8)) (|:| |wcond| (-644 (-952 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 *5)))) (|:| -2365 (-644 (-1264 (-409 (-952 *5)))))))))) (-5 *4 (-1157)) (-4 *5 (-13 (-308) (-147))) (-4 *8 (-949 *5 *7 *6)) (-4 *6 (-13 (-850) (-614 (-1175)))) (-4 *7 (-793)) (-5 *2 (-566)) (-5 *1 (-924 *5 *6 *7 *8)))) (-2213 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-689 *9)) (-5 *4 (-921)) (-5 *5 (-1157)) (-4 *9 (-949 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-850) (-614 (-1175)))) (-4 *8 (-793)) (-5 *2 (-566)) (-5 *1 (-924 *6 *7 *8 *9)))) (-2213 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-689 *10)) (-5 *4 (-644 (-1175))) (-5 *5 (-921)) (-5 *6 (-1157)) (-4 *10 (-949 *7 *9 *8)) (-4 *7 (-13 (-308) (-147))) (-4 *8 (-13 (-850) (-614 (-1175)))) (-4 *9 (-793)) (-5 *2 (-566)) (-5 *1 (-924 *7 *8 *9 *10)))) (-2213 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-689 *10)) (-5 *4 (-644 *10)) (-5 *5 (-921)) (-5 *6 (-1157)) (-4 *10 (-949 *7 *9 *8)) (-4 *7 (-13 (-308) (-147))) (-4 *8 (-13 (-850) (-614 (-1175)))) (-4 *9 (-793)) (-5 *2 (-566)) (-5 *1 (-924 *7 *8 *9 *10)))) (-2213 (*1 *2 *3 *4) (-12 (-5 *3 (-689 *8)) (-5 *4 (-1157)) (-4 *8 (-949 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-850) (-614 (-1175)))) (-4 *7 (-793)) (-5 *2 (-566)) (-5 *1 (-924 *5 *6 *7 *8)))) (-2213 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-689 *9)) (-5 *4 (-644 (-1175))) (-5 *5 (-1157)) (-4 *9 (-949 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-850) (-614 (-1175)))) (-4 *8 (-793)) (-5 *2 (-566)) (-5 *1 (-924 *6 *7 *8 *9)))) (-2213 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-689 *9)) (-5 *4 (-644 *9)) (-5 *5 (-1157)) (-4 *9 (-949 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-850) (-614 (-1175)))) (-4 *8 (-793)) (-5 *2 (-566)) (-5 *1 (-924 *6 *7 *8 *9)))) (-2213 (*1 *2 *3 *4) (-12 (-5 *3 (-689 *8)) (-5 *4 (-921)) (-4 *8 (-949 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-850) (-614 (-1175)))) (-4 *7 (-793)) (-5 *2 (-644 (-2 (|:| |eqzro| (-644 *8)) (|:| |neqzro| (-644 *8)) (|:| |wcond| (-644 (-952 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 *5)))) (|:| -2365 (-644 (-1264 (-409 (-952 *5)))))))))) (-5 *1 (-924 *5 *6 *7 *8)))) (-2213 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-689 *9)) (-5 *4 (-644 (-1175))) (-5 *5 (-921)) (-4 *9 (-949 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-850) (-614 (-1175)))) (-4 *8 (-793)) (-5 *2 (-644 (-2 (|:| |eqzro| (-644 *9)) (|:| |neqzro| (-644 *9)) (|:| |wcond| (-644 (-952 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 *6)))) (|:| -2365 (-644 (-1264 (-409 (-952 *6)))))))))) (-5 *1 (-924 *6 *7 *8 *9)))) (-2213 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-689 *9)) (-5 *5 (-921)) (-4 *9 (-949 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-850) (-614 (-1175)))) (-4 *8 (-793)) (-5 *2 (-644 (-2 (|:| |eqzro| (-644 *9)) (|:| |neqzro| (-644 *9)) (|:| |wcond| (-644 (-952 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 *6)))) (|:| -2365 (-644 (-1264 (-409 (-952 *6)))))))))) (-5 *1 (-924 *6 *7 *8 *9)) (-5 *4 (-644 *9)))) (-2213 (*1 *2 *3) (-12 (-5 *3 (-689 *7)) (-4 *7 (-949 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-644 (-2 (|:| |eqzro| (-644 *7)) (|:| |neqzro| (-644 *7)) (|:| |wcond| (-644 (-952 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 *4)))) (|:| -2365 (-644 (-1264 (-409 (-952 *4)))))))))) (-5 *1 (-924 *4 *5 *6 *7)))) (-2213 (*1 *2 *3 *4) (-12 (-5 *3 (-689 *8)) (-5 *4 (-644 (-1175))) (-4 *8 (-949 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-850) (-614 (-1175)))) (-4 *7 (-793)) (-5 *2 (-644 (-2 (|:| |eqzro| (-644 *8)) (|:| |neqzro| (-644 *8)) (|:| |wcond| (-644 (-952 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 *5)))) (|:| -2365 (-644 (-1264 (-409 (-952 *5)))))))))) (-5 *1 (-924 *5 *6 *7 *8)))) (-2213 (*1 *2 *3 *4) (-12 (-5 *3 (-689 *8)) (-4 *8 (-949 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-850) (-614 (-1175)))) (-4 *7 (-793)) (-5 *2 (-644 (-2 (|:| |eqzro| (-644 *8)) (|:| |neqzro| (-644 *8)) (|:| |wcond| (-644 (-952 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 *5)))) (|:| -2365 (-644 (-1264 (-409 (-952 *5)))))))))) (-5 *1 (-924 *5 *6 *7 *8)) (-5 *4 (-644 *8))))) -(-10 -7 (-15 -2213 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2365 (-644 (-1264 (-409 (-952 |#1|))))))))) (-689 |#4|) (-644 |#4|))) (-15 -2213 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2365 (-644 (-1264 (-409 (-952 |#1|))))))))) (-689 |#4|) (-644 (-1175)))) (-15 -2213 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2365 (-644 (-1264 (-409 (-952 |#1|))))))))) (-689 |#4|))) (-15 -2213 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2365 (-644 (-1264 (-409 (-952 |#1|))))))))) (-689 |#4|) (-644 |#4|) (-921))) (-15 -2213 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2365 (-644 (-1264 (-409 (-952 |#1|))))))))) (-689 |#4|) (-644 (-1175)) (-921))) (-15 -2213 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2365 (-644 (-1264 (-409 (-952 |#1|))))))))) (-689 |#4|) (-921))) (-15 -2213 ((-566) (-689 |#4|) (-644 |#4|) (-1157))) (-15 -2213 ((-566) (-689 |#4|) (-644 (-1175)) (-1157))) (-15 -2213 ((-566) (-689 |#4|) (-1157))) (-15 -2213 ((-566) (-689 |#4|) (-644 |#4|) (-921) (-1157))) (-15 -2213 ((-566) (-689 |#4|) (-644 (-1175)) (-921) (-1157))) (-15 -2213 ((-566) (-689 |#4|) (-921) (-1157))) (-15 -2287 ((-566) (-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2365 (-644 (-1264 (-409 (-952 |#1|))))))))) (-1157))) (-15 -2923 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2365 (-644 (-1264 (-409 (-952 |#1|))))))))) (-1157))) (-15 -2944 ((-2 (|:| |rgl| (-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2365 (-644 (-1264 (-409 (-952 |#1|)))))))))) (|:| |rgsz| (-566))) (-689 |#4|) (-644 (-409 (-952 |#1|))) (-771) (-1157) (-566))) (-15 -1914 ((-409 (-952 |#1|)) |#4|)) (-15 -1914 ((-689 (-409 (-952 |#1|))) (-689 |#4|))) (-15 -1914 ((-644 (-409 (-952 |#1|))) (-644 |#4|))) (-15 -3886 ((-644 (-409 (-952 |#1|))) (-644 (-1175)))) (-15 -4368 (|#4| (-952 |#1|))) (-15 -4169 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-644 |#4|)) (|:| |n0| (-644 |#4|))) (-644 |#4|) (-644 |#4|))) (-15 -3391 ((-644 (-2 (|:| -4313 (-771)) (|:| |eqns| (-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (|:| |fgb| (-644 |#4|)))) (-689 |#4|) (-771))) (-15 -2332 ((-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2365 (-644 (-1264 (-409 (-952 |#1|)))))) (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2365 (-644 (-1264 (-409 (-952 |#1|)))))) (-644 |#4|))) (-15 -2774 ((-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2365 (-644 (-1264 (-409 (-952 |#1|)))))) (-2 (|:| -4227 (-689 (-409 (-952 |#1|)))) (|:| |vec| (-644 (-409 (-952 |#1|)))) (|:| -4313 (-771)) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (-15 -2639 ((-644 |#4|) |#4|)) (-15 -2157 ((-771) (-644 (-2 (|:| -4313 (-771)) (|:| |eqns| (-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (|:| |fgb| (-644 |#4|)))))) (-15 -3713 ((-771) (-644 (-2 (|:| -4313 (-771)) (|:| |eqns| (-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (|:| |fgb| (-644 |#4|)))))) (-15 -1969 ((-644 (-644 |#4|)) (-644 (-644 |#4|)))) (-15 -2326 ((-644 (-644 (-566))) (-566) (-566))) (-15 -2218 ((-112) (-644 |#4|) (-644 (-644 |#4|)))) (-15 -2362 ((-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566))))) (-689 |#4|) (-771))) (-15 -1514 ((-689 |#4|) (-689 |#4|) (-644 |#4|))) (-15 -3020 ((-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2365 (-644 (-1264 (-409 (-952 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))) (-689 |#4|) (-644 (-409 (-952 |#1|))) (-644 (-644 |#4|)) (-771) (-771) (-566))) (-15 -4286 (|#4| |#4|)) (-15 -2078 ((-112) (-644 |#4|))) (-15 -2078 ((-112) (-644 (-952 |#1|))))) -((-3495 (((-927) |#1| (-1175)) 17) (((-927) |#1| (-1175) (-1093 (-225))) 21)) (-2219 (((-927) |#1| |#1| (-1175) (-1093 (-225))) 19) (((-927) |#1| (-1175) (-1093 (-225))) 15))) -(((-925 |#1|) (-10 -7 (-15 -2219 ((-927) |#1| (-1175) (-1093 (-225)))) (-15 -2219 ((-927) |#1| |#1| (-1175) (-1093 (-225)))) (-15 -3495 ((-927) |#1| (-1175) (-1093 (-225)))) (-15 -3495 ((-927) |#1| (-1175)))) (-614 (-538))) (T -925)) -((-3495 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-5 *2 (-927)) (-5 *1 (-925 *3)) (-4 *3 (-614 (-538))))) (-3495 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1175)) (-5 *5 (-1093 (-225))) (-5 *2 (-927)) (-5 *1 (-925 *3)) (-4 *3 (-614 (-538))))) (-2219 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1175)) (-5 *5 (-1093 (-225))) (-5 *2 (-927)) (-5 *1 (-925 *3)) (-4 *3 (-614 (-538))))) (-2219 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1175)) (-5 *5 (-1093 (-225))) (-5 *2 (-927)) (-5 *1 (-925 *3)) (-4 *3 (-614 (-538)))))) -(-10 -7 (-15 -2219 ((-927) |#1| (-1175) (-1093 (-225)))) (-15 -2219 ((-927) |#1| |#1| (-1175) (-1093 (-225)))) (-15 -3495 ((-927) |#1| (-1175) (-1093 (-225)))) (-15 -3495 ((-927) |#1| (-1175)))) -((-3139 (($ $ (-1093 (-225)) (-1093 (-225)) (-1093 (-225))) 123)) (-2898 (((-1093 (-225)) $) 64)) (-2888 (((-1093 (-225)) $) 63)) (-2877 (((-1093 (-225)) $) 62)) (-1781 (((-644 (-644 (-225))) $) 69)) (-3401 (((-1093 (-225)) $) 65)) (-2642 (((-566) (-566)) 57)) (-3587 (((-566) (-566)) 52)) (-2891 (((-566) (-566)) 55)) (-4274 (((-112) (-112)) 59)) (-3998 (((-566)) 56)) (-4022 (($ $ (-1093 (-225))) 126) (($ $) 127)) (-2150 (($ (-1 (-943 (-225)) (-225)) (-1093 (-225))) 133) (($ (-1 (-943 (-225)) (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225))) 134)) (-2219 (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1093 (-225))) 136) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225))) 137) (($ $ (-1093 (-225))) 129)) (-1559 (((-566)) 60)) (-4251 (((-566)) 50)) (-2735 (((-566)) 53)) (-1935 (((-644 (-644 (-943 (-225)))) $) 153)) (-3034 (((-112) (-112)) 61)) (-3783 (((-862) $) 151)) (-2616 (((-112)) 58))) -(((-926) (-13 (-974) (-10 -8 (-15 -2150 ($ (-1 (-943 (-225)) (-225)) (-1093 (-225)))) (-15 -2150 ($ (-1 (-943 (-225)) (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225)))) (-15 -2219 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1093 (-225)))) (-15 -2219 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225)))) (-15 -2219 ($ $ (-1093 (-225)))) (-15 -3139 ($ $ (-1093 (-225)) (-1093 (-225)) (-1093 (-225)))) (-15 -4022 ($ $ (-1093 (-225)))) (-15 -4022 ($ $)) (-15 -3401 ((-1093 (-225)) $)) (-15 -1781 ((-644 (-644 (-225))) $)) (-15 -4251 ((-566))) (-15 -3587 ((-566) (-566))) (-15 -2735 ((-566))) (-15 -2891 ((-566) (-566))) (-15 -3998 ((-566))) (-15 -2642 ((-566) (-566))) (-15 -2616 ((-112))) (-15 -4274 ((-112) (-112))) (-15 -1559 ((-566))) (-15 -3034 ((-112) (-112)))))) (T -926)) -((-2150 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-943 (-225)) (-225))) (-5 *3 (-1093 (-225))) (-5 *1 (-926)))) (-2150 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-943 (-225)) (-225))) (-5 *3 (-1093 (-225))) (-5 *1 (-926)))) (-2219 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1093 (-225))) (-5 *1 (-926)))) (-2219 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1093 (-225))) (-5 *1 (-926)))) (-2219 (*1 *1 *1 *2) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-926)))) (-3139 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-926)))) (-4022 (*1 *1 *1 *2) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-926)))) (-4022 (*1 *1 *1) (-5 *1 (-926))) (-3401 (*1 *2 *1) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-926)))) (-1781 (*1 *2 *1) (-12 (-5 *2 (-644 (-644 (-225)))) (-5 *1 (-926)))) (-4251 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-926)))) (-3587 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-926)))) (-2735 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-926)))) (-2891 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-926)))) (-3998 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-926)))) (-2642 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-926)))) (-2616 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-926)))) (-4274 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-926)))) (-1559 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-926)))) (-3034 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-926))))) -(-13 (-974) (-10 -8 (-15 -2150 ($ (-1 (-943 (-225)) (-225)) (-1093 (-225)))) (-15 -2150 ($ (-1 (-943 (-225)) (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225)))) (-15 -2219 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1093 (-225)))) (-15 -2219 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225)))) (-15 -2219 ($ $ (-1093 (-225)))) (-15 -3139 ($ $ (-1093 (-225)) (-1093 (-225)) (-1093 (-225)))) (-15 -4022 ($ $ (-1093 (-225)))) (-15 -4022 ($ $)) (-15 -3401 ((-1093 (-225)) $)) (-15 -1781 ((-644 (-644 (-225))) $)) (-15 -4251 ((-566))) (-15 -3587 ((-566) (-566))) (-15 -2735 ((-566))) (-15 -2891 ((-566) (-566))) (-15 -3998 ((-566))) (-15 -2642 ((-566) (-566))) (-15 -2616 ((-112))) (-15 -4274 ((-112) (-112))) (-15 -1559 ((-566))) (-15 -3034 ((-112) (-112))))) -((-3139 (($ $ (-1093 (-225))) 124) (($ $ (-1093 (-225)) (-1093 (-225))) 125)) (-2888 (((-1093 (-225)) $) 73)) (-2877 (((-1093 (-225)) $) 72)) (-3401 (((-1093 (-225)) $) 74)) (-3078 (((-566) (-566)) 66)) (-3305 (((-566) (-566)) 61)) (-3732 (((-566) (-566)) 64)) (-2237 (((-112) (-112)) 68)) (-3192 (((-566)) 65)) (-4022 (($ $ (-1093 (-225))) 128) (($ $) 129)) (-2150 (($ (-1 (-943 (-225)) (-225)) (-1093 (-225))) 143) (($ (-1 (-943 (-225)) (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225))) 144)) (-3495 (($ (-1 (-225) (-225)) (-1093 (-225))) 151) (($ (-1 (-225) (-225))) 155)) (-2219 (($ (-1 (-225) (-225)) (-1093 (-225))) 139) (($ (-1 (-225) (-225)) (-1093 (-225)) (-1093 (-225))) 140) (($ (-644 (-1 (-225) (-225))) (-1093 (-225))) 148) (($ (-644 (-1 (-225) (-225))) (-1093 (-225)) (-1093 (-225))) 149) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1093 (-225))) 141) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225))) 142) (($ $ (-1093 (-225))) 130)) (-1909 (((-112) $) 69)) (-2709 (((-566)) 70)) (-3751 (((-566)) 59)) (-3252 (((-566)) 62)) (-1935 (((-644 (-644 (-943 (-225)))) $) 35)) (-2864 (((-112) (-112)) 71)) (-3783 (((-862) $) 169)) (-3600 (((-112)) 67))) -(((-927) (-13 (-955) (-10 -8 (-15 -2219 ($ (-1 (-225) (-225)) (-1093 (-225)))) (-15 -2219 ($ (-1 (-225) (-225)) (-1093 (-225)) (-1093 (-225)))) (-15 -2219 ($ (-644 (-1 (-225) (-225))) (-1093 (-225)))) (-15 -2219 ($ (-644 (-1 (-225) (-225))) (-1093 (-225)) (-1093 (-225)))) (-15 -2219 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1093 (-225)))) (-15 -2219 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225)))) (-15 -2150 ($ (-1 (-943 (-225)) (-225)) (-1093 (-225)))) (-15 -2150 ($ (-1 (-943 (-225)) (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225)))) (-15 -3495 ($ (-1 (-225) (-225)) (-1093 (-225)))) (-15 -3495 ($ (-1 (-225) (-225)))) (-15 -2219 ($ $ (-1093 (-225)))) (-15 -1909 ((-112) $)) (-15 -3139 ($ $ (-1093 (-225)))) (-15 -3139 ($ $ (-1093 (-225)) (-1093 (-225)))) (-15 -4022 ($ $ (-1093 (-225)))) (-15 -4022 ($ $)) (-15 -3401 ((-1093 (-225)) $)) (-15 -3751 ((-566))) (-15 -3305 ((-566) (-566))) (-15 -3252 ((-566))) (-15 -3732 ((-566) (-566))) (-15 -3192 ((-566))) (-15 -3078 ((-566) (-566))) (-15 -3600 ((-112))) (-15 -2237 ((-112) (-112))) (-15 -2709 ((-566))) (-15 -2864 ((-112) (-112)))))) (T -927)) -((-2219 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1093 (-225))) (-5 *1 (-927)))) (-2219 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1093 (-225))) (-5 *1 (-927)))) (-2219 (*1 *1 *2 *3) (-12 (-5 *2 (-644 (-1 (-225) (-225)))) (-5 *3 (-1093 (-225))) (-5 *1 (-927)))) (-2219 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-644 (-1 (-225) (-225)))) (-5 *3 (-1093 (-225))) (-5 *1 (-927)))) (-2219 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1093 (-225))) (-5 *1 (-927)))) (-2219 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1093 (-225))) (-5 *1 (-927)))) (-2150 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-943 (-225)) (-225))) (-5 *3 (-1093 (-225))) (-5 *1 (-927)))) (-2150 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-943 (-225)) (-225))) (-5 *3 (-1093 (-225))) (-5 *1 (-927)))) (-3495 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1093 (-225))) (-5 *1 (-927)))) (-3495 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-927)))) (-2219 (*1 *1 *1 *2) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-927)))) (-1909 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-927)))) (-3139 (*1 *1 *1 *2) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-927)))) (-3139 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-927)))) (-4022 (*1 *1 *1 *2) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-927)))) (-4022 (*1 *1 *1) (-5 *1 (-927))) (-3401 (*1 *2 *1) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-927)))) (-3751 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-927)))) (-3305 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-927)))) (-3252 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-927)))) (-3732 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-927)))) (-3192 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-927)))) (-3078 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-927)))) (-3600 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-927)))) (-2237 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-927)))) (-2709 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-927)))) (-2864 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-927))))) -(-13 (-955) (-10 -8 (-15 -2219 ($ (-1 (-225) (-225)) (-1093 (-225)))) (-15 -2219 ($ (-1 (-225) (-225)) (-1093 (-225)) (-1093 (-225)))) (-15 -2219 ($ (-644 (-1 (-225) (-225))) (-1093 (-225)))) (-15 -2219 ($ (-644 (-1 (-225) (-225))) (-1093 (-225)) (-1093 (-225)))) (-15 -2219 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1093 (-225)))) (-15 -2219 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225)))) (-15 -2150 ($ (-1 (-943 (-225)) (-225)) (-1093 (-225)))) (-15 -2150 ($ (-1 (-943 (-225)) (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225)))) (-15 -3495 ($ (-1 (-225) (-225)) (-1093 (-225)))) (-15 -3495 ($ (-1 (-225) (-225)))) (-15 -2219 ($ $ (-1093 (-225)))) (-15 -1909 ((-112) $)) (-15 -3139 ($ $ (-1093 (-225)))) (-15 -3139 ($ $ (-1093 (-225)) (-1093 (-225)))) (-15 -4022 ($ $ (-1093 (-225)))) (-15 -4022 ($ $)) (-15 -3401 ((-1093 (-225)) $)) (-15 -3751 ((-566))) (-15 -3305 ((-566) (-566))) (-15 -3252 ((-566))) (-15 -3732 ((-566) (-566))) (-15 -3192 ((-566))) (-15 -3078 ((-566) (-566))) (-15 -3600 ((-112))) (-15 -2237 ((-112) (-112))) (-15 -2709 ((-566))) (-15 -2864 ((-112) (-112))))) -((-1488 (((-644 (-1093 (-225))) (-644 (-644 (-943 (-225))))) 34))) -(((-928) (-10 -7 (-15 -1488 ((-644 (-1093 (-225))) (-644 (-644 (-943 (-225)))))))) (T -928)) -((-1488 (*1 *2 *3) (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *2 (-644 (-1093 (-225)))) (-5 *1 (-928))))) -(-10 -7 (-15 -1488 ((-644 (-1093 (-225))) (-644 (-644 (-943 (-225))))))) -((-3543 ((|#2| |#2|) 28)) (-4218 ((|#2| |#2|) 29)) (-3704 ((|#2| |#2|) 27)) (-1475 ((|#2| |#2| (-508)) 26))) -(((-929 |#1| |#2|) (-10 -7 (-15 -1475 (|#2| |#2| (-508))) (-15 -3704 (|#2| |#2|)) (-15 -3543 (|#2| |#2|)) (-15 -4218 (|#2| |#2|))) (-1099) (-432 |#1|)) (T -929)) -((-4218 (*1 *2 *2) (-12 (-4 *3 (-1099)) (-5 *1 (-929 *3 *2)) (-4 *2 (-432 *3)))) (-3543 (*1 *2 *2) (-12 (-4 *3 (-1099)) (-5 *1 (-929 *3 *2)) (-4 *2 (-432 *3)))) (-3704 (*1 *2 *2) (-12 (-4 *3 (-1099)) (-5 *1 (-929 *3 *2)) (-4 *2 (-432 *3)))) (-1475 (*1 *2 *2 *3) (-12 (-5 *3 (-508)) (-4 *4 (-1099)) (-5 *1 (-929 *4 *2)) (-4 *2 (-432 *4))))) -(-10 -7 (-15 -1475 (|#2| |#2| (-508))) (-15 -3704 (|#2| |#2|)) (-15 -3543 (|#2| |#2|)) (-15 -4218 (|#2| |#2|))) -((-3543 (((-317 (-566)) (-1175)) 16)) (-4218 (((-317 (-566)) (-1175)) 14)) (-3704 (((-317 (-566)) (-1175)) 12)) (-1475 (((-317 (-566)) (-1175) (-508)) 19))) -(((-930) (-10 -7 (-15 -1475 ((-317 (-566)) (-1175) (-508))) (-15 -3704 ((-317 (-566)) (-1175))) (-15 -3543 ((-317 (-566)) (-1175))) (-15 -4218 ((-317 (-566)) (-1175))))) (T -930)) -((-4218 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-317 (-566))) (-5 *1 (-930)))) (-3543 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-317 (-566))) (-5 *1 (-930)))) (-3704 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-317 (-566))) (-5 *1 (-930)))) (-1475 (*1 *2 *3 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-508)) (-5 *2 (-317 (-566))) (-5 *1 (-930))))) -(-10 -7 (-15 -1475 ((-317 (-566)) (-1175) (-508))) (-15 -3704 ((-317 (-566)) (-1175))) (-15 -3543 ((-317 (-566)) (-1175))) (-15 -4218 ((-317 (-566)) (-1175)))) -((-2062 (((-889 |#1| |#3|) |#2| (-892 |#1|) (-889 |#1| |#3|)) 25)) (-3592 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13))) -(((-931 |#1| |#2| |#3|) (-10 -7 (-15 -3592 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -2062 ((-889 |#1| |#3|) |#2| (-892 |#1|) (-889 |#1| |#3|)))) (-1099) (-886 |#1|) (-13 (-1099) (-1038 |#2|))) (T -931)) -((-2062 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-889 *5 *6)) (-5 *4 (-892 *5)) (-4 *5 (-1099)) (-4 *6 (-13 (-1099) (-1038 *3))) (-4 *3 (-886 *5)) (-5 *1 (-931 *5 *3 *6)))) (-3592 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1099) (-1038 *5))) (-4 *5 (-886 *4)) (-4 *4 (-1099)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-931 *4 *5 *6))))) -(-10 -7 (-15 -3592 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -2062 ((-889 |#1| |#3|) |#2| (-892 |#1|) (-889 |#1| |#3|)))) -((-2062 (((-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|)) 30))) -(((-932 |#1| |#2| |#3|) (-10 -7 (-15 -2062 ((-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|)))) (-1099) (-13 (-558) (-886 |#1|)) (-13 (-432 |#2|) (-614 (-892 |#1|)) (-886 |#1|) (-1038 (-612 $)))) (T -932)) -((-2062 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-889 *5 *3)) (-4 *5 (-1099)) (-4 *3 (-13 (-432 *6) (-614 *4) (-886 *5) (-1038 (-612 $)))) (-5 *4 (-892 *5)) (-4 *6 (-13 (-558) (-886 *5))) (-5 *1 (-932 *5 *6 *3))))) -(-10 -7 (-15 -2062 ((-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|)))) -((-2062 (((-889 (-566) |#1|) |#1| (-892 (-566)) (-889 (-566) |#1|)) 13))) -(((-933 |#1|) (-10 -7 (-15 -2062 ((-889 (-566) |#1|) |#1| (-892 (-566)) (-889 (-566) |#1|)))) (-547)) (T -933)) -((-2062 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-889 (-566) *3)) (-5 *4 (-892 (-566))) (-4 *3 (-547)) (-5 *1 (-933 *3))))) -(-10 -7 (-15 -2062 ((-889 (-566) |#1|) |#1| (-892 (-566)) (-889 (-566) |#1|)))) -((-2062 (((-889 |#1| |#2|) (-612 |#2|) (-892 |#1|) (-889 |#1| |#2|)) 57))) -(((-934 |#1| |#2|) (-10 -7 (-15 -2062 ((-889 |#1| |#2|) (-612 |#2|) (-892 |#1|) (-889 |#1| |#2|)))) (-1099) (-13 (-1099) (-1038 (-612 $)) (-614 (-892 |#1|)) (-886 |#1|))) (T -934)) -((-2062 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-889 *5 *6)) (-5 *3 (-612 *6)) (-4 *5 (-1099)) (-4 *6 (-13 (-1099) (-1038 (-612 $)) (-614 *4) (-886 *5))) (-5 *4 (-892 *5)) (-5 *1 (-934 *5 *6))))) -(-10 -7 (-15 -2062 ((-889 |#1| |#2|) (-612 |#2|) (-892 |#1|) (-889 |#1| |#2|)))) -((-2062 (((-885 |#1| |#2| |#3|) |#3| (-892 |#1|) (-885 |#1| |#2| |#3|)) 17))) -(((-935 |#1| |#2| |#3|) (-10 -7 (-15 -2062 ((-885 |#1| |#2| |#3|) |#3| (-892 |#1|) (-885 |#1| |#2| |#3|)))) (-1099) (-886 |#1|) (-666 |#2|)) (T -935)) -((-2062 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-885 *5 *6 *3)) (-5 *4 (-892 *5)) (-4 *5 (-1099)) (-4 *6 (-886 *5)) (-4 *3 (-666 *6)) (-5 *1 (-935 *5 *6 *3))))) -(-10 -7 (-15 -2062 ((-885 |#1| |#2| |#3|) |#3| (-892 |#1|) (-885 |#1| |#2| |#3|)))) -((-2062 (((-889 |#1| |#5|) |#5| (-892 |#1|) (-889 |#1| |#5|)) 17 (|has| |#3| (-886 |#1|))) (((-889 |#1| |#5|) |#5| (-892 |#1|) (-889 |#1| |#5|) (-1 (-889 |#1| |#5|) |#3| (-892 |#1|) (-889 |#1| |#5|))) 16))) -(((-936 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2062 ((-889 |#1| |#5|) |#5| (-892 |#1|) (-889 |#1| |#5|) (-1 (-889 |#1| |#5|) |#3| (-892 |#1|) (-889 |#1| |#5|)))) (IF (|has| |#3| (-886 |#1|)) (-15 -2062 ((-889 |#1| |#5|) |#5| (-892 |#1|) (-889 |#1| |#5|))) |%noBranch|)) (-1099) (-793) (-850) (-13 (-1049) (-886 |#1|)) (-13 (-949 |#4| |#2| |#3|) (-614 (-892 |#1|)))) (T -936)) -((-2062 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-889 *5 *3)) (-4 *5 (-1099)) (-4 *3 (-13 (-949 *8 *6 *7) (-614 *4))) (-5 *4 (-892 *5)) (-4 *7 (-886 *5)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-13 (-1049) (-886 *5))) (-5 *1 (-936 *5 *6 *7 *8 *3)))) (-2062 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-889 *6 *3) *8 (-892 *6) (-889 *6 *3))) (-4 *8 (-850)) (-5 *2 (-889 *6 *3)) (-5 *4 (-892 *6)) (-4 *6 (-1099)) (-4 *3 (-13 (-949 *9 *7 *8) (-614 *4))) (-4 *7 (-793)) (-4 *9 (-13 (-1049) (-886 *6))) (-5 *1 (-936 *6 *7 *8 *9 *3))))) -(-10 -7 (-15 -2062 ((-889 |#1| |#5|) |#5| (-892 |#1|) (-889 |#1| |#5|) (-1 (-889 |#1| |#5|) |#3| (-892 |#1|) (-889 |#1| |#5|)))) (IF (|has| |#3| (-886 |#1|)) (-15 -2062 ((-889 |#1| |#5|) |#5| (-892 |#1|) (-889 |#1| |#5|))) |%noBranch|)) -((-4293 ((|#2| |#2| (-644 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13))) -(((-937 |#1| |#2| |#3|) (-10 -7 (-15 -4293 (|#2| |#2| (-1 (-112) |#3|))) (-15 -4293 (|#2| |#2| (-644 (-1 (-112) |#3|))))) (-1099) (-432 |#1|) (-1214)) (T -937)) -((-4293 (*1 *2 *2 *3) (-12 (-5 *3 (-644 (-1 (-112) *5))) (-4 *5 (-1214)) (-4 *4 (-1099)) (-5 *1 (-937 *4 *2 *5)) (-4 *2 (-432 *4)))) (-4293 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1214)) (-4 *4 (-1099)) (-5 *1 (-937 *4 *2 *5)) (-4 *2 (-432 *4))))) -(-10 -7 (-15 -4293 (|#2| |#2| (-1 (-112) |#3|))) (-15 -4293 (|#2| |#2| (-644 (-1 (-112) |#3|))))) -((-4293 (((-317 (-566)) (-1175) (-644 (-1 (-112) |#1|))) 18) (((-317 (-566)) (-1175) (-1 (-112) |#1|)) 15))) -(((-938 |#1|) (-10 -7 (-15 -4293 ((-317 (-566)) (-1175) (-1 (-112) |#1|))) (-15 -4293 ((-317 (-566)) (-1175) (-644 (-1 (-112) |#1|))))) (-1214)) (T -938)) -((-4293 (*1 *2 *3 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-644 (-1 (-112) *5))) (-4 *5 (-1214)) (-5 *2 (-317 (-566))) (-5 *1 (-938 *5)))) (-4293 (*1 *2 *3 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1214)) (-5 *2 (-317 (-566))) (-5 *1 (-938 *5))))) -(-10 -7 (-15 -4293 ((-317 (-566)) (-1175) (-1 (-112) |#1|))) (-15 -4293 ((-317 (-566)) (-1175) (-644 (-1 (-112) |#1|))))) -((-2062 (((-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|)) 25))) -(((-939 |#1| |#2| |#3|) (-10 -7 (-15 -2062 ((-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|)))) (-1099) (-13 (-558) (-886 |#1|) (-614 (-892 |#1|))) (-992 |#2|)) (T -939)) -((-2062 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-889 *5 *3)) (-4 *5 (-1099)) (-4 *3 (-992 *6)) (-4 *6 (-13 (-558) (-886 *5) (-614 *4))) (-5 *4 (-892 *5)) (-5 *1 (-939 *5 *6 *3))))) -(-10 -7 (-15 -2062 ((-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|)))) -((-2062 (((-889 |#1| (-1175)) (-1175) (-892 |#1|) (-889 |#1| (-1175))) 18))) -(((-940 |#1|) (-10 -7 (-15 -2062 ((-889 |#1| (-1175)) (-1175) (-892 |#1|) (-889 |#1| (-1175))))) (-1099)) (T -940)) -((-2062 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-889 *5 (-1175))) (-5 *3 (-1175)) (-5 *4 (-892 *5)) (-4 *5 (-1099)) (-5 *1 (-940 *5))))) -(-10 -7 (-15 -2062 ((-889 |#1| (-1175)) (-1175) (-892 |#1|) (-889 |#1| (-1175))))) -((-2524 (((-889 |#1| |#3|) (-644 |#3|) (-644 (-892 |#1|)) (-889 |#1| |#3|) (-1 (-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|))) 34)) (-2062 (((-889 |#1| |#3|) (-644 |#3|) (-644 (-892 |#1|)) (-1 |#3| (-644 |#3|)) (-889 |#1| |#3|) (-1 (-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|))) 33))) -(((-941 |#1| |#2| |#3|) (-10 -7 (-15 -2062 ((-889 |#1| |#3|) (-644 |#3|) (-644 (-892 |#1|)) (-1 |#3| (-644 |#3|)) (-889 |#1| |#3|) (-1 (-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|)))) (-15 -2524 ((-889 |#1| |#3|) (-644 |#3|) (-644 (-892 |#1|)) (-889 |#1| |#3|) (-1 (-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|))))) (-1099) (-1049) (-13 (-1049) (-614 (-892 |#1|)) (-1038 |#2|))) (T -941)) -((-2524 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 (-892 *6))) (-5 *5 (-1 (-889 *6 *8) *8 (-892 *6) (-889 *6 *8))) (-4 *6 (-1099)) (-4 *8 (-13 (-1049) (-614 (-892 *6)) (-1038 *7))) (-5 *2 (-889 *6 *8)) (-4 *7 (-1049)) (-5 *1 (-941 *6 *7 *8)))) (-2062 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-644 (-892 *7))) (-5 *5 (-1 *9 (-644 *9))) (-5 *6 (-1 (-889 *7 *9) *9 (-892 *7) (-889 *7 *9))) (-4 *7 (-1099)) (-4 *9 (-13 (-1049) (-614 (-892 *7)) (-1038 *8))) (-5 *2 (-889 *7 *9)) (-5 *3 (-644 *9)) (-4 *8 (-1049)) (-5 *1 (-941 *7 *8 *9))))) -(-10 -7 (-15 -2062 ((-889 |#1| |#3|) (-644 |#3|) (-644 (-892 |#1|)) (-1 |#3| (-644 |#3|)) (-889 |#1| |#3|) (-1 (-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|)))) (-15 -2524 ((-889 |#1| |#3|) (-644 |#3|) (-644 (-892 |#1|)) (-889 |#1| |#3|) (-1 (-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|))))) -((-2519 (((-1171 (-409 (-566))) (-566)) 81)) (-2883 (((-1171 (-566)) (-566)) 84)) (-3424 (((-1171 (-566)) (-566)) 78)) (-2841 (((-566) (-1171 (-566))) 74)) (-4217 (((-1171 (-409 (-566))) (-566)) 65)) (-2184 (((-1171 (-566)) (-566)) 49)) (-3523 (((-1171 (-566)) (-566)) 86)) (-1509 (((-1171 (-566)) (-566)) 85)) (-4010 (((-1171 (-409 (-566))) (-566)) 67))) -(((-942) (-10 -7 (-15 -4010 ((-1171 (-409 (-566))) (-566))) (-15 -1509 ((-1171 (-566)) (-566))) (-15 -3523 ((-1171 (-566)) (-566))) (-15 -2184 ((-1171 (-566)) (-566))) (-15 -4217 ((-1171 (-409 (-566))) (-566))) (-15 -2841 ((-566) (-1171 (-566)))) (-15 -3424 ((-1171 (-566)) (-566))) (-15 -2883 ((-1171 (-566)) (-566))) (-15 -2519 ((-1171 (-409 (-566))) (-566))))) (T -942)) -((-2519 (*1 *2 *3) (-12 (-5 *2 (-1171 (-409 (-566)))) (-5 *1 (-942)) (-5 *3 (-566)))) (-2883 (*1 *2 *3) (-12 (-5 *2 (-1171 (-566))) (-5 *1 (-942)) (-5 *3 (-566)))) (-3424 (*1 *2 *3) (-12 (-5 *2 (-1171 (-566))) (-5 *1 (-942)) (-5 *3 (-566)))) (-2841 (*1 *2 *3) (-12 (-5 *3 (-1171 (-566))) (-5 *2 (-566)) (-5 *1 (-942)))) (-4217 (*1 *2 *3) (-12 (-5 *2 (-1171 (-409 (-566)))) (-5 *1 (-942)) (-5 *3 (-566)))) (-2184 (*1 *2 *3) (-12 (-5 *2 (-1171 (-566))) (-5 *1 (-942)) (-5 *3 (-566)))) (-3523 (*1 *2 *3) (-12 (-5 *2 (-1171 (-566))) (-5 *1 (-942)) (-5 *3 (-566)))) (-1509 (*1 *2 *3) (-12 (-5 *2 (-1171 (-566))) (-5 *1 (-942)) (-5 *3 (-566)))) (-4010 (*1 *2 *3) (-12 (-5 *2 (-1171 (-409 (-566)))) (-5 *1 (-942)) (-5 *3 (-566))))) -(-10 -7 (-15 -4010 ((-1171 (-409 (-566))) (-566))) (-15 -1509 ((-1171 (-566)) (-566))) (-15 -3523 ((-1171 (-566)) (-566))) (-15 -2184 ((-1171 (-566)) (-566))) (-15 -4217 ((-1171 (-409 (-566))) (-566))) (-15 -2841 ((-566) (-1171 (-566)))) (-15 -3424 ((-1171 (-566)) (-566))) (-15 -2883 ((-1171 (-566)) (-566))) (-15 -2519 ((-1171 (-409 (-566))) (-566)))) -((-3007 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2149 (($ (-771)) NIL (|has| |#1| (-23)))) (-3734 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4415)))) (-2644 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-850)))) (-1944 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4415))) (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-850))))) (-1510 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-850)))) (-2256 (((-112) $ (-771)) NIL)) (-3923 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4415))) ((|#1| $ (-1231 (-566)) |#1|) NIL (|has| $ (-6 -4415)))) (-2701 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-3012 (($) NIL T CONST)) (-3413 (($ $) NIL (|has| $ (-6 -4415)))) (-1377 (($ $) NIL)) (-2031 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2665 (($ |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-1676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4414)))) (-2920 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4415)))) (-2855 ((|#1| $ (-566)) NIL)) (-4000 (((-566) (-1 (-112) |#1|) $) NIL) (((-566) |#1| $) NIL (|has| |#1| (-1099))) (((-566) |#1| $ (-566)) NIL (|has| |#1| (-1099)))) (-2017 (($ (-644 |#1|)) 9)) (-3979 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1939 (((-689 |#1|) $ $) NIL (|has| |#1| (-1049)))) (-4265 (($ (-771) |#1|) NIL)) (-2404 (((-112) $ (-771)) NIL)) (-3854 (((-566) $) NIL (|has| (-566) (-850)))) (-2097 (($ $ $) NIL (|has| |#1| (-850)))) (-3298 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-850)))) (-2329 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2712 (((-566) $) NIL (|has| (-566) (-850)))) (-3962 (($ $ $) NIL (|has| |#1| (-850)))) (-2908 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2330 ((|#1| $) NIL (-12 (|has| |#1| (-1002)) (|has| |#1| (-1049))))) (-2603 (((-112) $ (-771)) NIL)) (-4149 ((|#1| $) NIL (-12 (|has| |#1| (-1002)) (|has| |#1| (-1049))))) (-4117 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4276 (($ |#1| $ (-566)) NIL) (($ $ $ (-566)) NIL)) (-4074 (((-644 (-566)) $) NIL)) (-3792 (((-112) (-566) $) NIL)) (-4035 (((-1119) $) NIL (|has| |#1| (-1099)))) (-1998 ((|#1| $) NIL (|has| (-566) (-850)))) (-2006 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4030 (($ $ |#1|) NIL (|has| $ (-6 -4415)))) (-3874 (($ $ (-644 |#1|)) 25)) (-2692 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) NIL)) (-4156 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2993 (((-644 |#1|) $) NIL)) (-3467 (((-112) $) NIL)) (-1494 (($) NIL)) (-4390 ((|#1| $ (-566) |#1|) NIL) ((|#1| $ (-566)) 18) (($ $ (-1231 (-566))) NIL)) (-4280 ((|#1| $ $) NIL (|has| |#1| (-1049)))) (-3164 (((-921) $) 13)) (-2187 (($ $ (-566)) NIL) (($ $ (-1231 (-566))) NIL)) (-2797 (($ $ $) 23)) (-4045 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-1297 (($ $ $ (-566)) NIL (|has| $ (-6 -4415)))) (-3940 (($ $) NIL)) (-1348 (((-538) $) NIL (|has| |#1| (-614 (-538)))) (($ (-644 |#1|)) 14)) (-3796 (($ (-644 |#1|)) NIL)) (-3721 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 24) (($ (-644 $)) NIL)) (-3783 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-3117 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1894 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-3009 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2984 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2947 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2995 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2969 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3053 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3041 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-566) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-726))) (($ $ |#1|) NIL (|has| |#1| (-726)))) (-3018 (((-771) $) 11 (|has| $ (-6 -4414))))) +((-1578 ((|#2| (-644 |#1|) (-644 |#1|)) 29))) +(((-922 |#1| |#2|) (-10 -7 (-15 -1578 (|#2| (-644 |#1|) (-644 |#1|)))) (-365) (-1240 |#1|)) (T -922)) +((-1578 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *4)) (-4 *4 (-365)) (-4 *2 (-1240 *4)) (-5 *1 (-922 *4 *2))))) +(-10 -7 (-15 -1578 (|#2| (-644 |#1|) (-644 |#1|)))) +((-2566 (((-1171 |#2|) (-644 |#2|) (-644 |#2|)) 17) (((-1237 |#1| |#2|) (-1237 |#1| |#2|) (-644 |#2|) (-644 |#2|)) 13))) +(((-923 |#1| |#2|) (-10 -7 (-15 -2566 ((-1237 |#1| |#2|) (-1237 |#1| |#2|) (-644 |#2|) (-644 |#2|))) (-15 -2566 ((-1171 |#2|) (-644 |#2|) (-644 |#2|)))) (-1175) (-365)) (T -923)) +((-2566 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *5)) (-4 *5 (-365)) (-5 *2 (-1171 *5)) (-5 *1 (-923 *4 *5)) (-14 *4 (-1175)))) (-2566 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1237 *4 *5)) (-5 *3 (-644 *5)) (-14 *4 (-1175)) (-4 *5 (-365)) (-5 *1 (-923 *4 *5))))) +(-10 -7 (-15 -2566 ((-1237 |#1| |#2|) (-1237 |#1| |#2|) (-644 |#2|) (-644 |#2|))) (-15 -2566 ((-1171 |#2|) (-644 |#2|) (-644 |#2|)))) +((-1454 (((-566) (-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2875 (-644 (-1264 (-409 (-952 |#1|))))))))) (-1157)) 177)) (-4186 ((|#4| |#4|) 196)) (-2145 (((-644 (-409 (-952 |#1|))) (-644 (-1175))) 149)) (-2056 (((-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2875 (-644 (-1264 (-409 (-952 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))) (-689 |#4|) (-644 (-409 (-952 |#1|))) (-644 (-644 |#4|)) (-771) (-771) (-566)) 88)) (-2662 (((-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2875 (-644 (-1264 (-409 (-952 |#1|)))))) (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2875 (-644 (-1264 (-409 (-952 |#1|)))))) (-644 |#4|)) 69)) (-1766 (((-689 |#4|) (-689 |#4|) (-644 |#4|)) 65)) (-3529 (((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2875 (-644 (-1264 (-409 (-952 |#1|))))))))) (-1157)) 189)) (-3003 (((-566) (-689 |#4|) (-921) (-1157)) 169) (((-566) (-689 |#4|) (-644 (-1175)) (-921) (-1157)) 168) (((-566) (-689 |#4|) (-644 |#4|) (-921) (-1157)) 167) (((-566) (-689 |#4|) (-1157)) 157) (((-566) (-689 |#4|) (-644 (-1175)) (-1157)) 156) (((-566) (-689 |#4|) (-644 |#4|) (-1157)) 155) (((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2875 (-644 (-1264 (-409 (-952 |#1|))))))))) (-689 |#4|) (-921)) 154) (((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2875 (-644 (-1264 (-409 (-952 |#1|))))))))) (-689 |#4|) (-644 (-1175)) (-921)) 153) (((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2875 (-644 (-1264 (-409 (-952 |#1|))))))))) (-689 |#4|) (-644 |#4|) (-921)) 152) (((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2875 (-644 (-1264 (-409 (-952 |#1|))))))))) (-689 |#4|)) 151) (((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2875 (-644 (-1264 (-409 (-952 |#1|))))))))) (-689 |#4|) (-644 (-1175))) 150) (((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2875 (-644 (-1264 (-409 (-952 |#1|))))))))) (-689 |#4|) (-644 |#4|)) 146)) (-3075 ((|#4| (-952 |#1|)) 80)) (-2162 (((-112) (-644 |#4|) (-644 (-644 |#4|))) 193)) (-3175 (((-644 (-644 (-566))) (-566) (-566)) 162)) (-4390 (((-644 (-644 |#4|)) (-644 (-644 |#4|))) 107)) (-3418 (((-771) (-644 (-2 (|:| -2755 (-771)) (|:| |eqns| (-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (|:| |fgb| (-644 |#4|))))) 102)) (-3637 (((-771) (-644 (-2 (|:| -2755 (-771)) (|:| |eqns| (-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (|:| |fgb| (-644 |#4|))))) 101)) (-1857 (((-112) (-644 (-952 |#1|))) 19) (((-112) (-644 |#4|)) 15)) (-1538 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-644 |#4|)) (|:| |n0| (-644 |#4|))) (-644 |#4|) (-644 |#4|)) 84)) (-2611 (((-644 |#4|) |#4|) 57)) (-1403 (((-644 (-409 (-952 |#1|))) (-644 |#4|)) 145) (((-689 (-409 (-952 |#1|))) (-689 |#4|)) 66) (((-409 (-952 |#1|)) |#4|) 142)) (-3470 (((-2 (|:| |rgl| (-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2875 (-644 (-1264 (-409 (-952 |#1|)))))))))) (|:| |rgsz| (-566))) (-689 |#4|) (-644 (-409 (-952 |#1|))) (-771) (-1157) (-566)) 113)) (-3099 (((-644 (-2 (|:| -2755 (-771)) (|:| |eqns| (-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (|:| |fgb| (-644 |#4|)))) (-689 |#4|) (-771)) 100)) (-2600 (((-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566))))) (-689 |#4|) (-771)) 124)) (-4035 (((-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2875 (-644 (-1264 (-409 (-952 |#1|)))))) (-2 (|:| -3361 (-689 (-409 (-952 |#1|)))) (|:| |vec| (-644 (-409 (-952 |#1|)))) (|:| -2755 (-771)) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566))))) 56))) +(((-924 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3003 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2875 (-644 (-1264 (-409 (-952 |#1|))))))))) (-689 |#4|) (-644 |#4|))) (-15 -3003 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2875 (-644 (-1264 (-409 (-952 |#1|))))))))) (-689 |#4|) (-644 (-1175)))) (-15 -3003 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2875 (-644 (-1264 (-409 (-952 |#1|))))))))) (-689 |#4|))) (-15 -3003 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2875 (-644 (-1264 (-409 (-952 |#1|))))))))) (-689 |#4|) (-644 |#4|) (-921))) (-15 -3003 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2875 (-644 (-1264 (-409 (-952 |#1|))))))))) (-689 |#4|) (-644 (-1175)) (-921))) (-15 -3003 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2875 (-644 (-1264 (-409 (-952 |#1|))))))))) (-689 |#4|) (-921))) (-15 -3003 ((-566) (-689 |#4|) (-644 |#4|) (-1157))) (-15 -3003 ((-566) (-689 |#4|) (-644 (-1175)) (-1157))) (-15 -3003 ((-566) (-689 |#4|) (-1157))) (-15 -3003 ((-566) (-689 |#4|) (-644 |#4|) (-921) (-1157))) (-15 -3003 ((-566) (-689 |#4|) (-644 (-1175)) (-921) (-1157))) (-15 -3003 ((-566) (-689 |#4|) (-921) (-1157))) (-15 -1454 ((-566) (-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2875 (-644 (-1264 (-409 (-952 |#1|))))))))) (-1157))) (-15 -3529 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2875 (-644 (-1264 (-409 (-952 |#1|))))))))) (-1157))) (-15 -3470 ((-2 (|:| |rgl| (-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2875 (-644 (-1264 (-409 (-952 |#1|)))))))))) (|:| |rgsz| (-566))) (-689 |#4|) (-644 (-409 (-952 |#1|))) (-771) (-1157) (-566))) (-15 -1403 ((-409 (-952 |#1|)) |#4|)) (-15 -1403 ((-689 (-409 (-952 |#1|))) (-689 |#4|))) (-15 -1403 ((-644 (-409 (-952 |#1|))) (-644 |#4|))) (-15 -2145 ((-644 (-409 (-952 |#1|))) (-644 (-1175)))) (-15 -3075 (|#4| (-952 |#1|))) (-15 -1538 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-644 |#4|)) (|:| |n0| (-644 |#4|))) (-644 |#4|) (-644 |#4|))) (-15 -3099 ((-644 (-2 (|:| -2755 (-771)) (|:| |eqns| (-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (|:| |fgb| (-644 |#4|)))) (-689 |#4|) (-771))) (-15 -2662 ((-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2875 (-644 (-1264 (-409 (-952 |#1|)))))) (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2875 (-644 (-1264 (-409 (-952 |#1|)))))) (-644 |#4|))) (-15 -4035 ((-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2875 (-644 (-1264 (-409 (-952 |#1|)))))) (-2 (|:| -3361 (-689 (-409 (-952 |#1|)))) (|:| |vec| (-644 (-409 (-952 |#1|)))) (|:| -2755 (-771)) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (-15 -2611 ((-644 |#4|) |#4|)) (-15 -3637 ((-771) (-644 (-2 (|:| -2755 (-771)) (|:| |eqns| (-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (|:| |fgb| (-644 |#4|)))))) (-15 -3418 ((-771) (-644 (-2 (|:| -2755 (-771)) (|:| |eqns| (-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (|:| |fgb| (-644 |#4|)))))) (-15 -4390 ((-644 (-644 |#4|)) (-644 (-644 |#4|)))) (-15 -3175 ((-644 (-644 (-566))) (-566) (-566))) (-15 -2162 ((-112) (-644 |#4|) (-644 (-644 |#4|)))) (-15 -2600 ((-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566))))) (-689 |#4|) (-771))) (-15 -1766 ((-689 |#4|) (-689 |#4|) (-644 |#4|))) (-15 -2056 ((-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2875 (-644 (-1264 (-409 (-952 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))) (-689 |#4|) (-644 (-409 (-952 |#1|))) (-644 (-644 |#4|)) (-771) (-771) (-566))) (-15 -4186 (|#4| |#4|)) (-15 -1857 ((-112) (-644 |#4|))) (-15 -1857 ((-112) (-644 (-952 |#1|))))) (-13 (-308) (-147)) (-13 (-850) (-614 (-1175))) (-793) (-949 |#1| |#3| |#2|)) (T -924)) +((-1857 (*1 *2 *3) (-12 (-5 *3 (-644 (-952 *4))) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-112)) (-5 *1 (-924 *4 *5 *6 *7)) (-4 *7 (-949 *4 *6 *5)))) (-1857 (*1 *2 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-949 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-112)) (-5 *1 (-924 *4 *5 *6 *7)))) (-4186 (*1 *2 *2) (-12 (-4 *3 (-13 (-308) (-147))) (-4 *4 (-13 (-850) (-614 (-1175)))) (-4 *5 (-793)) (-5 *1 (-924 *3 *4 *5 *2)) (-4 *2 (-949 *3 *5 *4)))) (-2056 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566))))) (-5 *4 (-689 *12)) (-5 *5 (-644 (-409 (-952 *9)))) (-5 *6 (-644 (-644 *12))) (-5 *7 (-771)) (-5 *8 (-566)) (-4 *9 (-13 (-308) (-147))) (-4 *12 (-949 *9 *11 *10)) (-4 *10 (-13 (-850) (-614 (-1175)))) (-4 *11 (-793)) (-5 *2 (-2 (|:| |eqzro| (-644 *12)) (|:| |neqzro| (-644 *12)) (|:| |wcond| (-644 (-952 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 *9)))) (|:| -2875 (-644 (-1264 (-409 (-952 *9))))))))) (-5 *1 (-924 *9 *10 *11 *12)))) (-1766 (*1 *2 *2 *3) (-12 (-5 *2 (-689 *7)) (-5 *3 (-644 *7)) (-4 *7 (-949 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *1 (-924 *4 *5 *6 *7)))) (-2600 (*1 *2 *3 *4) (-12 (-5 *3 (-689 *8)) (-5 *4 (-771)) (-4 *8 (-949 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-850) (-614 (-1175)))) (-4 *7 (-793)) (-5 *2 (-644 (-2 (|:| |det| *8) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (-5 *1 (-924 *5 *6 *7 *8)))) (-2162 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-644 *8))) (-5 *3 (-644 *8)) (-4 *8 (-949 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-850) (-614 (-1175)))) (-4 *7 (-793)) (-5 *2 (-112)) (-5 *1 (-924 *5 *6 *7 *8)))) (-3175 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-644 (-644 (-566)))) (-5 *1 (-924 *4 *5 *6 *7)) (-5 *3 (-566)) (-4 *7 (-949 *4 *6 *5)))) (-4390 (*1 *2 *2) (-12 (-5 *2 (-644 (-644 *6))) (-4 *6 (-949 *3 *5 *4)) (-4 *3 (-13 (-308) (-147))) (-4 *4 (-13 (-850) (-614 (-1175)))) (-4 *5 (-793)) (-5 *1 (-924 *3 *4 *5 *6)))) (-3418 (*1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| -2755 (-771)) (|:| |eqns| (-644 (-2 (|:| |det| *7) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (|:| |fgb| (-644 *7))))) (-4 *7 (-949 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-771)) (-5 *1 (-924 *4 *5 *6 *7)))) (-3637 (*1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| -2755 (-771)) (|:| |eqns| (-644 (-2 (|:| |det| *7) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (|:| |fgb| (-644 *7))))) (-4 *7 (-949 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-771)) (-5 *1 (-924 *4 *5 *6 *7)))) (-2611 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-644 *3)) (-5 *1 (-924 *4 *5 *6 *3)) (-4 *3 (-949 *4 *6 *5)))) (-4035 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3361 (-689 (-409 (-952 *4)))) (|:| |vec| (-644 (-409 (-952 *4)))) (|:| -2755 (-771)) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566))))) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-2 (|:| |partsol| (-1264 (-409 (-952 *4)))) (|:| -2875 (-644 (-1264 (-409 (-952 *4))))))) (-5 *1 (-924 *4 *5 *6 *7)) (-4 *7 (-949 *4 *6 *5)))) (-2662 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1264 (-409 (-952 *4)))) (|:| -2875 (-644 (-1264 (-409 (-952 *4))))))) (-5 *3 (-644 *7)) (-4 *4 (-13 (-308) (-147))) (-4 *7 (-949 *4 *6 *5)) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *1 (-924 *4 *5 *6 *7)))) (-3099 (*1 *2 *3 *4) (-12 (-5 *3 (-689 *8)) (-4 *8 (-949 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-850) (-614 (-1175)))) (-4 *7 (-793)) (-5 *2 (-644 (-2 (|:| -2755 (-771)) (|:| |eqns| (-644 (-2 (|:| |det| *8) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (|:| |fgb| (-644 *8))))) (-5 *1 (-924 *5 *6 *7 *8)) (-5 *4 (-771)))) (-1538 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-4 *7 (-949 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-644 *7)) (|:| |n0| (-644 *7)))) (-5 *1 (-924 *4 *5 *6 *7)) (-5 *3 (-644 *7)))) (-3075 (*1 *2 *3) (-12 (-5 *3 (-952 *4)) (-4 *4 (-13 (-308) (-147))) (-4 *2 (-949 *4 *6 *5)) (-5 *1 (-924 *4 *5 *6 *2)) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)))) (-2145 (*1 *2 *3) (-12 (-5 *3 (-644 (-1175))) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-644 (-409 (-952 *4)))) (-5 *1 (-924 *4 *5 *6 *7)) (-4 *7 (-949 *4 *6 *5)))) (-1403 (*1 *2 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-949 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-644 (-409 (-952 *4)))) (-5 *1 (-924 *4 *5 *6 *7)))) (-1403 (*1 *2 *3) (-12 (-5 *3 (-689 *7)) (-4 *7 (-949 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-689 (-409 (-952 *4)))) (-5 *1 (-924 *4 *5 *6 *7)))) (-1403 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-409 (-952 *4))) (-5 *1 (-924 *4 *5 *6 *3)) (-4 *3 (-949 *4 *6 *5)))) (-3470 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-689 *11)) (-5 *4 (-644 (-409 (-952 *8)))) (-5 *5 (-771)) (-5 *6 (-1157)) (-4 *8 (-13 (-308) (-147))) (-4 *11 (-949 *8 *10 *9)) (-4 *9 (-13 (-850) (-614 (-1175)))) (-4 *10 (-793)) (-5 *2 (-2 (|:| |rgl| (-644 (-2 (|:| |eqzro| (-644 *11)) (|:| |neqzro| (-644 *11)) (|:| |wcond| (-644 (-952 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 *8)))) (|:| -2875 (-644 (-1264 (-409 (-952 *8)))))))))) (|:| |rgsz| (-566)))) (-5 *1 (-924 *8 *9 *10 *11)) (-5 *7 (-566)))) (-3529 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-644 (-2 (|:| |eqzro| (-644 *7)) (|:| |neqzro| (-644 *7)) (|:| |wcond| (-644 (-952 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 *4)))) (|:| -2875 (-644 (-1264 (-409 (-952 *4)))))))))) (-5 *1 (-924 *4 *5 *6 *7)) (-4 *7 (-949 *4 *6 *5)))) (-1454 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-2 (|:| |eqzro| (-644 *8)) (|:| |neqzro| (-644 *8)) (|:| |wcond| (-644 (-952 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 *5)))) (|:| -2875 (-644 (-1264 (-409 (-952 *5)))))))))) (-5 *4 (-1157)) (-4 *5 (-13 (-308) (-147))) (-4 *8 (-949 *5 *7 *6)) (-4 *6 (-13 (-850) (-614 (-1175)))) (-4 *7 (-793)) (-5 *2 (-566)) (-5 *1 (-924 *5 *6 *7 *8)))) (-3003 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-689 *9)) (-5 *4 (-921)) (-5 *5 (-1157)) (-4 *9 (-949 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-850) (-614 (-1175)))) (-4 *8 (-793)) (-5 *2 (-566)) (-5 *1 (-924 *6 *7 *8 *9)))) (-3003 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-689 *10)) (-5 *4 (-644 (-1175))) (-5 *5 (-921)) (-5 *6 (-1157)) (-4 *10 (-949 *7 *9 *8)) (-4 *7 (-13 (-308) (-147))) (-4 *8 (-13 (-850) (-614 (-1175)))) (-4 *9 (-793)) (-5 *2 (-566)) (-5 *1 (-924 *7 *8 *9 *10)))) (-3003 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-689 *10)) (-5 *4 (-644 *10)) (-5 *5 (-921)) (-5 *6 (-1157)) (-4 *10 (-949 *7 *9 *8)) (-4 *7 (-13 (-308) (-147))) (-4 *8 (-13 (-850) (-614 (-1175)))) (-4 *9 (-793)) (-5 *2 (-566)) (-5 *1 (-924 *7 *8 *9 *10)))) (-3003 (*1 *2 *3 *4) (-12 (-5 *3 (-689 *8)) (-5 *4 (-1157)) (-4 *8 (-949 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-850) (-614 (-1175)))) (-4 *7 (-793)) (-5 *2 (-566)) (-5 *1 (-924 *5 *6 *7 *8)))) (-3003 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-689 *9)) (-5 *4 (-644 (-1175))) (-5 *5 (-1157)) (-4 *9 (-949 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-850) (-614 (-1175)))) (-4 *8 (-793)) (-5 *2 (-566)) (-5 *1 (-924 *6 *7 *8 *9)))) (-3003 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-689 *9)) (-5 *4 (-644 *9)) (-5 *5 (-1157)) (-4 *9 (-949 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-850) (-614 (-1175)))) (-4 *8 (-793)) (-5 *2 (-566)) (-5 *1 (-924 *6 *7 *8 *9)))) (-3003 (*1 *2 *3 *4) (-12 (-5 *3 (-689 *8)) (-5 *4 (-921)) (-4 *8 (-949 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-850) (-614 (-1175)))) (-4 *7 (-793)) (-5 *2 (-644 (-2 (|:| |eqzro| (-644 *8)) (|:| |neqzro| (-644 *8)) (|:| |wcond| (-644 (-952 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 *5)))) (|:| -2875 (-644 (-1264 (-409 (-952 *5)))))))))) (-5 *1 (-924 *5 *6 *7 *8)))) (-3003 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-689 *9)) (-5 *4 (-644 (-1175))) (-5 *5 (-921)) (-4 *9 (-949 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-850) (-614 (-1175)))) (-4 *8 (-793)) (-5 *2 (-644 (-2 (|:| |eqzro| (-644 *9)) (|:| |neqzro| (-644 *9)) (|:| |wcond| (-644 (-952 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 *6)))) (|:| -2875 (-644 (-1264 (-409 (-952 *6)))))))))) (-5 *1 (-924 *6 *7 *8 *9)))) (-3003 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-689 *9)) (-5 *5 (-921)) (-4 *9 (-949 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-850) (-614 (-1175)))) (-4 *8 (-793)) (-5 *2 (-644 (-2 (|:| |eqzro| (-644 *9)) (|:| |neqzro| (-644 *9)) (|:| |wcond| (-644 (-952 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 *6)))) (|:| -2875 (-644 (-1264 (-409 (-952 *6)))))))))) (-5 *1 (-924 *6 *7 *8 *9)) (-5 *4 (-644 *9)))) (-3003 (*1 *2 *3) (-12 (-5 *3 (-689 *7)) (-4 *7 (-949 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-644 (-2 (|:| |eqzro| (-644 *7)) (|:| |neqzro| (-644 *7)) (|:| |wcond| (-644 (-952 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 *4)))) (|:| -2875 (-644 (-1264 (-409 (-952 *4)))))))))) (-5 *1 (-924 *4 *5 *6 *7)))) (-3003 (*1 *2 *3 *4) (-12 (-5 *3 (-689 *8)) (-5 *4 (-644 (-1175))) (-4 *8 (-949 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-850) (-614 (-1175)))) (-4 *7 (-793)) (-5 *2 (-644 (-2 (|:| |eqzro| (-644 *8)) (|:| |neqzro| (-644 *8)) (|:| |wcond| (-644 (-952 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 *5)))) (|:| -2875 (-644 (-1264 (-409 (-952 *5)))))))))) (-5 *1 (-924 *5 *6 *7 *8)))) (-3003 (*1 *2 *3 *4) (-12 (-5 *3 (-689 *8)) (-4 *8 (-949 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-850) (-614 (-1175)))) (-4 *7 (-793)) (-5 *2 (-644 (-2 (|:| |eqzro| (-644 *8)) (|:| |neqzro| (-644 *8)) (|:| |wcond| (-644 (-952 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 *5)))) (|:| -2875 (-644 (-1264 (-409 (-952 *5)))))))))) (-5 *1 (-924 *5 *6 *7 *8)) (-5 *4 (-644 *8))))) +(-10 -7 (-15 -3003 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2875 (-644 (-1264 (-409 (-952 |#1|))))))))) (-689 |#4|) (-644 |#4|))) (-15 -3003 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2875 (-644 (-1264 (-409 (-952 |#1|))))))))) (-689 |#4|) (-644 (-1175)))) (-15 -3003 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2875 (-644 (-1264 (-409 (-952 |#1|))))))))) (-689 |#4|))) (-15 -3003 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2875 (-644 (-1264 (-409 (-952 |#1|))))))))) (-689 |#4|) (-644 |#4|) (-921))) (-15 -3003 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2875 (-644 (-1264 (-409 (-952 |#1|))))))))) (-689 |#4|) (-644 (-1175)) (-921))) (-15 -3003 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2875 (-644 (-1264 (-409 (-952 |#1|))))))))) (-689 |#4|) (-921))) (-15 -3003 ((-566) (-689 |#4|) (-644 |#4|) (-1157))) (-15 -3003 ((-566) (-689 |#4|) (-644 (-1175)) (-1157))) (-15 -3003 ((-566) (-689 |#4|) (-1157))) (-15 -3003 ((-566) (-689 |#4|) (-644 |#4|) (-921) (-1157))) (-15 -3003 ((-566) (-689 |#4|) (-644 (-1175)) (-921) (-1157))) (-15 -3003 ((-566) (-689 |#4|) (-921) (-1157))) (-15 -1454 ((-566) (-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2875 (-644 (-1264 (-409 (-952 |#1|))))))))) (-1157))) (-15 -3529 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2875 (-644 (-1264 (-409 (-952 |#1|))))))))) (-1157))) (-15 -3470 ((-2 (|:| |rgl| (-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2875 (-644 (-1264 (-409 (-952 |#1|)))))))))) (|:| |rgsz| (-566))) (-689 |#4|) (-644 (-409 (-952 |#1|))) (-771) (-1157) (-566))) (-15 -1403 ((-409 (-952 |#1|)) |#4|)) (-15 -1403 ((-689 (-409 (-952 |#1|))) (-689 |#4|))) (-15 -1403 ((-644 (-409 (-952 |#1|))) (-644 |#4|))) (-15 -2145 ((-644 (-409 (-952 |#1|))) (-644 (-1175)))) (-15 -3075 (|#4| (-952 |#1|))) (-15 -1538 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-644 |#4|)) (|:| |n0| (-644 |#4|))) (-644 |#4|) (-644 |#4|))) (-15 -3099 ((-644 (-2 (|:| -2755 (-771)) (|:| |eqns| (-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (|:| |fgb| (-644 |#4|)))) (-689 |#4|) (-771))) (-15 -2662 ((-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2875 (-644 (-1264 (-409 (-952 |#1|)))))) (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2875 (-644 (-1264 (-409 (-952 |#1|)))))) (-644 |#4|))) (-15 -4035 ((-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2875 (-644 (-1264 (-409 (-952 |#1|)))))) (-2 (|:| -3361 (-689 (-409 (-952 |#1|)))) (|:| |vec| (-644 (-409 (-952 |#1|)))) (|:| -2755 (-771)) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (-15 -2611 ((-644 |#4|) |#4|)) (-15 -3637 ((-771) (-644 (-2 (|:| -2755 (-771)) (|:| |eqns| (-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (|:| |fgb| (-644 |#4|)))))) (-15 -3418 ((-771) (-644 (-2 (|:| -2755 (-771)) (|:| |eqns| (-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (|:| |fgb| (-644 |#4|)))))) (-15 -4390 ((-644 (-644 |#4|)) (-644 (-644 |#4|)))) (-15 -3175 ((-644 (-644 (-566))) (-566) (-566))) (-15 -2162 ((-112) (-644 |#4|) (-644 (-644 |#4|)))) (-15 -2600 ((-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566))))) (-689 |#4|) (-771))) (-15 -1766 ((-689 |#4|) (-689 |#4|) (-644 |#4|))) (-15 -2056 ((-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1264 (-409 (-952 |#1|)))) (|:| -2875 (-644 (-1264 (-409 (-952 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))) (-689 |#4|) (-644 (-409 (-952 |#1|))) (-644 (-644 |#4|)) (-771) (-771) (-566))) (-15 -4186 (|#4| |#4|)) (-15 -1857 ((-112) (-644 |#4|))) (-15 -1857 ((-112) (-644 (-952 |#1|))))) +((-3898 (((-927) |#1| (-1175)) 17) (((-927) |#1| (-1175) (-1093 (-225))) 21)) (-2275 (((-927) |#1| |#1| (-1175) (-1093 (-225))) 19) (((-927) |#1| (-1175) (-1093 (-225))) 15))) +(((-925 |#1|) (-10 -7 (-15 -2275 ((-927) |#1| (-1175) (-1093 (-225)))) (-15 -2275 ((-927) |#1| |#1| (-1175) (-1093 (-225)))) (-15 -3898 ((-927) |#1| (-1175) (-1093 (-225)))) (-15 -3898 ((-927) |#1| (-1175)))) (-614 (-538))) (T -925)) +((-3898 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-5 *2 (-927)) (-5 *1 (-925 *3)) (-4 *3 (-614 (-538))))) (-3898 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1175)) (-5 *5 (-1093 (-225))) (-5 *2 (-927)) (-5 *1 (-925 *3)) (-4 *3 (-614 (-538))))) (-2275 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1175)) (-5 *5 (-1093 (-225))) (-5 *2 (-927)) (-5 *1 (-925 *3)) (-4 *3 (-614 (-538))))) (-2275 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1175)) (-5 *5 (-1093 (-225))) (-5 *2 (-927)) (-5 *1 (-925 *3)) (-4 *3 (-614 (-538)))))) +(-10 -7 (-15 -2275 ((-927) |#1| (-1175) (-1093 (-225)))) (-15 -2275 ((-927) |#1| |#1| (-1175) (-1093 (-225)))) (-15 -3898 ((-927) |#1| (-1175) (-1093 (-225)))) (-15 -3898 ((-927) |#1| (-1175)))) +((-3294 (($ $ (-1093 (-225)) (-1093 (-225)) (-1093 (-225))) 123)) (-3880 (((-1093 (-225)) $) 64)) (-3867 (((-1093 (-225)) $) 63)) (-3857 (((-1093 (-225)) $) 62)) (-3874 (((-644 (-644 (-225))) $) 69)) (-3587 (((-1093 (-225)) $) 65)) (-2834 (((-566) (-566)) 57)) (-4019 (((-566) (-566)) 52)) (-3741 (((-566) (-566)) 55)) (-4195 (((-112) (-112)) 59)) (-1713 (((-566)) 56)) (-2279 (($ $ (-1093 (-225))) 126) (($ $) 127)) (-4334 (($ (-1 (-943 (-225)) (-225)) (-1093 (-225))) 133) (($ (-1 (-943 (-225)) (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225))) 134)) (-2275 (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1093 (-225))) 136) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225))) 137) (($ $ (-1093 (-225))) 129)) (-4041 (((-566)) 60)) (-1812 (((-566)) 50)) (-2432 (((-566)) 53)) (-4042 (((-644 (-644 (-943 (-225)))) $) 153)) (-3827 (((-112) (-112)) 61)) (-3152 (((-862) $) 151)) (-2037 (((-112)) 58))) +(((-926) (-13 (-974) (-10 -8 (-15 -4334 ($ (-1 (-943 (-225)) (-225)) (-1093 (-225)))) (-15 -4334 ($ (-1 (-943 (-225)) (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225)))) (-15 -2275 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1093 (-225)))) (-15 -2275 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225)))) (-15 -2275 ($ $ (-1093 (-225)))) (-15 -3294 ($ $ (-1093 (-225)) (-1093 (-225)) (-1093 (-225)))) (-15 -2279 ($ $ (-1093 (-225)))) (-15 -2279 ($ $)) (-15 -3587 ((-1093 (-225)) $)) (-15 -3874 ((-644 (-644 (-225))) $)) (-15 -1812 ((-566))) (-15 -4019 ((-566) (-566))) (-15 -2432 ((-566))) (-15 -3741 ((-566) (-566))) (-15 -1713 ((-566))) (-15 -2834 ((-566) (-566))) (-15 -2037 ((-112))) (-15 -4195 ((-112) (-112))) (-15 -4041 ((-566))) (-15 -3827 ((-112) (-112)))))) (T -926)) +((-4334 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-943 (-225)) (-225))) (-5 *3 (-1093 (-225))) (-5 *1 (-926)))) (-4334 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-943 (-225)) (-225))) (-5 *3 (-1093 (-225))) (-5 *1 (-926)))) (-2275 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1093 (-225))) (-5 *1 (-926)))) (-2275 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1093 (-225))) (-5 *1 (-926)))) (-2275 (*1 *1 *1 *2) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-926)))) (-3294 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-926)))) (-2279 (*1 *1 *1 *2) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-926)))) (-2279 (*1 *1 *1) (-5 *1 (-926))) (-3587 (*1 *2 *1) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-926)))) (-3874 (*1 *2 *1) (-12 (-5 *2 (-644 (-644 (-225)))) (-5 *1 (-926)))) (-1812 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-926)))) (-4019 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-926)))) (-2432 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-926)))) (-3741 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-926)))) (-1713 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-926)))) (-2834 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-926)))) (-2037 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-926)))) (-4195 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-926)))) (-4041 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-926)))) (-3827 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-926))))) +(-13 (-974) (-10 -8 (-15 -4334 ($ (-1 (-943 (-225)) (-225)) (-1093 (-225)))) (-15 -4334 ($ (-1 (-943 (-225)) (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225)))) (-15 -2275 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1093 (-225)))) (-15 -2275 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225)))) (-15 -2275 ($ $ (-1093 (-225)))) (-15 -3294 ($ $ (-1093 (-225)) (-1093 (-225)) (-1093 (-225)))) (-15 -2279 ($ $ (-1093 (-225)))) (-15 -2279 ($ $)) (-15 -3587 ((-1093 (-225)) $)) (-15 -3874 ((-644 (-644 (-225))) $)) (-15 -1812 ((-566))) (-15 -4019 ((-566) (-566))) (-15 -2432 ((-566))) (-15 -3741 ((-566) (-566))) (-15 -1713 ((-566))) (-15 -2834 ((-566) (-566))) (-15 -2037 ((-112))) (-15 -4195 ((-112) (-112))) (-15 -4041 ((-566))) (-15 -3827 ((-112) (-112))))) +((-3294 (($ $ (-1093 (-225))) 124) (($ $ (-1093 (-225)) (-1093 (-225))) 125)) (-3867 (((-1093 (-225)) $) 73)) (-3857 (((-1093 (-225)) $) 72)) (-3587 (((-1093 (-225)) $) 74)) (-3693 (((-566) (-566)) 66)) (-2176 (((-566) (-566)) 61)) (-2955 (((-566) (-566)) 64)) (-2221 (((-112) (-112)) 68)) (-2733 (((-566)) 65)) (-2279 (($ $ (-1093 (-225))) 128) (($ $) 129)) (-4334 (($ (-1 (-943 (-225)) (-225)) (-1093 (-225))) 143) (($ (-1 (-943 (-225)) (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225))) 144)) (-3898 (($ (-1 (-225) (-225)) (-1093 (-225))) 151) (($ (-1 (-225) (-225))) 155)) (-2275 (($ (-1 (-225) (-225)) (-1093 (-225))) 139) (($ (-1 (-225) (-225)) (-1093 (-225)) (-1093 (-225))) 140) (($ (-644 (-1 (-225) (-225))) (-1093 (-225))) 148) (($ (-644 (-1 (-225) (-225))) (-1093 (-225)) (-1093 (-225))) 149) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1093 (-225))) 141) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225))) 142) (($ $ (-1093 (-225))) 130)) (-2244 (((-112) $) 69)) (-1937 (((-566)) 70)) (-4350 (((-566)) 59)) (-3651 (((-566)) 62)) (-4042 (((-644 (-644 (-943 (-225)))) $) 35)) (-3487 (((-112) (-112)) 71)) (-3152 (((-862) $) 169)) (-2642 (((-112)) 67))) +(((-927) (-13 (-955) (-10 -8 (-15 -2275 ($ (-1 (-225) (-225)) (-1093 (-225)))) (-15 -2275 ($ (-1 (-225) (-225)) (-1093 (-225)) (-1093 (-225)))) (-15 -2275 ($ (-644 (-1 (-225) (-225))) (-1093 (-225)))) (-15 -2275 ($ (-644 (-1 (-225) (-225))) (-1093 (-225)) (-1093 (-225)))) (-15 -2275 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1093 (-225)))) (-15 -2275 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225)))) (-15 -4334 ($ (-1 (-943 (-225)) (-225)) (-1093 (-225)))) (-15 -4334 ($ (-1 (-943 (-225)) (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225)))) (-15 -3898 ($ (-1 (-225) (-225)) (-1093 (-225)))) (-15 -3898 ($ (-1 (-225) (-225)))) (-15 -2275 ($ $ (-1093 (-225)))) (-15 -2244 ((-112) $)) (-15 -3294 ($ $ (-1093 (-225)))) (-15 -3294 ($ $ (-1093 (-225)) (-1093 (-225)))) (-15 -2279 ($ $ (-1093 (-225)))) (-15 -2279 ($ $)) (-15 -3587 ((-1093 (-225)) $)) (-15 -4350 ((-566))) (-15 -2176 ((-566) (-566))) (-15 -3651 ((-566))) (-15 -2955 ((-566) (-566))) (-15 -2733 ((-566))) (-15 -3693 ((-566) (-566))) (-15 -2642 ((-112))) (-15 -2221 ((-112) (-112))) (-15 -1937 ((-566))) (-15 -3487 ((-112) (-112)))))) (T -927)) +((-2275 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1093 (-225))) (-5 *1 (-927)))) (-2275 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1093 (-225))) (-5 *1 (-927)))) (-2275 (*1 *1 *2 *3) (-12 (-5 *2 (-644 (-1 (-225) (-225)))) (-5 *3 (-1093 (-225))) (-5 *1 (-927)))) (-2275 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-644 (-1 (-225) (-225)))) (-5 *3 (-1093 (-225))) (-5 *1 (-927)))) (-2275 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1093 (-225))) (-5 *1 (-927)))) (-2275 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1093 (-225))) (-5 *1 (-927)))) (-4334 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-943 (-225)) (-225))) (-5 *3 (-1093 (-225))) (-5 *1 (-927)))) (-4334 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-943 (-225)) (-225))) (-5 *3 (-1093 (-225))) (-5 *1 (-927)))) (-3898 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1093 (-225))) (-5 *1 (-927)))) (-3898 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-927)))) (-2275 (*1 *1 *1 *2) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-927)))) (-2244 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-927)))) (-3294 (*1 *1 *1 *2) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-927)))) (-3294 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-927)))) (-2279 (*1 *1 *1 *2) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-927)))) (-2279 (*1 *1 *1) (-5 *1 (-927))) (-3587 (*1 *2 *1) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-927)))) (-4350 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-927)))) (-2176 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-927)))) (-3651 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-927)))) (-2955 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-927)))) (-2733 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-927)))) (-3693 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-927)))) (-2642 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-927)))) (-2221 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-927)))) (-1937 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-927)))) (-3487 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-927))))) +(-13 (-955) (-10 -8 (-15 -2275 ($ (-1 (-225) (-225)) (-1093 (-225)))) (-15 -2275 ($ (-1 (-225) (-225)) (-1093 (-225)) (-1093 (-225)))) (-15 -2275 ($ (-644 (-1 (-225) (-225))) (-1093 (-225)))) (-15 -2275 ($ (-644 (-1 (-225) (-225))) (-1093 (-225)) (-1093 (-225)))) (-15 -2275 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1093 (-225)))) (-15 -2275 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225)))) (-15 -4334 ($ (-1 (-943 (-225)) (-225)) (-1093 (-225)))) (-15 -4334 ($ (-1 (-943 (-225)) (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225)))) (-15 -3898 ($ (-1 (-225) (-225)) (-1093 (-225)))) (-15 -3898 ($ (-1 (-225) (-225)))) (-15 -2275 ($ $ (-1093 (-225)))) (-15 -2244 ((-112) $)) (-15 -3294 ($ $ (-1093 (-225)))) (-15 -3294 ($ $ (-1093 (-225)) (-1093 (-225)))) (-15 -2279 ($ $ (-1093 (-225)))) (-15 -2279 ($ $)) (-15 -3587 ((-1093 (-225)) $)) (-15 -4350 ((-566))) (-15 -2176 ((-566) (-566))) (-15 -3651 ((-566))) (-15 -2955 ((-566) (-566))) (-15 -2733 ((-566))) (-15 -3693 ((-566) (-566))) (-15 -2642 ((-112))) (-15 -2221 ((-112) (-112))) (-15 -1937 ((-566))) (-15 -3487 ((-112) (-112))))) +((-4206 (((-644 (-1093 (-225))) (-644 (-644 (-943 (-225))))) 34))) +(((-928) (-10 -7 (-15 -4206 ((-644 (-1093 (-225))) (-644 (-644 (-943 (-225)))))))) (T -928)) +((-4206 (*1 *2 *3) (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *2 (-644 (-1093 (-225)))) (-5 *1 (-928))))) +(-10 -7 (-15 -4206 ((-644 (-1093 (-225))) (-644 (-644 (-943 (-225))))))) +((-4238 ((|#2| |#2|) 28)) (-4082 ((|#2| |#2|) 29)) (-1623 ((|#2| |#2|) 27)) (-1442 ((|#2| |#2| (-508)) 26))) +(((-929 |#1| |#2|) (-10 -7 (-15 -1442 (|#2| |#2| (-508))) (-15 -1623 (|#2| |#2|)) (-15 -4238 (|#2| |#2|)) (-15 -4082 (|#2| |#2|))) (-1099) (-432 |#1|)) (T -929)) +((-4082 (*1 *2 *2) (-12 (-4 *3 (-1099)) (-5 *1 (-929 *3 *2)) (-4 *2 (-432 *3)))) (-4238 (*1 *2 *2) (-12 (-4 *3 (-1099)) (-5 *1 (-929 *3 *2)) (-4 *2 (-432 *3)))) (-1623 (*1 *2 *2) (-12 (-4 *3 (-1099)) (-5 *1 (-929 *3 *2)) (-4 *2 (-432 *3)))) (-1442 (*1 *2 *2 *3) (-12 (-5 *3 (-508)) (-4 *4 (-1099)) (-5 *1 (-929 *4 *2)) (-4 *2 (-432 *4))))) +(-10 -7 (-15 -1442 (|#2| |#2| (-508))) (-15 -1623 (|#2| |#2|)) (-15 -4238 (|#2| |#2|)) (-15 -4082 (|#2| |#2|))) +((-4238 (((-317 (-566)) (-1175)) 16)) (-4082 (((-317 (-566)) (-1175)) 14)) (-1623 (((-317 (-566)) (-1175)) 12)) (-1442 (((-317 (-566)) (-1175) (-508)) 19))) +(((-930) (-10 -7 (-15 -1442 ((-317 (-566)) (-1175) (-508))) (-15 -1623 ((-317 (-566)) (-1175))) (-15 -4238 ((-317 (-566)) (-1175))) (-15 -4082 ((-317 (-566)) (-1175))))) (T -930)) +((-4082 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-317 (-566))) (-5 *1 (-930)))) (-4238 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-317 (-566))) (-5 *1 (-930)))) (-1623 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-317 (-566))) (-5 *1 (-930)))) (-1442 (*1 *2 *3 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-508)) (-5 *2 (-317 (-566))) (-5 *1 (-930))))) +(-10 -7 (-15 -1442 ((-317 (-566)) (-1175) (-508))) (-15 -1623 ((-317 (-566)) (-1175))) (-15 -4238 ((-317 (-566)) (-1175))) (-15 -4082 ((-317 (-566)) (-1175)))) +((-2926 (((-889 |#1| |#3|) |#2| (-892 |#1|) (-889 |#1| |#3|)) 25)) (-3253 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13))) +(((-931 |#1| |#2| |#3|) (-10 -7 (-15 -3253 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -2926 ((-889 |#1| |#3|) |#2| (-892 |#1|) (-889 |#1| |#3|)))) (-1099) (-886 |#1|) (-13 (-1099) (-1038 |#2|))) (T -931)) +((-2926 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-889 *5 *6)) (-5 *4 (-892 *5)) (-4 *5 (-1099)) (-4 *6 (-13 (-1099) (-1038 *3))) (-4 *3 (-886 *5)) (-5 *1 (-931 *5 *3 *6)))) (-3253 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1099) (-1038 *5))) (-4 *5 (-886 *4)) (-4 *4 (-1099)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-931 *4 *5 *6))))) +(-10 -7 (-15 -3253 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -2926 ((-889 |#1| |#3|) |#2| (-892 |#1|) (-889 |#1| |#3|)))) +((-2926 (((-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|)) 30))) +(((-932 |#1| |#2| |#3|) (-10 -7 (-15 -2926 ((-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|)))) (-1099) (-13 (-558) (-886 |#1|)) (-13 (-432 |#2|) (-614 (-892 |#1|)) (-886 |#1|) (-1038 (-612 $)))) (T -932)) +((-2926 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-889 *5 *3)) (-4 *5 (-1099)) (-4 *3 (-13 (-432 *6) (-614 *4) (-886 *5) (-1038 (-612 $)))) (-5 *4 (-892 *5)) (-4 *6 (-13 (-558) (-886 *5))) (-5 *1 (-932 *5 *6 *3))))) +(-10 -7 (-15 -2926 ((-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|)))) +((-2926 (((-889 (-566) |#1|) |#1| (-892 (-566)) (-889 (-566) |#1|)) 13))) +(((-933 |#1|) (-10 -7 (-15 -2926 ((-889 (-566) |#1|) |#1| (-892 (-566)) (-889 (-566) |#1|)))) (-547)) (T -933)) +((-2926 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-889 (-566) *3)) (-5 *4 (-892 (-566))) (-4 *3 (-547)) (-5 *1 (-933 *3))))) +(-10 -7 (-15 -2926 ((-889 (-566) |#1|) |#1| (-892 (-566)) (-889 (-566) |#1|)))) +((-2926 (((-889 |#1| |#2|) (-612 |#2|) (-892 |#1|) (-889 |#1| |#2|)) 57))) +(((-934 |#1| |#2|) (-10 -7 (-15 -2926 ((-889 |#1| |#2|) (-612 |#2|) (-892 |#1|) (-889 |#1| |#2|)))) (-1099) (-13 (-1099) (-1038 (-612 $)) (-614 (-892 |#1|)) (-886 |#1|))) (T -934)) +((-2926 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-889 *5 *6)) (-5 *3 (-612 *6)) (-4 *5 (-1099)) (-4 *6 (-13 (-1099) (-1038 (-612 $)) (-614 *4) (-886 *5))) (-5 *4 (-892 *5)) (-5 *1 (-934 *5 *6))))) +(-10 -7 (-15 -2926 ((-889 |#1| |#2|) (-612 |#2|) (-892 |#1|) (-889 |#1| |#2|)))) +((-2926 (((-885 |#1| |#2| |#3|) |#3| (-892 |#1|) (-885 |#1| |#2| |#3|)) 17))) +(((-935 |#1| |#2| |#3|) (-10 -7 (-15 -2926 ((-885 |#1| |#2| |#3|) |#3| (-892 |#1|) (-885 |#1| |#2| |#3|)))) (-1099) (-886 |#1|) (-666 |#2|)) (T -935)) +((-2926 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-885 *5 *6 *3)) (-5 *4 (-892 *5)) (-4 *5 (-1099)) (-4 *6 (-886 *5)) (-4 *3 (-666 *6)) (-5 *1 (-935 *5 *6 *3))))) +(-10 -7 (-15 -2926 ((-885 |#1| |#2| |#3|) |#3| (-892 |#1|) (-885 |#1| |#2| |#3|)))) +((-2926 (((-889 |#1| |#5|) |#5| (-892 |#1|) (-889 |#1| |#5|)) 17 (|has| |#3| (-886 |#1|))) (((-889 |#1| |#5|) |#5| (-892 |#1|) (-889 |#1| |#5|) (-1 (-889 |#1| |#5|) |#3| (-892 |#1|) (-889 |#1| |#5|))) 16))) +(((-936 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2926 ((-889 |#1| |#5|) |#5| (-892 |#1|) (-889 |#1| |#5|) (-1 (-889 |#1| |#5|) |#3| (-892 |#1|) (-889 |#1| |#5|)))) (IF (|has| |#3| (-886 |#1|)) (-15 -2926 ((-889 |#1| |#5|) |#5| (-892 |#1|) (-889 |#1| |#5|))) |%noBranch|)) (-1099) (-793) (-850) (-13 (-1049) (-886 |#1|)) (-13 (-949 |#4| |#2| |#3|) (-614 (-892 |#1|)))) (T -936)) +((-2926 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-889 *5 *3)) (-4 *5 (-1099)) (-4 *3 (-13 (-949 *8 *6 *7) (-614 *4))) (-5 *4 (-892 *5)) (-4 *7 (-886 *5)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-13 (-1049) (-886 *5))) (-5 *1 (-936 *5 *6 *7 *8 *3)))) (-2926 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-889 *6 *3) *8 (-892 *6) (-889 *6 *3))) (-4 *8 (-850)) (-5 *2 (-889 *6 *3)) (-5 *4 (-892 *6)) (-4 *6 (-1099)) (-4 *3 (-13 (-949 *9 *7 *8) (-614 *4))) (-4 *7 (-793)) (-4 *9 (-13 (-1049) (-886 *6))) (-5 *1 (-936 *6 *7 *8 *9 *3))))) +(-10 -7 (-15 -2926 ((-889 |#1| |#5|) |#5| (-892 |#1|) (-889 |#1| |#5|) (-1 (-889 |#1| |#5|) |#3| (-892 |#1|) (-889 |#1| |#5|)))) (IF (|has| |#3| (-886 |#1|)) (-15 -2926 ((-889 |#1| |#5|) |#5| (-892 |#1|) (-889 |#1| |#5|))) |%noBranch|)) +((-4159 ((|#2| |#2| (-644 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13))) +(((-937 |#1| |#2| |#3|) (-10 -7 (-15 -4159 (|#2| |#2| (-1 (-112) |#3|))) (-15 -4159 (|#2| |#2| (-644 (-1 (-112) |#3|))))) (-1099) (-432 |#1|) (-1214)) (T -937)) +((-4159 (*1 *2 *2 *3) (-12 (-5 *3 (-644 (-1 (-112) *5))) (-4 *5 (-1214)) (-4 *4 (-1099)) (-5 *1 (-937 *4 *2 *5)) (-4 *2 (-432 *4)))) (-4159 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1214)) (-4 *4 (-1099)) (-5 *1 (-937 *4 *2 *5)) (-4 *2 (-432 *4))))) +(-10 -7 (-15 -4159 (|#2| |#2| (-1 (-112) |#3|))) (-15 -4159 (|#2| |#2| (-644 (-1 (-112) |#3|))))) +((-4159 (((-317 (-566)) (-1175) (-644 (-1 (-112) |#1|))) 18) (((-317 (-566)) (-1175) (-1 (-112) |#1|)) 15))) +(((-938 |#1|) (-10 -7 (-15 -4159 ((-317 (-566)) (-1175) (-1 (-112) |#1|))) (-15 -4159 ((-317 (-566)) (-1175) (-644 (-1 (-112) |#1|))))) (-1214)) (T -938)) +((-4159 (*1 *2 *3 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-644 (-1 (-112) *5))) (-4 *5 (-1214)) (-5 *2 (-317 (-566))) (-5 *1 (-938 *5)))) (-4159 (*1 *2 *3 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1214)) (-5 *2 (-317 (-566))) (-5 *1 (-938 *5))))) +(-10 -7 (-15 -4159 ((-317 (-566)) (-1175) (-1 (-112) |#1|))) (-15 -4159 ((-317 (-566)) (-1175) (-644 (-1 (-112) |#1|))))) +((-2926 (((-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|)) 25))) +(((-939 |#1| |#2| |#3|) (-10 -7 (-15 -2926 ((-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|)))) (-1099) (-13 (-558) (-886 |#1|) (-614 (-892 |#1|))) (-992 |#2|)) (T -939)) +((-2926 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-889 *5 *3)) (-4 *5 (-1099)) (-4 *3 (-992 *6)) (-4 *6 (-13 (-558) (-886 *5) (-614 *4))) (-5 *4 (-892 *5)) (-5 *1 (-939 *5 *6 *3))))) +(-10 -7 (-15 -2926 ((-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|)))) +((-2926 (((-889 |#1| (-1175)) (-1175) (-892 |#1|) (-889 |#1| (-1175))) 18))) +(((-940 |#1|) (-10 -7 (-15 -2926 ((-889 |#1| (-1175)) (-1175) (-892 |#1|) (-889 |#1| (-1175))))) (-1099)) (T -940)) +((-2926 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-889 *5 (-1175))) (-5 *3 (-1175)) (-5 *4 (-892 *5)) (-4 *5 (-1099)) (-5 *1 (-940 *5))))) +(-10 -7 (-15 -2926 ((-889 |#1| (-1175)) (-1175) (-892 |#1|) (-889 |#1| (-1175))))) +((-3142 (((-889 |#1| |#3|) (-644 |#3|) (-644 (-892 |#1|)) (-889 |#1| |#3|) (-1 (-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|))) 34)) (-2926 (((-889 |#1| |#3|) (-644 |#3|) (-644 (-892 |#1|)) (-1 |#3| (-644 |#3|)) (-889 |#1| |#3|) (-1 (-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|))) 33))) +(((-941 |#1| |#2| |#3|) (-10 -7 (-15 -2926 ((-889 |#1| |#3|) (-644 |#3|) (-644 (-892 |#1|)) (-1 |#3| (-644 |#3|)) (-889 |#1| |#3|) (-1 (-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|)))) (-15 -3142 ((-889 |#1| |#3|) (-644 |#3|) (-644 (-892 |#1|)) (-889 |#1| |#3|) (-1 (-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|))))) (-1099) (-1049) (-13 (-1049) (-614 (-892 |#1|)) (-1038 |#2|))) (T -941)) +((-3142 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 (-892 *6))) (-5 *5 (-1 (-889 *6 *8) *8 (-892 *6) (-889 *6 *8))) (-4 *6 (-1099)) (-4 *8 (-13 (-1049) (-614 (-892 *6)) (-1038 *7))) (-5 *2 (-889 *6 *8)) (-4 *7 (-1049)) (-5 *1 (-941 *6 *7 *8)))) (-2926 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-644 (-892 *7))) (-5 *5 (-1 *9 (-644 *9))) (-5 *6 (-1 (-889 *7 *9) *9 (-892 *7) (-889 *7 *9))) (-4 *7 (-1099)) (-4 *9 (-13 (-1049) (-614 (-892 *7)) (-1038 *8))) (-5 *2 (-889 *7 *9)) (-5 *3 (-644 *9)) (-4 *8 (-1049)) (-5 *1 (-941 *7 *8 *9))))) +(-10 -7 (-15 -2926 ((-889 |#1| |#3|) (-644 |#3|) (-644 (-892 |#1|)) (-1 |#3| (-644 |#3|)) (-889 |#1| |#3|) (-1 (-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|)))) (-15 -3142 ((-889 |#1| |#3|) (-644 |#3|) (-644 (-892 |#1|)) (-889 |#1| |#3|) (-1 (-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|))))) +((-2654 (((-1171 (-409 (-566))) (-566)) 81)) (-4336 (((-1171 (-566)) (-566)) 84)) (-2999 (((-1171 (-566)) (-566)) 78)) (-2503 (((-566) (-1171 (-566))) 74)) (-3700 (((-1171 (-409 (-566))) (-566)) 65)) (-1394 (((-1171 (-566)) (-566)) 49)) (-2640 (((-1171 (-566)) (-566)) 86)) (-1349 (((-1171 (-566)) (-566)) 85)) (-3539 (((-1171 (-409 (-566))) (-566)) 67))) +(((-942) (-10 -7 (-15 -3539 ((-1171 (-409 (-566))) (-566))) (-15 -1349 ((-1171 (-566)) (-566))) (-15 -2640 ((-1171 (-566)) (-566))) (-15 -1394 ((-1171 (-566)) (-566))) (-15 -3700 ((-1171 (-409 (-566))) (-566))) (-15 -2503 ((-566) (-1171 (-566)))) (-15 -2999 ((-1171 (-566)) (-566))) (-15 -4336 ((-1171 (-566)) (-566))) (-15 -2654 ((-1171 (-409 (-566))) (-566))))) (T -942)) +((-2654 (*1 *2 *3) (-12 (-5 *2 (-1171 (-409 (-566)))) (-5 *1 (-942)) (-5 *3 (-566)))) (-4336 (*1 *2 *3) (-12 (-5 *2 (-1171 (-566))) (-5 *1 (-942)) (-5 *3 (-566)))) (-2999 (*1 *2 *3) (-12 (-5 *2 (-1171 (-566))) (-5 *1 (-942)) (-5 *3 (-566)))) (-2503 (*1 *2 *3) (-12 (-5 *3 (-1171 (-566))) (-5 *2 (-566)) (-5 *1 (-942)))) (-3700 (*1 *2 *3) (-12 (-5 *2 (-1171 (-409 (-566)))) (-5 *1 (-942)) (-5 *3 (-566)))) (-1394 (*1 *2 *3) (-12 (-5 *2 (-1171 (-566))) (-5 *1 (-942)) (-5 *3 (-566)))) (-2640 (*1 *2 *3) (-12 (-5 *2 (-1171 (-566))) (-5 *1 (-942)) (-5 *3 (-566)))) (-1349 (*1 *2 *3) (-12 (-5 *2 (-1171 (-566))) (-5 *1 (-942)) (-5 *3 (-566)))) (-3539 (*1 *2 *3) (-12 (-5 *2 (-1171 (-409 (-566)))) (-5 *1 (-942)) (-5 *3 (-566))))) +(-10 -7 (-15 -3539 ((-1171 (-409 (-566))) (-566))) (-15 -1349 ((-1171 (-566)) (-566))) (-15 -2640 ((-1171 (-566)) (-566))) (-15 -1394 ((-1171 (-566)) (-566))) (-15 -3700 ((-1171 (-409 (-566))) (-566))) (-15 -2503 ((-566) (-1171 (-566)))) (-15 -2999 ((-1171 (-566)) (-566))) (-15 -4336 ((-1171 (-566)) (-566))) (-15 -2654 ((-1171 (-409 (-566))) (-566)))) +((-2988 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2819 (($ (-771)) NIL (|has| |#1| (-23)))) (-1944 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4415)))) (-3054 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-850)))) (-3628 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4415))) (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-850))))) (-2671 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-850)))) (-1504 (((-112) $ (-771)) NIL)) (-1456 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4415))) ((|#1| $ (-1231 (-566)) |#1|) NIL (|has| $ (-6 -4415)))) (-3678 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2463 (($) NIL T CONST)) (-3166 (($ $) NIL (|has| $ (-6 -4415)))) (-3683 (($ $) NIL)) (-3942 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2622 (($ |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2873 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4414)))) (-3897 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4415)))) (-3829 ((|#1| $ (-566)) NIL)) (-1569 (((-566) (-1 (-112) |#1|) $) NIL) (((-566) |#1| $) NIL (|has| |#1| (-1099))) (((-566) |#1| $ (-566)) NIL (|has| |#1| (-1099)))) (-1397 (($ (-644 |#1|)) 9)) (-1683 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-2977 (((-689 |#1|) $ $) NIL (|has| |#1| (-1049)))) (-1860 (($ (-771) |#1|) NIL)) (-3456 (((-112) $ (-771)) NIL)) (-2296 (((-566) $) NIL (|has| (-566) (-850)))) (-1478 (($ $ $) NIL (|has| |#1| (-850)))) (-2696 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-850)))) (-3491 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-4050 (((-566) $) NIL (|has| (-566) (-850)))) (-2599 (($ $ $) NIL (|has| |#1| (-850)))) (-3885 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3631 ((|#1| $) NIL (-12 (|has| |#1| (-1002)) (|has| |#1| (-1049))))) (-3267 (((-112) $ (-771)) NIL)) (-2440 ((|#1| $) NIL (-12 (|has| |#1| (-1002)) (|has| |#1| (-1049))))) (-3380 (((-1157) $) NIL (|has| |#1| (-1099)))) (-1859 (($ |#1| $ (-566)) NIL) (($ $ $ (-566)) NIL)) (-3725 (((-644 (-566)) $) NIL)) (-1644 (((-112) (-566) $) NIL)) (-4072 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3908 ((|#1| $) NIL (|has| (-566) (-850)))) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3787 (($ $ |#1|) NIL (|has| $ (-6 -4415)))) (-3369 (($ $ (-644 |#1|)) 25)) (-2823 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) NIL)) (-2847 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3486 (((-644 |#1|) $) NIL)) (-2872 (((-112) $) NIL)) (-3493 (($) NIL)) (-1309 ((|#1| $ (-566) |#1|) NIL) ((|#1| $ (-566)) 18) (($ $ (-1231 (-566))) NIL)) (-3386 ((|#1| $ $) NIL (|has| |#1| (-1049)))) (-3126 (((-921) $) 13)) (-2166 (($ $ (-566)) NIL) (($ $ (-1231 (-566))) NIL)) (-1395 (($ $ $) 23)) (-4083 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2661 (($ $ $ (-566)) NIL (|has| $ (-6 -4415)))) (-1480 (($ $) NIL)) (-2376 (((-538) $) NIL (|has| |#1| (-614 (-538)))) (($ (-644 |#1|)) 14)) (-1340 (($ (-644 |#1|)) NIL)) (-4386 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 24) (($ (-644 $)) NIL)) (-3152 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-3044 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2210 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2968 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2914 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2956 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2935 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3012 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3002 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-566) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-726))) (($ $ |#1|) NIL (|has| |#1| (-726)))) (-3000 (((-771) $) 11 (|has| $ (-6 -4414))))) (((-943 |#1|) (-980 |#1|) (-1049)) (T -943)) NIL (-980 |#1|) -((-2815 (((-483 |#1| |#2|) (-952 |#2|)) 22)) (-1854 (((-247 |#1| |#2|) (-952 |#2|)) 35)) (-3527 (((-952 |#2|) (-483 |#1| |#2|)) 27)) (-2861 (((-247 |#1| |#2|) (-483 |#1| |#2|)) 57)) (-1365 (((-952 |#2|) (-247 |#1| |#2|)) 32)) (-4015 (((-483 |#1| |#2|) (-247 |#1| |#2|)) 48))) -(((-944 |#1| |#2|) (-10 -7 (-15 -4015 ((-483 |#1| |#2|) (-247 |#1| |#2|))) (-15 -2861 ((-247 |#1| |#2|) (-483 |#1| |#2|))) (-15 -2815 ((-483 |#1| |#2|) (-952 |#2|))) (-15 -3527 ((-952 |#2|) (-483 |#1| |#2|))) (-15 -1365 ((-952 |#2|) (-247 |#1| |#2|))) (-15 -1854 ((-247 |#1| |#2|) (-952 |#2|)))) (-644 (-1175)) (-1049)) (T -944)) -((-1854 (*1 *2 *3) (-12 (-5 *3 (-952 *5)) (-4 *5 (-1049)) (-5 *2 (-247 *4 *5)) (-5 *1 (-944 *4 *5)) (-14 *4 (-644 (-1175))))) (-1365 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-644 (-1175))) (-4 *5 (-1049)) (-5 *2 (-952 *5)) (-5 *1 (-944 *4 *5)))) (-3527 (*1 *2 *3) (-12 (-5 *3 (-483 *4 *5)) (-14 *4 (-644 (-1175))) (-4 *5 (-1049)) (-5 *2 (-952 *5)) (-5 *1 (-944 *4 *5)))) (-2815 (*1 *2 *3) (-12 (-5 *3 (-952 *5)) (-4 *5 (-1049)) (-5 *2 (-483 *4 *5)) (-5 *1 (-944 *4 *5)) (-14 *4 (-644 (-1175))))) (-2861 (*1 *2 *3) (-12 (-5 *3 (-483 *4 *5)) (-14 *4 (-644 (-1175))) (-4 *5 (-1049)) (-5 *2 (-247 *4 *5)) (-5 *1 (-944 *4 *5)))) (-4015 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-644 (-1175))) (-4 *5 (-1049)) (-5 *2 (-483 *4 *5)) (-5 *1 (-944 *4 *5))))) -(-10 -7 (-15 -4015 ((-483 |#1| |#2|) (-247 |#1| |#2|))) (-15 -2861 ((-247 |#1| |#2|) (-483 |#1| |#2|))) (-15 -2815 ((-483 |#1| |#2|) (-952 |#2|))) (-15 -3527 ((-952 |#2|) (-483 |#1| |#2|))) (-15 -1365 ((-952 |#2|) (-247 |#1| |#2|))) (-15 -1854 ((-247 |#1| |#2|) (-952 |#2|)))) -((-3384 (((-644 |#2|) |#2| |#2|) 10)) (-2620 (((-771) (-644 |#1|)) 48 (|has| |#1| (-848)))) (-2402 (((-644 |#2|) |#2|) 11)) (-3484 (((-771) (-644 |#1|) (-566) (-566)) 52 (|has| |#1| (-848)))) (-1501 ((|#1| |#2|) 38 (|has| |#1| (-848))))) -(((-945 |#1| |#2|) (-10 -7 (-15 -3384 ((-644 |#2|) |#2| |#2|)) (-15 -2402 ((-644 |#2|) |#2|)) (IF (|has| |#1| (-848)) (PROGN (-15 -1501 (|#1| |#2|)) (-15 -2620 ((-771) (-644 |#1|))) (-15 -3484 ((-771) (-644 |#1|) (-566) (-566)))) |%noBranch|)) (-365) (-1240 |#1|)) (T -945)) -((-3484 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-644 *5)) (-5 *4 (-566)) (-4 *5 (-848)) (-4 *5 (-365)) (-5 *2 (-771)) (-5 *1 (-945 *5 *6)) (-4 *6 (-1240 *5)))) (-2620 (*1 *2 *3) (-12 (-5 *3 (-644 *4)) (-4 *4 (-848)) (-4 *4 (-365)) (-5 *2 (-771)) (-5 *1 (-945 *4 *5)) (-4 *5 (-1240 *4)))) (-1501 (*1 *2 *3) (-12 (-4 *2 (-365)) (-4 *2 (-848)) (-5 *1 (-945 *2 *3)) (-4 *3 (-1240 *2)))) (-2402 (*1 *2 *3) (-12 (-4 *4 (-365)) (-5 *2 (-644 *3)) (-5 *1 (-945 *4 *3)) (-4 *3 (-1240 *4)))) (-3384 (*1 *2 *3 *3) (-12 (-4 *4 (-365)) (-5 *2 (-644 *3)) (-5 *1 (-945 *4 *3)) (-4 *3 (-1240 *4))))) -(-10 -7 (-15 -3384 ((-644 |#2|) |#2| |#2|)) (-15 -2402 ((-644 |#2|) |#2|)) (IF (|has| |#1| (-848)) (PROGN (-15 -1501 (|#1| |#2|)) (-15 -2620 ((-771) (-644 |#1|))) (-15 -3484 ((-771) (-644 |#1|) (-566) (-566)))) |%noBranch|)) -((-1301 (((-952 |#2|) (-1 |#2| |#1|) (-952 |#1|)) 19))) -(((-946 |#1| |#2|) (-10 -7 (-15 -1301 ((-952 |#2|) (-1 |#2| |#1|) (-952 |#1|)))) (-1049) (-1049)) (T -946)) -((-1301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-952 *5)) (-4 *5 (-1049)) (-4 *6 (-1049)) (-5 *2 (-952 *6)) (-5 *1 (-946 *5 *6))))) -(-10 -7 (-15 -1301 ((-952 |#2|) (-1 |#2| |#1|) (-952 |#1|)))) -((-3683 (((-1237 |#1| (-952 |#2|)) (-952 |#2|) (-1260 |#1|)) 18))) -(((-947 |#1| |#2|) (-10 -7 (-15 -3683 ((-1237 |#1| (-952 |#2|)) (-952 |#2|) (-1260 |#1|)))) (-1175) (-1049)) (T -947)) -((-3683 (*1 *2 *3 *4) (-12 (-5 *4 (-1260 *5)) (-14 *5 (-1175)) (-4 *6 (-1049)) (-5 *2 (-1237 *5 (-952 *6))) (-5 *1 (-947 *5 *6)) (-5 *3 (-952 *6))))) -(-10 -7 (-15 -3683 ((-1237 |#1| (-952 |#2|)) (-952 |#2|) (-1260 |#1|)))) -((-3367 (((-771) $) 88) (((-771) $ (-644 |#4|)) 93)) (-1550 (($ $) 203)) (-3184 (((-420 $) $) 195)) (-3717 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) 141)) (-4307 (((-3 |#2| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL) (((-3 (-566) "failed") $) NIL) (((-3 |#4| "failed") $) 74)) (-4205 ((|#2| $) NIL) (((-409 (-566)) $) NIL) (((-566) $) NIL) ((|#4| $) 73)) (-2738 (($ $ $ |#4|) 95)) (-3577 (((-689 (-566)) (-689 $)) NIL) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL) (((-2 (|:| -4227 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 $) (-1264 $)) 131) (((-689 |#2|) (-689 $)) 121)) (-4075 (($ $) 210) (($ $ |#4|) 213)) (-1774 (((-644 $) $) 77)) (-2062 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 229) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 222)) (-2288 (((-644 $) $) 34)) (-3840 (($ |#2| |#3|) NIL) (($ $ |#4| (-771)) NIL) (($ $ (-644 |#4|) (-644 (-771))) 71)) (-2044 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $ |#4|) 192)) (-3714 (((-3 (-644 $) "failed") $) 52)) (-2353 (((-3 (-644 $) "failed") $) 39)) (-1518 (((-3 (-2 (|:| |var| |#4|) (|:| -2852 (-771))) "failed") $) 57)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) 134)) (-4303 (((-420 (-1171 $)) (-1171 $)) 147)) (-3240 (((-420 (-1171 $)) (-1171 $)) 145)) (-3719 (((-420 $) $) 165)) (-2055 (($ $ (-644 (-295 $))) 24) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-644 |#4|) (-644 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-644 |#4|) (-644 $)) NIL)) (-3652 (($ $ |#4|) 97)) (-1348 (((-892 (-381)) $) 243) (((-892 (-566)) $) 236) (((-538) $) 251)) (-2483 ((|#2| $) NIL) (($ $ |#4|) 205)) (-1656 (((-3 (-1264 $) "failed") (-689 $)) 184)) (-2649 ((|#2| $ |#3|) NIL) (($ $ |#4| (-771)) 62) (($ $ (-644 |#4|) (-644 (-771))) 69)) (-3144 (((-3 $ "failed") $) 186)) (-3117 (((-112) $ $) 216))) -(((-948 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2197 ((-1171 |#1|) (-1171 |#1|) (-1171 |#1|))) (-15 -3184 ((-420 |#1|) |#1|)) (-15 -1550 (|#1| |#1|)) (-15 -3144 ((-3 |#1| "failed") |#1|)) (-15 -1348 ((-538) |#1|)) (-15 -1348 ((-892 (-566)) |#1|)) (-15 -1348 ((-892 (-381)) |#1|)) (-15 -2062 ((-889 (-566) |#1|) |#1| (-892 (-566)) (-889 (-566) |#1|))) (-15 -2062 ((-889 (-381) |#1|) |#1| (-892 (-381)) (-889 (-381) |#1|))) (-15 -3719 ((-420 |#1|) |#1|)) (-15 -3240 ((-420 (-1171 |#1|)) (-1171 |#1|))) (-15 -4303 ((-420 (-1171 |#1|)) (-1171 |#1|))) (-15 -3717 ((-3 (-644 (-1171 |#1|)) "failed") (-644 (-1171 |#1|)) (-1171 |#1|))) (-15 -1656 ((-3 (-1264 |#1|) "failed") (-689 |#1|))) (-15 -4075 (|#1| |#1| |#4|)) (-15 -2483 (|#1| |#1| |#4|)) (-15 -3652 (|#1| |#1| |#4|)) (-15 -2738 (|#1| |#1| |#1| |#4|)) (-15 -1774 ((-644 |#1|) |#1|)) (-15 -3367 ((-771) |#1| (-644 |#4|))) (-15 -3367 ((-771) |#1|)) (-15 -1518 ((-3 (-2 (|:| |var| |#4|) (|:| -2852 (-771))) "failed") |#1|)) (-15 -3714 ((-3 (-644 |#1|) "failed") |#1|)) (-15 -2353 ((-3 (-644 |#1|) "failed") |#1|)) (-15 -3840 (|#1| |#1| (-644 |#4|) (-644 (-771)))) (-15 -3840 (|#1| |#1| |#4| (-771))) (-15 -2044 ((-2 (|:| -2275 |#1|) (|:| -2513 |#1|)) |#1| |#1| |#4|)) (-15 -2288 ((-644 |#1|) |#1|)) (-15 -2649 (|#1| |#1| (-644 |#4|) (-644 (-771)))) (-15 -2649 (|#1| |#1| |#4| (-771))) (-15 -3577 ((-689 |#2|) (-689 |#1|))) (-15 -3577 ((-2 (|:| -4227 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 |#1|) (-1264 |#1|))) (-15 -3577 ((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 |#1|) (-1264 |#1|))) (-15 -3577 ((-689 (-566)) (-689 |#1|))) (-15 -4307 ((-3 |#4| "failed") |#1|)) (-15 -4205 (|#4| |#1|)) (-15 -2055 (|#1| |#1| (-644 |#4|) (-644 |#1|))) (-15 -2055 (|#1| |#1| |#4| |#1|)) (-15 -2055 (|#1| |#1| (-644 |#4|) (-644 |#2|))) (-15 -2055 (|#1| |#1| |#4| |#2|)) (-15 -2055 (|#1| |#1| (-644 |#1|) (-644 |#1|))) (-15 -2055 (|#1| |#1| |#1| |#1|)) (-15 -2055 (|#1| |#1| (-295 |#1|))) (-15 -2055 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -3840 (|#1| |#2| |#3|)) (-15 -2649 (|#2| |#1| |#3|)) (-15 -4307 ((-3 (-566) "failed") |#1|)) (-15 -4205 ((-566) |#1|)) (-15 -4307 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -4205 ((-409 (-566)) |#1|)) (-15 -4205 (|#2| |#1|)) (-15 -4307 ((-3 |#2| "failed") |#1|)) (-15 -2483 (|#2| |#1|)) (-15 -4075 (|#1| |#1|)) (-15 -3117 ((-112) |#1| |#1|))) (-949 |#2| |#3| |#4|) (-1049) (-793) (-850)) (T -948)) -NIL -(-10 -8 (-15 -2197 ((-1171 |#1|) (-1171 |#1|) (-1171 |#1|))) (-15 -3184 ((-420 |#1|) |#1|)) (-15 -1550 (|#1| |#1|)) (-15 -3144 ((-3 |#1| "failed") |#1|)) (-15 -1348 ((-538) |#1|)) (-15 -1348 ((-892 (-566)) |#1|)) (-15 -1348 ((-892 (-381)) |#1|)) (-15 -2062 ((-889 (-566) |#1|) |#1| (-892 (-566)) (-889 (-566) |#1|))) (-15 -2062 ((-889 (-381) |#1|) |#1| (-892 (-381)) (-889 (-381) |#1|))) (-15 -3719 ((-420 |#1|) |#1|)) (-15 -3240 ((-420 (-1171 |#1|)) (-1171 |#1|))) (-15 -4303 ((-420 (-1171 |#1|)) (-1171 |#1|))) (-15 -3717 ((-3 (-644 (-1171 |#1|)) "failed") (-644 (-1171 |#1|)) (-1171 |#1|))) (-15 -1656 ((-3 (-1264 |#1|) "failed") (-689 |#1|))) (-15 -4075 (|#1| |#1| |#4|)) (-15 -2483 (|#1| |#1| |#4|)) (-15 -3652 (|#1| |#1| |#4|)) (-15 -2738 (|#1| |#1| |#1| |#4|)) (-15 -1774 ((-644 |#1|) |#1|)) (-15 -3367 ((-771) |#1| (-644 |#4|))) (-15 -3367 ((-771) |#1|)) (-15 -1518 ((-3 (-2 (|:| |var| |#4|) (|:| -2852 (-771))) "failed") |#1|)) (-15 -3714 ((-3 (-644 |#1|) "failed") |#1|)) (-15 -2353 ((-3 (-644 |#1|) "failed") |#1|)) (-15 -3840 (|#1| |#1| (-644 |#4|) (-644 (-771)))) (-15 -3840 (|#1| |#1| |#4| (-771))) (-15 -2044 ((-2 (|:| -2275 |#1|) (|:| -2513 |#1|)) |#1| |#1| |#4|)) (-15 -2288 ((-644 |#1|) |#1|)) (-15 -2649 (|#1| |#1| (-644 |#4|) (-644 (-771)))) (-15 -2649 (|#1| |#1| |#4| (-771))) (-15 -3577 ((-689 |#2|) (-689 |#1|))) (-15 -3577 ((-2 (|:| -4227 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 |#1|) (-1264 |#1|))) (-15 -3577 ((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 |#1|) (-1264 |#1|))) (-15 -3577 ((-689 (-566)) (-689 |#1|))) (-15 -4307 ((-3 |#4| "failed") |#1|)) (-15 -4205 (|#4| |#1|)) (-15 -2055 (|#1| |#1| (-644 |#4|) (-644 |#1|))) (-15 -2055 (|#1| |#1| |#4| |#1|)) (-15 -2055 (|#1| |#1| (-644 |#4|) (-644 |#2|))) (-15 -2055 (|#1| |#1| |#4| |#2|)) (-15 -2055 (|#1| |#1| (-644 |#1|) (-644 |#1|))) (-15 -2055 (|#1| |#1| |#1| |#1|)) (-15 -2055 (|#1| |#1| (-295 |#1|))) (-15 -2055 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -3840 (|#1| |#2| |#3|)) (-15 -2649 (|#2| |#1| |#3|)) (-15 -4307 ((-3 (-566) "failed") |#1|)) (-15 -4205 ((-566) |#1|)) (-15 -4307 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -4205 ((-409 (-566)) |#1|)) (-15 -4205 (|#2| |#1|)) (-15 -4307 ((-3 |#2| "failed") |#1|)) (-15 -2483 (|#2| |#1|)) (-15 -4075 (|#1| |#1|)) (-15 -3117 ((-112) |#1| |#1|))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-3863 (((-644 |#3|) $) 112)) (-3683 (((-1171 $) $ |#3|) 127) (((-1171 |#1|) $) 126)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) 89 (|has| |#1| (-558)))) (-3991 (($ $) 90 (|has| |#1| (-558)))) (-2388 (((-112) $) 92 (|has| |#1| (-558)))) (-3367 (((-771) $) 114) (((-771) $ (-644 |#3|)) 113)) (-4175 (((-3 $ "failed") $ $) 20)) (-1477 (((-420 (-1171 $)) (-1171 $)) 102 (|has| |#1| (-909)))) (-1550 (($ $) 100 (|has| |#1| (-454)))) (-3184 (((-420 $) $) 99 (|has| |#1| (-454)))) (-3717 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) 105 (|has| |#1| (-909)))) (-3012 (($) 18 T CONST)) (-4307 (((-3 |#1| "failed") $) 166) (((-3 (-409 (-566)) "failed") $) 163 (|has| |#1| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) 161 (|has| |#1| (-1038 (-566)))) (((-3 |#3| "failed") $) 138)) (-4205 ((|#1| $) 165) (((-409 (-566)) $) 164 (|has| |#1| (-1038 (-409 (-566))))) (((-566) $) 162 (|has| |#1| (-1038 (-566)))) ((|#3| $) 139)) (-2738 (($ $ $ |#3|) 110 (|has| |#1| (-172)))) (-1786 (($ $) 156)) (-3577 (((-689 (-566)) (-689 $)) 136 (|has| |#1| (-639 (-566)))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) 135 (|has| |#1| (-639 (-566)))) (((-2 (|:| -4227 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) 134) (((-689 |#1|) (-689 $)) 133)) (-1878 (((-3 $ "failed") $) 37)) (-4075 (($ $) 178 (|has| |#1| (-454))) (($ $ |#3|) 107 (|has| |#1| (-454)))) (-1774 (((-644 $) $) 111)) (-3268 (((-112) $) 98 (|has| |#1| (-909)))) (-3635 (($ $ |#1| |#2| $) 174)) (-2062 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 86 (-12 (|has| |#3| (-886 (-381))) (|has| |#1| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 85 (-12 (|has| |#3| (-886 (-566))) (|has| |#1| (-886 (-566)))))) (-3934 (((-112) $) 35)) (-2614 (((-771) $) 171)) (-3851 (($ (-1171 |#1|) |#3|) 119) (($ (-1171 $) |#3|) 118)) (-2288 (((-644 $) $) 128)) (-3264 (((-112) $) 154)) (-3840 (($ |#1| |#2|) 155) (($ $ |#3| (-771)) 121) (($ $ (-644 |#3|) (-644 (-771))) 120)) (-2044 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $ |#3|) 122)) (-3760 ((|#2| $) 172) (((-771) $ |#3|) 124) (((-644 (-771)) $ (-644 |#3|)) 123)) (-4301 (($ (-1 |#2| |#2|) $) 173)) (-1301 (($ (-1 |#1| |#1|) $) 153)) (-3169 (((-3 |#3| "failed") $) 125)) (-1749 (($ $) 151)) (-1763 ((|#1| $) 150)) (-2167 (($ (-644 $)) 96 (|has| |#1| (-454))) (($ $ $) 95 (|has| |#1| (-454)))) (-4117 (((-1157) $) 10)) (-3714 (((-3 (-644 $) "failed") $) 116)) (-2353 (((-3 (-644 $) "failed") $) 117)) (-1518 (((-3 (-2 (|:| |var| |#3|) (|:| -2852 (-771))) "failed") $) 115)) (-4035 (((-1119) $) 11)) (-1723 (((-112) $) 168)) (-1736 ((|#1| $) 169)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) 97 (|has| |#1| (-454)))) (-2214 (($ (-644 $)) 94 (|has| |#1| (-454))) (($ $ $) 93 (|has| |#1| (-454)))) (-4303 (((-420 (-1171 $)) (-1171 $)) 104 (|has| |#1| (-909)))) (-3240 (((-420 (-1171 $)) (-1171 $)) 103 (|has| |#1| (-909)))) (-3719 (((-420 $) $) 101 (|has| |#1| (-909)))) (-2994 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-558))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-558)))) (-2055 (($ $ (-644 (-295 $))) 147) (($ $ (-295 $)) 146) (($ $ $ $) 145) (($ $ (-644 $) (-644 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-644 |#3|) (-644 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-644 |#3|) (-644 $)) 140)) (-3652 (($ $ |#3|) 109 (|has| |#1| (-172)))) (-3561 (($ $ |#3|) 46) (($ $ (-644 |#3|)) 45) (($ $ |#3| (-771)) 44) (($ $ (-644 |#3|) (-644 (-771))) 43)) (-3636 ((|#2| $) 152) (((-771) $ |#3|) 132) (((-644 (-771)) $ (-644 |#3|)) 131)) (-1348 (((-892 (-381)) $) 84 (-12 (|has| |#3| (-614 (-892 (-381)))) (|has| |#1| (-614 (-892 (-381)))))) (((-892 (-566)) $) 83 (-12 (|has| |#3| (-614 (-892 (-566)))) (|has| |#1| (-614 (-892 (-566)))))) (((-538) $) 82 (-12 (|has| |#3| (-614 (-538))) (|has| |#1| (-614 (-538)))))) (-2483 ((|#1| $) 177 (|has| |#1| (-454))) (($ $ |#3|) 108 (|has| |#1| (-454)))) (-1656 (((-3 (-1264 $) "failed") (-689 $)) 106 (-2432 (|has| $ (-145)) (|has| |#1| (-909))))) (-3783 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 167) (($ |#3|) 137) (($ $) 87 (|has| |#1| (-558))) (($ (-409 (-566))) 80 (-2809 (|has| |#1| (-1038 (-409 (-566)))) (|has| |#1| (-38 (-409 (-566))))))) (-4170 (((-644 |#1|) $) 170)) (-2649 ((|#1| $ |#2|) 157) (($ $ |#3| (-771)) 130) (($ $ (-644 |#3|) (-644 (-771))) 129)) (-3144 (((-3 $ "failed") $) 81 (-2809 (-2432 (|has| $ (-145)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-2107 (((-771)) 32 T CONST)) (-3362 (($ $ $ (-771)) 175 (|has| |#1| (-172)))) (-3117 (((-112) $ $) 9)) (-2695 (((-112) $ $) 91 (|has| |#1| (-558)))) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-2875 (($ $ |#3|) 42) (($ $ (-644 |#3|)) 41) (($ $ |#3| (-771)) 40) (($ $ (-644 |#3|) (-644 (-771))) 39)) (-2947 (((-112) $ $) 6)) (-3065 (($ $ |#1|) 158 (|has| |#1| (-365)))) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 160 (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) 159 (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) 149) (($ $ |#1|) 148))) +((-3891 (((-483 |#1| |#2|) (-952 |#2|)) 22)) (-2541 (((-247 |#1| |#2|) (-952 |#2|)) 35)) (-3034 (((-952 |#2|) (-483 |#1| |#2|)) 27)) (-1795 (((-247 |#1| |#2|) (-483 |#1| |#2|)) 57)) (-2952 (((-952 |#2|) (-247 |#1| |#2|)) 32)) (-2889 (((-483 |#1| |#2|) (-247 |#1| |#2|)) 48))) +(((-944 |#1| |#2|) (-10 -7 (-15 -2889 ((-483 |#1| |#2|) (-247 |#1| |#2|))) (-15 -1795 ((-247 |#1| |#2|) (-483 |#1| |#2|))) (-15 -3891 ((-483 |#1| |#2|) (-952 |#2|))) (-15 -3034 ((-952 |#2|) (-483 |#1| |#2|))) (-15 -2952 ((-952 |#2|) (-247 |#1| |#2|))) (-15 -2541 ((-247 |#1| |#2|) (-952 |#2|)))) (-644 (-1175)) (-1049)) (T -944)) +((-2541 (*1 *2 *3) (-12 (-5 *3 (-952 *5)) (-4 *5 (-1049)) (-5 *2 (-247 *4 *5)) (-5 *1 (-944 *4 *5)) (-14 *4 (-644 (-1175))))) (-2952 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-644 (-1175))) (-4 *5 (-1049)) (-5 *2 (-952 *5)) (-5 *1 (-944 *4 *5)))) (-3034 (*1 *2 *3) (-12 (-5 *3 (-483 *4 *5)) (-14 *4 (-644 (-1175))) (-4 *5 (-1049)) (-5 *2 (-952 *5)) (-5 *1 (-944 *4 *5)))) (-3891 (*1 *2 *3) (-12 (-5 *3 (-952 *5)) (-4 *5 (-1049)) (-5 *2 (-483 *4 *5)) (-5 *1 (-944 *4 *5)) (-14 *4 (-644 (-1175))))) (-1795 (*1 *2 *3) (-12 (-5 *3 (-483 *4 *5)) (-14 *4 (-644 (-1175))) (-4 *5 (-1049)) (-5 *2 (-247 *4 *5)) (-5 *1 (-944 *4 *5)))) (-2889 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-644 (-1175))) (-4 *5 (-1049)) (-5 *2 (-483 *4 *5)) (-5 *1 (-944 *4 *5))))) +(-10 -7 (-15 -2889 ((-483 |#1| |#2|) (-247 |#1| |#2|))) (-15 -1795 ((-247 |#1| |#2|) (-483 |#1| |#2|))) (-15 -3891 ((-483 |#1| |#2|) (-952 |#2|))) (-15 -3034 ((-952 |#2|) (-483 |#1| |#2|))) (-15 -2952 ((-952 |#2|) (-247 |#1| |#2|))) (-15 -2541 ((-247 |#1| |#2|) (-952 |#2|)))) +((-3638 (((-644 |#2|) |#2| |#2|) 10)) (-2408 (((-771) (-644 |#1|)) 48 (|has| |#1| (-848)))) (-3277 (((-644 |#2|) |#2|) 11)) (-4025 (((-771) (-644 |#1|) (-566) (-566)) 52 (|has| |#1| (-848)))) (-2957 ((|#1| |#2|) 38 (|has| |#1| (-848))))) +(((-945 |#1| |#2|) (-10 -7 (-15 -3638 ((-644 |#2|) |#2| |#2|)) (-15 -3277 ((-644 |#2|) |#2|)) (IF (|has| |#1| (-848)) (PROGN (-15 -2957 (|#1| |#2|)) (-15 -2408 ((-771) (-644 |#1|))) (-15 -4025 ((-771) (-644 |#1|) (-566) (-566)))) |%noBranch|)) (-365) (-1240 |#1|)) (T -945)) +((-4025 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-644 *5)) (-5 *4 (-566)) (-4 *5 (-848)) (-4 *5 (-365)) (-5 *2 (-771)) (-5 *1 (-945 *5 *6)) (-4 *6 (-1240 *5)))) (-2408 (*1 *2 *3) (-12 (-5 *3 (-644 *4)) (-4 *4 (-848)) (-4 *4 (-365)) (-5 *2 (-771)) (-5 *1 (-945 *4 *5)) (-4 *5 (-1240 *4)))) (-2957 (*1 *2 *3) (-12 (-4 *2 (-365)) (-4 *2 (-848)) (-5 *1 (-945 *2 *3)) (-4 *3 (-1240 *2)))) (-3277 (*1 *2 *3) (-12 (-4 *4 (-365)) (-5 *2 (-644 *3)) (-5 *1 (-945 *4 *3)) (-4 *3 (-1240 *4)))) (-3638 (*1 *2 *3 *3) (-12 (-4 *4 (-365)) (-5 *2 (-644 *3)) (-5 *1 (-945 *4 *3)) (-4 *3 (-1240 *4))))) +(-10 -7 (-15 -3638 ((-644 |#2|) |#2| |#2|)) (-15 -3277 ((-644 |#2|) |#2|)) (IF (|has| |#1| (-848)) (PROGN (-15 -2957 (|#1| |#2|)) (-15 -2408 ((-771) (-644 |#1|))) (-15 -4025 ((-771) (-644 |#1|) (-566) (-566)))) |%noBranch|)) +((-2319 (((-952 |#2|) (-1 |#2| |#1|) (-952 |#1|)) 19))) +(((-946 |#1| |#2|) (-10 -7 (-15 -2319 ((-952 |#2|) (-1 |#2| |#1|) (-952 |#1|)))) (-1049) (-1049)) (T -946)) +((-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-952 *5)) (-4 *5 (-1049)) (-4 *6 (-1049)) (-5 *2 (-952 *6)) (-5 *1 (-946 *5 *6))))) +(-10 -7 (-15 -2319 ((-952 |#2|) (-1 |#2| |#1|) (-952 |#1|)))) +((-1590 (((-1237 |#1| (-952 |#2|)) (-952 |#2|) (-1260 |#1|)) 18))) +(((-947 |#1| |#2|) (-10 -7 (-15 -1590 ((-1237 |#1| (-952 |#2|)) (-952 |#2|) (-1260 |#1|)))) (-1175) (-1049)) (T -947)) +((-1590 (*1 *2 *3 *4) (-12 (-5 *4 (-1260 *5)) (-14 *5 (-1175)) (-4 *6 (-1049)) (-5 *2 (-1237 *5 (-952 *6))) (-5 *1 (-947 *5 *6)) (-5 *3 (-952 *6))))) +(-10 -7 (-15 -1590 ((-1237 |#1| (-952 |#2|)) (-952 |#2|) (-1260 |#1|)))) +((-1357 (((-771) $) 88) (((-771) $ (-644 |#4|)) 93)) (-1378 (($ $) 203)) (-1364 (((-420 $) $) 195)) (-4066 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) 141)) (-2229 (((-3 |#2| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL) (((-3 (-566) "failed") $) NIL) (((-3 |#4| "failed") $) 74)) (-4158 ((|#2| $) NIL) (((-409 (-566)) $) NIL) (((-566) $) NIL) ((|#4| $) 73)) (-2610 (($ $ $ |#4|) 95)) (-4089 (((-689 (-566)) (-689 $)) NIL) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL) (((-2 (|:| -3361 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 $) (-1264 $)) 131) (((-689 |#2|) (-689 $)) 121)) (-2616 (($ $) 210) (($ $ |#4|) 213)) (-2804 (((-644 $) $) 77)) (-2926 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 229) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 222)) (-1587 (((-644 $) $) 34)) (-1746 (($ |#2| |#3|) NIL) (($ $ |#4| (-771)) NIL) (($ $ (-644 |#4|) (-644 (-771))) 71)) (-2815 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $ |#4|) 192)) (-3738 (((-3 (-644 $) "failed") $) 52)) (-4199 (((-3 (-644 $) "failed") $) 39)) (-4108 (((-3 (-2 (|:| |var| |#4|) (|:| -2201 (-771))) "failed") $) 57)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) 134)) (-2010 (((-420 (-1171 $)) (-1171 $)) 147)) (-1893 (((-420 (-1171 $)) (-1171 $)) 145)) (-1624 (((-420 $) $) 165)) (-2023 (($ $ (-644 (-295 $))) 24) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-644 |#4|) (-644 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-644 |#4|) (-644 $)) NIL)) (-4068 (($ $ |#4|) 97)) (-2376 (((-892 (-381)) $) 243) (((-892 (-566)) $) 236) (((-538) $) 251)) (-3173 ((|#2| $) NIL) (($ $ |#4|) 205)) (-3391 (((-3 (-1264 $) "failed") (-689 $)) 184)) (-2271 ((|#2| $ |#3|) NIL) (($ $ |#4| (-771)) 62) (($ $ (-644 |#4|) (-644 (-771))) 69)) (-2633 (((-3 $ "failed") $) 186)) (-3044 (((-112) $ $) 216))) +(((-948 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4170 ((-1171 |#1|) (-1171 |#1|) (-1171 |#1|))) (-15 -1364 ((-420 |#1|) |#1|)) (-15 -1378 (|#1| |#1|)) (-15 -2633 ((-3 |#1| "failed") |#1|)) (-15 -2376 ((-538) |#1|)) (-15 -2376 ((-892 (-566)) |#1|)) (-15 -2376 ((-892 (-381)) |#1|)) (-15 -2926 ((-889 (-566) |#1|) |#1| (-892 (-566)) (-889 (-566) |#1|))) (-15 -2926 ((-889 (-381) |#1|) |#1| (-892 (-381)) (-889 (-381) |#1|))) (-15 -1624 ((-420 |#1|) |#1|)) (-15 -1893 ((-420 (-1171 |#1|)) (-1171 |#1|))) (-15 -2010 ((-420 (-1171 |#1|)) (-1171 |#1|))) (-15 -4066 ((-3 (-644 (-1171 |#1|)) "failed") (-644 (-1171 |#1|)) (-1171 |#1|))) (-15 -3391 ((-3 (-1264 |#1|) "failed") (-689 |#1|))) (-15 -2616 (|#1| |#1| |#4|)) (-15 -3173 (|#1| |#1| |#4|)) (-15 -4068 (|#1| |#1| |#4|)) (-15 -2610 (|#1| |#1| |#1| |#4|)) (-15 -2804 ((-644 |#1|) |#1|)) (-15 -1357 ((-771) |#1| (-644 |#4|))) (-15 -1357 ((-771) |#1|)) (-15 -4108 ((-3 (-2 (|:| |var| |#4|) (|:| -2201 (-771))) "failed") |#1|)) (-15 -3738 ((-3 (-644 |#1|) "failed") |#1|)) (-15 -4199 ((-3 (-644 |#1|) "failed") |#1|)) (-15 -1746 (|#1| |#1| (-644 |#4|) (-644 (-771)))) (-15 -1746 (|#1| |#1| |#4| (-771))) (-15 -2815 ((-2 (|:| -2631 |#1|) (|:| -3264 |#1|)) |#1| |#1| |#4|)) (-15 -1587 ((-644 |#1|) |#1|)) (-15 -2271 (|#1| |#1| (-644 |#4|) (-644 (-771)))) (-15 -2271 (|#1| |#1| |#4| (-771))) (-15 -4089 ((-689 |#2|) (-689 |#1|))) (-15 -4089 ((-2 (|:| -3361 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 |#1|) (-1264 |#1|))) (-15 -4089 ((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 |#1|) (-1264 |#1|))) (-15 -4089 ((-689 (-566)) (-689 |#1|))) (-15 -2229 ((-3 |#4| "failed") |#1|)) (-15 -4158 (|#4| |#1|)) (-15 -2023 (|#1| |#1| (-644 |#4|) (-644 |#1|))) (-15 -2023 (|#1| |#1| |#4| |#1|)) (-15 -2023 (|#1| |#1| (-644 |#4|) (-644 |#2|))) (-15 -2023 (|#1| |#1| |#4| |#2|)) (-15 -2023 (|#1| |#1| (-644 |#1|) (-644 |#1|))) (-15 -2023 (|#1| |#1| |#1| |#1|)) (-15 -2023 (|#1| |#1| (-295 |#1|))) (-15 -2023 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -1746 (|#1| |#2| |#3|)) (-15 -2271 (|#2| |#1| |#3|)) (-15 -2229 ((-3 (-566) "failed") |#1|)) (-15 -4158 ((-566) |#1|)) (-15 -2229 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -4158 ((-409 (-566)) |#1|)) (-15 -4158 (|#2| |#1|)) (-15 -2229 ((-3 |#2| "failed") |#1|)) (-15 -3173 (|#2| |#1|)) (-15 -2616 (|#1| |#1|)) (-15 -3044 ((-112) |#1| |#1|))) (-949 |#2| |#3| |#4|) (-1049) (-793) (-850)) (T -948)) +NIL +(-10 -8 (-15 -4170 ((-1171 |#1|) (-1171 |#1|) (-1171 |#1|))) (-15 -1364 ((-420 |#1|) |#1|)) (-15 -1378 (|#1| |#1|)) (-15 -2633 ((-3 |#1| "failed") |#1|)) (-15 -2376 ((-538) |#1|)) (-15 -2376 ((-892 (-566)) |#1|)) (-15 -2376 ((-892 (-381)) |#1|)) (-15 -2926 ((-889 (-566) |#1|) |#1| (-892 (-566)) (-889 (-566) |#1|))) (-15 -2926 ((-889 (-381) |#1|) |#1| (-892 (-381)) (-889 (-381) |#1|))) (-15 -1624 ((-420 |#1|) |#1|)) (-15 -1893 ((-420 (-1171 |#1|)) (-1171 |#1|))) (-15 -2010 ((-420 (-1171 |#1|)) (-1171 |#1|))) (-15 -4066 ((-3 (-644 (-1171 |#1|)) "failed") (-644 (-1171 |#1|)) (-1171 |#1|))) (-15 -3391 ((-3 (-1264 |#1|) "failed") (-689 |#1|))) (-15 -2616 (|#1| |#1| |#4|)) (-15 -3173 (|#1| |#1| |#4|)) (-15 -4068 (|#1| |#1| |#4|)) (-15 -2610 (|#1| |#1| |#1| |#4|)) (-15 -2804 ((-644 |#1|) |#1|)) (-15 -1357 ((-771) |#1| (-644 |#4|))) (-15 -1357 ((-771) |#1|)) (-15 -4108 ((-3 (-2 (|:| |var| |#4|) (|:| -2201 (-771))) "failed") |#1|)) (-15 -3738 ((-3 (-644 |#1|) "failed") |#1|)) (-15 -4199 ((-3 (-644 |#1|) "failed") |#1|)) (-15 -1746 (|#1| |#1| (-644 |#4|) (-644 (-771)))) (-15 -1746 (|#1| |#1| |#4| (-771))) (-15 -2815 ((-2 (|:| -2631 |#1|) (|:| -3264 |#1|)) |#1| |#1| |#4|)) (-15 -1587 ((-644 |#1|) |#1|)) (-15 -2271 (|#1| |#1| (-644 |#4|) (-644 (-771)))) (-15 -2271 (|#1| |#1| |#4| (-771))) (-15 -4089 ((-689 |#2|) (-689 |#1|))) (-15 -4089 ((-2 (|:| -3361 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 |#1|) (-1264 |#1|))) (-15 -4089 ((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 |#1|) (-1264 |#1|))) (-15 -4089 ((-689 (-566)) (-689 |#1|))) (-15 -2229 ((-3 |#4| "failed") |#1|)) (-15 -4158 (|#4| |#1|)) (-15 -2023 (|#1| |#1| (-644 |#4|) (-644 |#1|))) (-15 -2023 (|#1| |#1| |#4| |#1|)) (-15 -2023 (|#1| |#1| (-644 |#4|) (-644 |#2|))) (-15 -2023 (|#1| |#1| |#4| |#2|)) (-15 -2023 (|#1| |#1| (-644 |#1|) (-644 |#1|))) (-15 -2023 (|#1| |#1| |#1| |#1|)) (-15 -2023 (|#1| |#1| (-295 |#1|))) (-15 -2023 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -1746 (|#1| |#2| |#3|)) (-15 -2271 (|#2| |#1| |#3|)) (-15 -2229 ((-3 (-566) "failed") |#1|)) (-15 -4158 ((-566) |#1|)) (-15 -2229 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -4158 ((-409 (-566)) |#1|)) (-15 -4158 (|#2| |#1|)) (-15 -2229 ((-3 |#2| "failed") |#1|)) (-15 -3173 (|#2| |#1|)) (-15 -2616 (|#1| |#1|)) (-15 -3044 ((-112) |#1| |#1|))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-1771 (((-644 |#3|) $) 112)) (-1590 (((-1171 $) $ |#3|) 127) (((-1171 |#1|) $) 126)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) 89 (|has| |#1| (-558)))) (-2161 (($ $) 90 (|has| |#1| (-558)))) (-2345 (((-112) $) 92 (|has| |#1| (-558)))) (-1357 (((-771) $) 114) (((-771) $ (-644 |#3|)) 113)) (-3967 (((-3 $ "failed") $ $) 20)) (-2292 (((-420 (-1171 $)) (-1171 $)) 102 (|has| |#1| (-909)))) (-1378 (($ $) 100 (|has| |#1| (-454)))) (-1364 (((-420 $) $) 99 (|has| |#1| (-454)))) (-4066 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) 105 (|has| |#1| (-909)))) (-2463 (($) 18 T CONST)) (-2229 (((-3 |#1| "failed") $) 166) (((-3 (-409 (-566)) "failed") $) 163 (|has| |#1| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) 161 (|has| |#1| (-1038 (-566)))) (((-3 |#3| "failed") $) 138)) (-4158 ((|#1| $) 165) (((-409 (-566)) $) 164 (|has| |#1| (-1038 (-409 (-566))))) (((-566) $) 162 (|has| |#1| (-1038 (-566)))) ((|#3| $) 139)) (-2610 (($ $ $ |#3|) 110 (|has| |#1| (-172)))) (-2814 (($ $) 156)) (-4089 (((-689 (-566)) (-689 $)) 136 (|has| |#1| (-639 (-566)))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) 135 (|has| |#1| (-639 (-566)))) (((-2 (|:| -3361 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) 134) (((-689 |#1|) (-689 $)) 133)) (-3245 (((-3 $ "failed") $) 37)) (-2616 (($ $) 178 (|has| |#1| (-454))) (($ $ |#3|) 107 (|has| |#1| (-454)))) (-2804 (((-644 $) $) 111)) (-1615 (((-112) $) 98 (|has| |#1| (-909)))) (-1896 (($ $ |#1| |#2| $) 174)) (-2926 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 86 (-12 (|has| |#3| (-886 (-381))) (|has| |#1| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 85 (-12 (|has| |#3| (-886 (-566))) (|has| |#1| (-886 (-566)))))) (-2389 (((-112) $) 35)) (-3039 (((-771) $) 171)) (-1757 (($ (-1171 |#1|) |#3|) 119) (($ (-1171 $) |#3|) 118)) (-1587 (((-644 $) $) 128)) (-2497 (((-112) $) 154)) (-1746 (($ |#1| |#2|) 155) (($ $ |#3| (-771)) 121) (($ $ (-644 |#3|) (-644 (-771))) 120)) (-2815 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $ |#3|) 122)) (-2749 ((|#2| $) 172) (((-771) $ |#3|) 124) (((-644 (-771)) $ (-644 |#3|)) 123)) (-3021 (($ (-1 |#2| |#2|) $) 173)) (-2319 (($ (-1 |#1| |#1|) $) 153)) (-2297 (((-3 |#3| "failed") $) 125)) (-2784 (($ $) 151)) (-2794 ((|#1| $) 150)) (-2128 (($ (-644 $)) 96 (|has| |#1| (-454))) (($ $ $) 95 (|has| |#1| (-454)))) (-3380 (((-1157) $) 10)) (-3738 (((-3 (-644 $) "failed") $) 116)) (-4199 (((-3 (-644 $) "failed") $) 117)) (-4108 (((-3 (-2 (|:| |var| |#3|) (|:| -2201 (-771))) "failed") $) 115)) (-4072 (((-1119) $) 11)) (-2761 (((-112) $) 168)) (-2773 ((|#1| $) 169)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) 97 (|has| |#1| (-454)))) (-2164 (($ (-644 $)) 94 (|has| |#1| (-454))) (($ $ $) 93 (|has| |#1| (-454)))) (-2010 (((-420 (-1171 $)) (-1171 $)) 104 (|has| |#1| (-909)))) (-1893 (((-420 (-1171 $)) (-1171 $)) 103 (|has| |#1| (-909)))) (-1624 (((-420 $) $) 101 (|has| |#1| (-909)))) (-2978 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-558))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-558)))) (-2023 (($ $ (-644 (-295 $))) 147) (($ $ (-295 $)) 146) (($ $ $ $) 145) (($ $ (-644 $) (-644 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-644 |#3|) (-644 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-644 |#3|) (-644 $)) 140)) (-4068 (($ $ |#3|) 109 (|has| |#1| (-172)))) (-3629 (($ $ |#3|) 46) (($ $ (-644 |#3|)) 45) (($ $ |#3| (-771)) 44) (($ $ (-644 |#3|) (-644 (-771))) 43)) (-3902 ((|#2| $) 152) (((-771) $ |#3|) 132) (((-644 (-771)) $ (-644 |#3|)) 131)) (-2376 (((-892 (-381)) $) 84 (-12 (|has| |#3| (-614 (-892 (-381)))) (|has| |#1| (-614 (-892 (-381)))))) (((-892 (-566)) $) 83 (-12 (|has| |#3| (-614 (-892 (-566)))) (|has| |#1| (-614 (-892 (-566)))))) (((-538) $) 82 (-12 (|has| |#3| (-614 (-538))) (|has| |#1| (-614 (-538)))))) (-3173 ((|#1| $) 177 (|has| |#1| (-454))) (($ $ |#3|) 108 (|has| |#1| (-454)))) (-3391 (((-3 (-1264 $) "failed") (-689 $)) 106 (-2415 (|has| $ (-145)) (|has| |#1| (-909))))) (-3152 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 167) (($ |#3|) 137) (($ $) 87 (|has| |#1| (-558))) (($ (-409 (-566))) 80 (-2768 (|has| |#1| (-1038 (-409 (-566)))) (|has| |#1| (-38 (-409 (-566))))))) (-1643 (((-644 |#1|) $) 170)) (-2271 ((|#1| $ |#2|) 157) (($ $ |#3| (-771)) 130) (($ $ (-644 |#3|) (-644 (-771))) 129)) (-2633 (((-3 $ "failed") $) 81 (-2768 (-2415 (|has| $ (-145)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-2593 (((-771)) 32 T CONST)) (-2021 (($ $ $ (-771)) 175 (|has| |#1| (-172)))) (-3044 (((-112) $ $) 9)) (-3014 (((-112) $ $) 91 (|has| |#1| (-558)))) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-3497 (($ $ |#3|) 42) (($ $ (-644 |#3|)) 41) (($ $ |#3| (-771)) 40) (($ $ (-644 |#3|) (-644 (-771))) 39)) (-2914 (((-112) $ $) 6)) (-3025 (($ $ |#1|) 158 (|has| |#1| (-365)))) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 160 (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) 159 (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) 149) (($ $ |#1|) 148))) (((-949 |#1| |#2| |#3|) (-140) (-1049) (-793) (-850)) (T -949)) -((-4075 (*1 *1 *1) (-12 (-4 *1 (-949 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-454)))) (-3636 (*1 *2 *1 *3) (-12 (-4 *1 (-949 *4 *5 *3)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-850)) (-5 *2 (-771)))) (-3636 (*1 *2 *1 *3) (-12 (-5 *3 (-644 *6)) (-4 *1 (-949 *4 *5 *6)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 (-771))))) (-2649 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-771)) (-4 *1 (-949 *4 *5 *2)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *2 (-850)))) (-2649 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 *6)) (-5 *3 (-644 (-771))) (-4 *1 (-949 *4 *5 *6)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *6 (-850)))) (-2288 (*1 *2 *1) (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *1)) (-4 *1 (-949 *3 *4 *5)))) (-3683 (*1 *2 *1 *3) (-12 (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-850)) (-5 *2 (-1171 *1)) (-4 *1 (-949 *4 *5 *3)))) (-3683 (*1 *2 *1) (-12 (-4 *1 (-949 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-1171 *3)))) (-3169 (*1 *2 *1) (|partial| -12 (-4 *1 (-949 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)))) (-3760 (*1 *2 *1 *3) (-12 (-4 *1 (-949 *4 *5 *3)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-850)) (-5 *2 (-771)))) (-3760 (*1 *2 *1 *3) (-12 (-5 *3 (-644 *6)) (-4 *1 (-949 *4 *5 *6)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 (-771))))) (-2044 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-850)) (-5 *2 (-2 (|:| -2275 *1) (|:| -2513 *1))) (-4 *1 (-949 *4 *5 *3)))) (-3840 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-771)) (-4 *1 (-949 *4 *5 *2)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *2 (-850)))) (-3840 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 *6)) (-5 *3 (-644 (-771))) (-4 *1 (-949 *4 *5 *6)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *6 (-850)))) (-3851 (*1 *1 *2 *3) (-12 (-5 *2 (-1171 *4)) (-4 *4 (-1049)) (-4 *1 (-949 *4 *5 *3)) (-4 *5 (-793)) (-4 *3 (-850)))) (-3851 (*1 *1 *2 *3) (-12 (-5 *2 (-1171 *1)) (-4 *1 (-949 *4 *5 *3)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-850)))) (-2353 (*1 *2 *1) (|partial| -12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *1)) (-4 *1 (-949 *3 *4 *5)))) (-3714 (*1 *2 *1) (|partial| -12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *1)) (-4 *1 (-949 *3 *4 *5)))) (-1518 (*1 *2 *1) (|partial| -12 (-4 *1 (-949 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-2 (|:| |var| *5) (|:| -2852 (-771)))))) (-3367 (*1 *2 *1) (-12 (-4 *1 (-949 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-771)))) (-3367 (*1 *2 *1 *3) (-12 (-5 *3 (-644 *6)) (-4 *1 (-949 *4 *5 *6)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-771)))) (-3863 (*1 *2 *1) (-12 (-4 *1 (-949 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *5)))) (-1774 (*1 *2 *1) (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *1)) (-4 *1 (-949 *3 *4 *5)))) (-2738 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-949 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)) (-4 *3 (-172)))) (-3652 (*1 *1 *1 *2) (-12 (-4 *1 (-949 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)) (-4 *3 (-172)))) (-2483 (*1 *1 *1 *2) (-12 (-4 *1 (-949 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)) (-4 *3 (-454)))) (-4075 (*1 *1 *1 *2) (-12 (-4 *1 (-949 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)) (-4 *3 (-454)))) (-1550 (*1 *1 *1) (-12 (-4 *1 (-949 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-454)))) (-3184 (*1 *2 *1) (-12 (-4 *3 (-454)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-420 *1)) (-4 *1 (-949 *3 *4 *5))))) -(-13 (-900 |t#3|) (-327 |t#1| |t#2|) (-310 $) (-516 |t#3| |t#1|) (-516 |t#3| $) (-1038 |t#3|) (-379 |t#1|) (-10 -8 (-15 -3636 ((-771) $ |t#3|)) (-15 -3636 ((-644 (-771)) $ (-644 |t#3|))) (-15 -2649 ($ $ |t#3| (-771))) (-15 -2649 ($ $ (-644 |t#3|) (-644 (-771)))) (-15 -2288 ((-644 $) $)) (-15 -3683 ((-1171 $) $ |t#3|)) (-15 -3683 ((-1171 |t#1|) $)) (-15 -3169 ((-3 |t#3| "failed") $)) (-15 -3760 ((-771) $ |t#3|)) (-15 -3760 ((-644 (-771)) $ (-644 |t#3|))) (-15 -2044 ((-2 (|:| -2275 $) (|:| -2513 $)) $ $ |t#3|)) (-15 -3840 ($ $ |t#3| (-771))) (-15 -3840 ($ $ (-644 |t#3|) (-644 (-771)))) (-15 -3851 ($ (-1171 |t#1|) |t#3|)) (-15 -3851 ($ (-1171 $) |t#3|)) (-15 -2353 ((-3 (-644 $) "failed") $)) (-15 -3714 ((-3 (-644 $) "failed") $)) (-15 -1518 ((-3 (-2 (|:| |var| |t#3|) (|:| -2852 (-771))) "failed") $)) (-15 -3367 ((-771) $)) (-15 -3367 ((-771) $ (-644 |t#3|))) (-15 -3863 ((-644 |t#3|) $)) (-15 -1774 ((-644 $) $)) (IF (|has| |t#1| (-614 (-538))) (IF (|has| |t#3| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-614 (-892 (-566)))) (IF (|has| |t#3| (-614 (-892 (-566)))) (-6 (-614 (-892 (-566)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-614 (-892 (-381)))) (IF (|has| |t#3| (-614 (-892 (-381)))) (-6 (-614 (-892 (-381)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-886 (-566))) (IF (|has| |t#3| (-886 (-566))) (-6 (-886 (-566))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-886 (-381))) (IF (|has| |t#3| (-886 (-381))) (-6 (-886 (-381))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-15 -2738 ($ $ $ |t#3|)) (-15 -3652 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-454)) (PROGN (-6 (-454)) (-15 -2483 ($ $ |t#3|)) (-15 -4075 ($ $)) (-15 -4075 ($ $ |t#3|)) (-15 -3184 ((-420 $) $)) (-15 -1550 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4412)) (-6 -4412) |%noBranch|) (IF (|has| |t#1| (-909)) (-6 (-909)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-409 (-566)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #0#) -2809 (|has| |#1| (-1038 (-409 (-566)))) (|has| |#1| (-38 (-409 (-566))))) ((-616 (-566)) . T) ((-616 |#1|) . T) ((-616 |#3|) . T) ((-616 $) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-613 (-862)) . T) ((-172) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-172))) ((-614 (-538)) -12 (|has| |#1| (-614 (-538))) (|has| |#3| (-614 (-538)))) ((-614 (-892 (-381))) -12 (|has| |#1| (-614 (-892 (-381)))) (|has| |#3| (-614 (-892 (-381))))) ((-614 (-892 (-566))) -12 (|has| |#1| (-614 (-892 (-566)))) (|has| |#3| (-614 (-892 (-566))))) ((-291) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-310 $) . T) ((-327 |#1| |#2|) . T) ((-379 |#1|) . T) ((-413 |#1|) . T) ((-454) -2809 (|has| |#1| (-909)) (|has| |#1| (-454))) ((-516 |#3| |#1|) . T) ((-516 |#3| $) . T) ((-516 $ $) . T) ((-558) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-646 #0#) |has| |#1| (-38 (-409 (-566)))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #0#) |has| |#1| (-38 (-409 (-566)))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #0#) |has| |#1| (-38 (-409 (-566)))) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-639 (-566)) |has| |#1| (-639 (-566))) ((-639 |#1|) . T) ((-717 #0#) |has| |#1| (-38 (-409 (-566)))) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-726) . T) ((-900 |#3|) . T) ((-886 (-381)) -12 (|has| |#1| (-886 (-381))) (|has| |#3| (-886 (-381)))) ((-886 (-566)) -12 (|has| |#1| (-886 (-566))) (|has| |#3| (-886 (-566)))) ((-909) |has| |#1| (-909)) ((-1038 (-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((-1038 (-566)) |has| |#1| (-1038 (-566))) ((-1038 |#1|) . T) ((-1038 |#3|) . T) ((-1051 #0#) |has| |#1| (-38 (-409 (-566)))) ((-1051 |#1|) . T) ((-1051 $) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-172))) ((-1056 #0#) |has| |#1| (-38 (-409 (-566)))) ((-1056 |#1|) . T) ((-1056 $) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-172))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1218) |has| |#1| (-909))) -((-3863 (((-644 |#2|) |#5|) 40)) (-3683 (((-1171 |#5|) |#5| |#2| (-1171 |#5|)) 23) (((-409 (-1171 |#5|)) |#5| |#2|) 16)) (-3851 ((|#5| (-409 (-1171 |#5|)) |#2|) 30)) (-3169 (((-3 |#2| "failed") |#5|) 71)) (-3714 (((-3 (-644 |#5|) "failed") |#5|) 65)) (-2114 (((-3 (-2 (|:| |val| |#5|) (|:| -2852 (-566))) "failed") |#5|) 53)) (-2353 (((-3 (-644 |#5|) "failed") |#5|) 67)) (-1518 (((-3 (-2 (|:| |var| |#2|) (|:| -2852 (-566))) "failed") |#5|) 57))) -(((-950 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3863 ((-644 |#2|) |#5|)) (-15 -3169 ((-3 |#2| "failed") |#5|)) (-15 -3683 ((-409 (-1171 |#5|)) |#5| |#2|)) (-15 -3851 (|#5| (-409 (-1171 |#5|)) |#2|)) (-15 -3683 ((-1171 |#5|) |#5| |#2| (-1171 |#5|))) (-15 -2353 ((-3 (-644 |#5|) "failed") |#5|)) (-15 -3714 ((-3 (-644 |#5|) "failed") |#5|)) (-15 -1518 ((-3 (-2 (|:| |var| |#2|) (|:| -2852 (-566))) "failed") |#5|)) (-15 -2114 ((-3 (-2 (|:| |val| |#5|) (|:| -2852 (-566))) "failed") |#5|))) (-793) (-850) (-1049) (-949 |#3| |#1| |#2|) (-13 (-365) (-10 -8 (-15 -3783 ($ |#4|)) (-15 -4326 (|#4| $)) (-15 -4339 (|#4| $))))) (T -950)) -((-2114 (*1 *2 *3) (|partial| -12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1049)) (-4 *7 (-949 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2852 (-566)))) (-5 *1 (-950 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -3783 ($ *7)) (-15 -4326 (*7 $)) (-15 -4339 (*7 $))))))) (-1518 (*1 *2 *3) (|partial| -12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1049)) (-4 *7 (-949 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2852 (-566)))) (-5 *1 (-950 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -3783 ($ *7)) (-15 -4326 (*7 $)) (-15 -4339 (*7 $))))))) (-3714 (*1 *2 *3) (|partial| -12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1049)) (-4 *7 (-949 *6 *4 *5)) (-5 *2 (-644 *3)) (-5 *1 (-950 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -3783 ($ *7)) (-15 -4326 (*7 $)) (-15 -4339 (*7 $))))))) (-2353 (*1 *2 *3) (|partial| -12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1049)) (-4 *7 (-949 *6 *4 *5)) (-5 *2 (-644 *3)) (-5 *1 (-950 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -3783 ($ *7)) (-15 -4326 (*7 $)) (-15 -4339 (*7 $))))))) (-3683 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1171 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -3783 ($ *7)) (-15 -4326 (*7 $)) (-15 -4339 (*7 $))))) (-4 *7 (-949 *6 *5 *4)) (-4 *5 (-793)) (-4 *4 (-850)) (-4 *6 (-1049)) (-5 *1 (-950 *5 *4 *6 *7 *3)))) (-3851 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-1171 *2))) (-4 *5 (-793)) (-4 *4 (-850)) (-4 *6 (-1049)) (-4 *2 (-13 (-365) (-10 -8 (-15 -3783 ($ *7)) (-15 -4326 (*7 $)) (-15 -4339 (*7 $))))) (-5 *1 (-950 *5 *4 *6 *7 *2)) (-4 *7 (-949 *6 *5 *4)))) (-3683 (*1 *2 *3 *4) (-12 (-4 *5 (-793)) (-4 *4 (-850)) (-4 *6 (-1049)) (-4 *7 (-949 *6 *5 *4)) (-5 *2 (-409 (-1171 *3))) (-5 *1 (-950 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -3783 ($ *7)) (-15 -4326 (*7 $)) (-15 -4339 (*7 $))))))) (-3169 (*1 *2 *3) (|partial| -12 (-4 *4 (-793)) (-4 *5 (-1049)) (-4 *6 (-949 *5 *4 *2)) (-4 *2 (-850)) (-5 *1 (-950 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -3783 ($ *6)) (-15 -4326 (*6 $)) (-15 -4339 (*6 $))))))) (-3863 (*1 *2 *3) (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1049)) (-4 *7 (-949 *6 *4 *5)) (-5 *2 (-644 *5)) (-5 *1 (-950 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -3783 ($ *7)) (-15 -4326 (*7 $)) (-15 -4339 (*7 $)))))))) -(-10 -7 (-15 -3863 ((-644 |#2|) |#5|)) (-15 -3169 ((-3 |#2| "failed") |#5|)) (-15 -3683 ((-409 (-1171 |#5|)) |#5| |#2|)) (-15 -3851 (|#5| (-409 (-1171 |#5|)) |#2|)) (-15 -3683 ((-1171 |#5|) |#5| |#2| (-1171 |#5|))) (-15 -2353 ((-3 (-644 |#5|) "failed") |#5|)) (-15 -3714 ((-3 (-644 |#5|) "failed") |#5|)) (-15 -1518 ((-3 (-2 (|:| |var| |#2|) (|:| -2852 (-566))) "failed") |#5|)) (-15 -2114 ((-3 (-2 (|:| |val| |#5|) (|:| -2852 (-566))) "failed") |#5|))) -((-1301 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) -(((-951 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1301 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-793) (-850) (-1049) (-949 |#3| |#1| |#2|) (-13 (-1099) (-10 -8 (-15 -3041 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-771)))))) (T -951)) -((-1301 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-850)) (-4 *8 (-1049)) (-4 *6 (-793)) (-4 *2 (-13 (-1099) (-10 -8 (-15 -3041 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-771)))))) (-5 *1 (-951 *6 *7 *8 *5 *2)) (-4 *5 (-949 *8 *6 *7))))) -(-10 -7 (-15 -1301 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-3863 (((-644 (-1175)) $) 16)) (-3683 (((-1171 $) $ (-1175)) 21) (((-1171 |#1|) $) NIL)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-3991 (($ $) NIL (|has| |#1| (-558)))) (-2388 (((-112) $) NIL (|has| |#1| (-558)))) (-3367 (((-771) $) NIL) (((-771) $ (-644 (-1175))) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-1477 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-1550 (($ $) NIL (|has| |#1| (-454)))) (-3184 (((-420 $) $) NIL (|has| |#1| (-454)))) (-3717 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-3012 (($) NIL T CONST)) (-4307 (((-3 |#1| "failed") $) 8) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-1175) "failed") $) NIL)) (-4205 ((|#1| $) NIL) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-1175) $) NIL)) (-2738 (($ $ $ (-1175)) NIL (|has| |#1| (-172)))) (-1786 (($ $) NIL)) (-3577 (((-689 (-566)) (-689 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -4227 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) NIL) (((-689 |#1|) (-689 $)) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-4075 (($ $) NIL (|has| |#1| (-454))) (($ $ (-1175)) NIL (|has| |#1| (-454)))) (-1774 (((-644 $) $) NIL)) (-3268 (((-112) $) NIL (|has| |#1| (-909)))) (-3635 (($ $ |#1| (-533 (-1175)) $) NIL)) (-2062 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| (-1175) (-886 (-381))) (|has| |#1| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| (-1175) (-886 (-566))) (|has| |#1| (-886 (-566)))))) (-3934 (((-112) $) NIL)) (-2614 (((-771) $) NIL)) (-3851 (($ (-1171 |#1|) (-1175)) NIL) (($ (-1171 $) (-1175)) NIL)) (-2288 (((-644 $) $) NIL)) (-3264 (((-112) $) NIL)) (-3840 (($ |#1| (-533 (-1175))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL)) (-2044 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $ (-1175)) NIL)) (-3760 (((-533 (-1175)) $) NIL) (((-771) $ (-1175)) NIL) (((-644 (-771)) $ (-644 (-1175))) NIL)) (-4301 (($ (-1 (-533 (-1175)) (-533 (-1175))) $) NIL)) (-1301 (($ (-1 |#1| |#1|) $) NIL)) (-3169 (((-3 (-1175) "failed") $) 19)) (-1749 (($ $) NIL)) (-1763 ((|#1| $) NIL)) (-2167 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-4117 (((-1157) $) NIL)) (-3714 (((-3 (-644 $) "failed") $) NIL)) (-2353 (((-3 (-644 $) "failed") $) NIL)) (-1518 (((-3 (-2 (|:| |var| (-1175)) (|:| -2852 (-771))) "failed") $) NIL)) (-1941 (($ $ (-1175)) 29 (|has| |#1| (-38 (-409 (-566)))))) (-4035 (((-1119) $) NIL)) (-1723 (((-112) $) NIL)) (-1736 ((|#1| $) NIL)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-454)))) (-2214 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-4303 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-3240 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-3719 (((-420 $) $) NIL (|has| |#1| (-909)))) (-2994 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-2055 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-1175) |#1|) NIL) (($ $ (-644 (-1175)) (-644 |#1|)) NIL) (($ $ (-1175) $) NIL) (($ $ (-644 (-1175)) (-644 $)) NIL)) (-3652 (($ $ (-1175)) NIL (|has| |#1| (-172)))) (-3561 (($ $ (-1175)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL)) (-3636 (((-533 (-1175)) $) NIL) (((-771) $ (-1175)) NIL) (((-644 (-771)) $ (-644 (-1175))) NIL)) (-1348 (((-892 (-381)) $) NIL (-12 (|has| (-1175) (-614 (-892 (-381)))) (|has| |#1| (-614 (-892 (-381)))))) (((-892 (-566)) $) NIL (-12 (|has| (-1175) (-614 (-892 (-566)))) (|has| |#1| (-614 (-892 (-566)))))) (((-538) $) NIL (-12 (|has| (-1175) (-614 (-538))) (|has| |#1| (-614 (-538)))))) (-2483 ((|#1| $) NIL (|has| |#1| (-454))) (($ $ (-1175)) NIL (|has| |#1| (-454)))) (-1656 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-909))))) (-3783 (((-862) $) 25) (($ (-566)) NIL) (($ |#1|) NIL) (($ (-1175)) 27) (($ (-409 (-566))) NIL (-2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566)))))) (($ $) NIL (|has| |#1| (-558)))) (-4170 (((-644 |#1|) $) NIL)) (-2649 ((|#1| $ (-533 (-1175))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL)) (-3144 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| $ (-145)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-2107 (((-771)) NIL T CONST)) (-3362 (($ $ $ (-771)) NIL (|has| |#1| (-172)))) (-3117 (((-112) $ $) NIL)) (-2695 (((-112) $ $) NIL (|has| |#1| (-558)))) (-2479 (($) NIL T CONST)) (-4334 (($) NIL T CONST)) (-2875 (($ $ (-1175)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL)) (-2947 (((-112) $ $) NIL)) (-3065 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-952 |#1|) (-13 (-949 |#1| (-533 (-1175)) (-1175)) (-10 -8 (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -1941 ($ $ (-1175))) |%noBranch|))) (-1049)) (T -952)) -((-1941 (*1 *1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-952 *3)) (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049))))) -(-13 (-949 |#1| (-533 (-1175)) (-1175)) (-10 -8 (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -1941 ($ $ (-1175))) |%noBranch|))) -((-4050 (((-2 (|:| -2852 (-771)) (|:| -1364 |#5|) (|:| |radicand| |#5|)) |#3| (-771)) 49)) (-1349 (((-2 (|:| -2852 (-771)) (|:| -1364 |#5|) (|:| |radicand| |#5|)) (-409 (-566)) (-771)) 44)) (-4147 (((-2 (|:| -2852 (-771)) (|:| -1364 |#4|) (|:| |radicand| (-644 |#4|))) |#4| (-771)) 65)) (-4292 (((-2 (|:| -2852 (-771)) (|:| -1364 |#5|) (|:| |radicand| |#5|)) |#5| (-771)) 74 (|has| |#3| (-454))))) -(((-953 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4050 ((-2 (|:| -2852 (-771)) (|:| -1364 |#5|) (|:| |radicand| |#5|)) |#3| (-771))) (-15 -1349 ((-2 (|:| -2852 (-771)) (|:| -1364 |#5|) (|:| |radicand| |#5|)) (-409 (-566)) (-771))) (IF (|has| |#3| (-454)) (-15 -4292 ((-2 (|:| -2852 (-771)) (|:| -1364 |#5|) (|:| |radicand| |#5|)) |#5| (-771))) |%noBranch|) (-15 -4147 ((-2 (|:| -2852 (-771)) (|:| -1364 |#4|) (|:| |radicand| (-644 |#4|))) |#4| (-771)))) (-793) (-850) (-558) (-949 |#3| |#1| |#2|) (-13 (-365) (-10 -8 (-15 -3783 ($ |#4|)) (-15 -4326 (|#4| $)) (-15 -4339 (|#4| $))))) (T -953)) -((-4147 (*1 *2 *3 *4) (-12 (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-558)) (-4 *3 (-949 *7 *5 *6)) (-5 *2 (-2 (|:| -2852 (-771)) (|:| -1364 *3) (|:| |radicand| (-644 *3)))) (-5 *1 (-953 *5 *6 *7 *3 *8)) (-5 *4 (-771)) (-4 *8 (-13 (-365) (-10 -8 (-15 -3783 ($ *3)) (-15 -4326 (*3 $)) (-15 -4339 (*3 $))))))) (-4292 (*1 *2 *3 *4) (-12 (-4 *7 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-558)) (-4 *8 (-949 *7 *5 *6)) (-5 *2 (-2 (|:| -2852 (-771)) (|:| -1364 *3) (|:| |radicand| *3))) (-5 *1 (-953 *5 *6 *7 *8 *3)) (-5 *4 (-771)) (-4 *3 (-13 (-365) (-10 -8 (-15 -3783 ($ *8)) (-15 -4326 (*8 $)) (-15 -4339 (*8 $))))))) (-1349 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-566))) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-558)) (-4 *8 (-949 *7 *5 *6)) (-5 *2 (-2 (|:| -2852 (-771)) (|:| -1364 *9) (|:| |radicand| *9))) (-5 *1 (-953 *5 *6 *7 *8 *9)) (-5 *4 (-771)) (-4 *9 (-13 (-365) (-10 -8 (-15 -3783 ($ *8)) (-15 -4326 (*8 $)) (-15 -4339 (*8 $))))))) (-4050 (*1 *2 *3 *4) (-12 (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-558)) (-4 *7 (-949 *3 *5 *6)) (-5 *2 (-2 (|:| -2852 (-771)) (|:| -1364 *8) (|:| |radicand| *8))) (-5 *1 (-953 *5 *6 *3 *7 *8)) (-5 *4 (-771)) (-4 *8 (-13 (-365) (-10 -8 (-15 -3783 ($ *7)) (-15 -4326 (*7 $)) (-15 -4339 (*7 $)))))))) -(-10 -7 (-15 -4050 ((-2 (|:| -2852 (-771)) (|:| -1364 |#5|) (|:| |radicand| |#5|)) |#3| (-771))) (-15 -1349 ((-2 (|:| -2852 (-771)) (|:| -1364 |#5|) (|:| |radicand| |#5|)) (-409 (-566)) (-771))) (IF (|has| |#3| (-454)) (-15 -4292 ((-2 (|:| -2852 (-771)) (|:| -1364 |#5|) (|:| |radicand| |#5|)) |#5| (-771))) |%noBranch|) (-15 -4147 ((-2 (|:| -2852 (-771)) (|:| -1364 |#4|) (|:| |radicand| (-644 |#4|))) |#4| (-771)))) -((-3007 (((-112) $ $) NIL)) (-1438 (($ (-1119)) 8)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 15) (((-1119) $) 12)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) 11))) -(((-954) (-13 (-1099) (-613 (-1119)) (-10 -8 (-15 -1438 ($ (-1119)))))) (T -954)) -((-1438 (*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-954))))) -(-13 (-1099) (-613 (-1119)) (-10 -8 (-15 -1438 ($ (-1119))))) -((-2888 (((-1093 (-225)) $) 8)) (-2877 (((-1093 (-225)) $) 9)) (-1935 (((-644 (-644 (-943 (-225)))) $) 10)) (-3783 (((-862) $) 6))) +((-2616 (*1 *1 *1) (-12 (-4 *1 (-949 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-454)))) (-3902 (*1 *2 *1 *3) (-12 (-4 *1 (-949 *4 *5 *3)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-850)) (-5 *2 (-771)))) (-3902 (*1 *2 *1 *3) (-12 (-5 *3 (-644 *6)) (-4 *1 (-949 *4 *5 *6)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 (-771))))) (-2271 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-771)) (-4 *1 (-949 *4 *5 *2)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *2 (-850)))) (-2271 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 *6)) (-5 *3 (-644 (-771))) (-4 *1 (-949 *4 *5 *6)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *6 (-850)))) (-1587 (*1 *2 *1) (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *1)) (-4 *1 (-949 *3 *4 *5)))) (-1590 (*1 *2 *1 *3) (-12 (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-850)) (-5 *2 (-1171 *1)) (-4 *1 (-949 *4 *5 *3)))) (-1590 (*1 *2 *1) (-12 (-4 *1 (-949 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-1171 *3)))) (-2297 (*1 *2 *1) (|partial| -12 (-4 *1 (-949 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)))) (-2749 (*1 *2 *1 *3) (-12 (-4 *1 (-949 *4 *5 *3)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-850)) (-5 *2 (-771)))) (-2749 (*1 *2 *1 *3) (-12 (-5 *3 (-644 *6)) (-4 *1 (-949 *4 *5 *6)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 (-771))))) (-2815 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-850)) (-5 *2 (-2 (|:| -2631 *1) (|:| -3264 *1))) (-4 *1 (-949 *4 *5 *3)))) (-1746 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-771)) (-4 *1 (-949 *4 *5 *2)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *2 (-850)))) (-1746 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 *6)) (-5 *3 (-644 (-771))) (-4 *1 (-949 *4 *5 *6)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *6 (-850)))) (-1757 (*1 *1 *2 *3) (-12 (-5 *2 (-1171 *4)) (-4 *4 (-1049)) (-4 *1 (-949 *4 *5 *3)) (-4 *5 (-793)) (-4 *3 (-850)))) (-1757 (*1 *1 *2 *3) (-12 (-5 *2 (-1171 *1)) (-4 *1 (-949 *4 *5 *3)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-850)))) (-4199 (*1 *2 *1) (|partial| -12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *1)) (-4 *1 (-949 *3 *4 *5)))) (-3738 (*1 *2 *1) (|partial| -12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *1)) (-4 *1 (-949 *3 *4 *5)))) (-4108 (*1 *2 *1) (|partial| -12 (-4 *1 (-949 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-2 (|:| |var| *5) (|:| -2201 (-771)))))) (-1357 (*1 *2 *1) (-12 (-4 *1 (-949 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-771)))) (-1357 (*1 *2 *1 *3) (-12 (-5 *3 (-644 *6)) (-4 *1 (-949 *4 *5 *6)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-771)))) (-1771 (*1 *2 *1) (-12 (-4 *1 (-949 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *5)))) (-2804 (*1 *2 *1) (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *1)) (-4 *1 (-949 *3 *4 *5)))) (-2610 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-949 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)) (-4 *3 (-172)))) (-4068 (*1 *1 *1 *2) (-12 (-4 *1 (-949 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)) (-4 *3 (-172)))) (-3173 (*1 *1 *1 *2) (-12 (-4 *1 (-949 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)) (-4 *3 (-454)))) (-2616 (*1 *1 *1 *2) (-12 (-4 *1 (-949 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)) (-4 *3 (-454)))) (-1378 (*1 *1 *1) (-12 (-4 *1 (-949 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-454)))) (-1364 (*1 *2 *1) (-12 (-4 *3 (-454)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-420 *1)) (-4 *1 (-949 *3 *4 *5))))) +(-13 (-900 |t#3|) (-327 |t#1| |t#2|) (-310 $) (-516 |t#3| |t#1|) (-516 |t#3| $) (-1038 |t#3|) (-379 |t#1|) (-10 -8 (-15 -3902 ((-771) $ |t#3|)) (-15 -3902 ((-644 (-771)) $ (-644 |t#3|))) (-15 -2271 ($ $ |t#3| (-771))) (-15 -2271 ($ $ (-644 |t#3|) (-644 (-771)))) (-15 -1587 ((-644 $) $)) (-15 -1590 ((-1171 $) $ |t#3|)) (-15 -1590 ((-1171 |t#1|) $)) (-15 -2297 ((-3 |t#3| "failed") $)) (-15 -2749 ((-771) $ |t#3|)) (-15 -2749 ((-644 (-771)) $ (-644 |t#3|))) (-15 -2815 ((-2 (|:| -2631 $) (|:| -3264 $)) $ $ |t#3|)) (-15 -1746 ($ $ |t#3| (-771))) (-15 -1746 ($ $ (-644 |t#3|) (-644 (-771)))) (-15 -1757 ($ (-1171 |t#1|) |t#3|)) (-15 -1757 ($ (-1171 $) |t#3|)) (-15 -4199 ((-3 (-644 $) "failed") $)) (-15 -3738 ((-3 (-644 $) "failed") $)) (-15 -4108 ((-3 (-2 (|:| |var| |t#3|) (|:| -2201 (-771))) "failed") $)) (-15 -1357 ((-771) $)) (-15 -1357 ((-771) $ (-644 |t#3|))) (-15 -1771 ((-644 |t#3|) $)) (-15 -2804 ((-644 $) $)) (IF (|has| |t#1| (-614 (-538))) (IF (|has| |t#3| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-614 (-892 (-566)))) (IF (|has| |t#3| (-614 (-892 (-566)))) (-6 (-614 (-892 (-566)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-614 (-892 (-381)))) (IF (|has| |t#3| (-614 (-892 (-381)))) (-6 (-614 (-892 (-381)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-886 (-566))) (IF (|has| |t#3| (-886 (-566))) (-6 (-886 (-566))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-886 (-381))) (IF (|has| |t#3| (-886 (-381))) (-6 (-886 (-381))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-15 -2610 ($ $ $ |t#3|)) (-15 -4068 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-454)) (PROGN (-6 (-454)) (-15 -3173 ($ $ |t#3|)) (-15 -2616 ($ $)) (-15 -2616 ($ $ |t#3|)) (-15 -1364 ((-420 $) $)) (-15 -1378 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4412)) (-6 -4412) |%noBranch|) (IF (|has| |t#1| (-909)) (-6 (-909)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2768 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-409 (-566)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2768 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #0#) -2768 (|has| |#1| (-1038 (-409 (-566)))) (|has| |#1| (-38 (-409 (-566))))) ((-616 (-566)) . T) ((-616 |#1|) . T) ((-616 |#3|) . T) ((-616 $) -2768 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-613 (-862)) . T) ((-172) -2768 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-172))) ((-614 (-538)) -12 (|has| |#1| (-614 (-538))) (|has| |#3| (-614 (-538)))) ((-614 (-892 (-381))) -12 (|has| |#1| (-614 (-892 (-381)))) (|has| |#3| (-614 (-892 (-381))))) ((-614 (-892 (-566))) -12 (|has| |#1| (-614 (-892 (-566)))) (|has| |#3| (-614 (-892 (-566))))) ((-291) -2768 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-310 $) . T) ((-327 |#1| |#2|) . T) ((-379 |#1|) . T) ((-413 |#1|) . T) ((-454) -2768 (|has| |#1| (-909)) (|has| |#1| (-454))) ((-516 |#3| |#1|) . T) ((-516 |#3| $) . T) ((-516 $ $) . T) ((-558) -2768 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-646 #0#) |has| |#1| (-38 (-409 (-566)))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #0#) |has| |#1| (-38 (-409 (-566)))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #0#) |has| |#1| (-38 (-409 (-566)))) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) -2768 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-639 (-566)) |has| |#1| (-639 (-566))) ((-639 |#1|) . T) ((-717 #0#) |has| |#1| (-38 (-409 (-566)))) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) -2768 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-726) . T) ((-900 |#3|) . T) ((-886 (-381)) -12 (|has| |#1| (-886 (-381))) (|has| |#3| (-886 (-381)))) ((-886 (-566)) -12 (|has| |#1| (-886 (-566))) (|has| |#3| (-886 (-566)))) ((-909) |has| |#1| (-909)) ((-1038 (-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((-1038 (-566)) |has| |#1| (-1038 (-566))) ((-1038 |#1|) . T) ((-1038 |#3|) . T) ((-1051 #0#) |has| |#1| (-38 (-409 (-566)))) ((-1051 |#1|) . T) ((-1051 $) -2768 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-172))) ((-1056 #0#) |has| |#1| (-38 (-409 (-566)))) ((-1056 |#1|) . T) ((-1056 $) -2768 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-172))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1218) |has| |#1| (-909))) +((-1771 (((-644 |#2|) |#5|) 40)) (-1590 (((-1171 |#5|) |#5| |#2| (-1171 |#5|)) 23) (((-409 (-1171 |#5|)) |#5| |#2|) 16)) (-1757 ((|#5| (-409 (-1171 |#5|)) |#2|) 30)) (-2297 (((-3 |#2| "failed") |#5|) 71)) (-3738 (((-3 (-644 |#5|) "failed") |#5|) 65)) (-4224 (((-3 (-2 (|:| |val| |#5|) (|:| -2201 (-566))) "failed") |#5|) 53)) (-4199 (((-3 (-644 |#5|) "failed") |#5|) 67)) (-4108 (((-3 (-2 (|:| |var| |#2|) (|:| -2201 (-566))) "failed") |#5|) 57))) +(((-950 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1771 ((-644 |#2|) |#5|)) (-15 -2297 ((-3 |#2| "failed") |#5|)) (-15 -1590 ((-409 (-1171 |#5|)) |#5| |#2|)) (-15 -1757 (|#5| (-409 (-1171 |#5|)) |#2|)) (-15 -1590 ((-1171 |#5|) |#5| |#2| (-1171 |#5|))) (-15 -4199 ((-3 (-644 |#5|) "failed") |#5|)) (-15 -3738 ((-3 (-644 |#5|) "failed") |#5|)) (-15 -4108 ((-3 (-2 (|:| |var| |#2|) (|:| -2201 (-566))) "failed") |#5|)) (-15 -4224 ((-3 (-2 (|:| |val| |#5|) (|:| -2201 (-566))) "failed") |#5|))) (-793) (-850) (-1049) (-949 |#3| |#1| |#2|) (-13 (-365) (-10 -8 (-15 -3152 ($ |#4|)) (-15 -2248 (|#4| $)) (-15 -2260 (|#4| $))))) (T -950)) +((-4224 (*1 *2 *3) (|partial| -12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1049)) (-4 *7 (-949 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2201 (-566)))) (-5 *1 (-950 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -3152 ($ *7)) (-15 -2248 (*7 $)) (-15 -2260 (*7 $))))))) (-4108 (*1 *2 *3) (|partial| -12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1049)) (-4 *7 (-949 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2201 (-566)))) (-5 *1 (-950 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -3152 ($ *7)) (-15 -2248 (*7 $)) (-15 -2260 (*7 $))))))) (-3738 (*1 *2 *3) (|partial| -12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1049)) (-4 *7 (-949 *6 *4 *5)) (-5 *2 (-644 *3)) (-5 *1 (-950 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -3152 ($ *7)) (-15 -2248 (*7 $)) (-15 -2260 (*7 $))))))) (-4199 (*1 *2 *3) (|partial| -12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1049)) (-4 *7 (-949 *6 *4 *5)) (-5 *2 (-644 *3)) (-5 *1 (-950 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -3152 ($ *7)) (-15 -2248 (*7 $)) (-15 -2260 (*7 $))))))) (-1590 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1171 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -3152 ($ *7)) (-15 -2248 (*7 $)) (-15 -2260 (*7 $))))) (-4 *7 (-949 *6 *5 *4)) (-4 *5 (-793)) (-4 *4 (-850)) (-4 *6 (-1049)) (-5 *1 (-950 *5 *4 *6 *7 *3)))) (-1757 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-1171 *2))) (-4 *5 (-793)) (-4 *4 (-850)) (-4 *6 (-1049)) (-4 *2 (-13 (-365) (-10 -8 (-15 -3152 ($ *7)) (-15 -2248 (*7 $)) (-15 -2260 (*7 $))))) (-5 *1 (-950 *5 *4 *6 *7 *2)) (-4 *7 (-949 *6 *5 *4)))) (-1590 (*1 *2 *3 *4) (-12 (-4 *5 (-793)) (-4 *4 (-850)) (-4 *6 (-1049)) (-4 *7 (-949 *6 *5 *4)) (-5 *2 (-409 (-1171 *3))) (-5 *1 (-950 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -3152 ($ *7)) (-15 -2248 (*7 $)) (-15 -2260 (*7 $))))))) (-2297 (*1 *2 *3) (|partial| -12 (-4 *4 (-793)) (-4 *5 (-1049)) (-4 *6 (-949 *5 *4 *2)) (-4 *2 (-850)) (-5 *1 (-950 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -3152 ($ *6)) (-15 -2248 (*6 $)) (-15 -2260 (*6 $))))))) (-1771 (*1 *2 *3) (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1049)) (-4 *7 (-949 *6 *4 *5)) (-5 *2 (-644 *5)) (-5 *1 (-950 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -3152 ($ *7)) (-15 -2248 (*7 $)) (-15 -2260 (*7 $)))))))) +(-10 -7 (-15 -1771 ((-644 |#2|) |#5|)) (-15 -2297 ((-3 |#2| "failed") |#5|)) (-15 -1590 ((-409 (-1171 |#5|)) |#5| |#2|)) (-15 -1757 (|#5| (-409 (-1171 |#5|)) |#2|)) (-15 -1590 ((-1171 |#5|) |#5| |#2| (-1171 |#5|))) (-15 -4199 ((-3 (-644 |#5|) "failed") |#5|)) (-15 -3738 ((-3 (-644 |#5|) "failed") |#5|)) (-15 -4108 ((-3 (-2 (|:| |var| |#2|) (|:| -2201 (-566))) "failed") |#5|)) (-15 -4224 ((-3 (-2 (|:| |val| |#5|) (|:| -2201 (-566))) "failed") |#5|))) +((-2319 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) +(((-951 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2319 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-793) (-850) (-1049) (-949 |#3| |#1| |#2|) (-13 (-1099) (-10 -8 (-15 -3002 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-771)))))) (T -951)) +((-2319 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-850)) (-4 *8 (-1049)) (-4 *6 (-793)) (-4 *2 (-13 (-1099) (-10 -8 (-15 -3002 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-771)))))) (-5 *1 (-951 *6 *7 *8 *5 *2)) (-4 *5 (-949 *8 *6 *7))))) +(-10 -7 (-15 -2319 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-1771 (((-644 (-1175)) $) 16)) (-1590 (((-1171 $) $ (-1175)) 21) (((-1171 |#1|) $) NIL)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-2161 (($ $) NIL (|has| |#1| (-558)))) (-2345 (((-112) $) NIL (|has| |#1| (-558)))) (-1357 (((-771) $) NIL) (((-771) $ (-644 (-1175))) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-2292 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-1378 (($ $) NIL (|has| |#1| (-454)))) (-1364 (((-420 $) $) NIL (|has| |#1| (-454)))) (-4066 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-2463 (($) NIL T CONST)) (-2229 (((-3 |#1| "failed") $) 8) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-1175) "failed") $) NIL)) (-4158 ((|#1| $) NIL) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-1175) $) NIL)) (-2610 (($ $ $ (-1175)) NIL (|has| |#1| (-172)))) (-2814 (($ $) NIL)) (-4089 (((-689 (-566)) (-689 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -3361 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) NIL) (((-689 |#1|) (-689 $)) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-2616 (($ $) NIL (|has| |#1| (-454))) (($ $ (-1175)) NIL (|has| |#1| (-454)))) (-2804 (((-644 $) $) NIL)) (-1615 (((-112) $) NIL (|has| |#1| (-909)))) (-1896 (($ $ |#1| (-533 (-1175)) $) NIL)) (-2926 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| (-1175) (-886 (-381))) (|has| |#1| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| (-1175) (-886 (-566))) (|has| |#1| (-886 (-566)))))) (-2389 (((-112) $) NIL)) (-3039 (((-771) $) NIL)) (-1757 (($ (-1171 |#1|) (-1175)) NIL) (($ (-1171 $) (-1175)) NIL)) (-1587 (((-644 $) $) NIL)) (-2497 (((-112) $) NIL)) (-1746 (($ |#1| (-533 (-1175))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL)) (-2815 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $ (-1175)) NIL)) (-2749 (((-533 (-1175)) $) NIL) (((-771) $ (-1175)) NIL) (((-644 (-771)) $ (-644 (-1175))) NIL)) (-3021 (($ (-1 (-533 (-1175)) (-533 (-1175))) $) NIL)) (-2319 (($ (-1 |#1| |#1|) $) NIL)) (-2297 (((-3 (-1175) "failed") $) 19)) (-2784 (($ $) NIL)) (-2794 ((|#1| $) NIL)) (-2128 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-3380 (((-1157) $) NIL)) (-3738 (((-3 (-644 $) "failed") $) NIL)) (-4199 (((-3 (-644 $) "failed") $) NIL)) (-4108 (((-3 (-2 (|:| |var| (-1175)) (|:| -2201 (-771))) "failed") $) NIL)) (-3313 (($ $ (-1175)) 29 (|has| |#1| (-38 (-409 (-566)))))) (-4072 (((-1119) $) NIL)) (-2761 (((-112) $) NIL)) (-2773 ((|#1| $) NIL)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-454)))) (-2164 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-2010 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-1893 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-1624 (((-420 $) $) NIL (|has| |#1| (-909)))) (-2978 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-2023 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-1175) |#1|) NIL) (($ $ (-644 (-1175)) (-644 |#1|)) NIL) (($ $ (-1175) $) NIL) (($ $ (-644 (-1175)) (-644 $)) NIL)) (-4068 (($ $ (-1175)) NIL (|has| |#1| (-172)))) (-3629 (($ $ (-1175)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL)) (-3902 (((-533 (-1175)) $) NIL) (((-771) $ (-1175)) NIL) (((-644 (-771)) $ (-644 (-1175))) NIL)) (-2376 (((-892 (-381)) $) NIL (-12 (|has| (-1175) (-614 (-892 (-381)))) (|has| |#1| (-614 (-892 (-381)))))) (((-892 (-566)) $) NIL (-12 (|has| (-1175) (-614 (-892 (-566)))) (|has| |#1| (-614 (-892 (-566)))))) (((-538) $) NIL (-12 (|has| (-1175) (-614 (-538))) (|has| |#1| (-614 (-538)))))) (-3173 ((|#1| $) NIL (|has| |#1| (-454))) (($ $ (-1175)) NIL (|has| |#1| (-454)))) (-3391 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-909))))) (-3152 (((-862) $) 25) (($ (-566)) NIL) (($ |#1|) NIL) (($ (-1175)) 27) (($ (-409 (-566))) NIL (-2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566)))))) (($ $) NIL (|has| |#1| (-558)))) (-1643 (((-644 |#1|) $) NIL)) (-2271 ((|#1| $ (-533 (-1175))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL)) (-2633 (((-3 $ "failed") $) NIL (-2768 (-12 (|has| $ (-145)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-2593 (((-771)) NIL T CONST)) (-2021 (($ $ $ (-771)) NIL (|has| |#1| (-172)))) (-3044 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL (|has| |#1| (-558)))) (-4356 (($) NIL T CONST)) (-4366 (($) NIL T CONST)) (-3497 (($ $ (-1175)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL)) (-2914 (((-112) $ $) NIL)) (-3025 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-952 |#1|) (-13 (-949 |#1| (-533 (-1175)) (-1175)) (-10 -8 (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -3313 ($ $ (-1175))) |%noBranch|))) (-1049)) (T -952)) +((-3313 (*1 *1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-952 *3)) (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049))))) +(-13 (-949 |#1| (-533 (-1175)) (-1175)) (-10 -8 (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -3313 ($ $ (-1175))) |%noBranch|))) +((-1907 (((-2 (|:| -2201 (-771)) (|:| -2397 |#5|) (|:| |radicand| |#5|)) |#3| (-771)) 49)) (-3991 (((-2 (|:| -2201 (-771)) (|:| -2397 |#5|) (|:| |radicand| |#5|)) (-409 (-566)) (-771)) 44)) (-4070 (((-2 (|:| -2201 (-771)) (|:| -2397 |#4|) (|:| |radicand| (-644 |#4|))) |#4| (-771)) 65)) (-3554 (((-2 (|:| -2201 (-771)) (|:| -2397 |#5|) (|:| |radicand| |#5|)) |#5| (-771)) 74 (|has| |#3| (-454))))) +(((-953 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1907 ((-2 (|:| -2201 (-771)) (|:| -2397 |#5|) (|:| |radicand| |#5|)) |#3| (-771))) (-15 -3991 ((-2 (|:| -2201 (-771)) (|:| -2397 |#5|) (|:| |radicand| |#5|)) (-409 (-566)) (-771))) (IF (|has| |#3| (-454)) (-15 -3554 ((-2 (|:| -2201 (-771)) (|:| -2397 |#5|) (|:| |radicand| |#5|)) |#5| (-771))) |%noBranch|) (-15 -4070 ((-2 (|:| -2201 (-771)) (|:| -2397 |#4|) (|:| |radicand| (-644 |#4|))) |#4| (-771)))) (-793) (-850) (-558) (-949 |#3| |#1| |#2|) (-13 (-365) (-10 -8 (-15 -3152 ($ |#4|)) (-15 -2248 (|#4| $)) (-15 -2260 (|#4| $))))) (T -953)) +((-4070 (*1 *2 *3 *4) (-12 (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-558)) (-4 *3 (-949 *7 *5 *6)) (-5 *2 (-2 (|:| -2201 (-771)) (|:| -2397 *3) (|:| |radicand| (-644 *3)))) (-5 *1 (-953 *5 *6 *7 *3 *8)) (-5 *4 (-771)) (-4 *8 (-13 (-365) (-10 -8 (-15 -3152 ($ *3)) (-15 -2248 (*3 $)) (-15 -2260 (*3 $))))))) (-3554 (*1 *2 *3 *4) (-12 (-4 *7 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-558)) (-4 *8 (-949 *7 *5 *6)) (-5 *2 (-2 (|:| -2201 (-771)) (|:| -2397 *3) (|:| |radicand| *3))) (-5 *1 (-953 *5 *6 *7 *8 *3)) (-5 *4 (-771)) (-4 *3 (-13 (-365) (-10 -8 (-15 -3152 ($ *8)) (-15 -2248 (*8 $)) (-15 -2260 (*8 $))))))) (-3991 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-566))) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-558)) (-4 *8 (-949 *7 *5 *6)) (-5 *2 (-2 (|:| -2201 (-771)) (|:| -2397 *9) (|:| |radicand| *9))) (-5 *1 (-953 *5 *6 *7 *8 *9)) (-5 *4 (-771)) (-4 *9 (-13 (-365) (-10 -8 (-15 -3152 ($ *8)) (-15 -2248 (*8 $)) (-15 -2260 (*8 $))))))) (-1907 (*1 *2 *3 *4) (-12 (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-558)) (-4 *7 (-949 *3 *5 *6)) (-5 *2 (-2 (|:| -2201 (-771)) (|:| -2397 *8) (|:| |radicand| *8))) (-5 *1 (-953 *5 *6 *3 *7 *8)) (-5 *4 (-771)) (-4 *8 (-13 (-365) (-10 -8 (-15 -3152 ($ *7)) (-15 -2248 (*7 $)) (-15 -2260 (*7 $)))))))) +(-10 -7 (-15 -1907 ((-2 (|:| -2201 (-771)) (|:| -2397 |#5|) (|:| |radicand| |#5|)) |#3| (-771))) (-15 -3991 ((-2 (|:| -2201 (-771)) (|:| -2397 |#5|) (|:| |radicand| |#5|)) (-409 (-566)) (-771))) (IF (|has| |#3| (-454)) (-15 -3554 ((-2 (|:| -2201 (-771)) (|:| -2397 |#5|) (|:| |radicand| |#5|)) |#5| (-771))) |%noBranch|) (-15 -4070 ((-2 (|:| -2201 (-771)) (|:| -2397 |#4|) (|:| |radicand| (-644 |#4|))) |#4| (-771)))) +((-2988 (((-112) $ $) NIL)) (-1436 (($ (-1119)) 8)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 15) (((-1119) $) 12)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) 11))) +(((-954) (-13 (-1099) (-613 (-1119)) (-10 -8 (-15 -1436 ($ (-1119)))))) (T -954)) +((-1436 (*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-954))))) +(-13 (-1099) (-613 (-1119)) (-10 -8 (-15 -1436 ($ (-1119))))) +((-3867 (((-1093 (-225)) $) 8)) (-3857 (((-1093 (-225)) $) 9)) (-4042 (((-644 (-644 (-943 (-225)))) $) 10)) (-3152 (((-862) $) 6))) (((-955) (-140)) (T -955)) -((-1935 (*1 *2 *1) (-12 (-4 *1 (-955)) (-5 *2 (-644 (-644 (-943 (-225))))))) (-2877 (*1 *2 *1) (-12 (-4 *1 (-955)) (-5 *2 (-1093 (-225))))) (-2888 (*1 *2 *1) (-12 (-4 *1 (-955)) (-5 *2 (-1093 (-225)))))) -(-13 (-613 (-862)) (-10 -8 (-15 -1935 ((-644 (-644 (-943 (-225)))) $)) (-15 -2877 ((-1093 (-225)) $)) (-15 -2888 ((-1093 (-225)) $)))) +((-4042 (*1 *2 *1) (-12 (-4 *1 (-955)) (-5 *2 (-644 (-644 (-943 (-225))))))) (-3857 (*1 *2 *1) (-12 (-4 *1 (-955)) (-5 *2 (-1093 (-225))))) (-3867 (*1 *2 *1) (-12 (-4 *1 (-955)) (-5 *2 (-1093 (-225)))))) +(-13 (-613 (-862)) (-10 -8 (-15 -4042 ((-644 (-644 (-943 (-225)))) $)) (-15 -3857 ((-1093 (-225)) $)) (-15 -3867 ((-1093 (-225)) $)))) (((-613 (-862)) . T)) -((-3035 (((-3 (-689 |#1|) "failed") |#2| (-921)) 18))) -(((-956 |#1| |#2|) (-10 -7 (-15 -3035 ((-3 (-689 |#1|) "failed") |#2| (-921)))) (-558) (-656 |#1|)) (T -956)) -((-3035 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-921)) (-4 *5 (-558)) (-5 *2 (-689 *5)) (-5 *1 (-956 *5 *3)) (-4 *3 (-656 *5))))) -(-10 -7 (-15 -3035 ((-3 (-689 |#1|) "failed") |#2| (-921)))) -((-3795 (((-958 |#2|) (-1 |#2| |#1| |#2|) (-958 |#1|) |#2|) 16)) (-1676 ((|#2| (-1 |#2| |#1| |#2|) (-958 |#1|) |#2|) 18)) (-1301 (((-958 |#2|) (-1 |#2| |#1|) (-958 |#1|)) 13))) -(((-957 |#1| |#2|) (-10 -7 (-15 -3795 ((-958 |#2|) (-1 |#2| |#1| |#2|) (-958 |#1|) |#2|)) (-15 -1676 (|#2| (-1 |#2| |#1| |#2|) (-958 |#1|) |#2|)) (-15 -1301 ((-958 |#2|) (-1 |#2| |#1|) (-958 |#1|)))) (-1214) (-1214)) (T -957)) -((-1301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-958 *5)) (-4 *5 (-1214)) (-4 *6 (-1214)) (-5 *2 (-958 *6)) (-5 *1 (-957 *5 *6)))) (-1676 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-958 *5)) (-4 *5 (-1214)) (-4 *2 (-1214)) (-5 *1 (-957 *5 *2)))) (-3795 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-958 *6)) (-4 *6 (-1214)) (-4 *5 (-1214)) (-5 *2 (-958 *5)) (-5 *1 (-957 *6 *5))))) -(-10 -7 (-15 -3795 ((-958 |#2|) (-1 |#2| |#1| |#2|) (-958 |#1|) |#2|)) (-15 -1676 (|#2| (-1 |#2| |#1| |#2|) (-958 |#1|) |#2|)) (-15 -1301 ((-958 |#2|) (-1 |#2| |#1|) (-958 |#1|)))) -((-3007 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3734 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4415)))) (-2644 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-850)))) (-1944 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4415))) (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-850))))) (-1510 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-850)))) (-2256 (((-112) $ (-771)) NIL)) (-3923 ((|#1| $ (-566) |#1|) 19 (|has| $ (-6 -4415))) ((|#1| $ (-1231 (-566)) |#1|) NIL (|has| $ (-6 -4415)))) (-2701 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-3012 (($) NIL T CONST)) (-3413 (($ $) NIL (|has| $ (-6 -4415)))) (-1377 (($ $) NIL)) (-2031 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2665 (($ |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-1676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4414)))) (-2920 ((|#1| $ (-566) |#1|) 18 (|has| $ (-6 -4415)))) (-2855 ((|#1| $ (-566)) 16)) (-4000 (((-566) (-1 (-112) |#1|) $) NIL) (((-566) |#1| $) NIL (|has| |#1| (-1099))) (((-566) |#1| $ (-566)) NIL (|has| |#1| (-1099)))) (-3979 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-4265 (($ (-771) |#1|) 15)) (-2404 (((-112) $ (-771)) NIL)) (-3854 (((-566) $) 11 (|has| (-566) (-850)))) (-2097 (($ $ $) NIL (|has| |#1| (-850)))) (-3298 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-850)))) (-2329 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2712 (((-566) $) NIL (|has| (-566) (-850)))) (-3962 (($ $ $) NIL (|has| |#1| (-850)))) (-2908 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2603 (((-112) $ (-771)) NIL)) (-4117 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4276 (($ |#1| $ (-566)) NIL) (($ $ $ (-566)) NIL)) (-4074 (((-644 (-566)) $) NIL)) (-3792 (((-112) (-566) $) NIL)) (-4035 (((-1119) $) NIL (|has| |#1| (-1099)))) (-1998 ((|#1| $) NIL (|has| (-566) (-850)))) (-2006 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4030 (($ $ |#1|) 20 (|has| $ (-6 -4415)))) (-2692 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) NIL)) (-4156 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2993 (((-644 |#1|) $) NIL)) (-3467 (((-112) $) NIL)) (-1494 (($) 12)) (-4390 ((|#1| $ (-566) |#1|) NIL) ((|#1| $ (-566)) 17) (($ $ (-1231 (-566))) NIL)) (-2187 (($ $ (-566)) NIL) (($ $ (-1231 (-566))) NIL)) (-4045 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-1297 (($ $ $ (-566)) NIL (|has| $ (-6 -4415)))) (-3940 (($ $) 21)) (-1348 (((-538) $) NIL (|has| |#1| (-614 (-538))))) (-3796 (($ (-644 |#1|)) 14)) (-3721 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-644 $)) NIL)) (-3783 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-3117 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1894 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-3009 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2984 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2947 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2995 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2969 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3018 (((-771) $) 8 (|has| $ (-6 -4414))))) +((-3939 (((-3 (-689 |#1|) "failed") |#2| (-921)) 18))) +(((-956 |#1| |#2|) (-10 -7 (-15 -3939 ((-3 (-689 |#1|) "failed") |#2| (-921)))) (-558) (-656 |#1|)) (T -956)) +((-3939 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-921)) (-4 *5 (-558)) (-5 *2 (-689 *5)) (-5 *1 (-956 *5 *3)) (-4 *3 (-656 *5))))) +(-10 -7 (-15 -3939 ((-3 (-689 |#1|) "failed") |#2| (-921)))) +((-1960 (((-958 |#2|) (-1 |#2| |#1| |#2|) (-958 |#1|) |#2|) 16)) (-2873 ((|#2| (-1 |#2| |#1| |#2|) (-958 |#1|) |#2|) 18)) (-2319 (((-958 |#2|) (-1 |#2| |#1|) (-958 |#1|)) 13))) +(((-957 |#1| |#2|) (-10 -7 (-15 -1960 ((-958 |#2|) (-1 |#2| |#1| |#2|) (-958 |#1|) |#2|)) (-15 -2873 (|#2| (-1 |#2| |#1| |#2|) (-958 |#1|) |#2|)) (-15 -2319 ((-958 |#2|) (-1 |#2| |#1|) (-958 |#1|)))) (-1214) (-1214)) (T -957)) +((-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-958 *5)) (-4 *5 (-1214)) (-4 *6 (-1214)) (-5 *2 (-958 *6)) (-5 *1 (-957 *5 *6)))) (-2873 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-958 *5)) (-4 *5 (-1214)) (-4 *2 (-1214)) (-5 *1 (-957 *5 *2)))) (-1960 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-958 *6)) (-4 *6 (-1214)) (-4 *5 (-1214)) (-5 *2 (-958 *5)) (-5 *1 (-957 *6 *5))))) +(-10 -7 (-15 -1960 ((-958 |#2|) (-1 |#2| |#1| |#2|) (-958 |#1|) |#2|)) (-15 -2873 (|#2| (-1 |#2| |#1| |#2|) (-958 |#1|) |#2|)) (-15 -2319 ((-958 |#2|) (-1 |#2| |#1|) (-958 |#1|)))) +((-2988 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1944 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4415)))) (-3054 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-850)))) (-3628 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4415))) (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-850))))) (-2671 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-850)))) (-1504 (((-112) $ (-771)) NIL)) (-1456 ((|#1| $ (-566) |#1|) 19 (|has| $ (-6 -4415))) ((|#1| $ (-1231 (-566)) |#1|) NIL (|has| $ (-6 -4415)))) (-3678 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2463 (($) NIL T CONST)) (-3166 (($ $) NIL (|has| $ (-6 -4415)))) (-3683 (($ $) NIL)) (-3942 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2622 (($ |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2873 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4414)))) (-3897 ((|#1| $ (-566) |#1|) 18 (|has| $ (-6 -4415)))) (-3829 ((|#1| $ (-566)) 16)) (-1569 (((-566) (-1 (-112) |#1|) $) NIL) (((-566) |#1| $) NIL (|has| |#1| (-1099))) (((-566) |#1| $ (-566)) NIL (|has| |#1| (-1099)))) (-1683 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1860 (($ (-771) |#1|) 15)) (-3456 (((-112) $ (-771)) NIL)) (-2296 (((-566) $) 11 (|has| (-566) (-850)))) (-1478 (($ $ $) NIL (|has| |#1| (-850)))) (-2696 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-850)))) (-3491 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-4050 (((-566) $) NIL (|has| (-566) (-850)))) (-2599 (($ $ $) NIL (|has| |#1| (-850)))) (-3885 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3267 (((-112) $ (-771)) NIL)) (-3380 (((-1157) $) NIL (|has| |#1| (-1099)))) (-1859 (($ |#1| $ (-566)) NIL) (($ $ $ (-566)) NIL)) (-3725 (((-644 (-566)) $) NIL)) (-1644 (((-112) (-566) $) NIL)) (-4072 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3908 ((|#1| $) NIL (|has| (-566) (-850)))) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3787 (($ $ |#1|) 20 (|has| $ (-6 -4415)))) (-2823 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) NIL)) (-2847 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3486 (((-644 |#1|) $) NIL)) (-2872 (((-112) $) NIL)) (-3493 (($) 12)) (-1309 ((|#1| $ (-566) |#1|) NIL) ((|#1| $ (-566)) 17) (($ $ (-1231 (-566))) NIL)) (-2166 (($ $ (-566)) NIL) (($ $ (-1231 (-566))) NIL)) (-4083 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2661 (($ $ $ (-566)) NIL (|has| $ (-6 -4415)))) (-1480 (($ $) 21)) (-2376 (((-538) $) NIL (|has| |#1| (-614 (-538))))) (-1340 (($ (-644 |#1|)) 14)) (-4386 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-644 $)) NIL)) (-3152 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-3044 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2210 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2968 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2914 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2956 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2935 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3000 (((-771) $) 8 (|has| $ (-6 -4414))))) (((-958 |#1|) (-19 |#1|) (-1214)) (T -958)) NIL (-19 |#1|) -((-1880 (($ $ (-1091 $)) 7) (($ $ (-1175)) 6))) +((-3428 (($ $ (-1091 $)) 7) (($ $ (-1175)) 6))) (((-959) (-140)) (T -959)) -((-1880 (*1 *1 *1 *2) (-12 (-5 *2 (-1091 *1)) (-4 *1 (-959)))) (-1880 (*1 *1 *1 *2) (-12 (-4 *1 (-959)) (-5 *2 (-1175))))) -(-13 (-10 -8 (-15 -1880 ($ $ (-1175))) (-15 -1880 ($ $ (-1091 $))))) -((-2781 (((-2 (|:| -1364 (-644 (-566))) (|:| |poly| (-644 (-1171 |#1|))) (|:| |prim| (-1171 |#1|))) (-644 (-952 |#1|)) (-644 (-1175)) (-1175)) 30) (((-2 (|:| -1364 (-644 (-566))) (|:| |poly| (-644 (-1171 |#1|))) (|:| |prim| (-1171 |#1|))) (-644 (-952 |#1|)) (-644 (-1175))) 31) (((-2 (|:| |coef1| (-566)) (|:| |coef2| (-566)) (|:| |prim| (-1171 |#1|))) (-952 |#1|) (-1175) (-952 |#1|) (-1175)) 49))) -(((-960 |#1|) (-10 -7 (-15 -2781 ((-2 (|:| |coef1| (-566)) (|:| |coef2| (-566)) (|:| |prim| (-1171 |#1|))) (-952 |#1|) (-1175) (-952 |#1|) (-1175))) (-15 -2781 ((-2 (|:| -1364 (-644 (-566))) (|:| |poly| (-644 (-1171 |#1|))) (|:| |prim| (-1171 |#1|))) (-644 (-952 |#1|)) (-644 (-1175)))) (-15 -2781 ((-2 (|:| -1364 (-644 (-566))) (|:| |poly| (-644 (-1171 |#1|))) (|:| |prim| (-1171 |#1|))) (-644 (-952 |#1|)) (-644 (-1175)) (-1175)))) (-13 (-365) (-147))) (T -960)) -((-2781 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-644 (-952 *6))) (-5 *4 (-644 (-1175))) (-5 *5 (-1175)) (-4 *6 (-13 (-365) (-147))) (-5 *2 (-2 (|:| -1364 (-644 (-566))) (|:| |poly| (-644 (-1171 *6))) (|:| |prim| (-1171 *6)))) (-5 *1 (-960 *6)))) (-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-644 (-1175))) (-4 *5 (-13 (-365) (-147))) (-5 *2 (-2 (|:| -1364 (-644 (-566))) (|:| |poly| (-644 (-1171 *5))) (|:| |prim| (-1171 *5)))) (-5 *1 (-960 *5)))) (-2781 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-952 *5)) (-5 *4 (-1175)) (-4 *5 (-13 (-365) (-147))) (-5 *2 (-2 (|:| |coef1| (-566)) (|:| |coef2| (-566)) (|:| |prim| (-1171 *5)))) (-5 *1 (-960 *5))))) -(-10 -7 (-15 -2781 ((-2 (|:| |coef1| (-566)) (|:| |coef2| (-566)) (|:| |prim| (-1171 |#1|))) (-952 |#1|) (-1175) (-952 |#1|) (-1175))) (-15 -2781 ((-2 (|:| -1364 (-644 (-566))) (|:| |poly| (-644 (-1171 |#1|))) (|:| |prim| (-1171 |#1|))) (-644 (-952 |#1|)) (-644 (-1175)))) (-15 -2781 ((-2 (|:| -1364 (-644 (-566))) (|:| |poly| (-644 (-1171 |#1|))) (|:| |prim| (-1171 |#1|))) (-644 (-952 |#1|)) (-644 (-1175)) (-1175)))) -((-3414 (((-644 |#1|) |#1| |#1|) 47)) (-3268 (((-112) |#1|) 44)) (-1317 ((|#1| |#1|) 82)) (-3718 ((|#1| |#1|) 81))) -(((-961 |#1|) (-10 -7 (-15 -3268 ((-112) |#1|)) (-15 -3718 (|#1| |#1|)) (-15 -1317 (|#1| |#1|)) (-15 -3414 ((-644 |#1|) |#1| |#1|))) (-547)) (T -961)) -((-3414 (*1 *2 *3 *3) (-12 (-5 *2 (-644 *3)) (-5 *1 (-961 *3)) (-4 *3 (-547)))) (-1317 (*1 *2 *2) (-12 (-5 *1 (-961 *2)) (-4 *2 (-547)))) (-3718 (*1 *2 *2) (-12 (-5 *1 (-961 *2)) (-4 *2 (-547)))) (-3268 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-961 *3)) (-4 *3 (-547))))) -(-10 -7 (-15 -3268 ((-112) |#1|)) (-15 -3718 (|#1| |#1|)) (-15 -1317 (|#1| |#1|)) (-15 -3414 ((-644 |#1|) |#1| |#1|))) -((-2974 (((-1269) (-862)) 9))) -(((-962) (-10 -7 (-15 -2974 ((-1269) (-862))))) (T -962)) -((-2974 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1269)) (-5 *1 (-962))))) -(-10 -7 (-15 -2974 ((-1269) (-862)))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) 78 (|has| |#1| (-558)))) (-3991 (($ $) 79 (|has| |#1| (-558)))) (-2388 (((-112) $) NIL (|has| |#1| (-558)))) (-4175 (((-3 $ "failed") $ $) NIL)) (-3012 (($) NIL T CONST)) (-4307 (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) 34)) (-4205 (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) NIL)) (-1786 (($ $) 31)) (-1878 (((-3 $ "failed") $) 42)) (-4075 (($ $) NIL (|has| |#1| (-454)))) (-3635 (($ $ |#1| |#2| $) 62)) (-3934 (((-112) $) NIL)) (-2614 (((-771) $) 17)) (-3264 (((-112) $) NIL)) (-3840 (($ |#1| |#2|) NIL)) (-3760 ((|#2| $) 24)) (-4301 (($ (-1 |#2| |#2|) $) NIL)) (-1301 (($ (-1 |#1| |#1|) $) NIL)) (-1749 (($ $) 28)) (-1763 ((|#1| $) 26)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-1723 (((-112) $) 51)) (-1736 ((|#1| $) NIL)) (-2872 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-131)) (|has| |#1| (-558))))) (-2994 (((-3 $ "failed") $ $) 91 (|has| |#1| (-558))) (((-3 $ "failed") $ |#1|) 85 (|has| |#1| (-558)))) (-3636 ((|#2| $) 22)) (-2483 ((|#1| $) NIL (|has| |#1| (-454)))) (-3783 (((-862) $) NIL) (($ (-566)) 46) (($ $) NIL (|has| |#1| (-558))) (($ |#1|) 41) (($ (-409 (-566))) NIL (-2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))))) (-4170 (((-644 |#1|) $) NIL)) (-2649 ((|#1| $ |#2|) 37)) (-3144 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2107 (((-771)) 15 T CONST)) (-3362 (($ $ $ (-771)) 74 (|has| |#1| (-172)))) (-3117 (((-112) $ $) NIL)) (-2695 (((-112) $ $) 84 (|has| |#1| (-558)))) (-2479 (($) 27 T CONST)) (-4334 (($) 12 T CONST)) (-2947 (((-112) $ $) 83)) (-3065 (($ $ |#1|) 92 (|has| |#1| (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-921)) 69) (($ $ (-771)) 67)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 66) (($ $ |#1|) 64) (($ |#1| $) 63) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))))) -(((-963 |#1| |#2|) (-13 (-327 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-558)) (IF (|has| |#2| (-131)) (-15 -2872 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4412)) (-6 -4412) |%noBranch|))) (-1049) (-792)) (T -963)) -((-2872 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-963 *3 *2)) (-4 *2 (-131)) (-4 *3 (-558)) (-4 *3 (-1049)) (-4 *2 (-792))))) -(-13 (-327 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-558)) (IF (|has| |#2| (-131)) (-15 -2872 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4412)) (-6 -4412) |%noBranch|))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL (-2809 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-793)) (|has| |#2| (-793)))))) (-2660 (($ $ $) 65 (-12 (|has| |#1| (-793)) (|has| |#2| (-793))))) (-4175 (((-3 $ "failed") $ $) 52 (-2809 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-793)) (|has| |#2| (-793)))))) (-1970 (((-771)) 36 (-12 (|has| |#1| (-370)) (|has| |#2| (-370))))) (-3823 ((|#2| $) 22)) (-2298 ((|#1| $) 21)) (-3012 (($) NIL (-2809 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-475)) (|has| |#2| (-475))) (-12 (|has| |#1| (-726)) (|has| |#2| (-726))) (-12 (|has| |#1| (-793)) (|has| |#2| (-793)))) CONST)) (-1878 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| |#1| (-475)) (|has| |#2| (-475))) (-12 (|has| |#1| (-726)) (|has| |#2| (-726)))))) (-1552 (($) NIL (-12 (|has| |#1| (-370)) (|has| |#2| (-370))))) (-3934 (((-112) $) NIL (-2809 (-12 (|has| |#1| (-475)) (|has| |#2| (-475))) (-12 (|has| |#1| (-726)) (|has| |#2| (-726)))))) (-2097 (($ $ $) NIL (-2809 (-12 (|has| |#1| (-793)) (|has| |#2| (-793))) (-12 (|has| |#1| (-850)) (|has| |#2| (-850)))))) (-3962 (($ $ $) NIL (-2809 (-12 (|has| |#1| (-793)) (|has| |#2| (-793))) (-12 (|has| |#1| (-850)) (|has| |#2| (-850)))))) (-2394 (($ |#1| |#2|) 20)) (-3681 (((-921) $) NIL (-12 (|has| |#1| (-370)) (|has| |#2| (-370))))) (-4117 (((-1157) $) NIL)) (-1713 (($ $) 39 (-12 (|has| |#1| (-475)) (|has| |#2| (-475))))) (-2178 (($ (-921)) NIL (-12 (|has| |#1| (-370)) (|has| |#2| (-370))))) (-4035 (((-1119) $) NIL)) (-2358 (($ $ $) NIL (-12 (|has| |#1| (-475)) (|has| |#2| (-475))))) (-3171 (($ $ $) NIL (-12 (|has| |#1| (-475)) (|has| |#2| (-475))))) (-3783 (((-862) $) 14)) (-3117 (((-112) $ $) NIL)) (-2479 (($) 42 (-2809 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-793)) (|has| |#2| (-793)))) CONST)) (-4334 (($) 25 (-2809 (-12 (|has| |#1| (-475)) (|has| |#2| (-475))) (-12 (|has| |#1| (-726)) (|has| |#2| (-726)))) CONST)) (-3009 (((-112) $ $) NIL (-2809 (-12 (|has| |#1| (-793)) (|has| |#2| (-793))) (-12 (|has| |#1| (-850)) (|has| |#2| (-850)))))) (-2984 (((-112) $ $) NIL (-2809 (-12 (|has| |#1| (-793)) (|has| |#2| (-793))) (-12 (|has| |#1| (-850)) (|has| |#2| (-850)))))) (-2947 (((-112) $ $) 19)) (-2995 (((-112) $ $) NIL (-2809 (-12 (|has| |#1| (-793)) (|has| |#2| (-793))) (-12 (|has| |#1| (-850)) (|has| |#2| (-850)))))) (-2969 (((-112) $ $) 69 (-2809 (-12 (|has| |#1| (-793)) (|has| |#2| (-793))) (-12 (|has| |#1| (-850)) (|has| |#2| (-850)))))) (-3065 (($ $ $) NIL (-12 (|has| |#1| (-475)) (|has| |#2| (-475))))) (-3053 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-3041 (($ $ $) 45 (-2809 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-793)) (|has| |#2| (-793)))))) (** (($ $ (-566)) NIL (-12 (|has| |#1| (-475)) (|has| |#2| (-475)))) (($ $ (-771)) 32 (-2809 (-12 (|has| |#1| (-475)) (|has| |#2| (-475))) (-12 (|has| |#1| (-726)) (|has| |#2| (-726))))) (($ $ (-921)) NIL (-2809 (-12 (|has| |#1| (-475)) (|has| |#2| (-475))) (-12 (|has| |#1| (-726)) (|has| |#2| (-726)))))) (* (($ (-566) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-771) $) 48 (-2809 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-793)) (|has| |#2| (-793))))) (($ (-921) $) NIL (-2809 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-793)) (|has| |#2| (-793))))) (($ $ $) 28 (-2809 (-12 (|has| |#1| (-475)) (|has| |#2| (-475))) (-12 (|has| |#1| (-726)) (|has| |#2| (-726))))))) -(((-964 |#1| |#2|) (-13 (-1099) (-10 -8 (IF (|has| |#1| (-370)) (IF (|has| |#2| (-370)) (-6 (-370)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-726)) (IF (|has| |#2| (-726)) (-6 (-726)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-475)) (IF (|has| |#2| (-475)) (-6 (-475)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-793)) (IF (|has| |#2| (-793)) (-6 (-793)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-850)) (IF (|has| |#2| (-850)) (-6 (-850)) |%noBranch|) |%noBranch|) (-15 -2394 ($ |#1| |#2|)) (-15 -2298 (|#1| $)) (-15 -3823 (|#2| $)))) (-1099) (-1099)) (T -964)) -((-2394 (*1 *1 *2 *3) (-12 (-5 *1 (-964 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099)))) (-2298 (*1 *2 *1) (-12 (-4 *2 (-1099)) (-5 *1 (-964 *2 *3)) (-4 *3 (-1099)))) (-3823 (*1 *2 *1) (-12 (-4 *2 (-1099)) (-5 *1 (-964 *3 *2)) (-4 *3 (-1099))))) -(-13 (-1099) (-10 -8 (IF (|has| |#1| (-370)) (IF (|has| |#2| (-370)) (-6 (-370)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-726)) (IF (|has| |#2| (-726)) (-6 (-726)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-475)) (IF (|has| |#2| (-475)) (-6 (-475)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-793)) (IF (|has| |#2| (-793)) (-6 (-793)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-850)) (IF (|has| |#2| (-850)) (-6 (-850)) |%noBranch|) |%noBranch|) (-15 -2394 ($ |#1| |#2|)) (-15 -2298 (|#1| $)) (-15 -3823 (|#2| $)))) -((-2233 (((-1103) $) 12)) (-3174 (($ (-508) (-1103)) 14)) (-2640 (((-508) $) 9)) (-3783 (((-862) $) 26))) -(((-965) (-13 (-613 (-862)) (-10 -8 (-15 -2640 ((-508) $)) (-15 -2233 ((-1103) $)) (-15 -3174 ($ (-508) (-1103)))))) (T -965)) -((-2640 (*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-965)))) (-2233 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-965)))) (-3174 (*1 *1 *2 *3) (-12 (-5 *2 (-508)) (-5 *3 (-1103)) (-5 *1 (-965))))) -(-13 (-613 (-862)) (-10 -8 (-15 -2640 ((-508) $)) (-15 -2233 ((-1103) $)) (-15 -3174 ($ (-508) (-1103))))) -((-3007 (((-112) $ $) NIL)) (-3389 (($) NIL T CONST)) (-2445 (($ $ $) 11)) (-2418 (($ $) 9)) (-4117 (((-1157) $) NIL)) (-2239 (((-691 |#1|) $) 24)) (-3629 (((-691 (-873 $ $)) $) 36)) (-1658 (((-691 $) $) 29)) (-1439 (((-691 (-873 $ $)) $) 37)) (-2245 (((-691 (-873 $ $)) $) 38)) (-4061 (((-691 (-873 $ $)) $) 35)) (-3044 (($ $ $) 12)) (-4035 (((-1119) $) NIL)) (-2229 (($) 17 T CONST)) (-3235 (($ $ $) 13)) (-3783 (((-862) $) 40) (($ |#1|) 8)) (-3117 (((-112) $ $) NIL)) (-2432 (($ $ $) 10)) (-2947 (((-112) $ $) NIL))) -(((-966 |#1|) (-13 (-967) (-616 |#1|) (-10 -8 (-15 -2239 ((-691 |#1|) $)) (-15 -1658 ((-691 $) $)) (-15 -4061 ((-691 (-873 $ $)) $)) (-15 -3629 ((-691 (-873 $ $)) $)) (-15 -1439 ((-691 (-873 $ $)) $)) (-15 -2245 ((-691 (-873 $ $)) $)))) (-1099)) (T -966)) -((-2239 (*1 *2 *1) (-12 (-5 *2 (-691 *3)) (-5 *1 (-966 *3)) (-4 *3 (-1099)))) (-1658 (*1 *2 *1) (-12 (-5 *2 (-691 (-966 *3))) (-5 *1 (-966 *3)) (-4 *3 (-1099)))) (-4061 (*1 *2 *1) (-12 (-5 *2 (-691 (-873 (-966 *3) (-966 *3)))) (-5 *1 (-966 *3)) (-4 *3 (-1099)))) (-3629 (*1 *2 *1) (-12 (-5 *2 (-691 (-873 (-966 *3) (-966 *3)))) (-5 *1 (-966 *3)) (-4 *3 (-1099)))) (-1439 (*1 *2 *1) (-12 (-5 *2 (-691 (-873 (-966 *3) (-966 *3)))) (-5 *1 (-966 *3)) (-4 *3 (-1099)))) (-2245 (*1 *2 *1) (-12 (-5 *2 (-691 (-873 (-966 *3) (-966 *3)))) (-5 *1 (-966 *3)) (-4 *3 (-1099))))) -(-13 (-967) (-616 |#1|) (-10 -8 (-15 -2239 ((-691 |#1|) $)) (-15 -1658 ((-691 $) $)) (-15 -4061 ((-691 (-873 $ $)) $)) (-15 -3629 ((-691 (-873 $ $)) $)) (-15 -1439 ((-691 (-873 $ $)) $)) (-15 -2245 ((-691 (-873 $ $)) $)))) -((-3007 (((-112) $ $) 7)) (-3389 (($) 20 T CONST)) (-2445 (($ $ $) 16)) (-2418 (($ $) 18)) (-4117 (((-1157) $) 10)) (-3044 (($ $ $) 15)) (-4035 (((-1119) $) 11)) (-2229 (($) 19 T CONST)) (-3235 (($ $ $) 14)) (-3783 (((-862) $) 12)) (-3117 (((-112) $ $) 9)) (-2432 (($ $ $) 17)) (-2947 (((-112) $ $) 6))) +((-3428 (*1 *1 *1 *2) (-12 (-5 *2 (-1091 *1)) (-4 *1 (-959)))) (-3428 (*1 *1 *1 *2) (-12 (-4 *1 (-959)) (-5 *2 (-1175))))) +(-13 (-10 -8 (-15 -3428 ($ $ (-1175))) (-15 -3428 ($ $ (-1091 $))))) +((-3359 (((-2 (|:| -2397 (-644 (-566))) (|:| |poly| (-644 (-1171 |#1|))) (|:| |prim| (-1171 |#1|))) (-644 (-952 |#1|)) (-644 (-1175)) (-1175)) 30) (((-2 (|:| -2397 (-644 (-566))) (|:| |poly| (-644 (-1171 |#1|))) (|:| |prim| (-1171 |#1|))) (-644 (-952 |#1|)) (-644 (-1175))) 31) (((-2 (|:| |coef1| (-566)) (|:| |coef2| (-566)) (|:| |prim| (-1171 |#1|))) (-952 |#1|) (-1175) (-952 |#1|) (-1175)) 49))) +(((-960 |#1|) (-10 -7 (-15 -3359 ((-2 (|:| |coef1| (-566)) (|:| |coef2| (-566)) (|:| |prim| (-1171 |#1|))) (-952 |#1|) (-1175) (-952 |#1|) (-1175))) (-15 -3359 ((-2 (|:| -2397 (-644 (-566))) (|:| |poly| (-644 (-1171 |#1|))) (|:| |prim| (-1171 |#1|))) (-644 (-952 |#1|)) (-644 (-1175)))) (-15 -3359 ((-2 (|:| -2397 (-644 (-566))) (|:| |poly| (-644 (-1171 |#1|))) (|:| |prim| (-1171 |#1|))) (-644 (-952 |#1|)) (-644 (-1175)) (-1175)))) (-13 (-365) (-147))) (T -960)) +((-3359 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-644 (-952 *6))) (-5 *4 (-644 (-1175))) (-5 *5 (-1175)) (-4 *6 (-13 (-365) (-147))) (-5 *2 (-2 (|:| -2397 (-644 (-566))) (|:| |poly| (-644 (-1171 *6))) (|:| |prim| (-1171 *6)))) (-5 *1 (-960 *6)))) (-3359 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-644 (-1175))) (-4 *5 (-13 (-365) (-147))) (-5 *2 (-2 (|:| -2397 (-644 (-566))) (|:| |poly| (-644 (-1171 *5))) (|:| |prim| (-1171 *5)))) (-5 *1 (-960 *5)))) (-3359 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-952 *5)) (-5 *4 (-1175)) (-4 *5 (-13 (-365) (-147))) (-5 *2 (-2 (|:| |coef1| (-566)) (|:| |coef2| (-566)) (|:| |prim| (-1171 *5)))) (-5 *1 (-960 *5))))) +(-10 -7 (-15 -3359 ((-2 (|:| |coef1| (-566)) (|:| |coef2| (-566)) (|:| |prim| (-1171 |#1|))) (-952 |#1|) (-1175) (-952 |#1|) (-1175))) (-15 -3359 ((-2 (|:| -2397 (-644 (-566))) (|:| |poly| (-644 (-1171 |#1|))) (|:| |prim| (-1171 |#1|))) (-644 (-952 |#1|)) (-644 (-1175)))) (-15 -3359 ((-2 (|:| -2397 (-644 (-566))) (|:| |poly| (-644 (-1171 |#1|))) (|:| |prim| (-1171 |#1|))) (-644 (-952 |#1|)) (-644 (-1175)) (-1175)))) +((-3260 (((-644 |#1|) |#1| |#1|) 47)) (-1615 (((-112) |#1|) 44)) (-1519 ((|#1| |#1|) 82)) (-4166 ((|#1| |#1|) 81))) +(((-961 |#1|) (-10 -7 (-15 -1615 ((-112) |#1|)) (-15 -4166 (|#1| |#1|)) (-15 -1519 (|#1| |#1|)) (-15 -3260 ((-644 |#1|) |#1| |#1|))) (-547)) (T -961)) +((-3260 (*1 *2 *3 *3) (-12 (-5 *2 (-644 *3)) (-5 *1 (-961 *3)) (-4 *3 (-547)))) (-1519 (*1 *2 *2) (-12 (-5 *1 (-961 *2)) (-4 *2 (-547)))) (-4166 (*1 *2 *2) (-12 (-5 *1 (-961 *2)) (-4 *2 (-547)))) (-1615 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-961 *3)) (-4 *3 (-547))))) +(-10 -7 (-15 -1615 ((-112) |#1|)) (-15 -4166 (|#1| |#1|)) (-15 -1519 (|#1| |#1|)) (-15 -3260 ((-644 |#1|) |#1| |#1|))) +((-3595 (((-1269) (-862)) 9))) +(((-962) (-10 -7 (-15 -3595 ((-1269) (-862))))) (T -962)) +((-3595 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1269)) (-5 *1 (-962))))) +(-10 -7 (-15 -3595 ((-1269) (-862)))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) 78 (|has| |#1| (-558)))) (-2161 (($ $) 79 (|has| |#1| (-558)))) (-2345 (((-112) $) NIL (|has| |#1| (-558)))) (-3967 (((-3 $ "failed") $ $) NIL)) (-2463 (($) NIL T CONST)) (-2229 (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) 34)) (-4158 (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) NIL)) (-2814 (($ $) 31)) (-3245 (((-3 $ "failed") $) 42)) (-2616 (($ $) NIL (|has| |#1| (-454)))) (-1896 (($ $ |#1| |#2| $) 62)) (-2389 (((-112) $) NIL)) (-3039 (((-771) $) 17)) (-2497 (((-112) $) NIL)) (-1746 (($ |#1| |#2|) NIL)) (-2749 ((|#2| $) 24)) (-3021 (($ (-1 |#2| |#2|) $) NIL)) (-2319 (($ (-1 |#1| |#1|) $) NIL)) (-2784 (($ $) 28)) (-2794 ((|#1| $) 26)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-2761 (((-112) $) 51)) (-2773 ((|#1| $) NIL)) (-3252 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-131)) (|has| |#1| (-558))))) (-2978 (((-3 $ "failed") $ $) 91 (|has| |#1| (-558))) (((-3 $ "failed") $ |#1|) 85 (|has| |#1| (-558)))) (-3902 ((|#2| $) 22)) (-3173 ((|#1| $) NIL (|has| |#1| (-454)))) (-3152 (((-862) $) NIL) (($ (-566)) 46) (($ $) NIL (|has| |#1| (-558))) (($ |#1|) 41) (($ (-409 (-566))) NIL (-2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))))) (-1643 (((-644 |#1|) $) NIL)) (-2271 ((|#1| $ |#2|) 37)) (-2633 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2593 (((-771)) 15 T CONST)) (-2021 (($ $ $ (-771)) 74 (|has| |#1| (-172)))) (-3044 (((-112) $ $) NIL)) (-3014 (((-112) $ $) 84 (|has| |#1| (-558)))) (-4356 (($) 27 T CONST)) (-4366 (($) 12 T CONST)) (-2914 (((-112) $ $) 83)) (-3025 (($ $ |#1|) 92 (|has| |#1| (-365)))) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-921)) 69) (($ $ (-771)) 67)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 66) (($ $ |#1|) 64) (($ |#1| $) 63) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))))) +(((-963 |#1| |#2|) (-13 (-327 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-558)) (IF (|has| |#2| (-131)) (-15 -3252 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4412)) (-6 -4412) |%noBranch|))) (-1049) (-792)) (T -963)) +((-3252 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-963 *3 *2)) (-4 *2 (-131)) (-4 *3 (-558)) (-4 *3 (-1049)) (-4 *2 (-792))))) +(-13 (-327 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-558)) (IF (|has| |#2| (-131)) (-15 -3252 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4412)) (-6 -4412) |%noBranch|))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL (-2768 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-793)) (|has| |#2| (-793)))))) (-3920 (($ $ $) 65 (-12 (|has| |#1| (-793)) (|has| |#2| (-793))))) (-3967 (((-3 $ "failed") $ $) 52 (-2768 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-793)) (|has| |#2| (-793)))))) (-3870 (((-771)) 36 (-12 (|has| |#1| (-370)) (|has| |#2| (-370))))) (-2444 ((|#2| $) 22)) (-3296 ((|#1| $) 21)) (-2463 (($) NIL (-2768 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-475)) (|has| |#2| (-475))) (-12 (|has| |#1| (-726)) (|has| |#2| (-726))) (-12 (|has| |#1| (-793)) (|has| |#2| (-793)))) CONST)) (-3245 (((-3 $ "failed") $) NIL (-2768 (-12 (|has| |#1| (-475)) (|has| |#2| (-475))) (-12 (|has| |#1| (-726)) (|has| |#2| (-726)))))) (-2715 (($) NIL (-12 (|has| |#1| (-370)) (|has| |#2| (-370))))) (-2389 (((-112) $) NIL (-2768 (-12 (|has| |#1| (-475)) (|has| |#2| (-475))) (-12 (|has| |#1| (-726)) (|has| |#2| (-726)))))) (-1478 (($ $ $) NIL (-2768 (-12 (|has| |#1| (-793)) (|has| |#2| (-793))) (-12 (|has| |#1| (-850)) (|has| |#2| (-850)))))) (-2599 (($ $ $) NIL (-2768 (-12 (|has| |#1| (-793)) (|has| |#2| (-793))) (-12 (|has| |#1| (-850)) (|has| |#2| (-850)))))) (-1803 (($ |#1| |#2|) 20)) (-1866 (((-921) $) NIL (-12 (|has| |#1| (-370)) (|has| |#2| (-370))))) (-3380 (((-1157) $) NIL)) (-2748 (($ $) 39 (-12 (|has| |#1| (-475)) (|has| |#2| (-475))))) (-2835 (($ (-921)) NIL (-12 (|has| |#1| (-370)) (|has| |#2| (-370))))) (-4072 (((-1119) $) NIL)) (-3357 (($ $ $) NIL (-12 (|has| |#1| (-475)) (|has| |#2| (-475))))) (-2527 (($ $ $) NIL (-12 (|has| |#1| (-475)) (|has| |#2| (-475))))) (-3152 (((-862) $) 14)) (-3044 (((-112) $ $) NIL)) (-4356 (($) 42 (-2768 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-793)) (|has| |#2| (-793)))) CONST)) (-4366 (($) 25 (-2768 (-12 (|has| |#1| (-475)) (|has| |#2| (-475))) (-12 (|has| |#1| (-726)) (|has| |#2| (-726)))) CONST)) (-2968 (((-112) $ $) NIL (-2768 (-12 (|has| |#1| (-793)) (|has| |#2| (-793))) (-12 (|has| |#1| (-850)) (|has| |#2| (-850)))))) (-2946 (((-112) $ $) NIL (-2768 (-12 (|has| |#1| (-793)) (|has| |#2| (-793))) (-12 (|has| |#1| (-850)) (|has| |#2| (-850)))))) (-2914 (((-112) $ $) 19)) (-2956 (((-112) $ $) NIL (-2768 (-12 (|has| |#1| (-793)) (|has| |#2| (-793))) (-12 (|has| |#1| (-850)) (|has| |#2| (-850)))))) (-2935 (((-112) $ $) 69 (-2768 (-12 (|has| |#1| (-793)) (|has| |#2| (-793))) (-12 (|has| |#1| (-850)) (|has| |#2| (-850)))))) (-3025 (($ $ $) NIL (-12 (|has| |#1| (-475)) (|has| |#2| (-475))))) (-3012 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-3002 (($ $ $) 45 (-2768 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-793)) (|has| |#2| (-793)))))) (** (($ $ (-566)) NIL (-12 (|has| |#1| (-475)) (|has| |#2| (-475)))) (($ $ (-771)) 32 (-2768 (-12 (|has| |#1| (-475)) (|has| |#2| (-475))) (-12 (|has| |#1| (-726)) (|has| |#2| (-726))))) (($ $ (-921)) NIL (-2768 (-12 (|has| |#1| (-475)) (|has| |#2| (-475))) (-12 (|has| |#1| (-726)) (|has| |#2| (-726)))))) (* (($ (-566) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-771) $) 48 (-2768 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-793)) (|has| |#2| (-793))))) (($ (-921) $) NIL (-2768 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-793)) (|has| |#2| (-793))))) (($ $ $) 28 (-2768 (-12 (|has| |#1| (-475)) (|has| |#2| (-475))) (-12 (|has| |#1| (-726)) (|has| |#2| (-726))))))) +(((-964 |#1| |#2|) (-13 (-1099) (-10 -8 (IF (|has| |#1| (-370)) (IF (|has| |#2| (-370)) (-6 (-370)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-726)) (IF (|has| |#2| (-726)) (-6 (-726)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-475)) (IF (|has| |#2| (-475)) (-6 (-475)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-793)) (IF (|has| |#2| (-793)) (-6 (-793)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-850)) (IF (|has| |#2| (-850)) (-6 (-850)) |%noBranch|) |%noBranch|) (-15 -1803 ($ |#1| |#2|)) (-15 -3296 (|#1| $)) (-15 -2444 (|#2| $)))) (-1099) (-1099)) (T -964)) +((-1803 (*1 *1 *2 *3) (-12 (-5 *1 (-964 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099)))) (-3296 (*1 *2 *1) (-12 (-4 *2 (-1099)) (-5 *1 (-964 *2 *3)) (-4 *3 (-1099)))) (-2444 (*1 *2 *1) (-12 (-4 *2 (-1099)) (-5 *1 (-964 *3 *2)) (-4 *3 (-1099))))) +(-13 (-1099) (-10 -8 (IF (|has| |#1| (-370)) (IF (|has| |#2| (-370)) (-6 (-370)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-726)) (IF (|has| |#2| (-726)) (-6 (-726)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-475)) (IF (|has| |#2| (-475)) (-6 (-475)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-793)) (IF (|has| |#2| (-793)) (-6 (-793)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-850)) (IF (|has| |#2| (-850)) (-6 (-850)) |%noBranch|) |%noBranch|) (-15 -1803 ($ |#1| |#2|)) (-15 -3296 (|#1| $)) (-15 -2444 (|#2| $)))) +((-2876 (((-1103) $) 12)) (-3808 (($ (-508) (-1103)) 14)) (-1368 (((-508) $) 9)) (-3152 (((-862) $) 26))) +(((-965) (-13 (-613 (-862)) (-10 -8 (-15 -1368 ((-508) $)) (-15 -2876 ((-1103) $)) (-15 -3808 ($ (-508) (-1103)))))) (T -965)) +((-1368 (*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-965)))) (-2876 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-965)))) (-3808 (*1 *1 *2 *3) (-12 (-5 *2 (-508)) (-5 *3 (-1103)) (-5 *1 (-965))))) +(-13 (-613 (-862)) (-10 -8 (-15 -1368 ((-508) $)) (-15 -2876 ((-1103) $)) (-15 -3808 ($ (-508) (-1103))))) +((-2988 (((-112) $ $) NIL)) (-3338 (($) NIL T CONST)) (-2427 (($ $ $) 11)) (-2404 (($ $) 9)) (-3380 (((-1157) $) NIL)) (-2429 (((-691 |#1|) $) 24)) (-1333 (((-691 (-873 $ $)) $) 36)) (-3611 (((-691 $) $) 29)) (-2063 (((-691 (-873 $ $)) $) 37)) (-1670 (((-691 (-873 $ $)) $) 38)) (-1765 (((-691 (-873 $ $)) $) 35)) (-3513 (($ $ $) 12)) (-4072 (((-1119) $) NIL)) (-2177 (($) 17 T CONST)) (-1562 (($ $ $) 13)) (-3152 (((-862) $) 40) (($ |#1|) 8)) (-3044 (((-112) $ $) NIL)) (-2415 (($ $ $) 10)) (-2914 (((-112) $ $) NIL))) +(((-966 |#1|) (-13 (-967) (-616 |#1|) (-10 -8 (-15 -2429 ((-691 |#1|) $)) (-15 -3611 ((-691 $) $)) (-15 -1765 ((-691 (-873 $ $)) $)) (-15 -1333 ((-691 (-873 $ $)) $)) (-15 -2063 ((-691 (-873 $ $)) $)) (-15 -1670 ((-691 (-873 $ $)) $)))) (-1099)) (T -966)) +((-2429 (*1 *2 *1) (-12 (-5 *2 (-691 *3)) (-5 *1 (-966 *3)) (-4 *3 (-1099)))) (-3611 (*1 *2 *1) (-12 (-5 *2 (-691 (-966 *3))) (-5 *1 (-966 *3)) (-4 *3 (-1099)))) (-1765 (*1 *2 *1) (-12 (-5 *2 (-691 (-873 (-966 *3) (-966 *3)))) (-5 *1 (-966 *3)) (-4 *3 (-1099)))) (-1333 (*1 *2 *1) (-12 (-5 *2 (-691 (-873 (-966 *3) (-966 *3)))) (-5 *1 (-966 *3)) (-4 *3 (-1099)))) (-2063 (*1 *2 *1) (-12 (-5 *2 (-691 (-873 (-966 *3) (-966 *3)))) (-5 *1 (-966 *3)) (-4 *3 (-1099)))) (-1670 (*1 *2 *1) (-12 (-5 *2 (-691 (-873 (-966 *3) (-966 *3)))) (-5 *1 (-966 *3)) (-4 *3 (-1099))))) +(-13 (-967) (-616 |#1|) (-10 -8 (-15 -2429 ((-691 |#1|) $)) (-15 -3611 ((-691 $) $)) (-15 -1765 ((-691 (-873 $ $)) $)) (-15 -1333 ((-691 (-873 $ $)) $)) (-15 -2063 ((-691 (-873 $ $)) $)) (-15 -1670 ((-691 (-873 $ $)) $)))) +((-2988 (((-112) $ $) 7)) (-3338 (($) 20 T CONST)) (-2427 (($ $ $) 16)) (-2404 (($ $) 18)) (-3380 (((-1157) $) 10)) (-3513 (($ $ $) 15)) (-4072 (((-1119) $) 11)) (-2177 (($) 19 T CONST)) (-1562 (($ $ $) 14)) (-3152 (((-862) $) 12)) (-3044 (((-112) $ $) 9)) (-2415 (($ $ $) 17)) (-2914 (((-112) $ $) 6))) (((-967) (-140)) (T -967)) -((-3389 (*1 *1) (-4 *1 (-967))) (-2229 (*1 *1) (-4 *1 (-967))) (-2418 (*1 *1 *1) (-4 *1 (-967))) (-2432 (*1 *1 *1 *1) (-4 *1 (-967))) (-2445 (*1 *1 *1 *1) (-4 *1 (-967))) (-3044 (*1 *1 *1 *1) (-4 *1 (-967))) (-3235 (*1 *1 *1 *1) (-4 *1 (-967)))) -(-13 (-1099) (-10 -8 (-15 -3389 ($) -3704) (-15 -2229 ($) -3704) (-15 -2418 ($ $)) (-15 -2432 ($ $ $)) (-15 -2445 ($ $ $)) (-15 -3044 ($ $ $)) (-15 -3235 ($ $ $)))) +((-3338 (*1 *1) (-4 *1 (-967))) (-2177 (*1 *1) (-4 *1 (-967))) (-2404 (*1 *1 *1) (-4 *1 (-967))) (-2415 (*1 *1 *1 *1) (-4 *1 (-967))) (-2427 (*1 *1 *1 *1) (-4 *1 (-967))) (-3513 (*1 *1 *1 *1) (-4 *1 (-967))) (-1562 (*1 *1 *1 *1) (-4 *1 (-967)))) +(-13 (-1099) (-10 -8 (-15 -3338 ($) -1623) (-15 -2177 ($) -1623) (-15 -2404 ($ $)) (-15 -2415 ($ $ $)) (-15 -2427 ($ $ $)) (-15 -3513 ($ $ $)) (-15 -1562 ($ $ $)))) (((-102) . T) ((-613 (-862)) . T) ((-1099) . T)) -((-3007 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2256 (((-112) $ (-771)) 8)) (-3012 (($) 7 T CONST)) (-3979 (((-644 |#1|) $) 31 (|has| $ (-6 -4414)))) (-2404 (((-112) $ (-771)) 9)) (-3463 (($ $ $) 44)) (-3298 (($ $ $) 45)) (-2329 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-3962 ((|#1| $) 46)) (-2908 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#1| |#1|) $) 36)) (-2603 (((-112) $ (-771)) 10)) (-4117 (((-1157) $) 22 (|has| |#1| (-1099)))) (-4039 ((|#1| $) 40)) (-3406 (($ |#1| $) 41)) (-4035 (((-1119) $) 21 (|has| |#1| (-1099)))) (-2539 ((|#1| $) 42)) (-2692 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) 14)) (-3467 (((-112) $) 11)) (-1494 (($) 12)) (-4045 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-3940 (($ $) 13)) (-3783 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-3117 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-1748 (($ (-644 |#1|)) 43)) (-1894 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3018 (((-771) $) 6 (|has| $ (-6 -4414))))) +((-2988 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-1504 (((-112) $ (-771)) 8)) (-2463 (($) 7 T CONST)) (-1683 (((-644 |#1|) $) 31 (|has| $ (-6 -4414)))) (-3456 (((-112) $ (-771)) 9)) (-3674 (($ $ $) 44)) (-2696 (($ $ $) 45)) (-3491 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2599 ((|#1| $) 46)) (-3885 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#1| |#1|) $) 36)) (-3267 (((-112) $ (-771)) 10)) (-3380 (((-1157) $) 22 (|has| |#1| (-1099)))) (-3278 ((|#1| $) 40)) (-3888 (($ |#1| $) 41)) (-4072 (((-1119) $) 21 (|has| |#1| (-1099)))) (-1973 ((|#1| $) 42)) (-2823 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) 14)) (-2872 (((-112) $) 11)) (-3493 (($) 12)) (-4083 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-1480 (($ $) 13)) (-3152 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-3044 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-2948 (($ (-644 |#1|)) 43)) (-2210 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3000 (((-771) $) 6 (|has| $ (-6 -4414))))) (((-968 |#1|) (-140) (-850)) (T -968)) -((-3962 (*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-850)))) (-3298 (*1 *1 *1 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-850)))) (-3463 (*1 *1 *1 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-850))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4414) (-15 -3962 (|t#1| $)) (-15 -3298 ($ $ $)) (-15 -3463 ($ $ $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2809 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1099) |has| |#1| (-1099)) ((-1214) . T)) -((-2286 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2214 |#2|)) |#2| |#2|) 106)) (-4206 ((|#2| |#2| |#2|) 104)) (-2321 (((-2 (|:| |coef2| |#2|) (|:| -2214 |#2|)) |#2| |#2|) 108)) (-2355 (((-2 (|:| |coef1| |#2|) (|:| -2214 |#2|)) |#2| |#2|) 110)) (-1605 (((-2 (|:| |coef2| |#2|) (|:| -2871 |#1|)) |#2| |#2|) 132 (|has| |#1| (-454)))) (-3432 (((-2 (|:| |coef2| |#2|) (|:| -2738 |#1|)) |#2| |#2|) 56)) (-1440 (((-2 (|:| |coef2| |#2|) (|:| -2738 |#1|)) |#2| |#2|) 81)) (-3256 (((-2 (|:| |coef1| |#2|) (|:| -2738 |#1|)) |#2| |#2|) 83)) (-2842 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 97)) (-2932 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-771)) 90)) (-2827 (((-2 (|:| |coef2| |#2|) (|:| -3652 |#1|)) |#2|) 122)) (-1783 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-771)) 93)) (-1474 (((-644 (-771)) |#2| |#2|) 103)) (-2450 ((|#1| |#2| |#2|) 50)) (-1323 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2871 |#1|)) |#2| |#2|) 130 (|has| |#1| (-454)))) (-2871 ((|#1| |#2| |#2|) 128 (|has| |#1| (-454)))) (-3730 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2738 |#1|)) |#2| |#2|) 54)) (-2443 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2738 |#1|)) |#2| |#2|) 80)) (-2738 ((|#1| |#2| |#2|) 77)) (-1960 (((-2 (|:| -1364 |#1|) (|:| -2275 |#2|) (|:| -2513 |#2|)) |#2| |#2|) 41)) (-1512 ((|#2| |#2| |#2| |#2| |#1|) 67)) (-3047 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 95)) (-1558 ((|#2| |#2| |#2|) 94)) (-4142 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-771)) 88)) (-3555 ((|#2| |#2| |#2| (-771)) 86)) (-2214 ((|#2| |#2| |#2|) 136 (|has| |#1| (-454)))) (-2994 (((-1264 |#2|) (-1264 |#2|) |#1|) 22)) (-1685 (((-2 (|:| -2275 |#2|) (|:| -2513 |#2|)) |#2| |#2|) 46)) (-2115 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3652 |#1|)) |#2|) 120)) (-3652 ((|#1| |#2|) 117)) (-1836 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-771)) 92)) (-3248 ((|#2| |#2| |#2| (-771)) 91)) (-2808 (((-644 |#2|) |#2| |#2|) 100)) (-3526 ((|#2| |#2| |#1| |#1| (-771)) 62)) (-4213 ((|#1| |#1| |#1| (-771)) 61)) (* (((-1264 |#2|) |#1| (-1264 |#2|)) 17))) -(((-969 |#1| |#2|) (-10 -7 (-15 -2738 (|#1| |#2| |#2|)) (-15 -2443 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2738 |#1|)) |#2| |#2|)) (-15 -1440 ((-2 (|:| |coef2| |#2|) (|:| -2738 |#1|)) |#2| |#2|)) (-15 -3256 ((-2 (|:| |coef1| |#2|) (|:| -2738 |#1|)) |#2| |#2|)) (-15 -3555 (|#2| |#2| |#2| (-771))) (-15 -4142 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-771))) (-15 -2932 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-771))) (-15 -3248 (|#2| |#2| |#2| (-771))) (-15 -1836 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-771))) (-15 -1783 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-771))) (-15 -1558 (|#2| |#2| |#2|)) (-15 -3047 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2842 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4206 (|#2| |#2| |#2|)) (-15 -2286 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2214 |#2|)) |#2| |#2|)) (-15 -2321 ((-2 (|:| |coef2| |#2|) (|:| -2214 |#2|)) |#2| |#2|)) (-15 -2355 ((-2 (|:| |coef1| |#2|) (|:| -2214 |#2|)) |#2| |#2|)) (-15 -3652 (|#1| |#2|)) (-15 -2115 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3652 |#1|)) |#2|)) (-15 -2827 ((-2 (|:| |coef2| |#2|) (|:| -3652 |#1|)) |#2|)) (-15 -2808 ((-644 |#2|) |#2| |#2|)) (-15 -1474 ((-644 (-771)) |#2| |#2|)) (IF (|has| |#1| (-454)) (PROGN (-15 -2871 (|#1| |#2| |#2|)) (-15 -1323 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2871 |#1|)) |#2| |#2|)) (-15 -1605 ((-2 (|:| |coef2| |#2|) (|:| -2871 |#1|)) |#2| |#2|)) (-15 -2214 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1264 |#2|) |#1| (-1264 |#2|))) (-15 -2994 ((-1264 |#2|) (-1264 |#2|) |#1|)) (-15 -1960 ((-2 (|:| -1364 |#1|) (|:| -2275 |#2|) (|:| -2513 |#2|)) |#2| |#2|)) (-15 -1685 ((-2 (|:| -2275 |#2|) (|:| -2513 |#2|)) |#2| |#2|)) (-15 -4213 (|#1| |#1| |#1| (-771))) (-15 -3526 (|#2| |#2| |#1| |#1| (-771))) (-15 -1512 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2450 (|#1| |#2| |#2|)) (-15 -3730 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2738 |#1|)) |#2| |#2|)) (-15 -3432 ((-2 (|:| |coef2| |#2|) (|:| -2738 |#1|)) |#2| |#2|))) (-558) (-1240 |#1|)) (T -969)) -((-3432 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2738 *4))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4)))) (-3730 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2738 *4))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4)))) (-2450 (*1 *2 *3 *3) (-12 (-4 *2 (-558)) (-5 *1 (-969 *2 *3)) (-4 *3 (-1240 *2)))) (-1512 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-558)) (-5 *1 (-969 *3 *2)) (-4 *2 (-1240 *3)))) (-3526 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-771)) (-4 *3 (-558)) (-5 *1 (-969 *3 *2)) (-4 *2 (-1240 *3)))) (-4213 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-771)) (-4 *2 (-558)) (-5 *1 (-969 *2 *4)) (-4 *4 (-1240 *2)))) (-1685 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| -2275 *3) (|:| -2513 *3))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4)))) (-1960 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| -1364 *4) (|:| -2275 *3) (|:| -2513 *3))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4)))) (-2994 (*1 *2 *2 *3) (-12 (-5 *2 (-1264 *4)) (-4 *4 (-1240 *3)) (-4 *3 (-558)) (-5 *1 (-969 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1264 *4)) (-4 *4 (-1240 *3)) (-4 *3 (-558)) (-5 *1 (-969 *3 *4)))) (-2214 (*1 *2 *2 *2) (-12 (-4 *3 (-454)) (-4 *3 (-558)) (-5 *1 (-969 *3 *2)) (-4 *2 (-1240 *3)))) (-1605 (*1 *2 *3 *3) (-12 (-4 *4 (-454)) (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2871 *4))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4)))) (-1323 (*1 *2 *3 *3) (-12 (-4 *4 (-454)) (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2871 *4))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4)))) (-2871 (*1 *2 *3 *3) (-12 (-4 *2 (-558)) (-4 *2 (-454)) (-5 *1 (-969 *2 *3)) (-4 *3 (-1240 *2)))) (-1474 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-644 (-771))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4)))) (-2808 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-644 *3)) (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4)))) (-2827 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3652 *4))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4)))) (-2115 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3652 *4))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4)))) (-3652 (*1 *2 *3) (-12 (-4 *2 (-558)) (-5 *1 (-969 *2 *3)) (-4 *3 (-1240 *2)))) (-2355 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2214 *3))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4)))) (-2321 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2214 *3))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4)))) (-2286 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2214 *3))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4)))) (-4206 (*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-969 *3 *2)) (-4 *2 (-1240 *3)))) (-2842 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4)))) (-3047 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4)))) (-1558 (*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-969 *3 *2)) (-4 *2 (-1240 *3)))) (-1783 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-771)) (-4 *5 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-969 *5 *3)) (-4 *3 (-1240 *5)))) (-1836 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-771)) (-4 *5 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-969 *5 *3)) (-4 *3 (-1240 *5)))) (-3248 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-771)) (-4 *4 (-558)) (-5 *1 (-969 *4 *2)) (-4 *2 (-1240 *4)))) (-2932 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-771)) (-4 *5 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-969 *5 *3)) (-4 *3 (-1240 *5)))) (-4142 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-771)) (-4 *5 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-969 *5 *3)) (-4 *3 (-1240 *5)))) (-3555 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-771)) (-4 *4 (-558)) (-5 *1 (-969 *4 *2)) (-4 *2 (-1240 *4)))) (-3256 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2738 *4))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4)))) (-1440 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2738 *4))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4)))) (-2443 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2738 *4))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4)))) (-2738 (*1 *2 *3 *3) (-12 (-4 *2 (-558)) (-5 *1 (-969 *2 *3)) (-4 *3 (-1240 *2))))) -(-10 -7 (-15 -2738 (|#1| |#2| |#2|)) (-15 -2443 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2738 |#1|)) |#2| |#2|)) (-15 -1440 ((-2 (|:| |coef2| |#2|) (|:| -2738 |#1|)) |#2| |#2|)) (-15 -3256 ((-2 (|:| |coef1| |#2|) (|:| -2738 |#1|)) |#2| |#2|)) (-15 -3555 (|#2| |#2| |#2| (-771))) (-15 -4142 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-771))) (-15 -2932 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-771))) (-15 -3248 (|#2| |#2| |#2| (-771))) (-15 -1836 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-771))) (-15 -1783 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-771))) (-15 -1558 (|#2| |#2| |#2|)) (-15 -3047 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2842 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4206 (|#2| |#2| |#2|)) (-15 -2286 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2214 |#2|)) |#2| |#2|)) (-15 -2321 ((-2 (|:| |coef2| |#2|) (|:| -2214 |#2|)) |#2| |#2|)) (-15 -2355 ((-2 (|:| |coef1| |#2|) (|:| -2214 |#2|)) |#2| |#2|)) (-15 -3652 (|#1| |#2|)) (-15 -2115 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3652 |#1|)) |#2|)) (-15 -2827 ((-2 (|:| |coef2| |#2|) (|:| -3652 |#1|)) |#2|)) (-15 -2808 ((-644 |#2|) |#2| |#2|)) (-15 -1474 ((-644 (-771)) |#2| |#2|)) (IF (|has| |#1| (-454)) (PROGN (-15 -2871 (|#1| |#2| |#2|)) (-15 -1323 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2871 |#1|)) |#2| |#2|)) (-15 -1605 ((-2 (|:| |coef2| |#2|) (|:| -2871 |#1|)) |#2| |#2|)) (-15 -2214 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1264 |#2|) |#1| (-1264 |#2|))) (-15 -2994 ((-1264 |#2|) (-1264 |#2|) |#1|)) (-15 -1960 ((-2 (|:| -1364 |#1|) (|:| -2275 |#2|) (|:| -2513 |#2|)) |#2| |#2|)) (-15 -1685 ((-2 (|:| -2275 |#2|) (|:| -2513 |#2|)) |#2| |#2|)) (-15 -4213 (|#1| |#1| |#1| (-771))) (-15 -3526 (|#2| |#2| |#1| |#1| (-771))) (-15 -1512 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2450 (|#1| |#2| |#2|)) (-15 -3730 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2738 |#1|)) |#2| |#2|)) (-15 -3432 ((-2 (|:| |coef2| |#2|) (|:| -2738 |#1|)) |#2| |#2|))) -((-3007 (((-112) $ $) NIL)) (-3852 (((-1213) $) 13)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-1403 (((-1134) $) 10)) (-3783 (((-862) $) 20) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) -(((-970) (-13 (-1082) (-10 -8 (-15 -1403 ((-1134) $)) (-15 -3852 ((-1213) $))))) (T -970)) -((-1403 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-970)))) (-3852 (*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-970))))) -(-13 (-1082) (-10 -8 (-15 -1403 ((-1134) $)) (-15 -3852 ((-1213) $)))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-4175 (((-3 $ "failed") $ $) 39)) (-3012 (($) NIL T CONST)) (-3821 (((-644 (-644 (-566))) (-644 (-566))) 48)) (-2670 (((-566) $) 72)) (-1887 (($ (-644 (-566))) 18)) (-2097 (($ $ $) NIL)) (-3962 (($ $ $) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-1348 (((-644 (-566)) $) 13)) (-2358 (($ $) 52)) (-3783 (((-862) $) 68) (((-644 (-566)) $) 11)) (-3117 (((-112) $ $) NIL)) (-2479 (($) 8 T CONST)) (-3009 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2947 (((-112) $ $) 26)) (-2995 (((-112) $ $) NIL)) (-2969 (((-112) $ $) 25)) (-3041 (($ $ $) 28)) (* (($ (-921) $) NIL) (($ (-771) $) 37))) -(((-971) (-13 (-795) (-614 (-644 (-566))) (-613 (-644 (-566))) (-10 -8 (-15 -1887 ($ (-644 (-566)))) (-15 -3821 ((-644 (-644 (-566))) (-644 (-566)))) (-15 -2670 ((-566) $)) (-15 -2358 ($ $))))) (T -971)) -((-1887 (*1 *1 *2) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-971)))) (-3821 (*1 *2 *3) (-12 (-5 *2 (-644 (-644 (-566)))) (-5 *1 (-971)) (-5 *3 (-644 (-566))))) (-2670 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-971)))) (-2358 (*1 *1 *1) (-5 *1 (-971)))) -(-13 (-795) (-614 (-644 (-566))) (-613 (-644 (-566))) (-10 -8 (-15 -1887 ($ (-644 (-566)))) (-15 -3821 ((-644 (-644 (-566))) (-644 (-566)))) (-15 -2670 ((-566) $)) (-15 -2358 ($ $)))) -((-3065 (($ $ |#2|) 31)) (-3053 (($ $) 23) (($ $ $) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 17) (($ $ $) NIL) (($ $ |#2|) 21) (($ |#2| $) 20) (($ (-409 (-566)) $) 27) (($ $ (-409 (-566))) 29))) -(((-972 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-409 (-566)))) (-15 * (|#1| (-409 (-566)) |#1|)) (-15 -3065 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3053 (|#1| |#1| |#1|)) (-15 -3053 (|#1| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-921) |#1|))) (-973 |#2| |#3| |#4|) (-1049) (-792) (-850)) (T -972)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-409 (-566)))) (-15 * (|#1| (-409 (-566)) |#1|)) (-15 -3065 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3053 (|#1| |#1| |#1|)) (-15 -3053 (|#1| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-921) |#1|))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-3863 (((-644 |#3|) $) 86)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) 63 (|has| |#1| (-558)))) (-3991 (($ $) 64 (|has| |#1| (-558)))) (-2388 (((-112) $) 66 (|has| |#1| (-558)))) (-4175 (((-3 $ "failed") $ $) 20)) (-3012 (($) 18 T CONST)) (-1786 (($ $) 72)) (-1878 (((-3 $ "failed") $) 37)) (-2158 (((-112) $) 85)) (-3934 (((-112) $) 35)) (-3264 (((-112) $) 74)) (-3840 (($ |#1| |#2|) 73) (($ $ |#3| |#2|) 88) (($ $ (-644 |#3|) (-644 |#2|)) 87)) (-1301 (($ (-1 |#1| |#1|) $) 75)) (-1749 (($ $) 77)) (-1763 ((|#1| $) 78)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-2994 (((-3 $ "failed") $ $) 62 (|has| |#1| (-558)))) (-3636 ((|#2| $) 76)) (-2770 (($ $) 84)) (-3783 (((-862) $) 12) (($ (-566)) 33) (($ (-409 (-566))) 69 (|has| |#1| (-38 (-409 (-566))))) (($ $) 61 (|has| |#1| (-558))) (($ |#1|) 59 (|has| |#1| (-172)))) (-2649 ((|#1| $ |#2|) 71)) (-3144 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2107 (((-771)) 32 T CONST)) (-3117 (((-112) $ $) 9)) (-2695 (((-112) $ $) 65 (|has| |#1| (-558)))) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-2947 (((-112) $ $) 6)) (-3065 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-409 (-566)) $) 68 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 67 (|has| |#1| (-38 (-409 (-566))))))) +((-2599 (*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-850)))) (-2696 (*1 *1 *1 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-850)))) (-3674 (*1 *1 *1 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-850))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4414) (-15 -2599 (|t#1| $)) (-15 -2696 ($ $ $)) (-15 -3674 ($ $ $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2768 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1099) |has| |#1| (-1099)) ((-1214) . T)) +((-1362 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2164 |#2|)) |#2| |#2|) 106)) (-1890 ((|#2| |#2| |#2|) 104)) (-3993 (((-2 (|:| |coef2| |#2|) (|:| -2164 |#2|)) |#2| |#2|) 108)) (-3162 (((-2 (|:| |coef1| |#2|) (|:| -2164 |#2|)) |#2| |#2|) 110)) (-1996 (((-2 (|:| |coef2| |#2|) (|:| -3177 |#1|)) |#2| |#2|) 132 (|has| |#1| (-454)))) (-1396 (((-2 (|:| |coef2| |#2|) (|:| -2610 |#1|)) |#2| |#2|) 56)) (-2163 (((-2 (|:| |coef2| |#2|) (|:| -2610 |#1|)) |#2| |#2|) 81)) (-2920 (((-2 (|:| |coef1| |#2|) (|:| -2610 |#1|)) |#2| |#2|) 83)) (-2598 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 97)) (-3119 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-771)) 90)) (-3724 (((-2 (|:| |coef2| |#2|) (|:| -4068 |#1|)) |#2|) 122)) (-2853 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-771)) 93)) (-2070 (((-644 (-771)) |#2| |#2|) 103)) (-2032 ((|#1| |#2| |#2|) 50)) (-3961 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3177 |#1|)) |#2| |#2|) 130 (|has| |#1| (-454)))) (-3177 ((|#1| |#2| |#2|) 128 (|has| |#1| (-454)))) (-2845 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2610 |#1|)) |#2| |#2|) 54)) (-2652 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2610 |#1|)) |#2| |#2|) 80)) (-2610 ((|#1| |#2| |#2|) 77)) (-1514 (((-2 (|:| -2397 |#1|) (|:| -2631 |#2|) (|:| -3264 |#2|)) |#2| |#2|) 41)) (-1549 ((|#2| |#2| |#2| |#2| |#1|) 67)) (-2673 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 95)) (-3940 ((|#2| |#2| |#2|) 94)) (-3633 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-771)) 88)) (-3715 ((|#2| |#2| |#2| (-771)) 86)) (-2164 ((|#2| |#2| |#2|) 136 (|has| |#1| (-454)))) (-2978 (((-1264 |#2|) (-1264 |#2|) |#1|) 22)) (-4100 (((-2 (|:| -2631 |#2|) (|:| -3264 |#2|)) |#2| |#2|) 46)) (-4306 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4068 |#1|)) |#2|) 120)) (-4068 ((|#1| |#2|) 117)) (-4351 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-771)) 92)) (-3341 ((|#2| |#2| |#2| (-771)) 91)) (-4371 (((-644 |#2|) |#2| |#2|) 100)) (-2924 ((|#2| |#2| |#1| |#1| (-771)) 62)) (-3263 ((|#1| |#1| |#1| (-771)) 61)) (* (((-1264 |#2|) |#1| (-1264 |#2|)) 17))) +(((-969 |#1| |#2|) (-10 -7 (-15 -2610 (|#1| |#2| |#2|)) (-15 -2652 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2610 |#1|)) |#2| |#2|)) (-15 -2163 ((-2 (|:| |coef2| |#2|) (|:| -2610 |#1|)) |#2| |#2|)) (-15 -2920 ((-2 (|:| |coef1| |#2|) (|:| -2610 |#1|)) |#2| |#2|)) (-15 -3715 (|#2| |#2| |#2| (-771))) (-15 -3633 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-771))) (-15 -3119 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-771))) (-15 -3341 (|#2| |#2| |#2| (-771))) (-15 -4351 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-771))) (-15 -2853 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-771))) (-15 -3940 (|#2| |#2| |#2|)) (-15 -2673 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2598 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1890 (|#2| |#2| |#2|)) (-15 -1362 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2164 |#2|)) |#2| |#2|)) (-15 -3993 ((-2 (|:| |coef2| |#2|) (|:| -2164 |#2|)) |#2| |#2|)) (-15 -3162 ((-2 (|:| |coef1| |#2|) (|:| -2164 |#2|)) |#2| |#2|)) (-15 -4068 (|#1| |#2|)) (-15 -4306 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4068 |#1|)) |#2|)) (-15 -3724 ((-2 (|:| |coef2| |#2|) (|:| -4068 |#1|)) |#2|)) (-15 -4371 ((-644 |#2|) |#2| |#2|)) (-15 -2070 ((-644 (-771)) |#2| |#2|)) (IF (|has| |#1| (-454)) (PROGN (-15 -3177 (|#1| |#2| |#2|)) (-15 -3961 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3177 |#1|)) |#2| |#2|)) (-15 -1996 ((-2 (|:| |coef2| |#2|) (|:| -3177 |#1|)) |#2| |#2|)) (-15 -2164 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1264 |#2|) |#1| (-1264 |#2|))) (-15 -2978 ((-1264 |#2|) (-1264 |#2|) |#1|)) (-15 -1514 ((-2 (|:| -2397 |#1|) (|:| -2631 |#2|) (|:| -3264 |#2|)) |#2| |#2|)) (-15 -4100 ((-2 (|:| -2631 |#2|) (|:| -3264 |#2|)) |#2| |#2|)) (-15 -3263 (|#1| |#1| |#1| (-771))) (-15 -2924 (|#2| |#2| |#1| |#1| (-771))) (-15 -1549 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2032 (|#1| |#2| |#2|)) (-15 -2845 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2610 |#1|)) |#2| |#2|)) (-15 -1396 ((-2 (|:| |coef2| |#2|) (|:| -2610 |#1|)) |#2| |#2|))) (-558) (-1240 |#1|)) (T -969)) +((-1396 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2610 *4))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4)))) (-2845 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2610 *4))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4)))) (-2032 (*1 *2 *3 *3) (-12 (-4 *2 (-558)) (-5 *1 (-969 *2 *3)) (-4 *3 (-1240 *2)))) (-1549 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-558)) (-5 *1 (-969 *3 *2)) (-4 *2 (-1240 *3)))) (-2924 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-771)) (-4 *3 (-558)) (-5 *1 (-969 *3 *2)) (-4 *2 (-1240 *3)))) (-3263 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-771)) (-4 *2 (-558)) (-5 *1 (-969 *2 *4)) (-4 *4 (-1240 *2)))) (-4100 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| -2631 *3) (|:| -3264 *3))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4)))) (-1514 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| -2397 *4) (|:| -2631 *3) (|:| -3264 *3))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4)))) (-2978 (*1 *2 *2 *3) (-12 (-5 *2 (-1264 *4)) (-4 *4 (-1240 *3)) (-4 *3 (-558)) (-5 *1 (-969 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1264 *4)) (-4 *4 (-1240 *3)) (-4 *3 (-558)) (-5 *1 (-969 *3 *4)))) (-2164 (*1 *2 *2 *2) (-12 (-4 *3 (-454)) (-4 *3 (-558)) (-5 *1 (-969 *3 *2)) (-4 *2 (-1240 *3)))) (-1996 (*1 *2 *3 *3) (-12 (-4 *4 (-454)) (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3177 *4))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4)))) (-3961 (*1 *2 *3 *3) (-12 (-4 *4 (-454)) (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3177 *4))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4)))) (-3177 (*1 *2 *3 *3) (-12 (-4 *2 (-558)) (-4 *2 (-454)) (-5 *1 (-969 *2 *3)) (-4 *3 (-1240 *2)))) (-2070 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-644 (-771))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4)))) (-4371 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-644 *3)) (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4)))) (-3724 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4068 *4))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4)))) (-4306 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4068 *4))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4)))) (-4068 (*1 *2 *3) (-12 (-4 *2 (-558)) (-5 *1 (-969 *2 *3)) (-4 *3 (-1240 *2)))) (-3162 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2164 *3))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4)))) (-3993 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2164 *3))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4)))) (-1362 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2164 *3))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4)))) (-1890 (*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-969 *3 *2)) (-4 *2 (-1240 *3)))) (-2598 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4)))) (-2673 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4)))) (-3940 (*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-969 *3 *2)) (-4 *2 (-1240 *3)))) (-2853 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-771)) (-4 *5 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-969 *5 *3)) (-4 *3 (-1240 *5)))) (-4351 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-771)) (-4 *5 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-969 *5 *3)) (-4 *3 (-1240 *5)))) (-3341 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-771)) (-4 *4 (-558)) (-5 *1 (-969 *4 *2)) (-4 *2 (-1240 *4)))) (-3119 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-771)) (-4 *5 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-969 *5 *3)) (-4 *3 (-1240 *5)))) (-3633 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-771)) (-4 *5 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-969 *5 *3)) (-4 *3 (-1240 *5)))) (-3715 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-771)) (-4 *4 (-558)) (-5 *1 (-969 *4 *2)) (-4 *2 (-1240 *4)))) (-2920 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2610 *4))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4)))) (-2163 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2610 *4))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4)))) (-2652 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2610 *4))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4)))) (-2610 (*1 *2 *3 *3) (-12 (-4 *2 (-558)) (-5 *1 (-969 *2 *3)) (-4 *3 (-1240 *2))))) +(-10 -7 (-15 -2610 (|#1| |#2| |#2|)) (-15 -2652 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2610 |#1|)) |#2| |#2|)) (-15 -2163 ((-2 (|:| |coef2| |#2|) (|:| -2610 |#1|)) |#2| |#2|)) (-15 -2920 ((-2 (|:| |coef1| |#2|) (|:| -2610 |#1|)) |#2| |#2|)) (-15 -3715 (|#2| |#2| |#2| (-771))) (-15 -3633 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-771))) (-15 -3119 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-771))) (-15 -3341 (|#2| |#2| |#2| (-771))) (-15 -4351 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-771))) (-15 -2853 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-771))) (-15 -3940 (|#2| |#2| |#2|)) (-15 -2673 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2598 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1890 (|#2| |#2| |#2|)) (-15 -1362 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2164 |#2|)) |#2| |#2|)) (-15 -3993 ((-2 (|:| |coef2| |#2|) (|:| -2164 |#2|)) |#2| |#2|)) (-15 -3162 ((-2 (|:| |coef1| |#2|) (|:| -2164 |#2|)) |#2| |#2|)) (-15 -4068 (|#1| |#2|)) (-15 -4306 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4068 |#1|)) |#2|)) (-15 -3724 ((-2 (|:| |coef2| |#2|) (|:| -4068 |#1|)) |#2|)) (-15 -4371 ((-644 |#2|) |#2| |#2|)) (-15 -2070 ((-644 (-771)) |#2| |#2|)) (IF (|has| |#1| (-454)) (PROGN (-15 -3177 (|#1| |#2| |#2|)) (-15 -3961 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3177 |#1|)) |#2| |#2|)) (-15 -1996 ((-2 (|:| |coef2| |#2|) (|:| -3177 |#1|)) |#2| |#2|)) (-15 -2164 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1264 |#2|) |#1| (-1264 |#2|))) (-15 -2978 ((-1264 |#2|) (-1264 |#2|) |#1|)) (-15 -1514 ((-2 (|:| -2397 |#1|) (|:| -2631 |#2|) (|:| -3264 |#2|)) |#2| |#2|)) (-15 -4100 ((-2 (|:| -2631 |#2|) (|:| -3264 |#2|)) |#2| |#2|)) (-15 -3263 (|#1| |#1| |#1| (-771))) (-15 -2924 (|#2| |#2| |#1| |#1| (-771))) (-15 -1549 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2032 (|#1| |#2| |#2|)) (-15 -2845 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2610 |#1|)) |#2| |#2|)) (-15 -1396 ((-2 (|:| |coef2| |#2|) (|:| -2610 |#1|)) |#2| |#2|))) +((-2988 (((-112) $ $) NIL)) (-1385 (((-1213) $) 13)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-2080 (((-1134) $) 10)) (-3152 (((-862) $) 20) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) +(((-970) (-13 (-1082) (-10 -8 (-15 -2080 ((-1134) $)) (-15 -1385 ((-1213) $))))) (T -970)) +((-2080 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-970)))) (-1385 (*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-970))))) +(-13 (-1082) (-10 -8 (-15 -2080 ((-1134) $)) (-15 -1385 ((-1213) $)))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-3967 (((-3 $ "failed") $ $) 39)) (-2463 (($) NIL T CONST)) (-2225 (((-644 (-644 (-566))) (-644 (-566))) 48)) (-3663 (((-566) $) 72)) (-2824 (($ (-644 (-566))) 18)) (-1478 (($ $ $) NIL)) (-2599 (($ $ $) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-2376 (((-644 (-566)) $) 13)) (-3357 (($ $) 52)) (-3152 (((-862) $) 68) (((-644 (-566)) $) 11)) (-3044 (((-112) $ $) NIL)) (-4356 (($) 8 T CONST)) (-2968 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2914 (((-112) $ $) 26)) (-2956 (((-112) $ $) NIL)) (-2935 (((-112) $ $) 25)) (-3002 (($ $ $) 28)) (* (($ (-921) $) NIL) (($ (-771) $) 37))) +(((-971) (-13 (-795) (-614 (-644 (-566))) (-613 (-644 (-566))) (-10 -8 (-15 -2824 ($ (-644 (-566)))) (-15 -2225 ((-644 (-644 (-566))) (-644 (-566)))) (-15 -3663 ((-566) $)) (-15 -3357 ($ $))))) (T -971)) +((-2824 (*1 *1 *2) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-971)))) (-2225 (*1 *2 *3) (-12 (-5 *2 (-644 (-644 (-566)))) (-5 *1 (-971)) (-5 *3 (-644 (-566))))) (-3663 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-971)))) (-3357 (*1 *1 *1) (-5 *1 (-971)))) +(-13 (-795) (-614 (-644 (-566))) (-613 (-644 (-566))) (-10 -8 (-15 -2824 ($ (-644 (-566)))) (-15 -2225 ((-644 (-644 (-566))) (-644 (-566)))) (-15 -3663 ((-566) $)) (-15 -3357 ($ $)))) +((-3025 (($ $ |#2|) 31)) (-3012 (($ $) 23) (($ $ $) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 17) (($ $ $) NIL) (($ $ |#2|) 21) (($ |#2| $) 20) (($ (-409 (-566)) $) 27) (($ $ (-409 (-566))) 29))) +(((-972 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-409 (-566)))) (-15 * (|#1| (-409 (-566)) |#1|)) (-15 -3025 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3012 (|#1| |#1| |#1|)) (-15 -3012 (|#1| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-921) |#1|))) (-973 |#2| |#3| |#4|) (-1049) (-792) (-850)) (T -972)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-409 (-566)))) (-15 * (|#1| (-409 (-566)) |#1|)) (-15 -3025 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3012 (|#1| |#1| |#1|)) (-15 -3012 (|#1| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-921) |#1|))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-1771 (((-644 |#3|) $) 86)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) 63 (|has| |#1| (-558)))) (-2161 (($ $) 64 (|has| |#1| (-558)))) (-2345 (((-112) $) 66 (|has| |#1| (-558)))) (-3967 (((-3 $ "failed") $ $) 20)) (-2463 (($) 18 T CONST)) (-2814 (($ $) 72)) (-3245 (((-3 $ "failed") $) 37)) (-3772 (((-112) $) 85)) (-2389 (((-112) $) 35)) (-2497 (((-112) $) 74)) (-1746 (($ |#1| |#2|) 73) (($ $ |#3| |#2|) 88) (($ $ (-644 |#3|) (-644 |#2|)) 87)) (-2319 (($ (-1 |#1| |#1|) $) 75)) (-2784 (($ $) 77)) (-2794 ((|#1| $) 78)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-2978 (((-3 $ "failed") $ $) 62 (|has| |#1| (-558)))) (-3902 ((|#2| $) 76)) (-1687 (($ $) 84)) (-3152 (((-862) $) 12) (($ (-566)) 33) (($ (-409 (-566))) 69 (|has| |#1| (-38 (-409 (-566))))) (($ $) 61 (|has| |#1| (-558))) (($ |#1|) 59 (|has| |#1| (-172)))) (-2271 ((|#1| $ |#2|) 71)) (-2633 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2593 (((-771)) 32 T CONST)) (-3044 (((-112) $ $) 9)) (-3014 (((-112) $ $) 65 (|has| |#1| (-558)))) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-2914 (((-112) $ $) 6)) (-3025 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-409 (-566)) $) 68 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 67 (|has| |#1| (-38 (-409 (-566))))))) (((-973 |#1| |#2| |#3|) (-140) (-1049) (-792) (-850)) (T -973)) -((-1763 (*1 *2 *1) (-12 (-4 *1 (-973 *2 *3 *4)) (-4 *3 (-792)) (-4 *4 (-850)) (-4 *2 (-1049)))) (-1749 (*1 *1 *1) (-12 (-4 *1 (-973 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-792)) (-4 *4 (-850)))) (-3636 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *2 *4)) (-4 *3 (-1049)) (-4 *4 (-850)) (-4 *2 (-792)))) (-3840 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-973 *4 *3 *2)) (-4 *4 (-1049)) (-4 *3 (-792)) (-4 *2 (-850)))) (-3840 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 *6)) (-5 *3 (-644 *5)) (-4 *1 (-973 *4 *5 *6)) (-4 *4 (-1049)) (-4 *5 (-792)) (-4 *6 (-850)))) (-3863 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-792)) (-4 *5 (-850)) (-5 *2 (-644 *5)))) (-2158 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-792)) (-4 *5 (-850)) (-5 *2 (-112)))) (-2770 (*1 *1 *1) (-12 (-4 *1 (-973 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-792)) (-4 *4 (-850))))) -(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -3840 ($ $ |t#3| |t#2|)) (-15 -3840 ($ $ (-644 |t#3|) (-644 |t#2|))) (-15 -1749 ($ $)) (-15 -1763 (|t#1| $)) (-15 -3636 (|t#2| $)) (-15 -3863 ((-644 |t#3|) $)) (-15 -2158 ((-112) $)) (-15 -2770 ($ $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-558)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-409 (-566)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2809 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #0#) |has| |#1| (-38 (-409 (-566)))) ((-616 (-566)) . T) ((-616 |#1|) |has| |#1| (-172)) ((-616 $) |has| |#1| (-558)) ((-613 (-862)) . T) ((-172) -2809 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-291) |has| |#1| (-558)) ((-558) |has| |#1| (-558)) ((-646 #0#) |has| |#1| (-38 (-409 (-566)))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #0#) |has| |#1| (-38 (-409 (-566)))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #0#) |has| |#1| (-38 (-409 (-566)))) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) |has| |#1| (-558)) ((-717 #0#) |has| |#1| (-38 (-409 (-566)))) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) |has| |#1| (-558)) ((-726) . T) ((-1051 #0#) |has| |#1| (-38 (-409 (-566)))) ((-1051 |#1|) . T) ((-1051 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-1056 #0#) |has| |#1| (-38 (-409 (-566)))) ((-1056 |#1|) . T) ((-1056 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) -((-2898 (((-1093 (-225)) $) 8)) (-2888 (((-1093 (-225)) $) 9)) (-2877 (((-1093 (-225)) $) 10)) (-1935 (((-644 (-644 (-943 (-225)))) $) 11)) (-3783 (((-862) $) 6))) +((-2794 (*1 *2 *1) (-12 (-4 *1 (-973 *2 *3 *4)) (-4 *3 (-792)) (-4 *4 (-850)) (-4 *2 (-1049)))) (-2784 (*1 *1 *1) (-12 (-4 *1 (-973 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-792)) (-4 *4 (-850)))) (-3902 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *2 *4)) (-4 *3 (-1049)) (-4 *4 (-850)) (-4 *2 (-792)))) (-1746 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-973 *4 *3 *2)) (-4 *4 (-1049)) (-4 *3 (-792)) (-4 *2 (-850)))) (-1746 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 *6)) (-5 *3 (-644 *5)) (-4 *1 (-973 *4 *5 *6)) (-4 *4 (-1049)) (-4 *5 (-792)) (-4 *6 (-850)))) (-1771 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-792)) (-4 *5 (-850)) (-5 *2 (-644 *5)))) (-3772 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-792)) (-4 *5 (-850)) (-5 *2 (-112)))) (-1687 (*1 *1 *1) (-12 (-4 *1 (-973 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-792)) (-4 *4 (-850))))) +(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -1746 ($ $ |t#3| |t#2|)) (-15 -1746 ($ $ (-644 |t#3|) (-644 |t#2|))) (-15 -2784 ($ $)) (-15 -2794 (|t#1| $)) (-15 -3902 (|t#2| $)) (-15 -1771 ((-644 |t#3|) $)) (-15 -3772 ((-112) $)) (-15 -1687 ($ $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-558)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-409 (-566)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2768 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #0#) |has| |#1| (-38 (-409 (-566)))) ((-616 (-566)) . T) ((-616 |#1|) |has| |#1| (-172)) ((-616 $) |has| |#1| (-558)) ((-613 (-862)) . T) ((-172) -2768 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-291) |has| |#1| (-558)) ((-558) |has| |#1| (-558)) ((-646 #0#) |has| |#1| (-38 (-409 (-566)))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #0#) |has| |#1| (-38 (-409 (-566)))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #0#) |has| |#1| (-38 (-409 (-566)))) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) |has| |#1| (-558)) ((-717 #0#) |has| |#1| (-38 (-409 (-566)))) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) |has| |#1| (-558)) ((-726) . T) ((-1051 #0#) |has| |#1| (-38 (-409 (-566)))) ((-1051 |#1|) . T) ((-1051 $) -2768 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-1056 #0#) |has| |#1| (-38 (-409 (-566)))) ((-1056 |#1|) . T) ((-1056 $) -2768 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) +((-3880 (((-1093 (-225)) $) 8)) (-3867 (((-1093 (-225)) $) 9)) (-3857 (((-1093 (-225)) $) 10)) (-4042 (((-644 (-644 (-943 (-225)))) $) 11)) (-3152 (((-862) $) 6))) (((-974) (-140)) (T -974)) -((-1935 (*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-644 (-644 (-943 (-225))))))) (-2877 (*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-1093 (-225))))) (-2888 (*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-1093 (-225))))) (-2898 (*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-1093 (-225)))))) -(-13 (-613 (-862)) (-10 -8 (-15 -1935 ((-644 (-644 (-943 (-225)))) $)) (-15 -2877 ((-1093 (-225)) $)) (-15 -2888 ((-1093 (-225)) $)) (-15 -2898 ((-1093 (-225)) $)))) +((-4042 (*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-644 (-644 (-943 (-225))))))) (-3857 (*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-1093 (-225))))) (-3867 (*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-1093 (-225))))) (-3880 (*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-1093 (-225)))))) +(-13 (-613 (-862)) (-10 -8 (-15 -4042 ((-644 (-644 (-943 (-225)))) $)) (-15 -3857 ((-1093 (-225)) $)) (-15 -3867 ((-1093 (-225)) $)) (-15 -3880 ((-1093 (-225)) $)))) (((-613 (-862)) . T)) -((-3863 (((-644 |#4|) $) 23)) (-2368 (((-112) $) 55)) (-4070 (((-112) $) 54)) (-1510 (((-2 (|:| |under| $) (|:| -3470 $) (|:| |upper| $)) $ |#4|) 42)) (-3779 (((-112) $) 56)) (-2540 (((-112) $ $) 62)) (-4093 (((-112) $ $) 65)) (-3741 (((-112) $) 60)) (-2026 (((-644 |#5|) (-644 |#5|) $) 98)) (-4306 (((-644 |#5|) (-644 |#5|) $) 95)) (-2513 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88)) (-2189 (((-644 |#4|) $) 27)) (-3953 (((-112) |#4| $) 34)) (-3112 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-2325 (($ $ |#4|) 39)) (-4106 (($ $ |#4|) 38)) (-3080 (($ $ |#4|) 40)) (-2947 (((-112) $ $) 46))) -(((-975 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4070 ((-112) |#1|)) (-15 -2026 ((-644 |#5|) (-644 |#5|) |#1|)) (-15 -4306 ((-644 |#5|) (-644 |#5|) |#1|)) (-15 -2513 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3112 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3779 ((-112) |#1|)) (-15 -4093 ((-112) |#1| |#1|)) (-15 -2540 ((-112) |#1| |#1|)) (-15 -3741 ((-112) |#1|)) (-15 -2368 ((-112) |#1|)) (-15 -1510 ((-2 (|:| |under| |#1|) (|:| -3470 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2325 (|#1| |#1| |#4|)) (-15 -3080 (|#1| |#1| |#4|)) (-15 -4106 (|#1| |#1| |#4|)) (-15 -3953 ((-112) |#4| |#1|)) (-15 -2189 ((-644 |#4|) |#1|)) (-15 -3863 ((-644 |#4|) |#1|)) (-15 -2947 ((-112) |#1| |#1|))) (-976 |#2| |#3| |#4| |#5|) (-1049) (-793) (-850) (-1064 |#2| |#3| |#4|)) (T -975)) +((-1771 (((-644 |#4|) $) 23)) (-3071 (((-112) $) 55)) (-3274 (((-112) $) 54)) (-2671 (((-2 (|:| |under| $) (|:| -3143 $) (|:| |upper| $)) $ |#4|) 42)) (-3036 (((-112) $) 56)) (-1963 (((-112) $ $) 62)) (-2983 (((-112) $ $) 65)) (-1477 (((-112) $) 60)) (-1789 (((-644 |#5|) (-644 |#5|) $) 98)) (-2228 (((-644 |#5|) (-644 |#5|) $) 95)) (-3264 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88)) (-1785 (((-644 |#4|) $) 27)) (-1579 (((-112) |#4| $) 34)) (-2594 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-4305 (($ $ |#4|) 39)) (-1702 (($ $ |#4|) 38)) (-3809 (($ $ |#4|) 40)) (-2914 (((-112) $ $) 46))) +(((-975 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3274 ((-112) |#1|)) (-15 -1789 ((-644 |#5|) (-644 |#5|) |#1|)) (-15 -2228 ((-644 |#5|) (-644 |#5|) |#1|)) (-15 -3264 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2594 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3036 ((-112) |#1|)) (-15 -2983 ((-112) |#1| |#1|)) (-15 -1963 ((-112) |#1| |#1|)) (-15 -1477 ((-112) |#1|)) (-15 -3071 ((-112) |#1|)) (-15 -2671 ((-2 (|:| |under| |#1|) (|:| -3143 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -4305 (|#1| |#1| |#4|)) (-15 -3809 (|#1| |#1| |#4|)) (-15 -1702 (|#1| |#1| |#4|)) (-15 -1579 ((-112) |#4| |#1|)) (-15 -1785 ((-644 |#4|) |#1|)) (-15 -1771 ((-644 |#4|) |#1|)) (-15 -2914 ((-112) |#1| |#1|))) (-976 |#2| |#3| |#4| |#5|) (-1049) (-793) (-850) (-1064 |#2| |#3| |#4|)) (T -975)) NIL -(-10 -8 (-15 -4070 ((-112) |#1|)) (-15 -2026 ((-644 |#5|) (-644 |#5|) |#1|)) (-15 -4306 ((-644 |#5|) (-644 |#5|) |#1|)) (-15 -2513 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3112 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3779 ((-112) |#1|)) (-15 -4093 ((-112) |#1| |#1|)) (-15 -2540 ((-112) |#1| |#1|)) (-15 -3741 ((-112) |#1|)) (-15 -2368 ((-112) |#1|)) (-15 -1510 ((-2 (|:| |under| |#1|) (|:| -3470 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2325 (|#1| |#1| |#4|)) (-15 -3080 (|#1| |#1| |#4|)) (-15 -4106 (|#1| |#1| |#4|)) (-15 -3953 ((-112) |#4| |#1|)) (-15 -2189 ((-644 |#4|) |#1|)) (-15 -3863 ((-644 |#4|) |#1|)) (-15 -2947 ((-112) |#1| |#1|))) -((-3007 (((-112) $ $) 7)) (-3863 (((-644 |#3|) $) 34)) (-2368 (((-112) $) 27)) (-4070 (((-112) $) 18 (|has| |#1| (-558)))) (-1510 (((-2 (|:| |under| $) (|:| -3470 $) (|:| |upper| $)) $ |#3|) 28)) (-2256 (((-112) $ (-771)) 45)) (-2701 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4414)))) (-3012 (($) 46 T CONST)) (-3779 (((-112) $) 23 (|has| |#1| (-558)))) (-2540 (((-112) $ $) 25 (|has| |#1| (-558)))) (-4093 (((-112) $ $) 24 (|has| |#1| (-558)))) (-3741 (((-112) $) 26 (|has| |#1| (-558)))) (-2026 (((-644 |#4|) (-644 |#4|) $) 19 (|has| |#1| (-558)))) (-4306 (((-644 |#4|) (-644 |#4|) $) 20 (|has| |#1| (-558)))) (-4307 (((-3 $ "failed") (-644 |#4|)) 37)) (-4205 (($ (-644 |#4|)) 36)) (-2031 (($ $) 69 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414))))) (-2665 (($ |#4| $) 68 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4414)))) (-2513 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-558)))) (-1676 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4414))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4414)))) (-3979 (((-644 |#4|) $) 53 (|has| $ (-6 -4414)))) (-1489 ((|#3| $) 35)) (-2404 (((-112) $ (-771)) 44)) (-2329 (((-644 |#4|) $) 54 (|has| $ (-6 -4414)))) (-1916 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414))))) (-2908 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#4| |#4|) $) 48)) (-2189 (((-644 |#3|) $) 33)) (-3953 (((-112) |#3| $) 32)) (-2603 (((-112) $ (-771)) 43)) (-4117 (((-1157) $) 10)) (-3112 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-558)))) (-4035 (((-1119) $) 11)) (-2006 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2692 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 |#4|) (-644 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-644 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))) (-1932 (((-112) $ $) 39)) (-3467 (((-112) $) 42)) (-1494 (($) 41)) (-4045 (((-771) |#4| $) 55 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414)))) (((-771) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4414)))) (-3940 (($ $) 40)) (-1348 (((-538) $) 70 (|has| |#4| (-614 (-538))))) (-3796 (($ (-644 |#4|)) 61)) (-2325 (($ $ |#3|) 29)) (-4106 (($ $ |#3|) 31)) (-3080 (($ $ |#3|) 30)) (-3783 (((-862) $) 12) (((-644 |#4|) $) 38)) (-3117 (((-112) $ $) 9)) (-1894 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) 6)) (-3018 (((-771) $) 47 (|has| $ (-6 -4414))))) +(-10 -8 (-15 -3274 ((-112) |#1|)) (-15 -1789 ((-644 |#5|) (-644 |#5|) |#1|)) (-15 -2228 ((-644 |#5|) (-644 |#5|) |#1|)) (-15 -3264 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2594 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3036 ((-112) |#1|)) (-15 -2983 ((-112) |#1| |#1|)) (-15 -1963 ((-112) |#1| |#1|)) (-15 -1477 ((-112) |#1|)) (-15 -3071 ((-112) |#1|)) (-15 -2671 ((-2 (|:| |under| |#1|) (|:| -3143 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -4305 (|#1| |#1| |#4|)) (-15 -3809 (|#1| |#1| |#4|)) (-15 -1702 (|#1| |#1| |#4|)) (-15 -1579 ((-112) |#4| |#1|)) (-15 -1785 ((-644 |#4|) |#1|)) (-15 -1771 ((-644 |#4|) |#1|)) (-15 -2914 ((-112) |#1| |#1|))) +((-2988 (((-112) $ $) 7)) (-1771 (((-644 |#3|) $) 34)) (-3071 (((-112) $) 27)) (-3274 (((-112) $) 18 (|has| |#1| (-558)))) (-2671 (((-2 (|:| |under| $) (|:| -3143 $) (|:| |upper| $)) $ |#3|) 28)) (-1504 (((-112) $ (-771)) 45)) (-3678 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4414)))) (-2463 (($) 46 T CONST)) (-3036 (((-112) $) 23 (|has| |#1| (-558)))) (-1963 (((-112) $ $) 25 (|has| |#1| (-558)))) (-2983 (((-112) $ $) 24 (|has| |#1| (-558)))) (-1477 (((-112) $) 26 (|has| |#1| (-558)))) (-1789 (((-644 |#4|) (-644 |#4|) $) 19 (|has| |#1| (-558)))) (-2228 (((-644 |#4|) (-644 |#4|) $) 20 (|has| |#1| (-558)))) (-2229 (((-3 $ "failed") (-644 |#4|)) 37)) (-4158 (($ (-644 |#4|)) 36)) (-3942 (($ $) 69 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414))))) (-2622 (($ |#4| $) 68 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4414)))) (-3264 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-558)))) (-2873 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4414))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4414)))) (-1683 (((-644 |#4|) $) 53 (|has| $ (-6 -4414)))) (-4296 ((|#3| $) 35)) (-3456 (((-112) $ (-771)) 44)) (-3491 (((-644 |#4|) $) 54 (|has| $ (-6 -4414)))) (-1602 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414))))) (-3885 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#4| |#4|) $) 48)) (-1785 (((-644 |#3|) $) 33)) (-1579 (((-112) |#3| $) 32)) (-3267 (((-112) $ (-771)) 43)) (-3380 (((-1157) $) 10)) (-2594 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-558)))) (-4072 (((-1119) $) 11)) (-3668 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2823 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 |#4|) (-644 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-644 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))) (-3814 (((-112) $ $) 39)) (-2872 (((-112) $) 42)) (-3493 (($) 41)) (-4083 (((-771) |#4| $) 55 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414)))) (((-771) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4414)))) (-1480 (($ $) 40)) (-2376 (((-538) $) 70 (|has| |#4| (-614 (-538))))) (-1340 (($ (-644 |#4|)) 61)) (-4305 (($ $ |#3|) 29)) (-1702 (($ $ |#3|) 31)) (-3809 (($ $ |#3|) 30)) (-3152 (((-862) $) 12) (((-644 |#4|) $) 38)) (-3044 (((-112) $ $) 9)) (-2210 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) 6)) (-3000 (((-771) $) 47 (|has| $ (-6 -4414))))) (((-976 |#1| |#2| |#3| |#4|) (-140) (-1049) (-793) (-850) (-1064 |t#1| |t#2| |t#3|)) (T -976)) -((-4307 (*1 *1 *2) (|partial| -12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *1 (-976 *3 *4 *5 *6)))) (-4205 (*1 *1 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *1 (-976 *3 *4 *5 *6)))) (-1489 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *2 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-1064 *3 *4 *2)) (-4 *2 (-850)))) (-3863 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-644 *5)))) (-2189 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-644 *5)))) (-3953 (*1 *2 *3 *1) (-12 (-4 *1 (-976 *4 *5 *3 *6)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-850)) (-4 *6 (-1064 *4 *5 *3)) (-5 *2 (-112)))) (-4106 (*1 *1 *1 *2) (-12 (-4 *1 (-976 *3 *4 *2 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)) (-4 *5 (-1064 *3 *4 *2)))) (-3080 (*1 *1 *1 *2) (-12 (-4 *1 (-976 *3 *4 *2 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)) (-4 *5 (-1064 *3 *4 *2)))) (-2325 (*1 *1 *1 *2) (-12 (-4 *1 (-976 *3 *4 *2 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)) (-4 *5 (-1064 *3 *4 *2)))) (-1510 (*1 *2 *1 *3) (-12 (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-850)) (-4 *6 (-1064 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3470 *1) (|:| |upper| *1))) (-4 *1 (-976 *4 *5 *3 *6)))) (-2368 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-112)))) (-3741 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) (-5 *2 (-112)))) (-2540 (*1 *2 *1 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) (-5 *2 (-112)))) (-4093 (*1 *2 *1 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) (-5 *2 (-112)))) (-3779 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) (-5 *2 (-112)))) (-3112 (*1 *2 *3 *1) (-12 (-4 *1 (-976 *4 *5 *6 *3)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-4 *4 (-558)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-2513 (*1 *2 *3 *1) (-12 (-4 *1 (-976 *4 *5 *6 *3)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-4 *4 (-558)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-4306 (*1 *2 *2 *1) (-12 (-5 *2 (-644 *6)) (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)))) (-2026 (*1 *2 *2 *1) (-12 (-5 *2 (-644 *6)) (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)))) (-4070 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) (-5 *2 (-112))))) -(-13 (-1099) (-151 |t#4|) (-613 (-644 |t#4|)) (-10 -8 (-6 -4414) (-15 -4307 ((-3 $ "failed") (-644 |t#4|))) (-15 -4205 ($ (-644 |t#4|))) (-15 -1489 (|t#3| $)) (-15 -3863 ((-644 |t#3|) $)) (-15 -2189 ((-644 |t#3|) $)) (-15 -3953 ((-112) |t#3| $)) (-15 -4106 ($ $ |t#3|)) (-15 -3080 ($ $ |t#3|)) (-15 -2325 ($ $ |t#3|)) (-15 -1510 ((-2 (|:| |under| $) (|:| -3470 $) (|:| |upper| $)) $ |t#3|)) (-15 -2368 ((-112) $)) (IF (|has| |t#1| (-558)) (PROGN (-15 -3741 ((-112) $)) (-15 -2540 ((-112) $ $)) (-15 -4093 ((-112) $ $)) (-15 -3779 ((-112) $)) (-15 -3112 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2513 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -4306 ((-644 |t#4|) (-644 |t#4|) $)) (-15 -2026 ((-644 |t#4|) (-644 |t#4|) $)) (-15 -4070 ((-112) $))) |%noBranch|))) +((-2229 (*1 *1 *2) (|partial| -12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *1 (-976 *3 *4 *5 *6)))) (-4158 (*1 *1 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *1 (-976 *3 *4 *5 *6)))) (-4296 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *2 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-1064 *3 *4 *2)) (-4 *2 (-850)))) (-1771 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-644 *5)))) (-1785 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-644 *5)))) (-1579 (*1 *2 *3 *1) (-12 (-4 *1 (-976 *4 *5 *3 *6)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-850)) (-4 *6 (-1064 *4 *5 *3)) (-5 *2 (-112)))) (-1702 (*1 *1 *1 *2) (-12 (-4 *1 (-976 *3 *4 *2 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)) (-4 *5 (-1064 *3 *4 *2)))) (-3809 (*1 *1 *1 *2) (-12 (-4 *1 (-976 *3 *4 *2 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)) (-4 *5 (-1064 *3 *4 *2)))) (-4305 (*1 *1 *1 *2) (-12 (-4 *1 (-976 *3 *4 *2 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)) (-4 *5 (-1064 *3 *4 *2)))) (-2671 (*1 *2 *1 *3) (-12 (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-850)) (-4 *6 (-1064 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3143 *1) (|:| |upper| *1))) (-4 *1 (-976 *4 *5 *3 *6)))) (-3071 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-112)))) (-1477 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) (-5 *2 (-112)))) (-1963 (*1 *2 *1 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) (-5 *2 (-112)))) (-2983 (*1 *2 *1 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) (-5 *2 (-112)))) (-3036 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) (-5 *2 (-112)))) (-2594 (*1 *2 *3 *1) (-12 (-4 *1 (-976 *4 *5 *6 *3)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-4 *4 (-558)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3264 (*1 *2 *3 *1) (-12 (-4 *1 (-976 *4 *5 *6 *3)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-4 *4 (-558)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-2228 (*1 *2 *2 *1) (-12 (-5 *2 (-644 *6)) (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)))) (-1789 (*1 *2 *2 *1) (-12 (-5 *2 (-644 *6)) (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)))) (-3274 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) (-5 *2 (-112))))) +(-13 (-1099) (-151 |t#4|) (-613 (-644 |t#4|)) (-10 -8 (-6 -4414) (-15 -2229 ((-3 $ "failed") (-644 |t#4|))) (-15 -4158 ($ (-644 |t#4|))) (-15 -4296 (|t#3| $)) (-15 -1771 ((-644 |t#3|) $)) (-15 -1785 ((-644 |t#3|) $)) (-15 -1579 ((-112) |t#3| $)) (-15 -1702 ($ $ |t#3|)) (-15 -3809 ($ $ |t#3|)) (-15 -4305 ($ $ |t#3|)) (-15 -2671 ((-2 (|:| |under| $) (|:| -3143 $) (|:| |upper| $)) $ |t#3|)) (-15 -3071 ((-112) $)) (IF (|has| |t#1| (-558)) (PROGN (-15 -1477 ((-112) $)) (-15 -1963 ((-112) $ $)) (-15 -2983 ((-112) $ $)) (-15 -3036 ((-112) $)) (-15 -2594 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3264 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2228 ((-644 |t#4|) (-644 |t#4|) $)) (-15 -1789 ((-644 |t#4|) (-644 |t#4|) $)) (-15 -3274 ((-112) $))) |%noBranch|))) (((-34) . T) ((-102) . T) ((-613 (-644 |#4|)) . T) ((-613 (-862)) . T) ((-151 |#4|) . T) ((-614 (-538)) |has| |#4| (-614 (-538))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))) ((-491 |#4|) . T) ((-516 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))) ((-1099) . T) ((-1214) . T)) -((-2725 (((-644 |#4|) |#4| |#4|) 136)) (-3399 (((-644 |#4|) (-644 |#4|) (-112)) 125 (|has| |#1| (-454))) (((-644 |#4|) (-644 |#4|)) 126 (|has| |#1| (-454)))) (-1496 (((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|)) 44)) (-1551 (((-112) |#4|) 43)) (-3549 (((-644 |#4|) |#4|) 121 (|has| |#1| (-454)))) (-3969 (((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-1 (-112) |#4|) (-644 |#4|)) 24)) (-3496 (((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 (-1 (-112) |#4|)) (-644 |#4|)) 30)) (-2489 (((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 (-1 (-112) |#4|)) (-644 |#4|)) 31)) (-1982 (((-3 (-2 (|:| |bas| (-478 |#1| |#2| |#3| |#4|)) (|:| -1825 (-644 |#4|))) "failed") (-644 |#4|)) 90)) (-2413 (((-644 |#4|) (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103)) (-3302 (((-644 |#4|) (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129)) (-4032 (((-644 |#4|) (-644 |#4|)) 128)) (-2558 (((-644 |#4|) (-644 |#4|) (-644 |#4|) (-112)) 59) (((-644 |#4|) (-644 |#4|) (-644 |#4|)) 61)) (-1310 ((|#4| |#4| (-644 |#4|)) 60)) (-3128 (((-644 |#4|) (-644 |#4|) (-644 |#4|)) 132 (|has| |#1| (-454)))) (-2283 (((-644 |#4|) (-644 |#4|) (-644 |#4|)) 135 (|has| |#1| (-454)))) (-1476 (((-644 |#4|) (-644 |#4|) (-644 |#4|)) 134 (|has| |#1| (-454)))) (-1758 (((-644 |#4|) (-644 |#4|) (-644 |#4|) (-1 (-644 |#4|) (-644 |#4|))) 105) (((-644 |#4|) (-644 |#4|) (-644 |#4|)) 107) (((-644 |#4|) (-644 |#4|) |#4|) 141) (((-644 |#4|) |#4| |#4|) 137) (((-644 |#4|) (-644 |#4|)) 106)) (-1686 (((-644 |#4|) (-644 |#4|) (-644 |#4|)) 118 (-12 (|has| |#1| (-147)) (|has| |#1| (-308))))) (-3011 (((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|)) 52)) (-2579 (((-112) (-644 |#4|)) 79)) (-3365 (((-112) (-644 |#4|) (-644 (-644 |#4|))) 67)) (-3682 (((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|)) 37)) (-2845 (((-112) |#4|) 36)) (-3960 (((-644 |#4|) (-644 |#4|)) 116 (-12 (|has| |#1| (-147)) (|has| |#1| (-308))))) (-2651 (((-644 |#4|) (-644 |#4|)) 117 (-12 (|has| |#1| (-147)) (|has| |#1| (-308))))) (-3799 (((-644 |#4|) (-644 |#4|)) 83)) (-1900 (((-644 |#4|) (-644 |#4|)) 97)) (-1661 (((-112) (-644 |#4|) (-644 |#4|)) 65)) (-4191 (((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|)) 50)) (-1645 (((-112) |#4|) 45))) -(((-977 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1758 ((-644 |#4|) (-644 |#4|))) (-15 -1758 ((-644 |#4|) |#4| |#4|)) (-15 -4032 ((-644 |#4|) (-644 |#4|))) (-15 -2725 ((-644 |#4|) |#4| |#4|)) (-15 -1758 ((-644 |#4|) (-644 |#4|) |#4|)) (-15 -1758 ((-644 |#4|) (-644 |#4|) (-644 |#4|))) (-15 -1758 ((-644 |#4|) (-644 |#4|) (-644 |#4|) (-1 (-644 |#4|) (-644 |#4|)))) (-15 -1661 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -3365 ((-112) (-644 |#4|) (-644 (-644 |#4|)))) (-15 -2579 ((-112) (-644 |#4|))) (-15 -3969 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-1 (-112) |#4|) (-644 |#4|))) (-15 -3496 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 (-1 (-112) |#4|)) (-644 |#4|))) (-15 -2489 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 (-1 (-112) |#4|)) (-644 |#4|))) (-15 -3011 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|))) (-15 -1551 ((-112) |#4|)) (-15 -1496 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|))) (-15 -2845 ((-112) |#4|)) (-15 -3682 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|))) (-15 -1645 ((-112) |#4|)) (-15 -4191 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|))) (-15 -2558 ((-644 |#4|) (-644 |#4|) (-644 |#4|))) (-15 -2558 ((-644 |#4|) (-644 |#4|) (-644 |#4|) (-112))) (-15 -1310 (|#4| |#4| (-644 |#4|))) (-15 -3799 ((-644 |#4|) (-644 |#4|))) (-15 -1982 ((-3 (-2 (|:| |bas| (-478 |#1| |#2| |#3| |#4|)) (|:| -1825 (-644 |#4|))) "failed") (-644 |#4|))) (-15 -1900 ((-644 |#4|) (-644 |#4|))) (-15 -2413 ((-644 |#4|) (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3302 ((-644 |#4|) (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-454)) (PROGN (-15 -3549 ((-644 |#4|) |#4|)) (-15 -3399 ((-644 |#4|) (-644 |#4|))) (-15 -3399 ((-644 |#4|) (-644 |#4|) (-112))) (-15 -3128 ((-644 |#4|) (-644 |#4|) (-644 |#4|))) (-15 -1476 ((-644 |#4|) (-644 |#4|) (-644 |#4|))) (-15 -2283 ((-644 |#4|) (-644 |#4|) (-644 |#4|)))) |%noBranch|) (IF (|has| |#1| (-308)) (IF (|has| |#1| (-147)) (PROGN (-15 -2651 ((-644 |#4|) (-644 |#4|))) (-15 -3960 ((-644 |#4|) (-644 |#4|))) (-15 -1686 ((-644 |#4|) (-644 |#4|) (-644 |#4|)))) |%noBranch|) |%noBranch|)) (-558) (-793) (-850) (-1064 |#1| |#2| |#3|)) (T -977)) -((-1686 (*1 *2 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-308)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))) (-3960 (*1 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-308)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))) (-2651 (*1 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-308)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))) (-2283 (*1 *2 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-454)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))) (-1476 (*1 *2 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-454)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))) (-3128 (*1 *2 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-454)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))) (-3399 (*1 *2 *2 *3) (-12 (-5 *2 (-644 *7)) (-5 *3 (-112)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-977 *4 *5 *6 *7)))) (-3399 (*1 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-454)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))) (-3549 (*1 *2 *3) (-12 (-4 *4 (-454)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 *3)) (-5 *1 (-977 *4 *5 *6 *3)) (-4 *3 (-1064 *4 *5 *6)))) (-3302 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-644 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-977 *5 *6 *7 *8)))) (-2413 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-644 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1064 *6 *7 *8)) (-4 *6 (-558)) (-4 *7 (-793)) (-4 *8 (-850)) (-5 *1 (-977 *6 *7 *8 *9)))) (-1900 (*1 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))) (-1982 (*1 *2 *3) (|partial| -12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-478 *4 *5 *6 *7)) (|:| -1825 (-644 *7)))) (-5 *1 (-977 *4 *5 *6 *7)) (-5 *3 (-644 *7)))) (-3799 (*1 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))) (-1310 (*1 *2 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-1064 *4 *5 *6)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-977 *4 *5 *6 *2)))) (-2558 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-644 *7)) (-5 *3 (-112)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-977 *4 *5 *6 *7)))) (-2558 (*1 *2 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))) (-4191 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-644 *7)) (|:| |badPols| (-644 *7)))) (-5 *1 (-977 *4 *5 *6 *7)) (-5 *3 (-644 *7)))) (-1645 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-977 *4 *5 *6 *3)) (-4 *3 (-1064 *4 *5 *6)))) (-3682 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-644 *7)) (|:| |badPols| (-644 *7)))) (-5 *1 (-977 *4 *5 *6 *7)) (-5 *3 (-644 *7)))) (-2845 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-977 *4 *5 *6 *3)) (-4 *3 (-1064 *4 *5 *6)))) (-1496 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-644 *7)) (|:| |badPols| (-644 *7)))) (-5 *1 (-977 *4 *5 *6 *7)) (-5 *3 (-644 *7)))) (-1551 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-977 *4 *5 *6 *3)) (-4 *3 (-1064 *4 *5 *6)))) (-3011 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-644 *7)) (|:| |badPols| (-644 *7)))) (-5 *1 (-977 *4 *5 *6 *7)) (-5 *3 (-644 *7)))) (-2489 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-1 (-112) *8))) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-2 (|:| |goodPols| (-644 *8)) (|:| |badPols| (-644 *8)))) (-5 *1 (-977 *5 *6 *7 *8)) (-5 *4 (-644 *8)))) (-3496 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-1 (-112) *8))) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-2 (|:| |goodPols| (-644 *8)) (|:| |badPols| (-644 *8)))) (-5 *1 (-977 *5 *6 *7 *8)) (-5 *4 (-644 *8)))) (-3969 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-2 (|:| |goodPols| (-644 *8)) (|:| |badPols| (-644 *8)))) (-5 *1 (-977 *5 *6 *7 *8)) (-5 *4 (-644 *8)))) (-2579 (*1 *2 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-977 *4 *5 *6 *7)))) (-3365 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-644 *8))) (-5 *3 (-644 *8)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-112)) (-5 *1 (-977 *5 *6 *7 *8)))) (-1661 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-977 *4 *5 *6 *7)))) (-1758 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-644 *7) (-644 *7))) (-5 *2 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-977 *4 *5 *6 *7)))) (-1758 (*1 *2 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))) (-1758 (*1 *2 *2 *3) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1064 *4 *5 *6)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-977 *4 *5 *6 *3)))) (-2725 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 *3)) (-5 *1 (-977 *4 *5 *6 *3)) (-4 *3 (-1064 *4 *5 *6)))) (-4032 (*1 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))) (-1758 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 *3)) (-5 *1 (-977 *4 *5 *6 *3)) (-4 *3 (-1064 *4 *5 *6)))) (-1758 (*1 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6))))) -(-10 -7 (-15 -1758 ((-644 |#4|) (-644 |#4|))) (-15 -1758 ((-644 |#4|) |#4| |#4|)) (-15 -4032 ((-644 |#4|) (-644 |#4|))) (-15 -2725 ((-644 |#4|) |#4| |#4|)) (-15 -1758 ((-644 |#4|) (-644 |#4|) |#4|)) (-15 -1758 ((-644 |#4|) (-644 |#4|) (-644 |#4|))) (-15 -1758 ((-644 |#4|) (-644 |#4|) (-644 |#4|) (-1 (-644 |#4|) (-644 |#4|)))) (-15 -1661 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -3365 ((-112) (-644 |#4|) (-644 (-644 |#4|)))) (-15 -2579 ((-112) (-644 |#4|))) (-15 -3969 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-1 (-112) |#4|) (-644 |#4|))) (-15 -3496 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 (-1 (-112) |#4|)) (-644 |#4|))) (-15 -2489 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 (-1 (-112) |#4|)) (-644 |#4|))) (-15 -3011 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|))) (-15 -1551 ((-112) |#4|)) (-15 -1496 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|))) (-15 -2845 ((-112) |#4|)) (-15 -3682 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|))) (-15 -1645 ((-112) |#4|)) (-15 -4191 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|))) (-15 -2558 ((-644 |#4|) (-644 |#4|) (-644 |#4|))) (-15 -2558 ((-644 |#4|) (-644 |#4|) (-644 |#4|) (-112))) (-15 -1310 (|#4| |#4| (-644 |#4|))) (-15 -3799 ((-644 |#4|) (-644 |#4|))) (-15 -1982 ((-3 (-2 (|:| |bas| (-478 |#1| |#2| |#3| |#4|)) (|:| -1825 (-644 |#4|))) "failed") (-644 |#4|))) (-15 -1900 ((-644 |#4|) (-644 |#4|))) (-15 -2413 ((-644 |#4|) (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3302 ((-644 |#4|) (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-454)) (PROGN (-15 -3549 ((-644 |#4|) |#4|)) (-15 -3399 ((-644 |#4|) (-644 |#4|))) (-15 -3399 ((-644 |#4|) (-644 |#4|) (-112))) (-15 -3128 ((-644 |#4|) (-644 |#4|) (-644 |#4|))) (-15 -1476 ((-644 |#4|) (-644 |#4|) (-644 |#4|))) (-15 -2283 ((-644 |#4|) (-644 |#4|) (-644 |#4|)))) |%noBranch|) (IF (|has| |#1| (-308)) (IF (|has| |#1| (-147)) (PROGN (-15 -2651 ((-644 |#4|) (-644 |#4|))) (-15 -3960 ((-644 |#4|) (-644 |#4|))) (-15 -1686 ((-644 |#4|) (-644 |#4|) (-644 |#4|)))) |%noBranch|) |%noBranch|)) -((-3598 (((-2 (|:| R (-689 |#1|)) (|:| A (-689 |#1|)) (|:| |Ainv| (-689 |#1|))) (-689 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-1478 (((-644 (-2 (|:| C (-689 |#1|)) (|:| |g| (-1264 |#1|)))) (-689 |#1|) (-1264 |#1|)) 44)) (-3861 (((-689 |#1|) (-689 |#1|) (-689 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16))) -(((-978 |#1|) (-10 -7 (-15 -3598 ((-2 (|:| R (-689 |#1|)) (|:| A (-689 |#1|)) (|:| |Ainv| (-689 |#1|))) (-689 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3861 ((-689 |#1|) (-689 |#1|) (-689 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -1478 ((-644 (-2 (|:| C (-689 |#1|)) (|:| |g| (-1264 |#1|)))) (-689 |#1|) (-1264 |#1|)))) (-365)) (T -978)) -((-1478 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-5 *2 (-644 (-2 (|:| C (-689 *5)) (|:| |g| (-1264 *5))))) (-5 *1 (-978 *5)) (-5 *3 (-689 *5)) (-5 *4 (-1264 *5)))) (-3861 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-689 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) (-5 *1 (-978 *5)))) (-3598 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-365)) (-5 *2 (-2 (|:| R (-689 *6)) (|:| A (-689 *6)) (|:| |Ainv| (-689 *6)))) (-5 *1 (-978 *6)) (-5 *3 (-689 *6))))) -(-10 -7 (-15 -3598 ((-2 (|:| R (-689 |#1|)) (|:| A (-689 |#1|)) (|:| |Ainv| (-689 |#1|))) (-689 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3861 ((-689 |#1|) (-689 |#1|) (-689 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -1478 ((-644 (-2 (|:| C (-689 |#1|)) (|:| |g| (-1264 |#1|)))) (-689 |#1|) (-1264 |#1|)))) -((-3184 (((-420 |#4|) |#4|) 56))) -(((-979 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3184 ((-420 |#4|) |#4|))) (-850) (-793) (-454) (-949 |#3| |#2| |#1|)) (T -979)) -((-3184 (*1 *2 *3) (-12 (-4 *4 (-850)) (-4 *5 (-793)) (-4 *6 (-454)) (-5 *2 (-420 *3)) (-5 *1 (-979 *4 *5 *6 *3)) (-4 *3 (-949 *6 *5 *4))))) -(-10 -7 (-15 -3184 ((-420 |#4|) |#4|))) -((-3007 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2149 (($ (-771)) 113 (|has| |#1| (-23)))) (-3734 (((-1269) $ (-566) (-566)) 41 (|has| $ (-6 -4415)))) (-2644 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-850)))) (-1944 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4415))) (($ $) 89 (-12 (|has| |#1| (-850)) (|has| $ (-6 -4415))))) (-1510 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-850)))) (-2256 (((-112) $ (-771)) 8)) (-3923 ((|#1| $ (-566) |#1|) 53 (|has| $ (-6 -4415))) ((|#1| $ (-1231 (-566)) |#1|) 59 (|has| $ (-6 -4415)))) (-2701 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4414)))) (-3012 (($) 7 T CONST)) (-3413 (($ $) 91 (|has| $ (-6 -4415)))) (-1377 (($ $) 101)) (-2031 (($ $) 79 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2665 (($ |#1| $) 78 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4414)))) (-1676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4414)))) (-2920 ((|#1| $ (-566) |#1|) 54 (|has| $ (-6 -4415)))) (-2855 ((|#1| $ (-566)) 52)) (-4000 (((-566) (-1 (-112) |#1|) $) 98) (((-566) |#1| $) 97 (|has| |#1| (-1099))) (((-566) |#1| $ (-566)) 96 (|has| |#1| (-1099)))) (-2017 (($ (-644 |#1|)) 119)) (-3979 (((-644 |#1|) $) 31 (|has| $ (-6 -4414)))) (-1939 (((-689 |#1|) $ $) 106 (|has| |#1| (-1049)))) (-4265 (($ (-771) |#1|) 70)) (-2404 (((-112) $ (-771)) 9)) (-3854 (((-566) $) 44 (|has| (-566) (-850)))) (-2097 (($ $ $) 88 (|has| |#1| (-850)))) (-3298 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-850)))) (-2329 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2712 (((-566) $) 45 (|has| (-566) (-850)))) (-3962 (($ $ $) 87 (|has| |#1| (-850)))) (-2908 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2330 ((|#1| $) 103 (-12 (|has| |#1| (-1049)) (|has| |#1| (-1002))))) (-2603 (((-112) $ (-771)) 10)) (-4149 ((|#1| $) 104 (-12 (|has| |#1| (-1049)) (|has| |#1| (-1002))))) (-4117 (((-1157) $) 22 (|has| |#1| (-1099)))) (-4276 (($ |#1| $ (-566)) 61) (($ $ $ (-566)) 60)) (-4074 (((-644 (-566)) $) 47)) (-3792 (((-112) (-566) $) 48)) (-4035 (((-1119) $) 21 (|has| |#1| (-1099)))) (-1998 ((|#1| $) 43 (|has| (-566) (-850)))) (-2006 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-4030 (($ $ |#1|) 42 (|has| $ (-6 -4415)))) (-3874 (($ $ (-644 |#1|)) 117)) (-2692 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) 14)) (-4156 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2993 (((-644 |#1|) $) 49)) (-3467 (((-112) $) 11)) (-1494 (($) 12)) (-4390 ((|#1| $ (-566) |#1|) 51) ((|#1| $ (-566)) 50) (($ $ (-1231 (-566))) 64)) (-4280 ((|#1| $ $) 107 (|has| |#1| (-1049)))) (-3164 (((-921) $) 118)) (-2187 (($ $ (-566)) 63) (($ $ (-1231 (-566))) 62)) (-2797 (($ $ $) 105)) (-4045 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-1297 (($ $ $ (-566)) 92 (|has| $ (-6 -4415)))) (-3940 (($ $) 13)) (-1348 (((-538) $) 80 (|has| |#1| (-614 (-538)))) (($ (-644 |#1|)) 120)) (-3796 (($ (-644 |#1|)) 71)) (-3721 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-644 $)) 66)) (-3783 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-3117 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-1894 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-3009 (((-112) $ $) 85 (|has| |#1| (-850)))) (-2984 (((-112) $ $) 84 (|has| |#1| (-850)))) (-2947 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-2995 (((-112) $ $) 86 (|has| |#1| (-850)))) (-2969 (((-112) $ $) 83 (|has| |#1| (-850)))) (-3053 (($ $) 112 (|has| |#1| (-21))) (($ $ $) 111 (|has| |#1| (-21)))) (-3041 (($ $ $) 114 (|has| |#1| (-25)))) (* (($ (-566) $) 110 (|has| |#1| (-21))) (($ |#1| $) 109 (|has| |#1| (-726))) (($ $ |#1|) 108 (|has| |#1| (-726)))) (-3018 (((-771) $) 6 (|has| $ (-6 -4414))))) +((-2843 (((-644 |#4|) |#4| |#4|) 136)) (-2839 (((-644 |#4|) (-644 |#4|) (-112)) 125 (|has| |#1| (-454))) (((-644 |#4|) (-644 |#4|)) 126 (|has| |#1| (-454)))) (-3698 (((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|)) 44)) (-1474 (((-112) |#4|) 43)) (-3307 (((-644 |#4|) |#4|) 121 (|has| |#1| (-454)))) (-3426 (((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-1 (-112) |#4|) (-644 |#4|)) 24)) (-2777 (((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 (-1 (-112) |#4|)) (-644 |#4|)) 30)) (-2561 (((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 (-1 (-112) |#4|)) (-644 |#4|)) 31)) (-3660 (((-3 (-2 (|:| |bas| (-478 |#1| |#2| |#3| |#4|)) (|:| -3712 (-644 |#4|))) "failed") (-644 |#4|)) 90)) (-3074 (((-644 |#4|) (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103)) (-3104 (((-644 |#4|) (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129)) (-4016 (((-644 |#4|) (-644 |#4|)) 128)) (-4370 (((-644 |#4|) (-644 |#4|) (-644 |#4|) (-112)) 59) (((-644 |#4|) (-644 |#4|) (-644 |#4|)) 61)) (-2015 ((|#4| |#4| (-644 |#4|)) 60)) (-1573 (((-644 |#4|) (-644 |#4|) (-644 |#4|)) 132 (|has| |#1| (-454)))) (-2252 (((-644 |#4|) (-644 |#4|) (-644 |#4|)) 135 (|has| |#1| (-454)))) (-2182 (((-644 |#4|) (-644 |#4|) (-644 |#4|)) 134 (|has| |#1| (-454)))) (-2547 (((-644 |#4|) (-644 |#4|) (-644 |#4|) (-1 (-644 |#4|) (-644 |#4|))) 105) (((-644 |#4|) (-644 |#4|) (-644 |#4|)) 107) (((-644 |#4|) (-644 |#4|) |#4|) 141) (((-644 |#4|) |#4| |#4|) 137) (((-644 |#4|) (-644 |#4|)) 106)) (-4222 (((-644 |#4|) (-644 |#4|) (-644 |#4|)) 118 (-12 (|has| |#1| (-147)) (|has| |#1| (-308))))) (-2323 (((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|)) 52)) (-2902 (((-112) (-644 |#4|)) 79)) (-2375 (((-112) (-644 |#4|) (-644 (-644 |#4|))) 67)) (-3862 (((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|)) 37)) (-1656 (((-112) |#4|) 36)) (-4079 (((-644 |#4|) (-644 |#4|)) 116 (-12 (|has| |#1| (-147)) (|has| |#1| (-308))))) (-4389 (((-644 |#4|) (-644 |#4|)) 117 (-12 (|has| |#1| (-147)) (|has| |#1| (-308))))) (-4110 (((-644 |#4|) (-644 |#4|)) 83)) (-1577 (((-644 |#4|) (-644 |#4|)) 97)) (-1673 (((-112) (-644 |#4|) (-644 |#4|)) 65)) (-2863 (((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|)) 50)) (-1688 (((-112) |#4|) 45))) +(((-977 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2547 ((-644 |#4|) (-644 |#4|))) (-15 -2547 ((-644 |#4|) |#4| |#4|)) (-15 -4016 ((-644 |#4|) (-644 |#4|))) (-15 -2843 ((-644 |#4|) |#4| |#4|)) (-15 -2547 ((-644 |#4|) (-644 |#4|) |#4|)) (-15 -2547 ((-644 |#4|) (-644 |#4|) (-644 |#4|))) (-15 -2547 ((-644 |#4|) (-644 |#4|) (-644 |#4|) (-1 (-644 |#4|) (-644 |#4|)))) (-15 -1673 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -2375 ((-112) (-644 |#4|) (-644 (-644 |#4|)))) (-15 -2902 ((-112) (-644 |#4|))) (-15 -3426 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-1 (-112) |#4|) (-644 |#4|))) (-15 -2777 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 (-1 (-112) |#4|)) (-644 |#4|))) (-15 -2561 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 (-1 (-112) |#4|)) (-644 |#4|))) (-15 -2323 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|))) (-15 -1474 ((-112) |#4|)) (-15 -3698 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|))) (-15 -1656 ((-112) |#4|)) (-15 -3862 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|))) (-15 -1688 ((-112) |#4|)) (-15 -2863 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|))) (-15 -4370 ((-644 |#4|) (-644 |#4|) (-644 |#4|))) (-15 -4370 ((-644 |#4|) (-644 |#4|) (-644 |#4|) (-112))) (-15 -2015 (|#4| |#4| (-644 |#4|))) (-15 -4110 ((-644 |#4|) (-644 |#4|))) (-15 -3660 ((-3 (-2 (|:| |bas| (-478 |#1| |#2| |#3| |#4|)) (|:| -3712 (-644 |#4|))) "failed") (-644 |#4|))) (-15 -1577 ((-644 |#4|) (-644 |#4|))) (-15 -3074 ((-644 |#4|) (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3104 ((-644 |#4|) (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-454)) (PROGN (-15 -3307 ((-644 |#4|) |#4|)) (-15 -2839 ((-644 |#4|) (-644 |#4|))) (-15 -2839 ((-644 |#4|) (-644 |#4|) (-112))) (-15 -1573 ((-644 |#4|) (-644 |#4|) (-644 |#4|))) (-15 -2182 ((-644 |#4|) (-644 |#4|) (-644 |#4|))) (-15 -2252 ((-644 |#4|) (-644 |#4|) (-644 |#4|)))) |%noBranch|) (IF (|has| |#1| (-308)) (IF (|has| |#1| (-147)) (PROGN (-15 -4389 ((-644 |#4|) (-644 |#4|))) (-15 -4079 ((-644 |#4|) (-644 |#4|))) (-15 -4222 ((-644 |#4|) (-644 |#4|) (-644 |#4|)))) |%noBranch|) |%noBranch|)) (-558) (-793) (-850) (-1064 |#1| |#2| |#3|)) (T -977)) +((-4222 (*1 *2 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-308)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))) (-4079 (*1 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-308)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))) (-4389 (*1 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-308)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))) (-2252 (*1 *2 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-454)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))) (-2182 (*1 *2 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-454)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))) (-1573 (*1 *2 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-454)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))) (-2839 (*1 *2 *2 *3) (-12 (-5 *2 (-644 *7)) (-5 *3 (-112)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-977 *4 *5 *6 *7)))) (-2839 (*1 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-454)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))) (-3307 (*1 *2 *3) (-12 (-4 *4 (-454)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 *3)) (-5 *1 (-977 *4 *5 *6 *3)) (-4 *3 (-1064 *4 *5 *6)))) (-3104 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-644 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-977 *5 *6 *7 *8)))) (-3074 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-644 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1064 *6 *7 *8)) (-4 *6 (-558)) (-4 *7 (-793)) (-4 *8 (-850)) (-5 *1 (-977 *6 *7 *8 *9)))) (-1577 (*1 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))) (-3660 (*1 *2 *3) (|partial| -12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-478 *4 *5 *6 *7)) (|:| -3712 (-644 *7)))) (-5 *1 (-977 *4 *5 *6 *7)) (-5 *3 (-644 *7)))) (-4110 (*1 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))) (-2015 (*1 *2 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-1064 *4 *5 *6)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-977 *4 *5 *6 *2)))) (-4370 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-644 *7)) (-5 *3 (-112)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-977 *4 *5 *6 *7)))) (-4370 (*1 *2 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))) (-2863 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-644 *7)) (|:| |badPols| (-644 *7)))) (-5 *1 (-977 *4 *5 *6 *7)) (-5 *3 (-644 *7)))) (-1688 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-977 *4 *5 *6 *3)) (-4 *3 (-1064 *4 *5 *6)))) (-3862 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-644 *7)) (|:| |badPols| (-644 *7)))) (-5 *1 (-977 *4 *5 *6 *7)) (-5 *3 (-644 *7)))) (-1656 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-977 *4 *5 *6 *3)) (-4 *3 (-1064 *4 *5 *6)))) (-3698 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-644 *7)) (|:| |badPols| (-644 *7)))) (-5 *1 (-977 *4 *5 *6 *7)) (-5 *3 (-644 *7)))) (-1474 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-977 *4 *5 *6 *3)) (-4 *3 (-1064 *4 *5 *6)))) (-2323 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-644 *7)) (|:| |badPols| (-644 *7)))) (-5 *1 (-977 *4 *5 *6 *7)) (-5 *3 (-644 *7)))) (-2561 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-1 (-112) *8))) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-2 (|:| |goodPols| (-644 *8)) (|:| |badPols| (-644 *8)))) (-5 *1 (-977 *5 *6 *7 *8)) (-5 *4 (-644 *8)))) (-2777 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-1 (-112) *8))) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-2 (|:| |goodPols| (-644 *8)) (|:| |badPols| (-644 *8)))) (-5 *1 (-977 *5 *6 *7 *8)) (-5 *4 (-644 *8)))) (-3426 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-2 (|:| |goodPols| (-644 *8)) (|:| |badPols| (-644 *8)))) (-5 *1 (-977 *5 *6 *7 *8)) (-5 *4 (-644 *8)))) (-2902 (*1 *2 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-977 *4 *5 *6 *7)))) (-2375 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-644 *8))) (-5 *3 (-644 *8)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-112)) (-5 *1 (-977 *5 *6 *7 *8)))) (-1673 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-977 *4 *5 *6 *7)))) (-2547 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-644 *7) (-644 *7))) (-5 *2 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-977 *4 *5 *6 *7)))) (-2547 (*1 *2 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))) (-2547 (*1 *2 *2 *3) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1064 *4 *5 *6)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-977 *4 *5 *6 *3)))) (-2843 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 *3)) (-5 *1 (-977 *4 *5 *6 *3)) (-4 *3 (-1064 *4 *5 *6)))) (-4016 (*1 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))) (-2547 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 *3)) (-5 *1 (-977 *4 *5 *6 *3)) (-4 *3 (-1064 *4 *5 *6)))) (-2547 (*1 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6))))) +(-10 -7 (-15 -2547 ((-644 |#4|) (-644 |#4|))) (-15 -2547 ((-644 |#4|) |#4| |#4|)) (-15 -4016 ((-644 |#4|) (-644 |#4|))) (-15 -2843 ((-644 |#4|) |#4| |#4|)) (-15 -2547 ((-644 |#4|) (-644 |#4|) |#4|)) (-15 -2547 ((-644 |#4|) (-644 |#4|) (-644 |#4|))) (-15 -2547 ((-644 |#4|) (-644 |#4|) (-644 |#4|) (-1 (-644 |#4|) (-644 |#4|)))) (-15 -1673 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -2375 ((-112) (-644 |#4|) (-644 (-644 |#4|)))) (-15 -2902 ((-112) (-644 |#4|))) (-15 -3426 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-1 (-112) |#4|) (-644 |#4|))) (-15 -2777 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 (-1 (-112) |#4|)) (-644 |#4|))) (-15 -2561 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 (-1 (-112) |#4|)) (-644 |#4|))) (-15 -2323 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|))) (-15 -1474 ((-112) |#4|)) (-15 -3698 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|))) (-15 -1656 ((-112) |#4|)) (-15 -3862 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|))) (-15 -1688 ((-112) |#4|)) (-15 -2863 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|))) (-15 -4370 ((-644 |#4|) (-644 |#4|) (-644 |#4|))) (-15 -4370 ((-644 |#4|) (-644 |#4|) (-644 |#4|) (-112))) (-15 -2015 (|#4| |#4| (-644 |#4|))) (-15 -4110 ((-644 |#4|) (-644 |#4|))) (-15 -3660 ((-3 (-2 (|:| |bas| (-478 |#1| |#2| |#3| |#4|)) (|:| -3712 (-644 |#4|))) "failed") (-644 |#4|))) (-15 -1577 ((-644 |#4|) (-644 |#4|))) (-15 -3074 ((-644 |#4|) (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3104 ((-644 |#4|) (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-454)) (PROGN (-15 -3307 ((-644 |#4|) |#4|)) (-15 -2839 ((-644 |#4|) (-644 |#4|))) (-15 -2839 ((-644 |#4|) (-644 |#4|) (-112))) (-15 -1573 ((-644 |#4|) (-644 |#4|) (-644 |#4|))) (-15 -2182 ((-644 |#4|) (-644 |#4|) (-644 |#4|))) (-15 -2252 ((-644 |#4|) (-644 |#4|) (-644 |#4|)))) |%noBranch|) (IF (|has| |#1| (-308)) (IF (|has| |#1| (-147)) (PROGN (-15 -4389 ((-644 |#4|) (-644 |#4|))) (-15 -4079 ((-644 |#4|) (-644 |#4|))) (-15 -4222 ((-644 |#4|) (-644 |#4|) (-644 |#4|)))) |%noBranch|) |%noBranch|)) +((-3647 (((-2 (|:| R (-689 |#1|)) (|:| A (-689 |#1|)) (|:| |Ainv| (-689 |#1|))) (-689 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-2396 (((-644 (-2 (|:| C (-689 |#1|)) (|:| |g| (-1264 |#1|)))) (-689 |#1|) (-1264 |#1|)) 44)) (-1699 (((-689 |#1|) (-689 |#1|) (-689 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16))) +(((-978 |#1|) (-10 -7 (-15 -3647 ((-2 (|:| R (-689 |#1|)) (|:| A (-689 |#1|)) (|:| |Ainv| (-689 |#1|))) (-689 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -1699 ((-689 |#1|) (-689 |#1|) (-689 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2396 ((-644 (-2 (|:| C (-689 |#1|)) (|:| |g| (-1264 |#1|)))) (-689 |#1|) (-1264 |#1|)))) (-365)) (T -978)) +((-2396 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-5 *2 (-644 (-2 (|:| C (-689 *5)) (|:| |g| (-1264 *5))))) (-5 *1 (-978 *5)) (-5 *3 (-689 *5)) (-5 *4 (-1264 *5)))) (-1699 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-689 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) (-5 *1 (-978 *5)))) (-3647 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-365)) (-5 *2 (-2 (|:| R (-689 *6)) (|:| A (-689 *6)) (|:| |Ainv| (-689 *6)))) (-5 *1 (-978 *6)) (-5 *3 (-689 *6))))) +(-10 -7 (-15 -3647 ((-2 (|:| R (-689 |#1|)) (|:| A (-689 |#1|)) (|:| |Ainv| (-689 |#1|))) (-689 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -1699 ((-689 |#1|) (-689 |#1|) (-689 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2396 ((-644 (-2 (|:| C (-689 |#1|)) (|:| |g| (-1264 |#1|)))) (-689 |#1|) (-1264 |#1|)))) +((-1364 (((-420 |#4|) |#4|) 56))) +(((-979 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1364 ((-420 |#4|) |#4|))) (-850) (-793) (-454) (-949 |#3| |#2| |#1|)) (T -979)) +((-1364 (*1 *2 *3) (-12 (-4 *4 (-850)) (-4 *5 (-793)) (-4 *6 (-454)) (-5 *2 (-420 *3)) (-5 *1 (-979 *4 *5 *6 *3)) (-4 *3 (-949 *6 *5 *4))))) +(-10 -7 (-15 -1364 ((-420 |#4|) |#4|))) +((-2988 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2819 (($ (-771)) 113 (|has| |#1| (-23)))) (-1944 (((-1269) $ (-566) (-566)) 41 (|has| $ (-6 -4415)))) (-3054 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-850)))) (-3628 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4415))) (($ $) 89 (-12 (|has| |#1| (-850)) (|has| $ (-6 -4415))))) (-2671 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-850)))) (-1504 (((-112) $ (-771)) 8)) (-1456 ((|#1| $ (-566) |#1|) 53 (|has| $ (-6 -4415))) ((|#1| $ (-1231 (-566)) |#1|) 59 (|has| $ (-6 -4415)))) (-3678 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4414)))) (-2463 (($) 7 T CONST)) (-3166 (($ $) 91 (|has| $ (-6 -4415)))) (-3683 (($ $) 101)) (-3942 (($ $) 79 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2622 (($ |#1| $) 78 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4414)))) (-2873 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4414)))) (-3897 ((|#1| $ (-566) |#1|) 54 (|has| $ (-6 -4415)))) (-3829 ((|#1| $ (-566)) 52)) (-1569 (((-566) (-1 (-112) |#1|) $) 98) (((-566) |#1| $) 97 (|has| |#1| (-1099))) (((-566) |#1| $ (-566)) 96 (|has| |#1| (-1099)))) (-1397 (($ (-644 |#1|)) 119)) (-1683 (((-644 |#1|) $) 31 (|has| $ (-6 -4414)))) (-2977 (((-689 |#1|) $ $) 106 (|has| |#1| (-1049)))) (-1860 (($ (-771) |#1|) 70)) (-3456 (((-112) $ (-771)) 9)) (-2296 (((-566) $) 44 (|has| (-566) (-850)))) (-1478 (($ $ $) 88 (|has| |#1| (-850)))) (-2696 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-850)))) (-3491 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-4050 (((-566) $) 45 (|has| (-566) (-850)))) (-2599 (($ $ $) 87 (|has| |#1| (-850)))) (-3885 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3631 ((|#1| $) 103 (-12 (|has| |#1| (-1049)) (|has| |#1| (-1002))))) (-3267 (((-112) $ (-771)) 10)) (-2440 ((|#1| $) 104 (-12 (|has| |#1| (-1049)) (|has| |#1| (-1002))))) (-3380 (((-1157) $) 22 (|has| |#1| (-1099)))) (-1859 (($ |#1| $ (-566)) 61) (($ $ $ (-566)) 60)) (-3725 (((-644 (-566)) $) 47)) (-1644 (((-112) (-566) $) 48)) (-4072 (((-1119) $) 21 (|has| |#1| (-1099)))) (-3908 ((|#1| $) 43 (|has| (-566) (-850)))) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-3787 (($ $ |#1|) 42 (|has| $ (-6 -4415)))) (-3369 (($ $ (-644 |#1|)) 117)) (-2823 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) 14)) (-2847 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3486 (((-644 |#1|) $) 49)) (-2872 (((-112) $) 11)) (-3493 (($) 12)) (-1309 ((|#1| $ (-566) |#1|) 51) ((|#1| $ (-566)) 50) (($ $ (-1231 (-566))) 64)) (-3386 ((|#1| $ $) 107 (|has| |#1| (-1049)))) (-3126 (((-921) $) 118)) (-2166 (($ $ (-566)) 63) (($ $ (-1231 (-566))) 62)) (-1395 (($ $ $) 105)) (-4083 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2661 (($ $ $ (-566)) 92 (|has| $ (-6 -4415)))) (-1480 (($ $) 13)) (-2376 (((-538) $) 80 (|has| |#1| (-614 (-538)))) (($ (-644 |#1|)) 120)) (-1340 (($ (-644 |#1|)) 71)) (-4386 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-644 $)) 66)) (-3152 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-3044 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-2210 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-2968 (((-112) $ $) 85 (|has| |#1| (-850)))) (-2946 (((-112) $ $) 84 (|has| |#1| (-850)))) (-2914 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-2956 (((-112) $ $) 86 (|has| |#1| (-850)))) (-2935 (((-112) $ $) 83 (|has| |#1| (-850)))) (-3012 (($ $) 112 (|has| |#1| (-21))) (($ $ $) 111 (|has| |#1| (-21)))) (-3002 (($ $ $) 114 (|has| |#1| (-25)))) (* (($ (-566) $) 110 (|has| |#1| (-21))) (($ |#1| $) 109 (|has| |#1| (-726))) (($ $ |#1|) 108 (|has| |#1| (-726)))) (-3000 (((-771) $) 6 (|has| $ (-6 -4414))))) (((-980 |#1|) (-140) (-1049)) (T -980)) -((-2017 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1049)) (-4 *1 (-980 *3)))) (-3164 (*1 *2 *1) (-12 (-4 *1 (-980 *3)) (-4 *3 (-1049)) (-5 *2 (-921)))) (-2797 (*1 *1 *1 *1) (-12 (-4 *1 (-980 *2)) (-4 *2 (-1049)))) (-3874 (*1 *1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *1 (-980 *3)) (-4 *3 (-1049))))) -(-13 (-1262 |t#1|) (-618 (-644 |t#1|)) (-10 -8 (-15 -2017 ($ (-644 |t#1|))) (-15 -3164 ((-921) $)) (-15 -2797 ($ $ $)) (-15 -3874 ($ $ (-644 |t#1|))))) -(((-34) . T) ((-102) -2809 (|has| |#1| (-1099)) (|has| |#1| (-850))) ((-613 (-862)) -2809 (|has| |#1| (-1099)) (|has| |#1| (-850)) (|has| |#1| (-613 (-862)))) ((-151 |#1|) . T) ((-618 (-644 |#1|)) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-287 #0=(-566) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-375 |#1|) . T) ((-491 |#1|) . T) ((-604 #0# |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-651 |#1|) . T) ((-19 |#1|) . T) ((-850) |has| |#1| (-850)) ((-1099) -2809 (|has| |#1| (-1099)) (|has| |#1| (-850))) ((-1214) . T) ((-1262 |#1|) . T)) -((-1301 (((-943 |#2|) (-1 |#2| |#1|) (-943 |#1|)) 17))) -(((-981 |#1| |#2|) (-10 -7 (-15 -1301 ((-943 |#2|) (-1 |#2| |#1|) (-943 |#1|)))) (-1049) (-1049)) (T -981)) -((-1301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-943 *5)) (-4 *5 (-1049)) (-4 *6 (-1049)) (-5 *2 (-943 *6)) (-5 *1 (-981 *5 *6))))) -(-10 -7 (-15 -1301 ((-943 |#2|) (-1 |#2| |#1|) (-943 |#1|)))) -((-1811 ((|#1| (-943 |#1|)) 14)) (-3120 ((|#1| (-943 |#1|)) 13)) (-1511 ((|#1| (-943 |#1|)) 12)) (-3922 ((|#1| (-943 |#1|)) 16)) (-4310 ((|#1| (-943 |#1|)) 24)) (-3049 ((|#1| (-943 |#1|)) 15)) (-2574 ((|#1| (-943 |#1|)) 17)) (-3745 ((|#1| (-943 |#1|)) 23)) (-1744 ((|#1| (-943 |#1|)) 22))) -(((-982 |#1|) (-10 -7 (-15 -1511 (|#1| (-943 |#1|))) (-15 -3120 (|#1| (-943 |#1|))) (-15 -1811 (|#1| (-943 |#1|))) (-15 -3049 (|#1| (-943 |#1|))) (-15 -3922 (|#1| (-943 |#1|))) (-15 -2574 (|#1| (-943 |#1|))) (-15 -1744 (|#1| (-943 |#1|))) (-15 -3745 (|#1| (-943 |#1|))) (-15 -4310 (|#1| (-943 |#1|)))) (-1049)) (T -982)) -((-4310 (*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049)))) (-3745 (*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049)))) (-1744 (*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049)))) (-2574 (*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049)))) (-3922 (*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049)))) (-3049 (*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049)))) (-1811 (*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049)))) (-3120 (*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049)))) (-1511 (*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049))))) -(-10 -7 (-15 -1511 (|#1| (-943 |#1|))) (-15 -3120 (|#1| (-943 |#1|))) (-15 -1811 (|#1| (-943 |#1|))) (-15 -3049 (|#1| (-943 |#1|))) (-15 -3922 (|#1| (-943 |#1|))) (-15 -2574 (|#1| (-943 |#1|))) (-15 -1744 (|#1| (-943 |#1|))) (-15 -3745 (|#1| (-943 |#1|))) (-15 -4310 (|#1| (-943 |#1|)))) -((-3471 (((-3 |#1| "failed") |#1|) 18)) (-2108 (((-3 |#1| "failed") |#1|) 6)) (-3644 (((-3 |#1| "failed") |#1|) 16)) (-3200 (((-3 |#1| "failed") |#1|) 4)) (-1381 (((-3 |#1| "failed") |#1|) 20)) (-2742 (((-3 |#1| "failed") |#1|) 8)) (-1606 (((-3 |#1| "failed") |#1| (-771)) 1)) (-3185 (((-3 |#1| "failed") |#1|) 3)) (-3648 (((-3 |#1| "failed") |#1|) 2)) (-2037 (((-3 |#1| "failed") |#1|) 21)) (-2546 (((-3 |#1| "failed") |#1|) 9)) (-3452 (((-3 |#1| "failed") |#1|) 19)) (-1590 (((-3 |#1| "failed") |#1|) 7)) (-3883 (((-3 |#1| "failed") |#1|) 17)) (-4122 (((-3 |#1| "failed") |#1|) 5)) (-4189 (((-3 |#1| "failed") |#1|) 24)) (-3939 (((-3 |#1| "failed") |#1|) 12)) (-2406 (((-3 |#1| "failed") |#1|) 22)) (-1536 (((-3 |#1| "failed") |#1|) 10)) (-1358 (((-3 |#1| "failed") |#1|) 26)) (-1905 (((-3 |#1| "failed") |#1|) 14)) (-4233 (((-3 |#1| "failed") |#1|) 27)) (-2811 (((-3 |#1| "failed") |#1|) 15)) (-1984 (((-3 |#1| "failed") |#1|) 25)) (-2662 (((-3 |#1| "failed") |#1|) 13)) (-4031 (((-3 |#1| "failed") |#1|) 23)) (-3658 (((-3 |#1| "failed") |#1|) 11))) +((-1397 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1049)) (-4 *1 (-980 *3)))) (-3126 (*1 *2 *1) (-12 (-4 *1 (-980 *3)) (-4 *3 (-1049)) (-5 *2 (-921)))) (-1395 (*1 *1 *1 *1) (-12 (-4 *1 (-980 *2)) (-4 *2 (-1049)))) (-3369 (*1 *1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *1 (-980 *3)) (-4 *3 (-1049))))) +(-13 (-1262 |t#1|) (-618 (-644 |t#1|)) (-10 -8 (-15 -1397 ($ (-644 |t#1|))) (-15 -3126 ((-921) $)) (-15 -1395 ($ $ $)) (-15 -3369 ($ $ (-644 |t#1|))))) +(((-34) . T) ((-102) -2768 (|has| |#1| (-1099)) (|has| |#1| (-850))) ((-613 (-862)) -2768 (|has| |#1| (-1099)) (|has| |#1| (-850)) (|has| |#1| (-613 (-862)))) ((-151 |#1|) . T) ((-618 (-644 |#1|)) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-287 #0=(-566) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-375 |#1|) . T) ((-491 |#1|) . T) ((-604 #0# |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-651 |#1|) . T) ((-19 |#1|) . T) ((-850) |has| |#1| (-850)) ((-1099) -2768 (|has| |#1| (-1099)) (|has| |#1| (-850))) ((-1214) . T) ((-1262 |#1|) . T)) +((-2319 (((-943 |#2|) (-1 |#2| |#1|) (-943 |#1|)) 17))) +(((-981 |#1| |#2|) (-10 -7 (-15 -2319 ((-943 |#2|) (-1 |#2| |#1|) (-943 |#1|)))) (-1049) (-1049)) (T -981)) +((-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-943 *5)) (-4 *5 (-1049)) (-4 *6 (-1049)) (-5 *2 (-943 *6)) (-5 *1 (-981 *5 *6))))) +(-10 -7 (-15 -2319 ((-943 |#2|) (-1 |#2| |#1|) (-943 |#1|)))) +((-2632 ((|#1| (-943 |#1|)) 14)) (-2030 ((|#1| (-943 |#1|)) 13)) (-1455 ((|#1| (-943 |#1|)) 12)) (-3733 ((|#1| (-943 |#1|)) 16)) (-1339 ((|#1| (-943 |#1|)) 24)) (-2882 ((|#1| (-943 |#1|)) 15)) (-3534 ((|#1| (-943 |#1|)) 17)) (-1820 ((|#1| (-943 |#1|)) 23)) (-2665 ((|#1| (-943 |#1|)) 22))) +(((-982 |#1|) (-10 -7 (-15 -1455 (|#1| (-943 |#1|))) (-15 -2030 (|#1| (-943 |#1|))) (-15 -2632 (|#1| (-943 |#1|))) (-15 -2882 (|#1| (-943 |#1|))) (-15 -3733 (|#1| (-943 |#1|))) (-15 -3534 (|#1| (-943 |#1|))) (-15 -2665 (|#1| (-943 |#1|))) (-15 -1820 (|#1| (-943 |#1|))) (-15 -1339 (|#1| (-943 |#1|)))) (-1049)) (T -982)) +((-1339 (*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049)))) (-1820 (*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049)))) (-2665 (*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049)))) (-3534 (*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049)))) (-3733 (*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049)))) (-2882 (*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049)))) (-2632 (*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049)))) (-2030 (*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049)))) (-1455 (*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049))))) +(-10 -7 (-15 -1455 (|#1| (-943 |#1|))) (-15 -2030 (|#1| (-943 |#1|))) (-15 -2632 (|#1| (-943 |#1|))) (-15 -2882 (|#1| (-943 |#1|))) (-15 -3733 (|#1| (-943 |#1|))) (-15 -3534 (|#1| (-943 |#1|))) (-15 -2665 (|#1| (-943 |#1|))) (-15 -1820 (|#1| (-943 |#1|))) (-15 -1339 (|#1| (-943 |#1|)))) +((-2034 (((-3 |#1| "failed") |#1|) 18)) (-1450 (((-3 |#1| "failed") |#1|) 6)) (-1591 (((-3 |#1| "failed") |#1|) 16)) (-2315 (((-3 |#1| "failed") |#1|) 4)) (-2322 (((-3 |#1| "failed") |#1|) 20)) (-1751 (((-3 |#1| "failed") |#1|) 8)) (-2090 (((-3 |#1| "failed") |#1| (-771)) 1)) (-3309 (((-3 |#1| "failed") |#1|) 3)) (-1861 (((-3 |#1| "failed") |#1|) 2)) (-3410 (((-3 |#1| "failed") |#1|) 21)) (-1343 (((-3 |#1| "failed") |#1|) 9)) (-2762 (((-3 |#1| "failed") |#1|) 19)) (-1913 (((-3 |#1| "failed") |#1|) 7)) (-3051 (((-3 |#1| "failed") |#1|) 17)) (-2680 (((-3 |#1| "failed") |#1|) 5)) (-2628 (((-3 |#1| "failed") |#1|) 24)) (-1666 (((-3 |#1| "failed") |#1|) 12)) (-3667 (((-3 |#1| "failed") |#1|) 22)) (-2224 (((-3 |#1| "failed") |#1|) 10)) (-4277 (((-3 |#1| "failed") |#1|) 26)) (-1959 (((-3 |#1| "failed") |#1|) 14)) (-2666 (((-3 |#1| "failed") |#1|) 27)) (-3324 (((-3 |#1| "failed") |#1|) 15)) (-3859 (((-3 |#1| "failed") |#1|) 25)) (-4150 (((-3 |#1| "failed") |#1|) 13)) (-3900 (((-3 |#1| "failed") |#1|) 23)) (-3427 (((-3 |#1| "failed") |#1|) 11))) (((-983 |#1|) (-140) (-1199)) (T -983)) -((-4233 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-1358 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-1984 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-4189 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-4031 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-2406 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-2037 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-1381 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-3452 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-3471 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-3883 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-3644 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-2811 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-1905 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-2662 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-3939 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-3658 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-1536 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-2546 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-2742 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-1590 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-2108 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-4122 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-3200 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-3185 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-3648 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-1606 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-771)) (-4 *1 (-983 *2)) (-4 *2 (-1199))))) -(-13 (-10 -7 (-15 -1606 ((-3 |t#1| "failed") |t#1| (-771))) (-15 -3648 ((-3 |t#1| "failed") |t#1|)) (-15 -3185 ((-3 |t#1| "failed") |t#1|)) (-15 -3200 ((-3 |t#1| "failed") |t#1|)) (-15 -4122 ((-3 |t#1| "failed") |t#1|)) (-15 -2108 ((-3 |t#1| "failed") |t#1|)) (-15 -1590 ((-3 |t#1| "failed") |t#1|)) (-15 -2742 ((-3 |t#1| "failed") |t#1|)) (-15 -2546 ((-3 |t#1| "failed") |t#1|)) (-15 -1536 ((-3 |t#1| "failed") |t#1|)) (-15 -3658 ((-3 |t#1| "failed") |t#1|)) (-15 -3939 ((-3 |t#1| "failed") |t#1|)) (-15 -2662 ((-3 |t#1| "failed") |t#1|)) (-15 -1905 ((-3 |t#1| "failed") |t#1|)) (-15 -2811 ((-3 |t#1| "failed") |t#1|)) (-15 -3644 ((-3 |t#1| "failed") |t#1|)) (-15 -3883 ((-3 |t#1| "failed") |t#1|)) (-15 -3471 ((-3 |t#1| "failed") |t#1|)) (-15 -3452 ((-3 |t#1| "failed") |t#1|)) (-15 -1381 ((-3 |t#1| "failed") |t#1|)) (-15 -2037 ((-3 |t#1| "failed") |t#1|)) (-15 -2406 ((-3 |t#1| "failed") |t#1|)) (-15 -4031 ((-3 |t#1| "failed") |t#1|)) (-15 -4189 ((-3 |t#1| "failed") |t#1|)) (-15 -1984 ((-3 |t#1| "failed") |t#1|)) (-15 -1358 ((-3 |t#1| "failed") |t#1|)) (-15 -4233 ((-3 |t#1| "failed") |t#1|)))) -((-4125 ((|#4| |#4| (-644 |#3|)) 57) ((|#4| |#4| |#3|) 56)) (-2209 ((|#4| |#4| (-644 |#3|)) 24) ((|#4| |#4| |#3|) 20)) (-1301 ((|#4| (-1 |#4| (-952 |#1|)) |#4|) 31))) -(((-984 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2209 (|#4| |#4| |#3|)) (-15 -2209 (|#4| |#4| (-644 |#3|))) (-15 -4125 (|#4| |#4| |#3|)) (-15 -4125 (|#4| |#4| (-644 |#3|))) (-15 -1301 (|#4| (-1 |#4| (-952 |#1|)) |#4|))) (-1049) (-793) (-13 (-850) (-10 -8 (-15 -1348 ((-1175) $)) (-15 -1385 ((-3 $ "failed") (-1175))))) (-949 (-952 |#1|) |#2| |#3|)) (T -984)) -((-1301 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-952 *4))) (-4 *4 (-1049)) (-4 *2 (-949 (-952 *4) *5 *6)) (-4 *5 (-793)) (-4 *6 (-13 (-850) (-10 -8 (-15 -1348 ((-1175) $)) (-15 -1385 ((-3 $ "failed") (-1175)))))) (-5 *1 (-984 *4 *5 *6 *2)))) (-4125 (*1 *2 *2 *3) (-12 (-5 *3 (-644 *6)) (-4 *6 (-13 (-850) (-10 -8 (-15 -1348 ((-1175) $)) (-15 -1385 ((-3 $ "failed") (-1175)))))) (-4 *4 (-1049)) (-4 *5 (-793)) (-5 *1 (-984 *4 *5 *6 *2)) (-4 *2 (-949 (-952 *4) *5 *6)))) (-4125 (*1 *2 *2 *3) (-12 (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-13 (-850) (-10 -8 (-15 -1348 ((-1175) $)) (-15 -1385 ((-3 $ "failed") (-1175)))))) (-5 *1 (-984 *4 *5 *3 *2)) (-4 *2 (-949 (-952 *4) *5 *3)))) (-2209 (*1 *2 *2 *3) (-12 (-5 *3 (-644 *6)) (-4 *6 (-13 (-850) (-10 -8 (-15 -1348 ((-1175) $)) (-15 -1385 ((-3 $ "failed") (-1175)))))) (-4 *4 (-1049)) (-4 *5 (-793)) (-5 *1 (-984 *4 *5 *6 *2)) (-4 *2 (-949 (-952 *4) *5 *6)))) (-2209 (*1 *2 *2 *3) (-12 (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-13 (-850) (-10 -8 (-15 -1348 ((-1175) $)) (-15 -1385 ((-3 $ "failed") (-1175)))))) (-5 *1 (-984 *4 *5 *3 *2)) (-4 *2 (-949 (-952 *4) *5 *3))))) -(-10 -7 (-15 -2209 (|#4| |#4| |#3|)) (-15 -2209 (|#4| |#4| (-644 |#3|))) (-15 -4125 (|#4| |#4| |#3|)) (-15 -4125 (|#4| |#4| (-644 |#3|))) (-15 -1301 (|#4| (-1 |#4| (-952 |#1|)) |#4|))) -((-3109 ((|#2| |#3|) 35)) (-4266 (((-2 (|:| -2365 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))) |#2|) 83)) (-2444 (((-2 (|:| -2365 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|)))) 103))) -(((-985 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2444 ((-2 (|:| -2365 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))))) (-15 -4266 ((-2 (|:| -2365 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))) |#2|)) (-15 -3109 (|#2| |#3|))) (-351) (-1240 |#1|) (-1240 |#2|) (-724 |#2| |#3|)) (T -985)) -((-3109 (*1 *2 *3) (-12 (-4 *3 (-1240 *2)) (-4 *2 (-1240 *4)) (-5 *1 (-985 *4 *2 *3 *5)) (-4 *4 (-351)) (-4 *5 (-724 *2 *3)))) (-4266 (*1 *2 *3) (-12 (-4 *4 (-351)) (-4 *3 (-1240 *4)) (-4 *5 (-1240 *3)) (-5 *2 (-2 (|:| -2365 (-689 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-689 *3)))) (-5 *1 (-985 *4 *3 *5 *6)) (-4 *6 (-724 *3 *5)))) (-2444 (*1 *2) (-12 (-4 *3 (-351)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 *4)) (-5 *2 (-2 (|:| -2365 (-689 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-689 *4)))) (-5 *1 (-985 *3 *4 *5 *6)) (-4 *6 (-724 *4 *5))))) -(-10 -7 (-15 -2444 ((-2 (|:| -2365 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))))) (-15 -4266 ((-2 (|:| -2365 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))) |#2|)) (-15 -3109 (|#2| |#3|))) -((-3615 (((-987 (-409 (-566)) (-864 |#1|) (-240 |#2| (-771)) (-247 |#1| (-409 (-566)))) (-987 (-409 (-566)) (-864 |#1|) (-240 |#2| (-771)) (-247 |#1| (-409 (-566))))) 84))) -(((-986 |#1| |#2|) (-10 -7 (-15 -3615 ((-987 (-409 (-566)) (-864 |#1|) (-240 |#2| (-771)) (-247 |#1| (-409 (-566)))) (-987 (-409 (-566)) (-864 |#1|) (-240 |#2| (-771)) (-247 |#1| (-409 (-566))))))) (-644 (-1175)) (-771)) (T -986)) -((-3615 (*1 *2 *2) (-12 (-5 *2 (-987 (-409 (-566)) (-864 *3) (-240 *4 (-771)) (-247 *3 (-409 (-566))))) (-14 *3 (-644 (-1175))) (-14 *4 (-771)) (-5 *1 (-986 *3 *4))))) -(-10 -7 (-15 -3615 ((-987 (-409 (-566)) (-864 |#1|) (-240 |#2| (-771)) (-247 |#1| (-409 (-566)))) (-987 (-409 (-566)) (-864 |#1|) (-240 |#2| (-771)) (-247 |#1| (-409 (-566))))))) -((-3007 (((-112) $ $) NIL)) (-1395 (((-3 (-112) "failed") $) 71)) (-3564 (($ $) 36 (-12 (|has| |#1| (-147)) (|has| |#1| (-308))))) (-3908 (($ $ (-3 (-112) "failed")) 72)) (-2966 (($ (-644 |#4|) |#4|) 25)) (-4117 (((-1157) $) NIL)) (-3493 (($ $) 69)) (-4035 (((-1119) $) NIL)) (-3467 (((-112) $) 70)) (-1494 (($) 30)) (-1406 ((|#4| $) 74)) (-2520 (((-644 |#4|) $) 73)) (-3783 (((-862) $) 68)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) -(((-987 |#1| |#2| |#3| |#4|) (-13 (-1099) (-613 (-862)) (-10 -8 (-15 -1494 ($)) (-15 -2966 ($ (-644 |#4|) |#4|)) (-15 -1395 ((-3 (-112) "failed") $)) (-15 -3908 ($ $ (-3 (-112) "failed"))) (-15 -3467 ((-112) $)) (-15 -2520 ((-644 |#4|) $)) (-15 -1406 (|#4| $)) (-15 -3493 ($ $)) (IF (|has| |#1| (-308)) (IF (|has| |#1| (-147)) (-15 -3564 ($ $)) |%noBranch|) |%noBranch|))) (-454) (-850) (-793) (-949 |#1| |#3| |#2|)) (T -987)) -((-1494 (*1 *1) (-12 (-4 *2 (-454)) (-4 *3 (-850)) (-4 *4 (-793)) (-5 *1 (-987 *2 *3 *4 *5)) (-4 *5 (-949 *2 *4 *3)))) (-2966 (*1 *1 *2 *3) (-12 (-5 *2 (-644 *3)) (-4 *3 (-949 *4 *6 *5)) (-4 *4 (-454)) (-4 *5 (-850)) (-4 *6 (-793)) (-5 *1 (-987 *4 *5 *6 *3)))) (-1395 (*1 *2 *1) (|partial| -12 (-4 *3 (-454)) (-4 *4 (-850)) (-4 *5 (-793)) (-5 *2 (-112)) (-5 *1 (-987 *3 *4 *5 *6)) (-4 *6 (-949 *3 *5 *4)))) (-3908 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-454)) (-4 *4 (-850)) (-4 *5 (-793)) (-5 *1 (-987 *3 *4 *5 *6)) (-4 *6 (-949 *3 *5 *4)))) (-3467 (*1 *2 *1) (-12 (-4 *3 (-454)) (-4 *4 (-850)) (-4 *5 (-793)) (-5 *2 (-112)) (-5 *1 (-987 *3 *4 *5 *6)) (-4 *6 (-949 *3 *5 *4)))) (-2520 (*1 *2 *1) (-12 (-4 *3 (-454)) (-4 *4 (-850)) (-4 *5 (-793)) (-5 *2 (-644 *6)) (-5 *1 (-987 *3 *4 *5 *6)) (-4 *6 (-949 *3 *5 *4)))) (-1406 (*1 *2 *1) (-12 (-4 *2 (-949 *3 *5 *4)) (-5 *1 (-987 *3 *4 *5 *2)) (-4 *3 (-454)) (-4 *4 (-850)) (-4 *5 (-793)))) (-3493 (*1 *1 *1) (-12 (-4 *2 (-454)) (-4 *3 (-850)) (-4 *4 (-793)) (-5 *1 (-987 *2 *3 *4 *5)) (-4 *5 (-949 *2 *4 *3)))) (-3564 (*1 *1 *1) (-12 (-4 *2 (-147)) (-4 *2 (-308)) (-4 *2 (-454)) (-4 *3 (-850)) (-4 *4 (-793)) (-5 *1 (-987 *2 *3 *4 *5)) (-4 *5 (-949 *2 *4 *3))))) -(-13 (-1099) (-613 (-862)) (-10 -8 (-15 -1494 ($)) (-15 -2966 ($ (-644 |#4|) |#4|)) (-15 -1395 ((-3 (-112) "failed") $)) (-15 -3908 ($ $ (-3 (-112) "failed"))) (-15 -3467 ((-112) $)) (-15 -2520 ((-644 |#4|) $)) (-15 -1406 (|#4| $)) (-15 -3493 ($ $)) (IF (|has| |#1| (-308)) (IF (|has| |#1| (-147)) (-15 -3564 ($ $)) |%noBranch|) |%noBranch|))) -((-1915 (((-112) |#5| |#5|) 45)) (-3995 (((-112) |#5| |#5|) 60)) (-3708 (((-112) |#5| (-644 |#5|)) 82) (((-112) |#5| |#5|) 69)) (-3259 (((-112) (-644 |#4|) (-644 |#4|)) 66)) (-1682 (((-112) (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|)) (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))) 71)) (-1583 (((-1269)) 33)) (-3110 (((-1269) (-1157) (-1157) (-1157)) 29)) (-1487 (((-644 |#5|) (-644 |#5|)) 101)) (-1469 (((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|)))) 93)) (-2647 (((-644 (-2 (|:| -2470 (-644 |#4|)) (|:| -3570 |#5|) (|:| |ineq| (-644 |#4|)))) (-644 |#4|) (-644 |#5|) (-112) (-112)) 123)) (-3552 (((-112) |#5| |#5|) 54)) (-3981 (((-3 (-112) "failed") |#5| |#5|) 79)) (-3130 (((-112) (-644 |#4|) (-644 |#4|)) 65)) (-3040 (((-112) (-644 |#4|) (-644 |#4|)) 67)) (-2897 (((-112) (-644 |#4|) (-644 |#4|)) 68)) (-3971 (((-3 (-2 (|:| -2470 (-644 |#4|)) (|:| -3570 |#5|) (|:| |ineq| (-644 |#4|))) "failed") (-644 |#4|) |#5| (-644 |#4|) (-112) (-112) (-112) (-112) (-112)) 118)) (-2281 (((-644 |#5|) (-644 |#5|)) 50))) -(((-988 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3110 ((-1269) (-1157) (-1157) (-1157))) (-15 -1583 ((-1269))) (-15 -1915 ((-112) |#5| |#5|)) (-15 -2281 ((-644 |#5|) (-644 |#5|))) (-15 -3552 ((-112) |#5| |#5|)) (-15 -3995 ((-112) |#5| |#5|)) (-15 -3259 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -3130 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -3040 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -2897 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -3981 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3708 ((-112) |#5| |#5|)) (-15 -3708 ((-112) |#5| (-644 |#5|))) (-15 -1487 ((-644 |#5|) (-644 |#5|))) (-15 -1682 ((-112) (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|)) (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|)))) (-15 -1469 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))))) (-15 -2647 ((-644 (-2 (|:| -2470 (-644 |#4|)) (|:| -3570 |#5|) (|:| |ineq| (-644 |#4|)))) (-644 |#4|) (-644 |#5|) (-112) (-112))) (-15 -3971 ((-3 (-2 (|:| -2470 (-644 |#4|)) (|:| -3570 |#5|) (|:| |ineq| (-644 |#4|))) "failed") (-644 |#4|) |#5| (-644 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-454) (-793) (-850) (-1064 |#1| |#2| |#3|) (-1070 |#1| |#2| |#3| |#4|)) (T -988)) -((-3971 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) (-4 *9 (-1064 *6 *7 *8)) (-5 *2 (-2 (|:| -2470 (-644 *9)) (|:| -3570 *4) (|:| |ineq| (-644 *9)))) (-5 *1 (-988 *6 *7 *8 *9 *4)) (-5 *3 (-644 *9)) (-4 *4 (-1070 *6 *7 *8 *9)))) (-2647 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-644 *10)) (-5 *5 (-112)) (-4 *10 (-1070 *6 *7 *8 *9)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) (-4 *9 (-1064 *6 *7 *8)) (-5 *2 (-644 (-2 (|:| -2470 (-644 *9)) (|:| -3570 *10) (|:| |ineq| (-644 *9))))) (-5 *1 (-988 *6 *7 *8 *9 *10)) (-5 *3 (-644 *9)))) (-1469 (*1 *2 *2) (-12 (-5 *2 (-644 (-2 (|:| |val| (-644 *6)) (|:| -3570 *7)))) (-4 *6 (-1064 *3 *4 *5)) (-4 *7 (-1070 *3 *4 *5 *6)) (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-988 *3 *4 *5 *6 *7)))) (-1682 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-644 *7)) (|:| -3570 *8))) (-4 *7 (-1064 *4 *5 *6)) (-4 *8 (-1070 *4 *5 *6 *7)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-988 *4 *5 *6 *7 *8)))) (-1487 (*1 *2 *2) (-12 (-5 *2 (-644 *7)) (-4 *7 (-1070 *3 *4 *5 *6)) (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *1 (-988 *3 *4 *5 *6 *7)))) (-3708 (*1 *2 *3 *4) (-12 (-5 *4 (-644 *3)) (-4 *3 (-1070 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-1064 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-988 *5 *6 *7 *8 *3)))) (-3708 (*1 *2 *3 *3) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-988 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))) (-3981 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-988 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))) (-2897 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-988 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) (-3040 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-988 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) (-3130 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-988 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) (-3259 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-988 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) (-3995 (*1 *2 *3 *3) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-988 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))) (-3552 (*1 *2 *3 *3) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-988 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))) (-2281 (*1 *2 *2) (-12 (-5 *2 (-644 *7)) (-4 *7 (-1070 *3 *4 *5 *6)) (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *1 (-988 *3 *4 *5 *6 *7)))) (-1915 (*1 *2 *3 *3) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-988 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))) (-1583 (*1 *2) (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-1269)) (-5 *1 (-988 *3 *4 *5 *6 *7)) (-4 *7 (-1070 *3 *4 *5 *6)))) (-3110 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1157)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-1269)) (-5 *1 (-988 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7))))) -(-10 -7 (-15 -3110 ((-1269) (-1157) (-1157) (-1157))) (-15 -1583 ((-1269))) (-15 -1915 ((-112) |#5| |#5|)) (-15 -2281 ((-644 |#5|) (-644 |#5|))) (-15 -3552 ((-112) |#5| |#5|)) (-15 -3995 ((-112) |#5| |#5|)) (-15 -3259 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -3130 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -3040 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -2897 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -3981 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3708 ((-112) |#5| |#5|)) (-15 -3708 ((-112) |#5| (-644 |#5|))) (-15 -1487 ((-644 |#5|) (-644 |#5|))) (-15 -1682 ((-112) (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|)) (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|)))) (-15 -1469 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))))) (-15 -2647 ((-644 (-2 (|:| -2470 (-644 |#4|)) (|:| -3570 |#5|) (|:| |ineq| (-644 |#4|)))) (-644 |#4|) (-644 |#5|) (-112) (-112))) (-15 -3971 ((-3 (-2 (|:| -2470 (-644 |#4|)) (|:| -3570 |#5|) (|:| |ineq| (-644 |#4|))) "failed") (-644 |#4|) |#5| (-644 |#4|) (-112) (-112) (-112) (-112) (-112)))) -((-1385 (((-1175) $) 15)) (-2233 (((-1157) $) 16)) (-3191 (($ (-1175) (-1157)) 14)) (-3783 (((-862) $) 13))) -(((-989) (-13 (-613 (-862)) (-10 -8 (-15 -3191 ($ (-1175) (-1157))) (-15 -1385 ((-1175) $)) (-15 -2233 ((-1157) $))))) (T -989)) -((-3191 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1157)) (-5 *1 (-989)))) (-1385 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-989)))) (-2233 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-989))))) -(-13 (-613 (-862)) (-10 -8 (-15 -3191 ($ (-1175) (-1157))) (-15 -1385 ((-1175) $)) (-15 -2233 ((-1157) $)))) -((-1301 ((|#4| (-1 |#2| |#1|) |#3|) 14))) -(((-990 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1301 (|#4| (-1 |#2| |#1|) |#3|))) (-558) (-558) (-992 |#1|) (-992 |#2|)) (T -990)) -((-1301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-558)) (-4 *6 (-558)) (-4 *2 (-992 *6)) (-5 *1 (-990 *5 *6 *4 *2)) (-4 *4 (-992 *5))))) -(-10 -7 (-15 -1301 (|#4| (-1 |#2| |#1|) |#3|))) -((-4307 (((-3 |#2| "failed") $) NIL) (((-3 (-1175) "failed") $) 66) (((-3 (-409 (-566)) "failed") $) NIL) (((-3 (-566) "failed") $) 96)) (-4205 ((|#2| $) NIL) (((-1175) $) 61) (((-409 (-566)) $) NIL) (((-566) $) 93)) (-3577 (((-689 (-566)) (-689 $)) NIL) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL) (((-2 (|:| -4227 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 $) (-1264 $)) 115) (((-689 |#2|) (-689 $)) 28)) (-1552 (($) 99)) (-2062 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 76) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 85)) (-1493 (($ $) 10)) (-4363 (((-3 $ "failed") $) 20)) (-1301 (($ (-1 |#2| |#2|) $) 22)) (-1761 (($) 16)) (-2938 (($ $) 55)) (-3561 (($ $) NIL) (($ $ (-771)) NIL) (($ $ (-1175)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL) (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-2023 (($ $) 12)) (-1348 (((-892 (-566)) $) 71) (((-892 (-381)) $) 80) (((-538) $) 40) (((-381) $) 44) (((-225) $) 48)) (-3783 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) 91) (($ |#2|) NIL) (($ (-1175)) 58)) (-2107 (((-771)) 31)) (-2969 (((-112) $ $) 51))) -(((-991 |#1| |#2|) (-10 -8 (-15 -2969 ((-112) |#1| |#1|)) (-15 -1761 (|#1|)) (-15 -4363 ((-3 |#1| "failed") |#1|)) (-15 -4307 ((-3 (-566) "failed") |#1|)) (-15 -4205 ((-566) |#1|)) (-15 -4307 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -4205 ((-409 (-566)) |#1|)) (-15 -1348 ((-225) |#1|)) (-15 -1348 ((-381) |#1|)) (-15 -1348 ((-538) |#1|)) (-15 -3783 (|#1| (-1175))) (-15 -4307 ((-3 (-1175) "failed") |#1|)) (-15 -4205 ((-1175) |#1|)) (-15 -1552 (|#1|)) (-15 -2938 (|#1| |#1|)) (-15 -2023 (|#1| |#1|)) (-15 -1493 (|#1| |#1|)) (-15 -2062 ((-889 (-381) |#1|) |#1| (-892 (-381)) (-889 (-381) |#1|))) (-15 -2062 ((-889 (-566) |#1|) |#1| (-892 (-566)) (-889 (-566) |#1|))) (-15 -1348 ((-892 (-381)) |#1|)) (-15 -1348 ((-892 (-566)) |#1|)) (-15 -3577 ((-689 |#2|) (-689 |#1|))) (-15 -3577 ((-2 (|:| -4227 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 |#1|) (-1264 |#1|))) (-15 -3577 ((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 |#1|) (-1264 |#1|))) (-15 -3577 ((-689 (-566)) (-689 |#1|))) (-15 -3561 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3561 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -3561 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -3561 (|#1| |#1| (-1175) (-771))) (-15 -3561 (|#1| |#1| (-644 (-1175)))) (-15 -3561 (|#1| |#1| (-1175))) (-15 -3561 (|#1| |#1| (-771))) (-15 -3561 (|#1| |#1|)) (-15 -1301 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4307 ((-3 |#2| "failed") |#1|)) (-15 -4205 (|#2| |#1|)) (-15 -3783 (|#1| |#2|)) (-15 -3783 (|#1| (-409 (-566)))) (-15 -3783 (|#1| |#1|)) (-15 -2107 ((-771))) (-15 -3783 (|#1| (-566))) (-15 -3783 ((-862) |#1|))) (-992 |#2|) (-558)) (T -991)) -((-2107 (*1 *2) (-12 (-4 *4 (-558)) (-5 *2 (-771)) (-5 *1 (-991 *3 *4)) (-4 *3 (-992 *4))))) -(-10 -8 (-15 -2969 ((-112) |#1| |#1|)) (-15 -1761 (|#1|)) (-15 -4363 ((-3 |#1| "failed") |#1|)) (-15 -4307 ((-3 (-566) "failed") |#1|)) (-15 -4205 ((-566) |#1|)) (-15 -4307 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -4205 ((-409 (-566)) |#1|)) (-15 -1348 ((-225) |#1|)) (-15 -1348 ((-381) |#1|)) (-15 -1348 ((-538) |#1|)) (-15 -3783 (|#1| (-1175))) (-15 -4307 ((-3 (-1175) "failed") |#1|)) (-15 -4205 ((-1175) |#1|)) (-15 -1552 (|#1|)) (-15 -2938 (|#1| |#1|)) (-15 -2023 (|#1| |#1|)) (-15 -1493 (|#1| |#1|)) (-15 -2062 ((-889 (-381) |#1|) |#1| (-892 (-381)) (-889 (-381) |#1|))) (-15 -2062 ((-889 (-566) |#1|) |#1| (-892 (-566)) (-889 (-566) |#1|))) (-15 -1348 ((-892 (-381)) |#1|)) (-15 -1348 ((-892 (-566)) |#1|)) (-15 -3577 ((-689 |#2|) (-689 |#1|))) (-15 -3577 ((-2 (|:| -4227 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 |#1|) (-1264 |#1|))) (-15 -3577 ((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 |#1|) (-1264 |#1|))) (-15 -3577 ((-689 (-566)) (-689 |#1|))) (-15 -3561 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3561 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -3561 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -3561 (|#1| |#1| (-1175) (-771))) (-15 -3561 (|#1| |#1| (-644 (-1175)))) (-15 -3561 (|#1| |#1| (-1175))) (-15 -3561 (|#1| |#1| (-771))) (-15 -3561 (|#1| |#1|)) (-15 -1301 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4307 ((-3 |#2| "failed") |#1|)) (-15 -4205 (|#2| |#1|)) (-15 -3783 (|#1| |#2|)) (-15 -3783 (|#1| (-409 (-566)))) (-15 -3783 (|#1| |#1|)) (-15 -2107 ((-771))) (-15 -3783 (|#1| (-566))) (-15 -3783 ((-862) |#1|))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-1515 ((|#1| $) 147 (|has| |#1| (-308)))) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) 47)) (-3991 (($ $) 46)) (-2388 (((-112) $) 44)) (-4175 (((-3 $ "failed") $ $) 20)) (-1477 (((-420 (-1171 $)) (-1171 $)) 138 (|has| |#1| (-909)))) (-1550 (($ $) 81)) (-3184 (((-420 $) $) 80)) (-3717 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) 141 (|has| |#1| (-909)))) (-2837 (((-112) $ $) 65)) (-4364 (((-566) $) 128 (|has| |#1| (-820)))) (-3012 (($) 18 T CONST)) (-4307 (((-3 |#1| "failed") $) 185) (((-3 (-1175) "failed") $) 136 (|has| |#1| (-1038 (-1175)))) (((-3 (-409 (-566)) "failed") $) 119 (|has| |#1| (-1038 (-566)))) (((-3 (-566) "failed") $) 117 (|has| |#1| (-1038 (-566))))) (-4205 ((|#1| $) 186) (((-1175) $) 137 (|has| |#1| (-1038 (-1175)))) (((-409 (-566)) $) 120 (|has| |#1| (-1038 (-566)))) (((-566) $) 118 (|has| |#1| (-1038 (-566))))) (-2946 (($ $ $) 61)) (-3577 (((-689 (-566)) (-689 $)) 160 (|has| |#1| (-639 (-566)))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) 159 (|has| |#1| (-639 (-566)))) (((-2 (|:| -4227 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) 158) (((-689 |#1|) (-689 $)) 157)) (-1878 (((-3 $ "failed") $) 37)) (-1552 (($) 145 (|has| |#1| (-547)))) (-2957 (($ $ $) 62)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) 57)) (-3268 (((-112) $) 79)) (-1897 (((-112) $) 130 (|has| |#1| (-820)))) (-2062 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 154 (|has| |#1| (-886 (-566)))) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 153 (|has| |#1| (-886 (-381))))) (-3934 (((-112) $) 35)) (-1493 (($ $) 149)) (-4326 ((|#1| $) 151)) (-4363 (((-3 $ "failed") $) 116 (|has| |#1| (-1150)))) (-2117 (((-112) $) 129 (|has| |#1| (-820)))) (-3775 (((-3 (-644 $) "failed") (-644 $) $) 58)) (-2097 (($ $ $) 126 (|has| |#1| (-850)))) (-3962 (($ $ $) 125 (|has| |#1| (-850)))) (-1301 (($ (-1 |#1| |#1|) $) 177)) (-2167 (($ $ $) 52) (($ (-644 $)) 51)) (-4117 (((-1157) $) 10)) (-1713 (($ $) 78)) (-1761 (($) 115 (|has| |#1| (-1150)) CONST)) (-4035 (((-1119) $) 11)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-2214 (($ $ $) 54) (($ (-644 $)) 53)) (-2938 (($ $) 146 (|has| |#1| (-308)))) (-3470 ((|#1| $) 143 (|has| |#1| (-547)))) (-4303 (((-420 (-1171 $)) (-1171 $)) 140 (|has| |#1| (-909)))) (-3240 (((-420 (-1171 $)) (-1171 $)) 139 (|has| |#1| (-909)))) (-3719 (((-420 $) $) 82)) (-3148 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2994 (((-3 $ "failed") $ $) 48)) (-3161 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-2055 (($ $ (-644 |#1|) (-644 |#1|)) 183 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 182 (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) 181 (|has| |#1| (-310 |#1|))) (($ $ (-644 (-295 |#1|))) 180 (|has| |#1| (-310 |#1|))) (($ $ (-644 (-1175)) (-644 |#1|)) 179 (|has| |#1| (-516 (-1175) |#1|))) (($ $ (-1175) |#1|) 178 (|has| |#1| (-516 (-1175) |#1|)))) (-3039 (((-771) $) 64)) (-4390 (($ $ |#1|) 184 (|has| |#1| (-287 |#1| |#1|)))) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) 63)) (-3561 (($ $) 176 (|has| |#1| (-233))) (($ $ (-771)) 174 (|has| |#1| (-233))) (($ $ (-1175)) 172 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) 171 (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) 170 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) 169 (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) 162) (($ $ (-1 |#1| |#1|)) 161)) (-2023 (($ $) 148)) (-4339 ((|#1| $) 150)) (-1348 (((-892 (-566)) $) 156 (|has| |#1| (-614 (-892 (-566))))) (((-892 (-381)) $) 155 (|has| |#1| (-614 (-892 (-381))))) (((-538) $) 133 (|has| |#1| (-614 (-538)))) (((-381) $) 132 (|has| |#1| (-1022))) (((-225) $) 131 (|has| |#1| (-1022)))) (-1656 (((-3 (-1264 $) "failed") (-689 $)) 142 (-2432 (|has| $ (-145)) (|has| |#1| (-909))))) (-3783 (((-862) $) 12) (($ (-566)) 33) (($ $) 49) (($ (-409 (-566))) 74) (($ |#1|) 189) (($ (-1175)) 135 (|has| |#1| (-1038 (-1175))))) (-3144 (((-3 $ "failed") $) 134 (-2809 (|has| |#1| (-145)) (-2432 (|has| $ (-145)) (|has| |#1| (-909)))))) (-2107 (((-771)) 32 T CONST)) (-2948 ((|#1| $) 144 (|has| |#1| (-547)))) (-3117 (((-112) $ $) 9)) (-2695 (((-112) $ $) 45)) (-2086 (($ $) 127 (|has| |#1| (-820)))) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-2875 (($ $) 175 (|has| |#1| (-233))) (($ $ (-771)) 173 (|has| |#1| (-233))) (($ $ (-1175)) 168 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) 167 (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) 166 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) 165 (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) 164) (($ $ (-1 |#1| |#1|)) 163)) (-3009 (((-112) $ $) 123 (|has| |#1| (-850)))) (-2984 (((-112) $ $) 122 (|has| |#1| (-850)))) (-2947 (((-112) $ $) 6)) (-2995 (((-112) $ $) 124 (|has| |#1| (-850)))) (-2969 (((-112) $ $) 121 (|has| |#1| (-850)))) (-3065 (($ $ $) 73) (($ |#1| |#1|) 152)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 77)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 76) (($ (-409 (-566)) $) 75) (($ |#1| $) 188) (($ $ |#1|) 187))) +((-2666 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-4277 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-3859 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-2628 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-3900 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-3667 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-3410 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-2322 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-2762 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-2034 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-3051 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-1591 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-3324 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-1959 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-4150 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-1666 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-3427 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-2224 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-1343 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-1751 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-1913 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-1450 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-2680 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-2315 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-3309 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-1861 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199)))) (-2090 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-771)) (-4 *1 (-983 *2)) (-4 *2 (-1199))))) +(-13 (-10 -7 (-15 -2090 ((-3 |t#1| "failed") |t#1| (-771))) (-15 -1861 ((-3 |t#1| "failed") |t#1|)) (-15 -3309 ((-3 |t#1| "failed") |t#1|)) (-15 -2315 ((-3 |t#1| "failed") |t#1|)) (-15 -2680 ((-3 |t#1| "failed") |t#1|)) (-15 -1450 ((-3 |t#1| "failed") |t#1|)) (-15 -1913 ((-3 |t#1| "failed") |t#1|)) (-15 -1751 ((-3 |t#1| "failed") |t#1|)) (-15 -1343 ((-3 |t#1| "failed") |t#1|)) (-15 -2224 ((-3 |t#1| "failed") |t#1|)) (-15 -3427 ((-3 |t#1| "failed") |t#1|)) (-15 -1666 ((-3 |t#1| "failed") |t#1|)) (-15 -4150 ((-3 |t#1| "failed") |t#1|)) (-15 -1959 ((-3 |t#1| "failed") |t#1|)) (-15 -3324 ((-3 |t#1| "failed") |t#1|)) (-15 -1591 ((-3 |t#1| "failed") |t#1|)) (-15 -3051 ((-3 |t#1| "failed") |t#1|)) (-15 -2034 ((-3 |t#1| "failed") |t#1|)) (-15 -2762 ((-3 |t#1| "failed") |t#1|)) (-15 -2322 ((-3 |t#1| "failed") |t#1|)) (-15 -3410 ((-3 |t#1| "failed") |t#1|)) (-15 -3667 ((-3 |t#1| "failed") |t#1|)) (-15 -3900 ((-3 |t#1| "failed") |t#1|)) (-15 -2628 ((-3 |t#1| "failed") |t#1|)) (-15 -3859 ((-3 |t#1| "failed") |t#1|)) (-15 -4277 ((-3 |t#1| "failed") |t#1|)) (-15 -2666 ((-3 |t#1| "failed") |t#1|)))) +((-2890 ((|#4| |#4| (-644 |#3|)) 57) ((|#4| |#4| |#3|) 56)) (-2685 ((|#4| |#4| (-644 |#3|)) 24) ((|#4| |#4| |#3|) 20)) (-2319 ((|#4| (-1 |#4| (-952 |#1|)) |#4|) 31))) +(((-984 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2685 (|#4| |#4| |#3|)) (-15 -2685 (|#4| |#4| (-644 |#3|))) (-15 -2890 (|#4| |#4| |#3|)) (-15 -2890 (|#4| |#4| (-644 |#3|))) (-15 -2319 (|#4| (-1 |#4| (-952 |#1|)) |#4|))) (-1049) (-793) (-13 (-850) (-10 -8 (-15 -2376 ((-1175) $)) (-15 -4347 ((-3 $ "failed") (-1175))))) (-949 (-952 |#1|) |#2| |#3|)) (T -984)) +((-2319 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-952 *4))) (-4 *4 (-1049)) (-4 *2 (-949 (-952 *4) *5 *6)) (-4 *5 (-793)) (-4 *6 (-13 (-850) (-10 -8 (-15 -2376 ((-1175) $)) (-15 -4347 ((-3 $ "failed") (-1175)))))) (-5 *1 (-984 *4 *5 *6 *2)))) (-2890 (*1 *2 *2 *3) (-12 (-5 *3 (-644 *6)) (-4 *6 (-13 (-850) (-10 -8 (-15 -2376 ((-1175) $)) (-15 -4347 ((-3 $ "failed") (-1175)))))) (-4 *4 (-1049)) (-4 *5 (-793)) (-5 *1 (-984 *4 *5 *6 *2)) (-4 *2 (-949 (-952 *4) *5 *6)))) (-2890 (*1 *2 *2 *3) (-12 (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-13 (-850) (-10 -8 (-15 -2376 ((-1175) $)) (-15 -4347 ((-3 $ "failed") (-1175)))))) (-5 *1 (-984 *4 *5 *3 *2)) (-4 *2 (-949 (-952 *4) *5 *3)))) (-2685 (*1 *2 *2 *3) (-12 (-5 *3 (-644 *6)) (-4 *6 (-13 (-850) (-10 -8 (-15 -2376 ((-1175) $)) (-15 -4347 ((-3 $ "failed") (-1175)))))) (-4 *4 (-1049)) (-4 *5 (-793)) (-5 *1 (-984 *4 *5 *6 *2)) (-4 *2 (-949 (-952 *4) *5 *6)))) (-2685 (*1 *2 *2 *3) (-12 (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-13 (-850) (-10 -8 (-15 -2376 ((-1175) $)) (-15 -4347 ((-3 $ "failed") (-1175)))))) (-5 *1 (-984 *4 *5 *3 *2)) (-4 *2 (-949 (-952 *4) *5 *3))))) +(-10 -7 (-15 -2685 (|#4| |#4| |#3|)) (-15 -2685 (|#4| |#4| (-644 |#3|))) (-15 -2890 (|#4| |#4| |#3|)) (-15 -2890 (|#4| |#4| (-644 |#3|))) (-15 -2319 (|#4| (-1 |#4| (-952 |#1|)) |#4|))) +((-3436 ((|#2| |#3|) 35)) (-1637 (((-2 (|:| -2875 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))) |#2|) 83)) (-2736 (((-2 (|:| -2875 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|)))) 103))) +(((-985 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2736 ((-2 (|:| -2875 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))))) (-15 -1637 ((-2 (|:| -2875 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))) |#2|)) (-15 -3436 (|#2| |#3|))) (-351) (-1240 |#1|) (-1240 |#2|) (-724 |#2| |#3|)) (T -985)) +((-3436 (*1 *2 *3) (-12 (-4 *3 (-1240 *2)) (-4 *2 (-1240 *4)) (-5 *1 (-985 *4 *2 *3 *5)) (-4 *4 (-351)) (-4 *5 (-724 *2 *3)))) (-1637 (*1 *2 *3) (-12 (-4 *4 (-351)) (-4 *3 (-1240 *4)) (-4 *5 (-1240 *3)) (-5 *2 (-2 (|:| -2875 (-689 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-689 *3)))) (-5 *1 (-985 *4 *3 *5 *6)) (-4 *6 (-724 *3 *5)))) (-2736 (*1 *2) (-12 (-4 *3 (-351)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 *4)) (-5 *2 (-2 (|:| -2875 (-689 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-689 *4)))) (-5 *1 (-985 *3 *4 *5 *6)) (-4 *6 (-724 *4 *5))))) +(-10 -7 (-15 -2736 ((-2 (|:| -2875 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))))) (-15 -1637 ((-2 (|:| -2875 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))) |#2|)) (-15 -3436 (|#2| |#3|))) +((-1600 (((-987 (-409 (-566)) (-864 |#1|) (-240 |#2| (-771)) (-247 |#1| (-409 (-566)))) (-987 (-409 (-566)) (-864 |#1|) (-240 |#2| (-771)) (-247 |#1| (-409 (-566))))) 84))) +(((-986 |#1| |#2|) (-10 -7 (-15 -1600 ((-987 (-409 (-566)) (-864 |#1|) (-240 |#2| (-771)) (-247 |#1| (-409 (-566)))) (-987 (-409 (-566)) (-864 |#1|) (-240 |#2| (-771)) (-247 |#1| (-409 (-566))))))) (-644 (-1175)) (-771)) (T -986)) +((-1600 (*1 *2 *2) (-12 (-5 *2 (-987 (-409 (-566)) (-864 *3) (-240 *4 (-771)) (-247 *3 (-409 (-566))))) (-14 *3 (-644 (-1175))) (-14 *4 (-771)) (-5 *1 (-986 *3 *4))))) +(-10 -7 (-15 -1600 ((-987 (-409 (-566)) (-864 |#1|) (-240 |#2| (-771)) (-247 |#1| (-409 (-566)))) (-987 (-409 (-566)) (-864 |#1|) (-240 |#2| (-771)) (-247 |#1| (-409 (-566))))))) +((-2988 (((-112) $ $) NIL)) (-1845 (((-3 (-112) "failed") $) 71)) (-2192 (($ $) 36 (-12 (|has| |#1| (-147)) (|has| |#1| (-308))))) (-1807 (($ $ (-3 (-112) "failed")) 72)) (-1999 (($ (-644 |#4|) |#4|) 25)) (-3380 (((-1157) $) NIL)) (-3680 (($ $) 69)) (-4072 (((-1119) $) NIL)) (-2872 (((-112) $) 70)) (-3493 (($) 30)) (-2507 ((|#4| $) 74)) (-2738 (((-644 |#4|) $) 73)) (-3152 (((-862) $) 68)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) +(((-987 |#1| |#2| |#3| |#4|) (-13 (-1099) (-613 (-862)) (-10 -8 (-15 -3493 ($)) (-15 -1999 ($ (-644 |#4|) |#4|)) (-15 -1845 ((-3 (-112) "failed") $)) (-15 -1807 ($ $ (-3 (-112) "failed"))) (-15 -2872 ((-112) $)) (-15 -2738 ((-644 |#4|) $)) (-15 -2507 (|#4| $)) (-15 -3680 ($ $)) (IF (|has| |#1| (-308)) (IF (|has| |#1| (-147)) (-15 -2192 ($ $)) |%noBranch|) |%noBranch|))) (-454) (-850) (-793) (-949 |#1| |#3| |#2|)) (T -987)) +((-3493 (*1 *1) (-12 (-4 *2 (-454)) (-4 *3 (-850)) (-4 *4 (-793)) (-5 *1 (-987 *2 *3 *4 *5)) (-4 *5 (-949 *2 *4 *3)))) (-1999 (*1 *1 *2 *3) (-12 (-5 *2 (-644 *3)) (-4 *3 (-949 *4 *6 *5)) (-4 *4 (-454)) (-4 *5 (-850)) (-4 *6 (-793)) (-5 *1 (-987 *4 *5 *6 *3)))) (-1845 (*1 *2 *1) (|partial| -12 (-4 *3 (-454)) (-4 *4 (-850)) (-4 *5 (-793)) (-5 *2 (-112)) (-5 *1 (-987 *3 *4 *5 *6)) (-4 *6 (-949 *3 *5 *4)))) (-1807 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-454)) (-4 *4 (-850)) (-4 *5 (-793)) (-5 *1 (-987 *3 *4 *5 *6)) (-4 *6 (-949 *3 *5 *4)))) (-2872 (*1 *2 *1) (-12 (-4 *3 (-454)) (-4 *4 (-850)) (-4 *5 (-793)) (-5 *2 (-112)) (-5 *1 (-987 *3 *4 *5 *6)) (-4 *6 (-949 *3 *5 *4)))) (-2738 (*1 *2 *1) (-12 (-4 *3 (-454)) (-4 *4 (-850)) (-4 *5 (-793)) (-5 *2 (-644 *6)) (-5 *1 (-987 *3 *4 *5 *6)) (-4 *6 (-949 *3 *5 *4)))) (-2507 (*1 *2 *1) (-12 (-4 *2 (-949 *3 *5 *4)) (-5 *1 (-987 *3 *4 *5 *2)) (-4 *3 (-454)) (-4 *4 (-850)) (-4 *5 (-793)))) (-3680 (*1 *1 *1) (-12 (-4 *2 (-454)) (-4 *3 (-850)) (-4 *4 (-793)) (-5 *1 (-987 *2 *3 *4 *5)) (-4 *5 (-949 *2 *4 *3)))) (-2192 (*1 *1 *1) (-12 (-4 *2 (-147)) (-4 *2 (-308)) (-4 *2 (-454)) (-4 *3 (-850)) (-4 *4 (-793)) (-5 *1 (-987 *2 *3 *4 *5)) (-4 *5 (-949 *2 *4 *3))))) +(-13 (-1099) (-613 (-862)) (-10 -8 (-15 -3493 ($)) (-15 -1999 ($ (-644 |#4|) |#4|)) (-15 -1845 ((-3 (-112) "failed") $)) (-15 -1807 ($ $ (-3 (-112) "failed"))) (-15 -2872 ((-112) $)) (-15 -2738 ((-644 |#4|) $)) (-15 -2507 (|#4| $)) (-15 -3680 ($ $)) (IF (|has| |#1| (-308)) (IF (|has| |#1| (-147)) (-15 -2192 ($ $)) |%noBranch|) |%noBranch|))) +((-1506 (((-112) |#5| |#5|) 45)) (-1372 (((-112) |#5| |#5|) 60)) (-2419 (((-112) |#5| (-644 |#5|)) 82) (((-112) |#5| |#5|) 69)) (-2007 (((-112) (-644 |#4|) (-644 |#4|)) 66)) (-3864 (((-112) (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|)) (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))) 71)) (-1431 (((-1269)) 33)) (-3542 (((-1269) (-1157) (-1157) (-1157)) 29)) (-4136 (((-644 |#5|) (-644 |#5|)) 101)) (-2798 (((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|)))) 93)) (-2049 (((-644 (-2 (|:| -3434 (-644 |#4|)) (|:| -1470 |#5|) (|:| |ineq| (-644 |#4|)))) (-644 |#4|) (-644 |#5|) (-112) (-112)) 123)) (-3500 (((-112) |#5| |#5|) 54)) (-3505 (((-3 (-112) "failed") |#5| |#5|) 79)) (-1799 (((-112) (-644 |#4|) (-644 |#4|)) 65)) (-3213 (((-112) (-644 |#4|) (-644 |#4|)) 67)) (-3077 (((-112) (-644 |#4|) (-644 |#4|)) 68)) (-3800 (((-3 (-2 (|:| -3434 (-644 |#4|)) (|:| -1470 |#5|) (|:| |ineq| (-644 |#4|))) "failed") (-644 |#4|) |#5| (-644 |#4|) (-112) (-112) (-112) (-112) (-112)) 118)) (-2042 (((-644 |#5|) (-644 |#5|)) 50))) +(((-988 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3542 ((-1269) (-1157) (-1157) (-1157))) (-15 -1431 ((-1269))) (-15 -1506 ((-112) |#5| |#5|)) (-15 -2042 ((-644 |#5|) (-644 |#5|))) (-15 -3500 ((-112) |#5| |#5|)) (-15 -1372 ((-112) |#5| |#5|)) (-15 -2007 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -1799 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -3213 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -3077 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -3505 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2419 ((-112) |#5| |#5|)) (-15 -2419 ((-112) |#5| (-644 |#5|))) (-15 -4136 ((-644 |#5|) (-644 |#5|))) (-15 -3864 ((-112) (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|)) (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|)))) (-15 -2798 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))))) (-15 -2049 ((-644 (-2 (|:| -3434 (-644 |#4|)) (|:| -1470 |#5|) (|:| |ineq| (-644 |#4|)))) (-644 |#4|) (-644 |#5|) (-112) (-112))) (-15 -3800 ((-3 (-2 (|:| -3434 (-644 |#4|)) (|:| -1470 |#5|) (|:| |ineq| (-644 |#4|))) "failed") (-644 |#4|) |#5| (-644 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-454) (-793) (-850) (-1064 |#1| |#2| |#3|) (-1070 |#1| |#2| |#3| |#4|)) (T -988)) +((-3800 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) (-4 *9 (-1064 *6 *7 *8)) (-5 *2 (-2 (|:| -3434 (-644 *9)) (|:| -1470 *4) (|:| |ineq| (-644 *9)))) (-5 *1 (-988 *6 *7 *8 *9 *4)) (-5 *3 (-644 *9)) (-4 *4 (-1070 *6 *7 *8 *9)))) (-2049 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-644 *10)) (-5 *5 (-112)) (-4 *10 (-1070 *6 *7 *8 *9)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) (-4 *9 (-1064 *6 *7 *8)) (-5 *2 (-644 (-2 (|:| -3434 (-644 *9)) (|:| -1470 *10) (|:| |ineq| (-644 *9))))) (-5 *1 (-988 *6 *7 *8 *9 *10)) (-5 *3 (-644 *9)))) (-2798 (*1 *2 *2) (-12 (-5 *2 (-644 (-2 (|:| |val| (-644 *6)) (|:| -1470 *7)))) (-4 *6 (-1064 *3 *4 *5)) (-4 *7 (-1070 *3 *4 *5 *6)) (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-988 *3 *4 *5 *6 *7)))) (-3864 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-644 *7)) (|:| -1470 *8))) (-4 *7 (-1064 *4 *5 *6)) (-4 *8 (-1070 *4 *5 *6 *7)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-988 *4 *5 *6 *7 *8)))) (-4136 (*1 *2 *2) (-12 (-5 *2 (-644 *7)) (-4 *7 (-1070 *3 *4 *5 *6)) (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *1 (-988 *3 *4 *5 *6 *7)))) (-2419 (*1 *2 *3 *4) (-12 (-5 *4 (-644 *3)) (-4 *3 (-1070 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-1064 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-988 *5 *6 *7 *8 *3)))) (-2419 (*1 *2 *3 *3) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-988 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))) (-3505 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-988 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))) (-3077 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-988 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) (-3213 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-988 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) (-1799 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-988 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) (-2007 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-988 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) (-1372 (*1 *2 *3 *3) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-988 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))) (-3500 (*1 *2 *3 *3) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-988 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))) (-2042 (*1 *2 *2) (-12 (-5 *2 (-644 *7)) (-4 *7 (-1070 *3 *4 *5 *6)) (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *1 (-988 *3 *4 *5 *6 *7)))) (-1506 (*1 *2 *3 *3) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-988 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))) (-1431 (*1 *2) (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-1269)) (-5 *1 (-988 *3 *4 *5 *6 *7)) (-4 *7 (-1070 *3 *4 *5 *6)))) (-3542 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1157)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-1269)) (-5 *1 (-988 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7))))) +(-10 -7 (-15 -3542 ((-1269) (-1157) (-1157) (-1157))) (-15 -1431 ((-1269))) (-15 -1506 ((-112) |#5| |#5|)) (-15 -2042 ((-644 |#5|) (-644 |#5|))) (-15 -3500 ((-112) |#5| |#5|)) (-15 -1372 ((-112) |#5| |#5|)) (-15 -2007 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -1799 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -3213 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -3077 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -3505 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2419 ((-112) |#5| |#5|)) (-15 -2419 ((-112) |#5| (-644 |#5|))) (-15 -4136 ((-644 |#5|) (-644 |#5|))) (-15 -3864 ((-112) (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|)) (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|)))) (-15 -2798 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))))) (-15 -2049 ((-644 (-2 (|:| -3434 (-644 |#4|)) (|:| -1470 |#5|) (|:| |ineq| (-644 |#4|)))) (-644 |#4|) (-644 |#5|) (-112) (-112))) (-15 -3800 ((-3 (-2 (|:| -3434 (-644 |#4|)) (|:| -1470 |#5|) (|:| |ineq| (-644 |#4|))) "failed") (-644 |#4|) |#5| (-644 |#4|) (-112) (-112) (-112) (-112) (-112)))) +((-4347 (((-1175) $) 15)) (-2876 (((-1157) $) 16)) (-1335 (($ (-1175) (-1157)) 14)) (-3152 (((-862) $) 13))) +(((-989) (-13 (-613 (-862)) (-10 -8 (-15 -1335 ($ (-1175) (-1157))) (-15 -4347 ((-1175) $)) (-15 -2876 ((-1157) $))))) (T -989)) +((-1335 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1157)) (-5 *1 (-989)))) (-4347 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-989)))) (-2876 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-989))))) +(-13 (-613 (-862)) (-10 -8 (-15 -1335 ($ (-1175) (-1157))) (-15 -4347 ((-1175) $)) (-15 -2876 ((-1157) $)))) +((-2319 ((|#4| (-1 |#2| |#1|) |#3|) 14))) +(((-990 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2319 (|#4| (-1 |#2| |#1|) |#3|))) (-558) (-558) (-992 |#1|) (-992 |#2|)) (T -990)) +((-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-558)) (-4 *6 (-558)) (-4 *2 (-992 *6)) (-5 *1 (-990 *5 *6 *4 *2)) (-4 *4 (-992 *5))))) +(-10 -7 (-15 -2319 (|#4| (-1 |#2| |#1|) |#3|))) +((-2229 (((-3 |#2| "failed") $) NIL) (((-3 (-1175) "failed") $) 66) (((-3 (-409 (-566)) "failed") $) NIL) (((-3 (-566) "failed") $) 96)) (-4158 ((|#2| $) NIL) (((-1175) $) 61) (((-409 (-566)) $) NIL) (((-566) $) 93)) (-4089 (((-689 (-566)) (-689 $)) NIL) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL) (((-2 (|:| -3361 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 $) (-1264 $)) 115) (((-689 |#2|) (-689 $)) 28)) (-2715 (($) 99)) (-2926 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 76) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 85)) (-3406 (($ $) 10)) (-2621 (((-3 $ "failed") $) 20)) (-2319 (($ (-1 |#2| |#2|) $) 22)) (-3289 (($) 16)) (-2487 (($ $) 55)) (-3629 (($ $) NIL) (($ $ (-771)) NIL) (($ $ (-1175)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL) (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-1452 (($ $) 12)) (-2376 (((-892 (-566)) $) 71) (((-892 (-381)) $) 80) (((-538) $) 40) (((-381) $) 44) (((-225) $) 48)) (-3152 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) 91) (($ |#2|) NIL) (($ (-1175)) 58)) (-2593 (((-771)) 31)) (-2935 (((-112) $ $) 51))) +(((-991 |#1| |#2|) (-10 -8 (-15 -2935 ((-112) |#1| |#1|)) (-15 -3289 (|#1|)) (-15 -2621 ((-3 |#1| "failed") |#1|)) (-15 -2229 ((-3 (-566) "failed") |#1|)) (-15 -4158 ((-566) |#1|)) (-15 -2229 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -4158 ((-409 (-566)) |#1|)) (-15 -2376 ((-225) |#1|)) (-15 -2376 ((-381) |#1|)) (-15 -2376 ((-538) |#1|)) (-15 -3152 (|#1| (-1175))) (-15 -2229 ((-3 (-1175) "failed") |#1|)) (-15 -4158 ((-1175) |#1|)) (-15 -2715 (|#1|)) (-15 -2487 (|#1| |#1|)) (-15 -1452 (|#1| |#1|)) (-15 -3406 (|#1| |#1|)) (-15 -2926 ((-889 (-381) |#1|) |#1| (-892 (-381)) (-889 (-381) |#1|))) (-15 -2926 ((-889 (-566) |#1|) |#1| (-892 (-566)) (-889 (-566) |#1|))) (-15 -2376 ((-892 (-381)) |#1|)) (-15 -2376 ((-892 (-566)) |#1|)) (-15 -4089 ((-689 |#2|) (-689 |#1|))) (-15 -4089 ((-2 (|:| -3361 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 |#1|) (-1264 |#1|))) (-15 -4089 ((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 |#1|) (-1264 |#1|))) (-15 -4089 ((-689 (-566)) (-689 |#1|))) (-15 -3629 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3629 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -3629 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -3629 (|#1| |#1| (-1175) (-771))) (-15 -3629 (|#1| |#1| (-644 (-1175)))) (-15 -3629 (|#1| |#1| (-1175))) (-15 -3629 (|#1| |#1| (-771))) (-15 -3629 (|#1| |#1|)) (-15 -2319 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2229 ((-3 |#2| "failed") |#1|)) (-15 -4158 (|#2| |#1|)) (-15 -3152 (|#1| |#2|)) (-15 -3152 (|#1| (-409 (-566)))) (-15 -3152 (|#1| |#1|)) (-15 -2593 ((-771))) (-15 -3152 (|#1| (-566))) (-15 -3152 ((-862) |#1|))) (-992 |#2|) (-558)) (T -991)) +((-2593 (*1 *2) (-12 (-4 *4 (-558)) (-5 *2 (-771)) (-5 *1 (-991 *3 *4)) (-4 *3 (-992 *4))))) +(-10 -8 (-15 -2935 ((-112) |#1| |#1|)) (-15 -3289 (|#1|)) (-15 -2621 ((-3 |#1| "failed") |#1|)) (-15 -2229 ((-3 (-566) "failed") |#1|)) (-15 -4158 ((-566) |#1|)) (-15 -2229 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -4158 ((-409 (-566)) |#1|)) (-15 -2376 ((-225) |#1|)) (-15 -2376 ((-381) |#1|)) (-15 -2376 ((-538) |#1|)) (-15 -3152 (|#1| (-1175))) (-15 -2229 ((-3 (-1175) "failed") |#1|)) (-15 -4158 ((-1175) |#1|)) (-15 -2715 (|#1|)) (-15 -2487 (|#1| |#1|)) (-15 -1452 (|#1| |#1|)) (-15 -3406 (|#1| |#1|)) (-15 -2926 ((-889 (-381) |#1|) |#1| (-892 (-381)) (-889 (-381) |#1|))) (-15 -2926 ((-889 (-566) |#1|) |#1| (-892 (-566)) (-889 (-566) |#1|))) (-15 -2376 ((-892 (-381)) |#1|)) (-15 -2376 ((-892 (-566)) |#1|)) (-15 -4089 ((-689 |#2|) (-689 |#1|))) (-15 -4089 ((-2 (|:| -3361 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 |#1|) (-1264 |#1|))) (-15 -4089 ((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 |#1|) (-1264 |#1|))) (-15 -4089 ((-689 (-566)) (-689 |#1|))) (-15 -3629 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3629 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -3629 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -3629 (|#1| |#1| (-1175) (-771))) (-15 -3629 (|#1| |#1| (-644 (-1175)))) (-15 -3629 (|#1| |#1| (-1175))) (-15 -3629 (|#1| |#1| (-771))) (-15 -3629 (|#1| |#1|)) (-15 -2319 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2229 ((-3 |#2| "failed") |#1|)) (-15 -4158 (|#2| |#1|)) (-15 -3152 (|#1| |#2|)) (-15 -3152 (|#1| (-409 (-566)))) (-15 -3152 (|#1| |#1|)) (-15 -2593 ((-771))) (-15 -3152 (|#1| (-566))) (-15 -3152 ((-862) |#1|))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-1873 ((|#1| $) 147 (|has| |#1| (-308)))) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) 47)) (-2161 (($ $) 46)) (-2345 (((-112) $) 44)) (-3967 (((-3 $ "failed") $ $) 20)) (-2292 (((-420 (-1171 $)) (-1171 $)) 138 (|has| |#1| (-909)))) (-1378 (($ $) 81)) (-1364 (((-420 $) $) 80)) (-4066 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) 141 (|has| |#1| (-909)))) (-2085 (((-112) $ $) 65)) (-2743 (((-566) $) 128 (|has| |#1| (-820)))) (-2463 (($) 18 T CONST)) (-2229 (((-3 |#1| "failed") $) 185) (((-3 (-1175) "failed") $) 136 (|has| |#1| (-1038 (-1175)))) (((-3 (-409 (-566)) "failed") $) 119 (|has| |#1| (-1038 (-566)))) (((-3 (-566) "failed") $) 117 (|has| |#1| (-1038 (-566))))) (-4158 ((|#1| $) 186) (((-1175) $) 137 (|has| |#1| (-1038 (-1175)))) (((-409 (-566)) $) 120 (|has| |#1| (-1038 (-566)))) (((-566) $) 118 (|has| |#1| (-1038 (-566))))) (-2933 (($ $ $) 61)) (-4089 (((-689 (-566)) (-689 $)) 160 (|has| |#1| (-639 (-566)))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) 159 (|has| |#1| (-639 (-566)))) (((-2 (|:| -3361 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) 158) (((-689 |#1|) (-689 $)) 157)) (-3245 (((-3 $ "failed") $) 37)) (-2715 (($) 145 (|has| |#1| (-547)))) (-2945 (($ $ $) 62)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) 57)) (-1615 (((-112) $) 79)) (-2528 (((-112) $) 130 (|has| |#1| (-820)))) (-2926 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 154 (|has| |#1| (-886 (-566)))) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 153 (|has| |#1| (-886 (-381))))) (-2389 (((-112) $) 35)) (-3406 (($ $) 149)) (-2248 ((|#1| $) 151)) (-2621 (((-3 $ "failed") $) 116 (|has| |#1| (-1150)))) (-3233 (((-112) $) 129 (|has| |#1| (-820)))) (-3816 (((-3 (-644 $) "failed") (-644 $) $) 58)) (-1478 (($ $ $) 126 (|has| |#1| (-850)))) (-2599 (($ $ $) 125 (|has| |#1| (-850)))) (-2319 (($ (-1 |#1| |#1|) $) 177)) (-2128 (($ $ $) 52) (($ (-644 $)) 51)) (-3380 (((-1157) $) 10)) (-2748 (($ $) 78)) (-3289 (($) 115 (|has| |#1| (-1150)) CONST)) (-4072 (((-1119) $) 11)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-2164 (($ $ $) 54) (($ (-644 $)) 53)) (-2487 (($ $) 146 (|has| |#1| (-308)))) (-3143 ((|#1| $) 143 (|has| |#1| (-547)))) (-2010 (((-420 (-1171 $)) (-1171 $)) 140 (|has| |#1| (-909)))) (-1893 (((-420 (-1171 $)) (-1171 $)) 139 (|has| |#1| (-909)))) (-1624 (((-420 $) $) 82)) (-3005 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2978 (((-3 $ "failed") $ $) 48)) (-2915 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-2023 (($ $ (-644 |#1|) (-644 |#1|)) 183 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 182 (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) 181 (|has| |#1| (-310 |#1|))) (($ $ (-644 (-295 |#1|))) 180 (|has| |#1| (-310 |#1|))) (($ $ (-644 (-1175)) (-644 |#1|)) 179 (|has| |#1| (-516 (-1175) |#1|))) (($ $ (-1175) |#1|) 178 (|has| |#1| (-516 (-1175) |#1|)))) (-4357 (((-771) $) 64)) (-1309 (($ $ |#1|) 184 (|has| |#1| (-287 |#1| |#1|)))) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) 63)) (-3629 (($ $) 176 (|has| |#1| (-233))) (($ $ (-771)) 174 (|has| |#1| (-233))) (($ $ (-1175)) 172 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) 171 (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) 170 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) 169 (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) 162) (($ $ (-1 |#1| |#1|)) 161)) (-1452 (($ $) 148)) (-2260 ((|#1| $) 150)) (-2376 (((-892 (-566)) $) 156 (|has| |#1| (-614 (-892 (-566))))) (((-892 (-381)) $) 155 (|has| |#1| (-614 (-892 (-381))))) (((-538) $) 133 (|has| |#1| (-614 (-538)))) (((-381) $) 132 (|has| |#1| (-1022))) (((-225) $) 131 (|has| |#1| (-1022)))) (-3391 (((-3 (-1264 $) "failed") (-689 $)) 142 (-2415 (|has| $ (-145)) (|has| |#1| (-909))))) (-3152 (((-862) $) 12) (($ (-566)) 33) (($ $) 49) (($ (-409 (-566))) 74) (($ |#1|) 189) (($ (-1175)) 135 (|has| |#1| (-1038 (-1175))))) (-2633 (((-3 $ "failed") $) 134 (-2768 (|has| |#1| (-145)) (-2415 (|has| $ (-145)) (|has| |#1| (-909)))))) (-2593 (((-771)) 32 T CONST)) (-3913 ((|#1| $) 144 (|has| |#1| (-547)))) (-3044 (((-112) $ $) 9)) (-3014 (((-112) $ $) 45)) (-1358 (($ $) 127 (|has| |#1| (-820)))) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-3497 (($ $) 175 (|has| |#1| (-233))) (($ $ (-771)) 173 (|has| |#1| (-233))) (($ $ (-1175)) 168 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) 167 (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) 166 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) 165 (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) 164) (($ $ (-1 |#1| |#1|)) 163)) (-2968 (((-112) $ $) 123 (|has| |#1| (-850)))) (-2946 (((-112) $ $) 122 (|has| |#1| (-850)))) (-2914 (((-112) $ $) 6)) (-2956 (((-112) $ $) 124 (|has| |#1| (-850)))) (-2935 (((-112) $ $) 121 (|has| |#1| (-850)))) (-3025 (($ $ $) 73) (($ |#1| |#1|) 152)) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 77)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 76) (($ (-409 (-566)) $) 75) (($ |#1| $) 188) (($ $ |#1|) 187))) (((-992 |#1|) (-140) (-558)) (T -992)) -((-3065 (*1 *1 *2 *2) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558)))) (-4326 (*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558)))) (-4339 (*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558)))) (-1493 (*1 *1 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558)))) (-2023 (*1 *1 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558)))) (-1515 (*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558)) (-4 *2 (-308)))) (-2938 (*1 *1 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558)) (-4 *2 (-308)))) (-1552 (*1 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-547)) (-4 *2 (-558)))) (-2948 (*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558)) (-4 *2 (-547)))) (-3470 (*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558)) (-4 *2 (-547))))) -(-13 (-365) (-38 |t#1|) (-1038 |t#1|) (-340 |t#1|) (-231 |t#1|) (-379 |t#1|) (-884 |t#1|) (-402 |t#1|) (-10 -8 (-15 -3065 ($ |t#1| |t#1|)) (-15 -4326 (|t#1| $)) (-15 -4339 (|t#1| $)) (-15 -1493 ($ $)) (-15 -2023 ($ $)) (IF (|has| |t#1| (-1150)) (-6 (-1150)) |%noBranch|) (IF (|has| |t#1| (-1038 (-566))) (PROGN (-6 (-1038 (-566))) (-6 (-1038 (-409 (-566))))) |%noBranch|) (IF (|has| |t#1| (-850)) (-6 (-850)) |%noBranch|) (IF (|has| |t#1| (-820)) (-6 (-820)) |%noBranch|) (IF (|has| |t#1| (-1022)) (-6 (-1022)) |%noBranch|) (IF (|has| |t#1| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1038 (-1175))) (-6 (-1038 (-1175))) |%noBranch|) (IF (|has| |t#1| (-308)) (PROGN (-15 -1515 (|t#1| $)) (-15 -2938 ($ $))) |%noBranch|) (IF (|has| |t#1| (-547)) (PROGN (-15 -1552 ($)) (-15 -2948 (|t#1| $)) (-15 -3470 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-909)) (-6 (-909)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #0#) . T) ((-616 (-566)) . T) ((-616 #1=(-1175)) |has| |#1| (-1038 (-1175))) ((-616 |#1|) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-614 (-225)) |has| |#1| (-1022)) ((-614 (-381)) |has| |#1| (-1022)) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-614 (-892 (-381))) |has| |#1| (-614 (-892 (-381)))) ((-614 (-892 (-566))) |has| |#1| (-614 (-892 (-566)))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-243) . T) ((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-291) . T) ((-308) . T) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-365) . T) ((-340 |#1|) . T) ((-379 |#1|) . T) ((-402 |#1|) . T) ((-454) . T) ((-516 (-1175) |#1|) |has| |#1| (-516 (-1175) |#1|)) ((-516 |#1| |#1|) |has| |#1| (-310 |#1|)) ((-558) . T) ((-646 #0#) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #0#) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #0#) . T) ((-640 |#1|) . T) ((-640 $) . T) ((-639 (-566)) |has| |#1| (-639 (-566))) ((-639 |#1|) . T) ((-717 #0#) . T) ((-717 |#1|) . T) ((-717 $) . T) ((-726) . T) ((-791) |has| |#1| (-820)) ((-792) |has| |#1| (-820)) ((-794) |has| |#1| (-820)) ((-795) |has| |#1| (-820)) ((-820) |has| |#1| (-820)) ((-848) |has| |#1| (-820)) ((-850) -2809 (|has| |#1| (-850)) (|has| |#1| (-820))) ((-900 (-1175)) |has| |#1| (-900 (-1175))) ((-886 (-381)) |has| |#1| (-886 (-381))) ((-886 (-566)) |has| |#1| (-886 (-566))) ((-884 |#1|) . T) ((-909) |has| |#1| (-909)) ((-920) . T) ((-1022) |has| |#1| (-1022)) ((-1038 (-409 (-566))) |has| |#1| (-1038 (-566))) ((-1038 (-566)) |has| |#1| (-1038 (-566))) ((-1038 #1#) |has| |#1| (-1038 (-1175))) ((-1038 |#1|) . T) ((-1051 #0#) . T) ((-1051 |#1|) . T) ((-1051 $) . T) ((-1056 #0#) . T) ((-1056 |#1|) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1150) |has| |#1| (-1150)) ((-1214) . T) ((-1218) . T)) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-3012 (($) NIL T CONST)) (-2881 (($ (-1141 |#1| |#2|)) 11)) (-3163 (((-1141 |#1| |#2|) $) 12)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-4390 ((|#2| $ (-240 |#1| |#2|)) 16)) (-3783 (((-862) $) NIL)) (-3117 (((-112) $ $) NIL)) (-2479 (($) NIL T CONST)) (-2947 (((-112) $ $) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL))) -(((-993 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -2881 ($ (-1141 |#1| |#2|))) (-15 -3163 ((-1141 |#1| |#2|) $)) (-15 -4390 (|#2| $ (-240 |#1| |#2|))))) (-921) (-365)) (T -993)) -((-2881 (*1 *1 *2) (-12 (-5 *2 (-1141 *3 *4)) (-14 *3 (-921)) (-4 *4 (-365)) (-5 *1 (-993 *3 *4)))) (-3163 (*1 *2 *1) (-12 (-5 *2 (-1141 *3 *4)) (-5 *1 (-993 *3 *4)) (-14 *3 (-921)) (-4 *4 (-365)))) (-4390 (*1 *2 *1 *3) (-12 (-5 *3 (-240 *4 *2)) (-14 *4 (-921)) (-4 *2 (-365)) (-5 *1 (-993 *4 *2))))) -(-13 (-21) (-10 -8 (-15 -2881 ($ (-1141 |#1| |#2|))) (-15 -3163 ((-1141 |#1| |#2|) $)) (-15 -4390 (|#2| $ (-240 |#1| |#2|))))) -((-3007 (((-112) $ $) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-1403 (((-1134) $) 9)) (-3783 (((-862) $) 15) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) -(((-994) (-13 (-1082) (-10 -8 (-15 -1403 ((-1134) $))))) (T -994)) -((-1403 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-994))))) -(-13 (-1082) (-10 -8 (-15 -1403 ((-1134) $)))) -((-3007 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2256 (((-112) $ (-771)) 8)) (-3012 (($) 7 T CONST)) (-2499 (($ $) 47)) (-3979 (((-644 |#1|) $) 31 (|has| $ (-6 -4414)))) (-2404 (((-112) $ (-771)) 9)) (-2329 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2908 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#1| |#1|) $) 36)) (-2603 (((-112) $ (-771)) 10)) (-4149 (((-771) $) 46)) (-4117 (((-1157) $) 22 (|has| |#1| (-1099)))) (-4039 ((|#1| $) 40)) (-3406 (($ |#1| $) 41)) (-4035 (((-1119) $) 21 (|has| |#1| (-1099)))) (-2303 ((|#1| $) 45)) (-2539 ((|#1| $) 42)) (-2692 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) 14)) (-2364 ((|#1| |#1| $) 49)) (-3467 (((-112) $) 11)) (-1494 (($) 12)) (-1747 ((|#1| $) 48)) (-4045 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-3940 (($ $) 13)) (-3783 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-3117 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-1748 (($ (-644 |#1|)) 43)) (-2745 ((|#1| $) 44)) (-1894 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3018 (((-771) $) 6 (|has| $ (-6 -4414))))) +((-3025 (*1 *1 *2 *2) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558)))) (-2248 (*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558)))) (-2260 (*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558)))) (-3406 (*1 *1 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558)))) (-1452 (*1 *1 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558)))) (-1873 (*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558)) (-4 *2 (-308)))) (-2487 (*1 *1 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558)) (-4 *2 (-308)))) (-2715 (*1 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-547)) (-4 *2 (-558)))) (-3913 (*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558)) (-4 *2 (-547)))) (-3143 (*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558)) (-4 *2 (-547))))) +(-13 (-365) (-38 |t#1|) (-1038 |t#1|) (-340 |t#1|) (-231 |t#1|) (-379 |t#1|) (-884 |t#1|) (-402 |t#1|) (-10 -8 (-15 -3025 ($ |t#1| |t#1|)) (-15 -2248 (|t#1| $)) (-15 -2260 (|t#1| $)) (-15 -3406 ($ $)) (-15 -1452 ($ $)) (IF (|has| |t#1| (-1150)) (-6 (-1150)) |%noBranch|) (IF (|has| |t#1| (-1038 (-566))) (PROGN (-6 (-1038 (-566))) (-6 (-1038 (-409 (-566))))) |%noBranch|) (IF (|has| |t#1| (-850)) (-6 (-850)) |%noBranch|) (IF (|has| |t#1| (-820)) (-6 (-820)) |%noBranch|) (IF (|has| |t#1| (-1022)) (-6 (-1022)) |%noBranch|) (IF (|has| |t#1| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1038 (-1175))) (-6 (-1038 (-1175))) |%noBranch|) (IF (|has| |t#1| (-308)) (PROGN (-15 -1873 (|t#1| $)) (-15 -2487 ($ $))) |%noBranch|) (IF (|has| |t#1| (-547)) (PROGN (-15 -2715 ($)) (-15 -3913 (|t#1| $)) (-15 -3143 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-909)) (-6 (-909)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #0#) . T) ((-616 (-566)) . T) ((-616 #1=(-1175)) |has| |#1| (-1038 (-1175))) ((-616 |#1|) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-614 (-225)) |has| |#1| (-1022)) ((-614 (-381)) |has| |#1| (-1022)) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-614 (-892 (-381))) |has| |#1| (-614 (-892 (-381)))) ((-614 (-892 (-566))) |has| |#1| (-614 (-892 (-566)))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-243) . T) ((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-291) . T) ((-308) . T) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-365) . T) ((-340 |#1|) . T) ((-379 |#1|) . T) ((-402 |#1|) . T) ((-454) . T) ((-516 (-1175) |#1|) |has| |#1| (-516 (-1175) |#1|)) ((-516 |#1| |#1|) |has| |#1| (-310 |#1|)) ((-558) . T) ((-646 #0#) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #0#) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #0#) . T) ((-640 |#1|) . T) ((-640 $) . T) ((-639 (-566)) |has| |#1| (-639 (-566))) ((-639 |#1|) . T) ((-717 #0#) . T) ((-717 |#1|) . T) ((-717 $) . T) ((-726) . T) ((-791) |has| |#1| (-820)) ((-792) |has| |#1| (-820)) ((-794) |has| |#1| (-820)) ((-795) |has| |#1| (-820)) ((-820) |has| |#1| (-820)) ((-848) |has| |#1| (-820)) ((-850) -2768 (|has| |#1| (-850)) (|has| |#1| (-820))) ((-900 (-1175)) |has| |#1| (-900 (-1175))) ((-886 (-381)) |has| |#1| (-886 (-381))) ((-886 (-566)) |has| |#1| (-886 (-566))) ((-884 |#1|) . T) ((-909) |has| |#1| (-909)) ((-920) . T) ((-1022) |has| |#1| (-1022)) ((-1038 (-409 (-566))) |has| |#1| (-1038 (-566))) ((-1038 (-566)) |has| |#1| (-1038 (-566))) ((-1038 #1#) |has| |#1| (-1038 (-1175))) ((-1038 |#1|) . T) ((-1051 #0#) . T) ((-1051 |#1|) . T) ((-1051 $) . T) ((-1056 #0#) . T) ((-1056 |#1|) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1150) |has| |#1| (-1150)) ((-1214) . T) ((-1218) . T)) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-2463 (($) NIL T CONST)) (-4135 (($ (-1141 |#1| |#2|)) 11)) (-4184 (((-1141 |#1| |#2|) $) 12)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-1309 ((|#2| $ (-240 |#1| |#2|)) 16)) (-3152 (((-862) $) NIL)) (-3044 (((-112) $ $) NIL)) (-4356 (($) NIL T CONST)) (-2914 (((-112) $ $) NIL)) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL))) +(((-993 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -4135 ($ (-1141 |#1| |#2|))) (-15 -4184 ((-1141 |#1| |#2|) $)) (-15 -1309 (|#2| $ (-240 |#1| |#2|))))) (-921) (-365)) (T -993)) +((-4135 (*1 *1 *2) (-12 (-5 *2 (-1141 *3 *4)) (-14 *3 (-921)) (-4 *4 (-365)) (-5 *1 (-993 *3 *4)))) (-4184 (*1 *2 *1) (-12 (-5 *2 (-1141 *3 *4)) (-5 *1 (-993 *3 *4)) (-14 *3 (-921)) (-4 *4 (-365)))) (-1309 (*1 *2 *1 *3) (-12 (-5 *3 (-240 *4 *2)) (-14 *4 (-921)) (-4 *2 (-365)) (-5 *1 (-993 *4 *2))))) +(-13 (-21) (-10 -8 (-15 -4135 ($ (-1141 |#1| |#2|))) (-15 -4184 ((-1141 |#1| |#2|) $)) (-15 -1309 (|#2| $ (-240 |#1| |#2|))))) +((-2988 (((-112) $ $) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-2080 (((-1134) $) 9)) (-3152 (((-862) $) 15) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) +(((-994) (-13 (-1082) (-10 -8 (-15 -2080 ((-1134) $))))) (T -994)) +((-2080 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-994))))) +(-13 (-1082) (-10 -8 (-15 -2080 ((-1134) $)))) +((-2988 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-1504 (((-112) $ (-771)) 8)) (-2463 (($) 7 T CONST)) (-4310 (($ $) 47)) (-1683 (((-644 |#1|) $) 31 (|has| $ (-6 -4414)))) (-3456 (((-112) $ (-771)) 9)) (-3491 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-3885 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#1| |#1|) $) 36)) (-3267 (((-112) $ (-771)) 10)) (-2440 (((-771) $) 46)) (-3380 (((-1157) $) 22 (|has| |#1| (-1099)))) (-3278 ((|#1| $) 40)) (-3888 (($ |#1| $) 41)) (-4072 (((-1119) $) 21 (|has| |#1| (-1099)))) (-2660 ((|#1| $) 45)) (-1973 ((|#1| $) 42)) (-2823 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) 14)) (-2774 ((|#1| |#1| $) 49)) (-2872 (((-112) $) 11)) (-3493 (($) 12)) (-2849 ((|#1| $) 48)) (-4083 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-1480 (($ $) 13)) (-3152 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-3044 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-2948 (($ (-644 |#1|)) 43)) (-3582 ((|#1| $) 44)) (-2210 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3000 (((-771) $) 6 (|has| $ (-6 -4414))))) (((-995 |#1|) (-140) (-1214)) (T -995)) -((-2364 (*1 *2 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1214)))) (-1747 (*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1214)))) (-2499 (*1 *1 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1214)))) (-4149 (*1 *2 *1) (-12 (-4 *1 (-995 *3)) (-4 *3 (-1214)) (-5 *2 (-771)))) (-2303 (*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1214)))) (-2745 (*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1214))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4414) (-15 -2364 (|t#1| |t#1| $)) (-15 -1747 (|t#1| $)) (-15 -2499 ($ $)) (-15 -4149 ((-771) $)) (-15 -2303 (|t#1| $)) (-15 -2745 (|t#1| $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2809 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1099) |has| |#1| (-1099)) ((-1214) . T)) -((-1788 (((-112) $) 43)) (-4307 (((-3 (-566) "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL) (((-3 |#2| "failed") $) 46)) (-4205 (((-566) $) NIL) (((-409 (-566)) $) NIL) ((|#2| $) 44)) (-1521 (((-3 (-409 (-566)) "failed") $) 78)) (-1942 (((-112) $) 72)) (-4204 (((-409 (-566)) $) 76)) (-3934 (((-112) $) 42)) (-1577 ((|#2| $) 22)) (-1301 (($ (-1 |#2| |#2|) $) 19)) (-1713 (($ $) 58)) (-3561 (($ $) NIL) (($ $ (-771)) NIL) (($ $ (-1175)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL) (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-1 |#2| |#2|)) 35)) (-1348 (((-538) $) 67)) (-2358 (($ $) 17)) (-3783 (((-862) $) 53) (($ (-566)) 39) (($ |#2|) 37) (($ (-409 (-566))) NIL)) (-2107 (((-771)) 10)) (-2086 ((|#2| $) 71)) (-2947 (((-112) $ $) 26)) (-2969 (((-112) $ $) 69)) (-3053 (($ $) 30) (($ $ $) 29)) (-3041 (($ $ $) 27)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 34) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 31) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL))) -(((-996 |#1| |#2|) (-10 -8 (-15 -3783 (|#1| (-409 (-566)))) (-15 -2969 ((-112) |#1| |#1|)) (-15 * (|#1| (-409 (-566)) |#1|)) (-15 * (|#1| |#1| (-409 (-566)))) (-15 -1713 (|#1| |#1|)) (-15 -1348 ((-538) |#1|)) (-15 -1521 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -4204 ((-409 (-566)) |#1|)) (-15 -1942 ((-112) |#1|)) (-15 -2086 (|#2| |#1|)) (-15 -1577 (|#2| |#1|)) (-15 -2358 (|#1| |#1|)) (-15 -1301 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3561 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3561 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -3561 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -3561 (|#1| |#1| (-1175) (-771))) (-15 -3561 (|#1| |#1| (-644 (-1175)))) (-15 -3561 (|#1| |#1| (-1175))) (-15 -3561 (|#1| |#1| (-771))) (-15 -3561 (|#1| |#1|)) (-15 -4307 ((-3 |#2| "failed") |#1|)) (-15 -4205 (|#2| |#1|)) (-15 -4205 ((-409 (-566)) |#1|)) (-15 -4307 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -4205 ((-566) |#1|)) (-15 -4307 ((-3 (-566) "failed") |#1|)) (-15 -3783 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2107 ((-771))) (-15 -3783 (|#1| (-566))) (-15 -3934 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3053 (|#1| |#1| |#1|)) (-15 -3053 (|#1| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 -1788 ((-112) |#1|)) (-15 * (|#1| (-921) |#1|)) (-15 -3041 (|#1| |#1| |#1|)) (-15 -3783 ((-862) |#1|)) (-15 -2947 ((-112) |#1| |#1|))) (-997 |#2|) (-172)) (T -996)) -((-2107 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-771)) (-5 *1 (-996 *3 *4)) (-4 *3 (-997 *4))))) -(-10 -8 (-15 -3783 (|#1| (-409 (-566)))) (-15 -2969 ((-112) |#1| |#1|)) (-15 * (|#1| (-409 (-566)) |#1|)) (-15 * (|#1| |#1| (-409 (-566)))) (-15 -1713 (|#1| |#1|)) (-15 -1348 ((-538) |#1|)) (-15 -1521 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -4204 ((-409 (-566)) |#1|)) (-15 -1942 ((-112) |#1|)) (-15 -2086 (|#2| |#1|)) (-15 -1577 (|#2| |#1|)) (-15 -2358 (|#1| |#1|)) (-15 -1301 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3561 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3561 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -3561 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -3561 (|#1| |#1| (-1175) (-771))) (-15 -3561 (|#1| |#1| (-644 (-1175)))) (-15 -3561 (|#1| |#1| (-1175))) (-15 -3561 (|#1| |#1| (-771))) (-15 -3561 (|#1| |#1|)) (-15 -4307 ((-3 |#2| "failed") |#1|)) (-15 -4205 (|#2| |#1|)) (-15 -4205 ((-409 (-566)) |#1|)) (-15 -4307 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -4205 ((-566) |#1|)) (-15 -4307 ((-3 (-566) "failed") |#1|)) (-15 -3783 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2107 ((-771))) (-15 -3783 (|#1| (-566))) (-15 -3934 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3053 (|#1| |#1| |#1|)) (-15 -3053 (|#1| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 -1788 ((-112) |#1|)) (-15 * (|#1| (-921) |#1|)) (-15 -3041 (|#1| |#1| |#1|)) (-15 -3783 ((-862) |#1|)) (-15 -2947 ((-112) |#1| |#1|))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-4175 (((-3 $ "failed") $ $) 20)) (-3012 (($) 18 T CONST)) (-4307 (((-3 (-566) "failed") $) 127 (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) 125 (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) 122)) (-4205 (((-566) $) 126 (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) 124 (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) 123)) (-3577 (((-689 (-566)) (-689 $)) 97 (|has| |#1| (-639 (-566)))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) 96 (|has| |#1| (-639 (-566)))) (((-2 (|:| -4227 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) 95) (((-689 |#1|) (-689 $)) 94)) (-1878 (((-3 $ "failed") $) 37)) (-3742 ((|#1| $) 87)) (-1521 (((-3 (-409 (-566)) "failed") $) 83 (|has| |#1| (-547)))) (-1942 (((-112) $) 85 (|has| |#1| (-547)))) (-4204 (((-409 (-566)) $) 84 (|has| |#1| (-547)))) (-3585 (($ |#1| |#1| |#1| |#1|) 88)) (-3934 (((-112) $) 35)) (-1577 ((|#1| $) 89)) (-2097 (($ $ $) 76 (|has| |#1| (-850)))) (-3962 (($ $ $) 75 (|has| |#1| (-850)))) (-1301 (($ (-1 |#1| |#1|) $) 98)) (-4117 (((-1157) $) 10)) (-1713 (($ $) 80 (|has| |#1| (-365)))) (-1513 ((|#1| $) 90)) (-1519 ((|#1| $) 91)) (-3381 ((|#1| $) 92)) (-4035 (((-1119) $) 11)) (-2055 (($ $ (-644 |#1|) (-644 |#1|)) 104 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 103 (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) 102 (|has| |#1| (-310 |#1|))) (($ $ (-644 (-295 |#1|))) 101 (|has| |#1| (-310 |#1|))) (($ $ (-644 (-1175)) (-644 |#1|)) 100 (|has| |#1| (-516 (-1175) |#1|))) (($ $ (-1175) |#1|) 99 (|has| |#1| (-516 (-1175) |#1|)))) (-4390 (($ $ |#1|) 105 (|has| |#1| (-287 |#1| |#1|)))) (-3561 (($ $) 121 (|has| |#1| (-233))) (($ $ (-771)) 119 (|has| |#1| (-233))) (($ $ (-1175)) 117 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) 116 (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) 115 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) 114 (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) 107) (($ $ (-1 |#1| |#1|)) 106)) (-1348 (((-538) $) 81 (|has| |#1| (-614 (-538))))) (-2358 (($ $) 93)) (-3783 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 44) (($ (-409 (-566))) 70 (-2809 (|has| |#1| (-365)) (|has| |#1| (-1038 (-409 (-566))))))) (-3144 (((-3 $ "failed") $) 82 (|has| |#1| (-145)))) (-2107 (((-771)) 32 T CONST)) (-3117 (((-112) $ $) 9)) (-2086 ((|#1| $) 86 (|has| |#1| (-1059)))) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-2875 (($ $) 120 (|has| |#1| (-233))) (($ $ (-771)) 118 (|has| |#1| (-233))) (($ $ (-1175)) 113 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) 112 (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) 111 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) 110 (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) 109) (($ $ (-1 |#1| |#1|)) 108)) (-3009 (((-112) $ $) 73 (|has| |#1| (-850)))) (-2984 (((-112) $ $) 72 (|has| |#1| (-850)))) (-2947 (((-112) $ $) 6)) (-2995 (((-112) $ $) 74 (|has| |#1| (-850)))) (-2969 (((-112) $ $) 71 (|has| |#1| (-850)))) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 79 (|has| |#1| (-365)))) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ $ (-409 (-566))) 78 (|has| |#1| (-365))) (($ (-409 (-566)) $) 77 (|has| |#1| (-365))))) +((-2774 (*1 *2 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1214)))) (-2849 (*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1214)))) (-4310 (*1 *1 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1214)))) (-2440 (*1 *2 *1) (-12 (-4 *1 (-995 *3)) (-4 *3 (-1214)) (-5 *2 (-771)))) (-2660 (*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1214)))) (-3582 (*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1214))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4414) (-15 -2774 (|t#1| |t#1| $)) (-15 -2849 (|t#1| $)) (-15 -4310 ($ $)) (-15 -2440 ((-771) $)) (-15 -2660 (|t#1| $)) (-15 -3582 (|t#1| $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2768 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1099) |has| |#1| (-1099)) ((-1214) . T)) +((-3230 (((-112) $) 43)) (-2229 (((-3 (-566) "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL) (((-3 |#2| "failed") $) 46)) (-4158 (((-566) $) NIL) (((-409 (-566)) $) NIL) ((|#2| $) 44)) (-4391 (((-3 (-409 (-566)) "failed") $) 78)) (-3407 (((-112) $) 72)) (-1786 (((-409 (-566)) $) 76)) (-2389 (((-112) $) 42)) (-2064 ((|#2| $) 22)) (-2319 (($ (-1 |#2| |#2|) $) 19)) (-2748 (($ $) 58)) (-3629 (($ $) NIL) (($ $ (-771)) NIL) (($ $ (-1175)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL) (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-1 |#2| |#2|)) 35)) (-2376 (((-538) $) 67)) (-3357 (($ $) 17)) (-3152 (((-862) $) 53) (($ (-566)) 39) (($ |#2|) 37) (($ (-409 (-566))) NIL)) (-2593 (((-771)) 10)) (-1358 ((|#2| $) 71)) (-2914 (((-112) $ $) 26)) (-2935 (((-112) $ $) 69)) (-3012 (($ $) 30) (($ $ $) 29)) (-3002 (($ $ $) 27)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 34) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 31) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL))) +(((-996 |#1| |#2|) (-10 -8 (-15 -3152 (|#1| (-409 (-566)))) (-15 -2935 ((-112) |#1| |#1|)) (-15 * (|#1| (-409 (-566)) |#1|)) (-15 * (|#1| |#1| (-409 (-566)))) (-15 -2748 (|#1| |#1|)) (-15 -2376 ((-538) |#1|)) (-15 -4391 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -1786 ((-409 (-566)) |#1|)) (-15 -3407 ((-112) |#1|)) (-15 -1358 (|#2| |#1|)) (-15 -2064 (|#2| |#1|)) (-15 -3357 (|#1| |#1|)) (-15 -2319 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3629 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3629 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -3629 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -3629 (|#1| |#1| (-1175) (-771))) (-15 -3629 (|#1| |#1| (-644 (-1175)))) (-15 -3629 (|#1| |#1| (-1175))) (-15 -3629 (|#1| |#1| (-771))) (-15 -3629 (|#1| |#1|)) (-15 -2229 ((-3 |#2| "failed") |#1|)) (-15 -4158 (|#2| |#1|)) (-15 -4158 ((-409 (-566)) |#1|)) (-15 -2229 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -4158 ((-566) |#1|)) (-15 -2229 ((-3 (-566) "failed") |#1|)) (-15 -3152 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2593 ((-771))) (-15 -3152 (|#1| (-566))) (-15 -2389 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3012 (|#1| |#1| |#1|)) (-15 -3012 (|#1| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 -3230 ((-112) |#1|)) (-15 * (|#1| (-921) |#1|)) (-15 -3002 (|#1| |#1| |#1|)) (-15 -3152 ((-862) |#1|)) (-15 -2914 ((-112) |#1| |#1|))) (-997 |#2|) (-172)) (T -996)) +((-2593 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-771)) (-5 *1 (-996 *3 *4)) (-4 *3 (-997 *4))))) +(-10 -8 (-15 -3152 (|#1| (-409 (-566)))) (-15 -2935 ((-112) |#1| |#1|)) (-15 * (|#1| (-409 (-566)) |#1|)) (-15 * (|#1| |#1| (-409 (-566)))) (-15 -2748 (|#1| |#1|)) (-15 -2376 ((-538) |#1|)) (-15 -4391 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -1786 ((-409 (-566)) |#1|)) (-15 -3407 ((-112) |#1|)) (-15 -1358 (|#2| |#1|)) (-15 -2064 (|#2| |#1|)) (-15 -3357 (|#1| |#1|)) (-15 -2319 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3629 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3629 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -3629 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -3629 (|#1| |#1| (-1175) (-771))) (-15 -3629 (|#1| |#1| (-644 (-1175)))) (-15 -3629 (|#1| |#1| (-1175))) (-15 -3629 (|#1| |#1| (-771))) (-15 -3629 (|#1| |#1|)) (-15 -2229 ((-3 |#2| "failed") |#1|)) (-15 -4158 (|#2| |#1|)) (-15 -4158 ((-409 (-566)) |#1|)) (-15 -2229 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -4158 ((-566) |#1|)) (-15 -2229 ((-3 (-566) "failed") |#1|)) (-15 -3152 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2593 ((-771))) (-15 -3152 (|#1| (-566))) (-15 -2389 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3012 (|#1| |#1| |#1|)) (-15 -3012 (|#1| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 -3230 ((-112) |#1|)) (-15 * (|#1| (-921) |#1|)) (-15 -3002 (|#1| |#1| |#1|)) (-15 -3152 ((-862) |#1|)) (-15 -2914 ((-112) |#1| |#1|))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-3967 (((-3 $ "failed") $ $) 20)) (-2463 (($) 18 T CONST)) (-2229 (((-3 (-566) "failed") $) 127 (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) 125 (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) 122)) (-4158 (((-566) $) 126 (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) 124 (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) 123)) (-4089 (((-689 (-566)) (-689 $)) 97 (|has| |#1| (-639 (-566)))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) 96 (|has| |#1| (-639 (-566)))) (((-2 (|:| -3361 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) 95) (((-689 |#1|) (-689 $)) 94)) (-3245 (((-3 $ "failed") $) 37)) (-1646 ((|#1| $) 87)) (-4391 (((-3 (-409 (-566)) "failed") $) 83 (|has| |#1| (-547)))) (-3407 (((-112) $) 85 (|has| |#1| (-547)))) (-1786 (((-409 (-566)) $) 84 (|has| |#1| (-547)))) (-1915 (($ |#1| |#1| |#1| |#1|) 88)) (-2389 (((-112) $) 35)) (-2064 ((|#1| $) 89)) (-1478 (($ $ $) 76 (|has| |#1| (-850)))) (-2599 (($ $ $) 75 (|has| |#1| (-850)))) (-2319 (($ (-1 |#1| |#1|) $) 98)) (-3380 (((-1157) $) 10)) (-2748 (($ $) 80 (|has| |#1| (-365)))) (-1664 ((|#1| $) 90)) (-4220 ((|#1| $) 91)) (-3308 ((|#1| $) 92)) (-4072 (((-1119) $) 11)) (-2023 (($ $ (-644 |#1|) (-644 |#1|)) 104 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 103 (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) 102 (|has| |#1| (-310 |#1|))) (($ $ (-644 (-295 |#1|))) 101 (|has| |#1| (-310 |#1|))) (($ $ (-644 (-1175)) (-644 |#1|)) 100 (|has| |#1| (-516 (-1175) |#1|))) (($ $ (-1175) |#1|) 99 (|has| |#1| (-516 (-1175) |#1|)))) (-1309 (($ $ |#1|) 105 (|has| |#1| (-287 |#1| |#1|)))) (-3629 (($ $) 121 (|has| |#1| (-233))) (($ $ (-771)) 119 (|has| |#1| (-233))) (($ $ (-1175)) 117 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) 116 (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) 115 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) 114 (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) 107) (($ $ (-1 |#1| |#1|)) 106)) (-2376 (((-538) $) 81 (|has| |#1| (-614 (-538))))) (-3357 (($ $) 93)) (-3152 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 44) (($ (-409 (-566))) 70 (-2768 (|has| |#1| (-365)) (|has| |#1| (-1038 (-409 (-566))))))) (-2633 (((-3 $ "failed") $) 82 (|has| |#1| (-145)))) (-2593 (((-771)) 32 T CONST)) (-3044 (((-112) $ $) 9)) (-1358 ((|#1| $) 86 (|has| |#1| (-1059)))) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-3497 (($ $) 120 (|has| |#1| (-233))) (($ $ (-771)) 118 (|has| |#1| (-233))) (($ $ (-1175)) 113 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) 112 (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) 111 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) 110 (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) 109) (($ $ (-1 |#1| |#1|)) 108)) (-2968 (((-112) $ $) 73 (|has| |#1| (-850)))) (-2946 (((-112) $ $) 72 (|has| |#1| (-850)))) (-2914 (((-112) $ $) 6)) (-2956 (((-112) $ $) 74 (|has| |#1| (-850)))) (-2935 (((-112) $ $) 71 (|has| |#1| (-850)))) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 79 (|has| |#1| (-365)))) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ $ (-409 (-566))) 78 (|has| |#1| (-365))) (($ (-409 (-566)) $) 77 (|has| |#1| (-365))))) (((-997 |#1|) (-140) (-172)) (T -997)) -((-2358 (*1 *1 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)))) (-3381 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)))) (-1519 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)))) (-1513 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)))) (-1577 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)))) (-3585 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)))) (-3742 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)))) (-2086 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)) (-4 *2 (-1059)))) (-1942 (*1 *2 *1) (-12 (-4 *1 (-997 *3)) (-4 *3 (-172)) (-4 *3 (-547)) (-5 *2 (-112)))) (-4204 (*1 *2 *1) (-12 (-4 *1 (-997 *3)) (-4 *3 (-172)) (-4 *3 (-547)) (-5 *2 (-409 (-566))))) (-1521 (*1 *2 *1) (|partial| -12 (-4 *1 (-997 *3)) (-4 *3 (-172)) (-4 *3 (-547)) (-5 *2 (-409 (-566)))))) -(-13 (-38 |t#1|) (-413 |t#1|) (-231 |t#1|) (-340 |t#1|) (-379 |t#1|) (-10 -8 (-15 -2358 ($ $)) (-15 -3381 (|t#1| $)) (-15 -1519 (|t#1| $)) (-15 -1513 (|t#1| $)) (-15 -1577 (|t#1| $)) (-15 -3585 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3742 (|t#1| $)) (IF (|has| |t#1| (-291)) (-6 (-291)) |%noBranch|) (IF (|has| |t#1| (-850)) (-6 (-850)) |%noBranch|) (IF (|has| |t#1| (-365)) (-6 (-243)) |%noBranch|) (IF (|has| |t#1| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1059)) (-15 -2086 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-547)) (PROGN (-15 -1942 ((-112) $)) (-15 -4204 ((-409 (-566)) $)) (-15 -1521 ((-3 (-409 (-566)) "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) |has| |#1| (-365)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-365)) ((-111 |#1| |#1|) . T) ((-111 $ $) -2809 (|has| |#1| (-365)) (|has| |#1| (-291))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #0#) -2809 (|has| |#1| (-1038 (-409 (-566)))) (|has| |#1| (-365))) ((-616 (-566)) . T) ((-616 |#1|) . T) ((-613 (-862)) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-243) |has| |#1| (-365)) ((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-291) -2809 (|has| |#1| (-365)) (|has| |#1| (-291))) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-340 |#1|) . T) ((-379 |#1|) . T) ((-413 |#1|) . T) ((-516 (-1175) |#1|) |has| |#1| (-516 (-1175) |#1|)) ((-516 |#1| |#1|) |has| |#1| (-310 |#1|)) ((-646 #0#) |has| |#1| (-365)) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #0#) |has| |#1| (-365)) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #0#) |has| |#1| (-365)) ((-640 |#1|) . T) ((-639 (-566)) |has| |#1| (-639 (-566))) ((-639 |#1|) . T) ((-717 #0#) |has| |#1| (-365)) ((-717 |#1|) . T) ((-726) . T) ((-850) |has| |#1| (-850)) ((-900 (-1175)) |has| |#1| (-900 (-1175))) ((-1038 (-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((-1038 (-566)) |has| |#1| (-1038 (-566))) ((-1038 |#1|) . T) ((-1051 #0#) |has| |#1| (-365)) ((-1051 |#1|) . T) ((-1051 $) -2809 (|has| |#1| (-365)) (|has| |#1| (-291))) ((-1056 #0#) |has| |#1| (-365)) ((-1056 |#1|) . T) ((-1056 $) -2809 (|has| |#1| (-365)) (|has| |#1| (-291))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) -((-1301 ((|#3| (-1 |#4| |#2|) |#1|) 16))) -(((-998 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1301 (|#3| (-1 |#4| |#2|) |#1|))) (-997 |#2|) (-172) (-997 |#4|) (-172)) (T -998)) -((-1301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-997 *6)) (-5 *1 (-998 *4 *5 *2 *6)) (-4 *4 (-997 *5))))) -(-10 -7 (-15 -1301 (|#3| (-1 |#4| |#2|) |#1|))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-3012 (($) NIL T CONST)) (-4307 (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) NIL)) (-4205 (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) NIL)) (-3577 (((-689 (-566)) (-689 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -4227 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) NIL) (((-689 |#1|) (-689 $)) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-3742 ((|#1| $) 12)) (-1521 (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-547)))) (-1942 (((-112) $) NIL (|has| |#1| (-547)))) (-4204 (((-409 (-566)) $) NIL (|has| |#1| (-547)))) (-3585 (($ |#1| |#1| |#1| |#1|) 16)) (-3934 (((-112) $) NIL)) (-1577 ((|#1| $) NIL)) (-2097 (($ $ $) NIL (|has| |#1| (-850)))) (-3962 (($ $ $) NIL (|has| |#1| (-850)))) (-1301 (($ (-1 |#1| |#1|) $) NIL)) (-4117 (((-1157) $) NIL)) (-1713 (($ $) NIL (|has| |#1| (-365)))) (-1513 ((|#1| $) 15)) (-1519 ((|#1| $) 14)) (-3381 ((|#1| $) 13)) (-4035 (((-1119) $) NIL)) (-2055 (($ $ (-644 |#1|) (-644 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-644 (-295 |#1|))) NIL (|has| |#1| (-310 |#1|))) (($ $ (-644 (-1175)) (-644 |#1|)) NIL (|has| |#1| (-516 (-1175) |#1|))) (($ $ (-1175) |#1|) NIL (|has| |#1| (-516 (-1175) |#1|)))) (-4390 (($ $ |#1|) NIL (|has| |#1| (-287 |#1| |#1|)))) (-3561 (($ $) NIL (|has| |#1| (-233))) (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1348 (((-538) $) NIL (|has| |#1| (-614 (-538))))) (-2358 (($ $) NIL)) (-3783 (((-862) $) NIL) (($ (-566)) NIL) (($ |#1|) NIL) (($ (-409 (-566))) NIL (-2809 (|has| |#1| (-365)) (|has| |#1| (-1038 (-409 (-566))))))) (-3144 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2107 (((-771)) NIL T CONST)) (-3117 (((-112) $ $) NIL)) (-2086 ((|#1| $) NIL (|has| |#1| (-1059)))) (-2479 (($) 8 T CONST)) (-4334 (($) 10 T CONST)) (-2875 (($ $) NIL (|has| |#1| (-233))) (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3009 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2984 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2947 (((-112) $ $) NIL)) (-2995 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2969 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL (|has| |#1| (-365)))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-409 (-566))) NIL (|has| |#1| (-365))) (($ (-409 (-566)) $) NIL (|has| |#1| (-365))))) +((-3357 (*1 *1 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)))) (-3308 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)))) (-4220 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)))) (-1664 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)))) (-2064 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)))) (-1915 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)))) (-1646 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)))) (-1358 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)) (-4 *2 (-1059)))) (-3407 (*1 *2 *1) (-12 (-4 *1 (-997 *3)) (-4 *3 (-172)) (-4 *3 (-547)) (-5 *2 (-112)))) (-1786 (*1 *2 *1) (-12 (-4 *1 (-997 *3)) (-4 *3 (-172)) (-4 *3 (-547)) (-5 *2 (-409 (-566))))) (-4391 (*1 *2 *1) (|partial| -12 (-4 *1 (-997 *3)) (-4 *3 (-172)) (-4 *3 (-547)) (-5 *2 (-409 (-566)))))) +(-13 (-38 |t#1|) (-413 |t#1|) (-231 |t#1|) (-340 |t#1|) (-379 |t#1|) (-10 -8 (-15 -3357 ($ $)) (-15 -3308 (|t#1| $)) (-15 -4220 (|t#1| $)) (-15 -1664 (|t#1| $)) (-15 -2064 (|t#1| $)) (-15 -1915 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -1646 (|t#1| $)) (IF (|has| |t#1| (-291)) (-6 (-291)) |%noBranch|) (IF (|has| |t#1| (-850)) (-6 (-850)) |%noBranch|) (IF (|has| |t#1| (-365)) (-6 (-243)) |%noBranch|) (IF (|has| |t#1| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1059)) (-15 -1358 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-547)) (PROGN (-15 -3407 ((-112) $)) (-15 -1786 ((-409 (-566)) $)) (-15 -4391 ((-3 (-409 (-566)) "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) |has| |#1| (-365)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-365)) ((-111 |#1| |#1|) . T) ((-111 $ $) -2768 (|has| |#1| (-365)) (|has| |#1| (-291))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #0#) -2768 (|has| |#1| (-1038 (-409 (-566)))) (|has| |#1| (-365))) ((-616 (-566)) . T) ((-616 |#1|) . T) ((-613 (-862)) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-243) |has| |#1| (-365)) ((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-291) -2768 (|has| |#1| (-365)) (|has| |#1| (-291))) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-340 |#1|) . T) ((-379 |#1|) . T) ((-413 |#1|) . T) ((-516 (-1175) |#1|) |has| |#1| (-516 (-1175) |#1|)) ((-516 |#1| |#1|) |has| |#1| (-310 |#1|)) ((-646 #0#) |has| |#1| (-365)) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #0#) |has| |#1| (-365)) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #0#) |has| |#1| (-365)) ((-640 |#1|) . T) ((-639 (-566)) |has| |#1| (-639 (-566))) ((-639 |#1|) . T) ((-717 #0#) |has| |#1| (-365)) ((-717 |#1|) . T) ((-726) . T) ((-850) |has| |#1| (-850)) ((-900 (-1175)) |has| |#1| (-900 (-1175))) ((-1038 (-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((-1038 (-566)) |has| |#1| (-1038 (-566))) ((-1038 |#1|) . T) ((-1051 #0#) |has| |#1| (-365)) ((-1051 |#1|) . T) ((-1051 $) -2768 (|has| |#1| (-365)) (|has| |#1| (-291))) ((-1056 #0#) |has| |#1| (-365)) ((-1056 |#1|) . T) ((-1056 $) -2768 (|has| |#1| (-365)) (|has| |#1| (-291))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) +((-2319 ((|#3| (-1 |#4| |#2|) |#1|) 16))) +(((-998 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2319 (|#3| (-1 |#4| |#2|) |#1|))) (-997 |#2|) (-172) (-997 |#4|) (-172)) (T -998)) +((-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-997 *6)) (-5 *1 (-998 *4 *5 *2 *6)) (-4 *4 (-997 *5))))) +(-10 -7 (-15 -2319 (|#3| (-1 |#4| |#2|) |#1|))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-2463 (($) NIL T CONST)) (-2229 (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) NIL)) (-4158 (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) NIL)) (-4089 (((-689 (-566)) (-689 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -3361 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) NIL) (((-689 |#1|) (-689 $)) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-1646 ((|#1| $) 12)) (-4391 (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-547)))) (-3407 (((-112) $) NIL (|has| |#1| (-547)))) (-1786 (((-409 (-566)) $) NIL (|has| |#1| (-547)))) (-1915 (($ |#1| |#1| |#1| |#1|) 16)) (-2389 (((-112) $) NIL)) (-2064 ((|#1| $) NIL)) (-1478 (($ $ $) NIL (|has| |#1| (-850)))) (-2599 (($ $ $) NIL (|has| |#1| (-850)))) (-2319 (($ (-1 |#1| |#1|) $) NIL)) (-3380 (((-1157) $) NIL)) (-2748 (($ $) NIL (|has| |#1| (-365)))) (-1664 ((|#1| $) 15)) (-4220 ((|#1| $) 14)) (-3308 ((|#1| $) 13)) (-4072 (((-1119) $) NIL)) (-2023 (($ $ (-644 |#1|) (-644 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-644 (-295 |#1|))) NIL (|has| |#1| (-310 |#1|))) (($ $ (-644 (-1175)) (-644 |#1|)) NIL (|has| |#1| (-516 (-1175) |#1|))) (($ $ (-1175) |#1|) NIL (|has| |#1| (-516 (-1175) |#1|)))) (-1309 (($ $ |#1|) NIL (|has| |#1| (-287 |#1| |#1|)))) (-3629 (($ $) NIL (|has| |#1| (-233))) (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2376 (((-538) $) NIL (|has| |#1| (-614 (-538))))) (-3357 (($ $) NIL)) (-3152 (((-862) $) NIL) (($ (-566)) NIL) (($ |#1|) NIL) (($ (-409 (-566))) NIL (-2768 (|has| |#1| (-365)) (|has| |#1| (-1038 (-409 (-566))))))) (-2633 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2593 (((-771)) NIL T CONST)) (-3044 (((-112) $ $) NIL)) (-1358 ((|#1| $) NIL (|has| |#1| (-1059)))) (-4356 (($) 8 T CONST)) (-4366 (($) 10 T CONST)) (-3497 (($ $) NIL (|has| |#1| (-233))) (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2968 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2914 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2935 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL (|has| |#1| (-365)))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-409 (-566))) NIL (|has| |#1| (-365))) (($ (-409 (-566)) $) NIL (|has| |#1| (-365))))) (((-999 |#1|) (-997 |#1|) (-172)) (T -999)) NIL (-997 |#1|) -((-3007 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2256 (((-112) $ (-771)) NIL)) (-3012 (($) NIL T CONST)) (-2499 (($ $) 23)) (-3244 (($ (-644 |#1|)) 33)) (-3979 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-2404 (((-112) $ (-771)) NIL)) (-2329 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2908 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#1| |#1|) $) NIL)) (-2603 (((-112) $ (-771)) NIL)) (-4149 (((-771) $) 26)) (-4117 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4039 ((|#1| $) 28)) (-3406 (($ |#1| $) 17)) (-4035 (((-1119) $) NIL (|has| |#1| (-1099)))) (-2303 ((|#1| $) 27)) (-2539 ((|#1| $) 22)) (-2692 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) NIL)) (-2364 ((|#1| |#1| $) 16)) (-3467 (((-112) $) 18)) (-1494 (($) NIL)) (-1747 ((|#1| $) 21)) (-4045 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3940 (($ $) NIL)) (-3783 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-3117 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1748 (($ (-644 |#1|)) NIL)) (-2745 ((|#1| $) 30)) (-1894 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3018 (((-771) $) NIL (|has| $ (-6 -4414))))) -(((-1000 |#1|) (-13 (-995 |#1|) (-10 -8 (-15 -3244 ($ (-644 |#1|))))) (-1099)) (T -1000)) -((-3244 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-1000 *3))))) -(-13 (-995 |#1|) (-10 -8 (-15 -3244 ($ (-644 |#1|))))) -((-3731 (($ $) 12)) (-2140 (($ $ (-566)) 13))) -(((-1001 |#1|) (-10 -8 (-15 -3731 (|#1| |#1|)) (-15 -2140 (|#1| |#1| (-566)))) (-1002)) (T -1001)) -NIL -(-10 -8 (-15 -3731 (|#1| |#1|)) (-15 -2140 (|#1| |#1| (-566)))) -((-3731 (($ $) 6)) (-2140 (($ $ (-566)) 7)) (** (($ $ (-409 (-566))) 8))) +((-2988 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1504 (((-112) $ (-771)) NIL)) (-2463 (($) NIL T CONST)) (-4310 (($ $) 23)) (-4230 (($ (-644 |#1|)) 33)) (-1683 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-3456 (((-112) $ (-771)) NIL)) (-3491 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3885 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#1| |#1|) $) NIL)) (-3267 (((-112) $ (-771)) NIL)) (-2440 (((-771) $) 26)) (-3380 (((-1157) $) NIL (|has| |#1| (-1099)))) (-3278 ((|#1| $) 28)) (-3888 (($ |#1| $) 17)) (-4072 (((-1119) $) NIL (|has| |#1| (-1099)))) (-2660 ((|#1| $) 27)) (-1973 ((|#1| $) 22)) (-2823 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) NIL)) (-2774 ((|#1| |#1| $) 16)) (-2872 (((-112) $) 18)) (-3493 (($) NIL)) (-2849 ((|#1| $) 21)) (-4083 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-1480 (($ $) NIL)) (-3152 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-3044 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2948 (($ (-644 |#1|)) NIL)) (-3582 ((|#1| $) 30)) (-2210 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3000 (((-771) $) NIL (|has| $ (-6 -4414))))) +(((-1000 |#1|) (-13 (-995 |#1|) (-10 -8 (-15 -4230 ($ (-644 |#1|))))) (-1099)) (T -1000)) +((-4230 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-1000 *3))))) +(-13 (-995 |#1|) (-10 -8 (-15 -4230 ($ (-644 |#1|))))) +((-1635 (($ $) 12)) (-1575 (($ $ (-566)) 13))) +(((-1001 |#1|) (-10 -8 (-15 -1635 (|#1| |#1|)) (-15 -1575 (|#1| |#1| (-566)))) (-1002)) (T -1001)) +NIL +(-10 -8 (-15 -1635 (|#1| |#1|)) (-15 -1575 (|#1| |#1| (-566)))) +((-1635 (($ $) 6)) (-1575 (($ $ (-566)) 7)) (** (($ $ (-409 (-566))) 8))) (((-1002) (-140)) (T -1002)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-1002)) (-5 *2 (-409 (-566))))) (-2140 (*1 *1 *1 *2) (-12 (-4 *1 (-1002)) (-5 *2 (-566)))) (-3731 (*1 *1 *1) (-4 *1 (-1002)))) -(-13 (-10 -8 (-15 -3731 ($ $)) (-15 -2140 ($ $ (-566))) (-15 ** ($ $ (-409 (-566)))))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-3926 (((-2 (|:| |num| (-1264 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| (-409 |#2|) (-365)))) (-3991 (($ $) NIL (|has| (-409 |#2|) (-365)))) (-2388 (((-112) $) NIL (|has| (-409 |#2|) (-365)))) (-1872 (((-689 (-409 |#2|)) (-1264 $)) NIL) (((-689 (-409 |#2|))) NIL)) (-3837 (((-409 |#2|) $) NIL)) (-3778 (((-1187 (-921) (-771)) (-566)) NIL (|has| (-409 |#2|) (-351)))) (-4175 (((-3 $ "failed") $ $) NIL)) (-1550 (($ $) NIL (|has| (-409 |#2|) (-365)))) (-3184 (((-420 $) $) NIL (|has| (-409 |#2|) (-365)))) (-2837 (((-112) $ $) NIL (|has| (-409 |#2|) (-365)))) (-1970 (((-771)) NIL (|has| (-409 |#2|) (-370)))) (-1639 (((-112)) NIL)) (-2873 (((-112) |#1|) 173) (((-112) |#2|) 177)) (-3012 (($) NIL T CONST)) (-4307 (((-3 (-566) "failed") $) NIL (|has| (-409 |#2|) (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| (-409 |#2|) (-1038 (-409 (-566))))) (((-3 (-409 |#2|) "failed") $) NIL)) (-4205 (((-566) $) NIL (|has| (-409 |#2|) (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| (-409 |#2|) (-1038 (-409 (-566))))) (((-409 |#2|) $) NIL)) (-2392 (($ (-1264 (-409 |#2|)) (-1264 $)) NIL) (($ (-1264 (-409 |#2|))) 81) (($ (-1264 |#2|) |#2|) NIL)) (-1910 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-409 |#2|) (-351)))) (-2946 (($ $ $) NIL (|has| (-409 |#2|) (-365)))) (-4360 (((-689 (-409 |#2|)) $ (-1264 $)) NIL) (((-689 (-409 |#2|)) $) NIL)) (-3577 (((-689 (-566)) (-689 $)) NIL (|has| (-409 |#2|) (-639 (-566)))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| (-409 |#2|) (-639 (-566)))) (((-2 (|:| -4227 (-689 (-409 |#2|))) (|:| |vec| (-1264 (-409 |#2|)))) (-689 $) (-1264 $)) NIL) (((-689 (-409 |#2|)) (-689 $)) NIL)) (-3608 (((-1264 $) (-1264 $)) NIL)) (-1676 (($ |#3|) 75) (((-3 $ "failed") (-409 |#3|)) NIL (|has| (-409 |#2|) (-365)))) (-1878 (((-3 $ "failed") $) NIL)) (-1431 (((-644 (-644 |#1|))) NIL (|has| |#1| (-370)))) (-3811 (((-112) |#1| |#1|) NIL)) (-4313 (((-921)) NIL)) (-1552 (($) NIL (|has| (-409 |#2|) (-370)))) (-1361 (((-112)) NIL)) (-2979 (((-112) |#1|) 61) (((-112) |#2|) 175)) (-2957 (($ $ $) NIL (|has| (-409 |#2|) (-365)))) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL (|has| (-409 |#2|) (-365)))) (-4075 (($ $) NIL)) (-2781 (($) NIL (|has| (-409 |#2|) (-351)))) (-3506 (((-112) $) NIL (|has| (-409 |#2|) (-351)))) (-3369 (($ $ (-771)) NIL (|has| (-409 |#2|) (-351))) (($ $) NIL (|has| (-409 |#2|) (-351)))) (-3268 (((-112) $) NIL (|has| (-409 |#2|) (-365)))) (-3254 (((-921) $) NIL (|has| (-409 |#2|) (-351))) (((-833 (-921)) $) NIL (|has| (-409 |#2|) (-351)))) (-3934 (((-112) $) NIL)) (-3285 (((-771)) NIL)) (-1433 (((-1264 $) (-1264 $)) NIL)) (-1577 (((-409 |#2|) $) NIL)) (-3545 (((-644 (-952 |#1|)) (-1175)) NIL (|has| |#1| (-365)))) (-4363 (((-3 $ "failed") $) NIL (|has| (-409 |#2|) (-351)))) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| (-409 |#2|) (-365)))) (-1627 ((|#3| $) NIL (|has| (-409 |#2|) (-365)))) (-3681 (((-921) $) NIL (|has| (-409 |#2|) (-370)))) (-1662 ((|#3| $) NIL)) (-2167 (($ (-644 $)) NIL (|has| (-409 |#2|) (-365))) (($ $ $) NIL (|has| (-409 |#2|) (-365)))) (-4117 (((-1157) $) NIL)) (-2571 (((-689 (-409 |#2|))) 57)) (-3829 (((-689 (-409 |#2|))) 56)) (-1713 (($ $) NIL (|has| (-409 |#2|) (-365)))) (-2918 (($ (-1264 |#2|) |#2|) 82)) (-4359 (((-689 (-409 |#2|))) 55)) (-3707 (((-689 (-409 |#2|))) 54)) (-2016 (((-2 (|:| |num| (-689 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 97)) (-1812 (((-2 (|:| |num| (-1264 |#2|)) (|:| |den| |#2|)) $) 88)) (-3815 (((-1264 $)) 51)) (-2444 (((-1264 $)) 50)) (-2455 (((-112) $) NIL)) (-3810 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-1761 (($) NIL (|has| (-409 |#2|) (-351)) CONST)) (-2178 (($ (-921)) NIL (|has| (-409 |#2|) (-370)))) (-3288 (((-3 |#2| "failed")) 70)) (-4035 (((-1119) $) NIL)) (-3686 (((-771)) NIL)) (-3441 (($) NIL)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| (-409 |#2|) (-365)))) (-2214 (($ (-644 $)) NIL (|has| (-409 |#2|) (-365))) (($ $ $) NIL (|has| (-409 |#2|) (-365)))) (-1548 (((-644 (-2 (|:| -3719 (-566)) (|:| -2852 (-566))))) NIL (|has| (-409 |#2|) (-351)))) (-3719 (((-420 $) $) NIL (|has| (-409 |#2|) (-365)))) (-3148 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-409 |#2|) (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| (-409 |#2|) (-365)))) (-2994 (((-3 $ "failed") $ $) NIL (|has| (-409 |#2|) (-365)))) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| (-409 |#2|) (-365)))) (-3039 (((-771) $) NIL (|has| (-409 |#2|) (-365)))) (-4390 ((|#1| $ |#1| |#1|) NIL)) (-3204 (((-3 |#2| "failed")) 68)) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL (|has| (-409 |#2|) (-365)))) (-3652 (((-409 |#2|) (-1264 $)) NIL) (((-409 |#2|)) 47)) (-1437 (((-771) $) NIL (|has| (-409 |#2|) (-351))) (((-3 (-771) "failed") $ $) NIL (|has| (-409 |#2|) (-351)))) (-3561 (($ $ (-1 (-409 |#2|) (-409 |#2|)) (-771)) NIL (|has| (-409 |#2|) (-365))) (($ $ (-1 (-409 |#2|) (-409 |#2|))) NIL (|has| (-409 |#2|) (-365))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-771)) NIL (-2809 (-12 (|has| (-409 |#2|) (-233)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-351)))) (($ $) NIL (-2809 (-12 (|has| (-409 |#2|) (-233)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-351))))) (-3213 (((-689 (-409 |#2|)) (-1264 $) (-1 (-409 |#2|) (-409 |#2|))) NIL (|has| (-409 |#2|) (-365)))) (-1616 ((|#3|) 58)) (-3974 (($) NIL (|has| (-409 |#2|) (-351)))) (-2154 (((-1264 (-409 |#2|)) $ (-1264 $)) NIL) (((-689 (-409 |#2|)) (-1264 $) (-1264 $)) NIL) (((-1264 (-409 |#2|)) $) 83) (((-689 (-409 |#2|)) (-1264 $)) NIL)) (-1348 (((-1264 (-409 |#2|)) $) NIL) (($ (-1264 (-409 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1656 (((-3 (-1264 $) "failed") (-689 $)) NIL (|has| (-409 |#2|) (-351)))) (-2258 (((-1264 $) (-1264 $)) NIL)) (-3783 (((-862) $) NIL) (($ (-566)) NIL) (($ (-409 |#2|)) NIL) (($ (-409 (-566))) NIL (-2809 (|has| (-409 |#2|) (-1038 (-409 (-566)))) (|has| (-409 |#2|) (-365)))) (($ $) NIL (|has| (-409 |#2|) (-365)))) (-3144 (($ $) NIL (|has| (-409 |#2|) (-351))) (((-3 $ "failed") $) NIL (|has| (-409 |#2|) (-145)))) (-1820 ((|#3| $) NIL)) (-2107 (((-771)) NIL T CONST)) (-2379 (((-112)) 65)) (-3382 (((-112) |#1|) 178) (((-112) |#2|) 179)) (-3117 (((-112) $ $) NIL)) (-2365 (((-1264 $)) 143)) (-2695 (((-112) $ $) NIL (|has| (-409 |#2|) (-365)))) (-2014 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3740 (((-112)) NIL)) (-2479 (($) 109 T CONST)) (-4334 (($) NIL T CONST)) (-2875 (($ $ (-1 (-409 |#2|) (-409 |#2|)) (-771)) NIL (|has| (-409 |#2|) (-365))) (($ $ (-1 (-409 |#2|) (-409 |#2|))) NIL (|has| (-409 |#2|) (-365))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-771)) NIL (-2809 (-12 (|has| (-409 |#2|) (-233)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-351)))) (($ $) NIL (-2809 (-12 (|has| (-409 |#2|) (-233)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-351))))) (-2947 (((-112) $ $) NIL)) (-3065 (($ $ $) NIL (|has| (-409 |#2|) (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL (|has| (-409 |#2|) (-365)))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 |#2|)) NIL) (($ (-409 |#2|) $) NIL) (($ (-409 (-566)) $) NIL (|has| (-409 |#2|) (-365))) (($ $ (-409 (-566))) NIL (|has| (-409 |#2|) (-365))))) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-1002)) (-5 *2 (-409 (-566))))) (-1575 (*1 *1 *1 *2) (-12 (-4 *1 (-1002)) (-5 *2 (-566)))) (-1635 (*1 *1 *1) (-4 *1 (-1002)))) +(-13 (-10 -8 (-15 -1635 ($ $)) (-15 -1575 ($ $ (-566))) (-15 ** ($ $ (-409 (-566)))))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-2802 (((-2 (|:| |num| (-1264 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| (-409 |#2|) (-365)))) (-2161 (($ $) NIL (|has| (-409 |#2|) (-365)))) (-2345 (((-112) $) NIL (|has| (-409 |#2|) (-365)))) (-3899 (((-689 (-409 |#2|)) (-1264 $)) NIL) (((-689 (-409 |#2|))) NIL)) (-3833 (((-409 |#2|) $) NIL)) (-2894 (((-1187 (-921) (-771)) (-566)) NIL (|has| (-409 |#2|) (-351)))) (-3967 (((-3 $ "failed") $ $) NIL)) (-1378 (($ $) NIL (|has| (-409 |#2|) (-365)))) (-1364 (((-420 $) $) NIL (|has| (-409 |#2|) (-365)))) (-2085 (((-112) $ $) NIL (|has| (-409 |#2|) (-365)))) (-3870 (((-771)) NIL (|has| (-409 |#2|) (-370)))) (-2239 (((-112)) NIL)) (-3333 (((-112) |#1|) 173) (((-112) |#2|) 177)) (-2463 (($) NIL T CONST)) (-2229 (((-3 (-566) "failed") $) NIL (|has| (-409 |#2|) (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| (-409 |#2|) (-1038 (-409 (-566))))) (((-3 (-409 |#2|) "failed") $) NIL)) (-4158 (((-566) $) NIL (|has| (-409 |#2|) (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| (-409 |#2|) (-1038 (-409 (-566))))) (((-409 |#2|) $) NIL)) (-1563 (($ (-1264 (-409 |#2|)) (-1264 $)) NIL) (($ (-1264 (-409 |#2|))) 81) (($ (-1264 |#2|) |#2|) NIL)) (-2347 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-409 |#2|) (-351)))) (-2933 (($ $ $) NIL (|has| (-409 |#2|) (-365)))) (-3578 (((-689 (-409 |#2|)) $ (-1264 $)) NIL) (((-689 (-409 |#2|)) $) NIL)) (-4089 (((-689 (-566)) (-689 $)) NIL (|has| (-409 |#2|) (-639 (-566)))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| (-409 |#2|) (-639 (-566)))) (((-2 (|:| -3361 (-689 (-409 |#2|))) (|:| |vec| (-1264 (-409 |#2|)))) (-689 $) (-1264 $)) NIL) (((-689 (-409 |#2|)) (-689 $)) NIL)) (-2108 (((-1264 $) (-1264 $)) NIL)) (-2873 (($ |#3|) 75) (((-3 $ "failed") (-409 |#3|)) NIL (|has| (-409 |#2|) (-365)))) (-3245 (((-3 $ "failed") $) NIL)) (-3831 (((-644 (-644 |#1|))) NIL (|has| |#1| (-370)))) (-3748 (((-112) |#1| |#1|) NIL)) (-2755 (((-921)) NIL)) (-2715 (($) NIL (|has| (-409 |#2|) (-370)))) (-3032 (((-112)) NIL)) (-3756 (((-112) |#1|) 61) (((-112) |#2|) 175)) (-2945 (($ $ $) NIL (|has| (-409 |#2|) (-365)))) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL (|has| (-409 |#2|) (-365)))) (-2616 (($ $) NIL)) (-3359 (($) NIL (|has| (-409 |#2|) (-351)))) (-2466 (((-112) $) NIL (|has| (-409 |#2|) (-351)))) (-1574 (($ $ (-771)) NIL (|has| (-409 |#2|) (-351))) (($ $) NIL (|has| (-409 |#2|) (-351)))) (-1615 (((-112) $) NIL (|has| (-409 |#2|) (-365)))) (-2679 (((-921) $) NIL (|has| (-409 |#2|) (-351))) (((-833 (-921)) $) NIL (|has| (-409 |#2|) (-351)))) (-2389 (((-112) $) NIL)) (-3962 (((-771)) NIL)) (-2803 (((-1264 $) (-1264 $)) NIL)) (-2064 (((-409 |#2|) $) NIL)) (-4172 (((-644 (-952 |#1|)) (-1175)) NIL (|has| |#1| (-365)))) (-2621 (((-3 $ "failed") $) NIL (|has| (-409 |#2|) (-351)))) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| (-409 |#2|) (-365)))) (-3468 ((|#3| $) NIL (|has| (-409 |#2|) (-365)))) (-1866 (((-921) $) NIL (|has| (-409 |#2|) (-370)))) (-2860 ((|#3| $) NIL)) (-2128 (($ (-644 $)) NIL (|has| (-409 |#2|) (-365))) (($ $ $) NIL (|has| (-409 |#2|) (-365)))) (-3380 (((-1157) $) NIL)) (-3224 (((-689 (-409 |#2|))) 57)) (-1740 (((-689 (-409 |#2|))) 56)) (-2748 (($ $) NIL (|has| (-409 |#2|) (-365)))) (-4364 (($ (-1264 |#2|) |#2|) 82)) (-3458 (((-689 (-409 |#2|))) 55)) (-2300 (((-689 (-409 |#2|))) 54)) (-2238 (((-2 (|:| |num| (-689 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 97)) (-2713 (((-2 (|:| |num| (-1264 |#2|)) (|:| |den| |#2|)) $) 88)) (-2942 (((-1264 $)) 51)) (-2736 (((-1264 $)) 50)) (-2534 (((-112) $) NIL)) (-3626 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3289 (($) NIL (|has| (-409 |#2|) (-351)) CONST)) (-2835 (($ (-921)) NIL (|has| (-409 |#2|) (-370)))) (-4257 (((-3 |#2| "failed")) 70)) (-4072 (((-1119) $) NIL)) (-4200 (((-771)) NIL)) (-3302 (($) NIL)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| (-409 |#2|) (-365)))) (-2164 (($ (-644 $)) NIL (|has| (-409 |#2|) (-365))) (($ $ $) NIL (|has| (-409 |#2|) (-365)))) (-2442 (((-644 (-2 (|:| -1624 (-566)) (|:| -2201 (-566))))) NIL (|has| (-409 |#2|) (-351)))) (-1624 (((-420 $) $) NIL (|has| (-409 |#2|) (-365)))) (-3005 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-409 |#2|) (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL (|has| (-409 |#2|) (-365)))) (-2978 (((-3 $ "failed") $ $) NIL (|has| (-409 |#2|) (-365)))) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| (-409 |#2|) (-365)))) (-4357 (((-771) $) NIL (|has| (-409 |#2|) (-365)))) (-1309 ((|#1| $ |#1| |#1|) NIL)) (-1438 (((-3 |#2| "failed")) 68)) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL (|has| (-409 |#2|) (-365)))) (-4068 (((-409 |#2|) (-1264 $)) NIL) (((-409 |#2|)) 47)) (-3169 (((-771) $) NIL (|has| (-409 |#2|) (-351))) (((-3 (-771) "failed") $ $) NIL (|has| (-409 |#2|) (-351)))) (-3629 (($ $ (-1 (-409 |#2|) (-409 |#2|)) (-771)) NIL (|has| (-409 |#2|) (-365))) (($ $ (-1 (-409 |#2|) (-409 |#2|))) NIL (|has| (-409 |#2|) (-365))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-771)) NIL (-2768 (-12 (|has| (-409 |#2|) (-233)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-351)))) (($ $) NIL (-2768 (-12 (|has| (-409 |#2|) (-233)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-351))))) (-3225 (((-689 (-409 |#2|)) (-1264 $) (-1 (-409 |#2|) (-409 |#2|))) NIL (|has| (-409 |#2|) (-365)))) (-1705 ((|#3|) 58)) (-4122 (($) NIL (|has| (-409 |#2|) (-351)))) (-3350 (((-1264 (-409 |#2|)) $ (-1264 $)) NIL) (((-689 (-409 |#2|)) (-1264 $) (-1264 $)) NIL) (((-1264 (-409 |#2|)) $) 83) (((-689 (-409 |#2|)) (-1264 $)) NIL)) (-2376 (((-1264 (-409 |#2|)) $) NIL) (($ (-1264 (-409 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3391 (((-3 (-1264 $) "failed") (-689 $)) NIL (|has| (-409 |#2|) (-351)))) (-1726 (((-1264 $) (-1264 $)) NIL)) (-3152 (((-862) $) NIL) (($ (-566)) NIL) (($ (-409 |#2|)) NIL) (($ (-409 (-566))) NIL (-2768 (|has| (-409 |#2|) (-1038 (-409 (-566)))) (|has| (-409 |#2|) (-365)))) (($ $) NIL (|has| (-409 |#2|) (-365)))) (-2633 (($ $) NIL (|has| (-409 |#2|) (-351))) (((-3 $ "failed") $) NIL (|has| (-409 |#2|) (-145)))) (-2318 ((|#3| $) NIL)) (-2593 (((-771)) NIL T CONST)) (-2675 (((-112)) 65)) (-3401 (((-112) |#1|) 178) (((-112) |#2|) 179)) (-3044 (((-112) $ $) NIL)) (-2875 (((-1264 $)) 143)) (-3014 (((-112) $ $) NIL (|has| (-409 |#2|) (-365)))) (-2019 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1361 (((-112)) NIL)) (-4356 (($) 109 T CONST)) (-4366 (($) NIL T CONST)) (-3497 (($ $ (-1 (-409 |#2|) (-409 |#2|)) (-771)) NIL (|has| (-409 |#2|) (-365))) (($ $ (-1 (-409 |#2|) (-409 |#2|))) NIL (|has| (-409 |#2|) (-365))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-771)) NIL (-2768 (-12 (|has| (-409 |#2|) (-233)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-351)))) (($ $) NIL (-2768 (-12 (|has| (-409 |#2|) (-233)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-351))))) (-2914 (((-112) $ $) NIL)) (-3025 (($ $ $) NIL (|has| (-409 |#2|) (-365)))) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL (|has| (-409 |#2|) (-365)))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 |#2|)) NIL) (($ (-409 |#2|) $) NIL) (($ (-409 (-566)) $) NIL (|has| (-409 |#2|) (-365))) (($ $ (-409 (-566))) NIL (|has| (-409 |#2|) (-365))))) (((-1003 |#1| |#2| |#3| |#4| |#5|) (-344 |#1| |#2| |#3|) (-1218) (-1240 |#1|) (-1240 (-409 |#2|)) (-409 |#2|) (-771)) (T -1003)) NIL (-344 |#1| |#2| |#3|) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-2089 (((-644 (-566)) $) 73)) (-2417 (($ (-644 (-566))) 81)) (-1515 (((-566) $) 48 (|has| (-566) (-308)))) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-3991 (($ $) NIL)) (-2388 (((-112) $) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-1477 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-1550 (($ $) NIL)) (-3184 (((-420 $) $) NIL)) (-3717 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-2837 (((-112) $ $) NIL)) (-4364 (((-566) $) NIL (|has| (-566) (-820)))) (-3012 (($) NIL T CONST)) (-4307 (((-3 (-566) "failed") $) 60) (((-3 (-1175) "failed") $) NIL (|has| (-566) (-1038 (-1175)))) (((-3 (-409 (-566)) "failed") $) 57 (|has| (-566) (-1038 (-566)))) (((-3 (-566) "failed") $) 60 (|has| (-566) (-1038 (-566))))) (-4205 (((-566) $) NIL) (((-1175) $) NIL (|has| (-566) (-1038 (-1175)))) (((-409 (-566)) $) NIL (|has| (-566) (-1038 (-566)))) (((-566) $) NIL (|has| (-566) (-1038 (-566))))) (-2946 (($ $ $) NIL)) (-3577 (((-689 (-566)) (-689 $)) NIL (|has| (-566) (-639 (-566)))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| (-566) (-639 (-566)))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL) (((-689 (-566)) (-689 $)) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-1552 (($) NIL (|has| (-566) (-547)))) (-2957 (($ $ $) NIL)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL)) (-3268 (((-112) $) NIL)) (-2053 (((-644 (-566)) $) 79)) (-1897 (((-112) $) NIL (|has| (-566) (-820)))) (-2062 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (|has| (-566) (-886 (-566)))) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (|has| (-566) (-886 (-381))))) (-3934 (((-112) $) NIL)) (-1493 (($ $) NIL)) (-4326 (((-566) $) 45)) (-4363 (((-3 $ "failed") $) NIL (|has| (-566) (-1150)))) (-2117 (((-112) $) NIL (|has| (-566) (-820)))) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2097 (($ $ $) NIL (|has| (-566) (-850)))) (-3962 (($ $ $) NIL (|has| (-566) (-850)))) (-1301 (($ (-1 (-566) (-566)) $) NIL)) (-2167 (($ $ $) NIL) (($ (-644 $)) NIL)) (-4117 (((-1157) $) NIL)) (-1713 (($ $) NIL)) (-1761 (($) NIL (|has| (-566) (-1150)) CONST)) (-4035 (((-1119) $) NIL)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2214 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2938 (($ $) NIL (|has| (-566) (-308))) (((-409 (-566)) $) 50)) (-4069 (((-1155 (-566)) $) 78)) (-2977 (($ (-644 (-566)) (-644 (-566))) 82)) (-3470 (((-566) $) 64 (|has| (-566) (-547)))) (-4303 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-3240 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-3719 (((-420 $) $) NIL)) (-3148 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2994 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2055 (($ $ (-644 (-566)) (-644 (-566))) NIL (|has| (-566) (-310 (-566)))) (($ $ (-566) (-566)) NIL (|has| (-566) (-310 (-566)))) (($ $ (-295 (-566))) NIL (|has| (-566) (-310 (-566)))) (($ $ (-644 (-295 (-566)))) NIL (|has| (-566) (-310 (-566)))) (($ $ (-644 (-1175)) (-644 (-566))) NIL (|has| (-566) (-516 (-1175) (-566)))) (($ $ (-1175) (-566)) NIL (|has| (-566) (-516 (-1175) (-566))))) (-3039 (((-771) $) NIL)) (-4390 (($ $ (-566)) NIL (|has| (-566) (-287 (-566) (-566))))) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL)) (-3561 (($ $) 15 (|has| (-566) (-233))) (($ $ (-771)) NIL (|has| (-566) (-233))) (($ $ (-1175)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1 (-566) (-566)) (-771)) NIL) (($ $ (-1 (-566) (-566))) NIL)) (-2023 (($ $) NIL)) (-4339 (((-566) $) 47)) (-4143 (((-644 (-566)) $) 80)) (-1348 (((-892 (-566)) $) NIL (|has| (-566) (-614 (-892 (-566))))) (((-892 (-381)) $) NIL (|has| (-566) (-614 (-892 (-381))))) (((-538) $) NIL (|has| (-566) (-614 (-538)))) (((-381) $) NIL (|has| (-566) (-1022))) (((-225) $) NIL (|has| (-566) (-1022)))) (-1656 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| (-566) (-909))))) (-3783 (((-862) $) 107) (($ (-566)) 51) (($ $) NIL) (($ (-409 (-566))) 27) (($ (-566)) 51) (($ (-1175)) NIL (|has| (-566) (-1038 (-1175)))) (((-409 (-566)) $) 25)) (-3144 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| $ (-145)) (|has| (-566) (-909))) (|has| (-566) (-145))))) (-2107 (((-771)) 13 T CONST)) (-2948 (((-566) $) 62 (|has| (-566) (-547)))) (-3117 (((-112) $ $) NIL)) (-2695 (((-112) $ $) NIL)) (-2086 (($ $) NIL (|has| (-566) (-820)))) (-2479 (($) 14 T CONST)) (-4334 (($) 17 T CONST)) (-2875 (($ $) NIL (|has| (-566) (-233))) (($ $ (-771)) NIL (|has| (-566) (-233))) (($ $ (-1175)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1 (-566) (-566)) (-771)) NIL) (($ $ (-1 (-566) (-566))) NIL)) (-3009 (((-112) $ $) NIL (|has| (-566) (-850)))) (-2984 (((-112) $ $) NIL (|has| (-566) (-850)))) (-2947 (((-112) $ $) 21)) (-2995 (((-112) $ $) NIL (|has| (-566) (-850)))) (-2969 (((-112) $ $) 40 (|has| (-566) (-850)))) (-3065 (($ $ $) 36) (($ (-566) (-566)) 38)) (-3053 (($ $) 23) (($ $ $) 30)) (-3041 (($ $ $) 28)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 32) (($ $ $) 34) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ (-566) $) 32) (($ $ (-566)) NIL))) -(((-1004 |#1|) (-13 (-992 (-566)) (-613 (-409 (-566))) (-10 -8 (-15 -2938 ((-409 (-566)) $)) (-15 -2089 ((-644 (-566)) $)) (-15 -4069 ((-1155 (-566)) $)) (-15 -2053 ((-644 (-566)) $)) (-15 -4143 ((-644 (-566)) $)) (-15 -2417 ($ (-644 (-566)))) (-15 -2977 ($ (-644 (-566)) (-644 (-566)))))) (-566)) (T -1004)) -((-2938 (*1 *2 *1) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-1004 *3)) (-14 *3 (-566)))) (-2089 (*1 *2 *1) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1004 *3)) (-14 *3 (-566)))) (-4069 (*1 *2 *1) (-12 (-5 *2 (-1155 (-566))) (-5 *1 (-1004 *3)) (-14 *3 (-566)))) (-2053 (*1 *2 *1) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1004 *3)) (-14 *3 (-566)))) (-4143 (*1 *2 *1) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1004 *3)) (-14 *3 (-566)))) (-2417 (*1 *1 *2) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1004 *3)) (-14 *3 (-566)))) (-2977 (*1 *1 *2 *2) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1004 *3)) (-14 *3 (-566))))) -(-13 (-992 (-566)) (-613 (-409 (-566))) (-10 -8 (-15 -2938 ((-409 (-566)) $)) (-15 -2089 ((-644 (-566)) $)) (-15 -4069 ((-1155 (-566)) $)) (-15 -2053 ((-644 (-566)) $)) (-15 -4143 ((-644 (-566)) $)) (-15 -2417 ($ (-644 (-566)))) (-15 -2977 ($ (-644 (-566)) (-644 (-566)))))) -((-2736 (((-52) (-409 (-566)) (-566)) 9))) -(((-1005) (-10 -7 (-15 -2736 ((-52) (-409 (-566)) (-566))))) (T -1005)) -((-2736 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-566))) (-5 *4 (-566)) (-5 *2 (-52)) (-5 *1 (-1005))))) -(-10 -7 (-15 -2736 ((-52) (-409 (-566)) (-566)))) -((-1970 (((-566)) 23)) (-1366 (((-566)) 28)) (-4123 (((-1269) (-566)) 26)) (-2711 (((-566) (-566)) 29) (((-566)) 22))) -(((-1006) (-10 -7 (-15 -2711 ((-566))) (-15 -1970 ((-566))) (-15 -2711 ((-566) (-566))) (-15 -4123 ((-1269) (-566))) (-15 -1366 ((-566))))) (T -1006)) -((-1366 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1006)))) (-4123 (*1 *2 *3) (-12 (-5 *3 (-566)) (-5 *2 (-1269)) (-5 *1 (-1006)))) (-2711 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1006)))) (-1970 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1006)))) (-2711 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1006))))) -(-10 -7 (-15 -2711 ((-566))) (-15 -1970 ((-566))) (-15 -2711 ((-566) (-566))) (-15 -4123 ((-1269) (-566))) (-15 -1366 ((-566)))) -((-2585 (((-420 |#1|) |#1|) 43)) (-3719 (((-420 |#1|) |#1|) 41))) -(((-1007 |#1|) (-10 -7 (-15 -3719 ((-420 |#1|) |#1|)) (-15 -2585 ((-420 |#1|) |#1|))) (-1240 (-409 (-566)))) (T -1007)) -((-2585 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-1007 *3)) (-4 *3 (-1240 (-409 (-566)))))) (-3719 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-1007 *3)) (-4 *3 (-1240 (-409 (-566))))))) -(-10 -7 (-15 -3719 ((-420 |#1|) |#1|)) (-15 -2585 ((-420 |#1|) |#1|))) -((-1521 (((-3 (-409 (-566)) "failed") |#1|) 15)) (-1942 (((-112) |#1|) 14)) (-4204 (((-409 (-566)) |#1|) 10))) -(((-1008 |#1|) (-10 -7 (-15 -4204 ((-409 (-566)) |#1|)) (-15 -1942 ((-112) |#1|)) (-15 -1521 ((-3 (-409 (-566)) "failed") |#1|))) (-1038 (-409 (-566)))) (T -1008)) -((-1521 (*1 *2 *3) (|partial| -12 (-5 *2 (-409 (-566))) (-5 *1 (-1008 *3)) (-4 *3 (-1038 *2)))) (-1942 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1008 *3)) (-4 *3 (-1038 (-409 (-566)))))) (-4204 (*1 *2 *3) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-1008 *3)) (-4 *3 (-1038 *2))))) -(-10 -7 (-15 -4204 ((-409 (-566)) |#1|)) (-15 -1942 ((-112) |#1|)) (-15 -1521 ((-3 (-409 (-566)) "failed") |#1|))) -((-3923 ((|#2| $ "value" |#2|) 12)) (-4390 ((|#2| $ "value") 10)) (-4288 (((-112) $ $) 18))) -(((-1009 |#1| |#2|) (-10 -8 (-15 -3923 (|#2| |#1| "value" |#2|)) (-15 -4288 ((-112) |#1| |#1|)) (-15 -4390 (|#2| |#1| "value"))) (-1010 |#2|) (-1214)) (T -1009)) -NIL -(-10 -8 (-15 -3923 (|#2| |#1| "value" |#2|)) (-15 -4288 ((-112) |#1| |#1|)) (-15 -4390 (|#2| |#1| "value"))) -((-3007 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2233 ((|#1| $) 49)) (-2256 (((-112) $ (-771)) 8)) (-3396 ((|#1| $ |#1|) 40 (|has| $ (-6 -4415)))) (-3923 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4415)))) (-3800 (($ $ (-644 $)) 42 (|has| $ (-6 -4415)))) (-3012 (($) 7 T CONST)) (-3979 (((-644 |#1|) $) 31 (|has| $ (-6 -4414)))) (-4009 (((-644 $) $) 51)) (-3891 (((-112) $ $) 43 (|has| |#1| (-1099)))) (-2404 (((-112) $ (-771)) 9)) (-2329 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2908 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#1| |#1|) $) 36)) (-2603 (((-112) $ (-771)) 10)) (-3701 (((-644 |#1|) $) 46)) (-3438 (((-112) $) 50)) (-4117 (((-1157) $) 22 (|has| |#1| (-1099)))) (-4035 (((-1119) $) 21 (|has| |#1| (-1099)))) (-2692 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) 14)) (-3467 (((-112) $) 11)) (-1494 (($) 12)) (-4390 ((|#1| $ "value") 48)) (-1416 (((-566) $ $) 45)) (-3494 (((-112) $) 47)) (-4045 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-3940 (($ $) 13)) (-3783 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-2462 (((-644 $) $) 52)) (-4288 (((-112) $ $) 44 (|has| |#1| (-1099)))) (-3117 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-1894 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3018 (((-771) $) 6 (|has| $ (-6 -4414))))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-3511 (((-644 (-566)) $) 73)) (-2247 (($ (-644 (-566))) 81)) (-1873 (((-566) $) 48 (|has| (-566) (-308)))) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-2161 (($ $) NIL)) (-2345 (((-112) $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-2292 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-1378 (($ $) NIL)) (-1364 (((-420 $) $) NIL)) (-4066 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-2085 (((-112) $ $) NIL)) (-2743 (((-566) $) NIL (|has| (-566) (-820)))) (-2463 (($) NIL T CONST)) (-2229 (((-3 (-566) "failed") $) 60) (((-3 (-1175) "failed") $) NIL (|has| (-566) (-1038 (-1175)))) (((-3 (-409 (-566)) "failed") $) 57 (|has| (-566) (-1038 (-566)))) (((-3 (-566) "failed") $) 60 (|has| (-566) (-1038 (-566))))) (-4158 (((-566) $) NIL) (((-1175) $) NIL (|has| (-566) (-1038 (-1175)))) (((-409 (-566)) $) NIL (|has| (-566) (-1038 (-566)))) (((-566) $) NIL (|has| (-566) (-1038 (-566))))) (-2933 (($ $ $) NIL)) (-4089 (((-689 (-566)) (-689 $)) NIL (|has| (-566) (-639 (-566)))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| (-566) (-639 (-566)))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL) (((-689 (-566)) (-689 $)) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-2715 (($) NIL (|has| (-566) (-547)))) (-2945 (($ $ $) NIL)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL)) (-1615 (((-112) $) NIL)) (-3282 (((-644 (-566)) $) 79)) (-2528 (((-112) $) NIL (|has| (-566) (-820)))) (-2926 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (|has| (-566) (-886 (-566)))) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (|has| (-566) (-886 (-381))))) (-2389 (((-112) $) NIL)) (-3406 (($ $) NIL)) (-2248 (((-566) $) 45)) (-2621 (((-3 $ "failed") $) NIL (|has| (-566) (-1150)))) (-3233 (((-112) $) NIL (|has| (-566) (-820)))) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1478 (($ $ $) NIL (|has| (-566) (-850)))) (-2599 (($ $ $) NIL (|has| (-566) (-850)))) (-2319 (($ (-1 (-566) (-566)) $) NIL)) (-2128 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3380 (((-1157) $) NIL)) (-2748 (($ $) NIL)) (-3289 (($) NIL (|has| (-566) (-1150)) CONST)) (-4072 (((-1119) $) NIL)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2164 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2487 (($ $) NIL (|has| (-566) (-308))) (((-409 (-566)) $) 50)) (-3180 (((-1155 (-566)) $) 78)) (-1652 (($ (-644 (-566)) (-644 (-566))) 82)) (-3143 (((-566) $) 64 (|has| (-566) (-547)))) (-2010 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-1893 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-1624 (((-420 $) $) NIL)) (-3005 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2978 (((-3 $ "failed") $ $) NIL)) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2023 (($ $ (-644 (-566)) (-644 (-566))) NIL (|has| (-566) (-310 (-566)))) (($ $ (-566) (-566)) NIL (|has| (-566) (-310 (-566)))) (($ $ (-295 (-566))) NIL (|has| (-566) (-310 (-566)))) (($ $ (-644 (-295 (-566)))) NIL (|has| (-566) (-310 (-566)))) (($ $ (-644 (-1175)) (-644 (-566))) NIL (|has| (-566) (-516 (-1175) (-566)))) (($ $ (-1175) (-566)) NIL (|has| (-566) (-516 (-1175) (-566))))) (-4357 (((-771) $) NIL)) (-1309 (($ $ (-566)) NIL (|has| (-566) (-287 (-566) (-566))))) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL)) (-3629 (($ $) 15 (|has| (-566) (-233))) (($ $ (-771)) NIL (|has| (-566) (-233))) (($ $ (-1175)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1 (-566) (-566)) (-771)) NIL) (($ $ (-1 (-566) (-566))) NIL)) (-1452 (($ $) NIL)) (-2260 (((-566) $) 47)) (-3734 (((-644 (-566)) $) 80)) (-2376 (((-892 (-566)) $) NIL (|has| (-566) (-614 (-892 (-566))))) (((-892 (-381)) $) NIL (|has| (-566) (-614 (-892 (-381))))) (((-538) $) NIL (|has| (-566) (-614 (-538)))) (((-381) $) NIL (|has| (-566) (-1022))) (((-225) $) NIL (|has| (-566) (-1022)))) (-3391 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| (-566) (-909))))) (-3152 (((-862) $) 107) (($ (-566)) 51) (($ $) NIL) (($ (-409 (-566))) 27) (($ (-566)) 51) (($ (-1175)) NIL (|has| (-566) (-1038 (-1175)))) (((-409 (-566)) $) 25)) (-2633 (((-3 $ "failed") $) NIL (-2768 (-12 (|has| $ (-145)) (|has| (-566) (-909))) (|has| (-566) (-145))))) (-2593 (((-771)) 13 T CONST)) (-3913 (((-566) $) 62 (|has| (-566) (-547)))) (-3044 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-1358 (($ $) NIL (|has| (-566) (-820)))) (-4356 (($) 14 T CONST)) (-4366 (($) 17 T CONST)) (-3497 (($ $) NIL (|has| (-566) (-233))) (($ $ (-771)) NIL (|has| (-566) (-233))) (($ $ (-1175)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1 (-566) (-566)) (-771)) NIL) (($ $ (-1 (-566) (-566))) NIL)) (-2968 (((-112) $ $) NIL (|has| (-566) (-850)))) (-2946 (((-112) $ $) NIL (|has| (-566) (-850)))) (-2914 (((-112) $ $) 21)) (-2956 (((-112) $ $) NIL (|has| (-566) (-850)))) (-2935 (((-112) $ $) 40 (|has| (-566) (-850)))) (-3025 (($ $ $) 36) (($ (-566) (-566)) 38)) (-3012 (($ $) 23) (($ $ $) 30)) (-3002 (($ $ $) 28)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 32) (($ $ $) 34) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ (-566) $) 32) (($ $ (-566)) NIL))) +(((-1004 |#1|) (-13 (-992 (-566)) (-613 (-409 (-566))) (-10 -8 (-15 -2487 ((-409 (-566)) $)) (-15 -3511 ((-644 (-566)) $)) (-15 -3180 ((-1155 (-566)) $)) (-15 -3282 ((-644 (-566)) $)) (-15 -3734 ((-644 (-566)) $)) (-15 -2247 ($ (-644 (-566)))) (-15 -1652 ($ (-644 (-566)) (-644 (-566)))))) (-566)) (T -1004)) +((-2487 (*1 *2 *1) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-1004 *3)) (-14 *3 (-566)))) (-3511 (*1 *2 *1) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1004 *3)) (-14 *3 (-566)))) (-3180 (*1 *2 *1) (-12 (-5 *2 (-1155 (-566))) (-5 *1 (-1004 *3)) (-14 *3 (-566)))) (-3282 (*1 *2 *1) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1004 *3)) (-14 *3 (-566)))) (-3734 (*1 *2 *1) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1004 *3)) (-14 *3 (-566)))) (-2247 (*1 *1 *2) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1004 *3)) (-14 *3 (-566)))) (-1652 (*1 *1 *2 *2) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1004 *3)) (-14 *3 (-566))))) +(-13 (-992 (-566)) (-613 (-409 (-566))) (-10 -8 (-15 -2487 ((-409 (-566)) $)) (-15 -3511 ((-644 (-566)) $)) (-15 -3180 ((-1155 (-566)) $)) (-15 -3282 ((-644 (-566)) $)) (-15 -3734 ((-644 (-566)) $)) (-15 -2247 ($ (-644 (-566)))) (-15 -1652 ($ (-644 (-566)) (-644 (-566)))))) +((-2532 (((-52) (-409 (-566)) (-566)) 9))) +(((-1005) (-10 -7 (-15 -2532 ((-52) (-409 (-566)) (-566))))) (T -1005)) +((-2532 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-566))) (-5 *4 (-566)) (-5 *2 (-52)) (-5 *1 (-1005))))) +(-10 -7 (-15 -2532 ((-52) (-409 (-566)) (-566)))) +((-3870 (((-566)) 23)) (-3082 (((-566)) 28)) (-2788 (((-1269) (-566)) 26)) (-3980 (((-566) (-566)) 29) (((-566)) 22))) +(((-1006) (-10 -7 (-15 -3980 ((-566))) (-15 -3870 ((-566))) (-15 -3980 ((-566) (-566))) (-15 -2788 ((-1269) (-566))) (-15 -3082 ((-566))))) (T -1006)) +((-3082 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1006)))) (-2788 (*1 *2 *3) (-12 (-5 *3 (-566)) (-5 *2 (-1269)) (-5 *1 (-1006)))) (-3980 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1006)))) (-3870 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1006)))) (-3980 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1006))))) +(-10 -7 (-15 -3980 ((-566))) (-15 -3870 ((-566))) (-15 -3980 ((-566) (-566))) (-15 -2788 ((-1269) (-566))) (-15 -3082 ((-566)))) +((-2208 (((-420 |#1|) |#1|) 43)) (-1624 (((-420 |#1|) |#1|) 41))) +(((-1007 |#1|) (-10 -7 (-15 -1624 ((-420 |#1|) |#1|)) (-15 -2208 ((-420 |#1|) |#1|))) (-1240 (-409 (-566)))) (T -1007)) +((-2208 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-1007 *3)) (-4 *3 (-1240 (-409 (-566)))))) (-1624 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-1007 *3)) (-4 *3 (-1240 (-409 (-566))))))) +(-10 -7 (-15 -1624 ((-420 |#1|) |#1|)) (-15 -2208 ((-420 |#1|) |#1|))) +((-4391 (((-3 (-409 (-566)) "failed") |#1|) 15)) (-3407 (((-112) |#1|) 14)) (-1786 (((-409 (-566)) |#1|) 10))) +(((-1008 |#1|) (-10 -7 (-15 -1786 ((-409 (-566)) |#1|)) (-15 -3407 ((-112) |#1|)) (-15 -4391 ((-3 (-409 (-566)) "failed") |#1|))) (-1038 (-409 (-566)))) (T -1008)) +((-4391 (*1 *2 *3) (|partial| -12 (-5 *2 (-409 (-566))) (-5 *1 (-1008 *3)) (-4 *3 (-1038 *2)))) (-3407 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1008 *3)) (-4 *3 (-1038 (-409 (-566)))))) (-1786 (*1 *2 *3) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-1008 *3)) (-4 *3 (-1038 *2))))) +(-10 -7 (-15 -1786 ((-409 (-566)) |#1|)) (-15 -3407 ((-112) |#1|)) (-15 -4391 ((-3 (-409 (-566)) "failed") |#1|))) +((-1456 ((|#2| $ "value" |#2|) 12)) (-1309 ((|#2| $ "value") 10)) (-4385 (((-112) $ $) 18))) +(((-1009 |#1| |#2|) (-10 -8 (-15 -1456 (|#2| |#1| "value" |#2|)) (-15 -4385 ((-112) |#1| |#1|)) (-15 -1309 (|#2| |#1| "value"))) (-1010 |#2|) (-1214)) (T -1009)) +NIL +(-10 -8 (-15 -1456 (|#2| |#1| "value" |#2|)) (-15 -4385 ((-112) |#1| |#1|)) (-15 -1309 (|#2| |#1| "value"))) +((-2988 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2876 ((|#1| $) 49)) (-1504 (((-112) $ (-771)) 8)) (-2191 ((|#1| $ |#1|) 40 (|has| $ (-6 -4415)))) (-1456 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4415)))) (-4202 (($ $ (-644 $)) 42 (|has| $ (-6 -4415)))) (-2463 (($) 7 T CONST)) (-1683 (((-644 |#1|) $) 31 (|has| $ (-6 -4414)))) (-3431 (((-644 $) $) 51)) (-1507 (((-112) $ $) 43 (|has| |#1| (-1099)))) (-3456 (((-112) $ (-771)) 9)) (-3491 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-3885 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#1| |#1|) $) 36)) (-3267 (((-112) $ (-771)) 10)) (-1458 (((-644 |#1|) $) 46)) (-3860 (((-112) $) 50)) (-3380 (((-1157) $) 22 (|has| |#1| (-1099)))) (-4072 (((-1119) $) 21 (|has| |#1| (-1099)))) (-2823 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) 14)) (-2872 (((-112) $) 11)) (-3493 (($) 12)) (-1309 ((|#1| $ "value") 48)) (-1696 (((-566) $ $) 45)) (-3786 (((-112) $) 47)) (-4083 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-1480 (($ $) 13)) (-3152 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-1926 (((-644 $) $) 52)) (-4385 (((-112) $ $) 44 (|has| |#1| (-1099)))) (-3044 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-2210 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3000 (((-771) $) 6 (|has| $ (-6 -4414))))) (((-1010 |#1|) (-140) (-1214)) (T -1010)) -((-2462 (*1 *2 *1) (-12 (-4 *3 (-1214)) (-5 *2 (-644 *1)) (-4 *1 (-1010 *3)))) (-4009 (*1 *2 *1) (-12 (-4 *3 (-1214)) (-5 *2 (-644 *1)) (-4 *1 (-1010 *3)))) (-3438 (*1 *2 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1214)) (-5 *2 (-112)))) (-2233 (*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1214)))) (-4390 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1010 *2)) (-4 *2 (-1214)))) (-3494 (*1 *2 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1214)) (-5 *2 (-112)))) (-3701 (*1 *2 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1214)) (-5 *2 (-644 *3)))) (-1416 (*1 *2 *1 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1214)) (-5 *2 (-566)))) (-4288 (*1 *2 *1 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1214)) (-4 *3 (-1099)) (-5 *2 (-112)))) (-3891 (*1 *2 *1 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1214)) (-4 *3 (-1099)) (-5 *2 (-112)))) (-3800 (*1 *1 *1 *2) (-12 (-5 *2 (-644 *1)) (|has| *1 (-6 -4415)) (-4 *1 (-1010 *3)) (-4 *3 (-1214)))) (-3923 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4415)) (-4 *1 (-1010 *2)) (-4 *2 (-1214)))) (-3396 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4415)) (-4 *1 (-1010 *2)) (-4 *2 (-1214))))) -(-13 (-491 |t#1|) (-10 -8 (-15 -2462 ((-644 $) $)) (-15 -4009 ((-644 $) $)) (-15 -3438 ((-112) $)) (-15 -2233 (|t#1| $)) (-15 -4390 (|t#1| $ "value")) (-15 -3494 ((-112) $)) (-15 -3701 ((-644 |t#1|) $)) (-15 -1416 ((-566) $ $)) (IF (|has| |t#1| (-1099)) (PROGN (-15 -4288 ((-112) $ $)) (-15 -3891 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4415)) (PROGN (-15 -3800 ($ $ (-644 $))) (-15 -3923 (|t#1| $ "value" |t#1|)) (-15 -3396 (|t#1| $ |t#1|))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2809 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1099) |has| |#1| (-1099)) ((-1214) . T)) -((-3731 (($ $) 9) (($ $ (-921)) 49) (($ (-409 (-566))) 13) (($ (-566)) 15)) (-3912 (((-3 $ "failed") (-1171 $) (-921) (-862)) 24) (((-3 $ "failed") (-1171 $) (-921)) 32)) (-2140 (($ $ (-566)) 58)) (-2107 (((-771)) 18)) (-1990 (((-644 $) (-1171 $)) NIL) (((-644 $) (-1171 (-409 (-566)))) 63) (((-644 $) (-1171 (-566))) 68) (((-644 $) (-952 $)) 72) (((-644 $) (-952 (-409 (-566)))) 76) (((-644 $) (-952 (-566))) 80)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL) (($ $ (-409 (-566))) 53))) -(((-1011 |#1|) (-10 -8 (-15 -3731 (|#1| (-566))) (-15 -3731 (|#1| (-409 (-566)))) (-15 -3731 (|#1| |#1| (-921))) (-15 -1990 ((-644 |#1|) (-952 (-566)))) (-15 -1990 ((-644 |#1|) (-952 (-409 (-566))))) (-15 -1990 ((-644 |#1|) (-952 |#1|))) (-15 -1990 ((-644 |#1|) (-1171 (-566)))) (-15 -1990 ((-644 |#1|) (-1171 (-409 (-566))))) (-15 -1990 ((-644 |#1|) (-1171 |#1|))) (-15 -3912 ((-3 |#1| "failed") (-1171 |#1|) (-921))) (-15 -3912 ((-3 |#1| "failed") (-1171 |#1|) (-921) (-862))) (-15 ** (|#1| |#1| (-409 (-566)))) (-15 -2140 (|#1| |#1| (-566))) (-15 -3731 (|#1| |#1|)) (-15 ** (|#1| |#1| (-566))) (-15 -2107 ((-771))) (-15 ** (|#1| |#1| (-771))) (-15 ** (|#1| |#1| (-921)))) (-1012)) (T -1011)) -((-2107 (*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-1011 *3)) (-4 *3 (-1012))))) -(-10 -8 (-15 -3731 (|#1| (-566))) (-15 -3731 (|#1| (-409 (-566)))) (-15 -3731 (|#1| |#1| (-921))) (-15 -1990 ((-644 |#1|) (-952 (-566)))) (-15 -1990 ((-644 |#1|) (-952 (-409 (-566))))) (-15 -1990 ((-644 |#1|) (-952 |#1|))) (-15 -1990 ((-644 |#1|) (-1171 (-566)))) (-15 -1990 ((-644 |#1|) (-1171 (-409 (-566))))) (-15 -1990 ((-644 |#1|) (-1171 |#1|))) (-15 -3912 ((-3 |#1| "failed") (-1171 |#1|) (-921))) (-15 -3912 ((-3 |#1| "failed") (-1171 |#1|) (-921) (-862))) (-15 ** (|#1| |#1| (-409 (-566)))) (-15 -2140 (|#1| |#1| (-566))) (-15 -3731 (|#1| |#1|)) (-15 ** (|#1| |#1| (-566))) (-15 -2107 ((-771))) (-15 ** (|#1| |#1| (-771))) (-15 ** (|#1| |#1| (-921)))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) 102)) (-3991 (($ $) 103)) (-2388 (((-112) $) 105)) (-4175 (((-3 $ "failed") $ $) 20)) (-1550 (($ $) 122)) (-3184 (((-420 $) $) 123)) (-3731 (($ $) 86) (($ $ (-921)) 72) (($ (-409 (-566))) 71) (($ (-566)) 70)) (-2837 (((-112) $ $) 113)) (-4364 (((-566) $) 139)) (-3012 (($) 18 T CONST)) (-3912 (((-3 $ "failed") (-1171 $) (-921) (-862)) 80) (((-3 $ "failed") (-1171 $) (-921)) 79)) (-4307 (((-3 (-566) "failed") $) 99 (|has| (-409 (-566)) (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) 97 (|has| (-409 (-566)) (-1038 (-409 (-566))))) (((-3 (-409 (-566)) "failed") $) 94)) (-4205 (((-566) $) 98 (|has| (-409 (-566)) (-1038 (-566)))) (((-409 (-566)) $) 96 (|has| (-409 (-566)) (-1038 (-409 (-566))))) (((-409 (-566)) $) 95)) (-2594 (($ $ (-862)) 69)) (-1624 (($ $ (-862)) 68)) (-2946 (($ $ $) 117)) (-1878 (((-3 $ "failed") $) 37)) (-2957 (($ $ $) 116)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) 111)) (-3268 (((-112) $) 124)) (-1897 (((-112) $) 137)) (-3934 (((-112) $) 35)) (-2140 (($ $ (-566)) 85)) (-2117 (((-112) $) 138)) (-3775 (((-3 (-644 $) "failed") (-644 $) $) 120)) (-2097 (($ $ $) 136)) (-3962 (($ $ $) 135)) (-4247 (((-3 (-1171 $) "failed") $) 81)) (-1576 (((-3 (-862) "failed") $) 83)) (-3478 (((-3 (-1171 $) "failed") $) 82)) (-2167 (($ (-644 $)) 109) (($ $ $) 108)) (-4117 (((-1157) $) 10)) (-1713 (($ $) 125)) (-4035 (((-1119) $) 11)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) 110)) (-2214 (($ (-644 $)) 107) (($ $ $) 106)) (-3719 (((-420 $) $) 121)) (-3148 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 118)) (-2994 (((-3 $ "failed") $ $) 101)) (-3161 (((-3 (-644 $) "failed") (-644 $) $) 112)) (-3039 (((-771) $) 114)) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) 115)) (-3783 (((-862) $) 12) (($ (-566)) 33) (($ (-409 (-566))) 129) (($ $) 100) (($ (-409 (-566))) 93) (($ (-566)) 92) (($ (-409 (-566))) 89)) (-2107 (((-771)) 32 T CONST)) (-3117 (((-112) $ $) 9)) (-2695 (((-112) $ $) 104)) (-3628 (((-409 (-566)) $ $) 67)) (-1990 (((-644 $) (-1171 $)) 78) (((-644 $) (-1171 (-409 (-566)))) 77) (((-644 $) (-1171 (-566))) 76) (((-644 $) (-952 $)) 75) (((-644 $) (-952 (-409 (-566)))) 74) (((-644 $) (-952 (-566))) 73)) (-2086 (($ $) 140)) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-3009 (((-112) $ $) 133)) (-2984 (((-112) $ $) 132)) (-2947 (((-112) $ $) 6)) (-2995 (((-112) $ $) 134)) (-2969 (((-112) $ $) 131)) (-3065 (($ $ $) 130)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 126) (($ $ (-409 (-566))) 84)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ (-409 (-566)) $) 128) (($ $ (-409 (-566))) 127) (($ (-566) $) 91) (($ $ (-566)) 90) (($ (-409 (-566)) $) 88) (($ $ (-409 (-566))) 87))) +((-1926 (*1 *2 *1) (-12 (-4 *3 (-1214)) (-5 *2 (-644 *1)) (-4 *1 (-1010 *3)))) (-3431 (*1 *2 *1) (-12 (-4 *3 (-1214)) (-5 *2 (-644 *1)) (-4 *1 (-1010 *3)))) (-3860 (*1 *2 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1214)) (-5 *2 (-112)))) (-2876 (*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1214)))) (-1309 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1010 *2)) (-4 *2 (-1214)))) (-3786 (*1 *2 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1214)) (-5 *2 (-112)))) (-1458 (*1 *2 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1214)) (-5 *2 (-644 *3)))) (-1696 (*1 *2 *1 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1214)) (-5 *2 (-566)))) (-4385 (*1 *2 *1 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1214)) (-4 *3 (-1099)) (-5 *2 (-112)))) (-1507 (*1 *2 *1 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1214)) (-4 *3 (-1099)) (-5 *2 (-112)))) (-4202 (*1 *1 *1 *2) (-12 (-5 *2 (-644 *1)) (|has| *1 (-6 -4415)) (-4 *1 (-1010 *3)) (-4 *3 (-1214)))) (-1456 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4415)) (-4 *1 (-1010 *2)) (-4 *2 (-1214)))) (-2191 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4415)) (-4 *1 (-1010 *2)) (-4 *2 (-1214))))) +(-13 (-491 |t#1|) (-10 -8 (-15 -1926 ((-644 $) $)) (-15 -3431 ((-644 $) $)) (-15 -3860 ((-112) $)) (-15 -2876 (|t#1| $)) (-15 -1309 (|t#1| $ "value")) (-15 -3786 ((-112) $)) (-15 -1458 ((-644 |t#1|) $)) (-15 -1696 ((-566) $ $)) (IF (|has| |t#1| (-1099)) (PROGN (-15 -4385 ((-112) $ $)) (-15 -1507 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4415)) (PROGN (-15 -4202 ($ $ (-644 $))) (-15 -1456 (|t#1| $ "value" |t#1|)) (-15 -2191 (|t#1| $ |t#1|))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2768 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1099) |has| |#1| (-1099)) ((-1214) . T)) +((-1635 (($ $) 9) (($ $ (-921)) 49) (($ (-409 (-566))) 13) (($ (-566)) 15)) (-4093 (((-3 $ "failed") (-1171 $) (-921) (-862)) 24) (((-3 $ "failed") (-1171 $) (-921)) 32)) (-1575 (($ $ (-566)) 58)) (-2593 (((-771)) 18)) (-1526 (((-644 $) (-1171 $)) NIL) (((-644 $) (-1171 (-409 (-566)))) 63) (((-644 $) (-1171 (-566))) 68) (((-644 $) (-952 $)) 72) (((-644 $) (-952 (-409 (-566)))) 76) (((-644 $) (-952 (-566))) 80)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL) (($ $ (-409 (-566))) 53))) +(((-1011 |#1|) (-10 -8 (-15 -1635 (|#1| (-566))) (-15 -1635 (|#1| (-409 (-566)))) (-15 -1635 (|#1| |#1| (-921))) (-15 -1526 ((-644 |#1|) (-952 (-566)))) (-15 -1526 ((-644 |#1|) (-952 (-409 (-566))))) (-15 -1526 ((-644 |#1|) (-952 |#1|))) (-15 -1526 ((-644 |#1|) (-1171 (-566)))) (-15 -1526 ((-644 |#1|) (-1171 (-409 (-566))))) (-15 -1526 ((-644 |#1|) (-1171 |#1|))) (-15 -4093 ((-3 |#1| "failed") (-1171 |#1|) (-921))) (-15 -4093 ((-3 |#1| "failed") (-1171 |#1|) (-921) (-862))) (-15 ** (|#1| |#1| (-409 (-566)))) (-15 -1575 (|#1| |#1| (-566))) (-15 -1635 (|#1| |#1|)) (-15 ** (|#1| |#1| (-566))) (-15 -2593 ((-771))) (-15 ** (|#1| |#1| (-771))) (-15 ** (|#1| |#1| (-921)))) (-1012)) (T -1011)) +((-2593 (*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-1011 *3)) (-4 *3 (-1012))))) +(-10 -8 (-15 -1635 (|#1| (-566))) (-15 -1635 (|#1| (-409 (-566)))) (-15 -1635 (|#1| |#1| (-921))) (-15 -1526 ((-644 |#1|) (-952 (-566)))) (-15 -1526 ((-644 |#1|) (-952 (-409 (-566))))) (-15 -1526 ((-644 |#1|) (-952 |#1|))) (-15 -1526 ((-644 |#1|) (-1171 (-566)))) (-15 -1526 ((-644 |#1|) (-1171 (-409 (-566))))) (-15 -1526 ((-644 |#1|) (-1171 |#1|))) (-15 -4093 ((-3 |#1| "failed") (-1171 |#1|) (-921))) (-15 -4093 ((-3 |#1| "failed") (-1171 |#1|) (-921) (-862))) (-15 ** (|#1| |#1| (-409 (-566)))) (-15 -1575 (|#1| |#1| (-566))) (-15 -1635 (|#1| |#1|)) (-15 ** (|#1| |#1| (-566))) (-15 -2593 ((-771))) (-15 ** (|#1| |#1| (-771))) (-15 ** (|#1| |#1| (-921)))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) 102)) (-2161 (($ $) 103)) (-2345 (((-112) $) 105)) (-3967 (((-3 $ "failed") $ $) 20)) (-1378 (($ $) 122)) (-1364 (((-420 $) $) 123)) (-1635 (($ $) 86) (($ $ (-921)) 72) (($ (-409 (-566))) 71) (($ (-566)) 70)) (-2085 (((-112) $ $) 113)) (-2743 (((-566) $) 139)) (-2463 (($) 18 T CONST)) (-4093 (((-3 $ "failed") (-1171 $) (-921) (-862)) 80) (((-3 $ "failed") (-1171 $) (-921)) 79)) (-2229 (((-3 (-566) "failed") $) 99 (|has| (-409 (-566)) (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) 97 (|has| (-409 (-566)) (-1038 (-409 (-566))))) (((-3 (-409 (-566)) "failed") $) 94)) (-4158 (((-566) $) 98 (|has| (-409 (-566)) (-1038 (-566)))) (((-409 (-566)) $) 96 (|has| (-409 (-566)) (-1038 (-409 (-566))))) (((-409 (-566)) $) 95)) (-1767 (($ $ (-862)) 69)) (-4394 (($ $ (-862)) 68)) (-2933 (($ $ $) 117)) (-3245 (((-3 $ "failed") $) 37)) (-2945 (($ $ $) 116)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) 111)) (-1615 (((-112) $) 124)) (-2528 (((-112) $) 137)) (-2389 (((-112) $) 35)) (-1575 (($ $ (-566)) 85)) (-3233 (((-112) $) 138)) (-3816 (((-3 (-644 $) "failed") (-644 $) $) 120)) (-1478 (($ $ $) 136)) (-2599 (($ $ $) 135)) (-1401 (((-3 (-1171 $) "failed") $) 81)) (-3170 (((-3 (-862) "failed") $) 83)) (-1443 (((-3 (-1171 $) "failed") $) 82)) (-2128 (($ (-644 $)) 109) (($ $ $) 108)) (-3380 (((-1157) $) 10)) (-2748 (($ $) 125)) (-4072 (((-1119) $) 11)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) 110)) (-2164 (($ (-644 $)) 107) (($ $ $) 106)) (-1624 (((-420 $) $) 121)) (-3005 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) 118)) (-2978 (((-3 $ "failed") $ $) 101)) (-2915 (((-3 (-644 $) "failed") (-644 $) $) 112)) (-4357 (((-771) $) 114)) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) 115)) (-3152 (((-862) $) 12) (($ (-566)) 33) (($ (-409 (-566))) 129) (($ $) 100) (($ (-409 (-566))) 93) (($ (-566)) 92) (($ (-409 (-566))) 89)) (-2593 (((-771)) 32 T CONST)) (-3044 (((-112) $ $) 9)) (-3014 (((-112) $ $) 104)) (-3603 (((-409 (-566)) $ $) 67)) (-1526 (((-644 $) (-1171 $)) 78) (((-644 $) (-1171 (-409 (-566)))) 77) (((-644 $) (-1171 (-566))) 76) (((-644 $) (-952 $)) 75) (((-644 $) (-952 (-409 (-566)))) 74) (((-644 $) (-952 (-566))) 73)) (-1358 (($ $) 140)) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-2968 (((-112) $ $) 133)) (-2946 (((-112) $ $) 132)) (-2914 (((-112) $ $) 6)) (-2956 (((-112) $ $) 134)) (-2935 (((-112) $ $) 131)) (-3025 (($ $ $) 130)) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 126) (($ $ (-409 (-566))) 84)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ (-409 (-566)) $) 128) (($ $ (-409 (-566))) 127) (($ (-566) $) 91) (($ $ (-566)) 90) (($ (-409 (-566)) $) 88) (($ $ (-409 (-566))) 87))) (((-1012) (-140)) (T -1012)) -((-3731 (*1 *1 *1) (-4 *1 (-1012))) (-1576 (*1 *2 *1) (|partial| -12 (-4 *1 (-1012)) (-5 *2 (-862)))) (-3478 (*1 *2 *1) (|partial| -12 (-5 *2 (-1171 *1)) (-4 *1 (-1012)))) (-4247 (*1 *2 *1) (|partial| -12 (-5 *2 (-1171 *1)) (-4 *1 (-1012)))) (-3912 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1171 *1)) (-5 *3 (-921)) (-5 *4 (-862)) (-4 *1 (-1012)))) (-3912 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1171 *1)) (-5 *3 (-921)) (-4 *1 (-1012)))) (-1990 (*1 *2 *3) (-12 (-5 *3 (-1171 *1)) (-4 *1 (-1012)) (-5 *2 (-644 *1)))) (-1990 (*1 *2 *3) (-12 (-5 *3 (-1171 (-409 (-566)))) (-5 *2 (-644 *1)) (-4 *1 (-1012)))) (-1990 (*1 *2 *3) (-12 (-5 *3 (-1171 (-566))) (-5 *2 (-644 *1)) (-4 *1 (-1012)))) (-1990 (*1 *2 *3) (-12 (-5 *3 (-952 *1)) (-4 *1 (-1012)) (-5 *2 (-644 *1)))) (-1990 (*1 *2 *3) (-12 (-5 *3 (-952 (-409 (-566)))) (-5 *2 (-644 *1)) (-4 *1 (-1012)))) (-1990 (*1 *2 *3) (-12 (-5 *3 (-952 (-566))) (-5 *2 (-644 *1)) (-4 *1 (-1012)))) (-3731 (*1 *1 *1 *2) (-12 (-4 *1 (-1012)) (-5 *2 (-921)))) (-3731 (*1 *1 *2) (-12 (-5 *2 (-409 (-566))) (-4 *1 (-1012)))) (-3731 (*1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-1012)))) (-2594 (*1 *1 *1 *2) (-12 (-4 *1 (-1012)) (-5 *2 (-862)))) (-1624 (*1 *1 *1 *2) (-12 (-4 *1 (-1012)) (-5 *2 (-862)))) (-3628 (*1 *2 *1 *1) (-12 (-4 *1 (-1012)) (-5 *2 (-409 (-566)))))) -(-13 (-147) (-848) (-172) (-365) (-413 (-409 (-566))) (-38 (-566)) (-38 (-409 (-566))) (-1002) (-10 -8 (-15 -1576 ((-3 (-862) "failed") $)) (-15 -3478 ((-3 (-1171 $) "failed") $)) (-15 -4247 ((-3 (-1171 $) "failed") $)) (-15 -3912 ((-3 $ "failed") (-1171 $) (-921) (-862))) (-15 -3912 ((-3 $ "failed") (-1171 $) (-921))) (-15 -1990 ((-644 $) (-1171 $))) (-15 -1990 ((-644 $) (-1171 (-409 (-566))))) (-15 -1990 ((-644 $) (-1171 (-566)))) (-15 -1990 ((-644 $) (-952 $))) (-15 -1990 ((-644 $) (-952 (-409 (-566))))) (-15 -1990 ((-644 $) (-952 (-566)))) (-15 -3731 ($ $ (-921))) (-15 -3731 ($ $)) (-15 -3731 ($ (-409 (-566)))) (-15 -3731 ($ (-566))) (-15 -2594 ($ $ (-862))) (-15 -1624 ($ $ (-862))) (-15 -3628 ((-409 (-566)) $ $)))) +((-1635 (*1 *1 *1) (-4 *1 (-1012))) (-3170 (*1 *2 *1) (|partial| -12 (-4 *1 (-1012)) (-5 *2 (-862)))) (-1443 (*1 *2 *1) (|partial| -12 (-5 *2 (-1171 *1)) (-4 *1 (-1012)))) (-1401 (*1 *2 *1) (|partial| -12 (-5 *2 (-1171 *1)) (-4 *1 (-1012)))) (-4093 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1171 *1)) (-5 *3 (-921)) (-5 *4 (-862)) (-4 *1 (-1012)))) (-4093 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1171 *1)) (-5 *3 (-921)) (-4 *1 (-1012)))) (-1526 (*1 *2 *3) (-12 (-5 *3 (-1171 *1)) (-4 *1 (-1012)) (-5 *2 (-644 *1)))) (-1526 (*1 *2 *3) (-12 (-5 *3 (-1171 (-409 (-566)))) (-5 *2 (-644 *1)) (-4 *1 (-1012)))) (-1526 (*1 *2 *3) (-12 (-5 *3 (-1171 (-566))) (-5 *2 (-644 *1)) (-4 *1 (-1012)))) (-1526 (*1 *2 *3) (-12 (-5 *3 (-952 *1)) (-4 *1 (-1012)) (-5 *2 (-644 *1)))) (-1526 (*1 *2 *3) (-12 (-5 *3 (-952 (-409 (-566)))) (-5 *2 (-644 *1)) (-4 *1 (-1012)))) (-1526 (*1 *2 *3) (-12 (-5 *3 (-952 (-566))) (-5 *2 (-644 *1)) (-4 *1 (-1012)))) (-1635 (*1 *1 *1 *2) (-12 (-4 *1 (-1012)) (-5 *2 (-921)))) (-1635 (*1 *1 *2) (-12 (-5 *2 (-409 (-566))) (-4 *1 (-1012)))) (-1635 (*1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-1012)))) (-1767 (*1 *1 *1 *2) (-12 (-4 *1 (-1012)) (-5 *2 (-862)))) (-4394 (*1 *1 *1 *2) (-12 (-4 *1 (-1012)) (-5 *2 (-862)))) (-3603 (*1 *2 *1 *1) (-12 (-4 *1 (-1012)) (-5 *2 (-409 (-566)))))) +(-13 (-147) (-848) (-172) (-365) (-413 (-409 (-566))) (-38 (-566)) (-38 (-409 (-566))) (-1002) (-10 -8 (-15 -3170 ((-3 (-862) "failed") $)) (-15 -1443 ((-3 (-1171 $) "failed") $)) (-15 -1401 ((-3 (-1171 $) "failed") $)) (-15 -4093 ((-3 $ "failed") (-1171 $) (-921) (-862))) (-15 -4093 ((-3 $ "failed") (-1171 $) (-921))) (-15 -1526 ((-644 $) (-1171 $))) (-15 -1526 ((-644 $) (-1171 (-409 (-566))))) (-15 -1526 ((-644 $) (-1171 (-566)))) (-15 -1526 ((-644 $) (-952 $))) (-15 -1526 ((-644 $) (-952 (-409 (-566))))) (-15 -1526 ((-644 $) (-952 (-566)))) (-15 -1635 ($ $ (-921))) (-15 -1635 ($ $)) (-15 -1635 ($ (-409 (-566)))) (-15 -1635 ($ (-566))) (-15 -1767 ($ $ (-862))) (-15 -4394 ($ $ (-862))) (-15 -3603 ((-409 (-566)) $ $)))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) . T) ((-38 #1=(-566)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-616 #0#) . T) ((-616 (-566)) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-413 (-409 (-566))) . T) ((-454) . T) ((-558) . T) ((-646 #0#) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 #0#) . T) ((-648 #1#) . T) ((-648 $) . T) ((-640 #0#) . T) ((-640 #1#) . T) ((-640 $) . T) ((-717 #0#) . T) ((-717 #1#) . T) ((-717 $) . T) ((-726) . T) ((-791) . T) ((-792) . T) ((-794) . T) ((-795) . T) ((-848) . T) ((-850) . T) ((-920) . T) ((-1002) . T) ((-1038 (-409 (-566))) . T) ((-1038 (-566)) |has| (-409 (-566)) (-1038 (-566))) ((-1051 #0#) . T) ((-1051 #1#) . T) ((-1051 $) . T) ((-1056 #0#) . T) ((-1056 #1#) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1218) . T)) -((-2834 (((-2 (|:| |ans| |#2|) (|:| -4392 |#2|) (|:| |sol?| (-112))) (-566) |#2| |#2| (-1175) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-644 |#2|)) (-1 (-3 (-2 (|:| -2346 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67))) -(((-1013 |#1| |#2|) (-10 -7 (-15 -2834 ((-2 (|:| |ans| |#2|) (|:| -4392 |#2|) (|:| |sol?| (-112))) (-566) |#2| |#2| (-1175) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-644 |#2|)) (-1 (-3 (-2 (|:| -2346 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-454) (-147) (-1038 (-566)) (-639 (-566))) (-13 (-1199) (-27) (-432 |#1|))) (T -1013)) -((-2834 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1175)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-644 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2346 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1199) (-27) (-432 *8))) (-4 *8 (-13 (-454) (-147) (-1038 *3) (-639 *3))) (-5 *3 (-566)) (-5 *2 (-2 (|:| |ans| *4) (|:| -4392 *4) (|:| |sol?| (-112)))) (-5 *1 (-1013 *8 *4))))) -(-10 -7 (-15 -2834 ((-2 (|:| |ans| |#2|) (|:| -4392 |#2|) (|:| |sol?| (-112))) (-566) |#2| |#2| (-1175) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-644 |#2|)) (-1 (-3 (-2 (|:| -2346 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-1755 (((-3 (-644 |#2|) "failed") (-566) |#2| |#2| |#2| (-1175) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-644 |#2|)) (-1 (-3 (-2 (|:| -2346 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55))) -(((-1014 |#1| |#2|) (-10 -7 (-15 -1755 ((-3 (-644 |#2|) "failed") (-566) |#2| |#2| |#2| (-1175) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-644 |#2|)) (-1 (-3 (-2 (|:| -2346 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-454) (-147) (-1038 (-566)) (-639 (-566))) (-13 (-1199) (-27) (-432 |#1|))) (T -1014)) -((-1755 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1175)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-644 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2346 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1199) (-27) (-432 *8))) (-4 *8 (-13 (-454) (-147) (-1038 *3) (-639 *3))) (-5 *3 (-566)) (-5 *2 (-644 *4)) (-5 *1 (-1014 *8 *4))))) -(-10 -7 (-15 -1755 ((-3 (-644 |#2|) "failed") (-566) |#2| |#2| |#2| (-1175) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-644 |#2|)) (-1 (-3 (-2 (|:| -2346 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-1531 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -2470 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-566)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-566) (-1 |#2| |#2|)) 41)) (-2934 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-409 |#2|)) (|:| |c| (-409 |#2|)) (|:| -1460 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-1 |#2| |#2|)) 71)) (-2678 (((-2 (|:| |ans| (-409 |#2|)) (|:| |nosol| (-112))) (-409 |#2|) (-409 |#2|)) 76))) -(((-1015 |#1| |#2|) (-10 -7 (-15 -2934 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-409 |#2|)) (|:| |c| (-409 |#2|)) (|:| -1460 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-1 |#2| |#2|))) (-15 -2678 ((-2 (|:| |ans| (-409 |#2|)) (|:| |nosol| (-112))) (-409 |#2|) (-409 |#2|))) (-15 -1531 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -2470 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-566)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-566) (-1 |#2| |#2|)))) (-13 (-365) (-147) (-1038 (-566))) (-1240 |#1|)) (T -1015)) -((-1531 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1240 *6)) (-4 *6 (-13 (-365) (-147) (-1038 *4))) (-5 *4 (-566)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -2470 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1015 *6 *3)))) (-2678 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1038 (-566)))) (-4 *5 (-1240 *4)) (-5 *2 (-2 (|:| |ans| (-409 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1015 *4 *5)) (-5 *3 (-409 *5)))) (-2934 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1240 *5)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-409 *6)) (|:| |c| (-409 *6)) (|:| -1460 *6))) (-5 *1 (-1015 *5 *6)) (-5 *3 (-409 *6))))) -(-10 -7 (-15 -2934 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-409 |#2|)) (|:| |c| (-409 |#2|)) (|:| -1460 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-1 |#2| |#2|))) (-15 -2678 ((-2 (|:| |ans| (-409 |#2|)) (|:| |nosol| (-112))) (-409 |#2|) (-409 |#2|))) (-15 -1531 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -2470 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-566)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-566) (-1 |#2| |#2|)))) -((-3816 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-409 |#2|)) (|:| |h| |#2|) (|:| |c1| (-409 |#2|)) (|:| |c2| (-409 |#2|)) (|:| -1460 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|) (-1 |#2| |#2|)) 22)) (-2617 (((-3 (-644 (-409 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|)) 34))) -(((-1016 |#1| |#2|) (-10 -7 (-15 -3816 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-409 |#2|)) (|:| |h| |#2|) (|:| |c1| (-409 |#2|)) (|:| |c2| (-409 |#2|)) (|:| -1460 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|) (-1 |#2| |#2|))) (-15 -2617 ((-3 (-644 (-409 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|)))) (-13 (-365) (-147) (-1038 (-566))) (-1240 |#1|)) (T -1016)) -((-2617 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-365) (-147) (-1038 (-566)))) (-4 *5 (-1240 *4)) (-5 *2 (-644 (-409 *5))) (-5 *1 (-1016 *4 *5)) (-5 *3 (-409 *5)))) (-3816 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1240 *5)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-409 *6)) (|:| |h| *6) (|:| |c1| (-409 *6)) (|:| |c2| (-409 *6)) (|:| -1460 *6))) (-5 *1 (-1016 *5 *6)) (-5 *3 (-409 *6))))) -(-10 -7 (-15 -3816 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-409 |#2|)) (|:| |h| |#2|) (|:| |c1| (-409 |#2|)) (|:| |c2| (-409 |#2|)) (|:| -1460 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|) (-1 |#2| |#2|))) (-15 -2617 ((-3 (-644 (-409 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|)))) -((-2200 (((-1 |#1|) (-644 (-2 (|:| -2233 |#1|) (|:| -1617 (-566))))) 37)) (-1663 (((-1 |#1|) (-1101 |#1|)) 45)) (-1331 (((-1 |#1|) (-1264 |#1|) (-1264 (-566)) (-566)) 34))) -(((-1017 |#1|) (-10 -7 (-15 -1663 ((-1 |#1|) (-1101 |#1|))) (-15 -2200 ((-1 |#1|) (-644 (-2 (|:| -2233 |#1|) (|:| -1617 (-566)))))) (-15 -1331 ((-1 |#1|) (-1264 |#1|) (-1264 (-566)) (-566)))) (-1099)) (T -1017)) -((-1331 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1264 *6)) (-5 *4 (-1264 (-566))) (-5 *5 (-566)) (-4 *6 (-1099)) (-5 *2 (-1 *6)) (-5 *1 (-1017 *6)))) (-2200 (*1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| -2233 *4) (|:| -1617 (-566))))) (-4 *4 (-1099)) (-5 *2 (-1 *4)) (-5 *1 (-1017 *4)))) (-1663 (*1 *2 *3) (-12 (-5 *3 (-1101 *4)) (-4 *4 (-1099)) (-5 *2 (-1 *4)) (-5 *1 (-1017 *4))))) -(-10 -7 (-15 -1663 ((-1 |#1|) (-1101 |#1|))) (-15 -2200 ((-1 |#1|) (-644 (-2 (|:| -2233 |#1|) (|:| -1617 (-566)))))) (-15 -1331 ((-1 |#1|) (-1264 |#1|) (-1264 (-566)) (-566)))) -((-3254 (((-771) (-338 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) -(((-1018 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3254 ((-771) (-338 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-365) (-1240 |#1|) (-1240 (-409 |#2|)) (-344 |#1| |#2| |#3|) (-13 (-370) (-365))) (T -1018)) -((-3254 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-338 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-365)) (-4 *7 (-1240 *6)) (-4 *4 (-1240 (-409 *7))) (-4 *8 (-344 *6 *7 *4)) (-4 *9 (-13 (-370) (-365))) (-5 *2 (-771)) (-5 *1 (-1018 *6 *7 *4 *8 *9))))) -(-10 -7 (-15 -3254 ((-771) (-338 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) -((-3007 (((-112) $ $) NIL)) (-3659 (((-1134) $) 9)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) NIL) (($ (-1180)) NIL) (((-1180) $) NIL)) (-1382 (((-1134) $) 11)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) -(((-1019) (-13 (-1082) (-10 -8 (-15 -3659 ((-1134) $)) (-15 -1382 ((-1134) $))))) (T -1019)) -((-3659 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1019)))) (-1382 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1019))))) -(-13 (-1082) (-10 -8 (-15 -3659 ((-1134) $)) (-15 -1382 ((-1134) $)))) -((-4022 (((-3 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566)))) "failed") |#1| (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566)))) (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566))))) 32) (((-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566)))) |#1| (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566)))) (-409 (-566))) 29)) (-1394 (((-644 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566))))) |#1| (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566)))) (-409 (-566))) 34) (((-644 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566))))) |#1| (-409 (-566))) 30) (((-644 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566))))) |#1| (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566))))) 33) (((-644 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566))))) |#1|) 28)) (-3417 (((-644 (-409 (-566))) (-644 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566)))))) 20)) (-3511 (((-409 (-566)) (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566))))) 17))) -(((-1020 |#1|) (-10 -7 (-15 -1394 ((-644 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566))))) |#1|)) (-15 -1394 ((-644 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566))))) |#1| (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566)))))) (-15 -1394 ((-644 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566))))) |#1| (-409 (-566)))) (-15 -1394 ((-644 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566))))) |#1| (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566)))) (-409 (-566)))) (-15 -4022 ((-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566)))) |#1| (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566)))) (-409 (-566)))) (-15 -4022 ((-3 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566)))) "failed") |#1| (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566)))) (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566)))))) (-15 -3511 ((-409 (-566)) (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566)))))) (-15 -3417 ((-644 (-409 (-566))) (-644 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566)))))))) (-1240 (-566))) (T -1020)) -((-3417 (*1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566)))))) (-5 *2 (-644 (-409 (-566)))) (-5 *1 (-1020 *4)) (-4 *4 (-1240 (-566))))) (-3511 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566))))) (-5 *2 (-409 (-566))) (-5 *1 (-1020 *4)) (-4 *4 (-1240 (-566))))) (-4022 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566))))) (-5 *1 (-1020 *3)) (-4 *3 (-1240 (-566))))) (-4022 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566))))) (-5 *4 (-409 (-566))) (-5 *1 (-1020 *3)) (-4 *3 (-1240 (-566))))) (-1394 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-409 (-566))) (-5 *2 (-644 (-2 (|:| -4380 *5) (|:| -4392 *5)))) (-5 *1 (-1020 *3)) (-4 *3 (-1240 (-566))) (-5 *4 (-2 (|:| -4380 *5) (|:| -4392 *5))))) (-1394 (*1 *2 *3 *4) (-12 (-5 *2 (-644 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566)))))) (-5 *1 (-1020 *3)) (-4 *3 (-1240 (-566))) (-5 *4 (-409 (-566))))) (-1394 (*1 *2 *3 *4) (-12 (-5 *2 (-644 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566)))))) (-5 *1 (-1020 *3)) (-4 *3 (-1240 (-566))) (-5 *4 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566))))))) (-1394 (*1 *2 *3) (-12 (-5 *2 (-644 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566)))))) (-5 *1 (-1020 *3)) (-4 *3 (-1240 (-566)))))) -(-10 -7 (-15 -1394 ((-644 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566))))) |#1|)) (-15 -1394 ((-644 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566))))) |#1| (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566)))))) (-15 -1394 ((-644 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566))))) |#1| (-409 (-566)))) (-15 -1394 ((-644 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566))))) |#1| (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566)))) (-409 (-566)))) (-15 -4022 ((-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566)))) |#1| (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566)))) (-409 (-566)))) (-15 -4022 ((-3 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566)))) "failed") |#1| (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566)))) (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566)))))) (-15 -3511 ((-409 (-566)) (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566)))))) (-15 -3417 ((-644 (-409 (-566))) (-644 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566)))))))) -((-4022 (((-3 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566)))) "failed") |#1| (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566)))) (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566))))) 35) (((-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566)))) |#1| (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566)))) (-409 (-566))) 32)) (-1394 (((-644 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566))))) |#1| (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566)))) (-409 (-566))) 30) (((-644 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566))))) |#1| (-409 (-566))) 26) (((-644 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566))))) |#1| (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566))))) 28) (((-644 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566))))) |#1|) 24))) -(((-1021 |#1|) (-10 -7 (-15 -1394 ((-644 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566))))) |#1|)) (-15 -1394 ((-644 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566))))) |#1| (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566)))))) (-15 -1394 ((-644 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566))))) |#1| (-409 (-566)))) (-15 -1394 ((-644 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566))))) |#1| (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566)))) (-409 (-566)))) (-15 -4022 ((-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566)))) |#1| (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566)))) (-409 (-566)))) (-15 -4022 ((-3 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566)))) "failed") |#1| (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566)))) (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566))))))) (-1240 (-409 (-566)))) (T -1021)) -((-4022 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566))))) (-5 *1 (-1021 *3)) (-4 *3 (-1240 (-409 (-566)))))) (-4022 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566))))) (-5 *4 (-409 (-566))) (-5 *1 (-1021 *3)) (-4 *3 (-1240 *4)))) (-1394 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-409 (-566))) (-5 *2 (-644 (-2 (|:| -4380 *5) (|:| -4392 *5)))) (-5 *1 (-1021 *3)) (-4 *3 (-1240 *5)) (-5 *4 (-2 (|:| -4380 *5) (|:| -4392 *5))))) (-1394 (*1 *2 *3 *4) (-12 (-5 *4 (-409 (-566))) (-5 *2 (-644 (-2 (|:| -4380 *4) (|:| -4392 *4)))) (-5 *1 (-1021 *3)) (-4 *3 (-1240 *4)))) (-1394 (*1 *2 *3 *4) (-12 (-5 *2 (-644 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566)))))) (-5 *1 (-1021 *3)) (-4 *3 (-1240 (-409 (-566)))) (-5 *4 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566))))))) (-1394 (*1 *2 *3) (-12 (-5 *2 (-644 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566)))))) (-5 *1 (-1021 *3)) (-4 *3 (-1240 (-409 (-566))))))) -(-10 -7 (-15 -1394 ((-644 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566))))) |#1|)) (-15 -1394 ((-644 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566))))) |#1| (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566)))))) (-15 -1394 ((-644 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566))))) |#1| (-409 (-566)))) (-15 -1394 ((-644 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566))))) |#1| (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566)))) (-409 (-566)))) (-15 -4022 ((-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566)))) |#1| (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566)))) (-409 (-566)))) (-15 -4022 ((-3 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566)))) "failed") |#1| (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566)))) (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566))))))) -((-1348 (((-225) $) 6) (((-381) $) 9))) +((-3026 (((-2 (|:| |ans| |#2|) (|:| -1966 |#2|) (|:| |sol?| (-112))) (-566) |#2| |#2| (-1175) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-644 |#2|)) (-1 (-3 (-2 (|:| -1641 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67))) +(((-1013 |#1| |#2|) (-10 -7 (-15 -3026 ((-2 (|:| |ans| |#2|) (|:| -1966 |#2|) (|:| |sol?| (-112))) (-566) |#2| |#2| (-1175) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-644 |#2|)) (-1 (-3 (-2 (|:| -1641 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-454) (-147) (-1038 (-566)) (-639 (-566))) (-13 (-1199) (-27) (-432 |#1|))) (T -1013)) +((-3026 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1175)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-644 *4))) (-5 *7 (-1 (-3 (-2 (|:| -1641 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1199) (-27) (-432 *8))) (-4 *8 (-13 (-454) (-147) (-1038 *3) (-639 *3))) (-5 *3 (-566)) (-5 *2 (-2 (|:| |ans| *4) (|:| -1966 *4) (|:| |sol?| (-112)))) (-5 *1 (-1013 *8 *4))))) +(-10 -7 (-15 -3026 ((-2 (|:| |ans| |#2|) (|:| -1966 |#2|) (|:| |sol?| (-112))) (-566) |#2| |#2| (-1175) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-644 |#2|)) (-1 (-3 (-2 (|:| -1641 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-2332 (((-3 (-644 |#2|) "failed") (-566) |#2| |#2| |#2| (-1175) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-644 |#2|)) (-1 (-3 (-2 (|:| -1641 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55))) +(((-1014 |#1| |#2|) (-10 -7 (-15 -2332 ((-3 (-644 |#2|) "failed") (-566) |#2| |#2| |#2| (-1175) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-644 |#2|)) (-1 (-3 (-2 (|:| -1641 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-454) (-147) (-1038 (-566)) (-639 (-566))) (-13 (-1199) (-27) (-432 |#1|))) (T -1014)) +((-2332 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1175)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-644 *4))) (-5 *7 (-1 (-3 (-2 (|:| -1641 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1199) (-27) (-432 *8))) (-4 *8 (-13 (-454) (-147) (-1038 *3) (-639 *3))) (-5 *3 (-566)) (-5 *2 (-644 *4)) (-5 *1 (-1014 *8 *4))))) +(-10 -7 (-15 -2332 ((-3 (-644 |#2|) "failed") (-566) |#2| |#2| |#2| (-1175) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-644 |#2|)) (-1 (-3 (-2 (|:| -1641 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-2898 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3434 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-566)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-566) (-1 |#2| |#2|)) 41)) (-2091 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-409 |#2|)) (|:| |c| (-409 |#2|)) (|:| -1462 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-1 |#2| |#2|)) 71)) (-3107 (((-2 (|:| |ans| (-409 |#2|)) (|:| |nosol| (-112))) (-409 |#2|) (-409 |#2|)) 76))) +(((-1015 |#1| |#2|) (-10 -7 (-15 -2091 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-409 |#2|)) (|:| |c| (-409 |#2|)) (|:| -1462 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-1 |#2| |#2|))) (-15 -3107 ((-2 (|:| |ans| (-409 |#2|)) (|:| |nosol| (-112))) (-409 |#2|) (-409 |#2|))) (-15 -2898 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3434 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-566)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-566) (-1 |#2| |#2|)))) (-13 (-365) (-147) (-1038 (-566))) (-1240 |#1|)) (T -1015)) +((-2898 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1240 *6)) (-4 *6 (-13 (-365) (-147) (-1038 *4))) (-5 *4 (-566)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -3434 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1015 *6 *3)))) (-3107 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1038 (-566)))) (-4 *5 (-1240 *4)) (-5 *2 (-2 (|:| |ans| (-409 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1015 *4 *5)) (-5 *3 (-409 *5)))) (-2091 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1240 *5)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-409 *6)) (|:| |c| (-409 *6)) (|:| -1462 *6))) (-5 *1 (-1015 *5 *6)) (-5 *3 (-409 *6))))) +(-10 -7 (-15 -2091 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-409 |#2|)) (|:| |c| (-409 |#2|)) (|:| -1462 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-1 |#2| |#2|))) (-15 -3107 ((-2 (|:| |ans| (-409 |#2|)) (|:| |nosol| (-112))) (-409 |#2|) (-409 |#2|))) (-15 -2898 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3434 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-566)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-566) (-1 |#2| |#2|)))) +((-3041 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-409 |#2|)) (|:| |h| |#2|) (|:| |c1| (-409 |#2|)) (|:| |c2| (-409 |#2|)) (|:| -1462 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|) (-1 |#2| |#2|)) 22)) (-2134 (((-3 (-644 (-409 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|)) 34))) +(((-1016 |#1| |#2|) (-10 -7 (-15 -3041 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-409 |#2|)) (|:| |h| |#2|) (|:| |c1| (-409 |#2|)) (|:| |c2| (-409 |#2|)) (|:| -1462 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|) (-1 |#2| |#2|))) (-15 -2134 ((-3 (-644 (-409 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|)))) (-13 (-365) (-147) (-1038 (-566))) (-1240 |#1|)) (T -1016)) +((-2134 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-365) (-147) (-1038 (-566)))) (-4 *5 (-1240 *4)) (-5 *2 (-644 (-409 *5))) (-5 *1 (-1016 *4 *5)) (-5 *3 (-409 *5)))) (-3041 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1240 *5)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-409 *6)) (|:| |h| *6) (|:| |c1| (-409 *6)) (|:| |c2| (-409 *6)) (|:| -1462 *6))) (-5 *1 (-1016 *5 *6)) (-5 *3 (-409 *6))))) +(-10 -7 (-15 -3041 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-409 |#2|)) (|:| |h| |#2|) (|:| |c1| (-409 |#2|)) (|:| |c2| (-409 |#2|)) (|:| -1462 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|) (-1 |#2| |#2|))) (-15 -2134 ((-3 (-644 (-409 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|)))) +((-1346 (((-1 |#1|) (-644 (-2 (|:| -2876 |#1|) (|:| -1784 (-566))))) 37)) (-1762 (((-1 |#1|) (-1101 |#1|)) 45)) (-3516 (((-1 |#1|) (-1264 |#1|) (-1264 (-566)) (-566)) 34))) +(((-1017 |#1|) (-10 -7 (-15 -1762 ((-1 |#1|) (-1101 |#1|))) (-15 -1346 ((-1 |#1|) (-644 (-2 (|:| -2876 |#1|) (|:| -1784 (-566)))))) (-15 -3516 ((-1 |#1|) (-1264 |#1|) (-1264 (-566)) (-566)))) (-1099)) (T -1017)) +((-3516 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1264 *6)) (-5 *4 (-1264 (-566))) (-5 *5 (-566)) (-4 *6 (-1099)) (-5 *2 (-1 *6)) (-5 *1 (-1017 *6)))) (-1346 (*1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| -2876 *4) (|:| -1784 (-566))))) (-4 *4 (-1099)) (-5 *2 (-1 *4)) (-5 *1 (-1017 *4)))) (-1762 (*1 *2 *3) (-12 (-5 *3 (-1101 *4)) (-4 *4 (-1099)) (-5 *2 (-1 *4)) (-5 *1 (-1017 *4))))) +(-10 -7 (-15 -1762 ((-1 |#1|) (-1101 |#1|))) (-15 -1346 ((-1 |#1|) (-644 (-2 (|:| -2876 |#1|) (|:| -1784 (-566)))))) (-15 -3516 ((-1 |#1|) (-1264 |#1|) (-1264 (-566)) (-566)))) +((-2679 (((-771) (-338 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) +(((-1018 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2679 ((-771) (-338 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-365) (-1240 |#1|) (-1240 (-409 |#2|)) (-344 |#1| |#2| |#3|) (-13 (-370) (-365))) (T -1018)) +((-2679 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-338 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-365)) (-4 *7 (-1240 *6)) (-4 *4 (-1240 (-409 *7))) (-4 *8 (-344 *6 *7 *4)) (-4 *9 (-13 (-370) (-365))) (-5 *2 (-771)) (-5 *1 (-1018 *6 *7 *4 *8 *9))))) +(-10 -7 (-15 -2679 ((-771) (-338 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) +((-2988 (((-112) $ $) NIL)) (-1566 (((-1134) $) 9)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) NIL) (($ (-1180)) NIL) (((-1180) $) NIL)) (-1377 (((-1134) $) 11)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) +(((-1019) (-13 (-1082) (-10 -8 (-15 -1566 ((-1134) $)) (-15 -1377 ((-1134) $))))) (T -1019)) +((-1566 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1019)))) (-1377 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1019))))) +(-13 (-1082) (-10 -8 (-15 -1566 ((-1134) $)) (-15 -1377 ((-1134) $)))) +((-2279 (((-3 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566)))) "failed") |#1| (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566)))) (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566))))) 32) (((-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566)))) |#1| (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566)))) (-409 (-566))) 29)) (-2204 (((-644 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566))))) |#1| (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566)))) (-409 (-566))) 34) (((-644 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566))))) |#1| (-409 (-566))) 30) (((-644 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566))))) |#1| (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566))))) 33) (((-644 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566))))) |#1|) 28)) (-3617 (((-644 (-409 (-566))) (-644 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566)))))) 20)) (-1697 (((-409 (-566)) (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566))))) 17))) +(((-1020 |#1|) (-10 -7 (-15 -2204 ((-644 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566))))) |#1|)) (-15 -2204 ((-644 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566))))) |#1| (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566)))))) (-15 -2204 ((-644 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566))))) |#1| (-409 (-566)))) (-15 -2204 ((-644 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566))))) |#1| (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566)))) (-409 (-566)))) (-15 -2279 ((-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566)))) |#1| (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566)))) (-409 (-566)))) (-15 -2279 ((-3 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566)))) "failed") |#1| (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566)))) (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566)))))) (-15 -1697 ((-409 (-566)) (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566)))))) (-15 -3617 ((-644 (-409 (-566))) (-644 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566)))))))) (-1240 (-566))) (T -1020)) +((-3617 (*1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566)))))) (-5 *2 (-644 (-409 (-566)))) (-5 *1 (-1020 *4)) (-4 *4 (-1240 (-566))))) (-1697 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566))))) (-5 *2 (-409 (-566))) (-5 *1 (-1020 *4)) (-4 *4 (-1240 (-566))))) (-2279 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566))))) (-5 *1 (-1020 *3)) (-4 *3 (-1240 (-566))))) (-2279 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566))))) (-5 *4 (-409 (-566))) (-5 *1 (-1020 *3)) (-4 *3 (-1240 (-566))))) (-2204 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-409 (-566))) (-5 *2 (-644 (-2 (|:| -1953 *5) (|:| -1966 *5)))) (-5 *1 (-1020 *3)) (-4 *3 (-1240 (-566))) (-5 *4 (-2 (|:| -1953 *5) (|:| -1966 *5))))) (-2204 (*1 *2 *3 *4) (-12 (-5 *2 (-644 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566)))))) (-5 *1 (-1020 *3)) (-4 *3 (-1240 (-566))) (-5 *4 (-409 (-566))))) (-2204 (*1 *2 *3 *4) (-12 (-5 *2 (-644 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566)))))) (-5 *1 (-1020 *3)) (-4 *3 (-1240 (-566))) (-5 *4 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566))))))) (-2204 (*1 *2 *3) (-12 (-5 *2 (-644 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566)))))) (-5 *1 (-1020 *3)) (-4 *3 (-1240 (-566)))))) +(-10 -7 (-15 -2204 ((-644 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566))))) |#1|)) (-15 -2204 ((-644 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566))))) |#1| (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566)))))) (-15 -2204 ((-644 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566))))) |#1| (-409 (-566)))) (-15 -2204 ((-644 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566))))) |#1| (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566)))) (-409 (-566)))) (-15 -2279 ((-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566)))) |#1| (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566)))) (-409 (-566)))) (-15 -2279 ((-3 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566)))) "failed") |#1| (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566)))) (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566)))))) (-15 -1697 ((-409 (-566)) (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566)))))) (-15 -3617 ((-644 (-409 (-566))) (-644 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566)))))))) +((-2279 (((-3 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566)))) "failed") |#1| (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566)))) (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566))))) 35) (((-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566)))) |#1| (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566)))) (-409 (-566))) 32)) (-2204 (((-644 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566))))) |#1| (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566)))) (-409 (-566))) 30) (((-644 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566))))) |#1| (-409 (-566))) 26) (((-644 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566))))) |#1| (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566))))) 28) (((-644 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566))))) |#1|) 24))) +(((-1021 |#1|) (-10 -7 (-15 -2204 ((-644 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566))))) |#1|)) (-15 -2204 ((-644 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566))))) |#1| (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566)))))) (-15 -2204 ((-644 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566))))) |#1| (-409 (-566)))) (-15 -2204 ((-644 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566))))) |#1| (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566)))) (-409 (-566)))) (-15 -2279 ((-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566)))) |#1| (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566)))) (-409 (-566)))) (-15 -2279 ((-3 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566)))) "failed") |#1| (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566)))) (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566))))))) (-1240 (-409 (-566)))) (T -1021)) +((-2279 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566))))) (-5 *1 (-1021 *3)) (-4 *3 (-1240 (-409 (-566)))))) (-2279 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566))))) (-5 *4 (-409 (-566))) (-5 *1 (-1021 *3)) (-4 *3 (-1240 *4)))) (-2204 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-409 (-566))) (-5 *2 (-644 (-2 (|:| -1953 *5) (|:| -1966 *5)))) (-5 *1 (-1021 *3)) (-4 *3 (-1240 *5)) (-5 *4 (-2 (|:| -1953 *5) (|:| -1966 *5))))) (-2204 (*1 *2 *3 *4) (-12 (-5 *4 (-409 (-566))) (-5 *2 (-644 (-2 (|:| -1953 *4) (|:| -1966 *4)))) (-5 *1 (-1021 *3)) (-4 *3 (-1240 *4)))) (-2204 (*1 *2 *3 *4) (-12 (-5 *2 (-644 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566)))))) (-5 *1 (-1021 *3)) (-4 *3 (-1240 (-409 (-566)))) (-5 *4 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566))))))) (-2204 (*1 *2 *3) (-12 (-5 *2 (-644 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566)))))) (-5 *1 (-1021 *3)) (-4 *3 (-1240 (-409 (-566))))))) +(-10 -7 (-15 -2204 ((-644 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566))))) |#1|)) (-15 -2204 ((-644 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566))))) |#1| (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566)))))) (-15 -2204 ((-644 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566))))) |#1| (-409 (-566)))) (-15 -2204 ((-644 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566))))) |#1| (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566)))) (-409 (-566)))) (-15 -2279 ((-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566)))) |#1| (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566)))) (-409 (-566)))) (-15 -2279 ((-3 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566)))) "failed") |#1| (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566)))) (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566))))))) +((-2376 (((-225) $) 6) (((-381) $) 9))) (((-1022) (-140)) (T -1022)) NIL (-13 (-614 (-225)) (-614 (-381))) (((-614 (-225)) . T) ((-614 (-381)) . T)) -((-1957 (((-644 (-381)) (-952 (-566)) (-381)) 28) (((-644 (-381)) (-952 (-409 (-566))) (-381)) 27)) (-3620 (((-644 (-644 (-381))) (-644 (-952 (-566))) (-644 (-1175)) (-381)) 37))) -(((-1023) (-10 -7 (-15 -1957 ((-644 (-381)) (-952 (-409 (-566))) (-381))) (-15 -1957 ((-644 (-381)) (-952 (-566)) (-381))) (-15 -3620 ((-644 (-644 (-381))) (-644 (-952 (-566))) (-644 (-1175)) (-381))))) (T -1023)) -((-3620 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-644 (-952 (-566)))) (-5 *4 (-644 (-1175))) (-5 *2 (-644 (-644 (-381)))) (-5 *1 (-1023)) (-5 *5 (-381)))) (-1957 (*1 *2 *3 *4) (-12 (-5 *3 (-952 (-566))) (-5 *2 (-644 (-381))) (-5 *1 (-1023)) (-5 *4 (-381)))) (-1957 (*1 *2 *3 *4) (-12 (-5 *3 (-952 (-409 (-566)))) (-5 *2 (-644 (-381))) (-5 *1 (-1023)) (-5 *4 (-381))))) -(-10 -7 (-15 -1957 ((-644 (-381)) (-952 (-409 (-566))) (-381))) (-15 -1957 ((-644 (-381)) (-952 (-566)) (-381))) (-15 -3620 ((-644 (-644 (-381))) (-644 (-952 (-566))) (-644 (-1175)) (-381)))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) 75)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-3991 (($ $) NIL)) (-2388 (((-112) $) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-1550 (($ $) NIL)) (-3184 (((-420 $) $) NIL)) (-3731 (($ $) NIL) (($ $ (-921)) NIL) (($ (-409 (-566))) NIL) (($ (-566)) NIL)) (-2837 (((-112) $ $) NIL)) (-4364 (((-566) $) 70)) (-3012 (($) NIL T CONST)) (-3912 (((-3 $ "failed") (-1171 $) (-921) (-862)) NIL) (((-3 $ "failed") (-1171 $) (-921)) 55)) (-4307 (((-3 (-409 (-566)) "failed") $) NIL (|has| (-409 (-566)) (-1038 (-409 (-566))))) (((-3 (-409 (-566)) "failed") $) NIL) (((-3 |#1| "failed") $) 116) (((-3 (-566) "failed") $) NIL (-2809 (|has| (-409 (-566)) (-1038 (-566))) (|has| |#1| (-1038 (-566)))))) (-4205 (((-409 (-566)) $) 17 (|has| (-409 (-566)) (-1038 (-409 (-566))))) (((-409 (-566)) $) 17) ((|#1| $) 117) (((-566) $) NIL (-2809 (|has| (-409 (-566)) (-1038 (-566))) (|has| |#1| (-1038 (-566)))))) (-2594 (($ $ (-862)) 47)) (-1624 (($ $ (-862)) 48)) (-2946 (($ $ $) NIL)) (-3782 (((-409 (-566)) $ $) 21)) (-1878 (((-3 $ "failed") $) 88)) (-2957 (($ $ $) NIL)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL)) (-3268 (((-112) $) NIL)) (-1897 (((-112) $) 66)) (-3934 (((-112) $) NIL)) (-2140 (($ $ (-566)) NIL)) (-2117 (((-112) $) 69)) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2097 (($ $ $) NIL)) (-3962 (($ $ $) NIL)) (-4247 (((-3 (-1171 $) "failed") $) 83)) (-1576 (((-3 (-862) "failed") $) 82)) (-3478 (((-3 (-1171 $) "failed") $) 80)) (-1818 (((-3 (-1060 $ (-1171 $)) "failed") $) 78)) (-2167 (($ (-644 $)) NIL) (($ $ $) NIL)) (-4117 (((-1157) $) NIL)) (-1713 (($ $) 89)) (-4035 (((-1119) $) NIL)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2214 (($ (-644 $)) NIL) (($ $ $) NIL)) (-3719 (((-420 $) $) NIL)) (-3148 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL)) (-2994 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3039 (((-771) $) NIL)) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL)) (-3783 (((-862) $) 87) (($ (-566)) NIL) (($ (-409 (-566))) NIL) (($ $) 63) (($ (-409 (-566))) NIL) (($ (-566)) NIL) (($ (-409 (-566))) NIL) (($ |#1|) 119)) (-2107 (((-771)) NIL T CONST)) (-3117 (((-112) $ $) NIL)) (-2695 (((-112) $ $) NIL)) (-3628 (((-409 (-566)) $ $) 27)) (-1990 (((-644 $) (-1171 $)) 61) (((-644 $) (-1171 (-409 (-566)))) NIL) (((-644 $) (-1171 (-566))) NIL) (((-644 $) (-952 $)) NIL) (((-644 $) (-952 (-409 (-566)))) NIL) (((-644 $) (-952 (-566))) NIL)) (-2335 (($ (-1060 $ (-1171 $)) (-862)) 46)) (-2086 (($ $) 22)) (-2479 (($) 32 T CONST)) (-4334 (($) 39 T CONST)) (-3009 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2947 (((-112) $ $) 76)) (-2995 (((-112) $ $) NIL)) (-2969 (((-112) $ $) 24)) (-3065 (($ $ $) 37)) (-3053 (($ $) 38) (($ $ $) 74)) (-3041 (($ $ $) 112)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL) (($ $ (-409 (-566))) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 98) (($ $ $) 104) (($ (-409 (-566)) $) NIL) (($ $ (-409 (-566))) NIL) (($ (-566) $) 98) (($ $ (-566)) NIL) (($ (-409 (-566)) $) NIL) (($ $ (-409 (-566))) NIL) (($ |#1| $) 102) (($ $ |#1|) NIL))) -(((-1024 |#1|) (-13 (-1012) (-413 |#1|) (-38 |#1|) (-10 -8 (-15 -2335 ($ (-1060 $ (-1171 $)) (-862))) (-15 -1818 ((-3 (-1060 $ (-1171 $)) "failed") $)) (-15 -3782 ((-409 (-566)) $ $)))) (-13 (-848) (-365) (-1022))) (T -1024)) -((-2335 (*1 *1 *2 *3) (-12 (-5 *2 (-1060 (-1024 *4) (-1171 (-1024 *4)))) (-5 *3 (-862)) (-5 *1 (-1024 *4)) (-4 *4 (-13 (-848) (-365) (-1022))))) (-1818 (*1 *2 *1) (|partial| -12 (-5 *2 (-1060 (-1024 *3) (-1171 (-1024 *3)))) (-5 *1 (-1024 *3)) (-4 *3 (-13 (-848) (-365) (-1022))))) (-3782 (*1 *2 *1 *1) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-1024 *3)) (-4 *3 (-13 (-848) (-365) (-1022)))))) -(-13 (-1012) (-413 |#1|) (-38 |#1|) (-10 -8 (-15 -2335 ($ (-1060 $ (-1171 $)) (-862))) (-15 -1818 ((-3 (-1060 $ (-1171 $)) "failed") $)) (-15 -3782 ((-409 (-566)) $ $)))) -((-3099 (((-2 (|:| -2470 |#2|) (|:| -1684 (-644 |#1|))) |#2| (-644 |#1|)) 32) ((|#2| |#2| |#1|) 27))) -(((-1025 |#1| |#2|) (-10 -7 (-15 -3099 (|#2| |#2| |#1|)) (-15 -3099 ((-2 (|:| -2470 |#2|) (|:| -1684 (-644 |#1|))) |#2| (-644 |#1|)))) (-365) (-656 |#1|)) (T -1025)) -((-3099 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-5 *2 (-2 (|:| -2470 *3) (|:| -1684 (-644 *5)))) (-5 *1 (-1025 *5 *3)) (-5 *4 (-644 *5)) (-4 *3 (-656 *5)))) (-3099 (*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-1025 *3 *2)) (-4 *2 (-656 *3))))) -(-10 -7 (-15 -3099 (|#2| |#2| |#1|)) (-15 -3099 ((-2 (|:| -2470 |#2|) (|:| -1684 (-644 |#1|))) |#2| (-644 |#1|)))) -((-3007 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1865 ((|#1| $ |#1|) 14)) (-3923 ((|#1| $ |#1|) 12)) (-4111 (($ |#1|) 10)) (-4117 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4035 (((-1119) $) NIL (|has| |#1| (-1099)))) (-4390 ((|#1| $) 11)) (-2607 ((|#1| $) 13)) (-3783 (((-862) $) 21 (|has| |#1| (-1099)))) (-3117 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2947 (((-112) $ $) 9))) -(((-1026 |#1|) (-13 (-1214) (-10 -8 (-15 -4111 ($ |#1|)) (-15 -4390 (|#1| $)) (-15 -3923 (|#1| $ |#1|)) (-15 -2607 (|#1| $)) (-15 -1865 (|#1| $ |#1|)) (-15 -2947 ((-112) $ $)) (IF (|has| |#1| (-1099)) (-6 (-1099)) |%noBranch|))) (-1214)) (T -1026)) -((-4111 (*1 *1 *2) (-12 (-5 *1 (-1026 *2)) (-4 *2 (-1214)))) (-4390 (*1 *2 *1) (-12 (-5 *1 (-1026 *2)) (-4 *2 (-1214)))) (-3923 (*1 *2 *1 *2) (-12 (-5 *1 (-1026 *2)) (-4 *2 (-1214)))) (-2607 (*1 *2 *1) (-12 (-5 *1 (-1026 *2)) (-4 *2 (-1214)))) (-1865 (*1 *2 *1 *2) (-12 (-5 *1 (-1026 *2)) (-4 *2 (-1214)))) (-2947 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1026 *3)) (-4 *3 (-1214))))) -(-13 (-1214) (-10 -8 (-15 -4111 ($ |#1|)) (-15 -4390 (|#1| $)) (-15 -3923 (|#1| $ |#1|)) (-15 -2607 (|#1| $)) (-15 -1865 (|#1| $ |#1|)) (-15 -2947 ((-112) $ $)) (IF (|has| |#1| (-1099)) (-6 (-1099)) |%noBranch|))) -((-3007 (((-112) $ $) NIL)) (-2584 (((-644 (-2 (|:| -1651 $) (|:| -3501 (-644 |#4|)))) (-644 |#4|)) NIL)) (-2333 (((-644 $) (-644 |#4|)) 118) (((-644 $) (-644 |#4|) (-112)) 119) (((-644 $) (-644 |#4|) (-112) (-112)) 117) (((-644 $) (-644 |#4|) (-112) (-112) (-112) (-112)) 120)) (-3863 (((-644 |#3|) $) NIL)) (-2368 (((-112) $) NIL)) (-4070 (((-112) $) NIL (|has| |#1| (-558)))) (-3624 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1374 ((|#4| |#4| $) NIL)) (-1550 (((-644 (-2 (|:| |val| |#4|) (|:| -3570 $))) |#4| $) 112)) (-1510 (((-2 (|:| |under| $) (|:| -3470 $) (|:| |upper| $)) $ |#3|) NIL)) (-2256 (((-112) $ (-771)) NIL)) (-2701 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4414))) (((-3 |#4| "failed") $ |#3|) 66)) (-3012 (($) NIL T CONST)) (-3779 (((-112) $) 29 (|has| |#1| (-558)))) (-2540 (((-112) $ $) NIL (|has| |#1| (-558)))) (-4093 (((-112) $ $) NIL (|has| |#1| (-558)))) (-3741 (((-112) $) NIL (|has| |#1| (-558)))) (-2506 (((-644 |#4|) (-644 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2026 (((-644 |#4|) (-644 |#4|) $) NIL (|has| |#1| (-558)))) (-4306 (((-644 |#4|) (-644 |#4|) $) NIL (|has| |#1| (-558)))) (-4307 (((-3 $ "failed") (-644 |#4|)) NIL)) (-4205 (($ (-644 |#4|)) NIL)) (-2010 (((-3 $ "failed") $) 45)) (-2100 ((|#4| |#4| $) 69)) (-2031 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#4| (-1099))))) (-2665 (($ |#4| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#4| (-1099)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4414)))) (-2513 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-558)))) (-1464 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-1401 ((|#4| |#4| $) NIL)) (-1676 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4414)) (|has| |#4| (-1099)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4414))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4414))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3692 (((-2 (|:| -1651 (-644 |#4|)) (|:| -3501 (-644 |#4|))) $) NIL)) (-3987 (((-112) |#4| $) NIL)) (-1906 (((-112) |#4| $) NIL)) (-1530 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4281 (((-2 (|:| |val| (-644 |#4|)) (|:| |towers| (-644 $))) (-644 |#4|) (-112) (-112)) 133)) (-3979 (((-644 |#4|) $) 18 (|has| $ (-6 -4414)))) (-2111 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1489 ((|#3| $) 38)) (-2404 (((-112) $ (-771)) NIL)) (-2329 (((-644 |#4|) $) 19 (|has| $ (-6 -4414)))) (-1916 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4414)) (|has| |#4| (-1099))))) (-2908 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#4| |#4|) $) 23)) (-2189 (((-644 |#3|) $) NIL)) (-3953 (((-112) |#3| $) NIL)) (-2603 (((-112) $ (-771)) NIL)) (-4117 (((-1157) $) NIL)) (-1532 (((-3 |#4| (-644 $)) |#4| |#4| $) NIL)) (-1558 (((-644 (-2 (|:| |val| |#4|) (|:| -3570 $))) |#4| |#4| $) 110)) (-2686 (((-3 |#4| "failed") $) 42)) (-3758 (((-644 $) |#4| $) 93)) (-1613 (((-3 (-112) (-644 $)) |#4| $) NIL)) (-1714 (((-644 (-2 (|:| |val| (-112)) (|:| -3570 $))) |#4| $) 103) (((-112) |#4| $) 64)) (-4018 (((-644 $) |#4| $) 115) (((-644 $) (-644 |#4|) $) NIL) (((-644 $) (-644 |#4|) (-644 $)) 116) (((-644 $) |#4| (-644 $)) NIL)) (-3138 (((-644 $) (-644 |#4|) (-112) (-112) (-112)) 128)) (-2096 (($ |#4| $) 82) (($ (-644 |#4|) $) 83) (((-644 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 79)) (-2851 (((-644 |#4|) $) NIL)) (-1694 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1871 ((|#4| |#4| $) NIL)) (-2897 (((-112) $ $) NIL)) (-3112 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-558)))) (-3351 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3544 ((|#4| |#4| $) NIL)) (-4035 (((-1119) $) NIL)) (-1998 (((-3 |#4| "failed") $) 40)) (-2006 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2060 (((-3 $ "failed") $ |#4|) 59)) (-3874 (($ $ |#4|) NIL) (((-644 $) |#4| $) 95) (((-644 $) |#4| (-644 $)) NIL) (((-644 $) (-644 |#4|) $) NIL) (((-644 $) (-644 |#4|) (-644 $)) 89)) (-2692 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 |#4|) (-644 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-644 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))) (-1932 (((-112) $ $) NIL)) (-3467 (((-112) $) 17)) (-1494 (($) 14)) (-3636 (((-771) $) NIL)) (-4045 (((-771) |#4| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#4| (-1099)))) (((-771) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4414)))) (-3940 (($ $) 13)) (-1348 (((-538) $) NIL (|has| |#4| (-614 (-538))))) (-3796 (($ (-644 |#4|)) 22)) (-2325 (($ $ |#3|) 52)) (-4106 (($ $ |#3|) 54)) (-3973 (($ $) NIL)) (-3080 (($ $ |#3|) NIL)) (-3783 (((-862) $) 35) (((-644 |#4|) $) 46)) (-2028 (((-771) $) NIL (|has| |#3| (-370)))) (-3117 (((-112) $ $) NIL)) (-3706 (((-3 (-2 (|:| |bas| $) (|:| -1825 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1825 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3772 (((-112) $ (-1 (-112) |#4| (-644 |#4|))) NIL)) (-3089 (((-644 $) |#4| $) 92) (((-644 $) |#4| (-644 $)) NIL) (((-644 $) (-644 |#4|) $) NIL) (((-644 $) (-644 |#4|) (-644 $)) NIL)) (-1894 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4414)))) (-4180 (((-644 |#3|) $) NIL)) (-1571 (((-112) |#4| $) NIL)) (-1423 (((-112) |#3| $) 65)) (-2947 (((-112) $ $) NIL)) (-3018 (((-771) $) NIL (|has| $ (-6 -4414))))) -(((-1027 |#1| |#2| |#3| |#4|) (-13 (-1070 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2096 ((-644 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2333 ((-644 $) (-644 |#4|) (-112) (-112))) (-15 -2333 ((-644 $) (-644 |#4|) (-112) (-112) (-112) (-112))) (-15 -3138 ((-644 $) (-644 |#4|) (-112) (-112) (-112))) (-15 -4281 ((-2 (|:| |val| (-644 |#4|)) (|:| |towers| (-644 $))) (-644 |#4|) (-112) (-112))))) (-454) (-793) (-850) (-1064 |#1| |#2| |#3|)) (T -1027)) -((-2096 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-644 (-1027 *5 *6 *7 *3))) (-5 *1 (-1027 *5 *6 *7 *3)) (-4 *3 (-1064 *5 *6 *7)))) (-2333 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-644 (-1027 *5 *6 *7 *8))) (-5 *1 (-1027 *5 *6 *7 *8)))) (-2333 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-644 (-1027 *5 *6 *7 *8))) (-5 *1 (-1027 *5 *6 *7 *8)))) (-3138 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-644 (-1027 *5 *6 *7 *8))) (-5 *1 (-1027 *5 *6 *7 *8)))) (-4281 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-1064 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-644 *8)) (|:| |towers| (-644 (-1027 *5 *6 *7 *8))))) (-5 *1 (-1027 *5 *6 *7 *8)) (-5 *3 (-644 *8))))) -(-13 (-1070 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2096 ((-644 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2333 ((-644 $) (-644 |#4|) (-112) (-112))) (-15 -2333 ((-644 $) (-644 |#4|) (-112) (-112) (-112) (-112))) (-15 -3138 ((-644 $) (-644 |#4|) (-112) (-112) (-112))) (-15 -4281 ((-2 (|:| |val| (-644 |#4|)) (|:| |towers| (-644 $))) (-644 |#4|) (-112) (-112))))) -((-4040 (((-644 (-689 |#1|)) (-644 (-689 |#1|))) 73) (((-689 |#1|) (-689 |#1|)) 72) (((-644 (-689 |#1|)) (-644 (-689 |#1|)) (-644 (-689 |#1|))) 71) (((-689 |#1|) (-689 |#1|) (-689 |#1|)) 68)) (-3746 (((-644 (-689 |#1|)) (-644 (-689 |#1|)) (-921)) 66) (((-689 |#1|) (-689 |#1|) (-921)) 65)) (-2894 (((-644 (-689 (-566))) (-644 (-644 (-566)))) 84) (((-644 (-689 (-566))) (-644 (-905 (-566))) (-566)) 83) (((-689 (-566)) (-644 (-566))) 80) (((-689 (-566)) (-905 (-566)) (-566)) 78)) (-2564 (((-689 (-952 |#1|)) (-771)) 98)) (-1884 (((-644 (-689 |#1|)) (-644 (-689 |#1|)) (-921)) 52 (|has| |#1| (-6 (-4416 "*")))) (((-689 |#1|) (-689 |#1|) (-921)) 50 (|has| |#1| (-6 (-4416 "*")))))) -(((-1028 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4416 "*"))) (-15 -1884 ((-689 |#1|) (-689 |#1|) (-921))) |%noBranch|) (IF (|has| |#1| (-6 (-4416 "*"))) (-15 -1884 ((-644 (-689 |#1|)) (-644 (-689 |#1|)) (-921))) |%noBranch|) (-15 -2564 ((-689 (-952 |#1|)) (-771))) (-15 -3746 ((-689 |#1|) (-689 |#1|) (-921))) (-15 -3746 ((-644 (-689 |#1|)) (-644 (-689 |#1|)) (-921))) (-15 -4040 ((-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -4040 ((-644 (-689 |#1|)) (-644 (-689 |#1|)) (-644 (-689 |#1|)))) (-15 -4040 ((-689 |#1|) (-689 |#1|))) (-15 -4040 ((-644 (-689 |#1|)) (-644 (-689 |#1|)))) (-15 -2894 ((-689 (-566)) (-905 (-566)) (-566))) (-15 -2894 ((-689 (-566)) (-644 (-566)))) (-15 -2894 ((-644 (-689 (-566))) (-644 (-905 (-566))) (-566))) (-15 -2894 ((-644 (-689 (-566))) (-644 (-644 (-566)))))) (-1049)) (T -1028)) -((-2894 (*1 *2 *3) (-12 (-5 *3 (-644 (-644 (-566)))) (-5 *2 (-644 (-689 (-566)))) (-5 *1 (-1028 *4)) (-4 *4 (-1049)))) (-2894 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-905 (-566)))) (-5 *4 (-566)) (-5 *2 (-644 (-689 *4))) (-5 *1 (-1028 *5)) (-4 *5 (-1049)))) (-2894 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-689 (-566))) (-5 *1 (-1028 *4)) (-4 *4 (-1049)))) (-2894 (*1 *2 *3 *4) (-12 (-5 *3 (-905 (-566))) (-5 *4 (-566)) (-5 *2 (-689 *4)) (-5 *1 (-1028 *5)) (-4 *5 (-1049)))) (-4040 (*1 *2 *2) (-12 (-5 *2 (-644 (-689 *3))) (-4 *3 (-1049)) (-5 *1 (-1028 *3)))) (-4040 (*1 *2 *2) (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-1028 *3)))) (-4040 (*1 *2 *2 *2) (-12 (-5 *2 (-644 (-689 *3))) (-4 *3 (-1049)) (-5 *1 (-1028 *3)))) (-4040 (*1 *2 *2 *2) (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-1028 *3)))) (-3746 (*1 *2 *2 *3) (-12 (-5 *2 (-644 (-689 *4))) (-5 *3 (-921)) (-4 *4 (-1049)) (-5 *1 (-1028 *4)))) (-3746 (*1 *2 *2 *3) (-12 (-5 *2 (-689 *4)) (-5 *3 (-921)) (-4 *4 (-1049)) (-5 *1 (-1028 *4)))) (-2564 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-689 (-952 *4))) (-5 *1 (-1028 *4)) (-4 *4 (-1049)))) (-1884 (*1 *2 *2 *3) (-12 (-5 *2 (-644 (-689 *4))) (-5 *3 (-921)) (|has| *4 (-6 (-4416 "*"))) (-4 *4 (-1049)) (-5 *1 (-1028 *4)))) (-1884 (*1 *2 *2 *3) (-12 (-5 *2 (-689 *4)) (-5 *3 (-921)) (|has| *4 (-6 (-4416 "*"))) (-4 *4 (-1049)) (-5 *1 (-1028 *4))))) -(-10 -7 (IF (|has| |#1| (-6 (-4416 "*"))) (-15 -1884 ((-689 |#1|) (-689 |#1|) (-921))) |%noBranch|) (IF (|has| |#1| (-6 (-4416 "*"))) (-15 -1884 ((-644 (-689 |#1|)) (-644 (-689 |#1|)) (-921))) |%noBranch|) (-15 -2564 ((-689 (-952 |#1|)) (-771))) (-15 -3746 ((-689 |#1|) (-689 |#1|) (-921))) (-15 -3746 ((-644 (-689 |#1|)) (-644 (-689 |#1|)) (-921))) (-15 -4040 ((-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -4040 ((-644 (-689 |#1|)) (-644 (-689 |#1|)) (-644 (-689 |#1|)))) (-15 -4040 ((-689 |#1|) (-689 |#1|))) (-15 -4040 ((-644 (-689 |#1|)) (-644 (-689 |#1|)))) (-15 -2894 ((-689 (-566)) (-905 (-566)) (-566))) (-15 -2894 ((-689 (-566)) (-644 (-566)))) (-15 -2894 ((-644 (-689 (-566))) (-644 (-905 (-566))) (-566))) (-15 -2894 ((-644 (-689 (-566))) (-644 (-644 (-566)))))) -((-1739 (((-689 |#1|) (-644 (-689 |#1|)) (-1264 |#1|)) 71 (|has| |#1| (-308)))) (-1815 (((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-1264 (-1264 |#1|))) 112 (|has| |#1| (-365))) (((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-1264 |#1|)) 119 (|has| |#1| (-365)))) (-2151 (((-1264 |#1|) (-644 (-1264 |#1|)) (-566)) 137 (-12 (|has| |#1| (-365)) (|has| |#1| (-370))))) (-3368 (((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-921)) 125 (-12 (|has| |#1| (-365)) (|has| |#1| (-370)))) (((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-112)) 124 (-12 (|has| |#1| (-365)) (|has| |#1| (-370)))) (((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|))) 123 (-12 (|has| |#1| (-365)) (|has| |#1| (-370)))) (((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-112) (-566) (-566)) 122 (-12 (|has| |#1| (-365)) (|has| |#1| (-370))))) (-4027 (((-112) (-644 (-689 |#1|))) 105 (|has| |#1| (-365))) (((-112) (-644 (-689 |#1|)) (-566)) 108 (|has| |#1| (-365)))) (-2074 (((-1264 (-1264 |#1|)) (-644 (-689 |#1|)) (-1264 |#1|)) 68 (|has| |#1| (-308)))) (-3042 (((-689 |#1|) (-644 (-689 |#1|)) (-689 |#1|)) 48)) (-2484 (((-689 |#1|) (-1264 (-1264 |#1|))) 41)) (-3373 (((-689 |#1|) (-644 (-689 |#1|)) (-644 (-689 |#1|)) (-566)) 96 (|has| |#1| (-365))) (((-689 |#1|) (-644 (-689 |#1|)) (-644 (-689 |#1|))) 95 (|has| |#1| (-365))) (((-689 |#1|) (-644 (-689 |#1|)) (-644 (-689 |#1|)) (-112) (-566)) 103 (|has| |#1| (-365))))) -(((-1029 |#1|) (-10 -7 (-15 -2484 ((-689 |#1|) (-1264 (-1264 |#1|)))) (-15 -3042 ((-689 |#1|) (-644 (-689 |#1|)) (-689 |#1|))) (IF (|has| |#1| (-308)) (PROGN (-15 -2074 ((-1264 (-1264 |#1|)) (-644 (-689 |#1|)) (-1264 |#1|))) (-15 -1739 ((-689 |#1|) (-644 (-689 |#1|)) (-1264 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -3373 ((-689 |#1|) (-644 (-689 |#1|)) (-644 (-689 |#1|)) (-112) (-566))) (-15 -3373 ((-689 |#1|) (-644 (-689 |#1|)) (-644 (-689 |#1|)))) (-15 -3373 ((-689 |#1|) (-644 (-689 |#1|)) (-644 (-689 |#1|)) (-566))) (-15 -4027 ((-112) (-644 (-689 |#1|)) (-566))) (-15 -4027 ((-112) (-644 (-689 |#1|)))) (-15 -1815 ((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-1264 |#1|))) (-15 -1815 ((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-1264 (-1264 |#1|))))) |%noBranch|) (IF (|has| |#1| (-370)) (IF (|has| |#1| (-365)) (PROGN (-15 -3368 ((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-112) (-566) (-566))) (-15 -3368 ((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)))) (-15 -3368 ((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-112))) (-15 -3368 ((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-921))) (-15 -2151 ((-1264 |#1|) (-644 (-1264 |#1|)) (-566)))) |%noBranch|) |%noBranch|)) (-1049)) (T -1029)) -((-2151 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-1264 *5))) (-5 *4 (-566)) (-5 *2 (-1264 *5)) (-5 *1 (-1029 *5)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1049)))) (-3368 (*1 *2 *3 *4) (-12 (-5 *4 (-921)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1049)) (-5 *2 (-644 (-644 (-689 *5)))) (-5 *1 (-1029 *5)) (-5 *3 (-644 (-689 *5))))) (-3368 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1049)) (-5 *2 (-644 (-644 (-689 *5)))) (-5 *1 (-1029 *5)) (-5 *3 (-644 (-689 *5))))) (-3368 (*1 *2 *3) (-12 (-4 *4 (-365)) (-4 *4 (-370)) (-4 *4 (-1049)) (-5 *2 (-644 (-644 (-689 *4)))) (-5 *1 (-1029 *4)) (-5 *3 (-644 (-689 *4))))) (-3368 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-566)) (-4 *6 (-365)) (-4 *6 (-370)) (-4 *6 (-1049)) (-5 *2 (-644 (-644 (-689 *6)))) (-5 *1 (-1029 *6)) (-5 *3 (-644 (-689 *6))))) (-1815 (*1 *2 *3 *4) (-12 (-5 *4 (-1264 (-1264 *5))) (-4 *5 (-365)) (-4 *5 (-1049)) (-5 *2 (-644 (-644 (-689 *5)))) (-5 *1 (-1029 *5)) (-5 *3 (-644 (-689 *5))))) (-1815 (*1 *2 *3 *4) (-12 (-5 *4 (-1264 *5)) (-4 *5 (-365)) (-4 *5 (-1049)) (-5 *2 (-644 (-644 (-689 *5)))) (-5 *1 (-1029 *5)) (-5 *3 (-644 (-689 *5))))) (-4027 (*1 *2 *3) (-12 (-5 *3 (-644 (-689 *4))) (-4 *4 (-365)) (-4 *4 (-1049)) (-5 *2 (-112)) (-5 *1 (-1029 *4)))) (-4027 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-689 *5))) (-5 *4 (-566)) (-4 *5 (-365)) (-4 *5 (-1049)) (-5 *2 (-112)) (-5 *1 (-1029 *5)))) (-3373 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-644 (-689 *5))) (-5 *4 (-566)) (-5 *2 (-689 *5)) (-5 *1 (-1029 *5)) (-4 *5 (-365)) (-4 *5 (-1049)))) (-3373 (*1 *2 *3 *3) (-12 (-5 *3 (-644 (-689 *4))) (-5 *2 (-689 *4)) (-5 *1 (-1029 *4)) (-4 *4 (-365)) (-4 *4 (-1049)))) (-3373 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-644 (-689 *6))) (-5 *4 (-112)) (-5 *5 (-566)) (-5 *2 (-689 *6)) (-5 *1 (-1029 *6)) (-4 *6 (-365)) (-4 *6 (-1049)))) (-1739 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-689 *5))) (-5 *4 (-1264 *5)) (-4 *5 (-308)) (-4 *5 (-1049)) (-5 *2 (-689 *5)) (-5 *1 (-1029 *5)))) (-2074 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-689 *5))) (-4 *5 (-308)) (-4 *5 (-1049)) (-5 *2 (-1264 (-1264 *5))) (-5 *1 (-1029 *5)) (-5 *4 (-1264 *5)))) (-3042 (*1 *2 *3 *2) (-12 (-5 *3 (-644 (-689 *4))) (-5 *2 (-689 *4)) (-4 *4 (-1049)) (-5 *1 (-1029 *4)))) (-2484 (*1 *2 *3) (-12 (-5 *3 (-1264 (-1264 *4))) (-4 *4 (-1049)) (-5 *2 (-689 *4)) (-5 *1 (-1029 *4))))) -(-10 -7 (-15 -2484 ((-689 |#1|) (-1264 (-1264 |#1|)))) (-15 -3042 ((-689 |#1|) (-644 (-689 |#1|)) (-689 |#1|))) (IF (|has| |#1| (-308)) (PROGN (-15 -2074 ((-1264 (-1264 |#1|)) (-644 (-689 |#1|)) (-1264 |#1|))) (-15 -1739 ((-689 |#1|) (-644 (-689 |#1|)) (-1264 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -3373 ((-689 |#1|) (-644 (-689 |#1|)) (-644 (-689 |#1|)) (-112) (-566))) (-15 -3373 ((-689 |#1|) (-644 (-689 |#1|)) (-644 (-689 |#1|)))) (-15 -3373 ((-689 |#1|) (-644 (-689 |#1|)) (-644 (-689 |#1|)) (-566))) (-15 -4027 ((-112) (-644 (-689 |#1|)) (-566))) (-15 -4027 ((-112) (-644 (-689 |#1|)))) (-15 -1815 ((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-1264 |#1|))) (-15 -1815 ((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-1264 (-1264 |#1|))))) |%noBranch|) (IF (|has| |#1| (-370)) (IF (|has| |#1| (-365)) (PROGN (-15 -3368 ((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-112) (-566) (-566))) (-15 -3368 ((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)))) (-15 -3368 ((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-112))) (-15 -3368 ((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-921))) (-15 -2151 ((-1264 |#1|) (-644 (-1264 |#1|)) (-566)))) |%noBranch|) |%noBranch|)) -((-2273 ((|#1| (-921) |#1|) 18))) -(((-1030 |#1|) (-10 -7 (-15 -2273 (|#1| (-921) |#1|))) (-13 (-1099) (-10 -8 (-15 -3041 ($ $ $))))) (T -1030)) -((-2273 (*1 *2 *3 *2) (-12 (-5 *3 (-921)) (-5 *1 (-1030 *2)) (-4 *2 (-13 (-1099) (-10 -8 (-15 -3041 ($ $ $)))))))) -(-10 -7 (-15 -2273 (|#1| (-921) |#1|))) -((-2439 (((-644 (-2 (|:| |radval| (-317 (-566))) (|:| |radmult| (-566)) (|:| |radvect| (-644 (-689 (-317 (-566))))))) (-689 (-409 (-952 (-566))))) 67)) (-1807 (((-644 (-689 (-317 (-566)))) (-317 (-566)) (-689 (-409 (-952 (-566))))) 52)) (-1562 (((-644 (-317 (-566))) (-689 (-409 (-952 (-566))))) 45)) (-3490 (((-644 (-689 (-317 (-566)))) (-689 (-409 (-952 (-566))))) 88)) (-3996 (((-689 (-317 (-566))) (-689 (-317 (-566)))) 38)) (-1930 (((-644 (-689 (-317 (-566)))) (-644 (-689 (-317 (-566))))) 76)) (-4371 (((-3 (-689 (-317 (-566))) "failed") (-689 (-409 (-952 (-566))))) 85))) -(((-1031) (-10 -7 (-15 -2439 ((-644 (-2 (|:| |radval| (-317 (-566))) (|:| |radmult| (-566)) (|:| |radvect| (-644 (-689 (-317 (-566))))))) (-689 (-409 (-952 (-566)))))) (-15 -1807 ((-644 (-689 (-317 (-566)))) (-317 (-566)) (-689 (-409 (-952 (-566)))))) (-15 -1562 ((-644 (-317 (-566))) (-689 (-409 (-952 (-566)))))) (-15 -4371 ((-3 (-689 (-317 (-566))) "failed") (-689 (-409 (-952 (-566)))))) (-15 -3996 ((-689 (-317 (-566))) (-689 (-317 (-566))))) (-15 -1930 ((-644 (-689 (-317 (-566)))) (-644 (-689 (-317 (-566)))))) (-15 -3490 ((-644 (-689 (-317 (-566)))) (-689 (-409 (-952 (-566)))))))) (T -1031)) -((-3490 (*1 *2 *3) (-12 (-5 *3 (-689 (-409 (-952 (-566))))) (-5 *2 (-644 (-689 (-317 (-566))))) (-5 *1 (-1031)))) (-1930 (*1 *2 *2) (-12 (-5 *2 (-644 (-689 (-317 (-566))))) (-5 *1 (-1031)))) (-3996 (*1 *2 *2) (-12 (-5 *2 (-689 (-317 (-566)))) (-5 *1 (-1031)))) (-4371 (*1 *2 *3) (|partial| -12 (-5 *3 (-689 (-409 (-952 (-566))))) (-5 *2 (-689 (-317 (-566)))) (-5 *1 (-1031)))) (-1562 (*1 *2 *3) (-12 (-5 *3 (-689 (-409 (-952 (-566))))) (-5 *2 (-644 (-317 (-566)))) (-5 *1 (-1031)))) (-1807 (*1 *2 *3 *4) (-12 (-5 *4 (-689 (-409 (-952 (-566))))) (-5 *2 (-644 (-689 (-317 (-566))))) (-5 *1 (-1031)) (-5 *3 (-317 (-566))))) (-2439 (*1 *2 *3) (-12 (-5 *3 (-689 (-409 (-952 (-566))))) (-5 *2 (-644 (-2 (|:| |radval| (-317 (-566))) (|:| |radmult| (-566)) (|:| |radvect| (-644 (-689 (-317 (-566)))))))) (-5 *1 (-1031))))) -(-10 -7 (-15 -2439 ((-644 (-2 (|:| |radval| (-317 (-566))) (|:| |radmult| (-566)) (|:| |radvect| (-644 (-689 (-317 (-566))))))) (-689 (-409 (-952 (-566)))))) (-15 -1807 ((-644 (-689 (-317 (-566)))) (-317 (-566)) (-689 (-409 (-952 (-566)))))) (-15 -1562 ((-644 (-317 (-566))) (-689 (-409 (-952 (-566)))))) (-15 -4371 ((-3 (-689 (-317 (-566))) "failed") (-689 (-409 (-952 (-566)))))) (-15 -3996 ((-689 (-317 (-566))) (-689 (-317 (-566))))) (-15 -1930 ((-644 (-689 (-317 (-566)))) (-644 (-689 (-317 (-566)))))) (-15 -3490 ((-644 (-689 (-317 (-566)))) (-689 (-409 (-952 (-566))))))) -((-4079 ((|#1| |#1| (-921)) 18))) -(((-1032 |#1|) (-10 -7 (-15 -4079 (|#1| |#1| (-921)))) (-13 (-1099) (-10 -8 (-15 * ($ $ $))))) (T -1032)) -((-4079 (*1 *2 *2 *3) (-12 (-5 *3 (-921)) (-5 *1 (-1032 *2)) (-4 *2 (-13 (-1099) (-10 -8 (-15 * ($ $ $)))))))) -(-10 -7 (-15 -4079 (|#1| |#1| (-921)))) -((-3783 ((|#1| (-313)) 11) (((-1269) |#1|) 9))) -(((-1033 |#1|) (-10 -7 (-15 -3783 ((-1269) |#1|)) (-15 -3783 (|#1| (-313)))) (-1214)) (T -1033)) -((-3783 (*1 *2 *3) (-12 (-5 *3 (-313)) (-5 *1 (-1033 *2)) (-4 *2 (-1214)))) (-3783 (*1 *2 *3) (-12 (-5 *2 (-1269)) (-5 *1 (-1033 *3)) (-4 *3 (-1214))))) -(-10 -7 (-15 -3783 ((-1269) |#1|)) (-15 -3783 (|#1| (-313)))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-3012 (($) NIL T CONST)) (-1676 (($ |#4|) 25)) (-1878 (((-3 $ "failed") $) NIL)) (-3934 (((-112) $) NIL)) (-1662 ((|#4| $) 27)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 46) (($ (-566)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-2107 (((-771)) 43 T CONST)) (-3117 (((-112) $ $) NIL)) (-2479 (($) 21 T CONST)) (-4334 (($) 23 T CONST)) (-2947 (((-112) $ $) 40)) (-3053 (($ $) 31) (($ $ $) NIL)) (-3041 (($ $ $) 29)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) -(((-1034 |#1| |#2| |#3| |#4| |#5|) (-13 (-172) (-38 |#1|) (-10 -8 (-15 -1676 ($ |#4|)) (-15 -3783 ($ |#4|)) (-15 -1662 (|#4| $)))) (-365) (-793) (-850) (-949 |#1| |#2| |#3|) (-644 |#4|)) (T -1034)) -((-1676 (*1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-1034 *3 *4 *5 *2 *6)) (-4 *2 (-949 *3 *4 *5)) (-14 *6 (-644 *2)))) (-3783 (*1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-1034 *3 *4 *5 *2 *6)) (-4 *2 (-949 *3 *4 *5)) (-14 *6 (-644 *2)))) (-1662 (*1 *2 *1) (-12 (-4 *2 (-949 *3 *4 *5)) (-5 *1 (-1034 *3 *4 *5 *2 *6)) (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-14 *6 (-644 *2))))) -(-13 (-172) (-38 |#1|) (-10 -8 (-15 -1676 ($ |#4|)) (-15 -3783 ($ |#4|)) (-15 -1662 (|#4| $)))) -((-3007 (((-112) $ $) NIL (-2809 (|has| (-52) (-1099)) (|has| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-1099))))) (-4254 (($) NIL) (($ (-644 (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))))) NIL)) (-3734 (((-1269) $ (-1175) (-1175)) NIL (|has| $ (-6 -4415)))) (-2256 (((-112) $ (-771)) NIL)) (-2159 (((-112) (-112)) 43)) (-1891 (((-112) (-112)) 42)) (-3923 (((-52) $ (-1175) (-52)) NIL)) (-4016 (($ (-1 (-112) (-2 (|:| -2004 (-1175)) (|:| -3867 (-52)))) $) NIL (|has| $ (-6 -4414)))) (-2701 (($ (-1 (-112) (-2 (|:| -2004 (-1175)) (|:| -3867 (-52)))) $) NIL (|has| $ (-6 -4414)))) (-2434 (((-3 (-52) "failed") (-1175) $) NIL)) (-3012 (($) NIL T CONST)) (-2031 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-1099))))) (-2956 (($ (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) $) NIL (|has| $ (-6 -4414))) (($ (-1 (-112) (-2 (|:| -2004 (-1175)) (|:| -3867 (-52)))) $) NIL (|has| $ (-6 -4414))) (((-3 (-52) "failed") (-1175) $) NIL)) (-2665 (($ (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-1099)))) (($ (-1 (-112) (-2 (|:| -2004 (-1175)) (|:| -3867 (-52)))) $) NIL (|has| $ (-6 -4414)))) (-1676 (((-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-1 (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-2 (|:| -2004 (-1175)) (|:| -3867 (-52)))) $ (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-2 (|:| -2004 (-1175)) (|:| -3867 (-52)))) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-1099)))) (((-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-1 (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-2 (|:| -2004 (-1175)) (|:| -3867 (-52)))) $ (-2 (|:| -2004 (-1175)) (|:| -3867 (-52)))) NIL (|has| $ (-6 -4414))) (((-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-1 (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-2 (|:| -2004 (-1175)) (|:| -3867 (-52)))) $) NIL (|has| $ (-6 -4414)))) (-2920 (((-52) $ (-1175) (-52)) NIL (|has| $ (-6 -4415)))) (-2855 (((-52) $ (-1175)) NIL)) (-3979 (((-644 (-2 (|:| -2004 (-1175)) (|:| -3867 (-52)))) $) NIL (|has| $ (-6 -4414))) (((-644 (-52)) $) NIL (|has| $ (-6 -4414)))) (-2404 (((-112) $ (-771)) NIL)) (-3854 (((-1175) $) NIL (|has| (-1175) (-850)))) (-2329 (((-644 (-2 (|:| -2004 (-1175)) (|:| -3867 (-52)))) $) NIL (|has| $ (-6 -4414))) (((-644 (-52)) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-1099)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-52) (-1099))))) (-2712 (((-1175) $) NIL (|has| (-1175) (-850)))) (-2908 (($ (-1 (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-2 (|:| -2004 (-1175)) (|:| -3867 (-52)))) $) NIL (|has| $ (-6 -4415))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4415)))) (-1301 (($ (-1 (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-2 (|:| -2004 (-1175)) (|:| -3867 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2603 (((-112) $ (-771)) NIL)) (-4117 (((-1157) $) NIL (-2809 (|has| (-52) (-1099)) (|has| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-1099))))) (-4103 (((-644 (-1175)) $) 37)) (-2876 (((-112) (-1175) $) NIL)) (-4039 (((-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) $) NIL)) (-3406 (($ (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) $) NIL)) (-4074 (((-644 (-1175)) $) NIL)) (-3792 (((-112) (-1175) $) NIL)) (-4035 (((-1119) $) NIL (-2809 (|has| (-52) (-1099)) (|has| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-1099))))) (-1998 (((-52) $) NIL (|has| (-1175) (-850)))) (-2006 (((-3 (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) "failed") (-1 (-112) (-2 (|:| -2004 (-1175)) (|:| -3867 (-52)))) $) NIL)) (-4030 (($ $ (-52)) NIL (|has| $ (-6 -4415)))) (-2539 (((-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) $) NIL)) (-2692 (((-112) (-1 (-112) (-2 (|:| -2004 (-1175)) (|:| -3867 (-52)))) $) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 (-2 (|:| -2004 (-1175)) (|:| -3867 (-52)))))) NIL (-12 (|has| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-310 (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))))) (|has| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-1099)))) (($ $ (-295 (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))))) NIL (-12 (|has| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-310 (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))))) (|has| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-1099)))) (($ $ (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-2 (|:| -2004 (-1175)) (|:| -3867 (-52)))) NIL (-12 (|has| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-310 (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))))) (|has| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-1099)))) (($ $ (-644 (-2 (|:| -2004 (-1175)) (|:| -3867 (-52)))) (-644 (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))))) NIL (-12 (|has| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-310 (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))))) (|has| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-1099)))) (($ $ (-644 (-52)) (-644 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1099)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1099)))) (($ $ (-295 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1099)))) (($ $ (-644 (-295 (-52)))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1099))))) (-1932 (((-112) $ $) NIL)) (-4156 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-52) (-1099))))) (-2993 (((-644 (-52)) $) NIL)) (-3467 (((-112) $) NIL)) (-1494 (($) NIL)) (-4390 (((-52) $ (-1175)) 39) (((-52) $ (-1175) (-52)) NIL)) (-3481 (($) NIL) (($ (-644 (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))))) NIL)) (-4045 (((-771) (-1 (-112) (-2 (|:| -2004 (-1175)) (|:| -3867 (-52)))) $) NIL (|has| $ (-6 -4414))) (((-771) (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-1099)))) (((-771) (-52) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-52) (-1099)))) (((-771) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4414)))) (-3940 (($ $) NIL)) (-1348 (((-538) $) NIL (|has| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-614 (-538))))) (-3796 (($ (-644 (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))))) NIL)) (-3783 (((-862) $) 41 (-2809 (|has| (-52) (-613 (-862))) (|has| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-613 (-862)))))) (-3117 (((-112) $ $) NIL (-2809 (|has| (-52) (-1099)) (|has| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-1099))))) (-1748 (($ (-644 (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))))) NIL)) (-1894 (((-112) (-1 (-112) (-2 (|:| -2004 (-1175)) (|:| -3867 (-52)))) $) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) NIL (-2809 (|has| (-52) (-1099)) (|has| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-1099))))) (-3018 (((-771) $) NIL (|has| $ (-6 -4414))))) -(((-1035) (-13 (-1190 (-1175) (-52)) (-10 -7 (-15 -2159 ((-112) (-112))) (-15 -1891 ((-112) (-112))) (-6 -4414)))) (T -1035)) -((-2159 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1035)))) (-1891 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1035))))) -(-13 (-1190 (-1175) (-52)) (-10 -7 (-15 -2159 ((-112) (-112))) (-15 -1891 ((-112) (-112))) (-6 -4414))) -((-3007 (((-112) $ $) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-1403 (((-1134) $) 9)) (-3783 (((-862) $) 15) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) -(((-1036) (-13 (-1082) (-10 -8 (-15 -1403 ((-1134) $))))) (T -1036)) -((-1403 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1036))))) -(-13 (-1082) (-10 -8 (-15 -1403 ((-1134) $)))) -((-4205 ((|#2| $) 10))) -(((-1037 |#1| |#2|) (-10 -8 (-15 -4205 (|#2| |#1|))) (-1038 |#2|) (-1214)) (T -1037)) -NIL -(-10 -8 (-15 -4205 (|#2| |#1|))) -((-4307 (((-3 |#1| "failed") $) 9)) (-4205 ((|#1| $) 8)) (-3783 (($ |#1|) 6))) +((-2423 (((-644 (-381)) (-952 (-566)) (-381)) 28) (((-644 (-381)) (-952 (-409 (-566))) (-381)) 27)) (-1976 (((-644 (-644 (-381))) (-644 (-952 (-566))) (-644 (-1175)) (-381)) 37))) +(((-1023) (-10 -7 (-15 -2423 ((-644 (-381)) (-952 (-409 (-566))) (-381))) (-15 -2423 ((-644 (-381)) (-952 (-566)) (-381))) (-15 -1976 ((-644 (-644 (-381))) (-644 (-952 (-566))) (-644 (-1175)) (-381))))) (T -1023)) +((-1976 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-644 (-952 (-566)))) (-5 *4 (-644 (-1175))) (-5 *2 (-644 (-644 (-381)))) (-5 *1 (-1023)) (-5 *5 (-381)))) (-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-952 (-566))) (-5 *2 (-644 (-381))) (-5 *1 (-1023)) (-5 *4 (-381)))) (-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-952 (-409 (-566)))) (-5 *2 (-644 (-381))) (-5 *1 (-1023)) (-5 *4 (-381))))) +(-10 -7 (-15 -2423 ((-644 (-381)) (-952 (-409 (-566))) (-381))) (-15 -2423 ((-644 (-381)) (-952 (-566)) (-381))) (-15 -1976 ((-644 (-644 (-381))) (-644 (-952 (-566))) (-644 (-1175)) (-381)))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) 75)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-2161 (($ $) NIL)) (-2345 (((-112) $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-1378 (($ $) NIL)) (-1364 (((-420 $) $) NIL)) (-1635 (($ $) NIL) (($ $ (-921)) NIL) (($ (-409 (-566))) NIL) (($ (-566)) NIL)) (-2085 (((-112) $ $) NIL)) (-2743 (((-566) $) 70)) (-2463 (($) NIL T CONST)) (-4093 (((-3 $ "failed") (-1171 $) (-921) (-862)) NIL) (((-3 $ "failed") (-1171 $) (-921)) 55)) (-2229 (((-3 (-409 (-566)) "failed") $) NIL (|has| (-409 (-566)) (-1038 (-409 (-566))))) (((-3 (-409 (-566)) "failed") $) NIL) (((-3 |#1| "failed") $) 116) (((-3 (-566) "failed") $) NIL (-2768 (|has| (-409 (-566)) (-1038 (-566))) (|has| |#1| (-1038 (-566)))))) (-4158 (((-409 (-566)) $) 17 (|has| (-409 (-566)) (-1038 (-409 (-566))))) (((-409 (-566)) $) 17) ((|#1| $) 117) (((-566) $) NIL (-2768 (|has| (-409 (-566)) (-1038 (-566))) (|has| |#1| (-1038 (-566)))))) (-1767 (($ $ (-862)) 47)) (-4394 (($ $ (-862)) 48)) (-2933 (($ $ $) NIL)) (-2098 (((-409 (-566)) $ $) 21)) (-3245 (((-3 $ "failed") $) 88)) (-2945 (($ $ $) NIL)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL)) (-1615 (((-112) $) NIL)) (-2528 (((-112) $) 66)) (-2389 (((-112) $) NIL)) (-1575 (($ $ (-566)) NIL)) (-3233 (((-112) $) 69)) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1478 (($ $ $) NIL)) (-2599 (($ $ $) NIL)) (-1401 (((-3 (-1171 $) "failed") $) 83)) (-3170 (((-3 (-862) "failed") $) 82)) (-1443 (((-3 (-1171 $) "failed") $) 80)) (-2117 (((-3 (-1060 $ (-1171 $)) "failed") $) 78)) (-2128 (($ (-644 $)) NIL) (($ $ $) NIL)) (-3380 (((-1157) $) NIL)) (-2748 (($ $) 89)) (-4072 (((-1119) $) NIL)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2164 (($ (-644 $)) NIL) (($ $ $) NIL)) (-1624 (((-420 $) $) NIL)) (-3005 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL)) (-2978 (((-3 $ "failed") $ $) NIL)) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-4357 (((-771) $) NIL)) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL)) (-3152 (((-862) $) 87) (($ (-566)) NIL) (($ (-409 (-566))) NIL) (($ $) 63) (($ (-409 (-566))) NIL) (($ (-566)) NIL) (($ (-409 (-566))) NIL) (($ |#1|) 119)) (-2593 (((-771)) NIL T CONST)) (-3044 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-3603 (((-409 (-566)) $ $) 27)) (-1526 (((-644 $) (-1171 $)) 61) (((-644 $) (-1171 (-409 (-566)))) NIL) (((-644 $) (-1171 (-566))) NIL) (((-644 $) (-952 $)) NIL) (((-644 $) (-952 (-409 (-566)))) NIL) (((-644 $) (-952 (-566))) NIL)) (-2989 (($ (-1060 $ (-1171 $)) (-862)) 46)) (-1358 (($ $) 22)) (-4356 (($) 32 T CONST)) (-4366 (($) 39 T CONST)) (-2968 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2914 (((-112) $ $) 76)) (-2956 (((-112) $ $) NIL)) (-2935 (((-112) $ $) 24)) (-3025 (($ $ $) 37)) (-3012 (($ $) 38) (($ $ $) 74)) (-3002 (($ $ $) 112)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL) (($ $ (-409 (-566))) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 98) (($ $ $) 104) (($ (-409 (-566)) $) NIL) (($ $ (-409 (-566))) NIL) (($ (-566) $) 98) (($ $ (-566)) NIL) (($ (-409 (-566)) $) NIL) (($ $ (-409 (-566))) NIL) (($ |#1| $) 102) (($ $ |#1|) NIL))) +(((-1024 |#1|) (-13 (-1012) (-413 |#1|) (-38 |#1|) (-10 -8 (-15 -2989 ($ (-1060 $ (-1171 $)) (-862))) (-15 -2117 ((-3 (-1060 $ (-1171 $)) "failed") $)) (-15 -2098 ((-409 (-566)) $ $)))) (-13 (-848) (-365) (-1022))) (T -1024)) +((-2989 (*1 *1 *2 *3) (-12 (-5 *2 (-1060 (-1024 *4) (-1171 (-1024 *4)))) (-5 *3 (-862)) (-5 *1 (-1024 *4)) (-4 *4 (-13 (-848) (-365) (-1022))))) (-2117 (*1 *2 *1) (|partial| -12 (-5 *2 (-1060 (-1024 *3) (-1171 (-1024 *3)))) (-5 *1 (-1024 *3)) (-4 *3 (-13 (-848) (-365) (-1022))))) (-2098 (*1 *2 *1 *1) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-1024 *3)) (-4 *3 (-13 (-848) (-365) (-1022)))))) +(-13 (-1012) (-413 |#1|) (-38 |#1|) (-10 -8 (-15 -2989 ($ (-1060 $ (-1171 $)) (-862))) (-15 -2117 ((-3 (-1060 $ (-1171 $)) "failed") $)) (-15 -2098 ((-409 (-566)) $ $)))) +((-3719 (((-2 (|:| -3434 |#2|) (|:| -1707 (-644 |#1|))) |#2| (-644 |#1|)) 32) ((|#2| |#2| |#1|) 27))) +(((-1025 |#1| |#2|) (-10 -7 (-15 -3719 (|#2| |#2| |#1|)) (-15 -3719 ((-2 (|:| -3434 |#2|) (|:| -1707 (-644 |#1|))) |#2| (-644 |#1|)))) (-365) (-656 |#1|)) (T -1025)) +((-3719 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-5 *2 (-2 (|:| -3434 *3) (|:| -1707 (-644 *5)))) (-5 *1 (-1025 *5 *3)) (-5 *4 (-644 *5)) (-4 *3 (-656 *5)))) (-3719 (*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-1025 *3 *2)) (-4 *2 (-656 *3))))) +(-10 -7 (-15 -3719 (|#2| |#2| |#1|)) (-15 -3719 ((-2 (|:| -3434 |#2|) (|:| -1707 (-644 |#1|))) |#2| (-644 |#1|)))) +((-2988 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2592 ((|#1| $ |#1|) 14)) (-1456 ((|#1| $ |#1|) 12)) (-4153 (($ |#1|) 10)) (-3380 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4072 (((-1119) $) NIL (|has| |#1| (-1099)))) (-1309 ((|#1| $) 11)) (-3716 ((|#1| $) 13)) (-3152 (((-862) $) 21 (|has| |#1| (-1099)))) (-3044 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2914 (((-112) $ $) 9))) +(((-1026 |#1|) (-13 (-1214) (-10 -8 (-15 -4153 ($ |#1|)) (-15 -1309 (|#1| $)) (-15 -1456 (|#1| $ |#1|)) (-15 -3716 (|#1| $)) (-15 -2592 (|#1| $ |#1|)) (-15 -2914 ((-112) $ $)) (IF (|has| |#1| (-1099)) (-6 (-1099)) |%noBranch|))) (-1214)) (T -1026)) +((-4153 (*1 *1 *2) (-12 (-5 *1 (-1026 *2)) (-4 *2 (-1214)))) (-1309 (*1 *2 *1) (-12 (-5 *1 (-1026 *2)) (-4 *2 (-1214)))) (-1456 (*1 *2 *1 *2) (-12 (-5 *1 (-1026 *2)) (-4 *2 (-1214)))) (-3716 (*1 *2 *1) (-12 (-5 *1 (-1026 *2)) (-4 *2 (-1214)))) (-2592 (*1 *2 *1 *2) (-12 (-5 *1 (-1026 *2)) (-4 *2 (-1214)))) (-2914 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1026 *3)) (-4 *3 (-1214))))) +(-13 (-1214) (-10 -8 (-15 -4153 ($ |#1|)) (-15 -1309 (|#1| $)) (-15 -1456 (|#1| $ |#1|)) (-15 -3716 (|#1| $)) (-15 -2592 (|#1| $ |#1|)) (-15 -2914 ((-112) $ $)) (IF (|has| |#1| (-1099)) (-6 (-1099)) |%noBranch|))) +((-2988 (((-112) $ $) NIL)) (-2107 (((-644 (-2 (|:| -1685 $) (|:| -3292 (-644 |#4|)))) (-644 |#4|)) NIL)) (-2779 (((-644 $) (-644 |#4|)) 118) (((-644 $) (-644 |#4|) (-112)) 119) (((-644 $) (-644 |#4|) (-112) (-112)) 117) (((-644 $) (-644 |#4|) (-112) (-112) (-112) (-112)) 120)) (-1771 (((-644 |#3|) $) NIL)) (-3071 (((-112) $) NIL)) (-3274 (((-112) $) NIL (|has| |#1| (-558)))) (-2267 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1411 ((|#4| |#4| $) NIL)) (-1378 (((-644 (-2 (|:| |val| |#4|) (|:| -1470 $))) |#4| $) 112)) (-2671 (((-2 (|:| |under| $) (|:| -3143 $) (|:| |upper| $)) $ |#3|) NIL)) (-1504 (((-112) $ (-771)) NIL)) (-3678 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4414))) (((-3 |#4| "failed") $ |#3|) 66)) (-2463 (($) NIL T CONST)) (-3036 (((-112) $) 29 (|has| |#1| (-558)))) (-1963 (((-112) $ $) NIL (|has| |#1| (-558)))) (-2983 (((-112) $ $) NIL (|has| |#1| (-558)))) (-1477 (((-112) $) NIL (|has| |#1| (-558)))) (-3930 (((-644 |#4|) (-644 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1789 (((-644 |#4|) (-644 |#4|) $) NIL (|has| |#1| (-558)))) (-2228 (((-644 |#4|) (-644 |#4|) $) NIL (|has| |#1| (-558)))) (-2229 (((-3 $ "failed") (-644 |#4|)) NIL)) (-4158 (($ (-644 |#4|)) NIL)) (-3919 (((-3 $ "failed") $) 45)) (-3110 ((|#4| |#4| $) 69)) (-3942 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#4| (-1099))))) (-2622 (($ |#4| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#4| (-1099)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4414)))) (-3264 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-558)))) (-3599 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2690 ((|#4| |#4| $) NIL)) (-2873 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4414)) (|has| |#4| (-1099)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4414))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4414))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3476 (((-2 (|:| -1685 (-644 |#4|)) (|:| -3292 (-644 |#4|))) $) NIL)) (-2969 (((-112) |#4| $) NIL)) (-1951 (((-112) |#4| $) NIL)) (-2775 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3482 (((-2 (|:| |val| (-644 |#4|)) (|:| |towers| (-644 $))) (-644 |#4|) (-112) (-112)) 133)) (-1683 (((-644 |#4|) $) 18 (|has| $ (-6 -4414)))) (-1640 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4296 ((|#3| $) 38)) (-3456 (((-112) $ (-771)) NIL)) (-3491 (((-644 |#4|) $) 19 (|has| $ (-6 -4414)))) (-1602 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4414)) (|has| |#4| (-1099))))) (-3885 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#4| |#4|) $) 23)) (-1785 (((-644 |#3|) $) NIL)) (-1579 (((-112) |#3| $) NIL)) (-3267 (((-112) $ (-771)) NIL)) (-3380 (((-1157) $) NIL)) (-3006 (((-3 |#4| (-644 $)) |#4| |#4| $) NIL)) (-3940 (((-644 (-2 (|:| |val| |#4|) (|:| -1470 $))) |#4| |#4| $) 110)) (-2641 (((-3 |#4| "failed") $) 42)) (-2568 (((-644 $) |#4| $) 93)) (-1493 (((-3 (-112) (-644 $)) |#4| $) NIL)) (-3835 (((-644 (-2 (|:| |val| (-112)) (|:| -1470 $))) |#4| $) 103) (((-112) |#4| $) 64)) (-1997 (((-644 $) |#4| $) 115) (((-644 $) (-644 |#4|) $) NIL) (((-644 $) (-644 |#4|) (-644 $)) 116) (((-644 $) |#4| (-644 $)) NIL)) (-3196 (((-644 $) (-644 |#4|) (-112) (-112) (-112)) 128)) (-2921 (($ |#4| $) 82) (($ (-644 |#4|) $) 83) (((-644 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 79)) (-2133 (((-644 |#4|) $) NIL)) (-2543 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1906 ((|#4| |#4| $) NIL)) (-3077 (((-112) $ $) NIL)) (-2594 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-558)))) (-3374 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4074 ((|#4| |#4| $) NIL)) (-4072 (((-1119) $) NIL)) (-3908 (((-3 |#4| "failed") $) 40)) (-3668 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2718 (((-3 $ "failed") $ |#4|) 59)) (-3369 (($ $ |#4|) NIL) (((-644 $) |#4| $) 95) (((-644 $) |#4| (-644 $)) NIL) (((-644 $) (-644 |#4|) $) NIL) (((-644 $) (-644 |#4|) (-644 $)) 89)) (-2823 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 |#4|) (-644 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-644 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))) (-3814 (((-112) $ $) NIL)) (-2872 (((-112) $) 17)) (-3493 (($) 14)) (-3902 (((-771) $) NIL)) (-4083 (((-771) |#4| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#4| (-1099)))) (((-771) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4414)))) (-1480 (($ $) 13)) (-2376 (((-538) $) NIL (|has| |#4| (-614 (-538))))) (-1340 (($ (-644 |#4|)) 22)) (-4305 (($ $ |#3|) 52)) (-1702 (($ $ |#3|) 54)) (-4017 (($ $) NIL)) (-3809 (($ $ |#3|) NIL)) (-3152 (((-862) $) 35) (((-644 |#4|) $) 46)) (-3909 (((-771) $) NIL (|has| |#3| (-370)))) (-3044 (((-112) $ $) NIL)) (-2236 (((-3 (-2 (|:| |bas| $) (|:| -3712 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3712 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3622 (((-112) $ (-1 (-112) |#4| (-644 |#4|))) NIL)) (-3998 (((-644 $) |#4| $) 92) (((-644 $) |#4| (-644 $)) NIL) (((-644 $) (-644 |#4|) $) NIL) (((-644 $) (-644 |#4|) (-644 $)) NIL)) (-2210 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4414)))) (-4382 (((-644 |#3|) $) NIL)) (-2676 (((-112) |#4| $) NIL)) (-4217 (((-112) |#3| $) 65)) (-2914 (((-112) $ $) NIL)) (-3000 (((-771) $) NIL (|has| $ (-6 -4414))))) +(((-1027 |#1| |#2| |#3| |#4|) (-13 (-1070 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2921 ((-644 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2779 ((-644 $) (-644 |#4|) (-112) (-112))) (-15 -2779 ((-644 $) (-644 |#4|) (-112) (-112) (-112) (-112))) (-15 -3196 ((-644 $) (-644 |#4|) (-112) (-112) (-112))) (-15 -3482 ((-2 (|:| |val| (-644 |#4|)) (|:| |towers| (-644 $))) (-644 |#4|) (-112) (-112))))) (-454) (-793) (-850) (-1064 |#1| |#2| |#3|)) (T -1027)) +((-2921 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-644 (-1027 *5 *6 *7 *3))) (-5 *1 (-1027 *5 *6 *7 *3)) (-4 *3 (-1064 *5 *6 *7)))) (-2779 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-644 (-1027 *5 *6 *7 *8))) (-5 *1 (-1027 *5 *6 *7 *8)))) (-2779 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-644 (-1027 *5 *6 *7 *8))) (-5 *1 (-1027 *5 *6 *7 *8)))) (-3196 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-644 (-1027 *5 *6 *7 *8))) (-5 *1 (-1027 *5 *6 *7 *8)))) (-3482 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-1064 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-644 *8)) (|:| |towers| (-644 (-1027 *5 *6 *7 *8))))) (-5 *1 (-1027 *5 *6 *7 *8)) (-5 *3 (-644 *8))))) +(-13 (-1070 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2921 ((-644 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2779 ((-644 $) (-644 |#4|) (-112) (-112))) (-15 -2779 ((-644 $) (-644 |#4|) (-112) (-112) (-112) (-112))) (-15 -3196 ((-644 $) (-644 |#4|) (-112) (-112) (-112))) (-15 -3482 ((-2 (|:| |val| (-644 |#4|)) (|:| |towers| (-644 $))) (-644 |#4|) (-112) (-112))))) +((-3362 (((-644 (-689 |#1|)) (-644 (-689 |#1|))) 73) (((-689 |#1|) (-689 |#1|)) 72) (((-644 (-689 |#1|)) (-644 (-689 |#1|)) (-644 (-689 |#1|))) 71) (((-689 |#1|) (-689 |#1|) (-689 |#1|)) 68)) (-3807 (((-644 (-689 |#1|)) (-644 (-689 |#1|)) (-921)) 66) (((-689 |#1|) (-689 |#1|) (-921)) 65)) (-2857 (((-644 (-689 (-566))) (-644 (-644 (-566)))) 84) (((-644 (-689 (-566))) (-644 (-905 (-566))) (-566)) 83) (((-689 (-566)) (-644 (-566))) 80) (((-689 (-566)) (-905 (-566)) (-566)) 78)) (-1870 (((-689 (-952 |#1|)) (-771)) 98)) (-3739 (((-644 (-689 |#1|)) (-644 (-689 |#1|)) (-921)) 52 (|has| |#1| (-6 (-4416 "*")))) (((-689 |#1|) (-689 |#1|) (-921)) 50 (|has| |#1| (-6 (-4416 "*")))))) +(((-1028 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4416 "*"))) (-15 -3739 ((-689 |#1|) (-689 |#1|) (-921))) |%noBranch|) (IF (|has| |#1| (-6 (-4416 "*"))) (-15 -3739 ((-644 (-689 |#1|)) (-644 (-689 |#1|)) (-921))) |%noBranch|) (-15 -1870 ((-689 (-952 |#1|)) (-771))) (-15 -3807 ((-689 |#1|) (-689 |#1|) (-921))) (-15 -3807 ((-644 (-689 |#1|)) (-644 (-689 |#1|)) (-921))) (-15 -3362 ((-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -3362 ((-644 (-689 |#1|)) (-644 (-689 |#1|)) (-644 (-689 |#1|)))) (-15 -3362 ((-689 |#1|) (-689 |#1|))) (-15 -3362 ((-644 (-689 |#1|)) (-644 (-689 |#1|)))) (-15 -2857 ((-689 (-566)) (-905 (-566)) (-566))) (-15 -2857 ((-689 (-566)) (-644 (-566)))) (-15 -2857 ((-644 (-689 (-566))) (-644 (-905 (-566))) (-566))) (-15 -2857 ((-644 (-689 (-566))) (-644 (-644 (-566)))))) (-1049)) (T -1028)) +((-2857 (*1 *2 *3) (-12 (-5 *3 (-644 (-644 (-566)))) (-5 *2 (-644 (-689 (-566)))) (-5 *1 (-1028 *4)) (-4 *4 (-1049)))) (-2857 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-905 (-566)))) (-5 *4 (-566)) (-5 *2 (-644 (-689 *4))) (-5 *1 (-1028 *5)) (-4 *5 (-1049)))) (-2857 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-689 (-566))) (-5 *1 (-1028 *4)) (-4 *4 (-1049)))) (-2857 (*1 *2 *3 *4) (-12 (-5 *3 (-905 (-566))) (-5 *4 (-566)) (-5 *2 (-689 *4)) (-5 *1 (-1028 *5)) (-4 *5 (-1049)))) (-3362 (*1 *2 *2) (-12 (-5 *2 (-644 (-689 *3))) (-4 *3 (-1049)) (-5 *1 (-1028 *3)))) (-3362 (*1 *2 *2) (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-1028 *3)))) (-3362 (*1 *2 *2 *2) (-12 (-5 *2 (-644 (-689 *3))) (-4 *3 (-1049)) (-5 *1 (-1028 *3)))) (-3362 (*1 *2 *2 *2) (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-1028 *3)))) (-3807 (*1 *2 *2 *3) (-12 (-5 *2 (-644 (-689 *4))) (-5 *3 (-921)) (-4 *4 (-1049)) (-5 *1 (-1028 *4)))) (-3807 (*1 *2 *2 *3) (-12 (-5 *2 (-689 *4)) (-5 *3 (-921)) (-4 *4 (-1049)) (-5 *1 (-1028 *4)))) (-1870 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-689 (-952 *4))) (-5 *1 (-1028 *4)) (-4 *4 (-1049)))) (-3739 (*1 *2 *2 *3) (-12 (-5 *2 (-644 (-689 *4))) (-5 *3 (-921)) (|has| *4 (-6 (-4416 "*"))) (-4 *4 (-1049)) (-5 *1 (-1028 *4)))) (-3739 (*1 *2 *2 *3) (-12 (-5 *2 (-689 *4)) (-5 *3 (-921)) (|has| *4 (-6 (-4416 "*"))) (-4 *4 (-1049)) (-5 *1 (-1028 *4))))) +(-10 -7 (IF (|has| |#1| (-6 (-4416 "*"))) (-15 -3739 ((-689 |#1|) (-689 |#1|) (-921))) |%noBranch|) (IF (|has| |#1| (-6 (-4416 "*"))) (-15 -3739 ((-644 (-689 |#1|)) (-644 (-689 |#1|)) (-921))) |%noBranch|) (-15 -1870 ((-689 (-952 |#1|)) (-771))) (-15 -3807 ((-689 |#1|) (-689 |#1|) (-921))) (-15 -3807 ((-644 (-689 |#1|)) (-644 (-689 |#1|)) (-921))) (-15 -3362 ((-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -3362 ((-644 (-689 |#1|)) (-644 (-689 |#1|)) (-644 (-689 |#1|)))) (-15 -3362 ((-689 |#1|) (-689 |#1|))) (-15 -3362 ((-644 (-689 |#1|)) (-644 (-689 |#1|)))) (-15 -2857 ((-689 (-566)) (-905 (-566)) (-566))) (-15 -2857 ((-689 (-566)) (-644 (-566)))) (-15 -2857 ((-644 (-689 (-566))) (-644 (-905 (-566))) (-566))) (-15 -2857 ((-644 (-689 (-566))) (-644 (-644 (-566)))))) +((-3346 (((-689 |#1|) (-644 (-689 |#1|)) (-1264 |#1|)) 71 (|has| |#1| (-308)))) (-3011 (((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-1264 (-1264 |#1|))) 112 (|has| |#1| (-365))) (((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-1264 |#1|)) 119 (|has| |#1| (-365)))) (-1307 (((-1264 |#1|) (-644 (-1264 |#1|)) (-566)) 137 (-12 (|has| |#1| (-365)) (|has| |#1| (-370))))) (-1467 (((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-921)) 125 (-12 (|has| |#1| (-365)) (|has| |#1| (-370)))) (((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-112)) 124 (-12 (|has| |#1| (-365)) (|has| |#1| (-370)))) (((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|))) 123 (-12 (|has| |#1| (-365)) (|has| |#1| (-370)))) (((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-112) (-566) (-566)) 122 (-12 (|has| |#1| (-365)) (|has| |#1| (-370))))) (-1520 (((-112) (-644 (-689 |#1|))) 105 (|has| |#1| (-365))) (((-112) (-644 (-689 |#1|)) (-566)) 108 (|has| |#1| (-365)))) (-1503 (((-1264 (-1264 |#1|)) (-644 (-689 |#1|)) (-1264 |#1|)) 68 (|has| |#1| (-308)))) (-3303 (((-689 |#1|) (-644 (-689 |#1|)) (-689 |#1|)) 48)) (-2068 (((-689 |#1|) (-1264 (-1264 |#1|))) 41)) (-3911 (((-689 |#1|) (-644 (-689 |#1|)) (-644 (-689 |#1|)) (-566)) 96 (|has| |#1| (-365))) (((-689 |#1|) (-644 (-689 |#1|)) (-644 (-689 |#1|))) 95 (|has| |#1| (-365))) (((-689 |#1|) (-644 (-689 |#1|)) (-644 (-689 |#1|)) (-112) (-566)) 103 (|has| |#1| (-365))))) +(((-1029 |#1|) (-10 -7 (-15 -2068 ((-689 |#1|) (-1264 (-1264 |#1|)))) (-15 -3303 ((-689 |#1|) (-644 (-689 |#1|)) (-689 |#1|))) (IF (|has| |#1| (-308)) (PROGN (-15 -1503 ((-1264 (-1264 |#1|)) (-644 (-689 |#1|)) (-1264 |#1|))) (-15 -3346 ((-689 |#1|) (-644 (-689 |#1|)) (-1264 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -3911 ((-689 |#1|) (-644 (-689 |#1|)) (-644 (-689 |#1|)) (-112) (-566))) (-15 -3911 ((-689 |#1|) (-644 (-689 |#1|)) (-644 (-689 |#1|)))) (-15 -3911 ((-689 |#1|) (-644 (-689 |#1|)) (-644 (-689 |#1|)) (-566))) (-15 -1520 ((-112) (-644 (-689 |#1|)) (-566))) (-15 -1520 ((-112) (-644 (-689 |#1|)))) (-15 -3011 ((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-1264 |#1|))) (-15 -3011 ((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-1264 (-1264 |#1|))))) |%noBranch|) (IF (|has| |#1| (-370)) (IF (|has| |#1| (-365)) (PROGN (-15 -1467 ((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-112) (-566) (-566))) (-15 -1467 ((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)))) (-15 -1467 ((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-112))) (-15 -1467 ((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-921))) (-15 -1307 ((-1264 |#1|) (-644 (-1264 |#1|)) (-566)))) |%noBranch|) |%noBranch|)) (-1049)) (T -1029)) +((-1307 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-1264 *5))) (-5 *4 (-566)) (-5 *2 (-1264 *5)) (-5 *1 (-1029 *5)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1049)))) (-1467 (*1 *2 *3 *4) (-12 (-5 *4 (-921)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1049)) (-5 *2 (-644 (-644 (-689 *5)))) (-5 *1 (-1029 *5)) (-5 *3 (-644 (-689 *5))))) (-1467 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1049)) (-5 *2 (-644 (-644 (-689 *5)))) (-5 *1 (-1029 *5)) (-5 *3 (-644 (-689 *5))))) (-1467 (*1 *2 *3) (-12 (-4 *4 (-365)) (-4 *4 (-370)) (-4 *4 (-1049)) (-5 *2 (-644 (-644 (-689 *4)))) (-5 *1 (-1029 *4)) (-5 *3 (-644 (-689 *4))))) (-1467 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-566)) (-4 *6 (-365)) (-4 *6 (-370)) (-4 *6 (-1049)) (-5 *2 (-644 (-644 (-689 *6)))) (-5 *1 (-1029 *6)) (-5 *3 (-644 (-689 *6))))) (-3011 (*1 *2 *3 *4) (-12 (-5 *4 (-1264 (-1264 *5))) (-4 *5 (-365)) (-4 *5 (-1049)) (-5 *2 (-644 (-644 (-689 *5)))) (-5 *1 (-1029 *5)) (-5 *3 (-644 (-689 *5))))) (-3011 (*1 *2 *3 *4) (-12 (-5 *4 (-1264 *5)) (-4 *5 (-365)) (-4 *5 (-1049)) (-5 *2 (-644 (-644 (-689 *5)))) (-5 *1 (-1029 *5)) (-5 *3 (-644 (-689 *5))))) (-1520 (*1 *2 *3) (-12 (-5 *3 (-644 (-689 *4))) (-4 *4 (-365)) (-4 *4 (-1049)) (-5 *2 (-112)) (-5 *1 (-1029 *4)))) (-1520 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-689 *5))) (-5 *4 (-566)) (-4 *5 (-365)) (-4 *5 (-1049)) (-5 *2 (-112)) (-5 *1 (-1029 *5)))) (-3911 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-644 (-689 *5))) (-5 *4 (-566)) (-5 *2 (-689 *5)) (-5 *1 (-1029 *5)) (-4 *5 (-365)) (-4 *5 (-1049)))) (-3911 (*1 *2 *3 *3) (-12 (-5 *3 (-644 (-689 *4))) (-5 *2 (-689 *4)) (-5 *1 (-1029 *4)) (-4 *4 (-365)) (-4 *4 (-1049)))) (-3911 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-644 (-689 *6))) (-5 *4 (-112)) (-5 *5 (-566)) (-5 *2 (-689 *6)) (-5 *1 (-1029 *6)) (-4 *6 (-365)) (-4 *6 (-1049)))) (-3346 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-689 *5))) (-5 *4 (-1264 *5)) (-4 *5 (-308)) (-4 *5 (-1049)) (-5 *2 (-689 *5)) (-5 *1 (-1029 *5)))) (-1503 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-689 *5))) (-4 *5 (-308)) (-4 *5 (-1049)) (-5 *2 (-1264 (-1264 *5))) (-5 *1 (-1029 *5)) (-5 *4 (-1264 *5)))) (-3303 (*1 *2 *3 *2) (-12 (-5 *3 (-644 (-689 *4))) (-5 *2 (-689 *4)) (-4 *4 (-1049)) (-5 *1 (-1029 *4)))) (-2068 (*1 *2 *3) (-12 (-5 *3 (-1264 (-1264 *4))) (-4 *4 (-1049)) (-5 *2 (-689 *4)) (-5 *1 (-1029 *4))))) +(-10 -7 (-15 -2068 ((-689 |#1|) (-1264 (-1264 |#1|)))) (-15 -3303 ((-689 |#1|) (-644 (-689 |#1|)) (-689 |#1|))) (IF (|has| |#1| (-308)) (PROGN (-15 -1503 ((-1264 (-1264 |#1|)) (-644 (-689 |#1|)) (-1264 |#1|))) (-15 -3346 ((-689 |#1|) (-644 (-689 |#1|)) (-1264 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -3911 ((-689 |#1|) (-644 (-689 |#1|)) (-644 (-689 |#1|)) (-112) (-566))) (-15 -3911 ((-689 |#1|) (-644 (-689 |#1|)) (-644 (-689 |#1|)))) (-15 -3911 ((-689 |#1|) (-644 (-689 |#1|)) (-644 (-689 |#1|)) (-566))) (-15 -1520 ((-112) (-644 (-689 |#1|)) (-566))) (-15 -1520 ((-112) (-644 (-689 |#1|)))) (-15 -3011 ((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-1264 |#1|))) (-15 -3011 ((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-1264 (-1264 |#1|))))) |%noBranch|) (IF (|has| |#1| (-370)) (IF (|has| |#1| (-365)) (PROGN (-15 -1467 ((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-112) (-566) (-566))) (-15 -1467 ((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)))) (-15 -1467 ((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-112))) (-15 -1467 ((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-921))) (-15 -1307 ((-1264 |#1|) (-644 (-1264 |#1|)) (-566)))) |%noBranch|) |%noBranch|)) +((-2011 ((|#1| (-921) |#1|) 18))) +(((-1030 |#1|) (-10 -7 (-15 -2011 (|#1| (-921) |#1|))) (-13 (-1099) (-10 -8 (-15 -3002 ($ $ $))))) (T -1030)) +((-2011 (*1 *2 *3 *2) (-12 (-5 *3 (-921)) (-5 *1 (-1030 *2)) (-4 *2 (-13 (-1099) (-10 -8 (-15 -3002 ($ $ $)))))))) +(-10 -7 (-15 -2011 (|#1| (-921) |#1|))) +((-3460 (((-644 (-2 (|:| |radval| (-317 (-566))) (|:| |radmult| (-566)) (|:| |radvect| (-644 (-689 (-317 (-566))))))) (-689 (-409 (-952 (-566))))) 67)) (-3450 (((-644 (-689 (-317 (-566)))) (-317 (-566)) (-689 (-409 (-952 (-566))))) 52)) (-4372 (((-644 (-317 (-566))) (-689 (-409 (-952 (-566))))) 45)) (-3370 (((-644 (-689 (-317 (-566)))) (-689 (-409 (-952 (-566))))) 88)) (-1489 (((-689 (-317 (-566))) (-689 (-317 (-566)))) 38)) (-1758 (((-644 (-689 (-317 (-566)))) (-644 (-689 (-317 (-566))))) 76)) (-2173 (((-3 (-689 (-317 (-566))) "failed") (-689 (-409 (-952 (-566))))) 85))) +(((-1031) (-10 -7 (-15 -3460 ((-644 (-2 (|:| |radval| (-317 (-566))) (|:| |radmult| (-566)) (|:| |radvect| (-644 (-689 (-317 (-566))))))) (-689 (-409 (-952 (-566)))))) (-15 -3450 ((-644 (-689 (-317 (-566)))) (-317 (-566)) (-689 (-409 (-952 (-566)))))) (-15 -4372 ((-644 (-317 (-566))) (-689 (-409 (-952 (-566)))))) (-15 -2173 ((-3 (-689 (-317 (-566))) "failed") (-689 (-409 (-952 (-566)))))) (-15 -1489 ((-689 (-317 (-566))) (-689 (-317 (-566))))) (-15 -1758 ((-644 (-689 (-317 (-566)))) (-644 (-689 (-317 (-566)))))) (-15 -3370 ((-644 (-689 (-317 (-566)))) (-689 (-409 (-952 (-566)))))))) (T -1031)) +((-3370 (*1 *2 *3) (-12 (-5 *3 (-689 (-409 (-952 (-566))))) (-5 *2 (-644 (-689 (-317 (-566))))) (-5 *1 (-1031)))) (-1758 (*1 *2 *2) (-12 (-5 *2 (-644 (-689 (-317 (-566))))) (-5 *1 (-1031)))) (-1489 (*1 *2 *2) (-12 (-5 *2 (-689 (-317 (-566)))) (-5 *1 (-1031)))) (-2173 (*1 *2 *3) (|partial| -12 (-5 *3 (-689 (-409 (-952 (-566))))) (-5 *2 (-689 (-317 (-566)))) (-5 *1 (-1031)))) (-4372 (*1 *2 *3) (-12 (-5 *3 (-689 (-409 (-952 (-566))))) (-5 *2 (-644 (-317 (-566)))) (-5 *1 (-1031)))) (-3450 (*1 *2 *3 *4) (-12 (-5 *4 (-689 (-409 (-952 (-566))))) (-5 *2 (-644 (-689 (-317 (-566))))) (-5 *1 (-1031)) (-5 *3 (-317 (-566))))) (-3460 (*1 *2 *3) (-12 (-5 *3 (-689 (-409 (-952 (-566))))) (-5 *2 (-644 (-2 (|:| |radval| (-317 (-566))) (|:| |radmult| (-566)) (|:| |radvect| (-644 (-689 (-317 (-566)))))))) (-5 *1 (-1031))))) +(-10 -7 (-15 -3460 ((-644 (-2 (|:| |radval| (-317 (-566))) (|:| |radmult| (-566)) (|:| |radvect| (-644 (-689 (-317 (-566))))))) (-689 (-409 (-952 (-566)))))) (-15 -3450 ((-644 (-689 (-317 (-566)))) (-317 (-566)) (-689 (-409 (-952 (-566)))))) (-15 -4372 ((-644 (-317 (-566))) (-689 (-409 (-952 (-566)))))) (-15 -2173 ((-3 (-689 (-317 (-566))) "failed") (-689 (-409 (-952 (-566)))))) (-15 -1489 ((-689 (-317 (-566))) (-689 (-317 (-566))))) (-15 -1758 ((-644 (-689 (-317 (-566)))) (-644 (-689 (-317 (-566)))))) (-15 -3370 ((-644 (-689 (-317 (-566)))) (-689 (-409 (-952 (-566))))))) +((-2994 ((|#1| |#1| (-921)) 18))) +(((-1032 |#1|) (-10 -7 (-15 -2994 (|#1| |#1| (-921)))) (-13 (-1099) (-10 -8 (-15 * ($ $ $))))) (T -1032)) +((-2994 (*1 *2 *2 *3) (-12 (-5 *3 (-921)) (-5 *1 (-1032 *2)) (-4 *2 (-13 (-1099) (-10 -8 (-15 * ($ $ $)))))))) +(-10 -7 (-15 -2994 (|#1| |#1| (-921)))) +((-3152 ((|#1| (-313)) 11) (((-1269) |#1|) 9))) +(((-1033 |#1|) (-10 -7 (-15 -3152 ((-1269) |#1|)) (-15 -3152 (|#1| (-313)))) (-1214)) (T -1033)) +((-3152 (*1 *2 *3) (-12 (-5 *3 (-313)) (-5 *1 (-1033 *2)) (-4 *2 (-1214)))) (-3152 (*1 *2 *3) (-12 (-5 *2 (-1269)) (-5 *1 (-1033 *3)) (-4 *3 (-1214))))) +(-10 -7 (-15 -3152 ((-1269) |#1|)) (-15 -3152 (|#1| (-313)))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-2463 (($) NIL T CONST)) (-2873 (($ |#4|) 25)) (-3245 (((-3 $ "failed") $) NIL)) (-2389 (((-112) $) NIL)) (-2860 ((|#4| $) 27)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 46) (($ (-566)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-2593 (((-771)) 43 T CONST)) (-3044 (((-112) $ $) NIL)) (-4356 (($) 21 T CONST)) (-4366 (($) 23 T CONST)) (-2914 (((-112) $ $) 40)) (-3012 (($ $) 31) (($ $ $) NIL)) (-3002 (($ $ $) 29)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) +(((-1034 |#1| |#2| |#3| |#4| |#5|) (-13 (-172) (-38 |#1|) (-10 -8 (-15 -2873 ($ |#4|)) (-15 -3152 ($ |#4|)) (-15 -2860 (|#4| $)))) (-365) (-793) (-850) (-949 |#1| |#2| |#3|) (-644 |#4|)) (T -1034)) +((-2873 (*1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-1034 *3 *4 *5 *2 *6)) (-4 *2 (-949 *3 *4 *5)) (-14 *6 (-644 *2)))) (-3152 (*1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-1034 *3 *4 *5 *2 *6)) (-4 *2 (-949 *3 *4 *5)) (-14 *6 (-644 *2)))) (-2860 (*1 *2 *1) (-12 (-4 *2 (-949 *3 *4 *5)) (-5 *1 (-1034 *3 *4 *5 *2 *6)) (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-14 *6 (-644 *2))))) +(-13 (-172) (-38 |#1|) (-10 -8 (-15 -2873 ($ |#4|)) (-15 -3152 ($ |#4|)) (-15 -2860 (|#4| $)))) +((-2988 (((-112) $ $) NIL (-2768 (|has| (-52) (-1099)) (|has| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-1099))))) (-1849 (($) NIL) (($ (-644 (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))))) NIL)) (-1944 (((-1269) $ (-1175) (-1175)) NIL (|has| $ (-6 -4415)))) (-1504 (((-112) $ (-771)) NIL)) (-2669 (((-112) (-112)) 43)) (-3216 (((-112) (-112)) 42)) (-1456 (((-52) $ (-1175) (-52)) NIL)) (-2995 (($ (-1 (-112) (-2 (|:| -2674 (-1175)) (|:| -2636 (-52)))) $) NIL (|has| $ (-6 -4414)))) (-3678 (($ (-1 (-112) (-2 (|:| -2674 (-1175)) (|:| -2636 (-52)))) $) NIL (|has| $ (-6 -4414)))) (-3070 (((-3 (-52) "failed") (-1175) $) NIL)) (-2463 (($) NIL T CONST)) (-3942 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-1099))))) (-3512 (($ (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) $) NIL (|has| $ (-6 -4414))) (($ (-1 (-112) (-2 (|:| -2674 (-1175)) (|:| -2636 (-52)))) $) NIL (|has| $ (-6 -4414))) (((-3 (-52) "failed") (-1175) $) NIL)) (-2622 (($ (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-1099)))) (($ (-1 (-112) (-2 (|:| -2674 (-1175)) (|:| -2636 (-52)))) $) NIL (|has| $ (-6 -4414)))) (-2873 (((-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-1 (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-2 (|:| -2674 (-1175)) (|:| -2636 (-52)))) $ (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-2 (|:| -2674 (-1175)) (|:| -2636 (-52)))) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-1099)))) (((-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-1 (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-2 (|:| -2674 (-1175)) (|:| -2636 (-52)))) $ (-2 (|:| -2674 (-1175)) (|:| -2636 (-52)))) NIL (|has| $ (-6 -4414))) (((-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-1 (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-2 (|:| -2674 (-1175)) (|:| -2636 (-52)))) $) NIL (|has| $ (-6 -4414)))) (-3897 (((-52) $ (-1175) (-52)) NIL (|has| $ (-6 -4415)))) (-3829 (((-52) $ (-1175)) NIL)) (-1683 (((-644 (-2 (|:| -2674 (-1175)) (|:| -2636 (-52)))) $) NIL (|has| $ (-6 -4414))) (((-644 (-52)) $) NIL (|has| $ (-6 -4414)))) (-3456 (((-112) $ (-771)) NIL)) (-2296 (((-1175) $) NIL (|has| (-1175) (-850)))) (-3491 (((-644 (-2 (|:| -2674 (-1175)) (|:| -2636 (-52)))) $) NIL (|has| $ (-6 -4414))) (((-644 (-52)) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-1099)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-52) (-1099))))) (-4050 (((-1175) $) NIL (|has| (-1175) (-850)))) (-3885 (($ (-1 (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-2 (|:| -2674 (-1175)) (|:| -2636 (-52)))) $) NIL (|has| $ (-6 -4415))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4415)))) (-2319 (($ (-1 (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-2 (|:| -2674 (-1175)) (|:| -2636 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-3267 (((-112) $ (-771)) NIL)) (-3380 (((-1157) $) NIL (-2768 (|has| (-52) (-1099)) (|has| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-1099))))) (-4052 (((-644 (-1175)) $) 37)) (-1826 (((-112) (-1175) $) NIL)) (-3278 (((-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) $) NIL)) (-3888 (($ (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) $) NIL)) (-3725 (((-644 (-1175)) $) NIL)) (-1644 (((-112) (-1175) $) NIL)) (-4072 (((-1119) $) NIL (-2768 (|has| (-52) (-1099)) (|has| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-1099))))) (-3908 (((-52) $) NIL (|has| (-1175) (-850)))) (-3668 (((-3 (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) "failed") (-1 (-112) (-2 (|:| -2674 (-1175)) (|:| -2636 (-52)))) $) NIL)) (-3787 (($ $ (-52)) NIL (|has| $ (-6 -4415)))) (-1973 (((-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) $) NIL)) (-2823 (((-112) (-1 (-112) (-2 (|:| -2674 (-1175)) (|:| -2636 (-52)))) $) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 (-2 (|:| -2674 (-1175)) (|:| -2636 (-52)))))) NIL (-12 (|has| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-310 (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))))) (|has| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-1099)))) (($ $ (-295 (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))))) NIL (-12 (|has| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-310 (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))))) (|has| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-1099)))) (($ $ (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-2 (|:| -2674 (-1175)) (|:| -2636 (-52)))) NIL (-12 (|has| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-310 (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))))) (|has| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-1099)))) (($ $ (-644 (-2 (|:| -2674 (-1175)) (|:| -2636 (-52)))) (-644 (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))))) NIL (-12 (|has| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-310 (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))))) (|has| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-1099)))) (($ $ (-644 (-52)) (-644 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1099)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1099)))) (($ $ (-295 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1099)))) (($ $ (-644 (-295 (-52)))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1099))))) (-3814 (((-112) $ $) NIL)) (-2847 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-52) (-1099))))) (-3486 (((-644 (-52)) $) NIL)) (-2872 (((-112) $) NIL)) (-3493 (($) NIL)) (-1309 (((-52) $ (-1175)) 39) (((-52) $ (-1175) (-52)) NIL)) (-1792 (($) NIL) (($ (-644 (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))))) NIL)) (-4083 (((-771) (-1 (-112) (-2 (|:| -2674 (-1175)) (|:| -2636 (-52)))) $) NIL (|has| $ (-6 -4414))) (((-771) (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-1099)))) (((-771) (-52) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-52) (-1099)))) (((-771) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4414)))) (-1480 (($ $) NIL)) (-2376 (((-538) $) NIL (|has| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-614 (-538))))) (-1340 (($ (-644 (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))))) NIL)) (-3152 (((-862) $) 41 (-2768 (|has| (-52) (-613 (-862))) (|has| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-613 (-862)))))) (-3044 (((-112) $ $) NIL (-2768 (|has| (-52) (-1099)) (|has| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-1099))))) (-2948 (($ (-644 (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))))) NIL)) (-2210 (((-112) (-1 (-112) (-2 (|:| -2674 (-1175)) (|:| -2636 (-52)))) $) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) NIL (-2768 (|has| (-52) (-1099)) (|has| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-1099))))) (-3000 (((-771) $) NIL (|has| $ (-6 -4414))))) +(((-1035) (-13 (-1190 (-1175) (-52)) (-10 -7 (-15 -2669 ((-112) (-112))) (-15 -3216 ((-112) (-112))) (-6 -4414)))) (T -1035)) +((-2669 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1035)))) (-3216 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1035))))) +(-13 (-1190 (-1175) (-52)) (-10 -7 (-15 -2669 ((-112) (-112))) (-15 -3216 ((-112) (-112))) (-6 -4414))) +((-2988 (((-112) $ $) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-2080 (((-1134) $) 9)) (-3152 (((-862) $) 15) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) +(((-1036) (-13 (-1082) (-10 -8 (-15 -2080 ((-1134) $))))) (T -1036)) +((-2080 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1036))))) +(-13 (-1082) (-10 -8 (-15 -2080 ((-1134) $)))) +((-4158 ((|#2| $) 10))) +(((-1037 |#1| |#2|) (-10 -8 (-15 -4158 (|#2| |#1|))) (-1038 |#2|) (-1214)) (T -1037)) +NIL +(-10 -8 (-15 -4158 (|#2| |#1|))) +((-2229 (((-3 |#1| "failed") $) 9)) (-4158 ((|#1| $) 8)) (-3152 (($ |#1|) 6))) (((-1038 |#1|) (-140) (-1214)) (T -1038)) -((-4307 (*1 *2 *1) (|partial| -12 (-4 *1 (-1038 *2)) (-4 *2 (-1214)))) (-4205 (*1 *2 *1) (-12 (-4 *1 (-1038 *2)) (-4 *2 (-1214))))) -(-13 (-616 |t#1|) (-10 -8 (-15 -4307 ((-3 |t#1| "failed") $)) (-15 -4205 (|t#1| $)))) +((-2229 (*1 *2 *1) (|partial| -12 (-4 *1 (-1038 *2)) (-4 *2 (-1214)))) (-4158 (*1 *2 *1) (-12 (-4 *1 (-1038 *2)) (-4 *2 (-1214))))) +(-13 (-616 |t#1|) (-10 -8 (-15 -2229 ((-3 |t#1| "failed") $)) (-15 -4158 (|t#1| $)))) (((-616 |#1|) . T)) -((-3055 (((-644 (-644 (-295 (-409 (-952 |#2|))))) (-644 (-952 |#2|)) (-644 (-1175))) 38))) -(((-1039 |#1| |#2|) (-10 -7 (-15 -3055 ((-644 (-644 (-295 (-409 (-952 |#2|))))) (-644 (-952 |#2|)) (-644 (-1175))))) (-558) (-13 (-558) (-1038 |#1|))) (T -1039)) -((-3055 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-952 *6))) (-5 *4 (-644 (-1175))) (-4 *6 (-13 (-558) (-1038 *5))) (-4 *5 (-558)) (-5 *2 (-644 (-644 (-295 (-409 (-952 *6)))))) (-5 *1 (-1039 *5 *6))))) -(-10 -7 (-15 -3055 ((-644 (-644 (-295 (-409 (-952 |#2|))))) (-644 (-952 |#2|)) (-644 (-1175))))) -((-2859 (((-381)) 17)) (-1663 (((-1 (-381)) (-381) (-381)) 22)) (-1460 (((-1 (-381)) (-771)) 50)) (-2337 (((-381)) 37)) (-1486 (((-1 (-381)) (-381) (-381)) 38)) (-2758 (((-381)) 29)) (-1417 (((-1 (-381)) (-381)) 30)) (-2901 (((-381) (-771)) 45)) (-1311 (((-1 (-381)) (-771)) 46)) (-2371 (((-1 (-381)) (-771) (-771)) 49)) (-2880 (((-1 (-381)) (-771) (-771)) 47))) -(((-1040) (-10 -7 (-15 -2859 ((-381))) (-15 -2337 ((-381))) (-15 -2758 ((-381))) (-15 -2901 ((-381) (-771))) (-15 -1663 ((-1 (-381)) (-381) (-381))) (-15 -1486 ((-1 (-381)) (-381) (-381))) (-15 -1417 ((-1 (-381)) (-381))) (-15 -1311 ((-1 (-381)) (-771))) (-15 -2880 ((-1 (-381)) (-771) (-771))) (-15 -2371 ((-1 (-381)) (-771) (-771))) (-15 -1460 ((-1 (-381)) (-771))))) (T -1040)) -((-1460 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1 (-381))) (-5 *1 (-1040)))) (-2371 (*1 *2 *3 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1 (-381))) (-5 *1 (-1040)))) (-2880 (*1 *2 *3 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1 (-381))) (-5 *1 (-1040)))) (-1311 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1 (-381))) (-5 *1 (-1040)))) (-1417 (*1 *2 *3) (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1040)) (-5 *3 (-381)))) (-1486 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1040)) (-5 *3 (-381)))) (-1663 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1040)) (-5 *3 (-381)))) (-2901 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-381)) (-5 *1 (-1040)))) (-2758 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1040)))) (-2337 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1040)))) (-2859 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1040))))) -(-10 -7 (-15 -2859 ((-381))) (-15 -2337 ((-381))) (-15 -2758 ((-381))) (-15 -2901 ((-381) (-771))) (-15 -1663 ((-1 (-381)) (-381) (-381))) (-15 -1486 ((-1 (-381)) (-381) (-381))) (-15 -1417 ((-1 (-381)) (-381))) (-15 -1311 ((-1 (-381)) (-771))) (-15 -2880 ((-1 (-381)) (-771) (-771))) (-15 -2371 ((-1 (-381)) (-771) (-771))) (-15 -1460 ((-1 (-381)) (-771)))) -((-3719 (((-420 |#1|) |#1|) 33))) -(((-1041 |#1|) (-10 -7 (-15 -3719 ((-420 |#1|) |#1|))) (-1240 (-409 (-952 (-566))))) (T -1041)) -((-3719 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-1041 *3)) (-4 *3 (-1240 (-409 (-952 (-566)))))))) -(-10 -7 (-15 -3719 ((-420 |#1|) |#1|))) -((-4060 (((-409 (-420 (-952 |#1|))) (-409 (-952 |#1|))) 14))) -(((-1042 |#1|) (-10 -7 (-15 -4060 ((-409 (-420 (-952 |#1|))) (-409 (-952 |#1|))))) (-308)) (T -1042)) -((-4060 (*1 *2 *3) (-12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-308)) (-5 *2 (-409 (-420 (-952 *4)))) (-5 *1 (-1042 *4))))) -(-10 -7 (-15 -4060 ((-409 (-420 (-952 |#1|))) (-409 (-952 |#1|))))) -((-3863 (((-644 (-1175)) (-409 (-952 |#1|))) 17)) (-3683 (((-409 (-1171 (-409 (-952 |#1|)))) (-409 (-952 |#1|)) (-1175)) 24)) (-3851 (((-409 (-952 |#1|)) (-409 (-1171 (-409 (-952 |#1|)))) (-1175)) 26)) (-3169 (((-3 (-1175) "failed") (-409 (-952 |#1|))) 20)) (-2055 (((-409 (-952 |#1|)) (-409 (-952 |#1|)) (-644 (-295 (-409 (-952 |#1|))))) 32) (((-409 (-952 |#1|)) (-409 (-952 |#1|)) (-295 (-409 (-952 |#1|)))) 33) (((-409 (-952 |#1|)) (-409 (-952 |#1|)) (-644 (-1175)) (-644 (-409 (-952 |#1|)))) 28) (((-409 (-952 |#1|)) (-409 (-952 |#1|)) (-1175) (-409 (-952 |#1|))) 29)) (-3783 (((-409 (-952 |#1|)) |#1|) 11))) -(((-1043 |#1|) (-10 -7 (-15 -3863 ((-644 (-1175)) (-409 (-952 |#1|)))) (-15 -3169 ((-3 (-1175) "failed") (-409 (-952 |#1|)))) (-15 -3683 ((-409 (-1171 (-409 (-952 |#1|)))) (-409 (-952 |#1|)) (-1175))) (-15 -3851 ((-409 (-952 |#1|)) (-409 (-1171 (-409 (-952 |#1|)))) (-1175))) (-15 -2055 ((-409 (-952 |#1|)) (-409 (-952 |#1|)) (-1175) (-409 (-952 |#1|)))) (-15 -2055 ((-409 (-952 |#1|)) (-409 (-952 |#1|)) (-644 (-1175)) (-644 (-409 (-952 |#1|))))) (-15 -2055 ((-409 (-952 |#1|)) (-409 (-952 |#1|)) (-295 (-409 (-952 |#1|))))) (-15 -2055 ((-409 (-952 |#1|)) (-409 (-952 |#1|)) (-644 (-295 (-409 (-952 |#1|)))))) (-15 -3783 ((-409 (-952 |#1|)) |#1|))) (-558)) (T -1043)) -((-3783 (*1 *2 *3) (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-1043 *3)) (-4 *3 (-558)))) (-2055 (*1 *2 *2 *3) (-12 (-5 *3 (-644 (-295 (-409 (-952 *4))))) (-5 *2 (-409 (-952 *4))) (-4 *4 (-558)) (-5 *1 (-1043 *4)))) (-2055 (*1 *2 *2 *3) (-12 (-5 *3 (-295 (-409 (-952 *4)))) (-5 *2 (-409 (-952 *4))) (-4 *4 (-558)) (-5 *1 (-1043 *4)))) (-2055 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-644 (-1175))) (-5 *4 (-644 (-409 (-952 *5)))) (-5 *2 (-409 (-952 *5))) (-4 *5 (-558)) (-5 *1 (-1043 *5)))) (-2055 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-409 (-952 *4))) (-5 *3 (-1175)) (-4 *4 (-558)) (-5 *1 (-1043 *4)))) (-3851 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-1171 (-409 (-952 *5))))) (-5 *4 (-1175)) (-5 *2 (-409 (-952 *5))) (-5 *1 (-1043 *5)) (-4 *5 (-558)))) (-3683 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-4 *5 (-558)) (-5 *2 (-409 (-1171 (-409 (-952 *5))))) (-5 *1 (-1043 *5)) (-5 *3 (-409 (-952 *5))))) (-3169 (*1 *2 *3) (|partial| -12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-558)) (-5 *2 (-1175)) (-5 *1 (-1043 *4)))) (-3863 (*1 *2 *3) (-12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-558)) (-5 *2 (-644 (-1175))) (-5 *1 (-1043 *4))))) -(-10 -7 (-15 -3863 ((-644 (-1175)) (-409 (-952 |#1|)))) (-15 -3169 ((-3 (-1175) "failed") (-409 (-952 |#1|)))) (-15 -3683 ((-409 (-1171 (-409 (-952 |#1|)))) (-409 (-952 |#1|)) (-1175))) (-15 -3851 ((-409 (-952 |#1|)) (-409 (-1171 (-409 (-952 |#1|)))) (-1175))) (-15 -2055 ((-409 (-952 |#1|)) (-409 (-952 |#1|)) (-1175) (-409 (-952 |#1|)))) (-15 -2055 ((-409 (-952 |#1|)) (-409 (-952 |#1|)) (-644 (-1175)) (-644 (-409 (-952 |#1|))))) (-15 -2055 ((-409 (-952 |#1|)) (-409 (-952 |#1|)) (-295 (-409 (-952 |#1|))))) (-15 -2055 ((-409 (-952 |#1|)) (-409 (-952 |#1|)) (-644 (-295 (-409 (-952 |#1|)))))) (-15 -3783 ((-409 (-952 |#1|)) |#1|))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-3012 (($) 18 T CONST)) (-4270 ((|#1| $) 23)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3348 ((|#1| $) 22)) (-3933 ((|#1|) 20 T CONST)) (-3783 (((-862) $) 12)) (-3437 ((|#1| $) 21)) (-3117 (((-112) $ $) 9)) (-2479 (($) 19 T CONST)) (-2947 (((-112) $ $) 6)) (-3041 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16))) +((-2084 (((-644 (-644 (-295 (-409 (-952 |#2|))))) (-644 (-952 |#2|)) (-644 (-1175))) 38))) +(((-1039 |#1| |#2|) (-10 -7 (-15 -2084 ((-644 (-644 (-295 (-409 (-952 |#2|))))) (-644 (-952 |#2|)) (-644 (-1175))))) (-558) (-13 (-558) (-1038 |#1|))) (T -1039)) +((-2084 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-952 *6))) (-5 *4 (-644 (-1175))) (-4 *6 (-13 (-558) (-1038 *5))) (-4 *5 (-558)) (-5 *2 (-644 (-644 (-295 (-409 (-952 *6)))))) (-5 *1 (-1039 *5 *6))))) +(-10 -7 (-15 -2084 ((-644 (-644 (-295 (-409 (-952 |#2|))))) (-644 (-952 |#2|)) (-644 (-1175))))) +((-1592 (((-381)) 17)) (-1762 (((-1 (-381)) (-381) (-381)) 22)) (-1462 (((-1 (-381)) (-771)) 50)) (-1989 (((-381)) 37)) (-2548 (((-1 (-381)) (-381) (-381)) 38)) (-2892 (((-381)) 29)) (-1797 (((-1 (-381)) (-381)) 30)) (-2175 (((-381) (-771)) 45)) (-2135 (((-1 (-381)) (-771)) 46)) (-2352 (((-1 (-381)) (-771) (-771)) 49)) (-4006 (((-1 (-381)) (-771) (-771)) 47))) +(((-1040) (-10 -7 (-15 -1592 ((-381))) (-15 -1989 ((-381))) (-15 -2892 ((-381))) (-15 -2175 ((-381) (-771))) (-15 -1762 ((-1 (-381)) (-381) (-381))) (-15 -2548 ((-1 (-381)) (-381) (-381))) (-15 -1797 ((-1 (-381)) (-381))) (-15 -2135 ((-1 (-381)) (-771))) (-15 -4006 ((-1 (-381)) (-771) (-771))) (-15 -2352 ((-1 (-381)) (-771) (-771))) (-15 -1462 ((-1 (-381)) (-771))))) (T -1040)) +((-1462 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1 (-381))) (-5 *1 (-1040)))) (-2352 (*1 *2 *3 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1 (-381))) (-5 *1 (-1040)))) (-4006 (*1 *2 *3 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1 (-381))) (-5 *1 (-1040)))) (-2135 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1 (-381))) (-5 *1 (-1040)))) (-1797 (*1 *2 *3) (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1040)) (-5 *3 (-381)))) (-2548 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1040)) (-5 *3 (-381)))) (-1762 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1040)) (-5 *3 (-381)))) (-2175 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-381)) (-5 *1 (-1040)))) (-2892 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1040)))) (-1989 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1040)))) (-1592 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1040))))) +(-10 -7 (-15 -1592 ((-381))) (-15 -1989 ((-381))) (-15 -2892 ((-381))) (-15 -2175 ((-381) (-771))) (-15 -1762 ((-1 (-381)) (-381) (-381))) (-15 -2548 ((-1 (-381)) (-381) (-381))) (-15 -1797 ((-1 (-381)) (-381))) (-15 -2135 ((-1 (-381)) (-771))) (-15 -4006 ((-1 (-381)) (-771) (-771))) (-15 -2352 ((-1 (-381)) (-771) (-771))) (-15 -1462 ((-1 (-381)) (-771)))) +((-1624 (((-420 |#1|) |#1|) 33))) +(((-1041 |#1|) (-10 -7 (-15 -1624 ((-420 |#1|) |#1|))) (-1240 (-409 (-952 (-566))))) (T -1041)) +((-1624 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-1041 *3)) (-4 *3 (-1240 (-409 (-952 (-566)))))))) +(-10 -7 (-15 -1624 ((-420 |#1|) |#1|))) +((-1663 (((-409 (-420 (-952 |#1|))) (-409 (-952 |#1|))) 14))) +(((-1042 |#1|) (-10 -7 (-15 -1663 ((-409 (-420 (-952 |#1|))) (-409 (-952 |#1|))))) (-308)) (T -1042)) +((-1663 (*1 *2 *3) (-12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-308)) (-5 *2 (-409 (-420 (-952 *4)))) (-5 *1 (-1042 *4))))) +(-10 -7 (-15 -1663 ((-409 (-420 (-952 |#1|))) (-409 (-952 |#1|))))) +((-1771 (((-644 (-1175)) (-409 (-952 |#1|))) 17)) (-1590 (((-409 (-1171 (-409 (-952 |#1|)))) (-409 (-952 |#1|)) (-1175)) 24)) (-1757 (((-409 (-952 |#1|)) (-409 (-1171 (-409 (-952 |#1|)))) (-1175)) 26)) (-2297 (((-3 (-1175) "failed") (-409 (-952 |#1|))) 20)) (-2023 (((-409 (-952 |#1|)) (-409 (-952 |#1|)) (-644 (-295 (-409 (-952 |#1|))))) 32) (((-409 (-952 |#1|)) (-409 (-952 |#1|)) (-295 (-409 (-952 |#1|)))) 33) (((-409 (-952 |#1|)) (-409 (-952 |#1|)) (-644 (-1175)) (-644 (-409 (-952 |#1|)))) 28) (((-409 (-952 |#1|)) (-409 (-952 |#1|)) (-1175) (-409 (-952 |#1|))) 29)) (-3152 (((-409 (-952 |#1|)) |#1|) 11))) +(((-1043 |#1|) (-10 -7 (-15 -1771 ((-644 (-1175)) (-409 (-952 |#1|)))) (-15 -2297 ((-3 (-1175) "failed") (-409 (-952 |#1|)))) (-15 -1590 ((-409 (-1171 (-409 (-952 |#1|)))) (-409 (-952 |#1|)) (-1175))) (-15 -1757 ((-409 (-952 |#1|)) (-409 (-1171 (-409 (-952 |#1|)))) (-1175))) (-15 -2023 ((-409 (-952 |#1|)) (-409 (-952 |#1|)) (-1175) (-409 (-952 |#1|)))) (-15 -2023 ((-409 (-952 |#1|)) (-409 (-952 |#1|)) (-644 (-1175)) (-644 (-409 (-952 |#1|))))) (-15 -2023 ((-409 (-952 |#1|)) (-409 (-952 |#1|)) (-295 (-409 (-952 |#1|))))) (-15 -2023 ((-409 (-952 |#1|)) (-409 (-952 |#1|)) (-644 (-295 (-409 (-952 |#1|)))))) (-15 -3152 ((-409 (-952 |#1|)) |#1|))) (-558)) (T -1043)) +((-3152 (*1 *2 *3) (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-1043 *3)) (-4 *3 (-558)))) (-2023 (*1 *2 *2 *3) (-12 (-5 *3 (-644 (-295 (-409 (-952 *4))))) (-5 *2 (-409 (-952 *4))) (-4 *4 (-558)) (-5 *1 (-1043 *4)))) (-2023 (*1 *2 *2 *3) (-12 (-5 *3 (-295 (-409 (-952 *4)))) (-5 *2 (-409 (-952 *4))) (-4 *4 (-558)) (-5 *1 (-1043 *4)))) (-2023 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-644 (-1175))) (-5 *4 (-644 (-409 (-952 *5)))) (-5 *2 (-409 (-952 *5))) (-4 *5 (-558)) (-5 *1 (-1043 *5)))) (-2023 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-409 (-952 *4))) (-5 *3 (-1175)) (-4 *4 (-558)) (-5 *1 (-1043 *4)))) (-1757 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-1171 (-409 (-952 *5))))) (-5 *4 (-1175)) (-5 *2 (-409 (-952 *5))) (-5 *1 (-1043 *5)) (-4 *5 (-558)))) (-1590 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-4 *5 (-558)) (-5 *2 (-409 (-1171 (-409 (-952 *5))))) (-5 *1 (-1043 *5)) (-5 *3 (-409 (-952 *5))))) (-2297 (*1 *2 *3) (|partial| -12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-558)) (-5 *2 (-1175)) (-5 *1 (-1043 *4)))) (-1771 (*1 *2 *3) (-12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-558)) (-5 *2 (-644 (-1175))) (-5 *1 (-1043 *4))))) +(-10 -7 (-15 -1771 ((-644 (-1175)) (-409 (-952 |#1|)))) (-15 -2297 ((-3 (-1175) "failed") (-409 (-952 |#1|)))) (-15 -1590 ((-409 (-1171 (-409 (-952 |#1|)))) (-409 (-952 |#1|)) (-1175))) (-15 -1757 ((-409 (-952 |#1|)) (-409 (-1171 (-409 (-952 |#1|)))) (-1175))) (-15 -2023 ((-409 (-952 |#1|)) (-409 (-952 |#1|)) (-1175) (-409 (-952 |#1|)))) (-15 -2023 ((-409 (-952 |#1|)) (-409 (-952 |#1|)) (-644 (-1175)) (-644 (-409 (-952 |#1|))))) (-15 -2023 ((-409 (-952 |#1|)) (-409 (-952 |#1|)) (-295 (-409 (-952 |#1|))))) (-15 -2023 ((-409 (-952 |#1|)) (-409 (-952 |#1|)) (-644 (-295 (-409 (-952 |#1|)))))) (-15 -3152 ((-409 (-952 |#1|)) |#1|))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-2463 (($) 18 T CONST)) (-3914 ((|#1| $) 23)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-4307 ((|#1| $) 22)) (-2286 ((|#1|) 20 T CONST)) (-3152 (((-862) $) 12)) (-1864 ((|#1| $) 21)) (-3044 (((-112) $ $) 9)) (-4356 (($) 19 T CONST)) (-2914 (((-112) $ $) 6)) (-3002 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16))) (((-1044 |#1|) (-140) (-23)) (T -1044)) -((-4270 (*1 *2 *1) (-12 (-4 *1 (-1044 *2)) (-4 *2 (-23)))) (-3348 (*1 *2 *1) (-12 (-4 *1 (-1044 *2)) (-4 *2 (-23)))) (-3437 (*1 *2 *1) (-12 (-4 *1 (-1044 *2)) (-4 *2 (-23)))) (-3933 (*1 *2) (-12 (-4 *1 (-1044 *2)) (-4 *2 (-23))))) -(-13 (-23) (-10 -8 (-15 -4270 (|t#1| $)) (-15 -3348 (|t#1| $)) (-15 -3437 (|t#1| $)) (-15 -3933 (|t#1|) -3704))) +((-3914 (*1 *2 *1) (-12 (-4 *1 (-1044 *2)) (-4 *2 (-23)))) (-4307 (*1 *2 *1) (-12 (-4 *1 (-1044 *2)) (-4 *2 (-23)))) (-1864 (*1 *2 *1) (-12 (-4 *1 (-1044 *2)) (-4 *2 (-23)))) (-2286 (*1 *2) (-12 (-4 *1 (-1044 *2)) (-4 *2 (-23))))) +(-13 (-23) (-10 -8 (-15 -3914 (|t#1| $)) (-15 -4307 (|t#1| $)) (-15 -1864 (|t#1| $)) (-15 -2286 (|t#1|) -1623))) (((-23) . T) ((-25) . T) ((-102) . T) ((-613 (-862)) . T) ((-1099) . T)) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-2858 (($) 25 T CONST)) (-3012 (($) 18 T CONST)) (-4270 ((|#1| $) 23)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3348 ((|#1| $) 22)) (-3933 ((|#1|) 20 T CONST)) (-3783 (((-862) $) 12)) (-3437 ((|#1| $) 21)) (-3117 (((-112) $ $) 9)) (-2479 (($) 19 T CONST)) (-2947 (((-112) $ $) 6)) (-3041 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-1484 (($) 25 T CONST)) (-2463 (($) 18 T CONST)) (-3914 ((|#1| $) 23)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-4307 ((|#1| $) 22)) (-2286 ((|#1|) 20 T CONST)) (-3152 (((-862) $) 12)) (-1864 ((|#1| $) 21)) (-3044 (((-112) $ $) 9)) (-4356 (($) 19 T CONST)) (-2914 (((-112) $ $) 6)) (-3002 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16))) (((-1045 |#1|) (-140) (-23)) (T -1045)) -((-2858 (*1 *1) (-12 (-4 *1 (-1045 *2)) (-4 *2 (-23))))) -(-13 (-1044 |t#1|) (-10 -8 (-15 -2858 ($) -3704))) +((-1484 (*1 *1) (-12 (-4 *1 (-1045 *2)) (-4 *2 (-23))))) +(-13 (-1044 |t#1|) (-10 -8 (-15 -1484 ($) -1623))) (((-23) . T) ((-25) . T) ((-102) . T) ((-613 (-862)) . T) ((-1044 |#1|) . T) ((-1099) . T)) -((-3007 (((-112) $ $) NIL)) (-2584 (((-644 (-2 (|:| -1651 $) (|:| -3501 (-644 (-780 |#1| (-864 |#2|)))))) (-644 (-780 |#1| (-864 |#2|)))) NIL)) (-2333 (((-644 $) (-644 (-780 |#1| (-864 |#2|)))) NIL) (((-644 $) (-644 (-780 |#1| (-864 |#2|))) (-112)) NIL) (((-644 $) (-644 (-780 |#1| (-864 |#2|))) (-112) (-112)) NIL)) (-3863 (((-644 (-864 |#2|)) $) NIL)) (-2368 (((-112) $) NIL)) (-4070 (((-112) $) NIL (|has| |#1| (-558)))) (-3624 (((-112) (-780 |#1| (-864 |#2|)) $) NIL) (((-112) $) NIL)) (-1374 (((-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)) $) NIL)) (-1550 (((-644 (-2 (|:| |val| (-780 |#1| (-864 |#2|))) (|:| -3570 $))) (-780 |#1| (-864 |#2|)) $) NIL)) (-1510 (((-2 (|:| |under| $) (|:| -3470 $) (|:| |upper| $)) $ (-864 |#2|)) NIL)) (-2256 (((-112) $ (-771)) NIL)) (-2701 (($ (-1 (-112) (-780 |#1| (-864 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-3 (-780 |#1| (-864 |#2|)) "failed") $ (-864 |#2|)) NIL)) (-3012 (($) NIL T CONST)) (-3779 (((-112) $) NIL (|has| |#1| (-558)))) (-2540 (((-112) $ $) NIL (|has| |#1| (-558)))) (-4093 (((-112) $ $) NIL (|has| |#1| (-558)))) (-3741 (((-112) $) NIL (|has| |#1| (-558)))) (-2506 (((-644 (-780 |#1| (-864 |#2|))) (-644 (-780 |#1| (-864 |#2|))) $ (-1 (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|))) (-1 (-112) (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)))) NIL)) (-2026 (((-644 (-780 |#1| (-864 |#2|))) (-644 (-780 |#1| (-864 |#2|))) $) NIL (|has| |#1| (-558)))) (-4306 (((-644 (-780 |#1| (-864 |#2|))) (-644 (-780 |#1| (-864 |#2|))) $) NIL (|has| |#1| (-558)))) (-4307 (((-3 $ "failed") (-644 (-780 |#1| (-864 |#2|)))) NIL)) (-4205 (($ (-644 (-780 |#1| (-864 |#2|)))) NIL)) (-2010 (((-3 $ "failed") $) NIL)) (-2100 (((-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)) $) NIL)) (-2031 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-780 |#1| (-864 |#2|)) (-1099))))) (-2665 (($ (-780 |#1| (-864 |#2|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-780 |#1| (-864 |#2|)) (-1099)))) (($ (-1 (-112) (-780 |#1| (-864 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-2513 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-780 |#1| (-864 |#2|))) (|:| |den| |#1|)) (-780 |#1| (-864 |#2|)) $) NIL (|has| |#1| (-558)))) (-1464 (((-112) (-780 |#1| (-864 |#2|)) $ (-1 (-112) (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)))) NIL)) (-1401 (((-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)) $) NIL)) (-1676 (((-780 |#1| (-864 |#2|)) (-1 (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|))) $ (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|))) NIL (-12 (|has| $ (-6 -4414)) (|has| (-780 |#1| (-864 |#2|)) (-1099)))) (((-780 |#1| (-864 |#2|)) (-1 (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|))) $ (-780 |#1| (-864 |#2|))) NIL (|has| $ (-6 -4414))) (((-780 |#1| (-864 |#2|)) (-1 (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)) $ (-1 (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|))) (-1 (-112) (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)))) NIL)) (-3692 (((-2 (|:| -1651 (-644 (-780 |#1| (-864 |#2|)))) (|:| -3501 (-644 (-780 |#1| (-864 |#2|))))) $) NIL)) (-3987 (((-112) (-780 |#1| (-864 |#2|)) $) NIL)) (-1906 (((-112) (-780 |#1| (-864 |#2|)) $) NIL)) (-1530 (((-112) (-780 |#1| (-864 |#2|)) $) NIL) (((-112) $) NIL)) (-3979 (((-644 (-780 |#1| (-864 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-2111 (((-112) (-780 |#1| (-864 |#2|)) $) NIL) (((-112) $) NIL)) (-1489 (((-864 |#2|) $) NIL)) (-2404 (((-112) $ (-771)) NIL)) (-2329 (((-644 (-780 |#1| (-864 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) (-780 |#1| (-864 |#2|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-780 |#1| (-864 |#2|)) (-1099))))) (-2908 (($ (-1 (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|))) $) NIL (|has| $ (-6 -4415)))) (-1301 (($ (-1 (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|))) $) NIL)) (-2189 (((-644 (-864 |#2|)) $) NIL)) (-3953 (((-112) (-864 |#2|) $) NIL)) (-2603 (((-112) $ (-771)) NIL)) (-4117 (((-1157) $) NIL)) (-1532 (((-3 (-780 |#1| (-864 |#2|)) (-644 $)) (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)) $) NIL)) (-1558 (((-644 (-2 (|:| |val| (-780 |#1| (-864 |#2|))) (|:| -3570 $))) (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)) $) NIL)) (-2686 (((-3 (-780 |#1| (-864 |#2|)) "failed") $) NIL)) (-3758 (((-644 $) (-780 |#1| (-864 |#2|)) $) NIL)) (-1613 (((-3 (-112) (-644 $)) (-780 |#1| (-864 |#2|)) $) NIL)) (-1714 (((-644 (-2 (|:| |val| (-112)) (|:| -3570 $))) (-780 |#1| (-864 |#2|)) $) NIL) (((-112) (-780 |#1| (-864 |#2|)) $) NIL)) (-4018 (((-644 $) (-780 |#1| (-864 |#2|)) $) NIL) (((-644 $) (-644 (-780 |#1| (-864 |#2|))) $) NIL) (((-644 $) (-644 (-780 |#1| (-864 |#2|))) (-644 $)) NIL) (((-644 $) (-780 |#1| (-864 |#2|)) (-644 $)) NIL)) (-2096 (($ (-780 |#1| (-864 |#2|)) $) NIL) (($ (-644 (-780 |#1| (-864 |#2|))) $) NIL)) (-2851 (((-644 (-780 |#1| (-864 |#2|))) $) NIL)) (-1694 (((-112) (-780 |#1| (-864 |#2|)) $) NIL) (((-112) $) NIL)) (-1871 (((-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)) $) NIL)) (-2897 (((-112) $ $) NIL)) (-3112 (((-2 (|:| |num| (-780 |#1| (-864 |#2|))) (|:| |den| |#1|)) (-780 |#1| (-864 |#2|)) $) NIL (|has| |#1| (-558)))) (-3351 (((-112) (-780 |#1| (-864 |#2|)) $) NIL) (((-112) $) NIL)) (-3544 (((-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)) $) NIL)) (-4035 (((-1119) $) NIL)) (-1998 (((-3 (-780 |#1| (-864 |#2|)) "failed") $) NIL)) (-2006 (((-3 (-780 |#1| (-864 |#2|)) "failed") (-1 (-112) (-780 |#1| (-864 |#2|))) $) NIL)) (-2060 (((-3 $ "failed") $ (-780 |#1| (-864 |#2|))) NIL)) (-3874 (($ $ (-780 |#1| (-864 |#2|))) NIL) (((-644 $) (-780 |#1| (-864 |#2|)) $) NIL) (((-644 $) (-780 |#1| (-864 |#2|)) (-644 $)) NIL) (((-644 $) (-644 (-780 |#1| (-864 |#2|))) $) NIL) (((-644 $) (-644 (-780 |#1| (-864 |#2|))) (-644 $)) NIL)) (-2692 (((-112) (-1 (-112) (-780 |#1| (-864 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-780 |#1| (-864 |#2|))) (-644 (-780 |#1| (-864 |#2|)))) NIL (-12 (|has| (-780 |#1| (-864 |#2|)) (-310 (-780 |#1| (-864 |#2|)))) (|has| (-780 |#1| (-864 |#2|)) (-1099)))) (($ $ (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|))) NIL (-12 (|has| (-780 |#1| (-864 |#2|)) (-310 (-780 |#1| (-864 |#2|)))) (|has| (-780 |#1| (-864 |#2|)) (-1099)))) (($ $ (-295 (-780 |#1| (-864 |#2|)))) NIL (-12 (|has| (-780 |#1| (-864 |#2|)) (-310 (-780 |#1| (-864 |#2|)))) (|has| (-780 |#1| (-864 |#2|)) (-1099)))) (($ $ (-644 (-295 (-780 |#1| (-864 |#2|))))) NIL (-12 (|has| (-780 |#1| (-864 |#2|)) (-310 (-780 |#1| (-864 |#2|)))) (|has| (-780 |#1| (-864 |#2|)) (-1099))))) (-1932 (((-112) $ $) NIL)) (-3467 (((-112) $) NIL)) (-1494 (($) NIL)) (-3636 (((-771) $) NIL)) (-4045 (((-771) (-780 |#1| (-864 |#2|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-780 |#1| (-864 |#2|)) (-1099)))) (((-771) (-1 (-112) (-780 |#1| (-864 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-3940 (($ $) NIL)) (-1348 (((-538) $) NIL (|has| (-780 |#1| (-864 |#2|)) (-614 (-538))))) (-3796 (($ (-644 (-780 |#1| (-864 |#2|)))) NIL)) (-2325 (($ $ (-864 |#2|)) NIL)) (-4106 (($ $ (-864 |#2|)) NIL)) (-3973 (($ $) NIL)) (-3080 (($ $ (-864 |#2|)) NIL)) (-3783 (((-862) $) NIL) (((-644 (-780 |#1| (-864 |#2|))) $) NIL)) (-2028 (((-771) $) NIL (|has| (-864 |#2|) (-370)))) (-3117 (((-112) $ $) NIL)) (-3706 (((-3 (-2 (|:| |bas| $) (|:| -1825 (-644 (-780 |#1| (-864 |#2|))))) "failed") (-644 (-780 |#1| (-864 |#2|))) (-1 (-112) (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1825 (-644 (-780 |#1| (-864 |#2|))))) "failed") (-644 (-780 |#1| (-864 |#2|))) (-1 (-112) (-780 |#1| (-864 |#2|))) (-1 (-112) (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)))) NIL)) (-3772 (((-112) $ (-1 (-112) (-780 |#1| (-864 |#2|)) (-644 (-780 |#1| (-864 |#2|))))) NIL)) (-3089 (((-644 $) (-780 |#1| (-864 |#2|)) $) NIL) (((-644 $) (-780 |#1| (-864 |#2|)) (-644 $)) NIL) (((-644 $) (-644 (-780 |#1| (-864 |#2|))) $) NIL) (((-644 $) (-644 (-780 |#1| (-864 |#2|))) (-644 $)) NIL)) (-1894 (((-112) (-1 (-112) (-780 |#1| (-864 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-4180 (((-644 (-864 |#2|)) $) NIL)) (-1571 (((-112) (-780 |#1| (-864 |#2|)) $) NIL)) (-1423 (((-112) (-864 |#2|) $) NIL)) (-2947 (((-112) $ $) NIL)) (-3018 (((-771) $) NIL (|has| $ (-6 -4414))))) -(((-1046 |#1| |#2|) (-13 (-1070 |#1| (-533 (-864 |#2|)) (-864 |#2|) (-780 |#1| (-864 |#2|))) (-10 -8 (-15 -2333 ((-644 $) (-644 (-780 |#1| (-864 |#2|))) (-112) (-112))))) (-454) (-644 (-1175))) (T -1046)) -((-2333 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-644 (-780 *5 (-864 *6)))) (-5 *4 (-112)) (-4 *5 (-454)) (-14 *6 (-644 (-1175))) (-5 *2 (-644 (-1046 *5 *6))) (-5 *1 (-1046 *5 *6))))) -(-13 (-1070 |#1| (-533 (-864 |#2|)) (-864 |#2|) (-780 |#1| (-864 |#2|))) (-10 -8 (-15 -2333 ((-644 $) (-644 (-780 |#1| (-864 |#2|))) (-112) (-112))))) -((-1663 (((-1 (-566)) (-1093 (-566))) 32)) (-4225 (((-566) (-566) (-566) (-566) (-566)) 29)) (-3842 (((-1 (-566)) |RationalNumber|) NIL)) (-4194 (((-1 (-566)) |RationalNumber|) NIL)) (-3228 (((-1 (-566)) (-566) |RationalNumber|) NIL))) -(((-1047) (-10 -7 (-15 -1663 ((-1 (-566)) (-1093 (-566)))) (-15 -3228 ((-1 (-566)) (-566) |RationalNumber|)) (-15 -3842 ((-1 (-566)) |RationalNumber|)) (-15 -4194 ((-1 (-566)) |RationalNumber|)) (-15 -4225 ((-566) (-566) (-566) (-566) (-566))))) (T -1047)) -((-4225 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1047)))) (-4194 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-566))) (-5 *1 (-1047)))) (-3842 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-566))) (-5 *1 (-1047)))) (-3228 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-566))) (-5 *1 (-1047)) (-5 *3 (-566)))) (-1663 (*1 *2 *3) (-12 (-5 *3 (-1093 (-566))) (-5 *2 (-1 (-566))) (-5 *1 (-1047))))) -(-10 -7 (-15 -1663 ((-1 (-566)) (-1093 (-566)))) (-15 -3228 ((-1 (-566)) (-566) |RationalNumber|)) (-15 -3842 ((-1 (-566)) |RationalNumber|)) (-15 -4194 ((-1 (-566)) |RationalNumber|)) (-15 -4225 ((-566) (-566) (-566) (-566) (-566)))) -((-3783 (((-862) $) NIL) (($ (-566)) 10))) -(((-1048 |#1|) (-10 -8 (-15 -3783 (|#1| (-566))) (-15 -3783 ((-862) |#1|))) (-1049)) (T -1048)) -NIL -(-10 -8 (-15 -3783 (|#1| (-566))) (-15 -3783 ((-862) |#1|))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-4175 (((-3 $ "failed") $ $) 20)) (-3012 (($) 18 T CONST)) (-1878 (((-3 $ "failed") $) 37)) (-3934 (((-112) $) 35)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3783 (((-862) $) 12) (($ (-566)) 33)) (-2107 (((-771)) 32 T CONST)) (-3117 (((-112) $ $) 9)) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-2947 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) +((-2988 (((-112) $ $) NIL)) (-2107 (((-644 (-2 (|:| -1685 $) (|:| -3292 (-644 (-780 |#1| (-864 |#2|)))))) (-644 (-780 |#1| (-864 |#2|)))) NIL)) (-2779 (((-644 $) (-644 (-780 |#1| (-864 |#2|)))) NIL) (((-644 $) (-644 (-780 |#1| (-864 |#2|))) (-112)) NIL) (((-644 $) (-644 (-780 |#1| (-864 |#2|))) (-112) (-112)) NIL)) (-1771 (((-644 (-864 |#2|)) $) NIL)) (-3071 (((-112) $) NIL)) (-3274 (((-112) $) NIL (|has| |#1| (-558)))) (-2267 (((-112) (-780 |#1| (-864 |#2|)) $) NIL) (((-112) $) NIL)) (-1411 (((-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)) $) NIL)) (-1378 (((-644 (-2 (|:| |val| (-780 |#1| (-864 |#2|))) (|:| -1470 $))) (-780 |#1| (-864 |#2|)) $) NIL)) (-2671 (((-2 (|:| |under| $) (|:| -3143 $) (|:| |upper| $)) $ (-864 |#2|)) NIL)) (-1504 (((-112) $ (-771)) NIL)) (-3678 (($ (-1 (-112) (-780 |#1| (-864 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-3 (-780 |#1| (-864 |#2|)) "failed") $ (-864 |#2|)) NIL)) (-2463 (($) NIL T CONST)) (-3036 (((-112) $) NIL (|has| |#1| (-558)))) (-1963 (((-112) $ $) NIL (|has| |#1| (-558)))) (-2983 (((-112) $ $) NIL (|has| |#1| (-558)))) (-1477 (((-112) $) NIL (|has| |#1| (-558)))) (-3930 (((-644 (-780 |#1| (-864 |#2|))) (-644 (-780 |#1| (-864 |#2|))) $ (-1 (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|))) (-1 (-112) (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)))) NIL)) (-1789 (((-644 (-780 |#1| (-864 |#2|))) (-644 (-780 |#1| (-864 |#2|))) $) NIL (|has| |#1| (-558)))) (-2228 (((-644 (-780 |#1| (-864 |#2|))) (-644 (-780 |#1| (-864 |#2|))) $) NIL (|has| |#1| (-558)))) (-2229 (((-3 $ "failed") (-644 (-780 |#1| (-864 |#2|)))) NIL)) (-4158 (($ (-644 (-780 |#1| (-864 |#2|)))) NIL)) (-3919 (((-3 $ "failed") $) NIL)) (-3110 (((-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)) $) NIL)) (-3942 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-780 |#1| (-864 |#2|)) (-1099))))) (-2622 (($ (-780 |#1| (-864 |#2|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-780 |#1| (-864 |#2|)) (-1099)))) (($ (-1 (-112) (-780 |#1| (-864 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-3264 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-780 |#1| (-864 |#2|))) (|:| |den| |#1|)) (-780 |#1| (-864 |#2|)) $) NIL (|has| |#1| (-558)))) (-3599 (((-112) (-780 |#1| (-864 |#2|)) $ (-1 (-112) (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)))) NIL)) (-2690 (((-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)) $) NIL)) (-2873 (((-780 |#1| (-864 |#2|)) (-1 (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|))) $ (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|))) NIL (-12 (|has| $ (-6 -4414)) (|has| (-780 |#1| (-864 |#2|)) (-1099)))) (((-780 |#1| (-864 |#2|)) (-1 (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|))) $ (-780 |#1| (-864 |#2|))) NIL (|has| $ (-6 -4414))) (((-780 |#1| (-864 |#2|)) (-1 (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)) $ (-1 (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|))) (-1 (-112) (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)))) NIL)) (-3476 (((-2 (|:| -1685 (-644 (-780 |#1| (-864 |#2|)))) (|:| -3292 (-644 (-780 |#1| (-864 |#2|))))) $) NIL)) (-2969 (((-112) (-780 |#1| (-864 |#2|)) $) NIL)) (-1951 (((-112) (-780 |#1| (-864 |#2|)) $) NIL)) (-2775 (((-112) (-780 |#1| (-864 |#2|)) $) NIL) (((-112) $) NIL)) (-1683 (((-644 (-780 |#1| (-864 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-1640 (((-112) (-780 |#1| (-864 |#2|)) $) NIL) (((-112) $) NIL)) (-4296 (((-864 |#2|) $) NIL)) (-3456 (((-112) $ (-771)) NIL)) (-3491 (((-644 (-780 |#1| (-864 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) (-780 |#1| (-864 |#2|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-780 |#1| (-864 |#2|)) (-1099))))) (-3885 (($ (-1 (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|))) $) NIL (|has| $ (-6 -4415)))) (-2319 (($ (-1 (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|))) $) NIL)) (-1785 (((-644 (-864 |#2|)) $) NIL)) (-1579 (((-112) (-864 |#2|) $) NIL)) (-3267 (((-112) $ (-771)) NIL)) (-3380 (((-1157) $) NIL)) (-3006 (((-3 (-780 |#1| (-864 |#2|)) (-644 $)) (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)) $) NIL)) (-3940 (((-644 (-2 (|:| |val| (-780 |#1| (-864 |#2|))) (|:| -1470 $))) (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)) $) NIL)) (-2641 (((-3 (-780 |#1| (-864 |#2|)) "failed") $) NIL)) (-2568 (((-644 $) (-780 |#1| (-864 |#2|)) $) NIL)) (-1493 (((-3 (-112) (-644 $)) (-780 |#1| (-864 |#2|)) $) NIL)) (-3835 (((-644 (-2 (|:| |val| (-112)) (|:| -1470 $))) (-780 |#1| (-864 |#2|)) $) NIL) (((-112) (-780 |#1| (-864 |#2|)) $) NIL)) (-1997 (((-644 $) (-780 |#1| (-864 |#2|)) $) NIL) (((-644 $) (-644 (-780 |#1| (-864 |#2|))) $) NIL) (((-644 $) (-644 (-780 |#1| (-864 |#2|))) (-644 $)) NIL) (((-644 $) (-780 |#1| (-864 |#2|)) (-644 $)) NIL)) (-2921 (($ (-780 |#1| (-864 |#2|)) $) NIL) (($ (-644 (-780 |#1| (-864 |#2|))) $) NIL)) (-2133 (((-644 (-780 |#1| (-864 |#2|))) $) NIL)) (-2543 (((-112) (-780 |#1| (-864 |#2|)) $) NIL) (((-112) $) NIL)) (-1906 (((-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)) $) NIL)) (-3077 (((-112) $ $) NIL)) (-2594 (((-2 (|:| |num| (-780 |#1| (-864 |#2|))) (|:| |den| |#1|)) (-780 |#1| (-864 |#2|)) $) NIL (|has| |#1| (-558)))) (-3374 (((-112) (-780 |#1| (-864 |#2|)) $) NIL) (((-112) $) NIL)) (-4074 (((-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)) $) NIL)) (-4072 (((-1119) $) NIL)) (-3908 (((-3 (-780 |#1| (-864 |#2|)) "failed") $) NIL)) (-3668 (((-3 (-780 |#1| (-864 |#2|)) "failed") (-1 (-112) (-780 |#1| (-864 |#2|))) $) NIL)) (-2718 (((-3 $ "failed") $ (-780 |#1| (-864 |#2|))) NIL)) (-3369 (($ $ (-780 |#1| (-864 |#2|))) NIL) (((-644 $) (-780 |#1| (-864 |#2|)) $) NIL) (((-644 $) (-780 |#1| (-864 |#2|)) (-644 $)) NIL) (((-644 $) (-644 (-780 |#1| (-864 |#2|))) $) NIL) (((-644 $) (-644 (-780 |#1| (-864 |#2|))) (-644 $)) NIL)) (-2823 (((-112) (-1 (-112) (-780 |#1| (-864 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-780 |#1| (-864 |#2|))) (-644 (-780 |#1| (-864 |#2|)))) NIL (-12 (|has| (-780 |#1| (-864 |#2|)) (-310 (-780 |#1| (-864 |#2|)))) (|has| (-780 |#1| (-864 |#2|)) (-1099)))) (($ $ (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|))) NIL (-12 (|has| (-780 |#1| (-864 |#2|)) (-310 (-780 |#1| (-864 |#2|)))) (|has| (-780 |#1| (-864 |#2|)) (-1099)))) (($ $ (-295 (-780 |#1| (-864 |#2|)))) NIL (-12 (|has| (-780 |#1| (-864 |#2|)) (-310 (-780 |#1| (-864 |#2|)))) (|has| (-780 |#1| (-864 |#2|)) (-1099)))) (($ $ (-644 (-295 (-780 |#1| (-864 |#2|))))) NIL (-12 (|has| (-780 |#1| (-864 |#2|)) (-310 (-780 |#1| (-864 |#2|)))) (|has| (-780 |#1| (-864 |#2|)) (-1099))))) (-3814 (((-112) $ $) NIL)) (-2872 (((-112) $) NIL)) (-3493 (($) NIL)) (-3902 (((-771) $) NIL)) (-4083 (((-771) (-780 |#1| (-864 |#2|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-780 |#1| (-864 |#2|)) (-1099)))) (((-771) (-1 (-112) (-780 |#1| (-864 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-1480 (($ $) NIL)) (-2376 (((-538) $) NIL (|has| (-780 |#1| (-864 |#2|)) (-614 (-538))))) (-1340 (($ (-644 (-780 |#1| (-864 |#2|)))) NIL)) (-4305 (($ $ (-864 |#2|)) NIL)) (-1702 (($ $ (-864 |#2|)) NIL)) (-4017 (($ $) NIL)) (-3809 (($ $ (-864 |#2|)) NIL)) (-3152 (((-862) $) NIL) (((-644 (-780 |#1| (-864 |#2|))) $) NIL)) (-3909 (((-771) $) NIL (|has| (-864 |#2|) (-370)))) (-3044 (((-112) $ $) NIL)) (-2236 (((-3 (-2 (|:| |bas| $) (|:| -3712 (-644 (-780 |#1| (-864 |#2|))))) "failed") (-644 (-780 |#1| (-864 |#2|))) (-1 (-112) (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3712 (-644 (-780 |#1| (-864 |#2|))))) "failed") (-644 (-780 |#1| (-864 |#2|))) (-1 (-112) (-780 |#1| (-864 |#2|))) (-1 (-112) (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)))) NIL)) (-3622 (((-112) $ (-1 (-112) (-780 |#1| (-864 |#2|)) (-644 (-780 |#1| (-864 |#2|))))) NIL)) (-3998 (((-644 $) (-780 |#1| (-864 |#2|)) $) NIL) (((-644 $) (-780 |#1| (-864 |#2|)) (-644 $)) NIL) (((-644 $) (-644 (-780 |#1| (-864 |#2|))) $) NIL) (((-644 $) (-644 (-780 |#1| (-864 |#2|))) (-644 $)) NIL)) (-2210 (((-112) (-1 (-112) (-780 |#1| (-864 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-4382 (((-644 (-864 |#2|)) $) NIL)) (-2676 (((-112) (-780 |#1| (-864 |#2|)) $) NIL)) (-4217 (((-112) (-864 |#2|) $) NIL)) (-2914 (((-112) $ $) NIL)) (-3000 (((-771) $) NIL (|has| $ (-6 -4414))))) +(((-1046 |#1| |#2|) (-13 (-1070 |#1| (-533 (-864 |#2|)) (-864 |#2|) (-780 |#1| (-864 |#2|))) (-10 -8 (-15 -2779 ((-644 $) (-644 (-780 |#1| (-864 |#2|))) (-112) (-112))))) (-454) (-644 (-1175))) (T -1046)) +((-2779 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-644 (-780 *5 (-864 *6)))) (-5 *4 (-112)) (-4 *5 (-454)) (-14 *6 (-644 (-1175))) (-5 *2 (-644 (-1046 *5 *6))) (-5 *1 (-1046 *5 *6))))) +(-13 (-1070 |#1| (-533 (-864 |#2|)) (-864 |#2|) (-780 |#1| (-864 |#2|))) (-10 -8 (-15 -2779 ((-644 $) (-644 (-780 |#1| (-864 |#2|))) (-112) (-112))))) +((-1762 (((-1 (-566)) (-1093 (-566))) 32)) (-1321 (((-566) (-566) (-566) (-566) (-566)) 29)) (-2613 (((-1 (-566)) |RationalNumber|) NIL)) (-3182 (((-1 (-566)) |RationalNumber|) NIL)) (-2073 (((-1 (-566)) (-566) |RationalNumber|) NIL))) +(((-1047) (-10 -7 (-15 -1762 ((-1 (-566)) (-1093 (-566)))) (-15 -2073 ((-1 (-566)) (-566) |RationalNumber|)) (-15 -2613 ((-1 (-566)) |RationalNumber|)) (-15 -3182 ((-1 (-566)) |RationalNumber|)) (-15 -1321 ((-566) (-566) (-566) (-566) (-566))))) (T -1047)) +((-1321 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1047)))) (-3182 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-566))) (-5 *1 (-1047)))) (-2613 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-566))) (-5 *1 (-1047)))) (-2073 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-566))) (-5 *1 (-1047)) (-5 *3 (-566)))) (-1762 (*1 *2 *3) (-12 (-5 *3 (-1093 (-566))) (-5 *2 (-1 (-566))) (-5 *1 (-1047))))) +(-10 -7 (-15 -1762 ((-1 (-566)) (-1093 (-566)))) (-15 -2073 ((-1 (-566)) (-566) |RationalNumber|)) (-15 -2613 ((-1 (-566)) |RationalNumber|)) (-15 -3182 ((-1 (-566)) |RationalNumber|)) (-15 -1321 ((-566) (-566) (-566) (-566) (-566)))) +((-3152 (((-862) $) NIL) (($ (-566)) 10))) +(((-1048 |#1|) (-10 -8 (-15 -3152 (|#1| (-566))) (-15 -3152 ((-862) |#1|))) (-1049)) (T -1048)) +NIL +(-10 -8 (-15 -3152 (|#1| (-566))) (-15 -3152 ((-862) |#1|))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-3967 (((-3 $ "failed") $ $) 20)) (-2463 (($) 18 T CONST)) (-3245 (((-3 $ "failed") $) 37)) (-2389 (((-112) $) 35)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3152 (((-862) $) 12) (($ (-566)) 33)) (-2593 (((-771)) 32 T CONST)) (-3044 (((-112) $ $) 9)) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-2914 (((-112) $ $) 6)) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) (((-1049) (-140)) (T -1049)) -((-2107 (*1 *2) (-12 (-4 *1 (-1049)) (-5 *2 (-771))))) -(-13 (-1057) (-726) (-648 $) (-616 (-566)) (-10 -7 (-15 -2107 ((-771)) -3704) (-6 -4411))) +((-2593 (*1 *2) (-12 (-4 *1 (-1049)) (-5 *2 (-771))))) +(-13 (-1057) (-726) (-648 $) (-616 (-566)) (-10 -7 (-15 -2593 ((-771)) -1623) (-6 -4411))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-616 (-566)) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-726) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) -((-2390 (((-409 (-952 |#2|)) (-644 |#2|) (-644 |#2|) (-771) (-771)) 60))) -(((-1050 |#1| |#2|) (-10 -7 (-15 -2390 ((-409 (-952 |#2|)) (-644 |#2|) (-644 |#2|) (-771) (-771)))) (-1175) (-365)) (T -1050)) -((-2390 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-644 *6)) (-5 *4 (-771)) (-4 *6 (-365)) (-5 *2 (-409 (-952 *6))) (-5 *1 (-1050 *5 *6)) (-14 *5 (-1175))))) -(-10 -7 (-15 -2390 ((-409 (-952 |#2|)) (-644 |#2|) (-644 |#2|) (-771) (-771)))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 15)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3783 (((-862) $) 12)) (-3117 (((-112) $ $) 9)) (-2479 (($) 16 T CONST)) (-2947 (((-112) $ $) 6)) (* (($ $ |#1|) 14))) +((-2566 (((-409 (-952 |#2|)) (-644 |#2|) (-644 |#2|) (-771) (-771)) 60))) +(((-1050 |#1| |#2|) (-10 -7 (-15 -2566 ((-409 (-952 |#2|)) (-644 |#2|) (-644 |#2|) (-771) (-771)))) (-1175) (-365)) (T -1050)) +((-2566 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-644 *6)) (-5 *4 (-771)) (-4 *6 (-365)) (-5 *2 (-409 (-952 *6))) (-5 *1 (-1050 *5 *6)) (-14 *5 (-1175))))) +(-10 -7 (-15 -2566 ((-409 (-952 |#2|)) (-644 |#2|) (-644 |#2|) (-771) (-771)))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 15)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3152 (((-862) $) 12)) (-3044 (((-112) $ $) 9)) (-4356 (($) 16 T CONST)) (-2914 (((-112) $ $) 6)) (* (($ $ |#1|) 14))) (((-1051 |#1|) (-140) (-1057)) (T -1051)) -((-2479 (*1 *1) (-12 (-4 *1 (-1051 *2)) (-4 *2 (-1057)))) (-1788 (*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-1057)) (-5 *2 (-112)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1051 *2)) (-4 *2 (-1057))))) -(-13 (-1099) (-10 -8 (-15 (-2479) ($) -3704) (-15 -1788 ((-112) $)) (-15 * ($ $ |t#1|)))) +((-4356 (*1 *1) (-12 (-4 *1 (-1051 *2)) (-4 *2 (-1057)))) (-3230 (*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-1057)) (-5 *2 (-112)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1051 *2)) (-4 *2 (-1057))))) +(-13 (-1099) (-10 -8 (-15 (-4356) ($) -1623) (-15 -3230 ((-112) $)) (-15 * ($ $ |t#1|)))) (((-102) . T) ((-613 (-862)) . T) ((-1099) . T)) -((-2143 (((-112) $) 40)) (-1743 (((-112) $) 17)) (-1380 (((-771) $) 13)) (-1391 (((-771) $) 14)) (-2652 (((-112) $) 30)) (-3098 (((-112) $) 42))) -(((-1052 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -1391 ((-771) |#1|)) (-15 -1380 ((-771) |#1|)) (-15 -3098 ((-112) |#1|)) (-15 -2143 ((-112) |#1|)) (-15 -2652 ((-112) |#1|)) (-15 -1743 ((-112) |#1|))) (-1053 |#2| |#3| |#4| |#5| |#6|) (-771) (-771) (-1049) (-238 |#3| |#4|) (-238 |#2| |#4|)) (T -1052)) +((-1791 (((-112) $) 40)) (-3768 (((-112) $) 17)) (-3811 (((-771) $) 13)) (-3824 (((-771) $) 14)) (-1370 (((-112) $) 30)) (-1950 (((-112) $) 42))) +(((-1052 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -3824 ((-771) |#1|)) (-15 -3811 ((-771) |#1|)) (-15 -1950 ((-112) |#1|)) (-15 -1791 ((-112) |#1|)) (-15 -1370 ((-112) |#1|)) (-15 -3768 ((-112) |#1|))) (-1053 |#2| |#3| |#4| |#5| |#6|) (-771) (-771) (-1049) (-238 |#3| |#4|) (-238 |#2| |#4|)) (T -1052)) NIL -(-10 -8 (-15 -1391 ((-771) |#1|)) (-15 -1380 ((-771) |#1|)) (-15 -3098 ((-112) |#1|)) (-15 -2143 ((-112) |#1|)) (-15 -2652 ((-112) |#1|)) (-15 -1743 ((-112) |#1|))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-2143 (((-112) $) 56)) (-4175 (((-3 $ "failed") $ $) 20)) (-1743 (((-112) $) 58)) (-2256 (((-112) $ (-771)) 66)) (-3012 (($) 18 T CONST)) (-4137 (($ $) 39 (|has| |#3| (-308)))) (-4379 ((|#4| $ (-566)) 44)) (-4313 (((-771) $) 38 (|has| |#3| (-558)))) (-2855 ((|#3| $ (-566) (-566)) 46)) (-3979 (((-644 |#3|) $) 73 (|has| $ (-6 -4414)))) (-3864 (((-771) $) 37 (|has| |#3| (-558)))) (-1601 (((-644 |#5|) $) 36 (|has| |#3| (-558)))) (-1380 (((-771) $) 50)) (-1391 (((-771) $) 49)) (-2404 (((-112) $ (-771)) 65)) (-1368 (((-566) $) 54)) (-3832 (((-566) $) 52)) (-2329 (((-644 |#3|) $) 74 (|has| $ (-6 -4414)))) (-1916 (((-112) |#3| $) 76 (-12 (|has| |#3| (-1099)) (|has| $ (-6 -4414))))) (-1821 (((-566) $) 53)) (-1809 (((-566) $) 51)) (-3163 (($ (-644 (-644 |#3|))) 59)) (-2908 (($ (-1 |#3| |#3|) $) 69 (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#3| |#3|) $) 68) (($ (-1 |#3| |#3| |#3|) $ $) 42)) (-2909 (((-644 (-644 |#3|)) $) 48)) (-2603 (((-112) $ (-771)) 64)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-2994 (((-3 $ "failed") $ |#3|) 41 (|has| |#3| (-558)))) (-2692 (((-112) (-1 (-112) |#3|) $) 71 (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 |#3|) (-644 |#3|)) 80 (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) (($ $ |#3| |#3|) 79 (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) (($ $ (-295 |#3|)) 78 (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) (($ $ (-644 (-295 |#3|))) 77 (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099))))) (-1932 (((-112) $ $) 60)) (-3467 (((-112) $) 63)) (-1494 (($) 62)) (-4390 ((|#3| $ (-566) (-566)) 47) ((|#3| $ (-566) (-566) |#3|) 45)) (-2652 (((-112) $) 57)) (-4045 (((-771) |#3| $) 75 (-12 (|has| |#3| (-1099)) (|has| $ (-6 -4414)))) (((-771) (-1 (-112) |#3|) $) 72 (|has| $ (-6 -4414)))) (-3940 (($ $) 61)) (-2306 ((|#5| $ (-566)) 43)) (-3783 (((-862) $) 12)) (-3117 (((-112) $ $) 9)) (-1894 (((-112) (-1 (-112) |#3|) $) 70 (|has| $ (-6 -4414)))) (-3098 (((-112) $) 55)) (-2479 (($) 19 T CONST)) (-2947 (((-112) $ $) 6)) (-3065 (($ $ |#3|) 40 (|has| |#3| (-365)))) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ |#3| $) 27) (($ $ |#3|) 31)) (-3018 (((-771) $) 67 (|has| $ (-6 -4414))))) +(-10 -8 (-15 -3824 ((-771) |#1|)) (-15 -3811 ((-771) |#1|)) (-15 -1950 ((-112) |#1|)) (-15 -1791 ((-112) |#1|)) (-15 -1370 ((-112) |#1|)) (-15 -3768 ((-112) |#1|))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-1791 (((-112) $) 56)) (-3967 (((-3 $ "failed") $ $) 20)) (-3768 (((-112) $) 58)) (-1504 (((-112) $ (-771)) 66)) (-2463 (($) 18 T CONST)) (-1521 (($ $) 39 (|has| |#3| (-308)))) (-1721 ((|#4| $ (-566)) 44)) (-2755 (((-771) $) 38 (|has| |#3| (-558)))) (-3829 ((|#3| $ (-566) (-566)) 46)) (-1683 (((-644 |#3|) $) 73 (|has| $ (-6 -4414)))) (-1908 (((-771) $) 37 (|has| |#3| (-558)))) (-2950 (((-644 |#5|) $) 36 (|has| |#3| (-558)))) (-3811 (((-771) $) 50)) (-3824 (((-771) $) 49)) (-3456 (((-112) $ (-771)) 65)) (-2531 (((-566) $) 54)) (-3688 (((-566) $) 52)) (-3491 (((-644 |#3|) $) 74 (|has| $ (-6 -4414)))) (-1602 (((-112) |#3| $) 76 (-12 (|has| |#3| (-1099)) (|has| $ (-6 -4414))))) (-2422 (((-566) $) 53)) (-3632 (((-566) $) 51)) (-4184 (($ (-644 (-644 |#3|))) 59)) (-3885 (($ (-1 |#3| |#3|) $) 69 (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#3| |#3|) $) 68) (($ (-1 |#3| |#3| |#3|) $ $) 42)) (-1723 (((-644 (-644 |#3|)) $) 48)) (-3267 (((-112) $ (-771)) 64)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-2978 (((-3 $ "failed") $ |#3|) 41 (|has| |#3| (-558)))) (-2823 (((-112) (-1 (-112) |#3|) $) 71 (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 |#3|) (-644 |#3|)) 80 (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) (($ $ |#3| |#3|) 79 (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) (($ $ (-295 |#3|)) 78 (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) (($ $ (-644 (-295 |#3|))) 77 (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099))))) (-3814 (((-112) $ $) 60)) (-2872 (((-112) $) 63)) (-3493 (($) 62)) (-1309 ((|#3| $ (-566) (-566)) 47) ((|#3| $ (-566) (-566) |#3|) 45)) (-1370 (((-112) $) 57)) (-4083 (((-771) |#3| $) 75 (-12 (|has| |#3| (-1099)) (|has| $ (-6 -4414)))) (((-771) (-1 (-112) |#3|) $) 72 (|has| $ (-6 -4414)))) (-1480 (($ $) 61)) (-2986 ((|#5| $ (-566)) 43)) (-3152 (((-862) $) 12)) (-3044 (((-112) $ $) 9)) (-2210 (((-112) (-1 (-112) |#3|) $) 70 (|has| $ (-6 -4414)))) (-1950 (((-112) $) 55)) (-4356 (($) 19 T CONST)) (-2914 (((-112) $ $) 6)) (-3025 (($ $ |#3|) 40 (|has| |#3| (-365)))) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ |#3| $) 27) (($ $ |#3|) 31)) (-3000 (((-771) $) 67 (|has| $ (-6 -4414))))) (((-1053 |#1| |#2| |#3| |#4| |#5|) (-140) (-771) (-771) (-1049) (-238 |t#2| |t#3|) (-238 |t#1| |t#3|)) (T -1053)) -((-1301 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-3163 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 *5))) (-4 *5 (-1049)) (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-1743 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-2652 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-2143 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-3098 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-1368 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-566)))) (-1821 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-566)))) (-3832 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-566)))) (-1809 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-566)))) (-1380 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-771)))) (-1391 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-771)))) (-2909 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-644 (-644 *5))))) (-4390 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-566)) (-4 *1 (-1053 *4 *5 *2 *6 *7)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1049)))) (-2855 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-566)) (-4 *1 (-1053 *4 *5 *2 *6 *7)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1049)))) (-4390 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-566)) (-4 *1 (-1053 *4 *5 *2 *6 *7)) (-4 *2 (-1049)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)))) (-4379 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *1 (-1053 *4 *5 *6 *2 *7)) (-4 *6 (-1049)) (-4 *7 (-238 *4 *6)) (-4 *2 (-238 *5 *6)))) (-2306 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *1 (-1053 *4 *5 *6 *7 *2)) (-4 *6 (-1049)) (-4 *7 (-238 *5 *6)) (-4 *2 (-238 *4 *6)))) (-1301 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-2994 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1053 *3 *4 *2 *5 *6)) (-4 *2 (-1049)) (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-558)))) (-3065 (*1 *1 *1 *2) (-12 (-4 *1 (-1053 *3 *4 *2 *5 *6)) (-4 *2 (-1049)) (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-365)))) (-4137 (*1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4 *5 *6)) (-4 *4 (-1049)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *2 *4)) (-4 *4 (-308)))) (-4313 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-558)) (-5 *2 (-771)))) (-3864 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-558)) (-5 *2 (-771)))) (-1601 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-558)) (-5 *2 (-644 *7))))) -(-13 (-111 |t#3| |t#3|) (-491 |t#3|) (-10 -8 (-6 -4414) (IF (|has| |t#3| (-172)) (-6 (-717 |t#3|)) |%noBranch|) (-15 -3163 ($ (-644 (-644 |t#3|)))) (-15 -1743 ((-112) $)) (-15 -2652 ((-112) $)) (-15 -2143 ((-112) $)) (-15 -3098 ((-112) $)) (-15 -1368 ((-566) $)) (-15 -1821 ((-566) $)) (-15 -3832 ((-566) $)) (-15 -1809 ((-566) $)) (-15 -1380 ((-771) $)) (-15 -1391 ((-771) $)) (-15 -2909 ((-644 (-644 |t#3|)) $)) (-15 -4390 (|t#3| $ (-566) (-566))) (-15 -2855 (|t#3| $ (-566) (-566))) (-15 -4390 (|t#3| $ (-566) (-566) |t#3|)) (-15 -4379 (|t#4| $ (-566))) (-15 -2306 (|t#5| $ (-566))) (-15 -1301 ($ (-1 |t#3| |t#3|) $)) (-15 -1301 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-558)) (-15 -2994 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-365)) (-15 -3065 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-308)) (-15 -4137 ($ $)) |%noBranch|) (IF (|has| |t#3| (-558)) (PROGN (-15 -4313 ((-771) $)) (-15 -3864 ((-771) $)) (-15 -1601 ((-644 |t#5|) $))) |%noBranch|))) +((-2319 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-4184 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 *5))) (-4 *5 (-1049)) (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-3768 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-1370 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-1791 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-1950 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-2531 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-566)))) (-2422 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-566)))) (-3688 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-566)))) (-3632 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-566)))) (-3811 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-771)))) (-3824 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-771)))) (-1723 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-644 (-644 *5))))) (-1309 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-566)) (-4 *1 (-1053 *4 *5 *2 *6 *7)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1049)))) (-3829 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-566)) (-4 *1 (-1053 *4 *5 *2 *6 *7)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1049)))) (-1309 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-566)) (-4 *1 (-1053 *4 *5 *2 *6 *7)) (-4 *2 (-1049)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)))) (-1721 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *1 (-1053 *4 *5 *6 *2 *7)) (-4 *6 (-1049)) (-4 *7 (-238 *4 *6)) (-4 *2 (-238 *5 *6)))) (-2986 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *1 (-1053 *4 *5 *6 *7 *2)) (-4 *6 (-1049)) (-4 *7 (-238 *5 *6)) (-4 *2 (-238 *4 *6)))) (-2319 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-2978 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1053 *3 *4 *2 *5 *6)) (-4 *2 (-1049)) (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-558)))) (-3025 (*1 *1 *1 *2) (-12 (-4 *1 (-1053 *3 *4 *2 *5 *6)) (-4 *2 (-1049)) (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-365)))) (-1521 (*1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4 *5 *6)) (-4 *4 (-1049)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *2 *4)) (-4 *4 (-308)))) (-2755 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-558)) (-5 *2 (-771)))) (-1908 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-558)) (-5 *2 (-771)))) (-2950 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-558)) (-5 *2 (-644 *7))))) +(-13 (-111 |t#3| |t#3|) (-491 |t#3|) (-10 -8 (-6 -4414) (IF (|has| |t#3| (-172)) (-6 (-717 |t#3|)) |%noBranch|) (-15 -4184 ($ (-644 (-644 |t#3|)))) (-15 -3768 ((-112) $)) (-15 -1370 ((-112) $)) (-15 -1791 ((-112) $)) (-15 -1950 ((-112) $)) (-15 -2531 ((-566) $)) (-15 -2422 ((-566) $)) (-15 -3688 ((-566) $)) (-15 -3632 ((-566) $)) (-15 -3811 ((-771) $)) (-15 -3824 ((-771) $)) (-15 -1723 ((-644 (-644 |t#3|)) $)) (-15 -1309 (|t#3| $ (-566) (-566))) (-15 -3829 (|t#3| $ (-566) (-566))) (-15 -1309 (|t#3| $ (-566) (-566) |t#3|)) (-15 -1721 (|t#4| $ (-566))) (-15 -2986 (|t#5| $ (-566))) (-15 -2319 ($ (-1 |t#3| |t#3|) $)) (-15 -2319 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-558)) (-15 -2978 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-365)) (-15 -3025 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-308)) (-15 -1521 ($ $)) |%noBranch|) (IF (|has| |t#3| (-558)) (PROGN (-15 -2755 ((-771) $)) (-15 -1908 ((-771) $)) (-15 -2950 ((-644 |t#5|) $))) |%noBranch|))) (((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-131) . T) ((-613 (-862)) . T) ((-310 |#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099))) ((-491 |#3|) . T) ((-516 |#3| |#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099))) ((-646 (-566)) . T) ((-646 |#3|) . T) ((-648 |#3|) . T) ((-640 |#3|) |has| |#3| (-172)) ((-717 |#3|) |has| |#3| (-172)) ((-1051 |#3|) . T) ((-1056 |#3|) . T) ((-1099) . T) ((-1214) . T)) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-2143 (((-112) $) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-1743 (((-112) $) NIL)) (-2256 (((-112) $ (-771)) NIL)) (-3012 (($) NIL T CONST)) (-4137 (($ $) 47 (|has| |#3| (-308)))) (-4379 (((-240 |#2| |#3|) $ (-566)) 36)) (-3948 (($ (-689 |#3|)) 45)) (-4313 (((-771) $) 49 (|has| |#3| (-558)))) (-2855 ((|#3| $ (-566) (-566)) NIL)) (-3979 (((-644 |#3|) $) NIL (|has| $ (-6 -4414)))) (-3864 (((-771) $) 51 (|has| |#3| (-558)))) (-1601 (((-644 (-240 |#1| |#3|)) $) 55 (|has| |#3| (-558)))) (-1380 (((-771) $) NIL)) (-1391 (((-771) $) NIL)) (-2404 (((-112) $ (-771)) NIL)) (-1368 (((-566) $) NIL)) (-3832 (((-566) $) NIL)) (-2329 (((-644 |#3|) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#3| (-1099))))) (-1821 (((-566) $) NIL)) (-1809 (((-566) $) NIL)) (-3163 (($ (-644 (-644 |#3|))) 31)) (-2908 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-2909 (((-644 (-644 |#3|)) $) NIL)) (-2603 (((-112) $ (-771)) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-2994 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-558)))) (-2692 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 |#3|) (-644 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) (($ $ (-295 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) (($ $ (-644 (-295 |#3|))) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099))))) (-1932 (((-112) $ $) NIL)) (-3467 (((-112) $) NIL)) (-1494 (($) NIL)) (-4390 ((|#3| $ (-566) (-566)) NIL) ((|#3| $ (-566) (-566) |#3|) NIL)) (-3164 (((-134)) 59 (|has| |#3| (-365)))) (-2652 (((-112) $) NIL)) (-4045 (((-771) |#3| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#3| (-1099)))) (((-771) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4414)))) (-3940 (($ $) NIL)) (-1348 (((-538) $) 65 (|has| |#3| (-614 (-538))))) (-2306 (((-240 |#1| |#3|) $ (-566)) 40)) (-3783 (((-862) $) 19) (((-689 |#3|) $) 42)) (-3117 (((-112) $ $) NIL)) (-1894 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4414)))) (-3098 (((-112) $) NIL)) (-2479 (($) 16 T CONST)) (-2947 (((-112) $ $) NIL)) (-3065 (($ $ |#3|) NIL (|has| |#3| (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-3018 (((-771) $) NIL (|has| $ (-6 -4414))))) -(((-1054 |#1| |#2| |#3|) (-13 (-1053 |#1| |#2| |#3| (-240 |#2| |#3|) (-240 |#1| |#3|)) (-613 (-689 |#3|)) (-10 -8 (IF (|has| |#3| (-365)) (-6 (-1271 |#3|)) |%noBranch|) (IF (|has| |#3| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|) (-15 -3948 ($ (-689 |#3|))))) (-771) (-771) (-1049)) (T -1054)) -((-3948 (*1 *1 *2) (-12 (-5 *2 (-689 *5)) (-4 *5 (-1049)) (-5 *1 (-1054 *3 *4 *5)) (-14 *3 (-771)) (-14 *4 (-771))))) -(-13 (-1053 |#1| |#2| |#3| (-240 |#2| |#3|) (-240 |#1| |#3|)) (-613 (-689 |#3|)) (-10 -8 (IF (|has| |#3| (-365)) (-6 (-1271 |#3|)) |%noBranch|) (IF (|has| |#3| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|) (-15 -3948 ($ (-689 |#3|))))) -((-1676 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36)) (-1301 ((|#10| (-1 |#7| |#3|) |#6|) 34))) -(((-1055 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -1301 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -1676 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-771) (-771) (-1049) (-238 |#2| |#3|) (-238 |#1| |#3|) (-1053 |#1| |#2| |#3| |#4| |#5|) (-1049) (-238 |#2| |#7|) (-238 |#1| |#7|) (-1053 |#1| |#2| |#7| |#8| |#9|)) (T -1055)) -((-1676 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1049)) (-4 *2 (-1049)) (-14 *5 (-771)) (-14 *6 (-771)) (-4 *8 (-238 *6 *7)) (-4 *9 (-238 *5 *7)) (-4 *10 (-238 *6 *2)) (-4 *11 (-238 *5 *2)) (-5 *1 (-1055 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1053 *5 *6 *7 *8 *9)) (-4 *12 (-1053 *5 *6 *2 *10 *11)))) (-1301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1049)) (-4 *10 (-1049)) (-14 *5 (-771)) (-14 *6 (-771)) (-4 *8 (-238 *6 *7)) (-4 *9 (-238 *5 *7)) (-4 *2 (-1053 *5 *6 *10 *11 *12)) (-5 *1 (-1055 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1053 *5 *6 *7 *8 *9)) (-4 *11 (-238 *6 *10)) (-4 *12 (-238 *5 *10))))) -(-10 -7 (-15 -1301 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -1676 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-4175 (((-3 $ "failed") $ $) 20)) (-3012 (($) 18 T CONST)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3783 (((-862) $) 12)) (-3117 (((-112) $ $) 9)) (-2479 (($) 19 T CONST)) (-2947 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ |#1|) 27))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-1791 (((-112) $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-3768 (((-112) $) NIL)) (-1504 (((-112) $ (-771)) NIL)) (-2463 (($) NIL T CONST)) (-1521 (($ $) 47 (|has| |#3| (-308)))) (-1721 (((-240 |#2| |#3|) $ (-566)) 36)) (-2324 (($ (-689 |#3|)) 45)) (-2755 (((-771) $) 49 (|has| |#3| (-558)))) (-3829 ((|#3| $ (-566) (-566)) NIL)) (-1683 (((-644 |#3|) $) NIL (|has| $ (-6 -4414)))) (-1908 (((-771) $) 51 (|has| |#3| (-558)))) (-2950 (((-644 (-240 |#1| |#3|)) $) 55 (|has| |#3| (-558)))) (-3811 (((-771) $) NIL)) (-3824 (((-771) $) NIL)) (-3456 (((-112) $ (-771)) NIL)) (-2531 (((-566) $) NIL)) (-3688 (((-566) $) NIL)) (-3491 (((-644 |#3|) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#3| (-1099))))) (-2422 (((-566) $) NIL)) (-3632 (((-566) $) NIL)) (-4184 (($ (-644 (-644 |#3|))) 31)) (-3885 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-1723 (((-644 (-644 |#3|)) $) NIL)) (-3267 (((-112) $ (-771)) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-2978 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-558)))) (-2823 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 |#3|) (-644 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) (($ $ (-295 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) (($ $ (-644 (-295 |#3|))) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099))))) (-3814 (((-112) $ $) NIL)) (-2872 (((-112) $) NIL)) (-3493 (($) NIL)) (-1309 ((|#3| $ (-566) (-566)) NIL) ((|#3| $ (-566) (-566) |#3|) NIL)) (-3126 (((-134)) 59 (|has| |#3| (-365)))) (-1370 (((-112) $) NIL)) (-4083 (((-771) |#3| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#3| (-1099)))) (((-771) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4414)))) (-1480 (($ $) NIL)) (-2376 (((-538) $) 65 (|has| |#3| (-614 (-538))))) (-2986 (((-240 |#1| |#3|) $ (-566)) 40)) (-3152 (((-862) $) 19) (((-689 |#3|) $) 42)) (-3044 (((-112) $ $) NIL)) (-2210 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4414)))) (-1950 (((-112) $) NIL)) (-4356 (($) 16 T CONST)) (-2914 (((-112) $ $) NIL)) (-3025 (($ $ |#3|) NIL (|has| |#3| (-365)))) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-3000 (((-771) $) NIL (|has| $ (-6 -4414))))) +(((-1054 |#1| |#2| |#3|) (-13 (-1053 |#1| |#2| |#3| (-240 |#2| |#3|) (-240 |#1| |#3|)) (-613 (-689 |#3|)) (-10 -8 (IF (|has| |#3| (-365)) (-6 (-1271 |#3|)) |%noBranch|) (IF (|has| |#3| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|) (-15 -2324 ($ (-689 |#3|))))) (-771) (-771) (-1049)) (T -1054)) +((-2324 (*1 *1 *2) (-12 (-5 *2 (-689 *5)) (-4 *5 (-1049)) (-5 *1 (-1054 *3 *4 *5)) (-14 *3 (-771)) (-14 *4 (-771))))) +(-13 (-1053 |#1| |#2| |#3| (-240 |#2| |#3|) (-240 |#1| |#3|)) (-613 (-689 |#3|)) (-10 -8 (IF (|has| |#3| (-365)) (-6 (-1271 |#3|)) |%noBranch|) (IF (|has| |#3| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|) (-15 -2324 ($ (-689 |#3|))))) +((-2873 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36)) (-2319 ((|#10| (-1 |#7| |#3|) |#6|) 34))) +(((-1055 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -2319 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2873 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-771) (-771) (-1049) (-238 |#2| |#3|) (-238 |#1| |#3|) (-1053 |#1| |#2| |#3| |#4| |#5|) (-1049) (-238 |#2| |#7|) (-238 |#1| |#7|) (-1053 |#1| |#2| |#7| |#8| |#9|)) (T -1055)) +((-2873 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1049)) (-4 *2 (-1049)) (-14 *5 (-771)) (-14 *6 (-771)) (-4 *8 (-238 *6 *7)) (-4 *9 (-238 *5 *7)) (-4 *10 (-238 *6 *2)) (-4 *11 (-238 *5 *2)) (-5 *1 (-1055 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1053 *5 *6 *7 *8 *9)) (-4 *12 (-1053 *5 *6 *2 *10 *11)))) (-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1049)) (-4 *10 (-1049)) (-14 *5 (-771)) (-14 *6 (-771)) (-4 *8 (-238 *6 *7)) (-4 *9 (-238 *5 *7)) (-4 *2 (-1053 *5 *6 *10 *11 *12)) (-5 *1 (-1055 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1053 *5 *6 *7 *8 *9)) (-4 *11 (-238 *6 *10)) (-4 *12 (-238 *5 *10))))) +(-10 -7 (-15 -2319 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2873 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-3967 (((-3 $ "failed") $ $) 20)) (-2463 (($) 18 T CONST)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3152 (((-862) $) 12)) (-3044 (((-112) $ $) 9)) (-4356 (($) 19 T CONST)) (-2914 (((-112) $ $) 6)) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ |#1|) 27))) (((-1056 |#1|) (-140) (-1057)) (T -1056)) NIL (-13 (-21) (-1051 |t#1|)) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-1051 |#1|) . T) ((-1099) . T)) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-4175 (((-3 $ "failed") $ $) 20)) (-3012 (($) 18 T CONST)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3783 (((-862) $) 12)) (-3117 (((-112) $ $) 9)) (-2479 (($) 19 T CONST)) (-2947 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-3967 (((-3 $ "failed") $ $) 20)) (-2463 (($) 18 T CONST)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3152 (((-862) $) 12)) (-3044 (((-112) $ $) 9)) (-4356 (($) 19 T CONST)) (-2914 (((-112) $ $) 6)) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) (((-1057) (-140)) (T -1057)) NIL (-13 (-21) (-1111)) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-1111) . T) ((-1099) . T)) -((-2587 (($ $) 17)) (-2514 (($ $) 25)) (-2062 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 55)) (-1577 (($ $) 27)) (-2938 (($ $) 12)) (-3470 (($ $) 43)) (-1348 (((-381) $) NIL) (((-225) $) NIL) (((-892 (-381)) $) 36)) (-3783 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) 31) (($ (-566)) NIL) (($ (-409 (-566))) 31)) (-2107 (((-771)) 9)) (-2948 (($ $) 45))) -(((-1058 |#1|) (-10 -8 (-15 -2514 (|#1| |#1|)) (-15 -2587 (|#1| |#1|)) (-15 -2938 (|#1| |#1|)) (-15 -3470 (|#1| |#1|)) (-15 -2948 (|#1| |#1|)) (-15 -1577 (|#1| |#1|)) (-15 -2062 ((-889 (-381) |#1|) |#1| (-892 (-381)) (-889 (-381) |#1|))) (-15 -1348 ((-892 (-381)) |#1|)) (-15 -3783 (|#1| (-409 (-566)))) (-15 -3783 (|#1| (-566))) (-15 -1348 ((-225) |#1|)) (-15 -1348 ((-381) |#1|)) (-15 -3783 (|#1| (-409 (-566)))) (-15 -3783 (|#1| |#1|)) (-15 -2107 ((-771))) (-15 -3783 (|#1| (-566))) (-15 -3783 ((-862) |#1|))) (-1059)) (T -1058)) -((-2107 (*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-1058 *3)) (-4 *3 (-1059))))) -(-10 -8 (-15 -2514 (|#1| |#1|)) (-15 -2587 (|#1| |#1|)) (-15 -2938 (|#1| |#1|)) (-15 -3470 (|#1| |#1|)) (-15 -2948 (|#1| |#1|)) (-15 -1577 (|#1| |#1|)) (-15 -2062 ((-889 (-381) |#1|) |#1| (-892 (-381)) (-889 (-381) |#1|))) (-15 -1348 ((-892 (-381)) |#1|)) (-15 -3783 (|#1| (-409 (-566)))) (-15 -3783 (|#1| (-566))) (-15 -1348 ((-225) |#1|)) (-15 -1348 ((-381) |#1|)) (-15 -3783 (|#1| (-409 (-566)))) (-15 -3783 (|#1| |#1|)) (-15 -2107 ((-771))) (-15 -3783 (|#1| (-566))) (-15 -3783 ((-862) |#1|))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-1515 (((-566) $) 97)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) 47)) (-3991 (($ $) 46)) (-2388 (((-112) $) 44)) (-2587 (($ $) 95)) (-4175 (((-3 $ "failed") $ $) 20)) (-1550 (($ $) 81)) (-3184 (((-420 $) $) 80)) (-3731 (($ $) 105)) (-2837 (((-112) $ $) 65)) (-4364 (((-566) $) 122)) (-3012 (($) 18 T CONST)) (-2514 (($ $) 94)) (-4307 (((-3 (-566) "failed") $) 110) (((-3 (-409 (-566)) "failed") $) 107)) (-4205 (((-566) $) 111) (((-409 (-566)) $) 108)) (-2946 (($ $ $) 61)) (-1878 (((-3 $ "failed") $) 37)) (-2957 (($ $ $) 62)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) 57)) (-3268 (((-112) $) 79)) (-1897 (((-112) $) 120)) (-2062 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 101)) (-3934 (((-112) $) 35)) (-2140 (($ $ (-566)) 104)) (-1577 (($ $) 100)) (-2117 (((-112) $) 121)) (-3775 (((-3 (-644 $) "failed") (-644 $) $) 58)) (-2097 (($ $ $) 119)) (-3962 (($ $ $) 118)) (-2167 (($ $ $) 52) (($ (-644 $)) 51)) (-4117 (((-1157) $) 10)) (-1713 (($ $) 78)) (-4035 (((-1119) $) 11)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-2214 (($ $ $) 54) (($ (-644 $)) 53)) (-2938 (($ $) 96)) (-3470 (($ $) 98)) (-3719 (((-420 $) $) 82)) (-3148 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2994 (((-3 $ "failed") $ $) 48)) (-3161 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-3039 (((-771) $) 64)) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) 63)) (-1348 (((-381) $) 113) (((-225) $) 112) (((-892 (-381)) $) 102)) (-3783 (((-862) $) 12) (($ (-566)) 33) (($ $) 49) (($ (-409 (-566))) 74) (($ (-566)) 109) (($ (-409 (-566))) 106)) (-2107 (((-771)) 32 T CONST)) (-2948 (($ $) 99)) (-3117 (((-112) $ $) 9)) (-2695 (((-112) $ $) 45)) (-2086 (($ $) 123)) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-3009 (((-112) $ $) 116)) (-2984 (((-112) $ $) 115)) (-2947 (((-112) $ $) 6)) (-2995 (((-112) $ $) 117)) (-2969 (((-112) $ $) 114)) (-3065 (($ $ $) 73)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 77) (($ $ (-409 (-566))) 103)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 76) (($ (-409 (-566)) $) 75))) +((-2331 (($ $) 17)) (-3347 (($ $) 25)) (-2926 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 55)) (-2064 (($ $) 27)) (-2487 (($ $) 12)) (-3143 (($ $) 43)) (-2376 (((-381) $) NIL) (((-225) $) NIL) (((-892 (-381)) $) 36)) (-3152 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) 31) (($ (-566)) NIL) (($ (-409 (-566))) 31)) (-2593 (((-771)) 9)) (-3913 (($ $) 45))) +(((-1058 |#1|) (-10 -8 (-15 -3347 (|#1| |#1|)) (-15 -2331 (|#1| |#1|)) (-15 -2487 (|#1| |#1|)) (-15 -3143 (|#1| |#1|)) (-15 -3913 (|#1| |#1|)) (-15 -2064 (|#1| |#1|)) (-15 -2926 ((-889 (-381) |#1|) |#1| (-892 (-381)) (-889 (-381) |#1|))) (-15 -2376 ((-892 (-381)) |#1|)) (-15 -3152 (|#1| (-409 (-566)))) (-15 -3152 (|#1| (-566))) (-15 -2376 ((-225) |#1|)) (-15 -2376 ((-381) |#1|)) (-15 -3152 (|#1| (-409 (-566)))) (-15 -3152 (|#1| |#1|)) (-15 -2593 ((-771))) (-15 -3152 (|#1| (-566))) (-15 -3152 ((-862) |#1|))) (-1059)) (T -1058)) +((-2593 (*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-1058 *3)) (-4 *3 (-1059))))) +(-10 -8 (-15 -3347 (|#1| |#1|)) (-15 -2331 (|#1| |#1|)) (-15 -2487 (|#1| |#1|)) (-15 -3143 (|#1| |#1|)) (-15 -3913 (|#1| |#1|)) (-15 -2064 (|#1| |#1|)) (-15 -2926 ((-889 (-381) |#1|) |#1| (-892 (-381)) (-889 (-381) |#1|))) (-15 -2376 ((-892 (-381)) |#1|)) (-15 -3152 (|#1| (-409 (-566)))) (-15 -3152 (|#1| (-566))) (-15 -2376 ((-225) |#1|)) (-15 -2376 ((-381) |#1|)) (-15 -3152 (|#1| (-409 (-566)))) (-15 -3152 (|#1| |#1|)) (-15 -2593 ((-771))) (-15 -3152 (|#1| (-566))) (-15 -3152 ((-862) |#1|))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-1873 (((-566) $) 97)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) 47)) (-2161 (($ $) 46)) (-2345 (((-112) $) 44)) (-2331 (($ $) 95)) (-3967 (((-3 $ "failed") $ $) 20)) (-1378 (($ $) 81)) (-1364 (((-420 $) $) 80)) (-1635 (($ $) 105)) (-2085 (((-112) $ $) 65)) (-2743 (((-566) $) 122)) (-2463 (($) 18 T CONST)) (-3347 (($ $) 94)) (-2229 (((-3 (-566) "failed") $) 110) (((-3 (-409 (-566)) "failed") $) 107)) (-4158 (((-566) $) 111) (((-409 (-566)) $) 108)) (-2933 (($ $ $) 61)) (-3245 (((-3 $ "failed") $) 37)) (-2945 (($ $ $) 62)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) 57)) (-1615 (((-112) $) 79)) (-2528 (((-112) $) 120)) (-2926 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 101)) (-2389 (((-112) $) 35)) (-1575 (($ $ (-566)) 104)) (-2064 (($ $) 100)) (-3233 (((-112) $) 121)) (-3816 (((-3 (-644 $) "failed") (-644 $) $) 58)) (-1478 (($ $ $) 119)) (-2599 (($ $ $) 118)) (-2128 (($ $ $) 52) (($ (-644 $)) 51)) (-3380 (((-1157) $) 10)) (-2748 (($ $) 78)) (-4072 (((-1119) $) 11)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-2164 (($ $ $) 54) (($ (-644 $)) 53)) (-2487 (($ $) 96)) (-3143 (($ $) 98)) (-1624 (((-420 $) $) 82)) (-3005 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2978 (((-3 $ "failed") $ $) 48)) (-2915 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-4357 (((-771) $) 64)) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) 63)) (-2376 (((-381) $) 113) (((-225) $) 112) (((-892 (-381)) $) 102)) (-3152 (((-862) $) 12) (($ (-566)) 33) (($ $) 49) (($ (-409 (-566))) 74) (($ (-566)) 109) (($ (-409 (-566))) 106)) (-2593 (((-771)) 32 T CONST)) (-3913 (($ $) 99)) (-3044 (((-112) $ $) 9)) (-3014 (((-112) $ $) 45)) (-1358 (($ $) 123)) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-2968 (((-112) $ $) 116)) (-2946 (((-112) $ $) 115)) (-2914 (((-112) $ $) 6)) (-2956 (((-112) $ $) 117)) (-2935 (((-112) $ $) 114)) (-3025 (($ $ $) 73)) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 77) (($ $ (-409 (-566))) 103)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 76) (($ (-409 (-566)) $) 75))) (((-1059) (-140)) (T -1059)) -((-2086 (*1 *1 *1) (-4 *1 (-1059))) (-1577 (*1 *1 *1) (-4 *1 (-1059))) (-2948 (*1 *1 *1) (-4 *1 (-1059))) (-3470 (*1 *1 *1) (-4 *1 (-1059))) (-1515 (*1 *2 *1) (-12 (-4 *1 (-1059)) (-5 *2 (-566)))) (-2938 (*1 *1 *1) (-4 *1 (-1059))) (-2587 (*1 *1 *1) (-4 *1 (-1059))) (-2514 (*1 *1 *1) (-4 *1 (-1059)))) -(-13 (-365) (-848) (-1022) (-1038 (-566)) (-1038 (-409 (-566))) (-1002) (-614 (-892 (-381))) (-886 (-381)) (-147) (-10 -8 (-15 -1577 ($ $)) (-15 -2948 ($ $)) (-15 -3470 ($ $)) (-15 -1515 ((-566) $)) (-15 -2938 ($ $)) (-15 -2587 ($ $)) (-15 -2514 ($ $)) (-15 -2086 ($ $)))) +((-1358 (*1 *1 *1) (-4 *1 (-1059))) (-2064 (*1 *1 *1) (-4 *1 (-1059))) (-3913 (*1 *1 *1) (-4 *1 (-1059))) (-3143 (*1 *1 *1) (-4 *1 (-1059))) (-1873 (*1 *2 *1) (-12 (-4 *1 (-1059)) (-5 *2 (-566)))) (-2487 (*1 *1 *1) (-4 *1 (-1059))) (-2331 (*1 *1 *1) (-4 *1 (-1059))) (-3347 (*1 *1 *1) (-4 *1 (-1059)))) +(-13 (-365) (-848) (-1022) (-1038 (-566)) (-1038 (-409 (-566))) (-1002) (-614 (-892 (-381))) (-886 (-381)) (-147) (-10 -8 (-15 -2064 ($ $)) (-15 -3913 ($ $)) (-15 -3143 ($ $)) (-15 -1873 ((-566) $)) (-15 -2487 ($ $)) (-15 -2331 ($ $)) (-15 -3347 ($ $)) (-15 -1358 ($ $)))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-616 #0#) . T) ((-616 (-566)) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-614 (-225)) . T) ((-614 (-381)) . T) ((-614 (-892 (-381))) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-454) . T) ((-558) . T) ((-646 #0#) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 #0#) . T) ((-648 $) . T) ((-640 #0#) . T) ((-640 $) . T) ((-717 #0#) . T) ((-717 $) . T) ((-726) . T) ((-791) . T) ((-792) . T) ((-794) . T) ((-795) . T) ((-848) . T) ((-850) . T) ((-886 (-381)) . T) ((-920) . T) ((-1002) . T) ((-1022) . T) ((-1038 (-409 (-566))) . T) ((-1038 (-566)) . T) ((-1051 #0#) . T) ((-1051 $) . T) ((-1056 #0#) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1218) . T)) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) |#2| $) 26)) (-1970 ((|#1| $) 10)) (-4364 (((-566) |#2| $) 116)) (-3912 (((-3 $ "failed") |#2| (-921)) 75)) (-4392 ((|#1| $) 31)) (-3782 ((|#1| |#2| $ |#1|) 40)) (-4022 (($ $) 28)) (-1878 (((-3 |#2| "failed") |#2| $) 111)) (-1897 (((-112) |#2| $) NIL)) (-2117 (((-112) |#2| $) NIL)) (-2597 (((-112) |#2| $) 27)) (-1471 ((|#1| $) 117)) (-4380 ((|#1| $) 30)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-1616 ((|#2| $) 102)) (-3783 (((-862) $) 92)) (-3117 (((-112) $ $) NIL)) (-3628 ((|#1| |#2| $ |#1|) 41)) (-1990 (((-644 $) |#2|) 77)) (-2947 (((-112) $ $) 97))) -(((-1060 |#1| |#2|) (-13 (-1067 |#1| |#2|) (-10 -8 (-15 -4380 (|#1| $)) (-15 -4392 (|#1| $)) (-15 -1970 (|#1| $)) (-15 -1471 (|#1| $)) (-15 -4022 ($ $)) (-15 -2597 ((-112) |#2| $)) (-15 -3782 (|#1| |#2| $ |#1|)))) (-13 (-848) (-365)) (-1240 |#1|)) (T -1060)) -((-3782 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-848) (-365))) (-5 *1 (-1060 *2 *3)) (-4 *3 (-1240 *2)))) (-4380 (*1 *2 *1) (-12 (-4 *2 (-13 (-848) (-365))) (-5 *1 (-1060 *2 *3)) (-4 *3 (-1240 *2)))) (-4392 (*1 *2 *1) (-12 (-4 *2 (-13 (-848) (-365))) (-5 *1 (-1060 *2 *3)) (-4 *3 (-1240 *2)))) (-1970 (*1 *2 *1) (-12 (-4 *2 (-13 (-848) (-365))) (-5 *1 (-1060 *2 *3)) (-4 *3 (-1240 *2)))) (-1471 (*1 *2 *1) (-12 (-4 *2 (-13 (-848) (-365))) (-5 *1 (-1060 *2 *3)) (-4 *3 (-1240 *2)))) (-4022 (*1 *1 *1) (-12 (-4 *2 (-13 (-848) (-365))) (-5 *1 (-1060 *2 *3)) (-4 *3 (-1240 *2)))) (-2597 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-848) (-365))) (-5 *2 (-112)) (-5 *1 (-1060 *4 *3)) (-4 *3 (-1240 *4))))) -(-13 (-1067 |#1| |#2|) (-10 -8 (-15 -4380 (|#1| $)) (-15 -4392 (|#1| $)) (-15 -1970 (|#1| $)) (-15 -1471 (|#1| $)) (-15 -4022 ($ $)) (-15 -2597 ((-112) |#2| $)) (-15 -3782 (|#1| |#2| $ |#1|)))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-3991 (($ $) NIL)) (-2388 (((-112) $) NIL)) (-1573 (($ $ $) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-3904 (($ $ $ $) NIL)) (-1550 (($ $) NIL)) (-3184 (((-420 $) $) NIL)) (-2837 (((-112) $ $) NIL)) (-4364 (((-566) $) NIL)) (-3136 (($ $ $) NIL)) (-3012 (($) NIL T CONST)) (-3415 (($ (-1175)) 10) (($ (-566)) 7)) (-4307 (((-3 (-566) "failed") $) NIL)) (-4205 (((-566) $) NIL)) (-2946 (($ $ $) NIL)) (-3577 (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL) (((-689 (-566)) (-689 $)) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-1521 (((-3 (-409 (-566)) "failed") $) NIL)) (-1942 (((-112) $) NIL)) (-4204 (((-409 (-566)) $) NIL)) (-1552 (($) NIL) (($ $) NIL)) (-2957 (($ $ $) NIL)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL)) (-3268 (((-112) $) NIL)) (-3994 (($ $ $ $) NIL)) (-3680 (($ $ $) NIL)) (-1897 (((-112) $) NIL)) (-2529 (($ $ $) NIL)) (-2062 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL)) (-3934 (((-112) $) NIL)) (-2824 (((-112) $) NIL)) (-4363 (((-3 $ "failed") $) NIL)) (-2117 (((-112) $) NIL)) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3324 (($ $ $ $) NIL)) (-2097 (($ $ $) NIL)) (-3962 (($ $ $) NIL)) (-3674 (($ $) NIL)) (-4149 (($ $) NIL)) (-2167 (($ $ $) NIL) (($ (-644 $)) NIL)) (-4117 (((-1157) $) NIL)) (-2548 (($ $ $) NIL)) (-1761 (($) NIL T CONST)) (-3892 (($ $) NIL)) (-4035 (((-1119) $) NIL)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2214 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3727 (($ $) NIL)) (-3719 (((-420 $) $) NIL)) (-3148 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL)) (-2994 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1946 (((-112) $) NIL)) (-3039 (((-771) $) NIL)) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL)) (-3561 (($ $ (-771)) NIL) (($ $) NIL)) (-3238 (($ $) NIL)) (-3940 (($ $) NIL)) (-1348 (((-566) $) 16) (((-538) $) NIL) (((-892 (-566)) $) NIL) (((-381) $) NIL) (((-225) $) NIL) (($ (-1175)) 9)) (-3783 (((-862) $) 23) (($ (-566)) 6) (($ $) NIL) (($ (-566)) 6)) (-2107 (((-771)) NIL T CONST)) (-3162 (((-112) $ $) NIL)) (-3228 (($ $ $) NIL)) (-3117 (((-112) $ $) NIL)) (-2719 (($) NIL)) (-2695 (((-112) $ $) NIL)) (-3313 (($ $ $ $) NIL)) (-2086 (($ $) NIL)) (-2479 (($) NIL T CONST)) (-4334 (($) NIL T CONST)) (-2875 (($ $ (-771)) NIL) (($ $) NIL)) (-3009 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL)) (-2995 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-3053 (($ $) 22) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL))) -(((-1061) (-13 (-547) (-618 (-1175)) (-10 -8 (-6 -4401) (-6 -4406) (-6 -4402) (-15 -3415 ($ (-1175))) (-15 -3415 ($ (-566)))))) (T -1061)) -((-3415 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1061)))) (-3415 (*1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1061))))) -(-13 (-547) (-618 (-1175)) (-10 -8 (-6 -4401) (-6 -4406) (-6 -4402) (-15 -3415 ($ (-1175))) (-15 -3415 ($ (-566))))) -((-3007 (((-112) $ $) NIL (-2809 (|has| (-52) (-1099)) (|has| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-1099))))) (-4254 (($) NIL) (($ (-644 (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))))) NIL)) (-3734 (((-1269) $ (-1175) (-1175)) NIL (|has| $ (-6 -4415)))) (-2256 (((-112) $ (-771)) NIL)) (-4319 (($) 9)) (-3923 (((-52) $ (-1175) (-52)) NIL)) (-4267 (($ $) 32)) (-3610 (($ $) 30)) (-1444 (($ $) 29)) (-2075 (($ $) 31)) (-2271 (($ $) 35)) (-3583 (($ $) 36)) (-2589 (($ $) 28)) (-1855 (($ $) 33)) (-4016 (($ (-1 (-112) (-2 (|:| -2004 (-1175)) (|:| -3867 (-52)))) $) NIL (|has| $ (-6 -4414)))) (-2701 (($ (-1 (-112) (-2 (|:| -2004 (-1175)) (|:| -3867 (-52)))) $) 27 (|has| $ (-6 -4414)))) (-2434 (((-3 (-52) "failed") (-1175) $) 43)) (-3012 (($) NIL T CONST)) (-3222 (($) 7)) (-2031 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-1099))))) (-2956 (($ (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) $) 53 (|has| $ (-6 -4414))) (($ (-1 (-112) (-2 (|:| -2004 (-1175)) (|:| -3867 (-52)))) $) NIL (|has| $ (-6 -4414))) (((-3 (-52) "failed") (-1175) $) NIL)) (-2665 (($ (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-1099)))) (($ (-1 (-112) (-2 (|:| -2004 (-1175)) (|:| -3867 (-52)))) $) NIL (|has| $ (-6 -4414)))) (-1676 (((-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-1 (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-2 (|:| -2004 (-1175)) (|:| -3867 (-52)))) $ (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-2 (|:| -2004 (-1175)) (|:| -3867 (-52)))) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-1099)))) (((-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-1 (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-2 (|:| -2004 (-1175)) (|:| -3867 (-52)))) $ (-2 (|:| -2004 (-1175)) (|:| -3867 (-52)))) NIL (|has| $ (-6 -4414))) (((-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-1 (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-2 (|:| -2004 (-1175)) (|:| -3867 (-52)))) $) NIL (|has| $ (-6 -4414)))) (-3090 (((-3 (-1157) "failed") $ (-1157) (-566)) 74)) (-2920 (((-52) $ (-1175) (-52)) NIL (|has| $ (-6 -4415)))) (-2855 (((-52) $ (-1175)) NIL)) (-3979 (((-644 (-2 (|:| -2004 (-1175)) (|:| -3867 (-52)))) $) NIL (|has| $ (-6 -4414))) (((-644 (-52)) $) NIL (|has| $ (-6 -4414)))) (-2404 (((-112) $ (-771)) NIL)) (-3854 (((-1175) $) NIL (|has| (-1175) (-850)))) (-2329 (((-644 (-2 (|:| -2004 (-1175)) (|:| -3867 (-52)))) $) 38 (|has| $ (-6 -4414))) (((-644 (-52)) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-1099)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-52) (-1099))))) (-2712 (((-1175) $) NIL (|has| (-1175) (-850)))) (-2908 (($ (-1 (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-2 (|:| -2004 (-1175)) (|:| -3867 (-52)))) $) NIL (|has| $ (-6 -4415))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4415)))) (-1301 (($ (-1 (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-2 (|:| -2004 (-1175)) (|:| -3867 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2603 (((-112) $ (-771)) NIL)) (-4117 (((-1157) $) NIL (-2809 (|has| (-52) (-1099)) (|has| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-1099))))) (-4103 (((-644 (-1175)) $) NIL)) (-2876 (((-112) (-1175) $) NIL)) (-4039 (((-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) $) NIL)) (-3406 (($ (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) $) 46)) (-4074 (((-644 (-1175)) $) NIL)) (-3792 (((-112) (-1175) $) NIL)) (-4035 (((-1119) $) NIL (-2809 (|has| (-52) (-1099)) (|has| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-1099))))) (-2673 (((-381) $ (-1175)) 52)) (-2555 (((-644 (-1157)) $ (-1157)) 76)) (-1998 (((-52) $) NIL (|has| (-1175) (-850)))) (-2006 (((-3 (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) "failed") (-1 (-112) (-2 (|:| -2004 (-1175)) (|:| -3867 (-52)))) $) NIL)) (-4030 (($ $ (-52)) NIL (|has| $ (-6 -4415)))) (-2539 (((-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) $) NIL)) (-2692 (((-112) (-1 (-112) (-2 (|:| -2004 (-1175)) (|:| -3867 (-52)))) $) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 (-2 (|:| -2004 (-1175)) (|:| -3867 (-52)))))) NIL (-12 (|has| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-310 (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))))) (|has| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-1099)))) (($ $ (-295 (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))))) NIL (-12 (|has| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-310 (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))))) (|has| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-1099)))) (($ $ (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-2 (|:| -2004 (-1175)) (|:| -3867 (-52)))) NIL (-12 (|has| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-310 (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))))) (|has| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-1099)))) (($ $ (-644 (-2 (|:| -2004 (-1175)) (|:| -3867 (-52)))) (-644 (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))))) NIL (-12 (|has| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-310 (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))))) (|has| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-1099)))) (($ $ (-644 (-52)) (-644 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1099)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1099)))) (($ $ (-295 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1099)))) (($ $ (-644 (-295 (-52)))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1099))))) (-1932 (((-112) $ $) NIL)) (-4156 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-52) (-1099))))) (-2993 (((-644 (-52)) $) NIL)) (-3467 (((-112) $) NIL)) (-1494 (($) NIL)) (-4390 (((-52) $ (-1175)) NIL) (((-52) $ (-1175) (-52)) NIL)) (-3481 (($) NIL) (($ (-644 (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))))) NIL)) (-2747 (($ $ (-1175)) 54)) (-4045 (((-771) (-1 (-112) (-2 (|:| -2004 (-1175)) (|:| -3867 (-52)))) $) NIL (|has| $ (-6 -4414))) (((-771) (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-1099)))) (((-771) (-52) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-52) (-1099)))) (((-771) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4414)))) (-3940 (($ $) NIL)) (-1348 (((-538) $) NIL (|has| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-614 (-538))))) (-3796 (($ (-644 (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))))) 40)) (-3721 (($ $ $) 41)) (-3783 (((-862) $) NIL (-2809 (|has| (-52) (-613 (-862))) (|has| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-613 (-862)))))) (-4186 (($ $ (-1175) (-381)) 50)) (-3345 (($ $ (-1175) (-381)) 51)) (-3117 (((-112) $ $) NIL (-2809 (|has| (-52) (-1099)) (|has| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-1099))))) (-1748 (($ (-644 (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))))) NIL)) (-1894 (((-112) (-1 (-112) (-2 (|:| -2004 (-1175)) (|:| -3867 (-52)))) $) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) NIL (-2809 (|has| (-52) (-1099)) (|has| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (-1099))))) (-3018 (((-771) $) NIL (|has| $ (-6 -4414))))) -(((-1062) (-13 (-1190 (-1175) (-52)) (-10 -8 (-15 -3721 ($ $ $)) (-15 -3222 ($)) (-15 -2589 ($ $)) (-15 -1444 ($ $)) (-15 -3610 ($ $)) (-15 -2075 ($ $)) (-15 -1855 ($ $)) (-15 -4267 ($ $)) (-15 -2271 ($ $)) (-15 -3583 ($ $)) (-15 -4186 ($ $ (-1175) (-381))) (-15 -3345 ($ $ (-1175) (-381))) (-15 -2673 ((-381) $ (-1175))) (-15 -2555 ((-644 (-1157)) $ (-1157))) (-15 -2747 ($ $ (-1175))) (-15 -4319 ($)) (-15 -3090 ((-3 (-1157) "failed") $ (-1157) (-566))) (-6 -4414)))) (T -1062)) -((-3721 (*1 *1 *1 *1) (-5 *1 (-1062))) (-3222 (*1 *1) (-5 *1 (-1062))) (-2589 (*1 *1 *1) (-5 *1 (-1062))) (-1444 (*1 *1 *1) (-5 *1 (-1062))) (-3610 (*1 *1 *1) (-5 *1 (-1062))) (-2075 (*1 *1 *1) (-5 *1 (-1062))) (-1855 (*1 *1 *1) (-5 *1 (-1062))) (-4267 (*1 *1 *1) (-5 *1 (-1062))) (-2271 (*1 *1 *1) (-5 *1 (-1062))) (-3583 (*1 *1 *1) (-5 *1 (-1062))) (-4186 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-381)) (-5 *1 (-1062)))) (-3345 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-381)) (-5 *1 (-1062)))) (-2673 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-381)) (-5 *1 (-1062)))) (-2555 (*1 *2 *1 *3) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1062)) (-5 *3 (-1157)))) (-2747 (*1 *1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1062)))) (-4319 (*1 *1) (-5 *1 (-1062))) (-3090 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1157)) (-5 *3 (-566)) (-5 *1 (-1062))))) -(-13 (-1190 (-1175) (-52)) (-10 -8 (-15 -3721 ($ $ $)) (-15 -3222 ($)) (-15 -2589 ($ $)) (-15 -1444 ($ $)) (-15 -3610 ($ $)) (-15 -2075 ($ $)) (-15 -1855 ($ $)) (-15 -4267 ($ $)) (-15 -2271 ($ $)) (-15 -3583 ($ $)) (-15 -4186 ($ $ (-1175) (-381))) (-15 -3345 ($ $ (-1175) (-381))) (-15 -2673 ((-381) $ (-1175))) (-15 -2555 ((-644 (-1157)) $ (-1157))) (-15 -2747 ($ $ (-1175))) (-15 -4319 ($)) (-15 -3090 ((-3 (-1157) "failed") $ (-1157) (-566))) (-6 -4414))) -((-2223 (($ $) 46)) (-2459 (((-112) $ $) 82)) (-4307 (((-3 |#2| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL) (((-3 (-566) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-952 (-409 (-566)))) 253) (((-3 $ "failed") (-952 (-566))) 252) (((-3 $ "failed") (-952 |#2|)) 255)) (-4205 ((|#2| $) NIL) (((-409 (-566)) $) NIL) (((-566) $) NIL) ((|#4| $) NIL) (($ (-952 (-409 (-566)))) 241) (($ (-952 (-566))) 237) (($ (-952 |#2|)) 257)) (-1786 (($ $) NIL) (($ $ |#4|) 44)) (-1464 (((-112) $ $) 131) (((-112) $ (-644 $)) 135)) (-2857 (((-112) $) 60)) (-1960 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) 125)) (-2327 (($ $) 160)) (-2628 (($ $) 156)) (-3233 (($ $) 155)) (-3565 (($ $ $) 87) (($ $ $ |#4|) 92)) (-2750 (($ $ $) 90) (($ $ $ |#4|) 94)) (-2111 (((-112) $ $) 143) (((-112) $ (-644 $)) 144)) (-1489 ((|#4| $) 32)) (-2532 (($ $ $) 128)) (-1314 (((-112) $) 59)) (-3482 (((-771) $) 35)) (-1705 (($ $) 174)) (-3165 (($ $) 171)) (-4025 (((-644 $) $) 72)) (-3737 (($ $) 62)) (-4167 (($ $) 167)) (-3803 (((-644 $) $) 69)) (-3568 (($ $) 64)) (-1763 ((|#2| $) NIL) (($ $ |#4|) 39)) (-4252 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4369 (-771))) $ $) 130)) (-1953 (((-2 (|:| -1364 $) (|:| |gap| (-771)) (|:| -2275 $) (|:| -2513 $)) $ $) 126) (((-2 (|:| -1364 $) (|:| |gap| (-771)) (|:| -2275 $) (|:| -2513 $)) $ $ |#4|) 127)) (-2767 (((-2 (|:| -1364 $) (|:| |gap| (-771)) (|:| -2513 $)) $ $) 121) (((-2 (|:| -1364 $) (|:| |gap| (-771)) (|:| -2513 $)) $ $ |#4|) 123)) (-4388 (($ $ $) 97) (($ $ $ |#4|) 106)) (-2940 (($ $ $) 98) (($ $ $ |#4|) 107)) (-4253 (((-644 $) $) 54)) (-1694 (((-112) $ $) 140) (((-112) $ (-644 $)) 141)) (-1871 (($ $ $) 116)) (-1761 (($ $) 37)) (-2897 (((-112) $ $) 80)) (-3351 (((-112) $ $) 136) (((-112) $ (-644 $)) 138)) (-3544 (($ $ $) 112)) (-3558 (($ $) 41)) (-2214 ((|#2| |#2| $) 164) (($ (-644 $)) NIL) (($ $ $) NIL)) (-4164 (($ $ |#2|) NIL) (($ $ $) 153)) (-4044 (($ $ |#2|) 148) (($ $ $) 151)) (-1620 (($ $) 49)) (-3276 (($ $) 55)) (-1348 (((-892 (-381)) $) NIL) (((-892 (-566)) $) NIL) (((-538) $) NIL) (($ (-952 (-409 (-566)))) 243) (($ (-952 (-566))) 239) (($ (-952 |#2|)) 254) (((-1157) $) 281) (((-952 |#2|) $) 184)) (-3783 (((-862) $) 29) (($ (-566)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-952 |#2|) $) 185) (($ (-409 (-566))) NIL) (($ $) NIL)) (-2784 (((-3 (-112) "failed") $ $) 79))) -(((-1063 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3783 (|#1| |#1|)) (-15 -2214 (|#1| |#1| |#1|)) (-15 -2214 (|#1| (-644 |#1|))) (-15 -3783 (|#1| (-409 (-566)))) (-15 -3783 ((-952 |#2|) |#1|)) (-15 -1348 ((-952 |#2|) |#1|)) (-15 -1348 ((-1157) |#1|)) (-15 -1705 (|#1| |#1|)) (-15 -3165 (|#1| |#1|)) (-15 -4167 (|#1| |#1|)) (-15 -2327 (|#1| |#1|)) (-15 -2214 (|#2| |#2| |#1|)) (-15 -4164 (|#1| |#1| |#1|)) (-15 -4044 (|#1| |#1| |#1|)) (-15 -4164 (|#1| |#1| |#2|)) (-15 -4044 (|#1| |#1| |#2|)) (-15 -2628 (|#1| |#1|)) (-15 -3233 (|#1| |#1|)) (-15 -1348 (|#1| (-952 |#2|))) (-15 -4205 (|#1| (-952 |#2|))) (-15 -4307 ((-3 |#1| "failed") (-952 |#2|))) (-15 -1348 (|#1| (-952 (-566)))) (-15 -4205 (|#1| (-952 (-566)))) (-15 -4307 ((-3 |#1| "failed") (-952 (-566)))) (-15 -1348 (|#1| (-952 (-409 (-566))))) (-15 -4205 (|#1| (-952 (-409 (-566))))) (-15 -4307 ((-3 |#1| "failed") (-952 (-409 (-566))))) (-15 -1871 (|#1| |#1| |#1|)) (-15 -3544 (|#1| |#1| |#1|)) (-15 -4252 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -4369 (-771))) |#1| |#1|)) (-15 -2532 (|#1| |#1| |#1|)) (-15 -1960 ((-2 (|:| -2275 |#1|) (|:| -2513 |#1|)) |#1| |#1|)) (-15 -1953 ((-2 (|:| -1364 |#1|) (|:| |gap| (-771)) (|:| -2275 |#1|) (|:| -2513 |#1|)) |#1| |#1| |#4|)) (-15 -1953 ((-2 (|:| -1364 |#1|) (|:| |gap| (-771)) (|:| -2275 |#1|) (|:| -2513 |#1|)) |#1| |#1|)) (-15 -2767 ((-2 (|:| -1364 |#1|) (|:| |gap| (-771)) (|:| -2513 |#1|)) |#1| |#1| |#4|)) (-15 -2767 ((-2 (|:| -1364 |#1|) (|:| |gap| (-771)) (|:| -2513 |#1|)) |#1| |#1|)) (-15 -2940 (|#1| |#1| |#1| |#4|)) (-15 -4388 (|#1| |#1| |#1| |#4|)) (-15 -2940 (|#1| |#1| |#1|)) (-15 -4388 (|#1| |#1| |#1|)) (-15 -2750 (|#1| |#1| |#1| |#4|)) (-15 -3565 (|#1| |#1| |#1| |#4|)) (-15 -2750 (|#1| |#1| |#1|)) (-15 -3565 (|#1| |#1| |#1|)) (-15 -2111 ((-112) |#1| (-644 |#1|))) (-15 -2111 ((-112) |#1| |#1|)) (-15 -1694 ((-112) |#1| (-644 |#1|))) (-15 -1694 ((-112) |#1| |#1|)) (-15 -3351 ((-112) |#1| (-644 |#1|))) (-15 -3351 ((-112) |#1| |#1|)) (-15 -1464 ((-112) |#1| (-644 |#1|))) (-15 -1464 ((-112) |#1| |#1|)) (-15 -2459 ((-112) |#1| |#1|)) (-15 -2897 ((-112) |#1| |#1|)) (-15 -2784 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4025 ((-644 |#1|) |#1|)) (-15 -3803 ((-644 |#1|) |#1|)) (-15 -3568 (|#1| |#1|)) (-15 -3737 (|#1| |#1|)) (-15 -2857 ((-112) |#1|)) (-15 -1314 ((-112) |#1|)) (-15 -1786 (|#1| |#1| |#4|)) (-15 -1763 (|#1| |#1| |#4|)) (-15 -3276 (|#1| |#1|)) (-15 -4253 ((-644 |#1|) |#1|)) (-15 -1620 (|#1| |#1|)) (-15 -2223 (|#1| |#1|)) (-15 -3558 (|#1| |#1|)) (-15 -1761 (|#1| |#1|)) (-15 -3482 ((-771) |#1|)) (-15 -1489 (|#4| |#1|)) (-15 -1348 ((-538) |#1|)) (-15 -1348 ((-892 (-566)) |#1|)) (-15 -1348 ((-892 (-381)) |#1|)) (-15 -3783 (|#1| |#4|)) (-15 -4307 ((-3 |#4| "failed") |#1|)) (-15 -4205 (|#4| |#1|)) (-15 -1763 (|#2| |#1|)) (-15 -1786 (|#1| |#1|)) (-15 -4307 ((-3 (-566) "failed") |#1|)) (-15 -4205 ((-566) |#1|)) (-15 -4307 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -4205 ((-409 (-566)) |#1|)) (-15 -4205 (|#2| |#1|)) (-15 -4307 ((-3 |#2| "failed") |#1|)) (-15 -3783 (|#1| |#2|)) (-15 -3783 (|#1| (-566))) (-15 -3783 ((-862) |#1|))) (-1064 |#2| |#3| |#4|) (-1049) (-793) (-850)) (T -1063)) -NIL -(-10 -8 (-15 -3783 (|#1| |#1|)) (-15 -2214 (|#1| |#1| |#1|)) (-15 -2214 (|#1| (-644 |#1|))) (-15 -3783 (|#1| (-409 (-566)))) (-15 -3783 ((-952 |#2|) |#1|)) (-15 -1348 ((-952 |#2|) |#1|)) (-15 -1348 ((-1157) |#1|)) (-15 -1705 (|#1| |#1|)) (-15 -3165 (|#1| |#1|)) (-15 -4167 (|#1| |#1|)) (-15 -2327 (|#1| |#1|)) (-15 -2214 (|#2| |#2| |#1|)) (-15 -4164 (|#1| |#1| |#1|)) (-15 -4044 (|#1| |#1| |#1|)) (-15 -4164 (|#1| |#1| |#2|)) (-15 -4044 (|#1| |#1| |#2|)) (-15 -2628 (|#1| |#1|)) (-15 -3233 (|#1| |#1|)) (-15 -1348 (|#1| (-952 |#2|))) (-15 -4205 (|#1| (-952 |#2|))) (-15 -4307 ((-3 |#1| "failed") (-952 |#2|))) (-15 -1348 (|#1| (-952 (-566)))) (-15 -4205 (|#1| (-952 (-566)))) (-15 -4307 ((-3 |#1| "failed") (-952 (-566)))) (-15 -1348 (|#1| (-952 (-409 (-566))))) (-15 -4205 (|#1| (-952 (-409 (-566))))) (-15 -4307 ((-3 |#1| "failed") (-952 (-409 (-566))))) (-15 -1871 (|#1| |#1| |#1|)) (-15 -3544 (|#1| |#1| |#1|)) (-15 -4252 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -4369 (-771))) |#1| |#1|)) (-15 -2532 (|#1| |#1| |#1|)) (-15 -1960 ((-2 (|:| -2275 |#1|) (|:| -2513 |#1|)) |#1| |#1|)) (-15 -1953 ((-2 (|:| -1364 |#1|) (|:| |gap| (-771)) (|:| -2275 |#1|) (|:| -2513 |#1|)) |#1| |#1| |#4|)) (-15 -1953 ((-2 (|:| -1364 |#1|) (|:| |gap| (-771)) (|:| -2275 |#1|) (|:| -2513 |#1|)) |#1| |#1|)) (-15 -2767 ((-2 (|:| -1364 |#1|) (|:| |gap| (-771)) (|:| -2513 |#1|)) |#1| |#1| |#4|)) (-15 -2767 ((-2 (|:| -1364 |#1|) (|:| |gap| (-771)) (|:| -2513 |#1|)) |#1| |#1|)) (-15 -2940 (|#1| |#1| |#1| |#4|)) (-15 -4388 (|#1| |#1| |#1| |#4|)) (-15 -2940 (|#1| |#1| |#1|)) (-15 -4388 (|#1| |#1| |#1|)) (-15 -2750 (|#1| |#1| |#1| |#4|)) (-15 -3565 (|#1| |#1| |#1| |#4|)) (-15 -2750 (|#1| |#1| |#1|)) (-15 -3565 (|#1| |#1| |#1|)) (-15 -2111 ((-112) |#1| (-644 |#1|))) (-15 -2111 ((-112) |#1| |#1|)) (-15 -1694 ((-112) |#1| (-644 |#1|))) (-15 -1694 ((-112) |#1| |#1|)) (-15 -3351 ((-112) |#1| (-644 |#1|))) (-15 -3351 ((-112) |#1| |#1|)) (-15 -1464 ((-112) |#1| (-644 |#1|))) (-15 -1464 ((-112) |#1| |#1|)) (-15 -2459 ((-112) |#1| |#1|)) (-15 -2897 ((-112) |#1| |#1|)) (-15 -2784 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4025 ((-644 |#1|) |#1|)) (-15 -3803 ((-644 |#1|) |#1|)) (-15 -3568 (|#1| |#1|)) (-15 -3737 (|#1| |#1|)) (-15 -2857 ((-112) |#1|)) (-15 -1314 ((-112) |#1|)) (-15 -1786 (|#1| |#1| |#4|)) (-15 -1763 (|#1| |#1| |#4|)) (-15 -3276 (|#1| |#1|)) (-15 -4253 ((-644 |#1|) |#1|)) (-15 -1620 (|#1| |#1|)) (-15 -2223 (|#1| |#1|)) (-15 -3558 (|#1| |#1|)) (-15 -1761 (|#1| |#1|)) (-15 -3482 ((-771) |#1|)) (-15 -1489 (|#4| |#1|)) (-15 -1348 ((-538) |#1|)) (-15 -1348 ((-892 (-566)) |#1|)) (-15 -1348 ((-892 (-381)) |#1|)) (-15 -3783 (|#1| |#4|)) (-15 -4307 ((-3 |#4| "failed") |#1|)) (-15 -4205 (|#4| |#1|)) (-15 -1763 (|#2| |#1|)) (-15 -1786 (|#1| |#1|)) (-15 -4307 ((-3 (-566) "failed") |#1|)) (-15 -4205 ((-566) |#1|)) (-15 -4307 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -4205 ((-409 (-566)) |#1|)) (-15 -4205 (|#2| |#1|)) (-15 -4307 ((-3 |#2| "failed") |#1|)) (-15 -3783 (|#1| |#2|)) (-15 -3783 (|#1| (-566))) (-15 -3783 ((-862) |#1|))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-3863 (((-644 |#3|) $) 112)) (-3683 (((-1171 $) $ |#3|) 127) (((-1171 |#1|) $) 126)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) 89 (|has| |#1| (-558)))) (-3991 (($ $) 90 (|has| |#1| (-558)))) (-2388 (((-112) $) 92 (|has| |#1| (-558)))) (-3367 (((-771) $) 114) (((-771) $ (-644 |#3|)) 113)) (-2223 (($ $) 273)) (-2459 (((-112) $ $) 259)) (-4175 (((-3 $ "failed") $ $) 20)) (-4206 (($ $ $) 218 (|has| |#1| (-558)))) (-3856 (((-644 $) $ $) 213 (|has| |#1| (-558)))) (-1477 (((-420 (-1171 $)) (-1171 $)) 102 (|has| |#1| (-909)))) (-1550 (($ $) 100 (|has| |#1| (-454)))) (-3184 (((-420 $) $) 99 (|has| |#1| (-454)))) (-3717 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) 105 (|has| |#1| (-909)))) (-3012 (($) 18 T CONST)) (-4307 (((-3 |#1| "failed") $) 166) (((-3 (-409 (-566)) "failed") $) 163 (|has| |#1| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) 161 (|has| |#1| (-1038 (-566)))) (((-3 |#3| "failed") $) 138) (((-3 $ "failed") (-952 (-409 (-566)))) 233 (-12 (|has| |#1| (-38 (-409 (-566)))) (|has| |#3| (-614 (-1175))))) (((-3 $ "failed") (-952 (-566))) 230 (-2809 (-12 (-2418 (|has| |#1| (-38 (-409 (-566))))) (|has| |#1| (-38 (-566))) (|has| |#3| (-614 (-1175)))) (-12 (|has| |#1| (-38 (-409 (-566)))) (|has| |#3| (-614 (-1175)))))) (((-3 $ "failed") (-952 |#1|)) 227 (-2809 (-12 (-2418 (|has| |#1| (-38 (-409 (-566))))) (-2418 (|has| |#1| (-38 (-566)))) (|has| |#3| (-614 (-1175)))) (-12 (-2418 (|has| |#1| (-547))) (-2418 (|has| |#1| (-38 (-409 (-566))))) (|has| |#1| (-38 (-566))) (|has| |#3| (-614 (-1175)))) (-12 (-2418 (|has| |#1| (-992 (-566)))) (|has| |#1| (-38 (-409 (-566)))) (|has| |#3| (-614 (-1175))))))) (-4205 ((|#1| $) 165) (((-409 (-566)) $) 164 (|has| |#1| (-1038 (-409 (-566))))) (((-566) $) 162 (|has| |#1| (-1038 (-566)))) ((|#3| $) 139) (($ (-952 (-409 (-566)))) 232 (-12 (|has| |#1| (-38 (-409 (-566)))) (|has| |#3| (-614 (-1175))))) (($ (-952 (-566))) 229 (-2809 (-12 (-2418 (|has| |#1| (-38 (-409 (-566))))) (|has| |#1| (-38 (-566))) (|has| |#3| (-614 (-1175)))) (-12 (|has| |#1| (-38 (-409 (-566)))) (|has| |#3| (-614 (-1175)))))) (($ (-952 |#1|)) 226 (-2809 (-12 (-2418 (|has| |#1| (-38 (-409 (-566))))) (-2418 (|has| |#1| (-38 (-566)))) (|has| |#3| (-614 (-1175)))) (-12 (-2418 (|has| |#1| (-547))) (-2418 (|has| |#1| (-38 (-409 (-566))))) (|has| |#1| (-38 (-566))) (|has| |#3| (-614 (-1175)))) (-12 (-2418 (|has| |#1| (-992 (-566)))) (|has| |#1| (-38 (-409 (-566)))) (|has| |#3| (-614 (-1175))))))) (-2738 (($ $ $ |#3|) 110 (|has| |#1| (-172))) (($ $ $) 214 (|has| |#1| (-558)))) (-1786 (($ $) 156) (($ $ |#3|) 268)) (-3577 (((-689 (-566)) (-689 $)) 136 (|has| |#1| (-639 (-566)))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) 135 (|has| |#1| (-639 (-566)))) (((-2 (|:| -4227 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) 134) (((-689 |#1|) (-689 $)) 133)) (-1464 (((-112) $ $) 258) (((-112) $ (-644 $)) 257)) (-1878 (((-3 $ "failed") $) 37)) (-2857 (((-112) $) 266)) (-1960 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) 238)) (-2327 (($ $) 207 (|has| |#1| (-454)))) (-4075 (($ $) 178 (|has| |#1| (-454))) (($ $ |#3|) 107 (|has| |#1| (-454)))) (-1774 (((-644 $) $) 111)) (-3268 (((-112) $) 98 (|has| |#1| (-909)))) (-2628 (($ $) 223 (|has| |#1| (-558)))) (-3233 (($ $) 224 (|has| |#1| (-558)))) (-3565 (($ $ $) 250) (($ $ $ |#3|) 248)) (-2750 (($ $ $) 249) (($ $ $ |#3|) 247)) (-3635 (($ $ |#1| |#2| $) 174)) (-2062 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 86 (-12 (|has| |#3| (-886 (-381))) (|has| |#1| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 85 (-12 (|has| |#3| (-886 (-566))) (|has| |#1| (-886 (-566)))))) (-3934 (((-112) $) 35)) (-2614 (((-771) $) 171)) (-2111 (((-112) $ $) 252) (((-112) $ (-644 $)) 251)) (-3229 (($ $ $ $ $) 209 (|has| |#1| (-558)))) (-1489 ((|#3| $) 277)) (-3851 (($ (-1171 |#1|) |#3|) 119) (($ (-1171 $) |#3|) 118)) (-2288 (((-644 $) $) 128)) (-3264 (((-112) $) 154)) (-3840 (($ |#1| |#2|) 155) (($ $ |#3| (-771)) 121) (($ $ (-644 |#3|) (-644 (-771))) 120)) (-2532 (($ $ $) 237)) (-2044 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $ |#3|) 122)) (-1314 (((-112) $) 267)) (-3760 ((|#2| $) 172) (((-771) $ |#3|) 124) (((-644 (-771)) $ (-644 |#3|)) 123)) (-3482 (((-771) $) 276)) (-4301 (($ (-1 |#2| |#2|) $) 173)) (-1301 (($ (-1 |#1| |#1|) $) 153)) (-3169 (((-3 |#3| "failed") $) 125)) (-1705 (($ $) 204 (|has| |#1| (-454)))) (-3165 (($ $) 205 (|has| |#1| (-454)))) (-4025 (((-644 $) $) 262)) (-3737 (($ $) 265)) (-4167 (($ $) 206 (|has| |#1| (-454)))) (-3803 (((-644 $) $) 263)) (-3568 (($ $) 264)) (-1749 (($ $) 151)) (-1763 ((|#1| $) 150) (($ $ |#3|) 269)) (-2167 (($ (-644 $)) 96 (|has| |#1| (-454))) (($ $ $) 95 (|has| |#1| (-454)))) (-4252 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4369 (-771))) $ $) 236)) (-1953 (((-2 (|:| -1364 $) (|:| |gap| (-771)) (|:| -2275 $) (|:| -2513 $)) $ $) 240) (((-2 (|:| -1364 $) (|:| |gap| (-771)) (|:| -2275 $) (|:| -2513 $)) $ $ |#3|) 239)) (-2767 (((-2 (|:| -1364 $) (|:| |gap| (-771)) (|:| -2513 $)) $ $) 242) (((-2 (|:| -1364 $) (|:| |gap| (-771)) (|:| -2513 $)) $ $ |#3|) 241)) (-4388 (($ $ $) 246) (($ $ $ |#3|) 244)) (-2940 (($ $ $) 245) (($ $ $ |#3|) 243)) (-4117 (((-1157) $) 10)) (-1558 (($ $ $) 212 (|has| |#1| (-558)))) (-4253 (((-644 $) $) 271)) (-3714 (((-3 (-644 $) "failed") $) 116)) (-2353 (((-3 (-644 $) "failed") $) 117)) (-1518 (((-3 (-2 (|:| |var| |#3|) (|:| -2852 (-771))) "failed") $) 115)) (-1694 (((-112) $ $) 254) (((-112) $ (-644 $)) 253)) (-1871 (($ $ $) 234)) (-1761 (($ $) 275)) (-2897 (((-112) $ $) 260)) (-3351 (((-112) $ $) 256) (((-112) $ (-644 $)) 255)) (-3544 (($ $ $) 235)) (-3558 (($ $) 274)) (-4035 (((-1119) $) 11)) (-1621 (((-2 (|:| -2214 $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-558)))) (-2469 (((-2 (|:| -2214 $) (|:| |coef1| $)) $ $) 216 (|has| |#1| (-558)))) (-1723 (((-112) $) 168)) (-1736 ((|#1| $) 169)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) 97 (|has| |#1| (-454)))) (-2214 ((|#1| |#1| $) 208 (|has| |#1| (-454))) (($ (-644 $)) 94 (|has| |#1| (-454))) (($ $ $) 93 (|has| |#1| (-454)))) (-4303 (((-420 (-1171 $)) (-1171 $)) 104 (|has| |#1| (-909)))) (-3240 (((-420 (-1171 $)) (-1171 $)) 103 (|has| |#1| (-909)))) (-3719 (((-420 $) $) 101 (|has| |#1| (-909)))) (-2216 (((-2 (|:| -2214 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 217 (|has| |#1| (-558)))) (-2994 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-558))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-558)))) (-4164 (($ $ |#1|) 221 (|has| |#1| (-558))) (($ $ $) 219 (|has| |#1| (-558)))) (-4044 (($ $ |#1|) 222 (|has| |#1| (-558))) (($ $ $) 220 (|has| |#1| (-558)))) (-2055 (($ $ (-644 (-295 $))) 147) (($ $ (-295 $)) 146) (($ $ $ $) 145) (($ $ (-644 $) (-644 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-644 |#3|) (-644 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-644 |#3|) (-644 $)) 140)) (-3652 (($ $ |#3|) 109 (|has| |#1| (-172)))) (-3561 (($ $ |#3|) 46) (($ $ (-644 |#3|)) 45) (($ $ |#3| (-771)) 44) (($ $ (-644 |#3|) (-644 (-771))) 43)) (-3636 ((|#2| $) 152) (((-771) $ |#3|) 132) (((-644 (-771)) $ (-644 |#3|)) 131)) (-1620 (($ $) 272)) (-3276 (($ $) 270)) (-1348 (((-892 (-381)) $) 84 (-12 (|has| |#3| (-614 (-892 (-381)))) (|has| |#1| (-614 (-892 (-381)))))) (((-892 (-566)) $) 83 (-12 (|has| |#3| (-614 (-892 (-566)))) (|has| |#1| (-614 (-892 (-566)))))) (((-538) $) 82 (-12 (|has| |#3| (-614 (-538))) (|has| |#1| (-614 (-538))))) (($ (-952 (-409 (-566)))) 231 (-12 (|has| |#1| (-38 (-409 (-566)))) (|has| |#3| (-614 (-1175))))) (($ (-952 (-566))) 228 (-2809 (-12 (-2418 (|has| |#1| (-38 (-409 (-566))))) (|has| |#1| (-38 (-566))) (|has| |#3| (-614 (-1175)))) (-12 (|has| |#1| (-38 (-409 (-566)))) (|has| |#3| (-614 (-1175)))))) (($ (-952 |#1|)) 225 (|has| |#3| (-614 (-1175)))) (((-1157) $) 203 (-12 (|has| |#1| (-1038 (-566))) (|has| |#3| (-614 (-1175))))) (((-952 |#1|) $) 202 (|has| |#3| (-614 (-1175))))) (-2483 ((|#1| $) 177 (|has| |#1| (-454))) (($ $ |#3|) 108 (|has| |#1| (-454)))) (-1656 (((-3 (-1264 $) "failed") (-689 $)) 106 (-2432 (|has| $ (-145)) (|has| |#1| (-909))))) (-3783 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 167) (($ |#3|) 137) (((-952 |#1|) $) 201 (|has| |#3| (-614 (-1175)))) (($ (-409 (-566))) 80 (-2809 (|has| |#1| (-1038 (-409 (-566)))) (|has| |#1| (-38 (-409 (-566)))))) (($ $) 87 (|has| |#1| (-558)))) (-4170 (((-644 |#1|) $) 170)) (-2649 ((|#1| $ |#2|) 157) (($ $ |#3| (-771)) 130) (($ $ (-644 |#3|) (-644 (-771))) 129)) (-3144 (((-3 $ "failed") $) 81 (-2809 (-2432 (|has| $ (-145)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-2107 (((-771)) 32 T CONST)) (-3362 (($ $ $ (-771)) 175 (|has| |#1| (-172)))) (-3117 (((-112) $ $) 9)) (-2695 (((-112) $ $) 91 (|has| |#1| (-558)))) (-2479 (($) 19 T CONST)) (-2784 (((-3 (-112) "failed") $ $) 261)) (-4334 (($) 34 T CONST)) (-4121 (($ $ $ $ (-771)) 210 (|has| |#1| (-558)))) (-2608 (($ $ $ (-771)) 211 (|has| |#1| (-558)))) (-2875 (($ $ |#3|) 42) (($ $ (-644 |#3|)) 41) (($ $ |#3| (-771)) 40) (($ $ (-644 |#3|) (-644 (-771))) 39)) (-2947 (((-112) $ $) 6)) (-3065 (($ $ |#1|) 158 (|has| |#1| (-365)))) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 160 (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) 159 (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) 149) (($ $ |#1|) 148))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) |#2| $) 26)) (-3870 ((|#1| $) 10)) (-2743 (((-566) |#2| $) 116)) (-4093 (((-3 $ "failed") |#2| (-921)) 75)) (-1966 ((|#1| $) 31)) (-2098 ((|#1| |#2| $ |#1|) 40)) (-2279 (($ $) 28)) (-3245 (((-3 |#2| "failed") |#2| $) 111)) (-2528 (((-112) |#2| $) NIL)) (-3233 (((-112) |#2| $) NIL)) (-3979 (((-112) |#2| $) 27)) (-2997 ((|#1| $) 117)) (-1953 ((|#1| $) 30)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-1705 ((|#2| $) 102)) (-3152 (((-862) $) 92)) (-3044 (((-112) $ $) NIL)) (-3603 ((|#1| |#2| $ |#1|) 41)) (-1526 (((-644 $) |#2|) 77)) (-2914 (((-112) $ $) 97))) +(((-1060 |#1| |#2|) (-13 (-1067 |#1| |#2|) (-10 -8 (-15 -1953 (|#1| $)) (-15 -1966 (|#1| $)) (-15 -3870 (|#1| $)) (-15 -2997 (|#1| $)) (-15 -2279 ($ $)) (-15 -3979 ((-112) |#2| $)) (-15 -2098 (|#1| |#2| $ |#1|)))) (-13 (-848) (-365)) (-1240 |#1|)) (T -1060)) +((-2098 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-848) (-365))) (-5 *1 (-1060 *2 *3)) (-4 *3 (-1240 *2)))) (-1953 (*1 *2 *1) (-12 (-4 *2 (-13 (-848) (-365))) (-5 *1 (-1060 *2 *3)) (-4 *3 (-1240 *2)))) (-1966 (*1 *2 *1) (-12 (-4 *2 (-13 (-848) (-365))) (-5 *1 (-1060 *2 *3)) (-4 *3 (-1240 *2)))) (-3870 (*1 *2 *1) (-12 (-4 *2 (-13 (-848) (-365))) (-5 *1 (-1060 *2 *3)) (-4 *3 (-1240 *2)))) (-2997 (*1 *2 *1) (-12 (-4 *2 (-13 (-848) (-365))) (-5 *1 (-1060 *2 *3)) (-4 *3 (-1240 *2)))) (-2279 (*1 *1 *1) (-12 (-4 *2 (-13 (-848) (-365))) (-5 *1 (-1060 *2 *3)) (-4 *3 (-1240 *2)))) (-3979 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-848) (-365))) (-5 *2 (-112)) (-5 *1 (-1060 *4 *3)) (-4 *3 (-1240 *4))))) +(-13 (-1067 |#1| |#2|) (-10 -8 (-15 -1953 (|#1| $)) (-15 -1966 (|#1| $)) (-15 -3870 (|#1| $)) (-15 -2997 (|#1| $)) (-15 -2279 ($ $)) (-15 -3979 ((-112) |#2| $)) (-15 -2098 (|#1| |#2| $ |#1|)))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-2161 (($ $) NIL)) (-2345 (((-112) $) NIL)) (-2871 (($ $ $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-1345 (($ $ $ $) NIL)) (-1378 (($ $) NIL)) (-1364 (((-420 $) $) NIL)) (-2085 (((-112) $ $) NIL)) (-2743 (((-566) $) NIL)) (-3764 (($ $ $) NIL)) (-2463 (($) NIL T CONST)) (-3372 (($ (-1175)) 10) (($ (-566)) 7)) (-2229 (((-3 (-566) "failed") $) NIL)) (-4158 (((-566) $) NIL)) (-2933 (($ $ $) NIL)) (-4089 (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL) (((-689 (-566)) (-689 $)) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-4391 (((-3 (-409 (-566)) "failed") $) NIL)) (-3407 (((-112) $) NIL)) (-1786 (((-409 (-566)) $) NIL)) (-2715 (($) NIL) (($ $) NIL)) (-2945 (($ $ $) NIL)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL)) (-1615 (((-112) $) NIL)) (-2501 (($ $ $ $) NIL)) (-1732 (($ $ $) NIL)) (-2528 (((-112) $) NIL)) (-2413 (($ $ $) NIL)) (-2926 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL)) (-2389 (((-112) $) NIL)) (-3419 (((-112) $) NIL)) (-2621 (((-3 $ "failed") $) NIL)) (-3233 (((-112) $) NIL)) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2505 (($ $ $ $) NIL)) (-1478 (($ $ $) NIL)) (-2599 (($ $ $) NIL)) (-3479 (($ $) NIL)) (-2440 (($ $) NIL)) (-2128 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3380 (((-1157) $) NIL)) (-1517 (($ $ $) NIL)) (-3289 (($) NIL T CONST)) (-1847 (($ $) NIL)) (-4072 (((-1119) $) NIL)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2164 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2499 (($ $) NIL)) (-1624 (((-420 $) $) NIL)) (-3005 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL)) (-2978 (((-3 $ "failed") $ $) NIL)) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2664 (((-112) $) NIL)) (-4357 (((-771) $) NIL)) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL)) (-3629 (($ $ (-771)) NIL) (($ $) NIL)) (-2028 (($ $) NIL)) (-1480 (($ $) NIL)) (-2376 (((-566) $) 16) (((-538) $) NIL) (((-892 (-566)) $) NIL) (((-381) $) NIL) (((-225) $) NIL) (($ (-1175)) 9)) (-3152 (((-862) $) 23) (($ (-566)) 6) (($ $) NIL) (($ (-566)) 6)) (-2593 (((-771)) NIL T CONST)) (-2992 (((-112) $ $) NIL)) (-2073 (($ $ $) NIL)) (-3044 (((-112) $ $) NIL)) (-2576 (($) NIL)) (-3014 (((-112) $ $) NIL)) (-1725 (($ $ $ $) NIL)) (-1358 (($ $) NIL)) (-4356 (($) NIL T CONST)) (-4366 (($) NIL T CONST)) (-3497 (($ $ (-771)) NIL) (($ $) NIL)) (-2968 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2935 (((-112) $ $) NIL)) (-3012 (($ $) 22) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL))) +(((-1061) (-13 (-547) (-618 (-1175)) (-10 -8 (-6 -4401) (-6 -4406) (-6 -4402) (-15 -3372 ($ (-1175))) (-15 -3372 ($ (-566)))))) (T -1061)) +((-3372 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1061)))) (-3372 (*1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1061))))) +(-13 (-547) (-618 (-1175)) (-10 -8 (-6 -4401) (-6 -4406) (-6 -4402) (-15 -3372 ($ (-1175))) (-15 -3372 ($ (-566))))) +((-2988 (((-112) $ $) NIL (-2768 (|has| (-52) (-1099)) (|has| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-1099))))) (-1849 (($) NIL) (($ (-644 (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))))) NIL)) (-1944 (((-1269) $ (-1175) (-1175)) NIL (|has| $ (-6 -4415)))) (-1504 (((-112) $ (-771)) NIL)) (-4001 (($) 9)) (-1456 (((-52) $ (-1175) (-52)) NIL)) (-1737 (($ $) 32)) (-2333 (($ $) 30)) (-2504 (($ $) 29)) (-1634 (($ $) 31)) (-3492 (($ $) 35)) (-1729 (($ $) 36)) (-2555 (($ $) 28)) (-1414 (($ $) 33)) (-2995 (($ (-1 (-112) (-2 (|:| -2674 (-1175)) (|:| -2636 (-52)))) $) NIL (|has| $ (-6 -4414)))) (-3678 (($ (-1 (-112) (-2 (|:| -2674 (-1175)) (|:| -2636 (-52)))) $) 27 (|has| $ (-6 -4414)))) (-3070 (((-3 (-52) "failed") (-1175) $) 43)) (-2463 (($) NIL T CONST)) (-2683 (($) 7)) (-3942 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-1099))))) (-3512 (($ (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) $) 53 (|has| $ (-6 -4414))) (($ (-1 (-112) (-2 (|:| -2674 (-1175)) (|:| -2636 (-52)))) $) NIL (|has| $ (-6 -4414))) (((-3 (-52) "failed") (-1175) $) NIL)) (-2622 (($ (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-1099)))) (($ (-1 (-112) (-2 (|:| -2674 (-1175)) (|:| -2636 (-52)))) $) NIL (|has| $ (-6 -4414)))) (-2873 (((-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-1 (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-2 (|:| -2674 (-1175)) (|:| -2636 (-52)))) $ (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-2 (|:| -2674 (-1175)) (|:| -2636 (-52)))) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-1099)))) (((-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-1 (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-2 (|:| -2674 (-1175)) (|:| -2636 (-52)))) $ (-2 (|:| -2674 (-1175)) (|:| -2636 (-52)))) NIL (|has| $ (-6 -4414))) (((-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-1 (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-2 (|:| -2674 (-1175)) (|:| -2636 (-52)))) $) NIL (|has| $ (-6 -4414)))) (-4094 (((-3 (-1157) "failed") $ (-1157) (-566)) 74)) (-3897 (((-52) $ (-1175) (-52)) NIL (|has| $ (-6 -4415)))) (-3829 (((-52) $ (-1175)) NIL)) (-1683 (((-644 (-2 (|:| -2674 (-1175)) (|:| -2636 (-52)))) $) NIL (|has| $ (-6 -4414))) (((-644 (-52)) $) NIL (|has| $ (-6 -4414)))) (-3456 (((-112) $ (-771)) NIL)) (-2296 (((-1175) $) NIL (|has| (-1175) (-850)))) (-3491 (((-644 (-2 (|:| -2674 (-1175)) (|:| -2636 (-52)))) $) 38 (|has| $ (-6 -4414))) (((-644 (-52)) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-1099)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-52) (-1099))))) (-4050 (((-1175) $) NIL (|has| (-1175) (-850)))) (-3885 (($ (-1 (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-2 (|:| -2674 (-1175)) (|:| -2636 (-52)))) $) NIL (|has| $ (-6 -4415))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4415)))) (-2319 (($ (-1 (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-2 (|:| -2674 (-1175)) (|:| -2636 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-3267 (((-112) $ (-771)) NIL)) (-3380 (((-1157) $) NIL (-2768 (|has| (-52) (-1099)) (|has| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-1099))))) (-4052 (((-644 (-1175)) $) NIL)) (-1826 (((-112) (-1175) $) NIL)) (-3278 (((-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) $) NIL)) (-3888 (($ (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) $) 46)) (-3725 (((-644 (-1175)) $) NIL)) (-1644 (((-112) (-1175) $) NIL)) (-4072 (((-1119) $) NIL (-2768 (|has| (-52) (-1099)) (|has| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-1099))))) (-2658 (((-381) $ (-1175)) 52)) (-4115 (((-644 (-1157)) $ (-1157)) 76)) (-3908 (((-52) $) NIL (|has| (-1175) (-850)))) (-3668 (((-3 (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) "failed") (-1 (-112) (-2 (|:| -2674 (-1175)) (|:| -2636 (-52)))) $) NIL)) (-3787 (($ $ (-52)) NIL (|has| $ (-6 -4415)))) (-1973 (((-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) $) NIL)) (-2823 (((-112) (-1 (-112) (-2 (|:| -2674 (-1175)) (|:| -2636 (-52)))) $) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 (-2 (|:| -2674 (-1175)) (|:| -2636 (-52)))))) NIL (-12 (|has| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-310 (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))))) (|has| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-1099)))) (($ $ (-295 (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))))) NIL (-12 (|has| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-310 (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))))) (|has| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-1099)))) (($ $ (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-2 (|:| -2674 (-1175)) (|:| -2636 (-52)))) NIL (-12 (|has| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-310 (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))))) (|has| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-1099)))) (($ $ (-644 (-2 (|:| -2674 (-1175)) (|:| -2636 (-52)))) (-644 (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))))) NIL (-12 (|has| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-310 (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))))) (|has| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-1099)))) (($ $ (-644 (-52)) (-644 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1099)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1099)))) (($ $ (-295 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1099)))) (($ $ (-644 (-295 (-52)))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1099))))) (-3814 (((-112) $ $) NIL)) (-2847 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-52) (-1099))))) (-3486 (((-644 (-52)) $) NIL)) (-2872 (((-112) $) NIL)) (-3493 (($) NIL)) (-1309 (((-52) $ (-1175)) NIL) (((-52) $ (-1175) (-52)) NIL)) (-1792 (($) NIL) (($ (-644 (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))))) NIL)) (-3778 (($ $ (-1175)) 54)) (-4083 (((-771) (-1 (-112) (-2 (|:| -2674 (-1175)) (|:| -2636 (-52)))) $) NIL (|has| $ (-6 -4414))) (((-771) (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-1099)))) (((-771) (-52) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-52) (-1099)))) (((-771) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4414)))) (-1480 (($ $) NIL)) (-2376 (((-538) $) NIL (|has| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-614 (-538))))) (-1340 (($ (-644 (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))))) 40)) (-4386 (($ $ $) 41)) (-3152 (((-862) $) NIL (-2768 (|has| (-52) (-613 (-862))) (|has| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-613 (-862)))))) (-3727 (($ $ (-1175) (-381)) 50)) (-3995 (($ $ (-1175) (-381)) 51)) (-3044 (((-112) $ $) NIL (-2768 (|has| (-52) (-1099)) (|has| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-1099))))) (-2948 (($ (-644 (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))))) NIL)) (-2210 (((-112) (-1 (-112) (-2 (|:| -2674 (-1175)) (|:| -2636 (-52)))) $) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) NIL (-2768 (|has| (-52) (-1099)) (|has| (-2 (|:| -2674 (-1175)) (|:| -2636 (-52))) (-1099))))) (-3000 (((-771) $) NIL (|has| $ (-6 -4414))))) +(((-1062) (-13 (-1190 (-1175) (-52)) (-10 -8 (-15 -4386 ($ $ $)) (-15 -2683 ($)) (-15 -2555 ($ $)) (-15 -2504 ($ $)) (-15 -2333 ($ $)) (-15 -1634 ($ $)) (-15 -1414 ($ $)) (-15 -1737 ($ $)) (-15 -3492 ($ $)) (-15 -1729 ($ $)) (-15 -3727 ($ $ (-1175) (-381))) (-15 -3995 ($ $ (-1175) (-381))) (-15 -2658 ((-381) $ (-1175))) (-15 -4115 ((-644 (-1157)) $ (-1157))) (-15 -3778 ($ $ (-1175))) (-15 -4001 ($)) (-15 -4094 ((-3 (-1157) "failed") $ (-1157) (-566))) (-6 -4414)))) (T -1062)) +((-4386 (*1 *1 *1 *1) (-5 *1 (-1062))) (-2683 (*1 *1) (-5 *1 (-1062))) (-2555 (*1 *1 *1) (-5 *1 (-1062))) (-2504 (*1 *1 *1) (-5 *1 (-1062))) (-2333 (*1 *1 *1) (-5 *1 (-1062))) (-1634 (*1 *1 *1) (-5 *1 (-1062))) (-1414 (*1 *1 *1) (-5 *1 (-1062))) (-1737 (*1 *1 *1) (-5 *1 (-1062))) (-3492 (*1 *1 *1) (-5 *1 (-1062))) (-1729 (*1 *1 *1) (-5 *1 (-1062))) (-3727 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-381)) (-5 *1 (-1062)))) (-3995 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-381)) (-5 *1 (-1062)))) (-2658 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-381)) (-5 *1 (-1062)))) (-4115 (*1 *2 *1 *3) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1062)) (-5 *3 (-1157)))) (-3778 (*1 *1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1062)))) (-4001 (*1 *1) (-5 *1 (-1062))) (-4094 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1157)) (-5 *3 (-566)) (-5 *1 (-1062))))) +(-13 (-1190 (-1175) (-52)) (-10 -8 (-15 -4386 ($ $ $)) (-15 -2683 ($)) (-15 -2555 ($ $)) (-15 -2504 ($ $)) (-15 -2333 ($ $)) (-15 -1634 ($ $)) (-15 -1414 ($ $)) (-15 -1737 ($ $)) (-15 -3492 ($ $)) (-15 -1729 ($ $)) (-15 -3727 ($ $ (-1175) (-381))) (-15 -3995 ($ $ (-1175) (-381))) (-15 -2658 ((-381) $ (-1175))) (-15 -4115 ((-644 (-1157)) $ (-1157))) (-15 -3778 ($ $ (-1175))) (-15 -4001 ($)) (-15 -4094 ((-3 (-1157) "failed") $ (-1157) (-566))) (-6 -4414))) +((-3214 (($ $) 46)) (-1632 (((-112) $ $) 82)) (-2229 (((-3 |#2| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL) (((-3 (-566) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-952 (-409 (-566)))) 253) (((-3 $ "failed") (-952 (-566))) 252) (((-3 $ "failed") (-952 |#2|)) 255)) (-4158 ((|#2| $) NIL) (((-409 (-566)) $) NIL) (((-566) $) NIL) ((|#4| $) NIL) (($ (-952 (-409 (-566)))) 241) (($ (-952 (-566))) 237) (($ (-952 |#2|)) 257)) (-2814 (($ $) NIL) (($ $ |#4|) 44)) (-3599 (((-112) $ $) 131) (((-112) $ (-644 $)) 135)) (-1393 (((-112) $) 60)) (-1514 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) 125)) (-3269 (($ $) 160)) (-3960 (($ $) 156)) (-1363 (($ $) 155)) (-2314 (($ $ $) 87) (($ $ $ |#4|) 92)) (-4117 (($ $ $) 90) (($ $ $ |#4|) 94)) (-1640 (((-112) $ $) 143) (((-112) $ (-644 $)) 144)) (-4296 ((|#4| $) 32)) (-1492 (($ $ $) 128)) (-2520 (((-112) $) 59)) (-1904 (((-771) $) 35)) (-2410 (($ $) 174)) (-3195 (($ $) 171)) (-2580 (((-644 $) $) 72)) (-2261 (($ $) 62)) (-2556 (($ $) 167)) (-4314 (((-644 $) $) 69)) (-1437 (($ $) 64)) (-2794 ((|#2| $) NIL) (($ $ |#4|) 39)) (-1903 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1956 (-771))) $ $) 130)) (-1980 (((-2 (|:| -2397 $) (|:| |gap| (-771)) (|:| -2631 $) (|:| -3264 $)) $ $) 126) (((-2 (|:| -2397 $) (|:| |gap| (-771)) (|:| -2631 $) (|:| -3264 $)) $ $ |#4|) 127)) (-1380 (((-2 (|:| -2397 $) (|:| |gap| (-771)) (|:| -3264 $)) $ $) 121) (((-2 (|:| -2397 $) (|:| |gap| (-771)) (|:| -3264 $)) $ $ |#4|) 123)) (-3135 (($ $ $) 97) (($ $ $ |#4|) 106)) (-1415 (($ $ $) 98) (($ $ $ |#4|) 107)) (-1992 (((-644 $) $) 54)) (-2543 (((-112) $ $) 140) (((-112) $ (-644 $)) 141)) (-1906 (($ $ $) 116)) (-3289 (($ $) 37)) (-3077 (((-112) $ $) 80)) (-3374 (((-112) $ $) 136) (((-112) $ (-644 $)) 138)) (-4074 (($ $ $) 112)) (-2842 (($ $) 41)) (-2164 ((|#2| |#2| $) 164) (($ (-644 $)) NIL) (($ $ $) NIL)) (-2355 (($ $ |#2|) NIL) (($ $ $) 153)) (-2672 (($ $ |#2|) 148) (($ $ $) 151)) (-3974 (($ $) 49)) (-2562 (($ $) 55)) (-2376 (((-892 (-381)) $) NIL) (((-892 (-566)) $) NIL) (((-538) $) NIL) (($ (-952 (-409 (-566)))) 243) (($ (-952 (-566))) 239) (($ (-952 |#2|)) 254) (((-1157) $) 281) (((-952 |#2|) $) 184)) (-3152 (((-862) $) 29) (($ (-566)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-952 |#2|) $) 185) (($ (-409 (-566))) NIL) (($ $) NIL)) (-3677 (((-3 (-112) "failed") $ $) 79))) +(((-1063 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3152 (|#1| |#1|)) (-15 -2164 (|#1| |#1| |#1|)) (-15 -2164 (|#1| (-644 |#1|))) (-15 -3152 (|#1| (-409 (-566)))) (-15 -3152 ((-952 |#2|) |#1|)) (-15 -2376 ((-952 |#2|) |#1|)) (-15 -2376 ((-1157) |#1|)) (-15 -2410 (|#1| |#1|)) (-15 -3195 (|#1| |#1|)) (-15 -2556 (|#1| |#1|)) (-15 -3269 (|#1| |#1|)) (-15 -2164 (|#2| |#2| |#1|)) (-15 -2355 (|#1| |#1| |#1|)) (-15 -2672 (|#1| |#1| |#1|)) (-15 -2355 (|#1| |#1| |#2|)) (-15 -2672 (|#1| |#1| |#2|)) (-15 -3960 (|#1| |#1|)) (-15 -1363 (|#1| |#1|)) (-15 -2376 (|#1| (-952 |#2|))) (-15 -4158 (|#1| (-952 |#2|))) (-15 -2229 ((-3 |#1| "failed") (-952 |#2|))) (-15 -2376 (|#1| (-952 (-566)))) (-15 -4158 (|#1| (-952 (-566)))) (-15 -2229 ((-3 |#1| "failed") (-952 (-566)))) (-15 -2376 (|#1| (-952 (-409 (-566))))) (-15 -4158 (|#1| (-952 (-409 (-566))))) (-15 -2229 ((-3 |#1| "failed") (-952 (-409 (-566))))) (-15 -1906 (|#1| |#1| |#1|)) (-15 -4074 (|#1| |#1| |#1|)) (-15 -1903 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -1956 (-771))) |#1| |#1|)) (-15 -1492 (|#1| |#1| |#1|)) (-15 -1514 ((-2 (|:| -2631 |#1|) (|:| -3264 |#1|)) |#1| |#1|)) (-15 -1980 ((-2 (|:| -2397 |#1|) (|:| |gap| (-771)) (|:| -2631 |#1|) (|:| -3264 |#1|)) |#1| |#1| |#4|)) (-15 -1980 ((-2 (|:| -2397 |#1|) (|:| |gap| (-771)) (|:| -2631 |#1|) (|:| -3264 |#1|)) |#1| |#1|)) (-15 -1380 ((-2 (|:| -2397 |#1|) (|:| |gap| (-771)) (|:| -3264 |#1|)) |#1| |#1| |#4|)) (-15 -1380 ((-2 (|:| -2397 |#1|) (|:| |gap| (-771)) (|:| -3264 |#1|)) |#1| |#1|)) (-15 -1415 (|#1| |#1| |#1| |#4|)) (-15 -3135 (|#1| |#1| |#1| |#4|)) (-15 -1415 (|#1| |#1| |#1|)) (-15 -3135 (|#1| |#1| |#1|)) (-15 -4117 (|#1| |#1| |#1| |#4|)) (-15 -2314 (|#1| |#1| |#1| |#4|)) (-15 -4117 (|#1| |#1| |#1|)) (-15 -2314 (|#1| |#1| |#1|)) (-15 -1640 ((-112) |#1| (-644 |#1|))) (-15 -1640 ((-112) |#1| |#1|)) (-15 -2543 ((-112) |#1| (-644 |#1|))) (-15 -2543 ((-112) |#1| |#1|)) (-15 -3374 ((-112) |#1| (-644 |#1|))) (-15 -3374 ((-112) |#1| |#1|)) (-15 -3599 ((-112) |#1| (-644 |#1|))) (-15 -3599 ((-112) |#1| |#1|)) (-15 -1632 ((-112) |#1| |#1|)) (-15 -3077 ((-112) |#1| |#1|)) (-15 -3677 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2580 ((-644 |#1|) |#1|)) (-15 -4314 ((-644 |#1|) |#1|)) (-15 -1437 (|#1| |#1|)) (-15 -2261 (|#1| |#1|)) (-15 -1393 ((-112) |#1|)) (-15 -2520 ((-112) |#1|)) (-15 -2814 (|#1| |#1| |#4|)) (-15 -2794 (|#1| |#1| |#4|)) (-15 -2562 (|#1| |#1|)) (-15 -1992 ((-644 |#1|) |#1|)) (-15 -3974 (|#1| |#1|)) (-15 -3214 (|#1| |#1|)) (-15 -2842 (|#1| |#1|)) (-15 -3289 (|#1| |#1|)) (-15 -1904 ((-771) |#1|)) (-15 -4296 (|#4| |#1|)) (-15 -2376 ((-538) |#1|)) (-15 -2376 ((-892 (-566)) |#1|)) (-15 -2376 ((-892 (-381)) |#1|)) (-15 -3152 (|#1| |#4|)) (-15 -2229 ((-3 |#4| "failed") |#1|)) (-15 -4158 (|#4| |#1|)) (-15 -2794 (|#2| |#1|)) (-15 -2814 (|#1| |#1|)) (-15 -2229 ((-3 (-566) "failed") |#1|)) (-15 -4158 ((-566) |#1|)) (-15 -2229 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -4158 ((-409 (-566)) |#1|)) (-15 -4158 (|#2| |#1|)) (-15 -2229 ((-3 |#2| "failed") |#1|)) (-15 -3152 (|#1| |#2|)) (-15 -3152 (|#1| (-566))) (-15 -3152 ((-862) |#1|))) (-1064 |#2| |#3| |#4|) (-1049) (-793) (-850)) (T -1063)) +NIL +(-10 -8 (-15 -3152 (|#1| |#1|)) (-15 -2164 (|#1| |#1| |#1|)) (-15 -2164 (|#1| (-644 |#1|))) (-15 -3152 (|#1| (-409 (-566)))) (-15 -3152 ((-952 |#2|) |#1|)) (-15 -2376 ((-952 |#2|) |#1|)) (-15 -2376 ((-1157) |#1|)) (-15 -2410 (|#1| |#1|)) (-15 -3195 (|#1| |#1|)) (-15 -2556 (|#1| |#1|)) (-15 -3269 (|#1| |#1|)) (-15 -2164 (|#2| |#2| |#1|)) (-15 -2355 (|#1| |#1| |#1|)) (-15 -2672 (|#1| |#1| |#1|)) (-15 -2355 (|#1| |#1| |#2|)) (-15 -2672 (|#1| |#1| |#2|)) (-15 -3960 (|#1| |#1|)) (-15 -1363 (|#1| |#1|)) (-15 -2376 (|#1| (-952 |#2|))) (-15 -4158 (|#1| (-952 |#2|))) (-15 -2229 ((-3 |#1| "failed") (-952 |#2|))) (-15 -2376 (|#1| (-952 (-566)))) (-15 -4158 (|#1| (-952 (-566)))) (-15 -2229 ((-3 |#1| "failed") (-952 (-566)))) (-15 -2376 (|#1| (-952 (-409 (-566))))) (-15 -4158 (|#1| (-952 (-409 (-566))))) (-15 -2229 ((-3 |#1| "failed") (-952 (-409 (-566))))) (-15 -1906 (|#1| |#1| |#1|)) (-15 -4074 (|#1| |#1| |#1|)) (-15 -1903 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -1956 (-771))) |#1| |#1|)) (-15 -1492 (|#1| |#1| |#1|)) (-15 -1514 ((-2 (|:| -2631 |#1|) (|:| -3264 |#1|)) |#1| |#1|)) (-15 -1980 ((-2 (|:| -2397 |#1|) (|:| |gap| (-771)) (|:| -2631 |#1|) (|:| -3264 |#1|)) |#1| |#1| |#4|)) (-15 -1980 ((-2 (|:| -2397 |#1|) (|:| |gap| (-771)) (|:| -2631 |#1|) (|:| -3264 |#1|)) |#1| |#1|)) (-15 -1380 ((-2 (|:| -2397 |#1|) (|:| |gap| (-771)) (|:| -3264 |#1|)) |#1| |#1| |#4|)) (-15 -1380 ((-2 (|:| -2397 |#1|) (|:| |gap| (-771)) (|:| -3264 |#1|)) |#1| |#1|)) (-15 -1415 (|#1| |#1| |#1| |#4|)) (-15 -3135 (|#1| |#1| |#1| |#4|)) (-15 -1415 (|#1| |#1| |#1|)) (-15 -3135 (|#1| |#1| |#1|)) (-15 -4117 (|#1| |#1| |#1| |#4|)) (-15 -2314 (|#1| |#1| |#1| |#4|)) (-15 -4117 (|#1| |#1| |#1|)) (-15 -2314 (|#1| |#1| |#1|)) (-15 -1640 ((-112) |#1| (-644 |#1|))) (-15 -1640 ((-112) |#1| |#1|)) (-15 -2543 ((-112) |#1| (-644 |#1|))) (-15 -2543 ((-112) |#1| |#1|)) (-15 -3374 ((-112) |#1| (-644 |#1|))) (-15 -3374 ((-112) |#1| |#1|)) (-15 -3599 ((-112) |#1| (-644 |#1|))) (-15 -3599 ((-112) |#1| |#1|)) (-15 -1632 ((-112) |#1| |#1|)) (-15 -3077 ((-112) |#1| |#1|)) (-15 -3677 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2580 ((-644 |#1|) |#1|)) (-15 -4314 ((-644 |#1|) |#1|)) (-15 -1437 (|#1| |#1|)) (-15 -2261 (|#1| |#1|)) (-15 -1393 ((-112) |#1|)) (-15 -2520 ((-112) |#1|)) (-15 -2814 (|#1| |#1| |#4|)) (-15 -2794 (|#1| |#1| |#4|)) (-15 -2562 (|#1| |#1|)) (-15 -1992 ((-644 |#1|) |#1|)) (-15 -3974 (|#1| |#1|)) (-15 -3214 (|#1| |#1|)) (-15 -2842 (|#1| |#1|)) (-15 -3289 (|#1| |#1|)) (-15 -1904 ((-771) |#1|)) (-15 -4296 (|#4| |#1|)) (-15 -2376 ((-538) |#1|)) (-15 -2376 ((-892 (-566)) |#1|)) (-15 -2376 ((-892 (-381)) |#1|)) (-15 -3152 (|#1| |#4|)) (-15 -2229 ((-3 |#4| "failed") |#1|)) (-15 -4158 (|#4| |#1|)) (-15 -2794 (|#2| |#1|)) (-15 -2814 (|#1| |#1|)) (-15 -2229 ((-3 (-566) "failed") |#1|)) (-15 -4158 ((-566) |#1|)) (-15 -2229 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -4158 ((-409 (-566)) |#1|)) (-15 -4158 (|#2| |#1|)) (-15 -2229 ((-3 |#2| "failed") |#1|)) (-15 -3152 (|#1| |#2|)) (-15 -3152 (|#1| (-566))) (-15 -3152 ((-862) |#1|))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-1771 (((-644 |#3|) $) 112)) (-1590 (((-1171 $) $ |#3|) 127) (((-1171 |#1|) $) 126)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) 89 (|has| |#1| (-558)))) (-2161 (($ $) 90 (|has| |#1| (-558)))) (-2345 (((-112) $) 92 (|has| |#1| (-558)))) (-1357 (((-771) $) 114) (((-771) $ (-644 |#3|)) 113)) (-3214 (($ $) 273)) (-1632 (((-112) $ $) 259)) (-3967 (((-3 $ "failed") $ $) 20)) (-1890 (($ $ $) 218 (|has| |#1| (-558)))) (-2514 (((-644 $) $ $) 213 (|has| |#1| (-558)))) (-2292 (((-420 (-1171 $)) (-1171 $)) 102 (|has| |#1| (-909)))) (-1378 (($ $) 100 (|has| |#1| (-454)))) (-1364 (((-420 $) $) 99 (|has| |#1| (-454)))) (-4066 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) 105 (|has| |#1| (-909)))) (-2463 (($) 18 T CONST)) (-2229 (((-3 |#1| "failed") $) 166) (((-3 (-409 (-566)) "failed") $) 163 (|has| |#1| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) 161 (|has| |#1| (-1038 (-566)))) (((-3 |#3| "failed") $) 138) (((-3 $ "failed") (-952 (-409 (-566)))) 233 (-12 (|has| |#1| (-38 (-409 (-566)))) (|has| |#3| (-614 (-1175))))) (((-3 $ "failed") (-952 (-566))) 230 (-2768 (-12 (-2404 (|has| |#1| (-38 (-409 (-566))))) (|has| |#1| (-38 (-566))) (|has| |#3| (-614 (-1175)))) (-12 (|has| |#1| (-38 (-409 (-566)))) (|has| |#3| (-614 (-1175)))))) (((-3 $ "failed") (-952 |#1|)) 227 (-2768 (-12 (-2404 (|has| |#1| (-38 (-409 (-566))))) (-2404 (|has| |#1| (-38 (-566)))) (|has| |#3| (-614 (-1175)))) (-12 (-2404 (|has| |#1| (-547))) (-2404 (|has| |#1| (-38 (-409 (-566))))) (|has| |#1| (-38 (-566))) (|has| |#3| (-614 (-1175)))) (-12 (-2404 (|has| |#1| (-992 (-566)))) (|has| |#1| (-38 (-409 (-566)))) (|has| |#3| (-614 (-1175))))))) (-4158 ((|#1| $) 165) (((-409 (-566)) $) 164 (|has| |#1| (-1038 (-409 (-566))))) (((-566) $) 162 (|has| |#1| (-1038 (-566)))) ((|#3| $) 139) (($ (-952 (-409 (-566)))) 232 (-12 (|has| |#1| (-38 (-409 (-566)))) (|has| |#3| (-614 (-1175))))) (($ (-952 (-566))) 229 (-2768 (-12 (-2404 (|has| |#1| (-38 (-409 (-566))))) (|has| |#1| (-38 (-566))) (|has| |#3| (-614 (-1175)))) (-12 (|has| |#1| (-38 (-409 (-566)))) (|has| |#3| (-614 (-1175)))))) (($ (-952 |#1|)) 226 (-2768 (-12 (-2404 (|has| |#1| (-38 (-409 (-566))))) (-2404 (|has| |#1| (-38 (-566)))) (|has| |#3| (-614 (-1175)))) (-12 (-2404 (|has| |#1| (-547))) (-2404 (|has| |#1| (-38 (-409 (-566))))) (|has| |#1| (-38 (-566))) (|has| |#3| (-614 (-1175)))) (-12 (-2404 (|has| |#1| (-992 (-566)))) (|has| |#1| (-38 (-409 (-566)))) (|has| |#3| (-614 (-1175))))))) (-2610 (($ $ $ |#3|) 110 (|has| |#1| (-172))) (($ $ $) 214 (|has| |#1| (-558)))) (-2814 (($ $) 156) (($ $ |#3|) 268)) (-4089 (((-689 (-566)) (-689 $)) 136 (|has| |#1| (-639 (-566)))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) 135 (|has| |#1| (-639 (-566)))) (((-2 (|:| -3361 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) 134) (((-689 |#1|) (-689 $)) 133)) (-3599 (((-112) $ $) 258) (((-112) $ (-644 $)) 257)) (-3245 (((-3 $ "failed") $) 37)) (-1393 (((-112) $) 266)) (-1514 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) 238)) (-3269 (($ $) 207 (|has| |#1| (-454)))) (-2616 (($ $) 178 (|has| |#1| (-454))) (($ $ |#3|) 107 (|has| |#1| (-454)))) (-2804 (((-644 $) $) 111)) (-1615 (((-112) $) 98 (|has| |#1| (-909)))) (-3960 (($ $) 223 (|has| |#1| (-558)))) (-1363 (($ $) 224 (|has| |#1| (-558)))) (-2314 (($ $ $) 250) (($ $ $ |#3|) 248)) (-4117 (($ $ $) 249) (($ $ $ |#3|) 247)) (-1896 (($ $ |#1| |#2| $) 174)) (-2926 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 86 (-12 (|has| |#3| (-886 (-381))) (|has| |#1| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 85 (-12 (|has| |#3| (-886 (-566))) (|has| |#1| (-886 (-566)))))) (-2389 (((-112) $) 35)) (-3039 (((-771) $) 171)) (-1640 (((-112) $ $) 252) (((-112) $ (-644 $)) 251)) (-2196 (($ $ $ $ $) 209 (|has| |#1| (-558)))) (-4296 ((|#3| $) 277)) (-1757 (($ (-1171 |#1|) |#3|) 119) (($ (-1171 $) |#3|) 118)) (-1587 (((-644 $) $) 128)) (-2497 (((-112) $) 154)) (-1746 (($ |#1| |#2|) 155) (($ $ |#3| (-771)) 121) (($ $ (-644 |#3|) (-644 (-771))) 120)) (-1492 (($ $ $) 237)) (-2815 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $ |#3|) 122)) (-2520 (((-112) $) 267)) (-2749 ((|#2| $) 172) (((-771) $ |#3|) 124) (((-644 (-771)) $ (-644 |#3|)) 123)) (-1904 (((-771) $) 276)) (-3021 (($ (-1 |#2| |#2|) $) 173)) (-2319 (($ (-1 |#1| |#1|) $) 153)) (-2297 (((-3 |#3| "failed") $) 125)) (-2410 (($ $) 204 (|has| |#1| (-454)))) (-3195 (($ $) 205 (|has| |#1| (-454)))) (-2580 (((-644 $) $) 262)) (-2261 (($ $) 265)) (-2556 (($ $) 206 (|has| |#1| (-454)))) (-4314 (((-644 $) $) 263)) (-1437 (($ $) 264)) (-2784 (($ $) 151)) (-2794 ((|#1| $) 150) (($ $ |#3|) 269)) (-2128 (($ (-644 $)) 96 (|has| |#1| (-454))) (($ $ $) 95 (|has| |#1| (-454)))) (-1903 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1956 (-771))) $ $) 236)) (-1980 (((-2 (|:| -2397 $) (|:| |gap| (-771)) (|:| -2631 $) (|:| -3264 $)) $ $) 240) (((-2 (|:| -2397 $) (|:| |gap| (-771)) (|:| -2631 $) (|:| -3264 $)) $ $ |#3|) 239)) (-1380 (((-2 (|:| -2397 $) (|:| |gap| (-771)) (|:| -3264 $)) $ $) 242) (((-2 (|:| -2397 $) (|:| |gap| (-771)) (|:| -3264 $)) $ $ |#3|) 241)) (-3135 (($ $ $) 246) (($ $ $ |#3|) 244)) (-1415 (($ $ $) 245) (($ $ $ |#3|) 243)) (-3380 (((-1157) $) 10)) (-3940 (($ $ $) 212 (|has| |#1| (-558)))) (-1992 (((-644 $) $) 271)) (-3738 (((-3 (-644 $) "failed") $) 116)) (-4199 (((-3 (-644 $) "failed") $) 117)) (-4108 (((-3 (-2 (|:| |var| |#3|) (|:| -2201 (-771))) "failed") $) 115)) (-2543 (((-112) $ $) 254) (((-112) $ (-644 $)) 253)) (-1906 (($ $ $) 234)) (-3289 (($ $) 275)) (-3077 (((-112) $ $) 260)) (-3374 (((-112) $ $) 256) (((-112) $ (-644 $)) 255)) (-4074 (($ $ $) 235)) (-2842 (($ $) 274)) (-4072 (((-1119) $) 11)) (-4092 (((-2 (|:| -2164 $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-558)))) (-3220 (((-2 (|:| -2164 $) (|:| |coef1| $)) $ $) 216 (|has| |#1| (-558)))) (-2761 (((-112) $) 168)) (-2773 ((|#1| $) 169)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) 97 (|has| |#1| (-454)))) (-2164 ((|#1| |#1| $) 208 (|has| |#1| (-454))) (($ (-644 $)) 94 (|has| |#1| (-454))) (($ $ $) 93 (|has| |#1| (-454)))) (-2010 (((-420 (-1171 $)) (-1171 $)) 104 (|has| |#1| (-909)))) (-1893 (((-420 (-1171 $)) (-1171 $)) 103 (|has| |#1| (-909)))) (-1624 (((-420 $) $) 101 (|has| |#1| (-909)))) (-3188 (((-2 (|:| -2164 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 217 (|has| |#1| (-558)))) (-2978 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-558))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-558)))) (-2355 (($ $ |#1|) 221 (|has| |#1| (-558))) (($ $ $) 219 (|has| |#1| (-558)))) (-2672 (($ $ |#1|) 222 (|has| |#1| (-558))) (($ $ $) 220 (|has| |#1| (-558)))) (-2023 (($ $ (-644 (-295 $))) 147) (($ $ (-295 $)) 146) (($ $ $ $) 145) (($ $ (-644 $) (-644 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-644 |#3|) (-644 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-644 |#3|) (-644 $)) 140)) (-4068 (($ $ |#3|) 109 (|has| |#1| (-172)))) (-3629 (($ $ |#3|) 46) (($ $ (-644 |#3|)) 45) (($ $ |#3| (-771)) 44) (($ $ (-644 |#3|) (-644 (-771))) 43)) (-3902 ((|#2| $) 152) (((-771) $ |#3|) 132) (((-644 (-771)) $ (-644 |#3|)) 131)) (-3974 (($ $) 272)) (-2562 (($ $) 270)) (-2376 (((-892 (-381)) $) 84 (-12 (|has| |#3| (-614 (-892 (-381)))) (|has| |#1| (-614 (-892 (-381)))))) (((-892 (-566)) $) 83 (-12 (|has| |#3| (-614 (-892 (-566)))) (|has| |#1| (-614 (-892 (-566)))))) (((-538) $) 82 (-12 (|has| |#3| (-614 (-538))) (|has| |#1| (-614 (-538))))) (($ (-952 (-409 (-566)))) 231 (-12 (|has| |#1| (-38 (-409 (-566)))) (|has| |#3| (-614 (-1175))))) (($ (-952 (-566))) 228 (-2768 (-12 (-2404 (|has| |#1| (-38 (-409 (-566))))) (|has| |#1| (-38 (-566))) (|has| |#3| (-614 (-1175)))) (-12 (|has| |#1| (-38 (-409 (-566)))) (|has| |#3| (-614 (-1175)))))) (($ (-952 |#1|)) 225 (|has| |#3| (-614 (-1175)))) (((-1157) $) 203 (-12 (|has| |#1| (-1038 (-566))) (|has| |#3| (-614 (-1175))))) (((-952 |#1|) $) 202 (|has| |#3| (-614 (-1175))))) (-3173 ((|#1| $) 177 (|has| |#1| (-454))) (($ $ |#3|) 108 (|has| |#1| (-454)))) (-3391 (((-3 (-1264 $) "failed") (-689 $)) 106 (-2415 (|has| $ (-145)) (|has| |#1| (-909))))) (-3152 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 167) (($ |#3|) 137) (((-952 |#1|) $) 201 (|has| |#3| (-614 (-1175)))) (($ (-409 (-566))) 80 (-2768 (|has| |#1| (-1038 (-409 (-566)))) (|has| |#1| (-38 (-409 (-566)))))) (($ $) 87 (|has| |#1| (-558)))) (-1643 (((-644 |#1|) $) 170)) (-2271 ((|#1| $ |#2|) 157) (($ $ |#3| (-771)) 130) (($ $ (-644 |#3|) (-644 (-771))) 129)) (-2633 (((-3 $ "failed") $) 81 (-2768 (-2415 (|has| $ (-145)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-2593 (((-771)) 32 T CONST)) (-2021 (($ $ $ (-771)) 175 (|has| |#1| (-172)))) (-3044 (((-112) $ $) 9)) (-3014 (((-112) $ $) 91 (|has| |#1| (-558)))) (-4356 (($) 19 T CONST)) (-3677 (((-3 (-112) "failed") $ $) 261)) (-4366 (($) 34 T CONST)) (-3797 (($ $ $ $ (-771)) 210 (|has| |#1| (-558)))) (-2608 (($ $ $ (-771)) 211 (|has| |#1| (-558)))) (-3497 (($ $ |#3|) 42) (($ $ (-644 |#3|)) 41) (($ $ |#3| (-771)) 40) (($ $ (-644 |#3|) (-644 (-771))) 39)) (-2914 (((-112) $ $) 6)) (-3025 (($ $ |#1|) 158 (|has| |#1| (-365)))) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 160 (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) 159 (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) 149) (($ $ |#1|) 148))) (((-1064 |#1| |#2| |#3|) (-140) (-1049) (-793) (-850)) (T -1064)) -((-1489 (*1 *2 *1) (-12 (-4 *1 (-1064 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)))) (-3482 (*1 *2 *1) (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-771)))) (-1761 (*1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)))) (-3558 (*1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)))) (-2223 (*1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)))) (-1620 (*1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)))) (-4253 (*1 *2 *1) (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *1)) (-4 *1 (-1064 *3 *4 *5)))) (-3276 (*1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)))) (-1763 (*1 *1 *1 *2) (-12 (-4 *1 (-1064 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)))) (-1786 (*1 *1 *1 *2) (-12 (-4 *1 (-1064 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)))) (-1314 (*1 *2 *1) (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)))) (-2857 (*1 *2 *1) (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)))) (-3737 (*1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)))) (-3568 (*1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)))) (-3803 (*1 *2 *1) (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *1)) (-4 *1 (-1064 *3 *4 *5)))) (-4025 (*1 *2 *1) (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *1)) (-4 *1 (-1064 *3 *4 *5)))) (-2784 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)))) (-2897 (*1 *2 *1 *1) (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)))) (-2459 (*1 *2 *1 *1) (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)))) (-1464 (*1 *2 *1 *1) (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)))) (-1464 (*1 *2 *1 *3) (-12 (-5 *3 (-644 *1)) (-4 *1 (-1064 *4 *5 *6)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)))) (-3351 (*1 *2 *1 *1) (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)))) (-3351 (*1 *2 *1 *3) (-12 (-5 *3 (-644 *1)) (-4 *1 (-1064 *4 *5 *6)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)))) (-1694 (*1 *2 *1 *1) (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)))) (-1694 (*1 *2 *1 *3) (-12 (-5 *3 (-644 *1)) (-4 *1 (-1064 *4 *5 *6)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)))) (-2111 (*1 *2 *1 *1) (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)))) (-2111 (*1 *2 *1 *3) (-12 (-5 *3 (-644 *1)) (-4 *1 (-1064 *4 *5 *6)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)))) (-3565 (*1 *1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)))) (-2750 (*1 *1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)))) (-3565 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1064 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)))) (-2750 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1064 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)))) (-4388 (*1 *1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)))) (-2940 (*1 *1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)))) (-4388 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1064 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)))) (-2940 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1064 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)))) (-2767 (*1 *2 *1 *1) (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-2 (|:| -1364 *1) (|:| |gap| (-771)) (|:| -2513 *1))) (-4 *1 (-1064 *3 *4 *5)))) (-2767 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-850)) (-5 *2 (-2 (|:| -1364 *1) (|:| |gap| (-771)) (|:| -2513 *1))) (-4 *1 (-1064 *4 *5 *3)))) (-1953 (*1 *2 *1 *1) (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-2 (|:| -1364 *1) (|:| |gap| (-771)) (|:| -2275 *1) (|:| -2513 *1))) (-4 *1 (-1064 *3 *4 *5)))) (-1953 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-850)) (-5 *2 (-2 (|:| -1364 *1) (|:| |gap| (-771)) (|:| -2275 *1) (|:| -2513 *1))) (-4 *1 (-1064 *4 *5 *3)))) (-1960 (*1 *2 *1 *1) (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-2 (|:| -2275 *1) (|:| -2513 *1))) (-4 *1 (-1064 *3 *4 *5)))) (-2532 (*1 *1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)))) (-4252 (*1 *2 *1 *1) (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -4369 (-771)))) (-4 *1 (-1064 *3 *4 *5)))) (-3544 (*1 *1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)))) (-1871 (*1 *1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)))) (-4307 (*1 *1 *2) (|partial| -12 (-5 *2 (-952 (-409 (-566)))) (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-38 (-409 (-566)))) (-4 *5 (-614 (-1175))) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)))) (-4205 (*1 *1 *2) (-12 (-5 *2 (-952 (-409 (-566)))) (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-38 (-409 (-566)))) (-4 *5 (-614 (-1175))) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)))) (-1348 (*1 *1 *2) (-12 (-5 *2 (-952 (-409 (-566)))) (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-38 (-409 (-566)))) (-4 *5 (-614 (-1175))) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)))) (-4307 (*1 *1 *2) (|partial| -2809 (-12 (-5 *2 (-952 (-566))) (-4 *1 (-1064 *3 *4 *5)) (-12 (-2418 (-4 *3 (-38 (-409 (-566))))) (-4 *3 (-38 (-566))) (-4 *5 (-614 (-1175)))) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850))) (-12 (-5 *2 (-952 (-566))) (-4 *1 (-1064 *3 *4 *5)) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *5 (-614 (-1175)))) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850))))) (-4205 (*1 *1 *2) (-2809 (-12 (-5 *2 (-952 (-566))) (-4 *1 (-1064 *3 *4 *5)) (-12 (-2418 (-4 *3 (-38 (-409 (-566))))) (-4 *3 (-38 (-566))) (-4 *5 (-614 (-1175)))) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850))) (-12 (-5 *2 (-952 (-566))) (-4 *1 (-1064 *3 *4 *5)) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *5 (-614 (-1175)))) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850))))) (-1348 (*1 *1 *2) (-2809 (-12 (-5 *2 (-952 (-566))) (-4 *1 (-1064 *3 *4 *5)) (-12 (-2418 (-4 *3 (-38 (-409 (-566))))) (-4 *3 (-38 (-566))) (-4 *5 (-614 (-1175)))) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850))) (-12 (-5 *2 (-952 (-566))) (-4 *1 (-1064 *3 *4 *5)) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *5 (-614 (-1175)))) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850))))) (-4307 (*1 *1 *2) (|partial| -2809 (-12 (-5 *2 (-952 *3)) (-12 (-2418 (-4 *3 (-38 (-409 (-566))))) (-2418 (-4 *3 (-38 (-566)))) (-4 *5 (-614 (-1175)))) (-4 *3 (-1049)) (-4 *1 (-1064 *3 *4 *5)) (-4 *4 (-793)) (-4 *5 (-850))) (-12 (-5 *2 (-952 *3)) (-12 (-2418 (-4 *3 (-547))) (-2418 (-4 *3 (-38 (-409 (-566))))) (-4 *3 (-38 (-566))) (-4 *5 (-614 (-1175)))) (-4 *3 (-1049)) (-4 *1 (-1064 *3 *4 *5)) (-4 *4 (-793)) (-4 *5 (-850))) (-12 (-5 *2 (-952 *3)) (-12 (-2418 (-4 *3 (-992 (-566)))) (-4 *3 (-38 (-409 (-566)))) (-4 *5 (-614 (-1175)))) (-4 *3 (-1049)) (-4 *1 (-1064 *3 *4 *5)) (-4 *4 (-793)) (-4 *5 (-850))))) (-4205 (*1 *1 *2) (-2809 (-12 (-5 *2 (-952 *3)) (-12 (-2418 (-4 *3 (-38 (-409 (-566))))) (-2418 (-4 *3 (-38 (-566)))) (-4 *5 (-614 (-1175)))) (-4 *3 (-1049)) (-4 *1 (-1064 *3 *4 *5)) (-4 *4 (-793)) (-4 *5 (-850))) (-12 (-5 *2 (-952 *3)) (-12 (-2418 (-4 *3 (-547))) (-2418 (-4 *3 (-38 (-409 (-566))))) (-4 *3 (-38 (-566))) (-4 *5 (-614 (-1175)))) (-4 *3 (-1049)) (-4 *1 (-1064 *3 *4 *5)) (-4 *4 (-793)) (-4 *5 (-850))) (-12 (-5 *2 (-952 *3)) (-12 (-2418 (-4 *3 (-992 (-566)))) (-4 *3 (-38 (-409 (-566)))) (-4 *5 (-614 (-1175)))) (-4 *3 (-1049)) (-4 *1 (-1064 *3 *4 *5)) (-4 *4 (-793)) (-4 *5 (-850))))) (-1348 (*1 *1 *2) (-12 (-5 *2 (-952 *3)) (-4 *3 (-1049)) (-4 *1 (-1064 *3 *4 *5)) (-4 *5 (-614 (-1175))) (-4 *4 (-793)) (-4 *5 (-850)))) (-3233 (*1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-558)))) (-2628 (*1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-558)))) (-4044 (*1 *1 *1 *2) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-558)))) (-4164 (*1 *1 *1 *2) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-558)))) (-4044 (*1 *1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-558)))) (-4164 (*1 *1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-558)))) (-4206 (*1 *1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-558)))) (-2216 (*1 *2 *1 *1) (-12 (-4 *3 (-558)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-2 (|:| -2214 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1064 *3 *4 *5)))) (-2469 (*1 *2 *1 *1) (-12 (-4 *3 (-558)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-2 (|:| -2214 *1) (|:| |coef1| *1))) (-4 *1 (-1064 *3 *4 *5)))) (-1621 (*1 *2 *1 *1) (-12 (-4 *3 (-558)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-2 (|:| -2214 *1) (|:| |coef2| *1))) (-4 *1 (-1064 *3 *4 *5)))) (-2738 (*1 *1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-558)))) (-3856 (*1 *2 *1 *1) (-12 (-4 *3 (-558)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *1)) (-4 *1 (-1064 *3 *4 *5)))) (-1558 (*1 *1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-558)))) (-2608 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *3 (-558)))) (-4121 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *3 (-558)))) (-3229 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-558)))) (-2214 (*1 *2 *2 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-454)))) (-2327 (*1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-454)))) (-4167 (*1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-454)))) (-3165 (*1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-454)))) (-1705 (*1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-454))))) -(-13 (-949 |t#1| |t#2| |t#3|) (-10 -8 (-15 -1489 (|t#3| $)) (-15 -3482 ((-771) $)) (-15 -1761 ($ $)) (-15 -3558 ($ $)) (-15 -2223 ($ $)) (-15 -1620 ($ $)) (-15 -4253 ((-644 $) $)) (-15 -3276 ($ $)) (-15 -1763 ($ $ |t#3|)) (-15 -1786 ($ $ |t#3|)) (-15 -1314 ((-112) $)) (-15 -2857 ((-112) $)) (-15 -3737 ($ $)) (-15 -3568 ($ $)) (-15 -3803 ((-644 $) $)) (-15 -4025 ((-644 $) $)) (-15 -2784 ((-3 (-112) "failed") $ $)) (-15 -2897 ((-112) $ $)) (-15 -2459 ((-112) $ $)) (-15 -1464 ((-112) $ $)) (-15 -1464 ((-112) $ (-644 $))) (-15 -3351 ((-112) $ $)) (-15 -3351 ((-112) $ (-644 $))) (-15 -1694 ((-112) $ $)) (-15 -1694 ((-112) $ (-644 $))) (-15 -2111 ((-112) $ $)) (-15 -2111 ((-112) $ (-644 $))) (-15 -3565 ($ $ $)) (-15 -2750 ($ $ $)) (-15 -3565 ($ $ $ |t#3|)) (-15 -2750 ($ $ $ |t#3|)) (-15 -4388 ($ $ $)) (-15 -2940 ($ $ $)) (-15 -4388 ($ $ $ |t#3|)) (-15 -2940 ($ $ $ |t#3|)) (-15 -2767 ((-2 (|:| -1364 $) (|:| |gap| (-771)) (|:| -2513 $)) $ $)) (-15 -2767 ((-2 (|:| -1364 $) (|:| |gap| (-771)) (|:| -2513 $)) $ $ |t#3|)) (-15 -1953 ((-2 (|:| -1364 $) (|:| |gap| (-771)) (|:| -2275 $) (|:| -2513 $)) $ $)) (-15 -1953 ((-2 (|:| -1364 $) (|:| |gap| (-771)) (|:| -2275 $) (|:| -2513 $)) $ $ |t#3|)) (-15 -1960 ((-2 (|:| -2275 $) (|:| -2513 $)) $ $)) (-15 -2532 ($ $ $)) (-15 -4252 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4369 (-771))) $ $)) (-15 -3544 ($ $ $)) (-15 -1871 ($ $ $)) (IF (|has| |t#3| (-614 (-1175))) (PROGN (-6 (-613 (-952 |t#1|))) (-6 (-614 (-952 |t#1|))) (IF (|has| |t#1| (-38 (-409 (-566)))) (PROGN (-15 -4307 ((-3 $ "failed") (-952 (-409 (-566))))) (-15 -4205 ($ (-952 (-409 (-566))))) (-15 -1348 ($ (-952 (-409 (-566))))) (-15 -4307 ((-3 $ "failed") (-952 (-566)))) (-15 -4205 ($ (-952 (-566)))) (-15 -1348 ($ (-952 (-566)))) (IF (|has| |t#1| (-992 (-566))) |%noBranch| (PROGN (-15 -4307 ((-3 $ "failed") (-952 |t#1|))) (-15 -4205 ($ (-952 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-566))) (IF (|has| |t#1| (-38 (-409 (-566)))) |%noBranch| (PROGN (-15 -4307 ((-3 $ "failed") (-952 (-566)))) (-15 -4205 ($ (-952 (-566)))) (-15 -1348 ($ (-952 (-566)))) (IF (|has| |t#1| (-547)) |%noBranch| (PROGN (-15 -4307 ((-3 $ "failed") (-952 |t#1|))) (-15 -4205 ($ (-952 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-566))) |%noBranch| (IF (|has| |t#1| (-38 (-409 (-566)))) |%noBranch| (PROGN (-15 -4307 ((-3 $ "failed") (-952 |t#1|))) (-15 -4205 ($ (-952 |t#1|)))))) (-15 -1348 ($ (-952 |t#1|))) (IF (|has| |t#1| (-1038 (-566))) (-6 (-614 (-1157))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-558)) (PROGN (-15 -3233 ($ $)) (-15 -2628 ($ $)) (-15 -4044 ($ $ |t#1|)) (-15 -4164 ($ $ |t#1|)) (-15 -4044 ($ $ $)) (-15 -4164 ($ $ $)) (-15 -4206 ($ $ $)) (-15 -2216 ((-2 (|:| -2214 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2469 ((-2 (|:| -2214 $) (|:| |coef1| $)) $ $)) (-15 -1621 ((-2 (|:| -2214 $) (|:| |coef2| $)) $ $)) (-15 -2738 ($ $ $)) (-15 -3856 ((-644 $) $ $)) (-15 -1558 ($ $ $)) (-15 -2608 ($ $ $ (-771))) (-15 -4121 ($ $ $ $ (-771))) (-15 -3229 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-454)) (PROGN (-15 -2214 (|t#1| |t#1| $)) (-15 -2327 ($ $)) (-15 -4167 ($ $)) (-15 -3165 ($ $)) (-15 -1705 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-409 (-566)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #0#) -2809 (|has| |#1| (-1038 (-409 (-566)))) (|has| |#1| (-38 (-409 (-566))))) ((-616 (-566)) . T) ((-616 |#1|) . T) ((-616 |#3|) . T) ((-616 $) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-613 (-862)) . T) ((-613 (-952 |#1|)) |has| |#3| (-614 (-1175))) ((-172) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-172))) ((-614 (-538)) -12 (|has| |#1| (-614 (-538))) (|has| |#3| (-614 (-538)))) ((-614 (-892 (-381))) -12 (|has| |#1| (-614 (-892 (-381)))) (|has| |#3| (-614 (-892 (-381))))) ((-614 (-892 (-566))) -12 (|has| |#1| (-614 (-892 (-566)))) (|has| |#3| (-614 (-892 (-566))))) ((-614 (-952 |#1|)) |has| |#3| (-614 (-1175))) ((-614 (-1157)) -12 (|has| |#1| (-1038 (-566))) (|has| |#3| (-614 (-1175)))) ((-291) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-310 $) . T) ((-327 |#1| |#2|) . T) ((-379 |#1|) . T) ((-413 |#1|) . T) ((-454) -2809 (|has| |#1| (-909)) (|has| |#1| (-454))) ((-516 |#3| |#1|) . T) ((-516 |#3| $) . T) ((-516 $ $) . T) ((-558) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-646 #0#) |has| |#1| (-38 (-409 (-566)))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #0#) |has| |#1| (-38 (-409 (-566)))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #0#) |has| |#1| (-38 (-409 (-566)))) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-639 (-566)) |has| |#1| (-639 (-566))) ((-639 |#1|) . T) ((-717 #0#) |has| |#1| (-38 (-409 (-566)))) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-726) . T) ((-900 |#3|) . T) ((-886 (-381)) -12 (|has| |#1| (-886 (-381))) (|has| |#3| (-886 (-381)))) ((-886 (-566)) -12 (|has| |#1| (-886 (-566))) (|has| |#3| (-886 (-566)))) ((-949 |#1| |#2| |#3|) . T) ((-909) |has| |#1| (-909)) ((-1038 (-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((-1038 (-566)) |has| |#1| (-1038 (-566))) ((-1038 |#1|) . T) ((-1038 |#3|) . T) ((-1051 #0#) |has| |#1| (-38 (-409 (-566)))) ((-1051 |#1|) . T) ((-1051 $) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-172))) ((-1056 #0#) |has| |#1| (-38 (-409 (-566)))) ((-1056 |#1|) . T) ((-1056 $) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-172))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1218) |has| |#1| (-909))) -((-3007 (((-112) $ $) NIL)) (-4117 (((-1157) $) NIL)) (-1397 (((-644 (-1134)) $) 18)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 27) (($ (-1180)) NIL) (((-1180) $) NIL)) (-1382 (((-1134) $) 20)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) -(((-1065) (-13 (-1082) (-10 -8 (-15 -1397 ((-644 (-1134)) $)) (-15 -1382 ((-1134) $))))) (T -1065)) -((-1397 (*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-1065)))) (-1382 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1065))))) -(-13 (-1082) (-10 -8 (-15 -1397 ((-644 (-1134)) $)) (-15 -1382 ((-1134) $)))) -((-1788 (((-112) |#3| $) 15)) (-3912 (((-3 $ "failed") |#3| (-921)) 29)) (-1878 (((-3 |#3| "failed") |#3| $) 45)) (-1897 (((-112) |#3| $) 19)) (-2117 (((-112) |#3| $) 17))) -(((-1066 |#1| |#2| |#3|) (-10 -8 (-15 -3912 ((-3 |#1| "failed") |#3| (-921))) (-15 -1878 ((-3 |#3| "failed") |#3| |#1|)) (-15 -1897 ((-112) |#3| |#1|)) (-15 -2117 ((-112) |#3| |#1|)) (-15 -1788 ((-112) |#3| |#1|))) (-1067 |#2| |#3|) (-13 (-848) (-365)) (-1240 |#2|)) (T -1066)) -NIL -(-10 -8 (-15 -3912 ((-3 |#1| "failed") |#3| (-921))) (-15 -1878 ((-3 |#3| "failed") |#3| |#1|)) (-15 -1897 ((-112) |#3| |#1|)) (-15 -2117 ((-112) |#3| |#1|)) (-15 -1788 ((-112) |#3| |#1|))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) |#2| $) 22)) (-4364 (((-566) |#2| $) 23)) (-3912 (((-3 $ "failed") |#2| (-921)) 16)) (-3782 ((|#1| |#2| $ |#1|) 14)) (-1878 (((-3 |#2| "failed") |#2| $) 19)) (-1897 (((-112) |#2| $) 20)) (-2117 (((-112) |#2| $) 21)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-1616 ((|#2| $) 18)) (-3783 (((-862) $) 12)) (-3117 (((-112) $ $) 9)) (-3628 ((|#1| |#2| $ |#1|) 15)) (-1990 (((-644 $) |#2|) 17)) (-2947 (((-112) $ $) 6))) +((-4296 (*1 *2 *1) (-12 (-4 *1 (-1064 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)))) (-1904 (*1 *2 *1) (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-771)))) (-3289 (*1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)))) (-2842 (*1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)))) (-3214 (*1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)))) (-3974 (*1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)))) (-1992 (*1 *2 *1) (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *1)) (-4 *1 (-1064 *3 *4 *5)))) (-2562 (*1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)))) (-2794 (*1 *1 *1 *2) (-12 (-4 *1 (-1064 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)))) (-2814 (*1 *1 *1 *2) (-12 (-4 *1 (-1064 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)))) (-2520 (*1 *2 *1) (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)))) (-1393 (*1 *2 *1) (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)))) (-2261 (*1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)))) (-1437 (*1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)))) (-4314 (*1 *2 *1) (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *1)) (-4 *1 (-1064 *3 *4 *5)))) (-2580 (*1 *2 *1) (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *1)) (-4 *1 (-1064 *3 *4 *5)))) (-3677 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)))) (-3077 (*1 *2 *1 *1) (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)))) (-1632 (*1 *2 *1 *1) (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)))) (-3599 (*1 *2 *1 *1) (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)))) (-3599 (*1 *2 *1 *3) (-12 (-5 *3 (-644 *1)) (-4 *1 (-1064 *4 *5 *6)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)))) (-3374 (*1 *2 *1 *1) (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)))) (-3374 (*1 *2 *1 *3) (-12 (-5 *3 (-644 *1)) (-4 *1 (-1064 *4 *5 *6)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)))) (-2543 (*1 *2 *1 *1) (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)))) (-2543 (*1 *2 *1 *3) (-12 (-5 *3 (-644 *1)) (-4 *1 (-1064 *4 *5 *6)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)))) (-1640 (*1 *2 *1 *1) (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)))) (-1640 (*1 *2 *1 *3) (-12 (-5 *3 (-644 *1)) (-4 *1 (-1064 *4 *5 *6)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)))) (-2314 (*1 *1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)))) (-4117 (*1 *1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)))) (-2314 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1064 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)))) (-4117 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1064 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)))) (-3135 (*1 *1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)))) (-1415 (*1 *1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)))) (-3135 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1064 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)))) (-1415 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1064 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)))) (-1380 (*1 *2 *1 *1) (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-2 (|:| -2397 *1) (|:| |gap| (-771)) (|:| -3264 *1))) (-4 *1 (-1064 *3 *4 *5)))) (-1380 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-850)) (-5 *2 (-2 (|:| -2397 *1) (|:| |gap| (-771)) (|:| -3264 *1))) (-4 *1 (-1064 *4 *5 *3)))) (-1980 (*1 *2 *1 *1) (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-2 (|:| -2397 *1) (|:| |gap| (-771)) (|:| -2631 *1) (|:| -3264 *1))) (-4 *1 (-1064 *3 *4 *5)))) (-1980 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-850)) (-5 *2 (-2 (|:| -2397 *1) (|:| |gap| (-771)) (|:| -2631 *1) (|:| -3264 *1))) (-4 *1 (-1064 *4 *5 *3)))) (-1514 (*1 *2 *1 *1) (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-2 (|:| -2631 *1) (|:| -3264 *1))) (-4 *1 (-1064 *3 *4 *5)))) (-1492 (*1 *1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)))) (-1903 (*1 *2 *1 *1) (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -1956 (-771)))) (-4 *1 (-1064 *3 *4 *5)))) (-4074 (*1 *1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)))) (-1906 (*1 *1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)))) (-2229 (*1 *1 *2) (|partial| -12 (-5 *2 (-952 (-409 (-566)))) (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-38 (-409 (-566)))) (-4 *5 (-614 (-1175))) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)))) (-4158 (*1 *1 *2) (-12 (-5 *2 (-952 (-409 (-566)))) (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-38 (-409 (-566)))) (-4 *5 (-614 (-1175))) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)))) (-2376 (*1 *1 *2) (-12 (-5 *2 (-952 (-409 (-566)))) (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-38 (-409 (-566)))) (-4 *5 (-614 (-1175))) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)))) (-2229 (*1 *1 *2) (|partial| -2768 (-12 (-5 *2 (-952 (-566))) (-4 *1 (-1064 *3 *4 *5)) (-12 (-2404 (-4 *3 (-38 (-409 (-566))))) (-4 *3 (-38 (-566))) (-4 *5 (-614 (-1175)))) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850))) (-12 (-5 *2 (-952 (-566))) (-4 *1 (-1064 *3 *4 *5)) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *5 (-614 (-1175)))) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850))))) (-4158 (*1 *1 *2) (-2768 (-12 (-5 *2 (-952 (-566))) (-4 *1 (-1064 *3 *4 *5)) (-12 (-2404 (-4 *3 (-38 (-409 (-566))))) (-4 *3 (-38 (-566))) (-4 *5 (-614 (-1175)))) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850))) (-12 (-5 *2 (-952 (-566))) (-4 *1 (-1064 *3 *4 *5)) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *5 (-614 (-1175)))) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850))))) (-2376 (*1 *1 *2) (-2768 (-12 (-5 *2 (-952 (-566))) (-4 *1 (-1064 *3 *4 *5)) (-12 (-2404 (-4 *3 (-38 (-409 (-566))))) (-4 *3 (-38 (-566))) (-4 *5 (-614 (-1175)))) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850))) (-12 (-5 *2 (-952 (-566))) (-4 *1 (-1064 *3 *4 *5)) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *5 (-614 (-1175)))) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850))))) (-2229 (*1 *1 *2) (|partial| -2768 (-12 (-5 *2 (-952 *3)) (-12 (-2404 (-4 *3 (-38 (-409 (-566))))) (-2404 (-4 *3 (-38 (-566)))) (-4 *5 (-614 (-1175)))) (-4 *3 (-1049)) (-4 *1 (-1064 *3 *4 *5)) (-4 *4 (-793)) (-4 *5 (-850))) (-12 (-5 *2 (-952 *3)) (-12 (-2404 (-4 *3 (-547))) (-2404 (-4 *3 (-38 (-409 (-566))))) (-4 *3 (-38 (-566))) (-4 *5 (-614 (-1175)))) (-4 *3 (-1049)) (-4 *1 (-1064 *3 *4 *5)) (-4 *4 (-793)) (-4 *5 (-850))) (-12 (-5 *2 (-952 *3)) (-12 (-2404 (-4 *3 (-992 (-566)))) (-4 *3 (-38 (-409 (-566)))) (-4 *5 (-614 (-1175)))) (-4 *3 (-1049)) (-4 *1 (-1064 *3 *4 *5)) (-4 *4 (-793)) (-4 *5 (-850))))) (-4158 (*1 *1 *2) (-2768 (-12 (-5 *2 (-952 *3)) (-12 (-2404 (-4 *3 (-38 (-409 (-566))))) (-2404 (-4 *3 (-38 (-566)))) (-4 *5 (-614 (-1175)))) (-4 *3 (-1049)) (-4 *1 (-1064 *3 *4 *5)) (-4 *4 (-793)) (-4 *5 (-850))) (-12 (-5 *2 (-952 *3)) (-12 (-2404 (-4 *3 (-547))) (-2404 (-4 *3 (-38 (-409 (-566))))) (-4 *3 (-38 (-566))) (-4 *5 (-614 (-1175)))) (-4 *3 (-1049)) (-4 *1 (-1064 *3 *4 *5)) (-4 *4 (-793)) (-4 *5 (-850))) (-12 (-5 *2 (-952 *3)) (-12 (-2404 (-4 *3 (-992 (-566)))) (-4 *3 (-38 (-409 (-566)))) (-4 *5 (-614 (-1175)))) (-4 *3 (-1049)) (-4 *1 (-1064 *3 *4 *5)) (-4 *4 (-793)) (-4 *5 (-850))))) (-2376 (*1 *1 *2) (-12 (-5 *2 (-952 *3)) (-4 *3 (-1049)) (-4 *1 (-1064 *3 *4 *5)) (-4 *5 (-614 (-1175))) (-4 *4 (-793)) (-4 *5 (-850)))) (-1363 (*1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-558)))) (-3960 (*1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-558)))) (-2672 (*1 *1 *1 *2) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-558)))) (-2355 (*1 *1 *1 *2) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-558)))) (-2672 (*1 *1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-558)))) (-2355 (*1 *1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-558)))) (-1890 (*1 *1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-558)))) (-3188 (*1 *2 *1 *1) (-12 (-4 *3 (-558)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-2 (|:| -2164 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1064 *3 *4 *5)))) (-3220 (*1 *2 *1 *1) (-12 (-4 *3 (-558)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-2 (|:| -2164 *1) (|:| |coef1| *1))) (-4 *1 (-1064 *3 *4 *5)))) (-4092 (*1 *2 *1 *1) (-12 (-4 *3 (-558)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-2 (|:| -2164 *1) (|:| |coef2| *1))) (-4 *1 (-1064 *3 *4 *5)))) (-2610 (*1 *1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-558)))) (-2514 (*1 *2 *1 *1) (-12 (-4 *3 (-558)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *1)) (-4 *1 (-1064 *3 *4 *5)))) (-3940 (*1 *1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-558)))) (-2608 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *3 (-558)))) (-3797 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *3 (-558)))) (-2196 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-558)))) (-2164 (*1 *2 *2 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-454)))) (-3269 (*1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-454)))) (-2556 (*1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-454)))) (-3195 (*1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-454)))) (-2410 (*1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-454))))) +(-13 (-949 |t#1| |t#2| |t#3|) (-10 -8 (-15 -4296 (|t#3| $)) (-15 -1904 ((-771) $)) (-15 -3289 ($ $)) (-15 -2842 ($ $)) (-15 -3214 ($ $)) (-15 -3974 ($ $)) (-15 -1992 ((-644 $) $)) (-15 -2562 ($ $)) (-15 -2794 ($ $ |t#3|)) (-15 -2814 ($ $ |t#3|)) (-15 -2520 ((-112) $)) (-15 -1393 ((-112) $)) (-15 -2261 ($ $)) (-15 -1437 ($ $)) (-15 -4314 ((-644 $) $)) (-15 -2580 ((-644 $) $)) (-15 -3677 ((-3 (-112) "failed") $ $)) (-15 -3077 ((-112) $ $)) (-15 -1632 ((-112) $ $)) (-15 -3599 ((-112) $ $)) (-15 -3599 ((-112) $ (-644 $))) (-15 -3374 ((-112) $ $)) (-15 -3374 ((-112) $ (-644 $))) (-15 -2543 ((-112) $ $)) (-15 -2543 ((-112) $ (-644 $))) (-15 -1640 ((-112) $ $)) (-15 -1640 ((-112) $ (-644 $))) (-15 -2314 ($ $ $)) (-15 -4117 ($ $ $)) (-15 -2314 ($ $ $ |t#3|)) (-15 -4117 ($ $ $ |t#3|)) (-15 -3135 ($ $ $)) (-15 -1415 ($ $ $)) (-15 -3135 ($ $ $ |t#3|)) (-15 -1415 ($ $ $ |t#3|)) (-15 -1380 ((-2 (|:| -2397 $) (|:| |gap| (-771)) (|:| -3264 $)) $ $)) (-15 -1380 ((-2 (|:| -2397 $) (|:| |gap| (-771)) (|:| -3264 $)) $ $ |t#3|)) (-15 -1980 ((-2 (|:| -2397 $) (|:| |gap| (-771)) (|:| -2631 $) (|:| -3264 $)) $ $)) (-15 -1980 ((-2 (|:| -2397 $) (|:| |gap| (-771)) (|:| -2631 $) (|:| -3264 $)) $ $ |t#3|)) (-15 -1514 ((-2 (|:| -2631 $) (|:| -3264 $)) $ $)) (-15 -1492 ($ $ $)) (-15 -1903 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1956 (-771))) $ $)) (-15 -4074 ($ $ $)) (-15 -1906 ($ $ $)) (IF (|has| |t#3| (-614 (-1175))) (PROGN (-6 (-613 (-952 |t#1|))) (-6 (-614 (-952 |t#1|))) (IF (|has| |t#1| (-38 (-409 (-566)))) (PROGN (-15 -2229 ((-3 $ "failed") (-952 (-409 (-566))))) (-15 -4158 ($ (-952 (-409 (-566))))) (-15 -2376 ($ (-952 (-409 (-566))))) (-15 -2229 ((-3 $ "failed") (-952 (-566)))) (-15 -4158 ($ (-952 (-566)))) (-15 -2376 ($ (-952 (-566)))) (IF (|has| |t#1| (-992 (-566))) |%noBranch| (PROGN (-15 -2229 ((-3 $ "failed") (-952 |t#1|))) (-15 -4158 ($ (-952 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-566))) (IF (|has| |t#1| (-38 (-409 (-566)))) |%noBranch| (PROGN (-15 -2229 ((-3 $ "failed") (-952 (-566)))) (-15 -4158 ($ (-952 (-566)))) (-15 -2376 ($ (-952 (-566)))) (IF (|has| |t#1| (-547)) |%noBranch| (PROGN (-15 -2229 ((-3 $ "failed") (-952 |t#1|))) (-15 -4158 ($ (-952 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-566))) |%noBranch| (IF (|has| |t#1| (-38 (-409 (-566)))) |%noBranch| (PROGN (-15 -2229 ((-3 $ "failed") (-952 |t#1|))) (-15 -4158 ($ (-952 |t#1|)))))) (-15 -2376 ($ (-952 |t#1|))) (IF (|has| |t#1| (-1038 (-566))) (-6 (-614 (-1157))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-558)) (PROGN (-15 -1363 ($ $)) (-15 -3960 ($ $)) (-15 -2672 ($ $ |t#1|)) (-15 -2355 ($ $ |t#1|)) (-15 -2672 ($ $ $)) (-15 -2355 ($ $ $)) (-15 -1890 ($ $ $)) (-15 -3188 ((-2 (|:| -2164 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3220 ((-2 (|:| -2164 $) (|:| |coef1| $)) $ $)) (-15 -4092 ((-2 (|:| -2164 $) (|:| |coef2| $)) $ $)) (-15 -2610 ($ $ $)) (-15 -2514 ((-644 $) $ $)) (-15 -3940 ($ $ $)) (-15 -2608 ($ $ $ (-771))) (-15 -3797 ($ $ $ $ (-771))) (-15 -2196 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-454)) (PROGN (-15 -2164 (|t#1| |t#1| $)) (-15 -3269 ($ $)) (-15 -2556 ($ $)) (-15 -3195 ($ $)) (-15 -2410 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2768 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-409 (-566)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2768 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #0#) -2768 (|has| |#1| (-1038 (-409 (-566)))) (|has| |#1| (-38 (-409 (-566))))) ((-616 (-566)) . T) ((-616 |#1|) . T) ((-616 |#3|) . T) ((-616 $) -2768 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-613 (-862)) . T) ((-613 (-952 |#1|)) |has| |#3| (-614 (-1175))) ((-172) -2768 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-172))) ((-614 (-538)) -12 (|has| |#1| (-614 (-538))) (|has| |#3| (-614 (-538)))) ((-614 (-892 (-381))) -12 (|has| |#1| (-614 (-892 (-381)))) (|has| |#3| (-614 (-892 (-381))))) ((-614 (-892 (-566))) -12 (|has| |#1| (-614 (-892 (-566)))) (|has| |#3| (-614 (-892 (-566))))) ((-614 (-952 |#1|)) |has| |#3| (-614 (-1175))) ((-614 (-1157)) -12 (|has| |#1| (-1038 (-566))) (|has| |#3| (-614 (-1175)))) ((-291) -2768 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-310 $) . T) ((-327 |#1| |#2|) . T) ((-379 |#1|) . T) ((-413 |#1|) . T) ((-454) -2768 (|has| |#1| (-909)) (|has| |#1| (-454))) ((-516 |#3| |#1|) . T) ((-516 |#3| $) . T) ((-516 $ $) . T) ((-558) -2768 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-646 #0#) |has| |#1| (-38 (-409 (-566)))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #0#) |has| |#1| (-38 (-409 (-566)))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #0#) |has| |#1| (-38 (-409 (-566)))) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) -2768 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-639 (-566)) |has| |#1| (-639 (-566))) ((-639 |#1|) . T) ((-717 #0#) |has| |#1| (-38 (-409 (-566)))) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) -2768 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-726) . T) ((-900 |#3|) . T) ((-886 (-381)) -12 (|has| |#1| (-886 (-381))) (|has| |#3| (-886 (-381)))) ((-886 (-566)) -12 (|has| |#1| (-886 (-566))) (|has| |#3| (-886 (-566)))) ((-949 |#1| |#2| |#3|) . T) ((-909) |has| |#1| (-909)) ((-1038 (-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((-1038 (-566)) |has| |#1| (-1038 (-566))) ((-1038 |#1|) . T) ((-1038 |#3|) . T) ((-1051 #0#) |has| |#1| (-38 (-409 (-566)))) ((-1051 |#1|) . T) ((-1051 $) -2768 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-172))) ((-1056 #0#) |has| |#1| (-38 (-409 (-566)))) ((-1056 |#1|) . T) ((-1056 $) -2768 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-172))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1218) |has| |#1| (-909))) +((-2988 (((-112) $ $) NIL)) (-3380 (((-1157) $) NIL)) (-4359 (((-644 (-1134)) $) 18)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 27) (($ (-1180)) NIL) (((-1180) $) NIL)) (-1377 (((-1134) $) 20)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) +(((-1065) (-13 (-1082) (-10 -8 (-15 -4359 ((-644 (-1134)) $)) (-15 -1377 ((-1134) $))))) (T -1065)) +((-4359 (*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-1065)))) (-1377 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1065))))) +(-13 (-1082) (-10 -8 (-15 -4359 ((-644 (-1134)) $)) (-15 -1377 ((-1134) $)))) +((-3230 (((-112) |#3| $) 15)) (-4093 (((-3 $ "failed") |#3| (-921)) 29)) (-3245 (((-3 |#3| "failed") |#3| $) 45)) (-2528 (((-112) |#3| $) 19)) (-3233 (((-112) |#3| $) 17))) +(((-1066 |#1| |#2| |#3|) (-10 -8 (-15 -4093 ((-3 |#1| "failed") |#3| (-921))) (-15 -3245 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2528 ((-112) |#3| |#1|)) (-15 -3233 ((-112) |#3| |#1|)) (-15 -3230 ((-112) |#3| |#1|))) (-1067 |#2| |#3|) (-13 (-848) (-365)) (-1240 |#2|)) (T -1066)) +NIL +(-10 -8 (-15 -4093 ((-3 |#1| "failed") |#3| (-921))) (-15 -3245 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2528 ((-112) |#3| |#1|)) (-15 -3233 ((-112) |#3| |#1|)) (-15 -3230 ((-112) |#3| |#1|))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) |#2| $) 22)) (-2743 (((-566) |#2| $) 23)) (-4093 (((-3 $ "failed") |#2| (-921)) 16)) (-2098 ((|#1| |#2| $ |#1|) 14)) (-3245 (((-3 |#2| "failed") |#2| $) 19)) (-2528 (((-112) |#2| $) 20)) (-3233 (((-112) |#2| $) 21)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-1705 ((|#2| $) 18)) (-3152 (((-862) $) 12)) (-3044 (((-112) $ $) 9)) (-3603 ((|#1| |#2| $ |#1|) 15)) (-1526 (((-644 $) |#2|) 17)) (-2914 (((-112) $ $) 6))) (((-1067 |#1| |#2|) (-140) (-13 (-848) (-365)) (-1240 |t#1|)) (T -1067)) -((-4364 (*1 *2 *3 *1) (-12 (-4 *1 (-1067 *4 *3)) (-4 *4 (-13 (-848) (-365))) (-4 *3 (-1240 *4)) (-5 *2 (-566)))) (-1788 (*1 *2 *3 *1) (-12 (-4 *1 (-1067 *4 *3)) (-4 *4 (-13 (-848) (-365))) (-4 *3 (-1240 *4)) (-5 *2 (-112)))) (-2117 (*1 *2 *3 *1) (-12 (-4 *1 (-1067 *4 *3)) (-4 *4 (-13 (-848) (-365))) (-4 *3 (-1240 *4)) (-5 *2 (-112)))) (-1897 (*1 *2 *3 *1) (-12 (-4 *1 (-1067 *4 *3)) (-4 *4 (-13 (-848) (-365))) (-4 *3 (-1240 *4)) (-5 *2 (-112)))) (-1878 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1067 *3 *2)) (-4 *3 (-13 (-848) (-365))) (-4 *2 (-1240 *3)))) (-1616 (*1 *2 *1) (-12 (-4 *1 (-1067 *3 *2)) (-4 *3 (-13 (-848) (-365))) (-4 *2 (-1240 *3)))) (-1990 (*1 *2 *3) (-12 (-4 *4 (-13 (-848) (-365))) (-4 *3 (-1240 *4)) (-5 *2 (-644 *1)) (-4 *1 (-1067 *4 *3)))) (-3912 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-921)) (-4 *4 (-13 (-848) (-365))) (-4 *1 (-1067 *4 *2)) (-4 *2 (-1240 *4)))) (-3628 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1067 *2 *3)) (-4 *2 (-13 (-848) (-365))) (-4 *3 (-1240 *2)))) (-3782 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1067 *2 *3)) (-4 *2 (-13 (-848) (-365))) (-4 *3 (-1240 *2))))) -(-13 (-1099) (-10 -8 (-15 -4364 ((-566) |t#2| $)) (-15 -1788 ((-112) |t#2| $)) (-15 -2117 ((-112) |t#2| $)) (-15 -1897 ((-112) |t#2| $)) (-15 -1878 ((-3 |t#2| "failed") |t#2| $)) (-15 -1616 (|t#2| $)) (-15 -1990 ((-644 $) |t#2|)) (-15 -3912 ((-3 $ "failed") |t#2| (-921))) (-15 -3628 (|t#1| |t#2| $ |t#1|)) (-15 -3782 (|t#1| |t#2| $ |t#1|)))) +((-2743 (*1 *2 *3 *1) (-12 (-4 *1 (-1067 *4 *3)) (-4 *4 (-13 (-848) (-365))) (-4 *3 (-1240 *4)) (-5 *2 (-566)))) (-3230 (*1 *2 *3 *1) (-12 (-4 *1 (-1067 *4 *3)) (-4 *4 (-13 (-848) (-365))) (-4 *3 (-1240 *4)) (-5 *2 (-112)))) (-3233 (*1 *2 *3 *1) (-12 (-4 *1 (-1067 *4 *3)) (-4 *4 (-13 (-848) (-365))) (-4 *3 (-1240 *4)) (-5 *2 (-112)))) (-2528 (*1 *2 *3 *1) (-12 (-4 *1 (-1067 *4 *3)) (-4 *4 (-13 (-848) (-365))) (-4 *3 (-1240 *4)) (-5 *2 (-112)))) (-3245 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1067 *3 *2)) (-4 *3 (-13 (-848) (-365))) (-4 *2 (-1240 *3)))) (-1705 (*1 *2 *1) (-12 (-4 *1 (-1067 *3 *2)) (-4 *3 (-13 (-848) (-365))) (-4 *2 (-1240 *3)))) (-1526 (*1 *2 *3) (-12 (-4 *4 (-13 (-848) (-365))) (-4 *3 (-1240 *4)) (-5 *2 (-644 *1)) (-4 *1 (-1067 *4 *3)))) (-4093 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-921)) (-4 *4 (-13 (-848) (-365))) (-4 *1 (-1067 *4 *2)) (-4 *2 (-1240 *4)))) (-3603 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1067 *2 *3)) (-4 *2 (-13 (-848) (-365))) (-4 *3 (-1240 *2)))) (-2098 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1067 *2 *3)) (-4 *2 (-13 (-848) (-365))) (-4 *3 (-1240 *2))))) +(-13 (-1099) (-10 -8 (-15 -2743 ((-566) |t#2| $)) (-15 -3230 ((-112) |t#2| $)) (-15 -3233 ((-112) |t#2| $)) (-15 -2528 ((-112) |t#2| $)) (-15 -3245 ((-3 |t#2| "failed") |t#2| $)) (-15 -1705 (|t#2| $)) (-15 -1526 ((-644 $) |t#2|)) (-15 -4093 ((-3 $ "failed") |t#2| (-921))) (-15 -3603 (|t#1| |t#2| $ |t#1|)) (-15 -2098 (|t#1| |t#2| $ |t#1|)))) (((-102) . T) ((-613 (-862)) . T) ((-1099) . T)) -((-2822 (((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))) (-644 |#4|) (-644 |#5|) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))) (-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))))) (-771)) 115)) (-2754 (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))))) |#4| |#5| (-771)) 63)) (-2629 (((-1269) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))) (-771)) 100)) (-2987 (((-771) (-644 |#4|) (-644 |#5|)) 30)) (-2605 (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))))) |#4| |#5|) 66) (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))))) |#4| |#5| (-771)) 65) (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))))) |#4| |#5| (-771) (-112)) 67)) (-3475 (((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112) (-112) (-112) (-112)) 86) (((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112)) 87)) (-1348 (((-1157) (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))) 92)) (-4028 (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))))) |#4| |#5| (-112)) 62)) (-3947 (((-771) (-644 |#4|) (-644 |#5|)) 21))) -(((-1068 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3947 ((-771) (-644 |#4|) (-644 |#5|))) (-15 -2987 ((-771) (-644 |#4|) (-644 |#5|))) (-15 -4028 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))))) |#4| |#5| (-112))) (-15 -2754 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))))) |#4| |#5| (-771))) (-15 -2754 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))))) |#4| |#5|)) (-15 -2605 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))))) |#4| |#5| (-771) (-112))) (-15 -2605 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))))) |#4| |#5| (-771))) (-15 -2605 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))))) |#4| |#5|)) (-15 -3475 ((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112))) (-15 -3475 ((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2822 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))) (-644 |#4|) (-644 |#5|) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))) (-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))))) (-771))) (-15 -1348 ((-1157) (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|)))) (-15 -2629 ((-1269) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))) (-771)))) (-454) (-793) (-850) (-1064 |#1| |#2| |#3|) (-1070 |#1| |#2| |#3| |#4|)) (T -1068)) -((-2629 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-2 (|:| |val| (-644 *8)) (|:| -3570 *9)))) (-5 *4 (-771)) (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1070 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-1269)) (-5 *1 (-1068 *5 *6 *7 *8 *9)))) (-1348 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-644 *7)) (|:| -3570 *8))) (-4 *7 (-1064 *4 *5 *6)) (-4 *8 (-1070 *4 *5 *6 *7)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-1157)) (-5 *1 (-1068 *4 *5 *6 *7 *8)))) (-2822 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-644 *11)) (|:| |todo| (-644 (-2 (|:| |val| *3) (|:| -3570 *11)))))) (-5 *6 (-771)) (-5 *2 (-644 (-2 (|:| |val| (-644 *10)) (|:| -3570 *11)))) (-5 *3 (-644 *10)) (-5 *4 (-644 *11)) (-4 *10 (-1064 *7 *8 *9)) (-4 *11 (-1070 *7 *8 *9 *10)) (-4 *7 (-454)) (-4 *8 (-793)) (-4 *9 (-850)) (-5 *1 (-1068 *7 *8 *9 *10 *11)))) (-3475 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-644 *9)) (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1070 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-1068 *5 *6 *7 *8 *9)))) (-3475 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-644 *9)) (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1070 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-1068 *5 *6 *7 *8 *9)))) (-2605 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -3570 *4)))))) (-5 *1 (-1068 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-2605 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-771)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) (-4 *3 (-1064 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -3570 *4)))))) (-5 *1 (-1068 *6 *7 *8 *3 *4)) (-4 *4 (-1070 *6 *7 *8 *3)))) (-2605 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-771)) (-5 *6 (-112)) (-4 *7 (-454)) (-4 *8 (-793)) (-4 *9 (-850)) (-4 *3 (-1064 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -3570 *4)))))) (-5 *1 (-1068 *7 *8 *9 *3 *4)) (-4 *4 (-1070 *7 *8 *9 *3)))) (-2754 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -3570 *4)))))) (-5 *1 (-1068 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-2754 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-771)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) (-4 *3 (-1064 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -3570 *4)))))) (-5 *1 (-1068 *6 *7 *8 *3 *4)) (-4 *4 (-1070 *6 *7 *8 *3)))) (-4028 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) (-4 *3 (-1064 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -3570 *4)))))) (-5 *1 (-1068 *6 *7 *8 *3 *4)) (-4 *4 (-1070 *6 *7 *8 *3)))) (-2987 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 *9)) (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1070 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-771)) (-5 *1 (-1068 *5 *6 *7 *8 *9)))) (-3947 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 *9)) (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1070 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-771)) (-5 *1 (-1068 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -3947 ((-771) (-644 |#4|) (-644 |#5|))) (-15 -2987 ((-771) (-644 |#4|) (-644 |#5|))) (-15 -4028 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))))) |#4| |#5| (-112))) (-15 -2754 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))))) |#4| |#5| (-771))) (-15 -2754 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))))) |#4| |#5|)) (-15 -2605 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))))) |#4| |#5| (-771) (-112))) (-15 -2605 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))))) |#4| |#5| (-771))) (-15 -2605 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))))) |#4| |#5|)) (-15 -3475 ((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112))) (-15 -3475 ((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2822 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))) (-644 |#4|) (-644 |#5|) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))) (-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))))) (-771))) (-15 -1348 ((-1157) (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|)))) (-15 -2629 ((-1269) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))) (-771)))) -((-3987 (((-112) |#5| $) 26)) (-1906 (((-112) |#5| $) 29)) (-1530 (((-112) |#5| $) 18) (((-112) $) 52)) (-4018 (((-644 $) |#5| $) NIL) (((-644 $) (-644 |#5|) $) 94) (((-644 $) (-644 |#5|) (-644 $)) 92) (((-644 $) |#5| (-644 $)) 95)) (-3874 (($ $ |#5|) NIL) (((-644 $) |#5| $) NIL) (((-644 $) |#5| (-644 $)) 73) (((-644 $) (-644 |#5|) $) 75) (((-644 $) (-644 |#5|) (-644 $)) 77)) (-3089 (((-644 $) |#5| $) NIL) (((-644 $) |#5| (-644 $)) 64) (((-644 $) (-644 |#5|) $) 69) (((-644 $) (-644 |#5|) (-644 $)) 71)) (-1571 (((-112) |#5| $) 32))) -(((-1069 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3874 ((-644 |#1|) (-644 |#5|) (-644 |#1|))) (-15 -3874 ((-644 |#1|) (-644 |#5|) |#1|)) (-15 -3874 ((-644 |#1|) |#5| (-644 |#1|))) (-15 -3874 ((-644 |#1|) |#5| |#1|)) (-15 -3089 ((-644 |#1|) (-644 |#5|) (-644 |#1|))) (-15 -3089 ((-644 |#1|) (-644 |#5|) |#1|)) (-15 -3089 ((-644 |#1|) |#5| (-644 |#1|))) (-15 -3089 ((-644 |#1|) |#5| |#1|)) (-15 -4018 ((-644 |#1|) |#5| (-644 |#1|))) (-15 -4018 ((-644 |#1|) (-644 |#5|) (-644 |#1|))) (-15 -4018 ((-644 |#1|) (-644 |#5|) |#1|)) (-15 -4018 ((-644 |#1|) |#5| |#1|)) (-15 -1906 ((-112) |#5| |#1|)) (-15 -1530 ((-112) |#1|)) (-15 -1571 ((-112) |#5| |#1|)) (-15 -3987 ((-112) |#5| |#1|)) (-15 -1530 ((-112) |#5| |#1|)) (-15 -3874 (|#1| |#1| |#5|))) (-1070 |#2| |#3| |#4| |#5|) (-454) (-793) (-850) (-1064 |#2| |#3| |#4|)) (T -1069)) -NIL -(-10 -8 (-15 -3874 ((-644 |#1|) (-644 |#5|) (-644 |#1|))) (-15 -3874 ((-644 |#1|) (-644 |#5|) |#1|)) (-15 -3874 ((-644 |#1|) |#5| (-644 |#1|))) (-15 -3874 ((-644 |#1|) |#5| |#1|)) (-15 -3089 ((-644 |#1|) (-644 |#5|) (-644 |#1|))) (-15 -3089 ((-644 |#1|) (-644 |#5|) |#1|)) (-15 -3089 ((-644 |#1|) |#5| (-644 |#1|))) (-15 -3089 ((-644 |#1|) |#5| |#1|)) (-15 -4018 ((-644 |#1|) |#5| (-644 |#1|))) (-15 -4018 ((-644 |#1|) (-644 |#5|) (-644 |#1|))) (-15 -4018 ((-644 |#1|) (-644 |#5|) |#1|)) (-15 -4018 ((-644 |#1|) |#5| |#1|)) (-15 -1906 ((-112) |#5| |#1|)) (-15 -1530 ((-112) |#1|)) (-15 -1571 ((-112) |#5| |#1|)) (-15 -3987 ((-112) |#5| |#1|)) (-15 -1530 ((-112) |#5| |#1|)) (-15 -3874 (|#1| |#1| |#5|))) -((-3007 (((-112) $ $) 7)) (-2584 (((-644 (-2 (|:| -1651 $) (|:| -3501 (-644 |#4|)))) (-644 |#4|)) 86)) (-2333 (((-644 $) (-644 |#4|)) 87) (((-644 $) (-644 |#4|) (-112)) 112)) (-3863 (((-644 |#3|) $) 34)) (-2368 (((-112) $) 27)) (-4070 (((-112) $) 18 (|has| |#1| (-558)))) (-3624 (((-112) |#4| $) 102) (((-112) $) 98)) (-1374 ((|#4| |#4| $) 93)) (-1550 (((-644 (-2 (|:| |val| |#4|) (|:| -3570 $))) |#4| $) 127)) (-1510 (((-2 (|:| |under| $) (|:| -3470 $) (|:| |upper| $)) $ |#3|) 28)) (-2256 (((-112) $ (-771)) 45)) (-2701 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4414))) (((-3 |#4| "failed") $ |#3|) 80)) (-3012 (($) 46 T CONST)) (-3779 (((-112) $) 23 (|has| |#1| (-558)))) (-2540 (((-112) $ $) 25 (|has| |#1| (-558)))) (-4093 (((-112) $ $) 24 (|has| |#1| (-558)))) (-3741 (((-112) $) 26 (|has| |#1| (-558)))) (-2506 (((-644 |#4|) (-644 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2026 (((-644 |#4|) (-644 |#4|) $) 19 (|has| |#1| (-558)))) (-4306 (((-644 |#4|) (-644 |#4|) $) 20 (|has| |#1| (-558)))) (-4307 (((-3 $ "failed") (-644 |#4|)) 37)) (-4205 (($ (-644 |#4|)) 36)) (-2010 (((-3 $ "failed") $) 83)) (-2100 ((|#4| |#4| $) 90)) (-2031 (($ $) 69 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414))))) (-2665 (($ |#4| $) 68 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4414)))) (-2513 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-558)))) (-1464 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-1401 ((|#4| |#4| $) 88)) (-1676 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4414))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4414))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-3692 (((-2 (|:| -1651 (-644 |#4|)) (|:| -3501 (-644 |#4|))) $) 106)) (-3987 (((-112) |#4| $) 137)) (-1906 (((-112) |#4| $) 134)) (-1530 (((-112) |#4| $) 138) (((-112) $) 135)) (-3979 (((-644 |#4|) $) 53 (|has| $ (-6 -4414)))) (-2111 (((-112) |#4| $) 105) (((-112) $) 104)) (-1489 ((|#3| $) 35)) (-2404 (((-112) $ (-771)) 44)) (-2329 (((-644 |#4|) $) 54 (|has| $ (-6 -4414)))) (-1916 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414))))) (-2908 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#4| |#4|) $) 48)) (-2189 (((-644 |#3|) $) 33)) (-3953 (((-112) |#3| $) 32)) (-2603 (((-112) $ (-771)) 43)) (-4117 (((-1157) $) 10)) (-1532 (((-3 |#4| (-644 $)) |#4| |#4| $) 129)) (-1558 (((-644 (-2 (|:| |val| |#4|) (|:| -3570 $))) |#4| |#4| $) 128)) (-2686 (((-3 |#4| "failed") $) 84)) (-3758 (((-644 $) |#4| $) 130)) (-1613 (((-3 (-112) (-644 $)) |#4| $) 133)) (-1714 (((-644 (-2 (|:| |val| (-112)) (|:| -3570 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-4018 (((-644 $) |#4| $) 126) (((-644 $) (-644 |#4|) $) 125) (((-644 $) (-644 |#4|) (-644 $)) 124) (((-644 $) |#4| (-644 $)) 123)) (-2096 (($ |#4| $) 118) (($ (-644 |#4|) $) 117)) (-2851 (((-644 |#4|) $) 108)) (-1694 (((-112) |#4| $) 100) (((-112) $) 96)) (-1871 ((|#4| |#4| $) 91)) (-2897 (((-112) $ $) 111)) (-3112 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-558)))) (-3351 (((-112) |#4| $) 101) (((-112) $) 97)) (-3544 ((|#4| |#4| $) 92)) (-4035 (((-1119) $) 11)) (-1998 (((-3 |#4| "failed") $) 85)) (-2006 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2060 (((-3 $ "failed") $ |#4|) 79)) (-3874 (($ $ |#4|) 78) (((-644 $) |#4| $) 116) (((-644 $) |#4| (-644 $)) 115) (((-644 $) (-644 |#4|) $) 114) (((-644 $) (-644 |#4|) (-644 $)) 113)) (-2692 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 |#4|) (-644 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-644 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))) (-1932 (((-112) $ $) 39)) (-3467 (((-112) $) 42)) (-1494 (($) 41)) (-3636 (((-771) $) 107)) (-4045 (((-771) |#4| $) 55 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414)))) (((-771) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4414)))) (-3940 (($ $) 40)) (-1348 (((-538) $) 70 (|has| |#4| (-614 (-538))))) (-3796 (($ (-644 |#4|)) 61)) (-2325 (($ $ |#3|) 29)) (-4106 (($ $ |#3|) 31)) (-3973 (($ $) 89)) (-3080 (($ $ |#3|) 30)) (-3783 (((-862) $) 12) (((-644 |#4|) $) 38)) (-2028 (((-771) $) 77 (|has| |#3| (-370)))) (-3117 (((-112) $ $) 9)) (-3706 (((-3 (-2 (|:| |bas| $) (|:| -1825 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -1825 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3772 (((-112) $ (-1 (-112) |#4| (-644 |#4|))) 99)) (-3089 (((-644 $) |#4| $) 122) (((-644 $) |#4| (-644 $)) 121) (((-644 $) (-644 |#4|) $) 120) (((-644 $) (-644 |#4|) (-644 $)) 119)) (-1894 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4414)))) (-4180 (((-644 |#3|) $) 82)) (-1571 (((-112) |#4| $) 136)) (-1423 (((-112) |#3| $) 81)) (-2947 (((-112) $ $) 6)) (-3018 (((-771) $) 47 (|has| $ (-6 -4414))))) +((-3235 (((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))) (-644 |#4|) (-644 |#5|) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))) (-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))))) (-771)) 115)) (-2623 (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))))) |#4| |#5| (-771)) 63)) (-3484 (((-1269) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))) (-771)) 100)) (-4321 (((-771) (-644 |#4|) (-644 |#5|)) 30)) (-3465 (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))))) |#4| |#5|) 66) (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))))) |#4| |#5| (-771)) 65) (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))))) |#4| |#5| (-771) (-112)) 67)) (-2461 (((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112) (-112) (-112) (-112)) 86) (((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112)) 87)) (-2376 (((-1157) (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))) 92)) (-1628 (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))))) |#4| |#5| (-112)) 62)) (-2234 (((-771) (-644 |#4|) (-644 |#5|)) 21))) +(((-1068 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2234 ((-771) (-644 |#4|) (-644 |#5|))) (-15 -4321 ((-771) (-644 |#4|) (-644 |#5|))) (-15 -1628 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))))) |#4| |#5| (-112))) (-15 -2623 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))))) |#4| |#5| (-771))) (-15 -2623 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))))) |#4| |#5|)) (-15 -3465 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))))) |#4| |#5| (-771) (-112))) (-15 -3465 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))))) |#4| |#5| (-771))) (-15 -3465 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))))) |#4| |#5|)) (-15 -2461 ((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112))) (-15 -2461 ((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3235 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))) (-644 |#4|) (-644 |#5|) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))) (-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))))) (-771))) (-15 -2376 ((-1157) (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|)))) (-15 -3484 ((-1269) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))) (-771)))) (-454) (-793) (-850) (-1064 |#1| |#2| |#3|) (-1070 |#1| |#2| |#3| |#4|)) (T -1068)) +((-3484 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-2 (|:| |val| (-644 *8)) (|:| -1470 *9)))) (-5 *4 (-771)) (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1070 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-1269)) (-5 *1 (-1068 *5 *6 *7 *8 *9)))) (-2376 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-644 *7)) (|:| -1470 *8))) (-4 *7 (-1064 *4 *5 *6)) (-4 *8 (-1070 *4 *5 *6 *7)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-1157)) (-5 *1 (-1068 *4 *5 *6 *7 *8)))) (-3235 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-644 *11)) (|:| |todo| (-644 (-2 (|:| |val| *3) (|:| -1470 *11)))))) (-5 *6 (-771)) (-5 *2 (-644 (-2 (|:| |val| (-644 *10)) (|:| -1470 *11)))) (-5 *3 (-644 *10)) (-5 *4 (-644 *11)) (-4 *10 (-1064 *7 *8 *9)) (-4 *11 (-1070 *7 *8 *9 *10)) (-4 *7 (-454)) (-4 *8 (-793)) (-4 *9 (-850)) (-5 *1 (-1068 *7 *8 *9 *10 *11)))) (-2461 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-644 *9)) (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1070 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-1068 *5 *6 *7 *8 *9)))) (-2461 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-644 *9)) (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1070 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-1068 *5 *6 *7 *8 *9)))) (-3465 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -1470 *4)))))) (-5 *1 (-1068 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-3465 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-771)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) (-4 *3 (-1064 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -1470 *4)))))) (-5 *1 (-1068 *6 *7 *8 *3 *4)) (-4 *4 (-1070 *6 *7 *8 *3)))) (-3465 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-771)) (-5 *6 (-112)) (-4 *7 (-454)) (-4 *8 (-793)) (-4 *9 (-850)) (-4 *3 (-1064 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -1470 *4)))))) (-5 *1 (-1068 *7 *8 *9 *3 *4)) (-4 *4 (-1070 *7 *8 *9 *3)))) (-2623 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -1470 *4)))))) (-5 *1 (-1068 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-2623 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-771)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) (-4 *3 (-1064 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -1470 *4)))))) (-5 *1 (-1068 *6 *7 *8 *3 *4)) (-4 *4 (-1070 *6 *7 *8 *3)))) (-1628 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) (-4 *3 (-1064 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -1470 *4)))))) (-5 *1 (-1068 *6 *7 *8 *3 *4)) (-4 *4 (-1070 *6 *7 *8 *3)))) (-4321 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 *9)) (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1070 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-771)) (-5 *1 (-1068 *5 *6 *7 *8 *9)))) (-2234 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 *9)) (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1070 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-771)) (-5 *1 (-1068 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -2234 ((-771) (-644 |#4|) (-644 |#5|))) (-15 -4321 ((-771) (-644 |#4|) (-644 |#5|))) (-15 -1628 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))))) |#4| |#5| (-112))) (-15 -2623 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))))) |#4| |#5| (-771))) (-15 -2623 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))))) |#4| |#5|)) (-15 -3465 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))))) |#4| |#5| (-771) (-112))) (-15 -3465 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))))) |#4| |#5| (-771))) (-15 -3465 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))))) |#4| |#5|)) (-15 -2461 ((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112))) (-15 -2461 ((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3235 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))) (-644 |#4|) (-644 |#5|) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))) (-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))))) (-771))) (-15 -2376 ((-1157) (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|)))) (-15 -3484 ((-1269) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))) (-771)))) +((-2969 (((-112) |#5| $) 26)) (-1951 (((-112) |#5| $) 29)) (-2775 (((-112) |#5| $) 18) (((-112) $) 52)) (-1997 (((-644 $) |#5| $) NIL) (((-644 $) (-644 |#5|) $) 94) (((-644 $) (-644 |#5|) (-644 $)) 92) (((-644 $) |#5| (-644 $)) 95)) (-3369 (($ $ |#5|) NIL) (((-644 $) |#5| $) NIL) (((-644 $) |#5| (-644 $)) 73) (((-644 $) (-644 |#5|) $) 75) (((-644 $) (-644 |#5|) (-644 $)) 77)) (-3998 (((-644 $) |#5| $) NIL) (((-644 $) |#5| (-644 $)) 64) (((-644 $) (-644 |#5|) $) 69) (((-644 $) (-644 |#5|) (-644 $)) 71)) (-2676 (((-112) |#5| $) 32))) +(((-1069 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3369 ((-644 |#1|) (-644 |#5|) (-644 |#1|))) (-15 -3369 ((-644 |#1|) (-644 |#5|) |#1|)) (-15 -3369 ((-644 |#1|) |#5| (-644 |#1|))) (-15 -3369 ((-644 |#1|) |#5| |#1|)) (-15 -3998 ((-644 |#1|) (-644 |#5|) (-644 |#1|))) (-15 -3998 ((-644 |#1|) (-644 |#5|) |#1|)) (-15 -3998 ((-644 |#1|) |#5| (-644 |#1|))) (-15 -3998 ((-644 |#1|) |#5| |#1|)) (-15 -1997 ((-644 |#1|) |#5| (-644 |#1|))) (-15 -1997 ((-644 |#1|) (-644 |#5|) (-644 |#1|))) (-15 -1997 ((-644 |#1|) (-644 |#5|) |#1|)) (-15 -1997 ((-644 |#1|) |#5| |#1|)) (-15 -1951 ((-112) |#5| |#1|)) (-15 -2775 ((-112) |#1|)) (-15 -2676 ((-112) |#5| |#1|)) (-15 -2969 ((-112) |#5| |#1|)) (-15 -2775 ((-112) |#5| |#1|)) (-15 -3369 (|#1| |#1| |#5|))) (-1070 |#2| |#3| |#4| |#5|) (-454) (-793) (-850) (-1064 |#2| |#3| |#4|)) (T -1069)) +NIL +(-10 -8 (-15 -3369 ((-644 |#1|) (-644 |#5|) (-644 |#1|))) (-15 -3369 ((-644 |#1|) (-644 |#5|) |#1|)) (-15 -3369 ((-644 |#1|) |#5| (-644 |#1|))) (-15 -3369 ((-644 |#1|) |#5| |#1|)) (-15 -3998 ((-644 |#1|) (-644 |#5|) (-644 |#1|))) (-15 -3998 ((-644 |#1|) (-644 |#5|) |#1|)) (-15 -3998 ((-644 |#1|) |#5| (-644 |#1|))) (-15 -3998 ((-644 |#1|) |#5| |#1|)) (-15 -1997 ((-644 |#1|) |#5| (-644 |#1|))) (-15 -1997 ((-644 |#1|) (-644 |#5|) (-644 |#1|))) (-15 -1997 ((-644 |#1|) (-644 |#5|) |#1|)) (-15 -1997 ((-644 |#1|) |#5| |#1|)) (-15 -1951 ((-112) |#5| |#1|)) (-15 -2775 ((-112) |#1|)) (-15 -2676 ((-112) |#5| |#1|)) (-15 -2969 ((-112) |#5| |#1|)) (-15 -2775 ((-112) |#5| |#1|)) (-15 -3369 (|#1| |#1| |#5|))) +((-2988 (((-112) $ $) 7)) (-2107 (((-644 (-2 (|:| -1685 $) (|:| -3292 (-644 |#4|)))) (-644 |#4|)) 86)) (-2779 (((-644 $) (-644 |#4|)) 87) (((-644 $) (-644 |#4|) (-112)) 112)) (-1771 (((-644 |#3|) $) 34)) (-3071 (((-112) $) 27)) (-3274 (((-112) $) 18 (|has| |#1| (-558)))) (-2267 (((-112) |#4| $) 102) (((-112) $) 98)) (-1411 ((|#4| |#4| $) 93)) (-1378 (((-644 (-2 (|:| |val| |#4|) (|:| -1470 $))) |#4| $) 127)) (-2671 (((-2 (|:| |under| $) (|:| -3143 $) (|:| |upper| $)) $ |#3|) 28)) (-1504 (((-112) $ (-771)) 45)) (-3678 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4414))) (((-3 |#4| "failed") $ |#3|) 80)) (-2463 (($) 46 T CONST)) (-3036 (((-112) $) 23 (|has| |#1| (-558)))) (-1963 (((-112) $ $) 25 (|has| |#1| (-558)))) (-2983 (((-112) $ $) 24 (|has| |#1| (-558)))) (-1477 (((-112) $) 26 (|has| |#1| (-558)))) (-3930 (((-644 |#4|) (-644 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1789 (((-644 |#4|) (-644 |#4|) $) 19 (|has| |#1| (-558)))) (-2228 (((-644 |#4|) (-644 |#4|) $) 20 (|has| |#1| (-558)))) (-2229 (((-3 $ "failed") (-644 |#4|)) 37)) (-4158 (($ (-644 |#4|)) 36)) (-3919 (((-3 $ "failed") $) 83)) (-3110 ((|#4| |#4| $) 90)) (-3942 (($ $) 69 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414))))) (-2622 (($ |#4| $) 68 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4414)))) (-3264 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-558)))) (-3599 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-2690 ((|#4| |#4| $) 88)) (-2873 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4414))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4414))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-3476 (((-2 (|:| -1685 (-644 |#4|)) (|:| -3292 (-644 |#4|))) $) 106)) (-2969 (((-112) |#4| $) 137)) (-1951 (((-112) |#4| $) 134)) (-2775 (((-112) |#4| $) 138) (((-112) $) 135)) (-1683 (((-644 |#4|) $) 53 (|has| $ (-6 -4414)))) (-1640 (((-112) |#4| $) 105) (((-112) $) 104)) (-4296 ((|#3| $) 35)) (-3456 (((-112) $ (-771)) 44)) (-3491 (((-644 |#4|) $) 54 (|has| $ (-6 -4414)))) (-1602 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414))))) (-3885 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#4| |#4|) $) 48)) (-1785 (((-644 |#3|) $) 33)) (-1579 (((-112) |#3| $) 32)) (-3267 (((-112) $ (-771)) 43)) (-3380 (((-1157) $) 10)) (-3006 (((-3 |#4| (-644 $)) |#4| |#4| $) 129)) (-3940 (((-644 (-2 (|:| |val| |#4|) (|:| -1470 $))) |#4| |#4| $) 128)) (-2641 (((-3 |#4| "failed") $) 84)) (-2568 (((-644 $) |#4| $) 130)) (-1493 (((-3 (-112) (-644 $)) |#4| $) 133)) (-3835 (((-644 (-2 (|:| |val| (-112)) (|:| -1470 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-1997 (((-644 $) |#4| $) 126) (((-644 $) (-644 |#4|) $) 125) (((-644 $) (-644 |#4|) (-644 $)) 124) (((-644 $) |#4| (-644 $)) 123)) (-2921 (($ |#4| $) 118) (($ (-644 |#4|) $) 117)) (-2133 (((-644 |#4|) $) 108)) (-2543 (((-112) |#4| $) 100) (((-112) $) 96)) (-1906 ((|#4| |#4| $) 91)) (-3077 (((-112) $ $) 111)) (-2594 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-558)))) (-3374 (((-112) |#4| $) 101) (((-112) $) 97)) (-4074 ((|#4| |#4| $) 92)) (-4072 (((-1119) $) 11)) (-3908 (((-3 |#4| "failed") $) 85)) (-3668 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2718 (((-3 $ "failed") $ |#4|) 79)) (-3369 (($ $ |#4|) 78) (((-644 $) |#4| $) 116) (((-644 $) |#4| (-644 $)) 115) (((-644 $) (-644 |#4|) $) 114) (((-644 $) (-644 |#4|) (-644 $)) 113)) (-2823 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 |#4|) (-644 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-644 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))) (-3814 (((-112) $ $) 39)) (-2872 (((-112) $) 42)) (-3493 (($) 41)) (-3902 (((-771) $) 107)) (-4083 (((-771) |#4| $) 55 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414)))) (((-771) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4414)))) (-1480 (($ $) 40)) (-2376 (((-538) $) 70 (|has| |#4| (-614 (-538))))) (-1340 (($ (-644 |#4|)) 61)) (-4305 (($ $ |#3|) 29)) (-1702 (($ $ |#3|) 31)) (-4017 (($ $) 89)) (-3809 (($ $ |#3|) 30)) (-3152 (((-862) $) 12) (((-644 |#4|) $) 38)) (-3909 (((-771) $) 77 (|has| |#3| (-370)))) (-3044 (((-112) $ $) 9)) (-2236 (((-3 (-2 (|:| |bas| $) (|:| -3712 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3712 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3622 (((-112) $ (-1 (-112) |#4| (-644 |#4|))) 99)) (-3998 (((-644 $) |#4| $) 122) (((-644 $) |#4| (-644 $)) 121) (((-644 $) (-644 |#4|) $) 120) (((-644 $) (-644 |#4|) (-644 $)) 119)) (-2210 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4414)))) (-4382 (((-644 |#3|) $) 82)) (-2676 (((-112) |#4| $) 136)) (-4217 (((-112) |#3| $) 81)) (-2914 (((-112) $ $) 6)) (-3000 (((-771) $) 47 (|has| $ (-6 -4414))))) (((-1070 |#1| |#2| |#3| |#4|) (-140) (-454) (-793) (-850) (-1064 |t#1| |t#2| |t#3|)) (T -1070)) -((-1530 (*1 *2 *3 *1) (-12 (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112)))) (-3987 (*1 *2 *3 *1) (-12 (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112)))) (-1571 (*1 *2 *3 *1) (-12 (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112)))) (-1530 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6)) (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-112)))) (-1906 (*1 *2 *3 *1) (-12 (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112)))) (-1613 (*1 *2 *3 *1) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-3 (-112) (-644 *1))) (-4 *1 (-1070 *4 *5 *6 *3)))) (-1714 (*1 *2 *3 *1) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -3570 *1)))) (-4 *1 (-1070 *4 *5 *6 *3)))) (-1714 (*1 *2 *3 *1) (-12 (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112)))) (-3758 (*1 *2 *3 *1) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-644 *1)) (-4 *1 (-1070 *4 *5 *6 *3)))) (-1532 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-3 *3 (-644 *1))) (-4 *1 (-1070 *4 *5 *6 *3)))) (-1558 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -3570 *1)))) (-4 *1 (-1070 *4 *5 *6 *3)))) (-1550 (*1 *2 *3 *1) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -3570 *1)))) (-4 *1 (-1070 *4 *5 *6 *3)))) (-4018 (*1 *2 *3 *1) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-644 *1)) (-4 *1 (-1070 *4 *5 *6 *3)))) (-4018 (*1 *2 *3 *1) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 *1)) (-4 *1 (-1070 *4 *5 *6 *7)))) (-4018 (*1 *2 *3 *2) (-12 (-5 *2 (-644 *1)) (-5 *3 (-644 *7)) (-4 *1 (-1070 *4 *5 *6 *7)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)))) (-4018 (*1 *2 *3 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)))) (-3089 (*1 *2 *3 *1) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-644 *1)) (-4 *1 (-1070 *4 *5 *6 *3)))) (-3089 (*1 *2 *3 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)))) (-3089 (*1 *2 *3 *1) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 *1)) (-4 *1 (-1070 *4 *5 *6 *7)))) (-3089 (*1 *2 *3 *2) (-12 (-5 *2 (-644 *1)) (-5 *3 (-644 *7)) (-4 *1 (-1070 *4 *5 *6 *7)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)))) (-2096 (*1 *1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *2)) (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5)))) (-2096 (*1 *1 *2 *1) (-12 (-5 *2 (-644 *6)) (-4 *1 (-1070 *3 *4 *5 *6)) (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)))) (-3874 (*1 *2 *3 *1) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-644 *1)) (-4 *1 (-1070 *4 *5 *6 *3)))) (-3874 (*1 *2 *3 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)))) (-3874 (*1 *2 *3 *1) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 *1)) (-4 *1 (-1070 *4 *5 *6 *7)))) (-3874 (*1 *2 *3 *2) (-12 (-5 *2 (-644 *1)) (-5 *3 (-644 *7)) (-4 *1 (-1070 *4 *5 *6 *7)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)))) (-2333 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-644 *1)) (-4 *1 (-1070 *5 *6 *7 *8))))) -(-13 (-1207 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -1530 ((-112) |t#4| $)) (-15 -3987 ((-112) |t#4| $)) (-15 -1571 ((-112) |t#4| $)) (-15 -1530 ((-112) $)) (-15 -1906 ((-112) |t#4| $)) (-15 -1613 ((-3 (-112) (-644 $)) |t#4| $)) (-15 -1714 ((-644 (-2 (|:| |val| (-112)) (|:| -3570 $))) |t#4| $)) (-15 -1714 ((-112) |t#4| $)) (-15 -3758 ((-644 $) |t#4| $)) (-15 -1532 ((-3 |t#4| (-644 $)) |t#4| |t#4| $)) (-15 -1558 ((-644 (-2 (|:| |val| |t#4|) (|:| -3570 $))) |t#4| |t#4| $)) (-15 -1550 ((-644 (-2 (|:| |val| |t#4|) (|:| -3570 $))) |t#4| $)) (-15 -4018 ((-644 $) |t#4| $)) (-15 -4018 ((-644 $) (-644 |t#4|) $)) (-15 -4018 ((-644 $) (-644 |t#4|) (-644 $))) (-15 -4018 ((-644 $) |t#4| (-644 $))) (-15 -3089 ((-644 $) |t#4| $)) (-15 -3089 ((-644 $) |t#4| (-644 $))) (-15 -3089 ((-644 $) (-644 |t#4|) $)) (-15 -3089 ((-644 $) (-644 |t#4|) (-644 $))) (-15 -2096 ($ |t#4| $)) (-15 -2096 ($ (-644 |t#4|) $)) (-15 -3874 ((-644 $) |t#4| $)) (-15 -3874 ((-644 $) |t#4| (-644 $))) (-15 -3874 ((-644 $) (-644 |t#4|) $)) (-15 -3874 ((-644 $) (-644 |t#4|) (-644 $))) (-15 -2333 ((-644 $) (-644 |t#4|) (-112))))) +((-2775 (*1 *2 *3 *1) (-12 (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112)))) (-2969 (*1 *2 *3 *1) (-12 (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112)))) (-2676 (*1 *2 *3 *1) (-12 (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112)))) (-2775 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6)) (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-112)))) (-1951 (*1 *2 *3 *1) (-12 (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112)))) (-1493 (*1 *2 *3 *1) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-3 (-112) (-644 *1))) (-4 *1 (-1070 *4 *5 *6 *3)))) (-3835 (*1 *2 *3 *1) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -1470 *1)))) (-4 *1 (-1070 *4 *5 *6 *3)))) (-3835 (*1 *2 *3 *1) (-12 (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112)))) (-2568 (*1 *2 *3 *1) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-644 *1)) (-4 *1 (-1070 *4 *5 *6 *3)))) (-3006 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-3 *3 (-644 *1))) (-4 *1 (-1070 *4 *5 *6 *3)))) (-3940 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -1470 *1)))) (-4 *1 (-1070 *4 *5 *6 *3)))) (-1378 (*1 *2 *3 *1) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -1470 *1)))) (-4 *1 (-1070 *4 *5 *6 *3)))) (-1997 (*1 *2 *3 *1) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-644 *1)) (-4 *1 (-1070 *4 *5 *6 *3)))) (-1997 (*1 *2 *3 *1) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 *1)) (-4 *1 (-1070 *4 *5 *6 *7)))) (-1997 (*1 *2 *3 *2) (-12 (-5 *2 (-644 *1)) (-5 *3 (-644 *7)) (-4 *1 (-1070 *4 *5 *6 *7)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)))) (-1997 (*1 *2 *3 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)))) (-3998 (*1 *2 *3 *1) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-644 *1)) (-4 *1 (-1070 *4 *5 *6 *3)))) (-3998 (*1 *2 *3 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)))) (-3998 (*1 *2 *3 *1) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 *1)) (-4 *1 (-1070 *4 *5 *6 *7)))) (-3998 (*1 *2 *3 *2) (-12 (-5 *2 (-644 *1)) (-5 *3 (-644 *7)) (-4 *1 (-1070 *4 *5 *6 *7)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)))) (-2921 (*1 *1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *2)) (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5)))) (-2921 (*1 *1 *2 *1) (-12 (-5 *2 (-644 *6)) (-4 *1 (-1070 *3 *4 *5 *6)) (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)))) (-3369 (*1 *2 *3 *1) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-644 *1)) (-4 *1 (-1070 *4 *5 *6 *3)))) (-3369 (*1 *2 *3 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)))) (-3369 (*1 *2 *3 *1) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 *1)) (-4 *1 (-1070 *4 *5 *6 *7)))) (-3369 (*1 *2 *3 *2) (-12 (-5 *2 (-644 *1)) (-5 *3 (-644 *7)) (-4 *1 (-1070 *4 *5 *6 *7)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)))) (-2779 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-644 *1)) (-4 *1 (-1070 *5 *6 *7 *8))))) +(-13 (-1207 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -2775 ((-112) |t#4| $)) (-15 -2969 ((-112) |t#4| $)) (-15 -2676 ((-112) |t#4| $)) (-15 -2775 ((-112) $)) (-15 -1951 ((-112) |t#4| $)) (-15 -1493 ((-3 (-112) (-644 $)) |t#4| $)) (-15 -3835 ((-644 (-2 (|:| |val| (-112)) (|:| -1470 $))) |t#4| $)) (-15 -3835 ((-112) |t#4| $)) (-15 -2568 ((-644 $) |t#4| $)) (-15 -3006 ((-3 |t#4| (-644 $)) |t#4| |t#4| $)) (-15 -3940 ((-644 (-2 (|:| |val| |t#4|) (|:| -1470 $))) |t#4| |t#4| $)) (-15 -1378 ((-644 (-2 (|:| |val| |t#4|) (|:| -1470 $))) |t#4| $)) (-15 -1997 ((-644 $) |t#4| $)) (-15 -1997 ((-644 $) (-644 |t#4|) $)) (-15 -1997 ((-644 $) (-644 |t#4|) (-644 $))) (-15 -1997 ((-644 $) |t#4| (-644 $))) (-15 -3998 ((-644 $) |t#4| $)) (-15 -3998 ((-644 $) |t#4| (-644 $))) (-15 -3998 ((-644 $) (-644 |t#4|) $)) (-15 -3998 ((-644 $) (-644 |t#4|) (-644 $))) (-15 -2921 ($ |t#4| $)) (-15 -2921 ($ (-644 |t#4|) $)) (-15 -3369 ((-644 $) |t#4| $)) (-15 -3369 ((-644 $) |t#4| (-644 $))) (-15 -3369 ((-644 $) (-644 |t#4|) $)) (-15 -3369 ((-644 $) (-644 |t#4|) (-644 $))) (-15 -2779 ((-644 $) (-644 |t#4|) (-112))))) (((-34) . T) ((-102) . T) ((-613 (-644 |#4|)) . T) ((-613 (-862)) . T) ((-151 |#4|) . T) ((-614 (-538)) |has| |#4| (-614 (-538))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))) ((-491 |#4|) . T) ((-516 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))) ((-976 |#1| |#2| |#3| |#4|) . T) ((-1099) . T) ((-1207 |#1| |#2| |#3| |#4|) . T) ((-1214) . T)) -((-2105 (((-644 (-2 (|:| |val| |#4|) (|:| -3570 |#5|))) |#4| |#5|) 87)) (-2231 (((-644 (-2 (|:| |val| |#4|) (|:| -3570 |#5|))) |#4| |#4| |#5|) 128)) (-3601 (((-644 |#5|) |#4| |#5|) 75)) (-4185 (((-644 (-2 (|:| |val| (-112)) (|:| -3570 |#5|))) |#4| |#5|) 48) (((-112) |#4| |#5|) 56)) (-2850 (((-1269)) 37)) (-3332 (((-1269)) 26)) (-3472 (((-1269) (-1157) (-1157) (-1157)) 33)) (-4014 (((-1269) (-1157) (-1157) (-1157)) 22)) (-3766 (((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))) |#4| |#4| |#5|) 108)) (-1721 (((-644 (-2 (|:| |val| |#4|) (|:| -3570 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))) |#3| (-112)) 119) (((-644 (-2 (|:| |val| |#4|) (|:| -3570 |#5|))) |#4| |#4| |#5| (-112) (-112)) 53)) (-3263 (((-644 (-2 (|:| |val| |#4|) (|:| -3570 |#5|))) |#4| |#4| |#5|) 114))) -(((-1071 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4014 ((-1269) (-1157) (-1157) (-1157))) (-15 -3332 ((-1269))) (-15 -3472 ((-1269) (-1157) (-1157) (-1157))) (-15 -2850 ((-1269))) (-15 -3766 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))) |#4| |#4| |#5|)) (-15 -1721 ((-644 (-2 (|:| |val| |#4|) (|:| -3570 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1721 ((-644 (-2 (|:| |val| |#4|) (|:| -3570 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))) |#3| (-112))) (-15 -3263 ((-644 (-2 (|:| |val| |#4|) (|:| -3570 |#5|))) |#4| |#4| |#5|)) (-15 -2231 ((-644 (-2 (|:| |val| |#4|) (|:| -3570 |#5|))) |#4| |#4| |#5|)) (-15 -4185 ((-112) |#4| |#5|)) (-15 -4185 ((-644 (-2 (|:| |val| (-112)) (|:| -3570 |#5|))) |#4| |#5|)) (-15 -3601 ((-644 |#5|) |#4| |#5|)) (-15 -2105 ((-644 (-2 (|:| |val| |#4|) (|:| -3570 |#5|))) |#4| |#5|))) (-454) (-793) (-850) (-1064 |#1| |#2| |#3|) (-1070 |#1| |#2| |#3| |#4|)) (T -1071)) -((-2105 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -3570 *4)))) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-3601 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 *4)) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-4185 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -3570 *4)))) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-4185 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-2231 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -3570 *4)))) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-3263 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -3570 *4)))) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-1721 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-644 (-2 (|:| |val| (-644 *8)) (|:| -3570 *9)))) (-5 *5 (-112)) (-4 *8 (-1064 *6 *7 *4)) (-4 *9 (-1070 *6 *7 *4 *8)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *4 (-850)) (-5 *2 (-644 (-2 (|:| |val| *8) (|:| -3570 *9)))) (-5 *1 (-1071 *6 *7 *4 *8 *9)))) (-1721 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) (-4 *3 (-1064 *6 *7 *8)) (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -3570 *4)))) (-5 *1 (-1071 *6 *7 *8 *3 *4)) (-4 *4 (-1070 *6 *7 *8 *3)))) (-3766 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| (-644 *3)) (|:| -3570 *4)))) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-2850 (*1 *2) (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-1269)) (-5 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *7 (-1070 *3 *4 *5 *6)))) (-3472 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1157)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-1269)) (-5 *1 (-1071 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) (-3332 (*1 *2) (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-1269)) (-5 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *7 (-1070 *3 *4 *5 *6)))) (-4014 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1157)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-1269)) (-5 *1 (-1071 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7))))) -(-10 -7 (-15 -4014 ((-1269) (-1157) (-1157) (-1157))) (-15 -3332 ((-1269))) (-15 -3472 ((-1269) (-1157) (-1157) (-1157))) (-15 -2850 ((-1269))) (-15 -3766 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))) |#4| |#4| |#5|)) (-15 -1721 ((-644 (-2 (|:| |val| |#4|) (|:| -3570 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1721 ((-644 (-2 (|:| |val| |#4|) (|:| -3570 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))) |#3| (-112))) (-15 -3263 ((-644 (-2 (|:| |val| |#4|) (|:| -3570 |#5|))) |#4| |#4| |#5|)) (-15 -2231 ((-644 (-2 (|:| |val| |#4|) (|:| -3570 |#5|))) |#4| |#4| |#5|)) (-15 -4185 ((-112) |#4| |#5|)) (-15 -4185 ((-644 (-2 (|:| |val| (-112)) (|:| -3570 |#5|))) |#4| |#5|)) (-15 -3601 ((-644 |#5|) |#4| |#5|)) (-15 -2105 ((-644 (-2 (|:| |val| |#4|) (|:| -3570 |#5|))) |#4| |#5|))) -((-3007 (((-112) $ $) NIL)) (-3852 (((-1213) $) 13)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-1403 (((-1134) $) 10)) (-3783 (((-862) $) 20) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) -(((-1072) (-13 (-1082) (-10 -8 (-15 -1403 ((-1134) $)) (-15 -3852 ((-1213) $))))) (T -1072)) -((-1403 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1072)))) (-3852 (*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-1072))))) -(-13 (-1082) (-10 -8 (-15 -1403 ((-1134) $)) (-15 -3852 ((-1213) $)))) -((-2470 (((-112) $ $) 7))) -(((-1073) (-13 (-1214) (-10 -8 (-15 -2470 ((-112) $ $))))) (T -1073)) -((-2470 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1073))))) -(-13 (-1214) (-10 -8 (-15 -2470 ((-112) $ $)))) -((-3007 (((-112) $ $) NIL)) (-2640 (((-1175) $) 8)) (-4117 (((-1157) $) 17)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 11)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) 14))) -(((-1074 |#1|) (-13 (-1099) (-10 -8 (-15 -2640 ((-1175) $)))) (-1175)) (T -1074)) -((-2640 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1074 *3)) (-14 *3 *2)))) -(-13 (-1099) (-10 -8 (-15 -2640 ((-1175) $)))) -((-3007 (((-112) $ $) NIL)) (-4293 (($ $ (-644 (-1175)) (-1 (-112) (-644 |#3|))) 34)) (-2828 (($ |#3| |#3|) 23) (($ |#3| |#3| (-644 (-1175))) 21)) (-4330 ((|#3| $) 13)) (-4307 (((-3 (-295 |#3|) "failed") $) 60)) (-4205 (((-295 |#3|) $) NIL)) (-4285 (((-644 (-1175)) $) 16)) (-1711 (((-892 |#1|) $) 11)) (-4318 ((|#3| $) 12)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-4390 ((|#3| $ |#3|) 28) ((|#3| $ |#3| (-921)) 41)) (-3783 (((-862) $) 89) (($ (-295 |#3|)) 22)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) 38))) -(((-1075 |#1| |#2| |#3|) (-13 (-1099) (-287 |#3| |#3|) (-1038 (-295 |#3|)) (-10 -8 (-15 -2828 ($ |#3| |#3|)) (-15 -2828 ($ |#3| |#3| (-644 (-1175)))) (-15 -4293 ($ $ (-644 (-1175)) (-1 (-112) (-644 |#3|)))) (-15 -1711 ((-892 |#1|) $)) (-15 -4318 (|#3| $)) (-15 -4330 (|#3| $)) (-15 -4390 (|#3| $ |#3| (-921))) (-15 -4285 ((-644 (-1175)) $)))) (-1099) (-13 (-1049) (-886 |#1|) (-614 (-892 |#1|))) (-13 (-432 |#2|) (-886 |#1|) (-614 (-892 |#1|)))) (T -1075)) -((-2828 (*1 *1 *2 *2) (-12 (-4 *3 (-1099)) (-4 *4 (-13 (-1049) (-886 *3) (-614 (-892 *3)))) (-5 *1 (-1075 *3 *4 *2)) (-4 *2 (-13 (-432 *4) (-886 *3) (-614 (-892 *3)))))) (-2828 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-644 (-1175))) (-4 *4 (-1099)) (-4 *5 (-13 (-1049) (-886 *4) (-614 (-892 *4)))) (-5 *1 (-1075 *4 *5 *2)) (-4 *2 (-13 (-432 *5) (-886 *4) (-614 (-892 *4)))))) (-4293 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-1175))) (-5 *3 (-1 (-112) (-644 *6))) (-4 *6 (-13 (-432 *5) (-886 *4) (-614 (-892 *4)))) (-4 *4 (-1099)) (-4 *5 (-13 (-1049) (-886 *4) (-614 (-892 *4)))) (-5 *1 (-1075 *4 *5 *6)))) (-1711 (*1 *2 *1) (-12 (-4 *3 (-1099)) (-4 *4 (-13 (-1049) (-886 *3) (-614 *2))) (-5 *2 (-892 *3)) (-5 *1 (-1075 *3 *4 *5)) (-4 *5 (-13 (-432 *4) (-886 *3) (-614 *2))))) (-4318 (*1 *2 *1) (-12 (-4 *3 (-1099)) (-4 *2 (-13 (-432 *4) (-886 *3) (-614 (-892 *3)))) (-5 *1 (-1075 *3 *4 *2)) (-4 *4 (-13 (-1049) (-886 *3) (-614 (-892 *3)))))) (-4330 (*1 *2 *1) (-12 (-4 *3 (-1099)) (-4 *2 (-13 (-432 *4) (-886 *3) (-614 (-892 *3)))) (-5 *1 (-1075 *3 *4 *2)) (-4 *4 (-13 (-1049) (-886 *3) (-614 (-892 *3)))))) (-4390 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-921)) (-4 *4 (-1099)) (-4 *5 (-13 (-1049) (-886 *4) (-614 (-892 *4)))) (-5 *1 (-1075 *4 *5 *2)) (-4 *2 (-13 (-432 *5) (-886 *4) (-614 (-892 *4)))))) (-4285 (*1 *2 *1) (-12 (-4 *3 (-1099)) (-4 *4 (-13 (-1049) (-886 *3) (-614 (-892 *3)))) (-5 *2 (-644 (-1175))) (-5 *1 (-1075 *3 *4 *5)) (-4 *5 (-13 (-432 *4) (-886 *3) (-614 (-892 *3))))))) -(-13 (-1099) (-287 |#3| |#3|) (-1038 (-295 |#3|)) (-10 -8 (-15 -2828 ($ |#3| |#3|)) (-15 -2828 ($ |#3| |#3| (-644 (-1175)))) (-15 -4293 ($ $ (-644 (-1175)) (-1 (-112) (-644 |#3|)))) (-15 -1711 ((-892 |#1|) $)) (-15 -4318 (|#3| $)) (-15 -4330 (|#3| $)) (-15 -4390 (|#3| $ |#3| (-921))) (-15 -4285 ((-644 (-1175)) $)))) -((-3007 (((-112) $ $) NIL)) (-4260 (($ (-644 (-1075 |#1| |#2| |#3|))) 14)) (-1800 (((-644 (-1075 |#1| |#2| |#3|)) $) 21)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-4390 ((|#3| $ |#3|) 24) ((|#3| $ |#3| (-921)) 27)) (-3783 (((-862) $) 17)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) 20))) -(((-1076 |#1| |#2| |#3|) (-13 (-1099) (-287 |#3| |#3|) (-10 -8 (-15 -4260 ($ (-644 (-1075 |#1| |#2| |#3|)))) (-15 -1800 ((-644 (-1075 |#1| |#2| |#3|)) $)) (-15 -4390 (|#3| $ |#3| (-921))))) (-1099) (-13 (-1049) (-886 |#1|) (-614 (-892 |#1|))) (-13 (-432 |#2|) (-886 |#1|) (-614 (-892 |#1|)))) (T -1076)) -((-4260 (*1 *1 *2) (-12 (-5 *2 (-644 (-1075 *3 *4 *5))) (-4 *3 (-1099)) (-4 *4 (-13 (-1049) (-886 *3) (-614 (-892 *3)))) (-4 *5 (-13 (-432 *4) (-886 *3) (-614 (-892 *3)))) (-5 *1 (-1076 *3 *4 *5)))) (-1800 (*1 *2 *1) (-12 (-4 *3 (-1099)) (-4 *4 (-13 (-1049) (-886 *3) (-614 (-892 *3)))) (-5 *2 (-644 (-1075 *3 *4 *5))) (-5 *1 (-1076 *3 *4 *5)) (-4 *5 (-13 (-432 *4) (-886 *3) (-614 (-892 *3)))))) (-4390 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-921)) (-4 *4 (-1099)) (-4 *5 (-13 (-1049) (-886 *4) (-614 (-892 *4)))) (-5 *1 (-1076 *4 *5 *2)) (-4 *2 (-13 (-432 *5) (-886 *4) (-614 (-892 *4))))))) -(-13 (-1099) (-287 |#3| |#3|) (-10 -8 (-15 -4260 ($ (-644 (-1075 |#1| |#2| |#3|)))) (-15 -1800 ((-644 (-1075 |#1| |#2| |#3|)) $)) (-15 -4390 (|#3| $ |#3| (-921))))) -((-3378 (((-644 (-2 (|:| -2761 (-1171 |#1|)) (|:| -2154 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112) (-112)) 88) (((-644 (-2 (|:| -2761 (-1171 |#1|)) (|:| -2154 (-644 (-952 |#1|))))) (-644 (-952 |#1|))) 92) (((-644 (-2 (|:| -2761 (-1171 |#1|)) (|:| -2154 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112)) 90))) -(((-1077 |#1| |#2|) (-10 -7 (-15 -3378 ((-644 (-2 (|:| -2761 (-1171 |#1|)) (|:| -2154 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112))) (-15 -3378 ((-644 (-2 (|:| -2761 (-1171 |#1|)) (|:| -2154 (-644 (-952 |#1|))))) (-644 (-952 |#1|)))) (-15 -3378 ((-644 (-2 (|:| -2761 (-1171 |#1|)) (|:| -2154 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112) (-112)))) (-13 (-308) (-147)) (-644 (-1175))) (T -1077)) -((-3378 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-644 (-2 (|:| -2761 (-1171 *5)) (|:| -2154 (-644 (-952 *5)))))) (-5 *1 (-1077 *5 *6)) (-5 *3 (-644 (-952 *5))) (-14 *6 (-644 (-1175))))) (-3378 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-5 *2 (-644 (-2 (|:| -2761 (-1171 *4)) (|:| -2154 (-644 (-952 *4)))))) (-5 *1 (-1077 *4 *5)) (-5 *3 (-644 (-952 *4))) (-14 *5 (-644 (-1175))))) (-3378 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-644 (-2 (|:| -2761 (-1171 *5)) (|:| -2154 (-644 (-952 *5)))))) (-5 *1 (-1077 *5 *6)) (-5 *3 (-644 (-952 *5))) (-14 *6 (-644 (-1175)))))) -(-10 -7 (-15 -3378 ((-644 (-2 (|:| -2761 (-1171 |#1|)) (|:| -2154 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112))) (-15 -3378 ((-644 (-2 (|:| -2761 (-1171 |#1|)) (|:| -2154 (-644 (-952 |#1|))))) (-644 (-952 |#1|)))) (-15 -3378 ((-644 (-2 (|:| -2761 (-1171 |#1|)) (|:| -2154 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112) (-112)))) -((-3719 (((-420 |#3|) |#3|) 18))) -(((-1078 |#1| |#2| |#3|) (-10 -7 (-15 -3719 ((-420 |#3|) |#3|))) (-1240 (-409 (-566))) (-13 (-365) (-147) (-724 (-409 (-566)) |#1|)) (-1240 |#2|)) (T -1078)) -((-3719 (*1 *2 *3) (-12 (-4 *4 (-1240 (-409 (-566)))) (-4 *5 (-13 (-365) (-147) (-724 (-409 (-566)) *4))) (-5 *2 (-420 *3)) (-5 *1 (-1078 *4 *5 *3)) (-4 *3 (-1240 *5))))) -(-10 -7 (-15 -3719 ((-420 |#3|) |#3|))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) 141)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#1| (-365)))) (-3991 (($ $) NIL (|has| |#1| (-365)))) (-2388 (((-112) $) NIL (|has| |#1| (-365)))) (-1872 (((-689 |#1|) (-1264 $)) NIL) (((-689 |#1|)) 125)) (-3837 ((|#1| $) 130)) (-3778 (((-1187 (-921) (-771)) (-566)) NIL (|has| |#1| (-351)))) (-4175 (((-3 $ "failed") $ $) NIL)) (-1550 (($ $) NIL (|has| |#1| (-365)))) (-3184 (((-420 $) $) NIL (|has| |#1| (-365)))) (-2837 (((-112) $ $) NIL (|has| |#1| (-365)))) (-1970 (((-771)) 46 (|has| |#1| (-370)))) (-3012 (($) NIL T CONST)) (-4307 (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) NIL)) (-4205 (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) NIL)) (-2392 (($ (-1264 |#1|) (-1264 $)) NIL) (($ (-1264 |#1|)) 49)) (-1910 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-351)))) (-2946 (($ $ $) NIL (|has| |#1| (-365)))) (-4360 (((-689 |#1|) $ (-1264 $)) NIL) (((-689 |#1|) $) NIL)) (-3577 (((-689 (-566)) (-689 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -4227 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) 115) (((-689 |#1|) (-689 $)) 110)) (-1676 (($ |#2|) 67) (((-3 $ "failed") (-409 |#2|)) NIL (|has| |#1| (-365)))) (-1878 (((-3 $ "failed") $) NIL)) (-4313 (((-921)) 84)) (-1552 (($) 50 (|has| |#1| (-370)))) (-2957 (($ $ $) NIL (|has| |#1| (-365)))) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL (|has| |#1| (-365)))) (-2781 (($) NIL (|has| |#1| (-351)))) (-3506 (((-112) $) NIL (|has| |#1| (-351)))) (-3369 (($ $ (-771)) NIL (|has| |#1| (-351))) (($ $) NIL (|has| |#1| (-351)))) (-3268 (((-112) $) NIL (|has| |#1| (-365)))) (-3254 (((-921) $) NIL (|has| |#1| (-351))) (((-833 (-921)) $) NIL (|has| |#1| (-351)))) (-3934 (((-112) $) NIL)) (-1577 ((|#1| $) NIL)) (-4363 (((-3 $ "failed") $) NIL (|has| |#1| (-351)))) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-1627 ((|#2| $) 91 (|has| |#1| (-365)))) (-3681 (((-921) $) 150 (|has| |#1| (-370)))) (-1662 ((|#2| $) 64)) (-2167 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4117 (((-1157) $) NIL)) (-1713 (($ $) NIL (|has| |#1| (-365)))) (-1761 (($) NIL (|has| |#1| (-351)) CONST)) (-2178 (($ (-921)) 140 (|has| |#1| (-370)))) (-4035 (((-1119) $) NIL)) (-3441 (($) 132)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-365)))) (-2214 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-1548 (((-644 (-2 (|:| -3719 (-566)) (|:| -2852 (-566))))) NIL (|has| |#1| (-351)))) (-3719 (((-420 $) $) NIL (|has| |#1| (-365)))) (-3148 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-365)))) (-2994 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-3039 (((-771) $) NIL (|has| |#1| (-365)))) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL (|has| |#1| (-365)))) (-3652 ((|#1| (-1264 $)) NIL) ((|#1|) 119)) (-1437 (((-771) $) NIL (|has| |#1| (-351))) (((-3 (-771) "failed") $ $) NIL (|has| |#1| (-351)))) (-3561 (($ $) NIL (-2809 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-771)) NIL (-2809 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-900 (-1175))))) (($ $ (-1 |#1| |#1|) (-771)) NIL (|has| |#1| (-365))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-365)))) (-3213 (((-689 |#1|) (-1264 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-365)))) (-1616 ((|#2|) 80)) (-3974 (($) NIL (|has| |#1| (-351)))) (-2154 (((-1264 |#1|) $ (-1264 $)) 96) (((-689 |#1|) (-1264 $) (-1264 $)) NIL) (((-1264 |#1|) $) 77) (((-689 |#1|) (-1264 $)) 92)) (-1348 (((-1264 |#1|) $) NIL) (($ (-1264 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-1656 (((-3 (-1264 $) "failed") (-689 $)) NIL (|has| |#1| (-351)))) (-3783 (((-862) $) 63) (($ (-566)) 59) (($ |#1|) 60) (($ $) NIL (|has| |#1| (-365))) (($ (-409 (-566))) NIL (-2809 (|has| |#1| (-365)) (|has| |#1| (-1038 (-409 (-566))))))) (-3144 (($ $) NIL (|has| |#1| (-351))) (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1820 ((|#2| $) 89)) (-2107 (((-771)) 82 T CONST)) (-3117 (((-112) $ $) NIL)) (-2365 (((-1264 $)) 88)) (-2695 (((-112) $ $) NIL (|has| |#1| (-365)))) (-2479 (($) 32 T CONST)) (-4334 (($) 19 T CONST)) (-2875 (($ $) NIL (-2809 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-771)) NIL (-2809 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-900 (-1175))))) (($ $ (-1 |#1| |#1|) (-771)) NIL (|has| |#1| (-365))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-365)))) (-2947 (((-112) $ $) 69)) (-3065 (($ $ $) NIL (|has| |#1| (-365)))) (-3053 (($ $) 73) (($ $ $) NIL)) (-3041 (($ $ $) 71)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL (|has| |#1| (-365)))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 57) (($ $ $) 75) (($ $ |#1|) NIL) (($ |#1| $) 54) (($ (-409 (-566)) $) NIL (|has| |#1| (-365))) (($ $ (-409 (-566))) NIL (|has| |#1| (-365))))) +((-2420 (((-644 (-2 (|:| |val| |#4|) (|:| -1470 |#5|))) |#4| |#5|) 87)) (-1836 (((-644 (-2 (|:| |val| |#4|) (|:| -1470 |#5|))) |#4| |#4| |#5|) 128)) (-2746 (((-644 |#5|) |#4| |#5|) 75)) (-3612 (((-644 (-2 (|:| |val| (-112)) (|:| -1470 |#5|))) |#4| |#5|) 48) (((-112) |#4| |#5|) 56)) (-2036 (((-1269)) 37)) (-3950 (((-1269)) 26)) (-2120 (((-1269) (-1157) (-1157) (-1157)) 33)) (-2776 (((-1269) (-1157) (-1157) (-1157)) 22)) (-1975 (((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))) |#4| |#4| |#5|) 108)) (-3339 (((-644 (-2 (|:| |val| |#4|) (|:| -1470 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))) |#3| (-112)) 119) (((-644 (-2 (|:| |val| |#4|) (|:| -1470 |#5|))) |#4| |#4| |#5| (-112) (-112)) 53)) (-2371 (((-644 (-2 (|:| |val| |#4|) (|:| -1470 |#5|))) |#4| |#4| |#5|) 114))) +(((-1071 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2776 ((-1269) (-1157) (-1157) (-1157))) (-15 -3950 ((-1269))) (-15 -2120 ((-1269) (-1157) (-1157) (-1157))) (-15 -2036 ((-1269))) (-15 -1975 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))) |#4| |#4| |#5|)) (-15 -3339 ((-644 (-2 (|:| |val| |#4|) (|:| -1470 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3339 ((-644 (-2 (|:| |val| |#4|) (|:| -1470 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))) |#3| (-112))) (-15 -2371 ((-644 (-2 (|:| |val| |#4|) (|:| -1470 |#5|))) |#4| |#4| |#5|)) (-15 -1836 ((-644 (-2 (|:| |val| |#4|) (|:| -1470 |#5|))) |#4| |#4| |#5|)) (-15 -3612 ((-112) |#4| |#5|)) (-15 -3612 ((-644 (-2 (|:| |val| (-112)) (|:| -1470 |#5|))) |#4| |#5|)) (-15 -2746 ((-644 |#5|) |#4| |#5|)) (-15 -2420 ((-644 (-2 (|:| |val| |#4|) (|:| -1470 |#5|))) |#4| |#5|))) (-454) (-793) (-850) (-1064 |#1| |#2| |#3|) (-1070 |#1| |#2| |#3| |#4|)) (T -1071)) +((-2420 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -1470 *4)))) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-2746 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 *4)) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-3612 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -1470 *4)))) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-3612 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-1836 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -1470 *4)))) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-2371 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -1470 *4)))) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-3339 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-644 (-2 (|:| |val| (-644 *8)) (|:| -1470 *9)))) (-5 *5 (-112)) (-4 *8 (-1064 *6 *7 *4)) (-4 *9 (-1070 *6 *7 *4 *8)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *4 (-850)) (-5 *2 (-644 (-2 (|:| |val| *8) (|:| -1470 *9)))) (-5 *1 (-1071 *6 *7 *4 *8 *9)))) (-3339 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) (-4 *3 (-1064 *6 *7 *8)) (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -1470 *4)))) (-5 *1 (-1071 *6 *7 *8 *3 *4)) (-4 *4 (-1070 *6 *7 *8 *3)))) (-1975 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| (-644 *3)) (|:| -1470 *4)))) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-2036 (*1 *2) (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-1269)) (-5 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *7 (-1070 *3 *4 *5 *6)))) (-2120 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1157)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-1269)) (-5 *1 (-1071 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) (-3950 (*1 *2) (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-1269)) (-5 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *7 (-1070 *3 *4 *5 *6)))) (-2776 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1157)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-1269)) (-5 *1 (-1071 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7))))) +(-10 -7 (-15 -2776 ((-1269) (-1157) (-1157) (-1157))) (-15 -3950 ((-1269))) (-15 -2120 ((-1269) (-1157) (-1157) (-1157))) (-15 -2036 ((-1269))) (-15 -1975 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))) |#4| |#4| |#5|)) (-15 -3339 ((-644 (-2 (|:| |val| |#4|) (|:| -1470 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3339 ((-644 (-2 (|:| |val| |#4|) (|:| -1470 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))) |#3| (-112))) (-15 -2371 ((-644 (-2 (|:| |val| |#4|) (|:| -1470 |#5|))) |#4| |#4| |#5|)) (-15 -1836 ((-644 (-2 (|:| |val| |#4|) (|:| -1470 |#5|))) |#4| |#4| |#5|)) (-15 -3612 ((-112) |#4| |#5|)) (-15 -3612 ((-644 (-2 (|:| |val| (-112)) (|:| -1470 |#5|))) |#4| |#5|)) (-15 -2746 ((-644 |#5|) |#4| |#5|)) (-15 -2420 ((-644 (-2 (|:| |val| |#4|) (|:| -1470 |#5|))) |#4| |#5|))) +((-2988 (((-112) $ $) NIL)) (-1385 (((-1213) $) 13)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-2080 (((-1134) $) 10)) (-3152 (((-862) $) 20) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) +(((-1072) (-13 (-1082) (-10 -8 (-15 -2080 ((-1134) $)) (-15 -1385 ((-1213) $))))) (T -1072)) +((-2080 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1072)))) (-1385 (*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-1072))))) +(-13 (-1082) (-10 -8 (-15 -2080 ((-1134) $)) (-15 -1385 ((-1213) $)))) +((-3434 (((-112) $ $) 7))) +(((-1073) (-13 (-1214) (-10 -8 (-15 -3434 ((-112) $ $))))) (T -1073)) +((-3434 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1073))))) +(-13 (-1214) (-10 -8 (-15 -3434 ((-112) $ $)))) +((-2988 (((-112) $ $) NIL)) (-1368 (((-1175) $) 8)) (-3380 (((-1157) $) 17)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 11)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) 14))) +(((-1074 |#1|) (-13 (-1099) (-10 -8 (-15 -1368 ((-1175) $)))) (-1175)) (T -1074)) +((-1368 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1074 *3)) (-14 *3 *2)))) +(-13 (-1099) (-10 -8 (-15 -1368 ((-1175) $)))) +((-2988 (((-112) $ $) NIL)) (-4159 (($ $ (-644 (-1175)) (-1 (-112) (-644 |#3|))) 34)) (-3840 (($ |#3| |#3|) 23) (($ |#3| |#3| (-644 (-1175))) 21)) (-3124 ((|#3| $) 13)) (-2229 (((-3 (-295 |#3|) "failed") $) 60)) (-4158 (((-295 |#3|) $) NIL)) (-4080 (((-644 (-1175)) $) 16)) (-2399 (((-892 |#1|) $) 11)) (-3114 ((|#3| $) 12)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-1309 ((|#3| $ |#3|) 28) ((|#3| $ |#3| (-921)) 41)) (-3152 (((-862) $) 89) (($ (-295 |#3|)) 22)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) 38))) +(((-1075 |#1| |#2| |#3|) (-13 (-1099) (-287 |#3| |#3|) (-1038 (-295 |#3|)) (-10 -8 (-15 -3840 ($ |#3| |#3|)) (-15 -3840 ($ |#3| |#3| (-644 (-1175)))) (-15 -4159 ($ $ (-644 (-1175)) (-1 (-112) (-644 |#3|)))) (-15 -2399 ((-892 |#1|) $)) (-15 -3114 (|#3| $)) (-15 -3124 (|#3| $)) (-15 -1309 (|#3| $ |#3| (-921))) (-15 -4080 ((-644 (-1175)) $)))) (-1099) (-13 (-1049) (-886 |#1|) (-614 (-892 |#1|))) (-13 (-432 |#2|) (-886 |#1|) (-614 (-892 |#1|)))) (T -1075)) +((-3840 (*1 *1 *2 *2) (-12 (-4 *3 (-1099)) (-4 *4 (-13 (-1049) (-886 *3) (-614 (-892 *3)))) (-5 *1 (-1075 *3 *4 *2)) (-4 *2 (-13 (-432 *4) (-886 *3) (-614 (-892 *3)))))) (-3840 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-644 (-1175))) (-4 *4 (-1099)) (-4 *5 (-13 (-1049) (-886 *4) (-614 (-892 *4)))) (-5 *1 (-1075 *4 *5 *2)) (-4 *2 (-13 (-432 *5) (-886 *4) (-614 (-892 *4)))))) (-4159 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-1175))) (-5 *3 (-1 (-112) (-644 *6))) (-4 *6 (-13 (-432 *5) (-886 *4) (-614 (-892 *4)))) (-4 *4 (-1099)) (-4 *5 (-13 (-1049) (-886 *4) (-614 (-892 *4)))) (-5 *1 (-1075 *4 *5 *6)))) (-2399 (*1 *2 *1) (-12 (-4 *3 (-1099)) (-4 *4 (-13 (-1049) (-886 *3) (-614 *2))) (-5 *2 (-892 *3)) (-5 *1 (-1075 *3 *4 *5)) (-4 *5 (-13 (-432 *4) (-886 *3) (-614 *2))))) (-3114 (*1 *2 *1) (-12 (-4 *3 (-1099)) (-4 *2 (-13 (-432 *4) (-886 *3) (-614 (-892 *3)))) (-5 *1 (-1075 *3 *4 *2)) (-4 *4 (-13 (-1049) (-886 *3) (-614 (-892 *3)))))) (-3124 (*1 *2 *1) (-12 (-4 *3 (-1099)) (-4 *2 (-13 (-432 *4) (-886 *3) (-614 (-892 *3)))) (-5 *1 (-1075 *3 *4 *2)) (-4 *4 (-13 (-1049) (-886 *3) (-614 (-892 *3)))))) (-1309 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-921)) (-4 *4 (-1099)) (-4 *5 (-13 (-1049) (-886 *4) (-614 (-892 *4)))) (-5 *1 (-1075 *4 *5 *2)) (-4 *2 (-13 (-432 *5) (-886 *4) (-614 (-892 *4)))))) (-4080 (*1 *2 *1) (-12 (-4 *3 (-1099)) (-4 *4 (-13 (-1049) (-886 *3) (-614 (-892 *3)))) (-5 *2 (-644 (-1175))) (-5 *1 (-1075 *3 *4 *5)) (-4 *5 (-13 (-432 *4) (-886 *3) (-614 (-892 *3))))))) +(-13 (-1099) (-287 |#3| |#3|) (-1038 (-295 |#3|)) (-10 -8 (-15 -3840 ($ |#3| |#3|)) (-15 -3840 ($ |#3| |#3| (-644 (-1175)))) (-15 -4159 ($ $ (-644 (-1175)) (-1 (-112) (-644 |#3|)))) (-15 -2399 ((-892 |#1|) $)) (-15 -3114 (|#3| $)) (-15 -3124 (|#3| $)) (-15 -1309 (|#3| $ |#3| (-921))) (-15 -4080 ((-644 (-1175)) $)))) +((-2988 (((-112) $ $) NIL)) (-4128 (($ (-644 (-1075 |#1| |#2| |#3|))) 14)) (-2826 (((-644 (-1075 |#1| |#2| |#3|)) $) 21)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-1309 ((|#3| $ |#3|) 24) ((|#3| $ |#3| (-921)) 27)) (-3152 (((-862) $) 17)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) 20))) +(((-1076 |#1| |#2| |#3|) (-13 (-1099) (-287 |#3| |#3|) (-10 -8 (-15 -4128 ($ (-644 (-1075 |#1| |#2| |#3|)))) (-15 -2826 ((-644 (-1075 |#1| |#2| |#3|)) $)) (-15 -1309 (|#3| $ |#3| (-921))))) (-1099) (-13 (-1049) (-886 |#1|) (-614 (-892 |#1|))) (-13 (-432 |#2|) (-886 |#1|) (-614 (-892 |#1|)))) (T -1076)) +((-4128 (*1 *1 *2) (-12 (-5 *2 (-644 (-1075 *3 *4 *5))) (-4 *3 (-1099)) (-4 *4 (-13 (-1049) (-886 *3) (-614 (-892 *3)))) (-4 *5 (-13 (-432 *4) (-886 *3) (-614 (-892 *3)))) (-5 *1 (-1076 *3 *4 *5)))) (-2826 (*1 *2 *1) (-12 (-4 *3 (-1099)) (-4 *4 (-13 (-1049) (-886 *3) (-614 (-892 *3)))) (-5 *2 (-644 (-1075 *3 *4 *5))) (-5 *1 (-1076 *3 *4 *5)) (-4 *5 (-13 (-432 *4) (-886 *3) (-614 (-892 *3)))))) (-1309 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-921)) (-4 *4 (-1099)) (-4 *5 (-13 (-1049) (-886 *4) (-614 (-892 *4)))) (-5 *1 (-1076 *4 *5 *2)) (-4 *2 (-13 (-432 *5) (-886 *4) (-614 (-892 *4))))))) +(-13 (-1099) (-287 |#3| |#3|) (-10 -8 (-15 -4128 ($ (-644 (-1075 |#1| |#2| |#3|)))) (-15 -2826 ((-644 (-1075 |#1| |#2| |#3|)) $)) (-15 -1309 (|#3| $ |#3| (-921))))) +((-4342 (((-644 (-2 (|:| -3149 (-1171 |#1|)) (|:| -3350 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112) (-112)) 88) (((-644 (-2 (|:| -3149 (-1171 |#1|)) (|:| -3350 (-644 (-952 |#1|))))) (-644 (-952 |#1|))) 92) (((-644 (-2 (|:| -3149 (-1171 |#1|)) (|:| -3350 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112)) 90))) +(((-1077 |#1| |#2|) (-10 -7 (-15 -4342 ((-644 (-2 (|:| -3149 (-1171 |#1|)) (|:| -3350 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112))) (-15 -4342 ((-644 (-2 (|:| -3149 (-1171 |#1|)) (|:| -3350 (-644 (-952 |#1|))))) (-644 (-952 |#1|)))) (-15 -4342 ((-644 (-2 (|:| -3149 (-1171 |#1|)) (|:| -3350 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112) (-112)))) (-13 (-308) (-147)) (-644 (-1175))) (T -1077)) +((-4342 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-644 (-2 (|:| -3149 (-1171 *5)) (|:| -3350 (-644 (-952 *5)))))) (-5 *1 (-1077 *5 *6)) (-5 *3 (-644 (-952 *5))) (-14 *6 (-644 (-1175))))) (-4342 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-5 *2 (-644 (-2 (|:| -3149 (-1171 *4)) (|:| -3350 (-644 (-952 *4)))))) (-5 *1 (-1077 *4 *5)) (-5 *3 (-644 (-952 *4))) (-14 *5 (-644 (-1175))))) (-4342 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-644 (-2 (|:| -3149 (-1171 *5)) (|:| -3350 (-644 (-952 *5)))))) (-5 *1 (-1077 *5 *6)) (-5 *3 (-644 (-952 *5))) (-14 *6 (-644 (-1175)))))) +(-10 -7 (-15 -4342 ((-644 (-2 (|:| -3149 (-1171 |#1|)) (|:| -3350 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112))) (-15 -4342 ((-644 (-2 (|:| -3149 (-1171 |#1|)) (|:| -3350 (-644 (-952 |#1|))))) (-644 (-952 |#1|)))) (-15 -4342 ((-644 (-2 (|:| -3149 (-1171 |#1|)) (|:| -3350 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112) (-112)))) +((-1624 (((-420 |#3|) |#3|) 18))) +(((-1078 |#1| |#2| |#3|) (-10 -7 (-15 -1624 ((-420 |#3|) |#3|))) (-1240 (-409 (-566))) (-13 (-365) (-147) (-724 (-409 (-566)) |#1|)) (-1240 |#2|)) (T -1078)) +((-1624 (*1 *2 *3) (-12 (-4 *4 (-1240 (-409 (-566)))) (-4 *5 (-13 (-365) (-147) (-724 (-409 (-566)) *4))) (-5 *2 (-420 *3)) (-5 *1 (-1078 *4 *5 *3)) (-4 *3 (-1240 *5))))) +(-10 -7 (-15 -1624 ((-420 |#3|) |#3|))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) 141)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#1| (-365)))) (-2161 (($ $) NIL (|has| |#1| (-365)))) (-2345 (((-112) $) NIL (|has| |#1| (-365)))) (-3899 (((-689 |#1|) (-1264 $)) NIL) (((-689 |#1|)) 125)) (-3833 ((|#1| $) 130)) (-2894 (((-1187 (-921) (-771)) (-566)) NIL (|has| |#1| (-351)))) (-3967 (((-3 $ "failed") $ $) NIL)) (-1378 (($ $) NIL (|has| |#1| (-365)))) (-1364 (((-420 $) $) NIL (|has| |#1| (-365)))) (-2085 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3870 (((-771)) 46 (|has| |#1| (-370)))) (-2463 (($) NIL T CONST)) (-2229 (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) NIL)) (-4158 (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) NIL)) (-1563 (($ (-1264 |#1|) (-1264 $)) NIL) (($ (-1264 |#1|)) 49)) (-2347 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-351)))) (-2933 (($ $ $) NIL (|has| |#1| (-365)))) (-3578 (((-689 |#1|) $ (-1264 $)) NIL) (((-689 |#1|) $) NIL)) (-4089 (((-689 (-566)) (-689 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -3361 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) 115) (((-689 |#1|) (-689 $)) 110)) (-2873 (($ |#2|) 67) (((-3 $ "failed") (-409 |#2|)) NIL (|has| |#1| (-365)))) (-3245 (((-3 $ "failed") $) NIL)) (-2755 (((-921)) 84)) (-2715 (($) 50 (|has| |#1| (-370)))) (-2945 (($ $ $) NIL (|has| |#1| (-365)))) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL (|has| |#1| (-365)))) (-3359 (($) NIL (|has| |#1| (-351)))) (-2466 (((-112) $) NIL (|has| |#1| (-351)))) (-1574 (($ $ (-771)) NIL (|has| |#1| (-351))) (($ $) NIL (|has| |#1| (-351)))) (-1615 (((-112) $) NIL (|has| |#1| (-365)))) (-2679 (((-921) $) NIL (|has| |#1| (-351))) (((-833 (-921)) $) NIL (|has| |#1| (-351)))) (-2389 (((-112) $) NIL)) (-2064 ((|#1| $) NIL)) (-2621 (((-3 $ "failed") $) NIL (|has| |#1| (-351)))) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-3468 ((|#2| $) 91 (|has| |#1| (-365)))) (-1866 (((-921) $) 150 (|has| |#1| (-370)))) (-2860 ((|#2| $) 64)) (-2128 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3380 (((-1157) $) NIL)) (-2748 (($ $) NIL (|has| |#1| (-365)))) (-3289 (($) NIL (|has| |#1| (-351)) CONST)) (-2835 (($ (-921)) 140 (|has| |#1| (-370)))) (-4072 (((-1119) $) NIL)) (-3302 (($) 132)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-365)))) (-2164 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2442 (((-644 (-2 (|:| -1624 (-566)) (|:| -2201 (-566))))) NIL (|has| |#1| (-351)))) (-1624 (((-420 $) $) NIL (|has| |#1| (-365)))) (-3005 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL (|has| |#1| (-365)))) (-2978 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-4357 (((-771) $) NIL (|has| |#1| (-365)))) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL (|has| |#1| (-365)))) (-4068 ((|#1| (-1264 $)) NIL) ((|#1|) 119)) (-3169 (((-771) $) NIL (|has| |#1| (-351))) (((-3 (-771) "failed") $ $) NIL (|has| |#1| (-351)))) (-3629 (($ $) NIL (-2768 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-771)) NIL (-2768 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-900 (-1175))))) (($ $ (-1 |#1| |#1|) (-771)) NIL (|has| |#1| (-365))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-365)))) (-3225 (((-689 |#1|) (-1264 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-365)))) (-1705 ((|#2|) 80)) (-4122 (($) NIL (|has| |#1| (-351)))) (-3350 (((-1264 |#1|) $ (-1264 $)) 96) (((-689 |#1|) (-1264 $) (-1264 $)) NIL) (((-1264 |#1|) $) 77) (((-689 |#1|) (-1264 $)) 92)) (-2376 (((-1264 |#1|) $) NIL) (($ (-1264 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-3391 (((-3 (-1264 $) "failed") (-689 $)) NIL (|has| |#1| (-351)))) (-3152 (((-862) $) 63) (($ (-566)) 59) (($ |#1|) 60) (($ $) NIL (|has| |#1| (-365))) (($ (-409 (-566))) NIL (-2768 (|has| |#1| (-365)) (|has| |#1| (-1038 (-409 (-566))))))) (-2633 (($ $) NIL (|has| |#1| (-351))) (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2318 ((|#2| $) 89)) (-2593 (((-771)) 82 T CONST)) (-3044 (((-112) $ $) NIL)) (-2875 (((-1264 $)) 88)) (-3014 (((-112) $ $) NIL (|has| |#1| (-365)))) (-4356 (($) 32 T CONST)) (-4366 (($) 19 T CONST)) (-3497 (($ $) NIL (-2768 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-771)) NIL (-2768 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-900 (-1175))))) (($ $ (-1 |#1| |#1|) (-771)) NIL (|has| |#1| (-365))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-365)))) (-2914 (((-112) $ $) 69)) (-3025 (($ $ $) NIL (|has| |#1| (-365)))) (-3012 (($ $) 73) (($ $ $) NIL)) (-3002 (($ $ $) 71)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL (|has| |#1| (-365)))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 57) (($ $ $) 75) (($ $ |#1|) NIL) (($ |#1| $) 54) (($ (-409 (-566)) $) NIL (|has| |#1| (-365))) (($ $ (-409 (-566))) NIL (|has| |#1| (-365))))) (((-1079 |#1| |#2| |#3|) (-724 |#1| |#2|) (-172) (-1240 |#1|) |#2|) (T -1079)) NIL (-724 |#1| |#2|) -((-3719 (((-420 |#3|) |#3|) 19))) -(((-1080 |#1| |#2| |#3|) (-10 -7 (-15 -3719 ((-420 |#3|) |#3|))) (-1240 (-409 (-952 (-566)))) (-13 (-365) (-147) (-724 (-409 (-952 (-566))) |#1|)) (-1240 |#2|)) (T -1080)) -((-3719 (*1 *2 *3) (-12 (-4 *4 (-1240 (-409 (-952 (-566))))) (-4 *5 (-13 (-365) (-147) (-724 (-409 (-952 (-566))) *4))) (-5 *2 (-420 *3)) (-5 *1 (-1080 *4 *5 *3)) (-4 *3 (-1240 *5))))) -(-10 -7 (-15 -3719 ((-420 |#3|) |#3|))) -((-3007 (((-112) $ $) NIL)) (-2097 (($ $ $) 16)) (-3962 (($ $ $) 17)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-4139 (($) 6)) (-1348 (((-1175) $) 20)) (-3783 (((-862) $) 13)) (-3117 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2947 (((-112) $ $) 15)) (-2995 (((-112) $ $) NIL)) (-2969 (((-112) $ $) 9))) -(((-1081) (-13 (-850) (-614 (-1175)) (-10 -8 (-15 -4139 ($))))) (T -1081)) -((-4139 (*1 *1) (-5 *1 (-1081)))) -(-13 (-850) (-614 (-1175)) (-10 -8 (-15 -4139 ($)))) -((-3007 (((-112) $ $) 7)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3783 (((-862) $) 12) (($ (-1180)) 17) (((-1180) $) 16)) (-3117 (((-112) $ $) 9)) (-2947 (((-112) $ $) 6))) +((-1624 (((-420 |#3|) |#3|) 19))) +(((-1080 |#1| |#2| |#3|) (-10 -7 (-15 -1624 ((-420 |#3|) |#3|))) (-1240 (-409 (-952 (-566)))) (-13 (-365) (-147) (-724 (-409 (-952 (-566))) |#1|)) (-1240 |#2|)) (T -1080)) +((-1624 (*1 *2 *3) (-12 (-4 *4 (-1240 (-409 (-952 (-566))))) (-4 *5 (-13 (-365) (-147) (-724 (-409 (-952 (-566))) *4))) (-5 *2 (-420 *3)) (-5 *1 (-1080 *4 *5 *3)) (-4 *3 (-1240 *5))))) +(-10 -7 (-15 -1624 ((-420 |#3|) |#3|))) +((-2988 (((-112) $ $) NIL)) (-1478 (($ $ $) 16)) (-2599 (($ $ $) 17)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-1709 (($) 6)) (-2376 (((-1175) $) 20)) (-3152 (((-862) $) 13)) (-3044 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2914 (((-112) $ $) 15)) (-2956 (((-112) $ $) NIL)) (-2935 (((-112) $ $) 9))) +(((-1081) (-13 (-850) (-614 (-1175)) (-10 -8 (-15 -1709 ($))))) (T -1081)) +((-1709 (*1 *1) (-5 *1 (-1081)))) +(-13 (-850) (-614 (-1175)) (-10 -8 (-15 -1709 ($)))) +((-2988 (((-112) $ $) 7)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3152 (((-862) $) 12) (($ (-1180)) 17) (((-1180) $) 16)) (-3044 (((-112) $ $) 9)) (-2914 (((-112) $ $) 6))) (((-1082) (-140)) (T -1082)) NIL (-13 (-93)) (((-93) . T) ((-102) . T) ((-616 #0=(-1180)) . T) ((-613 (-862)) . T) ((-613 #0#) . T) ((-492 #0#) . T) ((-1099) . T)) -((-3074 ((|#1| |#1| (-1 (-566) |#1| |#1|)) 43) ((|#1| |#1| (-1 (-112) |#1|)) 34)) (-4294 (((-1269)) 22)) (-2612 (((-644 |#1|)) 13))) -(((-1083 |#1|) (-10 -7 (-15 -4294 ((-1269))) (-15 -2612 ((-644 |#1|))) (-15 -3074 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3074 (|#1| |#1| (-1 (-566) |#1| |#1|)))) (-132)) (T -1083)) -((-3074 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-566) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1083 *2)))) (-3074 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1083 *2)))) (-2612 (*1 *2) (-12 (-5 *2 (-644 *3)) (-5 *1 (-1083 *3)) (-4 *3 (-132)))) (-4294 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-1083 *3)) (-4 *3 (-132))))) -(-10 -7 (-15 -4294 ((-1269))) (-15 -2612 ((-644 |#1|))) (-15 -3074 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3074 (|#1| |#1| (-1 (-566) |#1| |#1|)))) -((-2384 (($ (-109) $) 20)) (-3553 (((-691 (-109)) (-508) $) 19)) (-1494 (($) 7)) (-3825 (($) 21)) (-3322 (($) 22)) (-3748 (((-644 (-175)) $) 10)) (-3783 (((-862) $) 25))) -(((-1084) (-13 (-613 (-862)) (-10 -8 (-15 -1494 ($)) (-15 -3748 ((-644 (-175)) $)) (-15 -3553 ((-691 (-109)) (-508) $)) (-15 -2384 ($ (-109) $)) (-15 -3825 ($)) (-15 -3322 ($))))) (T -1084)) -((-1494 (*1 *1) (-5 *1 (-1084))) (-3748 (*1 *2 *1) (-12 (-5 *2 (-644 (-175))) (-5 *1 (-1084)))) (-3553 (*1 *2 *3 *1) (-12 (-5 *3 (-508)) (-5 *2 (-691 (-109))) (-5 *1 (-1084)))) (-2384 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1084)))) (-3825 (*1 *1) (-5 *1 (-1084))) (-3322 (*1 *1) (-5 *1 (-1084)))) -(-13 (-613 (-862)) (-10 -8 (-15 -1494 ($)) (-15 -3748 ((-644 (-175)) $)) (-15 -3553 ((-691 (-109)) (-508) $)) (-15 -2384 ($ (-109) $)) (-15 -3825 ($)) (-15 -3322 ($)))) -((-4085 (((-1264 (-689 |#1|)) (-644 (-689 |#1|))) 47) (((-1264 (-689 (-952 |#1|))) (-644 (-1175)) (-689 (-952 |#1|))) 75) (((-1264 (-689 (-409 (-952 |#1|)))) (-644 (-1175)) (-689 (-409 (-952 |#1|)))) 92)) (-2154 (((-1264 |#1|) (-689 |#1|) (-644 (-689 |#1|))) 41))) -(((-1085 |#1|) (-10 -7 (-15 -4085 ((-1264 (-689 (-409 (-952 |#1|)))) (-644 (-1175)) (-689 (-409 (-952 |#1|))))) (-15 -4085 ((-1264 (-689 (-952 |#1|))) (-644 (-1175)) (-689 (-952 |#1|)))) (-15 -4085 ((-1264 (-689 |#1|)) (-644 (-689 |#1|)))) (-15 -2154 ((-1264 |#1|) (-689 |#1|) (-644 (-689 |#1|))))) (-365)) (T -1085)) -((-2154 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-689 *5))) (-5 *3 (-689 *5)) (-4 *5 (-365)) (-5 *2 (-1264 *5)) (-5 *1 (-1085 *5)))) (-4085 (*1 *2 *3) (-12 (-5 *3 (-644 (-689 *4))) (-4 *4 (-365)) (-5 *2 (-1264 (-689 *4))) (-5 *1 (-1085 *4)))) (-4085 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-1175))) (-4 *5 (-365)) (-5 *2 (-1264 (-689 (-952 *5)))) (-5 *1 (-1085 *5)) (-5 *4 (-689 (-952 *5))))) (-4085 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-1175))) (-4 *5 (-365)) (-5 *2 (-1264 (-689 (-409 (-952 *5))))) (-5 *1 (-1085 *5)) (-5 *4 (-689 (-409 (-952 *5))))))) -(-10 -7 (-15 -4085 ((-1264 (-689 (-409 (-952 |#1|)))) (-644 (-1175)) (-689 (-409 (-952 |#1|))))) (-15 -4085 ((-1264 (-689 (-952 |#1|))) (-644 (-1175)) (-689 (-952 |#1|)))) (-15 -4085 ((-1264 (-689 |#1|)) (-644 (-689 |#1|)))) (-15 -2154 ((-1264 |#1|) (-689 |#1|) (-644 (-689 |#1|))))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-2430 (((-644 (-771)) $) NIL) (((-644 (-771)) $ (-1175)) NIL)) (-1617 (((-771) $) NIL) (((-771) $ (-1175)) NIL)) (-3863 (((-644 (-1087 (-1175))) $) NIL)) (-3683 (((-1171 $) $ (-1087 (-1175))) NIL) (((-1171 |#1|) $) NIL)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-3991 (($ $) NIL (|has| |#1| (-558)))) (-2388 (((-112) $) NIL (|has| |#1| (-558)))) (-3367 (((-771) $) NIL) (((-771) $ (-644 (-1087 (-1175)))) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-1477 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-1550 (($ $) NIL (|has| |#1| (-454)))) (-3184 (((-420 $) $) NIL (|has| |#1| (-454)))) (-3717 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-1644 (($ $) NIL)) (-3012 (($) NIL T CONST)) (-4307 (((-3 |#1| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-1087 (-1175)) "failed") $) NIL) (((-3 (-1175) "failed") $) NIL) (((-3 (-1124 |#1| (-1175)) "failed") $) NIL)) (-4205 ((|#1| $) NIL) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-1087 (-1175)) $) NIL) (((-1175) $) NIL) (((-1124 |#1| (-1175)) $) NIL)) (-2738 (($ $ $ (-1087 (-1175))) NIL (|has| |#1| (-172)))) (-1786 (($ $) NIL)) (-3577 (((-689 (-566)) (-689 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -4227 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) NIL) (((-689 |#1|) (-689 $)) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-4075 (($ $) NIL (|has| |#1| (-454))) (($ $ (-1087 (-1175))) NIL (|has| |#1| (-454)))) (-1774 (((-644 $) $) NIL)) (-3268 (((-112) $) NIL (|has| |#1| (-909)))) (-3635 (($ $ |#1| (-533 (-1087 (-1175))) $) NIL)) (-2062 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| (-1087 (-1175)) (-886 (-381))) (|has| |#1| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| (-1087 (-1175)) (-886 (-566))) (|has| |#1| (-886 (-566)))))) (-3254 (((-771) $ (-1175)) NIL) (((-771) $) NIL)) (-3934 (((-112) $) NIL)) (-2614 (((-771) $) NIL)) (-3851 (($ (-1171 |#1|) (-1087 (-1175))) NIL) (($ (-1171 $) (-1087 (-1175))) NIL)) (-2288 (((-644 $) $) NIL)) (-3264 (((-112) $) NIL)) (-3840 (($ |#1| (-533 (-1087 (-1175)))) NIL) (($ $ (-1087 (-1175)) (-771)) NIL) (($ $ (-644 (-1087 (-1175))) (-644 (-771))) NIL)) (-2044 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $ (-1087 (-1175))) NIL)) (-3760 (((-533 (-1087 (-1175))) $) NIL) (((-771) $ (-1087 (-1175))) NIL) (((-644 (-771)) $ (-644 (-1087 (-1175)))) NIL)) (-4301 (($ (-1 (-533 (-1087 (-1175))) (-533 (-1087 (-1175)))) $) NIL)) (-1301 (($ (-1 |#1| |#1|) $) NIL)) (-4151 (((-1 $ (-771)) (-1175)) NIL) (((-1 $ (-771)) $) NIL (|has| |#1| (-233)))) (-3169 (((-3 (-1087 (-1175)) "failed") $) NIL)) (-1749 (($ $) NIL)) (-1763 ((|#1| $) NIL)) (-2886 (((-1087 (-1175)) $) NIL)) (-2167 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-4117 (((-1157) $) NIL)) (-3843 (((-112) $) NIL)) (-3714 (((-3 (-644 $) "failed") $) NIL)) (-2353 (((-3 (-644 $) "failed") $) NIL)) (-1518 (((-3 (-2 (|:| |var| (-1087 (-1175))) (|:| -2852 (-771))) "failed") $) NIL)) (-2780 (($ $) NIL)) (-4035 (((-1119) $) NIL)) (-1723 (((-112) $) NIL)) (-1736 ((|#1| $) NIL)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-454)))) (-2214 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-4303 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-3240 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-3719 (((-420 $) $) NIL (|has| |#1| (-909)))) (-2994 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-2055 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-1087 (-1175)) |#1|) NIL) (($ $ (-644 (-1087 (-1175))) (-644 |#1|)) NIL) (($ $ (-1087 (-1175)) $) NIL) (($ $ (-644 (-1087 (-1175))) (-644 $)) NIL) (($ $ (-1175) $) NIL (|has| |#1| (-233))) (($ $ (-644 (-1175)) (-644 $)) NIL (|has| |#1| (-233))) (($ $ (-1175) |#1|) NIL (|has| |#1| (-233))) (($ $ (-644 (-1175)) (-644 |#1|)) NIL (|has| |#1| (-233)))) (-3652 (($ $ (-1087 (-1175))) NIL (|has| |#1| (-172)))) (-3561 (($ $ (-1087 (-1175))) NIL) (($ $ (-644 (-1087 (-1175)))) NIL) (($ $ (-1087 (-1175)) (-771)) NIL) (($ $ (-644 (-1087 (-1175))) (-644 (-771))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4110 (((-644 (-1175)) $) NIL)) (-3636 (((-533 (-1087 (-1175))) $) NIL) (((-771) $ (-1087 (-1175))) NIL) (((-644 (-771)) $ (-644 (-1087 (-1175)))) NIL) (((-771) $ (-1175)) NIL)) (-1348 (((-892 (-381)) $) NIL (-12 (|has| (-1087 (-1175)) (-614 (-892 (-381)))) (|has| |#1| (-614 (-892 (-381)))))) (((-892 (-566)) $) NIL (-12 (|has| (-1087 (-1175)) (-614 (-892 (-566)))) (|has| |#1| (-614 (-892 (-566)))))) (((-538) $) NIL (-12 (|has| (-1087 (-1175)) (-614 (-538))) (|has| |#1| (-614 (-538)))))) (-2483 ((|#1| $) NIL (|has| |#1| (-454))) (($ $ (-1087 (-1175))) NIL (|has| |#1| (-454)))) (-1656 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-909))))) (-3783 (((-862) $) NIL) (($ (-566)) NIL) (($ |#1|) NIL) (($ (-1087 (-1175))) NIL) (($ (-1175)) NIL) (($ (-1124 |#1| (-1175))) NIL) (($ (-409 (-566))) NIL (-2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566)))))) (($ $) NIL (|has| |#1| (-558)))) (-4170 (((-644 |#1|) $) NIL)) (-2649 ((|#1| $ (-533 (-1087 (-1175)))) NIL) (($ $ (-1087 (-1175)) (-771)) NIL) (($ $ (-644 (-1087 (-1175))) (-644 (-771))) NIL)) (-3144 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| $ (-145)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-2107 (((-771)) NIL T CONST)) (-3362 (($ $ $ (-771)) NIL (|has| |#1| (-172)))) (-3117 (((-112) $ $) NIL)) (-2695 (((-112) $ $) NIL (|has| |#1| (-558)))) (-2479 (($) NIL T CONST)) (-4334 (($) NIL T CONST)) (-2875 (($ $ (-1087 (-1175))) NIL) (($ $ (-644 (-1087 (-1175)))) NIL) (($ $ (-1087 (-1175)) (-771)) NIL) (($ $ (-644 (-1087 (-1175))) (-644 (-771))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2947 (((-112) $ $) NIL)) (-3065 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +((-3349 ((|#1| |#1| (-1 (-566) |#1| |#1|)) 43) ((|#1| |#1| (-1 (-112) |#1|)) 34)) (-1884 (((-1269)) 22)) (-3226 (((-644 |#1|)) 13))) +(((-1083 |#1|) (-10 -7 (-15 -1884 ((-1269))) (-15 -3226 ((-644 |#1|))) (-15 -3349 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3349 (|#1| |#1| (-1 (-566) |#1| |#1|)))) (-132)) (T -1083)) +((-3349 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-566) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1083 *2)))) (-3349 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1083 *2)))) (-3226 (*1 *2) (-12 (-5 *2 (-644 *3)) (-5 *1 (-1083 *3)) (-4 *3 (-132)))) (-1884 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-1083 *3)) (-4 *3 (-132))))) +(-10 -7 (-15 -1884 ((-1269))) (-15 -3226 ((-644 |#1|))) (-15 -3349 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3349 (|#1| |#1| (-1 (-566) |#1| |#1|)))) +((-3153 (($ (-109) $) 20)) (-3585 (((-691 (-109)) (-508) $) 19)) (-3493 (($) 7)) (-2601 (($) 21)) (-2311 (($) 22)) (-4047 (((-644 (-175)) $) 10)) (-3152 (((-862) $) 25))) +(((-1084) (-13 (-613 (-862)) (-10 -8 (-15 -3493 ($)) (-15 -4047 ((-644 (-175)) $)) (-15 -3585 ((-691 (-109)) (-508) $)) (-15 -3153 ($ (-109) $)) (-15 -2601 ($)) (-15 -2311 ($))))) (T -1084)) +((-3493 (*1 *1) (-5 *1 (-1084))) (-4047 (*1 *2 *1) (-12 (-5 *2 (-644 (-175))) (-5 *1 (-1084)))) (-3585 (*1 *2 *3 *1) (-12 (-5 *3 (-508)) (-5 *2 (-691 (-109))) (-5 *1 (-1084)))) (-3153 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1084)))) (-2601 (*1 *1) (-5 *1 (-1084))) (-2311 (*1 *1) (-5 *1 (-1084)))) +(-13 (-613 (-862)) (-10 -8 (-15 -3493 ($)) (-15 -4047 ((-644 (-175)) $)) (-15 -3585 ((-691 (-109)) (-508) $)) (-15 -3153 ($ (-109) $)) (-15 -2601 ($)) (-15 -2311 ($)))) +((-2336 (((-1264 (-689 |#1|)) (-644 (-689 |#1|))) 47) (((-1264 (-689 (-952 |#1|))) (-644 (-1175)) (-689 (-952 |#1|))) 75) (((-1264 (-689 (-409 (-952 |#1|)))) (-644 (-1175)) (-689 (-409 (-952 |#1|)))) 92)) (-3350 (((-1264 |#1|) (-689 |#1|) (-644 (-689 |#1|))) 41))) +(((-1085 |#1|) (-10 -7 (-15 -2336 ((-1264 (-689 (-409 (-952 |#1|)))) (-644 (-1175)) (-689 (-409 (-952 |#1|))))) (-15 -2336 ((-1264 (-689 (-952 |#1|))) (-644 (-1175)) (-689 (-952 |#1|)))) (-15 -2336 ((-1264 (-689 |#1|)) (-644 (-689 |#1|)))) (-15 -3350 ((-1264 |#1|) (-689 |#1|) (-644 (-689 |#1|))))) (-365)) (T -1085)) +((-3350 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-689 *5))) (-5 *3 (-689 *5)) (-4 *5 (-365)) (-5 *2 (-1264 *5)) (-5 *1 (-1085 *5)))) (-2336 (*1 *2 *3) (-12 (-5 *3 (-644 (-689 *4))) (-4 *4 (-365)) (-5 *2 (-1264 (-689 *4))) (-5 *1 (-1085 *4)))) (-2336 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-1175))) (-4 *5 (-365)) (-5 *2 (-1264 (-689 (-952 *5)))) (-5 *1 (-1085 *5)) (-5 *4 (-689 (-952 *5))))) (-2336 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-1175))) (-4 *5 (-365)) (-5 *2 (-1264 (-689 (-409 (-952 *5))))) (-5 *1 (-1085 *5)) (-5 *4 (-689 (-409 (-952 *5))))))) +(-10 -7 (-15 -2336 ((-1264 (-689 (-409 (-952 |#1|)))) (-644 (-1175)) (-689 (-409 (-952 |#1|))))) (-15 -2336 ((-1264 (-689 (-952 |#1|))) (-644 (-1175)) (-689 (-952 |#1|)))) (-15 -2336 ((-1264 (-689 |#1|)) (-644 (-689 |#1|)))) (-15 -3350 ((-1264 |#1|) (-689 |#1|) (-644 (-689 |#1|))))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-1825 (((-644 (-771)) $) NIL) (((-644 (-771)) $ (-1175)) NIL)) (-1784 (((-771) $) NIL) (((-771) $ (-1175)) NIL)) (-1771 (((-644 (-1087 (-1175))) $) NIL)) (-1590 (((-1171 $) $ (-1087 (-1175))) NIL) (((-1171 |#1|) $) NIL)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-2161 (($ $) NIL (|has| |#1| (-558)))) (-2345 (((-112) $) NIL (|has| |#1| (-558)))) (-1357 (((-771) $) NIL) (((-771) $ (-644 (-1087 (-1175)))) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-2292 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-1378 (($ $) NIL (|has| |#1| (-454)))) (-1364 (((-420 $) $) NIL (|has| |#1| (-454)))) (-4066 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-1559 (($ $) NIL)) (-2463 (($) NIL T CONST)) (-2229 (((-3 |#1| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-1087 (-1175)) "failed") $) NIL) (((-3 (-1175) "failed") $) NIL) (((-3 (-1124 |#1| (-1175)) "failed") $) NIL)) (-4158 ((|#1| $) NIL) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-1087 (-1175)) $) NIL) (((-1175) $) NIL) (((-1124 |#1| (-1175)) $) NIL)) (-2610 (($ $ $ (-1087 (-1175))) NIL (|has| |#1| (-172)))) (-2814 (($ $) NIL)) (-4089 (((-689 (-566)) (-689 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -3361 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) NIL) (((-689 |#1|) (-689 $)) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-2616 (($ $) NIL (|has| |#1| (-454))) (($ $ (-1087 (-1175))) NIL (|has| |#1| (-454)))) (-2804 (((-644 $) $) NIL)) (-1615 (((-112) $) NIL (|has| |#1| (-909)))) (-1896 (($ $ |#1| (-533 (-1087 (-1175))) $) NIL)) (-2926 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| (-1087 (-1175)) (-886 (-381))) (|has| |#1| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| (-1087 (-1175)) (-886 (-566))) (|has| |#1| (-886 (-566)))))) (-2679 (((-771) $ (-1175)) NIL) (((-771) $) NIL)) (-2389 (((-112) $) NIL)) (-3039 (((-771) $) NIL)) (-1757 (($ (-1171 |#1|) (-1087 (-1175))) NIL) (($ (-1171 $) (-1087 (-1175))) NIL)) (-1587 (((-644 $) $) NIL)) (-2497 (((-112) $) NIL)) (-1746 (($ |#1| (-533 (-1087 (-1175)))) NIL) (($ $ (-1087 (-1175)) (-771)) NIL) (($ $ (-644 (-1087 (-1175))) (-644 (-771))) NIL)) (-2815 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $ (-1087 (-1175))) NIL)) (-2749 (((-533 (-1087 (-1175))) $) NIL) (((-771) $ (-1087 (-1175))) NIL) (((-644 (-771)) $ (-644 (-1087 (-1175)))) NIL)) (-3021 (($ (-1 (-533 (-1087 (-1175))) (-533 (-1087 (-1175)))) $) NIL)) (-2319 (($ (-1 |#1| |#1|) $) NIL)) (-1545 (((-1 $ (-771)) (-1175)) NIL) (((-1 $ (-771)) $) NIL (|has| |#1| (-233)))) (-2297 (((-3 (-1087 (-1175)) "failed") $) NIL)) (-2784 (($ $) NIL)) (-2794 ((|#1| $) NIL)) (-1528 (((-1087 (-1175)) $) NIL)) (-2128 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-3380 (((-1157) $) NIL)) (-2663 (((-112) $) NIL)) (-3738 (((-3 (-644 $) "failed") $) NIL)) (-4199 (((-3 (-644 $) "failed") $) NIL)) (-4108 (((-3 (-2 (|:| |var| (-1087 (-1175))) (|:| -2201 (-771))) "failed") $) NIL)) (-3779 (($ $) NIL)) (-4072 (((-1119) $) NIL)) (-2761 (((-112) $) NIL)) (-2773 ((|#1| $) NIL)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-454)))) (-2164 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-2010 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-1893 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-1624 (((-420 $) $) NIL (|has| |#1| (-909)))) (-2978 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-2023 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-1087 (-1175)) |#1|) NIL) (($ $ (-644 (-1087 (-1175))) (-644 |#1|)) NIL) (($ $ (-1087 (-1175)) $) NIL) (($ $ (-644 (-1087 (-1175))) (-644 $)) NIL) (($ $ (-1175) $) NIL (|has| |#1| (-233))) (($ $ (-644 (-1175)) (-644 $)) NIL (|has| |#1| (-233))) (($ $ (-1175) |#1|) NIL (|has| |#1| (-233))) (($ $ (-644 (-1175)) (-644 |#1|)) NIL (|has| |#1| (-233)))) (-4068 (($ $ (-1087 (-1175))) NIL (|has| |#1| (-172)))) (-3629 (($ $ (-1087 (-1175))) NIL) (($ $ (-644 (-1087 (-1175)))) NIL) (($ $ (-1087 (-1175)) (-771)) NIL) (($ $ (-644 (-1087 (-1175))) (-644 (-771))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4037 (((-644 (-1175)) $) NIL)) (-3902 (((-533 (-1087 (-1175))) $) NIL) (((-771) $ (-1087 (-1175))) NIL) (((-644 (-771)) $ (-644 (-1087 (-1175)))) NIL) (((-771) $ (-1175)) NIL)) (-2376 (((-892 (-381)) $) NIL (-12 (|has| (-1087 (-1175)) (-614 (-892 (-381)))) (|has| |#1| (-614 (-892 (-381)))))) (((-892 (-566)) $) NIL (-12 (|has| (-1087 (-1175)) (-614 (-892 (-566)))) (|has| |#1| (-614 (-892 (-566)))))) (((-538) $) NIL (-12 (|has| (-1087 (-1175)) (-614 (-538))) (|has| |#1| (-614 (-538)))))) (-3173 ((|#1| $) NIL (|has| |#1| (-454))) (($ $ (-1087 (-1175))) NIL (|has| |#1| (-454)))) (-3391 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-909))))) (-3152 (((-862) $) NIL) (($ (-566)) NIL) (($ |#1|) NIL) (($ (-1087 (-1175))) NIL) (($ (-1175)) NIL) (($ (-1124 |#1| (-1175))) NIL) (($ (-409 (-566))) NIL (-2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566)))))) (($ $) NIL (|has| |#1| (-558)))) (-1643 (((-644 |#1|) $) NIL)) (-2271 ((|#1| $ (-533 (-1087 (-1175)))) NIL) (($ $ (-1087 (-1175)) (-771)) NIL) (($ $ (-644 (-1087 (-1175))) (-644 (-771))) NIL)) (-2633 (((-3 $ "failed") $) NIL (-2768 (-12 (|has| $ (-145)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-2593 (((-771)) NIL T CONST)) (-2021 (($ $ $ (-771)) NIL (|has| |#1| (-172)))) (-3044 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL (|has| |#1| (-558)))) (-4356 (($) NIL T CONST)) (-4366 (($) NIL T CONST)) (-3497 (($ $ (-1087 (-1175))) NIL) (($ $ (-644 (-1087 (-1175)))) NIL) (($ $ (-1087 (-1175)) (-771)) NIL) (($ $ (-644 (-1087 (-1175))) (-644 (-771))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2914 (((-112) $ $) NIL)) (-3025 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) (((-1086 |#1|) (-13 (-254 |#1| (-1175) (-1087 (-1175)) (-533 (-1087 (-1175)))) (-1038 (-1124 |#1| (-1175)))) (-1049)) (T -1086)) NIL (-13 (-254 |#1| (-1175) (-1087 (-1175)) (-533 (-1087 (-1175)))) (-1038 (-1124 |#1| (-1175)))) -((-3007 (((-112) $ $) NIL)) (-1617 (((-771) $) NIL)) (-1385 ((|#1| $) 10)) (-4307 (((-3 |#1| "failed") $) NIL)) (-4205 ((|#1| $) NIL)) (-3254 (((-771) $) 11)) (-2097 (($ $ $) NIL)) (-3962 (($ $ $) NIL)) (-4151 (($ |#1| (-771)) 9)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3561 (($ $) NIL) (($ $ (-771)) NIL)) (-3783 (((-862) $) NIL) (($ |#1|) NIL)) (-3117 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL)) (-2995 (((-112) $ $) NIL)) (-2969 (((-112) $ $) 16))) +((-2988 (((-112) $ $) NIL)) (-1784 (((-771) $) NIL)) (-4347 ((|#1| $) 10)) (-2229 (((-3 |#1| "failed") $) NIL)) (-4158 ((|#1| $) NIL)) (-2679 (((-771) $) 11)) (-1478 (($ $ $) NIL)) (-2599 (($ $ $) NIL)) (-1545 (($ |#1| (-771)) 9)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3629 (($ $) NIL) (($ $ (-771)) NIL)) (-3152 (((-862) $) NIL) (($ |#1|) NIL)) (-3044 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2935 (((-112) $ $) 16))) (((-1087 |#1|) (-267 |#1|) (-850)) (T -1087)) NIL (-267 |#1|) -((-1301 (((-644 |#2|) (-1 |#2| |#1|) (-1093 |#1|)) 29 (|has| |#1| (-848))) (((-1093 |#2|) (-1 |#2| |#1|) (-1093 |#1|)) 14))) -(((-1088 |#1| |#2|) (-10 -7 (-15 -1301 ((-1093 |#2|) (-1 |#2| |#1|) (-1093 |#1|))) (IF (|has| |#1| (-848)) (-15 -1301 ((-644 |#2|) (-1 |#2| |#1|) (-1093 |#1|))) |%noBranch|)) (-1214) (-1214)) (T -1088)) -((-1301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1093 *5)) (-4 *5 (-848)) (-4 *5 (-1214)) (-4 *6 (-1214)) (-5 *2 (-644 *6)) (-5 *1 (-1088 *5 *6)))) (-1301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1093 *5)) (-4 *5 (-1214)) (-4 *6 (-1214)) (-5 *2 (-1093 *6)) (-5 *1 (-1088 *5 *6))))) -(-10 -7 (-15 -1301 ((-1093 |#2|) (-1 |#2| |#1|) (-1093 |#1|))) (IF (|has| |#1| (-848)) (-15 -1301 ((-644 |#2|) (-1 |#2| |#1|) (-1093 |#1|))) |%noBranch|)) -((-3007 (((-112) $ $) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 16) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3385 (((-644 (-1134)) $) 10)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) -(((-1089) (-13 (-1082) (-10 -8 (-15 -3385 ((-644 (-1134)) $))))) (T -1089)) -((-3385 (*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-1089))))) -(-13 (-1082) (-10 -8 (-15 -3385 ((-644 (-1134)) $)))) -((-1301 (((-1091 |#2|) (-1 |#2| |#1|) (-1091 |#1|)) 19))) -(((-1090 |#1| |#2|) (-10 -7 (-15 -1301 ((-1091 |#2|) (-1 |#2| |#1|) (-1091 |#1|)))) (-1214) (-1214)) (T -1090)) -((-1301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1091 *5)) (-4 *5 (-1214)) (-4 *6 (-1214)) (-5 *2 (-1091 *6)) (-5 *1 (-1090 *5 *6))))) -(-10 -7 (-15 -1301 ((-1091 |#2|) (-1 |#2| |#1|) (-1091 |#1|)))) -((-3007 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1385 (((-1175) $) 11)) (-2427 (((-1093 |#1|) $) 12)) (-4117 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4035 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3191 (($ (-1175) (-1093 |#1|)) 10)) (-3783 (((-862) $) 22 (|has| |#1| (-1099)))) (-3117 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2947 (((-112) $ $) 17 (|has| |#1| (-1099))))) -(((-1091 |#1|) (-13 (-1214) (-10 -8 (-15 -3191 ($ (-1175) (-1093 |#1|))) (-15 -1385 ((-1175) $)) (-15 -2427 ((-1093 |#1|) $)) (IF (|has| |#1| (-1099)) (-6 (-1099)) |%noBranch|))) (-1214)) (T -1091)) -((-3191 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1093 *4)) (-4 *4 (-1214)) (-5 *1 (-1091 *4)))) (-1385 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1091 *3)) (-4 *3 (-1214)))) (-2427 (*1 *2 *1) (-12 (-5 *2 (-1093 *3)) (-5 *1 (-1091 *3)) (-4 *3 (-1214))))) -(-13 (-1214) (-10 -8 (-15 -3191 ($ (-1175) (-1093 |#1|))) (-15 -1385 ((-1175) $)) (-15 -2427 ((-1093 |#1|) $)) (IF (|has| |#1| (-1099)) (-6 (-1099)) |%noBranch|))) -((-2427 (($ |#1| |#1|) 8)) (-2177 ((|#1| $) 11)) (-1448 ((|#1| $) 13)) (-2247 (((-566) $) 9)) (-1863 ((|#1| $) 10)) (-2269 ((|#1| $) 12)) (-1348 (($ |#1|) 6)) (-3622 (($ |#1| |#1|) 15)) (-2737 (($ $ (-566)) 14))) +((-2319 (((-644 |#2|) (-1 |#2| |#1|) (-1093 |#1|)) 29 (|has| |#1| (-848))) (((-1093 |#2|) (-1 |#2| |#1|) (-1093 |#1|)) 14))) +(((-1088 |#1| |#2|) (-10 -7 (-15 -2319 ((-1093 |#2|) (-1 |#2| |#1|) (-1093 |#1|))) (IF (|has| |#1| (-848)) (-15 -2319 ((-644 |#2|) (-1 |#2| |#1|) (-1093 |#1|))) |%noBranch|)) (-1214) (-1214)) (T -1088)) +((-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1093 *5)) (-4 *5 (-848)) (-4 *5 (-1214)) (-4 *6 (-1214)) (-5 *2 (-644 *6)) (-5 *1 (-1088 *5 *6)))) (-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1093 *5)) (-4 *5 (-1214)) (-4 *6 (-1214)) (-5 *2 (-1093 *6)) (-5 *1 (-1088 *5 *6))))) +(-10 -7 (-15 -2319 ((-1093 |#2|) (-1 |#2| |#1|) (-1093 |#1|))) (IF (|has| |#1| (-848)) (-15 -2319 ((-644 |#2|) (-1 |#2| |#1|) (-1093 |#1|))) |%noBranch|)) +((-2988 (((-112) $ $) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 16) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3747 (((-644 (-1134)) $) 10)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) +(((-1089) (-13 (-1082) (-10 -8 (-15 -3747 ((-644 (-1134)) $))))) (T -1089)) +((-3747 (*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-1089))))) +(-13 (-1082) (-10 -8 (-15 -3747 ((-644 (-1134)) $)))) +((-2319 (((-1091 |#2|) (-1 |#2| |#1|) (-1091 |#1|)) 19))) +(((-1090 |#1| |#2|) (-10 -7 (-15 -2319 ((-1091 |#2|) (-1 |#2| |#1|) (-1091 |#1|)))) (-1214) (-1214)) (T -1090)) +((-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1091 *5)) (-4 *5 (-1214)) (-4 *6 (-1214)) (-5 *2 (-1091 *6)) (-5 *1 (-1090 *5 *6))))) +(-10 -7 (-15 -2319 ((-1091 |#2|) (-1 |#2| |#1|) (-1091 |#1|)))) +((-2988 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-4347 (((-1175) $) 11)) (-2165 (((-1093 |#1|) $) 12)) (-3380 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4072 (((-1119) $) NIL (|has| |#1| (-1099)))) (-1335 (($ (-1175) (-1093 |#1|)) 10)) (-3152 (((-862) $) 22 (|has| |#1| (-1099)))) (-3044 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2914 (((-112) $ $) 17 (|has| |#1| (-1099))))) +(((-1091 |#1|) (-13 (-1214) (-10 -8 (-15 -1335 ($ (-1175) (-1093 |#1|))) (-15 -4347 ((-1175) $)) (-15 -2165 ((-1093 |#1|) $)) (IF (|has| |#1| (-1099)) (-6 (-1099)) |%noBranch|))) (-1214)) (T -1091)) +((-1335 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1093 *4)) (-4 *4 (-1214)) (-5 *1 (-1091 *4)))) (-4347 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1091 *3)) (-4 *3 (-1214)))) (-2165 (*1 *2 *1) (-12 (-5 *2 (-1093 *3)) (-5 *1 (-1091 *3)) (-4 *3 (-1214))))) +(-13 (-1214) (-10 -8 (-15 -1335 ($ (-1175) (-1093 |#1|))) (-15 -4347 ((-1175) $)) (-15 -2165 ((-1093 |#1|) $)) (IF (|has| |#1| (-1099)) (-6 (-1099)) |%noBranch|))) +((-2165 (($ |#1| |#1|) 8)) (-1923 ((|#1| $) 11)) (-2753 ((|#1| $) 13)) (-3478 (((-566) $) 9)) (-2395 ((|#1| $) 10)) (-3502 ((|#1| $) 12)) (-2376 (($ |#1|) 6)) (-4302 (($ |#1| |#1|) 15)) (-2686 (($ $ (-566)) 14))) (((-1092 |#1|) (-140) (-1214)) (T -1092)) -((-3622 (*1 *1 *2 *2) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1214)))) (-2737 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-1092 *3)) (-4 *3 (-1214)))) (-1448 (*1 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1214)))) (-2269 (*1 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1214)))) (-2177 (*1 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1214)))) (-1863 (*1 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1214)))) (-2247 (*1 *2 *1) (-12 (-4 *1 (-1092 *3)) (-4 *3 (-1214)) (-5 *2 (-566)))) (-2427 (*1 *1 *2 *2) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1214))))) -(-13 (-618 |t#1|) (-10 -8 (-15 -3622 ($ |t#1| |t#1|)) (-15 -2737 ($ $ (-566))) (-15 -1448 (|t#1| $)) (-15 -2269 (|t#1| $)) (-15 -2177 (|t#1| $)) (-15 -1863 (|t#1| $)) (-15 -2247 ((-566) $)) (-15 -2427 ($ |t#1| |t#1|)))) +((-4302 (*1 *1 *2 *2) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1214)))) (-2686 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-1092 *3)) (-4 *3 (-1214)))) (-2753 (*1 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1214)))) (-3502 (*1 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1214)))) (-1923 (*1 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1214)))) (-2395 (*1 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1214)))) (-3478 (*1 *2 *1) (-12 (-4 *1 (-1092 *3)) (-4 *3 (-1214)) (-5 *2 (-566)))) (-2165 (*1 *1 *2 *2) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1214))))) +(-13 (-618 |t#1|) (-10 -8 (-15 -4302 ($ |t#1| |t#1|)) (-15 -2686 ($ $ (-566))) (-15 -2753 (|t#1| $)) (-15 -3502 (|t#1| $)) (-15 -1923 (|t#1| $)) (-15 -2395 (|t#1| $)) (-15 -3478 ((-566) $)) (-15 -2165 ($ |t#1| |t#1|)))) (((-618 |#1|) . T)) -((-3007 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2427 (($ |#1| |#1|) 16)) (-1301 (((-644 |#1|) (-1 |#1| |#1|) $) 46 (|has| |#1| (-848)))) (-2177 ((|#1| $) 12)) (-1448 ((|#1| $) 11)) (-4117 (((-1157) $) NIL (|has| |#1| (-1099)))) (-2247 (((-566) $) 15)) (-1863 ((|#1| $) 14)) (-2269 ((|#1| $) 13)) (-4035 (((-1119) $) NIL (|has| |#1| (-1099)))) (-2671 (((-644 |#1|) $) 44 (|has| |#1| (-848))) (((-644 |#1|) (-644 $)) 43 (|has| |#1| (-848)))) (-1348 (($ |#1|) 29)) (-3783 (((-862) $) 28 (|has| |#1| (-1099)))) (-3117 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3622 (($ |#1| |#1|) 10)) (-2737 (($ $ (-566)) 17)) (-2947 (((-112) $ $) 22 (|has| |#1| (-1099))))) +((-2988 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2165 (($ |#1| |#1|) 16)) (-2319 (((-644 |#1|) (-1 |#1| |#1|) $) 46 (|has| |#1| (-848)))) (-1923 ((|#1| $) 12)) (-2753 ((|#1| $) 11)) (-3380 (((-1157) $) NIL (|has| |#1| (-1099)))) (-3478 (((-566) $) 15)) (-2395 ((|#1| $) 14)) (-3502 ((|#1| $) 13)) (-4072 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3640 (((-644 |#1|) $) 44 (|has| |#1| (-848))) (((-644 |#1|) (-644 $)) 43 (|has| |#1| (-848)))) (-2376 (($ |#1|) 29)) (-3152 (((-862) $) 28 (|has| |#1| (-1099)))) (-3044 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-4302 (($ |#1| |#1|) 10)) (-2686 (($ $ (-566)) 17)) (-2914 (((-112) $ $) 22 (|has| |#1| (-1099))))) (((-1093 |#1|) (-13 (-1092 |#1|) (-10 -7 (IF (|has| |#1| (-1099)) (-6 (-1099)) |%noBranch|) (IF (|has| |#1| (-848)) (-6 (-1094 |#1| (-644 |#1|))) |%noBranch|))) (-1214)) (T -1093)) NIL (-13 (-1092 |#1|) (-10 -7 (IF (|has| |#1| (-1099)) (-6 (-1099)) |%noBranch|) (IF (|has| |#1| (-848)) (-6 (-1094 |#1| (-644 |#1|))) |%noBranch|))) -((-2427 (($ |#1| |#1|) 8)) (-1301 ((|#2| (-1 |#1| |#1|) $) 16)) (-2177 ((|#1| $) 11)) (-1448 ((|#1| $) 13)) (-2247 (((-566) $) 9)) (-1863 ((|#1| $) 10)) (-2269 ((|#1| $) 12)) (-2671 ((|#2| (-644 $)) 18) ((|#2| $) 17)) (-1348 (($ |#1|) 6)) (-3622 (($ |#1| |#1|) 15)) (-2737 (($ $ (-566)) 14))) +((-2165 (($ |#1| |#1|) 8)) (-2319 ((|#2| (-1 |#1| |#1|) $) 16)) (-1923 ((|#1| $) 11)) (-2753 ((|#1| $) 13)) (-3478 (((-566) $) 9)) (-2395 ((|#1| $) 10)) (-3502 ((|#1| $) 12)) (-3640 ((|#2| (-644 $)) 18) ((|#2| $) 17)) (-2376 (($ |#1|) 6)) (-4302 (($ |#1| |#1|) 15)) (-2686 (($ $ (-566)) 14))) (((-1094 |#1| |#2|) (-140) (-848) (-1148 |t#1|)) (T -1094)) -((-2671 (*1 *2 *3) (-12 (-5 *3 (-644 *1)) (-4 *1 (-1094 *4 *2)) (-4 *4 (-848)) (-4 *2 (-1148 *4)))) (-2671 (*1 *2 *1) (-12 (-4 *1 (-1094 *3 *2)) (-4 *3 (-848)) (-4 *2 (-1148 *3)))) (-1301 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1094 *4 *2)) (-4 *4 (-848)) (-4 *2 (-1148 *4))))) -(-13 (-1092 |t#1|) (-10 -8 (-15 -2671 (|t#2| (-644 $))) (-15 -2671 (|t#2| $)) (-15 -1301 (|t#2| (-1 |t#1| |t#1|) $)))) +((-3640 (*1 *2 *3) (-12 (-5 *3 (-644 *1)) (-4 *1 (-1094 *4 *2)) (-4 *4 (-848)) (-4 *2 (-1148 *4)))) (-3640 (*1 *2 *1) (-12 (-4 *1 (-1094 *3 *2)) (-4 *3 (-848)) (-4 *2 (-1148 *3)))) (-2319 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1094 *4 *2)) (-4 *4 (-848)) (-4 *2 (-1148 *4))))) +(-13 (-1092 |t#1|) (-10 -8 (-15 -3640 (|t#2| (-644 $))) (-15 -3640 (|t#2| $)) (-15 -2319 (|t#2| (-1 |t#1| |t#1|) $)))) (((-618 |#1|) . T) ((-1092 |#1|) . T)) -((-3007 (((-112) $ $) NIL)) (-4117 (((-1157) $) NIL)) (-2686 (((-1134) $) 12)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 18) (($ (-1180)) NIL) (((-1180) $) NIL)) (-1382 (((-644 (-1134)) $) 10)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) -(((-1095) (-13 (-1082) (-10 -8 (-15 -1382 ((-644 (-1134)) $)) (-15 -2686 ((-1134) $))))) (T -1095)) -((-1382 (*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-1095)))) (-2686 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1095))))) -(-13 (-1082) (-10 -8 (-15 -1382 ((-644 (-1134)) $)) (-15 -2686 ((-1134) $)))) -((-1756 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-2204 (($ $ $) 10)) (-4340 (($ $ $) NIL) (($ $ |#2|) 15))) -(((-1096 |#1| |#2|) (-10 -8 (-15 -1756 (|#1| |#2| |#1|)) (-15 -1756 (|#1| |#1| |#2|)) (-15 -1756 (|#1| |#1| |#1|)) (-15 -2204 (|#1| |#1| |#1|)) (-15 -4340 (|#1| |#1| |#2|)) (-15 -4340 (|#1| |#1| |#1|))) (-1097 |#2|) (-1099)) (T -1096)) -NIL -(-10 -8 (-15 -1756 (|#1| |#2| |#1|)) (-15 -1756 (|#1| |#1| |#2|)) (-15 -1756 (|#1| |#1| |#1|)) (-15 -2204 (|#1| |#1| |#1|)) (-15 -4340 (|#1| |#1| |#2|)) (-15 -4340 (|#1| |#1| |#1|))) -((-3007 (((-112) $ $) 7)) (-1756 (($ $ $) 19) (($ $ |#1|) 18) (($ |#1| $) 17)) (-2204 (($ $ $) 21)) (-2904 (((-112) $ $) 20)) (-2256 (((-112) $ (-771)) 36)) (-3700 (($) 26) (($ (-644 |#1|)) 25)) (-2701 (($ (-1 (-112) |#1|) $) 57 (|has| $ (-6 -4414)))) (-3012 (($) 37 T CONST)) (-2031 (($ $) 60 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2665 (($ |#1| $) 59 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414)))) (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4414)))) (-1676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4414)))) (-3979 (((-644 |#1|) $) 44 (|has| $ (-6 -4414)))) (-2376 (((-112) $ $) 29)) (-2404 (((-112) $ (-771)) 35)) (-2329 (((-644 |#1|) $) 45 (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) 47 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2908 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#1| |#1|) $) 39)) (-2603 (((-112) $ (-771)) 34)) (-4117 (((-1157) $) 10)) (-4018 (($ $ $) 24)) (-4035 (((-1119) $) 11)) (-2006 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 53)) (-2692 (((-112) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 |#1|) (-644 |#1|)) 51 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 49 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 (-295 |#1|))) 48 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) 30)) (-3467 (((-112) $) 33)) (-1494 (($) 32)) (-4340 (($ $ $) 23) (($ $ |#1|) 22)) (-4045 (((-771) |#1| $) 46 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414)))) (((-771) (-1 (-112) |#1|) $) 43 (|has| $ (-6 -4414)))) (-3940 (($ $) 31)) (-1348 (((-538) $) 61 (|has| |#1| (-614 (-538))))) (-3796 (($ (-644 |#1|)) 52)) (-3783 (((-862) $) 12)) (-3788 (($) 28) (($ (-644 |#1|)) 27)) (-3117 (((-112) $ $) 9)) (-1894 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) 6)) (-3018 (((-771) $) 38 (|has| $ (-6 -4414))))) +((-2988 (((-112) $ $) NIL)) (-3380 (((-1157) $) NIL)) (-2641 (((-1134) $) 12)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 18) (($ (-1180)) NIL) (((-1180) $) NIL)) (-1377 (((-644 (-1134)) $) 10)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) +(((-1095) (-13 (-1082) (-10 -8 (-15 -1377 ((-644 (-1134)) $)) (-15 -2641 ((-1134) $))))) (T -1095)) +((-1377 (*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-1095)))) (-2641 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1095))))) +(-13 (-1082) (-10 -8 (-15 -1377 ((-644 (-1134)) $)) (-15 -2641 ((-1134) $)))) +((-1775 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-3495 (($ $ $) 10)) (-2048 (($ $ $) NIL) (($ $ |#2|) 15))) +(((-1096 |#1| |#2|) (-10 -8 (-15 -1775 (|#1| |#2| |#1|)) (-15 -1775 (|#1| |#1| |#2|)) (-15 -1775 (|#1| |#1| |#1|)) (-15 -3495 (|#1| |#1| |#1|)) (-15 -2048 (|#1| |#1| |#2|)) (-15 -2048 (|#1| |#1| |#1|))) (-1097 |#2|) (-1099)) (T -1096)) +NIL +(-10 -8 (-15 -1775 (|#1| |#2| |#1|)) (-15 -1775 (|#1| |#1| |#2|)) (-15 -1775 (|#1| |#1| |#1|)) (-15 -3495 (|#1| |#1| |#1|)) (-15 -2048 (|#1| |#1| |#2|)) (-15 -2048 (|#1| |#1| |#1|))) +((-2988 (((-112) $ $) 7)) (-1775 (($ $ $) 19) (($ $ |#1|) 18) (($ |#1| $) 17)) (-3495 (($ $ $) 21)) (-2515 (((-112) $ $) 20)) (-1504 (((-112) $ (-771)) 36)) (-3690 (($) 26) (($ (-644 |#1|)) 25)) (-3678 (($ (-1 (-112) |#1|) $) 57 (|has| $ (-6 -4414)))) (-2463 (($) 37 T CONST)) (-3942 (($ $) 60 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2622 (($ |#1| $) 59 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414)))) (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4414)))) (-2873 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4414)))) (-1683 (((-644 |#1|) $) 44 (|has| $ (-6 -4414)))) (-3546 (((-112) $ $) 29)) (-3456 (((-112) $ (-771)) 35)) (-3491 (((-644 |#1|) $) 45 (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) 47 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-3885 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#1| |#1|) $) 39)) (-3267 (((-112) $ (-771)) 34)) (-3380 (((-1157) $) 10)) (-1997 (($ $ $) 24)) (-4072 (((-1119) $) 11)) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 53)) (-2823 (((-112) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 |#1|) (-644 |#1|)) 51 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 49 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 (-295 |#1|))) 48 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) 30)) (-2872 (((-112) $) 33)) (-3493 (($) 32)) (-2048 (($ $ $) 23) (($ $ |#1|) 22)) (-4083 (((-771) |#1| $) 46 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414)))) (((-771) (-1 (-112) |#1|) $) 43 (|has| $ (-6 -4414)))) (-1480 (($ $) 31)) (-2376 (((-538) $) 61 (|has| |#1| (-614 (-538))))) (-1340 (($ (-644 |#1|)) 52)) (-3152 (((-862) $) 12)) (-1692 (($) 28) (($ (-644 |#1|)) 27)) (-3044 (((-112) $ $) 9)) (-2210 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) 6)) (-3000 (((-771) $) 38 (|has| $ (-6 -4414))))) (((-1097 |#1|) (-140) (-1099)) (T -1097)) -((-2376 (*1 *2 *1 *1) (-12 (-4 *1 (-1097 *3)) (-4 *3 (-1099)) (-5 *2 (-112)))) (-3788 (*1 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099)))) (-3788 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-4 *1 (-1097 *3)))) (-3700 (*1 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099)))) (-3700 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-4 *1 (-1097 *3)))) (-4018 (*1 *1 *1 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099)))) (-4340 (*1 *1 *1 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099)))) (-4340 (*1 *1 *1 *2) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099)))) (-2204 (*1 *1 *1 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099)))) (-2904 (*1 *2 *1 *1) (-12 (-4 *1 (-1097 *3)) (-4 *3 (-1099)) (-5 *2 (-112)))) (-1756 (*1 *1 *1 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099)))) (-1756 (*1 *1 *1 *2) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099)))) (-1756 (*1 *1 *2 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099))))) -(-13 (-1099) (-151 |t#1|) (-10 -8 (-6 -4404) (-15 -2376 ((-112) $ $)) (-15 -3788 ($)) (-15 -3788 ($ (-644 |t#1|))) (-15 -3700 ($)) (-15 -3700 ($ (-644 |t#1|))) (-15 -4018 ($ $ $)) (-15 -4340 ($ $ $)) (-15 -4340 ($ $ |t#1|)) (-15 -2204 ($ $ $)) (-15 -2904 ((-112) $ $)) (-15 -1756 ($ $ $)) (-15 -1756 ($ $ |t#1|)) (-15 -1756 ($ |t#1| $)))) +((-3546 (*1 *2 *1 *1) (-12 (-4 *1 (-1097 *3)) (-4 *3 (-1099)) (-5 *2 (-112)))) (-1692 (*1 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-4 *1 (-1097 *3)))) (-3690 (*1 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099)))) (-3690 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-4 *1 (-1097 *3)))) (-1997 (*1 *1 *1 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099)))) (-2048 (*1 *1 *1 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099)))) (-2048 (*1 *1 *1 *2) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099)))) (-3495 (*1 *1 *1 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099)))) (-2515 (*1 *2 *1 *1) (-12 (-4 *1 (-1097 *3)) (-4 *3 (-1099)) (-5 *2 (-112)))) (-1775 (*1 *1 *1 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099)))) (-1775 (*1 *1 *1 *2) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099)))) (-1775 (*1 *1 *2 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099))))) +(-13 (-1099) (-151 |t#1|) (-10 -8 (-6 -4404) (-15 -3546 ((-112) $ $)) (-15 -1692 ($)) (-15 -1692 ($ (-644 |t#1|))) (-15 -3690 ($)) (-15 -3690 ($ (-644 |t#1|))) (-15 -1997 ($ $ $)) (-15 -2048 ($ $ $)) (-15 -2048 ($ $ |t#1|)) (-15 -3495 ($ $ $)) (-15 -2515 ((-112) $ $)) (-15 -1775 ($ $ $)) (-15 -1775 ($ $ |t#1|)) (-15 -1775 ($ |t#1| $)))) (((-34) . T) ((-102) . T) ((-613 (-862)) . T) ((-151 |#1|) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1099) . T) ((-1214) . T)) -((-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 8)) (-3117 (((-112) $ $) 12))) -(((-1098 |#1|) (-10 -8 (-15 -3117 ((-112) |#1| |#1|)) (-15 -4117 ((-1157) |#1|)) (-15 -4035 ((-1119) |#1|))) (-1099)) (T -1098)) +((-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 8)) (-3044 (((-112) $ $) 12))) +(((-1098 |#1|) (-10 -8 (-15 -3044 ((-112) |#1| |#1|)) (-15 -3380 ((-1157) |#1|)) (-15 -4072 ((-1119) |#1|))) (-1099)) (T -1098)) NIL -(-10 -8 (-15 -3117 ((-112) |#1| |#1|)) (-15 -4117 ((-1157) |#1|)) (-15 -4035 ((-1119) |#1|))) -((-3007 (((-112) $ $) 7)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3783 (((-862) $) 12)) (-3117 (((-112) $ $) 9)) (-2947 (((-112) $ $) 6))) +(-10 -8 (-15 -3044 ((-112) |#1| |#1|)) (-15 -3380 ((-1157) |#1|)) (-15 -4072 ((-1119) |#1|))) +((-2988 (((-112) $ $) 7)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3152 (((-862) $) 12)) (-3044 (((-112) $ $) 9)) (-2914 (((-112) $ $) 6))) (((-1099) (-140)) (T -1099)) -((-4035 (*1 *2 *1) (-12 (-4 *1 (-1099)) (-5 *2 (-1119)))) (-4117 (*1 *2 *1) (-12 (-4 *1 (-1099)) (-5 *2 (-1157)))) (-3117 (*1 *2 *1 *1) (-12 (-4 *1 (-1099)) (-5 *2 (-112))))) -(-13 (-102) (-613 (-862)) (-10 -8 (-15 -4035 ((-1119) $)) (-15 -4117 ((-1157) $)) (-15 -3117 ((-112) $ $)))) +((-4072 (*1 *2 *1) (-12 (-4 *1 (-1099)) (-5 *2 (-1119)))) (-3380 (*1 *2 *1) (-12 (-4 *1 (-1099)) (-5 *2 (-1157)))) (-3044 (*1 *2 *1 *1) (-12 (-4 *1 (-1099)) (-5 *2 (-112))))) +(-13 (-102) (-613 (-862)) (-10 -8 (-15 -4072 ((-1119) $)) (-15 -3380 ((-1157) $)) (-15 -3044 ((-112) $ $)))) (((-102) . T) ((-613 (-862)) . T)) -((-3007 (((-112) $ $) NIL)) (-1970 (((-771)) 36)) (-1680 (($ (-644 (-921))) 73)) (-1681 (((-3 $ "failed") $ (-921) (-921)) 84)) (-1552 (($) 40)) (-1916 (((-112) (-921) $) 44)) (-3681 (((-921) $) 66)) (-4117 (((-1157) $) NIL)) (-2178 (($ (-921)) 39)) (-4195 (((-3 $ "failed") $ (-921)) 80)) (-4035 (((-1119) $) NIL)) (-1318 (((-1264 $)) 49)) (-1973 (((-644 (-921)) $) 27)) (-1695 (((-771) $ (-921) (-921)) 81)) (-3783 (((-862) $) 32)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) 24))) -(((-1100 |#1| |#2|) (-13 (-370) (-10 -8 (-15 -4195 ((-3 $ "failed") $ (-921))) (-15 -1681 ((-3 $ "failed") $ (-921) (-921))) (-15 -1973 ((-644 (-921)) $)) (-15 -1680 ($ (-644 (-921)))) (-15 -1318 ((-1264 $))) (-15 -1916 ((-112) (-921) $)) (-15 -1695 ((-771) $ (-921) (-921))))) (-921) (-921)) (T -1100)) -((-4195 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-921)) (-5 *1 (-1100 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-1681 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-921)) (-5 *1 (-1100 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-1973 (*1 *2 *1) (-12 (-5 *2 (-644 (-921))) (-5 *1 (-1100 *3 *4)) (-14 *3 (-921)) (-14 *4 (-921)))) (-1680 (*1 *1 *2) (-12 (-5 *2 (-644 (-921))) (-5 *1 (-1100 *3 *4)) (-14 *3 (-921)) (-14 *4 (-921)))) (-1318 (*1 *2) (-12 (-5 *2 (-1264 (-1100 *3 *4))) (-5 *1 (-1100 *3 *4)) (-14 *3 (-921)) (-14 *4 (-921)))) (-1916 (*1 *2 *3 *1) (-12 (-5 *3 (-921)) (-5 *2 (-112)) (-5 *1 (-1100 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-1695 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-921)) (-5 *2 (-771)) (-5 *1 (-1100 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-13 (-370) (-10 -8 (-15 -4195 ((-3 $ "failed") $ (-921))) (-15 -1681 ((-3 $ "failed") $ (-921) (-921))) (-15 -1973 ((-644 (-921)) $)) (-15 -1680 ($ (-644 (-921)))) (-15 -1318 ((-1264 $))) (-15 -1916 ((-112) (-921) $)) (-15 -1695 ((-771) $ (-921) (-921))))) -((-3007 (((-112) $ $) NIL)) (-1636 (($) NIL (|has| |#1| (-370)))) (-1756 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 83)) (-2204 (($ $ $) 81)) (-2904 (((-112) $ $) 82)) (-2256 (((-112) $ (-771)) NIL)) (-1970 (((-771)) NIL (|has| |#1| (-370)))) (-3700 (($ (-644 |#1|)) NIL) (($) 13)) (-4016 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2701 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-3012 (($) NIL T CONST)) (-2031 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2956 (($ |#1| $) 74 (|has| $ (-6 -4414))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2665 (($ |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-1676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4414)))) (-1552 (($) NIL (|has| |#1| (-370)))) (-3979 (((-644 |#1|) $) 19 (|has| $ (-6 -4414)))) (-2376 (((-112) $ $) NIL)) (-2404 (((-112) $ (-771)) NIL)) (-2097 ((|#1| $) 55 (|has| |#1| (-850)))) (-2329 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3962 ((|#1| $) 53 (|has| |#1| (-850)))) (-2908 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#1| |#1|) $) 34)) (-3681 (((-921) $) NIL (|has| |#1| (-370)))) (-2603 (((-112) $ (-771)) NIL)) (-4117 (((-1157) $) NIL)) (-4018 (($ $ $) 79)) (-4039 ((|#1| $) 25)) (-3406 (($ |#1| $) 69)) (-2178 (($ (-921)) NIL (|has| |#1| (-370)))) (-4035 (((-1119) $) NIL)) (-2006 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-2539 ((|#1| $) 27)) (-2692 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) NIL)) (-3467 (((-112) $) 21)) (-1494 (($) 11)) (-4340 (($ $ |#1|) NIL) (($ $ $) 80)) (-3481 (($) NIL) (($ (-644 |#1|)) NIL)) (-4045 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3940 (($ $) 16)) (-1348 (((-538) $) 50 (|has| |#1| (-614 (-538))))) (-3796 (($ (-644 |#1|)) 62)) (-3443 (($ $) NIL (|has| |#1| (-370)))) (-3783 (((-862) $) NIL)) (-2093 (((-771) $) NIL)) (-3788 (($ (-644 |#1|)) NIL) (($) 12)) (-3117 (((-112) $ $) NIL)) (-1748 (($ (-644 |#1|)) NIL)) (-1894 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) 52)) (-3018 (((-771) $) 10 (|has| $ (-6 -4414))))) +((-2988 (((-112) $ $) NIL)) (-3870 (((-771)) 36)) (-3425 (($ (-644 (-921))) 73)) (-3750 (((-3 $ "failed") $ (-921) (-921)) 84)) (-2715 (($) 40)) (-1602 (((-112) (-921) $) 44)) (-1866 (((-921) $) 66)) (-3380 (((-1157) $) NIL)) (-2835 (($ (-921)) 39)) (-2079 (((-3 $ "failed") $ (-921)) 80)) (-4072 (((-1119) $) NIL)) (-1639 (((-1264 $)) 49)) (-3455 (((-644 (-921)) $) 27)) (-3832 (((-771) $ (-921) (-921)) 81)) (-3152 (((-862) $) 32)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) 24))) +(((-1100 |#1| |#2|) (-13 (-370) (-10 -8 (-15 -2079 ((-3 $ "failed") $ (-921))) (-15 -3750 ((-3 $ "failed") $ (-921) (-921))) (-15 -3455 ((-644 (-921)) $)) (-15 -3425 ($ (-644 (-921)))) (-15 -1639 ((-1264 $))) (-15 -1602 ((-112) (-921) $)) (-15 -3832 ((-771) $ (-921) (-921))))) (-921) (-921)) (T -1100)) +((-2079 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-921)) (-5 *1 (-1100 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3750 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-921)) (-5 *1 (-1100 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3455 (*1 *2 *1) (-12 (-5 *2 (-644 (-921))) (-5 *1 (-1100 *3 *4)) (-14 *3 (-921)) (-14 *4 (-921)))) (-3425 (*1 *1 *2) (-12 (-5 *2 (-644 (-921))) (-5 *1 (-1100 *3 *4)) (-14 *3 (-921)) (-14 *4 (-921)))) (-1639 (*1 *2) (-12 (-5 *2 (-1264 (-1100 *3 *4))) (-5 *1 (-1100 *3 *4)) (-14 *3 (-921)) (-14 *4 (-921)))) (-1602 (*1 *2 *3 *1) (-12 (-5 *3 (-921)) (-5 *2 (-112)) (-5 *1 (-1100 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3832 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-921)) (-5 *2 (-771)) (-5 *1 (-1100 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-13 (-370) (-10 -8 (-15 -2079 ((-3 $ "failed") $ (-921))) (-15 -3750 ((-3 $ "failed") $ (-921) (-921))) (-15 -3455 ((-644 (-921)) $)) (-15 -3425 ($ (-644 (-921)))) (-15 -1639 ((-1264 $))) (-15 -1602 ((-112) (-921) $)) (-15 -3832 ((-771) $ (-921) (-921))))) +((-2988 (((-112) $ $) NIL)) (-3131 (($) NIL (|has| |#1| (-370)))) (-1775 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 83)) (-3495 (($ $ $) 81)) (-2515 (((-112) $ $) 82)) (-1504 (((-112) $ (-771)) NIL)) (-3870 (((-771)) NIL (|has| |#1| (-370)))) (-3690 (($ (-644 |#1|)) NIL) (($) 13)) (-2995 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-3678 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2463 (($) NIL T CONST)) (-3942 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3512 (($ |#1| $) 74 (|has| $ (-6 -4414))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2622 (($ |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2873 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4414)))) (-2715 (($) NIL (|has| |#1| (-370)))) (-1683 (((-644 |#1|) $) 19 (|has| $ (-6 -4414)))) (-3546 (((-112) $ $) NIL)) (-3456 (((-112) $ (-771)) NIL)) (-1478 ((|#1| $) 55 (|has| |#1| (-850)))) (-3491 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2599 ((|#1| $) 53 (|has| |#1| (-850)))) (-3885 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#1| |#1|) $) 34)) (-1866 (((-921) $) NIL (|has| |#1| (-370)))) (-3267 (((-112) $ (-771)) NIL)) (-3380 (((-1157) $) NIL)) (-1997 (($ $ $) 79)) (-3278 ((|#1| $) 25)) (-3888 (($ |#1| $) 69)) (-2835 (($ (-921)) NIL (|has| |#1| (-370)))) (-4072 (((-1119) $) NIL)) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-1973 ((|#1| $) 27)) (-2823 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) NIL)) (-2872 (((-112) $) 21)) (-3493 (($) 11)) (-2048 (($ $ |#1|) NIL) (($ $ $) 80)) (-1792 (($) NIL) (($ (-644 |#1|)) NIL)) (-4083 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-1480 (($ $) 16)) (-2376 (((-538) $) 50 (|has| |#1| (-614 (-538))))) (-1340 (($ (-644 |#1|)) 62)) (-4289 (($ $) NIL (|has| |#1| (-370)))) (-3152 (((-862) $) NIL)) (-3823 (((-771) $) NIL)) (-1692 (($ (-644 |#1|)) NIL) (($) 12)) (-3044 (((-112) $ $) NIL)) (-2948 (($ (-644 |#1|)) NIL)) (-2210 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) 52)) (-3000 (((-771) $) 10 (|has| $ (-6 -4414))))) (((-1101 |#1|) (-427 |#1|) (-1099)) (T -1101)) NIL (-427 |#1|) -((-3007 (((-112) $ $) 7)) (-2950 (((-112) $) 33)) (-1392 ((|#2| $) 28)) (-3606 (((-112) $) 34)) (-4336 ((|#1| $) 29)) (-1405 (((-112) $) 36)) (-1943 (((-112) $) 38)) (-3894 (((-112) $) 35)) (-4117 (((-1157) $) 10)) (-3354 (((-112) $) 32)) (-1410 ((|#3| $) 27)) (-4035 (((-1119) $) 11)) (-4240 (((-112) $) 31)) (-2985 ((|#4| $) 26)) (-1346 ((|#5| $) 25)) (-2470 (((-112) $ $) 39)) (-4390 (($ $ (-566)) 21) (($ $ (-644 (-566))) 20)) (-3801 (((-644 $) $) 30)) (-1348 (($ |#1|) 45) (($ |#2|) 44) (($ |#3|) 43) (($ |#4|) 42) (($ |#5|) 41) (($ (-644 $)) 40)) (-3783 (((-862) $) 12)) (-1904 (($ $) 23)) (-1893 (($ $) 24)) (-3117 (((-112) $ $) 9)) (-3593 (((-112) $) 37)) (-2947 (((-112) $ $) 6)) (-3018 (((-566) $) 22))) +((-2988 (((-112) $ $) 7)) (-4124 (((-112) $) 33)) (-2069 ((|#2| $) 28)) (-3154 (((-112) $) 34)) (-3822 ((|#1| $) 29)) (-2368 (((-112) $) 36)) (-3524 (((-112) $) 38)) (-1750 (((-112) $) 35)) (-3380 (((-1157) $) 10)) (-3709 (((-112) $) 32)) (-2092 ((|#3| $) 27)) (-4072 (((-1119) $) 11)) (-3161 (((-112) $) 31)) (-2938 ((|#4| $) 26)) (-4308 ((|#5| $) 25)) (-3434 (((-112) $ $) 39)) (-1309 (($ $ (-566)) 21) (($ $ (-644 (-566))) 20)) (-1704 (((-644 $) $) 30)) (-2376 (($ |#1|) 45) (($ |#2|) 44) (($ |#3|) 43) (($ |#4|) 42) (($ |#5|) 41) (($ (-644 $)) 40)) (-3152 (((-862) $) 12)) (-3794 (($ $) 23)) (-3780 (($ $) 24)) (-3044 (((-112) $ $) 9)) (-3355 (((-112) $) 37)) (-2914 (((-112) $ $) 6)) (-3000 (((-566) $) 22))) (((-1102 |#1| |#2| |#3| |#4| |#5|) (-140) (-1099) (-1099) (-1099) (-1099) (-1099)) (T -1102)) -((-2470 (*1 *2 *1 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112)))) (-1943 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112)))) (-3593 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112)))) (-1405 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112)))) (-3894 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112)))) (-3606 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112)))) (-2950 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112)))) (-3354 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112)))) (-4240 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112)))) (-3801 (*1 *2 *1) (-12 (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-644 *1)) (-4 *1 (-1102 *3 *4 *5 *6 *7)))) (-4336 (*1 *2 *1) (-12 (-4 *1 (-1102 *2 *3 *4 *5 *6)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *2 (-1099)))) (-1392 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *2 *4 *5 *6)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *2 (-1099)))) (-1410 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *2 *5 *6)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *2 (-1099)))) (-2985 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *2 *6)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *2 (-1099)))) (-1346 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6 *2)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *2 (-1099)))) (-1893 (*1 *1 *1) (-12 (-4 *1 (-1102 *2 *3 *4 *5 *6)) (-4 *2 (-1099)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)))) (-1904 (*1 *1 *1) (-12 (-4 *1 (-1102 *2 *3 *4 *5 *6)) (-4 *2 (-1099)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)))) (-3018 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-566)))) (-4390 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)))) (-4390 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-566))) (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099))))) -(-13 (-1099) (-618 |t#1|) (-618 |t#2|) (-618 |t#3|) (-618 |t#4|) (-618 |t#4|) (-618 |t#5|) (-618 (-644 $)) (-10 -8 (-15 -2470 ((-112) $ $)) (-15 -1943 ((-112) $)) (-15 -3593 ((-112) $)) (-15 -1405 ((-112) $)) (-15 -3894 ((-112) $)) (-15 -3606 ((-112) $)) (-15 -2950 ((-112) $)) (-15 -3354 ((-112) $)) (-15 -4240 ((-112) $)) (-15 -3801 ((-644 $) $)) (-15 -4336 (|t#1| $)) (-15 -1392 (|t#2| $)) (-15 -1410 (|t#3| $)) (-15 -2985 (|t#4| $)) (-15 -1346 (|t#5| $)) (-15 -1893 ($ $)) (-15 -1904 ($ $)) (-15 -3018 ((-566) $)) (-15 -4390 ($ $ (-566))) (-15 -4390 ($ $ (-644 (-566)))))) +((-3434 (*1 *2 *1 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112)))) (-3524 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112)))) (-3355 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112)))) (-2368 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112)))) (-1750 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112)))) (-3154 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112)))) (-4124 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112)))) (-3709 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112)))) (-3161 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112)))) (-1704 (*1 *2 *1) (-12 (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-644 *1)) (-4 *1 (-1102 *3 *4 *5 *6 *7)))) (-3822 (*1 *2 *1) (-12 (-4 *1 (-1102 *2 *3 *4 *5 *6)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *2 (-1099)))) (-2069 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *2 *4 *5 *6)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *2 (-1099)))) (-2092 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *2 *5 *6)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *2 (-1099)))) (-2938 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *2 *6)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *2 (-1099)))) (-4308 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6 *2)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *2 (-1099)))) (-3780 (*1 *1 *1) (-12 (-4 *1 (-1102 *2 *3 *4 *5 *6)) (-4 *2 (-1099)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)))) (-3794 (*1 *1 *1) (-12 (-4 *1 (-1102 *2 *3 *4 *5 *6)) (-4 *2 (-1099)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)))) (-3000 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-566)))) (-1309 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)))) (-1309 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-566))) (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099))))) +(-13 (-1099) (-618 |t#1|) (-618 |t#2|) (-618 |t#3|) (-618 |t#4|) (-618 |t#4|) (-618 |t#5|) (-618 (-644 $)) (-10 -8 (-15 -3434 ((-112) $ $)) (-15 -3524 ((-112) $)) (-15 -3355 ((-112) $)) (-15 -2368 ((-112) $)) (-15 -1750 ((-112) $)) (-15 -3154 ((-112) $)) (-15 -4124 ((-112) $)) (-15 -3709 ((-112) $)) (-15 -3161 ((-112) $)) (-15 -1704 ((-644 $) $)) (-15 -3822 (|t#1| $)) (-15 -2069 (|t#2| $)) (-15 -2092 (|t#3| $)) (-15 -2938 (|t#4| $)) (-15 -4308 (|t#5| $)) (-15 -3780 ($ $)) (-15 -3794 ($ $)) (-15 -3000 ((-566) $)) (-15 -1309 ($ $ (-566))) (-15 -1309 ($ $ (-644 (-566)))))) (((-102) . T) ((-613 (-862)) . T) ((-618 (-644 $)) . T) ((-618 |#1|) . T) ((-618 |#2|) . T) ((-618 |#3|) . T) ((-618 |#4|) . T) ((-618 |#5|) . T) ((-1099) . T)) -((-3007 (((-112) $ $) NIL)) (-2950 (((-112) $) NIL)) (-1392 (((-1175) $) NIL)) (-3606 (((-112) $) NIL)) (-4336 (((-1157) $) NIL)) (-1405 (((-112) $) NIL)) (-1943 (((-112) $) NIL)) (-3894 (((-112) $) NIL)) (-4117 (((-1157) $) NIL)) (-3354 (((-112) $) NIL)) (-1410 (((-566) $) NIL)) (-4035 (((-1119) $) NIL)) (-4240 (((-112) $) NIL)) (-2985 (((-225) $) NIL)) (-1346 (((-862) $) NIL)) (-2470 (((-112) $ $) NIL)) (-4390 (($ $ (-566)) NIL) (($ $ (-644 (-566))) NIL)) (-3801 (((-644 $) $) NIL)) (-1348 (($ (-1157)) NIL) (($ (-1175)) NIL) (($ (-566)) NIL) (($ (-225)) NIL) (($ (-862)) NIL) (($ (-644 $)) NIL)) (-3783 (((-862) $) NIL)) (-1904 (($ $) NIL)) (-1893 (($ $) NIL)) (-3117 (((-112) $ $) NIL)) (-3593 (((-112) $) NIL)) (-2947 (((-112) $ $) NIL)) (-3018 (((-566) $) NIL))) +((-2988 (((-112) $ $) NIL)) (-4124 (((-112) $) NIL)) (-2069 (((-1175) $) NIL)) (-3154 (((-112) $) NIL)) (-3822 (((-1157) $) NIL)) (-2368 (((-112) $) NIL)) (-3524 (((-112) $) NIL)) (-1750 (((-112) $) NIL)) (-3380 (((-1157) $) NIL)) (-3709 (((-112) $) NIL)) (-2092 (((-566) $) NIL)) (-4072 (((-1119) $) NIL)) (-3161 (((-112) $) NIL)) (-2938 (((-225) $) NIL)) (-4308 (((-862) $) NIL)) (-3434 (((-112) $ $) NIL)) (-1309 (($ $ (-566)) NIL) (($ $ (-644 (-566))) NIL)) (-1704 (((-644 $) $) NIL)) (-2376 (($ (-1157)) NIL) (($ (-1175)) NIL) (($ (-566)) NIL) (($ (-225)) NIL) (($ (-862)) NIL) (($ (-644 $)) NIL)) (-3152 (((-862) $) NIL)) (-3794 (($ $) NIL)) (-3780 (($ $) NIL)) (-3044 (((-112) $ $) NIL)) (-3355 (((-112) $) NIL)) (-2914 (((-112) $ $) NIL)) (-3000 (((-566) $) NIL))) (((-1103) (-1102 (-1157) (-1175) (-566) (-225) (-862))) (T -1103)) NIL (-1102 (-1157) (-1175) (-566) (-225) (-862)) -((-3007 (((-112) $ $) NIL)) (-2950 (((-112) $) 45)) (-1392 ((|#2| $) 48)) (-3606 (((-112) $) 20)) (-4336 ((|#1| $) 21)) (-1405 (((-112) $) 42)) (-1943 (((-112) $) 14)) (-3894 (((-112) $) 44)) (-4117 (((-1157) $) NIL)) (-3354 (((-112) $) 46)) (-1410 ((|#3| $) 50)) (-4035 (((-1119) $) NIL)) (-4240 (((-112) $) 47)) (-2985 ((|#4| $) 49)) (-1346 ((|#5| $) 51)) (-2470 (((-112) $ $) 41)) (-4390 (($ $ (-566)) 62) (($ $ (-644 (-566))) 64)) (-3801 (((-644 $) $) 27)) (-1348 (($ |#1|) 53) (($ |#2|) 54) (($ |#3|) 55) (($ |#4|) 56) (($ |#5|) 57) (($ (-644 $)) 52)) (-3783 (((-862) $) 28)) (-1904 (($ $) 26)) (-1893 (($ $) 58)) (-3117 (((-112) $ $) NIL)) (-3593 (((-112) $) 23)) (-2947 (((-112) $ $) 40)) (-3018 (((-566) $) 60))) +((-2988 (((-112) $ $) NIL)) (-4124 (((-112) $) 45)) (-2069 ((|#2| $) 48)) (-3154 (((-112) $) 20)) (-3822 ((|#1| $) 21)) (-2368 (((-112) $) 42)) (-3524 (((-112) $) 14)) (-1750 (((-112) $) 44)) (-3380 (((-1157) $) NIL)) (-3709 (((-112) $) 46)) (-2092 ((|#3| $) 50)) (-4072 (((-1119) $) NIL)) (-3161 (((-112) $) 47)) (-2938 ((|#4| $) 49)) (-4308 ((|#5| $) 51)) (-3434 (((-112) $ $) 41)) (-1309 (($ $ (-566)) 62) (($ $ (-644 (-566))) 64)) (-1704 (((-644 $) $) 27)) (-2376 (($ |#1|) 53) (($ |#2|) 54) (($ |#3|) 55) (($ |#4|) 56) (($ |#5|) 57) (($ (-644 $)) 52)) (-3152 (((-862) $) 28)) (-3794 (($ $) 26)) (-3780 (($ $) 58)) (-3044 (((-112) $ $) NIL)) (-3355 (((-112) $) 23)) (-2914 (((-112) $ $) 40)) (-3000 (((-566) $) 60))) (((-1104 |#1| |#2| |#3| |#4| |#5|) (-1102 |#1| |#2| |#3| |#4| |#5|) (-1099) (-1099) (-1099) (-1099) (-1099)) (T -1104)) NIL (-1102 |#1| |#2| |#3| |#4| |#5|) -((-3435 (((-1269) $) 23)) (-3266 (($ (-1175) (-436) |#2|) 11)) (-3783 (((-862) $) 16))) -(((-1105 |#1| |#2|) (-13 (-397) (-10 -8 (-15 -3266 ($ (-1175) (-436) |#2|)))) (-1099) (-432 |#1|)) (T -1105)) -((-3266 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1175)) (-5 *3 (-436)) (-4 *5 (-1099)) (-5 *1 (-1105 *5 *4)) (-4 *4 (-432 *5))))) -(-13 (-397) (-10 -8 (-15 -3266 ($ (-1175) (-436) |#2|)))) -((-1915 (((-112) |#5| |#5|) 45)) (-3995 (((-112) |#5| |#5|) 60)) (-3708 (((-112) |#5| (-644 |#5|)) 83) (((-112) |#5| |#5|) 69)) (-3259 (((-112) (-644 |#4|) (-644 |#4|)) 66)) (-1682 (((-112) (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|)) (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))) 71)) (-1583 (((-1269)) 33)) (-3110 (((-1269) (-1157) (-1157) (-1157)) 29)) (-1487 (((-644 |#5|) (-644 |#5|)) 102)) (-1469 (((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|)))) 94)) (-2647 (((-644 (-2 (|:| -2470 (-644 |#4|)) (|:| -3570 |#5|) (|:| |ineq| (-644 |#4|)))) (-644 |#4|) (-644 |#5|) (-112) (-112)) 124)) (-3552 (((-112) |#5| |#5|) 54)) (-3981 (((-3 (-112) "failed") |#5| |#5|) 79)) (-3130 (((-112) (-644 |#4|) (-644 |#4|)) 65)) (-3040 (((-112) (-644 |#4|) (-644 |#4|)) 67)) (-2897 (((-112) (-644 |#4|) (-644 |#4|)) 68)) (-3971 (((-3 (-2 (|:| -2470 (-644 |#4|)) (|:| -3570 |#5|) (|:| |ineq| (-644 |#4|))) "failed") (-644 |#4|) |#5| (-644 |#4|) (-112) (-112) (-112) (-112) (-112)) 119)) (-2281 (((-644 |#5|) (-644 |#5|)) 50))) -(((-1106 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3110 ((-1269) (-1157) (-1157) (-1157))) (-15 -1583 ((-1269))) (-15 -1915 ((-112) |#5| |#5|)) (-15 -2281 ((-644 |#5|) (-644 |#5|))) (-15 -3552 ((-112) |#5| |#5|)) (-15 -3995 ((-112) |#5| |#5|)) (-15 -3259 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -3130 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -3040 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -2897 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -3981 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3708 ((-112) |#5| |#5|)) (-15 -3708 ((-112) |#5| (-644 |#5|))) (-15 -1487 ((-644 |#5|) (-644 |#5|))) (-15 -1682 ((-112) (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|)) (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|)))) (-15 -1469 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))))) (-15 -2647 ((-644 (-2 (|:| -2470 (-644 |#4|)) (|:| -3570 |#5|) (|:| |ineq| (-644 |#4|)))) (-644 |#4|) (-644 |#5|) (-112) (-112))) (-15 -3971 ((-3 (-2 (|:| -2470 (-644 |#4|)) (|:| -3570 |#5|) (|:| |ineq| (-644 |#4|))) "failed") (-644 |#4|) |#5| (-644 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-454) (-793) (-850) (-1064 |#1| |#2| |#3|) (-1070 |#1| |#2| |#3| |#4|)) (T -1106)) -((-3971 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) (-4 *9 (-1064 *6 *7 *8)) (-5 *2 (-2 (|:| -2470 (-644 *9)) (|:| -3570 *4) (|:| |ineq| (-644 *9)))) (-5 *1 (-1106 *6 *7 *8 *9 *4)) (-5 *3 (-644 *9)) (-4 *4 (-1070 *6 *7 *8 *9)))) (-2647 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-644 *10)) (-5 *5 (-112)) (-4 *10 (-1070 *6 *7 *8 *9)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) (-4 *9 (-1064 *6 *7 *8)) (-5 *2 (-644 (-2 (|:| -2470 (-644 *9)) (|:| -3570 *10) (|:| |ineq| (-644 *9))))) (-5 *1 (-1106 *6 *7 *8 *9 *10)) (-5 *3 (-644 *9)))) (-1469 (*1 *2 *2) (-12 (-5 *2 (-644 (-2 (|:| |val| (-644 *6)) (|:| -3570 *7)))) (-4 *6 (-1064 *3 *4 *5)) (-4 *7 (-1070 *3 *4 *5 *6)) (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-1106 *3 *4 *5 *6 *7)))) (-1682 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-644 *7)) (|:| -3570 *8))) (-4 *7 (-1064 *4 *5 *6)) (-4 *8 (-1070 *4 *5 *6 *7)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-1106 *4 *5 *6 *7 *8)))) (-1487 (*1 *2 *2) (-12 (-5 *2 (-644 *7)) (-4 *7 (-1070 *3 *4 *5 *6)) (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *1 (-1106 *3 *4 *5 *6 *7)))) (-3708 (*1 *2 *3 *4) (-12 (-5 *4 (-644 *3)) (-4 *3 (-1070 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-1064 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1106 *5 *6 *7 *8 *3)))) (-3708 (*1 *2 *3 *3) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1106 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))) (-3981 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1106 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))) (-2897 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-1106 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) (-3040 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-1106 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) (-3130 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-1106 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) (-3259 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-1106 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) (-3995 (*1 *2 *3 *3) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1106 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))) (-3552 (*1 *2 *3 *3) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1106 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))) (-2281 (*1 *2 *2) (-12 (-5 *2 (-644 *7)) (-4 *7 (-1070 *3 *4 *5 *6)) (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *1 (-1106 *3 *4 *5 *6 *7)))) (-1915 (*1 *2 *3 *3) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1106 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))) (-1583 (*1 *2) (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-1269)) (-5 *1 (-1106 *3 *4 *5 *6 *7)) (-4 *7 (-1070 *3 *4 *5 *6)))) (-3110 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1157)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-1269)) (-5 *1 (-1106 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7))))) -(-10 -7 (-15 -3110 ((-1269) (-1157) (-1157) (-1157))) (-15 -1583 ((-1269))) (-15 -1915 ((-112) |#5| |#5|)) (-15 -2281 ((-644 |#5|) (-644 |#5|))) (-15 -3552 ((-112) |#5| |#5|)) (-15 -3995 ((-112) |#5| |#5|)) (-15 -3259 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -3130 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -3040 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -2897 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -3981 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3708 ((-112) |#5| |#5|)) (-15 -3708 ((-112) |#5| (-644 |#5|))) (-15 -1487 ((-644 |#5|) (-644 |#5|))) (-15 -1682 ((-112) (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|)) (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|)))) (-15 -1469 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))))) (-15 -2647 ((-644 (-2 (|:| -2470 (-644 |#4|)) (|:| -3570 |#5|) (|:| |ineq| (-644 |#4|)))) (-644 |#4|) (-644 |#5|) (-112) (-112))) (-15 -3971 ((-3 (-2 (|:| -2470 (-644 |#4|)) (|:| -3570 |#5|) (|:| |ineq| (-644 |#4|))) "failed") (-644 |#4|) |#5| (-644 |#4|) (-112) (-112) (-112) (-112) (-112)))) -((-1804 (((-644 (-2 (|:| |val| |#4|) (|:| -3570 |#5|))) |#4| |#5|) 109)) (-3690 (((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))) |#4| |#4| |#5|) 81)) (-1654 (((-644 (-2 (|:| |val| |#4|) (|:| -3570 |#5|))) |#4| |#4| |#5|) 103)) (-1567 (((-644 |#5|) |#4| |#5|) 125)) (-3899 (((-644 |#5|) |#4| |#5|) 132)) (-3428 (((-644 |#5|) |#4| |#5|) 133)) (-2899 (((-644 (-2 (|:| |val| (-112)) (|:| -3570 |#5|))) |#4| |#5|) 110)) (-3249 (((-644 (-2 (|:| |val| (-112)) (|:| -3570 |#5|))) |#4| |#5|) 131)) (-2835 (((-644 (-2 (|:| |val| (-112)) (|:| -3570 |#5|))) |#4| |#5|) 48) (((-112) |#4| |#5|) 56)) (-3409 (((-644 (-2 (|:| |val| |#4|) (|:| -3570 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))) |#3| (-112)) 93) (((-644 (-2 (|:| |val| |#4|) (|:| -3570 |#5|))) |#4| |#4| |#5| (-112) (-112)) 53)) (-2679 (((-644 (-2 (|:| |val| |#4|) (|:| -3570 |#5|))) |#4| |#4| |#5|) 88)) (-2850 (((-1269)) 37)) (-3332 (((-1269)) 26)) (-3472 (((-1269) (-1157) (-1157) (-1157)) 33)) (-4014 (((-1269) (-1157) (-1157) (-1157)) 22))) -(((-1107 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4014 ((-1269) (-1157) (-1157) (-1157))) (-15 -3332 ((-1269))) (-15 -3472 ((-1269) (-1157) (-1157) (-1157))) (-15 -2850 ((-1269))) (-15 -3690 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))) |#4| |#4| |#5|)) (-15 -3409 ((-644 (-2 (|:| |val| |#4|) (|:| -3570 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3409 ((-644 (-2 (|:| |val| |#4|) (|:| -3570 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))) |#3| (-112))) (-15 -2679 ((-644 (-2 (|:| |val| |#4|) (|:| -3570 |#5|))) |#4| |#4| |#5|)) (-15 -1654 ((-644 (-2 (|:| |val| |#4|) (|:| -3570 |#5|))) |#4| |#4| |#5|)) (-15 -2835 ((-112) |#4| |#5|)) (-15 -2899 ((-644 (-2 (|:| |val| (-112)) (|:| -3570 |#5|))) |#4| |#5|)) (-15 -1567 ((-644 |#5|) |#4| |#5|)) (-15 -3249 ((-644 (-2 (|:| |val| (-112)) (|:| -3570 |#5|))) |#4| |#5|)) (-15 -3899 ((-644 |#5|) |#4| |#5|)) (-15 -2835 ((-644 (-2 (|:| |val| (-112)) (|:| -3570 |#5|))) |#4| |#5|)) (-15 -3428 ((-644 |#5|) |#4| |#5|)) (-15 -1804 ((-644 (-2 (|:| |val| |#4|) (|:| -3570 |#5|))) |#4| |#5|))) (-454) (-793) (-850) (-1064 |#1| |#2| |#3|) (-1070 |#1| |#2| |#3| |#4|)) (T -1107)) -((-1804 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -3570 *4)))) (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-3428 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 *4)) (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-2835 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -3570 *4)))) (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-3899 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 *4)) (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-3249 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -3570 *4)))) (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-1567 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 *4)) (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-2899 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -3570 *4)))) (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-2835 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-1654 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -3570 *4)))) (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-2679 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -3570 *4)))) (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-3409 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-644 (-2 (|:| |val| (-644 *8)) (|:| -3570 *9)))) (-5 *5 (-112)) (-4 *8 (-1064 *6 *7 *4)) (-4 *9 (-1070 *6 *7 *4 *8)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *4 (-850)) (-5 *2 (-644 (-2 (|:| |val| *8) (|:| -3570 *9)))) (-5 *1 (-1107 *6 *7 *4 *8 *9)))) (-3409 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) (-4 *3 (-1064 *6 *7 *8)) (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -3570 *4)))) (-5 *1 (-1107 *6 *7 *8 *3 *4)) (-4 *4 (-1070 *6 *7 *8 *3)))) (-3690 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| (-644 *3)) (|:| -3570 *4)))) (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-2850 (*1 *2) (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-1269)) (-5 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *7 (-1070 *3 *4 *5 *6)))) (-3472 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1157)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-1269)) (-5 *1 (-1107 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) (-3332 (*1 *2) (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-1269)) (-5 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *7 (-1070 *3 *4 *5 *6)))) (-4014 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1157)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-1269)) (-5 *1 (-1107 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7))))) -(-10 -7 (-15 -4014 ((-1269) (-1157) (-1157) (-1157))) (-15 -3332 ((-1269))) (-15 -3472 ((-1269) (-1157) (-1157) (-1157))) (-15 -2850 ((-1269))) (-15 -3690 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))) |#4| |#4| |#5|)) (-15 -3409 ((-644 (-2 (|:| |val| |#4|) (|:| -3570 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3409 ((-644 (-2 (|:| |val| |#4|) (|:| -3570 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))) |#3| (-112))) (-15 -2679 ((-644 (-2 (|:| |val| |#4|) (|:| -3570 |#5|))) |#4| |#4| |#5|)) (-15 -1654 ((-644 (-2 (|:| |val| |#4|) (|:| -3570 |#5|))) |#4| |#4| |#5|)) (-15 -2835 ((-112) |#4| |#5|)) (-15 -2899 ((-644 (-2 (|:| |val| (-112)) (|:| -3570 |#5|))) |#4| |#5|)) (-15 -1567 ((-644 |#5|) |#4| |#5|)) (-15 -3249 ((-644 (-2 (|:| |val| (-112)) (|:| -3570 |#5|))) |#4| |#5|)) (-15 -3899 ((-644 |#5|) |#4| |#5|)) (-15 -2835 ((-644 (-2 (|:| |val| (-112)) (|:| -3570 |#5|))) |#4| |#5|)) (-15 -3428 ((-644 |#5|) |#4| |#5|)) (-15 -1804 ((-644 (-2 (|:| |val| |#4|) (|:| -3570 |#5|))) |#4| |#5|))) -((-3007 (((-112) $ $) 7)) (-2584 (((-644 (-2 (|:| -1651 $) (|:| -3501 (-644 |#4|)))) (-644 |#4|)) 86)) (-2333 (((-644 $) (-644 |#4|)) 87) (((-644 $) (-644 |#4|) (-112)) 112)) (-3863 (((-644 |#3|) $) 34)) (-2368 (((-112) $) 27)) (-4070 (((-112) $) 18 (|has| |#1| (-558)))) (-3624 (((-112) |#4| $) 102) (((-112) $) 98)) (-1374 ((|#4| |#4| $) 93)) (-1550 (((-644 (-2 (|:| |val| |#4|) (|:| -3570 $))) |#4| $) 127)) (-1510 (((-2 (|:| |under| $) (|:| -3470 $) (|:| |upper| $)) $ |#3|) 28)) (-2256 (((-112) $ (-771)) 45)) (-2701 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4414))) (((-3 |#4| "failed") $ |#3|) 80)) (-3012 (($) 46 T CONST)) (-3779 (((-112) $) 23 (|has| |#1| (-558)))) (-2540 (((-112) $ $) 25 (|has| |#1| (-558)))) (-4093 (((-112) $ $) 24 (|has| |#1| (-558)))) (-3741 (((-112) $) 26 (|has| |#1| (-558)))) (-2506 (((-644 |#4|) (-644 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2026 (((-644 |#4|) (-644 |#4|) $) 19 (|has| |#1| (-558)))) (-4306 (((-644 |#4|) (-644 |#4|) $) 20 (|has| |#1| (-558)))) (-4307 (((-3 $ "failed") (-644 |#4|)) 37)) (-4205 (($ (-644 |#4|)) 36)) (-2010 (((-3 $ "failed") $) 83)) (-2100 ((|#4| |#4| $) 90)) (-2031 (($ $) 69 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414))))) (-2665 (($ |#4| $) 68 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4414)))) (-2513 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-558)))) (-1464 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-1401 ((|#4| |#4| $) 88)) (-1676 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4414))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4414))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-3692 (((-2 (|:| -1651 (-644 |#4|)) (|:| -3501 (-644 |#4|))) $) 106)) (-3987 (((-112) |#4| $) 137)) (-1906 (((-112) |#4| $) 134)) (-1530 (((-112) |#4| $) 138) (((-112) $) 135)) (-3979 (((-644 |#4|) $) 53 (|has| $ (-6 -4414)))) (-2111 (((-112) |#4| $) 105) (((-112) $) 104)) (-1489 ((|#3| $) 35)) (-2404 (((-112) $ (-771)) 44)) (-2329 (((-644 |#4|) $) 54 (|has| $ (-6 -4414)))) (-1916 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414))))) (-2908 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#4| |#4|) $) 48)) (-2189 (((-644 |#3|) $) 33)) (-3953 (((-112) |#3| $) 32)) (-2603 (((-112) $ (-771)) 43)) (-4117 (((-1157) $) 10)) (-1532 (((-3 |#4| (-644 $)) |#4| |#4| $) 129)) (-1558 (((-644 (-2 (|:| |val| |#4|) (|:| -3570 $))) |#4| |#4| $) 128)) (-2686 (((-3 |#4| "failed") $) 84)) (-3758 (((-644 $) |#4| $) 130)) (-1613 (((-3 (-112) (-644 $)) |#4| $) 133)) (-1714 (((-644 (-2 (|:| |val| (-112)) (|:| -3570 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-4018 (((-644 $) |#4| $) 126) (((-644 $) (-644 |#4|) $) 125) (((-644 $) (-644 |#4|) (-644 $)) 124) (((-644 $) |#4| (-644 $)) 123)) (-2096 (($ |#4| $) 118) (($ (-644 |#4|) $) 117)) (-2851 (((-644 |#4|) $) 108)) (-1694 (((-112) |#4| $) 100) (((-112) $) 96)) (-1871 ((|#4| |#4| $) 91)) (-2897 (((-112) $ $) 111)) (-3112 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-558)))) (-3351 (((-112) |#4| $) 101) (((-112) $) 97)) (-3544 ((|#4| |#4| $) 92)) (-4035 (((-1119) $) 11)) (-1998 (((-3 |#4| "failed") $) 85)) (-2006 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2060 (((-3 $ "failed") $ |#4|) 79)) (-3874 (($ $ |#4|) 78) (((-644 $) |#4| $) 116) (((-644 $) |#4| (-644 $)) 115) (((-644 $) (-644 |#4|) $) 114) (((-644 $) (-644 |#4|) (-644 $)) 113)) (-2692 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 |#4|) (-644 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-644 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))) (-1932 (((-112) $ $) 39)) (-3467 (((-112) $) 42)) (-1494 (($) 41)) (-3636 (((-771) $) 107)) (-4045 (((-771) |#4| $) 55 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414)))) (((-771) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4414)))) (-3940 (($ $) 40)) (-1348 (((-538) $) 70 (|has| |#4| (-614 (-538))))) (-3796 (($ (-644 |#4|)) 61)) (-2325 (($ $ |#3|) 29)) (-4106 (($ $ |#3|) 31)) (-3973 (($ $) 89)) (-3080 (($ $ |#3|) 30)) (-3783 (((-862) $) 12) (((-644 |#4|) $) 38)) (-2028 (((-771) $) 77 (|has| |#3| (-370)))) (-3117 (((-112) $ $) 9)) (-3706 (((-3 (-2 (|:| |bas| $) (|:| -1825 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -1825 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3772 (((-112) $ (-1 (-112) |#4| (-644 |#4|))) 99)) (-3089 (((-644 $) |#4| $) 122) (((-644 $) |#4| (-644 $)) 121) (((-644 $) (-644 |#4|) $) 120) (((-644 $) (-644 |#4|) (-644 $)) 119)) (-1894 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4414)))) (-4180 (((-644 |#3|) $) 82)) (-1571 (((-112) |#4| $) 136)) (-1423 (((-112) |#3| $) 81)) (-2947 (((-112) $ $) 6)) (-3018 (((-771) $) 47 (|has| $ (-6 -4414))))) +((-1586 (((-1269) $) 23)) (-2335 (($ (-1175) (-436) |#2|) 11)) (-3152 (((-862) $) 16))) +(((-1105 |#1| |#2|) (-13 (-397) (-10 -8 (-15 -2335 ($ (-1175) (-436) |#2|)))) (-1099) (-432 |#1|)) (T -1105)) +((-2335 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1175)) (-5 *3 (-436)) (-4 *5 (-1099)) (-5 *1 (-1105 *5 *4)) (-4 *4 (-432 *5))))) +(-13 (-397) (-10 -8 (-15 -2335 ($ (-1175) (-436) |#2|)))) +((-1506 (((-112) |#5| |#5|) 45)) (-1372 (((-112) |#5| |#5|) 60)) (-2419 (((-112) |#5| (-644 |#5|)) 83) (((-112) |#5| |#5|) 69)) (-2007 (((-112) (-644 |#4|) (-644 |#4|)) 66)) (-3864 (((-112) (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|)) (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))) 71)) (-1431 (((-1269)) 33)) (-3542 (((-1269) (-1157) (-1157) (-1157)) 29)) (-4136 (((-644 |#5|) (-644 |#5|)) 102)) (-2798 (((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|)))) 94)) (-2049 (((-644 (-2 (|:| -3434 (-644 |#4|)) (|:| -1470 |#5|) (|:| |ineq| (-644 |#4|)))) (-644 |#4|) (-644 |#5|) (-112) (-112)) 124)) (-3500 (((-112) |#5| |#5|) 54)) (-3505 (((-3 (-112) "failed") |#5| |#5|) 79)) (-1799 (((-112) (-644 |#4|) (-644 |#4|)) 65)) (-3213 (((-112) (-644 |#4|) (-644 |#4|)) 67)) (-3077 (((-112) (-644 |#4|) (-644 |#4|)) 68)) (-3800 (((-3 (-2 (|:| -3434 (-644 |#4|)) (|:| -1470 |#5|) (|:| |ineq| (-644 |#4|))) "failed") (-644 |#4|) |#5| (-644 |#4|) (-112) (-112) (-112) (-112) (-112)) 119)) (-2042 (((-644 |#5|) (-644 |#5|)) 50))) +(((-1106 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3542 ((-1269) (-1157) (-1157) (-1157))) (-15 -1431 ((-1269))) (-15 -1506 ((-112) |#5| |#5|)) (-15 -2042 ((-644 |#5|) (-644 |#5|))) (-15 -3500 ((-112) |#5| |#5|)) (-15 -1372 ((-112) |#5| |#5|)) (-15 -2007 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -1799 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -3213 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -3077 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -3505 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2419 ((-112) |#5| |#5|)) (-15 -2419 ((-112) |#5| (-644 |#5|))) (-15 -4136 ((-644 |#5|) (-644 |#5|))) (-15 -3864 ((-112) (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|)) (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|)))) (-15 -2798 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))))) (-15 -2049 ((-644 (-2 (|:| -3434 (-644 |#4|)) (|:| -1470 |#5|) (|:| |ineq| (-644 |#4|)))) (-644 |#4|) (-644 |#5|) (-112) (-112))) (-15 -3800 ((-3 (-2 (|:| -3434 (-644 |#4|)) (|:| -1470 |#5|) (|:| |ineq| (-644 |#4|))) "failed") (-644 |#4|) |#5| (-644 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-454) (-793) (-850) (-1064 |#1| |#2| |#3|) (-1070 |#1| |#2| |#3| |#4|)) (T -1106)) +((-3800 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) (-4 *9 (-1064 *6 *7 *8)) (-5 *2 (-2 (|:| -3434 (-644 *9)) (|:| -1470 *4) (|:| |ineq| (-644 *9)))) (-5 *1 (-1106 *6 *7 *8 *9 *4)) (-5 *3 (-644 *9)) (-4 *4 (-1070 *6 *7 *8 *9)))) (-2049 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-644 *10)) (-5 *5 (-112)) (-4 *10 (-1070 *6 *7 *8 *9)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) (-4 *9 (-1064 *6 *7 *8)) (-5 *2 (-644 (-2 (|:| -3434 (-644 *9)) (|:| -1470 *10) (|:| |ineq| (-644 *9))))) (-5 *1 (-1106 *6 *7 *8 *9 *10)) (-5 *3 (-644 *9)))) (-2798 (*1 *2 *2) (-12 (-5 *2 (-644 (-2 (|:| |val| (-644 *6)) (|:| -1470 *7)))) (-4 *6 (-1064 *3 *4 *5)) (-4 *7 (-1070 *3 *4 *5 *6)) (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-1106 *3 *4 *5 *6 *7)))) (-3864 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-644 *7)) (|:| -1470 *8))) (-4 *7 (-1064 *4 *5 *6)) (-4 *8 (-1070 *4 *5 *6 *7)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-1106 *4 *5 *6 *7 *8)))) (-4136 (*1 *2 *2) (-12 (-5 *2 (-644 *7)) (-4 *7 (-1070 *3 *4 *5 *6)) (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *1 (-1106 *3 *4 *5 *6 *7)))) (-2419 (*1 *2 *3 *4) (-12 (-5 *4 (-644 *3)) (-4 *3 (-1070 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-1064 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1106 *5 *6 *7 *8 *3)))) (-2419 (*1 *2 *3 *3) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1106 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))) (-3505 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1106 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))) (-3077 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-1106 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) (-3213 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-1106 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) (-1799 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-1106 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) (-2007 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-1106 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) (-1372 (*1 *2 *3 *3) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1106 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))) (-3500 (*1 *2 *3 *3) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1106 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))) (-2042 (*1 *2 *2) (-12 (-5 *2 (-644 *7)) (-4 *7 (-1070 *3 *4 *5 *6)) (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *1 (-1106 *3 *4 *5 *6 *7)))) (-1506 (*1 *2 *3 *3) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1106 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))) (-1431 (*1 *2) (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-1269)) (-5 *1 (-1106 *3 *4 *5 *6 *7)) (-4 *7 (-1070 *3 *4 *5 *6)))) (-3542 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1157)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-1269)) (-5 *1 (-1106 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7))))) +(-10 -7 (-15 -3542 ((-1269) (-1157) (-1157) (-1157))) (-15 -1431 ((-1269))) (-15 -1506 ((-112) |#5| |#5|)) (-15 -2042 ((-644 |#5|) (-644 |#5|))) (-15 -3500 ((-112) |#5| |#5|)) (-15 -1372 ((-112) |#5| |#5|)) (-15 -2007 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -1799 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -3213 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -3077 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -3505 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2419 ((-112) |#5| |#5|)) (-15 -2419 ((-112) |#5| (-644 |#5|))) (-15 -4136 ((-644 |#5|) (-644 |#5|))) (-15 -3864 ((-112) (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|)) (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|)))) (-15 -2798 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))))) (-15 -2049 ((-644 (-2 (|:| -3434 (-644 |#4|)) (|:| -1470 |#5|) (|:| |ineq| (-644 |#4|)))) (-644 |#4|) (-644 |#5|) (-112) (-112))) (-15 -3800 ((-3 (-2 (|:| -3434 (-644 |#4|)) (|:| -1470 |#5|) (|:| |ineq| (-644 |#4|))) "failed") (-644 |#4|) |#5| (-644 |#4|) (-112) (-112) (-112) (-112) (-112)))) +((-3192 (((-644 (-2 (|:| |val| |#4|) (|:| -1470 |#5|))) |#4| |#5|) 109)) (-3368 (((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))) |#4| |#4| |#5|) 81)) (-1323 (((-644 (-2 (|:| |val| |#4|) (|:| -1470 |#5|))) |#4| |#4| |#5|) 103)) (-3473 (((-644 |#5|) |#4| |#5|) 125)) (-4043 (((-644 |#5|) |#4| |#5|) 132)) (-2194 (((-644 |#5|) |#4| |#5|) 133)) (-1957 (((-644 (-2 (|:| |val| (-112)) (|:| -1470 |#5|))) |#4| |#5|) 110)) (-3432 (((-644 (-2 (|:| |val| (-112)) (|:| -1470 |#5|))) |#4| |#5|) 131)) (-3125 (((-644 (-2 (|:| |val| (-112)) (|:| -1470 |#5|))) |#4| |#5|) 48) (((-112) |#4| |#5|) 56)) (-4113 (((-644 (-2 (|:| |val| |#4|) (|:| -1470 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))) |#3| (-112)) 93) (((-644 (-2 (|:| |val| |#4|) (|:| -1470 |#5|))) |#4| |#4| |#5| (-112) (-112)) 53)) (-1986 (((-644 (-2 (|:| |val| |#4|) (|:| -1470 |#5|))) |#4| |#4| |#5|) 88)) (-2036 (((-1269)) 37)) (-3950 (((-1269)) 26)) (-2120 (((-1269) (-1157) (-1157) (-1157)) 33)) (-2776 (((-1269) (-1157) (-1157) (-1157)) 22))) +(((-1107 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2776 ((-1269) (-1157) (-1157) (-1157))) (-15 -3950 ((-1269))) (-15 -2120 ((-1269) (-1157) (-1157) (-1157))) (-15 -2036 ((-1269))) (-15 -3368 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))) |#4| |#4| |#5|)) (-15 -4113 ((-644 (-2 (|:| |val| |#4|) (|:| -1470 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -4113 ((-644 (-2 (|:| |val| |#4|) (|:| -1470 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))) |#3| (-112))) (-15 -1986 ((-644 (-2 (|:| |val| |#4|) (|:| -1470 |#5|))) |#4| |#4| |#5|)) (-15 -1323 ((-644 (-2 (|:| |val| |#4|) (|:| -1470 |#5|))) |#4| |#4| |#5|)) (-15 -3125 ((-112) |#4| |#5|)) (-15 -1957 ((-644 (-2 (|:| |val| (-112)) (|:| -1470 |#5|))) |#4| |#5|)) (-15 -3473 ((-644 |#5|) |#4| |#5|)) (-15 -3432 ((-644 (-2 (|:| |val| (-112)) (|:| -1470 |#5|))) |#4| |#5|)) (-15 -4043 ((-644 |#5|) |#4| |#5|)) (-15 -3125 ((-644 (-2 (|:| |val| (-112)) (|:| -1470 |#5|))) |#4| |#5|)) (-15 -2194 ((-644 |#5|) |#4| |#5|)) (-15 -3192 ((-644 (-2 (|:| |val| |#4|) (|:| -1470 |#5|))) |#4| |#5|))) (-454) (-793) (-850) (-1064 |#1| |#2| |#3|) (-1070 |#1| |#2| |#3| |#4|)) (T -1107)) +((-3192 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -1470 *4)))) (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-2194 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 *4)) (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-3125 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -1470 *4)))) (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-4043 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 *4)) (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-3432 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -1470 *4)))) (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-3473 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 *4)) (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-1957 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -1470 *4)))) (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-3125 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-1323 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -1470 *4)))) (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-1986 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -1470 *4)))) (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-4113 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-644 (-2 (|:| |val| (-644 *8)) (|:| -1470 *9)))) (-5 *5 (-112)) (-4 *8 (-1064 *6 *7 *4)) (-4 *9 (-1070 *6 *7 *4 *8)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *4 (-850)) (-5 *2 (-644 (-2 (|:| |val| *8) (|:| -1470 *9)))) (-5 *1 (-1107 *6 *7 *4 *8 *9)))) (-4113 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) (-4 *3 (-1064 *6 *7 *8)) (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -1470 *4)))) (-5 *1 (-1107 *6 *7 *8 *3 *4)) (-4 *4 (-1070 *6 *7 *8 *3)))) (-3368 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| (-644 *3)) (|:| -1470 *4)))) (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-2036 (*1 *2) (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-1269)) (-5 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *7 (-1070 *3 *4 *5 *6)))) (-2120 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1157)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-1269)) (-5 *1 (-1107 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) (-3950 (*1 *2) (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-1269)) (-5 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *7 (-1070 *3 *4 *5 *6)))) (-2776 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1157)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-1269)) (-5 *1 (-1107 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7))))) +(-10 -7 (-15 -2776 ((-1269) (-1157) (-1157) (-1157))) (-15 -3950 ((-1269))) (-15 -2120 ((-1269) (-1157) (-1157) (-1157))) (-15 -2036 ((-1269))) (-15 -3368 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))) |#4| |#4| |#5|)) (-15 -4113 ((-644 (-2 (|:| |val| |#4|) (|:| -1470 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -4113 ((-644 (-2 (|:| |val| |#4|) (|:| -1470 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))) |#3| (-112))) (-15 -1986 ((-644 (-2 (|:| |val| |#4|) (|:| -1470 |#5|))) |#4| |#4| |#5|)) (-15 -1323 ((-644 (-2 (|:| |val| |#4|) (|:| -1470 |#5|))) |#4| |#4| |#5|)) (-15 -3125 ((-112) |#4| |#5|)) (-15 -1957 ((-644 (-2 (|:| |val| (-112)) (|:| -1470 |#5|))) |#4| |#5|)) (-15 -3473 ((-644 |#5|) |#4| |#5|)) (-15 -3432 ((-644 (-2 (|:| |val| (-112)) (|:| -1470 |#5|))) |#4| |#5|)) (-15 -4043 ((-644 |#5|) |#4| |#5|)) (-15 -3125 ((-644 (-2 (|:| |val| (-112)) (|:| -1470 |#5|))) |#4| |#5|)) (-15 -2194 ((-644 |#5|) |#4| |#5|)) (-15 -3192 ((-644 (-2 (|:| |val| |#4|) (|:| -1470 |#5|))) |#4| |#5|))) +((-2988 (((-112) $ $) 7)) (-2107 (((-644 (-2 (|:| -1685 $) (|:| -3292 (-644 |#4|)))) (-644 |#4|)) 86)) (-2779 (((-644 $) (-644 |#4|)) 87) (((-644 $) (-644 |#4|) (-112)) 112)) (-1771 (((-644 |#3|) $) 34)) (-3071 (((-112) $) 27)) (-3274 (((-112) $) 18 (|has| |#1| (-558)))) (-2267 (((-112) |#4| $) 102) (((-112) $) 98)) (-1411 ((|#4| |#4| $) 93)) (-1378 (((-644 (-2 (|:| |val| |#4|) (|:| -1470 $))) |#4| $) 127)) (-2671 (((-2 (|:| |under| $) (|:| -3143 $) (|:| |upper| $)) $ |#3|) 28)) (-1504 (((-112) $ (-771)) 45)) (-3678 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4414))) (((-3 |#4| "failed") $ |#3|) 80)) (-2463 (($) 46 T CONST)) (-3036 (((-112) $) 23 (|has| |#1| (-558)))) (-1963 (((-112) $ $) 25 (|has| |#1| (-558)))) (-2983 (((-112) $ $) 24 (|has| |#1| (-558)))) (-1477 (((-112) $) 26 (|has| |#1| (-558)))) (-3930 (((-644 |#4|) (-644 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1789 (((-644 |#4|) (-644 |#4|) $) 19 (|has| |#1| (-558)))) (-2228 (((-644 |#4|) (-644 |#4|) $) 20 (|has| |#1| (-558)))) (-2229 (((-3 $ "failed") (-644 |#4|)) 37)) (-4158 (($ (-644 |#4|)) 36)) (-3919 (((-3 $ "failed") $) 83)) (-3110 ((|#4| |#4| $) 90)) (-3942 (($ $) 69 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414))))) (-2622 (($ |#4| $) 68 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4414)))) (-3264 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-558)))) (-3599 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-2690 ((|#4| |#4| $) 88)) (-2873 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4414))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4414))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-3476 (((-2 (|:| -1685 (-644 |#4|)) (|:| -3292 (-644 |#4|))) $) 106)) (-2969 (((-112) |#4| $) 137)) (-1951 (((-112) |#4| $) 134)) (-2775 (((-112) |#4| $) 138) (((-112) $) 135)) (-1683 (((-644 |#4|) $) 53 (|has| $ (-6 -4414)))) (-1640 (((-112) |#4| $) 105) (((-112) $) 104)) (-4296 ((|#3| $) 35)) (-3456 (((-112) $ (-771)) 44)) (-3491 (((-644 |#4|) $) 54 (|has| $ (-6 -4414)))) (-1602 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414))))) (-3885 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#4| |#4|) $) 48)) (-1785 (((-644 |#3|) $) 33)) (-1579 (((-112) |#3| $) 32)) (-3267 (((-112) $ (-771)) 43)) (-3380 (((-1157) $) 10)) (-3006 (((-3 |#4| (-644 $)) |#4| |#4| $) 129)) (-3940 (((-644 (-2 (|:| |val| |#4|) (|:| -1470 $))) |#4| |#4| $) 128)) (-2641 (((-3 |#4| "failed") $) 84)) (-2568 (((-644 $) |#4| $) 130)) (-1493 (((-3 (-112) (-644 $)) |#4| $) 133)) (-3835 (((-644 (-2 (|:| |val| (-112)) (|:| -1470 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-1997 (((-644 $) |#4| $) 126) (((-644 $) (-644 |#4|) $) 125) (((-644 $) (-644 |#4|) (-644 $)) 124) (((-644 $) |#4| (-644 $)) 123)) (-2921 (($ |#4| $) 118) (($ (-644 |#4|) $) 117)) (-2133 (((-644 |#4|) $) 108)) (-2543 (((-112) |#4| $) 100) (((-112) $) 96)) (-1906 ((|#4| |#4| $) 91)) (-3077 (((-112) $ $) 111)) (-2594 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-558)))) (-3374 (((-112) |#4| $) 101) (((-112) $) 97)) (-4074 ((|#4| |#4| $) 92)) (-4072 (((-1119) $) 11)) (-3908 (((-3 |#4| "failed") $) 85)) (-3668 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2718 (((-3 $ "failed") $ |#4|) 79)) (-3369 (($ $ |#4|) 78) (((-644 $) |#4| $) 116) (((-644 $) |#4| (-644 $)) 115) (((-644 $) (-644 |#4|) $) 114) (((-644 $) (-644 |#4|) (-644 $)) 113)) (-2823 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 |#4|) (-644 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-644 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))) (-3814 (((-112) $ $) 39)) (-2872 (((-112) $) 42)) (-3493 (($) 41)) (-3902 (((-771) $) 107)) (-4083 (((-771) |#4| $) 55 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414)))) (((-771) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4414)))) (-1480 (($ $) 40)) (-2376 (((-538) $) 70 (|has| |#4| (-614 (-538))))) (-1340 (($ (-644 |#4|)) 61)) (-4305 (($ $ |#3|) 29)) (-1702 (($ $ |#3|) 31)) (-4017 (($ $) 89)) (-3809 (($ $ |#3|) 30)) (-3152 (((-862) $) 12) (((-644 |#4|) $) 38)) (-3909 (((-771) $) 77 (|has| |#3| (-370)))) (-3044 (((-112) $ $) 9)) (-2236 (((-3 (-2 (|:| |bas| $) (|:| -3712 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3712 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3622 (((-112) $ (-1 (-112) |#4| (-644 |#4|))) 99)) (-3998 (((-644 $) |#4| $) 122) (((-644 $) |#4| (-644 $)) 121) (((-644 $) (-644 |#4|) $) 120) (((-644 $) (-644 |#4|) (-644 $)) 119)) (-2210 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4414)))) (-4382 (((-644 |#3|) $) 82)) (-2676 (((-112) |#4| $) 136)) (-4217 (((-112) |#3| $) 81)) (-2914 (((-112) $ $) 6)) (-3000 (((-771) $) 47 (|has| $ (-6 -4414))))) (((-1108 |#1| |#2| |#3| |#4|) (-140) (-454) (-793) (-850) (-1064 |t#1| |t#2| |t#3|)) (T -1108)) NIL (-13 (-1070 |t#1| |t#2| |t#3| |t#4|)) (((-34) . T) ((-102) . T) ((-613 (-644 |#4|)) . T) ((-613 (-862)) . T) ((-151 |#4|) . T) ((-614 (-538)) |has| |#4| (-614 (-538))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))) ((-491 |#4|) . T) ((-516 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))) ((-976 |#1| |#2| |#3| |#4|) . T) ((-1070 |#1| |#2| |#3| |#4|) . T) ((-1099) . T) ((-1207 |#1| |#2| |#3| |#4|) . T) ((-1214) . T)) -((-2963 (((-644 (-566)) (-566) (-566) (-566)) 39)) (-3626 (((-644 (-566)) (-566) (-566) (-566)) 29)) (-3812 (((-644 (-566)) (-566) (-566) (-566)) 34)) (-2476 (((-566) (-566) (-566)) 23)) (-3411 (((-1264 (-566)) (-644 (-566)) (-1264 (-566)) (-566)) 75) (((-1264 (-566)) (-1264 (-566)) (-1264 (-566)) (-566)) 70)) (-2785 (((-644 (-566)) (-644 (-566)) (-644 (-566)) (-112)) 52)) (-3729 (((-689 (-566)) (-644 (-566)) (-644 (-566)) (-689 (-566))) 74)) (-3166 (((-689 (-566)) (-644 (-566)) (-644 (-566))) 58)) (-1785 (((-644 (-689 (-566))) (-644 (-566))) 63)) (-2460 (((-644 (-566)) (-644 (-566)) (-644 (-566)) (-689 (-566))) 78)) (-2685 (((-689 (-566)) (-644 (-566)) (-644 (-566)) (-644 (-566))) 88))) -(((-1109) (-10 -7 (-15 -2685 ((-689 (-566)) (-644 (-566)) (-644 (-566)) (-644 (-566)))) (-15 -2460 ((-644 (-566)) (-644 (-566)) (-644 (-566)) (-689 (-566)))) (-15 -1785 ((-644 (-689 (-566))) (-644 (-566)))) (-15 -3166 ((-689 (-566)) (-644 (-566)) (-644 (-566)))) (-15 -3729 ((-689 (-566)) (-644 (-566)) (-644 (-566)) (-689 (-566)))) (-15 -2785 ((-644 (-566)) (-644 (-566)) (-644 (-566)) (-112))) (-15 -3411 ((-1264 (-566)) (-1264 (-566)) (-1264 (-566)) (-566))) (-15 -3411 ((-1264 (-566)) (-644 (-566)) (-1264 (-566)) (-566))) (-15 -2476 ((-566) (-566) (-566))) (-15 -3812 ((-644 (-566)) (-566) (-566) (-566))) (-15 -3626 ((-644 (-566)) (-566) (-566) (-566))) (-15 -2963 ((-644 (-566)) (-566) (-566) (-566))))) (T -1109)) -((-2963 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1109)) (-5 *3 (-566)))) (-3626 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1109)) (-5 *3 (-566)))) (-3812 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1109)) (-5 *3 (-566)))) (-2476 (*1 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1109)))) (-3411 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1264 (-566))) (-5 *3 (-644 (-566))) (-5 *4 (-566)) (-5 *1 (-1109)))) (-3411 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1264 (-566))) (-5 *3 (-566)) (-5 *1 (-1109)))) (-2785 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-644 (-566))) (-5 *3 (-112)) (-5 *1 (-1109)))) (-3729 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-689 (-566))) (-5 *3 (-644 (-566))) (-5 *1 (-1109)))) (-3166 (*1 *2 *3 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-689 (-566))) (-5 *1 (-1109)))) (-1785 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-644 (-689 (-566)))) (-5 *1 (-1109)))) (-2460 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-644 (-566))) (-5 *3 (-689 (-566))) (-5 *1 (-1109)))) (-2685 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-689 (-566))) (-5 *1 (-1109))))) -(-10 -7 (-15 -2685 ((-689 (-566)) (-644 (-566)) (-644 (-566)) (-644 (-566)))) (-15 -2460 ((-644 (-566)) (-644 (-566)) (-644 (-566)) (-689 (-566)))) (-15 -1785 ((-644 (-689 (-566))) (-644 (-566)))) (-15 -3166 ((-689 (-566)) (-644 (-566)) (-644 (-566)))) (-15 -3729 ((-689 (-566)) (-644 (-566)) (-644 (-566)) (-689 (-566)))) (-15 -2785 ((-644 (-566)) (-644 (-566)) (-644 (-566)) (-112))) (-15 -3411 ((-1264 (-566)) (-1264 (-566)) (-1264 (-566)) (-566))) (-15 -3411 ((-1264 (-566)) (-644 (-566)) (-1264 (-566)) (-566))) (-15 -2476 ((-566) (-566) (-566))) (-15 -3812 ((-644 (-566)) (-566) (-566) (-566))) (-15 -3626 ((-644 (-566)) (-566) (-566) (-566))) (-15 -2963 ((-644 (-566)) (-566) (-566) (-566)))) +((-2912 (((-644 (-566)) (-566) (-566) (-566)) 39)) (-2369 (((-644 (-566)) (-566) (-566) (-566)) 29)) (-3852 (((-644 (-566)) (-566) (-566) (-566)) 34)) (-2609 (((-566) (-566) (-566)) 23)) (-4316 (((-1264 (-566)) (-644 (-566)) (-1264 (-566)) (-566)) 75) (((-1264 (-566)) (-1264 (-566)) (-1264 (-566)) (-566)) 70)) (-3796 (((-644 (-566)) (-644 (-566)) (-644 (-566)) (-112)) 52)) (-2724 (((-689 (-566)) (-644 (-566)) (-644 (-566)) (-689 (-566))) 74)) (-2086 (((-689 (-566)) (-644 (-566)) (-644 (-566))) 58)) (-3052 (((-644 (-689 (-566))) (-644 (-566))) 63)) (-1722 (((-644 (-566)) (-644 (-566)) (-644 (-566)) (-689 (-566))) 78)) (-1319 (((-689 (-566)) (-644 (-566)) (-644 (-566)) (-644 (-566))) 88))) +(((-1109) (-10 -7 (-15 -1319 ((-689 (-566)) (-644 (-566)) (-644 (-566)) (-644 (-566)))) (-15 -1722 ((-644 (-566)) (-644 (-566)) (-644 (-566)) (-689 (-566)))) (-15 -3052 ((-644 (-689 (-566))) (-644 (-566)))) (-15 -2086 ((-689 (-566)) (-644 (-566)) (-644 (-566)))) (-15 -2724 ((-689 (-566)) (-644 (-566)) (-644 (-566)) (-689 (-566)))) (-15 -3796 ((-644 (-566)) (-644 (-566)) (-644 (-566)) (-112))) (-15 -4316 ((-1264 (-566)) (-1264 (-566)) (-1264 (-566)) (-566))) (-15 -4316 ((-1264 (-566)) (-644 (-566)) (-1264 (-566)) (-566))) (-15 -2609 ((-566) (-566) (-566))) (-15 -3852 ((-644 (-566)) (-566) (-566) (-566))) (-15 -2369 ((-644 (-566)) (-566) (-566) (-566))) (-15 -2912 ((-644 (-566)) (-566) (-566) (-566))))) (T -1109)) +((-2912 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1109)) (-5 *3 (-566)))) (-2369 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1109)) (-5 *3 (-566)))) (-3852 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1109)) (-5 *3 (-566)))) (-2609 (*1 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1109)))) (-4316 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1264 (-566))) (-5 *3 (-644 (-566))) (-5 *4 (-566)) (-5 *1 (-1109)))) (-4316 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1264 (-566))) (-5 *3 (-566)) (-5 *1 (-1109)))) (-3796 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-644 (-566))) (-5 *3 (-112)) (-5 *1 (-1109)))) (-2724 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-689 (-566))) (-5 *3 (-644 (-566))) (-5 *1 (-1109)))) (-2086 (*1 *2 *3 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-689 (-566))) (-5 *1 (-1109)))) (-3052 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-644 (-689 (-566)))) (-5 *1 (-1109)))) (-1722 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-644 (-566))) (-5 *3 (-689 (-566))) (-5 *1 (-1109)))) (-1319 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-689 (-566))) (-5 *1 (-1109))))) +(-10 -7 (-15 -1319 ((-689 (-566)) (-644 (-566)) (-644 (-566)) (-644 (-566)))) (-15 -1722 ((-644 (-566)) (-644 (-566)) (-644 (-566)) (-689 (-566)))) (-15 -3052 ((-644 (-689 (-566))) (-644 (-566)))) (-15 -2086 ((-689 (-566)) (-644 (-566)) (-644 (-566)))) (-15 -2724 ((-689 (-566)) (-644 (-566)) (-644 (-566)) (-689 (-566)))) (-15 -3796 ((-644 (-566)) (-644 (-566)) (-644 (-566)) (-112))) (-15 -4316 ((-1264 (-566)) (-1264 (-566)) (-1264 (-566)) (-566))) (-15 -4316 ((-1264 (-566)) (-644 (-566)) (-1264 (-566)) (-566))) (-15 -2609 ((-566) (-566) (-566))) (-15 -3852 ((-644 (-566)) (-566) (-566) (-566))) (-15 -2369 ((-644 (-566)) (-566) (-566) (-566))) (-15 -2912 ((-644 (-566)) (-566) (-566) (-566)))) ((** (($ $ (-921)) 10))) (((-1110 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-921)))) (-1111)) (T -1110)) NIL (-10 -8 (-15 ** (|#1| |#1| (-921)))) -((-3007 (((-112) $ $) 7)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3783 (((-862) $) 12)) (-3117 (((-112) $ $) 9)) (-2947 (((-112) $ $) 6)) (** (($ $ (-921)) 14)) (* (($ $ $) 15))) +((-2988 (((-112) $ $) 7)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3152 (((-862) $) 12)) (-3044 (((-112) $ $) 9)) (-2914 (((-112) $ $) 6)) (** (($ $ (-921)) 14)) (* (($ $ $) 15))) (((-1111) (-140)) (T -1111)) ((* (*1 *1 *1 *1) (-4 *1 (-1111))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1111)) (-5 *2 (-921))))) (-13 (-1099) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-921))))) (((-102) . T) ((-613 (-862)) . T) ((-1099) . T)) -((-3007 (((-112) $ $) NIL (|has| |#3| (-1099)))) (-1788 (((-112) $) NIL (|has| |#3| (-131)))) (-4348 (($ (-921)) NIL (|has| |#3| (-1049)))) (-3734 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4415)))) (-2660 (($ $ $) NIL (|has| |#3| (-793)))) (-4175 (((-3 $ "failed") $ $) NIL (|has| |#3| (-131)))) (-2256 (((-112) $ (-771)) NIL)) (-1970 (((-771)) NIL (|has| |#3| (-370)))) (-4364 (((-566) $) NIL (|has| |#3| (-848)))) (-3923 ((|#3| $ (-566) |#3|) NIL (|has| $ (-6 -4415)))) (-3012 (($) NIL T CONST)) (-4307 (((-3 (-566) "failed") $) NIL (-12 (|has| |#3| (-1038 (-566))) (|has| |#3| (-1099)))) (((-3 (-409 (-566)) "failed") $) NIL (-12 (|has| |#3| (-1038 (-409 (-566)))) (|has| |#3| (-1099)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1099)))) (-4205 (((-566) $) NIL (-12 (|has| |#3| (-1038 (-566))) (|has| |#3| (-1099)))) (((-409 (-566)) $) NIL (-12 (|has| |#3| (-1038 (-409 (-566)))) (|has| |#3| (-1099)))) ((|#3| $) NIL (|has| |#3| (-1099)))) (-3577 (((-689 (-566)) (-689 $)) NIL (-12 (|has| |#3| (-639 (-566))) (|has| |#3| (-1049)))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (-12 (|has| |#3| (-639 (-566))) (|has| |#3| (-1049)))) (((-2 (|:| -4227 (-689 |#3|)) (|:| |vec| (-1264 |#3|))) (-689 $) (-1264 $)) NIL (|has| |#3| (-1049))) (((-689 |#3|) (-689 $)) NIL (|has| |#3| (-1049)))) (-1878 (((-3 $ "failed") $) NIL (|has| |#3| (-726)))) (-1552 (($) NIL (|has| |#3| (-370)))) (-2920 ((|#3| $ (-566) |#3|) NIL (|has| $ (-6 -4415)))) (-2855 ((|#3| $ (-566)) 12)) (-1897 (((-112) $) NIL (|has| |#3| (-848)))) (-3979 (((-644 |#3|) $) NIL (|has| $ (-6 -4414)))) (-3934 (((-112) $) NIL (|has| |#3| (-726)))) (-2117 (((-112) $) NIL (|has| |#3| (-848)))) (-2404 (((-112) $ (-771)) NIL)) (-3854 (((-566) $) NIL (|has| (-566) (-850)))) (-2097 (($ $ $) NIL (-2809 (|has| |#3| (-793)) (|has| |#3| (-848))))) (-2329 (((-644 |#3|) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#3| (-1099))))) (-2712 (((-566) $) NIL (|has| (-566) (-850)))) (-3962 (($ $ $) NIL (-2809 (|has| |#3| (-793)) (|has| |#3| (-848))))) (-2908 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#3| |#3|) $) NIL)) (-3681 (((-921) $) NIL (|has| |#3| (-370)))) (-2603 (((-112) $ (-771)) NIL)) (-4117 (((-1157) $) NIL (|has| |#3| (-1099)))) (-4074 (((-644 (-566)) $) NIL)) (-3792 (((-112) (-566) $) NIL)) (-2178 (($ (-921)) NIL (|has| |#3| (-370)))) (-4035 (((-1119) $) NIL (|has| |#3| (-1099)))) (-1998 ((|#3| $) NIL (|has| (-566) (-850)))) (-4030 (($ $ |#3|) NIL (|has| $ (-6 -4415)))) (-2692 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#3|))) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) (($ $ (-295 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) (($ $ (-644 |#3|) (-644 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099))))) (-1932 (((-112) $ $) NIL)) (-4156 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#3| (-1099))))) (-2993 (((-644 |#3|) $) NIL)) (-3467 (((-112) $) NIL)) (-1494 (($) NIL)) (-4390 ((|#3| $ (-566) |#3|) NIL) ((|#3| $ (-566)) NIL)) (-4280 ((|#3| $ $) NIL (|has| |#3| (-1049)))) (-3764 (($ (-1264 |#3|)) NIL)) (-3164 (((-134)) NIL (|has| |#3| (-365)))) (-3561 (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1049)))) (($ $ (-771)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1049)))) (($ $ (-1175)) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-1 |#3| |#3|) (-771)) NIL (|has| |#3| (-1049))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1049)))) (-4045 (((-771) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4414))) (((-771) |#3| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#3| (-1099))))) (-3940 (($ $) NIL)) (-3783 (((-1264 |#3|) $) NIL) (($ (-566)) NIL (-2809 (-12 (|has| |#3| (-1038 (-566))) (|has| |#3| (-1099))) (|has| |#3| (-1049)))) (($ (-409 (-566))) NIL (-12 (|has| |#3| (-1038 (-409 (-566)))) (|has| |#3| (-1099)))) (($ |#3|) NIL (|has| |#3| (-1099))) (((-862) $) NIL (|has| |#3| (-613 (-862))))) (-2107 (((-771)) NIL (|has| |#3| (-1049)) CONST)) (-3117 (((-112) $ $) NIL (|has| |#3| (-1099)))) (-1894 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4414)))) (-2086 (($ $) NIL (|has| |#3| (-848)))) (-2479 (($) NIL (|has| |#3| (-131)) CONST)) (-4334 (($) NIL (|has| |#3| (-726)) CONST)) (-2875 (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1049)))) (($ $ (-771)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1049)))) (($ $ (-1175)) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-1 |#3| |#3|) (-771)) NIL (|has| |#3| (-1049))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1049)))) (-3009 (((-112) $ $) NIL (-2809 (|has| |#3| (-793)) (|has| |#3| (-848))))) (-2984 (((-112) $ $) NIL (-2809 (|has| |#3| (-793)) (|has| |#3| (-848))))) (-2947 (((-112) $ $) NIL (|has| |#3| (-1099)))) (-2995 (((-112) $ $) NIL (-2809 (|has| |#3| (-793)) (|has| |#3| (-848))))) (-2969 (((-112) $ $) 24 (-2809 (|has| |#3| (-793)) (|has| |#3| (-848))))) (-3065 (($ $ |#3|) NIL (|has| |#3| (-365)))) (-3053 (($ $ $) NIL (|has| |#3| (-1049))) (($ $) NIL (|has| |#3| (-1049)))) (-3041 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-771)) NIL (|has| |#3| (-726))) (($ $ (-921)) NIL (|has| |#3| (-726)))) (* (($ (-566) $) NIL (|has| |#3| (-1049))) (($ $ $) NIL (|has| |#3| (-726))) (($ $ |#3|) NIL (|has| |#3| (-726))) (($ |#3| $) NIL (|has| |#3| (-726))) (($ (-771) $) NIL (|has| |#3| (-131))) (($ (-921) $) NIL (|has| |#3| (-25)))) (-3018 (((-771) $) NIL (|has| $ (-6 -4414))))) +((-2988 (((-112) $ $) NIL (|has| |#3| (-1099)))) (-3230 (((-112) $) NIL (|has| |#3| (-131)))) (-1570 (($ (-921)) NIL (|has| |#3| (-1049)))) (-1944 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4415)))) (-3920 (($ $ $) NIL (|has| |#3| (-793)))) (-3967 (((-3 $ "failed") $ $) NIL (|has| |#3| (-131)))) (-1504 (((-112) $ (-771)) NIL)) (-3870 (((-771)) NIL (|has| |#3| (-370)))) (-2743 (((-566) $) NIL (|has| |#3| (-848)))) (-1456 ((|#3| $ (-566) |#3|) NIL (|has| $ (-6 -4415)))) (-2463 (($) NIL T CONST)) (-2229 (((-3 (-566) "failed") $) NIL (-12 (|has| |#3| (-1038 (-566))) (|has| |#3| (-1099)))) (((-3 (-409 (-566)) "failed") $) NIL (-12 (|has| |#3| (-1038 (-409 (-566)))) (|has| |#3| (-1099)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1099)))) (-4158 (((-566) $) NIL (-12 (|has| |#3| (-1038 (-566))) (|has| |#3| (-1099)))) (((-409 (-566)) $) NIL (-12 (|has| |#3| (-1038 (-409 (-566)))) (|has| |#3| (-1099)))) ((|#3| $) NIL (|has| |#3| (-1099)))) (-4089 (((-689 (-566)) (-689 $)) NIL (-12 (|has| |#3| (-639 (-566))) (|has| |#3| (-1049)))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (-12 (|has| |#3| (-639 (-566))) (|has| |#3| (-1049)))) (((-2 (|:| -3361 (-689 |#3|)) (|:| |vec| (-1264 |#3|))) (-689 $) (-1264 $)) NIL (|has| |#3| (-1049))) (((-689 |#3|) (-689 $)) NIL (|has| |#3| (-1049)))) (-3245 (((-3 $ "failed") $) NIL (|has| |#3| (-726)))) (-2715 (($) NIL (|has| |#3| (-370)))) (-3897 ((|#3| $ (-566) |#3|) NIL (|has| $ (-6 -4415)))) (-3829 ((|#3| $ (-566)) 12)) (-2528 (((-112) $) NIL (|has| |#3| (-848)))) (-1683 (((-644 |#3|) $) NIL (|has| $ (-6 -4414)))) (-2389 (((-112) $) NIL (|has| |#3| (-726)))) (-3233 (((-112) $) NIL (|has| |#3| (-848)))) (-3456 (((-112) $ (-771)) NIL)) (-2296 (((-566) $) NIL (|has| (-566) (-850)))) (-1478 (($ $ $) NIL (-2768 (|has| |#3| (-793)) (|has| |#3| (-848))))) (-3491 (((-644 |#3|) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#3| (-1099))))) (-4050 (((-566) $) NIL (|has| (-566) (-850)))) (-2599 (($ $ $) NIL (-2768 (|has| |#3| (-793)) (|has| |#3| (-848))))) (-3885 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#3| |#3|) $) NIL)) (-1866 (((-921) $) NIL (|has| |#3| (-370)))) (-3267 (((-112) $ (-771)) NIL)) (-3380 (((-1157) $) NIL (|has| |#3| (-1099)))) (-3725 (((-644 (-566)) $) NIL)) (-1644 (((-112) (-566) $) NIL)) (-2835 (($ (-921)) NIL (|has| |#3| (-370)))) (-4072 (((-1119) $) NIL (|has| |#3| (-1099)))) (-3908 ((|#3| $) NIL (|has| (-566) (-850)))) (-3787 (($ $ |#3|) NIL (|has| $ (-6 -4415)))) (-2823 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#3|))) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) (($ $ (-295 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) (($ $ (-644 |#3|) (-644 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099))))) (-3814 (((-112) $ $) NIL)) (-2847 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#3| (-1099))))) (-3486 (((-644 |#3|) $) NIL)) (-2872 (((-112) $) NIL)) (-3493 (($) NIL)) (-1309 ((|#3| $ (-566) |#3|) NIL) ((|#3| $ (-566)) NIL)) (-3386 ((|#3| $ $) NIL (|has| |#3| (-1049)))) (-1668 (($ (-1264 |#3|)) NIL)) (-3126 (((-134)) NIL (|has| |#3| (-365)))) (-3629 (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1049)))) (($ $ (-771)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1049)))) (($ $ (-1175)) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-1 |#3| |#3|) (-771)) NIL (|has| |#3| (-1049))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1049)))) (-4083 (((-771) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4414))) (((-771) |#3| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#3| (-1099))))) (-1480 (($ $) NIL)) (-3152 (((-1264 |#3|) $) NIL) (($ (-566)) NIL (-2768 (-12 (|has| |#3| (-1038 (-566))) (|has| |#3| (-1099))) (|has| |#3| (-1049)))) (($ (-409 (-566))) NIL (-12 (|has| |#3| (-1038 (-409 (-566)))) (|has| |#3| (-1099)))) (($ |#3|) NIL (|has| |#3| (-1099))) (((-862) $) NIL (|has| |#3| (-613 (-862))))) (-2593 (((-771)) NIL (|has| |#3| (-1049)) CONST)) (-3044 (((-112) $ $) NIL (|has| |#3| (-1099)))) (-2210 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4414)))) (-1358 (($ $) NIL (|has| |#3| (-848)))) (-4356 (($) NIL (|has| |#3| (-131)) CONST)) (-4366 (($) NIL (|has| |#3| (-726)) CONST)) (-3497 (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1049)))) (($ $ (-771)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1049)))) (($ $ (-1175)) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-1 |#3| |#3|) (-771)) NIL (|has| |#3| (-1049))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1049)))) (-2968 (((-112) $ $) NIL (-2768 (|has| |#3| (-793)) (|has| |#3| (-848))))) (-2946 (((-112) $ $) NIL (-2768 (|has| |#3| (-793)) (|has| |#3| (-848))))) (-2914 (((-112) $ $) NIL (|has| |#3| (-1099)))) (-2956 (((-112) $ $) NIL (-2768 (|has| |#3| (-793)) (|has| |#3| (-848))))) (-2935 (((-112) $ $) 24 (-2768 (|has| |#3| (-793)) (|has| |#3| (-848))))) (-3025 (($ $ |#3|) NIL (|has| |#3| (-365)))) (-3012 (($ $ $) NIL (|has| |#3| (-1049))) (($ $) NIL (|has| |#3| (-1049)))) (-3002 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-771)) NIL (|has| |#3| (-726))) (($ $ (-921)) NIL (|has| |#3| (-726)))) (* (($ (-566) $) NIL (|has| |#3| (-1049))) (($ $ $) NIL (|has| |#3| (-726))) (($ $ |#3|) NIL (|has| |#3| (-726))) (($ |#3| $) NIL (|has| |#3| (-726))) (($ (-771) $) NIL (|has| |#3| (-131))) (($ (-921) $) NIL (|has| |#3| (-25)))) (-3000 (((-771) $) NIL (|has| $ (-6 -4414))))) (((-1112 |#1| |#2| |#3|) (-238 |#1| |#3|) (-771) (-771) (-793)) (T -1112)) NIL (-238 |#1| |#3|) -((-3280 (((-644 (-1237 |#2| |#1|)) (-1237 |#2| |#1|) (-1237 |#2| |#1|)) 53)) (-3068 (((-566) (-1237 |#2| |#1|)) 100 (|has| |#1| (-454)))) (-1332 (((-566) (-1237 |#2| |#1|)) 82)) (-3151 (((-644 (-1237 |#2| |#1|)) (-1237 |#2| |#1|) (-1237 |#2| |#1|)) 63)) (-2515 (((-566) (-1237 |#2| |#1|) (-1237 |#2| |#1|)) 99 (|has| |#1| (-454)))) (-3059 (((-644 |#1|) (-1237 |#2| |#1|) (-1237 |#2| |#1|)) 67)) (-3660 (((-566) (-1237 |#2| |#1|) (-1237 |#2| |#1|)) 81))) -(((-1113 |#1| |#2|) (-10 -7 (-15 -3280 ((-644 (-1237 |#2| |#1|)) (-1237 |#2| |#1|) (-1237 |#2| |#1|))) (-15 -3151 ((-644 (-1237 |#2| |#1|)) (-1237 |#2| |#1|) (-1237 |#2| |#1|))) (-15 -3059 ((-644 |#1|) (-1237 |#2| |#1|) (-1237 |#2| |#1|))) (-15 -3660 ((-566) (-1237 |#2| |#1|) (-1237 |#2| |#1|))) (-15 -1332 ((-566) (-1237 |#2| |#1|))) (IF (|has| |#1| (-454)) (PROGN (-15 -2515 ((-566) (-1237 |#2| |#1|) (-1237 |#2| |#1|))) (-15 -3068 ((-566) (-1237 |#2| |#1|)))) |%noBranch|)) (-820) (-1175)) (T -1113)) -((-3068 (*1 *2 *3) (-12 (-5 *3 (-1237 *5 *4)) (-4 *4 (-454)) (-4 *4 (-820)) (-14 *5 (-1175)) (-5 *2 (-566)) (-5 *1 (-1113 *4 *5)))) (-2515 (*1 *2 *3 *3) (-12 (-5 *3 (-1237 *5 *4)) (-4 *4 (-454)) (-4 *4 (-820)) (-14 *5 (-1175)) (-5 *2 (-566)) (-5 *1 (-1113 *4 *5)))) (-1332 (*1 *2 *3) (-12 (-5 *3 (-1237 *5 *4)) (-4 *4 (-820)) (-14 *5 (-1175)) (-5 *2 (-566)) (-5 *1 (-1113 *4 *5)))) (-3660 (*1 *2 *3 *3) (-12 (-5 *3 (-1237 *5 *4)) (-4 *4 (-820)) (-14 *5 (-1175)) (-5 *2 (-566)) (-5 *1 (-1113 *4 *5)))) (-3059 (*1 *2 *3 *3) (-12 (-5 *3 (-1237 *5 *4)) (-4 *4 (-820)) (-14 *5 (-1175)) (-5 *2 (-644 *4)) (-5 *1 (-1113 *4 *5)))) (-3151 (*1 *2 *3 *3) (-12 (-4 *4 (-820)) (-14 *5 (-1175)) (-5 *2 (-644 (-1237 *5 *4))) (-5 *1 (-1113 *4 *5)) (-5 *3 (-1237 *5 *4)))) (-3280 (*1 *2 *3 *3) (-12 (-4 *4 (-820)) (-14 *5 (-1175)) (-5 *2 (-644 (-1237 *5 *4))) (-5 *1 (-1113 *4 *5)) (-5 *3 (-1237 *5 *4))))) -(-10 -7 (-15 -3280 ((-644 (-1237 |#2| |#1|)) (-1237 |#2| |#1|) (-1237 |#2| |#1|))) (-15 -3151 ((-644 (-1237 |#2| |#1|)) (-1237 |#2| |#1|) (-1237 |#2| |#1|))) (-15 -3059 ((-644 |#1|) (-1237 |#2| |#1|) (-1237 |#2| |#1|))) (-15 -3660 ((-566) (-1237 |#2| |#1|) (-1237 |#2| |#1|))) (-15 -1332 ((-566) (-1237 |#2| |#1|))) (IF (|has| |#1| (-454)) (PROGN (-15 -2515 ((-566) (-1237 |#2| |#1|) (-1237 |#2| |#1|))) (-15 -3068 ((-566) (-1237 |#2| |#1|)))) |%noBranch|)) -((-3007 (((-112) $ $) NIL)) (-1470 (($ (-508) (-1117)) 13)) (-3030 (((-1117) $) 19)) (-2640 (((-508) $) 16)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 26) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) -(((-1114) (-13 (-1082) (-10 -8 (-15 -1470 ($ (-508) (-1117))) (-15 -2640 ((-508) $)) (-15 -3030 ((-1117) $))))) (T -1114)) -((-1470 (*1 *1 *2 *3) (-12 (-5 *2 (-508)) (-5 *3 (-1117)) (-5 *1 (-1114)))) (-2640 (*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-1114)))) (-3030 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1114))))) -(-13 (-1082) (-10 -8 (-15 -1470 ($ (-508) (-1117))) (-15 -2640 ((-508) $)) (-15 -3030 ((-1117) $)))) -((-4364 (((-3 (-566) "failed") |#2| (-1175) |#2| (-1157)) 19) (((-3 (-566) "failed") |#2| (-1175) (-843 |#2|)) 17) (((-3 (-566) "failed") |#2|) 60))) -(((-1115 |#1| |#2|) (-10 -7 (-15 -4364 ((-3 (-566) "failed") |#2|)) (-15 -4364 ((-3 (-566) "failed") |#2| (-1175) (-843 |#2|))) (-15 -4364 ((-3 (-566) "failed") |#2| (-1175) |#2| (-1157)))) (-13 (-558) (-1038 (-566)) (-639 (-566)) (-454)) (-13 (-27) (-1199) (-432 |#1|))) (T -1115)) -((-4364 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1175)) (-5 *5 (-1157)) (-4 *6 (-13 (-558) (-1038 *2) (-639 *2) (-454))) (-5 *2 (-566)) (-5 *1 (-1115 *6 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *6))))) (-4364 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1175)) (-5 *5 (-843 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *6))) (-4 *6 (-13 (-558) (-1038 *2) (-639 *2) (-454))) (-5 *2 (-566)) (-5 *1 (-1115 *6 *3)))) (-4364 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-558) (-1038 *2) (-639 *2) (-454))) (-5 *2 (-566)) (-5 *1 (-1115 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *4)))))) -(-10 -7 (-15 -4364 ((-3 (-566) "failed") |#2|)) (-15 -4364 ((-3 (-566) "failed") |#2| (-1175) (-843 |#2|))) (-15 -4364 ((-3 (-566) "failed") |#2| (-1175) |#2| (-1157)))) -((-4364 (((-3 (-566) "failed") (-409 (-952 |#1|)) (-1175) (-409 (-952 |#1|)) (-1157)) 38) (((-3 (-566) "failed") (-409 (-952 |#1|)) (-1175) (-843 (-409 (-952 |#1|)))) 33) (((-3 (-566) "failed") (-409 (-952 |#1|))) 14))) -(((-1116 |#1|) (-10 -7 (-15 -4364 ((-3 (-566) "failed") (-409 (-952 |#1|)))) (-15 -4364 ((-3 (-566) "failed") (-409 (-952 |#1|)) (-1175) (-843 (-409 (-952 |#1|))))) (-15 -4364 ((-3 (-566) "failed") (-409 (-952 |#1|)) (-1175) (-409 (-952 |#1|)) (-1157)))) (-454)) (T -1116)) -((-4364 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-409 (-952 *6))) (-5 *4 (-1175)) (-5 *5 (-1157)) (-4 *6 (-454)) (-5 *2 (-566)) (-5 *1 (-1116 *6)))) (-4364 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1175)) (-5 *5 (-843 (-409 (-952 *6)))) (-5 *3 (-409 (-952 *6))) (-4 *6 (-454)) (-5 *2 (-566)) (-5 *1 (-1116 *6)))) (-4364 (*1 *2 *3) (|partial| -12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-454)) (-5 *2 (-566)) (-5 *1 (-1116 *4))))) -(-10 -7 (-15 -4364 ((-3 (-566) "failed") (-409 (-952 |#1|)))) (-15 -4364 ((-3 (-566) "failed") (-409 (-952 |#1|)) (-1175) (-843 (-409 (-952 |#1|))))) (-15 -4364 ((-3 (-566) "failed") (-409 (-952 |#1|)) (-1175) (-409 (-952 |#1|)) (-1157)))) -((-3007 (((-112) $ $) NIL)) (-3852 (((-1180) $) 12)) (-3802 (((-644 (-1180)) $) 14)) (-3030 (($ (-644 (-1180)) (-1180)) 10)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 29)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) 17))) -(((-1117) (-13 (-1099) (-10 -8 (-15 -3030 ($ (-644 (-1180)) (-1180))) (-15 -3852 ((-1180) $)) (-15 -3802 ((-644 (-1180)) $))))) (T -1117)) -((-3030 (*1 *1 *2 *3) (-12 (-5 *2 (-644 (-1180))) (-5 *3 (-1180)) (-5 *1 (-1117)))) (-3852 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1117)))) (-3802 (*1 *2 *1) (-12 (-5 *2 (-644 (-1180))) (-5 *1 (-1117))))) -(-13 (-1099) (-10 -8 (-15 -3030 ($ (-644 (-1180)) (-1180))) (-15 -3852 ((-1180) $)) (-15 -3802 ((-644 (-1180)) $)))) -((-3564 (((-317 (-566)) (-48)) 12))) -(((-1118) (-10 -7 (-15 -3564 ((-317 (-566)) (-48))))) (T -1118)) -((-3564 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-317 (-566))) (-5 *1 (-1118))))) -(-10 -7 (-15 -3564 ((-317 (-566)) (-48)))) -((-3007 (((-112) $ $) NIL)) (-3029 (($ $) 44)) (-1788 (((-112) $) 69)) (-2456 (($ $ $) 51)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) 97)) (-3991 (($ $) NIL)) (-2388 (((-112) $) NIL)) (-1573 (($ $ $) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-3904 (($ $ $ $) 80)) (-1550 (($ $) NIL)) (-3184 (((-420 $) $) NIL)) (-2837 (((-112) $ $) NIL)) (-1970 (((-771)) 82)) (-4364 (((-566) $) NIL)) (-3136 (($ $ $) 77)) (-3012 (($) NIL T CONST)) (-4307 (((-3 (-566) "failed") $) NIL)) (-4205 (((-566) $) NIL)) (-2946 (($ $ $) 63)) (-3577 (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) 91) (((-689 (-566)) (-689 $)) 32)) (-1878 (((-3 $ "failed") $) NIL)) (-1521 (((-3 (-409 (-566)) "failed") $) NIL)) (-1942 (((-112) $) NIL)) (-4204 (((-409 (-566)) $) NIL)) (-1552 (($) 94) (($ $) 95)) (-2957 (($ $ $) 62)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL)) (-3268 (((-112) $) NIL)) (-3994 (($ $ $ $) NIL)) (-3680 (($ $ $) 92)) (-1897 (((-112) $) NIL)) (-2529 (($ $ $) NIL)) (-2062 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL)) (-3934 (((-112) $) 71)) (-2824 (((-112) $) 68)) (-2418 (($ $) 45)) (-4363 (((-3 $ "failed") $) NIL)) (-2117 (((-112) $) 81)) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3324 (($ $ $ $) 78)) (-2097 (($ $ $) 73) (($) 42 T CONST)) (-3962 (($ $ $) 72) (($) 41 T CONST)) (-3674 (($ $) NIL)) (-3681 (((-921) $) 87)) (-4149 (($ $) 76)) (-2167 (($ $ $) NIL) (($ (-644 $)) NIL)) (-4117 (((-1157) $) NIL)) (-2548 (($ $ $) NIL)) (-1761 (($) NIL T CONST)) (-2178 (($ (-921)) 86)) (-3892 (($ $) 56)) (-4035 (((-1119) $) 75)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2214 (($ $ $) 66) (($ (-644 $)) NIL)) (-3727 (($ $) NIL)) (-3719 (((-420 $) $) NIL)) (-3148 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL)) (-2994 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1946 (((-112) $) NIL)) (-3039 (((-771) $) NIL)) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) 65)) (-3561 (($ $ (-771)) NIL) (($ $) NIL)) (-3238 (($ $) 57)) (-3940 (($ $) NIL)) (-1348 (((-566) $) 17) (((-538) $) NIL) (((-892 (-566)) $) NIL) (((-381) $) NIL) (((-225) $) NIL)) (-3783 (((-862) $) 35) (($ (-566)) 93) (($ $) NIL) (($ (-566)) 93)) (-2107 (((-771)) NIL T CONST)) (-3162 (((-112) $ $) NIL)) (-3228 (($ $ $) NIL)) (-3117 (((-112) $ $) NIL)) (-2719 (($) 40)) (-2695 (((-112) $ $) NIL)) (-3313 (($ $ $ $) 79)) (-2086 (($ $) 67)) (-3075 (($ $ $) 47)) (-2479 (($) 7 T CONST)) (-2190 (($ $ $) 50)) (-4334 (($) 39 T CONST)) (-2452 (((-1157) $) 26) (((-1157) $ (-112)) 27) (((-1269) (-822) $) 28) (((-1269) (-822) $ (-112)) 29)) (-2206 (($ $) 48)) (-2875 (($ $ (-771)) NIL) (($ $) NIL)) (-2174 (($ $ $) 49)) (-3009 (((-112) $ $) 55)) (-2984 (((-112) $ $) 52)) (-2947 (((-112) $ $) 43)) (-2995 (((-112) $ $) 54)) (-2969 (((-112) $ $) 10)) (-3063 (($ $ $) 46)) (-3053 (($ $) 16) (($ $ $) 59)) (-3041 (($ $ $) 58)) (** (($ $ (-921)) NIL) (($ $ (-771)) 61)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 38) (($ $ $) 37))) -(((-1119) (-13 (-547) (-844) (-661) (-828) (-10 -8 (-6 -4401) (-6 -4406) (-6 -4402) (-15 -2418 ($ $)) (-15 -2456 ($ $ $)) (-15 -2206 ($ $)) (-15 -2174 ($ $ $)) (-15 -2190 ($ $ $))))) (T -1119)) -((-2418 (*1 *1 *1) (-5 *1 (-1119))) (-2456 (*1 *1 *1 *1) (-5 *1 (-1119))) (-2206 (*1 *1 *1) (-5 *1 (-1119))) (-2174 (*1 *1 *1 *1) (-5 *1 (-1119))) (-2190 (*1 *1 *1 *1) (-5 *1 (-1119)))) -(-13 (-547) (-844) (-661) (-828) (-10 -8 (-6 -4401) (-6 -4406) (-6 -4402) (-15 -2418 ($ $)) (-15 -2456 ($ $ $)) (-15 -2206 ($ $)) (-15 -2174 ($ $ $)) (-15 -2190 ($ $ $)))) +((-1708 (((-644 (-1237 |#2| |#1|)) (-1237 |#2| |#1|) (-1237 |#2| |#1|)) 53)) (-3968 (((-566) (-1237 |#2| |#1|)) 100 (|has| |#1| (-454)))) (-3635 (((-566) (-1237 |#2| |#1|)) 82)) (-4349 (((-644 (-1237 |#2| |#1|)) (-1237 |#2| |#1|) (-1237 |#2| |#1|)) 63)) (-3452 (((-566) (-1237 |#2| |#1|) (-1237 |#2| |#1|)) 99 (|has| |#1| (-454)))) (-2535 (((-644 |#1|) (-1237 |#2| |#1|) (-1237 |#2| |#1|)) 67)) (-3543 (((-566) (-1237 |#2| |#1|) (-1237 |#2| |#1|)) 81))) +(((-1113 |#1| |#2|) (-10 -7 (-15 -1708 ((-644 (-1237 |#2| |#1|)) (-1237 |#2| |#1|) (-1237 |#2| |#1|))) (-15 -4349 ((-644 (-1237 |#2| |#1|)) (-1237 |#2| |#1|) (-1237 |#2| |#1|))) (-15 -2535 ((-644 |#1|) (-1237 |#2| |#1|) (-1237 |#2| |#1|))) (-15 -3543 ((-566) (-1237 |#2| |#1|) (-1237 |#2| |#1|))) (-15 -3635 ((-566) (-1237 |#2| |#1|))) (IF (|has| |#1| (-454)) (PROGN (-15 -3452 ((-566) (-1237 |#2| |#1|) (-1237 |#2| |#1|))) (-15 -3968 ((-566) (-1237 |#2| |#1|)))) |%noBranch|)) (-820) (-1175)) (T -1113)) +((-3968 (*1 *2 *3) (-12 (-5 *3 (-1237 *5 *4)) (-4 *4 (-454)) (-4 *4 (-820)) (-14 *5 (-1175)) (-5 *2 (-566)) (-5 *1 (-1113 *4 *5)))) (-3452 (*1 *2 *3 *3) (-12 (-5 *3 (-1237 *5 *4)) (-4 *4 (-454)) (-4 *4 (-820)) (-14 *5 (-1175)) (-5 *2 (-566)) (-5 *1 (-1113 *4 *5)))) (-3635 (*1 *2 *3) (-12 (-5 *3 (-1237 *5 *4)) (-4 *4 (-820)) (-14 *5 (-1175)) (-5 *2 (-566)) (-5 *1 (-1113 *4 *5)))) (-3543 (*1 *2 *3 *3) (-12 (-5 *3 (-1237 *5 *4)) (-4 *4 (-820)) (-14 *5 (-1175)) (-5 *2 (-566)) (-5 *1 (-1113 *4 *5)))) (-2535 (*1 *2 *3 *3) (-12 (-5 *3 (-1237 *5 *4)) (-4 *4 (-820)) (-14 *5 (-1175)) (-5 *2 (-644 *4)) (-5 *1 (-1113 *4 *5)))) (-4349 (*1 *2 *3 *3) (-12 (-4 *4 (-820)) (-14 *5 (-1175)) (-5 *2 (-644 (-1237 *5 *4))) (-5 *1 (-1113 *4 *5)) (-5 *3 (-1237 *5 *4)))) (-1708 (*1 *2 *3 *3) (-12 (-4 *4 (-820)) (-14 *5 (-1175)) (-5 *2 (-644 (-1237 *5 *4))) (-5 *1 (-1113 *4 *5)) (-5 *3 (-1237 *5 *4))))) +(-10 -7 (-15 -1708 ((-644 (-1237 |#2| |#1|)) (-1237 |#2| |#1|) (-1237 |#2| |#1|))) (-15 -4349 ((-644 (-1237 |#2| |#1|)) (-1237 |#2| |#1|) (-1237 |#2| |#1|))) (-15 -2535 ((-644 |#1|) (-1237 |#2| |#1|) (-1237 |#2| |#1|))) (-15 -3543 ((-566) (-1237 |#2| |#1|) (-1237 |#2| |#1|))) (-15 -3635 ((-566) (-1237 |#2| |#1|))) (IF (|has| |#1| (-454)) (PROGN (-15 -3452 ((-566) (-1237 |#2| |#1|) (-1237 |#2| |#1|))) (-15 -3968 ((-566) (-1237 |#2| |#1|)))) |%noBranch|)) +((-2988 (((-112) $ $) NIL)) (-2900 (($ (-508) (-1117)) 13)) (-2831 (((-1117) $) 19)) (-1368 (((-508) $) 16)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 26) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) +(((-1114) (-13 (-1082) (-10 -8 (-15 -2900 ($ (-508) (-1117))) (-15 -1368 ((-508) $)) (-15 -2831 ((-1117) $))))) (T -1114)) +((-2900 (*1 *1 *2 *3) (-12 (-5 *2 (-508)) (-5 *3 (-1117)) (-5 *1 (-1114)))) (-1368 (*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-1114)))) (-2831 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1114))))) +(-13 (-1082) (-10 -8 (-15 -2900 ($ (-508) (-1117))) (-15 -1368 ((-508) $)) (-15 -2831 ((-1117) $)))) +((-2743 (((-3 (-566) "failed") |#2| (-1175) |#2| (-1157)) 19) (((-3 (-566) "failed") |#2| (-1175) (-843 |#2|)) 17) (((-3 (-566) "failed") |#2|) 60))) +(((-1115 |#1| |#2|) (-10 -7 (-15 -2743 ((-3 (-566) "failed") |#2|)) (-15 -2743 ((-3 (-566) "failed") |#2| (-1175) (-843 |#2|))) (-15 -2743 ((-3 (-566) "failed") |#2| (-1175) |#2| (-1157)))) (-13 (-558) (-1038 (-566)) (-639 (-566)) (-454)) (-13 (-27) (-1199) (-432 |#1|))) (T -1115)) +((-2743 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1175)) (-5 *5 (-1157)) (-4 *6 (-13 (-558) (-1038 *2) (-639 *2) (-454))) (-5 *2 (-566)) (-5 *1 (-1115 *6 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *6))))) (-2743 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1175)) (-5 *5 (-843 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *6))) (-4 *6 (-13 (-558) (-1038 *2) (-639 *2) (-454))) (-5 *2 (-566)) (-5 *1 (-1115 *6 *3)))) (-2743 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-558) (-1038 *2) (-639 *2) (-454))) (-5 *2 (-566)) (-5 *1 (-1115 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *4)))))) +(-10 -7 (-15 -2743 ((-3 (-566) "failed") |#2|)) (-15 -2743 ((-3 (-566) "failed") |#2| (-1175) (-843 |#2|))) (-15 -2743 ((-3 (-566) "failed") |#2| (-1175) |#2| (-1157)))) +((-2743 (((-3 (-566) "failed") (-409 (-952 |#1|)) (-1175) (-409 (-952 |#1|)) (-1157)) 38) (((-3 (-566) "failed") (-409 (-952 |#1|)) (-1175) (-843 (-409 (-952 |#1|)))) 33) (((-3 (-566) "failed") (-409 (-952 |#1|))) 14))) +(((-1116 |#1|) (-10 -7 (-15 -2743 ((-3 (-566) "failed") (-409 (-952 |#1|)))) (-15 -2743 ((-3 (-566) "failed") (-409 (-952 |#1|)) (-1175) (-843 (-409 (-952 |#1|))))) (-15 -2743 ((-3 (-566) "failed") (-409 (-952 |#1|)) (-1175) (-409 (-952 |#1|)) (-1157)))) (-454)) (T -1116)) +((-2743 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-409 (-952 *6))) (-5 *4 (-1175)) (-5 *5 (-1157)) (-4 *6 (-454)) (-5 *2 (-566)) (-5 *1 (-1116 *6)))) (-2743 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1175)) (-5 *5 (-843 (-409 (-952 *6)))) (-5 *3 (-409 (-952 *6))) (-4 *6 (-454)) (-5 *2 (-566)) (-5 *1 (-1116 *6)))) (-2743 (*1 *2 *3) (|partial| -12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-454)) (-5 *2 (-566)) (-5 *1 (-1116 *4))))) +(-10 -7 (-15 -2743 ((-3 (-566) "failed") (-409 (-952 |#1|)))) (-15 -2743 ((-3 (-566) "failed") (-409 (-952 |#1|)) (-1175) (-843 (-409 (-952 |#1|))))) (-15 -2743 ((-3 (-566) "failed") (-409 (-952 |#1|)) (-1175) (-409 (-952 |#1|)) (-1157)))) +((-2988 (((-112) $ $) NIL)) (-1385 (((-1180) $) 12)) (-1344 (((-644 (-1180)) $) 14)) (-2831 (($ (-644 (-1180)) (-1180)) 10)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 29)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) 17))) +(((-1117) (-13 (-1099) (-10 -8 (-15 -2831 ($ (-644 (-1180)) (-1180))) (-15 -1385 ((-1180) $)) (-15 -1344 ((-644 (-1180)) $))))) (T -1117)) +((-2831 (*1 *1 *2 *3) (-12 (-5 *2 (-644 (-1180))) (-5 *3 (-1180)) (-5 *1 (-1117)))) (-1385 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1117)))) (-1344 (*1 *2 *1) (-12 (-5 *2 (-644 (-1180))) (-5 *1 (-1117))))) +(-13 (-1099) (-10 -8 (-15 -2831 ($ (-644 (-1180)) (-1180))) (-15 -1385 ((-1180) $)) (-15 -1344 ((-644 (-1180)) $)))) +((-2192 (((-317 (-566)) (-48)) 12))) +(((-1118) (-10 -7 (-15 -2192 ((-317 (-566)) (-48))))) (T -1118)) +((-2192 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-317 (-566))) (-5 *1 (-1118))))) +(-10 -7 (-15 -2192 ((-317 (-566)) (-48)))) +((-2988 (((-112) $ $) NIL)) (-3010 (($ $) 44)) (-3230 (((-112) $) 69)) (-2439 (($ $ $) 51)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) 97)) (-2161 (($ $) NIL)) (-2345 (((-112) $) NIL)) (-2871 (($ $ $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-1345 (($ $ $ $) 80)) (-1378 (($ $) NIL)) (-1364 (((-420 $) $) NIL)) (-2085 (((-112) $ $) NIL)) (-3870 (((-771)) 82)) (-2743 (((-566) $) NIL)) (-3764 (($ $ $) 77)) (-2463 (($) NIL T CONST)) (-2229 (((-3 (-566) "failed") $) NIL)) (-4158 (((-566) $) NIL)) (-2933 (($ $ $) 63)) (-4089 (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) 91) (((-689 (-566)) (-689 $)) 32)) (-3245 (((-3 $ "failed") $) NIL)) (-4391 (((-3 (-409 (-566)) "failed") $) NIL)) (-3407 (((-112) $) NIL)) (-1786 (((-409 (-566)) $) NIL)) (-2715 (($) 94) (($ $) 95)) (-2945 (($ $ $) 62)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL)) (-1615 (((-112) $) NIL)) (-2501 (($ $ $ $) NIL)) (-1732 (($ $ $) 92)) (-2528 (((-112) $) NIL)) (-2413 (($ $ $) NIL)) (-2926 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL)) (-2389 (((-112) $) 71)) (-3419 (((-112) $) 68)) (-2404 (($ $) 45)) (-2621 (((-3 $ "failed") $) NIL)) (-3233 (((-112) $) 81)) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2505 (($ $ $ $) 78)) (-1478 (($ $ $) 73) (($) 42 T CONST)) (-2599 (($ $ $) 72) (($) 41 T CONST)) (-3479 (($ $) NIL)) (-1866 (((-921) $) 87)) (-2440 (($ $) 76)) (-2128 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3380 (((-1157) $) NIL)) (-1517 (($ $ $) NIL)) (-3289 (($) NIL T CONST)) (-2835 (($ (-921)) 86)) (-1847 (($ $) 56)) (-4072 (((-1119) $) 75)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-2164 (($ $ $) 66) (($ (-644 $)) NIL)) (-2499 (($ $) NIL)) (-1624 (((-420 $) $) NIL)) (-3005 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL)) (-2978 (((-3 $ "failed") $ $) NIL)) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2664 (((-112) $) NIL)) (-4357 (((-771) $) NIL)) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) 65)) (-3629 (($ $ (-771)) NIL) (($ $) NIL)) (-2028 (($ $) 57)) (-1480 (($ $) NIL)) (-2376 (((-566) $) 17) (((-538) $) NIL) (((-892 (-566)) $) NIL) (((-381) $) NIL) (((-225) $) NIL)) (-3152 (((-862) $) 35) (($ (-566)) 93) (($ $) NIL) (($ (-566)) 93)) (-2593 (((-771)) NIL T CONST)) (-2992 (((-112) $ $) NIL)) (-2073 (($ $ $) NIL)) (-3044 (((-112) $ $) NIL)) (-2576 (($) 40)) (-3014 (((-112) $ $) NIL)) (-1725 (($ $ $ $) 79)) (-1358 (($ $) 67)) (-3055 (($ $ $) 47)) (-4356 (($) 7 T CONST)) (-2854 (($ $ $) 50)) (-4366 (($) 39 T CONST)) (-2226 (((-1157) $) 26) (((-1157) $ (-112)) 27) (((-1269) (-822) $) 28) (((-1269) (-822) $ (-112)) 29)) (-2865 (($ $) 48)) (-3497 (($ $ (-771)) NIL) (($ $) NIL)) (-2844 (($ $ $) 49)) (-2968 (((-112) $ $) 55)) (-2946 (((-112) $ $) 52)) (-2914 (((-112) $ $) 43)) (-2956 (((-112) $ $) 54)) (-2935 (((-112) $ $) 10)) (-3043 (($ $ $) 46)) (-3012 (($ $) 16) (($ $ $) 59)) (-3002 (($ $ $) 58)) (** (($ $ (-921)) NIL) (($ $ (-771)) 61)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 38) (($ $ $) 37))) +(((-1119) (-13 (-547) (-844) (-661) (-828) (-10 -8 (-6 -4401) (-6 -4406) (-6 -4402) (-15 -2404 ($ $)) (-15 -2439 ($ $ $)) (-15 -2865 ($ $)) (-15 -2844 ($ $ $)) (-15 -2854 ($ $ $))))) (T -1119)) +((-2404 (*1 *1 *1) (-5 *1 (-1119))) (-2439 (*1 *1 *1 *1) (-5 *1 (-1119))) (-2865 (*1 *1 *1) (-5 *1 (-1119))) (-2844 (*1 *1 *1 *1) (-5 *1 (-1119))) (-2854 (*1 *1 *1 *1) (-5 *1 (-1119)))) +(-13 (-547) (-844) (-661) (-828) (-10 -8 (-6 -4401) (-6 -4406) (-6 -4402) (-15 -2404 ($ $)) (-15 -2439 ($ $ $)) (-15 -2865 ($ $)) (-15 -2844 ($ $ $)) (-15 -2854 ($ $ $)))) ((|Integer|) (SMINTP |#1|)) -((-3007 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-1825 ((|#1| $) 45)) (-2256 (((-112) $ (-771)) 8)) (-3012 (($) 7 T CONST)) (-2261 ((|#1| |#1| $) 47)) (-2008 ((|#1| $) 46)) (-3979 (((-644 |#1|) $) 31 (|has| $ (-6 -4414)))) (-2404 (((-112) $ (-771)) 9)) (-2329 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2908 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#1| |#1|) $) 36)) (-2603 (((-112) $ (-771)) 10)) (-4117 (((-1157) $) 22 (|has| |#1| (-1099)))) (-4039 ((|#1| $) 40)) (-3406 (($ |#1| $) 41)) (-4035 (((-1119) $) 21 (|has| |#1| (-1099)))) (-2539 ((|#1| $) 42)) (-2692 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) 14)) (-3467 (((-112) $) 11)) (-1494 (($) 12)) (-2266 (((-771) $) 44)) (-4045 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-3940 (($ $) 13)) (-3783 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-3117 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-1748 (($ (-644 |#1|)) 43)) (-1894 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3018 (((-771) $) 6 (|has| $ (-6 -4414))))) +((-2988 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-3712 ((|#1| $) 45)) (-1504 (((-112) $ (-771)) 8)) (-2463 (($) 7 T CONST)) (-3890 ((|#1| |#1| $) 47)) (-2692 ((|#1| $) 46)) (-1683 (((-644 |#1|) $) 31 (|has| $ (-6 -4414)))) (-3456 (((-112) $ (-771)) 9)) (-3491 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-3885 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#1| |#1|) $) 36)) (-3267 (((-112) $ (-771)) 10)) (-3380 (((-1157) $) 22 (|has| |#1| (-1099)))) (-3278 ((|#1| $) 40)) (-3888 (($ |#1| $) 41)) (-4072 (((-1119) $) 21 (|has| |#1| (-1099)))) (-1973 ((|#1| $) 42)) (-2823 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) 14)) (-2872 (((-112) $) 11)) (-3493 (($) 12)) (-2766 (((-771) $) 44)) (-4083 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-1480 (($ $) 13)) (-3152 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-3044 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-2948 (($ (-644 |#1|)) 43)) (-2210 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3000 (((-771) $) 6 (|has| $ (-6 -4414))))) (((-1120 |#1|) (-140) (-1214)) (T -1120)) -((-2261 (*1 *2 *2 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1214)))) (-2008 (*1 *2 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1214)))) (-1825 (*1 *2 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1214)))) (-2266 (*1 *2 *1) (-12 (-4 *1 (-1120 *3)) (-4 *3 (-1214)) (-5 *2 (-771))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4414) (-15 -2261 (|t#1| |t#1| $)) (-15 -2008 (|t#1| $)) (-15 -1825 (|t#1| $)) (-15 -2266 ((-771) $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2809 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1099) |has| |#1| (-1099)) ((-1214) . T)) -((-3837 ((|#3| $) 87)) (-4307 (((-3 (-566) "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL) (((-3 |#3| "failed") $) 50)) (-4205 (((-566) $) NIL) (((-409 (-566)) $) NIL) ((|#3| $) 47)) (-3577 (((-689 (-566)) (-689 $)) NIL) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL) (((-2 (|:| -4227 (-689 |#3|)) (|:| |vec| (-1264 |#3|))) (-689 $) (-1264 $)) 84) (((-689 |#3|) (-689 $)) 76)) (-3561 (($ $ (-1 |#3| |#3|)) 28) (($ $ (-1 |#3| |#3|) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175)) NIL) (($ $ (-771)) NIL) (($ $) NIL)) (-2812 ((|#3| $) 89)) (-3733 ((|#4| $) 43)) (-3783 (((-862) $) NIL) (($ (-566)) NIL) (($ (-409 (-566))) NIL) (($ |#3|) 25)) (** (($ $ (-921)) NIL) (($ $ (-771)) 24) (($ $ (-566)) 95))) -(((-1121 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-566))) (-15 -2812 (|#3| |#1|)) (-15 -3837 (|#3| |#1|)) (-15 -3733 (|#4| |#1|)) (-15 -3577 ((-689 |#3|) (-689 |#1|))) (-15 -3577 ((-2 (|:| -4227 (-689 |#3|)) (|:| |vec| (-1264 |#3|))) (-689 |#1|) (-1264 |#1|))) (-15 -3577 ((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 |#1|) (-1264 |#1|))) (-15 -3577 ((-689 (-566)) (-689 |#1|))) (-15 -3783 (|#1| |#3|)) (-15 -4307 ((-3 |#3| "failed") |#1|)) (-15 -4205 (|#3| |#1|)) (-15 -4205 ((-409 (-566)) |#1|)) (-15 -4307 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -3783 (|#1| (-409 (-566)))) (-15 -4205 ((-566) |#1|)) (-15 -4307 ((-3 (-566) "failed") |#1|)) (-15 -3561 (|#1| |#1|)) (-15 -3561 (|#1| |#1| (-771))) (-15 -3561 (|#1| |#1| (-1175))) (-15 -3561 (|#1| |#1| (-644 (-1175)))) (-15 -3561 (|#1| |#1| (-1175) (-771))) (-15 -3561 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -3561 (|#1| |#1| (-1 |#3| |#3|) (-771))) (-15 -3561 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3783 (|#1| (-566))) (-15 ** (|#1| |#1| (-771))) (-15 ** (|#1| |#1| (-921))) (-15 -3783 ((-862) |#1|))) (-1122 |#2| |#3| |#4| |#5|) (-771) (-1049) (-238 |#2| |#3|) (-238 |#2| |#3|)) (T -1121)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-566))) (-15 -2812 (|#3| |#1|)) (-15 -3837 (|#3| |#1|)) (-15 -3733 (|#4| |#1|)) (-15 -3577 ((-689 |#3|) (-689 |#1|))) (-15 -3577 ((-2 (|:| -4227 (-689 |#3|)) (|:| |vec| (-1264 |#3|))) (-689 |#1|) (-1264 |#1|))) (-15 -3577 ((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 |#1|) (-1264 |#1|))) (-15 -3577 ((-689 (-566)) (-689 |#1|))) (-15 -3783 (|#1| |#3|)) (-15 -4307 ((-3 |#3| "failed") |#1|)) (-15 -4205 (|#3| |#1|)) (-15 -4205 ((-409 (-566)) |#1|)) (-15 -4307 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -3783 (|#1| (-409 (-566)))) (-15 -4205 ((-566) |#1|)) (-15 -4307 ((-3 (-566) "failed") |#1|)) (-15 -3561 (|#1| |#1|)) (-15 -3561 (|#1| |#1| (-771))) (-15 -3561 (|#1| |#1| (-1175))) (-15 -3561 (|#1| |#1| (-644 (-1175)))) (-15 -3561 (|#1| |#1| (-1175) (-771))) (-15 -3561 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -3561 (|#1| |#1| (-1 |#3| |#3|) (-771))) (-15 -3561 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3783 (|#1| (-566))) (-15 ** (|#1| |#1| (-771))) (-15 ** (|#1| |#1| (-921))) (-15 -3783 ((-862) |#1|))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-3837 ((|#2| $) 77)) (-2143 (((-112) $) 117)) (-4175 (((-3 $ "failed") $ $) 20)) (-1743 (((-112) $) 115)) (-2256 (((-112) $ (-771)) 107)) (-3808 (($ |#2|) 80)) (-3012 (($) 18 T CONST)) (-4137 (($ $) 134 (|has| |#2| (-308)))) (-4379 ((|#3| $ (-566)) 129)) (-4307 (((-3 (-566) "failed") $) 92 (|has| |#2| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) 89 (|has| |#2| (-1038 (-409 (-566))))) (((-3 |#2| "failed") $) 86)) (-4205 (((-566) $) 91 (|has| |#2| (-1038 (-566)))) (((-409 (-566)) $) 88 (|has| |#2| (-1038 (-409 (-566))))) ((|#2| $) 87)) (-3577 (((-689 (-566)) (-689 $)) 84 (|has| |#2| (-639 (-566)))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) 83 (|has| |#2| (-639 (-566)))) (((-2 (|:| -4227 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 $) (-1264 $)) 82) (((-689 |#2|) (-689 $)) 81)) (-1878 (((-3 $ "failed") $) 37)) (-4313 (((-771) $) 135 (|has| |#2| (-558)))) (-2855 ((|#2| $ (-566) (-566)) 127)) (-3979 (((-644 |#2|) $) 100 (|has| $ (-6 -4414)))) (-3934 (((-112) $) 35)) (-3864 (((-771) $) 136 (|has| |#2| (-558)))) (-1601 (((-644 |#4|) $) 137 (|has| |#2| (-558)))) (-1380 (((-771) $) 123)) (-1391 (((-771) $) 124)) (-2404 (((-112) $ (-771)) 108)) (-3310 ((|#2| $) 72 (|has| |#2| (-6 (-4416 "*"))))) (-1368 (((-566) $) 119)) (-3832 (((-566) $) 121)) (-2329 (((-644 |#2|) $) 99 (|has| $ (-6 -4414)))) (-1916 (((-112) |#2| $) 97 (-12 (|has| |#2| (-1099)) (|has| $ (-6 -4414))))) (-1821 (((-566) $) 120)) (-1809 (((-566) $) 122)) (-3163 (($ (-644 (-644 |#2|))) 114)) (-2908 (($ (-1 |#2| |#2|) $) 104 (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#2| |#2| |#2|) $ $) 131) (($ (-1 |#2| |#2|) $) 105)) (-2909 (((-644 (-644 |#2|)) $) 125)) (-2603 (((-112) $ (-771)) 109)) (-4117 (((-1157) $) 10)) (-4264 (((-3 $ "failed") $) 71 (|has| |#2| (-365)))) (-4035 (((-1119) $) 11)) (-2994 (((-3 $ "failed") $ |#2|) 132 (|has| |#2| (-558)))) (-2692 (((-112) (-1 (-112) |#2|) $) 102 (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#2|))) 96 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) 95 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) 94 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) 93 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-1932 (((-112) $ $) 113)) (-3467 (((-112) $) 110)) (-1494 (($) 111)) (-4390 ((|#2| $ (-566) (-566) |#2|) 128) ((|#2| $ (-566) (-566)) 126)) (-3561 (($ $ (-1 |#2| |#2|)) 56) (($ $ (-1 |#2| |#2|) (-771)) 55) (($ $ (-644 (-1175)) (-644 (-771))) 48 (|has| |#2| (-900 (-1175)))) (($ $ (-1175) (-771)) 47 (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175))) 46 (|has| |#2| (-900 (-1175)))) (($ $ (-1175)) 45 (|has| |#2| (-900 (-1175)))) (($ $ (-771)) 43 (|has| |#2| (-233))) (($ $) 41 (|has| |#2| (-233)))) (-2812 ((|#2| $) 76)) (-4098 (($ (-644 |#2|)) 79)) (-2652 (((-112) $) 116)) (-3733 ((|#3| $) 78)) (-4383 ((|#2| $) 73 (|has| |#2| (-6 (-4416 "*"))))) (-4045 (((-771) (-1 (-112) |#2|) $) 101 (|has| $ (-6 -4414))) (((-771) |#2| $) 98 (-12 (|has| |#2| (-1099)) (|has| $ (-6 -4414))))) (-3940 (($ $) 112)) (-2306 ((|#4| $ (-566)) 130)) (-3783 (((-862) $) 12) (($ (-566)) 33) (($ (-409 (-566))) 90 (|has| |#2| (-1038 (-409 (-566))))) (($ |#2|) 85)) (-2107 (((-771)) 32 T CONST)) (-3117 (((-112) $ $) 9)) (-1894 (((-112) (-1 (-112) |#2|) $) 103 (|has| $ (-6 -4414)))) (-3098 (((-112) $) 118)) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-2875 (($ $ (-1 |#2| |#2|)) 54) (($ $ (-1 |#2| |#2|) (-771)) 53) (($ $ (-644 (-1175)) (-644 (-771))) 52 (|has| |#2| (-900 (-1175)))) (($ $ (-1175) (-771)) 51 (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175))) 50 (|has| |#2| (-900 (-1175)))) (($ $ (-1175)) 49 (|has| |#2| (-900 (-1175)))) (($ $ (-771)) 44 (|has| |#2| (-233))) (($ $) 42 (|has| |#2| (-233)))) (-2947 (((-112) $ $) 6)) (-3065 (($ $ |#2|) 133 (|has| |#2| (-365)))) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 70 (|has| |#2| (-365)))) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#2|) 139) (($ |#2| $) 138) ((|#4| $ |#4|) 75) ((|#3| |#3| $) 74)) (-3018 (((-771) $) 106 (|has| $ (-6 -4414))))) +((-3890 (*1 *2 *2 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1214)))) (-2692 (*1 *2 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1214)))) (-3712 (*1 *2 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1214)))) (-2766 (*1 *2 *1) (-12 (-4 *1 (-1120 *3)) (-4 *3 (-1214)) (-5 *2 (-771))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4414) (-15 -3890 (|t#1| |t#1| $)) (-15 -2692 (|t#1| $)) (-15 -3712 (|t#1| $)) (-15 -2766 ((-771) $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2768 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1099) |has| |#1| (-1099)) ((-1214) . T)) +((-3833 ((|#3| $) 87)) (-2229 (((-3 (-566) "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL) (((-3 |#3| "failed") $) 50)) (-4158 (((-566) $) NIL) (((-409 (-566)) $) NIL) ((|#3| $) 47)) (-4089 (((-689 (-566)) (-689 $)) NIL) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL) (((-2 (|:| -3361 (-689 |#3|)) (|:| |vec| (-1264 |#3|))) (-689 $) (-1264 $)) 84) (((-689 |#3|) (-689 $)) 76)) (-3629 (($ $ (-1 |#3| |#3|)) 28) (($ $ (-1 |#3| |#3|) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175)) NIL) (($ $ (-771)) NIL) (($ $) NIL)) (-3429 ((|#3| $) 89)) (-3065 ((|#4| $) 43)) (-3152 (((-862) $) NIL) (($ (-566)) NIL) (($ (-409 (-566))) NIL) (($ |#3|) 25)) (** (($ $ (-921)) NIL) (($ $ (-771)) 24) (($ $ (-566)) 95))) +(((-1121 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-566))) (-15 -3429 (|#3| |#1|)) (-15 -3833 (|#3| |#1|)) (-15 -3065 (|#4| |#1|)) (-15 -4089 ((-689 |#3|) (-689 |#1|))) (-15 -4089 ((-2 (|:| -3361 (-689 |#3|)) (|:| |vec| (-1264 |#3|))) (-689 |#1|) (-1264 |#1|))) (-15 -4089 ((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 |#1|) (-1264 |#1|))) (-15 -4089 ((-689 (-566)) (-689 |#1|))) (-15 -3152 (|#1| |#3|)) (-15 -2229 ((-3 |#3| "failed") |#1|)) (-15 -4158 (|#3| |#1|)) (-15 -4158 ((-409 (-566)) |#1|)) (-15 -2229 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -3152 (|#1| (-409 (-566)))) (-15 -4158 ((-566) |#1|)) (-15 -2229 ((-3 (-566) "failed") |#1|)) (-15 -3629 (|#1| |#1|)) (-15 -3629 (|#1| |#1| (-771))) (-15 -3629 (|#1| |#1| (-1175))) (-15 -3629 (|#1| |#1| (-644 (-1175)))) (-15 -3629 (|#1| |#1| (-1175) (-771))) (-15 -3629 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -3629 (|#1| |#1| (-1 |#3| |#3|) (-771))) (-15 -3629 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3152 (|#1| (-566))) (-15 ** (|#1| |#1| (-771))) (-15 ** (|#1| |#1| (-921))) (-15 -3152 ((-862) |#1|))) (-1122 |#2| |#3| |#4| |#5|) (-771) (-1049) (-238 |#2| |#3|) (-238 |#2| |#3|)) (T -1121)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-566))) (-15 -3429 (|#3| |#1|)) (-15 -3833 (|#3| |#1|)) (-15 -3065 (|#4| |#1|)) (-15 -4089 ((-689 |#3|) (-689 |#1|))) (-15 -4089 ((-2 (|:| -3361 (-689 |#3|)) (|:| |vec| (-1264 |#3|))) (-689 |#1|) (-1264 |#1|))) (-15 -4089 ((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 |#1|) (-1264 |#1|))) (-15 -4089 ((-689 (-566)) (-689 |#1|))) (-15 -3152 (|#1| |#3|)) (-15 -2229 ((-3 |#3| "failed") |#1|)) (-15 -4158 (|#3| |#1|)) (-15 -4158 ((-409 (-566)) |#1|)) (-15 -2229 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -3152 (|#1| (-409 (-566)))) (-15 -4158 ((-566) |#1|)) (-15 -2229 ((-3 (-566) "failed") |#1|)) (-15 -3629 (|#1| |#1|)) (-15 -3629 (|#1| |#1| (-771))) (-15 -3629 (|#1| |#1| (-1175))) (-15 -3629 (|#1| |#1| (-644 (-1175)))) (-15 -3629 (|#1| |#1| (-1175) (-771))) (-15 -3629 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -3629 (|#1| |#1| (-1 |#3| |#3|) (-771))) (-15 -3629 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3152 (|#1| (-566))) (-15 ** (|#1| |#1| (-771))) (-15 ** (|#1| |#1| (-921))) (-15 -3152 ((-862) |#1|))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-3833 ((|#2| $) 77)) (-1791 (((-112) $) 117)) (-3967 (((-3 $ "failed") $ $) 20)) (-3768 (((-112) $) 115)) (-1504 (((-112) $ (-771)) 107)) (-3520 (($ |#2|) 80)) (-2463 (($) 18 T CONST)) (-1521 (($ $) 134 (|has| |#2| (-308)))) (-1721 ((|#3| $ (-566)) 129)) (-2229 (((-3 (-566) "failed") $) 92 (|has| |#2| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) 89 (|has| |#2| (-1038 (-409 (-566))))) (((-3 |#2| "failed") $) 86)) (-4158 (((-566) $) 91 (|has| |#2| (-1038 (-566)))) (((-409 (-566)) $) 88 (|has| |#2| (-1038 (-409 (-566))))) ((|#2| $) 87)) (-4089 (((-689 (-566)) (-689 $)) 84 (|has| |#2| (-639 (-566)))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) 83 (|has| |#2| (-639 (-566)))) (((-2 (|:| -3361 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 $) (-1264 $)) 82) (((-689 |#2|) (-689 $)) 81)) (-3245 (((-3 $ "failed") $) 37)) (-2755 (((-771) $) 135 (|has| |#2| (-558)))) (-3829 ((|#2| $ (-566) (-566)) 127)) (-1683 (((-644 |#2|) $) 100 (|has| $ (-6 -4414)))) (-2389 (((-112) $) 35)) (-1908 (((-771) $) 136 (|has| |#2| (-558)))) (-2950 (((-644 |#4|) $) 137 (|has| |#2| (-558)))) (-3811 (((-771) $) 123)) (-3824 (((-771) $) 124)) (-3456 (((-112) $ (-771)) 108)) (-1444 ((|#2| $) 72 (|has| |#2| (-6 (-4416 "*"))))) (-2531 (((-566) $) 119)) (-3688 (((-566) $) 121)) (-3491 (((-644 |#2|) $) 99 (|has| $ (-6 -4414)))) (-1602 (((-112) |#2| $) 97 (-12 (|has| |#2| (-1099)) (|has| $ (-6 -4414))))) (-2422 (((-566) $) 120)) (-3632 (((-566) $) 122)) (-4184 (($ (-644 (-644 |#2|))) 114)) (-3885 (($ (-1 |#2| |#2|) $) 104 (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#2| |#2| |#2|) $ $) 131) (($ (-1 |#2| |#2|) $) 105)) (-1723 (((-644 (-644 |#2|)) $) 125)) (-3267 (((-112) $ (-771)) 109)) (-3380 (((-1157) $) 10)) (-1542 (((-3 $ "failed") $) 71 (|has| |#2| (-365)))) (-4072 (((-1119) $) 11)) (-2978 (((-3 $ "failed") $ |#2|) 132 (|has| |#2| (-558)))) (-2823 (((-112) (-1 (-112) |#2|) $) 102 (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#2|))) 96 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) 95 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) 94 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) 93 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-3814 (((-112) $ $) 113)) (-2872 (((-112) $) 110)) (-3493 (($) 111)) (-1309 ((|#2| $ (-566) (-566) |#2|) 128) ((|#2| $ (-566) (-566)) 126)) (-3629 (($ $ (-1 |#2| |#2|)) 56) (($ $ (-1 |#2| |#2|) (-771)) 55) (($ $ (-644 (-1175)) (-644 (-771))) 48 (|has| |#2| (-900 (-1175)))) (($ $ (-1175) (-771)) 47 (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175))) 46 (|has| |#2| (-900 (-1175)))) (($ $ (-1175)) 45 (|has| |#2| (-900 (-1175)))) (($ $ (-771)) 43 (|has| |#2| (-233))) (($ $) 41 (|has| |#2| (-233)))) (-3429 ((|#2| $) 76)) (-2253 (($ (-644 |#2|)) 79)) (-1370 (((-112) $) 116)) (-3065 ((|#3| $) 78)) (-3943 ((|#2| $) 73 (|has| |#2| (-6 (-4416 "*"))))) (-4083 (((-771) (-1 (-112) |#2|) $) 101 (|has| $ (-6 -4414))) (((-771) |#2| $) 98 (-12 (|has| |#2| (-1099)) (|has| $ (-6 -4414))))) (-1480 (($ $) 112)) (-2986 ((|#4| $ (-566)) 130)) (-3152 (((-862) $) 12) (($ (-566)) 33) (($ (-409 (-566))) 90 (|has| |#2| (-1038 (-409 (-566))))) (($ |#2|) 85)) (-2593 (((-771)) 32 T CONST)) (-3044 (((-112) $ $) 9)) (-2210 (((-112) (-1 (-112) |#2|) $) 103 (|has| $ (-6 -4414)))) (-1950 (((-112) $) 118)) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-3497 (($ $ (-1 |#2| |#2|)) 54) (($ $ (-1 |#2| |#2|) (-771)) 53) (($ $ (-644 (-1175)) (-644 (-771))) 52 (|has| |#2| (-900 (-1175)))) (($ $ (-1175) (-771)) 51 (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175))) 50 (|has| |#2| (-900 (-1175)))) (($ $ (-1175)) 49 (|has| |#2| (-900 (-1175)))) (($ $ (-771)) 44 (|has| |#2| (-233))) (($ $) 42 (|has| |#2| (-233)))) (-2914 (((-112) $ $) 6)) (-3025 (($ $ |#2|) 133 (|has| |#2| (-365)))) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 70 (|has| |#2| (-365)))) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#2|) 139) (($ |#2| $) 138) ((|#4| $ |#4|) 75) ((|#3| |#3| $) 74)) (-3000 (((-771) $) 106 (|has| $ (-6 -4414))))) (((-1122 |#1| |#2| |#3| |#4|) (-140) (-771) (-1049) (-238 |t#1| |t#2|) (-238 |t#1| |t#2|)) (T -1122)) -((-3808 (*1 *1 *2) (-12 (-4 *2 (-1049)) (-4 *1 (-1122 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)))) (-4098 (*1 *1 *2) (-12 (-5 *2 (-644 *4)) (-4 *4 (-1049)) (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)))) (-3733 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *2 *5)) (-4 *4 (-1049)) (-4 *5 (-238 *3 *4)) (-4 *2 (-238 *3 *4)))) (-3837 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (-4 *2 (-1049)))) (-2812 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (-4 *2 (-1049)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *4 (-1049)) (-4 *5 (-238 *3 *4)) (-4 *2 (-238 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *2 *5)) (-4 *4 (-1049)) (-4 *2 (-238 *3 *4)) (-4 *5 (-238 *3 *4)))) (-4383 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4416 "*"))) (-4 *2 (-1049)))) (-3310 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4416 "*"))) (-4 *2 (-1049)))) (-4264 (*1 *1 *1) (|partial| -12 (-4 *1 (-1122 *2 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-238 *2 *3)) (-4 *5 (-238 *2 *3)) (-4 *3 (-365)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *4 (-1049)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)) (-4 *4 (-365))))) -(-13 (-231 |t#2|) (-111 |t#2| |t#2|) (-1053 |t#1| |t#1| |t#2| |t#3| |t#4|) (-413 |t#2|) (-379 |t#2|) (-10 -8 (IF (|has| |t#2| (-172)) (-6 (-717 |t#2|)) |%noBranch|) (-15 -3808 ($ |t#2|)) (-15 -4098 ($ (-644 |t#2|))) (-15 -3733 (|t#3| $)) (-15 -3837 (|t#2| $)) (-15 -2812 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4416 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -4383 (|t#2| $)) (-15 -3310 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-365)) (PROGN (-15 -4264 ((-3 $ "failed") $)) (-15 ** ($ $ (-566)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4416 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-616 #0=(-409 (-566))) |has| |#2| (-1038 (-409 (-566)))) ((-616 (-566)) . T) ((-616 |#2|) . T) ((-613 (-862)) . T) ((-231 |#2|) . T) ((-233) |has| |#2| (-233)) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((-379 |#2|) . T) ((-413 |#2|) . T) ((-491 |#2|) . T) ((-516 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((-646 (-566)) . T) ((-646 |#2|) . T) ((-646 $) . T) ((-648 |#2|) . T) ((-648 $) . T) ((-640 |#2|) -2809 (|has| |#2| (-172)) (|has| |#2| (-6 (-4416 "*")))) ((-639 (-566)) |has| |#2| (-639 (-566))) ((-639 |#2|) . T) ((-717 |#2|) -2809 (|has| |#2| (-172)) (|has| |#2| (-6 (-4416 "*")))) ((-726) . T) ((-900 (-1175)) |has| |#2| (-900 (-1175))) ((-1053 |#1| |#1| |#2| |#3| |#4|) . T) ((-1038 #0#) |has| |#2| (-1038 (-409 (-566)))) ((-1038 (-566)) |has| |#2| (-1038 (-566))) ((-1038 |#2|) . T) ((-1051 |#2|) . T) ((-1056 |#2|) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1214) . T)) -((-1745 ((|#4| |#4|) 81)) (-3424 ((|#4| |#4|) 76)) (-3578 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2365 (-644 |#3|))) |#4| |#3|) 91)) (-3188 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80)) (-1947 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78))) -(((-1123 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3424 (|#4| |#4|)) (-15 -1947 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1745 (|#4| |#4|)) (-15 -3188 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3578 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2365 (-644 |#3|))) |#4| |#3|))) (-308) (-375 |#1|) (-375 |#1|) (-687 |#1| |#2| |#3|)) (T -1123)) -((-3578 (*1 *2 *3 *4) (-12 (-4 *5 (-308)) (-4 *6 (-375 *5)) (-4 *4 (-375 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2365 (-644 *4)))) (-5 *1 (-1123 *5 *6 *4 *3)) (-4 *3 (-687 *5 *6 *4)))) (-3188 (*1 *2 *3) (-12 (-4 *4 (-308)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1123 *4 *5 *6 *3)) (-4 *3 (-687 *4 *5 *6)))) (-1745 (*1 *2 *2) (-12 (-4 *3 (-308)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-1123 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5)))) (-1947 (*1 *2 *3) (-12 (-4 *4 (-308)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1123 *4 *5 *6 *3)) (-4 *3 (-687 *4 *5 *6)))) (-3424 (*1 *2 *2) (-12 (-4 *3 (-308)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-1123 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5))))) -(-10 -7 (-15 -3424 (|#4| |#4|)) (-15 -1947 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1745 (|#4| |#4|)) (-15 -3188 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3578 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2365 (-644 |#3|))) |#4| |#3|))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) 18)) (-3863 (((-644 |#2|) $) 178)) (-3683 (((-1171 $) $ |#2|) 63) (((-1171 |#1|) $) 52)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) 118 (|has| |#1| (-558)))) (-3991 (($ $) 120 (|has| |#1| (-558)))) (-2388 (((-112) $) 122 (|has| |#1| (-558)))) (-3367 (((-771) $) NIL) (((-771) $ (-644 |#2|)) 217)) (-4175 (((-3 $ "failed") $ $) NIL)) (-1477 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-1550 (($ $) NIL (|has| |#1| (-454)))) (-3184 (((-420 $) $) NIL (|has| |#1| (-454)))) (-3717 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-3012 (($) NIL T CONST)) (-4307 (((-3 |#1| "failed") $) 172) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 |#2| "failed") $) NIL)) (-4205 ((|#1| $) 170) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-566) $) NIL (|has| |#1| (-1038 (-566)))) ((|#2| $) NIL)) (-2738 (($ $ $ |#2|) NIL (|has| |#1| (-172)))) (-1786 (($ $) 221)) (-3577 (((-689 (-566)) (-689 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -4227 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) NIL) (((-689 |#1|) (-689 $)) NIL)) (-1878 (((-3 $ "failed") $) 92)) (-4075 (($ $) NIL (|has| |#1| (-454))) (($ $ |#2|) NIL (|has| |#1| (-454)))) (-1774 (((-644 $) $) NIL)) (-3268 (((-112) $) NIL (|has| |#1| (-909)))) (-3635 (($ $ |#1| (-533 |#2|) $) NIL)) (-2062 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| |#1| (-886 (-381))) (|has| |#2| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| |#1| (-886 (-566))) (|has| |#2| (-886 (-566)))))) (-3934 (((-112) $) 20)) (-2614 (((-771) $) 30)) (-3851 (($ (-1171 |#1|) |#2|) 57) (($ (-1171 $) |#2|) 74)) (-2288 (((-644 $) $) NIL)) (-3264 (((-112) $) 41)) (-3840 (($ |#1| (-533 |#2|)) 81) (($ $ |#2| (-771)) 61) (($ $ (-644 |#2|) (-644 (-771))) NIL)) (-2044 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $ |#2|) NIL)) (-3760 (((-533 |#2|) $) 209) (((-771) $ |#2|) 210) (((-644 (-771)) $ (-644 |#2|)) 211)) (-4301 (($ (-1 (-533 |#2|) (-533 |#2|)) $) NIL)) (-1301 (($ (-1 |#1| |#1|) $) 130)) (-3169 (((-3 |#2| "failed") $) 181)) (-1749 (($ $) 220)) (-1763 ((|#1| $) 46)) (-2167 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-4117 (((-1157) $) NIL)) (-3714 (((-3 (-644 $) "failed") $) NIL)) (-2353 (((-3 (-644 $) "failed") $) NIL)) (-1518 (((-3 (-2 (|:| |var| |#2|) (|:| -2852 (-771))) "failed") $) NIL)) (-4035 (((-1119) $) NIL)) (-1723 (((-112) $) 42)) (-1736 ((|#1| $) NIL)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) 150 (|has| |#1| (-454)))) (-2214 (($ (-644 $)) 155 (|has| |#1| (-454))) (($ $ $) 140 (|has| |#1| (-454)))) (-4303 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-3240 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-3719 (((-420 $) $) NIL (|has| |#1| (-909)))) (-2994 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558))) (((-3 $ "failed") $ $) 128 (|has| |#1| (-558)))) (-2055 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ |#2| |#1|) 184) (($ $ (-644 |#2|) (-644 |#1|)) 199) (($ $ |#2| $) 183) (($ $ (-644 |#2|) (-644 $)) 198)) (-3652 (($ $ |#2|) NIL (|has| |#1| (-172)))) (-3561 (($ $ |#2|) 219) (($ $ (-644 |#2|)) NIL) (($ $ |#2| (-771)) NIL) (($ $ (-644 |#2|) (-644 (-771))) NIL)) (-3636 (((-533 |#2|) $) 205) (((-771) $ |#2|) 200) (((-644 (-771)) $ (-644 |#2|)) 203)) (-1348 (((-892 (-381)) $) NIL (-12 (|has| |#1| (-614 (-892 (-381)))) (|has| |#2| (-614 (-892 (-381)))))) (((-892 (-566)) $) NIL (-12 (|has| |#1| (-614 (-892 (-566)))) (|has| |#2| (-614 (-892 (-566)))))) (((-538) $) NIL (-12 (|has| |#1| (-614 (-538))) (|has| |#2| (-614 (-538)))))) (-2483 ((|#1| $) 136 (|has| |#1| (-454))) (($ $ |#2|) 139 (|has| |#1| (-454)))) (-1656 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-909))))) (-3783 (((-862) $) 161) (($ (-566)) 86) (($ |#1|) 87) (($ |#2|) 33) (($ $) NIL (|has| |#1| (-558))) (($ (-409 (-566))) NIL (-2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))))) (-4170 (((-644 |#1|) $) 164)) (-2649 ((|#1| $ (-533 |#2|)) 83) (($ $ |#2| (-771)) NIL) (($ $ (-644 |#2|) (-644 (-771))) NIL)) (-3144 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| $ (-145)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-2107 (((-771)) 89 T CONST)) (-3362 (($ $ $ (-771)) NIL (|has| |#1| (-172)))) (-3117 (((-112) $ $) NIL)) (-2695 (((-112) $ $) 125 (|has| |#1| (-558)))) (-2479 (($) 12 T CONST)) (-4334 (($) 14 T CONST)) (-2875 (($ $ |#2|) NIL) (($ $ (-644 |#2|)) NIL) (($ $ |#2| (-771)) NIL) (($ $ (-644 |#2|) (-644 (-771))) NIL)) (-2947 (((-112) $ $) 108)) (-3065 (($ $ |#1|) 134 (|has| |#1| (-365)))) (-3053 (($ $) 95) (($ $ $) 106)) (-3041 (($ $ $) 58)) (** (($ $ (-921)) 112) (($ $ (-771)) 111)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 98) (($ $ $) 75) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) 101) (($ $ |#1|) NIL))) +((-3520 (*1 *1 *2) (-12 (-4 *2 (-1049)) (-4 *1 (-1122 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)))) (-2253 (*1 *1 *2) (-12 (-5 *2 (-644 *4)) (-4 *4 (-1049)) (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)))) (-3065 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *2 *5)) (-4 *4 (-1049)) (-4 *5 (-238 *3 *4)) (-4 *2 (-238 *3 *4)))) (-3833 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (-4 *2 (-1049)))) (-3429 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (-4 *2 (-1049)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *4 (-1049)) (-4 *5 (-238 *3 *4)) (-4 *2 (-238 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *2 *5)) (-4 *4 (-1049)) (-4 *2 (-238 *3 *4)) (-4 *5 (-238 *3 *4)))) (-3943 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4416 "*"))) (-4 *2 (-1049)))) (-1444 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4416 "*"))) (-4 *2 (-1049)))) (-1542 (*1 *1 *1) (|partial| -12 (-4 *1 (-1122 *2 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-238 *2 *3)) (-4 *5 (-238 *2 *3)) (-4 *3 (-365)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *4 (-1049)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)) (-4 *4 (-365))))) +(-13 (-231 |t#2|) (-111 |t#2| |t#2|) (-1053 |t#1| |t#1| |t#2| |t#3| |t#4|) (-413 |t#2|) (-379 |t#2|) (-10 -8 (IF (|has| |t#2| (-172)) (-6 (-717 |t#2|)) |%noBranch|) (-15 -3520 ($ |t#2|)) (-15 -2253 ($ (-644 |t#2|))) (-15 -3065 (|t#3| $)) (-15 -3833 (|t#2| $)) (-15 -3429 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4416 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3943 (|t#2| $)) (-15 -1444 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-365)) (PROGN (-15 -1542 ((-3 $ "failed") $)) (-15 ** ($ $ (-566)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4416 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-616 #0=(-409 (-566))) |has| |#2| (-1038 (-409 (-566)))) ((-616 (-566)) . T) ((-616 |#2|) . T) ((-613 (-862)) . T) ((-231 |#2|) . T) ((-233) |has| |#2| (-233)) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((-379 |#2|) . T) ((-413 |#2|) . T) ((-491 |#2|) . T) ((-516 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((-646 (-566)) . T) ((-646 |#2|) . T) ((-646 $) . T) ((-648 |#2|) . T) ((-648 $) . T) ((-640 |#2|) -2768 (|has| |#2| (-172)) (|has| |#2| (-6 (-4416 "*")))) ((-639 (-566)) |has| |#2| (-639 (-566))) ((-639 |#2|) . T) ((-717 |#2|) -2768 (|has| |#2| (-172)) (|has| |#2| (-6 (-4416 "*")))) ((-726) . T) ((-900 (-1175)) |has| |#2| (-900 (-1175))) ((-1053 |#1| |#1| |#2| |#3| |#4|) . T) ((-1038 #0#) |has| |#2| (-1038 (-409 (-566)))) ((-1038 (-566)) |has| |#2| (-1038 (-566))) ((-1038 |#2|) . T) ((-1051 |#2|) . T) ((-1056 |#2|) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1214) . T)) +((-2747 ((|#4| |#4|) 81)) (-2999 ((|#4| |#4|) 76)) (-4197 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2875 (-644 |#3|))) |#4| |#3|) 91)) (-3614 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80)) (-2769 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78))) +(((-1123 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2999 (|#4| |#4|)) (-15 -2769 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2747 (|#4| |#4|)) (-15 -3614 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -4197 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2875 (-644 |#3|))) |#4| |#3|))) (-308) (-375 |#1|) (-375 |#1|) (-687 |#1| |#2| |#3|)) (T -1123)) +((-4197 (*1 *2 *3 *4) (-12 (-4 *5 (-308)) (-4 *6 (-375 *5)) (-4 *4 (-375 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2875 (-644 *4)))) (-5 *1 (-1123 *5 *6 *4 *3)) (-4 *3 (-687 *5 *6 *4)))) (-3614 (*1 *2 *3) (-12 (-4 *4 (-308)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1123 *4 *5 *6 *3)) (-4 *3 (-687 *4 *5 *6)))) (-2747 (*1 *2 *2) (-12 (-4 *3 (-308)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-1123 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5)))) (-2769 (*1 *2 *3) (-12 (-4 *4 (-308)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1123 *4 *5 *6 *3)) (-4 *3 (-687 *4 *5 *6)))) (-2999 (*1 *2 *2) (-12 (-4 *3 (-308)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-1123 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5))))) +(-10 -7 (-15 -2999 (|#4| |#4|)) (-15 -2769 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2747 (|#4| |#4|)) (-15 -3614 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -4197 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2875 (-644 |#3|))) |#4| |#3|))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) 18)) (-1771 (((-644 |#2|) $) 178)) (-1590 (((-1171 $) $ |#2|) 63) (((-1171 |#1|) $) 52)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) 118 (|has| |#1| (-558)))) (-2161 (($ $) 120 (|has| |#1| (-558)))) (-2345 (((-112) $) 122 (|has| |#1| (-558)))) (-1357 (((-771) $) NIL) (((-771) $ (-644 |#2|)) 217)) (-3967 (((-3 $ "failed") $ $) NIL)) (-2292 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-1378 (($ $) NIL (|has| |#1| (-454)))) (-1364 (((-420 $) $) NIL (|has| |#1| (-454)))) (-4066 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-2463 (($) NIL T CONST)) (-2229 (((-3 |#1| "failed") $) 172) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 |#2| "failed") $) NIL)) (-4158 ((|#1| $) 170) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-566) $) NIL (|has| |#1| (-1038 (-566)))) ((|#2| $) NIL)) (-2610 (($ $ $ |#2|) NIL (|has| |#1| (-172)))) (-2814 (($ $) 221)) (-4089 (((-689 (-566)) (-689 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -3361 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) NIL) (((-689 |#1|) (-689 $)) NIL)) (-3245 (((-3 $ "failed") $) 92)) (-2616 (($ $) NIL (|has| |#1| (-454))) (($ $ |#2|) NIL (|has| |#1| (-454)))) (-2804 (((-644 $) $) NIL)) (-1615 (((-112) $) NIL (|has| |#1| (-909)))) (-1896 (($ $ |#1| (-533 |#2|) $) NIL)) (-2926 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| |#1| (-886 (-381))) (|has| |#2| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| |#1| (-886 (-566))) (|has| |#2| (-886 (-566)))))) (-2389 (((-112) $) 20)) (-3039 (((-771) $) 30)) (-1757 (($ (-1171 |#1|) |#2|) 57) (($ (-1171 $) |#2|) 74)) (-1587 (((-644 $) $) NIL)) (-2497 (((-112) $) 41)) (-1746 (($ |#1| (-533 |#2|)) 81) (($ $ |#2| (-771)) 61) (($ $ (-644 |#2|) (-644 (-771))) NIL)) (-2815 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $ |#2|) NIL)) (-2749 (((-533 |#2|) $) 209) (((-771) $ |#2|) 210) (((-644 (-771)) $ (-644 |#2|)) 211)) (-3021 (($ (-1 (-533 |#2|) (-533 |#2|)) $) NIL)) (-2319 (($ (-1 |#1| |#1|) $) 130)) (-2297 (((-3 |#2| "failed") $) 181)) (-2784 (($ $) 220)) (-2794 ((|#1| $) 46)) (-2128 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-3380 (((-1157) $) NIL)) (-3738 (((-3 (-644 $) "failed") $) NIL)) (-4199 (((-3 (-644 $) "failed") $) NIL)) (-4108 (((-3 (-2 (|:| |var| |#2|) (|:| -2201 (-771))) "failed") $) NIL)) (-4072 (((-1119) $) NIL)) (-2761 (((-112) $) 42)) (-2773 ((|#1| $) NIL)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) 150 (|has| |#1| (-454)))) (-2164 (($ (-644 $)) 155 (|has| |#1| (-454))) (($ $ $) 140 (|has| |#1| (-454)))) (-2010 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-1893 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-1624 (((-420 $) $) NIL (|has| |#1| (-909)))) (-2978 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558))) (((-3 $ "failed") $ $) 128 (|has| |#1| (-558)))) (-2023 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ |#2| |#1|) 184) (($ $ (-644 |#2|) (-644 |#1|)) 199) (($ $ |#2| $) 183) (($ $ (-644 |#2|) (-644 $)) 198)) (-4068 (($ $ |#2|) NIL (|has| |#1| (-172)))) (-3629 (($ $ |#2|) 219) (($ $ (-644 |#2|)) NIL) (($ $ |#2| (-771)) NIL) (($ $ (-644 |#2|) (-644 (-771))) NIL)) (-3902 (((-533 |#2|) $) 205) (((-771) $ |#2|) 200) (((-644 (-771)) $ (-644 |#2|)) 203)) (-2376 (((-892 (-381)) $) NIL (-12 (|has| |#1| (-614 (-892 (-381)))) (|has| |#2| (-614 (-892 (-381)))))) (((-892 (-566)) $) NIL (-12 (|has| |#1| (-614 (-892 (-566)))) (|has| |#2| (-614 (-892 (-566)))))) (((-538) $) NIL (-12 (|has| |#1| (-614 (-538))) (|has| |#2| (-614 (-538)))))) (-3173 ((|#1| $) 136 (|has| |#1| (-454))) (($ $ |#2|) 139 (|has| |#1| (-454)))) (-3391 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-909))))) (-3152 (((-862) $) 161) (($ (-566)) 86) (($ |#1|) 87) (($ |#2|) 33) (($ $) NIL (|has| |#1| (-558))) (($ (-409 (-566))) NIL (-2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))))) (-1643 (((-644 |#1|) $) 164)) (-2271 ((|#1| $ (-533 |#2|)) 83) (($ $ |#2| (-771)) NIL) (($ $ (-644 |#2|) (-644 (-771))) NIL)) (-2633 (((-3 $ "failed") $) NIL (-2768 (-12 (|has| $ (-145)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-2593 (((-771)) 89 T CONST)) (-2021 (($ $ $ (-771)) NIL (|has| |#1| (-172)))) (-3044 (((-112) $ $) NIL)) (-3014 (((-112) $ $) 125 (|has| |#1| (-558)))) (-4356 (($) 12 T CONST)) (-4366 (($) 14 T CONST)) (-3497 (($ $ |#2|) NIL) (($ $ (-644 |#2|)) NIL) (($ $ |#2| (-771)) NIL) (($ $ (-644 |#2|) (-644 (-771))) NIL)) (-2914 (((-112) $ $) 108)) (-3025 (($ $ |#1|) 134 (|has| |#1| (-365)))) (-3012 (($ $) 95) (($ $ $) 106)) (-3002 (($ $ $) 58)) (** (($ $ (-921)) 112) (($ $ (-771)) 111)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 98) (($ $ $) 75) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) 101) (($ $ |#1|) NIL))) (((-1124 |#1| |#2|) (-949 |#1| (-533 |#2|) |#2|) (-1049) (-850)) (T -1124)) NIL (-949 |#1| (-533 |#2|) |#2|) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-3863 (((-644 |#2|) $) NIL)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-3991 (($ $) NIL (|has| |#1| (-558)))) (-2388 (((-112) $) NIL (|has| |#1| (-558)))) (-4114 (($ $) 152 (|has| |#1| (-38 (-409 (-566)))))) (-2109 (($ $) 128 (|has| |#1| (-38 (-409 (-566)))))) (-4175 (((-3 $ "failed") $ $) NIL)) (-3731 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2240 (($ $) 148 (|has| |#1| (-38 (-409 (-566)))))) (-2085 (($ $) 124 (|has| |#1| (-38 (-409 (-566)))))) (-4134 (($ $) 156 (|has| |#1| (-38 (-409 (-566)))))) (-2129 (($ $) 132 (|has| |#1| (-38 (-409 (-566)))))) (-3012 (($) NIL T CONST)) (-1786 (($ $) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-4386 (((-952 |#1|) $ (-771)) NIL) (((-952 |#1|) $ (-771) (-771)) NIL)) (-2158 (((-112) $) NIL)) (-4361 (($) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3254 (((-771) $ |#2|) NIL) (((-771) $ |#2| (-771)) NIL)) (-3934 (((-112) $) NIL)) (-2140 (($ $ (-566)) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3264 (((-112) $) NIL)) (-3840 (($ $ (-644 |#2|) (-644 (-533 |#2|))) NIL) (($ $ |#2| (-533 |#2|)) NIL) (($ |#1| (-533 |#2|)) NIL) (($ $ |#2| (-771)) 63) (($ $ (-644 |#2|) (-644 (-771))) NIL)) (-1301 (($ (-1 |#1| |#1|) $) NIL)) (-3651 (($ $) 122 (|has| |#1| (-38 (-409 (-566)))))) (-1749 (($ $) NIL)) (-1763 ((|#1| $) NIL)) (-4117 (((-1157) $) NIL)) (-1941 (($ $ |#2|) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-409 (-566)))))) (-4035 (((-1119) $) NIL)) (-2314 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-409 (-566)))))) (-3874 (($ $ (-771)) 16)) (-2994 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-2561 (($ $) 120 (|has| |#1| (-38 (-409 (-566)))))) (-2055 (($ $ |#2| $) 106) (($ $ (-644 |#2|) (-644 $)) 99) (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL)) (-3561 (($ $ |#2|) 109) (($ $ (-644 |#2|)) NIL) (($ $ |#2| (-771)) NIL) (($ $ (-644 |#2|) (-644 (-771))) NIL)) (-3636 (((-533 |#2|) $) NIL)) (-1867 (((-1 (-1155 |#3|) |#3|) (-644 |#2|) (-644 (-1155 |#3|))) 87)) (-4144 (($ $) 158 (|has| |#1| (-38 (-409 (-566)))))) (-2141 (($ $) 134 (|has| |#1| (-38 (-409 (-566)))))) (-4124 (($ $) 154 (|has| |#1| (-38 (-409 (-566)))))) (-2118 (($ $) 130 (|has| |#1| (-38 (-409 (-566)))))) (-4104 (($ $) 150 (|has| |#1| (-38 (-409 (-566)))))) (-2098 (($ $) 126 (|has| |#1| (-38 (-409 (-566)))))) (-2770 (($ $) 18)) (-3783 (((-862) $) 199) (($ (-566)) NIL) (($ |#1|) 45 (|has| |#1| (-172))) (($ $) NIL (|has| |#1| (-558))) (($ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ |#2|) 70) (($ |#3|) 68)) (-2649 ((|#1| $ (-533 |#2|)) NIL) (($ $ |#2| (-771)) NIL) (($ $ (-644 |#2|) (-644 (-771))) NIL) ((|#3| $ (-771)) 43)) (-3144 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2107 (((-771)) NIL T CONST)) (-3117 (((-112) $ $) NIL)) (-4177 (($ $) 164 (|has| |#1| (-38 (-409 (-566)))))) (-2180 (($ $) 140 (|has| |#1| (-38 (-409 (-566)))))) (-2695 (((-112) $ $) NIL (|has| |#1| (-558)))) (-4155 (($ $) 160 (|has| |#1| (-38 (-409 (-566)))))) (-2153 (($ $) 136 (|has| |#1| (-38 (-409 (-566)))))) (-4198 (($ $) 168 (|has| |#1| (-38 (-409 (-566)))))) (-2212 (($ $) 144 (|has| |#1| (-38 (-409 (-566)))))) (-2976 (($ $) 170 (|has| |#1| (-38 (-409 (-566)))))) (-2227 (($ $) 146 (|has| |#1| (-38 (-409 (-566)))))) (-4188 (($ $) 166 (|has| |#1| (-38 (-409 (-566)))))) (-2196 (($ $) 142 (|has| |#1| (-38 (-409 (-566)))))) (-4166 (($ $) 162 (|has| |#1| (-38 (-409 (-566)))))) (-2166 (($ $) 138 (|has| |#1| (-38 (-409 (-566)))))) (-2479 (($) 52 T CONST)) (-4334 (($) 62 T CONST)) (-2875 (($ $ |#2|) NIL) (($ $ (-644 |#2|)) NIL) (($ $ |#2| (-771)) NIL) (($ $ (-644 |#2|) (-644 (-771))) NIL)) (-2947 (((-112) $ $) NIL)) (-3065 (($ $ |#1|) 201 (|has| |#1| (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) 66)) (** (($ $ (-921)) NIL) (($ $ (-771)) 77) (($ $ $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 112 (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 65) (($ $ (-409 (-566))) 117 (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) 115 (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) 48) (($ $ |#1|) 49) (($ |#3| $) 47))) -(((-1125 |#1| |#2| |#3|) (-13 (-740 |#1| |#2|) (-10 -8 (-15 -2649 (|#3| $ (-771))) (-15 -3783 ($ |#2|)) (-15 -3783 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1867 ((-1 (-1155 |#3|) |#3|) (-644 |#2|) (-644 (-1155 |#3|)))) (IF (|has| |#1| (-38 (-409 (-566)))) (PROGN (-15 -1941 ($ $ |#2| |#1|)) (-15 -2314 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1049) (-850) (-949 |#1| (-533 |#2|) |#2|)) (T -1125)) -((-2649 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-4 *2 (-949 *4 (-533 *5) *5)) (-5 *1 (-1125 *4 *5 *2)) (-4 *4 (-1049)) (-4 *5 (-850)))) (-3783 (*1 *1 *2) (-12 (-4 *3 (-1049)) (-4 *2 (-850)) (-5 *1 (-1125 *3 *2 *4)) (-4 *4 (-949 *3 (-533 *2) *2)))) (-3783 (*1 *1 *2) (-12 (-4 *3 (-1049)) (-4 *4 (-850)) (-5 *1 (-1125 *3 *4 *2)) (-4 *2 (-949 *3 (-533 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1049)) (-4 *4 (-850)) (-5 *1 (-1125 *3 *4 *2)) (-4 *2 (-949 *3 (-533 *4) *4)))) (-1867 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *6)) (-5 *4 (-644 (-1155 *7))) (-4 *6 (-850)) (-4 *7 (-949 *5 (-533 *6) *6)) (-4 *5 (-1049)) (-5 *2 (-1 (-1155 *7) *7)) (-5 *1 (-1125 *5 *6 *7)))) (-1941 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-4 *2 (-850)) (-5 *1 (-1125 *3 *2 *4)) (-4 *4 (-949 *3 (-533 *2) *2)))) (-2314 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1125 *4 *3 *5))) (-4 *4 (-38 (-409 (-566)))) (-4 *4 (-1049)) (-4 *3 (-850)) (-5 *1 (-1125 *4 *3 *5)) (-4 *5 (-949 *4 (-533 *3) *3))))) -(-13 (-740 |#1| |#2|) (-10 -8 (-15 -2649 (|#3| $ (-771))) (-15 -3783 ($ |#2|)) (-15 -3783 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1867 ((-1 (-1155 |#3|) |#3|) (-644 |#2|) (-644 (-1155 |#3|)))) (IF (|has| |#1| (-38 (-409 (-566)))) (PROGN (-15 -1941 ($ $ |#2| |#1|)) (-15 -2314 ($ (-1 $) |#2| |#1|))) |%noBranch|))) -((-3007 (((-112) $ $) 7)) (-2584 (((-644 (-2 (|:| -1651 $) (|:| -3501 (-644 |#4|)))) (-644 |#4|)) 86)) (-2333 (((-644 $) (-644 |#4|)) 87) (((-644 $) (-644 |#4|) (-112)) 112)) (-3863 (((-644 |#3|) $) 34)) (-2368 (((-112) $) 27)) (-4070 (((-112) $) 18 (|has| |#1| (-558)))) (-3624 (((-112) |#4| $) 102) (((-112) $) 98)) (-1374 ((|#4| |#4| $) 93)) (-1550 (((-644 (-2 (|:| |val| |#4|) (|:| -3570 $))) |#4| $) 127)) (-1510 (((-2 (|:| |under| $) (|:| -3470 $) (|:| |upper| $)) $ |#3|) 28)) (-2256 (((-112) $ (-771)) 45)) (-2701 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4414))) (((-3 |#4| "failed") $ |#3|) 80)) (-3012 (($) 46 T CONST)) (-3779 (((-112) $) 23 (|has| |#1| (-558)))) (-2540 (((-112) $ $) 25 (|has| |#1| (-558)))) (-4093 (((-112) $ $) 24 (|has| |#1| (-558)))) (-3741 (((-112) $) 26 (|has| |#1| (-558)))) (-2506 (((-644 |#4|) (-644 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2026 (((-644 |#4|) (-644 |#4|) $) 19 (|has| |#1| (-558)))) (-4306 (((-644 |#4|) (-644 |#4|) $) 20 (|has| |#1| (-558)))) (-4307 (((-3 $ "failed") (-644 |#4|)) 37)) (-4205 (($ (-644 |#4|)) 36)) (-2010 (((-3 $ "failed") $) 83)) (-2100 ((|#4| |#4| $) 90)) (-2031 (($ $) 69 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414))))) (-2665 (($ |#4| $) 68 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4414)))) (-2513 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-558)))) (-1464 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-1401 ((|#4| |#4| $) 88)) (-1676 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4414))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4414))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-3692 (((-2 (|:| -1651 (-644 |#4|)) (|:| -3501 (-644 |#4|))) $) 106)) (-3987 (((-112) |#4| $) 137)) (-1906 (((-112) |#4| $) 134)) (-1530 (((-112) |#4| $) 138) (((-112) $) 135)) (-3979 (((-644 |#4|) $) 53 (|has| $ (-6 -4414)))) (-2111 (((-112) |#4| $) 105) (((-112) $) 104)) (-1489 ((|#3| $) 35)) (-2404 (((-112) $ (-771)) 44)) (-2329 (((-644 |#4|) $) 54 (|has| $ (-6 -4414)))) (-1916 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414))))) (-2908 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#4| |#4|) $) 48)) (-2189 (((-644 |#3|) $) 33)) (-3953 (((-112) |#3| $) 32)) (-2603 (((-112) $ (-771)) 43)) (-4117 (((-1157) $) 10)) (-1532 (((-3 |#4| (-644 $)) |#4| |#4| $) 129)) (-1558 (((-644 (-2 (|:| |val| |#4|) (|:| -3570 $))) |#4| |#4| $) 128)) (-2686 (((-3 |#4| "failed") $) 84)) (-3758 (((-644 $) |#4| $) 130)) (-1613 (((-3 (-112) (-644 $)) |#4| $) 133)) (-1714 (((-644 (-2 (|:| |val| (-112)) (|:| -3570 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-4018 (((-644 $) |#4| $) 126) (((-644 $) (-644 |#4|) $) 125) (((-644 $) (-644 |#4|) (-644 $)) 124) (((-644 $) |#4| (-644 $)) 123)) (-2096 (($ |#4| $) 118) (($ (-644 |#4|) $) 117)) (-2851 (((-644 |#4|) $) 108)) (-1694 (((-112) |#4| $) 100) (((-112) $) 96)) (-1871 ((|#4| |#4| $) 91)) (-2897 (((-112) $ $) 111)) (-3112 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-558)))) (-3351 (((-112) |#4| $) 101) (((-112) $) 97)) (-3544 ((|#4| |#4| $) 92)) (-4035 (((-1119) $) 11)) (-1998 (((-3 |#4| "failed") $) 85)) (-2006 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2060 (((-3 $ "failed") $ |#4|) 79)) (-3874 (($ $ |#4|) 78) (((-644 $) |#4| $) 116) (((-644 $) |#4| (-644 $)) 115) (((-644 $) (-644 |#4|) $) 114) (((-644 $) (-644 |#4|) (-644 $)) 113)) (-2692 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 |#4|) (-644 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-644 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))) (-1932 (((-112) $ $) 39)) (-3467 (((-112) $) 42)) (-1494 (($) 41)) (-3636 (((-771) $) 107)) (-4045 (((-771) |#4| $) 55 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414)))) (((-771) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4414)))) (-3940 (($ $) 40)) (-1348 (((-538) $) 70 (|has| |#4| (-614 (-538))))) (-3796 (($ (-644 |#4|)) 61)) (-2325 (($ $ |#3|) 29)) (-4106 (($ $ |#3|) 31)) (-3973 (($ $) 89)) (-3080 (($ $ |#3|) 30)) (-3783 (((-862) $) 12) (((-644 |#4|) $) 38)) (-2028 (((-771) $) 77 (|has| |#3| (-370)))) (-3117 (((-112) $ $) 9)) (-3706 (((-3 (-2 (|:| |bas| $) (|:| -1825 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -1825 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3772 (((-112) $ (-1 (-112) |#4| (-644 |#4|))) 99)) (-3089 (((-644 $) |#4| $) 122) (((-644 $) |#4| (-644 $)) 121) (((-644 $) (-644 |#4|) $) 120) (((-644 $) (-644 |#4|) (-644 $)) 119)) (-1894 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4414)))) (-4180 (((-644 |#3|) $) 82)) (-1571 (((-112) |#4| $) 136)) (-1423 (((-112) |#3| $) 81)) (-2947 (((-112) $ $) 6)) (-3018 (((-771) $) 47 (|has| $ (-6 -4414))))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-1771 (((-644 |#2|) $) NIL)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-2161 (($ $) NIL (|has| |#1| (-558)))) (-2345 (((-112) $) NIL (|has| |#1| (-558)))) (-3963 (($ $) 152 (|has| |#1| (-38 (-409 (-566)))))) (-3630 (($ $) 128 (|has| |#1| (-38 (-409 (-566)))))) (-3967 (((-3 $ "failed") $ $) NIL)) (-1635 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3941 (($ $) 148 (|has| |#1| (-38 (-409 (-566)))))) (-3602 (($ $) 124 (|has| |#1| (-38 (-409 (-566)))))) (-3986 (($ $) 156 (|has| |#1| (-38 (-409 (-566)))))) (-3656 (($ $) 132 (|has| |#1| (-38 (-409 (-566)))))) (-2463 (($) NIL T CONST)) (-2814 (($ $) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-2016 (((-952 |#1|) $ (-771)) NIL) (((-952 |#1|) $ (-771) (-771)) NIL)) (-3772 (((-112) $) NIL)) (-2281 (($) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2679 (((-771) $ |#2|) NIL) (((-771) $ |#2| (-771)) NIL)) (-2389 (((-112) $) NIL)) (-1575 (($ $ (-566)) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2497 (((-112) $) NIL)) (-1746 (($ $ (-644 |#2|) (-644 (-533 |#2|))) NIL) (($ $ |#2| (-533 |#2|)) NIL) (($ |#1| (-533 |#2|)) NIL) (($ $ |#2| (-771)) 63) (($ $ (-644 |#2|) (-644 (-771))) NIL)) (-2319 (($ (-1 |#1| |#1|) $) NIL)) (-3619 (($ $) 122 (|has| |#1| (-38 (-409 (-566)))))) (-2784 (($ $) NIL)) (-2794 ((|#1| $) NIL)) (-3380 (((-1157) $) NIL)) (-3313 (($ $ |#2|) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-409 (-566)))))) (-4072 (((-1119) $) NIL)) (-3701 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-409 (-566)))))) (-3369 (($ $ (-771)) 16)) (-2978 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-3521 (($ $) 120 (|has| |#1| (-38 (-409 (-566)))))) (-2023 (($ $ |#2| $) 106) (($ $ (-644 |#2|) (-644 $)) 99) (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL)) (-3629 (($ $ |#2|) 109) (($ $ (-644 |#2|)) NIL) (($ $ |#2| (-771)) NIL) (($ $ (-644 |#2|) (-644 (-771))) NIL)) (-3902 (((-533 |#2|) $) NIL)) (-1533 (((-1 (-1155 |#3|) |#3|) (-644 |#2|) (-644 (-1155 |#3|))) 87)) (-3996 (($ $) 158 (|has| |#1| (-38 (-409 (-566)))))) (-3670 (($ $) 134 (|has| |#1| (-38 (-409 (-566)))))) (-3976 (($ $) 154 (|has| |#1| (-38 (-409 (-566)))))) (-3643 (($ $) 130 (|has| |#1| (-38 (-409 (-566)))))) (-3952 (($ $) 150 (|has| |#1| (-38 (-409 (-566)))))) (-3618 (($ $) 126 (|has| |#1| (-38 (-409 (-566)))))) (-1687 (($ $) 18)) (-3152 (((-862) $) 199) (($ (-566)) NIL) (($ |#1|) 45 (|has| |#1| (-172))) (($ $) NIL (|has| |#1| (-558))) (($ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ |#2|) 70) (($ |#3|) 68)) (-2271 ((|#1| $ (-533 |#2|)) NIL) (($ $ |#2| (-771)) NIL) (($ $ (-644 |#2|) (-644 (-771))) NIL) ((|#3| $ (-771)) 43)) (-2633 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2593 (((-771)) NIL T CONST)) (-3044 (((-112) $ $) NIL)) (-4032 (($ $) 164 (|has| |#1| (-38 (-409 (-566)))))) (-3892 (($ $) 140 (|has| |#1| (-38 (-409 (-566)))))) (-3014 (((-112) $ $) NIL (|has| |#1| (-558)))) (-4008 (($ $) 160 (|has| |#1| (-38 (-409 (-566)))))) (-3684 (($ $) 136 (|has| |#1| (-38 (-409 (-566)))))) (-4057 (($ $) 168 (|has| |#1| (-38 (-409 (-566)))))) (-3917 (($ $) 144 (|has| |#1| (-38 (-409 (-566)))))) (-3964 (($ $) 170 (|has| |#1| (-38 (-409 (-566)))))) (-3929 (($ $) 146 (|has| |#1| (-38 (-409 (-566)))))) (-4044 (($ $) 166 (|has| |#1| (-38 (-409 (-566)))))) (-3904 (($ $) 142 (|has| |#1| (-38 (-409 (-566)))))) (-4020 (($ $) 162 (|has| |#1| (-38 (-409 (-566)))))) (-3879 (($ $) 138 (|has| |#1| (-38 (-409 (-566)))))) (-4356 (($) 52 T CONST)) (-4366 (($) 62 T CONST)) (-3497 (($ $ |#2|) NIL) (($ $ (-644 |#2|)) NIL) (($ $ |#2| (-771)) NIL) (($ $ (-644 |#2|) (-644 (-771))) NIL)) (-2914 (((-112) $ $) NIL)) (-3025 (($ $ |#1|) 201 (|has| |#1| (-365)))) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) 66)) (** (($ $ (-921)) NIL) (($ $ (-771)) 77) (($ $ $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 112 (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 65) (($ $ (-409 (-566))) 117 (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) 115 (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) 48) (($ $ |#1|) 49) (($ |#3| $) 47))) +(((-1125 |#1| |#2| |#3|) (-13 (-740 |#1| |#2|) (-10 -8 (-15 -2271 (|#3| $ (-771))) (-15 -3152 ($ |#2|)) (-15 -3152 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1533 ((-1 (-1155 |#3|) |#3|) (-644 |#2|) (-644 (-1155 |#3|)))) (IF (|has| |#1| (-38 (-409 (-566)))) (PROGN (-15 -3313 ($ $ |#2| |#1|)) (-15 -3701 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1049) (-850) (-949 |#1| (-533 |#2|) |#2|)) (T -1125)) +((-2271 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-4 *2 (-949 *4 (-533 *5) *5)) (-5 *1 (-1125 *4 *5 *2)) (-4 *4 (-1049)) (-4 *5 (-850)))) (-3152 (*1 *1 *2) (-12 (-4 *3 (-1049)) (-4 *2 (-850)) (-5 *1 (-1125 *3 *2 *4)) (-4 *4 (-949 *3 (-533 *2) *2)))) (-3152 (*1 *1 *2) (-12 (-4 *3 (-1049)) (-4 *4 (-850)) (-5 *1 (-1125 *3 *4 *2)) (-4 *2 (-949 *3 (-533 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1049)) (-4 *4 (-850)) (-5 *1 (-1125 *3 *4 *2)) (-4 *2 (-949 *3 (-533 *4) *4)))) (-1533 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *6)) (-5 *4 (-644 (-1155 *7))) (-4 *6 (-850)) (-4 *7 (-949 *5 (-533 *6) *6)) (-4 *5 (-1049)) (-5 *2 (-1 (-1155 *7) *7)) (-5 *1 (-1125 *5 *6 *7)))) (-3313 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-4 *2 (-850)) (-5 *1 (-1125 *3 *2 *4)) (-4 *4 (-949 *3 (-533 *2) *2)))) (-3701 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1125 *4 *3 *5))) (-4 *4 (-38 (-409 (-566)))) (-4 *4 (-1049)) (-4 *3 (-850)) (-5 *1 (-1125 *4 *3 *5)) (-4 *5 (-949 *4 (-533 *3) *3))))) +(-13 (-740 |#1| |#2|) (-10 -8 (-15 -2271 (|#3| $ (-771))) (-15 -3152 ($ |#2|)) (-15 -3152 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1533 ((-1 (-1155 |#3|) |#3|) (-644 |#2|) (-644 (-1155 |#3|)))) (IF (|has| |#1| (-38 (-409 (-566)))) (PROGN (-15 -3313 ($ $ |#2| |#1|)) (-15 -3701 ($ (-1 $) |#2| |#1|))) |%noBranch|))) +((-2988 (((-112) $ $) 7)) (-2107 (((-644 (-2 (|:| -1685 $) (|:| -3292 (-644 |#4|)))) (-644 |#4|)) 86)) (-2779 (((-644 $) (-644 |#4|)) 87) (((-644 $) (-644 |#4|) (-112)) 112)) (-1771 (((-644 |#3|) $) 34)) (-3071 (((-112) $) 27)) (-3274 (((-112) $) 18 (|has| |#1| (-558)))) (-2267 (((-112) |#4| $) 102) (((-112) $) 98)) (-1411 ((|#4| |#4| $) 93)) (-1378 (((-644 (-2 (|:| |val| |#4|) (|:| -1470 $))) |#4| $) 127)) (-2671 (((-2 (|:| |under| $) (|:| -3143 $) (|:| |upper| $)) $ |#3|) 28)) (-1504 (((-112) $ (-771)) 45)) (-3678 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4414))) (((-3 |#4| "failed") $ |#3|) 80)) (-2463 (($) 46 T CONST)) (-3036 (((-112) $) 23 (|has| |#1| (-558)))) (-1963 (((-112) $ $) 25 (|has| |#1| (-558)))) (-2983 (((-112) $ $) 24 (|has| |#1| (-558)))) (-1477 (((-112) $) 26 (|has| |#1| (-558)))) (-3930 (((-644 |#4|) (-644 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1789 (((-644 |#4|) (-644 |#4|) $) 19 (|has| |#1| (-558)))) (-2228 (((-644 |#4|) (-644 |#4|) $) 20 (|has| |#1| (-558)))) (-2229 (((-3 $ "failed") (-644 |#4|)) 37)) (-4158 (($ (-644 |#4|)) 36)) (-3919 (((-3 $ "failed") $) 83)) (-3110 ((|#4| |#4| $) 90)) (-3942 (($ $) 69 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414))))) (-2622 (($ |#4| $) 68 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4414)))) (-3264 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-558)))) (-3599 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-2690 ((|#4| |#4| $) 88)) (-2873 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4414))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4414))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-3476 (((-2 (|:| -1685 (-644 |#4|)) (|:| -3292 (-644 |#4|))) $) 106)) (-2969 (((-112) |#4| $) 137)) (-1951 (((-112) |#4| $) 134)) (-2775 (((-112) |#4| $) 138) (((-112) $) 135)) (-1683 (((-644 |#4|) $) 53 (|has| $ (-6 -4414)))) (-1640 (((-112) |#4| $) 105) (((-112) $) 104)) (-4296 ((|#3| $) 35)) (-3456 (((-112) $ (-771)) 44)) (-3491 (((-644 |#4|) $) 54 (|has| $ (-6 -4414)))) (-1602 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414))))) (-3885 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#4| |#4|) $) 48)) (-1785 (((-644 |#3|) $) 33)) (-1579 (((-112) |#3| $) 32)) (-3267 (((-112) $ (-771)) 43)) (-3380 (((-1157) $) 10)) (-3006 (((-3 |#4| (-644 $)) |#4| |#4| $) 129)) (-3940 (((-644 (-2 (|:| |val| |#4|) (|:| -1470 $))) |#4| |#4| $) 128)) (-2641 (((-3 |#4| "failed") $) 84)) (-2568 (((-644 $) |#4| $) 130)) (-1493 (((-3 (-112) (-644 $)) |#4| $) 133)) (-3835 (((-644 (-2 (|:| |val| (-112)) (|:| -1470 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-1997 (((-644 $) |#4| $) 126) (((-644 $) (-644 |#4|) $) 125) (((-644 $) (-644 |#4|) (-644 $)) 124) (((-644 $) |#4| (-644 $)) 123)) (-2921 (($ |#4| $) 118) (($ (-644 |#4|) $) 117)) (-2133 (((-644 |#4|) $) 108)) (-2543 (((-112) |#4| $) 100) (((-112) $) 96)) (-1906 ((|#4| |#4| $) 91)) (-3077 (((-112) $ $) 111)) (-2594 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-558)))) (-3374 (((-112) |#4| $) 101) (((-112) $) 97)) (-4074 ((|#4| |#4| $) 92)) (-4072 (((-1119) $) 11)) (-3908 (((-3 |#4| "failed") $) 85)) (-3668 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2718 (((-3 $ "failed") $ |#4|) 79)) (-3369 (($ $ |#4|) 78) (((-644 $) |#4| $) 116) (((-644 $) |#4| (-644 $)) 115) (((-644 $) (-644 |#4|) $) 114) (((-644 $) (-644 |#4|) (-644 $)) 113)) (-2823 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 |#4|) (-644 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-644 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))) (-3814 (((-112) $ $) 39)) (-2872 (((-112) $) 42)) (-3493 (($) 41)) (-3902 (((-771) $) 107)) (-4083 (((-771) |#4| $) 55 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414)))) (((-771) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4414)))) (-1480 (($ $) 40)) (-2376 (((-538) $) 70 (|has| |#4| (-614 (-538))))) (-1340 (($ (-644 |#4|)) 61)) (-4305 (($ $ |#3|) 29)) (-1702 (($ $ |#3|) 31)) (-4017 (($ $) 89)) (-3809 (($ $ |#3|) 30)) (-3152 (((-862) $) 12) (((-644 |#4|) $) 38)) (-3909 (((-771) $) 77 (|has| |#3| (-370)))) (-3044 (((-112) $ $) 9)) (-2236 (((-3 (-2 (|:| |bas| $) (|:| -3712 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3712 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3622 (((-112) $ (-1 (-112) |#4| (-644 |#4|))) 99)) (-3998 (((-644 $) |#4| $) 122) (((-644 $) |#4| (-644 $)) 121) (((-644 $) (-644 |#4|) $) 120) (((-644 $) (-644 |#4|) (-644 $)) 119)) (-2210 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4414)))) (-4382 (((-644 |#3|) $) 82)) (-2676 (((-112) |#4| $) 136)) (-4217 (((-112) |#3| $) 81)) (-2914 (((-112) $ $) 6)) (-3000 (((-771) $) 47 (|has| $ (-6 -4414))))) (((-1126 |#1| |#2| |#3| |#4|) (-140) (-454) (-793) (-850) (-1064 |t#1| |t#2| |t#3|)) (T -1126)) NIL (-13 (-1108 |t#1| |t#2| |t#3| |t#4|) (-784 |t#1| |t#2| |t#3| |t#4|)) (((-34) . T) ((-102) . T) ((-613 (-644 |#4|)) . T) ((-613 (-862)) . T) ((-151 |#4|) . T) ((-614 (-538)) |has| |#4| (-614 (-538))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))) ((-491 |#4|) . T) ((-516 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))) ((-784 |#1| |#2| |#3| |#4|) . T) ((-976 |#1| |#2| |#3| |#4|) . T) ((-1070 |#1| |#2| |#3| |#4|) . T) ((-1099) . T) ((-1108 |#1| |#2| |#3| |#4|) . T) ((-1207 |#1| |#2| |#3| |#4|) . T) ((-1214) . T)) -((-1957 (((-644 |#2|) |#1|) 15)) (-4268 (((-644 |#2|) |#2| |#2| |#2| |#2| |#2|) 47) (((-644 |#2|) |#1|) 63)) (-3589 (((-644 |#2|) |#2| |#2| |#2|) 45) (((-644 |#2|) |#1|) 61)) (-3132 ((|#2| |#1|) 56)) (-2415 (((-2 (|:| |solns| (-644 |#2|)) (|:| |maps| (-644 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20)) (-4365 (((-644 |#2|) |#2| |#2|) 42) (((-644 |#2|) |#1|) 60)) (-3744 (((-644 |#2|) |#2| |#2| |#2| |#2|) 46) (((-644 |#2|) |#1|) 62)) (-2621 ((|#2| |#2| |#2| |#2| |#2| |#2|) 55)) (-4317 ((|#2| |#2| |#2| |#2|) 53)) (-4008 ((|#2| |#2| |#2|) 52)) (-2631 ((|#2| |#2| |#2| |#2| |#2|) 54))) -(((-1127 |#1| |#2|) (-10 -7 (-15 -1957 ((-644 |#2|) |#1|)) (-15 -3132 (|#2| |#1|)) (-15 -2415 ((-2 (|:| |solns| (-644 |#2|)) (|:| |maps| (-644 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -4365 ((-644 |#2|) |#1|)) (-15 -3589 ((-644 |#2|) |#1|)) (-15 -3744 ((-644 |#2|) |#1|)) (-15 -4268 ((-644 |#2|) |#1|)) (-15 -4365 ((-644 |#2|) |#2| |#2|)) (-15 -3589 ((-644 |#2|) |#2| |#2| |#2|)) (-15 -3744 ((-644 |#2|) |#2| |#2| |#2| |#2|)) (-15 -4268 ((-644 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -4008 (|#2| |#2| |#2|)) (-15 -4317 (|#2| |#2| |#2| |#2|)) (-15 -2631 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2621 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1240 |#2|) (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (T -1127)) -((-2621 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *1 (-1127 *3 *2)) (-4 *3 (-1240 *2)))) (-2631 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *1 (-1127 *3 *2)) (-4 *3 (-1240 *2)))) (-4317 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *1 (-1127 *3 *2)) (-4 *3 (-1240 *2)))) (-4008 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *1 (-1127 *3 *2)) (-4 *3 (-1240 *2)))) (-4268 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *2 (-644 *3)) (-5 *1 (-1127 *4 *3)) (-4 *4 (-1240 *3)))) (-3744 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *2 (-644 *3)) (-5 *1 (-1127 *4 *3)) (-4 *4 (-1240 *3)))) (-3589 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *2 (-644 *3)) (-5 *1 (-1127 *4 *3)) (-4 *4 (-1240 *3)))) (-4365 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *2 (-644 *3)) (-5 *1 (-1127 *4 *3)) (-4 *4 (-1240 *3)))) (-4268 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *2 (-644 *4)) (-5 *1 (-1127 *3 *4)) (-4 *3 (-1240 *4)))) (-3744 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *2 (-644 *4)) (-5 *1 (-1127 *3 *4)) (-4 *3 (-1240 *4)))) (-3589 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *2 (-644 *4)) (-5 *1 (-1127 *3 *4)) (-4 *3 (-1240 *4)))) (-4365 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *2 (-644 *4)) (-5 *1 (-1127 *3 *4)) (-4 *3 (-1240 *4)))) (-2415 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *2 (-2 (|:| |solns| (-644 *5)) (|:| |maps| (-644 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1127 *3 *5)) (-4 *3 (-1240 *5)))) (-3132 (*1 *2 *3) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *1 (-1127 *3 *2)) (-4 *3 (-1240 *2)))) (-1957 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *2 (-644 *4)) (-5 *1 (-1127 *3 *4)) (-4 *3 (-1240 *4))))) -(-10 -7 (-15 -1957 ((-644 |#2|) |#1|)) (-15 -3132 (|#2| |#1|)) (-15 -2415 ((-2 (|:| |solns| (-644 |#2|)) (|:| |maps| (-644 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -4365 ((-644 |#2|) |#1|)) (-15 -3589 ((-644 |#2|) |#1|)) (-15 -3744 ((-644 |#2|) |#1|)) (-15 -4268 ((-644 |#2|) |#1|)) (-15 -4365 ((-644 |#2|) |#2| |#2|)) (-15 -3589 ((-644 |#2|) |#2| |#2| |#2|)) (-15 -3744 ((-644 |#2|) |#2| |#2| |#2| |#2|)) (-15 -4268 ((-644 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -4008 (|#2| |#2| |#2|)) (-15 -4317 (|#2| |#2| |#2| |#2|)) (-15 -2631 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2621 (|#2| |#2| |#2| |#2| |#2| |#2|))) -((-3949 (((-644 (-644 (-295 (-317 |#1|)))) (-644 (-295 (-409 (-952 |#1|))))) 124) (((-644 (-644 (-295 (-317 |#1|)))) (-644 (-295 (-409 (-952 |#1|)))) (-644 (-1175))) 123) (((-644 (-644 (-295 (-317 |#1|)))) (-644 (-409 (-952 |#1|)))) 121) (((-644 (-644 (-295 (-317 |#1|)))) (-644 (-409 (-952 |#1|))) (-644 (-1175))) 119) (((-644 (-295 (-317 |#1|))) (-295 (-409 (-952 |#1|)))) 97) (((-644 (-295 (-317 |#1|))) (-295 (-409 (-952 |#1|))) (-1175)) 98) (((-644 (-295 (-317 |#1|))) (-409 (-952 |#1|))) 92) (((-644 (-295 (-317 |#1|))) (-409 (-952 |#1|)) (-1175)) 82)) (-1841 (((-644 (-644 (-317 |#1|))) (-644 (-409 (-952 |#1|))) (-644 (-1175))) 117) (((-644 (-317 |#1|)) (-409 (-952 |#1|)) (-1175)) 54)) (-2116 (((-1164 (-644 (-317 |#1|)) (-644 (-295 (-317 |#1|)))) (-409 (-952 |#1|)) (-1175)) 128) (((-1164 (-644 (-317 |#1|)) (-644 (-295 (-317 |#1|)))) (-295 (-409 (-952 |#1|))) (-1175)) 127))) -(((-1128 |#1|) (-10 -7 (-15 -3949 ((-644 (-295 (-317 |#1|))) (-409 (-952 |#1|)) (-1175))) (-15 -3949 ((-644 (-295 (-317 |#1|))) (-409 (-952 |#1|)))) (-15 -3949 ((-644 (-295 (-317 |#1|))) (-295 (-409 (-952 |#1|))) (-1175))) (-15 -3949 ((-644 (-295 (-317 |#1|))) (-295 (-409 (-952 |#1|))))) (-15 -3949 ((-644 (-644 (-295 (-317 |#1|)))) (-644 (-409 (-952 |#1|))) (-644 (-1175)))) (-15 -3949 ((-644 (-644 (-295 (-317 |#1|)))) (-644 (-409 (-952 |#1|))))) (-15 -3949 ((-644 (-644 (-295 (-317 |#1|)))) (-644 (-295 (-409 (-952 |#1|)))) (-644 (-1175)))) (-15 -3949 ((-644 (-644 (-295 (-317 |#1|)))) (-644 (-295 (-409 (-952 |#1|)))))) (-15 -1841 ((-644 (-317 |#1|)) (-409 (-952 |#1|)) (-1175))) (-15 -1841 ((-644 (-644 (-317 |#1|))) (-644 (-409 (-952 |#1|))) (-644 (-1175)))) (-15 -2116 ((-1164 (-644 (-317 |#1|)) (-644 (-295 (-317 |#1|)))) (-295 (-409 (-952 |#1|))) (-1175))) (-15 -2116 ((-1164 (-644 (-317 |#1|)) (-644 (-295 (-317 |#1|)))) (-409 (-952 |#1|)) (-1175)))) (-13 (-308) (-147))) (T -1128)) -((-2116 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-1175)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-1164 (-644 (-317 *5)) (-644 (-295 (-317 *5))))) (-5 *1 (-1128 *5)))) (-2116 (*1 *2 *3 *4) (-12 (-5 *3 (-295 (-409 (-952 *5)))) (-5 *4 (-1175)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-1164 (-644 (-317 *5)) (-644 (-295 (-317 *5))))) (-5 *1 (-1128 *5)))) (-1841 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-409 (-952 *5)))) (-5 *4 (-644 (-1175))) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-644 (-644 (-317 *5)))) (-5 *1 (-1128 *5)))) (-1841 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-1175)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-644 (-317 *5))) (-5 *1 (-1128 *5)))) (-3949 (*1 *2 *3) (-12 (-5 *3 (-644 (-295 (-409 (-952 *4))))) (-4 *4 (-13 (-308) (-147))) (-5 *2 (-644 (-644 (-295 (-317 *4))))) (-5 *1 (-1128 *4)))) (-3949 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-295 (-409 (-952 *5))))) (-5 *4 (-644 (-1175))) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-644 (-644 (-295 (-317 *5))))) (-5 *1 (-1128 *5)))) (-3949 (*1 *2 *3) (-12 (-5 *3 (-644 (-409 (-952 *4)))) (-4 *4 (-13 (-308) (-147))) (-5 *2 (-644 (-644 (-295 (-317 *4))))) (-5 *1 (-1128 *4)))) (-3949 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-409 (-952 *5)))) (-5 *4 (-644 (-1175))) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-644 (-644 (-295 (-317 *5))))) (-5 *1 (-1128 *5)))) (-3949 (*1 *2 *3) (-12 (-5 *3 (-295 (-409 (-952 *4)))) (-4 *4 (-13 (-308) (-147))) (-5 *2 (-644 (-295 (-317 *4)))) (-5 *1 (-1128 *4)))) (-3949 (*1 *2 *3 *4) (-12 (-5 *3 (-295 (-409 (-952 *5)))) (-5 *4 (-1175)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-644 (-295 (-317 *5)))) (-5 *1 (-1128 *5)))) (-3949 (*1 *2 *3) (-12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-13 (-308) (-147))) (-5 *2 (-644 (-295 (-317 *4)))) (-5 *1 (-1128 *4)))) (-3949 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-1175)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-644 (-295 (-317 *5)))) (-5 *1 (-1128 *5))))) -(-10 -7 (-15 -3949 ((-644 (-295 (-317 |#1|))) (-409 (-952 |#1|)) (-1175))) (-15 -3949 ((-644 (-295 (-317 |#1|))) (-409 (-952 |#1|)))) (-15 -3949 ((-644 (-295 (-317 |#1|))) (-295 (-409 (-952 |#1|))) (-1175))) (-15 -3949 ((-644 (-295 (-317 |#1|))) (-295 (-409 (-952 |#1|))))) (-15 -3949 ((-644 (-644 (-295 (-317 |#1|)))) (-644 (-409 (-952 |#1|))) (-644 (-1175)))) (-15 -3949 ((-644 (-644 (-295 (-317 |#1|)))) (-644 (-409 (-952 |#1|))))) (-15 -3949 ((-644 (-644 (-295 (-317 |#1|)))) (-644 (-295 (-409 (-952 |#1|)))) (-644 (-1175)))) (-15 -3949 ((-644 (-644 (-295 (-317 |#1|)))) (-644 (-295 (-409 (-952 |#1|)))))) (-15 -1841 ((-644 (-317 |#1|)) (-409 (-952 |#1|)) (-1175))) (-15 -1841 ((-644 (-644 (-317 |#1|))) (-644 (-409 (-952 |#1|))) (-644 (-1175)))) (-15 -2116 ((-1164 (-644 (-317 |#1|)) (-644 (-295 (-317 |#1|)))) (-295 (-409 (-952 |#1|))) (-1175))) (-15 -2116 ((-1164 (-644 (-317 |#1|)) (-644 (-295 (-317 |#1|)))) (-409 (-952 |#1|)) (-1175)))) -((-1842 (((-409 (-1171 (-317 |#1|))) (-1264 (-317 |#1|)) (-409 (-1171 (-317 |#1|))) (-566)) 38)) (-2242 (((-409 (-1171 (-317 |#1|))) (-409 (-1171 (-317 |#1|))) (-409 (-1171 (-317 |#1|))) (-409 (-1171 (-317 |#1|)))) 49))) -(((-1129 |#1|) (-10 -7 (-15 -2242 ((-409 (-1171 (-317 |#1|))) (-409 (-1171 (-317 |#1|))) (-409 (-1171 (-317 |#1|))) (-409 (-1171 (-317 |#1|))))) (-15 -1842 ((-409 (-1171 (-317 |#1|))) (-1264 (-317 |#1|)) (-409 (-1171 (-317 |#1|))) (-566)))) (-558)) (T -1129)) -((-1842 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-409 (-1171 (-317 *5)))) (-5 *3 (-1264 (-317 *5))) (-5 *4 (-566)) (-4 *5 (-558)) (-5 *1 (-1129 *5)))) (-2242 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-409 (-1171 (-317 *3)))) (-4 *3 (-558)) (-5 *1 (-1129 *3))))) -(-10 -7 (-15 -2242 ((-409 (-1171 (-317 |#1|))) (-409 (-1171 (-317 |#1|))) (-409 (-1171 (-317 |#1|))) (-409 (-1171 (-317 |#1|))))) (-15 -1842 ((-409 (-1171 (-317 |#1|))) (-1264 (-317 |#1|)) (-409 (-1171 (-317 |#1|))) (-566)))) -((-1957 (((-644 (-644 (-295 (-317 |#1|)))) (-644 (-295 (-317 |#1|))) (-644 (-1175))) 250) (((-644 (-295 (-317 |#1|))) (-317 |#1|) (-1175)) 23) (((-644 (-295 (-317 |#1|))) (-295 (-317 |#1|)) (-1175)) 29) (((-644 (-295 (-317 |#1|))) (-295 (-317 |#1|))) 28) (((-644 (-295 (-317 |#1|))) (-317 |#1|)) 24))) -(((-1130 |#1|) (-10 -7 (-15 -1957 ((-644 (-295 (-317 |#1|))) (-317 |#1|))) (-15 -1957 ((-644 (-295 (-317 |#1|))) (-295 (-317 |#1|)))) (-15 -1957 ((-644 (-295 (-317 |#1|))) (-295 (-317 |#1|)) (-1175))) (-15 -1957 ((-644 (-295 (-317 |#1|))) (-317 |#1|) (-1175))) (-15 -1957 ((-644 (-644 (-295 (-317 |#1|)))) (-644 (-295 (-317 |#1|))) (-644 (-1175))))) (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (T -1130)) -((-1957 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-1175))) (-4 *5 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *2 (-644 (-644 (-295 (-317 *5))))) (-5 *1 (-1130 *5)) (-5 *3 (-644 (-295 (-317 *5)))))) (-1957 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-4 *5 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *2 (-644 (-295 (-317 *5)))) (-5 *1 (-1130 *5)) (-5 *3 (-317 *5)))) (-1957 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-4 *5 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *2 (-644 (-295 (-317 *5)))) (-5 *1 (-1130 *5)) (-5 *3 (-295 (-317 *5))))) (-1957 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *2 (-644 (-295 (-317 *4)))) (-5 *1 (-1130 *4)) (-5 *3 (-295 (-317 *4))))) (-1957 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *2 (-644 (-295 (-317 *4)))) (-5 *1 (-1130 *4)) (-5 *3 (-317 *4))))) -(-10 -7 (-15 -1957 ((-644 (-295 (-317 |#1|))) (-317 |#1|))) (-15 -1957 ((-644 (-295 (-317 |#1|))) (-295 (-317 |#1|)))) (-15 -1957 ((-644 (-295 (-317 |#1|))) (-295 (-317 |#1|)) (-1175))) (-15 -1957 ((-644 (-295 (-317 |#1|))) (-317 |#1|) (-1175))) (-15 -1957 ((-644 (-644 (-295 (-317 |#1|)))) (-644 (-295 (-317 |#1|))) (-644 (-1175))))) -((-3402 ((|#2| |#2|) 30 (|has| |#1| (-850))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 27)) (-3375 ((|#2| |#2|) 29 (|has| |#1| (-850))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22))) -(((-1131 |#1| |#2|) (-10 -7 (-15 -3375 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -3402 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-850)) (PROGN (-15 -3375 (|#2| |#2|)) (-15 -3402 (|#2| |#2|))) |%noBranch|)) (-1214) (-13 (-604 (-566) |#1|) (-10 -7 (-6 -4414) (-6 -4415)))) (T -1131)) -((-3402 (*1 *2 *2) (-12 (-4 *3 (-850)) (-4 *3 (-1214)) (-5 *1 (-1131 *3 *2)) (-4 *2 (-13 (-604 (-566) *3) (-10 -7 (-6 -4414) (-6 -4415)))))) (-3375 (*1 *2 *2) (-12 (-4 *3 (-850)) (-4 *3 (-1214)) (-5 *1 (-1131 *3 *2)) (-4 *2 (-13 (-604 (-566) *3) (-10 -7 (-6 -4414) (-6 -4415)))))) (-3402 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1214)) (-5 *1 (-1131 *4 *2)) (-4 *2 (-13 (-604 (-566) *4) (-10 -7 (-6 -4414) (-6 -4415)))))) (-3375 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1214)) (-5 *1 (-1131 *4 *2)) (-4 *2 (-13 (-604 (-566) *4) (-10 -7 (-6 -4414) (-6 -4415))))))) -(-10 -7 (-15 -3375 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -3402 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-850)) (PROGN (-15 -3375 (|#2| |#2|)) (-15 -3402 (|#2| |#2|))) |%noBranch|)) -((-3007 (((-112) $ $) NIL)) (-2623 (((-1163 3 |#1|) $) 141)) (-2265 (((-112) $) 101)) (-3069 (($ $ (-644 (-943 |#1|))) 44) (($ $ (-644 (-644 |#1|))) 104) (($ (-644 (-943 |#1|))) 103) (((-644 (-943 |#1|)) $) 102)) (-1540 (((-112) $) 72)) (-2017 (($ $ (-943 |#1|)) 76) (($ $ (-644 |#1|)) 81) (($ $ (-771)) 83) (($ (-943 |#1|)) 77) (((-943 |#1|) $) 75)) (-2710 (((-2 (|:| -2556 (-771)) (|:| |curves| (-771)) (|:| |polygons| (-771)) (|:| |constructs| (-771))) $) 139)) (-3464 (((-771) $) 53)) (-3285 (((-771) $) 52)) (-4389 (($ $ (-771) (-943 |#1|)) 67)) (-3556 (((-112) $) 111)) (-2343 (($ $ (-644 (-644 (-943 |#1|))) (-644 (-171)) (-171)) 118) (($ $ (-644 (-644 (-644 |#1|))) (-644 (-171)) (-171)) 120) (($ $ (-644 (-644 (-943 |#1|))) (-112) (-112)) 115) (($ $ (-644 (-644 (-644 |#1|))) (-112) (-112)) 127) (($ (-644 (-644 (-943 |#1|)))) 116) (($ (-644 (-644 (-943 |#1|))) (-112) (-112)) 117) (((-644 (-644 (-943 |#1|))) $) 114)) (-3298 (($ (-644 $)) 56) (($ $ $) 57)) (-2664 (((-644 (-171)) $) 133)) (-2786 (((-644 (-943 |#1|)) $) 130)) (-1564 (((-644 (-644 (-171))) $) 132)) (-3145 (((-644 (-644 (-644 (-943 |#1|)))) $) NIL)) (-1308 (((-644 (-644 (-644 (-771)))) $) 131)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3241 (((-771) $ (-644 (-943 |#1|))) 65)) (-3749 (((-112) $) 84)) (-1926 (($ $ (-644 (-943 |#1|))) 86) (($ $ (-644 (-644 |#1|))) 92) (($ (-644 (-943 |#1|))) 87) (((-644 (-943 |#1|)) $) 85)) (-3485 (($) 48) (($ (-1163 3 |#1|)) 49)) (-3940 (($ $) 63)) (-2893 (((-644 $) $) 62)) (-4150 (($ (-644 $)) 59)) (-2278 (((-644 $) $) 61)) (-3783 (((-862) $) 146)) (-4072 (((-112) $) 94)) (-2510 (($ $ (-644 (-943 |#1|))) 96) (($ $ (-644 (-644 |#1|))) 99) (($ (-644 (-943 |#1|))) 97) (((-644 (-943 |#1|)) $) 95)) (-3260 (($ $) 140)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) +((-2423 (((-644 |#2|) |#1|) 15)) (-1837 (((-644 |#2|) |#2| |#2| |#2| |#2| |#2|) 47) (((-644 |#2|) |#1|) 63)) (-4216 (((-644 |#2|) |#2| |#2| |#2|) 45) (((-644 |#2|) |#1|) 61)) (-3894 ((|#2| |#1|) 56)) (-3249 (((-2 (|:| |solns| (-644 |#2|)) (|:| |maps| (-644 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20)) (-1998 (((-644 |#2|) |#2| |#2|) 42) (((-644 |#2|) |#1|) 60)) (-1698 (((-644 |#2|) |#2| |#2| |#2| |#2|) 46) (((-644 |#2|) |#1|) 62)) (-2510 ((|#2| |#2| |#2| |#2| |#2| |#2|) 55)) (-3884 ((|#2| |#2| |#2| |#2|) 53)) (-3330 ((|#2| |#2| |#2|) 52)) (-4175 ((|#2| |#2| |#2| |#2| |#2|) 54))) +(((-1127 |#1| |#2|) (-10 -7 (-15 -2423 ((-644 |#2|) |#1|)) (-15 -3894 (|#2| |#1|)) (-15 -3249 ((-2 (|:| |solns| (-644 |#2|)) (|:| |maps| (-644 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -1998 ((-644 |#2|) |#1|)) (-15 -4216 ((-644 |#2|) |#1|)) (-15 -1698 ((-644 |#2|) |#1|)) (-15 -1837 ((-644 |#2|) |#1|)) (-15 -1998 ((-644 |#2|) |#2| |#2|)) (-15 -4216 ((-644 |#2|) |#2| |#2| |#2|)) (-15 -1698 ((-644 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1837 ((-644 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3330 (|#2| |#2| |#2|)) (-15 -3884 (|#2| |#2| |#2| |#2|)) (-15 -4175 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2510 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1240 |#2|) (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (T -1127)) +((-2510 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *1 (-1127 *3 *2)) (-4 *3 (-1240 *2)))) (-4175 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *1 (-1127 *3 *2)) (-4 *3 (-1240 *2)))) (-3884 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *1 (-1127 *3 *2)) (-4 *3 (-1240 *2)))) (-3330 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *1 (-1127 *3 *2)) (-4 *3 (-1240 *2)))) (-1837 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *2 (-644 *3)) (-5 *1 (-1127 *4 *3)) (-4 *4 (-1240 *3)))) (-1698 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *2 (-644 *3)) (-5 *1 (-1127 *4 *3)) (-4 *4 (-1240 *3)))) (-4216 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *2 (-644 *3)) (-5 *1 (-1127 *4 *3)) (-4 *4 (-1240 *3)))) (-1998 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *2 (-644 *3)) (-5 *1 (-1127 *4 *3)) (-4 *4 (-1240 *3)))) (-1837 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *2 (-644 *4)) (-5 *1 (-1127 *3 *4)) (-4 *3 (-1240 *4)))) (-1698 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *2 (-644 *4)) (-5 *1 (-1127 *3 *4)) (-4 *3 (-1240 *4)))) (-4216 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *2 (-644 *4)) (-5 *1 (-1127 *3 *4)) (-4 *3 (-1240 *4)))) (-1998 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *2 (-644 *4)) (-5 *1 (-1127 *3 *4)) (-4 *3 (-1240 *4)))) (-3249 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *2 (-2 (|:| |solns| (-644 *5)) (|:| |maps| (-644 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1127 *3 *5)) (-4 *3 (-1240 *5)))) (-3894 (*1 *2 *3) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *1 (-1127 *3 *2)) (-4 *3 (-1240 *2)))) (-2423 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *2 (-644 *4)) (-5 *1 (-1127 *3 *4)) (-4 *3 (-1240 *4))))) +(-10 -7 (-15 -2423 ((-644 |#2|) |#1|)) (-15 -3894 (|#2| |#1|)) (-15 -3249 ((-2 (|:| |solns| (-644 |#2|)) (|:| |maps| (-644 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -1998 ((-644 |#2|) |#1|)) (-15 -4216 ((-644 |#2|) |#1|)) (-15 -1698 ((-644 |#2|) |#1|)) (-15 -1837 ((-644 |#2|) |#1|)) (-15 -1998 ((-644 |#2|) |#2| |#2|)) (-15 -4216 ((-644 |#2|) |#2| |#2| |#2|)) (-15 -1698 ((-644 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1837 ((-644 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3330 (|#2| |#2| |#2|)) (-15 -3884 (|#2| |#2| |#2| |#2|)) (-15 -4175 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2510 (|#2| |#2| |#2| |#2| |#2| |#2|))) +((-2441 (((-644 (-644 (-295 (-317 |#1|)))) (-644 (-295 (-409 (-952 |#1|))))) 124) (((-644 (-644 (-295 (-317 |#1|)))) (-644 (-295 (-409 (-952 |#1|)))) (-644 (-1175))) 123) (((-644 (-644 (-295 (-317 |#1|)))) (-644 (-409 (-952 |#1|)))) 121) (((-644 (-644 (-295 (-317 |#1|)))) (-644 (-409 (-952 |#1|))) (-644 (-1175))) 119) (((-644 (-295 (-317 |#1|))) (-295 (-409 (-952 |#1|)))) 97) (((-644 (-295 (-317 |#1|))) (-295 (-409 (-952 |#1|))) (-1175)) 98) (((-644 (-295 (-317 |#1|))) (-409 (-952 |#1|))) 92) (((-644 (-295 (-317 |#1|))) (-409 (-952 |#1|)) (-1175)) 82)) (-3475 (((-644 (-644 (-317 |#1|))) (-644 (-409 (-952 |#1|))) (-644 (-1175))) 117) (((-644 (-317 |#1|)) (-409 (-952 |#1|)) (-1175)) 54)) (-3168 (((-1164 (-644 (-317 |#1|)) (-644 (-295 (-317 |#1|)))) (-409 (-952 |#1|)) (-1175)) 128) (((-1164 (-644 (-317 |#1|)) (-644 (-295 (-317 |#1|)))) (-295 (-409 (-952 |#1|))) (-1175)) 127))) +(((-1128 |#1|) (-10 -7 (-15 -2441 ((-644 (-295 (-317 |#1|))) (-409 (-952 |#1|)) (-1175))) (-15 -2441 ((-644 (-295 (-317 |#1|))) (-409 (-952 |#1|)))) (-15 -2441 ((-644 (-295 (-317 |#1|))) (-295 (-409 (-952 |#1|))) (-1175))) (-15 -2441 ((-644 (-295 (-317 |#1|))) (-295 (-409 (-952 |#1|))))) (-15 -2441 ((-644 (-644 (-295 (-317 |#1|)))) (-644 (-409 (-952 |#1|))) (-644 (-1175)))) (-15 -2441 ((-644 (-644 (-295 (-317 |#1|)))) (-644 (-409 (-952 |#1|))))) (-15 -2441 ((-644 (-644 (-295 (-317 |#1|)))) (-644 (-295 (-409 (-952 |#1|)))) (-644 (-1175)))) (-15 -2441 ((-644 (-644 (-295 (-317 |#1|)))) (-644 (-295 (-409 (-952 |#1|)))))) (-15 -3475 ((-644 (-317 |#1|)) (-409 (-952 |#1|)) (-1175))) (-15 -3475 ((-644 (-644 (-317 |#1|))) (-644 (-409 (-952 |#1|))) (-644 (-1175)))) (-15 -3168 ((-1164 (-644 (-317 |#1|)) (-644 (-295 (-317 |#1|)))) (-295 (-409 (-952 |#1|))) (-1175))) (-15 -3168 ((-1164 (-644 (-317 |#1|)) (-644 (-295 (-317 |#1|)))) (-409 (-952 |#1|)) (-1175)))) (-13 (-308) (-147))) (T -1128)) +((-3168 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-1175)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-1164 (-644 (-317 *5)) (-644 (-295 (-317 *5))))) (-5 *1 (-1128 *5)))) (-3168 (*1 *2 *3 *4) (-12 (-5 *3 (-295 (-409 (-952 *5)))) (-5 *4 (-1175)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-1164 (-644 (-317 *5)) (-644 (-295 (-317 *5))))) (-5 *1 (-1128 *5)))) (-3475 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-409 (-952 *5)))) (-5 *4 (-644 (-1175))) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-644 (-644 (-317 *5)))) (-5 *1 (-1128 *5)))) (-3475 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-1175)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-644 (-317 *5))) (-5 *1 (-1128 *5)))) (-2441 (*1 *2 *3) (-12 (-5 *3 (-644 (-295 (-409 (-952 *4))))) (-4 *4 (-13 (-308) (-147))) (-5 *2 (-644 (-644 (-295 (-317 *4))))) (-5 *1 (-1128 *4)))) (-2441 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-295 (-409 (-952 *5))))) (-5 *4 (-644 (-1175))) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-644 (-644 (-295 (-317 *5))))) (-5 *1 (-1128 *5)))) (-2441 (*1 *2 *3) (-12 (-5 *3 (-644 (-409 (-952 *4)))) (-4 *4 (-13 (-308) (-147))) (-5 *2 (-644 (-644 (-295 (-317 *4))))) (-5 *1 (-1128 *4)))) (-2441 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-409 (-952 *5)))) (-5 *4 (-644 (-1175))) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-644 (-644 (-295 (-317 *5))))) (-5 *1 (-1128 *5)))) (-2441 (*1 *2 *3) (-12 (-5 *3 (-295 (-409 (-952 *4)))) (-4 *4 (-13 (-308) (-147))) (-5 *2 (-644 (-295 (-317 *4)))) (-5 *1 (-1128 *4)))) (-2441 (*1 *2 *3 *4) (-12 (-5 *3 (-295 (-409 (-952 *5)))) (-5 *4 (-1175)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-644 (-295 (-317 *5)))) (-5 *1 (-1128 *5)))) (-2441 (*1 *2 *3) (-12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-13 (-308) (-147))) (-5 *2 (-644 (-295 (-317 *4)))) (-5 *1 (-1128 *4)))) (-2441 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-1175)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-644 (-295 (-317 *5)))) (-5 *1 (-1128 *5))))) +(-10 -7 (-15 -2441 ((-644 (-295 (-317 |#1|))) (-409 (-952 |#1|)) (-1175))) (-15 -2441 ((-644 (-295 (-317 |#1|))) (-409 (-952 |#1|)))) (-15 -2441 ((-644 (-295 (-317 |#1|))) (-295 (-409 (-952 |#1|))) (-1175))) (-15 -2441 ((-644 (-295 (-317 |#1|))) (-295 (-409 (-952 |#1|))))) (-15 -2441 ((-644 (-644 (-295 (-317 |#1|)))) (-644 (-409 (-952 |#1|))) (-644 (-1175)))) (-15 -2441 ((-644 (-644 (-295 (-317 |#1|)))) (-644 (-409 (-952 |#1|))))) (-15 -2441 ((-644 (-644 (-295 (-317 |#1|)))) (-644 (-295 (-409 (-952 |#1|)))) (-644 (-1175)))) (-15 -2441 ((-644 (-644 (-295 (-317 |#1|)))) (-644 (-295 (-409 (-952 |#1|)))))) (-15 -3475 ((-644 (-317 |#1|)) (-409 (-952 |#1|)) (-1175))) (-15 -3475 ((-644 (-644 (-317 |#1|))) (-644 (-409 (-952 |#1|))) (-644 (-1175)))) (-15 -3168 ((-1164 (-644 (-317 |#1|)) (-644 (-295 (-317 |#1|)))) (-295 (-409 (-952 |#1|))) (-1175))) (-15 -3168 ((-1164 (-644 (-317 |#1|)) (-644 (-295 (-317 |#1|)))) (-409 (-952 |#1|)) (-1175)))) +((-3572 (((-409 (-1171 (-317 |#1|))) (-1264 (-317 |#1|)) (-409 (-1171 (-317 |#1|))) (-566)) 38)) (-1375 (((-409 (-1171 (-317 |#1|))) (-409 (-1171 (-317 |#1|))) (-409 (-1171 (-317 |#1|))) (-409 (-1171 (-317 |#1|)))) 49))) +(((-1129 |#1|) (-10 -7 (-15 -1375 ((-409 (-1171 (-317 |#1|))) (-409 (-1171 (-317 |#1|))) (-409 (-1171 (-317 |#1|))) (-409 (-1171 (-317 |#1|))))) (-15 -3572 ((-409 (-1171 (-317 |#1|))) (-1264 (-317 |#1|)) (-409 (-1171 (-317 |#1|))) (-566)))) (-558)) (T -1129)) +((-3572 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-409 (-1171 (-317 *5)))) (-5 *3 (-1264 (-317 *5))) (-5 *4 (-566)) (-4 *5 (-558)) (-5 *1 (-1129 *5)))) (-1375 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-409 (-1171 (-317 *3)))) (-4 *3 (-558)) (-5 *1 (-1129 *3))))) +(-10 -7 (-15 -1375 ((-409 (-1171 (-317 |#1|))) (-409 (-1171 (-317 |#1|))) (-409 (-1171 (-317 |#1|))) (-409 (-1171 (-317 |#1|))))) (-15 -3572 ((-409 (-1171 (-317 |#1|))) (-1264 (-317 |#1|)) (-409 (-1171 (-317 |#1|))) (-566)))) +((-2423 (((-644 (-644 (-295 (-317 |#1|)))) (-644 (-295 (-317 |#1|))) (-644 (-1175))) 250) (((-644 (-295 (-317 |#1|))) (-317 |#1|) (-1175)) 23) (((-644 (-295 (-317 |#1|))) (-295 (-317 |#1|)) (-1175)) 29) (((-644 (-295 (-317 |#1|))) (-295 (-317 |#1|))) 28) (((-644 (-295 (-317 |#1|))) (-317 |#1|)) 24))) +(((-1130 |#1|) (-10 -7 (-15 -2423 ((-644 (-295 (-317 |#1|))) (-317 |#1|))) (-15 -2423 ((-644 (-295 (-317 |#1|))) (-295 (-317 |#1|)))) (-15 -2423 ((-644 (-295 (-317 |#1|))) (-295 (-317 |#1|)) (-1175))) (-15 -2423 ((-644 (-295 (-317 |#1|))) (-317 |#1|) (-1175))) (-15 -2423 ((-644 (-644 (-295 (-317 |#1|)))) (-644 (-295 (-317 |#1|))) (-644 (-1175))))) (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (T -1130)) +((-2423 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-1175))) (-4 *5 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *2 (-644 (-644 (-295 (-317 *5))))) (-5 *1 (-1130 *5)) (-5 *3 (-644 (-295 (-317 *5)))))) (-2423 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-4 *5 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *2 (-644 (-295 (-317 *5)))) (-5 *1 (-1130 *5)) (-5 *3 (-317 *5)))) (-2423 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-4 *5 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *2 (-644 (-295 (-317 *5)))) (-5 *1 (-1130 *5)) (-5 *3 (-295 (-317 *5))))) (-2423 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *2 (-644 (-295 (-317 *4)))) (-5 *1 (-1130 *4)) (-5 *3 (-295 (-317 *4))))) (-2423 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *2 (-644 (-295 (-317 *4)))) (-5 *1 (-1130 *4)) (-5 *3 (-317 *4))))) +(-10 -7 (-15 -2423 ((-644 (-295 (-317 |#1|))) (-317 |#1|))) (-15 -2423 ((-644 (-295 (-317 |#1|))) (-295 (-317 |#1|)))) (-15 -2423 ((-644 (-295 (-317 |#1|))) (-295 (-317 |#1|)) (-1175))) (-15 -2423 ((-644 (-295 (-317 |#1|))) (-317 |#1|) (-1175))) (-15 -2423 ((-644 (-644 (-295 (-317 |#1|)))) (-644 (-295 (-317 |#1|))) (-644 (-1175))))) +((-1967 ((|#2| |#2|) 30 (|has| |#1| (-850))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 27)) (-4151 ((|#2| |#2|) 29 (|has| |#1| (-850))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22))) +(((-1131 |#1| |#2|) (-10 -7 (-15 -4151 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -1967 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-850)) (PROGN (-15 -4151 (|#2| |#2|)) (-15 -1967 (|#2| |#2|))) |%noBranch|)) (-1214) (-13 (-604 (-566) |#1|) (-10 -7 (-6 -4414) (-6 -4415)))) (T -1131)) +((-1967 (*1 *2 *2) (-12 (-4 *3 (-850)) (-4 *3 (-1214)) (-5 *1 (-1131 *3 *2)) (-4 *2 (-13 (-604 (-566) *3) (-10 -7 (-6 -4414) (-6 -4415)))))) (-4151 (*1 *2 *2) (-12 (-4 *3 (-850)) (-4 *3 (-1214)) (-5 *1 (-1131 *3 *2)) (-4 *2 (-13 (-604 (-566) *3) (-10 -7 (-6 -4414) (-6 -4415)))))) (-1967 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1214)) (-5 *1 (-1131 *4 *2)) (-4 *2 (-13 (-604 (-566) *4) (-10 -7 (-6 -4414) (-6 -4415)))))) (-4151 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1214)) (-5 *1 (-1131 *4 *2)) (-4 *2 (-13 (-604 (-566) *4) (-10 -7 (-6 -4414) (-6 -4415))))))) +(-10 -7 (-15 -4151 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -1967 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-850)) (PROGN (-15 -4151 (|#2| |#2|)) (-15 -1967 (|#2| |#2|))) |%noBranch|)) +((-2988 (((-112) $ $) NIL)) (-3305 (((-1163 3 |#1|) $) 141)) (-4317 (((-112) $) 101)) (-4086 (($ $ (-644 (-943 |#1|))) 44) (($ $ (-644 (-644 |#1|))) 104) (($ (-644 (-943 |#1|))) 103) (((-644 (-943 |#1|)) $) 102)) (-2962 (((-112) $) 72)) (-1397 (($ $ (-943 |#1|)) 76) (($ $ (-644 |#1|)) 81) (($ $ (-771)) 83) (($ (-943 |#1|)) 77) (((-943 |#1|) $) 75)) (-2567 (((-2 (|:| -4187 (-771)) (|:| |curves| (-771)) (|:| |polygons| (-771)) (|:| |constructs| (-771))) $) 139)) (-3777 (((-771) $) 53)) (-3962 (((-771) $) 52)) (-3227 (($ $ (-771) (-943 |#1|)) 67)) (-2617 (((-112) $) 111)) (-1322 (($ $ (-644 (-644 (-943 |#1|))) (-644 (-171)) (-171)) 118) (($ $ (-644 (-644 (-644 |#1|))) (-644 (-171)) (-171)) 120) (($ $ (-644 (-644 (-943 |#1|))) (-112) (-112)) 115) (($ $ (-644 (-644 (-644 |#1|))) (-112) (-112)) 127) (($ (-644 (-644 (-943 |#1|)))) 116) (($ (-644 (-644 (-943 |#1|))) (-112) (-112)) 117) (((-644 (-644 (-943 |#1|))) $) 114)) (-2696 (($ (-644 $)) 56) (($ $ $) 57)) (-4362 (((-644 (-171)) $) 133)) (-2588 (((-644 (-943 |#1|)) $) 130)) (-1329 (((-644 (-644 (-171))) $) 132)) (-2730 (((-644 (-644 (-644 (-943 |#1|)))) $) NIL)) (-3030 (((-644 (-644 (-644 (-771)))) $) 131)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3895 (((-771) $ (-644 (-943 |#1|))) 65)) (-4161 (((-112) $) 84)) (-1376 (($ $ (-644 (-943 |#1|))) 86) (($ $ (-644 (-644 |#1|))) 92) (($ (-644 (-943 |#1|))) 87) (((-644 (-943 |#1|)) $) 85)) (-4142 (($) 48) (($ (-1163 3 |#1|)) 49)) (-1480 (($ $) 63)) (-2735 (((-644 $) $) 62)) (-2529 (($ (-644 $)) 59)) (-2947 (((-644 $) $) 61)) (-3152 (((-862) $) 146)) (-3498 (((-112) $) 94)) (-4226 (($ $ (-644 (-943 |#1|))) 96) (($ $ (-644 (-644 |#1|))) 99) (($ (-644 (-943 |#1|))) 97) (((-644 (-943 |#1|)) $) 95)) (-2124 (($ $) 140)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) (((-1132 |#1|) (-1133 |#1|) (-1049)) (T -1132)) NIL (-1133 |#1|) -((-3007 (((-112) $ $) 7)) (-2623 (((-1163 3 |#1|) $) 14)) (-2265 (((-112) $) 30)) (-3069 (($ $ (-644 (-943 |#1|))) 34) (($ $ (-644 (-644 |#1|))) 33) (($ (-644 (-943 |#1|))) 32) (((-644 (-943 |#1|)) $) 31)) (-1540 (((-112) $) 45)) (-2017 (($ $ (-943 |#1|)) 50) (($ $ (-644 |#1|)) 49) (($ $ (-771)) 48) (($ (-943 |#1|)) 47) (((-943 |#1|) $) 46)) (-2710 (((-2 (|:| -2556 (-771)) (|:| |curves| (-771)) (|:| |polygons| (-771)) (|:| |constructs| (-771))) $) 16)) (-3464 (((-771) $) 59)) (-3285 (((-771) $) 60)) (-4389 (($ $ (-771) (-943 |#1|)) 51)) (-3556 (((-112) $) 22)) (-2343 (($ $ (-644 (-644 (-943 |#1|))) (-644 (-171)) (-171)) 29) (($ $ (-644 (-644 (-644 |#1|))) (-644 (-171)) (-171)) 28) (($ $ (-644 (-644 (-943 |#1|))) (-112) (-112)) 27) (($ $ (-644 (-644 (-644 |#1|))) (-112) (-112)) 26) (($ (-644 (-644 (-943 |#1|)))) 25) (($ (-644 (-644 (-943 |#1|))) (-112) (-112)) 24) (((-644 (-644 (-943 |#1|))) $) 23)) (-3298 (($ (-644 $)) 58) (($ $ $) 57)) (-2664 (((-644 (-171)) $) 17)) (-2786 (((-644 (-943 |#1|)) $) 21)) (-1564 (((-644 (-644 (-171))) $) 18)) (-3145 (((-644 (-644 (-644 (-943 |#1|)))) $) 19)) (-1308 (((-644 (-644 (-644 (-771)))) $) 20)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3241 (((-771) $ (-644 (-943 |#1|))) 52)) (-3749 (((-112) $) 40)) (-1926 (($ $ (-644 (-943 |#1|))) 44) (($ $ (-644 (-644 |#1|))) 43) (($ (-644 (-943 |#1|))) 42) (((-644 (-943 |#1|)) $) 41)) (-3485 (($) 62) (($ (-1163 3 |#1|)) 61)) (-3940 (($ $) 53)) (-2893 (((-644 $) $) 54)) (-4150 (($ (-644 $)) 56)) (-2278 (((-644 $) $) 55)) (-3783 (((-862) $) 12)) (-4072 (((-112) $) 35)) (-2510 (($ $ (-644 (-943 |#1|))) 39) (($ $ (-644 (-644 |#1|))) 38) (($ (-644 (-943 |#1|))) 37) (((-644 (-943 |#1|)) $) 36)) (-3260 (($ $) 15)) (-3117 (((-112) $ $) 9)) (-2947 (((-112) $ $) 6))) +((-2988 (((-112) $ $) 7)) (-3305 (((-1163 3 |#1|) $) 14)) (-4317 (((-112) $) 30)) (-4086 (($ $ (-644 (-943 |#1|))) 34) (($ $ (-644 (-644 |#1|))) 33) (($ (-644 (-943 |#1|))) 32) (((-644 (-943 |#1|)) $) 31)) (-2962 (((-112) $) 45)) (-1397 (($ $ (-943 |#1|)) 50) (($ $ (-644 |#1|)) 49) (($ $ (-771)) 48) (($ (-943 |#1|)) 47) (((-943 |#1|) $) 46)) (-2567 (((-2 (|:| -4187 (-771)) (|:| |curves| (-771)) (|:| |polygons| (-771)) (|:| |constructs| (-771))) $) 16)) (-3777 (((-771) $) 59)) (-3962 (((-771) $) 60)) (-3227 (($ $ (-771) (-943 |#1|)) 51)) (-2617 (((-112) $) 22)) (-1322 (($ $ (-644 (-644 (-943 |#1|))) (-644 (-171)) (-171)) 29) (($ $ (-644 (-644 (-644 |#1|))) (-644 (-171)) (-171)) 28) (($ $ (-644 (-644 (-943 |#1|))) (-112) (-112)) 27) (($ $ (-644 (-644 (-644 |#1|))) (-112) (-112)) 26) (($ (-644 (-644 (-943 |#1|)))) 25) (($ (-644 (-644 (-943 |#1|))) (-112) (-112)) 24) (((-644 (-644 (-943 |#1|))) $) 23)) (-2696 (($ (-644 $)) 58) (($ $ $) 57)) (-4362 (((-644 (-171)) $) 17)) (-2588 (((-644 (-943 |#1|)) $) 21)) (-1329 (((-644 (-644 (-171))) $) 18)) (-2730 (((-644 (-644 (-644 (-943 |#1|)))) $) 19)) (-3030 (((-644 (-644 (-644 (-771)))) $) 20)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3895 (((-771) $ (-644 (-943 |#1|))) 52)) (-4161 (((-112) $) 40)) (-1376 (($ $ (-644 (-943 |#1|))) 44) (($ $ (-644 (-644 |#1|))) 43) (($ (-644 (-943 |#1|))) 42) (((-644 (-943 |#1|)) $) 41)) (-4142 (($) 62) (($ (-1163 3 |#1|)) 61)) (-1480 (($ $) 53)) (-2735 (((-644 $) $) 54)) (-2529 (($ (-644 $)) 56)) (-2947 (((-644 $) $) 55)) (-3152 (((-862) $) 12)) (-3498 (((-112) $) 35)) (-4226 (($ $ (-644 (-943 |#1|))) 39) (($ $ (-644 (-644 |#1|))) 38) (($ (-644 (-943 |#1|))) 37) (((-644 (-943 |#1|)) $) 36)) (-2124 (($ $) 15)) (-3044 (((-112) $ $) 9)) (-2914 (((-112) $ $) 6))) (((-1133 |#1|) (-140) (-1049)) (T -1133)) -((-3783 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-862)))) (-3485 (*1 *1) (-12 (-4 *1 (-1133 *2)) (-4 *2 (-1049)))) (-3485 (*1 *1 *2) (-12 (-5 *2 (-1163 3 *3)) (-4 *3 (-1049)) (-4 *1 (-1133 *3)))) (-3285 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-771)))) (-3464 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-771)))) (-3298 (*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) (-3298 (*1 *1 *1 *1) (-12 (-4 *1 (-1133 *2)) (-4 *2 (-1049)))) (-4150 (*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) (-2278 (*1 *2 *1) (-12 (-4 *3 (-1049)) (-5 *2 (-644 *1)) (-4 *1 (-1133 *3)))) (-2893 (*1 *2 *1) (-12 (-4 *3 (-1049)) (-5 *2 (-644 *1)) (-4 *1 (-1133 *3)))) (-3940 (*1 *1 *1) (-12 (-4 *1 (-1133 *2)) (-4 *2 (-1049)))) (-3241 (*1 *2 *1 *3) (-12 (-5 *3 (-644 (-943 *4))) (-4 *1 (-1133 *4)) (-4 *4 (-1049)) (-5 *2 (-771)))) (-4389 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-771)) (-5 *3 (-943 *4)) (-4 *1 (-1133 *4)) (-4 *4 (-1049)))) (-2017 (*1 *1 *1 *2) (-12 (-5 *2 (-943 *3)) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) (-2017 (*1 *1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) (-2017 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) (-2017 (*1 *1 *2) (-12 (-5 *2 (-943 *3)) (-4 *3 (-1049)) (-4 *1 (-1133 *3)))) (-2017 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-943 *3)))) (-1540 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-112)))) (-1926 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-943 *3))) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) (-1926 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-644 *3))) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) (-1926 (*1 *1 *2) (-12 (-5 *2 (-644 (-943 *3))) (-4 *3 (-1049)) (-4 *1 (-1133 *3)))) (-1926 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-943 *3))))) (-3749 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-112)))) (-2510 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-943 *3))) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) (-2510 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-644 *3))) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) (-2510 (*1 *1 *2) (-12 (-5 *2 (-644 (-943 *3))) (-4 *3 (-1049)) (-4 *1 (-1133 *3)))) (-2510 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-943 *3))))) (-4072 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-112)))) (-3069 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-943 *3))) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) (-3069 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-644 *3))) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) (-3069 (*1 *1 *2) (-12 (-5 *2 (-644 (-943 *3))) (-4 *3 (-1049)) (-4 *1 (-1133 *3)))) (-3069 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-943 *3))))) (-2265 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-112)))) (-2343 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-644 (-644 (-943 *5)))) (-5 *3 (-644 (-171))) (-5 *4 (-171)) (-4 *1 (-1133 *5)) (-4 *5 (-1049)))) (-2343 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-644 (-644 (-644 *5)))) (-5 *3 (-644 (-171))) (-5 *4 (-171)) (-4 *1 (-1133 *5)) (-4 *5 (-1049)))) (-2343 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-644 (-644 (-943 *4)))) (-5 *3 (-112)) (-4 *1 (-1133 *4)) (-4 *4 (-1049)))) (-2343 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-644 (-644 (-644 *4)))) (-5 *3 (-112)) (-4 *1 (-1133 *4)) (-4 *4 (-1049)))) (-2343 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 (-943 *3)))) (-4 *3 (-1049)) (-4 *1 (-1133 *3)))) (-2343 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-644 (-644 (-943 *4)))) (-5 *3 (-112)) (-4 *4 (-1049)) (-4 *1 (-1133 *4)))) (-2343 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-644 (-943 *3)))))) (-3556 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-112)))) (-2786 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-943 *3))))) (-1308 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-644 (-644 (-771))))))) (-3145 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-644 (-644 (-943 *3))))))) (-1564 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-644 (-171)))))) (-2664 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-171))))) (-2710 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-2 (|:| -2556 (-771)) (|:| |curves| (-771)) (|:| |polygons| (-771)) (|:| |constructs| (-771)))))) (-3260 (*1 *1 *1) (-12 (-4 *1 (-1133 *2)) (-4 *2 (-1049)))) (-2623 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-1163 3 *3))))) -(-13 (-1099) (-10 -8 (-15 -3485 ($)) (-15 -3485 ($ (-1163 3 |t#1|))) (-15 -3285 ((-771) $)) (-15 -3464 ((-771) $)) (-15 -3298 ($ (-644 $))) (-15 -3298 ($ $ $)) (-15 -4150 ($ (-644 $))) (-15 -2278 ((-644 $) $)) (-15 -2893 ((-644 $) $)) (-15 -3940 ($ $)) (-15 -3241 ((-771) $ (-644 (-943 |t#1|)))) (-15 -4389 ($ $ (-771) (-943 |t#1|))) (-15 -2017 ($ $ (-943 |t#1|))) (-15 -2017 ($ $ (-644 |t#1|))) (-15 -2017 ($ $ (-771))) (-15 -2017 ($ (-943 |t#1|))) (-15 -2017 ((-943 |t#1|) $)) (-15 -1540 ((-112) $)) (-15 -1926 ($ $ (-644 (-943 |t#1|)))) (-15 -1926 ($ $ (-644 (-644 |t#1|)))) (-15 -1926 ($ (-644 (-943 |t#1|)))) (-15 -1926 ((-644 (-943 |t#1|)) $)) (-15 -3749 ((-112) $)) (-15 -2510 ($ $ (-644 (-943 |t#1|)))) (-15 -2510 ($ $ (-644 (-644 |t#1|)))) (-15 -2510 ($ (-644 (-943 |t#1|)))) (-15 -2510 ((-644 (-943 |t#1|)) $)) (-15 -4072 ((-112) $)) (-15 -3069 ($ $ (-644 (-943 |t#1|)))) (-15 -3069 ($ $ (-644 (-644 |t#1|)))) (-15 -3069 ($ (-644 (-943 |t#1|)))) (-15 -3069 ((-644 (-943 |t#1|)) $)) (-15 -2265 ((-112) $)) (-15 -2343 ($ $ (-644 (-644 (-943 |t#1|))) (-644 (-171)) (-171))) (-15 -2343 ($ $ (-644 (-644 (-644 |t#1|))) (-644 (-171)) (-171))) (-15 -2343 ($ $ (-644 (-644 (-943 |t#1|))) (-112) (-112))) (-15 -2343 ($ $ (-644 (-644 (-644 |t#1|))) (-112) (-112))) (-15 -2343 ($ (-644 (-644 (-943 |t#1|))))) (-15 -2343 ($ (-644 (-644 (-943 |t#1|))) (-112) (-112))) (-15 -2343 ((-644 (-644 (-943 |t#1|))) $)) (-15 -3556 ((-112) $)) (-15 -2786 ((-644 (-943 |t#1|)) $)) (-15 -1308 ((-644 (-644 (-644 (-771)))) $)) (-15 -3145 ((-644 (-644 (-644 (-943 |t#1|)))) $)) (-15 -1564 ((-644 (-644 (-171))) $)) (-15 -2664 ((-644 (-171)) $)) (-15 -2710 ((-2 (|:| -2556 (-771)) (|:| |curves| (-771)) (|:| |polygons| (-771)) (|:| |constructs| (-771))) $)) (-15 -3260 ($ $)) (-15 -2623 ((-1163 3 |t#1|) $)) (-15 -3783 ((-862) $)))) +((-3152 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-862)))) (-4142 (*1 *1) (-12 (-4 *1 (-1133 *2)) (-4 *2 (-1049)))) (-4142 (*1 *1 *2) (-12 (-5 *2 (-1163 3 *3)) (-4 *3 (-1049)) (-4 *1 (-1133 *3)))) (-3962 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-771)))) (-3777 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-771)))) (-2696 (*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) (-2696 (*1 *1 *1 *1) (-12 (-4 *1 (-1133 *2)) (-4 *2 (-1049)))) (-2529 (*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) (-2947 (*1 *2 *1) (-12 (-4 *3 (-1049)) (-5 *2 (-644 *1)) (-4 *1 (-1133 *3)))) (-2735 (*1 *2 *1) (-12 (-4 *3 (-1049)) (-5 *2 (-644 *1)) (-4 *1 (-1133 *3)))) (-1480 (*1 *1 *1) (-12 (-4 *1 (-1133 *2)) (-4 *2 (-1049)))) (-3895 (*1 *2 *1 *3) (-12 (-5 *3 (-644 (-943 *4))) (-4 *1 (-1133 *4)) (-4 *4 (-1049)) (-5 *2 (-771)))) (-3227 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-771)) (-5 *3 (-943 *4)) (-4 *1 (-1133 *4)) (-4 *4 (-1049)))) (-1397 (*1 *1 *1 *2) (-12 (-5 *2 (-943 *3)) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) (-1397 (*1 *1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) (-1397 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) (-1397 (*1 *1 *2) (-12 (-5 *2 (-943 *3)) (-4 *3 (-1049)) (-4 *1 (-1133 *3)))) (-1397 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-943 *3)))) (-2962 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-112)))) (-1376 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-943 *3))) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) (-1376 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-644 *3))) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) (-1376 (*1 *1 *2) (-12 (-5 *2 (-644 (-943 *3))) (-4 *3 (-1049)) (-4 *1 (-1133 *3)))) (-1376 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-943 *3))))) (-4161 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-112)))) (-4226 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-943 *3))) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) (-4226 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-644 *3))) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) (-4226 (*1 *1 *2) (-12 (-5 *2 (-644 (-943 *3))) (-4 *3 (-1049)) (-4 *1 (-1133 *3)))) (-4226 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-943 *3))))) (-3498 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-112)))) (-4086 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-943 *3))) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) (-4086 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-644 *3))) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) (-4086 (*1 *1 *2) (-12 (-5 *2 (-644 (-943 *3))) (-4 *3 (-1049)) (-4 *1 (-1133 *3)))) (-4086 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-943 *3))))) (-4317 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-112)))) (-1322 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-644 (-644 (-943 *5)))) (-5 *3 (-644 (-171))) (-5 *4 (-171)) (-4 *1 (-1133 *5)) (-4 *5 (-1049)))) (-1322 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-644 (-644 (-644 *5)))) (-5 *3 (-644 (-171))) (-5 *4 (-171)) (-4 *1 (-1133 *5)) (-4 *5 (-1049)))) (-1322 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-644 (-644 (-943 *4)))) (-5 *3 (-112)) (-4 *1 (-1133 *4)) (-4 *4 (-1049)))) (-1322 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-644 (-644 (-644 *4)))) (-5 *3 (-112)) (-4 *1 (-1133 *4)) (-4 *4 (-1049)))) (-1322 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 (-943 *3)))) (-4 *3 (-1049)) (-4 *1 (-1133 *3)))) (-1322 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-644 (-644 (-943 *4)))) (-5 *3 (-112)) (-4 *4 (-1049)) (-4 *1 (-1133 *4)))) (-1322 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-644 (-943 *3)))))) (-2617 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-112)))) (-2588 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-943 *3))))) (-3030 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-644 (-644 (-771))))))) (-2730 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-644 (-644 (-943 *3))))))) (-1329 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-644 (-171)))))) (-4362 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-171))))) (-2567 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-2 (|:| -4187 (-771)) (|:| |curves| (-771)) (|:| |polygons| (-771)) (|:| |constructs| (-771)))))) (-2124 (*1 *1 *1) (-12 (-4 *1 (-1133 *2)) (-4 *2 (-1049)))) (-3305 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-1163 3 *3))))) +(-13 (-1099) (-10 -8 (-15 -4142 ($)) (-15 -4142 ($ (-1163 3 |t#1|))) (-15 -3962 ((-771) $)) (-15 -3777 ((-771) $)) (-15 -2696 ($ (-644 $))) (-15 -2696 ($ $ $)) (-15 -2529 ($ (-644 $))) (-15 -2947 ((-644 $) $)) (-15 -2735 ((-644 $) $)) (-15 -1480 ($ $)) (-15 -3895 ((-771) $ (-644 (-943 |t#1|)))) (-15 -3227 ($ $ (-771) (-943 |t#1|))) (-15 -1397 ($ $ (-943 |t#1|))) (-15 -1397 ($ $ (-644 |t#1|))) (-15 -1397 ($ $ (-771))) (-15 -1397 ($ (-943 |t#1|))) (-15 -1397 ((-943 |t#1|) $)) (-15 -2962 ((-112) $)) (-15 -1376 ($ $ (-644 (-943 |t#1|)))) (-15 -1376 ($ $ (-644 (-644 |t#1|)))) (-15 -1376 ($ (-644 (-943 |t#1|)))) (-15 -1376 ((-644 (-943 |t#1|)) $)) (-15 -4161 ((-112) $)) (-15 -4226 ($ $ (-644 (-943 |t#1|)))) (-15 -4226 ($ $ (-644 (-644 |t#1|)))) (-15 -4226 ($ (-644 (-943 |t#1|)))) (-15 -4226 ((-644 (-943 |t#1|)) $)) (-15 -3498 ((-112) $)) (-15 -4086 ($ $ (-644 (-943 |t#1|)))) (-15 -4086 ($ $ (-644 (-644 |t#1|)))) (-15 -4086 ($ (-644 (-943 |t#1|)))) (-15 -4086 ((-644 (-943 |t#1|)) $)) (-15 -4317 ((-112) $)) (-15 -1322 ($ $ (-644 (-644 (-943 |t#1|))) (-644 (-171)) (-171))) (-15 -1322 ($ $ (-644 (-644 (-644 |t#1|))) (-644 (-171)) (-171))) (-15 -1322 ($ $ (-644 (-644 (-943 |t#1|))) (-112) (-112))) (-15 -1322 ($ $ (-644 (-644 (-644 |t#1|))) (-112) (-112))) (-15 -1322 ($ (-644 (-644 (-943 |t#1|))))) (-15 -1322 ($ (-644 (-644 (-943 |t#1|))) (-112) (-112))) (-15 -1322 ((-644 (-644 (-943 |t#1|))) $)) (-15 -2617 ((-112) $)) (-15 -2588 ((-644 (-943 |t#1|)) $)) (-15 -3030 ((-644 (-644 (-644 (-771)))) $)) (-15 -2730 ((-644 (-644 (-644 (-943 |t#1|)))) $)) (-15 -1329 ((-644 (-644 (-171))) $)) (-15 -4362 ((-644 (-171)) $)) (-15 -2567 ((-2 (|:| -4187 (-771)) (|:| |curves| (-771)) (|:| |polygons| (-771)) (|:| |constructs| (-771))) $)) (-15 -2124 ($ $)) (-15 -3305 ((-1163 3 |t#1|) $)) (-15 -3152 ((-862) $)))) (((-102) . T) ((-613 (-862)) . T) ((-1099) . T)) -((-3007 (((-112) $ $) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 174) (($ (-1180)) NIL) (((-1180) $) 7)) (-2467 (((-112) $ (|[\|\|]| (-526))) 19) (((-112) $ (|[\|\|]| (-218))) 23) (((-112) $ (|[\|\|]| (-676))) 27) (((-112) $ (|[\|\|]| (-1274))) 31) (((-112) $ (|[\|\|]| (-138))) 35) (((-112) $ (|[\|\|]| (-133))) 39) (((-112) $ (|[\|\|]| (-1114))) 43) (((-112) $ (|[\|\|]| (-96))) 47) (((-112) $ (|[\|\|]| (-681))) 51) (((-112) $ (|[\|\|]| (-519))) 55) (((-112) $ (|[\|\|]| (-1065))) 59) (((-112) $ (|[\|\|]| (-1275))) 63) (((-112) $ (|[\|\|]| (-527))) 67) (((-112) $ (|[\|\|]| (-154))) 71) (((-112) $ (|[\|\|]| (-671))) 75) (((-112) $ (|[\|\|]| (-312))) 79) (((-112) $ (|[\|\|]| (-1036))) 83) (((-112) $ (|[\|\|]| (-180))) 87) (((-112) $ (|[\|\|]| (-970))) 91) (((-112) $ (|[\|\|]| (-1072))) 95) (((-112) $ (|[\|\|]| (-1089))) 99) (((-112) $ (|[\|\|]| (-1095))) 103) (((-112) $ (|[\|\|]| (-626))) 107) (((-112) $ (|[\|\|]| (-1165))) 111) (((-112) $ (|[\|\|]| (-156))) 115) (((-112) $ (|[\|\|]| (-137))) 119) (((-112) $ (|[\|\|]| (-480))) 123) (((-112) $ (|[\|\|]| (-593))) 127) (((-112) $ (|[\|\|]| (-508))) 131) (((-112) $ (|[\|\|]| (-1157))) 135) (((-112) $ (|[\|\|]| (-566))) 139)) (-3117 (((-112) $ $) NIL)) (-3968 (((-526) $) 20) (((-218) $) 24) (((-676) $) 28) (((-1274) $) 32) (((-138) $) 36) (((-133) $) 40) (((-1114) $) 44) (((-96) $) 48) (((-681) $) 52) (((-519) $) 56) (((-1065) $) 60) (((-1275) $) 64) (((-527) $) 68) (((-154) $) 72) (((-671) $) 76) (((-312) $) 80) (((-1036) $) 84) (((-180) $) 88) (((-970) $) 92) (((-1072) $) 96) (((-1089) $) 100) (((-1095) $) 104) (((-626) $) 108) (((-1165) $) 112) (((-156) $) 116) (((-137) $) 120) (((-480) $) 124) (((-593) $) 128) (((-508) $) 132) (((-1157) $) 136) (((-566) $) 140)) (-2947 (((-112) $ $) NIL))) +((-2988 (((-112) $ $) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 174) (($ (-1180)) NIL) (((-1180) $) 7)) (-4344 (((-112) $ (|[\|\|]| (-526))) 19) (((-112) $ (|[\|\|]| (-218))) 23) (((-112) $ (|[\|\|]| (-676))) 27) (((-112) $ (|[\|\|]| (-1274))) 31) (((-112) $ (|[\|\|]| (-138))) 35) (((-112) $ (|[\|\|]| (-133))) 39) (((-112) $ (|[\|\|]| (-1114))) 43) (((-112) $ (|[\|\|]| (-96))) 47) (((-112) $ (|[\|\|]| (-681))) 51) (((-112) $ (|[\|\|]| (-519))) 55) (((-112) $ (|[\|\|]| (-1065))) 59) (((-112) $ (|[\|\|]| (-1275))) 63) (((-112) $ (|[\|\|]| (-527))) 67) (((-112) $ (|[\|\|]| (-154))) 71) (((-112) $ (|[\|\|]| (-671))) 75) (((-112) $ (|[\|\|]| (-312))) 79) (((-112) $ (|[\|\|]| (-1036))) 83) (((-112) $ (|[\|\|]| (-180))) 87) (((-112) $ (|[\|\|]| (-970))) 91) (((-112) $ (|[\|\|]| (-1072))) 95) (((-112) $ (|[\|\|]| (-1089))) 99) (((-112) $ (|[\|\|]| (-1095))) 103) (((-112) $ (|[\|\|]| (-626))) 107) (((-112) $ (|[\|\|]| (-1165))) 111) (((-112) $ (|[\|\|]| (-156))) 115) (((-112) $ (|[\|\|]| (-137))) 119) (((-112) $ (|[\|\|]| (-480))) 123) (((-112) $ (|[\|\|]| (-593))) 127) (((-112) $ (|[\|\|]| (-508))) 131) (((-112) $ (|[\|\|]| (-1157))) 135) (((-112) $ (|[\|\|]| (-566))) 139)) (-3044 (((-112) $ $) NIL)) (-1513 (((-526) $) 20) (((-218) $) 24) (((-676) $) 28) (((-1274) $) 32) (((-138) $) 36) (((-133) $) 40) (((-1114) $) 44) (((-96) $) 48) (((-681) $) 52) (((-519) $) 56) (((-1065) $) 60) (((-1275) $) 64) (((-527) $) 68) (((-154) $) 72) (((-671) $) 76) (((-312) $) 80) (((-1036) $) 84) (((-180) $) 88) (((-970) $) 92) (((-1072) $) 96) (((-1089) $) 100) (((-1095) $) 104) (((-626) $) 108) (((-1165) $) 112) (((-156) $) 116) (((-137) $) 120) (((-480) $) 124) (((-593) $) 128) (((-508) $) 132) (((-1157) $) 136) (((-566) $) 140)) (-2914 (((-112) $ $) NIL))) (((-1134) (-1136)) (T -1134)) NIL (-1136) -((-2051 (((-644 (-1180)) (-1157)) 9))) -(((-1135) (-10 -7 (-15 -2051 ((-644 (-1180)) (-1157))))) (T -1135)) -((-2051 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-644 (-1180))) (-5 *1 (-1135))))) -(-10 -7 (-15 -2051 ((-644 (-1180)) (-1157)))) -((-3007 (((-112) $ $) 7)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3783 (((-862) $) 12) (($ (-1180)) 17) (((-1180) $) 16)) (-2467 (((-112) $ (|[\|\|]| (-526))) 81) (((-112) $ (|[\|\|]| (-218))) 79) (((-112) $ (|[\|\|]| (-676))) 77) (((-112) $ (|[\|\|]| (-1274))) 75) (((-112) $ (|[\|\|]| (-138))) 73) (((-112) $ (|[\|\|]| (-133))) 71) (((-112) $ (|[\|\|]| (-1114))) 69) (((-112) $ (|[\|\|]| (-96))) 67) (((-112) $ (|[\|\|]| (-681))) 65) (((-112) $ (|[\|\|]| (-519))) 63) (((-112) $ (|[\|\|]| (-1065))) 61) (((-112) $ (|[\|\|]| (-1275))) 59) (((-112) $ (|[\|\|]| (-527))) 57) (((-112) $ (|[\|\|]| (-154))) 55) (((-112) $ (|[\|\|]| (-671))) 53) (((-112) $ (|[\|\|]| (-312))) 51) (((-112) $ (|[\|\|]| (-1036))) 49) (((-112) $ (|[\|\|]| (-180))) 47) (((-112) $ (|[\|\|]| (-970))) 45) (((-112) $ (|[\|\|]| (-1072))) 43) (((-112) $ (|[\|\|]| (-1089))) 41) (((-112) $ (|[\|\|]| (-1095))) 39) (((-112) $ (|[\|\|]| (-626))) 37) (((-112) $ (|[\|\|]| (-1165))) 35) (((-112) $ (|[\|\|]| (-156))) 33) (((-112) $ (|[\|\|]| (-137))) 31) (((-112) $ (|[\|\|]| (-480))) 29) (((-112) $ (|[\|\|]| (-593))) 27) (((-112) $ (|[\|\|]| (-508))) 25) (((-112) $ (|[\|\|]| (-1157))) 23) (((-112) $ (|[\|\|]| (-566))) 21)) (-3117 (((-112) $ $) 9)) (-3968 (((-526) $) 80) (((-218) $) 78) (((-676) $) 76) (((-1274) $) 74) (((-138) $) 72) (((-133) $) 70) (((-1114) $) 68) (((-96) $) 66) (((-681) $) 64) (((-519) $) 62) (((-1065) $) 60) (((-1275) $) 58) (((-527) $) 56) (((-154) $) 54) (((-671) $) 52) (((-312) $) 50) (((-1036) $) 48) (((-180) $) 46) (((-970) $) 44) (((-1072) $) 42) (((-1089) $) 40) (((-1095) $) 38) (((-626) $) 36) (((-1165) $) 34) (((-156) $) 32) (((-137) $) 30) (((-480) $) 28) (((-593) $) 26) (((-508) $) 24) (((-1157) $) 22) (((-566) $) 20)) (-2947 (((-112) $ $) 6))) +((-2716 (((-644 (-1180)) (-1157)) 9))) +(((-1135) (-10 -7 (-15 -2716 ((-644 (-1180)) (-1157))))) (T -1135)) +((-2716 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-644 (-1180))) (-5 *1 (-1135))))) +(-10 -7 (-15 -2716 ((-644 (-1180)) (-1157)))) +((-2988 (((-112) $ $) 7)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3152 (((-862) $) 12) (($ (-1180)) 17) (((-1180) $) 16)) (-4344 (((-112) $ (|[\|\|]| (-526))) 81) (((-112) $ (|[\|\|]| (-218))) 79) (((-112) $ (|[\|\|]| (-676))) 77) (((-112) $ (|[\|\|]| (-1274))) 75) (((-112) $ (|[\|\|]| (-138))) 73) (((-112) $ (|[\|\|]| (-133))) 71) (((-112) $ (|[\|\|]| (-1114))) 69) (((-112) $ (|[\|\|]| (-96))) 67) (((-112) $ (|[\|\|]| (-681))) 65) (((-112) $ (|[\|\|]| (-519))) 63) (((-112) $ (|[\|\|]| (-1065))) 61) (((-112) $ (|[\|\|]| (-1275))) 59) (((-112) $ (|[\|\|]| (-527))) 57) (((-112) $ (|[\|\|]| (-154))) 55) (((-112) $ (|[\|\|]| (-671))) 53) (((-112) $ (|[\|\|]| (-312))) 51) (((-112) $ (|[\|\|]| (-1036))) 49) (((-112) $ (|[\|\|]| (-180))) 47) (((-112) $ (|[\|\|]| (-970))) 45) (((-112) $ (|[\|\|]| (-1072))) 43) (((-112) $ (|[\|\|]| (-1089))) 41) (((-112) $ (|[\|\|]| (-1095))) 39) (((-112) $ (|[\|\|]| (-626))) 37) (((-112) $ (|[\|\|]| (-1165))) 35) (((-112) $ (|[\|\|]| (-156))) 33) (((-112) $ (|[\|\|]| (-137))) 31) (((-112) $ (|[\|\|]| (-480))) 29) (((-112) $ (|[\|\|]| (-593))) 27) (((-112) $ (|[\|\|]| (-508))) 25) (((-112) $ (|[\|\|]| (-1157))) 23) (((-112) $ (|[\|\|]| (-566))) 21)) (-3044 (((-112) $ $) 9)) (-1513 (((-526) $) 80) (((-218) $) 78) (((-676) $) 76) (((-1274) $) 74) (((-138) $) 72) (((-133) $) 70) (((-1114) $) 68) (((-96) $) 66) (((-681) $) 64) (((-519) $) 62) (((-1065) $) 60) (((-1275) $) 58) (((-527) $) 56) (((-154) $) 54) (((-671) $) 52) (((-312) $) 50) (((-1036) $) 48) (((-180) $) 46) (((-970) $) 44) (((-1072) $) 42) (((-1089) $) 40) (((-1095) $) 38) (((-626) $) 36) (((-1165) $) 34) (((-156) $) 32) (((-137) $) 30) (((-480) $) 28) (((-593) $) 26) (((-508) $) 24) (((-1157) $) 22) (((-566) $) 20)) (-2914 (((-112) $ $) 6))) (((-1136) (-140)) (T -1136)) -((-2467 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-526))) (-5 *2 (-112)))) (-3968 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-526)))) (-2467 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-218))) (-5 *2 (-112)))) (-3968 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-218)))) (-2467 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-676))) (-5 *2 (-112)))) (-3968 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-676)))) (-2467 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1274))) (-5 *2 (-112)))) (-3968 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1274)))) (-2467 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-3968 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-138)))) (-2467 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-133))) (-5 *2 (-112)))) (-3968 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-133)))) (-2467 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1114))) (-5 *2 (-112)))) (-3968 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1114)))) (-2467 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-3968 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-96)))) (-2467 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-681))) (-5 *2 (-112)))) (-3968 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-681)))) (-2467 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-519))) (-5 *2 (-112)))) (-3968 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-519)))) (-2467 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1065))) (-5 *2 (-112)))) (-3968 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1065)))) (-2467 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1275))) (-5 *2 (-112)))) (-3968 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1275)))) (-2467 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-527))) (-5 *2 (-112)))) (-3968 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-527)))) (-2467 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) (-3968 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-154)))) (-2467 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-671))) (-5 *2 (-112)))) (-3968 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-671)))) (-2467 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-312))) (-5 *2 (-112)))) (-3968 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-312)))) (-2467 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1036))) (-5 *2 (-112)))) (-3968 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1036)))) (-2467 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-180))) (-5 *2 (-112)))) (-3968 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-180)))) (-2467 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-970))) (-5 *2 (-112)))) (-3968 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-970)))) (-2467 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1072))) (-5 *2 (-112)))) (-3968 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1072)))) (-2467 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1089))) (-5 *2 (-112)))) (-3968 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1089)))) (-2467 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1095))) (-5 *2 (-112)))) (-3968 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1095)))) (-2467 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-626))) (-5 *2 (-112)))) (-3968 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-626)))) (-2467 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1165))) (-5 *2 (-112)))) (-3968 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1165)))) (-2467 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112)))) (-3968 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-156)))) (-2467 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) (-3968 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-137)))) (-2467 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-480))) (-5 *2 (-112)))) (-3968 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-480)))) (-2467 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-593))) (-5 *2 (-112)))) (-3968 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-593)))) (-2467 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-508))) (-5 *2 (-112)))) (-3968 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-508)))) (-2467 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1157))) (-5 *2 (-112)))) (-3968 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1157)))) (-2467 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-566))) (-5 *2 (-112)))) (-3968 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-566))))) -(-13 (-1082) (-1259) (-10 -8 (-15 -2467 ((-112) $ (|[\|\|]| (-526)))) (-15 -3968 ((-526) $)) (-15 -2467 ((-112) $ (|[\|\|]| (-218)))) (-15 -3968 ((-218) $)) (-15 -2467 ((-112) $ (|[\|\|]| (-676)))) (-15 -3968 ((-676) $)) (-15 -2467 ((-112) $ (|[\|\|]| (-1274)))) (-15 -3968 ((-1274) $)) (-15 -2467 ((-112) $ (|[\|\|]| (-138)))) (-15 -3968 ((-138) $)) (-15 -2467 ((-112) $ (|[\|\|]| (-133)))) (-15 -3968 ((-133) $)) (-15 -2467 ((-112) $ (|[\|\|]| (-1114)))) (-15 -3968 ((-1114) $)) (-15 -2467 ((-112) $ (|[\|\|]| (-96)))) (-15 -3968 ((-96) $)) (-15 -2467 ((-112) $ (|[\|\|]| (-681)))) (-15 -3968 ((-681) $)) (-15 -2467 ((-112) $ (|[\|\|]| (-519)))) (-15 -3968 ((-519) $)) (-15 -2467 ((-112) $ (|[\|\|]| (-1065)))) (-15 -3968 ((-1065) $)) (-15 -2467 ((-112) $ (|[\|\|]| (-1275)))) (-15 -3968 ((-1275) $)) (-15 -2467 ((-112) $ (|[\|\|]| (-527)))) (-15 -3968 ((-527) $)) (-15 -2467 ((-112) $ (|[\|\|]| (-154)))) (-15 -3968 ((-154) $)) (-15 -2467 ((-112) $ (|[\|\|]| (-671)))) (-15 -3968 ((-671) $)) (-15 -2467 ((-112) $ (|[\|\|]| (-312)))) (-15 -3968 ((-312) $)) (-15 -2467 ((-112) $ (|[\|\|]| (-1036)))) (-15 -3968 ((-1036) $)) (-15 -2467 ((-112) $ (|[\|\|]| (-180)))) (-15 -3968 ((-180) $)) (-15 -2467 ((-112) $ (|[\|\|]| (-970)))) (-15 -3968 ((-970) $)) (-15 -2467 ((-112) $ (|[\|\|]| (-1072)))) (-15 -3968 ((-1072) $)) (-15 -2467 ((-112) $ (|[\|\|]| (-1089)))) (-15 -3968 ((-1089) $)) (-15 -2467 ((-112) $ (|[\|\|]| (-1095)))) (-15 -3968 ((-1095) $)) (-15 -2467 ((-112) $ (|[\|\|]| (-626)))) (-15 -3968 ((-626) $)) (-15 -2467 ((-112) $ (|[\|\|]| (-1165)))) (-15 -3968 ((-1165) $)) (-15 -2467 ((-112) $ (|[\|\|]| (-156)))) (-15 -3968 ((-156) $)) (-15 -2467 ((-112) $ (|[\|\|]| (-137)))) (-15 -3968 ((-137) $)) (-15 -2467 ((-112) $ (|[\|\|]| (-480)))) (-15 -3968 ((-480) $)) (-15 -2467 ((-112) $ (|[\|\|]| (-593)))) (-15 -3968 ((-593) $)) (-15 -2467 ((-112) $ (|[\|\|]| (-508)))) (-15 -3968 ((-508) $)) (-15 -2467 ((-112) $ (|[\|\|]| (-1157)))) (-15 -3968 ((-1157) $)) (-15 -2467 ((-112) $ (|[\|\|]| (-566)))) (-15 -3968 ((-566) $)))) +((-4344 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-526))) (-5 *2 (-112)))) (-1513 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-526)))) (-4344 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-218))) (-5 *2 (-112)))) (-1513 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-218)))) (-4344 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-676))) (-5 *2 (-112)))) (-1513 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-676)))) (-4344 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1274))) (-5 *2 (-112)))) (-1513 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1274)))) (-4344 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-1513 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-138)))) (-4344 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-133))) (-5 *2 (-112)))) (-1513 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-133)))) (-4344 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1114))) (-5 *2 (-112)))) (-1513 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1114)))) (-4344 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-1513 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-96)))) (-4344 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-681))) (-5 *2 (-112)))) (-1513 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-681)))) (-4344 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-519))) (-5 *2 (-112)))) (-1513 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-519)))) (-4344 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1065))) (-5 *2 (-112)))) (-1513 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1065)))) (-4344 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1275))) (-5 *2 (-112)))) (-1513 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1275)))) (-4344 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-527))) (-5 *2 (-112)))) (-1513 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-527)))) (-4344 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) (-1513 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-154)))) (-4344 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-671))) (-5 *2 (-112)))) (-1513 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-671)))) (-4344 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-312))) (-5 *2 (-112)))) (-1513 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-312)))) (-4344 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1036))) (-5 *2 (-112)))) (-1513 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1036)))) (-4344 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-180))) (-5 *2 (-112)))) (-1513 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-180)))) (-4344 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-970))) (-5 *2 (-112)))) (-1513 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-970)))) (-4344 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1072))) (-5 *2 (-112)))) (-1513 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1072)))) (-4344 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1089))) (-5 *2 (-112)))) (-1513 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1089)))) (-4344 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1095))) (-5 *2 (-112)))) (-1513 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1095)))) (-4344 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-626))) (-5 *2 (-112)))) (-1513 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-626)))) (-4344 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1165))) (-5 *2 (-112)))) (-1513 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1165)))) (-4344 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112)))) (-1513 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-156)))) (-4344 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) (-1513 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-137)))) (-4344 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-480))) (-5 *2 (-112)))) (-1513 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-480)))) (-4344 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-593))) (-5 *2 (-112)))) (-1513 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-593)))) (-4344 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-508))) (-5 *2 (-112)))) (-1513 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-508)))) (-4344 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1157))) (-5 *2 (-112)))) (-1513 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1157)))) (-4344 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-566))) (-5 *2 (-112)))) (-1513 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-566))))) +(-13 (-1082) (-1259) (-10 -8 (-15 -4344 ((-112) $ (|[\|\|]| (-526)))) (-15 -1513 ((-526) $)) (-15 -4344 ((-112) $ (|[\|\|]| (-218)))) (-15 -1513 ((-218) $)) (-15 -4344 ((-112) $ (|[\|\|]| (-676)))) (-15 -1513 ((-676) $)) (-15 -4344 ((-112) $ (|[\|\|]| (-1274)))) (-15 -1513 ((-1274) $)) (-15 -4344 ((-112) $ (|[\|\|]| (-138)))) (-15 -1513 ((-138) $)) (-15 -4344 ((-112) $ (|[\|\|]| (-133)))) (-15 -1513 ((-133) $)) (-15 -4344 ((-112) $ (|[\|\|]| (-1114)))) (-15 -1513 ((-1114) $)) (-15 -4344 ((-112) $ (|[\|\|]| (-96)))) (-15 -1513 ((-96) $)) (-15 -4344 ((-112) $ (|[\|\|]| (-681)))) (-15 -1513 ((-681) $)) (-15 -4344 ((-112) $ (|[\|\|]| (-519)))) (-15 -1513 ((-519) $)) (-15 -4344 ((-112) $ (|[\|\|]| (-1065)))) (-15 -1513 ((-1065) $)) (-15 -4344 ((-112) $ (|[\|\|]| (-1275)))) (-15 -1513 ((-1275) $)) (-15 -4344 ((-112) $ (|[\|\|]| (-527)))) (-15 -1513 ((-527) $)) (-15 -4344 ((-112) $ (|[\|\|]| (-154)))) (-15 -1513 ((-154) $)) (-15 -4344 ((-112) $ (|[\|\|]| (-671)))) (-15 -1513 ((-671) $)) (-15 -4344 ((-112) $ (|[\|\|]| (-312)))) (-15 -1513 ((-312) $)) (-15 -4344 ((-112) $ (|[\|\|]| (-1036)))) (-15 -1513 ((-1036) $)) (-15 -4344 ((-112) $ (|[\|\|]| (-180)))) (-15 -1513 ((-180) $)) (-15 -4344 ((-112) $ (|[\|\|]| (-970)))) (-15 -1513 ((-970) $)) (-15 -4344 ((-112) $ (|[\|\|]| (-1072)))) (-15 -1513 ((-1072) $)) (-15 -4344 ((-112) $ (|[\|\|]| (-1089)))) (-15 -1513 ((-1089) $)) (-15 -4344 ((-112) $ (|[\|\|]| (-1095)))) (-15 -1513 ((-1095) $)) (-15 -4344 ((-112) $ (|[\|\|]| (-626)))) (-15 -1513 ((-626) $)) (-15 -4344 ((-112) $ (|[\|\|]| (-1165)))) (-15 -1513 ((-1165) $)) (-15 -4344 ((-112) $ (|[\|\|]| (-156)))) (-15 -1513 ((-156) $)) (-15 -4344 ((-112) $ (|[\|\|]| (-137)))) (-15 -1513 ((-137) $)) (-15 -4344 ((-112) $ (|[\|\|]| (-480)))) (-15 -1513 ((-480) $)) (-15 -4344 ((-112) $ (|[\|\|]| (-593)))) (-15 -1513 ((-593) $)) (-15 -4344 ((-112) $ (|[\|\|]| (-508)))) (-15 -1513 ((-508) $)) (-15 -4344 ((-112) $ (|[\|\|]| (-1157)))) (-15 -1513 ((-1157) $)) (-15 -4344 ((-112) $ (|[\|\|]| (-566)))) (-15 -1513 ((-566) $)))) (((-93) . T) ((-102) . T) ((-616 #0=(-1180)) . T) ((-613 (-862)) . T) ((-613 #0#) . T) ((-492 #0#) . T) ((-1099) . T) ((-1082) . T) ((-1259) . T)) -((-2800 (((-1269) (-644 (-862))) 23) (((-1269) (-862)) 22)) (-2378 (((-1269) (-644 (-862))) 21) (((-1269) (-862)) 20)) (-3435 (((-1269) (-644 (-862))) 19) (((-1269) (-862)) 11) (((-1269) (-1157) (-862)) 17))) -(((-1137) (-10 -7 (-15 -3435 ((-1269) (-1157) (-862))) (-15 -3435 ((-1269) (-862))) (-15 -2378 ((-1269) (-862))) (-15 -2800 ((-1269) (-862))) (-15 -3435 ((-1269) (-644 (-862)))) (-15 -2378 ((-1269) (-644 (-862)))) (-15 -2800 ((-1269) (-644 (-862)))))) (T -1137)) -((-2800 (*1 *2 *3) (-12 (-5 *3 (-644 (-862))) (-5 *2 (-1269)) (-5 *1 (-1137)))) (-2378 (*1 *2 *3) (-12 (-5 *3 (-644 (-862))) (-5 *2 (-1269)) (-5 *1 (-1137)))) (-3435 (*1 *2 *3) (-12 (-5 *3 (-644 (-862))) (-5 *2 (-1269)) (-5 *1 (-1137)))) (-2800 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1269)) (-5 *1 (-1137)))) (-2378 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1269)) (-5 *1 (-1137)))) (-3435 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1269)) (-5 *1 (-1137)))) (-3435 (*1 *2 *3 *4) (-12 (-5 *3 (-1157)) (-5 *4 (-862)) (-5 *2 (-1269)) (-5 *1 (-1137))))) -(-10 -7 (-15 -3435 ((-1269) (-1157) (-862))) (-15 -3435 ((-1269) (-862))) (-15 -2378 ((-1269) (-862))) (-15 -2800 ((-1269) (-862))) (-15 -3435 ((-1269) (-644 (-862)))) (-15 -2378 ((-1269) (-644 (-862)))) (-15 -2800 ((-1269) (-644 (-862))))) -((-2680 (($ $ $) 10)) (-1641 (($ $) 9)) (-1357 (($ $ $) 13)) (-4226 (($ $ $) 15)) (-4335 (($ $ $) 12)) (-3180 (($ $ $) 14)) (-1949 (($ $) 17)) (-3848 (($ $) 16)) (-2086 (($ $) 6)) (-2411 (($ $ $) 11) (($ $) 7)) (-2880 (($ $ $) 8))) +((-1627 (((-1269) (-644 (-862))) 23) (((-1269) (-862)) 22)) (-3791 (((-1269) (-644 (-862))) 21) (((-1269) (-862)) 20)) (-1586 (((-1269) (-644 (-862))) 19) (((-1269) (-862)) 11) (((-1269) (-1157) (-862)) 17))) +(((-1137) (-10 -7 (-15 -1586 ((-1269) (-1157) (-862))) (-15 -1586 ((-1269) (-862))) (-15 -3791 ((-1269) (-862))) (-15 -1627 ((-1269) (-862))) (-15 -1586 ((-1269) (-644 (-862)))) (-15 -3791 ((-1269) (-644 (-862)))) (-15 -1627 ((-1269) (-644 (-862)))))) (T -1137)) +((-1627 (*1 *2 *3) (-12 (-5 *3 (-644 (-862))) (-5 *2 (-1269)) (-5 *1 (-1137)))) (-3791 (*1 *2 *3) (-12 (-5 *3 (-644 (-862))) (-5 *2 (-1269)) (-5 *1 (-1137)))) (-1586 (*1 *2 *3) (-12 (-5 *3 (-644 (-862))) (-5 *2 (-1269)) (-5 *1 (-1137)))) (-1627 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1269)) (-5 *1 (-1137)))) (-3791 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1269)) (-5 *1 (-1137)))) (-1586 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1269)) (-5 *1 (-1137)))) (-1586 (*1 *2 *3 *4) (-12 (-5 *3 (-1157)) (-5 *4 (-862)) (-5 *2 (-1269)) (-5 *1 (-1137))))) +(-10 -7 (-15 -1586 ((-1269) (-1157) (-862))) (-15 -1586 ((-1269) (-862))) (-15 -3791 ((-1269) (-862))) (-15 -1627 ((-1269) (-862))) (-15 -1586 ((-1269) (-644 (-862)))) (-15 -3791 ((-1269) (-644 (-862)))) (-15 -1627 ((-1269) (-644 (-862))))) +((-2078 (($ $ $) 10)) (-2469 (($ $) 9)) (-1429 (($ $ $) 13)) (-3273 (($ $ $) 15)) (-2941 (($ $ $) 12)) (-4087 (($ $ $) 14)) (-2893 (($ $) 17)) (-3094 (($ $) 16)) (-1358 (($ $) 6)) (-2879 (($ $ $) 11) (($ $) 7)) (-4006 (($ $ $) 8))) (((-1138) (-140)) (T -1138)) -((-1949 (*1 *1 *1) (-4 *1 (-1138))) (-3848 (*1 *1 *1) (-4 *1 (-1138))) (-4226 (*1 *1 *1 *1) (-4 *1 (-1138))) (-3180 (*1 *1 *1 *1) (-4 *1 (-1138))) (-1357 (*1 *1 *1 *1) (-4 *1 (-1138))) (-4335 (*1 *1 *1 *1) (-4 *1 (-1138))) (-2411 (*1 *1 *1 *1) (-4 *1 (-1138))) (-2680 (*1 *1 *1 *1) (-4 *1 (-1138))) (-1641 (*1 *1 *1) (-4 *1 (-1138))) (-2880 (*1 *1 *1 *1) (-4 *1 (-1138))) (-2411 (*1 *1 *1) (-4 *1 (-1138))) (-2086 (*1 *1 *1) (-4 *1 (-1138)))) -(-13 (-10 -8 (-15 -2086 ($ $)) (-15 -2411 ($ $)) (-15 -2880 ($ $ $)) (-15 -1641 ($ $)) (-15 -2680 ($ $ $)) (-15 -2411 ($ $ $)) (-15 -4335 ($ $ $)) (-15 -1357 ($ $ $)) (-15 -3180 ($ $ $)) (-15 -4226 ($ $ $)) (-15 -3848 ($ $)) (-15 -1949 ($ $)))) -((-3007 (((-112) $ $) 44)) (-2233 ((|#1| $) 17)) (-3780 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39)) (-1395 (((-112) $) 19)) (-2848 (($ $ |#1|) 30)) (-3559 (($ $ (-112)) 32)) (-4033 (($ $) 33)) (-3211 (($ $ |#2|) 31)) (-4117 (((-1157) $) NIL)) (-1687 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38)) (-4035 (((-1119) $) NIL)) (-3467 (((-112) $) 16)) (-1494 (($) 13)) (-3940 (($ $) 29)) (-3796 (($ |#1| |#2| (-112)) 20) (($ |#1| |#2|) 21) (($ (-2 (|:| |val| |#1|) (|:| -3570 |#2|))) 23) (((-644 $) (-644 (-2 (|:| |val| |#1|) (|:| -3570 |#2|)))) 26) (((-644 $) |#1| (-644 |#2|)) 28)) (-3691 ((|#2| $) 18)) (-3783 (((-862) $) 53)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) 42))) -(((-1139 |#1| |#2|) (-13 (-1099) (-10 -8 (-15 -1494 ($)) (-15 -3467 ((-112) $)) (-15 -2233 (|#1| $)) (-15 -3691 (|#2| $)) (-15 -1395 ((-112) $)) (-15 -3796 ($ |#1| |#2| (-112))) (-15 -3796 ($ |#1| |#2|)) (-15 -3796 ($ (-2 (|:| |val| |#1|) (|:| -3570 |#2|)))) (-15 -3796 ((-644 $) (-644 (-2 (|:| |val| |#1|) (|:| -3570 |#2|))))) (-15 -3796 ((-644 $) |#1| (-644 |#2|))) (-15 -3940 ($ $)) (-15 -2848 ($ $ |#1|)) (-15 -3211 ($ $ |#2|)) (-15 -3559 ($ $ (-112))) (-15 -4033 ($ $)) (-15 -1687 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3780 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1099) (-34)) (-13 (-1099) (-34))) (T -1139)) -((-1494 (*1 *1) (-12 (-5 *1 (-1139 *2 *3)) (-4 *2 (-13 (-1099) (-34))) (-4 *3 (-13 (-1099) (-34))))) (-3467 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1139 *3 *4)) (-4 *3 (-13 (-1099) (-34))) (-4 *4 (-13 (-1099) (-34))))) (-2233 (*1 *2 *1) (-12 (-4 *2 (-13 (-1099) (-34))) (-5 *1 (-1139 *2 *3)) (-4 *3 (-13 (-1099) (-34))))) (-3691 (*1 *2 *1) (-12 (-4 *2 (-13 (-1099) (-34))) (-5 *1 (-1139 *3 *2)) (-4 *3 (-13 (-1099) (-34))))) (-1395 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1139 *3 *4)) (-4 *3 (-13 (-1099) (-34))) (-4 *4 (-13 (-1099) (-34))))) (-3796 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1139 *2 *3)) (-4 *2 (-13 (-1099) (-34))) (-4 *3 (-13 (-1099) (-34))))) (-3796 (*1 *1 *2 *3) (-12 (-5 *1 (-1139 *2 *3)) (-4 *2 (-13 (-1099) (-34))) (-4 *3 (-13 (-1099) (-34))))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3570 *4))) (-4 *3 (-13 (-1099) (-34))) (-4 *4 (-13 (-1099) (-34))) (-5 *1 (-1139 *3 *4)))) (-3796 (*1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| |val| *4) (|:| -3570 *5)))) (-4 *4 (-13 (-1099) (-34))) (-4 *5 (-13 (-1099) (-34))) (-5 *2 (-644 (-1139 *4 *5))) (-5 *1 (-1139 *4 *5)))) (-3796 (*1 *2 *3 *4) (-12 (-5 *4 (-644 *5)) (-4 *5 (-13 (-1099) (-34))) (-5 *2 (-644 (-1139 *3 *5))) (-5 *1 (-1139 *3 *5)) (-4 *3 (-13 (-1099) (-34))))) (-3940 (*1 *1 *1) (-12 (-5 *1 (-1139 *2 *3)) (-4 *2 (-13 (-1099) (-34))) (-4 *3 (-13 (-1099) (-34))))) (-2848 (*1 *1 *1 *2) (-12 (-5 *1 (-1139 *2 *3)) (-4 *2 (-13 (-1099) (-34))) (-4 *3 (-13 (-1099) (-34))))) (-3211 (*1 *1 *1 *2) (-12 (-5 *1 (-1139 *3 *2)) (-4 *3 (-13 (-1099) (-34))) (-4 *2 (-13 (-1099) (-34))))) (-3559 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1139 *3 *4)) (-4 *3 (-13 (-1099) (-34))) (-4 *4 (-13 (-1099) (-34))))) (-4033 (*1 *1 *1) (-12 (-5 *1 (-1139 *2 *3)) (-4 *2 (-13 (-1099) (-34))) (-4 *3 (-13 (-1099) (-34))))) (-1687 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1099) (-34))) (-4 *6 (-13 (-1099) (-34))) (-5 *2 (-112)) (-5 *1 (-1139 *5 *6)))) (-3780 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1099) (-34))) (-5 *2 (-112)) (-5 *1 (-1139 *4 *5)) (-4 *4 (-13 (-1099) (-34)))))) -(-13 (-1099) (-10 -8 (-15 -1494 ($)) (-15 -3467 ((-112) $)) (-15 -2233 (|#1| $)) (-15 -3691 (|#2| $)) (-15 -1395 ((-112) $)) (-15 -3796 ($ |#1| |#2| (-112))) (-15 -3796 ($ |#1| |#2|)) (-15 -3796 ($ (-2 (|:| |val| |#1|) (|:| -3570 |#2|)))) (-15 -3796 ((-644 $) (-644 (-2 (|:| |val| |#1|) (|:| -3570 |#2|))))) (-15 -3796 ((-644 $) |#1| (-644 |#2|))) (-15 -3940 ($ $)) (-15 -2848 ($ $ |#1|)) (-15 -3211 ($ $ |#2|)) (-15 -3559 ($ $ (-112))) (-15 -4033 ($ $)) (-15 -1687 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3780 ((-112) $ $ (-1 (-112) |#2| |#2|))))) -((-3007 (((-112) $ $) NIL (|has| (-1139 |#1| |#2|) (-1099)))) (-2233 (((-1139 |#1| |#2|) $) 27)) (-2302 (($ $) 91)) (-3116 (((-112) (-1139 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 100)) (-2457 (($ $ $ (-644 (-1139 |#1| |#2|))) 108) (($ $ $ (-644 (-1139 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 109)) (-2256 (((-112) $ (-771)) NIL)) (-3396 (((-1139 |#1| |#2|) $ (-1139 |#1| |#2|)) 46 (|has| $ (-6 -4415)))) (-3923 (((-1139 |#1| |#2|) $ "value" (-1139 |#1| |#2|)) NIL (|has| $ (-6 -4415)))) (-3800 (($ $ (-644 $)) 44 (|has| $ (-6 -4415)))) (-3012 (($) NIL T CONST)) (-2960 (((-644 (-2 (|:| |val| |#1|) (|:| -3570 |#2|))) $) 95)) (-2956 (($ (-1139 |#1| |#2|) $) 42)) (-2665 (($ (-1139 |#1| |#2|) $) 34)) (-3979 (((-644 (-1139 |#1| |#2|)) $) NIL (|has| $ (-6 -4414)))) (-4009 (((-644 $) $) 54)) (-4302 (((-112) (-1139 |#1| |#2|) $) 97)) (-3891 (((-112) $ $) NIL (|has| (-1139 |#1| |#2|) (-1099)))) (-2404 (((-112) $ (-771)) NIL)) (-2329 (((-644 (-1139 |#1| |#2|)) $) 58 (|has| $ (-6 -4414)))) (-1916 (((-112) (-1139 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-1139 |#1| |#2|) (-1099))))) (-2908 (($ (-1 (-1139 |#1| |#2|) (-1139 |#1| |#2|)) $) 50 (|has| $ (-6 -4415)))) (-1301 (($ (-1 (-1139 |#1| |#2|) (-1139 |#1| |#2|)) $) 49)) (-2603 (((-112) $ (-771)) NIL)) (-3701 (((-644 (-1139 |#1| |#2|)) $) 56)) (-3438 (((-112) $) 45)) (-4117 (((-1157) $) NIL (|has| (-1139 |#1| |#2|) (-1099)))) (-4035 (((-1119) $) NIL (|has| (-1139 |#1| |#2|) (-1099)))) (-3952 (((-3 $ "failed") $) 89)) (-2692 (((-112) (-1 (-112) (-1139 |#1| |#2|)) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 (-1139 |#1| |#2|)))) NIL (-12 (|has| (-1139 |#1| |#2|) (-310 (-1139 |#1| |#2|))) (|has| (-1139 |#1| |#2|) (-1099)))) (($ $ (-295 (-1139 |#1| |#2|))) NIL (-12 (|has| (-1139 |#1| |#2|) (-310 (-1139 |#1| |#2|))) (|has| (-1139 |#1| |#2|) (-1099)))) (($ $ (-1139 |#1| |#2|) (-1139 |#1| |#2|)) NIL (-12 (|has| (-1139 |#1| |#2|) (-310 (-1139 |#1| |#2|))) (|has| (-1139 |#1| |#2|) (-1099)))) (($ $ (-644 (-1139 |#1| |#2|)) (-644 (-1139 |#1| |#2|))) NIL (-12 (|has| (-1139 |#1| |#2|) (-310 (-1139 |#1| |#2|))) (|has| (-1139 |#1| |#2|) (-1099))))) (-1932 (((-112) $ $) 53)) (-3467 (((-112) $) 24)) (-1494 (($) 26)) (-4390 (((-1139 |#1| |#2|) $ "value") NIL)) (-1416 (((-566) $ $) NIL)) (-3494 (((-112) $) 47)) (-4045 (((-771) (-1 (-112) (-1139 |#1| |#2|)) $) NIL (|has| $ (-6 -4414))) (((-771) (-1139 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-1139 |#1| |#2|) (-1099))))) (-3940 (($ $) 52)) (-3796 (($ (-1139 |#1| |#2|)) 10) (($ |#1| |#2| (-644 $)) 13) (($ |#1| |#2| (-644 (-1139 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-644 |#2|)) 18)) (-4056 (((-644 |#2|) $) 96)) (-3783 (((-862) $) 87 (|has| (-1139 |#1| |#2|) (-613 (-862))))) (-2462 (((-644 $) $) 31)) (-4288 (((-112) $ $) NIL (|has| (-1139 |#1| |#2|) (-1099)))) (-3117 (((-112) $ $) NIL (|has| (-1139 |#1| |#2|) (-1099)))) (-1894 (((-112) (-1 (-112) (-1139 |#1| |#2|)) $) NIL (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) 70 (|has| (-1139 |#1| |#2|) (-1099)))) (-3018 (((-771) $) 64 (|has| $ (-6 -4414))))) -(((-1140 |#1| |#2|) (-13 (-1010 (-1139 |#1| |#2|)) (-10 -8 (-6 -4415) (-6 -4414) (-15 -3952 ((-3 $ "failed") $)) (-15 -2302 ($ $)) (-15 -3796 ($ (-1139 |#1| |#2|))) (-15 -3796 ($ |#1| |#2| (-644 $))) (-15 -3796 ($ |#1| |#2| (-644 (-1139 |#1| |#2|)))) (-15 -3796 ($ |#1| |#2| |#1| (-644 |#2|))) (-15 -4056 ((-644 |#2|) $)) (-15 -2960 ((-644 (-2 (|:| |val| |#1|) (|:| -3570 |#2|))) $)) (-15 -4302 ((-112) (-1139 |#1| |#2|) $)) (-15 -3116 ((-112) (-1139 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -2665 ($ (-1139 |#1| |#2|) $)) (-15 -2956 ($ (-1139 |#1| |#2|) $)) (-15 -2457 ($ $ $ (-644 (-1139 |#1| |#2|)))) (-15 -2457 ($ $ $ (-644 (-1139 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1099) (-34)) (-13 (-1099) (-34))) (T -1140)) -((-3952 (*1 *1 *1) (|partial| -12 (-5 *1 (-1140 *2 *3)) (-4 *2 (-13 (-1099) (-34))) (-4 *3 (-13 (-1099) (-34))))) (-2302 (*1 *1 *1) (-12 (-5 *1 (-1140 *2 *3)) (-4 *2 (-13 (-1099) (-34))) (-4 *3 (-13 (-1099) (-34))))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-1139 *3 *4)) (-4 *3 (-13 (-1099) (-34))) (-4 *4 (-13 (-1099) (-34))) (-5 *1 (-1140 *3 *4)))) (-3796 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-644 (-1140 *2 *3))) (-5 *1 (-1140 *2 *3)) (-4 *2 (-13 (-1099) (-34))) (-4 *3 (-13 (-1099) (-34))))) (-3796 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-644 (-1139 *2 *3))) (-4 *2 (-13 (-1099) (-34))) (-4 *3 (-13 (-1099) (-34))) (-5 *1 (-1140 *2 *3)))) (-3796 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-644 *3)) (-4 *3 (-13 (-1099) (-34))) (-5 *1 (-1140 *2 *3)) (-4 *2 (-13 (-1099) (-34))))) (-4056 (*1 *2 *1) (-12 (-5 *2 (-644 *4)) (-5 *1 (-1140 *3 *4)) (-4 *3 (-13 (-1099) (-34))) (-4 *4 (-13 (-1099) (-34))))) (-2960 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -3570 *4)))) (-5 *1 (-1140 *3 *4)) (-4 *3 (-13 (-1099) (-34))) (-4 *4 (-13 (-1099) (-34))))) (-4302 (*1 *2 *3 *1) (-12 (-5 *3 (-1139 *4 *5)) (-4 *4 (-13 (-1099) (-34))) (-4 *5 (-13 (-1099) (-34))) (-5 *2 (-112)) (-5 *1 (-1140 *4 *5)))) (-3116 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1139 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1099) (-34))) (-4 *6 (-13 (-1099) (-34))) (-5 *2 (-112)) (-5 *1 (-1140 *5 *6)))) (-2665 (*1 *1 *2 *1) (-12 (-5 *2 (-1139 *3 *4)) (-4 *3 (-13 (-1099) (-34))) (-4 *4 (-13 (-1099) (-34))) (-5 *1 (-1140 *3 *4)))) (-2956 (*1 *1 *2 *1) (-12 (-5 *2 (-1139 *3 *4)) (-4 *3 (-13 (-1099) (-34))) (-4 *4 (-13 (-1099) (-34))) (-5 *1 (-1140 *3 *4)))) (-2457 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-644 (-1139 *3 *4))) (-4 *3 (-13 (-1099) (-34))) (-4 *4 (-13 (-1099) (-34))) (-5 *1 (-1140 *3 *4)))) (-2457 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-1139 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1099) (-34))) (-4 *5 (-13 (-1099) (-34))) (-5 *1 (-1140 *4 *5))))) -(-13 (-1010 (-1139 |#1| |#2|)) (-10 -8 (-6 -4415) (-6 -4414) (-15 -3952 ((-3 $ "failed") $)) (-15 -2302 ($ $)) (-15 -3796 ($ (-1139 |#1| |#2|))) (-15 -3796 ($ |#1| |#2| (-644 $))) (-15 -3796 ($ |#1| |#2| (-644 (-1139 |#1| |#2|)))) (-15 -3796 ($ |#1| |#2| |#1| (-644 |#2|))) (-15 -4056 ((-644 |#2|) $)) (-15 -2960 ((-644 (-2 (|:| |val| |#1|) (|:| -3570 |#2|))) $)) (-15 -4302 ((-112) (-1139 |#1| |#2|) $)) (-15 -3116 ((-112) (-1139 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -2665 ($ (-1139 |#1| |#2|) $)) (-15 -2956 ($ (-1139 |#1| |#2|) $)) (-15 -2457 ($ $ $ (-644 (-1139 |#1| |#2|)))) (-15 -2457 ($ $ $ (-644 (-1139 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-1560 (($ $) NIL)) (-3837 ((|#2| $) NIL)) (-2143 (((-112) $) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-2794 (($ (-689 |#2|)) 56)) (-1743 (((-112) $) NIL)) (-2256 (((-112) $ (-771)) NIL)) (-3808 (($ |#2|) 14)) (-3012 (($) NIL T CONST)) (-4137 (($ $) 69 (|has| |#2| (-308)))) (-4379 (((-240 |#1| |#2|) $ (-566)) 42)) (-4307 (((-3 (-566) "failed") $) NIL (|has| |#2| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#2| (-1038 (-409 (-566))))) (((-3 |#2| "failed") $) NIL)) (-4205 (((-566) $) NIL (|has| |#2| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#2| (-1038 (-409 (-566))))) ((|#2| $) NIL)) (-3577 (((-689 (-566)) (-689 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -4227 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 $) (-1264 $)) NIL) (((-689 |#2|) (-689 $)) NIL)) (-1878 (((-3 $ "failed") $) 83)) (-4313 (((-771) $) 71 (|has| |#2| (-558)))) (-2855 ((|#2| $ (-566) (-566)) NIL)) (-3979 (((-644 |#2|) $) NIL (|has| $ (-6 -4414)))) (-3934 (((-112) $) NIL)) (-3864 (((-771) $) 73 (|has| |#2| (-558)))) (-1601 (((-644 (-240 |#1| |#2|)) $) 77 (|has| |#2| (-558)))) (-1380 (((-771) $) NIL)) (-4265 (($ |#2|) 25)) (-1391 (((-771) $) NIL)) (-2404 (((-112) $ (-771)) NIL)) (-3310 ((|#2| $) 67 (|has| |#2| (-6 (-4416 "*"))))) (-1368 (((-566) $) NIL)) (-3832 (((-566) $) NIL)) (-2329 (((-644 |#2|) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099))))) (-1821 (((-566) $) NIL)) (-1809 (((-566) $) NIL)) (-3163 (($ (-644 (-644 |#2|))) 37)) (-2908 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2909 (((-644 (-644 |#2|)) $) NIL)) (-2603 (((-112) $ (-771)) NIL)) (-4117 (((-1157) $) NIL)) (-4264 (((-3 $ "failed") $) 80 (|has| |#2| (-365)))) (-4035 (((-1119) $) NIL)) (-2994 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-558)))) (-2692 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-1932 (((-112) $ $) NIL)) (-3467 (((-112) $) NIL)) (-1494 (($) NIL)) (-4390 ((|#2| $ (-566) (-566) |#2|) NIL) ((|#2| $ (-566) (-566)) NIL)) (-3561 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-771)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-2812 ((|#2| $) NIL)) (-4098 (($ (-644 |#2|)) 50)) (-2652 (((-112) $) NIL)) (-3733 (((-240 |#1| |#2|) $) NIL)) (-4383 ((|#2| $) 65 (|has| |#2| (-6 (-4416 "*"))))) (-4045 (((-771) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414))) (((-771) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099))))) (-3940 (($ $) NIL)) (-1348 (((-538) $) 89 (|has| |#2| (-614 (-538))))) (-2306 (((-240 |#1| |#2|) $ (-566)) 44)) (-3783 (((-862) $) 47) (($ (-566)) NIL) (($ (-409 (-566))) NIL (|has| |#2| (-1038 (-409 (-566))))) (($ |#2|) NIL) (((-689 |#2|) $) 52)) (-2107 (((-771)) 23 T CONST)) (-3117 (((-112) $ $) NIL)) (-1894 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414)))) (-3098 (((-112) $) NIL)) (-2479 (($) 16 T CONST)) (-4334 (($) 21 T CONST)) (-2875 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-771)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-2947 (((-112) $ $) NIL)) (-3065 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) 63) (($ $ (-566)) 82 (|has| |#2| (-365)))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-240 |#1| |#2|) $ (-240 |#1| |#2|)) 59) (((-240 |#1| |#2|) (-240 |#1| |#2|) $) 61)) (-3018 (((-771) $) NIL (|has| $ (-6 -4414))))) -(((-1141 |#1| |#2|) (-13 (-1122 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-613 (-689 |#2|)) (-10 -8 (-15 -4265 ($ |#2|)) (-15 -1560 ($ $)) (-15 -2794 ($ (-689 |#2|))) (IF (|has| |#2| (-6 (-4416 "*"))) (-6 -4403) |%noBranch|) (IF (|has| |#2| (-6 (-4416 "*"))) (IF (|has| |#2| (-6 -4411)) (-6 -4411) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|))) (-771) (-1049)) (T -1141)) -((-4265 (*1 *1 *2) (-12 (-5 *1 (-1141 *3 *2)) (-14 *3 (-771)) (-4 *2 (-1049)))) (-1560 (*1 *1 *1) (-12 (-5 *1 (-1141 *2 *3)) (-14 *2 (-771)) (-4 *3 (-1049)))) (-2794 (*1 *1 *2) (-12 (-5 *2 (-689 *4)) (-4 *4 (-1049)) (-5 *1 (-1141 *3 *4)) (-14 *3 (-771))))) -(-13 (-1122 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-613 (-689 |#2|)) (-10 -8 (-15 -4265 ($ |#2|)) (-15 -1560 ($ $)) (-15 -2794 ($ (-689 |#2|))) (IF (|has| |#2| (-6 (-4416 "*"))) (-6 -4403) |%noBranch|) (IF (|has| |#2| (-6 (-4416 "*"))) (IF (|has| |#2| (-6 -4411)) (-6 -4411) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|))) -((-3761 (($ $) 19)) (-2436 (($ $ (-144)) 10) (($ $ (-141)) 14)) (-3595 (((-112) $ $) 24)) (-3895 (($ $) 17)) (-4390 (((-144) $ (-566) (-144)) NIL) (((-144) $ (-566)) NIL) (($ $ (-1231 (-566))) NIL) (($ $ $) 31)) (-3783 (($ (-144)) 29) (((-862) $) NIL))) -(((-1142 |#1|) (-10 -8 (-15 -3783 ((-862) |#1|)) (-15 -4390 (|#1| |#1| |#1|)) (-15 -2436 (|#1| |#1| (-141))) (-15 -2436 (|#1| |#1| (-144))) (-15 -3783 (|#1| (-144))) (-15 -3595 ((-112) |#1| |#1|)) (-15 -3761 (|#1| |#1|)) (-15 -3895 (|#1| |#1|)) (-15 -4390 (|#1| |#1| (-1231 (-566)))) (-15 -4390 ((-144) |#1| (-566))) (-15 -4390 ((-144) |#1| (-566) (-144)))) (-1143)) (T -1142)) -NIL -(-10 -8 (-15 -3783 ((-862) |#1|)) (-15 -4390 (|#1| |#1| |#1|)) (-15 -2436 (|#1| |#1| (-141))) (-15 -2436 (|#1| |#1| (-144))) (-15 -3783 (|#1| (-144))) (-15 -3595 ((-112) |#1| |#1|)) (-15 -3761 (|#1| |#1|)) (-15 -3895 (|#1| |#1|)) (-15 -4390 (|#1| |#1| (-1231 (-566)))) (-15 -4390 ((-144) |#1| (-566))) (-15 -4390 ((-144) |#1| (-566) (-144)))) -((-3007 (((-112) $ $) 19 (|has| (-144) (-1099)))) (-3530 (($ $) 121)) (-3761 (($ $) 122)) (-2436 (($ $ (-144)) 109) (($ $ (-141)) 108)) (-3734 (((-1269) $ (-566) (-566)) 41 (|has| $ (-6 -4415)))) (-3575 (((-112) $ $) 119)) (-3554 (((-112) $ $ (-566)) 118)) (-1815 (((-644 $) $ (-144)) 111) (((-644 $) $ (-141)) 110)) (-2644 (((-112) (-1 (-112) (-144) (-144)) $) 99) (((-112) $) 93 (|has| (-144) (-850)))) (-1944 (($ (-1 (-112) (-144) (-144)) $) 90 (|has| $ (-6 -4415))) (($ $) 89 (-12 (|has| (-144) (-850)) (|has| $ (-6 -4415))))) (-1510 (($ (-1 (-112) (-144) (-144)) $) 100) (($ $) 94 (|has| (-144) (-850)))) (-2256 (((-112) $ (-771)) 8)) (-3923 (((-144) $ (-566) (-144)) 53 (|has| $ (-6 -4415))) (((-144) $ (-1231 (-566)) (-144)) 59 (|has| $ (-6 -4415)))) (-2701 (($ (-1 (-112) (-144)) $) 76 (|has| $ (-6 -4414)))) (-3012 (($) 7 T CONST)) (-1602 (($ $ (-144)) 105) (($ $ (-141)) 104)) (-3413 (($ $) 91 (|has| $ (-6 -4415)))) (-1377 (($ $) 101)) (-2756 (($ $ (-1231 (-566)) $) 115)) (-2031 (($ $) 79 (-12 (|has| (-144) (-1099)) (|has| $ (-6 -4414))))) (-2665 (($ (-144) $) 78 (-12 (|has| (-144) (-1099)) (|has| $ (-6 -4414)))) (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4414)))) (-1676 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 77 (-12 (|has| (-144) (-1099)) (|has| $ (-6 -4414)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 74 (|has| $ (-6 -4414))) (((-144) (-1 (-144) (-144) (-144)) $) 73 (|has| $ (-6 -4414)))) (-2920 (((-144) $ (-566) (-144)) 54 (|has| $ (-6 -4415)))) (-2855 (((-144) $ (-566)) 52)) (-3595 (((-112) $ $) 120)) (-4000 (((-566) (-1 (-112) (-144)) $) 98) (((-566) (-144) $) 97 (|has| (-144) (-1099))) (((-566) (-144) $ (-566)) 96 (|has| (-144) (-1099))) (((-566) $ $ (-566)) 114) (((-566) (-141) $ (-566)) 113)) (-3979 (((-644 (-144)) $) 31 (|has| $ (-6 -4414)))) (-4265 (($ (-771) (-144)) 70)) (-2404 (((-112) $ (-771)) 9)) (-3854 (((-566) $) 44 (|has| (-566) (-850)))) (-2097 (($ $ $) 88 (|has| (-144) (-850)))) (-3298 (($ (-1 (-112) (-144) (-144)) $ $) 102) (($ $ $) 95 (|has| (-144) (-850)))) (-2329 (((-644 (-144)) $) 30 (|has| $ (-6 -4414)))) (-1916 (((-112) (-144) $) 28 (-12 (|has| (-144) (-1099)) (|has| $ (-6 -4414))))) (-2712 (((-566) $) 45 (|has| (-566) (-850)))) (-3962 (($ $ $) 87 (|has| (-144) (-850)))) (-4019 (((-112) $ $ (-144)) 116)) (-4066 (((-771) $ $ (-144)) 117)) (-2908 (($ (-1 (-144) (-144)) $) 35 (|has| $ (-6 -4415)))) (-1301 (($ (-1 (-144) (-144)) $) 36) (($ (-1 (-144) (-144) (-144)) $ $) 65)) (-3858 (($ $) 123)) (-3895 (($ $) 124)) (-2603 (((-112) $ (-771)) 10)) (-1614 (($ $ (-144)) 107) (($ $ (-141)) 106)) (-4117 (((-1157) $) 22 (|has| (-144) (-1099)))) (-4276 (($ (-144) $ (-566)) 61) (($ $ $ (-566)) 60)) (-4074 (((-644 (-566)) $) 47)) (-3792 (((-112) (-566) $) 48)) (-4035 (((-1119) $) 21 (|has| (-144) (-1099)))) (-1998 (((-144) $) 43 (|has| (-566) (-850)))) (-2006 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 72)) (-4030 (($ $ (-144)) 42 (|has| $ (-6 -4415)))) (-2692 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 (-144)))) 27 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-295 (-144))) 26 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-144) (-144)) 25 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-644 (-144)) (-644 (-144))) 24 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099))))) (-1932 (((-112) $ $) 14)) (-4156 (((-112) (-144) $) 46 (-12 (|has| $ (-6 -4414)) (|has| (-144) (-1099))))) (-2993 (((-644 (-144)) $) 49)) (-3467 (((-112) $) 11)) (-1494 (($) 12)) (-4390 (((-144) $ (-566) (-144)) 51) (((-144) $ (-566)) 50) (($ $ (-1231 (-566))) 64) (($ $ $) 103)) (-2187 (($ $ (-566)) 63) (($ $ (-1231 (-566))) 62)) (-4045 (((-771) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4414))) (((-771) (-144) $) 29 (-12 (|has| (-144) (-1099)) (|has| $ (-6 -4414))))) (-1297 (($ $ $ (-566)) 92 (|has| $ (-6 -4415)))) (-3940 (($ $) 13)) (-1348 (((-538) $) 80 (|has| (-144) (-614 (-538))))) (-3796 (($ (-644 (-144))) 71)) (-3721 (($ $ (-144)) 69) (($ (-144) $) 68) (($ $ $) 67) (($ (-644 $)) 66)) (-3783 (($ (-144)) 112) (((-862) $) 18 (|has| (-144) (-613 (-862))))) (-3117 (((-112) $ $) 23 (|has| (-144) (-1099)))) (-1894 (((-112) (-1 (-112) (-144)) $) 34 (|has| $ (-6 -4414)))) (-3009 (((-112) $ $) 85 (|has| (-144) (-850)))) (-2984 (((-112) $ $) 84 (|has| (-144) (-850)))) (-2947 (((-112) $ $) 20 (|has| (-144) (-1099)))) (-2995 (((-112) $ $) 86 (|has| (-144) (-850)))) (-2969 (((-112) $ $) 83 (|has| (-144) (-850)))) (-3018 (((-771) $) 6 (|has| $ (-6 -4414))))) +((-2893 (*1 *1 *1) (-4 *1 (-1138))) (-3094 (*1 *1 *1) (-4 *1 (-1138))) (-3273 (*1 *1 *1 *1) (-4 *1 (-1138))) (-4087 (*1 *1 *1 *1) (-4 *1 (-1138))) (-1429 (*1 *1 *1 *1) (-4 *1 (-1138))) (-2941 (*1 *1 *1 *1) (-4 *1 (-1138))) (-2879 (*1 *1 *1 *1) (-4 *1 (-1138))) (-2078 (*1 *1 *1 *1) (-4 *1 (-1138))) (-2469 (*1 *1 *1) (-4 *1 (-1138))) (-4006 (*1 *1 *1 *1) (-4 *1 (-1138))) (-2879 (*1 *1 *1) (-4 *1 (-1138))) (-1358 (*1 *1 *1) (-4 *1 (-1138)))) +(-13 (-10 -8 (-15 -1358 ($ $)) (-15 -2879 ($ $)) (-15 -4006 ($ $ $)) (-15 -2469 ($ $)) (-15 -2078 ($ $ $)) (-15 -2879 ($ $ $)) (-15 -2941 ($ $ $)) (-15 -1429 ($ $ $)) (-15 -4087 ($ $ $)) (-15 -3273 ($ $ $)) (-15 -3094 ($ $)) (-15 -2893 ($ $)))) +((-2988 (((-112) $ $) 44)) (-2876 ((|#1| $) 17)) (-3116 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39)) (-1845 (((-112) $) 19)) (-1947 (($ $ |#1|) 30)) (-2975 (($ $ (-112)) 32)) (-4134 (($ $) 33)) (-4318 (($ $ |#2|) 31)) (-3380 (((-1157) $) NIL)) (-4294 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38)) (-4072 (((-1119) $) NIL)) (-2872 (((-112) $) 16)) (-3493 (($) 13)) (-1480 (($ $) 29)) (-1340 (($ |#1| |#2| (-112)) 20) (($ |#1| |#2|) 21) (($ (-2 (|:| |val| |#1|) (|:| -1470 |#2|))) 23) (((-644 $) (-644 (-2 (|:| |val| |#1|) (|:| -1470 |#2|)))) 26) (((-644 $) |#1| (-644 |#2|)) 28)) (-1607 ((|#2| $) 18)) (-3152 (((-862) $) 53)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) 42))) +(((-1139 |#1| |#2|) (-13 (-1099) (-10 -8 (-15 -3493 ($)) (-15 -2872 ((-112) $)) (-15 -2876 (|#1| $)) (-15 -1607 (|#2| $)) (-15 -1845 ((-112) $)) (-15 -1340 ($ |#1| |#2| (-112))) (-15 -1340 ($ |#1| |#2|)) (-15 -1340 ($ (-2 (|:| |val| |#1|) (|:| -1470 |#2|)))) (-15 -1340 ((-644 $) (-644 (-2 (|:| |val| |#1|) (|:| -1470 |#2|))))) (-15 -1340 ((-644 $) |#1| (-644 |#2|))) (-15 -1480 ($ $)) (-15 -1947 ($ $ |#1|)) (-15 -4318 ($ $ |#2|)) (-15 -2975 ($ $ (-112))) (-15 -4134 ($ $)) (-15 -4294 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3116 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1099) (-34)) (-13 (-1099) (-34))) (T -1139)) +((-3493 (*1 *1) (-12 (-5 *1 (-1139 *2 *3)) (-4 *2 (-13 (-1099) (-34))) (-4 *3 (-13 (-1099) (-34))))) (-2872 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1139 *3 *4)) (-4 *3 (-13 (-1099) (-34))) (-4 *4 (-13 (-1099) (-34))))) (-2876 (*1 *2 *1) (-12 (-4 *2 (-13 (-1099) (-34))) (-5 *1 (-1139 *2 *3)) (-4 *3 (-13 (-1099) (-34))))) (-1607 (*1 *2 *1) (-12 (-4 *2 (-13 (-1099) (-34))) (-5 *1 (-1139 *3 *2)) (-4 *3 (-13 (-1099) (-34))))) (-1845 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1139 *3 *4)) (-4 *3 (-13 (-1099) (-34))) (-4 *4 (-13 (-1099) (-34))))) (-1340 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1139 *2 *3)) (-4 *2 (-13 (-1099) (-34))) (-4 *3 (-13 (-1099) (-34))))) (-1340 (*1 *1 *2 *3) (-12 (-5 *1 (-1139 *2 *3)) (-4 *2 (-13 (-1099) (-34))) (-4 *3 (-13 (-1099) (-34))))) (-1340 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1470 *4))) (-4 *3 (-13 (-1099) (-34))) (-4 *4 (-13 (-1099) (-34))) (-5 *1 (-1139 *3 *4)))) (-1340 (*1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| |val| *4) (|:| -1470 *5)))) (-4 *4 (-13 (-1099) (-34))) (-4 *5 (-13 (-1099) (-34))) (-5 *2 (-644 (-1139 *4 *5))) (-5 *1 (-1139 *4 *5)))) (-1340 (*1 *2 *3 *4) (-12 (-5 *4 (-644 *5)) (-4 *5 (-13 (-1099) (-34))) (-5 *2 (-644 (-1139 *3 *5))) (-5 *1 (-1139 *3 *5)) (-4 *3 (-13 (-1099) (-34))))) (-1480 (*1 *1 *1) (-12 (-5 *1 (-1139 *2 *3)) (-4 *2 (-13 (-1099) (-34))) (-4 *3 (-13 (-1099) (-34))))) (-1947 (*1 *1 *1 *2) (-12 (-5 *1 (-1139 *2 *3)) (-4 *2 (-13 (-1099) (-34))) (-4 *3 (-13 (-1099) (-34))))) (-4318 (*1 *1 *1 *2) (-12 (-5 *1 (-1139 *3 *2)) (-4 *3 (-13 (-1099) (-34))) (-4 *2 (-13 (-1099) (-34))))) (-2975 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1139 *3 *4)) (-4 *3 (-13 (-1099) (-34))) (-4 *4 (-13 (-1099) (-34))))) (-4134 (*1 *1 *1) (-12 (-5 *1 (-1139 *2 *3)) (-4 *2 (-13 (-1099) (-34))) (-4 *3 (-13 (-1099) (-34))))) (-4294 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1099) (-34))) (-4 *6 (-13 (-1099) (-34))) (-5 *2 (-112)) (-5 *1 (-1139 *5 *6)))) (-3116 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1099) (-34))) (-5 *2 (-112)) (-5 *1 (-1139 *4 *5)) (-4 *4 (-13 (-1099) (-34)))))) +(-13 (-1099) (-10 -8 (-15 -3493 ($)) (-15 -2872 ((-112) $)) (-15 -2876 (|#1| $)) (-15 -1607 (|#2| $)) (-15 -1845 ((-112) $)) (-15 -1340 ($ |#1| |#2| (-112))) (-15 -1340 ($ |#1| |#2|)) (-15 -1340 ($ (-2 (|:| |val| |#1|) (|:| -1470 |#2|)))) (-15 -1340 ((-644 $) (-644 (-2 (|:| |val| |#1|) (|:| -1470 |#2|))))) (-15 -1340 ((-644 $) |#1| (-644 |#2|))) (-15 -1480 ($ $)) (-15 -1947 ($ $ |#1|)) (-15 -4318 ($ $ |#2|)) (-15 -2975 ($ $ (-112))) (-15 -4134 ($ $)) (-15 -4294 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3116 ((-112) $ $ (-1 (-112) |#2| |#2|))))) +((-2988 (((-112) $ $) NIL (|has| (-1139 |#1| |#2|) (-1099)))) (-2876 (((-1139 |#1| |#2|) $) 27)) (-3759 (($ $) 91)) (-2934 (((-112) (-1139 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 100)) (-1399 (($ $ $ (-644 (-1139 |#1| |#2|))) 108) (($ $ $ (-644 (-1139 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 109)) (-1504 (((-112) $ (-771)) NIL)) (-2191 (((-1139 |#1| |#2|) $ (-1139 |#1| |#2|)) 46 (|has| $ (-6 -4415)))) (-1456 (((-1139 |#1| |#2|) $ "value" (-1139 |#1| |#2|)) NIL (|has| $ (-6 -4415)))) (-4202 (($ $ (-644 $)) 44 (|has| $ (-6 -4415)))) (-2463 (($) NIL T CONST)) (-3987 (((-644 (-2 (|:| |val| |#1|) (|:| -1470 |#2|))) $) 95)) (-3512 (($ (-1139 |#1| |#2|) $) 42)) (-2622 (($ (-1139 |#1| |#2|) $) 34)) (-1683 (((-644 (-1139 |#1| |#2|)) $) NIL (|has| $ (-6 -4414)))) (-3431 (((-644 $) $) 54)) (-3123 (((-112) (-1139 |#1| |#2|) $) 97)) (-1507 (((-112) $ $) NIL (|has| (-1139 |#1| |#2|) (-1099)))) (-3456 (((-112) $ (-771)) NIL)) (-3491 (((-644 (-1139 |#1| |#2|)) $) 58 (|has| $ (-6 -4414)))) (-1602 (((-112) (-1139 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-1139 |#1| |#2|) (-1099))))) (-3885 (($ (-1 (-1139 |#1| |#2|) (-1139 |#1| |#2|)) $) 50 (|has| $ (-6 -4415)))) (-2319 (($ (-1 (-1139 |#1| |#2|) (-1139 |#1| |#2|)) $) 49)) (-3267 (((-112) $ (-771)) NIL)) (-1458 (((-644 (-1139 |#1| |#2|)) $) 56)) (-3860 (((-112) $) 45)) (-3380 (((-1157) $) NIL (|has| (-1139 |#1| |#2|) (-1099)))) (-4072 (((-1119) $) NIL (|has| (-1139 |#1| |#2|) (-1099)))) (-1494 (((-3 $ "failed") $) 89)) (-2823 (((-112) (-1 (-112) (-1139 |#1| |#2|)) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 (-1139 |#1| |#2|)))) NIL (-12 (|has| (-1139 |#1| |#2|) (-310 (-1139 |#1| |#2|))) (|has| (-1139 |#1| |#2|) (-1099)))) (($ $ (-295 (-1139 |#1| |#2|))) NIL (-12 (|has| (-1139 |#1| |#2|) (-310 (-1139 |#1| |#2|))) (|has| (-1139 |#1| |#2|) (-1099)))) (($ $ (-1139 |#1| |#2|) (-1139 |#1| |#2|)) NIL (-12 (|has| (-1139 |#1| |#2|) (-310 (-1139 |#1| |#2|))) (|has| (-1139 |#1| |#2|) (-1099)))) (($ $ (-644 (-1139 |#1| |#2|)) (-644 (-1139 |#1| |#2|))) NIL (-12 (|has| (-1139 |#1| |#2|) (-310 (-1139 |#1| |#2|))) (|has| (-1139 |#1| |#2|) (-1099))))) (-3814 (((-112) $ $) 53)) (-2872 (((-112) $) 24)) (-3493 (($) 26)) (-1309 (((-1139 |#1| |#2|) $ "value") NIL)) (-1696 (((-566) $ $) NIL)) (-3786 (((-112) $) 47)) (-4083 (((-771) (-1 (-112) (-1139 |#1| |#2|)) $) NIL (|has| $ (-6 -4414))) (((-771) (-1139 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-1139 |#1| |#2|) (-1099))))) (-1480 (($ $) 52)) (-1340 (($ (-1139 |#1| |#2|)) 10) (($ |#1| |#2| (-644 $)) 13) (($ |#1| |#2| (-644 (-1139 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-644 |#2|)) 18)) (-1971 (((-644 |#2|) $) 96)) (-3152 (((-862) $) 87 (|has| (-1139 |#1| |#2|) (-613 (-862))))) (-1926 (((-644 $) $) 31)) (-4385 (((-112) $ $) NIL (|has| (-1139 |#1| |#2|) (-1099)))) (-3044 (((-112) $ $) NIL (|has| (-1139 |#1| |#2|) (-1099)))) (-2210 (((-112) (-1 (-112) (-1139 |#1| |#2|)) $) NIL (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) 70 (|has| (-1139 |#1| |#2|) (-1099)))) (-3000 (((-771) $) 64 (|has| $ (-6 -4414))))) +(((-1140 |#1| |#2|) (-13 (-1010 (-1139 |#1| |#2|)) (-10 -8 (-6 -4415) (-6 -4414) (-15 -1494 ((-3 $ "failed") $)) (-15 -3759 ($ $)) (-15 -1340 ($ (-1139 |#1| |#2|))) (-15 -1340 ($ |#1| |#2| (-644 $))) (-15 -1340 ($ |#1| |#2| (-644 (-1139 |#1| |#2|)))) (-15 -1340 ($ |#1| |#2| |#1| (-644 |#2|))) (-15 -1971 ((-644 |#2|) $)) (-15 -3987 ((-644 (-2 (|:| |val| |#1|) (|:| -1470 |#2|))) $)) (-15 -3123 ((-112) (-1139 |#1| |#2|) $)) (-15 -2934 ((-112) (-1139 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -2622 ($ (-1139 |#1| |#2|) $)) (-15 -3512 ($ (-1139 |#1| |#2|) $)) (-15 -1399 ($ $ $ (-644 (-1139 |#1| |#2|)))) (-15 -1399 ($ $ $ (-644 (-1139 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1099) (-34)) (-13 (-1099) (-34))) (T -1140)) +((-1494 (*1 *1 *1) (|partial| -12 (-5 *1 (-1140 *2 *3)) (-4 *2 (-13 (-1099) (-34))) (-4 *3 (-13 (-1099) (-34))))) (-3759 (*1 *1 *1) (-12 (-5 *1 (-1140 *2 *3)) (-4 *2 (-13 (-1099) (-34))) (-4 *3 (-13 (-1099) (-34))))) (-1340 (*1 *1 *2) (-12 (-5 *2 (-1139 *3 *4)) (-4 *3 (-13 (-1099) (-34))) (-4 *4 (-13 (-1099) (-34))) (-5 *1 (-1140 *3 *4)))) (-1340 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-644 (-1140 *2 *3))) (-5 *1 (-1140 *2 *3)) (-4 *2 (-13 (-1099) (-34))) (-4 *3 (-13 (-1099) (-34))))) (-1340 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-644 (-1139 *2 *3))) (-4 *2 (-13 (-1099) (-34))) (-4 *3 (-13 (-1099) (-34))) (-5 *1 (-1140 *2 *3)))) (-1340 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-644 *3)) (-4 *3 (-13 (-1099) (-34))) (-5 *1 (-1140 *2 *3)) (-4 *2 (-13 (-1099) (-34))))) (-1971 (*1 *2 *1) (-12 (-5 *2 (-644 *4)) (-5 *1 (-1140 *3 *4)) (-4 *3 (-13 (-1099) (-34))) (-4 *4 (-13 (-1099) (-34))))) (-3987 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -1470 *4)))) (-5 *1 (-1140 *3 *4)) (-4 *3 (-13 (-1099) (-34))) (-4 *4 (-13 (-1099) (-34))))) (-3123 (*1 *2 *3 *1) (-12 (-5 *3 (-1139 *4 *5)) (-4 *4 (-13 (-1099) (-34))) (-4 *5 (-13 (-1099) (-34))) (-5 *2 (-112)) (-5 *1 (-1140 *4 *5)))) (-2934 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1139 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1099) (-34))) (-4 *6 (-13 (-1099) (-34))) (-5 *2 (-112)) (-5 *1 (-1140 *5 *6)))) (-2622 (*1 *1 *2 *1) (-12 (-5 *2 (-1139 *3 *4)) (-4 *3 (-13 (-1099) (-34))) (-4 *4 (-13 (-1099) (-34))) (-5 *1 (-1140 *3 *4)))) (-3512 (*1 *1 *2 *1) (-12 (-5 *2 (-1139 *3 *4)) (-4 *3 (-13 (-1099) (-34))) (-4 *4 (-13 (-1099) (-34))) (-5 *1 (-1140 *3 *4)))) (-1399 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-644 (-1139 *3 *4))) (-4 *3 (-13 (-1099) (-34))) (-4 *4 (-13 (-1099) (-34))) (-5 *1 (-1140 *3 *4)))) (-1399 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-1139 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1099) (-34))) (-4 *5 (-13 (-1099) (-34))) (-5 *1 (-1140 *4 *5))))) +(-13 (-1010 (-1139 |#1| |#2|)) (-10 -8 (-6 -4415) (-6 -4414) (-15 -1494 ((-3 $ "failed") $)) (-15 -3759 ($ $)) (-15 -1340 ($ (-1139 |#1| |#2|))) (-15 -1340 ($ |#1| |#2| (-644 $))) (-15 -1340 ($ |#1| |#2| (-644 (-1139 |#1| |#2|)))) (-15 -1340 ($ |#1| |#2| |#1| (-644 |#2|))) (-15 -1971 ((-644 |#2|) $)) (-15 -3987 ((-644 (-2 (|:| |val| |#1|) (|:| -1470 |#2|))) $)) (-15 -3123 ((-112) (-1139 |#1| |#2|) $)) (-15 -2934 ((-112) (-1139 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -2622 ($ (-1139 |#1| |#2|) $)) (-15 -3512 ($ (-1139 |#1| |#2|) $)) (-15 -1399 ($ $ $ (-644 (-1139 |#1| |#2|)))) (-15 -1399 ($ $ $ (-644 (-1139 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-4160 (($ $) NIL)) (-3833 ((|#2| $) NIL)) (-1791 (((-112) $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-2269 (($ (-689 |#2|)) 56)) (-3768 (((-112) $) NIL)) (-1504 (((-112) $ (-771)) NIL)) (-3520 (($ |#2|) 14)) (-2463 (($) NIL T CONST)) (-1521 (($ $) 69 (|has| |#2| (-308)))) (-1721 (((-240 |#1| |#2|) $ (-566)) 42)) (-2229 (((-3 (-566) "failed") $) NIL (|has| |#2| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#2| (-1038 (-409 (-566))))) (((-3 |#2| "failed") $) NIL)) (-4158 (((-566) $) NIL (|has| |#2| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#2| (-1038 (-409 (-566))))) ((|#2| $) NIL)) (-4089 (((-689 (-566)) (-689 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -3361 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 $) (-1264 $)) NIL) (((-689 |#2|) (-689 $)) NIL)) (-3245 (((-3 $ "failed") $) 83)) (-2755 (((-771) $) 71 (|has| |#2| (-558)))) (-3829 ((|#2| $ (-566) (-566)) NIL)) (-1683 (((-644 |#2|) $) NIL (|has| $ (-6 -4414)))) (-2389 (((-112) $) NIL)) (-1908 (((-771) $) 73 (|has| |#2| (-558)))) (-2950 (((-644 (-240 |#1| |#2|)) $) 77 (|has| |#2| (-558)))) (-3811 (((-771) $) NIL)) (-1860 (($ |#2|) 25)) (-3824 (((-771) $) NIL)) (-3456 (((-112) $ (-771)) NIL)) (-1444 ((|#2| $) 67 (|has| |#2| (-6 (-4416 "*"))))) (-2531 (((-566) $) NIL)) (-3688 (((-566) $) NIL)) (-3491 (((-644 |#2|) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099))))) (-2422 (((-566) $) NIL)) (-3632 (((-566) $) NIL)) (-4184 (($ (-644 (-644 |#2|))) 37)) (-3885 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-1723 (((-644 (-644 |#2|)) $) NIL)) (-3267 (((-112) $ (-771)) NIL)) (-3380 (((-1157) $) NIL)) (-1542 (((-3 $ "failed") $) 80 (|has| |#2| (-365)))) (-4072 (((-1119) $) NIL)) (-2978 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-558)))) (-2823 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-3814 (((-112) $ $) NIL)) (-2872 (((-112) $) NIL)) (-3493 (($) NIL)) (-1309 ((|#2| $ (-566) (-566) |#2|) NIL) ((|#2| $ (-566) (-566)) NIL)) (-3629 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-771)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-3429 ((|#2| $) NIL)) (-2253 (($ (-644 |#2|)) 50)) (-1370 (((-112) $) NIL)) (-3065 (((-240 |#1| |#2|) $) NIL)) (-3943 ((|#2| $) 65 (|has| |#2| (-6 (-4416 "*"))))) (-4083 (((-771) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414))) (((-771) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099))))) (-1480 (($ $) NIL)) (-2376 (((-538) $) 89 (|has| |#2| (-614 (-538))))) (-2986 (((-240 |#1| |#2|) $ (-566)) 44)) (-3152 (((-862) $) 47) (($ (-566)) NIL) (($ (-409 (-566))) NIL (|has| |#2| (-1038 (-409 (-566))))) (($ |#2|) NIL) (((-689 |#2|) $) 52)) (-2593 (((-771)) 23 T CONST)) (-3044 (((-112) $ $) NIL)) (-2210 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414)))) (-1950 (((-112) $) NIL)) (-4356 (($) 16 T CONST)) (-4366 (($) 21 T CONST)) (-3497 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-771)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-2914 (((-112) $ $) NIL)) (-3025 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) 63) (($ $ (-566)) 82 (|has| |#2| (-365)))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-240 |#1| |#2|) $ (-240 |#1| |#2|)) 59) (((-240 |#1| |#2|) (-240 |#1| |#2|) $) 61)) (-3000 (((-771) $) NIL (|has| $ (-6 -4414))))) +(((-1141 |#1| |#2|) (-13 (-1122 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-613 (-689 |#2|)) (-10 -8 (-15 -1860 ($ |#2|)) (-15 -4160 ($ $)) (-15 -2269 ($ (-689 |#2|))) (IF (|has| |#2| (-6 (-4416 "*"))) (-6 -4403) |%noBranch|) (IF (|has| |#2| (-6 (-4416 "*"))) (IF (|has| |#2| (-6 -4411)) (-6 -4411) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|))) (-771) (-1049)) (T -1141)) +((-1860 (*1 *1 *2) (-12 (-5 *1 (-1141 *3 *2)) (-14 *3 (-771)) (-4 *2 (-1049)))) (-4160 (*1 *1 *1) (-12 (-5 *1 (-1141 *2 *3)) (-14 *2 (-771)) (-4 *3 (-1049)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-689 *4)) (-4 *4 (-1049)) (-5 *1 (-1141 *3 *4)) (-14 *3 (-771))))) +(-13 (-1122 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-613 (-689 |#2|)) (-10 -8 (-15 -1860 ($ |#2|)) (-15 -4160 ($ $)) (-15 -2269 ($ (-689 |#2|))) (IF (|has| |#2| (-6 (-4416 "*"))) (-6 -4403) |%noBranch|) (IF (|has| |#2| (-6 (-4416 "*"))) (IF (|has| |#2| (-6 -4411)) (-6 -4411) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|))) +((-2840 (($ $) 19)) (-3818 (($ $ (-144)) 10) (($ $ (-141)) 14)) (-3409 (((-112) $ $) 24)) (-1852 (($ $) 17)) (-1309 (((-144) $ (-566) (-144)) NIL) (((-144) $ (-566)) NIL) (($ $ (-1231 (-566))) NIL) (($ $ $) 31)) (-3152 (($ (-144)) 29) (((-862) $) NIL))) +(((-1142 |#1|) (-10 -8 (-15 -3152 ((-862) |#1|)) (-15 -1309 (|#1| |#1| |#1|)) (-15 -3818 (|#1| |#1| (-141))) (-15 -3818 (|#1| |#1| (-144))) (-15 -3152 (|#1| (-144))) (-15 -3409 ((-112) |#1| |#1|)) (-15 -2840 (|#1| |#1|)) (-15 -1852 (|#1| |#1|)) (-15 -1309 (|#1| |#1| (-1231 (-566)))) (-15 -1309 ((-144) |#1| (-566))) (-15 -1309 ((-144) |#1| (-566) (-144)))) (-1143)) (T -1142)) +NIL +(-10 -8 (-15 -3152 ((-862) |#1|)) (-15 -1309 (|#1| |#1| |#1|)) (-15 -3818 (|#1| |#1| (-141))) (-15 -3818 (|#1| |#1| (-144))) (-15 -3152 (|#1| (-144))) (-15 -3409 ((-112) |#1| |#1|)) (-15 -2840 (|#1| |#1|)) (-15 -1852 (|#1| |#1|)) (-15 -1309 (|#1| |#1| (-1231 (-566)))) (-15 -1309 ((-144) |#1| (-566))) (-15 -1309 ((-144) |#1| (-566) (-144)))) +((-2988 (((-112) $ $) 19 (|has| (-144) (-1099)))) (-2129 (($ $) 121)) (-2840 (($ $) 122)) (-3818 (($ $ (-144)) 109) (($ $ (-141)) 108)) (-1944 (((-1269) $ (-566) (-566)) 41 (|has| $ (-6 -4415)))) (-3388 (((-112) $ $) 119)) (-3366 (((-112) $ $ (-566)) 118)) (-3011 (((-644 $) $ (-144)) 111) (((-644 $) $ (-141)) 110)) (-3054 (((-112) (-1 (-112) (-144) (-144)) $) 99) (((-112) $) 93 (|has| (-144) (-850)))) (-3628 (($ (-1 (-112) (-144) (-144)) $) 90 (|has| $ (-6 -4415))) (($ $) 89 (-12 (|has| (-144) (-850)) (|has| $ (-6 -4415))))) (-2671 (($ (-1 (-112) (-144) (-144)) $) 100) (($ $) 94 (|has| (-144) (-850)))) (-1504 (((-112) $ (-771)) 8)) (-1456 (((-144) $ (-566) (-144)) 53 (|has| $ (-6 -4415))) (((-144) $ (-1231 (-566)) (-144)) 59 (|has| $ (-6 -4415)))) (-3678 (($ (-1 (-112) (-144)) $) 76 (|has| $ (-6 -4414)))) (-2463 (($) 7 T CONST)) (-2290 (($ $ (-144)) 105) (($ $ (-141)) 104)) (-3166 (($ $) 91 (|has| $ (-6 -4415)))) (-3683 (($ $) 101)) (-2801 (($ $ (-1231 (-566)) $) 115)) (-3942 (($ $) 79 (-12 (|has| (-144) (-1099)) (|has| $ (-6 -4414))))) (-2622 (($ (-144) $) 78 (-12 (|has| (-144) (-1099)) (|has| $ (-6 -4414)))) (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4414)))) (-2873 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 77 (-12 (|has| (-144) (-1099)) (|has| $ (-6 -4414)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 74 (|has| $ (-6 -4414))) (((-144) (-1 (-144) (-144) (-144)) $) 73 (|has| $ (-6 -4414)))) (-3897 (((-144) $ (-566) (-144)) 54 (|has| $ (-6 -4415)))) (-3829 (((-144) $ (-566)) 52)) (-3409 (((-112) $ $) 120)) (-1569 (((-566) (-1 (-112) (-144)) $) 98) (((-566) (-144) $) 97 (|has| (-144) (-1099))) (((-566) (-144) $ (-566)) 96 (|has| (-144) (-1099))) (((-566) $ $ (-566)) 114) (((-566) (-141) $ (-566)) 113)) (-1683 (((-644 (-144)) $) 31 (|has| $ (-6 -4414)))) (-1860 (($ (-771) (-144)) 70)) (-3456 (((-112) $ (-771)) 9)) (-2296 (((-566) $) 44 (|has| (-566) (-850)))) (-1478 (($ $ $) 88 (|has| (-144) (-850)))) (-2696 (($ (-1 (-112) (-144) (-144)) $ $) 102) (($ $ $) 95 (|has| (-144) (-850)))) (-3491 (((-644 (-144)) $) 30 (|has| $ (-6 -4414)))) (-1602 (((-112) (-144) $) 28 (-12 (|has| (-144) (-1099)) (|has| $ (-6 -4414))))) (-4050 (((-566) $) 45 (|has| (-566) (-850)))) (-2599 (($ $ $) 87 (|has| (-144) (-850)))) (-1580 (((-112) $ $ (-144)) 116)) (-1981 (((-771) $ $ (-144)) 117)) (-3885 (($ (-1 (-144) (-144)) $) 35 (|has| $ (-6 -4415)))) (-2319 (($ (-1 (-144) (-144)) $) 36) (($ (-1 (-144) (-144) (-144)) $ $) 65)) (-1490 (($ $) 123)) (-1852 (($ $) 124)) (-3267 (((-112) $ (-771)) 10)) (-2303 (($ $ (-144)) 107) (($ $ (-141)) 106)) (-3380 (((-1157) $) 22 (|has| (-144) (-1099)))) (-1859 (($ (-144) $ (-566)) 61) (($ $ $ (-566)) 60)) (-3725 (((-644 (-566)) $) 47)) (-1644 (((-112) (-566) $) 48)) (-4072 (((-1119) $) 21 (|has| (-144) (-1099)))) (-3908 (((-144) $) 43 (|has| (-566) (-850)))) (-3668 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 72)) (-3787 (($ $ (-144)) 42 (|has| $ (-6 -4415)))) (-2823 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 (-144)))) 27 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-295 (-144))) 26 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-144) (-144)) 25 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-644 (-144)) (-644 (-144))) 24 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099))))) (-3814 (((-112) $ $) 14)) (-2847 (((-112) (-144) $) 46 (-12 (|has| $ (-6 -4414)) (|has| (-144) (-1099))))) (-3486 (((-644 (-144)) $) 49)) (-2872 (((-112) $) 11)) (-3493 (($) 12)) (-1309 (((-144) $ (-566) (-144)) 51) (((-144) $ (-566)) 50) (($ $ (-1231 (-566))) 64) (($ $ $) 103)) (-2166 (($ $ (-566)) 63) (($ $ (-1231 (-566))) 62)) (-4083 (((-771) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4414))) (((-771) (-144) $) 29 (-12 (|has| (-144) (-1099)) (|has| $ (-6 -4414))))) (-2661 (($ $ $ (-566)) 92 (|has| $ (-6 -4415)))) (-1480 (($ $) 13)) (-2376 (((-538) $) 80 (|has| (-144) (-614 (-538))))) (-1340 (($ (-644 (-144))) 71)) (-4386 (($ $ (-144)) 69) (($ (-144) $) 68) (($ $ $) 67) (($ (-644 $)) 66)) (-3152 (($ (-144)) 112) (((-862) $) 18 (|has| (-144) (-613 (-862))))) (-3044 (((-112) $ $) 23 (|has| (-144) (-1099)))) (-2210 (((-112) (-1 (-112) (-144)) $) 34 (|has| $ (-6 -4414)))) (-2968 (((-112) $ $) 85 (|has| (-144) (-850)))) (-2946 (((-112) $ $) 84 (|has| (-144) (-850)))) (-2914 (((-112) $ $) 20 (|has| (-144) (-1099)))) (-2956 (((-112) $ $) 86 (|has| (-144) (-850)))) (-2935 (((-112) $ $) 83 (|has| (-144) (-850)))) (-3000 (((-771) $) 6 (|has| $ (-6 -4414))))) (((-1143) (-140)) (T -1143)) -((-3895 (*1 *1 *1) (-4 *1 (-1143))) (-3858 (*1 *1 *1) (-4 *1 (-1143))) (-3761 (*1 *1 *1) (-4 *1 (-1143))) (-3530 (*1 *1 *1) (-4 *1 (-1143))) (-3595 (*1 *2 *1 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-112)))) (-3575 (*1 *2 *1 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-112)))) (-3554 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (-566)) (-5 *2 (-112)))) (-4066 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (-144)) (-5 *2 (-771)))) (-4019 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (-144)) (-5 *2 (-112)))) (-2756 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1231 (-566))))) (-4000 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-566)))) (-4000 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-566)) (-5 *3 (-141)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-144)) (-4 *1 (-1143)))) (-1815 (*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-644 *1)) (-4 *1 (-1143)))) (-1815 (*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-644 *1)) (-4 *1 (-1143)))) (-2436 (*1 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-144)))) (-2436 (*1 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-141)))) (-1614 (*1 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-144)))) (-1614 (*1 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-141)))) (-1602 (*1 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-144)))) (-1602 (*1 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-141)))) (-4390 (*1 *1 *1 *1) (-4 *1 (-1143)))) -(-13 (-19 (-144)) (-10 -8 (-15 -3895 ($ $)) (-15 -3858 ($ $)) (-15 -3761 ($ $)) (-15 -3530 ($ $)) (-15 -3595 ((-112) $ $)) (-15 -3575 ((-112) $ $)) (-15 -3554 ((-112) $ $ (-566))) (-15 -4066 ((-771) $ $ (-144))) (-15 -4019 ((-112) $ $ (-144))) (-15 -2756 ($ $ (-1231 (-566)) $)) (-15 -4000 ((-566) $ $ (-566))) (-15 -4000 ((-566) (-141) $ (-566))) (-15 -3783 ($ (-144))) (-15 -1815 ((-644 $) $ (-144))) (-15 -1815 ((-644 $) $ (-141))) (-15 -2436 ($ $ (-144))) (-15 -2436 ($ $ (-141))) (-15 -1614 ($ $ (-144))) (-15 -1614 ($ $ (-141))) (-15 -1602 ($ $ (-144))) (-15 -1602 ($ $ (-141))) (-15 -4390 ($ $ $)))) -(((-34) . T) ((-102) -2809 (|has| (-144) (-1099)) (|has| (-144) (-850))) ((-613 (-862)) -2809 (|has| (-144) (-1099)) (|has| (-144) (-850)) (|has| (-144) (-613 (-862)))) ((-151 #0=(-144)) . T) ((-614 (-538)) |has| (-144) (-614 (-538))) ((-287 #1=(-566) #0#) . T) ((-289 #1# #0#) . T) ((-310 #0#) -12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099))) ((-375 #0#) . T) ((-491 #0#) . T) ((-604 #1# #0#) . T) ((-516 #0# #0#) -12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099))) ((-651 #0#) . T) ((-19 #0#) . T) ((-850) |has| (-144) (-850)) ((-1099) -2809 (|has| (-144) (-1099)) (|has| (-144) (-850))) ((-1214) . T)) -((-2822 (((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))) (-644 |#4|) (-644 |#5|) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))) (-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))))) (-771)) 113)) (-2754 (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))))) |#4| |#5|) 62) (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))))) |#4| |#5| (-771)) 61)) (-2629 (((-1269) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))) (-771)) 98)) (-2987 (((-771) (-644 |#4|) (-644 |#5|)) 30)) (-2605 (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))))) |#4| |#5| (-771)) 63) (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))))) |#4| |#5| (-771) (-112)) 65)) (-3475 (((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112) (-112) (-112) (-112)) 84) (((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112)) 85)) (-1348 (((-1157) (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))) 90)) (-4028 (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))))) |#4| |#5|) 60)) (-3947 (((-771) (-644 |#4|) (-644 |#5|)) 21))) -(((-1144 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3947 ((-771) (-644 |#4|) (-644 |#5|))) (-15 -2987 ((-771) (-644 |#4|) (-644 |#5|))) (-15 -4028 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))))) |#4| |#5|)) (-15 -2754 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))))) |#4| |#5| (-771))) (-15 -2754 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))))) |#4| |#5|)) (-15 -2605 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))))) |#4| |#5| (-771) (-112))) (-15 -2605 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))))) |#4| |#5| (-771))) (-15 -2605 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))))) |#4| |#5|)) (-15 -3475 ((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112))) (-15 -3475 ((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2822 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))) (-644 |#4|) (-644 |#5|) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))) (-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))))) (-771))) (-15 -1348 ((-1157) (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|)))) (-15 -2629 ((-1269) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))) (-771)))) (-454) (-793) (-850) (-1064 |#1| |#2| |#3|) (-1108 |#1| |#2| |#3| |#4|)) (T -1144)) -((-2629 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-2 (|:| |val| (-644 *8)) (|:| -3570 *9)))) (-5 *4 (-771)) (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1108 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-1269)) (-5 *1 (-1144 *5 *6 *7 *8 *9)))) (-1348 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-644 *7)) (|:| -3570 *8))) (-4 *7 (-1064 *4 *5 *6)) (-4 *8 (-1108 *4 *5 *6 *7)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-1157)) (-5 *1 (-1144 *4 *5 *6 *7 *8)))) (-2822 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-644 *11)) (|:| |todo| (-644 (-2 (|:| |val| *3) (|:| -3570 *11)))))) (-5 *6 (-771)) (-5 *2 (-644 (-2 (|:| |val| (-644 *10)) (|:| -3570 *11)))) (-5 *3 (-644 *10)) (-5 *4 (-644 *11)) (-4 *10 (-1064 *7 *8 *9)) (-4 *11 (-1108 *7 *8 *9 *10)) (-4 *7 (-454)) (-4 *8 (-793)) (-4 *9 (-850)) (-5 *1 (-1144 *7 *8 *9 *10 *11)))) (-3475 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-644 *9)) (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1108 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-1144 *5 *6 *7 *8 *9)))) (-3475 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-644 *9)) (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1108 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-1144 *5 *6 *7 *8 *9)))) (-2605 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -3570 *4)))))) (-5 *1 (-1144 *5 *6 *7 *3 *4)) (-4 *4 (-1108 *5 *6 *7 *3)))) (-2605 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-771)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) (-4 *3 (-1064 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -3570 *4)))))) (-5 *1 (-1144 *6 *7 *8 *3 *4)) (-4 *4 (-1108 *6 *7 *8 *3)))) (-2605 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-771)) (-5 *6 (-112)) (-4 *7 (-454)) (-4 *8 (-793)) (-4 *9 (-850)) (-4 *3 (-1064 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -3570 *4)))))) (-5 *1 (-1144 *7 *8 *9 *3 *4)) (-4 *4 (-1108 *7 *8 *9 *3)))) (-2754 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -3570 *4)))))) (-5 *1 (-1144 *5 *6 *7 *3 *4)) (-4 *4 (-1108 *5 *6 *7 *3)))) (-2754 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-771)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) (-4 *3 (-1064 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -3570 *4)))))) (-5 *1 (-1144 *6 *7 *8 *3 *4)) (-4 *4 (-1108 *6 *7 *8 *3)))) (-4028 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -3570 *4)))))) (-5 *1 (-1144 *5 *6 *7 *3 *4)) (-4 *4 (-1108 *5 *6 *7 *3)))) (-2987 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 *9)) (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1108 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-771)) (-5 *1 (-1144 *5 *6 *7 *8 *9)))) (-3947 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 *9)) (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1108 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-771)) (-5 *1 (-1144 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -3947 ((-771) (-644 |#4|) (-644 |#5|))) (-15 -2987 ((-771) (-644 |#4|) (-644 |#5|))) (-15 -4028 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))))) |#4| |#5|)) (-15 -2754 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))))) |#4| |#5| (-771))) (-15 -2754 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))))) |#4| |#5|)) (-15 -2605 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))))) |#4| |#5| (-771) (-112))) (-15 -2605 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))))) |#4| |#5| (-771))) (-15 -2605 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))))) |#4| |#5|)) (-15 -3475 ((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112))) (-15 -3475 ((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2822 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))) (-644 |#4|) (-644 |#5|) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))) (-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))))) (-771))) (-15 -1348 ((-1157) (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|)))) (-15 -2629 ((-1269) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3570 |#5|))) (-771)))) -((-3007 (((-112) $ $) NIL)) (-2584 (((-644 (-2 (|:| -1651 $) (|:| -3501 (-644 |#4|)))) (-644 |#4|)) NIL)) (-2333 (((-644 $) (-644 |#4|)) 124) (((-644 $) (-644 |#4|) (-112)) 125) (((-644 $) (-644 |#4|) (-112) (-112)) 123) (((-644 $) (-644 |#4|) (-112) (-112) (-112) (-112)) 126)) (-3863 (((-644 |#3|) $) NIL)) (-2368 (((-112) $) NIL)) (-4070 (((-112) $) NIL (|has| |#1| (-558)))) (-3624 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1374 ((|#4| |#4| $) NIL)) (-1550 (((-644 (-2 (|:| |val| |#4|) (|:| -3570 $))) |#4| $) 97)) (-1510 (((-2 (|:| |under| $) (|:| -3470 $) (|:| |upper| $)) $ |#3|) NIL)) (-2256 (((-112) $ (-771)) NIL)) (-2701 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4414))) (((-3 |#4| "failed") $ |#3|) 75)) (-3012 (($) NIL T CONST)) (-3779 (((-112) $) 29 (|has| |#1| (-558)))) (-2540 (((-112) $ $) NIL (|has| |#1| (-558)))) (-4093 (((-112) $ $) NIL (|has| |#1| (-558)))) (-3741 (((-112) $) NIL (|has| |#1| (-558)))) (-2506 (((-644 |#4|) (-644 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2026 (((-644 |#4|) (-644 |#4|) $) NIL (|has| |#1| (-558)))) (-4306 (((-644 |#4|) (-644 |#4|) $) NIL (|has| |#1| (-558)))) (-4307 (((-3 $ "failed") (-644 |#4|)) NIL)) (-4205 (($ (-644 |#4|)) NIL)) (-2010 (((-3 $ "failed") $) 45)) (-2100 ((|#4| |#4| $) 78)) (-2031 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#4| (-1099))))) (-2665 (($ |#4| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#4| (-1099)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4414)))) (-2513 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 91 (|has| |#1| (-558)))) (-1464 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-1401 ((|#4| |#4| $) NIL)) (-1676 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4414)) (|has| |#4| (-1099)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4414))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4414))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3692 (((-2 (|:| -1651 (-644 |#4|)) (|:| -3501 (-644 |#4|))) $) NIL)) (-3987 (((-112) |#4| $) NIL)) (-1906 (((-112) |#4| $) NIL)) (-1530 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4281 (((-2 (|:| |val| (-644 |#4|)) (|:| |towers| (-644 $))) (-644 |#4|) (-112) (-112)) 139)) (-3979 (((-644 |#4|) $) 18 (|has| $ (-6 -4414)))) (-2111 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1489 ((|#3| $) 38)) (-2404 (((-112) $ (-771)) NIL)) (-2329 (((-644 |#4|) $) 19 (|has| $ (-6 -4414)))) (-1916 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4414)) (|has| |#4| (-1099))))) (-2908 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#4| |#4|) $) 23)) (-2189 (((-644 |#3|) $) NIL)) (-3953 (((-112) |#3| $) NIL)) (-2603 (((-112) $ (-771)) NIL)) (-4117 (((-1157) $) NIL)) (-1532 (((-3 |#4| (-644 $)) |#4| |#4| $) NIL)) (-1558 (((-644 (-2 (|:| |val| |#4|) (|:| -3570 $))) |#4| |#4| $) 117)) (-2686 (((-3 |#4| "failed") $) 42)) (-3758 (((-644 $) |#4| $) 102)) (-1613 (((-3 (-112) (-644 $)) |#4| $) NIL)) (-1714 (((-644 (-2 (|:| |val| (-112)) (|:| -3570 $))) |#4| $) 112) (((-112) |#4| $) 65)) (-4018 (((-644 $) |#4| $) 121) (((-644 $) (-644 |#4|) $) NIL) (((-644 $) (-644 |#4|) (-644 $)) 122) (((-644 $) |#4| (-644 $)) NIL)) (-3138 (((-644 $) (-644 |#4|) (-112) (-112) (-112)) 134)) (-2096 (($ |#4| $) 88) (($ (-644 |#4|) $) 89) (((-644 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 87)) (-2851 (((-644 |#4|) $) NIL)) (-1694 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1871 ((|#4| |#4| $) NIL)) (-2897 (((-112) $ $) NIL)) (-3112 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-558)))) (-3351 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3544 ((|#4| |#4| $) NIL)) (-4035 (((-1119) $) NIL)) (-1998 (((-3 |#4| "failed") $) 40)) (-2006 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2060 (((-3 $ "failed") $ |#4|) 59)) (-3874 (($ $ |#4|) NIL) (((-644 $) |#4| $) 104) (((-644 $) |#4| (-644 $)) NIL) (((-644 $) (-644 |#4|) $) NIL) (((-644 $) (-644 |#4|) (-644 $)) 99)) (-2692 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 |#4|) (-644 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-644 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))) (-1932 (((-112) $ $) NIL)) (-3467 (((-112) $) 17)) (-1494 (($) 14)) (-3636 (((-771) $) NIL)) (-4045 (((-771) |#4| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#4| (-1099)))) (((-771) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4414)))) (-3940 (($ $) 13)) (-1348 (((-538) $) NIL (|has| |#4| (-614 (-538))))) (-3796 (($ (-644 |#4|)) 22)) (-2325 (($ $ |#3|) 52)) (-4106 (($ $ |#3|) 54)) (-3973 (($ $) NIL)) (-3080 (($ $ |#3|) NIL)) (-3783 (((-862) $) 35) (((-644 |#4|) $) 46)) (-2028 (((-771) $) NIL (|has| |#3| (-370)))) (-3117 (((-112) $ $) NIL)) (-3706 (((-3 (-2 (|:| |bas| $) (|:| -1825 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1825 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3772 (((-112) $ (-1 (-112) |#4| (-644 |#4|))) NIL)) (-3089 (((-644 $) |#4| $) 66) (((-644 $) |#4| (-644 $)) NIL) (((-644 $) (-644 |#4|) $) NIL) (((-644 $) (-644 |#4|) (-644 $)) NIL)) (-1894 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4414)))) (-4180 (((-644 |#3|) $) NIL)) (-1571 (((-112) |#4| $) NIL)) (-1423 (((-112) |#3| $) 74)) (-2947 (((-112) $ $) NIL)) (-3018 (((-771) $) NIL (|has| $ (-6 -4414))))) -(((-1145 |#1| |#2| |#3| |#4|) (-13 (-1108 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2096 ((-644 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2333 ((-644 $) (-644 |#4|) (-112) (-112))) (-15 -2333 ((-644 $) (-644 |#4|) (-112) (-112) (-112) (-112))) (-15 -3138 ((-644 $) (-644 |#4|) (-112) (-112) (-112))) (-15 -4281 ((-2 (|:| |val| (-644 |#4|)) (|:| |towers| (-644 $))) (-644 |#4|) (-112) (-112))))) (-454) (-793) (-850) (-1064 |#1| |#2| |#3|)) (T -1145)) -((-2096 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-644 (-1145 *5 *6 *7 *3))) (-5 *1 (-1145 *5 *6 *7 *3)) (-4 *3 (-1064 *5 *6 *7)))) (-2333 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-644 (-1145 *5 *6 *7 *8))) (-5 *1 (-1145 *5 *6 *7 *8)))) (-2333 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-644 (-1145 *5 *6 *7 *8))) (-5 *1 (-1145 *5 *6 *7 *8)))) (-3138 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-644 (-1145 *5 *6 *7 *8))) (-5 *1 (-1145 *5 *6 *7 *8)))) (-4281 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-1064 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-644 *8)) (|:| |towers| (-644 (-1145 *5 *6 *7 *8))))) (-5 *1 (-1145 *5 *6 *7 *8)) (-5 *3 (-644 *8))))) -(-13 (-1108 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2096 ((-644 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2333 ((-644 $) (-644 |#4|) (-112) (-112))) (-15 -2333 ((-644 $) (-644 |#4|) (-112) (-112) (-112) (-112))) (-15 -3138 ((-644 $) (-644 |#4|) (-112) (-112) (-112))) (-15 -4281 ((-2 (|:| |val| (-644 |#4|)) (|:| |towers| (-644 $))) (-644 |#4|) (-112) (-112))))) -((-3007 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1825 ((|#1| $) 37)) (-3881 (($ (-644 |#1|)) 45)) (-2256 (((-112) $ (-771)) NIL)) (-3012 (($) NIL T CONST)) (-2261 ((|#1| |#1| $) 40)) (-2008 ((|#1| $) 35)) (-3979 (((-644 |#1|) $) 18 (|has| $ (-6 -4414)))) (-2404 (((-112) $ (-771)) NIL)) (-2329 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2908 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#1| |#1|) $) 22)) (-2603 (((-112) $ (-771)) NIL)) (-4117 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4039 ((|#1| $) 38)) (-3406 (($ |#1| $) 41)) (-4035 (((-1119) $) NIL (|has| |#1| (-1099)))) (-2539 ((|#1| $) 36)) (-2692 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) NIL)) (-3467 (((-112) $) 32)) (-1494 (($) 43)) (-2266 (((-771) $) 30)) (-4045 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3940 (($ $) 27)) (-3783 (((-862) $) 14 (|has| |#1| (-613 (-862))))) (-3117 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1748 (($ (-644 |#1|)) NIL)) (-1894 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) 17 (|has| |#1| (-1099)))) (-3018 (((-771) $) 31 (|has| $ (-6 -4414))))) -(((-1146 |#1|) (-13 (-1120 |#1|) (-10 -8 (-15 -3881 ($ (-644 |#1|))))) (-1214)) (T -1146)) -((-3881 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1214)) (-5 *1 (-1146 *3))))) -(-13 (-1120 |#1|) (-10 -8 (-15 -3881 ($ (-644 |#1|))))) -((-3923 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1231 (-566)) |#2|) 55) ((|#2| $ (-566) |#2|) 52)) (-1902 (((-112) $) 12)) (-2908 (($ (-1 |#2| |#2|) $) 50)) (-1998 ((|#2| $) NIL) (($ $ (-771)) 20)) (-4030 (($ $ |#2|) 51)) (-2373 (((-112) $) 11)) (-4390 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1231 (-566))) 38) ((|#2| $ (-566)) 29) ((|#2| $ (-566) |#2|) NIL)) (-3480 (($ $ $) 58) (($ $ |#2|) NIL)) (-3721 (($ $ $) 40) (($ |#2| $) NIL) (($ (-644 $)) 47) (($ $ |#2|) NIL))) -(((-1147 |#1| |#2|) (-10 -8 (-15 -1902 ((-112) |#1|)) (-15 -2373 ((-112) |#1|)) (-15 -3923 (|#2| |#1| (-566) |#2|)) (-15 -4390 (|#2| |#1| (-566) |#2|)) (-15 -4390 (|#2| |#1| (-566))) (-15 -4030 (|#1| |#1| |#2|)) (-15 -3721 (|#1| |#1| |#2|)) (-15 -3721 (|#1| (-644 |#1|))) (-15 -4390 (|#1| |#1| (-1231 (-566)))) (-15 -3923 (|#2| |#1| (-1231 (-566)) |#2|)) (-15 -3923 (|#2| |#1| "last" |#2|)) (-15 -3923 (|#1| |#1| "rest" |#1|)) (-15 -3923 (|#2| |#1| "first" |#2|)) (-15 -3480 (|#1| |#1| |#2|)) (-15 -3480 (|#1| |#1| |#1|)) (-15 -4390 (|#2| |#1| "last")) (-15 -4390 (|#1| |#1| "rest")) (-15 -1998 (|#1| |#1| (-771))) (-15 -4390 (|#2| |#1| "first")) (-15 -1998 (|#2| |#1|)) (-15 -3721 (|#1| |#2| |#1|)) (-15 -3721 (|#1| |#1| |#1|)) (-15 -3923 (|#2| |#1| "value" |#2|)) (-15 -4390 (|#2| |#1| "value")) (-15 -2908 (|#1| (-1 |#2| |#2|) |#1|))) (-1148 |#2|) (-1214)) (T -1147)) -NIL -(-10 -8 (-15 -1902 ((-112) |#1|)) (-15 -2373 ((-112) |#1|)) (-15 -3923 (|#2| |#1| (-566) |#2|)) (-15 -4390 (|#2| |#1| (-566) |#2|)) (-15 -4390 (|#2| |#1| (-566))) (-15 -4030 (|#1| |#1| |#2|)) (-15 -3721 (|#1| |#1| |#2|)) (-15 -3721 (|#1| (-644 |#1|))) (-15 -4390 (|#1| |#1| (-1231 (-566)))) (-15 -3923 (|#2| |#1| (-1231 (-566)) |#2|)) (-15 -3923 (|#2| |#1| "last" |#2|)) (-15 -3923 (|#1| |#1| "rest" |#1|)) (-15 -3923 (|#2| |#1| "first" |#2|)) (-15 -3480 (|#1| |#1| |#2|)) (-15 -3480 (|#1| |#1| |#1|)) (-15 -4390 (|#2| |#1| "last")) (-15 -4390 (|#1| |#1| "rest")) (-15 -1998 (|#1| |#1| (-771))) (-15 -4390 (|#2| |#1| "first")) (-15 -1998 (|#2| |#1|)) (-15 -3721 (|#1| |#2| |#1|)) (-15 -3721 (|#1| |#1| |#1|)) (-15 -3923 (|#2| |#1| "value" |#2|)) (-15 -4390 (|#2| |#1| "value")) (-15 -2908 (|#1| (-1 |#2| |#2|) |#1|))) -((-3007 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2233 ((|#1| $) 49)) (-2593 ((|#1| $) 66)) (-2223 (($ $) 68)) (-3734 (((-1269) $ (-566) (-566)) 98 (|has| $ (-6 -4415)))) (-2807 (($ $ (-566)) 53 (|has| $ (-6 -4415)))) (-2256 (((-112) $ (-771)) 8)) (-3396 ((|#1| $ |#1|) 40 (|has| $ (-6 -4415)))) (-4107 (($ $ $) 57 (|has| $ (-6 -4415)))) (-3178 ((|#1| $ |#1|) 55 (|has| $ (-6 -4415)))) (-2905 ((|#1| $ |#1|) 59 (|has| $ (-6 -4415)))) (-3923 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4415))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4415))) (($ $ "rest" $) 56 (|has| $ (-6 -4415))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4415))) ((|#1| $ (-1231 (-566)) |#1|) 118 (|has| $ (-6 -4415))) ((|#1| $ (-566) |#1|) 87 (|has| $ (-6 -4415)))) (-3800 (($ $ (-644 $)) 42 (|has| $ (-6 -4415)))) (-2701 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4414)))) (-2582 ((|#1| $) 67)) (-3012 (($) 7 T CONST)) (-2010 (($ $) 74) (($ $ (-771)) 72)) (-2031 (($ $) 100 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2665 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4414))) (($ |#1| $) 101 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-1676 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2920 ((|#1| $ (-566) |#1|) 86 (|has| $ (-6 -4415)))) (-2855 ((|#1| $ (-566)) 88)) (-1902 (((-112) $) 84)) (-3979 (((-644 |#1|) $) 31 (|has| $ (-6 -4414)))) (-4009 (((-644 $) $) 51)) (-3891 (((-112) $ $) 43 (|has| |#1| (-1099)))) (-4265 (($ (-771) |#1|) 109)) (-2404 (((-112) $ (-771)) 9)) (-3854 (((-566) $) 96 (|has| (-566) (-850)))) (-2329 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2712 (((-566) $) 95 (|has| (-566) (-850)))) (-2908 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-2603 (((-112) $ (-771)) 10)) (-3701 (((-644 |#1|) $) 46)) (-3438 (((-112) $) 50)) (-4117 (((-1157) $) 22 (|has| |#1| (-1099)))) (-2686 ((|#1| $) 71) (($ $ (-771)) 69)) (-4276 (($ $ $ (-566)) 117) (($ |#1| $ (-566)) 116)) (-4074 (((-644 (-566)) $) 93)) (-3792 (((-112) (-566) $) 92)) (-4035 (((-1119) $) 21 (|has| |#1| (-1099)))) (-1998 ((|#1| $) 77) (($ $ (-771)) 75)) (-2006 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-4030 (($ $ |#1|) 97 (|has| $ (-6 -4415)))) (-2373 (((-112) $) 85)) (-2692 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) 14)) (-4156 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2993 (((-644 |#1|) $) 91)) (-3467 (((-112) $) 11)) (-1494 (($) 12)) (-4390 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1231 (-566))) 113) ((|#1| $ (-566)) 90) ((|#1| $ (-566) |#1|) 89)) (-1416 (((-566) $ $) 45)) (-2187 (($ $ (-1231 (-566))) 115) (($ $ (-566)) 114)) (-3494 (((-112) $) 47)) (-4272 (($ $) 63)) (-1844 (($ $) 60 (|has| $ (-6 -4415)))) (-2833 (((-771) $) 64)) (-2369 (($ $) 65)) (-4045 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-3940 (($ $) 13)) (-1348 (((-538) $) 99 (|has| |#1| (-614 (-538))))) (-3796 (($ (-644 |#1|)) 108)) (-3480 (($ $ $) 62 (|has| $ (-6 -4415))) (($ $ |#1|) 61 (|has| $ (-6 -4415)))) (-3721 (($ $ $) 79) (($ |#1| $) 78) (($ (-644 $)) 111) (($ $ |#1|) 110)) (-3783 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-2462 (((-644 $) $) 52)) (-4288 (((-112) $ $) 44 (|has| |#1| (-1099)))) (-3117 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-1894 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3018 (((-771) $) 6 (|has| $ (-6 -4414))))) +((-1852 (*1 *1 *1) (-4 *1 (-1143))) (-1490 (*1 *1 *1) (-4 *1 (-1143))) (-2840 (*1 *1 *1) (-4 *1 (-1143))) (-2129 (*1 *1 *1) (-4 *1 (-1143))) (-3409 (*1 *2 *1 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-112)))) (-3388 (*1 *2 *1 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-112)))) (-3366 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (-566)) (-5 *2 (-112)))) (-1981 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (-144)) (-5 *2 (-771)))) (-1580 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (-144)) (-5 *2 (-112)))) (-2801 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1231 (-566))))) (-1569 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-566)))) (-1569 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-566)) (-5 *3 (-141)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-144)) (-4 *1 (-1143)))) (-3011 (*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-644 *1)) (-4 *1 (-1143)))) (-3011 (*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-644 *1)) (-4 *1 (-1143)))) (-3818 (*1 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-144)))) (-3818 (*1 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-141)))) (-2303 (*1 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-144)))) (-2303 (*1 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-141)))) (-2290 (*1 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-144)))) (-2290 (*1 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-141)))) (-1309 (*1 *1 *1 *1) (-4 *1 (-1143)))) +(-13 (-19 (-144)) (-10 -8 (-15 -1852 ($ $)) (-15 -1490 ($ $)) (-15 -2840 ($ $)) (-15 -2129 ($ $)) (-15 -3409 ((-112) $ $)) (-15 -3388 ((-112) $ $)) (-15 -3366 ((-112) $ $ (-566))) (-15 -1981 ((-771) $ $ (-144))) (-15 -1580 ((-112) $ $ (-144))) (-15 -2801 ($ $ (-1231 (-566)) $)) (-15 -1569 ((-566) $ $ (-566))) (-15 -1569 ((-566) (-141) $ (-566))) (-15 -3152 ($ (-144))) (-15 -3011 ((-644 $) $ (-144))) (-15 -3011 ((-644 $) $ (-141))) (-15 -3818 ($ $ (-144))) (-15 -3818 ($ $ (-141))) (-15 -2303 ($ $ (-144))) (-15 -2303 ($ $ (-141))) (-15 -2290 ($ $ (-144))) (-15 -2290 ($ $ (-141))) (-15 -1309 ($ $ $)))) +(((-34) . T) ((-102) -2768 (|has| (-144) (-1099)) (|has| (-144) (-850))) ((-613 (-862)) -2768 (|has| (-144) (-1099)) (|has| (-144) (-850)) (|has| (-144) (-613 (-862)))) ((-151 #0=(-144)) . T) ((-614 (-538)) |has| (-144) (-614 (-538))) ((-287 #1=(-566) #0#) . T) ((-289 #1# #0#) . T) ((-310 #0#) -12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099))) ((-375 #0#) . T) ((-491 #0#) . T) ((-604 #1# #0#) . T) ((-516 #0# #0#) -12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099))) ((-651 #0#) . T) ((-19 #0#) . T) ((-850) |has| (-144) (-850)) ((-1099) -2768 (|has| (-144) (-1099)) (|has| (-144) (-850))) ((-1214) . T)) +((-3235 (((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))) (-644 |#4|) (-644 |#5|) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))) (-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))))) (-771)) 113)) (-2623 (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))))) |#4| |#5|) 62) (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))))) |#4| |#5| (-771)) 61)) (-3484 (((-1269) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))) (-771)) 98)) (-4321 (((-771) (-644 |#4|) (-644 |#5|)) 30)) (-3465 (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))))) |#4| |#5| (-771)) 63) (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))))) |#4| |#5| (-771) (-112)) 65)) (-2461 (((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112) (-112) (-112) (-112)) 84) (((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112)) 85)) (-2376 (((-1157) (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))) 90)) (-1628 (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))))) |#4| |#5|) 60)) (-2234 (((-771) (-644 |#4|) (-644 |#5|)) 21))) +(((-1144 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2234 ((-771) (-644 |#4|) (-644 |#5|))) (-15 -4321 ((-771) (-644 |#4|) (-644 |#5|))) (-15 -1628 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))))) |#4| |#5|)) (-15 -2623 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))))) |#4| |#5| (-771))) (-15 -2623 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))))) |#4| |#5|)) (-15 -3465 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))))) |#4| |#5| (-771) (-112))) (-15 -3465 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))))) |#4| |#5| (-771))) (-15 -3465 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))))) |#4| |#5|)) (-15 -2461 ((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112))) (-15 -2461 ((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3235 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))) (-644 |#4|) (-644 |#5|) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))) (-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))))) (-771))) (-15 -2376 ((-1157) (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|)))) (-15 -3484 ((-1269) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))) (-771)))) (-454) (-793) (-850) (-1064 |#1| |#2| |#3|) (-1108 |#1| |#2| |#3| |#4|)) (T -1144)) +((-3484 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-2 (|:| |val| (-644 *8)) (|:| -1470 *9)))) (-5 *4 (-771)) (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1108 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-1269)) (-5 *1 (-1144 *5 *6 *7 *8 *9)))) (-2376 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-644 *7)) (|:| -1470 *8))) (-4 *7 (-1064 *4 *5 *6)) (-4 *8 (-1108 *4 *5 *6 *7)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-1157)) (-5 *1 (-1144 *4 *5 *6 *7 *8)))) (-3235 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-644 *11)) (|:| |todo| (-644 (-2 (|:| |val| *3) (|:| -1470 *11)))))) (-5 *6 (-771)) (-5 *2 (-644 (-2 (|:| |val| (-644 *10)) (|:| -1470 *11)))) (-5 *3 (-644 *10)) (-5 *4 (-644 *11)) (-4 *10 (-1064 *7 *8 *9)) (-4 *11 (-1108 *7 *8 *9 *10)) (-4 *7 (-454)) (-4 *8 (-793)) (-4 *9 (-850)) (-5 *1 (-1144 *7 *8 *9 *10 *11)))) (-2461 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-644 *9)) (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1108 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-1144 *5 *6 *7 *8 *9)))) (-2461 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-644 *9)) (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1108 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-1144 *5 *6 *7 *8 *9)))) (-3465 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -1470 *4)))))) (-5 *1 (-1144 *5 *6 *7 *3 *4)) (-4 *4 (-1108 *5 *6 *7 *3)))) (-3465 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-771)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) (-4 *3 (-1064 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -1470 *4)))))) (-5 *1 (-1144 *6 *7 *8 *3 *4)) (-4 *4 (-1108 *6 *7 *8 *3)))) (-3465 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-771)) (-5 *6 (-112)) (-4 *7 (-454)) (-4 *8 (-793)) (-4 *9 (-850)) (-4 *3 (-1064 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -1470 *4)))))) (-5 *1 (-1144 *7 *8 *9 *3 *4)) (-4 *4 (-1108 *7 *8 *9 *3)))) (-2623 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -1470 *4)))))) (-5 *1 (-1144 *5 *6 *7 *3 *4)) (-4 *4 (-1108 *5 *6 *7 *3)))) (-2623 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-771)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) (-4 *3 (-1064 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -1470 *4)))))) (-5 *1 (-1144 *6 *7 *8 *3 *4)) (-4 *4 (-1108 *6 *7 *8 *3)))) (-1628 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -1470 *4)))))) (-5 *1 (-1144 *5 *6 *7 *3 *4)) (-4 *4 (-1108 *5 *6 *7 *3)))) (-4321 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 *9)) (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1108 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-771)) (-5 *1 (-1144 *5 *6 *7 *8 *9)))) (-2234 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 *9)) (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1108 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-771)) (-5 *1 (-1144 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -2234 ((-771) (-644 |#4|) (-644 |#5|))) (-15 -4321 ((-771) (-644 |#4|) (-644 |#5|))) (-15 -1628 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))))) |#4| |#5|)) (-15 -2623 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))))) |#4| |#5| (-771))) (-15 -2623 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))))) |#4| |#5|)) (-15 -3465 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))))) |#4| |#5| (-771) (-112))) (-15 -3465 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))))) |#4| |#5| (-771))) (-15 -3465 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))))) |#4| |#5|)) (-15 -2461 ((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112))) (-15 -2461 ((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3235 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))) (-644 |#4|) (-644 |#5|) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))) (-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))))) (-771))) (-15 -2376 ((-1157) (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|)))) (-15 -3484 ((-1269) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -1470 |#5|))) (-771)))) +((-2988 (((-112) $ $) NIL)) (-2107 (((-644 (-2 (|:| -1685 $) (|:| -3292 (-644 |#4|)))) (-644 |#4|)) NIL)) (-2779 (((-644 $) (-644 |#4|)) 124) (((-644 $) (-644 |#4|) (-112)) 125) (((-644 $) (-644 |#4|) (-112) (-112)) 123) (((-644 $) (-644 |#4|) (-112) (-112) (-112) (-112)) 126)) (-1771 (((-644 |#3|) $) NIL)) (-3071 (((-112) $) NIL)) (-3274 (((-112) $) NIL (|has| |#1| (-558)))) (-2267 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1411 ((|#4| |#4| $) NIL)) (-1378 (((-644 (-2 (|:| |val| |#4|) (|:| -1470 $))) |#4| $) 97)) (-2671 (((-2 (|:| |under| $) (|:| -3143 $) (|:| |upper| $)) $ |#3|) NIL)) (-1504 (((-112) $ (-771)) NIL)) (-3678 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4414))) (((-3 |#4| "failed") $ |#3|) 75)) (-2463 (($) NIL T CONST)) (-3036 (((-112) $) 29 (|has| |#1| (-558)))) (-1963 (((-112) $ $) NIL (|has| |#1| (-558)))) (-2983 (((-112) $ $) NIL (|has| |#1| (-558)))) (-1477 (((-112) $) NIL (|has| |#1| (-558)))) (-3930 (((-644 |#4|) (-644 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1789 (((-644 |#4|) (-644 |#4|) $) NIL (|has| |#1| (-558)))) (-2228 (((-644 |#4|) (-644 |#4|) $) NIL (|has| |#1| (-558)))) (-2229 (((-3 $ "failed") (-644 |#4|)) NIL)) (-4158 (($ (-644 |#4|)) NIL)) (-3919 (((-3 $ "failed") $) 45)) (-3110 ((|#4| |#4| $) 78)) (-3942 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#4| (-1099))))) (-2622 (($ |#4| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#4| (-1099)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4414)))) (-3264 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 91 (|has| |#1| (-558)))) (-3599 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2690 ((|#4| |#4| $) NIL)) (-2873 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4414)) (|has| |#4| (-1099)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4414))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4414))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3476 (((-2 (|:| -1685 (-644 |#4|)) (|:| -3292 (-644 |#4|))) $) NIL)) (-2969 (((-112) |#4| $) NIL)) (-1951 (((-112) |#4| $) NIL)) (-2775 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3482 (((-2 (|:| |val| (-644 |#4|)) (|:| |towers| (-644 $))) (-644 |#4|) (-112) (-112)) 139)) (-1683 (((-644 |#4|) $) 18 (|has| $ (-6 -4414)))) (-1640 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4296 ((|#3| $) 38)) (-3456 (((-112) $ (-771)) NIL)) (-3491 (((-644 |#4|) $) 19 (|has| $ (-6 -4414)))) (-1602 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4414)) (|has| |#4| (-1099))))) (-3885 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#4| |#4|) $) 23)) (-1785 (((-644 |#3|) $) NIL)) (-1579 (((-112) |#3| $) NIL)) (-3267 (((-112) $ (-771)) NIL)) (-3380 (((-1157) $) NIL)) (-3006 (((-3 |#4| (-644 $)) |#4| |#4| $) NIL)) (-3940 (((-644 (-2 (|:| |val| |#4|) (|:| -1470 $))) |#4| |#4| $) 117)) (-2641 (((-3 |#4| "failed") $) 42)) (-2568 (((-644 $) |#4| $) 102)) (-1493 (((-3 (-112) (-644 $)) |#4| $) NIL)) (-3835 (((-644 (-2 (|:| |val| (-112)) (|:| -1470 $))) |#4| $) 112) (((-112) |#4| $) 65)) (-1997 (((-644 $) |#4| $) 121) (((-644 $) (-644 |#4|) $) NIL) (((-644 $) (-644 |#4|) (-644 $)) 122) (((-644 $) |#4| (-644 $)) NIL)) (-3196 (((-644 $) (-644 |#4|) (-112) (-112) (-112)) 134)) (-2921 (($ |#4| $) 88) (($ (-644 |#4|) $) 89) (((-644 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 87)) (-2133 (((-644 |#4|) $) NIL)) (-2543 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1906 ((|#4| |#4| $) NIL)) (-3077 (((-112) $ $) NIL)) (-2594 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-558)))) (-3374 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4074 ((|#4| |#4| $) NIL)) (-4072 (((-1119) $) NIL)) (-3908 (((-3 |#4| "failed") $) 40)) (-3668 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2718 (((-3 $ "failed") $ |#4|) 59)) (-3369 (($ $ |#4|) NIL) (((-644 $) |#4| $) 104) (((-644 $) |#4| (-644 $)) NIL) (((-644 $) (-644 |#4|) $) NIL) (((-644 $) (-644 |#4|) (-644 $)) 99)) (-2823 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 |#4|) (-644 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-644 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))) (-3814 (((-112) $ $) NIL)) (-2872 (((-112) $) 17)) (-3493 (($) 14)) (-3902 (((-771) $) NIL)) (-4083 (((-771) |#4| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#4| (-1099)))) (((-771) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4414)))) (-1480 (($ $) 13)) (-2376 (((-538) $) NIL (|has| |#4| (-614 (-538))))) (-1340 (($ (-644 |#4|)) 22)) (-4305 (($ $ |#3|) 52)) (-1702 (($ $ |#3|) 54)) (-4017 (($ $) NIL)) (-3809 (($ $ |#3|) NIL)) (-3152 (((-862) $) 35) (((-644 |#4|) $) 46)) (-3909 (((-771) $) NIL (|has| |#3| (-370)))) (-3044 (((-112) $ $) NIL)) (-2236 (((-3 (-2 (|:| |bas| $) (|:| -3712 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3712 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3622 (((-112) $ (-1 (-112) |#4| (-644 |#4|))) NIL)) (-3998 (((-644 $) |#4| $) 66) (((-644 $) |#4| (-644 $)) NIL) (((-644 $) (-644 |#4|) $) NIL) (((-644 $) (-644 |#4|) (-644 $)) NIL)) (-2210 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4414)))) (-4382 (((-644 |#3|) $) NIL)) (-2676 (((-112) |#4| $) NIL)) (-4217 (((-112) |#3| $) 74)) (-2914 (((-112) $ $) NIL)) (-3000 (((-771) $) NIL (|has| $ (-6 -4414))))) +(((-1145 |#1| |#2| |#3| |#4|) (-13 (-1108 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2921 ((-644 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2779 ((-644 $) (-644 |#4|) (-112) (-112))) (-15 -2779 ((-644 $) (-644 |#4|) (-112) (-112) (-112) (-112))) (-15 -3196 ((-644 $) (-644 |#4|) (-112) (-112) (-112))) (-15 -3482 ((-2 (|:| |val| (-644 |#4|)) (|:| |towers| (-644 $))) (-644 |#4|) (-112) (-112))))) (-454) (-793) (-850) (-1064 |#1| |#2| |#3|)) (T -1145)) +((-2921 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-644 (-1145 *5 *6 *7 *3))) (-5 *1 (-1145 *5 *6 *7 *3)) (-4 *3 (-1064 *5 *6 *7)))) (-2779 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-644 (-1145 *5 *6 *7 *8))) (-5 *1 (-1145 *5 *6 *7 *8)))) (-2779 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-644 (-1145 *5 *6 *7 *8))) (-5 *1 (-1145 *5 *6 *7 *8)))) (-3196 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-644 (-1145 *5 *6 *7 *8))) (-5 *1 (-1145 *5 *6 *7 *8)))) (-3482 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-1064 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-644 *8)) (|:| |towers| (-644 (-1145 *5 *6 *7 *8))))) (-5 *1 (-1145 *5 *6 *7 *8)) (-5 *3 (-644 *8))))) +(-13 (-1108 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2921 ((-644 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2779 ((-644 $) (-644 |#4|) (-112) (-112))) (-15 -2779 ((-644 $) (-644 |#4|) (-112) (-112) (-112) (-112))) (-15 -3196 ((-644 $) (-644 |#4|) (-112) (-112) (-112))) (-15 -3482 ((-2 (|:| |val| (-644 |#4|)) (|:| |towers| (-644 $))) (-644 |#4|) (-112) (-112))))) +((-2988 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3712 ((|#1| $) 37)) (-1788 (($ (-644 |#1|)) 45)) (-1504 (((-112) $ (-771)) NIL)) (-2463 (($) NIL T CONST)) (-3890 ((|#1| |#1| $) 40)) (-2692 ((|#1| $) 35)) (-1683 (((-644 |#1|) $) 18 (|has| $ (-6 -4414)))) (-3456 (((-112) $ (-771)) NIL)) (-3491 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3885 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#1| |#1|) $) 22)) (-3267 (((-112) $ (-771)) NIL)) (-3380 (((-1157) $) NIL (|has| |#1| (-1099)))) (-3278 ((|#1| $) 38)) (-3888 (($ |#1| $) 41)) (-4072 (((-1119) $) NIL (|has| |#1| (-1099)))) (-1973 ((|#1| $) 36)) (-2823 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) NIL)) (-2872 (((-112) $) 32)) (-3493 (($) 43)) (-2766 (((-771) $) 30)) (-4083 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-1480 (($ $) 27)) (-3152 (((-862) $) 14 (|has| |#1| (-613 (-862))))) (-3044 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2948 (($ (-644 |#1|)) NIL)) (-2210 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) 17 (|has| |#1| (-1099)))) (-3000 (((-771) $) 31 (|has| $ (-6 -4414))))) +(((-1146 |#1|) (-13 (-1120 |#1|) (-10 -8 (-15 -1788 ($ (-644 |#1|))))) (-1214)) (T -1146)) +((-1788 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1214)) (-5 *1 (-1146 *3))))) +(-13 (-1120 |#1|) (-10 -8 (-15 -1788 ($ (-644 |#1|))))) +((-1456 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1231 (-566)) |#2|) 55) ((|#2| $ (-566) |#2|) 52)) (-1781 (((-112) $) 12)) (-3885 (($ (-1 |#2| |#2|) $) 50)) (-3908 ((|#2| $) NIL) (($ $ (-771)) 20)) (-3787 (($ $ |#2|) 51)) (-3254 (((-112) $) 11)) (-1309 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1231 (-566))) 38) ((|#2| $ (-566)) 29) ((|#2| $ (-566) |#2|) NIL)) (-1690 (($ $ $) 58) (($ $ |#2|) NIL)) (-4386 (($ $ $) 40) (($ |#2| $) NIL) (($ (-644 $)) 47) (($ $ |#2|) NIL))) +(((-1147 |#1| |#2|) (-10 -8 (-15 -1781 ((-112) |#1|)) (-15 -3254 ((-112) |#1|)) (-15 -1456 (|#2| |#1| (-566) |#2|)) (-15 -1309 (|#2| |#1| (-566) |#2|)) (-15 -1309 (|#2| |#1| (-566))) (-15 -3787 (|#1| |#1| |#2|)) (-15 -4386 (|#1| |#1| |#2|)) (-15 -4386 (|#1| (-644 |#1|))) (-15 -1309 (|#1| |#1| (-1231 (-566)))) (-15 -1456 (|#2| |#1| (-1231 (-566)) |#2|)) (-15 -1456 (|#2| |#1| "last" |#2|)) (-15 -1456 (|#1| |#1| "rest" |#1|)) (-15 -1456 (|#2| |#1| "first" |#2|)) (-15 -1690 (|#1| |#1| |#2|)) (-15 -1690 (|#1| |#1| |#1|)) (-15 -1309 (|#2| |#1| "last")) (-15 -1309 (|#1| |#1| "rest")) (-15 -3908 (|#1| |#1| (-771))) (-15 -1309 (|#2| |#1| "first")) (-15 -3908 (|#2| |#1|)) (-15 -4386 (|#1| |#2| |#1|)) (-15 -4386 (|#1| |#1| |#1|)) (-15 -1456 (|#2| |#1| "value" |#2|)) (-15 -1309 (|#2| |#1| "value")) (-15 -3885 (|#1| (-1 |#2| |#2|) |#1|))) (-1148 |#2|) (-1214)) (T -1147)) +NIL +(-10 -8 (-15 -1781 ((-112) |#1|)) (-15 -3254 ((-112) |#1|)) (-15 -1456 (|#2| |#1| (-566) |#2|)) (-15 -1309 (|#2| |#1| (-566) |#2|)) (-15 -1309 (|#2| |#1| (-566))) (-15 -3787 (|#1| |#1| |#2|)) (-15 -4386 (|#1| |#1| |#2|)) (-15 -4386 (|#1| (-644 |#1|))) (-15 -1309 (|#1| |#1| (-1231 (-566)))) (-15 -1456 (|#2| |#1| (-1231 (-566)) |#2|)) (-15 -1456 (|#2| |#1| "last" |#2|)) (-15 -1456 (|#1| |#1| "rest" |#1|)) (-15 -1456 (|#2| |#1| "first" |#2|)) (-15 -1690 (|#1| |#1| |#2|)) (-15 -1690 (|#1| |#1| |#1|)) (-15 -1309 (|#2| |#1| "last")) (-15 -1309 (|#1| |#1| "rest")) (-15 -3908 (|#1| |#1| (-771))) (-15 -1309 (|#2| |#1| "first")) (-15 -3908 (|#2| |#1|)) (-15 -4386 (|#1| |#2| |#1|)) (-15 -4386 (|#1| |#1| |#1|)) (-15 -1456 (|#2| |#1| "value" |#2|)) (-15 -1309 (|#2| |#1| "value")) (-15 -3885 (|#1| (-1 |#2| |#2|) |#1|))) +((-2988 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2876 ((|#1| $) 49)) (-3541 ((|#1| $) 66)) (-3214 (($ $) 68)) (-1944 (((-1269) $ (-566) (-566)) 98 (|has| $ (-6 -4415)))) (-4258 (($ $ (-566)) 53 (|has| $ (-6 -4415)))) (-1504 (((-112) $ (-771)) 8)) (-2191 ((|#1| $ |#1|) 40 (|has| $ (-6 -4415)))) (-1813 (($ $ $) 57 (|has| $ (-6 -4415)))) (-1948 ((|#1| $ |#1|) 55 (|has| $ (-6 -4415)))) (-1381 ((|#1| $ |#1|) 59 (|has| $ (-6 -4415)))) (-1456 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4415))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4415))) (($ $ "rest" $) 56 (|has| $ (-6 -4415))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4415))) ((|#1| $ (-1231 (-566)) |#1|) 118 (|has| $ (-6 -4415))) ((|#1| $ (-566) |#1|) 87 (|has| $ (-6 -4415)))) (-4202 (($ $ (-644 $)) 42 (|has| $ (-6 -4415)))) (-3678 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4414)))) (-3531 ((|#1| $) 67)) (-2463 (($) 7 T CONST)) (-3919 (($ $) 74) (($ $ (-771)) 72)) (-3942 (($ $) 100 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2622 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4414))) (($ |#1| $) 101 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2873 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-3897 ((|#1| $ (-566) |#1|) 86 (|has| $ (-6 -4415)))) (-3829 ((|#1| $ (-566)) 88)) (-1781 (((-112) $) 84)) (-1683 (((-644 |#1|) $) 31 (|has| $ (-6 -4414)))) (-3431 (((-644 $) $) 51)) (-1507 (((-112) $ $) 43 (|has| |#1| (-1099)))) (-1860 (($ (-771) |#1|) 109)) (-3456 (((-112) $ (-771)) 9)) (-2296 (((-566) $) 96 (|has| (-566) (-850)))) (-3491 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-4050 (((-566) $) 95 (|has| (-566) (-850)))) (-3885 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-3267 (((-112) $ (-771)) 10)) (-1458 (((-644 |#1|) $) 46)) (-3860 (((-112) $) 50)) (-3380 (((-1157) $) 22 (|has| |#1| (-1099)))) (-2641 ((|#1| $) 71) (($ $ (-771)) 69)) (-1859 (($ $ $ (-566)) 117) (($ |#1| $ (-566)) 116)) (-3725 (((-644 (-566)) $) 93)) (-1644 (((-112) (-566) $) 92)) (-4072 (((-1119) $) 21 (|has| |#1| (-1099)))) (-3908 ((|#1| $) 77) (($ $ (-771)) 75)) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-3787 (($ $ |#1|) 97 (|has| $ (-6 -4415)))) (-3254 (((-112) $) 85)) (-2823 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) 14)) (-2847 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3486 (((-644 |#1|) $) 91)) (-2872 (((-112) $) 11)) (-3493 (($) 12)) (-1309 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1231 (-566))) 113) ((|#1| $ (-566)) 90) ((|#1| $ (-566) |#1|) 89)) (-1696 (((-566) $ $) 45)) (-2166 (($ $ (-1231 (-566))) 115) (($ $ (-566)) 114)) (-3786 (((-112) $) 47)) (-4018 (($ $) 63)) (-3810 (($ $) 60 (|has| $ (-6 -4415)))) (-2916 (((-771) $) 64)) (-1922 (($ $) 65)) (-4083 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-1480 (($ $) 13)) (-2376 (((-538) $) 99 (|has| |#1| (-614 (-538))))) (-1340 (($ (-644 |#1|)) 108)) (-1690 (($ $ $) 62 (|has| $ (-6 -4415))) (($ $ |#1|) 61 (|has| $ (-6 -4415)))) (-4386 (($ $ $) 79) (($ |#1| $) 78) (($ (-644 $)) 111) (($ $ |#1|) 110)) (-3152 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-1926 (((-644 $) $) 52)) (-4385 (((-112) $ $) 44 (|has| |#1| (-1099)))) (-3044 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-2210 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3000 (((-771) $) 6 (|has| $ (-6 -4414))))) (((-1148 |#1|) (-140) (-1214)) (T -1148)) -((-2373 (*1 *2 *1) (-12 (-4 *1 (-1148 *3)) (-4 *3 (-1214)) (-5 *2 (-112)))) (-1902 (*1 *2 *1) (-12 (-4 *1 (-1148 *3)) (-4 *3 (-1214)) (-5 *2 (-112))))) -(-13 (-1252 |t#1|) (-651 |t#1|) (-10 -8 (-15 -2373 ((-112) $)) (-15 -1902 ((-112) $)))) -(((-34) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2809 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-151 |#1|) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-287 #0=(-566) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-604 #0# |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-651 |#1|) . T) ((-1010 |#1|) . T) ((-1099) |has| |#1| (-1099)) ((-1214) . T) ((-1252 |#1|) . T)) -((-3007 (((-112) $ $) NIL (-2809 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-4254 (($) NIL) (($ (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) NIL)) (-3734 (((-1269) $ |#1| |#1|) NIL (|has| $ (-6 -4415)))) (-2256 (((-112) $ (-771)) NIL)) (-3923 ((|#2| $ |#1| |#2|) NIL)) (-4016 (($ (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-2701 (($ (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-2434 (((-3 |#2| "failed") |#1| $) NIL)) (-3012 (($) NIL T CONST)) (-2031 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099))))) (-2956 (($ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL (|has| $ (-6 -4414))) (($ (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-3 |#2| "failed") |#1| $) NIL)) (-2665 (($ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (($ (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-1676 (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) NIL (|has| $ (-6 -4414))) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-2920 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4415)))) (-2855 ((|#2| $ |#1|) NIL)) (-3979 (((-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-644 |#2|) $) NIL (|has| $ (-6 -4414)))) (-2404 (((-112) $ (-771)) NIL)) (-3854 ((|#1| $) NIL (|has| |#1| (-850)))) (-2329 (((-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-644 |#2|) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099))))) (-2712 ((|#1| $) NIL (|has| |#1| (-850)))) (-2908 (($ (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4415))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4415)))) (-1301 (($ (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2603 (((-112) $ (-771)) NIL)) (-4117 (((-1157) $) NIL (-2809 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-4103 (((-644 |#1|) $) NIL)) (-2876 (((-112) |#1| $) NIL)) (-4039 (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL)) (-3406 (($ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL)) (-4074 (((-644 |#1|) $) NIL)) (-3792 (((-112) |#1| $) NIL)) (-4035 (((-1119) $) NIL (-2809 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-1998 ((|#2| $) NIL (|has| |#1| (-850)))) (-2006 (((-3 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) "failed") (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL)) (-4030 (($ $ |#2|) NIL (|has| $ (-6 -4415)))) (-2539 (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL)) (-2692 (((-112) (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))))) NIL (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (($ $ (-295 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) NIL (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (($ $ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) NIL (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (($ $ (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) NIL (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-1932 (((-112) $ $) NIL)) (-4156 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099))))) (-2993 (((-644 |#2|) $) NIL)) (-3467 (((-112) $) NIL)) (-1494 (($) NIL)) (-4390 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3481 (($) NIL) (($ (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) NIL)) (-4045 (((-771) (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-771) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (((-771) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099)))) (((-771) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414)))) (-3940 (($ $) NIL)) (-1348 (((-538) $) NIL (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-614 (-538))))) (-3796 (($ (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) NIL)) (-3783 (((-862) $) NIL (-2809 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-613 (-862))) (|has| |#2| (-613 (-862)))))) (-3117 (((-112) $ $) NIL (-2809 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-1748 (($ (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) NIL)) (-1894 (((-112) (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) NIL (-2809 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-3018 (((-771) $) NIL (|has| $ (-6 -4414))))) +((-3254 (*1 *2 *1) (-12 (-4 *1 (-1148 *3)) (-4 *3 (-1214)) (-5 *2 (-112)))) (-1781 (*1 *2 *1) (-12 (-4 *1 (-1148 *3)) (-4 *3 (-1214)) (-5 *2 (-112))))) +(-13 (-1252 |t#1|) (-651 |t#1|) (-10 -8 (-15 -3254 ((-112) $)) (-15 -1781 ((-112) $)))) +(((-34) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2768 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-151 |#1|) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-287 #0=(-566) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-604 #0# |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-651 |#1|) . T) ((-1010 |#1|) . T) ((-1099) |has| |#1| (-1099)) ((-1214) . T) ((-1252 |#1|) . T)) +((-2988 (((-112) $ $) NIL (-2768 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-1849 (($) NIL) (($ (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) NIL)) (-1944 (((-1269) $ |#1| |#1|) NIL (|has| $ (-6 -4415)))) (-1504 (((-112) $ (-771)) NIL)) (-1456 ((|#2| $ |#1| |#2|) NIL)) (-2995 (($ (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-3678 (($ (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-3070 (((-3 |#2| "failed") |#1| $) NIL)) (-2463 (($) NIL T CONST)) (-3942 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099))))) (-3512 (($ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL (|has| $ (-6 -4414))) (($ (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-3 |#2| "failed") |#1| $) NIL)) (-2622 (($ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (($ (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-2873 (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) NIL (|has| $ (-6 -4414))) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-3897 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4415)))) (-3829 ((|#2| $ |#1|) NIL)) (-1683 (((-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-644 |#2|) $) NIL (|has| $ (-6 -4414)))) (-3456 (((-112) $ (-771)) NIL)) (-2296 ((|#1| $) NIL (|has| |#1| (-850)))) (-3491 (((-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-644 |#2|) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099))))) (-4050 ((|#1| $) NIL (|has| |#1| (-850)))) (-3885 (($ (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4415))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4415)))) (-2319 (($ (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3267 (((-112) $ (-771)) NIL)) (-3380 (((-1157) $) NIL (-2768 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-4052 (((-644 |#1|) $) NIL)) (-1826 (((-112) |#1| $) NIL)) (-3278 (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL)) (-3888 (($ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL)) (-3725 (((-644 |#1|) $) NIL)) (-1644 (((-112) |#1| $) NIL)) (-4072 (((-1119) $) NIL (-2768 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-3908 ((|#2| $) NIL (|has| |#1| (-850)))) (-3668 (((-3 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) "failed") (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL)) (-3787 (($ $ |#2|) NIL (|has| $ (-6 -4415)))) (-1973 (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL)) (-2823 (((-112) (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))))) NIL (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (($ $ (-295 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) NIL (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (($ $ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) NIL (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (($ $ (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) NIL (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-3814 (((-112) $ $) NIL)) (-2847 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099))))) (-3486 (((-644 |#2|) $) NIL)) (-2872 (((-112) $) NIL)) (-3493 (($) NIL)) (-1309 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1792 (($) NIL) (($ (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) NIL)) (-4083 (((-771) (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-771) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (((-771) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099)))) (((-771) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414)))) (-1480 (($ $) NIL)) (-2376 (((-538) $) NIL (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-614 (-538))))) (-1340 (($ (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) NIL)) (-3152 (((-862) $) NIL (-2768 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-613 (-862))) (|has| |#2| (-613 (-862)))))) (-3044 (((-112) $ $) NIL (-2768 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-2948 (($ (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) NIL)) (-2210 (((-112) (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) NIL (-2768 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-3000 (((-771) $) NIL (|has| $ (-6 -4414))))) (((-1149 |#1| |#2| |#3|) (-1190 |#1| |#2|) (-1099) (-1099) |#2|) (T -1149)) NIL (-1190 |#1| |#2|) -((-3007 (((-112) $ $) 7)) (-4363 (((-3 $ "failed") $) 14)) (-4117 (((-1157) $) 10)) (-1761 (($) 15 T CONST)) (-4035 (((-1119) $) 11)) (-3783 (((-862) $) 12)) (-3117 (((-112) $ $) 9)) (-2947 (((-112) $ $) 6))) +((-2988 (((-112) $ $) 7)) (-2621 (((-3 $ "failed") $) 14)) (-3380 (((-1157) $) 10)) (-3289 (($) 15 T CONST)) (-4072 (((-1119) $) 11)) (-3152 (((-862) $) 12)) (-3044 (((-112) $ $) 9)) (-2914 (((-112) $ $) 6))) (((-1150) (-140)) (T -1150)) -((-1761 (*1 *1) (-4 *1 (-1150))) (-4363 (*1 *1 *1) (|partial| -4 *1 (-1150)))) -(-13 (-1099) (-10 -8 (-15 -1761 ($) -3704) (-15 -4363 ((-3 $ "failed") $)))) +((-3289 (*1 *1) (-4 *1 (-1150))) (-2621 (*1 *1 *1) (|partial| -4 *1 (-1150)))) +(-13 (-1099) (-10 -8 (-15 -3289 ($) -1623) (-15 -2621 ((-3 $ "failed") $)))) (((-102) . T) ((-613 (-862)) . T) ((-1099) . T)) -((-2291 (((-1155 |#1|) (-1155 |#1|)) 17)) (-3113 (((-1155 |#1|) (-1155 |#1|)) 13)) (-3274 (((-1155 |#1|) (-1155 |#1|) (-566) (-566)) 20)) (-1983 (((-1155 |#1|) (-1155 |#1|)) 15))) -(((-1151 |#1|) (-10 -7 (-15 -3113 ((-1155 |#1|) (-1155 |#1|))) (-15 -1983 ((-1155 |#1|) (-1155 |#1|))) (-15 -2291 ((-1155 |#1|) (-1155 |#1|))) (-15 -3274 ((-1155 |#1|) (-1155 |#1|) (-566) (-566)))) (-13 (-558) (-147))) (T -1151)) -((-3274 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1155 *4)) (-5 *3 (-566)) (-4 *4 (-13 (-558) (-147))) (-5 *1 (-1151 *4)))) (-2291 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-13 (-558) (-147))) (-5 *1 (-1151 *3)))) (-1983 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-13 (-558) (-147))) (-5 *1 (-1151 *3)))) (-3113 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-13 (-558) (-147))) (-5 *1 (-1151 *3))))) -(-10 -7 (-15 -3113 ((-1155 |#1|) (-1155 |#1|))) (-15 -1983 ((-1155 |#1|) (-1155 |#1|))) (-15 -2291 ((-1155 |#1|) (-1155 |#1|))) (-15 -3274 ((-1155 |#1|) (-1155 |#1|) (-566) (-566)))) -((-3721 (((-1155 |#1|) (-1155 (-1155 |#1|))) 15))) -(((-1152 |#1|) (-10 -7 (-15 -3721 ((-1155 |#1|) (-1155 (-1155 |#1|))))) (-1214)) (T -1152)) -((-3721 (*1 *2 *3) (-12 (-5 *3 (-1155 (-1155 *4))) (-5 *2 (-1155 *4)) (-5 *1 (-1152 *4)) (-4 *4 (-1214))))) -(-10 -7 (-15 -3721 ((-1155 |#1|) (-1155 (-1155 |#1|))))) -((-3795 (((-1155 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1155 |#1|)) 25)) (-1676 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1155 |#1|)) 26)) (-1301 (((-1155 |#2|) (-1 |#2| |#1|) (-1155 |#1|)) 16))) -(((-1153 |#1| |#2|) (-10 -7 (-15 -1301 ((-1155 |#2|) (-1 |#2| |#1|) (-1155 |#1|))) (-15 -3795 ((-1155 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1155 |#1|))) (-15 -1676 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1155 |#1|)))) (-1214) (-1214)) (T -1153)) -((-1676 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1155 *5)) (-4 *5 (-1214)) (-4 *2 (-1214)) (-5 *1 (-1153 *5 *2)))) (-3795 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1155 *6)) (-4 *6 (-1214)) (-4 *3 (-1214)) (-5 *2 (-1155 *3)) (-5 *1 (-1153 *6 *3)))) (-1301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1155 *5)) (-4 *5 (-1214)) (-4 *6 (-1214)) (-5 *2 (-1155 *6)) (-5 *1 (-1153 *5 *6))))) -(-10 -7 (-15 -1301 ((-1155 |#2|) (-1 |#2| |#1|) (-1155 |#1|))) (-15 -3795 ((-1155 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1155 |#1|))) (-15 -1676 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1155 |#1|)))) -((-1301 (((-1155 |#3|) (-1 |#3| |#1| |#2|) (-1155 |#1|) (-1155 |#2|)) 21))) -(((-1154 |#1| |#2| |#3|) (-10 -7 (-15 -1301 ((-1155 |#3|) (-1 |#3| |#1| |#2|) (-1155 |#1|) (-1155 |#2|)))) (-1214) (-1214) (-1214)) (T -1154)) -((-1301 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1155 *6)) (-5 *5 (-1155 *7)) (-4 *6 (-1214)) (-4 *7 (-1214)) (-4 *8 (-1214)) (-5 *2 (-1155 *8)) (-5 *1 (-1154 *6 *7 *8))))) -(-10 -7 (-15 -1301 ((-1155 |#3|) (-1 |#3| |#1| |#2|) (-1155 |#1|) (-1155 |#2|)))) -((-3007 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2233 ((|#1| $) NIL)) (-2593 ((|#1| $) NIL)) (-2223 (($ $) 67)) (-3734 (((-1269) $ (-566) (-566)) 99 (|has| $ (-6 -4415)))) (-2807 (($ $ (-566)) 129 (|has| $ (-6 -4415)))) (-2256 (((-112) $ (-771)) NIL)) (-3535 (((-862) $) 56 (|has| |#1| (-1099)))) (-3967 (((-112)) 55 (|has| |#1| (-1099)))) (-3396 ((|#1| $ |#1|) NIL (|has| $ (-6 -4415)))) (-4107 (($ $ $) 116 (|has| $ (-6 -4415))) (($ $ (-566) $) 142)) (-3178 ((|#1| $ |#1|) 126 (|has| $ (-6 -4415)))) (-2905 ((|#1| $ |#1|) 121 (|has| $ (-6 -4415)))) (-3923 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4415))) ((|#1| $ "first" |#1|) 123 (|has| $ (-6 -4415))) (($ $ "rest" $) 125 (|has| $ (-6 -4415))) ((|#1| $ "last" |#1|) 128 (|has| $ (-6 -4415))) ((|#1| $ (-1231 (-566)) |#1|) 113 (|has| $ (-6 -4415))) ((|#1| $ (-566) |#1|) 77 (|has| $ (-6 -4415)))) (-3800 (($ $ (-644 $)) NIL (|has| $ (-6 -4415)))) (-2701 (($ (-1 (-112) |#1|) $) 80)) (-2582 ((|#1| $) NIL)) (-3012 (($) NIL T CONST)) (-2768 (($ $) 14)) (-2010 (($ $) 42) (($ $ (-771)) 111)) (-1728 (((-112) (-644 |#1|) $) 135 (|has| |#1| (-1099)))) (-3985 (($ (-644 |#1|)) 131)) (-2031 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2665 (($ |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099)))) (($ (-1 (-112) |#1|) $) 79)) (-1676 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2920 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4415)))) (-2855 ((|#1| $ (-566)) NIL)) (-1902 (((-112) $) NIL)) (-3979 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-2533 (((-1269) (-566) $) 141 (|has| |#1| (-1099)))) (-3767 (((-771) $) 138)) (-4009 (((-644 $) $) NIL)) (-3891 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-4265 (($ (-771) |#1|) NIL)) (-2404 (((-112) $ (-771)) NIL)) (-3854 (((-566) $) NIL (|has| (-566) (-850)))) (-2329 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2712 (((-566) $) NIL (|has| (-566) (-850)))) (-2908 (($ (-1 |#1| |#1|) $) 95 (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#1| |#1|) $) 85) (($ (-1 |#1| |#1| |#1|) $ $) 89)) (-2603 (((-112) $ (-771)) NIL)) (-3701 (((-644 |#1|) $) NIL)) (-3438 (((-112) $) NIL)) (-3567 (($ $) 114)) (-3465 (((-112) $) 13)) (-4117 (((-1157) $) NIL (|has| |#1| (-1099)))) (-2686 ((|#1| $) NIL) (($ $ (-771)) NIL)) (-4276 (($ $ $ (-566)) NIL) (($ |#1| $ (-566)) NIL)) (-4074 (((-644 (-566)) $) NIL)) (-3792 (((-112) (-566) $) 96)) (-4035 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3082 (($ (-1 |#1|)) 144) (($ (-1 |#1| |#1|) |#1|) 145)) (-3921 ((|#1| $) 10)) (-1998 ((|#1| $) 41) (($ $ (-771)) 65)) (-3992 (((-2 (|:| |cycle?| (-112)) (|:| -2486 (-771)) (|:| |period| (-771))) (-771) $) 36)) (-2006 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2681 (($ (-1 (-112) |#1|) $) 146)) (-2689 (($ (-1 (-112) |#1|) $) 147)) (-4030 (($ $ |#1|) 90 (|has| $ (-6 -4415)))) (-3874 (($ $ (-566)) 45)) (-2373 (((-112) $) 94)) (-1929 (((-112) $) 12)) (-2267 (((-112) $) 137)) (-2692 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) 30)) (-4156 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2993 (((-644 |#1|) $) NIL)) (-3467 (((-112) $) 20)) (-1494 (($) 60)) (-4390 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1231 (-566))) NIL) ((|#1| $ (-566)) 75) ((|#1| $ (-566) |#1|) NIL)) (-1416 (((-566) $ $) 64)) (-2187 (($ $ (-1231 (-566))) NIL) (($ $ (-566)) NIL)) (-4183 (($ (-1 $)) 63)) (-3494 (((-112) $) 91)) (-4272 (($ $) 92)) (-1844 (($ $) 117 (|has| $ (-6 -4415)))) (-2833 (((-771) $) NIL)) (-2369 (($ $) NIL)) (-4045 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3940 (($ $) 59)) (-1348 (((-538) $) NIL (|has| |#1| (-614 (-538))))) (-3796 (($ (-644 |#1|)) 73)) (-1827 (($ |#1| $) 115)) (-3480 (($ $ $) 119 (|has| $ (-6 -4415))) (($ $ |#1|) 120 (|has| $ (-6 -4415)))) (-3721 (($ $ $) 101) (($ |#1| $) 61) (($ (-644 $)) 106) (($ $ |#1|) 100)) (-2770 (($ $) 66)) (-3783 (($ (-644 |#1|)) 130) (((-862) $) 57 (|has| |#1| (-613 (-862))))) (-2462 (((-644 $) $) NIL)) (-4288 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3117 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1894 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) 133 (|has| |#1| (-1099)))) (-3018 (((-771) $) NIL (|has| $ (-6 -4414))))) -(((-1155 |#1|) (-13 (-674 |#1|) (-616 (-644 |#1|)) (-10 -8 (-6 -4415) (-15 -3985 ($ (-644 |#1|))) (IF (|has| |#1| (-1099)) (-15 -1728 ((-112) (-644 |#1|) $)) |%noBranch|) (-15 -3992 ((-2 (|:| |cycle?| (-112)) (|:| -2486 (-771)) (|:| |period| (-771))) (-771) $)) (-15 -4183 ($ (-1 $))) (-15 -1827 ($ |#1| $)) (IF (|has| |#1| (-1099)) (PROGN (-15 -2533 ((-1269) (-566) $)) (-15 -3535 ((-862) $)) (-15 -3967 ((-112)))) |%noBranch|) (-15 -4107 ($ $ (-566) $)) (-15 -3082 ($ (-1 |#1|))) (-15 -3082 ($ (-1 |#1| |#1|) |#1|)) (-15 -2681 ($ (-1 (-112) |#1|) $)) (-15 -2689 ($ (-1 (-112) |#1|) $)))) (-1214)) (T -1155)) -((-3985 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1214)) (-5 *1 (-1155 *3)))) (-1728 (*1 *2 *3 *1) (-12 (-5 *3 (-644 *4)) (-4 *4 (-1099)) (-4 *4 (-1214)) (-5 *2 (-112)) (-5 *1 (-1155 *4)))) (-3992 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -2486 (-771)) (|:| |period| (-771)))) (-5 *1 (-1155 *4)) (-4 *4 (-1214)) (-5 *3 (-771)))) (-4183 (*1 *1 *2) (-12 (-5 *2 (-1 (-1155 *3))) (-5 *1 (-1155 *3)) (-4 *3 (-1214)))) (-1827 (*1 *1 *2 *1) (-12 (-5 *1 (-1155 *2)) (-4 *2 (-1214)))) (-2533 (*1 *2 *3 *1) (-12 (-5 *3 (-566)) (-5 *2 (-1269)) (-5 *1 (-1155 *4)) (-4 *4 (-1099)) (-4 *4 (-1214)))) (-3535 (*1 *2 *1) (-12 (-5 *2 (-862)) (-5 *1 (-1155 *3)) (-4 *3 (-1099)) (-4 *3 (-1214)))) (-3967 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1155 *3)) (-4 *3 (-1099)) (-4 *3 (-1214)))) (-4107 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-1155 *3)) (-4 *3 (-1214)))) (-3082 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1214)) (-5 *1 (-1155 *3)))) (-3082 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1214)) (-5 *1 (-1155 *3)))) (-2681 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1214)) (-5 *1 (-1155 *3)))) (-2689 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1214)) (-5 *1 (-1155 *3))))) -(-13 (-674 |#1|) (-616 (-644 |#1|)) (-10 -8 (-6 -4415) (-15 -3985 ($ (-644 |#1|))) (IF (|has| |#1| (-1099)) (-15 -1728 ((-112) (-644 |#1|) $)) |%noBranch|) (-15 -3992 ((-2 (|:| |cycle?| (-112)) (|:| -2486 (-771)) (|:| |period| (-771))) (-771) $)) (-15 -4183 ($ (-1 $))) (-15 -1827 ($ |#1| $)) (IF (|has| |#1| (-1099)) (PROGN (-15 -2533 ((-1269) (-566) $)) (-15 -3535 ((-862) $)) (-15 -3967 ((-112)))) |%noBranch|) (-15 -4107 ($ $ (-566) $)) (-15 -3082 ($ (-1 |#1|))) (-15 -3082 ($ (-1 |#1| |#1|) |#1|)) (-15 -2681 ($ (-1 (-112) |#1|) $)) (-15 -2689 ($ (-1 (-112) |#1|) $)))) -((-3007 (((-112) $ $) 19)) (-3530 (($ $) 121)) (-3761 (($ $) 122)) (-2436 (($ $ (-144)) 109) (($ $ (-141)) 108)) (-3734 (((-1269) $ (-566) (-566)) 41 (|has| $ (-6 -4415)))) (-3575 (((-112) $ $) 119)) (-3554 (((-112) $ $ (-566)) 118)) (-4336 (($ (-566)) 128)) (-1815 (((-644 $) $ (-144)) 111) (((-644 $) $ (-141)) 110)) (-2644 (((-112) (-1 (-112) (-144) (-144)) $) 99) (((-112) $) 93 (|has| (-144) (-850)))) (-1944 (($ (-1 (-112) (-144) (-144)) $) 90 (|has| $ (-6 -4415))) (($ $) 89 (-12 (|has| (-144) (-850)) (|has| $ (-6 -4415))))) (-1510 (($ (-1 (-112) (-144) (-144)) $) 100) (($ $) 94 (|has| (-144) (-850)))) (-2256 (((-112) $ (-771)) 8)) (-3923 (((-144) $ (-566) (-144)) 53 (|has| $ (-6 -4415))) (((-144) $ (-1231 (-566)) (-144)) 59 (|has| $ (-6 -4415)))) (-2701 (($ (-1 (-112) (-144)) $) 76 (|has| $ (-6 -4414)))) (-3012 (($) 7 T CONST)) (-1602 (($ $ (-144)) 105) (($ $ (-141)) 104)) (-3413 (($ $) 91 (|has| $ (-6 -4415)))) (-1377 (($ $) 101)) (-2756 (($ $ (-1231 (-566)) $) 115)) (-2031 (($ $) 79 (-12 (|has| (-144) (-1099)) (|has| $ (-6 -4414))))) (-2665 (($ (-144) $) 78 (-12 (|has| (-144) (-1099)) (|has| $ (-6 -4414)))) (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4414)))) (-1676 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 77 (-12 (|has| (-144) (-1099)) (|has| $ (-6 -4414)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 74 (|has| $ (-6 -4414))) (((-144) (-1 (-144) (-144) (-144)) $) 73 (|has| $ (-6 -4414)))) (-2920 (((-144) $ (-566) (-144)) 54 (|has| $ (-6 -4415)))) (-2855 (((-144) $ (-566)) 52)) (-3595 (((-112) $ $) 120)) (-4000 (((-566) (-1 (-112) (-144)) $) 98) (((-566) (-144) $) 97 (|has| (-144) (-1099))) (((-566) (-144) $ (-566)) 96 (|has| (-144) (-1099))) (((-566) $ $ (-566)) 114) (((-566) (-141) $ (-566)) 113)) (-3979 (((-644 (-144)) $) 31 (|has| $ (-6 -4414)))) (-4265 (($ (-771) (-144)) 70)) (-2404 (((-112) $ (-771)) 9)) (-3854 (((-566) $) 44 (|has| (-566) (-850)))) (-2097 (($ $ $) 88 (|has| (-144) (-850)))) (-3298 (($ (-1 (-112) (-144) (-144)) $ $) 102) (($ $ $) 95 (|has| (-144) (-850)))) (-2329 (((-644 (-144)) $) 30 (|has| $ (-6 -4414)))) (-1916 (((-112) (-144) $) 28 (-12 (|has| (-144) (-1099)) (|has| $ (-6 -4414))))) (-2712 (((-566) $) 45 (|has| (-566) (-850)))) (-3962 (($ $ $) 87 (|has| (-144) (-850)))) (-4019 (((-112) $ $ (-144)) 116)) (-4066 (((-771) $ $ (-144)) 117)) (-2908 (($ (-1 (-144) (-144)) $) 35 (|has| $ (-6 -4415)))) (-1301 (($ (-1 (-144) (-144)) $) 36) (($ (-1 (-144) (-144) (-144)) $ $) 65)) (-3858 (($ $) 123)) (-3895 (($ $) 124)) (-2603 (((-112) $ (-771)) 10)) (-1614 (($ $ (-144)) 107) (($ $ (-141)) 106)) (-4117 (((-1157) $) 22)) (-4276 (($ (-144) $ (-566)) 61) (($ $ $ (-566)) 60)) (-4074 (((-644 (-566)) $) 47)) (-3792 (((-112) (-566) $) 48)) (-4035 (((-1119) $) 21)) (-1998 (((-144) $) 43 (|has| (-566) (-850)))) (-2006 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 72)) (-4030 (($ $ (-144)) 42 (|has| $ (-6 -4415)))) (-2692 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 (-144)))) 27 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-295 (-144))) 26 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-144) (-144)) 25 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-644 (-144)) (-644 (-144))) 24 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099))))) (-1932 (((-112) $ $) 14)) (-4156 (((-112) (-144) $) 46 (-12 (|has| $ (-6 -4414)) (|has| (-144) (-1099))))) (-2993 (((-644 (-144)) $) 49)) (-3467 (((-112) $) 11)) (-1494 (($) 12)) (-4390 (((-144) $ (-566) (-144)) 51) (((-144) $ (-566)) 50) (($ $ (-1231 (-566))) 64) (($ $ $) 103)) (-2187 (($ $ (-566)) 63) (($ $ (-1231 (-566))) 62)) (-4045 (((-771) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4414))) (((-771) (-144) $) 29 (-12 (|has| (-144) (-1099)) (|has| $ (-6 -4414))))) (-1297 (($ $ $ (-566)) 92 (|has| $ (-6 -4415)))) (-3940 (($ $) 13)) (-1348 (((-538) $) 80 (|has| (-144) (-614 (-538))))) (-3796 (($ (-644 (-144))) 71)) (-3721 (($ $ (-144)) 69) (($ (-144) $) 68) (($ $ $) 67) (($ (-644 $)) 66)) (-3783 (($ (-144)) 112) (((-862) $) 18)) (-3117 (((-112) $ $) 23)) (-1894 (((-112) (-1 (-112) (-144)) $) 34 (|has| $ (-6 -4414)))) (-2452 (((-1157) $) 132) (((-1157) $ (-112)) 131) (((-1269) (-822) $) 130) (((-1269) (-822) $ (-112)) 129)) (-3009 (((-112) $ $) 85 (|has| (-144) (-850)))) (-2984 (((-112) $ $) 84 (|has| (-144) (-850)))) (-2947 (((-112) $ $) 20)) (-2995 (((-112) $ $) 86 (|has| (-144) (-850)))) (-2969 (((-112) $ $) 83 (|has| (-144) (-850)))) (-3018 (((-771) $) 6 (|has| $ (-6 -4414))))) +((-1909 (((-1155 |#1|) (-1155 |#1|)) 17)) (-2702 (((-1155 |#1|) (-1155 |#1|)) 13)) (-2361 (((-1155 |#1|) (-1155 |#1|) (-566) (-566)) 20)) (-3743 (((-1155 |#1|) (-1155 |#1|)) 15))) +(((-1151 |#1|) (-10 -7 (-15 -2702 ((-1155 |#1|) (-1155 |#1|))) (-15 -3743 ((-1155 |#1|) (-1155 |#1|))) (-15 -1909 ((-1155 |#1|) (-1155 |#1|))) (-15 -2361 ((-1155 |#1|) (-1155 |#1|) (-566) (-566)))) (-13 (-558) (-147))) (T -1151)) +((-2361 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1155 *4)) (-5 *3 (-566)) (-4 *4 (-13 (-558) (-147))) (-5 *1 (-1151 *4)))) (-1909 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-13 (-558) (-147))) (-5 *1 (-1151 *3)))) (-3743 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-13 (-558) (-147))) (-5 *1 (-1151 *3)))) (-2702 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-13 (-558) (-147))) (-5 *1 (-1151 *3))))) +(-10 -7 (-15 -2702 ((-1155 |#1|) (-1155 |#1|))) (-15 -3743 ((-1155 |#1|) (-1155 |#1|))) (-15 -1909 ((-1155 |#1|) (-1155 |#1|))) (-15 -2361 ((-1155 |#1|) (-1155 |#1|) (-566) (-566)))) +((-4386 (((-1155 |#1|) (-1155 (-1155 |#1|))) 15))) +(((-1152 |#1|) (-10 -7 (-15 -4386 ((-1155 |#1|) (-1155 (-1155 |#1|))))) (-1214)) (T -1152)) +((-4386 (*1 *2 *3) (-12 (-5 *3 (-1155 (-1155 *4))) (-5 *2 (-1155 *4)) (-5 *1 (-1152 *4)) (-4 *4 (-1214))))) +(-10 -7 (-15 -4386 ((-1155 |#1|) (-1155 (-1155 |#1|))))) +((-1960 (((-1155 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1155 |#1|)) 25)) (-2873 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1155 |#1|)) 26)) (-2319 (((-1155 |#2|) (-1 |#2| |#1|) (-1155 |#1|)) 16))) +(((-1153 |#1| |#2|) (-10 -7 (-15 -2319 ((-1155 |#2|) (-1 |#2| |#1|) (-1155 |#1|))) (-15 -1960 ((-1155 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1155 |#1|))) (-15 -2873 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1155 |#1|)))) (-1214) (-1214)) (T -1153)) +((-2873 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1155 *5)) (-4 *5 (-1214)) (-4 *2 (-1214)) (-5 *1 (-1153 *5 *2)))) (-1960 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1155 *6)) (-4 *6 (-1214)) (-4 *3 (-1214)) (-5 *2 (-1155 *3)) (-5 *1 (-1153 *6 *3)))) (-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1155 *5)) (-4 *5 (-1214)) (-4 *6 (-1214)) (-5 *2 (-1155 *6)) (-5 *1 (-1153 *5 *6))))) +(-10 -7 (-15 -2319 ((-1155 |#2|) (-1 |#2| |#1|) (-1155 |#1|))) (-15 -1960 ((-1155 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1155 |#1|))) (-15 -2873 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1155 |#1|)))) +((-2319 (((-1155 |#3|) (-1 |#3| |#1| |#2|) (-1155 |#1|) (-1155 |#2|)) 21))) +(((-1154 |#1| |#2| |#3|) (-10 -7 (-15 -2319 ((-1155 |#3|) (-1 |#3| |#1| |#2|) (-1155 |#1|) (-1155 |#2|)))) (-1214) (-1214) (-1214)) (T -1154)) +((-2319 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1155 *6)) (-5 *5 (-1155 *7)) (-4 *6 (-1214)) (-4 *7 (-1214)) (-4 *8 (-1214)) (-5 *2 (-1155 *8)) (-5 *1 (-1154 *6 *7 *8))))) +(-10 -7 (-15 -2319 ((-1155 |#3|) (-1 |#3| |#1| |#2|) (-1155 |#1|) (-1155 |#2|)))) +((-2988 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2876 ((|#1| $) NIL)) (-3541 ((|#1| $) NIL)) (-3214 (($ $) 67)) (-1944 (((-1269) $ (-566) (-566)) 99 (|has| $ (-6 -4415)))) (-4258 (($ $ (-566)) 129 (|has| $ (-6 -4415)))) (-1504 (((-112) $ (-771)) NIL)) (-1409 (((-862) $) 56 (|has| |#1| (-1099)))) (-3345 (((-112)) 55 (|has| |#1| (-1099)))) (-2191 ((|#1| $ |#1|) NIL (|has| $ (-6 -4415)))) (-1813 (($ $ $) 116 (|has| $ (-6 -4415))) (($ $ (-566) $) 142)) (-1948 ((|#1| $ |#1|) 126 (|has| $ (-6 -4415)))) (-1381 ((|#1| $ |#1|) 121 (|has| $ (-6 -4415)))) (-1456 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4415))) ((|#1| $ "first" |#1|) 123 (|has| $ (-6 -4415))) (($ $ "rest" $) 125 (|has| $ (-6 -4415))) ((|#1| $ "last" |#1|) 128 (|has| $ (-6 -4415))) ((|#1| $ (-1231 (-566)) |#1|) 113 (|has| $ (-6 -4415))) ((|#1| $ (-566) |#1|) 77 (|has| $ (-6 -4415)))) (-4202 (($ $ (-644 $)) NIL (|has| $ (-6 -4415)))) (-3678 (($ (-1 (-112) |#1|) $) 80)) (-3531 ((|#1| $) NIL)) (-2463 (($) NIL T CONST)) (-1466 (($ $) 14)) (-3919 (($ $) 42) (($ $ (-771)) 111)) (-1863 (((-112) (-644 |#1|) $) 135 (|has| |#1| (-1099)))) (-2745 (($ (-644 |#1|)) 131)) (-3942 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2622 (($ |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099)))) (($ (-1 (-112) |#1|) $) 79)) (-2873 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3897 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4415)))) (-3829 ((|#1| $ (-566)) NIL)) (-1781 (((-112) $) NIL)) (-1683 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-3496 (((-1269) (-566) $) 141 (|has| |#1| (-1099)))) (-2067 (((-771) $) 138)) (-3431 (((-644 $) $) NIL)) (-1507 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1860 (($ (-771) |#1|) NIL)) (-3456 (((-112) $ (-771)) NIL)) (-2296 (((-566) $) NIL (|has| (-566) (-850)))) (-3491 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-4050 (((-566) $) NIL (|has| (-566) (-850)))) (-3885 (($ (-1 |#1| |#1|) $) 95 (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#1| |#1|) $) 85) (($ (-1 |#1| |#1| |#1|) $ $) 89)) (-3267 (((-112) $ (-771)) NIL)) (-1458 (((-644 |#1|) $) NIL)) (-3860 (((-112) $) NIL)) (-2551 (($ $) 114)) (-2684 (((-112) $) 13)) (-3380 (((-1157) $) NIL (|has| |#1| (-1099)))) (-2641 ((|#1| $) NIL) (($ $ (-771)) NIL)) (-1859 (($ $ $ (-566)) NIL) (($ |#1| $ (-566)) NIL)) (-3725 (((-644 (-566)) $) NIL)) (-1644 (((-112) (-566) $) 96)) (-4072 (((-1119) $) NIL (|has| |#1| (-1099)))) (-4109 (($ (-1 |#1|)) 144) (($ (-1 |#1| |#1|) |#1|) 145)) (-3600 ((|#1| $) 10)) (-3908 ((|#1| $) 41) (($ $ (-771)) 65)) (-2273 (((-2 (|:| |cycle?| (-112)) (|:| -3449 (-771)) (|:| |period| (-771))) (-771) $) 36)) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3652 (($ (-1 (-112) |#1|) $) 146)) (-3666 (($ (-1 (-112) |#1|) $) 147)) (-3787 (($ $ |#1|) 90 (|has| $ (-6 -4415)))) (-3369 (($ $ (-566)) 45)) (-3254 (((-112) $) 94)) (-1659 (((-112) $) 12)) (-3176 (((-112) $) 137)) (-2823 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) 30)) (-2847 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3486 (((-644 |#1|) $) NIL)) (-2872 (((-112) $) 20)) (-3493 (($) 60)) (-1309 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1231 (-566))) NIL) ((|#1| $ (-566)) 75) ((|#1| $ (-566) |#1|) NIL)) (-1696 (((-566) $ $) 64)) (-2166 (($ $ (-1231 (-566))) NIL) (($ $ (-566)) NIL)) (-3412 (($ (-1 $)) 63)) (-3786 (((-112) $) 91)) (-4018 (($ $) 92)) (-3810 (($ $) 117 (|has| $ (-6 -4415)))) (-2916 (((-771) $) NIL)) (-1922 (($ $) NIL)) (-4083 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-1480 (($ $) 59)) (-2376 (((-538) $) NIL (|has| |#1| (-614 (-538))))) (-1340 (($ (-644 |#1|)) 73)) (-2508 (($ |#1| $) 115)) (-1690 (($ $ $) 119 (|has| $ (-6 -4415))) (($ $ |#1|) 120 (|has| $ (-6 -4415)))) (-4386 (($ $ $) 101) (($ |#1| $) 61) (($ (-644 $)) 106) (($ $ |#1|) 100)) (-1687 (($ $) 66)) (-3152 (($ (-644 |#1|)) 130) (((-862) $) 57 (|has| |#1| (-613 (-862))))) (-1926 (((-644 $) $) NIL)) (-4385 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3044 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2210 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) 133 (|has| |#1| (-1099)))) (-3000 (((-771) $) NIL (|has| $ (-6 -4414))))) +(((-1155 |#1|) (-13 (-674 |#1|) (-616 (-644 |#1|)) (-10 -8 (-6 -4415) (-15 -2745 ($ (-644 |#1|))) (IF (|has| |#1| (-1099)) (-15 -1863 ((-112) (-644 |#1|) $)) |%noBranch|) (-15 -2273 ((-2 (|:| |cycle?| (-112)) (|:| -3449 (-771)) (|:| |period| (-771))) (-771) $)) (-15 -3412 ($ (-1 $))) (-15 -2508 ($ |#1| $)) (IF (|has| |#1| (-1099)) (PROGN (-15 -3496 ((-1269) (-566) $)) (-15 -1409 ((-862) $)) (-15 -3345 ((-112)))) |%noBranch|) (-15 -1813 ($ $ (-566) $)) (-15 -4109 ($ (-1 |#1|))) (-15 -4109 ($ (-1 |#1| |#1|) |#1|)) (-15 -3652 ($ (-1 (-112) |#1|) $)) (-15 -3666 ($ (-1 (-112) |#1|) $)))) (-1214)) (T -1155)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1214)) (-5 *1 (-1155 *3)))) (-1863 (*1 *2 *3 *1) (-12 (-5 *3 (-644 *4)) (-4 *4 (-1099)) (-4 *4 (-1214)) (-5 *2 (-112)) (-5 *1 (-1155 *4)))) (-2273 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -3449 (-771)) (|:| |period| (-771)))) (-5 *1 (-1155 *4)) (-4 *4 (-1214)) (-5 *3 (-771)))) (-3412 (*1 *1 *2) (-12 (-5 *2 (-1 (-1155 *3))) (-5 *1 (-1155 *3)) (-4 *3 (-1214)))) (-2508 (*1 *1 *2 *1) (-12 (-5 *1 (-1155 *2)) (-4 *2 (-1214)))) (-3496 (*1 *2 *3 *1) (-12 (-5 *3 (-566)) (-5 *2 (-1269)) (-5 *1 (-1155 *4)) (-4 *4 (-1099)) (-4 *4 (-1214)))) (-1409 (*1 *2 *1) (-12 (-5 *2 (-862)) (-5 *1 (-1155 *3)) (-4 *3 (-1099)) (-4 *3 (-1214)))) (-3345 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1155 *3)) (-4 *3 (-1099)) (-4 *3 (-1214)))) (-1813 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-1155 *3)) (-4 *3 (-1214)))) (-4109 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1214)) (-5 *1 (-1155 *3)))) (-4109 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1214)) (-5 *1 (-1155 *3)))) (-3652 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1214)) (-5 *1 (-1155 *3)))) (-3666 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1214)) (-5 *1 (-1155 *3))))) +(-13 (-674 |#1|) (-616 (-644 |#1|)) (-10 -8 (-6 -4415) (-15 -2745 ($ (-644 |#1|))) (IF (|has| |#1| (-1099)) (-15 -1863 ((-112) (-644 |#1|) $)) |%noBranch|) (-15 -2273 ((-2 (|:| |cycle?| (-112)) (|:| -3449 (-771)) (|:| |period| (-771))) (-771) $)) (-15 -3412 ($ (-1 $))) (-15 -2508 ($ |#1| $)) (IF (|has| |#1| (-1099)) (PROGN (-15 -3496 ((-1269) (-566) $)) (-15 -1409 ((-862) $)) (-15 -3345 ((-112)))) |%noBranch|) (-15 -1813 ($ $ (-566) $)) (-15 -4109 ($ (-1 |#1|))) (-15 -4109 ($ (-1 |#1| |#1|) |#1|)) (-15 -3652 ($ (-1 (-112) |#1|) $)) (-15 -3666 ($ (-1 (-112) |#1|) $)))) +((-2988 (((-112) $ $) 19)) (-2129 (($ $) 121)) (-2840 (($ $) 122)) (-3818 (($ $ (-144)) 109) (($ $ (-141)) 108)) (-1944 (((-1269) $ (-566) (-566)) 41 (|has| $ (-6 -4415)))) (-3388 (((-112) $ $) 119)) (-3366 (((-112) $ $ (-566)) 118)) (-3822 (($ (-566)) 128)) (-3011 (((-644 $) $ (-144)) 111) (((-644 $) $ (-141)) 110)) (-3054 (((-112) (-1 (-112) (-144) (-144)) $) 99) (((-112) $) 93 (|has| (-144) (-850)))) (-3628 (($ (-1 (-112) (-144) (-144)) $) 90 (|has| $ (-6 -4415))) (($ $) 89 (-12 (|has| (-144) (-850)) (|has| $ (-6 -4415))))) (-2671 (($ (-1 (-112) (-144) (-144)) $) 100) (($ $) 94 (|has| (-144) (-850)))) (-1504 (((-112) $ (-771)) 8)) (-1456 (((-144) $ (-566) (-144)) 53 (|has| $ (-6 -4415))) (((-144) $ (-1231 (-566)) (-144)) 59 (|has| $ (-6 -4415)))) (-3678 (($ (-1 (-112) (-144)) $) 76 (|has| $ (-6 -4414)))) (-2463 (($) 7 T CONST)) (-2290 (($ $ (-144)) 105) (($ $ (-141)) 104)) (-3166 (($ $) 91 (|has| $ (-6 -4415)))) (-3683 (($ $) 101)) (-2801 (($ $ (-1231 (-566)) $) 115)) (-3942 (($ $) 79 (-12 (|has| (-144) (-1099)) (|has| $ (-6 -4414))))) (-2622 (($ (-144) $) 78 (-12 (|has| (-144) (-1099)) (|has| $ (-6 -4414)))) (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4414)))) (-2873 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 77 (-12 (|has| (-144) (-1099)) (|has| $ (-6 -4414)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 74 (|has| $ (-6 -4414))) (((-144) (-1 (-144) (-144) (-144)) $) 73 (|has| $ (-6 -4414)))) (-3897 (((-144) $ (-566) (-144)) 54 (|has| $ (-6 -4415)))) (-3829 (((-144) $ (-566)) 52)) (-3409 (((-112) $ $) 120)) (-1569 (((-566) (-1 (-112) (-144)) $) 98) (((-566) (-144) $) 97 (|has| (-144) (-1099))) (((-566) (-144) $ (-566)) 96 (|has| (-144) (-1099))) (((-566) $ $ (-566)) 114) (((-566) (-141) $ (-566)) 113)) (-1683 (((-644 (-144)) $) 31 (|has| $ (-6 -4414)))) (-1860 (($ (-771) (-144)) 70)) (-3456 (((-112) $ (-771)) 9)) (-2296 (((-566) $) 44 (|has| (-566) (-850)))) (-1478 (($ $ $) 88 (|has| (-144) (-850)))) (-2696 (($ (-1 (-112) (-144) (-144)) $ $) 102) (($ $ $) 95 (|has| (-144) (-850)))) (-3491 (((-644 (-144)) $) 30 (|has| $ (-6 -4414)))) (-1602 (((-112) (-144) $) 28 (-12 (|has| (-144) (-1099)) (|has| $ (-6 -4414))))) (-4050 (((-566) $) 45 (|has| (-566) (-850)))) (-2599 (($ $ $) 87 (|has| (-144) (-850)))) (-1580 (((-112) $ $ (-144)) 116)) (-1981 (((-771) $ $ (-144)) 117)) (-3885 (($ (-1 (-144) (-144)) $) 35 (|has| $ (-6 -4415)))) (-2319 (($ (-1 (-144) (-144)) $) 36) (($ (-1 (-144) (-144) (-144)) $ $) 65)) (-1490 (($ $) 123)) (-1852 (($ $) 124)) (-3267 (((-112) $ (-771)) 10)) (-2303 (($ $ (-144)) 107) (($ $ (-141)) 106)) (-3380 (((-1157) $) 22)) (-1859 (($ (-144) $ (-566)) 61) (($ $ $ (-566)) 60)) (-3725 (((-644 (-566)) $) 47)) (-1644 (((-112) (-566) $) 48)) (-4072 (((-1119) $) 21)) (-3908 (((-144) $) 43 (|has| (-566) (-850)))) (-3668 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 72)) (-3787 (($ $ (-144)) 42 (|has| $ (-6 -4415)))) (-2823 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 (-144)))) 27 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-295 (-144))) 26 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-144) (-144)) 25 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-644 (-144)) (-644 (-144))) 24 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099))))) (-3814 (((-112) $ $) 14)) (-2847 (((-112) (-144) $) 46 (-12 (|has| $ (-6 -4414)) (|has| (-144) (-1099))))) (-3486 (((-644 (-144)) $) 49)) (-2872 (((-112) $) 11)) (-3493 (($) 12)) (-1309 (((-144) $ (-566) (-144)) 51) (((-144) $ (-566)) 50) (($ $ (-1231 (-566))) 64) (($ $ $) 103)) (-2166 (($ $ (-566)) 63) (($ $ (-1231 (-566))) 62)) (-4083 (((-771) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4414))) (((-771) (-144) $) 29 (-12 (|has| (-144) (-1099)) (|has| $ (-6 -4414))))) (-2661 (($ $ $ (-566)) 92 (|has| $ (-6 -4415)))) (-1480 (($ $) 13)) (-2376 (((-538) $) 80 (|has| (-144) (-614 (-538))))) (-1340 (($ (-644 (-144))) 71)) (-4386 (($ $ (-144)) 69) (($ (-144) $) 68) (($ $ $) 67) (($ (-644 $)) 66)) (-3152 (($ (-144)) 112) (((-862) $) 18)) (-3044 (((-112) $ $) 23)) (-2210 (((-112) (-1 (-112) (-144)) $) 34 (|has| $ (-6 -4414)))) (-2226 (((-1157) $) 132) (((-1157) $ (-112)) 131) (((-1269) (-822) $) 130) (((-1269) (-822) $ (-112)) 129)) (-2968 (((-112) $ $) 85 (|has| (-144) (-850)))) (-2946 (((-112) $ $) 84 (|has| (-144) (-850)))) (-2914 (((-112) $ $) 20)) (-2956 (((-112) $ $) 86 (|has| (-144) (-850)))) (-2935 (((-112) $ $) 83 (|has| (-144) (-850)))) (-3000 (((-771) $) 6 (|has| $ (-6 -4414))))) (((-1156) (-140)) (T -1156)) -((-4336 (*1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-1156))))) -(-13 (-1143) (-1099) (-828) (-10 -8 (-15 -4336 ($ (-566))))) +((-3822 (*1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-1156))))) +(-13 (-1143) (-1099) (-828) (-10 -8 (-15 -3822 ($ (-566))))) (((-34) . T) ((-102) . T) ((-613 (-862)) . T) ((-151 #0=(-144)) . T) ((-614 (-538)) |has| (-144) (-614 (-538))) ((-287 #1=(-566) #0#) . T) ((-289 #1# #0#) . T) ((-310 #0#) -12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099))) ((-375 #0#) . T) ((-491 #0#) . T) ((-604 #1# #0#) . T) ((-516 #0# #0#) -12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099))) ((-651 #0#) . T) ((-19 #0#) . T) ((-828) . T) ((-850) |has| (-144) (-850)) ((-1099) . T) ((-1143) . T) ((-1214) . T)) -((-3007 (((-112) $ $) NIL)) (-3530 (($ $) NIL)) (-3761 (($ $) NIL)) (-2436 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-3734 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4415)))) (-3575 (((-112) $ $) NIL)) (-3554 (((-112) $ $ (-566)) NIL)) (-4336 (($ (-566)) 8)) (-1815 (((-644 $) $ (-144)) NIL) (((-644 $) $ (-141)) NIL)) (-2644 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-850)))) (-1944 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4415))) (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-144) (-850))))) (-1510 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-850)))) (-2256 (((-112) $ (-771)) NIL)) (-3923 (((-144) $ (-566) (-144)) NIL (|has| $ (-6 -4415))) (((-144) $ (-1231 (-566)) (-144)) NIL (|has| $ (-6 -4415)))) (-2701 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4414)))) (-3012 (($) NIL T CONST)) (-1602 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-3413 (($ $) NIL (|has| $ (-6 -4415)))) (-1377 (($ $) NIL)) (-2756 (($ $ (-1231 (-566)) $) NIL)) (-2031 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-144) (-1099))))) (-2665 (($ (-144) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-144) (-1099)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4414)))) (-1676 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4414)) (|has| (-144) (-1099)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4414))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4414)))) (-2920 (((-144) $ (-566) (-144)) NIL (|has| $ (-6 -4415)))) (-2855 (((-144) $ (-566)) NIL)) (-3595 (((-112) $ $) NIL)) (-4000 (((-566) (-1 (-112) (-144)) $) NIL) (((-566) (-144) $) NIL (|has| (-144) (-1099))) (((-566) (-144) $ (-566)) NIL (|has| (-144) (-1099))) (((-566) $ $ (-566)) NIL) (((-566) (-141) $ (-566)) NIL)) (-3979 (((-644 (-144)) $) NIL (|has| $ (-6 -4414)))) (-4265 (($ (-771) (-144)) NIL)) (-2404 (((-112) $ (-771)) NIL)) (-3854 (((-566) $) NIL (|has| (-566) (-850)))) (-2097 (($ $ $) NIL (|has| (-144) (-850)))) (-3298 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-850)))) (-2329 (((-644 (-144)) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-144) (-1099))))) (-2712 (((-566) $) NIL (|has| (-566) (-850)))) (-3962 (($ $ $) NIL (|has| (-144) (-850)))) (-4019 (((-112) $ $ (-144)) NIL)) (-4066 (((-771) $ $ (-144)) NIL)) (-2908 (($ (-1 (-144) (-144)) $) NIL (|has| $ (-6 -4415)))) (-1301 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-3858 (($ $) NIL)) (-3895 (($ $) NIL)) (-2603 (((-112) $ (-771)) NIL)) (-1614 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-4117 (((-1157) $) NIL)) (-4276 (($ (-144) $ (-566)) NIL) (($ $ $ (-566)) NIL)) (-4074 (((-644 (-566)) $) NIL)) (-3792 (((-112) (-566) $) NIL)) (-4035 (((-1119) $) NIL)) (-1998 (((-144) $) NIL (|has| (-566) (-850)))) (-2006 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-4030 (($ $ (-144)) NIL (|has| $ (-6 -4415)))) (-2692 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 (-144)))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-295 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-644 (-144)) (-644 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099))))) (-1932 (((-112) $ $) NIL)) (-4156 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-144) (-1099))))) (-2993 (((-644 (-144)) $) NIL)) (-3467 (((-112) $) NIL)) (-1494 (($) NIL)) (-4390 (((-144) $ (-566) (-144)) NIL) (((-144) $ (-566)) NIL) (($ $ (-1231 (-566))) NIL) (($ $ $) NIL)) (-2187 (($ $ (-566)) NIL) (($ $ (-1231 (-566))) NIL)) (-4045 (((-771) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4414))) (((-771) (-144) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-144) (-1099))))) (-1297 (($ $ $ (-566)) NIL (|has| $ (-6 -4415)))) (-3940 (($ $) NIL)) (-1348 (((-538) $) NIL (|has| (-144) (-614 (-538))))) (-3796 (($ (-644 (-144))) NIL)) (-3721 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) NIL) (($ (-644 $)) NIL)) (-3783 (($ (-144)) NIL) (((-862) $) NIL)) (-3117 (((-112) $ $) NIL)) (-1894 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4414)))) (-2452 (((-1157) $) 19) (((-1157) $ (-112)) 21) (((-1269) (-822) $) 22) (((-1269) (-822) $ (-112)) 23)) (-3009 (((-112) $ $) NIL (|has| (-144) (-850)))) (-2984 (((-112) $ $) NIL (|has| (-144) (-850)))) (-2947 (((-112) $ $) NIL)) (-2995 (((-112) $ $) NIL (|has| (-144) (-850)))) (-2969 (((-112) $ $) NIL (|has| (-144) (-850)))) (-3018 (((-771) $) NIL (|has| $ (-6 -4414))))) +((-2988 (((-112) $ $) NIL)) (-2129 (($ $) NIL)) (-2840 (($ $) NIL)) (-3818 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-1944 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4415)))) (-3388 (((-112) $ $) NIL)) (-3366 (((-112) $ $ (-566)) NIL)) (-3822 (($ (-566)) 8)) (-3011 (((-644 $) $ (-144)) NIL) (((-644 $) $ (-141)) NIL)) (-3054 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-850)))) (-3628 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4415))) (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-144) (-850))))) (-2671 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-850)))) (-1504 (((-112) $ (-771)) NIL)) (-1456 (((-144) $ (-566) (-144)) NIL (|has| $ (-6 -4415))) (((-144) $ (-1231 (-566)) (-144)) NIL (|has| $ (-6 -4415)))) (-3678 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4414)))) (-2463 (($) NIL T CONST)) (-2290 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-3166 (($ $) NIL (|has| $ (-6 -4415)))) (-3683 (($ $) NIL)) (-2801 (($ $ (-1231 (-566)) $) NIL)) (-3942 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-144) (-1099))))) (-2622 (($ (-144) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-144) (-1099)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4414)))) (-2873 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4414)) (|has| (-144) (-1099)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4414))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4414)))) (-3897 (((-144) $ (-566) (-144)) NIL (|has| $ (-6 -4415)))) (-3829 (((-144) $ (-566)) NIL)) (-3409 (((-112) $ $) NIL)) (-1569 (((-566) (-1 (-112) (-144)) $) NIL) (((-566) (-144) $) NIL (|has| (-144) (-1099))) (((-566) (-144) $ (-566)) NIL (|has| (-144) (-1099))) (((-566) $ $ (-566)) NIL) (((-566) (-141) $ (-566)) NIL)) (-1683 (((-644 (-144)) $) NIL (|has| $ (-6 -4414)))) (-1860 (($ (-771) (-144)) NIL)) (-3456 (((-112) $ (-771)) NIL)) (-2296 (((-566) $) NIL (|has| (-566) (-850)))) (-1478 (($ $ $) NIL (|has| (-144) (-850)))) (-2696 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-850)))) (-3491 (((-644 (-144)) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-144) (-1099))))) (-4050 (((-566) $) NIL (|has| (-566) (-850)))) (-2599 (($ $ $) NIL (|has| (-144) (-850)))) (-1580 (((-112) $ $ (-144)) NIL)) (-1981 (((-771) $ $ (-144)) NIL)) (-3885 (($ (-1 (-144) (-144)) $) NIL (|has| $ (-6 -4415)))) (-2319 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-1490 (($ $) NIL)) (-1852 (($ $) NIL)) (-3267 (((-112) $ (-771)) NIL)) (-2303 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-3380 (((-1157) $) NIL)) (-1859 (($ (-144) $ (-566)) NIL) (($ $ $ (-566)) NIL)) (-3725 (((-644 (-566)) $) NIL)) (-1644 (((-112) (-566) $) NIL)) (-4072 (((-1119) $) NIL)) (-3908 (((-144) $) NIL (|has| (-566) (-850)))) (-3668 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-3787 (($ $ (-144)) NIL (|has| $ (-6 -4415)))) (-2823 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 (-144)))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-295 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-644 (-144)) (-644 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099))))) (-3814 (((-112) $ $) NIL)) (-2847 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-144) (-1099))))) (-3486 (((-644 (-144)) $) NIL)) (-2872 (((-112) $) NIL)) (-3493 (($) NIL)) (-1309 (((-144) $ (-566) (-144)) NIL) (((-144) $ (-566)) NIL) (($ $ (-1231 (-566))) NIL) (($ $ $) NIL)) (-2166 (($ $ (-566)) NIL) (($ $ (-1231 (-566))) NIL)) (-4083 (((-771) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4414))) (((-771) (-144) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-144) (-1099))))) (-2661 (($ $ $ (-566)) NIL (|has| $ (-6 -4415)))) (-1480 (($ $) NIL)) (-2376 (((-538) $) NIL (|has| (-144) (-614 (-538))))) (-1340 (($ (-644 (-144))) NIL)) (-4386 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) NIL) (($ (-644 $)) NIL)) (-3152 (($ (-144)) NIL) (((-862) $) NIL)) (-3044 (((-112) $ $) NIL)) (-2210 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4414)))) (-2226 (((-1157) $) 19) (((-1157) $ (-112)) 21) (((-1269) (-822) $) 22) (((-1269) (-822) $ (-112)) 23)) (-2968 (((-112) $ $) NIL (|has| (-144) (-850)))) (-2946 (((-112) $ $) NIL (|has| (-144) (-850)))) (-2914 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL (|has| (-144) (-850)))) (-2935 (((-112) $ $) NIL (|has| (-144) (-850)))) (-3000 (((-771) $) NIL (|has| $ (-6 -4414))))) (((-1157) (-1156)) (T -1157)) NIL (-1156) -((-3007 (((-112) $ $) NIL (-2809 (|has| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-1099)) (|has| |#1| (-1099))))) (-4254 (($) NIL) (($ (-644 (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)))) NIL)) (-3734 (((-1269) $ (-1157) (-1157)) NIL (|has| $ (-6 -4415)))) (-2256 (((-112) $ (-771)) NIL)) (-3923 ((|#1| $ (-1157) |#1|) NIL)) (-4016 (($ (-1 (-112) (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))) $) NIL (|has| $ (-6 -4414)))) (-2701 (($ (-1 (-112) (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))) $) NIL (|has| $ (-6 -4414)))) (-2434 (((-3 |#1| "failed") (-1157) $) NIL)) (-3012 (($) NIL T CONST)) (-2031 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-1099))))) (-2956 (($ (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) $) NIL (|has| $ (-6 -4414))) (($ (-1 (-112) (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))) $) NIL (|has| $ (-6 -4414))) (((-3 |#1| "failed") (-1157) $) NIL)) (-2665 (($ (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-1099)))) (($ (-1 (-112) (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))) $) NIL (|has| $ (-6 -4414)))) (-1676 (((-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-1 (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))) $ (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-1099)))) (((-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-1 (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))) $ (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))) NIL (|has| $ (-6 -4414))) (((-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-1 (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))) $) NIL (|has| $ (-6 -4414)))) (-2920 ((|#1| $ (-1157) |#1|) NIL (|has| $ (-6 -4415)))) (-2855 ((|#1| $ (-1157)) NIL)) (-3979 (((-644 (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))) $) NIL (|has| $ (-6 -4414))) (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-2404 (((-112) $ (-771)) NIL)) (-3854 (((-1157) $) NIL (|has| (-1157) (-850)))) (-2329 (((-644 (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))) $) NIL (|has| $ (-6 -4414))) (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-1099)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2712 (((-1157) $) NIL (|has| (-1157) (-850)))) (-2908 (($ (-1 (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))) $) NIL (|has| $ (-6 -4415))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4415)))) (-1301 (($ (-1 (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2603 (((-112) $ (-771)) NIL)) (-4117 (((-1157) $) NIL (-2809 (|has| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-1099)) (|has| |#1| (-1099))))) (-4103 (((-644 (-1157)) $) NIL)) (-2876 (((-112) (-1157) $) NIL)) (-4039 (((-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) $) NIL)) (-3406 (($ (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) $) NIL)) (-4074 (((-644 (-1157)) $) NIL)) (-3792 (((-112) (-1157) $) NIL)) (-4035 (((-1119) $) NIL (-2809 (|has| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-1099)) (|has| |#1| (-1099))))) (-1998 ((|#1| $) NIL (|has| (-1157) (-850)))) (-2006 (((-3 (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) "failed") (-1 (-112) (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))) $) NIL)) (-4030 (($ $ |#1|) NIL (|has| $ (-6 -4415)))) (-2539 (((-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) $) NIL)) (-2692 (((-112) (-1 (-112) (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))) $) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))))) NIL (-12 (|has| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-310 (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)))) (|has| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-1099)))) (($ $ (-295 (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)))) NIL (-12 (|has| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-310 (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)))) (|has| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-1099)))) (($ $ (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))) NIL (-12 (|has| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-310 (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)))) (|has| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-1099)))) (($ $ (-644 (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))) (-644 (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)))) NIL (-12 (|has| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-310 (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)))) (|has| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) NIL)) (-4156 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2993 (((-644 |#1|) $) NIL)) (-3467 (((-112) $) NIL)) (-1494 (($) NIL)) (-4390 ((|#1| $ (-1157)) NIL) ((|#1| $ (-1157) |#1|) NIL)) (-3481 (($) NIL) (($ (-644 (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)))) NIL)) (-4045 (((-771) (-1 (-112) (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))) $) NIL (|has| $ (-6 -4414))) (((-771) (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-1099)))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099)))) (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-3940 (($ $) NIL)) (-1348 (((-538) $) NIL (|has| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-614 (-538))))) (-3796 (($ (-644 (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)))) NIL)) (-3783 (((-862) $) NIL (-2809 (|has| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-613 (-862))) (|has| |#1| (-613 (-862)))))) (-3117 (((-112) $ $) NIL (-2809 (|has| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-1099)) (|has| |#1| (-1099))))) (-1748 (($ (-644 (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)))) NIL)) (-1894 (((-112) (-1 (-112) (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|))) $) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) NIL (-2809 (|has| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (-1099)) (|has| |#1| (-1099))))) (-3018 (((-771) $) NIL (|has| $ (-6 -4414))))) +((-2988 (((-112) $ $) NIL (-2768 (|has| (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-1099)) (|has| |#1| (-1099))))) (-1849 (($) NIL) (($ (-644 (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)))) NIL)) (-1944 (((-1269) $ (-1157) (-1157)) NIL (|has| $ (-6 -4415)))) (-1504 (((-112) $ (-771)) NIL)) (-1456 ((|#1| $ (-1157) |#1|) NIL)) (-2995 (($ (-1 (-112) (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))) $) NIL (|has| $ (-6 -4414)))) (-3678 (($ (-1 (-112) (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))) $) NIL (|has| $ (-6 -4414)))) (-3070 (((-3 |#1| "failed") (-1157) $) NIL)) (-2463 (($) NIL T CONST)) (-3942 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-1099))))) (-3512 (($ (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) $) NIL (|has| $ (-6 -4414))) (($ (-1 (-112) (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))) $) NIL (|has| $ (-6 -4414))) (((-3 |#1| "failed") (-1157) $) NIL)) (-2622 (($ (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-1099)))) (($ (-1 (-112) (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))) $) NIL (|has| $ (-6 -4414)))) (-2873 (((-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-1 (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))) $ (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-1099)))) (((-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-1 (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))) $ (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))) NIL (|has| $ (-6 -4414))) (((-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-1 (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))) $) NIL (|has| $ (-6 -4414)))) (-3897 ((|#1| $ (-1157) |#1|) NIL (|has| $ (-6 -4415)))) (-3829 ((|#1| $ (-1157)) NIL)) (-1683 (((-644 (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))) $) NIL (|has| $ (-6 -4414))) (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-3456 (((-112) $ (-771)) NIL)) (-2296 (((-1157) $) NIL (|has| (-1157) (-850)))) (-3491 (((-644 (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))) $) NIL (|has| $ (-6 -4414))) (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-1099)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-4050 (((-1157) $) NIL (|has| (-1157) (-850)))) (-3885 (($ (-1 (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))) $) NIL (|has| $ (-6 -4415))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4415)))) (-2319 (($ (-1 (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3267 (((-112) $ (-771)) NIL)) (-3380 (((-1157) $) NIL (-2768 (|has| (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-1099)) (|has| |#1| (-1099))))) (-4052 (((-644 (-1157)) $) NIL)) (-1826 (((-112) (-1157) $) NIL)) (-3278 (((-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) $) NIL)) (-3888 (($ (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) $) NIL)) (-3725 (((-644 (-1157)) $) NIL)) (-1644 (((-112) (-1157) $) NIL)) (-4072 (((-1119) $) NIL (-2768 (|has| (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-1099)) (|has| |#1| (-1099))))) (-3908 ((|#1| $) NIL (|has| (-1157) (-850)))) (-3668 (((-3 (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) "failed") (-1 (-112) (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))) $) NIL)) (-3787 (($ $ |#1|) NIL (|has| $ (-6 -4415)))) (-1973 (((-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) $) NIL)) (-2823 (((-112) (-1 (-112) (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))) $) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))))) NIL (-12 (|has| (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-310 (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)))) (|has| (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-1099)))) (($ $ (-295 (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)))) NIL (-12 (|has| (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-310 (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)))) (|has| (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-1099)))) (($ $ (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))) NIL (-12 (|has| (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-310 (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)))) (|has| (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-1099)))) (($ $ (-644 (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))) (-644 (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)))) NIL (-12 (|has| (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-310 (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)))) (|has| (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) NIL)) (-2847 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3486 (((-644 |#1|) $) NIL)) (-2872 (((-112) $) NIL)) (-3493 (($) NIL)) (-1309 ((|#1| $ (-1157)) NIL) ((|#1| $ (-1157) |#1|) NIL)) (-1792 (($) NIL) (($ (-644 (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)))) NIL)) (-4083 (((-771) (-1 (-112) (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))) $) NIL (|has| $ (-6 -4414))) (((-771) (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-1099)))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099)))) (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-1480 (($ $) NIL)) (-2376 (((-538) $) NIL (|has| (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-614 (-538))))) (-1340 (($ (-644 (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)))) NIL)) (-3152 (((-862) $) NIL (-2768 (|has| (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-613 (-862))) (|has| |#1| (-613 (-862)))))) (-3044 (((-112) $ $) NIL (-2768 (|has| (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-1099)) (|has| |#1| (-1099))))) (-2948 (($ (-644 (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)))) NIL)) (-2210 (((-112) (-1 (-112) (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|))) $) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) NIL (-2768 (|has| (-2 (|:| -2674 (-1157)) (|:| -2636 |#1|)) (-1099)) (|has| |#1| (-1099))))) (-3000 (((-771) $) NIL (|has| $ (-6 -4414))))) (((-1158 |#1|) (-13 (-1190 (-1157) |#1|) (-10 -7 (-6 -4414))) (-1099)) (T -1158)) NIL (-13 (-1190 (-1157) |#1|) (-10 -7 (-6 -4414))) -((-2360 (((-1155 |#1|) (-1155 |#1|)) 85)) (-1878 (((-3 (-1155 |#1|) "failed") (-1155 |#1|)) 42)) (-2081 (((-1155 |#1|) (-409 (-566)) (-1155 |#1|)) 136 (|has| |#1| (-38 (-409 (-566)))))) (-4369 (((-1155 |#1|) |#1| (-1155 |#1|)) 142 (|has| |#1| (-365)))) (-3641 (((-1155 |#1|) (-1155 |#1|)) 100)) (-2453 (((-1155 (-566)) (-566)) 64)) (-1347 (((-1155 |#1|) (-1155 (-1155 |#1|))) 119 (|has| |#1| (-38 (-409 (-566)))))) (-3557 (((-1155 |#1|) (-566) (-566) (-1155 |#1|)) 105)) (-3319 (((-1155 |#1|) |#1| (-566)) 54)) (-3835 (((-1155 |#1|) (-1155 |#1|) (-1155 |#1|)) 67)) (-3314 (((-1155 |#1|) (-1155 |#1|) (-1155 |#1|)) 139 (|has| |#1| (-365)))) (-1700 (((-1155 |#1|) |#1| (-1 (-1155 |#1|))) 118 (|has| |#1| (-38 (-409 (-566)))))) (-2477 (((-1155 |#1|) (-1 |#1| (-566)) |#1| (-1 (-1155 |#1|))) 140 (|has| |#1| (-365)))) (-3284 (((-1155 |#1|) (-1155 |#1|)) 99)) (-2198 (((-1155 |#1|) (-1155 |#1|)) 83)) (-3539 (((-1155 |#1|) (-566) (-566) (-1155 |#1|)) 106)) (-1941 (((-1155 |#1|) |#1| (-1155 |#1|)) 115 (|has| |#1| (-38 (-409 (-566)))))) (-4287 (((-1155 (-566)) (-566)) 63)) (-3903 (((-1155 |#1|) |#1|) 66)) (-2451 (((-1155 |#1|) (-1155 |#1|) (-566) (-566)) 102)) (-3043 (((-1155 |#1|) (-1 |#1| (-566)) (-1155 |#1|)) 73)) (-2994 (((-3 (-1155 |#1|) "failed") (-1155 |#1|) (-1155 |#1|)) 40)) (-1674 (((-1155 |#1|) (-1155 |#1|)) 101)) (-2055 (((-1155 |#1|) (-1155 |#1|) |#1|) 78)) (-2276 (((-1155 |#1|) (-1155 |#1|)) 69)) (-1919 (((-1155 |#1|) (-1155 |#1|) (-1155 |#1|)) 79)) (-3783 (((-1155 |#1|) |#1|) 74)) (-1917 (((-1155 |#1|) (-1155 (-1155 |#1|))) 90)) (-3065 (((-1155 |#1|) (-1155 |#1|) (-1155 |#1|)) 41)) (-3053 (((-1155 |#1|) (-1155 |#1|)) 21) (((-1155 |#1|) (-1155 |#1|) (-1155 |#1|)) 23)) (-3041 (((-1155 |#1|) (-1155 |#1|) (-1155 |#1|)) 17)) (* (((-1155 |#1|) (-1155 |#1|) |#1|) 29) (((-1155 |#1|) |#1| (-1155 |#1|)) 26) (((-1155 |#1|) (-1155 |#1|) (-1155 |#1|)) 27))) -(((-1159 |#1|) (-10 -7 (-15 -3041 ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -3053 ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -3053 ((-1155 |#1|) (-1155 |#1|))) (-15 * ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 * ((-1155 |#1|) |#1| (-1155 |#1|))) (-15 * ((-1155 |#1|) (-1155 |#1|) |#1|)) (-15 -2994 ((-3 (-1155 |#1|) "failed") (-1155 |#1|) (-1155 |#1|))) (-15 -3065 ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -1878 ((-3 (-1155 |#1|) "failed") (-1155 |#1|))) (-15 -3319 ((-1155 |#1|) |#1| (-566))) (-15 -4287 ((-1155 (-566)) (-566))) (-15 -2453 ((-1155 (-566)) (-566))) (-15 -3903 ((-1155 |#1|) |#1|)) (-15 -3835 ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -2276 ((-1155 |#1|) (-1155 |#1|))) (-15 -3043 ((-1155 |#1|) (-1 |#1| (-566)) (-1155 |#1|))) (-15 -3783 ((-1155 |#1|) |#1|)) (-15 -2055 ((-1155 |#1|) (-1155 |#1|) |#1|)) (-15 -1919 ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -2198 ((-1155 |#1|) (-1155 |#1|))) (-15 -2360 ((-1155 |#1|) (-1155 |#1|))) (-15 -1917 ((-1155 |#1|) (-1155 (-1155 |#1|)))) (-15 -3284 ((-1155 |#1|) (-1155 |#1|))) (-15 -3641 ((-1155 |#1|) (-1155 |#1|))) (-15 -1674 ((-1155 |#1|) (-1155 |#1|))) (-15 -2451 ((-1155 |#1|) (-1155 |#1|) (-566) (-566))) (-15 -3557 ((-1155 |#1|) (-566) (-566) (-1155 |#1|))) (-15 -3539 ((-1155 |#1|) (-566) (-566) (-1155 |#1|))) (IF (|has| |#1| (-38 (-409 (-566)))) (PROGN (-15 -1941 ((-1155 |#1|) |#1| (-1155 |#1|))) (-15 -1700 ((-1155 |#1|) |#1| (-1 (-1155 |#1|)))) (-15 -1347 ((-1155 |#1|) (-1155 (-1155 |#1|)))) (-15 -2081 ((-1155 |#1|) (-409 (-566)) (-1155 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -3314 ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -2477 ((-1155 |#1|) (-1 |#1| (-566)) |#1| (-1 (-1155 |#1|)))) (-15 -4369 ((-1155 |#1|) |#1| (-1155 |#1|)))) |%noBranch|)) (-1049)) (T -1159)) -((-4369 (*1 *2 *3 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-365)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-2477 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-566))) (-5 *5 (-1 (-1155 *4))) (-4 *4 (-365)) (-4 *4 (-1049)) (-5 *2 (-1155 *4)) (-5 *1 (-1159 *4)))) (-3314 (*1 *2 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-365)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-2081 (*1 *2 *3 *2) (-12 (-5 *2 (-1155 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1049)) (-5 *3 (-409 (-566))) (-5 *1 (-1159 *4)))) (-1347 (*1 *2 *3) (-12 (-5 *3 (-1155 (-1155 *4))) (-5 *2 (-1155 *4)) (-5 *1 (-1159 *4)) (-4 *4 (-38 (-409 (-566)))) (-4 *4 (-1049)))) (-1700 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1155 *3))) (-5 *2 (-1155 *3)) (-5 *1 (-1159 *3)) (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)))) (-1941 (*1 *2 *3 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-3539 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1155 *4)) (-5 *3 (-566)) (-4 *4 (-1049)) (-5 *1 (-1159 *4)))) (-3557 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1155 *4)) (-5 *3 (-566)) (-4 *4 (-1049)) (-5 *1 (-1159 *4)))) (-2451 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1155 *4)) (-5 *3 (-566)) (-4 *4 (-1049)) (-5 *1 (-1159 *4)))) (-1674 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-3641 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-3284 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-1917 (*1 *2 *3) (-12 (-5 *3 (-1155 (-1155 *4))) (-5 *2 (-1155 *4)) (-5 *1 (-1159 *4)) (-4 *4 (-1049)))) (-2360 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-2198 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-1919 (*1 *2 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-2055 (*1 *2 *2 *3) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-3783 (*1 *2 *3) (-12 (-5 *2 (-1155 *3)) (-5 *1 (-1159 *3)) (-4 *3 (-1049)))) (-3043 (*1 *2 *3 *2) (-12 (-5 *2 (-1155 *4)) (-5 *3 (-1 *4 (-566))) (-4 *4 (-1049)) (-5 *1 (-1159 *4)))) (-2276 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-3835 (*1 *2 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-3903 (*1 *2 *3) (-12 (-5 *2 (-1155 *3)) (-5 *1 (-1159 *3)) (-4 *3 (-1049)))) (-2453 (*1 *2 *3) (-12 (-5 *2 (-1155 (-566))) (-5 *1 (-1159 *4)) (-4 *4 (-1049)) (-5 *3 (-566)))) (-4287 (*1 *2 *3) (-12 (-5 *2 (-1155 (-566))) (-5 *1 (-1159 *4)) (-4 *4 (-1049)) (-5 *3 (-566)))) (-3319 (*1 *2 *3 *4) (-12 (-5 *4 (-566)) (-5 *2 (-1155 *3)) (-5 *1 (-1159 *3)) (-4 *3 (-1049)))) (-1878 (*1 *2 *2) (|partial| -12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-3065 (*1 *2 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-2994 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-3053 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-3053 (*1 *2 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-3041 (*1 *2 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3))))) -(-10 -7 (-15 -3041 ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -3053 ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -3053 ((-1155 |#1|) (-1155 |#1|))) (-15 * ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 * ((-1155 |#1|) |#1| (-1155 |#1|))) (-15 * ((-1155 |#1|) (-1155 |#1|) |#1|)) (-15 -2994 ((-3 (-1155 |#1|) "failed") (-1155 |#1|) (-1155 |#1|))) (-15 -3065 ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -1878 ((-3 (-1155 |#1|) "failed") (-1155 |#1|))) (-15 -3319 ((-1155 |#1|) |#1| (-566))) (-15 -4287 ((-1155 (-566)) (-566))) (-15 -2453 ((-1155 (-566)) (-566))) (-15 -3903 ((-1155 |#1|) |#1|)) (-15 -3835 ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -2276 ((-1155 |#1|) (-1155 |#1|))) (-15 -3043 ((-1155 |#1|) (-1 |#1| (-566)) (-1155 |#1|))) (-15 -3783 ((-1155 |#1|) |#1|)) (-15 -2055 ((-1155 |#1|) (-1155 |#1|) |#1|)) (-15 -1919 ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -2198 ((-1155 |#1|) (-1155 |#1|))) (-15 -2360 ((-1155 |#1|) (-1155 |#1|))) (-15 -1917 ((-1155 |#1|) (-1155 (-1155 |#1|)))) (-15 -3284 ((-1155 |#1|) (-1155 |#1|))) (-15 -3641 ((-1155 |#1|) (-1155 |#1|))) (-15 -1674 ((-1155 |#1|) (-1155 |#1|))) (-15 -2451 ((-1155 |#1|) (-1155 |#1|) (-566) (-566))) (-15 -3557 ((-1155 |#1|) (-566) (-566) (-1155 |#1|))) (-15 -3539 ((-1155 |#1|) (-566) (-566) (-1155 |#1|))) (IF (|has| |#1| (-38 (-409 (-566)))) (PROGN (-15 -1941 ((-1155 |#1|) |#1| (-1155 |#1|))) (-15 -1700 ((-1155 |#1|) |#1| (-1 (-1155 |#1|)))) (-15 -1347 ((-1155 |#1|) (-1155 (-1155 |#1|)))) (-15 -2081 ((-1155 |#1|) (-409 (-566)) (-1155 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -3314 ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -2477 ((-1155 |#1|) (-1 |#1| (-566)) |#1| (-1 (-1155 |#1|)))) (-15 -4369 ((-1155 |#1|) |#1| (-1155 |#1|)))) |%noBranch|)) -((-4114 (((-1155 |#1|) (-1155 |#1|)) 60)) (-2109 (((-1155 |#1|) (-1155 |#1|)) 42)) (-2240 (((-1155 |#1|) (-1155 |#1|)) 56)) (-2085 (((-1155 |#1|) (-1155 |#1|)) 38)) (-4134 (((-1155 |#1|) (-1155 |#1|)) 63)) (-2129 (((-1155 |#1|) (-1155 |#1|)) 45)) (-3651 (((-1155 |#1|) (-1155 |#1|)) 34)) (-2561 (((-1155 |#1|) (-1155 |#1|)) 29)) (-4144 (((-1155 |#1|) (-1155 |#1|)) 64)) (-2141 (((-1155 |#1|) (-1155 |#1|)) 46)) (-4124 (((-1155 |#1|) (-1155 |#1|)) 61)) (-2118 (((-1155 |#1|) (-1155 |#1|)) 43)) (-4104 (((-1155 |#1|) (-1155 |#1|)) 58)) (-2098 (((-1155 |#1|) (-1155 |#1|)) 40)) (-4177 (((-1155 |#1|) (-1155 |#1|)) 68)) (-2180 (((-1155 |#1|) (-1155 |#1|)) 50)) (-4155 (((-1155 |#1|) (-1155 |#1|)) 66)) (-2153 (((-1155 |#1|) (-1155 |#1|)) 48)) (-4198 (((-1155 |#1|) (-1155 |#1|)) 71)) (-2212 (((-1155 |#1|) (-1155 |#1|)) 53)) (-2976 (((-1155 |#1|) (-1155 |#1|)) 72)) (-2227 (((-1155 |#1|) (-1155 |#1|)) 54)) (-4188 (((-1155 |#1|) (-1155 |#1|)) 70)) (-2196 (((-1155 |#1|) (-1155 |#1|)) 52)) (-4166 (((-1155 |#1|) (-1155 |#1|)) 69)) (-2166 (((-1155 |#1|) (-1155 |#1|)) 51)) (** (((-1155 |#1|) (-1155 |#1|) (-1155 |#1|)) 36))) -(((-1160 |#1|) (-10 -7 (-15 -2561 ((-1155 |#1|) (-1155 |#1|))) (-15 -3651 ((-1155 |#1|) (-1155 |#1|))) (-15 ** ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -2085 ((-1155 |#1|) (-1155 |#1|))) (-15 -2098 ((-1155 |#1|) (-1155 |#1|))) (-15 -2109 ((-1155 |#1|) (-1155 |#1|))) (-15 -2118 ((-1155 |#1|) (-1155 |#1|))) (-15 -2129 ((-1155 |#1|) (-1155 |#1|))) (-15 -2141 ((-1155 |#1|) (-1155 |#1|))) (-15 -2153 ((-1155 |#1|) (-1155 |#1|))) (-15 -2166 ((-1155 |#1|) (-1155 |#1|))) (-15 -2180 ((-1155 |#1|) (-1155 |#1|))) (-15 -2196 ((-1155 |#1|) (-1155 |#1|))) (-15 -2212 ((-1155 |#1|) (-1155 |#1|))) (-15 -2227 ((-1155 |#1|) (-1155 |#1|))) (-15 -2240 ((-1155 |#1|) (-1155 |#1|))) (-15 -4104 ((-1155 |#1|) (-1155 |#1|))) (-15 -4114 ((-1155 |#1|) (-1155 |#1|))) (-15 -4124 ((-1155 |#1|) (-1155 |#1|))) (-15 -4134 ((-1155 |#1|) (-1155 |#1|))) (-15 -4144 ((-1155 |#1|) (-1155 |#1|))) (-15 -4155 ((-1155 |#1|) (-1155 |#1|))) (-15 -4166 ((-1155 |#1|) (-1155 |#1|))) (-15 -4177 ((-1155 |#1|) (-1155 |#1|))) (-15 -4188 ((-1155 |#1|) (-1155 |#1|))) (-15 -4198 ((-1155 |#1|) (-1155 |#1|))) (-15 -2976 ((-1155 |#1|) (-1155 |#1|)))) (-38 (-409 (-566)))) (T -1160)) -((-2976 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-4198 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-4188 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-4177 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-4166 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-4155 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-4144 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-4134 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-4124 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-4114 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-4104 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-2240 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-2227 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-2212 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-2196 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-2180 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-2166 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-2153 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-2141 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-2129 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-2118 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-2109 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-2098 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-2085 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3651 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-2561 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3))))) -(-10 -7 (-15 -2561 ((-1155 |#1|) (-1155 |#1|))) (-15 -3651 ((-1155 |#1|) (-1155 |#1|))) (-15 ** ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -2085 ((-1155 |#1|) (-1155 |#1|))) (-15 -2098 ((-1155 |#1|) (-1155 |#1|))) (-15 -2109 ((-1155 |#1|) (-1155 |#1|))) (-15 -2118 ((-1155 |#1|) (-1155 |#1|))) (-15 -2129 ((-1155 |#1|) (-1155 |#1|))) (-15 -2141 ((-1155 |#1|) (-1155 |#1|))) (-15 -2153 ((-1155 |#1|) (-1155 |#1|))) (-15 -2166 ((-1155 |#1|) (-1155 |#1|))) (-15 -2180 ((-1155 |#1|) (-1155 |#1|))) (-15 -2196 ((-1155 |#1|) (-1155 |#1|))) (-15 -2212 ((-1155 |#1|) (-1155 |#1|))) (-15 -2227 ((-1155 |#1|) (-1155 |#1|))) (-15 -2240 ((-1155 |#1|) (-1155 |#1|))) (-15 -4104 ((-1155 |#1|) (-1155 |#1|))) (-15 -4114 ((-1155 |#1|) (-1155 |#1|))) (-15 -4124 ((-1155 |#1|) (-1155 |#1|))) (-15 -4134 ((-1155 |#1|) (-1155 |#1|))) (-15 -4144 ((-1155 |#1|) (-1155 |#1|))) (-15 -4155 ((-1155 |#1|) (-1155 |#1|))) (-15 -4166 ((-1155 |#1|) (-1155 |#1|))) (-15 -4177 ((-1155 |#1|) (-1155 |#1|))) (-15 -4188 ((-1155 |#1|) (-1155 |#1|))) (-15 -4198 ((-1155 |#1|) (-1155 |#1|))) (-15 -2976 ((-1155 |#1|) (-1155 |#1|)))) -((-4114 (((-1155 |#1|) (-1155 |#1|)) 108)) (-2109 (((-1155 |#1|) (-1155 |#1|)) 65)) (-3853 (((-2 (|:| -2240 (-1155 |#1|)) (|:| -4104 (-1155 |#1|))) (-1155 |#1|)) 104)) (-2240 (((-1155 |#1|) (-1155 |#1|)) 105)) (-2551 (((-2 (|:| -2085 (-1155 |#1|)) (|:| -2098 (-1155 |#1|))) (-1155 |#1|)) 54)) (-2085 (((-1155 |#1|) (-1155 |#1|)) 55)) (-4134 (((-1155 |#1|) (-1155 |#1|)) 110)) (-2129 (((-1155 |#1|) (-1155 |#1|)) 72)) (-3651 (((-1155 |#1|) (-1155 |#1|)) 40)) (-2561 (((-1155 |#1|) (-1155 |#1|)) 37)) (-4144 (((-1155 |#1|) (-1155 |#1|)) 111)) (-2141 (((-1155 |#1|) (-1155 |#1|)) 73)) (-4124 (((-1155 |#1|) (-1155 |#1|)) 109)) (-2118 (((-1155 |#1|) (-1155 |#1|)) 68)) (-4104 (((-1155 |#1|) (-1155 |#1|)) 106)) (-2098 (((-1155 |#1|) (-1155 |#1|)) 56)) (-4177 (((-1155 |#1|) (-1155 |#1|)) 119)) (-2180 (((-1155 |#1|) (-1155 |#1|)) 94)) (-4155 (((-1155 |#1|) (-1155 |#1|)) 113)) (-2153 (((-1155 |#1|) (-1155 |#1|)) 90)) (-4198 (((-1155 |#1|) (-1155 |#1|)) 123)) (-2212 (((-1155 |#1|) (-1155 |#1|)) 98)) (-2976 (((-1155 |#1|) (-1155 |#1|)) 125)) (-2227 (((-1155 |#1|) (-1155 |#1|)) 100)) (-4188 (((-1155 |#1|) (-1155 |#1|)) 121)) (-2196 (((-1155 |#1|) (-1155 |#1|)) 96)) (-4166 (((-1155 |#1|) (-1155 |#1|)) 115)) (-2166 (((-1155 |#1|) (-1155 |#1|)) 92)) (** (((-1155 |#1|) (-1155 |#1|) (-1155 |#1|)) 41))) -(((-1161 |#1|) (-10 -7 (-15 -2561 ((-1155 |#1|) (-1155 |#1|))) (-15 -3651 ((-1155 |#1|) (-1155 |#1|))) (-15 ** ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -2551 ((-2 (|:| -2085 (-1155 |#1|)) (|:| -2098 (-1155 |#1|))) (-1155 |#1|))) (-15 -2085 ((-1155 |#1|) (-1155 |#1|))) (-15 -2098 ((-1155 |#1|) (-1155 |#1|))) (-15 -2109 ((-1155 |#1|) (-1155 |#1|))) (-15 -2118 ((-1155 |#1|) (-1155 |#1|))) (-15 -2129 ((-1155 |#1|) (-1155 |#1|))) (-15 -2141 ((-1155 |#1|) (-1155 |#1|))) (-15 -2153 ((-1155 |#1|) (-1155 |#1|))) (-15 -2166 ((-1155 |#1|) (-1155 |#1|))) (-15 -2180 ((-1155 |#1|) (-1155 |#1|))) (-15 -2196 ((-1155 |#1|) (-1155 |#1|))) (-15 -2212 ((-1155 |#1|) (-1155 |#1|))) (-15 -2227 ((-1155 |#1|) (-1155 |#1|))) (-15 -3853 ((-2 (|:| -2240 (-1155 |#1|)) (|:| -4104 (-1155 |#1|))) (-1155 |#1|))) (-15 -2240 ((-1155 |#1|) (-1155 |#1|))) (-15 -4104 ((-1155 |#1|) (-1155 |#1|))) (-15 -4114 ((-1155 |#1|) (-1155 |#1|))) (-15 -4124 ((-1155 |#1|) (-1155 |#1|))) (-15 -4134 ((-1155 |#1|) (-1155 |#1|))) (-15 -4144 ((-1155 |#1|) (-1155 |#1|))) (-15 -4155 ((-1155 |#1|) (-1155 |#1|))) (-15 -4166 ((-1155 |#1|) (-1155 |#1|))) (-15 -4177 ((-1155 |#1|) (-1155 |#1|))) (-15 -4188 ((-1155 |#1|) (-1155 |#1|))) (-15 -4198 ((-1155 |#1|) (-1155 |#1|))) (-15 -2976 ((-1155 |#1|) (-1155 |#1|)))) (-38 (-409 (-566)))) (T -1161)) -((-2976 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-4198 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-4188 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-4177 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-4166 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-4155 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-4144 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-4134 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-4124 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-4114 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-4104 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-2240 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3853 (*1 *2 *3) (-12 (-4 *4 (-38 (-409 (-566)))) (-5 *2 (-2 (|:| -2240 (-1155 *4)) (|:| -4104 (-1155 *4)))) (-5 *1 (-1161 *4)) (-5 *3 (-1155 *4)))) (-2227 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-2212 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-2196 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-2180 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-2166 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-2153 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-2141 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-2129 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-2118 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-2109 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-2098 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-2085 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-2551 (*1 *2 *3) (-12 (-4 *4 (-38 (-409 (-566)))) (-5 *2 (-2 (|:| -2085 (-1155 *4)) (|:| -2098 (-1155 *4)))) (-5 *1 (-1161 *4)) (-5 *3 (-1155 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3651 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-2561 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3))))) -(-10 -7 (-15 -2561 ((-1155 |#1|) (-1155 |#1|))) (-15 -3651 ((-1155 |#1|) (-1155 |#1|))) (-15 ** ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -2551 ((-2 (|:| -2085 (-1155 |#1|)) (|:| -2098 (-1155 |#1|))) (-1155 |#1|))) (-15 -2085 ((-1155 |#1|) (-1155 |#1|))) (-15 -2098 ((-1155 |#1|) (-1155 |#1|))) (-15 -2109 ((-1155 |#1|) (-1155 |#1|))) (-15 -2118 ((-1155 |#1|) (-1155 |#1|))) (-15 -2129 ((-1155 |#1|) (-1155 |#1|))) (-15 -2141 ((-1155 |#1|) (-1155 |#1|))) (-15 -2153 ((-1155 |#1|) (-1155 |#1|))) (-15 -2166 ((-1155 |#1|) (-1155 |#1|))) (-15 -2180 ((-1155 |#1|) (-1155 |#1|))) (-15 -2196 ((-1155 |#1|) (-1155 |#1|))) (-15 -2212 ((-1155 |#1|) (-1155 |#1|))) (-15 -2227 ((-1155 |#1|) (-1155 |#1|))) (-15 -3853 ((-2 (|:| -2240 (-1155 |#1|)) (|:| -4104 (-1155 |#1|))) (-1155 |#1|))) (-15 -2240 ((-1155 |#1|) (-1155 |#1|))) (-15 -4104 ((-1155 |#1|) (-1155 |#1|))) (-15 -4114 ((-1155 |#1|) (-1155 |#1|))) (-15 -4124 ((-1155 |#1|) (-1155 |#1|))) (-15 -4134 ((-1155 |#1|) (-1155 |#1|))) (-15 -4144 ((-1155 |#1|) (-1155 |#1|))) (-15 -4155 ((-1155 |#1|) (-1155 |#1|))) (-15 -4166 ((-1155 |#1|) (-1155 |#1|))) (-15 -4177 ((-1155 |#1|) (-1155 |#1|))) (-15 -4188 ((-1155 |#1|) (-1155 |#1|))) (-15 -4198 ((-1155 |#1|) (-1155 |#1|))) (-15 -2976 ((-1155 |#1|) (-1155 |#1|)))) -((-1407 (((-958 |#2|) |#2| |#2|) 51)) (-4075 ((|#2| |#2| |#1|) 19 (|has| |#1| (-308))))) -(((-1162 |#1| |#2|) (-10 -7 (-15 -1407 ((-958 |#2|) |#2| |#2|)) (IF (|has| |#1| (-308)) (-15 -4075 (|#2| |#2| |#1|)) |%noBranch|)) (-558) (-1240 |#1|)) (T -1162)) -((-4075 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-4 *3 (-558)) (-5 *1 (-1162 *3 *2)) (-4 *2 (-1240 *3)))) (-1407 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-958 *3)) (-5 *1 (-1162 *4 *3)) (-4 *3 (-1240 *4))))) -(-10 -7 (-15 -1407 ((-958 |#2|) |#2| |#2|)) (IF (|has| |#1| (-308)) (-15 -4075 (|#2| |#2| |#1|)) |%noBranch|)) -((-3007 (((-112) $ $) NIL)) (-1388 (($ $ (-644 (-771))) 81)) (-2623 (($) 33)) (-2038 (($ $) 51)) (-1454 (((-644 $) $) 60)) (-2054 (((-112) $) 19)) (-1937 (((-644 (-943 |#2|)) $) 88)) (-3819 (($ $) 82)) (-2136 (((-771) $) 47)) (-4265 (($) 32)) (-1987 (($ $ (-644 (-771)) (-943 |#2|)) 74) (($ $ (-644 (-771)) (-771)) 75) (($ $ (-771) (-943 |#2|)) 77)) (-3298 (($ $ $) 57) (($ (-644 $)) 59)) (-3118 (((-771) $) 89)) (-3438 (((-112) $) 15)) (-4117 (((-1157) $) NIL)) (-2296 (((-112) $) 22)) (-4035 (((-1119) $) NIL)) (-4391 (((-171) $) 87)) (-4101 (((-943 |#2|) $) 83)) (-3186 (((-771) $) 84)) (-2208 (((-112) $) 86)) (-2996 (($ $ (-644 (-771)) (-171)) 80)) (-3421 (($ $) 52)) (-3783 (((-862) $) 100)) (-1485 (($ $ (-644 (-771)) (-112)) 79)) (-2462 (((-644 $) $) 11)) (-1435 (($ $ (-771)) 46)) (-3142 (($ $) 43)) (-3117 (((-112) $ $) NIL)) (-2442 (($ $ $ (-943 |#2|) (-771)) 70)) (-2421 (($ $ (-943 |#2|)) 69)) (-3297 (($ $ (-644 (-771)) (-943 |#2|)) 66) (($ $ (-644 (-771)) (-771)) 72) (((-771) $ (-943 |#2|)) 73)) (-2947 (((-112) $ $) 94))) -(((-1163 |#1| |#2|) (-13 (-1099) (-10 -8 (-15 -3438 ((-112) $)) (-15 -2054 ((-112) $)) (-15 -2296 ((-112) $)) (-15 -4265 ($)) (-15 -2623 ($)) (-15 -3142 ($ $)) (-15 -1435 ($ $ (-771))) (-15 -2462 ((-644 $) $)) (-15 -2136 ((-771) $)) (-15 -2038 ($ $)) (-15 -3421 ($ $)) (-15 -3298 ($ $ $)) (-15 -3298 ($ (-644 $))) (-15 -1454 ((-644 $) $)) (-15 -3297 ($ $ (-644 (-771)) (-943 |#2|))) (-15 -2421 ($ $ (-943 |#2|))) (-15 -2442 ($ $ $ (-943 |#2|) (-771))) (-15 -1987 ($ $ (-644 (-771)) (-943 |#2|))) (-15 -3297 ($ $ (-644 (-771)) (-771))) (-15 -1987 ($ $ (-644 (-771)) (-771))) (-15 -3297 ((-771) $ (-943 |#2|))) (-15 -1987 ($ $ (-771) (-943 |#2|))) (-15 -1485 ($ $ (-644 (-771)) (-112))) (-15 -2996 ($ $ (-644 (-771)) (-171))) (-15 -1388 ($ $ (-644 (-771)))) (-15 -4101 ((-943 |#2|) $)) (-15 -3186 ((-771) $)) (-15 -2208 ((-112) $)) (-15 -4391 ((-171) $)) (-15 -3118 ((-771) $)) (-15 -3819 ($ $)) (-15 -1937 ((-644 (-943 |#2|)) $)))) (-921) (-1049)) (T -1163)) -((-3438 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049)))) (-2054 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049)))) (-2296 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049)))) (-4265 (*1 *1) (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1049)))) (-2623 (*1 *1) (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1049)))) (-3142 (*1 *1 *1) (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1049)))) (-1435 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049)))) (-2462 (*1 *2 *1) (-12 (-5 *2 (-644 (-1163 *3 *4))) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049)))) (-2136 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049)))) (-2038 (*1 *1 *1) (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1049)))) (-3421 (*1 *1 *1) (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1049)))) (-3298 (*1 *1 *1 *1) (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1049)))) (-3298 (*1 *1 *2) (-12 (-5 *2 (-644 (-1163 *3 *4))) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049)))) (-1454 (*1 *2 *1) (-12 (-5 *2 (-644 (-1163 *3 *4))) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049)))) (-3297 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-771))) (-5 *3 (-943 *5)) (-4 *5 (-1049)) (-5 *1 (-1163 *4 *5)) (-14 *4 (-921)))) (-2421 (*1 *1 *1 *2) (-12 (-5 *2 (-943 *4)) (-4 *4 (-1049)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)))) (-2442 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-943 *5)) (-5 *3 (-771)) (-4 *5 (-1049)) (-5 *1 (-1163 *4 *5)) (-14 *4 (-921)))) (-1987 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-771))) (-5 *3 (-943 *5)) (-4 *5 (-1049)) (-5 *1 (-1163 *4 *5)) (-14 *4 (-921)))) (-3297 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-771))) (-5 *3 (-771)) (-5 *1 (-1163 *4 *5)) (-14 *4 (-921)) (-4 *5 (-1049)))) (-1987 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-771))) (-5 *3 (-771)) (-5 *1 (-1163 *4 *5)) (-14 *4 (-921)) (-4 *5 (-1049)))) (-3297 (*1 *2 *1 *3) (-12 (-5 *3 (-943 *5)) (-4 *5 (-1049)) (-5 *2 (-771)) (-5 *1 (-1163 *4 *5)) (-14 *4 (-921)))) (-1987 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-771)) (-5 *3 (-943 *5)) (-4 *5 (-1049)) (-5 *1 (-1163 *4 *5)) (-14 *4 (-921)))) (-1485 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-771))) (-5 *3 (-112)) (-5 *1 (-1163 *4 *5)) (-14 *4 (-921)) (-4 *5 (-1049)))) (-2996 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-771))) (-5 *3 (-171)) (-5 *1 (-1163 *4 *5)) (-14 *4 (-921)) (-4 *5 (-1049)))) (-1388 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-771))) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049)))) (-4101 (*1 *2 *1) (-12 (-5 *2 (-943 *4)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049)))) (-3186 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049)))) (-2208 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049)))) (-4391 (*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049)))) (-3118 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049)))) (-3819 (*1 *1 *1) (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1049)))) (-1937 (*1 *2 *1) (-12 (-5 *2 (-644 (-943 *4))) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049))))) -(-13 (-1099) (-10 -8 (-15 -3438 ((-112) $)) (-15 -2054 ((-112) $)) (-15 -2296 ((-112) $)) (-15 -4265 ($)) (-15 -2623 ($)) (-15 -3142 ($ $)) (-15 -1435 ($ $ (-771))) (-15 -2462 ((-644 $) $)) (-15 -2136 ((-771) $)) (-15 -2038 ($ $)) (-15 -3421 ($ $)) (-15 -3298 ($ $ $)) (-15 -3298 ($ (-644 $))) (-15 -1454 ((-644 $) $)) (-15 -3297 ($ $ (-644 (-771)) (-943 |#2|))) (-15 -2421 ($ $ (-943 |#2|))) (-15 -2442 ($ $ $ (-943 |#2|) (-771))) (-15 -1987 ($ $ (-644 (-771)) (-943 |#2|))) (-15 -3297 ($ $ (-644 (-771)) (-771))) (-15 -1987 ($ $ (-644 (-771)) (-771))) (-15 -3297 ((-771) $ (-943 |#2|))) (-15 -1987 ($ $ (-771) (-943 |#2|))) (-15 -1485 ($ $ (-644 (-771)) (-112))) (-15 -2996 ($ $ (-644 (-771)) (-171))) (-15 -1388 ($ $ (-644 (-771)))) (-15 -4101 ((-943 |#2|) $)) (-15 -3186 ((-771) $)) (-15 -2208 ((-112) $)) (-15 -4391 ((-171) $)) (-15 -3118 ((-771) $)) (-15 -3819 ($ $)) (-15 -1937 ((-644 (-943 |#2|)) $)))) -((-3007 (((-112) $ $) NIL)) (-4330 ((|#2| $) 11)) (-4318 ((|#1| $) 10)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3796 (($ |#1| |#2|) 9)) (-3783 (((-862) $) 16)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) -(((-1164 |#1| |#2|) (-13 (-1099) (-10 -8 (-15 -3796 ($ |#1| |#2|)) (-15 -4318 (|#1| $)) (-15 -4330 (|#2| $)))) (-1099) (-1099)) (T -1164)) -((-3796 (*1 *1 *2 *3) (-12 (-5 *1 (-1164 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099)))) (-4318 (*1 *2 *1) (-12 (-4 *2 (-1099)) (-5 *1 (-1164 *2 *3)) (-4 *3 (-1099)))) (-4330 (*1 *2 *1) (-12 (-4 *2 (-1099)) (-5 *1 (-1164 *3 *2)) (-4 *3 (-1099))))) -(-13 (-1099) (-10 -8 (-15 -3796 ($ |#1| |#2|)) (-15 -4318 (|#1| $)) (-15 -4330 (|#2| $)))) -((-3007 (((-112) $ $) NIL)) (-1367 (((-1134) $) 9)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 15) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) -(((-1165) (-13 (-1082) (-10 -8 (-15 -1367 ((-1134) $))))) (T -1165)) -((-1367 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1165))))) -(-13 (-1082) (-10 -8 (-15 -1367 ((-1134) $)))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-1515 (((-1173 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-308)) (|has| |#1| (-365))))) (-3863 (((-644 (-1081)) $) NIL)) (-1385 (((-1175) $) 11)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (-2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))) (|has| |#1| (-558))))) (-3991 (($ $) NIL (-2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))) (|has| |#1| (-558))))) (-2388 (((-112) $) NIL (-2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))) (|has| |#1| (-558))))) (-2587 (($ $ (-566)) NIL) (($ $ (-566) (-566)) 75)) (-2775 (((-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))) $) NIL)) (-2268 (((-1173 |#1| |#2| |#3|) $) 42)) (-2783 (((-3 (-1173 |#1| |#2| |#3|) "failed") $) 32)) (-3916 (((-1173 |#1| |#2| |#3|) $) 33)) (-4114 (($ $) 116 (|has| |#1| (-38 (-409 (-566)))))) (-2109 (($ $) 92 (|has| |#1| (-38 (-409 (-566)))))) (-4175 (((-3 $ "failed") $ $) NIL)) (-1477 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))))) (-1550 (($ $) NIL (|has| |#1| (-365)))) (-3184 (((-420 $) $) NIL (|has| |#1| (-365)))) (-3731 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3717 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))))) (-2837 (((-112) $ $) NIL (|has| |#1| (-365)))) (-2240 (($ $) 112 (|has| |#1| (-38 (-409 (-566)))))) (-2085 (($ $) 88 (|has| |#1| (-38 (-409 (-566)))))) (-4364 (((-566) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))))) (-2052 (($ (-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|)))) NIL)) (-4134 (($ $) 120 (|has| |#1| (-38 (-409 (-566)))))) (-2129 (($ $) 96 (|has| |#1| (-38 (-409 (-566)))))) (-3012 (($) NIL T CONST)) (-4307 (((-3 (-1173 |#1| |#2| |#3|) "failed") $) 34) (((-3 (-1175) "failed") $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-1038 (-1175))) (|has| |#1| (-365)))) (((-3 (-409 (-566)) "failed") $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-1038 (-566))) (|has| |#1| (-365)))) (((-3 (-566) "failed") $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-1038 (-566))) (|has| |#1| (-365))))) (-4205 (((-1173 |#1| |#2| |#3|) $) 140) (((-1175) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-1038 (-1175))) (|has| |#1| (-365)))) (((-409 (-566)) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-1038 (-566))) (|has| |#1| (-365)))) (((-566) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-1038 (-566))) (|has| |#1| (-365))))) (-3569 (($ $) 37) (($ (-566) $) 38)) (-2946 (($ $ $) NIL (|has| |#1| (-365)))) (-1786 (($ $) NIL)) (-3577 (((-689 (-1173 |#1| |#2| |#3|)) (-689 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -4227 (-689 (-1173 |#1| |#2| |#3|))) (|:| |vec| (-1264 (-1173 |#1| |#2| |#3|)))) (-689 $) (-1264 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-639 (-566))) (|has| |#1| (-365)))) (((-689 (-566)) (-689 $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-639 (-566))) (|has| |#1| (-365))))) (-1878 (((-3 $ "failed") $) 54)) (-3977 (((-409 (-952 |#1|)) $ (-566)) 74 (|has| |#1| (-558))) (((-409 (-952 |#1|)) $ (-566) (-566)) 76 (|has| |#1| (-558)))) (-1552 (($) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-547)) (|has| |#1| (-365))))) (-2957 (($ $ $) NIL (|has| |#1| (-365)))) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL (|has| |#1| (-365)))) (-3268 (((-112) $) NIL (|has| |#1| (-365)))) (-1897 (((-112) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))))) (-2158 (((-112) $) 28)) (-4361 (($) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2062 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-886 (-381))) (|has| |#1| (-365)))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-886 (-566))) (|has| |#1| (-365))))) (-3254 (((-566) $) NIL) (((-566) $ (-566)) 26)) (-3934 (((-112) $) NIL)) (-1493 (($ $) NIL (|has| |#1| (-365)))) (-4326 (((-1173 |#1| |#2| |#3|) $) 44 (|has| |#1| (-365)))) (-2140 (($ $ (-566)) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4363 (((-3 $ "failed") $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-1150)) (|has| |#1| (-365))))) (-2117 (((-112) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))))) (-2955 (($ $ (-921)) NIL)) (-4042 (($ (-1 |#1| (-566)) $) NIL)) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-3264 (((-112) $) NIL)) (-3840 (($ |#1| (-566)) 19) (($ $ (-1081) (-566)) NIL) (($ $ (-644 (-1081)) (-644 (-566))) NIL)) (-2097 (($ $ $) NIL (-2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-365)))))) (-3962 (($ $ $) NIL (-2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-365)))))) (-1301 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-365)))) (-3651 (($ $) 81 (|has| |#1| (-38 (-409 (-566)))))) (-1749 (($ $) NIL)) (-1763 ((|#1| $) NIL)) (-2167 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-1678 (($ (-566) (-1173 |#1| |#2| |#3|)) 36)) (-4117 (((-1157) $) NIL)) (-1713 (($ $) NIL (|has| |#1| (-365)))) (-1941 (($ $) 79 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) NIL (-2809 (-12 (|has| |#1| (-15 -1941 (|#1| |#1| (-1175)))) (|has| |#1| (-15 -3863 ((-644 (-1175)) |#1|))) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-959)) (|has| |#1| (-1199))))) (($ $ (-1260 |#2|)) 80 (|has| |#1| (-38 (-409 (-566)))))) (-1761 (($) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-1150)) (|has| |#1| (-365))) CONST)) (-4035 (((-1119) $) NIL)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-365)))) (-2214 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2938 (($ $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-308)) (|has| |#1| (-365))))) (-3470 (((-1173 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-547)) (|has| |#1| (-365))))) (-4303 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))))) (-3240 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))))) (-3719 (((-420 $) $) NIL (|has| |#1| (-365)))) (-3148 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-365)))) (-3874 (($ $ (-566)) 158)) (-2994 (((-3 $ "failed") $ $) 55 (-2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))) (|has| |#1| (-558))))) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-2561 (($ $) 82 (|has| |#1| (-38 (-409 (-566)))))) (-2055 (((-1155 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-566))))) (($ $ (-1175) (-1173 |#1| |#2| |#3|)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-516 (-1175) (-1173 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-644 (-1175)) (-644 (-1173 |#1| |#2| |#3|))) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-516 (-1175) (-1173 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-644 (-295 (-1173 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-310 (-1173 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-295 (-1173 |#1| |#2| |#3|))) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-310 (-1173 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-310 (-1173 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-644 (-1173 |#1| |#2| |#3|)) (-644 (-1173 |#1| |#2| |#3|))) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-310 (-1173 |#1| |#2| |#3|))) (|has| |#1| (-365))))) (-3039 (((-771) $) NIL (|has| |#1| (-365)))) (-4390 ((|#1| $ (-566)) NIL) (($ $ $) 61 (|has| (-566) (-1111))) (($ $ (-1173 |#1| |#2| |#3|)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-287 (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|))) (|has| |#1| (-365))))) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL (|has| |#1| (-365)))) (-3561 (($ $ (-1 (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|))) NIL (|has| |#1| (-365))) (($ $ (-1 (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|)) (-771)) NIL (|has| |#1| (-365))) (($ $ (-1260 |#2|)) 57) (($ $ (-771)) NIL (-2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $) 56 (-2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-1175) (-771)) NIL (-2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-644 (-1175))) NIL (-2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-1175)) NIL (-2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))))) (-2023 (($ $) NIL (|has| |#1| (-365)))) (-4339 (((-1173 |#1| |#2| |#3|) $) 46 (|has| |#1| (-365)))) (-3636 (((-566) $) 43)) (-4144 (($ $) 122 (|has| |#1| (-38 (-409 (-566)))))) (-2141 (($ $) 98 (|has| |#1| (-38 (-409 (-566)))))) (-4124 (($ $) 118 (|has| |#1| (-38 (-409 (-566)))))) (-2118 (($ $) 94 (|has| |#1| (-38 (-409 (-566)))))) (-4104 (($ $) 114 (|has| |#1| (-38 (-409 (-566)))))) (-2098 (($ $) 90 (|has| |#1| (-38 (-409 (-566)))))) (-1348 (((-538) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-614 (-538))) (|has| |#1| (-365)))) (((-381) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-1022)) (|has| |#1| (-365)))) (((-225) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-1022)) (|has| |#1| (-365)))) (((-892 (-381)) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-614 (-892 (-381)))) (|has| |#1| (-365)))) (((-892 (-566)) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-614 (-892 (-566)))) (|has| |#1| (-365))))) (-1656 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| (-1173 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))))) (-2770 (($ $) NIL)) (-3783 (((-862) $) 162) (($ (-566)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1173 |#1| |#2| |#3|)) 30) (($ (-1260 |#2|)) 25) (($ (-1175)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-1038 (-1175))) (|has| |#1| (-365)))) (($ $) NIL (-2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))) (|has| |#1| (-558)))) (($ (-409 (-566))) NIL (-2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-1038 (-566))) (|has| |#1| (-365))) (|has| |#1| (-38 (-409 (-566))))))) (-2649 ((|#1| $ (-566)) 77)) (-3144 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| $ (-145)) (|has| (-1173 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-145)) (|has| |#1| (-365))) (|has| |#1| (-145))))) (-2107 (((-771)) NIL T CONST)) (-1320 ((|#1| $) 12)) (-2948 (((-1173 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-547)) (|has| |#1| (-365))))) (-3117 (((-112) $ $) NIL)) (-4177 (($ $) 128 (|has| |#1| (-38 (-409 (-566)))))) (-2180 (($ $) 104 (|has| |#1| (-38 (-409 (-566)))))) (-2695 (((-112) $ $) NIL (-2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))) (|has| |#1| (-558))))) (-4155 (($ $) 124 (|has| |#1| (-38 (-409 (-566)))))) (-2153 (($ $) 100 (|has| |#1| (-38 (-409 (-566)))))) (-4198 (($ $) 132 (|has| |#1| (-38 (-409 (-566)))))) (-2212 (($ $) 108 (|has| |#1| (-38 (-409 (-566)))))) (-3628 ((|#1| $ (-566)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-566)))) (|has| |#1| (-15 -3783 (|#1| (-1175))))))) (-2976 (($ $) 134 (|has| |#1| (-38 (-409 (-566)))))) (-2227 (($ $) 110 (|has| |#1| (-38 (-409 (-566)))))) (-4188 (($ $) 130 (|has| |#1| (-38 (-409 (-566)))))) (-2196 (($ $) 106 (|has| |#1| (-38 (-409 (-566)))))) (-4166 (($ $) 126 (|has| |#1| (-38 (-409 (-566)))))) (-2166 (($ $) 102 (|has| |#1| (-38 (-409 (-566)))))) (-2086 (($ $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))))) (-2479 (($) 21 T CONST)) (-4334 (($) 16 T CONST)) (-2875 (($ $ (-1 (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|))) NIL (|has| |#1| (-365))) (($ $ (-1 (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|)) (-771)) NIL (|has| |#1| (-365))) (($ $ (-771)) NIL (-2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $) NIL (-2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-1175) (-771)) NIL (-2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-644 (-1175))) NIL (-2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-1175)) NIL (-2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))))) (-3009 (((-112) $ $) NIL (-2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-365)))))) (-2984 (((-112) $ $) NIL (-2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-365)))))) (-2947 (((-112) $ $) NIL)) (-2995 (((-112) $ $) NIL (-2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-365)))))) (-2969 (((-112) $ $) NIL (-2809 (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-365)))))) (-3065 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) 49 (|has| |#1| (-365))) (($ (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|)) 50 (|has| |#1| (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) 23)) (** (($ $ (-921)) NIL) (($ $ (-771)) 60) (($ $ (-566)) NIL (|has| |#1| (-365))) (($ $ $) 83 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 137 (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 35) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1173 |#1| |#2| |#3|)) 48 (|has| |#1| (-365))) (($ (-1173 |#1| |#2| |#3|) $) 47 (|has| |#1| (-365))) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))))) -(((-1166 |#1| |#2| |#3|) (-13 (-1226 |#1| (-1173 |#1| |#2| |#3|)) (-10 -8 (-15 -3783 ($ (-1260 |#2|))) (-15 -3561 ($ $ (-1260 |#2|))) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -1941 ($ $ (-1260 |#2|))) |%noBranch|))) (-1049) (-1175) |#1|) (T -1166)) -((-3783 (*1 *1 *2) (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1166 *3 *4 *5)) (-4 *3 (-1049)) (-14 *5 *3))) (-3561 (*1 *1 *1 *2) (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1166 *3 *4 *5)) (-4 *3 (-1049)) (-14 *5 *3))) (-1941 (*1 *1 *1 *2) (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1166 *3 *4 *5)) (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-14 *5 *3)))) -(-13 (-1226 |#1| (-1173 |#1| |#2| |#3|)) (-10 -8 (-15 -3783 ($ (-1260 |#2|))) (-15 -3561 ($ $ (-1260 |#2|))) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -1941 ($ $ (-1260 |#2|))) |%noBranch|))) -((-2744 ((|#2| |#2| (-1091 |#2|)) 26) ((|#2| |#2| (-1175)) 28))) -(((-1167 |#1| |#2|) (-10 -7 (-15 -2744 (|#2| |#2| (-1175))) (-15 -2744 (|#2| |#2| (-1091 |#2|)))) (-13 (-558) (-1038 (-566)) (-639 (-566))) (-13 (-432 |#1|) (-160) (-27) (-1199))) (T -1167)) -((-2744 (*1 *2 *2 *3) (-12 (-5 *3 (-1091 *2)) (-4 *2 (-13 (-432 *4) (-160) (-27) (-1199))) (-4 *4 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-1167 *4 *2)))) (-2744 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-1167 *4 *2)) (-4 *2 (-13 (-432 *4) (-160) (-27) (-1199)))))) -(-10 -7 (-15 -2744 (|#2| |#2| (-1175))) (-15 -2744 (|#2| |#2| (-1091 |#2|)))) -((-2744 (((-3 (-409 (-952 |#1|)) (-317 |#1|)) (-409 (-952 |#1|)) (-1091 (-409 (-952 |#1|)))) 31) (((-409 (-952 |#1|)) (-952 |#1|) (-1091 (-952 |#1|))) 44) (((-3 (-409 (-952 |#1|)) (-317 |#1|)) (-409 (-952 |#1|)) (-1175)) 33) (((-409 (-952 |#1|)) (-952 |#1|) (-1175)) 36))) -(((-1168 |#1|) (-10 -7 (-15 -2744 ((-409 (-952 |#1|)) (-952 |#1|) (-1175))) (-15 -2744 ((-3 (-409 (-952 |#1|)) (-317 |#1|)) (-409 (-952 |#1|)) (-1175))) (-15 -2744 ((-409 (-952 |#1|)) (-952 |#1|) (-1091 (-952 |#1|)))) (-15 -2744 ((-3 (-409 (-952 |#1|)) (-317 |#1|)) (-409 (-952 |#1|)) (-1091 (-409 (-952 |#1|)))))) (-13 (-558) (-1038 (-566)))) (T -1168)) -((-2744 (*1 *2 *3 *4) (-12 (-5 *4 (-1091 (-409 (-952 *5)))) (-5 *3 (-409 (-952 *5))) (-4 *5 (-13 (-558) (-1038 (-566)))) (-5 *2 (-3 *3 (-317 *5))) (-5 *1 (-1168 *5)))) (-2744 (*1 *2 *3 *4) (-12 (-5 *4 (-1091 (-952 *5))) (-5 *3 (-952 *5)) (-4 *5 (-13 (-558) (-1038 (-566)))) (-5 *2 (-409 *3)) (-5 *1 (-1168 *5)))) (-2744 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-4 *5 (-13 (-558) (-1038 (-566)))) (-5 *2 (-3 (-409 (-952 *5)) (-317 *5))) (-5 *1 (-1168 *5)) (-5 *3 (-409 (-952 *5))))) (-2744 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-4 *5 (-13 (-558) (-1038 (-566)))) (-5 *2 (-409 (-952 *5))) (-5 *1 (-1168 *5)) (-5 *3 (-952 *5))))) -(-10 -7 (-15 -2744 ((-409 (-952 |#1|)) (-952 |#1|) (-1175))) (-15 -2744 ((-3 (-409 (-952 |#1|)) (-317 |#1|)) (-409 (-952 |#1|)) (-1175))) (-15 -2744 ((-409 (-952 |#1|)) (-952 |#1|) (-1091 (-952 |#1|)))) (-15 -2744 ((-3 (-409 (-952 |#1|)) (-317 |#1|)) (-409 (-952 |#1|)) (-1091 (-409 (-952 |#1|)))))) -((-1301 (((-1171 |#2|) (-1 |#2| |#1|) (-1171 |#1|)) 13))) -(((-1169 |#1| |#2|) (-10 -7 (-15 -1301 ((-1171 |#2|) (-1 |#2| |#1|) (-1171 |#1|)))) (-1049) (-1049)) (T -1169)) -((-1301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1171 *5)) (-4 *5 (-1049)) (-4 *6 (-1049)) (-5 *2 (-1171 *6)) (-5 *1 (-1169 *5 *6))))) -(-10 -7 (-15 -1301 ((-1171 |#2|) (-1 |#2| |#1|) (-1171 |#1|)))) -((-3184 (((-420 (-1171 (-409 |#4|))) (-1171 (-409 |#4|))) 51)) (-3719 (((-420 (-1171 (-409 |#4|))) (-1171 (-409 |#4|))) 52))) -(((-1170 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3719 ((-420 (-1171 (-409 |#4|))) (-1171 (-409 |#4|)))) (-15 -3184 ((-420 (-1171 (-409 |#4|))) (-1171 (-409 |#4|))))) (-793) (-850) (-454) (-949 |#3| |#1| |#2|)) (T -1170)) -((-3184 (*1 *2 *3) (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-454)) (-4 *7 (-949 *6 *4 *5)) (-5 *2 (-420 (-1171 (-409 *7)))) (-5 *1 (-1170 *4 *5 *6 *7)) (-5 *3 (-1171 (-409 *7))))) (-3719 (*1 *2 *3) (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-454)) (-4 *7 (-949 *6 *4 *5)) (-5 *2 (-420 (-1171 (-409 *7)))) (-5 *1 (-1170 *4 *5 *6 *7)) (-5 *3 (-1171 (-409 *7)))))) -(-10 -7 (-15 -3719 ((-420 (-1171 (-409 |#4|))) (-1171 (-409 |#4|)))) (-15 -3184 ((-420 (-1171 (-409 |#4|))) (-1171 (-409 |#4|))))) -((-3007 (((-112) $ $) 171)) (-1788 (((-112) $) 43)) (-2293 (((-1264 |#1|) $ (-771)) NIL)) (-3863 (((-644 (-1081)) $) NIL)) (-3841 (($ (-1171 |#1|)) NIL)) (-3683 (((-1171 $) $ (-1081)) 82) (((-1171 |#1|) $) 71)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-3991 (($ $) 164 (|has| |#1| (-558)))) (-2388 (((-112) $) NIL (|has| |#1| (-558)))) (-3367 (((-771) $) NIL) (((-771) $ (-644 (-1081))) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $ $) 158 (|has| |#1| (-558)))) (-1477 (((-420 (-1171 $)) (-1171 $)) 95 (|has| |#1| (-909)))) (-1550 (($ $) NIL (|has| |#1| (-454)))) (-3184 (((-420 $) $) NIL (|has| |#1| (-454)))) (-3717 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) 115 (|has| |#1| (-909)))) (-2837 (((-112) $ $) NIL (|has| |#1| (-365)))) (-2838 (($ $ (-771)) 61)) (-3827 (($ $ (-771)) 63)) (-1454 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-454)))) (-3012 (($) NIL T CONST)) (-4307 (((-3 |#1| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-1081) "failed") $) NIL)) (-4205 ((|#1| $) NIL) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-1081) $) NIL)) (-2738 (($ $ $ (-1081)) NIL (|has| |#1| (-172))) ((|#1| $ $) 160 (|has| |#1| (-172)))) (-2946 (($ $ $) NIL (|has| |#1| (-365)))) (-1786 (($ $) 80)) (-3577 (((-689 (-566)) (-689 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -4227 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) NIL) (((-689 |#1|) (-689 $)) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-2957 (($ $ $) NIL (|has| |#1| (-365)))) (-3672 (($ $ $) 131)) (-1324 (($ $ $) NIL (|has| |#1| (-558)))) (-1960 (((-2 (|:| -1364 |#1|) (|:| -2275 $) (|:| -2513 $)) $ $) NIL (|has| |#1| (-558)))) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL (|has| |#1| (-365)))) (-4075 (($ $) 165 (|has| |#1| (-454))) (($ $ (-1081)) NIL (|has| |#1| (-454)))) (-1774 (((-644 $) $) NIL)) (-3268 (((-112) $) NIL (|has| |#1| (-909)))) (-3635 (($ $ |#1| (-771) $) 69)) (-2062 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| (-1081) (-886 (-381))) (|has| |#1| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| (-1081) (-886 (-566))) (|has| |#1| (-886 (-566)))))) (-3416 (((-862) $ (-862)) 148)) (-3254 (((-771) $ $) NIL (|has| |#1| (-558)))) (-3934 (((-112) $) 48)) (-2614 (((-771) $) NIL)) (-4363 (((-3 $ "failed") $) NIL (|has| |#1| (-1150)))) (-3851 (($ (-1171 |#1|) (-1081)) 73) (($ (-1171 $) (-1081)) 89)) (-2955 (($ $ (-771)) 51)) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-2288 (((-644 $) $) NIL)) (-3264 (((-112) $) NIL)) (-3840 (($ |#1| (-771)) 87) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL)) (-2044 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $ (-1081)) NIL) (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) 153)) (-3760 (((-771) $) NIL) (((-771) $ (-1081)) NIL) (((-644 (-771)) $ (-644 (-1081))) NIL)) (-4301 (($ (-1 (-771) (-771)) $) NIL)) (-1301 (($ (-1 |#1| |#1|) $) NIL)) (-1988 (((-1171 |#1|) $) NIL)) (-3169 (((-3 (-1081) "failed") $) NIL)) (-1749 (($ $) NIL)) (-1763 ((|#1| $) 76)) (-2167 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-4117 (((-1157) $) NIL)) (-2764 (((-2 (|:| -2275 $) (|:| -2513 $)) $ (-771)) 60)) (-3714 (((-3 (-644 $) "failed") $) NIL)) (-2353 (((-3 (-644 $) "failed") $) NIL)) (-1518 (((-3 (-2 (|:| |var| (-1081)) (|:| -2852 (-771))) "failed") $) NIL)) (-1941 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1761 (($) NIL (|has| |#1| (-1150)) CONST)) (-4035 (((-1119) $) NIL)) (-1723 (((-112) $) 50)) (-1736 ((|#1| $) NIL)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) 103 (|has| |#1| (-454)))) (-2214 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) 167 (|has| |#1| (-454)))) (-2872 (($ $ (-771) |#1| $) 123)) (-4303 (((-420 (-1171 $)) (-1171 $)) 101 (|has| |#1| (-909)))) (-3240 (((-420 (-1171 $)) (-1171 $)) 100 (|has| |#1| (-909)))) (-3719 (((-420 $) $) 108 (|has| |#1| (-909)))) (-3148 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-365)))) (-2994 (((-3 $ "failed") $ |#1|) 163 (|has| |#1| (-558))) (((-3 $ "failed") $ $) 124 (|has| |#1| (-558)))) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-2055 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-1081) |#1|) NIL) (($ $ (-644 (-1081)) (-644 |#1|)) NIL) (($ $ (-1081) $) NIL) (($ $ (-644 (-1081)) (-644 $)) NIL)) (-3039 (((-771) $) NIL (|has| |#1| (-365)))) (-4390 ((|#1| $ |#1|) 150) (($ $ $) 151) (((-409 $) (-409 $) (-409 $)) NIL (|has| |#1| (-558))) ((|#1| (-409 $) |#1|) NIL (|has| |#1| (-365))) (((-409 $) $ (-409 $)) NIL (|has| |#1| (-558)))) (-1313 (((-3 $ "failed") $ (-771)) 54)) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) 172 (|has| |#1| (-365)))) (-3652 (($ $ (-1081)) NIL (|has| |#1| (-172))) ((|#1| $) 156 (|has| |#1| (-172)))) (-3561 (($ $ (-1081)) NIL) (($ $ (-644 (-1081))) NIL) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL) (($ $ (-771)) NIL) (($ $) NIL) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3636 (((-771) $) 78) (((-771) $ (-1081)) NIL) (((-644 (-771)) $ (-644 (-1081))) NIL)) (-1348 (((-892 (-381)) $) NIL (-12 (|has| (-1081) (-614 (-892 (-381)))) (|has| |#1| (-614 (-892 (-381)))))) (((-892 (-566)) $) NIL (-12 (|has| (-1081) (-614 (-892 (-566)))) (|has| |#1| (-614 (-892 (-566)))))) (((-538) $) NIL (-12 (|has| (-1081) (-614 (-538))) (|has| |#1| (-614 (-538)))))) (-2483 ((|#1| $) 162 (|has| |#1| (-454))) (($ $ (-1081)) NIL (|has| |#1| (-454)))) (-1656 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-909))))) (-4150 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558))) (((-3 (-409 $) "failed") (-409 $) $) NIL (|has| |#1| (-558)))) (-3783 (((-862) $) 149) (($ (-566)) NIL) (($ |#1|) 77) (($ (-1081)) NIL) (($ (-409 (-566))) NIL (-2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566)))))) (($ $) NIL (|has| |#1| (-558)))) (-4170 (((-644 |#1|) $) NIL)) (-2649 ((|#1| $ (-771)) NIL) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL)) (-3144 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| $ (-145)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-2107 (((-771)) NIL T CONST)) (-3362 (($ $ $ (-771)) 41 (|has| |#1| (-172)))) (-3117 (((-112) $ $) NIL)) (-2695 (((-112) $ $) NIL (|has| |#1| (-558)))) (-2479 (($) 17 T CONST)) (-4334 (($) 19 T CONST)) (-2875 (($ $ (-1081)) NIL) (($ $ (-644 (-1081))) NIL) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL) (($ $ (-771)) NIL) (($ $) NIL) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2947 (((-112) $ $) 120)) (-3065 (($ $ |#1|) 173 (|has| |#1| (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) 90)) (** (($ $ (-921)) 14) (($ $ (-771)) 12)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 39) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) 129) (($ $ |#1|) NIL))) -(((-1171 |#1|) (-13 (-1240 |#1|) (-10 -8 (-15 -3416 ((-862) $ (-862))) (-15 -2872 ($ $ (-771) |#1| $)))) (-1049)) (T -1171)) -((-3416 (*1 *2 *1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-1171 *3)) (-4 *3 (-1049)))) (-2872 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-771)) (-5 *1 (-1171 *3)) (-4 *3 (-1049))))) -(-13 (-1240 |#1|) (-10 -8 (-15 -3416 ((-862) $ (-862))) (-15 -2872 ($ $ (-771) |#1| $)))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-3863 (((-644 (-1081)) $) NIL)) (-1385 (((-1175) $) 11)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-3991 (($ $) NIL (|has| |#1| (-558)))) (-2388 (((-112) $) NIL (|has| |#1| (-558)))) (-2587 (($ $ (-409 (-566))) NIL) (($ $ (-409 (-566)) (-409 (-566))) NIL)) (-2775 (((-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#1|))) $) NIL)) (-4114 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2109 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4175 (((-3 $ "failed") $ $) NIL)) (-1550 (($ $) NIL (|has| |#1| (-365)))) (-3184 (((-420 $) $) NIL (|has| |#1| (-365)))) (-3731 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2837 (((-112) $ $) NIL (|has| |#1| (-365)))) (-2240 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2085 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2052 (($ (-771) (-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#1|)))) NIL)) (-4134 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2129 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3012 (($) NIL T CONST)) (-4307 (((-3 (-1166 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1173 |#1| |#2| |#3|) "failed") $) 36)) (-4205 (((-1166 |#1| |#2| |#3|) $) NIL) (((-1173 |#1| |#2| |#3|) $) NIL)) (-2946 (($ $ $) NIL (|has| |#1| (-365)))) (-1786 (($ $) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-2290 (((-409 (-566)) $) 59)) (-2957 (($ $ $) NIL (|has| |#1| (-365)))) (-1690 (($ (-409 (-566)) (-1166 |#1| |#2| |#3|)) NIL)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL (|has| |#1| (-365)))) (-3268 (((-112) $) NIL (|has| |#1| (-365)))) (-2158 (((-112) $) NIL)) (-4361 (($) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3254 (((-409 (-566)) $) NIL) (((-409 (-566)) $ (-409 (-566))) NIL)) (-3934 (((-112) $) NIL)) (-2140 (($ $ (-566)) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2955 (($ $ (-921)) NIL) (($ $ (-409 (-566))) NIL)) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-3264 (((-112) $) NIL)) (-3840 (($ |#1| (-409 (-566))) 20) (($ $ (-1081) (-409 (-566))) NIL) (($ $ (-644 (-1081)) (-644 (-409 (-566)))) NIL)) (-1301 (($ (-1 |#1| |#1|) $) NIL)) (-3651 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1749 (($ $) NIL)) (-1763 ((|#1| $) NIL)) (-2167 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-1378 (((-1166 |#1| |#2| |#3|) $) 41)) (-2087 (((-3 (-1166 |#1| |#2| |#3|) "failed") $) NIL)) (-1678 (((-1166 |#1| |#2| |#3|) $) NIL)) (-4117 (((-1157) $) NIL)) (-1713 (($ $) NIL (|has| |#1| (-365)))) (-1941 (($ $) 39 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) NIL (-2809 (-12 (|has| |#1| (-15 -1941 (|#1| |#1| (-1175)))) (|has| |#1| (-15 -3863 ((-644 (-1175)) |#1|))) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-959)) (|has| |#1| (-1199))))) (($ $ (-1260 |#2|)) 40 (|has| |#1| (-38 (-409 (-566)))))) (-4035 (((-1119) $) NIL)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-365)))) (-2214 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3719 (((-420 $) $) NIL (|has| |#1| (-365)))) (-3148 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-365)))) (-3874 (($ $ (-409 (-566))) NIL)) (-2994 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-2561 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2055 (((-1155 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-409 (-566))))))) (-3039 (((-771) $) NIL (|has| |#1| (-365)))) (-4390 ((|#1| $ (-409 (-566))) NIL) (($ $ $) NIL (|has| (-409 (-566)) (-1111)))) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL (|has| |#1| (-365)))) (-3561 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $ (-1260 |#2|)) 38)) (-3636 (((-409 (-566)) $) NIL)) (-4144 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2141 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4124 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2118 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4104 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2098 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2770 (($ $) NIL)) (-3783 (((-862) $) 62) (($ (-566)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1166 |#1| |#2| |#3|)) 30) (($ (-1173 |#1| |#2| |#3|)) 31) (($ (-1260 |#2|)) 26) (($ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $) NIL (|has| |#1| (-558)))) (-2649 ((|#1| $ (-409 (-566))) NIL)) (-3144 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2107 (((-771)) NIL T CONST)) (-1320 ((|#1| $) 12)) (-3117 (((-112) $ $) NIL)) (-4177 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2180 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2695 (((-112) $ $) NIL (|has| |#1| (-558)))) (-4155 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2153 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4198 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2212 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3628 ((|#1| $ (-409 (-566))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-409 (-566))))) (|has| |#1| (-15 -3783 (|#1| (-1175))))))) (-2976 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2227 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4188 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2196 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4166 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2166 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2479 (($) 22 T CONST)) (-4334 (($) 16 T CONST)) (-2875 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (-2947 (((-112) $ $) NIL)) (-3065 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) 24)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))))) -(((-1172 |#1| |#2| |#3|) (-13 (-1247 |#1| (-1166 |#1| |#2| |#3|)) (-1038 (-1173 |#1| |#2| |#3|)) (-616 (-1260 |#2|)) (-10 -8 (-15 -3561 ($ $ (-1260 |#2|))) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -1941 ($ $ (-1260 |#2|))) |%noBranch|))) (-1049) (-1175) |#1|) (T -1172)) -((-3561 (*1 *1 *1 *2) (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1172 *3 *4 *5)) (-4 *3 (-1049)) (-14 *5 *3))) (-1941 (*1 *1 *1 *2) (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1172 *3 *4 *5)) (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-14 *5 *3)))) -(-13 (-1247 |#1| (-1166 |#1| |#2| |#3|)) (-1038 (-1173 |#1| |#2| |#3|)) (-616 (-1260 |#2|)) (-10 -8 (-15 -3561 ($ $ (-1260 |#2|))) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -1941 ($ $ (-1260 |#2|))) |%noBranch|))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) 131)) (-3863 (((-644 (-1081)) $) NIL)) (-1385 (((-1175) $) 121)) (-3334 (((-1237 |#2| |#1|) $ (-771)) 69)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-3991 (($ $) NIL (|has| |#1| (-558)))) (-2388 (((-112) $) NIL (|has| |#1| (-558)))) (-2587 (($ $ (-771)) 85) (($ $ (-771) (-771)) 82)) (-2775 (((-1155 (-2 (|:| |k| (-771)) (|:| |c| |#1|))) $) 107)) (-4114 (($ $) 175 (|has| |#1| (-38 (-409 (-566)))))) (-2109 (($ $) 151 (|has| |#1| (-38 (-409 (-566)))))) (-4175 (((-3 $ "failed") $ $) NIL)) (-3731 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2240 (($ $) 171 (|has| |#1| (-38 (-409 (-566)))))) (-2085 (($ $) 147 (|has| |#1| (-38 (-409 (-566)))))) (-2052 (($ (-1155 (-2 (|:| |k| (-771)) (|:| |c| |#1|)))) 120) (($ (-1155 |#1|)) 115)) (-4134 (($ $) 179 (|has| |#1| (-38 (-409 (-566)))))) (-2129 (($ $) 155 (|has| |#1| (-38 (-409 (-566)))))) (-3012 (($) NIL T CONST)) (-1786 (($ $) NIL)) (-1878 (((-3 $ "failed") $) 25)) (-1703 (($ $) 28)) (-4386 (((-952 |#1|) $ (-771)) 81) (((-952 |#1|) $ (-771) (-771)) 83)) (-2158 (((-112) $) 126)) (-4361 (($) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3254 (((-771) $) 128) (((-771) $ (-771)) 130)) (-3934 (((-112) $) NIL)) (-2140 (($ $ (-566)) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2955 (($ $ (-921)) NIL)) (-4042 (($ (-1 |#1| (-566)) $) NIL)) (-3264 (((-112) $) NIL)) (-3840 (($ |#1| (-771)) 13) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL)) (-1301 (($ (-1 |#1| |#1|) $) NIL)) (-3651 (($ $) 137 (|has| |#1| (-38 (-409 (-566)))))) (-1749 (($ $) NIL)) (-1763 ((|#1| $) NIL)) (-4117 (((-1157) $) NIL)) (-1941 (($ $) 135 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) NIL (-2809 (-12 (|has| |#1| (-15 -1941 (|#1| |#1| (-1175)))) (|has| |#1| (-15 -3863 ((-644 (-1175)) |#1|))) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-959)) (|has| |#1| (-1199))))) (($ $ (-1260 |#2|)) 136 (|has| |#1| (-38 (-409 (-566)))))) (-4035 (((-1119) $) NIL)) (-3874 (($ $ (-771)) 15)) (-2994 (((-3 $ "failed") $ $) 26 (|has| |#1| (-558)))) (-2561 (($ $) 139 (|has| |#1| (-38 (-409 (-566)))))) (-2055 (((-1155 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-771)))))) (-4390 ((|#1| $ (-771)) 124) (($ $ $) 134 (|has| (-771) (-1111)))) (-3561 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-771) |#1|)))) (($ $) 29 (|has| |#1| (-15 * (|#1| (-771) |#1|)))) (($ $ (-1260 |#2|)) 31)) (-3636 (((-771) $) NIL)) (-4144 (($ $) 181 (|has| |#1| (-38 (-409 (-566)))))) (-2141 (($ $) 157 (|has| |#1| (-38 (-409 (-566)))))) (-4124 (($ $) 177 (|has| |#1| (-38 (-409 (-566)))))) (-2118 (($ $) 153 (|has| |#1| (-38 (-409 (-566)))))) (-4104 (($ $) 173 (|has| |#1| (-38 (-409 (-566)))))) (-2098 (($ $) 149 (|has| |#1| (-38 (-409 (-566)))))) (-2770 (($ $) NIL)) (-3783 (((-862) $) 208) (($ (-566)) NIL) (($ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $) NIL (|has| |#1| (-558))) (($ |#1|) 132 (|has| |#1| (-172))) (($ (-1237 |#2| |#1|)) 55) (($ (-1260 |#2|)) 36)) (-4170 (((-1155 |#1|) $) 103)) (-2649 ((|#1| $ (-771)) 123)) (-3144 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2107 (((-771)) NIL T CONST)) (-1320 ((|#1| $) 58)) (-3117 (((-112) $ $) NIL)) (-4177 (($ $) 187 (|has| |#1| (-38 (-409 (-566)))))) (-2180 (($ $) 163 (|has| |#1| (-38 (-409 (-566)))))) (-2695 (((-112) $ $) NIL (|has| |#1| (-558)))) (-4155 (($ $) 183 (|has| |#1| (-38 (-409 (-566)))))) (-2153 (($ $) 159 (|has| |#1| (-38 (-409 (-566)))))) (-4198 (($ $) 191 (|has| |#1| (-38 (-409 (-566)))))) (-2212 (($ $) 167 (|has| |#1| (-38 (-409 (-566)))))) (-3628 ((|#1| $ (-771)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-771)))) (|has| |#1| (-15 -3783 (|#1| (-1175))))))) (-2976 (($ $) 193 (|has| |#1| (-38 (-409 (-566)))))) (-2227 (($ $) 169 (|has| |#1| (-38 (-409 (-566)))))) (-4188 (($ $) 189 (|has| |#1| (-38 (-409 (-566)))))) (-2196 (($ $) 165 (|has| |#1| (-38 (-409 (-566)))))) (-4166 (($ $) 185 (|has| |#1| (-38 (-409 (-566)))))) (-2166 (($ $) 161 (|has| |#1| (-38 (-409 (-566)))))) (-2479 (($) 17 T CONST)) (-4334 (($) 20 T CONST)) (-2875 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-771) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-771) |#1|))))) (-2947 (((-112) $ $) NIL)) (-3065 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3053 (($ $) NIL) (($ $ $) 200)) (-3041 (($ $ $) 35)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ |#1|) 205 (|has| |#1| (-365))) (($ $ $) 140 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 143 (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 138) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))))) -(((-1173 |#1| |#2| |#3|) (-13 (-1255 |#1|) (-10 -8 (-15 -3783 ($ (-1237 |#2| |#1|))) (-15 -3334 ((-1237 |#2| |#1|) $ (-771))) (-15 -3783 ($ (-1260 |#2|))) (-15 -3561 ($ $ (-1260 |#2|))) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -1941 ($ $ (-1260 |#2|))) |%noBranch|))) (-1049) (-1175) |#1|) (T -1173)) -((-3783 (*1 *1 *2) (-12 (-5 *2 (-1237 *4 *3)) (-4 *3 (-1049)) (-14 *4 (-1175)) (-14 *5 *3) (-5 *1 (-1173 *3 *4 *5)))) (-3334 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1237 *5 *4)) (-5 *1 (-1173 *4 *5 *6)) (-4 *4 (-1049)) (-14 *5 (-1175)) (-14 *6 *4))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1173 *3 *4 *5)) (-4 *3 (-1049)) (-14 *5 *3))) (-3561 (*1 *1 *1 *2) (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1173 *3 *4 *5)) (-4 *3 (-1049)) (-14 *5 *3))) (-1941 (*1 *1 *1 *2) (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1173 *3 *4 *5)) (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-14 *5 *3)))) -(-13 (-1255 |#1|) (-10 -8 (-15 -3783 ($ (-1237 |#2| |#1|))) (-15 -3334 ((-1237 |#2| |#1|) $ (-771))) (-15 -3783 ($ (-1260 |#2|))) (-15 -3561 ($ $ (-1260 |#2|))) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -1941 ($ $ (-1260 |#2|))) |%noBranch|))) -((-3783 (((-862) $) 33) (($ (-1175)) 35)) (-2809 (($ (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 46)) (-2799 (($ (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 39) (($ $) 40)) (-3114 (($ (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 41)) (-3103 (($ (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 43)) (-3091 (($ (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 42)) (-3079 (($ (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 44)) (-2071 (($ (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 47)) (-12 (($ (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 45))) -(((-1174) (-13 (-613 (-862)) (-10 -8 (-15 -3783 ($ (-1175))) (-15 -3114 ($ (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -3091 ($ (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -3103 ($ (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -3079 ($ (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2809 ($ (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2071 ($ (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2799 ($ (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2799 ($ $))))) (T -1174)) -((-3783 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1174)))) (-3114 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174)))) (-5 *1 (-1174)))) (-3091 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174)))) (-5 *1 (-1174)))) (-3103 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174)))) (-5 *1 (-1174)))) (-3079 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174)))) (-5 *1 (-1174)))) (-2809 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174)))) (-5 *1 (-1174)))) (-2071 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174)))) (-5 *1 (-1174)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174)))) (-5 *1 (-1174)))) (-2799 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174)))) (-5 *1 (-1174)))) (-2799 (*1 *1 *1) (-5 *1 (-1174)))) -(-13 (-613 (-862)) (-10 -8 (-15 -3783 ($ (-1175))) (-15 -3114 ($ (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -3091 ($ (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -3103 ($ (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -3079 ($ (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2809 ($ (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2071 ($ (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2799 ($ (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2799 ($ $)))) -((-3007 (((-112) $ $) NIL)) (-2033 (($ $ (-644 (-862))) 64)) (-3504 (($ $ (-644 (-862))) 62)) (-4336 (((-1157) $) 103)) (-4160 (((-2 (|:| -4222 (-644 (-862))) (|:| -2660 (-644 (-862))) (|:| |presup| (-644 (-862))) (|:| -1325 (-644 (-862))) (|:| |args| (-644 (-862)))) $) 110)) (-4362 (((-112) $) 23)) (-3377 (($ $ (-644 (-644 (-862)))) 61) (($ $ (-2 (|:| -4222 (-644 (-862))) (|:| -2660 (-644 (-862))) (|:| |presup| (-644 (-862))) (|:| -1325 (-644 (-862))) (|:| |args| (-644 (-862))))) 101)) (-3012 (($) 166 T CONST)) (-3312 (((-1269)) 138)) (-2062 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 71) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 78)) (-4265 (($) 124) (($ $) 133)) (-2640 (($ $) 102)) (-2097 (($ $ $) NIL)) (-3962 (($ $ $) NIL)) (-1881 (((-644 $) $) 139)) (-4117 (((-1157) $) 116)) (-4035 (((-1119) $) NIL)) (-4390 (($ $ (-644 (-862))) 63)) (-1348 (((-538) $) 48) (((-1175) $) 49) (((-892 (-566)) $) 82) (((-892 (-381)) $) 80)) (-3783 (((-862) $) 55) (($ (-1157)) 50)) (-3117 (((-112) $ $) NIL)) (-2723 (($ $ (-644 (-862))) 65)) (-2452 (((-1157) $) 34) (((-1157) $ (-112)) 35) (((-1269) (-822) $) 36) (((-1269) (-822) $ (-112)) 37)) (-3009 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2947 (((-112) $ $) 51)) (-2995 (((-112) $ $) NIL)) (-2969 (((-112) $ $) 52))) -(((-1175) (-13 (-850) (-614 (-538)) (-828) (-614 (-1175)) (-616 (-1157)) (-614 (-892 (-566))) (-614 (-892 (-381))) (-886 (-566)) (-886 (-381)) (-10 -8 (-15 -4265 ($)) (-15 -4265 ($ $)) (-15 -3312 ((-1269))) (-15 -2640 ($ $)) (-15 -4362 ((-112) $)) (-15 -4160 ((-2 (|:| -4222 (-644 (-862))) (|:| -2660 (-644 (-862))) (|:| |presup| (-644 (-862))) (|:| -1325 (-644 (-862))) (|:| |args| (-644 (-862)))) $)) (-15 -3377 ($ $ (-644 (-644 (-862))))) (-15 -3377 ($ $ (-2 (|:| -4222 (-644 (-862))) (|:| -2660 (-644 (-862))) (|:| |presup| (-644 (-862))) (|:| -1325 (-644 (-862))) (|:| |args| (-644 (-862)))))) (-15 -3504 ($ $ (-644 (-862)))) (-15 -2033 ($ $ (-644 (-862)))) (-15 -2723 ($ $ (-644 (-862)))) (-15 -4390 ($ $ (-644 (-862)))) (-15 -4336 ((-1157) $)) (-15 -1881 ((-644 $) $)) (-15 -3012 ($) -3704)))) (T -1175)) -((-4265 (*1 *1) (-5 *1 (-1175))) (-4265 (*1 *1 *1) (-5 *1 (-1175))) (-3312 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-1175)))) (-2640 (*1 *1 *1) (-5 *1 (-1175))) (-4362 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1175)))) (-4160 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -4222 (-644 (-862))) (|:| -2660 (-644 (-862))) (|:| |presup| (-644 (-862))) (|:| -1325 (-644 (-862))) (|:| |args| (-644 (-862))))) (-5 *1 (-1175)))) (-3377 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-644 (-862)))) (-5 *1 (-1175)))) (-3377 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -4222 (-644 (-862))) (|:| -2660 (-644 (-862))) (|:| |presup| (-644 (-862))) (|:| -1325 (-644 (-862))) (|:| |args| (-644 (-862))))) (-5 *1 (-1175)))) (-3504 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-1175)))) (-2033 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-1175)))) (-2723 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-1175)))) (-4390 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-1175)))) (-4336 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1175)))) (-1881 (*1 *2 *1) (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-1175)))) (-3012 (*1 *1) (-5 *1 (-1175)))) -(-13 (-850) (-614 (-538)) (-828) (-614 (-1175)) (-616 (-1157)) (-614 (-892 (-566))) (-614 (-892 (-381))) (-886 (-566)) (-886 (-381)) (-10 -8 (-15 -4265 ($)) (-15 -4265 ($ $)) (-15 -3312 ((-1269))) (-15 -2640 ($ $)) (-15 -4362 ((-112) $)) (-15 -4160 ((-2 (|:| -4222 (-644 (-862))) (|:| -2660 (-644 (-862))) (|:| |presup| (-644 (-862))) (|:| -1325 (-644 (-862))) (|:| |args| (-644 (-862)))) $)) (-15 -3377 ($ $ (-644 (-644 (-862))))) (-15 -3377 ($ $ (-2 (|:| -4222 (-644 (-862))) (|:| -2660 (-644 (-862))) (|:| |presup| (-644 (-862))) (|:| -1325 (-644 (-862))) (|:| |args| (-644 (-862)))))) (-15 -3504 ($ $ (-644 (-862)))) (-15 -2033 ($ $ (-644 (-862)))) (-15 -2723 ($ $ (-644 (-862)))) (-15 -4390 ($ $ (-644 (-862)))) (-15 -4336 ((-1157) $)) (-15 -1881 ((-644 $) $)) (-15 -3012 ($) -3704))) -((-2929 (((-1264 |#1|) |#1| (-921)) 18) (((-1264 |#1|) (-644 |#1|)) 25))) -(((-1176 |#1|) (-10 -7 (-15 -2929 ((-1264 |#1|) (-644 |#1|))) (-15 -2929 ((-1264 |#1|) |#1| (-921)))) (-1049)) (T -1176)) -((-2929 (*1 *2 *3 *4) (-12 (-5 *4 (-921)) (-5 *2 (-1264 *3)) (-5 *1 (-1176 *3)) (-4 *3 (-1049)))) (-2929 (*1 *2 *3) (-12 (-5 *3 (-644 *4)) (-4 *4 (-1049)) (-5 *2 (-1264 *4)) (-5 *1 (-1176 *4))))) -(-10 -7 (-15 -2929 ((-1264 |#1|) (-644 |#1|))) (-15 -2929 ((-1264 |#1|) |#1| (-921)))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-3991 (($ $) NIL (|has| |#1| (-558)))) (-2388 (((-112) $) NIL (|has| |#1| (-558)))) (-4175 (((-3 $ "failed") $ $) NIL)) (-3012 (($) NIL T CONST)) (-4307 (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) NIL)) (-4205 (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) NIL)) (-1786 (($ $) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-4075 (($ $) NIL (|has| |#1| (-454)))) (-3635 (($ $ |#1| (-971) $) NIL)) (-3934 (((-112) $) 17)) (-2614 (((-771) $) NIL)) (-3264 (((-112) $) NIL)) (-3840 (($ |#1| (-971)) NIL)) (-3760 (((-971) $) NIL)) (-4301 (($ (-1 (-971) (-971)) $) NIL)) (-1301 (($ (-1 |#1| |#1|) $) NIL)) (-1749 (($ $) NIL)) (-1763 ((|#1| $) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-1723 (((-112) $) NIL)) (-1736 ((|#1| $) NIL)) (-2872 (($ $ (-971) |#1| $) NIL (-12 (|has| (-971) (-131)) (|has| |#1| (-558))))) (-2994 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558)))) (-3636 (((-971) $) NIL)) (-2483 ((|#1| $) NIL (|has| |#1| (-454)))) (-3783 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL (|has| |#1| (-558))) (($ |#1|) NIL) (($ (-409 (-566))) NIL (-2809 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))))) (-4170 (((-644 |#1|) $) NIL)) (-2649 ((|#1| $ (-971)) NIL)) (-3144 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2107 (((-771)) NIL T CONST)) (-3362 (($ $ $ (-771)) NIL (|has| |#1| (-172)))) (-3117 (((-112) $ $) NIL)) (-2695 (((-112) $ $) NIL (|has| |#1| (-558)))) (-2479 (($) 11 T CONST)) (-4334 (($) NIL T CONST)) (-2947 (((-112) $ $) NIL)) (-3065 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) 21)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 22) (($ $ |#1|) NIL) (($ |#1| $) 16) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))))) -(((-1177 |#1|) (-13 (-327 |#1| (-971)) (-10 -8 (IF (|has| |#1| (-558)) (IF (|has| (-971) (-131)) (-15 -2872 ($ $ (-971) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4412)) (-6 -4412) |%noBranch|))) (-1049)) (T -1177)) -((-2872 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-971)) (-4 *2 (-131)) (-5 *1 (-1177 *3)) (-4 *3 (-558)) (-4 *3 (-1049))))) -(-13 (-327 |#1| (-971)) (-10 -8 (IF (|has| |#1| (-558)) (IF (|has| (-971) (-131)) (-15 -2872 ($ $ (-971) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4412)) (-6 -4412) |%noBranch|))) -((-3546 (((-1179) (-1175) $) 25)) (-3720 (($) 29)) (-2057 (((-3 (|:| |fst| (-436)) (|:| -2895 "void")) (-1175) $) 22)) (-3915 (((-1269) (-1175) (-3 (|:| |fst| (-436)) (|:| -2895 "void")) $) 41) (((-1269) (-1175) (-3 (|:| |fst| (-436)) (|:| -2895 "void"))) 42) (((-1269) (-3 (|:| |fst| (-436)) (|:| -2895 "void"))) 43)) (-2474 (((-1269) (-1175)) 58)) (-1635 (((-1269) (-1175) $) 55) (((-1269) (-1175)) 56) (((-1269)) 57)) (-1699 (((-1269) (-1175)) 37)) (-2961 (((-1175)) 36)) (-1494 (($) 34)) (-2349 (((-439) (-1175) (-439) (-1175) $) 45) (((-439) (-644 (-1175)) (-439) (-1175) $) 49) (((-439) (-1175) (-439)) 46) (((-439) (-1175) (-439) (-1175)) 50)) (-3457 (((-1175)) 35)) (-3783 (((-862) $) 28)) (-3631 (((-1269)) 30) (((-1269) (-1175)) 33)) (-4041 (((-644 (-1175)) (-1175) $) 24)) (-1737 (((-1269) (-1175) (-644 (-1175)) $) 38) (((-1269) (-1175) (-644 (-1175))) 39) (((-1269) (-644 (-1175))) 40))) -(((-1178) (-13 (-613 (-862)) (-10 -8 (-15 -3720 ($)) (-15 -3631 ((-1269))) (-15 -3631 ((-1269) (-1175))) (-15 -2349 ((-439) (-1175) (-439) (-1175) $)) (-15 -2349 ((-439) (-644 (-1175)) (-439) (-1175) $)) (-15 -2349 ((-439) (-1175) (-439))) (-15 -2349 ((-439) (-1175) (-439) (-1175))) (-15 -1699 ((-1269) (-1175))) (-15 -3457 ((-1175))) (-15 -2961 ((-1175))) (-15 -1737 ((-1269) (-1175) (-644 (-1175)) $)) (-15 -1737 ((-1269) (-1175) (-644 (-1175)))) (-15 -1737 ((-1269) (-644 (-1175)))) (-15 -3915 ((-1269) (-1175) (-3 (|:| |fst| (-436)) (|:| -2895 "void")) $)) (-15 -3915 ((-1269) (-1175) (-3 (|:| |fst| (-436)) (|:| -2895 "void")))) (-15 -3915 ((-1269) (-3 (|:| |fst| (-436)) (|:| -2895 "void")))) (-15 -1635 ((-1269) (-1175) $)) (-15 -1635 ((-1269) (-1175))) (-15 -1635 ((-1269))) (-15 -2474 ((-1269) (-1175))) (-15 -1494 ($)) (-15 -2057 ((-3 (|:| |fst| (-436)) (|:| -2895 "void")) (-1175) $)) (-15 -4041 ((-644 (-1175)) (-1175) $)) (-15 -3546 ((-1179) (-1175) $))))) (T -1178)) -((-3720 (*1 *1) (-5 *1 (-1178))) (-3631 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-1178)))) (-3631 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1269)) (-5 *1 (-1178)))) (-2349 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-439)) (-5 *3 (-1175)) (-5 *1 (-1178)))) (-2349 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-439)) (-5 *3 (-644 (-1175))) (-5 *4 (-1175)) (-5 *1 (-1178)))) (-2349 (*1 *2 *3 *2) (-12 (-5 *2 (-439)) (-5 *3 (-1175)) (-5 *1 (-1178)))) (-2349 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-439)) (-5 *3 (-1175)) (-5 *1 (-1178)))) (-1699 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1269)) (-5 *1 (-1178)))) (-3457 (*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1178)))) (-2961 (*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1178)))) (-1737 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-644 (-1175))) (-5 *3 (-1175)) (-5 *2 (-1269)) (-5 *1 (-1178)))) (-1737 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-1175))) (-5 *3 (-1175)) (-5 *2 (-1269)) (-5 *1 (-1178)))) (-1737 (*1 *2 *3) (-12 (-5 *3 (-644 (-1175))) (-5 *2 (-1269)) (-5 *1 (-1178)))) (-3915 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1175)) (-5 *4 (-3 (|:| |fst| (-436)) (|:| -2895 "void"))) (-5 *2 (-1269)) (-5 *1 (-1178)))) (-3915 (*1 *2 *3 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-3 (|:| |fst| (-436)) (|:| -2895 "void"))) (-5 *2 (-1269)) (-5 *1 (-1178)))) (-3915 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-436)) (|:| -2895 "void"))) (-5 *2 (-1269)) (-5 *1 (-1178)))) (-1635 (*1 *2 *3 *1) (-12 (-5 *3 (-1175)) (-5 *2 (-1269)) (-5 *1 (-1178)))) (-1635 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1269)) (-5 *1 (-1178)))) (-1635 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-1178)))) (-2474 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1269)) (-5 *1 (-1178)))) (-1494 (*1 *1) (-5 *1 (-1178))) (-2057 (*1 *2 *3 *1) (-12 (-5 *3 (-1175)) (-5 *2 (-3 (|:| |fst| (-436)) (|:| -2895 "void"))) (-5 *1 (-1178)))) (-4041 (*1 *2 *3 *1) (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-1178)) (-5 *3 (-1175)))) (-3546 (*1 *2 *3 *1) (-12 (-5 *3 (-1175)) (-5 *2 (-1179)) (-5 *1 (-1178))))) -(-13 (-613 (-862)) (-10 -8 (-15 -3720 ($)) (-15 -3631 ((-1269))) (-15 -3631 ((-1269) (-1175))) (-15 -2349 ((-439) (-1175) (-439) (-1175) $)) (-15 -2349 ((-439) (-644 (-1175)) (-439) (-1175) $)) (-15 -2349 ((-439) (-1175) (-439))) (-15 -2349 ((-439) (-1175) (-439) (-1175))) (-15 -1699 ((-1269) (-1175))) (-15 -3457 ((-1175))) (-15 -2961 ((-1175))) (-15 -1737 ((-1269) (-1175) (-644 (-1175)) $)) (-15 -1737 ((-1269) (-1175) (-644 (-1175)))) (-15 -1737 ((-1269) (-644 (-1175)))) (-15 -3915 ((-1269) (-1175) (-3 (|:| |fst| (-436)) (|:| -2895 "void")) $)) (-15 -3915 ((-1269) (-1175) (-3 (|:| |fst| (-436)) (|:| -2895 "void")))) (-15 -3915 ((-1269) (-3 (|:| |fst| (-436)) (|:| -2895 "void")))) (-15 -1635 ((-1269) (-1175) $)) (-15 -1635 ((-1269) (-1175))) (-15 -1635 ((-1269))) (-15 -2474 ((-1269) (-1175))) (-15 -1494 ($)) (-15 -2057 ((-3 (|:| |fst| (-436)) (|:| -2895 "void")) (-1175) $)) (-15 -4041 ((-644 (-1175)) (-1175) $)) (-15 -3546 ((-1179) (-1175) $)))) -((-2779 (((-644 (-644 (-3 (|:| -2640 (-1175)) (|:| -3385 (-644 (-3 (|:| S (-1175)) (|:| P (-952 (-566))))))))) $) 66)) (-2729 (((-644 (-3 (|:| -2640 (-1175)) (|:| -3385 (-644 (-3 (|:| S (-1175)) (|:| P (-952 (-566)))))))) (-436) $) 47)) (-3394 (($ (-644 (-2 (|:| -2004 (-1175)) (|:| -3867 (-439))))) 17)) (-2474 (((-1269) $) 74)) (-3869 (((-644 (-1175)) $) 22)) (-1345 (((-1103) $) 60)) (-2690 (((-439) (-1175) $) 27)) (-3918 (((-644 (-1175)) $) 30)) (-1494 (($) 19)) (-2349 (((-439) (-644 (-1175)) (-439) $) 25) (((-439) (-1175) (-439) $) 24)) (-3783 (((-862) $) 9) (((-1187 (-1175) (-439)) $) 13))) -(((-1179) (-13 (-613 (-862)) (-10 -8 (-15 -3783 ((-1187 (-1175) (-439)) $)) (-15 -1494 ($)) (-15 -2349 ((-439) (-644 (-1175)) (-439) $)) (-15 -2349 ((-439) (-1175) (-439) $)) (-15 -2690 ((-439) (-1175) $)) (-15 -3869 ((-644 (-1175)) $)) (-15 -2729 ((-644 (-3 (|:| -2640 (-1175)) (|:| -3385 (-644 (-3 (|:| S (-1175)) (|:| P (-952 (-566)))))))) (-436) $)) (-15 -3918 ((-644 (-1175)) $)) (-15 -2779 ((-644 (-644 (-3 (|:| -2640 (-1175)) (|:| -3385 (-644 (-3 (|:| S (-1175)) (|:| P (-952 (-566))))))))) $)) (-15 -1345 ((-1103) $)) (-15 -2474 ((-1269) $)) (-15 -3394 ($ (-644 (-2 (|:| -2004 (-1175)) (|:| -3867 (-439))))))))) (T -1179)) -((-3783 (*1 *2 *1) (-12 (-5 *2 (-1187 (-1175) (-439))) (-5 *1 (-1179)))) (-1494 (*1 *1) (-5 *1 (-1179))) (-2349 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-439)) (-5 *3 (-644 (-1175))) (-5 *1 (-1179)))) (-2349 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-439)) (-5 *3 (-1175)) (-5 *1 (-1179)))) (-2690 (*1 *2 *3 *1) (-12 (-5 *3 (-1175)) (-5 *2 (-439)) (-5 *1 (-1179)))) (-3869 (*1 *2 *1) (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-1179)))) (-2729 (*1 *2 *3 *1) (-12 (-5 *3 (-436)) (-5 *2 (-644 (-3 (|:| -2640 (-1175)) (|:| -3385 (-644 (-3 (|:| S (-1175)) (|:| P (-952 (-566))))))))) (-5 *1 (-1179)))) (-3918 (*1 *2 *1) (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-1179)))) (-2779 (*1 *2 *1) (-12 (-5 *2 (-644 (-644 (-3 (|:| -2640 (-1175)) (|:| -3385 (-644 (-3 (|:| S (-1175)) (|:| P (-952 (-566)))))))))) (-5 *1 (-1179)))) (-1345 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-1179)))) (-2474 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-1179)))) (-3394 (*1 *1 *2) (-12 (-5 *2 (-644 (-2 (|:| -2004 (-1175)) (|:| -3867 (-439))))) (-5 *1 (-1179))))) -(-13 (-613 (-862)) (-10 -8 (-15 -3783 ((-1187 (-1175) (-439)) $)) (-15 -1494 ($)) (-15 -2349 ((-439) (-644 (-1175)) (-439) $)) (-15 -2349 ((-439) (-1175) (-439) $)) (-15 -2690 ((-439) (-1175) $)) (-15 -3869 ((-644 (-1175)) $)) (-15 -2729 ((-644 (-3 (|:| -2640 (-1175)) (|:| -3385 (-644 (-3 (|:| S (-1175)) (|:| P (-952 (-566)))))))) (-436) $)) (-15 -3918 ((-644 (-1175)) $)) (-15 -2779 ((-644 (-644 (-3 (|:| -2640 (-1175)) (|:| -3385 (-644 (-3 (|:| S (-1175)) (|:| P (-952 (-566))))))))) $)) (-15 -1345 ((-1103) $)) (-15 -2474 ((-1269) $)) (-15 -3394 ($ (-644 (-2 (|:| -2004 (-1175)) (|:| -3867 (-439)))))))) -((-3007 (((-112) $ $) NIL)) (-4307 (((-3 (-566) "failed") $) 29) (((-3 (-225) "failed") $) 35) (((-3 (-508) "failed") $) 43) (((-3 (-1157) "failed") $) 47)) (-4205 (((-566) $) 30) (((-225) $) 36) (((-508) $) 40) (((-1157) $) 48)) (-3519 (((-112) $) 53)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-1648 (((-3 (-566) (-225) (-508) (-1157) $) $) 55)) (-1707 (((-644 $) $) 57)) (-1348 (((-1103) $) 24) (($ (-1103)) 25)) (-2569 (((-112) $) 56)) (-3783 (((-862) $) 23) (($ (-566)) 26) (($ (-225)) 32) (($ (-508)) 38) (($ (-1157)) 44) (((-538) $) 59) (((-566) $) 31) (((-225) $) 37) (((-508) $) 41) (((-1157) $) 49)) (-2467 (((-112) $ (|[\|\|]| (-566))) 10) (((-112) $ (|[\|\|]| (-225))) 13) (((-112) $ (|[\|\|]| (-508))) 19) (((-112) $ (|[\|\|]| (-1157))) 16)) (-2431 (($ (-508) (-644 $)) 51) (($ $ (-644 $)) 52)) (-3117 (((-112) $ $) NIL)) (-3968 (((-566) $) 27) (((-225) $) 33) (((-508) $) 39) (((-1157) $) 45)) (-2947 (((-112) $ $) 7))) -(((-1180) (-13 (-1259) (-1099) (-1038 (-566)) (-1038 (-225)) (-1038 (-508)) (-1038 (-1157)) (-613 (-538)) (-10 -8 (-15 -1348 ((-1103) $)) (-15 -1348 ($ (-1103))) (-15 -3783 ((-566) $)) (-15 -3968 ((-566) $)) (-15 -3783 ((-225) $)) (-15 -3968 ((-225) $)) (-15 -3783 ((-508) $)) (-15 -3968 ((-508) $)) (-15 -3783 ((-1157) $)) (-15 -3968 ((-1157) $)) (-15 -2431 ($ (-508) (-644 $))) (-15 -2431 ($ $ (-644 $))) (-15 -3519 ((-112) $)) (-15 -1648 ((-3 (-566) (-225) (-508) (-1157) $) $)) (-15 -1707 ((-644 $) $)) (-15 -2569 ((-112) $)) (-15 -2467 ((-112) $ (|[\|\|]| (-566)))) (-15 -2467 ((-112) $ (|[\|\|]| (-225)))) (-15 -2467 ((-112) $ (|[\|\|]| (-508)))) (-15 -2467 ((-112) $ (|[\|\|]| (-1157))))))) (T -1180)) -((-1348 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-1180)))) (-1348 (*1 *1 *2) (-12 (-5 *2 (-1103)) (-5 *1 (-1180)))) (-3783 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-1180)))) (-3968 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-1180)))) (-3783 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1180)))) (-3968 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1180)))) (-3783 (*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-1180)))) (-3968 (*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-1180)))) (-3783 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1180)))) (-3968 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1180)))) (-2431 (*1 *1 *2 *3) (-12 (-5 *2 (-508)) (-5 *3 (-644 (-1180))) (-5 *1 (-1180)))) (-2431 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-1180))) (-5 *1 (-1180)))) (-3519 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1180)))) (-1648 (*1 *2 *1) (-12 (-5 *2 (-3 (-566) (-225) (-508) (-1157) (-1180))) (-5 *1 (-1180)))) (-1707 (*1 *2 *1) (-12 (-5 *2 (-644 (-1180))) (-5 *1 (-1180)))) (-2569 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1180)))) (-2467 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-566))) (-5 *2 (-112)) (-5 *1 (-1180)))) (-2467 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-225))) (-5 *2 (-112)) (-5 *1 (-1180)))) (-2467 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-508))) (-5 *2 (-112)) (-5 *1 (-1180)))) (-2467 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1157))) (-5 *2 (-112)) (-5 *1 (-1180))))) -(-13 (-1259) (-1099) (-1038 (-566)) (-1038 (-225)) (-1038 (-508)) (-1038 (-1157)) (-613 (-538)) (-10 -8 (-15 -1348 ((-1103) $)) (-15 -1348 ($ (-1103))) (-15 -3783 ((-566) $)) (-15 -3968 ((-566) $)) (-15 -3783 ((-225) $)) (-15 -3968 ((-225) $)) (-15 -3783 ((-508) $)) (-15 -3968 ((-508) $)) (-15 -3783 ((-1157) $)) (-15 -3968 ((-1157) $)) (-15 -2431 ($ (-508) (-644 $))) (-15 -2431 ($ $ (-644 $))) (-15 -3519 ((-112) $)) (-15 -1648 ((-3 (-566) (-225) (-508) (-1157) $) $)) (-15 -1707 ((-644 $) $)) (-15 -2569 ((-112) $)) (-15 -2467 ((-112) $ (|[\|\|]| (-566)))) (-15 -2467 ((-112) $ (|[\|\|]| (-225)))) (-15 -2467 ((-112) $ (|[\|\|]| (-508)))) (-15 -2467 ((-112) $ (|[\|\|]| (-1157)))))) -((-3007 (((-112) $ $) NIL)) (-1970 (((-771)) 22)) (-3012 (($) 12 T CONST)) (-1552 (($) 27)) (-2097 (($ $ $) NIL) (($) 19 T CONST)) (-3962 (($ $ $) NIL) (($) 20 T CONST)) (-3681 (((-921) $) 24)) (-4117 (((-1157) $) NIL)) (-2178 (($ (-921)) 23)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) NIL)) (-3117 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL)) (-2995 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL))) -(((-1181 |#1|) (-13 (-844) (-10 -8 (-15 -3012 ($) -3704))) (-921)) (T -1181)) -((-3012 (*1 *1) (-12 (-5 *1 (-1181 *2)) (-14 *2 (-921))))) -(-13 (-844) (-10 -8 (-15 -3012 ($) -3704))) +((-3583 (((-1155 |#1|) (-1155 |#1|)) 85)) (-3245 (((-3 (-1155 |#1|) "failed") (-1155 |#1|)) 42)) (-4098 (((-1155 |#1|) (-409 (-566)) (-1155 |#1|)) 136 (|has| |#1| (-38 (-409 (-566)))))) (-1956 (((-1155 |#1|) |#1| (-1155 |#1|)) 142 (|has| |#1| (-365)))) (-4275 (((-1155 |#1|) (-1155 |#1|)) 100)) (-2330 (((-1155 (-566)) (-566)) 64)) (-1974 (((-1155 |#1|) (-1155 (-1155 |#1|))) 119 (|has| |#1| (-38 (-409 (-566)))))) (-2732 (((-1155 |#1|) (-566) (-566) (-1155 |#1|)) 105)) (-4325 (((-1155 |#1|) |#1| (-566)) 54)) (-3566 (((-1155 |#1|) (-1155 |#1|) (-1155 |#1|)) 67)) (-1846 (((-1155 |#1|) (-1155 |#1|) (-1155 |#1|)) 139 (|has| |#1| (-365)))) (-3084 (((-1155 |#1|) |#1| (-1 (-1155 |#1|))) 118 (|has| |#1| (-38 (-409 (-566)))))) (-2722 (((-1155 |#1|) (-1 |#1| (-566)) |#1| (-1 (-1155 |#1|))) 140 (|has| |#1| (-365)))) (-1968 (((-1155 |#1|) (-1155 |#1|)) 99)) (-4267 (((-1155 |#1|) (-1155 |#1|)) 83)) (-1733 (((-1155 |#1|) (-566) (-566) (-1155 |#1|)) 106)) (-3313 (((-1155 |#1|) |#1| (-1155 |#1|)) 115 (|has| |#1| (-38 (-409 (-566)))))) (-4286 (((-1155 (-566)) (-566)) 63)) (-2590 (((-1155 |#1|) |#1|) 66)) (-2139 (((-1155 |#1|) (-1155 |#1|) (-566) (-566)) 102)) (-3417 (((-1155 |#1|) (-1 |#1| (-566)) (-1155 |#1|)) 73)) (-2978 (((-3 (-1155 |#1|) "failed") (-1155 |#1|) (-1155 |#1|)) 40)) (-4059 (((-1155 |#1|) (-1155 |#1|)) 101)) (-2023 (((-1155 |#1|) (-1155 |#1|) |#1|) 78)) (-2726 (((-1155 |#1|) (-1155 |#1|)) 69)) (-1964 (((-1155 |#1|) (-1155 |#1|) (-1155 |#1|)) 79)) (-3152 (((-1155 |#1|) |#1|) 74)) (-1706 (((-1155 |#1|) (-1155 (-1155 |#1|))) 90)) (-3025 (((-1155 |#1|) (-1155 |#1|) (-1155 |#1|)) 41)) (-3012 (((-1155 |#1|) (-1155 |#1|)) 21) (((-1155 |#1|) (-1155 |#1|) (-1155 |#1|)) 23)) (-3002 (((-1155 |#1|) (-1155 |#1|) (-1155 |#1|)) 17)) (* (((-1155 |#1|) (-1155 |#1|) |#1|) 29) (((-1155 |#1|) |#1| (-1155 |#1|)) 26) (((-1155 |#1|) (-1155 |#1|) (-1155 |#1|)) 27))) +(((-1159 |#1|) (-10 -7 (-15 -3002 ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -3012 ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -3012 ((-1155 |#1|) (-1155 |#1|))) (-15 * ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 * ((-1155 |#1|) |#1| (-1155 |#1|))) (-15 * ((-1155 |#1|) (-1155 |#1|) |#1|)) (-15 -2978 ((-3 (-1155 |#1|) "failed") (-1155 |#1|) (-1155 |#1|))) (-15 -3025 ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -3245 ((-3 (-1155 |#1|) "failed") (-1155 |#1|))) (-15 -4325 ((-1155 |#1|) |#1| (-566))) (-15 -4286 ((-1155 (-566)) (-566))) (-15 -2330 ((-1155 (-566)) (-566))) (-15 -2590 ((-1155 |#1|) |#1|)) (-15 -3566 ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -2726 ((-1155 |#1|) (-1155 |#1|))) (-15 -3417 ((-1155 |#1|) (-1 |#1| (-566)) (-1155 |#1|))) (-15 -3152 ((-1155 |#1|) |#1|)) (-15 -2023 ((-1155 |#1|) (-1155 |#1|) |#1|)) (-15 -1964 ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -4267 ((-1155 |#1|) (-1155 |#1|))) (-15 -3583 ((-1155 |#1|) (-1155 |#1|))) (-15 -1706 ((-1155 |#1|) (-1155 (-1155 |#1|)))) (-15 -1968 ((-1155 |#1|) (-1155 |#1|))) (-15 -4275 ((-1155 |#1|) (-1155 |#1|))) (-15 -4059 ((-1155 |#1|) (-1155 |#1|))) (-15 -2139 ((-1155 |#1|) (-1155 |#1|) (-566) (-566))) (-15 -2732 ((-1155 |#1|) (-566) (-566) (-1155 |#1|))) (-15 -1733 ((-1155 |#1|) (-566) (-566) (-1155 |#1|))) (IF (|has| |#1| (-38 (-409 (-566)))) (PROGN (-15 -3313 ((-1155 |#1|) |#1| (-1155 |#1|))) (-15 -3084 ((-1155 |#1|) |#1| (-1 (-1155 |#1|)))) (-15 -1974 ((-1155 |#1|) (-1155 (-1155 |#1|)))) (-15 -4098 ((-1155 |#1|) (-409 (-566)) (-1155 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -1846 ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -2722 ((-1155 |#1|) (-1 |#1| (-566)) |#1| (-1 (-1155 |#1|)))) (-15 -1956 ((-1155 |#1|) |#1| (-1155 |#1|)))) |%noBranch|)) (-1049)) (T -1159)) +((-1956 (*1 *2 *3 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-365)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-2722 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-566))) (-5 *5 (-1 (-1155 *4))) (-4 *4 (-365)) (-4 *4 (-1049)) (-5 *2 (-1155 *4)) (-5 *1 (-1159 *4)))) (-1846 (*1 *2 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-365)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-4098 (*1 *2 *3 *2) (-12 (-5 *2 (-1155 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1049)) (-5 *3 (-409 (-566))) (-5 *1 (-1159 *4)))) (-1974 (*1 *2 *3) (-12 (-5 *3 (-1155 (-1155 *4))) (-5 *2 (-1155 *4)) (-5 *1 (-1159 *4)) (-4 *4 (-38 (-409 (-566)))) (-4 *4 (-1049)))) (-3084 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1155 *3))) (-5 *2 (-1155 *3)) (-5 *1 (-1159 *3)) (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)))) (-3313 (*1 *2 *3 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-1733 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1155 *4)) (-5 *3 (-566)) (-4 *4 (-1049)) (-5 *1 (-1159 *4)))) (-2732 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1155 *4)) (-5 *3 (-566)) (-4 *4 (-1049)) (-5 *1 (-1159 *4)))) (-2139 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1155 *4)) (-5 *3 (-566)) (-4 *4 (-1049)) (-5 *1 (-1159 *4)))) (-4059 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-4275 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-1968 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-1706 (*1 *2 *3) (-12 (-5 *3 (-1155 (-1155 *4))) (-5 *2 (-1155 *4)) (-5 *1 (-1159 *4)) (-4 *4 (-1049)))) (-3583 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-4267 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-1964 (*1 *2 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-2023 (*1 *2 *2 *3) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-3152 (*1 *2 *3) (-12 (-5 *2 (-1155 *3)) (-5 *1 (-1159 *3)) (-4 *3 (-1049)))) (-3417 (*1 *2 *3 *2) (-12 (-5 *2 (-1155 *4)) (-5 *3 (-1 *4 (-566))) (-4 *4 (-1049)) (-5 *1 (-1159 *4)))) (-2726 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-3566 (*1 *2 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-2590 (*1 *2 *3) (-12 (-5 *2 (-1155 *3)) (-5 *1 (-1159 *3)) (-4 *3 (-1049)))) (-2330 (*1 *2 *3) (-12 (-5 *2 (-1155 (-566))) (-5 *1 (-1159 *4)) (-4 *4 (-1049)) (-5 *3 (-566)))) (-4286 (*1 *2 *3) (-12 (-5 *2 (-1155 (-566))) (-5 *1 (-1159 *4)) (-4 *4 (-1049)) (-5 *3 (-566)))) (-4325 (*1 *2 *3 *4) (-12 (-5 *4 (-566)) (-5 *2 (-1155 *3)) (-5 *1 (-1159 *3)) (-4 *3 (-1049)))) (-3245 (*1 *2 *2) (|partial| -12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-3025 (*1 *2 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-2978 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-3012 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-3012 (*1 *2 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-3002 (*1 *2 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3))))) +(-10 -7 (-15 -3002 ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -3012 ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -3012 ((-1155 |#1|) (-1155 |#1|))) (-15 * ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 * ((-1155 |#1|) |#1| (-1155 |#1|))) (-15 * ((-1155 |#1|) (-1155 |#1|) |#1|)) (-15 -2978 ((-3 (-1155 |#1|) "failed") (-1155 |#1|) (-1155 |#1|))) (-15 -3025 ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -3245 ((-3 (-1155 |#1|) "failed") (-1155 |#1|))) (-15 -4325 ((-1155 |#1|) |#1| (-566))) (-15 -4286 ((-1155 (-566)) (-566))) (-15 -2330 ((-1155 (-566)) (-566))) (-15 -2590 ((-1155 |#1|) |#1|)) (-15 -3566 ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -2726 ((-1155 |#1|) (-1155 |#1|))) (-15 -3417 ((-1155 |#1|) (-1 |#1| (-566)) (-1155 |#1|))) (-15 -3152 ((-1155 |#1|) |#1|)) (-15 -2023 ((-1155 |#1|) (-1155 |#1|) |#1|)) (-15 -1964 ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -4267 ((-1155 |#1|) (-1155 |#1|))) (-15 -3583 ((-1155 |#1|) (-1155 |#1|))) (-15 -1706 ((-1155 |#1|) (-1155 (-1155 |#1|)))) (-15 -1968 ((-1155 |#1|) (-1155 |#1|))) (-15 -4275 ((-1155 |#1|) (-1155 |#1|))) (-15 -4059 ((-1155 |#1|) (-1155 |#1|))) (-15 -2139 ((-1155 |#1|) (-1155 |#1|) (-566) (-566))) (-15 -2732 ((-1155 |#1|) (-566) (-566) (-1155 |#1|))) (-15 -1733 ((-1155 |#1|) (-566) (-566) (-1155 |#1|))) (IF (|has| |#1| (-38 (-409 (-566)))) (PROGN (-15 -3313 ((-1155 |#1|) |#1| (-1155 |#1|))) (-15 -3084 ((-1155 |#1|) |#1| (-1 (-1155 |#1|)))) (-15 -1974 ((-1155 |#1|) (-1155 (-1155 |#1|)))) (-15 -4098 ((-1155 |#1|) (-409 (-566)) (-1155 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -1846 ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -2722 ((-1155 |#1|) (-1 |#1| (-566)) |#1| (-1 (-1155 |#1|)))) (-15 -1956 ((-1155 |#1|) |#1| (-1155 |#1|)))) |%noBranch|)) +((-3963 (((-1155 |#1|) (-1155 |#1|)) 60)) (-3630 (((-1155 |#1|) (-1155 |#1|)) 42)) (-3941 (((-1155 |#1|) (-1155 |#1|)) 56)) (-3602 (((-1155 |#1|) (-1155 |#1|)) 38)) (-3986 (((-1155 |#1|) (-1155 |#1|)) 63)) (-3656 (((-1155 |#1|) (-1155 |#1|)) 45)) (-3619 (((-1155 |#1|) (-1155 |#1|)) 34)) (-3521 (((-1155 |#1|) (-1155 |#1|)) 29)) (-3996 (((-1155 |#1|) (-1155 |#1|)) 64)) (-3670 (((-1155 |#1|) (-1155 |#1|)) 46)) (-3976 (((-1155 |#1|) (-1155 |#1|)) 61)) (-3643 (((-1155 |#1|) (-1155 |#1|)) 43)) (-3952 (((-1155 |#1|) (-1155 |#1|)) 58)) (-3618 (((-1155 |#1|) (-1155 |#1|)) 40)) (-4032 (((-1155 |#1|) (-1155 |#1|)) 68)) (-3892 (((-1155 |#1|) (-1155 |#1|)) 50)) (-4008 (((-1155 |#1|) (-1155 |#1|)) 66)) (-3684 (((-1155 |#1|) (-1155 |#1|)) 48)) (-4057 (((-1155 |#1|) (-1155 |#1|)) 71)) (-3917 (((-1155 |#1|) (-1155 |#1|)) 53)) (-3964 (((-1155 |#1|) (-1155 |#1|)) 72)) (-3929 (((-1155 |#1|) (-1155 |#1|)) 54)) (-4044 (((-1155 |#1|) (-1155 |#1|)) 70)) (-3904 (((-1155 |#1|) (-1155 |#1|)) 52)) (-4020 (((-1155 |#1|) (-1155 |#1|)) 69)) (-3879 (((-1155 |#1|) (-1155 |#1|)) 51)) (** (((-1155 |#1|) (-1155 |#1|) (-1155 |#1|)) 36))) +(((-1160 |#1|) (-10 -7 (-15 -3521 ((-1155 |#1|) (-1155 |#1|))) (-15 -3619 ((-1155 |#1|) (-1155 |#1|))) (-15 ** ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -3602 ((-1155 |#1|) (-1155 |#1|))) (-15 -3618 ((-1155 |#1|) (-1155 |#1|))) (-15 -3630 ((-1155 |#1|) (-1155 |#1|))) (-15 -3643 ((-1155 |#1|) (-1155 |#1|))) (-15 -3656 ((-1155 |#1|) (-1155 |#1|))) (-15 -3670 ((-1155 |#1|) (-1155 |#1|))) (-15 -3684 ((-1155 |#1|) (-1155 |#1|))) (-15 -3879 ((-1155 |#1|) (-1155 |#1|))) (-15 -3892 ((-1155 |#1|) (-1155 |#1|))) (-15 -3904 ((-1155 |#1|) (-1155 |#1|))) (-15 -3917 ((-1155 |#1|) (-1155 |#1|))) (-15 -3929 ((-1155 |#1|) (-1155 |#1|))) (-15 -3941 ((-1155 |#1|) (-1155 |#1|))) (-15 -3952 ((-1155 |#1|) (-1155 |#1|))) (-15 -3963 ((-1155 |#1|) (-1155 |#1|))) (-15 -3976 ((-1155 |#1|) (-1155 |#1|))) (-15 -3986 ((-1155 |#1|) (-1155 |#1|))) (-15 -3996 ((-1155 |#1|) (-1155 |#1|))) (-15 -4008 ((-1155 |#1|) (-1155 |#1|))) (-15 -4020 ((-1155 |#1|) (-1155 |#1|))) (-15 -4032 ((-1155 |#1|) (-1155 |#1|))) (-15 -4044 ((-1155 |#1|) (-1155 |#1|))) (-15 -4057 ((-1155 |#1|) (-1155 |#1|))) (-15 -3964 ((-1155 |#1|) (-1155 |#1|)))) (-38 (-409 (-566)))) (T -1160)) +((-3964 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-4057 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-4044 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-4032 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-4020 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-4008 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3996 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3986 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3976 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3963 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3952 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3941 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3929 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3917 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3904 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3892 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3879 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3684 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3670 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3656 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3643 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3630 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3618 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3602 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3619 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3521 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3))))) +(-10 -7 (-15 -3521 ((-1155 |#1|) (-1155 |#1|))) (-15 -3619 ((-1155 |#1|) (-1155 |#1|))) (-15 ** ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -3602 ((-1155 |#1|) (-1155 |#1|))) (-15 -3618 ((-1155 |#1|) (-1155 |#1|))) (-15 -3630 ((-1155 |#1|) (-1155 |#1|))) (-15 -3643 ((-1155 |#1|) (-1155 |#1|))) (-15 -3656 ((-1155 |#1|) (-1155 |#1|))) (-15 -3670 ((-1155 |#1|) (-1155 |#1|))) (-15 -3684 ((-1155 |#1|) (-1155 |#1|))) (-15 -3879 ((-1155 |#1|) (-1155 |#1|))) (-15 -3892 ((-1155 |#1|) (-1155 |#1|))) (-15 -3904 ((-1155 |#1|) (-1155 |#1|))) (-15 -3917 ((-1155 |#1|) (-1155 |#1|))) (-15 -3929 ((-1155 |#1|) (-1155 |#1|))) (-15 -3941 ((-1155 |#1|) (-1155 |#1|))) (-15 -3952 ((-1155 |#1|) (-1155 |#1|))) (-15 -3963 ((-1155 |#1|) (-1155 |#1|))) (-15 -3976 ((-1155 |#1|) (-1155 |#1|))) (-15 -3986 ((-1155 |#1|) (-1155 |#1|))) (-15 -3996 ((-1155 |#1|) (-1155 |#1|))) (-15 -4008 ((-1155 |#1|) (-1155 |#1|))) (-15 -4020 ((-1155 |#1|) (-1155 |#1|))) (-15 -4032 ((-1155 |#1|) (-1155 |#1|))) (-15 -4044 ((-1155 |#1|) (-1155 |#1|))) (-15 -4057 ((-1155 |#1|) (-1155 |#1|))) (-15 -3964 ((-1155 |#1|) (-1155 |#1|)))) +((-3963 (((-1155 |#1|) (-1155 |#1|)) 108)) (-3630 (((-1155 |#1|) (-1155 |#1|)) 65)) (-2207 (((-2 (|:| -3941 (-1155 |#1|)) (|:| -3952 (-1155 |#1|))) (-1155 |#1|)) 104)) (-3941 (((-1155 |#1|) (-1155 |#1|)) 105)) (-1829 (((-2 (|:| -3602 (-1155 |#1|)) (|:| -3618 (-1155 |#1|))) (-1155 |#1|)) 54)) (-3602 (((-1155 |#1|) (-1155 |#1|)) 55)) (-3986 (((-1155 |#1|) (-1155 |#1|)) 110)) (-3656 (((-1155 |#1|) (-1155 |#1|)) 72)) (-3619 (((-1155 |#1|) (-1155 |#1|)) 40)) (-3521 (((-1155 |#1|) (-1155 |#1|)) 37)) (-3996 (((-1155 |#1|) (-1155 |#1|)) 111)) (-3670 (((-1155 |#1|) (-1155 |#1|)) 73)) (-3976 (((-1155 |#1|) (-1155 |#1|)) 109)) (-3643 (((-1155 |#1|) (-1155 |#1|)) 68)) (-3952 (((-1155 |#1|) (-1155 |#1|)) 106)) (-3618 (((-1155 |#1|) (-1155 |#1|)) 56)) (-4032 (((-1155 |#1|) (-1155 |#1|)) 119)) (-3892 (((-1155 |#1|) (-1155 |#1|)) 94)) (-4008 (((-1155 |#1|) (-1155 |#1|)) 113)) (-3684 (((-1155 |#1|) (-1155 |#1|)) 90)) (-4057 (((-1155 |#1|) (-1155 |#1|)) 123)) (-3917 (((-1155 |#1|) (-1155 |#1|)) 98)) (-3964 (((-1155 |#1|) (-1155 |#1|)) 125)) (-3929 (((-1155 |#1|) (-1155 |#1|)) 100)) (-4044 (((-1155 |#1|) (-1155 |#1|)) 121)) (-3904 (((-1155 |#1|) (-1155 |#1|)) 96)) (-4020 (((-1155 |#1|) (-1155 |#1|)) 115)) (-3879 (((-1155 |#1|) (-1155 |#1|)) 92)) (** (((-1155 |#1|) (-1155 |#1|) (-1155 |#1|)) 41))) +(((-1161 |#1|) (-10 -7 (-15 -3521 ((-1155 |#1|) (-1155 |#1|))) (-15 -3619 ((-1155 |#1|) (-1155 |#1|))) (-15 ** ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -1829 ((-2 (|:| -3602 (-1155 |#1|)) (|:| -3618 (-1155 |#1|))) (-1155 |#1|))) (-15 -3602 ((-1155 |#1|) (-1155 |#1|))) (-15 -3618 ((-1155 |#1|) (-1155 |#1|))) (-15 -3630 ((-1155 |#1|) (-1155 |#1|))) (-15 -3643 ((-1155 |#1|) (-1155 |#1|))) (-15 -3656 ((-1155 |#1|) (-1155 |#1|))) (-15 -3670 ((-1155 |#1|) (-1155 |#1|))) (-15 -3684 ((-1155 |#1|) (-1155 |#1|))) (-15 -3879 ((-1155 |#1|) (-1155 |#1|))) (-15 -3892 ((-1155 |#1|) (-1155 |#1|))) (-15 -3904 ((-1155 |#1|) (-1155 |#1|))) (-15 -3917 ((-1155 |#1|) (-1155 |#1|))) (-15 -3929 ((-1155 |#1|) (-1155 |#1|))) (-15 -2207 ((-2 (|:| -3941 (-1155 |#1|)) (|:| -3952 (-1155 |#1|))) (-1155 |#1|))) (-15 -3941 ((-1155 |#1|) (-1155 |#1|))) (-15 -3952 ((-1155 |#1|) (-1155 |#1|))) (-15 -3963 ((-1155 |#1|) (-1155 |#1|))) (-15 -3976 ((-1155 |#1|) (-1155 |#1|))) (-15 -3986 ((-1155 |#1|) (-1155 |#1|))) (-15 -3996 ((-1155 |#1|) (-1155 |#1|))) (-15 -4008 ((-1155 |#1|) (-1155 |#1|))) (-15 -4020 ((-1155 |#1|) (-1155 |#1|))) (-15 -4032 ((-1155 |#1|) (-1155 |#1|))) (-15 -4044 ((-1155 |#1|) (-1155 |#1|))) (-15 -4057 ((-1155 |#1|) (-1155 |#1|))) (-15 -3964 ((-1155 |#1|) (-1155 |#1|)))) (-38 (-409 (-566)))) (T -1161)) +((-3964 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-4057 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-4044 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-4032 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-4020 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-4008 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3996 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3986 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3976 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3963 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3952 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3941 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-2207 (*1 *2 *3) (-12 (-4 *4 (-38 (-409 (-566)))) (-5 *2 (-2 (|:| -3941 (-1155 *4)) (|:| -3952 (-1155 *4)))) (-5 *1 (-1161 *4)) (-5 *3 (-1155 *4)))) (-3929 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3917 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3904 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3892 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3879 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3684 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3670 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3656 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3643 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3630 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3618 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3602 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-1829 (*1 *2 *3) (-12 (-4 *4 (-38 (-409 (-566)))) (-5 *2 (-2 (|:| -3602 (-1155 *4)) (|:| -3618 (-1155 *4)))) (-5 *1 (-1161 *4)) (-5 *3 (-1155 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3619 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3521 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3))))) +(-10 -7 (-15 -3521 ((-1155 |#1|) (-1155 |#1|))) (-15 -3619 ((-1155 |#1|) (-1155 |#1|))) (-15 ** ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -1829 ((-2 (|:| -3602 (-1155 |#1|)) (|:| -3618 (-1155 |#1|))) (-1155 |#1|))) (-15 -3602 ((-1155 |#1|) (-1155 |#1|))) (-15 -3618 ((-1155 |#1|) (-1155 |#1|))) (-15 -3630 ((-1155 |#1|) (-1155 |#1|))) (-15 -3643 ((-1155 |#1|) (-1155 |#1|))) (-15 -3656 ((-1155 |#1|) (-1155 |#1|))) (-15 -3670 ((-1155 |#1|) (-1155 |#1|))) (-15 -3684 ((-1155 |#1|) (-1155 |#1|))) (-15 -3879 ((-1155 |#1|) (-1155 |#1|))) (-15 -3892 ((-1155 |#1|) (-1155 |#1|))) (-15 -3904 ((-1155 |#1|) (-1155 |#1|))) (-15 -3917 ((-1155 |#1|) (-1155 |#1|))) (-15 -3929 ((-1155 |#1|) (-1155 |#1|))) (-15 -2207 ((-2 (|:| -3941 (-1155 |#1|)) (|:| -3952 (-1155 |#1|))) (-1155 |#1|))) (-15 -3941 ((-1155 |#1|) (-1155 |#1|))) (-15 -3952 ((-1155 |#1|) (-1155 |#1|))) (-15 -3963 ((-1155 |#1|) (-1155 |#1|))) (-15 -3976 ((-1155 |#1|) (-1155 |#1|))) (-15 -3986 ((-1155 |#1|) (-1155 |#1|))) (-15 -3996 ((-1155 |#1|) (-1155 |#1|))) (-15 -4008 ((-1155 |#1|) (-1155 |#1|))) (-15 -4020 ((-1155 |#1|) (-1155 |#1|))) (-15 -4032 ((-1155 |#1|) (-1155 |#1|))) (-15 -4044 ((-1155 |#1|) (-1155 |#1|))) (-15 -4057 ((-1155 |#1|) (-1155 |#1|))) (-15 -3964 ((-1155 |#1|) (-1155 |#1|)))) +((-1801 (((-958 |#2|) |#2| |#2|) 51)) (-2616 ((|#2| |#2| |#1|) 19 (|has| |#1| (-308))))) +(((-1162 |#1| |#2|) (-10 -7 (-15 -1801 ((-958 |#2|) |#2| |#2|)) (IF (|has| |#1| (-308)) (-15 -2616 (|#2| |#2| |#1|)) |%noBranch|)) (-558) (-1240 |#1|)) (T -1162)) +((-2616 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-4 *3 (-558)) (-5 *1 (-1162 *3 *2)) (-4 *2 (-1240 *3)))) (-1801 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-958 *3)) (-5 *1 (-1162 *4 *3)) (-4 *3 (-1240 *4))))) +(-10 -7 (-15 -1801 ((-958 |#2|) |#2| |#2|)) (IF (|has| |#1| (-308)) (-15 -2616 (|#2| |#2| |#1|)) |%noBranch|)) +((-2988 (((-112) $ $) NIL)) (-1991 (($ $ (-644 (-771))) 81)) (-3305 (($) 33)) (-3508 (($ $) 51)) (-3946 (((-644 $) $) 60)) (-3398 (((-112) $) 19)) (-4265 (((-644 (-943 |#2|)) $) 88)) (-3222 (($ $) 82)) (-2502 (((-771) $) 47)) (-1860 (($) 32)) (-3371 (($ $ (-644 (-771)) (-943 |#2|)) 74) (($ $ (-644 (-771)) (-771)) 75) (($ $ (-771) (-943 |#2|)) 77)) (-2696 (($ $ $) 57) (($ (-644 $)) 59)) (-4143 (((-771) $) 89)) (-3860 (((-112) $) 15)) (-3380 (((-1157) $) NIL)) (-4352 (((-112) $) 22)) (-4072 (((-1119) $) NIL)) (-3328 (((-171) $) 87)) (-2577 (((-943 |#2|) $) 83)) (-3413 (((-771) $) 84)) (-3803 (((-112) $) 86)) (-3596 (($ $ (-644 (-771)) (-171)) 80)) (-2891 (($ $) 52)) (-3152 (((-862) $) 100)) (-4030 (($ $ (-644 (-771)) (-112)) 79)) (-1926 (((-644 $) $) 11)) (-3004 (($ $ (-771)) 46)) (-3636 (($ $) 43)) (-3044 (((-112) $ $) NIL)) (-3753 (($ $ $ (-943 |#2|) (-771)) 70)) (-2477 (($ $ (-943 |#2|)) 69)) (-3817 (($ $ (-644 (-771)) (-943 |#2|)) 66) (($ $ (-644 (-771)) (-771)) 72) (((-771) $ (-943 |#2|)) 73)) (-2914 (((-112) $ $) 94))) +(((-1163 |#1| |#2|) (-13 (-1099) (-10 -8 (-15 -3860 ((-112) $)) (-15 -3398 ((-112) $)) (-15 -4352 ((-112) $)) (-15 -1860 ($)) (-15 -3305 ($)) (-15 -3636 ($ $)) (-15 -3004 ($ $ (-771))) (-15 -1926 ((-644 $) $)) (-15 -2502 ((-771) $)) (-15 -3508 ($ $)) (-15 -2891 ($ $)) (-15 -2696 ($ $ $)) (-15 -2696 ($ (-644 $))) (-15 -3946 ((-644 $) $)) (-15 -3817 ($ $ (-644 (-771)) (-943 |#2|))) (-15 -2477 ($ $ (-943 |#2|))) (-15 -3753 ($ $ $ (-943 |#2|) (-771))) (-15 -3371 ($ $ (-644 (-771)) (-943 |#2|))) (-15 -3817 ($ $ (-644 (-771)) (-771))) (-15 -3371 ($ $ (-644 (-771)) (-771))) (-15 -3817 ((-771) $ (-943 |#2|))) (-15 -3371 ($ $ (-771) (-943 |#2|))) (-15 -4030 ($ $ (-644 (-771)) (-112))) (-15 -3596 ($ $ (-644 (-771)) (-171))) (-15 -1991 ($ $ (-644 (-771)))) (-15 -2577 ((-943 |#2|) $)) (-15 -3413 ((-771) $)) (-15 -3803 ((-112) $)) (-15 -3328 ((-171) $)) (-15 -4143 ((-771) $)) (-15 -3222 ($ $)) (-15 -4265 ((-644 (-943 |#2|)) $)))) (-921) (-1049)) (T -1163)) +((-3860 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049)))) (-3398 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049)))) (-4352 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049)))) (-1860 (*1 *1) (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1049)))) (-3305 (*1 *1) (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1049)))) (-3636 (*1 *1 *1) (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1049)))) (-3004 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049)))) (-1926 (*1 *2 *1) (-12 (-5 *2 (-644 (-1163 *3 *4))) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049)))) (-2502 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049)))) (-3508 (*1 *1 *1) (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1049)))) (-2891 (*1 *1 *1) (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1049)))) (-2696 (*1 *1 *1 *1) (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1049)))) (-2696 (*1 *1 *2) (-12 (-5 *2 (-644 (-1163 *3 *4))) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-644 (-1163 *3 *4))) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049)))) (-3817 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-771))) (-5 *3 (-943 *5)) (-4 *5 (-1049)) (-5 *1 (-1163 *4 *5)) (-14 *4 (-921)))) (-2477 (*1 *1 *1 *2) (-12 (-5 *2 (-943 *4)) (-4 *4 (-1049)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)))) (-3753 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-943 *5)) (-5 *3 (-771)) (-4 *5 (-1049)) (-5 *1 (-1163 *4 *5)) (-14 *4 (-921)))) (-3371 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-771))) (-5 *3 (-943 *5)) (-4 *5 (-1049)) (-5 *1 (-1163 *4 *5)) (-14 *4 (-921)))) (-3817 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-771))) (-5 *3 (-771)) (-5 *1 (-1163 *4 *5)) (-14 *4 (-921)) (-4 *5 (-1049)))) (-3371 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-771))) (-5 *3 (-771)) (-5 *1 (-1163 *4 *5)) (-14 *4 (-921)) (-4 *5 (-1049)))) (-3817 (*1 *2 *1 *3) (-12 (-5 *3 (-943 *5)) (-4 *5 (-1049)) (-5 *2 (-771)) (-5 *1 (-1163 *4 *5)) (-14 *4 (-921)))) (-3371 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-771)) (-5 *3 (-943 *5)) (-4 *5 (-1049)) (-5 *1 (-1163 *4 *5)) (-14 *4 (-921)))) (-4030 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-771))) (-5 *3 (-112)) (-5 *1 (-1163 *4 *5)) (-14 *4 (-921)) (-4 *5 (-1049)))) (-3596 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-771))) (-5 *3 (-171)) (-5 *1 (-1163 *4 *5)) (-14 *4 (-921)) (-4 *5 (-1049)))) (-1991 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-771))) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049)))) (-2577 (*1 *2 *1) (-12 (-5 *2 (-943 *4)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049)))) (-3413 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049)))) (-3803 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049)))) (-3328 (*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049)))) (-4143 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049)))) (-3222 (*1 *1 *1) (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1049)))) (-4265 (*1 *2 *1) (-12 (-5 *2 (-644 (-943 *4))) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049))))) +(-13 (-1099) (-10 -8 (-15 -3860 ((-112) $)) (-15 -3398 ((-112) $)) (-15 -4352 ((-112) $)) (-15 -1860 ($)) (-15 -3305 ($)) (-15 -3636 ($ $)) (-15 -3004 ($ $ (-771))) (-15 -1926 ((-644 $) $)) (-15 -2502 ((-771) $)) (-15 -3508 ($ $)) (-15 -2891 ($ $)) (-15 -2696 ($ $ $)) (-15 -2696 ($ (-644 $))) (-15 -3946 ((-644 $) $)) (-15 -3817 ($ $ (-644 (-771)) (-943 |#2|))) (-15 -2477 ($ $ (-943 |#2|))) (-15 -3753 ($ $ $ (-943 |#2|) (-771))) (-15 -3371 ($ $ (-644 (-771)) (-943 |#2|))) (-15 -3817 ($ $ (-644 (-771)) (-771))) (-15 -3371 ($ $ (-644 (-771)) (-771))) (-15 -3817 ((-771) $ (-943 |#2|))) (-15 -3371 ($ $ (-771) (-943 |#2|))) (-15 -4030 ($ $ (-644 (-771)) (-112))) (-15 -3596 ($ $ (-644 (-771)) (-171))) (-15 -1991 ($ $ (-644 (-771)))) (-15 -2577 ((-943 |#2|) $)) (-15 -3413 ((-771) $)) (-15 -3803 ((-112) $)) (-15 -3328 ((-171) $)) (-15 -4143 ((-771) $)) (-15 -3222 ($ $)) (-15 -4265 ((-644 (-943 |#2|)) $)))) +((-2988 (((-112) $ $) NIL)) (-3124 ((|#2| $) 11)) (-3114 ((|#1| $) 10)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-1340 (($ |#1| |#2|) 9)) (-3152 (((-862) $) 16)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) +(((-1164 |#1| |#2|) (-13 (-1099) (-10 -8 (-15 -1340 ($ |#1| |#2|)) (-15 -3114 (|#1| $)) (-15 -3124 (|#2| $)))) (-1099) (-1099)) (T -1164)) +((-1340 (*1 *1 *2 *3) (-12 (-5 *1 (-1164 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099)))) (-3114 (*1 *2 *1) (-12 (-4 *2 (-1099)) (-5 *1 (-1164 *2 *3)) (-4 *3 (-1099)))) (-3124 (*1 *2 *1) (-12 (-4 *2 (-1099)) (-5 *1 (-1164 *3 *2)) (-4 *3 (-1099))))) +(-13 (-1099) (-10 -8 (-15 -1340 ($ |#1| |#2|)) (-15 -3114 (|#1| $)) (-15 -3124 (|#2| $)))) +((-2988 (((-112) $ $) NIL)) (-2558 (((-1134) $) 9)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 15) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) +(((-1165) (-13 (-1082) (-10 -8 (-15 -2558 ((-1134) $))))) (T -1165)) +((-2558 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1165))))) +(-13 (-1082) (-10 -8 (-15 -2558 ((-1134) $)))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-1873 (((-1173 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-308)) (|has| |#1| (-365))))) (-1771 (((-644 (-1081)) $) NIL)) (-4347 (((-1175) $) 11)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (-2768 (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))) (|has| |#1| (-558))))) (-2161 (($ $) NIL (-2768 (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))) (|has| |#1| (-558))))) (-2345 (((-112) $) NIL (-2768 (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))) (|has| |#1| (-558))))) (-2331 (($ $ (-566)) NIL) (($ $ (-566) (-566)) 75)) (-4152 (((-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))) $) NIL)) (-3271 (((-1173 |#1| |#2| |#3|) $) 42)) (-3560 (((-3 (-1173 |#1| |#2| |#3|) "failed") $) 32)) (-1827 (((-1173 |#1| |#2| |#3|) $) 33)) (-3963 (($ $) 116 (|has| |#1| (-38 (-409 (-566)))))) (-3630 (($ $) 92 (|has| |#1| (-38 (-409 (-566)))))) (-3967 (((-3 $ "failed") $ $) NIL)) (-2292 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))))) (-1378 (($ $) NIL (|has| |#1| (-365)))) (-1364 (((-420 $) $) NIL (|has| |#1| (-365)))) (-1635 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4066 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))))) (-2085 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3941 (($ $) 112 (|has| |#1| (-38 (-409 (-566)))))) (-3602 (($ $) 88 (|has| |#1| (-38 (-409 (-566)))))) (-2743 (((-566) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))))) (-1427 (($ (-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|)))) NIL)) (-3986 (($ $) 120 (|has| |#1| (-38 (-409 (-566)))))) (-3656 (($ $) 96 (|has| |#1| (-38 (-409 (-566)))))) (-2463 (($) NIL T CONST)) (-2229 (((-3 (-1173 |#1| |#2| |#3|) "failed") $) 34) (((-3 (-1175) "failed") $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-1038 (-1175))) (|has| |#1| (-365)))) (((-3 (-409 (-566)) "failed") $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-1038 (-566))) (|has| |#1| (-365)))) (((-3 (-566) "failed") $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-1038 (-566))) (|has| |#1| (-365))))) (-4158 (((-1173 |#1| |#2| |#3|) $) 140) (((-1175) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-1038 (-1175))) (|has| |#1| (-365)))) (((-409 (-566)) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-1038 (-566))) (|has| |#1| (-365)))) (((-566) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-1038 (-566))) (|has| |#1| (-365))))) (-1556 (($ $) 37) (($ (-566) $) 38)) (-2933 (($ $ $) NIL (|has| |#1| (-365)))) (-2814 (($ $) NIL)) (-4089 (((-689 (-1173 |#1| |#2| |#3|)) (-689 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -3361 (-689 (-1173 |#1| |#2| |#3|))) (|:| |vec| (-1264 (-1173 |#1| |#2| |#3|)))) (-689 $) (-1264 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-639 (-566))) (|has| |#1| (-365)))) (((-689 (-566)) (-689 $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-639 (-566))) (|has| |#1| (-365))))) (-3245 (((-3 $ "failed") $) 54)) (-3193 (((-409 (-952 |#1|)) $ (-566)) 74 (|has| |#1| (-558))) (((-409 (-952 |#1|)) $ (-566) (-566)) 76 (|has| |#1| (-558)))) (-2715 (($) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-547)) (|has| |#1| (-365))))) (-2945 (($ $ $) NIL (|has| |#1| (-365)))) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL (|has| |#1| (-365)))) (-1615 (((-112) $) NIL (|has| |#1| (-365)))) (-2528 (((-112) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))))) (-3772 (((-112) $) 28)) (-2281 (($) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2926 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-886 (-381))) (|has| |#1| (-365)))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-886 (-566))) (|has| |#1| (-365))))) (-2679 (((-566) $) NIL) (((-566) $ (-566)) 26)) (-2389 (((-112) $) NIL)) (-3406 (($ $) NIL (|has| |#1| (-365)))) (-2248 (((-1173 |#1| |#2| |#3|) $) 44 (|has| |#1| (-365)))) (-1575 (($ $ (-566)) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2621 (((-3 $ "failed") $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-1150)) (|has| |#1| (-365))))) (-3233 (((-112) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))))) (-3394 (($ $ (-921)) NIL)) (-3657 (($ (-1 |#1| (-566)) $) NIL)) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-2497 (((-112) $) NIL)) (-1746 (($ |#1| (-566)) 19) (($ $ (-1081) (-566)) NIL) (($ $ (-644 (-1081)) (-644 (-566))) NIL)) (-1478 (($ $ $) NIL (-2768 (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-365)))))) (-2599 (($ $ $) NIL (-2768 (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-365)))))) (-2319 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-365)))) (-3619 (($ $) 81 (|has| |#1| (-38 (-409 (-566)))))) (-2784 (($ $) NIL)) (-2794 ((|#1| $) NIL)) (-2128 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2719 (($ (-566) (-1173 |#1| |#2| |#3|)) 36)) (-3380 (((-1157) $) NIL)) (-2748 (($ $) NIL (|has| |#1| (-365)))) (-3313 (($ $) 79 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) NIL (-2768 (-12 (|has| |#1| (-15 -3313 (|#1| |#1| (-1175)))) (|has| |#1| (-15 -1771 ((-644 (-1175)) |#1|))) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-959)) (|has| |#1| (-1199))))) (($ $ (-1260 |#2|)) 80 (|has| |#1| (-38 (-409 (-566)))))) (-3289 (($) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-1150)) (|has| |#1| (-365))) CONST)) (-4072 (((-1119) $) NIL)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-365)))) (-2164 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2487 (($ $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-308)) (|has| |#1| (-365))))) (-3143 (((-1173 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-547)) (|has| |#1| (-365))))) (-2010 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))))) (-1893 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))))) (-1624 (((-420 $) $) NIL (|has| |#1| (-365)))) (-3005 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL (|has| |#1| (-365)))) (-3369 (($ $ (-566)) 158)) (-2978 (((-3 $ "failed") $ $) 55 (-2768 (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))) (|has| |#1| (-558))))) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-3521 (($ $) 82 (|has| |#1| (-38 (-409 (-566)))))) (-2023 (((-1155 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-566))))) (($ $ (-1175) (-1173 |#1| |#2| |#3|)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-516 (-1175) (-1173 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-644 (-1175)) (-644 (-1173 |#1| |#2| |#3|))) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-516 (-1175) (-1173 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-644 (-295 (-1173 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-310 (-1173 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-295 (-1173 |#1| |#2| |#3|))) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-310 (-1173 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-310 (-1173 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-644 (-1173 |#1| |#2| |#3|)) (-644 (-1173 |#1| |#2| |#3|))) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-310 (-1173 |#1| |#2| |#3|))) (|has| |#1| (-365))))) (-4357 (((-771) $) NIL (|has| |#1| (-365)))) (-1309 ((|#1| $ (-566)) NIL) (($ $ $) 61 (|has| (-566) (-1111))) (($ $ (-1173 |#1| |#2| |#3|)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-287 (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|))) (|has| |#1| (-365))))) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL (|has| |#1| (-365)))) (-3629 (($ $ (-1 (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|))) NIL (|has| |#1| (-365))) (($ $ (-1 (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|)) (-771)) NIL (|has| |#1| (-365))) (($ $ (-1260 |#2|)) 57) (($ $ (-771)) NIL (-2768 (-12 (|has| (-1173 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $) 56 (-2768 (-12 (|has| (-1173 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-2768 (-12 (|has| (-1173 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-1175) (-771)) NIL (-2768 (-12 (|has| (-1173 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-644 (-1175))) NIL (-2768 (-12 (|has| (-1173 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-1175)) NIL (-2768 (-12 (|has| (-1173 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))))) (-1452 (($ $) NIL (|has| |#1| (-365)))) (-2260 (((-1173 |#1| |#2| |#3|) $) 46 (|has| |#1| (-365)))) (-3902 (((-566) $) 43)) (-3996 (($ $) 122 (|has| |#1| (-38 (-409 (-566)))))) (-3670 (($ $) 98 (|has| |#1| (-38 (-409 (-566)))))) (-3976 (($ $) 118 (|has| |#1| (-38 (-409 (-566)))))) (-3643 (($ $) 94 (|has| |#1| (-38 (-409 (-566)))))) (-3952 (($ $) 114 (|has| |#1| (-38 (-409 (-566)))))) (-3618 (($ $) 90 (|has| |#1| (-38 (-409 (-566)))))) (-2376 (((-538) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-614 (-538))) (|has| |#1| (-365)))) (((-381) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-1022)) (|has| |#1| (-365)))) (((-225) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-1022)) (|has| |#1| (-365)))) (((-892 (-381)) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-614 (-892 (-381)))) (|has| |#1| (-365)))) (((-892 (-566)) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-614 (-892 (-566)))) (|has| |#1| (-365))))) (-3391 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| (-1173 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))))) (-1687 (($ $) NIL)) (-3152 (((-862) $) 162) (($ (-566)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1173 |#1| |#2| |#3|)) 30) (($ (-1260 |#2|)) 25) (($ (-1175)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-1038 (-1175))) (|has| |#1| (-365)))) (($ $) NIL (-2768 (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))) (|has| |#1| (-558)))) (($ (-409 (-566))) NIL (-2768 (-12 (|has| (-1173 |#1| |#2| |#3|) (-1038 (-566))) (|has| |#1| (-365))) (|has| |#1| (-38 (-409 (-566))))))) (-2271 ((|#1| $ (-566)) 77)) (-2633 (((-3 $ "failed") $) NIL (-2768 (-12 (|has| $ (-145)) (|has| (-1173 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-145)) (|has| |#1| (-365))) (|has| |#1| (-145))))) (-2593 (((-771)) NIL T CONST)) (-4290 ((|#1| $) 12)) (-3913 (((-1173 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-547)) (|has| |#1| (-365))))) (-3044 (((-112) $ $) NIL)) (-4032 (($ $) 128 (|has| |#1| (-38 (-409 (-566)))))) (-3892 (($ $) 104 (|has| |#1| (-38 (-409 (-566)))))) (-3014 (((-112) $ $) NIL (-2768 (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))) (|has| |#1| (-558))))) (-4008 (($ $) 124 (|has| |#1| (-38 (-409 (-566)))))) (-3684 (($ $) 100 (|has| |#1| (-38 (-409 (-566)))))) (-4057 (($ $) 132 (|has| |#1| (-38 (-409 (-566)))))) (-3917 (($ $) 108 (|has| |#1| (-38 (-409 (-566)))))) (-3603 ((|#1| $ (-566)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-566)))) (|has| |#1| (-15 -3152 (|#1| (-1175))))))) (-3964 (($ $) 134 (|has| |#1| (-38 (-409 (-566)))))) (-3929 (($ $) 110 (|has| |#1| (-38 (-409 (-566)))))) (-4044 (($ $) 130 (|has| |#1| (-38 (-409 (-566)))))) (-3904 (($ $) 106 (|has| |#1| (-38 (-409 (-566)))))) (-4020 (($ $) 126 (|has| |#1| (-38 (-409 (-566)))))) (-3879 (($ $) 102 (|has| |#1| (-38 (-409 (-566)))))) (-1358 (($ $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))))) (-4356 (($) 21 T CONST)) (-4366 (($) 16 T CONST)) (-3497 (($ $ (-1 (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|))) NIL (|has| |#1| (-365))) (($ $ (-1 (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|)) (-771)) NIL (|has| |#1| (-365))) (($ $ (-771)) NIL (-2768 (-12 (|has| (-1173 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $) NIL (-2768 (-12 (|has| (-1173 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-2768 (-12 (|has| (-1173 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-1175) (-771)) NIL (-2768 (-12 (|has| (-1173 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-644 (-1175))) NIL (-2768 (-12 (|has| (-1173 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-1175)) NIL (-2768 (-12 (|has| (-1173 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))))) (-2968 (((-112) $ $) NIL (-2768 (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-365)))))) (-2946 (((-112) $ $) NIL (-2768 (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-365)))))) (-2914 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL (-2768 (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-365)))))) (-2935 (((-112) $ $) NIL (-2768 (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-365)))))) (-3025 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) 49 (|has| |#1| (-365))) (($ (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|)) 50 (|has| |#1| (-365)))) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) 23)) (** (($ $ (-921)) NIL) (($ $ (-771)) 60) (($ $ (-566)) NIL (|has| |#1| (-365))) (($ $ $) 83 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 137 (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 35) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1173 |#1| |#2| |#3|)) 48 (|has| |#1| (-365))) (($ (-1173 |#1| |#2| |#3|) $) 47 (|has| |#1| (-365))) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))))) +(((-1166 |#1| |#2| |#3|) (-13 (-1226 |#1| (-1173 |#1| |#2| |#3|)) (-10 -8 (-15 -3152 ($ (-1260 |#2|))) (-15 -3629 ($ $ (-1260 |#2|))) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -3313 ($ $ (-1260 |#2|))) |%noBranch|))) (-1049) (-1175) |#1|) (T -1166)) +((-3152 (*1 *1 *2) (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1166 *3 *4 *5)) (-4 *3 (-1049)) (-14 *5 *3))) (-3629 (*1 *1 *1 *2) (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1166 *3 *4 *5)) (-4 *3 (-1049)) (-14 *5 *3))) (-3313 (*1 *1 *1 *2) (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1166 *3 *4 *5)) (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-14 *5 *3)))) +(-13 (-1226 |#1| (-1173 |#1| |#2| |#3|)) (-10 -8 (-15 -3152 ($ (-1260 |#2|))) (-15 -3629 ($ $ (-1260 |#2|))) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -3313 ($ $ (-1260 |#2|))) |%noBranch|))) +((-4272 ((|#2| |#2| (-1091 |#2|)) 26) ((|#2| |#2| (-1175)) 28))) +(((-1167 |#1| |#2|) (-10 -7 (-15 -4272 (|#2| |#2| (-1175))) (-15 -4272 (|#2| |#2| (-1091 |#2|)))) (-13 (-558) (-1038 (-566)) (-639 (-566))) (-13 (-432 |#1|) (-160) (-27) (-1199))) (T -1167)) +((-4272 (*1 *2 *2 *3) (-12 (-5 *3 (-1091 *2)) (-4 *2 (-13 (-432 *4) (-160) (-27) (-1199))) (-4 *4 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-1167 *4 *2)))) (-4272 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-1167 *4 *2)) (-4 *2 (-13 (-432 *4) (-160) (-27) (-1199)))))) +(-10 -7 (-15 -4272 (|#2| |#2| (-1175))) (-15 -4272 (|#2| |#2| (-1091 |#2|)))) +((-4272 (((-3 (-409 (-952 |#1|)) (-317 |#1|)) (-409 (-952 |#1|)) (-1091 (-409 (-952 |#1|)))) 31) (((-409 (-952 |#1|)) (-952 |#1|) (-1091 (-952 |#1|))) 44) (((-3 (-409 (-952 |#1|)) (-317 |#1|)) (-409 (-952 |#1|)) (-1175)) 33) (((-409 (-952 |#1|)) (-952 |#1|) (-1175)) 36))) +(((-1168 |#1|) (-10 -7 (-15 -4272 ((-409 (-952 |#1|)) (-952 |#1|) (-1175))) (-15 -4272 ((-3 (-409 (-952 |#1|)) (-317 |#1|)) (-409 (-952 |#1|)) (-1175))) (-15 -4272 ((-409 (-952 |#1|)) (-952 |#1|) (-1091 (-952 |#1|)))) (-15 -4272 ((-3 (-409 (-952 |#1|)) (-317 |#1|)) (-409 (-952 |#1|)) (-1091 (-409 (-952 |#1|)))))) (-13 (-558) (-1038 (-566)))) (T -1168)) +((-4272 (*1 *2 *3 *4) (-12 (-5 *4 (-1091 (-409 (-952 *5)))) (-5 *3 (-409 (-952 *5))) (-4 *5 (-13 (-558) (-1038 (-566)))) (-5 *2 (-3 *3 (-317 *5))) (-5 *1 (-1168 *5)))) (-4272 (*1 *2 *3 *4) (-12 (-5 *4 (-1091 (-952 *5))) (-5 *3 (-952 *5)) (-4 *5 (-13 (-558) (-1038 (-566)))) (-5 *2 (-409 *3)) (-5 *1 (-1168 *5)))) (-4272 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-4 *5 (-13 (-558) (-1038 (-566)))) (-5 *2 (-3 (-409 (-952 *5)) (-317 *5))) (-5 *1 (-1168 *5)) (-5 *3 (-409 (-952 *5))))) (-4272 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-4 *5 (-13 (-558) (-1038 (-566)))) (-5 *2 (-409 (-952 *5))) (-5 *1 (-1168 *5)) (-5 *3 (-952 *5))))) +(-10 -7 (-15 -4272 ((-409 (-952 |#1|)) (-952 |#1|) (-1175))) (-15 -4272 ((-3 (-409 (-952 |#1|)) (-317 |#1|)) (-409 (-952 |#1|)) (-1175))) (-15 -4272 ((-409 (-952 |#1|)) (-952 |#1|) (-1091 (-952 |#1|)))) (-15 -4272 ((-3 (-409 (-952 |#1|)) (-317 |#1|)) (-409 (-952 |#1|)) (-1091 (-409 (-952 |#1|)))))) +((-2319 (((-1171 |#2|) (-1 |#2| |#1|) (-1171 |#1|)) 13))) +(((-1169 |#1| |#2|) (-10 -7 (-15 -2319 ((-1171 |#2|) (-1 |#2| |#1|) (-1171 |#1|)))) (-1049) (-1049)) (T -1169)) +((-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1171 *5)) (-4 *5 (-1049)) (-4 *6 (-1049)) (-5 *2 (-1171 *6)) (-5 *1 (-1169 *5 *6))))) +(-10 -7 (-15 -2319 ((-1171 |#2|) (-1 |#2| |#1|) (-1171 |#1|)))) +((-1364 (((-420 (-1171 (-409 |#4|))) (-1171 (-409 |#4|))) 51)) (-1624 (((-420 (-1171 (-409 |#4|))) (-1171 (-409 |#4|))) 52))) +(((-1170 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1624 ((-420 (-1171 (-409 |#4|))) (-1171 (-409 |#4|)))) (-15 -1364 ((-420 (-1171 (-409 |#4|))) (-1171 (-409 |#4|))))) (-793) (-850) (-454) (-949 |#3| |#1| |#2|)) (T -1170)) +((-1364 (*1 *2 *3) (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-454)) (-4 *7 (-949 *6 *4 *5)) (-5 *2 (-420 (-1171 (-409 *7)))) (-5 *1 (-1170 *4 *5 *6 *7)) (-5 *3 (-1171 (-409 *7))))) (-1624 (*1 *2 *3) (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-454)) (-4 *7 (-949 *6 *4 *5)) (-5 *2 (-420 (-1171 (-409 *7)))) (-5 *1 (-1170 *4 *5 *6 *7)) (-5 *3 (-1171 (-409 *7)))))) +(-10 -7 (-15 -1624 ((-420 (-1171 (-409 |#4|))) (-1171 (-409 |#4|)))) (-15 -1364 ((-420 (-1171 (-409 |#4|))) (-1171 (-409 |#4|))))) +((-2988 (((-112) $ $) 171)) (-3230 (((-112) $) 43)) (-4036 (((-1264 |#1|) $ (-771)) NIL)) (-1771 (((-644 (-1081)) $) NIL)) (-3732 (($ (-1171 |#1|)) NIL)) (-1590 (((-1171 $) $ (-1081)) 82) (((-1171 |#1|) $) 71)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-2161 (($ $) 164 (|has| |#1| (-558)))) (-2345 (((-112) $) NIL (|has| |#1| (-558)))) (-1357 (((-771) $) NIL) (((-771) $ (-644 (-1081))) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-1890 (($ $ $) 158 (|has| |#1| (-558)))) (-2292 (((-420 (-1171 $)) (-1171 $)) 95 (|has| |#1| (-909)))) (-1378 (($ $) NIL (|has| |#1| (-454)))) (-1364 (((-420 $) $) NIL (|has| |#1| (-454)))) (-4066 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) 115 (|has| |#1| (-909)))) (-2085 (((-112) $ $) NIL (|has| |#1| (-365)))) (-2197 (($ $ (-771)) 61)) (-1583 (($ $ (-771)) 63)) (-3946 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-454)))) (-2463 (($) NIL T CONST)) (-2229 (((-3 |#1| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-1081) "failed") $) NIL)) (-4158 ((|#1| $) NIL) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-1081) $) NIL)) (-2610 (($ $ $ (-1081)) NIL (|has| |#1| (-172))) ((|#1| $ $) 160 (|has| |#1| (-172)))) (-2933 (($ $ $) NIL (|has| |#1| (-365)))) (-2814 (($ $) 80)) (-4089 (((-689 (-566)) (-689 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -3361 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) NIL) (((-689 |#1|) (-689 $)) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-2945 (($ $ $) NIL (|has| |#1| (-365)))) (-2218 (($ $ $) 131)) (-4058 (($ $ $) NIL (|has| |#1| (-558)))) (-1514 (((-2 (|:| -2397 |#1|) (|:| -2631 $) (|:| -3264 $)) $ $) NIL (|has| |#1| (-558)))) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL (|has| |#1| (-365)))) (-2616 (($ $) 165 (|has| |#1| (-454))) (($ $ (-1081)) NIL (|has| |#1| (-454)))) (-2804 (((-644 $) $) NIL)) (-1615 (((-112) $) NIL (|has| |#1| (-909)))) (-1896 (($ $ |#1| (-771) $) 69)) (-2926 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| (-1081) (-886 (-381))) (|has| |#1| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| (-1081) (-886 (-566))) (|has| |#1| (-886 (-566)))))) (-3503 (((-862) $ (-862)) 148)) (-2679 (((-771) $ $) NIL (|has| |#1| (-558)))) (-2389 (((-112) $) 48)) (-3039 (((-771) $) NIL)) (-2621 (((-3 $ "failed") $) NIL (|has| |#1| (-1150)))) (-1757 (($ (-1171 |#1|) (-1081)) 73) (($ (-1171 $) (-1081)) 89)) (-3394 (($ $ (-771)) 51)) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-1587 (((-644 $) $) NIL)) (-2497 (((-112) $) NIL)) (-1746 (($ |#1| (-771)) 87) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL)) (-2815 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $ (-1081)) NIL) (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) 153)) (-2749 (((-771) $) NIL) (((-771) $ (-1081)) NIL) (((-644 (-771)) $ (-644 (-1081))) NIL)) (-3021 (($ (-1 (-771) (-771)) $) NIL)) (-2319 (($ (-1 |#1| |#1|) $) NIL)) (-2513 (((-1171 |#1|) $) NIL)) (-2297 (((-3 (-1081) "failed") $) NIL)) (-2784 (($ $) NIL)) (-2794 ((|#1| $) 76)) (-2128 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-3380 (((-1157) $) NIL)) (-2307 (((-2 (|:| -2631 $) (|:| -3264 $)) $ (-771)) 60)) (-3738 (((-3 (-644 $) "failed") $) NIL)) (-4199 (((-3 (-644 $) "failed") $) NIL)) (-4108 (((-3 (-2 (|:| |var| (-1081)) (|:| -2201 (-771))) "failed") $) NIL)) (-3313 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3289 (($) NIL (|has| |#1| (-1150)) CONST)) (-4072 (((-1119) $) NIL)) (-2761 (((-112) $) 50)) (-2773 ((|#1| $) NIL)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) 103 (|has| |#1| (-454)))) (-2164 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) 167 (|has| |#1| (-454)))) (-3252 (($ $ (-771) |#1| $) 123)) (-2010 (((-420 (-1171 $)) (-1171 $)) 101 (|has| |#1| (-909)))) (-1893 (((-420 (-1171 $)) (-1171 $)) 100 (|has| |#1| (-909)))) (-1624 (((-420 $) $) 108 (|has| |#1| (-909)))) (-3005 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL (|has| |#1| (-365)))) (-2978 (((-3 $ "failed") $ |#1|) 163 (|has| |#1| (-558))) (((-3 $ "failed") $ $) 124 (|has| |#1| (-558)))) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-2023 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-1081) |#1|) NIL) (($ $ (-644 (-1081)) (-644 |#1|)) NIL) (($ $ (-1081) $) NIL) (($ $ (-644 (-1081)) (-644 $)) NIL)) (-4357 (((-771) $) NIL (|has| |#1| (-365)))) (-1309 ((|#1| $ |#1|) 150) (($ $ $) 151) (((-409 $) (-409 $) (-409 $)) NIL (|has| |#1| (-558))) ((|#1| (-409 $) |#1|) NIL (|has| |#1| (-365))) (((-409 $) $ (-409 $)) NIL (|has| |#1| (-558)))) (-2382 (((-3 $ "failed") $ (-771)) 54)) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) 172 (|has| |#1| (-365)))) (-4068 (($ $ (-1081)) NIL (|has| |#1| (-172))) ((|#1| $) 156 (|has| |#1| (-172)))) (-3629 (($ $ (-1081)) NIL) (($ $ (-644 (-1081))) NIL) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL) (($ $ (-771)) NIL) (($ $) NIL) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3902 (((-771) $) 78) (((-771) $ (-1081)) NIL) (((-644 (-771)) $ (-644 (-1081))) NIL)) (-2376 (((-892 (-381)) $) NIL (-12 (|has| (-1081) (-614 (-892 (-381)))) (|has| |#1| (-614 (-892 (-381)))))) (((-892 (-566)) $) NIL (-12 (|has| (-1081) (-614 (-892 (-566)))) (|has| |#1| (-614 (-892 (-566)))))) (((-538) $) NIL (-12 (|has| (-1081) (-614 (-538))) (|has| |#1| (-614 (-538)))))) (-3173 ((|#1| $) 162 (|has| |#1| (-454))) (($ $ (-1081)) NIL (|has| |#1| (-454)))) (-3391 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-909))))) (-2529 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558))) (((-3 (-409 $) "failed") (-409 $) $) NIL (|has| |#1| (-558)))) (-3152 (((-862) $) 149) (($ (-566)) NIL) (($ |#1|) 77) (($ (-1081)) NIL) (($ (-409 (-566))) NIL (-2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566)))))) (($ $) NIL (|has| |#1| (-558)))) (-1643 (((-644 |#1|) $) NIL)) (-2271 ((|#1| $ (-771)) NIL) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL)) (-2633 (((-3 $ "failed") $) NIL (-2768 (-12 (|has| $ (-145)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-2593 (((-771)) NIL T CONST)) (-2021 (($ $ $ (-771)) 41 (|has| |#1| (-172)))) (-3044 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL (|has| |#1| (-558)))) (-4356 (($) 17 T CONST)) (-4366 (($) 19 T CONST)) (-3497 (($ $ (-1081)) NIL) (($ $ (-644 (-1081))) NIL) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL) (($ $ (-771)) NIL) (($ $) NIL) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2914 (((-112) $ $) 120)) (-3025 (($ $ |#1|) 173 (|has| |#1| (-365)))) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) 90)) (** (($ $ (-921)) 14) (($ $ (-771)) 12)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 39) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) 129) (($ $ |#1|) NIL))) +(((-1171 |#1|) (-13 (-1240 |#1|) (-10 -8 (-15 -3503 ((-862) $ (-862))) (-15 -3252 ($ $ (-771) |#1| $)))) (-1049)) (T -1171)) +((-3503 (*1 *2 *1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-1171 *3)) (-4 *3 (-1049)))) (-3252 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-771)) (-5 *1 (-1171 *3)) (-4 *3 (-1049))))) +(-13 (-1240 |#1|) (-10 -8 (-15 -3503 ((-862) $ (-862))) (-15 -3252 ($ $ (-771) |#1| $)))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-1771 (((-644 (-1081)) $) NIL)) (-4347 (((-1175) $) 11)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-2161 (($ $) NIL (|has| |#1| (-558)))) (-2345 (((-112) $) NIL (|has| |#1| (-558)))) (-2331 (($ $ (-409 (-566))) NIL) (($ $ (-409 (-566)) (-409 (-566))) NIL)) (-4152 (((-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#1|))) $) NIL)) (-3963 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3630 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3967 (((-3 $ "failed") $ $) NIL)) (-1378 (($ $) NIL (|has| |#1| (-365)))) (-1364 (((-420 $) $) NIL (|has| |#1| (-365)))) (-1635 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2085 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3941 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3602 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1427 (($ (-771) (-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#1|)))) NIL)) (-3986 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3656 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2463 (($) NIL T CONST)) (-2229 (((-3 (-1166 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1173 |#1| |#2| |#3|) "failed") $) 36)) (-4158 (((-1166 |#1| |#2| |#3|) $) NIL) (((-1173 |#1| |#2| |#3|) $) NIL)) (-2933 (($ $ $) NIL (|has| |#1| (-365)))) (-2814 (($ $) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-1811 (((-409 (-566)) $) 59)) (-2945 (($ $ $) NIL (|has| |#1| (-365)))) (-2729 (($ (-409 (-566)) (-1166 |#1| |#2| |#3|)) NIL)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL (|has| |#1| (-365)))) (-1615 (((-112) $) NIL (|has| |#1| (-365)))) (-3772 (((-112) $) NIL)) (-2281 (($) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2679 (((-409 (-566)) $) NIL) (((-409 (-566)) $ (-409 (-566))) NIL)) (-2389 (((-112) $) NIL)) (-1575 (($ $ (-566)) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3394 (($ $ (-921)) NIL) (($ $ (-409 (-566))) NIL)) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-2497 (((-112) $) NIL)) (-1746 (($ |#1| (-409 (-566))) 20) (($ $ (-1081) (-409 (-566))) NIL) (($ $ (-644 (-1081)) (-644 (-409 (-566)))) NIL)) (-2319 (($ (-1 |#1| |#1|) $) NIL)) (-3619 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2784 (($ $) NIL)) (-2794 ((|#1| $) NIL)) (-2128 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2877 (((-1166 |#1| |#2| |#3|) $) 41)) (-3320 (((-3 (-1166 |#1| |#2| |#3|) "failed") $) NIL)) (-2719 (((-1166 |#1| |#2| |#3|) $) NIL)) (-3380 (((-1157) $) NIL)) (-2748 (($ $) NIL (|has| |#1| (-365)))) (-3313 (($ $) 39 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) NIL (-2768 (-12 (|has| |#1| (-15 -3313 (|#1| |#1| (-1175)))) (|has| |#1| (-15 -1771 ((-644 (-1175)) |#1|))) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-959)) (|has| |#1| (-1199))))) (($ $ (-1260 |#2|)) 40 (|has| |#1| (-38 (-409 (-566)))))) (-4072 (((-1119) $) NIL)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-365)))) (-2164 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-1624 (((-420 $) $) NIL (|has| |#1| (-365)))) (-3005 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL (|has| |#1| (-365)))) (-3369 (($ $ (-409 (-566))) NIL)) (-2978 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-3521 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2023 (((-1155 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-409 (-566))))))) (-4357 (((-771) $) NIL (|has| |#1| (-365)))) (-1309 ((|#1| $ (-409 (-566))) NIL) (($ $ $) NIL (|has| (-409 (-566)) (-1111)))) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL (|has| |#1| (-365)))) (-3629 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $ (-1260 |#2|)) 38)) (-3902 (((-409 (-566)) $) NIL)) (-3996 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3670 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3976 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3643 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3952 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3618 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1687 (($ $) NIL)) (-3152 (((-862) $) 62) (($ (-566)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1166 |#1| |#2| |#3|)) 30) (($ (-1173 |#1| |#2| |#3|)) 31) (($ (-1260 |#2|)) 26) (($ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $) NIL (|has| |#1| (-558)))) (-2271 ((|#1| $ (-409 (-566))) NIL)) (-2633 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2593 (((-771)) NIL T CONST)) (-4290 ((|#1| $) 12)) (-3044 (((-112) $ $) NIL)) (-4032 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3892 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3014 (((-112) $ $) NIL (|has| |#1| (-558)))) (-4008 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3684 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4057 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3917 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3603 ((|#1| $ (-409 (-566))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-409 (-566))))) (|has| |#1| (-15 -3152 (|#1| (-1175))))))) (-3964 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3929 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4044 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3904 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4020 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3879 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4356 (($) 22 T CONST)) (-4366 (($) 16 T CONST)) (-3497 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (-2914 (((-112) $ $) NIL)) (-3025 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) 24)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))))) +(((-1172 |#1| |#2| |#3|) (-13 (-1247 |#1| (-1166 |#1| |#2| |#3|)) (-1038 (-1173 |#1| |#2| |#3|)) (-616 (-1260 |#2|)) (-10 -8 (-15 -3629 ($ $ (-1260 |#2|))) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -3313 ($ $ (-1260 |#2|))) |%noBranch|))) (-1049) (-1175) |#1|) (T -1172)) +((-3629 (*1 *1 *1 *2) (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1172 *3 *4 *5)) (-4 *3 (-1049)) (-14 *5 *3))) (-3313 (*1 *1 *1 *2) (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1172 *3 *4 *5)) (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-14 *5 *3)))) +(-13 (-1247 |#1| (-1166 |#1| |#2| |#3|)) (-1038 (-1173 |#1| |#2| |#3|)) (-616 (-1260 |#2|)) (-10 -8 (-15 -3629 ($ $ (-1260 |#2|))) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -3313 ($ $ (-1260 |#2|))) |%noBranch|))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) 131)) (-1771 (((-644 (-1081)) $) NIL)) (-4347 (((-1175) $) 121)) (-2312 (((-1237 |#2| |#1|) $ (-771)) 69)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-2161 (($ $) NIL (|has| |#1| (-558)))) (-2345 (((-112) $) NIL (|has| |#1| (-558)))) (-2331 (($ $ (-771)) 85) (($ $ (-771) (-771)) 82)) (-4152 (((-1155 (-2 (|:| |k| (-771)) (|:| |c| |#1|))) $) 107)) (-3963 (($ $) 175 (|has| |#1| (-38 (-409 (-566)))))) (-3630 (($ $) 151 (|has| |#1| (-38 (-409 (-566)))))) (-3967 (((-3 $ "failed") $ $) NIL)) (-1635 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3941 (($ $) 171 (|has| |#1| (-38 (-409 (-566)))))) (-3602 (($ $) 147 (|has| |#1| (-38 (-409 (-566)))))) (-1427 (($ (-1155 (-2 (|:| |k| (-771)) (|:| |c| |#1|)))) 120) (($ (-1155 |#1|)) 115)) (-3986 (($ $) 179 (|has| |#1| (-38 (-409 (-566)))))) (-3656 (($ $) 155 (|has| |#1| (-38 (-409 (-566)))))) (-2463 (($) NIL T CONST)) (-2814 (($ $) NIL)) (-3245 (((-3 $ "failed") $) 25)) (-2183 (($ $) 28)) (-2016 (((-952 |#1|) $ (-771)) 81) (((-952 |#1|) $ (-771) (-771)) 83)) (-3772 (((-112) $) 126)) (-2281 (($) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2679 (((-771) $) 128) (((-771) $ (-771)) 130)) (-2389 (((-112) $) NIL)) (-1575 (($ $ (-566)) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3394 (($ $ (-921)) NIL)) (-3657 (($ (-1 |#1| (-566)) $) NIL)) (-2497 (((-112) $) NIL)) (-1746 (($ |#1| (-771)) 13) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL)) (-2319 (($ (-1 |#1| |#1|) $) NIL)) (-3619 (($ $) 137 (|has| |#1| (-38 (-409 (-566)))))) (-2784 (($ $) NIL)) (-2794 ((|#1| $) NIL)) (-3380 (((-1157) $) NIL)) (-3313 (($ $) 135 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) NIL (-2768 (-12 (|has| |#1| (-15 -3313 (|#1| |#1| (-1175)))) (|has| |#1| (-15 -1771 ((-644 (-1175)) |#1|))) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-959)) (|has| |#1| (-1199))))) (($ $ (-1260 |#2|)) 136 (|has| |#1| (-38 (-409 (-566)))))) (-4072 (((-1119) $) NIL)) (-3369 (($ $ (-771)) 15)) (-2978 (((-3 $ "failed") $ $) 26 (|has| |#1| (-558)))) (-3521 (($ $) 139 (|has| |#1| (-38 (-409 (-566)))))) (-2023 (((-1155 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-771)))))) (-1309 ((|#1| $ (-771)) 124) (($ $ $) 134 (|has| (-771) (-1111)))) (-3629 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-771) |#1|)))) (($ $) 29 (|has| |#1| (-15 * (|#1| (-771) |#1|)))) (($ $ (-1260 |#2|)) 31)) (-3902 (((-771) $) NIL)) (-3996 (($ $) 181 (|has| |#1| (-38 (-409 (-566)))))) (-3670 (($ $) 157 (|has| |#1| (-38 (-409 (-566)))))) (-3976 (($ $) 177 (|has| |#1| (-38 (-409 (-566)))))) (-3643 (($ $) 153 (|has| |#1| (-38 (-409 (-566)))))) (-3952 (($ $) 173 (|has| |#1| (-38 (-409 (-566)))))) (-3618 (($ $) 149 (|has| |#1| (-38 (-409 (-566)))))) (-1687 (($ $) NIL)) (-3152 (((-862) $) 208) (($ (-566)) NIL) (($ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $) NIL (|has| |#1| (-558))) (($ |#1|) 132 (|has| |#1| (-172))) (($ (-1237 |#2| |#1|)) 55) (($ (-1260 |#2|)) 36)) (-1643 (((-1155 |#1|) $) 103)) (-2271 ((|#1| $ (-771)) 123)) (-2633 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2593 (((-771)) NIL T CONST)) (-4290 ((|#1| $) 58)) (-3044 (((-112) $ $) NIL)) (-4032 (($ $) 187 (|has| |#1| (-38 (-409 (-566)))))) (-3892 (($ $) 163 (|has| |#1| (-38 (-409 (-566)))))) (-3014 (((-112) $ $) NIL (|has| |#1| (-558)))) (-4008 (($ $) 183 (|has| |#1| (-38 (-409 (-566)))))) (-3684 (($ $) 159 (|has| |#1| (-38 (-409 (-566)))))) (-4057 (($ $) 191 (|has| |#1| (-38 (-409 (-566)))))) (-3917 (($ $) 167 (|has| |#1| (-38 (-409 (-566)))))) (-3603 ((|#1| $ (-771)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-771)))) (|has| |#1| (-15 -3152 (|#1| (-1175))))))) (-3964 (($ $) 193 (|has| |#1| (-38 (-409 (-566)))))) (-3929 (($ $) 169 (|has| |#1| (-38 (-409 (-566)))))) (-4044 (($ $) 189 (|has| |#1| (-38 (-409 (-566)))))) (-3904 (($ $) 165 (|has| |#1| (-38 (-409 (-566)))))) (-4020 (($ $) 185 (|has| |#1| (-38 (-409 (-566)))))) (-3879 (($ $) 161 (|has| |#1| (-38 (-409 (-566)))))) (-4356 (($) 17 T CONST)) (-4366 (($) 20 T CONST)) (-3497 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-771) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-771) |#1|))))) (-2914 (((-112) $ $) NIL)) (-3025 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3012 (($ $) NIL) (($ $ $) 200)) (-3002 (($ $ $) 35)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ |#1|) 205 (|has| |#1| (-365))) (($ $ $) 140 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 143 (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 138) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))))) +(((-1173 |#1| |#2| |#3|) (-13 (-1255 |#1|) (-10 -8 (-15 -3152 ($ (-1237 |#2| |#1|))) (-15 -2312 ((-1237 |#2| |#1|) $ (-771))) (-15 -3152 ($ (-1260 |#2|))) (-15 -3629 ($ $ (-1260 |#2|))) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -3313 ($ $ (-1260 |#2|))) |%noBranch|))) (-1049) (-1175) |#1|) (T -1173)) +((-3152 (*1 *1 *2) (-12 (-5 *2 (-1237 *4 *3)) (-4 *3 (-1049)) (-14 *4 (-1175)) (-14 *5 *3) (-5 *1 (-1173 *3 *4 *5)))) (-2312 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1237 *5 *4)) (-5 *1 (-1173 *4 *5 *6)) (-4 *4 (-1049)) (-14 *5 (-1175)) (-14 *6 *4))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1173 *3 *4 *5)) (-4 *3 (-1049)) (-14 *5 *3))) (-3629 (*1 *1 *1 *2) (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1173 *3 *4 *5)) (-4 *3 (-1049)) (-14 *5 *3))) (-3313 (*1 *1 *1 *2) (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1173 *3 *4 *5)) (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-14 *5 *3)))) +(-13 (-1255 |#1|) (-10 -8 (-15 -3152 ($ (-1237 |#2| |#1|))) (-15 -2312 ((-1237 |#2| |#1|) $ (-771))) (-15 -3152 ($ (-1260 |#2|))) (-15 -3629 ($ $ (-1260 |#2|))) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -3313 ($ $ (-1260 |#2|))) |%noBranch|))) +((-3152 (((-862) $) 33) (($ (-1175)) 35)) (-2768 (($ (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 46)) (-2756 (($ (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 39) (($ $) 40)) (-3059 (($ (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 41)) (-3048 (($ (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 43)) (-3037 (($ (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 42)) (-3027 (($ (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 44)) (-2050 (($ (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 47)) (-12 (($ (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 45))) +(((-1174) (-13 (-613 (-862)) (-10 -8 (-15 -3152 ($ (-1175))) (-15 -3059 ($ (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -3037 ($ (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -3048 ($ (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -3027 ($ (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2768 ($ (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2050 ($ (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2756 ($ (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2756 ($ $))))) (T -1174)) +((-3152 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1174)))) (-3059 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174)))) (-5 *1 (-1174)))) (-3037 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174)))) (-5 *1 (-1174)))) (-3048 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174)))) (-5 *1 (-1174)))) (-3027 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174)))) (-5 *1 (-1174)))) (-2768 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174)))) (-5 *1 (-1174)))) (-2050 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174)))) (-5 *1 (-1174)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174)))) (-5 *1 (-1174)))) (-2756 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174)))) (-5 *1 (-1174)))) (-2756 (*1 *1 *1) (-5 *1 (-1174)))) +(-13 (-613 (-862)) (-10 -8 (-15 -3152 ($ (-1175))) (-15 -3059 ($ (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -3037 ($ (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -3048 ($ (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -3027 ($ (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2768 ($ (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2050 ($ (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2756 ($ (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2756 ($ $)))) +((-2988 (((-112) $ $) NIL)) (-4249 (($ $ (-644 (-862))) 64)) (-2259 (($ $ (-644 (-862))) 62)) (-3822 (((-1157) $) 103)) (-2453 (((-2 (|:| -4237 (-644 (-862))) (|:| -3920 (-644 (-862))) (|:| |presup| (-644 (-862))) (|:| -4168 (-644 (-862))) (|:| |args| (-644 (-862)))) $) 110)) (-2523 (((-112) $) 23)) (-2473 (($ $ (-644 (-644 (-862)))) 61) (($ $ (-2 (|:| -4237 (-644 (-862))) (|:| -3920 (-644 (-862))) (|:| |presup| (-644 (-862))) (|:| -4168 (-644 (-862))) (|:| |args| (-644 (-862))))) 101)) (-2463 (($) 166 T CONST)) (-1645 (((-1269)) 138)) (-2926 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 71) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 78)) (-1860 (($) 124) (($ $) 133)) (-1368 (($ $) 102)) (-1478 (($ $ $) NIL)) (-2599 (($ $ $) NIL)) (-3770 (((-644 $) $) 139)) (-3380 (((-1157) $) 116)) (-4072 (((-1119) $) NIL)) (-1309 (($ $ (-644 (-862))) 63)) (-2376 (((-538) $) 48) (((-1175) $) 49) (((-892 (-566)) $) 82) (((-892 (-381)) $) 80)) (-3152 (((-862) $) 55) (($ (-1157)) 50)) (-3044 (((-112) $ $) NIL)) (-3863 (($ $ (-644 (-862))) 65)) (-2226 (((-1157) $) 34) (((-1157) $ (-112)) 35) (((-1269) (-822) $) 36) (((-1269) (-822) $ (-112)) 37)) (-2968 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2914 (((-112) $ $) 51)) (-2956 (((-112) $ $) NIL)) (-2935 (((-112) $ $) 52))) +(((-1175) (-13 (-850) (-614 (-538)) (-828) (-614 (-1175)) (-616 (-1157)) (-614 (-892 (-566))) (-614 (-892 (-381))) (-886 (-566)) (-886 (-381)) (-10 -8 (-15 -1860 ($)) (-15 -1860 ($ $)) (-15 -1645 ((-1269))) (-15 -1368 ($ $)) (-15 -2523 ((-112) $)) (-15 -2453 ((-2 (|:| -4237 (-644 (-862))) (|:| -3920 (-644 (-862))) (|:| |presup| (-644 (-862))) (|:| -4168 (-644 (-862))) (|:| |args| (-644 (-862)))) $)) (-15 -2473 ($ $ (-644 (-644 (-862))))) (-15 -2473 ($ $ (-2 (|:| -4237 (-644 (-862))) (|:| -3920 (-644 (-862))) (|:| |presup| (-644 (-862))) (|:| -4168 (-644 (-862))) (|:| |args| (-644 (-862)))))) (-15 -2259 ($ $ (-644 (-862)))) (-15 -4249 ($ $ (-644 (-862)))) (-15 -3863 ($ $ (-644 (-862)))) (-15 -1309 ($ $ (-644 (-862)))) (-15 -3822 ((-1157) $)) (-15 -3770 ((-644 $) $)) (-15 -2463 ($) -1623)))) (T -1175)) +((-1860 (*1 *1) (-5 *1 (-1175))) (-1860 (*1 *1 *1) (-5 *1 (-1175))) (-1645 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-1175)))) (-1368 (*1 *1 *1) (-5 *1 (-1175))) (-2523 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1175)))) (-2453 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -4237 (-644 (-862))) (|:| -3920 (-644 (-862))) (|:| |presup| (-644 (-862))) (|:| -4168 (-644 (-862))) (|:| |args| (-644 (-862))))) (-5 *1 (-1175)))) (-2473 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-644 (-862)))) (-5 *1 (-1175)))) (-2473 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -4237 (-644 (-862))) (|:| -3920 (-644 (-862))) (|:| |presup| (-644 (-862))) (|:| -4168 (-644 (-862))) (|:| |args| (-644 (-862))))) (-5 *1 (-1175)))) (-2259 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-1175)))) (-4249 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-1175)))) (-3863 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-1175)))) (-1309 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-1175)))) (-3822 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1175)))) (-3770 (*1 *2 *1) (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-1175)))) (-2463 (*1 *1) (-5 *1 (-1175)))) +(-13 (-850) (-614 (-538)) (-828) (-614 (-1175)) (-616 (-1157)) (-614 (-892 (-566))) (-614 (-892 (-381))) (-886 (-566)) (-886 (-381)) (-10 -8 (-15 -1860 ($)) (-15 -1860 ($ $)) (-15 -1645 ((-1269))) (-15 -1368 ($ $)) (-15 -2523 ((-112) $)) (-15 -2453 ((-2 (|:| -4237 (-644 (-862))) (|:| -3920 (-644 (-862))) (|:| |presup| (-644 (-862))) (|:| -4168 (-644 (-862))) (|:| |args| (-644 (-862)))) $)) (-15 -2473 ($ $ (-644 (-644 (-862))))) (-15 -2473 ($ $ (-2 (|:| -4237 (-644 (-862))) (|:| -3920 (-644 (-862))) (|:| |presup| (-644 (-862))) (|:| -4168 (-644 (-862))) (|:| |args| (-644 (-862)))))) (-15 -2259 ($ $ (-644 (-862)))) (-15 -4249 ($ $ (-644 (-862)))) (-15 -3863 ($ $ (-644 (-862)))) (-15 -1309 ($ $ (-644 (-862)))) (-15 -3822 ((-1157) $)) (-15 -3770 ((-644 $) $)) (-15 -2463 ($) -1623))) +((-3007 (((-1264 |#1|) |#1| (-921)) 18) (((-1264 |#1|) (-644 |#1|)) 25))) +(((-1176 |#1|) (-10 -7 (-15 -3007 ((-1264 |#1|) (-644 |#1|))) (-15 -3007 ((-1264 |#1|) |#1| (-921)))) (-1049)) (T -1176)) +((-3007 (*1 *2 *3 *4) (-12 (-5 *4 (-921)) (-5 *2 (-1264 *3)) (-5 *1 (-1176 *3)) (-4 *3 (-1049)))) (-3007 (*1 *2 *3) (-12 (-5 *3 (-644 *4)) (-4 *4 (-1049)) (-5 *2 (-1264 *4)) (-5 *1 (-1176 *4))))) +(-10 -7 (-15 -3007 ((-1264 |#1|) (-644 |#1|))) (-15 -3007 ((-1264 |#1|) |#1| (-921)))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-2161 (($ $) NIL (|has| |#1| (-558)))) (-2345 (((-112) $) NIL (|has| |#1| (-558)))) (-3967 (((-3 $ "failed") $ $) NIL)) (-2463 (($) NIL T CONST)) (-2229 (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) NIL)) (-4158 (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) NIL)) (-2814 (($ $) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-2616 (($ $) NIL (|has| |#1| (-454)))) (-1896 (($ $ |#1| (-971) $) NIL)) (-2389 (((-112) $) 17)) (-3039 (((-771) $) NIL)) (-2497 (((-112) $) NIL)) (-1746 (($ |#1| (-971)) NIL)) (-2749 (((-971) $) NIL)) (-3021 (($ (-1 (-971) (-971)) $) NIL)) (-2319 (($ (-1 |#1| |#1|) $) NIL)) (-2784 (($ $) NIL)) (-2794 ((|#1| $) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-2761 (((-112) $) NIL)) (-2773 ((|#1| $) NIL)) (-3252 (($ $ (-971) |#1| $) NIL (-12 (|has| (-971) (-131)) (|has| |#1| (-558))))) (-2978 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558)))) (-3902 (((-971) $) NIL)) (-3173 ((|#1| $) NIL (|has| |#1| (-454)))) (-3152 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL (|has| |#1| (-558))) (($ |#1|) NIL) (($ (-409 (-566))) NIL (-2768 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))))) (-1643 (((-644 |#1|) $) NIL)) (-2271 ((|#1| $ (-971)) NIL)) (-2633 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2593 (((-771)) NIL T CONST)) (-2021 (($ $ $ (-771)) NIL (|has| |#1| (-172)))) (-3044 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL (|has| |#1| (-558)))) (-4356 (($) 11 T CONST)) (-4366 (($) NIL T CONST)) (-2914 (((-112) $ $) NIL)) (-3025 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) 21)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 22) (($ $ |#1|) NIL) (($ |#1| $) 16) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))))) +(((-1177 |#1|) (-13 (-327 |#1| (-971)) (-10 -8 (IF (|has| |#1| (-558)) (IF (|has| (-971) (-131)) (-15 -3252 ($ $ (-971) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4412)) (-6 -4412) |%noBranch|))) (-1049)) (T -1177)) +((-3252 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-971)) (-4 *2 (-131)) (-5 *1 (-1177 *3)) (-4 *3 (-558)) (-4 *3 (-1049))))) +(-13 (-327 |#1| (-971)) (-10 -8 (IF (|has| |#1| (-558)) (IF (|has| (-971) (-131)) (-15 -3252 ($ $ (-971) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4412)) (-6 -4412) |%noBranch|))) +((-4270 (((-1179) (-1175) $) 25)) (-4273 (($) 29)) (-3607 (((-3 (|:| |fst| (-436)) (|:| -3907 "void")) (-1175) $) 22)) (-4388 (((-1269) (-1175) (-3 (|:| |fst| (-436)) (|:| -3907 "void")) $) 41) (((-1269) (-1175) (-3 (|:| |fst| (-436)) (|:| -3907 "void"))) 42) (((-1269) (-3 (|:| |fst| (-436)) (|:| -3907 "void"))) 43)) (-3598 (((-1269) (-1175)) 58)) (-3035 (((-1269) (-1175) $) 55) (((-1269) (-1175)) 56) (((-1269)) 57)) (-2979 (((-1269) (-1175)) 37)) (-2681 (((-1175)) 36)) (-3493 (($) 34)) (-2087 (((-439) (-1175) (-439) (-1175) $) 45) (((-439) (-644 (-1175)) (-439) (-1175) $) 49) (((-439) (-1175) (-439)) 46) (((-439) (-1175) (-439) (-1175)) 50)) (-2013 (((-1175)) 35)) (-3152 (((-862) $) 28)) (-1531 (((-1269)) 30) (((-1269) (-1175)) 33)) (-3522 (((-644 (-1175)) (-1175) $) 24)) (-1298 (((-1269) (-1175) (-644 (-1175)) $) 38) (((-1269) (-1175) (-644 (-1175))) 39) (((-1269) (-644 (-1175))) 40))) +(((-1178) (-13 (-613 (-862)) (-10 -8 (-15 -4273 ($)) (-15 -1531 ((-1269))) (-15 -1531 ((-1269) (-1175))) (-15 -2087 ((-439) (-1175) (-439) (-1175) $)) (-15 -2087 ((-439) (-644 (-1175)) (-439) (-1175) $)) (-15 -2087 ((-439) (-1175) (-439))) (-15 -2087 ((-439) (-1175) (-439) (-1175))) (-15 -2979 ((-1269) (-1175))) (-15 -2013 ((-1175))) (-15 -2681 ((-1175))) (-15 -1298 ((-1269) (-1175) (-644 (-1175)) $)) (-15 -1298 ((-1269) (-1175) (-644 (-1175)))) (-15 -1298 ((-1269) (-644 (-1175)))) (-15 -4388 ((-1269) (-1175) (-3 (|:| |fst| (-436)) (|:| -3907 "void")) $)) (-15 -4388 ((-1269) (-1175) (-3 (|:| |fst| (-436)) (|:| -3907 "void")))) (-15 -4388 ((-1269) (-3 (|:| |fst| (-436)) (|:| -3907 "void")))) (-15 -3035 ((-1269) (-1175) $)) (-15 -3035 ((-1269) (-1175))) (-15 -3035 ((-1269))) (-15 -3598 ((-1269) (-1175))) (-15 -3493 ($)) (-15 -3607 ((-3 (|:| |fst| (-436)) (|:| -3907 "void")) (-1175) $)) (-15 -3522 ((-644 (-1175)) (-1175) $)) (-15 -4270 ((-1179) (-1175) $))))) (T -1178)) +((-4273 (*1 *1) (-5 *1 (-1178))) (-1531 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-1178)))) (-1531 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1269)) (-5 *1 (-1178)))) (-2087 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-439)) (-5 *3 (-1175)) (-5 *1 (-1178)))) (-2087 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-439)) (-5 *3 (-644 (-1175))) (-5 *4 (-1175)) (-5 *1 (-1178)))) (-2087 (*1 *2 *3 *2) (-12 (-5 *2 (-439)) (-5 *3 (-1175)) (-5 *1 (-1178)))) (-2087 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-439)) (-5 *3 (-1175)) (-5 *1 (-1178)))) (-2979 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1269)) (-5 *1 (-1178)))) (-2013 (*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1178)))) (-2681 (*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1178)))) (-1298 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-644 (-1175))) (-5 *3 (-1175)) (-5 *2 (-1269)) (-5 *1 (-1178)))) (-1298 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-1175))) (-5 *3 (-1175)) (-5 *2 (-1269)) (-5 *1 (-1178)))) (-1298 (*1 *2 *3) (-12 (-5 *3 (-644 (-1175))) (-5 *2 (-1269)) (-5 *1 (-1178)))) (-4388 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1175)) (-5 *4 (-3 (|:| |fst| (-436)) (|:| -3907 "void"))) (-5 *2 (-1269)) (-5 *1 (-1178)))) (-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-3 (|:| |fst| (-436)) (|:| -3907 "void"))) (-5 *2 (-1269)) (-5 *1 (-1178)))) (-4388 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-436)) (|:| -3907 "void"))) (-5 *2 (-1269)) (-5 *1 (-1178)))) (-3035 (*1 *2 *3 *1) (-12 (-5 *3 (-1175)) (-5 *2 (-1269)) (-5 *1 (-1178)))) (-3035 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1269)) (-5 *1 (-1178)))) (-3035 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-1178)))) (-3598 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1269)) (-5 *1 (-1178)))) (-3493 (*1 *1) (-5 *1 (-1178))) (-3607 (*1 *2 *3 *1) (-12 (-5 *3 (-1175)) (-5 *2 (-3 (|:| |fst| (-436)) (|:| -3907 "void"))) (-5 *1 (-1178)))) (-3522 (*1 *2 *3 *1) (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-1178)) (-5 *3 (-1175)))) (-4270 (*1 *2 *3 *1) (-12 (-5 *3 (-1175)) (-5 *2 (-1179)) (-5 *1 (-1178))))) +(-13 (-613 (-862)) (-10 -8 (-15 -4273 ($)) (-15 -1531 ((-1269))) (-15 -1531 ((-1269) (-1175))) (-15 -2087 ((-439) (-1175) (-439) (-1175) $)) (-15 -2087 ((-439) (-644 (-1175)) (-439) (-1175) $)) (-15 -2087 ((-439) (-1175) (-439))) (-15 -2087 ((-439) (-1175) (-439) (-1175))) (-15 -2979 ((-1269) (-1175))) (-15 -2013 ((-1175))) (-15 -2681 ((-1175))) (-15 -1298 ((-1269) (-1175) (-644 (-1175)) $)) (-15 -1298 ((-1269) (-1175) (-644 (-1175)))) (-15 -1298 ((-1269) (-644 (-1175)))) (-15 -4388 ((-1269) (-1175) (-3 (|:| |fst| (-436)) (|:| -3907 "void")) $)) (-15 -4388 ((-1269) (-1175) (-3 (|:| |fst| (-436)) (|:| -3907 "void")))) (-15 -4388 ((-1269) (-3 (|:| |fst| (-436)) (|:| -3907 "void")))) (-15 -3035 ((-1269) (-1175) $)) (-15 -3035 ((-1269) (-1175))) (-15 -3035 ((-1269))) (-15 -3598 ((-1269) (-1175))) (-15 -3493 ($)) (-15 -3607 ((-3 (|:| |fst| (-436)) (|:| -3907 "void")) (-1175) $)) (-15 -3522 ((-644 (-1175)) (-1175) $)) (-15 -4270 ((-1179) (-1175) $)))) +((-3276 (((-644 (-644 (-3 (|:| -1368 (-1175)) (|:| -3747 (-644 (-3 (|:| S (-1175)) (|:| P (-952 (-566))))))))) $) 66)) (-3129 (((-644 (-3 (|:| -1368 (-1175)) (|:| -3747 (-644 (-3 (|:| S (-1175)) (|:| P (-952 (-566)))))))) (-436) $) 47)) (-1537 (($ (-644 (-2 (|:| -2674 (-1175)) (|:| -2636 (-439))))) 17)) (-3598 (((-1269) $) 74)) (-4251 (((-644 (-1175)) $) 22)) (-1876 (((-1103) $) 60)) (-2643 (((-439) (-1175) $) 27)) (-3325 (((-644 (-1175)) $) 30)) (-3493 (($) 19)) (-2087 (((-439) (-644 (-1175)) (-439) $) 25) (((-439) (-1175) (-439) $) 24)) (-3152 (((-862) $) 9) (((-1187 (-1175) (-439)) $) 13))) +(((-1179) (-13 (-613 (-862)) (-10 -8 (-15 -3152 ((-1187 (-1175) (-439)) $)) (-15 -3493 ($)) (-15 -2087 ((-439) (-644 (-1175)) (-439) $)) (-15 -2087 ((-439) (-1175) (-439) $)) (-15 -2643 ((-439) (-1175) $)) (-15 -4251 ((-644 (-1175)) $)) (-15 -3129 ((-644 (-3 (|:| -1368 (-1175)) (|:| -3747 (-644 (-3 (|:| S (-1175)) (|:| P (-952 (-566)))))))) (-436) $)) (-15 -3325 ((-644 (-1175)) $)) (-15 -3276 ((-644 (-644 (-3 (|:| -1368 (-1175)) (|:| -3747 (-644 (-3 (|:| S (-1175)) (|:| P (-952 (-566))))))))) $)) (-15 -1876 ((-1103) $)) (-15 -3598 ((-1269) $)) (-15 -1537 ($ (-644 (-2 (|:| -2674 (-1175)) (|:| -2636 (-439))))))))) (T -1179)) +((-3152 (*1 *2 *1) (-12 (-5 *2 (-1187 (-1175) (-439))) (-5 *1 (-1179)))) (-3493 (*1 *1) (-5 *1 (-1179))) (-2087 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-439)) (-5 *3 (-644 (-1175))) (-5 *1 (-1179)))) (-2087 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-439)) (-5 *3 (-1175)) (-5 *1 (-1179)))) (-2643 (*1 *2 *3 *1) (-12 (-5 *3 (-1175)) (-5 *2 (-439)) (-5 *1 (-1179)))) (-4251 (*1 *2 *1) (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-1179)))) (-3129 (*1 *2 *3 *1) (-12 (-5 *3 (-436)) (-5 *2 (-644 (-3 (|:| -1368 (-1175)) (|:| -3747 (-644 (-3 (|:| S (-1175)) (|:| P (-952 (-566))))))))) (-5 *1 (-1179)))) (-3325 (*1 *2 *1) (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-1179)))) (-3276 (*1 *2 *1) (-12 (-5 *2 (-644 (-644 (-3 (|:| -1368 (-1175)) (|:| -3747 (-644 (-3 (|:| S (-1175)) (|:| P (-952 (-566)))))))))) (-5 *1 (-1179)))) (-1876 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-1179)))) (-3598 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-1179)))) (-1537 (*1 *1 *2) (-12 (-5 *2 (-644 (-2 (|:| -2674 (-1175)) (|:| -2636 (-439))))) (-5 *1 (-1179))))) +(-13 (-613 (-862)) (-10 -8 (-15 -3152 ((-1187 (-1175) (-439)) $)) (-15 -3493 ($)) (-15 -2087 ((-439) (-644 (-1175)) (-439) $)) (-15 -2087 ((-439) (-1175) (-439) $)) (-15 -2643 ((-439) (-1175) $)) (-15 -4251 ((-644 (-1175)) $)) (-15 -3129 ((-644 (-3 (|:| -1368 (-1175)) (|:| -3747 (-644 (-3 (|:| S (-1175)) (|:| P (-952 (-566)))))))) (-436) $)) (-15 -3325 ((-644 (-1175)) $)) (-15 -3276 ((-644 (-644 (-3 (|:| -1368 (-1175)) (|:| -3747 (-644 (-3 (|:| S (-1175)) (|:| P (-952 (-566))))))))) $)) (-15 -1876 ((-1103) $)) (-15 -3598 ((-1269) $)) (-15 -1537 ($ (-644 (-2 (|:| -2674 (-1175)) (|:| -2636 (-439)))))))) +((-2988 (((-112) $ $) NIL)) (-2229 (((-3 (-566) "failed") $) 29) (((-3 (-225) "failed") $) 35) (((-3 (-508) "failed") $) 43) (((-3 (-1157) "failed") $) 47)) (-4158 (((-566) $) 30) (((-225) $) 36) (((-508) $) 40) (((-1157) $) 48)) (-3471 (((-112) $) 53)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3896 (((-3 (-566) (-225) (-508) (-1157) $) $) 55)) (-1389 (((-644 $) $) 57)) (-2376 (((-1103) $) 24) (($ (-1103)) 25)) (-4274 (((-112) $) 56)) (-3152 (((-862) $) 23) (($ (-566)) 26) (($ (-225)) 32) (($ (-508)) 38) (($ (-1157)) 44) (((-538) $) 59) (((-566) $) 31) (((-225) $) 37) (((-508) $) 41) (((-1157) $) 49)) (-4344 (((-112) $ (|[\|\|]| (-566))) 10) (((-112) $ (|[\|\|]| (-225))) 13) (((-112) $ (|[\|\|]| (-508))) 19) (((-112) $ (|[\|\|]| (-1157))) 16)) (-3620 (($ (-508) (-644 $)) 51) (($ $ (-644 $)) 52)) (-3044 (((-112) $ $) NIL)) (-1513 (((-566) $) 27) (((-225) $) 33) (((-508) $) 39) (((-1157) $) 45)) (-2914 (((-112) $ $) 7))) +(((-1180) (-13 (-1259) (-1099) (-1038 (-566)) (-1038 (-225)) (-1038 (-508)) (-1038 (-1157)) (-613 (-538)) (-10 -8 (-15 -2376 ((-1103) $)) (-15 -2376 ($ (-1103))) (-15 -3152 ((-566) $)) (-15 -1513 ((-566) $)) (-15 -3152 ((-225) $)) (-15 -1513 ((-225) $)) (-15 -3152 ((-508) $)) (-15 -1513 ((-508) $)) (-15 -3152 ((-1157) $)) (-15 -1513 ((-1157) $)) (-15 -3620 ($ (-508) (-644 $))) (-15 -3620 ($ $ (-644 $))) (-15 -3471 ((-112) $)) (-15 -3896 ((-3 (-566) (-225) (-508) (-1157) $) $)) (-15 -1389 ((-644 $) $)) (-15 -4274 ((-112) $)) (-15 -4344 ((-112) $ (|[\|\|]| (-566)))) (-15 -4344 ((-112) $ (|[\|\|]| (-225)))) (-15 -4344 ((-112) $ (|[\|\|]| (-508)))) (-15 -4344 ((-112) $ (|[\|\|]| (-1157))))))) (T -1180)) +((-2376 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-1180)))) (-2376 (*1 *1 *2) (-12 (-5 *2 (-1103)) (-5 *1 (-1180)))) (-3152 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-1180)))) (-1513 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-1180)))) (-3152 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1180)))) (-1513 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1180)))) (-3152 (*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-1180)))) (-1513 (*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-1180)))) (-3152 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1180)))) (-1513 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1180)))) (-3620 (*1 *1 *2 *3) (-12 (-5 *2 (-508)) (-5 *3 (-644 (-1180))) (-5 *1 (-1180)))) (-3620 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-1180))) (-5 *1 (-1180)))) (-3471 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1180)))) (-3896 (*1 *2 *1) (-12 (-5 *2 (-3 (-566) (-225) (-508) (-1157) (-1180))) (-5 *1 (-1180)))) (-1389 (*1 *2 *1) (-12 (-5 *2 (-644 (-1180))) (-5 *1 (-1180)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1180)))) (-4344 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-566))) (-5 *2 (-112)) (-5 *1 (-1180)))) (-4344 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-225))) (-5 *2 (-112)) (-5 *1 (-1180)))) (-4344 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-508))) (-5 *2 (-112)) (-5 *1 (-1180)))) (-4344 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1157))) (-5 *2 (-112)) (-5 *1 (-1180))))) +(-13 (-1259) (-1099) (-1038 (-566)) (-1038 (-225)) (-1038 (-508)) (-1038 (-1157)) (-613 (-538)) (-10 -8 (-15 -2376 ((-1103) $)) (-15 -2376 ($ (-1103))) (-15 -3152 ((-566) $)) (-15 -1513 ((-566) $)) (-15 -3152 ((-225) $)) (-15 -1513 ((-225) $)) (-15 -3152 ((-508) $)) (-15 -1513 ((-508) $)) (-15 -3152 ((-1157) $)) (-15 -1513 ((-1157) $)) (-15 -3620 ($ (-508) (-644 $))) (-15 -3620 ($ $ (-644 $))) (-15 -3471 ((-112) $)) (-15 -3896 ((-3 (-566) (-225) (-508) (-1157) $) $)) (-15 -1389 ((-644 $) $)) (-15 -4274 ((-112) $)) (-15 -4344 ((-112) $ (|[\|\|]| (-566)))) (-15 -4344 ((-112) $ (|[\|\|]| (-225)))) (-15 -4344 ((-112) $ (|[\|\|]| (-508)))) (-15 -4344 ((-112) $ (|[\|\|]| (-1157)))))) +((-2988 (((-112) $ $) NIL)) (-3870 (((-771)) 22)) (-2463 (($) 12 T CONST)) (-2715 (($) 27)) (-1478 (($ $ $) NIL) (($) 19 T CONST)) (-2599 (($ $ $) NIL) (($) 20 T CONST)) (-1866 (((-921) $) 24)) (-3380 (((-1157) $) NIL)) (-2835 (($ (-921)) 23)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) NIL)) (-3044 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2935 (((-112) $ $) NIL))) +(((-1181 |#1|) (-13 (-844) (-10 -8 (-15 -2463 ($) -1623))) (-921)) (T -1181)) +((-2463 (*1 *1) (-12 (-5 *1 (-1181 *2)) (-14 *2 (-921))))) +(-13 (-844) (-10 -8 (-15 -2463 ($) -1623))) ((|Integer|) (NOT (> (INTEGER-LENGTH |#1|) @1))) -((-3007 (((-112) $ $) NIL)) (-1970 (((-771)) NIL)) (-3012 (($) 19 T CONST)) (-1552 (($) NIL)) (-2097 (($ $ $) NIL) (($) 12 T CONST)) (-3962 (($ $ $) NIL) (($) 18 T CONST)) (-3681 (((-921) $) NIL)) (-4117 (((-1157) $) NIL)) (-2178 (($ (-921)) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) NIL)) (-2367 (($ $ $) 21)) (-2356 (($ $ $) 20)) (-3117 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL)) (-2995 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL))) -(((-1182 |#1|) (-13 (-844) (-10 -8 (-15 -2356 ($ $ $)) (-15 -2367 ($ $ $)) (-15 -3012 ($) -3704))) (-921)) (T -1182)) -((-2356 (*1 *1 *1 *1) (-12 (-5 *1 (-1182 *2)) (-14 *2 (-921)))) (-2367 (*1 *1 *1 *1) (-12 (-5 *1 (-1182 *2)) (-14 *2 (-921)))) (-3012 (*1 *1) (-12 (-5 *1 (-1182 *2)) (-14 *2 (-921))))) -(-13 (-844) (-10 -8 (-15 -2356 ($ $ $)) (-15 -2367 ($ $ $)) (-15 -3012 ($) -3704))) +((-2988 (((-112) $ $) NIL)) (-3870 (((-771)) NIL)) (-2463 (($) 19 T CONST)) (-2715 (($) NIL)) (-1478 (($ $ $) NIL) (($) 12 T CONST)) (-2599 (($ $ $) NIL) (($) 18 T CONST)) (-1866 (((-921) $) NIL)) (-3380 (((-1157) $) NIL)) (-2835 (($ (-921)) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) NIL)) (-2339 (($ $ $) 21)) (-2326 (($ $ $) 20)) (-3044 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2935 (((-112) $ $) NIL))) +(((-1182 |#1|) (-13 (-844) (-10 -8 (-15 -2326 ($ $ $)) (-15 -2339 ($ $ $)) (-15 -2463 ($) -1623))) (-921)) (T -1182)) +((-2326 (*1 *1 *1 *1) (-12 (-5 *1 (-1182 *2)) (-14 *2 (-921)))) (-2339 (*1 *1 *1 *1) (-12 (-5 *1 (-1182 *2)) (-14 *2 (-921)))) (-2463 (*1 *1) (-12 (-5 *1 (-1182 *2)) (-14 *2 (-921))))) +(-13 (-844) (-10 -8 (-15 -2326 ($ $ $)) (-15 -2339 ($ $ $)) (-15 -2463 ($) -1623))) ((|NonNegativeInteger|) (NOT (> (INTEGER-LENGTH |#1|) @1))) -((-2601 (((-644 (-644 (-952 |#1|))) (-644 (-409 (-952 |#1|))) (-644 (-1175))) 67)) (-1957 (((-644 (-295 (-409 (-952 |#1|)))) (-295 (-409 (-952 |#1|)))) 78) (((-644 (-295 (-409 (-952 |#1|)))) (-409 (-952 |#1|))) 74) (((-644 (-295 (-409 (-952 |#1|)))) (-295 (-409 (-952 |#1|))) (-1175)) 79) (((-644 (-295 (-409 (-952 |#1|)))) (-409 (-952 |#1|)) (-1175)) 73) (((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-295 (-409 (-952 |#1|))))) 106) (((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-409 (-952 |#1|)))) 105) (((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-295 (-409 (-952 |#1|)))) (-644 (-1175))) 107) (((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-409 (-952 |#1|))) (-644 (-1175))) 104))) -(((-1183 |#1|) (-10 -7 (-15 -1957 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-409 (-952 |#1|))) (-644 (-1175)))) (-15 -1957 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-295 (-409 (-952 |#1|)))) (-644 (-1175)))) (-15 -1957 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-409 (-952 |#1|))))) (-15 -1957 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-295 (-409 (-952 |#1|)))))) (-15 -1957 ((-644 (-295 (-409 (-952 |#1|)))) (-409 (-952 |#1|)) (-1175))) (-15 -1957 ((-644 (-295 (-409 (-952 |#1|)))) (-295 (-409 (-952 |#1|))) (-1175))) (-15 -1957 ((-644 (-295 (-409 (-952 |#1|)))) (-409 (-952 |#1|)))) (-15 -1957 ((-644 (-295 (-409 (-952 |#1|)))) (-295 (-409 (-952 |#1|))))) (-15 -2601 ((-644 (-644 (-952 |#1|))) (-644 (-409 (-952 |#1|))) (-644 (-1175))))) (-558)) (T -1183)) -((-2601 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-409 (-952 *5)))) (-5 *4 (-644 (-1175))) (-4 *5 (-558)) (-5 *2 (-644 (-644 (-952 *5)))) (-5 *1 (-1183 *5)))) (-1957 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-644 (-295 (-409 (-952 *4))))) (-5 *1 (-1183 *4)) (-5 *3 (-295 (-409 (-952 *4)))))) (-1957 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-644 (-295 (-409 (-952 *4))))) (-5 *1 (-1183 *4)) (-5 *3 (-409 (-952 *4))))) (-1957 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-4 *5 (-558)) (-5 *2 (-644 (-295 (-409 (-952 *5))))) (-5 *1 (-1183 *5)) (-5 *3 (-295 (-409 (-952 *5)))))) (-1957 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-4 *5 (-558)) (-5 *2 (-644 (-295 (-409 (-952 *5))))) (-5 *1 (-1183 *5)) (-5 *3 (-409 (-952 *5))))) (-1957 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-644 (-644 (-295 (-409 (-952 *4)))))) (-5 *1 (-1183 *4)) (-5 *3 (-644 (-295 (-409 (-952 *4))))))) (-1957 (*1 *2 *3) (-12 (-5 *3 (-644 (-409 (-952 *4)))) (-4 *4 (-558)) (-5 *2 (-644 (-644 (-295 (-409 (-952 *4)))))) (-5 *1 (-1183 *4)))) (-1957 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-1175))) (-4 *5 (-558)) (-5 *2 (-644 (-644 (-295 (-409 (-952 *5)))))) (-5 *1 (-1183 *5)) (-5 *3 (-644 (-295 (-409 (-952 *5))))))) (-1957 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-409 (-952 *5)))) (-5 *4 (-644 (-1175))) (-4 *5 (-558)) (-5 *2 (-644 (-644 (-295 (-409 (-952 *5)))))) (-5 *1 (-1183 *5))))) -(-10 -7 (-15 -1957 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-409 (-952 |#1|))) (-644 (-1175)))) (-15 -1957 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-295 (-409 (-952 |#1|)))) (-644 (-1175)))) (-15 -1957 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-409 (-952 |#1|))))) (-15 -1957 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-295 (-409 (-952 |#1|)))))) (-15 -1957 ((-644 (-295 (-409 (-952 |#1|)))) (-409 (-952 |#1|)) (-1175))) (-15 -1957 ((-644 (-295 (-409 (-952 |#1|)))) (-295 (-409 (-952 |#1|))) (-1175))) (-15 -1957 ((-644 (-295 (-409 (-952 |#1|)))) (-409 (-952 |#1|)))) (-15 -1957 ((-644 (-295 (-409 (-952 |#1|)))) (-295 (-409 (-952 |#1|))))) (-15 -2601 ((-644 (-644 (-952 |#1|))) (-644 (-409 (-952 |#1|))) (-644 (-1175))))) -((-3197 (((-1157)) 7)) (-2573 (((-1157)) 11 T CONST)) (-4223 (((-1269) (-1157)) 13)) (-3360 (((-1157)) 8 T CONST)) (-2792 (((-130)) 10 T CONST))) -(((-1184) (-13 (-1214) (-10 -7 (-15 -3197 ((-1157))) (-15 -3360 ((-1157)) -3704) (-15 -2792 ((-130)) -3704) (-15 -2573 ((-1157)) -3704) (-15 -4223 ((-1269) (-1157)))))) (T -1184)) -((-3197 (*1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1184)))) (-3360 (*1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1184)))) (-2792 (*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1184)))) (-2573 (*1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1184)))) (-4223 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1184))))) -(-13 (-1214) (-10 -7 (-15 -3197 ((-1157))) (-15 -3360 ((-1157)) -3704) (-15 -2792 ((-130)) -3704) (-15 -2573 ((-1157)) -3704) (-15 -4223 ((-1269) (-1157))))) -((-2110 (((-644 (-644 |#1|)) (-644 (-644 |#1|)) (-644 (-644 (-644 |#1|)))) 56)) (-3838 (((-644 (-644 (-644 |#1|))) (-644 (-644 |#1|))) 38)) (-3430 (((-1186 (-644 |#1|)) (-644 |#1|)) 49)) (-4244 (((-644 (-644 |#1|)) (-644 |#1|)) 45)) (-1798 (((-2 (|:| |f1| (-644 |#1|)) (|:| |f2| (-644 (-644 (-644 |#1|)))) (|:| |f3| (-644 (-644 |#1|))) (|:| |f4| (-644 (-644 (-644 |#1|))))) (-644 (-644 (-644 |#1|)))) 53)) (-3143 (((-2 (|:| |f1| (-644 |#1|)) (|:| |f2| (-644 (-644 (-644 |#1|)))) (|:| |f3| (-644 (-644 |#1|))) (|:| |f4| (-644 (-644 (-644 |#1|))))) (-644 |#1|) (-644 (-644 (-644 |#1|))) (-644 (-644 |#1|)) (-644 (-644 (-644 |#1|))) (-644 (-644 (-644 |#1|))) (-644 (-644 (-644 |#1|)))) 52)) (-4354 (((-644 (-644 |#1|)) (-644 (-644 |#1|))) 43)) (-4264 (((-644 |#1|) (-644 |#1|)) 46)) (-3963 (((-644 (-644 (-644 |#1|))) (-644 |#1|) (-644 (-644 (-644 |#1|)))) 32)) (-3329 (((-644 (-644 (-644 |#1|))) (-1 (-112) |#1| |#1|) (-644 |#1|) (-644 (-644 (-644 |#1|)))) 29)) (-4127 (((-2 (|:| |fs| (-112)) (|:| |sd| (-644 |#1|)) (|:| |td| (-644 (-644 |#1|)))) (-1 (-112) |#1| |#1|) (-644 |#1|) (-644 (-644 |#1|))) 24)) (-2547 (((-644 (-644 |#1|)) (-644 (-644 (-644 |#1|)))) 58)) (-3223 (((-644 (-644 |#1|)) (-1186 (-644 |#1|))) 60))) -(((-1185 |#1|) (-10 -7 (-15 -4127 ((-2 (|:| |fs| (-112)) (|:| |sd| (-644 |#1|)) (|:| |td| (-644 (-644 |#1|)))) (-1 (-112) |#1| |#1|) (-644 |#1|) (-644 (-644 |#1|)))) (-15 -3329 ((-644 (-644 (-644 |#1|))) (-1 (-112) |#1| |#1|) (-644 |#1|) (-644 (-644 (-644 |#1|))))) (-15 -3963 ((-644 (-644 (-644 |#1|))) (-644 |#1|) (-644 (-644 (-644 |#1|))))) (-15 -2110 ((-644 (-644 |#1|)) (-644 (-644 |#1|)) (-644 (-644 (-644 |#1|))))) (-15 -2547 ((-644 (-644 |#1|)) (-644 (-644 (-644 |#1|))))) (-15 -3223 ((-644 (-644 |#1|)) (-1186 (-644 |#1|)))) (-15 -3838 ((-644 (-644 (-644 |#1|))) (-644 (-644 |#1|)))) (-15 -3430 ((-1186 (-644 |#1|)) (-644 |#1|))) (-15 -4354 ((-644 (-644 |#1|)) (-644 (-644 |#1|)))) (-15 -4244 ((-644 (-644 |#1|)) (-644 |#1|))) (-15 -4264 ((-644 |#1|) (-644 |#1|))) (-15 -3143 ((-2 (|:| |f1| (-644 |#1|)) (|:| |f2| (-644 (-644 (-644 |#1|)))) (|:| |f3| (-644 (-644 |#1|))) (|:| |f4| (-644 (-644 (-644 |#1|))))) (-644 |#1|) (-644 (-644 (-644 |#1|))) (-644 (-644 |#1|)) (-644 (-644 (-644 |#1|))) (-644 (-644 (-644 |#1|))) (-644 (-644 (-644 |#1|))))) (-15 -1798 ((-2 (|:| |f1| (-644 |#1|)) (|:| |f2| (-644 (-644 (-644 |#1|)))) (|:| |f3| (-644 (-644 |#1|))) (|:| |f4| (-644 (-644 (-644 |#1|))))) (-644 (-644 (-644 |#1|)))))) (-850)) (T -1185)) -((-1798 (*1 *2 *3) (-12 (-4 *4 (-850)) (-5 *2 (-2 (|:| |f1| (-644 *4)) (|:| |f2| (-644 (-644 (-644 *4)))) (|:| |f3| (-644 (-644 *4))) (|:| |f4| (-644 (-644 (-644 *4)))))) (-5 *1 (-1185 *4)) (-5 *3 (-644 (-644 (-644 *4)))))) (-3143 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-850)) (-5 *3 (-644 *6)) (-5 *5 (-644 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-644 *5)) (|:| |f3| *5) (|:| |f4| (-644 *5)))) (-5 *1 (-1185 *6)) (-5 *4 (-644 *5)))) (-4264 (*1 *2 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-850)) (-5 *1 (-1185 *3)))) (-4244 (*1 *2 *3) (-12 (-4 *4 (-850)) (-5 *2 (-644 (-644 *4))) (-5 *1 (-1185 *4)) (-5 *3 (-644 *4)))) (-4354 (*1 *2 *2) (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-850)) (-5 *1 (-1185 *3)))) (-3430 (*1 *2 *3) (-12 (-4 *4 (-850)) (-5 *2 (-1186 (-644 *4))) (-5 *1 (-1185 *4)) (-5 *3 (-644 *4)))) (-3838 (*1 *2 *3) (-12 (-4 *4 (-850)) (-5 *2 (-644 (-644 (-644 *4)))) (-5 *1 (-1185 *4)) (-5 *3 (-644 (-644 *4))))) (-3223 (*1 *2 *3) (-12 (-5 *3 (-1186 (-644 *4))) (-4 *4 (-850)) (-5 *2 (-644 (-644 *4))) (-5 *1 (-1185 *4)))) (-2547 (*1 *2 *3) (-12 (-5 *3 (-644 (-644 (-644 *4)))) (-5 *2 (-644 (-644 *4))) (-5 *1 (-1185 *4)) (-4 *4 (-850)))) (-2110 (*1 *2 *2 *3) (-12 (-5 *3 (-644 (-644 (-644 *4)))) (-5 *2 (-644 (-644 *4))) (-4 *4 (-850)) (-5 *1 (-1185 *4)))) (-3963 (*1 *2 *3 *2) (-12 (-5 *2 (-644 (-644 (-644 *4)))) (-5 *3 (-644 *4)) (-4 *4 (-850)) (-5 *1 (-1185 *4)))) (-3329 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-644 (-644 (-644 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-644 *5)) (-4 *5 (-850)) (-5 *1 (-1185 *5)))) (-4127 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-850)) (-5 *4 (-644 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-644 *4)))) (-5 *1 (-1185 *6)) (-5 *5 (-644 *4))))) -(-10 -7 (-15 -4127 ((-2 (|:| |fs| (-112)) (|:| |sd| (-644 |#1|)) (|:| |td| (-644 (-644 |#1|)))) (-1 (-112) |#1| |#1|) (-644 |#1|) (-644 (-644 |#1|)))) (-15 -3329 ((-644 (-644 (-644 |#1|))) (-1 (-112) |#1| |#1|) (-644 |#1|) (-644 (-644 (-644 |#1|))))) (-15 -3963 ((-644 (-644 (-644 |#1|))) (-644 |#1|) (-644 (-644 (-644 |#1|))))) (-15 -2110 ((-644 (-644 |#1|)) (-644 (-644 |#1|)) (-644 (-644 (-644 |#1|))))) (-15 -2547 ((-644 (-644 |#1|)) (-644 (-644 (-644 |#1|))))) (-15 -3223 ((-644 (-644 |#1|)) (-1186 (-644 |#1|)))) (-15 -3838 ((-644 (-644 (-644 |#1|))) (-644 (-644 |#1|)))) (-15 -3430 ((-1186 (-644 |#1|)) (-644 |#1|))) (-15 -4354 ((-644 (-644 |#1|)) (-644 (-644 |#1|)))) (-15 -4244 ((-644 (-644 |#1|)) (-644 |#1|))) (-15 -4264 ((-644 |#1|) (-644 |#1|))) (-15 -3143 ((-2 (|:| |f1| (-644 |#1|)) (|:| |f2| (-644 (-644 (-644 |#1|)))) (|:| |f3| (-644 (-644 |#1|))) (|:| |f4| (-644 (-644 (-644 |#1|))))) (-644 |#1|) (-644 (-644 (-644 |#1|))) (-644 (-644 |#1|)) (-644 (-644 (-644 |#1|))) (-644 (-644 (-644 |#1|))) (-644 (-644 (-644 |#1|))))) (-15 -1798 ((-2 (|:| |f1| (-644 |#1|)) (|:| |f2| (-644 (-644 (-644 |#1|)))) (|:| |f3| (-644 (-644 |#1|))) (|:| |f4| (-644 (-644 (-644 |#1|))))) (-644 (-644 (-644 |#1|)))))) -((-1304 (($ (-644 (-644 |#1|))) 10)) (-2909 (((-644 (-644 |#1|)) $) 11)) (-3783 (((-862) $) 38))) -(((-1186 |#1|) (-10 -8 (-15 -1304 ($ (-644 (-644 |#1|)))) (-15 -2909 ((-644 (-644 |#1|)) $)) (-15 -3783 ((-862) $))) (-1099)) (T -1186)) -((-3783 (*1 *2 *1) (-12 (-5 *2 (-862)) (-5 *1 (-1186 *3)) (-4 *3 (-1099)))) (-2909 (*1 *2 *1) (-12 (-5 *2 (-644 (-644 *3))) (-5 *1 (-1186 *3)) (-4 *3 (-1099)))) (-1304 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1099)) (-5 *1 (-1186 *3))))) -(-10 -8 (-15 -1304 ($ (-644 (-644 |#1|)))) (-15 -2909 ((-644 (-644 |#1|)) $)) (-15 -3783 ((-862) $))) -((-3007 (((-112) $ $) NIL (-2809 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-4254 (($) NIL) (($ (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) NIL)) (-3734 (((-1269) $ |#1| |#1|) NIL (|has| $ (-6 -4415)))) (-2256 (((-112) $ (-771)) NIL)) (-3923 ((|#2| $ |#1| |#2|) NIL)) (-4016 (($ (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-2701 (($ (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-2434 (((-3 |#2| "failed") |#1| $) NIL)) (-3012 (($) NIL T CONST)) (-2031 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099))))) (-2956 (($ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL (|has| $ (-6 -4414))) (($ (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-3 |#2| "failed") |#1| $) NIL)) (-2665 (($ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (($ (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-1676 (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) NIL (|has| $ (-6 -4414))) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-2920 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4415)))) (-2855 ((|#2| $ |#1|) NIL)) (-3979 (((-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-644 |#2|) $) NIL (|has| $ (-6 -4414)))) (-2404 (((-112) $ (-771)) NIL)) (-3854 ((|#1| $) NIL (|has| |#1| (-850)))) (-2329 (((-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-644 |#2|) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099))))) (-2712 ((|#1| $) NIL (|has| |#1| (-850)))) (-2908 (($ (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4415))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4415)))) (-1301 (($ (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2603 (((-112) $ (-771)) NIL)) (-4117 (((-1157) $) NIL (-2809 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-4103 (((-644 |#1|) $) NIL)) (-2876 (((-112) |#1| $) NIL)) (-4039 (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL)) (-3406 (($ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL)) (-4074 (((-644 |#1|) $) NIL)) (-3792 (((-112) |#1| $) NIL)) (-4035 (((-1119) $) NIL (-2809 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-1998 ((|#2| $) NIL (|has| |#1| (-850)))) (-2006 (((-3 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) "failed") (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL)) (-4030 (($ $ |#2|) NIL (|has| $ (-6 -4415)))) (-2539 (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL)) (-2692 (((-112) (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))))) NIL (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (($ $ (-295 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) NIL (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (($ $ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) NIL (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (($ $ (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) NIL (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-1932 (((-112) $ $) NIL)) (-4156 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099))))) (-2993 (((-644 |#2|) $) NIL)) (-3467 (((-112) $) NIL)) (-1494 (($) NIL)) (-4390 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3481 (($) NIL) (($ (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) NIL)) (-4045 (((-771) (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-771) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (((-771) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099)))) (((-771) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414)))) (-3940 (($ $) NIL)) (-1348 (((-538) $) NIL (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-614 (-538))))) (-3796 (($ (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) NIL)) (-3783 (((-862) $) NIL (-2809 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-613 (-862))) (|has| |#2| (-613 (-862)))))) (-3117 (((-112) $ $) NIL (-2809 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-1748 (($ (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) NIL)) (-1894 (((-112) (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) NIL (-2809 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-3018 (((-771) $) NIL (|has| $ (-6 -4414))))) +((-4313 (((-644 (-644 (-952 |#1|))) (-644 (-409 (-952 |#1|))) (-644 (-1175))) 67)) (-2423 (((-644 (-295 (-409 (-952 |#1|)))) (-295 (-409 (-952 |#1|)))) 78) (((-644 (-295 (-409 (-952 |#1|)))) (-409 (-952 |#1|))) 74) (((-644 (-295 (-409 (-952 |#1|)))) (-295 (-409 (-952 |#1|))) (-1175)) 79) (((-644 (-295 (-409 (-952 |#1|)))) (-409 (-952 |#1|)) (-1175)) 73) (((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-295 (-409 (-952 |#1|))))) 106) (((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-409 (-952 |#1|)))) 105) (((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-295 (-409 (-952 |#1|)))) (-644 (-1175))) 107) (((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-409 (-952 |#1|))) (-644 (-1175))) 104))) +(((-1183 |#1|) (-10 -7 (-15 -2423 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-409 (-952 |#1|))) (-644 (-1175)))) (-15 -2423 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-295 (-409 (-952 |#1|)))) (-644 (-1175)))) (-15 -2423 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-409 (-952 |#1|))))) (-15 -2423 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-295 (-409 (-952 |#1|)))))) (-15 -2423 ((-644 (-295 (-409 (-952 |#1|)))) (-409 (-952 |#1|)) (-1175))) (-15 -2423 ((-644 (-295 (-409 (-952 |#1|)))) (-295 (-409 (-952 |#1|))) (-1175))) (-15 -2423 ((-644 (-295 (-409 (-952 |#1|)))) (-409 (-952 |#1|)))) (-15 -2423 ((-644 (-295 (-409 (-952 |#1|)))) (-295 (-409 (-952 |#1|))))) (-15 -4313 ((-644 (-644 (-952 |#1|))) (-644 (-409 (-952 |#1|))) (-644 (-1175))))) (-558)) (T -1183)) +((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-409 (-952 *5)))) (-5 *4 (-644 (-1175))) (-4 *5 (-558)) (-5 *2 (-644 (-644 (-952 *5)))) (-5 *1 (-1183 *5)))) (-2423 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-644 (-295 (-409 (-952 *4))))) (-5 *1 (-1183 *4)) (-5 *3 (-295 (-409 (-952 *4)))))) (-2423 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-644 (-295 (-409 (-952 *4))))) (-5 *1 (-1183 *4)) (-5 *3 (-409 (-952 *4))))) (-2423 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-4 *5 (-558)) (-5 *2 (-644 (-295 (-409 (-952 *5))))) (-5 *1 (-1183 *5)) (-5 *3 (-295 (-409 (-952 *5)))))) (-2423 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-4 *5 (-558)) (-5 *2 (-644 (-295 (-409 (-952 *5))))) (-5 *1 (-1183 *5)) (-5 *3 (-409 (-952 *5))))) (-2423 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-644 (-644 (-295 (-409 (-952 *4)))))) (-5 *1 (-1183 *4)) (-5 *3 (-644 (-295 (-409 (-952 *4))))))) (-2423 (*1 *2 *3) (-12 (-5 *3 (-644 (-409 (-952 *4)))) (-4 *4 (-558)) (-5 *2 (-644 (-644 (-295 (-409 (-952 *4)))))) (-5 *1 (-1183 *4)))) (-2423 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-1175))) (-4 *5 (-558)) (-5 *2 (-644 (-644 (-295 (-409 (-952 *5)))))) (-5 *1 (-1183 *5)) (-5 *3 (-644 (-295 (-409 (-952 *5))))))) (-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-409 (-952 *5)))) (-5 *4 (-644 (-1175))) (-4 *5 (-558)) (-5 *2 (-644 (-644 (-295 (-409 (-952 *5)))))) (-5 *1 (-1183 *5))))) +(-10 -7 (-15 -2423 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-409 (-952 |#1|))) (-644 (-1175)))) (-15 -2423 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-295 (-409 (-952 |#1|)))) (-644 (-1175)))) (-15 -2423 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-409 (-952 |#1|))))) (-15 -2423 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-295 (-409 (-952 |#1|)))))) (-15 -2423 ((-644 (-295 (-409 (-952 |#1|)))) (-409 (-952 |#1|)) (-1175))) (-15 -2423 ((-644 (-295 (-409 (-952 |#1|)))) (-295 (-409 (-952 |#1|))) (-1175))) (-15 -2423 ((-644 (-295 (-409 (-952 |#1|)))) (-409 (-952 |#1|)))) (-15 -2423 ((-644 (-295 (-409 (-952 |#1|)))) (-295 (-409 (-952 |#1|))))) (-15 -4313 ((-644 (-644 (-952 |#1|))) (-644 (-409 (-952 |#1|))) (-644 (-1175))))) +((-3200 (((-1157)) 7)) (-3437 (((-1157)) 11 T CONST)) (-4253 (((-1269) (-1157)) 13)) (-3151 (((-1157)) 8 T CONST)) (-2038 (((-130)) 10 T CONST))) +(((-1184) (-13 (-1214) (-10 -7 (-15 -3200 ((-1157))) (-15 -3151 ((-1157)) -1623) (-15 -2038 ((-130)) -1623) (-15 -3437 ((-1157)) -1623) (-15 -4253 ((-1269) (-1157)))))) (T -1184)) +((-3200 (*1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1184)))) (-3151 (*1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1184)))) (-2038 (*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1184)))) (-3437 (*1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1184)))) (-4253 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1184))))) +(-13 (-1214) (-10 -7 (-15 -3200 ((-1157))) (-15 -3151 ((-1157)) -1623) (-15 -2038 ((-130)) -1623) (-15 -3437 ((-1157)) -1623) (-15 -4253 ((-1269) (-1157))))) +((-1558 (((-644 (-644 |#1|)) (-644 (-644 |#1|)) (-644 (-644 (-644 |#1|)))) 56)) (-3804 (((-644 (-644 (-644 |#1|))) (-644 (-644 |#1|))) 38)) (-2421 (((-1186 (-644 |#1|)) (-644 |#1|)) 49)) (-2346 (((-644 (-644 |#1|)) (-644 |#1|)) 45)) (-2493 (((-2 (|:| |f1| (-644 |#1|)) (|:| |f2| (-644 (-644 (-644 |#1|)))) (|:| |f3| (-644 (-644 |#1|))) (|:| |f4| (-644 (-644 (-644 |#1|))))) (-644 (-644 (-644 |#1|)))) 53)) (-2549 (((-2 (|:| |f1| (-644 |#1|)) (|:| |f2| (-644 (-644 (-644 |#1|)))) (|:| |f3| (-644 (-644 |#1|))) (|:| |f4| (-644 (-644 (-644 |#1|))))) (-644 |#1|) (-644 (-644 (-644 |#1|))) (-644 (-644 |#1|)) (-644 (-644 (-644 |#1|))) (-644 (-644 (-644 |#1|))) (-644 (-644 (-644 |#1|)))) 52)) (-4185 (((-644 (-644 |#1|)) (-644 (-644 |#1|))) 43)) (-1542 (((-644 |#1|) (-644 |#1|)) 46)) (-4246 (((-644 (-644 (-644 |#1|))) (-644 |#1|) (-644 (-644 (-644 |#1|)))) 32)) (-1759 (((-644 (-644 (-644 |#1|))) (-1 (-112) |#1| |#1|) (-644 |#1|) (-644 (-644 (-644 |#1|)))) 29)) (-3083 (((-2 (|:| |fs| (-112)) (|:| |sd| (-644 |#1|)) (|:| |td| (-644 (-644 |#1|)))) (-1 (-112) |#1| |#1|) (-644 |#1|) (-644 (-644 |#1|))) 24)) (-1422 (((-644 (-644 |#1|)) (-644 (-644 (-644 |#1|)))) 58)) (-2770 (((-644 (-644 |#1|)) (-1186 (-644 |#1|))) 60))) +(((-1185 |#1|) (-10 -7 (-15 -3083 ((-2 (|:| |fs| (-112)) (|:| |sd| (-644 |#1|)) (|:| |td| (-644 (-644 |#1|)))) (-1 (-112) |#1| |#1|) (-644 |#1|) (-644 (-644 |#1|)))) (-15 -1759 ((-644 (-644 (-644 |#1|))) (-1 (-112) |#1| |#1|) (-644 |#1|) (-644 (-644 (-644 |#1|))))) (-15 -4246 ((-644 (-644 (-644 |#1|))) (-644 |#1|) (-644 (-644 (-644 |#1|))))) (-15 -1558 ((-644 (-644 |#1|)) (-644 (-644 |#1|)) (-644 (-644 (-644 |#1|))))) (-15 -1422 ((-644 (-644 |#1|)) (-644 (-644 (-644 |#1|))))) (-15 -2770 ((-644 (-644 |#1|)) (-1186 (-644 |#1|)))) (-15 -3804 ((-644 (-644 (-644 |#1|))) (-644 (-644 |#1|)))) (-15 -2421 ((-1186 (-644 |#1|)) (-644 |#1|))) (-15 -4185 ((-644 (-644 |#1|)) (-644 (-644 |#1|)))) (-15 -2346 ((-644 (-644 |#1|)) (-644 |#1|))) (-15 -1542 ((-644 |#1|) (-644 |#1|))) (-15 -2549 ((-2 (|:| |f1| (-644 |#1|)) (|:| |f2| (-644 (-644 (-644 |#1|)))) (|:| |f3| (-644 (-644 |#1|))) (|:| |f4| (-644 (-644 (-644 |#1|))))) (-644 |#1|) (-644 (-644 (-644 |#1|))) (-644 (-644 |#1|)) (-644 (-644 (-644 |#1|))) (-644 (-644 (-644 |#1|))) (-644 (-644 (-644 |#1|))))) (-15 -2493 ((-2 (|:| |f1| (-644 |#1|)) (|:| |f2| (-644 (-644 (-644 |#1|)))) (|:| |f3| (-644 (-644 |#1|))) (|:| |f4| (-644 (-644 (-644 |#1|))))) (-644 (-644 (-644 |#1|)))))) (-850)) (T -1185)) +((-2493 (*1 *2 *3) (-12 (-4 *4 (-850)) (-5 *2 (-2 (|:| |f1| (-644 *4)) (|:| |f2| (-644 (-644 (-644 *4)))) (|:| |f3| (-644 (-644 *4))) (|:| |f4| (-644 (-644 (-644 *4)))))) (-5 *1 (-1185 *4)) (-5 *3 (-644 (-644 (-644 *4)))))) (-2549 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-850)) (-5 *3 (-644 *6)) (-5 *5 (-644 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-644 *5)) (|:| |f3| *5) (|:| |f4| (-644 *5)))) (-5 *1 (-1185 *6)) (-5 *4 (-644 *5)))) (-1542 (*1 *2 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-850)) (-5 *1 (-1185 *3)))) (-2346 (*1 *2 *3) (-12 (-4 *4 (-850)) (-5 *2 (-644 (-644 *4))) (-5 *1 (-1185 *4)) (-5 *3 (-644 *4)))) (-4185 (*1 *2 *2) (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-850)) (-5 *1 (-1185 *3)))) (-2421 (*1 *2 *3) (-12 (-4 *4 (-850)) (-5 *2 (-1186 (-644 *4))) (-5 *1 (-1185 *4)) (-5 *3 (-644 *4)))) (-3804 (*1 *2 *3) (-12 (-4 *4 (-850)) (-5 *2 (-644 (-644 (-644 *4)))) (-5 *1 (-1185 *4)) (-5 *3 (-644 (-644 *4))))) (-2770 (*1 *2 *3) (-12 (-5 *3 (-1186 (-644 *4))) (-4 *4 (-850)) (-5 *2 (-644 (-644 *4))) (-5 *1 (-1185 *4)))) (-1422 (*1 *2 *3) (-12 (-5 *3 (-644 (-644 (-644 *4)))) (-5 *2 (-644 (-644 *4))) (-5 *1 (-1185 *4)) (-4 *4 (-850)))) (-1558 (*1 *2 *2 *3) (-12 (-5 *3 (-644 (-644 (-644 *4)))) (-5 *2 (-644 (-644 *4))) (-4 *4 (-850)) (-5 *1 (-1185 *4)))) (-4246 (*1 *2 *3 *2) (-12 (-5 *2 (-644 (-644 (-644 *4)))) (-5 *3 (-644 *4)) (-4 *4 (-850)) (-5 *1 (-1185 *4)))) (-1759 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-644 (-644 (-644 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-644 *5)) (-4 *5 (-850)) (-5 *1 (-1185 *5)))) (-3083 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-850)) (-5 *4 (-644 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-644 *4)))) (-5 *1 (-1185 *6)) (-5 *5 (-644 *4))))) +(-10 -7 (-15 -3083 ((-2 (|:| |fs| (-112)) (|:| |sd| (-644 |#1|)) (|:| |td| (-644 (-644 |#1|)))) (-1 (-112) |#1| |#1|) (-644 |#1|) (-644 (-644 |#1|)))) (-15 -1759 ((-644 (-644 (-644 |#1|))) (-1 (-112) |#1| |#1|) (-644 |#1|) (-644 (-644 (-644 |#1|))))) (-15 -4246 ((-644 (-644 (-644 |#1|))) (-644 |#1|) (-644 (-644 (-644 |#1|))))) (-15 -1558 ((-644 (-644 |#1|)) (-644 (-644 |#1|)) (-644 (-644 (-644 |#1|))))) (-15 -1422 ((-644 (-644 |#1|)) (-644 (-644 (-644 |#1|))))) (-15 -2770 ((-644 (-644 |#1|)) (-1186 (-644 |#1|)))) (-15 -3804 ((-644 (-644 (-644 |#1|))) (-644 (-644 |#1|)))) (-15 -2421 ((-1186 (-644 |#1|)) (-644 |#1|))) (-15 -4185 ((-644 (-644 |#1|)) (-644 (-644 |#1|)))) (-15 -2346 ((-644 (-644 |#1|)) (-644 |#1|))) (-15 -1542 ((-644 |#1|) (-644 |#1|))) (-15 -2549 ((-2 (|:| |f1| (-644 |#1|)) (|:| |f2| (-644 (-644 (-644 |#1|)))) (|:| |f3| (-644 (-644 |#1|))) (|:| |f4| (-644 (-644 (-644 |#1|))))) (-644 |#1|) (-644 (-644 (-644 |#1|))) (-644 (-644 |#1|)) (-644 (-644 (-644 |#1|))) (-644 (-644 (-644 |#1|))) (-644 (-644 (-644 |#1|))))) (-15 -2493 ((-2 (|:| |f1| (-644 |#1|)) (|:| |f2| (-644 (-644 (-644 |#1|)))) (|:| |f3| (-644 (-644 |#1|))) (|:| |f4| (-644 (-644 (-644 |#1|))))) (-644 (-644 (-644 |#1|)))))) +((-2689 (($ (-644 (-644 |#1|))) 10)) (-1723 (((-644 (-644 |#1|)) $) 11)) (-3152 (((-862) $) 38))) +(((-1186 |#1|) (-10 -8 (-15 -2689 ($ (-644 (-644 |#1|)))) (-15 -1723 ((-644 (-644 |#1|)) $)) (-15 -3152 ((-862) $))) (-1099)) (T -1186)) +((-3152 (*1 *2 *1) (-12 (-5 *2 (-862)) (-5 *1 (-1186 *3)) (-4 *3 (-1099)))) (-1723 (*1 *2 *1) (-12 (-5 *2 (-644 (-644 *3))) (-5 *1 (-1186 *3)) (-4 *3 (-1099)))) (-2689 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1099)) (-5 *1 (-1186 *3))))) +(-10 -8 (-15 -2689 ($ (-644 (-644 |#1|)))) (-15 -1723 ((-644 (-644 |#1|)) $)) (-15 -3152 ((-862) $))) +((-2988 (((-112) $ $) NIL (-2768 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-1849 (($) NIL) (($ (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) NIL)) (-1944 (((-1269) $ |#1| |#1|) NIL (|has| $ (-6 -4415)))) (-1504 (((-112) $ (-771)) NIL)) (-1456 ((|#2| $ |#1| |#2|) NIL)) (-2995 (($ (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-3678 (($ (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-3070 (((-3 |#2| "failed") |#1| $) NIL)) (-2463 (($) NIL T CONST)) (-3942 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099))))) (-3512 (($ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL (|has| $ (-6 -4414))) (($ (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-3 |#2| "failed") |#1| $) NIL)) (-2622 (($ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (($ (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-2873 (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) NIL (|has| $ (-6 -4414))) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414)))) (-3897 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4415)))) (-3829 ((|#2| $ |#1|) NIL)) (-1683 (((-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-644 |#2|) $) NIL (|has| $ (-6 -4414)))) (-3456 (((-112) $ (-771)) NIL)) (-2296 ((|#1| $) NIL (|has| |#1| (-850)))) (-3491 (((-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-644 |#2|) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099))))) (-4050 ((|#1| $) NIL (|has| |#1| (-850)))) (-3885 (($ (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4415))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4415)))) (-2319 (($ (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3267 (((-112) $ (-771)) NIL)) (-3380 (((-1157) $) NIL (-2768 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-4052 (((-644 |#1|) $) NIL)) (-1826 (((-112) |#1| $) NIL)) (-3278 (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL)) (-3888 (($ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL)) (-3725 (((-644 |#1|) $) NIL)) (-1644 (((-112) |#1| $) NIL)) (-4072 (((-1119) $) NIL (-2768 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-3908 ((|#2| $) NIL (|has| |#1| (-850)))) (-3668 (((-3 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) "failed") (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL)) (-3787 (($ $ |#2|) NIL (|has| $ (-6 -4415)))) (-1973 (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL)) (-2823 (((-112) (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))))) NIL (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (($ $ (-295 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) NIL (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (($ $ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) NIL (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (($ $ (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) NIL (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-3814 (((-112) $ $) NIL)) (-2847 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099))))) (-3486 (((-644 |#2|) $) NIL)) (-2872 (((-112) $) NIL)) (-3493 (($) NIL)) (-1309 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1792 (($) NIL) (($ (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) NIL)) (-4083 (((-771) (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-771) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) NIL (-12 (|has| $ (-6 -4414)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (((-771) |#2| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099)))) (((-771) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414)))) (-1480 (($ $) NIL)) (-2376 (((-538) $) NIL (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-614 (-538))))) (-1340 (($ (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) NIL)) (-3152 (((-862) $) NIL (-2768 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-613 (-862))) (|has| |#2| (-613 (-862)))))) (-3044 (((-112) $ $) NIL (-2768 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-2948 (($ (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) NIL)) (-2210 (((-112) (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) NIL (|has| $ (-6 -4414))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) NIL (-2768 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-3000 (((-771) $) NIL (|has| $ (-6 -4414))))) (((-1187 |#1| |#2|) (-13 (-1190 |#1| |#2|) (-10 -7 (-6 -4414))) (-1099) (-1099)) (T -1187)) NIL (-13 (-1190 |#1| |#2|) (-10 -7 (-6 -4414))) -((-1622 ((|#1| (-644 |#1|)) 49)) (-2818 ((|#1| |#1| (-566)) 24)) (-1985 (((-1171 |#1|) |#1| (-921)) 20))) -(((-1188 |#1|) (-10 -7 (-15 -1622 (|#1| (-644 |#1|))) (-15 -1985 ((-1171 |#1|) |#1| (-921))) (-15 -2818 (|#1| |#1| (-566)))) (-365)) (T -1188)) -((-2818 (*1 *2 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-1188 *2)) (-4 *2 (-365)))) (-1985 (*1 *2 *3 *4) (-12 (-5 *4 (-921)) (-5 *2 (-1171 *3)) (-5 *1 (-1188 *3)) (-4 *3 (-365)))) (-1622 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-5 *1 (-1188 *2)) (-4 *2 (-365))))) -(-10 -7 (-15 -1622 (|#1| (-644 |#1|))) (-15 -1985 ((-1171 |#1|) |#1| (-921))) (-15 -2818 (|#1| |#1| (-566)))) -((-4254 (($) 10) (($ (-644 (-2 (|:| -2004 |#2|) (|:| -3867 |#3|)))) 14)) (-2956 (($ (-2 (|:| -2004 |#2|) (|:| -3867 |#3|)) $) 67) (($ (-1 (-112) (-2 (|:| -2004 |#2|) (|:| -3867 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-3979 (((-644 (-2 (|:| -2004 |#2|) (|:| -3867 |#3|))) $) 39) (((-644 |#3|) $) 41)) (-2908 (($ (-1 (-2 (|:| -2004 |#2|) (|:| -3867 |#3|)) (-2 (|:| -2004 |#2|) (|:| -3867 |#3|))) $) 57) (($ (-1 |#3| |#3|) $) 33)) (-1301 (($ (-1 (-2 (|:| -2004 |#2|) (|:| -3867 |#3|)) (-2 (|:| -2004 |#2|) (|:| -3867 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-4039 (((-2 (|:| -2004 |#2|) (|:| -3867 |#3|)) $) 60)) (-3406 (($ (-2 (|:| -2004 |#2|) (|:| -3867 |#3|)) $) 16)) (-4074 (((-644 |#2|) $) 19)) (-3792 (((-112) |#2| $) 65)) (-2006 (((-3 (-2 (|:| -2004 |#2|) (|:| -3867 |#3|)) "failed") (-1 (-112) (-2 (|:| -2004 |#2|) (|:| -3867 |#3|))) $) 64)) (-2539 (((-2 (|:| -2004 |#2|) (|:| -3867 |#3|)) $) 69)) (-2692 (((-112) (-1 (-112) (-2 (|:| -2004 |#2|) (|:| -3867 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 73)) (-2993 (((-644 |#3|) $) 43)) (-4390 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-4045 (((-771) (-1 (-112) (-2 (|:| -2004 |#2|) (|:| -3867 |#3|))) $) NIL) (((-771) (-2 (|:| -2004 |#2|) (|:| -3867 |#3|)) $) NIL) (((-771) |#3| $) NIL) (((-771) (-1 (-112) |#3|) $) 79)) (-3783 (((-862) $) 27)) (-1894 (((-112) (-1 (-112) (-2 (|:| -2004 |#2|) (|:| -3867 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 71)) (-2947 (((-112) $ $) 51))) -(((-1189 |#1| |#2| |#3|) (-10 -8 (-15 -2947 ((-112) |#1| |#1|)) (-15 -3783 ((-862) |#1|)) (-15 -1301 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4254 (|#1| (-644 (-2 (|:| -2004 |#2|) (|:| -3867 |#3|))))) (-15 -4254 (|#1|)) (-15 -1301 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2908 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1894 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2692 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -4045 ((-771) (-1 (-112) |#3|) |#1|)) (-15 -3979 ((-644 |#3|) |#1|)) (-15 -4045 ((-771) |#3| |#1|)) (-15 -4390 (|#3| |#1| |#2| |#3|)) (-15 -4390 (|#3| |#1| |#2|)) (-15 -2993 ((-644 |#3|) |#1|)) (-15 -3792 ((-112) |#2| |#1|)) (-15 -4074 ((-644 |#2|) |#1|)) (-15 -2956 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2956 (|#1| (-1 (-112) (-2 (|:| -2004 |#2|) (|:| -3867 |#3|))) |#1|)) (-15 -2956 (|#1| (-2 (|:| -2004 |#2|) (|:| -3867 |#3|)) |#1|)) (-15 -2006 ((-3 (-2 (|:| -2004 |#2|) (|:| -3867 |#3|)) "failed") (-1 (-112) (-2 (|:| -2004 |#2|) (|:| -3867 |#3|))) |#1|)) (-15 -4039 ((-2 (|:| -2004 |#2|) (|:| -3867 |#3|)) |#1|)) (-15 -3406 (|#1| (-2 (|:| -2004 |#2|) (|:| -3867 |#3|)) |#1|)) (-15 -2539 ((-2 (|:| -2004 |#2|) (|:| -3867 |#3|)) |#1|)) (-15 -4045 ((-771) (-2 (|:| -2004 |#2|) (|:| -3867 |#3|)) |#1|)) (-15 -3979 ((-644 (-2 (|:| -2004 |#2|) (|:| -3867 |#3|))) |#1|)) (-15 -4045 ((-771) (-1 (-112) (-2 (|:| -2004 |#2|) (|:| -3867 |#3|))) |#1|)) (-15 -2692 ((-112) (-1 (-112) (-2 (|:| -2004 |#2|) (|:| -3867 |#3|))) |#1|)) (-15 -1894 ((-112) (-1 (-112) (-2 (|:| -2004 |#2|) (|:| -3867 |#3|))) |#1|)) (-15 -2908 (|#1| (-1 (-2 (|:| -2004 |#2|) (|:| -3867 |#3|)) (-2 (|:| -2004 |#2|) (|:| -3867 |#3|))) |#1|)) (-15 -1301 (|#1| (-1 (-2 (|:| -2004 |#2|) (|:| -3867 |#3|)) (-2 (|:| -2004 |#2|) (|:| -3867 |#3|))) |#1|))) (-1190 |#2| |#3|) (-1099) (-1099)) (T -1189)) -NIL -(-10 -8 (-15 -2947 ((-112) |#1| |#1|)) (-15 -3783 ((-862) |#1|)) (-15 -1301 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4254 (|#1| (-644 (-2 (|:| -2004 |#2|) (|:| -3867 |#3|))))) (-15 -4254 (|#1|)) (-15 -1301 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2908 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1894 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2692 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -4045 ((-771) (-1 (-112) |#3|) |#1|)) (-15 -3979 ((-644 |#3|) |#1|)) (-15 -4045 ((-771) |#3| |#1|)) (-15 -4390 (|#3| |#1| |#2| |#3|)) (-15 -4390 (|#3| |#1| |#2|)) (-15 -2993 ((-644 |#3|) |#1|)) (-15 -3792 ((-112) |#2| |#1|)) (-15 -4074 ((-644 |#2|) |#1|)) (-15 -2956 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2956 (|#1| (-1 (-112) (-2 (|:| -2004 |#2|) (|:| -3867 |#3|))) |#1|)) (-15 -2956 (|#1| (-2 (|:| -2004 |#2|) (|:| -3867 |#3|)) |#1|)) (-15 -2006 ((-3 (-2 (|:| -2004 |#2|) (|:| -3867 |#3|)) "failed") (-1 (-112) (-2 (|:| -2004 |#2|) (|:| -3867 |#3|))) |#1|)) (-15 -4039 ((-2 (|:| -2004 |#2|) (|:| -3867 |#3|)) |#1|)) (-15 -3406 (|#1| (-2 (|:| -2004 |#2|) (|:| -3867 |#3|)) |#1|)) (-15 -2539 ((-2 (|:| -2004 |#2|) (|:| -3867 |#3|)) |#1|)) (-15 -4045 ((-771) (-2 (|:| -2004 |#2|) (|:| -3867 |#3|)) |#1|)) (-15 -3979 ((-644 (-2 (|:| -2004 |#2|) (|:| -3867 |#3|))) |#1|)) (-15 -4045 ((-771) (-1 (-112) (-2 (|:| -2004 |#2|) (|:| -3867 |#3|))) |#1|)) (-15 -2692 ((-112) (-1 (-112) (-2 (|:| -2004 |#2|) (|:| -3867 |#3|))) |#1|)) (-15 -1894 ((-112) (-1 (-112) (-2 (|:| -2004 |#2|) (|:| -3867 |#3|))) |#1|)) (-15 -2908 (|#1| (-1 (-2 (|:| -2004 |#2|) (|:| -3867 |#3|)) (-2 (|:| -2004 |#2|) (|:| -3867 |#3|))) |#1|)) (-15 -1301 (|#1| (-1 (-2 (|:| -2004 |#2|) (|:| -3867 |#3|)) (-2 (|:| -2004 |#2|) (|:| -3867 |#3|))) |#1|))) -((-3007 (((-112) $ $) 19 (-2809 (|has| |#2| (-1099)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099))))) (-4254 (($) 73) (($ (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) 72)) (-3734 (((-1269) $ |#1| |#1|) 100 (|has| $ (-6 -4415)))) (-2256 (((-112) $ (-771)) 8)) (-3923 ((|#2| $ |#1| |#2|) 74)) (-4016 (($ (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 46 (|has| $ (-6 -4414)))) (-2701 (($ (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 56 (|has| $ (-6 -4414)))) (-2434 (((-3 |#2| "failed") |#1| $) 62)) (-3012 (($) 7 T CONST)) (-2031 (($ $) 59 (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| $ (-6 -4414))))) (-2956 (($ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) 48 (|has| $ (-6 -4414))) (($ (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 47 (|has| $ (-6 -4414))) (((-3 |#2| "failed") |#1| $) 63)) (-2665 (($ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) 58 (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| $ (-6 -4414)))) (($ (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 55 (|has| $ (-6 -4414)))) (-1676 (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) 57 (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| $ (-6 -4414)))) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) 54 (|has| $ (-6 -4414))) (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 53 (|has| $ (-6 -4414)))) (-2920 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4415)))) (-2855 ((|#2| $ |#1|) 89)) (-3979 (((-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 31 (|has| $ (-6 -4414))) (((-644 |#2|) $) 80 (|has| $ (-6 -4414)))) (-2404 (((-112) $ (-771)) 9)) (-3854 ((|#1| $) 97 (|has| |#1| (-850)))) (-2329 (((-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 30 (|has| $ (-6 -4414))) (((-644 |#2|) $) 81 (|has| $ (-6 -4414)))) (-1916 (((-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| $ (-6 -4414)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1099)) (|has| $ (-6 -4414))))) (-2712 ((|#1| $) 96 (|has| |#1| (-850)))) (-2908 (($ (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 35 (|has| $ (-6 -4415))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4415)))) (-1301 (($ (-1 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71)) (-2603 (((-112) $ (-771)) 10)) (-4117 (((-1157) $) 22 (-2809 (|has| |#2| (-1099)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099))))) (-4103 (((-644 |#1|) $) 64)) (-2876 (((-112) |#1| $) 65)) (-4039 (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) 40)) (-3406 (($ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) 41)) (-4074 (((-644 |#1|) $) 94)) (-3792 (((-112) |#1| $) 93)) (-4035 (((-1119) $) 21 (-2809 (|has| |#2| (-1099)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099))))) (-1998 ((|#2| $) 98 (|has| |#1| (-850)))) (-2006 (((-3 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) "failed") (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 52)) (-4030 (($ $ |#2|) 99 (|has| $ (-6 -4415)))) (-2539 (((-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) 42)) (-2692 (((-112) (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 33 (|has| $ (-6 -4414))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))))) 27 (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (($ $ (-295 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) 26 (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (($ $ (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) 25 (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (($ $ (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) 24 (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) 87 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) 85 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 (-295 |#2|))) 84 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-1932 (((-112) $ $) 14)) (-4156 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099))))) (-2993 (((-644 |#2|) $) 92)) (-3467 (((-112) $) 11)) (-1494 (($) 12)) (-4390 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90)) (-3481 (($) 50) (($ (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) 49)) (-4045 (((-771) (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 32 (|has| $ (-6 -4414))) (((-771) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) $) 29 (-12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| $ (-6 -4414)))) (((-771) |#2| $) 82 (-12 (|has| |#2| (-1099)) (|has| $ (-6 -4414)))) (((-771) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4414)))) (-3940 (($ $) 13)) (-1348 (((-538) $) 60 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-614 (-538))))) (-3796 (($ (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) 51)) (-3783 (((-862) $) 18 (-2809 (|has| |#2| (-613 (-862))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-613 (-862)))))) (-3117 (((-112) $ $) 23 (-2809 (|has| |#2| (-1099)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099))))) (-1748 (($ (-644 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) 43)) (-1894 (((-112) (-1 (-112) (-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) $) 34 (|has| $ (-6 -4414))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) 20 (-2809 (|has| |#2| (-1099)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099))))) (-3018 (((-771) $) 6 (|has| $ (-6 -4414))))) +((-4196 ((|#1| (-644 |#1|)) 49)) (-4189 ((|#1| |#1| (-566)) 24)) (-4009 (((-1171 |#1|) |#1| (-921)) 20))) +(((-1188 |#1|) (-10 -7 (-15 -4196 (|#1| (-644 |#1|))) (-15 -4009 ((-1171 |#1|) |#1| (-921))) (-15 -4189 (|#1| |#1| (-566)))) (-365)) (T -1188)) +((-4189 (*1 *2 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-1188 *2)) (-4 *2 (-365)))) (-4009 (*1 *2 *3 *4) (-12 (-5 *4 (-921)) (-5 *2 (-1171 *3)) (-5 *1 (-1188 *3)) (-4 *3 (-365)))) (-4196 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-5 *1 (-1188 *2)) (-4 *2 (-365))))) +(-10 -7 (-15 -4196 (|#1| (-644 |#1|))) (-15 -4009 ((-1171 |#1|) |#1| (-921))) (-15 -4189 (|#1| |#1| (-566)))) +((-1849 (($) 10) (($ (-644 (-2 (|:| -2674 |#2|) (|:| -2636 |#3|)))) 14)) (-3512 (($ (-2 (|:| -2674 |#2|) (|:| -2636 |#3|)) $) 67) (($ (-1 (-112) (-2 (|:| -2674 |#2|) (|:| -2636 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-1683 (((-644 (-2 (|:| -2674 |#2|) (|:| -2636 |#3|))) $) 39) (((-644 |#3|) $) 41)) (-3885 (($ (-1 (-2 (|:| -2674 |#2|) (|:| -2636 |#3|)) (-2 (|:| -2674 |#2|) (|:| -2636 |#3|))) $) 57) (($ (-1 |#3| |#3|) $) 33)) (-2319 (($ (-1 (-2 (|:| -2674 |#2|) (|:| -2636 |#3|)) (-2 (|:| -2674 |#2|) (|:| -2636 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-3278 (((-2 (|:| -2674 |#2|) (|:| -2636 |#3|)) $) 60)) (-3888 (($ (-2 (|:| -2674 |#2|) (|:| -2636 |#3|)) $) 16)) (-3725 (((-644 |#2|) $) 19)) (-1644 (((-112) |#2| $) 65)) (-3668 (((-3 (-2 (|:| -2674 |#2|) (|:| -2636 |#3|)) "failed") (-1 (-112) (-2 (|:| -2674 |#2|) (|:| -2636 |#3|))) $) 64)) (-1973 (((-2 (|:| -2674 |#2|) (|:| -2636 |#3|)) $) 69)) (-2823 (((-112) (-1 (-112) (-2 (|:| -2674 |#2|) (|:| -2636 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 73)) (-3486 (((-644 |#3|) $) 43)) (-1309 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-4083 (((-771) (-1 (-112) (-2 (|:| -2674 |#2|) (|:| -2636 |#3|))) $) NIL) (((-771) (-2 (|:| -2674 |#2|) (|:| -2636 |#3|)) $) NIL) (((-771) |#3| $) NIL) (((-771) (-1 (-112) |#3|) $) 79)) (-3152 (((-862) $) 27)) (-2210 (((-112) (-1 (-112) (-2 (|:| -2674 |#2|) (|:| -2636 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 71)) (-2914 (((-112) $ $) 51))) +(((-1189 |#1| |#2| |#3|) (-10 -8 (-15 -2914 ((-112) |#1| |#1|)) (-15 -3152 ((-862) |#1|)) (-15 -2319 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -1849 (|#1| (-644 (-2 (|:| -2674 |#2|) (|:| -2636 |#3|))))) (-15 -1849 (|#1|)) (-15 -2319 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3885 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2210 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2823 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -4083 ((-771) (-1 (-112) |#3|) |#1|)) (-15 -1683 ((-644 |#3|) |#1|)) (-15 -4083 ((-771) |#3| |#1|)) (-15 -1309 (|#3| |#1| |#2| |#3|)) (-15 -1309 (|#3| |#1| |#2|)) (-15 -3486 ((-644 |#3|) |#1|)) (-15 -1644 ((-112) |#2| |#1|)) (-15 -3725 ((-644 |#2|) |#1|)) (-15 -3512 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3512 (|#1| (-1 (-112) (-2 (|:| -2674 |#2|) (|:| -2636 |#3|))) |#1|)) (-15 -3512 (|#1| (-2 (|:| -2674 |#2|) (|:| -2636 |#3|)) |#1|)) (-15 -3668 ((-3 (-2 (|:| -2674 |#2|) (|:| -2636 |#3|)) "failed") (-1 (-112) (-2 (|:| -2674 |#2|) (|:| -2636 |#3|))) |#1|)) (-15 -3278 ((-2 (|:| -2674 |#2|) (|:| -2636 |#3|)) |#1|)) (-15 -3888 (|#1| (-2 (|:| -2674 |#2|) (|:| -2636 |#3|)) |#1|)) (-15 -1973 ((-2 (|:| -2674 |#2|) (|:| -2636 |#3|)) |#1|)) (-15 -4083 ((-771) (-2 (|:| -2674 |#2|) (|:| -2636 |#3|)) |#1|)) (-15 -1683 ((-644 (-2 (|:| -2674 |#2|) (|:| -2636 |#3|))) |#1|)) (-15 -4083 ((-771) (-1 (-112) (-2 (|:| -2674 |#2|) (|:| -2636 |#3|))) |#1|)) (-15 -2823 ((-112) (-1 (-112) (-2 (|:| -2674 |#2|) (|:| -2636 |#3|))) |#1|)) (-15 -2210 ((-112) (-1 (-112) (-2 (|:| -2674 |#2|) (|:| -2636 |#3|))) |#1|)) (-15 -3885 (|#1| (-1 (-2 (|:| -2674 |#2|) (|:| -2636 |#3|)) (-2 (|:| -2674 |#2|) (|:| -2636 |#3|))) |#1|)) (-15 -2319 (|#1| (-1 (-2 (|:| -2674 |#2|) (|:| -2636 |#3|)) (-2 (|:| -2674 |#2|) (|:| -2636 |#3|))) |#1|))) (-1190 |#2| |#3|) (-1099) (-1099)) (T -1189)) +NIL +(-10 -8 (-15 -2914 ((-112) |#1| |#1|)) (-15 -3152 ((-862) |#1|)) (-15 -2319 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -1849 (|#1| (-644 (-2 (|:| -2674 |#2|) (|:| -2636 |#3|))))) (-15 -1849 (|#1|)) (-15 -2319 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3885 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2210 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2823 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -4083 ((-771) (-1 (-112) |#3|) |#1|)) (-15 -1683 ((-644 |#3|) |#1|)) (-15 -4083 ((-771) |#3| |#1|)) (-15 -1309 (|#3| |#1| |#2| |#3|)) (-15 -1309 (|#3| |#1| |#2|)) (-15 -3486 ((-644 |#3|) |#1|)) (-15 -1644 ((-112) |#2| |#1|)) (-15 -3725 ((-644 |#2|) |#1|)) (-15 -3512 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3512 (|#1| (-1 (-112) (-2 (|:| -2674 |#2|) (|:| -2636 |#3|))) |#1|)) (-15 -3512 (|#1| (-2 (|:| -2674 |#2|) (|:| -2636 |#3|)) |#1|)) (-15 -3668 ((-3 (-2 (|:| -2674 |#2|) (|:| -2636 |#3|)) "failed") (-1 (-112) (-2 (|:| -2674 |#2|) (|:| -2636 |#3|))) |#1|)) (-15 -3278 ((-2 (|:| -2674 |#2|) (|:| -2636 |#3|)) |#1|)) (-15 -3888 (|#1| (-2 (|:| -2674 |#2|) (|:| -2636 |#3|)) |#1|)) (-15 -1973 ((-2 (|:| -2674 |#2|) (|:| -2636 |#3|)) |#1|)) (-15 -4083 ((-771) (-2 (|:| -2674 |#2|) (|:| -2636 |#3|)) |#1|)) (-15 -1683 ((-644 (-2 (|:| -2674 |#2|) (|:| -2636 |#3|))) |#1|)) (-15 -4083 ((-771) (-1 (-112) (-2 (|:| -2674 |#2|) (|:| -2636 |#3|))) |#1|)) (-15 -2823 ((-112) (-1 (-112) (-2 (|:| -2674 |#2|) (|:| -2636 |#3|))) |#1|)) (-15 -2210 ((-112) (-1 (-112) (-2 (|:| -2674 |#2|) (|:| -2636 |#3|))) |#1|)) (-15 -3885 (|#1| (-1 (-2 (|:| -2674 |#2|) (|:| -2636 |#3|)) (-2 (|:| -2674 |#2|) (|:| -2636 |#3|))) |#1|)) (-15 -2319 (|#1| (-1 (-2 (|:| -2674 |#2|) (|:| -2636 |#3|)) (-2 (|:| -2674 |#2|) (|:| -2636 |#3|))) |#1|))) +((-2988 (((-112) $ $) 19 (-2768 (|has| |#2| (-1099)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099))))) (-1849 (($) 73) (($ (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) 72)) (-1944 (((-1269) $ |#1| |#1|) 100 (|has| $ (-6 -4415)))) (-1504 (((-112) $ (-771)) 8)) (-1456 ((|#2| $ |#1| |#2|) 74)) (-2995 (($ (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 46 (|has| $ (-6 -4414)))) (-3678 (($ (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 56 (|has| $ (-6 -4414)))) (-3070 (((-3 |#2| "failed") |#1| $) 62)) (-2463 (($) 7 T CONST)) (-3942 (($ $) 59 (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| $ (-6 -4414))))) (-3512 (($ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) 48 (|has| $ (-6 -4414))) (($ (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 47 (|has| $ (-6 -4414))) (((-3 |#2| "failed") |#1| $) 63)) (-2622 (($ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) 58 (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| $ (-6 -4414)))) (($ (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 55 (|has| $ (-6 -4414)))) (-2873 (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) 57 (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| $ (-6 -4414)))) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) 54 (|has| $ (-6 -4414))) (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 53 (|has| $ (-6 -4414)))) (-3897 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4415)))) (-3829 ((|#2| $ |#1|) 89)) (-1683 (((-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 31 (|has| $ (-6 -4414))) (((-644 |#2|) $) 80 (|has| $ (-6 -4414)))) (-3456 (((-112) $ (-771)) 9)) (-2296 ((|#1| $) 97 (|has| |#1| (-850)))) (-3491 (((-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 30 (|has| $ (-6 -4414))) (((-644 |#2|) $) 81 (|has| $ (-6 -4414)))) (-1602 (((-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| $ (-6 -4414)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1099)) (|has| $ (-6 -4414))))) (-4050 ((|#1| $) 96 (|has| |#1| (-850)))) (-3885 (($ (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 35 (|has| $ (-6 -4415))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4415)))) (-2319 (($ (-1 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71)) (-3267 (((-112) $ (-771)) 10)) (-3380 (((-1157) $) 22 (-2768 (|has| |#2| (-1099)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099))))) (-4052 (((-644 |#1|) $) 64)) (-1826 (((-112) |#1| $) 65)) (-3278 (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) 40)) (-3888 (($ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) 41)) (-3725 (((-644 |#1|) $) 94)) (-1644 (((-112) |#1| $) 93)) (-4072 (((-1119) $) 21 (-2768 (|has| |#2| (-1099)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099))))) (-3908 ((|#2| $) 98 (|has| |#1| (-850)))) (-3668 (((-3 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) "failed") (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 52)) (-3787 (($ $ |#2|) 99 (|has| $ (-6 -4415)))) (-1973 (((-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) 42)) (-2823 (((-112) (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 33 (|has| $ (-6 -4414))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))))) 27 (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (($ $ (-295 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) 26 (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (($ $ (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) 25 (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (($ $ (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) 24 (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) 87 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) 85 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 (-295 |#2|))) 84 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-3814 (((-112) $ $) 14)) (-2847 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4414)) (|has| |#2| (-1099))))) (-3486 (((-644 |#2|) $) 92)) (-2872 (((-112) $) 11)) (-3493 (($) 12)) (-1309 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90)) (-1792 (($) 50) (($ (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) 49)) (-4083 (((-771) (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 32 (|has| $ (-6 -4414))) (((-771) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) $) 29 (-12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| $ (-6 -4414)))) (((-771) |#2| $) 82 (-12 (|has| |#2| (-1099)) (|has| $ (-6 -4414)))) (((-771) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4414)))) (-1480 (($ $) 13)) (-2376 (((-538) $) 60 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-614 (-538))))) (-1340 (($ (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) 51)) (-3152 (((-862) $) 18 (-2768 (|has| |#2| (-613 (-862))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-613 (-862)))))) (-3044 (((-112) $ $) 23 (-2768 (|has| |#2| (-1099)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099))))) (-2948 (($ (-644 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) 43)) (-2210 (((-112) (-1 (-112) (-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) $) 34 (|has| $ (-6 -4414))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) 20 (-2768 (|has| |#2| (-1099)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099))))) (-3000 (((-771) $) 6 (|has| $ (-6 -4414))))) (((-1190 |#1| |#2|) (-140) (-1099) (-1099)) (T -1190)) -((-3923 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1190 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1099)))) (-4254 (*1 *1) (-12 (-4 *1 (-1190 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099)))) (-4254 (*1 *1 *2) (-12 (-5 *2 (-644 (-2 (|:| -2004 *3) (|:| -3867 *4)))) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *1 (-1190 *3 *4)))) (-1301 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1190 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099))))) -(-13 (-610 |t#1| |t#2|) (-604 |t#1| |t#2|) (-10 -8 (-15 -3923 (|t#2| $ |t#1| |t#2|)) (-15 -4254 ($)) (-15 -4254 ($ (-644 (-2 (|:| -2004 |t#1|) (|:| -3867 |t#2|))))) (-15 -1301 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) -(((-34) . T) ((-107 #0=(-2 (|:| -2004 |#1|) (|:| -3867 |#2|))) . T) ((-102) -2809 (|has| |#2| (-1099)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099))) ((-613 (-862)) -2809 (|has| |#2| (-1099)) (|has| |#2| (-613 (-862))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-613 (-862)))) ((-151 #0#) . T) ((-614 (-538)) |has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-614 (-538))) ((-229 #0#) . T) ((-235 #0#) . T) ((-287 |#1| |#2|) . T) ((-289 |#1| |#2|) . T) ((-310 #0#) -12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099))) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((-491 #0#) . T) ((-491 |#2|) . T) ((-604 |#1| |#2|) . T) ((-516 #0# #0#) -12 (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-310 (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)))) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099))) ((-516 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((-610 |#1| |#2|) . T) ((-1099) -2809 (|has| |#2| (-1099)) (|has| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (-1099))) ((-1214) . T)) -((-2130 (((-112)) 29)) (-4130 (((-1269) (-1157)) 31)) (-2243 (((-112)) 41)) (-2447 (((-1269)) 39)) (-2124 (((-1269) (-1157) (-1157)) 30)) (-3846 (((-112)) 42)) (-3406 (((-1269) |#1| |#2|) 53)) (-3057 (((-1269)) 27)) (-3573 (((-3 |#2| "failed") |#1|) 51)) (-1508 (((-1269)) 40))) -(((-1191 |#1| |#2|) (-10 -7 (-15 -3057 ((-1269))) (-15 -2124 ((-1269) (-1157) (-1157))) (-15 -4130 ((-1269) (-1157))) (-15 -2447 ((-1269))) (-15 -1508 ((-1269))) (-15 -2130 ((-112))) (-15 -2243 ((-112))) (-15 -3846 ((-112))) (-15 -3573 ((-3 |#2| "failed") |#1|)) (-15 -3406 ((-1269) |#1| |#2|))) (-1099) (-1099)) (T -1191)) -((-3406 (*1 *2 *3 *4) (-12 (-5 *2 (-1269)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)))) (-3573 (*1 *2 *3) (|partial| -12 (-4 *2 (-1099)) (-5 *1 (-1191 *3 *2)) (-4 *3 (-1099)))) (-3846 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)))) (-2243 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)))) (-2130 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)))) (-1508 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)))) (-2447 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)))) (-4130 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1191 *4 *5)) (-4 *4 (-1099)) (-4 *5 (-1099)))) (-2124 (*1 *2 *3 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1191 *4 *5)) (-4 *4 (-1099)) (-4 *5 (-1099)))) (-3057 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099))))) -(-10 -7 (-15 -3057 ((-1269))) (-15 -2124 ((-1269) (-1157) (-1157))) (-15 -4130 ((-1269) (-1157))) (-15 -2447 ((-1269))) (-15 -1508 ((-1269))) (-15 -2130 ((-112))) (-15 -2243 ((-112))) (-15 -3846 ((-112))) (-15 -3573 ((-3 |#2| "failed") |#1|)) (-15 -3406 ((-1269) |#1| |#2|))) -((-3217 (((-1157) (-1157)) 22)) (-4304 (((-52) (-1157)) 25))) -(((-1192) (-10 -7 (-15 -4304 ((-52) (-1157))) (-15 -3217 ((-1157) (-1157))))) (T -1192)) -((-3217 (*1 *2 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1192)))) (-4304 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-52)) (-5 *1 (-1192))))) -(-10 -7 (-15 -4304 ((-52) (-1157))) (-15 -3217 ((-1157) (-1157)))) -((-3783 (((-1194) |#1|) 11))) -(((-1193 |#1|) (-10 -7 (-15 -3783 ((-1194) |#1|))) (-1099)) (T -1193)) -((-3783 (*1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *1 (-1193 *3)) (-4 *3 (-1099))))) -(-10 -7 (-15 -3783 ((-1194) |#1|))) -((-3007 (((-112) $ $) NIL)) (-3407 (((-644 (-1157)) $) 39)) (-2344 (((-644 (-1157)) $ (-644 (-1157))) 42)) (-3093 (((-644 (-1157)) $ (-644 (-1157))) 41)) (-1792 (((-644 (-1157)) $ (-644 (-1157))) 43)) (-3695 (((-644 (-1157)) $) 38)) (-4265 (($) 26)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3337 (((-644 (-1157)) $) 40)) (-1675 (((-1269) $ (-566)) 35) (((-1269) $) 36)) (-1348 (($ (-862) (-566)) 32) (($ (-862) (-566) (-862)) NIL)) (-3783 (((-862) $) 53) (($ (-862)) 31)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) -(((-1194) (-13 (-1099) (-616 (-862)) (-10 -8 (-15 -1348 ($ (-862) (-566))) (-15 -1348 ($ (-862) (-566) (-862))) (-15 -1675 ((-1269) $ (-566))) (-15 -1675 ((-1269) $)) (-15 -3337 ((-644 (-1157)) $)) (-15 -3407 ((-644 (-1157)) $)) (-15 -4265 ($)) (-15 -3695 ((-644 (-1157)) $)) (-15 -1792 ((-644 (-1157)) $ (-644 (-1157)))) (-15 -2344 ((-644 (-1157)) $ (-644 (-1157)))) (-15 -3093 ((-644 (-1157)) $ (-644 (-1157))))))) (T -1194)) -((-1348 (*1 *1 *2 *3) (-12 (-5 *2 (-862)) (-5 *3 (-566)) (-5 *1 (-1194)))) (-1348 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-862)) (-5 *3 (-566)) (-5 *1 (-1194)))) (-1675 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *2 (-1269)) (-5 *1 (-1194)))) (-1675 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-1194)))) (-3337 (*1 *2 *1) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1194)))) (-3407 (*1 *2 *1) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1194)))) (-4265 (*1 *1) (-5 *1 (-1194))) (-3695 (*1 *2 *1) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1194)))) (-1792 (*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1194)))) (-2344 (*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1194)))) (-3093 (*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1194))))) -(-13 (-1099) (-616 (-862)) (-10 -8 (-15 -1348 ($ (-862) (-566))) (-15 -1348 ($ (-862) (-566) (-862))) (-15 -1675 ((-1269) $ (-566))) (-15 -1675 ((-1269) $)) (-15 -3337 ((-644 (-1157)) $)) (-15 -3407 ((-644 (-1157)) $)) (-15 -4265 ($)) (-15 -3695 ((-644 (-1157)) $)) (-15 -1792 ((-644 (-1157)) $ (-644 (-1157)))) (-15 -2344 ((-644 (-1157)) $ (-644 (-1157)))) (-15 -3093 ((-644 (-1157)) $ (-644 (-1157)))))) -((-3007 (((-112) $ $) NIL)) (-4053 (((-1157) $ (-1157)) 17) (((-1157) $) 16)) (-3349 (((-1157) $ (-1157)) 15)) (-3534 (($ $ (-1157)) NIL)) (-2517 (((-3 (-1157) "failed") $) 11)) (-2464 (((-1157) $) 8)) (-2840 (((-3 (-1157) "failed") $) 12)) (-2972 (((-1157) $) 9)) (-3501 (($ (-390)) NIL) (($ (-390) (-1157)) NIL)) (-2640 (((-390) $) NIL)) (-4117 (((-1157) $) NIL)) (-4176 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3964 (((-112) $) 21)) (-3783 (((-862) $) NIL)) (-1596 (($ $) NIL)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) -(((-1195) (-13 (-366 (-390) (-1157)) (-10 -8 (-15 -4053 ((-1157) $ (-1157))) (-15 -4053 ((-1157) $)) (-15 -2464 ((-1157) $)) (-15 -2517 ((-3 (-1157) "failed") $)) (-15 -2840 ((-3 (-1157) "failed") $)) (-15 -3964 ((-112) $))))) (T -1195)) -((-4053 (*1 *2 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1195)))) (-4053 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1195)))) (-2464 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1195)))) (-2517 (*1 *2 *1) (|partial| -12 (-5 *2 (-1157)) (-5 *1 (-1195)))) (-2840 (*1 *2 *1) (|partial| -12 (-5 *2 (-1157)) (-5 *1 (-1195)))) (-3964 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1195))))) -(-13 (-366 (-390) (-1157)) (-10 -8 (-15 -4053 ((-1157) $ (-1157))) (-15 -4053 ((-1157) $)) (-15 -2464 ((-1157) $)) (-15 -2517 ((-3 (-1157) "failed") $)) (-15 -2840 ((-3 (-1157) "failed") $)) (-15 -3964 ((-112) $)))) -((-4364 (((-3 (-566) "failed") |#1|) 19)) (-1870 (((-3 (-566) "failed") |#1|) 14)) (-3522 (((-566) (-1157)) 33))) -(((-1196 |#1|) (-10 -7 (-15 -4364 ((-3 (-566) "failed") |#1|)) (-15 -1870 ((-3 (-566) "failed") |#1|)) (-15 -3522 ((-566) (-1157)))) (-1049)) (T -1196)) -((-3522 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-566)) (-5 *1 (-1196 *4)) (-4 *4 (-1049)))) (-1870 (*1 *2 *3) (|partial| -12 (-5 *2 (-566)) (-5 *1 (-1196 *3)) (-4 *3 (-1049)))) (-4364 (*1 *2 *3) (|partial| -12 (-5 *2 (-566)) (-5 *1 (-1196 *3)) (-4 *3 (-1049))))) -(-10 -7 (-15 -4364 ((-3 (-566) "failed") |#1|)) (-15 -1870 ((-3 (-566) "failed") |#1|)) (-15 -3522 ((-566) (-1157)))) -((-1764 (((-1132 (-225))) 9))) -(((-1197) (-10 -7 (-15 -1764 ((-1132 (-225)))))) (T -1197)) -((-1764 (*1 *2) (-12 (-5 *2 (-1132 (-225))) (-5 *1 (-1197))))) -(-10 -7 (-15 -1764 ((-1132 (-225))))) -((-4361 (($) 12)) (-4177 (($ $) 36)) (-4155 (($ $) 34)) (-2153 (($ $) 26)) (-4198 (($ $) 18)) (-2976 (($ $) 16)) (-4188 (($ $) 20)) (-2196 (($ $) 31)) (-4166 (($ $) 35)) (-2166 (($ $) 30))) -(((-1198 |#1|) (-10 -8 (-15 -4361 (|#1|)) (-15 -4177 (|#1| |#1|)) (-15 -4155 (|#1| |#1|)) (-15 -4198 (|#1| |#1|)) (-15 -2976 (|#1| |#1|)) (-15 -4188 (|#1| |#1|)) (-15 -4166 (|#1| |#1|)) (-15 -2153 (|#1| |#1|)) (-15 -2196 (|#1| |#1|)) (-15 -2166 (|#1| |#1|))) (-1199)) (T -1198)) -NIL -(-10 -8 (-15 -4361 (|#1|)) (-15 -4177 (|#1| |#1|)) (-15 -4155 (|#1| |#1|)) (-15 -4198 (|#1| |#1|)) (-15 -2976 (|#1| |#1|)) (-15 -4188 (|#1| |#1|)) (-15 -4166 (|#1| |#1|)) (-15 -2153 (|#1| |#1|)) (-15 -2196 (|#1| |#1|)) (-15 -2166 (|#1| |#1|))) -((-4114 (($ $) 26)) (-2109 (($ $) 11)) (-2240 (($ $) 27)) (-2085 (($ $) 10)) (-4134 (($ $) 28)) (-2129 (($ $) 9)) (-4361 (($) 16)) (-3651 (($ $) 19)) (-2561 (($ $) 18)) (-4144 (($ $) 29)) (-2141 (($ $) 8)) (-4124 (($ $) 30)) (-2118 (($ $) 7)) (-4104 (($ $) 31)) (-2098 (($ $) 6)) (-4177 (($ $) 20)) (-2180 (($ $) 32)) (-4155 (($ $) 21)) (-2153 (($ $) 33)) (-4198 (($ $) 22)) (-2212 (($ $) 34)) (-2976 (($ $) 23)) (-2227 (($ $) 35)) (-4188 (($ $) 24)) (-2196 (($ $) 36)) (-4166 (($ $) 25)) (-2166 (($ $) 37)) (** (($ $ $) 17))) +((-1456 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1190 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1099)))) (-1849 (*1 *1) (-12 (-4 *1 (-1190 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099)))) (-1849 (*1 *1 *2) (-12 (-5 *2 (-644 (-2 (|:| -2674 *3) (|:| -2636 *4)))) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *1 (-1190 *3 *4)))) (-2319 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1190 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099))))) +(-13 (-610 |t#1| |t#2|) (-604 |t#1| |t#2|) (-10 -8 (-15 -1456 (|t#2| $ |t#1| |t#2|)) (-15 -1849 ($)) (-15 -1849 ($ (-644 (-2 (|:| -2674 |t#1|) (|:| -2636 |t#2|))))) (-15 -2319 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -2674 |#1|) (|:| -2636 |#2|))) . T) ((-102) -2768 (|has| |#2| (-1099)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099))) ((-613 (-862)) -2768 (|has| |#2| (-1099)) (|has| |#2| (-613 (-862))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-613 (-862)))) ((-151 #0#) . T) ((-614 (-538)) |has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-614 (-538))) ((-229 #0#) . T) ((-235 #0#) . T) ((-287 |#1| |#2|) . T) ((-289 |#1| |#2|) . T) ((-310 #0#) -12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099))) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((-491 #0#) . T) ((-491 |#2|) . T) ((-604 |#1| |#2|) . T) ((-516 #0# #0#) -12 (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-310 (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)))) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099))) ((-516 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((-610 |#1| |#2|) . T) ((-1099) -2768 (|has| |#2| (-1099)) (|has| (-2 (|:| -2674 |#1|) (|:| -2636 |#2|)) (-1099))) ((-1214) . T)) +((-3086 (((-112)) 29)) (-2157 (((-1269) (-1157)) 31)) (-1472 (((-112)) 41)) (-2936 (((-1269)) 39)) (-2604 (((-1269) (-1157) (-1157)) 30)) (-2903 (((-112)) 42)) (-3888 (((-1269) |#1| |#2|) 53)) (-2306 (((-1269)) 27)) (-1880 (((-3 |#2| "failed") |#1|) 51)) (-2480 (((-1269)) 40))) +(((-1191 |#1| |#2|) (-10 -7 (-15 -2306 ((-1269))) (-15 -2604 ((-1269) (-1157) (-1157))) (-15 -2157 ((-1269) (-1157))) (-15 -2936 ((-1269))) (-15 -2480 ((-1269))) (-15 -3086 ((-112))) (-15 -1472 ((-112))) (-15 -2903 ((-112))) (-15 -1880 ((-3 |#2| "failed") |#1|)) (-15 -3888 ((-1269) |#1| |#2|))) (-1099) (-1099)) (T -1191)) +((-3888 (*1 *2 *3 *4) (-12 (-5 *2 (-1269)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)))) (-1880 (*1 *2 *3) (|partial| -12 (-4 *2 (-1099)) (-5 *1 (-1191 *3 *2)) (-4 *3 (-1099)))) (-2903 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)))) (-1472 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)))) (-3086 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)))) (-2480 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)))) (-2936 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)))) (-2157 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1191 *4 *5)) (-4 *4 (-1099)) (-4 *5 (-1099)))) (-2604 (*1 *2 *3 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1191 *4 *5)) (-4 *4 (-1099)) (-4 *5 (-1099)))) (-2306 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099))))) +(-10 -7 (-15 -2306 ((-1269))) (-15 -2604 ((-1269) (-1157) (-1157))) (-15 -2157 ((-1269) (-1157))) (-15 -2936 ((-1269))) (-15 -2480 ((-1269))) (-15 -3086 ((-112))) (-15 -1472 ((-112))) (-15 -2903 ((-112))) (-15 -1880 ((-3 |#2| "failed") |#1|)) (-15 -3888 ((-1269) |#1| |#2|))) +((-3514 (((-1157) (-1157)) 22)) (-2118 (((-52) (-1157)) 25))) +(((-1192) (-10 -7 (-15 -2118 ((-52) (-1157))) (-15 -3514 ((-1157) (-1157))))) (T -1192)) +((-3514 (*1 *2 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1192)))) (-2118 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-52)) (-5 *1 (-1192))))) +(-10 -7 (-15 -2118 ((-52) (-1157))) (-15 -3514 ((-1157) (-1157)))) +((-3152 (((-1194) |#1|) 11))) +(((-1193 |#1|) (-10 -7 (-15 -3152 ((-1194) |#1|))) (-1099)) (T -1193)) +((-3152 (*1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *1 (-1193 *3)) (-4 *3 (-1099))))) +(-10 -7 (-15 -3152 ((-1194) |#1|))) +((-2988 (((-112) $ $) NIL)) (-2506 (((-644 (-1157)) $) 39)) (-1407 (((-644 (-1157)) $ (-644 (-1157))) 42)) (-2539 (((-644 (-1157)) $ (-644 (-1157))) 41)) (-2456 (((-644 (-1157)) $ (-644 (-1157))) 43)) (-2618 (((-644 (-1157)) $) 38)) (-1860 (($) 26)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-1404 (((-644 (-1157)) $) 40)) (-1710 (((-1269) $ (-566)) 35) (((-1269) $) 36)) (-2376 (($ (-862) (-566)) 32) (($ (-862) (-566) (-862)) NIL)) (-3152 (((-862) $) 53) (($ (-862)) 31)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) +(((-1194) (-13 (-1099) (-616 (-862)) (-10 -8 (-15 -2376 ($ (-862) (-566))) (-15 -2376 ($ (-862) (-566) (-862))) (-15 -1710 ((-1269) $ (-566))) (-15 -1710 ((-1269) $)) (-15 -1404 ((-644 (-1157)) $)) (-15 -2506 ((-644 (-1157)) $)) (-15 -1860 ($)) (-15 -2618 ((-644 (-1157)) $)) (-15 -2456 ((-644 (-1157)) $ (-644 (-1157)))) (-15 -1407 ((-644 (-1157)) $ (-644 (-1157)))) (-15 -2539 ((-644 (-1157)) $ (-644 (-1157))))))) (T -1194)) +((-2376 (*1 *1 *2 *3) (-12 (-5 *2 (-862)) (-5 *3 (-566)) (-5 *1 (-1194)))) (-2376 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-862)) (-5 *3 (-566)) (-5 *1 (-1194)))) (-1710 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *2 (-1269)) (-5 *1 (-1194)))) (-1710 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-1194)))) (-1404 (*1 *2 *1) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1194)))) (-2506 (*1 *2 *1) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1194)))) (-1860 (*1 *1) (-5 *1 (-1194))) (-2618 (*1 *2 *1) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1194)))) (-2456 (*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1194)))) (-1407 (*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1194)))) (-2539 (*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1194))))) +(-13 (-1099) (-616 (-862)) (-10 -8 (-15 -2376 ($ (-862) (-566))) (-15 -2376 ($ (-862) (-566) (-862))) (-15 -1710 ((-1269) $ (-566))) (-15 -1710 ((-1269) $)) (-15 -1404 ((-644 (-1157)) $)) (-15 -2506 ((-644 (-1157)) $)) (-15 -1860 ($)) (-15 -2618 ((-644 (-1157)) $)) (-15 -2456 ((-644 (-1157)) $ (-644 (-1157)))) (-15 -1407 ((-644 (-1157)) $ (-644 (-1157)))) (-15 -2539 ((-644 (-1157)) $ (-644 (-1157)))))) +((-2988 (((-112) $ $) NIL)) (-2227 (((-1157) $ (-1157)) 17) (((-1157) $) 16)) (-3167 (((-1157) $ (-1157)) 15)) (-2545 (($ $ (-1157)) NIL)) (-3661 (((-3 (-1157) "failed") $) 11)) (-4063 (((-1157) $) 8)) (-2403 (((-3 (-1157) "failed") $) 12)) (-1338 (((-1157) $) 9)) (-3292 (($ (-390)) NIL) (($ (-390) (-1157)) NIL)) (-1368 (((-390) $) NIL)) (-3380 (((-1157) $) NIL)) (-4085 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-4337 (((-112) $) 21)) (-3152 (((-862) $) NIL)) (-2405 (($ $) NIL)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) +(((-1195) (-13 (-366 (-390) (-1157)) (-10 -8 (-15 -2227 ((-1157) $ (-1157))) (-15 -2227 ((-1157) $)) (-15 -4063 ((-1157) $)) (-15 -3661 ((-3 (-1157) "failed") $)) (-15 -2403 ((-3 (-1157) "failed") $)) (-15 -4337 ((-112) $))))) (T -1195)) +((-2227 (*1 *2 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1195)))) (-2227 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1195)))) (-4063 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1195)))) (-3661 (*1 *2 *1) (|partial| -12 (-5 *2 (-1157)) (-5 *1 (-1195)))) (-2403 (*1 *2 *1) (|partial| -12 (-5 *2 (-1157)) (-5 *1 (-1195)))) (-4337 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1195))))) +(-13 (-366 (-390) (-1157)) (-10 -8 (-15 -2227 ((-1157) $ (-1157))) (-15 -2227 ((-1157) $)) (-15 -4063 ((-1157) $)) (-15 -3661 ((-3 (-1157) "failed") $)) (-15 -2403 ((-3 (-1157) "failed") $)) (-15 -4337 ((-112) $)))) +((-2743 (((-3 (-566) "failed") |#1|) 19)) (-1818 (((-3 (-566) "failed") |#1|) 14)) (-3766 (((-566) (-1157)) 33))) +(((-1196 |#1|) (-10 -7 (-15 -2743 ((-3 (-566) "failed") |#1|)) (-15 -1818 ((-3 (-566) "failed") |#1|)) (-15 -3766 ((-566) (-1157)))) (-1049)) (T -1196)) +((-3766 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-566)) (-5 *1 (-1196 *4)) (-4 *4 (-1049)))) (-1818 (*1 *2 *3) (|partial| -12 (-5 *2 (-566)) (-5 *1 (-1196 *3)) (-4 *3 (-1049)))) (-2743 (*1 *2 *3) (|partial| -12 (-5 *2 (-566)) (-5 *1 (-1196 *3)) (-4 *3 (-1049))))) +(-10 -7 (-15 -2743 ((-3 (-566) "failed") |#1|)) (-15 -1818 ((-3 (-566) "failed") |#1|)) (-15 -3766 ((-566) (-1157)))) +((-1667 (((-1132 (-225))) 9))) +(((-1197) (-10 -7 (-15 -1667 ((-1132 (-225)))))) (T -1197)) +((-1667 (*1 *2) (-12 (-5 *2 (-1132 (-225))) (-5 *1 (-1197))))) +(-10 -7 (-15 -1667 ((-1132 (-225))))) +((-2281 (($) 12)) (-4032 (($ $) 36)) (-4008 (($ $) 34)) (-3684 (($ $) 26)) (-4057 (($ $) 18)) (-3964 (($ $) 16)) (-4044 (($ $) 20)) (-3904 (($ $) 31)) (-4020 (($ $) 35)) (-3879 (($ $) 30))) +(((-1198 |#1|) (-10 -8 (-15 -2281 (|#1|)) (-15 -4032 (|#1| |#1|)) (-15 -4008 (|#1| |#1|)) (-15 -4057 (|#1| |#1|)) (-15 -3964 (|#1| |#1|)) (-15 -4044 (|#1| |#1|)) (-15 -4020 (|#1| |#1|)) (-15 -3684 (|#1| |#1|)) (-15 -3904 (|#1| |#1|)) (-15 -3879 (|#1| |#1|))) (-1199)) (T -1198)) +NIL +(-10 -8 (-15 -2281 (|#1|)) (-15 -4032 (|#1| |#1|)) (-15 -4008 (|#1| |#1|)) (-15 -4057 (|#1| |#1|)) (-15 -3964 (|#1| |#1|)) (-15 -4044 (|#1| |#1|)) (-15 -4020 (|#1| |#1|)) (-15 -3684 (|#1| |#1|)) (-15 -3904 (|#1| |#1|)) (-15 -3879 (|#1| |#1|))) +((-3963 (($ $) 26)) (-3630 (($ $) 11)) (-3941 (($ $) 27)) (-3602 (($ $) 10)) (-3986 (($ $) 28)) (-3656 (($ $) 9)) (-2281 (($) 16)) (-3619 (($ $) 19)) (-3521 (($ $) 18)) (-3996 (($ $) 29)) (-3670 (($ $) 8)) (-3976 (($ $) 30)) (-3643 (($ $) 7)) (-3952 (($ $) 31)) (-3618 (($ $) 6)) (-4032 (($ $) 20)) (-3892 (($ $) 32)) (-4008 (($ $) 21)) (-3684 (($ $) 33)) (-4057 (($ $) 22)) (-3917 (($ $) 34)) (-3964 (($ $) 23)) (-3929 (($ $) 35)) (-4044 (($ $) 24)) (-3904 (($ $) 36)) (-4020 (($ $) 25)) (-3879 (($ $) 37)) (** (($ $ $) 17))) (((-1199) (-140)) (T -1199)) -((-4361 (*1 *1) (-4 *1 (-1199)))) -(-13 (-1202) (-95) (-495) (-35) (-285) (-10 -8 (-15 -4361 ($)))) +((-2281 (*1 *1) (-4 *1 (-1199)))) +(-13 (-1202) (-95) (-495) (-35) (-285) (-10 -8 (-15 -2281 ($)))) (((-35) . T) ((-95) . T) ((-285) . T) ((-495) . T) ((-1202) . T)) -((-3007 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2233 ((|#1| $) 19)) (-3379 (($ |#1| (-644 $)) 28) (($ (-644 |#1|)) 35) (($ |#1|) 30)) (-2256 (((-112) $ (-771)) 72)) (-3396 ((|#1| $ |#1|) 14 (|has| $ (-6 -4415)))) (-3923 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4415)))) (-3800 (($ $ (-644 $)) 13 (|has| $ (-6 -4415)))) (-3012 (($) NIL T CONST)) (-3979 (((-644 |#1|) $) 76 (|has| $ (-6 -4414)))) (-4009 (((-644 $) $) 64)) (-3891 (((-112) $ $) 49 (|has| |#1| (-1099)))) (-2404 (((-112) $ (-771)) 62)) (-2329 (((-644 |#1|) $) 77 (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) 75 (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2908 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#1| |#1|) $) 27)) (-2603 (((-112) $ (-771)) 60)) (-3701 (((-644 |#1|) $) 54)) (-3438 (((-112) $) 52)) (-4117 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4035 (((-1119) $) NIL (|has| |#1| (-1099)))) (-2692 (((-112) (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) 107)) (-3467 (((-112) $) 9)) (-1494 (($) 10)) (-4390 ((|#1| $ "value") NIL)) (-1416 (((-566) $ $) 48)) (-1875 (((-644 $) $) 89)) (-3189 (((-112) $ $) 110)) (-4174 (((-644 $) $) 105)) (-3675 (($ $) 106)) (-3494 (((-112) $) 84)) (-4045 (((-771) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4414))) (((-771) |#1| $) 17 (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3940 (($ $) 88)) (-3783 (((-862) $) 91 (|has| |#1| (-613 (-862))))) (-2462 (((-644 $) $) 12)) (-4288 (((-112) $ $) 39 (|has| |#1| (-1099)))) (-3117 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1894 (((-112) (-1 (-112) |#1|) $) 73 (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) 37 (|has| |#1| (-1099)))) (-3018 (((-771) $) 58 (|has| $ (-6 -4414))))) -(((-1200 |#1|) (-13 (-1010 |#1|) (-10 -8 (-6 -4414) (-6 -4415) (-15 -3379 ($ |#1| (-644 $))) (-15 -3379 ($ (-644 |#1|))) (-15 -3379 ($ |#1|)) (-15 -3494 ((-112) $)) (-15 -3675 ($ $)) (-15 -4174 ((-644 $) $)) (-15 -3189 ((-112) $ $)) (-15 -1875 ((-644 $) $)))) (-1099)) (T -1200)) -((-3494 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1200 *3)) (-4 *3 (-1099)))) (-3379 (*1 *1 *2 *3) (-12 (-5 *3 (-644 (-1200 *2))) (-5 *1 (-1200 *2)) (-4 *2 (-1099)))) (-3379 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-1200 *3)))) (-3379 (*1 *1 *2) (-12 (-5 *1 (-1200 *2)) (-4 *2 (-1099)))) (-3675 (*1 *1 *1) (-12 (-5 *1 (-1200 *2)) (-4 *2 (-1099)))) (-4174 (*1 *2 *1) (-12 (-5 *2 (-644 (-1200 *3))) (-5 *1 (-1200 *3)) (-4 *3 (-1099)))) (-3189 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1200 *3)) (-4 *3 (-1099)))) (-1875 (*1 *2 *1) (-12 (-5 *2 (-644 (-1200 *3))) (-5 *1 (-1200 *3)) (-4 *3 (-1099))))) -(-13 (-1010 |#1|) (-10 -8 (-6 -4414) (-6 -4415) (-15 -3379 ($ |#1| (-644 $))) (-15 -3379 ($ (-644 |#1|))) (-15 -3379 ($ |#1|)) (-15 -3494 ((-112) $)) (-15 -3675 ($ $)) (-15 -4174 ((-644 $) $)) (-15 -3189 ((-112) $ $)) (-15 -1875 ((-644 $) $)))) -((-2109 (($ $) 15)) (-2129 (($ $) 12)) (-2141 (($ $) 10)) (-2118 (($ $) 17))) -(((-1201 |#1|) (-10 -8 (-15 -2118 (|#1| |#1|)) (-15 -2141 (|#1| |#1|)) (-15 -2129 (|#1| |#1|)) (-15 -2109 (|#1| |#1|))) (-1202)) (T -1201)) -NIL -(-10 -8 (-15 -2118 (|#1| |#1|)) (-15 -2141 (|#1| |#1|)) (-15 -2129 (|#1| |#1|)) (-15 -2109 (|#1| |#1|))) -((-2109 (($ $) 11)) (-2085 (($ $) 10)) (-2129 (($ $) 9)) (-2141 (($ $) 8)) (-2118 (($ $) 7)) (-2098 (($ $) 6))) +((-2988 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2876 ((|#1| $) 19)) (-3243 (($ |#1| (-644 $)) 28) (($ (-644 |#1|)) 35) (($ |#1|) 30)) (-1504 (((-112) $ (-771)) 72)) (-2191 ((|#1| $ |#1|) 14 (|has| $ (-6 -4415)))) (-1456 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4415)))) (-4202 (($ $ (-644 $)) 13 (|has| $ (-6 -4415)))) (-2463 (($) NIL T CONST)) (-1683 (((-644 |#1|) $) 76 (|has| $ (-6 -4414)))) (-3431 (((-644 $) $) 64)) (-1507 (((-112) $ $) 49 (|has| |#1| (-1099)))) (-3456 (((-112) $ (-771)) 62)) (-3491 (((-644 |#1|) $) 77 (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) 75 (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3885 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#1| |#1|) $) 27)) (-3267 (((-112) $ (-771)) 60)) (-1458 (((-644 |#1|) $) 54)) (-3860 (((-112) $) 52)) (-3380 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4072 (((-1119) $) NIL (|has| |#1| (-1099)))) (-2823 (((-112) (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) 107)) (-2872 (((-112) $) 9)) (-3493 (($) 10)) (-1309 ((|#1| $ "value") NIL)) (-1696 (((-566) $ $) 48)) (-4208 (((-644 $) $) 89)) (-3728 (((-112) $ $) 110)) (-3848 (((-644 $) $) 105)) (-2448 (($ $) 106)) (-3786 (((-112) $) 84)) (-4083 (((-771) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4414))) (((-771) |#1| $) 17 (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-1480 (($ $) 88)) (-3152 (((-862) $) 91 (|has| |#1| (-613 (-862))))) (-1926 (((-644 $) $) 12)) (-4385 (((-112) $ $) 39 (|has| |#1| (-1099)))) (-3044 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2210 (((-112) (-1 (-112) |#1|) $) 73 (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) 37 (|has| |#1| (-1099)))) (-3000 (((-771) $) 58 (|has| $ (-6 -4414))))) +(((-1200 |#1|) (-13 (-1010 |#1|) (-10 -8 (-6 -4414) (-6 -4415) (-15 -3243 ($ |#1| (-644 $))) (-15 -3243 ($ (-644 |#1|))) (-15 -3243 ($ |#1|)) (-15 -3786 ((-112) $)) (-15 -2448 ($ $)) (-15 -3848 ((-644 $) $)) (-15 -3728 ((-112) $ $)) (-15 -4208 ((-644 $) $)))) (-1099)) (T -1200)) +((-3786 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1200 *3)) (-4 *3 (-1099)))) (-3243 (*1 *1 *2 *3) (-12 (-5 *3 (-644 (-1200 *2))) (-5 *1 (-1200 *2)) (-4 *2 (-1099)))) (-3243 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-1200 *3)))) (-3243 (*1 *1 *2) (-12 (-5 *1 (-1200 *2)) (-4 *2 (-1099)))) (-2448 (*1 *1 *1) (-12 (-5 *1 (-1200 *2)) (-4 *2 (-1099)))) (-3848 (*1 *2 *1) (-12 (-5 *2 (-644 (-1200 *3))) (-5 *1 (-1200 *3)) (-4 *3 (-1099)))) (-3728 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1200 *3)) (-4 *3 (-1099)))) (-4208 (*1 *2 *1) (-12 (-5 *2 (-644 (-1200 *3))) (-5 *1 (-1200 *3)) (-4 *3 (-1099))))) +(-13 (-1010 |#1|) (-10 -8 (-6 -4414) (-6 -4415) (-15 -3243 ($ |#1| (-644 $))) (-15 -3243 ($ (-644 |#1|))) (-15 -3243 ($ |#1|)) (-15 -3786 ((-112) $)) (-15 -2448 ($ $)) (-15 -3848 ((-644 $) $)) (-15 -3728 ((-112) $ $)) (-15 -4208 ((-644 $) $)))) +((-3630 (($ $) 15)) (-3656 (($ $) 12)) (-3670 (($ $) 10)) (-3643 (($ $) 17))) +(((-1201 |#1|) (-10 -8 (-15 -3643 (|#1| |#1|)) (-15 -3670 (|#1| |#1|)) (-15 -3656 (|#1| |#1|)) (-15 -3630 (|#1| |#1|))) (-1202)) (T -1201)) +NIL +(-10 -8 (-15 -3643 (|#1| |#1|)) (-15 -3670 (|#1| |#1|)) (-15 -3656 (|#1| |#1|)) (-15 -3630 (|#1| |#1|))) +((-3630 (($ $) 11)) (-3602 (($ $) 10)) (-3656 (($ $) 9)) (-3670 (($ $) 8)) (-3643 (($ $) 7)) (-3618 (($ $) 6))) (((-1202) (-140)) (T -1202)) -((-2109 (*1 *1 *1) (-4 *1 (-1202))) (-2085 (*1 *1 *1) (-4 *1 (-1202))) (-2129 (*1 *1 *1) (-4 *1 (-1202))) (-2141 (*1 *1 *1) (-4 *1 (-1202))) (-2118 (*1 *1 *1) (-4 *1 (-1202))) (-2098 (*1 *1 *1) (-4 *1 (-1202)))) -(-13 (-10 -8 (-15 -2098 ($ $)) (-15 -2118 ($ $)) (-15 -2141 ($ $)) (-15 -2129 ($ $)) (-15 -2085 ($ $)) (-15 -2109 ($ $)))) -((-4201 ((|#2| |#2|) 98)) (-2472 (((-112) |#2|) 29)) (-3742 ((|#2| |#2|) 33)) (-3753 ((|#2| |#2|) 35)) (-2978 ((|#2| |#2| (-1175)) 92) ((|#2| |#2|) 93)) (-1673 (((-169 |#2|) |#2|) 31)) (-2853 ((|#2| |#2| (-1175)) 94) ((|#2| |#2|) 95))) -(((-1203 |#1| |#2|) (-10 -7 (-15 -2978 (|#2| |#2|)) (-15 -2978 (|#2| |#2| (-1175))) (-15 -2853 (|#2| |#2|)) (-15 -2853 (|#2| |#2| (-1175))) (-15 -4201 (|#2| |#2|)) (-15 -3742 (|#2| |#2|)) (-15 -3753 (|#2| |#2|)) (-15 -2472 ((-112) |#2|)) (-15 -1673 ((-169 |#2|) |#2|))) (-13 (-454) (-1038 (-566)) (-639 (-566))) (-13 (-27) (-1199) (-432 |#1|))) (T -1203)) -((-1673 (*1 *2 *3) (-12 (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-169 *3)) (-5 *1 (-1203 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *4))))) (-2472 (*1 *2 *3) (-12 (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-112)) (-5 *1 (-1203 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *4))))) (-3753 (*1 *2 *2) (-12 (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *3))))) (-3742 (*1 *2 *2) (-12 (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *3))))) (-4201 (*1 *2 *2) (-12 (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *3))))) (-2853 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-1203 *4 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *4))))) (-2853 (*1 *2 *2) (-12 (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *3))))) (-2978 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-1203 *4 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *4))))) (-2978 (*1 *2 *2) (-12 (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *3)))))) -(-10 -7 (-15 -2978 (|#2| |#2|)) (-15 -2978 (|#2| |#2| (-1175))) (-15 -2853 (|#2| |#2|)) (-15 -2853 (|#2| |#2| (-1175))) (-15 -4201 (|#2| |#2|)) (-15 -3742 (|#2| |#2|)) (-15 -3753 (|#2| |#2|)) (-15 -2472 ((-112) |#2|)) (-15 -1673 ((-169 |#2|) |#2|))) -((-4051 ((|#4| |#4| |#1|) 32)) (-2663 ((|#4| |#4| |#1|) 33))) -(((-1204 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4051 (|#4| |#4| |#1|)) (-15 -2663 (|#4| |#4| |#1|))) (-558) (-375 |#1|) (-375 |#1|) (-687 |#1| |#2| |#3|)) (T -1204)) -((-2663 (*1 *2 *2 *3) (-12 (-4 *3 (-558)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-1204 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5)))) (-4051 (*1 *2 *2 *3) (-12 (-4 *3 (-558)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-1204 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5))))) -(-10 -7 (-15 -4051 (|#4| |#4| |#1|)) (-15 -2663 (|#4| |#4| |#1|))) -((-1851 ((|#2| |#2|) 148)) (-2244 ((|#2| |#2|) 145)) (-4165 ((|#2| |#2|) 136)) (-2466 ((|#2| |#2|) 133)) (-2102 ((|#2| |#2|) 141)) (-2843 ((|#2| |#2|) 129)) (-1767 ((|#2| |#2|) 44)) (-1483 ((|#2| |#2|) 105)) (-3564 ((|#2| |#2|) 88)) (-3581 ((|#2| |#2|) 143)) (-2912 ((|#2| |#2|) 131)) (-2826 ((|#2| |#2|) 153)) (-2251 ((|#2| |#2|) 151)) (-1633 ((|#2| |#2|) 152)) (-3195 ((|#2| |#2|) 150)) (-1472 ((|#2| |#2|) 163)) (-3357 ((|#2| |#2|) 30 (-12 (|has| |#2| (-614 (-892 |#1|))) (|has| |#2| (-886 |#1|)) (|has| |#1| (-614 (-892 |#1|))) (|has| |#1| (-886 |#1|))))) (-1962 ((|#2| |#2|) 89)) (-3067 ((|#2| |#2|) 154)) (-2671 ((|#2| |#2|) 155)) (-1412 ((|#2| |#2|) 142)) (-1873 ((|#2| |#2|) 130)) (-4314 ((|#2| |#2|) 149)) (-2565 ((|#2| |#2|) 147)) (-2182 ((|#2| |#2|) 137)) (-1668 ((|#2| |#2|) 135)) (-4209 ((|#2| |#2|) 139)) (-1649 ((|#2| |#2|) 127))) -(((-1205 |#1| |#2|) (-10 -7 (-15 -2671 (|#2| |#2|)) (-15 -3564 (|#2| |#2|)) (-15 -1472 (|#2| |#2|)) (-15 -1483 (|#2| |#2|)) (-15 -1767 (|#2| |#2|)) (-15 -1962 (|#2| |#2|)) (-15 -3067 (|#2| |#2|)) (-15 -1649 (|#2| |#2|)) (-15 -4209 (|#2| |#2|)) (-15 -2182 (|#2| |#2|)) (-15 -4314 (|#2| |#2|)) (-15 -1873 (|#2| |#2|)) (-15 -1412 (|#2| |#2|)) (-15 -2912 (|#2| |#2|)) (-15 -3581 (|#2| |#2|)) (-15 -2843 (|#2| |#2|)) (-15 -2102 (|#2| |#2|)) (-15 -4165 (|#2| |#2|)) (-15 -1851 (|#2| |#2|)) (-15 -2466 (|#2| |#2|)) (-15 -2244 (|#2| |#2|)) (-15 -1668 (|#2| |#2|)) (-15 -2565 (|#2| |#2|)) (-15 -3195 (|#2| |#2|)) (-15 -2251 (|#2| |#2|)) (-15 -1633 (|#2| |#2|)) (-15 -2826 (|#2| |#2|)) (IF (|has| |#1| (-886 |#1|)) (IF (|has| |#1| (-614 (-892 |#1|))) (IF (|has| |#2| (-614 (-892 |#1|))) (IF (|has| |#2| (-886 |#1|)) (-15 -3357 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-454) (-13 (-432 |#1|) (-1199))) (T -1205)) -((-3357 (*1 *2 *2) (-12 (-4 *3 (-614 (-892 *3))) (-4 *3 (-886 *3)) (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-614 (-892 *3))) (-4 *2 (-886 *3)) (-4 *2 (-13 (-432 *3) (-1199))))) (-2826 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-1633 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-2251 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-3195 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-2565 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-1668 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-2244 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-2466 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-1851 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-4165 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-2102 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-2843 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-3581 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-2912 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-1412 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-1873 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-4314 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-2182 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-4209 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-1649 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-3067 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-1962 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-1767 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-1483 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-1472 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-3564 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-2671 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199)))))) -(-10 -7 (-15 -2671 (|#2| |#2|)) (-15 -3564 (|#2| |#2|)) (-15 -1472 (|#2| |#2|)) (-15 -1483 (|#2| |#2|)) (-15 -1767 (|#2| |#2|)) (-15 -1962 (|#2| |#2|)) (-15 -3067 (|#2| |#2|)) (-15 -1649 (|#2| |#2|)) (-15 -4209 (|#2| |#2|)) (-15 -2182 (|#2| |#2|)) (-15 -4314 (|#2| |#2|)) (-15 -1873 (|#2| |#2|)) (-15 -1412 (|#2| |#2|)) (-15 -2912 (|#2| |#2|)) (-15 -3581 (|#2| |#2|)) (-15 -2843 (|#2| |#2|)) (-15 -2102 (|#2| |#2|)) (-15 -4165 (|#2| |#2|)) (-15 -1851 (|#2| |#2|)) (-15 -2466 (|#2| |#2|)) (-15 -2244 (|#2| |#2|)) (-15 -1668 (|#2| |#2|)) (-15 -2565 (|#2| |#2|)) (-15 -3195 (|#2| |#2|)) (-15 -2251 (|#2| |#2|)) (-15 -1633 (|#2| |#2|)) (-15 -2826 (|#2| |#2|)) (IF (|has| |#1| (-886 |#1|)) (IF (|has| |#1| (-614 (-892 |#1|))) (IF (|has| |#2| (-614 (-892 |#1|))) (IF (|has| |#2| (-886 |#1|)) (-15 -3357 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) -((-3624 (((-112) |#5| $) 68) (((-112) $) 110)) (-1374 ((|#5| |#5| $) 83)) (-2701 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 127)) (-2506 (((-644 |#5|) (-644 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 81)) (-4307 (((-3 $ "failed") (-644 |#5|)) 135)) (-2010 (((-3 $ "failed") $) 120)) (-2100 ((|#5| |#5| $) 102)) (-1464 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 36)) (-1401 ((|#5| |#5| $) 106)) (-1676 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 77)) (-3692 (((-2 (|:| -1651 (-644 |#5|)) (|:| -3501 (-644 |#5|))) $) 63)) (-2111 (((-112) |#5| $) 66) (((-112) $) 111)) (-1489 ((|#4| $) 116)) (-2686 (((-3 |#5| "failed") $) 118)) (-2851 (((-644 |#5|) $) 55)) (-1694 (((-112) |#5| $) 75) (((-112) $) 115)) (-1871 ((|#5| |#5| $) 89)) (-2897 (((-112) $ $) 29)) (-3351 (((-112) |#5| $) 71) (((-112) $) 113)) (-3544 ((|#5| |#5| $) 86)) (-1998 (((-3 |#5| "failed") $) 117)) (-3874 (($ $ |#5|) 136)) (-3636 (((-771) $) 60)) (-3796 (($ (-644 |#5|)) 133)) (-2325 (($ $ |#4|) 131)) (-4106 (($ $ |#4|) 129)) (-3973 (($ $) 128)) (-3783 (((-862) $) NIL) (((-644 |#5|) $) 121)) (-2028 (((-771) $) 140)) (-3706 (((-3 (-2 (|:| |bas| $) (|:| -1825 (-644 |#5|))) "failed") (-644 |#5|) (-1 (-112) |#5| |#5|)) 49) (((-3 (-2 (|:| |bas| $) (|:| -1825 (-644 |#5|))) "failed") (-644 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 51)) (-3772 (((-112) $ (-1 (-112) |#5| (-644 |#5|))) 108)) (-4180 (((-644 |#4|) $) 123)) (-1423 (((-112) |#4| $) 126)) (-2947 (((-112) $ $) 20))) -(((-1206 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2028 ((-771) |#1|)) (-15 -3874 (|#1| |#1| |#5|)) (-15 -2701 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1423 ((-112) |#4| |#1|)) (-15 -4180 ((-644 |#4|) |#1|)) (-15 -2010 ((-3 |#1| "failed") |#1|)) (-15 -2686 ((-3 |#5| "failed") |#1|)) (-15 -1998 ((-3 |#5| "failed") |#1|)) (-15 -1401 (|#5| |#5| |#1|)) (-15 -3973 (|#1| |#1|)) (-15 -2100 (|#5| |#5| |#1|)) (-15 -1871 (|#5| |#5| |#1|)) (-15 -3544 (|#5| |#5| |#1|)) (-15 -1374 (|#5| |#5| |#1|)) (-15 -2506 ((-644 |#5|) (-644 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -1676 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -1694 ((-112) |#1|)) (-15 -3351 ((-112) |#1|)) (-15 -3624 ((-112) |#1|)) (-15 -3772 ((-112) |#1| (-1 (-112) |#5| (-644 |#5|)))) (-15 -1694 ((-112) |#5| |#1|)) (-15 -3351 ((-112) |#5| |#1|)) (-15 -3624 ((-112) |#5| |#1|)) (-15 -1464 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -2111 ((-112) |#1|)) (-15 -2111 ((-112) |#5| |#1|)) (-15 -3692 ((-2 (|:| -1651 (-644 |#5|)) (|:| -3501 (-644 |#5|))) |#1|)) (-15 -3636 ((-771) |#1|)) (-15 -2851 ((-644 |#5|) |#1|)) (-15 -3706 ((-3 (-2 (|:| |bas| |#1|) (|:| -1825 (-644 |#5|))) "failed") (-644 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3706 ((-3 (-2 (|:| |bas| |#1|) (|:| -1825 (-644 |#5|))) "failed") (-644 |#5|) (-1 (-112) |#5| |#5|))) (-15 -2897 ((-112) |#1| |#1|)) (-15 -2325 (|#1| |#1| |#4|)) (-15 -4106 (|#1| |#1| |#4|)) (-15 -1489 (|#4| |#1|)) (-15 -4307 ((-3 |#1| "failed") (-644 |#5|))) (-15 -3783 ((-644 |#5|) |#1|)) (-15 -3796 (|#1| (-644 |#5|))) (-15 -1676 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -1676 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2701 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -1676 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3783 ((-862) |#1|)) (-15 -2947 ((-112) |#1| |#1|))) (-1207 |#2| |#3| |#4| |#5|) (-558) (-793) (-850) (-1064 |#2| |#3| |#4|)) (T -1206)) -NIL -(-10 -8 (-15 -2028 ((-771) |#1|)) (-15 -3874 (|#1| |#1| |#5|)) (-15 -2701 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1423 ((-112) |#4| |#1|)) (-15 -4180 ((-644 |#4|) |#1|)) (-15 -2010 ((-3 |#1| "failed") |#1|)) (-15 -2686 ((-3 |#5| "failed") |#1|)) (-15 -1998 ((-3 |#5| "failed") |#1|)) (-15 -1401 (|#5| |#5| |#1|)) (-15 -3973 (|#1| |#1|)) (-15 -2100 (|#5| |#5| |#1|)) (-15 -1871 (|#5| |#5| |#1|)) (-15 -3544 (|#5| |#5| |#1|)) (-15 -1374 (|#5| |#5| |#1|)) (-15 -2506 ((-644 |#5|) (-644 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -1676 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -1694 ((-112) |#1|)) (-15 -3351 ((-112) |#1|)) (-15 -3624 ((-112) |#1|)) (-15 -3772 ((-112) |#1| (-1 (-112) |#5| (-644 |#5|)))) (-15 -1694 ((-112) |#5| |#1|)) (-15 -3351 ((-112) |#5| |#1|)) (-15 -3624 ((-112) |#5| |#1|)) (-15 -1464 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -2111 ((-112) |#1|)) (-15 -2111 ((-112) |#5| |#1|)) (-15 -3692 ((-2 (|:| -1651 (-644 |#5|)) (|:| -3501 (-644 |#5|))) |#1|)) (-15 -3636 ((-771) |#1|)) (-15 -2851 ((-644 |#5|) |#1|)) (-15 -3706 ((-3 (-2 (|:| |bas| |#1|) (|:| -1825 (-644 |#5|))) "failed") (-644 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3706 ((-3 (-2 (|:| |bas| |#1|) (|:| -1825 (-644 |#5|))) "failed") (-644 |#5|) (-1 (-112) |#5| |#5|))) (-15 -2897 ((-112) |#1| |#1|)) (-15 -2325 (|#1| |#1| |#4|)) (-15 -4106 (|#1| |#1| |#4|)) (-15 -1489 (|#4| |#1|)) (-15 -4307 ((-3 |#1| "failed") (-644 |#5|))) (-15 -3783 ((-644 |#5|) |#1|)) (-15 -3796 (|#1| (-644 |#5|))) (-15 -1676 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -1676 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2701 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -1676 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3783 ((-862) |#1|)) (-15 -2947 ((-112) |#1| |#1|))) -((-3007 (((-112) $ $) 7)) (-2584 (((-644 (-2 (|:| -1651 $) (|:| -3501 (-644 |#4|)))) (-644 |#4|)) 86)) (-2333 (((-644 $) (-644 |#4|)) 87)) (-3863 (((-644 |#3|) $) 34)) (-2368 (((-112) $) 27)) (-4070 (((-112) $) 18 (|has| |#1| (-558)))) (-3624 (((-112) |#4| $) 102) (((-112) $) 98)) (-1374 ((|#4| |#4| $) 93)) (-1510 (((-2 (|:| |under| $) (|:| -3470 $) (|:| |upper| $)) $ |#3|) 28)) (-2256 (((-112) $ (-771)) 45)) (-2701 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4414))) (((-3 |#4| "failed") $ |#3|) 80)) (-3012 (($) 46 T CONST)) (-3779 (((-112) $) 23 (|has| |#1| (-558)))) (-2540 (((-112) $ $) 25 (|has| |#1| (-558)))) (-4093 (((-112) $ $) 24 (|has| |#1| (-558)))) (-3741 (((-112) $) 26 (|has| |#1| (-558)))) (-2506 (((-644 |#4|) (-644 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2026 (((-644 |#4|) (-644 |#4|) $) 19 (|has| |#1| (-558)))) (-4306 (((-644 |#4|) (-644 |#4|) $) 20 (|has| |#1| (-558)))) (-4307 (((-3 $ "failed") (-644 |#4|)) 37)) (-4205 (($ (-644 |#4|)) 36)) (-2010 (((-3 $ "failed") $) 83)) (-2100 ((|#4| |#4| $) 90)) (-2031 (($ $) 69 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414))))) (-2665 (($ |#4| $) 68 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4414)))) (-2513 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-558)))) (-1464 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-1401 ((|#4| |#4| $) 88)) (-1676 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4414))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4414))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-3692 (((-2 (|:| -1651 (-644 |#4|)) (|:| -3501 (-644 |#4|))) $) 106)) (-3979 (((-644 |#4|) $) 53 (|has| $ (-6 -4414)))) (-2111 (((-112) |#4| $) 105) (((-112) $) 104)) (-1489 ((|#3| $) 35)) (-2404 (((-112) $ (-771)) 44)) (-2329 (((-644 |#4|) $) 54 (|has| $ (-6 -4414)))) (-1916 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414))))) (-2908 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#4| |#4|) $) 48)) (-2189 (((-644 |#3|) $) 33)) (-3953 (((-112) |#3| $) 32)) (-2603 (((-112) $ (-771)) 43)) (-4117 (((-1157) $) 10)) (-2686 (((-3 |#4| "failed") $) 84)) (-2851 (((-644 |#4|) $) 108)) (-1694 (((-112) |#4| $) 100) (((-112) $) 96)) (-1871 ((|#4| |#4| $) 91)) (-2897 (((-112) $ $) 111)) (-3112 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-558)))) (-3351 (((-112) |#4| $) 101) (((-112) $) 97)) (-3544 ((|#4| |#4| $) 92)) (-4035 (((-1119) $) 11)) (-1998 (((-3 |#4| "failed") $) 85)) (-2006 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2060 (((-3 $ "failed") $ |#4|) 79)) (-3874 (($ $ |#4|) 78)) (-2692 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 |#4|) (-644 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-644 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))) (-1932 (((-112) $ $) 39)) (-3467 (((-112) $) 42)) (-1494 (($) 41)) (-3636 (((-771) $) 107)) (-4045 (((-771) |#4| $) 55 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414)))) (((-771) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4414)))) (-3940 (($ $) 40)) (-1348 (((-538) $) 70 (|has| |#4| (-614 (-538))))) (-3796 (($ (-644 |#4|)) 61)) (-2325 (($ $ |#3|) 29)) (-4106 (($ $ |#3|) 31)) (-3973 (($ $) 89)) (-3080 (($ $ |#3|) 30)) (-3783 (((-862) $) 12) (((-644 |#4|) $) 38)) (-2028 (((-771) $) 77 (|has| |#3| (-370)))) (-3117 (((-112) $ $) 9)) (-3706 (((-3 (-2 (|:| |bas| $) (|:| -1825 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -1825 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3772 (((-112) $ (-1 (-112) |#4| (-644 |#4|))) 99)) (-1894 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4414)))) (-4180 (((-644 |#3|) $) 82)) (-1423 (((-112) |#3| $) 81)) (-2947 (((-112) $ $) 6)) (-3018 (((-771) $) 47 (|has| $ (-6 -4414))))) +((-3630 (*1 *1 *1) (-4 *1 (-1202))) (-3602 (*1 *1 *1) (-4 *1 (-1202))) (-3656 (*1 *1 *1) (-4 *1 (-1202))) (-3670 (*1 *1 *1) (-4 *1 (-1202))) (-3643 (*1 *1 *1) (-4 *1 (-1202))) (-3618 (*1 *1 *1) (-4 *1 (-1202)))) +(-13 (-10 -8 (-15 -3618 ($ $)) (-15 -3643 ($ $)) (-15 -3670 ($ $)) (-15 -3656 ($ $)) (-15 -3602 ($ $)) (-15 -3630 ($ $)))) +((-1449 ((|#2| |#2|) 98)) (-3402 (((-112) |#2|) 29)) (-1646 ((|#2| |#2|) 33)) (-1657 ((|#2| |#2|) 35)) (-1778 ((|#2| |#2| (-1175)) 92) ((|#2| |#2|) 93)) (-2524 (((-169 |#2|) |#2|) 31)) (-2337 ((|#2| |#2| (-1175)) 94) ((|#2| |#2|) 95))) +(((-1203 |#1| |#2|) (-10 -7 (-15 -1778 (|#2| |#2|)) (-15 -1778 (|#2| |#2| (-1175))) (-15 -2337 (|#2| |#2|)) (-15 -2337 (|#2| |#2| (-1175))) (-15 -1449 (|#2| |#2|)) (-15 -1646 (|#2| |#2|)) (-15 -1657 (|#2| |#2|)) (-15 -3402 ((-112) |#2|)) (-15 -2524 ((-169 |#2|) |#2|))) (-13 (-454) (-1038 (-566)) (-639 (-566))) (-13 (-27) (-1199) (-432 |#1|))) (T -1203)) +((-2524 (*1 *2 *3) (-12 (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-169 *3)) (-5 *1 (-1203 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *4))))) (-3402 (*1 *2 *3) (-12 (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-112)) (-5 *1 (-1203 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *4))))) (-1657 (*1 *2 *2) (-12 (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *3))))) (-1646 (*1 *2 *2) (-12 (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *3))))) (-1449 (*1 *2 *2) (-12 (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *3))))) (-2337 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-1203 *4 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *4))))) (-2337 (*1 *2 *2) (-12 (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *3))))) (-1778 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-1203 *4 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *4))))) (-1778 (*1 *2 *2) (-12 (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *3)))))) +(-10 -7 (-15 -1778 (|#2| |#2|)) (-15 -1778 (|#2| |#2| (-1175))) (-15 -2337 (|#2| |#2|)) (-15 -2337 (|#2| |#2| (-1175))) (-15 -1449 (|#2| |#2|)) (-15 -1646 (|#2| |#2|)) (-15 -1657 (|#2| |#2|)) (-15 -3402 ((-112) |#2|)) (-15 -2524 ((-169 |#2|) |#2|))) +((-2008 ((|#4| |#4| |#1|) 32)) (-4259 ((|#4| |#4| |#1|) 33))) +(((-1204 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2008 (|#4| |#4| |#1|)) (-15 -4259 (|#4| |#4| |#1|))) (-558) (-375 |#1|) (-375 |#1|) (-687 |#1| |#2| |#3|)) (T -1204)) +((-4259 (*1 *2 *2 *3) (-12 (-4 *3 (-558)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-1204 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5)))) (-2008 (*1 *2 *2 *3) (-12 (-4 *3 (-558)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-1204 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5))))) +(-10 -7 (-15 -2008 (|#4| |#4| |#1|)) (-15 -4259 (|#4| |#4| |#1|))) +((-2170 ((|#2| |#2|) 148)) (-1568 ((|#2| |#2|) 145)) (-2459 ((|#2| |#2|) 136)) (-4280 ((|#2| |#2|) 133)) (-2093 ((|#2| |#2|) 141)) (-1453 ((|#2| |#2|) 129)) (-1993 ((|#2| |#2|) 44)) (-3815 ((|#2| |#2|) 105)) (-2192 ((|#2| |#2|) 88)) (-1555 ((|#2| |#2|) 143)) (-3945 ((|#2| |#2|) 131)) (-3621 ((|#2| |#2|) 153)) (-4056 ((|#2| |#2|) 151)) (-2811 ((|#2| |#2|) 152)) (-3020 ((|#2| |#2|) 150)) (-3092 ((|#2| |#2|) 163)) (-2836 ((|#2| |#2|) 30 (-12 (|has| |#2| (-614 (-892 |#1|))) (|has| |#2| (-886 |#1|)) (|has| |#1| (-614 (-892 |#1|))) (|has| |#1| (-886 |#1|))))) (-1754 ((|#2| |#2|) 89)) (-3850 ((|#2| |#2|) 154)) (-3640 ((|#2| |#2|) 155)) (-4120 ((|#2| |#2|) 142)) (-3997 ((|#2| |#2|) 130)) (-1665 ((|#2| |#2|) 149)) (-3855 ((|#2| |#2|) 147)) (-2465 ((|#2| |#2|) 137)) (-3893 ((|#2| |#2|) 135)) (-4104 ((|#2| |#2|) 139)) (-4013 ((|#2| |#2|) 127))) +(((-1205 |#1| |#2|) (-10 -7 (-15 -3640 (|#2| |#2|)) (-15 -2192 (|#2| |#2|)) (-15 -3092 (|#2| |#2|)) (-15 -3815 (|#2| |#2|)) (-15 -1993 (|#2| |#2|)) (-15 -1754 (|#2| |#2|)) (-15 -3850 (|#2| |#2|)) (-15 -4013 (|#2| |#2|)) (-15 -4104 (|#2| |#2|)) (-15 -2465 (|#2| |#2|)) (-15 -1665 (|#2| |#2|)) (-15 -3997 (|#2| |#2|)) (-15 -4120 (|#2| |#2|)) (-15 -3945 (|#2| |#2|)) (-15 -1555 (|#2| |#2|)) (-15 -1453 (|#2| |#2|)) (-15 -2093 (|#2| |#2|)) (-15 -2459 (|#2| |#2|)) (-15 -2170 (|#2| |#2|)) (-15 -4280 (|#2| |#2|)) (-15 -1568 (|#2| |#2|)) (-15 -3893 (|#2| |#2|)) (-15 -3855 (|#2| |#2|)) (-15 -3020 (|#2| |#2|)) (-15 -4056 (|#2| |#2|)) (-15 -2811 (|#2| |#2|)) (-15 -3621 (|#2| |#2|)) (IF (|has| |#1| (-886 |#1|)) (IF (|has| |#1| (-614 (-892 |#1|))) (IF (|has| |#2| (-614 (-892 |#1|))) (IF (|has| |#2| (-886 |#1|)) (-15 -2836 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-454) (-13 (-432 |#1|) (-1199))) (T -1205)) +((-2836 (*1 *2 *2) (-12 (-4 *3 (-614 (-892 *3))) (-4 *3 (-886 *3)) (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-614 (-892 *3))) (-4 *2 (-886 *3)) (-4 *2 (-13 (-432 *3) (-1199))))) (-3621 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-2811 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-4056 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-3020 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-3855 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-3893 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-1568 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-4280 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-2170 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-2459 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-2093 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-1453 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-1555 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-3945 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-4120 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-3997 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-1665 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-2465 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-4104 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-4013 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-3850 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-1754 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-1993 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-3815 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-3092 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-2192 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199))))) (-3640 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199)))))) +(-10 -7 (-15 -3640 (|#2| |#2|)) (-15 -2192 (|#2| |#2|)) (-15 -3092 (|#2| |#2|)) (-15 -3815 (|#2| |#2|)) (-15 -1993 (|#2| |#2|)) (-15 -1754 (|#2| |#2|)) (-15 -3850 (|#2| |#2|)) (-15 -4013 (|#2| |#2|)) (-15 -4104 (|#2| |#2|)) (-15 -2465 (|#2| |#2|)) (-15 -1665 (|#2| |#2|)) (-15 -3997 (|#2| |#2|)) (-15 -4120 (|#2| |#2|)) (-15 -3945 (|#2| |#2|)) (-15 -1555 (|#2| |#2|)) (-15 -1453 (|#2| |#2|)) (-15 -2093 (|#2| |#2|)) (-15 -2459 (|#2| |#2|)) (-15 -2170 (|#2| |#2|)) (-15 -4280 (|#2| |#2|)) (-15 -1568 (|#2| |#2|)) (-15 -3893 (|#2| |#2|)) (-15 -3855 (|#2| |#2|)) (-15 -3020 (|#2| |#2|)) (-15 -4056 (|#2| |#2|)) (-15 -2811 (|#2| |#2|)) (-15 -3621 (|#2| |#2|)) (IF (|has| |#1| (-886 |#1|)) (IF (|has| |#1| (-614 (-892 |#1|))) (IF (|has| |#2| (-614 (-892 |#1|))) (IF (|has| |#2| (-886 |#1|)) (-15 -2836 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) +((-2267 (((-112) |#5| $) 68) (((-112) $) 110)) (-1411 ((|#5| |#5| $) 83)) (-3678 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 127)) (-3930 (((-644 |#5|) (-644 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 81)) (-2229 (((-3 $ "failed") (-644 |#5|)) 135)) (-3919 (((-3 $ "failed") $) 120)) (-3110 ((|#5| |#5| $) 102)) (-3599 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 36)) (-2690 ((|#5| |#5| $) 106)) (-2873 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 77)) (-3476 (((-2 (|:| -1685 (-644 |#5|)) (|:| -3292 (-644 |#5|))) $) 63)) (-1640 (((-112) |#5| $) 66) (((-112) $) 111)) (-4296 ((|#4| $) 116)) (-2641 (((-3 |#5| "failed") $) 118)) (-2133 (((-644 |#5|) $) 55)) (-2543 (((-112) |#5| $) 75) (((-112) $) 115)) (-1906 ((|#5| |#5| $) 89)) (-3077 (((-112) $ $) 29)) (-3374 (((-112) |#5| $) 71) (((-112) $) 113)) (-4074 ((|#5| |#5| $) 86)) (-3908 (((-3 |#5| "failed") $) 117)) (-3369 (($ $ |#5|) 136)) (-3902 (((-771) $) 60)) (-1340 (($ (-644 |#5|)) 133)) (-4305 (($ $ |#4|) 131)) (-1702 (($ $ |#4|) 129)) (-4017 (($ $) 128)) (-3152 (((-862) $) NIL) (((-644 |#5|) $) 121)) (-3909 (((-771) $) 140)) (-2236 (((-3 (-2 (|:| |bas| $) (|:| -3712 (-644 |#5|))) "failed") (-644 |#5|) (-1 (-112) |#5| |#5|)) 49) (((-3 (-2 (|:| |bas| $) (|:| -3712 (-644 |#5|))) "failed") (-644 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 51)) (-3622 (((-112) $ (-1 (-112) |#5| (-644 |#5|))) 108)) (-4382 (((-644 |#4|) $) 123)) (-4217 (((-112) |#4| $) 126)) (-2914 (((-112) $ $) 20))) +(((-1206 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3909 ((-771) |#1|)) (-15 -3369 (|#1| |#1| |#5|)) (-15 -3678 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4217 ((-112) |#4| |#1|)) (-15 -4382 ((-644 |#4|) |#1|)) (-15 -3919 ((-3 |#1| "failed") |#1|)) (-15 -2641 ((-3 |#5| "failed") |#1|)) (-15 -3908 ((-3 |#5| "failed") |#1|)) (-15 -2690 (|#5| |#5| |#1|)) (-15 -4017 (|#1| |#1|)) (-15 -3110 (|#5| |#5| |#1|)) (-15 -1906 (|#5| |#5| |#1|)) (-15 -4074 (|#5| |#5| |#1|)) (-15 -1411 (|#5| |#5| |#1|)) (-15 -3930 ((-644 |#5|) (-644 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2873 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2543 ((-112) |#1|)) (-15 -3374 ((-112) |#1|)) (-15 -2267 ((-112) |#1|)) (-15 -3622 ((-112) |#1| (-1 (-112) |#5| (-644 |#5|)))) (-15 -2543 ((-112) |#5| |#1|)) (-15 -3374 ((-112) |#5| |#1|)) (-15 -2267 ((-112) |#5| |#1|)) (-15 -3599 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -1640 ((-112) |#1|)) (-15 -1640 ((-112) |#5| |#1|)) (-15 -3476 ((-2 (|:| -1685 (-644 |#5|)) (|:| -3292 (-644 |#5|))) |#1|)) (-15 -3902 ((-771) |#1|)) (-15 -2133 ((-644 |#5|) |#1|)) (-15 -2236 ((-3 (-2 (|:| |bas| |#1|) (|:| -3712 (-644 |#5|))) "failed") (-644 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2236 ((-3 (-2 (|:| |bas| |#1|) (|:| -3712 (-644 |#5|))) "failed") (-644 |#5|) (-1 (-112) |#5| |#5|))) (-15 -3077 ((-112) |#1| |#1|)) (-15 -4305 (|#1| |#1| |#4|)) (-15 -1702 (|#1| |#1| |#4|)) (-15 -4296 (|#4| |#1|)) (-15 -2229 ((-3 |#1| "failed") (-644 |#5|))) (-15 -3152 ((-644 |#5|) |#1|)) (-15 -1340 (|#1| (-644 |#5|))) (-15 -2873 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2873 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3678 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2873 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3152 ((-862) |#1|)) (-15 -2914 ((-112) |#1| |#1|))) (-1207 |#2| |#3| |#4| |#5|) (-558) (-793) (-850) (-1064 |#2| |#3| |#4|)) (T -1206)) +NIL +(-10 -8 (-15 -3909 ((-771) |#1|)) (-15 -3369 (|#1| |#1| |#5|)) (-15 -3678 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4217 ((-112) |#4| |#1|)) (-15 -4382 ((-644 |#4|) |#1|)) (-15 -3919 ((-3 |#1| "failed") |#1|)) (-15 -2641 ((-3 |#5| "failed") |#1|)) (-15 -3908 ((-3 |#5| "failed") |#1|)) (-15 -2690 (|#5| |#5| |#1|)) (-15 -4017 (|#1| |#1|)) (-15 -3110 (|#5| |#5| |#1|)) (-15 -1906 (|#5| |#5| |#1|)) (-15 -4074 (|#5| |#5| |#1|)) (-15 -1411 (|#5| |#5| |#1|)) (-15 -3930 ((-644 |#5|) (-644 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2873 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2543 ((-112) |#1|)) (-15 -3374 ((-112) |#1|)) (-15 -2267 ((-112) |#1|)) (-15 -3622 ((-112) |#1| (-1 (-112) |#5| (-644 |#5|)))) (-15 -2543 ((-112) |#5| |#1|)) (-15 -3374 ((-112) |#5| |#1|)) (-15 -2267 ((-112) |#5| |#1|)) (-15 -3599 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -1640 ((-112) |#1|)) (-15 -1640 ((-112) |#5| |#1|)) (-15 -3476 ((-2 (|:| -1685 (-644 |#5|)) (|:| -3292 (-644 |#5|))) |#1|)) (-15 -3902 ((-771) |#1|)) (-15 -2133 ((-644 |#5|) |#1|)) (-15 -2236 ((-3 (-2 (|:| |bas| |#1|) (|:| -3712 (-644 |#5|))) "failed") (-644 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2236 ((-3 (-2 (|:| |bas| |#1|) (|:| -3712 (-644 |#5|))) "failed") (-644 |#5|) (-1 (-112) |#5| |#5|))) (-15 -3077 ((-112) |#1| |#1|)) (-15 -4305 (|#1| |#1| |#4|)) (-15 -1702 (|#1| |#1| |#4|)) (-15 -4296 (|#4| |#1|)) (-15 -2229 ((-3 |#1| "failed") (-644 |#5|))) (-15 -3152 ((-644 |#5|) |#1|)) (-15 -1340 (|#1| (-644 |#5|))) (-15 -2873 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2873 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3678 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2873 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3152 ((-862) |#1|)) (-15 -2914 ((-112) |#1| |#1|))) +((-2988 (((-112) $ $) 7)) (-2107 (((-644 (-2 (|:| -1685 $) (|:| -3292 (-644 |#4|)))) (-644 |#4|)) 86)) (-2779 (((-644 $) (-644 |#4|)) 87)) (-1771 (((-644 |#3|) $) 34)) (-3071 (((-112) $) 27)) (-3274 (((-112) $) 18 (|has| |#1| (-558)))) (-2267 (((-112) |#4| $) 102) (((-112) $) 98)) (-1411 ((|#4| |#4| $) 93)) (-2671 (((-2 (|:| |under| $) (|:| -3143 $) (|:| |upper| $)) $ |#3|) 28)) (-1504 (((-112) $ (-771)) 45)) (-3678 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4414))) (((-3 |#4| "failed") $ |#3|) 80)) (-2463 (($) 46 T CONST)) (-3036 (((-112) $) 23 (|has| |#1| (-558)))) (-1963 (((-112) $ $) 25 (|has| |#1| (-558)))) (-2983 (((-112) $ $) 24 (|has| |#1| (-558)))) (-1477 (((-112) $) 26 (|has| |#1| (-558)))) (-3930 (((-644 |#4|) (-644 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1789 (((-644 |#4|) (-644 |#4|) $) 19 (|has| |#1| (-558)))) (-2228 (((-644 |#4|) (-644 |#4|) $) 20 (|has| |#1| (-558)))) (-2229 (((-3 $ "failed") (-644 |#4|)) 37)) (-4158 (($ (-644 |#4|)) 36)) (-3919 (((-3 $ "failed") $) 83)) (-3110 ((|#4| |#4| $) 90)) (-3942 (($ $) 69 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414))))) (-2622 (($ |#4| $) 68 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4414)))) (-3264 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-558)))) (-3599 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-2690 ((|#4| |#4| $) 88)) (-2873 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4414))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4414))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-3476 (((-2 (|:| -1685 (-644 |#4|)) (|:| -3292 (-644 |#4|))) $) 106)) (-1683 (((-644 |#4|) $) 53 (|has| $ (-6 -4414)))) (-1640 (((-112) |#4| $) 105) (((-112) $) 104)) (-4296 ((|#3| $) 35)) (-3456 (((-112) $ (-771)) 44)) (-3491 (((-644 |#4|) $) 54 (|has| $ (-6 -4414)))) (-1602 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414))))) (-3885 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#4| |#4|) $) 48)) (-1785 (((-644 |#3|) $) 33)) (-1579 (((-112) |#3| $) 32)) (-3267 (((-112) $ (-771)) 43)) (-3380 (((-1157) $) 10)) (-2641 (((-3 |#4| "failed") $) 84)) (-2133 (((-644 |#4|) $) 108)) (-2543 (((-112) |#4| $) 100) (((-112) $) 96)) (-1906 ((|#4| |#4| $) 91)) (-3077 (((-112) $ $) 111)) (-2594 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-558)))) (-3374 (((-112) |#4| $) 101) (((-112) $) 97)) (-4074 ((|#4| |#4| $) 92)) (-4072 (((-1119) $) 11)) (-3908 (((-3 |#4| "failed") $) 85)) (-3668 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2718 (((-3 $ "failed") $ |#4|) 79)) (-3369 (($ $ |#4|) 78)) (-2823 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 |#4|) (-644 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-644 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))) (-3814 (((-112) $ $) 39)) (-2872 (((-112) $) 42)) (-3493 (($) 41)) (-3902 (((-771) $) 107)) (-4083 (((-771) |#4| $) 55 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4414)))) (((-771) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4414)))) (-1480 (($ $) 40)) (-2376 (((-538) $) 70 (|has| |#4| (-614 (-538))))) (-1340 (($ (-644 |#4|)) 61)) (-4305 (($ $ |#3|) 29)) (-1702 (($ $ |#3|) 31)) (-4017 (($ $) 89)) (-3809 (($ $ |#3|) 30)) (-3152 (((-862) $) 12) (((-644 |#4|) $) 38)) (-3909 (((-771) $) 77 (|has| |#3| (-370)))) (-3044 (((-112) $ $) 9)) (-2236 (((-3 (-2 (|:| |bas| $) (|:| -3712 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3712 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3622 (((-112) $ (-1 (-112) |#4| (-644 |#4|))) 99)) (-2210 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4414)))) (-4382 (((-644 |#3|) $) 82)) (-4217 (((-112) |#3| $) 81)) (-2914 (((-112) $ $) 6)) (-3000 (((-771) $) 47 (|has| $ (-6 -4414))))) (((-1207 |#1| |#2| |#3| |#4|) (-140) (-558) (-793) (-850) (-1064 |t#1| |t#2| |t#3|)) (T -1207)) -((-2897 (*1 *2 *1 *1) (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-112)))) (-3706 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1825 (-644 *8)))) (-5 *3 (-644 *8)) (-4 *1 (-1207 *5 *6 *7 *8)))) (-3706 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1064 *6 *7 *8)) (-4 *6 (-558)) (-4 *7 (-793)) (-4 *8 (-850)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1825 (-644 *9)))) (-5 *3 (-644 *9)) (-4 *1 (-1207 *6 *7 *8 *9)))) (-2851 (*1 *2 *1) (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-644 *6)))) (-3636 (*1 *2 *1) (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-771)))) (-3692 (*1 *2 *1) (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-2 (|:| -1651 (-644 *6)) (|:| -3501 (-644 *6)))))) (-2111 (*1 *2 *3 *1) (-12 (-4 *1 (-1207 *4 *5 *6 *3)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112)))) (-2111 (*1 *2 *1) (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-112)))) (-1464 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1207 *5 *6 *7 *3)) (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-112)))) (-3624 (*1 *2 *3 *1) (-12 (-4 *1 (-1207 *4 *5 *6 *3)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112)))) (-3351 (*1 *2 *3 *1) (-12 (-4 *1 (-1207 *4 *5 *6 *3)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112)))) (-1694 (*1 *2 *3 *1) (-12 (-4 *1 (-1207 *4 *5 *6 *3)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112)))) (-3772 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-644 *7))) (-4 *1 (-1207 *4 *5 *6 *7)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)))) (-3624 (*1 *2 *1) (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-112)))) (-3351 (*1 *2 *1) (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-112)))) (-1694 (*1 *2 *1) (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-112)))) (-1676 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1207 *5 *6 *7 *2)) (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *2 (-1064 *5 *6 *7)))) (-2506 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-644 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1207 *5 *6 *7 *8)) (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-1064 *5 *6 *7)))) (-1374 (*1 *2 *2 *1) (-12 (-4 *1 (-1207 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5)))) (-3544 (*1 *2 *2 *1) (-12 (-4 *1 (-1207 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5)))) (-1871 (*1 *2 *2 *1) (-12 (-4 *1 (-1207 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5)))) (-2100 (*1 *2 *2 *1) (-12 (-4 *1 (-1207 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5)))) (-3973 (*1 *1 *1) (-12 (-4 *1 (-1207 *2 *3 *4 *5)) (-4 *2 (-558)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *5 (-1064 *2 *3 *4)))) (-1401 (*1 *2 *2 *1) (-12 (-4 *1 (-1207 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5)))) (-2333 (*1 *2 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 *1)) (-4 *1 (-1207 *4 *5 *6 *7)))) (-2584 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-644 (-2 (|:| -1651 *1) (|:| -3501 (-644 *7))))) (-5 *3 (-644 *7)) (-4 *1 (-1207 *4 *5 *6 *7)))) (-1998 (*1 *2 *1) (|partial| -12 (-4 *1 (-1207 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5)))) (-2686 (*1 *2 *1) (|partial| -12 (-4 *1 (-1207 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5)))) (-2010 (*1 *1 *1) (|partial| -12 (-4 *1 (-1207 *2 *3 *4 *5)) (-4 *2 (-558)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *5 (-1064 *2 *3 *4)))) (-4180 (*1 *2 *1) (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-644 *5)))) (-1423 (*1 *2 *3 *1) (-12 (-4 *1 (-1207 *4 *5 *3 *6)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *3 (-850)) (-4 *6 (-1064 *4 *5 *3)) (-5 *2 (-112)))) (-2701 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1207 *4 *5 *3 *2)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *3 (-850)) (-4 *2 (-1064 *4 *5 *3)))) (-2060 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1207 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5)))) (-3874 (*1 *1 *1 *2) (-12 (-4 *1 (-1207 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5)))) (-2028 (*1 *2 *1) (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-4 *5 (-370)) (-5 *2 (-771))))) -(-13 (-976 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4414) (-6 -4415) (-15 -2897 ((-112) $ $)) (-15 -3706 ((-3 (-2 (|:| |bas| $) (|:| -1825 (-644 |t#4|))) "failed") (-644 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3706 ((-3 (-2 (|:| |bas| $) (|:| -1825 (-644 |t#4|))) "failed") (-644 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2851 ((-644 |t#4|) $)) (-15 -3636 ((-771) $)) (-15 -3692 ((-2 (|:| -1651 (-644 |t#4|)) (|:| -3501 (-644 |t#4|))) $)) (-15 -2111 ((-112) |t#4| $)) (-15 -2111 ((-112) $)) (-15 -1464 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -3624 ((-112) |t#4| $)) (-15 -3351 ((-112) |t#4| $)) (-15 -1694 ((-112) |t#4| $)) (-15 -3772 ((-112) $ (-1 (-112) |t#4| (-644 |t#4|)))) (-15 -3624 ((-112) $)) (-15 -3351 ((-112) $)) (-15 -1694 ((-112) $)) (-15 -1676 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2506 ((-644 |t#4|) (-644 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -1374 (|t#4| |t#4| $)) (-15 -3544 (|t#4| |t#4| $)) (-15 -1871 (|t#4| |t#4| $)) (-15 -2100 (|t#4| |t#4| $)) (-15 -3973 ($ $)) (-15 -1401 (|t#4| |t#4| $)) (-15 -2333 ((-644 $) (-644 |t#4|))) (-15 -2584 ((-644 (-2 (|:| -1651 $) (|:| -3501 (-644 |t#4|)))) (-644 |t#4|))) (-15 -1998 ((-3 |t#4| "failed") $)) (-15 -2686 ((-3 |t#4| "failed") $)) (-15 -2010 ((-3 $ "failed") $)) (-15 -4180 ((-644 |t#3|) $)) (-15 -1423 ((-112) |t#3| $)) (-15 -2701 ((-3 |t#4| "failed") $ |t#3|)) (-15 -2060 ((-3 $ "failed") $ |t#4|)) (-15 -3874 ($ $ |t#4|)) (IF (|has| |t#3| (-370)) (-15 -2028 ((-771) $)) |%noBranch|))) +((-3077 (*1 *2 *1 *1) (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-112)))) (-2236 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3712 (-644 *8)))) (-5 *3 (-644 *8)) (-4 *1 (-1207 *5 *6 *7 *8)))) (-2236 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1064 *6 *7 *8)) (-4 *6 (-558)) (-4 *7 (-793)) (-4 *8 (-850)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3712 (-644 *9)))) (-5 *3 (-644 *9)) (-4 *1 (-1207 *6 *7 *8 *9)))) (-2133 (*1 *2 *1) (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-644 *6)))) (-3902 (*1 *2 *1) (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-771)))) (-3476 (*1 *2 *1) (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-2 (|:| -1685 (-644 *6)) (|:| -3292 (-644 *6)))))) (-1640 (*1 *2 *3 *1) (-12 (-4 *1 (-1207 *4 *5 *6 *3)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112)))) (-1640 (*1 *2 *1) (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-112)))) (-3599 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1207 *5 *6 *7 *3)) (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-112)))) (-2267 (*1 *2 *3 *1) (-12 (-4 *1 (-1207 *4 *5 *6 *3)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112)))) (-3374 (*1 *2 *3 *1) (-12 (-4 *1 (-1207 *4 *5 *6 *3)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112)))) (-2543 (*1 *2 *3 *1) (-12 (-4 *1 (-1207 *4 *5 *6 *3)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112)))) (-3622 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-644 *7))) (-4 *1 (-1207 *4 *5 *6 *7)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)))) (-2267 (*1 *2 *1) (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-112)))) (-3374 (*1 *2 *1) (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-112)))) (-2543 (*1 *2 *1) (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-112)))) (-2873 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1207 *5 *6 *7 *2)) (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *2 (-1064 *5 *6 *7)))) (-3930 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-644 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1207 *5 *6 *7 *8)) (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-1064 *5 *6 *7)))) (-1411 (*1 *2 *2 *1) (-12 (-4 *1 (-1207 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5)))) (-4074 (*1 *2 *2 *1) (-12 (-4 *1 (-1207 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5)))) (-1906 (*1 *2 *2 *1) (-12 (-4 *1 (-1207 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5)))) (-3110 (*1 *2 *2 *1) (-12 (-4 *1 (-1207 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5)))) (-4017 (*1 *1 *1) (-12 (-4 *1 (-1207 *2 *3 *4 *5)) (-4 *2 (-558)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *5 (-1064 *2 *3 *4)))) (-2690 (*1 *2 *2 *1) (-12 (-4 *1 (-1207 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5)))) (-2779 (*1 *2 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 *1)) (-4 *1 (-1207 *4 *5 *6 *7)))) (-2107 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-644 (-2 (|:| -1685 *1) (|:| -3292 (-644 *7))))) (-5 *3 (-644 *7)) (-4 *1 (-1207 *4 *5 *6 *7)))) (-3908 (*1 *2 *1) (|partial| -12 (-4 *1 (-1207 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5)))) (-2641 (*1 *2 *1) (|partial| -12 (-4 *1 (-1207 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5)))) (-3919 (*1 *1 *1) (|partial| -12 (-4 *1 (-1207 *2 *3 *4 *5)) (-4 *2 (-558)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *5 (-1064 *2 *3 *4)))) (-4382 (*1 *2 *1) (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-644 *5)))) (-4217 (*1 *2 *3 *1) (-12 (-4 *1 (-1207 *4 *5 *3 *6)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *3 (-850)) (-4 *6 (-1064 *4 *5 *3)) (-5 *2 (-112)))) (-3678 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1207 *4 *5 *3 *2)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *3 (-850)) (-4 *2 (-1064 *4 *5 *3)))) (-2718 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1207 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5)))) (-3369 (*1 *1 *1 *2) (-12 (-4 *1 (-1207 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5)))) (-3909 (*1 *2 *1) (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-4 *5 (-370)) (-5 *2 (-771))))) +(-13 (-976 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4414) (-6 -4415) (-15 -3077 ((-112) $ $)) (-15 -2236 ((-3 (-2 (|:| |bas| $) (|:| -3712 (-644 |t#4|))) "failed") (-644 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2236 ((-3 (-2 (|:| |bas| $) (|:| -3712 (-644 |t#4|))) "failed") (-644 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2133 ((-644 |t#4|) $)) (-15 -3902 ((-771) $)) (-15 -3476 ((-2 (|:| -1685 (-644 |t#4|)) (|:| -3292 (-644 |t#4|))) $)) (-15 -1640 ((-112) |t#4| $)) (-15 -1640 ((-112) $)) (-15 -3599 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -2267 ((-112) |t#4| $)) (-15 -3374 ((-112) |t#4| $)) (-15 -2543 ((-112) |t#4| $)) (-15 -3622 ((-112) $ (-1 (-112) |t#4| (-644 |t#4|)))) (-15 -2267 ((-112) $)) (-15 -3374 ((-112) $)) (-15 -2543 ((-112) $)) (-15 -2873 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3930 ((-644 |t#4|) (-644 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -1411 (|t#4| |t#4| $)) (-15 -4074 (|t#4| |t#4| $)) (-15 -1906 (|t#4| |t#4| $)) (-15 -3110 (|t#4| |t#4| $)) (-15 -4017 ($ $)) (-15 -2690 (|t#4| |t#4| $)) (-15 -2779 ((-644 $) (-644 |t#4|))) (-15 -2107 ((-644 (-2 (|:| -1685 $) (|:| -3292 (-644 |t#4|)))) (-644 |t#4|))) (-15 -3908 ((-3 |t#4| "failed") $)) (-15 -2641 ((-3 |t#4| "failed") $)) (-15 -3919 ((-3 $ "failed") $)) (-15 -4382 ((-644 |t#3|) $)) (-15 -4217 ((-112) |t#3| $)) (-15 -3678 ((-3 |t#4| "failed") $ |t#3|)) (-15 -2718 ((-3 $ "failed") $ |t#4|)) (-15 -3369 ($ $ |t#4|)) (IF (|has| |t#3| (-370)) (-15 -3909 ((-771) $)) |%noBranch|))) (((-34) . T) ((-102) . T) ((-613 (-644 |#4|)) . T) ((-613 (-862)) . T) ((-151 |#4|) . T) ((-614 (-538)) |has| |#4| (-614 (-538))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))) ((-491 |#4|) . T) ((-516 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))) ((-976 |#1| |#2| |#3| |#4|) . T) ((-1099) . T) ((-1214) . T)) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-3863 (((-644 (-1175)) $) NIL)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-3991 (($ $) NIL (|has| |#1| (-558)))) (-2388 (((-112) $) NIL (|has| |#1| (-558)))) (-4114 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2109 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4175 (((-3 $ "failed") $ $) NIL)) (-3731 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2240 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2085 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4134 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2129 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3012 (($) NIL T CONST)) (-1786 (($ $) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-4386 (((-952 |#1|) $ (-771)) 20) (((-952 |#1|) $ (-771) (-771)) NIL)) (-2158 (((-112) $) NIL)) (-4361 (($) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3254 (((-771) $ (-1175)) NIL) (((-771) $ (-1175) (-771)) NIL)) (-3934 (((-112) $) NIL)) (-2140 (($ $ (-566)) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3264 (((-112) $) NIL)) (-3840 (($ $ (-644 (-1175)) (-644 (-533 (-1175)))) NIL) (($ $ (-1175) (-533 (-1175))) NIL) (($ |#1| (-533 (-1175))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL)) (-1301 (($ (-1 |#1| |#1|) $) NIL)) (-3651 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1749 (($ $) NIL)) (-1763 ((|#1| $) NIL)) (-4117 (((-1157) $) NIL)) (-1941 (($ $ (-1175)) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175) |#1|) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4035 (((-1119) $) NIL)) (-2314 (($ (-1 $) (-1175) |#1|) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3874 (($ $ (-771)) NIL)) (-2994 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-2561 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2055 (($ $ (-1175) $) NIL) (($ $ (-644 (-1175)) (-644 $)) NIL) (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL)) (-3561 (($ $ (-1175)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL)) (-3636 (((-533 (-1175)) $) NIL)) (-4144 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2141 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4124 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2118 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4104 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2098 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2770 (($ $) NIL)) (-3783 (((-862) $) NIL) (($ (-566)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ $) NIL (|has| |#1| (-558))) (($ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ (-1175)) NIL) (($ (-952 |#1|)) NIL)) (-2649 ((|#1| $ (-533 (-1175))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL) (((-952 |#1|) $ (-771)) NIL)) (-3144 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2107 (((-771)) NIL T CONST)) (-3117 (((-112) $ $) NIL)) (-4177 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2180 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2695 (((-112) $ $) NIL (|has| |#1| (-558)))) (-4155 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2153 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4198 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2212 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2976 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2227 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4188 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2196 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4166 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2166 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2479 (($) NIL T CONST)) (-4334 (($) NIL T CONST)) (-2875 (($ $ (-1175)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL)) (-2947 (((-112) $ $) NIL)) (-3065 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1208 |#1|) (-13 (-740 |#1| (-1175)) (-10 -8 (-15 -2649 ((-952 |#1|) $ (-771))) (-15 -3783 ($ (-1175))) (-15 -3783 ($ (-952 |#1|))) (IF (|has| |#1| (-38 (-409 (-566)))) (PROGN (-15 -1941 ($ $ (-1175) |#1|)) (-15 -2314 ($ (-1 $) (-1175) |#1|))) |%noBranch|))) (-1049)) (T -1208)) -((-2649 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *2 (-952 *4)) (-5 *1 (-1208 *4)) (-4 *4 (-1049)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1208 *3)) (-4 *3 (-1049)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-952 *3)) (-4 *3 (-1049)) (-5 *1 (-1208 *3)))) (-1941 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *1 (-1208 *3)) (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)))) (-2314 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1208 *4))) (-5 *3 (-1175)) (-5 *1 (-1208 *4)) (-4 *4 (-38 (-409 (-566)))) (-4 *4 (-1049))))) -(-13 (-740 |#1| (-1175)) (-10 -8 (-15 -2649 ((-952 |#1|) $ (-771))) (-15 -3783 ($ (-1175))) (-15 -3783 ($ (-952 |#1|))) (IF (|has| |#1| (-38 (-409 (-566)))) (PROGN (-15 -1941 ($ $ (-1175) |#1|)) (-15 -2314 ($ (-1 $) (-1175) |#1|))) |%noBranch|))) -((-2380 (($ |#1| (-644 (-644 (-943 (-225)))) (-112)) 19)) (-4282 (((-112) $ (-112)) 18)) (-2386 (((-112) $) 17)) (-3366 (((-644 (-644 (-943 (-225)))) $) 13)) (-2126 ((|#1| $) 8)) (-3153 (((-112) $) 15))) -(((-1209 |#1|) (-10 -8 (-15 -2126 (|#1| $)) (-15 -3366 ((-644 (-644 (-943 (-225)))) $)) (-15 -3153 ((-112) $)) (-15 -2386 ((-112) $)) (-15 -4282 ((-112) $ (-112))) (-15 -2380 ($ |#1| (-644 (-644 (-943 (-225)))) (-112)))) (-974)) (T -1209)) -((-2380 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *4 (-112)) (-5 *1 (-1209 *2)) (-4 *2 (-974)))) (-4282 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1209 *3)) (-4 *3 (-974)))) (-2386 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1209 *3)) (-4 *3 (-974)))) (-3153 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1209 *3)) (-4 *3 (-974)))) (-3366 (*1 *2 *1) (-12 (-5 *2 (-644 (-644 (-943 (-225))))) (-5 *1 (-1209 *3)) (-4 *3 (-974)))) (-2126 (*1 *2 *1) (-12 (-5 *1 (-1209 *2)) (-4 *2 (-974))))) -(-10 -8 (-15 -2126 (|#1| $)) (-15 -3366 ((-644 (-644 (-943 (-225)))) $)) (-15 -3153 ((-112) $)) (-15 -2386 ((-112) $)) (-15 -4282 ((-112) $ (-112))) (-15 -2380 ($ |#1| (-644 (-644 (-943 (-225)))) (-112)))) -((-4348 (((-943 (-225)) (-943 (-225))) 31)) (-2017 (((-943 (-225)) (-225) (-225) (-225) (-225)) 10)) (-4346 (((-644 (-943 (-225))) (-943 (-225)) (-943 (-225)) (-943 (-225)) (-225) (-644 (-644 (-225)))) 60)) (-4280 (((-225) (-943 (-225)) (-943 (-225))) 27)) (-2797 (((-943 (-225)) (-943 (-225)) (-943 (-225))) 28)) (-3146 (((-644 (-644 (-225))) (-566)) 48)) (-3053 (((-943 (-225)) (-943 (-225)) (-943 (-225))) 26)) (-3041 (((-943 (-225)) (-943 (-225)) (-943 (-225))) 24)) (* (((-943 (-225)) (-225) (-943 (-225))) 22))) -(((-1210) (-10 -7 (-15 -2017 ((-943 (-225)) (-225) (-225) (-225) (-225))) (-15 * ((-943 (-225)) (-225) (-943 (-225)))) (-15 -3041 ((-943 (-225)) (-943 (-225)) (-943 (-225)))) (-15 -3053 ((-943 (-225)) (-943 (-225)) (-943 (-225)))) (-15 -4280 ((-225) (-943 (-225)) (-943 (-225)))) (-15 -2797 ((-943 (-225)) (-943 (-225)) (-943 (-225)))) (-15 -4348 ((-943 (-225)) (-943 (-225)))) (-15 -3146 ((-644 (-644 (-225))) (-566))) (-15 -4346 ((-644 (-943 (-225))) (-943 (-225)) (-943 (-225)) (-943 (-225)) (-225) (-644 (-644 (-225))))))) (T -1210)) -((-4346 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-644 (-644 (-225)))) (-5 *4 (-225)) (-5 *2 (-644 (-943 *4))) (-5 *1 (-1210)) (-5 *3 (-943 *4)))) (-3146 (*1 *2 *3) (-12 (-5 *3 (-566)) (-5 *2 (-644 (-644 (-225)))) (-5 *1 (-1210)))) (-4348 (*1 *2 *2) (-12 (-5 *2 (-943 (-225))) (-5 *1 (-1210)))) (-2797 (*1 *2 *2 *2) (-12 (-5 *2 (-943 (-225))) (-5 *1 (-1210)))) (-4280 (*1 *2 *3 *3) (-12 (-5 *3 (-943 (-225))) (-5 *2 (-225)) (-5 *1 (-1210)))) (-3053 (*1 *2 *2 *2) (-12 (-5 *2 (-943 (-225))) (-5 *1 (-1210)))) (-3041 (*1 *2 *2 *2) (-12 (-5 *2 (-943 (-225))) (-5 *1 (-1210)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-943 (-225))) (-5 *3 (-225)) (-5 *1 (-1210)))) (-2017 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-943 (-225))) (-5 *1 (-1210)) (-5 *3 (-225))))) -(-10 -7 (-15 -2017 ((-943 (-225)) (-225) (-225) (-225) (-225))) (-15 * ((-943 (-225)) (-225) (-943 (-225)))) (-15 -3041 ((-943 (-225)) (-943 (-225)) (-943 (-225)))) (-15 -3053 ((-943 (-225)) (-943 (-225)) (-943 (-225)))) (-15 -4280 ((-225) (-943 (-225)) (-943 (-225)))) (-15 -2797 ((-943 (-225)) (-943 (-225)) (-943 (-225)))) (-15 -4348 ((-943 (-225)) (-943 (-225)))) (-15 -3146 ((-644 (-644 (-225))) (-566))) (-15 -4346 ((-644 (-943 (-225))) (-943 (-225)) (-943 (-225)) (-943 (-225)) (-225) (-644 (-644 (-225)))))) -((-3007 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2701 ((|#1| $ (-771)) 18)) (-4149 (((-771) $) 13)) (-4117 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4035 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3783 (((-958 |#1|) $) 12) (($ (-958 |#1|)) 11) (((-862) $) 29 (|has| |#1| (-613 (-862))))) (-3117 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2947 (((-112) $ $) 22 (|has| |#1| (-1099))))) -(((-1211 |#1|) (-13 (-492 (-958 |#1|)) (-10 -8 (-15 -2701 (|#1| $ (-771))) (-15 -4149 ((-771) $)) (IF (|has| |#1| (-613 (-862))) (-6 (-613 (-862))) |%noBranch|) (IF (|has| |#1| (-1099)) (-6 (-1099)) |%noBranch|))) (-1214)) (T -1211)) -((-2701 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *1 (-1211 *2)) (-4 *2 (-1214)))) (-4149 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-1211 *3)) (-4 *3 (-1214))))) -(-13 (-492 (-958 |#1|)) (-10 -8 (-15 -2701 (|#1| $ (-771))) (-15 -4149 ((-771) $)) (IF (|has| |#1| (-613 (-862))) (-6 (-613 (-862))) |%noBranch|) (IF (|has| |#1| (-1099)) (-6 (-1099)) |%noBranch|))) -((-3890 (((-420 (-1171 (-1171 |#1|))) (-1171 (-1171 |#1|)) (-566)) 94)) (-4343 (((-420 (-1171 (-1171 |#1|))) (-1171 (-1171 |#1|))) 86)) (-2526 (((-420 (-1171 (-1171 |#1|))) (-1171 (-1171 |#1|))) 70))) -(((-1212 |#1|) (-10 -7 (-15 -4343 ((-420 (-1171 (-1171 |#1|))) (-1171 (-1171 |#1|)))) (-15 -2526 ((-420 (-1171 (-1171 |#1|))) (-1171 (-1171 |#1|)))) (-15 -3890 ((-420 (-1171 (-1171 |#1|))) (-1171 (-1171 |#1|)) (-566)))) (-351)) (T -1212)) -((-3890 (*1 *2 *3 *4) (-12 (-5 *4 (-566)) (-4 *5 (-351)) (-5 *2 (-420 (-1171 (-1171 *5)))) (-5 *1 (-1212 *5)) (-5 *3 (-1171 (-1171 *5))))) (-2526 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-420 (-1171 (-1171 *4)))) (-5 *1 (-1212 *4)) (-5 *3 (-1171 (-1171 *4))))) (-4343 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-420 (-1171 (-1171 *4)))) (-5 *1 (-1212 *4)) (-5 *3 (-1171 (-1171 *4)))))) -(-10 -7 (-15 -4343 ((-420 (-1171 (-1171 |#1|))) (-1171 (-1171 |#1|)))) (-15 -2526 ((-420 (-1171 (-1171 |#1|))) (-1171 (-1171 |#1|)))) (-15 -3890 ((-420 (-1171 (-1171 |#1|))) (-1171 (-1171 |#1|)) (-566)))) -((-3007 (((-112) $ $) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 9) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-1771 (((-644 (-1175)) $) NIL)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-2161 (($ $) NIL (|has| |#1| (-558)))) (-2345 (((-112) $) NIL (|has| |#1| (-558)))) (-3963 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3630 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3967 (((-3 $ "failed") $ $) NIL)) (-1635 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3941 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3602 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3986 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3656 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2463 (($) NIL T CONST)) (-2814 (($ $) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-2016 (((-952 |#1|) $ (-771)) 20) (((-952 |#1|) $ (-771) (-771)) NIL)) (-3772 (((-112) $) NIL)) (-2281 (($) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2679 (((-771) $ (-1175)) NIL) (((-771) $ (-1175) (-771)) NIL)) (-2389 (((-112) $) NIL)) (-1575 (($ $ (-566)) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2497 (((-112) $) NIL)) (-1746 (($ $ (-644 (-1175)) (-644 (-533 (-1175)))) NIL) (($ $ (-1175) (-533 (-1175))) NIL) (($ |#1| (-533 (-1175))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL)) (-2319 (($ (-1 |#1| |#1|) $) NIL)) (-3619 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2784 (($ $) NIL)) (-2794 ((|#1| $) NIL)) (-3380 (((-1157) $) NIL)) (-3313 (($ $ (-1175)) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175) |#1|) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4072 (((-1119) $) NIL)) (-3701 (($ (-1 $) (-1175) |#1|) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3369 (($ $ (-771)) NIL)) (-2978 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-3521 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2023 (($ $ (-1175) $) NIL) (($ $ (-644 (-1175)) (-644 $)) NIL) (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL)) (-3629 (($ $ (-1175)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL)) (-3902 (((-533 (-1175)) $) NIL)) (-3996 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3670 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3976 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3643 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3952 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3618 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1687 (($ $) NIL)) (-3152 (((-862) $) NIL) (($ (-566)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ $) NIL (|has| |#1| (-558))) (($ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ (-1175)) NIL) (($ (-952 |#1|)) NIL)) (-2271 ((|#1| $ (-533 (-1175))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL) (((-952 |#1|) $ (-771)) NIL)) (-2633 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2593 (((-771)) NIL T CONST)) (-3044 (((-112) $ $) NIL)) (-4032 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3892 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3014 (((-112) $ $) NIL (|has| |#1| (-558)))) (-4008 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3684 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4057 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3917 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3964 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3929 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4044 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3904 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4020 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3879 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4356 (($) NIL T CONST)) (-4366 (($) NIL T CONST)) (-3497 (($ $ (-1175)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL)) (-2914 (((-112) $ $) NIL)) (-3025 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1208 |#1|) (-13 (-740 |#1| (-1175)) (-10 -8 (-15 -2271 ((-952 |#1|) $ (-771))) (-15 -3152 ($ (-1175))) (-15 -3152 ($ (-952 |#1|))) (IF (|has| |#1| (-38 (-409 (-566)))) (PROGN (-15 -3313 ($ $ (-1175) |#1|)) (-15 -3701 ($ (-1 $) (-1175) |#1|))) |%noBranch|))) (-1049)) (T -1208)) +((-2271 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *2 (-952 *4)) (-5 *1 (-1208 *4)) (-4 *4 (-1049)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1208 *3)) (-4 *3 (-1049)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-952 *3)) (-4 *3 (-1049)) (-5 *1 (-1208 *3)))) (-3313 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *1 (-1208 *3)) (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)))) (-3701 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1208 *4))) (-5 *3 (-1175)) (-5 *1 (-1208 *4)) (-4 *4 (-38 (-409 (-566)))) (-4 *4 (-1049))))) +(-13 (-740 |#1| (-1175)) (-10 -8 (-15 -2271 ((-952 |#1|) $ (-771))) (-15 -3152 ($ (-1175))) (-15 -3152 ($ (-952 |#1|))) (IF (|has| |#1| (-38 (-409 (-566)))) (PROGN (-15 -3313 ($ $ (-1175) |#1|)) (-15 -3701 ($ (-1 $) (-1175) |#1|))) |%noBranch|))) +((-2772 (($ |#1| (-644 (-644 (-943 (-225)))) (-112)) 19)) (-3555 (((-112) $ (-112)) 18)) (-2130 (((-112) $) 17)) (-2490 (((-644 (-644 (-943 (-225)))) $) 13)) (-2781 ((|#1| $) 8)) (-3293 (((-112) $) 15))) +(((-1209 |#1|) (-10 -8 (-15 -2781 (|#1| $)) (-15 -2490 ((-644 (-644 (-943 (-225)))) $)) (-15 -3293 ((-112) $)) (-15 -2130 ((-112) $)) (-15 -3555 ((-112) $ (-112))) (-15 -2772 ($ |#1| (-644 (-644 (-943 (-225)))) (-112)))) (-974)) (T -1209)) +((-2772 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *4 (-112)) (-5 *1 (-1209 *2)) (-4 *2 (-974)))) (-3555 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1209 *3)) (-4 *3 (-974)))) (-2130 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1209 *3)) (-4 *3 (-974)))) (-3293 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1209 *3)) (-4 *3 (-974)))) (-2490 (*1 *2 *1) (-12 (-5 *2 (-644 (-644 (-943 (-225))))) (-5 *1 (-1209 *3)) (-4 *3 (-974)))) (-2781 (*1 *2 *1) (-12 (-5 *1 (-1209 *2)) (-4 *2 (-974))))) +(-10 -8 (-15 -2781 (|#1| $)) (-15 -2490 ((-644 (-644 (-943 (-225)))) $)) (-15 -3293 ((-112) $)) (-15 -2130 ((-112) $)) (-15 -3555 ((-112) $ (-112))) (-15 -2772 ($ |#1| (-644 (-644 (-943 (-225)))) (-112)))) +((-1570 (((-943 (-225)) (-943 (-225))) 31)) (-1397 (((-943 (-225)) (-225) (-225) (-225) (-225)) 10)) (-1369 (((-644 (-943 (-225))) (-943 (-225)) (-943 (-225)) (-943 (-225)) (-225) (-644 (-644 (-225)))) 60)) (-3386 (((-225) (-943 (-225)) (-943 (-225))) 27)) (-1395 (((-943 (-225)) (-943 (-225)) (-943 (-225))) 28)) (-2805 (((-644 (-644 (-225))) (-566)) 48)) (-3012 (((-943 (-225)) (-943 (-225)) (-943 (-225))) 26)) (-3002 (((-943 (-225)) (-943 (-225)) (-943 (-225))) 24)) (* (((-943 (-225)) (-225) (-943 (-225))) 22))) +(((-1210) (-10 -7 (-15 -1397 ((-943 (-225)) (-225) (-225) (-225) (-225))) (-15 * ((-943 (-225)) (-225) (-943 (-225)))) (-15 -3002 ((-943 (-225)) (-943 (-225)) (-943 (-225)))) (-15 -3012 ((-943 (-225)) (-943 (-225)) (-943 (-225)))) (-15 -3386 ((-225) (-943 (-225)) (-943 (-225)))) (-15 -1395 ((-943 (-225)) (-943 (-225)) (-943 (-225)))) (-15 -1570 ((-943 (-225)) (-943 (-225)))) (-15 -2805 ((-644 (-644 (-225))) (-566))) (-15 -1369 ((-644 (-943 (-225))) (-943 (-225)) (-943 (-225)) (-943 (-225)) (-225) (-644 (-644 (-225))))))) (T -1210)) +((-1369 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-644 (-644 (-225)))) (-5 *4 (-225)) (-5 *2 (-644 (-943 *4))) (-5 *1 (-1210)) (-5 *3 (-943 *4)))) (-2805 (*1 *2 *3) (-12 (-5 *3 (-566)) (-5 *2 (-644 (-644 (-225)))) (-5 *1 (-1210)))) (-1570 (*1 *2 *2) (-12 (-5 *2 (-943 (-225))) (-5 *1 (-1210)))) (-1395 (*1 *2 *2 *2) (-12 (-5 *2 (-943 (-225))) (-5 *1 (-1210)))) (-3386 (*1 *2 *3 *3) (-12 (-5 *3 (-943 (-225))) (-5 *2 (-225)) (-5 *1 (-1210)))) (-3012 (*1 *2 *2 *2) (-12 (-5 *2 (-943 (-225))) (-5 *1 (-1210)))) (-3002 (*1 *2 *2 *2) (-12 (-5 *2 (-943 (-225))) (-5 *1 (-1210)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-943 (-225))) (-5 *3 (-225)) (-5 *1 (-1210)))) (-1397 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-943 (-225))) (-5 *1 (-1210)) (-5 *3 (-225))))) +(-10 -7 (-15 -1397 ((-943 (-225)) (-225) (-225) (-225) (-225))) (-15 * ((-943 (-225)) (-225) (-943 (-225)))) (-15 -3002 ((-943 (-225)) (-943 (-225)) (-943 (-225)))) (-15 -3012 ((-943 (-225)) (-943 (-225)) (-943 (-225)))) (-15 -3386 ((-225) (-943 (-225)) (-943 (-225)))) (-15 -1395 ((-943 (-225)) (-943 (-225)) (-943 (-225)))) (-15 -1570 ((-943 (-225)) (-943 (-225)))) (-15 -2805 ((-644 (-644 (-225))) (-566))) (-15 -1369 ((-644 (-943 (-225))) (-943 (-225)) (-943 (-225)) (-943 (-225)) (-225) (-644 (-644 (-225)))))) +((-2988 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3678 ((|#1| $ (-771)) 18)) (-2440 (((-771) $) 13)) (-3380 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4072 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3152 (((-958 |#1|) $) 12) (($ (-958 |#1|)) 11) (((-862) $) 29 (|has| |#1| (-613 (-862))))) (-3044 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2914 (((-112) $ $) 22 (|has| |#1| (-1099))))) +(((-1211 |#1|) (-13 (-492 (-958 |#1|)) (-10 -8 (-15 -3678 (|#1| $ (-771))) (-15 -2440 ((-771) $)) (IF (|has| |#1| (-613 (-862))) (-6 (-613 (-862))) |%noBranch|) (IF (|has| |#1| (-1099)) (-6 (-1099)) |%noBranch|))) (-1214)) (T -1211)) +((-3678 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *1 (-1211 *2)) (-4 *2 (-1214)))) (-2440 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-1211 *3)) (-4 *3 (-1214))))) +(-13 (-492 (-958 |#1|)) (-10 -8 (-15 -3678 (|#1| $ (-771))) (-15 -2440 ((-771) $)) (IF (|has| |#1| (-613 (-862))) (-6 (-613 (-862))) |%noBranch|) (IF (|has| |#1| (-1099)) (-6 (-1099)) |%noBranch|))) +((-1387 (((-420 (-1171 (-1171 |#1|))) (-1171 (-1171 |#1|)) (-566)) 94)) (-2325 (((-420 (-1171 (-1171 |#1|))) (-1171 (-1171 |#1|))) 86)) (-2131 (((-420 (-1171 (-1171 |#1|))) (-1171 (-1171 |#1|))) 70))) +(((-1212 |#1|) (-10 -7 (-15 -2325 ((-420 (-1171 (-1171 |#1|))) (-1171 (-1171 |#1|)))) (-15 -2131 ((-420 (-1171 (-1171 |#1|))) (-1171 (-1171 |#1|)))) (-15 -1387 ((-420 (-1171 (-1171 |#1|))) (-1171 (-1171 |#1|)) (-566)))) (-351)) (T -1212)) +((-1387 (*1 *2 *3 *4) (-12 (-5 *4 (-566)) (-4 *5 (-351)) (-5 *2 (-420 (-1171 (-1171 *5)))) (-5 *1 (-1212 *5)) (-5 *3 (-1171 (-1171 *5))))) (-2131 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-420 (-1171 (-1171 *4)))) (-5 *1 (-1212 *4)) (-5 *3 (-1171 (-1171 *4))))) (-2325 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-420 (-1171 (-1171 *4)))) (-5 *1 (-1212 *4)) (-5 *3 (-1171 (-1171 *4)))))) +(-10 -7 (-15 -2325 ((-420 (-1171 (-1171 |#1|))) (-1171 (-1171 |#1|)))) (-15 -2131 ((-420 (-1171 (-1171 |#1|))) (-1171 (-1171 |#1|)))) (-15 -1387 ((-420 (-1171 (-1171 |#1|))) (-1171 (-1171 |#1|)) (-566)))) +((-2988 (((-112) $ $) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 9) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) (((-1213) (-1082)) (T -1213)) NIL (-1082) NIL (((-1214) (-140)) (T -1214)) NIL -(-13 (-10 -7 (-6 -3594))) -((-1575 (((-112)) 18)) (-3033 (((-1269) (-644 |#1|) (-644 |#1|)) 22) (((-1269) (-644 |#1|)) 23)) (-2404 (((-112) |#1| |#1|) 38 (|has| |#1| (-850)))) (-2603 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 30) (((-3 (-112) "failed") |#1| |#1|) 28)) (-3791 ((|#1| (-644 |#1|)) 39 (|has| |#1| (-850))) ((|#1| (-644 |#1|) (-1 (-112) |#1| |#1|)) 33)) (-3531 (((-2 (|:| -2177 (-644 |#1|)) (|:| -1863 (-644 |#1|)))) 20))) -(((-1215 |#1|) (-10 -7 (-15 -3033 ((-1269) (-644 |#1|))) (-15 -3033 ((-1269) (-644 |#1|) (-644 |#1|))) (-15 -3531 ((-2 (|:| -2177 (-644 |#1|)) (|:| -1863 (-644 |#1|))))) (-15 -2603 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2603 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -3791 (|#1| (-644 |#1|) (-1 (-112) |#1| |#1|))) (-15 -1575 ((-112))) (IF (|has| |#1| (-850)) (PROGN (-15 -3791 (|#1| (-644 |#1|))) (-15 -2404 ((-112) |#1| |#1|))) |%noBranch|)) (-1099)) (T -1215)) -((-2404 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1215 *3)) (-4 *3 (-850)) (-4 *3 (-1099)))) (-3791 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-1099)) (-4 *2 (-850)) (-5 *1 (-1215 *2)))) (-1575 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1215 *3)) (-4 *3 (-1099)))) (-3791 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1215 *2)) (-4 *2 (-1099)))) (-2603 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1099)) (-5 *2 (-112)) (-5 *1 (-1215 *3)))) (-2603 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1215 *3)) (-4 *3 (-1099)))) (-3531 (*1 *2) (-12 (-5 *2 (-2 (|:| -2177 (-644 *3)) (|:| -1863 (-644 *3)))) (-5 *1 (-1215 *3)) (-4 *3 (-1099)))) (-3033 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *4)) (-4 *4 (-1099)) (-5 *2 (-1269)) (-5 *1 (-1215 *4)))) (-3033 (*1 *2 *3) (-12 (-5 *3 (-644 *4)) (-4 *4 (-1099)) (-5 *2 (-1269)) (-5 *1 (-1215 *4))))) -(-10 -7 (-15 -3033 ((-1269) (-644 |#1|))) (-15 -3033 ((-1269) (-644 |#1|) (-644 |#1|))) (-15 -3531 ((-2 (|:| -2177 (-644 |#1|)) (|:| -1863 (-644 |#1|))))) (-15 -2603 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2603 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -3791 (|#1| (-644 |#1|) (-1 (-112) |#1| |#1|))) (-15 -1575 ((-112))) (IF (|has| |#1| (-850)) (PROGN (-15 -3791 (|#1| (-644 |#1|))) (-15 -2404 ((-112) |#1| |#1|))) |%noBranch|)) -((-2980 (((-1269) (-644 (-1175)) (-644 (-1175))) 14) (((-1269) (-644 (-1175))) 12)) (-3491 (((-1269)) 16)) (-2505 (((-2 (|:| -1863 (-644 (-1175))) (|:| -2177 (-644 (-1175))))) 20))) -(((-1216) (-10 -7 (-15 -2980 ((-1269) (-644 (-1175)))) (-15 -2980 ((-1269) (-644 (-1175)) (-644 (-1175)))) (-15 -2505 ((-2 (|:| -1863 (-644 (-1175))) (|:| -2177 (-644 (-1175)))))) (-15 -3491 ((-1269))))) (T -1216)) -((-3491 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-1216)))) (-2505 (*1 *2) (-12 (-5 *2 (-2 (|:| -1863 (-644 (-1175))) (|:| -2177 (-644 (-1175))))) (-5 *1 (-1216)))) (-2980 (*1 *2 *3 *3) (-12 (-5 *3 (-644 (-1175))) (-5 *2 (-1269)) (-5 *1 (-1216)))) (-2980 (*1 *2 *3) (-12 (-5 *3 (-644 (-1175))) (-5 *2 (-1269)) (-5 *1 (-1216))))) -(-10 -7 (-15 -2980 ((-1269) (-644 (-1175)))) (-15 -2980 ((-1269) (-644 (-1175)) (-644 (-1175)))) (-15 -2505 ((-2 (|:| -1863 (-644 (-1175))) (|:| -2177 (-644 (-1175)))))) (-15 -3491 ((-1269)))) -((-1550 (($ $) 17)) (-3268 (((-112) $) 28))) -(((-1217 |#1|) (-10 -8 (-15 -1550 (|#1| |#1|)) (-15 -3268 ((-112) |#1|))) (-1218)) (T -1217)) -NIL -(-10 -8 (-15 -1550 (|#1| |#1|)) (-15 -3268 ((-112) |#1|))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) 47)) (-3991 (($ $) 46)) (-2388 (((-112) $) 44)) (-4175 (((-3 $ "failed") $ $) 20)) (-1550 (($ $) 57)) (-3184 (((-420 $) $) 58)) (-3012 (($) 18 T CONST)) (-1878 (((-3 $ "failed") $) 37)) (-3268 (((-112) $) 59)) (-3934 (((-112) $) 35)) (-2167 (($ $ $) 52) (($ (-644 $)) 51)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-2214 (($ $ $) 54) (($ (-644 $)) 53)) (-3719 (((-420 $) $) 56)) (-2994 (((-3 $ "failed") $ $) 48)) (-3783 (((-862) $) 12) (($ (-566)) 33) (($ $) 49)) (-2107 (((-771)) 32 T CONST)) (-3117 (((-112) $ $) 9)) (-2695 (((-112) $ $) 45)) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-2947 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) +(-13 (-10 -7 (-6 -3564))) +((-3088 (((-112)) 18)) (-1838 (((-1269) (-644 |#1|) (-644 |#1|)) 22) (((-1269) (-644 |#1|)) 23)) (-3456 (((-112) |#1| |#1|) 38 (|has| |#1| (-850)))) (-3267 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 30) (((-3 (-112) "failed") |#1| |#1|) 28)) (-1516 ((|#1| (-644 |#1|)) 39 (|has| |#1| (-850))) ((|#1| (-644 |#1|) (-1 (-112) |#1| |#1|)) 33)) (-2240 (((-2 (|:| -1923 (-644 |#1|)) (|:| -2395 (-644 |#1|)))) 20))) +(((-1215 |#1|) (-10 -7 (-15 -1838 ((-1269) (-644 |#1|))) (-15 -1838 ((-1269) (-644 |#1|) (-644 |#1|))) (-15 -2240 ((-2 (|:| -1923 (-644 |#1|)) (|:| -2395 (-644 |#1|))))) (-15 -3267 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3267 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -1516 (|#1| (-644 |#1|) (-1 (-112) |#1| |#1|))) (-15 -3088 ((-112))) (IF (|has| |#1| (-850)) (PROGN (-15 -1516 (|#1| (-644 |#1|))) (-15 -3456 ((-112) |#1| |#1|))) |%noBranch|)) (-1099)) (T -1215)) +((-3456 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1215 *3)) (-4 *3 (-850)) (-4 *3 (-1099)))) (-1516 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-1099)) (-4 *2 (-850)) (-5 *1 (-1215 *2)))) (-3088 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1215 *3)) (-4 *3 (-1099)))) (-1516 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1215 *2)) (-4 *2 (-1099)))) (-3267 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1099)) (-5 *2 (-112)) (-5 *1 (-1215 *3)))) (-3267 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1215 *3)) (-4 *3 (-1099)))) (-2240 (*1 *2) (-12 (-5 *2 (-2 (|:| -1923 (-644 *3)) (|:| -2395 (-644 *3)))) (-5 *1 (-1215 *3)) (-4 *3 (-1099)))) (-1838 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *4)) (-4 *4 (-1099)) (-5 *2 (-1269)) (-5 *1 (-1215 *4)))) (-1838 (*1 *2 *3) (-12 (-5 *3 (-644 *4)) (-4 *4 (-1099)) (-5 *2 (-1269)) (-5 *1 (-1215 *4))))) +(-10 -7 (-15 -1838 ((-1269) (-644 |#1|))) (-15 -1838 ((-1269) (-644 |#1|) (-644 |#1|))) (-15 -2240 ((-2 (|:| -1923 (-644 |#1|)) (|:| -2395 (-644 |#1|))))) (-15 -3267 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3267 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -1516 (|#1| (-644 |#1|) (-1 (-112) |#1| |#1|))) (-15 -3088 ((-112))) (IF (|has| |#1| (-850)) (PROGN (-15 -1516 (|#1| (-644 |#1|))) (-15 -3456 ((-112) |#1| |#1|))) |%noBranch|)) +((-3882 (((-1269) (-644 (-1175)) (-644 (-1175))) 14) (((-1269) (-644 (-1175))) 12)) (-3466 (((-1269)) 16)) (-1924 (((-2 (|:| -2395 (-644 (-1175))) (|:| -1923 (-644 (-1175))))) 20))) +(((-1216) (-10 -7 (-15 -3882 ((-1269) (-644 (-1175)))) (-15 -3882 ((-1269) (-644 (-1175)) (-644 (-1175)))) (-15 -1924 ((-2 (|:| -2395 (-644 (-1175))) (|:| -1923 (-644 (-1175)))))) (-15 -3466 ((-1269))))) (T -1216)) +((-3466 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-1216)))) (-1924 (*1 *2) (-12 (-5 *2 (-2 (|:| -2395 (-644 (-1175))) (|:| -1923 (-644 (-1175))))) (-5 *1 (-1216)))) (-3882 (*1 *2 *3 *3) (-12 (-5 *3 (-644 (-1175))) (-5 *2 (-1269)) (-5 *1 (-1216)))) (-3882 (*1 *2 *3) (-12 (-5 *3 (-644 (-1175))) (-5 *2 (-1269)) (-5 *1 (-1216))))) +(-10 -7 (-15 -3882 ((-1269) (-644 (-1175)))) (-15 -3882 ((-1269) (-644 (-1175)) (-644 (-1175)))) (-15 -1924 ((-2 (|:| -2395 (-644 (-1175))) (|:| -1923 (-644 (-1175)))))) (-15 -3466 ((-1269)))) +((-1378 (($ $) 17)) (-1615 (((-112) $) 28))) +(((-1217 |#1|) (-10 -8 (-15 -1378 (|#1| |#1|)) (-15 -1615 ((-112) |#1|))) (-1218)) (T -1217)) +NIL +(-10 -8 (-15 -1378 (|#1| |#1|)) (-15 -1615 ((-112) |#1|))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) 47)) (-2161 (($ $) 46)) (-2345 (((-112) $) 44)) (-3967 (((-3 $ "failed") $ $) 20)) (-1378 (($ $) 57)) (-1364 (((-420 $) $) 58)) (-2463 (($) 18 T CONST)) (-3245 (((-3 $ "failed") $) 37)) (-1615 (((-112) $) 59)) (-2389 (((-112) $) 35)) (-2128 (($ $ $) 52) (($ (-644 $)) 51)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-2164 (($ $ $) 54) (($ (-644 $)) 53)) (-1624 (((-420 $) $) 56)) (-2978 (((-3 $ "failed") $ $) 48)) (-3152 (((-862) $) 12) (($ (-566)) 33) (($ $) 49)) (-2593 (((-771)) 32 T CONST)) (-3044 (((-112) $ $) 9)) (-3014 (((-112) $ $) 45)) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-2914 (((-112) $ $) 6)) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27))) (((-1218) (-140)) (T -1218)) -((-3268 (*1 *2 *1) (-12 (-4 *1 (-1218)) (-5 *2 (-112)))) (-3184 (*1 *2 *1) (-12 (-5 *2 (-420 *1)) (-4 *1 (-1218)))) (-1550 (*1 *1 *1) (-4 *1 (-1218))) (-3719 (*1 *2 *1) (-12 (-5 *2 (-420 *1)) (-4 *1 (-1218))))) -(-13 (-454) (-10 -8 (-15 -3268 ((-112) $)) (-15 -3184 ((-420 $) $)) (-15 -1550 ($ $)) (-15 -3719 ((-420 $) $)))) +((-1615 (*1 *2 *1) (-12 (-4 *1 (-1218)) (-5 *2 (-112)))) (-1364 (*1 *2 *1) (-12 (-5 *2 (-420 *1)) (-4 *1 (-1218)))) (-1378 (*1 *1 *1) (-4 *1 (-1218))) (-1624 (*1 *2 *1) (-12 (-5 *2 (-420 *1)) (-4 *1 (-1218))))) +(-13 (-454) (-10 -8 (-15 -1615 ((-112) $)) (-15 -1364 ((-420 $) $)) (-15 -1378 ($ $)) (-15 -1624 ((-420 $) $)))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-616 (-566)) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-291) . T) ((-454) . T) ((-558) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-640 $) . T) ((-717 $) . T) ((-726) . T) ((-1051 $) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) -((-3007 (((-112) $ $) NIL)) (-1970 (((-771)) NIL)) (-3012 (($) NIL T CONST)) (-1552 (($) NIL)) (-2097 (($ $ $) NIL) (($) NIL T CONST)) (-3962 (($ $ $) NIL) (($) NIL T CONST)) (-3681 (((-921) $) NIL)) (-4117 (((-1157) $) NIL)) (-2178 (($ (-921)) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) NIL)) (-2367 (($ $ $) NIL)) (-2356 (($ $ $) NIL)) (-3117 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL)) (-2995 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL))) -(((-1219) (-13 (-844) (-10 -8 (-15 -2356 ($ $ $)) (-15 -2367 ($ $ $)) (-15 -3012 ($) -3704)))) (T -1219)) -((-2356 (*1 *1 *1 *1) (-5 *1 (-1219))) (-2367 (*1 *1 *1 *1) (-5 *1 (-1219))) (-3012 (*1 *1) (-5 *1 (-1219)))) -(-13 (-844) (-10 -8 (-15 -2356 ($ $ $)) (-15 -2367 ($ $ $)) (-15 -3012 ($) -3704))) +((-2988 (((-112) $ $) NIL)) (-3870 (((-771)) NIL)) (-2463 (($) NIL T CONST)) (-2715 (($) NIL)) (-1478 (($ $ $) NIL) (($) NIL T CONST)) (-2599 (($ $ $) NIL) (($) NIL T CONST)) (-1866 (((-921) $) NIL)) (-3380 (((-1157) $) NIL)) (-2835 (($ (-921)) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) NIL)) (-2339 (($ $ $) NIL)) (-2326 (($ $ $) NIL)) (-3044 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2935 (((-112) $ $) NIL))) +(((-1219) (-13 (-844) (-10 -8 (-15 -2326 ($ $ $)) (-15 -2339 ($ $ $)) (-15 -2463 ($) -1623)))) (T -1219)) +((-2326 (*1 *1 *1 *1) (-5 *1 (-1219))) (-2339 (*1 *1 *1 *1) (-5 *1 (-1219))) (-2463 (*1 *1) (-5 *1 (-1219)))) +(-13 (-844) (-10 -8 (-15 -2326 ($ $ $)) (-15 -2339 ($ $ $)) (-15 -2463 ($) -1623))) ((|NonNegativeInteger|) (NOT (> (INTEGER-LENGTH |#1|) 16))) -((-3007 (((-112) $ $) NIL)) (-1970 (((-771)) NIL)) (-3012 (($) NIL T CONST)) (-1552 (($) NIL)) (-2097 (($ $ $) NIL) (($) NIL T CONST)) (-3962 (($ $ $) NIL) (($) NIL T CONST)) (-3681 (((-921) $) NIL)) (-4117 (((-1157) $) NIL)) (-2178 (($ (-921)) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) NIL)) (-2367 (($ $ $) NIL)) (-2356 (($ $ $) NIL)) (-3117 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL)) (-2995 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL))) -(((-1220) (-13 (-844) (-10 -8 (-15 -2356 ($ $ $)) (-15 -2367 ($ $ $)) (-15 -3012 ($) -3704)))) (T -1220)) -((-2356 (*1 *1 *1 *1) (-5 *1 (-1220))) (-2367 (*1 *1 *1 *1) (-5 *1 (-1220))) (-3012 (*1 *1) (-5 *1 (-1220)))) -(-13 (-844) (-10 -8 (-15 -2356 ($ $ $)) (-15 -2367 ($ $ $)) (-15 -3012 ($) -3704))) +((-2988 (((-112) $ $) NIL)) (-3870 (((-771)) NIL)) (-2463 (($) NIL T CONST)) (-2715 (($) NIL)) (-1478 (($ $ $) NIL) (($) NIL T CONST)) (-2599 (($ $ $) NIL) (($) NIL T CONST)) (-1866 (((-921) $) NIL)) (-3380 (((-1157) $) NIL)) (-2835 (($ (-921)) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) NIL)) (-2339 (($ $ $) NIL)) (-2326 (($ $ $) NIL)) (-3044 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2935 (((-112) $ $) NIL))) +(((-1220) (-13 (-844) (-10 -8 (-15 -2326 ($ $ $)) (-15 -2339 ($ $ $)) (-15 -2463 ($) -1623)))) (T -1220)) +((-2326 (*1 *1 *1 *1) (-5 *1 (-1220))) (-2339 (*1 *1 *1 *1) (-5 *1 (-1220))) (-2463 (*1 *1) (-5 *1 (-1220)))) +(-13 (-844) (-10 -8 (-15 -2326 ($ $ $)) (-15 -2339 ($ $ $)) (-15 -2463 ($) -1623))) ((|NonNegativeInteger|) (NOT (> (INTEGER-LENGTH |#1|) 32))) -((-3007 (((-112) $ $) NIL)) (-1970 (((-771)) NIL)) (-3012 (($) NIL T CONST)) (-1552 (($) NIL)) (-2097 (($ $ $) NIL) (($) NIL T CONST)) (-3962 (($ $ $) NIL) (($) NIL T CONST)) (-3681 (((-921) $) NIL)) (-4117 (((-1157) $) NIL)) (-2178 (($ (-921)) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) NIL)) (-2367 (($ $ $) NIL)) (-2356 (($ $ $) NIL)) (-3117 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL)) (-2995 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL))) -(((-1221) (-13 (-844) (-10 -8 (-15 -2356 ($ $ $)) (-15 -2367 ($ $ $)) (-15 -3012 ($) -3704)))) (T -1221)) -((-2356 (*1 *1 *1 *1) (-5 *1 (-1221))) (-2367 (*1 *1 *1 *1) (-5 *1 (-1221))) (-3012 (*1 *1) (-5 *1 (-1221)))) -(-13 (-844) (-10 -8 (-15 -2356 ($ $ $)) (-15 -2367 ($ $ $)) (-15 -3012 ($) -3704))) +((-2988 (((-112) $ $) NIL)) (-3870 (((-771)) NIL)) (-2463 (($) NIL T CONST)) (-2715 (($) NIL)) (-1478 (($ $ $) NIL) (($) NIL T CONST)) (-2599 (($ $ $) NIL) (($) NIL T CONST)) (-1866 (((-921) $) NIL)) (-3380 (((-1157) $) NIL)) (-2835 (($ (-921)) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) NIL)) (-2339 (($ $ $) NIL)) (-2326 (($ $ $) NIL)) (-3044 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2935 (((-112) $ $) NIL))) +(((-1221) (-13 (-844) (-10 -8 (-15 -2326 ($ $ $)) (-15 -2339 ($ $ $)) (-15 -2463 ($) -1623)))) (T -1221)) +((-2326 (*1 *1 *1 *1) (-5 *1 (-1221))) (-2339 (*1 *1 *1 *1) (-5 *1 (-1221))) (-2463 (*1 *1) (-5 *1 (-1221)))) +(-13 (-844) (-10 -8 (-15 -2326 ($ $ $)) (-15 -2339 ($ $ $)) (-15 -2463 ($) -1623))) ((|NonNegativeInteger|) (NOT (> (INTEGER-LENGTH |#1|) 64))) -((-3007 (((-112) $ $) NIL)) (-1970 (((-771)) NIL)) (-3012 (($) NIL T CONST)) (-1552 (($) NIL)) (-2097 (($ $ $) NIL) (($) NIL T CONST)) (-3962 (($ $ $) NIL) (($) NIL T CONST)) (-3681 (((-921) $) NIL)) (-4117 (((-1157) $) NIL)) (-2178 (($ (-921)) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) NIL)) (-2367 (($ $ $) NIL)) (-2356 (($ $ $) NIL)) (-3117 (((-112) $ $) NIL)) (-3009 (((-112) $ $) NIL)) (-2984 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL)) (-2995 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL))) -(((-1222) (-13 (-844) (-10 -8 (-15 -2356 ($ $ $)) (-15 -2367 ($ $ $)) (-15 -3012 ($) -3704)))) (T -1222)) -((-2356 (*1 *1 *1 *1) (-5 *1 (-1222))) (-2367 (*1 *1 *1 *1) (-5 *1 (-1222))) (-3012 (*1 *1) (-5 *1 (-1222)))) -(-13 (-844) (-10 -8 (-15 -2356 ($ $ $)) (-15 -2367 ($ $ $)) (-15 -3012 ($) -3704))) +((-2988 (((-112) $ $) NIL)) (-3870 (((-771)) NIL)) (-2463 (($) NIL T CONST)) (-2715 (($) NIL)) (-1478 (($ $ $) NIL) (($) NIL T CONST)) (-2599 (($ $ $) NIL) (($) NIL T CONST)) (-1866 (((-921) $) NIL)) (-3380 (((-1157) $) NIL)) (-2835 (($ (-921)) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) NIL)) (-2339 (($ $ $) NIL)) (-2326 (($ $ $) NIL)) (-3044 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-2946 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2935 (((-112) $ $) NIL))) +(((-1222) (-13 (-844) (-10 -8 (-15 -2326 ($ $ $)) (-15 -2339 ($ $ $)) (-15 -2463 ($) -1623)))) (T -1222)) +((-2326 (*1 *1 *1 *1) (-5 *1 (-1222))) (-2339 (*1 *1 *1 *1) (-5 *1 (-1222))) (-2463 (*1 *1) (-5 *1 (-1222)))) +(-13 (-844) (-10 -8 (-15 -2326 ($ $ $)) (-15 -2339 ($ $ $)) (-15 -2463 ($) -1623))) ((|NonNegativeInteger|) (NOT (> (INTEGER-LENGTH |#1|) 8))) -((-1301 (((-1228 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1228 |#1| |#3| |#5|)) 23))) -(((-1223 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1301 ((-1228 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1228 |#1| |#3| |#5|)))) (-1049) (-1049) (-1175) (-1175) |#1| |#2|) (T -1223)) -((-1301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1228 *5 *7 *9)) (-4 *5 (-1049)) (-4 *6 (-1049)) (-14 *7 (-1175)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1228 *6 *8 *10)) (-5 *1 (-1223 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1175))))) -(-10 -7 (-15 -1301 ((-1228 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1228 |#1| |#3| |#5|)))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-3863 (((-644 (-1081)) $) 86)) (-1385 (((-1175) $) 115)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) 63 (|has| |#1| (-558)))) (-3991 (($ $) 64 (|has| |#1| (-558)))) (-2388 (((-112) $) 66 (|has| |#1| (-558)))) (-2587 (($ $ (-566)) 110) (($ $ (-566) (-566)) 109)) (-2775 (((-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))) $) 117)) (-4114 (($ $) 147 (|has| |#1| (-38 (-409 (-566)))))) (-2109 (($ $) 130 (|has| |#1| (-38 (-409 (-566)))))) (-4175 (((-3 $ "failed") $ $) 20)) (-1550 (($ $) 174 (|has| |#1| (-365)))) (-3184 (((-420 $) $) 175 (|has| |#1| (-365)))) (-3731 (($ $) 129 (|has| |#1| (-38 (-409 (-566)))))) (-2837 (((-112) $ $) 165 (|has| |#1| (-365)))) (-2240 (($ $) 146 (|has| |#1| (-38 (-409 (-566)))))) (-2085 (($ $) 131 (|has| |#1| (-38 (-409 (-566)))))) (-2052 (($ (-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|)))) 185)) (-4134 (($ $) 145 (|has| |#1| (-38 (-409 (-566)))))) (-2129 (($ $) 132 (|has| |#1| (-38 (-409 (-566)))))) (-3012 (($) 18 T CONST)) (-2946 (($ $ $) 169 (|has| |#1| (-365)))) (-1786 (($ $) 72)) (-1878 (((-3 $ "failed") $) 37)) (-3977 (((-409 (-952 |#1|)) $ (-566)) 183 (|has| |#1| (-558))) (((-409 (-952 |#1|)) $ (-566) (-566)) 182 (|has| |#1| (-558)))) (-2957 (($ $ $) 168 (|has| |#1| (-365)))) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) 163 (|has| |#1| (-365)))) (-3268 (((-112) $) 176 (|has| |#1| (-365)))) (-2158 (((-112) $) 85)) (-4361 (($) 157 (|has| |#1| (-38 (-409 (-566)))))) (-3254 (((-566) $) 112) (((-566) $ (-566)) 111)) (-3934 (((-112) $) 35)) (-2140 (($ $ (-566)) 128 (|has| |#1| (-38 (-409 (-566)))))) (-2955 (($ $ (-921)) 113)) (-4042 (($ (-1 |#1| (-566)) $) 184)) (-3775 (((-3 (-644 $) "failed") (-644 $) $) 172 (|has| |#1| (-365)))) (-3264 (((-112) $) 74)) (-3840 (($ |#1| (-566)) 73) (($ $ (-1081) (-566)) 88) (($ $ (-644 (-1081)) (-644 (-566))) 87)) (-1301 (($ (-1 |#1| |#1|) $) 75)) (-3651 (($ $) 154 (|has| |#1| (-38 (-409 (-566)))))) (-1749 (($ $) 77)) (-1763 ((|#1| $) 78)) (-2167 (($ (-644 $)) 161 (|has| |#1| (-365))) (($ $ $) 160 (|has| |#1| (-365)))) (-4117 (((-1157) $) 10)) (-1713 (($ $) 177 (|has| |#1| (-365)))) (-1941 (($ $) 181 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) 180 (-2809 (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-959)) (|has| |#1| (-1199)) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-15 -3863 ((-644 (-1175)) |#1|))) (|has| |#1| (-15 -1941 (|#1| |#1| (-1175)))) (|has| |#1| (-38 (-409 (-566)))))))) (-4035 (((-1119) $) 11)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) 162 (|has| |#1| (-365)))) (-2214 (($ (-644 $)) 159 (|has| |#1| (-365))) (($ $ $) 158 (|has| |#1| (-365)))) (-3719 (((-420 $) $) 173 (|has| |#1| (-365)))) (-3148 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 170 (|has| |#1| (-365)))) (-3874 (($ $ (-566)) 107)) (-2994 (((-3 $ "failed") $ $) 62 (|has| |#1| (-558)))) (-3161 (((-3 (-644 $) "failed") (-644 $) $) 164 (|has| |#1| (-365)))) (-2561 (($ $) 155 (|has| |#1| (-38 (-409 (-566)))))) (-2055 (((-1155 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-566)))))) (-3039 (((-771) $) 166 (|has| |#1| (-365)))) (-4390 ((|#1| $ (-566)) 116) (($ $ $) 93 (|has| (-566) (-1111)))) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) 167 (|has| |#1| (-365)))) (-3561 (($ $ (-644 (-1175)) (-644 (-771))) 101 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-1175) (-771)) 100 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-644 (-1175))) 99 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-1175)) 98 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-771)) 96 (|has| |#1| (-15 * (|#1| (-566) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (-3636 (((-566) $) 76)) (-4144 (($ $) 144 (|has| |#1| (-38 (-409 (-566)))))) (-2141 (($ $) 133 (|has| |#1| (-38 (-409 (-566)))))) (-4124 (($ $) 143 (|has| |#1| (-38 (-409 (-566)))))) (-2118 (($ $) 134 (|has| |#1| (-38 (-409 (-566)))))) (-4104 (($ $) 142 (|has| |#1| (-38 (-409 (-566)))))) (-2098 (($ $) 135 (|has| |#1| (-38 (-409 (-566)))))) (-2770 (($ $) 84)) (-3783 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 59 (|has| |#1| (-172))) (($ (-409 (-566))) 69 (|has| |#1| (-38 (-409 (-566))))) (($ $) 61 (|has| |#1| (-558)))) (-2649 ((|#1| $ (-566)) 71)) (-3144 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2107 (((-771)) 32 T CONST)) (-1320 ((|#1| $) 114)) (-3117 (((-112) $ $) 9)) (-4177 (($ $) 153 (|has| |#1| (-38 (-409 (-566)))))) (-2180 (($ $) 141 (|has| |#1| (-38 (-409 (-566)))))) (-2695 (((-112) $ $) 65 (|has| |#1| (-558)))) (-4155 (($ $) 152 (|has| |#1| (-38 (-409 (-566)))))) (-2153 (($ $) 140 (|has| |#1| (-38 (-409 (-566)))))) (-4198 (($ $) 151 (|has| |#1| (-38 (-409 (-566)))))) (-2212 (($ $) 139 (|has| |#1| (-38 (-409 (-566)))))) (-3628 ((|#1| $ (-566)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-566)))) (|has| |#1| (-15 -3783 (|#1| (-1175))))))) (-2976 (($ $) 150 (|has| |#1| (-38 (-409 (-566)))))) (-2227 (($ $) 138 (|has| |#1| (-38 (-409 (-566)))))) (-4188 (($ $) 149 (|has| |#1| (-38 (-409 (-566)))))) (-2196 (($ $) 137 (|has| |#1| (-38 (-409 (-566)))))) (-4166 (($ $) 148 (|has| |#1| (-38 (-409 (-566)))))) (-2166 (($ $) 136 (|has| |#1| (-38 (-409 (-566)))))) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-2875 (($ $ (-644 (-1175)) (-644 (-771))) 105 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-1175) (-771)) 104 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-644 (-1175))) 103 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-1175)) 102 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-771)) 97 (|has| |#1| (-15 * (|#1| (-566) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (-2947 (((-112) $ $) 6)) (-3065 (($ $ |#1|) 70 (|has| |#1| (-365))) (($ $ $) 179 (|has| |#1| (-365)))) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 178 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 127 (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-409 (-566)) $) 68 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 67 (|has| |#1| (-38 (-409 (-566))))))) +((-2319 (((-1228 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1228 |#1| |#3| |#5|)) 23))) +(((-1223 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2319 ((-1228 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1228 |#1| |#3| |#5|)))) (-1049) (-1049) (-1175) (-1175) |#1| |#2|) (T -1223)) +((-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1228 *5 *7 *9)) (-4 *5 (-1049)) (-4 *6 (-1049)) (-14 *7 (-1175)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1228 *6 *8 *10)) (-5 *1 (-1223 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1175))))) +(-10 -7 (-15 -2319 ((-1228 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1228 |#1| |#3| |#5|)))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-1771 (((-644 (-1081)) $) 86)) (-4347 (((-1175) $) 115)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) 63 (|has| |#1| (-558)))) (-2161 (($ $) 64 (|has| |#1| (-558)))) (-2345 (((-112) $) 66 (|has| |#1| (-558)))) (-2331 (($ $ (-566)) 110) (($ $ (-566) (-566)) 109)) (-4152 (((-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))) $) 117)) (-3963 (($ $) 147 (|has| |#1| (-38 (-409 (-566)))))) (-3630 (($ $) 130 (|has| |#1| (-38 (-409 (-566)))))) (-3967 (((-3 $ "failed") $ $) 20)) (-1378 (($ $) 174 (|has| |#1| (-365)))) (-1364 (((-420 $) $) 175 (|has| |#1| (-365)))) (-1635 (($ $) 129 (|has| |#1| (-38 (-409 (-566)))))) (-2085 (((-112) $ $) 165 (|has| |#1| (-365)))) (-3941 (($ $) 146 (|has| |#1| (-38 (-409 (-566)))))) (-3602 (($ $) 131 (|has| |#1| (-38 (-409 (-566)))))) (-1427 (($ (-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|)))) 185)) (-3986 (($ $) 145 (|has| |#1| (-38 (-409 (-566)))))) (-3656 (($ $) 132 (|has| |#1| (-38 (-409 (-566)))))) (-2463 (($) 18 T CONST)) (-2933 (($ $ $) 169 (|has| |#1| (-365)))) (-2814 (($ $) 72)) (-3245 (((-3 $ "failed") $) 37)) (-3193 (((-409 (-952 |#1|)) $ (-566)) 183 (|has| |#1| (-558))) (((-409 (-952 |#1|)) $ (-566) (-566)) 182 (|has| |#1| (-558)))) (-2945 (($ $ $) 168 (|has| |#1| (-365)))) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) 163 (|has| |#1| (-365)))) (-1615 (((-112) $) 176 (|has| |#1| (-365)))) (-3772 (((-112) $) 85)) (-2281 (($) 157 (|has| |#1| (-38 (-409 (-566)))))) (-2679 (((-566) $) 112) (((-566) $ (-566)) 111)) (-2389 (((-112) $) 35)) (-1575 (($ $ (-566)) 128 (|has| |#1| (-38 (-409 (-566)))))) (-3394 (($ $ (-921)) 113)) (-3657 (($ (-1 |#1| (-566)) $) 184)) (-3816 (((-3 (-644 $) "failed") (-644 $) $) 172 (|has| |#1| (-365)))) (-2497 (((-112) $) 74)) (-1746 (($ |#1| (-566)) 73) (($ $ (-1081) (-566)) 88) (($ $ (-644 (-1081)) (-644 (-566))) 87)) (-2319 (($ (-1 |#1| |#1|) $) 75)) (-3619 (($ $) 154 (|has| |#1| (-38 (-409 (-566)))))) (-2784 (($ $) 77)) (-2794 ((|#1| $) 78)) (-2128 (($ (-644 $)) 161 (|has| |#1| (-365))) (($ $ $) 160 (|has| |#1| (-365)))) (-3380 (((-1157) $) 10)) (-2748 (($ $) 177 (|has| |#1| (-365)))) (-3313 (($ $) 181 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) 180 (-2768 (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-959)) (|has| |#1| (-1199)) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-15 -1771 ((-644 (-1175)) |#1|))) (|has| |#1| (-15 -3313 (|#1| |#1| (-1175)))) (|has| |#1| (-38 (-409 (-566)))))))) (-4072 (((-1119) $) 11)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) 162 (|has| |#1| (-365)))) (-2164 (($ (-644 $)) 159 (|has| |#1| (-365))) (($ $ $) 158 (|has| |#1| (-365)))) (-1624 (((-420 $) $) 173 (|has| |#1| (-365)))) (-3005 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) 170 (|has| |#1| (-365)))) (-3369 (($ $ (-566)) 107)) (-2978 (((-3 $ "failed") $ $) 62 (|has| |#1| (-558)))) (-2915 (((-3 (-644 $) "failed") (-644 $) $) 164 (|has| |#1| (-365)))) (-3521 (($ $) 155 (|has| |#1| (-38 (-409 (-566)))))) (-2023 (((-1155 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-566)))))) (-4357 (((-771) $) 166 (|has| |#1| (-365)))) (-1309 ((|#1| $ (-566)) 116) (($ $ $) 93 (|has| (-566) (-1111)))) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) 167 (|has| |#1| (-365)))) (-3629 (($ $ (-644 (-1175)) (-644 (-771))) 101 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-1175) (-771)) 100 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-644 (-1175))) 99 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-1175)) 98 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-771)) 96 (|has| |#1| (-15 * (|#1| (-566) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (-3902 (((-566) $) 76)) (-3996 (($ $) 144 (|has| |#1| (-38 (-409 (-566)))))) (-3670 (($ $) 133 (|has| |#1| (-38 (-409 (-566)))))) (-3976 (($ $) 143 (|has| |#1| (-38 (-409 (-566)))))) (-3643 (($ $) 134 (|has| |#1| (-38 (-409 (-566)))))) (-3952 (($ $) 142 (|has| |#1| (-38 (-409 (-566)))))) (-3618 (($ $) 135 (|has| |#1| (-38 (-409 (-566)))))) (-1687 (($ $) 84)) (-3152 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 59 (|has| |#1| (-172))) (($ (-409 (-566))) 69 (|has| |#1| (-38 (-409 (-566))))) (($ $) 61 (|has| |#1| (-558)))) (-2271 ((|#1| $ (-566)) 71)) (-2633 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2593 (((-771)) 32 T CONST)) (-4290 ((|#1| $) 114)) (-3044 (((-112) $ $) 9)) (-4032 (($ $) 153 (|has| |#1| (-38 (-409 (-566)))))) (-3892 (($ $) 141 (|has| |#1| (-38 (-409 (-566)))))) (-3014 (((-112) $ $) 65 (|has| |#1| (-558)))) (-4008 (($ $) 152 (|has| |#1| (-38 (-409 (-566)))))) (-3684 (($ $) 140 (|has| |#1| (-38 (-409 (-566)))))) (-4057 (($ $) 151 (|has| |#1| (-38 (-409 (-566)))))) (-3917 (($ $) 139 (|has| |#1| (-38 (-409 (-566)))))) (-3603 ((|#1| $ (-566)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-566)))) (|has| |#1| (-15 -3152 (|#1| (-1175))))))) (-3964 (($ $) 150 (|has| |#1| (-38 (-409 (-566)))))) (-3929 (($ $) 138 (|has| |#1| (-38 (-409 (-566)))))) (-4044 (($ $) 149 (|has| |#1| (-38 (-409 (-566)))))) (-3904 (($ $) 137 (|has| |#1| (-38 (-409 (-566)))))) (-4020 (($ $) 148 (|has| |#1| (-38 (-409 (-566)))))) (-3879 (($ $) 136 (|has| |#1| (-38 (-409 (-566)))))) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-3497 (($ $ (-644 (-1175)) (-644 (-771))) 105 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-1175) (-771)) 104 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-644 (-1175))) 103 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-1175)) 102 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-771)) 97 (|has| |#1| (-15 * (|#1| (-566) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (-2914 (((-112) $ $) 6)) (-3025 (($ $ |#1|) 70 (|has| |#1| (-365))) (($ $ $) 179 (|has| |#1| (-365)))) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 178 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 127 (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-409 (-566)) $) 68 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 67 (|has| |#1| (-38 (-409 (-566))))))) (((-1224 |#1|) (-140) (-1049)) (T -1224)) -((-2052 (*1 *1 *2) (-12 (-5 *2 (-1155 (-2 (|:| |k| (-566)) (|:| |c| *3)))) (-4 *3 (-1049)) (-4 *1 (-1224 *3)))) (-4042 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-566))) (-4 *1 (-1224 *3)) (-4 *3 (-1049)))) (-3977 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *1 (-1224 *4)) (-4 *4 (-1049)) (-4 *4 (-558)) (-5 *2 (-409 (-952 *4))))) (-3977 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-566)) (-4 *1 (-1224 *4)) (-4 *4 (-1049)) (-4 *4 (-558)) (-5 *2 (-409 (-952 *4))))) (-1941 (*1 *1 *1) (-12 (-4 *1 (-1224 *2)) (-4 *2 (-1049)) (-4 *2 (-38 (-409 (-566)))))) (-1941 (*1 *1 *1 *2) (-2809 (-12 (-5 *2 (-1175)) (-4 *1 (-1224 *3)) (-4 *3 (-1049)) (-12 (-4 *3 (-29 (-566))) (-4 *3 (-959)) (-4 *3 (-1199)) (-4 *3 (-38 (-409 (-566)))))) (-12 (-5 *2 (-1175)) (-4 *1 (-1224 *3)) (-4 *3 (-1049)) (-12 (|has| *3 (-15 -3863 ((-644 *2) *3))) (|has| *3 (-15 -1941 (*3 *3 *2))) (-4 *3 (-38 (-409 (-566))))))))) -(-13 (-1242 |t#1| (-566)) (-10 -8 (-15 -2052 ($ (-1155 (-2 (|:| |k| (-566)) (|:| |c| |t#1|))))) (-15 -4042 ($ (-1 |t#1| (-566)) $)) (IF (|has| |t#1| (-558)) (PROGN (-15 -3977 ((-409 (-952 |t#1|)) $ (-566))) (-15 -3977 ((-409 (-952 |t#1|)) $ (-566) (-566)))) |%noBranch|) (IF (|has| |t#1| (-38 (-409 (-566)))) (PROGN (-15 -1941 ($ $)) (IF (|has| |t#1| (-15 -1941 (|t#1| |t#1| (-1175)))) (IF (|has| |t#1| (-15 -3863 ((-644 (-1175)) |t#1|))) (-15 -1941 ($ $ (-1175))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1199)) (IF (|has| |t#1| (-959)) (IF (|has| |t#1| (-29 (-566))) (-15 -1941 ($ $ (-1175))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1002)) (-6 (-1199))) |%noBranch|) (IF (|has| |t#1| (-365)) (-6 (-365)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-566)) . T) ((-25) . T) ((-38 #1=(-409 (-566))) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-35) |has| |#1| (-38 (-409 (-566)))) ((-95) |has| |#1| (-38 (-409 (-566)))) ((-102) . T) ((-111 #1# #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2809 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-616 (-566)) . T) ((-616 |#1|) |has| |#1| (-172)) ((-616 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-613 (-862)) . T) ((-172) -2809 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-566) |#1|))) ((-243) |has| |#1| (-365)) ((-285) |has| |#1| (-38 (-409 (-566)))) ((-287 $ $) |has| (-566) (-1111)) ((-291) -2809 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-365) |has| |#1| (-365)) ((-454) |has| |#1| (-365)) ((-495) |has| |#1| (-38 (-409 (-566)))) ((-558) -2809 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-646 #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-717 #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-726) . T) ((-900 (-1175)) -12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))) ((-973 |#1| #0# (-1081)) . T) ((-920) |has| |#1| (-365)) ((-1002) |has| |#1| (-38 (-409 (-566)))) ((-1051 #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-1051 |#1|) . T) ((-1051 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1056 #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-1056 |#1|) . T) ((-1056 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1199) |has| |#1| (-38 (-409 (-566)))) ((-1202) |has| |#1| (-38 (-409 (-566)))) ((-1218) |has| |#1| (-365)) ((-1242 |#1| #0#) . T)) -((-1788 (((-112) $) 12)) (-4307 (((-3 |#3| "failed") $) 17) (((-3 (-1175) "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL) (((-3 (-566) "failed") $) NIL)) (-4205 ((|#3| $) 14) (((-1175) $) NIL) (((-409 (-566)) $) NIL) (((-566) $) NIL))) -(((-1225 |#1| |#2| |#3|) (-10 -8 (-15 -4307 ((-3 (-566) "failed") |#1|)) (-15 -4205 ((-566) |#1|)) (-15 -4307 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -4205 ((-409 (-566)) |#1|)) (-15 -4307 ((-3 (-1175) "failed") |#1|)) (-15 -4205 ((-1175) |#1|)) (-15 -4307 ((-3 |#3| "failed") |#1|)) (-15 -4205 (|#3| |#1|)) (-15 -1788 ((-112) |#1|))) (-1226 |#2| |#3|) (-1049) (-1255 |#2|)) (T -1225)) -NIL -(-10 -8 (-15 -4307 ((-3 (-566) "failed") |#1|)) (-15 -4205 ((-566) |#1|)) (-15 -4307 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -4205 ((-409 (-566)) |#1|)) (-15 -4307 ((-3 (-1175) "failed") |#1|)) (-15 -4205 ((-1175) |#1|)) (-15 -4307 ((-3 |#3| "failed") |#1|)) (-15 -4205 (|#3| |#1|)) (-15 -1788 ((-112) |#1|))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-1515 ((|#2| $) 242 (-2432 (|has| |#2| (-308)) (|has| |#1| (-365))))) (-3863 (((-644 (-1081)) $) 86)) (-1385 (((-1175) $) 115)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) 63 (|has| |#1| (-558)))) (-3991 (($ $) 64 (|has| |#1| (-558)))) (-2388 (((-112) $) 66 (|has| |#1| (-558)))) (-2587 (($ $ (-566)) 110) (($ $ (-566) (-566)) 109)) (-2775 (((-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))) $) 117)) (-2268 ((|#2| $) 278)) (-2783 (((-3 |#2| "failed") $) 274)) (-3916 ((|#2| $) 275)) (-4114 (($ $) 147 (|has| |#1| (-38 (-409 (-566)))))) (-2109 (($ $) 130 (|has| |#1| (-38 (-409 (-566)))))) (-4175 (((-3 $ "failed") $ $) 20)) (-1477 (((-420 (-1171 $)) (-1171 $)) 251 (-2432 (|has| |#2| (-909)) (|has| |#1| (-365))))) (-1550 (($ $) 174 (|has| |#1| (-365)))) (-3184 (((-420 $) $) 175 (|has| |#1| (-365)))) (-3731 (($ $) 129 (|has| |#1| (-38 (-409 (-566)))))) (-3717 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) 248 (-2432 (|has| |#2| (-909)) (|has| |#1| (-365))))) (-2837 (((-112) $ $) 165 (|has| |#1| (-365)))) (-2240 (($ $) 146 (|has| |#1| (-38 (-409 (-566)))))) (-2085 (($ $) 131 (|has| |#1| (-38 (-409 (-566)))))) (-4364 (((-566) $) 260 (-2432 (|has| |#2| (-820)) (|has| |#1| (-365))))) (-2052 (($ (-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|)))) 185)) (-4134 (($ $) 145 (|has| |#1| (-38 (-409 (-566)))))) (-2129 (($ $) 132 (|has| |#1| (-38 (-409 (-566)))))) (-3012 (($) 18 T CONST)) (-4307 (((-3 |#2| "failed") $) 281) (((-3 (-566) "failed") $) 271 (-2432 (|has| |#2| (-1038 (-566))) (|has| |#1| (-365)))) (((-3 (-409 (-566)) "failed") $) 269 (-2432 (|has| |#2| (-1038 (-566))) (|has| |#1| (-365)))) (((-3 (-1175) "failed") $) 253 (-2432 (|has| |#2| (-1038 (-1175))) (|has| |#1| (-365))))) (-4205 ((|#2| $) 282) (((-566) $) 270 (-2432 (|has| |#2| (-1038 (-566))) (|has| |#1| (-365)))) (((-409 (-566)) $) 268 (-2432 (|has| |#2| (-1038 (-566))) (|has| |#1| (-365)))) (((-1175) $) 252 (-2432 (|has| |#2| (-1038 (-1175))) (|has| |#1| (-365))))) (-3569 (($ $) 277) (($ (-566) $) 276)) (-2946 (($ $ $) 169 (|has| |#1| (-365)))) (-1786 (($ $) 72)) (-3577 (((-689 |#2|) (-689 $)) 232 (|has| |#1| (-365))) (((-2 (|:| -4227 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 $) (-1264 $)) 231 (|has| |#1| (-365))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) 230 (-2432 (|has| |#2| (-639 (-566))) (|has| |#1| (-365)))) (((-689 (-566)) (-689 $)) 229 (-2432 (|has| |#2| (-639 (-566))) (|has| |#1| (-365))))) (-1878 (((-3 $ "failed") $) 37)) (-3977 (((-409 (-952 |#1|)) $ (-566)) 183 (|has| |#1| (-558))) (((-409 (-952 |#1|)) $ (-566) (-566)) 182 (|has| |#1| (-558)))) (-1552 (($) 244 (-2432 (|has| |#2| (-547)) (|has| |#1| (-365))))) (-2957 (($ $ $) 168 (|has| |#1| (-365)))) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) 163 (|has| |#1| (-365)))) (-3268 (((-112) $) 176 (|has| |#1| (-365)))) (-1897 (((-112) $) 258 (-2432 (|has| |#2| (-820)) (|has| |#1| (-365))))) (-2158 (((-112) $) 85)) (-4361 (($) 157 (|has| |#1| (-38 (-409 (-566)))))) (-2062 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 236 (-2432 (|has| |#2| (-886 (-381))) (|has| |#1| (-365)))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 235 (-2432 (|has| |#2| (-886 (-566))) (|has| |#1| (-365))))) (-3254 (((-566) $) 112) (((-566) $ (-566)) 111)) (-3934 (((-112) $) 35)) (-1493 (($ $) 240 (|has| |#1| (-365)))) (-4326 ((|#2| $) 238 (|has| |#1| (-365)))) (-2140 (($ $ (-566)) 128 (|has| |#1| (-38 (-409 (-566)))))) (-4363 (((-3 $ "failed") $) 272 (-2432 (|has| |#2| (-1150)) (|has| |#1| (-365))))) (-2117 (((-112) $) 259 (-2432 (|has| |#2| (-820)) (|has| |#1| (-365))))) (-2955 (($ $ (-921)) 113)) (-4042 (($ (-1 |#1| (-566)) $) 184)) (-3775 (((-3 (-644 $) "failed") (-644 $) $) 172 (|has| |#1| (-365)))) (-3264 (((-112) $) 74)) (-3840 (($ |#1| (-566)) 73) (($ $ (-1081) (-566)) 88) (($ $ (-644 (-1081)) (-644 (-566))) 87)) (-2097 (($ $ $) 262 (-2432 (|has| |#2| (-850)) (|has| |#1| (-365))))) (-3962 (($ $ $) 263 (-2432 (|has| |#2| (-850)) (|has| |#1| (-365))))) (-1301 (($ (-1 |#1| |#1|) $) 75) (($ (-1 |#2| |#2|) $) 224 (|has| |#1| (-365)))) (-3651 (($ $) 154 (|has| |#1| (-38 (-409 (-566)))))) (-1749 (($ $) 77)) (-1763 ((|#1| $) 78)) (-2167 (($ (-644 $)) 161 (|has| |#1| (-365))) (($ $ $) 160 (|has| |#1| (-365)))) (-1678 (($ (-566) |#2|) 279)) (-4117 (((-1157) $) 10)) (-1713 (($ $) 177 (|has| |#1| (-365)))) (-1941 (($ $) 181 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) 180 (-2809 (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-959)) (|has| |#1| (-1199)) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-15 -3863 ((-644 (-1175)) |#1|))) (|has| |#1| (-15 -1941 (|#1| |#1| (-1175)))) (|has| |#1| (-38 (-409 (-566)))))))) (-1761 (($) 273 (-2432 (|has| |#2| (-1150)) (|has| |#1| (-365))) CONST)) (-4035 (((-1119) $) 11)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) 162 (|has| |#1| (-365)))) (-2214 (($ (-644 $)) 159 (|has| |#1| (-365))) (($ $ $) 158 (|has| |#1| (-365)))) (-2938 (($ $) 243 (-2432 (|has| |#2| (-308)) (|has| |#1| (-365))))) (-3470 ((|#2| $) 246 (-2432 (|has| |#2| (-547)) (|has| |#1| (-365))))) (-4303 (((-420 (-1171 $)) (-1171 $)) 249 (-2432 (|has| |#2| (-909)) (|has| |#1| (-365))))) (-3240 (((-420 (-1171 $)) (-1171 $)) 250 (-2432 (|has| |#2| (-909)) (|has| |#1| (-365))))) (-3719 (((-420 $) $) 173 (|has| |#1| (-365)))) (-3148 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 170 (|has| |#1| (-365)))) (-3874 (($ $ (-566)) 107)) (-2994 (((-3 $ "failed") $ $) 62 (|has| |#1| (-558)))) (-3161 (((-3 (-644 $) "failed") (-644 $) $) 164 (|has| |#1| (-365)))) (-2561 (($ $) 155 (|has| |#1| (-38 (-409 (-566)))))) (-2055 (((-1155 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-566))))) (($ $ (-1175) |#2|) 223 (-2432 (|has| |#2| (-516 (-1175) |#2|)) (|has| |#1| (-365)))) (($ $ (-644 (-1175)) (-644 |#2|)) 222 (-2432 (|has| |#2| (-516 (-1175) |#2|)) (|has| |#1| (-365)))) (($ $ (-644 (-295 |#2|))) 221 (-2432 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ (-295 |#2|)) 220 (-2432 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ |#2| |#2|) 219 (-2432 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ (-644 |#2|) (-644 |#2|)) 218 (-2432 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365))))) (-3039 (((-771) $) 166 (|has| |#1| (-365)))) (-4390 ((|#1| $ (-566)) 116) (($ $ $) 93 (|has| (-566) (-1111))) (($ $ |#2|) 217 (-2432 (|has| |#2| (-287 |#2| |#2|)) (|has| |#1| (-365))))) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) 167 (|has| |#1| (-365)))) (-3561 (($ $ (-1 |#2| |#2|)) 228 (|has| |#1| (-365))) (($ $ (-1 |#2| |#2|) (-771)) 227 (|has| |#1| (-365))) (($ $ (-771)) 96 (-2809 (-2432 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $) 94 (-2809 (-2432 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-644 (-1175)) (-644 (-771))) 101 (-2809 (-2432 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|)))))) (($ $ (-1175) (-771)) 100 (-2809 (-2432 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|)))))) (($ $ (-644 (-1175))) 99 (-2809 (-2432 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|)))))) (($ $ (-1175)) 98 (-2809 (-2432 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))))) (-2023 (($ $) 241 (|has| |#1| (-365)))) (-4339 ((|#2| $) 239 (|has| |#1| (-365)))) (-3636 (((-566) $) 76)) (-4144 (($ $) 144 (|has| |#1| (-38 (-409 (-566)))))) (-2141 (($ $) 133 (|has| |#1| (-38 (-409 (-566)))))) (-4124 (($ $) 143 (|has| |#1| (-38 (-409 (-566)))))) (-2118 (($ $) 134 (|has| |#1| (-38 (-409 (-566)))))) (-4104 (($ $) 142 (|has| |#1| (-38 (-409 (-566)))))) (-2098 (($ $) 135 (|has| |#1| (-38 (-409 (-566)))))) (-1348 (((-225) $) 257 (-2432 (|has| |#2| (-1022)) (|has| |#1| (-365)))) (((-381) $) 256 (-2432 (|has| |#2| (-1022)) (|has| |#1| (-365)))) (((-538) $) 255 (-2432 (|has| |#2| (-614 (-538))) (|has| |#1| (-365)))) (((-892 (-381)) $) 234 (-2432 (|has| |#2| (-614 (-892 (-381)))) (|has| |#1| (-365)))) (((-892 (-566)) $) 233 (-2432 (|has| |#2| (-614 (-892 (-566)))) (|has| |#1| (-365))))) (-1656 (((-3 (-1264 $) "failed") (-689 $)) 247 (-2432 (-2432 (|has| $ (-145)) (|has| |#2| (-909))) (|has| |#1| (-365))))) (-2770 (($ $) 84)) (-3783 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 59 (|has| |#1| (-172))) (($ |#2|) 280) (($ (-1175)) 254 (-2432 (|has| |#2| (-1038 (-1175))) (|has| |#1| (-365)))) (($ (-409 (-566))) 69 (|has| |#1| (-38 (-409 (-566))))) (($ $) 61 (|has| |#1| (-558)))) (-2649 ((|#1| $ (-566)) 71)) (-3144 (((-3 $ "failed") $) 60 (-2809 (-2432 (-2809 (|has| |#2| (-145)) (-2432 (|has| $ (-145)) (|has| |#2| (-909)))) (|has| |#1| (-365))) (|has| |#1| (-145))))) (-2107 (((-771)) 32 T CONST)) (-1320 ((|#1| $) 114)) (-2948 ((|#2| $) 245 (-2432 (|has| |#2| (-547)) (|has| |#1| (-365))))) (-3117 (((-112) $ $) 9)) (-4177 (($ $) 153 (|has| |#1| (-38 (-409 (-566)))))) (-2180 (($ $) 141 (|has| |#1| (-38 (-409 (-566)))))) (-2695 (((-112) $ $) 65 (|has| |#1| (-558)))) (-4155 (($ $) 152 (|has| |#1| (-38 (-409 (-566)))))) (-2153 (($ $) 140 (|has| |#1| (-38 (-409 (-566)))))) (-4198 (($ $) 151 (|has| |#1| (-38 (-409 (-566)))))) (-2212 (($ $) 139 (|has| |#1| (-38 (-409 (-566)))))) (-3628 ((|#1| $ (-566)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-566)))) (|has| |#1| (-15 -3783 (|#1| (-1175))))))) (-2976 (($ $) 150 (|has| |#1| (-38 (-409 (-566)))))) (-2227 (($ $) 138 (|has| |#1| (-38 (-409 (-566)))))) (-4188 (($ $) 149 (|has| |#1| (-38 (-409 (-566)))))) (-2196 (($ $) 137 (|has| |#1| (-38 (-409 (-566)))))) (-4166 (($ $) 148 (|has| |#1| (-38 (-409 (-566)))))) (-2166 (($ $) 136 (|has| |#1| (-38 (-409 (-566)))))) (-2086 (($ $) 261 (-2432 (|has| |#2| (-820)) (|has| |#1| (-365))))) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-2875 (($ $ (-1 |#2| |#2|)) 226 (|has| |#1| (-365))) (($ $ (-1 |#2| |#2|) (-771)) 225 (|has| |#1| (-365))) (($ $ (-771)) 97 (-2809 (-2432 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $) 95 (-2809 (-2432 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-644 (-1175)) (-644 (-771))) 105 (-2809 (-2432 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|)))))) (($ $ (-1175) (-771)) 104 (-2809 (-2432 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|)))))) (($ $ (-644 (-1175))) 103 (-2809 (-2432 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|)))))) (($ $ (-1175)) 102 (-2809 (-2432 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))))) (-3009 (((-112) $ $) 265 (-2432 (|has| |#2| (-850)) (|has| |#1| (-365))))) (-2984 (((-112) $ $) 266 (-2432 (|has| |#2| (-850)) (|has| |#1| (-365))))) (-2947 (((-112) $ $) 6)) (-2995 (((-112) $ $) 264 (-2432 (|has| |#2| (-850)) (|has| |#1| (-365))))) (-2969 (((-112) $ $) 267 (-2432 (|has| |#2| (-850)) (|has| |#1| (-365))))) (-3065 (($ $ |#1|) 70 (|has| |#1| (-365))) (($ $ $) 179 (|has| |#1| (-365))) (($ |#2| |#2|) 237 (|has| |#1| (-365)))) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 178 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 127 (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ $ |#2|) 216 (|has| |#1| (-365))) (($ |#2| $) 215 (|has| |#1| (-365))) (($ (-409 (-566)) $) 68 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 67 (|has| |#1| (-38 (-409 (-566))))))) +((-1427 (*1 *1 *2) (-12 (-5 *2 (-1155 (-2 (|:| |k| (-566)) (|:| |c| *3)))) (-4 *3 (-1049)) (-4 *1 (-1224 *3)))) (-3657 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-566))) (-4 *1 (-1224 *3)) (-4 *3 (-1049)))) (-3193 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *1 (-1224 *4)) (-4 *4 (-1049)) (-4 *4 (-558)) (-5 *2 (-409 (-952 *4))))) (-3193 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-566)) (-4 *1 (-1224 *4)) (-4 *4 (-1049)) (-4 *4 (-558)) (-5 *2 (-409 (-952 *4))))) (-3313 (*1 *1 *1) (-12 (-4 *1 (-1224 *2)) (-4 *2 (-1049)) (-4 *2 (-38 (-409 (-566)))))) (-3313 (*1 *1 *1 *2) (-2768 (-12 (-5 *2 (-1175)) (-4 *1 (-1224 *3)) (-4 *3 (-1049)) (-12 (-4 *3 (-29 (-566))) (-4 *3 (-959)) (-4 *3 (-1199)) (-4 *3 (-38 (-409 (-566)))))) (-12 (-5 *2 (-1175)) (-4 *1 (-1224 *3)) (-4 *3 (-1049)) (-12 (|has| *3 (-15 -1771 ((-644 *2) *3))) (|has| *3 (-15 -3313 (*3 *3 *2))) (-4 *3 (-38 (-409 (-566))))))))) +(-13 (-1242 |t#1| (-566)) (-10 -8 (-15 -1427 ($ (-1155 (-2 (|:| |k| (-566)) (|:| |c| |t#1|))))) (-15 -3657 ($ (-1 |t#1| (-566)) $)) (IF (|has| |t#1| (-558)) (PROGN (-15 -3193 ((-409 (-952 |t#1|)) $ (-566))) (-15 -3193 ((-409 (-952 |t#1|)) $ (-566) (-566)))) |%noBranch|) (IF (|has| |t#1| (-38 (-409 (-566)))) (PROGN (-15 -3313 ($ $)) (IF (|has| |t#1| (-15 -3313 (|t#1| |t#1| (-1175)))) (IF (|has| |t#1| (-15 -1771 ((-644 (-1175)) |t#1|))) (-15 -3313 ($ $ (-1175))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1199)) (IF (|has| |t#1| (-959)) (IF (|has| |t#1| (-29 (-566))) (-15 -3313 ($ $ (-1175))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1002)) (-6 (-1199))) |%noBranch|) (IF (|has| |t#1| (-365)) (-6 (-365)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-566)) . T) ((-25) . T) ((-38 #1=(-409 (-566))) -2768 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2768 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-35) |has| |#1| (-38 (-409 (-566)))) ((-95) |has| |#1| (-38 (-409 (-566)))) ((-102) . T) ((-111 #1# #1#) -2768 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2768 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #1#) -2768 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-616 (-566)) . T) ((-616 |#1|) |has| |#1| (-172)) ((-616 $) -2768 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-613 (-862)) . T) ((-172) -2768 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-566) |#1|))) ((-243) |has| |#1| (-365)) ((-285) |has| |#1| (-38 (-409 (-566)))) ((-287 $ $) |has| (-566) (-1111)) ((-291) -2768 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-365) |has| |#1| (-365)) ((-454) |has| |#1| (-365)) ((-495) |has| |#1| (-38 (-409 (-566)))) ((-558) -2768 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-646 #1#) -2768 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #1#) -2768 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #1#) -2768 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) -2768 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-717 #1#) -2768 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) -2768 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-726) . T) ((-900 (-1175)) -12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))) ((-973 |#1| #0# (-1081)) . T) ((-920) |has| |#1| (-365)) ((-1002) |has| |#1| (-38 (-409 (-566)))) ((-1051 #1#) -2768 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-1051 |#1|) . T) ((-1051 $) -2768 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1056 #1#) -2768 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-1056 |#1|) . T) ((-1056 $) -2768 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1199) |has| |#1| (-38 (-409 (-566)))) ((-1202) |has| |#1| (-38 (-409 (-566)))) ((-1218) |has| |#1| (-365)) ((-1242 |#1| #0#) . T)) +((-3230 (((-112) $) 12)) (-2229 (((-3 |#3| "failed") $) 17) (((-3 (-1175) "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL) (((-3 (-566) "failed") $) NIL)) (-4158 ((|#3| $) 14) (((-1175) $) NIL) (((-409 (-566)) $) NIL) (((-566) $) NIL))) +(((-1225 |#1| |#2| |#3|) (-10 -8 (-15 -2229 ((-3 (-566) "failed") |#1|)) (-15 -4158 ((-566) |#1|)) (-15 -2229 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -4158 ((-409 (-566)) |#1|)) (-15 -2229 ((-3 (-1175) "failed") |#1|)) (-15 -4158 ((-1175) |#1|)) (-15 -2229 ((-3 |#3| "failed") |#1|)) (-15 -4158 (|#3| |#1|)) (-15 -3230 ((-112) |#1|))) (-1226 |#2| |#3|) (-1049) (-1255 |#2|)) (T -1225)) +NIL +(-10 -8 (-15 -2229 ((-3 (-566) "failed") |#1|)) (-15 -4158 ((-566) |#1|)) (-15 -2229 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -4158 ((-409 (-566)) |#1|)) (-15 -2229 ((-3 (-1175) "failed") |#1|)) (-15 -4158 ((-1175) |#1|)) (-15 -2229 ((-3 |#3| "failed") |#1|)) (-15 -4158 (|#3| |#1|)) (-15 -3230 ((-112) |#1|))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-1873 ((|#2| $) 242 (-2415 (|has| |#2| (-308)) (|has| |#1| (-365))))) (-1771 (((-644 (-1081)) $) 86)) (-4347 (((-1175) $) 115)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) 63 (|has| |#1| (-558)))) (-2161 (($ $) 64 (|has| |#1| (-558)))) (-2345 (((-112) $) 66 (|has| |#1| (-558)))) (-2331 (($ $ (-566)) 110) (($ $ (-566) (-566)) 109)) (-4152 (((-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))) $) 117)) (-3271 ((|#2| $) 278)) (-3560 (((-3 |#2| "failed") $) 274)) (-1827 ((|#2| $) 275)) (-3963 (($ $) 147 (|has| |#1| (-38 (-409 (-566)))))) (-3630 (($ $) 130 (|has| |#1| (-38 (-409 (-566)))))) (-3967 (((-3 $ "failed") $ $) 20)) (-2292 (((-420 (-1171 $)) (-1171 $)) 251 (-2415 (|has| |#2| (-909)) (|has| |#1| (-365))))) (-1378 (($ $) 174 (|has| |#1| (-365)))) (-1364 (((-420 $) $) 175 (|has| |#1| (-365)))) (-1635 (($ $) 129 (|has| |#1| (-38 (-409 (-566)))))) (-4066 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) 248 (-2415 (|has| |#2| (-909)) (|has| |#1| (-365))))) (-2085 (((-112) $ $) 165 (|has| |#1| (-365)))) (-3941 (($ $) 146 (|has| |#1| (-38 (-409 (-566)))))) (-3602 (($ $) 131 (|has| |#1| (-38 (-409 (-566)))))) (-2743 (((-566) $) 260 (-2415 (|has| |#2| (-820)) (|has| |#1| (-365))))) (-1427 (($ (-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|)))) 185)) (-3986 (($ $) 145 (|has| |#1| (-38 (-409 (-566)))))) (-3656 (($ $) 132 (|has| |#1| (-38 (-409 (-566)))))) (-2463 (($) 18 T CONST)) (-2229 (((-3 |#2| "failed") $) 281) (((-3 (-566) "failed") $) 271 (-2415 (|has| |#2| (-1038 (-566))) (|has| |#1| (-365)))) (((-3 (-409 (-566)) "failed") $) 269 (-2415 (|has| |#2| (-1038 (-566))) (|has| |#1| (-365)))) (((-3 (-1175) "failed") $) 253 (-2415 (|has| |#2| (-1038 (-1175))) (|has| |#1| (-365))))) (-4158 ((|#2| $) 282) (((-566) $) 270 (-2415 (|has| |#2| (-1038 (-566))) (|has| |#1| (-365)))) (((-409 (-566)) $) 268 (-2415 (|has| |#2| (-1038 (-566))) (|has| |#1| (-365)))) (((-1175) $) 252 (-2415 (|has| |#2| (-1038 (-1175))) (|has| |#1| (-365))))) (-1556 (($ $) 277) (($ (-566) $) 276)) (-2933 (($ $ $) 169 (|has| |#1| (-365)))) (-2814 (($ $) 72)) (-4089 (((-689 |#2|) (-689 $)) 232 (|has| |#1| (-365))) (((-2 (|:| -3361 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 $) (-1264 $)) 231 (|has| |#1| (-365))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) 230 (-2415 (|has| |#2| (-639 (-566))) (|has| |#1| (-365)))) (((-689 (-566)) (-689 $)) 229 (-2415 (|has| |#2| (-639 (-566))) (|has| |#1| (-365))))) (-3245 (((-3 $ "failed") $) 37)) (-3193 (((-409 (-952 |#1|)) $ (-566)) 183 (|has| |#1| (-558))) (((-409 (-952 |#1|)) $ (-566) (-566)) 182 (|has| |#1| (-558)))) (-2715 (($) 244 (-2415 (|has| |#2| (-547)) (|has| |#1| (-365))))) (-2945 (($ $ $) 168 (|has| |#1| (-365)))) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) 163 (|has| |#1| (-365)))) (-1615 (((-112) $) 176 (|has| |#1| (-365)))) (-2528 (((-112) $) 258 (-2415 (|has| |#2| (-820)) (|has| |#1| (-365))))) (-3772 (((-112) $) 85)) (-2281 (($) 157 (|has| |#1| (-38 (-409 (-566)))))) (-2926 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 236 (-2415 (|has| |#2| (-886 (-381))) (|has| |#1| (-365)))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 235 (-2415 (|has| |#2| (-886 (-566))) (|has| |#1| (-365))))) (-2679 (((-566) $) 112) (((-566) $ (-566)) 111)) (-2389 (((-112) $) 35)) (-3406 (($ $) 240 (|has| |#1| (-365)))) (-2248 ((|#2| $) 238 (|has| |#1| (-365)))) (-1575 (($ $ (-566)) 128 (|has| |#1| (-38 (-409 (-566)))))) (-2621 (((-3 $ "failed") $) 272 (-2415 (|has| |#2| (-1150)) (|has| |#1| (-365))))) (-3233 (((-112) $) 259 (-2415 (|has| |#2| (-820)) (|has| |#1| (-365))))) (-3394 (($ $ (-921)) 113)) (-3657 (($ (-1 |#1| (-566)) $) 184)) (-3816 (((-3 (-644 $) "failed") (-644 $) $) 172 (|has| |#1| (-365)))) (-2497 (((-112) $) 74)) (-1746 (($ |#1| (-566)) 73) (($ $ (-1081) (-566)) 88) (($ $ (-644 (-1081)) (-644 (-566))) 87)) (-1478 (($ $ $) 262 (-2415 (|has| |#2| (-850)) (|has| |#1| (-365))))) (-2599 (($ $ $) 263 (-2415 (|has| |#2| (-850)) (|has| |#1| (-365))))) (-2319 (($ (-1 |#1| |#1|) $) 75) (($ (-1 |#2| |#2|) $) 224 (|has| |#1| (-365)))) (-3619 (($ $) 154 (|has| |#1| (-38 (-409 (-566)))))) (-2784 (($ $) 77)) (-2794 ((|#1| $) 78)) (-2128 (($ (-644 $)) 161 (|has| |#1| (-365))) (($ $ $) 160 (|has| |#1| (-365)))) (-2719 (($ (-566) |#2|) 279)) (-3380 (((-1157) $) 10)) (-2748 (($ $) 177 (|has| |#1| (-365)))) (-3313 (($ $) 181 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) 180 (-2768 (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-959)) (|has| |#1| (-1199)) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-15 -1771 ((-644 (-1175)) |#1|))) (|has| |#1| (-15 -3313 (|#1| |#1| (-1175)))) (|has| |#1| (-38 (-409 (-566)))))))) (-3289 (($) 273 (-2415 (|has| |#2| (-1150)) (|has| |#1| (-365))) CONST)) (-4072 (((-1119) $) 11)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) 162 (|has| |#1| (-365)))) (-2164 (($ (-644 $)) 159 (|has| |#1| (-365))) (($ $ $) 158 (|has| |#1| (-365)))) (-2487 (($ $) 243 (-2415 (|has| |#2| (-308)) (|has| |#1| (-365))))) (-3143 ((|#2| $) 246 (-2415 (|has| |#2| (-547)) (|has| |#1| (-365))))) (-2010 (((-420 (-1171 $)) (-1171 $)) 249 (-2415 (|has| |#2| (-909)) (|has| |#1| (-365))))) (-1893 (((-420 (-1171 $)) (-1171 $)) 250 (-2415 (|has| |#2| (-909)) (|has| |#1| (-365))))) (-1624 (((-420 $) $) 173 (|has| |#1| (-365)))) (-3005 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) 170 (|has| |#1| (-365)))) (-3369 (($ $ (-566)) 107)) (-2978 (((-3 $ "failed") $ $) 62 (|has| |#1| (-558)))) (-2915 (((-3 (-644 $) "failed") (-644 $) $) 164 (|has| |#1| (-365)))) (-3521 (($ $) 155 (|has| |#1| (-38 (-409 (-566)))))) (-2023 (((-1155 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-566))))) (($ $ (-1175) |#2|) 223 (-2415 (|has| |#2| (-516 (-1175) |#2|)) (|has| |#1| (-365)))) (($ $ (-644 (-1175)) (-644 |#2|)) 222 (-2415 (|has| |#2| (-516 (-1175) |#2|)) (|has| |#1| (-365)))) (($ $ (-644 (-295 |#2|))) 221 (-2415 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ (-295 |#2|)) 220 (-2415 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ |#2| |#2|) 219 (-2415 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ (-644 |#2|) (-644 |#2|)) 218 (-2415 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365))))) (-4357 (((-771) $) 166 (|has| |#1| (-365)))) (-1309 ((|#1| $ (-566)) 116) (($ $ $) 93 (|has| (-566) (-1111))) (($ $ |#2|) 217 (-2415 (|has| |#2| (-287 |#2| |#2|)) (|has| |#1| (-365))))) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) 167 (|has| |#1| (-365)))) (-3629 (($ $ (-1 |#2| |#2|)) 228 (|has| |#1| (-365))) (($ $ (-1 |#2| |#2|) (-771)) 227 (|has| |#1| (-365))) (($ $ (-771)) 96 (-2768 (-2415 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $) 94 (-2768 (-2415 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-644 (-1175)) (-644 (-771))) 101 (-2768 (-2415 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|)))))) (($ $ (-1175) (-771)) 100 (-2768 (-2415 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|)))))) (($ $ (-644 (-1175))) 99 (-2768 (-2415 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|)))))) (($ $ (-1175)) 98 (-2768 (-2415 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))))) (-1452 (($ $) 241 (|has| |#1| (-365)))) (-2260 ((|#2| $) 239 (|has| |#1| (-365)))) (-3902 (((-566) $) 76)) (-3996 (($ $) 144 (|has| |#1| (-38 (-409 (-566)))))) (-3670 (($ $) 133 (|has| |#1| (-38 (-409 (-566)))))) (-3976 (($ $) 143 (|has| |#1| (-38 (-409 (-566)))))) (-3643 (($ $) 134 (|has| |#1| (-38 (-409 (-566)))))) (-3952 (($ $) 142 (|has| |#1| (-38 (-409 (-566)))))) (-3618 (($ $) 135 (|has| |#1| (-38 (-409 (-566)))))) (-2376 (((-225) $) 257 (-2415 (|has| |#2| (-1022)) (|has| |#1| (-365)))) (((-381) $) 256 (-2415 (|has| |#2| (-1022)) (|has| |#1| (-365)))) (((-538) $) 255 (-2415 (|has| |#2| (-614 (-538))) (|has| |#1| (-365)))) (((-892 (-381)) $) 234 (-2415 (|has| |#2| (-614 (-892 (-381)))) (|has| |#1| (-365)))) (((-892 (-566)) $) 233 (-2415 (|has| |#2| (-614 (-892 (-566)))) (|has| |#1| (-365))))) (-3391 (((-3 (-1264 $) "failed") (-689 $)) 247 (-2415 (-2415 (|has| $ (-145)) (|has| |#2| (-909))) (|has| |#1| (-365))))) (-1687 (($ $) 84)) (-3152 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 59 (|has| |#1| (-172))) (($ |#2|) 280) (($ (-1175)) 254 (-2415 (|has| |#2| (-1038 (-1175))) (|has| |#1| (-365)))) (($ (-409 (-566))) 69 (|has| |#1| (-38 (-409 (-566))))) (($ $) 61 (|has| |#1| (-558)))) (-2271 ((|#1| $ (-566)) 71)) (-2633 (((-3 $ "failed") $) 60 (-2768 (-2415 (-2768 (|has| |#2| (-145)) (-2415 (|has| $ (-145)) (|has| |#2| (-909)))) (|has| |#1| (-365))) (|has| |#1| (-145))))) (-2593 (((-771)) 32 T CONST)) (-4290 ((|#1| $) 114)) (-3913 ((|#2| $) 245 (-2415 (|has| |#2| (-547)) (|has| |#1| (-365))))) (-3044 (((-112) $ $) 9)) (-4032 (($ $) 153 (|has| |#1| (-38 (-409 (-566)))))) (-3892 (($ $) 141 (|has| |#1| (-38 (-409 (-566)))))) (-3014 (((-112) $ $) 65 (|has| |#1| (-558)))) (-4008 (($ $) 152 (|has| |#1| (-38 (-409 (-566)))))) (-3684 (($ $) 140 (|has| |#1| (-38 (-409 (-566)))))) (-4057 (($ $) 151 (|has| |#1| (-38 (-409 (-566)))))) (-3917 (($ $) 139 (|has| |#1| (-38 (-409 (-566)))))) (-3603 ((|#1| $ (-566)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-566)))) (|has| |#1| (-15 -3152 (|#1| (-1175))))))) (-3964 (($ $) 150 (|has| |#1| (-38 (-409 (-566)))))) (-3929 (($ $) 138 (|has| |#1| (-38 (-409 (-566)))))) (-4044 (($ $) 149 (|has| |#1| (-38 (-409 (-566)))))) (-3904 (($ $) 137 (|has| |#1| (-38 (-409 (-566)))))) (-4020 (($ $) 148 (|has| |#1| (-38 (-409 (-566)))))) (-3879 (($ $) 136 (|has| |#1| (-38 (-409 (-566)))))) (-1358 (($ $) 261 (-2415 (|has| |#2| (-820)) (|has| |#1| (-365))))) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-3497 (($ $ (-1 |#2| |#2|)) 226 (|has| |#1| (-365))) (($ $ (-1 |#2| |#2|) (-771)) 225 (|has| |#1| (-365))) (($ $ (-771)) 97 (-2768 (-2415 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $) 95 (-2768 (-2415 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-644 (-1175)) (-644 (-771))) 105 (-2768 (-2415 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|)))))) (($ $ (-1175) (-771)) 104 (-2768 (-2415 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|)))))) (($ $ (-644 (-1175))) 103 (-2768 (-2415 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|)))))) (($ $ (-1175)) 102 (-2768 (-2415 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))))) (-2968 (((-112) $ $) 265 (-2415 (|has| |#2| (-850)) (|has| |#1| (-365))))) (-2946 (((-112) $ $) 266 (-2415 (|has| |#2| (-850)) (|has| |#1| (-365))))) (-2914 (((-112) $ $) 6)) (-2956 (((-112) $ $) 264 (-2415 (|has| |#2| (-850)) (|has| |#1| (-365))))) (-2935 (((-112) $ $) 267 (-2415 (|has| |#2| (-850)) (|has| |#1| (-365))))) (-3025 (($ $ |#1|) 70 (|has| |#1| (-365))) (($ $ $) 179 (|has| |#1| (-365))) (($ |#2| |#2|) 237 (|has| |#1| (-365)))) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 178 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 127 (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ $ |#2|) 216 (|has| |#1| (-365))) (($ |#2| $) 215 (|has| |#1| (-365))) (($ (-409 (-566)) $) 68 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 67 (|has| |#1| (-38 (-409 (-566))))))) (((-1226 |#1| |#2|) (-140) (-1049) (-1255 |t#1|)) (T -1226)) -((-3636 (*1 *2 *1) (-12 (-4 *1 (-1226 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1255 *3)) (-5 *2 (-566)))) (-1678 (*1 *1 *2 *3) (-12 (-5 *2 (-566)) (-4 *4 (-1049)) (-4 *1 (-1226 *4 *3)) (-4 *3 (-1255 *4)))) (-2268 (*1 *2 *1) (-12 (-4 *1 (-1226 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-1255 *3)))) (-3569 (*1 *1 *1) (-12 (-4 *1 (-1226 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-1255 *2)))) (-3569 (*1 *1 *2 *1) (-12 (-5 *2 (-566)) (-4 *1 (-1226 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1255 *3)))) (-3916 (*1 *2 *1) (-12 (-4 *1 (-1226 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-1255 *3)))) (-2783 (*1 *2 *1) (|partial| -12 (-4 *1 (-1226 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-1255 *3))))) -(-13 (-1224 |t#1|) (-1038 |t#2|) (-616 |t#2|) (-10 -8 (-15 -1678 ($ (-566) |t#2|)) (-15 -3636 ((-566) $)) (-15 -2268 (|t#2| $)) (-15 -3569 ($ $)) (-15 -3569 ($ (-566) $)) (-15 -3916 (|t#2| $)) (-15 -2783 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-365)) (-6 (-992 |t#2|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-566)) . T) ((-25) . T) ((-38 #1=(-409 (-566))) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 |#2|) |has| |#1| (-365)) ((-38 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-35) |has| |#1| (-38 (-409 (-566)))) ((-95) |has| |#1| (-38 (-409 (-566)))) ((-102) . T) ((-111 #1# #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-365)) ((-111 $ $) -2809 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) -2809 (-12 (|has| |#1| (-365)) (|has| |#2| (-145))) (|has| |#1| (-145))) ((-147) -2809 (-12 (|has| |#1| (-365)) (|has| |#2| (-147))) (|has| |#1| (-147))) ((-616 #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-616 (-566)) . T) ((-616 #2=(-1175)) -12 (|has| |#1| (-365)) (|has| |#2| (-1038 (-1175)))) ((-616 |#1|) |has| |#1| (-172)) ((-616 |#2|) . T) ((-616 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-613 (-862)) . T) ((-172) -2809 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-614 (-225)) -12 (|has| |#1| (-365)) (|has| |#2| (-1022))) ((-614 (-381)) -12 (|has| |#1| (-365)) (|has| |#2| (-1022))) ((-614 (-538)) -12 (|has| |#1| (-365)) (|has| |#2| (-614 (-538)))) ((-614 (-892 (-381))) -12 (|has| |#1| (-365)) (|has| |#2| (-614 (-892 (-381))))) ((-614 (-892 (-566))) -12 (|has| |#1| (-365)) (|has| |#2| (-614 (-892 (-566))))) ((-231 |#2|) |has| |#1| (-365)) ((-233) -2809 (-12 (|has| |#1| (-365)) (|has| |#2| (-233))) (|has| |#1| (-15 * (|#1| (-566) |#1|)))) ((-243) |has| |#1| (-365)) ((-285) |has| |#1| (-38 (-409 (-566)))) ((-287 |#2| $) -12 (|has| |#1| (-365)) (|has| |#2| (-287 |#2| |#2|))) ((-287 $ $) |has| (-566) (-1111)) ((-291) -2809 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-310 |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-310 |#2|))) ((-365) |has| |#1| (-365)) ((-340 |#2|) |has| |#1| (-365)) ((-379 |#2|) |has| |#1| (-365)) ((-402 |#2|) |has| |#1| (-365)) ((-454) |has| |#1| (-365)) ((-495) |has| |#1| (-38 (-409 (-566)))) ((-516 (-1175) |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-516 (-1175) |#2|))) ((-516 |#2| |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-310 |#2|))) ((-558) -2809 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-646 #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 |#2|) |has| |#1| (-365)) ((-646 $) . T) ((-648 #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-648 |#1|) . T) ((-648 |#2|) |has| |#1| (-365)) ((-648 $) . T) ((-640 #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-640 |#1|) |has| |#1| (-172)) ((-640 |#2|) |has| |#1| (-365)) ((-640 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-639 (-566)) -12 (|has| |#1| (-365)) (|has| |#2| (-639 (-566)))) ((-639 |#2|) |has| |#1| (-365)) ((-717 #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-717 |#1|) |has| |#1| (-172)) ((-717 |#2|) |has| |#1| (-365)) ((-717 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-726) . T) ((-791) -12 (|has| |#1| (-365)) (|has| |#2| (-820))) ((-792) -12 (|has| |#1| (-365)) (|has| |#2| (-820))) ((-794) -12 (|has| |#1| (-365)) (|has| |#2| (-820))) ((-795) -12 (|has| |#1| (-365)) (|has| |#2| (-820))) ((-820) -12 (|has| |#1| (-365)) (|has| |#2| (-820))) ((-848) -12 (|has| |#1| (-365)) (|has| |#2| (-820))) ((-850) -2809 (-12 (|has| |#1| (-365)) (|has| |#2| (-850))) (-12 (|has| |#1| (-365)) (|has| |#2| (-820)))) ((-900 (-1175)) -2809 (-12 (|has| |#1| (-365)) (|has| |#2| (-900 (-1175)))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))) ((-886 (-381)) -12 (|has| |#1| (-365)) (|has| |#2| (-886 (-381)))) ((-886 (-566)) -12 (|has| |#1| (-365)) (|has| |#2| (-886 (-566)))) ((-884 |#2|) |has| |#1| (-365)) ((-909) -12 (|has| |#1| (-365)) (|has| |#2| (-909))) ((-973 |#1| #0# (-1081)) . T) ((-920) |has| |#1| (-365)) ((-992 |#2|) |has| |#1| (-365)) ((-1002) |has| |#1| (-38 (-409 (-566)))) ((-1022) -12 (|has| |#1| (-365)) (|has| |#2| (-1022))) ((-1038 (-409 (-566))) -12 (|has| |#1| (-365)) (|has| |#2| (-1038 (-566)))) ((-1038 (-566)) -12 (|has| |#1| (-365)) (|has| |#2| (-1038 (-566)))) ((-1038 #2#) -12 (|has| |#1| (-365)) (|has| |#2| (-1038 (-1175)))) ((-1038 |#2|) . T) ((-1051 #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-1051 |#1|) . T) ((-1051 |#2|) |has| |#1| (-365)) ((-1051 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1056 #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-1056 |#1|) . T) ((-1056 |#2|) |has| |#1| (-365)) ((-1056 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1150) -12 (|has| |#1| (-365)) (|has| |#2| (-1150))) ((-1199) |has| |#1| (-38 (-409 (-566)))) ((-1202) |has| |#1| (-38 (-409 (-566)))) ((-1214) |has| |#1| (-365)) ((-1218) |has| |#1| (-365)) ((-1224 |#1|) . T) ((-1242 |#1| #0#) . T)) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) 81)) (-1515 ((|#2| $) NIL (-12 (|has| |#2| (-308)) (|has| |#1| (-365))))) (-3863 (((-644 (-1081)) $) NIL)) (-1385 (((-1175) $) 100)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-3991 (($ $) NIL (|has| |#1| (-558)))) (-2388 (((-112) $) NIL (|has| |#1| (-558)))) (-2587 (($ $ (-566)) 109) (($ $ (-566) (-566)) 111)) (-2775 (((-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))) $) 51)) (-2268 ((|#2| $) 11)) (-2783 (((-3 |#2| "failed") $) 35)) (-3916 ((|#2| $) 36)) (-4114 (($ $) 206 (|has| |#1| (-38 (-409 (-566)))))) (-2109 (($ $) 182 (|has| |#1| (-38 (-409 (-566)))))) (-4175 (((-3 $ "failed") $ $) NIL)) (-1477 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| |#2| (-909)) (|has| |#1| (-365))))) (-1550 (($ $) NIL (|has| |#1| (-365)))) (-3184 (((-420 $) $) NIL (|has| |#1| (-365)))) (-3731 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3717 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (-12 (|has| |#2| (-909)) (|has| |#1| (-365))))) (-2837 (((-112) $ $) NIL (|has| |#1| (-365)))) (-2240 (($ $) 202 (|has| |#1| (-38 (-409 (-566)))))) (-2085 (($ $) 178 (|has| |#1| (-38 (-409 (-566)))))) (-4364 (((-566) $) NIL (-12 (|has| |#2| (-820)) (|has| |#1| (-365))))) (-2052 (($ (-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|)))) 59)) (-4134 (($ $) 210 (|has| |#1| (-38 (-409 (-566)))))) (-2129 (($ $) 186 (|has| |#1| (-38 (-409 (-566)))))) (-3012 (($) NIL T CONST)) (-4307 (((-3 |#2| "failed") $) 157) (((-3 (-566) "failed") $) NIL (-12 (|has| |#2| (-1038 (-566))) (|has| |#1| (-365)))) (((-3 (-409 (-566)) "failed") $) NIL (-12 (|has| |#2| (-1038 (-566))) (|has| |#1| (-365)))) (((-3 (-1175) "failed") $) NIL (-12 (|has| |#2| (-1038 (-1175))) (|has| |#1| (-365))))) (-4205 ((|#2| $) 156) (((-566) $) NIL (-12 (|has| |#2| (-1038 (-566))) (|has| |#1| (-365)))) (((-409 (-566)) $) NIL (-12 (|has| |#2| (-1038 (-566))) (|has| |#1| (-365)))) (((-1175) $) NIL (-12 (|has| |#2| (-1038 (-1175))) (|has| |#1| (-365))))) (-3569 (($ $) 65) (($ (-566) $) 28)) (-2946 (($ $ $) NIL (|has| |#1| (-365)))) (-1786 (($ $) NIL)) (-3577 (((-689 |#2|) (-689 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -4227 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 $) (-1264 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (-12 (|has| |#2| (-639 (-566))) (|has| |#1| (-365)))) (((-689 (-566)) (-689 $)) NIL (-12 (|has| |#2| (-639 (-566))) (|has| |#1| (-365))))) (-1878 (((-3 $ "failed") $) 88)) (-3977 (((-409 (-952 |#1|)) $ (-566)) 124 (|has| |#1| (-558))) (((-409 (-952 |#1|)) $ (-566) (-566)) 126 (|has| |#1| (-558)))) (-1552 (($) NIL (-12 (|has| |#2| (-547)) (|has| |#1| (-365))))) (-2957 (($ $ $) NIL (|has| |#1| (-365)))) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL (|has| |#1| (-365)))) (-3268 (((-112) $) NIL (|has| |#1| (-365)))) (-1897 (((-112) $) NIL (-12 (|has| |#2| (-820)) (|has| |#1| (-365))))) (-2158 (((-112) $) 74)) (-4361 (($) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2062 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| |#2| (-886 (-381))) (|has| |#1| (-365)))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| |#2| (-886 (-566))) (|has| |#1| (-365))))) (-3254 (((-566) $) 105) (((-566) $ (-566)) 107)) (-3934 (((-112) $) NIL)) (-1493 (($ $) NIL (|has| |#1| (-365)))) (-4326 ((|#2| $) 165 (|has| |#1| (-365)))) (-2140 (($ $ (-566)) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4363 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1150)) (|has| |#1| (-365))))) (-2117 (((-112) $) NIL (-12 (|has| |#2| (-820)) (|has| |#1| (-365))))) (-2955 (($ $ (-921)) 148)) (-4042 (($ (-1 |#1| (-566)) $) 144)) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-3264 (((-112) $) NIL)) (-3840 (($ |#1| (-566)) 20) (($ $ (-1081) (-566)) NIL) (($ $ (-644 (-1081)) (-644 (-566))) NIL)) (-2097 (($ $ $) NIL (-12 (|has| |#2| (-850)) (|has| |#1| (-365))))) (-3962 (($ $ $) NIL (-12 (|has| |#2| (-850)) (|has| |#1| (-365))))) (-1301 (($ (-1 |#1| |#1|) $) 141) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-365)))) (-3651 (($ $) 176 (|has| |#1| (-38 (-409 (-566)))))) (-1749 (($ $) NIL)) (-1763 ((|#1| $) NIL)) (-2167 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-1678 (($ (-566) |#2|) 10)) (-4117 (((-1157) $) NIL)) (-1713 (($ $) 159 (|has| |#1| (-365)))) (-1941 (($ $) 228 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) 233 (-2809 (-12 (|has| |#1| (-15 -1941 (|#1| |#1| (-1175)))) (|has| |#1| (-15 -3863 ((-644 (-1175)) |#1|))) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-959)) (|has| |#1| (-1199)))))) (-1761 (($) NIL (-12 (|has| |#2| (-1150)) (|has| |#1| (-365))) CONST)) (-4035 (((-1119) $) NIL)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-365)))) (-2214 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2938 (($ $) NIL (-12 (|has| |#2| (-308)) (|has| |#1| (-365))))) (-3470 ((|#2| $) NIL (-12 (|has| |#2| (-547)) (|has| |#1| (-365))))) (-4303 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| |#2| (-909)) (|has| |#1| (-365))))) (-3240 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| |#2| (-909)) (|has| |#1| (-365))))) (-3719 (((-420 $) $) NIL (|has| |#1| (-365)))) (-3148 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-365)))) (-3874 (($ $ (-566)) 138)) (-2994 (((-3 $ "failed") $ $) 128 (|has| |#1| (-558)))) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-2561 (($ $) 174 (|has| |#1| (-38 (-409 (-566)))))) (-2055 (((-1155 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-566))))) (($ $ (-1175) |#2|) NIL (-12 (|has| |#2| (-516 (-1175) |#2|)) (|has| |#1| (-365)))) (($ $ (-644 (-1175)) (-644 |#2|)) NIL (-12 (|has| |#2| (-516 (-1175) |#2|)) (|has| |#1| (-365)))) (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365))))) (-3039 (((-771) $) NIL (|has| |#1| (-365)))) (-4390 ((|#1| $ (-566)) 103) (($ $ $) 90 (|has| (-566) (-1111))) (($ $ |#2|) NIL (-12 (|has| |#2| (-287 |#2| |#2|)) (|has| |#1| (-365))))) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL (|has| |#1| (-365)))) (-3561 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-365))) (($ $ (-1 |#2| |#2|) (-771)) NIL (|has| |#1| (-365))) (($ $ (-771)) NIL (-2809 (-12 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $) 149 (-2809 (-12 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-2809 (-12 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-1175) (-771)) NIL (-2809 (-12 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-644 (-1175))) NIL (-2809 (-12 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-1175)) 153 (-2809 (-12 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))))) (-2023 (($ $) NIL (|has| |#1| (-365)))) (-4339 ((|#2| $) 166 (|has| |#1| (-365)))) (-3636 (((-566) $) 12)) (-4144 (($ $) 212 (|has| |#1| (-38 (-409 (-566)))))) (-2141 (($ $) 188 (|has| |#1| (-38 (-409 (-566)))))) (-4124 (($ $) 208 (|has| |#1| (-38 (-409 (-566)))))) (-2118 (($ $) 184 (|has| |#1| (-38 (-409 (-566)))))) (-4104 (($ $) 204 (|has| |#1| (-38 (-409 (-566)))))) (-2098 (($ $) 180 (|has| |#1| (-38 (-409 (-566)))))) (-1348 (((-225) $) NIL (-12 (|has| |#2| (-1022)) (|has| |#1| (-365)))) (((-381) $) NIL (-12 (|has| |#2| (-1022)) (|has| |#1| (-365)))) (((-538) $) NIL (-12 (|has| |#2| (-614 (-538))) (|has| |#1| (-365)))) (((-892 (-381)) $) NIL (-12 (|has| |#2| (-614 (-892 (-381)))) (|has| |#1| (-365)))) (((-892 (-566)) $) NIL (-12 (|has| |#2| (-614 (-892 (-566)))) (|has| |#1| (-365))))) (-1656 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-909)) (|has| |#1| (-365))))) (-2770 (($ $) 136)) (-3783 (((-862) $) 267) (($ (-566)) 24) (($ |#1|) 22 (|has| |#1| (-172))) (($ |#2|) 21) (($ (-1175)) NIL (-12 (|has| |#2| (-1038 (-1175))) (|has| |#1| (-365)))) (($ (-409 (-566))) 169 (|has| |#1| (-38 (-409 (-566))))) (($ $) NIL (|has| |#1| (-558)))) (-2649 ((|#1| $ (-566)) 85)) (-3144 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| $ (-145)) (|has| |#2| (-909)) (|has| |#1| (-365))) (-12 (|has| |#2| (-145)) (|has| |#1| (-365))) (|has| |#1| (-145))))) (-2107 (((-771)) 155 T CONST)) (-1320 ((|#1| $) 102)) (-2948 ((|#2| $) NIL (-12 (|has| |#2| (-547)) (|has| |#1| (-365))))) (-3117 (((-112) $ $) NIL)) (-4177 (($ $) 218 (|has| |#1| (-38 (-409 (-566)))))) (-2180 (($ $) 194 (|has| |#1| (-38 (-409 (-566)))))) (-2695 (((-112) $ $) NIL (|has| |#1| (-558)))) (-4155 (($ $) 214 (|has| |#1| (-38 (-409 (-566)))))) (-2153 (($ $) 190 (|has| |#1| (-38 (-409 (-566)))))) (-4198 (($ $) 222 (|has| |#1| (-38 (-409 (-566)))))) (-2212 (($ $) 198 (|has| |#1| (-38 (-409 (-566)))))) (-3628 ((|#1| $ (-566)) 134 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-566)))) (|has| |#1| (-15 -3783 (|#1| (-1175))))))) (-2976 (($ $) 224 (|has| |#1| (-38 (-409 (-566)))))) (-2227 (($ $) 200 (|has| |#1| (-38 (-409 (-566)))))) (-4188 (($ $) 220 (|has| |#1| (-38 (-409 (-566)))))) (-2196 (($ $) 196 (|has| |#1| (-38 (-409 (-566)))))) (-4166 (($ $) 216 (|has| |#1| (-38 (-409 (-566)))))) (-2166 (($ $) 192 (|has| |#1| (-38 (-409 (-566)))))) (-2086 (($ $) NIL (-12 (|has| |#2| (-820)) (|has| |#1| (-365))))) (-2479 (($) 13 T CONST)) (-4334 (($) 18 T CONST)) (-2875 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-365))) (($ $ (-1 |#2| |#2|) (-771)) NIL (|has| |#1| (-365))) (($ $ (-771)) NIL (-2809 (-12 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $) NIL (-2809 (-12 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-2809 (-12 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-1175) (-771)) NIL (-2809 (-12 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-644 (-1175))) NIL (-2809 (-12 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-1175)) NIL (-2809 (-12 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))))) (-3009 (((-112) $ $) NIL (-12 (|has| |#2| (-850)) (|has| |#1| (-365))))) (-2984 (((-112) $ $) NIL (-12 (|has| |#2| (-850)) (|has| |#1| (-365))))) (-2947 (((-112) $ $) 72)) (-2995 (((-112) $ $) NIL (-12 (|has| |#2| (-850)) (|has| |#1| (-365))))) (-2969 (((-112) $ $) NIL (-12 (|has| |#2| (-850)) (|has| |#1| (-365))))) (-3065 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) 163 (|has| |#1| (-365))) (($ |#2| |#2|) 164 (|has| |#1| (-365)))) (-3053 (($ $) 227) (($ $ $) 78)) (-3041 (($ $ $) 76)) (** (($ $ (-921)) NIL) (($ $ (-771)) 84) (($ $ (-566)) 160 (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 172 (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 79) (($ $ |#1|) NIL) (($ |#1| $) 152) (($ $ |#2|) 162 (|has| |#1| (-365))) (($ |#2| $) 161 (|has| |#1| (-365))) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))))) +((-3902 (*1 *2 *1) (-12 (-4 *1 (-1226 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1255 *3)) (-5 *2 (-566)))) (-2719 (*1 *1 *2 *3) (-12 (-5 *2 (-566)) (-4 *4 (-1049)) (-4 *1 (-1226 *4 *3)) (-4 *3 (-1255 *4)))) (-3271 (*1 *2 *1) (-12 (-4 *1 (-1226 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-1255 *3)))) (-1556 (*1 *1 *1) (-12 (-4 *1 (-1226 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-1255 *2)))) (-1556 (*1 *1 *2 *1) (-12 (-5 *2 (-566)) (-4 *1 (-1226 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1255 *3)))) (-1827 (*1 *2 *1) (-12 (-4 *1 (-1226 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-1255 *3)))) (-3560 (*1 *2 *1) (|partial| -12 (-4 *1 (-1226 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-1255 *3))))) +(-13 (-1224 |t#1|) (-1038 |t#2|) (-616 |t#2|) (-10 -8 (-15 -2719 ($ (-566) |t#2|)) (-15 -3902 ((-566) $)) (-15 -3271 (|t#2| $)) (-15 -1556 ($ $)) (-15 -1556 ($ (-566) $)) (-15 -1827 (|t#2| $)) (-15 -3560 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-365)) (-6 (-992 |t#2|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-566)) . T) ((-25) . T) ((-38 #1=(-409 (-566))) -2768 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 |#2|) |has| |#1| (-365)) ((-38 $) -2768 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-35) |has| |#1| (-38 (-409 (-566)))) ((-95) |has| |#1| (-38 (-409 (-566)))) ((-102) . T) ((-111 #1# #1#) -2768 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-365)) ((-111 $ $) -2768 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) -2768 (-12 (|has| |#1| (-365)) (|has| |#2| (-145))) (|has| |#1| (-145))) ((-147) -2768 (-12 (|has| |#1| (-365)) (|has| |#2| (-147))) (|has| |#1| (-147))) ((-616 #1#) -2768 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-616 (-566)) . T) ((-616 #2=(-1175)) -12 (|has| |#1| (-365)) (|has| |#2| (-1038 (-1175)))) ((-616 |#1|) |has| |#1| (-172)) ((-616 |#2|) . T) ((-616 $) -2768 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-613 (-862)) . T) ((-172) -2768 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-614 (-225)) -12 (|has| |#1| (-365)) (|has| |#2| (-1022))) ((-614 (-381)) -12 (|has| |#1| (-365)) (|has| |#2| (-1022))) ((-614 (-538)) -12 (|has| |#1| (-365)) (|has| |#2| (-614 (-538)))) ((-614 (-892 (-381))) -12 (|has| |#1| (-365)) (|has| |#2| (-614 (-892 (-381))))) ((-614 (-892 (-566))) -12 (|has| |#1| (-365)) (|has| |#2| (-614 (-892 (-566))))) ((-231 |#2|) |has| |#1| (-365)) ((-233) -2768 (-12 (|has| |#1| (-365)) (|has| |#2| (-233))) (|has| |#1| (-15 * (|#1| (-566) |#1|)))) ((-243) |has| |#1| (-365)) ((-285) |has| |#1| (-38 (-409 (-566)))) ((-287 |#2| $) -12 (|has| |#1| (-365)) (|has| |#2| (-287 |#2| |#2|))) ((-287 $ $) |has| (-566) (-1111)) ((-291) -2768 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-310 |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-310 |#2|))) ((-365) |has| |#1| (-365)) ((-340 |#2|) |has| |#1| (-365)) ((-379 |#2|) |has| |#1| (-365)) ((-402 |#2|) |has| |#1| (-365)) ((-454) |has| |#1| (-365)) ((-495) |has| |#1| (-38 (-409 (-566)))) ((-516 (-1175) |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-516 (-1175) |#2|))) ((-516 |#2| |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-310 |#2|))) ((-558) -2768 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-646 #1#) -2768 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 |#2|) |has| |#1| (-365)) ((-646 $) . T) ((-648 #1#) -2768 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-648 |#1|) . T) ((-648 |#2|) |has| |#1| (-365)) ((-648 $) . T) ((-640 #1#) -2768 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-640 |#1|) |has| |#1| (-172)) ((-640 |#2|) |has| |#1| (-365)) ((-640 $) -2768 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-639 (-566)) -12 (|has| |#1| (-365)) (|has| |#2| (-639 (-566)))) ((-639 |#2|) |has| |#1| (-365)) ((-717 #1#) -2768 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-717 |#1|) |has| |#1| (-172)) ((-717 |#2|) |has| |#1| (-365)) ((-717 $) -2768 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-726) . T) ((-791) -12 (|has| |#1| (-365)) (|has| |#2| (-820))) ((-792) -12 (|has| |#1| (-365)) (|has| |#2| (-820))) ((-794) -12 (|has| |#1| (-365)) (|has| |#2| (-820))) ((-795) -12 (|has| |#1| (-365)) (|has| |#2| (-820))) ((-820) -12 (|has| |#1| (-365)) (|has| |#2| (-820))) ((-848) -12 (|has| |#1| (-365)) (|has| |#2| (-820))) ((-850) -2768 (-12 (|has| |#1| (-365)) (|has| |#2| (-850))) (-12 (|has| |#1| (-365)) (|has| |#2| (-820)))) ((-900 (-1175)) -2768 (-12 (|has| |#1| (-365)) (|has| |#2| (-900 (-1175)))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))) ((-886 (-381)) -12 (|has| |#1| (-365)) (|has| |#2| (-886 (-381)))) ((-886 (-566)) -12 (|has| |#1| (-365)) (|has| |#2| (-886 (-566)))) ((-884 |#2|) |has| |#1| (-365)) ((-909) -12 (|has| |#1| (-365)) (|has| |#2| (-909))) ((-973 |#1| #0# (-1081)) . T) ((-920) |has| |#1| (-365)) ((-992 |#2|) |has| |#1| (-365)) ((-1002) |has| |#1| (-38 (-409 (-566)))) ((-1022) -12 (|has| |#1| (-365)) (|has| |#2| (-1022))) ((-1038 (-409 (-566))) -12 (|has| |#1| (-365)) (|has| |#2| (-1038 (-566)))) ((-1038 (-566)) -12 (|has| |#1| (-365)) (|has| |#2| (-1038 (-566)))) ((-1038 #2#) -12 (|has| |#1| (-365)) (|has| |#2| (-1038 (-1175)))) ((-1038 |#2|) . T) ((-1051 #1#) -2768 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-1051 |#1|) . T) ((-1051 |#2|) |has| |#1| (-365)) ((-1051 $) -2768 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1056 #1#) -2768 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-1056 |#1|) . T) ((-1056 |#2|) |has| |#1| (-365)) ((-1056 $) -2768 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1150) -12 (|has| |#1| (-365)) (|has| |#2| (-1150))) ((-1199) |has| |#1| (-38 (-409 (-566)))) ((-1202) |has| |#1| (-38 (-409 (-566)))) ((-1214) |has| |#1| (-365)) ((-1218) |has| |#1| (-365)) ((-1224 |#1|) . T) ((-1242 |#1| #0#) . T)) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) 81)) (-1873 ((|#2| $) NIL (-12 (|has| |#2| (-308)) (|has| |#1| (-365))))) (-1771 (((-644 (-1081)) $) NIL)) (-4347 (((-1175) $) 100)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-2161 (($ $) NIL (|has| |#1| (-558)))) (-2345 (((-112) $) NIL (|has| |#1| (-558)))) (-2331 (($ $ (-566)) 109) (($ $ (-566) (-566)) 111)) (-4152 (((-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))) $) 51)) (-3271 ((|#2| $) 11)) (-3560 (((-3 |#2| "failed") $) 35)) (-1827 ((|#2| $) 36)) (-3963 (($ $) 206 (|has| |#1| (-38 (-409 (-566)))))) (-3630 (($ $) 182 (|has| |#1| (-38 (-409 (-566)))))) (-3967 (((-3 $ "failed") $ $) NIL)) (-2292 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| |#2| (-909)) (|has| |#1| (-365))))) (-1378 (($ $) NIL (|has| |#1| (-365)))) (-1364 (((-420 $) $) NIL (|has| |#1| (-365)))) (-1635 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4066 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (-12 (|has| |#2| (-909)) (|has| |#1| (-365))))) (-2085 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3941 (($ $) 202 (|has| |#1| (-38 (-409 (-566)))))) (-3602 (($ $) 178 (|has| |#1| (-38 (-409 (-566)))))) (-2743 (((-566) $) NIL (-12 (|has| |#2| (-820)) (|has| |#1| (-365))))) (-1427 (($ (-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|)))) 59)) (-3986 (($ $) 210 (|has| |#1| (-38 (-409 (-566)))))) (-3656 (($ $) 186 (|has| |#1| (-38 (-409 (-566)))))) (-2463 (($) NIL T CONST)) (-2229 (((-3 |#2| "failed") $) 157) (((-3 (-566) "failed") $) NIL (-12 (|has| |#2| (-1038 (-566))) (|has| |#1| (-365)))) (((-3 (-409 (-566)) "failed") $) NIL (-12 (|has| |#2| (-1038 (-566))) (|has| |#1| (-365)))) (((-3 (-1175) "failed") $) NIL (-12 (|has| |#2| (-1038 (-1175))) (|has| |#1| (-365))))) (-4158 ((|#2| $) 156) (((-566) $) NIL (-12 (|has| |#2| (-1038 (-566))) (|has| |#1| (-365)))) (((-409 (-566)) $) NIL (-12 (|has| |#2| (-1038 (-566))) (|has| |#1| (-365)))) (((-1175) $) NIL (-12 (|has| |#2| (-1038 (-1175))) (|has| |#1| (-365))))) (-1556 (($ $) 65) (($ (-566) $) 28)) (-2933 (($ $ $) NIL (|has| |#1| (-365)))) (-2814 (($ $) NIL)) (-4089 (((-689 |#2|) (-689 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -3361 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 $) (-1264 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (-12 (|has| |#2| (-639 (-566))) (|has| |#1| (-365)))) (((-689 (-566)) (-689 $)) NIL (-12 (|has| |#2| (-639 (-566))) (|has| |#1| (-365))))) (-3245 (((-3 $ "failed") $) 88)) (-3193 (((-409 (-952 |#1|)) $ (-566)) 124 (|has| |#1| (-558))) (((-409 (-952 |#1|)) $ (-566) (-566)) 126 (|has| |#1| (-558)))) (-2715 (($) NIL (-12 (|has| |#2| (-547)) (|has| |#1| (-365))))) (-2945 (($ $ $) NIL (|has| |#1| (-365)))) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL (|has| |#1| (-365)))) (-1615 (((-112) $) NIL (|has| |#1| (-365)))) (-2528 (((-112) $) NIL (-12 (|has| |#2| (-820)) (|has| |#1| (-365))))) (-3772 (((-112) $) 74)) (-2281 (($) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2926 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| |#2| (-886 (-381))) (|has| |#1| (-365)))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| |#2| (-886 (-566))) (|has| |#1| (-365))))) (-2679 (((-566) $) 105) (((-566) $ (-566)) 107)) (-2389 (((-112) $) NIL)) (-3406 (($ $) NIL (|has| |#1| (-365)))) (-2248 ((|#2| $) 165 (|has| |#1| (-365)))) (-1575 (($ $ (-566)) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2621 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1150)) (|has| |#1| (-365))))) (-3233 (((-112) $) NIL (-12 (|has| |#2| (-820)) (|has| |#1| (-365))))) (-3394 (($ $ (-921)) 148)) (-3657 (($ (-1 |#1| (-566)) $) 144)) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-2497 (((-112) $) NIL)) (-1746 (($ |#1| (-566)) 20) (($ $ (-1081) (-566)) NIL) (($ $ (-644 (-1081)) (-644 (-566))) NIL)) (-1478 (($ $ $) NIL (-12 (|has| |#2| (-850)) (|has| |#1| (-365))))) (-2599 (($ $ $) NIL (-12 (|has| |#2| (-850)) (|has| |#1| (-365))))) (-2319 (($ (-1 |#1| |#1|) $) 141) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-365)))) (-3619 (($ $) 176 (|has| |#1| (-38 (-409 (-566)))))) (-2784 (($ $) NIL)) (-2794 ((|#1| $) NIL)) (-2128 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2719 (($ (-566) |#2|) 10)) (-3380 (((-1157) $) NIL)) (-2748 (($ $) 159 (|has| |#1| (-365)))) (-3313 (($ $) 228 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) 233 (-2768 (-12 (|has| |#1| (-15 -3313 (|#1| |#1| (-1175)))) (|has| |#1| (-15 -1771 ((-644 (-1175)) |#1|))) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-959)) (|has| |#1| (-1199)))))) (-3289 (($) NIL (-12 (|has| |#2| (-1150)) (|has| |#1| (-365))) CONST)) (-4072 (((-1119) $) NIL)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-365)))) (-2164 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2487 (($ $) NIL (-12 (|has| |#2| (-308)) (|has| |#1| (-365))))) (-3143 ((|#2| $) NIL (-12 (|has| |#2| (-547)) (|has| |#1| (-365))))) (-2010 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| |#2| (-909)) (|has| |#1| (-365))))) (-1893 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| |#2| (-909)) (|has| |#1| (-365))))) (-1624 (((-420 $) $) NIL (|has| |#1| (-365)))) (-3005 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL (|has| |#1| (-365)))) (-3369 (($ $ (-566)) 138)) (-2978 (((-3 $ "failed") $ $) 128 (|has| |#1| (-558)))) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-3521 (($ $) 174 (|has| |#1| (-38 (-409 (-566)))))) (-2023 (((-1155 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-566))))) (($ $ (-1175) |#2|) NIL (-12 (|has| |#2| (-516 (-1175) |#2|)) (|has| |#1| (-365)))) (($ $ (-644 (-1175)) (-644 |#2|)) NIL (-12 (|has| |#2| (-516 (-1175) |#2|)) (|has| |#1| (-365)))) (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365))))) (-4357 (((-771) $) NIL (|has| |#1| (-365)))) (-1309 ((|#1| $ (-566)) 103) (($ $ $) 90 (|has| (-566) (-1111))) (($ $ |#2|) NIL (-12 (|has| |#2| (-287 |#2| |#2|)) (|has| |#1| (-365))))) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL (|has| |#1| (-365)))) (-3629 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-365))) (($ $ (-1 |#2| |#2|) (-771)) NIL (|has| |#1| (-365))) (($ $ (-771)) NIL (-2768 (-12 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $) 149 (-2768 (-12 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-2768 (-12 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-1175) (-771)) NIL (-2768 (-12 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-644 (-1175))) NIL (-2768 (-12 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-1175)) 153 (-2768 (-12 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))))) (-1452 (($ $) NIL (|has| |#1| (-365)))) (-2260 ((|#2| $) 166 (|has| |#1| (-365)))) (-3902 (((-566) $) 12)) (-3996 (($ $) 212 (|has| |#1| (-38 (-409 (-566)))))) (-3670 (($ $) 188 (|has| |#1| (-38 (-409 (-566)))))) (-3976 (($ $) 208 (|has| |#1| (-38 (-409 (-566)))))) (-3643 (($ $) 184 (|has| |#1| (-38 (-409 (-566)))))) (-3952 (($ $) 204 (|has| |#1| (-38 (-409 (-566)))))) (-3618 (($ $) 180 (|has| |#1| (-38 (-409 (-566)))))) (-2376 (((-225) $) NIL (-12 (|has| |#2| (-1022)) (|has| |#1| (-365)))) (((-381) $) NIL (-12 (|has| |#2| (-1022)) (|has| |#1| (-365)))) (((-538) $) NIL (-12 (|has| |#2| (-614 (-538))) (|has| |#1| (-365)))) (((-892 (-381)) $) NIL (-12 (|has| |#2| (-614 (-892 (-381)))) (|has| |#1| (-365)))) (((-892 (-566)) $) NIL (-12 (|has| |#2| (-614 (-892 (-566)))) (|has| |#1| (-365))))) (-3391 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-909)) (|has| |#1| (-365))))) (-1687 (($ $) 136)) (-3152 (((-862) $) 267) (($ (-566)) 24) (($ |#1|) 22 (|has| |#1| (-172))) (($ |#2|) 21) (($ (-1175)) NIL (-12 (|has| |#2| (-1038 (-1175))) (|has| |#1| (-365)))) (($ (-409 (-566))) 169 (|has| |#1| (-38 (-409 (-566))))) (($ $) NIL (|has| |#1| (-558)))) (-2271 ((|#1| $ (-566)) 85)) (-2633 (((-3 $ "failed") $) NIL (-2768 (-12 (|has| $ (-145)) (|has| |#2| (-909)) (|has| |#1| (-365))) (-12 (|has| |#2| (-145)) (|has| |#1| (-365))) (|has| |#1| (-145))))) (-2593 (((-771)) 155 T CONST)) (-4290 ((|#1| $) 102)) (-3913 ((|#2| $) NIL (-12 (|has| |#2| (-547)) (|has| |#1| (-365))))) (-3044 (((-112) $ $) NIL)) (-4032 (($ $) 218 (|has| |#1| (-38 (-409 (-566)))))) (-3892 (($ $) 194 (|has| |#1| (-38 (-409 (-566)))))) (-3014 (((-112) $ $) NIL (|has| |#1| (-558)))) (-4008 (($ $) 214 (|has| |#1| (-38 (-409 (-566)))))) (-3684 (($ $) 190 (|has| |#1| (-38 (-409 (-566)))))) (-4057 (($ $) 222 (|has| |#1| (-38 (-409 (-566)))))) (-3917 (($ $) 198 (|has| |#1| (-38 (-409 (-566)))))) (-3603 ((|#1| $ (-566)) 134 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-566)))) (|has| |#1| (-15 -3152 (|#1| (-1175))))))) (-3964 (($ $) 224 (|has| |#1| (-38 (-409 (-566)))))) (-3929 (($ $) 200 (|has| |#1| (-38 (-409 (-566)))))) (-4044 (($ $) 220 (|has| |#1| (-38 (-409 (-566)))))) (-3904 (($ $) 196 (|has| |#1| (-38 (-409 (-566)))))) (-4020 (($ $) 216 (|has| |#1| (-38 (-409 (-566)))))) (-3879 (($ $) 192 (|has| |#1| (-38 (-409 (-566)))))) (-1358 (($ $) NIL (-12 (|has| |#2| (-820)) (|has| |#1| (-365))))) (-4356 (($) 13 T CONST)) (-4366 (($) 18 T CONST)) (-3497 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-365))) (($ $ (-1 |#2| |#2|) (-771)) NIL (|has| |#1| (-365))) (($ $ (-771)) NIL (-2768 (-12 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $) NIL (-2768 (-12 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-2768 (-12 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-1175) (-771)) NIL (-2768 (-12 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-644 (-1175))) NIL (-2768 (-12 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-1175)) NIL (-2768 (-12 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))))) (-2968 (((-112) $ $) NIL (-12 (|has| |#2| (-850)) (|has| |#1| (-365))))) (-2946 (((-112) $ $) NIL (-12 (|has| |#2| (-850)) (|has| |#1| (-365))))) (-2914 (((-112) $ $) 72)) (-2956 (((-112) $ $) NIL (-12 (|has| |#2| (-850)) (|has| |#1| (-365))))) (-2935 (((-112) $ $) NIL (-12 (|has| |#2| (-850)) (|has| |#1| (-365))))) (-3025 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) 163 (|has| |#1| (-365))) (($ |#2| |#2|) 164 (|has| |#1| (-365)))) (-3012 (($ $) 227) (($ $ $) 78)) (-3002 (($ $ $) 76)) (** (($ $ (-921)) NIL) (($ $ (-771)) 84) (($ $ (-566)) 160 (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 172 (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 79) (($ $ |#1|) NIL) (($ |#1| $) 152) (($ $ |#2|) 162 (|has| |#1| (-365))) (($ |#2| $) 161 (|has| |#1| (-365))) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))))) (((-1227 |#1| |#2|) (-1226 |#1| |#2|) (-1049) (-1255 |#1|)) (T -1227)) NIL (-1226 |#1| |#2|) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-1515 (((-1256 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-308)) (|has| |#1| (-365))))) (-3863 (((-644 (-1081)) $) NIL)) (-1385 (((-1175) $) 10)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (-2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1256 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))) (|has| |#1| (-558))))) (-3991 (($ $) NIL (-2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1256 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))) (|has| |#1| (-558))))) (-2388 (((-112) $) NIL (-2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1256 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))) (|has| |#1| (-558))))) (-2587 (($ $ (-566)) NIL) (($ $ (-566) (-566)) NIL)) (-2775 (((-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))) $) NIL)) (-2268 (((-1256 |#1| |#2| |#3|) $) NIL)) (-2783 (((-3 (-1256 |#1| |#2| |#3|) "failed") $) NIL)) (-3916 (((-1256 |#1| |#2| |#3|) $) NIL)) (-4114 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2109 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4175 (((-3 $ "failed") $ $) NIL)) (-1477 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))))) (-1550 (($ $) NIL (|has| |#1| (-365)))) (-3184 (((-420 $) $) NIL (|has| |#1| (-365)))) (-3731 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3717 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))))) (-2837 (((-112) $ $) NIL (|has| |#1| (-365)))) (-2240 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2085 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4364 (((-566) $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))))) (-2052 (($ (-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|)))) NIL)) (-4134 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2129 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3012 (($) NIL T CONST)) (-4307 (((-3 (-1256 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1175) "failed") $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-1038 (-1175))) (|has| |#1| (-365)))) (((-3 (-409 (-566)) "failed") $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-1038 (-566))) (|has| |#1| (-365)))) (((-3 (-566) "failed") $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-1038 (-566))) (|has| |#1| (-365))))) (-4205 (((-1256 |#1| |#2| |#3|) $) NIL) (((-1175) $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-1038 (-1175))) (|has| |#1| (-365)))) (((-409 (-566)) $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-1038 (-566))) (|has| |#1| (-365)))) (((-566) $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-1038 (-566))) (|has| |#1| (-365))))) (-3569 (($ $) NIL) (($ (-566) $) NIL)) (-2946 (($ $ $) NIL (|has| |#1| (-365)))) (-1786 (($ $) NIL)) (-3577 (((-689 (-1256 |#1| |#2| |#3|)) (-689 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -4227 (-689 (-1256 |#1| |#2| |#3|))) (|:| |vec| (-1264 (-1256 |#1| |#2| |#3|)))) (-689 $) (-1264 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-639 (-566))) (|has| |#1| (-365)))) (((-689 (-566)) (-689 $)) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-639 (-566))) (|has| |#1| (-365))))) (-1878 (((-3 $ "failed") $) NIL)) (-3977 (((-409 (-952 |#1|)) $ (-566)) NIL (|has| |#1| (-558))) (((-409 (-952 |#1|)) $ (-566) (-566)) NIL (|has| |#1| (-558)))) (-1552 (($) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-547)) (|has| |#1| (-365))))) (-2957 (($ $ $) NIL (|has| |#1| (-365)))) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL (|has| |#1| (-365)))) (-3268 (((-112) $) NIL (|has| |#1| (-365)))) (-1897 (((-112) $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))))) (-2158 (((-112) $) NIL)) (-4361 (($) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2062 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-886 (-381))) (|has| |#1| (-365)))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-886 (-566))) (|has| |#1| (-365))))) (-3254 (((-566) $) NIL) (((-566) $ (-566)) NIL)) (-3934 (((-112) $) NIL)) (-1493 (($ $) NIL (|has| |#1| (-365)))) (-4326 (((-1256 |#1| |#2| |#3|) $) NIL (|has| |#1| (-365)))) (-2140 (($ $ (-566)) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4363 (((-3 $ "failed") $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-1150)) (|has| |#1| (-365))))) (-2117 (((-112) $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))))) (-2955 (($ $ (-921)) NIL)) (-4042 (($ (-1 |#1| (-566)) $) NIL)) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-3264 (((-112) $) NIL)) (-3840 (($ |#1| (-566)) 18) (($ $ (-1081) (-566)) NIL) (($ $ (-644 (-1081)) (-644 (-566))) NIL)) (-2097 (($ $ $) NIL (-2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1256 |#1| |#2| |#3|) (-850)) (|has| |#1| (-365)))))) (-3962 (($ $ $) NIL (-2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1256 |#1| |#2| |#3|) (-850)) (|has| |#1| (-365)))))) (-1301 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1256 |#1| |#2| |#3|) (-1256 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-365)))) (-3651 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1749 (($ $) NIL)) (-1763 ((|#1| $) NIL)) (-2167 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-1678 (($ (-566) (-1256 |#1| |#2| |#3|)) NIL)) (-4117 (((-1157) $) NIL)) (-1713 (($ $) NIL (|has| |#1| (-365)))) (-1941 (($ $) 27 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) NIL (-2809 (-12 (|has| |#1| (-15 -1941 (|#1| |#1| (-1175)))) (|has| |#1| (-15 -3863 ((-644 (-1175)) |#1|))) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-959)) (|has| |#1| (-1199))))) (($ $ (-1260 |#2|)) 28 (|has| |#1| (-38 (-409 (-566)))))) (-1761 (($) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-1150)) (|has| |#1| (-365))) CONST)) (-4035 (((-1119) $) NIL)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-365)))) (-2214 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2938 (($ $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-308)) (|has| |#1| (-365))))) (-3470 (((-1256 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-547)) (|has| |#1| (-365))))) (-4303 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))))) (-3240 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))))) (-3719 (((-420 $) $) NIL (|has| |#1| (-365)))) (-3148 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-365)))) (-3874 (($ $ (-566)) NIL)) (-2994 (((-3 $ "failed") $ $) NIL (-2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1256 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))) (|has| |#1| (-558))))) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-2561 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2055 (((-1155 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-566))))) (($ $ (-1175) (-1256 |#1| |#2| |#3|)) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-516 (-1175) (-1256 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-644 (-1175)) (-644 (-1256 |#1| |#2| |#3|))) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-516 (-1175) (-1256 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-644 (-295 (-1256 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-310 (-1256 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-295 (-1256 |#1| |#2| |#3|))) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-310 (-1256 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-1256 |#1| |#2| |#3|) (-1256 |#1| |#2| |#3|)) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-310 (-1256 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-644 (-1256 |#1| |#2| |#3|)) (-644 (-1256 |#1| |#2| |#3|))) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-310 (-1256 |#1| |#2| |#3|))) (|has| |#1| (-365))))) (-3039 (((-771) $) NIL (|has| |#1| (-365)))) (-4390 ((|#1| $ (-566)) NIL) (($ $ $) NIL (|has| (-566) (-1111))) (($ $ (-1256 |#1| |#2| |#3|)) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-287 (-1256 |#1| |#2| |#3|) (-1256 |#1| |#2| |#3|))) (|has| |#1| (-365))))) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL (|has| |#1| (-365)))) (-3561 (($ $ (-1 (-1256 |#1| |#2| |#3|) (-1256 |#1| |#2| |#3|))) NIL (|has| |#1| (-365))) (($ $ (-1 (-1256 |#1| |#2| |#3|) (-1256 |#1| |#2| |#3|)) (-771)) NIL (|has| |#1| (-365))) (($ $ (-1260 |#2|)) 26) (($ $ (-771)) NIL (-2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $) 25 (-2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-1175) (-771)) NIL (-2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-644 (-1175))) NIL (-2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-1175)) NIL (-2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))))) (-2023 (($ $) NIL (|has| |#1| (-365)))) (-4339 (((-1256 |#1| |#2| |#3|) $) NIL (|has| |#1| (-365)))) (-3636 (((-566) $) NIL)) (-4144 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2141 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4124 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2118 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4104 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2098 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1348 (((-538) $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-614 (-538))) (|has| |#1| (-365)))) (((-381) $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-1022)) (|has| |#1| (-365)))) (((-225) $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-1022)) (|has| |#1| (-365)))) (((-892 (-381)) $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-614 (-892 (-381)))) (|has| |#1| (-365)))) (((-892 (-566)) $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-614 (-892 (-566)))) (|has| |#1| (-365))))) (-1656 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| (-1256 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))))) (-2770 (($ $) NIL)) (-3783 (((-862) $) NIL) (($ (-566)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1256 |#1| |#2| |#3|)) NIL) (($ (-1260 |#2|)) 24) (($ (-1175)) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-1038 (-1175))) (|has| |#1| (-365)))) (($ $) NIL (-2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1256 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))) (|has| |#1| (-558)))) (($ (-409 (-566))) NIL (-2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-1038 (-566))) (|has| |#1| (-365))) (|has| |#1| (-38 (-409 (-566))))))) (-2649 ((|#1| $ (-566)) NIL)) (-3144 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| $ (-145)) (|has| (-1256 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))) (-12 (|has| (-1256 |#1| |#2| |#3|) (-145)) (|has| |#1| (-365))) (|has| |#1| (-145))))) (-2107 (((-771)) NIL T CONST)) (-1320 ((|#1| $) 11)) (-2948 (((-1256 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-547)) (|has| |#1| (-365))))) (-3117 (((-112) $ $) NIL)) (-4177 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2180 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2695 (((-112) $ $) NIL (-2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1256 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))) (|has| |#1| (-558))))) (-4155 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2153 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4198 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2212 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3628 ((|#1| $ (-566)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-566)))) (|has| |#1| (-15 -3783 (|#1| (-1175))))))) (-2976 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2227 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4188 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2196 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4166 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2166 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2086 (($ $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))))) (-2479 (($) 20 T CONST)) (-4334 (($) 15 T CONST)) (-2875 (($ $ (-1 (-1256 |#1| |#2| |#3|) (-1256 |#1| |#2| |#3|))) NIL (|has| |#1| (-365))) (($ $ (-1 (-1256 |#1| |#2| |#3|) (-1256 |#1| |#2| |#3|)) (-771)) NIL (|has| |#1| (-365))) (($ $ (-771)) NIL (-2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $) NIL (-2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-1175) (-771)) NIL (-2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-644 (-1175))) NIL (-2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-1175)) NIL (-2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))))) (-3009 (((-112) $ $) NIL (-2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1256 |#1| |#2| |#3|) (-850)) (|has| |#1| (-365)))))) (-2984 (((-112) $ $) NIL (-2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1256 |#1| |#2| |#3|) (-850)) (|has| |#1| (-365)))))) (-2947 (((-112) $ $) NIL)) (-2995 (((-112) $ $) NIL (-2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1256 |#1| |#2| |#3|) (-850)) (|has| |#1| (-365)))))) (-2969 (((-112) $ $) NIL (-2809 (-12 (|has| (-1256 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1256 |#1| |#2| |#3|) (-850)) (|has| |#1| (-365)))))) (-3065 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365))) (($ (-1256 |#1| |#2| |#3|) (-1256 |#1| |#2| |#3|)) NIL (|has| |#1| (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) 22)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1256 |#1| |#2| |#3|)) NIL (|has| |#1| (-365))) (($ (-1256 |#1| |#2| |#3|) $) NIL (|has| |#1| (-365))) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))))) -(((-1228 |#1| |#2| |#3|) (-13 (-1226 |#1| (-1256 |#1| |#2| |#3|)) (-10 -8 (-15 -3783 ($ (-1260 |#2|))) (-15 -3561 ($ $ (-1260 |#2|))) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -1941 ($ $ (-1260 |#2|))) |%noBranch|))) (-1049) (-1175) |#1|) (T -1228)) -((-3783 (*1 *1 *2) (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1228 *3 *4 *5)) (-4 *3 (-1049)) (-14 *5 *3))) (-3561 (*1 *1 *1 *2) (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1228 *3 *4 *5)) (-4 *3 (-1049)) (-14 *5 *3))) (-1941 (*1 *1 *1 *2) (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1228 *3 *4 *5)) (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-14 *5 *3)))) -(-13 (-1226 |#1| (-1256 |#1| |#2| |#3|)) (-10 -8 (-15 -3783 ($ (-1260 |#2|))) (-15 -3561 ($ $ (-1260 |#2|))) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -1941 ($ $ (-1260 |#2|))) |%noBranch|))) -((-4006 (((-2 (|:| |contp| (-566)) (|:| -4138 (-644 (-2 (|:| |irr| |#1|) (|:| -3149 (-566)))))) |#1| (-112)) 13)) (-2585 (((-420 |#1|) |#1|) 26)) (-3719 (((-420 |#1|) |#1|) 24))) -(((-1229 |#1|) (-10 -7 (-15 -3719 ((-420 |#1|) |#1|)) (-15 -2585 ((-420 |#1|) |#1|)) (-15 -4006 ((-2 (|:| |contp| (-566)) (|:| -4138 (-644 (-2 (|:| |irr| |#1|) (|:| -3149 (-566)))))) |#1| (-112)))) (-1240 (-566))) (T -1229)) -((-4006 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-566)) (|:| -4138 (-644 (-2 (|:| |irr| *3) (|:| -3149 (-566))))))) (-5 *1 (-1229 *3)) (-4 *3 (-1240 (-566))))) (-2585 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-1229 *3)) (-4 *3 (-1240 (-566))))) (-3719 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-1229 *3)) (-4 *3 (-1240 (-566)))))) -(-10 -7 (-15 -3719 ((-420 |#1|) |#1|)) (-15 -2585 ((-420 |#1|) |#1|)) (-15 -4006 ((-2 (|:| |contp| (-566)) (|:| -4138 (-644 (-2 (|:| |irr| |#1|) (|:| -3149 (-566)))))) |#1| (-112)))) -((-1301 (((-1155 |#2|) (-1 |#2| |#1|) (-1231 |#1|)) 23 (|has| |#1| (-848))) (((-1231 |#2|) (-1 |#2| |#1|) (-1231 |#1|)) 17))) -(((-1230 |#1| |#2|) (-10 -7 (-15 -1301 ((-1231 |#2|) (-1 |#2| |#1|) (-1231 |#1|))) (IF (|has| |#1| (-848)) (-15 -1301 ((-1155 |#2|) (-1 |#2| |#1|) (-1231 |#1|))) |%noBranch|)) (-1214) (-1214)) (T -1230)) -((-1301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1231 *5)) (-4 *5 (-848)) (-4 *5 (-1214)) (-4 *6 (-1214)) (-5 *2 (-1155 *6)) (-5 *1 (-1230 *5 *6)))) (-1301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1231 *5)) (-4 *5 (-1214)) (-4 *6 (-1214)) (-5 *2 (-1231 *6)) (-5 *1 (-1230 *5 *6))))) -(-10 -7 (-15 -1301 ((-1231 |#2|) (-1 |#2| |#1|) (-1231 |#1|))) (IF (|has| |#1| (-848)) (-15 -1301 ((-1155 |#2|) (-1 |#2| |#1|) (-1231 |#1|))) |%noBranch|)) -((-3007 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2427 (($ |#1| |#1|) 11) (($ |#1|) 10)) (-1301 (((-1155 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-848)))) (-2177 ((|#1| $) 15)) (-1448 ((|#1| $) 12)) (-4117 (((-1157) $) NIL (|has| |#1| (-1099)))) (-2247 (((-566) $) 19)) (-1863 ((|#1| $) 18)) (-2269 ((|#1| $) 13)) (-4035 (((-1119) $) NIL (|has| |#1| (-1099)))) (-2832 (((-112) $) 17)) (-2671 (((-1155 |#1|) $) 41 (|has| |#1| (-848))) (((-1155 |#1|) (-644 $)) 40 (|has| |#1| (-848)))) (-1348 (($ |#1|) 26)) (-3783 (($ (-1093 |#1|)) 25) (((-862) $) 37 (|has| |#1| (-1099)))) (-3117 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3622 (($ |#1| |#1|) 21) (($ |#1|) 20)) (-2737 (($ $ (-566)) 14)) (-2947 (((-112) $ $) 30 (|has| |#1| (-1099))))) -(((-1231 |#1|) (-13 (-1092 |#1|) (-10 -8 (-15 -3622 ($ |#1|)) (-15 -2427 ($ |#1|)) (-15 -3783 ($ (-1093 |#1|))) (-15 -2832 ((-112) $)) (IF (|has| |#1| (-1099)) (-6 (-1099)) |%noBranch|) (IF (|has| |#1| (-848)) (-6 (-1094 |#1| (-1155 |#1|))) |%noBranch|))) (-1214)) (T -1231)) -((-3622 (*1 *1 *2) (-12 (-5 *1 (-1231 *2)) (-4 *2 (-1214)))) (-2427 (*1 *1 *2) (-12 (-5 *1 (-1231 *2)) (-4 *2 (-1214)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-1093 *3)) (-4 *3 (-1214)) (-5 *1 (-1231 *3)))) (-2832 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1231 *3)) (-4 *3 (-1214))))) -(-13 (-1092 |#1|) (-10 -8 (-15 -3622 ($ |#1|)) (-15 -2427 ($ |#1|)) (-15 -3783 ($ (-1093 |#1|))) (-15 -2832 ((-112) $)) (IF (|has| |#1| (-1099)) (-6 (-1099)) |%noBranch|) (IF (|has| |#1| (-848)) (-6 (-1094 |#1| (-1155 |#1|))) |%noBranch|))) -((-1301 (((-1237 |#3| |#4|) (-1 |#4| |#2|) (-1237 |#1| |#2|)) 15))) -(((-1232 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1301 ((-1237 |#3| |#4|) (-1 |#4| |#2|) (-1237 |#1| |#2|)))) (-1175) (-1049) (-1175) (-1049)) (T -1232)) -((-1301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1237 *5 *6)) (-14 *5 (-1175)) (-4 *6 (-1049)) (-4 *8 (-1049)) (-5 *2 (-1237 *7 *8)) (-5 *1 (-1232 *5 *6 *7 *8)) (-14 *7 (-1175))))) -(-10 -7 (-15 -1301 ((-1237 |#3| |#4|) (-1 |#4| |#2|) (-1237 |#1| |#2|)))) -((-3830 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-4297 ((|#1| |#3|) 13)) (-3738 ((|#3| |#3|) 19))) -(((-1233 |#1| |#2| |#3|) (-10 -7 (-15 -4297 (|#1| |#3|)) (-15 -3738 (|#3| |#3|)) (-15 -3830 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-558) (-992 |#1|) (-1240 |#2|)) (T -1233)) -((-3830 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-992 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1233 *4 *5 *3)) (-4 *3 (-1240 *5)))) (-3738 (*1 *2 *2) (-12 (-4 *3 (-558)) (-4 *4 (-992 *3)) (-5 *1 (-1233 *3 *4 *2)) (-4 *2 (-1240 *4)))) (-4297 (*1 *2 *3) (-12 (-4 *4 (-992 *2)) (-4 *2 (-558)) (-5 *1 (-1233 *2 *4 *3)) (-4 *3 (-1240 *4))))) -(-10 -7 (-15 -4297 (|#1| |#3|)) (-15 -3738 (|#3| |#3|)) (-15 -3830 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-3255 (((-3 |#2| "failed") |#2| (-771) |#1|) 37)) (-1398 (((-3 |#2| "failed") |#2| (-771)) 38)) (-2127 (((-3 (-2 (|:| -4380 |#2|) (|:| -4392 |#2|)) "failed") |#2|) 52)) (-3520 (((-644 |#2|) |#2|) 54)) (-4020 (((-3 |#2| "failed") |#2| |#2|) 48))) -(((-1234 |#1| |#2|) (-10 -7 (-15 -1398 ((-3 |#2| "failed") |#2| (-771))) (-15 -3255 ((-3 |#2| "failed") |#2| (-771) |#1|)) (-15 -4020 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2127 ((-3 (-2 (|:| -4380 |#2|) (|:| -4392 |#2|)) "failed") |#2|)) (-15 -3520 ((-644 |#2|) |#2|))) (-13 (-558) (-147)) (-1240 |#1|)) (T -1234)) -((-3520 (*1 *2 *3) (-12 (-4 *4 (-13 (-558) (-147))) (-5 *2 (-644 *3)) (-5 *1 (-1234 *4 *3)) (-4 *3 (-1240 *4)))) (-2127 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-558) (-147))) (-5 *2 (-2 (|:| -4380 *3) (|:| -4392 *3))) (-5 *1 (-1234 *4 *3)) (-4 *3 (-1240 *4)))) (-4020 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-558) (-147))) (-5 *1 (-1234 *3 *2)) (-4 *2 (-1240 *3)))) (-3255 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-771)) (-4 *4 (-13 (-558) (-147))) (-5 *1 (-1234 *4 *2)) (-4 *2 (-1240 *4)))) (-1398 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-771)) (-4 *4 (-13 (-558) (-147))) (-5 *1 (-1234 *4 *2)) (-4 *2 (-1240 *4))))) -(-10 -7 (-15 -1398 ((-3 |#2| "failed") |#2| (-771))) (-15 -3255 ((-3 |#2| "failed") |#2| (-771) |#1|)) (-15 -4020 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2127 ((-3 (-2 (|:| -4380 |#2|) (|:| -4392 |#2|)) "failed") |#2|)) (-15 -3520 ((-644 |#2|) |#2|))) -((-2595 (((-3 (-2 (|:| -2275 |#2|) (|:| -2513 |#2|)) "failed") |#2| |#2|) 30))) -(((-1235 |#1| |#2|) (-10 -7 (-15 -2595 ((-3 (-2 (|:| -2275 |#2|) (|:| -2513 |#2|)) "failed") |#2| |#2|))) (-558) (-1240 |#1|)) (T -1235)) -((-2595 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-558)) (-5 *2 (-2 (|:| -2275 *3) (|:| -2513 *3))) (-5 *1 (-1235 *4 *3)) (-4 *3 (-1240 *4))))) -(-10 -7 (-15 -2595 ((-3 (-2 (|:| -2275 |#2|) (|:| -2513 |#2|)) "failed") |#2| |#2|))) -((-2787 ((|#2| |#2| |#2|) 22)) (-3370 ((|#2| |#2| |#2|) 36)) (-2902 ((|#2| |#2| |#2| (-771) (-771)) 44))) -(((-1236 |#1| |#2|) (-10 -7 (-15 -2787 (|#2| |#2| |#2|)) (-15 -3370 (|#2| |#2| |#2|)) (-15 -2902 (|#2| |#2| |#2| (-771) (-771)))) (-1049) (-1240 |#1|)) (T -1236)) -((-2902 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-771)) (-4 *4 (-1049)) (-5 *1 (-1236 *4 *2)) (-4 *2 (-1240 *4)))) (-3370 (*1 *2 *2 *2) (-12 (-4 *3 (-1049)) (-5 *1 (-1236 *3 *2)) (-4 *2 (-1240 *3)))) (-2787 (*1 *2 *2 *2) (-12 (-4 *3 (-1049)) (-5 *1 (-1236 *3 *2)) (-4 *2 (-1240 *3))))) -(-10 -7 (-15 -2787 (|#2| |#2| |#2|)) (-15 -3370 (|#2| |#2| |#2|)) (-15 -2902 (|#2| |#2| |#2| (-771) (-771)))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-2293 (((-1264 |#2|) $ (-771)) NIL)) (-3863 (((-644 (-1081)) $) NIL)) (-3841 (($ (-1171 |#2|)) NIL)) (-3683 (((-1171 $) $ (-1081)) NIL) (((-1171 |#2|) $) NIL)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#2| (-558)))) (-3991 (($ $) NIL (|has| |#2| (-558)))) (-2388 (((-112) $) NIL (|has| |#2| (-558)))) (-3367 (((-771) $) NIL) (((-771) $ (-644 (-1081))) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $ $) NIL (|has| |#2| (-558)))) (-1477 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-1550 (($ $) NIL (|has| |#2| (-454)))) (-3184 (((-420 $) $) NIL (|has| |#2| (-454)))) (-3717 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-2837 (((-112) $ $) NIL (|has| |#2| (-365)))) (-2838 (($ $ (-771)) NIL)) (-3827 (($ $ (-771)) NIL)) (-1454 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-454)))) (-3012 (($) NIL T CONST)) (-4307 (((-3 |#2| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#2| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#2| (-1038 (-566)))) (((-3 (-1081) "failed") $) NIL)) (-4205 ((|#2| $) NIL) (((-409 (-566)) $) NIL (|has| |#2| (-1038 (-409 (-566))))) (((-566) $) NIL (|has| |#2| (-1038 (-566)))) (((-1081) $) NIL)) (-2738 (($ $ $ (-1081)) NIL (|has| |#2| (-172))) ((|#2| $ $) NIL (|has| |#2| (-172)))) (-2946 (($ $ $) NIL (|has| |#2| (-365)))) (-1786 (($ $) NIL)) (-3577 (((-689 (-566)) (-689 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -4227 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 $) (-1264 $)) NIL) (((-689 |#2|) (-689 $)) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-2957 (($ $ $) NIL (|has| |#2| (-365)))) (-3672 (($ $ $) NIL)) (-1324 (($ $ $) NIL (|has| |#2| (-558)))) (-1960 (((-2 (|:| -1364 |#2|) (|:| -2275 $) (|:| -2513 $)) $ $) NIL (|has| |#2| (-558)))) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL (|has| |#2| (-365)))) (-4075 (($ $) NIL (|has| |#2| (-454))) (($ $ (-1081)) NIL (|has| |#2| (-454)))) (-1774 (((-644 $) $) NIL)) (-3268 (((-112) $) NIL (|has| |#2| (-909)))) (-3635 (($ $ |#2| (-771) $) NIL)) (-2062 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| (-1081) (-886 (-381))) (|has| |#2| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| (-1081) (-886 (-566))) (|has| |#2| (-886 (-566)))))) (-3254 (((-771) $ $) NIL (|has| |#2| (-558)))) (-3934 (((-112) $) NIL)) (-2614 (((-771) $) NIL)) (-4363 (((-3 $ "failed") $) NIL (|has| |#2| (-1150)))) (-3851 (($ (-1171 |#2|) (-1081)) NIL) (($ (-1171 $) (-1081)) NIL)) (-2955 (($ $ (-771)) NIL)) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#2| (-365)))) (-2288 (((-644 $) $) NIL)) (-3264 (((-112) $) NIL)) (-3840 (($ |#2| (-771)) 18) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL)) (-2044 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $ (-1081)) NIL) (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL)) (-3760 (((-771) $) NIL) (((-771) $ (-1081)) NIL) (((-644 (-771)) $ (-644 (-1081))) NIL)) (-4301 (($ (-1 (-771) (-771)) $) NIL)) (-1301 (($ (-1 |#2| |#2|) $) NIL)) (-1988 (((-1171 |#2|) $) NIL)) (-3169 (((-3 (-1081) "failed") $) NIL)) (-1749 (($ $) NIL)) (-1763 ((|#2| $) NIL)) (-2167 (($ (-644 $)) NIL (|has| |#2| (-454))) (($ $ $) NIL (|has| |#2| (-454)))) (-4117 (((-1157) $) NIL)) (-2764 (((-2 (|:| -2275 $) (|:| -2513 $)) $ (-771)) NIL)) (-3714 (((-3 (-644 $) "failed") $) NIL)) (-2353 (((-3 (-644 $) "failed") $) NIL)) (-1518 (((-3 (-2 (|:| |var| (-1081)) (|:| -2852 (-771))) "failed") $) NIL)) (-1941 (($ $) NIL (|has| |#2| (-38 (-409 (-566)))))) (-1761 (($) NIL (|has| |#2| (-1150)) CONST)) (-4035 (((-1119) $) NIL)) (-1723 (((-112) $) NIL)) (-1736 ((|#2| $) NIL)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#2| (-454)))) (-2214 (($ (-644 $)) NIL (|has| |#2| (-454))) (($ $ $) NIL (|has| |#2| (-454)))) (-2872 (($ $ (-771) |#2| $) NIL)) (-4303 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-3240 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-3719 (((-420 $) $) NIL (|has| |#2| (-909)))) (-3148 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#2| (-365)))) (-2994 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-558))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-558)))) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#2| (-365)))) (-2055 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-1081) |#2|) NIL) (($ $ (-644 (-1081)) (-644 |#2|)) NIL) (($ $ (-1081) $) NIL) (($ $ (-644 (-1081)) (-644 $)) NIL)) (-3039 (((-771) $) NIL (|has| |#2| (-365)))) (-4390 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-409 $) (-409 $) (-409 $)) NIL (|has| |#2| (-558))) ((|#2| (-409 $) |#2|) NIL (|has| |#2| (-365))) (((-409 $) $ (-409 $)) NIL (|has| |#2| (-558)))) (-1313 (((-3 $ "failed") $ (-771)) NIL)) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL (|has| |#2| (-365)))) (-3652 (($ $ (-1081)) NIL (|has| |#2| (-172))) ((|#2| $) NIL (|has| |#2| (-172)))) (-3561 (($ $ (-1081)) NIL) (($ $ (-644 (-1081))) NIL) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL) (($ $ (-771)) NIL) (($ $) NIL) (($ $ (-1175)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-3636 (((-771) $) NIL) (((-771) $ (-1081)) NIL) (((-644 (-771)) $ (-644 (-1081))) NIL)) (-1348 (((-892 (-381)) $) NIL (-12 (|has| (-1081) (-614 (-892 (-381)))) (|has| |#2| (-614 (-892 (-381)))))) (((-892 (-566)) $) NIL (-12 (|has| (-1081) (-614 (-892 (-566)))) (|has| |#2| (-614 (-892 (-566)))))) (((-538) $) NIL (-12 (|has| (-1081) (-614 (-538))) (|has| |#2| (-614 (-538)))))) (-2483 ((|#2| $) NIL (|has| |#2| (-454))) (($ $ (-1081)) NIL (|has| |#2| (-454)))) (-1656 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-909))))) (-4150 (((-3 $ "failed") $ $) NIL (|has| |#2| (-558))) (((-3 (-409 $) "failed") (-409 $) $) NIL (|has| |#2| (-558)))) (-3783 (((-862) $) 13) (($ (-566)) NIL) (($ |#2|) NIL) (($ (-1081)) NIL) (($ (-1260 |#1|)) 20) (($ (-409 (-566))) NIL (-2809 (|has| |#2| (-38 (-409 (-566)))) (|has| |#2| (-1038 (-409 (-566)))))) (($ $) NIL (|has| |#2| (-558)))) (-4170 (((-644 |#2|) $) NIL)) (-2649 ((|#2| $ (-771)) NIL) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL)) (-3144 (((-3 $ "failed") $) NIL (-2809 (-12 (|has| $ (-145)) (|has| |#2| (-909))) (|has| |#2| (-145))))) (-2107 (((-771)) NIL T CONST)) (-3362 (($ $ $ (-771)) NIL (|has| |#2| (-172)))) (-3117 (((-112) $ $) NIL)) (-2695 (((-112) $ $) NIL (|has| |#2| (-558)))) (-2479 (($) NIL T CONST)) (-4334 (($) 14 T CONST)) (-2875 (($ $ (-1081)) NIL) (($ $ (-644 (-1081))) NIL) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL) (($ $ (-771)) NIL) (($ $) NIL) (($ $ (-1175)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2947 (((-112) $ $) NIL)) (-3065 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL (|has| |#2| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#2| (-38 (-409 (-566))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-1237 |#1| |#2|) (-13 (-1240 |#2|) (-616 (-1260 |#1|)) (-10 -8 (-15 -2872 ($ $ (-771) |#2| $)))) (-1175) (-1049)) (T -1237)) -((-2872 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-771)) (-5 *1 (-1237 *4 *3)) (-14 *4 (-1175)) (-4 *3 (-1049))))) -(-13 (-1240 |#2|) (-616 (-1260 |#1|)) (-10 -8 (-15 -2872 ($ $ (-771) |#2| $)))) -((-1301 ((|#4| (-1 |#3| |#1|) |#2|) 22))) -(((-1238 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1301 (|#4| (-1 |#3| |#1|) |#2|))) (-1049) (-1240 |#1|) (-1049) (-1240 |#3|)) (T -1238)) -((-1301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1049)) (-4 *6 (-1049)) (-4 *2 (-1240 *6)) (-5 *1 (-1238 *5 *4 *6 *2)) (-4 *4 (-1240 *5))))) -(-10 -7 (-15 -1301 (|#4| (-1 |#3| |#1|) |#2|))) -((-2293 (((-1264 |#2|) $ (-771)) 129)) (-3863 (((-644 (-1081)) $) 16)) (-3841 (($ (-1171 |#2|)) 80)) (-3367 (((-771) $) NIL) (((-771) $ (-644 (-1081))) 21)) (-1477 (((-420 (-1171 $)) (-1171 $)) 204)) (-1550 (($ $) 194)) (-3184 (((-420 $) $) 192)) (-3717 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) 95)) (-2838 (($ $ (-771)) 84)) (-3827 (($ $ (-771)) 86)) (-1454 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 145)) (-4307 (((-3 |#2| "failed") $) 132) (((-3 (-409 (-566)) "failed") $) NIL) (((-3 (-566) "failed") $) NIL) (((-3 (-1081) "failed") $) NIL)) (-4205 ((|#2| $) 130) (((-409 (-566)) $) NIL) (((-566) $) NIL) (((-1081) $) NIL)) (-1324 (($ $ $) 170)) (-1960 (((-2 (|:| -1364 |#2|) (|:| -2275 $) (|:| -2513 $)) $ $) 172)) (-3254 (((-771) $ $) 189)) (-4363 (((-3 $ "failed") $) 138)) (-3840 (($ |#2| (-771)) NIL) (($ $ (-1081) (-771)) 59) (($ $ (-644 (-1081)) (-644 (-771))) NIL)) (-3760 (((-771) $) NIL) (((-771) $ (-1081)) 54) (((-644 (-771)) $ (-644 (-1081))) 55)) (-1988 (((-1171 |#2|) $) 72)) (-3169 (((-3 (-1081) "failed") $) 52)) (-2764 (((-2 (|:| -2275 $) (|:| -2513 $)) $ (-771)) 83)) (-1941 (($ $) 219)) (-1761 (($) 134)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) 201)) (-4303 (((-420 (-1171 $)) (-1171 $)) 101)) (-3240 (((-420 (-1171 $)) (-1171 $)) 99)) (-3719 (((-420 $) $) 120)) (-2055 (($ $ (-644 (-295 $))) 51) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-1081) |#2|) 39) (($ $ (-644 (-1081)) (-644 |#2|)) 36) (($ $ (-1081) $) 32) (($ $ (-644 (-1081)) (-644 $)) 30)) (-3039 (((-771) $) 207)) (-4390 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-409 $) (-409 $) (-409 $)) 164) ((|#2| (-409 $) |#2|) 206) (((-409 $) $ (-409 $)) 188)) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) 212)) (-3561 (($ $ (-1081)) 157) (($ $ (-644 (-1081))) NIL) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL) (($ $ (-771)) NIL) (($ $) 155) (($ $ (-1175)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL) (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-1 |#2| |#2|)) 154) (($ $ (-1 |#2| |#2|) $) 149)) (-3636 (((-771) $) NIL) (((-771) $ (-1081)) 17) (((-644 (-771)) $ (-644 (-1081))) 23)) (-2483 ((|#2| $) NIL) (($ $ (-1081)) 140)) (-4150 (((-3 $ "failed") $ $) 180) (((-3 (-409 $) "failed") (-409 $) $) 176)) (-3783 (((-862) $) NIL) (($ (-566)) NIL) (($ |#2|) NIL) (($ (-1081)) 64) (($ (-409 (-566))) NIL) (($ $) NIL))) -(((-1239 |#1| |#2|) (-10 -8 (-15 -3783 (|#1| |#1|)) (-15 -2197 ((-1171 |#1|) (-1171 |#1|) (-1171 |#1|))) (-15 -3184 ((-420 |#1|) |#1|)) (-15 -1550 (|#1| |#1|)) (-15 -3783 (|#1| (-409 (-566)))) (-15 -1761 (|#1|)) (-15 -4363 ((-3 |#1| "failed") |#1|)) (-15 -4390 ((-409 |#1|) |#1| (-409 |#1|))) (-15 -3039 ((-771) |#1|)) (-15 -1685 ((-2 (|:| -2275 |#1|) (|:| -2513 |#1|)) |#1| |#1|)) (-15 -1941 (|#1| |#1|)) (-15 -4390 (|#2| (-409 |#1|) |#2|)) (-15 -1454 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1960 ((-2 (|:| -1364 |#2|) (|:| -2275 |#1|) (|:| -2513 |#1|)) |#1| |#1|)) (-15 -1324 (|#1| |#1| |#1|)) (-15 -4150 ((-3 (-409 |#1|) "failed") (-409 |#1|) |#1|)) (-15 -4150 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3254 ((-771) |#1| |#1|)) (-15 -4390 ((-409 |#1|) (-409 |#1|) (-409 |#1|))) (-15 -3561 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3827 (|#1| |#1| (-771))) (-15 -2838 (|#1| |#1| (-771))) (-15 -2764 ((-2 (|:| -2275 |#1|) (|:| -2513 |#1|)) |#1| (-771))) (-15 -3841 (|#1| (-1171 |#2|))) (-15 -1988 ((-1171 |#2|) |#1|)) (-15 -2293 ((-1264 |#2|) |#1| (-771))) (-15 -3561 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3561 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -3561 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -3561 (|#1| |#1| (-1175) (-771))) (-15 -3561 (|#1| |#1| (-644 (-1175)))) (-15 -3561 (|#1| |#1| (-1175))) (-15 -3561 (|#1| |#1|)) (-15 -3561 (|#1| |#1| (-771))) (-15 -4390 (|#1| |#1| |#1|)) (-15 -4390 (|#2| |#1| |#2|)) (-15 -3719 ((-420 |#1|) |#1|)) (-15 -1477 ((-420 (-1171 |#1|)) (-1171 |#1|))) (-15 -3240 ((-420 (-1171 |#1|)) (-1171 |#1|))) (-15 -4303 ((-420 (-1171 |#1|)) (-1171 |#1|))) (-15 -3717 ((-3 (-644 (-1171 |#1|)) "failed") (-644 (-1171 |#1|)) (-1171 |#1|))) (-15 -2483 (|#1| |#1| (-1081))) (-15 -3863 ((-644 (-1081)) |#1|)) (-15 -3367 ((-771) |#1| (-644 (-1081)))) (-15 -3367 ((-771) |#1|)) (-15 -3840 (|#1| |#1| (-644 (-1081)) (-644 (-771)))) (-15 -3840 (|#1| |#1| (-1081) (-771))) (-15 -3760 ((-644 (-771)) |#1| (-644 (-1081)))) (-15 -3760 ((-771) |#1| (-1081))) (-15 -3169 ((-3 (-1081) "failed") |#1|)) (-15 -3636 ((-644 (-771)) |#1| (-644 (-1081)))) (-15 -3636 ((-771) |#1| (-1081))) (-15 -3783 (|#1| (-1081))) (-15 -4307 ((-3 (-1081) "failed") |#1|)) (-15 -4205 ((-1081) |#1|)) (-15 -2055 (|#1| |#1| (-644 (-1081)) (-644 |#1|))) (-15 -2055 (|#1| |#1| (-1081) |#1|)) (-15 -2055 (|#1| |#1| (-644 (-1081)) (-644 |#2|))) (-15 -2055 (|#1| |#1| (-1081) |#2|)) (-15 -2055 (|#1| |#1| (-644 |#1|) (-644 |#1|))) (-15 -2055 (|#1| |#1| |#1| |#1|)) (-15 -2055 (|#1| |#1| (-295 |#1|))) (-15 -2055 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -3636 ((-771) |#1|)) (-15 -3840 (|#1| |#2| (-771))) (-15 -4307 ((-3 (-566) "failed") |#1|)) (-15 -4205 ((-566) |#1|)) (-15 -4307 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -4205 ((-409 (-566)) |#1|)) (-15 -4205 (|#2| |#1|)) (-15 -4307 ((-3 |#2| "failed") |#1|)) (-15 -3783 (|#1| |#2|)) (-15 -3760 ((-771) |#1|)) (-15 -2483 (|#2| |#1|)) (-15 -3561 (|#1| |#1| (-644 (-1081)) (-644 (-771)))) (-15 -3561 (|#1| |#1| (-1081) (-771))) (-15 -3561 (|#1| |#1| (-644 (-1081)))) (-15 -3561 (|#1| |#1| (-1081))) (-15 -3783 (|#1| (-566))) (-15 -3783 ((-862) |#1|))) (-1240 |#2|) (-1049)) (T -1239)) -NIL -(-10 -8 (-15 -3783 (|#1| |#1|)) (-15 -2197 ((-1171 |#1|) (-1171 |#1|) (-1171 |#1|))) (-15 -3184 ((-420 |#1|) |#1|)) (-15 -1550 (|#1| |#1|)) (-15 -3783 (|#1| (-409 (-566)))) (-15 -1761 (|#1|)) (-15 -4363 ((-3 |#1| "failed") |#1|)) (-15 -4390 ((-409 |#1|) |#1| (-409 |#1|))) (-15 -3039 ((-771) |#1|)) (-15 -1685 ((-2 (|:| -2275 |#1|) (|:| -2513 |#1|)) |#1| |#1|)) (-15 -1941 (|#1| |#1|)) (-15 -4390 (|#2| (-409 |#1|) |#2|)) (-15 -1454 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1960 ((-2 (|:| -1364 |#2|) (|:| -2275 |#1|) (|:| -2513 |#1|)) |#1| |#1|)) (-15 -1324 (|#1| |#1| |#1|)) (-15 -4150 ((-3 (-409 |#1|) "failed") (-409 |#1|) |#1|)) (-15 -4150 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3254 ((-771) |#1| |#1|)) (-15 -4390 ((-409 |#1|) (-409 |#1|) (-409 |#1|))) (-15 -3561 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3827 (|#1| |#1| (-771))) (-15 -2838 (|#1| |#1| (-771))) (-15 -2764 ((-2 (|:| -2275 |#1|) (|:| -2513 |#1|)) |#1| (-771))) (-15 -3841 (|#1| (-1171 |#2|))) (-15 -1988 ((-1171 |#2|) |#1|)) (-15 -2293 ((-1264 |#2|) |#1| (-771))) (-15 -3561 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3561 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -3561 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -3561 (|#1| |#1| (-1175) (-771))) (-15 -3561 (|#1| |#1| (-644 (-1175)))) (-15 -3561 (|#1| |#1| (-1175))) (-15 -3561 (|#1| |#1|)) (-15 -3561 (|#1| |#1| (-771))) (-15 -4390 (|#1| |#1| |#1|)) (-15 -4390 (|#2| |#1| |#2|)) (-15 -3719 ((-420 |#1|) |#1|)) (-15 -1477 ((-420 (-1171 |#1|)) (-1171 |#1|))) (-15 -3240 ((-420 (-1171 |#1|)) (-1171 |#1|))) (-15 -4303 ((-420 (-1171 |#1|)) (-1171 |#1|))) (-15 -3717 ((-3 (-644 (-1171 |#1|)) "failed") (-644 (-1171 |#1|)) (-1171 |#1|))) (-15 -2483 (|#1| |#1| (-1081))) (-15 -3863 ((-644 (-1081)) |#1|)) (-15 -3367 ((-771) |#1| (-644 (-1081)))) (-15 -3367 ((-771) |#1|)) (-15 -3840 (|#1| |#1| (-644 (-1081)) (-644 (-771)))) (-15 -3840 (|#1| |#1| (-1081) (-771))) (-15 -3760 ((-644 (-771)) |#1| (-644 (-1081)))) (-15 -3760 ((-771) |#1| (-1081))) (-15 -3169 ((-3 (-1081) "failed") |#1|)) (-15 -3636 ((-644 (-771)) |#1| (-644 (-1081)))) (-15 -3636 ((-771) |#1| (-1081))) (-15 -3783 (|#1| (-1081))) (-15 -4307 ((-3 (-1081) "failed") |#1|)) (-15 -4205 ((-1081) |#1|)) (-15 -2055 (|#1| |#1| (-644 (-1081)) (-644 |#1|))) (-15 -2055 (|#1| |#1| (-1081) |#1|)) (-15 -2055 (|#1| |#1| (-644 (-1081)) (-644 |#2|))) (-15 -2055 (|#1| |#1| (-1081) |#2|)) (-15 -2055 (|#1| |#1| (-644 |#1|) (-644 |#1|))) (-15 -2055 (|#1| |#1| |#1| |#1|)) (-15 -2055 (|#1| |#1| (-295 |#1|))) (-15 -2055 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -3636 ((-771) |#1|)) (-15 -3840 (|#1| |#2| (-771))) (-15 -4307 ((-3 (-566) "failed") |#1|)) (-15 -4205 ((-566) |#1|)) (-15 -4307 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -4205 ((-409 (-566)) |#1|)) (-15 -4205 (|#2| |#1|)) (-15 -4307 ((-3 |#2| "failed") |#1|)) (-15 -3783 (|#1| |#2|)) (-15 -3760 ((-771) |#1|)) (-15 -2483 (|#2| |#1|)) (-15 -3561 (|#1| |#1| (-644 (-1081)) (-644 (-771)))) (-15 -3561 (|#1| |#1| (-1081) (-771))) (-15 -3561 (|#1| |#1| (-644 (-1081)))) (-15 -3561 (|#1| |#1| (-1081))) (-15 -3783 (|#1| (-566))) (-15 -3783 ((-862) |#1|))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-2293 (((-1264 |#1|) $ (-771)) 240)) (-3863 (((-644 (-1081)) $) 112)) (-3841 (($ (-1171 |#1|)) 238)) (-3683 (((-1171 $) $ (-1081)) 127) (((-1171 |#1|) $) 126)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) 89 (|has| |#1| (-558)))) (-3991 (($ $) 90 (|has| |#1| (-558)))) (-2388 (((-112) $) 92 (|has| |#1| (-558)))) (-3367 (((-771) $) 114) (((-771) $ (-644 (-1081))) 113)) (-4175 (((-3 $ "failed") $ $) 20)) (-4206 (($ $ $) 225 (|has| |#1| (-558)))) (-1477 (((-420 (-1171 $)) (-1171 $)) 102 (|has| |#1| (-909)))) (-1550 (($ $) 100 (|has| |#1| (-454)))) (-3184 (((-420 $) $) 99 (|has| |#1| (-454)))) (-3717 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) 105 (|has| |#1| (-909)))) (-2837 (((-112) $ $) 210 (|has| |#1| (-365)))) (-2838 (($ $ (-771)) 233)) (-3827 (($ $ (-771)) 232)) (-1454 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 220 (|has| |#1| (-454)))) (-3012 (($) 18 T CONST)) (-4307 (((-3 |#1| "failed") $) 166) (((-3 (-409 (-566)) "failed") $) 163 (|has| |#1| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) 161 (|has| |#1| (-1038 (-566)))) (((-3 (-1081) "failed") $) 138)) (-4205 ((|#1| $) 165) (((-409 (-566)) $) 164 (|has| |#1| (-1038 (-409 (-566))))) (((-566) $) 162 (|has| |#1| (-1038 (-566)))) (((-1081) $) 139)) (-2738 (($ $ $ (-1081)) 110 (|has| |#1| (-172))) ((|#1| $ $) 228 (|has| |#1| (-172)))) (-2946 (($ $ $) 214 (|has| |#1| (-365)))) (-1786 (($ $) 156)) (-3577 (((-689 (-566)) (-689 $)) 136 (|has| |#1| (-639 (-566)))) (((-2 (|:| -4227 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) 135 (|has| |#1| (-639 (-566)))) (((-2 (|:| -4227 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) 134) (((-689 |#1|) (-689 $)) 133)) (-1878 (((-3 $ "failed") $) 37)) (-2957 (($ $ $) 213 (|has| |#1| (-365)))) (-3672 (($ $ $) 231)) (-1324 (($ $ $) 222 (|has| |#1| (-558)))) (-1960 (((-2 (|:| -1364 |#1|) (|:| -2275 $) (|:| -2513 $)) $ $) 221 (|has| |#1| (-558)))) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) 208 (|has| |#1| (-365)))) (-4075 (($ $) 178 (|has| |#1| (-454))) (($ $ (-1081)) 107 (|has| |#1| (-454)))) (-1774 (((-644 $) $) 111)) (-3268 (((-112) $) 98 (|has| |#1| (-909)))) (-3635 (($ $ |#1| (-771) $) 174)) (-2062 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 86 (-12 (|has| (-1081) (-886 (-381))) (|has| |#1| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 85 (-12 (|has| (-1081) (-886 (-566))) (|has| |#1| (-886 (-566)))))) (-3254 (((-771) $ $) 226 (|has| |#1| (-558)))) (-3934 (((-112) $) 35)) (-2614 (((-771) $) 171)) (-4363 (((-3 $ "failed") $) 206 (|has| |#1| (-1150)))) (-3851 (($ (-1171 |#1|) (-1081)) 119) (($ (-1171 $) (-1081)) 118)) (-2955 (($ $ (-771)) 237)) (-3775 (((-3 (-644 $) "failed") (-644 $) $) 217 (|has| |#1| (-365)))) (-2288 (((-644 $) $) 128)) (-3264 (((-112) $) 154)) (-3840 (($ |#1| (-771)) 155) (($ $ (-1081) (-771)) 121) (($ $ (-644 (-1081)) (-644 (-771))) 120)) (-2044 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $ (-1081)) 122) (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) 235)) (-3760 (((-771) $) 172) (((-771) $ (-1081)) 124) (((-644 (-771)) $ (-644 (-1081))) 123)) (-4301 (($ (-1 (-771) (-771)) $) 173)) (-1301 (($ (-1 |#1| |#1|) $) 153)) (-1988 (((-1171 |#1|) $) 239)) (-3169 (((-3 (-1081) "failed") $) 125)) (-1749 (($ $) 151)) (-1763 ((|#1| $) 150)) (-2167 (($ (-644 $)) 96 (|has| |#1| (-454))) (($ $ $) 95 (|has| |#1| (-454)))) (-4117 (((-1157) $) 10)) (-2764 (((-2 (|:| -2275 $) (|:| -2513 $)) $ (-771)) 234)) (-3714 (((-3 (-644 $) "failed") $) 116)) (-2353 (((-3 (-644 $) "failed") $) 117)) (-1518 (((-3 (-2 (|:| |var| (-1081)) (|:| -2852 (-771))) "failed") $) 115)) (-1941 (($ $) 218 (|has| |#1| (-38 (-409 (-566)))))) (-1761 (($) 205 (|has| |#1| (-1150)) CONST)) (-4035 (((-1119) $) 11)) (-1723 (((-112) $) 168)) (-1736 ((|#1| $) 169)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) 97 (|has| |#1| (-454)))) (-2214 (($ (-644 $)) 94 (|has| |#1| (-454))) (($ $ $) 93 (|has| |#1| (-454)))) (-4303 (((-420 (-1171 $)) (-1171 $)) 104 (|has| |#1| (-909)))) (-3240 (((-420 (-1171 $)) (-1171 $)) 103 (|has| |#1| (-909)))) (-3719 (((-420 $) $) 101 (|has| |#1| (-909)))) (-3148 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 216 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 215 (|has| |#1| (-365)))) (-2994 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-558))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-558)))) (-3161 (((-3 (-644 $) "failed") (-644 $) $) 209 (|has| |#1| (-365)))) (-2055 (($ $ (-644 (-295 $))) 147) (($ $ (-295 $)) 146) (($ $ $ $) 145) (($ $ (-644 $) (-644 $)) 144) (($ $ (-1081) |#1|) 143) (($ $ (-644 (-1081)) (-644 |#1|)) 142) (($ $ (-1081) $) 141) (($ $ (-644 (-1081)) (-644 $)) 140)) (-3039 (((-771) $) 211 (|has| |#1| (-365)))) (-4390 ((|#1| $ |#1|) 258) (($ $ $) 257) (((-409 $) (-409 $) (-409 $)) 227 (|has| |#1| (-558))) ((|#1| (-409 $) |#1|) 219 (|has| |#1| (-365))) (((-409 $) $ (-409 $)) 207 (|has| |#1| (-558)))) (-1313 (((-3 $ "failed") $ (-771)) 236)) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) 212 (|has| |#1| (-365)))) (-3652 (($ $ (-1081)) 109 (|has| |#1| (-172))) ((|#1| $) 229 (|has| |#1| (-172)))) (-3561 (($ $ (-1081)) 46) (($ $ (-644 (-1081))) 45) (($ $ (-1081) (-771)) 44) (($ $ (-644 (-1081)) (-644 (-771))) 43) (($ $ (-771)) 255) (($ $) 253) (($ $ (-1175)) 252 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) 251 (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) 250 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) 249 (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) 242) (($ $ (-1 |#1| |#1|)) 241) (($ $ (-1 |#1| |#1|) $) 230)) (-3636 (((-771) $) 152) (((-771) $ (-1081)) 132) (((-644 (-771)) $ (-644 (-1081))) 131)) (-1348 (((-892 (-381)) $) 84 (-12 (|has| (-1081) (-614 (-892 (-381)))) (|has| |#1| (-614 (-892 (-381)))))) (((-892 (-566)) $) 83 (-12 (|has| (-1081) (-614 (-892 (-566)))) (|has| |#1| (-614 (-892 (-566)))))) (((-538) $) 82 (-12 (|has| (-1081) (-614 (-538))) (|has| |#1| (-614 (-538)))))) (-2483 ((|#1| $) 177 (|has| |#1| (-454))) (($ $ (-1081)) 108 (|has| |#1| (-454)))) (-1656 (((-3 (-1264 $) "failed") (-689 $)) 106 (-2432 (|has| $ (-145)) (|has| |#1| (-909))))) (-4150 (((-3 $ "failed") $ $) 224 (|has| |#1| (-558))) (((-3 (-409 $) "failed") (-409 $) $) 223 (|has| |#1| (-558)))) (-3783 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 167) (($ (-1081)) 137) (($ (-409 (-566))) 80 (-2809 (|has| |#1| (-1038 (-409 (-566)))) (|has| |#1| (-38 (-409 (-566)))))) (($ $) 87 (|has| |#1| (-558)))) (-4170 (((-644 |#1|) $) 170)) (-2649 ((|#1| $ (-771)) 157) (($ $ (-1081) (-771)) 130) (($ $ (-644 (-1081)) (-644 (-771))) 129)) (-3144 (((-3 $ "failed") $) 81 (-2809 (-2432 (|has| $ (-145)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-2107 (((-771)) 32 T CONST)) (-3362 (($ $ $ (-771)) 175 (|has| |#1| (-172)))) (-3117 (((-112) $ $) 9)) (-2695 (((-112) $ $) 91 (|has| |#1| (-558)))) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-2875 (($ $ (-1081)) 42) (($ $ (-644 (-1081))) 41) (($ $ (-1081) (-771)) 40) (($ $ (-644 (-1081)) (-644 (-771))) 39) (($ $ (-771)) 256) (($ $) 254) (($ $ (-1175)) 248 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) 247 (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) 246 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) 245 (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) 244) (($ $ (-1 |#1| |#1|)) 243)) (-2947 (((-112) $ $) 6)) (-3065 (($ $ |#1|) 158 (|has| |#1| (-365)))) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 160 (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) 159 (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) 149) (($ $ |#1|) 148))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-1873 (((-1256 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-308)) (|has| |#1| (-365))))) (-1771 (((-644 (-1081)) $) NIL)) (-4347 (((-1175) $) 10)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (-2768 (-12 (|has| (-1256 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1256 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))) (|has| |#1| (-558))))) (-2161 (($ $) NIL (-2768 (-12 (|has| (-1256 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1256 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))) (|has| |#1| (-558))))) (-2345 (((-112) $) NIL (-2768 (-12 (|has| (-1256 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1256 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))) (|has| |#1| (-558))))) (-2331 (($ $ (-566)) NIL) (($ $ (-566) (-566)) NIL)) (-4152 (((-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))) $) NIL)) (-3271 (((-1256 |#1| |#2| |#3|) $) NIL)) (-3560 (((-3 (-1256 |#1| |#2| |#3|) "failed") $) NIL)) (-1827 (((-1256 |#1| |#2| |#3|) $) NIL)) (-3963 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3630 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3967 (((-3 $ "failed") $ $) NIL)) (-2292 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))))) (-1378 (($ $) NIL (|has| |#1| (-365)))) (-1364 (((-420 $) $) NIL (|has| |#1| (-365)))) (-1635 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4066 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))))) (-2085 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3941 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3602 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2743 (((-566) $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))))) (-1427 (($ (-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|)))) NIL)) (-3986 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3656 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2463 (($) NIL T CONST)) (-2229 (((-3 (-1256 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1175) "failed") $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-1038 (-1175))) (|has| |#1| (-365)))) (((-3 (-409 (-566)) "failed") $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-1038 (-566))) (|has| |#1| (-365)))) (((-3 (-566) "failed") $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-1038 (-566))) (|has| |#1| (-365))))) (-4158 (((-1256 |#1| |#2| |#3|) $) NIL) (((-1175) $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-1038 (-1175))) (|has| |#1| (-365)))) (((-409 (-566)) $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-1038 (-566))) (|has| |#1| (-365)))) (((-566) $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-1038 (-566))) (|has| |#1| (-365))))) (-1556 (($ $) NIL) (($ (-566) $) NIL)) (-2933 (($ $ $) NIL (|has| |#1| (-365)))) (-2814 (($ $) NIL)) (-4089 (((-689 (-1256 |#1| |#2| |#3|)) (-689 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -3361 (-689 (-1256 |#1| |#2| |#3|))) (|:| |vec| (-1264 (-1256 |#1| |#2| |#3|)))) (-689 $) (-1264 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-639 (-566))) (|has| |#1| (-365)))) (((-689 (-566)) (-689 $)) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-639 (-566))) (|has| |#1| (-365))))) (-3245 (((-3 $ "failed") $) NIL)) (-3193 (((-409 (-952 |#1|)) $ (-566)) NIL (|has| |#1| (-558))) (((-409 (-952 |#1|)) $ (-566) (-566)) NIL (|has| |#1| (-558)))) (-2715 (($) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-547)) (|has| |#1| (-365))))) (-2945 (($ $ $) NIL (|has| |#1| (-365)))) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL (|has| |#1| (-365)))) (-1615 (((-112) $) NIL (|has| |#1| (-365)))) (-2528 (((-112) $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))))) (-3772 (((-112) $) NIL)) (-2281 (($) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2926 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-886 (-381))) (|has| |#1| (-365)))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-886 (-566))) (|has| |#1| (-365))))) (-2679 (((-566) $) NIL) (((-566) $ (-566)) NIL)) (-2389 (((-112) $) NIL)) (-3406 (($ $) NIL (|has| |#1| (-365)))) (-2248 (((-1256 |#1| |#2| |#3|) $) NIL (|has| |#1| (-365)))) (-1575 (($ $ (-566)) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2621 (((-3 $ "failed") $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-1150)) (|has| |#1| (-365))))) (-3233 (((-112) $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))))) (-3394 (($ $ (-921)) NIL)) (-3657 (($ (-1 |#1| (-566)) $) NIL)) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-2497 (((-112) $) NIL)) (-1746 (($ |#1| (-566)) 18) (($ $ (-1081) (-566)) NIL) (($ $ (-644 (-1081)) (-644 (-566))) NIL)) (-1478 (($ $ $) NIL (-2768 (-12 (|has| (-1256 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1256 |#1| |#2| |#3|) (-850)) (|has| |#1| (-365)))))) (-2599 (($ $ $) NIL (-2768 (-12 (|has| (-1256 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1256 |#1| |#2| |#3|) (-850)) (|has| |#1| (-365)))))) (-2319 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1256 |#1| |#2| |#3|) (-1256 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-365)))) (-3619 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2784 (($ $) NIL)) (-2794 ((|#1| $) NIL)) (-2128 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2719 (($ (-566) (-1256 |#1| |#2| |#3|)) NIL)) (-3380 (((-1157) $) NIL)) (-2748 (($ $) NIL (|has| |#1| (-365)))) (-3313 (($ $) 27 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) NIL (-2768 (-12 (|has| |#1| (-15 -3313 (|#1| |#1| (-1175)))) (|has| |#1| (-15 -1771 ((-644 (-1175)) |#1|))) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-959)) (|has| |#1| (-1199))))) (($ $ (-1260 |#2|)) 28 (|has| |#1| (-38 (-409 (-566)))))) (-3289 (($) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-1150)) (|has| |#1| (-365))) CONST)) (-4072 (((-1119) $) NIL)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-365)))) (-2164 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2487 (($ $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-308)) (|has| |#1| (-365))))) (-3143 (((-1256 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-547)) (|has| |#1| (-365))))) (-2010 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))))) (-1893 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))))) (-1624 (((-420 $) $) NIL (|has| |#1| (-365)))) (-3005 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL (|has| |#1| (-365)))) (-3369 (($ $ (-566)) NIL)) (-2978 (((-3 $ "failed") $ $) NIL (-2768 (-12 (|has| (-1256 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1256 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))) (|has| |#1| (-558))))) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-3521 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2023 (((-1155 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-566))))) (($ $ (-1175) (-1256 |#1| |#2| |#3|)) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-516 (-1175) (-1256 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-644 (-1175)) (-644 (-1256 |#1| |#2| |#3|))) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-516 (-1175) (-1256 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-644 (-295 (-1256 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-310 (-1256 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-295 (-1256 |#1| |#2| |#3|))) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-310 (-1256 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-1256 |#1| |#2| |#3|) (-1256 |#1| |#2| |#3|)) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-310 (-1256 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-644 (-1256 |#1| |#2| |#3|)) (-644 (-1256 |#1| |#2| |#3|))) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-310 (-1256 |#1| |#2| |#3|))) (|has| |#1| (-365))))) (-4357 (((-771) $) NIL (|has| |#1| (-365)))) (-1309 ((|#1| $ (-566)) NIL) (($ $ $) NIL (|has| (-566) (-1111))) (($ $ (-1256 |#1| |#2| |#3|)) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-287 (-1256 |#1| |#2| |#3|) (-1256 |#1| |#2| |#3|))) (|has| |#1| (-365))))) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL (|has| |#1| (-365)))) (-3629 (($ $ (-1 (-1256 |#1| |#2| |#3|) (-1256 |#1| |#2| |#3|))) NIL (|has| |#1| (-365))) (($ $ (-1 (-1256 |#1| |#2| |#3|) (-1256 |#1| |#2| |#3|)) (-771)) NIL (|has| |#1| (-365))) (($ $ (-1260 |#2|)) 26) (($ $ (-771)) NIL (-2768 (-12 (|has| (-1256 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $) 25 (-2768 (-12 (|has| (-1256 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-2768 (-12 (|has| (-1256 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-1175) (-771)) NIL (-2768 (-12 (|has| (-1256 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-644 (-1175))) NIL (-2768 (-12 (|has| (-1256 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-1175)) NIL (-2768 (-12 (|has| (-1256 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))))) (-1452 (($ $) NIL (|has| |#1| (-365)))) (-2260 (((-1256 |#1| |#2| |#3|) $) NIL (|has| |#1| (-365)))) (-3902 (((-566) $) NIL)) (-3996 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3670 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3976 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3643 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3952 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3618 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2376 (((-538) $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-614 (-538))) (|has| |#1| (-365)))) (((-381) $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-1022)) (|has| |#1| (-365)))) (((-225) $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-1022)) (|has| |#1| (-365)))) (((-892 (-381)) $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-614 (-892 (-381)))) (|has| |#1| (-365)))) (((-892 (-566)) $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-614 (-892 (-566)))) (|has| |#1| (-365))))) (-3391 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| (-1256 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))))) (-1687 (($ $) NIL)) (-3152 (((-862) $) NIL) (($ (-566)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1256 |#1| |#2| |#3|)) NIL) (($ (-1260 |#2|)) 24) (($ (-1175)) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-1038 (-1175))) (|has| |#1| (-365)))) (($ $) NIL (-2768 (-12 (|has| (-1256 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1256 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))) (|has| |#1| (-558)))) (($ (-409 (-566))) NIL (-2768 (-12 (|has| (-1256 |#1| |#2| |#3|) (-1038 (-566))) (|has| |#1| (-365))) (|has| |#1| (-38 (-409 (-566))))))) (-2271 ((|#1| $ (-566)) NIL)) (-2633 (((-3 $ "failed") $) NIL (-2768 (-12 (|has| $ (-145)) (|has| (-1256 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))) (-12 (|has| (-1256 |#1| |#2| |#3|) (-145)) (|has| |#1| (-365))) (|has| |#1| (-145))))) (-2593 (((-771)) NIL T CONST)) (-4290 ((|#1| $) 11)) (-3913 (((-1256 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-547)) (|has| |#1| (-365))))) (-3044 (((-112) $ $) NIL)) (-4032 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3892 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3014 (((-112) $ $) NIL (-2768 (-12 (|has| (-1256 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1256 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))) (|has| |#1| (-558))))) (-4008 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3684 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4057 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3917 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3603 ((|#1| $ (-566)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-566)))) (|has| |#1| (-15 -3152 (|#1| (-1175))))))) (-3964 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3929 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4044 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3904 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4020 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3879 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1358 (($ $) NIL (-12 (|has| (-1256 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))))) (-4356 (($) 20 T CONST)) (-4366 (($) 15 T CONST)) (-3497 (($ $ (-1 (-1256 |#1| |#2| |#3|) (-1256 |#1| |#2| |#3|))) NIL (|has| |#1| (-365))) (($ $ (-1 (-1256 |#1| |#2| |#3|) (-1256 |#1| |#2| |#3|)) (-771)) NIL (|has| |#1| (-365))) (($ $ (-771)) NIL (-2768 (-12 (|has| (-1256 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $) NIL (-2768 (-12 (|has| (-1256 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-2768 (-12 (|has| (-1256 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-1175) (-771)) NIL (-2768 (-12 (|has| (-1256 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-644 (-1175))) NIL (-2768 (-12 (|has| (-1256 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-1175)) NIL (-2768 (-12 (|has| (-1256 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))))) (-2968 (((-112) $ $) NIL (-2768 (-12 (|has| (-1256 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1256 |#1| |#2| |#3|) (-850)) (|has| |#1| (-365)))))) (-2946 (((-112) $ $) NIL (-2768 (-12 (|has| (-1256 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1256 |#1| |#2| |#3|) (-850)) (|has| |#1| (-365)))))) (-2914 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL (-2768 (-12 (|has| (-1256 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1256 |#1| |#2| |#3|) (-850)) (|has| |#1| (-365)))))) (-2935 (((-112) $ $) NIL (-2768 (-12 (|has| (-1256 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1256 |#1| |#2| |#3|) (-850)) (|has| |#1| (-365)))))) (-3025 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365))) (($ (-1256 |#1| |#2| |#3|) (-1256 |#1| |#2| |#3|)) NIL (|has| |#1| (-365)))) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) 22)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1256 |#1| |#2| |#3|)) NIL (|has| |#1| (-365))) (($ (-1256 |#1| |#2| |#3|) $) NIL (|has| |#1| (-365))) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))))) +(((-1228 |#1| |#2| |#3|) (-13 (-1226 |#1| (-1256 |#1| |#2| |#3|)) (-10 -8 (-15 -3152 ($ (-1260 |#2|))) (-15 -3629 ($ $ (-1260 |#2|))) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -3313 ($ $ (-1260 |#2|))) |%noBranch|))) (-1049) (-1175) |#1|) (T -1228)) +((-3152 (*1 *1 *2) (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1228 *3 *4 *5)) (-4 *3 (-1049)) (-14 *5 *3))) (-3629 (*1 *1 *1 *2) (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1228 *3 *4 *5)) (-4 *3 (-1049)) (-14 *5 *3))) (-3313 (*1 *1 *1 *2) (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1228 *3 *4 *5)) (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-14 *5 *3)))) +(-13 (-1226 |#1| (-1256 |#1| |#2| |#3|)) (-10 -8 (-15 -3152 ($ (-1260 |#2|))) (-15 -3629 ($ $ (-1260 |#2|))) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -3313 ($ $ (-1260 |#2|))) |%noBranch|))) +((-4374 (((-2 (|:| |contp| (-566)) (|:| -1616 (-644 (-2 (|:| |irr| |#1|) (|:| -4125 (-566)))))) |#1| (-112)) 13)) (-2208 (((-420 |#1|) |#1|) 26)) (-1624 (((-420 |#1|) |#1|) 24))) +(((-1229 |#1|) (-10 -7 (-15 -1624 ((-420 |#1|) |#1|)) (-15 -2208 ((-420 |#1|) |#1|)) (-15 -4374 ((-2 (|:| |contp| (-566)) (|:| -1616 (-644 (-2 (|:| |irr| |#1|) (|:| -4125 (-566)))))) |#1| (-112)))) (-1240 (-566))) (T -1229)) +((-4374 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-566)) (|:| -1616 (-644 (-2 (|:| |irr| *3) (|:| -4125 (-566))))))) (-5 *1 (-1229 *3)) (-4 *3 (-1240 (-566))))) (-2208 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-1229 *3)) (-4 *3 (-1240 (-566))))) (-1624 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-1229 *3)) (-4 *3 (-1240 (-566)))))) +(-10 -7 (-15 -1624 ((-420 |#1|) |#1|)) (-15 -2208 ((-420 |#1|) |#1|)) (-15 -4374 ((-2 (|:| |contp| (-566)) (|:| -1616 (-644 (-2 (|:| |irr| |#1|) (|:| -4125 (-566)))))) |#1| (-112)))) +((-2319 (((-1155 |#2|) (-1 |#2| |#1|) (-1231 |#1|)) 23 (|has| |#1| (-848))) (((-1231 |#2|) (-1 |#2| |#1|) (-1231 |#1|)) 17))) +(((-1230 |#1| |#2|) (-10 -7 (-15 -2319 ((-1231 |#2|) (-1 |#2| |#1|) (-1231 |#1|))) (IF (|has| |#1| (-848)) (-15 -2319 ((-1155 |#2|) (-1 |#2| |#1|) (-1231 |#1|))) |%noBranch|)) (-1214) (-1214)) (T -1230)) +((-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1231 *5)) (-4 *5 (-848)) (-4 *5 (-1214)) (-4 *6 (-1214)) (-5 *2 (-1155 *6)) (-5 *1 (-1230 *5 *6)))) (-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1231 *5)) (-4 *5 (-1214)) (-4 *6 (-1214)) (-5 *2 (-1231 *6)) (-5 *1 (-1230 *5 *6))))) +(-10 -7 (-15 -2319 ((-1231 |#2|) (-1 |#2| |#1|) (-1231 |#1|))) (IF (|has| |#1| (-848)) (-15 -2319 ((-1155 |#2|) (-1 |#2| |#1|) (-1231 |#1|))) |%noBranch|)) +((-2988 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2165 (($ |#1| |#1|) 11) (($ |#1|) 10)) (-2319 (((-1155 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-848)))) (-1923 ((|#1| $) 15)) (-2753 ((|#1| $) 12)) (-3380 (((-1157) $) NIL (|has| |#1| (-1099)))) (-3478 (((-566) $) 19)) (-2395 ((|#1| $) 18)) (-3502 ((|#1| $) 13)) (-4072 (((-1119) $) NIL (|has| |#1| (-1099)))) (-2813 (((-112) $) 17)) (-3640 (((-1155 |#1|) $) 41 (|has| |#1| (-848))) (((-1155 |#1|) (-644 $)) 40 (|has| |#1| (-848)))) (-2376 (($ |#1|) 26)) (-3152 (($ (-1093 |#1|)) 25) (((-862) $) 37 (|has| |#1| (-1099)))) (-3044 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-4302 (($ |#1| |#1|) 21) (($ |#1|) 20)) (-2686 (($ $ (-566)) 14)) (-2914 (((-112) $ $) 30 (|has| |#1| (-1099))))) +(((-1231 |#1|) (-13 (-1092 |#1|) (-10 -8 (-15 -4302 ($ |#1|)) (-15 -2165 ($ |#1|)) (-15 -3152 ($ (-1093 |#1|))) (-15 -2813 ((-112) $)) (IF (|has| |#1| (-1099)) (-6 (-1099)) |%noBranch|) (IF (|has| |#1| (-848)) (-6 (-1094 |#1| (-1155 |#1|))) |%noBranch|))) (-1214)) (T -1231)) +((-4302 (*1 *1 *2) (-12 (-5 *1 (-1231 *2)) (-4 *2 (-1214)))) (-2165 (*1 *1 *2) (-12 (-5 *1 (-1231 *2)) (-4 *2 (-1214)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-1093 *3)) (-4 *3 (-1214)) (-5 *1 (-1231 *3)))) (-2813 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1231 *3)) (-4 *3 (-1214))))) +(-13 (-1092 |#1|) (-10 -8 (-15 -4302 ($ |#1|)) (-15 -2165 ($ |#1|)) (-15 -3152 ($ (-1093 |#1|))) (-15 -2813 ((-112) $)) (IF (|has| |#1| (-1099)) (-6 (-1099)) |%noBranch|) (IF (|has| |#1| (-848)) (-6 (-1094 |#1| (-1155 |#1|))) |%noBranch|))) +((-2319 (((-1237 |#3| |#4|) (-1 |#4| |#2|) (-1237 |#1| |#2|)) 15))) +(((-1232 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2319 ((-1237 |#3| |#4|) (-1 |#4| |#2|) (-1237 |#1| |#2|)))) (-1175) (-1049) (-1175) (-1049)) (T -1232)) +((-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1237 *5 *6)) (-14 *5 (-1175)) (-4 *6 (-1049)) (-4 *8 (-1049)) (-5 *2 (-1237 *7 *8)) (-5 *1 (-1232 *5 *6 *7 *8)) (-14 *7 (-1175))))) +(-10 -7 (-15 -2319 ((-1237 |#3| |#4|) (-1 |#4| |#2|) (-1237 |#1| |#2|)))) +((-4367 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-2693 ((|#1| |#3|) 13)) (-2386 ((|#3| |#3|) 19))) +(((-1233 |#1| |#2| |#3|) (-10 -7 (-15 -2693 (|#1| |#3|)) (-15 -2386 (|#3| |#3|)) (-15 -4367 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-558) (-992 |#1|) (-1240 |#2|)) (T -1233)) +((-4367 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-992 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1233 *4 *5 *3)) (-4 *3 (-1240 *5)))) (-2386 (*1 *2 *2) (-12 (-4 *3 (-558)) (-4 *4 (-992 *3)) (-5 *1 (-1233 *3 *4 *2)) (-4 *2 (-1240 *4)))) (-2693 (*1 *2 *3) (-12 (-4 *4 (-992 *2)) (-4 *2 (-558)) (-5 *1 (-1233 *2 *4 *3)) (-4 *3 (-1240 *4))))) +(-10 -7 (-15 -2693 (|#1| |#3|)) (-15 -2386 (|#3| |#3|)) (-15 -4367 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-2787 (((-3 |#2| "failed") |#2| (-771) |#1|) 37)) (-4198 (((-3 |#2| "failed") |#2| (-771)) 38)) (-2883 (((-3 (-2 (|:| -1953 |#2|) (|:| -1966 |#2|)) "failed") |#2|) 52)) (-3544 (((-644 |#2|) |#2|) 54)) (-2102 (((-3 |#2| "failed") |#2| |#2|) 48))) +(((-1234 |#1| |#2|) (-10 -7 (-15 -4198 ((-3 |#2| "failed") |#2| (-771))) (-15 -2787 ((-3 |#2| "failed") |#2| (-771) |#1|)) (-15 -2102 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2883 ((-3 (-2 (|:| -1953 |#2|) (|:| -1966 |#2|)) "failed") |#2|)) (-15 -3544 ((-644 |#2|) |#2|))) (-13 (-558) (-147)) (-1240 |#1|)) (T -1234)) +((-3544 (*1 *2 *3) (-12 (-4 *4 (-13 (-558) (-147))) (-5 *2 (-644 *3)) (-5 *1 (-1234 *4 *3)) (-4 *3 (-1240 *4)))) (-2883 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-558) (-147))) (-5 *2 (-2 (|:| -1953 *3) (|:| -1966 *3))) (-5 *1 (-1234 *4 *3)) (-4 *3 (-1240 *4)))) (-2102 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-558) (-147))) (-5 *1 (-1234 *3 *2)) (-4 *2 (-1240 *3)))) (-2787 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-771)) (-4 *4 (-13 (-558) (-147))) (-5 *1 (-1234 *4 *2)) (-4 *2 (-1240 *4)))) (-4198 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-771)) (-4 *4 (-13 (-558) (-147))) (-5 *1 (-1234 *4 *2)) (-4 *2 (-1240 *4))))) +(-10 -7 (-15 -4198 ((-3 |#2| "failed") |#2| (-771))) (-15 -2787 ((-3 |#2| "failed") |#2| (-771) |#1|)) (-15 -2102 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2883 ((-3 (-2 (|:| -1953 |#2|) (|:| -1966 |#2|)) "failed") |#2|)) (-15 -3544 ((-644 |#2|) |#2|))) +((-1874 (((-3 (-2 (|:| -2631 |#2|) (|:| -3264 |#2|)) "failed") |#2| |#2|) 30))) +(((-1235 |#1| |#2|) (-10 -7 (-15 -1874 ((-3 (-2 (|:| -2631 |#2|) (|:| -3264 |#2|)) "failed") |#2| |#2|))) (-558) (-1240 |#1|)) (T -1235)) +((-1874 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-558)) (-5 *2 (-2 (|:| -2631 *3) (|:| -3264 *3))) (-5 *1 (-1235 *4 *3)) (-4 *3 (-1240 *4))))) +(-10 -7 (-15 -1874 ((-3 (-2 (|:| -2631 |#2|) (|:| -3264 |#2|)) "failed") |#2| |#2|))) +((-2699 ((|#2| |#2| |#2|) 22)) (-1700 ((|#2| |#2| |#2|) 36)) (-2284 ((|#2| |#2| |#2| (-771) (-771)) 44))) +(((-1236 |#1| |#2|) (-10 -7 (-15 -2699 (|#2| |#2| |#2|)) (-15 -1700 (|#2| |#2| |#2|)) (-15 -2284 (|#2| |#2| |#2| (-771) (-771)))) (-1049) (-1240 |#1|)) (T -1236)) +((-2284 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-771)) (-4 *4 (-1049)) (-5 *1 (-1236 *4 *2)) (-4 *2 (-1240 *4)))) (-1700 (*1 *2 *2 *2) (-12 (-4 *3 (-1049)) (-5 *1 (-1236 *3 *2)) (-4 *2 (-1240 *3)))) (-2699 (*1 *2 *2 *2) (-12 (-4 *3 (-1049)) (-5 *1 (-1236 *3 *2)) (-4 *2 (-1240 *3))))) +(-10 -7 (-15 -2699 (|#2| |#2| |#2|)) (-15 -1700 (|#2| |#2| |#2|)) (-15 -2284 (|#2| |#2| |#2| (-771) (-771)))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-4036 (((-1264 |#2|) $ (-771)) NIL)) (-1771 (((-644 (-1081)) $) NIL)) (-3732 (($ (-1171 |#2|)) NIL)) (-1590 (((-1171 $) $ (-1081)) NIL) (((-1171 |#2|) $) NIL)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#2| (-558)))) (-2161 (($ $) NIL (|has| |#2| (-558)))) (-2345 (((-112) $) NIL (|has| |#2| (-558)))) (-1357 (((-771) $) NIL) (((-771) $ (-644 (-1081))) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-1890 (($ $ $) NIL (|has| |#2| (-558)))) (-2292 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-1378 (($ $) NIL (|has| |#2| (-454)))) (-1364 (((-420 $) $) NIL (|has| |#2| (-454)))) (-4066 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-2085 (((-112) $ $) NIL (|has| |#2| (-365)))) (-2197 (($ $ (-771)) NIL)) (-1583 (($ $ (-771)) NIL)) (-3946 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-454)))) (-2463 (($) NIL T CONST)) (-2229 (((-3 |#2| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#2| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#2| (-1038 (-566)))) (((-3 (-1081) "failed") $) NIL)) (-4158 ((|#2| $) NIL) (((-409 (-566)) $) NIL (|has| |#2| (-1038 (-409 (-566))))) (((-566) $) NIL (|has| |#2| (-1038 (-566)))) (((-1081) $) NIL)) (-2610 (($ $ $ (-1081)) NIL (|has| |#2| (-172))) ((|#2| $ $) NIL (|has| |#2| (-172)))) (-2933 (($ $ $) NIL (|has| |#2| (-365)))) (-2814 (($ $) NIL)) (-4089 (((-689 (-566)) (-689 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -3361 (-689 |#2|)) (|:| |vec| (-1264 |#2|))) (-689 $) (-1264 $)) NIL) (((-689 |#2|) (-689 $)) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-2945 (($ $ $) NIL (|has| |#2| (-365)))) (-2218 (($ $ $) NIL)) (-4058 (($ $ $) NIL (|has| |#2| (-558)))) (-1514 (((-2 (|:| -2397 |#2|) (|:| -2631 $) (|:| -3264 $)) $ $) NIL (|has| |#2| (-558)))) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL (|has| |#2| (-365)))) (-2616 (($ $) NIL (|has| |#2| (-454))) (($ $ (-1081)) NIL (|has| |#2| (-454)))) (-2804 (((-644 $) $) NIL)) (-1615 (((-112) $) NIL (|has| |#2| (-909)))) (-1896 (($ $ |#2| (-771) $) NIL)) (-2926 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| (-1081) (-886 (-381))) (|has| |#2| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| (-1081) (-886 (-566))) (|has| |#2| (-886 (-566)))))) (-2679 (((-771) $ $) NIL (|has| |#2| (-558)))) (-2389 (((-112) $) NIL)) (-3039 (((-771) $) NIL)) (-2621 (((-3 $ "failed") $) NIL (|has| |#2| (-1150)))) (-1757 (($ (-1171 |#2|) (-1081)) NIL) (($ (-1171 $) (-1081)) NIL)) (-3394 (($ $ (-771)) NIL)) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#2| (-365)))) (-1587 (((-644 $) $) NIL)) (-2497 (((-112) $) NIL)) (-1746 (($ |#2| (-771)) 18) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL)) (-2815 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $ (-1081)) NIL) (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL)) (-2749 (((-771) $) NIL) (((-771) $ (-1081)) NIL) (((-644 (-771)) $ (-644 (-1081))) NIL)) (-3021 (($ (-1 (-771) (-771)) $) NIL)) (-2319 (($ (-1 |#2| |#2|) $) NIL)) (-2513 (((-1171 |#2|) $) NIL)) (-2297 (((-3 (-1081) "failed") $) NIL)) (-2784 (($ $) NIL)) (-2794 ((|#2| $) NIL)) (-2128 (($ (-644 $)) NIL (|has| |#2| (-454))) (($ $ $) NIL (|has| |#2| (-454)))) (-3380 (((-1157) $) NIL)) (-2307 (((-2 (|:| -2631 $) (|:| -3264 $)) $ (-771)) NIL)) (-3738 (((-3 (-644 $) "failed") $) NIL)) (-4199 (((-3 (-644 $) "failed") $) NIL)) (-4108 (((-3 (-2 (|:| |var| (-1081)) (|:| -2201 (-771))) "failed") $) NIL)) (-3313 (($ $) NIL (|has| |#2| (-38 (-409 (-566)))))) (-3289 (($) NIL (|has| |#2| (-1150)) CONST)) (-4072 (((-1119) $) NIL)) (-2761 (((-112) $) NIL)) (-2773 ((|#2| $) NIL)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#2| (-454)))) (-2164 (($ (-644 $)) NIL (|has| |#2| (-454))) (($ $ $) NIL (|has| |#2| (-454)))) (-3252 (($ $ (-771) |#2| $) NIL)) (-2010 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-1893 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-1624 (((-420 $) $) NIL (|has| |#2| (-909)))) (-3005 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL (|has| |#2| (-365)))) (-2978 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-558))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-558)))) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#2| (-365)))) (-2023 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-1081) |#2|) NIL) (($ $ (-644 (-1081)) (-644 |#2|)) NIL) (($ $ (-1081) $) NIL) (($ $ (-644 (-1081)) (-644 $)) NIL)) (-4357 (((-771) $) NIL (|has| |#2| (-365)))) (-1309 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-409 $) (-409 $) (-409 $)) NIL (|has| |#2| (-558))) ((|#2| (-409 $) |#2|) NIL (|has| |#2| (-365))) (((-409 $) $ (-409 $)) NIL (|has| |#2| (-558)))) (-2382 (((-3 $ "failed") $ (-771)) NIL)) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL (|has| |#2| (-365)))) (-4068 (($ $ (-1081)) NIL (|has| |#2| (-172))) ((|#2| $) NIL (|has| |#2| (-172)))) (-3629 (($ $ (-1081)) NIL) (($ $ (-644 (-1081))) NIL) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL) (($ $ (-771)) NIL) (($ $) NIL) (($ $ (-1175)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-3902 (((-771) $) NIL) (((-771) $ (-1081)) NIL) (((-644 (-771)) $ (-644 (-1081))) NIL)) (-2376 (((-892 (-381)) $) NIL (-12 (|has| (-1081) (-614 (-892 (-381)))) (|has| |#2| (-614 (-892 (-381)))))) (((-892 (-566)) $) NIL (-12 (|has| (-1081) (-614 (-892 (-566)))) (|has| |#2| (-614 (-892 (-566)))))) (((-538) $) NIL (-12 (|has| (-1081) (-614 (-538))) (|has| |#2| (-614 (-538)))))) (-3173 ((|#2| $) NIL (|has| |#2| (-454))) (($ $ (-1081)) NIL (|has| |#2| (-454)))) (-3391 (((-3 (-1264 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-909))))) (-2529 (((-3 $ "failed") $ $) NIL (|has| |#2| (-558))) (((-3 (-409 $) "failed") (-409 $) $) NIL (|has| |#2| (-558)))) (-3152 (((-862) $) 13) (($ (-566)) NIL) (($ |#2|) NIL) (($ (-1081)) NIL) (($ (-1260 |#1|)) 20) (($ (-409 (-566))) NIL (-2768 (|has| |#2| (-38 (-409 (-566)))) (|has| |#2| (-1038 (-409 (-566)))))) (($ $) NIL (|has| |#2| (-558)))) (-1643 (((-644 |#2|) $) NIL)) (-2271 ((|#2| $ (-771)) NIL) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL)) (-2633 (((-3 $ "failed") $) NIL (-2768 (-12 (|has| $ (-145)) (|has| |#2| (-909))) (|has| |#2| (-145))))) (-2593 (((-771)) NIL T CONST)) (-2021 (($ $ $ (-771)) NIL (|has| |#2| (-172)))) (-3044 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL (|has| |#2| (-558)))) (-4356 (($) NIL T CONST)) (-4366 (($) 14 T CONST)) (-3497 (($ $ (-1081)) NIL) (($ $ (-644 (-1081))) NIL) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL) (($ $ (-771)) NIL) (($ $) NIL) (($ $ (-1175)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2914 (((-112) $ $) NIL)) (-3025 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL (|has| |#2| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#2| (-38 (-409 (-566))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-1237 |#1| |#2|) (-13 (-1240 |#2|) (-616 (-1260 |#1|)) (-10 -8 (-15 -3252 ($ $ (-771) |#2| $)))) (-1175) (-1049)) (T -1237)) +((-3252 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-771)) (-5 *1 (-1237 *4 *3)) (-14 *4 (-1175)) (-4 *3 (-1049))))) +(-13 (-1240 |#2|) (-616 (-1260 |#1|)) (-10 -8 (-15 -3252 ($ $ (-771) |#2| $)))) +((-2319 ((|#4| (-1 |#3| |#1|) |#2|) 22))) +(((-1238 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2319 (|#4| (-1 |#3| |#1|) |#2|))) (-1049) (-1240 |#1|) (-1049) (-1240 |#3|)) (T -1238)) +((-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1049)) (-4 *6 (-1049)) (-4 *2 (-1240 *6)) (-5 *1 (-1238 *5 *4 *6 *2)) (-4 *4 (-1240 *5))))) +(-10 -7 (-15 -2319 (|#4| (-1 |#3| |#1|) |#2|))) +((-4036 (((-1264 |#2|) $ (-771)) 129)) (-1771 (((-644 (-1081)) $) 16)) (-3732 (($ (-1171 |#2|)) 80)) (-1357 (((-771) $) NIL) (((-771) $ (-644 (-1081))) 21)) (-2292 (((-420 (-1171 $)) (-1171 $)) 204)) (-1378 (($ $) 194)) (-1364 (((-420 $) $) 192)) (-4066 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) 95)) (-2197 (($ $ (-771)) 84)) (-1583 (($ $ (-771)) 86)) (-3946 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 145)) (-2229 (((-3 |#2| "failed") $) 132) (((-3 (-409 (-566)) "failed") $) NIL) (((-3 (-566) "failed") $) NIL) (((-3 (-1081) "failed") $) NIL)) (-4158 ((|#2| $) 130) (((-409 (-566)) $) NIL) (((-566) $) NIL) (((-1081) $) NIL)) (-4058 (($ $ $) 170)) (-1514 (((-2 (|:| -2397 |#2|) (|:| -2631 $) (|:| -3264 $)) $ $) 172)) (-2679 (((-771) $ $) 189)) (-2621 (((-3 $ "failed") $) 138)) (-1746 (($ |#2| (-771)) NIL) (($ $ (-1081) (-771)) 59) (($ $ (-644 (-1081)) (-644 (-771))) NIL)) (-2749 (((-771) $) NIL) (((-771) $ (-1081)) 54) (((-644 (-771)) $ (-644 (-1081))) 55)) (-2513 (((-1171 |#2|) $) 72)) (-2297 (((-3 (-1081) "failed") $) 52)) (-2307 (((-2 (|:| -2631 $) (|:| -3264 $)) $ (-771)) 83)) (-3313 (($ $) 219)) (-3289 (($) 134)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) 201)) (-2010 (((-420 (-1171 $)) (-1171 $)) 101)) (-1893 (((-420 (-1171 $)) (-1171 $)) 99)) (-1624 (((-420 $) $) 120)) (-2023 (($ $ (-644 (-295 $))) 51) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-1081) |#2|) 39) (($ $ (-644 (-1081)) (-644 |#2|)) 36) (($ $ (-1081) $) 32) (($ $ (-644 (-1081)) (-644 $)) 30)) (-4357 (((-771) $) 207)) (-1309 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-409 $) (-409 $) (-409 $)) 164) ((|#2| (-409 $) |#2|) 206) (((-409 $) $ (-409 $)) 188)) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) 212)) (-3629 (($ $ (-1081)) 157) (($ $ (-644 (-1081))) NIL) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL) (($ $ (-771)) NIL) (($ $) 155) (($ $ (-1175)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL) (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-1 |#2| |#2|)) 154) (($ $ (-1 |#2| |#2|) $) 149)) (-3902 (((-771) $) NIL) (((-771) $ (-1081)) 17) (((-644 (-771)) $ (-644 (-1081))) 23)) (-3173 ((|#2| $) NIL) (($ $ (-1081)) 140)) (-2529 (((-3 $ "failed") $ $) 180) (((-3 (-409 $) "failed") (-409 $) $) 176)) (-3152 (((-862) $) NIL) (($ (-566)) NIL) (($ |#2|) NIL) (($ (-1081)) 64) (($ (-409 (-566))) NIL) (($ $) NIL))) +(((-1239 |#1| |#2|) (-10 -8 (-15 -3152 (|#1| |#1|)) (-15 -4170 ((-1171 |#1|) (-1171 |#1|) (-1171 |#1|))) (-15 -1364 ((-420 |#1|) |#1|)) (-15 -1378 (|#1| |#1|)) (-15 -3152 (|#1| (-409 (-566)))) (-15 -3289 (|#1|)) (-15 -2621 ((-3 |#1| "failed") |#1|)) (-15 -1309 ((-409 |#1|) |#1| (-409 |#1|))) (-15 -4357 ((-771) |#1|)) (-15 -4100 ((-2 (|:| -2631 |#1|) (|:| -3264 |#1|)) |#1| |#1|)) (-15 -3313 (|#1| |#1|)) (-15 -1309 (|#2| (-409 |#1|) |#2|)) (-15 -3946 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1514 ((-2 (|:| -2397 |#2|) (|:| -2631 |#1|) (|:| -3264 |#1|)) |#1| |#1|)) (-15 -4058 (|#1| |#1| |#1|)) (-15 -2529 ((-3 (-409 |#1|) "failed") (-409 |#1|) |#1|)) (-15 -2529 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2679 ((-771) |#1| |#1|)) (-15 -1309 ((-409 |#1|) (-409 |#1|) (-409 |#1|))) (-15 -3629 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -1583 (|#1| |#1| (-771))) (-15 -2197 (|#1| |#1| (-771))) (-15 -2307 ((-2 (|:| -2631 |#1|) (|:| -3264 |#1|)) |#1| (-771))) (-15 -3732 (|#1| (-1171 |#2|))) (-15 -2513 ((-1171 |#2|) |#1|)) (-15 -4036 ((-1264 |#2|) |#1| (-771))) (-15 -3629 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3629 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -3629 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -3629 (|#1| |#1| (-1175) (-771))) (-15 -3629 (|#1| |#1| (-644 (-1175)))) (-15 -3629 (|#1| |#1| (-1175))) (-15 -3629 (|#1| |#1|)) (-15 -3629 (|#1| |#1| (-771))) (-15 -1309 (|#1| |#1| |#1|)) (-15 -1309 (|#2| |#1| |#2|)) (-15 -1624 ((-420 |#1|) |#1|)) (-15 -2292 ((-420 (-1171 |#1|)) (-1171 |#1|))) (-15 -1893 ((-420 (-1171 |#1|)) (-1171 |#1|))) (-15 -2010 ((-420 (-1171 |#1|)) (-1171 |#1|))) (-15 -4066 ((-3 (-644 (-1171 |#1|)) "failed") (-644 (-1171 |#1|)) (-1171 |#1|))) (-15 -3173 (|#1| |#1| (-1081))) (-15 -1771 ((-644 (-1081)) |#1|)) (-15 -1357 ((-771) |#1| (-644 (-1081)))) (-15 -1357 ((-771) |#1|)) (-15 -1746 (|#1| |#1| (-644 (-1081)) (-644 (-771)))) (-15 -1746 (|#1| |#1| (-1081) (-771))) (-15 -2749 ((-644 (-771)) |#1| (-644 (-1081)))) (-15 -2749 ((-771) |#1| (-1081))) (-15 -2297 ((-3 (-1081) "failed") |#1|)) (-15 -3902 ((-644 (-771)) |#1| (-644 (-1081)))) (-15 -3902 ((-771) |#1| (-1081))) (-15 -3152 (|#1| (-1081))) (-15 -2229 ((-3 (-1081) "failed") |#1|)) (-15 -4158 ((-1081) |#1|)) (-15 -2023 (|#1| |#1| (-644 (-1081)) (-644 |#1|))) (-15 -2023 (|#1| |#1| (-1081) |#1|)) (-15 -2023 (|#1| |#1| (-644 (-1081)) (-644 |#2|))) (-15 -2023 (|#1| |#1| (-1081) |#2|)) (-15 -2023 (|#1| |#1| (-644 |#1|) (-644 |#1|))) (-15 -2023 (|#1| |#1| |#1| |#1|)) (-15 -2023 (|#1| |#1| (-295 |#1|))) (-15 -2023 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -3902 ((-771) |#1|)) (-15 -1746 (|#1| |#2| (-771))) (-15 -2229 ((-3 (-566) "failed") |#1|)) (-15 -4158 ((-566) |#1|)) (-15 -2229 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -4158 ((-409 (-566)) |#1|)) (-15 -4158 (|#2| |#1|)) (-15 -2229 ((-3 |#2| "failed") |#1|)) (-15 -3152 (|#1| |#2|)) (-15 -2749 ((-771) |#1|)) (-15 -3173 (|#2| |#1|)) (-15 -3629 (|#1| |#1| (-644 (-1081)) (-644 (-771)))) (-15 -3629 (|#1| |#1| (-1081) (-771))) (-15 -3629 (|#1| |#1| (-644 (-1081)))) (-15 -3629 (|#1| |#1| (-1081))) (-15 -3152 (|#1| (-566))) (-15 -3152 ((-862) |#1|))) (-1240 |#2|) (-1049)) (T -1239)) +NIL +(-10 -8 (-15 -3152 (|#1| |#1|)) (-15 -4170 ((-1171 |#1|) (-1171 |#1|) (-1171 |#1|))) (-15 -1364 ((-420 |#1|) |#1|)) (-15 -1378 (|#1| |#1|)) (-15 -3152 (|#1| (-409 (-566)))) (-15 -3289 (|#1|)) (-15 -2621 ((-3 |#1| "failed") |#1|)) (-15 -1309 ((-409 |#1|) |#1| (-409 |#1|))) (-15 -4357 ((-771) |#1|)) (-15 -4100 ((-2 (|:| -2631 |#1|) (|:| -3264 |#1|)) |#1| |#1|)) (-15 -3313 (|#1| |#1|)) (-15 -1309 (|#2| (-409 |#1|) |#2|)) (-15 -3946 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1514 ((-2 (|:| -2397 |#2|) (|:| -2631 |#1|) (|:| -3264 |#1|)) |#1| |#1|)) (-15 -4058 (|#1| |#1| |#1|)) (-15 -2529 ((-3 (-409 |#1|) "failed") (-409 |#1|) |#1|)) (-15 -2529 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2679 ((-771) |#1| |#1|)) (-15 -1309 ((-409 |#1|) (-409 |#1|) (-409 |#1|))) (-15 -3629 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -1583 (|#1| |#1| (-771))) (-15 -2197 (|#1| |#1| (-771))) (-15 -2307 ((-2 (|:| -2631 |#1|) (|:| -3264 |#1|)) |#1| (-771))) (-15 -3732 (|#1| (-1171 |#2|))) (-15 -2513 ((-1171 |#2|) |#1|)) (-15 -4036 ((-1264 |#2|) |#1| (-771))) (-15 -3629 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3629 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -3629 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -3629 (|#1| |#1| (-1175) (-771))) (-15 -3629 (|#1| |#1| (-644 (-1175)))) (-15 -3629 (|#1| |#1| (-1175))) (-15 -3629 (|#1| |#1|)) (-15 -3629 (|#1| |#1| (-771))) (-15 -1309 (|#1| |#1| |#1|)) (-15 -1309 (|#2| |#1| |#2|)) (-15 -1624 ((-420 |#1|) |#1|)) (-15 -2292 ((-420 (-1171 |#1|)) (-1171 |#1|))) (-15 -1893 ((-420 (-1171 |#1|)) (-1171 |#1|))) (-15 -2010 ((-420 (-1171 |#1|)) (-1171 |#1|))) (-15 -4066 ((-3 (-644 (-1171 |#1|)) "failed") (-644 (-1171 |#1|)) (-1171 |#1|))) (-15 -3173 (|#1| |#1| (-1081))) (-15 -1771 ((-644 (-1081)) |#1|)) (-15 -1357 ((-771) |#1| (-644 (-1081)))) (-15 -1357 ((-771) |#1|)) (-15 -1746 (|#1| |#1| (-644 (-1081)) (-644 (-771)))) (-15 -1746 (|#1| |#1| (-1081) (-771))) (-15 -2749 ((-644 (-771)) |#1| (-644 (-1081)))) (-15 -2749 ((-771) |#1| (-1081))) (-15 -2297 ((-3 (-1081) "failed") |#1|)) (-15 -3902 ((-644 (-771)) |#1| (-644 (-1081)))) (-15 -3902 ((-771) |#1| (-1081))) (-15 -3152 (|#1| (-1081))) (-15 -2229 ((-3 (-1081) "failed") |#1|)) (-15 -4158 ((-1081) |#1|)) (-15 -2023 (|#1| |#1| (-644 (-1081)) (-644 |#1|))) (-15 -2023 (|#1| |#1| (-1081) |#1|)) (-15 -2023 (|#1| |#1| (-644 (-1081)) (-644 |#2|))) (-15 -2023 (|#1| |#1| (-1081) |#2|)) (-15 -2023 (|#1| |#1| (-644 |#1|) (-644 |#1|))) (-15 -2023 (|#1| |#1| |#1| |#1|)) (-15 -2023 (|#1| |#1| (-295 |#1|))) (-15 -2023 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -3902 ((-771) |#1|)) (-15 -1746 (|#1| |#2| (-771))) (-15 -2229 ((-3 (-566) "failed") |#1|)) (-15 -4158 ((-566) |#1|)) (-15 -2229 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -4158 ((-409 (-566)) |#1|)) (-15 -4158 (|#2| |#1|)) (-15 -2229 ((-3 |#2| "failed") |#1|)) (-15 -3152 (|#1| |#2|)) (-15 -2749 ((-771) |#1|)) (-15 -3173 (|#2| |#1|)) (-15 -3629 (|#1| |#1| (-644 (-1081)) (-644 (-771)))) (-15 -3629 (|#1| |#1| (-1081) (-771))) (-15 -3629 (|#1| |#1| (-644 (-1081)))) (-15 -3629 (|#1| |#1| (-1081))) (-15 -3152 (|#1| (-566))) (-15 -3152 ((-862) |#1|))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-4036 (((-1264 |#1|) $ (-771)) 240)) (-1771 (((-644 (-1081)) $) 112)) (-3732 (($ (-1171 |#1|)) 238)) (-1590 (((-1171 $) $ (-1081)) 127) (((-1171 |#1|) $) 126)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) 89 (|has| |#1| (-558)))) (-2161 (($ $) 90 (|has| |#1| (-558)))) (-2345 (((-112) $) 92 (|has| |#1| (-558)))) (-1357 (((-771) $) 114) (((-771) $ (-644 (-1081))) 113)) (-3967 (((-3 $ "failed") $ $) 20)) (-1890 (($ $ $) 225 (|has| |#1| (-558)))) (-2292 (((-420 (-1171 $)) (-1171 $)) 102 (|has| |#1| (-909)))) (-1378 (($ $) 100 (|has| |#1| (-454)))) (-1364 (((-420 $) $) 99 (|has| |#1| (-454)))) (-4066 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) 105 (|has| |#1| (-909)))) (-2085 (((-112) $ $) 210 (|has| |#1| (-365)))) (-2197 (($ $ (-771)) 233)) (-1583 (($ $ (-771)) 232)) (-3946 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 220 (|has| |#1| (-454)))) (-2463 (($) 18 T CONST)) (-2229 (((-3 |#1| "failed") $) 166) (((-3 (-409 (-566)) "failed") $) 163 (|has| |#1| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) 161 (|has| |#1| (-1038 (-566)))) (((-3 (-1081) "failed") $) 138)) (-4158 ((|#1| $) 165) (((-409 (-566)) $) 164 (|has| |#1| (-1038 (-409 (-566))))) (((-566) $) 162 (|has| |#1| (-1038 (-566)))) (((-1081) $) 139)) (-2610 (($ $ $ (-1081)) 110 (|has| |#1| (-172))) ((|#1| $ $) 228 (|has| |#1| (-172)))) (-2933 (($ $ $) 214 (|has| |#1| (-365)))) (-2814 (($ $) 156)) (-4089 (((-689 (-566)) (-689 $)) 136 (|has| |#1| (-639 (-566)))) (((-2 (|:| -3361 (-689 (-566))) (|:| |vec| (-1264 (-566)))) (-689 $) (-1264 $)) 135 (|has| |#1| (-639 (-566)))) (((-2 (|:| -3361 (-689 |#1|)) (|:| |vec| (-1264 |#1|))) (-689 $) (-1264 $)) 134) (((-689 |#1|) (-689 $)) 133)) (-3245 (((-3 $ "failed") $) 37)) (-2945 (($ $ $) 213 (|has| |#1| (-365)))) (-2218 (($ $ $) 231)) (-4058 (($ $ $) 222 (|has| |#1| (-558)))) (-1514 (((-2 (|:| -2397 |#1|) (|:| -2631 $) (|:| -3264 $)) $ $) 221 (|has| |#1| (-558)))) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) 208 (|has| |#1| (-365)))) (-2616 (($ $) 178 (|has| |#1| (-454))) (($ $ (-1081)) 107 (|has| |#1| (-454)))) (-2804 (((-644 $) $) 111)) (-1615 (((-112) $) 98 (|has| |#1| (-909)))) (-1896 (($ $ |#1| (-771) $) 174)) (-2926 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 86 (-12 (|has| (-1081) (-886 (-381))) (|has| |#1| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 85 (-12 (|has| (-1081) (-886 (-566))) (|has| |#1| (-886 (-566)))))) (-2679 (((-771) $ $) 226 (|has| |#1| (-558)))) (-2389 (((-112) $) 35)) (-3039 (((-771) $) 171)) (-2621 (((-3 $ "failed") $) 206 (|has| |#1| (-1150)))) (-1757 (($ (-1171 |#1|) (-1081)) 119) (($ (-1171 $) (-1081)) 118)) (-3394 (($ $ (-771)) 237)) (-3816 (((-3 (-644 $) "failed") (-644 $) $) 217 (|has| |#1| (-365)))) (-1587 (((-644 $) $) 128)) (-2497 (((-112) $) 154)) (-1746 (($ |#1| (-771)) 155) (($ $ (-1081) (-771)) 121) (($ $ (-644 (-1081)) (-644 (-771))) 120)) (-2815 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $ (-1081)) 122) (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) 235)) (-2749 (((-771) $) 172) (((-771) $ (-1081)) 124) (((-644 (-771)) $ (-644 (-1081))) 123)) (-3021 (($ (-1 (-771) (-771)) $) 173)) (-2319 (($ (-1 |#1| |#1|) $) 153)) (-2513 (((-1171 |#1|) $) 239)) (-2297 (((-3 (-1081) "failed") $) 125)) (-2784 (($ $) 151)) (-2794 ((|#1| $) 150)) (-2128 (($ (-644 $)) 96 (|has| |#1| (-454))) (($ $ $) 95 (|has| |#1| (-454)))) (-3380 (((-1157) $) 10)) (-2307 (((-2 (|:| -2631 $) (|:| -3264 $)) $ (-771)) 234)) (-3738 (((-3 (-644 $) "failed") $) 116)) (-4199 (((-3 (-644 $) "failed") $) 117)) (-4108 (((-3 (-2 (|:| |var| (-1081)) (|:| -2201 (-771))) "failed") $) 115)) (-3313 (($ $) 218 (|has| |#1| (-38 (-409 (-566)))))) (-3289 (($) 205 (|has| |#1| (-1150)) CONST)) (-4072 (((-1119) $) 11)) (-2761 (((-112) $) 168)) (-2773 ((|#1| $) 169)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) 97 (|has| |#1| (-454)))) (-2164 (($ (-644 $)) 94 (|has| |#1| (-454))) (($ $ $) 93 (|has| |#1| (-454)))) (-2010 (((-420 (-1171 $)) (-1171 $)) 104 (|has| |#1| (-909)))) (-1893 (((-420 (-1171 $)) (-1171 $)) 103 (|has| |#1| (-909)))) (-1624 (((-420 $) $) 101 (|has| |#1| (-909)))) (-3005 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 216 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) 215 (|has| |#1| (-365)))) (-2978 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-558))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-558)))) (-2915 (((-3 (-644 $) "failed") (-644 $) $) 209 (|has| |#1| (-365)))) (-2023 (($ $ (-644 (-295 $))) 147) (($ $ (-295 $)) 146) (($ $ $ $) 145) (($ $ (-644 $) (-644 $)) 144) (($ $ (-1081) |#1|) 143) (($ $ (-644 (-1081)) (-644 |#1|)) 142) (($ $ (-1081) $) 141) (($ $ (-644 (-1081)) (-644 $)) 140)) (-4357 (((-771) $) 211 (|has| |#1| (-365)))) (-1309 ((|#1| $ |#1|) 258) (($ $ $) 257) (((-409 $) (-409 $) (-409 $)) 227 (|has| |#1| (-558))) ((|#1| (-409 $) |#1|) 219 (|has| |#1| (-365))) (((-409 $) $ (-409 $)) 207 (|has| |#1| (-558)))) (-2382 (((-3 $ "failed") $ (-771)) 236)) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) 212 (|has| |#1| (-365)))) (-4068 (($ $ (-1081)) 109 (|has| |#1| (-172))) ((|#1| $) 229 (|has| |#1| (-172)))) (-3629 (($ $ (-1081)) 46) (($ $ (-644 (-1081))) 45) (($ $ (-1081) (-771)) 44) (($ $ (-644 (-1081)) (-644 (-771))) 43) (($ $ (-771)) 255) (($ $) 253) (($ $ (-1175)) 252 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) 251 (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) 250 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) 249 (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) 242) (($ $ (-1 |#1| |#1|)) 241) (($ $ (-1 |#1| |#1|) $) 230)) (-3902 (((-771) $) 152) (((-771) $ (-1081)) 132) (((-644 (-771)) $ (-644 (-1081))) 131)) (-2376 (((-892 (-381)) $) 84 (-12 (|has| (-1081) (-614 (-892 (-381)))) (|has| |#1| (-614 (-892 (-381)))))) (((-892 (-566)) $) 83 (-12 (|has| (-1081) (-614 (-892 (-566)))) (|has| |#1| (-614 (-892 (-566)))))) (((-538) $) 82 (-12 (|has| (-1081) (-614 (-538))) (|has| |#1| (-614 (-538)))))) (-3173 ((|#1| $) 177 (|has| |#1| (-454))) (($ $ (-1081)) 108 (|has| |#1| (-454)))) (-3391 (((-3 (-1264 $) "failed") (-689 $)) 106 (-2415 (|has| $ (-145)) (|has| |#1| (-909))))) (-2529 (((-3 $ "failed") $ $) 224 (|has| |#1| (-558))) (((-3 (-409 $) "failed") (-409 $) $) 223 (|has| |#1| (-558)))) (-3152 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 167) (($ (-1081)) 137) (($ (-409 (-566))) 80 (-2768 (|has| |#1| (-1038 (-409 (-566)))) (|has| |#1| (-38 (-409 (-566)))))) (($ $) 87 (|has| |#1| (-558)))) (-1643 (((-644 |#1|) $) 170)) (-2271 ((|#1| $ (-771)) 157) (($ $ (-1081) (-771)) 130) (($ $ (-644 (-1081)) (-644 (-771))) 129)) (-2633 (((-3 $ "failed") $) 81 (-2768 (-2415 (|has| $ (-145)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-2593 (((-771)) 32 T CONST)) (-2021 (($ $ $ (-771)) 175 (|has| |#1| (-172)))) (-3044 (((-112) $ $) 9)) (-3014 (((-112) $ $) 91 (|has| |#1| (-558)))) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-3497 (($ $ (-1081)) 42) (($ $ (-644 (-1081))) 41) (($ $ (-1081) (-771)) 40) (($ $ (-644 (-1081)) (-644 (-771))) 39) (($ $ (-771)) 256) (($ $) 254) (($ $ (-1175)) 248 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) 247 (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) 246 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) 245 (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) 244) (($ $ (-1 |#1| |#1|)) 243)) (-2914 (((-112) $ $) 6)) (-3025 (($ $ |#1|) 158 (|has| |#1| (-365)))) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 160 (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) 159 (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) 149) (($ $ |#1|) 148))) (((-1240 |#1|) (-140) (-1049)) (T -1240)) -((-2293 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-4 *1 (-1240 *4)) (-4 *4 (-1049)) (-5 *2 (-1264 *4)))) (-1988 (*1 *2 *1) (-12 (-4 *1 (-1240 *3)) (-4 *3 (-1049)) (-5 *2 (-1171 *3)))) (-3841 (*1 *1 *2) (-12 (-5 *2 (-1171 *3)) (-4 *3 (-1049)) (-4 *1 (-1240 *3)))) (-2955 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-1240 *3)) (-4 *3 (-1049)))) (-1313 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-771)) (-4 *1 (-1240 *3)) (-4 *3 (-1049)))) (-2044 (*1 *2 *1 *1) (-12 (-4 *3 (-1049)) (-5 *2 (-2 (|:| -2275 *1) (|:| -2513 *1))) (-4 *1 (-1240 *3)))) (-2764 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-4 *4 (-1049)) (-5 *2 (-2 (|:| -2275 *1) (|:| -2513 *1))) (-4 *1 (-1240 *4)))) (-2838 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-1240 *3)) (-4 *3 (-1049)))) (-3827 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-1240 *3)) (-4 *3 (-1049)))) (-3672 (*1 *1 *1 *1) (-12 (-4 *1 (-1240 *2)) (-4 *2 (-1049)))) (-3561 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1240 *3)) (-4 *3 (-1049)))) (-3652 (*1 *2 *1) (-12 (-4 *1 (-1240 *2)) (-4 *2 (-1049)) (-4 *2 (-172)))) (-2738 (*1 *2 *1 *1) (-12 (-4 *1 (-1240 *2)) (-4 *2 (-1049)) (-4 *2 (-172)))) (-4390 (*1 *2 *2 *2) (-12 (-5 *2 (-409 *1)) (-4 *1 (-1240 *3)) (-4 *3 (-1049)) (-4 *3 (-558)))) (-3254 (*1 *2 *1 *1) (-12 (-4 *1 (-1240 *3)) (-4 *3 (-1049)) (-4 *3 (-558)) (-5 *2 (-771)))) (-4206 (*1 *1 *1 *1) (-12 (-4 *1 (-1240 *2)) (-4 *2 (-1049)) (-4 *2 (-558)))) (-4150 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1240 *2)) (-4 *2 (-1049)) (-4 *2 (-558)))) (-4150 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-409 *1)) (-4 *1 (-1240 *3)) (-4 *3 (-1049)) (-4 *3 (-558)))) (-1324 (*1 *1 *1 *1) (-12 (-4 *1 (-1240 *2)) (-4 *2 (-1049)) (-4 *2 (-558)))) (-1960 (*1 *2 *1 *1) (-12 (-4 *3 (-558)) (-4 *3 (-1049)) (-5 *2 (-2 (|:| -1364 *3) (|:| -2275 *1) (|:| -2513 *1))) (-4 *1 (-1240 *3)))) (-1454 (*1 *2 *1 *1) (-12 (-4 *3 (-454)) (-4 *3 (-1049)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1240 *3)))) (-4390 (*1 *2 *3 *2) (-12 (-5 *3 (-409 *1)) (-4 *1 (-1240 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) (-1941 (*1 *1 *1) (-12 (-4 *1 (-1240 *2)) (-4 *2 (-1049)) (-4 *2 (-38 (-409 (-566))))))) -(-13 (-949 |t#1| (-771) (-1081)) (-287 |t#1| |t#1|) (-287 $ $) (-233) (-231 |t#1|) (-10 -8 (-15 -2293 ((-1264 |t#1|) $ (-771))) (-15 -1988 ((-1171 |t#1|) $)) (-15 -3841 ($ (-1171 |t#1|))) (-15 -2955 ($ $ (-771))) (-15 -1313 ((-3 $ "failed") $ (-771))) (-15 -2044 ((-2 (|:| -2275 $) (|:| -2513 $)) $ $)) (-15 -2764 ((-2 (|:| -2275 $) (|:| -2513 $)) $ (-771))) (-15 -2838 ($ $ (-771))) (-15 -3827 ($ $ (-771))) (-15 -3672 ($ $ $)) (-15 -3561 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1150)) (-6 (-1150)) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-15 -3652 (|t#1| $)) (-15 -2738 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-558)) (PROGN (-6 (-287 (-409 $) (-409 $))) (-15 -4390 ((-409 $) (-409 $) (-409 $))) (-15 -3254 ((-771) $ $)) (-15 -4206 ($ $ $)) (-15 -4150 ((-3 $ "failed") $ $)) (-15 -4150 ((-3 (-409 $) "failed") (-409 $) $)) (-15 -1324 ($ $ $)) (-15 -1960 ((-2 (|:| -1364 |t#1|) (|:| -2275 $) (|:| -2513 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-454)) (-15 -1454 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-365)) (PROGN (-6 (-308)) (-6 -4410) (-15 -4390 (|t#1| (-409 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-409 (-566)))) (-15 -1941 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-771)) . T) ((-25) . T) ((-38 #1=(-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-365))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-409 (-566)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #1#) -2809 (|has| |#1| (-1038 (-409 (-566)))) (|has| |#1| (-38 (-409 (-566))))) ((-616 (-566)) . T) ((-616 #2=(-1081)) . T) ((-616 |#1|) . T) ((-616 $) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-365))) ((-613 (-862)) . T) ((-172) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-614 (-538)) -12 (|has| (-1081) (-614 (-538))) (|has| |#1| (-614 (-538)))) ((-614 (-892 (-381))) -12 (|has| (-1081) (-614 (-892 (-381)))) (|has| |#1| (-614 (-892 (-381))))) ((-614 (-892 (-566))) -12 (|has| (-1081) (-614 (-892 (-566)))) (|has| |#1| (-614 (-892 (-566))))) ((-231 |#1|) . T) ((-233) . T) ((-287 (-409 $) (-409 $)) |has| |#1| (-558)) ((-287 |#1| |#1|) . T) ((-287 $ $) . T) ((-291) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-310 $) . T) ((-327 |#1| #0#) . T) ((-379 |#1|) . T) ((-413 |#1|) . T) ((-454) -2809 (|has| |#1| (-909)) (|has| |#1| (-454)) (|has| |#1| (-365))) ((-516 #2# |#1|) . T) ((-516 #2# $) . T) ((-516 $ $) . T) ((-558) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-365))) ((-646 #1#) |has| |#1| (-38 (-409 (-566)))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #1#) |has| |#1| (-38 (-409 (-566)))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #1#) |has| |#1| (-38 (-409 (-566)))) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-365))) ((-639 (-566)) |has| |#1| (-639 (-566))) ((-639 |#1|) . T) ((-717 #1#) |has| |#1| (-38 (-409 (-566)))) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-365))) ((-726) . T) ((-900 #2#) . T) ((-900 (-1175)) |has| |#1| (-900 (-1175))) ((-886 (-381)) -12 (|has| (-1081) (-886 (-381))) (|has| |#1| (-886 (-381)))) ((-886 (-566)) -12 (|has| (-1081) (-886 (-566))) (|has| |#1| (-886 (-566)))) ((-949 |#1| #0# #2#) . T) ((-909) |has| |#1| (-909)) ((-920) |has| |#1| (-365)) ((-1038 (-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((-1038 (-566)) |has| |#1| (-1038 (-566))) ((-1038 #2#) . T) ((-1038 |#1|) . T) ((-1051 #1#) |has| |#1| (-38 (-409 (-566)))) ((-1051 |#1|) . T) ((-1051 $) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1056 #1#) |has| |#1| (-38 (-409 (-566)))) ((-1056 |#1|) . T) ((-1056 $) -2809 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1150) |has| |#1| (-1150)) ((-1218) |has| |#1| (-909))) -((-3863 (((-644 (-1081)) $) 34)) (-1786 (($ $) 31)) (-3840 (($ |#2| |#3|) NIL) (($ $ (-1081) |#3|) 28) (($ $ (-644 (-1081)) (-644 |#3|)) 27)) (-1749 (($ $) 14)) (-1763 ((|#2| $) 12)) (-3636 ((|#3| $) 10))) -(((-1241 |#1| |#2| |#3|) (-10 -8 (-15 -3863 ((-644 (-1081)) |#1|)) (-15 -3840 (|#1| |#1| (-644 (-1081)) (-644 |#3|))) (-15 -3840 (|#1| |#1| (-1081) |#3|)) (-15 -1786 (|#1| |#1|)) (-15 -3840 (|#1| |#2| |#3|)) (-15 -3636 (|#3| |#1|)) (-15 -1749 (|#1| |#1|)) (-15 -1763 (|#2| |#1|))) (-1242 |#2| |#3|) (-1049) (-792)) (T -1241)) -NIL -(-10 -8 (-15 -3863 ((-644 (-1081)) |#1|)) (-15 -3840 (|#1| |#1| (-644 (-1081)) (-644 |#3|))) (-15 -3840 (|#1| |#1| (-1081) |#3|)) (-15 -1786 (|#1| |#1|)) (-15 -3840 (|#1| |#2| |#3|)) (-15 -3636 (|#3| |#1|)) (-15 -1749 (|#1| |#1|)) (-15 -1763 (|#2| |#1|))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-3863 (((-644 (-1081)) $) 86)) (-1385 (((-1175) $) 115)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) 63 (|has| |#1| (-558)))) (-3991 (($ $) 64 (|has| |#1| (-558)))) (-2388 (((-112) $) 66 (|has| |#1| (-558)))) (-2587 (($ $ |#2|) 110) (($ $ |#2| |#2|) 109)) (-2775 (((-1155 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 117)) (-4175 (((-3 $ "failed") $ $) 20)) (-3012 (($) 18 T CONST)) (-1786 (($ $) 72)) (-1878 (((-3 $ "failed") $) 37)) (-2158 (((-112) $) 85)) (-3254 ((|#2| $) 112) ((|#2| $ |#2|) 111)) (-3934 (((-112) $) 35)) (-2955 (($ $ (-921)) 113)) (-3264 (((-112) $) 74)) (-3840 (($ |#1| |#2|) 73) (($ $ (-1081) |#2|) 88) (($ $ (-644 (-1081)) (-644 |#2|)) 87)) (-1301 (($ (-1 |#1| |#1|) $) 75)) (-1749 (($ $) 77)) (-1763 ((|#1| $) 78)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3874 (($ $ |#2|) 107)) (-2994 (((-3 $ "failed") $ $) 62 (|has| |#1| (-558)))) (-2055 (((-1155 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-4390 ((|#1| $ |#2|) 116) (($ $ $) 93 (|has| |#2| (-1111)))) (-3561 (($ $ (-644 (-1175)) (-644 (-771))) 101 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1175) (-771)) 100 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-644 (-1175))) 99 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1175)) 98 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-771)) 96 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3636 ((|#2| $) 76)) (-2770 (($ $) 84)) (-3783 (((-862) $) 12) (($ (-566)) 33) (($ (-409 (-566))) 69 (|has| |#1| (-38 (-409 (-566))))) (($ $) 61 (|has| |#1| (-558))) (($ |#1|) 59 (|has| |#1| (-172)))) (-2649 ((|#1| $ |#2|) 71)) (-3144 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2107 (((-771)) 32 T CONST)) (-1320 ((|#1| $) 114)) (-3117 (((-112) $ $) 9)) (-2695 (((-112) $ $) 65 (|has| |#1| (-558)))) (-3628 ((|#1| $ |#2|) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -3783 (|#1| (-1175))))))) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-2875 (($ $ (-644 (-1175)) (-644 (-771))) 105 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1175) (-771)) 104 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-644 (-1175))) 103 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1175)) 102 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-771)) 97 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2947 (((-112) $ $) 6)) (-3065 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-409 (-566)) $) 68 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 67 (|has| |#1| (-38 (-409 (-566))))))) +((-4036 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-4 *1 (-1240 *4)) (-4 *4 (-1049)) (-5 *2 (-1264 *4)))) (-2513 (*1 *2 *1) (-12 (-4 *1 (-1240 *3)) (-4 *3 (-1049)) (-5 *2 (-1171 *3)))) (-3732 (*1 *1 *2) (-12 (-5 *2 (-1171 *3)) (-4 *3 (-1049)) (-4 *1 (-1240 *3)))) (-3394 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-1240 *3)) (-4 *3 (-1049)))) (-2382 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-771)) (-4 *1 (-1240 *3)) (-4 *3 (-1049)))) (-2815 (*1 *2 *1 *1) (-12 (-4 *3 (-1049)) (-5 *2 (-2 (|:| -2631 *1) (|:| -3264 *1))) (-4 *1 (-1240 *3)))) (-2307 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-4 *4 (-1049)) (-5 *2 (-2 (|:| -2631 *1) (|:| -3264 *1))) (-4 *1 (-1240 *4)))) (-2197 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-1240 *3)) (-4 *3 (-1049)))) (-1583 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-1240 *3)) (-4 *3 (-1049)))) (-2218 (*1 *1 *1 *1) (-12 (-4 *1 (-1240 *2)) (-4 *2 (-1049)))) (-3629 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1240 *3)) (-4 *3 (-1049)))) (-4068 (*1 *2 *1) (-12 (-4 *1 (-1240 *2)) (-4 *2 (-1049)) (-4 *2 (-172)))) (-2610 (*1 *2 *1 *1) (-12 (-4 *1 (-1240 *2)) (-4 *2 (-1049)) (-4 *2 (-172)))) (-1309 (*1 *2 *2 *2) (-12 (-5 *2 (-409 *1)) (-4 *1 (-1240 *3)) (-4 *3 (-1049)) (-4 *3 (-558)))) (-2679 (*1 *2 *1 *1) (-12 (-4 *1 (-1240 *3)) (-4 *3 (-1049)) (-4 *3 (-558)) (-5 *2 (-771)))) (-1890 (*1 *1 *1 *1) (-12 (-4 *1 (-1240 *2)) (-4 *2 (-1049)) (-4 *2 (-558)))) (-2529 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1240 *2)) (-4 *2 (-1049)) (-4 *2 (-558)))) (-2529 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-409 *1)) (-4 *1 (-1240 *3)) (-4 *3 (-1049)) (-4 *3 (-558)))) (-4058 (*1 *1 *1 *1) (-12 (-4 *1 (-1240 *2)) (-4 *2 (-1049)) (-4 *2 (-558)))) (-1514 (*1 *2 *1 *1) (-12 (-4 *3 (-558)) (-4 *3 (-1049)) (-5 *2 (-2 (|:| -2397 *3) (|:| -2631 *1) (|:| -3264 *1))) (-4 *1 (-1240 *3)))) (-3946 (*1 *2 *1 *1) (-12 (-4 *3 (-454)) (-4 *3 (-1049)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1240 *3)))) (-1309 (*1 *2 *3 *2) (-12 (-5 *3 (-409 *1)) (-4 *1 (-1240 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) (-3313 (*1 *1 *1) (-12 (-4 *1 (-1240 *2)) (-4 *2 (-1049)) (-4 *2 (-38 (-409 (-566))))))) +(-13 (-949 |t#1| (-771) (-1081)) (-287 |t#1| |t#1|) (-287 $ $) (-233) (-231 |t#1|) (-10 -8 (-15 -4036 ((-1264 |t#1|) $ (-771))) (-15 -2513 ((-1171 |t#1|) $)) (-15 -3732 ($ (-1171 |t#1|))) (-15 -3394 ($ $ (-771))) (-15 -2382 ((-3 $ "failed") $ (-771))) (-15 -2815 ((-2 (|:| -2631 $) (|:| -3264 $)) $ $)) (-15 -2307 ((-2 (|:| -2631 $) (|:| -3264 $)) $ (-771))) (-15 -2197 ($ $ (-771))) (-15 -1583 ($ $ (-771))) (-15 -2218 ($ $ $)) (-15 -3629 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1150)) (-6 (-1150)) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-15 -4068 (|t#1| $)) (-15 -2610 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-558)) (PROGN (-6 (-287 (-409 $) (-409 $))) (-15 -1309 ((-409 $) (-409 $) (-409 $))) (-15 -2679 ((-771) $ $)) (-15 -1890 ($ $ $)) (-15 -2529 ((-3 $ "failed") $ $)) (-15 -2529 ((-3 (-409 $) "failed") (-409 $) $)) (-15 -4058 ($ $ $)) (-15 -1514 ((-2 (|:| -2397 |t#1|) (|:| -2631 $) (|:| -3264 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-454)) (-15 -3946 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-365)) (PROGN (-6 (-308)) (-6 -4410) (-15 -1309 (|t#1| (-409 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-409 (-566)))) (-15 -3313 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-771)) . T) ((-25) . T) ((-38 #1=(-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2768 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-365))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-409 (-566)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2768 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #1#) -2768 (|has| |#1| (-1038 (-409 (-566)))) (|has| |#1| (-38 (-409 (-566))))) ((-616 (-566)) . T) ((-616 #2=(-1081)) . T) ((-616 |#1|) . T) ((-616 $) -2768 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-365))) ((-613 (-862)) . T) ((-172) -2768 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-614 (-538)) -12 (|has| (-1081) (-614 (-538))) (|has| |#1| (-614 (-538)))) ((-614 (-892 (-381))) -12 (|has| (-1081) (-614 (-892 (-381)))) (|has| |#1| (-614 (-892 (-381))))) ((-614 (-892 (-566))) -12 (|has| (-1081) (-614 (-892 (-566)))) (|has| |#1| (-614 (-892 (-566))))) ((-231 |#1|) . T) ((-233) . T) ((-287 (-409 $) (-409 $)) |has| |#1| (-558)) ((-287 |#1| |#1|) . T) ((-287 $ $) . T) ((-291) -2768 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-310 $) . T) ((-327 |#1| #0#) . T) ((-379 |#1|) . T) ((-413 |#1|) . T) ((-454) -2768 (|has| |#1| (-909)) (|has| |#1| (-454)) (|has| |#1| (-365))) ((-516 #2# |#1|) . T) ((-516 #2# $) . T) ((-516 $ $) . T) ((-558) -2768 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-365))) ((-646 #1#) |has| |#1| (-38 (-409 (-566)))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #1#) |has| |#1| (-38 (-409 (-566)))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #1#) |has| |#1| (-38 (-409 (-566)))) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) -2768 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-365))) ((-639 (-566)) |has| |#1| (-639 (-566))) ((-639 |#1|) . T) ((-717 #1#) |has| |#1| (-38 (-409 (-566)))) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) -2768 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-365))) ((-726) . T) ((-900 #2#) . T) ((-900 (-1175)) |has| |#1| (-900 (-1175))) ((-886 (-381)) -12 (|has| (-1081) (-886 (-381))) (|has| |#1| (-886 (-381)))) ((-886 (-566)) -12 (|has| (-1081) (-886 (-566))) (|has| |#1| (-886 (-566)))) ((-949 |#1| #0# #2#) . T) ((-909) |has| |#1| (-909)) ((-920) |has| |#1| (-365)) ((-1038 (-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((-1038 (-566)) |has| |#1| (-1038 (-566))) ((-1038 #2#) . T) ((-1038 |#1|) . T) ((-1051 #1#) |has| |#1| (-38 (-409 (-566)))) ((-1051 |#1|) . T) ((-1051 $) -2768 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1056 #1#) |has| |#1| (-38 (-409 (-566)))) ((-1056 |#1|) . T) ((-1056 $) -2768 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1150) |has| |#1| (-1150)) ((-1218) |has| |#1| (-909))) +((-1771 (((-644 (-1081)) $) 34)) (-2814 (($ $) 31)) (-1746 (($ |#2| |#3|) NIL) (($ $ (-1081) |#3|) 28) (($ $ (-644 (-1081)) (-644 |#3|)) 27)) (-2784 (($ $) 14)) (-2794 ((|#2| $) 12)) (-3902 ((|#3| $) 10))) +(((-1241 |#1| |#2| |#3|) (-10 -8 (-15 -1771 ((-644 (-1081)) |#1|)) (-15 -1746 (|#1| |#1| (-644 (-1081)) (-644 |#3|))) (-15 -1746 (|#1| |#1| (-1081) |#3|)) (-15 -2814 (|#1| |#1|)) (-15 -1746 (|#1| |#2| |#3|)) (-15 -3902 (|#3| |#1|)) (-15 -2784 (|#1| |#1|)) (-15 -2794 (|#2| |#1|))) (-1242 |#2| |#3|) (-1049) (-792)) (T -1241)) +NIL +(-10 -8 (-15 -1771 ((-644 (-1081)) |#1|)) (-15 -1746 (|#1| |#1| (-644 (-1081)) (-644 |#3|))) (-15 -1746 (|#1| |#1| (-1081) |#3|)) (-15 -2814 (|#1| |#1|)) (-15 -1746 (|#1| |#2| |#3|)) (-15 -3902 (|#3| |#1|)) (-15 -2784 (|#1| |#1|)) (-15 -2794 (|#2| |#1|))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-1771 (((-644 (-1081)) $) 86)) (-4347 (((-1175) $) 115)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) 63 (|has| |#1| (-558)))) (-2161 (($ $) 64 (|has| |#1| (-558)))) (-2345 (((-112) $) 66 (|has| |#1| (-558)))) (-2331 (($ $ |#2|) 110) (($ $ |#2| |#2|) 109)) (-4152 (((-1155 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 117)) (-3967 (((-3 $ "failed") $ $) 20)) (-2463 (($) 18 T CONST)) (-2814 (($ $) 72)) (-3245 (((-3 $ "failed") $) 37)) (-3772 (((-112) $) 85)) (-2679 ((|#2| $) 112) ((|#2| $ |#2|) 111)) (-2389 (((-112) $) 35)) (-3394 (($ $ (-921)) 113)) (-2497 (((-112) $) 74)) (-1746 (($ |#1| |#2|) 73) (($ $ (-1081) |#2|) 88) (($ $ (-644 (-1081)) (-644 |#2|)) 87)) (-2319 (($ (-1 |#1| |#1|) $) 75)) (-2784 (($ $) 77)) (-2794 ((|#1| $) 78)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3369 (($ $ |#2|) 107)) (-2978 (((-3 $ "failed") $ $) 62 (|has| |#1| (-558)))) (-2023 (((-1155 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-1309 ((|#1| $ |#2|) 116) (($ $ $) 93 (|has| |#2| (-1111)))) (-3629 (($ $ (-644 (-1175)) (-644 (-771))) 101 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1175) (-771)) 100 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-644 (-1175))) 99 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1175)) 98 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-771)) 96 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3902 ((|#2| $) 76)) (-1687 (($ $) 84)) (-3152 (((-862) $) 12) (($ (-566)) 33) (($ (-409 (-566))) 69 (|has| |#1| (-38 (-409 (-566))))) (($ $) 61 (|has| |#1| (-558))) (($ |#1|) 59 (|has| |#1| (-172)))) (-2271 ((|#1| $ |#2|) 71)) (-2633 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2593 (((-771)) 32 T CONST)) (-4290 ((|#1| $) 114)) (-3044 (((-112) $ $) 9)) (-3014 (((-112) $ $) 65 (|has| |#1| (-558)))) (-3603 ((|#1| $ |#2|) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -3152 (|#1| (-1175))))))) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-3497 (($ $ (-644 (-1175)) (-644 (-771))) 105 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1175) (-771)) 104 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-644 (-1175))) 103 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1175)) 102 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-771)) 97 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2914 (((-112) $ $) 6)) (-3025 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-409 (-566)) $) 68 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 67 (|has| |#1| (-38 (-409 (-566))))))) (((-1242 |#1| |#2|) (-140) (-1049) (-792)) (T -1242)) -((-2775 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)) (-5 *2 (-1155 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4390 (*1 *2 *1 *3) (-12 (-4 *1 (-1242 *2 *3)) (-4 *3 (-792)) (-4 *2 (-1049)))) (-1385 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)) (-5 *2 (-1175)))) (-1320 (*1 *2 *1) (-12 (-4 *1 (-1242 *2 *3)) (-4 *3 (-792)) (-4 *2 (-1049)))) (-2955 (*1 *1 *1 *2) (-12 (-5 *2 (-921)) (-4 *1 (-1242 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)))) (-3254 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-792)))) (-3254 (*1 *2 *1 *2) (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-792)))) (-2587 (*1 *1 *1 *2) (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-792)))) (-2587 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-792)))) (-3628 (*1 *2 *1 *3) (-12 (-4 *1 (-1242 *2 *3)) (-4 *3 (-792)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3783 (*2 (-1175)))) (-4 *2 (-1049)))) (-3874 (*1 *1 *1 *2) (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-792)))) (-2055 (*1 *2 *1 *3) (-12 (-4 *1 (-1242 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1155 *3))))) -(-13 (-973 |t#1| |t#2| (-1081)) (-10 -8 (-15 -2775 ((-1155 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4390 (|t#1| $ |t#2|)) (-15 -1385 ((-1175) $)) (-15 -1320 (|t#1| $)) (-15 -2955 ($ $ (-921))) (-15 -3254 (|t#2| $)) (-15 -3254 (|t#2| $ |t#2|)) (-15 -2587 ($ $ |t#2|)) (-15 -2587 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -3783 (|t#1| (-1175)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3628 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3874 ($ $ |t#2|)) (IF (|has| |t#2| (-1111)) (-6 (-287 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-233)) (IF (|has| |t#1| (-900 (-1175))) (-6 (-900 (-1175))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2055 ((-1155 |t#1|) $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-558)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-409 (-566)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2809 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #0#) |has| |#1| (-38 (-409 (-566)))) ((-616 (-566)) . T) ((-616 |#1|) |has| |#1| (-172)) ((-616 $) |has| |#1| (-558)) ((-613 (-862)) . T) ((-172) -2809 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-287 $ $) |has| |#2| (-1111)) ((-291) |has| |#1| (-558)) ((-558) |has| |#1| (-558)) ((-646 #0#) |has| |#1| (-38 (-409 (-566)))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #0#) |has| |#1| (-38 (-409 (-566)))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #0#) |has| |#1| (-38 (-409 (-566)))) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) |has| |#1| (-558)) ((-717 #0#) |has| |#1| (-38 (-409 (-566)))) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) |has| |#1| (-558)) ((-726) . T) ((-900 (-1175)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-900 (-1175)))) ((-973 |#1| |#2| (-1081)) . T) ((-1051 #0#) |has| |#1| (-38 (-409 (-566)))) ((-1051 |#1|) . T) ((-1051 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-1056 #0#) |has| |#1| (-38 (-409 (-566)))) ((-1056 |#1|) . T) ((-1056 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) -((-1550 ((|#2| |#2|) 12)) (-3184 (((-420 |#2|) |#2|) 14)) (-3176 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-566))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-566)))) 30))) -(((-1243 |#1| |#2|) (-10 -7 (-15 -3184 ((-420 |#2|) |#2|)) (-15 -1550 (|#2| |#2|)) (-15 -3176 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-566))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-566)))))) (-558) (-13 (-1240 |#1|) (-558) (-10 -8 (-15 -2214 ($ $ $))))) (T -1243)) -((-3176 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-566)))) (-4 *4 (-13 (-1240 *3) (-558) (-10 -8 (-15 -2214 ($ $ $))))) (-4 *3 (-558)) (-5 *1 (-1243 *3 *4)))) (-1550 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-1243 *3 *2)) (-4 *2 (-13 (-1240 *3) (-558) (-10 -8 (-15 -2214 ($ $ $))))))) (-3184 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-420 *3)) (-5 *1 (-1243 *4 *3)) (-4 *3 (-13 (-1240 *4) (-558) (-10 -8 (-15 -2214 ($ $ $)))))))) -(-10 -7 (-15 -3184 ((-420 |#2|) |#2|)) (-15 -1550 (|#2| |#2|)) (-15 -3176 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-566))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-566)))))) -((-1301 (((-1249 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1249 |#1| |#3| |#5|)) 24))) -(((-1244 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1301 ((-1249 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1249 |#1| |#3| |#5|)))) (-1049) (-1049) (-1175) (-1175) |#1| |#2|) (T -1244)) -((-1301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1249 *5 *7 *9)) (-4 *5 (-1049)) (-4 *6 (-1049)) (-14 *7 (-1175)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1249 *6 *8 *10)) (-5 *1 (-1244 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1175))))) -(-10 -7 (-15 -1301 ((-1249 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1249 |#1| |#3| |#5|)))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-3863 (((-644 (-1081)) $) 86)) (-1385 (((-1175) $) 115)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) 63 (|has| |#1| (-558)))) (-3991 (($ $) 64 (|has| |#1| (-558)))) (-2388 (((-112) $) 66 (|has| |#1| (-558)))) (-2587 (($ $ (-409 (-566))) 110) (($ $ (-409 (-566)) (-409 (-566))) 109)) (-2775 (((-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#1|))) $) 117)) (-4114 (($ $) 147 (|has| |#1| (-38 (-409 (-566)))))) (-2109 (($ $) 130 (|has| |#1| (-38 (-409 (-566)))))) (-4175 (((-3 $ "failed") $ $) 20)) (-1550 (($ $) 174 (|has| |#1| (-365)))) (-3184 (((-420 $) $) 175 (|has| |#1| (-365)))) (-3731 (($ $) 129 (|has| |#1| (-38 (-409 (-566)))))) (-2837 (((-112) $ $) 165 (|has| |#1| (-365)))) (-2240 (($ $) 146 (|has| |#1| (-38 (-409 (-566)))))) (-2085 (($ $) 131 (|has| |#1| (-38 (-409 (-566)))))) (-2052 (($ (-771) (-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#1|)))) 183)) (-4134 (($ $) 145 (|has| |#1| (-38 (-409 (-566)))))) (-2129 (($ $) 132 (|has| |#1| (-38 (-409 (-566)))))) (-3012 (($) 18 T CONST)) (-2946 (($ $ $) 169 (|has| |#1| (-365)))) (-1786 (($ $) 72)) (-1878 (((-3 $ "failed") $) 37)) (-2957 (($ $ $) 168 (|has| |#1| (-365)))) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) 163 (|has| |#1| (-365)))) (-3268 (((-112) $) 176 (|has| |#1| (-365)))) (-2158 (((-112) $) 85)) (-4361 (($) 157 (|has| |#1| (-38 (-409 (-566)))))) (-3254 (((-409 (-566)) $) 112) (((-409 (-566)) $ (-409 (-566))) 111)) (-3934 (((-112) $) 35)) (-2140 (($ $ (-566)) 128 (|has| |#1| (-38 (-409 (-566)))))) (-2955 (($ $ (-921)) 113) (($ $ (-409 (-566))) 182)) (-3775 (((-3 (-644 $) "failed") (-644 $) $) 172 (|has| |#1| (-365)))) (-3264 (((-112) $) 74)) (-3840 (($ |#1| (-409 (-566))) 73) (($ $ (-1081) (-409 (-566))) 88) (($ $ (-644 (-1081)) (-644 (-409 (-566)))) 87)) (-1301 (($ (-1 |#1| |#1|) $) 75)) (-3651 (($ $) 154 (|has| |#1| (-38 (-409 (-566)))))) (-1749 (($ $) 77)) (-1763 ((|#1| $) 78)) (-2167 (($ (-644 $)) 161 (|has| |#1| (-365))) (($ $ $) 160 (|has| |#1| (-365)))) (-4117 (((-1157) $) 10)) (-1713 (($ $) 177 (|has| |#1| (-365)))) (-1941 (($ $) 181 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) 180 (-2809 (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-959)) (|has| |#1| (-1199)) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-15 -3863 ((-644 (-1175)) |#1|))) (|has| |#1| (-15 -1941 (|#1| |#1| (-1175)))) (|has| |#1| (-38 (-409 (-566)))))))) (-4035 (((-1119) $) 11)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) 162 (|has| |#1| (-365)))) (-2214 (($ (-644 $)) 159 (|has| |#1| (-365))) (($ $ $) 158 (|has| |#1| (-365)))) (-3719 (((-420 $) $) 173 (|has| |#1| (-365)))) (-3148 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 170 (|has| |#1| (-365)))) (-3874 (($ $ (-409 (-566))) 107)) (-2994 (((-3 $ "failed") $ $) 62 (|has| |#1| (-558)))) (-3161 (((-3 (-644 $) "failed") (-644 $) $) 164 (|has| |#1| (-365)))) (-2561 (($ $) 155 (|has| |#1| (-38 (-409 (-566)))))) (-2055 (((-1155 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-409 (-566))))))) (-3039 (((-771) $) 166 (|has| |#1| (-365)))) (-4390 ((|#1| $ (-409 (-566))) 116) (($ $ $) 93 (|has| (-409 (-566)) (-1111)))) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) 167 (|has| |#1| (-365)))) (-3561 (($ $ (-644 (-1175)) (-644 (-771))) 101 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-1175) (-771)) 100 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-644 (-1175))) 99 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-1175)) 98 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-771)) 96 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (-3636 (((-409 (-566)) $) 76)) (-4144 (($ $) 144 (|has| |#1| (-38 (-409 (-566)))))) (-2141 (($ $) 133 (|has| |#1| (-38 (-409 (-566)))))) (-4124 (($ $) 143 (|has| |#1| (-38 (-409 (-566)))))) (-2118 (($ $) 134 (|has| |#1| (-38 (-409 (-566)))))) (-4104 (($ $) 142 (|has| |#1| (-38 (-409 (-566)))))) (-2098 (($ $) 135 (|has| |#1| (-38 (-409 (-566)))))) (-2770 (($ $) 84)) (-3783 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 59 (|has| |#1| (-172))) (($ (-409 (-566))) 69 (|has| |#1| (-38 (-409 (-566))))) (($ $) 61 (|has| |#1| (-558)))) (-2649 ((|#1| $ (-409 (-566))) 71)) (-3144 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2107 (((-771)) 32 T CONST)) (-1320 ((|#1| $) 114)) (-3117 (((-112) $ $) 9)) (-4177 (($ $) 153 (|has| |#1| (-38 (-409 (-566)))))) (-2180 (($ $) 141 (|has| |#1| (-38 (-409 (-566)))))) (-2695 (((-112) $ $) 65 (|has| |#1| (-558)))) (-4155 (($ $) 152 (|has| |#1| (-38 (-409 (-566)))))) (-2153 (($ $) 140 (|has| |#1| (-38 (-409 (-566)))))) (-4198 (($ $) 151 (|has| |#1| (-38 (-409 (-566)))))) (-2212 (($ $) 139 (|has| |#1| (-38 (-409 (-566)))))) (-3628 ((|#1| $ (-409 (-566))) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-409 (-566))))) (|has| |#1| (-15 -3783 (|#1| (-1175))))))) (-2976 (($ $) 150 (|has| |#1| (-38 (-409 (-566)))))) (-2227 (($ $) 138 (|has| |#1| (-38 (-409 (-566)))))) (-4188 (($ $) 149 (|has| |#1| (-38 (-409 (-566)))))) (-2196 (($ $) 137 (|has| |#1| (-38 (-409 (-566)))))) (-4166 (($ $) 148 (|has| |#1| (-38 (-409 (-566)))))) (-2166 (($ $) 136 (|has| |#1| (-38 (-409 (-566)))))) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-2875 (($ $ (-644 (-1175)) (-644 (-771))) 105 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-1175) (-771)) 104 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-644 (-1175))) 103 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-1175)) 102 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-771)) 97 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (-2947 (((-112) $ $) 6)) (-3065 (($ $ |#1|) 70 (|has| |#1| (-365))) (($ $ $) 179 (|has| |#1| (-365)))) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 178 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 127 (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-409 (-566)) $) 68 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 67 (|has| |#1| (-38 (-409 (-566))))))) +((-4152 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)) (-5 *2 (-1155 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1309 (*1 *2 *1 *3) (-12 (-4 *1 (-1242 *2 *3)) (-4 *3 (-792)) (-4 *2 (-1049)))) (-4347 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)) (-5 *2 (-1175)))) (-4290 (*1 *2 *1) (-12 (-4 *1 (-1242 *2 *3)) (-4 *3 (-792)) (-4 *2 (-1049)))) (-3394 (*1 *1 *1 *2) (-12 (-5 *2 (-921)) (-4 *1 (-1242 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)))) (-2679 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-792)))) (-2679 (*1 *2 *1 *2) (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-792)))) (-2331 (*1 *1 *1 *2) (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-792)))) (-2331 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-792)))) (-3603 (*1 *2 *1 *3) (-12 (-4 *1 (-1242 *2 *3)) (-4 *3 (-792)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3152 (*2 (-1175)))) (-4 *2 (-1049)))) (-3369 (*1 *1 *1 *2) (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-792)))) (-2023 (*1 *2 *1 *3) (-12 (-4 *1 (-1242 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1155 *3))))) +(-13 (-973 |t#1| |t#2| (-1081)) (-10 -8 (-15 -4152 ((-1155 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1309 (|t#1| $ |t#2|)) (-15 -4347 ((-1175) $)) (-15 -4290 (|t#1| $)) (-15 -3394 ($ $ (-921))) (-15 -2679 (|t#2| $)) (-15 -2679 (|t#2| $ |t#2|)) (-15 -2331 ($ $ |t#2|)) (-15 -2331 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -3152 (|t#1| (-1175)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3603 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3369 ($ $ |t#2|)) (IF (|has| |t#2| (-1111)) (-6 (-287 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-233)) (IF (|has| |t#1| (-900 (-1175))) (-6 (-900 (-1175))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2023 ((-1155 |t#1|) $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-558)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-409 (-566)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2768 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #0#) |has| |#1| (-38 (-409 (-566)))) ((-616 (-566)) . T) ((-616 |#1|) |has| |#1| (-172)) ((-616 $) |has| |#1| (-558)) ((-613 (-862)) . T) ((-172) -2768 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-287 $ $) |has| |#2| (-1111)) ((-291) |has| |#1| (-558)) ((-558) |has| |#1| (-558)) ((-646 #0#) |has| |#1| (-38 (-409 (-566)))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #0#) |has| |#1| (-38 (-409 (-566)))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #0#) |has| |#1| (-38 (-409 (-566)))) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) |has| |#1| (-558)) ((-717 #0#) |has| |#1| (-38 (-409 (-566)))) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) |has| |#1| (-558)) ((-726) . T) ((-900 (-1175)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-900 (-1175)))) ((-973 |#1| |#2| (-1081)) . T) ((-1051 #0#) |has| |#1| (-38 (-409 (-566)))) ((-1051 |#1|) . T) ((-1051 $) -2768 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-1056 #0#) |has| |#1| (-38 (-409 (-566)))) ((-1056 |#1|) . T) ((-1056 $) -2768 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) +((-1378 ((|#2| |#2|) 12)) (-1364 (((-420 |#2|) |#2|) 14)) (-1756 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-566))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-566)))) 30))) +(((-1243 |#1| |#2|) (-10 -7 (-15 -1364 ((-420 |#2|) |#2|)) (-15 -1378 (|#2| |#2|)) (-15 -1756 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-566))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-566)))))) (-558) (-13 (-1240 |#1|) (-558) (-10 -8 (-15 -2164 ($ $ $))))) (T -1243)) +((-1756 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-566)))) (-4 *4 (-13 (-1240 *3) (-558) (-10 -8 (-15 -2164 ($ $ $))))) (-4 *3 (-558)) (-5 *1 (-1243 *3 *4)))) (-1378 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-1243 *3 *2)) (-4 *2 (-13 (-1240 *3) (-558) (-10 -8 (-15 -2164 ($ $ $))))))) (-1364 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-420 *3)) (-5 *1 (-1243 *4 *3)) (-4 *3 (-13 (-1240 *4) (-558) (-10 -8 (-15 -2164 ($ $ $)))))))) +(-10 -7 (-15 -1364 ((-420 |#2|) |#2|)) (-15 -1378 (|#2| |#2|)) (-15 -1756 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-566))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-566)))))) +((-2319 (((-1249 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1249 |#1| |#3| |#5|)) 24))) +(((-1244 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2319 ((-1249 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1249 |#1| |#3| |#5|)))) (-1049) (-1049) (-1175) (-1175) |#1| |#2|) (T -1244)) +((-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1249 *5 *7 *9)) (-4 *5 (-1049)) (-4 *6 (-1049)) (-14 *7 (-1175)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1249 *6 *8 *10)) (-5 *1 (-1244 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1175))))) +(-10 -7 (-15 -2319 ((-1249 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1249 |#1| |#3| |#5|)))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-1771 (((-644 (-1081)) $) 86)) (-4347 (((-1175) $) 115)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) 63 (|has| |#1| (-558)))) (-2161 (($ $) 64 (|has| |#1| (-558)))) (-2345 (((-112) $) 66 (|has| |#1| (-558)))) (-2331 (($ $ (-409 (-566))) 110) (($ $ (-409 (-566)) (-409 (-566))) 109)) (-4152 (((-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#1|))) $) 117)) (-3963 (($ $) 147 (|has| |#1| (-38 (-409 (-566)))))) (-3630 (($ $) 130 (|has| |#1| (-38 (-409 (-566)))))) (-3967 (((-3 $ "failed") $ $) 20)) (-1378 (($ $) 174 (|has| |#1| (-365)))) (-1364 (((-420 $) $) 175 (|has| |#1| (-365)))) (-1635 (($ $) 129 (|has| |#1| (-38 (-409 (-566)))))) (-2085 (((-112) $ $) 165 (|has| |#1| (-365)))) (-3941 (($ $) 146 (|has| |#1| (-38 (-409 (-566)))))) (-3602 (($ $) 131 (|has| |#1| (-38 (-409 (-566)))))) (-1427 (($ (-771) (-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#1|)))) 183)) (-3986 (($ $) 145 (|has| |#1| (-38 (-409 (-566)))))) (-3656 (($ $) 132 (|has| |#1| (-38 (-409 (-566)))))) (-2463 (($) 18 T CONST)) (-2933 (($ $ $) 169 (|has| |#1| (-365)))) (-2814 (($ $) 72)) (-3245 (((-3 $ "failed") $) 37)) (-2945 (($ $ $) 168 (|has| |#1| (-365)))) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) 163 (|has| |#1| (-365)))) (-1615 (((-112) $) 176 (|has| |#1| (-365)))) (-3772 (((-112) $) 85)) (-2281 (($) 157 (|has| |#1| (-38 (-409 (-566)))))) (-2679 (((-409 (-566)) $) 112) (((-409 (-566)) $ (-409 (-566))) 111)) (-2389 (((-112) $) 35)) (-1575 (($ $ (-566)) 128 (|has| |#1| (-38 (-409 (-566)))))) (-3394 (($ $ (-921)) 113) (($ $ (-409 (-566))) 182)) (-3816 (((-3 (-644 $) "failed") (-644 $) $) 172 (|has| |#1| (-365)))) (-2497 (((-112) $) 74)) (-1746 (($ |#1| (-409 (-566))) 73) (($ $ (-1081) (-409 (-566))) 88) (($ $ (-644 (-1081)) (-644 (-409 (-566)))) 87)) (-2319 (($ (-1 |#1| |#1|) $) 75)) (-3619 (($ $) 154 (|has| |#1| (-38 (-409 (-566)))))) (-2784 (($ $) 77)) (-2794 ((|#1| $) 78)) (-2128 (($ (-644 $)) 161 (|has| |#1| (-365))) (($ $ $) 160 (|has| |#1| (-365)))) (-3380 (((-1157) $) 10)) (-2748 (($ $) 177 (|has| |#1| (-365)))) (-3313 (($ $) 181 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) 180 (-2768 (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-959)) (|has| |#1| (-1199)) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-15 -1771 ((-644 (-1175)) |#1|))) (|has| |#1| (-15 -3313 (|#1| |#1| (-1175)))) (|has| |#1| (-38 (-409 (-566)))))))) (-4072 (((-1119) $) 11)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) 162 (|has| |#1| (-365)))) (-2164 (($ (-644 $)) 159 (|has| |#1| (-365))) (($ $ $) 158 (|has| |#1| (-365)))) (-1624 (((-420 $) $) 173 (|has| |#1| (-365)))) (-3005 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) 170 (|has| |#1| (-365)))) (-3369 (($ $ (-409 (-566))) 107)) (-2978 (((-3 $ "failed") $ $) 62 (|has| |#1| (-558)))) (-2915 (((-3 (-644 $) "failed") (-644 $) $) 164 (|has| |#1| (-365)))) (-3521 (($ $) 155 (|has| |#1| (-38 (-409 (-566)))))) (-2023 (((-1155 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-409 (-566))))))) (-4357 (((-771) $) 166 (|has| |#1| (-365)))) (-1309 ((|#1| $ (-409 (-566))) 116) (($ $ $) 93 (|has| (-409 (-566)) (-1111)))) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) 167 (|has| |#1| (-365)))) (-3629 (($ $ (-644 (-1175)) (-644 (-771))) 101 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-1175) (-771)) 100 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-644 (-1175))) 99 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-1175)) 98 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-771)) 96 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (-3902 (((-409 (-566)) $) 76)) (-3996 (($ $) 144 (|has| |#1| (-38 (-409 (-566)))))) (-3670 (($ $) 133 (|has| |#1| (-38 (-409 (-566)))))) (-3976 (($ $) 143 (|has| |#1| (-38 (-409 (-566)))))) (-3643 (($ $) 134 (|has| |#1| (-38 (-409 (-566)))))) (-3952 (($ $) 142 (|has| |#1| (-38 (-409 (-566)))))) (-3618 (($ $) 135 (|has| |#1| (-38 (-409 (-566)))))) (-1687 (($ $) 84)) (-3152 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 59 (|has| |#1| (-172))) (($ (-409 (-566))) 69 (|has| |#1| (-38 (-409 (-566))))) (($ $) 61 (|has| |#1| (-558)))) (-2271 ((|#1| $ (-409 (-566))) 71)) (-2633 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2593 (((-771)) 32 T CONST)) (-4290 ((|#1| $) 114)) (-3044 (((-112) $ $) 9)) (-4032 (($ $) 153 (|has| |#1| (-38 (-409 (-566)))))) (-3892 (($ $) 141 (|has| |#1| (-38 (-409 (-566)))))) (-3014 (((-112) $ $) 65 (|has| |#1| (-558)))) (-4008 (($ $) 152 (|has| |#1| (-38 (-409 (-566)))))) (-3684 (($ $) 140 (|has| |#1| (-38 (-409 (-566)))))) (-4057 (($ $) 151 (|has| |#1| (-38 (-409 (-566)))))) (-3917 (($ $) 139 (|has| |#1| (-38 (-409 (-566)))))) (-3603 ((|#1| $ (-409 (-566))) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-409 (-566))))) (|has| |#1| (-15 -3152 (|#1| (-1175))))))) (-3964 (($ $) 150 (|has| |#1| (-38 (-409 (-566)))))) (-3929 (($ $) 138 (|has| |#1| (-38 (-409 (-566)))))) (-4044 (($ $) 149 (|has| |#1| (-38 (-409 (-566)))))) (-3904 (($ $) 137 (|has| |#1| (-38 (-409 (-566)))))) (-4020 (($ $) 148 (|has| |#1| (-38 (-409 (-566)))))) (-3879 (($ $) 136 (|has| |#1| (-38 (-409 (-566)))))) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-3497 (($ $ (-644 (-1175)) (-644 (-771))) 105 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-1175) (-771)) 104 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-644 (-1175))) 103 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-1175)) 102 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-771)) 97 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (-2914 (((-112) $ $) 6)) (-3025 (($ $ |#1|) 70 (|has| |#1| (-365))) (($ $ $) 179 (|has| |#1| (-365)))) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 178 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 127 (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-409 (-566)) $) 68 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 67 (|has| |#1| (-38 (-409 (-566))))))) (((-1245 |#1|) (-140) (-1049)) (T -1245)) -((-2052 (*1 *1 *2 *3) (-12 (-5 *2 (-771)) (-5 *3 (-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| *4)))) (-4 *4 (-1049)) (-4 *1 (-1245 *4)))) (-2955 (*1 *1 *1 *2) (-12 (-5 *2 (-409 (-566))) (-4 *1 (-1245 *3)) (-4 *3 (-1049)))) (-1941 (*1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1049)) (-4 *2 (-38 (-409 (-566)))))) (-1941 (*1 *1 *1 *2) (-2809 (-12 (-5 *2 (-1175)) (-4 *1 (-1245 *3)) (-4 *3 (-1049)) (-12 (-4 *3 (-29 (-566))) (-4 *3 (-959)) (-4 *3 (-1199)) (-4 *3 (-38 (-409 (-566)))))) (-12 (-5 *2 (-1175)) (-4 *1 (-1245 *3)) (-4 *3 (-1049)) (-12 (|has| *3 (-15 -3863 ((-644 *2) *3))) (|has| *3 (-15 -1941 (*3 *3 *2))) (-4 *3 (-38 (-409 (-566))))))))) -(-13 (-1242 |t#1| (-409 (-566))) (-10 -8 (-15 -2052 ($ (-771) (-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |t#1|))))) (-15 -2955 ($ $ (-409 (-566)))) (IF (|has| |t#1| (-38 (-409 (-566)))) (PROGN (-15 -1941 ($ $)) (IF (|has| |t#1| (-15 -1941 (|t#1| |t#1| (-1175)))) (IF (|has| |t#1| (-15 -3863 ((-644 (-1175)) |t#1|))) (-15 -1941 ($ $ (-1175))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1199)) (IF (|has| |t#1| (-959)) (IF (|has| |t#1| (-29 (-566))) (-15 -1941 ($ $ (-1175))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1002)) (-6 (-1199))) |%noBranch|) (IF (|has| |t#1| (-365)) (-6 (-365)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-409 (-566))) . T) ((-25) . T) ((-38 #1=(-409 (-566))) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-35) |has| |#1| (-38 (-409 (-566)))) ((-95) |has| |#1| (-38 (-409 (-566)))) ((-102) . T) ((-111 #1# #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2809 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-616 (-566)) . T) ((-616 |#1|) |has| |#1| (-172)) ((-616 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-613 (-862)) . T) ((-172) -2809 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) ((-243) |has| |#1| (-365)) ((-285) |has| |#1| (-38 (-409 (-566)))) ((-287 $ $) |has| (-409 (-566)) (-1111)) ((-291) -2809 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-365) |has| |#1| (-365)) ((-454) |has| |#1| (-365)) ((-495) |has| |#1| (-38 (-409 (-566)))) ((-558) -2809 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-646 #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-717 #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-726) . T) ((-900 (-1175)) -12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175)))) ((-973 |#1| #0# (-1081)) . T) ((-920) |has| |#1| (-365)) ((-1002) |has| |#1| (-38 (-409 (-566)))) ((-1051 #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-1051 |#1|) . T) ((-1051 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1056 #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-1056 |#1|) . T) ((-1056 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1199) |has| |#1| (-38 (-409 (-566)))) ((-1202) |has| |#1| (-38 (-409 (-566)))) ((-1218) |has| |#1| (-365)) ((-1242 |#1| #0#) . T)) -((-1788 (((-112) $) 12)) (-4307 (((-3 |#3| "failed") $) 17)) (-4205 ((|#3| $) 14))) -(((-1246 |#1| |#2| |#3|) (-10 -8 (-15 -4307 ((-3 |#3| "failed") |#1|)) (-15 -4205 (|#3| |#1|)) (-15 -1788 ((-112) |#1|))) (-1247 |#2| |#3|) (-1049) (-1224 |#2|)) (T -1246)) -NIL -(-10 -8 (-15 -4307 ((-3 |#3| "failed") |#1|)) (-15 -4205 (|#3| |#1|)) (-15 -1788 ((-112) |#1|))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-3863 (((-644 (-1081)) $) 86)) (-1385 (((-1175) $) 115)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) 63 (|has| |#1| (-558)))) (-3991 (($ $) 64 (|has| |#1| (-558)))) (-2388 (((-112) $) 66 (|has| |#1| (-558)))) (-2587 (($ $ (-409 (-566))) 110) (($ $ (-409 (-566)) (-409 (-566))) 109)) (-2775 (((-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#1|))) $) 117)) (-4114 (($ $) 147 (|has| |#1| (-38 (-409 (-566)))))) (-2109 (($ $) 130 (|has| |#1| (-38 (-409 (-566)))))) (-4175 (((-3 $ "failed") $ $) 20)) (-1550 (($ $) 174 (|has| |#1| (-365)))) (-3184 (((-420 $) $) 175 (|has| |#1| (-365)))) (-3731 (($ $) 129 (|has| |#1| (-38 (-409 (-566)))))) (-2837 (((-112) $ $) 165 (|has| |#1| (-365)))) (-2240 (($ $) 146 (|has| |#1| (-38 (-409 (-566)))))) (-2085 (($ $) 131 (|has| |#1| (-38 (-409 (-566)))))) (-2052 (($ (-771) (-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#1|)))) 183)) (-4134 (($ $) 145 (|has| |#1| (-38 (-409 (-566)))))) (-2129 (($ $) 132 (|has| |#1| (-38 (-409 (-566)))))) (-3012 (($) 18 T CONST)) (-4307 (((-3 |#2| "failed") $) 194)) (-4205 ((|#2| $) 195)) (-2946 (($ $ $) 169 (|has| |#1| (-365)))) (-1786 (($ $) 72)) (-1878 (((-3 $ "failed") $) 37)) (-2290 (((-409 (-566)) $) 191)) (-2957 (($ $ $) 168 (|has| |#1| (-365)))) (-1690 (($ (-409 (-566)) |#2|) 192)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) 163 (|has| |#1| (-365)))) (-3268 (((-112) $) 176 (|has| |#1| (-365)))) (-2158 (((-112) $) 85)) (-4361 (($) 157 (|has| |#1| (-38 (-409 (-566)))))) (-3254 (((-409 (-566)) $) 112) (((-409 (-566)) $ (-409 (-566))) 111)) (-3934 (((-112) $) 35)) (-2140 (($ $ (-566)) 128 (|has| |#1| (-38 (-409 (-566)))))) (-2955 (($ $ (-921)) 113) (($ $ (-409 (-566))) 182)) (-3775 (((-3 (-644 $) "failed") (-644 $) $) 172 (|has| |#1| (-365)))) (-3264 (((-112) $) 74)) (-3840 (($ |#1| (-409 (-566))) 73) (($ $ (-1081) (-409 (-566))) 88) (($ $ (-644 (-1081)) (-644 (-409 (-566)))) 87)) (-1301 (($ (-1 |#1| |#1|) $) 75)) (-3651 (($ $) 154 (|has| |#1| (-38 (-409 (-566)))))) (-1749 (($ $) 77)) (-1763 ((|#1| $) 78)) (-2167 (($ (-644 $)) 161 (|has| |#1| (-365))) (($ $ $) 160 (|has| |#1| (-365)))) (-1378 ((|#2| $) 190)) (-2087 (((-3 |#2| "failed") $) 188)) (-1678 ((|#2| $) 189)) (-4117 (((-1157) $) 10)) (-1713 (($ $) 177 (|has| |#1| (-365)))) (-1941 (($ $) 181 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) 180 (-2809 (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-959)) (|has| |#1| (-1199)) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-15 -3863 ((-644 (-1175)) |#1|))) (|has| |#1| (-15 -1941 (|#1| |#1| (-1175)))) (|has| |#1| (-38 (-409 (-566)))))))) (-4035 (((-1119) $) 11)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) 162 (|has| |#1| (-365)))) (-2214 (($ (-644 $)) 159 (|has| |#1| (-365))) (($ $ $) 158 (|has| |#1| (-365)))) (-3719 (((-420 $) $) 173 (|has| |#1| (-365)))) (-3148 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 170 (|has| |#1| (-365)))) (-3874 (($ $ (-409 (-566))) 107)) (-2994 (((-3 $ "failed") $ $) 62 (|has| |#1| (-558)))) (-3161 (((-3 (-644 $) "failed") (-644 $) $) 164 (|has| |#1| (-365)))) (-2561 (($ $) 155 (|has| |#1| (-38 (-409 (-566)))))) (-2055 (((-1155 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-409 (-566))))))) (-3039 (((-771) $) 166 (|has| |#1| (-365)))) (-4390 ((|#1| $ (-409 (-566))) 116) (($ $ $) 93 (|has| (-409 (-566)) (-1111)))) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) 167 (|has| |#1| (-365)))) (-3561 (($ $ (-644 (-1175)) (-644 (-771))) 101 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-1175) (-771)) 100 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-644 (-1175))) 99 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-1175)) 98 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-771)) 96 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (-3636 (((-409 (-566)) $) 76)) (-4144 (($ $) 144 (|has| |#1| (-38 (-409 (-566)))))) (-2141 (($ $) 133 (|has| |#1| (-38 (-409 (-566)))))) (-4124 (($ $) 143 (|has| |#1| (-38 (-409 (-566)))))) (-2118 (($ $) 134 (|has| |#1| (-38 (-409 (-566)))))) (-4104 (($ $) 142 (|has| |#1| (-38 (-409 (-566)))))) (-2098 (($ $) 135 (|has| |#1| (-38 (-409 (-566)))))) (-2770 (($ $) 84)) (-3783 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 59 (|has| |#1| (-172))) (($ |#2|) 193) (($ (-409 (-566))) 69 (|has| |#1| (-38 (-409 (-566))))) (($ $) 61 (|has| |#1| (-558)))) (-2649 ((|#1| $ (-409 (-566))) 71)) (-3144 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2107 (((-771)) 32 T CONST)) (-1320 ((|#1| $) 114)) (-3117 (((-112) $ $) 9)) (-4177 (($ $) 153 (|has| |#1| (-38 (-409 (-566)))))) (-2180 (($ $) 141 (|has| |#1| (-38 (-409 (-566)))))) (-2695 (((-112) $ $) 65 (|has| |#1| (-558)))) (-4155 (($ $) 152 (|has| |#1| (-38 (-409 (-566)))))) (-2153 (($ $) 140 (|has| |#1| (-38 (-409 (-566)))))) (-4198 (($ $) 151 (|has| |#1| (-38 (-409 (-566)))))) (-2212 (($ $) 139 (|has| |#1| (-38 (-409 (-566)))))) (-3628 ((|#1| $ (-409 (-566))) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-409 (-566))))) (|has| |#1| (-15 -3783 (|#1| (-1175))))))) (-2976 (($ $) 150 (|has| |#1| (-38 (-409 (-566)))))) (-2227 (($ $) 138 (|has| |#1| (-38 (-409 (-566)))))) (-4188 (($ $) 149 (|has| |#1| (-38 (-409 (-566)))))) (-2196 (($ $) 137 (|has| |#1| (-38 (-409 (-566)))))) (-4166 (($ $) 148 (|has| |#1| (-38 (-409 (-566)))))) (-2166 (($ $) 136 (|has| |#1| (-38 (-409 (-566)))))) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-2875 (($ $ (-644 (-1175)) (-644 (-771))) 105 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-1175) (-771)) 104 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-644 (-1175))) 103 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-1175)) 102 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-771)) 97 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (-2947 (((-112) $ $) 6)) (-3065 (($ $ |#1|) 70 (|has| |#1| (-365))) (($ $ $) 179 (|has| |#1| (-365)))) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 178 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 127 (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-409 (-566)) $) 68 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 67 (|has| |#1| (-38 (-409 (-566))))))) +((-1427 (*1 *1 *2 *3) (-12 (-5 *2 (-771)) (-5 *3 (-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| *4)))) (-4 *4 (-1049)) (-4 *1 (-1245 *4)))) (-3394 (*1 *1 *1 *2) (-12 (-5 *2 (-409 (-566))) (-4 *1 (-1245 *3)) (-4 *3 (-1049)))) (-3313 (*1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1049)) (-4 *2 (-38 (-409 (-566)))))) (-3313 (*1 *1 *1 *2) (-2768 (-12 (-5 *2 (-1175)) (-4 *1 (-1245 *3)) (-4 *3 (-1049)) (-12 (-4 *3 (-29 (-566))) (-4 *3 (-959)) (-4 *3 (-1199)) (-4 *3 (-38 (-409 (-566)))))) (-12 (-5 *2 (-1175)) (-4 *1 (-1245 *3)) (-4 *3 (-1049)) (-12 (|has| *3 (-15 -1771 ((-644 *2) *3))) (|has| *3 (-15 -3313 (*3 *3 *2))) (-4 *3 (-38 (-409 (-566))))))))) +(-13 (-1242 |t#1| (-409 (-566))) (-10 -8 (-15 -1427 ($ (-771) (-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |t#1|))))) (-15 -3394 ($ $ (-409 (-566)))) (IF (|has| |t#1| (-38 (-409 (-566)))) (PROGN (-15 -3313 ($ $)) (IF (|has| |t#1| (-15 -3313 (|t#1| |t#1| (-1175)))) (IF (|has| |t#1| (-15 -1771 ((-644 (-1175)) |t#1|))) (-15 -3313 ($ $ (-1175))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1199)) (IF (|has| |t#1| (-959)) (IF (|has| |t#1| (-29 (-566))) (-15 -3313 ($ $ (-1175))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1002)) (-6 (-1199))) |%noBranch|) (IF (|has| |t#1| (-365)) (-6 (-365)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-409 (-566))) . T) ((-25) . T) ((-38 #1=(-409 (-566))) -2768 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2768 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-35) |has| |#1| (-38 (-409 (-566)))) ((-95) |has| |#1| (-38 (-409 (-566)))) ((-102) . T) ((-111 #1# #1#) -2768 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2768 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #1#) -2768 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-616 (-566)) . T) ((-616 |#1|) |has| |#1| (-172)) ((-616 $) -2768 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-613 (-862)) . T) ((-172) -2768 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) ((-243) |has| |#1| (-365)) ((-285) |has| |#1| (-38 (-409 (-566)))) ((-287 $ $) |has| (-409 (-566)) (-1111)) ((-291) -2768 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-365) |has| |#1| (-365)) ((-454) |has| |#1| (-365)) ((-495) |has| |#1| (-38 (-409 (-566)))) ((-558) -2768 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-646 #1#) -2768 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #1#) -2768 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #1#) -2768 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) -2768 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-717 #1#) -2768 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) -2768 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-726) . T) ((-900 (-1175)) -12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175)))) ((-973 |#1| #0# (-1081)) . T) ((-920) |has| |#1| (-365)) ((-1002) |has| |#1| (-38 (-409 (-566)))) ((-1051 #1#) -2768 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-1051 |#1|) . T) ((-1051 $) -2768 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1056 #1#) -2768 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-1056 |#1|) . T) ((-1056 $) -2768 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1199) |has| |#1| (-38 (-409 (-566)))) ((-1202) |has| |#1| (-38 (-409 (-566)))) ((-1218) |has| |#1| (-365)) ((-1242 |#1| #0#) . T)) +((-3230 (((-112) $) 12)) (-2229 (((-3 |#3| "failed") $) 17)) (-4158 ((|#3| $) 14))) +(((-1246 |#1| |#2| |#3|) (-10 -8 (-15 -2229 ((-3 |#3| "failed") |#1|)) (-15 -4158 (|#3| |#1|)) (-15 -3230 ((-112) |#1|))) (-1247 |#2| |#3|) (-1049) (-1224 |#2|)) (T -1246)) +NIL +(-10 -8 (-15 -2229 ((-3 |#3| "failed") |#1|)) (-15 -4158 (|#3| |#1|)) (-15 -3230 ((-112) |#1|))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-1771 (((-644 (-1081)) $) 86)) (-4347 (((-1175) $) 115)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) 63 (|has| |#1| (-558)))) (-2161 (($ $) 64 (|has| |#1| (-558)))) (-2345 (((-112) $) 66 (|has| |#1| (-558)))) (-2331 (($ $ (-409 (-566))) 110) (($ $ (-409 (-566)) (-409 (-566))) 109)) (-4152 (((-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#1|))) $) 117)) (-3963 (($ $) 147 (|has| |#1| (-38 (-409 (-566)))))) (-3630 (($ $) 130 (|has| |#1| (-38 (-409 (-566)))))) (-3967 (((-3 $ "failed") $ $) 20)) (-1378 (($ $) 174 (|has| |#1| (-365)))) (-1364 (((-420 $) $) 175 (|has| |#1| (-365)))) (-1635 (($ $) 129 (|has| |#1| (-38 (-409 (-566)))))) (-2085 (((-112) $ $) 165 (|has| |#1| (-365)))) (-3941 (($ $) 146 (|has| |#1| (-38 (-409 (-566)))))) (-3602 (($ $) 131 (|has| |#1| (-38 (-409 (-566)))))) (-1427 (($ (-771) (-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#1|)))) 183)) (-3986 (($ $) 145 (|has| |#1| (-38 (-409 (-566)))))) (-3656 (($ $) 132 (|has| |#1| (-38 (-409 (-566)))))) (-2463 (($) 18 T CONST)) (-2229 (((-3 |#2| "failed") $) 194)) (-4158 ((|#2| $) 195)) (-2933 (($ $ $) 169 (|has| |#1| (-365)))) (-2814 (($ $) 72)) (-3245 (((-3 $ "failed") $) 37)) (-1811 (((-409 (-566)) $) 191)) (-2945 (($ $ $) 168 (|has| |#1| (-365)))) (-2729 (($ (-409 (-566)) |#2|) 192)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) 163 (|has| |#1| (-365)))) (-1615 (((-112) $) 176 (|has| |#1| (-365)))) (-3772 (((-112) $) 85)) (-2281 (($) 157 (|has| |#1| (-38 (-409 (-566)))))) (-2679 (((-409 (-566)) $) 112) (((-409 (-566)) $ (-409 (-566))) 111)) (-2389 (((-112) $) 35)) (-1575 (($ $ (-566)) 128 (|has| |#1| (-38 (-409 (-566)))))) (-3394 (($ $ (-921)) 113) (($ $ (-409 (-566))) 182)) (-3816 (((-3 (-644 $) "failed") (-644 $) $) 172 (|has| |#1| (-365)))) (-2497 (((-112) $) 74)) (-1746 (($ |#1| (-409 (-566))) 73) (($ $ (-1081) (-409 (-566))) 88) (($ $ (-644 (-1081)) (-644 (-409 (-566)))) 87)) (-2319 (($ (-1 |#1| |#1|) $) 75)) (-3619 (($ $) 154 (|has| |#1| (-38 (-409 (-566)))))) (-2784 (($ $) 77)) (-2794 ((|#1| $) 78)) (-2128 (($ (-644 $)) 161 (|has| |#1| (-365))) (($ $ $) 160 (|has| |#1| (-365)))) (-2877 ((|#2| $) 190)) (-3320 (((-3 |#2| "failed") $) 188)) (-2719 ((|#2| $) 189)) (-3380 (((-1157) $) 10)) (-2748 (($ $) 177 (|has| |#1| (-365)))) (-3313 (($ $) 181 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) 180 (-2768 (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-959)) (|has| |#1| (-1199)) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-15 -1771 ((-644 (-1175)) |#1|))) (|has| |#1| (-15 -3313 (|#1| |#1| (-1175)))) (|has| |#1| (-38 (-409 (-566)))))))) (-4072 (((-1119) $) 11)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) 162 (|has| |#1| (-365)))) (-2164 (($ (-644 $)) 159 (|has| |#1| (-365))) (($ $ $) 158 (|has| |#1| (-365)))) (-1624 (((-420 $) $) 173 (|has| |#1| (-365)))) (-3005 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) 170 (|has| |#1| (-365)))) (-3369 (($ $ (-409 (-566))) 107)) (-2978 (((-3 $ "failed") $ $) 62 (|has| |#1| (-558)))) (-2915 (((-3 (-644 $) "failed") (-644 $) $) 164 (|has| |#1| (-365)))) (-3521 (($ $) 155 (|has| |#1| (-38 (-409 (-566)))))) (-2023 (((-1155 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-409 (-566))))))) (-4357 (((-771) $) 166 (|has| |#1| (-365)))) (-1309 ((|#1| $ (-409 (-566))) 116) (($ $ $) 93 (|has| (-409 (-566)) (-1111)))) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) 167 (|has| |#1| (-365)))) (-3629 (($ $ (-644 (-1175)) (-644 (-771))) 101 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-1175) (-771)) 100 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-644 (-1175))) 99 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-1175)) 98 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-771)) 96 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (-3902 (((-409 (-566)) $) 76)) (-3996 (($ $) 144 (|has| |#1| (-38 (-409 (-566)))))) (-3670 (($ $) 133 (|has| |#1| (-38 (-409 (-566)))))) (-3976 (($ $) 143 (|has| |#1| (-38 (-409 (-566)))))) (-3643 (($ $) 134 (|has| |#1| (-38 (-409 (-566)))))) (-3952 (($ $) 142 (|has| |#1| (-38 (-409 (-566)))))) (-3618 (($ $) 135 (|has| |#1| (-38 (-409 (-566)))))) (-1687 (($ $) 84)) (-3152 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 59 (|has| |#1| (-172))) (($ |#2|) 193) (($ (-409 (-566))) 69 (|has| |#1| (-38 (-409 (-566))))) (($ $) 61 (|has| |#1| (-558)))) (-2271 ((|#1| $ (-409 (-566))) 71)) (-2633 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2593 (((-771)) 32 T CONST)) (-4290 ((|#1| $) 114)) (-3044 (((-112) $ $) 9)) (-4032 (($ $) 153 (|has| |#1| (-38 (-409 (-566)))))) (-3892 (($ $) 141 (|has| |#1| (-38 (-409 (-566)))))) (-3014 (((-112) $ $) 65 (|has| |#1| (-558)))) (-4008 (($ $) 152 (|has| |#1| (-38 (-409 (-566)))))) (-3684 (($ $) 140 (|has| |#1| (-38 (-409 (-566)))))) (-4057 (($ $) 151 (|has| |#1| (-38 (-409 (-566)))))) (-3917 (($ $) 139 (|has| |#1| (-38 (-409 (-566)))))) (-3603 ((|#1| $ (-409 (-566))) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-409 (-566))))) (|has| |#1| (-15 -3152 (|#1| (-1175))))))) (-3964 (($ $) 150 (|has| |#1| (-38 (-409 (-566)))))) (-3929 (($ $) 138 (|has| |#1| (-38 (-409 (-566)))))) (-4044 (($ $) 149 (|has| |#1| (-38 (-409 (-566)))))) (-3904 (($ $) 137 (|has| |#1| (-38 (-409 (-566)))))) (-4020 (($ $) 148 (|has| |#1| (-38 (-409 (-566)))))) (-3879 (($ $) 136 (|has| |#1| (-38 (-409 (-566)))))) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-3497 (($ $ (-644 (-1175)) (-644 (-771))) 105 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-1175) (-771)) 104 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-644 (-1175))) 103 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-1175)) 102 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-771)) 97 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (-2914 (((-112) $ $) 6)) (-3025 (($ $ |#1|) 70 (|has| |#1| (-365))) (($ $ $) 179 (|has| |#1| (-365)))) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 178 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 127 (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-409 (-566)) $) 68 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 67 (|has| |#1| (-38 (-409 (-566))))))) (((-1247 |#1| |#2|) (-140) (-1049) (-1224 |t#1|)) (T -1247)) -((-3636 (*1 *2 *1) (-12 (-4 *1 (-1247 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1224 *3)) (-5 *2 (-409 (-566))))) (-1690 (*1 *1 *2 *3) (-12 (-5 *2 (-409 (-566))) (-4 *4 (-1049)) (-4 *1 (-1247 *4 *3)) (-4 *3 (-1224 *4)))) (-2290 (*1 *2 *1) (-12 (-4 *1 (-1247 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1224 *3)) (-5 *2 (-409 (-566))))) (-1378 (*1 *2 *1) (-12 (-4 *1 (-1247 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-1224 *3)))) (-1678 (*1 *2 *1) (-12 (-4 *1 (-1247 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-1224 *3)))) (-2087 (*1 *2 *1) (|partial| -12 (-4 *1 (-1247 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-1224 *3))))) -(-13 (-1245 |t#1|) (-1038 |t#2|) (-616 |t#2|) (-10 -8 (-15 -1690 ($ (-409 (-566)) |t#2|)) (-15 -2290 ((-409 (-566)) $)) (-15 -1378 (|t#2| $)) (-15 -3636 ((-409 (-566)) $)) (-15 -1678 (|t#2| $)) (-15 -2087 ((-3 |t#2| "failed") $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-409 (-566))) . T) ((-25) . T) ((-38 #1=(-409 (-566))) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-35) |has| |#1| (-38 (-409 (-566)))) ((-95) |has| |#1| (-38 (-409 (-566)))) ((-102) . T) ((-111 #1# #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2809 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-616 (-566)) . T) ((-616 |#1|) |has| |#1| (-172)) ((-616 |#2|) . T) ((-616 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-613 (-862)) . T) ((-172) -2809 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) ((-243) |has| |#1| (-365)) ((-285) |has| |#1| (-38 (-409 (-566)))) ((-287 $ $) |has| (-409 (-566)) (-1111)) ((-291) -2809 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-365) |has| |#1| (-365)) ((-454) |has| |#1| (-365)) ((-495) |has| |#1| (-38 (-409 (-566)))) ((-558) -2809 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-646 #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-717 #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-726) . T) ((-900 (-1175)) -12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175)))) ((-973 |#1| #0# (-1081)) . T) ((-920) |has| |#1| (-365)) ((-1002) |has| |#1| (-38 (-409 (-566)))) ((-1038 |#2|) . T) ((-1051 #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-1051 |#1|) . T) ((-1051 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1056 #1#) -2809 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-1056 |#1|) . T) ((-1056 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1199) |has| |#1| (-38 (-409 (-566)))) ((-1202) |has| |#1| (-38 (-409 (-566)))) ((-1218) |has| |#1| (-365)) ((-1242 |#1| #0#) . T) ((-1245 |#1|) . T)) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-3863 (((-644 (-1081)) $) NIL)) (-1385 (((-1175) $) 104)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-3991 (($ $) NIL (|has| |#1| (-558)))) (-2388 (((-112) $) NIL (|has| |#1| (-558)))) (-2587 (($ $ (-409 (-566))) 116) (($ $ (-409 (-566)) (-409 (-566))) 118)) (-2775 (((-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#1|))) $) 54)) (-4114 (($ $) 192 (|has| |#1| (-38 (-409 (-566)))))) (-2109 (($ $) 168 (|has| |#1| (-38 (-409 (-566)))))) (-4175 (((-3 $ "failed") $ $) NIL)) (-1550 (($ $) NIL (|has| |#1| (-365)))) (-3184 (((-420 $) $) NIL (|has| |#1| (-365)))) (-3731 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2837 (((-112) $ $) NIL (|has| |#1| (-365)))) (-2240 (($ $) 188 (|has| |#1| (-38 (-409 (-566)))))) (-2085 (($ $) 164 (|has| |#1| (-38 (-409 (-566)))))) (-2052 (($ (-771) (-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#1|)))) 65)) (-4134 (($ $) 196 (|has| |#1| (-38 (-409 (-566)))))) (-2129 (($ $) 172 (|has| |#1| (-38 (-409 (-566)))))) (-3012 (($) NIL T CONST)) (-4307 (((-3 |#2| "failed") $) NIL)) (-4205 ((|#2| $) NIL)) (-2946 (($ $ $) NIL (|has| |#1| (-365)))) (-1786 (($ $) NIL)) (-1878 (((-3 $ "failed") $) 85)) (-2290 (((-409 (-566)) $) 13)) (-2957 (($ $ $) NIL (|has| |#1| (-365)))) (-1690 (($ (-409 (-566)) |#2|) 11)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL (|has| |#1| (-365)))) (-3268 (((-112) $) NIL (|has| |#1| (-365)))) (-2158 (((-112) $) 74)) (-4361 (($) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3254 (((-409 (-566)) $) 113) (((-409 (-566)) $ (-409 (-566))) 114)) (-3934 (((-112) $) NIL)) (-2140 (($ $ (-566)) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2955 (($ $ (-921)) 130) (($ $ (-409 (-566))) 128)) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-3264 (((-112) $) NIL)) (-3840 (($ |#1| (-409 (-566))) 33) (($ $ (-1081) (-409 (-566))) NIL) (($ $ (-644 (-1081)) (-644 (-409 (-566)))) NIL)) (-1301 (($ (-1 |#1| |#1|) $) 125)) (-3651 (($ $) 162 (|has| |#1| (-38 (-409 (-566)))))) (-1749 (($ $) NIL)) (-1763 ((|#1| $) NIL)) (-2167 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-1378 ((|#2| $) 12)) (-2087 (((-3 |#2| "failed") $) 44)) (-1678 ((|#2| $) 45)) (-4117 (((-1157) $) NIL)) (-1713 (($ $) 101 (|has| |#1| (-365)))) (-1941 (($ $) 146 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) 151 (-2809 (-12 (|has| |#1| (-15 -1941 (|#1| |#1| (-1175)))) (|has| |#1| (-15 -3863 ((-644 (-1175)) |#1|))) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-959)) (|has| |#1| (-1199)))))) (-4035 (((-1119) $) NIL)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-365)))) (-2214 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3719 (((-420 $) $) NIL (|has| |#1| (-365)))) (-3148 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-365)))) (-3874 (($ $ (-409 (-566))) 122)) (-2994 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-2561 (($ $) 160 (|has| |#1| (-38 (-409 (-566)))))) (-2055 (((-1155 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-409 (-566))))))) (-3039 (((-771) $) NIL (|has| |#1| (-365)))) (-4390 ((|#1| $ (-409 (-566))) 108) (($ $ $) 94 (|has| (-409 (-566)) (-1111)))) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL (|has| |#1| (-365)))) (-3561 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) 138 (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $) 134 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (-3636 (((-409 (-566)) $) 16)) (-4144 (($ $) 198 (|has| |#1| (-38 (-409 (-566)))))) (-2141 (($ $) 174 (|has| |#1| (-38 (-409 (-566)))))) (-4124 (($ $) 194 (|has| |#1| (-38 (-409 (-566)))))) (-2118 (($ $) 170 (|has| |#1| (-38 (-409 (-566)))))) (-4104 (($ $) 190 (|has| |#1| (-38 (-409 (-566)))))) (-2098 (($ $) 166 (|has| |#1| (-38 (-409 (-566)))))) (-2770 (($ $) 120)) (-3783 (((-862) $) NIL) (($ (-566)) 37) (($ |#1|) 27 (|has| |#1| (-172))) (($ |#2|) 34) (($ (-409 (-566))) 139 (|has| |#1| (-38 (-409 (-566))))) (($ $) NIL (|has| |#1| (-558)))) (-2649 ((|#1| $ (-409 (-566))) 107)) (-3144 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2107 (((-771)) 127 T CONST)) (-1320 ((|#1| $) 106)) (-3117 (((-112) $ $) NIL)) (-4177 (($ $) 204 (|has| |#1| (-38 (-409 (-566)))))) (-2180 (($ $) 180 (|has| |#1| (-38 (-409 (-566)))))) (-2695 (((-112) $ $) NIL (|has| |#1| (-558)))) (-4155 (($ $) 200 (|has| |#1| (-38 (-409 (-566)))))) (-2153 (($ $) 176 (|has| |#1| (-38 (-409 (-566)))))) (-4198 (($ $) 208 (|has| |#1| (-38 (-409 (-566)))))) (-2212 (($ $) 184 (|has| |#1| (-38 (-409 (-566)))))) (-3628 ((|#1| $ (-409 (-566))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-409 (-566))))) (|has| |#1| (-15 -3783 (|#1| (-1175))))))) (-2976 (($ $) 210 (|has| |#1| (-38 (-409 (-566)))))) (-2227 (($ $) 186 (|has| |#1| (-38 (-409 (-566)))))) (-4188 (($ $) 206 (|has| |#1| (-38 (-409 (-566)))))) (-2196 (($ $) 182 (|has| |#1| (-38 (-409 (-566)))))) (-4166 (($ $) 202 (|has| |#1| (-38 (-409 (-566)))))) (-2166 (($ $) 178 (|has| |#1| (-38 (-409 (-566)))))) (-2479 (($) 21 T CONST)) (-4334 (($) 17 T CONST)) (-2875 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (-2947 (((-112) $ $) 72)) (-3065 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) 100 (|has| |#1| (-365)))) (-3053 (($ $) 142) (($ $ $) 78)) (-3041 (($ $ $) 76)) (** (($ $ (-921)) NIL) (($ $ (-771)) 82) (($ $ (-566)) 157 (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 158 (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) 137) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))))) +((-3902 (*1 *2 *1) (-12 (-4 *1 (-1247 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1224 *3)) (-5 *2 (-409 (-566))))) (-2729 (*1 *1 *2 *3) (-12 (-5 *2 (-409 (-566))) (-4 *4 (-1049)) (-4 *1 (-1247 *4 *3)) (-4 *3 (-1224 *4)))) (-1811 (*1 *2 *1) (-12 (-4 *1 (-1247 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1224 *3)) (-5 *2 (-409 (-566))))) (-2877 (*1 *2 *1) (-12 (-4 *1 (-1247 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-1224 *3)))) (-2719 (*1 *2 *1) (-12 (-4 *1 (-1247 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-1224 *3)))) (-3320 (*1 *2 *1) (|partial| -12 (-4 *1 (-1247 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-1224 *3))))) +(-13 (-1245 |t#1|) (-1038 |t#2|) (-616 |t#2|) (-10 -8 (-15 -2729 ($ (-409 (-566)) |t#2|)) (-15 -1811 ((-409 (-566)) $)) (-15 -2877 (|t#2| $)) (-15 -3902 ((-409 (-566)) $)) (-15 -2719 (|t#2| $)) (-15 -3320 ((-3 |t#2| "failed") $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-409 (-566))) . T) ((-25) . T) ((-38 #1=(-409 (-566))) -2768 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2768 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-35) |has| |#1| (-38 (-409 (-566)))) ((-95) |has| |#1| (-38 (-409 (-566)))) ((-102) . T) ((-111 #1# #1#) -2768 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2768 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #1#) -2768 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-616 (-566)) . T) ((-616 |#1|) |has| |#1| (-172)) ((-616 |#2|) . T) ((-616 $) -2768 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-613 (-862)) . T) ((-172) -2768 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) ((-243) |has| |#1| (-365)) ((-285) |has| |#1| (-38 (-409 (-566)))) ((-287 $ $) |has| (-409 (-566)) (-1111)) ((-291) -2768 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-365) |has| |#1| (-365)) ((-454) |has| |#1| (-365)) ((-495) |has| |#1| (-38 (-409 (-566)))) ((-558) -2768 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-646 #1#) -2768 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #1#) -2768 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #1#) -2768 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) -2768 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-717 #1#) -2768 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) -2768 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-726) . T) ((-900 (-1175)) -12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175)))) ((-973 |#1| #0# (-1081)) . T) ((-920) |has| |#1| (-365)) ((-1002) |has| |#1| (-38 (-409 (-566)))) ((-1038 |#2|) . T) ((-1051 #1#) -2768 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-1051 |#1|) . T) ((-1051 $) -2768 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1056 #1#) -2768 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-1056 |#1|) . T) ((-1056 $) -2768 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1199) |has| |#1| (-38 (-409 (-566)))) ((-1202) |has| |#1| (-38 (-409 (-566)))) ((-1218) |has| |#1| (-365)) ((-1242 |#1| #0#) . T) ((-1245 |#1|) . T)) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-1771 (((-644 (-1081)) $) NIL)) (-4347 (((-1175) $) 104)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-2161 (($ $) NIL (|has| |#1| (-558)))) (-2345 (((-112) $) NIL (|has| |#1| (-558)))) (-2331 (($ $ (-409 (-566))) 116) (($ $ (-409 (-566)) (-409 (-566))) 118)) (-4152 (((-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#1|))) $) 54)) (-3963 (($ $) 192 (|has| |#1| (-38 (-409 (-566)))))) (-3630 (($ $) 168 (|has| |#1| (-38 (-409 (-566)))))) (-3967 (((-3 $ "failed") $ $) NIL)) (-1378 (($ $) NIL (|has| |#1| (-365)))) (-1364 (((-420 $) $) NIL (|has| |#1| (-365)))) (-1635 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2085 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3941 (($ $) 188 (|has| |#1| (-38 (-409 (-566)))))) (-3602 (($ $) 164 (|has| |#1| (-38 (-409 (-566)))))) (-1427 (($ (-771) (-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#1|)))) 65)) (-3986 (($ $) 196 (|has| |#1| (-38 (-409 (-566)))))) (-3656 (($ $) 172 (|has| |#1| (-38 (-409 (-566)))))) (-2463 (($) NIL T CONST)) (-2229 (((-3 |#2| "failed") $) NIL)) (-4158 ((|#2| $) NIL)) (-2933 (($ $ $) NIL (|has| |#1| (-365)))) (-2814 (($ $) NIL)) (-3245 (((-3 $ "failed") $) 85)) (-1811 (((-409 (-566)) $) 13)) (-2945 (($ $ $) NIL (|has| |#1| (-365)))) (-2729 (($ (-409 (-566)) |#2|) 11)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL (|has| |#1| (-365)))) (-1615 (((-112) $) NIL (|has| |#1| (-365)))) (-3772 (((-112) $) 74)) (-2281 (($) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2679 (((-409 (-566)) $) 113) (((-409 (-566)) $ (-409 (-566))) 114)) (-2389 (((-112) $) NIL)) (-1575 (($ $ (-566)) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3394 (($ $ (-921)) 130) (($ $ (-409 (-566))) 128)) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-2497 (((-112) $) NIL)) (-1746 (($ |#1| (-409 (-566))) 33) (($ $ (-1081) (-409 (-566))) NIL) (($ $ (-644 (-1081)) (-644 (-409 (-566)))) NIL)) (-2319 (($ (-1 |#1| |#1|) $) 125)) (-3619 (($ $) 162 (|has| |#1| (-38 (-409 (-566)))))) (-2784 (($ $) NIL)) (-2794 ((|#1| $) NIL)) (-2128 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2877 ((|#2| $) 12)) (-3320 (((-3 |#2| "failed") $) 44)) (-2719 ((|#2| $) 45)) (-3380 (((-1157) $) NIL)) (-2748 (($ $) 101 (|has| |#1| (-365)))) (-3313 (($ $) 146 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) 151 (-2768 (-12 (|has| |#1| (-15 -3313 (|#1| |#1| (-1175)))) (|has| |#1| (-15 -1771 ((-644 (-1175)) |#1|))) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-959)) (|has| |#1| (-1199)))))) (-4072 (((-1119) $) NIL)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-365)))) (-2164 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-1624 (((-420 $) $) NIL (|has| |#1| (-365)))) (-3005 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL (|has| |#1| (-365)))) (-3369 (($ $ (-409 (-566))) 122)) (-2978 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-3521 (($ $) 160 (|has| |#1| (-38 (-409 (-566)))))) (-2023 (((-1155 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-409 (-566))))))) (-4357 (((-771) $) NIL (|has| |#1| (-365)))) (-1309 ((|#1| $ (-409 (-566))) 108) (($ $ $) 94 (|has| (-409 (-566)) (-1111)))) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL (|has| |#1| (-365)))) (-3629 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) 138 (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $) 134 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (-3902 (((-409 (-566)) $) 16)) (-3996 (($ $) 198 (|has| |#1| (-38 (-409 (-566)))))) (-3670 (($ $) 174 (|has| |#1| (-38 (-409 (-566)))))) (-3976 (($ $) 194 (|has| |#1| (-38 (-409 (-566)))))) (-3643 (($ $) 170 (|has| |#1| (-38 (-409 (-566)))))) (-3952 (($ $) 190 (|has| |#1| (-38 (-409 (-566)))))) (-3618 (($ $) 166 (|has| |#1| (-38 (-409 (-566)))))) (-1687 (($ $) 120)) (-3152 (((-862) $) NIL) (($ (-566)) 37) (($ |#1|) 27 (|has| |#1| (-172))) (($ |#2|) 34) (($ (-409 (-566))) 139 (|has| |#1| (-38 (-409 (-566))))) (($ $) NIL (|has| |#1| (-558)))) (-2271 ((|#1| $ (-409 (-566))) 107)) (-2633 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2593 (((-771)) 127 T CONST)) (-4290 ((|#1| $) 106)) (-3044 (((-112) $ $) NIL)) (-4032 (($ $) 204 (|has| |#1| (-38 (-409 (-566)))))) (-3892 (($ $) 180 (|has| |#1| (-38 (-409 (-566)))))) (-3014 (((-112) $ $) NIL (|has| |#1| (-558)))) (-4008 (($ $) 200 (|has| |#1| (-38 (-409 (-566)))))) (-3684 (($ $) 176 (|has| |#1| (-38 (-409 (-566)))))) (-4057 (($ $) 208 (|has| |#1| (-38 (-409 (-566)))))) (-3917 (($ $) 184 (|has| |#1| (-38 (-409 (-566)))))) (-3603 ((|#1| $ (-409 (-566))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-409 (-566))))) (|has| |#1| (-15 -3152 (|#1| (-1175))))))) (-3964 (($ $) 210 (|has| |#1| (-38 (-409 (-566)))))) (-3929 (($ $) 186 (|has| |#1| (-38 (-409 (-566)))))) (-4044 (($ $) 206 (|has| |#1| (-38 (-409 (-566)))))) (-3904 (($ $) 182 (|has| |#1| (-38 (-409 (-566)))))) (-4020 (($ $) 202 (|has| |#1| (-38 (-409 (-566)))))) (-3879 (($ $) 178 (|has| |#1| (-38 (-409 (-566)))))) (-4356 (($) 21 T CONST)) (-4366 (($) 17 T CONST)) (-3497 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (-2914 (((-112) $ $) 72)) (-3025 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) 100 (|has| |#1| (-365)))) (-3012 (($ $) 142) (($ $ $) 78)) (-3002 (($ $ $) 76)) (** (($ $ (-921)) NIL) (($ $ (-771)) 82) (($ $ (-566)) 157 (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 158 (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) 137) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))))) (((-1248 |#1| |#2|) (-1247 |#1| |#2|) (-1049) (-1224 |#1|)) (T -1248)) NIL (-1247 |#1| |#2|) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-3863 (((-644 (-1081)) $) NIL)) (-1385 (((-1175) $) 11)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-3991 (($ $) NIL (|has| |#1| (-558)))) (-2388 (((-112) $) NIL (|has| |#1| (-558)))) (-2587 (($ $ (-409 (-566))) NIL) (($ $ (-409 (-566)) (-409 (-566))) NIL)) (-2775 (((-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#1|))) $) NIL)) (-4114 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2109 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4175 (((-3 $ "failed") $ $) NIL)) (-1550 (($ $) NIL (|has| |#1| (-365)))) (-3184 (((-420 $) $) NIL (|has| |#1| (-365)))) (-3731 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2837 (((-112) $ $) NIL (|has| |#1| (-365)))) (-2240 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2085 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2052 (($ (-771) (-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#1|)))) NIL)) (-4134 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2129 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3012 (($) NIL T CONST)) (-4307 (((-3 (-1228 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1256 |#1| |#2| |#3|) "failed") $) 22)) (-4205 (((-1228 |#1| |#2| |#3|) $) NIL) (((-1256 |#1| |#2| |#3|) $) NIL)) (-2946 (($ $ $) NIL (|has| |#1| (-365)))) (-1786 (($ $) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-2290 (((-409 (-566)) $) 69)) (-2957 (($ $ $) NIL (|has| |#1| (-365)))) (-1690 (($ (-409 (-566)) (-1228 |#1| |#2| |#3|)) NIL)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) NIL (|has| |#1| (-365)))) (-3268 (((-112) $) NIL (|has| |#1| (-365)))) (-2158 (((-112) $) NIL)) (-4361 (($) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3254 (((-409 (-566)) $) NIL) (((-409 (-566)) $ (-409 (-566))) NIL)) (-3934 (((-112) $) NIL)) (-2140 (($ $ (-566)) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2955 (($ $ (-921)) NIL) (($ $ (-409 (-566))) NIL)) (-3775 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-3264 (((-112) $) NIL)) (-3840 (($ |#1| (-409 (-566))) 30) (($ $ (-1081) (-409 (-566))) NIL) (($ $ (-644 (-1081)) (-644 (-409 (-566)))) NIL)) (-1301 (($ (-1 |#1| |#1|) $) NIL)) (-3651 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1749 (($ $) NIL)) (-1763 ((|#1| $) NIL)) (-2167 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-1378 (((-1228 |#1| |#2| |#3|) $) 72)) (-2087 (((-3 (-1228 |#1| |#2| |#3|) "failed") $) NIL)) (-1678 (((-1228 |#1| |#2| |#3|) $) NIL)) (-4117 (((-1157) $) NIL)) (-1713 (($ $) NIL (|has| |#1| (-365)))) (-1941 (($ $) 39 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) NIL (-2809 (-12 (|has| |#1| (-15 -1941 (|#1| |#1| (-1175)))) (|has| |#1| (-15 -3863 ((-644 (-1175)) |#1|))) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-959)) (|has| |#1| (-1199))))) (($ $ (-1260 |#2|)) 40 (|has| |#1| (-38 (-409 (-566)))))) (-4035 (((-1119) $) NIL)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-365)))) (-2214 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3719 (((-420 $) $) NIL (|has| |#1| (-365)))) (-3148 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) NIL (|has| |#1| (-365)))) (-3874 (($ $ (-409 (-566))) NIL)) (-2994 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-3161 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-2561 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2055 (((-1155 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-409 (-566))))))) (-3039 (((-771) $) NIL (|has| |#1| (-365)))) (-4390 ((|#1| $ (-409 (-566))) NIL) (($ $ $) NIL (|has| (-409 (-566)) (-1111)))) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) NIL (|has| |#1| (-365)))) (-3561 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $ (-1260 |#2|)) 38)) (-3636 (((-409 (-566)) $) NIL)) (-4144 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2141 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4124 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2118 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4104 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2098 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2770 (($ $) NIL)) (-3783 (((-862) $) 109) (($ (-566)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1228 |#1| |#2| |#3|)) 16) (($ (-1256 |#1| |#2| |#3|)) 17) (($ (-1260 |#2|)) 36) (($ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $) NIL (|has| |#1| (-558)))) (-2649 ((|#1| $ (-409 (-566))) NIL)) (-3144 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2107 (((-771)) NIL T CONST)) (-1320 ((|#1| $) 12)) (-3117 (((-112) $ $) NIL)) (-4177 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2180 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2695 (((-112) $ $) NIL (|has| |#1| (-558)))) (-4155 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2153 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4198 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2212 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3628 ((|#1| $ (-409 (-566))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-409 (-566))))) (|has| |#1| (-15 -3783 (|#1| (-1175))))))) (-2976 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2227 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4188 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2196 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4166 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2166 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2479 (($) 32 T CONST)) (-4334 (($) 26 T CONST)) (-2875 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (-2947 (((-112) $ $) NIL)) (-3065 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) 34)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))))) -(((-1249 |#1| |#2| |#3|) (-13 (-1247 |#1| (-1228 |#1| |#2| |#3|)) (-1038 (-1256 |#1| |#2| |#3|)) (-616 (-1260 |#2|)) (-10 -8 (-15 -3561 ($ $ (-1260 |#2|))) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -1941 ($ $ (-1260 |#2|))) |%noBranch|))) (-1049) (-1175) |#1|) (T -1249)) -((-3561 (*1 *1 *1 *2) (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1249 *3 *4 *5)) (-4 *3 (-1049)) (-14 *5 *3))) (-1941 (*1 *1 *1 *2) (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1249 *3 *4 *5)) (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-14 *5 *3)))) -(-13 (-1247 |#1| (-1228 |#1| |#2| |#3|)) (-1038 (-1256 |#1| |#2| |#3|)) (-616 (-1260 |#2|)) (-10 -8 (-15 -3561 ($ $ (-1260 |#2|))) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -1941 ($ $ (-1260 |#2|))) |%noBranch|))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) 37)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-3991 (($ $) NIL)) (-2388 (((-112) $) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-3012 (($) NIL T CONST)) (-4307 (((-3 (-566) "failed") $) NIL (|has| (-1249 |#2| |#3| |#4|) (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| (-1249 |#2| |#3| |#4|) (-1038 (-409 (-566))))) (((-3 (-1249 |#2| |#3| |#4|) "failed") $) 22)) (-4205 (((-566) $) NIL (|has| (-1249 |#2| |#3| |#4|) (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| (-1249 |#2| |#3| |#4|) (-1038 (-409 (-566))))) (((-1249 |#2| |#3| |#4|) $) NIL)) (-1786 (($ $) 41)) (-1878 (((-3 $ "failed") $) 27)) (-4075 (($ $) NIL (|has| (-1249 |#2| |#3| |#4|) (-454)))) (-3635 (($ $ (-1249 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|) $) NIL)) (-3934 (((-112) $) NIL)) (-2614 (((-771) $) 11)) (-3264 (((-112) $) NIL)) (-3840 (($ (-1249 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) 25)) (-3760 (((-320 |#2| |#3| |#4|) $) NIL)) (-4301 (($ (-1 (-320 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) $) NIL)) (-1301 (($ (-1 (-1249 |#2| |#3| |#4|) (-1249 |#2| |#3| |#4|)) $) NIL)) (-2839 (((-3 (-843 |#2|) "failed") $) 90)) (-1749 (($ $) NIL)) (-1763 (((-1249 |#2| |#3| |#4|) $) 20)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-1723 (((-112) $) NIL)) (-1736 (((-1249 |#2| |#3| |#4|) $) NIL)) (-2994 (((-3 $ "failed") $ (-1249 |#2| |#3| |#4|)) NIL (|has| (-1249 |#2| |#3| |#4|) (-558))) (((-3 $ "failed") $ $) NIL)) (-1298 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1249 |#2| |#3| |#4|)) (|:| |%expon| (-320 |#2| |#3| |#4|)) (|:| |%expTerms| (-644 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#2|)))))) (|:| |%type| (-1157))) "failed") $) 74)) (-3636 (((-320 |#2| |#3| |#4|) $) 17)) (-2483 (((-1249 |#2| |#3| |#4|) $) NIL (|has| (-1249 |#2| |#3| |#4|) (-454)))) (-3783 (((-862) $) NIL) (($ (-566)) NIL) (($ (-1249 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL (-2809 (|has| (-1249 |#2| |#3| |#4|) (-38 (-409 (-566)))) (|has| (-1249 |#2| |#3| |#4|) (-1038 (-409 (-566))))))) (-4170 (((-644 (-1249 |#2| |#3| |#4|)) $) NIL)) (-2649 (((-1249 |#2| |#3| |#4|) $ (-320 |#2| |#3| |#4|)) NIL)) (-3144 (((-3 $ "failed") $) NIL (|has| (-1249 |#2| |#3| |#4|) (-145)))) (-2107 (((-771)) NIL T CONST)) (-3362 (($ $ $ (-771)) NIL (|has| (-1249 |#2| |#3| |#4|) (-172)))) (-3117 (((-112) $ $) NIL)) (-2695 (((-112) $ $) NIL)) (-2479 (($) NIL T CONST)) (-4334 (($) NIL T CONST)) (-2947 (((-112) $ $) NIL)) (-3065 (($ $ (-1249 |#2| |#3| |#4|)) NIL (|has| (-1249 |#2| |#3| |#4|) (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-1249 |#2| |#3| |#4|)) NIL) (($ (-1249 |#2| |#3| |#4|) $) NIL) (($ (-409 (-566)) $) NIL (|has| (-1249 |#2| |#3| |#4|) (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| (-1249 |#2| |#3| |#4|) (-38 (-409 (-566))))))) -(((-1250 |#1| |#2| |#3| |#4|) (-13 (-327 (-1249 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) (-558) (-10 -8 (-15 -2839 ((-3 (-843 |#2|) "failed") $)) (-15 -1298 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1249 |#2| |#3| |#4|)) (|:| |%expon| (-320 |#2| |#3| |#4|)) (|:| |%expTerms| (-644 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#2|)))))) (|:| |%type| (-1157))) "failed") $)))) (-13 (-1038 (-566)) (-639 (-566)) (-454)) (-13 (-27) (-1199) (-432 |#1|)) (-1175) |#2|) (T -1250)) -((-2839 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1038 (-566)) (-639 (-566)) (-454))) (-5 *2 (-843 *4)) (-5 *1 (-1250 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1199) (-432 *3))) (-14 *5 (-1175)) (-14 *6 *4))) (-1298 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1038 (-566)) (-639 (-566)) (-454))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1249 *4 *5 *6)) (|:| |%expon| (-320 *4 *5 *6)) (|:| |%expTerms| (-644 (-2 (|:| |k| (-409 (-566))) (|:| |c| *4)))))) (|:| |%type| (-1157)))) (-5 *1 (-1250 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1199) (-432 *3))) (-14 *5 (-1175)) (-14 *6 *4)))) -(-13 (-327 (-1249 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) (-558) (-10 -8 (-15 -2839 ((-3 (-843 |#2|) "failed") $)) (-15 -1298 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1249 |#2| |#3| |#4|)) (|:| |%expon| (-320 |#2| |#3| |#4|)) (|:| |%expTerms| (-644 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#2|)))))) (|:| |%type| (-1157))) "failed") $)))) -((-2233 ((|#2| $) 34)) (-2593 ((|#2| $) 18)) (-2223 (($ $) 52)) (-2807 (($ $ (-566)) 85)) (-2256 (((-112) $ (-771)) 46)) (-3396 ((|#2| $ |#2|) 82)) (-3178 ((|#2| $ |#2|) 78)) (-3923 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 71) (($ $ "rest" $) 75) ((|#2| $ "last" |#2|) 73)) (-3800 (($ $ (-644 $)) 81)) (-2582 ((|#2| $) 17)) (-2010 (($ $) NIL) (($ $ (-771)) 59)) (-4009 (((-644 $) $) 31)) (-3891 (((-112) $ $) 69)) (-2404 (((-112) $ (-771)) 45)) (-2603 (((-112) $ (-771)) 43)) (-3438 (((-112) $) 33)) (-2686 ((|#2| $) 25) (($ $ (-771)) 64)) (-4390 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-3494 (((-112) $) 23)) (-4272 (($ $) 55)) (-1844 (($ $) 86)) (-2833 (((-771) $) 58)) (-2369 (($ $) 57)) (-3721 (($ $ $) 77) (($ |#2| $) NIL)) (-2462 (((-644 $) $) 32)) (-2947 (((-112) $ $) 67)) (-3018 (((-771) $) 51))) -(((-1251 |#1| |#2|) (-10 -8 (-15 -2807 (|#1| |#1| (-566))) (-15 -3923 (|#2| |#1| "last" |#2|)) (-15 -3178 (|#2| |#1| |#2|)) (-15 -3923 (|#1| |#1| "rest" |#1|)) (-15 -3923 (|#2| |#1| "first" |#2|)) (-15 -1844 (|#1| |#1|)) (-15 -4272 (|#1| |#1|)) (-15 -2833 ((-771) |#1|)) (-15 -2369 (|#1| |#1|)) (-15 -2593 (|#2| |#1|)) (-15 -2582 (|#2| |#1|)) (-15 -2223 (|#1| |#1|)) (-15 -2686 (|#1| |#1| (-771))) (-15 -4390 (|#2| |#1| "last")) (-15 -2686 (|#2| |#1|)) (-15 -2010 (|#1| |#1| (-771))) (-15 -4390 (|#1| |#1| "rest")) (-15 -2010 (|#1| |#1|)) (-15 -4390 (|#2| |#1| "first")) (-15 -3721 (|#1| |#2| |#1|)) (-15 -3721 (|#1| |#1| |#1|)) (-15 -3396 (|#2| |#1| |#2|)) (-15 -3923 (|#2| |#1| "value" |#2|)) (-15 -3800 (|#1| |#1| (-644 |#1|))) (-15 -3891 ((-112) |#1| |#1|)) (-15 -3494 ((-112) |#1|)) (-15 -4390 (|#2| |#1| "value")) (-15 -2233 (|#2| |#1|)) (-15 -3438 ((-112) |#1|)) (-15 -4009 ((-644 |#1|) |#1|)) (-15 -2462 ((-644 |#1|) |#1|)) (-15 -2947 ((-112) |#1| |#1|)) (-15 -3018 ((-771) |#1|)) (-15 -2256 ((-112) |#1| (-771))) (-15 -2404 ((-112) |#1| (-771))) (-15 -2603 ((-112) |#1| (-771)))) (-1252 |#2|) (-1214)) (T -1251)) -NIL -(-10 -8 (-15 -2807 (|#1| |#1| (-566))) (-15 -3923 (|#2| |#1| "last" |#2|)) (-15 -3178 (|#2| |#1| |#2|)) (-15 -3923 (|#1| |#1| "rest" |#1|)) (-15 -3923 (|#2| |#1| "first" |#2|)) (-15 -1844 (|#1| |#1|)) (-15 -4272 (|#1| |#1|)) (-15 -2833 ((-771) |#1|)) (-15 -2369 (|#1| |#1|)) (-15 -2593 (|#2| |#1|)) (-15 -2582 (|#2| |#1|)) (-15 -2223 (|#1| |#1|)) (-15 -2686 (|#1| |#1| (-771))) (-15 -4390 (|#2| |#1| "last")) (-15 -2686 (|#2| |#1|)) (-15 -2010 (|#1| |#1| (-771))) (-15 -4390 (|#1| |#1| "rest")) (-15 -2010 (|#1| |#1|)) (-15 -4390 (|#2| |#1| "first")) (-15 -3721 (|#1| |#2| |#1|)) (-15 -3721 (|#1| |#1| |#1|)) (-15 -3396 (|#2| |#1| |#2|)) (-15 -3923 (|#2| |#1| "value" |#2|)) (-15 -3800 (|#1| |#1| (-644 |#1|))) (-15 -3891 ((-112) |#1| |#1|)) (-15 -3494 ((-112) |#1|)) (-15 -4390 (|#2| |#1| "value")) (-15 -2233 (|#2| |#1|)) (-15 -3438 ((-112) |#1|)) (-15 -4009 ((-644 |#1|) |#1|)) (-15 -2462 ((-644 |#1|) |#1|)) (-15 -2947 ((-112) |#1| |#1|)) (-15 -3018 ((-771) |#1|)) (-15 -2256 ((-112) |#1| (-771))) (-15 -2404 ((-112) |#1| (-771))) (-15 -2603 ((-112) |#1| (-771)))) -((-3007 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2233 ((|#1| $) 49)) (-2593 ((|#1| $) 66)) (-2223 (($ $) 68)) (-2807 (($ $ (-566)) 53 (|has| $ (-6 -4415)))) (-2256 (((-112) $ (-771)) 8)) (-3396 ((|#1| $ |#1|) 40 (|has| $ (-6 -4415)))) (-4107 (($ $ $) 57 (|has| $ (-6 -4415)))) (-3178 ((|#1| $ |#1|) 55 (|has| $ (-6 -4415)))) (-2905 ((|#1| $ |#1|) 59 (|has| $ (-6 -4415)))) (-3923 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4415))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4415))) (($ $ "rest" $) 56 (|has| $ (-6 -4415))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4415)))) (-3800 (($ $ (-644 $)) 42 (|has| $ (-6 -4415)))) (-2582 ((|#1| $) 67)) (-3012 (($) 7 T CONST)) (-2010 (($ $) 74) (($ $ (-771)) 72)) (-3979 (((-644 |#1|) $) 31 (|has| $ (-6 -4414)))) (-4009 (((-644 $) $) 51)) (-3891 (((-112) $ $) 43 (|has| |#1| (-1099)))) (-2404 (((-112) $ (-771)) 9)) (-2329 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2908 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#1| |#1|) $) 36)) (-2603 (((-112) $ (-771)) 10)) (-3701 (((-644 |#1|) $) 46)) (-3438 (((-112) $) 50)) (-4117 (((-1157) $) 22 (|has| |#1| (-1099)))) (-2686 ((|#1| $) 71) (($ $ (-771)) 69)) (-4035 (((-1119) $) 21 (|has| |#1| (-1099)))) (-1998 ((|#1| $) 77) (($ $ (-771)) 75)) (-2692 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) 14)) (-3467 (((-112) $) 11)) (-1494 (($) 12)) (-4390 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70)) (-1416 (((-566) $ $) 45)) (-3494 (((-112) $) 47)) (-4272 (($ $) 63)) (-1844 (($ $) 60 (|has| $ (-6 -4415)))) (-2833 (((-771) $) 64)) (-2369 (($ $) 65)) (-4045 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-3940 (($ $) 13)) (-3480 (($ $ $) 62 (|has| $ (-6 -4415))) (($ $ |#1|) 61 (|has| $ (-6 -4415)))) (-3721 (($ $ $) 79) (($ |#1| $) 78)) (-3783 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-2462 (((-644 $) $) 52)) (-4288 (((-112) $ $) 44 (|has| |#1| (-1099)))) (-3117 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-1894 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-2947 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3018 (((-771) $) 6 (|has| $ (-6 -4414))))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-1771 (((-644 (-1081)) $) NIL)) (-4347 (((-1175) $) 11)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-2161 (($ $) NIL (|has| |#1| (-558)))) (-2345 (((-112) $) NIL (|has| |#1| (-558)))) (-2331 (($ $ (-409 (-566))) NIL) (($ $ (-409 (-566)) (-409 (-566))) NIL)) (-4152 (((-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#1|))) $) NIL)) (-3963 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3630 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3967 (((-3 $ "failed") $ $) NIL)) (-1378 (($ $) NIL (|has| |#1| (-365)))) (-1364 (((-420 $) $) NIL (|has| |#1| (-365)))) (-1635 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2085 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3941 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3602 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1427 (($ (-771) (-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#1|)))) NIL)) (-3986 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3656 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2463 (($) NIL T CONST)) (-2229 (((-3 (-1228 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1256 |#1| |#2| |#3|) "failed") $) 22)) (-4158 (((-1228 |#1| |#2| |#3|) $) NIL) (((-1256 |#1| |#2| |#3|) $) NIL)) (-2933 (($ $ $) NIL (|has| |#1| (-365)))) (-2814 (($ $) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-1811 (((-409 (-566)) $) 69)) (-2945 (($ $ $) NIL (|has| |#1| (-365)))) (-2729 (($ (-409 (-566)) (-1228 |#1| |#2| |#3|)) NIL)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) NIL (|has| |#1| (-365)))) (-1615 (((-112) $) NIL (|has| |#1| (-365)))) (-3772 (((-112) $) NIL)) (-2281 (($) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2679 (((-409 (-566)) $) NIL) (((-409 (-566)) $ (-409 (-566))) NIL)) (-2389 (((-112) $) NIL)) (-1575 (($ $ (-566)) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3394 (($ $ (-921)) NIL) (($ $ (-409 (-566))) NIL)) (-3816 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-2497 (((-112) $) NIL)) (-1746 (($ |#1| (-409 (-566))) 30) (($ $ (-1081) (-409 (-566))) NIL) (($ $ (-644 (-1081)) (-644 (-409 (-566)))) NIL)) (-2319 (($ (-1 |#1| |#1|) $) NIL)) (-3619 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2784 (($ $) NIL)) (-2794 ((|#1| $) NIL)) (-2128 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2877 (((-1228 |#1| |#2| |#3|) $) 72)) (-3320 (((-3 (-1228 |#1| |#2| |#3|) "failed") $) NIL)) (-2719 (((-1228 |#1| |#2| |#3|) $) NIL)) (-3380 (((-1157) $) NIL)) (-2748 (($ $) NIL (|has| |#1| (-365)))) (-3313 (($ $) 39 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) NIL (-2768 (-12 (|has| |#1| (-15 -3313 (|#1| |#1| (-1175)))) (|has| |#1| (-15 -1771 ((-644 (-1175)) |#1|))) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-959)) (|has| |#1| (-1199))))) (($ $ (-1260 |#2|)) 40 (|has| |#1| (-38 (-409 (-566)))))) (-4072 (((-1119) $) NIL)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-365)))) (-2164 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-1624 (((-420 $) $) NIL (|has| |#1| (-365)))) (-3005 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) NIL (|has| |#1| (-365)))) (-3369 (($ $ (-409 (-566))) NIL)) (-2978 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-2915 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-3521 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2023 (((-1155 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-409 (-566))))))) (-4357 (((-771) $) NIL (|has| |#1| (-365)))) (-1309 ((|#1| $ (-409 (-566))) NIL) (($ $ $) NIL (|has| (-409 (-566)) (-1111)))) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) NIL (|has| |#1| (-365)))) (-3629 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $ (-1260 |#2|)) 38)) (-3902 (((-409 (-566)) $) NIL)) (-3996 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3670 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3976 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3643 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3952 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3618 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1687 (($ $) NIL)) (-3152 (((-862) $) 109) (($ (-566)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1228 |#1| |#2| |#3|)) 16) (($ (-1256 |#1| |#2| |#3|)) 17) (($ (-1260 |#2|)) 36) (($ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $) NIL (|has| |#1| (-558)))) (-2271 ((|#1| $ (-409 (-566))) NIL)) (-2633 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2593 (((-771)) NIL T CONST)) (-4290 ((|#1| $) 12)) (-3044 (((-112) $ $) NIL)) (-4032 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3892 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3014 (((-112) $ $) NIL (|has| |#1| (-558)))) (-4008 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3684 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4057 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3917 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3603 ((|#1| $ (-409 (-566))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-409 (-566))))) (|has| |#1| (-15 -3152 (|#1| (-1175))))))) (-3964 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3929 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4044 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3904 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4020 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3879 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4356 (($) 32 T CONST)) (-4366 (($) 26 T CONST)) (-3497 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (-2914 (((-112) $ $) NIL)) (-3025 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) 34)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))))) +(((-1249 |#1| |#2| |#3|) (-13 (-1247 |#1| (-1228 |#1| |#2| |#3|)) (-1038 (-1256 |#1| |#2| |#3|)) (-616 (-1260 |#2|)) (-10 -8 (-15 -3629 ($ $ (-1260 |#2|))) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -3313 ($ $ (-1260 |#2|))) |%noBranch|))) (-1049) (-1175) |#1|) (T -1249)) +((-3629 (*1 *1 *1 *2) (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1249 *3 *4 *5)) (-4 *3 (-1049)) (-14 *5 *3))) (-3313 (*1 *1 *1 *2) (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1249 *3 *4 *5)) (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-14 *5 *3)))) +(-13 (-1247 |#1| (-1228 |#1| |#2| |#3|)) (-1038 (-1256 |#1| |#2| |#3|)) (-616 (-1260 |#2|)) (-10 -8 (-15 -3629 ($ $ (-1260 |#2|))) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -3313 ($ $ (-1260 |#2|))) |%noBranch|))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) 37)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL)) (-2161 (($ $) NIL)) (-2345 (((-112) $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-2463 (($) NIL T CONST)) (-2229 (((-3 (-566) "failed") $) NIL (|has| (-1249 |#2| |#3| |#4|) (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| (-1249 |#2| |#3| |#4|) (-1038 (-409 (-566))))) (((-3 (-1249 |#2| |#3| |#4|) "failed") $) 22)) (-4158 (((-566) $) NIL (|has| (-1249 |#2| |#3| |#4|) (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| (-1249 |#2| |#3| |#4|) (-1038 (-409 (-566))))) (((-1249 |#2| |#3| |#4|) $) NIL)) (-2814 (($ $) 41)) (-3245 (((-3 $ "failed") $) 27)) (-2616 (($ $) NIL (|has| (-1249 |#2| |#3| |#4|) (-454)))) (-1896 (($ $ (-1249 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|) $) NIL)) (-2389 (((-112) $) NIL)) (-3039 (((-771) $) 11)) (-2497 (((-112) $) NIL)) (-1746 (($ (-1249 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) 25)) (-2749 (((-320 |#2| |#3| |#4|) $) NIL)) (-3021 (($ (-1 (-320 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) $) NIL)) (-2319 (($ (-1 (-1249 |#2| |#3| |#4|) (-1249 |#2| |#3| |#4|)) $) NIL)) (-2298 (((-3 (-843 |#2|) "failed") $) 90)) (-2784 (($ $) NIL)) (-2794 (((-1249 |#2| |#3| |#4|) $) 20)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-2761 (((-112) $) NIL)) (-2773 (((-1249 |#2| |#3| |#4|) $) NIL)) (-2978 (((-3 $ "failed") $ (-1249 |#2| |#3| |#4|)) NIL (|has| (-1249 |#2| |#3| |#4|) (-558))) (((-3 $ "failed") $ $) NIL)) (-1534 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1249 |#2| |#3| |#4|)) (|:| |%expon| (-320 |#2| |#3| |#4|)) (|:| |%expTerms| (-644 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#2|)))))) (|:| |%type| (-1157))) "failed") $) 74)) (-3902 (((-320 |#2| |#3| |#4|) $) 17)) (-3173 (((-1249 |#2| |#3| |#4|) $) NIL (|has| (-1249 |#2| |#3| |#4|) (-454)))) (-3152 (((-862) $) NIL) (($ (-566)) NIL) (($ (-1249 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL (-2768 (|has| (-1249 |#2| |#3| |#4|) (-38 (-409 (-566)))) (|has| (-1249 |#2| |#3| |#4|) (-1038 (-409 (-566))))))) (-1643 (((-644 (-1249 |#2| |#3| |#4|)) $) NIL)) (-2271 (((-1249 |#2| |#3| |#4|) $ (-320 |#2| |#3| |#4|)) NIL)) (-2633 (((-3 $ "failed") $) NIL (|has| (-1249 |#2| |#3| |#4|) (-145)))) (-2593 (((-771)) NIL T CONST)) (-2021 (($ $ $ (-771)) NIL (|has| (-1249 |#2| |#3| |#4|) (-172)))) (-3044 (((-112) $ $) NIL)) (-3014 (((-112) $ $) NIL)) (-4356 (($) NIL T CONST)) (-4366 (($) NIL T CONST)) (-2914 (((-112) $ $) NIL)) (-3025 (($ $ (-1249 |#2| |#3| |#4|)) NIL (|has| (-1249 |#2| |#3| |#4|) (-365)))) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-1249 |#2| |#3| |#4|)) NIL) (($ (-1249 |#2| |#3| |#4|) $) NIL) (($ (-409 (-566)) $) NIL (|has| (-1249 |#2| |#3| |#4|) (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| (-1249 |#2| |#3| |#4|) (-38 (-409 (-566))))))) +(((-1250 |#1| |#2| |#3| |#4|) (-13 (-327 (-1249 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) (-558) (-10 -8 (-15 -2298 ((-3 (-843 |#2|) "failed") $)) (-15 -1534 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1249 |#2| |#3| |#4|)) (|:| |%expon| (-320 |#2| |#3| |#4|)) (|:| |%expTerms| (-644 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#2|)))))) (|:| |%type| (-1157))) "failed") $)))) (-13 (-1038 (-566)) (-639 (-566)) (-454)) (-13 (-27) (-1199) (-432 |#1|)) (-1175) |#2|) (T -1250)) +((-2298 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1038 (-566)) (-639 (-566)) (-454))) (-5 *2 (-843 *4)) (-5 *1 (-1250 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1199) (-432 *3))) (-14 *5 (-1175)) (-14 *6 *4))) (-1534 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1038 (-566)) (-639 (-566)) (-454))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1249 *4 *5 *6)) (|:| |%expon| (-320 *4 *5 *6)) (|:| |%expTerms| (-644 (-2 (|:| |k| (-409 (-566))) (|:| |c| *4)))))) (|:| |%type| (-1157)))) (-5 *1 (-1250 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1199) (-432 *3))) (-14 *5 (-1175)) (-14 *6 *4)))) +(-13 (-327 (-1249 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) (-558) (-10 -8 (-15 -2298 ((-3 (-843 |#2|) "failed") $)) (-15 -1534 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1249 |#2| |#3| |#4|)) (|:| |%expon| (-320 |#2| |#3| |#4|)) (|:| |%expTerms| (-644 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#2|)))))) (|:| |%type| (-1157))) "failed") $)))) +((-2876 ((|#2| $) 34)) (-3541 ((|#2| $) 18)) (-3214 (($ $) 52)) (-4258 (($ $ (-566)) 85)) (-1504 (((-112) $ (-771)) 46)) (-2191 ((|#2| $ |#2|) 82)) (-1948 ((|#2| $ |#2|) 78)) (-1456 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 71) (($ $ "rest" $) 75) ((|#2| $ "last" |#2|) 73)) (-4202 (($ $ (-644 $)) 81)) (-3531 ((|#2| $) 17)) (-3919 (($ $) NIL) (($ $ (-771)) 59)) (-3431 (((-644 $) $) 31)) (-1507 (((-112) $ $) 69)) (-3456 (((-112) $ (-771)) 45)) (-3267 (((-112) $ (-771)) 43)) (-3860 (((-112) $) 33)) (-2641 ((|#2| $) 25) (($ $ (-771)) 64)) (-1309 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-3786 (((-112) $) 23)) (-4018 (($ $) 55)) (-3810 (($ $) 86)) (-2916 (((-771) $) 58)) (-1922 (($ $) 57)) (-4386 (($ $ $) 77) (($ |#2| $) NIL)) (-1926 (((-644 $) $) 32)) (-2914 (((-112) $ $) 67)) (-3000 (((-771) $) 51))) +(((-1251 |#1| |#2|) (-10 -8 (-15 -4258 (|#1| |#1| (-566))) (-15 -1456 (|#2| |#1| "last" |#2|)) (-15 -1948 (|#2| |#1| |#2|)) (-15 -1456 (|#1| |#1| "rest" |#1|)) (-15 -1456 (|#2| |#1| "first" |#2|)) (-15 -3810 (|#1| |#1|)) (-15 -4018 (|#1| |#1|)) (-15 -2916 ((-771) |#1|)) (-15 -1922 (|#1| |#1|)) (-15 -3541 (|#2| |#1|)) (-15 -3531 (|#2| |#1|)) (-15 -3214 (|#1| |#1|)) (-15 -2641 (|#1| |#1| (-771))) (-15 -1309 (|#2| |#1| "last")) (-15 -2641 (|#2| |#1|)) (-15 -3919 (|#1| |#1| (-771))) (-15 -1309 (|#1| |#1| "rest")) (-15 -3919 (|#1| |#1|)) (-15 -1309 (|#2| |#1| "first")) (-15 -4386 (|#1| |#2| |#1|)) (-15 -4386 (|#1| |#1| |#1|)) (-15 -2191 (|#2| |#1| |#2|)) (-15 -1456 (|#2| |#1| "value" |#2|)) (-15 -4202 (|#1| |#1| (-644 |#1|))) (-15 -1507 ((-112) |#1| |#1|)) (-15 -3786 ((-112) |#1|)) (-15 -1309 (|#2| |#1| "value")) (-15 -2876 (|#2| |#1|)) (-15 -3860 ((-112) |#1|)) (-15 -3431 ((-644 |#1|) |#1|)) (-15 -1926 ((-644 |#1|) |#1|)) (-15 -2914 ((-112) |#1| |#1|)) (-15 -3000 ((-771) |#1|)) (-15 -1504 ((-112) |#1| (-771))) (-15 -3456 ((-112) |#1| (-771))) (-15 -3267 ((-112) |#1| (-771)))) (-1252 |#2|) (-1214)) (T -1251)) +NIL +(-10 -8 (-15 -4258 (|#1| |#1| (-566))) (-15 -1456 (|#2| |#1| "last" |#2|)) (-15 -1948 (|#2| |#1| |#2|)) (-15 -1456 (|#1| |#1| "rest" |#1|)) (-15 -1456 (|#2| |#1| "first" |#2|)) (-15 -3810 (|#1| |#1|)) (-15 -4018 (|#1| |#1|)) (-15 -2916 ((-771) |#1|)) (-15 -1922 (|#1| |#1|)) (-15 -3541 (|#2| |#1|)) (-15 -3531 (|#2| |#1|)) (-15 -3214 (|#1| |#1|)) (-15 -2641 (|#1| |#1| (-771))) (-15 -1309 (|#2| |#1| "last")) (-15 -2641 (|#2| |#1|)) (-15 -3919 (|#1| |#1| (-771))) (-15 -1309 (|#1| |#1| "rest")) (-15 -3919 (|#1| |#1|)) (-15 -1309 (|#2| |#1| "first")) (-15 -4386 (|#1| |#2| |#1|)) (-15 -4386 (|#1| |#1| |#1|)) (-15 -2191 (|#2| |#1| |#2|)) (-15 -1456 (|#2| |#1| "value" |#2|)) (-15 -4202 (|#1| |#1| (-644 |#1|))) (-15 -1507 ((-112) |#1| |#1|)) (-15 -3786 ((-112) |#1|)) (-15 -1309 (|#2| |#1| "value")) (-15 -2876 (|#2| |#1|)) (-15 -3860 ((-112) |#1|)) (-15 -3431 ((-644 |#1|) |#1|)) (-15 -1926 ((-644 |#1|) |#1|)) (-15 -2914 ((-112) |#1| |#1|)) (-15 -3000 ((-771) |#1|)) (-15 -1504 ((-112) |#1| (-771))) (-15 -3456 ((-112) |#1| (-771))) (-15 -3267 ((-112) |#1| (-771)))) +((-2988 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2876 ((|#1| $) 49)) (-3541 ((|#1| $) 66)) (-3214 (($ $) 68)) (-4258 (($ $ (-566)) 53 (|has| $ (-6 -4415)))) (-1504 (((-112) $ (-771)) 8)) (-2191 ((|#1| $ |#1|) 40 (|has| $ (-6 -4415)))) (-1813 (($ $ $) 57 (|has| $ (-6 -4415)))) (-1948 ((|#1| $ |#1|) 55 (|has| $ (-6 -4415)))) (-1381 ((|#1| $ |#1|) 59 (|has| $ (-6 -4415)))) (-1456 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4415))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4415))) (($ $ "rest" $) 56 (|has| $ (-6 -4415))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4415)))) (-4202 (($ $ (-644 $)) 42 (|has| $ (-6 -4415)))) (-3531 ((|#1| $) 67)) (-2463 (($) 7 T CONST)) (-3919 (($ $) 74) (($ $ (-771)) 72)) (-1683 (((-644 |#1|) $) 31 (|has| $ (-6 -4414)))) (-3431 (((-644 $) $) 51)) (-1507 (((-112) $ $) 43 (|has| |#1| (-1099)))) (-3456 (((-112) $ (-771)) 9)) (-3491 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-3885 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#1| |#1|) $) 36)) (-3267 (((-112) $ (-771)) 10)) (-1458 (((-644 |#1|) $) 46)) (-3860 (((-112) $) 50)) (-3380 (((-1157) $) 22 (|has| |#1| (-1099)))) (-2641 ((|#1| $) 71) (($ $ (-771)) 69)) (-4072 (((-1119) $) 21 (|has| |#1| (-1099)))) (-3908 ((|#1| $) 77) (($ $ (-771)) 75)) (-2823 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) 14)) (-2872 (((-112) $) 11)) (-3493 (($) 12)) (-1309 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70)) (-1696 (((-566) $ $) 45)) (-3786 (((-112) $) 47)) (-4018 (($ $) 63)) (-3810 (($ $) 60 (|has| $ (-6 -4415)))) (-2916 (((-771) $) 64)) (-1922 (($ $) 65)) (-4083 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-1480 (($ $) 13)) (-1690 (($ $ $) 62 (|has| $ (-6 -4415))) (($ $ |#1|) 61 (|has| $ (-6 -4415)))) (-4386 (($ $ $) 79) (($ |#1| $) 78)) (-3152 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-1926 (((-644 $) $) 52)) (-4385 (((-112) $ $) 44 (|has| |#1| (-1099)))) (-3044 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-2210 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-2914 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3000 (((-771) $) 6 (|has| $ (-6 -4414))))) (((-1252 |#1|) (-140) (-1214)) (T -1252)) -((-3721 (*1 *1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-3721 (*1 *1 *2 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-1998 (*1 *2 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-4390 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-1998 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-1252 *3)) (-4 *3 (-1214)))) (-2010 (*1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-4390 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1252 *3)) (-4 *3 (-1214)))) (-2010 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-1252 *3)) (-4 *3 (-1214)))) (-2686 (*1 *2 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-4390 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-2686 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-1252 *3)) (-4 *3 (-1214)))) (-2223 (*1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-2582 (*1 *2 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-2593 (*1 *2 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-2369 (*1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-2833 (*1 *2 *1) (-12 (-4 *1 (-1252 *3)) (-4 *3 (-1214)) (-5 *2 (-771)))) (-4272 (*1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-3480 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4415)) (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-3480 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4415)) (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-1844 (*1 *1 *1) (-12 (|has| *1 (-6 -4415)) (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-2905 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4415)) (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-3923 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4415)) (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-4107 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4415)) (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-3923 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4415)) (-4 *1 (-1252 *3)) (-4 *3 (-1214)))) (-3178 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4415)) (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-3923 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4415)) (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-2807 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (|has| *1 (-6 -4415)) (-4 *1 (-1252 *3)) (-4 *3 (-1214))))) -(-13 (-1010 |t#1|) (-10 -8 (-15 -3721 ($ $ $)) (-15 -3721 ($ |t#1| $)) (-15 -1998 (|t#1| $)) (-15 -4390 (|t#1| $ "first")) (-15 -1998 ($ $ (-771))) (-15 -2010 ($ $)) (-15 -4390 ($ $ "rest")) (-15 -2010 ($ $ (-771))) (-15 -2686 (|t#1| $)) (-15 -4390 (|t#1| $ "last")) (-15 -2686 ($ $ (-771))) (-15 -2223 ($ $)) (-15 -2582 (|t#1| $)) (-15 -2593 (|t#1| $)) (-15 -2369 ($ $)) (-15 -2833 ((-771) $)) (-15 -4272 ($ $)) (IF (|has| $ (-6 -4415)) (PROGN (-15 -3480 ($ $ $)) (-15 -3480 ($ $ |t#1|)) (-15 -1844 ($ $)) (-15 -2905 (|t#1| $ |t#1|)) (-15 -3923 (|t#1| $ "first" |t#1|)) (-15 -4107 ($ $ $)) (-15 -3923 ($ $ "rest" $)) (-15 -3178 (|t#1| $ |t#1|)) (-15 -3923 (|t#1| $ "last" |t#1|)) (-15 -2807 ($ $ (-566)))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2809 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1010 |#1|) . T) ((-1099) |has| |#1| (-1099)) ((-1214) . T)) -((-1301 ((|#4| (-1 |#2| |#1|) |#3|) 17))) -(((-1253 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1301 (|#4| (-1 |#2| |#1|) |#3|))) (-1049) (-1049) (-1255 |#1|) (-1255 |#2|)) (T -1253)) -((-1301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1049)) (-4 *6 (-1049)) (-4 *2 (-1255 *6)) (-5 *1 (-1253 *5 *6 *4 *2)) (-4 *4 (-1255 *5))))) -(-10 -7 (-15 -1301 (|#4| (-1 |#2| |#1|) |#3|))) -((-1788 (((-112) $) 17)) (-4114 (($ $) 106)) (-2109 (($ $) 82)) (-2240 (($ $) 102)) (-2085 (($ $) 78)) (-4134 (($ $) 110)) (-2129 (($ $) 86)) (-3651 (($ $) 76)) (-2561 (($ $) 74)) (-4144 (($ $) 112)) (-2141 (($ $) 88)) (-4124 (($ $) 108)) (-2118 (($ $) 84)) (-4104 (($ $) 104)) (-2098 (($ $) 80)) (-3783 (((-862) $) 62) (($ (-566)) NIL) (($ (-409 (-566))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-4177 (($ $) 118)) (-2180 (($ $) 94)) (-4155 (($ $) 114)) (-2153 (($ $) 90)) (-4198 (($ $) 122)) (-2212 (($ $) 98)) (-2976 (($ $) 124)) (-2227 (($ $) 100)) (-4188 (($ $) 120)) (-2196 (($ $) 96)) (-4166 (($ $) 116)) (-2166 (($ $) 92)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ |#2|) 66) (($ $ $) 69) (($ $ (-409 (-566))) 72))) -(((-1254 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-409 (-566)))) (-15 -2109 (|#1| |#1|)) (-15 -2085 (|#1| |#1|)) (-15 -2129 (|#1| |#1|)) (-15 -2141 (|#1| |#1|)) (-15 -2118 (|#1| |#1|)) (-15 -2098 (|#1| |#1|)) (-15 -2166 (|#1| |#1|)) (-15 -2196 (|#1| |#1|)) (-15 -2227 (|#1| |#1|)) (-15 -2212 (|#1| |#1|)) (-15 -2153 (|#1| |#1|)) (-15 -2180 (|#1| |#1|)) (-15 -4104 (|#1| |#1|)) (-15 -4124 (|#1| |#1|)) (-15 -4144 (|#1| |#1|)) (-15 -4134 (|#1| |#1|)) (-15 -2240 (|#1| |#1|)) (-15 -4114 (|#1| |#1|)) (-15 -4166 (|#1| |#1|)) (-15 -4188 (|#1| |#1|)) (-15 -2976 (|#1| |#1|)) (-15 -4198 (|#1| |#1|)) (-15 -4155 (|#1| |#1|)) (-15 -4177 (|#1| |#1|)) (-15 -3651 (|#1| |#1|)) (-15 -2561 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3783 (|#1| |#2|)) (-15 -3783 (|#1| |#1|)) (-15 -3783 (|#1| (-409 (-566)))) (-15 -3783 (|#1| (-566))) (-15 ** (|#1| |#1| (-771))) (-15 ** (|#1| |#1| (-921))) (-15 -1788 ((-112) |#1|)) (-15 -3783 ((-862) |#1|))) (-1255 |#2|) (-1049)) (T -1254)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-409 (-566)))) (-15 -2109 (|#1| |#1|)) (-15 -2085 (|#1| |#1|)) (-15 -2129 (|#1| |#1|)) (-15 -2141 (|#1| |#1|)) (-15 -2118 (|#1| |#1|)) (-15 -2098 (|#1| |#1|)) (-15 -2166 (|#1| |#1|)) (-15 -2196 (|#1| |#1|)) (-15 -2227 (|#1| |#1|)) (-15 -2212 (|#1| |#1|)) (-15 -2153 (|#1| |#1|)) (-15 -2180 (|#1| |#1|)) (-15 -4104 (|#1| |#1|)) (-15 -4124 (|#1| |#1|)) (-15 -4144 (|#1| |#1|)) (-15 -4134 (|#1| |#1|)) (-15 -2240 (|#1| |#1|)) (-15 -4114 (|#1| |#1|)) (-15 -4166 (|#1| |#1|)) (-15 -4188 (|#1| |#1|)) (-15 -2976 (|#1| |#1|)) (-15 -4198 (|#1| |#1|)) (-15 -4155 (|#1| |#1|)) (-15 -4177 (|#1| |#1|)) (-15 -3651 (|#1| |#1|)) (-15 -2561 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3783 (|#1| |#2|)) (-15 -3783 (|#1| |#1|)) (-15 -3783 (|#1| (-409 (-566)))) (-15 -3783 (|#1| (-566))) (-15 ** (|#1| |#1| (-771))) (-15 ** (|#1| |#1| (-921))) (-15 -1788 ((-112) |#1|)) (-15 -3783 ((-862) |#1|))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-3863 (((-644 (-1081)) $) 86)) (-1385 (((-1175) $) 115)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) 63 (|has| |#1| (-558)))) (-3991 (($ $) 64 (|has| |#1| (-558)))) (-2388 (((-112) $) 66 (|has| |#1| (-558)))) (-2587 (($ $ (-771)) 110) (($ $ (-771) (-771)) 109)) (-2775 (((-1155 (-2 (|:| |k| (-771)) (|:| |c| |#1|))) $) 117)) (-4114 (($ $) 147 (|has| |#1| (-38 (-409 (-566)))))) (-2109 (($ $) 130 (|has| |#1| (-38 (-409 (-566)))))) (-4175 (((-3 $ "failed") $ $) 20)) (-3731 (($ $) 129 (|has| |#1| (-38 (-409 (-566)))))) (-2240 (($ $) 146 (|has| |#1| (-38 (-409 (-566)))))) (-2085 (($ $) 131 (|has| |#1| (-38 (-409 (-566)))))) (-2052 (($ (-1155 (-2 (|:| |k| (-771)) (|:| |c| |#1|)))) 167) (($ (-1155 |#1|)) 165)) (-4134 (($ $) 145 (|has| |#1| (-38 (-409 (-566)))))) (-2129 (($ $) 132 (|has| |#1| (-38 (-409 (-566)))))) (-3012 (($) 18 T CONST)) (-1786 (($ $) 72)) (-1878 (((-3 $ "failed") $) 37)) (-1703 (($ $) 164)) (-4386 (((-952 |#1|) $ (-771)) 162) (((-952 |#1|) $ (-771) (-771)) 161)) (-2158 (((-112) $) 85)) (-4361 (($) 157 (|has| |#1| (-38 (-409 (-566)))))) (-3254 (((-771) $) 112) (((-771) $ (-771)) 111)) (-3934 (((-112) $) 35)) (-2140 (($ $ (-566)) 128 (|has| |#1| (-38 (-409 (-566)))))) (-2955 (($ $ (-921)) 113)) (-4042 (($ (-1 |#1| (-566)) $) 163)) (-3264 (((-112) $) 74)) (-3840 (($ |#1| (-771)) 73) (($ $ (-1081) (-771)) 88) (($ $ (-644 (-1081)) (-644 (-771))) 87)) (-1301 (($ (-1 |#1| |#1|) $) 75)) (-3651 (($ $) 154 (|has| |#1| (-38 (-409 (-566)))))) (-1749 (($ $) 77)) (-1763 ((|#1| $) 78)) (-4117 (((-1157) $) 10)) (-1941 (($ $) 159 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) 158 (-2809 (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-959)) (|has| |#1| (-1199)) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-15 -3863 ((-644 (-1175)) |#1|))) (|has| |#1| (-15 -1941 (|#1| |#1| (-1175)))) (|has| |#1| (-38 (-409 (-566)))))))) (-4035 (((-1119) $) 11)) (-3874 (($ $ (-771)) 107)) (-2994 (((-3 $ "failed") $ $) 62 (|has| |#1| (-558)))) (-2561 (($ $) 155 (|has| |#1| (-38 (-409 (-566)))))) (-2055 (((-1155 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-771)))))) (-4390 ((|#1| $ (-771)) 116) (($ $ $) 93 (|has| (-771) (-1111)))) (-3561 (($ $ (-644 (-1175)) (-644 (-771))) 101 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-771) |#1|))))) (($ $ (-1175) (-771)) 100 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-771) |#1|))))) (($ $ (-644 (-1175))) 99 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-771) |#1|))))) (($ $ (-1175)) 98 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-771) |#1|))))) (($ $ (-771)) 96 (|has| |#1| (-15 * (|#1| (-771) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-771) |#1|))))) (-3636 (((-771) $) 76)) (-4144 (($ $) 144 (|has| |#1| (-38 (-409 (-566)))))) (-2141 (($ $) 133 (|has| |#1| (-38 (-409 (-566)))))) (-4124 (($ $) 143 (|has| |#1| (-38 (-409 (-566)))))) (-2118 (($ $) 134 (|has| |#1| (-38 (-409 (-566)))))) (-4104 (($ $) 142 (|has| |#1| (-38 (-409 (-566)))))) (-2098 (($ $) 135 (|has| |#1| (-38 (-409 (-566)))))) (-2770 (($ $) 84)) (-3783 (((-862) $) 12) (($ (-566)) 33) (($ (-409 (-566))) 69 (|has| |#1| (-38 (-409 (-566))))) (($ $) 61 (|has| |#1| (-558))) (($ |#1|) 59 (|has| |#1| (-172)))) (-4170 (((-1155 |#1|) $) 166)) (-2649 ((|#1| $ (-771)) 71)) (-3144 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2107 (((-771)) 32 T CONST)) (-1320 ((|#1| $) 114)) (-3117 (((-112) $ $) 9)) (-4177 (($ $) 153 (|has| |#1| (-38 (-409 (-566)))))) (-2180 (($ $) 141 (|has| |#1| (-38 (-409 (-566)))))) (-2695 (((-112) $ $) 65 (|has| |#1| (-558)))) (-4155 (($ $) 152 (|has| |#1| (-38 (-409 (-566)))))) (-2153 (($ $) 140 (|has| |#1| (-38 (-409 (-566)))))) (-4198 (($ $) 151 (|has| |#1| (-38 (-409 (-566)))))) (-2212 (($ $) 139 (|has| |#1| (-38 (-409 (-566)))))) (-3628 ((|#1| $ (-771)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-771)))) (|has| |#1| (-15 -3783 (|#1| (-1175))))))) (-2976 (($ $) 150 (|has| |#1| (-38 (-409 (-566)))))) (-2227 (($ $) 138 (|has| |#1| (-38 (-409 (-566)))))) (-4188 (($ $) 149 (|has| |#1| (-38 (-409 (-566)))))) (-2196 (($ $) 137 (|has| |#1| (-38 (-409 (-566)))))) (-4166 (($ $) 148 (|has| |#1| (-38 (-409 (-566)))))) (-2166 (($ $) 136 (|has| |#1| (-38 (-409 (-566)))))) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-2875 (($ $ (-644 (-1175)) (-644 (-771))) 105 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-771) |#1|))))) (($ $ (-1175) (-771)) 104 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-771) |#1|))))) (($ $ (-644 (-1175))) 103 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-771) |#1|))))) (($ $ (-1175)) 102 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-771) |#1|))))) (($ $ (-771)) 97 (|has| |#1| (-15 * (|#1| (-771) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-771) |#1|))))) (-2947 (((-112) $ $) 6)) (-3065 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ |#1|) 160 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 127 (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-409 (-566)) $) 68 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 67 (|has| |#1| (-38 (-409 (-566))))))) +((-4386 (*1 *1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-4386 (*1 *1 *2 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-3908 (*1 *2 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-1309 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-3908 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-1252 *3)) (-4 *3 (-1214)))) (-3919 (*1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-1309 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1252 *3)) (-4 *3 (-1214)))) (-3919 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-1252 *3)) (-4 *3 (-1214)))) (-2641 (*1 *2 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-1309 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-2641 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-1252 *3)) (-4 *3 (-1214)))) (-3214 (*1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-3531 (*1 *2 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-3541 (*1 *2 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-1922 (*1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-2916 (*1 *2 *1) (-12 (-4 *1 (-1252 *3)) (-4 *3 (-1214)) (-5 *2 (-771)))) (-4018 (*1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-1690 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4415)) (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-1690 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4415)) (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-3810 (*1 *1 *1) (-12 (|has| *1 (-6 -4415)) (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-1381 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4415)) (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-1456 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4415)) (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-1813 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4415)) (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-1456 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4415)) (-4 *1 (-1252 *3)) (-4 *3 (-1214)))) (-1948 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4415)) (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-1456 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4415)) (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) (-4258 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (|has| *1 (-6 -4415)) (-4 *1 (-1252 *3)) (-4 *3 (-1214))))) +(-13 (-1010 |t#1|) (-10 -8 (-15 -4386 ($ $ $)) (-15 -4386 ($ |t#1| $)) (-15 -3908 (|t#1| $)) (-15 -1309 (|t#1| $ "first")) (-15 -3908 ($ $ (-771))) (-15 -3919 ($ $)) (-15 -1309 ($ $ "rest")) (-15 -3919 ($ $ (-771))) (-15 -2641 (|t#1| $)) (-15 -1309 (|t#1| $ "last")) (-15 -2641 ($ $ (-771))) (-15 -3214 ($ $)) (-15 -3531 (|t#1| $)) (-15 -3541 (|t#1| $)) (-15 -1922 ($ $)) (-15 -2916 ((-771) $)) (-15 -4018 ($ $)) (IF (|has| $ (-6 -4415)) (PROGN (-15 -1690 ($ $ $)) (-15 -1690 ($ $ |t#1|)) (-15 -3810 ($ $)) (-15 -1381 (|t#1| $ |t#1|)) (-15 -1456 (|t#1| $ "first" |t#1|)) (-15 -1813 ($ $ $)) (-15 -1456 ($ $ "rest" $)) (-15 -1948 (|t#1| $ |t#1|)) (-15 -1456 (|t#1| $ "last" |t#1|)) (-15 -4258 ($ $ (-566)))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2768 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1010 |#1|) . T) ((-1099) |has| |#1| (-1099)) ((-1214) . T)) +((-2319 ((|#4| (-1 |#2| |#1|) |#3|) 17))) +(((-1253 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2319 (|#4| (-1 |#2| |#1|) |#3|))) (-1049) (-1049) (-1255 |#1|) (-1255 |#2|)) (T -1253)) +((-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1049)) (-4 *6 (-1049)) (-4 *2 (-1255 *6)) (-5 *1 (-1253 *5 *6 *4 *2)) (-4 *4 (-1255 *5))))) +(-10 -7 (-15 -2319 (|#4| (-1 |#2| |#1|) |#3|))) +((-3230 (((-112) $) 17)) (-3963 (($ $) 106)) (-3630 (($ $) 82)) (-3941 (($ $) 102)) (-3602 (($ $) 78)) (-3986 (($ $) 110)) (-3656 (($ $) 86)) (-3619 (($ $) 76)) (-3521 (($ $) 74)) (-3996 (($ $) 112)) (-3670 (($ $) 88)) (-3976 (($ $) 108)) (-3643 (($ $) 84)) (-3952 (($ $) 104)) (-3618 (($ $) 80)) (-3152 (((-862) $) 62) (($ (-566)) NIL) (($ (-409 (-566))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-4032 (($ $) 118)) (-3892 (($ $) 94)) (-4008 (($ $) 114)) (-3684 (($ $) 90)) (-4057 (($ $) 122)) (-3917 (($ $) 98)) (-3964 (($ $) 124)) (-3929 (($ $) 100)) (-4044 (($ $) 120)) (-3904 (($ $) 96)) (-4020 (($ $) 116)) (-3879 (($ $) 92)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ |#2|) 66) (($ $ $) 69) (($ $ (-409 (-566))) 72))) +(((-1254 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-409 (-566)))) (-15 -3630 (|#1| |#1|)) (-15 -3602 (|#1| |#1|)) (-15 -3656 (|#1| |#1|)) (-15 -3670 (|#1| |#1|)) (-15 -3643 (|#1| |#1|)) (-15 -3618 (|#1| |#1|)) (-15 -3879 (|#1| |#1|)) (-15 -3904 (|#1| |#1|)) (-15 -3929 (|#1| |#1|)) (-15 -3917 (|#1| |#1|)) (-15 -3684 (|#1| |#1|)) (-15 -3892 (|#1| |#1|)) (-15 -3952 (|#1| |#1|)) (-15 -3976 (|#1| |#1|)) (-15 -3996 (|#1| |#1|)) (-15 -3986 (|#1| |#1|)) (-15 -3941 (|#1| |#1|)) (-15 -3963 (|#1| |#1|)) (-15 -4020 (|#1| |#1|)) (-15 -4044 (|#1| |#1|)) (-15 -3964 (|#1| |#1|)) (-15 -4057 (|#1| |#1|)) (-15 -4008 (|#1| |#1|)) (-15 -4032 (|#1| |#1|)) (-15 -3619 (|#1| |#1|)) (-15 -3521 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3152 (|#1| |#2|)) (-15 -3152 (|#1| |#1|)) (-15 -3152 (|#1| (-409 (-566)))) (-15 -3152 (|#1| (-566))) (-15 ** (|#1| |#1| (-771))) (-15 ** (|#1| |#1| (-921))) (-15 -3230 ((-112) |#1|)) (-15 -3152 ((-862) |#1|))) (-1255 |#2|) (-1049)) (T -1254)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-409 (-566)))) (-15 -3630 (|#1| |#1|)) (-15 -3602 (|#1| |#1|)) (-15 -3656 (|#1| |#1|)) (-15 -3670 (|#1| |#1|)) (-15 -3643 (|#1| |#1|)) (-15 -3618 (|#1| |#1|)) (-15 -3879 (|#1| |#1|)) (-15 -3904 (|#1| |#1|)) (-15 -3929 (|#1| |#1|)) (-15 -3917 (|#1| |#1|)) (-15 -3684 (|#1| |#1|)) (-15 -3892 (|#1| |#1|)) (-15 -3952 (|#1| |#1|)) (-15 -3976 (|#1| |#1|)) (-15 -3996 (|#1| |#1|)) (-15 -3986 (|#1| |#1|)) (-15 -3941 (|#1| |#1|)) (-15 -3963 (|#1| |#1|)) (-15 -4020 (|#1| |#1|)) (-15 -4044 (|#1| |#1|)) (-15 -3964 (|#1| |#1|)) (-15 -4057 (|#1| |#1|)) (-15 -4008 (|#1| |#1|)) (-15 -4032 (|#1| |#1|)) (-15 -3619 (|#1| |#1|)) (-15 -3521 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3152 (|#1| |#2|)) (-15 -3152 (|#1| |#1|)) (-15 -3152 (|#1| (-409 (-566)))) (-15 -3152 (|#1| (-566))) (-15 ** (|#1| |#1| (-771))) (-15 ** (|#1| |#1| (-921))) (-15 -3230 ((-112) |#1|)) (-15 -3152 ((-862) |#1|))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-1771 (((-644 (-1081)) $) 86)) (-4347 (((-1175) $) 115)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) 63 (|has| |#1| (-558)))) (-2161 (($ $) 64 (|has| |#1| (-558)))) (-2345 (((-112) $) 66 (|has| |#1| (-558)))) (-2331 (($ $ (-771)) 110) (($ $ (-771) (-771)) 109)) (-4152 (((-1155 (-2 (|:| |k| (-771)) (|:| |c| |#1|))) $) 117)) (-3963 (($ $) 147 (|has| |#1| (-38 (-409 (-566)))))) (-3630 (($ $) 130 (|has| |#1| (-38 (-409 (-566)))))) (-3967 (((-3 $ "failed") $ $) 20)) (-1635 (($ $) 129 (|has| |#1| (-38 (-409 (-566)))))) (-3941 (($ $) 146 (|has| |#1| (-38 (-409 (-566)))))) (-3602 (($ $) 131 (|has| |#1| (-38 (-409 (-566)))))) (-1427 (($ (-1155 (-2 (|:| |k| (-771)) (|:| |c| |#1|)))) 167) (($ (-1155 |#1|)) 165)) (-3986 (($ $) 145 (|has| |#1| (-38 (-409 (-566)))))) (-3656 (($ $) 132 (|has| |#1| (-38 (-409 (-566)))))) (-2463 (($) 18 T CONST)) (-2814 (($ $) 72)) (-3245 (((-3 $ "failed") $) 37)) (-2183 (($ $) 164)) (-2016 (((-952 |#1|) $ (-771)) 162) (((-952 |#1|) $ (-771) (-771)) 161)) (-3772 (((-112) $) 85)) (-2281 (($) 157 (|has| |#1| (-38 (-409 (-566)))))) (-2679 (((-771) $) 112) (((-771) $ (-771)) 111)) (-2389 (((-112) $) 35)) (-1575 (($ $ (-566)) 128 (|has| |#1| (-38 (-409 (-566)))))) (-3394 (($ $ (-921)) 113)) (-3657 (($ (-1 |#1| (-566)) $) 163)) (-2497 (((-112) $) 74)) (-1746 (($ |#1| (-771)) 73) (($ $ (-1081) (-771)) 88) (($ $ (-644 (-1081)) (-644 (-771))) 87)) (-2319 (($ (-1 |#1| |#1|) $) 75)) (-3619 (($ $) 154 (|has| |#1| (-38 (-409 (-566)))))) (-2784 (($ $) 77)) (-2794 ((|#1| $) 78)) (-3380 (((-1157) $) 10)) (-3313 (($ $) 159 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) 158 (-2768 (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-959)) (|has| |#1| (-1199)) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-15 -1771 ((-644 (-1175)) |#1|))) (|has| |#1| (-15 -3313 (|#1| |#1| (-1175)))) (|has| |#1| (-38 (-409 (-566)))))))) (-4072 (((-1119) $) 11)) (-3369 (($ $ (-771)) 107)) (-2978 (((-3 $ "failed") $ $) 62 (|has| |#1| (-558)))) (-3521 (($ $) 155 (|has| |#1| (-38 (-409 (-566)))))) (-2023 (((-1155 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-771)))))) (-1309 ((|#1| $ (-771)) 116) (($ $ $) 93 (|has| (-771) (-1111)))) (-3629 (($ $ (-644 (-1175)) (-644 (-771))) 101 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-771) |#1|))))) (($ $ (-1175) (-771)) 100 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-771) |#1|))))) (($ $ (-644 (-1175))) 99 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-771) |#1|))))) (($ $ (-1175)) 98 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-771) |#1|))))) (($ $ (-771)) 96 (|has| |#1| (-15 * (|#1| (-771) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-771) |#1|))))) (-3902 (((-771) $) 76)) (-3996 (($ $) 144 (|has| |#1| (-38 (-409 (-566)))))) (-3670 (($ $) 133 (|has| |#1| (-38 (-409 (-566)))))) (-3976 (($ $) 143 (|has| |#1| (-38 (-409 (-566)))))) (-3643 (($ $) 134 (|has| |#1| (-38 (-409 (-566)))))) (-3952 (($ $) 142 (|has| |#1| (-38 (-409 (-566)))))) (-3618 (($ $) 135 (|has| |#1| (-38 (-409 (-566)))))) (-1687 (($ $) 84)) (-3152 (((-862) $) 12) (($ (-566)) 33) (($ (-409 (-566))) 69 (|has| |#1| (-38 (-409 (-566))))) (($ $) 61 (|has| |#1| (-558))) (($ |#1|) 59 (|has| |#1| (-172)))) (-1643 (((-1155 |#1|) $) 166)) (-2271 ((|#1| $ (-771)) 71)) (-2633 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2593 (((-771)) 32 T CONST)) (-4290 ((|#1| $) 114)) (-3044 (((-112) $ $) 9)) (-4032 (($ $) 153 (|has| |#1| (-38 (-409 (-566)))))) (-3892 (($ $) 141 (|has| |#1| (-38 (-409 (-566)))))) (-3014 (((-112) $ $) 65 (|has| |#1| (-558)))) (-4008 (($ $) 152 (|has| |#1| (-38 (-409 (-566)))))) (-3684 (($ $) 140 (|has| |#1| (-38 (-409 (-566)))))) (-4057 (($ $) 151 (|has| |#1| (-38 (-409 (-566)))))) (-3917 (($ $) 139 (|has| |#1| (-38 (-409 (-566)))))) (-3603 ((|#1| $ (-771)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-771)))) (|has| |#1| (-15 -3152 (|#1| (-1175))))))) (-3964 (($ $) 150 (|has| |#1| (-38 (-409 (-566)))))) (-3929 (($ $) 138 (|has| |#1| (-38 (-409 (-566)))))) (-4044 (($ $) 149 (|has| |#1| (-38 (-409 (-566)))))) (-3904 (($ $) 137 (|has| |#1| (-38 (-409 (-566)))))) (-4020 (($ $) 148 (|has| |#1| (-38 (-409 (-566)))))) (-3879 (($ $) 136 (|has| |#1| (-38 (-409 (-566)))))) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-3497 (($ $ (-644 (-1175)) (-644 (-771))) 105 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-771) |#1|))))) (($ $ (-1175) (-771)) 104 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-771) |#1|))))) (($ $ (-644 (-1175))) 103 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-771) |#1|))))) (($ $ (-1175)) 102 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-771) |#1|))))) (($ $ (-771)) 97 (|has| |#1| (-15 * (|#1| (-771) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-771) |#1|))))) (-2914 (((-112) $ $) 6)) (-3025 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ |#1|) 160 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 127 (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-409 (-566)) $) 68 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 67 (|has| |#1| (-38 (-409 (-566))))))) (((-1255 |#1|) (-140) (-1049)) (T -1255)) -((-2052 (*1 *1 *2) (-12 (-5 *2 (-1155 (-2 (|:| |k| (-771)) (|:| |c| *3)))) (-4 *3 (-1049)) (-4 *1 (-1255 *3)))) (-4170 (*1 *2 *1) (-12 (-4 *1 (-1255 *3)) (-4 *3 (-1049)) (-5 *2 (-1155 *3)))) (-2052 (*1 *1 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-4 *1 (-1255 *3)))) (-1703 (*1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1049)))) (-4042 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-566))) (-4 *1 (-1255 *3)) (-4 *3 (-1049)))) (-4386 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-4 *1 (-1255 *4)) (-4 *4 (-1049)) (-5 *2 (-952 *4)))) (-4386 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-771)) (-4 *1 (-1255 *4)) (-4 *4 (-1049)) (-5 *2 (-952 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) (-1941 (*1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1049)) (-4 *2 (-38 (-409 (-566)))))) (-1941 (*1 *1 *1 *2) (-2809 (-12 (-5 *2 (-1175)) (-4 *1 (-1255 *3)) (-4 *3 (-1049)) (-12 (-4 *3 (-29 (-566))) (-4 *3 (-959)) (-4 *3 (-1199)) (-4 *3 (-38 (-409 (-566)))))) (-12 (-5 *2 (-1175)) (-4 *1 (-1255 *3)) (-4 *3 (-1049)) (-12 (|has| *3 (-15 -3863 ((-644 *2) *3))) (|has| *3 (-15 -1941 (*3 *3 *2))) (-4 *3 (-38 (-409 (-566))))))))) -(-13 (-1242 |t#1| (-771)) (-10 -8 (-15 -2052 ($ (-1155 (-2 (|:| |k| (-771)) (|:| |c| |t#1|))))) (-15 -4170 ((-1155 |t#1|) $)) (-15 -2052 ($ (-1155 |t#1|))) (-15 -1703 ($ $)) (-15 -4042 ($ (-1 |t#1| (-566)) $)) (-15 -4386 ((-952 |t#1|) $ (-771))) (-15 -4386 ((-952 |t#1|) $ (-771) (-771))) (IF (|has| |t#1| (-365)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-409 (-566)))) (PROGN (-15 -1941 ($ $)) (IF (|has| |t#1| (-15 -1941 (|t#1| |t#1| (-1175)))) (IF (|has| |t#1| (-15 -3863 ((-644 (-1175)) |t#1|))) (-15 -1941 ($ $ (-1175))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1199)) (IF (|has| |t#1| (-959)) (IF (|has| |t#1| (-29 (-566))) (-15 -1941 ($ $ (-1175))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1002)) (-6 (-1199))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-771)) . T) ((-25) . T) ((-38 #1=(-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-558)) ((-35) |has| |#1| (-38 (-409 (-566)))) ((-95) |has| |#1| (-38 (-409 (-566)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-409 (-566)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2809 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #1#) |has| |#1| (-38 (-409 (-566)))) ((-616 (-566)) . T) ((-616 |#1|) |has| |#1| (-172)) ((-616 $) |has| |#1| (-558)) ((-613 (-862)) . T) ((-172) -2809 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-771) |#1|))) ((-285) |has| |#1| (-38 (-409 (-566)))) ((-287 $ $) |has| (-771) (-1111)) ((-291) |has| |#1| (-558)) ((-495) |has| |#1| (-38 (-409 (-566)))) ((-558) |has| |#1| (-558)) ((-646 #1#) |has| |#1| (-38 (-409 (-566)))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #1#) |has| |#1| (-38 (-409 (-566)))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #1#) |has| |#1| (-38 (-409 (-566)))) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) |has| |#1| (-558)) ((-717 #1#) |has| |#1| (-38 (-409 (-566)))) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) |has| |#1| (-558)) ((-726) . T) ((-900 (-1175)) -12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175)))) ((-973 |#1| #0# (-1081)) . T) ((-1002) |has| |#1| (-38 (-409 (-566)))) ((-1051 #1#) |has| |#1| (-38 (-409 (-566)))) ((-1051 |#1|) . T) ((-1051 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-1056 #1#) |has| |#1| (-38 (-409 (-566)))) ((-1056 |#1|) . T) ((-1056 $) -2809 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1199) |has| |#1| (-38 (-409 (-566)))) ((-1202) |has| |#1| (-38 (-409 (-566)))) ((-1242 |#1| #0#) . T)) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-3863 (((-644 (-1081)) $) NIL)) (-1385 (((-1175) $) 93)) (-3334 (((-1237 |#2| |#1|) $ (-771)) 74)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-3991 (($ $) NIL (|has| |#1| (-558)))) (-2388 (((-112) $) 145 (|has| |#1| (-558)))) (-2587 (($ $ (-771)) 130) (($ $ (-771) (-771)) 133)) (-2775 (((-1155 (-2 (|:| |k| (-771)) (|:| |c| |#1|))) $) 43)) (-4114 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2109 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4175 (((-3 $ "failed") $ $) NIL)) (-3731 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2240 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2085 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2052 (($ (-1155 (-2 (|:| |k| (-771)) (|:| |c| |#1|)))) 53) (($ (-1155 |#1|)) NIL)) (-4134 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2129 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3012 (($) NIL T CONST)) (-2360 (($ $) 137)) (-1786 (($ $) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-1703 (($ $) 143)) (-4386 (((-952 |#1|) $ (-771)) 64) (((-952 |#1|) $ (-771) (-771)) 66)) (-2158 (((-112) $) NIL)) (-4361 (($) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3254 (((-771) $) NIL) (((-771) $ (-771)) NIL)) (-3934 (((-112) $) NIL)) (-3641 (($ $) 120)) (-2140 (($ $ (-566)) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3557 (($ (-566) (-566) $) 139)) (-2955 (($ $ (-921)) 142)) (-4042 (($ (-1 |#1| (-566)) $) 114)) (-3264 (((-112) $) NIL)) (-3840 (($ |#1| (-771)) 16) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL)) (-1301 (($ (-1 |#1| |#1|) $) 101)) (-3651 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1749 (($ $) NIL)) (-1763 ((|#1| $) NIL)) (-4117 (((-1157) $) NIL)) (-3284 (($ $) 118)) (-2198 (($ $) 116)) (-3539 (($ (-566) (-566) $) 141)) (-1941 (($ $) 153 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) 159 (-2809 (-12 (|has| |#1| (-15 -1941 (|#1| |#1| (-1175)))) (|has| |#1| (-15 -3863 ((-644 (-1175)) |#1|))) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-959)) (|has| |#1| (-1199))))) (($ $ (-1260 |#2|)) 154 (|has| |#1| (-38 (-409 (-566)))))) (-4035 (((-1119) $) NIL)) (-2451 (($ $ (-566) (-566)) 124)) (-3874 (($ $ (-771)) 126)) (-2994 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-2561 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1674 (($ $) 122)) (-2055 (((-1155 |#1|) $ |#1|) 103 (|has| |#1| (-15 ** (|#1| |#1| (-771)))))) (-4390 ((|#1| $ (-771)) 98) (($ $ $) 135 (|has| (-771) (-1111)))) (-3561 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) 111 (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-771) |#1|)))) (($ $) 105 (|has| |#1| (-15 * (|#1| (-771) |#1|)))) (($ $ (-1260 |#2|)) 106)) (-3636 (((-771) $) NIL)) (-4144 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2141 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4124 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2118 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4104 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2098 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2770 (($ $) 128)) (-3783 (((-862) $) NIL) (($ (-566)) 26) (($ (-409 (-566))) 151 (|has| |#1| (-38 (-409 (-566))))) (($ $) NIL (|has| |#1| (-558))) (($ |#1|) 25 (|has| |#1| (-172))) (($ (-1237 |#2| |#1|)) 84) (($ (-1260 |#2|)) 22)) (-4170 (((-1155 |#1|) $) NIL)) (-2649 ((|#1| $ (-771)) 97)) (-3144 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2107 (((-771)) NIL T CONST)) (-1320 ((|#1| $) 94)) (-3117 (((-112) $ $) NIL)) (-4177 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2180 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2695 (((-112) $ $) NIL (|has| |#1| (-558)))) (-4155 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2153 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4198 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2212 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3628 ((|#1| $ (-771)) 92 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-771)))) (|has| |#1| (-15 -3783 (|#1| (-1175))))))) (-2976 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2227 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4188 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2196 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4166 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2166 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2479 (($) 18 T CONST)) (-4334 (($) 13 T CONST)) (-2875 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-771) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-771) |#1|))))) (-2947 (((-112) $ $) NIL)) (-3065 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3053 (($ $) NIL) (($ $ $) 110)) (-3041 (($ $ $) 20)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ |#1|) 148 (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 109) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))))) -(((-1256 |#1| |#2| |#3|) (-13 (-1255 |#1|) (-10 -8 (-15 -3783 ($ (-1237 |#2| |#1|))) (-15 -3334 ((-1237 |#2| |#1|) $ (-771))) (-15 -3783 ($ (-1260 |#2|))) (-15 -3561 ($ $ (-1260 |#2|))) (-15 -2198 ($ $)) (-15 -3284 ($ $)) (-15 -3641 ($ $)) (-15 -1674 ($ $)) (-15 -2451 ($ $ (-566) (-566))) (-15 -2360 ($ $)) (-15 -3557 ($ (-566) (-566) $)) (-15 -3539 ($ (-566) (-566) $)) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -1941 ($ $ (-1260 |#2|))) |%noBranch|))) (-1049) (-1175) |#1|) (T -1256)) -((-3783 (*1 *1 *2) (-12 (-5 *2 (-1237 *4 *3)) (-4 *3 (-1049)) (-14 *4 (-1175)) (-14 *5 *3) (-5 *1 (-1256 *3 *4 *5)))) (-3334 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1237 *5 *4)) (-5 *1 (-1256 *4 *5 *6)) (-4 *4 (-1049)) (-14 *5 (-1175)) (-14 *6 *4))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1256 *3 *4 *5)) (-4 *3 (-1049)) (-14 *5 *3))) (-3561 (*1 *1 *1 *2) (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1256 *3 *4 *5)) (-4 *3 (-1049)) (-14 *5 *3))) (-2198 (*1 *1 *1) (-12 (-5 *1 (-1256 *2 *3 *4)) (-4 *2 (-1049)) (-14 *3 (-1175)) (-14 *4 *2))) (-3284 (*1 *1 *1) (-12 (-5 *1 (-1256 *2 *3 *4)) (-4 *2 (-1049)) (-14 *3 (-1175)) (-14 *4 *2))) (-3641 (*1 *1 *1) (-12 (-5 *1 (-1256 *2 *3 *4)) (-4 *2 (-1049)) (-14 *3 (-1175)) (-14 *4 *2))) (-1674 (*1 *1 *1) (-12 (-5 *1 (-1256 *2 *3 *4)) (-4 *2 (-1049)) (-14 *3 (-1175)) (-14 *4 *2))) (-2451 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1256 *3 *4 *5)) (-4 *3 (-1049)) (-14 *4 (-1175)) (-14 *5 *3))) (-2360 (*1 *1 *1) (-12 (-5 *1 (-1256 *2 *3 *4)) (-4 *2 (-1049)) (-14 *3 (-1175)) (-14 *4 *2))) (-3557 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-1256 *3 *4 *5)) (-4 *3 (-1049)) (-14 *4 (-1175)) (-14 *5 *3))) (-3539 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-1256 *3 *4 *5)) (-4 *3 (-1049)) (-14 *4 (-1175)) (-14 *5 *3))) (-1941 (*1 *1 *1 *2) (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1256 *3 *4 *5)) (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-14 *5 *3)))) -(-13 (-1255 |#1|) (-10 -8 (-15 -3783 ($ (-1237 |#2| |#1|))) (-15 -3334 ((-1237 |#2| |#1|) $ (-771))) (-15 -3783 ($ (-1260 |#2|))) (-15 -3561 ($ $ (-1260 |#2|))) (-15 -2198 ($ $)) (-15 -3284 ($ $)) (-15 -3641 ($ $)) (-15 -1674 ($ $)) (-15 -2451 ($ $ (-566) (-566))) (-15 -2360 ($ $)) (-15 -3557 ($ (-566) (-566) $)) (-15 -3539 ($ (-566) (-566) $)) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -1941 ($ $ (-1260 |#2|))) |%noBranch|))) -((-2667 (((-1 (-1155 |#1|) (-644 (-1155 |#1|))) (-1 |#2| (-644 |#2|))) 24)) (-1586 (((-1 (-1155 |#1|) (-1155 |#1|) (-1155 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-1414 (((-1 (-1155 |#1|) (-1155 |#1|)) (-1 |#2| |#2|)) 13)) (-3010 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-4118 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-2511 ((|#2| (-1 |#2| (-644 |#2|)) (-644 |#1|)) 60)) (-1327 (((-644 |#2|) (-644 |#1|) (-644 (-1 |#2| (-644 |#2|)))) 66)) (-3061 ((|#2| |#2| |#2|) 43))) -(((-1257 |#1| |#2|) (-10 -7 (-15 -1414 ((-1 (-1155 |#1|) (-1155 |#1|)) (-1 |#2| |#2|))) (-15 -1586 ((-1 (-1155 |#1|) (-1155 |#1|) (-1155 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -2667 ((-1 (-1155 |#1|) (-644 (-1155 |#1|))) (-1 |#2| (-644 |#2|)))) (-15 -3061 (|#2| |#2| |#2|)) (-15 -4118 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3010 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2511 (|#2| (-1 |#2| (-644 |#2|)) (-644 |#1|))) (-15 -1327 ((-644 |#2|) (-644 |#1|) (-644 (-1 |#2| (-644 |#2|)))))) (-38 (-409 (-566))) (-1255 |#1|)) (T -1257)) -((-1327 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *5)) (-5 *4 (-644 (-1 *6 (-644 *6)))) (-4 *5 (-38 (-409 (-566)))) (-4 *6 (-1255 *5)) (-5 *2 (-644 *6)) (-5 *1 (-1257 *5 *6)))) (-2511 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-644 *2))) (-5 *4 (-644 *5)) (-4 *5 (-38 (-409 (-566)))) (-4 *2 (-1255 *5)) (-5 *1 (-1257 *5 *2)))) (-3010 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1255 *4)) (-5 *1 (-1257 *4 *2)) (-4 *4 (-38 (-409 (-566)))))) (-4118 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1255 *4)) (-5 *1 (-1257 *4 *2)) (-4 *4 (-38 (-409 (-566)))))) (-3061 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1257 *3 *2)) (-4 *2 (-1255 *3)))) (-2667 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-644 *5))) (-4 *5 (-1255 *4)) (-4 *4 (-38 (-409 (-566)))) (-5 *2 (-1 (-1155 *4) (-644 (-1155 *4)))) (-5 *1 (-1257 *4 *5)))) (-1586 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1255 *4)) (-4 *4 (-38 (-409 (-566)))) (-5 *2 (-1 (-1155 *4) (-1155 *4) (-1155 *4))) (-5 *1 (-1257 *4 *5)))) (-1414 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1255 *4)) (-4 *4 (-38 (-409 (-566)))) (-5 *2 (-1 (-1155 *4) (-1155 *4))) (-5 *1 (-1257 *4 *5))))) -(-10 -7 (-15 -1414 ((-1 (-1155 |#1|) (-1155 |#1|)) (-1 |#2| |#2|))) (-15 -1586 ((-1 (-1155 |#1|) (-1155 |#1|) (-1155 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -2667 ((-1 (-1155 |#1|) (-644 (-1155 |#1|))) (-1 |#2| (-644 |#2|)))) (-15 -3061 (|#2| |#2| |#2|)) (-15 -4118 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3010 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2511 (|#2| (-1 |#2| (-644 |#2|)) (-644 |#1|))) (-15 -1327 ((-644 |#2|) (-644 |#1|) (-644 (-1 |#2| (-644 |#2|)))))) -((-3505 ((|#2| |#4| (-771)) 34)) (-1467 ((|#4| |#2|) 29)) (-2596 ((|#4| (-409 |#2|)) 53 (|has| |#1| (-558)))) (-3510 (((-1 |#4| (-644 |#4|)) |#3|) 46))) -(((-1258 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1467 (|#4| |#2|)) (-15 -3505 (|#2| |#4| (-771))) (-15 -3510 ((-1 |#4| (-644 |#4|)) |#3|)) (IF (|has| |#1| (-558)) (-15 -2596 (|#4| (-409 |#2|))) |%noBranch|)) (-1049) (-1240 |#1|) (-656 |#2|) (-1255 |#1|)) (T -1258)) -((-2596 (*1 *2 *3) (-12 (-5 *3 (-409 *5)) (-4 *5 (-1240 *4)) (-4 *4 (-558)) (-4 *4 (-1049)) (-4 *2 (-1255 *4)) (-5 *1 (-1258 *4 *5 *6 *2)) (-4 *6 (-656 *5)))) (-3510 (*1 *2 *3) (-12 (-4 *4 (-1049)) (-4 *5 (-1240 *4)) (-5 *2 (-1 *6 (-644 *6))) (-5 *1 (-1258 *4 *5 *3 *6)) (-4 *3 (-656 *5)) (-4 *6 (-1255 *4)))) (-3505 (*1 *2 *3 *4) (-12 (-5 *4 (-771)) (-4 *5 (-1049)) (-4 *2 (-1240 *5)) (-5 *1 (-1258 *5 *2 *6 *3)) (-4 *6 (-656 *2)) (-4 *3 (-1255 *5)))) (-1467 (*1 *2 *3) (-12 (-4 *4 (-1049)) (-4 *3 (-1240 *4)) (-4 *2 (-1255 *4)) (-5 *1 (-1258 *4 *3 *5 *2)) (-4 *5 (-656 *3))))) -(-10 -7 (-15 -1467 (|#4| |#2|)) (-15 -3505 (|#2| |#4| (-771))) (-15 -3510 ((-1 |#4| (-644 |#4|)) |#3|)) (IF (|has| |#1| (-558)) (-15 -2596 (|#4| (-409 |#2|))) |%noBranch|)) +((-1427 (*1 *1 *2) (-12 (-5 *2 (-1155 (-2 (|:| |k| (-771)) (|:| |c| *3)))) (-4 *3 (-1049)) (-4 *1 (-1255 *3)))) (-1643 (*1 *2 *1) (-12 (-4 *1 (-1255 *3)) (-4 *3 (-1049)) (-5 *2 (-1155 *3)))) (-1427 (*1 *1 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-4 *1 (-1255 *3)))) (-2183 (*1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1049)))) (-3657 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-566))) (-4 *1 (-1255 *3)) (-4 *3 (-1049)))) (-2016 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-4 *1 (-1255 *4)) (-4 *4 (-1049)) (-5 *2 (-952 *4)))) (-2016 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-771)) (-4 *1 (-1255 *4)) (-4 *4 (-1049)) (-5 *2 (-952 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) (-3313 (*1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1049)) (-4 *2 (-38 (-409 (-566)))))) (-3313 (*1 *1 *1 *2) (-2768 (-12 (-5 *2 (-1175)) (-4 *1 (-1255 *3)) (-4 *3 (-1049)) (-12 (-4 *3 (-29 (-566))) (-4 *3 (-959)) (-4 *3 (-1199)) (-4 *3 (-38 (-409 (-566)))))) (-12 (-5 *2 (-1175)) (-4 *1 (-1255 *3)) (-4 *3 (-1049)) (-12 (|has| *3 (-15 -1771 ((-644 *2) *3))) (|has| *3 (-15 -3313 (*3 *3 *2))) (-4 *3 (-38 (-409 (-566))))))))) +(-13 (-1242 |t#1| (-771)) (-10 -8 (-15 -1427 ($ (-1155 (-2 (|:| |k| (-771)) (|:| |c| |t#1|))))) (-15 -1643 ((-1155 |t#1|) $)) (-15 -1427 ($ (-1155 |t#1|))) (-15 -2183 ($ $)) (-15 -3657 ($ (-1 |t#1| (-566)) $)) (-15 -2016 ((-952 |t#1|) $ (-771))) (-15 -2016 ((-952 |t#1|) $ (-771) (-771))) (IF (|has| |t#1| (-365)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-409 (-566)))) (PROGN (-15 -3313 ($ $)) (IF (|has| |t#1| (-15 -3313 (|t#1| |t#1| (-1175)))) (IF (|has| |t#1| (-15 -1771 ((-644 (-1175)) |t#1|))) (-15 -3313 ($ $ (-1175))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1199)) (IF (|has| |t#1| (-959)) (IF (|has| |t#1| (-29 (-566))) (-15 -3313 ($ $ (-1175))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1002)) (-6 (-1199))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-771)) . T) ((-25) . T) ((-38 #1=(-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-558)) ((-35) |has| |#1| (-38 (-409 (-566)))) ((-95) |has| |#1| (-38 (-409 (-566)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-409 (-566)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2768 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #1#) |has| |#1| (-38 (-409 (-566)))) ((-616 (-566)) . T) ((-616 |#1|) |has| |#1| (-172)) ((-616 $) |has| |#1| (-558)) ((-613 (-862)) . T) ((-172) -2768 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-771) |#1|))) ((-285) |has| |#1| (-38 (-409 (-566)))) ((-287 $ $) |has| (-771) (-1111)) ((-291) |has| |#1| (-558)) ((-495) |has| |#1| (-38 (-409 (-566)))) ((-558) |has| |#1| (-558)) ((-646 #1#) |has| |#1| (-38 (-409 (-566)))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #1#) |has| |#1| (-38 (-409 (-566)))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #1#) |has| |#1| (-38 (-409 (-566)))) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) |has| |#1| (-558)) ((-717 #1#) |has| |#1| (-38 (-409 (-566)))) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) |has| |#1| (-558)) ((-726) . T) ((-900 (-1175)) -12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175)))) ((-973 |#1| #0# (-1081)) . T) ((-1002) |has| |#1| (-38 (-409 (-566)))) ((-1051 #1#) |has| |#1| (-38 (-409 (-566)))) ((-1051 |#1|) . T) ((-1051 $) -2768 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-1056 #1#) |has| |#1| (-38 (-409 (-566)))) ((-1056 |#1|) . T) ((-1056 $) -2768 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1199) |has| |#1| (-38 (-409 (-566)))) ((-1202) |has| |#1| (-38 (-409 (-566)))) ((-1242 |#1| #0#) . T)) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-1771 (((-644 (-1081)) $) NIL)) (-4347 (((-1175) $) 93)) (-2312 (((-1237 |#2| |#1|) $ (-771)) 74)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-2161 (($ $) NIL (|has| |#1| (-558)))) (-2345 (((-112) $) 145 (|has| |#1| (-558)))) (-2331 (($ $ (-771)) 130) (($ $ (-771) (-771)) 133)) (-4152 (((-1155 (-2 (|:| |k| (-771)) (|:| |c| |#1|))) $) 43)) (-3963 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3630 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3967 (((-3 $ "failed") $ $) NIL)) (-1635 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3941 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3602 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1427 (($ (-1155 (-2 (|:| |k| (-771)) (|:| |c| |#1|)))) 53) (($ (-1155 |#1|)) NIL)) (-3986 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3656 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2463 (($) NIL T CONST)) (-3583 (($ $) 137)) (-2814 (($ $) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-2183 (($ $) 143)) (-2016 (((-952 |#1|) $ (-771)) 64) (((-952 |#1|) $ (-771) (-771)) 66)) (-3772 (((-112) $) NIL)) (-2281 (($) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2679 (((-771) $) NIL) (((-771) $ (-771)) NIL)) (-2389 (((-112) $) NIL)) (-4275 (($ $) 120)) (-1575 (($ $ (-566)) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2732 (($ (-566) (-566) $) 139)) (-3394 (($ $ (-921)) 142)) (-3657 (($ (-1 |#1| (-566)) $) 114)) (-2497 (((-112) $) NIL)) (-1746 (($ |#1| (-771)) 16) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL)) (-2319 (($ (-1 |#1| |#1|) $) 101)) (-3619 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2784 (($ $) NIL)) (-2794 ((|#1| $) NIL)) (-3380 (((-1157) $) NIL)) (-1968 (($ $) 118)) (-4267 (($ $) 116)) (-1733 (($ (-566) (-566) $) 141)) (-3313 (($ $) 153 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) 159 (-2768 (-12 (|has| |#1| (-15 -3313 (|#1| |#1| (-1175)))) (|has| |#1| (-15 -1771 ((-644 (-1175)) |#1|))) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-959)) (|has| |#1| (-1199))))) (($ $ (-1260 |#2|)) 154 (|has| |#1| (-38 (-409 (-566)))))) (-4072 (((-1119) $) NIL)) (-2139 (($ $ (-566) (-566)) 124)) (-3369 (($ $ (-771)) 126)) (-2978 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-3521 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4059 (($ $) 122)) (-2023 (((-1155 |#1|) $ |#1|) 103 (|has| |#1| (-15 ** (|#1| |#1| (-771)))))) (-1309 ((|#1| $ (-771)) 98) (($ $ $) 135 (|has| (-771) (-1111)))) (-3629 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) 111 (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-771) |#1|)))) (($ $) 105 (|has| |#1| (-15 * (|#1| (-771) |#1|)))) (($ $ (-1260 |#2|)) 106)) (-3902 (((-771) $) NIL)) (-3996 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3670 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3976 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3643 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3952 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3618 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1687 (($ $) 128)) (-3152 (((-862) $) NIL) (($ (-566)) 26) (($ (-409 (-566))) 151 (|has| |#1| (-38 (-409 (-566))))) (($ $) NIL (|has| |#1| (-558))) (($ |#1|) 25 (|has| |#1| (-172))) (($ (-1237 |#2| |#1|)) 84) (($ (-1260 |#2|)) 22)) (-1643 (((-1155 |#1|) $) NIL)) (-2271 ((|#1| $ (-771)) 97)) (-2633 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2593 (((-771)) NIL T CONST)) (-4290 ((|#1| $) 94)) (-3044 (((-112) $ $) NIL)) (-4032 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3892 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3014 (((-112) $ $) NIL (|has| |#1| (-558)))) (-4008 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3684 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4057 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3917 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3603 ((|#1| $ (-771)) 92 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-771)))) (|has| |#1| (-15 -3152 (|#1| (-1175))))))) (-3964 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3929 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4044 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3904 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4020 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3879 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4356 (($) 18 T CONST)) (-4366 (($) 13 T CONST)) (-3497 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-771) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-771) |#1|))))) (-2914 (((-112) $ $) NIL)) (-3025 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3012 (($ $) NIL) (($ $ $) 110)) (-3002 (($ $ $) 20)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ |#1|) 148 (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 109) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))))) +(((-1256 |#1| |#2| |#3|) (-13 (-1255 |#1|) (-10 -8 (-15 -3152 ($ (-1237 |#2| |#1|))) (-15 -2312 ((-1237 |#2| |#1|) $ (-771))) (-15 -3152 ($ (-1260 |#2|))) (-15 -3629 ($ $ (-1260 |#2|))) (-15 -4267 ($ $)) (-15 -1968 ($ $)) (-15 -4275 ($ $)) (-15 -4059 ($ $)) (-15 -2139 ($ $ (-566) (-566))) (-15 -3583 ($ $)) (-15 -2732 ($ (-566) (-566) $)) (-15 -1733 ($ (-566) (-566) $)) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -3313 ($ $ (-1260 |#2|))) |%noBranch|))) (-1049) (-1175) |#1|) (T -1256)) +((-3152 (*1 *1 *2) (-12 (-5 *2 (-1237 *4 *3)) (-4 *3 (-1049)) (-14 *4 (-1175)) (-14 *5 *3) (-5 *1 (-1256 *3 *4 *5)))) (-2312 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1237 *5 *4)) (-5 *1 (-1256 *4 *5 *6)) (-4 *4 (-1049)) (-14 *5 (-1175)) (-14 *6 *4))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1256 *3 *4 *5)) (-4 *3 (-1049)) (-14 *5 *3))) (-3629 (*1 *1 *1 *2) (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1256 *3 *4 *5)) (-4 *3 (-1049)) (-14 *5 *3))) (-4267 (*1 *1 *1) (-12 (-5 *1 (-1256 *2 *3 *4)) (-4 *2 (-1049)) (-14 *3 (-1175)) (-14 *4 *2))) (-1968 (*1 *1 *1) (-12 (-5 *1 (-1256 *2 *3 *4)) (-4 *2 (-1049)) (-14 *3 (-1175)) (-14 *4 *2))) (-4275 (*1 *1 *1) (-12 (-5 *1 (-1256 *2 *3 *4)) (-4 *2 (-1049)) (-14 *3 (-1175)) (-14 *4 *2))) (-4059 (*1 *1 *1) (-12 (-5 *1 (-1256 *2 *3 *4)) (-4 *2 (-1049)) (-14 *3 (-1175)) (-14 *4 *2))) (-2139 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1256 *3 *4 *5)) (-4 *3 (-1049)) (-14 *4 (-1175)) (-14 *5 *3))) (-3583 (*1 *1 *1) (-12 (-5 *1 (-1256 *2 *3 *4)) (-4 *2 (-1049)) (-14 *3 (-1175)) (-14 *4 *2))) (-2732 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-1256 *3 *4 *5)) (-4 *3 (-1049)) (-14 *4 (-1175)) (-14 *5 *3))) (-1733 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-1256 *3 *4 *5)) (-4 *3 (-1049)) (-14 *4 (-1175)) (-14 *5 *3))) (-3313 (*1 *1 *1 *2) (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1256 *3 *4 *5)) (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-14 *5 *3)))) +(-13 (-1255 |#1|) (-10 -8 (-15 -3152 ($ (-1237 |#2| |#1|))) (-15 -2312 ((-1237 |#2| |#1|) $ (-771))) (-15 -3152 ($ (-1260 |#2|))) (-15 -3629 ($ $ (-1260 |#2|))) (-15 -4267 ($ $)) (-15 -1968 ($ $)) (-15 -4275 ($ $)) (-15 -4059 ($ $)) (-15 -2139 ($ $ (-566) (-566))) (-15 -3583 ($ $)) (-15 -2732 ($ (-566) (-566) $)) (-15 -1733 ($ (-566) (-566) $)) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -3313 ($ $ (-1260 |#2|))) |%noBranch|))) +((-3317 (((-1 (-1155 |#1|) (-644 (-1155 |#1|))) (-1 |#2| (-644 |#2|))) 24)) (-1735 (((-1 (-1155 |#1|) (-1155 |#1|) (-1155 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-1463 (((-1 (-1155 |#1|) (-1155 |#1|)) (-1 |#2| |#2|)) 13)) (-2212 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-3477 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-4331 ((|#2| (-1 |#2| (-644 |#2|)) (-644 |#1|)) 60)) (-4379 (((-644 |#2|) (-644 |#1|) (-644 (-1 |#2| (-644 |#2|)))) 66)) (-1524 ((|#2| |#2| |#2|) 43))) +(((-1257 |#1| |#2|) (-10 -7 (-15 -1463 ((-1 (-1155 |#1|) (-1155 |#1|)) (-1 |#2| |#2|))) (-15 -1735 ((-1 (-1155 |#1|) (-1155 |#1|) (-1155 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3317 ((-1 (-1155 |#1|) (-644 (-1155 |#1|))) (-1 |#2| (-644 |#2|)))) (-15 -1524 (|#2| |#2| |#2|)) (-15 -3477 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2212 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4331 (|#2| (-1 |#2| (-644 |#2|)) (-644 |#1|))) (-15 -4379 ((-644 |#2|) (-644 |#1|) (-644 (-1 |#2| (-644 |#2|)))))) (-38 (-409 (-566))) (-1255 |#1|)) (T -1257)) +((-4379 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *5)) (-5 *4 (-644 (-1 *6 (-644 *6)))) (-4 *5 (-38 (-409 (-566)))) (-4 *6 (-1255 *5)) (-5 *2 (-644 *6)) (-5 *1 (-1257 *5 *6)))) (-4331 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-644 *2))) (-5 *4 (-644 *5)) (-4 *5 (-38 (-409 (-566)))) (-4 *2 (-1255 *5)) (-5 *1 (-1257 *5 *2)))) (-2212 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1255 *4)) (-5 *1 (-1257 *4 *2)) (-4 *4 (-38 (-409 (-566)))))) (-3477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1255 *4)) (-5 *1 (-1257 *4 *2)) (-4 *4 (-38 (-409 (-566)))))) (-1524 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1257 *3 *2)) (-4 *2 (-1255 *3)))) (-3317 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-644 *5))) (-4 *5 (-1255 *4)) (-4 *4 (-38 (-409 (-566)))) (-5 *2 (-1 (-1155 *4) (-644 (-1155 *4)))) (-5 *1 (-1257 *4 *5)))) (-1735 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1255 *4)) (-4 *4 (-38 (-409 (-566)))) (-5 *2 (-1 (-1155 *4) (-1155 *4) (-1155 *4))) (-5 *1 (-1257 *4 *5)))) (-1463 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1255 *4)) (-4 *4 (-38 (-409 (-566)))) (-5 *2 (-1 (-1155 *4) (-1155 *4))) (-5 *1 (-1257 *4 *5))))) +(-10 -7 (-15 -1463 ((-1 (-1155 |#1|) (-1155 |#1|)) (-1 |#2| |#2|))) (-15 -1735 ((-1 (-1155 |#1|) (-1155 |#1|) (-1155 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3317 ((-1 (-1155 |#1|) (-644 (-1155 |#1|))) (-1 |#2| (-644 |#2|)))) (-15 -1524 (|#2| |#2| |#2|)) (-15 -3477 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2212 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4331 (|#2| (-1 |#2| (-644 |#2|)) (-644 |#1|))) (-15 -4379 ((-644 |#2|) (-644 |#1|) (-644 (-1 |#2| (-644 |#2|)))))) +((-2372 ((|#2| |#4| (-771)) 34)) (-3812 ((|#4| |#2|) 29)) (-3872 ((|#4| (-409 |#2|)) 53 (|has| |#1| (-558)))) (-1605 (((-1 |#4| (-644 |#4|)) |#3|) 46))) +(((-1258 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3812 (|#4| |#2|)) (-15 -2372 (|#2| |#4| (-771))) (-15 -1605 ((-1 |#4| (-644 |#4|)) |#3|)) (IF (|has| |#1| (-558)) (-15 -3872 (|#4| (-409 |#2|))) |%noBranch|)) (-1049) (-1240 |#1|) (-656 |#2|) (-1255 |#1|)) (T -1258)) +((-3872 (*1 *2 *3) (-12 (-5 *3 (-409 *5)) (-4 *5 (-1240 *4)) (-4 *4 (-558)) (-4 *4 (-1049)) (-4 *2 (-1255 *4)) (-5 *1 (-1258 *4 *5 *6 *2)) (-4 *6 (-656 *5)))) (-1605 (*1 *2 *3) (-12 (-4 *4 (-1049)) (-4 *5 (-1240 *4)) (-5 *2 (-1 *6 (-644 *6))) (-5 *1 (-1258 *4 *5 *3 *6)) (-4 *3 (-656 *5)) (-4 *6 (-1255 *4)))) (-2372 (*1 *2 *3 *4) (-12 (-5 *4 (-771)) (-4 *5 (-1049)) (-4 *2 (-1240 *5)) (-5 *1 (-1258 *5 *2 *6 *3)) (-4 *6 (-656 *2)) (-4 *3 (-1255 *5)))) (-3812 (*1 *2 *3) (-12 (-4 *4 (-1049)) (-4 *3 (-1240 *4)) (-4 *2 (-1255 *4)) (-5 *1 (-1258 *4 *3 *5 *2)) (-4 *5 (-656 *3))))) +(-10 -7 (-15 -3812 (|#4| |#2|)) (-15 -2372 (|#2| |#4| (-771))) (-15 -1605 ((-1 |#4| (-644 |#4|)) |#3|)) (IF (|has| |#1| (-558)) (-15 -3872 (|#4| (-409 |#2|))) |%noBranch|)) NIL (((-1259) (-140)) (T -1259)) NIL -(-13 (-10 -7 (-6 -3594))) -((-3007 (((-112) $ $) NIL)) (-1385 (((-1175)) 12)) (-4117 (((-1157) $) 18)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 11) (((-1175) $) 8)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) 15))) -(((-1260 |#1|) (-13 (-1099) (-613 (-1175)) (-10 -8 (-15 -3783 ((-1175) $)) (-15 -1385 ((-1175))))) (-1175)) (T -1260)) -((-3783 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1260 *3)) (-14 *3 *2))) (-1385 (*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1260 *3)) (-14 *3 *2)))) -(-13 (-1099) (-613 (-1175)) (-10 -8 (-15 -3783 ((-1175) $)) (-15 -1385 ((-1175))))) -((-2149 (($ (-771)) 19)) (-1939 (((-689 |#2|) $ $) 41)) (-2330 ((|#2| $) 51)) (-4149 ((|#2| $) 50)) (-4280 ((|#2| $ $) 36)) (-2797 (($ $ $) 47)) (-3053 (($ $) 23) (($ $ $) 29)) (-3041 (($ $ $) 15)) (* (($ (-566) $) 26) (($ |#2| $) 32) (($ $ |#2|) 31))) -(((-1261 |#1| |#2|) (-10 -8 (-15 -2330 (|#2| |#1|)) (-15 -4149 (|#2| |#1|)) (-15 -2797 (|#1| |#1| |#1|)) (-15 -1939 ((-689 |#2|) |#1| |#1|)) (-15 -4280 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 -3053 (|#1| |#1| |#1|)) (-15 -3053 (|#1| |#1|)) (-15 -2149 (|#1| (-771))) (-15 -3041 (|#1| |#1| |#1|))) (-1262 |#2|) (-1214)) (T -1261)) +(-13 (-10 -7 (-6 -3564))) +((-2988 (((-112) $ $) NIL)) (-4347 (((-1175)) 12)) (-3380 (((-1157) $) 18)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 11) (((-1175) $) 8)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) 15))) +(((-1260 |#1|) (-13 (-1099) (-613 (-1175)) (-10 -8 (-15 -3152 ((-1175) $)) (-15 -4347 ((-1175))))) (-1175)) (T -1260)) +((-3152 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1260 *3)) (-14 *3 *2))) (-4347 (*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1260 *3)) (-14 *3 *2)))) +(-13 (-1099) (-613 (-1175)) (-10 -8 (-15 -3152 ((-1175) $)) (-15 -4347 ((-1175))))) +((-2819 (($ (-771)) 19)) (-2977 (((-689 |#2|) $ $) 41)) (-3631 ((|#2| $) 51)) (-2440 ((|#2| $) 50)) (-3386 ((|#2| $ $) 36)) (-1395 (($ $ $) 47)) (-3012 (($ $) 23) (($ $ $) 29)) (-3002 (($ $ $) 15)) (* (($ (-566) $) 26) (($ |#2| $) 32) (($ $ |#2|) 31))) +(((-1261 |#1| |#2|) (-10 -8 (-15 -3631 (|#2| |#1|)) (-15 -2440 (|#2| |#1|)) (-15 -1395 (|#1| |#1| |#1|)) (-15 -2977 ((-689 |#2|) |#1| |#1|)) (-15 -3386 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 -3012 (|#1| |#1| |#1|)) (-15 -3012 (|#1| |#1|)) (-15 -2819 (|#1| (-771))) (-15 -3002 (|#1| |#1| |#1|))) (-1262 |#2|) (-1214)) (T -1261)) NIL -(-10 -8 (-15 -2330 (|#2| |#1|)) (-15 -4149 (|#2| |#1|)) (-15 -2797 (|#1| |#1| |#1|)) (-15 -1939 ((-689 |#2|) |#1| |#1|)) (-15 -4280 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 -3053 (|#1| |#1| |#1|)) (-15 -3053 (|#1| |#1|)) (-15 -2149 (|#1| (-771))) (-15 -3041 (|#1| |#1| |#1|))) -((-3007 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2149 (($ (-771)) 113 (|has| |#1| (-23)))) (-3734 (((-1269) $ (-566) (-566)) 41 (|has| $ (-6 -4415)))) (-2644 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-850)))) (-1944 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4415))) (($ $) 89 (-12 (|has| |#1| (-850)) (|has| $ (-6 -4415))))) (-1510 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-850)))) (-2256 (((-112) $ (-771)) 8)) (-3923 ((|#1| $ (-566) |#1|) 53 (|has| $ (-6 -4415))) ((|#1| $ (-1231 (-566)) |#1|) 59 (|has| $ (-6 -4415)))) (-2701 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4414)))) (-3012 (($) 7 T CONST)) (-3413 (($ $) 91 (|has| $ (-6 -4415)))) (-1377 (($ $) 101)) (-2031 (($ $) 79 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2665 (($ |#1| $) 78 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4414)))) (-1676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4414)))) (-2920 ((|#1| $ (-566) |#1|) 54 (|has| $ (-6 -4415)))) (-2855 ((|#1| $ (-566)) 52)) (-4000 (((-566) (-1 (-112) |#1|) $) 98) (((-566) |#1| $) 97 (|has| |#1| (-1099))) (((-566) |#1| $ (-566)) 96 (|has| |#1| (-1099)))) (-3979 (((-644 |#1|) $) 31 (|has| $ (-6 -4414)))) (-1939 (((-689 |#1|) $ $) 106 (|has| |#1| (-1049)))) (-4265 (($ (-771) |#1|) 70)) (-2404 (((-112) $ (-771)) 9)) (-3854 (((-566) $) 44 (|has| (-566) (-850)))) (-2097 (($ $ $) 88 (|has| |#1| (-850)))) (-3298 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-850)))) (-2329 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2712 (((-566) $) 45 (|has| (-566) (-850)))) (-3962 (($ $ $) 87 (|has| |#1| (-850)))) (-2908 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2330 ((|#1| $) 103 (-12 (|has| |#1| (-1049)) (|has| |#1| (-1002))))) (-2603 (((-112) $ (-771)) 10)) (-4149 ((|#1| $) 104 (-12 (|has| |#1| (-1049)) (|has| |#1| (-1002))))) (-4117 (((-1157) $) 22 (|has| |#1| (-1099)))) (-4276 (($ |#1| $ (-566)) 61) (($ $ $ (-566)) 60)) (-4074 (((-644 (-566)) $) 47)) (-3792 (((-112) (-566) $) 48)) (-4035 (((-1119) $) 21 (|has| |#1| (-1099)))) (-1998 ((|#1| $) 43 (|has| (-566) (-850)))) (-2006 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-4030 (($ $ |#1|) 42 (|has| $ (-6 -4415)))) (-2692 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) 14)) (-4156 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2993 (((-644 |#1|) $) 49)) (-3467 (((-112) $) 11)) (-1494 (($) 12)) (-4390 ((|#1| $ (-566) |#1|) 51) ((|#1| $ (-566)) 50) (($ $ (-1231 (-566))) 64)) (-4280 ((|#1| $ $) 107 (|has| |#1| (-1049)))) (-2187 (($ $ (-566)) 63) (($ $ (-1231 (-566))) 62)) (-2797 (($ $ $) 105 (|has| |#1| (-1049)))) (-4045 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-1297 (($ $ $ (-566)) 92 (|has| $ (-6 -4415)))) (-3940 (($ $) 13)) (-1348 (((-538) $) 80 (|has| |#1| (-614 (-538))))) (-3796 (($ (-644 |#1|)) 71)) (-3721 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-644 $)) 66)) (-3783 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-3117 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-1894 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-3009 (((-112) $ $) 85 (|has| |#1| (-850)))) (-2984 (((-112) $ $) 84 (|has| |#1| (-850)))) (-2947 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-2995 (((-112) $ $) 86 (|has| |#1| (-850)))) (-2969 (((-112) $ $) 83 (|has| |#1| (-850)))) (-3053 (($ $) 112 (|has| |#1| (-21))) (($ $ $) 111 (|has| |#1| (-21)))) (-3041 (($ $ $) 114 (|has| |#1| (-25)))) (* (($ (-566) $) 110 (|has| |#1| (-21))) (($ |#1| $) 109 (|has| |#1| (-726))) (($ $ |#1|) 108 (|has| |#1| (-726)))) (-3018 (((-771) $) 6 (|has| $ (-6 -4414))))) +(-10 -8 (-15 -3631 (|#2| |#1|)) (-15 -2440 (|#2| |#1|)) (-15 -1395 (|#1| |#1| |#1|)) (-15 -2977 ((-689 |#2|) |#1| |#1|)) (-15 -3386 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 -3012 (|#1| |#1| |#1|)) (-15 -3012 (|#1| |#1|)) (-15 -2819 (|#1| (-771))) (-15 -3002 (|#1| |#1| |#1|))) +((-2988 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2819 (($ (-771)) 113 (|has| |#1| (-23)))) (-1944 (((-1269) $ (-566) (-566)) 41 (|has| $ (-6 -4415)))) (-3054 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-850)))) (-3628 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4415))) (($ $) 89 (-12 (|has| |#1| (-850)) (|has| $ (-6 -4415))))) (-2671 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-850)))) (-1504 (((-112) $ (-771)) 8)) (-1456 ((|#1| $ (-566) |#1|) 53 (|has| $ (-6 -4415))) ((|#1| $ (-1231 (-566)) |#1|) 59 (|has| $ (-6 -4415)))) (-3678 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4414)))) (-2463 (($) 7 T CONST)) (-3166 (($ $) 91 (|has| $ (-6 -4415)))) (-3683 (($ $) 101)) (-3942 (($ $) 79 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2622 (($ |#1| $) 78 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4414)))) (-2873 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4414)))) (-3897 ((|#1| $ (-566) |#1|) 54 (|has| $ (-6 -4415)))) (-3829 ((|#1| $ (-566)) 52)) (-1569 (((-566) (-1 (-112) |#1|) $) 98) (((-566) |#1| $) 97 (|has| |#1| (-1099))) (((-566) |#1| $ (-566)) 96 (|has| |#1| (-1099)))) (-1683 (((-644 |#1|) $) 31 (|has| $ (-6 -4414)))) (-2977 (((-689 |#1|) $ $) 106 (|has| |#1| (-1049)))) (-1860 (($ (-771) |#1|) 70)) (-3456 (((-112) $ (-771)) 9)) (-2296 (((-566) $) 44 (|has| (-566) (-850)))) (-1478 (($ $ $) 88 (|has| |#1| (-850)))) (-2696 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-850)))) (-3491 (((-644 |#1|) $) 30 (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-4050 (((-566) $) 45 (|has| (-566) (-850)))) (-2599 (($ $ $) 87 (|has| |#1| (-850)))) (-3885 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3631 ((|#1| $) 103 (-12 (|has| |#1| (-1049)) (|has| |#1| (-1002))))) (-3267 (((-112) $ (-771)) 10)) (-2440 ((|#1| $) 104 (-12 (|has| |#1| (-1049)) (|has| |#1| (-1002))))) (-3380 (((-1157) $) 22 (|has| |#1| (-1099)))) (-1859 (($ |#1| $ (-566)) 61) (($ $ $ (-566)) 60)) (-3725 (((-644 (-566)) $) 47)) (-1644 (((-112) (-566) $) 48)) (-4072 (((-1119) $) 21 (|has| |#1| (-1099)))) (-3908 ((|#1| $) 43 (|has| (-566) (-850)))) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-3787 (($ $ |#1|) 42 (|has| $ (-6 -4415)))) (-2823 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) 14)) (-2847 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3486 (((-644 |#1|) $) 49)) (-2872 (((-112) $) 11)) (-3493 (($) 12)) (-1309 ((|#1| $ (-566) |#1|) 51) ((|#1| $ (-566)) 50) (($ $ (-1231 (-566))) 64)) (-3386 ((|#1| $ $) 107 (|has| |#1| (-1049)))) (-2166 (($ $ (-566)) 63) (($ $ (-1231 (-566))) 62)) (-1395 (($ $ $) 105 (|has| |#1| (-1049)))) (-4083 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4414))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4414))))) (-2661 (($ $ $ (-566)) 92 (|has| $ (-6 -4415)))) (-1480 (($ $) 13)) (-2376 (((-538) $) 80 (|has| |#1| (-614 (-538))))) (-1340 (($ (-644 |#1|)) 71)) (-4386 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-644 $)) 66)) (-3152 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-3044 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-2210 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4414)))) (-2968 (((-112) $ $) 85 (|has| |#1| (-850)))) (-2946 (((-112) $ $) 84 (|has| |#1| (-850)))) (-2914 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-2956 (((-112) $ $) 86 (|has| |#1| (-850)))) (-2935 (((-112) $ $) 83 (|has| |#1| (-850)))) (-3012 (($ $) 112 (|has| |#1| (-21))) (($ $ $) 111 (|has| |#1| (-21)))) (-3002 (($ $ $) 114 (|has| |#1| (-25)))) (* (($ (-566) $) 110 (|has| |#1| (-21))) (($ |#1| $) 109 (|has| |#1| (-726))) (($ $ |#1|) 108 (|has| |#1| (-726)))) (-3000 (((-771) $) 6 (|has| $ (-6 -4414))))) (((-1262 |#1|) (-140) (-1214)) (T -1262)) -((-3041 (*1 *1 *1 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1214)) (-4 *2 (-25)))) (-2149 (*1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-1262 *3)) (-4 *3 (-23)) (-4 *3 (-1214)))) (-3053 (*1 *1 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1214)) (-4 *2 (-21)))) (-3053 (*1 *1 *1 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1214)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-566)) (-4 *1 (-1262 *3)) (-4 *3 (-1214)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1214)) (-4 *2 (-726)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1214)) (-4 *2 (-726)))) (-4280 (*1 *2 *1 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1214)) (-4 *2 (-1049)))) (-1939 (*1 *2 *1 *1) (-12 (-4 *1 (-1262 *3)) (-4 *3 (-1214)) (-4 *3 (-1049)) (-5 *2 (-689 *3)))) (-2797 (*1 *1 *1 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1214)) (-4 *2 (-1049)))) (-4149 (*1 *2 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1214)) (-4 *2 (-1002)) (-4 *2 (-1049)))) (-2330 (*1 *2 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1214)) (-4 *2 (-1002)) (-4 *2 (-1049))))) -(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3041 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -2149 ($ (-771))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3053 ($ $)) (-15 -3053 ($ $ $)) (-15 * ($ (-566) $))) |%noBranch|) (IF (|has| |t#1| (-726)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1049)) (PROGN (-15 -4280 (|t#1| $ $)) (-15 -1939 ((-689 |t#1|) $ $)) (-15 -2797 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1002)) (IF (|has| |t#1| (-1049)) (PROGN (-15 -4149 (|t#1| $)) (-15 -2330 (|t#1| $))) |%noBranch|) |%noBranch|))) -(((-34) . T) ((-102) -2809 (|has| |#1| (-1099)) (|has| |#1| (-850))) ((-613 (-862)) -2809 (|has| |#1| (-1099)) (|has| |#1| (-850)) (|has| |#1| (-613 (-862)))) ((-151 |#1|) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-287 #0=(-566) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-375 |#1|) . T) ((-491 |#1|) . T) ((-604 #0# |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-651 |#1|) . T) ((-19 |#1|) . T) ((-850) |has| |#1| (-850)) ((-1099) -2809 (|has| |#1| (-1099)) (|has| |#1| (-850))) ((-1214) . T)) -((-3795 (((-1264 |#2|) (-1 |#2| |#1| |#2|) (-1264 |#1|) |#2|) 13)) (-1676 ((|#2| (-1 |#2| |#1| |#2|) (-1264 |#1|) |#2|) 15)) (-1301 (((-3 (-1264 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1264 |#1|)) 30) (((-1264 |#2|) (-1 |#2| |#1|) (-1264 |#1|)) 18))) -(((-1263 |#1| |#2|) (-10 -7 (-15 -3795 ((-1264 |#2|) (-1 |#2| |#1| |#2|) (-1264 |#1|) |#2|)) (-15 -1676 (|#2| (-1 |#2| |#1| |#2|) (-1264 |#1|) |#2|)) (-15 -1301 ((-1264 |#2|) (-1 |#2| |#1|) (-1264 |#1|))) (-15 -1301 ((-3 (-1264 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1264 |#1|)))) (-1214) (-1214)) (T -1263)) -((-1301 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1264 *5)) (-4 *5 (-1214)) (-4 *6 (-1214)) (-5 *2 (-1264 *6)) (-5 *1 (-1263 *5 *6)))) (-1301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1264 *5)) (-4 *5 (-1214)) (-4 *6 (-1214)) (-5 *2 (-1264 *6)) (-5 *1 (-1263 *5 *6)))) (-1676 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1264 *5)) (-4 *5 (-1214)) (-4 *2 (-1214)) (-5 *1 (-1263 *5 *2)))) (-3795 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1264 *6)) (-4 *6 (-1214)) (-4 *5 (-1214)) (-5 *2 (-1264 *5)) (-5 *1 (-1263 *6 *5))))) -(-10 -7 (-15 -3795 ((-1264 |#2|) (-1 |#2| |#1| |#2|) (-1264 |#1|) |#2|)) (-15 -1676 (|#2| (-1 |#2| |#1| |#2|) (-1264 |#1|) |#2|)) (-15 -1301 ((-1264 |#2|) (-1 |#2| |#1|) (-1264 |#1|))) (-15 -1301 ((-3 (-1264 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1264 |#1|)))) -((-3007 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2149 (($ (-771)) NIL (|has| |#1| (-23)))) (-3550 (($ (-644 |#1|)) 11)) (-3734 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4415)))) (-2644 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-850)))) (-1944 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4415))) (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-850))))) (-1510 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-850)))) (-2256 (((-112) $ (-771)) NIL)) (-3923 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4415))) ((|#1| $ (-1231 (-566)) |#1|) NIL (|has| $ (-6 -4415)))) (-2701 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-3012 (($) NIL T CONST)) (-3413 (($ $) NIL (|has| $ (-6 -4415)))) (-1377 (($ $) NIL)) (-2031 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2665 (($ |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-1676 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4414)))) (-2920 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4415)))) (-2855 ((|#1| $ (-566)) NIL)) (-4000 (((-566) (-1 (-112) |#1|) $) NIL) (((-566) |#1| $) NIL (|has| |#1| (-1099))) (((-566) |#1| $ (-566)) NIL (|has| |#1| (-1099)))) (-3979 (((-644 |#1|) $) 15 (|has| $ (-6 -4414)))) (-1939 (((-689 |#1|) $ $) NIL (|has| |#1| (-1049)))) (-4265 (($ (-771) |#1|) NIL)) (-2404 (((-112) $ (-771)) NIL)) (-3854 (((-566) $) NIL (|has| (-566) (-850)))) (-2097 (($ $ $) NIL (|has| |#1| (-850)))) (-3298 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-850)))) (-2329 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1916 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2712 (((-566) $) NIL (|has| (-566) (-850)))) (-3962 (($ $ $) NIL (|has| |#1| (-850)))) (-2908 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2330 ((|#1| $) NIL (-12 (|has| |#1| (-1002)) (|has| |#1| (-1049))))) (-2603 (((-112) $ (-771)) NIL)) (-4149 ((|#1| $) NIL (-12 (|has| |#1| (-1002)) (|has| |#1| (-1049))))) (-4117 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4276 (($ |#1| $ (-566)) NIL) (($ $ $ (-566)) NIL)) (-4074 (((-644 (-566)) $) NIL)) (-3792 (((-112) (-566) $) NIL)) (-4035 (((-1119) $) NIL (|has| |#1| (-1099)))) (-1998 ((|#1| $) NIL (|has| (-566) (-850)))) (-2006 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4030 (($ $ |#1|) NIL (|has| $ (-6 -4415)))) (-2692 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-1932 (((-112) $ $) NIL)) (-4156 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2993 (((-644 |#1|) $) NIL)) (-3467 (((-112) $) NIL)) (-1494 (($) NIL)) (-4390 ((|#1| $ (-566) |#1|) NIL) ((|#1| $ (-566)) NIL) (($ $ (-1231 (-566))) NIL)) (-4280 ((|#1| $ $) NIL (|has| |#1| (-1049)))) (-2187 (($ $ (-566)) NIL) (($ $ (-1231 (-566))) NIL)) (-2797 (($ $ $) NIL (|has| |#1| (-1049)))) (-4045 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-1297 (($ $ $ (-566)) NIL (|has| $ (-6 -4415)))) (-3940 (($ $) NIL)) (-1348 (((-538) $) 19 (|has| |#1| (-614 (-538))))) (-3796 (($ (-644 |#1|)) 10)) (-3721 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-644 $)) NIL)) (-3783 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-3117 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1894 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-3009 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2984 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2947 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2995 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2969 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3053 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3041 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-566) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-726))) (($ $ |#1|) NIL (|has| |#1| (-726)))) (-3018 (((-771) $) NIL (|has| $ (-6 -4414))))) -(((-1264 |#1|) (-13 (-1262 |#1|) (-10 -8 (-15 -3550 ($ (-644 |#1|))))) (-1214)) (T -1264)) -((-3550 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1214)) (-5 *1 (-1264 *3))))) -(-13 (-1262 |#1|) (-10 -8 (-15 -3550 ($ (-644 |#1|))))) -((-3007 (((-112) $ $) NIL)) (-3013 (((-1157) $ (-1157)) 110) (((-1157) $ (-1157) (-1157)) 108) (((-1157) $ (-1157) (-644 (-1157))) 107)) (-1387 (($) 70)) (-3955 (((-1269) $ (-470) (-921)) 55)) (-3206 (((-1269) $ (-921) (-1157)) 92) (((-1269) $ (-921) (-874)) 93)) (-4187 (((-1269) $ (-921) (-381) (-381)) 58)) (-3361 (((-1269) $ (-1157)) 87)) (-3817 (((-1269) $ (-921) (-1157)) 97)) (-1389 (((-1269) $ (-921) (-381) (-381)) 59)) (-2336 (((-1269) $ (-921) (-921)) 56)) (-2988 (((-1269) $) 88)) (-4084 (((-1269) $ (-921) (-1157)) 96)) (-1765 (((-1269) $ (-470) (-921)) 41)) (-2556 (((-1269) $ (-921) (-1157)) 95)) (-4299 (((-644 (-264)) $) 29) (($ $ (-644 (-264))) 30)) (-2879 (((-1269) $ (-771) (-771)) 53)) (-3666 (($ $) 72) (($ (-470) (-644 (-264))) 73)) (-4117 (((-1157) $) NIL)) (-2004 (((-566) $) 48)) (-4035 (((-1119) $) NIL)) (-1882 (((-1264 (-3 (-470) "undefined")) $) 47)) (-1579 (((-1264 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -2556 (-566)) (|:| -2720 (-566)) (|:| |spline| (-566)) (|:| -3668 (-566)) (|:| |axesColor| (-874)) (|:| -3206 (-566)) (|:| |unitsColor| (-874)) (|:| |showing| (-566)))) $) 46)) (-3081 (((-1269) $ (-921) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-566) (-874) (-566) (-874) (-566)) 86)) (-3045 (((-644 (-943 (-225))) $) NIL)) (-3167 (((-470) $ (-921)) 43)) (-2874 (((-1269) $ (-771) (-771) (-921) (-921)) 51)) (-2246 (((-1269) $ (-1157)) 98)) (-2720 (((-1269) $ (-921) (-1157)) 94)) (-3783 (((-862) $) 105)) (-1651 (((-1269) $) 99)) (-3117 (((-112) $ $) NIL)) (-3668 (((-1269) $ (-921) (-1157)) 90) (((-1269) $ (-921) (-874)) 91)) (-2947 (((-112) $ $) NIL))) -(((-1265) (-13 (-1099) (-10 -8 (-15 -3045 ((-644 (-943 (-225))) $)) (-15 -1387 ($)) (-15 -3666 ($ $)) (-15 -4299 ((-644 (-264)) $)) (-15 -4299 ($ $ (-644 (-264)))) (-15 -3666 ($ (-470) (-644 (-264)))) (-15 -3081 ((-1269) $ (-921) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-566) (-874) (-566) (-874) (-566))) (-15 -1579 ((-1264 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -2556 (-566)) (|:| -2720 (-566)) (|:| |spline| (-566)) (|:| -3668 (-566)) (|:| |axesColor| (-874)) (|:| -3206 (-566)) (|:| |unitsColor| (-874)) (|:| |showing| (-566)))) $)) (-15 -1882 ((-1264 (-3 (-470) "undefined")) $)) (-15 -3361 ((-1269) $ (-1157))) (-15 -1765 ((-1269) $ (-470) (-921))) (-15 -3167 ((-470) $ (-921))) (-15 -3668 ((-1269) $ (-921) (-1157))) (-15 -3668 ((-1269) $ (-921) (-874))) (-15 -3206 ((-1269) $ (-921) (-1157))) (-15 -3206 ((-1269) $ (-921) (-874))) (-15 -2556 ((-1269) $ (-921) (-1157))) (-15 -4084 ((-1269) $ (-921) (-1157))) (-15 -2720 ((-1269) $ (-921) (-1157))) (-15 -2246 ((-1269) $ (-1157))) (-15 -1651 ((-1269) $)) (-15 -2874 ((-1269) $ (-771) (-771) (-921) (-921))) (-15 -1389 ((-1269) $ (-921) (-381) (-381))) (-15 -4187 ((-1269) $ (-921) (-381) (-381))) (-15 -3817 ((-1269) $ (-921) (-1157))) (-15 -2879 ((-1269) $ (-771) (-771))) (-15 -3955 ((-1269) $ (-470) (-921))) (-15 -2336 ((-1269) $ (-921) (-921))) (-15 -3013 ((-1157) $ (-1157))) (-15 -3013 ((-1157) $ (-1157) (-1157))) (-15 -3013 ((-1157) $ (-1157) (-644 (-1157)))) (-15 -2988 ((-1269) $)) (-15 -2004 ((-566) $)) (-15 -3783 ((-862) $))))) (T -1265)) -((-3783 (*1 *2 *1) (-12 (-5 *2 (-862)) (-5 *1 (-1265)))) (-3045 (*1 *2 *1) (-12 (-5 *2 (-644 (-943 (-225)))) (-5 *1 (-1265)))) (-1387 (*1 *1) (-5 *1 (-1265))) (-3666 (*1 *1 *1) (-5 *1 (-1265))) (-4299 (*1 *2 *1) (-12 (-5 *2 (-644 (-264))) (-5 *1 (-1265)))) (-4299 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-264))) (-5 *1 (-1265)))) (-3666 (*1 *1 *2 *3) (-12 (-5 *2 (-470)) (-5 *3 (-644 (-264))) (-5 *1 (-1265)))) (-3081 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-921)) (-5 *4 (-225)) (-5 *5 (-566)) (-5 *6 (-874)) (-5 *2 (-1269)) (-5 *1 (-1265)))) (-1579 (*1 *2 *1) (-12 (-5 *2 (-1264 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -2556 (-566)) (|:| -2720 (-566)) (|:| |spline| (-566)) (|:| -3668 (-566)) (|:| |axesColor| (-874)) (|:| -3206 (-566)) (|:| |unitsColor| (-874)) (|:| |showing| (-566))))) (-5 *1 (-1265)))) (-1882 (*1 *2 *1) (-12 (-5 *2 (-1264 (-3 (-470) "undefined"))) (-5 *1 (-1265)))) (-3361 (*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1265)))) (-1765 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-470)) (-5 *4 (-921)) (-5 *2 (-1269)) (-5 *1 (-1265)))) (-3167 (*1 *2 *1 *3) (-12 (-5 *3 (-921)) (-5 *2 (-470)) (-5 *1 (-1265)))) (-3668 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-921)) (-5 *4 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1265)))) (-3668 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-921)) (-5 *4 (-874)) (-5 *2 (-1269)) (-5 *1 (-1265)))) (-3206 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-921)) (-5 *4 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1265)))) (-3206 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-921)) (-5 *4 (-874)) (-5 *2 (-1269)) (-5 *1 (-1265)))) (-2556 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-921)) (-5 *4 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1265)))) (-4084 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-921)) (-5 *4 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1265)))) (-2720 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-921)) (-5 *4 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1265)))) (-2246 (*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1265)))) (-1651 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-1265)))) (-2874 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-771)) (-5 *4 (-921)) (-5 *2 (-1269)) (-5 *1 (-1265)))) (-1389 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-921)) (-5 *4 (-381)) (-5 *2 (-1269)) (-5 *1 (-1265)))) (-4187 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-921)) (-5 *4 (-381)) (-5 *2 (-1269)) (-5 *1 (-1265)))) (-3817 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-921)) (-5 *4 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1265)))) (-2879 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1269)) (-5 *1 (-1265)))) (-3955 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-470)) (-5 *4 (-921)) (-5 *2 (-1269)) (-5 *1 (-1265)))) (-2336 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1269)) (-5 *1 (-1265)))) (-3013 (*1 *2 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1265)))) (-3013 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1265)))) (-3013 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-644 (-1157))) (-5 *2 (-1157)) (-5 *1 (-1265)))) (-2988 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-1265)))) (-2004 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-1265))))) -(-13 (-1099) (-10 -8 (-15 -3045 ((-644 (-943 (-225))) $)) (-15 -1387 ($)) (-15 -3666 ($ $)) (-15 -4299 ((-644 (-264)) $)) (-15 -4299 ($ $ (-644 (-264)))) (-15 -3666 ($ (-470) (-644 (-264)))) (-15 -3081 ((-1269) $ (-921) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-566) (-874) (-566) (-874) (-566))) (-15 -1579 ((-1264 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -2556 (-566)) (|:| -2720 (-566)) (|:| |spline| (-566)) (|:| -3668 (-566)) (|:| |axesColor| (-874)) (|:| -3206 (-566)) (|:| |unitsColor| (-874)) (|:| |showing| (-566)))) $)) (-15 -1882 ((-1264 (-3 (-470) "undefined")) $)) (-15 -3361 ((-1269) $ (-1157))) (-15 -1765 ((-1269) $ (-470) (-921))) (-15 -3167 ((-470) $ (-921))) (-15 -3668 ((-1269) $ (-921) (-1157))) (-15 -3668 ((-1269) $ (-921) (-874))) (-15 -3206 ((-1269) $ (-921) (-1157))) (-15 -3206 ((-1269) $ (-921) (-874))) (-15 -2556 ((-1269) $ (-921) (-1157))) (-15 -4084 ((-1269) $ (-921) (-1157))) (-15 -2720 ((-1269) $ (-921) (-1157))) (-15 -2246 ((-1269) $ (-1157))) (-15 -1651 ((-1269) $)) (-15 -2874 ((-1269) $ (-771) (-771) (-921) (-921))) (-15 -1389 ((-1269) $ (-921) (-381) (-381))) (-15 -4187 ((-1269) $ (-921) (-381) (-381))) (-15 -3817 ((-1269) $ (-921) (-1157))) (-15 -2879 ((-1269) $ (-771) (-771))) (-15 -3955 ((-1269) $ (-470) (-921))) (-15 -2336 ((-1269) $ (-921) (-921))) (-15 -3013 ((-1157) $ (-1157))) (-15 -3013 ((-1157) $ (-1157) (-1157))) (-15 -3013 ((-1157) $ (-1157) (-644 (-1157)))) (-15 -2988 ((-1269) $)) (-15 -2004 ((-566) $)) (-15 -3783 ((-862) $)))) -((-3007 (((-112) $ $) NIL)) (-3139 (((-1269) $ (-381)) 172) (((-1269) $ (-381) (-381) (-381)) 173)) (-3013 (((-1157) $ (-1157)) 182) (((-1157) $ (-1157) (-1157)) 180) (((-1157) $ (-1157) (-644 (-1157))) 179)) (-1672 (($) 67)) (-3087 (((-1269) $ (-381) (-381) (-381) (-381) (-381)) 144) (((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -1389 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $) 142) (((-1269) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -1389 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 143) (((-1269) $ (-566) (-566) (-381) (-381) (-381)) 147) (((-1269) $ (-381) (-381)) 148) (((-1269) $ (-381) (-381) (-381)) 155)) (-2656 (((-381)) 125) (((-381) (-381)) 126)) (-3709 (((-381)) 120) (((-381) (-381)) 122)) (-1333 (((-381)) 123) (((-381) (-381)) 124)) (-4342 (((-381)) 129) (((-381) (-381)) 130)) (-2255 (((-381)) 127) (((-381) (-381)) 128)) (-4187 (((-1269) $ (-381) (-381)) 174)) (-3361 (((-1269) $ (-1157)) 156)) (-2623 (((-1132 (-225)) $) 68) (($ $ (-1132 (-225))) 69)) (-2458 (((-1269) $ (-1157)) 190)) (-2478 (((-1269) $ (-1157)) 191)) (-2292 (((-1269) $ (-381) (-381)) 154) (((-1269) $ (-566) (-566)) 171)) (-2336 (((-1269) $ (-921) (-921)) 163)) (-2988 (((-1269) $) 140)) (-3141 (((-1269) $ (-1157)) 189)) (-2163 (((-1269) $ (-1157)) 137)) (-4299 (((-644 (-264)) $) 70) (($ $ (-644 (-264))) 71)) (-2879 (((-1269) $ (-771) (-771)) 162)) (-4389 (((-1269) $ (-771) (-943 (-225))) 196)) (-3513 (($ $) 73) (($ (-1132 (-225)) (-1157)) 74) (($ (-1132 (-225)) (-644 (-264))) 75)) (-3965 (((-1269) $ (-381) (-381) (-381)) 134)) (-4117 (((-1157) $) NIL)) (-2004 (((-566) $) 131)) (-1468 (((-1269) $ (-381)) 177)) (-3517 (((-1269) $ (-381)) 194)) (-4035 (((-1119) $) NIL)) (-4141 (((-1269) $ (-381)) 193)) (-2155 (((-1269) $ (-1157)) 139)) (-2874 (((-1269) $ (-771) (-771) (-921) (-921)) 161)) (-2903 (((-1269) $ (-1157)) 136)) (-2246 (((-1269) $ (-1157)) 138)) (-1436 (((-1269) $ (-157) (-157)) 160)) (-3783 (((-862) $) 169)) (-1651 (((-1269) $) 141)) (-2282 (((-1269) $ (-1157)) 192)) (-3117 (((-112) $ $) NIL)) (-3668 (((-1269) $ (-1157)) 135)) (-2947 (((-112) $ $) NIL))) -(((-1266) (-13 (-1099) (-10 -8 (-15 -3709 ((-381))) (-15 -3709 ((-381) (-381))) (-15 -1333 ((-381))) (-15 -1333 ((-381) (-381))) (-15 -2656 ((-381))) (-15 -2656 ((-381) (-381))) (-15 -2255 ((-381))) (-15 -2255 ((-381) (-381))) (-15 -4342 ((-381))) (-15 -4342 ((-381) (-381))) (-15 -1672 ($)) (-15 -3513 ($ $)) (-15 -3513 ($ (-1132 (-225)) (-1157))) (-15 -3513 ($ (-1132 (-225)) (-644 (-264)))) (-15 -2623 ((-1132 (-225)) $)) (-15 -2623 ($ $ (-1132 (-225)))) (-15 -4389 ((-1269) $ (-771) (-943 (-225)))) (-15 -4299 ((-644 (-264)) $)) (-15 -4299 ($ $ (-644 (-264)))) (-15 -2879 ((-1269) $ (-771) (-771))) (-15 -2336 ((-1269) $ (-921) (-921))) (-15 -3361 ((-1269) $ (-1157))) (-15 -2874 ((-1269) $ (-771) (-771) (-921) (-921))) (-15 -3087 ((-1269) $ (-381) (-381) (-381) (-381) (-381))) (-15 -3087 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -1389 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $)) (-15 -3087 ((-1269) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -1389 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3087 ((-1269) $ (-566) (-566) (-381) (-381) (-381))) (-15 -3087 ((-1269) $ (-381) (-381))) (-15 -3087 ((-1269) $ (-381) (-381) (-381))) (-15 -2246 ((-1269) $ (-1157))) (-15 -3668 ((-1269) $ (-1157))) (-15 -2903 ((-1269) $ (-1157))) (-15 -2163 ((-1269) $ (-1157))) (-15 -2155 ((-1269) $ (-1157))) (-15 -2292 ((-1269) $ (-381) (-381))) (-15 -2292 ((-1269) $ (-566) (-566))) (-15 -3139 ((-1269) $ (-381))) (-15 -3139 ((-1269) $ (-381) (-381) (-381))) (-15 -4187 ((-1269) $ (-381) (-381))) (-15 -3141 ((-1269) $ (-1157))) (-15 -4141 ((-1269) $ (-381))) (-15 -3517 ((-1269) $ (-381))) (-15 -2458 ((-1269) $ (-1157))) (-15 -2478 ((-1269) $ (-1157))) (-15 -2282 ((-1269) $ (-1157))) (-15 -3965 ((-1269) $ (-381) (-381) (-381))) (-15 -1468 ((-1269) $ (-381))) (-15 -2988 ((-1269) $)) (-15 -1436 ((-1269) $ (-157) (-157))) (-15 -3013 ((-1157) $ (-1157))) (-15 -3013 ((-1157) $ (-1157) (-1157))) (-15 -3013 ((-1157) $ (-1157) (-644 (-1157)))) (-15 -1651 ((-1269) $)) (-15 -2004 ((-566) $))))) (T -1266)) -((-3709 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266)))) (-3709 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266)))) (-1333 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266)))) (-1333 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266)))) (-2656 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266)))) (-2656 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266)))) (-2255 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266)))) (-2255 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266)))) (-4342 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266)))) (-4342 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266)))) (-1672 (*1 *1) (-5 *1 (-1266))) (-3513 (*1 *1 *1) (-5 *1 (-1266))) (-3513 (*1 *1 *2 *3) (-12 (-5 *2 (-1132 (-225))) (-5 *3 (-1157)) (-5 *1 (-1266)))) (-3513 (*1 *1 *2 *3) (-12 (-5 *2 (-1132 (-225))) (-5 *3 (-644 (-264))) (-5 *1 (-1266)))) (-2623 (*1 *2 *1) (-12 (-5 *2 (-1132 (-225))) (-5 *1 (-1266)))) (-2623 (*1 *1 *1 *2) (-12 (-5 *2 (-1132 (-225))) (-5 *1 (-1266)))) (-4389 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-771)) (-5 *4 (-943 (-225))) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-4299 (*1 *2 *1) (-12 (-5 *2 (-644 (-264))) (-5 *1 (-1266)))) (-4299 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-264))) (-5 *1 (-1266)))) (-2879 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-2336 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-3361 (*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-2874 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-771)) (-5 *4 (-921)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-3087 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-3087 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -1389 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *1 (-1266)))) (-3087 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -1389 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-3087 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-566)) (-5 *4 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-3087 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-3087 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-2246 (*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-3668 (*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-2903 (*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-2163 (*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-2155 (*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-2292 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-2292 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-566)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-3139 (*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-3139 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-4187 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-3141 (*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-4141 (*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-3517 (*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-2458 (*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-2478 (*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-2282 (*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-3965 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-1468 (*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-2988 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-1266)))) (-1436 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-157)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-3013 (*1 *2 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1266)))) (-3013 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1266)))) (-3013 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-644 (-1157))) (-5 *2 (-1157)) (-5 *1 (-1266)))) (-1651 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-1266)))) (-2004 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-1266))))) -(-13 (-1099) (-10 -8 (-15 -3709 ((-381))) (-15 -3709 ((-381) (-381))) (-15 -1333 ((-381))) (-15 -1333 ((-381) (-381))) (-15 -2656 ((-381))) (-15 -2656 ((-381) (-381))) (-15 -2255 ((-381))) (-15 -2255 ((-381) (-381))) (-15 -4342 ((-381))) (-15 -4342 ((-381) (-381))) (-15 -1672 ($)) (-15 -3513 ($ $)) (-15 -3513 ($ (-1132 (-225)) (-1157))) (-15 -3513 ($ (-1132 (-225)) (-644 (-264)))) (-15 -2623 ((-1132 (-225)) $)) (-15 -2623 ($ $ (-1132 (-225)))) (-15 -4389 ((-1269) $ (-771) (-943 (-225)))) (-15 -4299 ((-644 (-264)) $)) (-15 -4299 ($ $ (-644 (-264)))) (-15 -2879 ((-1269) $ (-771) (-771))) (-15 -2336 ((-1269) $ (-921) (-921))) (-15 -3361 ((-1269) $ (-1157))) (-15 -2874 ((-1269) $ (-771) (-771) (-921) (-921))) (-15 -3087 ((-1269) $ (-381) (-381) (-381) (-381) (-381))) (-15 -3087 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -1389 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $)) (-15 -3087 ((-1269) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -1389 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3087 ((-1269) $ (-566) (-566) (-381) (-381) (-381))) (-15 -3087 ((-1269) $ (-381) (-381))) (-15 -3087 ((-1269) $ (-381) (-381) (-381))) (-15 -2246 ((-1269) $ (-1157))) (-15 -3668 ((-1269) $ (-1157))) (-15 -2903 ((-1269) $ (-1157))) (-15 -2163 ((-1269) $ (-1157))) (-15 -2155 ((-1269) $ (-1157))) (-15 -2292 ((-1269) $ (-381) (-381))) (-15 -2292 ((-1269) $ (-566) (-566))) (-15 -3139 ((-1269) $ (-381))) (-15 -3139 ((-1269) $ (-381) (-381) (-381))) (-15 -4187 ((-1269) $ (-381) (-381))) (-15 -3141 ((-1269) $ (-1157))) (-15 -4141 ((-1269) $ (-381))) (-15 -3517 ((-1269) $ (-381))) (-15 -2458 ((-1269) $ (-1157))) (-15 -2478 ((-1269) $ (-1157))) (-15 -2282 ((-1269) $ (-1157))) (-15 -3965 ((-1269) $ (-381) (-381) (-381))) (-15 -1468 ((-1269) $ (-381))) (-15 -2988 ((-1269) $)) (-15 -1436 ((-1269) $ (-157) (-157))) (-15 -3013 ((-1157) $ (-1157))) (-15 -3013 ((-1157) $ (-1157) (-1157))) (-15 -3013 ((-1157) $ (-1157) (-644 (-1157)))) (-15 -1651 ((-1269) $)) (-15 -2004 ((-566) $)))) -((-1689 (((-644 (-1157)) (-644 (-1157))) 104) (((-644 (-1157))) 96)) (-1659 (((-644 (-1157))) 94)) (-4087 (((-644 (-921)) (-644 (-921))) 69) (((-644 (-921))) 64)) (-3532 (((-644 (-771)) (-644 (-771))) 61) (((-644 (-771))) 55)) (-1715 (((-1269)) 71)) (-2739 (((-921) (-921)) 87) (((-921)) 86)) (-3122 (((-921) (-921)) 85) (((-921)) 84)) (-3774 (((-874) (-874)) 81) (((-874)) 80)) (-2705 (((-225)) 91) (((-225) (-381)) 93)) (-4211 (((-921)) 88) (((-921) (-921)) 89)) (-2328 (((-921) (-921)) 83) (((-921)) 82)) (-4001 (((-874) (-874)) 75) (((-874)) 73)) (-3993 (((-874) (-874)) 77) (((-874)) 76)) (-2341 (((-874) (-874)) 79) (((-874)) 78))) -(((-1267) (-10 -7 (-15 -4001 ((-874))) (-15 -4001 ((-874) (-874))) (-15 -3993 ((-874))) (-15 -3993 ((-874) (-874))) (-15 -2341 ((-874))) (-15 -2341 ((-874) (-874))) (-15 -3774 ((-874))) (-15 -3774 ((-874) (-874))) (-15 -2328 ((-921))) (-15 -2328 ((-921) (-921))) (-15 -3532 ((-644 (-771)))) (-15 -3532 ((-644 (-771)) (-644 (-771)))) (-15 -4087 ((-644 (-921)))) (-15 -4087 ((-644 (-921)) (-644 (-921)))) (-15 -1715 ((-1269))) (-15 -1689 ((-644 (-1157)))) (-15 -1689 ((-644 (-1157)) (-644 (-1157)))) (-15 -1659 ((-644 (-1157)))) (-15 -3122 ((-921))) (-15 -2739 ((-921))) (-15 -3122 ((-921) (-921))) (-15 -2739 ((-921) (-921))) (-15 -4211 ((-921) (-921))) (-15 -4211 ((-921))) (-15 -2705 ((-225) (-381))) (-15 -2705 ((-225))))) (T -1267)) -((-2705 (*1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-1267)))) (-2705 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-225)) (-5 *1 (-1267)))) (-4211 (*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1267)))) (-4211 (*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1267)))) (-2739 (*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1267)))) (-3122 (*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1267)))) (-2739 (*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1267)))) (-3122 (*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1267)))) (-1659 (*1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1267)))) (-1689 (*1 *2 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1267)))) (-1689 (*1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1267)))) (-1715 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-1267)))) (-4087 (*1 *2 *2) (-12 (-5 *2 (-644 (-921))) (-5 *1 (-1267)))) (-4087 (*1 *2) (-12 (-5 *2 (-644 (-921))) (-5 *1 (-1267)))) (-3532 (*1 *2 *2) (-12 (-5 *2 (-644 (-771))) (-5 *1 (-1267)))) (-3532 (*1 *2) (-12 (-5 *2 (-644 (-771))) (-5 *1 (-1267)))) (-2328 (*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1267)))) (-2328 (*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1267)))) (-3774 (*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1267)))) (-3774 (*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1267)))) (-2341 (*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1267)))) (-2341 (*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1267)))) (-3993 (*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1267)))) (-3993 (*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1267)))) (-4001 (*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1267)))) (-4001 (*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1267))))) -(-10 -7 (-15 -4001 ((-874))) (-15 -4001 ((-874) (-874))) (-15 -3993 ((-874))) (-15 -3993 ((-874) (-874))) (-15 -2341 ((-874))) (-15 -2341 ((-874) (-874))) (-15 -3774 ((-874))) (-15 -3774 ((-874) (-874))) (-15 -2328 ((-921))) (-15 -2328 ((-921) (-921))) (-15 -3532 ((-644 (-771)))) (-15 -3532 ((-644 (-771)) (-644 (-771)))) (-15 -4087 ((-644 (-921)))) (-15 -4087 ((-644 (-921)) (-644 (-921)))) (-15 -1715 ((-1269))) (-15 -1689 ((-644 (-1157)))) (-15 -1689 ((-644 (-1157)) (-644 (-1157)))) (-15 -1659 ((-644 (-1157)))) (-15 -3122 ((-921))) (-15 -2739 ((-921))) (-15 -3122 ((-921) (-921))) (-15 -2739 ((-921) (-921))) (-15 -4211 ((-921) (-921))) (-15 -4211 ((-921))) (-15 -2705 ((-225) (-381))) (-15 -2705 ((-225)))) -((-1455 (((-470) (-644 (-644 (-943 (-225)))) (-644 (-264))) 22) (((-470) (-644 (-644 (-943 (-225))))) 21) (((-470) (-644 (-644 (-943 (-225)))) (-874) (-874) (-921) (-644 (-264))) 20)) (-3655 (((-1265) (-644 (-644 (-943 (-225)))) (-644 (-264))) 33) (((-1265) (-644 (-644 (-943 (-225)))) (-874) (-874) (-921) (-644 (-264))) 32)) (-3783 (((-1265) (-470)) 48))) -(((-1268) (-10 -7 (-15 -1455 ((-470) (-644 (-644 (-943 (-225)))) (-874) (-874) (-921) (-644 (-264)))) (-15 -1455 ((-470) (-644 (-644 (-943 (-225)))))) (-15 -1455 ((-470) (-644 (-644 (-943 (-225)))) (-644 (-264)))) (-15 -3655 ((-1265) (-644 (-644 (-943 (-225)))) (-874) (-874) (-921) (-644 (-264)))) (-15 -3655 ((-1265) (-644 (-644 (-943 (-225)))) (-644 (-264)))) (-15 -3783 ((-1265) (-470))))) (T -1268)) -((-3783 (*1 *2 *3) (-12 (-5 *3 (-470)) (-5 *2 (-1265)) (-5 *1 (-1268)))) (-3655 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *4 (-644 (-264))) (-5 *2 (-1265)) (-5 *1 (-1268)))) (-3655 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *4 (-874)) (-5 *5 (-921)) (-5 *6 (-644 (-264))) (-5 *2 (-1265)) (-5 *1 (-1268)))) (-1455 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *4 (-644 (-264))) (-5 *2 (-470)) (-5 *1 (-1268)))) (-1455 (*1 *2 *3) (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *2 (-470)) (-5 *1 (-1268)))) (-1455 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *4 (-874)) (-5 *5 (-921)) (-5 *6 (-644 (-264))) (-5 *2 (-470)) (-5 *1 (-1268))))) -(-10 -7 (-15 -1455 ((-470) (-644 (-644 (-943 (-225)))) (-874) (-874) (-921) (-644 (-264)))) (-15 -1455 ((-470) (-644 (-644 (-943 (-225)))))) (-15 -1455 ((-470) (-644 (-644 (-943 (-225)))) (-644 (-264)))) (-15 -3655 ((-1265) (-644 (-644 (-943 (-225)))) (-874) (-874) (-921) (-644 (-264)))) (-15 -3655 ((-1265) (-644 (-644 (-943 (-225)))) (-644 (-264)))) (-15 -3783 ((-1265) (-470)))) -((-2895 (($) 7)) (-3783 (((-862) $) 10))) -(((-1269) (-13 (-613 (-862)) (-10 -8 (-15 -2895 ($))))) (T -1269)) -((-2895 (*1 *1) (-5 *1 (-1269)))) -(-13 (-613 (-862)) (-10 -8 (-15 -2895 ($)))) -((-3065 (($ $ |#2|) 10))) -(((-1270 |#1| |#2|) (-10 -8 (-15 -3065 (|#1| |#1| |#2|))) (-1271 |#2|) (-365)) (T -1270)) -NIL -(-10 -8 (-15 -3065 (|#1| |#1| |#2|))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-4175 (((-3 $ "failed") $ $) 20)) (-3012 (($) 18 T CONST)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3164 (((-134)) 33)) (-3783 (((-862) $) 12)) (-3117 (((-112) $ $) 9)) (-2479 (($) 19 T CONST)) (-2947 (((-112) $ $) 6)) (-3065 (($ $ |#1|) 34)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +((-3002 (*1 *1 *1 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1214)) (-4 *2 (-25)))) (-2819 (*1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-1262 *3)) (-4 *3 (-23)) (-4 *3 (-1214)))) (-3012 (*1 *1 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1214)) (-4 *2 (-21)))) (-3012 (*1 *1 *1 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1214)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-566)) (-4 *1 (-1262 *3)) (-4 *3 (-1214)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1214)) (-4 *2 (-726)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1214)) (-4 *2 (-726)))) (-3386 (*1 *2 *1 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1214)) (-4 *2 (-1049)))) (-2977 (*1 *2 *1 *1) (-12 (-4 *1 (-1262 *3)) (-4 *3 (-1214)) (-4 *3 (-1049)) (-5 *2 (-689 *3)))) (-1395 (*1 *1 *1 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1214)) (-4 *2 (-1049)))) (-2440 (*1 *2 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1214)) (-4 *2 (-1002)) (-4 *2 (-1049)))) (-3631 (*1 *2 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1214)) (-4 *2 (-1002)) (-4 *2 (-1049))))) +(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3002 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -2819 ($ (-771))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3012 ($ $)) (-15 -3012 ($ $ $)) (-15 * ($ (-566) $))) |%noBranch|) (IF (|has| |t#1| (-726)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1049)) (PROGN (-15 -3386 (|t#1| $ $)) (-15 -2977 ((-689 |t#1|) $ $)) (-15 -1395 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1002)) (IF (|has| |t#1| (-1049)) (PROGN (-15 -2440 (|t#1| $)) (-15 -3631 (|t#1| $))) |%noBranch|) |%noBranch|))) +(((-34) . T) ((-102) -2768 (|has| |#1| (-1099)) (|has| |#1| (-850))) ((-613 (-862)) -2768 (|has| |#1| (-1099)) (|has| |#1| (-850)) (|has| |#1| (-613 (-862)))) ((-151 |#1|) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-287 #0=(-566) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-375 |#1|) . T) ((-491 |#1|) . T) ((-604 #0# |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-651 |#1|) . T) ((-19 |#1|) . T) ((-850) |has| |#1| (-850)) ((-1099) -2768 (|has| |#1| (-1099)) (|has| |#1| (-850))) ((-1214) . T)) +((-1960 (((-1264 |#2|) (-1 |#2| |#1| |#2|) (-1264 |#1|) |#2|) 13)) (-2873 ((|#2| (-1 |#2| |#1| |#2|) (-1264 |#1|) |#2|) 15)) (-2319 (((-3 (-1264 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1264 |#1|)) 30) (((-1264 |#2|) (-1 |#2| |#1|) (-1264 |#1|)) 18))) +(((-1263 |#1| |#2|) (-10 -7 (-15 -1960 ((-1264 |#2|) (-1 |#2| |#1| |#2|) (-1264 |#1|) |#2|)) (-15 -2873 (|#2| (-1 |#2| |#1| |#2|) (-1264 |#1|) |#2|)) (-15 -2319 ((-1264 |#2|) (-1 |#2| |#1|) (-1264 |#1|))) (-15 -2319 ((-3 (-1264 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1264 |#1|)))) (-1214) (-1214)) (T -1263)) +((-2319 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1264 *5)) (-4 *5 (-1214)) (-4 *6 (-1214)) (-5 *2 (-1264 *6)) (-5 *1 (-1263 *5 *6)))) (-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1264 *5)) (-4 *5 (-1214)) (-4 *6 (-1214)) (-5 *2 (-1264 *6)) (-5 *1 (-1263 *5 *6)))) (-2873 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1264 *5)) (-4 *5 (-1214)) (-4 *2 (-1214)) (-5 *1 (-1263 *5 *2)))) (-1960 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1264 *6)) (-4 *6 (-1214)) (-4 *5 (-1214)) (-5 *2 (-1264 *5)) (-5 *1 (-1263 *6 *5))))) +(-10 -7 (-15 -1960 ((-1264 |#2|) (-1 |#2| |#1| |#2|) (-1264 |#1|) |#2|)) (-15 -2873 (|#2| (-1 |#2| |#1| |#2|) (-1264 |#1|) |#2|)) (-15 -2319 ((-1264 |#2|) (-1 |#2| |#1|) (-1264 |#1|))) (-15 -2319 ((-3 (-1264 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1264 |#1|)))) +((-2988 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2819 (($ (-771)) NIL (|has| |#1| (-23)))) (-3613 (($ (-644 |#1|)) 11)) (-1944 (((-1269) $ (-566) (-566)) NIL (|has| $ (-6 -4415)))) (-3054 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-850)))) (-3628 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4415))) (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-850))))) (-2671 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-850)))) (-1504 (((-112) $ (-771)) NIL)) (-1456 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4415))) ((|#1| $ (-1231 (-566)) |#1|) NIL (|has| $ (-6 -4415)))) (-3678 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2463 (($) NIL T CONST)) (-3166 (($ $) NIL (|has| $ (-6 -4415)))) (-3683 (($ $) NIL)) (-3942 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2622 (($ |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2873 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4414))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4414)))) (-3897 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4415)))) (-3829 ((|#1| $ (-566)) NIL)) (-1569 (((-566) (-1 (-112) |#1|) $) NIL) (((-566) |#1| $) NIL (|has| |#1| (-1099))) (((-566) |#1| $ (-566)) NIL (|has| |#1| (-1099)))) (-1683 (((-644 |#1|) $) 15 (|has| $ (-6 -4414)))) (-2977 (((-689 |#1|) $ $) NIL (|has| |#1| (-1049)))) (-1860 (($ (-771) |#1|) NIL)) (-3456 (((-112) $ (-771)) NIL)) (-2296 (((-566) $) NIL (|has| (-566) (-850)))) (-1478 (($ $ $) NIL (|has| |#1| (-850)))) (-2696 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-850)))) (-3491 (((-644 |#1|) $) NIL (|has| $ (-6 -4414)))) (-1602 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-4050 (((-566) $) NIL (|has| (-566) (-850)))) (-2599 (($ $ $) NIL (|has| |#1| (-850)))) (-3885 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3631 ((|#1| $) NIL (-12 (|has| |#1| (-1002)) (|has| |#1| (-1049))))) (-3267 (((-112) $ (-771)) NIL)) (-2440 ((|#1| $) NIL (-12 (|has| |#1| (-1002)) (|has| |#1| (-1049))))) (-3380 (((-1157) $) NIL (|has| |#1| (-1099)))) (-1859 (($ |#1| $ (-566)) NIL) (($ $ $ (-566)) NIL)) (-3725 (((-644 (-566)) $) NIL)) (-1644 (((-112) (-566) $) NIL)) (-4072 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3908 ((|#1| $) NIL (|has| (-566) (-850)))) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3787 (($ $ |#1|) NIL (|has| $ (-6 -4415)))) (-2823 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-3814 (((-112) $ $) NIL)) (-2847 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-3486 (((-644 |#1|) $) NIL)) (-2872 (((-112) $) NIL)) (-3493 (($) NIL)) (-1309 ((|#1| $ (-566) |#1|) NIL) ((|#1| $ (-566)) NIL) (($ $ (-1231 (-566))) NIL)) (-3386 ((|#1| $ $) NIL (|has| |#1| (-1049)))) (-2166 (($ $ (-566)) NIL) (($ $ (-1231 (-566))) NIL)) (-1395 (($ $ $) NIL (|has| |#1| (-1049)))) (-4083 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#1| (-1099))))) (-2661 (($ $ $ (-566)) NIL (|has| $ (-6 -4415)))) (-1480 (($ $) NIL)) (-2376 (((-538) $) 19 (|has| |#1| (-614 (-538))))) (-1340 (($ (-644 |#1|)) 10)) (-4386 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-644 $)) NIL)) (-3152 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-3044 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2210 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4414)))) (-2968 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2946 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2914 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2956 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2935 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3012 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3002 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-566) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-726))) (($ $ |#1|) NIL (|has| |#1| (-726)))) (-3000 (((-771) $) NIL (|has| $ (-6 -4414))))) +(((-1264 |#1|) (-13 (-1262 |#1|) (-10 -8 (-15 -3613 ($ (-644 |#1|))))) (-1214)) (T -1264)) +((-3613 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1214)) (-5 *1 (-1264 *3))))) +(-13 (-1262 |#1|) (-10 -8 (-15 -3613 ($ (-644 |#1|))))) +((-2988 (((-112) $ $) NIL)) (-4034 (((-1157) $ (-1157)) 110) (((-1157) $ (-1157) (-1157)) 108) (((-1157) $ (-1157) (-644 (-1157))) 107)) (-3103 (($) 70)) (-1508 (((-1269) $ (-470) (-921)) 55)) (-3851 (((-1269) $ (-921) (-1157)) 92) (((-1269) $ (-921) (-874)) 93)) (-2116 (((-1269) $ (-921) (-381) (-381)) 58)) (-4024 (((-1269) $ (-1157)) 87)) (-3805 (((-1269) $ (-921) (-1157)) 97)) (-2406 (((-1269) $ (-921) (-381) (-381)) 59)) (-1891 (((-1269) $ (-921) (-921)) 56)) (-4011 (((-1269) $) 88)) (-2222 (((-1269) $ (-921) (-1157)) 96)) (-1782 (((-1269) $ (-470) (-921)) 41)) (-4187 (((-1269) $ (-921) (-1157)) 95)) (-3782 (((-644 (-264)) $) 29) (($ $ (-644 (-264))) 30)) (-3915 (((-1269) $ (-771) (-771)) 53)) (-2791 (($ $) 72) (($ (-470) (-644 (-264))) 73)) (-3380 (((-1157) $) NIL)) (-2674 (((-566) $) 48)) (-4072 (((-1119) $) NIL)) (-3526 (((-1264 (-3 (-470) "undefined")) $) 47)) (-2254 (((-1264 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -4187 (-566)) (|:| -3530 (-566)) (|:| |spline| (-566)) (|:| -3013 (-566)) (|:| |axesColor| (-874)) (|:| -3851 (-566)) (|:| |unitsColor| (-874)) (|:| |showing| (-566)))) $) 46)) (-2700 (((-1269) $ (-921) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-566) (-874) (-566) (-874) (-566)) 86)) (-3645 (((-644 (-943 (-225))) $) NIL)) (-2187 (((-470) $ (-921)) 43)) (-3438 (((-1269) $ (-771) (-771) (-921) (-921)) 51)) (-1773 (((-1269) $ (-1157)) 98)) (-3530 (((-1269) $ (-921) (-1157)) 94)) (-3152 (((-862) $) 105)) (-1685 (((-1269) $) 99)) (-3044 (((-112) $ $) NIL)) (-3013 (((-1269) $ (-921) (-1157)) 90) (((-1269) $ (-921) (-874)) 91)) (-2914 (((-112) $ $) NIL))) +(((-1265) (-13 (-1099) (-10 -8 (-15 -3645 ((-644 (-943 (-225))) $)) (-15 -3103 ($)) (-15 -2791 ($ $)) (-15 -3782 ((-644 (-264)) $)) (-15 -3782 ($ $ (-644 (-264)))) (-15 -2791 ($ (-470) (-644 (-264)))) (-15 -2700 ((-1269) $ (-921) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-566) (-874) (-566) (-874) (-566))) (-15 -2254 ((-1264 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -4187 (-566)) (|:| -3530 (-566)) (|:| |spline| (-566)) (|:| -3013 (-566)) (|:| |axesColor| (-874)) (|:| -3851 (-566)) (|:| |unitsColor| (-874)) (|:| |showing| (-566)))) $)) (-15 -3526 ((-1264 (-3 (-470) "undefined")) $)) (-15 -4024 ((-1269) $ (-1157))) (-15 -1782 ((-1269) $ (-470) (-921))) (-15 -2187 ((-470) $ (-921))) (-15 -3013 ((-1269) $ (-921) (-1157))) (-15 -3013 ((-1269) $ (-921) (-874))) (-15 -3851 ((-1269) $ (-921) (-1157))) (-15 -3851 ((-1269) $ (-921) (-874))) (-15 -4187 ((-1269) $ (-921) (-1157))) (-15 -2222 ((-1269) $ (-921) (-1157))) (-15 -3530 ((-1269) $ (-921) (-1157))) (-15 -1773 ((-1269) $ (-1157))) (-15 -1685 ((-1269) $)) (-15 -3438 ((-1269) $ (-771) (-771) (-921) (-921))) (-15 -2406 ((-1269) $ (-921) (-381) (-381))) (-15 -2116 ((-1269) $ (-921) (-381) (-381))) (-15 -3805 ((-1269) $ (-921) (-1157))) (-15 -3915 ((-1269) $ (-771) (-771))) (-15 -1508 ((-1269) $ (-470) (-921))) (-15 -1891 ((-1269) $ (-921) (-921))) (-15 -4034 ((-1157) $ (-1157))) (-15 -4034 ((-1157) $ (-1157) (-1157))) (-15 -4034 ((-1157) $ (-1157) (-644 (-1157)))) (-15 -4011 ((-1269) $)) (-15 -2674 ((-566) $)) (-15 -3152 ((-862) $))))) (T -1265)) +((-3152 (*1 *2 *1) (-12 (-5 *2 (-862)) (-5 *1 (-1265)))) (-3645 (*1 *2 *1) (-12 (-5 *2 (-644 (-943 (-225)))) (-5 *1 (-1265)))) (-3103 (*1 *1) (-5 *1 (-1265))) (-2791 (*1 *1 *1) (-5 *1 (-1265))) (-3782 (*1 *2 *1) (-12 (-5 *2 (-644 (-264))) (-5 *1 (-1265)))) (-3782 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-264))) (-5 *1 (-1265)))) (-2791 (*1 *1 *2 *3) (-12 (-5 *2 (-470)) (-5 *3 (-644 (-264))) (-5 *1 (-1265)))) (-2700 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-921)) (-5 *4 (-225)) (-5 *5 (-566)) (-5 *6 (-874)) (-5 *2 (-1269)) (-5 *1 (-1265)))) (-2254 (*1 *2 *1) (-12 (-5 *2 (-1264 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -4187 (-566)) (|:| -3530 (-566)) (|:| |spline| (-566)) (|:| -3013 (-566)) (|:| |axesColor| (-874)) (|:| -3851 (-566)) (|:| |unitsColor| (-874)) (|:| |showing| (-566))))) (-5 *1 (-1265)))) (-3526 (*1 *2 *1) (-12 (-5 *2 (-1264 (-3 (-470) "undefined"))) (-5 *1 (-1265)))) (-4024 (*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1265)))) (-1782 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-470)) (-5 *4 (-921)) (-5 *2 (-1269)) (-5 *1 (-1265)))) (-2187 (*1 *2 *1 *3) (-12 (-5 *3 (-921)) (-5 *2 (-470)) (-5 *1 (-1265)))) (-3013 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-921)) (-5 *4 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1265)))) (-3013 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-921)) (-5 *4 (-874)) (-5 *2 (-1269)) (-5 *1 (-1265)))) (-3851 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-921)) (-5 *4 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1265)))) (-3851 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-921)) (-5 *4 (-874)) (-5 *2 (-1269)) (-5 *1 (-1265)))) (-4187 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-921)) (-5 *4 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1265)))) (-2222 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-921)) (-5 *4 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1265)))) (-3530 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-921)) (-5 *4 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1265)))) (-1773 (*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1265)))) (-1685 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-1265)))) (-3438 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-771)) (-5 *4 (-921)) (-5 *2 (-1269)) (-5 *1 (-1265)))) (-2406 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-921)) (-5 *4 (-381)) (-5 *2 (-1269)) (-5 *1 (-1265)))) (-2116 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-921)) (-5 *4 (-381)) (-5 *2 (-1269)) (-5 *1 (-1265)))) (-3805 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-921)) (-5 *4 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1265)))) (-3915 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1269)) (-5 *1 (-1265)))) (-1508 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-470)) (-5 *4 (-921)) (-5 *2 (-1269)) (-5 *1 (-1265)))) (-1891 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1269)) (-5 *1 (-1265)))) (-4034 (*1 *2 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1265)))) (-4034 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1265)))) (-4034 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-644 (-1157))) (-5 *2 (-1157)) (-5 *1 (-1265)))) (-4011 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-1265)))) (-2674 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-1265))))) +(-13 (-1099) (-10 -8 (-15 -3645 ((-644 (-943 (-225))) $)) (-15 -3103 ($)) (-15 -2791 ($ $)) (-15 -3782 ((-644 (-264)) $)) (-15 -3782 ($ $ (-644 (-264)))) (-15 -2791 ($ (-470) (-644 (-264)))) (-15 -2700 ((-1269) $ (-921) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-566) (-874) (-566) (-874) (-566))) (-15 -2254 ((-1264 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -4187 (-566)) (|:| -3530 (-566)) (|:| |spline| (-566)) (|:| -3013 (-566)) (|:| |axesColor| (-874)) (|:| -3851 (-566)) (|:| |unitsColor| (-874)) (|:| |showing| (-566)))) $)) (-15 -3526 ((-1264 (-3 (-470) "undefined")) $)) (-15 -4024 ((-1269) $ (-1157))) (-15 -1782 ((-1269) $ (-470) (-921))) (-15 -2187 ((-470) $ (-921))) (-15 -3013 ((-1269) $ (-921) (-1157))) (-15 -3013 ((-1269) $ (-921) (-874))) (-15 -3851 ((-1269) $ (-921) (-1157))) (-15 -3851 ((-1269) $ (-921) (-874))) (-15 -4187 ((-1269) $ (-921) (-1157))) (-15 -2222 ((-1269) $ (-921) (-1157))) (-15 -3530 ((-1269) $ (-921) (-1157))) (-15 -1773 ((-1269) $ (-1157))) (-15 -1685 ((-1269) $)) (-15 -3438 ((-1269) $ (-771) (-771) (-921) (-921))) (-15 -2406 ((-1269) $ (-921) (-381) (-381))) (-15 -2116 ((-1269) $ (-921) (-381) (-381))) (-15 -3805 ((-1269) $ (-921) (-1157))) (-15 -3915 ((-1269) $ (-771) (-771))) (-15 -1508 ((-1269) $ (-470) (-921))) (-15 -1891 ((-1269) $ (-921) (-921))) (-15 -4034 ((-1157) $ (-1157))) (-15 -4034 ((-1157) $ (-1157) (-1157))) (-15 -4034 ((-1157) $ (-1157) (-644 (-1157)))) (-15 -4011 ((-1269) $)) (-15 -2674 ((-566) $)) (-15 -3152 ((-862) $)))) +((-2988 (((-112) $ $) NIL)) (-3294 (((-1269) $ (-381)) 172) (((-1269) $ (-381) (-381) (-381)) 173)) (-4034 (((-1157) $ (-1157)) 182) (((-1157) $ (-1157) (-1157)) 180) (((-1157) $ (-1157) (-644 (-1157))) 179)) (-3819 (($) 67)) (-3755 (((-1269) $ (-381) (-381) (-381) (-381) (-381)) 144) (((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2406 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $) 142) (((-1269) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2406 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 143) (((-1269) $ (-566) (-566) (-381) (-381) (-381)) 147) (((-1269) $ (-381) (-381)) 148) (((-1269) $ (-381) (-381) (-381)) 155)) (-1711 (((-381)) 125) (((-381) (-381)) 126)) (-2521 (((-381)) 120) (((-381) (-381)) 122)) (-3754 (((-381)) 123) (((-381) (-381)) 124)) (-2246 (((-381)) 129) (((-381) (-381)) 130)) (-1413 (((-381)) 127) (((-381) (-381)) 128)) (-2116 (((-1269) $ (-381) (-381)) 174)) (-4024 (((-1269) $ (-1157)) 156)) (-3305 (((-1132 (-225)) $) 68) (($ $ (-1132 (-225))) 69)) (-1525 (((-1269) $ (-1157)) 190)) (-2852 (((-1269) $ (-1157)) 191)) (-3922 (((-1269) $ (-381) (-381)) 154) (((-1269) $ (-566) (-566)) 171)) (-1891 (((-1269) $ (-921) (-921)) 163)) (-4011 (((-1269) $) 140)) (-3517 (((-1269) $ (-1157)) 189)) (-3128 (((-1269) $ (-1157)) 137)) (-3782 (((-644 (-264)) $) 70) (($ $ (-644 (-264))) 71)) (-3915 (((-1269) $ (-771) (-771)) 162)) (-3227 (((-1269) $ (-771) (-943 (-225))) 196)) (-3679 (($ $) 73) (($ (-1132 (-225)) (-1157)) 74) (($ (-1132 (-225)) (-644 (-264))) 75)) (-3186 (((-1269) $ (-381) (-381) (-381)) 134)) (-3380 (((-1157) $) NIL)) (-2674 (((-566) $) 131)) (-2711 (((-1269) $ (-381)) 177)) (-3280 (((-1269) $ (-381)) 194)) (-4072 (((-1119) $) NIL)) (-3695 (((-1269) $ (-381)) 193)) (-3443 (((-1269) $ (-1157)) 139)) (-3438 (((-1269) $ (-771) (-771) (-921) (-921)) 161)) (-2388 (((-1269) $ (-1157)) 136)) (-1773 (((-1269) $ (-1157)) 138)) (-3105 (((-1269) $ (-157) (-157)) 160)) (-3152 (((-862) $) 169)) (-1685 (((-1269) $) 141)) (-2150 (((-1269) $ (-1157)) 192)) (-3044 (((-112) $ $) NIL)) (-3013 (((-1269) $ (-1157)) 135)) (-2914 (((-112) $ $) NIL))) +(((-1266) (-13 (-1099) (-10 -8 (-15 -2521 ((-381))) (-15 -2521 ((-381) (-381))) (-15 -3754 ((-381))) (-15 -3754 ((-381) (-381))) (-15 -1711 ((-381))) (-15 -1711 ((-381) (-381))) (-15 -1413 ((-381))) (-15 -1413 ((-381) (-381))) (-15 -2246 ((-381))) (-15 -2246 ((-381) (-381))) (-15 -3819 ($)) (-15 -3679 ($ $)) (-15 -3679 ($ (-1132 (-225)) (-1157))) (-15 -3679 ($ (-1132 (-225)) (-644 (-264)))) (-15 -3305 ((-1132 (-225)) $)) (-15 -3305 ($ $ (-1132 (-225)))) (-15 -3227 ((-1269) $ (-771) (-943 (-225)))) (-15 -3782 ((-644 (-264)) $)) (-15 -3782 ($ $ (-644 (-264)))) (-15 -3915 ((-1269) $ (-771) (-771))) (-15 -1891 ((-1269) $ (-921) (-921))) (-15 -4024 ((-1269) $ (-1157))) (-15 -3438 ((-1269) $ (-771) (-771) (-921) (-921))) (-15 -3755 ((-1269) $ (-381) (-381) (-381) (-381) (-381))) (-15 -3755 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2406 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $)) (-15 -3755 ((-1269) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2406 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3755 ((-1269) $ (-566) (-566) (-381) (-381) (-381))) (-15 -3755 ((-1269) $ (-381) (-381))) (-15 -3755 ((-1269) $ (-381) (-381) (-381))) (-15 -1773 ((-1269) $ (-1157))) (-15 -3013 ((-1269) $ (-1157))) (-15 -2388 ((-1269) $ (-1157))) (-15 -3128 ((-1269) $ (-1157))) (-15 -3443 ((-1269) $ (-1157))) (-15 -3922 ((-1269) $ (-381) (-381))) (-15 -3922 ((-1269) $ (-566) (-566))) (-15 -3294 ((-1269) $ (-381))) (-15 -3294 ((-1269) $ (-381) (-381) (-381))) (-15 -2116 ((-1269) $ (-381) (-381))) (-15 -3517 ((-1269) $ (-1157))) (-15 -3695 ((-1269) $ (-381))) (-15 -3280 ((-1269) $ (-381))) (-15 -1525 ((-1269) $ (-1157))) (-15 -2852 ((-1269) $ (-1157))) (-15 -2150 ((-1269) $ (-1157))) (-15 -3186 ((-1269) $ (-381) (-381) (-381))) (-15 -2711 ((-1269) $ (-381))) (-15 -4011 ((-1269) $)) (-15 -3105 ((-1269) $ (-157) (-157))) (-15 -4034 ((-1157) $ (-1157))) (-15 -4034 ((-1157) $ (-1157) (-1157))) (-15 -4034 ((-1157) $ (-1157) (-644 (-1157)))) (-15 -1685 ((-1269) $)) (-15 -2674 ((-566) $))))) (T -1266)) +((-2521 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266)))) (-2521 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266)))) (-3754 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266)))) (-3754 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266)))) (-1711 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266)))) (-1711 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266)))) (-1413 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266)))) (-1413 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266)))) (-2246 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266)))) (-2246 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266)))) (-3819 (*1 *1) (-5 *1 (-1266))) (-3679 (*1 *1 *1) (-5 *1 (-1266))) (-3679 (*1 *1 *2 *3) (-12 (-5 *2 (-1132 (-225))) (-5 *3 (-1157)) (-5 *1 (-1266)))) (-3679 (*1 *1 *2 *3) (-12 (-5 *2 (-1132 (-225))) (-5 *3 (-644 (-264))) (-5 *1 (-1266)))) (-3305 (*1 *2 *1) (-12 (-5 *2 (-1132 (-225))) (-5 *1 (-1266)))) (-3305 (*1 *1 *1 *2) (-12 (-5 *2 (-1132 (-225))) (-5 *1 (-1266)))) (-3227 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-771)) (-5 *4 (-943 (-225))) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-3782 (*1 *2 *1) (-12 (-5 *2 (-644 (-264))) (-5 *1 (-1266)))) (-3782 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-264))) (-5 *1 (-1266)))) (-3915 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-1891 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-4024 (*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-3438 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-771)) (-5 *4 (-921)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-3755 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-3755 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2406 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *1 (-1266)))) (-3755 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2406 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-3755 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-566)) (-5 *4 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-3755 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-3755 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-1773 (*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-3013 (*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-2388 (*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-3128 (*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-3443 (*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-3922 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-3922 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-566)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-3294 (*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-3294 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-2116 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-3517 (*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-3695 (*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-3280 (*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-1525 (*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-2852 (*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-2150 (*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-3186 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-2711 (*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-4011 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-1266)))) (-3105 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-157)) (-5 *2 (-1269)) (-5 *1 (-1266)))) (-4034 (*1 *2 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1266)))) (-4034 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1266)))) (-4034 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-644 (-1157))) (-5 *2 (-1157)) (-5 *1 (-1266)))) (-1685 (*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-1266)))) (-2674 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-1266))))) +(-13 (-1099) (-10 -8 (-15 -2521 ((-381))) (-15 -2521 ((-381) (-381))) (-15 -3754 ((-381))) (-15 -3754 ((-381) (-381))) (-15 -1711 ((-381))) (-15 -1711 ((-381) (-381))) (-15 -1413 ((-381))) (-15 -1413 ((-381) (-381))) (-15 -2246 ((-381))) (-15 -2246 ((-381) (-381))) (-15 -3819 ($)) (-15 -3679 ($ $)) (-15 -3679 ($ (-1132 (-225)) (-1157))) (-15 -3679 ($ (-1132 (-225)) (-644 (-264)))) (-15 -3305 ((-1132 (-225)) $)) (-15 -3305 ($ $ (-1132 (-225)))) (-15 -3227 ((-1269) $ (-771) (-943 (-225)))) (-15 -3782 ((-644 (-264)) $)) (-15 -3782 ($ $ (-644 (-264)))) (-15 -3915 ((-1269) $ (-771) (-771))) (-15 -1891 ((-1269) $ (-921) (-921))) (-15 -4024 ((-1269) $ (-1157))) (-15 -3438 ((-1269) $ (-771) (-771) (-921) (-921))) (-15 -3755 ((-1269) $ (-381) (-381) (-381) (-381) (-381))) (-15 -3755 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2406 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $)) (-15 -3755 ((-1269) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2406 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3755 ((-1269) $ (-566) (-566) (-381) (-381) (-381))) (-15 -3755 ((-1269) $ (-381) (-381))) (-15 -3755 ((-1269) $ (-381) (-381) (-381))) (-15 -1773 ((-1269) $ (-1157))) (-15 -3013 ((-1269) $ (-1157))) (-15 -2388 ((-1269) $ (-1157))) (-15 -3128 ((-1269) $ (-1157))) (-15 -3443 ((-1269) $ (-1157))) (-15 -3922 ((-1269) $ (-381) (-381))) (-15 -3922 ((-1269) $ (-566) (-566))) (-15 -3294 ((-1269) $ (-381))) (-15 -3294 ((-1269) $ (-381) (-381) (-381))) (-15 -2116 ((-1269) $ (-381) (-381))) (-15 -3517 ((-1269) $ (-1157))) (-15 -3695 ((-1269) $ (-381))) (-15 -3280 ((-1269) $ (-381))) (-15 -1525 ((-1269) $ (-1157))) (-15 -2852 ((-1269) $ (-1157))) (-15 -2150 ((-1269) $ (-1157))) (-15 -3186 ((-1269) $ (-381) (-381) (-381))) (-15 -2711 ((-1269) $ (-381))) (-15 -4011 ((-1269) $)) (-15 -3105 ((-1269) $ (-157) (-157))) (-15 -4034 ((-1157) $ (-1157))) (-15 -4034 ((-1157) $ (-1157) (-1157))) (-15 -4034 ((-1157) $ (-1157) (-644 (-1157)))) (-15 -1685 ((-1269) $)) (-15 -2674 ((-566) $)))) +((-3250 (((-644 (-1157)) (-644 (-1157))) 104) (((-644 (-1157))) 96)) (-3736 (((-644 (-1157))) 94)) (-1360 (((-644 (-921)) (-644 (-921))) 69) (((-644 (-921))) 64)) (-2344 (((-644 (-771)) (-644 (-771))) 61) (((-644 (-771))) 55)) (-3954 (((-1269)) 71)) (-1475 (((-921) (-921)) 87) (((-921)) 86)) (-2250 (((-921) (-921)) 85) (((-921)) 84)) (-3742 (((-874) (-874)) 81) (((-874)) 80)) (-1527 (((-225)) 91) (((-225) (-381)) 93)) (-4320 (((-921)) 88) (((-921) (-921)) 89)) (-3384 (((-921) (-921)) 83) (((-921)) 82)) (-1927 (((-874) (-874)) 75) (((-874)) 73)) (-2401 (((-874) (-874)) 77) (((-874)) 76)) (-2433 (((-874) (-874)) 79) (((-874)) 78))) +(((-1267) (-10 -7 (-15 -1927 ((-874))) (-15 -1927 ((-874) (-874))) (-15 -2401 ((-874))) (-15 -2401 ((-874) (-874))) (-15 -2433 ((-874))) (-15 -2433 ((-874) (-874))) (-15 -3742 ((-874))) (-15 -3742 ((-874) (-874))) (-15 -3384 ((-921))) (-15 -3384 ((-921) (-921))) (-15 -2344 ((-644 (-771)))) (-15 -2344 ((-644 (-771)) (-644 (-771)))) (-15 -1360 ((-644 (-921)))) (-15 -1360 ((-644 (-921)) (-644 (-921)))) (-15 -3954 ((-1269))) (-15 -3250 ((-644 (-1157)))) (-15 -3250 ((-644 (-1157)) (-644 (-1157)))) (-15 -3736 ((-644 (-1157)))) (-15 -2250 ((-921))) (-15 -1475 ((-921))) (-15 -2250 ((-921) (-921))) (-15 -1475 ((-921) (-921))) (-15 -4320 ((-921) (-921))) (-15 -4320 ((-921))) (-15 -1527 ((-225) (-381))) (-15 -1527 ((-225))))) (T -1267)) +((-1527 (*1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-1267)))) (-1527 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-225)) (-5 *1 (-1267)))) (-4320 (*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1267)))) (-4320 (*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1267)))) (-1475 (*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1267)))) (-2250 (*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1267)))) (-1475 (*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1267)))) (-2250 (*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1267)))) (-3736 (*1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1267)))) (-3250 (*1 *2 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1267)))) (-3250 (*1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1267)))) (-3954 (*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-1267)))) (-1360 (*1 *2 *2) (-12 (-5 *2 (-644 (-921))) (-5 *1 (-1267)))) (-1360 (*1 *2) (-12 (-5 *2 (-644 (-921))) (-5 *1 (-1267)))) (-2344 (*1 *2 *2) (-12 (-5 *2 (-644 (-771))) (-5 *1 (-1267)))) (-2344 (*1 *2) (-12 (-5 *2 (-644 (-771))) (-5 *1 (-1267)))) (-3384 (*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1267)))) (-3384 (*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1267)))) (-3742 (*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1267)))) (-3742 (*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1267)))) (-2433 (*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1267)))) (-2433 (*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1267)))) (-2401 (*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1267)))) (-2401 (*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1267)))) (-1927 (*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1267)))) (-1927 (*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1267))))) +(-10 -7 (-15 -1927 ((-874))) (-15 -1927 ((-874) (-874))) (-15 -2401 ((-874))) (-15 -2401 ((-874) (-874))) (-15 -2433 ((-874))) (-15 -2433 ((-874) (-874))) (-15 -3742 ((-874))) (-15 -3742 ((-874) (-874))) (-15 -3384 ((-921))) (-15 -3384 ((-921) (-921))) (-15 -2344 ((-644 (-771)))) (-15 -2344 ((-644 (-771)) (-644 (-771)))) (-15 -1360 ((-644 (-921)))) (-15 -1360 ((-644 (-921)) (-644 (-921)))) (-15 -3954 ((-1269))) (-15 -3250 ((-644 (-1157)))) (-15 -3250 ((-644 (-1157)) (-644 (-1157)))) (-15 -3736 ((-644 (-1157)))) (-15 -2250 ((-921))) (-15 -1475 ((-921))) (-15 -2250 ((-921) (-921))) (-15 -1475 ((-921) (-921))) (-15 -4320 ((-921) (-921))) (-15 -4320 ((-921))) (-15 -1527 ((-225) (-381))) (-15 -1527 ((-225)))) +((-4075 (((-470) (-644 (-644 (-943 (-225)))) (-644 (-264))) 22) (((-470) (-644 (-644 (-943 (-225))))) 21) (((-470) (-644 (-644 (-943 (-225)))) (-874) (-874) (-921) (-644 (-264))) 20)) (-4377 (((-1265) (-644 (-644 (-943 (-225)))) (-644 (-264))) 33) (((-1265) (-644 (-644 (-943 (-225)))) (-874) (-874) (-921) (-644 (-264))) 32)) (-3152 (((-1265) (-470)) 48))) +(((-1268) (-10 -7 (-15 -4075 ((-470) (-644 (-644 (-943 (-225)))) (-874) (-874) (-921) (-644 (-264)))) (-15 -4075 ((-470) (-644 (-644 (-943 (-225)))))) (-15 -4075 ((-470) (-644 (-644 (-943 (-225)))) (-644 (-264)))) (-15 -4377 ((-1265) (-644 (-644 (-943 (-225)))) (-874) (-874) (-921) (-644 (-264)))) (-15 -4377 ((-1265) (-644 (-644 (-943 (-225)))) (-644 (-264)))) (-15 -3152 ((-1265) (-470))))) (T -1268)) +((-3152 (*1 *2 *3) (-12 (-5 *3 (-470)) (-5 *2 (-1265)) (-5 *1 (-1268)))) (-4377 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *4 (-644 (-264))) (-5 *2 (-1265)) (-5 *1 (-1268)))) (-4377 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *4 (-874)) (-5 *5 (-921)) (-5 *6 (-644 (-264))) (-5 *2 (-1265)) (-5 *1 (-1268)))) (-4075 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *4 (-644 (-264))) (-5 *2 (-470)) (-5 *1 (-1268)))) (-4075 (*1 *2 *3) (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *2 (-470)) (-5 *1 (-1268)))) (-4075 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *4 (-874)) (-5 *5 (-921)) (-5 *6 (-644 (-264))) (-5 *2 (-470)) (-5 *1 (-1268))))) +(-10 -7 (-15 -4075 ((-470) (-644 (-644 (-943 (-225)))) (-874) (-874) (-921) (-644 (-264)))) (-15 -4075 ((-470) (-644 (-644 (-943 (-225)))))) (-15 -4075 ((-470) (-644 (-644 (-943 (-225)))) (-644 (-264)))) (-15 -4377 ((-1265) (-644 (-644 (-943 (-225)))) (-874) (-874) (-921) (-644 (-264)))) (-15 -4377 ((-1265) (-644 (-644 (-943 (-225)))) (-644 (-264)))) (-15 -3152 ((-1265) (-470)))) +((-3907 (($) 7)) (-3152 (((-862) $) 10))) +(((-1269) (-13 (-613 (-862)) (-10 -8 (-15 -3907 ($))))) (T -1269)) +((-3907 (*1 *1) (-5 *1 (-1269)))) +(-13 (-613 (-862)) (-10 -8 (-15 -3907 ($)))) +((-3025 (($ $ |#2|) 10))) +(((-1270 |#1| |#2|) (-10 -8 (-15 -3025 (|#1| |#1| |#2|))) (-1271 |#2|) (-365)) (T -1270)) +NIL +(-10 -8 (-15 -3025 (|#1| |#1| |#2|))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-3967 (((-3 $ "failed") $ $) 20)) (-2463 (($) 18 T CONST)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3126 (((-134)) 33)) (-3152 (((-862) $) 12)) (-3044 (((-112) $ $) 9)) (-4356 (($) 19 T CONST)) (-2914 (((-112) $ $) 6)) (-3025 (($ $ |#1|) 34)) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) (((-1271 |#1|) (-140) (-365)) (T -1271)) -((-3065 (*1 *1 *1 *2) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-365)))) (-3164 (*1 *2) (-12 (-4 *1 (-1271 *3)) (-4 *3 (-365)) (-5 *2 (-134))))) -(-13 (-717 |t#1|) (-10 -8 (-15 -3065 ($ $ |t#1|)) (-15 -3164 ((-134))))) +((-3025 (*1 *1 *1 *2) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-365)))) (-3126 (*1 *2) (-12 (-4 *1 (-1271 *3)) (-4 *3 (-365)) (-5 *2 (-134))))) +(-13 (-717 |t#1|) (-10 -8 (-15 -3025 ($ $ |t#1|)) (-15 -3126 ((-134))))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-648 |#1|) . T) ((-640 |#1|) . T) ((-717 |#1|) . T) ((-1051 |#1|) . T) ((-1056 |#1|) . T) ((-1099) . T)) -((-3541 (((-644 (-1208 |#1|)) (-1175) (-1208 |#1|)) 83)) (-4102 (((-1155 (-1155 (-952 |#1|))) (-1175) (-1155 (-952 |#1|))) 63)) (-4315 (((-1 (-1155 (-1208 |#1|)) (-1155 (-1208 |#1|))) (-771) (-1208 |#1|) (-1155 (-1208 |#1|))) 74)) (-2953 (((-1 (-1155 (-952 |#1|)) (-1155 (-952 |#1|))) (-771)) 65)) (-3364 (((-1 (-1171 (-952 |#1|)) (-952 |#1|)) (-1175)) 32)) (-2160 (((-1 (-1155 (-952 |#1|)) (-1155 (-952 |#1|))) (-771)) 64))) -(((-1272 |#1|) (-10 -7 (-15 -2953 ((-1 (-1155 (-952 |#1|)) (-1155 (-952 |#1|))) (-771))) (-15 -2160 ((-1 (-1155 (-952 |#1|)) (-1155 (-952 |#1|))) (-771))) (-15 -4102 ((-1155 (-1155 (-952 |#1|))) (-1175) (-1155 (-952 |#1|)))) (-15 -3364 ((-1 (-1171 (-952 |#1|)) (-952 |#1|)) (-1175))) (-15 -3541 ((-644 (-1208 |#1|)) (-1175) (-1208 |#1|))) (-15 -4315 ((-1 (-1155 (-1208 |#1|)) (-1155 (-1208 |#1|))) (-771) (-1208 |#1|) (-1155 (-1208 |#1|))))) (-365)) (T -1272)) -((-4315 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-771)) (-4 *6 (-365)) (-5 *4 (-1208 *6)) (-5 *2 (-1 (-1155 *4) (-1155 *4))) (-5 *1 (-1272 *6)) (-5 *5 (-1155 *4)))) (-3541 (*1 *2 *3 *4) (-12 (-5 *3 (-1175)) (-4 *5 (-365)) (-5 *2 (-644 (-1208 *5))) (-5 *1 (-1272 *5)) (-5 *4 (-1208 *5)))) (-3364 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1 (-1171 (-952 *4)) (-952 *4))) (-5 *1 (-1272 *4)) (-4 *4 (-365)))) (-4102 (*1 *2 *3 *4) (-12 (-5 *3 (-1175)) (-4 *5 (-365)) (-5 *2 (-1155 (-1155 (-952 *5)))) (-5 *1 (-1272 *5)) (-5 *4 (-1155 (-952 *5))))) (-2160 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1 (-1155 (-952 *4)) (-1155 (-952 *4)))) (-5 *1 (-1272 *4)) (-4 *4 (-365)))) (-2953 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1 (-1155 (-952 *4)) (-1155 (-952 *4)))) (-5 *1 (-1272 *4)) (-4 *4 (-365))))) -(-10 -7 (-15 -2953 ((-1 (-1155 (-952 |#1|)) (-1155 (-952 |#1|))) (-771))) (-15 -2160 ((-1 (-1155 (-952 |#1|)) (-1155 (-952 |#1|))) (-771))) (-15 -4102 ((-1155 (-1155 (-952 |#1|))) (-1175) (-1155 (-952 |#1|)))) (-15 -3364 ((-1 (-1171 (-952 |#1|)) (-952 |#1|)) (-1175))) (-15 -3541 ((-644 (-1208 |#1|)) (-1175) (-1208 |#1|))) (-15 -4315 ((-1 (-1155 (-1208 |#1|)) (-1155 (-1208 |#1|))) (-771) (-1208 |#1|) (-1155 (-1208 |#1|))))) -((-4266 (((-2 (|:| -2365 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))) |#2|) 82)) (-2444 (((-2 (|:| -2365 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|)))) 81))) -(((-1273 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2444 ((-2 (|:| -2365 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))))) (-15 -4266 ((-2 (|:| -2365 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))) |#2|))) (-351) (-1240 |#1|) (-1240 |#2|) (-411 |#2| |#3|)) (T -1273)) -((-4266 (*1 *2 *3) (-12 (-4 *4 (-351)) (-4 *3 (-1240 *4)) (-4 *5 (-1240 *3)) (-5 *2 (-2 (|:| -2365 (-689 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-689 *3)))) (-5 *1 (-1273 *4 *3 *5 *6)) (-4 *6 (-411 *3 *5)))) (-2444 (*1 *2) (-12 (-4 *3 (-351)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 *4)) (-5 *2 (-2 (|:| -2365 (-689 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-689 *4)))) (-5 *1 (-1273 *3 *4 *5 *6)) (-4 *6 (-411 *4 *5))))) -(-10 -7 (-15 -2444 ((-2 (|:| -2365 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))))) (-15 -4266 ((-2 (|:| -2365 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))) |#2|))) -((-3007 (((-112) $ $) NIL)) (-4073 (((-1134) $) 11)) (-2503 (((-1134) $) 9)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 17) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) -(((-1274) (-13 (-1082) (-10 -8 (-15 -2503 ((-1134) $)) (-15 -4073 ((-1134) $))))) (T -1274)) -((-2503 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1274)))) (-4073 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1274))))) -(-13 (-1082) (-10 -8 (-15 -2503 ((-1134) $)) (-15 -4073 ((-1134) $)))) -((-3007 (((-112) $ $) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3691 (((-1134) $) 9)) (-3783 (((-862) $) 15) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3117 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL))) -(((-1275) (-13 (-1082) (-10 -8 (-15 -3691 ((-1134) $))))) (T -1275)) -((-3691 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1275))))) -(-13 (-1082) (-10 -8 (-15 -3691 ((-1134) $)))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) 58)) (-4175 (((-3 $ "failed") $ $) NIL)) (-3012 (($) NIL T CONST)) (-1878 (((-3 $ "failed") $) NIL)) (-3934 (((-112) $) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3783 (((-862) $) 81) (($ (-566)) NIL) (($ |#4|) 65) ((|#4| $) 70) (($ |#1|) NIL (|has| |#1| (-172)))) (-2107 (((-771)) NIL T CONST)) (-1592 (((-1269) (-771)) 16)) (-3117 (((-112) $ $) NIL)) (-2479 (($) 37 T CONST)) (-4334 (($) 84 T CONST)) (-2947 (((-112) $ $) 87)) (-3065 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-3053 (($ $) 89) (($ $ $) NIL)) (-3041 (($ $ $) 63)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 91) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) -(((-1276 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1049) (-492 |#4|) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -3065 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1592 ((-1269) (-771))))) (-1049) (-850) (-793) (-949 |#1| |#3| |#2|) (-644 |#2|) (-644 (-771)) (-771)) (T -1276)) -((-3065 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-365)) (-4 *2 (-1049)) (-4 *3 (-850)) (-4 *4 (-793)) (-14 *6 (-644 *3)) (-5 *1 (-1276 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-949 *2 *4 *3)) (-14 *7 (-644 (-771))) (-14 *8 (-771)))) (-1592 (*1 *2 *3) (-12 (-5 *3 (-771)) (-4 *4 (-1049)) (-4 *5 (-850)) (-4 *6 (-793)) (-14 *8 (-644 *5)) (-5 *2 (-1269)) (-5 *1 (-1276 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-949 *4 *6 *5)) (-14 *9 (-644 *3)) (-14 *10 *3)))) -(-13 (-1049) (-492 |#4|) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -3065 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1592 ((-1269) (-771))))) -((-3007 (((-112) $ $) NIL)) (-2584 (((-644 (-2 (|:| -1651 $) (|:| -3501 (-644 |#4|)))) (-644 |#4|)) NIL)) (-2333 (((-644 $) (-644 |#4|)) 96)) (-3863 (((-644 |#3|) $) NIL)) (-2368 (((-112) $) NIL)) (-4070 (((-112) $) NIL (|has| |#1| (-558)))) (-3624 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1374 ((|#4| |#4| $) NIL)) (-1510 (((-2 (|:| |under| $) (|:| -3470 $) (|:| |upper| $)) $ |#3|) NIL)) (-2256 (((-112) $ (-771)) NIL)) (-2701 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4414))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3012 (($) NIL T CONST)) (-3779 (((-112) $) NIL (|has| |#1| (-558)))) (-2540 (((-112) $ $) NIL (|has| |#1| (-558)))) (-4093 (((-112) $ $) NIL (|has| |#1| (-558)))) (-3741 (((-112) $) NIL (|has| |#1| (-558)))) (-2506 (((-644 |#4|) (-644 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 31)) (-2026 (((-644 |#4|) (-644 |#4|) $) 28 (|has| |#1| (-558)))) (-4306 (((-644 |#4|) (-644 |#4|) $) NIL (|has| |#1| (-558)))) (-4307 (((-3 $ "failed") (-644 |#4|)) NIL)) (-4205 (($ (-644 |#4|)) NIL)) (-2010 (((-3 $ "failed") $) 78)) (-2100 ((|#4| |#4| $) 83)) (-2031 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#4| (-1099))))) (-2665 (($ |#4| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#4| (-1099)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4414)))) (-2513 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-558)))) (-1464 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-1401 ((|#4| |#4| $) NIL)) (-1676 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4414)) (|has| |#4| (-1099)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4414))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4414))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3692 (((-2 (|:| -1651 (-644 |#4|)) (|:| -3501 (-644 |#4|))) $) NIL)) (-3979 (((-644 |#4|) $) NIL (|has| $ (-6 -4414)))) (-2111 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1489 ((|#3| $) 84)) (-2404 (((-112) $ (-771)) NIL)) (-2329 (((-644 |#4|) $) 32 (|has| $ (-6 -4414)))) (-1916 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#4| (-1099))))) (-2844 (((-3 $ "failed") (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35) (((-3 $ "failed") (-644 |#4|)) 38)) (-2908 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4415)))) (-1301 (($ (-1 |#4| |#4|) $) NIL)) (-2189 (((-644 |#3|) $) NIL)) (-3953 (((-112) |#3| $) NIL)) (-2603 (((-112) $ (-771)) NIL)) (-4117 (((-1157) $) NIL)) (-2686 (((-3 |#4| "failed") $) NIL)) (-2851 (((-644 |#4|) $) 54)) (-1694 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1871 ((|#4| |#4| $) 82)) (-2897 (((-112) $ $) 93)) (-3112 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-558)))) (-3351 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3544 ((|#4| |#4| $) NIL)) (-4035 (((-1119) $) NIL)) (-1998 (((-3 |#4| "failed") $) 77)) (-2006 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2060 (((-3 $ "failed") $ |#4|) NIL)) (-3874 (($ $ |#4|) NIL)) (-2692 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4414)))) (-2055 (($ $ (-644 |#4|) (-644 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-644 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))) (-1932 (((-112) $ $) NIL)) (-3467 (((-112) $) 75)) (-1494 (($) 46)) (-3636 (((-771) $) NIL)) (-4045 (((-771) |#4| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#4| (-1099)))) (((-771) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4414)))) (-3940 (($ $) NIL)) (-1348 (((-538) $) NIL (|has| |#4| (-614 (-538))))) (-3796 (($ (-644 |#4|)) NIL)) (-2325 (($ $ |#3|) NIL)) (-4106 (($ $ |#3|) NIL)) (-3973 (($ $) NIL)) (-3080 (($ $ |#3|) NIL)) (-3783 (((-862) $) NIL) (((-644 |#4|) $) 63)) (-2028 (((-771) $) NIL (|has| |#3| (-370)))) (-3227 (((-3 $ "failed") (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44) (((-3 $ "failed") (-644 |#4|)) 45)) (-1428 (((-644 $) (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73) (((-644 $) (-644 |#4|)) 74)) (-3117 (((-112) $ $) NIL)) (-3706 (((-3 (-2 (|:| |bas| $) (|:| -1825 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4| |#4|)) 27) (((-3 (-2 (|:| |bas| $) (|:| -1825 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3772 (((-112) $ (-1 (-112) |#4| (-644 |#4|))) NIL)) (-1894 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4414)))) (-4180 (((-644 |#3|) $) NIL)) (-1423 (((-112) |#3| $) NIL)) (-2947 (((-112) $ $) NIL)) (-3018 (((-771) $) NIL (|has| $ (-6 -4414))))) -(((-1277 |#1| |#2| |#3| |#4|) (-13 (-1207 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2844 ((-3 $ "failed") (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2844 ((-3 $ "failed") (-644 |#4|))) (-15 -3227 ((-3 $ "failed") (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3227 ((-3 $ "failed") (-644 |#4|))) (-15 -1428 ((-644 $) (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1428 ((-644 $) (-644 |#4|))))) (-558) (-793) (-850) (-1064 |#1| |#2| |#3|)) (T -1277)) -((-2844 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-644 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-1277 *5 *6 *7 *8)))) (-2844 (*1 *1 *2) (|partial| -12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-1277 *3 *4 *5 *6)))) (-3227 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-644 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-1277 *5 *6 *7 *8)))) (-3227 (*1 *1 *2) (|partial| -12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-1277 *3 *4 *5 *6)))) (-1428 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-644 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1064 *6 *7 *8)) (-4 *6 (-558)) (-4 *7 (-793)) (-4 *8 (-850)) (-5 *2 (-644 (-1277 *6 *7 *8 *9))) (-5 *1 (-1277 *6 *7 *8 *9)))) (-1428 (*1 *2 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 (-1277 *4 *5 *6 *7))) (-5 *1 (-1277 *4 *5 *6 *7))))) -(-13 (-1207 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2844 ((-3 $ "failed") (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2844 ((-3 $ "failed") (-644 |#4|))) (-15 -3227 ((-3 $ "failed") (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3227 ((-3 $ "failed") (-644 |#4|))) (-15 -1428 ((-644 $) (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1428 ((-644 $) (-644 |#4|))))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-4175 (((-3 $ "failed") $ $) 20)) (-3012 (($) 18 T CONST)) (-1878 (((-3 $ "failed") $) 37)) (-3934 (((-112) $) 35)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3783 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 45)) (-2107 (((-771)) 32 T CONST)) (-3117 (((-112) $ $) 9)) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-2947 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 47) (($ |#1| $) 46))) +((-3837 (((-644 (-1208 |#1|)) (-1175) (-1208 |#1|)) 83)) (-1457 (((-1155 (-1155 (-952 |#1|))) (-1175) (-1155 (-952 |#1|))) 63)) (-1780 (((-1 (-1155 (-1208 |#1|)) (-1155 (-1208 |#1|))) (-771) (-1208 |#1|) (-1155 (-1208 |#1|))) 74)) (-3191 (((-1 (-1155 (-952 |#1|)) (-1155 (-952 |#1|))) (-771)) 65)) (-2263 (((-1 (-1171 (-952 |#1|)) (-952 |#1|)) (-1175)) 32)) (-2797 (((-1 (-1155 (-952 |#1|)) (-1155 (-952 |#1|))) (-771)) 64))) +(((-1272 |#1|) (-10 -7 (-15 -3191 ((-1 (-1155 (-952 |#1|)) (-1155 (-952 |#1|))) (-771))) (-15 -2797 ((-1 (-1155 (-952 |#1|)) (-1155 (-952 |#1|))) (-771))) (-15 -1457 ((-1155 (-1155 (-952 |#1|))) (-1175) (-1155 (-952 |#1|)))) (-15 -2263 ((-1 (-1171 (-952 |#1|)) (-952 |#1|)) (-1175))) (-15 -3837 ((-644 (-1208 |#1|)) (-1175) (-1208 |#1|))) (-15 -1780 ((-1 (-1155 (-1208 |#1|)) (-1155 (-1208 |#1|))) (-771) (-1208 |#1|) (-1155 (-1208 |#1|))))) (-365)) (T -1272)) +((-1780 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-771)) (-4 *6 (-365)) (-5 *4 (-1208 *6)) (-5 *2 (-1 (-1155 *4) (-1155 *4))) (-5 *1 (-1272 *6)) (-5 *5 (-1155 *4)))) (-3837 (*1 *2 *3 *4) (-12 (-5 *3 (-1175)) (-4 *5 (-365)) (-5 *2 (-644 (-1208 *5))) (-5 *1 (-1272 *5)) (-5 *4 (-1208 *5)))) (-2263 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1 (-1171 (-952 *4)) (-952 *4))) (-5 *1 (-1272 *4)) (-4 *4 (-365)))) (-1457 (*1 *2 *3 *4) (-12 (-5 *3 (-1175)) (-4 *5 (-365)) (-5 *2 (-1155 (-1155 (-952 *5)))) (-5 *1 (-1272 *5)) (-5 *4 (-1155 (-952 *5))))) (-2797 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1 (-1155 (-952 *4)) (-1155 (-952 *4)))) (-5 *1 (-1272 *4)) (-4 *4 (-365)))) (-3191 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1 (-1155 (-952 *4)) (-1155 (-952 *4)))) (-5 *1 (-1272 *4)) (-4 *4 (-365))))) +(-10 -7 (-15 -3191 ((-1 (-1155 (-952 |#1|)) (-1155 (-952 |#1|))) (-771))) (-15 -2797 ((-1 (-1155 (-952 |#1|)) (-1155 (-952 |#1|))) (-771))) (-15 -1457 ((-1155 (-1155 (-952 |#1|))) (-1175) (-1155 (-952 |#1|)))) (-15 -2263 ((-1 (-1171 (-952 |#1|)) (-952 |#1|)) (-1175))) (-15 -3837 ((-644 (-1208 |#1|)) (-1175) (-1208 |#1|))) (-15 -1780 ((-1 (-1155 (-1208 |#1|)) (-1155 (-1208 |#1|))) (-771) (-1208 |#1|) (-1155 (-1208 |#1|))))) +((-1637 (((-2 (|:| -2875 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))) |#2|) 82)) (-2736 (((-2 (|:| -2875 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|)))) 81))) +(((-1273 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2736 ((-2 (|:| -2875 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))))) (-15 -1637 ((-2 (|:| -2875 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))) |#2|))) (-351) (-1240 |#1|) (-1240 |#2|) (-411 |#2| |#3|)) (T -1273)) +((-1637 (*1 *2 *3) (-12 (-4 *4 (-351)) (-4 *3 (-1240 *4)) (-4 *5 (-1240 *3)) (-5 *2 (-2 (|:| -2875 (-689 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-689 *3)))) (-5 *1 (-1273 *4 *3 *5 *6)) (-4 *6 (-411 *3 *5)))) (-2736 (*1 *2) (-12 (-4 *3 (-351)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 *4)) (-5 *2 (-2 (|:| -2875 (-689 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-689 *4)))) (-5 *1 (-1273 *3 *4 *5 *6)) (-4 *6 (-411 *4 *5))))) +(-10 -7 (-15 -2736 ((-2 (|:| -2875 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))))) (-15 -1637 ((-2 (|:| -2875 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))) |#2|))) +((-2988 (((-112) $ $) NIL)) (-3610 (((-1134) $) 11)) (-1739 (((-1134) $) 9)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 17) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) +(((-1274) (-13 (-1082) (-10 -8 (-15 -1739 ((-1134) $)) (-15 -3610 ((-1134) $))))) (T -1274)) +((-1739 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1274)))) (-3610 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1274))))) +(-13 (-1082) (-10 -8 (-15 -1739 ((-1134) $)) (-15 -3610 ((-1134) $)))) +((-2988 (((-112) $ $) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-1607 (((-1134) $) 9)) (-3152 (((-862) $) 15) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3044 (((-112) $ $) NIL)) (-2914 (((-112) $ $) NIL))) +(((-1275) (-13 (-1082) (-10 -8 (-15 -1607 ((-1134) $))))) (T -1275)) +((-1607 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1275))))) +(-13 (-1082) (-10 -8 (-15 -1607 ((-1134) $)))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) 58)) (-3967 (((-3 $ "failed") $ $) NIL)) (-2463 (($) NIL T CONST)) (-3245 (((-3 $ "failed") $) NIL)) (-2389 (((-112) $) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3152 (((-862) $) 81) (($ (-566)) NIL) (($ |#4|) 65) ((|#4| $) 70) (($ |#1|) NIL (|has| |#1| (-172)))) (-2593 (((-771)) NIL T CONST)) (-2111 (((-1269) (-771)) 16)) (-3044 (((-112) $ $) NIL)) (-4356 (($) 37 T CONST)) (-4366 (($) 84 T CONST)) (-2914 (((-112) $ $) 87)) (-3025 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-3012 (($ $) 89) (($ $ $) NIL)) (-3002 (($ $ $) 63)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 91) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) +(((-1276 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1049) (-492 |#4|) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -3025 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2111 ((-1269) (-771))))) (-1049) (-850) (-793) (-949 |#1| |#3| |#2|) (-644 |#2|) (-644 (-771)) (-771)) (T -1276)) +((-3025 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-365)) (-4 *2 (-1049)) (-4 *3 (-850)) (-4 *4 (-793)) (-14 *6 (-644 *3)) (-5 *1 (-1276 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-949 *2 *4 *3)) (-14 *7 (-644 (-771))) (-14 *8 (-771)))) (-2111 (*1 *2 *3) (-12 (-5 *3 (-771)) (-4 *4 (-1049)) (-4 *5 (-850)) (-4 *6 (-793)) (-14 *8 (-644 *5)) (-5 *2 (-1269)) (-5 *1 (-1276 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-949 *4 *6 *5)) (-14 *9 (-644 *3)) (-14 *10 *3)))) +(-13 (-1049) (-492 |#4|) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -3025 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2111 ((-1269) (-771))))) +((-2988 (((-112) $ $) NIL)) (-2107 (((-644 (-2 (|:| -1685 $) (|:| -3292 (-644 |#4|)))) (-644 |#4|)) NIL)) (-2779 (((-644 $) (-644 |#4|)) 96)) (-1771 (((-644 |#3|) $) NIL)) (-3071 (((-112) $) NIL)) (-3274 (((-112) $) NIL (|has| |#1| (-558)))) (-2267 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1411 ((|#4| |#4| $) NIL)) (-2671 (((-2 (|:| |under| $) (|:| -3143 $) (|:| |upper| $)) $ |#3|) NIL)) (-1504 (((-112) $ (-771)) NIL)) (-3678 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4414))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2463 (($) NIL T CONST)) (-3036 (((-112) $) NIL (|has| |#1| (-558)))) (-1963 (((-112) $ $) NIL (|has| |#1| (-558)))) (-2983 (((-112) $ $) NIL (|has| |#1| (-558)))) (-1477 (((-112) $) NIL (|has| |#1| (-558)))) (-3930 (((-644 |#4|) (-644 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 31)) (-1789 (((-644 |#4|) (-644 |#4|) $) 28 (|has| |#1| (-558)))) (-2228 (((-644 |#4|) (-644 |#4|) $) NIL (|has| |#1| (-558)))) (-2229 (((-3 $ "failed") (-644 |#4|)) NIL)) (-4158 (($ (-644 |#4|)) NIL)) (-3919 (((-3 $ "failed") $) 78)) (-3110 ((|#4| |#4| $) 83)) (-3942 (($ $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#4| (-1099))))) (-2622 (($ |#4| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#4| (-1099)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4414)))) (-3264 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-558)))) (-3599 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2690 ((|#4| |#4| $) NIL)) (-2873 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4414)) (|has| |#4| (-1099)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4414))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4414))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3476 (((-2 (|:| -1685 (-644 |#4|)) (|:| -3292 (-644 |#4|))) $) NIL)) (-1683 (((-644 |#4|) $) NIL (|has| $ (-6 -4414)))) (-1640 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4296 ((|#3| $) 84)) (-3456 (((-112) $ (-771)) NIL)) (-3491 (((-644 |#4|) $) 32 (|has| $ (-6 -4414)))) (-1602 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#4| (-1099))))) (-1564 (((-3 $ "failed") (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35) (((-3 $ "failed") (-644 |#4|)) 38)) (-3885 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4415)))) (-2319 (($ (-1 |#4| |#4|) $) NIL)) (-1785 (((-644 |#3|) $) NIL)) (-1579 (((-112) |#3| $) NIL)) (-3267 (((-112) $ (-771)) NIL)) (-3380 (((-1157) $) NIL)) (-2641 (((-3 |#4| "failed") $) NIL)) (-2133 (((-644 |#4|) $) 54)) (-2543 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1906 ((|#4| |#4| $) 82)) (-3077 (((-112) $ $) 93)) (-2594 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-558)))) (-3374 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4074 ((|#4| |#4| $) NIL)) (-4072 (((-1119) $) NIL)) (-3908 (((-3 |#4| "failed") $) 77)) (-3668 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2718 (((-3 $ "failed") $ |#4|) NIL)) (-3369 (($ $ |#4|) NIL)) (-2823 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4414)))) (-2023 (($ $ (-644 |#4|) (-644 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-644 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))) (-3814 (((-112) $ $) NIL)) (-2872 (((-112) $) 75)) (-3493 (($) 46)) (-3902 (((-771) $) NIL)) (-4083 (((-771) |#4| $) NIL (-12 (|has| $ (-6 -4414)) (|has| |#4| (-1099)))) (((-771) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4414)))) (-1480 (($ $) NIL)) (-2376 (((-538) $) NIL (|has| |#4| (-614 (-538))))) (-1340 (($ (-644 |#4|)) NIL)) (-4305 (($ $ |#3|) NIL)) (-1702 (($ $ |#3|) NIL)) (-4017 (($ $) NIL)) (-3809 (($ $ |#3|) NIL)) (-3152 (((-862) $) NIL) (((-644 |#4|) $) 63)) (-3909 (((-771) $) NIL (|has| |#3| (-370)))) (-1958 (((-3 $ "failed") (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44) (((-3 $ "failed") (-644 |#4|)) 45)) (-3485 (((-644 $) (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73) (((-644 $) (-644 |#4|)) 74)) (-3044 (((-112) $ $) NIL)) (-2236 (((-3 (-2 (|:| |bas| $) (|:| -3712 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4| |#4|)) 27) (((-3 (-2 (|:| |bas| $) (|:| -3712 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3622 (((-112) $ (-1 (-112) |#4| (-644 |#4|))) NIL)) (-2210 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4414)))) (-4382 (((-644 |#3|) $) NIL)) (-4217 (((-112) |#3| $) NIL)) (-2914 (((-112) $ $) NIL)) (-3000 (((-771) $) NIL (|has| $ (-6 -4414))))) +(((-1277 |#1| |#2| |#3| |#4|) (-13 (-1207 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1564 ((-3 $ "failed") (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1564 ((-3 $ "failed") (-644 |#4|))) (-15 -1958 ((-3 $ "failed") (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1958 ((-3 $ "failed") (-644 |#4|))) (-15 -3485 ((-644 $) (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3485 ((-644 $) (-644 |#4|))))) (-558) (-793) (-850) (-1064 |#1| |#2| |#3|)) (T -1277)) +((-1564 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-644 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-1277 *5 *6 *7 *8)))) (-1564 (*1 *1 *2) (|partial| -12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-1277 *3 *4 *5 *6)))) (-1958 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-644 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-1277 *5 *6 *7 *8)))) (-1958 (*1 *1 *2) (|partial| -12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-1277 *3 *4 *5 *6)))) (-3485 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-644 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1064 *6 *7 *8)) (-4 *6 (-558)) (-4 *7 (-793)) (-4 *8 (-850)) (-5 *2 (-644 (-1277 *6 *7 *8 *9))) (-5 *1 (-1277 *6 *7 *8 *9)))) (-3485 (*1 *2 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 (-1277 *4 *5 *6 *7))) (-5 *1 (-1277 *4 *5 *6 *7))))) +(-13 (-1207 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1564 ((-3 $ "failed") (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1564 ((-3 $ "failed") (-644 |#4|))) (-15 -1958 ((-3 $ "failed") (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1958 ((-3 $ "failed") (-644 |#4|))) (-15 -3485 ((-644 $) (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3485 ((-644 $) (-644 |#4|))))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-3967 (((-3 $ "failed") $ $) 20)) (-2463 (($) 18 T CONST)) (-3245 (((-3 $ "failed") $) 37)) (-2389 (((-112) $) 35)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3152 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 45)) (-2593 (((-771)) 32 T CONST)) (-3044 (((-112) $ $) 9)) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-2914 (((-112) $ $) 6)) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 47) (($ |#1| $) 46))) (((-1278 |#1|) (-140) (-1049)) (T -1278)) NIL (-13 (-1049) (-111 |t#1| |t#1|) (-616 |t#1|) (-10 -7 (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-616 (-566)) . T) ((-616 |#1|) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-640 |#1|) |has| |#1| (-172)) ((-717 |#1|) |has| |#1| (-172)) ((-726) . T) ((-1051 |#1|) . T) ((-1056 |#1|) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T)) -((-3007 (((-112) $ $) 67)) (-1788 (((-112) $) NIL)) (-3095 (((-644 |#1|) $) 52)) (-3684 (($ $ (-771)) 46)) (-4175 (((-3 $ "failed") $ $) NIL)) (-3871 (($ $ (-771)) 24 (|has| |#2| (-172))) (($ $ $) 25 (|has| |#2| (-172)))) (-3012 (($) NIL T CONST)) (-2374 (($ $ $) 70) (($ $ (-819 |#1|)) 56) (($ $ |#1|) 60)) (-4307 (((-3 (-819 |#1|) "failed") $) NIL)) (-4205 (((-819 |#1|) $) NIL)) (-1786 (($ $) 39)) (-1878 (((-3 $ "failed") $) NIL)) (-3653 (((-112) $) NIL)) (-1852 (($ $) NIL)) (-3934 (((-112) $) NIL)) (-2614 (((-771) $) NIL)) (-2288 (((-644 $) $) NIL)) (-3264 (((-112) $) NIL)) (-3319 (($ (-819 |#1|) |#2|) 38)) (-3000 (($ $) 40)) (-4131 (((-2 (|:| |k| (-819 |#1|)) (|:| |c| |#2|)) $) 12)) (-3806 (((-819 |#1|) $) NIL)) (-3137 (((-819 |#1|) $) 41)) (-1301 (($ (-1 |#2| |#2|) $) NIL)) (-2274 (($ $ $) 69) (($ $ (-819 |#1|)) 58) (($ $ |#1|) 62)) (-3849 (((-2 (|:| |k| (-819 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1749 (((-819 |#1|) $) 35)) (-1763 ((|#2| $) 37)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-3636 (((-771) $) 43)) (-1466 (((-112) $) 47)) (-3704 ((|#2| $) NIL)) (-3783 (((-862) $) NIL) (($ (-819 |#1|)) 30) (($ |#1|) 31) (($ |#2|) NIL) (($ (-566)) NIL)) (-4170 (((-644 |#2|) $) NIL)) (-2649 ((|#2| $ (-819 |#1|)) NIL)) (-1364 ((|#2| $ $) 76) ((|#2| $ (-819 |#1|)) NIL)) (-2107 (((-771)) NIL T CONST)) (-3117 (((-112) $ $) NIL)) (-2479 (($) 13 T CONST)) (-4334 (($) 19 T CONST)) (-2935 (((-644 (-2 (|:| |k| (-819 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2947 (((-112) $ $) 44)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) 28)) (** (($ $ (-771)) NIL) (($ $ (-921)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ |#2| $) 27) (($ $ |#2|) 68) (($ |#2| (-819 |#1|)) NIL) (($ |#1| $) 33) (($ $ $) NIL))) +((-2988 (((-112) $ $) 67)) (-3230 (((-112) $) NIL)) (-4111 (((-644 |#1|) $) 52)) (-3990 (($ $ (-771)) 46)) (-3967 (((-3 $ "failed") $ $) NIL)) (-1324 (($ $ (-771)) 24 (|has| |#2| (-172))) (($ $ $) 25 (|has| |#2| (-172)))) (-2463 (($) NIL T CONST)) (-3356 (($ $ $) 70) (($ $ (-819 |#1|)) 56) (($ $ |#1|) 60)) (-2229 (((-3 (-819 |#1|) "failed") $) NIL)) (-4158 (((-819 |#1|) $) NIL)) (-2814 (($ $) 39)) (-3245 (((-3 $ "failed") $) NIL)) (-4177 (((-112) $) NIL)) (-2291 (($ $) NIL)) (-2389 (((-112) $) NIL)) (-3039 (((-771) $) NIL)) (-1587 (((-644 $) $) NIL)) (-2497 (((-112) $) NIL)) (-4325 (($ (-819 |#1|) |#2|) 38)) (-2795 (($ $) 40)) (-2270 (((-2 (|:| |k| (-819 |#1|)) (|:| |c| |#2|)) $) 12)) (-3342 (((-819 |#1|) $) NIL)) (-4340 (((-819 |#1|) $) 41)) (-2319 (($ (-1 |#2| |#2|) $) NIL)) (-3722 (($ $ $) 69) (($ $ (-819 |#1|)) 58) (($ $ |#1|) 62)) (-1978 (((-2 (|:| |k| (-819 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2784 (((-819 |#1|) $) 35)) (-2794 ((|#2| $) 37)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3902 (((-771) $) 43)) (-3705 (((-112) $) 47)) (-1623 ((|#2| $) NIL)) (-3152 (((-862) $) NIL) (($ (-819 |#1|)) 30) (($ |#1|) 31) (($ |#2|) NIL) (($ (-566)) NIL)) (-1643 (((-644 |#2|) $) NIL)) (-2271 ((|#2| $ (-819 |#1|)) NIL)) (-2397 ((|#2| $ $) 76) ((|#2| $ (-819 |#1|)) NIL)) (-2593 (((-771)) NIL T CONST)) (-3044 (((-112) $ $) NIL)) (-4356 (($) 13 T CONST)) (-4366 (($) 19 T CONST)) (-2203 (((-644 (-2 (|:| |k| (-819 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2914 (((-112) $ $) 44)) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) 28)) (** (($ $ (-771)) NIL) (($ $ (-921)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ |#2| $) 27) (($ $ |#2|) 68) (($ |#2| (-819 |#1|)) NIL) (($ |#1| $) 33) (($ $ $) NIL))) (((-1279 |#1| |#2|) (-13 (-384 |#2| (-819 |#1|)) (-1285 |#1| |#2|)) (-850) (-1049)) (T -1279)) NIL (-13 (-384 |#2| (-819 |#1|)) (-1285 |#1| |#2|)) -((-3651 ((|#3| |#3| (-771)) 30)) (-2561 ((|#3| |#3| (-771)) 36)) (-4158 ((|#3| |#3| |#3| (-771)) 37))) -(((-1280 |#1| |#2| |#3|) (-10 -7 (-15 -2561 (|#3| |#3| (-771))) (-15 -3651 (|#3| |#3| (-771))) (-15 -4158 (|#3| |#3| |#3| (-771)))) (-13 (-1049) (-717 (-409 (-566)))) (-850) (-1285 |#2| |#1|)) (T -1280)) -((-4158 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-771)) (-4 *4 (-13 (-1049) (-717 (-409 (-566))))) (-4 *5 (-850)) (-5 *1 (-1280 *4 *5 *2)) (-4 *2 (-1285 *5 *4)))) (-3651 (*1 *2 *2 *3) (-12 (-5 *3 (-771)) (-4 *4 (-13 (-1049) (-717 (-409 (-566))))) (-4 *5 (-850)) (-5 *1 (-1280 *4 *5 *2)) (-4 *2 (-1285 *5 *4)))) (-2561 (*1 *2 *2 *3) (-12 (-5 *3 (-771)) (-4 *4 (-13 (-1049) (-717 (-409 (-566))))) (-4 *5 (-850)) (-5 *1 (-1280 *4 *5 *2)) (-4 *2 (-1285 *5 *4))))) -(-10 -7 (-15 -2561 (|#3| |#3| (-771))) (-15 -3651 (|#3| |#3| (-771))) (-15 -4158 (|#3| |#3| |#3| (-771)))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-3095 (((-644 |#1|) $) 47)) (-4175 (((-3 $ "failed") $ $) 20)) (-3871 (($ $ $) 50 (|has| |#2| (-172))) (($ $ (-771)) 49 (|has| |#2| (-172)))) (-3012 (($) 18 T CONST)) (-2374 (($ $ |#1|) 61) (($ $ (-819 |#1|)) 60) (($ $ $) 59)) (-4307 (((-3 (-819 |#1|) "failed") $) 71)) (-4205 (((-819 |#1|) $) 72)) (-1878 (((-3 $ "failed") $) 37)) (-3653 (((-112) $) 52)) (-1852 (($ $) 51)) (-3934 (((-112) $) 35)) (-3264 (((-112) $) 57)) (-3319 (($ (-819 |#1|) |#2|) 58)) (-3000 (($ $) 56)) (-4131 (((-2 (|:| |k| (-819 |#1|)) (|:| |c| |#2|)) $) 67)) (-3806 (((-819 |#1|) $) 68)) (-1301 (($ (-1 |#2| |#2|) $) 48)) (-2274 (($ $ |#1|) 64) (($ $ (-819 |#1|)) 63) (($ $ $) 62)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-1466 (((-112) $) 54)) (-3704 ((|#2| $) 53)) (-3783 (((-862) $) 12) (($ (-566)) 33) (($ |#2|) 75) (($ (-819 |#1|)) 70) (($ |#1|) 55)) (-1364 ((|#2| $ (-819 |#1|)) 66) ((|#2| $ $) 65)) (-2107 (((-771)) 32 T CONST)) (-3117 (((-112) $ $) 9)) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-2947 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) +((-3619 ((|#3| |#3| (-771)) 30)) (-3521 ((|#3| |#3| (-771)) 36)) (-3046 ((|#3| |#3| |#3| (-771)) 37))) +(((-1280 |#1| |#2| |#3|) (-10 -7 (-15 -3521 (|#3| |#3| (-771))) (-15 -3619 (|#3| |#3| (-771))) (-15 -3046 (|#3| |#3| |#3| (-771)))) (-13 (-1049) (-717 (-409 (-566)))) (-850) (-1285 |#2| |#1|)) (T -1280)) +((-3046 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-771)) (-4 *4 (-13 (-1049) (-717 (-409 (-566))))) (-4 *5 (-850)) (-5 *1 (-1280 *4 *5 *2)) (-4 *2 (-1285 *5 *4)))) (-3619 (*1 *2 *2 *3) (-12 (-5 *3 (-771)) (-4 *4 (-13 (-1049) (-717 (-409 (-566))))) (-4 *5 (-850)) (-5 *1 (-1280 *4 *5 *2)) (-4 *2 (-1285 *5 *4)))) (-3521 (*1 *2 *2 *3) (-12 (-5 *3 (-771)) (-4 *4 (-13 (-1049) (-717 (-409 (-566))))) (-4 *5 (-850)) (-5 *1 (-1280 *4 *5 *2)) (-4 *2 (-1285 *5 *4))))) +(-10 -7 (-15 -3521 (|#3| |#3| (-771))) (-15 -3619 (|#3| |#3| (-771))) (-15 -3046 (|#3| |#3| |#3| (-771)))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-4111 (((-644 |#1|) $) 47)) (-3967 (((-3 $ "failed") $ $) 20)) (-1324 (($ $ $) 50 (|has| |#2| (-172))) (($ $ (-771)) 49 (|has| |#2| (-172)))) (-2463 (($) 18 T CONST)) (-3356 (($ $ |#1|) 61) (($ $ (-819 |#1|)) 60) (($ $ $) 59)) (-2229 (((-3 (-819 |#1|) "failed") $) 71)) (-4158 (((-819 |#1|) $) 72)) (-3245 (((-3 $ "failed") $) 37)) (-4177 (((-112) $) 52)) (-2291 (($ $) 51)) (-2389 (((-112) $) 35)) (-2497 (((-112) $) 57)) (-4325 (($ (-819 |#1|) |#2|) 58)) (-2795 (($ $) 56)) (-2270 (((-2 (|:| |k| (-819 |#1|)) (|:| |c| |#2|)) $) 67)) (-3342 (((-819 |#1|) $) 68)) (-2319 (($ (-1 |#2| |#2|) $) 48)) (-3722 (($ $ |#1|) 64) (($ $ (-819 |#1|)) 63) (($ $ $) 62)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3705 (((-112) $) 54)) (-1623 ((|#2| $) 53)) (-3152 (((-862) $) 12) (($ (-566)) 33) (($ |#2|) 75) (($ (-819 |#1|)) 70) (($ |#1|) 55)) (-2397 ((|#2| $ (-819 |#1|)) 66) ((|#2| $ $) 65)) (-2593 (((-771)) 32 T CONST)) (-3044 (((-112) $ $) 9)) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-2914 (((-112) $ $) 6)) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) (((-1281 |#1| |#2|) (-140) (-850) (-1049)) (T -1281)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1281 *3 *2)) (-4 *3 (-850)) (-4 *2 (-1049)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1281 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049)))) (-3806 (*1 *2 *1) (-12 (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) (-5 *2 (-819 *3)))) (-4131 (*1 *2 *1) (-12 (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) (-5 *2 (-2 (|:| |k| (-819 *3)) (|:| |c| *4))))) (-1364 (*1 *2 *1 *3) (-12 (-5 *3 (-819 *4)) (-4 *1 (-1281 *4 *2)) (-4 *4 (-850)) (-4 *2 (-1049)))) (-1364 (*1 *2 *1 *1) (-12 (-4 *1 (-1281 *3 *2)) (-4 *3 (-850)) (-4 *2 (-1049)))) (-2274 (*1 *1 *1 *2) (-12 (-4 *1 (-1281 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049)))) (-2274 (*1 *1 *1 *2) (-12 (-5 *2 (-819 *3)) (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)))) (-2274 (*1 *1 *1 *1) (-12 (-4 *1 (-1281 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049)))) (-2374 (*1 *1 *1 *2) (-12 (-4 *1 (-1281 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049)))) (-2374 (*1 *1 *1 *2) (-12 (-5 *2 (-819 *3)) (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)))) (-2374 (*1 *1 *1 *1) (-12 (-4 *1 (-1281 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049)))) (-3319 (*1 *1 *2 *3) (-12 (-5 *2 (-819 *4)) (-4 *4 (-850)) (-4 *1 (-1281 *4 *3)) (-4 *3 (-1049)))) (-3264 (*1 *2 *1) (-12 (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) (-5 *2 (-112)))) (-3000 (*1 *1 *1) (-12 (-4 *1 (-1281 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049)))) (-3783 (*1 *1 *2) (-12 (-4 *1 (-1281 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049)))) (-1466 (*1 *2 *1) (-12 (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) (-5 *2 (-112)))) (-3704 (*1 *2 *1) (-12 (-4 *1 (-1281 *3 *2)) (-4 *3 (-850)) (-4 *2 (-1049)))) (-3653 (*1 *2 *1) (-12 (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) (-5 *2 (-112)))) (-1852 (*1 *1 *1) (-12 (-4 *1 (-1281 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049)))) (-3871 (*1 *1 *1 *1) (-12 (-4 *1 (-1281 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049)) (-4 *3 (-172)))) (-3871 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) (-4 *4 (-172)))) (-1301 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)))) (-3095 (*1 *2 *1) (-12 (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) (-5 *2 (-644 *3))))) -(-13 (-1049) (-1278 |t#2|) (-1038 (-819 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -3806 ((-819 |t#1|) $)) (-15 -4131 ((-2 (|:| |k| (-819 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -1364 (|t#2| $ (-819 |t#1|))) (-15 -1364 (|t#2| $ $)) (-15 -2274 ($ $ |t#1|)) (-15 -2274 ($ $ (-819 |t#1|))) (-15 -2274 ($ $ $)) (-15 -2374 ($ $ |t#1|)) (-15 -2374 ($ $ (-819 |t#1|))) (-15 -2374 ($ $ $)) (-15 -3319 ($ (-819 |t#1|) |t#2|)) (-15 -3264 ((-112) $)) (-15 -3000 ($ $)) (-15 -3783 ($ |t#1|)) (-15 -1466 ((-112) $)) (-15 -3704 (|t#2| $)) (-15 -3653 ((-112) $)) (-15 -1852 ($ $)) (IF (|has| |t#2| (-172)) (PROGN (-15 -3871 ($ $ $)) (-15 -3871 ($ $ (-771)))) |%noBranch|) (-15 -1301 ($ (-1 |t#2| |t#2|) $)) (-15 -3095 ((-644 |t#1|) $)) (IF (|has| |t#2| (-6 -4407)) (-6 -4407) |%noBranch|))) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1281 *3 *2)) (-4 *3 (-850)) (-4 *2 (-1049)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1281 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049)))) (-3342 (*1 *2 *1) (-12 (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) (-5 *2 (-819 *3)))) (-2270 (*1 *2 *1) (-12 (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) (-5 *2 (-2 (|:| |k| (-819 *3)) (|:| |c| *4))))) (-2397 (*1 *2 *1 *3) (-12 (-5 *3 (-819 *4)) (-4 *1 (-1281 *4 *2)) (-4 *4 (-850)) (-4 *2 (-1049)))) (-2397 (*1 *2 *1 *1) (-12 (-4 *1 (-1281 *3 *2)) (-4 *3 (-850)) (-4 *2 (-1049)))) (-3722 (*1 *1 *1 *2) (-12 (-4 *1 (-1281 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049)))) (-3722 (*1 *1 *1 *2) (-12 (-5 *2 (-819 *3)) (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)))) (-3722 (*1 *1 *1 *1) (-12 (-4 *1 (-1281 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049)))) (-3356 (*1 *1 *1 *2) (-12 (-4 *1 (-1281 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049)))) (-3356 (*1 *1 *1 *2) (-12 (-5 *2 (-819 *3)) (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)))) (-3356 (*1 *1 *1 *1) (-12 (-4 *1 (-1281 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049)))) (-4325 (*1 *1 *2 *3) (-12 (-5 *2 (-819 *4)) (-4 *4 (-850)) (-4 *1 (-1281 *4 *3)) (-4 *3 (-1049)))) (-2497 (*1 *2 *1) (-12 (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) (-5 *2 (-112)))) (-2795 (*1 *1 *1) (-12 (-4 *1 (-1281 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049)))) (-3152 (*1 *1 *2) (-12 (-4 *1 (-1281 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049)))) (-3705 (*1 *2 *1) (-12 (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) (-5 *2 (-112)))) (-1623 (*1 *2 *1) (-12 (-4 *1 (-1281 *3 *2)) (-4 *3 (-850)) (-4 *2 (-1049)))) (-4177 (*1 *2 *1) (-12 (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) (-5 *2 (-112)))) (-2291 (*1 *1 *1) (-12 (-4 *1 (-1281 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049)))) (-1324 (*1 *1 *1 *1) (-12 (-4 *1 (-1281 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049)) (-4 *3 (-172)))) (-1324 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) (-4 *4 (-172)))) (-2319 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)))) (-4111 (*1 *2 *1) (-12 (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) (-5 *2 (-644 *3))))) +(-13 (-1049) (-1278 |t#2|) (-1038 (-819 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -3342 ((-819 |t#1|) $)) (-15 -2270 ((-2 (|:| |k| (-819 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -2397 (|t#2| $ (-819 |t#1|))) (-15 -2397 (|t#2| $ $)) (-15 -3722 ($ $ |t#1|)) (-15 -3722 ($ $ (-819 |t#1|))) (-15 -3722 ($ $ $)) (-15 -3356 ($ $ |t#1|)) (-15 -3356 ($ $ (-819 |t#1|))) (-15 -3356 ($ $ $)) (-15 -4325 ($ (-819 |t#1|) |t#2|)) (-15 -2497 ((-112) $)) (-15 -2795 ($ $)) (-15 -3152 ($ |t#1|)) (-15 -3705 ((-112) $)) (-15 -1623 (|t#2| $)) (-15 -4177 ((-112) $)) (-15 -2291 ($ $)) (IF (|has| |t#2| (-172)) (PROGN (-15 -1324 ($ $ $)) (-15 -1324 ($ $ (-771)))) |%noBranch|) (-15 -2319 ($ (-1 |t#2| |t#2|) $)) (-15 -4111 ((-644 |t#1|) $)) (IF (|has| |t#2| (-6 -4407)) (-6 -4407) |%noBranch|))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-616 (-566)) . T) ((-616 #0=(-819 |#1|)) . T) ((-616 |#2|) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 |#2|) . T) ((-646 $) . T) ((-648 |#2|) . T) ((-648 $) . T) ((-640 |#2|) |has| |#2| (-172)) ((-717 |#2|) |has| |#2| (-172)) ((-726) . T) ((-1038 #0#) . T) ((-1051 |#2|) . T) ((-1056 |#2|) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1278 |#2|) . T)) -((-2131 (((-112) $) 15)) (-1423 (((-112) $) 14)) (-2699 (($ $) 19) (($ $ (-771)) 21))) -(((-1282 |#1| |#2|) (-10 -8 (-15 -2699 (|#1| |#1| (-771))) (-15 -2699 (|#1| |#1|)) (-15 -2131 ((-112) |#1|)) (-15 -1423 ((-112) |#1|))) (-1283 |#2|) (-365)) (T -1282)) +((-1972 (((-112) $) 15)) (-4217 (((-112) $) 14)) (-2198 (($ $) 19) (($ $ (-771)) 21))) +(((-1282 |#1| |#2|) (-10 -8 (-15 -2198 (|#1| |#1| (-771))) (-15 -2198 (|#1| |#1|)) (-15 -1972 ((-112) |#1|)) (-15 -4217 ((-112) |#1|))) (-1283 |#2|) (-365)) (T -1282)) NIL -(-10 -8 (-15 -2699 (|#1| |#1| (-771))) (-15 -2699 (|#1| |#1|)) (-15 -2131 ((-112) |#1|)) (-15 -1423 ((-112) |#1|))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-1860 (((-2 (|:| -3002 $) (|:| -4401 $) (|:| |associate| $)) $) 47)) (-3991 (($ $) 46)) (-2388 (((-112) $) 44)) (-2131 (((-112) $) 104)) (-3193 (((-771)) 100)) (-4175 (((-3 $ "failed") $ $) 20)) (-1550 (($ $) 81)) (-3184 (((-420 $) $) 80)) (-2837 (((-112) $ $) 65)) (-3012 (($) 18 T CONST)) (-4307 (((-3 |#1| "failed") $) 111)) (-4205 ((|#1| $) 112)) (-2946 (($ $ $) 61)) (-1878 (((-3 $ "failed") $) 37)) (-2957 (($ $ $) 62)) (-2357 (((-2 (|:| -1364 (-644 $)) (|:| -3441 $)) (-644 $)) 57)) (-3369 (($ $ (-771)) 97 (-2809 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) 96 (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3268 (((-112) $) 79)) (-3254 (((-833 (-921)) $) 94 (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3934 (((-112) $) 35)) (-3775 (((-3 (-644 $) "failed") (-644 $) $) 58)) (-2167 (($ $ $) 52) (($ (-644 $)) 51)) (-4117 (((-1157) $) 10)) (-1713 (($ $) 78)) (-1778 (((-112) $) 103)) (-4035 (((-1119) $) 11)) (-2197 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-2214 (($ $ $) 54) (($ (-644 $)) 53)) (-3719 (((-420 $) $) 82)) (-3129 (((-833 (-921))) 101)) (-3148 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3441 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2994 (((-3 $ "failed") $ $) 48)) (-3161 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-3039 (((-771) $) 64)) (-1685 (((-2 (|:| -2275 $) (|:| -2513 $)) $ $) 63)) (-1437 (((-3 (-771) "failed") $ $) 95 (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3164 (((-134)) 109)) (-3636 (((-833 (-921)) $) 102)) (-3783 (((-862) $) 12) (($ (-566)) 33) (($ $) 49) (($ (-409 (-566))) 74) (($ |#1|) 110)) (-3144 (((-3 $ "failed") $) 93 (-2809 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2107 (((-771)) 32 T CONST)) (-3117 (((-112) $ $) 9)) (-2695 (((-112) $ $) 45)) (-1423 (((-112) $) 105)) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-2699 (($ $) 99 (|has| |#1| (-370))) (($ $ (-771)) 98 (|has| |#1| (-370)))) (-2947 (((-112) $ $) 6)) (-3065 (($ $ $) 73) (($ $ |#1|) 108)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 77)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 76) (($ (-409 (-566)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) +(-10 -8 (-15 -2198 (|#1| |#1| (-771))) (-15 -2198 (|#1| |#1|)) (-15 -1972 ((-112) |#1|)) (-15 -4217 ((-112) |#1|))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-2112 (((-2 (|:| -2896 $) (|:| -4401 $) (|:| |associate| $)) $) 47)) (-2161 (($ $) 46)) (-2345 (((-112) $) 44)) (-1972 (((-112) $) 104)) (-2818 (((-771)) 100)) (-3967 (((-3 $ "failed") $ $) 20)) (-1378 (($ $) 81)) (-1364 (((-420 $) $) 80)) (-2085 (((-112) $ $) 65)) (-2463 (($) 18 T CONST)) (-2229 (((-3 |#1| "failed") $) 111)) (-4158 ((|#1| $) 112)) (-2933 (($ $ $) 61)) (-3245 (((-3 $ "failed") $) 37)) (-2945 (($ $ $) 62)) (-3255 (((-2 (|:| -2397 (-644 $)) (|:| -3302 $)) (-644 $)) 57)) (-1574 (($ $ (-771)) 97 (-2768 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) 96 (-2768 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1615 (((-112) $) 79)) (-2679 (((-833 (-921)) $) 94 (-2768 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2389 (((-112) $) 35)) (-3816 (((-3 (-644 $) "failed") (-644 $) $) 58)) (-2128 (($ $ $) 52) (($ (-644 $)) 51)) (-3380 (((-1157) $) 10)) (-2748 (($ $) 78)) (-3653 (((-112) $) 103)) (-4072 (((-1119) $) 11)) (-4170 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-2164 (($ $ $) 54) (($ (-644 $)) 53)) (-1624 (((-420 $) $) 82)) (-1686 (((-833 (-921))) 101)) (-3005 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3302 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2978 (((-3 $ "failed") $ $) 48)) (-2915 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-4357 (((-771) $) 64)) (-4100 (((-2 (|:| -2631 $) (|:| -3264 $)) $ $) 63)) (-3169 (((-3 (-771) "failed") $ $) 95 (-2768 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3126 (((-134)) 109)) (-3902 (((-833 (-921)) $) 102)) (-3152 (((-862) $) 12) (($ (-566)) 33) (($ $) 49) (($ (-409 (-566))) 74) (($ |#1|) 110)) (-2633 (((-3 $ "failed") $) 93 (-2768 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2593 (((-771)) 32 T CONST)) (-3044 (((-112) $ $) 9)) (-3014 (((-112) $ $) 45)) (-4217 (((-112) $) 105)) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-2198 (($ $) 99 (|has| |#1| (-370))) (($ $ (-771)) 98 (|has| |#1| (-370)))) (-2914 (((-112) $ $) 6)) (-3025 (($ $ $) 73) (($ $ |#1|) 108)) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 77)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 76) (($ (-409 (-566)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) (((-1283 |#1|) (-140) (-365)) (T -1283)) -((-1423 (*1 *2 *1) (-12 (-4 *1 (-1283 *3)) (-4 *3 (-365)) (-5 *2 (-112)))) (-2131 (*1 *2 *1) (-12 (-4 *1 (-1283 *3)) (-4 *3 (-365)) (-5 *2 (-112)))) (-1778 (*1 *2 *1) (-12 (-4 *1 (-1283 *3)) (-4 *3 (-365)) (-5 *2 (-112)))) (-3636 (*1 *2 *1) (-12 (-4 *1 (-1283 *3)) (-4 *3 (-365)) (-5 *2 (-833 (-921))))) (-3129 (*1 *2) (-12 (-4 *1 (-1283 *3)) (-4 *3 (-365)) (-5 *2 (-833 (-921))))) (-3193 (*1 *2) (-12 (-4 *1 (-1283 *3)) (-4 *3 (-365)) (-5 *2 (-771)))) (-2699 (*1 *1 *1) (-12 (-4 *1 (-1283 *2)) (-4 *2 (-365)) (-4 *2 (-370)))) (-2699 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-1283 *3)) (-4 *3 (-365)) (-4 *3 (-370))))) -(-13 (-365) (-1038 |t#1|) (-1271 |t#1|) (-10 -8 (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-404)) |%noBranch|) (-15 -1423 ((-112) $)) (-15 -2131 ((-112) $)) (-15 -1778 ((-112) $)) (-15 -3636 ((-833 (-921)) $)) (-15 -3129 ((-833 (-921)))) (-15 -3193 ((-771))) (IF (|has| |t#1| (-370)) (PROGN (-6 (-404)) (-15 -2699 ($ $)) (-15 -2699 ($ $ (-771)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2809 (|has| |#1| (-370)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-616 #0#) . T) ((-616 (-566)) . T) ((-616 |#1|) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-404) -2809 (|has| |#1| (-370)) (|has| |#1| (-145))) ((-454) . T) ((-558) . T) ((-646 #0#) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #0#) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #0#) . T) ((-640 |#1|) . T) ((-640 $) . T) ((-717 #0#) . T) ((-717 |#1|) . T) ((-717 $) . T) ((-726) . T) ((-920) . T) ((-1038 |#1|) . T) ((-1051 #0#) . T) ((-1051 |#1|) . T) ((-1051 $) . T) ((-1056 #0#) . T) ((-1056 |#1|) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1218) . T) ((-1271 |#1|) . T)) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-3095 (((-644 |#1|) $) 99)) (-3684 (($ $ (-771)) 103)) (-4175 (((-3 $ "failed") $ $) NIL)) (-3871 (($ $ $) NIL (|has| |#2| (-172))) (($ $ (-771)) NIL (|has| |#2| (-172)))) (-3012 (($) NIL T CONST)) (-2374 (($ $ |#1|) NIL) (($ $ (-819 |#1|)) NIL) (($ $ $) NIL)) (-4307 (((-3 (-819 |#1|) "failed") $) NIL) (((-3 (-893 |#1|) "failed") $) NIL)) (-4205 (((-819 |#1|) $) NIL) (((-893 |#1|) $) NIL)) (-1786 (($ $) 102)) (-1878 (((-3 $ "failed") $) NIL)) (-3653 (((-112) $) 91)) (-1852 (($ $) 94)) (-2235 (($ $ $ (-771)) 104)) (-3934 (((-112) $) NIL)) (-2614 (((-771) $) NIL)) (-2288 (((-644 $) $) NIL)) (-3264 (((-112) $) NIL)) (-3319 (($ (-819 |#1|) |#2|) NIL) (($ (-893 |#1|) |#2|) 29)) (-3000 (($ $) 121)) (-4131 (((-2 (|:| |k| (-819 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3806 (((-819 |#1|) $) NIL)) (-3137 (((-819 |#1|) $) NIL)) (-1301 (($ (-1 |#2| |#2|) $) NIL)) (-2274 (($ $ |#1|) NIL) (($ $ (-819 |#1|)) NIL) (($ $ $) NIL)) (-3651 (($ $ (-771)) 114 (|has| |#2| (-717 (-409 (-566)))))) (-3849 (((-2 (|:| |k| (-893 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1749 (((-893 |#1|) $) 84)) (-1763 ((|#2| $) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-2561 (($ $ (-771)) 111 (|has| |#2| (-717 (-409 (-566)))))) (-3636 (((-771) $) 100)) (-1466 (((-112) $) 85)) (-3704 ((|#2| $) 89)) (-3783 (((-862) $) 70) (($ (-566)) NIL) (($ |#2|) 60) (($ (-819 |#1|)) NIL) (($ |#1|) 72) (($ (-893 |#1|)) NIL) (($ (-664 |#1| |#2|)) 48) (((-1279 |#1| |#2|) $) 77) (((-1288 |#1| |#2|) $) 82)) (-4170 (((-644 |#2|) $) NIL)) (-2649 ((|#2| $ (-893 |#1|)) NIL)) (-1364 ((|#2| $ (-819 |#1|)) NIL) ((|#2| $ $) NIL)) (-2107 (((-771)) NIL T CONST)) (-3117 (((-112) $ $) NIL)) (-2479 (($) 21 T CONST)) (-4334 (($) 28 T CONST)) (-2935 (((-644 (-2 (|:| |k| (-893 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2125 (((-3 (-664 |#1| |#2|) "failed") $) 120)) (-2947 (((-112) $ $) 78)) (-3053 (($ $) 113) (($ $ $) 112)) (-3041 (($ $ $) 20)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 49) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-893 |#1|)) NIL))) -(((-1284 |#1| |#2|) (-13 (-1285 |#1| |#2|) (-384 |#2| (-893 |#1|)) (-10 -8 (-15 -3783 ($ (-664 |#1| |#2|))) (-15 -3783 ((-1279 |#1| |#2|) $)) (-15 -3783 ((-1288 |#1| |#2|) $)) (-15 -2125 ((-3 (-664 |#1| |#2|) "failed") $)) (-15 -2235 ($ $ $ (-771))) (IF (|has| |#2| (-717 (-409 (-566)))) (PROGN (-15 -2561 ($ $ (-771))) (-15 -3651 ($ $ (-771)))) |%noBranch|))) (-850) (-172)) (T -1284)) -((-3783 (*1 *1 *2) (-12 (-5 *2 (-664 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)) (-5 *1 (-1284 *3 *4)))) (-3783 (*1 *2 *1) (-12 (-5 *2 (-1279 *3 *4)) (-5 *1 (-1284 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)))) (-3783 (*1 *2 *1) (-12 (-5 *2 (-1288 *3 *4)) (-5 *1 (-1284 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)))) (-2125 (*1 *2 *1) (|partial| -12 (-5 *2 (-664 *3 *4)) (-5 *1 (-1284 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)))) (-2235 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-1284 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)))) (-2561 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-1284 *3 *4)) (-4 *4 (-717 (-409 (-566)))) (-4 *3 (-850)) (-4 *4 (-172)))) (-3651 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-1284 *3 *4)) (-4 *4 (-717 (-409 (-566)))) (-4 *3 (-850)) (-4 *4 (-172))))) -(-13 (-1285 |#1| |#2|) (-384 |#2| (-893 |#1|)) (-10 -8 (-15 -3783 ($ (-664 |#1| |#2|))) (-15 -3783 ((-1279 |#1| |#2|) $)) (-15 -3783 ((-1288 |#1| |#2|) $)) (-15 -2125 ((-3 (-664 |#1| |#2|) "failed") $)) (-15 -2235 ($ $ $ (-771))) (IF (|has| |#2| (-717 (-409 (-566)))) (PROGN (-15 -2561 ($ $ (-771))) (-15 -3651 ($ $ (-771)))) |%noBranch|))) -((-3007 (((-112) $ $) 7)) (-1788 (((-112) $) 17)) (-3095 (((-644 |#1|) $) 47)) (-3684 (($ $ (-771)) 80)) (-4175 (((-3 $ "failed") $ $) 20)) (-3871 (($ $ $) 50 (|has| |#2| (-172))) (($ $ (-771)) 49 (|has| |#2| (-172)))) (-3012 (($) 18 T CONST)) (-2374 (($ $ |#1|) 61) (($ $ (-819 |#1|)) 60) (($ $ $) 59)) (-4307 (((-3 (-819 |#1|) "failed") $) 71)) (-4205 (((-819 |#1|) $) 72)) (-1878 (((-3 $ "failed") $) 37)) (-3653 (((-112) $) 52)) (-1852 (($ $) 51)) (-3934 (((-112) $) 35)) (-3264 (((-112) $) 57)) (-3319 (($ (-819 |#1|) |#2|) 58)) (-3000 (($ $) 56)) (-4131 (((-2 (|:| |k| (-819 |#1|)) (|:| |c| |#2|)) $) 67)) (-3806 (((-819 |#1|) $) 68)) (-3137 (((-819 |#1|) $) 82)) (-1301 (($ (-1 |#2| |#2|) $) 48)) (-2274 (($ $ |#1|) 64) (($ $ (-819 |#1|)) 63) (($ $ $) 62)) (-4117 (((-1157) $) 10)) (-4035 (((-1119) $) 11)) (-3636 (((-771) $) 81)) (-1466 (((-112) $) 54)) (-3704 ((|#2| $) 53)) (-3783 (((-862) $) 12) (($ (-566)) 33) (($ |#2|) 75) (($ (-819 |#1|)) 70) (($ |#1|) 55)) (-1364 ((|#2| $ (-819 |#1|)) 66) ((|#2| $ $) 65)) (-2107 (((-771)) 32 T CONST)) (-3117 (((-112) $ $) 9)) (-2479 (($) 19 T CONST)) (-4334 (($) 34 T CONST)) (-2947 (((-112) $ $) 6)) (-3053 (($ $) 23) (($ $ $) 22)) (-3041 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) +((-4217 (*1 *2 *1) (-12 (-4 *1 (-1283 *3)) (-4 *3 (-365)) (-5 *2 (-112)))) (-1972 (*1 *2 *1) (-12 (-4 *1 (-1283 *3)) (-4 *3 (-365)) (-5 *2 (-112)))) (-3653 (*1 *2 *1) (-12 (-4 *1 (-1283 *3)) (-4 *3 (-365)) (-5 *2 (-112)))) (-3902 (*1 *2 *1) (-12 (-4 *1 (-1283 *3)) (-4 *3 (-365)) (-5 *2 (-833 (-921))))) (-1686 (*1 *2) (-12 (-4 *1 (-1283 *3)) (-4 *3 (-365)) (-5 *2 (-833 (-921))))) (-2818 (*1 *2) (-12 (-4 *1 (-1283 *3)) (-4 *3 (-365)) (-5 *2 (-771)))) (-2198 (*1 *1 *1) (-12 (-4 *1 (-1283 *2)) (-4 *2 (-365)) (-4 *2 (-370)))) (-2198 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-1283 *3)) (-4 *3 (-365)) (-4 *3 (-370))))) +(-13 (-365) (-1038 |t#1|) (-1271 |t#1|) (-10 -8 (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-404)) |%noBranch|) (-15 -4217 ((-112) $)) (-15 -1972 ((-112) $)) (-15 -3653 ((-112) $)) (-15 -3902 ((-833 (-921)) $)) (-15 -1686 ((-833 (-921)))) (-15 -2818 ((-771))) (IF (|has| |t#1| (-370)) (PROGN (-6 (-404)) (-15 -2198 ($ $)) (-15 -2198 ($ $ (-771)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2768 (|has| |#1| (-370)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-616 #0#) . T) ((-616 (-566)) . T) ((-616 |#1|) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-404) -2768 (|has| |#1| (-370)) (|has| |#1| (-145))) ((-454) . T) ((-558) . T) ((-646 #0#) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #0#) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #0#) . T) ((-640 |#1|) . T) ((-640 $) . T) ((-717 #0#) . T) ((-717 |#1|) . T) ((-717 $) . T) ((-726) . T) ((-920) . T) ((-1038 |#1|) . T) ((-1051 #0#) . T) ((-1051 |#1|) . T) ((-1051 $) . T) ((-1056 #0#) . T) ((-1056 |#1|) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1218) . T) ((-1271 |#1|) . T)) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-4111 (((-644 |#1|) $) 99)) (-3990 (($ $ (-771)) 103)) (-3967 (((-3 $ "failed") $ $) NIL)) (-1324 (($ $ $) NIL (|has| |#2| (-172))) (($ $ (-771)) NIL (|has| |#2| (-172)))) (-2463 (($) NIL T CONST)) (-3356 (($ $ |#1|) NIL) (($ $ (-819 |#1|)) NIL) (($ $ $) NIL)) (-2229 (((-3 (-819 |#1|) "failed") $) NIL) (((-3 (-893 |#1|) "failed") $) NIL)) (-4158 (((-819 |#1|) $) NIL) (((-893 |#1|) $) NIL)) (-2814 (($ $) 102)) (-3245 (((-3 $ "failed") $) NIL)) (-4177 (((-112) $) 91)) (-2291 (($ $) 94)) (-2014 (($ $ $ (-771)) 104)) (-2389 (((-112) $) NIL)) (-3039 (((-771) $) NIL)) (-1587 (((-644 $) $) NIL)) (-2497 (((-112) $) NIL)) (-4325 (($ (-819 |#1|) |#2|) NIL) (($ (-893 |#1|) |#2|) 29)) (-2795 (($ $) 121)) (-2270 (((-2 (|:| |k| (-819 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3342 (((-819 |#1|) $) NIL)) (-4340 (((-819 |#1|) $) NIL)) (-2319 (($ (-1 |#2| |#2|) $) NIL)) (-3722 (($ $ |#1|) NIL) (($ $ (-819 |#1|)) NIL) (($ $ $) NIL)) (-3619 (($ $ (-771)) 114 (|has| |#2| (-717 (-409 (-566)))))) (-1978 (((-2 (|:| |k| (-893 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2784 (((-893 |#1|) $) 84)) (-2794 ((|#2| $) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3521 (($ $ (-771)) 111 (|has| |#2| (-717 (-409 (-566)))))) (-3902 (((-771) $) 100)) (-3705 (((-112) $) 85)) (-1623 ((|#2| $) 89)) (-3152 (((-862) $) 70) (($ (-566)) NIL) (($ |#2|) 60) (($ (-819 |#1|)) NIL) (($ |#1|) 72) (($ (-893 |#1|)) NIL) (($ (-664 |#1| |#2|)) 48) (((-1279 |#1| |#2|) $) 77) (((-1288 |#1| |#2|) $) 82)) (-1643 (((-644 |#2|) $) NIL)) (-2271 ((|#2| $ (-893 |#1|)) NIL)) (-2397 ((|#2| $ (-819 |#1|)) NIL) ((|#2| $ $) NIL)) (-2593 (((-771)) NIL T CONST)) (-3044 (((-112) $ $) NIL)) (-4356 (($) 21 T CONST)) (-4366 (($) 28 T CONST)) (-2203 (((-644 (-2 (|:| |k| (-893 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2694 (((-3 (-664 |#1| |#2|) "failed") $) 120)) (-2914 (((-112) $ $) 78)) (-3012 (($ $) 113) (($ $ $) 112)) (-3002 (($ $ $) 20)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 49) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-893 |#1|)) NIL))) +(((-1284 |#1| |#2|) (-13 (-1285 |#1| |#2|) (-384 |#2| (-893 |#1|)) (-10 -8 (-15 -3152 ($ (-664 |#1| |#2|))) (-15 -3152 ((-1279 |#1| |#2|) $)) (-15 -3152 ((-1288 |#1| |#2|) $)) (-15 -2694 ((-3 (-664 |#1| |#2|) "failed") $)) (-15 -2014 ($ $ $ (-771))) (IF (|has| |#2| (-717 (-409 (-566)))) (PROGN (-15 -3521 ($ $ (-771))) (-15 -3619 ($ $ (-771)))) |%noBranch|))) (-850) (-172)) (T -1284)) +((-3152 (*1 *1 *2) (-12 (-5 *2 (-664 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)) (-5 *1 (-1284 *3 *4)))) (-3152 (*1 *2 *1) (-12 (-5 *2 (-1279 *3 *4)) (-5 *1 (-1284 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)))) (-3152 (*1 *2 *1) (-12 (-5 *2 (-1288 *3 *4)) (-5 *1 (-1284 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)))) (-2694 (*1 *2 *1) (|partial| -12 (-5 *2 (-664 *3 *4)) (-5 *1 (-1284 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)))) (-2014 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-1284 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)))) (-3521 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-1284 *3 *4)) (-4 *4 (-717 (-409 (-566)))) (-4 *3 (-850)) (-4 *4 (-172)))) (-3619 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-1284 *3 *4)) (-4 *4 (-717 (-409 (-566)))) (-4 *3 (-850)) (-4 *4 (-172))))) +(-13 (-1285 |#1| |#2|) (-384 |#2| (-893 |#1|)) (-10 -8 (-15 -3152 ($ (-664 |#1| |#2|))) (-15 -3152 ((-1279 |#1| |#2|) $)) (-15 -3152 ((-1288 |#1| |#2|) $)) (-15 -2694 ((-3 (-664 |#1| |#2|) "failed") $)) (-15 -2014 ($ $ $ (-771))) (IF (|has| |#2| (-717 (-409 (-566)))) (PROGN (-15 -3521 ($ $ (-771))) (-15 -3619 ($ $ (-771)))) |%noBranch|))) +((-2988 (((-112) $ $) 7)) (-3230 (((-112) $) 17)) (-4111 (((-644 |#1|) $) 47)) (-3990 (($ $ (-771)) 80)) (-3967 (((-3 $ "failed") $ $) 20)) (-1324 (($ $ $) 50 (|has| |#2| (-172))) (($ $ (-771)) 49 (|has| |#2| (-172)))) (-2463 (($) 18 T CONST)) (-3356 (($ $ |#1|) 61) (($ $ (-819 |#1|)) 60) (($ $ $) 59)) (-2229 (((-3 (-819 |#1|) "failed") $) 71)) (-4158 (((-819 |#1|) $) 72)) (-3245 (((-3 $ "failed") $) 37)) (-4177 (((-112) $) 52)) (-2291 (($ $) 51)) (-2389 (((-112) $) 35)) (-2497 (((-112) $) 57)) (-4325 (($ (-819 |#1|) |#2|) 58)) (-2795 (($ $) 56)) (-2270 (((-2 (|:| |k| (-819 |#1|)) (|:| |c| |#2|)) $) 67)) (-3342 (((-819 |#1|) $) 68)) (-4340 (((-819 |#1|) $) 82)) (-2319 (($ (-1 |#2| |#2|) $) 48)) (-3722 (($ $ |#1|) 64) (($ $ (-819 |#1|)) 63) (($ $ $) 62)) (-3380 (((-1157) $) 10)) (-4072 (((-1119) $) 11)) (-3902 (((-771) $) 81)) (-3705 (((-112) $) 54)) (-1623 ((|#2| $) 53)) (-3152 (((-862) $) 12) (($ (-566)) 33) (($ |#2|) 75) (($ (-819 |#1|)) 70) (($ |#1|) 55)) (-2397 ((|#2| $ (-819 |#1|)) 66) ((|#2| $ $) 65)) (-2593 (((-771)) 32 T CONST)) (-3044 (((-112) $ $) 9)) (-4356 (($) 19 T CONST)) (-4366 (($) 34 T CONST)) (-2914 (((-112) $ $) 6)) (-3012 (($ $) 23) (($ $ $) 22)) (-3002 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) (((-1285 |#1| |#2|) (-140) (-850) (-1049)) (T -1285)) -((-3137 (*1 *2 *1) (-12 (-4 *1 (-1285 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) (-5 *2 (-819 *3)))) (-3636 (*1 *2 *1) (-12 (-4 *1 (-1285 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) (-5 *2 (-771)))) (-3684 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-1285 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049))))) -(-13 (-1281 |t#1| |t#2|) (-10 -8 (-15 -3137 ((-819 |t#1|) $)) (-15 -3636 ((-771) $)) (-15 -3684 ($ $ (-771))))) +((-4340 (*1 *2 *1) (-12 (-4 *1 (-1285 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) (-5 *2 (-819 *3)))) (-3902 (*1 *2 *1) (-12 (-4 *1 (-1285 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) (-5 *2 (-771)))) (-3990 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-1285 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049))))) +(-13 (-1281 |t#1| |t#2|) (-10 -8 (-15 -4340 ((-819 |t#1|) $)) (-15 -3902 ((-771) $)) (-15 -3990 ($ $ (-771))))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-616 (-566)) . T) ((-616 #0=(-819 |#1|)) . T) ((-616 |#2|) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 |#2|) . T) ((-646 $) . T) ((-648 |#2|) . T) ((-648 $) . T) ((-640 |#2|) |has| |#2| (-172)) ((-717 |#2|) |has| |#2| (-172)) ((-726) . T) ((-1038 #0#) . T) ((-1051 |#2|) . T) ((-1056 |#2|) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1278 |#2|) . T) ((-1281 |#1| |#2|) . T)) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-3095 (((-644 (-1175)) $) NIL)) (-3528 (($ (-1279 (-1175) |#1|)) NIL)) (-3684 (($ $ (-771)) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-3871 (($ $ $) NIL (|has| |#1| (-172))) (($ $ (-771)) NIL (|has| |#1| (-172)))) (-3012 (($) NIL T CONST)) (-2374 (($ $ (-1175)) NIL) (($ $ (-819 (-1175))) NIL) (($ $ $) NIL)) (-4307 (((-3 (-819 (-1175)) "failed") $) NIL)) (-4205 (((-819 (-1175)) $) NIL)) (-1878 (((-3 $ "failed") $) NIL)) (-3653 (((-112) $) NIL)) (-1852 (($ $) NIL)) (-3934 (((-112) $) NIL)) (-3264 (((-112) $) NIL)) (-3319 (($ (-819 (-1175)) |#1|) NIL)) (-3000 (($ $) NIL)) (-4131 (((-2 (|:| |k| (-819 (-1175))) (|:| |c| |#1|)) $) NIL)) (-3806 (((-819 (-1175)) $) NIL)) (-3137 (((-819 (-1175)) $) NIL)) (-1301 (($ (-1 |#1| |#1|) $) NIL)) (-2274 (($ $ (-1175)) NIL) (($ $ (-819 (-1175))) NIL) (($ $ $) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-2671 (((-1279 (-1175) |#1|) $) NIL)) (-3636 (((-771) $) NIL)) (-1466 (((-112) $) NIL)) (-3704 ((|#1| $) NIL)) (-3783 (((-862) $) NIL) (($ (-566)) NIL) (($ |#1|) NIL) (($ (-819 (-1175))) NIL) (($ (-1175)) NIL)) (-1364 ((|#1| $ (-819 (-1175))) NIL) ((|#1| $ $) NIL)) (-2107 (((-771)) NIL T CONST)) (-3117 (((-112) $ $) NIL)) (-2479 (($) NIL T CONST)) (-1717 (((-644 (-2 (|:| |k| (-1175)) (|:| |c| $))) $) NIL)) (-4334 (($) NIL T CONST)) (-2947 (((-112) $ $) NIL)) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1175) $) NIL))) -(((-1286 |#1|) (-13 (-1285 (-1175) |#1|) (-10 -8 (-15 -2671 ((-1279 (-1175) |#1|) $)) (-15 -3528 ($ (-1279 (-1175) |#1|))) (-15 -1717 ((-644 (-2 (|:| |k| (-1175)) (|:| |c| $))) $)))) (-1049)) (T -1286)) -((-2671 (*1 *2 *1) (-12 (-5 *2 (-1279 (-1175) *3)) (-5 *1 (-1286 *3)) (-4 *3 (-1049)))) (-3528 (*1 *1 *2) (-12 (-5 *2 (-1279 (-1175) *3)) (-4 *3 (-1049)) (-5 *1 (-1286 *3)))) (-1717 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |k| (-1175)) (|:| |c| (-1286 *3))))) (-5 *1 (-1286 *3)) (-4 *3 (-1049))))) -(-13 (-1285 (-1175) |#1|) (-10 -8 (-15 -2671 ((-1279 (-1175) |#1|) $)) (-15 -3528 ($ (-1279 (-1175) |#1|))) (-15 -1717 ((-644 (-2 (|:| |k| (-1175)) (|:| |c| $))) $)))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) NIL)) (-4175 (((-3 $ "failed") $ $) NIL)) (-3012 (($) NIL T CONST)) (-4307 (((-3 |#2| "failed") $) NIL)) (-4205 ((|#2| $) NIL)) (-1786 (($ $) NIL)) (-1878 (((-3 $ "failed") $) 42)) (-3653 (((-112) $) 35)) (-1852 (($ $) 37)) (-3934 (((-112) $) NIL)) (-2614 (((-771) $) NIL)) (-2288 (((-644 $) $) NIL)) (-3264 (((-112) $) NIL)) (-3319 (($ |#2| |#1|) NIL)) (-3806 ((|#2| $) 24)) (-3137 ((|#2| $) 22)) (-1301 (($ (-1 |#1| |#1|) $) NIL)) (-3849 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-1749 ((|#2| $) NIL)) (-1763 ((|#1| $) NIL)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-1466 (((-112) $) 32)) (-3704 ((|#1| $) 33)) (-3783 (((-862) $) 65) (($ (-566)) 46) (($ |#1|) 41) (($ |#2|) NIL)) (-4170 (((-644 |#1|) $) NIL)) (-2649 ((|#1| $ |#2|) NIL)) (-1364 ((|#1| $ |#2|) 28)) (-2107 (((-771)) 14 T CONST)) (-3117 (((-112) $ $) NIL)) (-2479 (($) 29 T CONST)) (-4334 (($) 11 T CONST)) (-2935 (((-644 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2947 (((-112) $ $) 30)) (-3065 (($ $ |#1|) 67 (|has| |#1| (-365)))) (-3053 (($ $) NIL) (($ $ $) NIL)) (-3041 (($ $ $) 50)) (** (($ $ (-921)) NIL) (($ $ (-771)) 52)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 51) (($ |#1| $) 47) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-3018 (((-771) $) 16))) -(((-1287 |#1| |#2|) (-13 (-1049) (-1278 |#1|) (-384 |#1| |#2|) (-616 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3018 ((-771) $)) (-15 -3137 (|#2| $)) (-15 -3806 (|#2| $)) (-15 -1786 ($ $)) (-15 -1364 (|#1| $ |#2|)) (-15 -1466 ((-112) $)) (-15 -3704 (|#1| $)) (-15 -3653 ((-112) $)) (-15 -1852 ($ $)) (-15 -1301 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-365)) (-15 -3065 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4407)) (-6 -4407) |%noBranch|) (IF (|has| |#1| (-6 -4411)) (-6 -4411) |%noBranch|) (IF (|has| |#1| (-6 -4412)) (-6 -4412) |%noBranch|))) (-1049) (-846)) (T -1287)) -((* (*1 *1 *1 *2) (-12 (-5 *1 (-1287 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-846)))) (-1786 (*1 *1 *1) (-12 (-5 *1 (-1287 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-846)))) (-1301 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1049)) (-5 *1 (-1287 *3 *4)) (-4 *4 (-846)))) (-3018 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-1287 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-846)))) (-3137 (*1 *2 *1) (-12 (-4 *2 (-846)) (-5 *1 (-1287 *3 *2)) (-4 *3 (-1049)))) (-3806 (*1 *2 *1) (-12 (-4 *2 (-846)) (-5 *1 (-1287 *3 *2)) (-4 *3 (-1049)))) (-1364 (*1 *2 *1 *3) (-12 (-4 *2 (-1049)) (-5 *1 (-1287 *2 *3)) (-4 *3 (-846)))) (-1466 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1287 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-846)))) (-3704 (*1 *2 *1) (-12 (-4 *2 (-1049)) (-5 *1 (-1287 *2 *3)) (-4 *3 (-846)))) (-3653 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1287 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-846)))) (-1852 (*1 *1 *1) (-12 (-5 *1 (-1287 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-846)))) (-3065 (*1 *1 *1 *2) (-12 (-5 *1 (-1287 *2 *3)) (-4 *2 (-365)) (-4 *2 (-1049)) (-4 *3 (-846))))) -(-13 (-1049) (-1278 |#1|) (-384 |#1| |#2|) (-616 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3018 ((-771) $)) (-15 -3137 (|#2| $)) (-15 -3806 (|#2| $)) (-15 -1786 ($ $)) (-15 -1364 (|#1| $ |#2|)) (-15 -1466 ((-112) $)) (-15 -3704 (|#1| $)) (-15 -3653 ((-112) $)) (-15 -1852 ($ $)) (-15 -1301 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-365)) (-15 -3065 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4407)) (-6 -4407) |%noBranch|) (IF (|has| |#1| (-6 -4411)) (-6 -4411) |%noBranch|) (IF (|has| |#1| (-6 -4412)) (-6 -4412) |%noBranch|))) -((-3007 (((-112) $ $) 27)) (-1788 (((-112) $) NIL)) (-3095 (((-644 |#1|) $) 132)) (-3528 (($ (-1279 |#1| |#2|)) 50)) (-3684 (($ $ (-771)) 38)) (-4175 (((-3 $ "failed") $ $) NIL)) (-3871 (($ $ $) 54 (|has| |#2| (-172))) (($ $ (-771)) 52 (|has| |#2| (-172)))) (-3012 (($) NIL T CONST)) (-2374 (($ $ |#1|) 114) (($ $ (-819 |#1|)) 115) (($ $ $) 26)) (-4307 (((-3 (-819 |#1|) "failed") $) NIL)) (-4205 (((-819 |#1|) $) NIL)) (-1878 (((-3 $ "failed") $) 122)) (-3653 (((-112) $) 117)) (-1852 (($ $) 118)) (-3934 (((-112) $) NIL)) (-3264 (((-112) $) NIL)) (-3319 (($ (-819 |#1|) |#2|) 20)) (-3000 (($ $) NIL)) (-4131 (((-2 (|:| |k| (-819 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3806 (((-819 |#1|) $) 123)) (-3137 (((-819 |#1|) $) 126)) (-1301 (($ (-1 |#2| |#2|) $) 131)) (-2274 (($ $ |#1|) 112) (($ $ (-819 |#1|)) 113) (($ $ $) 62)) (-4117 (((-1157) $) NIL)) (-4035 (((-1119) $) NIL)) (-2671 (((-1279 |#1| |#2|) $) 94)) (-3636 (((-771) $) 129)) (-1466 (((-112) $) 81)) (-3704 ((|#2| $) 32)) (-3783 (((-862) $) 73) (($ (-566)) 87) (($ |#2|) 85) (($ (-819 |#1|)) 18) (($ |#1|) 84)) (-1364 ((|#2| $ (-819 |#1|)) 116) ((|#2| $ $) 28)) (-2107 (((-771)) 120 T CONST)) (-3117 (((-112) $ $) NIL)) (-2479 (($) 15 T CONST)) (-1717 (((-644 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59)) (-4334 (($) 33 T CONST)) (-2947 (((-112) $ $) 14)) (-3053 (($ $) 98) (($ $ $) 101)) (-3041 (($ $ $) 61)) (** (($ $ (-921)) NIL) (($ $ (-771)) 55)) (* (($ (-921) $) NIL) (($ (-771) $) 53) (($ (-566) $) 106) (($ $ $) 22) (($ |#2| $) 19) (($ $ |#2|) 21) (($ |#1| $) 92))) -(((-1288 |#1| |#2|) (-13 (-1285 |#1| |#2|) (-10 -8 (-15 -2671 ((-1279 |#1| |#2|) $)) (-15 -3528 ($ (-1279 |#1| |#2|))) (-15 -1717 ((-644 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-850) (-1049)) (T -1288)) -((-2671 (*1 *2 *1) (-12 (-5 *2 (-1279 *3 *4)) (-5 *1 (-1288 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)))) (-3528 (*1 *1 *2) (-12 (-5 *2 (-1279 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) (-5 *1 (-1288 *3 *4)))) (-1717 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |k| *3) (|:| |c| (-1288 *3 *4))))) (-5 *1 (-1288 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049))))) -(-13 (-1285 |#1| |#2|) (-10 -8 (-15 -2671 ((-1279 |#1| |#2|) $)) (-15 -3528 ($ (-1279 |#1| |#2|))) (-15 -1717 ((-644 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) -((-2509 (((-644 (-1155 |#1|)) (-1 (-644 (-1155 |#1|)) (-644 (-1155 |#1|))) (-566)) 20) (((-1155 |#1|) (-1 (-1155 |#1|) (-1155 |#1|))) 13))) -(((-1289 |#1|) (-10 -7 (-15 -2509 ((-1155 |#1|) (-1 (-1155 |#1|) (-1155 |#1|)))) (-15 -2509 ((-644 (-1155 |#1|)) (-1 (-644 (-1155 |#1|)) (-644 (-1155 |#1|))) (-566)))) (-1214)) (T -1289)) -((-2509 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-644 (-1155 *5)) (-644 (-1155 *5)))) (-5 *4 (-566)) (-5 *2 (-644 (-1155 *5))) (-5 *1 (-1289 *5)) (-4 *5 (-1214)))) (-2509 (*1 *2 *3) (-12 (-5 *3 (-1 (-1155 *4) (-1155 *4))) (-5 *2 (-1155 *4)) (-5 *1 (-1289 *4)) (-4 *4 (-1214))))) -(-10 -7 (-15 -2509 ((-1155 |#1|) (-1 (-1155 |#1|) (-1155 |#1|)))) (-15 -2509 ((-644 (-1155 |#1|)) (-1 (-644 (-1155 |#1|)) (-644 (-1155 |#1|))) (-566)))) -((-4067 (((-644 (-2 (|:| -2761 (-1171 |#1|)) (|:| -2154 (-644 (-952 |#1|))))) (-644 (-952 |#1|))) 174) (((-644 (-2 (|:| -2761 (-1171 |#1|)) (|:| -2154 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112)) 173) (((-644 (-2 (|:| -2761 (-1171 |#1|)) (|:| -2154 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112) (-112)) 172) (((-644 (-2 (|:| -2761 (-1171 |#1|)) (|:| -2154 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112) (-112) (-112)) 171) (((-644 (-2 (|:| -2761 (-1171 |#1|)) (|:| -2154 (-644 (-952 |#1|))))) (-1046 |#1| |#2|)) 156)) (-2323 (((-644 (-1046 |#1| |#2|)) (-644 (-952 |#1|))) 85) (((-644 (-1046 |#1| |#2|)) (-644 (-952 |#1|)) (-112)) 84) (((-644 (-1046 |#1| |#2|)) (-644 (-952 |#1|)) (-112) (-112)) 83)) (-3184 (((-644 (-1145 |#1| (-533 (-864 |#3|)) (-864 |#3|) (-780 |#1| (-864 |#3|)))) (-1046 |#1| |#2|)) 73)) (-3620 (((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|))) 140) (((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112)) 139) (((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112) (-112)) 138) (((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112) (-112) (-112)) 137) (((-644 (-644 (-1024 (-409 |#1|)))) (-1046 |#1| |#2|)) 132)) (-3159 (((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|))) 145) (((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112)) 144) (((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112) (-112)) 143) (((-644 (-644 (-1024 (-409 |#1|)))) (-1046 |#1| |#2|)) 142)) (-1348 (((-644 (-780 |#1| (-864 |#3|))) (-1145 |#1| (-533 (-864 |#3|)) (-864 |#3|) (-780 |#1| (-864 |#3|)))) 111) (((-1171 (-1024 (-409 |#1|))) (-1171 |#1|)) 102) (((-952 (-1024 (-409 |#1|))) (-780 |#1| (-864 |#3|))) 109) (((-952 (-1024 (-409 |#1|))) (-952 |#1|)) 107) (((-780 |#1| (-864 |#3|)) (-780 |#1| (-864 |#2|))) 33))) -(((-1290 |#1| |#2| |#3|) (-10 -7 (-15 -2323 ((-644 (-1046 |#1| |#2|)) (-644 (-952 |#1|)) (-112) (-112))) (-15 -2323 ((-644 (-1046 |#1| |#2|)) (-644 (-952 |#1|)) (-112))) (-15 -2323 ((-644 (-1046 |#1| |#2|)) (-644 (-952 |#1|)))) (-15 -4067 ((-644 (-2 (|:| -2761 (-1171 |#1|)) (|:| -2154 (-644 (-952 |#1|))))) (-1046 |#1| |#2|))) (-15 -4067 ((-644 (-2 (|:| -2761 (-1171 |#1|)) (|:| -2154 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112) (-112) (-112))) (-15 -4067 ((-644 (-2 (|:| -2761 (-1171 |#1|)) (|:| -2154 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112) (-112))) (-15 -4067 ((-644 (-2 (|:| -2761 (-1171 |#1|)) (|:| -2154 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112))) (-15 -4067 ((-644 (-2 (|:| -2761 (-1171 |#1|)) (|:| -2154 (-644 (-952 |#1|))))) (-644 (-952 |#1|)))) (-15 -3620 ((-644 (-644 (-1024 (-409 |#1|)))) (-1046 |#1| |#2|))) (-15 -3620 ((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112) (-112) (-112))) (-15 -3620 ((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112) (-112))) (-15 -3620 ((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112))) (-15 -3620 ((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)))) (-15 -3159 ((-644 (-644 (-1024 (-409 |#1|)))) (-1046 |#1| |#2|))) (-15 -3159 ((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112) (-112))) (-15 -3159 ((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112))) (-15 -3159 ((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)))) (-15 -3184 ((-644 (-1145 |#1| (-533 (-864 |#3|)) (-864 |#3|) (-780 |#1| (-864 |#3|)))) (-1046 |#1| |#2|))) (-15 -1348 ((-780 |#1| (-864 |#3|)) (-780 |#1| (-864 |#2|)))) (-15 -1348 ((-952 (-1024 (-409 |#1|))) (-952 |#1|))) (-15 -1348 ((-952 (-1024 (-409 |#1|))) (-780 |#1| (-864 |#3|)))) (-15 -1348 ((-1171 (-1024 (-409 |#1|))) (-1171 |#1|))) (-15 -1348 ((-644 (-780 |#1| (-864 |#3|))) (-1145 |#1| (-533 (-864 |#3|)) (-864 |#3|) (-780 |#1| (-864 |#3|)))))) (-13 (-848) (-308) (-147) (-1022)) (-644 (-1175)) (-644 (-1175))) (T -1290)) -((-1348 (*1 *2 *3) (-12 (-5 *3 (-1145 *4 (-533 (-864 *6)) (-864 *6) (-780 *4 (-864 *6)))) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-14 *6 (-644 (-1175))) (-5 *2 (-644 (-780 *4 (-864 *6)))) (-5 *1 (-1290 *4 *5 *6)) (-14 *5 (-644 (-1175))))) (-1348 (*1 *2 *3) (-12 (-5 *3 (-1171 *4)) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-1171 (-1024 (-409 *4)))) (-5 *1 (-1290 *4 *5 *6)) (-14 *5 (-644 (-1175))) (-14 *6 (-644 (-1175))))) (-1348 (*1 *2 *3) (-12 (-5 *3 (-780 *4 (-864 *6))) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-14 *6 (-644 (-1175))) (-5 *2 (-952 (-1024 (-409 *4)))) (-5 *1 (-1290 *4 *5 *6)) (-14 *5 (-644 (-1175))))) (-1348 (*1 *2 *3) (-12 (-5 *3 (-952 *4)) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-952 (-1024 (-409 *4)))) (-5 *1 (-1290 *4 *5 *6)) (-14 *5 (-644 (-1175))) (-14 *6 (-644 (-1175))))) (-1348 (*1 *2 *3) (-12 (-5 *3 (-780 *4 (-864 *5))) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-14 *5 (-644 (-1175))) (-5 *2 (-780 *4 (-864 *6))) (-5 *1 (-1290 *4 *5 *6)) (-14 *6 (-644 (-1175))))) (-3184 (*1 *2 *3) (-12 (-5 *3 (-1046 *4 *5)) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-14 *5 (-644 (-1175))) (-5 *2 (-644 (-1145 *4 (-533 (-864 *6)) (-864 *6) (-780 *4 (-864 *6))))) (-5 *1 (-1290 *4 *5 *6)) (-14 *6 (-644 (-1175))))) (-3159 (*1 *2 *3) (-12 (-5 *3 (-644 (-952 *4))) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-644 (-644 (-1024 (-409 *4))))) (-5 *1 (-1290 *4 *5 *6)) (-14 *5 (-644 (-1175))) (-14 *6 (-644 (-1175))))) (-3159 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-644 (-644 (-1024 (-409 *5))))) (-5 *1 (-1290 *5 *6 *7)) (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) (-3159 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-644 (-644 (-1024 (-409 *5))))) (-5 *1 (-1290 *5 *6 *7)) (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) (-3159 (*1 *2 *3) (-12 (-5 *3 (-1046 *4 *5)) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-14 *5 (-644 (-1175))) (-5 *2 (-644 (-644 (-1024 (-409 *4))))) (-5 *1 (-1290 *4 *5 *6)) (-14 *6 (-644 (-1175))))) (-3620 (*1 *2 *3) (-12 (-5 *3 (-644 (-952 *4))) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-644 (-644 (-1024 (-409 *4))))) (-5 *1 (-1290 *4 *5 *6)) (-14 *5 (-644 (-1175))) (-14 *6 (-644 (-1175))))) (-3620 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-644 (-644 (-1024 (-409 *5))))) (-5 *1 (-1290 *5 *6 *7)) (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) (-3620 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-644 (-644 (-1024 (-409 *5))))) (-5 *1 (-1290 *5 *6 *7)) (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) (-3620 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-644 (-644 (-1024 (-409 *5))))) (-5 *1 (-1290 *5 *6 *7)) (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) (-3620 (*1 *2 *3) (-12 (-5 *3 (-1046 *4 *5)) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-14 *5 (-644 (-1175))) (-5 *2 (-644 (-644 (-1024 (-409 *4))))) (-5 *1 (-1290 *4 *5 *6)) (-14 *6 (-644 (-1175))))) (-4067 (*1 *2 *3) (-12 (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-644 (-2 (|:| -2761 (-1171 *4)) (|:| -2154 (-644 (-952 *4)))))) (-5 *1 (-1290 *4 *5 *6)) (-5 *3 (-644 (-952 *4))) (-14 *5 (-644 (-1175))) (-14 *6 (-644 (-1175))))) (-4067 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-644 (-2 (|:| -2761 (-1171 *5)) (|:| -2154 (-644 (-952 *5)))))) (-5 *1 (-1290 *5 *6 *7)) (-5 *3 (-644 (-952 *5))) (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) (-4067 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-644 (-2 (|:| -2761 (-1171 *5)) (|:| -2154 (-644 (-952 *5)))))) (-5 *1 (-1290 *5 *6 *7)) (-5 *3 (-644 (-952 *5))) (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) (-4067 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-644 (-2 (|:| -2761 (-1171 *5)) (|:| -2154 (-644 (-952 *5)))))) (-5 *1 (-1290 *5 *6 *7)) (-5 *3 (-644 (-952 *5))) (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) (-4067 (*1 *2 *3) (-12 (-5 *3 (-1046 *4 *5)) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-14 *5 (-644 (-1175))) (-5 *2 (-644 (-2 (|:| -2761 (-1171 *4)) (|:| -2154 (-644 (-952 *4)))))) (-5 *1 (-1290 *4 *5 *6)) (-14 *6 (-644 (-1175))))) (-2323 (*1 *2 *3) (-12 (-5 *3 (-644 (-952 *4))) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-644 (-1046 *4 *5))) (-5 *1 (-1290 *4 *5 *6)) (-14 *5 (-644 (-1175))) (-14 *6 (-644 (-1175))))) (-2323 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-644 (-1046 *5 *6))) (-5 *1 (-1290 *5 *6 *7)) (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) (-2323 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-644 (-1046 *5 *6))) (-5 *1 (-1290 *5 *6 *7)) (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175)))))) -(-10 -7 (-15 -2323 ((-644 (-1046 |#1| |#2|)) (-644 (-952 |#1|)) (-112) (-112))) (-15 -2323 ((-644 (-1046 |#1| |#2|)) (-644 (-952 |#1|)) (-112))) (-15 -2323 ((-644 (-1046 |#1| |#2|)) (-644 (-952 |#1|)))) (-15 -4067 ((-644 (-2 (|:| -2761 (-1171 |#1|)) (|:| -2154 (-644 (-952 |#1|))))) (-1046 |#1| |#2|))) (-15 -4067 ((-644 (-2 (|:| -2761 (-1171 |#1|)) (|:| -2154 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112) (-112) (-112))) (-15 -4067 ((-644 (-2 (|:| -2761 (-1171 |#1|)) (|:| -2154 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112) (-112))) (-15 -4067 ((-644 (-2 (|:| -2761 (-1171 |#1|)) (|:| -2154 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112))) (-15 -4067 ((-644 (-2 (|:| -2761 (-1171 |#1|)) (|:| -2154 (-644 (-952 |#1|))))) (-644 (-952 |#1|)))) (-15 -3620 ((-644 (-644 (-1024 (-409 |#1|)))) (-1046 |#1| |#2|))) (-15 -3620 ((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112) (-112) (-112))) (-15 -3620 ((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112) (-112))) (-15 -3620 ((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112))) (-15 -3620 ((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)))) (-15 -3159 ((-644 (-644 (-1024 (-409 |#1|)))) (-1046 |#1| |#2|))) (-15 -3159 ((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112) (-112))) (-15 -3159 ((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112))) (-15 -3159 ((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)))) (-15 -3184 ((-644 (-1145 |#1| (-533 (-864 |#3|)) (-864 |#3|) (-780 |#1| (-864 |#3|)))) (-1046 |#1| |#2|))) (-15 -1348 ((-780 |#1| (-864 |#3|)) (-780 |#1| (-864 |#2|)))) (-15 -1348 ((-952 (-1024 (-409 |#1|))) (-952 |#1|))) (-15 -1348 ((-952 (-1024 (-409 |#1|))) (-780 |#1| (-864 |#3|)))) (-15 -1348 ((-1171 (-1024 (-409 |#1|))) (-1171 |#1|))) (-15 -1348 ((-644 (-780 |#1| (-864 |#3|))) (-1145 |#1| (-533 (-864 |#3|)) (-864 |#3|) (-780 |#1| (-864 |#3|)))))) -((-2047 (((-3 (-1264 (-409 (-566))) "failed") (-1264 |#1|) |#1|) 21)) (-1931 (((-112) (-1264 |#1|)) 12)) (-2162 (((-3 (-1264 (-566)) "failed") (-1264 |#1|)) 16))) -(((-1291 |#1|) (-10 -7 (-15 -1931 ((-112) (-1264 |#1|))) (-15 -2162 ((-3 (-1264 (-566)) "failed") (-1264 |#1|))) (-15 -2047 ((-3 (-1264 (-409 (-566))) "failed") (-1264 |#1|) |#1|))) (-639 (-566))) (T -1291)) -((-2047 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1264 *4)) (-4 *4 (-639 (-566))) (-5 *2 (-1264 (-409 (-566)))) (-5 *1 (-1291 *4)))) (-2162 (*1 *2 *3) (|partial| -12 (-5 *3 (-1264 *4)) (-4 *4 (-639 (-566))) (-5 *2 (-1264 (-566))) (-5 *1 (-1291 *4)))) (-1931 (*1 *2 *3) (-12 (-5 *3 (-1264 *4)) (-4 *4 (-639 (-566))) (-5 *2 (-112)) (-5 *1 (-1291 *4))))) -(-10 -7 (-15 -1931 ((-112) (-1264 |#1|))) (-15 -2162 ((-3 (-1264 (-566)) "failed") (-1264 |#1|))) (-15 -2047 ((-3 (-1264 (-409 (-566))) "failed") (-1264 |#1|) |#1|))) -((-3007 (((-112) $ $) NIL)) (-1788 (((-112) $) 11)) (-4175 (((-3 $ "failed") $ $) NIL)) (-1970 (((-771)) 8)) (-3012 (($) NIL T CONST)) (-1878 (((-3 $ "failed") $) 58)) (-1552 (($) 49)) (-3934 (((-112) $) 57)) (-4363 (((-3 $ "failed") $) 40)) (-3681 (((-921) $) 15)) (-4117 (((-1157) $) NIL)) (-1761 (($) 32 T CONST)) (-2178 (($ (-921)) 50)) (-4035 (((-1119) $) NIL)) (-1348 (((-566) $) 13)) (-3783 (((-862) $) 27) (($ (-566)) 24)) (-2107 (((-771)) 9 T CONST)) (-3117 (((-112) $ $) 60)) (-2479 (($) 29 T CONST)) (-4334 (($) 31 T CONST)) (-2947 (((-112) $ $) 38)) (-3053 (($ $) 52) (($ $ $) 47)) (-3041 (($ $ $) 35)) (** (($ $ (-921)) NIL) (($ $ (-771)) 54)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 44) (($ $ $) 43))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-4111 (((-644 (-1175)) $) NIL)) (-3132 (($ (-1279 (-1175) |#1|)) NIL)) (-3990 (($ $ (-771)) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-1324 (($ $ $) NIL (|has| |#1| (-172))) (($ $ (-771)) NIL (|has| |#1| (-172)))) (-2463 (($) NIL T CONST)) (-3356 (($ $ (-1175)) NIL) (($ $ (-819 (-1175))) NIL) (($ $ $) NIL)) (-2229 (((-3 (-819 (-1175)) "failed") $) NIL)) (-4158 (((-819 (-1175)) $) NIL)) (-3245 (((-3 $ "failed") $) NIL)) (-4177 (((-112) $) NIL)) (-2291 (($ $) NIL)) (-2389 (((-112) $) NIL)) (-2497 (((-112) $) NIL)) (-4325 (($ (-819 (-1175)) |#1|) NIL)) (-2795 (($ $) NIL)) (-2270 (((-2 (|:| |k| (-819 (-1175))) (|:| |c| |#1|)) $) NIL)) (-3342 (((-819 (-1175)) $) NIL)) (-4340 (((-819 (-1175)) $) NIL)) (-2319 (($ (-1 |#1| |#1|) $) NIL)) (-3722 (($ $ (-1175)) NIL) (($ $ (-819 (-1175))) NIL) (($ $ $) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3640 (((-1279 (-1175) |#1|) $) NIL)) (-3902 (((-771) $) NIL)) (-3705 (((-112) $) NIL)) (-1623 ((|#1| $) NIL)) (-3152 (((-862) $) NIL) (($ (-566)) NIL) (($ |#1|) NIL) (($ (-819 (-1175))) NIL) (($ (-1175)) NIL)) (-2397 ((|#1| $ (-819 (-1175))) NIL) ((|#1| $ $) NIL)) (-2593 (((-771)) NIL T CONST)) (-3044 (((-112) $ $) NIL)) (-4356 (($) NIL T CONST)) (-4180 (((-644 (-2 (|:| |k| (-1175)) (|:| |c| $))) $) NIL)) (-4366 (($) NIL T CONST)) (-2914 (((-112) $ $) NIL)) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1175) $) NIL))) +(((-1286 |#1|) (-13 (-1285 (-1175) |#1|) (-10 -8 (-15 -3640 ((-1279 (-1175) |#1|) $)) (-15 -3132 ($ (-1279 (-1175) |#1|))) (-15 -4180 ((-644 (-2 (|:| |k| (-1175)) (|:| |c| $))) $)))) (-1049)) (T -1286)) +((-3640 (*1 *2 *1) (-12 (-5 *2 (-1279 (-1175) *3)) (-5 *1 (-1286 *3)) (-4 *3 (-1049)))) (-3132 (*1 *1 *2) (-12 (-5 *2 (-1279 (-1175) *3)) (-4 *3 (-1049)) (-5 *1 (-1286 *3)))) (-4180 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |k| (-1175)) (|:| |c| (-1286 *3))))) (-5 *1 (-1286 *3)) (-4 *3 (-1049))))) +(-13 (-1285 (-1175) |#1|) (-10 -8 (-15 -3640 ((-1279 (-1175) |#1|) $)) (-15 -3132 ($ (-1279 (-1175) |#1|))) (-15 -4180 ((-644 (-2 (|:| |k| (-1175)) (|:| |c| $))) $)))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-2463 (($) NIL T CONST)) (-2229 (((-3 |#2| "failed") $) NIL)) (-4158 ((|#2| $) NIL)) (-2814 (($ $) NIL)) (-3245 (((-3 $ "failed") $) 42)) (-4177 (((-112) $) 35)) (-2291 (($ $) 37)) (-2389 (((-112) $) NIL)) (-3039 (((-771) $) NIL)) (-1587 (((-644 $) $) NIL)) (-2497 (((-112) $) NIL)) (-4325 (($ |#2| |#1|) NIL)) (-3342 ((|#2| $) 24)) (-4340 ((|#2| $) 22)) (-2319 (($ (-1 |#1| |#1|) $) NIL)) (-1978 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-2784 ((|#2| $) NIL)) (-2794 ((|#1| $) NIL)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3705 (((-112) $) 32)) (-1623 ((|#1| $) 33)) (-3152 (((-862) $) 65) (($ (-566)) 46) (($ |#1|) 41) (($ |#2|) NIL)) (-1643 (((-644 |#1|) $) NIL)) (-2271 ((|#1| $ |#2|) NIL)) (-2397 ((|#1| $ |#2|) 28)) (-2593 (((-771)) 14 T CONST)) (-3044 (((-112) $ $) NIL)) (-4356 (($) 29 T CONST)) (-4366 (($) 11 T CONST)) (-2203 (((-644 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2914 (((-112) $ $) 30)) (-3025 (($ $ |#1|) 67 (|has| |#1| (-365)))) (-3012 (($ $) NIL) (($ $ $) NIL)) (-3002 (($ $ $) 50)) (** (($ $ (-921)) NIL) (($ $ (-771)) 52)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 51) (($ |#1| $) 47) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-3000 (((-771) $) 16))) +(((-1287 |#1| |#2|) (-13 (-1049) (-1278 |#1|) (-384 |#1| |#2|) (-616 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3000 ((-771) $)) (-15 -4340 (|#2| $)) (-15 -3342 (|#2| $)) (-15 -2814 ($ $)) (-15 -2397 (|#1| $ |#2|)) (-15 -3705 ((-112) $)) (-15 -1623 (|#1| $)) (-15 -4177 ((-112) $)) (-15 -2291 ($ $)) (-15 -2319 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-365)) (-15 -3025 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4407)) (-6 -4407) |%noBranch|) (IF (|has| |#1| (-6 -4411)) (-6 -4411) |%noBranch|) (IF (|has| |#1| (-6 -4412)) (-6 -4412) |%noBranch|))) (-1049) (-846)) (T -1287)) +((* (*1 *1 *1 *2) (-12 (-5 *1 (-1287 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-846)))) (-2814 (*1 *1 *1) (-12 (-5 *1 (-1287 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-846)))) (-2319 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1049)) (-5 *1 (-1287 *3 *4)) (-4 *4 (-846)))) (-3000 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-1287 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-846)))) (-4340 (*1 *2 *1) (-12 (-4 *2 (-846)) (-5 *1 (-1287 *3 *2)) (-4 *3 (-1049)))) (-3342 (*1 *2 *1) (-12 (-4 *2 (-846)) (-5 *1 (-1287 *3 *2)) (-4 *3 (-1049)))) (-2397 (*1 *2 *1 *3) (-12 (-4 *2 (-1049)) (-5 *1 (-1287 *2 *3)) (-4 *3 (-846)))) (-3705 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1287 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-846)))) (-1623 (*1 *2 *1) (-12 (-4 *2 (-1049)) (-5 *1 (-1287 *2 *3)) (-4 *3 (-846)))) (-4177 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1287 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-846)))) (-2291 (*1 *1 *1) (-12 (-5 *1 (-1287 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-846)))) (-3025 (*1 *1 *1 *2) (-12 (-5 *1 (-1287 *2 *3)) (-4 *2 (-365)) (-4 *2 (-1049)) (-4 *3 (-846))))) +(-13 (-1049) (-1278 |#1|) (-384 |#1| |#2|) (-616 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3000 ((-771) $)) (-15 -4340 (|#2| $)) (-15 -3342 (|#2| $)) (-15 -2814 ($ $)) (-15 -2397 (|#1| $ |#2|)) (-15 -3705 ((-112) $)) (-15 -1623 (|#1| $)) (-15 -4177 ((-112) $)) (-15 -2291 ($ $)) (-15 -2319 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-365)) (-15 -3025 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4407)) (-6 -4407) |%noBranch|) (IF (|has| |#1| (-6 -4411)) (-6 -4411) |%noBranch|) (IF (|has| |#1| (-6 -4412)) (-6 -4412) |%noBranch|))) +((-2988 (((-112) $ $) 27)) (-3230 (((-112) $) NIL)) (-4111 (((-644 |#1|) $) 132)) (-3132 (($ (-1279 |#1| |#2|)) 50)) (-3990 (($ $ (-771)) 38)) (-3967 (((-3 $ "failed") $ $) NIL)) (-1324 (($ $ $) 54 (|has| |#2| (-172))) (($ $ (-771)) 52 (|has| |#2| (-172)))) (-2463 (($) NIL T CONST)) (-3356 (($ $ |#1|) 114) (($ $ (-819 |#1|)) 115) (($ $ $) 26)) (-2229 (((-3 (-819 |#1|) "failed") $) NIL)) (-4158 (((-819 |#1|) $) NIL)) (-3245 (((-3 $ "failed") $) 122)) (-4177 (((-112) $) 117)) (-2291 (($ $) 118)) (-2389 (((-112) $) NIL)) (-2497 (((-112) $) NIL)) (-4325 (($ (-819 |#1|) |#2|) 20)) (-2795 (($ $) NIL)) (-2270 (((-2 (|:| |k| (-819 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3342 (((-819 |#1|) $) 123)) (-4340 (((-819 |#1|) $) 126)) (-2319 (($ (-1 |#2| |#2|) $) 131)) (-3722 (($ $ |#1|) 112) (($ $ (-819 |#1|)) 113) (($ $ $) 62)) (-3380 (((-1157) $) NIL)) (-4072 (((-1119) $) NIL)) (-3640 (((-1279 |#1| |#2|) $) 94)) (-3902 (((-771) $) 129)) (-3705 (((-112) $) 81)) (-1623 ((|#2| $) 32)) (-3152 (((-862) $) 73) (($ (-566)) 87) (($ |#2|) 85) (($ (-819 |#1|)) 18) (($ |#1|) 84)) (-2397 ((|#2| $ (-819 |#1|)) 116) ((|#2| $ $) 28)) (-2593 (((-771)) 120 T CONST)) (-3044 (((-112) $ $) NIL)) (-4356 (($) 15 T CONST)) (-4180 (((-644 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59)) (-4366 (($) 33 T CONST)) (-2914 (((-112) $ $) 14)) (-3012 (($ $) 98) (($ $ $) 101)) (-3002 (($ $ $) 61)) (** (($ $ (-921)) NIL) (($ $ (-771)) 55)) (* (($ (-921) $) NIL) (($ (-771) $) 53) (($ (-566) $) 106) (($ $ $) 22) (($ |#2| $) 19) (($ $ |#2|) 21) (($ |#1| $) 92))) +(((-1288 |#1| |#2|) (-13 (-1285 |#1| |#2|) (-10 -8 (-15 -3640 ((-1279 |#1| |#2|) $)) (-15 -3132 ($ (-1279 |#1| |#2|))) (-15 -4180 ((-644 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-850) (-1049)) (T -1288)) +((-3640 (*1 *2 *1) (-12 (-5 *2 (-1279 *3 *4)) (-5 *1 (-1288 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)))) (-3132 (*1 *1 *2) (-12 (-5 *2 (-1279 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) (-5 *1 (-1288 *3 *4)))) (-4180 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |k| *3) (|:| |c| (-1288 *3 *4))))) (-5 *1 (-1288 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049))))) +(-13 (-1285 |#1| |#2|) (-10 -8 (-15 -3640 ((-1279 |#1| |#2|) $)) (-15 -3132 ($ (-1279 |#1| |#2|))) (-15 -4180 ((-644 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) +((-2481 (((-644 (-1155 |#1|)) (-1 (-644 (-1155 |#1|)) (-644 (-1155 |#1|))) (-566)) 20) (((-1155 |#1|) (-1 (-1155 |#1|) (-1155 |#1|))) 13))) +(((-1289 |#1|) (-10 -7 (-15 -2481 ((-1155 |#1|) (-1 (-1155 |#1|) (-1155 |#1|)))) (-15 -2481 ((-644 (-1155 |#1|)) (-1 (-644 (-1155 |#1|)) (-644 (-1155 |#1|))) (-566)))) (-1214)) (T -1289)) +((-2481 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-644 (-1155 *5)) (-644 (-1155 *5)))) (-5 *4 (-566)) (-5 *2 (-644 (-1155 *5))) (-5 *1 (-1289 *5)) (-4 *5 (-1214)))) (-2481 (*1 *2 *3) (-12 (-5 *3 (-1 (-1155 *4) (-1155 *4))) (-5 *2 (-1155 *4)) (-5 *1 (-1289 *4)) (-4 *4 (-1214))))) +(-10 -7 (-15 -2481 ((-1155 |#1|) (-1 (-1155 |#1|) (-1155 |#1|)))) (-15 -2481 ((-644 (-1155 |#1|)) (-1 (-644 (-1155 |#1|)) (-644 (-1155 |#1|))) (-566)))) +((-4218 (((-644 (-2 (|:| -3149 (-1171 |#1|)) (|:| -3350 (-644 (-952 |#1|))))) (-644 (-952 |#1|))) 174) (((-644 (-2 (|:| -3149 (-1171 |#1|)) (|:| -3350 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112)) 173) (((-644 (-2 (|:| -3149 (-1171 |#1|)) (|:| -3350 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112) (-112)) 172) (((-644 (-2 (|:| -3149 (-1171 |#1|)) (|:| -3350 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112) (-112) (-112)) 171) (((-644 (-2 (|:| -3149 (-1171 |#1|)) (|:| -3350 (-644 (-952 |#1|))))) (-1046 |#1| |#2|)) 156)) (-4234 (((-644 (-1046 |#1| |#2|)) (-644 (-952 |#1|))) 85) (((-644 (-1046 |#1| |#2|)) (-644 (-952 |#1|)) (-112)) 84) (((-644 (-1046 |#1| |#2|)) (-644 (-952 |#1|)) (-112) (-112)) 83)) (-1364 (((-644 (-1145 |#1| (-533 (-864 |#3|)) (-864 |#3|) (-780 |#1| (-864 |#3|)))) (-1046 |#1| |#2|)) 73)) (-1976 (((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|))) 140) (((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112)) 139) (((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112) (-112)) 138) (((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112) (-112) (-112)) 137) (((-644 (-644 (-1024 (-409 |#1|)))) (-1046 |#1| |#2|)) 132)) (-2728 (((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|))) 145) (((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112)) 144) (((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112) (-112)) 143) (((-644 (-644 (-1024 (-409 |#1|)))) (-1046 |#1| |#2|)) 142)) (-2376 (((-644 (-780 |#1| (-864 |#3|))) (-1145 |#1| (-533 (-864 |#3|)) (-864 |#3|) (-780 |#1| (-864 |#3|)))) 111) (((-1171 (-1024 (-409 |#1|))) (-1171 |#1|)) 102) (((-952 (-1024 (-409 |#1|))) (-780 |#1| (-864 |#3|))) 109) (((-952 (-1024 (-409 |#1|))) (-952 |#1|)) 107) (((-780 |#1| (-864 |#3|)) (-780 |#1| (-864 |#2|))) 33))) +(((-1290 |#1| |#2| |#3|) (-10 -7 (-15 -4234 ((-644 (-1046 |#1| |#2|)) (-644 (-952 |#1|)) (-112) (-112))) (-15 -4234 ((-644 (-1046 |#1| |#2|)) (-644 (-952 |#1|)) (-112))) (-15 -4234 ((-644 (-1046 |#1| |#2|)) (-644 (-952 |#1|)))) (-15 -4218 ((-644 (-2 (|:| -3149 (-1171 |#1|)) (|:| -3350 (-644 (-952 |#1|))))) (-1046 |#1| |#2|))) (-15 -4218 ((-644 (-2 (|:| -3149 (-1171 |#1|)) (|:| -3350 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112) (-112) (-112))) (-15 -4218 ((-644 (-2 (|:| -3149 (-1171 |#1|)) (|:| -3350 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112) (-112))) (-15 -4218 ((-644 (-2 (|:| -3149 (-1171 |#1|)) (|:| -3350 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112))) (-15 -4218 ((-644 (-2 (|:| -3149 (-1171 |#1|)) (|:| -3350 (-644 (-952 |#1|))))) (-644 (-952 |#1|)))) (-15 -1976 ((-644 (-644 (-1024 (-409 |#1|)))) (-1046 |#1| |#2|))) (-15 -1976 ((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112) (-112) (-112))) (-15 -1976 ((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112) (-112))) (-15 -1976 ((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112))) (-15 -1976 ((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)))) (-15 -2728 ((-644 (-644 (-1024 (-409 |#1|)))) (-1046 |#1| |#2|))) (-15 -2728 ((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112) (-112))) (-15 -2728 ((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112))) (-15 -2728 ((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)))) (-15 -1364 ((-644 (-1145 |#1| (-533 (-864 |#3|)) (-864 |#3|) (-780 |#1| (-864 |#3|)))) (-1046 |#1| |#2|))) (-15 -2376 ((-780 |#1| (-864 |#3|)) (-780 |#1| (-864 |#2|)))) (-15 -2376 ((-952 (-1024 (-409 |#1|))) (-952 |#1|))) (-15 -2376 ((-952 (-1024 (-409 |#1|))) (-780 |#1| (-864 |#3|)))) (-15 -2376 ((-1171 (-1024 (-409 |#1|))) (-1171 |#1|))) (-15 -2376 ((-644 (-780 |#1| (-864 |#3|))) (-1145 |#1| (-533 (-864 |#3|)) (-864 |#3|) (-780 |#1| (-864 |#3|)))))) (-13 (-848) (-308) (-147) (-1022)) (-644 (-1175)) (-644 (-1175))) (T -1290)) +((-2376 (*1 *2 *3) (-12 (-5 *3 (-1145 *4 (-533 (-864 *6)) (-864 *6) (-780 *4 (-864 *6)))) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-14 *6 (-644 (-1175))) (-5 *2 (-644 (-780 *4 (-864 *6)))) (-5 *1 (-1290 *4 *5 *6)) (-14 *5 (-644 (-1175))))) (-2376 (*1 *2 *3) (-12 (-5 *3 (-1171 *4)) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-1171 (-1024 (-409 *4)))) (-5 *1 (-1290 *4 *5 *6)) (-14 *5 (-644 (-1175))) (-14 *6 (-644 (-1175))))) (-2376 (*1 *2 *3) (-12 (-5 *3 (-780 *4 (-864 *6))) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-14 *6 (-644 (-1175))) (-5 *2 (-952 (-1024 (-409 *4)))) (-5 *1 (-1290 *4 *5 *6)) (-14 *5 (-644 (-1175))))) (-2376 (*1 *2 *3) (-12 (-5 *3 (-952 *4)) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-952 (-1024 (-409 *4)))) (-5 *1 (-1290 *4 *5 *6)) (-14 *5 (-644 (-1175))) (-14 *6 (-644 (-1175))))) (-2376 (*1 *2 *3) (-12 (-5 *3 (-780 *4 (-864 *5))) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-14 *5 (-644 (-1175))) (-5 *2 (-780 *4 (-864 *6))) (-5 *1 (-1290 *4 *5 *6)) (-14 *6 (-644 (-1175))))) (-1364 (*1 *2 *3) (-12 (-5 *3 (-1046 *4 *5)) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-14 *5 (-644 (-1175))) (-5 *2 (-644 (-1145 *4 (-533 (-864 *6)) (-864 *6) (-780 *4 (-864 *6))))) (-5 *1 (-1290 *4 *5 *6)) (-14 *6 (-644 (-1175))))) (-2728 (*1 *2 *3) (-12 (-5 *3 (-644 (-952 *4))) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-644 (-644 (-1024 (-409 *4))))) (-5 *1 (-1290 *4 *5 *6)) (-14 *5 (-644 (-1175))) (-14 *6 (-644 (-1175))))) (-2728 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-644 (-644 (-1024 (-409 *5))))) (-5 *1 (-1290 *5 *6 *7)) (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) (-2728 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-644 (-644 (-1024 (-409 *5))))) (-5 *1 (-1290 *5 *6 *7)) (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) (-2728 (*1 *2 *3) (-12 (-5 *3 (-1046 *4 *5)) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-14 *5 (-644 (-1175))) (-5 *2 (-644 (-644 (-1024 (-409 *4))))) (-5 *1 (-1290 *4 *5 *6)) (-14 *6 (-644 (-1175))))) (-1976 (*1 *2 *3) (-12 (-5 *3 (-644 (-952 *4))) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-644 (-644 (-1024 (-409 *4))))) (-5 *1 (-1290 *4 *5 *6)) (-14 *5 (-644 (-1175))) (-14 *6 (-644 (-1175))))) (-1976 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-644 (-644 (-1024 (-409 *5))))) (-5 *1 (-1290 *5 *6 *7)) (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) (-1976 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-644 (-644 (-1024 (-409 *5))))) (-5 *1 (-1290 *5 *6 *7)) (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) (-1976 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-644 (-644 (-1024 (-409 *5))))) (-5 *1 (-1290 *5 *6 *7)) (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) (-1976 (*1 *2 *3) (-12 (-5 *3 (-1046 *4 *5)) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-14 *5 (-644 (-1175))) (-5 *2 (-644 (-644 (-1024 (-409 *4))))) (-5 *1 (-1290 *4 *5 *6)) (-14 *6 (-644 (-1175))))) (-4218 (*1 *2 *3) (-12 (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-644 (-2 (|:| -3149 (-1171 *4)) (|:| -3350 (-644 (-952 *4)))))) (-5 *1 (-1290 *4 *5 *6)) (-5 *3 (-644 (-952 *4))) (-14 *5 (-644 (-1175))) (-14 *6 (-644 (-1175))))) (-4218 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-644 (-2 (|:| -3149 (-1171 *5)) (|:| -3350 (-644 (-952 *5)))))) (-5 *1 (-1290 *5 *6 *7)) (-5 *3 (-644 (-952 *5))) (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) (-4218 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-644 (-2 (|:| -3149 (-1171 *5)) (|:| -3350 (-644 (-952 *5)))))) (-5 *1 (-1290 *5 *6 *7)) (-5 *3 (-644 (-952 *5))) (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) (-4218 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-644 (-2 (|:| -3149 (-1171 *5)) (|:| -3350 (-644 (-952 *5)))))) (-5 *1 (-1290 *5 *6 *7)) (-5 *3 (-644 (-952 *5))) (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) (-4218 (*1 *2 *3) (-12 (-5 *3 (-1046 *4 *5)) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-14 *5 (-644 (-1175))) (-5 *2 (-644 (-2 (|:| -3149 (-1171 *4)) (|:| -3350 (-644 (-952 *4)))))) (-5 *1 (-1290 *4 *5 *6)) (-14 *6 (-644 (-1175))))) (-4234 (*1 *2 *3) (-12 (-5 *3 (-644 (-952 *4))) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-644 (-1046 *4 *5))) (-5 *1 (-1290 *4 *5 *6)) (-14 *5 (-644 (-1175))) (-14 *6 (-644 (-1175))))) (-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-644 (-1046 *5 *6))) (-5 *1 (-1290 *5 *6 *7)) (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) (-4234 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-644 (-1046 *5 *6))) (-5 *1 (-1290 *5 *6 *7)) (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175)))))) +(-10 -7 (-15 -4234 ((-644 (-1046 |#1| |#2|)) (-644 (-952 |#1|)) (-112) (-112))) (-15 -4234 ((-644 (-1046 |#1| |#2|)) (-644 (-952 |#1|)) (-112))) (-15 -4234 ((-644 (-1046 |#1| |#2|)) (-644 (-952 |#1|)))) (-15 -4218 ((-644 (-2 (|:| -3149 (-1171 |#1|)) (|:| -3350 (-644 (-952 |#1|))))) (-1046 |#1| |#2|))) (-15 -4218 ((-644 (-2 (|:| -3149 (-1171 |#1|)) (|:| -3350 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112) (-112) (-112))) (-15 -4218 ((-644 (-2 (|:| -3149 (-1171 |#1|)) (|:| -3350 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112) (-112))) (-15 -4218 ((-644 (-2 (|:| -3149 (-1171 |#1|)) (|:| -3350 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112))) (-15 -4218 ((-644 (-2 (|:| -3149 (-1171 |#1|)) (|:| -3350 (-644 (-952 |#1|))))) (-644 (-952 |#1|)))) (-15 -1976 ((-644 (-644 (-1024 (-409 |#1|)))) (-1046 |#1| |#2|))) (-15 -1976 ((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112) (-112) (-112))) (-15 -1976 ((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112) (-112))) (-15 -1976 ((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112))) (-15 -1976 ((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)))) (-15 -2728 ((-644 (-644 (-1024 (-409 |#1|)))) (-1046 |#1| |#2|))) (-15 -2728 ((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112) (-112))) (-15 -2728 ((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112))) (-15 -2728 ((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)))) (-15 -1364 ((-644 (-1145 |#1| (-533 (-864 |#3|)) (-864 |#3|) (-780 |#1| (-864 |#3|)))) (-1046 |#1| |#2|))) (-15 -2376 ((-780 |#1| (-864 |#3|)) (-780 |#1| (-864 |#2|)))) (-15 -2376 ((-952 (-1024 (-409 |#1|))) (-952 |#1|))) (-15 -2376 ((-952 (-1024 (-409 |#1|))) (-780 |#1| (-864 |#3|)))) (-15 -2376 ((-1171 (-1024 (-409 |#1|))) (-1171 |#1|))) (-15 -2376 ((-644 (-780 |#1| (-864 |#3|))) (-1145 |#1| (-533 (-864 |#3|)) (-864 |#3|) (-780 |#1| (-864 |#3|)))))) +((-4138 (((-3 (-1264 (-409 (-566))) "failed") (-1264 |#1|) |#1|) 21)) (-1850 (((-112) (-1264 |#1|)) 12)) (-3019 (((-3 (-1264 (-566)) "failed") (-1264 |#1|)) 16))) +(((-1291 |#1|) (-10 -7 (-15 -1850 ((-112) (-1264 |#1|))) (-15 -3019 ((-3 (-1264 (-566)) "failed") (-1264 |#1|))) (-15 -4138 ((-3 (-1264 (-409 (-566))) "failed") (-1264 |#1|) |#1|))) (-639 (-566))) (T -1291)) +((-4138 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1264 *4)) (-4 *4 (-639 (-566))) (-5 *2 (-1264 (-409 (-566)))) (-5 *1 (-1291 *4)))) (-3019 (*1 *2 *3) (|partial| -12 (-5 *3 (-1264 *4)) (-4 *4 (-639 (-566))) (-5 *2 (-1264 (-566))) (-5 *1 (-1291 *4)))) (-1850 (*1 *2 *3) (-12 (-5 *3 (-1264 *4)) (-4 *4 (-639 (-566))) (-5 *2 (-112)) (-5 *1 (-1291 *4))))) +(-10 -7 (-15 -1850 ((-112) (-1264 |#1|))) (-15 -3019 ((-3 (-1264 (-566)) "failed") (-1264 |#1|))) (-15 -4138 ((-3 (-1264 (-409 (-566))) "failed") (-1264 |#1|) |#1|))) +((-2988 (((-112) $ $) NIL)) (-3230 (((-112) $) 11)) (-3967 (((-3 $ "failed") $ $) NIL)) (-3870 (((-771)) 8)) (-2463 (($) NIL T CONST)) (-3245 (((-3 $ "failed") $) 58)) (-2715 (($) 49)) (-2389 (((-112) $) 57)) (-2621 (((-3 $ "failed") $) 40)) (-1866 (((-921) $) 15)) (-3380 (((-1157) $) NIL)) (-3289 (($) 32 T CONST)) (-2835 (($ (-921)) 50)) (-4072 (((-1119) $) NIL)) (-2376 (((-566) $) 13)) (-3152 (((-862) $) 27) (($ (-566)) 24)) (-2593 (((-771)) 9 T CONST)) (-3044 (((-112) $ $) 60)) (-4356 (($) 29 T CONST)) (-4366 (($) 31 T CONST)) (-2914 (((-112) $ $) 38)) (-3012 (($ $) 52) (($ $ $) 47)) (-3002 (($ $ $) 35)) (** (($ $ (-921)) NIL) (($ $ (-771)) 54)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 44) (($ $ $) 43))) (((-1292 |#1|) (-13 (-172) (-370) (-614 (-566)) (-1150)) (-921)) (T -1292)) NIL (-13 (-172) (-370) (-614 (-566)) (-1150)) @@ -5329,4 +5329,4 @@ NIL NIL NIL NIL -((-3 3221085 3221090 3221095 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3221070 3221075 3221080 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3221055 3221060 3221065 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3221040 3221045 3221050 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1292 3220183 3220915 3220992 "ZMOD" 3220997 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1291 3219293 3219457 3219666 "ZLINDEP" 3220015 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1290 3208593 3210361 3212333 "ZDSOLVE" 3217423 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1289 3207839 3207980 3208169 "YSTREAM" 3208439 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1288 3205613 3207140 3207344 "XRPOLY" 3207682 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1287 3202166 3203484 3204059 "XPR" 3205085 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1286 3199887 3201497 3201701 "XPOLY" 3201997 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1285 3197540 3198908 3198963 "XPOLYC" 3199251 NIL XPOLYC (NIL T T) -9 NIL 3199364 NIL) (-1284 3193915 3196057 3196445 "XPBWPOLY" 3197198 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1283 3189610 3191905 3191947 "XF" 3192568 NIL XF (NIL T) -9 NIL 3192968 NIL) (-1282 3189231 3189319 3189488 "XF-" 3189493 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1281 3184427 3185716 3185771 "XFALG" 3187943 NIL XFALG (NIL T T) -9 NIL 3188732 NIL) (-1280 3183560 3183664 3183869 "XEXPPKG" 3184319 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1279 3181669 3183410 3183506 "XDPOLY" 3183511 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1278 3180476 3181076 3181119 "XALG" 3181124 NIL XALG (NIL T) -9 NIL 3181235 NIL) (-1277 3173918 3178453 3178947 "WUTSET" 3180068 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1276 3172174 3172970 3173293 "WP" 3173729 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1275 3171776 3171996 3172066 "WHILEAST" 3172126 T WHILEAST (NIL) -8 NIL NIL NIL) (-1274 3171248 3171493 3171587 "WHEREAST" 3171704 T WHEREAST (NIL) -8 NIL NIL NIL) (-1273 3170134 3170332 3170627 "WFFINTBS" 3171045 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1272 3168038 3168465 3168927 "WEIER" 3169706 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1271 3167084 3167534 3167576 "VSPACE" 3167712 NIL VSPACE (NIL T) -9 NIL 3167786 NIL) (-1270 3166922 3166949 3167040 "VSPACE-" 3167045 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1269 3166730 3166773 3166841 "VOID" 3166876 T VOID (NIL) -8 NIL NIL NIL) (-1268 3164866 3165225 3165631 "VIEW" 3166346 T VIEW (NIL) -7 NIL NIL NIL) (-1267 3161290 3161929 3162666 "VIEWDEF" 3164151 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1266 3150594 3152838 3155011 "VIEW3D" 3159139 T VIEW3D (NIL) -8 NIL NIL NIL) (-1265 3142845 3144505 3146084 "VIEW2D" 3149037 T VIEW2D (NIL) -8 NIL NIL NIL) (-1264 3138197 3142615 3142707 "VECTOR" 3142788 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1263 3136774 3137033 3137351 "VECTOR2" 3137927 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1262 3130248 3134555 3134598 "VECTCAT" 3135593 NIL VECTCAT (NIL T) -9 NIL 3136180 NIL) (-1261 3129262 3129516 3129906 "VECTCAT-" 3129911 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1260 3128716 3128913 3129033 "VARIABLE" 3129177 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1259 3128649 3128654 3128684 "UTYPE" 3128689 T UTYPE (NIL) -9 NIL NIL NIL) (-1258 3127479 3127633 3127895 "UTSODETL" 3128475 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1257 3124919 3125379 3125903 "UTSODE" 3127020 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1256 3116756 3122545 3123034 "UTS" 3124488 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1255 3107630 3112997 3113040 "UTSCAT" 3114152 NIL UTSCAT (NIL T) -9 NIL 3114910 NIL) (-1254 3104977 3105700 3106689 "UTSCAT-" 3106694 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1253 3104604 3104647 3104780 "UTS2" 3104928 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1252 3098830 3101442 3101485 "URAGG" 3103555 NIL URAGG (NIL T) -9 NIL 3104278 NIL) (-1251 3095769 3096632 3097755 "URAGG-" 3097760 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1250 3091478 3094404 3094869 "UPXSSING" 3095433 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1249 3083544 3090725 3090998 "UPXS" 3091263 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1248 3076617 3083448 3083520 "UPXSCONS" 3083525 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1247 3066362 3073155 3073217 "UPXSCCA" 3073791 NIL UPXSCCA (NIL T T) -9 NIL 3074024 NIL) (-1246 3066000 3066085 3066259 "UPXSCCA-" 3066264 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1245 3055597 3062163 3062206 "UPXSCAT" 3062854 NIL UPXSCAT (NIL T) -9 NIL 3063463 NIL) (-1244 3055027 3055106 3055285 "UPXS2" 3055512 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1243 3053681 3053934 3054285 "UPSQFREE" 3054770 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1242 3047102 3050159 3050214 "UPSCAT" 3051375 NIL UPSCAT (NIL T T) -9 NIL 3052149 NIL) (-1241 3046306 3046513 3046840 "UPSCAT-" 3046845 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1240 3031961 3039729 3039772 "UPOLYC" 3041873 NIL UPOLYC (NIL T) -9 NIL 3043094 NIL) (-1239 3023289 3025715 3028862 "UPOLYC-" 3028867 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1238 3022916 3022959 3023092 "UPOLYC2" 3023240 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1237 3014727 3022599 3022728 "UP" 3022835 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1236 3014066 3014173 3014337 "UPMP" 3014616 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1235 3013619 3013700 3013839 "UPDIVP" 3013979 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1234 3012187 3012436 3012752 "UPDECOMP" 3013368 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1233 3011422 3011534 3011719 "UPCDEN" 3012071 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1232 3010941 3011010 3011159 "UP2" 3011347 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1231 3009408 3010145 3010422 "UNISEG" 3010699 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1230 3008623 3008750 3008955 "UNISEG2" 3009251 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1229 3007683 3007863 3008089 "UNIFACT" 3008439 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1228 2991615 3006860 3007111 "ULS" 3007490 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1227 2979613 2991519 2991591 "ULSCONS" 2991596 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1226 2961632 2973617 2973679 "ULSCCAT" 2974317 NIL ULSCCAT (NIL T T) -9 NIL 2974605 NIL) (-1225 2960682 2960927 2961315 "ULSCCAT-" 2961320 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1224 2950056 2956536 2956579 "ULSCAT" 2957442 NIL ULSCAT (NIL T) -9 NIL 2958173 NIL) (-1223 2949486 2949565 2949744 "ULS2" 2949971 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1222 2948613 2949123 2949230 "UINT8" 2949341 T UINT8 (NIL) -8 NIL NIL 2949426) (-1221 2947739 2948249 2948356 "UINT64" 2948467 T UINT64 (NIL) -8 NIL NIL 2948552) (-1220 2946865 2947375 2947482 "UINT32" 2947593 T UINT32 (NIL) -8 NIL NIL 2947678) (-1219 2945991 2946501 2946608 "UINT16" 2946719 T UINT16 (NIL) -8 NIL NIL 2946804) (-1218 2944294 2945251 2945281 "UFD" 2945493 T UFD (NIL) -9 NIL 2945607 NIL) (-1217 2944088 2944134 2944229 "UFD-" 2944234 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1216 2943170 2943353 2943569 "UDVO" 2943894 T UDVO (NIL) -7 NIL NIL NIL) (-1215 2940986 2941395 2941866 "UDPO" 2942734 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1214 2940919 2940924 2940954 "TYPE" 2940959 T TYPE (NIL) -9 NIL NIL NIL) (-1213 2940679 2940874 2940905 "TYPEAST" 2940910 T TYPEAST (NIL) -8 NIL NIL NIL) (-1212 2939650 2939852 2940092 "TWOFACT" 2940473 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1211 2938673 2939059 2939294 "TUPLE" 2939450 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1210 2936364 2936883 2937422 "TUBETOOL" 2938156 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1209 2935213 2935418 2935659 "TUBE" 2936157 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1208 2929942 2934185 2934468 "TS" 2934965 NIL TS (NIL T) -8 NIL NIL NIL) (-1207 2918582 2922701 2922798 "TSETCAT" 2928067 NIL TSETCAT (NIL T T T T) -9 NIL 2929598 NIL) (-1206 2913314 2914914 2916805 "TSETCAT-" 2916810 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1205 2907953 2908800 2909729 "TRMANIP" 2912450 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1204 2907394 2907457 2907620 "TRIMAT" 2907885 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1203 2905260 2905497 2905854 "TRIGMNIP" 2907143 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1202 2904780 2904893 2904923 "TRIGCAT" 2905136 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1201 2904449 2904528 2904669 "TRIGCAT-" 2904674 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1200 2901294 2903307 2903588 "TREE" 2904203 NIL TREE (NIL T) -8 NIL NIL NIL) (-1199 2900568 2901096 2901126 "TRANFUN" 2901161 T TRANFUN (NIL) -9 NIL 2901227 NIL) (-1198 2899847 2900038 2900318 "TRANFUN-" 2900323 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1197 2899651 2899683 2899744 "TOPSP" 2899808 T TOPSP (NIL) -7 NIL NIL NIL) (-1196 2898999 2899114 2899268 "TOOLSIGN" 2899532 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1195 2897633 2898176 2898415 "TEXTFILE" 2898782 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1194 2895545 2896086 2896515 "TEX" 2897226 T TEX (NIL) -8 NIL NIL NIL) (-1193 2895326 2895357 2895429 "TEX1" 2895508 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1192 2894974 2895037 2895127 "TEMUTL" 2895258 T TEMUTL (NIL) -7 NIL NIL NIL) (-1191 2893128 2893408 2893733 "TBCMPPK" 2894697 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1190 2884905 2891288 2891344 "TBAGG" 2891744 NIL TBAGG (NIL T T) -9 NIL 2891955 NIL) (-1189 2879975 2881463 2883217 "TBAGG-" 2883222 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1188 2879359 2879466 2879611 "TANEXP" 2879864 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1187 2872749 2879216 2879309 "TABLE" 2879314 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1186 2872161 2872260 2872398 "TABLEAU" 2872646 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1185 2866769 2867989 2869237 "TABLBUMP" 2870947 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1184 2865991 2866138 2866319 "SYSTEM" 2866610 T SYSTEM (NIL) -8 NIL NIL NIL) (-1183 2862450 2863149 2863932 "SYSSOLP" 2865242 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1182 2861494 2861999 2862118 "SYSNNI" 2862304 NIL SYSNNI (NIL NIL) -8 NIL NIL 2862389) (-1181 2860801 2861260 2861339 "SYSINT" 2861399 NIL SYSINT (NIL NIL) -8 NIL NIL 2861444) (-1180 2857133 2858079 2858789 "SYNTAX" 2860113 T SYNTAX (NIL) -8 NIL NIL NIL) (-1179 2854291 2854893 2855525 "SYMTAB" 2856523 T SYMTAB (NIL) -8 NIL NIL NIL) (-1178 2849540 2850442 2851425 "SYMS" 2853330 T SYMS (NIL) -8 NIL NIL NIL) (-1177 2846775 2848998 2849228 "SYMPOLY" 2849345 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1176 2846292 2846367 2846490 "SYMFUNC" 2846687 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1175 2842311 2843604 2844417 "SYMBOL" 2845501 T SYMBOL (NIL) -8 NIL NIL NIL) (-1174 2835850 2837539 2839259 "SWITCH" 2840613 T SWITCH (NIL) -8 NIL NIL NIL) (-1173 2829084 2834671 2834974 "SUTS" 2835605 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1172 2821150 2828331 2828604 "SUPXS" 2828869 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1171 2812909 2820768 2820894 "SUP" 2821059 NIL SUP (NIL T) -8 NIL NIL NIL) (-1170 2812068 2812195 2812412 "SUPFRACF" 2812777 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1169 2811689 2811748 2811861 "SUP2" 2812003 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1168 2810137 2810411 2810767 "SUMRF" 2811388 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1167 2809472 2809538 2809730 "SUMFS" 2810058 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1166 2793439 2808649 2808900 "SULS" 2809279 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1165 2793041 2793261 2793331 "SUCHTAST" 2793391 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1164 2792336 2792566 2792706 "SUCH" 2792949 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1163 2786202 2787242 2788201 "SUBSPACE" 2791424 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1162 2785632 2785722 2785886 "SUBRESP" 2786090 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1161 2778997 2780297 2781608 "STTF" 2784368 NIL STTF (NIL T) -7 NIL NIL NIL) (-1160 2773170 2774290 2775437 "STTFNC" 2777897 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1159 2764480 2766352 2768146 "STTAYLOR" 2771411 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1158 2757610 2764344 2764427 "STRTBL" 2764432 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1157 2752974 2757565 2757596 "STRING" 2757601 T STRING (NIL) -8 NIL NIL NIL) (-1156 2747835 2752347 2752377 "STRICAT" 2752436 T STRICAT (NIL) -9 NIL 2752498 NIL) (-1155 2740588 2745454 2746065 "STREAM" 2747259 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1154 2740098 2740175 2740319 "STREAM3" 2740505 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1153 2739080 2739263 2739498 "STREAM2" 2739911 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1152 2738768 2738820 2738913 "STREAM1" 2739022 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1151 2737784 2737965 2738196 "STINPROD" 2738584 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1150 2737336 2737546 2737576 "STEP" 2737656 T STEP (NIL) -9 NIL 2737734 NIL) (-1149 2730768 2737235 2737312 "STBL" 2737317 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1148 2725894 2729989 2730032 "STAGG" 2730185 NIL STAGG (NIL T) -9 NIL 2730274 NIL) (-1147 2723596 2724198 2725070 "STAGG-" 2725075 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1146 2721743 2723366 2723458 "STACK" 2723539 NIL STACK (NIL T) -8 NIL NIL NIL) (-1145 2714438 2719884 2720340 "SREGSET" 2721373 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1144 2706863 2708232 2709745 "SRDCMPK" 2713044 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1143 2699780 2704303 2704333 "SRAGG" 2705636 T SRAGG (NIL) -9 NIL 2706244 NIL) (-1142 2698797 2699052 2699431 "SRAGG-" 2699436 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1141 2693257 2697744 2698165 "SQMATRIX" 2698423 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1140 2686942 2689975 2690702 "SPLTREE" 2692602 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1139 2682905 2683598 2684244 "SPLNODE" 2686368 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1138 2681952 2682185 2682215 "SPFCAT" 2682659 T SPFCAT (NIL) -9 NIL NIL NIL) (-1137 2680689 2680899 2681163 "SPECOUT" 2681710 T SPECOUT (NIL) -7 NIL NIL NIL) (-1136 2672315 2674085 2674115 "SPADXPT" 2678507 T SPADXPT (NIL) -9 NIL 2680541 NIL) (-1135 2672076 2672116 2672185 "SPADPRSR" 2672268 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1134 2670231 2672031 2672062 "SPADAST" 2672067 T SPADAST (NIL) -8 NIL NIL NIL) (-1133 2662176 2663949 2663992 "SPACEC" 2668365 NIL SPACEC (NIL T) -9 NIL 2670181 NIL) (-1132 2660306 2662108 2662157 "SPACE3" 2662162 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1131 2659058 2659229 2659520 "SORTPAK" 2660111 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1130 2657150 2657453 2657865 "SOLVETRA" 2658722 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1129 2656200 2656422 2656683 "SOLVESER" 2656923 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1128 2651504 2652392 2653387 "SOLVERAD" 2655252 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1127 2647319 2647928 2648657 "SOLVEFOR" 2650871 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1126 2641589 2646668 2646765 "SNTSCAT" 2646770 NIL SNTSCAT (NIL T T T T) -9 NIL 2646840 NIL) (-1125 2635695 2639912 2640303 "SMTS" 2641279 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1124 2630379 2635583 2635660 "SMP" 2635665 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1123 2628538 2628839 2629237 "SMITH" 2630076 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1122 2621251 2625447 2625550 "SMATCAT" 2626901 NIL SMATCAT (NIL NIL T T T) -9 NIL 2627451 NIL) (-1121 2618191 2619014 2620192 "SMATCAT-" 2620197 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1120 2615857 2617427 2617470 "SKAGG" 2617731 NIL SKAGG (NIL T) -9 NIL 2617866 NIL) (-1119 2612168 2615273 2615468 "SINT" 2615655 T SINT (NIL) -8 NIL NIL 2615828) (-1118 2611940 2611978 2612044 "SIMPAN" 2612124 T SIMPAN (NIL) -7 NIL NIL NIL) (-1117 2611219 2611475 2611615 "SIG" 2611822 T SIG (NIL) -8 NIL NIL NIL) (-1116 2610057 2610278 2610553 "SIGNRF" 2610978 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1115 2608890 2609041 2609325 "SIGNEF" 2609886 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1114 2608196 2608473 2608597 "SIGAST" 2608788 T SIGAST (NIL) -8 NIL NIL NIL) (-1113 2605885 2606340 2606846 "SHP" 2607737 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1112 2599737 2605786 2605862 "SHDP" 2605867 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1111 2599310 2599502 2599532 "SGROUP" 2599625 T SGROUP (NIL) -9 NIL 2599687 NIL) (-1110 2599168 2599194 2599267 "SGROUP-" 2599272 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1109 2596003 2596701 2597424 "SGCF" 2598467 T SGCF (NIL) -7 NIL NIL NIL) (-1108 2590371 2595450 2595547 "SFRTCAT" 2595552 NIL SFRTCAT (NIL T T T T) -9 NIL 2595591 NIL) (-1107 2583792 2584810 2585946 "SFRGCD" 2589354 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1106 2576918 2577991 2579177 "SFQCMPK" 2582725 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1105 2576538 2576627 2576738 "SFORT" 2576859 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1104 2575656 2576378 2576499 "SEXOF" 2576504 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1103 2574763 2575537 2575605 "SEX" 2575610 T SEX (NIL) -8 NIL NIL NIL) (-1102 2570276 2570991 2571086 "SEXCAT" 2574023 NIL SEXCAT (NIL T T T T T) -9 NIL 2574601 NIL) (-1101 2567429 2570210 2570258 "SET" 2570263 NIL SET (NIL T) -8 NIL NIL NIL) (-1100 2565653 2566142 2566447 "SETMN" 2567170 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1099 2565149 2565301 2565331 "SETCAT" 2565507 T SETCAT (NIL) -9 NIL 2565617 NIL) (-1098 2564841 2564919 2565049 "SETCAT-" 2565054 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1097 2561202 2563302 2563345 "SETAGG" 2564215 NIL SETAGG (NIL T) -9 NIL 2564555 NIL) (-1096 2560660 2560776 2561013 "SETAGG-" 2561018 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1095 2560103 2560356 2560457 "SEQAST" 2560581 T SEQAST (NIL) -8 NIL NIL NIL) (-1094 2559302 2559596 2559657 "SEGXCAT" 2559943 NIL SEGXCAT (NIL T T) -9 NIL 2560063 NIL) (-1093 2558308 2558968 2559150 "SEG" 2559155 NIL SEG (NIL T) -8 NIL NIL NIL) (-1092 2557287 2557501 2557544 "SEGCAT" 2558066 NIL SEGCAT (NIL T) -9 NIL 2558287 NIL) (-1091 2556288 2556666 2556866 "SEGBIND" 2557122 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1090 2555909 2555968 2556081 "SEGBIND2" 2556223 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1089 2555482 2555710 2555787 "SEGAST" 2555854 T SEGAST (NIL) -8 NIL NIL NIL) (-1088 2554701 2554827 2555031 "SEG2" 2555326 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1087 2554111 2554636 2554683 "SDVAR" 2554688 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1086 2546638 2553881 2554011 "SDPOL" 2554016 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1085 2545231 2545497 2545816 "SCPKG" 2546353 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1084 2544395 2544567 2544759 "SCOPE" 2545061 T SCOPE (NIL) -8 NIL NIL NIL) (-1083 2543615 2543749 2543928 "SCACHE" 2544250 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1082 2543261 2543447 2543477 "SASTCAT" 2543482 T SASTCAT (NIL) -9 NIL 2543495 NIL) (-1081 2542748 2543096 2543172 "SAOS" 2543207 T SAOS (NIL) -8 NIL NIL NIL) (-1080 2542313 2542348 2542521 "SAERFFC" 2542707 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1079 2536252 2542210 2542290 "SAE" 2542295 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1078 2535845 2535880 2536039 "SAEFACT" 2536211 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1077 2534166 2534480 2534881 "RURPK" 2535511 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1076 2532803 2533109 2533414 "RULESET" 2534000 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1075 2530026 2530556 2531014 "RULE" 2532484 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1074 2529638 2529820 2529903 "RULECOLD" 2529978 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1073 2529428 2529456 2529527 "RTVALUE" 2529589 T RTVALUE (NIL) -8 NIL NIL NIL) (-1072 2528899 2529145 2529239 "RSTRCAST" 2529356 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1071 2523747 2524542 2525462 "RSETGCD" 2528098 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1070 2512977 2518056 2518153 "RSETCAT" 2522272 NIL RSETCAT (NIL T T T T) -9 NIL 2523369 NIL) (-1069 2510904 2511443 2512267 "RSETCAT-" 2512272 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1068 2503289 2504666 2506186 "RSDCMPK" 2509503 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1067 2501268 2501735 2501809 "RRCC" 2502895 NIL RRCC (NIL T T) -9 NIL 2503239 NIL) (-1066 2500619 2500793 2501072 "RRCC-" 2501077 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1065 2500062 2500315 2500416 "RPTAST" 2500540 T RPTAST (NIL) -8 NIL NIL NIL) (-1064 2473913 2483270 2483337 "RPOLCAT" 2494001 NIL RPOLCAT (NIL T T T) -9 NIL 2497160 NIL) (-1063 2465411 2467751 2470873 "RPOLCAT-" 2470878 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1062 2456342 2463622 2464104 "ROUTINE" 2464951 T ROUTINE (NIL) -8 NIL NIL NIL) (-1061 2453140 2455968 2456108 "ROMAN" 2456224 T ROMAN (NIL) -8 NIL NIL NIL) (-1060 2451384 2452000 2452260 "ROIRC" 2452945 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1059 2447616 2449900 2449930 "RNS" 2450234 T RNS (NIL) -9 NIL 2450508 NIL) (-1058 2446125 2446508 2447042 "RNS-" 2447117 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1057 2445528 2445936 2445966 "RNG" 2445971 T RNG (NIL) -9 NIL 2445992 NIL) (-1056 2444927 2445315 2445358 "RMODULE" 2445363 NIL RMODULE (NIL T) -9 NIL 2445390 NIL) (-1055 2443763 2443857 2444193 "RMCAT2" 2444828 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1054 2440613 2443109 2443406 "RMATRIX" 2443525 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1053 2433440 2435700 2435815 "RMATCAT" 2439174 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2440156 NIL) (-1052 2432815 2432962 2433269 "RMATCAT-" 2433274 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1051 2432216 2432437 2432480 "RLINSET" 2432674 NIL RLINSET (NIL T) -9 NIL 2432765 NIL) (-1050 2431783 2431858 2431986 "RINTERP" 2432135 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1049 2430841 2431395 2431425 "RING" 2431481 T RING (NIL) -9 NIL 2431573 NIL) (-1048 2430633 2430677 2430774 "RING-" 2430779 NIL RING- (NIL T) -8 NIL NIL NIL) (-1047 2429474 2429711 2429969 "RIDIST" 2430397 T RIDIST (NIL) -7 NIL NIL NIL) (-1046 2420763 2428942 2429148 "RGCHAIN" 2429322 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1045 2420113 2420519 2420560 "RGBCSPC" 2420618 NIL RGBCSPC (NIL T) -9 NIL 2420670 NIL) (-1044 2419271 2419652 2419693 "RGBCMDL" 2419925 NIL RGBCMDL (NIL T) -9 NIL 2420039 NIL) (-1043 2416265 2416879 2417549 "RF" 2418635 NIL RF (NIL T) -7 NIL NIL NIL) (-1042 2415911 2415974 2416077 "RFFACTOR" 2416196 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1041 2415636 2415671 2415768 "RFFACT" 2415870 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1040 2413753 2414117 2414499 "RFDIST" 2415276 T RFDIST (NIL) -7 NIL NIL NIL) (-1039 2413206 2413298 2413461 "RETSOL" 2413655 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1038 2412842 2412922 2412965 "RETRACT" 2413098 NIL RETRACT (NIL T) -9 NIL 2413185 NIL) (-1037 2412691 2412716 2412803 "RETRACT-" 2412808 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1036 2412293 2412513 2412583 "RETAST" 2412643 T RETAST (NIL) -8 NIL NIL NIL) (-1035 2405031 2411946 2412073 "RESULT" 2412188 T RESULT (NIL) -8 NIL NIL NIL) (-1034 2403622 2404300 2404499 "RESRING" 2404934 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1033 2403258 2403307 2403405 "RESLATC" 2403559 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1032 2402963 2402998 2403105 "REPSQ" 2403217 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1031 2400385 2400965 2401567 "REP" 2402383 T REP (NIL) -7 NIL NIL NIL) (-1030 2400082 2400117 2400228 "REPDB" 2400344 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1029 2393982 2395371 2396594 "REP2" 2398894 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1028 2390359 2391040 2391848 "REP1" 2393209 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1027 2383055 2388500 2388956 "REGSET" 2389989 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1026 2381820 2382203 2382453 "REF" 2382840 NIL REF (NIL T) -8 NIL NIL NIL) (-1025 2381197 2381300 2381467 "REDORDER" 2381704 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1024 2377165 2380410 2380637 "RECLOS" 2381025 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1023 2376217 2376398 2376613 "REALSOLV" 2376972 T REALSOLV (NIL) -7 NIL NIL NIL) (-1022 2376063 2376104 2376134 "REAL" 2376139 T REAL (NIL) -9 NIL 2376174 NIL) (-1021 2372546 2373348 2374232 "REAL0Q" 2375228 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1020 2368147 2369135 2370196 "REAL0" 2371527 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1019 2367618 2367864 2367958 "RDUCEAST" 2368075 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1018 2367023 2367095 2367302 "RDIV" 2367540 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1017 2366091 2366265 2366478 "RDIST" 2366845 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1016 2364688 2364975 2365347 "RDETRS" 2365799 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1015 2362500 2362954 2363492 "RDETR" 2364230 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1014 2361125 2361403 2361800 "RDEEFS" 2362216 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1013 2359634 2359940 2360365 "RDEEF" 2360813 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1012 2353695 2356615 2356645 "RCFIELD" 2357940 T RCFIELD (NIL) -9 NIL 2358671 NIL) (-1011 2351759 2352263 2352959 "RCFIELD-" 2353034 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1010 2348028 2349860 2349903 "RCAGG" 2350987 NIL RCAGG (NIL T) -9 NIL 2351452 NIL) (-1009 2347656 2347750 2347913 "RCAGG-" 2347918 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1008 2346991 2347103 2347268 "RATRET" 2347540 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1007 2346544 2346611 2346732 "RATFACT" 2346919 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1006 2345852 2345972 2346124 "RANDSRC" 2346414 T RANDSRC (NIL) -7 NIL NIL NIL) (-1005 2345586 2345630 2345703 "RADUTIL" 2345801 T RADUTIL (NIL) -7 NIL NIL NIL) (-1004 2338702 2344419 2344729 "RADIX" 2345310 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1003 2330321 2338544 2338674 "RADFF" 2338679 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1002 2329968 2330043 2330073 "RADCAT" 2330233 T RADCAT (NIL) -9 NIL NIL NIL) (-1001 2329750 2329798 2329898 "RADCAT-" 2329903 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-1000 2327850 2329522 2329613 "QUEUE" 2329694 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-999 2324391 2327787 2327832 "QUAT" 2327837 NIL QUAT (NIL T) -8 NIL NIL NIL) (-998 2324029 2324072 2324199 "QUATCT2" 2324342 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-997 2317491 2320836 2320876 "QUATCAT" 2321656 NIL QUATCAT (NIL T) -9 NIL 2322422 NIL) (-996 2313635 2314672 2316059 "QUATCAT-" 2316153 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-995 2311108 2312719 2312760 "QUAGG" 2313135 NIL QUAGG (NIL T) -9 NIL 2313310 NIL) (-994 2310713 2310933 2311001 "QQUTAST" 2311060 T QQUTAST (NIL) -8 NIL NIL NIL) (-993 2309611 2310111 2310283 "QFORM" 2310585 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-992 2300616 2305855 2305895 "QFCAT" 2306553 NIL QFCAT (NIL T) -9 NIL 2307554 NIL) (-991 2296188 2297389 2298980 "QFCAT-" 2299074 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-990 2295826 2295869 2295996 "QFCAT2" 2296139 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-989 2295286 2295396 2295526 "QEQUAT" 2295716 T QEQUAT (NIL) -8 NIL NIL NIL) (-988 2288432 2289505 2290689 "QCMPACK" 2294219 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-987 2285981 2286429 2286857 "QALGSET" 2288087 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-986 2285226 2285400 2285632 "QALGSET2" 2285801 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-985 2283916 2284140 2284457 "PWFFINTB" 2284999 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-984 2282098 2282266 2282620 "PUSHVAR" 2283730 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-983 2278016 2279070 2279111 "PTRANFN" 2280995 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-982 2276418 2276709 2277031 "PTPACK" 2277727 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-981 2276050 2276107 2276216 "PTFUNC2" 2276355 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-980 2270527 2274922 2274963 "PTCAT" 2275259 NIL PTCAT (NIL T) -9 NIL 2275412 NIL) (-979 2270185 2270220 2270344 "PSQFR" 2270486 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-978 2268780 2269078 2269412 "PSEUDLIN" 2269883 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-977 2255543 2257914 2260238 "PSETPK" 2266540 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-976 2248561 2251301 2251397 "PSETCAT" 2254418 NIL PSETCAT (NIL T T T T) -9 NIL 2255232 NIL) (-975 2246397 2247031 2247852 "PSETCAT-" 2247857 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-974 2245746 2245911 2245939 "PSCURVE" 2246207 T PSCURVE (NIL) -9 NIL 2246374 NIL) (-973 2241744 2243260 2243325 "PSCAT" 2244169 NIL PSCAT (NIL T T T) -9 NIL 2244409 NIL) (-972 2240807 2241023 2241423 "PSCAT-" 2241428 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-971 2239512 2240172 2240377 "PRTITION" 2240622 T PRTITION (NIL) -8 NIL NIL NIL) (-970 2238987 2239233 2239325 "PRTDAST" 2239440 T PRTDAST (NIL) -8 NIL NIL NIL) (-969 2228076 2230291 2232479 "PRS" 2236849 NIL PRS (NIL T T) -7 NIL NIL NIL) (-968 2225887 2227426 2227466 "PRQAGG" 2227649 NIL PRQAGG (NIL T) -9 NIL 2227751 NIL) (-967 2225091 2225396 2225424 "PROPLOG" 2225671 T PROPLOG (NIL) -9 NIL 2225837 NIL) (-966 2223521 2224042 2224299 "PROPFRML" 2224867 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-965 2222990 2223097 2223225 "PROPERTY" 2223413 T PROPERTY (NIL) -8 NIL NIL NIL) (-964 2217048 2221156 2221976 "PRODUCT" 2222216 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-963 2214326 2216506 2216740 "PR" 2216859 NIL PR (NIL T T) -8 NIL NIL NIL) (-962 2214122 2214154 2214213 "PRINT" 2214287 T PRINT (NIL) -7 NIL NIL NIL) (-961 2213462 2213579 2213731 "PRIMES" 2214002 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-960 2211527 2211928 2212394 "PRIMELT" 2213041 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-959 2211256 2211305 2211333 "PRIMCAT" 2211457 T PRIMCAT (NIL) -9 NIL NIL NIL) (-958 2207371 2211194 2211239 "PRIMARR" 2211244 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-957 2206378 2206556 2206784 "PRIMARR2" 2207189 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-956 2206021 2206077 2206188 "PREASSOC" 2206316 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-955 2205496 2205629 2205657 "PPCURVE" 2205862 T PPCURVE (NIL) -9 NIL 2205998 NIL) (-954 2205091 2205291 2205374 "PORTNUM" 2205433 T PORTNUM (NIL) -8 NIL NIL NIL) (-953 2202450 2202849 2203441 "POLYROOT" 2204672 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-952 2196632 2202054 2202214 "POLY" 2202323 NIL POLY (NIL T) -8 NIL NIL NIL) (-951 2196015 2196073 2196307 "POLYLIFT" 2196568 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-950 2192290 2192739 2193368 "POLYCATQ" 2195560 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-949 2179002 2184130 2184195 "POLYCAT" 2187709 NIL POLYCAT (NIL T T T) -9 NIL 2189587 NIL) (-948 2172451 2174313 2176697 "POLYCAT-" 2176702 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-947 2172038 2172106 2172226 "POLY2UP" 2172377 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-946 2171670 2171727 2171836 "POLY2" 2171975 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-945 2170355 2170594 2170870 "POLUTIL" 2171444 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-944 2168710 2168987 2169318 "POLTOPOL" 2170077 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-943 2164175 2168646 2168692 "POINT" 2168697 NIL POINT (NIL T) -8 NIL NIL NIL) (-942 2162362 2162719 2163094 "PNTHEORY" 2163820 T PNTHEORY (NIL) -7 NIL NIL NIL) (-941 2160820 2161117 2161516 "PMTOOLS" 2162060 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-940 2160413 2160491 2160608 "PMSYM" 2160736 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-939 2159923 2159992 2160166 "PMQFCAT" 2160338 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-938 2159278 2159388 2159544 "PMPRED" 2159800 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-937 2158671 2158757 2158919 "PMPREDFS" 2159179 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-936 2157335 2157543 2157921 "PMPLCAT" 2158433 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-935 2156867 2156946 2157098 "PMLSAGG" 2157250 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-934 2156340 2156416 2156598 "PMKERNEL" 2156785 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-933 2155957 2156032 2156145 "PMINS" 2156259 NIL PMINS (NIL T) -7 NIL NIL NIL) (-932 2155399 2155468 2155677 "PMFS" 2155882 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-931 2154627 2154745 2154950 "PMDOWN" 2155276 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-930 2153794 2153952 2154133 "PMASS" 2154466 T PMASS (NIL) -7 NIL NIL NIL) (-929 2153067 2153177 2153340 "PMASSFS" 2153681 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-928 2152722 2152790 2152884 "PLOTTOOL" 2152993 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-927 2147329 2148533 2149681 "PLOT" 2151594 T PLOT (NIL) -8 NIL NIL NIL) (-926 2143133 2144177 2145098 "PLOT3D" 2146428 T PLOT3D (NIL) -8 NIL NIL NIL) (-925 2142045 2142222 2142457 "PLOT1" 2142937 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-924 2117434 2122111 2126962 "PLEQN" 2137311 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-923 2116752 2116874 2117054 "PINTERP" 2117299 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-922 2116445 2116492 2116595 "PINTERPA" 2116699 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-921 2115666 2116214 2116301 "PI" 2116341 T PI (NIL) -8 NIL NIL 2116408) (-920 2113963 2114938 2114966 "PID" 2115148 T PID (NIL) -9 NIL 2115282 NIL) (-919 2113714 2113751 2113826 "PICOERCE" 2113920 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-918 2113034 2113173 2113349 "PGROEB" 2113570 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-917 2108621 2109435 2110340 "PGE" 2112149 T PGE (NIL) -7 NIL NIL NIL) (-916 2106744 2106991 2107357 "PGCD" 2108338 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-915 2106082 2106185 2106346 "PFRPAC" 2106628 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-914 2102722 2104630 2104983 "PFR" 2105761 NIL PFR (NIL T) -8 NIL NIL NIL) (-913 2101111 2101355 2101680 "PFOTOOLS" 2102469 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-912 2099644 2099883 2100234 "PFOQ" 2100868 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-911 2098145 2098357 2098713 "PFO" 2099428 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-910 2094698 2098034 2098103 "PF" 2098108 NIL PF (NIL NIL) -8 NIL NIL NIL) (-909 2092032 2093303 2093331 "PFECAT" 2093916 T PFECAT (NIL) -9 NIL 2094300 NIL) (-908 2091477 2091631 2091845 "PFECAT-" 2091850 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-907 2090080 2090332 2090633 "PFBRU" 2091226 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-906 2087946 2088298 2088730 "PFBR" 2089731 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-905 2083828 2085322 2085998 "PERM" 2087303 NIL PERM (NIL T) -8 NIL NIL NIL) (-904 2079062 2080035 2080905 "PERMGRP" 2082991 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-903 2077168 2078125 2078166 "PERMCAT" 2078612 NIL PERMCAT (NIL T) -9 NIL 2078917 NIL) (-902 2076821 2076862 2076986 "PERMAN" 2077121 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-901 2074309 2076486 2076608 "PENDTREE" 2076732 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-900 2072333 2073101 2073142 "PDRING" 2073799 NIL PDRING (NIL T) -9 NIL 2074085 NIL) (-899 2071436 2071654 2072016 "PDRING-" 2072021 NIL PDRING- (NIL T T) -8 NIL NIL NIL) (-898 2068651 2069429 2070097 "PDEPROB" 2070788 T PDEPROB (NIL) -8 NIL NIL NIL) (-897 2066196 2066700 2067255 "PDEPACK" 2068116 T PDEPACK (NIL) -7 NIL NIL NIL) (-896 2065108 2065298 2065549 "PDECOMP" 2065995 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-895 2062687 2063530 2063558 "PDECAT" 2064345 T PDECAT (NIL) -9 NIL 2065058 NIL) (-894 2062438 2062471 2062561 "PCOMP" 2062648 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-893 2060616 2061239 2061536 "PBWLB" 2062167 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-892 2053089 2054689 2056027 "PATTERN" 2059299 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-891 2052721 2052778 2052887 "PATTERN2" 2053026 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-890 2050478 2050866 2051323 "PATTERN1" 2052310 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-889 2047846 2048427 2048908 "PATRES" 2050043 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-888 2047410 2047477 2047609 "PATRES2" 2047773 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-887 2045293 2045698 2046105 "PATMATCH" 2047077 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-886 2044803 2045012 2045053 "PATMAB" 2045160 NIL PATMAB (NIL T) -9 NIL 2045243 NIL) (-885 2043321 2043657 2043915 "PATLRES" 2044608 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-884 2042867 2042990 2043031 "PATAB" 2043036 NIL PATAB (NIL T) -9 NIL 2043208 NIL) (-883 2040348 2040880 2041453 "PARTPERM" 2042314 T PARTPERM (NIL) -7 NIL NIL NIL) (-882 2039969 2040032 2040134 "PARSURF" 2040279 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-881 2039601 2039658 2039767 "PARSU2" 2039906 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-880 2039365 2039405 2039472 "PARSER" 2039554 T PARSER (NIL) -7 NIL NIL NIL) (-879 2038986 2039049 2039151 "PARSCURV" 2039296 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-878 2038618 2038675 2038784 "PARSC2" 2038923 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-877 2038257 2038315 2038412 "PARPCURV" 2038554 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-876 2037889 2037946 2038055 "PARPC2" 2038194 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-875 2037409 2037495 2037614 "PAN2EXPR" 2037790 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-874 2036186 2036530 2036758 "PALETTE" 2037201 T PALETTE (NIL) -8 NIL NIL NIL) (-873 2034579 2035191 2035551 "PAIR" 2035872 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-872 2028449 2033838 2034032 "PADICRC" 2034434 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-871 2021678 2027795 2027979 "PADICRAT" 2028297 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-870 2019993 2021615 2021660 "PADIC" 2021665 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-869 2017103 2018667 2018707 "PADICCT" 2019288 NIL PADICCT (NIL NIL) -9 NIL 2019570 NIL) (-868 2016060 2016260 2016528 "PADEPAC" 2016890 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-867 2015272 2015405 2015611 "PADE" 2015922 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-866 2013659 2014480 2014760 "OWP" 2015076 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-865 2013152 2013365 2013462 "OVERSET" 2013582 T OVERSET (NIL) -8 NIL NIL NIL) (-864 2012198 2012757 2012929 "OVAR" 2013020 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-863 2011462 2011583 2011744 "OUT" 2012057 T OUT (NIL) -7 NIL NIL NIL) (-862 2000334 2002571 2004771 "OUTFORM" 2009282 T OUTFORM (NIL) -8 NIL NIL NIL) (-861 1999670 1999931 2000058 "OUTBFILE" 2000227 T OUTBFILE (NIL) -8 NIL NIL NIL) (-860 1998977 1999142 1999170 "OUTBCON" 1999488 T OUTBCON (NIL) -9 NIL 1999654 NIL) (-859 1998578 1998690 1998847 "OUTBCON-" 1998852 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-858 1997958 1998307 1998396 "OSI" 1998509 T OSI (NIL) -8 NIL NIL NIL) (-857 1997488 1997826 1997854 "OSGROUP" 1997859 T OSGROUP (NIL) -9 NIL 1997881 NIL) (-856 1996233 1996460 1996745 "ORTHPOL" 1997235 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-855 1993784 1996068 1996189 "OREUP" 1996194 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-854 1991187 1993475 1993602 "ORESUP" 1993726 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-853 1988715 1989215 1989776 "OREPCTO" 1990676 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-852 1982401 1984602 1984643 "OREPCAT" 1986991 NIL OREPCAT (NIL T) -9 NIL 1988095 NIL) (-851 1979548 1980330 1981388 "OREPCAT-" 1981393 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-850 1978699 1978997 1979025 "ORDSET" 1979334 T ORDSET (NIL) -9 NIL 1979498 NIL) (-849 1978130 1978278 1978502 "ORDSET-" 1978507 NIL ORDSET- (NIL T) -8 NIL NIL NIL) (-848 1976695 1977486 1977514 "ORDRING" 1977716 T ORDRING (NIL) -9 NIL 1977841 NIL) (-847 1976340 1976434 1976578 "ORDRING-" 1976583 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-846 1975720 1976183 1976211 "ORDMON" 1976216 T ORDMON (NIL) -9 NIL 1976237 NIL) (-845 1974882 1975029 1975224 "ORDFUNS" 1975569 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-844 1974220 1974639 1974667 "ORDFIN" 1974732 T ORDFIN (NIL) -9 NIL 1974806 NIL) (-843 1970779 1972806 1973215 "ORDCOMP" 1973844 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-842 1970045 1970172 1970358 "ORDCOMP2" 1970639 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-841 1966626 1967536 1968350 "OPTPROB" 1969251 T OPTPROB (NIL) -8 NIL NIL NIL) (-840 1963428 1964067 1964771 "OPTPACK" 1965942 T OPTPACK (NIL) -7 NIL NIL NIL) (-839 1961115 1961881 1961909 "OPTCAT" 1962728 T OPTCAT (NIL) -9 NIL 1963378 NIL) (-838 1960499 1960792 1960897 "OPSIG" 1961030 T OPSIG (NIL) -8 NIL NIL NIL) (-837 1960267 1960306 1960372 "OPQUERY" 1960453 T OPQUERY (NIL) -7 NIL NIL NIL) (-836 1957398 1958578 1959082 "OP" 1959796 NIL OP (NIL T) -8 NIL NIL NIL) (-835 1956772 1956998 1957039 "OPERCAT" 1957251 NIL OPERCAT (NIL T) -9 NIL 1957348 NIL) (-834 1956527 1956583 1956700 "OPERCAT-" 1956705 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-833 1953340 1955324 1955693 "ONECOMP" 1956191 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-832 1952645 1952760 1952934 "ONECOMP2" 1953212 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-831 1952064 1952170 1952300 "OMSERVER" 1952535 T OMSERVER (NIL) -7 NIL NIL NIL) (-830 1948926 1951504 1951544 "OMSAGG" 1951605 NIL OMSAGG (NIL T) -9 NIL 1951669 NIL) (-829 1947549 1947812 1948094 "OMPKG" 1948664 T OMPKG (NIL) -7 NIL NIL NIL) (-828 1946979 1947082 1947110 "OM" 1947409 T OM (NIL) -9 NIL NIL NIL) (-827 1945526 1946528 1946697 "OMLO" 1946860 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-826 1944486 1944633 1944853 "OMEXPR" 1945352 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-825 1943777 1944032 1944168 "OMERR" 1944370 T OMERR (NIL) -8 NIL NIL NIL) (-824 1942928 1943198 1943358 "OMERRK" 1943637 T OMERRK (NIL) -8 NIL NIL NIL) (-823 1942379 1942605 1942713 "OMENC" 1942840 T OMENC (NIL) -8 NIL NIL NIL) (-822 1936274 1937459 1938630 "OMDEV" 1941228 T OMDEV (NIL) -8 NIL NIL NIL) (-821 1935343 1935514 1935708 "OMCONN" 1936100 T OMCONN (NIL) -8 NIL NIL NIL) (-820 1933864 1934840 1934868 "OINTDOM" 1934873 T OINTDOM (NIL) -9 NIL 1934894 NIL) (-819 1929643 1930854 1931570 "OFMONOID" 1933180 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-818 1929054 1929580 1929625 "ODVAR" 1929630 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-817 1926477 1928799 1928954 "ODR" 1928959 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-816 1919058 1926253 1926379 "ODPOL" 1926384 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-815 1912880 1918930 1919035 "ODP" 1919040 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-814 1911646 1911861 1912136 "ODETOOLS" 1912654 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-813 1908613 1909271 1909987 "ODESYS" 1910979 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-812 1903495 1904403 1905428 "ODERTRIC" 1907688 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-811 1902921 1903003 1903197 "ODERED" 1903407 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-810 1899809 1900357 1901034 "ODERAT" 1902344 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-809 1896766 1897233 1897830 "ODEPRRIC" 1899338 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-808 1894709 1895305 1895791 "ODEPROB" 1896300 T ODEPROB (NIL) -8 NIL NIL NIL) (-807 1891229 1891714 1892361 "ODEPRIM" 1894188 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-806 1890478 1890580 1890840 "ODEPAL" 1891121 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-805 1886640 1887431 1888295 "ODEPACK" 1889634 T ODEPACK (NIL) -7 NIL NIL NIL) (-804 1885701 1885808 1886030 "ODEINT" 1886529 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-803 1879802 1881227 1882674 "ODEIFTBL" 1884274 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-802 1875200 1875986 1876938 "ODEEF" 1878961 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-801 1874549 1874638 1874861 "ODECONST" 1875105 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-800 1872674 1873335 1873363 "ODECAT" 1873968 T ODECAT (NIL) -9 NIL 1874499 NIL) (-799 1869546 1872386 1872505 "OCT" 1872587 NIL OCT (NIL T) -8 NIL NIL NIL) (-798 1869184 1869227 1869354 "OCTCT2" 1869497 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-797 1863833 1866268 1866308 "OC" 1867405 NIL OC (NIL T) -9 NIL 1868263 NIL) (-796 1861060 1861808 1862798 "OC-" 1862892 NIL OC- (NIL T T) -8 NIL NIL NIL) (-795 1860412 1860880 1860908 "OCAMON" 1860913 T OCAMON (NIL) -9 NIL 1860934 NIL) (-794 1859943 1860284 1860312 "OASGP" 1860317 T OASGP (NIL) -9 NIL 1860337 NIL) (-793 1859204 1859693 1859721 "OAMONS" 1859761 T OAMONS (NIL) -9 NIL 1859804 NIL) (-792 1858618 1859051 1859079 "OAMON" 1859084 T OAMON (NIL) -9 NIL 1859104 NIL) (-791 1857876 1858394 1858422 "OAGROUP" 1858427 T OAGROUP (NIL) -9 NIL 1858447 NIL) (-790 1857566 1857616 1857704 "NUMTUBE" 1857820 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-789 1851139 1852657 1854193 "NUMQUAD" 1856050 T NUMQUAD (NIL) -7 NIL NIL NIL) (-788 1846895 1847883 1848908 "NUMODE" 1850134 T NUMODE (NIL) -7 NIL NIL NIL) (-787 1844250 1845130 1845158 "NUMINT" 1846081 T NUMINT (NIL) -9 NIL 1846845 NIL) (-786 1843198 1843395 1843613 "NUMFMT" 1844052 T NUMFMT (NIL) -7 NIL NIL NIL) (-785 1829557 1832502 1835034 "NUMERIC" 1840705 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-784 1823927 1829006 1829101 "NTSCAT" 1829106 NIL NTSCAT (NIL T T T T) -9 NIL 1829145 NIL) (-783 1823121 1823286 1823479 "NTPOLFN" 1823766 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-782 1811198 1819946 1820758 "NSUP" 1822342 NIL NSUP (NIL T) -8 NIL NIL NIL) (-781 1810830 1810887 1810996 "NSUP2" 1811135 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-780 1801058 1810604 1810737 "NSMP" 1810742 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-779 1799490 1799791 1800148 "NREP" 1800746 NIL NREP (NIL T) -7 NIL NIL NIL) (-778 1798081 1798333 1798691 "NPCOEF" 1799233 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-777 1797147 1797262 1797478 "NORMRETR" 1797962 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-776 1795188 1795478 1795887 "NORMPK" 1796855 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-775 1794873 1794901 1795025 "NORMMA" 1795154 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-774 1794673 1794830 1794859 "NONE" 1794864 T NONE (NIL) -8 NIL NIL NIL) (-773 1794462 1794491 1794560 "NONE1" 1794637 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-772 1793959 1794021 1794200 "NODE1" 1794394 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-771 1792244 1793095 1793350 "NNI" 1793697 T NNI (NIL) -8 NIL NIL 1793932) (-770 1790664 1790977 1791341 "NLINSOL" 1791912 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-769 1786905 1787900 1788799 "NIPROB" 1789785 T NIPROB (NIL) -8 NIL NIL NIL) (-768 1785662 1785896 1786198 "NFINTBAS" 1786667 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-767 1784836 1785312 1785353 "NETCLT" 1785525 NIL NETCLT (NIL T) -9 NIL 1785607 NIL) (-766 1783544 1783775 1784056 "NCODIV" 1784604 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-765 1783306 1783343 1783418 "NCNTFRAC" 1783501 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-764 1781486 1781850 1782270 "NCEP" 1782931 NIL NCEP (NIL T) -7 NIL NIL NIL) (-763 1780337 1781110 1781138 "NASRING" 1781248 T NASRING (NIL) -9 NIL 1781328 NIL) (-762 1780132 1780176 1780270 "NASRING-" 1780275 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-761 1779239 1779764 1779792 "NARNG" 1779909 T NARNG (NIL) -9 NIL 1780000 NIL) (-760 1778931 1778998 1779132 "NARNG-" 1779137 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-759 1777810 1778017 1778252 "NAGSP" 1778716 T NAGSP (NIL) -7 NIL NIL NIL) (-758 1769082 1770766 1772439 "NAGS" 1776157 T NAGS (NIL) -7 NIL NIL NIL) (-757 1767630 1767938 1768269 "NAGF07" 1768771 T NAGF07 (NIL) -7 NIL NIL NIL) (-756 1762168 1763459 1764766 "NAGF04" 1766343 T NAGF04 (NIL) -7 NIL NIL NIL) (-755 1755136 1756750 1758383 "NAGF02" 1760555 T NAGF02 (NIL) -7 NIL NIL NIL) (-754 1750360 1751460 1752577 "NAGF01" 1754039 T NAGF01 (NIL) -7 NIL NIL NIL) (-753 1743988 1745554 1747139 "NAGE04" 1748795 T NAGE04 (NIL) -7 NIL NIL NIL) (-752 1735157 1737278 1739408 "NAGE02" 1741878 T NAGE02 (NIL) -7 NIL NIL NIL) (-751 1731110 1732057 1733021 "NAGE01" 1734213 T NAGE01 (NIL) -7 NIL NIL NIL) (-750 1728905 1729439 1729997 "NAGD03" 1730572 T NAGD03 (NIL) -7 NIL NIL NIL) (-749 1720655 1722583 1724537 "NAGD02" 1726971 T NAGD02 (NIL) -7 NIL NIL NIL) (-748 1714466 1715891 1717331 "NAGD01" 1719235 T NAGD01 (NIL) -7 NIL NIL NIL) (-747 1710675 1711497 1712334 "NAGC06" 1713649 T NAGC06 (NIL) -7 NIL NIL NIL) (-746 1709140 1709472 1709828 "NAGC05" 1710339 T NAGC05 (NIL) -7 NIL NIL NIL) (-745 1708516 1708635 1708779 "NAGC02" 1709016 T NAGC02 (NIL) -7 NIL NIL NIL) (-744 1707475 1708058 1708098 "NAALG" 1708177 NIL NAALG (NIL T) -9 NIL 1708238 NIL) (-743 1707310 1707339 1707429 "NAALG-" 1707434 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-742 1701260 1702368 1703555 "MULTSQFR" 1706206 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-741 1700579 1700654 1700838 "MULTFACT" 1701172 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-740 1693303 1697216 1697269 "MTSCAT" 1698339 NIL MTSCAT (NIL T T) -9 NIL 1698854 NIL) (-739 1693015 1693069 1693161 "MTHING" 1693243 NIL MTHING (NIL T) -7 NIL NIL NIL) (-738 1692807 1692840 1692900 "MSYSCMD" 1692975 T MSYSCMD (NIL) -7 NIL NIL NIL) (-737 1688889 1691562 1691882 "MSET" 1692520 NIL MSET (NIL T) -8 NIL NIL NIL) (-736 1685958 1688450 1688491 "MSETAGG" 1688496 NIL MSETAGG (NIL T) -9 NIL 1688530 NIL) (-735 1681799 1683337 1684082 "MRING" 1685258 NIL MRING (NIL T T) -8 NIL NIL NIL) (-734 1681365 1681432 1681563 "MRF2" 1681726 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-733 1680983 1681018 1681162 "MRATFAC" 1681324 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-732 1678595 1678890 1679321 "MPRFF" 1680688 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-731 1672892 1678449 1678546 "MPOLY" 1678551 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-730 1672382 1672417 1672625 "MPCPF" 1672851 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-729 1671896 1671939 1672123 "MPC3" 1672333 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-728 1671091 1671172 1671393 "MPC2" 1671811 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-727 1669392 1669729 1670119 "MONOTOOL" 1670751 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-726 1668617 1668934 1668962 "MONOID" 1669181 T MONOID (NIL) -9 NIL 1669328 NIL) (-725 1668163 1668282 1668463 "MONOID-" 1668468 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-724 1658638 1664589 1664648 "MONOGEN" 1665322 NIL MONOGEN (NIL T T) -9 NIL 1665778 NIL) (-723 1655856 1656591 1657591 "MONOGEN-" 1657710 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-722 1654689 1655135 1655163 "MONADWU" 1655555 T MONADWU (NIL) -9 NIL 1655793 NIL) (-721 1654061 1654220 1654468 "MONADWU-" 1654473 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-720 1653420 1653664 1653692 "MONAD" 1653899 T MONAD (NIL) -9 NIL 1654011 NIL) (-719 1653105 1653183 1653315 "MONAD-" 1653320 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-718 1651394 1652018 1652297 "MOEBIUS" 1652858 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-717 1650672 1651076 1651116 "MODULE" 1651121 NIL MODULE (NIL T) -9 NIL 1651160 NIL) (-716 1650240 1650336 1650526 "MODULE-" 1650531 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-715 1647920 1648604 1648931 "MODRING" 1650064 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-714 1644864 1646025 1646546 "MODOP" 1647449 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-713 1643452 1643931 1644208 "MODMONOM" 1644727 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-712 1633493 1641743 1642157 "MODMON" 1643089 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-711 1630649 1632337 1632613 "MODFIELD" 1633368 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-710 1629626 1629930 1630120 "MMLFORM" 1630479 T MMLFORM (NIL) -8 NIL NIL NIL) (-709 1629152 1629195 1629374 "MMAP" 1629577 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-708 1627231 1627998 1628039 "MLO" 1628462 NIL MLO (NIL T) -9 NIL 1628704 NIL) (-707 1624597 1625113 1625715 "MLIFT" 1626712 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-706 1623988 1624072 1624226 "MKUCFUNC" 1624508 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-705 1623587 1623657 1623780 "MKRECORD" 1623911 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-704 1622634 1622796 1623024 "MKFUNC" 1623398 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-703 1622022 1622126 1622282 "MKFLCFN" 1622517 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-702 1621299 1621401 1621586 "MKBCFUNC" 1621915 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-701 1618006 1620853 1620989 "MINT" 1621183 T MINT (NIL) -8 NIL NIL NIL) (-700 1616818 1617061 1617338 "MHROWRED" 1617761 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-699 1612197 1615353 1615758 "MFLOAT" 1616433 T MFLOAT (NIL) -8 NIL NIL NIL) (-698 1611554 1611630 1611801 "MFINFACT" 1612109 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-697 1607869 1608717 1609601 "MESH" 1610690 T MESH (NIL) -7 NIL NIL NIL) (-696 1606259 1606571 1606924 "MDDFACT" 1607556 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-695 1603054 1605418 1605459 "MDAGG" 1605714 NIL MDAGG (NIL T) -9 NIL 1605857 NIL) (-694 1592794 1602347 1602554 "MCMPLX" 1602867 T MCMPLX (NIL) -8 NIL NIL NIL) (-693 1591935 1592081 1592281 "MCDEN" 1592643 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-692 1589825 1590095 1590475 "MCALCFN" 1591665 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-691 1588750 1588990 1589223 "MAYBE" 1589631 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-690 1586362 1586885 1587447 "MATSTOR" 1588221 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-689 1582319 1585734 1585982 "MATRIX" 1586147 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-688 1578083 1578792 1579528 "MATLIN" 1581676 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-687 1568189 1571375 1571452 "MATCAT" 1576332 NIL MATCAT (NIL T T T) -9 NIL 1577749 NIL) (-686 1564545 1565566 1566922 "MATCAT-" 1566927 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-685 1563139 1563292 1563625 "MATCAT2" 1564380 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-684 1561251 1561575 1561959 "MAPPKG3" 1562814 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-683 1560232 1560405 1560627 "MAPPKG2" 1561075 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-682 1558731 1559015 1559342 "MAPPKG1" 1559938 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-681 1557810 1558137 1558314 "MAPPAST" 1558574 T MAPPAST (NIL) -8 NIL NIL NIL) (-680 1557421 1557479 1557602 "MAPHACK3" 1557746 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-679 1557013 1557074 1557188 "MAPHACK2" 1557353 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-678 1556450 1556554 1556696 "MAPHACK1" 1556904 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-677 1554529 1555150 1555454 "MAGMA" 1556178 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-676 1554008 1554253 1554344 "MACROAST" 1554458 T MACROAST (NIL) -8 NIL NIL NIL) (-675 1550426 1552247 1552708 "M3D" 1553580 NIL M3D (NIL T) -8 NIL NIL NIL) (-674 1544532 1548795 1548836 "LZSTAGG" 1549618 NIL LZSTAGG (NIL T) -9 NIL 1549913 NIL) (-673 1540489 1541663 1543120 "LZSTAGG-" 1543125 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-672 1537576 1538380 1538867 "LWORD" 1540034 NIL LWORD (NIL T) -8 NIL NIL NIL) (-671 1537152 1537380 1537455 "LSTAST" 1537521 T LSTAST (NIL) -8 NIL NIL NIL) (-670 1530318 1536923 1537057 "LSQM" 1537062 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-669 1529542 1529681 1529909 "LSPP" 1530173 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-668 1527354 1527655 1528111 "LSMP" 1529231 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-667 1524133 1524807 1525537 "LSMP1" 1526656 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-666 1518010 1523300 1523341 "LSAGG" 1523403 NIL LSAGG (NIL T) -9 NIL 1523481 NIL) (-665 1514705 1515629 1516842 "LSAGG-" 1516847 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-664 1512304 1513849 1514098 "LPOLY" 1514500 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-663 1511886 1511971 1512094 "LPEFRAC" 1512213 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-662 1510207 1510980 1511233 "LO" 1511718 NIL LO (NIL T T T) -8 NIL NIL NIL) (-661 1509859 1509971 1509999 "LOGIC" 1510110 T LOGIC (NIL) -9 NIL 1510191 NIL) (-660 1509721 1509744 1509815 "LOGIC-" 1509820 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-659 1508914 1509054 1509247 "LODOOPS" 1509577 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-658 1506337 1508830 1508896 "LODO" 1508901 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-657 1504875 1505110 1505463 "LODOF" 1506084 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-656 1501093 1503524 1503565 "LODOCAT" 1504003 NIL LODOCAT (NIL T) -9 NIL 1504214 NIL) (-655 1500826 1500884 1501011 "LODOCAT-" 1501016 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-654 1498146 1500667 1500785 "LODO2" 1500790 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-653 1495581 1498083 1498128 "LODO1" 1498133 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-652 1494462 1494627 1494932 "LODEEF" 1495404 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-651 1489701 1492592 1492633 "LNAGG" 1493580 NIL LNAGG (NIL T) -9 NIL 1494024 NIL) (-650 1488848 1489062 1489404 "LNAGG-" 1489409 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-649 1484984 1485773 1486412 "LMOPS" 1488263 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-648 1484387 1484775 1484816 "LMODULE" 1484821 NIL LMODULE (NIL T) -9 NIL 1484847 NIL) (-647 1481585 1484032 1484155 "LMDICT" 1484297 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-646 1480991 1481212 1481253 "LLINSET" 1481444 NIL LLINSET (NIL T) -9 NIL 1481535 NIL) (-645 1480690 1480899 1480959 "LITERAL" 1480964 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-644 1473873 1479636 1479934 "LIST" 1480425 NIL LIST (NIL T) -8 NIL NIL NIL) (-643 1473398 1473472 1473611 "LIST3" 1473793 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-642 1472405 1472583 1472811 "LIST2" 1473216 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-641 1470539 1470851 1471250 "LIST2MAP" 1472052 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-640 1470135 1470372 1470413 "LINSET" 1470418 NIL LINSET (NIL T) -9 NIL 1470452 NIL) (-639 1468796 1469466 1469507 "LINEXP" 1469762 NIL LINEXP (NIL T) -9 NIL 1469911 NIL) (-638 1467443 1467703 1468000 "LINDEP" 1468548 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-637 1464210 1464929 1465706 "LIMITRF" 1466698 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-636 1462513 1462809 1463218 "LIMITPS" 1463905 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-635 1456941 1462024 1462252 "LIE" 1462334 NIL LIE (NIL T T) -8 NIL NIL NIL) (-634 1455889 1456358 1456398 "LIECAT" 1456538 NIL LIECAT (NIL T) -9 NIL 1456689 NIL) (-633 1455730 1455757 1455845 "LIECAT-" 1455850 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-632 1448226 1455179 1455344 "LIB" 1455585 T LIB (NIL) -8 NIL NIL NIL) (-631 1443861 1444744 1445679 "LGROBP" 1447343 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-630 1441859 1442133 1442483 "LF" 1443582 NIL LF (NIL T T) -7 NIL NIL NIL) (-629 1440699 1441391 1441419 "LFCAT" 1441626 T LFCAT (NIL) -9 NIL 1441765 NIL) (-628 1437601 1438231 1438919 "LEXTRIPK" 1440063 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-627 1434345 1435171 1435674 "LEXP" 1437181 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-626 1433821 1434066 1434158 "LETAST" 1434273 T LETAST (NIL) -8 NIL NIL NIL) (-625 1432219 1432532 1432933 "LEADCDET" 1433503 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-624 1431409 1431483 1431712 "LAZM3PK" 1432140 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-623 1426326 1429486 1430024 "LAUPOL" 1430921 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-622 1425905 1425949 1426110 "LAPLACE" 1426276 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-621 1423844 1425006 1425257 "LA" 1425738 NIL LA (NIL T T T) -8 NIL NIL NIL) (-620 1422838 1423422 1423463 "LALG" 1423525 NIL LALG (NIL T) -9 NIL 1423584 NIL) (-619 1422552 1422611 1422747 "LALG-" 1422752 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-618 1422387 1422411 1422452 "KVTFROM" 1422514 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-617 1421310 1421754 1421939 "KTVLOGIC" 1422222 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-616 1421145 1421169 1421210 "KRCFROM" 1421272 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-615 1420049 1420236 1420535 "KOVACIC" 1420945 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-614 1419884 1419908 1419949 "KONVERT" 1420011 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-613 1419719 1419743 1419784 "KOERCE" 1419846 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-612 1417549 1418312 1418689 "KERNEL" 1419375 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-611 1417045 1417126 1417258 "KERNEL2" 1417463 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-610 1410815 1415584 1415638 "KDAGG" 1416015 NIL KDAGG (NIL T T) -9 NIL 1416221 NIL) (-609 1410344 1410468 1410673 "KDAGG-" 1410678 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-608 1403492 1410005 1410160 "KAFILE" 1410222 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-607 1397920 1403003 1403231 "JORDAN" 1403313 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-606 1397299 1397569 1397690 "JOINAST" 1397819 T JOINAST (NIL) -8 NIL NIL NIL) (-605 1397145 1397204 1397259 "JAVACODE" 1397264 T JAVACODE (NIL) -8 NIL NIL NIL) (-604 1393397 1395350 1395404 "IXAGG" 1396333 NIL IXAGG (NIL T T) -9 NIL 1396792 NIL) (-603 1392316 1392622 1393041 "IXAGG-" 1393046 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-602 1387846 1392238 1392297 "IVECTOR" 1392302 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-601 1386612 1386849 1387115 "ITUPLE" 1387613 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-600 1385114 1385291 1385586 "ITRIGMNP" 1386434 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-599 1383859 1384063 1384346 "ITFUN3" 1384890 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-598 1383491 1383548 1383657 "ITFUN2" 1383796 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-597 1381293 1382353 1382652 "ITAYLOR" 1383225 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-596 1370238 1375430 1376593 "ISUPS" 1380163 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-595 1369342 1369482 1369718 "ISUMP" 1370085 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-594 1364556 1369143 1369222 "ISTRING" 1369295 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-593 1364032 1364277 1364369 "ISAST" 1364484 T ISAST (NIL) -8 NIL NIL NIL) (-592 1363241 1363323 1363539 "IRURPK" 1363946 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-591 1362177 1362378 1362618 "IRSN" 1363021 T IRSN (NIL) -7 NIL NIL NIL) (-590 1360248 1360603 1361032 "IRRF2F" 1361815 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-589 1359995 1360033 1360109 "IRREDFFX" 1360204 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-588 1358610 1358869 1359168 "IROOT" 1359728 NIL IROOT (NIL T) -7 NIL NIL NIL) (-587 1355214 1356294 1356986 "IR" 1357950 NIL IR (NIL T) -8 NIL NIL NIL) (-586 1352827 1353322 1353888 "IR2" 1354692 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-585 1351927 1352040 1352254 "IR2F" 1352710 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-584 1351718 1351752 1351812 "IPRNTPK" 1351887 T IPRNTPK (NIL) -7 NIL NIL NIL) (-583 1348297 1351607 1351676 "IPF" 1351681 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-582 1346624 1348222 1348279 "IPADIC" 1348284 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-581 1345936 1346184 1346314 "IP4ADDR" 1346514 T IP4ADDR (NIL) -8 NIL NIL NIL) (-580 1345409 1345640 1345750 "IOMODE" 1345846 T IOMODE (NIL) -8 NIL NIL NIL) (-579 1344482 1345006 1345133 "IOBFILE" 1345302 T IOBFILE (NIL) -8 NIL NIL NIL) (-578 1343970 1344386 1344414 "IOBCON" 1344419 T IOBCON (NIL) -9 NIL 1344440 NIL) (-577 1343481 1343539 1343722 "INVLAPLA" 1343906 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-576 1333129 1335483 1337869 "INTTR" 1341145 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-575 1329464 1330206 1331071 "INTTOOLS" 1332314 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-574 1329050 1329141 1329258 "INTSLPE" 1329367 T INTSLPE (NIL) -7 NIL NIL NIL) (-573 1327003 1328973 1329032 "INTRVL" 1329037 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-572 1324605 1325117 1325692 "INTRF" 1326488 NIL INTRF (NIL T) -7 NIL NIL NIL) (-571 1324016 1324113 1324255 "INTRET" 1324503 NIL INTRET (NIL T) -7 NIL NIL NIL) (-570 1322013 1322402 1322872 "INTRAT" 1323624 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-569 1319276 1319859 1320478 "INTPM" 1321498 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-568 1316021 1316620 1317358 "INTPAF" 1318662 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-567 1311200 1312162 1313213 "INTPACK" 1314990 T INTPACK (NIL) -7 NIL NIL NIL) (-566 1308080 1310929 1311056 "INT" 1311093 T INT (NIL) -8 NIL NIL NIL) (-565 1307332 1307484 1307692 "INTHERTR" 1307922 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-564 1306771 1306851 1307039 "INTHERAL" 1307246 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-563 1304617 1305060 1305517 "INTHEORY" 1306334 T INTHEORY (NIL) -7 NIL NIL NIL) (-562 1296023 1297644 1299416 "INTG0" 1302969 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-561 1276596 1281386 1286196 "INTFTBL" 1291233 T INTFTBL (NIL) -8 NIL NIL NIL) (-560 1275845 1275983 1276156 "INTFACT" 1276455 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-559 1273272 1273718 1274275 "INTEF" 1275399 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-558 1271639 1272378 1272406 "INTDOM" 1272707 T INTDOM (NIL) -9 NIL 1272914 NIL) (-557 1271008 1271182 1271424 "INTDOM-" 1271429 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-556 1267396 1269324 1269378 "INTCAT" 1270177 NIL INTCAT (NIL T) -9 NIL 1270498 NIL) (-555 1266868 1266971 1267099 "INTBIT" 1267288 T INTBIT (NIL) -7 NIL NIL NIL) (-554 1265567 1265721 1266028 "INTALG" 1266713 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-553 1265050 1265140 1265297 "INTAF" 1265471 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-552 1258393 1264860 1265000 "INTABL" 1265005 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-551 1257734 1258200 1258265 "INT8" 1258299 T INT8 (NIL) -8 NIL NIL 1258344) (-550 1257074 1257540 1257605 "INT64" 1257639 T INT64 (NIL) -8 NIL NIL 1257684) (-549 1256414 1256880 1256945 "INT32" 1256979 T INT32 (NIL) -8 NIL NIL 1257024) (-548 1255754 1256220 1256285 "INT16" 1256319 T INT16 (NIL) -8 NIL NIL 1256364) (-547 1250664 1253377 1253405 "INS" 1254339 T INS (NIL) -9 NIL 1255004 NIL) (-546 1247904 1248675 1249649 "INS-" 1249722 NIL INS- (NIL T) -8 NIL NIL NIL) (-545 1246679 1246906 1247204 "INPSIGN" 1247657 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-544 1245797 1245914 1246111 "INPRODPF" 1246559 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-543 1244691 1244808 1245045 "INPRODFF" 1245677 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-542 1243691 1243843 1244103 "INNMFACT" 1244527 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-541 1242888 1242985 1243173 "INMODGCD" 1243590 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-540 1241396 1241641 1241965 "INFSP" 1242633 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-539 1240580 1240697 1240880 "INFPROD0" 1241276 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-538 1237435 1238645 1239160 "INFORM" 1240073 T INFORM (NIL) -8 NIL NIL NIL) (-537 1237045 1237105 1237203 "INFORM1" 1237370 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-536 1236568 1236657 1236771 "INFINITY" 1236951 T INFINITY (NIL) -7 NIL NIL NIL) (-535 1235744 1236288 1236389 "INETCLTS" 1236487 T INETCLTS (NIL) -8 NIL NIL NIL) (-534 1234360 1234610 1234931 "INEP" 1235492 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-533 1233609 1234257 1234322 "INDE" 1234327 NIL INDE (NIL T) -8 NIL NIL NIL) (-532 1233173 1233241 1233358 "INCRMAPS" 1233536 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-531 1231991 1232442 1232648 "INBFILE" 1232987 T INBFILE (NIL) -8 NIL NIL NIL) (-530 1227290 1228227 1229171 "INBFF" 1231079 NIL INBFF (NIL T) -7 NIL NIL NIL) (-529 1226198 1226467 1226495 "INBCON" 1227008 T INBCON (NIL) -9 NIL 1227274 NIL) (-528 1225450 1225673 1225949 "INBCON-" 1225954 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-527 1224929 1225174 1225265 "INAST" 1225379 T INAST (NIL) -8 NIL NIL NIL) (-526 1224356 1224608 1224714 "IMPTAST" 1224843 T IMPTAST (NIL) -8 NIL NIL NIL) (-525 1220802 1224200 1224304 "IMATRIX" 1224309 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-524 1219514 1219637 1219952 "IMATQF" 1220658 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-523 1217734 1217961 1218298 "IMATLIN" 1219270 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-522 1212312 1217658 1217716 "ILIST" 1217721 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-521 1210217 1212172 1212285 "IIARRAY2" 1212290 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-520 1205615 1210128 1210192 "IFF" 1210197 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-519 1204962 1205232 1205348 "IFAST" 1205519 T IFAST (NIL) -8 NIL NIL NIL) (-518 1199957 1204254 1204442 "IFARRAY" 1204819 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-517 1199137 1199861 1199934 "IFAMON" 1199939 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-516 1198721 1198786 1198840 "IEVALAB" 1199047 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-515 1198396 1198464 1198624 "IEVALAB-" 1198629 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-514 1198027 1198310 1198373 "IDPO" 1198378 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-513 1197277 1197916 1197991 "IDPOAMS" 1197996 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-512 1196584 1197166 1197241 "IDPOAM" 1197246 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-511 1195643 1195919 1195972 "IDPC" 1196385 NIL IDPC (NIL T T) -9 NIL 1196534 NIL) (-510 1195112 1195535 1195608 "IDPAM" 1195613 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-509 1194488 1195004 1195077 "IDPAG" 1195082 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-508 1194133 1194324 1194399 "IDENT" 1194433 T IDENT (NIL) -8 NIL NIL NIL) (-507 1190388 1191236 1192131 "IDECOMP" 1193290 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-506 1183226 1184311 1185358 "IDEAL" 1189424 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-505 1182390 1182502 1182701 "ICDEN" 1183110 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-504 1181461 1181870 1182017 "ICARD" 1182263 T ICARD (NIL) -8 NIL NIL NIL) (-503 1179521 1179834 1180239 "IBPTOOLS" 1181138 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-502 1175128 1179141 1179254 "IBITS" 1179440 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-501 1171851 1172427 1173122 "IBATOOL" 1174545 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-500 1169630 1170092 1170625 "IBACHIN" 1171386 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-499 1167459 1169476 1169579 "IARRAY2" 1169584 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-498 1163565 1167385 1167442 "IARRAY1" 1167447 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-497 1157674 1161977 1162458 "IAN" 1163104 T IAN (NIL) -8 NIL NIL NIL) (-496 1157185 1157242 1157415 "IALGFACT" 1157611 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-495 1156713 1156826 1156854 "HYPCAT" 1157061 T HYPCAT (NIL) -9 NIL NIL NIL) (-494 1156251 1156368 1156554 "HYPCAT-" 1156559 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-493 1155846 1156046 1156129 "HOSTNAME" 1156188 T HOSTNAME (NIL) -8 NIL NIL NIL) (-492 1155691 1155728 1155769 "HOMOTOP" 1155774 NIL HOMOTOP (NIL T) -9 NIL 1155807 NIL) (-491 1152323 1153701 1153742 "HOAGG" 1154723 NIL HOAGG (NIL T) -9 NIL 1155402 NIL) (-490 1150917 1151316 1151842 "HOAGG-" 1151847 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-489 1144921 1150512 1150661 "HEXADEC" 1150788 T HEXADEC (NIL) -8 NIL NIL NIL) (-488 1143668 1143891 1144154 "HEUGCD" 1144698 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-487 1142744 1143505 1143635 "HELLFDIV" 1143640 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-486 1140923 1142521 1142609 "HEAP" 1142688 NIL HEAP (NIL T) -8 NIL NIL NIL) (-485 1140186 1140475 1140609 "HEADAST" 1140809 T HEADAST (NIL) -8 NIL NIL NIL) (-484 1134052 1140101 1140163 "HDP" 1140168 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-483 1128040 1133687 1133839 "HDMP" 1133953 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-482 1127364 1127504 1127668 "HB" 1127896 T HB (NIL) -7 NIL NIL NIL) (-481 1120750 1127210 1127314 "HASHTBL" 1127319 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-480 1120226 1120471 1120563 "HASAST" 1120678 T HASAST (NIL) -8 NIL NIL NIL) (-479 1118004 1119848 1120030 "HACKPI" 1120064 T HACKPI (NIL) -8 NIL NIL NIL) (-478 1113672 1117857 1117970 "GTSET" 1117975 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-477 1107087 1113550 1113648 "GSTBL" 1113653 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-476 1099365 1106118 1106383 "GSERIES" 1106878 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-475 1098506 1098923 1098951 "GROUP" 1099154 T GROUP (NIL) -9 NIL 1099288 NIL) (-474 1097872 1098031 1098282 "GROUP-" 1098287 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-473 1096239 1096560 1096947 "GROEBSOL" 1097549 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-472 1095153 1095441 1095492 "GRMOD" 1096021 NIL GRMOD (NIL T T) -9 NIL 1096189 NIL) (-471 1094921 1094957 1095085 "GRMOD-" 1095090 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-470 1090211 1091275 1092275 "GRIMAGE" 1093941 T GRIMAGE (NIL) -8 NIL NIL NIL) (-469 1088677 1088938 1089262 "GRDEF" 1089907 T GRDEF (NIL) -7 NIL NIL NIL) (-468 1088121 1088237 1088378 "GRAY" 1088556 T GRAY (NIL) -7 NIL NIL NIL) (-467 1087308 1087714 1087765 "GRALG" 1087918 NIL GRALG (NIL T T) -9 NIL 1088011 NIL) (-466 1086969 1087042 1087205 "GRALG-" 1087210 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-465 1083746 1086554 1086732 "GPOLSET" 1086876 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-464 1083100 1083157 1083415 "GOSPER" 1083683 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-463 1078832 1079538 1080064 "GMODPOL" 1082799 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-462 1077837 1078021 1078259 "GHENSEL" 1078644 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-461 1071993 1072836 1073856 "GENUPS" 1076921 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-460 1071690 1071741 1071830 "GENUFACT" 1071936 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-459 1071102 1071179 1071344 "GENPGCD" 1071608 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-458 1070576 1070611 1070824 "GENMFACT" 1071061 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-457 1069142 1069399 1069706 "GENEEZ" 1070319 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-456 1063288 1068753 1068915 "GDMP" 1069065 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-455 1052630 1057059 1058165 "GCNAALG" 1062271 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-454 1050957 1051819 1051847 "GCDDOM" 1052102 T GCDDOM (NIL) -9 NIL 1052259 NIL) (-453 1050427 1050554 1050769 "GCDDOM-" 1050774 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-452 1049099 1049284 1049588 "GB" 1050206 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-451 1037715 1040045 1042437 "GBINTERN" 1046790 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-450 1035552 1035844 1036265 "GBF" 1037390 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-449 1034333 1034498 1034765 "GBEUCLID" 1035368 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-448 1033682 1033807 1033956 "GAUSSFAC" 1034204 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-447 1032049 1032351 1032665 "GALUTIL" 1033401 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-446 1030357 1030631 1030955 "GALPOLYU" 1031776 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-445 1027722 1028012 1028419 "GALFACTU" 1030054 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-444 1019527 1021027 1022635 "GALFACT" 1026154 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-443 1016915 1017573 1017601 "FVFUN" 1018757 T FVFUN (NIL) -9 NIL 1019477 NIL) (-442 1016181 1016363 1016391 "FVC" 1016682 T FVC (NIL) -9 NIL 1016865 NIL) (-441 1015824 1016006 1016074 "FUNDESC" 1016133 T FUNDESC (NIL) -8 NIL NIL NIL) (-440 1015439 1015621 1015702 "FUNCTION" 1015776 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-439 1013183 1013761 1014227 "FT" 1014993 T FT (NIL) -8 NIL NIL NIL) (-438 1011974 1012484 1012687 "FTEM" 1013000 T FTEM (NIL) -8 NIL NIL NIL) (-437 1010265 1010554 1010951 "FSUPFACT" 1011665 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-436 1008662 1008951 1009283 "FST" 1009953 T FST (NIL) -8 NIL NIL NIL) (-435 1007861 1007967 1008155 "FSRED" 1008544 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-434 1006560 1006816 1007163 "FSPRMELT" 1007576 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-433 1003866 1004304 1004790 "FSPECF" 1006123 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-432 985504 993835 993876 "FS" 997760 NIL FS (NIL T) -9 NIL 1000049 NIL) (-431 974147 977140 981197 "FS-" 981497 NIL FS- (NIL T T) -8 NIL NIL NIL) (-430 973675 973729 973899 "FSINT" 974088 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-429 971967 972668 972971 "FSERIES" 973454 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-428 971009 971125 971349 "FSCINT" 971847 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-427 967217 969953 969994 "FSAGG" 970364 NIL FSAGG (NIL T) -9 NIL 970623 NIL) (-426 964979 965580 966376 "FSAGG-" 966471 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-425 964021 964164 964391 "FSAGG2" 964832 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-424 961703 961983 962530 "FS2UPS" 963739 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-423 961337 961380 961509 "FS2" 961654 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-422 960215 960386 960688 "FS2EXPXP" 961162 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-421 959641 959756 959908 "FRUTIL" 960095 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-420 951054 955136 956494 "FR" 958315 NIL FR (NIL T) -8 NIL NIL NIL) (-419 946023 948697 948737 "FRNAALG" 950133 NIL FRNAALG (NIL T) -9 NIL 950740 NIL) (-418 941696 942772 944047 "FRNAALG-" 944797 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-417 941334 941377 941504 "FRNAAF2" 941647 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-416 939714 940188 940483 "FRMOD" 941146 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-415 937465 938097 938414 "FRIDEAL" 939505 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-414 936660 936747 937036 "FRIDEAL2" 937372 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-413 935793 936207 936248 "FRETRCT" 936253 NIL FRETRCT (NIL T) -9 NIL 936429 NIL) (-412 934905 935136 935487 "FRETRCT-" 935492 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-411 931993 933203 933262 "FRAMALG" 934144 NIL FRAMALG (NIL T T) -9 NIL 934436 NIL) (-410 930127 930582 931212 "FRAMALG-" 931435 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-409 924048 929602 929878 "FRAC" 929883 NIL FRAC (NIL T) -8 NIL NIL NIL) (-408 923684 923741 923848 "FRAC2" 923985 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-407 923320 923377 923484 "FR2" 923621 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-406 917833 920726 920754 "FPS" 921873 T FPS (NIL) -9 NIL 922430 NIL) (-405 917282 917391 917555 "FPS-" 917701 NIL FPS- (NIL T) -8 NIL NIL NIL) (-404 914584 916253 916281 "FPC" 916506 T FPC (NIL) -9 NIL 916648 NIL) (-403 914377 914417 914514 "FPC-" 914519 NIL FPC- (NIL T) -8 NIL NIL NIL) (-402 913167 913865 913906 "FPATMAB" 913911 NIL FPATMAB (NIL T) -9 NIL 914063 NIL) (-401 910840 911343 911769 "FPARFRAC" 912804 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-400 906233 906732 907414 "FORTRAN" 910272 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-399 903949 904449 904988 "FORT" 905714 T FORT (NIL) -7 NIL NIL NIL) (-398 901625 902187 902215 "FORTFN" 903275 T FORTFN (NIL) -9 NIL 903899 NIL) (-397 901389 901439 901467 "FORTCAT" 901526 T FORTCAT (NIL) -9 NIL 901588 NIL) (-396 899495 900005 900395 "FORMULA" 901019 T FORMULA (NIL) -8 NIL NIL NIL) (-395 899283 899313 899382 "FORMULA1" 899459 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-394 898806 898858 899031 "FORDER" 899225 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-393 897902 898066 898259 "FOP" 898633 T FOP (NIL) -7 NIL NIL NIL) (-392 896483 897182 897356 "FNLA" 897784 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-391 895212 895627 895655 "FNCAT" 896115 T FNCAT (NIL) -9 NIL 896375 NIL) (-390 894751 895171 895199 "FNAME" 895204 T FNAME (NIL) -8 NIL NIL NIL) (-389 893314 894277 894305 "FMTC" 894310 T FMTC (NIL) -9 NIL 894346 NIL) (-388 889647 890837 891466 "FMONOID" 892718 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-387 888839 889389 889538 "FM" 889543 NIL FM (NIL T T) -8 NIL NIL NIL) (-386 886263 886909 886937 "FMFUN" 888081 T FMFUN (NIL) -9 NIL 888789 NIL) (-385 885532 885713 885741 "FMC" 886031 T FMC (NIL) -9 NIL 886213 NIL) (-384 882611 883471 883525 "FMCAT" 884720 NIL FMCAT (NIL T T) -9 NIL 885215 NIL) (-383 881477 882377 882477 "FM1" 882556 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-382 879251 879667 880161 "FLOATRP" 881028 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-381 872826 876980 877601 "FLOAT" 878650 T FLOAT (NIL) -8 NIL NIL NIL) (-380 870264 870764 871342 "FLOATCP" 872293 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-379 869004 869842 869883 "FLINEXP" 869888 NIL FLINEXP (NIL T) -9 NIL 869981 NIL) (-378 868158 868393 868721 "FLINEXP-" 868726 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-377 867234 867378 867602 "FLASORT" 868010 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-376 864350 865218 865270 "FLALG" 866497 NIL FLALG (NIL T T) -9 NIL 866964 NIL) (-375 858086 861836 861877 "FLAGG" 863139 NIL FLAGG (NIL T) -9 NIL 863791 NIL) (-374 856812 857151 857641 "FLAGG-" 857646 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-373 855854 855997 856224 "FLAGG2" 856665 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-372 852705 853713 853772 "FINRALG" 854900 NIL FINRALG (NIL T T) -9 NIL 855408 NIL) (-371 851865 852094 852433 "FINRALG-" 852438 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-370 851245 851484 851512 "FINITE" 851708 T FINITE (NIL) -9 NIL 851815 NIL) (-369 843602 845789 845829 "FINAALG" 849496 NIL FINAALG (NIL T) -9 NIL 850949 NIL) (-368 838934 839984 841128 "FINAALG-" 842507 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-367 838302 838689 838792 "FILE" 838864 NIL FILE (NIL T) -8 NIL NIL NIL) (-366 836960 837298 837352 "FILECAT" 838036 NIL FILECAT (NIL T T) -9 NIL 838252 NIL) (-365 834676 836204 836232 "FIELD" 836272 T FIELD (NIL) -9 NIL 836352 NIL) (-364 833296 833681 834192 "FIELD-" 834197 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-363 831146 831931 832278 "FGROUP" 832982 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-362 830236 830400 830620 "FGLMICPK" 830978 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-361 826068 830161 830218 "FFX" 830223 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-360 825669 825730 825865 "FFSLPE" 826001 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-359 821658 822441 823237 "FFPOLY" 824905 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-358 821162 821198 821407 "FFPOLY2" 821616 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-357 817005 821081 821144 "FFP" 821149 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-356 812403 816916 816980 "FF" 816985 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-355 807529 811746 811936 "FFNBX" 812257 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-354 802458 806664 806922 "FFNBP" 807383 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-353 797091 801742 801953 "FFNB" 802291 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-352 795923 796121 796436 "FFINTBAS" 796888 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-351 791992 794212 794240 "FFIELDC" 794860 T FFIELDC (NIL) -9 NIL 795236 NIL) (-350 790654 791025 791522 "FFIELDC-" 791527 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-349 790223 790269 790393 "FFHOM" 790596 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-348 787918 788405 788922 "FFF" 789738 NIL FFF (NIL T) -7 NIL NIL NIL) (-347 783536 787660 787761 "FFCGX" 787861 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-346 779157 783268 783375 "FFCGP" 783479 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-345 774340 778884 778992 "FFCG" 779093 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-344 755736 764817 764903 "FFCAT" 770068 NIL FFCAT (NIL T T T) -9 NIL 771519 NIL) (-343 750934 751981 753295 "FFCAT-" 754525 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-342 750345 750388 750623 "FFCAT2" 750885 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-341 739666 743317 744537 "FEXPR" 749197 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-340 738666 739101 739142 "FEVALAB" 739226 NIL FEVALAB (NIL T) -9 NIL 739487 NIL) (-339 737825 738035 738373 "FEVALAB-" 738378 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-338 736391 737208 737411 "FDIV" 737724 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-337 733411 734152 734267 "FDIVCAT" 735835 NIL FDIVCAT (NIL T T T T) -9 NIL 736272 NIL) (-336 733173 733200 733370 "FDIVCAT-" 733375 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-335 732393 732480 732757 "FDIV2" 733080 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-334 731367 731688 731890 "FCTRDATA" 732211 T FCTRDATA (NIL) -8 NIL NIL NIL) (-333 730053 730312 730601 "FCPAK1" 731098 T FCPAK1 (NIL) -7 NIL NIL NIL) (-332 729152 729553 729694 "FCOMP" 729944 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-331 712854 716302 719840 "FC" 725634 T FC (NIL) -8 NIL NIL NIL) (-330 705217 709245 709285 "FAXF" 711087 NIL FAXF (NIL T) -9 NIL 711779 NIL) (-329 702493 703151 703976 "FAXF-" 704441 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-328 697545 701869 702045 "FARRAY" 702350 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-327 692439 694506 694559 "FAMR" 695582 NIL FAMR (NIL T T) -9 NIL 696042 NIL) (-326 691329 691631 692066 "FAMR-" 692071 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-325 690498 691251 691304 "FAMONOID" 691309 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-324 688284 688994 689047 "FAMONC" 689988 NIL FAMONC (NIL T T) -9 NIL 690374 NIL) (-323 686948 688038 688175 "FAGROUP" 688180 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-322 684743 685062 685465 "FACUTIL" 686629 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-321 683842 684027 684249 "FACTFUNC" 684553 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-320 676264 683145 683344 "EXPUPXS" 683698 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-319 673747 674287 674873 "EXPRTUBE" 675698 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-318 670018 670610 671340 "EXPRODE" 673086 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-317 655503 668667 669096 "EXPR" 669622 NIL EXPR (NIL T) -8 NIL NIL NIL) (-316 650057 650644 651450 "EXPR2UPS" 654801 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-315 649689 649746 649855 "EXPR2" 649994 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-314 641079 648842 649132 "EXPEXPAN" 649526 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-313 640879 641036 641065 "EXIT" 641070 T EXIT (NIL) -8 NIL NIL NIL) (-312 640359 640603 640694 "EXITAST" 640808 T EXITAST (NIL) -8 NIL NIL NIL) (-311 639986 640048 640161 "EVALCYC" 640291 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-310 639527 639645 639686 "EVALAB" 639856 NIL EVALAB (NIL T) -9 NIL 639960 NIL) (-309 639008 639130 639351 "EVALAB-" 639356 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-308 636376 637678 637706 "EUCDOM" 638261 T EUCDOM (NIL) -9 NIL 638611 NIL) (-307 634781 635223 635813 "EUCDOM-" 635818 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-306 622319 625079 627829 "ESTOOLS" 632051 T ESTOOLS (NIL) -7 NIL NIL NIL) (-305 621951 622008 622117 "ESTOOLS2" 622256 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-304 621702 621744 621824 "ESTOOLS1" 621903 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-303 615739 617347 617375 "ES" 620143 T ES (NIL) -9 NIL 621553 NIL) (-302 610686 611973 613790 "ES-" 613954 NIL ES- (NIL T) -8 NIL NIL NIL) (-301 607060 607821 608601 "ESCONT" 609926 T ESCONT (NIL) -7 NIL NIL NIL) (-300 606805 606837 606919 "ESCONT1" 607022 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-299 606480 606530 606630 "ES2" 606749 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-298 606110 606168 606277 "ES1" 606416 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-297 605326 605455 605631 "ERROR" 605954 T ERROR (NIL) -7 NIL NIL NIL) (-296 598718 605185 605276 "EQTBL" 605281 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-295 591221 594032 595481 "EQ" 597302 NIL -2071 (NIL T) -8 NIL NIL NIL) (-294 590853 590910 591019 "EQ2" 591158 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-293 586142 587191 588284 "EP" 589792 NIL EP (NIL T) -7 NIL NIL NIL) (-292 584742 585033 585339 "ENV" 585856 T ENV (NIL) -8 NIL NIL NIL) (-291 583836 584390 584418 "ENTIRER" 584423 T ENTIRER (NIL) -9 NIL 584469 NIL) (-290 580303 581791 582161 "EMR" 583635 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-289 579447 579632 579686 "ELTAGG" 580066 NIL ELTAGG (NIL T T) -9 NIL 580277 NIL) (-288 579166 579228 579369 "ELTAGG-" 579374 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-287 578955 578984 579038 "ELTAB" 579122 NIL ELTAB (NIL T T) -9 NIL NIL NIL) (-286 578081 578227 578426 "ELFUTS" 578806 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-285 577823 577879 577907 "ELEMFUN" 578012 T ELEMFUN (NIL) -9 NIL NIL NIL) (-284 577693 577714 577782 "ELEMFUN-" 577787 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-283 572537 575793 575834 "ELAGG" 576774 NIL ELAGG (NIL T) -9 NIL 577237 NIL) (-282 570822 571256 571919 "ELAGG-" 571924 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-281 569483 569762 570056 "ELABEXPR" 570548 T ELABEXPR (NIL) -8 NIL NIL NIL) (-280 562347 564150 564977 "EFUPXS" 568759 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-279 555797 557598 558408 "EFULS" 561623 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-278 553282 553640 554112 "EFSTRUC" 555429 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-277 543073 544639 546187 "EF" 551797 NIL EF (NIL T T) -7 NIL NIL NIL) (-276 542147 542558 542707 "EAB" 542944 T EAB (NIL) -8 NIL NIL NIL) (-275 541329 542106 542134 "E04UCFA" 542139 T E04UCFA (NIL) -8 NIL NIL NIL) (-274 540511 541288 541316 "E04NAFA" 541321 T E04NAFA (NIL) -8 NIL NIL NIL) (-273 539693 540470 540498 "E04MBFA" 540503 T E04MBFA (NIL) -8 NIL NIL NIL) (-272 538875 539652 539680 "E04JAFA" 539685 T E04JAFA (NIL) -8 NIL NIL NIL) (-271 538059 538834 538862 "E04GCFA" 538867 T E04GCFA (NIL) -8 NIL NIL NIL) (-270 537243 538018 538046 "E04FDFA" 538051 T E04FDFA (NIL) -8 NIL NIL NIL) (-269 536425 537202 537230 "E04DGFA" 537235 T E04DGFA (NIL) -8 NIL NIL NIL) (-268 530598 531950 533314 "E04AGNT" 535081 T E04AGNT (NIL) -7 NIL NIL NIL) (-267 529278 529784 529824 "DVARCAT" 530299 NIL DVARCAT (NIL T) -9 NIL 530498 NIL) (-266 528482 528694 529008 "DVARCAT-" 529013 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-265 521619 528281 528410 "DSMP" 528415 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-264 516400 517564 518632 "DROPT" 520571 T DROPT (NIL) -8 NIL NIL NIL) (-263 516065 516124 516222 "DROPT1" 516335 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-262 511180 512306 513443 "DROPT0" 514948 T DROPT0 (NIL) -7 NIL NIL NIL) (-261 509525 509850 510236 "DRAWPT" 510814 T DRAWPT (NIL) -7 NIL NIL NIL) (-260 504112 505035 506114 "DRAW" 508499 NIL DRAW (NIL T) -7 NIL NIL NIL) (-259 503745 503798 503916 "DRAWHACK" 504053 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-258 502476 502745 503036 "DRAWCX" 503474 T DRAWCX (NIL) -7 NIL NIL NIL) (-257 501991 502060 502211 "DRAWCURV" 502402 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-256 492459 494421 496536 "DRAWCFUN" 499896 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-255 489225 491154 491195 "DQAGG" 491824 NIL DQAGG (NIL T) -9 NIL 492097 NIL) (-254 477349 483818 483901 "DPOLCAT" 485753 NIL DPOLCAT (NIL T T T T) -9 NIL 486298 NIL) (-253 472185 473534 475492 "DPOLCAT-" 475497 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-252 465307 472046 472144 "DPMO" 472149 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-251 458332 465087 465254 "DPMM" 465259 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-250 457810 458024 458122 "DOMTMPLT" 458254 T DOMTMPLT (NIL) -8 NIL NIL NIL) (-249 457243 457612 457692 "DOMCTOR" 457750 T DOMCTOR (NIL) -8 NIL NIL NIL) (-248 456455 456723 456874 "DOMAIN" 457112 T DOMAIN (NIL) -8 NIL NIL NIL) (-247 450443 456090 456242 "DMP" 456356 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-246 450043 450099 450243 "DLP" 450381 NIL DLP (NIL T) -7 NIL NIL NIL) (-245 443865 449370 449560 "DLIST" 449885 NIL DLIST (NIL T) -8 NIL NIL NIL) (-244 440662 442718 442759 "DLAGG" 443309 NIL DLAGG (NIL T) -9 NIL 443539 NIL) (-243 439338 440002 440030 "DIVRING" 440122 T DIVRING (NIL) -9 NIL 440205 NIL) (-242 438575 438765 439065 "DIVRING-" 439070 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-241 436677 437034 437440 "DISPLAY" 438189 T DISPLAY (NIL) -7 NIL NIL NIL) (-240 430565 436591 436654 "DIRPROD" 436659 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-239 429413 429616 429881 "DIRPROD2" 430358 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-238 418188 424194 424247 "DIRPCAT" 424657 NIL DIRPCAT (NIL NIL T) -9 NIL 425497 NIL) (-237 415514 416156 417037 "DIRPCAT-" 417374 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-236 414801 414961 415147 "DIOSP" 415348 T DIOSP (NIL) -7 NIL NIL NIL) (-235 411456 413713 413754 "DIOPS" 414188 NIL DIOPS (NIL T) -9 NIL 414417 NIL) (-234 411005 411119 411310 "DIOPS-" 411315 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-233 409828 410456 410484 "DIFRING" 410671 T DIFRING (NIL) -9 NIL 410781 NIL) (-232 409474 409551 409703 "DIFRING-" 409708 NIL DIFRING- (NIL T) -8 NIL NIL NIL) (-231 407210 408482 408523 "DIFEXT" 408886 NIL DIFEXT (NIL T) -9 NIL 409180 NIL) (-230 405495 405923 406589 "DIFEXT-" 406594 NIL DIFEXT- (NIL T T) -8 NIL NIL NIL) (-229 402770 405027 405068 "DIAGG" 405073 NIL DIAGG (NIL T) -9 NIL 405093 NIL) (-228 402154 402311 402563 "DIAGG-" 402568 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-227 397571 401113 401390 "DHMATRIX" 401923 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-226 393183 394092 395102 "DFSFUN" 396581 T DFSFUN (NIL) -7 NIL NIL NIL) (-225 388261 392114 392426 "DFLOAT" 392891 T DFLOAT (NIL) -8 NIL NIL NIL) (-224 386524 386805 387194 "DFINTTLS" 387969 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-223 383553 384545 384945 "DERHAM" 386190 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-222 381354 383328 383417 "DEQUEUE" 383497 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-221 380608 380741 380924 "DEGRED" 381216 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-220 377038 377783 378629 "DEFINTRF" 379836 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-219 374593 375062 375654 "DEFINTEF" 376557 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-218 373943 374213 374328 "DEFAST" 374498 T DEFAST (NIL) -8 NIL NIL NIL) (-217 367947 373538 373687 "DECIMAL" 373814 T DECIMAL (NIL) -8 NIL NIL NIL) (-216 365459 365917 366423 "DDFACT" 367491 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-215 365055 365098 365249 "DBLRESP" 365410 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-214 362927 363288 363648 "DBASE" 364822 NIL DBASE (NIL T) -8 NIL NIL NIL) (-213 362169 362407 362553 "DATAARY" 362826 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-212 361275 362128 362156 "D03FAFA" 362161 T D03FAFA (NIL) -8 NIL NIL NIL) (-211 360382 361234 361262 "D03EEFA" 361267 T D03EEFA (NIL) -8 NIL NIL NIL) (-210 358332 358798 359287 "D03AGNT" 359913 T D03AGNT (NIL) -7 NIL NIL NIL) (-209 357621 358291 358319 "D02EJFA" 358324 T D02EJFA (NIL) -8 NIL NIL NIL) (-208 356910 357580 357608 "D02CJFA" 357613 T D02CJFA (NIL) -8 NIL NIL NIL) (-207 356199 356869 356897 "D02BHFA" 356902 T D02BHFA (NIL) -8 NIL NIL NIL) (-206 355488 356158 356186 "D02BBFA" 356191 T D02BBFA (NIL) -8 NIL NIL NIL) (-205 348685 350274 351880 "D02AGNT" 353902 T D02AGNT (NIL) -7 NIL NIL NIL) (-204 346453 346976 347522 "D01WGTS" 348159 T D01WGTS (NIL) -7 NIL NIL NIL) (-203 345520 346412 346440 "D01TRNS" 346445 T D01TRNS (NIL) -8 NIL NIL NIL) (-202 344588 345479 345507 "D01GBFA" 345512 T D01GBFA (NIL) -8 NIL NIL NIL) (-201 343656 344547 344575 "D01FCFA" 344580 T D01FCFA (NIL) -8 NIL NIL NIL) (-200 342724 343615 343643 "D01ASFA" 343648 T D01ASFA (NIL) -8 NIL NIL NIL) (-199 341792 342683 342711 "D01AQFA" 342716 T D01AQFA (NIL) -8 NIL NIL NIL) (-198 340860 341751 341779 "D01APFA" 341784 T D01APFA (NIL) -8 NIL NIL NIL) (-197 339928 340819 340847 "D01ANFA" 340852 T D01ANFA (NIL) -8 NIL NIL NIL) (-196 338996 339887 339915 "D01AMFA" 339920 T D01AMFA (NIL) -8 NIL NIL NIL) (-195 338064 338955 338983 "D01ALFA" 338988 T D01ALFA (NIL) -8 NIL NIL NIL) (-194 337132 338023 338051 "D01AKFA" 338056 T D01AKFA (NIL) -8 NIL NIL NIL) (-193 336200 337091 337119 "D01AJFA" 337124 T D01AJFA (NIL) -8 NIL NIL NIL) (-192 329495 331048 332609 "D01AGNT" 334659 T D01AGNT (NIL) -7 NIL NIL NIL) (-191 328832 328960 329112 "CYCLOTOM" 329363 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-190 325566 326280 327007 "CYCLES" 328125 T CYCLES (NIL) -7 NIL NIL NIL) (-189 324878 325012 325183 "CVMP" 325427 NIL CVMP (NIL T) -7 NIL NIL NIL) (-188 322719 322977 323346 "CTRIGMNP" 324606 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-187 322155 322513 322586 "CTOR" 322666 T CTOR (NIL) -8 NIL NIL NIL) (-186 321664 321886 321987 "CTORKIND" 322074 T CTORKIND (NIL) -8 NIL NIL NIL) (-185 320955 321271 321299 "CTORCAT" 321481 T CTORCAT (NIL) -9 NIL 321594 NIL) (-184 320553 320664 320823 "CTORCAT-" 320828 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-183 320015 320227 320335 "CTORCALL" 320477 NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-182 319389 319488 319641 "CSTTOOLS" 319912 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-181 315188 315845 316603 "CRFP" 318701 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-180 314663 314909 315001 "CRCEAST" 315116 T CRCEAST (NIL) -8 NIL NIL NIL) (-179 313710 313895 314123 "CRAPACK" 314467 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-178 313094 313195 313399 "CPMATCH" 313586 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-177 312819 312847 312953 "CPIMA" 313060 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-176 309167 309839 310558 "COORDSYS" 312154 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-175 308579 308700 308842 "CONTOUR" 309045 T CONTOUR (NIL) -8 NIL NIL NIL) (-174 304470 306582 307074 "CONTFRAC" 308119 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-173 304350 304371 304399 "CONDUIT" 304436 T CONDUIT (NIL) -9 NIL NIL NIL) (-172 303438 303992 304020 "COMRING" 304025 T COMRING (NIL) -9 NIL 304077 NIL) (-171 302492 302796 302980 "COMPPROP" 303274 T COMPPROP (NIL) -8 NIL NIL NIL) (-170 302153 302188 302316 "COMPLPAT" 302451 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-169 292444 301962 302071 "COMPLEX" 302076 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-168 292080 292137 292244 "COMPLEX2" 292381 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-167 291798 291833 291931 "COMPFACT" 292039 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-166 275878 285872 285912 "COMPCAT" 286916 NIL COMPCAT (NIL T) -9 NIL 288264 NIL) (-165 265390 268317 271944 "COMPCAT-" 272300 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-164 265119 265147 265250 "COMMUPC" 265356 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-163 264913 264947 265006 "COMMONOP" 265080 T COMMONOP (NIL) -7 NIL NIL NIL) (-162 264469 264664 264751 "COMM" 264846 T COMM (NIL) -8 NIL NIL NIL) (-161 264045 264273 264348 "COMMAAST" 264414 T COMMAAST (NIL) -8 NIL NIL NIL) (-160 263294 263488 263516 "COMBOPC" 263854 T COMBOPC (NIL) -9 NIL 264029 NIL) (-159 262190 262400 262642 "COMBINAT" 263084 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-158 258647 259221 259848 "COMBF" 261612 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-157 257405 257763 257998 "COLOR" 258432 T COLOR (NIL) -8 NIL NIL NIL) (-156 256881 257126 257218 "COLONAST" 257333 T COLONAST (NIL) -8 NIL NIL NIL) (-155 256521 256568 256693 "CMPLXRT" 256828 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-154 255969 256221 256320 "CLLCTAST" 256442 T CLLCTAST (NIL) -8 NIL NIL NIL) (-153 251467 252499 253579 "CLIP" 254909 T CLIP (NIL) -7 NIL NIL NIL) (-152 249813 250573 250812 "CLIF" 251294 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-151 245988 247959 248000 "CLAGG" 248929 NIL CLAGG (NIL T) -9 NIL 249465 NIL) (-150 244410 244867 245450 "CLAGG-" 245455 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-149 243954 244039 244179 "CINTSLPE" 244319 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-148 241455 241926 242474 "CHVAR" 243482 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-147 240629 241183 241211 "CHARZ" 241216 T CHARZ (NIL) -9 NIL 241231 NIL) (-146 240383 240423 240501 "CHARPOL" 240583 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-145 239441 240028 240056 "CHARNZ" 240103 T CHARNZ (NIL) -9 NIL 240159 NIL) (-144 237407 238131 238466 "CHAR" 239126 T CHAR (NIL) -8 NIL NIL NIL) (-143 237133 237194 237222 "CFCAT" 237333 T CFCAT (NIL) -9 NIL NIL NIL) (-142 236378 236489 236671 "CDEN" 237017 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-141 232343 235531 235811 "CCLASS" 236118 T CCLASS (NIL) -8 NIL NIL NIL) (-140 231594 231751 231928 "CATEGORY" 232186 T -10 (NIL) -8 NIL NIL NIL) (-139 231167 231513 231561 "CATCTOR" 231566 T CATCTOR (NIL) -8 NIL NIL NIL) (-138 230618 230870 230968 "CATAST" 231089 T CATAST (NIL) -8 NIL NIL NIL) (-137 230094 230339 230431 "CASEAST" 230546 T CASEAST (NIL) -8 NIL NIL NIL) (-136 225103 226123 226876 "CARTEN" 229397 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-135 224211 224359 224580 "CARTEN2" 224950 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-134 222527 223361 223618 "CARD" 223974 T CARD (NIL) -8 NIL NIL NIL) (-133 222103 222331 222406 "CAPSLAST" 222472 T CAPSLAST (NIL) -8 NIL NIL NIL) (-132 221607 221815 221843 "CACHSET" 221975 T CACHSET (NIL) -9 NIL 222053 NIL) (-131 221077 221399 221427 "CABMON" 221477 T CABMON (NIL) -9 NIL 221533 NIL) (-130 220550 220781 220891 "BYTEORD" 220987 T BYTEORD (NIL) -8 NIL NIL NIL) (-129 219529 220084 220226 "BYTE" 220389 T BYTE (NIL) -8 NIL NIL 220511) (-128 214879 219034 219206 "BYTEBUF" 219377 T BYTEBUF (NIL) -8 NIL NIL NIL) (-127 212388 214571 214678 "BTREE" 214805 NIL BTREE (NIL T) -8 NIL NIL NIL) (-126 209837 212036 212158 "BTOURN" 212298 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-125 207207 209307 209348 "BTCAT" 209416 NIL BTCAT (NIL T) -9 NIL 209493 NIL) (-124 206874 206954 207103 "BTCAT-" 207108 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-123 202139 206017 206045 "BTAGG" 206267 T BTAGG (NIL) -9 NIL 206428 NIL) (-122 201629 201754 201960 "BTAGG-" 201965 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-121 198624 200907 201122 "BSTREE" 201446 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-120 197762 197888 198072 "BRILL" 198480 NIL BRILL (NIL T) -7 NIL NIL NIL) (-119 194414 196488 196529 "BRAGG" 197178 NIL BRAGG (NIL T) -9 NIL 197436 NIL) (-118 192943 193349 193904 "BRAGG-" 193909 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-117 186172 192289 192473 "BPADICRT" 192791 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-116 184487 186109 186154 "BPADIC" 186159 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-115 184185 184215 184329 "BOUNDZRO" 184451 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-114 179413 180611 181523 "BOP" 183293 T BOP (NIL) -8 NIL NIL NIL) (-113 177194 177598 178073 "BOP1" 178971 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-112 176019 176768 176917 "BOOLEAN" 177065 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 175298 175702 175756 "BMODULE" 175761 NIL BMODULE (NIL T T) -9 NIL 175826 NIL) (-110 171099 175096 175169 "BITS" 175245 T BITS (NIL) -8 NIL NIL NIL) (-109 170520 170639 170779 "BINDING" 170979 T BINDING (NIL) -8 NIL NIL NIL) (-108 164527 170117 170265 "BINARY" 170392 T BINARY (NIL) -8 NIL NIL NIL) (-107 162307 163782 163823 "BGAGG" 164083 NIL BGAGG (NIL T) -9 NIL 164220 NIL) (-106 162138 162170 162261 "BGAGG-" 162266 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 161209 161522 161727 "BFUNCT" 161953 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 159899 160077 160365 "BEZOUT" 161033 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 156368 158751 159081 "BBTREE" 159602 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 156102 156155 156183 "BASTYPE" 156302 T BASTYPE (NIL) -9 NIL NIL NIL) (-101 155954 155983 156056 "BASTYPE-" 156061 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 155388 155464 155616 "BALFACT" 155865 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 154244 154803 154989 "AUTOMOR" 155233 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 153970 153975 154001 "ATTREG" 154006 T ATTREG (NIL) -9 NIL NIL NIL) (-97 152222 152667 153019 "ATTRBUT" 153636 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 151830 152050 152116 "ATTRAST" 152174 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 151366 151479 151505 "ATRIG" 151706 T ATRIG (NIL) -9 NIL NIL NIL) (-94 151175 151216 151303 "ATRIG-" 151308 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 150820 151006 151032 "ASTCAT" 151037 T ASTCAT (NIL) -9 NIL 151067 NIL) (-92 150547 150606 150725 "ASTCAT-" 150730 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 148696 150323 150411 "ASTACK" 150490 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 147201 147498 147863 "ASSOCEQ" 148378 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 146233 146860 146984 "ASP9" 147108 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 145996 146181 146220 "ASP8" 146225 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 144864 145601 145743 "ASP80" 145885 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 143762 144499 144631 "ASP7" 144763 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 142716 143439 143557 "ASP78" 143675 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 141685 142396 142513 "ASP77" 142630 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 140597 141323 141454 "ASP74" 141585 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 139497 140232 140364 "ASP73" 140496 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 138601 139323 139423 "ASP6" 139428 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 137545 138278 138396 "ASP55" 138514 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 136494 137219 137338 "ASP50" 137457 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 135582 136195 136305 "ASP4" 136415 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 134670 135283 135393 "ASP49" 135503 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 133454 134209 134377 "ASP42" 134559 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 132230 132987 133157 "ASP41" 133341 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 131180 131907 132025 "ASP35" 132143 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 130945 131128 131167 "ASP34" 131172 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 130682 130749 130825 "ASP33" 130900 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 129575 130317 130449 "ASP31" 130581 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 129340 129523 129562 "ASP30" 129567 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 129075 129144 129220 "ASP29" 129295 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 128840 129023 129062 "ASP28" 129067 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 128605 128788 128827 "ASP27" 128832 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 127689 128303 128414 "ASP24" 128525 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 126765 127491 127603 "ASP20" 127608 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 125853 126466 126576 "ASP1" 126686 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 124795 125527 125646 "ASP19" 125765 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 124532 124599 124675 "ASP12" 124750 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 123384 124131 124275 "ASP10" 124419 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 121235 123228 123319 "ARRAY2" 123324 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 117000 120883 120997 "ARRAY1" 121152 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 116032 116205 116426 "ARRAY12" 116823 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 110344 112262 112337 "ARR2CAT" 114967 NIL ARR2CAT (NIL T T T) -9 NIL 115725 NIL) (-56 107778 108522 109476 "ARR2CAT-" 109481 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 107095 107405 107530 "ARITY" 107671 T ARITY (NIL) -8 NIL NIL NIL) (-54 105871 106023 106322 "APPRULE" 106931 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 105522 105570 105689 "APPLYORE" 105817 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 104876 105115 105235 "ANY" 105420 T ANY (NIL) -8 NIL NIL NIL) (-51 104154 104277 104434 "ANY1" 104750 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 101684 102591 102918 "ANTISYM" 103878 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 101176 101391 101487 "ANON" 101606 T ANON (NIL) -8 NIL NIL NIL) (-48 95425 99715 100169 "AN" 100740 T AN (NIL) -8 NIL NIL NIL) (-47 91323 92711 92762 "AMR" 93510 NIL AMR (NIL T T) -9 NIL 94110 NIL) (-46 90435 90656 91019 "AMR-" 91024 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 74874 90352 90413 "ALIST" 90418 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 71676 74468 74637 "ALGSC" 74792 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 68231 68786 69393 "ALGPKG" 71116 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 67508 67609 67793 "ALGMFACT" 68117 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 63543 64122 64716 "ALGMANIP" 67092 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 54913 63169 63319 "ALGFF" 63476 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 54109 54240 54419 "ALGFACT" 54771 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 53050 53650 53688 "ALGEBRA" 53693 NIL ALGEBRA (NIL T) -9 NIL 53734 NIL) (-37 52768 52827 52959 "ALGEBRA-" 52964 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 34861 50770 50822 "ALAGG" 50958 NIL ALAGG (NIL T T) -9 NIL 51119 NIL) (-35 34397 34510 34536 "AHYP" 34737 T AHYP (NIL) -9 NIL NIL NIL) (-34 33328 33576 33602 "AGG" 34101 T AGG (NIL) -9 NIL 34380 NIL) (-33 32762 32924 33138 "AGG-" 33143 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 30568 30991 31396 "AF" 32404 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30048 30293 30383 "ADDAST" 30496 T ADDAST (NIL) -8 NIL NIL NIL) (-30 29316 29575 29731 "ACPLOT" 29910 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18639 26443 26481 "ACFS" 27088 NIL ACFS (NIL T) -9 NIL 27327 NIL) (-28 16666 17156 17918 "ACFS-" 17923 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12784 14713 14739 "ACF" 15618 T ACF (NIL) -9 NIL 16031 NIL) (-26 11488 11822 12315 "ACF-" 12320 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 11060 11255 11281 "ABELSG" 11373 T ABELSG (NIL) -9 NIL 11438 NIL) (-24 10927 10952 11018 "ABELSG-" 11023 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10270 10557 10583 "ABELMON" 10753 T ABELMON (NIL) -9 NIL 10865 NIL) (-22 9934 10018 10156 "ABELMON-" 10161 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9282 9654 9680 "ABELGRP" 9752 T ABELGRP (NIL) -9 NIL 9827 NIL) (-20 8745 8874 9090 "ABELGRP-" 9095 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4334 8084 8123 "A1AGG" 8128 NIL A1AGG (NIL T) -9 NIL 8168 NIL) (-18 30 1252 2814 "A1AGG-" 2819 NIL A1AGG- (NIL T T) -8 NIL NIL NIL))
\ No newline at end of file +((-3 3221163 3221168 3221173 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3221148 3221153 3221158 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3221133 3221138 3221143 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3221118 3221123 3221128 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1292 3220261 3220993 3221070 "ZMOD" 3221075 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1291 3219371 3219535 3219744 "ZLINDEP" 3220093 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1290 3208671 3210439 3212411 "ZDSOLVE" 3217501 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1289 3207917 3208058 3208247 "YSTREAM" 3208517 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1288 3205691 3207218 3207422 "XRPOLY" 3207760 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1287 3202244 3203562 3204137 "XPR" 3205163 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1286 3199965 3201575 3201779 "XPOLY" 3202075 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1285 3197618 3198986 3199041 "XPOLYC" 3199329 NIL XPOLYC (NIL T T) -9 NIL 3199442 NIL) (-1284 3193993 3196135 3196523 "XPBWPOLY" 3197276 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1283 3189688 3191983 3192025 "XF" 3192646 NIL XF (NIL T) -9 NIL 3193046 NIL) (-1282 3189309 3189397 3189566 "XF-" 3189571 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1281 3184505 3185794 3185849 "XFALG" 3188021 NIL XFALG (NIL T T) -9 NIL 3188810 NIL) (-1280 3183638 3183742 3183947 "XEXPPKG" 3184397 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1279 3181747 3183488 3183584 "XDPOLY" 3183589 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1278 3180554 3181154 3181197 "XALG" 3181202 NIL XALG (NIL T) -9 NIL 3181313 NIL) (-1277 3173996 3178531 3179025 "WUTSET" 3180146 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1276 3172252 3173048 3173371 "WP" 3173807 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1275 3171854 3172074 3172144 "WHILEAST" 3172204 T WHILEAST (NIL) -8 NIL NIL NIL) (-1274 3171326 3171571 3171665 "WHEREAST" 3171782 T WHEREAST (NIL) -8 NIL NIL NIL) (-1273 3170212 3170410 3170705 "WFFINTBS" 3171123 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1272 3168116 3168543 3169005 "WEIER" 3169784 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1271 3167162 3167612 3167654 "VSPACE" 3167790 NIL VSPACE (NIL T) -9 NIL 3167864 NIL) (-1270 3167000 3167027 3167118 "VSPACE-" 3167123 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1269 3166808 3166851 3166919 "VOID" 3166954 T VOID (NIL) -8 NIL NIL NIL) (-1268 3164944 3165303 3165709 "VIEW" 3166424 T VIEW (NIL) -7 NIL NIL NIL) (-1267 3161368 3162007 3162744 "VIEWDEF" 3164229 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1266 3150672 3152916 3155089 "VIEW3D" 3159217 T VIEW3D (NIL) -8 NIL NIL NIL) (-1265 3142923 3144583 3146162 "VIEW2D" 3149115 T VIEW2D (NIL) -8 NIL NIL NIL) (-1264 3138275 3142693 3142785 "VECTOR" 3142866 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1263 3136852 3137111 3137429 "VECTOR2" 3138005 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1262 3130326 3134633 3134676 "VECTCAT" 3135671 NIL VECTCAT (NIL T) -9 NIL 3136258 NIL) (-1261 3129340 3129594 3129984 "VECTCAT-" 3129989 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1260 3128794 3128991 3129111 "VARIABLE" 3129255 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1259 3128727 3128732 3128762 "UTYPE" 3128767 T UTYPE (NIL) -9 NIL NIL NIL) (-1258 3127557 3127711 3127973 "UTSODETL" 3128553 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1257 3124997 3125457 3125981 "UTSODE" 3127098 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1256 3116834 3122623 3123112 "UTS" 3124566 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1255 3107708 3113075 3113118 "UTSCAT" 3114230 NIL UTSCAT (NIL T) -9 NIL 3114988 NIL) (-1254 3105055 3105778 3106767 "UTSCAT-" 3106772 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1253 3104682 3104725 3104858 "UTS2" 3105006 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1252 3098908 3101520 3101563 "URAGG" 3103633 NIL URAGG (NIL T) -9 NIL 3104356 NIL) (-1251 3095847 3096710 3097833 "URAGG-" 3097838 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1250 3091556 3094482 3094947 "UPXSSING" 3095511 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1249 3083622 3090803 3091076 "UPXS" 3091341 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1248 3076695 3083526 3083598 "UPXSCONS" 3083603 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1247 3066440 3073233 3073295 "UPXSCCA" 3073869 NIL UPXSCCA (NIL T T) -9 NIL 3074102 NIL) (-1246 3066078 3066163 3066337 "UPXSCCA-" 3066342 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1245 3055675 3062241 3062284 "UPXSCAT" 3062932 NIL UPXSCAT (NIL T) -9 NIL 3063541 NIL) (-1244 3055105 3055184 3055363 "UPXS2" 3055590 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1243 3053759 3054012 3054363 "UPSQFREE" 3054848 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1242 3047180 3050237 3050292 "UPSCAT" 3051453 NIL UPSCAT (NIL T T) -9 NIL 3052227 NIL) (-1241 3046384 3046591 3046918 "UPSCAT-" 3046923 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1240 3032039 3039807 3039850 "UPOLYC" 3041951 NIL UPOLYC (NIL T) -9 NIL 3043172 NIL) (-1239 3023367 3025793 3028940 "UPOLYC-" 3028945 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1238 3022994 3023037 3023170 "UPOLYC2" 3023318 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1237 3014805 3022677 3022806 "UP" 3022913 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1236 3014144 3014251 3014415 "UPMP" 3014694 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1235 3013697 3013778 3013917 "UPDIVP" 3014057 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1234 3012265 3012514 3012830 "UPDECOMP" 3013446 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1233 3011500 3011612 3011797 "UPCDEN" 3012149 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1232 3011019 3011088 3011237 "UP2" 3011425 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1231 3009486 3010223 3010500 "UNISEG" 3010777 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1230 3008701 3008828 3009033 "UNISEG2" 3009329 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1229 3007761 3007941 3008167 "UNIFACT" 3008517 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1228 2991693 3006938 3007189 "ULS" 3007568 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1227 2979691 2991597 2991669 "ULSCONS" 2991674 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1226 2961710 2973695 2973757 "ULSCCAT" 2974395 NIL ULSCCAT (NIL T T) -9 NIL 2974683 NIL) (-1225 2960760 2961005 2961393 "ULSCCAT-" 2961398 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1224 2950134 2956614 2956657 "ULSCAT" 2957520 NIL ULSCAT (NIL T) -9 NIL 2958251 NIL) (-1223 2949564 2949643 2949822 "ULS2" 2950049 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1222 2948691 2949201 2949308 "UINT8" 2949419 T UINT8 (NIL) -8 NIL NIL 2949504) (-1221 2947817 2948327 2948434 "UINT64" 2948545 T UINT64 (NIL) -8 NIL NIL 2948630) (-1220 2946943 2947453 2947560 "UINT32" 2947671 T UINT32 (NIL) -8 NIL NIL 2947756) (-1219 2946069 2946579 2946686 "UINT16" 2946797 T UINT16 (NIL) -8 NIL NIL 2946882) (-1218 2944372 2945329 2945359 "UFD" 2945571 T UFD (NIL) -9 NIL 2945685 NIL) (-1217 2944166 2944212 2944307 "UFD-" 2944312 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1216 2943248 2943431 2943647 "UDVO" 2943972 T UDVO (NIL) -7 NIL NIL NIL) (-1215 2941064 2941473 2941944 "UDPO" 2942812 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1214 2940997 2941002 2941032 "TYPE" 2941037 T TYPE (NIL) -9 NIL NIL NIL) (-1213 2940757 2940952 2940983 "TYPEAST" 2940988 T TYPEAST (NIL) -8 NIL NIL NIL) (-1212 2939728 2939930 2940170 "TWOFACT" 2940551 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1211 2938751 2939137 2939372 "TUPLE" 2939528 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1210 2936442 2936961 2937500 "TUBETOOL" 2938234 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1209 2935291 2935496 2935737 "TUBE" 2936235 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1208 2930020 2934263 2934546 "TS" 2935043 NIL TS (NIL T) -8 NIL NIL NIL) (-1207 2918660 2922779 2922876 "TSETCAT" 2928145 NIL TSETCAT (NIL T T T T) -9 NIL 2929676 NIL) (-1206 2913392 2914992 2916883 "TSETCAT-" 2916888 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1205 2908031 2908878 2909807 "TRMANIP" 2912528 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1204 2907472 2907535 2907698 "TRIMAT" 2907963 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1203 2905338 2905575 2905932 "TRIGMNIP" 2907221 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1202 2904858 2904971 2905001 "TRIGCAT" 2905214 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1201 2904527 2904606 2904747 "TRIGCAT-" 2904752 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1200 2901372 2903385 2903666 "TREE" 2904281 NIL TREE (NIL T) -8 NIL NIL NIL) (-1199 2900646 2901174 2901204 "TRANFUN" 2901239 T TRANFUN (NIL) -9 NIL 2901305 NIL) (-1198 2899925 2900116 2900396 "TRANFUN-" 2900401 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1197 2899729 2899761 2899822 "TOPSP" 2899886 T TOPSP (NIL) -7 NIL NIL NIL) (-1196 2899077 2899192 2899346 "TOOLSIGN" 2899610 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1195 2897711 2898254 2898493 "TEXTFILE" 2898860 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1194 2895623 2896164 2896593 "TEX" 2897304 T TEX (NIL) -8 NIL NIL NIL) (-1193 2895404 2895435 2895507 "TEX1" 2895586 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1192 2895052 2895115 2895205 "TEMUTL" 2895336 T TEMUTL (NIL) -7 NIL NIL NIL) (-1191 2893206 2893486 2893811 "TBCMPPK" 2894775 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1190 2884983 2891366 2891422 "TBAGG" 2891822 NIL TBAGG (NIL T T) -9 NIL 2892033 NIL) (-1189 2880053 2881541 2883295 "TBAGG-" 2883300 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1188 2879437 2879544 2879689 "TANEXP" 2879942 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1187 2872827 2879294 2879387 "TABLE" 2879392 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1186 2872239 2872338 2872476 "TABLEAU" 2872724 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1185 2866847 2868067 2869315 "TABLBUMP" 2871025 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1184 2866069 2866216 2866397 "SYSTEM" 2866688 T SYSTEM (NIL) -8 NIL NIL NIL) (-1183 2862528 2863227 2864010 "SYSSOLP" 2865320 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1182 2861572 2862077 2862196 "SYSNNI" 2862382 NIL SYSNNI (NIL NIL) -8 NIL NIL 2862467) (-1181 2860879 2861338 2861417 "SYSINT" 2861477 NIL SYSINT (NIL NIL) -8 NIL NIL 2861522) (-1180 2857211 2858157 2858867 "SYNTAX" 2860191 T SYNTAX (NIL) -8 NIL NIL NIL) (-1179 2854369 2854971 2855603 "SYMTAB" 2856601 T SYMTAB (NIL) -8 NIL NIL NIL) (-1178 2849618 2850520 2851503 "SYMS" 2853408 T SYMS (NIL) -8 NIL NIL NIL) (-1177 2846853 2849076 2849306 "SYMPOLY" 2849423 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1176 2846370 2846445 2846568 "SYMFUNC" 2846765 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1175 2842389 2843682 2844495 "SYMBOL" 2845579 T SYMBOL (NIL) -8 NIL NIL NIL) (-1174 2835928 2837617 2839337 "SWITCH" 2840691 T SWITCH (NIL) -8 NIL NIL NIL) (-1173 2829162 2834749 2835052 "SUTS" 2835683 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1172 2821228 2828409 2828682 "SUPXS" 2828947 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1171 2812987 2820846 2820972 "SUP" 2821137 NIL SUP (NIL T) -8 NIL NIL NIL) (-1170 2812146 2812273 2812490 "SUPFRACF" 2812855 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1169 2811767 2811826 2811939 "SUP2" 2812081 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1168 2810215 2810489 2810845 "SUMRF" 2811466 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1167 2809550 2809616 2809808 "SUMFS" 2810136 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1166 2793517 2808727 2808978 "SULS" 2809357 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1165 2793119 2793339 2793409 "SUCHTAST" 2793469 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1164 2792414 2792644 2792784 "SUCH" 2793027 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1163 2786280 2787320 2788279 "SUBSPACE" 2791502 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1162 2785710 2785800 2785964 "SUBRESP" 2786168 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1161 2779075 2780375 2781686 "STTF" 2784446 NIL STTF (NIL T) -7 NIL NIL NIL) (-1160 2773248 2774368 2775515 "STTFNC" 2777975 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1159 2764558 2766430 2768224 "STTAYLOR" 2771489 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1158 2757688 2764422 2764505 "STRTBL" 2764510 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1157 2753052 2757643 2757674 "STRING" 2757679 T STRING (NIL) -8 NIL NIL NIL) (-1156 2747913 2752425 2752455 "STRICAT" 2752514 T STRICAT (NIL) -9 NIL 2752576 NIL) (-1155 2740666 2745532 2746143 "STREAM" 2747337 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1154 2740176 2740253 2740397 "STREAM3" 2740583 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1153 2739158 2739341 2739576 "STREAM2" 2739989 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1152 2738846 2738898 2738991 "STREAM1" 2739100 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1151 2737862 2738043 2738274 "STINPROD" 2738662 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1150 2737414 2737624 2737654 "STEP" 2737734 T STEP (NIL) -9 NIL 2737812 NIL) (-1149 2730846 2737313 2737390 "STBL" 2737395 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1148 2725972 2730067 2730110 "STAGG" 2730263 NIL STAGG (NIL T) -9 NIL 2730352 NIL) (-1147 2723674 2724276 2725148 "STAGG-" 2725153 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1146 2721821 2723444 2723536 "STACK" 2723617 NIL STACK (NIL T) -8 NIL NIL NIL) (-1145 2714516 2719962 2720418 "SREGSET" 2721451 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1144 2706941 2708310 2709823 "SRDCMPK" 2713122 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1143 2699858 2704381 2704411 "SRAGG" 2705714 T SRAGG (NIL) -9 NIL 2706322 NIL) (-1142 2698875 2699130 2699509 "SRAGG-" 2699514 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1141 2693335 2697822 2698243 "SQMATRIX" 2698501 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1140 2687020 2690053 2690780 "SPLTREE" 2692680 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1139 2682983 2683676 2684322 "SPLNODE" 2686446 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1138 2682030 2682263 2682293 "SPFCAT" 2682737 T SPFCAT (NIL) -9 NIL NIL NIL) (-1137 2680767 2680977 2681241 "SPECOUT" 2681788 T SPECOUT (NIL) -7 NIL NIL NIL) (-1136 2672393 2674163 2674193 "SPADXPT" 2678585 T SPADXPT (NIL) -9 NIL 2680619 NIL) (-1135 2672154 2672194 2672263 "SPADPRSR" 2672346 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1134 2670309 2672109 2672140 "SPADAST" 2672145 T SPADAST (NIL) -8 NIL NIL NIL) (-1133 2662254 2664027 2664070 "SPACEC" 2668443 NIL SPACEC (NIL T) -9 NIL 2670259 NIL) (-1132 2660384 2662186 2662235 "SPACE3" 2662240 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1131 2659136 2659307 2659598 "SORTPAK" 2660189 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1130 2657228 2657531 2657943 "SOLVETRA" 2658800 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1129 2656278 2656500 2656761 "SOLVESER" 2657001 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1128 2651582 2652470 2653465 "SOLVERAD" 2655330 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1127 2647397 2648006 2648735 "SOLVEFOR" 2650949 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1126 2641667 2646746 2646843 "SNTSCAT" 2646848 NIL SNTSCAT (NIL T T T T) -9 NIL 2646918 NIL) (-1125 2635773 2639990 2640381 "SMTS" 2641357 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1124 2630457 2635661 2635738 "SMP" 2635743 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1123 2628616 2628917 2629315 "SMITH" 2630154 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1122 2621329 2625525 2625628 "SMATCAT" 2626979 NIL SMATCAT (NIL NIL T T T) -9 NIL 2627529 NIL) (-1121 2618269 2619092 2620270 "SMATCAT-" 2620275 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1120 2615935 2617505 2617548 "SKAGG" 2617809 NIL SKAGG (NIL T) -9 NIL 2617944 NIL) (-1119 2612246 2615351 2615546 "SINT" 2615733 T SINT (NIL) -8 NIL NIL 2615906) (-1118 2612018 2612056 2612122 "SIMPAN" 2612202 T SIMPAN (NIL) -7 NIL NIL NIL) (-1117 2611297 2611553 2611693 "SIG" 2611900 T SIG (NIL) -8 NIL NIL NIL) (-1116 2610135 2610356 2610631 "SIGNRF" 2611056 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1115 2608968 2609119 2609403 "SIGNEF" 2609964 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1114 2608274 2608551 2608675 "SIGAST" 2608866 T SIGAST (NIL) -8 NIL NIL NIL) (-1113 2605963 2606418 2606924 "SHP" 2607815 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1112 2599815 2605864 2605940 "SHDP" 2605945 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1111 2599388 2599580 2599610 "SGROUP" 2599703 T SGROUP (NIL) -9 NIL 2599765 NIL) (-1110 2599246 2599272 2599345 "SGROUP-" 2599350 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1109 2596081 2596779 2597502 "SGCF" 2598545 T SGCF (NIL) -7 NIL NIL NIL) (-1108 2590449 2595528 2595625 "SFRTCAT" 2595630 NIL SFRTCAT (NIL T T T T) -9 NIL 2595669 NIL) (-1107 2583870 2584888 2586024 "SFRGCD" 2589432 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1106 2576996 2578069 2579255 "SFQCMPK" 2582803 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1105 2576616 2576705 2576816 "SFORT" 2576937 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1104 2575734 2576456 2576577 "SEXOF" 2576582 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1103 2574841 2575615 2575683 "SEX" 2575688 T SEX (NIL) -8 NIL NIL NIL) (-1102 2570354 2571069 2571164 "SEXCAT" 2574101 NIL SEXCAT (NIL T T T T T) -9 NIL 2574679 NIL) (-1101 2567507 2570288 2570336 "SET" 2570341 NIL SET (NIL T) -8 NIL NIL NIL) (-1100 2565731 2566220 2566525 "SETMN" 2567248 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1099 2565227 2565379 2565409 "SETCAT" 2565585 T SETCAT (NIL) -9 NIL 2565695 NIL) (-1098 2564919 2564997 2565127 "SETCAT-" 2565132 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1097 2561280 2563380 2563423 "SETAGG" 2564293 NIL SETAGG (NIL T) -9 NIL 2564633 NIL) (-1096 2560738 2560854 2561091 "SETAGG-" 2561096 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1095 2560181 2560434 2560535 "SEQAST" 2560659 T SEQAST (NIL) -8 NIL NIL NIL) (-1094 2559380 2559674 2559735 "SEGXCAT" 2560021 NIL SEGXCAT (NIL T T) -9 NIL 2560141 NIL) (-1093 2558386 2559046 2559228 "SEG" 2559233 NIL SEG (NIL T) -8 NIL NIL NIL) (-1092 2557365 2557579 2557622 "SEGCAT" 2558144 NIL SEGCAT (NIL T) -9 NIL 2558365 NIL) (-1091 2556366 2556744 2556944 "SEGBIND" 2557200 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1090 2555987 2556046 2556159 "SEGBIND2" 2556301 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1089 2555560 2555788 2555865 "SEGAST" 2555932 T SEGAST (NIL) -8 NIL NIL NIL) (-1088 2554779 2554905 2555109 "SEG2" 2555404 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1087 2554189 2554714 2554761 "SDVAR" 2554766 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1086 2546716 2553959 2554089 "SDPOL" 2554094 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1085 2545309 2545575 2545894 "SCPKG" 2546431 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1084 2544473 2544645 2544837 "SCOPE" 2545139 T SCOPE (NIL) -8 NIL NIL NIL) (-1083 2543693 2543827 2544006 "SCACHE" 2544328 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1082 2543339 2543525 2543555 "SASTCAT" 2543560 T SASTCAT (NIL) -9 NIL 2543573 NIL) (-1081 2542826 2543174 2543250 "SAOS" 2543285 T SAOS (NIL) -8 NIL NIL NIL) (-1080 2542391 2542426 2542599 "SAERFFC" 2542785 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1079 2536330 2542288 2542368 "SAE" 2542373 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1078 2535923 2535958 2536117 "SAEFACT" 2536289 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1077 2534244 2534558 2534959 "RURPK" 2535589 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1076 2532881 2533187 2533492 "RULESET" 2534078 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1075 2530104 2530634 2531092 "RULE" 2532562 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1074 2529716 2529898 2529981 "RULECOLD" 2530056 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1073 2529506 2529534 2529605 "RTVALUE" 2529667 T RTVALUE (NIL) -8 NIL NIL NIL) (-1072 2528977 2529223 2529317 "RSTRCAST" 2529434 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1071 2523825 2524620 2525540 "RSETGCD" 2528176 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1070 2513055 2518134 2518231 "RSETCAT" 2522350 NIL RSETCAT (NIL T T T T) -9 NIL 2523447 NIL) (-1069 2510982 2511521 2512345 "RSETCAT-" 2512350 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1068 2503367 2504744 2506264 "RSDCMPK" 2509581 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1067 2501346 2501813 2501887 "RRCC" 2502973 NIL RRCC (NIL T T) -9 NIL 2503317 NIL) (-1066 2500697 2500871 2501150 "RRCC-" 2501155 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1065 2500140 2500393 2500494 "RPTAST" 2500618 T RPTAST (NIL) -8 NIL NIL NIL) (-1064 2473991 2483348 2483415 "RPOLCAT" 2494079 NIL RPOLCAT (NIL T T T) -9 NIL 2497238 NIL) (-1063 2465489 2467829 2470951 "RPOLCAT-" 2470956 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1062 2456420 2463700 2464182 "ROUTINE" 2465029 T ROUTINE (NIL) -8 NIL NIL NIL) (-1061 2453218 2456046 2456186 "ROMAN" 2456302 T ROMAN (NIL) -8 NIL NIL NIL) (-1060 2451462 2452078 2452338 "ROIRC" 2453023 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1059 2447694 2449978 2450008 "RNS" 2450312 T RNS (NIL) -9 NIL 2450586 NIL) (-1058 2446203 2446586 2447120 "RNS-" 2447195 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1057 2445606 2446014 2446044 "RNG" 2446049 T RNG (NIL) -9 NIL 2446070 NIL) (-1056 2445005 2445393 2445436 "RMODULE" 2445441 NIL RMODULE (NIL T) -9 NIL 2445468 NIL) (-1055 2443841 2443935 2444271 "RMCAT2" 2444906 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1054 2440691 2443187 2443484 "RMATRIX" 2443603 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1053 2433518 2435778 2435893 "RMATCAT" 2439252 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2440234 NIL) (-1052 2432893 2433040 2433347 "RMATCAT-" 2433352 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1051 2432294 2432515 2432558 "RLINSET" 2432752 NIL RLINSET (NIL T) -9 NIL 2432843 NIL) (-1050 2431861 2431936 2432064 "RINTERP" 2432213 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1049 2430919 2431473 2431503 "RING" 2431559 T RING (NIL) -9 NIL 2431651 NIL) (-1048 2430711 2430755 2430852 "RING-" 2430857 NIL RING- (NIL T) -8 NIL NIL NIL) (-1047 2429552 2429789 2430047 "RIDIST" 2430475 T RIDIST (NIL) -7 NIL NIL NIL) (-1046 2420841 2429020 2429226 "RGCHAIN" 2429400 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1045 2420191 2420597 2420638 "RGBCSPC" 2420696 NIL RGBCSPC (NIL T) -9 NIL 2420748 NIL) (-1044 2419349 2419730 2419771 "RGBCMDL" 2420003 NIL RGBCMDL (NIL T) -9 NIL 2420117 NIL) (-1043 2416343 2416957 2417627 "RF" 2418713 NIL RF (NIL T) -7 NIL NIL NIL) (-1042 2415989 2416052 2416155 "RFFACTOR" 2416274 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1041 2415714 2415749 2415846 "RFFACT" 2415948 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1040 2413831 2414195 2414577 "RFDIST" 2415354 T RFDIST (NIL) -7 NIL NIL NIL) (-1039 2413284 2413376 2413539 "RETSOL" 2413733 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1038 2412920 2413000 2413043 "RETRACT" 2413176 NIL RETRACT (NIL T) -9 NIL 2413263 NIL) (-1037 2412769 2412794 2412881 "RETRACT-" 2412886 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1036 2412371 2412591 2412661 "RETAST" 2412721 T RETAST (NIL) -8 NIL NIL NIL) (-1035 2405109 2412024 2412151 "RESULT" 2412266 T RESULT (NIL) -8 NIL NIL NIL) (-1034 2403700 2404378 2404577 "RESRING" 2405012 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1033 2403336 2403385 2403483 "RESLATC" 2403637 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1032 2403041 2403076 2403183 "REPSQ" 2403295 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1031 2400463 2401043 2401645 "REP" 2402461 T REP (NIL) -7 NIL NIL NIL) (-1030 2400160 2400195 2400306 "REPDB" 2400422 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1029 2394060 2395449 2396672 "REP2" 2398972 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1028 2390437 2391118 2391926 "REP1" 2393287 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1027 2383133 2388578 2389034 "REGSET" 2390067 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1026 2381898 2382281 2382531 "REF" 2382918 NIL REF (NIL T) -8 NIL NIL NIL) (-1025 2381275 2381378 2381545 "REDORDER" 2381782 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1024 2377243 2380488 2380715 "RECLOS" 2381103 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1023 2376295 2376476 2376691 "REALSOLV" 2377050 T REALSOLV (NIL) -7 NIL NIL NIL) (-1022 2376141 2376182 2376212 "REAL" 2376217 T REAL (NIL) -9 NIL 2376252 NIL) (-1021 2372624 2373426 2374310 "REAL0Q" 2375306 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1020 2368225 2369213 2370274 "REAL0" 2371605 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1019 2367696 2367942 2368036 "RDUCEAST" 2368153 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1018 2367101 2367173 2367380 "RDIV" 2367618 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1017 2366169 2366343 2366556 "RDIST" 2366923 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1016 2364766 2365053 2365425 "RDETRS" 2365877 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1015 2362578 2363032 2363570 "RDETR" 2364308 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1014 2361203 2361481 2361878 "RDEEFS" 2362294 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1013 2359712 2360018 2360443 "RDEEF" 2360891 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1012 2353773 2356693 2356723 "RCFIELD" 2358018 T RCFIELD (NIL) -9 NIL 2358749 NIL) (-1011 2351837 2352341 2353037 "RCFIELD-" 2353112 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1010 2348106 2349938 2349981 "RCAGG" 2351065 NIL RCAGG (NIL T) -9 NIL 2351530 NIL) (-1009 2347734 2347828 2347991 "RCAGG-" 2347996 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1008 2347069 2347181 2347346 "RATRET" 2347618 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1007 2346622 2346689 2346810 "RATFACT" 2346997 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1006 2345930 2346050 2346202 "RANDSRC" 2346492 T RANDSRC (NIL) -7 NIL NIL NIL) (-1005 2345664 2345708 2345781 "RADUTIL" 2345879 T RADUTIL (NIL) -7 NIL NIL NIL) (-1004 2338780 2344497 2344807 "RADIX" 2345388 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1003 2330399 2338622 2338752 "RADFF" 2338757 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1002 2330046 2330121 2330151 "RADCAT" 2330311 T RADCAT (NIL) -9 NIL NIL NIL) (-1001 2329828 2329876 2329976 "RADCAT-" 2329981 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-1000 2327928 2329600 2329691 "QUEUE" 2329772 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-999 2324469 2327865 2327910 "QUAT" 2327915 NIL QUAT (NIL T) -8 NIL NIL NIL) (-998 2324107 2324150 2324277 "QUATCT2" 2324420 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-997 2317569 2320914 2320954 "QUATCAT" 2321734 NIL QUATCAT (NIL T) -9 NIL 2322500 NIL) (-996 2313713 2314750 2316137 "QUATCAT-" 2316231 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-995 2311186 2312797 2312838 "QUAGG" 2313213 NIL QUAGG (NIL T) -9 NIL 2313388 NIL) (-994 2310791 2311011 2311079 "QQUTAST" 2311138 T QQUTAST (NIL) -8 NIL NIL NIL) (-993 2309689 2310189 2310361 "QFORM" 2310663 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-992 2300694 2305933 2305973 "QFCAT" 2306631 NIL QFCAT (NIL T) -9 NIL 2307632 NIL) (-991 2296266 2297467 2299058 "QFCAT-" 2299152 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-990 2295904 2295947 2296074 "QFCAT2" 2296217 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-989 2295364 2295474 2295604 "QEQUAT" 2295794 T QEQUAT (NIL) -8 NIL NIL NIL) (-988 2288510 2289583 2290767 "QCMPACK" 2294297 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-987 2286059 2286507 2286935 "QALGSET" 2288165 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-986 2285304 2285478 2285710 "QALGSET2" 2285879 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-985 2283994 2284218 2284535 "PWFFINTB" 2285077 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-984 2282176 2282344 2282698 "PUSHVAR" 2283808 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-983 2278094 2279148 2279189 "PTRANFN" 2281073 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-982 2276496 2276787 2277109 "PTPACK" 2277805 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-981 2276128 2276185 2276294 "PTFUNC2" 2276433 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-980 2270605 2275000 2275041 "PTCAT" 2275337 NIL PTCAT (NIL T) -9 NIL 2275490 NIL) (-979 2270263 2270298 2270422 "PSQFR" 2270564 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-978 2268858 2269156 2269490 "PSEUDLIN" 2269961 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-977 2255621 2257992 2260316 "PSETPK" 2266618 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-976 2248639 2251379 2251475 "PSETCAT" 2254496 NIL PSETCAT (NIL T T T T) -9 NIL 2255310 NIL) (-975 2246475 2247109 2247930 "PSETCAT-" 2247935 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-974 2245824 2245989 2246017 "PSCURVE" 2246285 T PSCURVE (NIL) -9 NIL 2246452 NIL) (-973 2241822 2243338 2243403 "PSCAT" 2244247 NIL PSCAT (NIL T T T) -9 NIL 2244487 NIL) (-972 2240885 2241101 2241501 "PSCAT-" 2241506 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-971 2239590 2240250 2240455 "PRTITION" 2240700 T PRTITION (NIL) -8 NIL NIL NIL) (-970 2239065 2239311 2239403 "PRTDAST" 2239518 T PRTDAST (NIL) -8 NIL NIL NIL) (-969 2228154 2230369 2232557 "PRS" 2236927 NIL PRS (NIL T T) -7 NIL NIL NIL) (-968 2225965 2227504 2227544 "PRQAGG" 2227727 NIL PRQAGG (NIL T) -9 NIL 2227829 NIL) (-967 2225169 2225474 2225502 "PROPLOG" 2225749 T PROPLOG (NIL) -9 NIL 2225915 NIL) (-966 2223599 2224120 2224377 "PROPFRML" 2224945 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-965 2223068 2223175 2223303 "PROPERTY" 2223491 T PROPERTY (NIL) -8 NIL NIL NIL) (-964 2217126 2221234 2222054 "PRODUCT" 2222294 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-963 2214404 2216584 2216818 "PR" 2216937 NIL PR (NIL T T) -8 NIL NIL NIL) (-962 2214200 2214232 2214291 "PRINT" 2214365 T PRINT (NIL) -7 NIL NIL NIL) (-961 2213540 2213657 2213809 "PRIMES" 2214080 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-960 2211605 2212006 2212472 "PRIMELT" 2213119 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-959 2211334 2211383 2211411 "PRIMCAT" 2211535 T PRIMCAT (NIL) -9 NIL NIL NIL) (-958 2207449 2211272 2211317 "PRIMARR" 2211322 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-957 2206456 2206634 2206862 "PRIMARR2" 2207267 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-956 2206099 2206155 2206266 "PREASSOC" 2206394 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-955 2205574 2205707 2205735 "PPCURVE" 2205940 T PPCURVE (NIL) -9 NIL 2206076 NIL) (-954 2205169 2205369 2205452 "PORTNUM" 2205511 T PORTNUM (NIL) -8 NIL NIL NIL) (-953 2202528 2202927 2203519 "POLYROOT" 2204750 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-952 2196710 2202132 2202292 "POLY" 2202401 NIL POLY (NIL T) -8 NIL NIL NIL) (-951 2196093 2196151 2196385 "POLYLIFT" 2196646 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-950 2192368 2192817 2193446 "POLYCATQ" 2195638 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-949 2179080 2184208 2184273 "POLYCAT" 2187787 NIL POLYCAT (NIL T T T) -9 NIL 2189665 NIL) (-948 2172529 2174391 2176775 "POLYCAT-" 2176780 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-947 2172116 2172184 2172304 "POLY2UP" 2172455 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-946 2171748 2171805 2171914 "POLY2" 2172053 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-945 2170433 2170672 2170948 "POLUTIL" 2171522 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-944 2168788 2169065 2169396 "POLTOPOL" 2170155 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-943 2164253 2168724 2168770 "POINT" 2168775 NIL POINT (NIL T) -8 NIL NIL NIL) (-942 2162440 2162797 2163172 "PNTHEORY" 2163898 T PNTHEORY (NIL) -7 NIL NIL NIL) (-941 2160898 2161195 2161594 "PMTOOLS" 2162138 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-940 2160491 2160569 2160686 "PMSYM" 2160814 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-939 2160001 2160070 2160244 "PMQFCAT" 2160416 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-938 2159356 2159466 2159622 "PMPRED" 2159878 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-937 2158749 2158835 2158997 "PMPREDFS" 2159257 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-936 2157413 2157621 2157999 "PMPLCAT" 2158511 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-935 2156945 2157024 2157176 "PMLSAGG" 2157328 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-934 2156418 2156494 2156676 "PMKERNEL" 2156863 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-933 2156035 2156110 2156223 "PMINS" 2156337 NIL PMINS (NIL T) -7 NIL NIL NIL) (-932 2155477 2155546 2155755 "PMFS" 2155960 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-931 2154705 2154823 2155028 "PMDOWN" 2155354 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-930 2153872 2154030 2154211 "PMASS" 2154544 T PMASS (NIL) -7 NIL NIL NIL) (-929 2153145 2153255 2153418 "PMASSFS" 2153759 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-928 2152800 2152868 2152962 "PLOTTOOL" 2153071 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-927 2147407 2148611 2149759 "PLOT" 2151672 T PLOT (NIL) -8 NIL NIL NIL) (-926 2143211 2144255 2145176 "PLOT3D" 2146506 T PLOT3D (NIL) -8 NIL NIL NIL) (-925 2142123 2142300 2142535 "PLOT1" 2143015 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-924 2117512 2122189 2127040 "PLEQN" 2137389 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-923 2116830 2116952 2117132 "PINTERP" 2117377 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-922 2116523 2116570 2116673 "PINTERPA" 2116777 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-921 2115744 2116292 2116379 "PI" 2116419 T PI (NIL) -8 NIL NIL 2116486) (-920 2114041 2115016 2115044 "PID" 2115226 T PID (NIL) -9 NIL 2115360 NIL) (-919 2113792 2113829 2113904 "PICOERCE" 2113998 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-918 2113112 2113251 2113427 "PGROEB" 2113648 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-917 2108699 2109513 2110418 "PGE" 2112227 T PGE (NIL) -7 NIL NIL NIL) (-916 2106822 2107069 2107435 "PGCD" 2108416 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-915 2106160 2106263 2106424 "PFRPAC" 2106706 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-914 2102800 2104708 2105061 "PFR" 2105839 NIL PFR (NIL T) -8 NIL NIL NIL) (-913 2101189 2101433 2101758 "PFOTOOLS" 2102547 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-912 2099722 2099961 2100312 "PFOQ" 2100946 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-911 2098223 2098435 2098791 "PFO" 2099506 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-910 2094776 2098112 2098181 "PF" 2098186 NIL PF (NIL NIL) -8 NIL NIL NIL) (-909 2092110 2093381 2093409 "PFECAT" 2093994 T PFECAT (NIL) -9 NIL 2094378 NIL) (-908 2091555 2091709 2091923 "PFECAT-" 2091928 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-907 2090158 2090410 2090711 "PFBRU" 2091304 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-906 2088024 2088376 2088808 "PFBR" 2089809 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-905 2083906 2085400 2086076 "PERM" 2087381 NIL PERM (NIL T) -8 NIL NIL NIL) (-904 2079140 2080113 2080983 "PERMGRP" 2083069 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-903 2077246 2078203 2078244 "PERMCAT" 2078690 NIL PERMCAT (NIL T) -9 NIL 2078995 NIL) (-902 2076899 2076940 2077064 "PERMAN" 2077199 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-901 2074387 2076564 2076686 "PENDTREE" 2076810 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-900 2072411 2073179 2073220 "PDRING" 2073877 NIL PDRING (NIL T) -9 NIL 2074163 NIL) (-899 2071514 2071732 2072094 "PDRING-" 2072099 NIL PDRING- (NIL T T) -8 NIL NIL NIL) (-898 2068729 2069507 2070175 "PDEPROB" 2070866 T PDEPROB (NIL) -8 NIL NIL NIL) (-897 2066274 2066778 2067333 "PDEPACK" 2068194 T PDEPACK (NIL) -7 NIL NIL NIL) (-896 2065186 2065376 2065627 "PDECOMP" 2066073 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-895 2062765 2063608 2063636 "PDECAT" 2064423 T PDECAT (NIL) -9 NIL 2065136 NIL) (-894 2062516 2062549 2062639 "PCOMP" 2062726 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-893 2060694 2061317 2061614 "PBWLB" 2062245 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-892 2053167 2054767 2056105 "PATTERN" 2059377 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-891 2052799 2052856 2052965 "PATTERN2" 2053104 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-890 2050556 2050944 2051401 "PATTERN1" 2052388 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-889 2047924 2048505 2048986 "PATRES" 2050121 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-888 2047488 2047555 2047687 "PATRES2" 2047851 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-887 2045371 2045776 2046183 "PATMATCH" 2047155 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-886 2044881 2045090 2045131 "PATMAB" 2045238 NIL PATMAB (NIL T) -9 NIL 2045321 NIL) (-885 2043399 2043735 2043993 "PATLRES" 2044686 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-884 2042945 2043068 2043109 "PATAB" 2043114 NIL PATAB (NIL T) -9 NIL 2043286 NIL) (-883 2040426 2040958 2041531 "PARTPERM" 2042392 T PARTPERM (NIL) -7 NIL NIL NIL) (-882 2040047 2040110 2040212 "PARSURF" 2040357 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-881 2039679 2039736 2039845 "PARSU2" 2039984 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-880 2039443 2039483 2039550 "PARSER" 2039632 T PARSER (NIL) -7 NIL NIL NIL) (-879 2039064 2039127 2039229 "PARSCURV" 2039374 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-878 2038696 2038753 2038862 "PARSC2" 2039001 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-877 2038335 2038393 2038490 "PARPCURV" 2038632 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-876 2037967 2038024 2038133 "PARPC2" 2038272 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-875 2037487 2037573 2037692 "PAN2EXPR" 2037868 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-874 2036264 2036608 2036836 "PALETTE" 2037279 T PALETTE (NIL) -8 NIL NIL NIL) (-873 2034657 2035269 2035629 "PAIR" 2035950 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-872 2028527 2033916 2034110 "PADICRC" 2034512 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-871 2021756 2027873 2028057 "PADICRAT" 2028375 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-870 2020071 2021693 2021738 "PADIC" 2021743 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-869 2017181 2018745 2018785 "PADICCT" 2019366 NIL PADICCT (NIL NIL) -9 NIL 2019648 NIL) (-868 2016138 2016338 2016606 "PADEPAC" 2016968 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-867 2015350 2015483 2015689 "PADE" 2016000 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-866 2013737 2014558 2014838 "OWP" 2015154 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-865 2013230 2013443 2013540 "OVERSET" 2013660 T OVERSET (NIL) -8 NIL NIL NIL) (-864 2012276 2012835 2013007 "OVAR" 2013098 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-863 2011540 2011661 2011822 "OUT" 2012135 T OUT (NIL) -7 NIL NIL NIL) (-862 2000412 2002649 2004849 "OUTFORM" 2009360 T OUTFORM (NIL) -8 NIL NIL NIL) (-861 1999748 2000009 2000136 "OUTBFILE" 2000305 T OUTBFILE (NIL) -8 NIL NIL NIL) (-860 1999055 1999220 1999248 "OUTBCON" 1999566 T OUTBCON (NIL) -9 NIL 1999732 NIL) (-859 1998656 1998768 1998925 "OUTBCON-" 1998930 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-858 1998036 1998385 1998474 "OSI" 1998587 T OSI (NIL) -8 NIL NIL NIL) (-857 1997566 1997904 1997932 "OSGROUP" 1997937 T OSGROUP (NIL) -9 NIL 1997959 NIL) (-856 1996311 1996538 1996823 "ORTHPOL" 1997313 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-855 1993862 1996146 1996267 "OREUP" 1996272 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-854 1991265 1993553 1993680 "ORESUP" 1993804 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-853 1988793 1989293 1989854 "OREPCTO" 1990754 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-852 1982479 1984680 1984721 "OREPCAT" 1987069 NIL OREPCAT (NIL T) -9 NIL 1988173 NIL) (-851 1979626 1980408 1981466 "OREPCAT-" 1981471 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-850 1978777 1979075 1979103 "ORDSET" 1979412 T ORDSET (NIL) -9 NIL 1979576 NIL) (-849 1978208 1978356 1978580 "ORDSET-" 1978585 NIL ORDSET- (NIL T) -8 NIL NIL NIL) (-848 1976773 1977564 1977592 "ORDRING" 1977794 T ORDRING (NIL) -9 NIL 1977919 NIL) (-847 1976418 1976512 1976656 "ORDRING-" 1976661 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-846 1975798 1976261 1976289 "ORDMON" 1976294 T ORDMON (NIL) -9 NIL 1976315 NIL) (-845 1974960 1975107 1975302 "ORDFUNS" 1975647 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-844 1974298 1974717 1974745 "ORDFIN" 1974810 T ORDFIN (NIL) -9 NIL 1974884 NIL) (-843 1970857 1972884 1973293 "ORDCOMP" 1973922 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-842 1970123 1970250 1970436 "ORDCOMP2" 1970717 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-841 1966704 1967614 1968428 "OPTPROB" 1969329 T OPTPROB (NIL) -8 NIL NIL NIL) (-840 1963506 1964145 1964849 "OPTPACK" 1966020 T OPTPACK (NIL) -7 NIL NIL NIL) (-839 1961193 1961959 1961987 "OPTCAT" 1962806 T OPTCAT (NIL) -9 NIL 1963456 NIL) (-838 1960577 1960870 1960975 "OPSIG" 1961108 T OPSIG (NIL) -8 NIL NIL NIL) (-837 1960345 1960384 1960450 "OPQUERY" 1960531 T OPQUERY (NIL) -7 NIL NIL NIL) (-836 1957476 1958656 1959160 "OP" 1959874 NIL OP (NIL T) -8 NIL NIL NIL) (-835 1956850 1957076 1957117 "OPERCAT" 1957329 NIL OPERCAT (NIL T) -9 NIL 1957426 NIL) (-834 1956605 1956661 1956778 "OPERCAT-" 1956783 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-833 1953418 1955402 1955771 "ONECOMP" 1956269 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-832 1952723 1952838 1953012 "ONECOMP2" 1953290 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-831 1952142 1952248 1952378 "OMSERVER" 1952613 T OMSERVER (NIL) -7 NIL NIL NIL) (-830 1949004 1951582 1951622 "OMSAGG" 1951683 NIL OMSAGG (NIL T) -9 NIL 1951747 NIL) (-829 1947627 1947890 1948172 "OMPKG" 1948742 T OMPKG (NIL) -7 NIL NIL NIL) (-828 1947057 1947160 1947188 "OM" 1947487 T OM (NIL) -9 NIL NIL NIL) (-827 1945604 1946606 1946775 "OMLO" 1946938 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-826 1944564 1944711 1944931 "OMEXPR" 1945430 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-825 1943855 1944110 1944246 "OMERR" 1944448 T OMERR (NIL) -8 NIL NIL NIL) (-824 1943006 1943276 1943436 "OMERRK" 1943715 T OMERRK (NIL) -8 NIL NIL NIL) (-823 1942457 1942683 1942791 "OMENC" 1942918 T OMENC (NIL) -8 NIL NIL NIL) (-822 1936352 1937537 1938708 "OMDEV" 1941306 T OMDEV (NIL) -8 NIL NIL NIL) (-821 1935421 1935592 1935786 "OMCONN" 1936178 T OMCONN (NIL) -8 NIL NIL NIL) (-820 1933942 1934918 1934946 "OINTDOM" 1934951 T OINTDOM (NIL) -9 NIL 1934972 NIL) (-819 1929721 1930932 1931648 "OFMONOID" 1933258 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-818 1929132 1929658 1929703 "ODVAR" 1929708 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-817 1926555 1928877 1929032 "ODR" 1929037 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-816 1919136 1926331 1926457 "ODPOL" 1926462 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-815 1912958 1919008 1919113 "ODP" 1919118 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-814 1911724 1911939 1912214 "ODETOOLS" 1912732 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-813 1908691 1909349 1910065 "ODESYS" 1911057 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-812 1903573 1904481 1905506 "ODERTRIC" 1907766 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-811 1902999 1903081 1903275 "ODERED" 1903485 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-810 1899887 1900435 1901112 "ODERAT" 1902422 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-809 1896844 1897311 1897908 "ODEPRRIC" 1899416 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-808 1894787 1895383 1895869 "ODEPROB" 1896378 T ODEPROB (NIL) -8 NIL NIL NIL) (-807 1891307 1891792 1892439 "ODEPRIM" 1894266 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-806 1890556 1890658 1890918 "ODEPAL" 1891199 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-805 1886718 1887509 1888373 "ODEPACK" 1889712 T ODEPACK (NIL) -7 NIL NIL NIL) (-804 1885779 1885886 1886108 "ODEINT" 1886607 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-803 1879880 1881305 1882752 "ODEIFTBL" 1884352 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-802 1875278 1876064 1877016 "ODEEF" 1879039 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-801 1874627 1874716 1874939 "ODECONST" 1875183 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-800 1872752 1873413 1873441 "ODECAT" 1874046 T ODECAT (NIL) -9 NIL 1874577 NIL) (-799 1869624 1872464 1872583 "OCT" 1872665 NIL OCT (NIL T) -8 NIL NIL NIL) (-798 1869262 1869305 1869432 "OCTCT2" 1869575 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-797 1863911 1866346 1866386 "OC" 1867483 NIL OC (NIL T) -9 NIL 1868341 NIL) (-796 1861138 1861886 1862876 "OC-" 1862970 NIL OC- (NIL T T) -8 NIL NIL NIL) (-795 1860490 1860958 1860986 "OCAMON" 1860991 T OCAMON (NIL) -9 NIL 1861012 NIL) (-794 1860021 1860362 1860390 "OASGP" 1860395 T OASGP (NIL) -9 NIL 1860415 NIL) (-793 1859282 1859771 1859799 "OAMONS" 1859839 T OAMONS (NIL) -9 NIL 1859882 NIL) (-792 1858696 1859129 1859157 "OAMON" 1859162 T OAMON (NIL) -9 NIL 1859182 NIL) (-791 1857954 1858472 1858500 "OAGROUP" 1858505 T OAGROUP (NIL) -9 NIL 1858525 NIL) (-790 1857644 1857694 1857782 "NUMTUBE" 1857898 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-789 1851217 1852735 1854271 "NUMQUAD" 1856128 T NUMQUAD (NIL) -7 NIL NIL NIL) (-788 1846973 1847961 1848986 "NUMODE" 1850212 T NUMODE (NIL) -7 NIL NIL NIL) (-787 1844328 1845208 1845236 "NUMINT" 1846159 T NUMINT (NIL) -9 NIL 1846923 NIL) (-786 1843276 1843473 1843691 "NUMFMT" 1844130 T NUMFMT (NIL) -7 NIL NIL NIL) (-785 1829635 1832580 1835112 "NUMERIC" 1840783 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-784 1824005 1829084 1829179 "NTSCAT" 1829184 NIL NTSCAT (NIL T T T T) -9 NIL 1829223 NIL) (-783 1823199 1823364 1823557 "NTPOLFN" 1823844 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-782 1811276 1820024 1820836 "NSUP" 1822420 NIL NSUP (NIL T) -8 NIL NIL NIL) (-781 1810908 1810965 1811074 "NSUP2" 1811213 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-780 1801136 1810682 1810815 "NSMP" 1810820 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-779 1799568 1799869 1800226 "NREP" 1800824 NIL NREP (NIL T) -7 NIL NIL NIL) (-778 1798159 1798411 1798769 "NPCOEF" 1799311 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-777 1797225 1797340 1797556 "NORMRETR" 1798040 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-776 1795266 1795556 1795965 "NORMPK" 1796933 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-775 1794951 1794979 1795103 "NORMMA" 1795232 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-774 1794751 1794908 1794937 "NONE" 1794942 T NONE (NIL) -8 NIL NIL NIL) (-773 1794540 1794569 1794638 "NONE1" 1794715 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-772 1794037 1794099 1794278 "NODE1" 1794472 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-771 1792322 1793173 1793428 "NNI" 1793775 T NNI (NIL) -8 NIL NIL 1794010) (-770 1790742 1791055 1791419 "NLINSOL" 1791990 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-769 1786983 1787978 1788877 "NIPROB" 1789863 T NIPROB (NIL) -8 NIL NIL NIL) (-768 1785740 1785974 1786276 "NFINTBAS" 1786745 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-767 1784914 1785390 1785431 "NETCLT" 1785603 NIL NETCLT (NIL T) -9 NIL 1785685 NIL) (-766 1783622 1783853 1784134 "NCODIV" 1784682 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-765 1783384 1783421 1783496 "NCNTFRAC" 1783579 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-764 1781564 1781928 1782348 "NCEP" 1783009 NIL NCEP (NIL T) -7 NIL NIL NIL) (-763 1780415 1781188 1781216 "NASRING" 1781326 T NASRING (NIL) -9 NIL 1781406 NIL) (-762 1780210 1780254 1780348 "NASRING-" 1780353 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-761 1779317 1779842 1779870 "NARNG" 1779987 T NARNG (NIL) -9 NIL 1780078 NIL) (-760 1779009 1779076 1779210 "NARNG-" 1779215 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-759 1777888 1778095 1778330 "NAGSP" 1778794 T NAGSP (NIL) -7 NIL NIL NIL) (-758 1769160 1770844 1772517 "NAGS" 1776235 T NAGS (NIL) -7 NIL NIL NIL) (-757 1767708 1768016 1768347 "NAGF07" 1768849 T NAGF07 (NIL) -7 NIL NIL NIL) (-756 1762246 1763537 1764844 "NAGF04" 1766421 T NAGF04 (NIL) -7 NIL NIL NIL) (-755 1755214 1756828 1758461 "NAGF02" 1760633 T NAGF02 (NIL) -7 NIL NIL NIL) (-754 1750438 1751538 1752655 "NAGF01" 1754117 T NAGF01 (NIL) -7 NIL NIL NIL) (-753 1744066 1745632 1747217 "NAGE04" 1748873 T NAGE04 (NIL) -7 NIL NIL NIL) (-752 1735235 1737356 1739486 "NAGE02" 1741956 T NAGE02 (NIL) -7 NIL NIL NIL) (-751 1731188 1732135 1733099 "NAGE01" 1734291 T NAGE01 (NIL) -7 NIL NIL NIL) (-750 1728983 1729517 1730075 "NAGD03" 1730650 T NAGD03 (NIL) -7 NIL NIL NIL) (-749 1720733 1722661 1724615 "NAGD02" 1727049 T NAGD02 (NIL) -7 NIL NIL NIL) (-748 1714544 1715969 1717409 "NAGD01" 1719313 T NAGD01 (NIL) -7 NIL NIL NIL) (-747 1710753 1711575 1712412 "NAGC06" 1713727 T NAGC06 (NIL) -7 NIL NIL NIL) (-746 1709218 1709550 1709906 "NAGC05" 1710417 T NAGC05 (NIL) -7 NIL NIL NIL) (-745 1708594 1708713 1708857 "NAGC02" 1709094 T NAGC02 (NIL) -7 NIL NIL NIL) (-744 1707553 1708136 1708176 "NAALG" 1708255 NIL NAALG (NIL T) -9 NIL 1708316 NIL) (-743 1707388 1707417 1707507 "NAALG-" 1707512 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-742 1701338 1702446 1703633 "MULTSQFR" 1706284 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-741 1700657 1700732 1700916 "MULTFACT" 1701250 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-740 1693381 1697294 1697347 "MTSCAT" 1698417 NIL MTSCAT (NIL T T) -9 NIL 1698932 NIL) (-739 1693093 1693147 1693239 "MTHING" 1693321 NIL MTHING (NIL T) -7 NIL NIL NIL) (-738 1692885 1692918 1692978 "MSYSCMD" 1693053 T MSYSCMD (NIL) -7 NIL NIL NIL) (-737 1688967 1691640 1691960 "MSET" 1692598 NIL MSET (NIL T) -8 NIL NIL NIL) (-736 1686036 1688528 1688569 "MSETAGG" 1688574 NIL MSETAGG (NIL T) -9 NIL 1688608 NIL) (-735 1681877 1683415 1684160 "MRING" 1685336 NIL MRING (NIL T T) -8 NIL NIL NIL) (-734 1681443 1681510 1681641 "MRF2" 1681804 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-733 1681061 1681096 1681240 "MRATFAC" 1681402 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-732 1678673 1678968 1679399 "MPRFF" 1680766 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-731 1672970 1678527 1678624 "MPOLY" 1678629 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-730 1672460 1672495 1672703 "MPCPF" 1672929 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-729 1671974 1672017 1672201 "MPC3" 1672411 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-728 1671169 1671250 1671471 "MPC2" 1671889 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-727 1669470 1669807 1670197 "MONOTOOL" 1670829 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-726 1668695 1669012 1669040 "MONOID" 1669259 T MONOID (NIL) -9 NIL 1669406 NIL) (-725 1668241 1668360 1668541 "MONOID-" 1668546 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-724 1658716 1664667 1664726 "MONOGEN" 1665400 NIL MONOGEN (NIL T T) -9 NIL 1665856 NIL) (-723 1655934 1656669 1657669 "MONOGEN-" 1657788 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-722 1654767 1655213 1655241 "MONADWU" 1655633 T MONADWU (NIL) -9 NIL 1655871 NIL) (-721 1654139 1654298 1654546 "MONADWU-" 1654551 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-720 1653498 1653742 1653770 "MONAD" 1653977 T MONAD (NIL) -9 NIL 1654089 NIL) (-719 1653183 1653261 1653393 "MONAD-" 1653398 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-718 1651472 1652096 1652375 "MOEBIUS" 1652936 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-717 1650750 1651154 1651194 "MODULE" 1651199 NIL MODULE (NIL T) -9 NIL 1651238 NIL) (-716 1650318 1650414 1650604 "MODULE-" 1650609 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-715 1647998 1648682 1649009 "MODRING" 1650142 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-714 1644942 1646103 1646624 "MODOP" 1647527 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-713 1643530 1644009 1644286 "MODMONOM" 1644805 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-712 1633571 1641821 1642235 "MODMON" 1643167 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-711 1630727 1632415 1632691 "MODFIELD" 1633446 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-710 1629704 1630008 1630198 "MMLFORM" 1630557 T MMLFORM (NIL) -8 NIL NIL NIL) (-709 1629230 1629273 1629452 "MMAP" 1629655 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-708 1627309 1628076 1628117 "MLO" 1628540 NIL MLO (NIL T) -9 NIL 1628782 NIL) (-707 1624675 1625191 1625793 "MLIFT" 1626790 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-706 1624066 1624150 1624304 "MKUCFUNC" 1624586 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-705 1623665 1623735 1623858 "MKRECORD" 1623989 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-704 1622712 1622874 1623102 "MKFUNC" 1623476 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-703 1622100 1622204 1622360 "MKFLCFN" 1622595 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-702 1621377 1621479 1621664 "MKBCFUNC" 1621993 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-701 1618084 1620931 1621067 "MINT" 1621261 T MINT (NIL) -8 NIL NIL NIL) (-700 1616896 1617139 1617416 "MHROWRED" 1617839 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-699 1612275 1615431 1615836 "MFLOAT" 1616511 T MFLOAT (NIL) -8 NIL NIL NIL) (-698 1611632 1611708 1611879 "MFINFACT" 1612187 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-697 1607947 1608795 1609679 "MESH" 1610768 T MESH (NIL) -7 NIL NIL NIL) (-696 1606337 1606649 1607002 "MDDFACT" 1607634 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-695 1603132 1605496 1605537 "MDAGG" 1605792 NIL MDAGG (NIL T) -9 NIL 1605935 NIL) (-694 1592872 1602425 1602632 "MCMPLX" 1602945 T MCMPLX (NIL) -8 NIL NIL NIL) (-693 1592013 1592159 1592359 "MCDEN" 1592721 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-692 1589903 1590173 1590553 "MCALCFN" 1591743 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-691 1588828 1589068 1589301 "MAYBE" 1589709 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-690 1586440 1586963 1587525 "MATSTOR" 1588299 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-689 1582397 1585812 1586060 "MATRIX" 1586225 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-688 1578161 1578870 1579606 "MATLIN" 1581754 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-687 1568267 1571453 1571530 "MATCAT" 1576410 NIL MATCAT (NIL T T T) -9 NIL 1577827 NIL) (-686 1564623 1565644 1567000 "MATCAT-" 1567005 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-685 1563217 1563370 1563703 "MATCAT2" 1564458 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-684 1561329 1561653 1562037 "MAPPKG3" 1562892 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-683 1560310 1560483 1560705 "MAPPKG2" 1561153 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-682 1558809 1559093 1559420 "MAPPKG1" 1560016 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-681 1557888 1558215 1558392 "MAPPAST" 1558652 T MAPPAST (NIL) -8 NIL NIL NIL) (-680 1557499 1557557 1557680 "MAPHACK3" 1557824 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-679 1557091 1557152 1557266 "MAPHACK2" 1557431 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-678 1556528 1556632 1556774 "MAPHACK1" 1556982 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-677 1554607 1555228 1555532 "MAGMA" 1556256 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-676 1554086 1554331 1554422 "MACROAST" 1554536 T MACROAST (NIL) -8 NIL NIL NIL) (-675 1550504 1552325 1552786 "M3D" 1553658 NIL M3D (NIL T) -8 NIL NIL NIL) (-674 1544610 1548873 1548914 "LZSTAGG" 1549696 NIL LZSTAGG (NIL T) -9 NIL 1549991 NIL) (-673 1540567 1541741 1543198 "LZSTAGG-" 1543203 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-672 1537654 1538458 1538945 "LWORD" 1540112 NIL LWORD (NIL T) -8 NIL NIL NIL) (-671 1537230 1537458 1537533 "LSTAST" 1537599 T LSTAST (NIL) -8 NIL NIL NIL) (-670 1530396 1537001 1537135 "LSQM" 1537140 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-669 1529620 1529759 1529987 "LSPP" 1530251 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-668 1527432 1527733 1528189 "LSMP" 1529309 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-667 1524211 1524885 1525615 "LSMP1" 1526734 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-666 1518088 1523378 1523419 "LSAGG" 1523481 NIL LSAGG (NIL T) -9 NIL 1523559 NIL) (-665 1514783 1515707 1516920 "LSAGG-" 1516925 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-664 1512382 1513927 1514176 "LPOLY" 1514578 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-663 1511964 1512049 1512172 "LPEFRAC" 1512291 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-662 1510285 1511058 1511311 "LO" 1511796 NIL LO (NIL T T T) -8 NIL NIL NIL) (-661 1509937 1510049 1510077 "LOGIC" 1510188 T LOGIC (NIL) -9 NIL 1510269 NIL) (-660 1509799 1509822 1509893 "LOGIC-" 1509898 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-659 1508992 1509132 1509325 "LODOOPS" 1509655 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-658 1506415 1508908 1508974 "LODO" 1508979 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-657 1504953 1505188 1505541 "LODOF" 1506162 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-656 1501171 1503602 1503643 "LODOCAT" 1504081 NIL LODOCAT (NIL T) -9 NIL 1504292 NIL) (-655 1500904 1500962 1501089 "LODOCAT-" 1501094 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-654 1498224 1500745 1500863 "LODO2" 1500868 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-653 1495659 1498161 1498206 "LODO1" 1498211 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-652 1494540 1494705 1495010 "LODEEF" 1495482 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-651 1489779 1492670 1492711 "LNAGG" 1493658 NIL LNAGG (NIL T) -9 NIL 1494102 NIL) (-650 1488926 1489140 1489482 "LNAGG-" 1489487 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-649 1485062 1485851 1486490 "LMOPS" 1488341 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-648 1484465 1484853 1484894 "LMODULE" 1484899 NIL LMODULE (NIL T) -9 NIL 1484925 NIL) (-647 1481663 1484110 1484233 "LMDICT" 1484375 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-646 1481069 1481290 1481331 "LLINSET" 1481522 NIL LLINSET (NIL T) -9 NIL 1481613 NIL) (-645 1480768 1480977 1481037 "LITERAL" 1481042 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-644 1473931 1479702 1480006 "LIST" 1480497 NIL LIST (NIL T) -8 NIL NIL NIL) (-643 1473456 1473530 1473669 "LIST3" 1473851 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-642 1472463 1472641 1472869 "LIST2" 1473274 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-641 1470597 1470909 1471308 "LIST2MAP" 1472110 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-640 1470193 1470430 1470471 "LINSET" 1470476 NIL LINSET (NIL T) -9 NIL 1470510 NIL) (-639 1468854 1469524 1469565 "LINEXP" 1469820 NIL LINEXP (NIL T) -9 NIL 1469969 NIL) (-638 1467501 1467761 1468058 "LINDEP" 1468606 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-637 1464268 1464987 1465764 "LIMITRF" 1466756 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-636 1462571 1462867 1463276 "LIMITPS" 1463963 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-635 1456999 1462082 1462310 "LIE" 1462392 NIL LIE (NIL T T) -8 NIL NIL NIL) (-634 1455947 1456416 1456456 "LIECAT" 1456596 NIL LIECAT (NIL T) -9 NIL 1456747 NIL) (-633 1455788 1455815 1455903 "LIECAT-" 1455908 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-632 1448284 1455237 1455402 "LIB" 1455643 T LIB (NIL) -8 NIL NIL NIL) (-631 1443919 1444802 1445737 "LGROBP" 1447401 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-630 1441917 1442191 1442541 "LF" 1443640 NIL LF (NIL T T) -7 NIL NIL NIL) (-629 1440757 1441449 1441477 "LFCAT" 1441684 T LFCAT (NIL) -9 NIL 1441823 NIL) (-628 1437659 1438289 1438977 "LEXTRIPK" 1440121 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-627 1434403 1435229 1435732 "LEXP" 1437239 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-626 1433879 1434124 1434216 "LETAST" 1434331 T LETAST (NIL) -8 NIL NIL NIL) (-625 1432277 1432590 1432991 "LEADCDET" 1433561 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-624 1431467 1431541 1431770 "LAZM3PK" 1432198 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-623 1426384 1429544 1430082 "LAUPOL" 1430979 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-622 1425963 1426007 1426168 "LAPLACE" 1426334 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-621 1423902 1425064 1425315 "LA" 1425796 NIL LA (NIL T T T) -8 NIL NIL NIL) (-620 1422896 1423480 1423521 "LALG" 1423583 NIL LALG (NIL T) -9 NIL 1423642 NIL) (-619 1422610 1422669 1422805 "LALG-" 1422810 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-618 1422445 1422469 1422510 "KVTFROM" 1422572 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-617 1421368 1421812 1421997 "KTVLOGIC" 1422280 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-616 1421203 1421227 1421268 "KRCFROM" 1421330 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-615 1420107 1420294 1420593 "KOVACIC" 1421003 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-614 1419942 1419966 1420007 "KONVERT" 1420069 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-613 1419777 1419801 1419842 "KOERCE" 1419904 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-612 1417607 1418370 1418747 "KERNEL" 1419433 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-611 1417103 1417184 1417316 "KERNEL2" 1417521 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-610 1410873 1415642 1415696 "KDAGG" 1416073 NIL KDAGG (NIL T T) -9 NIL 1416279 NIL) (-609 1410402 1410526 1410731 "KDAGG-" 1410736 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-608 1403550 1410063 1410218 "KAFILE" 1410280 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-607 1397978 1403061 1403289 "JORDAN" 1403371 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-606 1397357 1397627 1397748 "JOINAST" 1397877 T JOINAST (NIL) -8 NIL NIL NIL) (-605 1397203 1397262 1397317 "JAVACODE" 1397322 T JAVACODE (NIL) -8 NIL NIL NIL) (-604 1393455 1395408 1395462 "IXAGG" 1396391 NIL IXAGG (NIL T T) -9 NIL 1396850 NIL) (-603 1392374 1392680 1393099 "IXAGG-" 1393104 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-602 1387904 1392296 1392355 "IVECTOR" 1392360 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-601 1386670 1386907 1387173 "ITUPLE" 1387671 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-600 1385172 1385349 1385644 "ITRIGMNP" 1386492 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-599 1383917 1384121 1384404 "ITFUN3" 1384948 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-598 1383549 1383606 1383715 "ITFUN2" 1383854 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-597 1381351 1382411 1382710 "ITAYLOR" 1383283 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-596 1370296 1375488 1376651 "ISUPS" 1380221 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-595 1369400 1369540 1369776 "ISUMP" 1370143 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-594 1364614 1369201 1369280 "ISTRING" 1369353 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-593 1364090 1364335 1364427 "ISAST" 1364542 T ISAST (NIL) -8 NIL NIL NIL) (-592 1363299 1363381 1363597 "IRURPK" 1364004 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-591 1362235 1362436 1362676 "IRSN" 1363079 T IRSN (NIL) -7 NIL NIL NIL) (-590 1360306 1360661 1361090 "IRRF2F" 1361873 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-589 1360053 1360091 1360167 "IRREDFFX" 1360262 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-588 1358668 1358927 1359226 "IROOT" 1359786 NIL IROOT (NIL T) -7 NIL NIL NIL) (-587 1355272 1356352 1357044 "IR" 1358008 NIL IR (NIL T) -8 NIL NIL NIL) (-586 1352885 1353380 1353946 "IR2" 1354750 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-585 1351985 1352098 1352312 "IR2F" 1352768 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-584 1351776 1351810 1351870 "IPRNTPK" 1351945 T IPRNTPK (NIL) -7 NIL NIL NIL) (-583 1348357 1351665 1351734 "IPF" 1351739 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-582 1346684 1348282 1348339 "IPADIC" 1348344 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-581 1345996 1346244 1346374 "IP4ADDR" 1346574 T IP4ADDR (NIL) -8 NIL NIL NIL) (-580 1345469 1345700 1345810 "IOMODE" 1345906 T IOMODE (NIL) -8 NIL NIL NIL) (-579 1344542 1345066 1345193 "IOBFILE" 1345362 T IOBFILE (NIL) -8 NIL NIL NIL) (-578 1344030 1344446 1344474 "IOBCON" 1344479 T IOBCON (NIL) -9 NIL 1344500 NIL) (-577 1343541 1343599 1343782 "INVLAPLA" 1343966 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-576 1333189 1335543 1337929 "INTTR" 1341205 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-575 1329524 1330266 1331131 "INTTOOLS" 1332374 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-574 1329110 1329201 1329318 "INTSLPE" 1329427 T INTSLPE (NIL) -7 NIL NIL NIL) (-573 1327063 1329033 1329092 "INTRVL" 1329097 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-572 1324665 1325177 1325752 "INTRF" 1326548 NIL INTRF (NIL T) -7 NIL NIL NIL) (-571 1324076 1324173 1324315 "INTRET" 1324563 NIL INTRET (NIL T) -7 NIL NIL NIL) (-570 1322073 1322462 1322932 "INTRAT" 1323684 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-569 1319336 1319919 1320538 "INTPM" 1321558 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-568 1316081 1316680 1317418 "INTPAF" 1318722 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-567 1311260 1312222 1313273 "INTPACK" 1315050 T INTPACK (NIL) -7 NIL NIL NIL) (-566 1308140 1310989 1311116 "INT" 1311153 T INT (NIL) -8 NIL NIL NIL) (-565 1307392 1307544 1307752 "INTHERTR" 1307982 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-564 1306831 1306911 1307099 "INTHERAL" 1307306 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-563 1304677 1305120 1305577 "INTHEORY" 1306394 T INTHEORY (NIL) -7 NIL NIL NIL) (-562 1296083 1297704 1299476 "INTG0" 1303029 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-561 1276656 1281446 1286256 "INTFTBL" 1291293 T INTFTBL (NIL) -8 NIL NIL NIL) (-560 1275905 1276043 1276216 "INTFACT" 1276515 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-559 1273332 1273778 1274335 "INTEF" 1275459 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-558 1271699 1272438 1272466 "INTDOM" 1272767 T INTDOM (NIL) -9 NIL 1272974 NIL) (-557 1271068 1271242 1271484 "INTDOM-" 1271489 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-556 1267456 1269384 1269438 "INTCAT" 1270237 NIL INTCAT (NIL T) -9 NIL 1270558 NIL) (-555 1266928 1267031 1267159 "INTBIT" 1267348 T INTBIT (NIL) -7 NIL NIL NIL) (-554 1265627 1265781 1266088 "INTALG" 1266773 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-553 1265110 1265200 1265357 "INTAF" 1265531 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-552 1258453 1264920 1265060 "INTABL" 1265065 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-551 1257794 1258260 1258325 "INT8" 1258359 T INT8 (NIL) -8 NIL NIL 1258404) (-550 1257134 1257600 1257665 "INT64" 1257699 T INT64 (NIL) -8 NIL NIL 1257744) (-549 1256474 1256940 1257005 "INT32" 1257039 T INT32 (NIL) -8 NIL NIL 1257084) (-548 1255814 1256280 1256345 "INT16" 1256379 T INT16 (NIL) -8 NIL NIL 1256424) (-547 1250724 1253437 1253465 "INS" 1254399 T INS (NIL) -9 NIL 1255064 NIL) (-546 1247964 1248735 1249709 "INS-" 1249782 NIL INS- (NIL T) -8 NIL NIL NIL) (-545 1246739 1246966 1247264 "INPSIGN" 1247717 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-544 1245857 1245974 1246171 "INPRODPF" 1246619 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-543 1244751 1244868 1245105 "INPRODFF" 1245737 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-542 1243751 1243903 1244163 "INNMFACT" 1244587 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-541 1242948 1243045 1243233 "INMODGCD" 1243650 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-540 1241456 1241701 1242025 "INFSP" 1242693 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-539 1240640 1240757 1240940 "INFPROD0" 1241336 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-538 1237495 1238705 1239220 "INFORM" 1240133 T INFORM (NIL) -8 NIL NIL NIL) (-537 1237105 1237165 1237263 "INFORM1" 1237430 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-536 1236628 1236717 1236831 "INFINITY" 1237011 T INFINITY (NIL) -7 NIL NIL NIL) (-535 1235804 1236348 1236449 "INETCLTS" 1236547 T INETCLTS (NIL) -8 NIL NIL NIL) (-534 1234420 1234670 1234991 "INEP" 1235552 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-533 1233669 1234317 1234382 "INDE" 1234387 NIL INDE (NIL T) -8 NIL NIL NIL) (-532 1233233 1233301 1233418 "INCRMAPS" 1233596 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-531 1232051 1232502 1232708 "INBFILE" 1233047 T INBFILE (NIL) -8 NIL NIL NIL) (-530 1227350 1228287 1229231 "INBFF" 1231139 NIL INBFF (NIL T) -7 NIL NIL NIL) (-529 1226258 1226527 1226555 "INBCON" 1227068 T INBCON (NIL) -9 NIL 1227334 NIL) (-528 1225510 1225733 1226009 "INBCON-" 1226014 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-527 1224989 1225234 1225325 "INAST" 1225439 T INAST (NIL) -8 NIL NIL NIL) (-526 1224416 1224668 1224774 "IMPTAST" 1224903 T IMPTAST (NIL) -8 NIL NIL NIL) (-525 1220862 1224260 1224364 "IMATRIX" 1224369 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-524 1219574 1219697 1220012 "IMATQF" 1220718 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-523 1217794 1218021 1218358 "IMATLIN" 1219330 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-522 1212372 1217718 1217776 "ILIST" 1217781 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-521 1210277 1212232 1212345 "IIARRAY2" 1212350 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-520 1205675 1210188 1210252 "IFF" 1210257 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-519 1205022 1205292 1205408 "IFAST" 1205579 T IFAST (NIL) -8 NIL NIL NIL) (-518 1200017 1204314 1204502 "IFARRAY" 1204879 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-517 1199197 1199921 1199994 "IFAMON" 1199999 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-516 1198781 1198846 1198900 "IEVALAB" 1199107 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-515 1198456 1198524 1198684 "IEVALAB-" 1198689 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-514 1198087 1198370 1198433 "IDPO" 1198438 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-513 1197337 1197976 1198051 "IDPOAMS" 1198056 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-512 1196644 1197226 1197301 "IDPOAM" 1197306 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-511 1195703 1195979 1196032 "IDPC" 1196445 NIL IDPC (NIL T T) -9 NIL 1196594 NIL) (-510 1195172 1195595 1195668 "IDPAM" 1195673 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-509 1194548 1195064 1195137 "IDPAG" 1195142 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-508 1194193 1194384 1194459 "IDENT" 1194493 T IDENT (NIL) -8 NIL NIL NIL) (-507 1190448 1191296 1192191 "IDECOMP" 1193350 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-506 1183286 1184371 1185418 "IDEAL" 1189484 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-505 1182450 1182562 1182761 "ICDEN" 1183170 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-504 1181521 1181930 1182077 "ICARD" 1182323 T ICARD (NIL) -8 NIL NIL NIL) (-503 1179581 1179894 1180299 "IBPTOOLS" 1181198 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-502 1175188 1179201 1179314 "IBITS" 1179500 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-501 1171911 1172487 1173182 "IBATOOL" 1174605 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-500 1169690 1170152 1170685 "IBACHIN" 1171446 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-499 1167519 1169536 1169639 "IARRAY2" 1169644 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-498 1163625 1167445 1167502 "IARRAY1" 1167507 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-497 1157734 1162037 1162518 "IAN" 1163164 T IAN (NIL) -8 NIL NIL NIL) (-496 1157245 1157302 1157475 "IALGFACT" 1157671 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-495 1156773 1156886 1156914 "HYPCAT" 1157121 T HYPCAT (NIL) -9 NIL NIL NIL) (-494 1156311 1156428 1156614 "HYPCAT-" 1156619 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-493 1155906 1156106 1156189 "HOSTNAME" 1156248 T HOSTNAME (NIL) -8 NIL NIL NIL) (-492 1155751 1155788 1155829 "HOMOTOP" 1155834 NIL HOMOTOP (NIL T) -9 NIL 1155867 NIL) (-491 1152383 1153761 1153802 "HOAGG" 1154783 NIL HOAGG (NIL T) -9 NIL 1155462 NIL) (-490 1150977 1151376 1151902 "HOAGG-" 1151907 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-489 1144981 1150572 1150721 "HEXADEC" 1150848 T HEXADEC (NIL) -8 NIL NIL NIL) (-488 1143728 1143951 1144214 "HEUGCD" 1144758 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-487 1142804 1143565 1143695 "HELLFDIV" 1143700 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-486 1140983 1142581 1142669 "HEAP" 1142748 NIL HEAP (NIL T) -8 NIL NIL NIL) (-485 1140246 1140535 1140669 "HEADAST" 1140869 T HEADAST (NIL) -8 NIL NIL NIL) (-484 1134112 1140161 1140223 "HDP" 1140228 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-483 1128100 1133747 1133899 "HDMP" 1134013 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-482 1127424 1127564 1127728 "HB" 1127956 T HB (NIL) -7 NIL NIL NIL) (-481 1120810 1127270 1127374 "HASHTBL" 1127379 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-480 1120286 1120531 1120623 "HASAST" 1120738 T HASAST (NIL) -8 NIL NIL NIL) (-479 1118064 1119908 1120090 "HACKPI" 1120124 T HACKPI (NIL) -8 NIL NIL NIL) (-478 1113732 1117917 1118030 "GTSET" 1118035 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-477 1107147 1113610 1113708 "GSTBL" 1113713 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-476 1099425 1106178 1106443 "GSERIES" 1106938 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-475 1098566 1098983 1099011 "GROUP" 1099214 T GROUP (NIL) -9 NIL 1099348 NIL) (-474 1097932 1098091 1098342 "GROUP-" 1098347 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-473 1096299 1096620 1097007 "GROEBSOL" 1097609 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-472 1095213 1095501 1095552 "GRMOD" 1096081 NIL GRMOD (NIL T T) -9 NIL 1096249 NIL) (-471 1094981 1095017 1095145 "GRMOD-" 1095150 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-470 1090271 1091335 1092335 "GRIMAGE" 1094001 T GRIMAGE (NIL) -8 NIL NIL NIL) (-469 1088737 1088998 1089322 "GRDEF" 1089967 T GRDEF (NIL) -7 NIL NIL NIL) (-468 1088181 1088297 1088438 "GRAY" 1088616 T GRAY (NIL) -7 NIL NIL NIL) (-467 1087368 1087774 1087825 "GRALG" 1087978 NIL GRALG (NIL T T) -9 NIL 1088071 NIL) (-466 1087029 1087102 1087265 "GRALG-" 1087270 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-465 1083806 1086614 1086792 "GPOLSET" 1086936 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-464 1083160 1083217 1083475 "GOSPER" 1083743 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-463 1078892 1079598 1080124 "GMODPOL" 1082859 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-462 1077897 1078081 1078319 "GHENSEL" 1078704 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-461 1072053 1072896 1073916 "GENUPS" 1076981 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-460 1071750 1071801 1071890 "GENUFACT" 1071996 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-459 1071162 1071239 1071404 "GENPGCD" 1071668 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-458 1070636 1070671 1070884 "GENMFACT" 1071121 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-457 1069202 1069459 1069766 "GENEEZ" 1070379 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-456 1063348 1068813 1068975 "GDMP" 1069125 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-455 1052690 1057119 1058225 "GCNAALG" 1062331 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-454 1051017 1051879 1051907 "GCDDOM" 1052162 T GCDDOM (NIL) -9 NIL 1052319 NIL) (-453 1050487 1050614 1050829 "GCDDOM-" 1050834 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-452 1049159 1049344 1049648 "GB" 1050266 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-451 1037775 1040105 1042497 "GBINTERN" 1046850 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-450 1035612 1035904 1036325 "GBF" 1037450 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-449 1034393 1034558 1034825 "GBEUCLID" 1035428 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-448 1033742 1033867 1034016 "GAUSSFAC" 1034264 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-447 1032109 1032411 1032725 "GALUTIL" 1033461 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-446 1030417 1030691 1031015 "GALPOLYU" 1031836 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-445 1027782 1028072 1028479 "GALFACTU" 1030114 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-444 1019587 1021087 1022695 "GALFACT" 1026214 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-443 1016975 1017633 1017661 "FVFUN" 1018817 T FVFUN (NIL) -9 NIL 1019537 NIL) (-442 1016241 1016423 1016451 "FVC" 1016742 T FVC (NIL) -9 NIL 1016925 NIL) (-441 1015884 1016066 1016134 "FUNDESC" 1016193 T FUNDESC (NIL) -8 NIL NIL NIL) (-440 1015499 1015681 1015762 "FUNCTION" 1015836 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-439 1013243 1013821 1014287 "FT" 1015053 T FT (NIL) -8 NIL NIL NIL) (-438 1012034 1012544 1012747 "FTEM" 1013060 T FTEM (NIL) -8 NIL NIL NIL) (-437 1010325 1010614 1011011 "FSUPFACT" 1011725 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-436 1008722 1009011 1009343 "FST" 1010013 T FST (NIL) -8 NIL NIL NIL) (-435 1007921 1008027 1008215 "FSRED" 1008604 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-434 1006620 1006876 1007223 "FSPRMELT" 1007636 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-433 1003926 1004364 1004850 "FSPECF" 1006183 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-432 985564 993895 993936 "FS" 997820 NIL FS (NIL T) -9 NIL 1000109 NIL) (-431 974207 977200 981257 "FS-" 981557 NIL FS- (NIL T T) -8 NIL NIL NIL) (-430 973735 973789 973959 "FSINT" 974148 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-429 972027 972728 973031 "FSERIES" 973514 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-428 971069 971185 971409 "FSCINT" 971907 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-427 967277 970013 970054 "FSAGG" 970424 NIL FSAGG (NIL T) -9 NIL 970683 NIL) (-426 965039 965640 966436 "FSAGG-" 966531 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-425 964081 964224 964451 "FSAGG2" 964892 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-424 961763 962043 962590 "FS2UPS" 963799 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-423 961397 961440 961569 "FS2" 961714 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-422 960275 960446 960748 "FS2EXPXP" 961222 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-421 959701 959816 959968 "FRUTIL" 960155 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-420 951114 955196 956554 "FR" 958375 NIL FR (NIL T) -8 NIL NIL NIL) (-419 946083 948757 948797 "FRNAALG" 950193 NIL FRNAALG (NIL T) -9 NIL 950800 NIL) (-418 941756 942832 944107 "FRNAALG-" 944857 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-417 941394 941437 941564 "FRNAAF2" 941707 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-416 939774 940248 940543 "FRMOD" 941206 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-415 937525 938157 938474 "FRIDEAL" 939565 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-414 936720 936807 937096 "FRIDEAL2" 937432 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-413 935853 936267 936308 "FRETRCT" 936313 NIL FRETRCT (NIL T) -9 NIL 936489 NIL) (-412 934965 935196 935547 "FRETRCT-" 935552 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-411 932053 933263 933322 "FRAMALG" 934204 NIL FRAMALG (NIL T T) -9 NIL 934496 NIL) (-410 930187 930642 931272 "FRAMALG-" 931495 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-409 924108 929662 929938 "FRAC" 929943 NIL FRAC (NIL T) -8 NIL NIL NIL) (-408 923744 923801 923908 "FRAC2" 924045 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-407 923380 923437 923544 "FR2" 923681 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-406 917893 920786 920814 "FPS" 921933 T FPS (NIL) -9 NIL 922490 NIL) (-405 917342 917451 917615 "FPS-" 917761 NIL FPS- (NIL T) -8 NIL NIL NIL) (-404 914644 916313 916341 "FPC" 916566 T FPC (NIL) -9 NIL 916708 NIL) (-403 914437 914477 914574 "FPC-" 914579 NIL FPC- (NIL T) -8 NIL NIL NIL) (-402 913227 913925 913966 "FPATMAB" 913971 NIL FPATMAB (NIL T) -9 NIL 914123 NIL) (-401 910900 911403 911829 "FPARFRAC" 912864 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-400 906293 906792 907474 "FORTRAN" 910332 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-399 904009 904509 905048 "FORT" 905774 T FORT (NIL) -7 NIL NIL NIL) (-398 901685 902247 902275 "FORTFN" 903335 T FORTFN (NIL) -9 NIL 903959 NIL) (-397 901449 901499 901527 "FORTCAT" 901586 T FORTCAT (NIL) -9 NIL 901648 NIL) (-396 899555 900065 900455 "FORMULA" 901079 T FORMULA (NIL) -8 NIL NIL NIL) (-395 899343 899373 899442 "FORMULA1" 899519 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-394 898866 898918 899091 "FORDER" 899285 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-393 897962 898126 898319 "FOP" 898693 T FOP (NIL) -7 NIL NIL NIL) (-392 896543 897242 897416 "FNLA" 897844 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-391 895272 895687 895715 "FNCAT" 896175 T FNCAT (NIL) -9 NIL 896435 NIL) (-390 894811 895231 895259 "FNAME" 895264 T FNAME (NIL) -8 NIL NIL NIL) (-389 893374 894337 894365 "FMTC" 894370 T FMTC (NIL) -9 NIL 894406 NIL) (-388 889707 890897 891526 "FMONOID" 892778 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-387 888899 889449 889598 "FM" 889603 NIL FM (NIL T T) -8 NIL NIL NIL) (-386 886323 886969 886997 "FMFUN" 888141 T FMFUN (NIL) -9 NIL 888849 NIL) (-385 885592 885773 885801 "FMC" 886091 T FMC (NIL) -9 NIL 886273 NIL) (-384 882671 883531 883585 "FMCAT" 884780 NIL FMCAT (NIL T T) -9 NIL 885275 NIL) (-383 881537 882437 882537 "FM1" 882616 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-382 879311 879727 880221 "FLOATRP" 881088 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-381 872886 877040 877661 "FLOAT" 878710 T FLOAT (NIL) -8 NIL NIL NIL) (-380 870324 870824 871402 "FLOATCP" 872353 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-379 869064 869902 869943 "FLINEXP" 869948 NIL FLINEXP (NIL T) -9 NIL 870041 NIL) (-378 868218 868453 868781 "FLINEXP-" 868786 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-377 867294 867438 867662 "FLASORT" 868070 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-376 864410 865278 865330 "FLALG" 866557 NIL FLALG (NIL T T) -9 NIL 867024 NIL) (-375 858146 861896 861937 "FLAGG" 863199 NIL FLAGG (NIL T) -9 NIL 863851 NIL) (-374 856872 857211 857701 "FLAGG-" 857706 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-373 855914 856057 856284 "FLAGG2" 856725 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-372 852765 853773 853832 "FINRALG" 854960 NIL FINRALG (NIL T T) -9 NIL 855468 NIL) (-371 851925 852154 852493 "FINRALG-" 852498 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-370 851305 851544 851572 "FINITE" 851768 T FINITE (NIL) -9 NIL 851875 NIL) (-369 843662 845849 845889 "FINAALG" 849556 NIL FINAALG (NIL T) -9 NIL 851009 NIL) (-368 838994 840044 841188 "FINAALG-" 842567 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-367 838362 838749 838852 "FILE" 838924 NIL FILE (NIL T) -8 NIL NIL NIL) (-366 837020 837358 837412 "FILECAT" 838096 NIL FILECAT (NIL T T) -9 NIL 838312 NIL) (-365 834736 836264 836292 "FIELD" 836332 T FIELD (NIL) -9 NIL 836412 NIL) (-364 833356 833741 834252 "FIELD-" 834257 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-363 831206 831991 832338 "FGROUP" 833042 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-362 830296 830460 830680 "FGLMICPK" 831038 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-361 826128 830221 830278 "FFX" 830283 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-360 825729 825790 825925 "FFSLPE" 826061 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-359 821718 822501 823297 "FFPOLY" 824965 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-358 821222 821258 821467 "FFPOLY2" 821676 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-357 817065 821141 821204 "FFP" 821209 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-356 812463 816976 817040 "FF" 817045 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-355 807589 811806 811996 "FFNBX" 812317 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-354 802518 806724 806982 "FFNBP" 807443 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-353 797151 801802 802013 "FFNB" 802351 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-352 795983 796181 796496 "FFINTBAS" 796948 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-351 792052 794272 794300 "FFIELDC" 794920 T FFIELDC (NIL) -9 NIL 795296 NIL) (-350 790714 791085 791582 "FFIELDC-" 791587 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-349 790283 790329 790453 "FFHOM" 790656 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-348 787978 788465 788982 "FFF" 789798 NIL FFF (NIL T) -7 NIL NIL NIL) (-347 783596 787720 787821 "FFCGX" 787921 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-346 779217 783328 783435 "FFCGP" 783539 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-345 774400 778944 779052 "FFCG" 779153 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-344 755796 764877 764963 "FFCAT" 770128 NIL FFCAT (NIL T T T) -9 NIL 771579 NIL) (-343 750994 752041 753355 "FFCAT-" 754585 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-342 750405 750448 750683 "FFCAT2" 750945 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-341 739726 743377 744597 "FEXPR" 749257 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-340 738726 739161 739202 "FEVALAB" 739286 NIL FEVALAB (NIL T) -9 NIL 739547 NIL) (-339 737885 738095 738433 "FEVALAB-" 738438 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-338 736451 737268 737471 "FDIV" 737784 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-337 733471 734212 734327 "FDIVCAT" 735895 NIL FDIVCAT (NIL T T T T) -9 NIL 736332 NIL) (-336 733233 733260 733430 "FDIVCAT-" 733435 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-335 732453 732540 732817 "FDIV2" 733140 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-334 731427 731748 731950 "FCTRDATA" 732271 T FCTRDATA (NIL) -8 NIL NIL NIL) (-333 730113 730372 730661 "FCPAK1" 731158 T FCPAK1 (NIL) -7 NIL NIL NIL) (-332 729212 729613 729754 "FCOMP" 730004 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-331 712914 716362 719900 "FC" 725694 T FC (NIL) -8 NIL NIL NIL) (-330 705277 709305 709345 "FAXF" 711147 NIL FAXF (NIL T) -9 NIL 711839 NIL) (-329 702553 703211 704036 "FAXF-" 704501 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-328 697605 701929 702105 "FARRAY" 702410 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-327 692499 694566 694619 "FAMR" 695642 NIL FAMR (NIL T T) -9 NIL 696102 NIL) (-326 691389 691691 692126 "FAMR-" 692131 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-325 690558 691311 691364 "FAMONOID" 691369 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-324 688344 689054 689107 "FAMONC" 690048 NIL FAMONC (NIL T T) -9 NIL 690434 NIL) (-323 687008 688098 688235 "FAGROUP" 688240 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-322 684803 685122 685525 "FACUTIL" 686689 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-321 683902 684087 684309 "FACTFUNC" 684613 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-320 676324 683205 683404 "EXPUPXS" 683758 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-319 673807 674347 674933 "EXPRTUBE" 675758 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-318 670078 670670 671400 "EXPRODE" 673146 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-317 655563 668727 669156 "EXPR" 669682 NIL EXPR (NIL T) -8 NIL NIL NIL) (-316 650117 650704 651510 "EXPR2UPS" 654861 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-315 649749 649806 649915 "EXPR2" 650054 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-314 641139 648902 649192 "EXPEXPAN" 649586 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-313 640939 641096 641125 "EXIT" 641130 T EXIT (NIL) -8 NIL NIL NIL) (-312 640419 640663 640754 "EXITAST" 640868 T EXITAST (NIL) -8 NIL NIL NIL) (-311 640046 640108 640221 "EVALCYC" 640351 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-310 639587 639705 639746 "EVALAB" 639916 NIL EVALAB (NIL T) -9 NIL 640020 NIL) (-309 639068 639190 639411 "EVALAB-" 639416 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-308 636436 637738 637766 "EUCDOM" 638321 T EUCDOM (NIL) -9 NIL 638671 NIL) (-307 634841 635283 635873 "EUCDOM-" 635878 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-306 622379 625139 627889 "ESTOOLS" 632111 T ESTOOLS (NIL) -7 NIL NIL NIL) (-305 622011 622068 622177 "ESTOOLS2" 622316 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-304 621762 621804 621884 "ESTOOLS1" 621963 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-303 615799 617407 617435 "ES" 620203 T ES (NIL) -9 NIL 621613 NIL) (-302 610746 612033 613850 "ES-" 614014 NIL ES- (NIL T) -8 NIL NIL NIL) (-301 607120 607881 608661 "ESCONT" 609986 T ESCONT (NIL) -7 NIL NIL NIL) (-300 606865 606897 606979 "ESCONT1" 607082 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-299 606540 606590 606690 "ES2" 606809 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-298 606170 606228 606337 "ES1" 606476 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-297 605386 605515 605691 "ERROR" 606014 T ERROR (NIL) -7 NIL NIL NIL) (-296 598778 605245 605336 "EQTBL" 605341 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-295 591281 594092 595541 "EQ" 597362 NIL -2050 (NIL T) -8 NIL NIL NIL) (-294 590913 590970 591079 "EQ2" 591218 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-293 586202 587251 588344 "EP" 589852 NIL EP (NIL T) -7 NIL NIL NIL) (-292 584802 585093 585399 "ENV" 585916 T ENV (NIL) -8 NIL NIL NIL) (-291 583896 584450 584478 "ENTIRER" 584483 T ENTIRER (NIL) -9 NIL 584529 NIL) (-290 580363 581851 582221 "EMR" 583695 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-289 579507 579692 579746 "ELTAGG" 580126 NIL ELTAGG (NIL T T) -9 NIL 580337 NIL) (-288 579226 579288 579429 "ELTAGG-" 579434 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-287 579015 579044 579098 "ELTAB" 579182 NIL ELTAB (NIL T T) -9 NIL NIL NIL) (-286 578141 578287 578486 "ELFUTS" 578866 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-285 577883 577939 577967 "ELEMFUN" 578072 T ELEMFUN (NIL) -9 NIL NIL NIL) (-284 577753 577774 577842 "ELEMFUN-" 577847 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-283 572597 575853 575894 "ELAGG" 576834 NIL ELAGG (NIL T) -9 NIL 577297 NIL) (-282 570882 571316 571979 "ELAGG-" 571984 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-281 569543 569822 570116 "ELABEXPR" 570608 T ELABEXPR (NIL) -8 NIL NIL NIL) (-280 562407 564210 565037 "EFUPXS" 568819 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-279 555857 557658 558468 "EFULS" 561683 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-278 553342 553700 554172 "EFSTRUC" 555489 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-277 543133 544699 546247 "EF" 551857 NIL EF (NIL T T) -7 NIL NIL NIL) (-276 542207 542618 542767 "EAB" 543004 T EAB (NIL) -8 NIL NIL NIL) (-275 541389 542166 542194 "E04UCFA" 542199 T E04UCFA (NIL) -8 NIL NIL NIL) (-274 540571 541348 541376 "E04NAFA" 541381 T E04NAFA (NIL) -8 NIL NIL NIL) (-273 539753 540530 540558 "E04MBFA" 540563 T E04MBFA (NIL) -8 NIL NIL NIL) (-272 538935 539712 539740 "E04JAFA" 539745 T E04JAFA (NIL) -8 NIL NIL NIL) (-271 538119 538894 538922 "E04GCFA" 538927 T E04GCFA (NIL) -8 NIL NIL NIL) (-270 537303 538078 538106 "E04FDFA" 538111 T E04FDFA (NIL) -8 NIL NIL NIL) (-269 536485 537262 537290 "E04DGFA" 537295 T E04DGFA (NIL) -8 NIL NIL NIL) (-268 530658 532010 533374 "E04AGNT" 535141 T E04AGNT (NIL) -7 NIL NIL NIL) (-267 529338 529844 529884 "DVARCAT" 530359 NIL DVARCAT (NIL T) -9 NIL 530558 NIL) (-266 528542 528754 529068 "DVARCAT-" 529073 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-265 521679 528341 528470 "DSMP" 528475 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-264 516460 517624 518692 "DROPT" 520631 T DROPT (NIL) -8 NIL NIL NIL) (-263 516125 516184 516282 "DROPT1" 516395 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-262 511240 512366 513503 "DROPT0" 515008 T DROPT0 (NIL) -7 NIL NIL NIL) (-261 509585 509910 510296 "DRAWPT" 510874 T DRAWPT (NIL) -7 NIL NIL NIL) (-260 504172 505095 506174 "DRAW" 508559 NIL DRAW (NIL T) -7 NIL NIL NIL) (-259 503805 503858 503976 "DRAWHACK" 504113 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-258 502536 502805 503096 "DRAWCX" 503534 T DRAWCX (NIL) -7 NIL NIL NIL) (-257 502051 502120 502271 "DRAWCURV" 502462 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-256 492519 494481 496596 "DRAWCFUN" 499956 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-255 489285 491214 491255 "DQAGG" 491884 NIL DQAGG (NIL T) -9 NIL 492157 NIL) (-254 477409 483878 483961 "DPOLCAT" 485813 NIL DPOLCAT (NIL T T T T) -9 NIL 486358 NIL) (-253 472245 473594 475552 "DPOLCAT-" 475557 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-252 465367 472106 472204 "DPMO" 472209 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-251 458392 465147 465314 "DPMM" 465319 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-250 457870 458084 458182 "DOMTMPLT" 458314 T DOMTMPLT (NIL) -8 NIL NIL NIL) (-249 457303 457672 457752 "DOMCTOR" 457810 T DOMCTOR (NIL) -8 NIL NIL NIL) (-248 456515 456783 456934 "DOMAIN" 457172 T DOMAIN (NIL) -8 NIL NIL NIL) (-247 450503 456150 456302 "DMP" 456416 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-246 450103 450159 450303 "DLP" 450441 NIL DLP (NIL T) -7 NIL NIL NIL) (-245 443925 449430 449620 "DLIST" 449945 NIL DLIST (NIL T) -8 NIL NIL NIL) (-244 440722 442778 442819 "DLAGG" 443369 NIL DLAGG (NIL T) -9 NIL 443599 NIL) (-243 439398 440062 440090 "DIVRING" 440182 T DIVRING (NIL) -9 NIL 440265 NIL) (-242 438635 438825 439125 "DIVRING-" 439130 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-241 436737 437094 437500 "DISPLAY" 438249 T DISPLAY (NIL) -7 NIL NIL NIL) (-240 430625 436651 436714 "DIRPROD" 436719 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-239 429473 429676 429941 "DIRPROD2" 430418 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-238 418248 424254 424307 "DIRPCAT" 424717 NIL DIRPCAT (NIL NIL T) -9 NIL 425557 NIL) (-237 415574 416216 417097 "DIRPCAT-" 417434 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-236 414861 415021 415207 "DIOSP" 415408 T DIOSP (NIL) -7 NIL NIL NIL) (-235 411516 413773 413814 "DIOPS" 414248 NIL DIOPS (NIL T) -9 NIL 414477 NIL) (-234 411065 411179 411370 "DIOPS-" 411375 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-233 409888 410516 410544 "DIFRING" 410731 T DIFRING (NIL) -9 NIL 410841 NIL) (-232 409534 409611 409763 "DIFRING-" 409768 NIL DIFRING- (NIL T) -8 NIL NIL NIL) (-231 407270 408542 408583 "DIFEXT" 408946 NIL DIFEXT (NIL T) -9 NIL 409240 NIL) (-230 405555 405983 406649 "DIFEXT-" 406654 NIL DIFEXT- (NIL T T) -8 NIL NIL NIL) (-229 402830 405087 405128 "DIAGG" 405133 NIL DIAGG (NIL T) -9 NIL 405153 NIL) (-228 402214 402371 402623 "DIAGG-" 402628 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-227 397631 401173 401450 "DHMATRIX" 401983 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-226 393243 394152 395162 "DFSFUN" 396641 T DFSFUN (NIL) -7 NIL NIL NIL) (-225 388321 392174 392486 "DFLOAT" 392951 T DFLOAT (NIL) -8 NIL NIL NIL) (-224 386584 386865 387254 "DFINTTLS" 388029 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-223 383613 384605 385005 "DERHAM" 386250 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-222 381414 383388 383477 "DEQUEUE" 383557 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-221 380668 380801 380984 "DEGRED" 381276 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-220 377098 377843 378689 "DEFINTRF" 379896 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-219 374653 375122 375714 "DEFINTEF" 376617 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-218 374003 374273 374388 "DEFAST" 374558 T DEFAST (NIL) -8 NIL NIL NIL) (-217 368007 373598 373747 "DECIMAL" 373874 T DECIMAL (NIL) -8 NIL NIL NIL) (-216 365519 365977 366483 "DDFACT" 367551 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-215 365115 365158 365309 "DBLRESP" 365470 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-214 362987 363348 363708 "DBASE" 364882 NIL DBASE (NIL T) -8 NIL NIL NIL) (-213 362229 362467 362613 "DATAARY" 362886 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-212 361335 362188 362216 "D03FAFA" 362221 T D03FAFA (NIL) -8 NIL NIL NIL) (-211 360442 361294 361322 "D03EEFA" 361327 T D03EEFA (NIL) -8 NIL NIL NIL) (-210 358392 358858 359347 "D03AGNT" 359973 T D03AGNT (NIL) -7 NIL NIL NIL) (-209 357681 358351 358379 "D02EJFA" 358384 T D02EJFA (NIL) -8 NIL NIL NIL) (-208 356970 357640 357668 "D02CJFA" 357673 T D02CJFA (NIL) -8 NIL NIL NIL) (-207 356259 356929 356957 "D02BHFA" 356962 T D02BHFA (NIL) -8 NIL NIL NIL) (-206 355548 356218 356246 "D02BBFA" 356251 T D02BBFA (NIL) -8 NIL NIL NIL) (-205 348745 350334 351940 "D02AGNT" 353962 T D02AGNT (NIL) -7 NIL NIL NIL) (-204 346513 347036 347582 "D01WGTS" 348219 T D01WGTS (NIL) -7 NIL NIL NIL) (-203 345580 346472 346500 "D01TRNS" 346505 T D01TRNS (NIL) -8 NIL NIL NIL) (-202 344648 345539 345567 "D01GBFA" 345572 T D01GBFA (NIL) -8 NIL NIL NIL) (-201 343716 344607 344635 "D01FCFA" 344640 T D01FCFA (NIL) -8 NIL NIL NIL) (-200 342784 343675 343703 "D01ASFA" 343708 T D01ASFA (NIL) -8 NIL NIL NIL) (-199 341852 342743 342771 "D01AQFA" 342776 T D01AQFA (NIL) -8 NIL NIL NIL) (-198 340920 341811 341839 "D01APFA" 341844 T D01APFA (NIL) -8 NIL NIL NIL) (-197 339988 340879 340907 "D01ANFA" 340912 T D01ANFA (NIL) -8 NIL NIL NIL) (-196 339056 339947 339975 "D01AMFA" 339980 T D01AMFA (NIL) -8 NIL NIL NIL) (-195 338124 339015 339043 "D01ALFA" 339048 T D01ALFA (NIL) -8 NIL NIL NIL) (-194 337192 338083 338111 "D01AKFA" 338116 T D01AKFA (NIL) -8 NIL NIL NIL) (-193 336260 337151 337179 "D01AJFA" 337184 T D01AJFA (NIL) -8 NIL NIL NIL) (-192 329555 331108 332669 "D01AGNT" 334719 T D01AGNT (NIL) -7 NIL NIL NIL) (-191 328892 329020 329172 "CYCLOTOM" 329423 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-190 325626 326340 327067 "CYCLES" 328185 T CYCLES (NIL) -7 NIL NIL NIL) (-189 324938 325072 325243 "CVMP" 325487 NIL CVMP (NIL T) -7 NIL NIL NIL) (-188 322779 323037 323406 "CTRIGMNP" 324666 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-187 322215 322573 322646 "CTOR" 322726 T CTOR (NIL) -8 NIL NIL NIL) (-186 321724 321946 322047 "CTORKIND" 322134 T CTORKIND (NIL) -8 NIL NIL NIL) (-185 321015 321331 321359 "CTORCAT" 321541 T CTORCAT (NIL) -9 NIL 321654 NIL) (-184 320613 320724 320883 "CTORCAT-" 320888 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-183 320075 320287 320395 "CTORCALL" 320537 NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-182 319449 319548 319701 "CSTTOOLS" 319972 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-181 315248 315905 316663 "CRFP" 318761 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-180 314723 314969 315061 "CRCEAST" 315176 T CRCEAST (NIL) -8 NIL NIL NIL) (-179 313770 313955 314183 "CRAPACK" 314527 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-178 313154 313255 313459 "CPMATCH" 313646 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-177 312879 312907 313013 "CPIMA" 313120 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-176 309227 309899 310618 "COORDSYS" 312214 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-175 308639 308760 308902 "CONTOUR" 309105 T CONTOUR (NIL) -8 NIL NIL NIL) (-174 304530 306642 307134 "CONTFRAC" 308179 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-173 304410 304431 304459 "CONDUIT" 304496 T CONDUIT (NIL) -9 NIL NIL NIL) (-172 303498 304052 304080 "COMRING" 304085 T COMRING (NIL) -9 NIL 304137 NIL) (-171 302552 302856 303040 "COMPPROP" 303334 T COMPPROP (NIL) -8 NIL NIL NIL) (-170 302213 302248 302376 "COMPLPAT" 302511 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-169 292504 302022 302131 "COMPLEX" 302136 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-168 292140 292197 292304 "COMPLEX2" 292441 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-167 291858 291893 291991 "COMPFACT" 292099 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-166 275938 285932 285972 "COMPCAT" 286976 NIL COMPCAT (NIL T) -9 NIL 288324 NIL) (-165 265450 268377 272004 "COMPCAT-" 272360 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-164 265179 265207 265310 "COMMUPC" 265416 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-163 264973 265007 265066 "COMMONOP" 265140 T COMMONOP (NIL) -7 NIL NIL NIL) (-162 264529 264724 264811 "COMM" 264906 T COMM (NIL) -8 NIL NIL NIL) (-161 264105 264333 264408 "COMMAAST" 264474 T COMMAAST (NIL) -8 NIL NIL NIL) (-160 263354 263548 263576 "COMBOPC" 263914 T COMBOPC (NIL) -9 NIL 264089 NIL) (-159 262250 262460 262702 "COMBINAT" 263144 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-158 258707 259281 259908 "COMBF" 261672 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-157 257465 257823 258058 "COLOR" 258492 T COLOR (NIL) -8 NIL NIL NIL) (-156 256941 257186 257278 "COLONAST" 257393 T COLONAST (NIL) -8 NIL NIL NIL) (-155 256581 256628 256753 "CMPLXRT" 256888 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-154 256029 256281 256380 "CLLCTAST" 256502 T CLLCTAST (NIL) -8 NIL NIL NIL) (-153 251527 252559 253639 "CLIP" 254969 T CLIP (NIL) -7 NIL NIL NIL) (-152 249873 250633 250872 "CLIF" 251354 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-151 246048 248019 248060 "CLAGG" 248989 NIL CLAGG (NIL T) -9 NIL 249525 NIL) (-150 244470 244927 245510 "CLAGG-" 245515 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-149 244014 244099 244239 "CINTSLPE" 244379 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-148 241515 241986 242534 "CHVAR" 243542 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-147 240689 241243 241271 "CHARZ" 241276 T CHARZ (NIL) -9 NIL 241291 NIL) (-146 240443 240483 240561 "CHARPOL" 240643 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-145 239501 240088 240116 "CHARNZ" 240163 T CHARNZ (NIL) -9 NIL 240219 NIL) (-144 237407 238155 238508 "CHAR" 239168 T CHAR (NIL) -8 NIL NIL NIL) (-143 237133 237194 237222 "CFCAT" 237333 T CFCAT (NIL) -9 NIL NIL NIL) (-142 236378 236489 236671 "CDEN" 237017 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-141 232343 235531 235811 "CCLASS" 236118 T CCLASS (NIL) -8 NIL NIL NIL) (-140 231594 231751 231928 "CATEGORY" 232186 T -10 (NIL) -8 NIL NIL NIL) (-139 231167 231513 231561 "CATCTOR" 231566 T CATCTOR (NIL) -8 NIL NIL NIL) (-138 230618 230870 230968 "CATAST" 231089 T CATAST (NIL) -8 NIL NIL NIL) (-137 230094 230339 230431 "CASEAST" 230546 T CASEAST (NIL) -8 NIL NIL NIL) (-136 225103 226123 226876 "CARTEN" 229397 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-135 224211 224359 224580 "CARTEN2" 224950 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-134 222527 223361 223618 "CARD" 223974 T CARD (NIL) -8 NIL NIL NIL) (-133 222103 222331 222406 "CAPSLAST" 222472 T CAPSLAST (NIL) -8 NIL NIL NIL) (-132 221607 221815 221843 "CACHSET" 221975 T CACHSET (NIL) -9 NIL 222053 NIL) (-131 221077 221399 221427 "CABMON" 221477 T CABMON (NIL) -9 NIL 221533 NIL) (-130 220550 220781 220891 "BYTEORD" 220987 T BYTEORD (NIL) -8 NIL NIL NIL) (-129 219529 220084 220226 "BYTE" 220389 T BYTE (NIL) -8 NIL NIL 220511) (-128 214879 219034 219206 "BYTEBUF" 219377 T BYTEBUF (NIL) -8 NIL NIL NIL) (-127 212388 214571 214678 "BTREE" 214805 NIL BTREE (NIL T) -8 NIL NIL NIL) (-126 209837 212036 212158 "BTOURN" 212298 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-125 207207 209307 209348 "BTCAT" 209416 NIL BTCAT (NIL T) -9 NIL 209493 NIL) (-124 206874 206954 207103 "BTCAT-" 207108 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-123 202139 206017 206045 "BTAGG" 206267 T BTAGG (NIL) -9 NIL 206428 NIL) (-122 201629 201754 201960 "BTAGG-" 201965 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-121 198624 200907 201122 "BSTREE" 201446 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-120 197762 197888 198072 "BRILL" 198480 NIL BRILL (NIL T) -7 NIL NIL NIL) (-119 194414 196488 196529 "BRAGG" 197178 NIL BRAGG (NIL T) -9 NIL 197436 NIL) (-118 192943 193349 193904 "BRAGG-" 193909 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-117 186172 192289 192473 "BPADICRT" 192791 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-116 184487 186109 186154 "BPADIC" 186159 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-115 184185 184215 184329 "BOUNDZRO" 184451 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-114 179413 180611 181523 "BOP" 183293 T BOP (NIL) -8 NIL NIL NIL) (-113 177194 177598 178073 "BOP1" 178971 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-112 176019 176768 176917 "BOOLEAN" 177065 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 175298 175702 175756 "BMODULE" 175761 NIL BMODULE (NIL T T) -9 NIL 175826 NIL) (-110 171099 175096 175169 "BITS" 175245 T BITS (NIL) -8 NIL NIL NIL) (-109 170520 170639 170779 "BINDING" 170979 T BINDING (NIL) -8 NIL NIL NIL) (-108 164527 170117 170265 "BINARY" 170392 T BINARY (NIL) -8 NIL NIL NIL) (-107 162307 163782 163823 "BGAGG" 164083 NIL BGAGG (NIL T) -9 NIL 164220 NIL) (-106 162138 162170 162261 "BGAGG-" 162266 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 161209 161522 161727 "BFUNCT" 161953 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 159899 160077 160365 "BEZOUT" 161033 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 156368 158751 159081 "BBTREE" 159602 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 156102 156155 156183 "BASTYPE" 156302 T BASTYPE (NIL) -9 NIL NIL NIL) (-101 155954 155983 156056 "BASTYPE-" 156061 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 155388 155464 155616 "BALFACT" 155865 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 154244 154803 154989 "AUTOMOR" 155233 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 153970 153975 154001 "ATTREG" 154006 T ATTREG (NIL) -9 NIL NIL NIL) (-97 152222 152667 153019 "ATTRBUT" 153636 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 151830 152050 152116 "ATTRAST" 152174 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 151366 151479 151505 "ATRIG" 151706 T ATRIG (NIL) -9 NIL NIL NIL) (-94 151175 151216 151303 "ATRIG-" 151308 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 150820 151006 151032 "ASTCAT" 151037 T ASTCAT (NIL) -9 NIL 151067 NIL) (-92 150547 150606 150725 "ASTCAT-" 150730 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 148696 150323 150411 "ASTACK" 150490 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 147201 147498 147863 "ASSOCEQ" 148378 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 146233 146860 146984 "ASP9" 147108 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 145996 146181 146220 "ASP8" 146225 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 144864 145601 145743 "ASP80" 145885 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 143762 144499 144631 "ASP7" 144763 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 142716 143439 143557 "ASP78" 143675 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 141685 142396 142513 "ASP77" 142630 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 140597 141323 141454 "ASP74" 141585 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 139497 140232 140364 "ASP73" 140496 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 138601 139323 139423 "ASP6" 139428 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 137545 138278 138396 "ASP55" 138514 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 136494 137219 137338 "ASP50" 137457 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 135582 136195 136305 "ASP4" 136415 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 134670 135283 135393 "ASP49" 135503 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 133454 134209 134377 "ASP42" 134559 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 132230 132987 133157 "ASP41" 133341 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 131180 131907 132025 "ASP35" 132143 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 130945 131128 131167 "ASP34" 131172 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 130682 130749 130825 "ASP33" 130900 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 129575 130317 130449 "ASP31" 130581 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 129340 129523 129562 "ASP30" 129567 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 129075 129144 129220 "ASP29" 129295 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 128840 129023 129062 "ASP28" 129067 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 128605 128788 128827 "ASP27" 128832 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 127689 128303 128414 "ASP24" 128525 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 126765 127491 127603 "ASP20" 127608 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 125853 126466 126576 "ASP1" 126686 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 124795 125527 125646 "ASP19" 125765 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 124532 124599 124675 "ASP12" 124750 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 123384 124131 124275 "ASP10" 124419 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 121235 123228 123319 "ARRAY2" 123324 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 117000 120883 120997 "ARRAY1" 121152 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 116032 116205 116426 "ARRAY12" 116823 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 110344 112262 112337 "ARR2CAT" 114967 NIL ARR2CAT (NIL T T T) -9 NIL 115725 NIL) (-56 107778 108522 109476 "ARR2CAT-" 109481 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 107095 107405 107530 "ARITY" 107671 T ARITY (NIL) -8 NIL NIL NIL) (-54 105871 106023 106322 "APPRULE" 106931 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 105522 105570 105689 "APPLYORE" 105817 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 104876 105115 105235 "ANY" 105420 T ANY (NIL) -8 NIL NIL NIL) (-51 104154 104277 104434 "ANY1" 104750 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 101684 102591 102918 "ANTISYM" 103878 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 101176 101391 101487 "ANON" 101606 T ANON (NIL) -8 NIL NIL NIL) (-48 95425 99715 100169 "AN" 100740 T AN (NIL) -8 NIL NIL NIL) (-47 91323 92711 92762 "AMR" 93510 NIL AMR (NIL T T) -9 NIL 94110 NIL) (-46 90435 90656 91019 "AMR-" 91024 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 74874 90352 90413 "ALIST" 90418 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 71676 74468 74637 "ALGSC" 74792 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 68231 68786 69393 "ALGPKG" 71116 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 67508 67609 67793 "ALGMFACT" 68117 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 63543 64122 64716 "ALGMANIP" 67092 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 54913 63169 63319 "ALGFF" 63476 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 54109 54240 54419 "ALGFACT" 54771 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 53050 53650 53688 "ALGEBRA" 53693 NIL ALGEBRA (NIL T) -9 NIL 53734 NIL) (-37 52768 52827 52959 "ALGEBRA-" 52964 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 34861 50770 50822 "ALAGG" 50958 NIL ALAGG (NIL T T) -9 NIL 51119 NIL) (-35 34397 34510 34536 "AHYP" 34737 T AHYP (NIL) -9 NIL NIL NIL) (-34 33328 33576 33602 "AGG" 34101 T AGG (NIL) -9 NIL 34380 NIL) (-33 32762 32924 33138 "AGG-" 33143 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 30568 30991 31396 "AF" 32404 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30048 30293 30383 "ADDAST" 30496 T ADDAST (NIL) -8 NIL NIL NIL) (-30 29316 29575 29731 "ACPLOT" 29910 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18639 26443 26481 "ACFS" 27088 NIL ACFS (NIL T) -9 NIL 27327 NIL) (-28 16666 17156 17918 "ACFS-" 17923 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12784 14713 14739 "ACF" 15618 T ACF (NIL) -9 NIL 16031 NIL) (-26 11488 11822 12315 "ACF-" 12320 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 11060 11255 11281 "ABELSG" 11373 T ABELSG (NIL) -9 NIL 11438 NIL) (-24 10927 10952 11018 "ABELSG-" 11023 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10270 10557 10583 "ABELMON" 10753 T ABELMON (NIL) -9 NIL 10865 NIL) (-22 9934 10018 10156 "ABELMON-" 10161 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9282 9654 9680 "ABELGRP" 9752 T ABELGRP (NIL) -9 NIL 9827 NIL) (-20 8745 8874 9090 "ABELGRP-" 9095 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4334 8084 8123 "A1AGG" 8128 NIL A1AGG (NIL T) -9 NIL 8168 NIL) (-18 30 1252 2814 "A1AGG-" 2819 NIL A1AGG- (NIL T T) -8 NIL NIL NIL))
\ No newline at end of file diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase index abe4412c..01979d45 100644 --- a/src/share/algebra/operation.daase +++ b/src/share/algebra/operation.daase @@ -1,350 +1,575 @@ -(732279 . 3454219024) +(732279 . 3459379710) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1012)) (-5 *2 (-862))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-331))))) +(((*1 *1 *1) + (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-558)))) + ((*1 *1 *1) (|partial| -4 *1 (-722)))) (((*1 *2 *1) - (-12 (-4 *4 (-1099)) (-5 *2 (-889 *3 *5)) (-5 *1 (-885 *3 *4 *5)) - (-4 *3 (-1099)) (-4 *5 (-666 *4))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) - (-5 *1 (-755))))) -(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1214)))) - ((*1 *1 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-850)))) - ((*1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-850)))) - ((*1 *1 *1) (-5 *1 (-862))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) + (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-547)) + (-5 *2 (-409 (-566))))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-848) (-365))) (-5 *1 (-1060 *2 *3)) - (-4 *3 (-1240 *2))))) + (|partial| -12 (-5 *2 (-409 (-566))) (-5 *1 (-420 *3)) (-4 *3 (-547)) + (-4 *3 (-558)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-547)) (-5 *2 (-409 (-566))))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-797 *3)) (-4 *3 (-172)) (-4 *3 (-547)) + (-5 *2 (-409 (-566))))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-409 (-566))) (-5 *1 (-833 *3)) (-4 *3 (-547)) + (-4 *3 (-1099)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-409 (-566))) (-5 *1 (-843 *3)) (-4 *3 (-547)) + (-4 *3 (-1099)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-997 *3)) (-4 *3 (-172)) (-4 *3 (-547)) + (-5 *2 (-409 (-566))))) + ((*1 *2 *3) + (|partial| -12 (-5 *2 (-409 (-566))) (-5 *1 (-1008 *3)) + (-4 *3 (-1038 *2))))) +(((*1 *2 *2) + (-12 (-5 *2 (-644 (-644 *6))) (-4 *6 (-949 *3 *5 *4)) + (-4 *3 (-13 (-308) (-147))) (-4 *4 (-13 (-850) (-614 (-1175)))) + (-4 *5 (-793)) (-5 *1 (-924 *3 *4 *5 *6))))) +(((*1 *2 *2) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-147)) + (-4 *3 (-308)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) + (-5 *1 (-977 *3 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-3 (|:| |fst| (-436)) (|:| -3907 "void"))) + (-5 *2 (-1269)) (-5 *1 (-1178)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1175)) + (-5 *4 (-3 (|:| |fst| (-436)) (|:| -3907 "void"))) (-5 *2 (-1269)) + (-5 *1 (-1178)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *3 (-1175)) + (-5 *4 (-3 (|:| |fst| (-436)) (|:| -3907 "void"))) (-5 *2 (-1269)) + (-5 *1 (-1178))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)) (-5 *3 (-566))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1035)) (-5 *1 (-306)))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 (-1035))) (-5 *2 (-1035)) (-5 *1 (-306)))) + ((*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-651 *3)) (-4 *3 (-1214)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1214)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1214)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1214)))) + ((*1 *1 *1 *1) (-5 *1 (-1062))) + ((*1 *2 *3) + (-12 (-5 *3 (-1155 (-1155 *4))) (-5 *2 (-1155 *4)) (-5 *1 (-1152 *4)) + (-4 *4 (-1214)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1214)) (-4 *3 (-1099)) + (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-771)) (-4 *4 (-365)) (-4 *5 (-1240 *4)) (-5 *2 (-1269)) + (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1240 (-409 *5))) (-14 *7 *6)))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) + (-4 *4 (-375 *2))))) (((*1 *2 *1) - (-12 (-5 *2 (-171)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) + (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) + (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-644 *5))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-365) (-848))) + (-5 *2 (-644 (-2 (|:| -1616 (-644 *3)) (|:| -1425 *5)))) + (-5 *1 (-181 *5 *3)) (-4 *3 (-1240 (-169 *5))))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-365) (-848))) + (-5 *2 (-644 (-2 (|:| -1616 (-644 *3)) (|:| -1425 *4)))) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1240 (-169 *4)))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-850)) (-5 *1 (-126 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-644 *5)) (-5 *4 (-644 (-1 *6 (-644 *6)))) + (-4 *5 (-38 (-409 (-566)))) (-4 *6 (-1255 *5)) (-5 *2 (-644 *6)) + (-5 *1 (-1257 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *3 (-13 (-365) (-147))) + (-5 *2 (-644 (-2 (|:| -2201 (-771)) (|:| -4290 *4) (|:| |num| *4)))) + (-5 *1 (-401 *3 *4)) (-4 *4 (-1240 *3))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *4 (-874)) + (-5 *5 (-921)) (-5 *6 (-644 (-264))) (-5 *2 (-1265)) + (-5 *1 (-1268)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *4 (-644 (-264))) + (-5 *2 (-1265)) (-5 *1 (-1268))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-295 (-843 *3))) (-4 *3 (-13 (-27) (-1199) (-432 *5))) + (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) + (-5 *2 + (-3 (-843 *3) + (-2 (|:| |leftHandLimit| (-3 (-843 *3) "failed")) + (|:| |rightHandLimit| (-3 (-843 *3) "failed"))) + "failed")) + (-5 *1 (-636 *5 *3)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-295 *3)) (-5 *5 (-1157)) + (-4 *3 (-13 (-27) (-1199) (-432 *6))) + (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) + (-5 *2 (-843 *3)) (-5 *1 (-636 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-295 (-843 (-952 *5)))) (-4 *5 (-454)) + (-5 *2 + (-3 (-843 (-409 (-952 *5))) + (-2 (|:| |leftHandLimit| (-3 (-843 (-409 (-952 *5))) "failed")) + (|:| |rightHandLimit| (-3 (-843 (-409 (-952 *5))) "failed"))) + "failed")) + (-5 *1 (-637 *5)) (-5 *3 (-409 (-952 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-295 (-409 (-952 *5)))) (-5 *3 (-409 (-952 *5))) + (-4 *5 (-454)) + (-5 *2 + (-3 (-843 *3) + (-2 (|:| |leftHandLimit| (-3 (-843 *3) "failed")) + (|:| |rightHandLimit| (-3 (-843 *3) "failed"))) + "failed")) + (-5 *1 (-637 *5)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-295 (-409 (-952 *6)))) (-5 *5 (-1157)) + (-5 *3 (-409 (-952 *6))) (-4 *6 (-454)) (-5 *2 (-843 *3)) + (-5 *1 (-637 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) + (-5 *2 + (-2 (|:| |contp| (-566)) + (|:| -1616 (-644 (-2 (|:| |irr| *3) (|:| -4125 (-566))))))) + (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) + (-5 *2 + (-2 (|:| |contp| (-566)) + (|:| -1616 (-644 (-2 (|:| |irr| *3) (|:| -4125 (-566))))))) + (-5 *1 (-1229 *3)) (-4 *3 (-1240 (-566)))))) +(((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172))))) +(((*1 *2 *3) + (-12 (-5 *3 (-689 (-409 (-952 (-566))))) (-5 *2 (-644 (-317 (-566)))) + (-5 *1 (-1031))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-558)) (-5 *2 (-644 *3)) (-5 *1 (-969 *4 *3)) + (-4 *3 (-1240 *4))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) + (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-644 *7)) (-5 *3 (-112)) (-4 *7 (-1064 *4 *5 *6)) + (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) + (-5 *1 (-977 *4 *5 *6 *7))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) + (-4 *3 (-369 *4)))) + ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-5 *2 (-644 (-1180))) (-5 *1 (-183 *3)) (-4 *3 (-185))))) +(((*1 *2 *3) + (-12 (-4 *4 (-558)) (-4 *5 (-992 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3)) + (-4 *3 (-375 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-558)) (-4 *5 (-992 *4)) + (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) + (-5 *1 (-505 *4 *5 *6 *3)) (-4 *6 (-375 *4)) (-4 *3 (-375 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-689 *5)) (-4 *5 (-992 *4)) (-4 *4 (-558)) + (-5 *2 (-2 (|:| |num| (-689 *4)) (|:| |den| *4))) + (-5 *1 (-693 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-365) (-147) (-1038 (-409 (-566))))) + (-4 *6 (-1240 *5)) + (-5 *2 (-2 (|:| -3434 *7) (|:| |rh| (-644 (-409 *6))))) + (-5 *1 (-807 *5 *6 *7 *3)) (-5 *4 (-644 (-409 *6))) + (-4 *7 (-656 *6)) (-4 *3 (-656 (-409 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-558)) (-4 *5 (-992 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1233 *4 *5 *3)) + (-4 *3 (-1240 *5))))) +(((*1 *1) (-12 (-4 *1 (-467 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-538))) ((*1 *1) (-4 *1 (-722))) + ((*1 *1) (-4 *1 (-726))) + ((*1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099)))) + ((*1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-850))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1264 *3)) (-4 *3 (-1240 *4)) (-4 *4 (-1218)) + (-4 *1 (-344 *4 *3 *5)) (-4 *5 (-1240 (-409 *3)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)) (-5 *3 (-566))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-171)))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *5 (-612 *4)) (-5 *6 (-1175)) + (-4 *4 (-13 (-432 *7) (-27) (-1199))) + (-4 *7 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2875 (-644 *4)))) + (-5 *1 (-568 *7 *4 *3)) (-4 *3 (-656 *4)) (-4 *3 (-1099))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-547))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-154)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-1065))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 + (-4 *4 (-13 (-147) (-27) (-1038 (-566)) (-1038 (-409 (-566))))) + (-4 *5 (-1240 *4)) (-5 *2 (-1171 (-409 *5))) (-5 *1 (-615 *4 *5)) + (-5 *3 (-409 *5)))) + ((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 (-420 *6) *6)) (-4 *6 (-1240 *5)) + (-4 *5 (-13 (-147) (-27) (-1038 (-566)) (-1038 (-409 (-566))))) + (-5 *2 (-1171 (-409 *6))) (-5 *1 (-615 *5 *6)) (-5 *3 (-409 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-308)) (-5 *2 (-771))))) +(((*1 *1) (-4 *1 (-23))) + ((*1 *1) (-12 (-4 *1 (-472 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-538))) + ((*1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1057)))) + ((*1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099)))) + ((*1 *1) (-12 (-4 *1 (-1051 *2)) (-4 *2 (-1057))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-112)) + (-5 *2 (-1035)) (-5 *1 (-753))))) +(((*1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-644 (-1175))) (-5 *2 (-1175)) (-5 *1 (-331))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049))))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-566)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1214)) - (-4 *4 (-375 *2)) (-4 *5 (-375 *2)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-566)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-375 *2)) - (-4 *5 (-375 *2)) (-4 *2 (-1214)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1214)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1214)))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-771)) (-4 *5 (-558)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-969 *5 *3)) (-4 *3 (-1240 *5))))) +(((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-469)))) + ((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-469)))) + ((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-927))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-820)) (-14 *5 (-1175)) (-5 *2 (-644 (-1237 *5 *4))) + (-5 *1 (-1113 *4 *5)) (-5 *3 (-1237 *5 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-317 (-225))) (-5 *2 (-317 (-381))) (-5 *1 (-306))))) +(((*1 *2 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-850)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1175)) (-5 *1 (-864 *3)) (-14 *3 (-644 *2)))) + ((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-989)))) + ((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1091 *3)) (-4 *3 (-1214)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1242 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)) + (-5 *2 (-1175)))) + ((*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1260 *3)) (-14 *3 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-644 (-317 (-225)))) (-5 *1 (-268))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) + (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 (-381)) (-5 *1 (-192))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| -3338)) (-5 *2 (-112)) (-5 *1 (-617)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-644 (-566))) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) - (-14 *4 (-566)) (-14 *5 (-771)))) - ((*1 *2 *1 *3 *3 *3 *3) - (-12 (-5 *3 (-566)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-771)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-566)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-771)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-566)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-771)))) + (-12 (-5 *3 (|[\|\|]| -2583)) (-5 *2 (-112)) (-5 *1 (-617)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-566)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-771)))) - ((*1 *2 *1) - (-12 (-4 *2 (-172)) (-5 *1 (-136 *3 *4 *2)) (-14 *3 (-566)) - (-14 *4 (-771)))) + (-12 (-5 *3 (|[\|\|]| -2177)) (-5 *2 (-112)) (-5 *1 (-617)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1175)) (-5 *2 (-245 (-1157))) (-5 *1 (-214 *4)) - (-4 *4 - (-13 (-850) - (-10 -8 (-15 -4390 ((-1157) $ *3)) (-15 -1675 ((-1269) $)) - (-15 -3997 ((-1269) $))))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-989)) (-5 *1 (-214 *3)) - (-4 *3 - (-13 (-850) - (-10 -8 (-15 -4390 ((-1157) $ (-1175))) (-15 -1675 ((-1269) $)) - (-15 -3997 ((-1269) $))))))) + (-12 (-5 *3 (|[\|\|]| -4107)) (-5 *2 (-112)) (-5 *1 (-691 *4)) + (-4 *4 (-613 (-862))))) ((*1 *2 *1 *3) - (-12 (-5 *3 "count") (-5 *2 (-771)) (-5 *1 (-245 *4)) (-4 *4 (-850)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-245 *3)) (-4 *3 (-850)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 "unique") (-5 *1 (-245 *3)) (-4 *3 (-850)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1180)) (-5 *1 (-250)))) + (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-613 (-862))) (-5 *2 (-112)) + (-5 *1 (-691 *4)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-287 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1214)))) - ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1214)))) - ((*1 *2 *1 *2) - (-12 (-4 *3 (-172)) (-5 *1 (-290 *3 *2 *4 *5 *6 *7)) - (-4 *2 (-1240 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-644 *1)) (-4 *1 (-303)))) - ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) - ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) - ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) - ((*1 *2 *1 *2 *2) - (-12 (-4 *1 (-344 *2 *3 *4)) (-4 *2 (-1218)) (-4 *3 (-1240 *2)) - (-4 *4 (-1240 (-409 *3))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *1 (-419 *2)) (-4 *2 (-172)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1157)) (-5 *1 (-504)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-52)) (-5 *1 (-632)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1231 (-566))) (-4 *1 (-651 *3)) (-4 *3 (-1214)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-771)) (-5 *1 (-675 *2)) (-4 *2 (-1099)))) - ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-644 (-566))) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) - (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-644 (-892 *4))) (-5 *1 (-892 *4)) - (-4 *4 (-1099)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-903 *2)) (-4 *2 (-1099)))) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-566))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-771)) (-5 *2 (-905 *4)) (-5 *1 (-904 *4)) - (-4 *4 (-1099)))) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1157))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-240 *4 *2)) (-14 *4 (-921)) (-4 *2 (-365)) - (-5 *1 (-993 *4 *2)))) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-508))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-5 *3 "value") (-4 *1 (-1010 *2)) (-4 *2 (-1214)))) - ((*1 *2 *1) (-12 (-5 *1 (-1026 *2)) (-4 *2 (-1214)))) - ((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-566)) (-4 *1 (-1053 *4 *5 *2 *6 *7)) (-4 *2 (-1049)) - (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-566)) (-4 *1 (-1053 *4 *5 *2 *6 *7)) - (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1049)))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-921)) (-4 *4 (-1099)) - (-4 *5 (-13 (-1049) (-886 *4) (-614 (-892 *4)))) - (-5 *1 (-1075 *4 *5 *2)) - (-4 *2 (-13 (-432 *5) (-886 *4) (-614 (-892 *4)))))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-921)) (-4 *4 (-1099)) - (-4 *5 (-13 (-1049) (-886 *4) (-614 (-892 *4)))) - (-5 *1 (-1076 *4 *5 *2)) - (-4 *2 (-13 (-432 *5) (-886 *4) (-614 (-892 *4)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-644 (-566))) (-4 *1 (-1102 *3 *4 *5 *6 *7)) - (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) - (-4 *7 (-1099)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-566)) (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) - (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)))) - ((*1 *1 *1 *1) (-4 *1 (-1143))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-1175)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-409 *1)) (-4 *1 (-1240 *2)) (-4 *2 (-1049)) - (-4 *2 (-365)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-409 *1)) (-4 *1 (-1240 *3)) (-4 *3 (-1049)) - (-4 *3 (-558)))) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-593))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1242 *2 *3)) (-4 *3 (-792)) (-4 *2 (-1049)))) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-480))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-5 *3 "last") (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 "rest") (-4 *1 (-1252 *3)) (-4 *3 (-1214)))) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-5 *3 "first") (-4 *1 (-1252 *2)) (-4 *2 (-1214))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-771)) (-5 *3 (-943 *4)) (-4 *1 (-1133 *4)) - (-4 *4 (-1049)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-771)) (-5 *4 (-943 (-225))) (-5 *2 (-1269)) - (-5 *1 (-1266))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1064 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) - (-4 *2 (-850)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) - (-4 *4 (-850))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-771)) (-4 *1 (-740 *4 *5)) (-4 *4 (-1049)) - (-4 *5 (-850)) (-5 *2 (-952 *4)))) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-771)) (-4 *1 (-740 *4 *5)) (-4 *4 (-1049)) - (-4 *5 (-850)) (-5 *2 (-952 *4)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-771)) (-4 *1 (-1255 *4)) (-4 *4 (-1049)) - (-5 *2 (-952 *4)))) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1165))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-771)) (-4 *1 (-1255 *4)) (-4 *4 (-1049)) - (-5 *2 (-952 *4))))) -(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225)) - (-5 *2 (-1035)) (-5 *1 (-756))))) -(((*1 *2 *1) (-12 (-5 *2 (-644 (-183 (-139)))) (-5 *1 (-140))))) -(((*1 *2 *3) - (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-365)) - (-5 *1 (-523 *2 *4 *5 *3)) (-4 *3 (-687 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) - (|has| *2 (-6 (-4416 "*"))) (-4 *2 (-1049)))) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-626))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1095))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1089))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1072))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-970))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-180))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1036))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-312))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-671))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-527))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1275))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1065))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-519))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-681))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1114))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-133))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1274))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-676))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-218))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-526))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-1157))) (-5 *2 (-112)) (-5 *1 (-1180)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-508))) (-5 *2 (-112)) (-5 *1 (-1180)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-225))) (-5 *2 (-112)) (-5 *1 (-1180)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-566))) (-5 *2 (-112)) (-5 *1 (-1180))))) +(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-527))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-793)) + (-4 *7 (-850)) (-4 *8 (-1064 *5 *6 *7)) (-5 *2 (-644 *3)) + (-5 *1 (-592 *5 *6 *7 *8 *3)) (-4 *3 (-1108 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) + (-5 *2 + (-644 (-2 (|:| -3149 (-1171 *5)) (|:| -3350 (-644 (-952 *5)))))) + (-5 *1 (-1077 *5 *6)) (-5 *3 (-644 (-952 *5))) + (-14 *6 (-644 (-1175))))) ((*1 *2 *3) - (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-172)) - (-5 *1 (-688 *2 *4 *5 *3)) (-4 *3 (-687 *2 *4 *5)))) + (-12 (-4 *4 (-13 (-308) (-147))) + (-5 *2 + (-644 (-2 (|:| -3149 (-1171 *4)) (|:| -3350 (-644 (-952 *4)))))) + (-5 *1 (-1077 *4 *5)) (-5 *3 (-644 (-952 *4))) + (-14 *5 (-644 (-1175))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) + (-5 *2 + (-644 (-2 (|:| -3149 (-1171 *5)) (|:| -3350 (-644 (-952 *5)))))) + (-5 *1 (-1077 *5 *6)) (-5 *3 (-644 (-952 *5))) + (-14 *6 (-644 (-1175)))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1285 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) + (-5 *2 (-819 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1122 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) - (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4416 "*"))) (-4 *2 (-1049))))) + (-12 (-4 *2 (-846)) (-5 *1 (-1287 *3 *2)) (-4 *3 (-1049))))) +(((*1 *1 *1) + (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) +(((*1 *1) (-5 *1 (-144))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-262)))) + ((*1 *1 *2) (-12 (-5 *2 (-1132 (-225))) (-5 *1 (-264))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1195))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1171 (-566))) (-5 *1 (-942)) (-5 *3 (-566))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264)))) + ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-469)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-469))))) +(((*1 *1 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-943 (-225)) (-225))) (-5 *3 (-1093 (-225))) + (-5 *1 (-926)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-943 (-225)) (-225))) (-5 *3 (-1093 (-225))) + (-5 *1 (-926)))) + ((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-943 (-225)) (-225))) (-5 *3 (-1093 (-225))) + (-5 *1 (-927)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-943 (-225)) (-225))) (-5 *3 (-1093 (-225))) + (-5 *1 (-927))))) +(((*1 *2 *1) (-12 (-5 *2 (-334)) (-5 *1 (-249))))) +(((*1 *1 *2) + (-12 (-5 *2 (-317 *3)) (-4 *3 (-13 (-1049) (-850))) + (-5 *1 (-223 *3 *4)) (-14 *4 (-644 (-1175)))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-295 (-833 *3))) - (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) - (-5 *2 (-833 *3)) (-5 *1 (-636 *5 *3)) - (-4 *3 (-13 (-27) (-1199) (-432 *5))))) + (-12 (-5 *3 (-1 *2 (-644 *2))) (-5 *4 (-644 *5)) + (-4 *5 (-38 (-409 (-566)))) (-4 *2 (-1255 *5)) + (-5 *1 (-1257 *5 *2))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1035)) (-5 *3 (-1175)) (-5 *1 (-192))))) +(((*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1269)) (-5 *1 (-381)))) + ((*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-381))))) +(((*1 *2 *1) (-12 (-5 *2 (-250)) (-5 *1 (-334))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1171 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1099))))) +(((*1 *1 *2 *3) + (-12 (-4 *1 (-384 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-1099)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-295 (-833 (-952 *5)))) (-4 *5 (-454)) - (-5 *2 (-833 (-409 (-952 *5)))) (-5 *1 (-637 *5)) - (-5 *3 (-409 (-952 *5))))) + (-12 (-5 *4 (-566)) (-5 *2 (-1155 *3)) (-5 *1 (-1159 *3)) + (-4 *3 (-1049)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-819 *4)) (-4 *4 (-850)) (-4 *1 (-1281 *4 *3)) + (-4 *3 (-1049))))) +(((*1 *2 *3) + (-12 (-5 *3 (-771)) (-5 *2 (-1171 *4)) (-5 *1 (-530 *4)) + (-4 *4 (-351))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *2 *3 *4 *4 *3) + (|partial| -12 (-5 *4 (-612 *3)) + (-4 *3 (-13 (-432 *5) (-27) (-1199))) + (-4 *5 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) + (-5 *2 (-2 (|:| -1641 *3) (|:| |coeff| *3))) + (-5 *1 (-568 *5 *3 *6)) (-4 *6 (-1099))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 *9)) (-4 *8 (-1064 *5 *6 *7)) + (-4 *9 (-1070 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) + (-4 *7 (-850)) (-5 *2 (-771)) (-5 *1 (-1068 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-295 (-409 (-952 *5)))) (-5 *3 (-409 (-952 *5))) - (-4 *5 (-454)) (-5 *2 (-833 *3)) (-5 *1 (-637 *5))))) + (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 *9)) (-4 *8 (-1064 *5 *6 *7)) + (-4 *9 (-1108 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) + (-4 *7 (-850)) (-5 *2 (-771)) (-5 *1 (-1144 *5 *6 *7 *8 *9))))) +(((*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1267)))) + ((*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1267))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1139 *3 *2)) (-4 *3 (-13 (-1099) (-34))) + (-4 *2 (-13 (-1099) (-34)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-112))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-1264 (-566))) (-5 *3 (-566)) (-5 *1 (-1109)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-1264 (-566))) (-5 *3 (-644 (-566))) (-5 *4 (-566)) + (-5 *1 (-1109))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-5 *3 (-566)) (-5 *2 (-112)) (-5 *1 (-482))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *1)) + (-4 *1 (-1064 *3 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-409 (-952 *5)))) (-5 *4 (-644 (-1175))) + (-4 *5 (-558)) (-5 *2 (-644 (-644 (-952 *5)))) (-5 *1 (-1183 *5))))) +(((*1 *1 *1 *1) (-5 *1 (-862)))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 + *7 *3 *8) + (-12 (-5 *5 (-689 (-225))) (-5 *6 (-112)) (-5 *7 (-689 (-566))) + (-5 *8 (-3 (|:| |fn| (-390)) (|:| |fp| (-65 QPHESS)))) + (-5 *3 (-566)) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-753))))) +(((*1 *1 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1214))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-1155 (-2 (|:| |k| (-566)) (|:| |c| *6)))) + (-5 *4 (-1026 (-843 (-566)))) (-5 *5 (-1175)) (-5 *7 (-409 (-566))) + (-4 *6 (-1049)) (-5 *2 (-862)) (-5 *1 (-596 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1102 *3 *4 *5 *6 *2)) (-4 *3 (-1099)) (-4 *4 (-1099)) + (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *2 (-1099))))) +(((*1 *1) (-5 *1 (-157))) + ((*1 *2 *1) (-12 (-4 *1 (-1044 *2)) (-4 *2 (-23))))) +(((*1 *2 *3) + (-12 (-4 *4 (-558)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4068 *4))) + (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-976 *3 *4 *2 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *2 (-850)) (-4 *5 (-1064 *3 *4 *2))))) (((*1 *2 *3) + (-12 (-5 *3 (-1264 (-644 (-2 (|:| -2876 *4) (|:| -2835 (-1119)))))) + (-4 *4 (-351)) (-5 *2 (-689 *4)) (-5 *1 (-348 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-359 *3)) (-4 *3 (-351))))) +(((*1 *1 *1) (-5 *1 (-862))) ((*1 *1 *1 *1) (-5 *1 (-862))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1214)))) + ((*1 *1 *2) (-12 (-5 *1 (-1231 *2)) (-4 *2 (-1214))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225)) + (-5 *2 (-1035)) (-5 *1 (-752))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1175)) (-5 *2 (-1 (-225) (-225))) (-5 *1 (-703 *3)) + (-4 *3 (-614 (-538))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1175)) (-5 *2 (-1 (-225) (-225) (-225))) + (-5 *1 (-703 *3)) (-4 *3 (-614 (-538)))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| |lm| (-388 *3)) (|:| |mm| (-388 *3)) (|:| |rm| (-388 *3)))) + (-5 *1 (-388 *3)) (-4 *3 (-1099)))) + ((*1 *2 *1 *1) (-12 + (-5 *2 + (-2 (|:| |lm| (-819 *3)) (|:| |mm| (-819 *3)) (|:| |rm| (-819 *3)))) + (-5 *1 (-819 *3)) (-4 *3 (-850))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) + (-5 *2 + (-3 (|:| |%expansion| (-314 *5 *3 *6 *7)) + (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157)))))) + (-5 *1 (-422 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1199) (-432 *5))) + (-14 *6 (-1175)) (-14 *7 *3)))) +(((*1 *2 *1) + (-12 (-4 *1 (-976 *3 *4 *2 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *5 (-1064 *3 *4 *2)) (-4 *2 (-850)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1064 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *2 (-850))))) +(((*1 *2 *1) (-12 (-5 *1 (-914 *2)) (-4 *2 (-308))))) +(((*1 *2 *1 *1 *3 *4) + (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) + (-4 *5 (-13 (-1099) (-34))) (-4 *6 (-13 (-1099) (-34))) + (-5 *2 (-112)) (-5 *1 (-1139 *5 *6))))) +(((*1 *2 *3) + (-12 (-4 *1 (-800)) (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *2 (-381)) (-5 *1 (-205))))) -(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1214)))) - ((*1 *1 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-850)))) - ((*1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-850)))) + (-5 *2 (-1035))))) +(((*1 *1 *1) (-12 (-5 *1 (-914 *2)) (-4 *2 (-308))))) +(((*1 *2 *2) + (-12 (-5 *2 (-771)) (-5 *1 (-447 *3)) (-4 *3 (-406)) (-4 *3 (-1049)))) + ((*1 *2) + (-12 (-5 *2 (-771)) (-5 *1 (-447 *3)) (-4 *3 (-406)) (-4 *3 (-1049))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1157)) (-5 *3 (-566)) (-5 *1 (-241)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-644 (-1157))) (-5 *3 (-566)) (-5 *4 (-1157)) + (-5 *1 (-241)))) ((*1 *1 *1) (-5 *1 (-862))) ((*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-848) (-365))) (-5 *1 (-1060 *2 *3)) - (-4 *3 (-1240 *2))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-566)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1214)) - (-4 *5 (-375 *4)) (-4 *2 (-375 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-566)) (-4 *1 (-1053 *4 *5 *6 *2 *7)) (-4 *6 (-1049)) - (-4 *7 (-238 *4 *6)) (-4 *2 (-238 *5 *6))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-860)) (-5 *2 (-691 (-129))) (-5 *3 (-129))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-644 *7)) (-5 *3 (-566)) (-4 *7 (-949 *4 *5 *6)) - (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) - (-5 *1 (-451 *4 *5 *6 *7))))) -(((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1002)))))) -(((*1 *2 *3 *4 *5 *6 *2 *7 *8) - (|partial| -12 (-5 *2 (-644 (-1171 *11))) (-5 *3 (-1171 *11)) - (-5 *4 (-644 *10)) (-5 *5 (-644 *8)) (-5 *6 (-644 (-771))) - (-5 *7 (-1264 (-644 (-1171 *8)))) (-4 *10 (-850)) - (-4 *8 (-308)) (-4 *11 (-949 *8 *9 *10)) (-4 *9 (-793)) - (-5 *1 (-707 *9 *10 *8 *11))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1214)) (-5 *1 (-182 *3 *2)) (-4 *2 (-674 *3))))) -(((*1 *2) (-12 (-5 *2 (-833 (-566))) (-5 *1 (-536)))) - ((*1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-1099))))) -(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) - (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-112)) - (-5 *6 (-225)) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-68 APROD)))) - (-5 *8 (-3 (|:| |fn| (-390)) (|:| |fp| (-73 MSOLVE)))) - (-5 *2 (-1035)) (-5 *1 (-756))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-689 (-409 (-952 (-566))))) - (-5 *2 (-689 (-317 (-566)))) (-5 *1 (-1031))))) -(((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-579)))) - ((*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-579))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1155 *3)) (-4 *3 (-365)) (-4 *3 (-1049)) - (-5 *1 (-1159 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-952 *4)) (-4 *4 (-13 (-308) (-147))) - (-4 *2 (-949 *4 *6 *5)) (-5 *1 (-924 *4 *5 *6 *2)) - (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793))))) -(((*1 *2 *2) - (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))) - (-5 *1 (-176 *3))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1175)) (-4 *5 (-614 (-892 (-566)))) - (-4 *5 (-886 (-566))) - (-4 *5 (-13 (-1038 (-566)) (-454) (-639 (-566)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-569 *5 *3)) (-4 *3 (-629)) - (-4 *3 (-13 (-27) (-1199) (-432 *5))))) - ((*1 *2 *2 *3 *4 *4) - (|partial| -12 (-5 *3 (-1175)) (-5 *4 (-843 *2)) (-4 *2 (-1138)) - (-4 *2 (-13 (-27) (-1199) (-432 *5))) - (-4 *5 (-614 (-892 (-566)))) (-4 *5 (-886 (-566))) - (-4 *5 (-13 (-1038 (-566)) (-454) (-639 (-566)))) - (-5 *1 (-569 *5 *2))))) + (-12 (-4 *1 (-1242 *2 *3)) (-4 *3 (-792)) (-4 *2 (-1049))))) +(((*1 *1 *1) (-12 (-4 *1 (-427 *2)) (-4 *2 (-1099)) (-4 *2 (-370))))) +(((*1 *1 *1) (-5 *1 (-862)))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) + (-5 *2 (-1035)) (-5 *1 (-752))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) - (-5 *2 (-644 *4)) (-5 *1 (-1127 *3 *4)) (-4 *3 (-1240 *4)))) - ((*1 *2 *3 *3) - (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) - (-5 *2 (-644 *3)) (-5 *1 (-1127 *4 *3)) (-4 *4 (-1240 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-848)) (-5 *2 (-566)))) - ((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-905 *3)) (-4 *3 (-1099)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1067 *4 *3)) (-4 *4 (-13 (-848) (-365))) - (-4 *3 (-1240 *4)) (-5 *2 (-566)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-558) (-1038 *2) (-639 *2) (-454))) - (-5 *2 (-566)) (-5 *1 (-1115 *4 *3)) - (-4 *3 (-13 (-27) (-1199) (-432 *4))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1175)) (-5 *5 (-843 *3)) - (-4 *3 (-13 (-27) (-1199) (-432 *6))) - (-4 *6 (-13 (-558) (-1038 *2) (-639 *2) (-454))) (-5 *2 (-566)) - (-5 *1 (-1115 *6 *3)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-1175)) (-5 *5 (-1157)) - (-4 *6 (-13 (-558) (-1038 *2) (-639 *2) (-454))) (-5 *2 (-566)) - (-5 *1 (-1115 *6 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *6))))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-454)) (-5 *2 (-566)) - (-5 *1 (-1116 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1175)) (-5 *5 (-843 (-409 (-952 *6)))) - (-5 *3 (-409 (-952 *6))) (-4 *6 (-454)) (-5 *2 (-566)) - (-5 *1 (-1116 *6)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-409 (-952 *6))) (-5 *4 (-1175)) - (-5 *5 (-1157)) (-4 *6 (-454)) (-5 *2 (-566)) (-5 *1 (-1116 *6)))) - ((*1 *2 *3) - (|partial| -12 (-5 *2 (-566)) (-5 *1 (-1196 *3)) (-4 *3 (-1049))))) -(((*1 *1 *1) (|partial| -4 *1 (-1150)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1175))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-432 *3) (-1002))) (-5 *1 (-277 *3 *2)) - (-4 *3 (-558)))) - ((*1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) - (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) - ((*1 *1) (-5 *1 (-479))) ((*1 *1) (-4 *1 (-1199)))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1264 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) - (-4 *5 (-1240 *4)) (-5 *2 (-689 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-411 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1240 *3)) - (-5 *2 (-689 *3))))) -(((*1 *2) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) - (-4 *5 (-1240 (-409 *4))) (-5 *2 (-689 (-409 *4)))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-331))))) -(((*1 *1 *2 *3 *3 *3 *4) - (-12 (-4 *4 (-365)) (-4 *3 (-1240 *4)) (-4 *5 (-1240 (-409 *3))) - (-4 *1 (-337 *4 *3 *5 *2)) (-4 *2 (-344 *4 *3 *5)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-566)) (-4 *2 (-365)) (-4 *4 (-1240 *2)) - (-4 *5 (-1240 (-409 *4))) (-4 *1 (-337 *2 *4 *5 *6)) - (-4 *6 (-344 *2 *4 *5)))) - ((*1 *1 *2 *2) - (-12 (-4 *2 (-365)) (-4 *3 (-1240 *2)) (-4 *4 (-1240 (-409 *3))) - (-4 *1 (-337 *2 *3 *4 *5)) (-4 *5 (-344 *2 *3 *4)))) - ((*1 *1 *2) - (-12 (-4 *3 (-365)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) - (-4 *1 (-337 *3 *4 *5 *2)) (-4 *2 (-344 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-415 *4 (-409 *4) *5 *6)) (-4 *4 (-1240 *3)) - (-4 *5 (-1240 (-409 *4))) (-4 *6 (-344 *3 *4 *5)) (-4 *3 (-365)) - (-4 *1 (-337 *3 *4 *5 *6))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-365)) (-5 *1 (-766 *2 *3)) (-4 *2 (-708 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365))))) + (-12 (-5 *2 (-1155 (-566))) (-5 *1 (-1159 *4)) (-4 *4 (-1049)) + (-5 *3 (-566))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225)) + (-5 *2 (-1035)) (-5 *1 (-752))))) +(((*1 *1 *1) + (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) (((*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-612 *3)) (-5 *5 (-644 *3)) (-4 *3 (-13 (-432 *6) (-27) (-1199))) @@ -354,380 +579,579 @@ (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-568 *6 *3 *7)) (-4 *7 (-1099))))) +(((*1 *2 *2 *2 *3 *4) + (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1049)) + (-5 *1 (-853 *5 *2)) (-4 *2 (-852 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-328 *3)) (-4 *3 (-1214)))) + ((*1 *2 *1) + (-12 (-5 *2 (-771)) (-5 *1 (-518 *3 *4)) (-4 *3 (-1214)) + (-14 *4 (-566))))) (((*1 *2 *2) - (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-850)) (-5 *1 (-1185 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-644 (-644 (-943 (-225))))) (-5 *1 (-470))))) -(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-699)) (-5 *1 (-306))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-469)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-469))))) -(((*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1269)) (-5 *1 (-381)))) - ((*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-381))))) + (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1199)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-822))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) (((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-921)) (-4 *1 (-238 *3 *4)) (-4 *4 (-1049)) - (-4 *4 (-1214)))) - ((*1 *1 *2) - (-12 (-14 *3 (-644 (-1175))) (-4 *4 (-172)) - (-4 *5 (-238 (-3018 *3) (-771))) - (-14 *6 - (-1 (-112) (-2 (|:| -2178 *2) (|:| -2852 *5)) - (-2 (|:| -2178 *2) (|:| -2852 *5)))) - (-5 *1 (-463 *3 *4 *2 *5 *6 *7)) (-4 *2 (-850)) - (-4 *7 (-949 *4 *5 (-864 *3))))) - ((*1 *2 *2) (-12 (-5 *2 (-943 (-225))) (-5 *1 (-1210))))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1256 *2 *3 *4)) (-4 *2 (-1049)) (-14 *3 (-1175)) + (-14 *4 *2)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1180))))) +(((*1 *1) (-5 *1 (-1178)))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-1093 *3)) (-4 *3 (-949 *7 *6 *4)) (-4 *6 (-793)) + (-4 *4 (-850)) (-4 *7 (-558)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-566)))) + (-5 *1 (-595 *6 *4 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-793)) (-4 *4 (-850)) (-4 *6 (-558)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-566)))) + (-5 *1 (-595 *5 *4 *6 *3)) (-4 *3 (-949 *6 *5 *4)))) + ((*1 *1 *1 *1 *1) (-5 *1 (-862))) ((*1 *1 *1 *1) (-5 *1 (-862))) + ((*1 *1 *1) (-5 *1 (-862))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1175)) + (-4 *4 (-13 (-558) (-1038 (-566)) (-639 (-566)))) + (-5 *1 (-1167 *4 *2)) (-4 *2 (-13 (-432 *4) (-160) (-27) (-1199))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1091 *2)) (-4 *2 (-13 (-432 *4) (-160) (-27) (-1199))) + (-4 *4 (-13 (-558) (-1038 (-566)) (-639 (-566)))) + (-5 *1 (-1167 *4 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1175)) (-4 *5 (-13 (-558) (-1038 (-566)))) + (-5 *2 (-409 (-952 *5))) (-5 *1 (-1168 *5)) (-5 *3 (-952 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1175)) (-4 *5 (-13 (-558) (-1038 (-566)))) + (-5 *2 (-3 (-409 (-952 *5)) (-317 *5))) (-5 *1 (-1168 *5)) + (-5 *3 (-409 (-952 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1091 (-952 *5))) (-5 *3 (-952 *5)) + (-4 *5 (-13 (-558) (-1038 (-566)))) (-5 *2 (-409 *3)) + (-5 *1 (-1168 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1091 (-409 (-952 *5)))) (-5 *3 (-409 (-952 *5))) + (-4 *5 (-13 (-558) (-1038 (-566)))) (-5 *2 (-3 *3 (-317 *5))) + (-5 *1 (-1168 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1214)) (-5 *1 (-377 *4 *2)) + (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4415))))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1175)) (-5 *2 (-1179)) (-5 *1 (-1178))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1099)) (-4 *6 (-1099)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-684 *4 *5 *6)) (-4 *4 (-1099))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-644 (-644 (-225)))) (-5 *4 (-225)) - (-5 *2 (-644 (-943 *4))) (-5 *1 (-1210)) (-5 *3 (-943 *4))))) + (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) + ((*1 *2) (-12 (-5 *2 (-904 (-566))) (-5 *1 (-917))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1256 *2 *3 *4)) (-4 *2 (-1049)) (-14 *3 (-1175)) + (-14 *4 *2)))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) + (-5 *2 + (-2 (|:| -2876 *4) (|:| -1425 *4) (|:| |totalpts| (-566)) + (|:| |success| (-112)))) + (-5 *1 (-789)) (-5 *5 (-566))))) +(((*1 *2 *1) + (-12 (-5 *2 (-644 (-943 *4))) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) + (-4 *4 (-1049))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-689 *5)) (-5 *4 (-1264 *5)) (-4 *5 (-365)) + (-5 *2 (-112)) (-5 *1 (-667 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4415)))) + (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4415)))) (-5 *2 (-112)) + (-5 *1 (-668 *5 *6 *4 *3)) (-4 *3 (-687 *5 *6 *4))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225)) + (-5 *2 (-1035)) (-5 *1 (-752))))) +(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-258))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-771)) (-5 *1 (-783 *2)) (-4 *2 (-38 (-409 (-566)))) + (-4 *2 (-172))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-558)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) + (-5 *1 (-1204 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-566)) (|has| *1 (-6 -4415)) (-4 *1 (-1252 *3)) + (-4 *3 (-1214))))) +(((*1 *2) + (|partial| -12 (-4 *4 (-1218)) (-4 *5 (-1240 (-409 *2))) + (-4 *2 (-1240 *4)) (-5 *1 (-343 *3 *4 *2 *5)) + (-4 *3 (-344 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-344 *3 *2 *4)) (-4 *3 (-1218)) + (-4 *4 (-1240 (-409 *2))) (-4 *2 (-1240 *3))))) +(((*1 *2 *1) + (|partial| -12 + (-5 *2 (-2 (|:| -1707 (-114)) (|:| |arg| (-644 (-892 *3))))) + (-5 *1 (-892 *3)) (-4 *3 (-1099)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-114)) (-5 *2 (-644 (-892 *4))) + (-5 *1 (-892 *4)) (-4 *4 (-1099))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-747))))) +(((*1 *1 *1) + (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) +(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1184))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-1049)) (-5 *1 (-446 *3 *2)) (-4 *2 (-1240 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-1179))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-1175))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-860)) (-5 *2 (-691 (-551))) (-5 *3 (-551))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-409 *2)) (-4 *2 (-1240 *5)) + (-5 *1 (-807 *5 *2 *3 *6)) + (-4 *5 (-13 (-365) (-147) (-1038 (-409 (-566))))) + (-4 *3 (-656 *2)) (-4 *6 (-656 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-644 (-409 *2))) (-4 *2 (-1240 *5)) + (-5 *1 (-807 *5 *2 *3 *6)) + (-4 *5 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *3 (-656 *2)) + (-4 *6 (-656 (-409 *2)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-644 (-644 (-644 *4)))) (-5 *3 (-644 *4)) (-4 *4 (-850)) + (-5 *1 (-1185 *4))))) +(((*1 *1 *1) + (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) (((*1 *2 *3) (-12 (-5 *3 - (-644 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566)))))) - (-5 *2 (-644 (-225))) (-5 *1 (-306))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1240 *6)) - (-4 *6 (-13 (-27) (-432 *5))) (-4 *5 (-13 (-558) (-1038 (-566)))) - (-4 *8 (-1240 (-409 *7))) (-5 *2 (-587 *3)) - (-5 *1 (-554 *5 *6 *7 *8 *3)) (-4 *3 (-344 *6 *7 *8))))) + (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) + (|:| |expense| (-381)) (|:| |accuracy| (-381)) + (|:| |intermediateResults| (-381)))) + (-5 *2 (-1035)) (-5 *1 (-306))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23)) + (-14 *4 *3))) + ((*1 *1 *2 *3 *1) + (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23)) + (-14 *4 *3))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-675 *2)) (-4 *2 (-1049)) (-4 *2 (-1099))))) +(((*1 *2) + (-12 + (-5 *2 + (-1264 (-644 (-2 (|:| -2876 (-910 *3)) (|:| -2835 (-1119)))))) + (-5 *1 (-353 *3 *4)) (-14 *3 (-921)) (-14 *4 (-921)))) + ((*1 *2) + (-12 (-5 *2 (-1264 (-644 (-2 (|:| -2876 *3) (|:| -2835 (-1119)))))) + (-5 *1 (-354 *3 *4)) (-4 *3 (-351)) (-14 *4 (-3 (-1171 *3) *2)))) + ((*1 *2) + (-12 (-5 *2 (-1264 (-644 (-2 (|:| -2876 *3) (|:| -2835 (-1119)))))) + (-5 *1 (-355 *3 *4)) (-4 *3 (-351)) (-14 *4 (-921))))) (((*1 *2 *3) - (-12 (-4 *4 (-351)) (-5 *2 (-420 (-1171 (-1171 *4)))) - (-5 *1 (-1212 *4)) (-5 *3 (-1171 (-1171 *4)))))) -(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266)))) - ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099))))) -(((*1 *2 *1) (-12 (-5 *2 (-1124 (-566) (-612 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *1) - (-12 (-4 *3 (-992 *2)) (-4 *4 (-1240 *3)) (-4 *2 (-308)) - (-5 *1 (-415 *2 *3 *4 *5)) (-4 *5 (-13 (-411 *3 *4) (-1038 *3))))) - ((*1 *2 *1) - (-12 (-4 *3 (-558)) (-4 *3 (-1099)) (-5 *2 (-1124 *3 (-612 *1))) - (-4 *1 (-432 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1124 (-566) (-612 (-497)))) (-5 *1 (-497)))) - ((*1 *2 *1) - (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-726) *4)) - (-5 *1 (-621 *3 *4 *2)) (-4 *3 (-38 *4)))) - ((*1 *2 *1) - (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-726) *4)) - (-5 *1 (-662 *3 *4 *2)) (-4 *3 (-717 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558))))) -(((*1 *1 *1) - (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) -(((*1 *1) (-5 *1 (-157)))) -(((*1 *1 *1) (-5 *1 (-862))) - ((*1 *2 *1) - (-12 (-4 *1 (-1102 *2 *3 *4 *5 *6)) (-4 *3 (-1099)) (-4 *4 (-1099)) - (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *2 (-1099)))) - ((*1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-1156)))) - ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1175))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1138)))) -(((*1 *1) (-12 (-4 *1 (-467 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-538))) ((*1 *1) (-4 *1 (-722))) - ((*1 *1) (-4 *1 (-726))) - ((*1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099)))) - ((*1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-850))))) -(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-566)) (-5 *5 (-689 (-225))) - (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G)))) - (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN)))) (-5 *3 (-225)) - (-5 *2 (-1035)) (-5 *1 (-749))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-420 *3)) (-4 *3 (-558)) (-5 *1 (-421 *3))))) + (-12 (-4 *1 (-895)) + (-5 *3 + (-2 (|:| |pde| (-644 (-317 (-225)))) + (|:| |constraints| + (-644 + (-2 (|:| |start| (-225)) (|:| |finish| (-225)) + (|:| |grid| (-771)) (|:| |boundaryType| (-566)) + (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) + (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) + (|:| |tol| (-225)))) + (-5 *2 (-1035))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) + (-4 *3 (-369 *4)))) + ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) + (-12 (-5 *4 (-566)) (-5 *5 (-1157)) (-5 *6 (-689 (-225))) + (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G)))) + (-5 *8 (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN)))) + (-5 *9 (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-749))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1099)) (-5 *1 (-929 *3 *2)) (-4 *2 (-432 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1175)) (-5 *2 (-317 (-566))) (-5 *1 (-930))))) +(((*1 *1 *1 *1) (-5 *1 (-862)))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) - (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 (-1155 (-225))) (-5 *1 (-192)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-317 (-225))) (-5 *4 (-644 (-1175))) - (-5 *5 (-1093 (-843 (-225)))) (-5 *2 (-1155 (-225))) (-5 *1 (-301)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1264 (-317 (-225)))) (-5 *4 (-644 (-1175))) - (-5 *5 (-1093 (-843 (-225)))) (-5 *2 (-1155 (-225))) (-5 *1 (-301))))) -(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-137)))) - ((*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-156)))) - ((*1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1214)))) - ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-480)))) - ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-593)))) - ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-626)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1099)) - (-4 *2 (-13 (-432 *4) (-886 *3) (-614 (-892 *3)))) - (-5 *1 (-1075 *3 *4 *2)) - (-4 *4 (-13 (-1049) (-886 *3) (-614 (-892 *3)))))) - ((*1 *2 *1) - (-12 (-4 *2 (-1099)) (-5 *1 (-1164 *3 *2)) (-4 *3 (-1099))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1171 *7)) - (-4 *5 (-1049)) (-4 *7 (-1049)) (-4 *2 (-1240 *5)) - (-5 *1 (-503 *5 *2 *6 *7)) (-4 *6 (-1240 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-644 (-873 (-1180) (-771)))) (-5 *1 (-334))))) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-771)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-793)) (-4 *7 (-949 *4 *5 *6)) (-4 *4 (-454)) (-4 *6 (-850)) + (-5 *2 (-112)) (-5 *1 (-451 *4 *5 *6 *7))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-644 *2)) (-4 *2 (-949 *4 *5 *6)) (-4 *4 (-308)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-449 *4 *5 *6 *2))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-848) (-308) (-147) (-1022))) + (-5 *2 (-644 (-1046 *5 *6))) (-5 *1 (-1290 *5 *6 *7)) + (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-848) (-308) (-147) (-1022))) + (-5 *2 (-644 (-1046 *5 *6))) (-5 *1 (-1290 *5 *6 *7)) + (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 (-952 *4))) + (-4 *4 (-13 (-848) (-308) (-147) (-1022))) + (-5 *2 (-644 (-1046 *4 *5))) (-5 *1 (-1290 *4 *5 *6)) + (-14 *5 (-644 (-1175))) (-14 *6 (-644 (-1175)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1093 (-843 (-381)))) (-5 *2 (-1093 (-843 (-225)))) + (-5 *1 (-306))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-644 (-1175))) (-4 *4 (-1099)) + (-4 *5 (-13 (-1049) (-886 *4) (-614 (-892 *4)))) + (-5 *1 (-54 *4 *5 *2)) + (-4 *2 (-13 (-432 *5) (-886 *4) (-614 (-892 *4))))))) +(((*1 *1 *2) + (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-1000 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *4 (-225)) + (-5 *2 + (-2 (|:| |brans| (-644 (-644 (-943 *4)))) + (|:| |xValues| (-1093 *4)) (|:| |yValues| (-1093 *4)))) + (-5 *1 (-153)) (-5 *3 (-644 (-644 (-943 *4))))))) +(((*1 *2 *1) (-12 (-5 *2 (-958 (-183 (-139)))) (-5 *1 (-334)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 (-1213))) (-5 *1 (-606))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-943 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-644 (-943 *3))) (-4 *3 (-1049)) (-4 *1 (-1133 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-644 (-644 *3))) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-644 (-943 *3))) (-4 *1 (-1133 *3)) (-4 *3 (-1049))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1177 (-409 (-566)))) (-5 *2 (-409 (-566))) - (-5 *1 (-190))))) -(((*1 *2 *1) (-12 (-5 *2 (-1124 (-566) (-612 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *1) - (-12 (-4 *3 (-308)) (-4 *4 (-992 *3)) (-4 *5 (-1240 *4)) - (-5 *2 (-1264 *6)) (-5 *1 (-415 *3 *4 *5 *6)) - (-4 *6 (-13 (-411 *4 *5) (-1038 *4))))) - ((*1 *2 *1) - (-12 (-4 *3 (-1049)) (-4 *3 (-1099)) (-5 *2 (-1124 *3 (-612 *1))) - (-4 *1 (-432 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1124 (-566) (-612 (-497)))) (-5 *1 (-497)))) - ((*1 *2 *1) - (-12 (-4 *3 (-172)) (-4 *2 (-38 *3)) (-5 *1 (-621 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-726) *3)))) + (-12 (-4 *4 (-1049)) (-4 *2 (-687 *4 *5 *6)) + (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1240 *4)) (-4 *5 (-375 *4)) + (-4 *6 (-375 *4))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-1049)) (-4 *3 (-1099)) + (-5 *2 (-2 (|:| |val| *1) (|:| -2201 (-566)))) (-4 *1 (-432 *3)))) ((*1 *2 *1) - (-12 (-4 *3 (-172)) (-4 *2 (-717 *3)) (-5 *1 (-662 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-726) *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558))))) -(((*1 *2 *3) - (-12 (-4 *4 (-351)) - (-5 *2 (-644 (-2 (|:| |deg| (-771)) (|:| -1300 *3)))) - (-5 *1 (-216 *4 *3)) (-4 *3 (-1240 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-644 (-264))) (-5 *1 (-262))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) -(((*1 *2 *3 *4 *4 *3) - (|partial| -12 (-5 *4 (-612 *3)) - (-4 *3 (-13 (-432 *5) (-27) (-1199))) - (-4 *5 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) - (-5 *2 (-2 (|:| -2346 *3) (|:| |coeff| *3))) - (-5 *1 (-568 *5 *3 *6)) (-4 *6 (-1099))))) + (|partial| -12 + (-5 *2 (-2 (|:| |val| (-892 *3)) (|:| -2201 (-892 *3)))) + (-5 *1 (-892 *3)) (-4 *3 (-1099)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1049)) + (-4 *7 (-949 *6 *4 *5)) + (-5 *2 (-2 (|:| |val| *3) (|:| -2201 (-566)))) + (-5 *1 (-950 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-365) + (-10 -8 (-15 -3152 ($ *7)) (-15 -2248 (*7 $)) + (-15 -2260 (*7 $)))))))) +(((*1 *1) (-5 *1 (-439)))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-147)) + (-4 *3 (-308)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) + (-5 *1 (-977 *3 *4 *5 *6))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-365)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) + (-5 *1 (-506 *4 *5 *6 *3)) (-4 *3 (-949 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) + ((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172))))) (((*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-756))))) -(((*1 *2 *1) - (-12 (-4 *3 (-365)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) - (-5 *2 (-1264 *6)) (-5 *1 (-338 *3 *4 *5 *6)) - (-4 *6 (-344 *3 *4 *5))))) -(((*1 *1) (-5 *1 (-1062)))) -(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-137)))) - ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-156)))) - ((*1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1214)))) - ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-480)))) - ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-593)))) - ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-626)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1099)) - (-4 *2 (-13 (-432 *4) (-886 *3) (-614 (-892 *3)))) - (-5 *1 (-1075 *3 *4 *2)) - (-4 *4 (-13 (-1049) (-886 *3) (-614 (-892 *3)))))) - ((*1 *2 *1) - (-12 (-4 *2 (-1099)) (-5 *1 (-1164 *2 *3)) (-4 *3 (-1099))))) -(((*1 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) - (-5 *1 (-1127 *3 *2)) (-4 *3 (-1240 *2))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *5 (-112)) - (-5 *2 (-1035)) (-5 *1 (-745))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-771)) (-4 *6 (-365)) (-5 *4 (-1208 *6)) - (-5 *2 (-1 (-1155 *4) (-1155 *4))) (-5 *1 (-1272 *6)) - (-5 *5 (-1155 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1046 *4 *5)) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) + (-14 *5 (-644 (-1175))) + (-5 *2 + (-644 (-2 (|:| -3149 (-1171 *4)) (|:| -3350 (-644 (-952 *4)))))) + (-5 *1 (-1290 *4 *5 *6)) (-14 *6 (-644 (-1175))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-848) (-308) (-147) (-1022))) + (-5 *2 + (-644 (-2 (|:| -3149 (-1171 *5)) (|:| -3350 (-644 (-952 *5)))))) + (-5 *1 (-1290 *5 *6 *7)) (-5 *3 (-644 (-952 *5))) + (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-848) (-308) (-147) (-1022))) + (-5 *2 + (-644 (-2 (|:| -3149 (-1171 *5)) (|:| -3350 (-644 (-952 *5)))))) + (-5 *1 (-1290 *5 *6 *7)) (-5 *3 (-644 (-952 *5))) + (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-848) (-308) (-147) (-1022))) + (-5 *2 + (-644 (-2 (|:| -3149 (-1171 *5)) (|:| -3350 (-644 (-952 *5)))))) + (-5 *1 (-1290 *5 *6 *7)) (-5 *3 (-644 (-952 *5))) + (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-848) (-308) (-147) (-1022))) + (-5 *2 + (-644 (-2 (|:| -3149 (-1171 *4)) (|:| -3350 (-644 (-952 *4)))))) + (-5 *1 (-1290 *4 *5 *6)) (-5 *3 (-644 (-952 *4))) + (-14 *5 (-644 (-1175))) (-14 *6 (-644 (-1175)))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1207 *4 *5 *3 *6)) (-4 *4 (-558)) (-4 *5 (-793)) + (-4 *3 (-850)) (-4 *6 (-1064 *4 *5 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-1283 *3)) (-4 *3 (-365)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) + (-5 *2 (-644 *4)) (-5 *1 (-1127 *3 *4)) (-4 *3 (-1240 *4)))) + ((*1 *2 *3 *3 *3) + (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) + (-5 *2 (-644 *3)) (-5 *1 (-1127 *4 *3)) (-4 *4 (-1240 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-821)) (-5 *4 (-52)) (-5 *2 (-1269)) (-5 *1 (-831))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 (-771) *2)) (-5 *4 (-771)) (-4 *2 (-1099)) + (-5 *1 (-678 *2)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1 *3 (-771) *3)) (-4 *3 (-1099)) (-5 *1 (-682 *3))))) +(((*1 *1) (-5 *1 (-225))) ((*1 *1) (-5 *1 (-381)))) (((*1 *2 *2) - (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1199)))))) + (|partial| -12 (-5 *2 (-644 (-892 *3))) (-5 *1 (-892 *3)) + (-4 *3 (-1099))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) + (-4 *5 (-1240 *4)) (-5 *2 (-644 (-2 (|:| -4290 *5) (|:| -1335 *5)))) + (-5 *1 (-807 *4 *5 *3 *6)) (-4 *3 (-656 *5)) + (-4 *6 (-656 (-409 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-365) (-147) (-1038 (-409 (-566))))) + (-4 *4 (-1240 *5)) (-5 *2 (-644 (-2 (|:| -4290 *4) (|:| -1335 *4)))) + (-5 *1 (-807 *5 *4 *3 *6)) (-4 *3 (-656 *4)) + (-4 *6 (-656 (-409 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) + (-4 *5 (-1240 *4)) (-5 *2 (-644 (-2 (|:| -4290 *5) (|:| -1335 *5)))) + (-5 *1 (-807 *4 *5 *6 *3)) (-4 *6 (-656 *5)) + (-4 *3 (-656 (-409 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-365) (-147) (-1038 (-409 (-566))))) + (-4 *4 (-1240 *5)) (-5 *2 (-644 (-2 (|:| -4290 *4) (|:| -1335 *4)))) + (-5 *1 (-807 *5 *4 *6 *3)) (-4 *6 (-656 *4)) + (-4 *3 (-656 (-409 *4)))))) +(((*1 *2 *3 *4 *5 *6 *5 *3 *7) + (-12 (-5 *4 (-566)) + (-5 *6 + (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3655 (-381)))) + (-5 *7 (-1 (-1269) (-1264 *5) (-1264 *5) (-381))) + (-5 *3 (-1264 (-381))) (-5 *5 (-381)) (-5 *2 (-1269)) + (-5 *1 (-788)))) + ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) + (-12 (-5 *4 (-566)) + (-5 *6 + (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3655 (-381)))) + (-5 *7 (-1 (-1269) (-1264 *5) (-1264 *5) (-381))) + (-5 *3 (-1264 (-381))) (-5 *5 (-381)) (-5 *2 (-1269)) + (-5 *1 (-788))))) (((*1 *2 *1) - (-12 (-5 *2 (-771)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-566)) - (-14 *4 *2) (-4 *5 (-172)))) - ((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-921)) (-5 *1 (-165 *3 *4)) - (-4 *3 (-166 *4)))) - ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-921)))) + (-12 (-5 *2 (-644 (-1200 *3))) (-5 *1 (-1200 *3)) (-4 *3 (-1099))))) +(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) + (-12 (-5 *3 (-1157)) (-5 *5 (-689 (-225))) (-5 *6 (-225)) + (-5 *7 (-689 (-566))) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-752))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 (-644 (-943 (-225))))) + (-5 *2 (-644 (-1093 (-225)))) (-5 *1 (-928))))) +(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-519))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1255 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-381)) (-5 *1 (-97)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-381)) (-5 *1 (-97))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-644 *1)) (|has| *1 (-6 -4415)) (-4 *1 (-1010 *3)) + (-4 *3 (-1214))))) +(((*1 *1 *1) + (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) +(((*1 *2) + (-12 (-4 *4 (-1218)) (-4 *5 (-1240 *4)) (-4 *6 (-1240 (-409 *5))) + (-5 *2 (-771)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-372 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1240 *3)) - (-5 *2 (-921)))) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) + (-4 *5 (-1240 (-409 *4))) (-5 *2 (-771))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1099)) (-5 *2 (-644 *1)) + (-4 *1 (-432 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-644 (-892 *3))) (-5 *1 (-892 *3)) + (-4 *3 (-1099)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) + (-5 *2 (-644 *1)) (-4 *1 (-949 *3 *4 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-365)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) - (-5 *2 (-771)) (-5 *1 (-523 *4 *5 *6 *3)) (-4 *3 (-687 *4 *5 *6)))) + (|partial| -12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1049)) + (-4 *7 (-949 *6 *4 *5)) (-5 *2 (-644 *3)) + (-5 *1 (-950 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-365) + (-10 -8 (-15 -3152 ($ *7)) (-15 -2248 (*7 $)) + (-15 -2260 (*7 $)))))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-771)) (-4 *4 (-13 (-558) (-147))) + (-5 *1 (-1234 *4 *2)) (-4 *2 (-1240 *4))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-308)) (-4 *6 (-375 *5)) (-4 *4 (-375 *5)) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2875 (-644 *4)))) + (-5 *1 (-1123 *5 *6 *4 *3)) (-4 *3 (-687 *5 *6 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-5 *1 (-1188 *2)) (-4 *2 (-365))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-926))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-771)) (-5 *1 (-59 *3)) (-4 *3 (-1214)))) + ((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1214)) (-5 *1 (-59 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1099)) (-4 *5 (-1099)) + (-5 *2 (-1 *5)) (-5 *1 (-683 *4 *5))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-892 *4)) (-4 *4 (-1099)) (-4 *2 (-1099)) + (-5 *1 (-889 *4 *2))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-690 *3))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-952 *4)) (-4 *4 (-1049)) (-4 *4 (-614 *2)) + (-5 *2 (-381)) (-5 *1 (-785 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-689 *5)) (-5 *4 (-1264 *5)) (-4 *5 (-365)) - (-5 *2 (-771)) (-5 *1 (-667 *5)))) + (|partial| -12 (-5 *3 (-952 *5)) (-5 *4 (-921)) (-4 *5 (-1049)) + (-4 *5 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-558)) + (-4 *4 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *4)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4415)))) - (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4415)))) (-5 *2 (-771)) - (-5 *1 (-668 *5 *6 *4 *3)) (-4 *3 (-687 *5 *6 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-4 *3 (-558)) (-5 *2 (-771)))) + (|partial| -12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-921)) (-4 *5 (-558)) + (-4 *5 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-558)) (-4 *4 (-172)) (-4 *5 (-375 *4)) - (-4 *6 (-375 *4)) (-5 *2 (-771)) (-5 *1 (-688 *4 *5 *6 *3)) - (-4 *3 (-687 *4 *5 *6)))) + (|partial| -12 (-5 *3 (-317 *4)) (-4 *4 (-558)) (-4 *4 (-850)) + (-4 *4 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-317 *5)) (-5 *4 (-921)) (-4 *5 (-558)) + (-4 *5 (-850)) (-4 *5 (-614 *2)) (-5 *2 (-381)) + (-5 *1 (-785 *5))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-1188 *2)) (-4 *2 (-365))))) +(((*1 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) + (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 (-644 (-225))) (-5 *1 (-204))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-921)) (-5 *4 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1265))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-308) (-147))) (-4 *4 (-13 (-850) (-614 (-1175)))) + (-4 *5 (-793)) (-5 *1 (-924 *3 *4 *5 *2)) (-4 *2 (-949 *3 *5 *4))))) +(((*1 *2 *2) + (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-850)) (-5 *1 (-1185 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1049)) (-4 *1 (-687 *3 *4 *5)) + (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-644 (-644 (-862)))) (-5 *1 (-862)))) ((*1 *2 *1) - (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-558)) - (-5 *2 (-771))))) -(((*1 *2 *3 *4 *5 *3 *6 *3) - (-12 (-5 *3 (-566)) (-5 *5 (-169 (-225))) (-5 *6 (-1157)) - (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-758))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) - (-5 *1 (-752))))) -(((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-874)))) - ((*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049))))) -(((*1 *2 *1 *3 *3 *3 *2) - (-12 (-5 *3 (-771)) (-5 *1 (-675 *2)) (-4 *2 (-1099))))) + (-12 (-5 *2 (-1141 *3 *4)) (-5 *1 (-993 *3 *4)) (-14 *3 (-921)) + (-4 *4 (-365)))) + ((*1 *1 *2) + (-12 (-5 *2 (-644 (-644 *5))) (-4 *5 (-1049)) + (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *6 (-238 *4 *5)) + (-4 *7 (-238 *3 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1214))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-683 *4 *3)) (-4 *4 (-1099)) + (-4 *3 (-1099))))) +(((*1 *1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1049)) (-4 *2 (-365))))) (((*1 *2 *1) - (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *6)) - (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) + (-12 (-5 *2 (-644 (-2 (|:| |k| (-1175)) (|:| |c| (-1286 *3))))) + (-5 *1 (-1286 *3)) (-4 *3 (-1049)))) ((*1 *2 *1) - (-12 (-5 *2 (-644 (-905 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1099))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1214)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-952 (-381))) (-5 *1 (-341 *3 *4 *5)) - (-4 *5 (-1038 (-381))) (-14 *3 (-644 (-1175))) - (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-409 (-952 (-381)))) (-5 *1 (-341 *3 *4 *5)) - (-4 *5 (-1038 (-381))) (-14 *3 (-644 (-1175))) - (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-317 (-381))) (-5 *1 (-341 *3 *4 *5)) - (-4 *5 (-1038 (-381))) (-14 *3 (-644 (-1175))) - (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-952 (-566))) (-5 *1 (-341 *3 *4 *5)) - (-4 *5 (-1038 (-566))) (-14 *3 (-644 (-1175))) - (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-409 (-952 (-566)))) (-5 *1 (-341 *3 *4 *5)) - (-4 *5 (-1038 (-566))) (-14 *3 (-644 (-1175))) - (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-317 (-566))) (-5 *1 (-341 *3 *4 *5)) - (-4 *5 (-1038 (-566))) (-14 *3 (-644 (-1175))) - (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1175)) (-5 *1 (-341 *3 *4 *5)) - (-14 *3 (-644 *2)) (-14 *4 (-644 *2)) (-4 *5 (-389)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-317 *5)) (-4 *5 (-389)) - (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-644 (-1175))) - (-14 *4 (-644 (-1175))))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-689 (-409 (-952 (-566))))) (-4 *1 (-386)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-689 (-409 (-952 (-381))))) (-4 *1 (-386)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-689 (-952 (-566)))) (-4 *1 (-386)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-689 (-952 (-381)))) (-4 *1 (-386)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-689 (-317 (-566)))) (-4 *1 (-386)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-689 (-317 (-381)))) (-4 *1 (-386)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-409 (-952 (-566)))) (-4 *1 (-398)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-409 (-952 (-381)))) (-4 *1 (-398)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-952 (-566))) (-4 *1 (-398)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-952 (-381))) (-4 *1 (-398)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-566))) (-4 *1 (-398)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-381))) (-4 *1 (-398)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1264 (-409 (-952 (-566))))) (-4 *1 (-443)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1264 (-409 (-952 (-381))))) (-4 *1 (-443)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1264 (-952 (-566)))) (-4 *1 (-443)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1264 (-952 (-381)))) (-4 *1 (-443)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1264 (-317 (-566)))) (-4 *1 (-443)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1264 (-317 (-381)))) (-4 *1 (-443)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-351)) (-4 *5 (-330 *4)) (-4 *6 (-1240 *5)) - (-5 *2 (-1171 (-1171 *4))) (-5 *1 (-777 *4 *5 *6 *3 *7)) - (-4 *3 (-1240 *6)) (-14 *7 (-921)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) - (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) - (-4 *1 (-976 *3 *4 *5 *6)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-1038 *2)) (-4 *2 (-1214)))) - ((*1 *1 *2) - (|partial| -2809 - (-12 (-5 *2 (-952 *3)) - (-12 (-2418 (-4 *3 (-38 (-409 (-566))))) - (-2418 (-4 *3 (-38 (-566)))) (-4 *5 (-614 (-1175)))) - (-4 *3 (-1049)) (-4 *1 (-1064 *3 *4 *5)) (-4 *4 (-793)) - (-4 *5 (-850))) - (-12 (-5 *2 (-952 *3)) - (-12 (-2418 (-4 *3 (-547))) (-2418 (-4 *3 (-38 (-409 (-566))))) - (-4 *3 (-38 (-566))) (-4 *5 (-614 (-1175)))) - (-4 *3 (-1049)) (-4 *1 (-1064 *3 *4 *5)) (-4 *4 (-793)) - (-4 *5 (-850))) - (-12 (-5 *2 (-952 *3)) - (-12 (-2418 (-4 *3 (-992 (-566)))) (-4 *3 (-38 (-409 (-566)))) - (-4 *5 (-614 (-1175)))) - (-4 *3 (-1049)) (-4 *1 (-1064 *3 *4 *5)) (-4 *4 (-793)) - (-4 *5 (-850))))) - ((*1 *1 *2) - (|partial| -2809 - (-12 (-5 *2 (-952 (-566))) (-4 *1 (-1064 *3 *4 *5)) - (-12 (-2418 (-4 *3 (-38 (-409 (-566))))) (-4 *3 (-38 (-566))) - (-4 *5 (-614 (-1175)))) - (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850))) - (-12 (-5 *2 (-952 (-566))) (-4 *1 (-1064 *3 *4 *5)) - (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *5 (-614 (-1175)))) - (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850))))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-952 (-409 (-566)))) (-4 *1 (-1064 *3 *4 *5)) - (-4 *3 (-38 (-409 (-566)))) (-4 *5 (-614 (-1175))) - (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-644 *6)) (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) - (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) - (-4 *3 (-558))))) -(((*1 *1 *1 *1) (-5 *1 (-862)))) -(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-52)) (-5 *1 (-1192))))) + (-12 (-5 *2 (-644 (-2 (|:| |k| *3) (|:| |c| (-1288 *3 *4))))) + (-5 *1 (-1288 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-169 (-225))) (-5 *5 (-566)) (-5 *6 (-1157)) + (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-758))))) (((*1 *2 *3) - (-12 (-4 *1 (-909)) (-5 *2 (-420 (-1171 *1))) (-5 *3 (-1171 *1))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1139 *4 *5)) (-4 *4 (-13 (-1099) (-34))) - (-4 *5 (-13 (-1099) (-34))) (-5 *2 (-112)) (-5 *1 (-1140 *4 *5))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-327 *3 *4)) (-4 *3 (-1049)) - (-4 *4 (-792))))) -(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-519))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-264))) (-5 *1 (-1265)))) - ((*1 *2 *1) (-12 (-5 *2 (-644 (-264))) (-5 *1 (-1265)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-264))) (-5 *1 (-1266)))) - ((*1 *2 *1) (-12 (-5 *2 (-644 (-264))) (-5 *1 (-1266))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) - (-5 *2 (-689 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-689 *3))))) + (-12 (-4 *4 (-27)) + (-4 *4 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) + (-4 *5 (-1240 *4)) (-5 *2 (-644 (-653 (-409 *5)))) + (-5 *1 (-657 *4 *5)) (-5 *3 (-653 (-409 *5)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) + (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1287 *3 *4)) (-4 *3 (-1049)) + (-4 *4 (-846))))) +(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563))))) +(((*1 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) + (-5 *1 (-1127 *3 *2)) (-4 *3 (-1240 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-992 *2)) (-4 *2 (-558)) (-5 *1 (-142 *2 *4 *3)) - (-4 *3 (-375 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-992 *2)) (-4 *2 (-558)) (-5 *1 (-505 *2 *4 *5 *3)) - (-4 *5 (-375 *2)) (-4 *3 (-375 *4)))) + (|partial| -12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-432 *4)) + (-4 *6 (-1240 *5)) (-4 *7 (-1240 (-409 *6))) + (-4 *8 (-344 *5 *6 *7)) (-4 *4 (-13 (-558) (-1038 (-566)))) + (-5 *2 (-2 (|:| -2679 (-771)) (|:| -3204 *8))) + (-5 *1 (-911 *4 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-689 *4)) (-4 *4 (-992 *2)) (-4 *2 (-558)) - (-5 *1 (-693 *2 *4)))) + (|partial| -12 (-5 *3 (-338 (-409 (-566)) *4 *5 *6)) + (-4 *4 (-1240 (-409 (-566)))) (-4 *5 (-1240 (-409 *4))) + (-4 *6 (-344 (-409 (-566)) *4 *5)) + (-5 *2 (-2 (|:| -2679 (-771)) (|:| -3204 *6))) + (-5 *1 (-912 *4 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-819 *3)) (-4 *3 (-850)) (-5 *1 (-672 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1175)) (-4 *5 (-1218)) (-4 *6 (-1240 *5)) + (-4 *7 (-1240 (-409 *6))) (-5 *2 (-644 (-952 *5))) + (-5 *1 (-343 *4 *5 *6 *7)) (-4 *4 (-344 *5 *6 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-992 *2)) (-4 *2 (-558)) (-5 *1 (-1233 *2 *4 *3)) - (-4 *3 (-1240 *4))))) + (-12 (-5 *3 (-1175)) (-4 *1 (-344 *4 *5 *6)) (-4 *4 (-1218)) + (-4 *5 (-1240 *4)) (-4 *6 (-1240 (-409 *5))) (-4 *4 (-365)) + (-5 *2 (-644 (-952 *4)))))) +(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225)) + (-5 *2 (-1035)) (-5 *1 (-756))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1171 *1)) (-4 *1 (-454)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1171 *6)) (-4 *6 (-949 *5 *3 *4)) (-4 *3 (-793)) + (-4 *4 (-850)) (-4 *5 (-909)) (-5 *1 (-459 *3 *4 *5 *6)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1171 *1)) (-4 *1 (-909))))) +(((*1 *2 *1) (-12 (-4 *1 (-556 *2)) (-4 *2 (-13 (-406) (-1199))))) + ((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) + ((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-862))))) +(((*1 *1 *1 *1) (-5 *1 (-862)))) +(((*1 *2 *3 *2) + (-12 (-4 *1 (-787)) (-5 *2 (-1035)) + (-5 *3 + (-2 (|:| |fn| (-317 (-225))) + (|:| -2821 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))))) + ((*1 *2 *3 *2) + (-12 (-4 *1 (-787)) (-5 *2 (-1035)) + (-5 *3 + (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) + (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225))))))) +(((*1 *2 *2) (-12 (-5 *1 (-961 *2)) (-4 *2 (-547))))) +(((*1 *2 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-689 *4)) (-5 *3 (-771)) (-4 *4 (-1049)) + (-5 *1 (-690 *4))))) (((*1 *2 *3) - (-12 (-5 *2 (-420 (-1171 (-566)))) (-5 *1 (-191)) (-5 *3 (-566))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-943 (-225))) (-5 *2 (-1269)) (-5 *1 (-470))))) -(((*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-1083 *3)) (-4 *3 (-132))))) + (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)) (-5 *3 (-566))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1199)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-112))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-566)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-771)) (-4 *5 (-172)))) + ((*1 *1 *1) + (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-566)) (-14 *3 (-771)) + (-4 *4 (-172)))) + ((*1 *1 *1) + (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) + (-4 *4 (-375 *2)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1049)) (-4 *1 (-687 *3 *2 *4)) (-4 *2 (-375 *3)) + (-4 *4 (-375 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1141 *2 *3)) (-14 *2 (-771)) (-4 *3 (-1049))))) (((*1 *2 *2 *3) (-12 (-5 *2 (-892 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1099)) (-4 *5 (-1214)) (-5 *1 (-890 *4 *5)))) @@ -755,352 +1179,6 @@ (-4 *6 (-13 (-432 *5) (-886 *4) (-614 (-892 *4)))) (-4 *4 (-1099)) (-4 *5 (-13 (-1049) (-886 *4) (-614 (-892 *4)))) (-5 *1 (-1075 *4 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-4 *7 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-558)) - (-4 *8 (-949 *7 *5 *6)) - (-5 *2 (-2 (|:| -2852 (-771)) (|:| -1364 *3) (|:| |radicand| *3))) - (-5 *1 (-953 *5 *6 *7 *8 *3)) (-5 *4 (-771)) - (-4 *3 - (-13 (-365) - (-10 -8 (-15 -3783 ($ *8)) (-15 -4326 (*8 $)) (-15 -4339 (*8 $)))))))) -(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-850)) (-5 *1 (-486 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-4 *1 (-903 *3))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-396))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1214)) (-4 *3 (-1099)) - (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1155 (-566))) (-5 *1 (-1159 *4)) (-4 *4 (-1049)) - (-5 *3 (-566))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-308) (-147))) (-4 *4 (-13 (-850) (-614 (-1175)))) - (-4 *5 (-793)) (-5 *1 (-924 *3 *4 *5 *2)) (-4 *2 (-949 *3 *5 *4))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1099)) (-4 *4 (-13 (-1049) (-886 *3) (-614 (-892 *3)))) - (-5 *2 (-644 (-1175))) (-5 *1 (-1075 *3 *4 *5)) - (-4 *5 (-13 (-432 *4) (-886 *3) (-614 (-892 *3))))))) -(((*1 *1 *1) - (-12 (-4 *2 (-365)) (-4 *3 (-793)) (-4 *4 (-850)) - (-5 *1 (-506 *2 *3 *4 *5)) (-4 *5 (-949 *2 *3 *4))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) - (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 (-2 (|:| -1684 (-114)) (|:| |w| (-225)))) (-5 *1 (-204))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1209 *3)) (-4 *3 (-974))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) - (-4 *8 (-1064 *5 *6 *7)) - (-5 *2 - (-2 (|:| |val| (-644 *8)) - (|:| |towers| (-644 (-1027 *5 *6 *7 *8))))) - (-5 *1 (-1027 *5 *6 *7 *8)) (-5 *3 (-644 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) - (-4 *8 (-1064 *5 *6 *7)) - (-5 *2 - (-2 (|:| |val| (-644 *8)) - (|:| |towers| (-644 (-1145 *5 *6 *7 *8))))) - (-5 *1 (-1145 *5 *6 *7 *8)) (-5 *3 (-644 *8))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1214)) (-4 *2 (-1049)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-862)))) - ((*1 *1 *1) (-5 *1 (-862))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-943 (-225))) (-5 *2 (-225)) (-5 *1 (-1210)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1214)) (-4 *2 (-1049))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-644 (-566))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-566)) - (-14 *4 (-771)) (-4 *5 (-172))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-644 *5)) (-5 *4 (-921)) (-4 *5 (-850)) - (-5 *2 (-59 (-644 (-672 *5)))) (-5 *1 (-672 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-566)) (-4 *1 (-651 *3)) (-4 *3 (-1214)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-566)) (-4 *1 (-651 *2)) (-4 *2 (-1214))))) -(((*1 *1 *1) - (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-926))))) -(((*1 *2 *3 *4) - (-12 (-4 *6 (-558)) (-4 *2 (-949 *3 *5 *4)) - (-5 *1 (-732 *5 *4 *6 *2)) (-5 *3 (-409 (-952 *6))) (-4 *5 (-793)) - (-4 *4 (-13 (-850) (-10 -8 (-15 -1348 ((-1175) $)))))))) -(((*1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214))))) -(((*1 *2 *3) (-12 (-5 *3 (-538)) (-5 *1 (-537 *2)) (-4 *2 (-1214)))) - ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-538))))) -(((*1 *1) (-5 *1 (-157))) - ((*1 *2 *1) (-12 (-4 *1 (-1044 *2)) (-4 *2 (-23))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1155 (-409 *3))) (-5 *1 (-174 *3)) (-4 *3 (-308))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) - (-5 *2 (-644 *4)) (-5 *1 (-1127 *3 *4)) (-4 *3 (-1240 *4)))) - ((*1 *2 *3 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) - (-5 *2 (-644 *3)) (-5 *1 (-1127 *4 *3)) (-4 *4 (-1240 *3))))) -(((*1 *1 *1) (-5 *1 (-1062)))) -(((*1 *2 *3) - (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 -3184 ((-420 $) $))))) - (-4 *4 (-1240 *3)) - (-5 *2 - (-2 (|:| -2365 (-689 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-689 *3)))) - (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-411 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-566)) (-4 *4 (-1240 *3)) - (-5 *2 - (-2 (|:| -2365 (-689 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-689 *3)))) - (-5 *1 (-768 *4 *5)) (-4 *5 (-411 *3 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-351)) (-4 *3 (-1240 *4)) (-4 *5 (-1240 *3)) - (-5 *2 - (-2 (|:| -2365 (-689 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-689 *3)))) - (-5 *1 (-985 *4 *3 *5 *6)) (-4 *6 (-724 *3 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-351)) (-4 *3 (-1240 *4)) (-4 *5 (-1240 *3)) - (-5 *2 - (-2 (|:| -2365 (-689 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-689 *3)))) - (-5 *1 (-1273 *4 *3 *5 *6)) (-4 *6 (-411 *3 *5))))) -(((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-771)) (-4 *3 (-1214)) (-4 *1 (-57 *3 *4 *5)) - (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) - ((*1 *1) (-5 *1 (-171))) - ((*1 *1) (-12 (-5 *1 (-213 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1099)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1157)) (-4 *1 (-391)))) - ((*1 *1) (-5 *1 (-396))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-771)) (-4 *1 (-651 *3)) (-4 *3 (-1214)))) - ((*1 *1) - (-12 (-4 *3 (-1099)) (-5 *1 (-885 *2 *3 *4)) (-4 *2 (-1099)) - (-4 *4 (-666 *3)))) - ((*1 *1) (-12 (-5 *1 (-889 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099)))) - ((*1 *1 *2) - (-12 (-5 *1 (-1141 *3 *2)) (-14 *3 (-771)) (-4 *2 (-1049)))) - ((*1 *1) (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1049)))) - ((*1 *1 *1) (-5 *1 (-1175))) ((*1 *1) (-5 *1 (-1175))) - ((*1 *1) (-5 *1 (-1194)))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) - (-5 *1 (-523 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-558)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) - (-4 *7 (-992 *4)) (-4 *2 (-687 *7 *8 *9)) - (-5 *1 (-524 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-687 *4 *5 *6)) - (-4 *8 (-375 *7)) (-4 *9 (-375 *7)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) - (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-365)))) - ((*1 *2 *2) - (|partial| -12 (-4 *3 (-365)) (-4 *3 (-172)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-5 *1 (-688 *3 *4 *5 *2)) - (-4 *2 (-687 *3 *4 *5)))) - ((*1 *1 *1) - (|partial| -12 (-5 *1 (-689 *2)) (-4 *2 (-365)) (-4 *2 (-1049)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1122 *2 *3 *4 *5)) (-4 *3 (-1049)) - (-4 *4 (-238 *2 *3)) (-4 *5 (-238 *2 *3)) (-4 *3 (-365)))) - ((*1 *2 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-850)) (-5 *1 (-1185 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-300 *4 *5)) (-14 *4 *3) - (-14 *5 *3))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1093 (-843 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) - (-5 *1 (-306)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)) - (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-2 (|:| |totdeg| (-771)) (|:| -2495 *4))) (-5 *5 (-771)) - (-4 *4 (-949 *6 *7 *8)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) - (-5 *2 - (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) - (|:| |polj| *4))) - (-5 *1 (-451 *6 *7 *8 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-644 *3)) (-4 *3 (-1240 *5)) (-4 *5 (-308)) - (-5 *2 (-771)) (-5 *1 (-457 *5 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-644 (-1075 *3 *4 *5))) (-4 *3 (-1099)) - (-4 *4 (-13 (-1049) (-886 *3) (-614 (-892 *3)))) - (-4 *5 (-13 (-432 *4) (-886 *3) (-614 (-892 *3)))) - (-5 *1 (-1076 *3 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-563)) (-5 *3 (-566))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1171 *5)) (-4 *5 (-454)) (-5 *2 (-644 *6)) - (-5 *1 (-540 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-848))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-952 *5)) (-4 *5 (-454)) (-5 *2 (-644 *6)) - (-5 *1 (-540 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-848)))))) -(((*1 *2 *2) (-12 (-5 *2 (-689 *3)) (-4 *3 (-308)) (-5 *1 (-700 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1171 *4)) (-4 *4 (-351)) (-5 *2 (-958 (-1119))) - (-5 *1 (-348 *4))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-363 (-114))) (-4 *2 (-1049)) (-5 *1 (-714 *2 *4)) - (-4 *4 (-648 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-363 (-114))) (-5 *1 (-836 *2)) (-4 *2 (-1049))))) -(((*1 *1 *2) - (-12 (-5 *2 (-644 (-2 (|:| -2004 *3) (|:| -3867 *4)))) - (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *1 (-1190 *3 *4)))) - ((*1 *1) (-12 (-4 *1 (-1190 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *1)) - (-4 *1 (-1064 *3 *4 *5))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| |polnum| (-782 *3)) (|:| |polden| *3) (|:| -4369 (-771)))) - (-5 *1 (-782 *3)) (-4 *3 (-1049)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) - (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -4369 (-771)))) - (-4 *1 (-1064 *3 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-926))))) -(((*1 *2 *3) (-12 (-5 *3 (-409 (-566))) (-5 *2 (-225)) (-5 *1 (-306))))) -(((*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-157))))) -(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-91 *3))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1171 *1)) (-4 *1 (-1012))))) -(((*1 *1) (-5 *1 (-141)))) -(((*1 *1) (-5 *1 (-144))) ((*1 *1 *1) (-5 *1 (-862)))) -(((*1 *2 *3) - (-12 (-4 *4 (-850)) (-5 *2 (-644 (-644 *4))) (-5 *1 (-1185 *4)) - (-5 *3 (-644 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-862))))) -(((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-531)))) - ((*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-531))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-365) (-848))) (-5 *1 (-181 *3 *2)) - (-4 *2 (-1240 (-169 *3)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) - (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1155 (-225))) (-5 *2 (-644 (-1157))) (-5 *1 (-192)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1155 (-225))) (-5 *2 (-644 (-1157))) (-5 *1 (-301)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1155 (-225))) (-5 *2 (-644 (-1157))) (-5 *1 (-306))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) - (-5 *2 - (-2 (|:| -2233 *4) (|:| -1465 *4) (|:| |totalpts| (-566)) - (|:| |success| (-112)))) - (-5 *1 (-789)) (-5 *5 (-566))))) -(((*1 *1) (-5 *1 (-331)))) -(((*1 *2 *3 *2) - (-12 - (-5 *2 - (-644 - (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-771)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *3 (-793)) (-4 *6 (-949 *4 *3 *5)) (-4 *4 (-454)) (-4 *5 (-850)) - (-5 *1 (-451 *4 *3 *5 *6))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 (-566))) (-4 *3 (-1049)) (-5 *1 (-99 *3)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1049)) (-5 *1 (-99 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1049)) (-5 *1 (-99 *3))))) -(((*1 *2 *2) (-12 (-5 *1 (-682 *2)) (-4 *2 (-1099))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) -(((*1 *2 *3 *4 *4 *4 *5 *5 *3) - (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) - (-5 *2 (-1035)) (-5 *1 (-751))))) -(((*1 *2 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) - (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1035)) - (-5 *1 (-746))))) -(((*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1175)) (-5 *3 (-644 *1)) (-4 *1 (-432 *4)) - (-4 *4 (-1099)))) - ((*1 *1 *2 *1 *1 *1 *1) - (-12 (-5 *2 (-1175)) (-4 *1 (-432 *3)) (-4 *3 (-1099)))) - ((*1 *1 *2 *1 *1 *1) - (-12 (-5 *2 (-1175)) (-4 *1 (-432 *3)) (-4 *3 (-1099)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1175)) (-4 *1 (-432 *3)) (-4 *3 (-1099)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1175)) (-4 *1 (-432 *3)) (-4 *3 (-1099))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-482))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-644 (-225))) (-5 *4 (-771)) (-5 *2 (-689 (-225))) - (-5 *1 (-306))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1138)))) -(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1047))))) -(((*1 *1) (-5 *1 (-144))) - ((*1 *2 *3) - (-12 (-5 *3 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-262)))) - ((*1 *1 *2) (-12 (-5 *2 (-1132 (-225))) (-5 *1 (-264))))) -(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1184))))) -(((*1 *1 *1 *1) (-5 *1 (-862)))) -(((*1 *1 *2 *2 *3 *1) - (-12 (-5 *2 (-508)) (-5 *3 (-1103)) (-5 *1 (-292))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))) -(((*1 *2 *2) - (-12 (-4 *3 (-1099)) (-5 *1 (-929 *3 *2)) (-4 *2 (-432 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1175)) (-5 *2 (-317 (-566))) (-5 *1 (-930))))) -(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1171 (-409 (-566)))) (-5 *1 (-942)) (-5 *3 (-566))))) -(((*1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-1 (-587 *3) *3 (-1175))) - (-5 *6 - (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 - (-1175))) - (-4 *3 (-285)) (-4 *3 (-629)) (-4 *3 (-1038 *4)) (-4 *3 (-432 *7)) - (-5 *4 (-1175)) (-4 *7 (-614 (-892 (-566)))) (-4 *7 (-454)) - (-4 *7 (-886 (-566))) (-4 *7 (-1099)) (-5 *2 (-587 *3)) - (-5 *1 (-575 *7 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-644 (-612 *5))) (-4 *4 (-1099)) (-5 *2 (-612 *5)) - (-5 *1 (-575 *4 *5)) (-4 *5 (-432 *4))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-771)) (-4 *2 (-558)) (-5 *1 (-969 *2 *4)) - (-4 *4 (-1240 *2))))) -(((*1 *2 *3) - (-12 (-5 *3 (-644 *7)) (-4 *7 (-949 *4 *5 *6)) (-4 *6 (-614 (-1175))) - (-4 *4 (-365)) (-4 *5 (-793)) (-4 *6 (-850)) - (-5 *2 (-1164 (-644 (-952 *4)) (-644 (-295 (-952 *4))))) - (-5 *1 (-506 *4 *5 *6 *7))))) -(((*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1267)))) - ((*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1267))))) -(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) - (-12 (-5 *3 (-1157)) (-5 *5 (-689 (-225))) (-5 *6 (-225)) - (-5 *7 (-689 (-566))) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-752))))) -(((*1 *2 *2) - (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1199)))))) -(((*1 *2 *3) - (-12 (-4 *2 (-1240 *4)) (-5 *1 (-809 *4 *2 *3 *5)) - (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *3 (-656 *2)) - (-4 *5 (-656 (-409 *2)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-644 (-780 *5 (-864 *6)))) (-5 *4 (-112)) (-4 *5 (-454)) - (-14 *6 (-644 (-1175))) (-5 *2 (-644 (-1046 *5 *6))) - (-5 *1 (-628 *5 *6))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-969 *3 *2)) (-4 *2 (-1240 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) - (-4 *4 (-850)) (-4 *2 (-558)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1240 *2)) (-4 *2 (-1049)) (-4 *2 (-558))))) (((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1214)))) ((*1 *1 *2) (-12 (-5 *2 (-952 (-381))) (-5 *1 (-341 *3 *4 *5)) @@ -1156,11 +1234,11 @@ (-3 (|:| |nia| (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) - (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) + (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) - (|:| -2446 (-644 (-1093 (-843 (-225))))) + (|:| -2821 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-5 *1 (-769)))) ((*1 *2 *1) @@ -1176,13 +1254,13 @@ (-5 *2 (-3 (|:| |noa| - (-2 (|:| |fn| (-317 (-225))) (|:| -1761 (-644 (-225))) + (-2 (|:| |fn| (-317 (-225))) (|:| -3289 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-317 (-225)))) - (|:| -1761 (-644 (-225))))))) + (|:| -3289 (-644 (-225))))))) (-5 *1 (-841)))) ((*1 *2 *1) (-12 @@ -1201,26 +1279,26 @@ (-4 *4 (-793)) (-4 *5 (-850)) (-4 *1 (-976 *3 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-1038 *2)) (-4 *2 (-1214)))) ((*1 *1 *2) - (-2809 + (-2768 (-12 (-5 *2 (-952 *3)) - (-12 (-2418 (-4 *3 (-38 (-409 (-566))))) - (-2418 (-4 *3 (-38 (-566)))) (-4 *5 (-614 (-1175)))) + (-12 (-2404 (-4 *3 (-38 (-409 (-566))))) + (-2404 (-4 *3 (-38 (-566)))) (-4 *5 (-614 (-1175)))) (-4 *3 (-1049)) (-4 *1 (-1064 *3 *4 *5)) (-4 *4 (-793)) (-4 *5 (-850))) (-12 (-5 *2 (-952 *3)) - (-12 (-2418 (-4 *3 (-547))) (-2418 (-4 *3 (-38 (-409 (-566))))) + (-12 (-2404 (-4 *3 (-547))) (-2404 (-4 *3 (-38 (-409 (-566))))) (-4 *3 (-38 (-566))) (-4 *5 (-614 (-1175)))) (-4 *3 (-1049)) (-4 *1 (-1064 *3 *4 *5)) (-4 *4 (-793)) (-4 *5 (-850))) (-12 (-5 *2 (-952 *3)) - (-12 (-2418 (-4 *3 (-992 (-566)))) (-4 *3 (-38 (-409 (-566)))) + (-12 (-2404 (-4 *3 (-992 (-566)))) (-4 *3 (-38 (-409 (-566)))) (-4 *5 (-614 (-1175)))) (-4 *3 (-1049)) (-4 *1 (-1064 *3 *4 *5)) (-4 *4 (-793)) (-4 *5 (-850))))) ((*1 *1 *2) - (-2809 + (-2768 (-12 (-5 *2 (-952 (-566))) (-4 *1 (-1064 *3 *4 *5)) - (-12 (-2418 (-4 *3 (-38 (-409 (-566))))) (-4 *3 (-38 (-566))) + (-12 (-2404 (-4 *3 (-38 (-409 (-566))))) (-4 *3 (-38 (-566))) (-4 *5 (-614 (-1175)))) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850))) (-12 (-5 *2 (-952 (-566))) (-4 *1 (-1064 *3 *4 *5)) @@ -1230,46 +1308,470 @@ (-12 (-5 *2 (-952 (-409 (-566)))) (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-38 (-409 (-566)))) (-4 *5 (-614 (-1175))) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850))))) +(((*1 *2 *2) (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-833 *3)) (-4 *3 (-1099)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-1099))))) +(((*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-803))))) +(((*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-691 (-548)))))) +(((*1 *1 *2) (-12 (-5 *1 (-1026 *2)) (-4 *2 (-1214))))) (((*1 *2 *1) - (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-547)) - (-5 *2 (-409 (-566))))) + (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-131)) + (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -3521 *4)))))) ((*1 *2 *1) - (-12 (-5 *2 (-409 (-566))) (-5 *1 (-420 *3)) (-4 *3 (-547)) - (-4 *3 (-558)))) - ((*1 *2 *1) (-12 (-4 *1 (-547)) (-5 *2 (-409 (-566))))) + (-12 (-5 *2 (-644 (-2 (|:| -2397 *3) (|:| -4325 *4)))) + (-5 *1 (-735 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-726)))) ((*1 *2 *1) - (-12 (-4 *1 (-797 *3)) (-4 *3 (-172)) (-4 *3 (-547)) - (-5 *2 (-409 (-566))))) + (-12 (-4 *1 (-1242 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)) + (-5 *2 (-1155 (-2 (|:| |k| *4) (|:| |c| *3))))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1214)) (-5 *1 (-1131 *4 *2)) + (-4 *2 (-13 (-604 (-566) *4) (-10 -7 (-6 -4414) (-6 -4415)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-850)) (-4 *3 (-1214)) (-5 *1 (-1131 *3 *2)) + (-4 *2 (-13 (-604 (-566) *3) (-10 -7 (-6 -4414) (-6 -4415))))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) + (-5 *2 + (-2 (|:| -2876 *4) (|:| -1425 *4) (|:| |totalpts| (-566)) + (|:| |success| (-112)))) + (-5 *1 (-789)) (-5 *5 (-566))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) + (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225)) + (-5 *2 (-1035)) (-5 *1 (-750))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-833 *3)) (-4 *3 (-1099)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-1099))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-644 *6)) (-4 *6 (-850)) (-4 *4 (-365)) (-4 *5 (-793)) + (-5 *2 + (-2 (|:| |mval| (-689 *4)) (|:| |invmval| (-689 *4)) + (|:| |genIdeal| (-506 *4 *5 *6 *7)))) + (-5 *1 (-506 *4 *5 *6 *7)) (-4 *7 (-949 *4 *5 *6))))) +(((*1 *1 *1) + (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) +(((*1 *2 *2) + (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))) + (-5 *1 (-176 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-312)))) ((*1 *2 *1) - (-12 (-5 *2 (-409 (-566))) (-5 *1 (-833 *3)) (-4 *3 (-547)) - (-4 *3 (-1099)))) + (-12 (-5 *2 (-771)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) + (-4 *4 (-1049))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1163 3 *3)) (-4 *3 (-1049)) (-4 *1 (-1133 *3)))) + ((*1 *1) (-12 (-4 *1 (-1133 *2)) (-4 *2 (-1049))))) +(((*1 *2 *1) + (-12 (-5 *2 (-644 (-52))) (-5 *1 (-892 *3)) (-4 *3 (-1099))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-566)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-420 *2)) (-4 *2 (-558))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-1049))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1264 *4)) (-4 *4 (-639 (-566))) + (-5 *2 (-1264 (-409 (-566)))) (-5 *1 (-1291 *4))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1175)) + (-4 *5 (-13 (-558) (-1038 (-566)) (-147))) + (-5 *2 + (-2 (|:| -1641 (-409 (-952 *5))) (|:| |coeff| (-409 (-952 *5))))) + (-5 *1 (-572 *5)) (-5 *3 (-409 (-952 *5)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-644 *7)) (-4 *7 (-1070 *3 *4 *5 *6)) (-4 *3 (-454)) + (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) + (-5 *1 (-988 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-644 *7)) (-4 *7 (-1070 *3 *4 *5 *6)) (-4 *3 (-454)) + (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) + (-5 *1 (-1106 *3 *4 *5 *6 *7))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1141 *3 *4)) (-14 *3 (-921)) (-4 *4 (-365)) + (-5 *1 (-993 *3 *4))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1139 *2 *3)) (-4 *2 (-13 (-1099) (-34))) + (-4 *3 (-13 (-1099) (-34)))))) +(((*1 *1 *2 *2 *3 *1) + (-12 (-5 *2 (-508)) (-5 *3 (-1103)) (-5 *1 (-292))))) +(((*1 *2 *3 *3 *3 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1171 *9)) (-5 *4 (-644 *7)) (-5 *5 (-644 *8)) + (-4 *7 (-850)) (-4 *8 (-1049)) (-4 *9 (-949 *8 *6 *7)) + (-4 *6 (-793)) (-5 *2 (-1171 *8)) (-5 *1 (-322 *6 *7 *8 *9))))) +(((*1 *1 *1) + (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) +(((*1 *1 *2) + (-12 (-5 *2 (-644 (-1075 *3 *4 *5))) (-4 *3 (-1099)) + (-4 *4 (-13 (-1049) (-886 *3) (-614 (-892 *3)))) + (-4 *5 (-13 (-432 *4) (-886 *3) (-614 (-892 *3)))) + (-5 *1 (-1076 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) + ((*1 *2 *3) (-12 (-5 *3 (-971)) (-5 *2 (-904 (-566))) (-5 *1 (-917))))) +(((*1 *2 *3 *4) + (-12 (-4 *6 (-558)) (-4 *2 (-949 *3 *5 *4)) + (-5 *1 (-732 *5 *4 *6 *2)) (-5 *3 (-409 (-952 *6))) (-4 *5 (-793)) + (-4 *4 (-13 (-850) (-10 -8 (-15 -2376 ((-1175) $)))))))) +(((*1 *2) + (-12 (-4 *3 (-1049)) (-5 *2 (-958 (-712 *3 *4))) (-5 *1 (-712 *3 *4)) + (-4 *4 (-1240 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) ((*1 *2 *1) - (-12 (-5 *2 (-409 (-566))) (-5 *1 (-843 *3)) (-4 *3 (-547)) - (-4 *3 (-1099)))) + (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) + (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-644 *3)) (-4 *3 (-949 *5 *6 *7)) (-4 *5 (-454)) + (-4 *6 (-793)) (-4 *7 (-850)) + (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) + (-5 *1 (-451 *5 *6 *7 *3))))) +(((*1 *1) (-4 *1 (-351)))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1240 *5)) + (-4 *5 (-13 (-27) (-432 *4))) (-4 *4 (-13 (-558) (-1038 (-566)))) + (-4 *7 (-1240 (-409 *6))) (-5 *1 (-554 *4 *5 *6 *7 *2)) + (-4 *2 (-344 *5 *6 *7))))) +(((*1 *2 *2) + (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1199)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-365)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) + (-5 *2 (-1264 *6)) (-5 *1 (-338 *3 *4 *5 *6)) + (-4 *6 (-344 *3 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1064 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *2 (-850)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850))))) +(((*1 *1) (-5 *1 (-144)))) +(((*1 *2 *1 *3) + (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1062)) (-5 *3 (-1157))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-112)) (-5 *5 (-689 (-225))) + (-5 *2 (-1035)) (-5 *1 (-755))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) + (-4 *3 (-1064 *6 *7 *8)) + (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -1470 *4)))) + (-5 *1 (-1107 *6 *7 *8 *3 *4)) (-4 *4 (-1070 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-644 (-2 (|:| |val| (-644 *8)) (|:| -1470 *9)))) + (-5 *5 (-112)) (-4 *8 (-1064 *6 *7 *4)) (-4 *9 (-1070 *6 *7 *4 *8)) + (-4 *6 (-454)) (-4 *7 (-793)) (-4 *4 (-850)) + (-5 *2 (-644 (-2 (|:| |val| *8) (|:| -1470 *9)))) + (-5 *1 (-1107 *6 *7 *4 *8 *9))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1171 *1)) (-5 *4 (-1175)) (-4 *1 (-27)) + (-5 *2 (-644 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1171 *1)) (-4 *1 (-27)) (-5 *2 (-644 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-952 *1)) (-4 *1 (-27)) (-5 *2 (-644 *1)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1175)) (-4 *4 (-558)) (-5 *2 (-644 *1)) + (-4 *1 (-29 *4)))) + ((*1 *2 *1) (-12 (-4 *3 (-558)) (-5 *2 (-644 *1)) (-4 *1 (-29 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-771)) (-5 *2 (-644 (-1175))) (-5 *1 (-210)) + (-5 *3 (-1175)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-317 (-225))) (-5 *4 (-771)) (-5 *2 (-644 (-1175))) + (-5 *1 (-268)))) ((*1 *2 *1) - (-12 (-4 *1 (-997 *3)) (-4 *3 (-172)) (-4 *3 (-547)) - (-5 *2 (-409 (-566))))) + (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)) + (-5 *2 (-644 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-644 *3)) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-850)) + (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-14 *5 (-921)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-672 *3)) (-4 *3 (-850)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-677 *3)) (-4 *3 (-850)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-819 *3)) (-4 *3 (-850)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-893 *3)) (-4 *3 (-850)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) + (-5 *2 (-644 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) + (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-771)) (-5 *2 (-1264 (-644 (-566)))) (-5 *1 (-482)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1214)) (-5 *1 (-601 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1214)) (-5 *1 (-1155 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1214)) (-5 *1 (-1155 *3))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-1175)) (-4 *4 (-1049)) (-4 *4 (-1099)) + (-5 *2 (-2 (|:| |var| (-612 *1)) (|:| -2201 (-566)))) + (-4 *1 (-432 *4)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1049)) (-4 *4 (-1099)) + (-5 *2 (-2 (|:| |var| (-612 *1)) (|:| -2201 (-566)))) + (-4 *1 (-432 *4)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1111)) (-4 *3 (-1099)) + (-5 *2 (-2 (|:| |var| (-612 *1)) (|:| -2201 (-566)))) + (-4 *1 (-432 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-892 *3)) (|:| -2201 (-771)))) + (-5 *1 (-892 *3)) (-4 *3 (-1099)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-949 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *5 (-850)) (-5 *2 (-2 (|:| |var| *5) (|:| -2201 (-771)))))) ((*1 *2 *3) - (-12 (-5 *2 (-409 (-566))) (-5 *1 (-1008 *3)) (-4 *3 (-1038 *2))))) + (|partial| -12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1049)) + (-4 *7 (-949 *6 *4 *5)) + (-5 *2 (-2 (|:| |var| *5) (|:| -2201 (-566)))) + (-5 *1 (-950 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-365) + (-10 -8 (-15 -3152 ($ *7)) (-15 -2248 (*7 $)) + (-15 -2260 (*7 $)))))))) +(((*1 *1) (-12 (-5 *1 (-691 *2)) (-4 *2 (-613 (-862)))))) +(((*1 *1 *1) (-4 *1 (-629))) + ((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-630 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002) (-1199)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1199)))))) +(((*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-1049))))) +(((*1 *2 *1) (-12 (-5 *2 (-824)) (-5 *1 (-825))))) (((*1 *2 *1) - (-12 (-5 *2 (-1101 *3)) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1101 *3)) (-5 *1 (-905 *3)) (-4 *3 (-1099))))) + (-12 (-5 *2 (-862)) (-5 *1 (-392 *3 *4 *5)) (-14 *3 (-771)) + (-14 *4 (-771)) (-4 *5 (-172))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2631 *1) (|:| -3264 *1))) (-4 *1 (-308)))) + ((*1 *2 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-388 *3)) (|:| |rm| (-388 *3)))) + (-5 *1 (-388 *3)) (-4 *3 (-1099)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2631 (-771)) (|:| -3264 (-771)))) + (-5 *1 (-771)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| -2631 *3) (|:| -3264 *3))) + (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1171 *7)) (-5 *3 (-566)) (-4 *7 (-949 *6 *4 *5)) + (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1049)) + (-5 *1 (-322 *4 *5 *6 *7))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1155 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1049)) + (-5 *3 (-409 (-566))) (-5 *1 (-1159 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563))))) (((*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-689 (-409 (-566)))) + (-5 *2 + (-644 + (-2 (|:| |outval| *4) (|:| |outmult| (-566)) + (|:| |outvect| (-644 (-689 *4)))))) + (-5 *1 (-779 *4)) (-4 *4 (-13 (-365) (-848)))))) +(((*1 *2 *1 *2 *3) + (|partial| -12 (-5 *2 (-1157)) (-5 *3 (-566)) (-5 *1 (-1062))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1171 *1)) (-5 *3 (-1175)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1171 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-952 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1175)) (-4 *1 (-29 *3)) (-4 *3 (-558)))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-558)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1171 *2)) (-5 *4 (-1175)) (-4 *2 (-432 *5)) + (-5 *1 (-32 *5 *2)) (-4 *5 (-558)))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *2 (-1171 *1)) (-5 *3 (-921)) (-4 *1 (-1012)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-1171 *1)) (-5 *3 (-921)) (-5 *4 (-862)) + (-4 *1 (-1012)))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *3 (-921)) (-4 *4 (-13 (-848) (-365))) + (-4 *1 (-1067 *4 *2)) (-4 *2 (-1240 *4))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2164 (-782 *3)) (|:| |coef2| (-782 *3)))) + (-5 *1 (-782 *3)) (-4 *3 (-558)) (-4 *3 (-1049)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-558)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) + (-5 *2 (-2 (|:| -2164 *1) (|:| |coef2| *1))) + (-4 *1 (-1064 *3 *4 *5))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-892 *4)) (-4 *4 (-1099)) (-5 *2 (-112)) + (-5 *1 (-889 *4 *5)) (-4 *5 (-1099)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-892 *5)) (-4 *5 (-1099)) (-5 *2 (-112)) + (-5 *1 (-890 *5 *3)) (-4 *3 (-1214)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 *6)) (-5 *4 (-892 *5)) (-4 *5 (-1099)) + (-4 *6 (-1214)) (-5 *2 (-112)) (-5 *1 (-890 *5 *6))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-921)) (-4 *1 (-744 *3)) (-4 *3 (-172))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-689 *1)) (-5 *4 (-1264 *1)) (-4 *1 (-639 *5)) + (-4 *5 (-1049)) + (-5 *2 (-2 (|:| -3361 (-689 *5)) (|:| |vec| (-1264 *5)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-689 *1)) (-4 *1 (-639 *4)) (-4 *4 (-1049)) + (-5 *2 (-689 *4))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-644 *1)) (-4 *1 (-432 *4)) + (-4 *4 (-1099)))) + ((*1 *1 *2 *1 *1 *1 *1) + (-12 (-5 *2 (-1175)) (-4 *1 (-432 *3)) (-4 *3 (-1099)))) + ((*1 *1 *2 *1 *1 *1) + (-12 (-5 *2 (-1175)) (-4 *1 (-432 *3)) (-4 *3 (-1099)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1175)) (-4 *1 (-432 *3)) (-4 *3 (-1099)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1175)) (-4 *1 (-432 *3)) (-4 *3 (-1099))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1138)))) +(((*1 *2 *1) + (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-943 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-644 (-943 *3))) (-4 *3 (-1049)) (-4 *1 (-1133 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-644 (-644 *3))) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-644 (-943 *3))) (-4 *1 (-1133 *3)) (-4 *3 (-1049))))) +(((*1 *2 *1) + (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)) + (-5 *2 (-1157))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-558) (-1038 (-566)))) (-5 *1 (-188 *3 *2)) - (-4 *2 (-13 (-27) (-1199) (-432 (-169 *3)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) - (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *3)))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1214)) (-5 *1 (-377 *4 *2)) - (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4415))))))) + (-12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) + (-5 *1 (-523 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4414)) (-4 *1 (-491 *3)) (-4 *3 (-1214)) + (-4 *3 (-1099)) (-5 *2 (-771)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4414)) (-4 *1 (-491 *4)) + (-4 *4 (-1214)) (-5 *2 (-771))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1099)) (-5 *1 (-929 *3 *2)) (-4 *2 (-432 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1175)) (-5 *2 (-317 (-566))) (-5 *1 (-930))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-752))))) (((*1 *2 *1) - (-12 (-4 *2 (-1240 *3)) (-5 *1 (-401 *3 *2)) - (-4 *3 (-13 (-365) (-147)))))) + (-12 (-4 *3 (-1099)) (-4 *4 (-13 (-1049) (-886 *3) (-614 (-892 *3)))) + (-5 *2 (-644 (-1175))) (-5 *1 (-1075 *3 *4 *5)) + (-4 *5 (-13 (-432 *4) (-886 *3) (-614 (-892 *3))))))) +(((*1 *2 *2) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-147)) + (-4 *3 (-308)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) + (-5 *1 (-977 *3 *4 *5 *6))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-747))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1240 *5)) (-4 *5 (-365)) + (-4 *7 (-1240 (-409 *6))) + (-5 *2 (-2 (|:| |answer| *3) (|:| -3137 *3))) + (-5 *1 (-564 *5 *6 *7 *3)) (-4 *3 (-344 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1240 *5)) (-4 *5 (-365)) + (-5 *2 + (-2 (|:| |answer| (-409 *6)) (|:| -3137 (-409 *6)) + (|:| |specpart| (-409 *6)) (|:| |polypart| *6))) + (-5 *1 (-565 *5 *6)) (-5 *3 (-409 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-644 (-943 (-225))))) (-5 *1 (-470))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *4 (-874)) + (-5 *5 (-921)) (-5 *6 (-644 (-264))) (-5 *2 (-470)) (-5 *1 (-1268)))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *2 (-470)) + (-5 *1 (-1268)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *4 (-644 (-264))) + (-5 *2 (-470)) (-5 *1 (-1268))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1207 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793)) + (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5))))) +(((*1 *2 *2) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-454)) + (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-451 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-594 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-4 *1 (-1099)) (-5 *2 (-1119))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-558)) + (-4 *3 (-949 *7 *5 *6)) + (-5 *2 + (-2 (|:| -2201 (-771)) (|:| -2397 *3) (|:| |radicand| (-644 *3)))) + (-5 *1 (-953 *5 *6 *7 *3 *8)) (-5 *4 (-771)) + (-4 *8 + (-13 (-365) + (-10 -8 (-15 -3152 ($ *3)) (-15 -2248 (*3 $)) (-15 -2260 (*3 $)))))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-903 *3)) (-4 *3 (-1099)) (-5 *2 (-1101 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1099)) (-5 *2 (-1101 (-644 *4))) (-5 *1 (-904 *4)) + (-5 *3 (-644 *4)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1099)) (-5 *2 (-1101 (-1101 *4))) (-5 *1 (-904 *4)) + (-5 *3 (-1101 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *2 (-1101 *3)) (-5 *1 (-904 *3)) (-4 *3 (-1099))))) +(((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1264 *1)) (-4 *1 (-372 *2 *4)) (-4 *4 (-1240 *2)) + (-4 *2 (-172)))) + ((*1 *2) + (-12 (-4 *4 (-1240 *2)) (-4 *2 (-172)) (-5 *1 (-410 *3 *2 *4)) + (-4 *3 (-411 *2 *4)))) + ((*1 *2) (-12 (-4 *1 (-411 *2 *3)) (-4 *3 (-1240 *2)) (-4 *2 (-172)))) + ((*1 *2) + (-12 (-4 *3 (-1240 *2)) (-5 *2 (-566)) (-5 *1 (-768 *3 *4)) + (-4 *4 (-411 *2 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-949 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *2 (-850)) (-4 *3 (-172)))) + ((*1 *2 *3) + (-12 (-4 *2 (-558)) (-5 *1 (-969 *2 *3)) (-4 *3 (-1240 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1240 *2)) (-4 *2 (-1049)) (-4 *2 (-172))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-644 (-1171 *5))) (-5 *3 (-1171 *5)) + (-4 *5 (-166 *4)) (-4 *4 (-547)) (-5 *1 (-149 *4 *5)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-644 *3)) (-4 *3 (-1240 *5)) + (-4 *5 (-1240 *4)) (-4 *4 (-351)) (-5 *1 (-360 *4 *5 *3)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-644 (-1171 (-566)))) (-5 *3 (-1171 (-566))) + (-5 *1 (-574)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-644 (-1171 *1))) (-5 *3 (-1171 *1)) + (-4 *1 (-909))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1175)) (-5 *6 (-644 (-612 *3))) + (-5 *5 (-612 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *7))) + (-4 *7 (-13 (-454) (-147) (-1038 (-566)) (-639 (-566)))) + (-5 *2 (-2 (|:| -1641 *3) (|:| |coeff| *3))) + (-5 *1 (-559 *7 *3))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-751))))) +(((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1195))))) +(((*1 *2 *3) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-448)) (-5 *3 (-566))))) +(((*1 *1 *2) + (-12 (-5 *2 (-921)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2) + (-4 *4 (-365)) (-14 *5 (-993 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-183 (-139)))) (-5 *1 (-140))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1256 *2 *3 *4)) (-4 *2 (-1049)) (-14 *3 (-1175)) + (-14 *4 *2)))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1240 *2)) (-4 *2 (-1049)) (-4 *2 (-558))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) @@ -1286,37 +1788,56 @@ ((*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1199)))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-644 (-483 *4 *5))) (-5 *3 (-644 (-864 *4))) - (-14 *4 (-644 (-1175))) (-4 *5 (-454)) (-5 *1 (-473 *4 *5 *6)) - (-4 *6 (-454))))) -(((*1 *1 *1) - (-12 (-4 *2 (-308)) (-4 *3 (-992 *2)) (-4 *4 (-1240 *3)) - (-5 *1 (-415 *2 *3 *4 *5)) (-4 *5 (-13 (-411 *3 *4) (-1038 *3)))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-921)) (-5 *1 (-1100 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) -(((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-566))) (-5 *1 (-1047))))) -(((*1 *2 *3 *3 *2 *4) - (-12 (-5 *3 (-689 *2)) (-5 *4 (-566)) - (-4 *2 (-13 (-308) (-10 -8 (-15 -3184 ((-420 $) $))))) - (-4 *5 (-1240 *2)) (-5 *1 (-501 *2 *5 *6)) (-4 *6 (-411 *2 *5))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) + (-12 (-5 *3 (-644 (-247 *4 *5))) (-5 *2 (-247 *4 *5)) + (-14 *4 (-644 (-1175))) (-4 *5 (-454)) (-5 *1 (-631 *4 *5))))) +(((*1 *2) + (-12 (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-909)) + (-5 *1 (-459 *3 *4 *2 *5)) (-4 *5 (-949 *2 *3 *4)))) + ((*1 *2) + (-12 (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-909)) + (-5 *1 (-906 *2 *3 *4 *5)) (-4 *5 (-949 *2 *3 *4)))) + ((*1 *2) (-12 (-4 *2 (-909)) (-5 *1 (-907 *2 *3)) (-4 *3 (-1240 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-780 *5 (-864 *6)))) (-5 *4 (-112)) (-4 *5 (-454)) + (-14 *6 (-644 (-1175))) (-5 *2 - (-2 (|:| -2233 *4) (|:| -1465 *4) (|:| |totalpts| (-566)) - (|:| |success| (-112)))) - (-5 *1 (-789)) (-5 *5 (-566))))) -(((*1 *2 *3) - (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) - (-4 *7 (-1064 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-644 *7)) (|:| |badPols| (-644 *7)))) - (-5 *1 (-977 *4 *5 *6 *7)) (-5 *3 (-644 *7))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-644 (-1171 *4))) (-5 *3 (-1171 *4)) - (-4 *4 (-909)) (-5 *1 (-663 *4))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) + (-644 (-1145 *5 (-533 (-864 *6)) (-864 *6) (-780 *5 (-864 *6))))) + (-5 *1 (-628 *5 *6))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-644 + (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) + (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225))))) + (-5 *1 (-561)))) + ((*1 *2 *1) + (-12 (-4 *1 (-610 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)) + (-5 *2 (-644 *3)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-644 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) + (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225))))) + (-5 *1 (-803))))) +(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1199)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-604 *2 *3)) (-4 *3 (-1214)) (-4 *2 (-1099)) + (-4 *2 (-850))))) +(((*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-838))) (-5 *1 (-140))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-175))) (-5 *1 (-1084))))) +(((*1 *1) (-5 *1 (-331)))) +(((*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1214))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) @@ -1333,56 +1854,49 @@ ((*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3))))) -(((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1199))))) - ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-921)) (-5 *4 (-381)) (-5 *2 (-1269)) (-5 *1 (-1265)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1175)) (-5 *3 (-381)) (-5 *1 (-1062))))) (((*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) - (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) - (-4 *3 (-1064 *5 *6 *7)) - (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -3570 *4)))) - (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1175)) (-4 *4 (-558)) (-4 *4 (-1099)) - (-5 *1 (-575 *4 *2)) (-4 *2 (-432 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-1155 *3))) (-5 *1 (-1155 *3)) (-4 *3 (-1214))))) -(((*1 *2 *3 *3 *3 *4 *5 *4 *6) - (-12 (-5 *3 (-317 (-566))) (-5 *4 (-1 (-225) (-225))) - (-5 *5 (-1093 (-225))) (-5 *6 (-566)) (-5 *2 (-1209 (-926))) - (-5 *1 (-319)))) - ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-317 (-566))) (-5 *4 (-1 (-225) (-225))) - (-5 *5 (-1093 (-225))) (-5 *6 (-566)) (-5 *7 (-1157)) - (-5 *2 (-1209 (-926))) (-5 *1 (-319)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-317 (-566))) (-5 *4 (-1 (-225) (-225))) - (-5 *5 (-1093 (-225))) (-5 *6 (-225)) (-5 *7 (-566)) - (-5 *2 (-1209 (-926))) (-5 *1 (-319)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) - (-12 (-5 *3 (-317 (-566))) (-5 *4 (-1 (-225) (-225))) - (-5 *5 (-1093 (-225))) (-5 *6 (-225)) (-5 *7 (-566)) (-5 *8 (-1157)) - (-5 *2 (-1209 (-926))) (-5 *1 (-319))))) + (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 *4)) + (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-955)) (-5 *2 (-644 (-644 (-943 (-225))))))) + ((*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-644 (-644 (-943 (-225)))))))) +(((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-926))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-771)) (-5 *1 (-783 *2)) (-4 *2 (-38 (-409 (-566)))) + (-4 *2 (-172))))) +(((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172))))) (((*1 *2 *3) - (-12 (-4 *4 (-351)) (-5 *2 (-112)) (-5 *1 (-216 *4 *3)) - (-4 *3 (-1240 *4))))) + (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3)) + (-4 *3 (-13 (-365) (-1199) (-1002)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) - (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-644 *5))))) -(((*1 *2 *2) - (-12 (-5 *2 (-771)) (-5 *1 (-447 *3)) (-4 *3 (-406)) (-4 *3 (-1049)))) - ((*1 *2) - (-12 (-5 *2 (-771)) (-5 *1 (-447 *3)) (-4 *3 (-406)) (-4 *3 (-1049))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-690 *3))))) + (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-850)) + (-4 *5 (-267 *4)) (-4 *6 (-793)) (-5 *2 (-644 *4))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-771)) (-4 *1 (-1240 *4)) (-4 *4 (-1049)) + (-5 *2 (-1264 *4))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| -3361 (-689 (-409 (-952 *4)))) + (|:| |vec| (-644 (-409 (-952 *4)))) (|:| -2755 (-771)) + (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566))))) + (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) + (-4 *6 (-793)) + (-5 *2 + (-2 (|:| |partsol| (-1264 (-409 (-952 *4)))) + (|:| -2875 (-644 (-1264 (-409 (-952 *4))))))) + (-5 *1 (-924 *4 *5 *6 *7)) (-4 *7 (-949 *4 *6 *5))))) +(((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-644 (-1157))) (-5 *2 (-1157)) (-5 *1 (-1265)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1265)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1265)))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-644 (-1157))) (-5 *2 (-1157)) (-5 *1 (-1266)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1266)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1266))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-751))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) @@ -1399,43 +1913,55 @@ ((*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)) - (-5 *2 (-1157))))) -(((*1 *1 *1 *1) (|partial| -4 *1 (-131)))) -(((*1 *2 *1) - (-12 (-5 *2 (-644 (-1200 *3))) (-5 *1 (-1200 *3)) (-4 *3 (-1099))))) -(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) -(((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-861)))) - ((*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-861))))) -(((*1 *2 *1) (-12 (-5 *2 (-644 (-965))) (-5 *1 (-109)))) - ((*1 *2 *1) (-12 (-5 *2 (-45 (-1157) (-774))) (-5 *1 (-114))))) -(((*1 *2 *1) - (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)) - (-5 *2 (-644 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1099)) - (-5 *2 (-644 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1155 *3)) (-5 *1 (-597 *3)) (-4 *3 (-1049)))) - ((*1 *2 *1) - (-12 (-5 *2 (-644 *3)) (-5 *1 (-735 *3 *4)) (-4 *3 (-1049)) - (-4 *4 (-726)))) - ((*1 *2 *1) (-12 (-4 *1 (-852 *3)) (-4 *3 (-1049)) (-5 *2 (-644 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1255 *3)) (-4 *3 (-1049)) (-5 *2 (-1155 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) - (-4 *6 (-793)) (-4 *7 (-949 *4 *6 *5)) - (-5 *2 - (-2 (|:| |sysok| (-112)) (|:| |z0| (-644 *7)) (|:| |n0| (-644 *7)))) - (-5 *1 (-924 *4 *5 *6 *7)) (-5 *3 (-644 *7))))) -(((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-566)) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) - (-4 *4 (-375 *3)) (-4 *5 (-375 *3))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) - (-4 *4 (-850)) (-4 *2 (-454))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-225) (-225) (-225))) + (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) + (-5 *5 (-1093 (-225))) (-5 *6 (-644 (-264))) (-5 *2 (-1132 (-225))) + (-5 *1 (-697)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-943 (-225)) (-225) (-225))) (-5 *4 (-1093 (-225))) + (-5 *5 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-697)))) + ((*1 *2 *2 *3 *4 *4 *5) + (-12 (-5 *2 (-1132 (-225))) (-5 *3 (-1 (-943 (-225)) (-225) (-225))) + (-5 *4 (-1093 (-225))) (-5 *5 (-644 (-264))) (-5 *1 (-697))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-644 (-771))) (-5 *3 (-112)) (-5 *1 (-1163 *4 *5)) + (-14 *4 (-921)) (-4 *5 (-1049))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) + (-4 *3 (-369 *4)))) + ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *2 *2 *5) + (|partial| -12 (-5 *2 (-843 *4)) (-5 *3 (-612 *4)) (-5 *5 (-112)) + (-4 *4 (-13 (-1199) (-29 *6))) + (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) + (-5 *1 (-224 *6 *4))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-771)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2)) + (-4 *2 (-1240 *4))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-644 *5)) (-5 *4 (-566)) (-4 *5 (-848)) (-4 *5 (-365)) + (-5 *2 (-771)) (-5 *1 (-945 *5 *6)) (-4 *6 (-1240 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1157)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) + ((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-264)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1265)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-690 *3)))) + ((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-690 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-566)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-308)) + (-4 *9 (-949 *8 *6 *7)) + (-5 *2 (-2 (|:| -3877 (-1171 *9)) (|:| |polval| (-1171 *8)))) + (-5 *1 (-742 *6 *7 *8 *9)) (-5 *3 (-1171 *9)) (-5 *4 (-1171 *8))))) +(((*1 *2 *2 *3) + (|partial| -12 + (-5 *3 (-644 (-2 (|:| |func| *2) (|:| |pole| (-112))))) + (-4 *2 (-13 (-432 *4) (-1002))) (-4 *4 (-558)) + (-5 *1 (-277 *4 *2))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) @@ -1452,54 +1978,32 @@ ((*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-926))))) +(((*1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1207 *2 *3 *4 *5)) (-4 *2 (-558)) (-4 *3 (-793)) + (-4 *4 (-850)) (-4 *5 (-1064 *2 *3 *4))))) +(((*1 *2 *2) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) + (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-169 (-225))) (-5 *4 (-566)) (-5 *2 (-1035)) + (-5 *1 (-758))))) +(((*1 *1) (-5 *1 (-580)))) (((*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199)))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) - (-4 *4 (-850)) (-4 *2 (-558)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) - (-4 *4 (-850)) (-4 *2 (-558))))) -(((*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-405 *3)) (-4 *3 (-406)))) - ((*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-405 *3)) (-4 *3 (-406)))) - ((*1 *2 *2) (-12 (-5 *2 (-921)) (|has| *1 (-6 -4405)) (-4 *1 (-406)))) - ((*1 *2) (-12 (-4 *1 (-406)) (-5 *2 (-921)))) - ((*1 *2 *1) (-12 (-4 *1 (-869 *3)) (-5 *2 (-1155 (-566)))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) - (-5 *1 (-751))))) -(((*1 *2 *2 *2 *3 *3 *4 *2 *5) - (|partial| -12 (-5 *3 (-612 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1175))) (-5 *5 (-1171 *2)) - (-4 *2 (-13 (-432 *6) (-27) (-1199))) - (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) - (-5 *1 (-562 *6 *2 *7)) (-4 *7 (-1099)))) - ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) - (|partial| -12 (-5 *3 (-612 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1175))) - (-5 *5 (-409 (-1171 *2))) (-4 *2 (-13 (-432 *6) (-27) (-1199))) - (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) - (-5 *1 (-562 *6 *2 *7)) (-4 *7 (-1099))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| -4222 (-644 (-862))) (|:| -2660 (-644 (-862))) - (|:| |presup| (-644 (-862))) (|:| -1325 (-644 (-862))) - (|:| |args| (-644 (-862))))) - (-5 *1 (-1175))))) -(((*1 *2 *3) - (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-359 *4)) - (-4 *4 (-351))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-771)) (-4 *4 (-13 (-1049) (-717 (-409 (-566))))) - (-4 *5 (-850)) (-5 *1 (-1280 *4 *5 *2)) (-4 *2 (-1285 *5 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-644 (-225))) (-5 *2 (-1264 (-699))) (-5 *1 (-306))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4414)) (-4 *1 (-604 *4 *3)) (-4 *4 (-1099)) - (-4 *3 (-1214)) (-4 *3 (-1099)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1240 *6)) + (-4 *6 (-13 (-27) (-432 *5))) (-4 *5 (-13 (-558) (-1038 (-566)))) + (-4 *8 (-1240 (-409 *7))) (-5 *2 (-587 *3)) + (-5 *1 (-554 *5 *6 *7 *8 *3)) (-4 *3 (-344 *6 *7 *8))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-1265)))) + ((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-1266))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-612 *1)) (-4 *1 (-303))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-921)) (-5 *2 (-1171 *3)) (-5 *1 (-1188 *3)) + (-4 *3 (-365))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) @@ -1516,57 +2020,101 @@ ((*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3))))) -(((*1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-759))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225)) - (-5 *2 (-1035)) (-5 *1 (-752))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-689 (-169 (-409 (-566))))) (-5 *2 (-644 (-169 *4))) - (-5 *1 (-764 *4)) (-4 *4 (-13 (-365) (-848)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-233)) (-4 *3 (-1049)) (-4 *4 (-850)) (-4 *5 (-267 *4)) - (-4 *6 (-793)) (-5 *2 (-1 *1 (-771))) (-4 *1 (-254 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1049)) (-4 *3 (-850)) (-4 *5 (-267 *3)) (-4 *6 (-793)) - (-5 *2 (-1 *1 (-771))) (-4 *1 (-254 *4 *3 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-771)) (-4 *1 (-267 *2)) (-4 *2 (-850))))) -(((*1 *1 *2) - (-12 (-5 *2 (-644 *1)) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) - ((*1 *2 *2 *1) - (|partial| -12 (-5 *2 (-409 *1)) (-4 *1 (-1240 *3)) (-4 *3 (-1049)) - (-4 *3 (-558)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-1240 *2)) (-4 *2 (-1049)) (-4 *2 (-558))))) (((*1 *2 *3) - (-12 (-4 *4 (-1049)) - (-4 *2 (-13 (-406) (-1038 *4) (-365) (-1199) (-285))) - (-5 *1 (-445 *4 *3 *2)) (-4 *3 (-1240 *4)))) - ((*1 *1 *1) (-4 *1 (-547))) - ((*1 *2 *1) (-12 (-5 *2 (-921)) (-5 *1 (-672 *3)) (-4 *3 (-850)))) - ((*1 *2 *1) (-12 (-5 *2 (-921)) (-5 *1 (-677 *3)) (-4 *3 (-850)))) - ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-819 *3)) (-4 *3 (-850)))) - ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-893 *3)) (-4 *3 (-850)))) - ((*1 *2 *1) (-12 (-4 *1 (-995 *3)) (-4 *3 (-1214)) (-5 *2 (-771)))) - ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-1211 *3)) (-4 *3 (-1214)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1214)) (-4 *2 (-1002)) - (-4 *2 (-1049))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-331))))) + (-12 (-4 *2 (-1240 *4)) (-5 *1 (-809 *4 *2 *3 *5)) + (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *3 (-656 *2)) + (-4 *5 (-656 (-409 *2)))))) +(((*1 *1 *1 *1) (-5 *1 (-225))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-771)) (-5 *2 (-1 (-381))) (-5 *1 (-1040)))) + ((*1 *1 *1 *1) (-4 *1 (-1138)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-689 *3)) (-4 *3 (-308)) (-5 *1 (-700 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-555))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-454) (-1038 (-566)))) (-4 *3 (-558)) + (-5 *1 (-41 *3 *2)) (-4 *2 (-432 *3)) + (-4 *2 + (-13 (-365) (-303) + (-10 -8 (-15 -2248 ((-1124 *3 (-612 $)) $)) + (-15 -2260 ((-1124 *3 (-612 $)) $)) + (-15 -3152 ($ (-1124 *3 (-612 $)))))))))) +(((*1 *1) (-5 *1 (-1062)))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1175)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-702 *3 *5 *6 *7)) + (-4 *3 (-614 (-538))) (-4 *5 (-1214)) (-4 *6 (-1214)) + (-4 *7 (-1214)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1175)) (-5 *2 (-1 *6 *5)) (-5 *1 (-706 *3 *5 *6)) + (-4 *3 (-614 (-538))) (-4 *5 (-1214)) (-4 *6 (-1214))))) +(((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-538))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-644 *1)) (-5 *3 (-644 *7)) (-4 *1 (-1070 *4 *5 *6 *7)) + (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-1064 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 *1)) + (-4 *1 (-1070 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-644 *1)) (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) + (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-644 *1)) + (-4 *1 (-1070 *4 *5 *6 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1199)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) + ((*1 *1 *1) (-4 *1 (-495))) + ((*1 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1160 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1161 *3))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-381)) (-5 *1 (-1062))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2164 *3))) + (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-558)) - (-4 *3 (-949 *7 *5 *6)) - (-5 *2 - (-2 (|:| -2852 (-771)) (|:| -1364 *3) (|:| |radicand| (-644 *3)))) - (-5 *1 (-953 *5 *6 *7 *3 *8)) (-5 *4 (-771)) - (-4 *8 + (-12 (-5 *3 (-409 (-566))) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-558)) (-4 *8 (-949 *7 *5 *6)) + (-5 *2 (-2 (|:| -2201 (-771)) (|:| -2397 *9) (|:| |radicand| *9))) + (-5 *1 (-953 *5 *6 *7 *8 *9)) (-5 *4 (-771)) + (-4 *9 (-13 (-365) - (-10 -8 (-15 -3783 ($ *3)) (-15 -4326 (*3 $)) (-15 -4339 (*3 $)))))))) -(((*1 *1 *2) - (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1099)) (-5 *1 (-905 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-3 (-409 (-952 *5)) (-1164 (-1175) (-952 *5)))) - (-4 *5 (-454)) (-5 *2 (-644 (-689 (-409 (-952 *5))))) - (-5 *1 (-293 *5)) (-5 *4 (-689 (-409 (-952 *5))))))) + (-10 -8 (-15 -3152 ($ *8)) (-15 -2248 (*8 $)) (-15 -2260 (*8 $)))))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-771)) (-4 *1 (-376 *3 *4)) (-4 *3 (-850)) + (-4 *4 (-172)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-771)) (-4 *1 (-1285 *3 *4)) (-4 *3 (-850)) + (-4 *4 (-1049))))) +(((*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-112))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1255 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -1470 *4)))) + (-5 *1 (-1140 *3 *4)) (-4 *3 (-13 (-1099) (-34))) + (-4 *4 (-13 (-1099) (-34)))))) (((*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) @@ -1583,57 +2131,28 @@ ((*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1004 *3)) (-14 *3 (-566))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-771)) (-4 *5 (-558)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-969 *5 *3)) (-4 *3 (-1240 *5))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) - (-4 *4 (-375 *2))))) -(((*1 *1) (-5 *1 (-1081)))) -(((*1 *2 *1) - (-12 (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -2561 (-566))))) - (-5 *1 (-363 *3)) (-4 *3 (-1099)))) - ((*1 *2 *1) - (-12 (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -2561 (-771))))) - (-5 *1 (-388 *3)) (-4 *3 (-1099)))) - ((*1 *2 *1) - (-12 (-5 *2 (-644 (-2 (|:| -3719 *3) (|:| -2852 (-566))))) - (-5 *1 (-420 *3)) (-4 *3 (-558)))) - ((*1 *2 *1) - (-12 (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -2561 (-771))))) - (-5 *1 (-819 *3)) (-4 *3 (-850))))) + (|partial| -12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365))))) (((*1 *2 *2) - (-12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) - (-5 *1 (-523 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-558)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) - (-4 *7 (-992 *4)) (-4 *2 (-687 *7 *8 *9)) - (-5 *1 (-524 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-687 *4 *5 *6)) - (-4 *8 (-375 *7)) (-4 *9 (-375 *7)))) - ((*1 *1 *1) - (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) - (-4 *4 (-375 *2)) (-4 *2 (-308)))) - ((*1 *2 *2) - (-12 (-4 *3 (-308)) (-4 *3 (-172)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-5 *1 (-688 *3 *4 *5 *2)) - (-4 *2 (-687 *3 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-689 *3)) (-4 *3 (-308)) (-5 *1 (-700 *3)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1053 *2 *3 *4 *5 *6)) (-4 *4 (-1049)) - (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *2 *4)) (-4 *4 (-308))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-644 (-612 *2))) (-5 *4 (-1175)) - (-4 *2 (-13 (-27) (-1199) (-432 *5))) - (-4 *5 (-13 (-558) (-1038 (-566)) (-639 (-566)))) - (-5 *1 (-278 *5 *2))))) -(((*1 *1 *1) - (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) + (|partial| -12 (-5 *2 (-409 *4)) (-4 *4 (-1240 *3)) + (-4 *3 (-13 (-365) (-147) (-1038 (-566)))) (-5 *1 (-570 *3 *4))))) +(((*1 *2 *2) + (-12 (-5 *2 (-644 *3)) (-4 *3 (-1240 (-566))) (-5 *1 (-488 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-644 (-2 (|:| |k| (-672 *3)) (|:| |c| *4)))) + (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-850)) + (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-14 *5 (-921))))) +(((*1 *2) + (-12 (-4 *3 (-13 (-558) (-1038 (-566)))) (-5 *2 (-1269)) + (-5 *1 (-435 *3 *4)) (-4 *4 (-432 *3))))) +(((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1006)))) + ((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1006))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-13 (-848) (-365))) (-5 *2 (-112)) (-5 *1 (-1060 *4 *3)) + (-4 *3 (-1240 *4))))) +(((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1240 (-48)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099))))) (((*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) @@ -1650,50 +2169,57 @@ ((*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-365)) (-5 *1 (-766 *2 *3)) (-4 *2 (-708 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *5 (-1157)) - (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-82 PDEF)))) - (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1035)) - (-5 *1 (-750))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) - (-5 *2 (-2 (|:| |k| (-819 *3)) (|:| |c| *4)))))) +(((*1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-759))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850))))) (((*1 *2 *3) - (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1191 *4 *5)) - (-4 *4 (-1099)) (-4 *5 (-1099))))) + (-12 (-4 *4 (-1049)) (-5 *2 (-566)) (-5 *1 (-445 *4 *3 *5)) + (-4 *3 (-1240 *4)) + (-4 *5 (-13 (-406) (-1038 *4) (-365) (-1199) (-285)))))) +(((*1 *2 *3) (-12 (-5 *3 (-644 (-52))) (-5 *2 (-1269)) (-5 *1 (-863))))) (((*1 *2 *3) - (-12 (-4 *4 (-558)) (-5 *2 (-771)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-419 *4))))) -(((*1 *2 *2) - (-12 (-5 *2 (-644 (-483 *3 *4))) (-14 *3 (-644 (-1175))) - (-4 *4 (-454)) (-5 *1 (-631 *3 *4))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-850)) (-5 *4 (-644 *6)) - (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-644 *4)))) - (-5 *1 (-1185 *6)) (-5 *5 (-644 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-793)) - (-4 *3 (-13 (-850) (-10 -8 (-15 -1348 ((-1175) $))))) (-4 *5 (-558)) - (-5 *1 (-732 *4 *3 *5 *2)) (-4 *2 (-949 (-409 (-952 *5)) *4 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *4 (-1049)) (-4 *5 (-793)) - (-4 *3 - (-13 (-850) - (-10 -8 (-15 -1348 ((-1175) $)) - (-15 -1385 ((-3 $ "failed") (-1175)))))) - (-5 *1 (-984 *4 *5 *3 *2)) (-4 *2 (-949 (-952 *4) *5 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-644 *6)) - (-4 *6 - (-13 (-850) - (-10 -8 (-15 -1348 ((-1175) $)) - (-15 -1385 ((-3 $ "failed") (-1175)))))) - (-4 *4 (-1049)) (-4 *5 (-793)) (-5 *1 (-984 *4 *5 *6 *2)) - (-4 *2 (-949 (-952 *4) *5 *6))))) + (-12 (-14 *4 (-644 (-1175))) (-14 *5 (-771)) + (-5 *2 + (-644 + (-506 (-409 (-566)) (-240 *5 (-771)) (-864 *4) + (-247 *4 (-409 (-566)))))) + (-5 *1 (-507 *4 *5)) + (-5 *3 + (-506 (-409 (-566)) (-240 *5 (-771)) (-864 *4) + (-247 *4 (-409 (-566)))))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-432 *3) (-1002))) (-5 *1 (-277 *3 *2)) + (-4 *3 (-558))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) + (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) + (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) + (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-76 G JACOBG JACGEP)))) + (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-749))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1237 *5 *4)) (-4 *4 (-454)) (-4 *4 (-820)) + (-14 *5 (-1175)) (-5 *2 (-566)) (-5 *1 (-1113 *4 *5))))) +(((*1 *1 *1 *1) (|partial| -4 *1 (-131)))) +(((*1 *1) + (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-566)) (-14 *3 (-771)) + (-4 *4 (-172))))) +(((*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-52))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1160 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1161 *3))))) (((*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) @@ -1703,6 +2229,9 @@ ((*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) + (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) ((*1 *1 *1) (-4 *1 (-495))) ((*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) @@ -1710,61 +2239,42 @@ ((*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-566)) (-5 *2 (-1269)) (-5 *1 (-1006))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) -(((*1 *1 *1 *1 *1 *2) - (-12 (-5 *2 (-771)) (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) - (-4 *4 (-793)) (-4 *5 (-850)) (-4 *3 (-558))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) - (-12 (-5 *4 (-644 (-112))) (-5 *5 (-689 (-225))) - (-5 *6 (-689 (-566))) (-5 *7 (-225)) (-5 *3 (-566)) (-5 *2 (-1035)) - (-5 *1 (-754))))) (((*1 *2) - (|partial| -12 (-4 *3 (-558)) (-4 *3 (-172)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -2365 (-644 *1)))) - (-4 *1 (-369 *3)))) + (-12 (-4 *4 (-1218)) (-4 *5 (-1240 *4)) (-4 *6 (-1240 (-409 *5))) + (-5 *2 (-771)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) ((*1 *2) - (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-455 *3 *4 *5 *6)) - (|:| -2365 (-644 (-455 *3 *4 *5 *6))))) - (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-921)) - (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3)))))) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) + (-4 *5 (-1240 (-409 *4))) (-5 *2 (-771)))) + ((*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-771))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-454)) (-4 *4 (-558)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3177 *4))) + (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850)) (-4 *2 (-558))))) +(((*1 *1 *1) + (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) +(((*1 *2) + (-12 (-4 *3 (-558)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-419 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 (-2 (|:| |deg| (-771)) (|:| -3527 *5)))) + (-4 *5 (-1240 *4)) (-4 *4 (-351)) (-5 *2 (-644 *5)) + (-5 *1 (-216 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-2 (|:| -1624 *5) (|:| -3902 (-566))))) + (-5 *4 (-566)) (-4 *5 (-1240 *4)) (-5 *2 (-644 *5)) + (-5 *1 (-696 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1255 *4)) (-5 *1 (-1257 *4 *2)) - (-4 *4 (-38 (-409 (-566))))))) -(((*1 *2 *1) (-12 (-4 *1 (-1099)) (-5 *2 (-1157))))) -(((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-365) (-303) - (-10 -8 (-15 -4326 ((-1124 *3 (-612 $)) $)) - (-15 -4339 ((-1124 *3 (-612 $)) $)) - (-15 -3783 ($ (-1124 *3 (-612 $))))))))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-365) (-303) - (-10 -8 (-15 -4326 ((-1124 *3 (-612 $)) $)) - (-15 -4339 ((-1124 *3 (-612 $)) $)) - (-15 -3783 ($ (-1124 *3 (-612 $))))))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-644 *2)) - (-4 *2 - (-13 (-365) (-303) - (-10 -8 (-15 -4326 ((-1124 *4 (-612 $)) $)) - (-15 -4339 ((-1124 *4 (-612 $)) $)) - (-15 -3783 ($ (-1124 *4 (-612 $))))))) - (-4 *4 (-558)) (-5 *1 (-41 *4 *2)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-644 (-612 *2))) - (-4 *2 - (-13 (-365) (-303) - (-10 -8 (-15 -4326 ((-1124 *4 (-612 $)) $)) - (-15 -4339 ((-1124 *4 (-612 $)) $)) - (-15 -3783 ($ (-1124 *4 (-612 $))))))) - (-4 *4 (-558)) (-5 *1 (-41 *4 *2))))) -(((*1 *2) (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-105))))) + (-12 (-4 *5 (-793)) (-4 *4 (-850)) (-4 *6 (-308)) (-5 *2 (-420 *3)) + (-5 *1 (-742 *5 *4 *6 *3)) (-4 *3 (-949 *6 *5 *4))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-295 *2)) (-4 *2 (-726)) (-4 *2 (-1214))))) +(((*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-1267))))) +(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-241)))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 (-1157))) (-5 *2 (-1269)) (-5 *1 (-241))))) (((*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) @@ -1784,26 +2294,55 @@ ((*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-1049)) (-5 *1 (-446 *3 *2)) (-4 *2 (-1240 *3))))) -(((*1 *1 *2) (-12 (-5 *1 (-1026 *2)) (-4 *2 (-1214))))) -(((*1 *2 *1) - (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-850)) - (-4 *5 (-267 *4)) (-4 *6 (-793)) (-5 *2 (-644 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1099)) (-4 *1 (-903 *3))))) +(((*1 *2) + (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) + (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-1269)) + (-5 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *7 (-1070 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) + (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-1269)) + (-5 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *7 (-1070 *3 *4 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) (((*1 *2 *3) - (-12 (-5 *3 (-689 (-317 (-225)))) (-5 *2 (-381)) (-5 *1 (-205))))) + (-12 (-4 *4 (-558)) (-5 *2 (-771)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-419 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-365)) (-4 *4 (-558)) (-4 *5 (-1240 *4)) + (-5 *2 (-2 (|:| -2426 (-623 *4 *5)) (|:| -4378 (-409 *5)))) + (-5 *1 (-623 *4 *5)) (-5 *3 (-409 *5)))) + ((*1 *2 *1) + (-12 (-5 *2 (-644 (-1163 *3 *4))) (-5 *1 (-1163 *3 *4)) + (-14 *3 (-921)) (-4 *4 (-1049)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-454)) (-4 *3 (-1049)) + (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) + (-4 *1 (-1240 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1199)))))) (((*1 *2 *1) - (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-558)) - (-5 *2 (-1171 *3))))) -(((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-566)) (-5 *1 (-1155 *3)) (-4 *3 (-1214)))) - ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4415)) (-4 *1 (-1252 *2)) (-4 *2 (-1214))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-976 *3 *4 *2 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) - (-4 *2 (-850)) (-4 *5 (-1064 *3 *4 *2))))) -(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-874))))) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1099)) + (-5 *2 (-2 (|:| -2397 (-566)) (|:| |var| (-612 *1)))) + (-4 *1 (-432 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-365)) + (-5 *1 (-523 *2 *4 *5 *3)) (-4 *3 (-687 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) + (|has| *2 (-6 (-4416 "*"))) (-4 *2 (-1049)))) + ((*1 *2 *3) + (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-172)) + (-5 *1 (-688 *2 *4 *5 *3)) (-4 *3 (-687 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1122 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) + (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4416 "*"))) (-4 *2 (-1049))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4414)) (-4 *1 (-151 *2)) (-4 *2 (-1214)) + (-4 *2 (-1099))))) (((*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) @@ -1823,558 +2362,2221 @@ ((*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3))))) -(((*1 *2 *1) - (-12 +(((*1 *1 *1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-558)) (-4 *2 (-1049)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-969 *3 *2)) (-4 *2 (-1240 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850)) (-4 *2 (-558)))) + ((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *3 (-1064 *4 *5 *6)) + (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -1470 *1)))) + (-4 *1 (-1070 *4 *5 *6 *3))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-921)) (-4 *5 (-558)) (-5 *2 (-689 *5)) + (-5 *1 (-956 *5 *3)) (-4 *3 (-656 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1175)) (-5 *5 (-644 *3)) + (-4 *3 (-13 (-27) (-1199) (-432 *6))) + (-4 *6 (-13 (-454) (-147) (-1038 (-566)) (-639 (-566)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-559 *6 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 (-2 (|:| -1624 *4) (|:| -3902 (-566))))) + (-4 *4 (-1240 (-566))) (-5 *2 (-737 (-771))) (-5 *1 (-444 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-420 *5)) (-4 *5 (-1240 *4)) (-4 *4 (-1049)) + (-5 *2 (-737 (-771))) (-5 *1 (-446 *4 *5))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) + (-5 *4 (-689 (-1171 *8))) (-4 *5 (-1049)) (-4 *8 (-1049)) + (-4 *6 (-1240 *5)) (-5 *2 (-689 *6)) (-5 *1 (-503 *5 *6 *7 *8)) + (-4 *7 (-1240 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-547))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 (-644 *7) *7 (-1171 *7))) (-5 *5 (-1 (-420 *7) *7)) + (-4 *7 (-1240 *6)) (-4 *6 (-13 (-365) (-147) (-1038 (-409 (-566))))) + (-5 *2 (-644 (-2 (|:| |frac| (-409 *7)) (|:| -3434 *3)))) + (-5 *1 (-809 *6 *7 *3 *8)) (-4 *3 (-656 *7)) + (-4 *8 (-656 (-409 *7))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-420 *6) *6)) (-4 *6 (-1240 *5)) + (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-5 *2 - (-644 - (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) - (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225))))) - (-5 *1 (-561)))) + (-644 (-2 (|:| |frac| (-409 *6)) (|:| -3434 (-654 *6 (-409 *6)))))) + (-5 *1 (-812 *5 *6)) (-5 *3 (-654 *6 (-409 *6)))))) +(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-647 *2)) (-4 *2 (-1099))))) +(((*1 *2 *2 *1 *3 *4) + (-12 (-5 *2 (-644 *8)) (-5 *3 (-1 *8 *8 *8)) + (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1207 *5 *6 *7 *8)) (-4 *5 (-558)) + (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-1064 *5 *6 *7))))) +(((*1 *1 *1) (-4 *1 (-95))) + ((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1160 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1161 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-303)))) + ((*1 *1 *1) (-4 *1 (-303))) ((*1 *1 *1) (-5 *1 (-862)))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-169 (-225))) (-5 *5 (-566)) (-5 *6 (-1157)) + (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-644 (-1213))) (-5 *3 (-1213)) (-5 *1 (-681))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-644 *6)) (-5 *4 (-644 (-1175))) (-4 *6 (-365)) + (-5 *2 (-644 (-295 (-952 *6)))) (-5 *1 (-540 *5 *6 *7)) + (-4 *5 (-454)) (-4 *7 (-13 (-365) (-848)))))) +(((*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-331))))) +(((*1 *2 *3) + (-12 (-5 *3 (-689 (-317 (-225)))) (-5 *2 (-381)) (-5 *1 (-205))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-566)) (-5 *2 (-1269)) (-5 *1 (-1266)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-112)) (-5 *5 (-689 (-169 (-225)))) + (-5 *2 (-1035)) (-5 *1 (-755))))) +(((*1 *2 *1) (-12 (-4 *1 (-556 *2)) (-4 *2 (-13 (-406) (-1199))))) + ((*1 *1 *1 *1) (-4 *1 (-793)))) +(((*1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-850)))) + ((*1 *1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) + ((*1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-850)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-1207 *2 *3 *4 *5)) (-4 *2 (-558)) + (-4 *3 (-793)) (-4 *4 (-850)) (-4 *5 (-1064 *2 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-771)) (-4 *1 (-1252 *3)) (-4 *3 (-1214)))) + ((*1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-538))))) +(((*1 *1 *1) (-4 *1 (-95))) + ((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1160 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1161 *3))))) +(((*1 *1) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1199)))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-771)) (-5 *2 (-1269)) (-5 *1 (-1265)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-771)) (-5 *2 (-1269)) (-5 *1 (-1266))))) +(((*1 *1) (-5 *1 (-157))) + ((*1 *2 *1) (-12 (-4 *1 (-1044 *2)) (-4 *2 (-23))))) +(((*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558)) (-4 *2 (-547)))) + ((*1 *1 *1) (-4 *1 (-1059)))) +(((*1 *1) (-5 *1 (-130)))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-644 (-689 *6))) (-5 *4 (-112)) (-5 *5 (-566)) + (-5 *2 (-689 *6)) (-5 *1 (-1029 *6)) (-4 *6 (-365)) (-4 *6 (-1049)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-644 (-689 *4))) (-5 *2 (-689 *4)) (-5 *1 (-1029 *4)) + (-4 *4 (-365)) (-4 *4 (-1049)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-644 (-689 *5))) (-5 *4 (-566)) (-5 *2 (-689 *5)) + (-5 *1 (-1029 *5)) (-4 *5 (-365)) (-4 *5 (-1049))))) +(((*1 *2 *1) + (-12 (-5 *2 (-3 (|:| |fst| (-436)) (|:| -3907 "void"))) + (-5 *1 (-439))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) + (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-4 *5 (-370)) + (-5 *2 (-771))))) +(((*1 *2 *1) + (-12 (-4 *1 (-604 *3 *2)) (-4 *3 (-1099)) (-4 *3 (-850)) + (-4 *2 (-1214)))) + ((*1 *2 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-850)))) + ((*1 *2 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) ((*1 *2 *1) - (-12 (-4 *1 (-610 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)) - (-5 *2 (-644 *3)))) + (-12 (-4 *2 (-1214)) (-5 *1 (-873 *2 *3)) (-4 *3 (-1214)))) + ((*1 *2 *1) (-12 (-5 *2 (-672 *3)) (-5 *1 (-893 *3)) (-4 *3 (-850)))) ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1207 *3 *4 *5 *2)) (-4 *3 (-558)) + (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-771)) (-4 *1 (-1252 *3)) (-4 *3 (-1214)))) + ((*1 *2 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214))))) +(((*1 *1) (-5 *1 (-1269)))) +(((*1 *2 *1) (-12 (-5 *2 - (-644 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) - (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225))))) - (-5 *1 (-803))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1175)) (-4 *5 (-365)) (-5 *2 (-1155 (-1155 (-952 *5)))) - (-5 *1 (-1272 *5)) (-5 *4 (-1155 (-952 *5)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-943 *4)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) - (-4 *4 (-1049))))) -(((*1 *2 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) - (-5 *1 (-751))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-771)) (-5 *3 (-112)) (-5 *1 (-110)))) - ((*1 *2 *2) (-12 (-5 *2 (-921)) (|has| *1 (-6 -4405)) (-4 *1 (-406)))) - ((*1 *2) (-12 (-4 *1 (-406)) (-5 *2 (-921))))) + (-3 (|:| |nullBranch| "null") + (|:| |assignmentBranch| + (-2 (|:| |var| (-1175)) + (|:| |arrayIndex| (-644 (-952 (-566)))) + (|:| |rand| + (-2 (|:| |ints2Floats?| (-112)) (|:| -4308 (-862)))))) + (|:| |arrayAssignmentBranch| + (-2 (|:| |var| (-1175)) (|:| |rand| (-862)) + (|:| |ints2Floats?| (-112)))) + (|:| |conditionalBranch| + (-2 (|:| |switch| (-1174)) (|:| |thenClause| (-331)) + (|:| |elseClause| (-331)))) + (|:| |returnBranch| + (-2 (|:| -2872 (-112)) + (|:| -2876 + (-2 (|:| |ints2Floats?| (-112)) (|:| -4308 (-862)))))) + (|:| |blockBranch| (-644 (-331))) + (|:| |commentBranch| (-644 (-1157))) (|:| |callBranch| (-1157)) + (|:| |forBranch| + (-2 (|:| -2821 (-1091 (-952 (-566)))) + (|:| |span| (-952 (-566))) (|:| -1377 (-331)))) + (|:| |labelBranch| (-1119)) + (|:| |loopBranch| (-2 (|:| |switch| (-1174)) (|:| -1377 (-331)))) + (|:| |commonBranch| + (-2 (|:| -1368 (-1175)) (|:| |contents| (-644 (-1175))))) + (|:| |printBranch| (-644 (-862))))) + (-5 *1 (-331))))) (((*1 *1 *2) - (-12 (-5 *2 (-644 *1)) (-4 *3 (-1049)) (-4 *1 (-687 *3 *4 *5)) - (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-644 *3)) (-4 *3 (-1049)) (-4 *1 (-687 *3 *4 *5)) - (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1264 *3)) (-4 *3 (-1049)) (-5 *1 (-689 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-644 *4)) (-4 *4 (-1049)) (-4 *1 (-1122 *3 *4 *5 *6)) - (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4))))) + (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1099)) (-5 *1 (-905 *3))))) +(((*1 *1 *1) (-4 *1 (-95))) + ((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1160 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1161 *3))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-556 *2)) (-4 *2 (-13 (-406) (-1199)))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-792)))) + ((*1 *2 *1) + (-12 (-5 *2 (-771)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1049)) + (-14 *4 (-644 (-1175))))) + ((*1 *2 *1) + (-12 (-5 *2 (-566)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1049) (-850))) + (-14 *4 (-644 (-1175))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1049)) (-4 *3 (-850)) + (-4 *5 (-267 *3)) (-4 *6 (-793)) (-5 *2 (-771)))) + ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-276)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1171 *8)) (-5 *4 (-644 *6)) (-4 *6 (-850)) + (-4 *8 (-949 *7 *5 *6)) (-4 *5 (-793)) (-4 *7 (-1049)) + (-5 *2 (-644 (-771))) (-5 *1 (-322 *5 *6 *7 *8)))) + ((*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-921)))) + ((*1 *2 *1) + (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)) + (-5 *2 (-771)))) + ((*1 *2 *1) (-12 (-4 *1 (-472 *3 *2)) (-4 *3 (-172)) (-4 *2 (-23)))) + ((*1 *2 *1) + (-12 (-4 *3 (-558)) (-5 *2 (-566)) (-5 *1 (-623 *3 *4)) + (-4 *4 (-1240 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-708 *3)) (-4 *3 (-1049)) (-5 *2 (-771)))) + ((*1 *2 *1) (-12 (-4 *1 (-852 *3)) (-4 *3 (-1049)) (-5 *2 (-771)))) + ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) + ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-905 *3)) (-4 *3 (-1099)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-644 *6)) (-4 *1 (-949 *4 *5 *6)) (-4 *4 (-1049)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 (-771))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-949 *4 *5 *3)) (-4 *4 (-1049)) (-4 *5 (-793)) + (-4 *3 (-850)) (-5 *2 (-771)))) + ((*1 *2 *1) + (-12 (-4 *1 (-973 *3 *2 *4)) (-4 *3 (-1049)) (-4 *4 (-850)) + (-4 *2 (-792)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) + (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-771)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1226 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1255 *3)) + (-5 *2 (-566)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1247 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1224 *3)) + (-5 *2 (-409 (-566))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1283 *3)) (-4 *3 (-365)) (-5 *2 (-833 (-921))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1285 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) + (-5 *2 (-771))))) (((*1 *2 *3) - (-12 (-5 *3 (-921)) (-5 *2 (-1264 (-1264 (-566)))) (-5 *1 (-468))))) -(((*1 *1 *1 *1) (-5 *1 (-862)))) + (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-829)) (-5 *3 (-1157))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1264 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) + (-4 *5 (-1240 *4)) (-5 *2 (-689 *4)))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-4 *5 (-1240 *4)) (-5 *2 (-689 *4)) + (-5 *1 (-410 *3 *4 *5)) (-4 *3 (-411 *4 *5)))) + ((*1 *2) + (-12 (-4 *1 (-411 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1240 *3)) + (-5 *2 (-689 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1175)) (-5 *5 (-1093 (-225))) (-5 *2 (-927)) + (-5 *1 (-925 *3)) (-4 *3 (-614 (-538))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1175)) (-5 *2 (-927)) (-5 *1 (-925 *3)) + (-4 *3 (-614 (-538))))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-927)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1093 (-225))) + (-5 *1 (-927))))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-566)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1214)) + (-4 *4 (-375 *2)) (-4 *5 (-375 *2)))) + ((*1 *2 *1 *3 *2) + (-12 (|has| *1 (-6 -4415)) (-4 *1 (-289 *3 *2)) (-4 *3 (-1099)) + (-4 *2 (-1214))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-508)) (-5 *1 (-281)))) + ((*1 *2 *1) + (-12 (-5 *2 (-3 (-566) (-225) (-508) (-1157) (-1180))) + (-5 *1 (-1180))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-644 (-943 *4))) (-4 *1 (-1133 *4)) (-4 *4 (-1049)) + (-5 *2 (-771))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *2 (-1264 *4)) (-5 *3 (-689 *4)) (-4 *4 (-365)) + (-5 *1 (-667 *4)))) + ((*1 *2 *3 *2) + (|partial| -12 (-4 *4 (-365)) + (-4 *5 (-13 (-375 *4) (-10 -7 (-6 -4415)))) + (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4415)))) + (-5 *1 (-668 *4 *5 *2 *3)) (-4 *3 (-687 *4 *5 *2)))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *4 (-644 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-365)) + (-5 *1 (-814 *2 *3)) (-4 *3 (-656 *2)))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) + (-5 *1 (-1127 *3 *2)) (-4 *3 (-1240 *2))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-644 (-952 *3))) (-4 *3 (-454)) - (-5 *1 (-362 *3 *4)) (-14 *4 (-644 (-1175))))) + (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1199)))))) +(((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-225))) ((*1 *2 *2) - (|partial| -12 (-5 *2 (-644 (-780 *3 (-864 *4)))) (-4 *3 (-454)) - (-14 *4 (-644 (-1175))) (-5 *1 (-628 *3 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-587 *3)) (-4 *3 (-365))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) - (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) - (-5 *2 (-112))))) -(((*1 *1 *1) (-4 *1 (-629))) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002))))) ((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-630 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1002) (-1199)))))) -(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) - (-12 (-5 *3 (-1157)) (-5 *5 (-689 (-225))) (-5 *6 (-689 (-566))) - (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-757))))) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) + (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) + ((*1 *1 *1 *1) (-5 *1 (-381))) + ((*1 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1160 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1161 *3))))) (((*1 *2 *3) + (-12 (-5 *3 (-952 *5)) (-4 *5 (-1049)) (-5 *2 (-483 *4 *5)) + (-5 *1 (-944 *4 *5)) (-14 *4 (-644 (-1175)))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1214))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-771)) (-4 *1 (-656 *3)) (-4 *3 (-1049)) (-4 *3 (-365)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-771)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) + (-5 *1 (-659 *5 *2)) (-4 *2 (-656 *5))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1214)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-850)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-850)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-566)) (-4 *1 (-283 *3)) (-4 *3 (-1214)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-566)) (-4 *1 (-283 *2)) (-4 *2 (-1214)))) + ((*1 *1 *2) (-12 - (-5 *3 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) - (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 - (-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381)))) - (-5 *1 (-205))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *2 (-644 (-1171 *7))) (-5 *3 (-1171 *7)) - (-4 *7 (-949 *5 *6 *4)) (-4 *5 (-909)) (-4 *6 (-793)) - (-4 *4 (-850)) (-5 *1 (-906 *5 *6 *4 *7))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-469)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-469))))) -(((*1 *2) (-12 (-5 *2 (-644 (-921))) (-5 *1 (-1267)))) - ((*1 *2 *2) (-12 (-5 *2 (-644 (-921))) (-5 *1 (-1267))))) -(((*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1157)) (-5 *1 (-710))))) + (-2 + (|:| -2674 + (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) + (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (|:| -2636 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1155 (-225))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -2821 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))))) + (-5 *1 (-561)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-771)) (-4 *1 (-695 *2)) (-4 *2 (-1099)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 + (|:| -2674 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) + (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (|:| -2636 + (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) + (|:| |expense| (-381)) (|:| |accuracy| (-381)) + (|:| |intermediateResults| (-381)))))) + (-5 *1 (-803)))) + ((*1 *2 *3 *4) + (-12 (-5 *2 (-1269)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-1099)) + (-4 *4 (-1099))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-780 *5 (-864 *6)))) (-5 *4 (-112)) (-4 *5 (-454)) + (-14 *6 (-644 (-1175))) (-5 *2 (-644 (-1046 *5 *6))) + (-5 *1 (-628 *5 *6))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-365)) (-5 *1 (-896 *2 *3)) + (-4 *2 (-1240 *3))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) + (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4415)) (-4 *1 (-491 *3)) + (-4 *3 (-1214))))) +(((*1 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) + (-5 *1 (-1127 *3 *2)) (-4 *3 (-1240 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) - (-5 *2 (-1264 (-689 *4))))) + (-12 (-5 *2 (-566)) (-5 *1 (-447 *3)) (-4 *3 (-406)) (-4 *3 (-1049))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 (-1175))) (-5 *2 (-1269)) (-5 *1 (-1216)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-644 (-1175))) (-5 *2 (-1269)) (-5 *1 (-1216))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1214)) (-5 *1 (-328 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-644 *3)) (-4 *3 (-1214)) (-5 *1 (-518 *3 *4)) + (-14 *4 (-566))))) +(((*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-1093 (-225)))))) +(((*1 *1 *1) (-4 *1 (-95))) + ((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) + (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1160 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1161 *3))))) +(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) + (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G)))) (-5 *2 (-1035)) + (-5 *1 (-748))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1264 *4)) (-4 *4 (-351)) (-5 *2 (-1171 *4)) + (-5 *1 (-530 *4))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-761)))) +(((*1 *2) + (-12 (-5 *2 (-689 (-910 *3))) (-5 *1 (-353 *3 *4)) (-14 *3 (-921)) + (-14 *4 (-921)))) ((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-1264 (-689 *4))) (-5 *1 (-418 *3 *4)) - (-4 *3 (-419 *4)))) + (-12 (-5 *2 (-689 *3)) (-5 *1 (-354 *3 *4)) (-4 *3 (-351)) + (-14 *4 + (-3 (-1171 *3) + (-1264 (-644 (-2 (|:| -2876 *3) (|:| -2835 (-1119))))))))) ((*1 *2) - (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-1264 (-689 *3))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-644 (-1175))) (-4 *5 (-365)) - (-5 *2 (-1264 (-689 (-409 (-952 *5))))) (-5 *1 (-1085 *5)) - (-5 *4 (-689 (-409 (-952 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-644 (-1175))) (-4 *5 (-365)) - (-5 *2 (-1264 (-689 (-952 *5)))) (-5 *1 (-1085 *5)) - (-5 *4 (-689 (-952 *5))))) - ((*1 *2 *3) - (-12 (-5 *3 (-644 (-689 *4))) (-4 *4 (-365)) - (-5 *2 (-1264 (-689 *4))) (-5 *1 (-1085 *4))))) -(((*1 *2 *1 *3 *4) + (-12 (-5 *2 (-689 *3)) (-5 *1 (-355 *3 *4)) (-4 *3 (-351)) + (-14 *4 (-921))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-644 (-225)))) (-5 *1 (-926))))) +(((*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-334))))) +(((*1 *2 *3) + (-12 (-5 *3 (-409 *5)) (-4 *5 (-1240 *4)) (-4 *4 (-558)) + (-4 *4 (-1049)) (-4 *2 (-1255 *4)) (-5 *1 (-1258 *4 *5 *6 *2)) + (-4 *6 (-656 *5))))) +(((*1 *1) + (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2) + (-12 (-14 *4 *2) (-4 *5 (-1214)) (-5 *2 (-771)) + (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-131)) + (-5 *2 (-771)))) + ((*1 *2) + (-12 (-4 *4 (-365)) (-5 *2 (-771)) (-5 *1 (-329 *3 *4)) + (-4 *3 (-330 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-363 *3)) (-4 *3 (-1099)))) + ((*1 *2) (-12 (-4 *1 (-370)) (-5 *2 (-771)))) + ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-388 *3)) (-4 *3 (-1099)))) + ((*1 *2) + (-12 (-4 *4 (-1099)) (-5 *2 (-771)) (-5 *1 (-426 *3 *4)) + (-4 *3 (-427 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-771)) (-5 *1 (-649 *3 *4 *5)) (-4 *3 (-1099)) + (-4 *4 (-23)) (-14 *5 *4))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-4 *5 (-1240 *4)) (-5 *2 (-771)) + (-5 *1 (-723 *3 *4 *5)) (-4 *3 (-724 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-819 *3)) (-4 *3 (-850)))) + ((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1006)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-848) (-365))) (-5 *1 (-1060 *2 *3)) + (-4 *3 (-1240 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-1157))))) +(((*1 *2 *3) + (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-1269)) + (-5 *1 (-451 *4 *5 *6 *3)) (-4 *3 (-949 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-955)) (-5 *2 (-1093 (-225))))) + ((*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-1093 (-225)))))) +(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) + (-12 (-5 *4 (-689 (-225))) (-5 *5 (-689 (-566))) (-5 *3 (-566)) + (-5 *2 (-1035)) (-5 *1 (-756))))) +(((*1 *2 *2 *2 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-612 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1175))) + (-4 *2 (-13 (-432 *5) (-27) (-1199))) + (-4 *5 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) + (-5 *1 (-568 *5 *2 *6)) (-4 *6 (-1099))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-2 (|:| |val| (-644 *7)) (|:| -1470 *8))) + (-4 *7 (-1064 *4 *5 *6)) (-4 *8 (-1070 *4 *5 *6 *7)) (-4 *4 (-454)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) + (-5 *1 (-988 *4 *5 *6 *7 *8)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-2 (|:| |val| (-644 *7)) (|:| -1470 *8))) + (-4 *7 (-1064 *4 *5 *6)) (-4 *8 (-1070 *4 *5 *6 *7)) (-4 *4 (-454)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) + (-5 *1 (-1106 *4 *5 *6 *7 *8))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-1175))))) +(((*1 *2 *3) + (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-1064 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-644 *7)) (|:| |badPols| (-644 *7)))) + (-5 *1 (-977 *4 *5 *6 *7)) (-5 *3 (-644 *7))))) +(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-381)) (-5 *1 (-97)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-381)) (-5 *1 (-97))))) +(((*1 *2 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1214)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) + (-4 *4 (-1049))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) + (-5 *2 + (-2 (|:| -2876 *4) (|:| -1425 *4) (|:| |totalpts| (-566)) + (|:| |success| (-112)))) + (-5 *1 (-789)) (-5 *5 (-566))))) +(((*1 *2 *1) (-12 (-4 *1 (-955)) (-5 *2 (-1093 (-225))))) + ((*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-1093 (-225)))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-103 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1199)))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-754))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-892 *4)) (-4 *4 (-1099)) (-5 *1 (-889 *4 *3)) + (-4 *3 (-1099))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1109)) (-5 *3 (-566))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-644 (-381))) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-644 (-381))) (-5 *1 (-470)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 (-381))) (-5 *1 (-470)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-921)) (-5 *4 (-874)) (-5 *2 (-1269)) (-5 *1 (-1265)))) + ((*1 *2 *1 *3 *4) (-12 (-5 *3 (-921)) (-5 *4 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1265))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-882 *2)) (-4 *2 (-1214))))) +(((*1 *2 *2) + (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1199)))))) +(((*1 *1 *1 *1) (-5 *1 (-862)))) +(((*1 *2 *1) + (-12 (-5 *2 (-644 (-1200 *3))) (-5 *1 (-1200 *3)) (-4 *3 (-1099))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-648 *5)) (-4 *5 (-1049)) + (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-852 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-689 *3)) (-4 *1 (-419 *3)) (-4 *3 (-172)))) + ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)))) + ((*1 *2 *3 *2 *2 *4 *5) + (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1049)) + (-5 *1 (-853 *2 *3)) (-4 *3 (-852 *2))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) + (-4 *3 (-369 *4)))) + ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-1091 (-952 (-566)))) (-5 *3 (-952 (-566))) + (-5 *1 (-331)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1091 (-952 (-566)))) (-5 *1 (-331))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1171 *3)) (-4 *3 (-370)) (-4 *1 (-330 *3)) + (-4 *3 (-365))))) +(((*1 *2 *1 *3 *2) + (-12 (-5 *3 (-771)) (-5 *1 (-213 *4 *2)) (-14 *4 (-921)) + (-4 *2 (-1099))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-644 (-1175))) (-4 *4 (-1099)) + (-4 *5 (-13 (-1049) (-886 *4) (-614 (-892 *4)))) + (-5 *1 (-1075 *4 *5 *2)) + (-4 *2 (-13 (-432 *5) (-886 *4) (-614 (-892 *4)))))) + ((*1 *1 *2 *2) + (-12 (-4 *3 (-1099)) (-4 *4 (-13 (-1049) (-886 *3) (-614 (-892 *3)))) + (-5 *1 (-1075 *3 *4 *2)) + (-4 *2 (-13 (-432 *4) (-886 *3) (-614 (-892 *3))))))) (((*1 *2 *3) - (-12 (-4 *1 (-839)) - (-5 *3 - (-2 (|:| |fn| (-317 (-225))) (|:| -1761 (-644 (-225))) - (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) - (|:| |ub| (-644 (-843 (-225)))))) - (-5 *2 (-1035)))) + (-12 (-5 *3 (-644 (-483 *4 *5))) (-14 *4 (-644 (-1175))) + (-4 *5 (-454)) + (-5 *2 + (-2 (|:| |gblist| (-644 (-247 *4 *5))) + (|:| |gvlist| (-644 (-566))))) + (-5 *1 (-631 *4 *5))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-644 (-644 (-943 (-225))))) (-5 *3 (-644 (-874))) + (-5 *1 (-470))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1175)) (-4 *5 (-365)) (-5 *2 (-644 (-1208 *5))) + (-5 *1 (-1272 *5)) (-5 *4 (-1208 *5))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1171 *9)) (-5 *4 (-644 *7)) (-5 *5 (-644 (-644 *8))) + (-4 *7 (-850)) (-4 *8 (-308)) (-4 *9 (-949 *8 *6 *7)) (-4 *6 (-793)) + (-5 *2 + (-2 (|:| |upol| (-1171 *8)) (|:| |Lval| (-644 *8)) + (|:| |Lfact| + (-644 (-2 (|:| -1624 (-1171 *8)) (|:| -2201 (-566))))) + (|:| |ctpol| *8))) + (-5 *1 (-742 *6 *7 *8 *9))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) (-4 *5 (-793)) + (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *3 (-1064 *4 *5 *6)) + (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -1470 *1)))) + (-4 *1 (-1070 *4 *5 *6 *3))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-644 *2)) (-4 *2 (-1099)) (-4 *2 (-1214))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-921)) (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)))) + ((*1 *2 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-365)))) + ((*1 *2 *1) + (-12 (-4 *1 (-372 *2 *3)) (-4 *3 (-1240 *2)) (-4 *2 (-172)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1264 *4)) (-5 *3 (-921)) (-4 *4 (-351)) + (-5 *1 (-530 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1122 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) + (-4 *5 (-238 *3 *2)) (-4 *2 (-1049))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-921)) (-5 *2 (-771)) (-5 *1 (-1100 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) +(((*1 *2) + (-12 (-4 *4 (-1218)) (-4 *5 (-1240 *4)) (-4 *6 (-1240 (-409 *5))) + (-5 *2 (-644 (-644 *4))) (-5 *1 (-343 *3 *4 *5 *6)) + (-4 *3 (-344 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) + (-4 *5 (-1240 (-409 *4))) (-4 *3 (-370)) (-5 *2 (-644 (-644 *3)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-3 (-409 (-952 *5)) (-1164 (-1175) (-952 *5)))) + (-4 *5 (-454)) (-5 *2 (-644 (-689 (-409 (-952 *5))))) + (-5 *1 (-293 *5)) (-5 *4 (-689 (-409 (-952 *5))))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-566)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-375 *2)) + (-4 *5 (-375 *2)) (-4 *2 (-1214)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-771)) (-4 *2 (-1099)) (-5 *1 (-213 *4 *2)) + (-14 *4 (-921)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1214)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-566)) (-4 *1 (-1053 *4 *5 *2 *6 *7)) + (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1049))))) +(((*1 *2 *3 *4) + (-12 (-5 *2 (-644 (-169 *4))) (-5 *1 (-155 *3 *4)) + (-4 *3 (-1240 (-169 (-566)))) (-4 *4 (-13 (-365) (-848))))) ((*1 *2 *3) - (-12 (-4 *1 (-839)) - (-5 *3 - (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1761 (-644 (-225))))) - (-5 *2 (-1035))))) + (-12 (-4 *4 (-13 (-365) (-848))) (-5 *2 (-644 (-169 *4))) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1240 (-169 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-365) (-848))) (-5 *2 (-644 (-169 *4))) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1240 (-169 *4)))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-926))))) +(((*1 *2 *2 *2) + (-12 + (-5 *2 + (-644 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-771)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-793)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-454)) (-4 *5 (-850)) + (-5 *1 (-451 *3 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-921)) + (-5 *2 + (-3 (-1171 *4) + (-1264 (-644 (-2 (|:| -2876 *4) (|:| -2835 (-1119))))))) + (-5 *1 (-348 *4)) (-4 *4 (-351))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *2 (-771)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-771))))) +(((*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-1099)) (-5 *2 (-771))))) +(((*1 *1 *1) (-5 *1 (-862))) + ((*1 *2 *1) + (-12 (-4 *1 (-1102 *2 *3 *4 *5 *6)) (-4 *3 (-1099)) (-4 *4 (-1099)) + (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *2 (-1099)))) + ((*1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-1156)))) + ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1175))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-644 *2)) (-4 *2 (-1099)) (-4 *2 (-1214))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-558)) - (-5 *2 (-2 (|:| -4227 (-689 *5)) (|:| |vec| (-1264 (-644 (-921)))))) - (-5 *1 (-90 *5 *3)) (-5 *4 (-921)) (-4 *3 (-656 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-821))))) + (|partial| -12 (-5 *4 (-295 (-833 *3))) + (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) + (-5 *2 (-833 *3)) (-5 *1 (-636 *5 *3)) + (-4 *3 (-13 (-27) (-1199) (-432 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-295 (-833 (-952 *5)))) (-4 *5 (-454)) + (-5 *2 (-833 (-409 (-952 *5)))) (-5 *1 (-637 *5)) + (-5 *3 (-409 (-952 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-295 (-409 (-952 *5)))) (-5 *3 (-409 (-952 *5))) + (-4 *5 (-454)) (-5 *2 (-833 *3)) (-5 *1 (-637 *5))))) +(((*1 *1) (-5 *1 (-1266)))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-141)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-144))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-943 *5)) (-4 *5 (-1049)) (-5 *2 (-771)) + (-5 *1 (-1163 *4 *5)) (-14 *4 (-921)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-644 (-771))) (-5 *3 (-771)) (-5 *1 (-1163 *4 *5)) + (-14 *4 (-921)) (-4 *5 (-1049)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-644 (-771))) (-5 *3 (-943 *5)) (-4 *5 (-1049)) + (-5 *1 (-1163 *4 *5)) (-14 *4 (-921))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-644 *1)) (-4 *1 (-308))))) +(((*1 *2 *2) + (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1199)))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-55)))) +(((*1 *2 *3) + (-12 (-4 *4 (-1049)) (-4 *3 (-1240 *4)) (-4 *2 (-1255 *4)) + (-5 *1 (-1258 *4 *3 *5 *2)) (-4 *5 (-656 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *2 (-771)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-771))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4415)) (-4 *1 (-1252 *2)) (-4 *2 (-1214))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-976 *3 *4 *2 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *2 (-850)) (-4 *5 (-1064 *3 *4 *2))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-508)) (-5 *2 (-691 (-774))) (-5 *1 (-114)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-1157)) (-5 *2 (-774)) (-5 *1 (-114)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-508)) (-5 *3 (-1103)) (-5 *1 (-965))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-921)) (-5 *1 (-1032 *2)) - (-4 *2 (-13 (-1099) (-10 -8 (-15 * ($ $ $)))))))) + (-12 (-5 *2 (-689 *4)) (-5 *3 (-921)) (-4 *4 (-1049)) + (-5 *1 (-1028 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-644 (-689 *4))) (-5 *3 (-921)) (-4 *4 (-1049)) + (-5 *1 (-1028 *4))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-644 *2)) (-4 *2 (-1099)) (-4 *2 (-1214))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-921)) (-5 *4 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1265))))) (((*1 *2 *3) - (-12 (-5 *3 (-1093 (-843 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1093 (-843 (-225)))) (-5 *2 (-225)) (-5 *1 (-301)))) + (-12 (-4 *4 (-850)) (-5 *2 (-644 (-644 (-644 *4)))) + (-5 *1 (-1185 *4)) (-5 *3 (-644 (-644 *4)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) + (-4 *4 (-1049))))) +(((*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-438))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))) +(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-112)) (-4 *6 (-454)) (-4 *7 (-793)) + (-4 *8 (-850)) (-4 *9 (-1064 *6 *7 *8)) + (-5 *2 + (-2 (|:| -3434 (-644 *9)) (|:| -1470 *4) (|:| |ineq| (-644 *9)))) + (-5 *1 (-988 *6 *7 *8 *9 *4)) (-5 *3 (-644 *9)) + (-4 *4 (-1070 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-112)) (-4 *6 (-454)) (-4 *7 (-793)) + (-4 *8 (-850)) (-4 *9 (-1064 *6 *7 *8)) + (-5 *2 + (-2 (|:| -3434 (-644 *9)) (|:| -1470 *4) (|:| |ineq| (-644 *9)))) + (-5 *1 (-1106 *6 *7 *8 *9 *4)) (-5 *3 (-644 *9)) + (-4 *4 (-1070 *6 *7 *8 *9))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1155 (-409 *3))) (-5 *1 (-174 *3)) (-4 *3 (-308))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1049)) (-5 *2 (-1264 *3)) (-5 *1 (-712 *3 *4)) + (-4 *4 (-1240 *3))))) +(((*1 *1 *1 *1 *1 *2) + (-12 (-5 *2 (-771)) (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) + (-4 *4 (-793)) (-4 *5 (-850)) (-4 *3 (-558))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-644 (-566))) (-5 *3 (-112)) (-5 *1 (-1109))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) + (-4 *3 (-369 *4)))) + ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1102 *2 *3 *4 *5 *6)) (-4 *2 (-1099)) (-4 *3 (-1099)) + (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099))))) +(((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172))))) +(((*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1269)) (-5 *1 (-1137)))) ((*1 *2 *3) - (-12 (-5 *3 (-1093 (-843 (-225)))) (-5 *2 (-225)) (-5 *1 (-306))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-771)) (-5 *2 (-1269))))) + (-12 (-5 *3 (-644 (-862))) (-5 *2 (-1269)) (-5 *1 (-1137))))) +(((*1 *2) + (-12 (-4 *3 (-558)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-419 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-644 (-864 *5))) (-14 *5 (-644 (-1175))) (-4 *6 (-454)) + (-5 *2 (-644 (-644 (-247 *5 *6)))) (-5 *1 (-473 *5 *6 *7)) + (-5 *3 (-644 (-247 *5 *6))) (-4 *7 (-454))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1214)) (-4 *3 (-375 *2)) + (-4 *4 (-375 *2)))) + ((*1 *1 *1 *2) + (-12 (|has| *1 (-6 -4415)) (-4 *1 (-604 *3 *2)) (-4 *3 (-1099)) + (-4 *2 (-1214))))) +(((*1 *2 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1214)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1200 *3)) (-4 *3 (-1099))))) +(((*1 *1) (-5 *1 (-186)))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) + (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-78 FUNCTN)))) + (-5 *2 (-1035)) (-5 *1 (-748))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3)) - (-4 *3 (-13 (-365) (-1199) (-1002)))))) + (-12 (-5 *3 (-644 (-317 (-225)))) (-5 *2 (-112)) (-5 *1 (-268))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-264))) (-5 *1 (-1265)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 (-264))) (-5 *1 (-1265)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-264))) (-5 *1 (-1266)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 (-264))) (-5 *1 (-1266))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-824)) (-5 *3 (-644 (-1175))) (-5 *1 (-825))))) (((*1 *1 *1) - (-12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-792)) - (-4 *2 (-454)))) - ((*1 *1 *1) - (-12 (-4 *1 (-344 *2 *3 *4)) (-4 *2 (-1218)) (-4 *3 (-1240 *2)) - (-4 *4 (-1240 (-409 *3))))) - ((*1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-454)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-949 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) - (-4 *2 (-850)) (-4 *3 (-454)))) - ((*1 *1 *1) - (-12 (-4 *1 (-949 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) - (-4 *4 (-850)) (-4 *2 (-454)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-308)) (-4 *3 (-558)) (-5 *1 (-1162 *3 *2)) - (-4 *2 (-1240 *3))))) + (-12 (-4 *1 (-1102 *2 *3 *4 *5 *6)) (-4 *2 (-1099)) (-4 *3 (-1099)) + (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099))))) +(((*1 *1 *1) + (-12 (-4 *1 (-254 *2 *3 *4 *5)) (-4 *2 (-1049)) (-4 *3 (-850)) + (-4 *4 (-267 *3)) (-4 *5 (-793))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1062))))) +(((*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-771))))) +(((*1 *2 *3 *4 *4 *4 *5 *5 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) + (-5 *2 (-1035)) (-5 *1 (-751))))) +(((*1 *1 *2) + (-12 (-5 *2 (-771)) (-5 *1 (-675 *3)) (-4 *3 (-1049)) + (-4 *3 (-1099))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-531))))) +(((*1 *1) (-5 *1 (-186)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-1049)))) + ((*1 *2 *1) + (-12 (-4 *1 (-973 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-792)) + (-4 *5 (-850)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-771)) (-5 *5 (-644 *3)) (-4 *3 (-308)) (-4 *6 (-850)) + (-4 *7 (-793)) (-5 *2 (-112)) (-5 *1 (-625 *6 *7 *3 *8)) + (-4 *8 (-949 *3 *7 *6))))) +(((*1 *1 *2) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1214)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-1175))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) + (-5 *2 (-689 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-689 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-604 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1214)) - (-5 *2 (-644 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1274))))) -(((*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-112))))) + (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-112)) (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) + (-4 *3 (-13 (-27) (-1199) (-432 *6) (-10 -8 (-15 -3152 ($ *7))))) + (-4 *7 (-848)) + (-4 *8 + (-13 (-1242 *3 *7) (-365) (-1199) + (-10 -8 (-15 -3629 ($ $)) (-15 -3313 ($ $))))) + (-5 *2 + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157)))))) + (-5 *1 (-424 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1157)) (-4 *9 (-983 *8)) + (-14 *10 (-1175))))) (((*1 *2 *3) - (-12 (-5 *3 (-1157)) (-5 *2 (-644 (-1180))) (-5 *1 (-880))))) -(((*1 *2 *1) - (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) - (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) - (-5 *2 (-112))))) + (-12 (-5 *3 (-1157)) (-5 *2 (-566)) (-5 *1 (-1196 *4)) + (-4 *4 (-1049))))) (((*1 *2 *1) - (-12 (-5 *2 (-1155 (-566))) (-5 *1 (-1004 *3)) (-14 *3 (-566))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 - *7 *3 *8) - (-12 (-5 *5 (-689 (-225))) (-5 *6 (-112)) (-5 *7 (-689 (-566))) - (-5 *8 (-3 (|:| |fn| (-390)) (|:| |fp| (-65 QPHESS)))) - (-5 *3 (-566)) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-753))))) + (-12 (-4 *4 (-1099)) (-5 *2 (-889 *3 *4)) (-5 *1 (-885 *3 *4 *5)) + (-4 *3 (-1099)) (-4 *5 (-666 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-381)))) + ((*1 *1 *1 *1) (-4 *1 (-547))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365)))) + ((*1 *1 *2) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-771))))) +(((*1 *2 *2) + (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))) + (-5 *1 (-176 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1046 *4 *5)) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) - (-14 *5 (-644 (-1175))) - (-5 *2 - (-644 (-2 (|:| -2761 (-1171 *4)) (|:| -2154 (-644 (-952 *4)))))) - (-5 *1 (-1290 *4 *5 *6)) (-14 *6 (-644 (-1175))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-848) (-308) (-147) (-1022))) + (-12 (-5 *3 (-927)) (-5 *2 - (-644 (-2 (|:| -2761 (-1171 *5)) (|:| -2154 (-644 (-952 *5)))))) - (-5 *1 (-1290 *5 *6 *7)) (-5 *3 (-644 (-952 *5))) - (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) + (-2 (|:| |brans| (-644 (-644 (-943 (-225))))) + (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225))))) + (-5 *1 (-153)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-848) (-308) (-147) (-1022))) - (-5 *2 - (-644 (-2 (|:| -2761 (-1171 *5)) (|:| -2154 (-644 (-952 *5)))))) - (-5 *1 (-1290 *5 *6 *7)) (-5 *3 (-644 (-952 *5))) - (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-848) (-308) (-147) (-1022))) + (-12 (-5 *3 (-927)) (-5 *4 (-409 (-566))) (-5 *2 - (-644 (-2 (|:| -2761 (-1171 *5)) (|:| -2154 (-644 (-952 *5)))))) - (-5 *1 (-1290 *5 *6 *7)) (-5 *3 (-644 (-952 *5))) - (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) + (-2 (|:| |brans| (-644 (-644 (-943 (-225))))) + (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225))))) + (-5 *1 (-153))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-921)) (-5 *4 (-420 *6)) (-4 *6 (-1240 *5)) + (-4 *5 (-1049)) (-5 *2 (-644 *6)) (-5 *1 (-446 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-396))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1140 *2 *3)) (-4 *2 (-13 (-1099) (-34))) + (-4 *3 (-13 (-1099) (-34)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1175)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-702 *4 *5 *6 *7)) + (-4 *4 (-614 (-538))) (-4 *5 (-1214)) (-4 *6 (-1214)) + (-4 *7 (-1214))))) +(((*1 *1) (-5 *1 (-186)))) +(((*1 *2 *3) + (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1218)) (-4 *3 (-1240 *4)) + (-4 *5 (-1240 (-409 *3))) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-848) (-308) (-147) (-1022))) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) + (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 - (-644 (-2 (|:| -2761 (-1171 *4)) (|:| -2154 (-644 (-952 *4)))))) - (-5 *1 (-1290 *4 *5 *6)) (-5 *3 (-644 (-952 *4))) - (-14 *5 (-644 (-1175))) (-14 *6 (-644 (-1175)))))) + (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2406 (-225)) + (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) + (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) + (-5 *3 (-644 (-264))) (-5 *1 (-262)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2406 (-225)) + (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) + (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) + (-5 *1 (-264)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266)))) + ((*1 *2 *1 *3 *3 *4 *4 *4) + (-12 (-5 *3 (-566)) (-5 *4 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266)))) + ((*1 *2 *1 *3) + (-12 + (-5 *3 + (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2406 (-225)) + (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) + (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) + (-5 *2 (-1269)) (-5 *1 (-1266)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2406 (-225)) + (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) + (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) + (-5 *1 (-1266)))) + ((*1 *2 *1 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266))))) +(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266)))) + ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-943 *5)) (-5 *3 (-771)) (-4 *5 (-1049)) + (-5 *1 (-1163 *4 *5)) (-14 *4 (-921))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-644 *5)) (-5 *4 (-644 *6)) (-4 *5 (-1099)) - (-4 *6 (-1214)) (-5 *2 (-1 *6 *5)) (-5 *1 (-641 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-644 *5)) (-5 *4 (-644 *2)) (-4 *5 (-1099)) - (-4 *2 (-1214)) (-5 *1 (-641 *5 *2)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-644 *6)) (-5 *4 (-644 *5)) (-4 *6 (-1099)) - (-4 *5 (-1214)) (-5 *2 (-1 *5 *6)) (-5 *1 (-641 *6 *5)))) - ((*1 *2 *3 *4 *5 *2) - (-12 (-5 *3 (-644 *5)) (-5 *4 (-644 *2)) (-4 *5 (-1099)) - (-4 *2 (-1214)) (-5 *1 (-641 *5 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-644 *5)) (-5 *4 (-644 *6)) - (-4 *5 (-1099)) (-4 *6 (-1214)) (-5 *1 (-641 *5 *6)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-644 *5)) (-5 *4 (-644 *2)) (-5 *6 (-1 *2 *5)) - (-4 *5 (-1099)) (-4 *2 (-1214)) (-5 *1 (-641 *5 *2)))) - ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (-144)) (-5 *2 (-771))))) -(((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1255 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-1157))))) + (-12 (-5 *3 (-771)) (-5 *4 (-566)) (-5 *1 (-447 *2)) (-4 *2 (-1049))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-874)) (-5 *3 (-644 (-264))) (-5 *1 (-262))))) + (-12 (-4 *2 (-13 (-365) (-848))) (-5 *1 (-181 *2 *3)) + (-4 *3 (-1240 (-169 *2))))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-365) (-848))) (-5 *1 (-181 *2 *3)) + (-4 *3 (-1240 (-169 *2)))))) +(((*1 *1 *1 *2 *2) + (|partial| -12 (-5 *2 (-921)) (-5 *1 (-1100 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) +(((*1 *2 *3 *4) + (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) + (-5 *1 (-705 *3 *4)) (-4 *3 (-1214)) (-4 *4 (-1214))))) +(((*1 *2 *3 *3) + (-12 (-4 *3 (-1218)) (-4 *5 (-1240 *3)) (-4 *6 (-1240 (-409 *5))) + (-5 *2 (-112)) (-5 *1 (-343 *4 *3 *5 *6)) (-4 *4 (-344 *3 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) + (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-1089))))) (((*1 *2 *1) - (-12 (-5 *2 (-691 (-873 (-966 *3) (-966 *3)))) (-5 *1 (-966 *3)) - (-4 *3 (-1099))))) -(((*1 *2 *3) - (-12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-308)) - (-5 *2 (-409 (-420 (-952 *4)))) (-5 *1 (-1042 *4))))) + (-12 (-14 *3 (-644 (-1175))) (-4 *4 (-172)) + (-14 *6 + (-1 (-112) (-2 (|:| -2835 *5) (|:| -2201 *2)) + (-2 (|:| -2835 *5) (|:| -2201 *2)))) + (-4 *2 (-238 (-3000 *3) (-771))) (-5 *1 (-463 *3 *4 *5 *2 *6 *7)) + (-4 *5 (-850)) (-4 *7 (-949 *4 *2 (-864 *3)))))) +(((*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-331))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1 (-943 (-225)) (-943 (-225)))) (-5 *3 (-644 (-264))) - (-5 *1 (-262)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1 (-943 (-225)) (-943 (-225)))) (-5 *1 (-264)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-644 (-483 *5 *6))) (-5 *3 (-483 *5 *6)) - (-14 *5 (-644 (-1175))) (-4 *6 (-454)) (-5 *2 (-1264 *6)) - (-5 *1 (-631 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-691 (-549)))))) + (-12 (-5 *2 (-874)) (-5 *3 (-644 (-264))) (-5 *1 (-262))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-558) (-147))) (-5 *1 (-539 *3 *2)) + (-4 *2 (-1255 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-365) (-370) (-614 (-566)))) (-4 *4 (-1240 *3)) + (-4 *5 (-724 *3 *4)) (-5 *1 (-543 *3 *4 *5 *2)) (-4 *2 (-1255 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-365) (-370) (-614 (-566)))) (-5 *1 (-544 *3 *2)) + (-4 *2 (-1255 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-13 (-558) (-147))) + (-5 *1 (-1151 *3))))) +(((*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1267)))) + ((*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1267))))) +(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-926))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-1099)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-850))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-689 *4)) (-5 *3 (-921)) (|has| *4 (-6 (-4416 "*"))) + (-4 *4 (-1049)) (-5 *1 (-1028 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-644 (-689 *4))) (-5 *3 (-921)) + (|has| *4 (-6 (-4416 "*"))) (-4 *4 (-1049)) (-5 *1 (-1028 *4))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-1111)) (-4 *3 (-1099)) (-5 *2 (-644 *1)) + (-4 *1 (-432 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-644 (-892 *3))) (-5 *1 (-892 *3)) + (-4 *3 (-1099)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) + (-5 *2 (-644 *1)) (-4 *1 (-949 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1049)) + (-4 *7 (-949 *6 *4 *5)) (-5 *2 (-644 *3)) + (-5 *1 (-950 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-365) + (-10 -8 (-15 -3152 ($ *7)) (-15 -2248 (*7 $)) + (-15 -2260 (*7 $)))))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-1155 *2)) (-4 *2 (-308)) (-5 *1 (-174 *2))))) + (-12 (-5 *2 (-508)) (-5 *3 (-644 (-965))) (-5 *1 (-109))))) +(((*1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1267))))) +(((*1 *2 *3) + (-12 (-4 *4 (-558)) (-5 *2 (-1171 *3)) (-5 *1 (-41 *4 *3)) + (-4 *3 + (-13 (-365) (-303) + (-10 -8 (-15 -2248 ((-1124 *4 (-612 $)) $)) + (-15 -2260 ((-1124 *4 (-612 $)) $)) + (-15 -3152 ($ (-1124 *4 (-612 $)))))))))) (((*1 *2 *1) - (-12 (-5 *2 (-644 *4)) (-5 *1 (-1140 *3 *4)) - (-4 *3 (-13 (-1099) (-34))) (-4 *4 (-13 (-1099) (-34)))))) + (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1004 *3)) (-14 *3 (-566))))) +(((*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1171 *3)) (-4 *3 (-1049)) (-4 *1 (-1240 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-409 *6))) (-5 *4 (-409 *6)) (-4 *6 (-1240 *5)) + (-12 (-5 *3 (-653 *4)) (-4 *4 (-344 *5 *6 *7)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) + (-4 *6 (-1240 *5)) (-4 *7 (-1240 (-409 *6))) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2365 (-644 *4)))) - (-5 *1 (-810 *5 *6)))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2875 (-644 *4)))) + (-5 *1 (-806 *5 *6 *7 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-771)) (-5 *2 (-112)) (-5 *1 (-588 *3)) (-4 *3 (-547))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1200 *3)) (-4 *3 (-1099))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-381)) (-5 *1 (-1062))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1171 *7)) + (-4 *5 (-1049)) (-4 *7 (-1049)) (-4 *2 (-1240 *5)) + (-5 *1 (-503 *5 *2 *6 *7)) (-4 *6 (-1240 *2))))) +(((*1 *2 *1) + (-12 (-4 *1 (-604 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1214)) + (-5 *2 (-644 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4068 *4))) + (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) + (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-63 LSFUN2)))) + (-5 *2 (-1035)) (-5 *1 (-753))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1288 *3 *4)) (-4 *1 (-376 *3 *4)) (-4 *3 (-850)) + (-4 *4 (-172)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-388 *2)) (-4 *2 (-1099)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1281 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-819 *3)) (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) + (-4 *4 (-1049)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1281 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1175)) (-5 *2 (-1 *6 *5)) (-5 *1 (-706 *4 *5 *6)) + (-4 *4 (-614 (-538))) (-4 *5 (-1214)) (-4 *6 (-1214))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-365)) (-5 *1 (-1025 *3 *2)) (-4 *2 (-656 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-409 *6))) (-4 *6 (-1240 *5)) - (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) - (-5 *2 (-2 (|:| -2365 (-644 (-409 *6))) (|:| -4227 (-689 *5)))) - (-5 *1 (-810 *5 *6)) (-5 *4 (-644 (-409 *6))))) + (-12 (-4 *5 (-365)) (-5 *2 (-2 (|:| -3434 *3) (|:| -1707 (-644 *5)))) + (-5 *1 (-1025 *5 *3)) (-5 *4 (-644 *5)) (-4 *3 (-656 *5))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1099)) + (-4 *6 (-1099)) (-4 *2 (-1099)) (-5 *1 (-680 *5 *6 *2))))) +(((*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1264 *1)) (-4 *1 (-369 *3))))) +(((*1 *2 *1) (-12 (-5 *1 (-1026 *2)) (-4 *2 (-1214))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-771)) (-4 *4 (-558)) (-5 *1 (-969 *4 *2)) + (-4 *2 (-1240 *4))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-420 *2)) (-4 *2 (-308)) (-5 *1 (-914 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 *6 (-409 *6))) (-5 *4 (-409 *6)) (-4 *6 (-1240 *5)) - (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2365 (-644 *4)))) - (-5 *1 (-810 *5 *6)))) + (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-1175)) + (-4 *5 (-13 (-308) (-147))) (-5 *2 (-52)) (-5 *1 (-915 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-420 (-952 *6))) (-5 *5 (-1175)) (-5 *3 (-952 *6)) + (-4 *6 (-13 (-308) (-147))) (-5 *2 (-52)) (-5 *1 (-915 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-738))))) +(((*1 *2 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1214))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-747))))) +(((*1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-393))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436)))) + ((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-571 *3)) (-4 *3 (-1038 (-566))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) + (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1171 (-409 (-952 *3)))) (-5 *1 (-455 *3 *4 *5 *6)) + (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) + (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-689 (-409 (-952 *4)))) (-4 *4 (-454)) + (-5 *2 (-644 (-3 (-409 (-952 *4)) (-1164 (-1175) (-952 *4))))) + (-5 *1 (-293 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-454) (-1038 (-566)))) (-4 *3 (-558)) + (-5 *1 (-41 *3 *2)) (-4 *2 (-432 *3)) + (-4 *2 + (-13 (-365) (-303) + (-10 -8 (-15 -2248 ((-1124 *3 (-612 $)) $)) + (-15 -2260 ((-1124 *3 (-612 $)) $)) + (-15 -3152 ($ (-1124 *3 (-612 $)))))))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) + (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1287 *3 *4)) (-4 *3 (-1049)) + (-4 *4 (-846))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1049)) (-5 *1 (-712 *3 *2)) (-4 *2 (-1240 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1155 (-409 *3))) (-5 *1 (-174 *3)) (-4 *3 (-308))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-757))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1125 *4 *3 *5))) (-4 *4 (-38 (-409 (-566)))) + (-4 *4 (-1049)) (-4 *3 (-850)) (-5 *1 (-1125 *4 *3 *5)) + (-4 *5 (-949 *4 (-533 *3) *3)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1208 *4))) (-5 *3 (-1175)) (-5 *1 (-1208 *4)) + (-4 *4 (-38 (-409 (-566)))) (-4 *4 (-1049))))) +(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1171 (-409 (-566)))) (-5 *1 (-942)) (-5 *3 (-566))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1175)) + (-4 *4 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) + (-5 *1 (-428 *4 *2)) (-4 *2 (-13 (-1199) (-29 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 *6 (-409 *6))) (-4 *6 (-1240 *5)) - (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) - (-5 *2 (-2 (|:| -2365 (-644 (-409 *6))) (|:| -4227 (-689 *5)))) - (-5 *1 (-810 *5 *6)) (-5 *4 (-644 (-409 *6)))))) + (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-1175)) (-4 *5 (-147)) + (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-317 *5)) + (-5 *1 (-590 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-1064 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-644 *7)) (|:| |badPols| (-644 *7)))) + (-5 *1 (-977 *4 *5 *6 *7)) (-5 *3 (-644 *7))))) +(((*1 *2 *3 *3 *3 *3 *4 *5) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) + (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2352)))) + (-5 *2 (-1035)) (-5 *1 (-746))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1214)) (-5 *2 (-771)) (-5 *1 (-182 *4 *3)) + (-4 *3 (-674 *4))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) + (-12 (-5 *4 (-644 (-112))) (-5 *5 (-689 (-225))) + (-5 *6 (-689 (-566))) (-5 *7 (-225)) (-5 *3 (-566)) (-5 *2 (-1035)) + (-5 *1 (-754))))) +(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-927))))) (((*1 *2) - (-12 (-5 *2 (-771)) (-5 *1 (-120 *3)) (-4 *3 (-1240 (-566))))) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) + (-4 *3 (-369 *4)))) + ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 *7)) (-4 *7 (-850)) + (-4 *8 (-949 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-793)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1264 (-409 *8)) "failed")) + (|:| -2875 (-644 (-1264 (-409 *8)))))) + (-5 *1 (-669 *5 *6 *7 *8))))) +(((*1 *1 *2) + (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-4 *1 (-1097 *3)))) + ((*1 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1214)) (-5 *1 (-377 *4 *2)) + (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4415))))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *2 (-566)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-566))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-943 (-225))) (-5 *2 (-1269)) (-5 *1 (-470))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3289 (-644 (-225))))) + (-5 *2 (-381)) (-5 *1 (-268)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1264 (-317 (-225)))) (-5 *2 (-381)) (-5 *1 (-306))))) +(((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) - (-12 (-5 *2 (-771)) (-5 *1 (-120 *3)) (-4 *3 (-1240 (-566)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1195)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1195))))) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) + (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1160 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1161 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1214)))) + ((*1 *2 *2) + (-12 (-4 *3 (-1049)) (-5 *1 (-446 *3 *2)) (-4 *2 (-1240 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23)) + (-14 *4 *3)))) (((*1 *2 *3) - (-12 (-4 *4 (-454)) - (-5 *2 - (-644 - (-2 (|:| |eigval| (-3 (-409 (-952 *4)) (-1164 (-1175) (-952 *4)))) - (|:| |geneigvec| (-644 (-689 (-409 (-952 *4)))))))) - (-5 *1 (-293 *4)) (-5 *3 (-689 (-409 (-952 *4))))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-558)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) - (-5 *1 (-1204 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5))))) + (-12 (-5 *2 (-566)) (-5 *1 (-447 *3)) (-4 *3 (-406)) (-4 *3 (-1049))))) +(((*1 *2 *3 *3 *2) + (|partial| -12 (-5 *2 (-771)) + (-4 *3 (-13 (-726) (-370) (-10 -7 (-15 ** (*3 *3 (-566)))))) + (-5 *1 (-246 *3))))) +(((*1 *1 *1) + (-12 (-4 *2 (-454)) (-4 *3 (-850)) (-4 *4 (-793)) + (-5 *1 (-987 *2 *3 *4 *5)) (-4 *5 (-949 *2 *4 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1132 (-225))) (-5 *3 (-644 (-264))) (-5 *1 (-1266)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1132 (-225))) (-5 *3 (-1157)) (-5 *1 (-1266)))) + ((*1 *1 *1) (-5 *1 (-1266)))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4414)) (-4 *1 (-151 *3)) + (-4 *3 (-1214)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1214)) (-5 *1 (-601 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-674 *3)) (-4 *3 (-1214)))) + ((*1 *2 *1 *3) + (|partial| -12 (-4 *1 (-1207 *4 *5 *3 *2)) (-4 *4 (-558)) + (-4 *5 (-793)) (-4 *3 (-850)) (-4 *2 (-1064 *4 *5 *3)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-771)) (-5 *1 (-1211 *2)) (-4 *2 (-1214))))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) + (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-108)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-538))) (-5 *1 (-538))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-558)) - (-4 *7 (-949 *3 *5 *6)) - (-5 *2 (-2 (|:| -2852 (-771)) (|:| -1364 *8) (|:| |radicand| *8))) - (-5 *1 (-953 *5 *6 *3 *7 *8)) (-5 *4 (-771)) - (-4 *8 - (-13 (-365) - (-10 -8 (-15 -3783 ($ *7)) (-15 -4326 (*7 $)) (-15 -4339 (*7 $)))))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)) - (-5 *3 (-644 (-566))))) - ((*1 *2 *3) - (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)) - (-5 *3 (-644 (-566)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1155 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-508)) (-5 *3 (-774)) (-5 *1 (-114)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1157)) (-5 *3 (-774)) (-5 *1 (-114))))) + (-12 (-5 *3 (-644 (-409 (-952 (-169 (-566)))))) + (-5 *2 (-644 (-644 (-295 (-952 (-169 *4)))))) (-5 *1 (-380 *4)) + (-4 *4 (-13 (-365) (-848))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-295 (-409 (-952 (-169 (-566))))))) + (-5 *2 (-644 (-644 (-295 (-952 (-169 *4)))))) (-5 *1 (-380 *4)) + (-4 *4 (-13 (-365) (-848))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-409 (-952 (-169 (-566))))) + (-5 *2 (-644 (-295 (-952 (-169 *4))))) (-5 *1 (-380 *4)) + (-4 *4 (-13 (-365) (-848))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-295 (-409 (-952 (-169 (-566)))))) + (-5 *2 (-644 (-295 (-952 (-169 *4))))) (-5 *1 (-380 *4)) + (-4 *4 (-13 (-365) (-848)))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1214)) (-4 *2 (-850)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-283 *3)) (-4 *3 (-1214)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-850))))) +(((*1 *2 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) + (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1035)) + (-5 *1 (-746))))) +(((*1 *2 *3) + (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-589 *4)) + (-4 *4 (-351))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-1175)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1160 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1161 *3)))) + ((*1 *1 *1) (-4 *1 (-1202)))) +(((*1 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) + (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 (-2 (|:| -1707 (-114)) (|:| |w| (-225)))) (-5 *1 (-204))))) (((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4414)) (-4 *1 (-491 *3)) (-4 *3 (-1214)) - (-4 *3 (-1099)) (-5 *2 (-771)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4414)) (-4 *1 (-491 *4)) - (-4 *4 (-1214)) (-5 *2 (-771))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) - (-4 *4 (-850)) (-4 *2 (-558)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) - (-4 *4 (-850)) (-4 *2 (-558))))) -(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-225)) (-5 *4 (-566)) - (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2371)))) - (-5 *2 (-1035)) (-5 *1 (-748))))) + (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2)) + (-4 *2 (-1214))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1214)) (-5 *1 (-601 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1214)) (-5 *1 (-1155 *3))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1264 *5)) (-4 *5 (-792)) (-5 *2 (-112)) + (-5 *1 (-845 *4 *5)) (-14 *4 (-771))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1240 *5)) (-4 *5 (-365)) + (-5 *2 (-2 (|:| -1641 (-409 *6)) (|:| |coeff| (-409 *6)))) + (-5 *1 (-576 *5 *6)) (-5 *3 (-409 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-971))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 (-566))) (-5 *2 (-566)) (-5 *1 (-488 *4)) + (-4 *4 (-1240 *2))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1157)) (-5 *1 (-1195))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-1064 *4 *5 *6)) + (-5 *2 (-2 (|:| |bas| (-478 *4 *5 *6 *7)) (|:| -3712 (-644 *7)))) + (-5 *1 (-977 *4 *5 *6 *7)) (-5 *3 (-644 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *2 (-644 (-225))) + (-5 *1 (-470))))) +(((*1 *2 *3) (-12 (-5 *3 (-952 (-225))) (-5 *2 (-225)) (-5 *1 (-306))))) (((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-566))) (-4 *3 (-1049)) (-5 *1 (-596 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-566))) (-4 *1 (-1224 *3)) (-4 *3 (-1049)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-566))) (-4 *1 (-1255 *3)) (-4 *3 (-1049))))) -(((*1 *2 *3 *1) - (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-1178)) (-5 *3 (-1175))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-1028 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-644 (-689 *3))) (-4 *3 (-1049)) (-5 *1 (-1028 *3)))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002))))) ((*1 *2 *2) - (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-1028 *3)))) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-644 (-689 *3))) (-4 *3 (-1049)) (-5 *1 (-1028 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1214))))) -(((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-581))))) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1160 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1161 *3)))) + ((*1 *1 *1) (-4 *1 (-1202)))) +(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1214))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1049)) (-4 *2 (-687 *4 *5 *6)) + (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1240 *4)) (-4 *5 (-375 *4)) + (-4 *6 (-375 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1283 *3)) (-4 *3 (-365)) (-5 *2 (-112))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1214)) (-5 *1 (-601 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1214)) (-5 *1 (-1155 *3))))) +(((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-469)))) + ((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-469)))) + ((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-927))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-689 (-169 (-409 (-566))))) (-5 *2 (-644 (-169 *4))) + (-5 *1 (-764 *4)) (-4 *4 (-13 (-365) (-848)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1099)) (-4 *3 (-900 *5)) (-5 *2 (-689 *3)) + (-5 *1 (-692 *5 *3 *6 *4)) (-4 *6 (-375 *3)) + (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4414))))))) +(((*1 *2 *1) + (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-558)) + (-5 *2 (-1171 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-644 *2)) (-4 *2 (-949 *4 *5 *6)) (-4 *4 (-365)) + (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-5 *1 (-452 *4 *5 *6 *2)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-365)) + (-5 *2 + (-2 (|:| R (-689 *6)) (|:| A (-689 *6)) (|:| |Ainv| (-689 *6)))) + (-5 *1 (-978 *6)) (-5 *3 (-689 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1099)) (-4 *5 (-1099)) + (-4 *6 (-1099)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-684 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-943 (-225)))) (-5 *1 (-1265))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *2 (-409 (-566))) + (-5 *1 (-435 *4 *3)) (-4 *3 (-432 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-612 *3)) (-4 *3 (-432 *5)) + (-4 *5 (-13 (-558) (-1038 (-566)))) (-5 *2 (-1171 (-409 (-566)))) + (-5 *1 (-435 *5 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1171 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-381)) (-5 *1 (-97)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-381)) (-5 *1 (-97))))) -(((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-594 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-4 *1 (-1099)) (-5 *2 (-1119))))) -(((*1 *2 *3 *2) - (-12 (-5 *1 (-679 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1099))))) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1160 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1161 *3)))) + ((*1 *1 *1) (-4 *1 (-1202)))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 *2)) (-4 *2 (-1240 *4)) (-5 *1 (-541 *4 *2 *5 *6)) + (-4 *4 (-308)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-771)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-644 (-1175))) + (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) + ((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-644 (-1175))) + (-14 *4 (-644 (-1175))) (-4 *5 (-389))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-921)) (-4 *6 (-558)) (-5 *2 (-644 (-317 *6))) + (-5 *1 (-221 *5 *6)) (-5 *3 (-317 *6)) (-4 *5 (-1049)))) + ((*1 *2 *1) (-12 (-5 *1 (-420 *2)) (-4 *2 (-558)))) + ((*1 *2 *3) + (-12 (-5 *3 (-587 *5)) (-4 *5 (-13 (-29 *4) (-1199))) + (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-644 *5)) + (-5 *1 (-585 *4 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-587 (-409 (-952 *4)))) + (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) + (-5 *2 (-644 (-317 *4))) (-5 *1 (-590 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1094 *3 *2)) (-4 *3 (-848)) (-4 *2 (-1148 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 *1)) (-4 *1 (-1094 *4 *2)) (-4 *4 (-848)) + (-4 *2 (-1148 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1199))))) + ((*1 *2 *1) + (-12 (-5 *2 (-1279 (-1175) *3)) (-5 *1 (-1286 *3)) (-4 *3 (-1049)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1279 *3 *4)) (-5 *1 (-1288 *3 *4)) (-4 *3 (-850)) + (-4 *4 (-1049))))) +(((*1 *1) (-5 *1 (-439)))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-365)) (-5 *2 (-644 *3)) (-5 *1 (-945 *4 *3)) + (-4 *3 (-1240 *4))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-644 + (-2 (|:| -2755 (-771)) + (|:| |eqns| + (-644 + (-2 (|:| |det| *7) (|:| |rows| (-644 (-566))) + (|:| |cols| (-644 (-566)))))) + (|:| |fgb| (-644 *7))))) + (-4 *7 (-949 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) + (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-771)) + (-5 *1 (-924 *4 *5 *6 *7))))) (((*1 *1 *1) - (-12 (-5 *1 (-1139 *2 *3)) (-4 *2 (-13 (-1099) (-34))) - (-4 *3 (-13 (-1099) (-34)))))) + (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1049))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1237 *5 *4)) (-4 *4 (-820)) (-14 *5 (-1175)) + (-5 *2 (-566)) (-5 *1 (-1113 *4 *5))))) +(((*1 *1 *2) + (-12 + (-5 *2 + (-644 + (-2 + (|:| -2674 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1264 (-317 (-225)))) + (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) + (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (|:| -2636 + (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) + (|:| |expense| (-381)) (|:| |accuracy| (-381)) + (|:| |intermediateResults| (-381))))))) + (-5 *1 (-803))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-771)) (-4 *5 (-558)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-969 *5 *3)) (-4 *3 (-1240 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *2 (-566)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-566))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1214)) (-4 *2 (-1002)) + (-4 *2 (-1049))))) (((*1 *2 *2) - (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) - (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1214)) (-4 *3 (-375 *2)) - (-4 *4 (-375 *2)))) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) + (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1160 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1161 *3)))) + ((*1 *1 *1) (-4 *1 (-1202)))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-771)) (-4 *1 (-231 *4)) + (-4 *4 (-1049)))) ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4415)) (-4 *1 (-604 *3 *2)) (-4 *3 (-1099)) - (-4 *2 (-1214))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) - (-4 *3 (-1064 *6 *7 *8)) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1049)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-771)))) + ((*1 *1 *1) (-4 *1 (-233))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-267 *3)) (-4 *3 (-850)))) + ((*1 *1 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-850)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) + (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-771)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-401 *3 *4)) + (-4 *4 (-1240 *3)))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-365) (-147))) (-5 *1 (-401 *2 *3)) + (-4 *3 (-1240 *2)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-476 *3 *4 *5)) + (-4 *3 (-1049)) (-14 *5 *3))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-365)) (-4 *2 (-900 *3)) (-5 *1 (-587 *2)) + (-5 *3 (-1175)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-587 *2)) (-4 *2 (-365)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-862)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-644 *4)) (-5 *3 (-644 (-771))) (-4 *1 (-900 *4)) + (-4 *4 (-1099)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-771)) (-4 *1 (-900 *2)) (-4 *2 (-1099)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-644 *3)) (-4 *1 (-900 *3)) (-4 *3 (-1099)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-900 *2)) (-4 *2 (-1099)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1166 *3 *4 *5)) + (-4 *3 (-1049)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1172 *3 *4 *5)) + (-4 *3 (-1049)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1173 *3 *4 *5)) + (-4 *3 (-1049)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1228 *3 *4 *5)) + (-4 *3 (-1049)) (-14 *5 *3))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1240 *3)) (-4 *3 (-1049)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1249 *3 *4 *5)) + (-4 *3 (-1049)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1256 *3 *4 *5)) + (-4 *3 (-1049)) (-14 *5 *3)))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4415)) (-4 *1 (-375 *2)) (-4 *2 (-1214)) + (-4 *2 (-850)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4415)) + (-4 *1 (-375 *3)) (-4 *3 (-1214))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-532 *3)) (-4 *3 (-13 (-726) (-25)))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1218)) (-4 *3 (-1240 *4)) + (-4 *5 (-1240 (-409 *3))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) + (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) + (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-1099)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-850))))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) + (-5 *2 (-1171 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) + (-5 *2 (-1171 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-134))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 (-112) *7 (-644 *7))) (-4 *1 (-1207 *4 *5 *6 *7)) + (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1199)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-1180))) (-5 *1 (-1180)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-508)) (-5 *3 (-644 (-1180))) (-5 *1 (-1180))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) + ((*1 *1 *1) (-4 *1 (-285))) + ((*1 *2 *3) + (-12 (-5 *3 (-420 *4)) (-4 *4 (-558)) + (-5 *2 (-644 (-2 (|:| -2397 (-771)) (|:| |logand| *4)))) + (-5 *1 (-321 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) + (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) + ((*1 *2 *1) + (-12 (-5 *2 (-664 *3 *4)) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-850)) + (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-14 *5 (-921)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1160 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1161 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-771)) (-4 *4 (-13 (-1049) (-717 (-409 (-566))))) + (-4 *5 (-850)) (-5 *1 (-1280 *4 *5 *2)) (-4 *2 (-1285 *5 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-771)) (-5 *1 (-1284 *3 *4)) + (-4 *4 (-717 (-409 (-566)))) (-4 *3 (-850)) (-4 *4 (-172))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-332 *2)) (-4 *2 (-850)))) + ((*1 *1 *1) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) + (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1160 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1161 *3)))) + ((*1 *1 *1) (-4 *1 (-1202)))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-644 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566)))))) + (-5 *2 (-644 (-409 (-566)))) (-5 *1 (-1020 *4)) + (-4 *4 (-1240 (-566)))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-862))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365))))) +(((*1 *2 *3) + (-12 (-4 *4 (-308)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 - (-2 (|:| |done| (-644 *4)) - (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -3570 *4)))))) - (-5 *1 (-1068 *6 *7 *8 *3 *4)) (-4 *4 (-1070 *6 *7 *8 *3)))) + (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) + (-5 *1 (-1123 *4 *5 *6 *3)) (-4 *3 (-687 *4 *5 *6))))) +(((*1 *1 *2) + (-12 (-5 *2 (-644 *3)) (-4 *3 (-1214)) (-5 *1 (-1264 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-644 *4)) - (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -3570 *4)))))) - (-5 *1 (-1144 *5 *6 *7 *3 *4)) (-4 *4 (-1108 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-644 (-689 *5))) (-5 *4 (-566)) (-4 *5 (-365)) - (-4 *5 (-1049)) (-5 *2 (-112)) (-5 *1 (-1029 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-644 (-689 *4))) (-4 *4 (-365)) (-4 *4 (-1049)) - (-5 *2 (-112)) (-5 *1 (-1029 *4))))) -(((*1 *1 *1) (-4 *1 (-869 *2)))) + (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -1470 *4)))) + (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))) (((*1 *2 *1) - (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *1)) - (-4 *1 (-1064 *3 *4 *5))))) + (-12 (-5 *2 (-691 (-966 *3))) (-5 *1 (-966 *3)) (-4 *3 (-1099))))) +(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1274))))) +(((*1 *2 *3) (-12 (-5 *3 (-493)) (-5 *2 (-691 (-581))) (-5 *1 (-581))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1175)) + (-5 *2 (-3 (|:| |fst| (-436)) (|:| -3907 "void"))) (-5 *1 (-1178))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) + (-12 (-5 *6 (-644 (-112))) (-5 *7 (-689 (-225))) + (-5 *8 (-689 (-566))) (-5 *3 (-566)) (-5 *4 (-225)) (-5 *5 (-112)) + (-5 *2 (-1035)) (-5 *1 (-754))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-1157)) (-5 *5 (-689 (-225))) + (-5 *2 (-1035)) (-5 *1 (-747))))) +(((*1 *2 *1 *3) + (-12 (-5 *2 (-409 (-566))) (-5 *1 (-117 *4)) (-14 *4 *3) + (-5 *3 (-566)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-869 *3)) (-5 *2 (-566)))) + ((*1 *2 *1 *3) + (-12 (-5 *2 (-409 (-566))) (-5 *1 (-871 *4)) (-14 *4 *3) + (-5 *3 (-566)))) + ((*1 *2 *1 *3) + (-12 (-14 *4 *3) (-5 *2 (-409 (-566))) (-5 *1 (-872 *4 *5)) + (-5 *3 (-566)) (-4 *5 (-869 *4)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1012)) (-5 *2 (-409 (-566))))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *1 (-1067 *2 *3)) (-4 *2 (-13 (-848) (-365))) + (-4 *3 (-1240 *2)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1242 *2 *3)) (-4 *3 (-792)) + (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3152 (*2 (-1175)))) + (-4 *2 (-1049))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-332 *2)) (-4 *2 (-850)))) + ((*1 *1 *1) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) + (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1160 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1161 *3)))) + ((*1 *1 *1) (-4 *1 (-1202)))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-566)) (-5 *2 (-644 (-2 (|:| -3719 *3) (|:| -3636 *4)))) - (-5 *1 (-696 *3)) (-4 *3 (-1240 *4))))) + (-12 (-4 *5 (-1099)) (-4 *2 (-900 *5)) (-5 *1 (-692 *5 *2 *3 *4)) + (-4 *3 (-375 *2)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4414))))))) +(((*1 *2 *1) (-12 (-4 *1 (-674 *2)) (-4 *2 (-1214))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-644 *1)) (-4 *1 (-1064 *4 *5 *6)) (-4 *4 (-1049)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *5 (-850)) (-5 *2 (-112)))) + ((*1 *2 *3 *1 *4) + (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1207 *5 *6 *7 *3)) + (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1269)) (-5 *1 (-1178)))) + ((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-1179))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-873 (-1180) (-771)))) (-5 *1 (-334))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-644 (-771))) (-5 *3 (-171)) (-5 *1 (-1163 *4 *5)) + (-14 *4 (-921)) (-4 *5 (-1049))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-862)))) + ((*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1269)) (-5 *1 (-962))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-588 *2)) (-4 *2 (-547))))) +(((*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-843 *3)) (-4 *3 (-1099))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2610 *3) (|:| |coef2| (-782 *3)))) + (-5 *1 (-782 *3)) (-4 *3 (-558)) (-4 *3 (-1049))))) +(((*1 *1 *1) (-4 *1 (-629))) + ((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-630 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002) (-1199)))))) +(((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-644 (-112)))))) +(((*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-97))))) +(((*1 *2 *1) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-926)))) + ((*1 *2 *1) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-927))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)) (-5 *3 (-566))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-508)) (-5 *2 (-691 (-109))) (-5 *1 (-175)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-508)) (-5 *2 (-691 (-109))) (-5 *1 (-1084))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1256 *2 *3 *4)) (-4 *2 (-1049)) (-14 *3 (-1175)) + (-14 *4 *2)))) +(((*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1214))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-331)))) + ((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-331))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1099)) (-4 *5 (-1099)) - (-4 *6 (-1099)) (-5 *2 (-1 *6 *5)) (-5 *1 (-684 *4 *5 *6))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-30)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-420 *4) *4)) (-4 *4 (-558)) (-5 *2 (-420 *4)) - (-5 *1 (-421 *4)))) - ((*1 *1 *1) (-5 *1 (-926))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-926)))) - ((*1 *1 *1) (-5 *1 (-927))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-927)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566))))) - (-5 *4 (-409 (-566))) (-5 *1 (-1020 *3)) (-4 *3 (-1240 (-566))))) - ((*1 *2 *3 *2 *2) + (-12 (-4 *5 (-1099)) (-4 *3 (-900 *5)) (-5 *2 (-1264 *3)) + (-5 *1 (-692 *5 *3 *6 *4)) (-4 *6 (-375 *3)) + (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4414))))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-295 *2)) (-4 *2 (-726)) (-4 *2 (-1214))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1264 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) + (-4 *5 (-1240 *4)) (-5 *2 (-689 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-411 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1240 *3)) + (-5 *2 (-689 *3))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) + (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-5 *2 (-381)) (-5 *1 (-205))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-841)) (-5 *4 (-1062)) (-5 *2 (-1035)) (-5 *1 (-840)))) + ((*1 *2 *3) (-12 (-5 *3 (-841)) (-5 *2 (-1035)) (-5 *1 (-840)))) + ((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-644 (-381))) (-5 *5 (-644 (-843 (-381)))) + (-5 *6 (-644 (-317 (-381)))) (-5 *3 (-317 (-381))) (-5 *2 (-1035)) + (-5 *1 (-840)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-317 (-381))) (-5 *4 (-644 (-381))) + (-5 *5 (-644 (-843 (-381)))) (-5 *2 (-1035)) (-5 *1 (-840)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-317 (-381))) (-5 *4 (-644 (-381))) (-5 *2 (-1035)) + (-5 *1 (-840)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-317 (-381)))) (-5 *4 (-644 (-381))) + (-5 *2 (-1035)) (-5 *1 (-840))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171))))) +(((*1 *2) + (|partial| -12 (-4 *3 (-558)) (-4 *3 (-172)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -2875 (-644 *1)))) + (-4 *1 (-369 *3)))) + ((*1 *2) (|partial| -12 - (-5 *2 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566))))) - (-5 *1 (-1020 *3)) (-4 *3 (-1240 (-566))))) + (-5 *2 + (-2 (|:| |particular| (-455 *3 *4 *5 *6)) + (|:| -2875 (-644 (-455 *3 *4 *5 *6))))) + (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-921)) + (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3)))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1264 *4)) (-4 *4 (-1049)) (-4 *2 (-1240 *4)) + (-5 *1 (-446 *4 *2)))) ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566))))) - (-5 *4 (-409 (-566))) (-5 *1 (-1021 *3)) (-4 *3 (-1240 *4)))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566))))) - (-5 *1 (-1021 *3)) (-4 *3 (-1240 (-409 (-566)))))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-848) (-365))) (-5 *1 (-1060 *2 *3)) - (-4 *3 (-1240 *2))))) -(((*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) - ((*1 *1 *1) (-5 *1 (-862)))) + (-12 (-5 *2 (-409 (-1171 (-317 *5)))) (-5 *3 (-1264 (-317 *5))) + (-5 *4 (-566)) (-4 *5 (-558)) (-5 *1 (-1129 *5))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *3 (-921)) (-5 *1 (-444 *2)) + (-4 *2 (-1240 (-566))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-921)) (-5 *4 (-771)) (-5 *1 (-444 *2)) + (-4 *2 (-1240 (-566))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-921)) (-5 *4 (-644 (-771))) (-5 *1 (-444 *2)) + (-4 *2 (-1240 (-566))))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *3 (-921)) (-5 *4 (-644 (-771))) (-5 *5 (-771)) + (-5 *1 (-444 *2)) (-4 *2 (-1240 (-566))))) + ((*1 *2 *3 *2 *4 *5 *6) + (|partial| -12 (-5 *3 (-921)) (-5 *4 (-644 (-771))) (-5 *5 (-771)) + (-5 *6 (-112)) (-5 *1 (-444 *2)) (-4 *2 (-1240 (-566))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-921)) (-5 *4 (-420 *2)) (-4 *2 (-1240 *5)) + (-5 *1 (-446 *5 *2)) (-4 *5 (-1049))))) +(((*1 *2 *3) + (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-771)) + (-5 *1 (-451 *4 *5 *6 *3)) (-4 *3 (-949 *4 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862))))) +(((*1 *2 *3) + (-12 (-4 *4 (-558)) (-4 *2 (-13 (-432 *4) (-1002) (-1199))) + (-5 *1 (-600 *4 *2 *3)) + (-4 *3 (-13 (-432 (-169 *4)) (-1002) (-1199)))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-558)) (-4 *3 (-1049)) + (-5 *2 (-2 (|:| -2631 *1) (|:| -3264 *1))) (-4 *1 (-852 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-558)) (-4 *5 (-1049)) + (-5 *2 (-2 (|:| -2631 *3) (|:| -3264 *3))) (-5 *1 (-853 *5 *3)) + (-4 *3 (-852 *5))))) (((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-13 (-558) (-147))) (-5 *1 (-1234 *3 *2)) - (-4 *2 (-1240 *3))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (-144)) (-5 *2 (-112))))) -(((*1 *1 *2) - (-12 (-5 *2 (-644 (-506 *3 *4 *5 *6))) (-4 *3 (-365)) (-4 *4 (-793)) - (-4 *5 (-850)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-365)) (-4 *3 (-793)) (-4 *4 (-850)) - (-5 *1 (-506 *2 *3 *4 *5)) (-4 *5 (-949 *2 *3 *4)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-644 *1)) (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) - (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-644 *1)) (-5 *3 (-644 *7)) (-4 *1 (-1070 *4 *5 *6 *7)) - (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) - (-4 *7 (-1064 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) - (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 *1)) - (-4 *1 (-1070 *4 *5 *6 *7)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) - (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-644 *1)) - (-4 *1 (-1070 *4 *5 *6 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099))))) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-771)) (-5 *1 (-856 *2)) (-4 *2 (-38 (-409 (-566)))) + (-4 *2 (-172))))) +(((*1 *1) (-12 (-5 *1 (-644 *2)) (-4 *2 (-1214))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-4 *5 (-432 *4)) + (-5 *2 + (-3 (|:| |overq| (-1171 (-409 (-566)))) + (|:| |overan| (-1171 (-48))) (|:| -3221 (-112)))) + (-5 *1 (-437 *4 *5 *3)) (-4 *3 (-1240 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-558) (-1038 (-566)) (-639 (-566)))) - (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1175)) - (-4 *4 (-13 (-558) (-1038 (-566)) (-639 (-566)))) - (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *4))))) - ((*1 *1 *1) (-5 *1 (-381))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) - (-4 *3 (-1064 *5 *6 *7)) - (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -3570 *4)))) - (-5 *1 (-776 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4414)) (-4 *1 (-235 *3)) - (-4 *3 (-1099)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-283 *3)) (-4 *3 (-1214))))) + (-12 (-4 *3 (-13 (-454) (-1038 (-566)))) (-4 *3 (-558)) + (-5 *1 (-41 *3 *2)) (-4 *2 (-432 *3)) + (-4 *2 + (-13 (-365) (-303) + (-10 -8 (-15 -2248 ((-1124 *3 (-612 $)) $)) + (-15 -2260 ((-1124 *3 (-612 $)) $)) + (-15 -3152 ($ (-1124 *3 (-612 $)))))))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-771)) (-4 *5 (-351)) (-4 *6 (-1240 *5)) + (-5 *2 + (-644 + (-2 (|:| -2875 (-689 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-689 *6))))) + (-5 *1 (-500 *5 *6 *7)) + (-5 *3 + (-2 (|:| -2875 (-689 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-689 *6)))) + (-4 *7 (-1240 *6))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-1226 *3 *2)) (-4 *3 (-1049)) + (-4 *2 (-1255 *3))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-747))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-112)) (-5 *5 (-1101 (-771))) (-5 *6 (-771)) + (-5 *2 + (-2 (|:| |contp| (-566)) + (|:| -1616 (-644 (-2 (|:| |irr| *3) (|:| -4125 (-566))))))) + (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566)))))) +(((*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308))))) (((*1 *2 *3) - (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-644 (-1175))) (-4 *5 (-1049)) - (-5 *2 (-483 *4 *5)) (-5 *1 (-944 *4 *5))))) + (-12 (-4 *4 (-558)) (-5 *2 (-771)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-419 *4))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1209 *3)) (-4 *3 (-974))))) +(((*1 *2 *3 *4) + (-12 (-4 *7 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-558)) + (-4 *8 (-949 *7 *5 *6)) + (-5 *2 (-2 (|:| -2201 (-771)) (|:| -2397 *3) (|:| |radicand| *3))) + (-5 *1 (-953 *5 *6 *7 *8 *3)) (-5 *4 (-771)) + (-4 *3 + (-13 (-365) + (-10 -8 (-15 -3152 ($ *8)) (-15 -2248 (*8 $)) (-15 -2260 (*8 $)))))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1101 (-1101 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1099))))) +(((*1 *1 *1) (-4 *1 (-629))) + ((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-630 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002) (-1199)))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-1049)) (-5 *1 (-446 *3 *2)) (-4 *2 (-1240 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-644 *2)) (-4 *2 (-949 *4 *5 *6)) (-4 *4 (-454)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-451 *4 *5 *6 *2))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-771)) (-5 *1 (-588 *2)) (-4 *2 (-547)))) + ((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -2576 *3) (|:| -2201 (-771)))) (-5 *1 (-588 *3)) + (-4 *3 (-547))))) +(((*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-1171 *3))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-793)) (-4 *4 (-850)) (-4 *5 (-308)) + (-5 *1 (-916 *3 *4 *5 *2)) (-4 *2 (-949 *5 *3 *4)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1171 *6)) (-4 *6 (-949 *5 *3 *4)) (-4 *3 (-793)) + (-4 *4 (-850)) (-4 *5 (-308)) (-5 *1 (-916 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 *2)) (-4 *2 (-949 *6 *4 *5)) + (-5 *1 (-916 *4 *5 *6 *2)) (-4 *4 (-793)) (-4 *5 (-850)) + (-4 *6 (-308))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1097 *3)) (-4 *3 (-1099)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-892 *4)) (-4 *4 (-1099)) (-5 *2 (-644 *5)) + (-5 *1 (-890 *4 *5)) (-4 *5 (-1214))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-558) (-147))) (-5 *2 (-644 *3)) + (-5 *1 (-1234 *4 *3)) (-4 *3 (-1240 *4))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1237 *5 *4)) (-4 *4 (-820)) (-14 *5 (-1175)) + (-5 *2 (-566)) (-5 *1 (-1113 *4 *5))))) (((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1157)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-1269)) - (-5 *1 (-1071 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) + (-5 *1 (-988 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1157)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-1269)) - (-5 *1 (-1107 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7))))) -(((*1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-276))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) - (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) - (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-78 FUNCTN)))) - (-5 *2 (-1035)) (-5 *1 (-748))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1099)) (-4 *3 (-900 *5)) (-5 *2 (-689 *3)) - (-5 *1 (-692 *5 *3 *6 *4)) (-4 *6 (-375 *3)) - (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4414))))))) + (-5 *1 (-1106 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214))))) +(((*1 *2 *1) + (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-1059)) (-4 *3 (-1199)) + (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) (((*1 *2 *3) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-563)) (-5 *3 (-566)))) ((*1 *2 *3) (-12 (-5 *2 (-1171 (-409 (-566)))) (-5 *1 (-942)) (-5 *3 (-566))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1214)) (-5 *2 (-644 *1)) (-4 *1 (-1010 *3))))) -(((*1 *2 *2 *2) - (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) - (-5 *1 (-1127 *3 *2)) (-4 *3 (-1240 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) + (-12 (-5 *3 (-644 (-843 (-225)))) (-5 *4 (-225)) (-5 *2 (-644 *4)) + (-5 *1 (-268))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1240 (-409 *2))) (-5 *2 (-566)) (-5 *1 (-913 *4 *3)) + (-4 *3 (-1240 (-409 *4)))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1157)) (-5 *4 (-566)) (-5 *5 (-689 (-225))) + (-5 *2 (-1035)) (-5 *1 (-754))))) +(((*1 *2 *1) (-12 (-5 *2 (-1155 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308))))) +(((*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049))))) +(((*1 *2 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-862))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) - (-5 *2 - (-2 (|:| |contp| (-566)) - (|:| -4138 (-644 (-2 (|:| |irr| *3) (|:| -3149 (-566))))))) - (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) + (-12 (-5 *4 (-1175)) + (-4 *5 (-13 (-1038 (-566)) (-454) (-639 (-566)))) + (-5 *2 (-2 (|:| -4182 *3) (|:| |nconst| *3))) (-5 *1 (-569 *5 *3)) + (-4 *3 (-13 (-27) (-1199) (-432 *5)))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1214)) (-5 *1 (-873 *3 *2)) (-4 *3 (-1214)))) + ((*1 *2 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-921)) (-5 *4 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1265))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1157)) (-4 *4 (-13 (-308) (-147))) + (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 - (-2 (|:| |contp| (-566)) - (|:| -4138 (-644 (-2 (|:| |irr| *3) (|:| -3149 (-566))))))) - (-5 *1 (-1229 *3)) (-4 *3 (-1240 (-566)))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-771)) (-5 *1 (-783 *2)) (-4 *2 (-38 (-409 (-566)))) - (-4 *2 (-172))))) -(((*1 *1 *2) (-12 (-5 *2 (-819 *3)) (-4 *3 (-850)) (-5 *1 (-672 *3))))) -(((*1 *2 *3) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-448)) (-5 *3 (-566))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-547))))) -(((*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1267)))) - ((*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1267))))) -(((*1 *2 *1) (-12 (-4 *1 (-132)) (-5 *2 (-771)))) - ((*1 *2 *3 *1 *2) - (-12 (-5 *2 (-566)) (-4 *1 (-375 *3)) (-4 *3 (-1214)) + (-644 + (-2 (|:| |eqzro| (-644 *7)) (|:| |neqzro| (-644 *7)) + (|:| |wcond| (-644 (-952 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1264 (-409 (-952 *4)))) + (|:| -2875 (-644 (-1264 (-409 (-952 *4)))))))))) + (-5 *1 (-924 *4 *5 *6 *7)) (-4 *7 (-949 *4 *6 *5))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4415)) (-4 *1 (-244 *2)) (-4 *2 (-1214))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-862))) ((*1 *1 *1 *1) (-5 *1 (-862))) + ((*1 *1 *1) (-5 *1 (-862)))) +(((*1 *2 *3) + (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)) (-5 *3 (-566)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1264 (-3 (-470) "undefined"))) (-5 *1 (-1265))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |preimage| (-644 *3)) (|:| |image| (-644 *3)))) + (-5 *1 (-905 *3)) (-4 *3 (-1099))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) + (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-914 *3)) (-4 *3 (-308))))) +(((*1 *2 *3 *1) + (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-1178)) (-5 *3 (-1175))))) +(((*1 *1 *2) + (-12 (-5 *2 (-644 (-566))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1049)) + (-14 *4 (-644 (-1175))))) + ((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) + (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) + ((*1 *1 *1) (-4 *1 (-285))) + ((*1 *1 *1) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) + (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) + ((*1 *1 *2) + (-12 (-5 *2 (-664 *3 *4)) (-4 *3 (-850)) + (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-5 *1 (-627 *3 *4 *5)) + (-14 *5 (-921)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1160 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1161 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-771)) (-4 *4 (-13 (-1049) (-717 (-409 (-566))))) + (-4 *5 (-850)) (-5 *1 (-1280 *4 *5 *2)) (-4 *2 (-1285 *5 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-771)) (-5 *1 (-1284 *3 *4)) + (-4 *4 (-717 (-409 (-566)))) (-4 *3 (-850)) (-4 *4 (-172))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-771)) (-4 *3 (-1049)) (-4 *1 (-687 *3 *4 *5)) + (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) + ((*1 *1 *2) + (-12 (-4 *2 (-1049)) (-4 *1 (-1122 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) + (-4 *5 (-238 *3 *2))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1099)) (-5 *2 (-112)) (-5 *1 (-885 *3 *4 *5)) + (-4 *3 (-1099)) (-4 *5 (-666 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-889 *3 *4)) (-4 *3 (-1099)) + (-4 *4 (-1099))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 (-483 *4 *5))) (-14 *4 (-644 (-1175))) + (-4 *5 (-454)) (-5 *2 (-644 (-247 *4 *5))) (-5 *1 (-631 *4 *5))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1264 *6)) (-5 *4 (-1264 (-566))) (-5 *5 (-566)) + (-4 *6 (-1099)) (-5 *2 (-1 *6)) (-5 *1 (-1017 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-114)) (-4 *4 (-558)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) + (-4 *5 (-432 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-114)) (-4 *4 (-558)) (-5 *2 (-112)) + (-5 *1 (-158 *4 *5)) (-4 *5 (-432 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-114)) (-4 *4 (-558)) (-5 *2 (-112)) + (-5 *1 (-277 *4 *5)) (-4 *5 (-13 (-432 *4) (-1002))))) + ((*1 *2 *3) + (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-302 *4)) (-4 *4 (-303)))) + ((*1 *2 *3) (-12 (-4 *1 (-303)) (-5 *3 (-114)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *3 (-114)) (-4 *5 (-1099)) (-5 *2 (-112)) + (-5 *1 (-431 *4 *5)) (-4 *4 (-432 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-114)) (-4 *4 (-558)) (-5 *2 (-112)) + (-5 *1 (-433 *4 *5)) (-4 *5 (-432 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-114)) (-4 *4 (-558)) (-5 *2 (-112)) + (-5 *1 (-630 *4 *5)) (-4 *5 (-13 (-432 *4) (-1002) (-1199)))))) +(((*1 *2 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1192))))) +(((*1 *1 *1 *1) (-4 *1 (-967)))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4414)) (-4 *1 (-235 *3)) (-4 *3 (-1099)))) + ((*1 *1 *2 *1) + (-12 (|has| *1 (-6 -4414)) (-4 *1 (-235 *2)) (-4 *2 (-1099)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-283 *2)) (-4 *2 (-1214)) (-4 *2 (-1099)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-283 *3)) (-4 *3 (-1214)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-375 *3)) (-4 *3 (-1214)) (-4 *3 (-1099)) - (-5 *2 (-566)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-375 *4)) (-4 *4 (-1214)) - (-5 *2 (-566)))) - ((*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-531)))) - ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-566)) (-5 *3 (-141)))) - ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-566))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-365)) - (-5 *2 - (-2 (|:| A (-689 *5)) - (|:| |eqs| - (-644 - (-2 (|:| C (-689 *5)) (|:| |g| (-1264 *5)) (|:| -2470 *6) - (|:| |rh| *5)))))) - (-5 *1 (-813 *5 *6)) (-5 *3 (-689 *5)) (-5 *4 (-1264 *5)) - (-4 *6 (-656 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-365)) (-4 *6 (-656 *5)) - (-5 *2 (-2 (|:| -4227 (-689 *6)) (|:| |vec| (-1264 *5)))) - (-5 *1 (-813 *5 *6)) (-5 *3 (-689 *6)) (-5 *4 (-1264 *5))))) -(((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-926))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-921)) (-5 *2 (-1269)) (-5 *1 (-214 *4)) - (-4 *4 - (-13 (-850) - (-10 -8 (-15 -4390 ((-1157) $ (-1175))) (-15 -1675 (*2 $)) - (-15 -3997 (*2 $))))))) - ((*1 *2 *1) - (-12 (-5 *2 (-1269)) (-5 *1 (-214 *3)) - (-4 *3 - (-13 (-850) - (-10 -8 (-15 -4390 ((-1157) $ (-1175))) (-15 -1675 (*2 $)) - (-15 -3997 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-504))))) -(((*1 *2 *2) (-12 (-5 *2 (-689 (-317 (-566)))) (-5 *1 (-1031))))) + (|partial| -12 (-4 *1 (-610 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1099)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-566)) (-4 *4 (-1099)) + (-5 *1 (-737 *4)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-566)) (-5 *1 (-737 *2)) (-4 *2 (-1099)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1139 *3 *4)) (-4 *3 (-13 (-1099) (-34))) + (-4 *4 (-13 (-1099) (-34))) (-5 *1 (-1140 *3 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1004 *3)) (-14 *3 (-566))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1175)) (-4 *4 (-558)) (-4 *4 (-1099)) + (-5 *1 (-575 *4 *2)) (-4 *2 (-432 *4))))) +(((*1 *1) (-5 *1 (-130)))) +(((*1 *1 *1) + (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1049))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-420 *2)) (-4 *2 (-558))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-988 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1106 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7))))) +(((*1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-829))))) +(((*1 *2 *1 *3 *3 *4) + (-12 (-5 *3 (-1 (-862) (-862) (-862))) (-5 *4 (-566)) (-5 *2 (-862)) + (-5 *1 (-649 *5 *6 *7)) (-4 *5 (-1099)) (-4 *6 (-23)) (-14 *7 *6))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-862)) (-5 *1 (-854 *3 *4 *5)) (-4 *3 (-1049)) + (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-862)))) + ((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-862)))) + ((*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-862)))) + ((*1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-862)) (-5 *1 (-1171 *3)) (-4 *3 (-1049))))) +(((*1 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1214))))) +(((*1 *1 *1) (-5 *1 (-225))) ((*1 *1 *1) (-5 *1 (-381))) + ((*1 *1) (-5 *1 (-381)))) (((*1 *2 *3 *3) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) @@ -2383,605 +4585,643 @@ (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1106 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-547)))) -(((*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1267)))) - ((*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1267))))) -(((*1 *2 *3 *1) - (-12 - (-5 *2 - (-2 (|:| |cycle?| (-112)) (|:| -2486 (-771)) (|:| |period| (-771)))) - (-5 *1 (-1155 *4)) (-4 *4 (-1214)) (-5 *3 (-771))))) -(((*1 *1 *1) (-4 *1 (-558)))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-566)) (-4 *1 (-324 *4 *2)) (-4 *4 (-1099)) - (-4 *2 (-131))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-365) (-848))) (-5 *1 (-181 *3 *2)) - (-4 *2 (-1240 (-169 *3)))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-771)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2)) - (-4 *2 (-1240 *4)))) - ((*1 *2 *2 *3 *2 *3) - (-12 (-5 *3 (-566)) (-5 *1 (-696 *2)) (-4 *2 (-1240 *3))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) (-4 *5 (-793)) - (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-644 (-864 *5))) (-14 *5 (-644 (-1175))) (-4 *6 (-454)) - (-5 *2 - (-2 (|:| |dpolys| (-644 (-247 *5 *6))) - (|:| |coords| (-644 (-566))))) - (-5 *1 (-473 *5 *6 *7)) (-5 *3 (-644 (-247 *5 *6))) (-4 *7 (-454))))) -(((*1 *1 *2) - (-12 (-5 *2 (-644 *3)) (-4 *3 (-1214)) (-5 *1 (-1155 *3))))) -(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) - (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-999 *3)) (-4 *3 (-172)) (-5 *1 (-799 *3))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-324 *3 *4)) (-4 *3 (-1099)) + (-4 *4 (-131)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1099)) (-5 *1 (-363 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1099)) (-5 *1 (-388 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1099)) (-5 *1 (-649 *3 *4 *5)) + (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-112))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-771)) (-4 *1 (-231 *4)) + (-4 *4 (-1049)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1049)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-771)))) + ((*1 *1 *1) (-4 *1 (-233))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-771)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-401 *3 *4)) + (-4 *4 (-1240 *3)))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-365) (-147))) (-5 *1 (-401 *2 *3)) + (-4 *3 (-1240 *2)))) + ((*1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1049)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-644 *4)) (-5 *3 (-644 (-771))) (-4 *1 (-900 *4)) + (-4 *4 (-1099)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-771)) (-4 *1 (-900 *2)) (-4 *2 (-1099)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-644 *3)) (-4 *1 (-900 *3)) (-4 *3 (-1099)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-900 *2)) (-4 *2 (-1099))))) +(((*1 *1) (-5 *1 (-580))) + ((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-863)))) + ((*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1269)) (-5 *1 (-863)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1157)) (-5 *4 (-862)) (-5 *2 (-1269)) (-5 *1 (-863)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-566)) (-5 *2 (-1269)) (-5 *1 (-1155 *4)) + (-4 *4 (-1099)) (-4 *4 (-1214))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-653 *4)) (-4 *4 (-344 *5 *6 *7)) - (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) - (-4 *6 (-1240 *5)) (-4 *7 (-1240 (-409 *6))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2365 (-644 *4)))) - (-5 *1 (-806 *5 *6 *7 *4))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365))))) + (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-365)) (-4 *6 (-1240 (-409 *2))) + (-4 *2 (-1240 *5)) (-5 *1 (-215 *5 *2 *6 *3)) + (-4 *3 (-344 *5 *2 *6))))) +(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-292))) + ((*1 *1) (-5 *1 (-862))) + ((*1 *1) + (-12 (-4 *2 (-454)) (-4 *3 (-850)) (-4 *4 (-793)) + (-5 *1 (-987 *2 *3 *4 *5)) (-4 *5 (-949 *2 *4 *3)))) + ((*1 *1) (-5 *1 (-1084))) + ((*1 *1) + (-12 (-5 *1 (-1139 *2 *3)) (-4 *2 (-13 (-1099) (-34))) + (-4 *3 (-13 (-1099) (-34))))) + ((*1 *1) (-5 *1 (-1178))) ((*1 *1) (-5 *1 (-1179)))) +(((*1 *1 *1) (-5 *1 (-1062)))) +(((*1 *2 *1) + (-12 (|has| *1 (-6 -4414)) (-4 *1 (-491 *3)) (-4 *3 (-1214)) + (-5 *2 (-644 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-737 *3)) (-4 *3 (-1099)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 (-441))) (-5 *1 (-865))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1214))))) +(((*1 *1 *2) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-489))))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) - (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-988 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) - (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1106 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7))))) -(((*1 *1) (-5 *1 (-141)))) + (-12 (-5 *3 (-1177 (-409 (-566)))) (-5 *2 (-409 (-566))) + (-5 *1 (-190))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-927))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-5 *2 (-644 *3)))) + (-12 + (-5 *2 + (-644 + (-2 + (|:| -2674 + (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) + (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (|:| -2636 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1155 (-225))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -2821 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated")))))))) + (-5 *1 (-561)))) ((*1 *2 *1) - (-12 (|has| *1 (-6 -4414)) (-4 *1 (-491 *3)) (-4 *3 (-1214)) - (-5 *2 (-644 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-264)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-264)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-264))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-566)) (-4 *1 (-1224 *4)) (-4 *4 (-1049)) (-4 *4 (-558)) - (-5 *2 (-409 (-952 *4))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-566)) (-4 *1 (-1224 *4)) (-4 *4 (-1049)) (-4 *4 (-558)) - (-5 *2 (-409 (-952 *4)))))) -(((*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1269)) (-5 *1 (-381)))) - ((*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-381))))) -(((*1 *1) (-5 *1 (-439)))) -(((*1 *1) (-4 *1 (-351)))) -(((*1 *1 *1) - (-12 (-4 *1 (-1207 *2 *3 *4 *5)) (-4 *2 (-558)) (-4 *3 (-793)) - (-4 *4 (-850)) (-4 *5 (-1064 *2 *3 *4))))) + (-12 (-4 *1 (-604 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1214)) + (-5 *2 (-644 *4))))) (((*1 *2 *3) - (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-829)) (-5 *3 (-1157))))) -(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-112)) (-4 *6 (-454)) (-4 *7 (-793)) - (-4 *8 (-850)) (-4 *9 (-1064 *6 *7 *8)) - (-5 *2 - (-2 (|:| -2470 (-644 *9)) (|:| -3570 *4) (|:| |ineq| (-644 *9)))) - (-5 *1 (-988 *6 *7 *8 *9 *4)) (-5 *3 (-644 *9)) - (-4 *4 (-1070 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-112)) (-4 *6 (-454)) (-4 *7 (-793)) - (-4 *8 (-850)) (-4 *9 (-1064 *6 *7 *8)) - (-5 *2 - (-2 (|:| -2470 (-644 *9)) (|:| -3570 *4) (|:| |ineq| (-644 *9)))) - (-5 *1 (-1106 *6 *7 *8 *9 *4)) (-5 *3 (-644 *9)) - (-4 *4 (-1070 *6 *7 *8 *9))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-409 (-566))) - (-4 *4 (-13 (-558) (-1038 (-566)) (-639 (-566)))) - (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *4)))))) + (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-558)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 (-1277 *4 *5 *6 *7))) + (-5 *1 (-1277 *4 *5 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-644 *9)) (-5 *4 (-1 (-112) *9 *9)) + (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1064 *6 *7 *8)) (-4 *6 (-558)) + (-4 *7 (-793)) (-4 *8 (-850)) (-5 *2 (-644 (-1277 *6 *7 *8 *9))) + (-5 *1 (-1277 *6 *7 *8 *9))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-558)) - (-4 *6 (-793)) (-4 *7 (-850)) - (-5 *2 (-2 (|:| |goodPols| (-644 *8)) (|:| |badPols| (-644 *8)))) - (-5 *1 (-977 *5 *6 *7 *8)) (-5 *4 (-644 *8))))) -(((*1 *2 *1) (-12 (-5 *1 (-691 *2)) (-4 *2 (-613 (-862))))) - ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-566)))) - ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1157)))) - ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-508)))) - ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-593)))) - ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-480)))) - ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-137)))) - ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-156)))) - ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1165)))) - ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-626)))) - ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1095)))) - ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1089)))) - ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1072)))) - ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-970)))) - ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-180)))) - ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1036)))) - ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-312)))) - ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-671)))) - ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-154)))) - ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-527)))) - ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1275)))) - ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1065)))) - ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-519)))) - ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-681)))) - ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-96)))) - ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1114)))) - ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-133)))) - ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-138)))) - ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1274)))) - ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-676)))) - ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-218)))) - ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-526)))) - ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1180)))) - ((*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-1180)))) - ((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1180)))) - ((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-1180))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1155 *3)) (-4 *3 (-1099)) - (-4 *3 (-1214))))) -(((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-493))))) -(((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1195))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-644 (-644 (-644 *4)))) (-5 *3 (-644 *4)) (-4 *4 (-850)) - (-5 *1 (-1185 *4))))) -(((*1 *1) - (-12 (-4 *1 (-406)) (-2418 (|has| *1 (-6 -4405))) - (-2418 (|has| *1 (-6 -4397))))) - ((*1 *2 *1) (-12 (-4 *1 (-427 *2)) (-4 *2 (-1099)) (-4 *2 (-850)))) - ((*1 *1) (-4 *1 (-844))) ((*1 *1 *1 *1) (-4 *1 (-850))) - ((*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-850))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-833 *3)) (-4 *3 (-1099)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-1099))))) -(((*1 *2 *2) - (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-147)) - (-4 *3 (-308)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) - (-5 *1 (-977 *3 *4 *5 *6))))) -(((*1 *2) - (-12 (-4 *3 (-558)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-419 *3))))) -(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) - (-12 (-5 *4 (-689 (-225))) (-5 *5 (-689 (-566))) (-5 *3 (-566)) - (-5 *2 (-1035)) (-5 *1 (-756))))) + (-12 (-5 *3 (-644 (-2 (|:| |val| (-644 *8)) (|:| -1470 *9)))) + (-5 *4 (-771)) (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1070 *5 *6 *7 *8)) + (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-1269)) + (-5 *1 (-1068 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-2 (|:| |val| (-644 *8)) (|:| -1470 *9)))) + (-5 *4 (-771)) (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1108 *5 *6 *7 *8)) + (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-1269)) + (-5 *1 (-1144 *5 *6 *7 *8 *9))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-365)) (-5 *1 (-766 *2 *3)) (-4 *2 (-708 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *8 (-1064 *5 *6 *7)) + (-5 *2 + (-2 (|:| |val| (-644 *8)) + (|:| |towers| (-644 (-1027 *5 *6 *7 *8))))) + (-5 *1 (-1027 *5 *6 *7 *8)) (-5 *3 (-644 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *8 (-1064 *5 *6 *7)) + (-5 *2 + (-2 (|:| |val| (-644 *8)) + (|:| |towers| (-644 (-1145 *5 *6 *7 *8))))) + (-5 *1 (-1145 *5 *6 *7 *8)) (-5 *3 (-644 *8))))) (((*1 *2 *3) - (-12 (-5 *3 (-1264 (-689 *4))) (-4 *4 (-172)) - (-5 *2 (-1264 (-689 (-952 *4)))) (-5 *1 (-189 *4))))) -(((*1 *2 *2) - (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))) - (-5 *1 (-176 *3))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-470)) (-5 *4 (-921)) (-5 *2 (-1269)) (-5 *1 (-1265))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-644 *4)) (-4 *4 (-365)) (-5 *2 (-1264 *4)) - (-5 *1 (-814 *4 *3)) (-4 *3 (-656 *4))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-976 *4 *5 *3 *6)) (-4 *4 (-1049)) (-4 *5 (-793)) - (-4 *3 (-850)) (-4 *6 (-1064 *4 *5 *3)) (-5 *2 (-112))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-1140 *2 *3)) (-4 *2 (-13 (-1099) (-34))) - (-4 *3 (-13 (-1099) (-34)))))) + (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) + ((*1 *2) (-12 (-5 *2 (-904 (-566))) (-5 *1 (-917))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-566) (-566))) (-5 *1 (-363 *3)) (-4 *3 (-1099)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-771) (-771))) (-5 *1 (-388 *3)) (-4 *3 (-1099)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) + (-5 *1 (-649 *3 *4 *5)) (-4 *3 (-1099))))) +(((*1 *1 *1) (-4 *1 (-547)))) +(((*1 *2 *1) (-12 (-4 *1 (-1092 *3)) (-4 *3 (-1214)) (-5 *2 (-566))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1175)) (-5 *4 (-952 (-566))) (-5 *2 (-331)) - (-5 *1 (-333))))) -(((*1 *2 *3 *4 *4 *3 *3 *5) - (|partial| -12 (-5 *4 (-612 *3)) (-5 *5 (-1171 *3)) - (-4 *3 (-13 (-432 *6) (-27) (-1199))) - (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) - (-5 *2 (-2 (|:| -2346 *3) (|:| |coeff| *3))) - (-5 *1 (-562 *6 *3 *7)) (-4 *7 (-1099)))) - ((*1 *2 *3 *4 *4 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-612 *3)) (-5 *5 (-409 (-1171 *3))) - (-4 *3 (-13 (-432 *6) (-27) (-1199))) - (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) - (-5 *2 (-2 (|:| -2346 *3) (|:| |coeff| *3))) - (-5 *1 (-562 *6 *3 *7)) (-4 *7 (-1099))))) + (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1255 *4)) (-5 *1 (-1257 *4 *2)) + (-4 *4 (-38 (-409 (-566))))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) + (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) + (-5 *2 (-2 (|:| -1685 (-644 *6)) (|:| -3292 (-644 *6))))))) (((*1 *2 *3 *4) (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-1175)) - (-4 *5 (-13 (-308) (-147))) (-5 *2 (-644 (-295 (-317 *5)))) - (-5 *1 (-1128 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-13 (-308) (-147))) - (-5 *2 (-644 (-295 (-317 *4)))) (-5 *1 (-1128 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-295 (-409 (-952 *5)))) (-5 *4 (-1175)) - (-4 *5 (-13 (-308) (-147))) (-5 *2 (-644 (-295 (-317 *5)))) + (-4 *5 (-13 (-308) (-147))) (-5 *2 (-644 (-317 *5))) (-5 *1 (-1128 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-295 (-409 (-952 *4)))) (-4 *4 (-13 (-308) (-147))) - (-5 *2 (-644 (-295 (-317 *4)))) (-5 *1 (-1128 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-644 (-409 (-952 *5)))) (-5 *4 (-644 (-1175))) - (-4 *5 (-13 (-308) (-147))) (-5 *2 (-644 (-644 (-295 (-317 *5))))) - (-5 *1 (-1128 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-644 (-409 (-952 *4)))) (-4 *4 (-13 (-308) (-147))) - (-5 *2 (-644 (-644 (-295 (-317 *4))))) (-5 *1 (-1128 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-644 (-295 (-409 (-952 *5))))) (-5 *4 (-644 (-1175))) - (-4 *5 (-13 (-308) (-147))) (-5 *2 (-644 (-644 (-295 (-317 *5))))) - (-5 *1 (-1128 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-644 (-295 (-409 (-952 *4))))) - (-4 *4 (-13 (-308) (-147))) (-5 *2 (-644 (-644 (-295 (-317 *4))))) - (-5 *1 (-1128 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-689 *5)) (-4 *5 (-1049)) (-5 *1 (-1054 *3 *4 *5)) - (-14 *3 (-771)) (-14 *4 (-771))))) + (-4 *5 (-13 (-308) (-147))) (-5 *2 (-644 (-644 (-317 *5)))) + (-5 *1 (-1128 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-295 (-952 (-566)))) + (-5 *2 + (-2 (|:| |varOrder| (-644 (-1175))) + (|:| |inhom| (-3 (-644 (-1264 (-771))) "failed")) + (|:| |hom| (-644 (-1264 (-771)))))) + (-5 *1 (-236))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 *9)) (-4 *8 (-1064 *5 *6 *7)) - (-4 *9 (-1070 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) - (-4 *7 (-850)) (-5 *2 (-771)) (-5 *1 (-1068 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 *9)) (-4 *8 (-1064 *5 *6 *7)) - (-4 *9 (-1108 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) - (-4 *7 (-850)) (-5 *2 (-771)) (-5 *1 (-1144 *5 *6 *7 *8 *9))))) + (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 *4)) + (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-862))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1180))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-689 *11)) (-5 *4 (-644 (-409 (-952 *8)))) + (-5 *5 (-771)) (-5 *6 (-1157)) (-4 *8 (-13 (-308) (-147))) + (-4 *11 (-949 *8 *10 *9)) (-4 *9 (-13 (-850) (-614 (-1175)))) + (-4 *10 (-793)) + (-5 *2 + (-2 + (|:| |rgl| + (-644 + (-2 (|:| |eqzro| (-644 *11)) (|:| |neqzro| (-644 *11)) + (|:| |wcond| (-644 (-952 *8))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1264 (-409 (-952 *8)))) + (|:| -2875 (-644 (-1264 (-409 (-952 *8)))))))))) + (|:| |rgsz| (-566)))) + (-5 *1 (-924 *8 *9 *10 *11)) (-5 *7 (-566))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-1 (-587 *3) *3 (-1175))) + (-5 *6 + (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 + (-1175))) + (-4 *3 (-285)) (-4 *3 (-629)) (-4 *3 (-1038 *4)) (-4 *3 (-432 *7)) + (-5 *4 (-1175)) (-4 *7 (-614 (-892 (-566)))) (-4 *7 (-454)) + (-4 *7 (-886 (-566))) (-4 *7 (-1099)) (-5 *2 (-587 *3)) + (-5 *1 (-575 *7 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-566)) (-4 *1 (-324 *2 *4)) (-4 *4 (-131)) - (-4 *2 (-1099)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *1 (-363 *2)) (-4 *2 (-1099)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *1 (-388 *2)) (-4 *2 (-1099)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *1 (-420 *2)) (-4 *2 (-558)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-566)) (-4 *2 (-1099)) (-5 *1 (-649 *2 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *1 (-819 *2)) (-4 *2 (-850))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-1 (-225) (-225) (-225))) - (-5 *4 (-1 (-225) (-225) (-225) (-225))) - (-5 *2 (-1 (-943 (-225)) (-225) (-225))) (-5 *1 (-697))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-824))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-644 (-952 *4))) (-5 *3 (-644 (-1175))) (-4 *4 (-454)) - (-5 *1 (-918 *4))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-720)) (-5 *2 (-921)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-722)) (-5 *2 (-771))))) -(((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-128))))) -(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-114))) - ((*1 *1 *1) (-5 *1 (-171))) ((*1 *1 *1) (-4 *1 (-547))) - ((*1 *1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099)))) - ((*1 *1 *1) (-12 (-4 *1 (-1133 *2)) (-4 *2 (-1049)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1139 *2 *3)) (-4 *2 (-13 (-1099) (-34))) - (-4 *3 (-13 (-1099) (-34)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) -(((*1 *1 *2) - (-12 (-5 *2 (-644 (-905 *3))) (-4 *3 (-1099)) (-5 *1 (-904 *3))))) -(((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1175)) (-5 *1 (-675 *3)) (-4 *3 (-1099))))) -(((*1 *2) - (-12 (-5 *2 (-958 (-1119))) (-5 *1 (-345 *3 *4)) (-14 *3 (-921)) - (-14 *4 (-921)))) - ((*1 *2) - (-12 (-5 *2 (-958 (-1119))) (-5 *1 (-346 *3 *4)) (-4 *3 (-351)) - (-14 *4 (-1171 *3)))) - ((*1 *2) - (-12 (-5 *2 (-958 (-1119))) (-5 *1 (-347 *3 *4)) (-4 *3 (-351)) - (-14 *4 (-921))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) - ((*1 *2 *1) - (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)) - (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-722)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-726)) (-5 *2 (-112))))) -(((*1 *2) (-12 (-4 *1 (-1044 *2)) (-4 *2 (-23))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1099)) (-4 *6 (-1099)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-684 *4 *5 *6)) (-4 *5 (-1099))))) -(((*1 *2 *3) - (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) - ((*1 *2) (-12 (-5 *2 (-904 (-566))) (-5 *1 (-917))))) -(((*1 *2 *1) - (-12 (-4 *3 (-172)) (-4 *2 (-23)) (-5 *1 (-290 *3 *4 *2 *5 *6 *7)) - (-4 *4 (-1240 *3)) (-14 *5 (-1 *4 *4 *2)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2)) - (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) - ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-711 *3 *2 *4 *5 *6)) (-4 *3 (-172)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) - (-12 (-4 *2 (-1240 *3)) (-5 *1 (-712 *3 *2)) (-4 *3 (-1049)))) + (-12 (-5 *3 (-921)) (-4 *4 (-370)) (-4 *4 (-365)) (-5 *2 (-1171 *1)) + (-4 *1 (-330 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1171 *3)))) ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-715 *3 *2 *4 *5 *6)) (-4 *3 (-172)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *1 (-869 *3)) (-5 *2 (-566))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-644 (-1175))) (-4 *5 (-558)) - (-5 *2 (-644 (-644 (-295 (-409 (-952 *5)))))) (-5 *1 (-770 *5)))) + (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-172)) (-4 *3 (-365)) + (-4 *2 (-1240 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-644 (-952 *4))) (-4 *4 (-558)) - (-5 *2 (-644 (-644 (-295 (-409 (-952 *4)))))) (-5 *1 (-770 *4)))) + (-12 (-5 *3 (-1264 *4)) (-4 *4 (-351)) (-5 *2 (-1171 *4)) + (-5 *1 (-530 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-566)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1049)) + (-5 *1 (-322 *4 *5 *2 *6)) (-4 *6 (-949 *2 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-1216))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-771)) (-5 *6 (-112)) (-4 *7 (-454)) (-4 *8 (-793)) + (-4 *9 (-850)) (-4 *3 (-1064 *7 *8 *9)) + (-5 *2 + (-2 (|:| |done| (-644 *4)) + (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -1470 *4)))))) + (-5 *1 (-1068 *7 *8 *9 *3 *4)) (-4 *4 (-1070 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-689 *7)) - (-5 *5 - (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2365 (-644 *6))) - *7 *6)) - (-4 *6 (-365)) (-4 *7 (-656 *6)) + (-12 (-5 *5 (-771)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) + (-4 *3 (-1064 *6 *7 *8)) (-5 *2 - (-2 (|:| |particular| (-3 (-1264 *6) "failed")) - (|:| -2365 (-644 (-1264 *6))))) - (-5 *1 (-813 *6 *7)) (-5 *4 (-1264 *6))))) -(((*1 *2 *3 *4 *3 *5 *3) - (-12 (-5 *4 (-689 (-225))) (-5 *5 (-689 (-566))) (-5 *3 (-566)) - (-5 *2 (-1035)) (-5 *1 (-754))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-644 (-612 *5))) (-5 *3 (-1175)) (-4 *5 (-432 *4)) - (-4 *4 (-1099)) (-5 *1 (-575 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) - (-4 *5 (-1240 (-409 *4))) - (-5 *2 (-2 (|:| |num| (-1264 *4)) (|:| |den| *4)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-644 *2)) (-4 *2 (-1240 *4)) (-5 *1 (-541 *4 *2 *5 *6)) - (-4 *4 (-308)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-771)))))) -(((*1 *2 *3 *4) - (-12 (-5 *2 (-644 (-169 *4))) (-5 *1 (-155 *3 *4)) - (-4 *3 (-1240 (-169 (-566)))) (-4 *4 (-13 (-365) (-848))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-365) (-848))) (-5 *2 (-644 (-169 *4))) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1240 (-169 *4))))) + (-2 (|:| |done| (-644 *4)) + (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -1470 *4)))))) + (-5 *1 (-1068 *6 *7 *8 *3 *4)) (-4 *4 (-1070 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-365) (-848))) (-5 *2 (-644 (-169 *4))) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1240 (-169 *4)))))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-566)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1214)) - (-4 *4 (-375 *2)) (-4 *5 (-375 *2)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "right") (|has| *1 (-6 -4415)) (-4 *1 (-119 *3)) - (-4 *3 (-1214)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "left") (|has| *1 (-6 -4415)) (-4 *1 (-119 *3)) - (-4 *3 (-1214)))) - ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4415)) (-4 *1 (-289 *3 *2)) (-4 *3 (-1099)) - (-4 *2 (-1214)))) - ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1175)) (-5 *1 (-632)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-1231 (-566))) (|has| *1 (-6 -4415)) (-4 *1 (-651 *2)) - (-4 *2 (-1214)))) - ((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-644 (-566))) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) - (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "value") (|has| *1 (-6 -4415)) (-4 *1 (-1010 *2)) - (-4 *2 (-1214)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-1026 *2)) (-4 *2 (-1214)))) - ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-1190 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1099)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "last") (|has| *1 (-6 -4415)) (-4 *1 (-1252 *2)) - (-4 *2 (-1214)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "rest") (|has| *1 (-6 -4415)) (-4 *1 (-1252 *3)) - (-4 *3 (-1214)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "first") (|has| *1 (-6 -4415)) (-4 *1 (-1252 *2)) - (-4 *2 (-1214))))) -(((*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049))))) -(((*1 *2 *1) (-12 (-4 *1 (-674 *2)) (-4 *2 (-1214))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439))))) -(((*1 *2 *3) - (-12 (-4 *4 (-558)) (-5 *2 (-112)) (-5 *1 (-277 *4 *3)) - (-4 *3 (-13 (-432 *4) (-1002)))))) -(((*1 *2 *1) (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-1179))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-566)) (-5 *6 (-1 (-1269) (-1264 *5) (-1264 *5) (-381))) - (-5 *3 (-1264 (-381))) (-5 *5 (-381)) (-5 *2 (-1269)) - (-5 *1 (-788)))) - ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) - (-12 (-5 *4 (-566)) (-5 *6 (-1 (-1269) (-1264 *5) (-1264 *5) (-381))) - (-5 *3 (-1264 (-381))) (-5 *5 (-381)) (-5 *2 (-1269)) - (-5 *1 (-788))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1175)) - (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) - (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1199) (-432 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) - (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *4))))) + (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *3 (-1064 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-644 *4)) + (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -1470 *4)))))) + (-5 *1 (-1068 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-771)) (-5 *6 (-112)) (-4 *7 (-454)) (-4 *8 (-793)) + (-4 *9 (-850)) (-4 *3 (-1064 *7 *8 *9)) + (-5 *2 + (-2 (|:| |done| (-644 *4)) + (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -1470 *4)))))) + (-5 *1 (-1144 *7 *8 *9 *3 *4)) (-4 *4 (-1108 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-771)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) + (-4 *3 (-1064 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-644 *4)) + (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -1470 *4)))))) + (-5 *1 (-1144 *6 *7 *8 *3 *4)) (-4 *4 (-1108 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-771)) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) - (-5 *2 (-52)) (-5 *1 (-316 *5 *3)) - (-4 *3 (-13 (-27) (-1199) (-432 *5))))) + (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *3 (-1064 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-644 *4)) + (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -1470 *4)))))) + (-5 *1 (-1144 *5 *6 *7 *3 *4)) (-4 *4 (-1108 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1099)) (-4 *6 (-886 *5)) (-5 *2 (-885 *5 *6 (-644 *6))) + (-5 *1 (-887 *5 *6 *4)) (-5 *3 (-644 *6)) (-4 *4 (-614 (-892 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5))) - (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) - (-5 *1 (-316 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-295 *3)) (-5 *5 (-771)) - (-4 *3 (-13 (-27) (-1199) (-432 *6))) - (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) - (-5 *1 (-316 *6 *3)))) + (-12 (-4 *5 (-1099)) (-5 *2 (-644 (-295 *3))) (-5 *1 (-887 *5 *3 *4)) + (-4 *3 (-1038 (-1175))) (-4 *3 (-886 *5)) (-4 *4 (-614 (-892 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-566))) (-5 *4 (-295 *6)) - (-4 *6 (-13 (-27) (-1199) (-432 *5))) - (-4 *5 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) - (-5 *1 (-461 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1175)) (-5 *5 (-295 *3)) - (-4 *3 (-13 (-27) (-1199) (-432 *6))) - (-4 *6 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) - (-5 *1 (-461 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-566))) (-5 *4 (-295 *7)) (-5 *5 (-1231 (-771))) - (-4 *7 (-13 (-27) (-1199) (-432 *6))) - (-4 *6 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) - (-5 *1 (-461 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1175)) (-5 *5 (-295 *3)) (-5 *6 (-1231 (-771))) - (-4 *3 (-13 (-27) (-1199) (-432 *7))) - (-4 *7 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) - (-5 *1 (-461 *7 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1226 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-1255 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-3 (|:| |fst| (-436)) (|:| -2895 "void"))) - (-5 *2 (-1269)) (-5 *1 (-1178)))) + (-12 (-4 *5 (-1099)) (-5 *2 (-644 (-295 (-952 *3)))) + (-5 *1 (-887 *5 *3 *4)) (-4 *3 (-1049)) + (-2404 (-4 *3 (-1038 (-1175)))) (-4 *3 (-886 *5)) + (-4 *4 (-614 (-892 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1175)) - (-5 *4 (-3 (|:| |fst| (-436)) (|:| -2895 "void"))) (-5 *2 (-1269)) - (-5 *1 (-1178)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *3 (-1175)) - (-5 *4 (-3 (|:| |fst| (-436)) (|:| -2895 "void"))) (-5 *2 (-1269)) - (-5 *1 (-1178))))) -(((*1 *2 *3 *3 *3 *4) + (-12 (-4 *5 (-1099)) (-5 *2 (-889 *5 *3)) (-5 *1 (-887 *5 *3 *4)) + (-2404 (-4 *3 (-1038 (-1175)))) (-2404 (-4 *3 (-1049))) + (-4 *3 (-886 *5)) (-4 *4 (-614 (-892 *5)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 *5)) (-4 *5 (-432 *4)) (-4 *4 (-558)) + (-5 *2 (-862)) (-5 *1 (-32 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) (((*1 *2 *3) - (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) - (-4 *5 (-1240 *4)) (-5 *2 (-644 (-653 (-409 *5)))) - (-5 *1 (-657 *4 *5)) (-5 *3 (-653 (-409 *5)))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1171 *1)) (-5 *3 (-1175)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1171 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-952 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1175)) (-4 *1 (-29 *3)) (-4 *3 (-558)))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-558)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1171 *2)) (-5 *4 (-1175)) (-4 *2 (-432 *5)) - (-5 *1 (-32 *5 *2)) (-4 *5 (-558)))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *2 (-1171 *1)) (-5 *3 (-921)) (-4 *1 (-1012)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-1171 *1)) (-5 *3 (-921)) (-5 *4 (-862)) - (-4 *1 (-1012)))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *3 (-921)) (-4 *4 (-13 (-848) (-365))) - (-4 *1 (-1067 *4 *2)) (-4 *2 (-1240 *4))))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365))))) + (-12 (-5 *3 (-689 (-409 (-952 (-566))))) + (-5 *2 + (-644 + (-2 (|:| |radval| (-317 (-566))) (|:| |radmult| (-566)) + (|:| |radvect| (-644 (-689 (-317 (-566)))))))) + (-5 *1 (-1031))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-482))))) (((*1 *2) - (-12 (-5 *2 (-689 (-910 *3))) (-5 *1 (-353 *3 *4)) (-14 *3 (-921)) - (-14 *4 (-921)))) - ((*1 *2) - (-12 (-5 *2 (-689 *3)) (-5 *1 (-354 *3 *4)) (-4 *3 (-351)) - (-14 *4 - (-3 (-1171 *3) - (-1264 (-644 (-2 (|:| -2233 *3) (|:| -2178 (-1119))))))))) - ((*1 *2) - (-12 (-5 *2 (-689 *3)) (-5 *1 (-355 *3 *4)) (-4 *3 (-351)) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) + (-4 *5 (-1240 (-409 *4))) (-5 *2 (-689 (-409 *4)))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-1214)) (-5 *1 (-182 *3 *2)) + (-4 *2 (-674 *3))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-771)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-1215 *3)) (-4 *3 (-850)) + (-4 *3 (-1099))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-671)))) + ((*1 *2 *1) + (-12 (-5 *2 (-644 (-921))) (-5 *1 (-1100 *3 *4)) (-14 *3 (-921)) (-14 *4 (-921))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-1218)) (-4 *5 (-1240 *4)) - (-5 *2 (-2 (|:| |radicand| (-409 *5)) (|:| |deg| (-771)))) - (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1240 (-409 *5)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-454)) (-4 *4 (-850)) - (-4 *5 (-793)) (-5 *1 (-987 *3 *4 *5 *6)) (-4 *6 (-949 *3 *5 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-644 *8)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-566)) - (-14 *6 (-771)) (-4 *7 (-172)) (-4 *8 (-172)) - (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-644 *9)) (-4 *9 (-1049)) (-4 *5 (-850)) (-4 *6 (-793)) - (-4 *8 (-1049)) (-4 *2 (-949 *9 *7 *5)) - (-5 *1 (-728 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-793)) - (-4 *4 (-949 *8 *6 *5))))) + (-12 (-4 *4 (-1049)) + (-4 *2 (-13 (-406) (-1038 *4) (-365) (-1199) (-285))) + (-5 *1 (-445 *4 *3 *2)) (-4 *3 (-1240 *4))))) +(((*1 *1 *1) + (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1237 *5 *4)) (-4 *4 (-454)) (-4 *4 (-820)) + (-14 *5 (-1175)) (-5 *2 (-566)) (-5 *1 (-1113 *4 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1099)) (-5 *1 (-905 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1240 *5)) (-4 *5 (-365)) - (-5 *2 - (-2 (|:| |ir| (-587 (-409 *6))) (|:| |specpart| (-409 *6)) - (|:| |polypart| *6))) - (-5 *1 (-576 *5 *6)) (-5 *3 (-409 *6))))) + (-12 (-5 *4 (-689 (-409 (-952 (-566))))) + (-5 *2 (-644 (-689 (-317 (-566))))) (-5 *1 (-1031)) + (-5 *3 (-317 (-566)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-114)) (-4 *4 (-1049)) (-5 *1 (-714 *4 *2)) + (-4 *2 (-648 *4)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-836 *2)) (-4 *2 (-1049))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-850)) (-5 *1 (-486 *3))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-771)) (-4 *2 (-1099)) + (-5 *1 (-678 *2))))) +(((*1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-241))))) +(((*1 *2 *3 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-748))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266))))) +(((*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1214))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-755))))) +(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-862))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-771)) (-5 *4 (-921)) (-5 *2 (-1269)) (-5 *1 (-1265)))) + ((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-771)) (-5 *4 (-921)) (-5 *2 (-1269)) (-5 *1 (-1266))))) +(((*1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1184))))) (((*1 *2 *3) - (-12 (-4 *4 (-909)) (-4 *5 (-793)) (-4 *6 (-850)) - (-4 *7 (-949 *4 *5 *6)) (-5 *2 (-420 (-1171 *7))) - (-5 *1 (-906 *4 *5 *6 *7)) (-5 *3 (-1171 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-909)) (-4 *5 (-1240 *4)) (-5 *2 (-420 (-1171 *5))) - (-5 *1 (-907 *4 *5)) (-5 *3 (-1171 *5))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-547)))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1175)) - (-4 *4 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) - (-5 *1 (-804 *4 *2)) (-4 *2 (-13 (-29 *4) (-1199) (-959))))) - ((*1 *1 *1 *1 *1) (-5 *1 (-862))) ((*1 *1 *1 *1) (-5 *1 (-862))) - ((*1 *1 *1) (-5 *1 (-862))) + (-12 (-4 *3 (-1240 *2)) (-4 *2 (-1240 *4)) (-5 *1 (-985 *4 *2 *3 *5)) + (-4 *4 (-351)) (-4 *5 (-724 *2 *3))))) +(((*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-701)))) + ((*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-701))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1073)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) + (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-587 *2)) (-4 *2 (-13 (-29 *4) (-1199))) + (-5 *1 (-585 *4 *2)) + (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))))) ((*1 *2 *3) - (-12 (-5 *2 (-1155 *3)) (-5 *1 (-1159 *3)) (-4 *3 (-1049))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-547))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-860)) (-5 *2 (-691 (-551))) (-5 *3 (-551))))) -(((*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-803))))) + (-12 (-5 *3 (-587 (-409 (-952 *4)))) + (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-317 *4)) + (-5 *1 (-590 *4))))) (((*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) - (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 *4)) + (-4 *3 (-1064 *5 *6 *7)) + (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -1470 *4)))) (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))) -(((*1 *1) (-5 *1 (-130)))) (((*1 *2 *1) - (-12 (-5 *2 (-644 *5)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-566)) - (-14 *4 (-771)) (-4 *5 (-172))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-644 (-1 *4 (-644 *4)))) (-4 *4 (-1099)) - (-5 *1 (-113 *4)))) + (-12 (-4 *3 (-1214)) (-5 *2 (-644 *1)) (-4 *1 (-1010 *3))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1264 *5)) (-4 *5 (-792)) (-5 *2 (-112)) + (-5 *1 (-845 *4 *5)) (-14 *4 (-771))))) +(((*1 *2 *3) + (-12 (-5 *3 (-689 *2)) (-4 *4 (-1240 *2)) + (-4 *2 (-13 (-308) (-10 -8 (-15 -1364 ((-420 $) $))))) + (-5 *1 (-501 *2 *4 *5)) (-4 *5 (-411 *2 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1122 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) + (-4 *5 (-238 *3 *2)) (-4 *2 (-1049))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1175)) (-5 *1 (-587 *2)) (-4 *2 (-1038 *3)) + (-4 *2 (-365)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-587 *2)) (-4 *2 (-365)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1099)) - (-5 *1 (-113 *4)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-114)) (-5 *2 (-644 (-1 *4 (-644 *4)))) - (-5 *1 (-113 *4)) (-4 *4 (-1099))))) -(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144))) - ((*1 *1 *1) (-4 *1 (-1143)))) -(((*1 *2 *1) - (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) - (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112))))) + (-12 (-5 *3 (-1175)) (-4 *4 (-558)) (-5 *1 (-630 *4 *2)) + (-4 *2 (-13 (-432 *4) (-1002) (-1199))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1091 *2)) (-4 *2 (-13 (-432 *4) (-1002) (-1199))) + (-4 *4 (-558)) (-5 *1 (-630 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-959)) (-5 *2 (-1175)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1091 *1)) (-4 *1 (-959))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-558)) + (-4 *6 (-793)) (-4 *7 (-850)) + (-5 *2 (-2 (|:| |goodPols| (-644 *8)) (|:| |badPols| (-644 *8)))) + (-5 *1 (-977 *5 *6 *7 *8)) (-5 *4 (-644 *8))))) +(((*1 *1 *2) + (-12 (-5 *2 (-644 (-921))) (-5 *1 (-1100 *3 *4)) (-14 *3 (-921)) + (-14 *4 (-921))))) +(((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-225)) (-5 *1 (-306))))) +(((*1 *2 *1) (-12 (-5 *2 (-958 (-771))) (-5 *1 (-334))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-752))))) (((*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002)))))) -(((*1 *1 *1) (-4 *1 (-547)))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1214)) (-4 *3 (-1099)) - (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-566)) (-4 *5 (-351)) (-5 *2 (-420 (-1171 (-1171 *5)))) - (-5 *1 (-1212 *5)) (-5 *3 (-1171 (-1171 *5)))))) (((*1 *1) (-5 *1 (-439)))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1175)) - (-4 *4 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) - (-5 *1 (-804 *4 *2)) (-4 *2 (-13 (-29 *4) (-1199) (-959)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1038 (-566))) (-4 *1 (-303)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-547)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1099))))) (((*1 *2 *3) - (-12 (-5 *3 (-644 (-1175))) (-4 *4 (-13 (-308) (-147))) - (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) - (-5 *2 (-644 (-409 (-952 *4)))) (-5 *1 (-924 *4 *5 *6 *7)) - (-4 *7 (-949 *4 *6 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-52)) (-5 *1 (-829))))) -(((*1 *2 *2) (-12 (-5 *2 (-317 (-225))) (-5 *1 (-210))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1157)) (-5 *3 (-566)) (-5 *1 (-241))))) -(((*1 *1 *2) - (-12 (-5 *2 (-644 *3)) (-4 *3 (-1214)) (-5 *1 (-1146 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-644 (-952 (-566)))) (-5 *1 (-439)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1175)) (-5 *4 (-689 (-225))) (-5 *2 (-1103)) - (-5 *1 (-759)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1175)) (-5 *4 (-689 (-566))) (-5 *2 (-1103)) - (-5 *1 (-759))))) + (-12 + (-5 *3 + (-644 + (-2 (|:| -2755 (-771)) + (|:| |eqns| + (-644 + (-2 (|:| |det| *7) (|:| |rows| (-644 (-566))) + (|:| |cols| (-644 (-566)))))) + (|:| |fgb| (-644 *7))))) + (-4 *7 (-949 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) + (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-771)) + (-5 *1 (-924 *4 *5 *6 *7))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1155 *4)) (-5 *3 (-1 *4 (-566))) (-4 *4 (-1049)) + (-5 *1 (-1159 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-644 (-52))) (-5 *1 (-892 *3)) (-4 *3 (-1099))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-752))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4415)) (-4 *1 (-119 *2)) (-4 *2 (-1214))))) +(((*1 *2 *1) + (-12 (-5 *2 (-771)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) + (-4 *4 (-1049))))) (((*1 *1 *2) - (-12 (-5 *2 (-644 *6)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-365)) - (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-506 *3 *4 *5 *6))))) + (-12 (-5 *2 (-1 (-1155 *3))) (-5 *1 (-1155 *3)) (-4 *3 (-1214))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-690 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1240 *5)) (-4 *5 (-365)) + (-5 *2 + (-2 (|:| |ir| (-587 (-409 *6))) (|:| |specpart| (-409 *6)) + (|:| |polypart| *6))) + (-5 *1 (-576 *5 *6)) (-5 *3 (-409 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-547)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-420 *3)) (-4 *3 (-547)) (-4 *3 (-558)))) + ((*1 *2 *1) (-12 (-4 *1 (-547)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-797 *3)) (-4 *3 (-172)) (-4 *3 (-547)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-833 *3)) (-4 *3 (-547)) (-4 *3 (-1099)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-547)) (-4 *3 (-1099)))) + ((*1 *2 *1) + (-12 (-4 *1 (-997 *3)) (-4 *3 (-172)) (-4 *3 (-547)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-1008 *3)) (-4 *3 (-1038 (-409 (-566))))))) +(((*1 *1 *1) (-12 (-4 *1 (-432 *2)) (-4 *2 (-1099)) (-4 *2 (-1049)))) + ((*1 *1 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558))))) +(((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-822))))) (((*1 *2 *3) - (-12 (-5 *3 (-644 (-317 (-225)))) (-5 *2 (-112)) (-5 *1 (-268))))) + (-12 (-4 *4 (-558)) (-5 *2 (-112)) (-5 *1 (-277 *4 *3)) + (-4 *3 (-13 (-432 *4) (-1002)))))) +(((*1 *2 *3 *4 *3 *3) + (-12 (-5 *3 (-295 *6)) (-5 *4 (-114)) (-4 *6 (-432 *5)) + (-4 *5 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) + (-5 *1 (-318 *5 *6)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-295 *7)) (-5 *4 (-114)) (-5 *5 (-644 *7)) + (-4 *7 (-432 *6)) (-4 *6 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) + (-5 *1 (-318 *6 *7)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-644 (-295 *7))) (-5 *4 (-644 (-114))) (-5 *5 (-295 *7)) + (-4 *7 (-432 *6)) (-4 *6 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) + (-5 *1 (-318 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-644 (-295 *8))) (-5 *4 (-644 (-114))) (-5 *5 (-295 *8)) + (-5 *6 (-644 *8)) (-4 *8 (-432 *7)) + (-4 *7 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) + (-5 *1 (-318 *7 *8)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-644 *7)) (-5 *4 (-644 (-114))) (-5 *5 (-295 *7)) + (-4 *7 (-432 *6)) (-4 *6 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) + (-5 *1 (-318 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 (-114))) (-5 *6 (-644 (-295 *8))) + (-4 *8 (-432 *7)) (-5 *5 (-295 *8)) + (-4 *7 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) + (-5 *1 (-318 *7 *8)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-295 *5)) (-5 *4 (-114)) (-4 *5 (-432 *6)) + (-4 *6 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) + (-5 *1 (-318 *6 *5)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-4 *3 (-432 *6)) + (-4 *6 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) + (-5 *1 (-318 *6 *3)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-4 *3 (-432 *6)) + (-4 *6 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) + (-5 *1 (-318 *6 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-5 *6 (-644 *3)) + (-4 *3 (-432 *7)) (-4 *7 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) + (-5 *1 (-318 *7 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-644 (-566))) (-5 *2 (-566)) (-5 *1 (-488 *4)) - (-4 *4 (-1240 *2))))) + (-12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *2 (-112)) + (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 (-169 *4)))))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-112)) + (-5 *1 (-1203 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *4)))))) +(((*1 *2 *3) + (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1218)) (-4 *3 (-1240 *4)) + (-4 *5 (-1240 (-409 *3))) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) + (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-420 *2)) (-4 *2 (-558))))) +(((*1 *1 *1) (-5 *1 (-112)))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) + (-4 *4 (-1049))))) +(((*1 *1 *1) + (-12 (-4 *2 (-351)) (-4 *2 (-1049)) (-5 *1 (-712 *2 *3)) + (-4 *3 (-1240 *2))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-365)) (-5 *1 (-659 *4 *2)) + (-4 *2 (-656 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1264 *5)) (-4 *5 (-639 *4)) (-4 *4 (-558)) + (-5 *2 (-112)) (-5 *1 (-638 *4 *5))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-771)) (-4 *1 (-1240 *3)) (-4 *3 (-1049)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-921)) (-4 *1 (-1242 *3 *4)) (-4 *3 (-1049)) + (-4 *4 (-792)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-409 (-566))) (-4 *1 (-1245 *3)) (-4 *3 (-1049))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1103)) (-5 *3 (-774)) (-5 *1 (-52))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-850)) (-4 *5 (-793)) + (-4 *6 (-558)) (-4 *7 (-949 *6 *5 *3)) + (-5 *1 (-464 *5 *3 *6 *7 *2)) + (-4 *2 + (-13 (-1038 (-409 (-566))) (-365) + (-10 -8 (-15 -3152 ($ *7)) (-15 -2248 (*7 $)) + (-15 -2260 (*7 $)))))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-689 *1)) (-4 *1 (-351)) (-5 *2 (-1264 *1)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-689 *1)) (-4 *1 (-145)) (-4 *1 (-909)) + (-5 *2 (-1264 *1))))) +(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1157)) (-5 *1 (-192)))) + ((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1157)) (-5 *1 (-301)))) + ((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1157)) (-5 *1 (-306))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-317 (-225))) (-5 *1 (-268))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-112))))) +(((*1 *1 *1) + (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1214)) (-4 *2 (-1049)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-862)))) + ((*1 *1 *1) (-5 *1 (-862))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-943 (-225))) (-5 *2 (-225)) (-5 *1 (-1210)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1214)) (-4 *2 (-1049))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-771)) (-5 *1 (-588 *2)) (-4 *2 (-547)))) + (-12 (-5 *2 (-1 (-943 (-225)) (-225) (-225))) + (-5 *3 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-256))))) +(((*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1267)))) + ((*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1267))))) +(((*1 *1) (-5 *1 (-141)))) +(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-874))))) +(((*1 *2 *2 *3 *3) + (|partial| -12 (-5 *3 (-1175)) + (-4 *4 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) + (-5 *1 (-577 *4 *2)) + (-4 *2 (-13 (-1199) (-959) (-1138) (-29 *4)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1099)) (-5 *2 (-1157))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-644 (-295 *4))) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-850)) + (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-14 *5 (-921))))) +(((*1 *2 *3) + (-12 (-4 *4 (-351)) + (-5 *2 (-644 (-2 (|:| |deg| (-771)) (|:| -3527 *3)))) + (-5 *1 (-216 *4 *3)) (-4 *3 (-1240 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1157)) (-5 *2 (-644 (-1180))) (-5 *1 (-880))))) +(((*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-771)) (-5 *1 (-591))))) +(((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1240 (-566)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-644 *1)) (-4 *1 (-1064 *4 *5 *6)) (-4 *4 (-1049)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *5 (-850)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) + (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1207 *4 *5 *6 *3)) (-4 *4 (-558)) (-4 *5 (-793)) + (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)) (-5 *3 (-566)))) ((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -2719 *3) (|:| -2852 (-771)))) (-5 *1 (-588 *3)) - (-4 *3 (-547))))) + (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)) (-5 *3 (-566)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)) (-5 *3 (-566))))) +(((*1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1061)))) + ((*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1061))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-771)) (-5 *3 (-943 *5)) (-4 *5 (-1049)) + (-5 *1 (-1163 *4 *5)) (-14 *4 (-921)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-644 (-771))) (-5 *3 (-771)) (-5 *1 (-1163 *4 *5)) + (-14 *4 (-921)) (-4 *5 (-1049)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-644 (-771))) (-5 *3 (-943 *5)) (-4 *5 (-1049)) + (-5 *1 (-1163 *4 *5)) (-14 *4 (-921))))) (((*1 *2 *3) - (-12 (-4 *4 (-1049)) - (-4 *2 (-13 (-406) (-1038 *4) (-365) (-1199) (-285))) - (-5 *1 (-445 *4 *3 *2)) (-4 *3 (-1240 *4))))) + (-12 (-5 *3 (-689 (-409 (-952 (-566))))) + (-5 *2 (-644 (-689 (-317 (-566))))) (-5 *1 (-1031))))) (((*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-674 *3)) (-4 *3 (-1214)))) ((*1 *1 *1 *2) @@ -3010,642 +5250,1238 @@ (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-792))))) -(((*1 *2 *1) - (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) - (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) - (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3)))))) -(((*1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-129))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-771)) (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) - (-4 *4 (-1049)) (-4 *4 (-172)))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *3 (-1064 *5 *6 *7)) + (-5 *2 (-644 (-2 (|:| |val| (-644 *3)) (|:| -1470 *4)))) + (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) + (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2352)))) + (-5 *2 (-1035)) (-5 *1 (-748))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (-566)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 (-612 *5))) (-4 *4 (-1099)) (-5 *2 (-612 *5)) + (-5 *1 (-575 *4 *5)) (-4 *5 (-432 *4))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-644 (-952 *6))) (-5 *4 (-644 (-1175))) (-4 *6 (-454)) + (-5 *2 (-644 (-644 *7))) (-5 *1 (-540 *6 *7 *5)) (-4 *7 (-365)) + (-4 *5 (-13 (-365) (-848)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-949 *4 *5 *6)) (-5 *2 (-644 (-644 *7))) + (-5 *1 (-450 *4 *5 *6 *7)) (-5 *3 (-644 *7)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-793)) + (-4 *7 (-850)) (-4 *8 (-949 *5 *6 *7)) (-5 *2 (-644 (-644 *8))) + (-5 *1 (-450 *5 *6 *7 *8)) (-5 *3 (-644 *8)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-949 *4 *5 *6)) (-5 *2 (-644 (-644 *7))) + (-5 *1 (-450 *4 *5 *6 *7)) (-5 *3 (-644 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-793)) + (-4 *7 (-850)) (-4 *8 (-949 *5 *6 *7)) (-5 *2 (-644 (-644 *8))) + (-5 *1 (-450 *5 *6 *7 *8)) (-5 *3 (-644 *8))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-1028 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-644 (-689 *3))) (-4 *3 (-1049)) (-5 *1 (-1028 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-1028 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-644 (-689 *3))) (-4 *3 (-1049)) (-5 *1 (-1028 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-225))) (-5 *4 (-771)) (-5 *2 (-689 (-225))) + (-5 *1 (-306))))) +(((*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-331))))) +(((*1 *1) (-4 *1 (-351))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 *5)) (-4 *5 (-432 *4)) (-4 *4 (-13 (-558) (-147))) + (-5 *2 + (-2 (|:| |primelt| *5) (|:| |poly| (-644 (-1171 *5))) + (|:| |prim| (-1171 *5)))) + (-5 *1 (-434 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-558) (-147))) + (-5 *2 + (-2 (|:| |primelt| *3) (|:| |pol1| (-1171 *3)) + (|:| |pol2| (-1171 *3)) (|:| |prim| (-1171 *3)))) + (-5 *1 (-434 *4 *3)) (-4 *3 (-27)) (-4 *3 (-432 *4)))) + ((*1 *2 *3 *4 *3 *4) + (-12 (-5 *3 (-952 *5)) (-5 *4 (-1175)) (-4 *5 (-13 (-365) (-147))) + (-5 *2 + (-2 (|:| |coef1| (-566)) (|:| |coef2| (-566)) + (|:| |prim| (-1171 *5)))) + (-5 *1 (-960 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-644 (-1175))) + (-4 *5 (-13 (-365) (-147))) + (-5 *2 + (-2 (|:| -2397 (-644 (-566))) (|:| |poly| (-644 (-1171 *5))) + (|:| |prim| (-1171 *5)))) + (-5 *1 (-960 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-644 (-952 *6))) (-5 *4 (-644 (-1175))) (-5 *5 (-1175)) + (-4 *6 (-13 (-365) (-147))) + (-5 *2 + (-2 (|:| -2397 (-644 (-566))) (|:| |poly| (-644 (-1171 *6))) + (|:| |prim| (-1171 *6)))) + (-5 *1 (-960 *6))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) + (-12 (-5 *3 (-1157)) (-5 *4 (-566)) (-5 *5 (-689 (-225))) + (-5 *6 (-225)) (-5 *2 (-1035)) (-5 *1 (-752))))) +(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) + ((*1 *1 *1 *1) (-4 *1 (-475))) + ((*1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) + ((*1 *2 *2) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-883)))) + ((*1 *1 *1) (-5 *1 (-971))) + ((*1 *1 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1288 *3 *4)) (-4 *1 (-376 *3 *4)) (-4 *3 (-850)) + (-4 *4 (-172)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-388 *2)) (-4 *2 (-1099)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1281 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049)) - (-4 *3 (-172))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862))))) -(((*1 *2 *1) (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-1179))))) + (-12 (-4 *1 (-1281 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-819 *3)) (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) + (-4 *4 (-1049)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1281 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049))))) (((*1 *2 *1) - (-12 (-5 *2 (-644 (-52))) (-5 *1 (-892 *3)) (-4 *3 (-1099))))) -(((*1 *2 *3) + (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) + (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112))))) +(((*1 *2 *1 *1) (-12 - (-5 *3 - (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) - (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) (-5 *2 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1155 (-225))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2446 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-561))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-690 *3)))) - ((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-690 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-381)) (-5 *1 (-97)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-381)) (-5 *1 (-97))))) + (-2 (|:| -2610 *3) (|:| |coef1| (-782 *3)) (|:| |coef2| (-782 *3)))) + (-5 *1 (-782 *3)) (-4 *3 (-558)) (-4 *3 (-1049))))) (((*1 *2 *3) - (-12 (-4 *4 (-365)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) - (-5 *2 (-771)) (-5 *1 (-523 *4 *5 *6 *3)) (-4 *3 (-687 *4 *5 *6)))) + (|partial| -12 (-5 *2 (-566)) (-5 *1 (-571 *3)) (-4 *3 (-1038 *2))))) +(((*1 *2 *3) + (-12 (-4 *4 (-351)) (-4 *5 (-330 *4)) (-4 *6 (-1240 *5)) + (-5 *2 (-644 *3)) (-5 *1 (-777 *4 *5 *6 *3 *7)) (-4 *3 (-1240 *6)) + (-14 *7 (-921))))) +(((*1 *2 *3 *4 *5 *6 *7 *8 *9) + (|partial| -12 (-5 *4 (-644 *11)) (-5 *5 (-644 (-1171 *9))) + (-5 *6 (-644 *9)) (-5 *7 (-644 *12)) (-5 *8 (-644 (-771))) + (-4 *11 (-850)) (-4 *9 (-308)) (-4 *12 (-949 *9 *10 *11)) + (-4 *10 (-793)) (-5 *2 (-644 (-1171 *12))) + (-5 *1 (-707 *10 *11 *9 *12)) (-5 *3 (-1171 *12))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-943 (-225)) (-943 (-225)))) (-5 *1 (-264)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1264 *1)) (-4 *1 (-330 *4)) (-4 *4 (-365)) + (-5 *2 (-689 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1264 *3)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) + (-5 *2 (-689 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) + (-5 *2 (-1264 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-1264 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) + (-4 *5 (-1240 *4)) (-5 *2 (-689 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1264 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) + (-4 *5 (-1240 *4)) (-5 *2 (-1264 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1264 *1)) (-4 *1 (-411 *4 *5)) (-4 *4 (-172)) + (-4 *5 (-1240 *4)) (-5 *2 (-689 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-4 *3 (-558)) (-5 *2 (-771)))) + (-12 (-4 *1 (-411 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1240 *3)) + (-5 *2 (-1264 *3)))) ((*1 *2 *3) - (-12 (-4 *4 (-558)) (-4 *4 (-172)) (-4 *5 (-375 *4)) - (-4 *6 (-375 *4)) (-5 *2 (-771)) (-5 *1 (-688 *4 *5 *6 *3)) - (-4 *3 (-687 *4 *5 *6)))) + (-12 (-5 *3 (-1264 *1)) (-4 *1 (-419 *4)) (-4 *4 (-172)) + (-5 *2 (-689 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-1264 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-644 (-689 *5))) (-5 *3 (-689 *5)) (-4 *5 (-365)) + (-5 *2 (-1264 *5)) (-5 *1 (-1085 *5))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1083 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-566) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1083 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *1 *1) (-4 *1 (-1059)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-689 *5))) (-5 *4 (-1264 *5)) (-4 *5 (-308)) + (-4 *5 (-1049)) (-5 *2 (-689 *5)) (-5 *1 (-1029 *5))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1155 *3)) (-4 *3 (-1099)) + (-4 *3 (-1214))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-4 *1 (-903 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-331))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) + (-5 *2 (-819 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-558)) - (-5 *2 (-771))))) + (-12 (-4 *2 (-846)) (-5 *1 (-1287 *3 *2)) (-4 *3 (-1049))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-771)) (-4 *4 (-558)) (-5 *1 (-969 *4 *2)) + (-4 *2 (-1240 *4))))) +(((*1 *2 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-755))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) + (-4 *3 (-1064 *6 *7 *8)) + (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -1470 *4)))) + (-5 *1 (-1071 *6 *7 *8 *3 *4)) (-4 *4 (-1070 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-644 (-2 (|:| |val| (-644 *8)) (|:| -1470 *9)))) + (-5 *5 (-112)) (-4 *8 (-1064 *6 *7 *4)) (-4 *9 (-1070 *6 *7 *4 *8)) + (-4 *6 (-454)) (-4 *7 (-793)) (-4 *4 (-850)) + (-5 *2 (-644 (-2 (|:| |val| *8) (|:| -1470 *9)))) + (-5 *1 (-1071 *6 *7 *4 *8 *9))))) +(((*1 *1) (-4 *1 (-967)))) +(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-905 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-771)) (-4 *4 (-365)) (-5 *1 (-896 *2 *4)) + (-4 *2 (-1240 *4))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-1175)) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-114)) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1175)) (-5 *2 (-112)) (-5 *1 (-612 *4)) + (-4 *4 (-1099)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-612 *4)) (-4 *4 (-1099)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-835 *3)) (-4 *3 (-1099)) (-5 *2 (-112)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1099)) (-5 *2 (-112)) (-5 *1 (-887 *5 *3 *4)) + (-4 *3 (-886 *5)) (-4 *4 (-614 (-892 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 *6)) (-4 *6 (-886 *5)) (-4 *5 (-1099)) + (-5 *2 (-112)) (-5 *1 (-887 *5 *6 *4)) (-4 *4 (-614 (-892 *5)))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-365)) (-5 *1 (-659 *4 *2)) + (-4 *2 (-656 *4))))) (((*1 *2 *3) + (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1218)) (-4 *3 (-1240 *4)) + (-4 *5 (-1240 (-409 *3))) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) + (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-644 (-865)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-824))))) +(((*1 *2 *2 *2) + (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) + (-5 *1 (-1127 *3 *2)) (-4 *3 (-1240 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1175)) + (-4 *5 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) + (-5 *2 (-587 *3)) (-5 *1 (-428 *5 *3)) + (-4 *3 (-13 (-1199) (-29 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1175)) (-4 *5 (-13 (-558) (-1038 (-566)) (-147))) + (-5 *2 (-587 (-409 (-952 *5)))) (-5 *1 (-572 *5)) + (-5 *3 (-409 (-952 *5)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-171)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) + (-4 *4 (-1049))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) + (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) + (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-183 (-139)))) (-5 *1 (-140))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-1179))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)) + (-5 *3 (-644 (-566)))))) +(((*1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1214)) (-4 *2 (-1099)))) + ((*1 *1 *1) (-12 (-4 *1 (-695 *2)) (-4 *2 (-1099))))) +(((*1 *2 *2) (-12 - (-5 *3 - (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1761 (-644 (-225))))) - (-5 *2 (-644 (-1175))) (-5 *1 (-268)))) + (-5 *2 + (-644 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-771)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-793)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-454)) (-4 *5 (-850)) + (-5 *1 (-451 *3 *4 *5 *6))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-1247 *3 *2)) (-4 *3 (-1049)) + (-4 *2 (-1224 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-454)) (-4 *3 (-793)) (-4 *5 (-850)) (-5 *2 (-112)) + (-5 *1 (-451 *4 *3 *5 *6)) (-4 *6 (-949 *4 *3 *5))))) +(((*1 *2 *3 *3 *3 *4 *5 *4 *6) + (-12 (-5 *3 (-317 (-566))) (-5 *4 (-1 (-225) (-225))) + (-5 *5 (-1093 (-225))) (-5 *6 (-566)) (-5 *2 (-1209 (-926))) + (-5 *1 (-319)))) + ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-317 (-566))) (-5 *4 (-1 (-225) (-225))) + (-5 *5 (-1093 (-225))) (-5 *6 (-566)) (-5 *7 (-1157)) + (-5 *2 (-1209 (-926))) (-5 *1 (-319)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-317 (-566))) (-5 *4 (-1 (-225) (-225))) + (-5 *5 (-1093 (-225))) (-5 *6 (-225)) (-5 *7 (-566)) + (-5 *2 (-1209 (-926))) (-5 *1 (-319)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) + (-12 (-5 *3 (-317 (-566))) (-5 *4 (-1 (-225) (-225))) + (-5 *5 (-1093 (-225))) (-5 *6 (-225)) (-5 *7 (-566)) (-5 *8 (-1157)) + (-5 *2 (-1209 (-926))) (-5 *1 (-319))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 (-644 *5))) (-4 *5 (-1255 *4)) + (-4 *4 (-38 (-409 (-566)))) + (-5 *2 (-1 (-1155 *4) (-644 (-1155 *4)))) (-5 *1 (-1257 *4 *5))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-331))))) +(((*1 *2 *3) + (-12 (-4 *4 (-909)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-949 *4 *5 *6)) (-5 *2 (-420 (-1171 *7))) + (-5 *1 (-906 *4 *5 *6 *7)) (-5 *3 (-1171 *7)))) ((*1 *2 *3) - (-12 (-5 *3 (-1171 *7)) (-4 *7 (-949 *6 *4 *5)) (-4 *4 (-793)) - (-4 *5 (-850)) (-4 *6 (-1049)) (-5 *2 (-644 *5)) - (-5 *1 (-322 *4 *5 *6 *7)))) - ((*1 *2 *1) - (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-341 *3 *4 *5)) (-14 *3 *2) - (-14 *4 *2) (-4 *5 (-389)))) - ((*1 *2 *1) - (-12 (-4 *1 (-432 *3)) (-4 *3 (-1099)) (-5 *2 (-644 (-1175))))) - ((*1 *2 *1) - (-12 (-5 *2 (-644 (-892 *3))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) - ((*1 *2 *1) - (-12 (-4 *1 (-949 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) - (-4 *5 (-850)) (-5 *2 (-644 *5)))) + (-12 (-4 *4 (-909)) (-4 *5 (-1240 *4)) (-5 *2 (-420 (-1171 *5))) + (-5 *1 (-907 *4 *5)) (-5 *3 (-1171 *5))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-905 *4)) (-4 *4 (-1099)) (-5 *2 (-644 (-771))) + (-5 *1 (-904 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1091 (-843 *3))) (-4 *3 (-13 (-1199) (-959) (-29 *5))) + (-4 *5 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) + (-5 *2 + (-3 (|:| |f1| (-843 *3)) (|:| |f2| (-644 (-843 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-219 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1091 (-843 *3))) (-5 *5 (-1157)) + (-4 *3 (-13 (-1199) (-959) (-29 *6))) + (-4 *6 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) + (-5 *2 + (-3 (|:| |f1| (-843 *3)) (|:| |f2| (-644 (-843 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-219 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-1091 (-843 (-317 *5)))) + (-4 *5 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) + (-5 *2 + (-3 (|:| |f1| (-843 (-317 *5))) (|:| |f2| (-644 (-843 (-317 *5)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-220 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-409 (-952 *6))) (-5 *4 (-1091 (-843 (-317 *6)))) + (-5 *5 (-1157)) + (-4 *6 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) + (-5 *2 + (-3 (|:| |f1| (-843 (-317 *6))) (|:| |f2| (-644 (-843 (-317 *6)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-220 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1091 (-843 (-409 (-952 *5))))) (-5 *3 (-409 (-952 *5))) + (-4 *5 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) + (-5 *2 + (-3 (|:| |f1| (-843 (-317 *5))) (|:| |f2| (-644 (-843 (-317 *5)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-220 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1091 (-843 (-409 (-952 *6))))) (-5 *5 (-1157)) + (-5 *3 (-409 (-952 *6))) + (-4 *6 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) + (-5 *2 + (-3 (|:| |f1| (-843 (-317 *6))) (|:| |f2| (-644 (-843 (-317 *6)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-220 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1175)) + (-4 *5 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) + (-5 *2 (-3 *3 (-644 *3))) (-5 *1 (-430 *5 *3)) + (-4 *3 (-13 (-1199) (-959) (-29 *5))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-476 *3 *4 *5)) + (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-14 *5 *3))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1093 (-843 (-381)))) + (-5 *5 (-381)) (-5 *6 (-1062)) (-5 *2 (-1035)) (-5 *1 (-567)))) + ((*1 *2 *3) (-12 (-5 *3 (-769)) (-5 *2 (-1035)) (-5 *1 (-567)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1093 (-843 (-381)))) + (-5 *5 (-381)) (-5 *2 (-1035)) (-5 *1 (-567)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1093 (-843 (-381)))) + (-5 *5 (-381)) (-5 *2 (-1035)) (-5 *1 (-567)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1093 (-843 (-381)))) + (-5 *2 (-1035)) (-5 *1 (-567)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-317 (-381))) (-5 *4 (-644 (-1093 (-843 (-381))))) + (-5 *2 (-1035)) (-5 *1 (-567)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-317 (-381))) (-5 *4 (-644 (-1093 (-843 (-381))))) + (-5 *5 (-381)) (-5 *2 (-1035)) (-5 *1 (-567)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-317 (-381))) (-5 *4 (-644 (-1093 (-843 (-381))))) + (-5 *5 (-381)) (-5 *2 (-1035)) (-5 *1 (-567)))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-317 (-381))) (-5 *4 (-644 (-1093 (-843 (-381))))) + (-5 *5 (-381)) (-5 *6 (-1062)) (-5 *2 (-1035)) (-5 *1 (-567)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-317 (-381))) (-5 *4 (-1091 (-843 (-381)))) + (-5 *5 (-1157)) (-5 *2 (-1035)) (-5 *1 (-567)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-317 (-381))) (-5 *4 (-1091 (-843 (-381)))) + (-5 *5 (-1175)) (-5 *2 (-1035)) (-5 *1 (-567)))) ((*1 *2 *3) - (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1049)) - (-4 *7 (-949 *6 *4 *5)) (-5 *2 (-644 *5)) - (-5 *1 (-950 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-365) - (-10 -8 (-15 -3783 ($ *7)) (-15 -4326 (*7 $)) (-15 -4339 (*7 $))))))) - ((*1 *2 *1) - (-12 (-4 *1 (-973 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-792)) - (-4 *5 (-850)) (-5 *2 (-644 *5)))) + (-12 (-4 *4 (-13 (-365) (-147) (-1038 (-566)))) (-4 *5 (-1240 *4)) + (-5 *2 (-587 (-409 *5))) (-5 *1 (-570 *4 *5)) (-5 *3 (-409 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-1175)) (-4 *5 (-147)) + (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) + (-5 *2 (-3 (-317 *5) (-644 (-317 *5)))) (-5 *1 (-590 *5)))) + ((*1 *1 *1) + (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-740 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-850)) + (-4 *3 (-38 (-409 (-566)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1175)) (-5 *1 (-952 *3)) (-4 *3 (-38 (-409 (-566)))) + (-4 *3 (-1049)))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-4 *2 (-850)) + (-5 *1 (-1125 *3 *2 *4)) (-4 *4 (-949 *3 (-533 *2) *2)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) + (-5 *1 (-1159 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1166 *3 *4 *5)) + (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1172 *3 *4 *5)) + (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1173 *3 *4 *5)) + (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-14 *5 *3))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *1 (-1208 *3)) (-4 *3 (-38 (-409 (-566)))) + (-4 *3 (-1049)))) + ((*1 *1 *1 *2) + (-2768 + (-12 (-5 *2 (-1175)) (-4 *1 (-1224 *3)) (-4 *3 (-1049)) + (-12 (-4 *3 (-29 (-566))) (-4 *3 (-959)) (-4 *3 (-1199)) + (-4 *3 (-38 (-409 (-566)))))) + (-12 (-5 *2 (-1175)) (-4 *1 (-1224 *3)) (-4 *3 (-1049)) + (-12 (|has| *3 (-15 -1771 ((-644 *2) *3))) + (|has| *3 (-15 -3313 (*3 *3 *2))) (-4 *3 (-38 (-409 (-566)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1224 *2)) (-4 *2 (-1049)) (-4 *2 (-38 (-409 (-566)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1228 *3 *4 *5)) + (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-14 *5 *3))) + ((*1 *1 *1) + (-12 (-4 *1 (-1240 *2)) (-4 *2 (-1049)) (-4 *2 (-38 (-409 (-566)))))) + ((*1 *1 *1 *2) + (-2768 + (-12 (-5 *2 (-1175)) (-4 *1 (-1245 *3)) (-4 *3 (-1049)) + (-12 (-4 *3 (-29 (-566))) (-4 *3 (-959)) (-4 *3 (-1199)) + (-4 *3 (-38 (-409 (-566)))))) + (-12 (-5 *2 (-1175)) (-4 *1 (-1245 *3)) (-4 *3 (-1049)) + (-12 (|has| *3 (-15 -1771 ((-644 *2) *3))) + (|has| *3 (-15 -3313 (*3 *3 *2))) (-4 *3 (-38 (-409 (-566)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1049)) (-4 *2 (-38 (-409 (-566)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1249 *3 *4 *5)) + (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-2768 + (-12 (-5 *2 (-1175)) (-4 *1 (-1255 *3)) (-4 *3 (-1049)) + (-12 (-4 *3 (-29 (-566))) (-4 *3 (-959)) (-4 *3 (-1199)) + (-4 *3 (-38 (-409 (-566)))))) + (-12 (-5 *2 (-1175)) (-4 *1 (-1255 *3)) (-4 *3 (-1049)) + (-12 (|has| *3 (-15 -1771 ((-644 *2) *3))) + (|has| *3 (-15 -3313 (*3 *3 *2))) (-4 *3 (-38 (-409 (-566)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1049)) (-4 *2 (-38 (-409 (-566)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1256 *3 *4 *5)) + (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-14 *5 *3)))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-747))))) +(((*1 *2 *2) (-12 (-5 *1 (-588 *2)) (-4 *2 (-547))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) +(((*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) + ((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172))))) +(((*1 *2 *3) + (-12 (-4 *4 (-454)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) + (-5 *2 (-644 *3)) (-5 *1 (-977 *4 *5 *6 *3)) + (-4 *3 (-1064 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-493)) (-5 *4 (-954)) (-5 *2 (-691 (-535))) + (-5 *1 (-535)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-954)) (-4 *3 (-1099)) (-5 *2 (-691 *1)) + (-4 *1 (-767 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-1163 3 *3)))) + ((*1 *1) (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1049)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1132 (-225))) (-5 *1 (-1266)))) + ((*1 *2 *1) (-12 (-5 *2 (-1132 (-225))) (-5 *1 (-1266))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) + (-12 (-5 *4 (-689 (-225))) (-5 *5 (-689 (-566))) (-5 *6 (-225)) + (-5 *3 (-566)) (-5 *2 (-1035)) (-5 *1 (-752))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-644 (-689 *4))) (-5 *2 (-689 *4)) (-4 *4 (-1049)) + (-5 *1 (-1029 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-771)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1049)) + (-14 *4 (-644 (-1175))))) + ((*1 *1 *2) + (-12 (-5 *2 (-771)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1049) (-850))) + (-14 *4 (-644 (-1175))))) + ((*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365)))) ((*1 *2 *1) + (|partial| -12 (-4 *1 (-337 *3 *4 *5 *2)) (-4 *3 (-365)) + (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) + (-4 *2 (-344 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-771)) (-5 *1 (-392 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-172)))) + ((*1 *1) (-12 (-4 *2 (-172)) (-4 *1 (-724 *2 *3)) (-4 *3 (-1240 *2))))) +(((*1 *1 *1) (-4 *1 (-629))) + ((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-630 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002) (-1199)))))) +(((*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-691 (-1219)))))) +(((*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-447 *3)) (-4 *3 (-1049))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 *2)) (-4 *2 (-432 *4)) (-5 *1 (-158 *4 *2)) + (-4 *4 (-558))))) +(((*1 *2 *3 *4 *4 *2 *2 *2 *2) + (-12 (-5 *2 (-566)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-771)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-793)) (-4 *4 (-949 *5 *6 *7)) (-4 *5 (-454)) (-4 *7 (-850)) + (-5 *1 (-451 *5 *6 *7 *4))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1099)) (-5 *1 (-964 *2 *3)) (-4 *3 (-1099))))) +(((*1 *2 *3) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-563)) (-5 *3 (-566))))) +(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-926)))) + ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-927)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-927)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1209 *3)) (-4 *3 (-974))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1157)) (-4 *1 (-366 *2 *4)) (-4 *2 (-1099)) + (-4 *4 (-1099)))) + ((*1 *1 *2) + (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-3 (-2 (|:| -1641 *7) (|:| |coeff| *7)) "failed") *7)) + (-5 *6 (-644 (-409 *8))) (-4 *7 (-365)) (-4 *8 (-1240 *7)) + (-5 *3 (-409 *8)) + (-5 *2 + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-576 *7 *8))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-644 (-566))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-566)) + (-14 *4 (-771)) (-4 *5 (-172))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850)))) + ((*1 *1) (-4 *1 (-1150)))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) + (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G)))) (-5 *2 (-1035)) + (-5 *1 (-748))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-381)) (-5 *1 (-97))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-365) (-303) + (-10 -8 (-15 -2248 ((-1124 *3 (-612 $)) $)) + (-15 -2260 ((-1124 *3 (-612 $)) $)) + (-15 -3152 ($ (-1124 *3 (-612 $))))))))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-365) (-303) + (-10 -8 (-15 -2248 ((-1124 *3 (-612 $)) $)) + (-15 -2260 ((-1124 *3 (-612 $)) $)) + (-15 -3152 ($ (-1124 *3 (-612 $))))))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-644 *2)) + (-4 *2 + (-13 (-365) (-303) + (-10 -8 (-15 -2248 ((-1124 *4 (-612 $)) $)) + (-15 -2260 ((-1124 *4 (-612 $)) $)) + (-15 -3152 ($ (-1124 *4 (-612 $))))))) + (-4 *4 (-558)) (-5 *1 (-41 *4 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-644 (-612 *2))) + (-4 *2 + (-13 (-365) (-303) + (-10 -8 (-15 -2248 ((-1124 *4 (-612 $)) $)) + (-15 -2260 ((-1124 *4 (-612 $)) $)) + (-15 -3152 ($ (-1124 *4 (-612 $))))))) + (-4 *4 (-558)) (-5 *1 (-41 *4 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-822)) (-5 *1 (-821))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-2 (|:| |fn| (-317 (-225))) (|:| -3289 (-644 (-225))) + (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) + (|:| |ub| (-644 (-843 (-225)))))) + (-5 *1 (-268))))) +(((*1 *1) (-5 *1 (-823)))) +(((*1 *2 *1) + (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1004 *3)) (-14 *3 (-566))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-824))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-264)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-264)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-264))))) +(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1214))))) +(((*1 *2 *3) + (-12 (-4 *4 (-365)) (-5 *2 (-644 *3)) (-5 *1 (-945 *4 *3)) + (-4 *3 (-1240 *4))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-644 + (-644 + (-3 (|:| -1368 (-1175)) + (|:| -3747 (-644 (-3 (|:| S (-1175)) (|:| P (-952 (-566)))))))))) + (-5 *1 (-1179))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-644 (-264))) (-5 *1 (-262))))) +(((*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) - (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-644 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-558)) (-5 *2 (-644 (-1175))) - (-5 *1 (-1043 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-566)) (-5 *3 (-921)) (-5 *1 (-699)))) - ((*1 *2 *2 *2 *3 *4) - (-12 (-5 *2 (-689 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) - (-4 *5 (-365)) (-5 *1 (-978 *5))))) -(((*1 *1 *2 *3 *4) + (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) + (-5 *2 (-112))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1138)))) +(((*1 *2 *1) (-12 - (-5 *3 + (-5 *2 (-644 - (-2 (|:| |scalar| (-409 (-566))) (|:| |coeff| (-1171 *2)) - (|:| |logand| (-1171 *2))))) - (-5 *4 (-644 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) - (-4 *2 (-365)) (-5 *1 (-587 *2))))) -(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1214))))) -(((*1 *1 *1) (-4 *1 (-1143)))) -(((*1 *1 *1 *1) + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) + (|:| |xpnt| (-566))))) + (-5 *1 (-420 *3)) (-4 *3 (-558)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-771)) (-4 *3 (-351)) (-4 *5 (-1240 *3)) + (-5 *2 (-644 (-1171 *3))) (-5 *1 (-500 *3 *5 *6)) + (-4 *6 (-1240 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1226 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-1255 *3))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-720)) (-5 *2 (-921)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-722)) (-5 *2 (-771))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850)) (-4 *2 (-454))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-158 *3 *2)) (-4 *2 (-432 *3))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-771)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1215 *3)) (-4 *3 (-1099)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1099)) (-5 *2 (-112)) + (-5 *1 (-1215 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) + (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) + (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3)))))) +(((*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1214))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-976 *4 *5 *6 *3)) (-4 *4 (-1049)) (-4 *5 (-793)) + (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-4 *4 (-558)) + (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-771)) (-4 *2 (-558)) (-5 *1 (-969 *2 *4)) + (-4 *4 (-1240 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-921)) (|has| *1 (-6 -4405)) (-4 *1 (-406)))) + ((*1 *2) (-12 (-4 *1 (-406)) (-5 *2 (-921)))) + ((*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-699)))) + ((*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-699))))) +(((*1 *1 *1) + (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-644 *3)) (-5 *1 (-961 *3)) (-4 *3 (-547))))) +(((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-331))))) +(((*1 *2) + (-12 (-4 *3 (-558)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-419 *3))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-771)) (-4 *5 (-365)) (-5 *2 (-174 *6)) + (-5 *1 (-867 *5 *4 *6)) (-4 *4 (-1255 *5)) (-4 *6 (-1240 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-822))))) +(((*1 *2 *3) + (-12 (-4 *1 (-920)) (-5 *2 (-2 (|:| -2397 (-644 *1)) (|:| -3302 *1))) + (-5 *3 (-644 *1))))) +(((*1 *2 *1) (-12 (-4 *1 (-1148 *3)) (-4 *3 (-1214)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1099) (-1038 *5))) + (-4 *5 (-886 *4)) (-4 *4 (-1099)) (-5 *2 (-1 (-112) *5)) + (-5 *1 (-931 *4 *5 *6))))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-771)) (-5 *1 (-782 *3)) (-4 *3 (-1049)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *1 (-963 *3 *2)) (-4 *2 (-131)) (-4 *3 (-558)) + (-4 *3 (-1049)) (-4 *2 (-792)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-771)) (-5 *1 (-1171 *3)) (-4 *3 (-1049)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-971)) (-4 *2 (-131)) (-5 *1 (-1177 *3)) (-4 *3 (-558)) + (-4 *3 (-1049)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-771)) (-5 *1 (-1237 *4 *3)) (-14 *4 (-1175)) + (-4 *3 (-1049))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *6 (-921)) (-4 *5 (-308)) (-4 *3 (-1240 *5)) + (-5 *2 (-2 (|:| |plist| (-644 *3)) (|:| |modulo| *5))) + (-5 *1 (-462 *5 *3)) (-5 *4 (-644 *3))))) +(((*1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1267)))) + ((*1 *2 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1267))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *5 *5)) + (-4 *5 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) + (-5 *2 + (-2 (|:| |solns| (-644 *5)) + (|:| |maps| (-644 (-2 (|:| |arg| *5) (|:| |res| *5)))))) + (-5 *1 (-1127 *3 *5)) (-4 *3 (-1240 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-420 *3)) (-5 *1 (-914 *3)) (-4 *3 (-308))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-454) (-147))) (-5 *2 (-420 *3)) + (-5 *1 (-100 *4 *3)) (-4 *3 (-1240 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-644 *3)) (-4 *3 (-1240 *5)) (-4 *5 (-13 (-454) (-147))) + (-5 *2 (-420 *3)) (-5 *1 (-100 *5 *3))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-1157)) (-5 *5 (-689 (-225))) + (-5 *2 (-1035)) (-5 *1 (-747))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-921)) (-4 *3 (-365)) + (-14 *4 (-993 *2 *3)))) + ((*1 *1 *1) (|partial| -12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1240 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1 *1) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-558)))) + ((*1 *1 *1) (|partial| -12 (-5 *1 (-715 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-558)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) - (-5 *2 (-644 *1)) (-4 *1 (-1064 *3 *4 *5))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) - (-12 (-5 *4 (-689 (-225))) (-5 *5 (-689 (-566))) (-5 *6 (-225)) - (-5 *3 (-566)) (-5 *2 (-1035)) (-5 *1 (-751))))) -(((*1 *2 *1) - (-12 (-4 *1 (-604 *2 *3)) (-4 *3 (-1214)) (-4 *2 (-1099)) - (-4 *2 (-850))))) -(((*1 *2 *3) - (-12 (-4 *4 (-38 (-409 (-566)))) - (-5 *2 (-2 (|:| -2240 (-1155 *4)) (|:| -4104 (-1155 *4)))) - (-5 *1 (-1161 *4)) (-5 *3 (-1155 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-180)))) - ((*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-681)))) - ((*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-970)))) - ((*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-1072)))) - ((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1117))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1171 (-409 (-1171 *2)))) (-5 *4 (-612 *2)) - (-4 *2 (-13 (-432 *5) (-27) (-1199))) - (-4 *5 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) - (-5 *1 (-562 *5 *2 *6)) (-4 *6 (-1099)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1171 *1)) (-4 *1 (-949 *4 *5 *3)) (-4 *4 (-1049)) - (-4 *5 (-793)) (-4 *3 (-850)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1171 *4)) (-4 *4 (-1049)) (-4 *1 (-949 *4 *5 *3)) - (-4 *5 (-793)) (-4 *3 (-850)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-409 (-1171 *2))) (-4 *5 (-793)) (-4 *4 (-850)) - (-4 *6 (-1049)) - (-4 *2 - (-13 (-365) - (-10 -8 (-15 -3783 ($ *7)) (-15 -4326 (*7 $)) (-15 -4339 (*7 $))))) - (-5 *1 (-950 *5 *4 *6 *7 *2)) (-4 *7 (-949 *6 *5 *4)))) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365)))) + ((*1 *1) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365)))) + ((*1 *1 *1) (|partial| -4 *1 (-722))) + ((*1 *1 *1) (|partial| -4 *1 (-726))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-409 (-1171 (-409 (-952 *5))))) (-5 *4 (-1175)) - (-5 *2 (-409 (-952 *5))) (-5 *1 (-1043 *5)) (-4 *5 (-558))))) -(((*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1099)) - (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) -(((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) - ((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) + (-5 *1 (-776 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) + ((*1 *2 *2 *1) + (|partial| -12 (-4 *1 (-1067 *3 *2)) (-4 *3 (-13 (-848) (-365))) + (-4 *2 (-1240 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) - ((*1 *1 *1) (-4 *1 (-1138)))) -(((*1 *2 *1) - (-12 (-4 *2 (-708 *3)) (-5 *1 (-827 *2 *3)) (-4 *3 (-1049))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-1099)) - (-4 *4 (-1099))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1175)) (-5 *3 (-644 (-538))) (-5 *1 (-538))))) -(((*1 *2 *1) - (-12 (-14 *3 (-644 (-1175))) (-4 *4 (-172)) - (-4 *5 (-238 (-3018 *3) (-771))) - (-14 *6 - (-1 (-112) (-2 (|:| -2178 *2) (|:| -2852 *5)) - (-2 (|:| -2178 *2) (|:| -2852 *5)))) - (-4 *2 (-850)) (-5 *1 (-463 *3 *4 *2 *5 *6 *7)) - (-4 *7 (-949 *4 *5 (-864 *3)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-850)) - (-4 *5 (-267 *4)) (-4 *6 (-793)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-566))) (-5 *1 (-1047))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1171 *3)) (-4 *3 (-1049)) (-4 *1 (-1240 *3))))) -(((*1 *1 *2 *3) - (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-792)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-644 (-921))) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-921)) - (-4 *2 (-365)) (-14 *5 (-993 *4 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-713 *5 *6 *7)) (-4 *5 (-850)) - (-4 *6 (-238 (-3018 *4) (-771))) - (-14 *7 - (-1 (-112) (-2 (|:| -2178 *5) (|:| -2852 *6)) - (-2 (|:| -2178 *5) (|:| -2852 *6)))) - (-14 *4 (-644 (-1175))) (-4 *2 (-172)) - (-5 *1 (-463 *4 *2 *5 *6 *7 *8)) (-4 *8 (-949 *2 *6 (-864 *4))))) - ((*1 *1 *2 *3) - (-12 (-4 *1 (-511 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-850)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-566)) (-4 *2 (-558)) (-5 *1 (-623 *2 *4)) - (-4 *4 (-1240 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-771)) (-4 *1 (-708 *2)) (-4 *2 (-1049)))) + (|partial| -12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-644 (-409 *6))) (-5 *3 (-409 *6)) + (-4 *6 (-1240 *5)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-570 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *1 (-1200 *2)) (-4 *2 (-1099)))) + ((*1 *1 *2) + (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-1200 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-735 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-726)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-644 *5)) (-5 *3 (-644 (-771))) (-4 *1 (-740 *4 *5)) - (-4 *4 (-1049)) (-4 *5 (-850)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-771)) (-4 *1 (-740 *4 *2)) (-4 *4 (-1049)) - (-4 *2 (-850)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-771)) (-4 *1 (-852 *2)) (-4 *2 (-1049)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-644 *6)) (-5 *3 (-644 (-771))) (-4 *1 (-949 *4 *5 *6)) - (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *6 (-850)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-771)) (-4 *1 (-949 *4 *5 *2)) (-4 *4 (-1049)) - (-4 *5 (-793)) (-4 *2 (-850)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-644 *6)) (-5 *3 (-644 *5)) (-4 *1 (-973 *4 *5 *6)) - (-4 *4 (-1049)) (-4 *5 (-792)) (-4 *6 (-850)))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-973 *4 *3 *2)) (-4 *4 (-1049)) (-4 *3 (-792)) - (-4 *2 (-850))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-862))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862))))) -(((*1 *2 *3) - (-12 (-4 *4 (-850)) (-5 *2 (-644 (-644 (-644 *4)))) - (-5 *1 (-1185 *4)) (-5 *3 (-644 (-644 *4)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-921)) (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)))) - ((*1 *2 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-365)))) - ((*1 *2 *1) - (-12 (-4 *1 (-372 *2 *3)) (-4 *3 (-1240 *2)) (-4 *2 (-172)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1264 *4)) (-5 *3 (-921)) (-4 *4 (-351)) - (-5 *1 (-530 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1122 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) - (-4 *5 (-238 *3 *2)) (-4 *2 (-1049))))) -(((*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-1049))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1214)) (-5 *1 (-328 *3)))) + (-12 (-5 *3 (-644 (-1200 *2))) (-5 *1 (-1200 *2)) (-4 *2 (-1099))))) +(((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-493))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-396))))) +(((*1 *1 *2 *3 *3 *3 *4) + (-12 (-4 *4 (-365)) (-4 *3 (-1240 *4)) (-4 *5 (-1240 (-409 *3))) + (-4 *1 (-337 *4 *3 *5 *2)) (-4 *2 (-344 *4 *3 *5)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-566)) (-4 *2 (-365)) (-4 *4 (-1240 *2)) + (-4 *5 (-1240 (-409 *4))) (-4 *1 (-337 *2 *4 *5 *6)) + (-4 *6 (-344 *2 *4 *5)))) + ((*1 *1 *2 *2) + (-12 (-4 *2 (-365)) (-4 *3 (-1240 *2)) (-4 *4 (-1240 (-409 *3))) + (-4 *1 (-337 *2 *3 *4 *5)) (-4 *5 (-344 *2 *3 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-644 *3)) (-4 *3 (-1214)) (-5 *1 (-518 *3 *4)) - (-14 *4 (-566))))) + (-12 (-4 *3 (-365)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) + (-4 *1 (-337 *3 *4 *5 *2)) (-4 *2 (-344 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-415 *4 (-409 *4) *5 *6)) (-4 *4 (-1240 *3)) + (-4 *5 (-1240 (-409 *4))) (-4 *6 (-344 *3 *4 *5)) (-4 *3 (-365)) + (-4 *1 (-337 *3 *4 *5 *6))))) (((*1 *2 *2) (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))) (-5 *1 (-176 *3))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-2 (|:| |ans| *7) (|:| -1966 *7) (|:| |sol?| (-112))) + (-566) *7)) + (-5 *6 (-644 (-409 *8))) (-4 *7 (-365)) (-4 *8 (-1240 *7)) + (-5 *3 (-409 *8)) + (-5 *2 + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-576 *7 *8))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-508)) (-5 *2 (-112)) (-5 *1 (-114))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *2 *3 *4 *2 *5 *6) + (-12 + (-5 *5 + (-2 (|:| |done| (-644 *11)) + (|:| |todo| (-644 (-2 (|:| |val| *3) (|:| -1470 *11)))))) + (-5 *6 (-771)) + (-5 *2 (-644 (-2 (|:| |val| (-644 *10)) (|:| -1470 *11)))) + (-5 *3 (-644 *10)) (-5 *4 (-644 *11)) (-4 *10 (-1064 *7 *8 *9)) + (-4 *11 (-1070 *7 *8 *9 *10)) (-4 *7 (-454)) (-4 *8 (-793)) + (-4 *9 (-850)) (-5 *1 (-1068 *7 *8 *9 *10 *11)))) + ((*1 *2 *3 *4 *2 *5 *6) + (-12 + (-5 *5 + (-2 (|:| |done| (-644 *11)) + (|:| |todo| (-644 (-2 (|:| |val| *3) (|:| -1470 *11)))))) + (-5 *6 (-771)) + (-5 *2 (-644 (-2 (|:| |val| (-644 *10)) (|:| -1470 *11)))) + (-5 *3 (-644 *10)) (-5 *4 (-644 *11)) (-4 *10 (-1064 *7 *8 *9)) + (-4 *11 (-1108 *7 *8 *9 *10)) (-4 *7 (-454)) (-4 *8 (-793)) + (-4 *9 (-850)) (-5 *1 (-1144 *7 *8 *9 *10 *11))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-5 *2 (-566)))) + (-12 (-4 *1 (-556 *3)) (-4 *3 (-13 (-406) (-1199))) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-848)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1067 *4 *3)) (-4 *4 (-13 (-848) (-365))) + (-4 *3 (-1240 *4)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *3 (-1064 *5 *6 *7)) + (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -1470 *4)))) + (-5 *1 (-776 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))) +(((*1 *1) + (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-566)) (-14 *3 (-771)) + (-4 *4 (-172))))) +(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) ((*1 *2 *1) - (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-566))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-454) (-1038 (-566)))) (-4 *3 (-558)) - (-5 *1 (-41 *3 *2)) (-4 *2 (-432 *3)) - (-4 *2 - (-13 (-365) (-303) - (-10 -8 (-15 -4326 ((-1124 *3 (-612 $)) $)) - (-15 -4339 ((-1124 *3 (-612 $)) $)) - (-15 -3783 ($ (-1124 *3 (-612 $)))))))))) + (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)) + (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-646 *3)) (-4 *3 (-1057)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-1057)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1067 *4 *3)) (-4 *4 (-13 (-848) (-365))) + (-4 *3 (-1240 *4)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) (((*1 *2 *3) - (-12 (-4 *4 (-558)) (-4 *5 (-992 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3)) - (-4 *3 (-375 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-558)) (-4 *5 (-992 *4)) - (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) - (-5 *1 (-505 *4 *5 *6 *3)) (-4 *6 (-375 *4)) (-4 *3 (-375 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-689 *5)) (-4 *5 (-992 *4)) (-4 *4 (-558)) - (-5 *2 (-2 (|:| |num| (-689 *4)) (|:| |den| *4))) - (-5 *1 (-693 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-365) (-147) (-1038 (-409 (-566))))) - (-4 *6 (-1240 *5)) - (-5 *2 (-2 (|:| -2470 *7) (|:| |rh| (-644 (-409 *6))))) - (-5 *1 (-807 *5 *6 *7 *3)) (-5 *4 (-644 (-409 *6))) - (-4 *7 (-656 *6)) (-4 *3 (-656 (-409 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-558)) (-4 *5 (-992 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1233 *4 *5 *3)) - (-4 *3 (-1240 *5))))) + (-12 (-4 *4 (-351)) (-5 *2 (-112)) (-5 *1 (-216 *4 *3)) + (-4 *3 (-1240 *4))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-771)) (-5 *3 (-943 *4)) (-4 *1 (-1133 *4)) + (-4 *4 (-1049)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-771)) (-5 *4 (-943 (-225))) (-5 *2 (-1269)) + (-5 *1 (-1266))))) +(((*1 *2) (-12 (-5 *2 (-644 *3)) (-5 *1 (-1083 *3)) (-4 *3 (-132))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1264 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) + (-4 *1 (-724 *5 *6)) (-4 *5 (-172)) (-4 *6 (-1240 *5)) + (-5 *2 (-689 *5))))) (((*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) (-5 *2 (-689 (-409 *4)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-558)) (-5 *2 (-1264 (-689 *4))) (-5 *1 (-90 *4 *5)) + (-5 *3 (-689 *4)) (-4 *5 (-656 *4))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1049))))) +(((*1 *1) + (-12 (-4 *3 (-1099)) (-5 *1 (-885 *2 *3 *4)) (-4 *2 (-1099)) + (-4 *4 (-666 *3)))) + ((*1 *1) (-12 (-5 *1 (-889 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2164 (-782 *3)) (|:| |coef1| (-782 *3)))) + (-5 *1 (-782 *3)) (-4 *3 (-558)) (-4 *3 (-1049)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-558)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) + (-5 *2 (-2 (|:| -2164 *1) (|:| |coef1| *1))) + (-4 *1 (-1064 *3 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-771)) (-4 *1 (-1240 *3)) (-4 *3 (-1049))))) -(((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-158 *3 *2)) (-4 *2 (-432 *3)))) + (-12 (-5 *3 (-644 *5)) (-5 *4 (-921)) (-4 *5 (-850)) + (-5 *2 (-644 (-672 *5))) (-5 *1 (-672 *5))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1264 (-1175))) (-5 *3 (-1264 (-455 *4 *5 *6 *7))) + (-5 *1 (-455 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-921)) + (-14 *6 (-644 (-1175))) (-14 *7 (-1264 (-689 *4))))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-455 *4 *5 *6 *7))) + (-5 *1 (-455 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-921)) + (-14 *6 (-644 *2)) (-14 *7 (-1264 (-689 *4))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1264 (-455 *3 *4 *5 *6))) (-5 *1 (-455 *3 *4 *5 *6)) + (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) + (-14 *6 (-1264 (-689 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1264 (-1175))) (-5 *1 (-455 *3 *4 *5 *6)) + (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) + (-14 *6 (-1264 (-689 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1175)) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-172)) + (-14 *4 (-921)) (-14 *5 (-644 *2)) (-14 *6 (-1264 (-689 *3))))) + ((*1 *1) + (-12 (-5 *1 (-455 *2 *3 *4 *5)) (-4 *2 (-172)) (-14 *3 (-921)) + (-14 *4 (-644 (-1175))) (-14 *5 (-1264 (-689 *2)))))) +(((*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-52))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1035))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-205)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1175)) (-4 *4 (-558)) (-5 *1 (-158 *4 *2)) - (-4 *2 (-432 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1175)))) - ((*1 *1 *1) (-4 *1 (-160)))) -(((*1 *1) (-5 *1 (-1084)))) + (-12 (-5 *3 (-644 (-381))) (-5 *2 (-381)) (-5 *1 (-205))))) +(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1214)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850)))) + ((*1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) + (-5 *1 (-988 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) + (-5 *1 (-1106 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-822)) (-5 *1 (-821))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1264 *4)) (-5 *3 (-771)) (-4 *4 (-351)) + (-5 *1 (-530 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-862)))) + ((*1 *1 *1) (-5 *1 (-862)))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-771)) (-4 *6 (-1099)) (-4 *3 (-900 *6)) - (-5 *2 (-689 *3)) (-5 *1 (-692 *6 *3 *7 *4)) (-4 *7 (-375 *3)) - (-4 *4 (-13 (-375 *6) (-10 -7 (-6 -4414))))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1099)) (-5 *1 (-964 *3 *2)) (-4 *3 (-1099))))) -(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-566)) (-5 *5 (-689 (-225))) - (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN)))) - (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT)))) - (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-749))))) -(((*1 *2 *3) - (-12 (-5 *2 (-644 (-644 (-566)))) (-5 *1 (-971)) - (-5 *3 (-644 (-566)))))) -(((*1 *2 *3) - (-12 + (-12 (-5 *3 (-317 (-225))) (-5 *4 (-1175)) + (-5 *5 (-1093 (-843 (-225)))) (-5 *2 (-644 (-225))) (-5 *1 (-192)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-317 (-225))) (-5 *4 (-1175)) + (-5 *5 (-1093 (-843 (-225)))) (-5 *2 (-644 (-225))) (-5 *1 (-301))))) +(((*1 *2 *3 *4 *4 *2 *2 *2) + (-12 (-5 *2 (-566)) (-5 *3 - (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) - (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| "There are singularities at both end points") - (|:| |notEvaluated| "End point continuity not yet evaluated"))) - (-5 *1 (-192))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1049))))) + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-771)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-793)) (-4 *4 (-949 *5 *6 *7)) (-4 *5 (-454)) (-4 *7 (-850)) + (-5 *1 (-451 *5 *6 *7 *4))))) +(((*1 *2 *1) + (-12 (-4 *3 (-172)) (-4 *2 (-23)) (-5 *1 (-290 *3 *4 *2 *5 *6 *7)) + (-4 *4 (-1240 *3)) (-14 *5 (-1 *4 *4 *2)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2)) + (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) + ((*1 *2 *1) + (-12 (-4 *2 (-23)) (-5 *1 (-711 *3 *2 *4 *5 *6)) (-4 *3 (-172)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) + (-12 (-4 *2 (-1240 *3)) (-5 *1 (-712 *3 *2)) (-4 *3 (-1049)))) + ((*1 *2 *1) + (-12 (-4 *2 (-23)) (-5 *1 (-715 *3 *2 *4 *5 *6)) (-4 *3 (-172)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) (-12 (-4 *1 (-869 *3)) (-5 *2 (-566))))) +(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-112)) (-5 *1 (-829))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-644 (-1175))) (-5 *3 (-1175)) (-5 *1 (-538)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1175)) (-5 *1 (-704 *3)) (-4 *3 (-614 (-538))))) + ((*1 *2 *3 *2 *2) + (-12 (-5 *2 (-1175)) (-5 *1 (-704 *3)) (-4 *3 (-614 (-538))))) + ((*1 *2 *3 *2 *2 *2) + (-12 (-5 *2 (-1175)) (-5 *1 (-704 *3)) (-4 *3 (-614 (-538))))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *4 (-644 (-1175))) (-5 *2 (-1175)) (-5 *1 (-704 *3)) + (-4 *3 (-614 (-538)))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 - (-2 (|:| -2233 *4) (|:| -1465 *4) (|:| |totalpts| (-566)) + (-2 (|:| -2876 *4) (|:| -1425 *4) (|:| |totalpts| (-566)) (|:| |success| (-112)))) (-5 *1 (-789)) (-5 *5 (-566))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-921)) (-5 *4 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1265))))) -(((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1240 *5)) - (-4 *5 (-13 (-365) (-147) (-1038 (-566)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-409 *6)) (|:| |h| *6) - (|:| |c1| (-409 *6)) (|:| |c2| (-409 *6)) (|:| -1460 *6))) - (-5 *1 (-1016 *5 *6)) (-5 *3 (-409 *6))))) -(((*1 *2) - (-12 (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) - (-5 *2 (-1264 *1)) (-4 *1 (-344 *3 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-644 *5)) (-5 *4 (-921)) (-4 *5 (-850)) + (-5 *2 (-59 (-644 (-672 *5)))) (-5 *1 (-672 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1184))))) (((*1 *2 *3) - (-12 (-5 *3 (-644 (-566))) (-5 *2 (-1177 (-409 (-566)))) - (-5 *1 (-190))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-225)) (-5 *4 (-566)) - (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G)))) (-5 *2 (-1035)) - (-5 *1 (-748))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1109)) (-5 *3 (-566))))) -(((*1 *2 *3 *3) - (-12 (-4 *3 (-1218)) (-4 *5 (-1240 *3)) (-4 *6 (-1240 (-409 *5))) - (-5 *2 (-112)) (-5 *1 (-343 *4 *3 *5 *6)) (-4 *4 (-344 *3 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) - (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1218)) (-4 *3 (-1240 *4)) - (-4 *5 (-1240 (-409 *3))) (-5 *2 (-112)))) + (-12 (-5 *3 (-644 (-538))) (-5 *2 (-1175)) (-5 *1 (-538))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-644 *6) "failed") (-566) *6 *6)) (-4 *6 (-365)) + (-4 *7 (-1240 *6)) + (-5 *2 (-2 (|:| |answer| (-587 (-409 *7))) (|:| |a0| *6))) + (-5 *1 (-576 *6 *7)) (-5 *3 (-409 *7))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 (-144))) (-5 *1 (-141)))) + ((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-141))))) +(((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) + (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-5 *2 (-644 (-1027 *5 *6 *7 *8))) (-5 *1 (-1027 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) + (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-5 *2 (-644 (-1145 *5 *6 *7 *8))) (-5 *1 (-1145 *5 *6 *7 *8))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850)) (-4 *2 (-454))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) + (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-79 LSFUN1)))) + (-5 *2 (-1035)) (-5 *1 (-753))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-566)) (-4 *1 (-1224 *4)) (-4 *4 (-1049)) (-4 *4 (-558)) + (-5 *2 (-409 (-952 *4))))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) - (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) - (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-331)))) - ((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-331))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-771)) (-4 *3 (-1049)) (-4 *1 (-687 *3 *4 *5)) - (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) - ((*1 *1 *2) - (-12 (-4 *2 (-1049)) (-4 *1 (-1122 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) - (-4 *5 (-238 *3 *2))))) + (-12 (-5 *3 (-566)) (-4 *1 (-1224 *4)) (-4 *4 (-1049)) (-4 *4 (-558)) + (-5 *2 (-409 (-952 *4)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *3 (-1064 *5 *6 *7)) + (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -1470 *4)))) + (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-587 *2)) (-4 *2 (-13 (-29 *4) (-1199))) - (-5 *1 (-585 *4 *2)) - (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))))) + (-12 (-5 *3 (-771)) (-5 *2 (-1 (-1155 (-952 *4)) (-1155 (-952 *4)))) + (-5 *1 (-1272 *4)) (-4 *4 (-365))))) +(((*1 *2 *3) + (-12 (-5 *3 (-653 (-409 *2))) (-4 *2 (-1240 *4)) (-5 *1 (-810 *4 *2)) + (-4 *4 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))))) ((*1 *2 *3) - (-12 (-5 *3 (-587 (-409 (-952 *4)))) - (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-317 *4)) - (-5 *1 (-590 *4))))) + (-12 (-5 *3 (-654 *2 (-409 *2))) (-4 *2 (-1240 *4)) + (-5 *1 (-810 *4 *2)) + (-4 *4 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566)))))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-4 *4 (-454)) (-4 *3 (-793)) (-4 *5 (-850)) (-5 *2 (-112)) + (-5 *1 (-451 *4 *3 *5 *6)) (-4 *6 (-949 *4 *3 *5))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| -2164 (-782 *3)) (|:| |coef1| (-782 *3)) + (|:| |coef2| (-782 *3)))) + (-5 *1 (-782 *3)) (-4 *3 (-558)) (-4 *3 (-1049)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-558)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) + (-5 *2 (-2 (|:| -2164 *1) (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-1064 *3 *4 *5))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-225) (-225) (-225))) + (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) + (-5 *5 (-1093 (-225))) (-5 *6 (-644 (-264))) (-5 *2 (-1132 (-225))) + (-5 *1 (-697))))) +(((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436))))) +(((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-581))))) +(((*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1157)) (-5 *1 (-786))))) +(((*1 *2 *3) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-566))) (-5 *1 (-1047))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-756))))) (((*1 *2 *1) - (-12 (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) - (-5 *2 (-819 *3)))) - ((*1 *2 *1) - (-12 (-4 *2 (-846)) (-5 *1 (-1287 *3 *2)) (-4 *3 (-1049))))) -(((*1 *1 *2) - (-12 (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -2561 *4)))) - (-4 *3 (-1099)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-649 *3 *4 *5))))) -(((*1 *1 *1) (-12 (-5 *1 (-914 *2)) (-4 *2 (-308))))) + (-12 (-5 *2 (-1155 (-566))) (-5 *1 (-1004 *3)) (-14 *3 (-566))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-755))))) +(((*1 *1 *2 *3 *3 *4 *5) + (-12 (-5 *2 (-644 (-644 (-943 (-225))))) (-5 *3 (-644 (-874))) + (-5 *4 (-644 (-921))) (-5 *5 (-644 (-264))) (-5 *1 (-470)))) + ((*1 *1 *2 *3 *3 *4) + (-12 (-5 *2 (-644 (-644 (-943 (-225))))) (-5 *3 (-644 (-874))) + (-5 *4 (-644 (-921))) (-5 *1 (-470)))) + ((*1 *1 *2) (-12 (-5 *2 (-644 (-644 (-943 (-225))))) (-5 *1 (-470)))) + ((*1 *1 *1) (-5 *1 (-470)))) +(((*1 *2 *3 *3) + (-12 (-4 *2 (-558)) (-4 *2 (-454)) (-5 *1 (-969 *2 *3)) + (-4 *3 (-1240 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-674 *3)) (-4 *3 (-1214)) (-5 *2 (-112))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) + (-4 *6 (-793)) (-5 *2 (-644 (-644 (-566)))) + (-5 *1 (-924 *4 *5 *6 *7)) (-5 *3 (-566)) (-4 *7 (-949 *4 *6 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 *2)) (-4 *2 (-432 *4)) (-5 *1 (-158 *4 *2)) + (-4 *4 (-558))))) (((*1 *2 *1) - (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *1)) - (-4 *1 (-1064 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-644 (-1213))) (-5 *1 (-681)))) - ((*1 *2 *1) (-12 (-5 *2 (-644 (-1180))) (-5 *1 (-1117))))) + (-12 (-4 *1 (-327 *2 *3)) (-4 *3 (-792)) (-4 *2 (-1049)) + (-4 *2 (-454)))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 *4)) (-4 *4 (-1240 (-566))) (-5 *2 (-644 (-566))) + (-5 *1 (-488 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-454)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-949 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *2 (-850)) (-4 *3 (-454))))) +(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) + (-12 (-5 *4 (-566)) (-5 *5 (-1157)) (-5 *6 (-689 (-225))) + (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G)))) + (-5 *8 (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN)))) + (-5 *9 (-3 (|:| |fn| (-390)) (|:| |fp| (-71 PEDERV)))) + (-5 *10 (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-749))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436))))) +(((*1 *2 *1) (|partial| -12 (-4 *1 (-1012)) (-5 *2 (-862))))) +(((*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-771)))) + ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-404)) (-5 *2 (-771))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-295 (-409 (-952 *5)))) (-5 *4 (-1175)) + (-4 *5 (-13 (-308) (-147))) + (-5 *2 (-1164 (-644 (-317 *5)) (-644 (-295 (-317 *5))))) + (-5 *1 (-1128 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-1175)) + (-4 *5 (-13 (-308) (-147))) + (-5 *2 (-1164 (-644 (-317 *5)) (-644 (-295 (-317 *5))))) + (-5 *1 (-1128 *5))))) +(((*1 *2 *1 *2) + (-12 (-4 *1 (-366 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1099))))) +(((*1 *1 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1214)))) + ((*1 *1 *1) + (-12 (|has| *1 (-6 -4415)) (-4 *1 (-375 *2)) (-4 *2 (-1214)))) + ((*1 *1 *1) + (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *2) + (-12 (-5 *2 (-644 (-483 *3 *4))) (-14 *3 (-644 (-1175))) + (-4 *4 (-454)) (-5 *1 (-631 *3 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-169 *5)) (-4 *5 (-13 (-432 *4) (-1002) (-1199))) + (-4 *4 (-558)) (-4 *2 (-13 (-432 (-169 *4)) (-1002) (-1199))) + (-5 *1 (-600 *4 *5 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1264 (-317 (-225)))) (-5 *2 (-1264 (-317 (-381)))) + (-5 *1 (-306))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2164 *3))) + (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-644 (-2 (|:| -2004 (-1175)) (|:| -3867 *4)))) - (-5 *1 (-889 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) - (-4 *7 (-1099)) (-5 *2 (-644 *1)) (-4 *1 (-1102 *3 *4 *5 *6 *7))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-644 *1)) (|has| *1 (-6 -4415)) (-4 *1 (-1010 *3)) - (-4 *3 (-1214))))) + (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) + (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112))))) (((*1 *2 *2) - (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) - (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) - (-5 *4 (-689 (-1171 *8))) (-4 *5 (-1049)) (-4 *8 (-1049)) - (-4 *6 (-1240 *5)) (-5 *2 (-689 *6)) (-5 *1 (-503 *5 *6 *7 *8)) - (-4 *7 (-1240 *6))))) -(((*1 *1) (-5 *1 (-186)))) -(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1214)) (-4 *1 (-151 *3)))) - ((*1 *1 *2) + (|partial| -12 (-5 *2 (-644 (-952 *3))) (-4 *3 (-454)) + (-5 *1 (-362 *3 *4)) (-14 *4 (-644 (-1175))))) + ((*1 *2 *2) + (|partial| -12 (-5 *2 (-644 (-780 *3 (-864 *4)))) (-4 *3 (-454)) + (-14 *4 (-644 (-1175))) (-5 *1 (-628 *3 *4))))) +(((*1 *2 *3 *3) (-12 - (-5 *2 (-644 (-2 (|:| -2852 (-771)) (|:| -1320 *4) (|:| |num| *4)))) - (-4 *4 (-1240 *3)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-401 *3 *4)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-436)) (|:| -2895 "void"))) - (-5 *3 (-644 (-952 (-566)))) (-5 *4 (-112)) (-5 *1 (-439)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-436)) (|:| -2895 "void"))) - (-5 *3 (-644 (-1175))) (-5 *4 (-112)) (-5 *1 (-439)))) + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-771)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-793)) (-4 *7 (-949 *4 *5 *6)) (-4 *4 (-454)) (-4 *6 (-850)) + (-5 *2 (-112)) (-5 *1 (-451 *4 *5 *6 *7))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1101 *3)) (-5 *1 (-905 *3)) (-4 *3 (-370)) + (-4 *3 (-1099))))) +(((*1 *1 *1) + (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1049)) + (-14 *4 (-644 (-1175))))) ((*1 *2 *1) - (-12 (-5 *2 (-1155 *3)) (-5 *1 (-601 *3)) (-4 *3 (-1214)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-172)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-672 *3)) (-4 *3 (-850)) (-5 *1 (-664 *3 *4)) - (-4 *4 (-172)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-672 *3)) (-4 *3 (-850)) (-5 *1 (-664 *3 *4)) - (-4 *4 (-172)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-672 *3)) (-4 *3 (-850)) (-5 *1 (-664 *3 *4)) - (-4 *4 (-172)))) - ((*1 *1 *2) - (-12 (-5 *2 (-644 (-644 (-644 *3)))) (-4 *3 (-1099)) - (-5 *1 (-675 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-713 *2 *3 *4)) (-4 *2 (-850)) (-4 *3 (-1099)) - (-14 *4 - (-1 (-112) (-2 (|:| -2178 *2) (|:| -2852 *3)) - (-2 (|:| -2178 *2) (|:| -2852 *3)))))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-508)) (-5 *3 (-1117)) (-5 *1 (-838)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-873 *2 *3)) (-4 *2 (-1214)) (-4 *3 (-1214)))) - ((*1 *1 *2) - (-12 (-5 *2 (-644 (-2 (|:| -2004 (-1175)) (|:| -3867 *4)))) - (-4 *4 (-1099)) (-5 *1 (-889 *3 *4)) (-4 *3 (-1099)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-644 *5)) (-4 *5 (-13 (-1099) (-34))) - (-5 *2 (-644 (-1139 *3 *5))) (-5 *1 (-1139 *3 *5)) - (-4 *3 (-13 (-1099) (-34))))) - ((*1 *2 *3) - (-12 (-5 *3 (-644 (-2 (|:| |val| *4) (|:| -3570 *5)))) - (-4 *4 (-13 (-1099) (-34))) (-4 *5 (-13 (-1099) (-34))) - (-5 *2 (-644 (-1139 *4 *5))) (-5 *1 (-1139 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3570 *4))) - (-4 *3 (-13 (-1099) (-34))) (-4 *4 (-13 (-1099) (-34))) - (-5 *1 (-1139 *3 *4)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-1139 *2 *3)) (-4 *2 (-13 (-1099) (-34))) - (-4 *3 (-13 (-1099) (-34))))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-5 *1 (-1139 *2 *3)) (-4 *2 (-13 (-1099) (-34))) - (-4 *3 (-13 (-1099) (-34))))) - ((*1 *1 *2 *3 *2 *4) - (-12 (-5 *4 (-644 *3)) (-4 *3 (-13 (-1099) (-34))) - (-5 *1 (-1140 *2 *3)) (-4 *2 (-13 (-1099) (-34))))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-644 (-1139 *2 *3))) (-4 *2 (-13 (-1099) (-34))) - (-4 *3 (-13 (-1099) (-34))) (-5 *1 (-1140 *2 *3)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-644 (-1140 *2 *3))) (-5 *1 (-1140 *2 *3)) - (-4 *2 (-13 (-1099) (-34))) (-4 *3 (-13 (-1099) (-34))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1139 *3 *4)) (-4 *3 (-13 (-1099) (-34))) - (-4 *4 (-13 (-1099) (-34))) (-5 *1 (-1140 *3 *4)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-1164 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1214)) - (-4 *5 (-1214)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-240 *6 *7)) (-14 *6 (-771)) - (-4 *7 (-1214)) (-4 *5 (-1214)) (-5 *2 (-240 *6 *5)) - (-5 *1 (-239 *6 *7 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1214)) (-4 *5 (-1214)) - (-4 *2 (-375 *5)) (-5 *1 (-373 *6 *4 *5 *2)) (-4 *4 (-375 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1099)) (-4 *5 (-1099)) - (-4 *2 (-427 *5)) (-5 *1 (-425 *6 *4 *5 *2)) (-4 *4 (-427 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-644 *6)) (-4 *6 (-1214)) - (-4 *5 (-1214)) (-5 *2 (-644 *5)) (-5 *1 (-642 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-958 *6)) (-4 *6 (-1214)) - (-4 *5 (-1214)) (-5 *2 (-958 *5)) (-5 *1 (-957 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1155 *6)) (-4 *6 (-1214)) - (-4 *3 (-1214)) (-5 *2 (-1155 *3)) (-5 *1 (-1153 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1264 *6)) (-4 *6 (-1214)) - (-4 *5 (-1214)) (-5 *2 (-1264 *5)) (-5 *1 (-1263 *6 *5))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-682 *3)) (-4 *3 (-1099))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-604 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1214)) - (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-644 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1215 *2)) - (-4 *2 (-1099)))) - ((*1 *2 *3) - (-12 (-5 *3 (-644 *2)) (-4 *2 (-1099)) (-4 *2 (-850)) - (-5 *1 (-1215 *2))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-644 (-782 *3))) (-5 *1 (-782 *3)) (-4 *3 (-558)) - (-4 *3 (-1049))))) -(((*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1269)) (-5 *1 (-381)))) - ((*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-381))))) -(((*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) - ((*1 *1 *1) (-5 *1 (-862))) - ((*1 *1 *2) - (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-4 *1 (-1097 *3)))) - ((*1 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099))))) + (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1049) (-850))) + (-14 *4 (-644 (-1175)))))) +(((*1 *1 *1 *1) (-5 *1 (-862)))) (((*1 *2 *1) - (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1240 *3)) - (-4 *5 (-1240 (-409 *4))) (-4 *6 (-344 *3 *4 *5)) - (-5 *2 (-415 *4 (-409 *4) *5 *6)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1264 *6)) (-4 *6 (-13 (-411 *4 *5) (-1038 *4))) - (-4 *4 (-992 *3)) (-4 *5 (-1240 *4)) (-4 *3 (-308)) - (-5 *1 (-415 *3 *4 *5 *6)))) - ((*1 *1 *2) - (-12 (-5 *2 (-644 *6)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-365)) - (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-506 *3 *4 *5 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1002)))))) -(((*1 *1) (-5 *1 (-186)))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1099)) (-5 *1 (-103 *3)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1099))))) + (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) + (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1084))))) (((*1 *1 *2) (-12 (-5 *2 (-1264 *3)) (-4 *3 (-365)) (-14 *6 (-1264 (-689 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))))) ((*1 *1 *2) (-12 (-5 *2 (-1124 (-566) (-612 (-48)))) (-5 *1 (-48)))) ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1214)))) ((*1 *1 *2) - (-12 (-5 *2 (-1264 (-341 (-3796 'JINT 'X 'ELAM) (-3796) (-699)))) + (-12 (-5 *2 (-1264 (-341 (-1340 'JINT 'X 'ELAM) (-1340) (-699)))) (-5 *1 (-61 *3)) (-14 *3 (-1175)))) ((*1 *1 *2) - (-12 (-5 *2 (-1264 (-341 (-3796) (-3796 'XC) (-699)))) + (-12 (-5 *2 (-1264 (-341 (-1340) (-1340 'XC) (-699)))) (-5 *1 (-63 *3)) (-14 *3 (-1175)))) ((*1 *1 *2) - (-12 (-5 *2 (-341 (-3796 'X) (-3796) (-699))) (-5 *1 (-64 *3)) + (-12 (-5 *2 (-341 (-1340 'X) (-1340) (-699))) (-5 *1 (-64 *3)) (-14 *3 (-1175)))) ((*1 *1 *2) - (-12 (-5 *2 (-341 (-3796) (-3796 'XC) (-699))) (-5 *1 (-66 *3)) + (-12 (-5 *2 (-341 (-1340) (-1340 'XC) (-699))) (-5 *1 (-66 *3)) (-14 *3 (-1175)))) ((*1 *1 *2) - (-12 (-5 *2 (-1264 (-341 (-3796 'X) (-3796 '-2509) (-699)))) + (-12 (-5 *2 (-1264 (-341 (-1340 'X) (-1340 '-2481) (-699)))) (-5 *1 (-71 *3)) (-14 *3 (-1175)))) ((*1 *1 *2) - (-12 (-5 *2 (-1264 (-341 (-3796) (-3796 'X) (-699)))) + (-12 (-5 *2 (-1264 (-341 (-1340) (-1340 'X) (-699)))) (-5 *1 (-74 *3)) (-14 *3 (-1175)))) ((*1 *1 *2) - (-12 (-5 *2 (-1264 (-341 (-3796 'X 'EPS) (-3796 '-2509) (-699)))) + (-12 (-5 *2 (-1264 (-341 (-1340 'X 'EPS) (-1340 '-2481) (-699)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1175)) (-14 *4 (-1175)) (-14 *5 (-1175)))) ((*1 *1 *2) - (-12 (-5 *2 (-1264 (-341 (-3796 'EPS) (-3796 'YA 'YB) (-699)))) + (-12 (-5 *2 (-1264 (-341 (-1340 'EPS) (-1340 'YA 'YB) (-699)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1175)) (-14 *4 (-1175)) (-14 *5 (-1175)))) ((*1 *1 *2) - (-12 (-5 *2 (-341 (-3796) (-3796 'X) (-699))) (-5 *1 (-77 *3)) + (-12 (-5 *2 (-341 (-1340) (-1340 'X) (-699))) (-5 *1 (-77 *3)) (-14 *3 (-1175)))) ((*1 *1 *2) - (-12 (-5 *2 (-341 (-3796) (-3796 'X) (-699))) (-5 *1 (-78 *3)) + (-12 (-5 *2 (-341 (-1340) (-1340 'X) (-699))) (-5 *1 (-78 *3)) (-14 *3 (-1175)))) ((*1 *1 *2) - (-12 (-5 *2 (-1264 (-341 (-3796) (-3796 'XC) (-699)))) + (-12 (-5 *2 (-1264 (-341 (-1340) (-1340 'XC) (-699)))) (-5 *1 (-79 *3)) (-14 *3 (-1175)))) ((*1 *1 *2) - (-12 (-5 *2 (-1264 (-341 (-3796) (-3796 'X) (-699)))) + (-12 (-5 *2 (-1264 (-341 (-1340) (-1340 'X) (-699)))) (-5 *1 (-80 *3)) (-14 *3 (-1175)))) ((*1 *1 *2) - (-12 (-5 *2 (-1264 (-341 (-3796 'X '-2509) (-3796) (-699)))) + (-12 (-5 *2 (-1264 (-341 (-1340 'X '-2481) (-1340) (-699)))) (-5 *1 (-82 *3)) (-14 *3 (-1175)))) ((*1 *1 *2) - (-12 (-5 *2 (-689 (-341 (-3796 'X '-2509) (-3796) (-699)))) + (-12 (-5 *2 (-689 (-341 (-1340 'X '-2481) (-1340) (-699)))) (-5 *1 (-83 *3)) (-14 *3 (-1175)))) ((*1 *1 *2) - (-12 (-5 *2 (-689 (-341 (-3796 'X) (-3796) (-699)))) (-5 *1 (-84 *3)) + (-12 (-5 *2 (-689 (-341 (-1340 'X) (-1340) (-699)))) (-5 *1 (-84 *3)) (-14 *3 (-1175)))) ((*1 *1 *2) - (-12 (-5 *2 (-1264 (-341 (-3796 'X) (-3796) (-699)))) + (-12 (-5 *2 (-1264 (-341 (-1340 'X) (-1340) (-699)))) (-5 *1 (-85 *3)) (-14 *3 (-1175)))) ((*1 *1 *2) - (-12 (-5 *2 (-1264 (-341 (-3796 'X) (-3796 '-2509) (-699)))) + (-12 (-5 *2 (-1264 (-341 (-1340 'X) (-1340 '-2481) (-699)))) (-5 *1 (-86 *3)) (-14 *3 (-1175)))) ((*1 *1 *2) - (-12 (-5 *2 (-689 (-341 (-3796 'XL 'XR 'ELAM) (-3796) (-699)))) + (-12 (-5 *2 (-689 (-341 (-1340 'XL 'XR 'ELAM) (-1340) (-699)))) (-5 *1 (-87 *3)) (-14 *3 (-1175)))) ((*1 *1 *2) - (-12 (-5 *2 (-341 (-3796 'X) (-3796 '-2509) (-699))) (-5 *1 (-89 *3)) + (-12 (-5 *2 (-341 (-1340 'X) (-1340 '-2481) (-699))) (-5 *1 (-89 *3)) (-14 *3 (-1175)))) ((*1 *1 *2) (-12 (-5 *2 (-644 (-136 *3 *4 *5))) (-5 *1 (-136 *3 *4 *5)) @@ -3696,85 +6532,85 @@ ((*1 *1 *2) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-850)) (-4 *3 (-172)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1179)) (|:| -3261 (-644 (-331))))) + (-5 *2 (-2 (|:| |localSymbols| (-1179)) (|:| -3906 (-644 (-331))))) (-4 *1 (-385)))) ((*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-385)))) ((*1 *1 *2) (-12 (-5 *2 (-644 (-331))) (-4 *1 (-385)))) ((*1 *1 *2) (-12 (-5 *2 (-689 (-699))) (-4 *1 (-385)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1179)) (|:| -3261 (-644 (-331))))) + (-5 *2 (-2 (|:| |localSymbols| (-1179)) (|:| -3906 (-644 (-331))))) (-4 *1 (-386)))) ((*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-386)))) ((*1 *1 *2) (-12 (-5 *2 (-644 (-331))) (-4 *1 (-386)))) ((*1 *2 *3) (-12 (-5 *2 (-396)) (-5 *1 (-395 *3)) (-4 *3 (-1099)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1179)) (|:| -3261 (-644 (-331))))) + (-5 *2 (-2 (|:| |localSymbols| (-1179)) (|:| -3906 (-644 (-331))))) (-4 *1 (-398)))) ((*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-398)))) ((*1 *1 *2) (-12 (-5 *2 (-644 (-331))) (-4 *1 (-398)))) ((*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-169 (-381))))) (-5 *1 (-400 *3 *4 *5 *6)) - (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -2895 "void"))) + (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3907 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) ((*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-381)))) (-5 *1 (-400 *3 *4 *5 *6)) - (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -2895 "void"))) + (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3907 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) ((*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-566)))) (-5 *1 (-400 *3 *4 *5 *6)) - (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -2895 "void"))) + (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3907 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) ((*1 *1 *2) (-12 (-5 *2 (-317 (-169 (-381)))) (-5 *1 (-400 *3 *4 *5 *6)) - (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -2895 "void"))) + (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3907 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) ((*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-5 *1 (-400 *3 *4 *5 *6)) - (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -2895 "void"))) + (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3907 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) ((*1 *1 *2) (-12 (-5 *2 (-317 (-566))) (-5 *1 (-400 *3 *4 *5 *6)) - (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -2895 "void"))) + (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3907 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) ((*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-694)))) (-5 *1 (-400 *3 *4 *5 *6)) - (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -2895 "void"))) + (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3907 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) ((*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-699)))) (-5 *1 (-400 *3 *4 *5 *6)) - (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -2895 "void"))) + (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3907 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) ((*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-701)))) (-5 *1 (-400 *3 *4 *5 *6)) - (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -2895 "void"))) + (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3907 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) ((*1 *1 *2) (-12 (-5 *2 (-317 (-694))) (-5 *1 (-400 *3 *4 *5 *6)) - (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -2895 "void"))) + (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3907 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) ((*1 *1 *2) (-12 (-5 *2 (-317 (-699))) (-5 *1 (-400 *3 *4 *5 *6)) - (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -2895 "void"))) + (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3907 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) ((*1 *1 *2) (-12 (-5 *2 (-317 (-701))) (-5 *1 (-400 *3 *4 *5 *6)) - (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -2895 "void"))) + (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3907 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1179)) (|:| -3261 (-644 (-331))))) + (-5 *2 (-2 (|:| |localSymbols| (-1179)) (|:| -3906 (-644 (-331))))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) - (-14 *4 (-3 (|:| |fst| (-436)) (|:| -2895 "void"))) + (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3907 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) ((*1 *1 *2) (-12 (-5 *2 (-644 (-331))) (-5 *1 (-400 *3 *4 *5 *6)) - (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -2895 "void"))) + (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3907 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) ((*1 *1 *2) (-12 (-5 *2 (-331)) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) - (-14 *4 (-3 (|:| |fst| (-436)) (|:| -2895 "void"))) + (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3907 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) ((*1 *1 *2) (-12 (-5 *2 (-332 *4)) (-4 *4 (-13 (-850) (-21))) @@ -3801,14 +6637,14 @@ ((*1 *1 *2) (-12 (-5 *2 (-436)) (-5 *1 (-439)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1179)) (|:| -3261 (-644 (-331))))) + (-5 *2 (-2 (|:| |localSymbols| (-1179)) (|:| -3906 (-644 (-331))))) (-4 *1 (-442)))) ((*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-442)))) ((*1 *1 *2) (-12 (-5 *2 (-644 (-331))) (-4 *1 (-442)))) ((*1 *1 *2) (-12 (-5 *2 (-1264 (-699))) (-4 *1 (-442)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1179)) (|:| -3261 (-644 (-331))))) + (-5 *2 (-2 (|:| |localSymbols| (-1179)) (|:| -3906 (-644 (-331))))) (-4 *1 (-443)))) ((*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-443)))) ((*1 *1 *2) (-12 (-5 *2 (-644 (-331))) (-4 *1 (-443)))) @@ -3877,7 +6713,7 @@ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-644 (-2 (|:| -1364 *3) (|:| -3319 *4)))) + (-12 (-5 *2 (-644 (-2 (|:| -2397 *3) (|:| -4325 *4)))) (-4 *3 (-1049)) (-4 *4 (-726)) (-5 *1 (-735 *3 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-763)))) ((*1 *1 *2) @@ -3886,25 +6722,25 @@ (-3 (|:| |nia| (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) - (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) + (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) - (|:| -2446 (-644 (-1093 (-843 (-225))))) + (|:| -2821 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-5 *1 (-769)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-317 (-225))) - (|:| -2446 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) + (|:| -2821 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-769)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) - (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) + (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-769)))) ((*1 *2 *3) (-12 (-5 *2 (-774)) (-5 *1 (-773 *3)) (-4 *3 (-1214)))) @@ -3922,23 +6758,23 @@ (-5 *2 (-3 (|:| |noa| - (-2 (|:| |fn| (-317 (-225))) (|:| -1761 (-644 (-225))) + (-2 (|:| |fn| (-317 (-225))) (|:| -3289 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-317 (-225)))) - (|:| -1761 (-644 (-225))))))) + (|:| -3289 (-644 (-225))))))) (-5 *1 (-841)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1761 (-644 (-225))))) + (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3289 (-644 (-225))))) (-5 *1 (-841)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |fn| (-317 (-225))) (|:| -1761 (-644 (-225))) + (-2 (|:| |fn| (-317 (-225))) (|:| -3289 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (-5 *1 (-841)))) @@ -4039,3498 +6875,544 @@ ((*1 *1 *2) (-12 (-5 *2 (-664 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)) (-5 *1 (-1284 *3 *4))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-409 (-566))) (-5 *1 (-1024 *3)) - (-4 *3 (-13 (-848) (-365) (-1022))))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *2 (-13 (-848) (-365))) (-5 *1 (-1060 *2 *3)) - (-4 *3 (-1240 *2)))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1067 *2 *3)) (-4 *2 (-13 (-848) (-365))) - (-4 *3 (-1240 *2))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-225) (-225) (-225))) - (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) - (-5 *5 (-1093 (-225))) (-5 *6 (-644 (-264))) (-5 *2 (-1132 (-225))) - (-5 *1 (-697))))) -(((*1 *2 *1 *1 *3) - (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1099) (-34))) - (-5 *2 (-112)) (-5 *1 (-1139 *4 *5)) (-4 *4 (-13 (-1099) (-34)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) - (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) - (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-4 *1 (-351)) (-5 *3 (-566)) (-5 *2 (-1187 (-921) (-771)))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1175)) - (-4 *4 (-13 (-454) (-147) (-1038 (-566)) (-639 (-566)))) - (-5 *1 (-559 *4 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *4)))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1171 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-644 *1)) (-4 *1 (-308))))) -(((*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1267)))) - ((*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1267))))) -(((*1 *1) (-5 *1 (-186)))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 (-112) *7 (-644 *7))) (-4 *1 (-1207 *4 *5 *6 *7)) - (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) - (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-860)) (-5 *3 (-128)) (-5 *2 (-771))))) -(((*1 *2 *3) - (-12 (-5 *3 (-566)) (-4 *4 (-1240 (-409 *3))) (-5 *2 (-921)) - (-5 *1 (-913 *4 *5)) (-4 *5 (-1240 (-409 *4)))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-566)) (-4 *3 (-172)) (-4 *5 (-375 *3)) - (-4 *6 (-375 *3)) (-5 *1 (-688 *3 *5 *6 *2)) - (-4 *2 (-687 *3 *5 *6))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-365)) (-4 *3 (-1049)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3441 *1))) - (-4 *1 (-852 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-674 *3)) (-4 *3 (-1214)) (-5 *2 (-771))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) - (-4 *3 (-1064 *5 *6 *7)) - (-5 *2 (-644 (-2 (|:| |val| (-644 *3)) (|:| -3570 *4)))) - (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *1 *2) - (-12 (-5 *2 (-1264 *4)) (-4 *4 (-1214)) (-4 *1 (-238 *3 *4))))) -(((*1 *1) (-5 *1 (-470)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1157) (-774))) (-5 *1 (-114))))) -(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144))) - ((*1 *1 *1) (-4 *1 (-1143)))) -(((*1 *2 *1) (-12 (-4 *1 (-327 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-792)))) - ((*1 *2 *1) (-12 (-4 *1 (-708 *3)) (-4 *3 (-1049)) (-5 *2 (-771)))) - ((*1 *2 *1) (-12 (-4 *1 (-852 *3)) (-4 *3 (-1049)) (-5 *2 (-771)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-644 *6)) (-4 *1 (-949 *4 *5 *6)) (-4 *4 (-1049)) - (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 (-771))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-949 *4 *5 *3)) (-4 *4 (-1049)) (-4 *5 (-793)) - (-4 *3 (-850)) (-5 *2 (-771))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-644 *6)) (-5 *4 (-644 (-247 *5 *6))) (-4 *6 (-454)) - (-5 *2 (-247 *5 *6)) (-14 *5 (-644 (-1175))) (-5 *1 (-631 *5 *6))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) - (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-644 *1)) - (-4 *1 (-1070 *4 *5 *6 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-558)) - (-5 *2 (-1171 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1240 (-409 *2))) (-5 *2 (-566)) (-5 *1 (-913 *4 *3)) - (-4 *3 (-1240 (-409 *4)))))) -(((*1 *1) (-5 *1 (-439)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-493)) (-5 *4 (-954)) (-5 *2 (-691 (-535))) - (-5 *1 (-535)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-954)) (-4 *3 (-1099)) (-5 *2 (-691 *1)) - (-4 *1 (-767 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *2 (-317 *4)) - (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 (-169 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) - (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *3)))))) -(((*1 *2 *3 *4 *4 *2 *2 *2) - (-12 (-5 *2 (-566)) - (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-771)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-793)) (-4 *4 (-949 *5 *6 *7)) (-4 *5 (-454)) (-4 *7 (-850)) - (-5 *1 (-451 *5 *6 *7 *4))))) -(((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-469)))) - ((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-469)))) - ((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-927))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *4 (-225)) - (-5 *2 - (-2 (|:| |brans| (-644 (-644 (-943 *4)))) - (|:| |xValues| (-1093 *4)) (|:| |yValues| (-1093 *4)))) - (-5 *1 (-153)) (-5 *3 (-644 (-644 (-943 *4))))))) -(((*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-644 (-175))) (-5 *1 (-1084))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 (-644 *7) *7 (-1171 *7))) (-5 *5 (-1 (-420 *7) *7)) - (-4 *7 (-1240 *6)) (-4 *6 (-13 (-365) (-147) (-1038 (-409 (-566))))) - (-5 *2 (-644 (-2 (|:| |frac| (-409 *7)) (|:| -2470 *3)))) - (-5 *1 (-809 *6 *7 *3 *8)) (-4 *3 (-656 *7)) - (-4 *8 (-656 (-409 *7))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-420 *6) *6)) (-4 *6 (-1240 *5)) - (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) - (-5 *2 - (-644 (-2 (|:| |frac| (-409 *6)) (|:| -2470 (-654 *6 (-409 *6)))))) - (-5 *1 (-812 *5 *6)) (-5 *3 (-654 *6 (-409 *6)))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-689 *4)) (-5 *3 (-921)) (-4 *4 (-1049)) - (-5 *1 (-1028 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-644 (-689 *4))) (-5 *3 (-921)) (-4 *4 (-1049)) - (-5 *1 (-1028 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-157)))) - ((*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-874)))) - ((*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) - (-5 *2 (-644 *4)) (-5 *1 (-1127 *3 *4)) (-4 *3 (-1240 *4)))) - ((*1 *2 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) - (-5 *2 (-644 *3)) (-5 *1 (-1127 *4 *3)) (-4 *4 (-1240 *3))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) - (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) - (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-78 FUNCTN)))) - (-5 *2 (-1035)) (-5 *1 (-748))))) -(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *2 (-317 *4)) - (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 (-169 *4)))))) - ((*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) - ((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) - (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *3)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) - (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) - (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *4 (-1218)) (-4 *5 (-1240 *4)) (-4 *6 (-1240 (-409 *5))) - (-5 *2 (-112)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) - (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-850)) (-5 *1 (-126 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-558)) (-4 *4 (-992 *3)) (-5 *1 (-142 *3 *4 *2)) - (-4 *2 (-375 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-558)) (-4 *5 (-992 *4)) (-4 *2 (-375 *4)) - (-5 *1 (-505 *4 *5 *2 *3)) (-4 *3 (-375 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-689 *5)) (-4 *5 (-992 *4)) (-4 *4 (-558)) - (-5 *2 (-689 *4)) (-5 *1 (-693 *4 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-558)) (-4 *4 (-992 *3)) (-5 *1 (-1233 *3 *4 *2)) - (-4 *2 (-1240 *4))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) - (-4 *4 (-850))))) +(((*1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1184))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-689 *3)) (-4 *3 (-308)) (-5 *1 (-700 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) - ((*1 *1 *1 *1) (-5 *1 (-862)))) -(((*1 *2 *1 *3 *3) - (-12 (|has| *1 (-6 -4415)) (-4 *1 (-604 *3 *4)) (-4 *3 (-1099)) - (-4 *4 (-1214)) (-5 *2 (-1269))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1122 *3 *4 *2 *5)) (-4 *4 (-1049)) (-4 *5 (-238 *3 *4)) - (-4 *2 (-238 *3 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-927))))) -(((*1 *1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) - (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-869 *3)) (-5 *2 (-566)))) - ((*1 *1 *1) (-4 *1 (-1002))) - ((*1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-1012)))) - ((*1 *1 *2) (-12 (-5 *2 (-409 (-566))) (-4 *1 (-1012)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1012)) (-5 *2 (-921)))) - ((*1 *1 *1) (-4 *1 (-1012)))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-558)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2738 *4))) - (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-689 (-566))) (-5 *3 (-644 (-566))) (-5 *1 (-1109))))) -(((*1 *2 *3) - (-12 (-14 *4 (-644 (-1175))) (-4 *5 (-454)) - (-5 *2 - (-2 (|:| |glbase| (-644 (-247 *4 *5))) (|:| |glval| (-644 (-566))))) - (-5 *1 (-631 *4 *5)) (-5 *3 (-644 (-247 *4 *5)))))) -(((*1 *1 *1) (-4 *1 (-143))) - ((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-158 *3 *2)) (-4 *2 (-432 *3)))) - ((*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-547))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-771)) (-5 *1 (-856 *2)) (-4 *2 (-38 (-409 (-566)))) - (-4 *2 (-172))))) -(((*1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-241))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-365)) (-5 *1 (-659 *4 *2)) - (-4 *2 (-656 *4))))) -(((*1 *1) - (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-566)) (-14 *3 (-771)) - (-4 *4 (-172))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1035)) (-5 *1 (-306)))) - ((*1 *2 *3) - (-12 (-5 *3 (-644 (-1035))) (-5 *2 (-1035)) (-5 *1 (-306)))) - ((*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-651 *3)) (-4 *3 (-1214)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1214)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1214)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1214)))) - ((*1 *1 *1 *1) (-5 *1 (-1062))) - ((*1 *2 *3) - (-12 (-5 *3 (-1155 (-1155 *4))) (-5 *2 (-1155 *4)) (-5 *1 (-1152 *4)) - (-4 *4 (-1214)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214))))) -(((*1 *1) (-5 *1 (-1178)))) + (-12 (-5 *1 (-679 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-644 (-48))) (-5 *2 (-420 *3)) (-5 *1 (-39 *3)) - (-4 *3 (-1240 (-48))))) - ((*1 *2 *3) - (-12 (-5 *2 (-420 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1240 (-48))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-644 (-48))) (-4 *5 (-850)) (-4 *6 (-793)) - (-5 *2 (-420 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-949 (-48) *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-644 (-48))) (-4 *5 (-850)) (-4 *6 (-793)) - (-4 *7 (-949 (-48) *6 *5)) (-5 *2 (-420 (-1171 *7))) - (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1171 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-308)) (-5 *2 (-420 *3)) (-5 *1 (-167 *4 *3)) - (-4 *3 (-1240 (-169 *4))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *4 (-13 (-365) (-848))) (-5 *2 (-420 *3)) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1240 (-169 *4))))) - ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-365) (-848))) (-5 *2 (-420 *3)) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1240 (-169 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-365) (-848))) (-5 *2 (-420 *3)) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1240 (-169 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-351)) (-5 *2 (-420 *3)) (-5 *1 (-216 *4 *3)) - (-4 *3 (-1240 *4)))) - ((*1 *2 *3) - (-12 (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-771)) (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) - (-4 *3 (-1240 (-566))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-644 (-771))) (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) - (-4 *3 (-1240 (-566))))) + (-12 (-5 *3 (-409 (-952 (-169 (-566))))) (-5 *2 (-644 (-169 *4))) + (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-848))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-644 (-771))) (-5 *5 (-771)) (-5 *2 (-420 *3)) - (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-771)) (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) - (-4 *3 (-1240 (-566))))) - ((*1 *2 *3) - (-12 (-5 *2 (-420 (-169 (-566)))) (-5 *1 (-448)) - (-5 *3 (-169 (-566))))) - ((*1 *2 *3) - (-12 - (-4 *4 - (-13 (-850) - (-10 -8 (-15 -1348 ((-1175) $)) - (-15 -1385 ((-3 $ "failed") (-1175)))))) - (-4 *5 (-793)) (-4 *7 (-558)) (-5 *2 (-420 *3)) - (-5 *1 (-458 *4 *5 *6 *7 *3)) (-4 *6 (-558)) - (-4 *3 (-949 *7 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-308)) (-5 *2 (-420 (-1171 *4))) (-5 *1 (-460 *4)) - (-5 *3 (-1171 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-420 *6) *6)) (-4 *6 (-1240 *5)) (-4 *5 (-365)) - (-4 *7 (-13 (-365) (-147) (-724 *5 *6))) (-5 *2 (-420 *3)) - (-5 *1 (-496 *5 *6 *7 *3)) (-4 *3 (-1240 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-420 (-1171 *7)) (-1171 *7))) - (-4 *7 (-13 (-308) (-147))) (-4 *5 (-850)) (-4 *6 (-793)) - (-5 *2 (-420 *3)) (-5 *1 (-542 *5 *6 *7 *3)) - (-4 *3 (-949 *7 *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-420 (-1171 *7)) (-1171 *7))) - (-4 *7 (-13 (-308) (-147))) (-4 *5 (-850)) (-4 *6 (-793)) - (-4 *8 (-949 *7 *6 *5)) (-5 *2 (-420 (-1171 *8))) - (-5 *1 (-542 *5 *6 *7 *8)) (-5 *3 (-1171 *8)))) - ((*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-560 *3)) (-4 *3 (-547)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-644 *5) *6)) - (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) - (-4 *6 (-1240 *5)) (-5 *2 (-644 (-653 (-409 *6)))) - (-5 *1 (-657 *5 *6)) (-5 *3 (-653 (-409 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) - (-4 *5 (-1240 *4)) (-5 *2 (-644 (-653 (-409 *5)))) - (-5 *1 (-657 *4 *5)) (-5 *3 (-653 (-409 *5))))) - ((*1 *2 *3) - (-12 (-5 *3 (-819 *4)) (-4 *4 (-850)) (-5 *2 (-644 (-672 *4))) - (-5 *1 (-672 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-566)) (-5 *2 (-644 *3)) (-5 *1 (-696 *3)) - (-4 *3 (-1240 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-850)) (-4 *5 (-793)) (-4 *6 (-351)) (-5 *2 (-420 *3)) - (-5 *1 (-698 *4 *5 *6 *3)) (-4 *3 (-949 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-850)) (-4 *5 (-793)) (-4 *6 (-351)) - (-4 *7 (-949 *6 *5 *4)) (-5 *2 (-420 (-1171 *7))) - (-5 *1 (-698 *4 *5 *6 *7)) (-5 *3 (-1171 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-793)) - (-4 *5 - (-13 (-850) - (-10 -8 (-15 -1348 ((-1175) $)) - (-15 -1385 ((-3 $ "failed") (-1175)))))) - (-4 *6 (-308)) (-5 *2 (-420 *3)) (-5 *1 (-730 *4 *5 *6 *3)) - (-4 *3 (-949 (-952 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-793)) - (-4 *5 (-13 (-850) (-10 -8 (-15 -1348 ((-1175) $))))) (-4 *6 (-558)) - (-5 *2 (-420 *3)) (-5 *1 (-732 *4 *5 *6 *3)) - (-4 *3 (-949 (-409 (-952 *6)) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-13 (-308) (-147))) - (-5 *2 (-420 *3)) (-5 *1 (-733 *4 *5 *6 *3)) - (-4 *3 (-949 (-409 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-850)) (-4 *5 (-793)) (-4 *6 (-13 (-308) (-147))) - (-5 *2 (-420 *3)) (-5 *1 (-741 *4 *5 *6 *3)) - (-4 *3 (-949 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-850)) (-4 *5 (-793)) (-4 *6 (-13 (-308) (-147))) - (-4 *7 (-949 *6 *5 *4)) (-5 *2 (-420 (-1171 *7))) - (-5 *1 (-741 *4 *5 *6 *7)) (-5 *3 (-1171 *7)))) - ((*1 *2 *3) - (-12 (-5 *2 (-420 *3)) (-5 *1 (-1007 *3)) - (-4 *3 (-1240 (-409 (-566)))))) - ((*1 *2 *3) - (-12 (-5 *2 (-420 *3)) (-5 *1 (-1041 *3)) - (-4 *3 (-1240 (-409 (-952 (-566))))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1240 (-409 (-566)))) - (-4 *5 (-13 (-365) (-147) (-724 (-409 (-566)) *4))) - (-5 *2 (-420 *3)) (-5 *1 (-1078 *4 *5 *3)) (-4 *3 (-1240 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1240 (-409 (-952 (-566))))) - (-4 *5 (-13 (-365) (-147) (-724 (-409 (-952 (-566))) *4))) - (-5 *2 (-420 *3)) (-5 *1 (-1080 *4 *5 *3)) (-4 *3 (-1240 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-454)) - (-4 *7 (-949 *6 *4 *5)) (-5 *2 (-420 (-1171 (-409 *7)))) - (-5 *1 (-1170 *4 *5 *6 *7)) (-5 *3 (-1171 (-409 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-420 *1)) (-4 *1 (-1218)))) - ((*1 *2 *3) - (-12 (-5 *2 (-420 *3)) (-5 *1 (-1229 *3)) (-4 *3 (-1240 (-566)))))) -(((*1 *2 *2) (-12 (-5 *1 (-961 *2)) (-4 *2 (-547))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-644 (-1171 *5))) (-5 *3 (-1171 *5)) - (-4 *5 (-166 *4)) (-4 *4 (-547)) (-5 *1 (-149 *4 *5)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-644 *3)) (-4 *3 (-1240 *5)) - (-4 *5 (-1240 *4)) (-4 *4 (-351)) (-5 *1 (-360 *4 *5 *3)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-644 (-1171 (-566)))) (-5 *3 (-1171 (-566))) - (-5 *1 (-574)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-644 (-1171 *1))) (-5 *3 (-1171 *1)) - (-4 *1 (-909))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-892 *4)) (-4 *4 (-1099)) (-5 *1 (-889 *4 *3)) - (-4 *3 (-1099))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-1111)) (-4 *3 (-1099)) (-5 *2 (-644 *1)) - (-4 *1 (-432 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-644 (-892 *3))) (-5 *1 (-892 *3)) - (-4 *3 (-1099)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) - (-5 *2 (-644 *1)) (-4 *1 (-949 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1049)) - (-4 *7 (-949 *6 *4 *5)) (-5 *2 (-644 *3)) - (-5 *1 (-950 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-365) - (-10 -8 (-15 -3783 ($ *7)) (-15 -4326 (*7 $)) - (-15 -4339 (*7 $)))))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-644 - (-2 (|:| -4313 (-771)) - (|:| |eqns| - (-644 - (-2 (|:| |det| *7) (|:| |rows| (-644 (-566))) - (|:| |cols| (-644 (-566)))))) - (|:| |fgb| (-644 *7))))) - (-4 *7 (-949 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) - (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-771)) - (-5 *1 (-924 *4 *5 *6 *7))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-363 *3)) (-4 *3 (-1099)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-566)) (-5 *2 (-771)) (-5 *1 (-388 *4)) (-4 *4 (-1099)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-566)) (-4 *2 (-23)) (-5 *1 (-649 *4 *2 *5)) - (-4 *4 (-1099)) (-14 *5 *2))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-566)) (-5 *2 (-771)) (-5 *1 (-819 *4)) (-4 *4 (-850))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1240 *5)) (-4 *5 (-365)) - (-5 *2 (-2 (|:| -2346 (-409 *6)) (|:| |coeff| (-409 *6)))) - (-5 *1 (-576 *5 *6)) (-5 *3 (-409 *6))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1171 *1)) (-5 *3 (-1175)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1171 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-952 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1175)) (-4 *1 (-29 *3)) (-4 *3 (-558)))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-558))))) -(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266)))) - ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) - (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-988 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-644 *3)) (-4 *3 (-1070 *5 *6 *7 *8)) (-4 *5 (-454)) - (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-1064 *5 *6 *7)) - (-5 *2 (-112)) (-5 *1 (-988 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) - (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1106 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-644 *3)) (-4 *3 (-1070 *5 *6 *7 *8)) (-4 *5 (-454)) - (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-1064 *5 *6 *7)) - (-5 *2 (-112)) (-5 *1 (-1106 *5 *6 *7 *8 *3))))) -(((*1 *2) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) - (-4 *5 (-1240 (-409 *4))) (-5 *2 (-689 (-409 *4)))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) - (-4 *9 (-1064 *6 *7 *8)) (-4 *6 (-558)) (-4 *7 (-793)) - (-4 *8 (-850)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1825 (-644 *9)))) - (-5 *3 (-644 *9)) (-4 *1 (-1207 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1064 *5 *6 *7)) - (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -1825 (-644 *8)))) - (-5 *3 (-644 *8)) (-4 *1 (-1207 *5 *6 *7 *8))))) + (-12 (-5 *3 (-644 (-409 (-952 (-169 (-566)))))) + (-5 *4 (-644 (-1175))) (-5 *2 (-644 (-644 (-169 *5)))) + (-5 *1 (-380 *5)) (-4 *5 (-13 (-365) (-848)))))) (((*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-766 *2 *3)) (-4 *2 (-708 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5)) (-4 *5 (-1099)) (-5 *2 (-1 *5 *4)) - (-5 *1 (-683 *4 *5)) (-4 *4 (-1099)))) - ((*1 *2 *2) - (-12 (-4 *3 (-1099)) (-5 *1 (-929 *3 *2)) (-4 *2 (-432 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1175)) (-5 *2 (-317 (-566))) (-5 *1 (-930)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1281 *3 *2)) (-4 *3 (-850)) (-4 *2 (-1049)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1049)) (-5 *1 (-1287 *2 *3)) (-4 *3 (-846))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-644 (-952 *4))) (-5 *3 (-644 (-1175))) (-4 *4 (-454)) - (-5 *1 (-918 *4))))) + (-12 (-5 *3 (-1175)) (-4 *4 (-454)) (-4 *4 (-1099)) + (-5 *1 (-575 *4 *2)) (-4 *2 (-285)) (-4 *2 (-432 *4))))) (((*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-892 *4)) (-4 *4 (-1099)) (-5 *1 (-889 *4 *3)) (-4 *3 (-1099))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1214)) (-5 *2 (-644 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-4 *1 (-1097 *3)))) - ((*1 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) - (-5 *1 (-755))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-644 *2)) (-4 *2 (-547)) (-5 *1 (-159 *2))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-644 (-1175))) (-5 *3 (-52)) (-5 *1 (-892 *4)) - (-4 *4 (-1099))))) -(((*1 *2 *1) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-396)))) - ((*1 *2 *1) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1194))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1155 (-409 *3))) (-5 *1 (-174 *3)) (-4 *3 (-308))))) -(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) - (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) - (-5 *2 (-2 (|:| -1651 (-644 *6)) (|:| -3501 (-644 *6))))))) -(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-519)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1099) (-34))) (-5 *1 (-1139 *3 *2)) - (-4 *3 (-13 (-1099) (-34))))) - ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1275))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) - (-4 *3 (-1064 *5 *6 *7)) - (-5 *2 (-644 (-2 (|:| |val| (-644 *3)) (|:| -3570 *4)))) - (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-771)) (-4 *5 (-365)) (-5 *2 (-174 *6)) - (-5 *1 (-867 *5 *4 *6)) (-4 *4 (-1255 *5)) (-4 *6 (-1240 *5))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *4 (-566)) (-5 *6 (-1 (-1269) (-1264 *5) (-1264 *5) (-381))) - (-5 *3 (-1264 (-381))) (-5 *5 (-381)) (-5 *2 (-1269)) - (-5 *1 (-788))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225)) - (-5 *2 (-1035)) (-5 *1 (-752))))) -(((*1 *2) - (-12 (-4 *4 (-1218)) (-4 *5 (-1240 *4)) (-4 *6 (-1240 (-409 *5))) - (-5 *2 (-771)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) - (-4 *5 (-1240 (-409 *4))) (-5 *2 (-771))))) -(((*1 *1 *1) (-4 *1 (-629))) - ((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-630 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1002) (-1199)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-771)) (-4 *1 (-376 *3 *4)) (-4 *3 (-850)) - (-4 *4 (-172)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-771)) (-4 *1 (-1285 *3 *4)) (-4 *3 (-850)) - (-4 *4 (-1049))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-612 *1)) (-4 *1 (-432 *4)) (-4 *4 (-1099)) - (-4 *4 (-558)) (-5 *2 (-409 (-1171 *1))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-612 *3)) (-4 *3 (-13 (-432 *6) (-27) (-1199))) - (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) - (-5 *2 (-1171 (-409 (-1171 *3)))) (-5 *1 (-562 *6 *3 *7)) - (-5 *5 (-1171 *3)) (-4 *7 (-1099)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1260 *5)) (-14 *5 (-1175)) (-4 *6 (-1049)) - (-5 *2 (-1237 *5 (-952 *6))) (-5 *1 (-947 *5 *6)) (-5 *3 (-952 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-949 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) - (-4 *5 (-850)) (-5 *2 (-1171 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-850)) (-5 *2 (-1171 *1)) - (-4 *1 (-949 *4 *5 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-793)) (-4 *4 (-850)) (-4 *6 (-1049)) - (-4 *7 (-949 *6 *5 *4)) (-5 *2 (-409 (-1171 *3))) - (-5 *1 (-950 *5 *4 *6 *7 *3)) - (-4 *3 - (-13 (-365) - (-10 -8 (-15 -3783 ($ *7)) (-15 -4326 (*7 $)) (-15 -4339 (*7 $))))))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1171 *3)) - (-4 *3 - (-13 (-365) - (-10 -8 (-15 -3783 ($ *7)) (-15 -4326 (*7 $)) (-15 -4339 (*7 $))))) - (-4 *7 (-949 *6 *5 *4)) (-4 *5 (-793)) (-4 *4 (-850)) - (-4 *6 (-1049)) (-5 *1 (-950 *5 *4 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1175)) (-4 *5 (-558)) - (-5 *2 (-409 (-1171 (-409 (-952 *5))))) (-5 *1 (-1043 *5)) - (-5 *3 (-409 (-952 *5)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) - (-4 *7 (-1064 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-644 *7)) (|:| |badPols| (-644 *7)))) - (-5 *1 (-977 *4 *5 *6 *7)) (-5 *3 (-644 *7))))) -(((*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-921)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1264 *4)) (-4 *4 (-351)) (-5 *2 (-921)) - (-5 *1 (-530 *4))))) -(((*1 *1 *1 *1) (-4 *1 (-547)))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-822))))) -(((*1 *2) - (-12 (-4 *3 (-558)) (-5 *2 (-644 (-689 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-419 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1099)) (-4 *5 (-1099)) - (-5 *2 (-1 *5 *4)) (-5 *1 (-683 *4 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-1171 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3))))) -(((*1 *1 *1) (-12 (-5 *1 (-1200 *2)) (-4 *2 (-1099))))) -(((*1 *1 *1) (-4 *1 (-547)))) -(((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566)))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1240 *2)) (-4 *2 (-1049))))) -(((*1 *1) (-5 *1 (-141)))) -(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-644 *2)) (-4 *2 (-949 *4 *5 *6)) (-4 *4 (-454)) - (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-451 *4 *5 *6 *2))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-921)) (-5 *4 (-874)) (-5 *2 (-1269)) (-5 *1 (-1265)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-921)) (-5 *4 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1265)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *3 (-644 (-264))) - (-5 *1 (-262)))) - ((*1 *1 *2) (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *1 (-264)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *1 (-470)))) - ((*1 *2 *1) (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *1 (-470))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-470)) (-5 *3 (-644 (-264))) (-5 *1 (-1265)))) - ((*1 *1 *1) (-5 *1 (-1265)))) -(((*1 *2) - (-12 (-4 *3 (-558)) (-5 *2 (-644 (-689 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-419 *3))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) - (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) - (-5 *2 (-1035)) (-5 *1 (-751))))) -(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-850)) (-5 *1 (-245 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-862))))) -(((*1 *2 *3) - (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-589 *4)) - (-4 *4 (-351))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1237 *5 *4)) (-4 *4 (-820)) (-14 *5 (-1175)) - (-5 *2 (-566)) (-5 *1 (-1113 *4 *5))))) -(((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *3 (-558)) (-5 *1 (-32 *3 *4)) - (-4 *4 (-432 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-55)) (-5 *1 (-114)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-771)) (-5 *1 (-114)))) - ((*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-114)))) - ((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *3 (-558)) (-5 *1 (-158 *3 *4)) - (-4 *4 (-432 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-114)) (-5 *1 (-163)))) - ((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *3 (-558)) (-5 *1 (-277 *3 *4)) - (-4 *4 (-13 (-432 *3) (-1002))))) - ((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-302 *3)) (-4 *3 (-303)))) - ((*1 *2 *2) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) - ((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *4 (-1099)) (-5 *1 (-431 *3 *4)) - (-4 *3 (-432 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *3 (-558)) (-5 *1 (-433 *3 *4)) - (-4 *4 (-432 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-612 *3)) (-4 *3 (-1099)))) - ((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *3 (-558)) (-5 *1 (-630 *3 *4)) - (-4 *4 (-13 (-432 *3) (-1002) (-1199))))) - ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1019))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) -(((*1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1214)) (-4 *2 (-1099)))) - ((*1 *1 *1) (-12 (-4 *1 (-695 *2)) (-4 *2 (-1099))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) - (-4 *3 (-1064 *5 *6 *7)) - (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -3570 *4)))) - (-5 *1 (-776 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *4 (-874)) - (-5 *5 (-921)) (-5 *6 (-644 (-264))) (-5 *2 (-1265)) - (-5 *1 (-1268)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *4 (-644 (-264))) - (-5 *2 (-1265)) (-5 *1 (-1268))))) -(((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| -1684 (-114)) (|:| |arg| (-644 (-892 *3))))) - (-5 *1 (-892 *3)) (-4 *3 (-1099)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-114)) (-5 *2 (-644 (-892 *4))) - (-5 *1 (-892 *4)) (-4 *4 (-1099))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1287 *3 *4)) (-4 *3 (-1049)) - (-4 *4 (-846))))) -(((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1264 *1)) (-4 *1 (-372 *2 *4)) (-4 *4 (-1240 *2)) - (-4 *2 (-172)))) - ((*1 *2) - (-12 (-4 *4 (-1240 *2)) (-4 *2 (-172)) (-5 *1 (-410 *3 *2 *4)) - (-4 *3 (-411 *2 *4)))) - ((*1 *2) (-12 (-4 *1 (-411 *2 *3)) (-4 *3 (-1240 *2)) (-4 *2 (-172)))) - ((*1 *2) - (-12 (-4 *3 (-1240 *2)) (-5 *2 (-566)) (-5 *1 (-768 *3 *4)) - (-4 *4 (-411 *2 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-949 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) - (-4 *2 (-850)) (-4 *3 (-172)))) - ((*1 *2 *3) - (-12 (-4 *2 (-558)) (-5 *1 (-969 *2 *3)) (-4 *3 (-1240 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1240 *2)) (-4 *2 (-1049)) (-4 *2 (-172))))) -(((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1002))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) - ((*1 *1 *1) (-4 *1 (-285))) - ((*1 *2 *3) - (-12 (-5 *3 (-420 *4)) (-4 *4 (-558)) - (-5 *2 (-644 (-2 (|:| -1364 (-771)) (|:| |logand| *4)))) - (-5 *1 (-321 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) - (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) - ((*1 *2 *1) - (-12 (-5 *2 (-664 *3 *4)) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-850)) - (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-14 *5 (-921)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) - (-5 *1 (-1160 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) - (-5 *1 (-1161 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-771)) (-4 *4 (-13 (-1049) (-717 (-409 (-566))))) - (-4 *5 (-850)) (-5 *1 (-1280 *4 *5 *2)) (-4 *2 (-1285 *5 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-771)) (-5 *1 (-1284 *3 *4)) - (-4 *4 (-717 (-409 (-566)))) (-4 *3 (-850)) (-4 *4 (-172))))) -(((*1 *2 *3) - (-12 (-4 *4 (-558)) (-5 *2 (-771)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-419 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) -(((*1 *2 *1) (-12 (-5 *2 (-644 (-612 *1))) (-4 *1 (-303))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-308)) (-5 *1 (-457 *3 *2)) (-4 *2 (-1240 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-308)) (-5 *1 (-462 *3 *2)) (-4 *2 (-1240 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-308)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-771))) - (-5 *1 (-541 *3 *2 *4 *5)) (-4 *2 (-1240 *3))))) -(((*1 *2) - (-12 (-4 *3 (-558)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-419 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) -(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) - (-12 (-5 *4 (-689 (-225))) (-5 *5 (-689 (-566))) (-5 *3 (-566)) - (-5 *2 (-1035)) (-5 *1 (-756))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 - (-4 *4 (-13 (-147) (-27) (-1038 (-566)) (-1038 (-409 (-566))))) - (-4 *5 (-1240 *4)) (-5 *2 (-1171 (-409 *5))) (-5 *1 (-615 *4 *5)) - (-5 *3 (-409 *5)))) - ((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 (-420 *6) *6)) (-4 *6 (-1240 *5)) - (-4 *5 (-13 (-147) (-27) (-1038 (-566)) (-1038 (-409 (-566))))) - (-5 *2 (-1171 (-409 *6))) (-5 *1 (-615 *5 *6)) (-5 *3 (-409 *6))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1256 *2 *3 *4)) (-4 *2 (-1049)) (-14 *3 (-1175)) - (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563))))) -(((*1 *2 *1) (-12 (-5 *2 (-824)) (-5 *1 (-825))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-792)))) - ((*1 *2 *1) - (-12 (-5 *2 (-771)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1049)) - (-14 *4 (-644 (-1175))))) - ((*1 *2 *1) - (-12 (-5 *2 (-566)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1049) (-850))) - (-14 *4 (-644 (-1175))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1049)) (-4 *3 (-850)) - (-4 *5 (-267 *3)) (-4 *6 (-793)) (-5 *2 (-771)))) - ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-276)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1171 *8)) (-5 *4 (-644 *6)) (-4 *6 (-850)) - (-4 *8 (-949 *7 *5 *6)) (-4 *5 (-793)) (-4 *7 (-1049)) - (-5 *2 (-644 (-771))) (-5 *1 (-322 *5 *6 *7 *8)))) - ((*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-921)))) - ((*1 *2 *1) - (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)) - (-5 *2 (-771)))) - ((*1 *2 *1) (-12 (-4 *1 (-472 *3 *2)) (-4 *3 (-172)) (-4 *2 (-23)))) - ((*1 *2 *1) - (-12 (-4 *3 (-558)) (-5 *2 (-566)) (-5 *1 (-623 *3 *4)) - (-4 *4 (-1240 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-708 *3)) (-4 *3 (-1049)) (-5 *2 (-771)))) - ((*1 *2 *1) (-12 (-4 *1 (-852 *3)) (-4 *3 (-1049)) (-5 *2 (-771)))) - ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) - ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-905 *3)) (-4 *3 (-1099)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-644 *6)) (-4 *1 (-949 *4 *5 *6)) (-4 *4 (-1049)) - (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 (-771))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-949 *4 *5 *3)) (-4 *4 (-1049)) (-4 *5 (-793)) - (-4 *3 (-850)) (-5 *2 (-771)))) - ((*1 *2 *1) - (-12 (-4 *1 (-973 *3 *2 *4)) (-4 *3 (-1049)) (-4 *4 (-850)) - (-4 *2 (-792)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) - (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-771)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1226 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1255 *3)) - (-5 *2 (-566)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1247 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1224 *3)) - (-5 *2 (-409 (-566))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1283 *3)) (-4 *3 (-365)) (-5 *2 (-833 (-921))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1285 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) - (-5 *2 (-771))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-792))))) +(((*1 *2 *3) (-12 (-5 *3 (-822)) (-5 *2 (-52)) (-5 *1 (-829))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-1264 *5)) (-5 *3 (-771)) (-5 *4 (-1119)) (-4 *5 (-351)) + (-5 *1 (-530 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558)) (-4 *2 (-547)))) + ((*1 *1 *1) (-4 *1 (-1059)))) +(((*1 *2 *3 *4 *2 *5) + (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 (-892 *6))) + (-5 *5 (-1 (-889 *6 *8) *8 (-892 *6) (-889 *6 *8))) (-4 *6 (-1099)) + (-4 *8 (-13 (-1049) (-614 (-892 *6)) (-1038 *7))) + (-5 *2 (-889 *6 *8)) (-4 *7 (-1049)) (-5 *1 (-941 *6 *7 *8))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-856 *2)) (-4 *2 (-172))))) (((*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-644 (-892 *3))) (-5 *1 (-892 *3)) - (-4 *3 (-1099))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1264 *4)) (-5 *3 (-566)) (-4 *4 (-351)) - (-5 *1 (-530 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1269)) (-5 *1 (-1178)))) - ((*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-1178))))) -(((*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) - ((*1 *2 *3) - (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917))))) -(((*1 *2 *1) - (-12 (-5 *2 (-691 (-873 (-966 *3) (-966 *3)))) (-5 *1 (-966 *3)) - (-4 *3 (-1099))))) -(((*1 *2 *1 *3) - (-12 (-5 *2 (-409 (-566))) (-5 *1 (-117 *4)) (-14 *4 *3) - (-5 *3 (-566)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-869 *3)) (-5 *2 (-566)))) - ((*1 *2 *1 *3) - (-12 (-5 *2 (-409 (-566))) (-5 *1 (-871 *4)) (-14 *4 *3) - (-5 *3 (-566)))) - ((*1 *2 *1 *3) - (-12 (-14 *4 *3) (-5 *2 (-409 (-566))) (-5 *1 (-872 *4 *5)) - (-5 *3 (-566)) (-4 *5 (-869 *4)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1012)) (-5 *2 (-409 (-566))))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1067 *2 *3)) (-4 *2 (-13 (-848) (-365))) - (-4 *3 (-1240 *2)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1242 *2 *3)) (-4 *3 (-792)) - (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3783 (*2 (-1175)))) - (-4 *2 (-1049))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1109)) (-5 *3 (-566))))) -(((*1 *2 *3) - (-12 (-5 *2 (-169 (-381))) (-5 *1 (-785 *3)) (-4 *3 (-614 (-381))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-921)) (-5 *2 (-169 (-381))) (-5 *1 (-785 *3)) - (-4 *3 (-614 (-381))))) - ((*1 *2 *3) - (-12 (-5 *3 (-169 *4)) (-4 *4 (-172)) (-4 *4 (-614 (-381))) - (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-169 *5)) (-5 *4 (-921)) (-4 *5 (-172)) - (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-952 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-614 (-381))) - (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-952 (-169 *5))) (-5 *4 (-921)) (-4 *5 (-172)) - (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-952 *4)) (-4 *4 (-1049)) (-4 *4 (-614 (-381))) - (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-952 *5)) (-5 *4 (-921)) (-4 *5 (-1049)) - (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-558)) (-4 *4 (-614 (-381))) - (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-921)) (-4 *5 (-558)) - (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-409 (-952 (-169 *4)))) (-4 *4 (-558)) - (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-409 (-952 (-169 *5)))) (-5 *4 (-921)) (-4 *5 (-558)) - (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-317 *4)) (-4 *4 (-558)) (-4 *4 (-850)) - (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-317 *5)) (-5 *4 (-921)) (-4 *5 (-558)) (-4 *5 (-850)) - (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-317 (-169 *4))) (-4 *4 (-558)) (-4 *4 (-850)) - (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-317 (-169 *5))) (-5 *4 (-921)) (-4 *5 (-558)) - (-4 *5 (-850)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) - (-5 *1 (-785 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) - (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1207 *4 *5 *6 *3)) (-4 *4 (-558)) (-4 *5 (-793)) - (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *2) (-12 (-5 *2 (-317 (-225))) (-5 *1 (-268))))) -(((*1 *1 *1) (-5 *1 (-862))) ((*1 *1 *1 *1) (-5 *1 (-862))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1214)))) - ((*1 *1 *2) (-12 (-5 *1 (-1231 *2)) (-4 *2 (-1214))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1240 *2)) (-4 *2 (-1218)) (-5 *1 (-148 *2 *4 *3)) - (-4 *3 (-1240 (-409 *4)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-644 (-952 (-566)))) (-5 *4 (-644 (-1175))) - (-5 *2 (-644 (-644 (-381)))) (-5 *1 (-1023)) (-5 *5 (-381)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1046 *4 *5)) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) - (-14 *5 (-644 (-1175))) (-5 *2 (-644 (-644 (-1024 (-409 *4))))) - (-5 *1 (-1290 *4 *5 *6)) (-14 *6 (-644 (-1175))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-848) (-308) (-147) (-1022))) - (-5 *2 (-644 (-644 (-1024 (-409 *5))))) (-5 *1 (-1290 *5 *6 *7)) - (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-848) (-308) (-147) (-1022))) - (-5 *2 (-644 (-644 (-1024 (-409 *5))))) (-5 *1 (-1290 *5 *6 *7)) - (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-848) (-308) (-147) (-1022))) - (-5 *2 (-644 (-644 (-1024 (-409 *5))))) (-5 *1 (-1290 *5 *6 *7)) - (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) - ((*1 *2 *3) - (-12 (-5 *3 (-644 (-952 *4))) - (-4 *4 (-13 (-848) (-308) (-147) (-1022))) - (-5 *2 (-644 (-644 (-1024 (-409 *4))))) (-5 *1 (-1290 *4 *5 *6)) - (-14 *5 (-644 (-1175))) (-14 *6 (-644 (-1175)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-529)) (-5 *3 (-128)) (-5 *2 (-771))))) -(((*1 *2 *3) - (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-308)) - (-5 *2 (-644 (-771))) (-5 *1 (-778 *3 *4 *5 *6 *7)) - (-4 *3 (-1240 *6)) (-4 *7 (-949 *6 *4 *5))))) -(((*1 *1 *1) (-4 *1 (-629))) - ((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-630 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1002) (-1199)))))) -(((*1 *1) (-5 *1 (-823)))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-987 (-409 (-566)) (-864 *3) (-240 *4 (-771)) - (-247 *3 (-409 (-566))))) - (-14 *3 (-644 (-1175))) (-14 *4 (-771)) (-5 *1 (-986 *3 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) -(((*1 *1 *1) - (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) (((*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) -(((*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365)))) - ((*1 *2 *3) - (-12 (-5 *3 (-921)) (-5 *2 (-1264 *4)) (-5 *1 (-530 *4)) - (-4 *4 (-351))))) -(((*1 *1 *1) (-5 *1 (-1062)))) -(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-921)) (-5 *1 (-786))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1264 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) - (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1002)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) - (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-841)) (-5 *4 (-1062)) (-5 *2 (-1035)) (-5 *1 (-840)))) - ((*1 *2 *3) (-12 (-5 *3 (-841)) (-5 *2 (-1035)) (-5 *1 (-840)))) - ((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-644 (-381))) (-5 *5 (-644 (-843 (-381)))) - (-5 *6 (-644 (-317 (-381)))) (-5 *3 (-317 (-381))) (-5 *2 (-1035)) - (-5 *1 (-840)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-317 (-381))) (-5 *4 (-644 (-381))) - (-5 *5 (-644 (-843 (-381)))) (-5 *2 (-1035)) (-5 *1 (-840)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-317 (-381))) (-5 *4 (-644 (-381))) (-5 *2 (-1035)) - (-5 *1 (-840)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-644 (-317 (-381)))) (-5 *4 (-644 (-381))) - (-5 *2 (-1035)) (-5 *1 (-840))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-365) (-1038 (-409 *2)))) (-5 *2 (-566)) - (-5 *1 (-115 *4 *3)) (-4 *3 (-1240 *4))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1171 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-689 (-317 (-225)))) - (-5 *2 - (-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381)))) - (-5 *1 (-205))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) - (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 *4)) - (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-927))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-112)) (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) - (-4 *3 (-13 (-27) (-1199) (-432 *6) (-10 -8 (-15 -3783 ($ *7))))) - (-4 *7 (-848)) - (-4 *8 - (-13 (-1242 *3 *7) (-365) (-1199) - (-10 -8 (-15 -3561 ($ $)) (-15 -1941 ($ $))))) - (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157)))))) - (-5 *1 (-424 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1157)) (-4 *9 (-983 *8)) - (-14 *10 (-1175))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-644 *2)) (-4 *2 (-949 *4 *5 *6)) (-4 *4 (-365)) - (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) - (-5 *1 (-452 *4 *5 *6 *2)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-365)) - (-5 *2 - (-2 (|:| R (-689 *6)) (|:| A (-689 *6)) (|:| |Ainv| (-689 *6)))) - (-5 *1 (-978 *6)) (-5 *3 (-689 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-892 *4)) (-4 *4 (-1099)) (-5 *2 (-644 *5)) - (-5 *1 (-890 *4 *5)) (-4 *5 (-1214))))) -(((*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-701)))) - ((*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-701))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-112))))) -(((*1 *1) (-12 (-5 *1 (-644 *2)) (-4 *2 (-1214))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) + (-12 (-5 *4 (-566)) (-5 *5 (-689 (-225))) + (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-84 FCNF)))) + (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-225)) + (-5 *2 (-1035)) (-5 *1 (-749))))) (((*1 *2 *1) - (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) - (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1099) (-1038 *5))) - (-4 *5 (-886 *4)) (-4 *4 (-1099)) (-5 *2 (-1 (-112) *5)) - (-5 *1 (-931 *4 *5 *6))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-822))))) -(((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1002)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) - (-5 *2 (-644 *4)) (-5 *1 (-1127 *3 *4)) (-4 *3 (-1240 *4)))) - ((*1 *2 *3 *3 *3) - (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) - (-5 *2 (-644 *3)) (-5 *1 (-1127 *4 *3)) (-4 *4 (-1240 *3))))) -(((*1 *1) (-5 *1 (-144)))) -(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-926))))) -(((*1 *1) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1199)))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-566)) (-5 *1 (-381))))) -(((*1 *1 *1) (-5 *1 (-1062)))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4415)) (-4 *1 (-244 *2)) (-4 *2 (-1214))))) -(((*1 *2 *2) - (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1199)))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-771)) - (-4 *3 (-13 (-308) (-10 -8 (-15 -3184 ((-420 $) $))))) - (-4 *4 (-1240 *3)) (-5 *1 (-501 *3 *4 *5)) (-4 *5 (-411 *3 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) - (-5 *2 - (-3 (|:| |%expansion| (-314 *5 *3 *6 *7)) - (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157)))))) - (-5 *1 (-422 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1199) (-432 *5))) - (-14 *6 (-1175)) (-14 *7 *3)))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-308)) (-4 *6 (-375 *5)) (-4 *4 (-375 *5)) + (-12 (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2365 (-644 *4)))) - (-5 *1 (-1123 *5 *6 *4 *3)) (-4 *3 (-687 *5 *6 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-689 *1)) (-5 *4 (-1264 *1)) (-4 *1 (-639 *5)) - (-4 *5 (-1049)) - (-5 *2 (-2 (|:| -4227 (-689 *5)) (|:| |vec| (-1264 *5)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-689 *1)) (-4 *1 (-639 *4)) (-4 *4 (-1049)) - (-5 *2 (-689 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-4 *5 (-432 *4)) - (-5 *2 (-420 *3)) (-5 *1 (-437 *4 *5 *3)) (-4 *3 (-1240 *5))))) -(((*1 *2 *3) - (|partial| -12 (-4 *2 (-1099)) (-5 *1 (-1191 *3 *2)) (-4 *3 (-1099))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862))))) + (-644 + (-2 (|:| |scalar| (-409 (-566))) (|:| |coeff| (-1171 *3)) + (|:| |logand| (-1171 *3))))) + (-5 *1 (-587 *3)) (-4 *3 (-365))))) (((*1 *2 *3) - (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)) (-5 *3 (-566))))) -(((*1 *2 *1) (-12 (-5 *2 (-644 (-612 *1))) (-4 *1 (-303))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-117 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-566)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-871 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-871 *2)) (-14 *2 (-566)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-566)) (-14 *3 *2) (-5 *1 (-872 *3 *4)) - (-4 *4 (-869 *3)))) - ((*1 *1 *1) - (-12 (-14 *2 (-566)) (-5 *1 (-872 *2 *3)) (-4 *3 (-869 *2)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-566)) (-4 *1 (-1226 *3 *4)) (-4 *3 (-1049)) - (-4 *4 (-1255 *3)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1226 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-1255 *2))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) - (-4 *4 (-850))))) -(((*1 *1 *1) (-12 (-4 *1 (-674 *2)) (-4 *2 (-1214))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-566)) (-4 *2 (-432 *3)) (-5 *1 (-32 *3 *2)) - (-4 *3 (-1038 *4)) (-4 *3 (-558))))) + (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-359 *4)) + (-4 *4 (-351))))) (((*1 *1 *1 *1 *2) (-12 (-4 *1 (-1064 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850))))) -(((*1 *1 *1) - (-12 (-4 *2 (-147)) (-4 *2 (-308)) (-4 *2 (-454)) (-4 *3 (-850)) - (-4 *4 (-793)) (-5 *1 (-987 *2 *3 *4 *5)) (-4 *5 (-949 *2 *4 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-317 (-566))) (-5 *1 (-1118)))) - ((*1 *2 *2) - (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1199)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-914 *3)) (-4 *3 (-308))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1264 (-317 (-225)))) (-5 *2 (-1264 (-317 (-381)))) - (-5 *1 (-306))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-771)) (-4 *1 (-231 *4)) - (-4 *4 (-1049)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1049)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-771)))) - ((*1 *1 *1) (-4 *1 (-233))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-267 *3)) (-4 *3 (-850)))) - ((*1 *1 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-850)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) - (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-771)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-401 *3 *4)) - (-4 *4 (-1240 *3)))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-365) (-147))) (-5 *1 (-401 *2 *3)) - (-4 *3 (-1240 *2)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-476 *3 *4 *5)) - (-4 *3 (-1049)) (-14 *5 *3))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-365)) (-4 *2 (-900 *3)) (-5 *1 (-587 *2)) - (-5 *3 (-1175)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-587 *2)) (-4 *2 (-365)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-862)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-644 *4)) (-5 *3 (-644 (-771))) (-4 *1 (-900 *4)) - (-4 *4 (-1099)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-771)) (-4 *1 (-900 *2)) (-4 *2 (-1099)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-644 *3)) (-4 *1 (-900 *3)) (-4 *3 (-1099)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-900 *2)) (-4 *2 (-1099)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1166 *3 *4 *5)) - (-4 *3 (-1049)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1172 *3 *4 *5)) - (-4 *3 (-1049)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1173 *3 *4 *5)) - (-4 *3 (-1049)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1228 *3 *4 *5)) - (-4 *3 (-1049)) (-14 *5 *3))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1240 *3)) (-4 *3 (-1049)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1249 *3 *4 *5)) - (-4 *3 (-1049)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1256 *3 *4 *5)) - (-4 *3 (-1049)) (-14 *5 *3)))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1139 *3 *4)) (-4 *3 (-13 (-1099) (-34))) - (-4 *4 (-13 (-1099) (-34)))))) -(((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-218)))) - ((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1214)))) - ((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-676)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) - (-4 *4 (-850))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1155 *4)) (-5 *3 (-566)) (-4 *4 (-1049)) - (-5 *1 (-1159 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-566)) (-5 *1 (-1256 *3 *4 *5)) (-4 *3 (-1049)) - (-14 *4 (-1175)) (-14 *5 *3)))) -(((*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-112))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-771)) (-4 *4 (-558)) (-5 *1 (-969 *4 *2)) - (-4 *2 (-1240 *4))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (-566)) (-5 *2 (-112))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-508)) (-5 *2 (-691 (-109))) (-5 *1 (-175)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-508)) (-5 *2 (-691 (-109))) (-5 *1 (-1084))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) - (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-988 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) - (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1106 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7))))) -(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1157)) (-5 *1 (-192)))) - ((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1157)) (-5 *1 (-301)))) - ((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1157)) (-5 *1 (-306))))) -(((*1 *1 *2) - (-12 (-5 *2 (-644 *3)) (-4 *3 (-1214)) (-5 *1 (-1264 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-454)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) - (-5 *2 (-644 *3)) (-5 *1 (-977 *4 *5 *6 *3)) - (-4 *3 (-1064 *4 *5 *6))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-317 (-225))) (-5 *4 (-1175)) - (-5 *5 (-1093 (-843 (-225)))) (-5 *2 (-644 (-225))) (-5 *1 (-192)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-317 (-225))) (-5 *4 (-1175)) - (-5 *5 (-1093 (-843 (-225)))) (-5 *2 (-644 (-225))) (-5 *1 (-301))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)) (-5 *3 (-566))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1175)) (-5 *2 (-1179)) (-5 *1 (-1178))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1175)) (-4 *5 (-1218)) (-4 *6 (-1240 *5)) - (-4 *7 (-1240 (-409 *6))) (-5 *2 (-644 (-952 *5))) - (-5 *1 (-343 *4 *5 *6 *7)) (-4 *4 (-344 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1175)) (-4 *1 (-344 *4 *5 *6)) (-4 *4 (-1218)) - (-4 *5 (-1240 *4)) (-4 *6 (-1240 (-409 *5))) (-4 *4 (-365)) - (-5 *2 (-644 (-952 *4)))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) - (-4 *4 (-850)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1207 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793)) - (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1099)) (-5 *1 (-929 *3 *2)) (-4 *2 (-432 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1175)) (-5 *2 (-317 (-566))) (-5 *1 (-930))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1099)) - (-5 *2 (-2 (|:| -1364 (-566)) (|:| |var| (-612 *1)))) - (-4 *1 (-432 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1175)) (-4 *5 (-365)) (-5 *2 (-644 (-1208 *5))) - (-5 *1 (-1272 *5)) (-5 *4 (-1208 *5))))) -(((*1 *2 *2 *2) - (-12 - (-5 *2 - (-2 (|:| -2365 (-689 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-689 *3)))) - (-4 *3 (-13 (-308) (-10 -8 (-15 -3184 ((-420 $) $))))) - (-4 *4 (-1240 *3)) (-5 *1 (-501 *3 *4 *5)) (-4 *5 (-411 *3 *4))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1155 *4)) (-5 *3 (-566)) (-4 *4 (-1049)) - (-5 *1 (-1159 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-566)) (-5 *1 (-1256 *3 *4 *5)) (-4 *3 (-1049)) - (-14 *4 (-1175)) (-14 *5 *3)))) -(((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-644 (-865)))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-623 *4 *5)) - (-5 *3 - (-1 (-2 (|:| |ans| *4) (|:| -4392 *4) (|:| |sol?| (-112))) - (-566) *4)) - (-4 *4 (-365)) (-4 *5 (-1240 *4)) (-5 *1 (-576 *4 *5))))) -(((*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))) -(((*1 *2 *1) - (-12 (-5 *2 (-862)) (-5 *1 (-1155 *3)) (-4 *3 (-1099)) - (-4 *3 (-1214))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1157)) (-4 *1 (-366 *3 *4)) (-4 *3 (-1099)) - (-4 *4 (-1099))))) -(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) - (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *2 (-1035)) - (-5 *1 (-755))))) -(((*1 *2) (-12 (-5 *2 (-644 (-771))) (-5 *1 (-1267)))) - ((*1 *2 *2) (-12 (-5 *2 (-644 (-771))) (-5 *1 (-1267))))) -(((*1 *2) - (-12 (-5 *2 (-2 (|:| -2177 (-644 *3)) (|:| -1863 (-644 *3)))) - (-5 *1 (-1215 *3)) (-4 *3 (-1099))))) -(((*1 *1 *1) (-4 *1 (-1143)))) -(((*1 *1 *1 *1) (-4 *1 (-303))) ((*1 *1 *1) (-4 *1 (-303)))) +(((*1 *1 *1 *1) (-5 *1 (-862))) ((*1 *1 *1) (-5 *1 (-862))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1171 (-566))) (-5 *3 (-566)) (-4 *1 (-869 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-767 *3)) (-4 *3 (-1099)) (-5 *2 (-112))))) (((*1 *1 *2) (-12 (-5 *2 (-1279 (-1175) *3)) (-4 *3 (-1049)) (-5 *1 (-1286 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1279 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) (-5 *1 (-1288 *3 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-483 *4 *5)) (-14 *4 (-644 (-1175))) (-4 *5 (-1049)) - (-5 *2 (-952 *5)) (-5 *1 (-944 *4 *5))))) -(((*1 *2 *2 *3 *3 *4) - (-12 (-5 *4 (-771)) (-4 *3 (-558)) (-5 *1 (-969 *3 *2)) - (-4 *2 (-1240 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-566)) (-5 *4 (-420 *2)) (-4 *2 (-949 *7 *5 *6)) - (-5 *1 (-742 *5 *6 *7 *2)) (-4 *5 (-793)) (-4 *6 (-850)) - (-4 *7 (-308))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-856 *2)) (-4 *2 (-172)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1171 (-566))) (-5 *1 (-942)) (-5 *3 (-566))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1157)) (-5 *2 (-566)) (-5 *1 (-1196 *4)) - (-4 *4 (-1049))))) -(((*1 *2 *3) - (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *2 (-644 (-225))) - (-5 *1 (-470))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-558) (-147))) (-5 *2 (-644 *3)) - (-5 *1 (-1234 *4 *3)) (-4 *3 (-1240 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1180))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-793)) (-4 *6 (-850)) - (-4 *7 (-949 *4 *5 *6)) (-5 *2 (-644 (-644 *7))) - (-5 *1 (-450 *4 *5 *6 *7)) (-5 *3 (-644 *7)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-793)) - (-4 *7 (-850)) (-4 *8 (-949 *5 *6 *7)) (-5 *2 (-644 (-644 *8))) - (-5 *1 (-450 *5 *6 *7 *8)) (-5 *3 (-644 *8)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-793)) (-4 *6 (-850)) - (-4 *7 (-949 *4 *5 *6)) (-5 *2 (-644 (-644 *7))) - (-5 *1 (-450 *4 *5 *6 *7)) (-5 *3 (-644 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-793)) - (-4 *7 (-850)) (-4 *8 (-949 *5 *6 *7)) (-5 *2 (-644 (-644 *8))) - (-5 *1 (-450 *5 *6 *7 *8)) (-5 *3 (-644 *8))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266))))) -(((*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-438))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1175)) (-5 *2 (-1 *6 *5)) (-5 *1 (-706 *4 *5 *6)) - (-4 *4 (-614 (-538))) (-4 *5 (-1214)) (-4 *6 (-1214))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) - (-12 (-5 *6 (-644 (-112))) (-5 *7 (-689 (-225))) - (-5 *8 (-689 (-566))) (-5 *3 (-566)) (-5 *4 (-225)) (-5 *5 (-112)) - (-5 *2 (-1035)) (-5 *1 (-754))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1132 (-225))) (-5 *3 (-644 (-264))) (-5 *1 (-1266)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1132 (-225))) (-5 *3 (-1157)) (-5 *1 (-1266)))) - ((*1 *1 *1) (-5 *1 (-1266)))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1264 *4)) (-5 *3 (-1119)) (-4 *4 (-351)) - (-5 *1 (-530 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566))))) - (-5 *2 (-409 (-566))) (-5 *1 (-1020 *4)) (-4 *4 (-1240 (-566)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1049)) (-4 *5 (-1240 *4)) (-5 *2 (-1 *6 (-644 *6))) - (-5 *1 (-1258 *4 *5 *3 *6)) (-4 *3 (-656 *5)) (-4 *6 (-1255 *4))))) -(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) - (|partial| -12 (-5 *2 (-644 (-1171 *13))) (-5 *3 (-1171 *13)) - (-5 *4 (-644 *12)) (-5 *5 (-644 *10)) (-5 *6 (-644 *13)) - (-5 *7 (-644 (-644 (-2 (|:| -4079 (-771)) (|:| |pcoef| *13))))) - (-5 *8 (-644 (-771))) (-5 *9 (-1264 (-644 (-1171 *10)))) - (-4 *12 (-850)) (-4 *10 (-308)) (-4 *13 (-949 *10 *11 *12)) - (-4 *11 (-793)) (-5 *1 (-707 *11 *12 *10 *13))))) -(((*1 *2 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) - (-5 *1 (-747))))) -(((*1 *1) (-5 *1 (-292)))) -(((*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1171 *4)) (-4 *4 (-351)) (-5 *2 (-112)) - (-5 *1 (-359 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-771)) (-4 *5 (-1049)) (-4 *2 (-1240 *5)) - (-5 *1 (-1258 *5 *2 *6 *3)) (-4 *6 (-656 *2)) (-4 *3 (-1255 *5))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-1175))))) -(((*1 *2 *1) - (-12 (-5 *2 (-174 (-409 (-566)))) (-5 *1 (-117 *3)) (-14 *3 (-566)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *3 (-1155 *2)) (-4 *2 (-308)) (-5 *1 (-174 *2)))) - ((*1 *1 *2) (-12 (-5 *2 (-409 *3)) (-4 *3 (-308)) (-5 *1 (-174 *3)))) - ((*1 *2 *3) - (-12 (-5 *2 (-174 (-566))) (-5 *1 (-765 *3)) (-4 *3 (-406)))) - ((*1 *2 *1) - (-12 (-5 *2 (-174 (-409 (-566)))) (-5 *1 (-871 *3)) (-14 *3 (-566)))) - ((*1 *2 *1) - (-12 (-14 *3 (-566)) (-5 *2 (-174 (-409 (-566)))) - (-5 *1 (-872 *3 *4)) (-4 *4 (-869 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))) - (-5 *1 (-176 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1157)) (-4 *1 (-366 *2 *4)) (-4 *2 (-1099)) - (-4 *4 (-1099)))) - ((*1 *1 *2) - (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1101 *3)) (-5 *1 (-905 *3)) (-4 *3 (-370)) - (-4 *3 (-1099))))) -(((*1 *2 *1) - (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) - (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) - (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-409 (-566))) (-5 *1 (-596 *3)) (-4 *3 (-38 *2)) - (-4 *3 (-1049))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-351)) - (-5 *2 - (-2 (|:| |cont| *5) - (|:| -4138 (-644 (-2 (|:| |irr| *3) (|:| -3149 (-566))))))) - (-5 *1 (-216 *5 *3)) (-4 *3 (-1240 *5))))) +(((*1 *1) (-12 (-4 *1 (-427 *2)) (-4 *2 (-370)) (-4 *2 (-1099))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-644 (-1 (-112) *8))) (-4 *8 (-1064 *5 *6 *7)) - (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850)) - (-5 *2 (-2 (|:| |goodPols| (-644 *8)) (|:| |badPols| (-644 *8)))) - (-5 *1 (-977 *5 *6 *7 *8)) (-5 *4 (-644 *8))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1175)) (-5 *5 (-1093 (-225))) (-5 *2 (-927)) - (-5 *1 (-925 *3)) (-4 *3 (-614 (-538))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1175)) (-5 *2 (-927)) (-5 *1 (-925 *3)) - (-4 *3 (-614 (-538))))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-927)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1093 (-225))) - (-5 *1 (-927))))) -(((*1 *2 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1214)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1200 *3)) (-4 *3 (-1099))))) -(((*1 *1 *1) - (-12 (-4 *2 (-454)) (-4 *3 (-850)) (-4 *4 (-793)) - (-5 *1 (-987 *2 *3 *4 *5)) (-4 *5 (-949 *2 *4 *3))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-771)) (-4 *5 (-351)) (-4 *6 (-1240 *5)) + (-12 (-4 *4 (-365)) (-5 *2 (-644 (-1155 *4))) (-5 *1 (-286 *4 *5)) + (-5 *3 (-1155 *4)) (-4 *5 (-1255 *4))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-436)) (-5 *2 (-644 - (-2 (|:| -2365 (-689 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-689 *6))))) - (-5 *1 (-500 *5 *6 *7)) - (-5 *3 - (-2 (|:| -2365 (-689 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-689 *6)))) - (-4 *7 (-1240 *6))))) -(((*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-1216))))) -(((*1 *2 *3) - (-12 (-5 *3 (-689 (-409 (-952 (-566))))) - (-5 *2 (-644 (-689 (-317 (-566))))) (-5 *1 (-1031))))) -(((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-158 *3 *2)) (-4 *2 (-432 *3))))) -(((*1 *2) - (-12 (-4 *3 (-558)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-419 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-527))))) + (-3 (|:| -1368 (-1175)) + (|:| -3747 (-644 (-3 (|:| S (-1175)) (|:| P (-952 (-566))))))))) + (-5 *1 (-1179))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-420 *2)) (-4 *2 (-558))))) (((*1 *2) - (-12 - (-5 *2 - (-1264 (-644 (-2 (|:| -2233 (-910 *3)) (|:| -2178 (-1119)))))) - (-5 *1 (-353 *3 *4)) (-14 *3 (-921)) (-14 *4 (-921)))) + (-12 (-14 *4 (-771)) (-4 *5 (-1214)) (-5 *2 (-134)) + (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) ((*1 *2) - (-12 (-5 *2 (-1264 (-644 (-2 (|:| -2233 *3) (|:| -2178 (-1119)))))) - (-5 *1 (-354 *3 *4)) (-4 *3 (-351)) (-14 *4 (-3 (-1171 *3) *2)))) + (-12 (-4 *4 (-365)) (-5 *2 (-134)) (-5 *1 (-329 *3 *4)) + (-4 *3 (-330 *4)))) ((*1 *2) - (-12 (-5 *2 (-1264 (-644 (-2 (|:| -2233 *3) (|:| -2178 (-1119)))))) - (-5 *1 (-355 *3 *4)) (-4 *3 (-351)) (-14 *4 (-921))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1163 3 *3)) (-4 *3 (-1049)) (-4 *1 (-1133 *3)))) - ((*1 *1) (-12 (-4 *1 (-1133 *2)) (-4 *2 (-1049))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-644 *5)) (-5 *4 (-566)) (-4 *5 (-848)) (-4 *5 (-365)) - (-5 *2 (-771)) (-5 *1 (-945 *5 *6)) (-4 *6 (-1240 *5))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) - (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225)) - (-5 *2 (-1035)) (-5 *1 (-752))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) - (-4 *5 (-850)) (-5 *2 (-771))))) -(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-4 *1 (-235 *3)))) - ((*1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1099))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4415)) (-4 *1 (-244 *2)) (-4 *2 (-1214)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1214)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1214)))) - ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4415)) (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) - ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4415)) (-4 *1 (-1252 *2)) (-4 *2 (-1214))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-689 *3)) - (-4 *3 (-13 (-308) (-10 -8 (-15 -3184 ((-420 $) $))))) - (-4 *4 (-1240 *3)) (-5 *1 (-501 *3 *4 *5)) (-4 *5 (-411 *3 *4)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-689 *3)) - (-4 *3 (-13 (-308) (-10 -8 (-15 -3184 ((-420 $) $))))) - (-4 *4 (-1240 *3)) (-5 *1 (-501 *3 *4 *5)) (-4 *5 (-411 *3 *4))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1171 *1)) (-4 *1 (-1012))))) -(((*1 *2 *1) (-12 (-4 *1 (-556 *2)) (-4 *2 (-13 (-406) (-1199))))) - ((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) - ((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-862))))) -(((*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1157)) (-5 *1 (-786))))) -(((*1 *2 *1) - (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1240 *3)) - (-4 *5 (-1240 (-409 *4))) (-4 *6 (-344 *3 *4 *5)) - (-5 *2 - (-2 (|:| -4234 (-415 *4 (-409 *4) *5 *6)) (|:| |principalPart| *6))))) + (-12 (-5 *2 (-771)) (-5 *1 (-392 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-172)))) + ((*1 *2 *1) + (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-566)) + (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-644 *6)) (-4 *6 (-850)) (-4 *4 (-365)) (-4 *5 (-793)) + (-5 *2 (-566)) (-5 *1 (-506 *4 *5 *6 *7)) (-4 *7 (-949 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-980 *3)) (-4 *3 (-1049)) (-5 *2 (-921)))) + ((*1 *2) (-12 (-4 *1 (-1271 *3)) (-4 *3 (-365)) (-5 *2 (-134))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1240 *5)) (-4 *5 (-365)) - (-5 *2 - (-2 (|:| |poly| *6) (|:| -1486 (-409 *6)) - (|:| |special| (-409 *6)))) - (-5 *1 (-727 *5 *6)) (-5 *3 (-409 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-365)) (-5 *2 (-644 *3)) (-5 *1 (-896 *3 *4)) - (-4 *3 (-1240 *4)))) - ((*1 *2 *3 *4 *4) - (|partial| -12 (-5 *4 (-771)) (-4 *5 (-365)) - (-5 *2 (-2 (|:| -4380 *3) (|:| -4392 *3))) (-5 *1 (-896 *3 *5)) - (-4 *3 (-1240 *5)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-644 *9)) (-5 *3 (-644 *8)) (-5 *4 (-112)) - (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1070 *5 *6 *7 *8)) (-4 *5 (-454)) - (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-1068 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-644 *9)) (-5 *3 (-644 *8)) (-5 *4 (-112)) - (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1070 *5 *6 *7 *8)) (-4 *5 (-454)) - (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-1068 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-644 *9)) (-5 *3 (-644 *8)) (-5 *4 (-112)) - (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1108 *5 *6 *7 *8)) (-4 *5 (-454)) - (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-1144 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-644 *9)) (-5 *3 (-644 *8)) (-5 *4 (-112)) - (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1108 *5 *6 *7 *8)) (-4 *5 (-454)) - (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-1144 *5 *6 *7 *8 *9))))) -(((*1 *1) (-5 *1 (-823)))) -(((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1157)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) - (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-1269)) - (-5 *1 (-1071 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1157)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) - (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-1269)) - (-5 *1 (-1107 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) -(((*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558)) (-4 *2 (-547)))) - ((*1 *1 *1) (-4 *1 (-1059)))) -(((*1 *2 *3) - (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-359 *4)) - (-4 *4 (-351))))) -(((*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-1099)))) - ((*1 *1 *1) (-5 *1 (-632)))) -(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) + (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *3 (-1064 *5 *6 *7)) + (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -1470 *4)))) + (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-137)))) + ((*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-156)))) + ((*1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1214)))) + ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-480)))) + ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-593)))) + ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-626)))) ((*1 *2 *1) - (-12 (-4 *3 (-454)) (-4 *4 (-850)) (-4 *5 (-793)) (-5 *2 (-112)) - (-5 *1 (-987 *3 *4 *5 *6)) (-4 *6 (-949 *3 *5 *4)))) + (-12 (-4 *3 (-1099)) + (-4 *2 (-13 (-432 *4) (-886 *3) (-614 (-892 *3)))) + (-5 *1 (-1075 *3 *4 *2)) + (-4 *4 (-13 (-1049) (-886 *3) (-614 (-892 *3)))))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1139 *3 *4)) (-4 *3 (-13 (-1099) (-34))) - (-4 *4 (-13 (-1099) (-34)))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-690 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-674 *3)) (-4 *3 (-1214)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-771))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1214)) (-4 *2 (-850)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-283 *3)) (-4 *3 (-1214)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-850))))) -(((*1 *2 *1) (-12 (-5 *2 (-1155 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308))))) -(((*1 *1 *2) - (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1099)) (-5 *1 (-905 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-771)) (-4 *4 (-365)) (-5 *1 (-896 *2 *4)) - (-4 *2 (-1240 *4))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-644 (-409 *6))) (-5 *3 (-409 *6)) - (-4 *6 (-1240 *5)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-570 *5 *6))))) -(((*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365))))) -(((*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1178))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-555))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1171 *5)) (-4 *5 (-365)) (-5 *2 (-644 *6)) - (-5 *1 (-534 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-848)))))) -(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) - (-5 *2 (-644 (-952 *4))))) - ((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-644 (-952 *4))) (-5 *1 (-418 *3 *4)) - (-4 *3 (-419 *4)))) - ((*1 *2) - (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-644 (-952 *3))))) - ((*1 *2) - (-12 (-5 *2 (-644 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) - (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) - (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1264 (-455 *4 *5 *6 *7))) (-5 *2 (-644 (-952 *4))) - (-5 *1 (-455 *4 *5 *6 *7)) (-4 *4 (-558)) (-4 *4 (-172)) - (-14 *5 (-921)) (-14 *6 (-644 (-1175))) (-14 *7 (-1264 (-689 *4)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) -(((*1 *2 *1) - (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) - (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) - (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-689 (-169 (-409 (-566))))) + (-12 (-4 *2 (-1099)) (-5 *1 (-1164 *3 *2)) (-4 *3 (-1099))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1139 *4 *5)) (-4 *4 (-13 (-1099) (-34))) + (-4 *5 (-13 (-1099) (-34))) (-5 *2 (-112)) (-5 *1 (-1140 *4 *5))))) +(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) + (-12 (-5 *4 (-566)) (-5 *5 (-689 (-225))) + (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2352)))) (-5 *3 (-225)) + (-5 *2 (-1035)) (-5 *1 (-748))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1171 *9)) (-5 *4 (-644 *7)) (-4 *7 (-850)) + (-4 *9 (-949 *8 *6 *7)) (-4 *6 (-793)) (-4 *8 (-308)) + (-5 *2 (-644 (-771))) (-5 *1 (-742 *6 *7 *8 *9)) (-5 *5 (-771))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 - (-644 - (-2 (|:| |outval| (-169 *4)) (|:| |outmult| (-566)) - (|:| |outvect| (-644 (-689 (-169 *4))))))) - (-5 *1 (-764 *4)) (-4 *4 (-13 (-365) (-848)))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) - (-5 *1 (-757))))) -(((*1 *2 *3) - (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-771)) - (-5 *1 (-451 *4 *5 *6 *3)) (-4 *3 (-949 *4 *5 *6))))) + (-2 (|:| -2876 *4) (|:| -1425 *4) (|:| |totalpts| (-566)) + (|:| |success| (-112)))) + (-5 *1 (-789)) (-5 *5 (-566))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-771)) (-4 *5 (-558)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-969 *5 *3)) (-4 *3 (-1240 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-295 (-952 (-566)))) - (-5 *2 - (-2 (|:| |varOrder| (-644 (-1175))) - (|:| |inhom| (-3 (-644 (-1264 (-771))) "failed")) - (|:| |hom| (-644 (-1264 (-771)))))) - (-5 *1 (-236))))) + (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) + ((*1 *2) (-12 (-5 *2 (-904 (-566))) (-5 *1 (-917))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-644 (-2 (|:| |totdeg| (-771)) (|:| -3877 *3)))) + (-5 *4 (-771)) (-4 *3 (-949 *5 *6 *7)) (-4 *5 (-454)) (-4 *6 (-793)) + (-4 *7 (-850)) (-5 *1 (-451 *5 *6 *7 *3))))) +(((*1 *2 *1 *1 *3) + (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1099) (-34))) + (-5 *2 (-112)) (-5 *1 (-1139 *4 *5)) (-4 *4 (-13 (-1099) (-34)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-566)) (-5 *4 (-1157)) (-5 *5 (-689 (-225))) - (-5 *2 (-1035)) (-5 *1 (-747))))) -(((*1 *1 *1 *1) (-5 *1 (-862)))) -(((*1 *1 *1) (-12 (-4 *1 (-427 *2)) (-4 *2 (-1099)) (-4 *2 (-370))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-952 *4)) (-4 *4 (-1049)) (-4 *4 (-614 *2)) - (-5 *2 (-381)) (-5 *1 (-785 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-952 *5)) (-5 *4 (-921)) (-4 *5 (-1049)) - (-4 *5 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-558)) - (-4 *4 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-921)) (-4 *5 (-558)) - (-4 *5 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-317 *4)) (-4 *4 (-558)) (-4 *4 (-850)) - (-4 *4 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-317 *5)) (-5 *4 (-921)) (-4 *5 (-558)) - (-4 *5 (-850)) (-4 *5 (-614 *2)) (-5 *2 (-381)) - (-5 *1 (-785 *5))))) -(((*1 *1 *2) - (-12 (-5 *2 (-771)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1049)) - (-14 *4 (-644 (-1175))))) - ((*1 *1 *2) - (-12 (-5 *2 (-771)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1049) (-850))) - (-14 *4 (-644 (-1175))))) - ((*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-337 *3 *4 *5 *2)) (-4 *3 (-365)) - (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) - (-4 *2 (-344 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-771)) (-5 *1 (-392 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-172)))) - ((*1 *1) (-12 (-4 *2 (-172)) (-4 *1 (-724 *2 *3)) (-4 *3 (-1240 *2))))) -(((*1 *2 *2) - (-12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) - (-5 *1 (-523 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5))))) -(((*1 *1) - (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-566)) (-14 *3 (-771)) - (-4 *4 (-172))))) -(((*1 *2 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1214)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) - (-4 *4 (-1049))))) -(((*1 *1) (-5 *1 (-157))) - ((*1 *2 *1) (-12 (-4 *1 (-1044 *2)) (-4 *2 (-23))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-1157)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) - (-4 *4 (-1064 *6 *7 *8)) (-5 *2 (-1269)) - (-5 *1 (-776 *6 *7 *8 *4 *5)) (-4 *5 (-1070 *6 *7 *8 *4))))) -(((*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-62 *3)) (-14 *3 (-1175)))) - ((*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-69 *3)) (-14 *3 (-1175)))) - ((*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-72 *3)) (-14 *3 (-1175)))) - ((*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-1269)))) - ((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1269)) (-5 *1 (-399)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1157)) (-5 *4 (-862)) (-5 *2 (-1269)) (-5 *1 (-1137)))) - ((*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1269)) (-5 *1 (-1137)))) + (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-644 (-1175))) (-4 *5 (-558)) + (-5 *2 (-644 (-644 (-295 (-409 (-952 *5)))))) (-5 *1 (-770 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-644 (-862))) (-5 *2 (-1269)) (-5 *1 (-1137))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-644 *2)) (-5 *1 (-179 *2)) (-4 *2 (-308)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-644 (-644 *4))) (-5 *2 (-644 *4)) (-4 *4 (-308)) - (-5 *1 (-179 *4)))) + (-12 (-5 *3 (-644 (-952 *4))) (-4 *4 (-558)) + (-5 *2 (-644 (-644 (-295 (-409 (-952 *4)))))) (-5 *1 (-770 *4)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-644 *8)) - (-5 *4 - (-644 - (-2 (|:| -2365 (-689 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-689 *7))))) - (-5 *5 (-771)) (-4 *8 (-1240 *7)) (-4 *7 (-1240 *6)) (-4 *6 (-351)) + (-12 (-5 *3 (-689 *7)) + (-5 *5 + (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2875 (-644 *6))) + *7 *6)) + (-4 *6 (-365)) (-4 *7 (-656 *6)) (-5 *2 - (-2 (|:| -2365 (-689 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-689 *7)))) - (-5 *1 (-500 *6 *7 *8)))) - ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2738 *4))) - (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-258))))) -(((*1 *2 *3) - (-12 (-4 *4 (-850)) (-5 *2 (-1186 (-644 *4))) (-5 *1 (-1185 *4)) - (-5 *3 (-644 *4))))) + (-2 (|:| |particular| (-3 (-1264 *6) "failed")) + (|:| -2875 (-644 (-1264 *6))))) + (-5 *1 (-813 *6 *7)) (-5 *4 (-1264 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-137)))) + ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-156)))) + ((*1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1214)))) + ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-480)))) + ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-593)))) + ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-626)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1099)) + (-4 *2 (-13 (-432 *4) (-886 *3) (-614 (-892 *3)))) + (-5 *1 (-1075 *3 *4 *2)) + (-4 *4 (-13 (-1049) (-886 *3) (-614 (-892 *3)))))) + ((*1 *2 *1) + (-12 (-4 *2 (-1099)) (-5 *1 (-1164 *2 *3)) (-4 *3 (-1099))))) +(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) + (-12 (-5 *4 (-689 (-225))) (-5 *5 (-689 (-566))) (-5 *3 (-566)) + (-5 *2 (-1035)) (-5 *1 (-756))))) (((*1 *2 *3) - (-12 (-5 *3 (-566)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) - (-5 *2 (-1269)) (-5 *1 (-451 *4 *5 *6 *7)) (-4 *7 (-949 *4 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) - (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 *4)) - (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))) + (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-566)) + (-5 *1 (-451 *4 *5 *6 *3)) (-4 *3 (-949 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-432 *4)) (-4 *6 (-1240 *5)) - (-4 *7 (-1240 (-409 *6))) (-4 *8 (-344 *5 *6 *7)) - (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *2 (-112)) - (-5 *1 (-911 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-338 (-409 (-566)) *4 *5 *6)) - (-4 *4 (-1240 (-409 (-566)))) (-4 *5 (-1240 (-409 *4))) - (-4 *6 (-344 (-409 (-566)) *4 *5)) (-5 *2 (-112)) - (-5 *1 (-912 *4 *5 *6))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-566)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-420 *4)) (-4 *4 (-558))))) + (-12 (-5 *3 (-644 *4)) (-4 *4 (-850)) (-5 *2 (-644 (-664 *4 *5))) + (-5 *1 (-627 *4 *5 *6)) (-4 *5 (-13 (-172) (-717 (-409 (-566))))) + (-14 *6 (-921))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1207 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793)) + (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5))))) (((*1 *2 *2) - (-12 (-4 *2 (-13 (-365) (-848))) (-5 *1 (-181 *2 *3)) - (-4 *3 (-1240 (-169 *2)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1171 (-566))) (-5 *1 (-942)) (-5 *3 (-566)))) - ((*1 *2 *2) - (-12 (-4 *3 (-308)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) - (-5 *1 (-1123 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-393))))) -(((*1 *1) (-12 (-5 *1 (-691 *2)) (-4 *2 (-613 (-862)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1049))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566)))))) -(((*1 *2 *3) (-12 (-5 *3 (-821)) (-5 *2 (-52)) (-5 *1 (-831))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1093 (-843 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1093 (-843 (-225)))) (-5 *2 (-225)) (-5 *1 (-301)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1093 (-843 (-225)))) (-5 *2 (-225)) (-5 *1 (-306))))) + (-12 (-4 *3 (-13 (-558) (-1038 (-566)) (-639 (-566)))) + (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1175)) + (-4 *4 (-13 (-558) (-1038 (-566)) (-639 (-566)))) + (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *4))))) + ((*1 *1 *1) (-5 *1 (-381))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *3 (-1064 *5 *6 *7)) + (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -1470 *4)))) + (-5 *1 (-776 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-644 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566)))))) - (-5 *2 (-644 (-409 (-566)))) (-5 *1 (-1020 *4)) - (-4 *4 (-1240 (-566)))))) -(((*1 *2 *1 *3 *3 *4) - (-12 (-5 *3 (-1 (-862) (-862) (-862))) (-5 *4 (-566)) (-5 *2 (-862)) - (-5 *1 (-649 *5 *6 *7)) (-4 *5 (-1099)) (-4 *6 (-23)) (-14 *7 *6))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-862)) (-5 *1 (-854 *3 *4 *5)) (-4 *3 (-1049)) - (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-862)))) - ((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-862)))) - ((*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-862)))) - ((*1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-862)) (-5 *1 (-1171 *3)) (-4 *3 (-1049))))) -(((*1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1061)))) - ((*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1061))))) + (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-359 *4)) + (-4 *4 (-351))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-644 *3)) (-5 *1 (-961 *3)) (-4 *3 (-547))))) -(((*1 *1 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1214)))) - ((*1 *1 *1) - (-12 (|has| *1 (-6 -4415)) (-4 *1 (-375 *2)) (-4 *2 (-1214)))) - ((*1 *1 *1) - (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1269)) (-5 *1 (-393)))) - ((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-393))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-1264 (-566))) (-5 *3 (-566)) (-5 *1 (-1109)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-1264 (-566))) (-5 *3 (-644 (-566))) (-5 *4 (-566)) - (-5 *1 (-1109))))) -(((*1 *1) (-5 *1 (-225))) ((*1 *1) (-5 *1 (-381)))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) - (-4 *3 (-1064 *6 *7 *8)) - (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -3570 *4)))) - (-5 *1 (-1107 *6 *7 *8 *3 *4)) (-4 *4 (-1070 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-644 (-2 (|:| |val| (-644 *8)) (|:| -3570 *9)))) - (-5 *5 (-112)) (-4 *8 (-1064 *6 *7 *4)) (-4 *9 (-1070 *6 *7 *4 *8)) - (-4 *6 (-454)) (-4 *7 (-793)) (-4 *4 (-850)) - (-5 *2 (-644 (-2 (|:| |val| *8) (|:| -3570 *9)))) - (-5 *1 (-1107 *6 *7 *4 *8 *9))))) -(((*1 *2 *1) - (-12 (-5 *2 (-644 (-2 (|:| |k| (-672 *3)) (|:| |c| *4)))) - (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-850)) - (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-14 *5 (-921))))) -(((*1 *2 *1) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1194))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1214)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-850)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-850)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-566)) (-4 *1 (-283 *3)) (-4 *3 (-1214)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-566)) (-4 *1 (-283 *2)) (-4 *2 (-1214)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 - (|:| -2004 - (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) - (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (|:| -3867 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1155 (-225))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2446 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))))) - (-5 *1 (-561)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-771)) (-4 *1 (-695 *2)) (-4 *2 (-1099)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 - (|:| -2004 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) - (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (|:| -3867 - (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) - (|:| |expense| (-381)) (|:| |accuracy| (-381)) - (|:| |intermediateResults| (-381)))))) - (-5 *1 (-803)))) - ((*1 *2 *3 *4) - (-12 (-5 *2 (-1269)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-1099)) - (-4 *4 (-1099))))) -(((*1 *1 *2) - (-12 (-5 *2 (-771)) (-5 *1 (-675 *3)) (-4 *3 (-1049)) - (-4 *3 (-1099))))) -(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-644 (-1175))) (-4 *4 (-1099)) - (-4 *5 (-13 (-1049) (-886 *4) (-614 (-892 *4)))) - (-5 *1 (-54 *4 *5 *2)) - (-4 *2 (-13 (-432 *5) (-886 *4) (-614 (-892 *4))))))) + (-12 (-4 *4 (-13 (-365) (-147) (-1038 (-566)))) (-4 *5 (-1240 *4)) + (-5 *2 (-2 (|:| |ans| (-409 *5)) (|:| |nosol| (-112)))) + (-5 *1 (-1015 *4 *5)) (-5 *3 (-409 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-255 *3)) (-4 *3 (-1214)) (-5 *2 (-771)))) + ((*1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-771)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1049)) + (-4 *2 (-13 (-406) (-1038 *4) (-365) (-1199) (-285))) + (-5 *1 (-445 *4 *3 *2)) (-4 *3 (-1240 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-612 *3)) (-4 *3 (-1099)))) + ((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) + ((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-862))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-157)) (-5 *2 (-1269)) (-5 *1 (-1266))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-644 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-558)) + (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-977 *5 *6 *7 *8))))) +(((*1 *1) (-5 *1 (-1265)))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1214)) (-5 *1 (-1131 *4 *2)) - (-4 *2 (-13 (-604 (-566) *4) (-10 -7 (-6 -4414) (-6 -4415)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-850)) (-4 *3 (-1214)) (-5 *1 (-1131 *3 *2)) - (-4 *2 (-13 (-604 (-566) *3) (-10 -7 (-6 -4414) (-6 -4415))))))) -(((*1 *2 *1) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-926)))) - ((*1 *2 *1) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-927))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1214)) (-5 *1 (-377 *4 *2)) - (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4415))))))) -(((*1 *2 *2) - (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-454)) - (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) - (-5 *1 (-977 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-644 *7)) (-5 *3 (-112)) (-4 *7 (-1064 *4 *5 *6)) - (-4 *4 (-454)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) - (-5 *1 (-977 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) - (-5 *2 - (-2 (|:| -2233 *4) (|:| -1465 *4) (|:| |totalpts| (-566)) - (|:| |success| (-112)))) - (-5 *1 (-789)) (-5 *5 (-566))))) -(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1199)))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4415)) (-4 *1 (-1010 *2)) (-4 *2 (-1214))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1264 *5)) (-4 *5 (-792)) (-5 *2 (-112)) - (-5 *1 (-845 *4 *5)) (-14 *4 (-771))))) -(((*1 *1 *2) - (-12 (-5 *2 (-644 (-2 (|:| -2004 (-1175)) (|:| -3867 (-439))))) - (-5 *1 (-1179))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) - (-5 *1 (-756))))) + (-12 (-5 *3 (-644 *2)) (-4 *2 (-949 *4 *5 *6)) (-4 *4 (-454)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-451 *4 *5 *6 *2))))) (((*1 *1 *2) - (-12 (-5 *2 (-921)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2) - (-4 *4 (-365)) (-14 *5 (-993 *3 *4))))) + (|partial| -12 (-5 *2 (-819 *3)) (-4 *3 (-850)) (-5 *1 (-672 *3))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-644 (-612 *2))) (-5 *4 (-644 (-1175))) + (-4 *2 (-13 (-432 (-169 *5)) (-1002) (-1199))) (-4 *5 (-558)) + (-5 *1 (-600 *5 *6 *2)) (-4 *6 (-13 (-432 *5) (-1002) (-1199)))))) (((*1 *2 *3 *4) (-12 (-5 *3 (-689 *8)) (-4 *8 (-949 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-850) (-614 (-1175)))) (-4 *7 (-793)) (-5 *2 (-644 - (-2 (|:| -4313 (-771)) + (-2 (|:| -2755 (-771)) (|:| |eqns| (-644 (-2 (|:| |det| *8) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (|:| |fgb| (-644 *8))))) (-5 *1 (-924 *5 *6 *7 *8)) (-5 *4 (-771))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) - (-4 *3 (-369 *4)))) - ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *1) (-4 *1 (-967)))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1157)) (-5 *4 (-169 (-225))) (-5 *5 (-566)) - (-5 *2 (-1035)) (-5 *1 (-758))))) -(((*1 *1 *2) - (-12 (-5 *2 (-672 *3)) (-4 *3 (-850)) (-4 *1 (-376 *3 *4)) - (-4 *4 (-172))))) -(((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1002)))))) -(((*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-1089))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-365)) (-5 *2 (-644 *3)) (-5 *1 (-945 *4 *3)) - (-4 *3 (-1240 *4))))) -(((*1 *1) (-5 *1 (-130)))) -(((*1 *2 *3) - (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1218)) (-4 *3 (-1240 *4)) - (-4 *5 (-1240 (-409 *3))) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) - (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) - ((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-862)))) - ((*1 *1 *1) (-5 *1 (-862)))) -(((*1 *1 *2) (-12 (-5 *1 (-1200 *2)) (-4 *2 (-1099)))) - ((*1 *1 *2) - (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-1200 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-644 (-1200 *2))) (-5 *1 (-1200 *2)) (-4 *2 (-1099))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-793)) - (-4 *7 (-850)) (-4 *8 (-1064 *5 *6 *7)) (-5 *2 (-644 *3)) - (-5 *1 (-592 *5 *6 *7 *8 *3)) (-4 *3 (-1108 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) - (-5 *2 - (-644 (-2 (|:| -2761 (-1171 *5)) (|:| -2154 (-644 (-952 *5)))))) - (-5 *1 (-1077 *5 *6)) (-5 *3 (-644 (-952 *5))) - (-14 *6 (-644 (-1175))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-308) (-147))) - (-5 *2 - (-644 (-2 (|:| -2761 (-1171 *4)) (|:| -2154 (-644 (-952 *4)))))) - (-5 *1 (-1077 *4 *5)) (-5 *3 (-644 (-952 *4))) - (-14 *5 (-644 (-1175))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) - (-5 *2 - (-644 (-2 (|:| -2761 (-1171 *5)) (|:| -2154 (-644 (-952 *5)))))) - (-5 *1 (-1077 *5 *6)) (-5 *3 (-644 (-952 *5))) - (-14 *6 (-644 (-1175)))))) +(((*1 *2 *3 *3 *2 *4) + (-12 (-5 *3 (-689 *2)) (-5 *4 (-566)) + (-4 *2 (-13 (-308) (-10 -8 (-15 -1364 ((-420 $) $))))) + (-4 *5 (-1240 *2)) (-5 *1 (-501 *2 *5 *6)) (-4 *6 (-411 *2 *5))))) (((*1 *1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| -4222 (-644 (-862))) (|:| -2660 (-644 (-862))) - (|:| |presup| (-644 (-862))) (|:| -1325 (-644 (-862))) - (|:| |args| (-644 (-862))))) - (-5 *1 (-1175)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-644 (-862)))) (-5 *1 (-1175))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1214)) (-5 *1 (-1131 *4 *2)) - (-4 *2 (-13 (-604 (-566) *4) (-10 -7 (-6 -4414) (-6 -4415)))))) + (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-751))))) +(((*1 *1 *1) + (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1049)) (-14 *3 (-644 (-1175))))) + ((*1 *1 *1) + (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1049) (-850))) + (-14 *3 (-644 (-1175)))))) +(((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) + ((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) ((*1 *2 *2) - (-12 (-4 *3 (-850)) (-4 *3 (-1214)) (-5 *1 (-1131 *3 *2)) - (-4 *2 (-13 (-604 (-566) *3) (-10 -7 (-6 -4414) (-6 -4415))))))) -(((*1 *2 *2 *3) - (|partial| -12 - (-5 *3 (-644 (-2 (|:| |func| *2) (|:| |pole| (-112))))) - (-4 *2 (-13 (-432 *4) (-1002))) (-4 *4 (-558)) - (-5 *1 (-277 *4 *2))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-644 (-689 *6))) (-5 *4 (-112)) (-5 *5 (-566)) - (-5 *2 (-689 *6)) (-5 *1 (-1029 *6)) (-4 *6 (-365)) (-4 *6 (-1049)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-644 (-689 *4))) (-5 *2 (-689 *4)) (-5 *1 (-1029 *4)) - (-4 *4 (-365)) (-4 *4 (-1049)))) + (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) + ((*1 *1 *1) (-4 *1 (-1138)))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-558)) (-4 *3 (-1049)) + (-5 *2 (-2 (|:| -2631 *1) (|:| -3264 *1))) (-4 *1 (-852 *3)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-644 (-689 *5))) (-5 *4 (-566)) (-5 *2 (-689 *5)) - (-5 *1 (-1029 *5)) (-4 *5 (-365)) (-4 *5 (-1049))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1157)) (-5 *4 (-566)) (-5 *5 (-689 (-225))) - (-5 *2 (-1035)) (-5 *1 (-757))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1026 (-843 (-566)))) (-5 *1 (-596 *3)) (-4 *3 (-1049))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1049)) (-5 *1 (-1236 *3 *2)) (-4 *2 (-1240 *3))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-771)))) - ((*1 *1 *1) (-4 *1 (-404)))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-112)) (-5 *5 (-566)) (-4 *6 (-365)) (-4 *6 (-370)) - (-4 *6 (-1049)) (-5 *2 (-644 (-644 (-689 *6)))) (-5 *1 (-1029 *6)) - (-5 *3 (-644 (-689 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-365)) (-4 *4 (-370)) (-4 *4 (-1049)) - (-5 *2 (-644 (-644 (-689 *4)))) (-5 *1 (-1029 *4)) - (-5 *3 (-644 (-689 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1049)) - (-5 *2 (-644 (-644 (-689 *5)))) (-5 *1 (-1029 *5)) - (-5 *3 (-644 (-689 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-921)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1049)) - (-5 *2 (-644 (-644 (-689 *5)))) (-5 *1 (-1029 *5)) - (-5 *3 (-644 (-689 *5)))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-644 *6)) (-4 *1 (-949 *4 *5 *6)) (-4 *4 (-1049)) - (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-771)))) - ((*1 *2 *1) - (-12 (-4 *1 (-949 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) - (-4 *5 (-850)) (-5 *2 (-771))))) -(((*1 *2 *1) - (-12 (-5 *2 (-644 (-644 (-943 (-225))))) (-5 *1 (-1209 *3)) - (-4 *3 (-974))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-644 (-644 *8))) (-5 *3 (-644 *8)) - (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-793)) - (-4 *7 (-850)) (-5 *2 (-112)) (-5 *1 (-977 *5 *6 *7 *8))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1175)) (-5 *2 (-1 (-1171 (-952 *4)) (-952 *4))) - (-5 *1 (-1272 *4)) (-4 *4 (-365))))) -(((*1 *2 *1) - (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1240 *3)) - (-4 *5 (-1240 (-409 *4))) (-4 *6 (-344 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-771)) (-4 *1 (-327 *3 *4)) (-4 *3 (-1049)) - (-4 *4 (-792)) (-4 *3 (-172))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1157)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) - ((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-264)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1265)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266))))) -(((*1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1184))))) -(((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1175)) (-5 *3 (-112)) (-5 *1 (-892 *4)) - (-4 *4 (-1099))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-558)) (-4 *5 (-1049)) + (-5 *2 (-2 (|:| -2631 *3) (|:| -3264 *3))) (-5 *1 (-853 *5 *3)) + (-4 *3 (-852 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-614 (-892 *3))) (-4 *3 (-886 *3)) (-4 *3 (-454)) - (-5 *1 (-1205 *3 *2)) (-4 *2 (-614 (-892 *3))) (-4 *2 (-886 *3)) + (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199)))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-4 *5 (-432 *4)) - (-5 *2 (-420 (-1171 (-409 (-566))))) (-5 *1 (-437 *4 *5 *3)) - (-4 *3 (-1240 *5))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)) (-5 *3 (-566))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436)))) - ((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-571 *3)) (-4 *3 (-1038 (-566))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) - (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2738 *3) (|:| |coef2| (-782 *3)))) - (-5 *1 (-782 *3)) (-4 *3 (-558)) (-4 *3 (-1049))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-566) (-566))) (-5 *1 (-363 *3)) (-4 *3 (-1099)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-771) (-771))) (-5 *1 (-388 *3)) (-4 *3 (-1099)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) - (-5 *1 (-649 *3 *4 *5)) (-4 *3 (-1099))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-644 *1)) (-4 *1 (-1064 *4 *5 *6)) (-4 *4 (-1049)) - (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) - (-4 *5 (-850)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) - (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1207 *4 *5 *6 *3)) (-4 *4 (-558)) (-4 *5 (-793)) - (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-771)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2)) + (-4 *2 (-1240 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-317 (-225))) (-5 *1 (-210))))) +(((*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-821))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1215 *3)) (-4 *3 (-1099))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-644 *5)) (-4 *5 (-1240 *3)) (-4 *3 (-308)) + (-5 *2 (-112)) (-5 *1 (-457 *3 *5))))) (((*1 *2) - (-12 (-4 *3 (-558)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-419 *3))))) -(((*1 *2 *1 *2) - (-12 (-4 *1 (-366 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1099))))) -(((*1 *1) (-5 *1 (-157))) - ((*1 *2 *1) (-12 (-4 *1 (-1044 *2)) (-4 *2 (-23))))) -(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-519))))) -(((*1 *2 *1) - (-12 (-5 *2 (-862)) (-5 *1 (-392 *3 *4 *5)) (-14 *3 (-771)) - (-14 *4 (-771)) (-4 *5 (-172))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1175)) (-5 *3 (-381)) (-5 *1 (-1062))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-644 (-1175))) (-5 *2 (-1175)) (-5 *1 (-331))))) -(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-225)) (-5 *4 (-566)) - (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G)))) (-5 *2 (-1035)) - (-5 *1 (-748))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-409 (-952 *4))) (-5 *3 (-1175)) - (-4 *4 (-13 (-558) (-1038 (-566)) (-147))) (-5 *1 (-572 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-328 *3)) (-4 *3 (-1214)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-566)) (-5 *1 (-518 *3 *4)) (-4 *3 (-1214)) (-14 *4 *2)))) + (-12 (-5 *2 (-112)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-1099)) + (-4 *4 (-1099))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1171 *2)) (-4 *2 (-432 *4)) (-4 *4 (-558)) - (-5 *1 (-32 *4 *2))))) -(((*1 *2 *3) - (-12 (-5 *3 (-644 *2)) (-5 *1 (-488 *2)) (-4 *2 (-1240 (-566)))))) + (-12 (-5 *2 (-921)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) + ((*1 *1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-264))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1175)) (-4 *5 (-614 (-892 (-566)))) - (-4 *5 (-886 (-566))) - (-4 *5 (-13 (-1038 (-566)) (-454) (-639 (-566)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-569 *5 *3)) (-4 *3 (-629)) - (-4 *3 (-13 (-27) (-1199) (-432 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-396)))) - ((*1 *2 *1) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1194))))) -(((*1 *2) - (-12 (-4 *3 (-558)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-419 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-691 (-1220)))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-771)) (-5 *2 (-1237 *5 *4)) (-5 *1 (-1173 *4 *5 *6)) - (-4 *4 (-1049)) (-14 *5 (-1175)) (-14 *6 *4))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-771)) (-5 *2 (-1237 *5 *4)) (-5 *1 (-1256 *4 *5 *6)) - (-4 *4 (-1049)) (-14 *5 (-1175)) (-14 *6 *4)))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3)) - (-4 *3 (-13 (-365) (-1199) (-1002)))))) -(((*1 *2) - (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) - (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-1269)) - (-5 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *7 (-1070 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) - (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-1269)) - (-5 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *7 (-1070 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) + (-12 (-5 *4 (-1 (-1155 *3))) (-5 *2 (-1155 *3)) (-5 *1 (-1159 *3)) + (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-850)) (-5 *4 (-644 *6)) + (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-644 *4)))) + (-5 *1 (-1185 *6)) (-5 *5 (-644 *4))))) +(((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1006))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-1049))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-587 *3)) (-4 *3 (-365))))) (((*1 *2 *3) - (-12 (-4 *4 (-558)) (-5 *2 (-771)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-419 *4))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-644 (-644 (-644 *5)))) (-5 *3 (-1 (-112) *5 *5)) - (-5 *4 (-644 *5)) (-4 *5 (-850)) (-5 *1 (-1185 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1002)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-584))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) - (-4 *3 (-369 *4)))) - ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-5 *2 (-644 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) - (-5 *1 (-587 *3)) (-4 *3 (-365))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-547)))) -(((*1 *2 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) - (-5 *1 (-751))))) -(((*1 *1) (-5 *1 (-1084)))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1240 *5)) (-4 *5 (-365)) - (-5 *2 (-2 (|:| -1486 (-420 *3)) (|:| |special| (-420 *3)))) - (-5 *1 (-727 *5 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-438)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-438))))) -(((*1 *1 *2 *3) - (-12 (-4 *1 (-384 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-1099)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-566)) (-5 *2 (-1155 *3)) (-5 *1 (-1159 *3)) - (-4 *3 (-1049)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-819 *4)) (-4 *4 (-850)) (-4 *1 (-1281 *4 *3)) - (-4 *3 (-1049))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) - (-5 *1 (-756))))) -(((*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-52))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-644 *6)) (-5 *4 (-1175)) (-4 *6 (-432 *5)) - (-4 *5 (-1099)) (-5 *2 (-644 (-612 *6))) (-5 *1 (-575 *5 *6))))) -(((*1 *1 *2 *3 *3 *4 *4) - (-12 (-5 *2 (-952 (-566))) (-5 *3 (-1175)) - (-5 *4 (-1093 (-409 (-566)))) (-5 *1 (-30))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-1155 *3)) (-4 *3 (-365)) (-4 *3 (-1049)) - (-5 *1 (-1159 *3))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-547)))) -(((*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-1175))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436))))) -(((*1 *2 *1) - (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) - (|has| *2 (-6 (-4416 "*"))) (-4 *2 (-1049)))) + (-12 (-5 *3 (-1155 (-225))) (-5 *2 (-644 (-1157))) (-5 *1 (-192)))) ((*1 *2 *3) - (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-172)) - (-5 *1 (-688 *2 *4 *5 *3)) (-4 *3 (-687 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1122 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) - (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4416 "*"))) (-4 *2 (-1049))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-365)) (-4 *7 (-1240 *5)) (-4 *4 (-724 *5 *7)) - (-5 *2 (-2 (|:| -4227 (-689 *6)) (|:| |vec| (-1264 *5)))) - (-5 *1 (-811 *5 *6 *7 *4 *3)) (-4 *6 (-656 *5)) (-4 *3 (-656 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1171 *7)) (-4 *5 (-1049)) - (-4 *7 (-1049)) (-4 *2 (-1240 *5)) (-5 *1 (-503 *5 *2 *6 *7)) - (-4 *6 (-1240 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1049)) (-4 *7 (-1049)) - (-4 *4 (-1240 *5)) (-5 *2 (-1171 *7)) (-5 *1 (-503 *5 *4 *6 *7)) - (-4 *6 (-1240 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1093 (-225))) - (-5 *2 (-1266)) (-5 *1 (-258))))) -(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-927))))) -(((*1 *2 *1) (-12 (-5 *2 (-644 (-1213))) (-5 *1 (-526))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) - (-5 *1 (-755))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-644 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-558)) - (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-977 *5 *6 *7 *8))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-905 *4)) (-4 *4 (-1099)) (-5 *2 (-644 (-771))) - (-5 *1 (-904 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1157)) (-5 *2 (-214 (-504))) (-5 *1 (-837))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) - (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *2 (-381)) (-5 *1 (-205))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1214)) (-4 *2 (-850)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-375 *3)) (-4 *3 (-1214)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-850)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1133 *2)) (-4 *2 (-1049)))) - ((*1 *1 *2) - (-12 (-5 *2 (-644 *1)) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) - ((*1 *1 *2) - (-12 (-5 *2 (-644 (-1163 *3 *4))) (-5 *1 (-1163 *3 *4)) - (-14 *3 (-921)) (-4 *4 (-1049)))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1049))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-943 *5)) (-4 *5 (-1049)) (-5 *2 (-771)) - (-5 *1 (-1163 *4 *5)) (-14 *4 (-921)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-644 (-771))) (-5 *3 (-771)) (-5 *1 (-1163 *4 *5)) - (-14 *4 (-921)) (-4 *5 (-1049)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-644 (-771))) (-5 *3 (-943 *5)) (-4 *5 (-1049)) - (-5 *1 (-1163 *4 *5)) (-14 *4 (-921))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) - (-5 *1 (-747))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) - (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *2 (-381)) (-5 *1 (-205))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-365)) (-5 *1 (-766 *2 *3)) (-4 *2 (-708 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365))))) -(((*1 *1 *1) - (-12 (-4 *2 (-351)) (-4 *2 (-1049)) (-5 *1 (-712 *2 *3)) - (-4 *3 (-1240 *2))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-381)) (-5 *1 (-97))))) -(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *5 (-612 *4)) (-5 *6 (-1175)) - (-4 *4 (-13 (-432 *7) (-27) (-1199))) - (-4 *7 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2365 (-644 *4)))) - (-5 *1 (-568 *7 *4 *3)) (-4 *3 (-656 *4)) (-4 *3 (-1099))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-644 (-1175))) (-5 *3 (-1175)) (-5 *1 (-538)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1175)) (-5 *1 (-704 *3)) (-4 *3 (-614 (-538))))) - ((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-1175)) (-5 *1 (-704 *3)) (-4 *3 (-614 (-538))))) - ((*1 *2 *3 *2 *2 *2) - (-12 (-5 *2 (-1175)) (-5 *1 (-704 *3)) (-4 *3 (-614 (-538))))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *4 (-644 (-1175))) (-5 *2 (-1175)) (-5 *1 (-704 *3)) - (-4 *3 (-614 (-538)))))) -(((*1 *2) - (|partial| -12 (-4 *4 (-1218)) (-4 *5 (-1240 (-409 *2))) - (-4 *2 (-1240 *4)) (-5 *1 (-343 *3 *4 *2 *5)) - (-4 *3 (-344 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-344 *3 *2 *4)) (-4 *3 (-1218)) - (-4 *4 (-1240 (-409 *2))) (-4 *2 (-1240 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))) - (-5 *1 (-176 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-644 (-780 *5 (-864 *6)))) (-5 *4 (-112)) (-4 *5 (-454)) - (-14 *6 (-644 (-1175))) - (-5 *2 - (-644 (-1145 *5 (-533 (-864 *6)) (-864 *6) (-780 *5 (-864 *6))))) - (-5 *1 (-628 *5 *6))))) -(((*1 *2) - (-12 (-4 *4 (-1218)) (-4 *5 (-1240 *4)) (-4 *6 (-1240 (-409 *5))) - (-5 *2 (-771)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) - (-4 *5 (-1240 (-409 *4))) (-5 *2 (-771)))) - ((*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-771))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1256 *2 *3 *4)) (-4 *2 (-1049)) (-14 *3 (-1175)) - (-14 *4 *2)))) -(((*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1214))))) -(((*1 *2 *2 *2 *3 *4) - (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1049)) - (-5 *1 (-853 *5 *2)) (-4 *2 (-852 *5))))) -(((*1 *2 *3 *4 *4 *3 *5) - (-12 (-5 *4 (-612 *3)) (-5 *5 (-1171 *3)) - (-4 *3 (-13 (-432 *6) (-27) (-1199))) - (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) - (-5 *2 (-587 *3)) (-5 *1 (-562 *6 *3 *7)) (-4 *7 (-1099)))) - ((*1 *2 *3 *4 *4 *4 *3 *5) - (-12 (-5 *4 (-612 *3)) (-5 *5 (-409 (-1171 *3))) - (-4 *3 (-13 (-432 *6) (-27) (-1199))) - (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) - (-5 *2 (-587 *3)) (-5 *1 (-562 *6 *3 *7)) (-4 *7 (-1099))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-820)) (-14 *5 (-1175)) (-5 *2 (-644 (-1237 *5 *4))) - (-5 *1 (-1113 *4 *5)) (-5 *3 (-1237 *5 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-264)))) - ((*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264))))) -(((*1 *2 *3 *4 *4 *5 *3 *3) - (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) - (-5 *2 (-1035)) (-5 *1 (-752))))) -(((*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-359 *3)) (-4 *3 (-351))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) - (-4 *4 (-850))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) - (-5 *1 (-755))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-566)) (-4 *4 (-13 (-558) (-147))) (-5 *1 (-539 *4 *2)) - (-4 *2 (-1255 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-566)) (-4 *4 (-13 (-365) (-370) (-614 *3))) - (-4 *5 (-1240 *4)) (-4 *6 (-724 *4 *5)) (-5 *1 (-543 *4 *5 *6 *2)) - (-4 *2 (-1255 *6)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-566)) (-4 *4 (-13 (-365) (-370) (-614 *3))) - (-5 *1 (-544 *4 *2)) (-4 *2 (-1255 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1155 *4)) (-5 *3 (-566)) (-4 *4 (-13 (-558) (-147))) - (-5 *1 (-1151 *4))))) -(((*1 *1) - (-12 (-4 *3 (-1099)) (-5 *1 (-885 *2 *3 *4)) (-4 *2 (-1099)) - (-4 *4 (-666 *3)))) - ((*1 *1) (-12 (-5 *1 (-889 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099))))) -(((*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-331))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-114)) (-5 *1 (-113 *2)) (-4 *2 (-1099))))) -(((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -3380 (-566)) (|:| -4138 (-644 *3)))) - (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566)))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-324 *3 *4)) (-4 *3 (-1099)) - (-4 *4 (-131))))) -(((*1 *2 *3) (-12 (-5 *3 (-169 (-566))) (-5 *2 (-112)) (-5 *1 (-448)))) + (-12 (-5 *3 (-1155 (-225))) (-5 *2 (-644 (-1157))) (-5 *1 (-301)))) ((*1 *2 *3) - (-12 - (-5 *3 - (-506 (-409 (-566)) (-240 *5 (-771)) (-864 *4) - (-247 *4 (-409 (-566))))) - (-14 *4 (-644 (-1175))) (-14 *5 (-771)) (-5 *2 (-112)) - (-5 *1 (-507 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-961 *3)) (-4 *3 (-547)))) - ((*1 *2 *1) (-12 (-4 *1 (-1218)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-566)) (|has| *1 (-6 -4405)) (-4 *1 (-406)) - (-5 *2 (-921))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1175)) (-5 *3 (-436)) (-4 *5 (-1099)) - (-5 *1 (-1105 *5 *4)) (-4 *4 (-432 *5))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) - (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))) - (-5 *1 (-192))))) -(((*1 *2 *1) - (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1099)) - (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-596 *3)) (-4 *3 (-1049)))) - ((*1 *2 *1) - (-12 (-4 *3 (-558)) (-5 *2 (-112)) (-5 *1 (-623 *3 *4)) - (-4 *4 (-1240 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-735 *3 *4)) (-4 *3 (-1049)) - (-4 *4 (-726)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) - (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) - (-4 *3 (-1064 *5 *6 *7)) - (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -3570 *4)))) - (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-3 (-409 (-952 *6)) (-1164 (-1175) (-952 *6)))) - (-5 *5 (-771)) (-4 *6 (-454)) (-5 *2 (-644 (-689 (-409 (-952 *6))))) - (-5 *1 (-293 *6)) (-5 *4 (-689 (-409 (-952 *6)))))) - ((*1 *2 *3 *4) - (-12 - (-5 *3 - (-2 (|:| |eigval| (-3 (-409 (-952 *5)) (-1164 (-1175) (-952 *5)))) - (|:| |eigmult| (-771)) (|:| |eigvec| (-644 *4)))) - (-4 *5 (-454)) (-5 *2 (-644 (-689 (-409 (-952 *5))))) - (-5 *1 (-293 *5)) (-5 *4 (-689 (-409 (-952 *5))))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-3 (|:| |nullBranch| "null") - (|:| |assignmentBranch| - (-2 (|:| |var| (-1175)) - (|:| |arrayIndex| (-644 (-952 (-566)))) - (|:| |rand| - (-2 (|:| |ints2Floats?| (-112)) (|:| -1346 (-862)))))) - (|:| |arrayAssignmentBranch| - (-2 (|:| |var| (-1175)) (|:| |rand| (-862)) - (|:| |ints2Floats?| (-112)))) - (|:| |conditionalBranch| - (-2 (|:| |switch| (-1174)) (|:| |thenClause| (-331)) - (|:| |elseClause| (-331)))) - (|:| |returnBranch| - (-2 (|:| -3467 (-112)) - (|:| -2233 - (-2 (|:| |ints2Floats?| (-112)) (|:| -1346 (-862)))))) - (|:| |blockBranch| (-644 (-331))) - (|:| |commentBranch| (-644 (-1157))) (|:| |callBranch| (-1157)) - (|:| |forBranch| - (-2 (|:| -2446 (-1091 (-952 (-566)))) - (|:| |span| (-952 (-566))) (|:| -1382 (-331)))) - (|:| |labelBranch| (-1119)) - (|:| |loopBranch| (-2 (|:| |switch| (-1174)) (|:| -1382 (-331)))) - (|:| |commonBranch| - (-2 (|:| -2640 (-1175)) (|:| |contents| (-644 (-1175))))) - (|:| |printBranch| (-644 (-862))))) - (-5 *1 (-331))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-644 (-2 (|:| -3719 (-1171 *6)) (|:| -2852 (-566))))) - (-4 *6 (-308)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)) - (-5 *1 (-742 *4 *5 *6 *7)) (-4 *7 (-949 *6 *4 *5)))) - ((*1 *1 *1) (-12 (-4 *1 (-1133 *2)) (-4 *2 (-1049))))) + (-12 (-5 *3 (-1155 (-225))) (-5 *2 (-644 (-1157))) (-5 *1 (-306))))) (((*1 *2 *3 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-988 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *5 (-850)) (-5 *2 (-112)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) - (-5 *1 (-1106 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) - ((*1 *2) (-12 (-5 *2 (-904 (-566))) (-5 *1 (-917))))) -(((*1 *2 *2) - (-12 (-5 *2 (-644 *6)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-308)) - (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-449 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-644 *7)) (-5 *3 (-1157)) (-4 *7 (-949 *4 *5 *6)) - (-4 *4 (-308)) (-4 *5 (-793)) (-4 *6 (-850)) - (-5 *1 (-449 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-644 *7)) (-5 *3 (-1157)) (-4 *7 (-949 *4 *5 *6)) - (-4 *4 (-308)) (-4 *5 (-793)) (-4 *6 (-850)) - (-5 *1 (-449 *4 *5 *6 *7))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2738 *4))) - (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-771)) (-4 *4 (-13 (-558) (-147))) - (-5 *1 (-1234 *4 *2)) (-4 *2 (-1240 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-850)) - (-4 *5 (-267 *4)) (-4 *6 (-793)) (-5 *2 (-771)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1049)) (-4 *3 (-850)) - (-4 *5 (-267 *3)) (-4 *6 (-793)) (-5 *2 (-771)))) - ((*1 *2 *1) (-12 (-4 *1 (-267 *3)) (-4 *3 (-850)) (-5 *2 (-771)))) - ((*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-921)))) - ((*1 *2 *3) - (-12 (-5 *3 (-338 *4 *5 *6 *7)) (-4 *4 (-13 (-370) (-365))) - (-4 *5 (-1240 *4)) (-4 *6 (-1240 (-409 *5))) (-4 *7 (-344 *4 *5 *6)) - (-5 *2 (-771)) (-5 *1 (-394 *4 *5 *6 *7)))) - ((*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-833 (-921))))) - ((*1 *2 *1) (-12 (-4 *1 (-406)) (-5 *2 (-566)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-597 *3)) (-4 *3 (-1049)))) - ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-597 *3)) (-4 *3 (-1049)))) - ((*1 *2 *1) - (-12 (-4 *3 (-558)) (-5 *2 (-566)) (-5 *1 (-623 *3 *4)) - (-4 *4 (-1240 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-771)) (-4 *1 (-740 *4 *3)) (-4 *4 (-1049)) - (-4 *3 (-850)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-740 *4 *3)) (-4 *4 (-1049)) (-4 *3 (-850)) - (-5 *2 (-771)))) - ((*1 *2 *1) (-12 (-4 *1 (-869 *3)) (-5 *2 (-771)))) - ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) - ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-905 *3)) (-4 *3 (-1099)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-432 *4)) - (-4 *6 (-1240 *5)) (-4 *7 (-1240 (-409 *6))) - (-4 *8 (-344 *5 *6 *7)) (-4 *4 (-13 (-558) (-1038 (-566)))) - (-5 *2 (-771)) (-5 *1 (-911 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-338 (-409 (-566)) *4 *5 *6)) - (-4 *4 (-1240 (-409 (-566)))) (-4 *5 (-1240 (-409 *4))) - (-4 *6 (-344 (-409 (-566)) *4 *5)) (-5 *2 (-771)) - (-5 *1 (-912 *4 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-338 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-365)) - (-4 *7 (-1240 *6)) (-4 *4 (-1240 (-409 *7))) (-4 *8 (-344 *6 *7 *4)) - (-4 *9 (-13 (-370) (-365))) (-5 *2 (-771)) - (-5 *1 (-1018 *6 *7 *4 *8 *9)))) + (-5 *1 (-1106 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1240 *3)) (-4 *3 (-1049)) (-4 *3 (-558)) - (-5 *2 (-771)))) - ((*1 *2 *1 *2) - (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-792)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-792))))) -(((*1 *2 *3) - (-12 (-4 *4 (-558)) (-5 *2 (-1171 *3)) (-5 *1 (-41 *4 *3)) - (-4 *3 - (-13 (-365) (-303) - (-10 -8 (-15 -4326 ((-1124 *4 (-612 $)) $)) - (-15 -4339 ((-1124 *4 (-612 $)) $)) - (-15 -3783 ($ (-1124 *4 (-612 $)))))))))) -(((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-469)))) - ((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-469)))) - ((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-927))))) + (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) + (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) + (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *5 (-225)) + (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1035)) + (-5 *1 (-749))))) (((*1 *2 *3) - (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-241)) (-5 *3 (-1157)))) - ((*1 *2 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-241)))) - ((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-874))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-644 (-843 (-225)))) (-5 *4 (-225)) (-5 *2 (-644 *4)) - (-5 *1 (-268))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) - (-4 *3 (-1064 *5 *6 *7)) - (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -3570 *4)))) - (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-771)) (-4 *4 (-558)) (-5 *1 (-969 *4 *2)) - (-4 *2 (-1240 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-822))))) + (-12 (-5 *3 (-952 *4)) (-4 *4 (-13 (-308) (-147))) + (-4 *2 (-949 *4 *6 *5)) (-5 *1 (-924 *4 *5 *6 *2)) + (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793))))) +(((*1 *2 *2 *3 *4 *5) + (-12 (-5 *2 (-644 *9)) (-5 *3 (-1 (-112) *9)) + (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) + (-4 *9 (-1064 *6 *7 *8)) (-4 *6 (-558)) (-4 *7 (-793)) + (-4 *8 (-850)) (-5 *1 (-977 *6 *7 *8 *9))))) +(((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-699)))) + ((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-699))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-566)) (-5 *1 (-696 *2)) (-4 *2 (-1240 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-610 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1099))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3)) - (-4 *3 (-13 (-365) (-1199) (-1002)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) -(((*1 *1 *2) - (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-1000 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1240 *6)) - (-4 *6 (-13 (-27) (-432 *5))) (-4 *5 (-13 (-558) (-1038 (-566)))) - (-4 *8 (-1240 (-409 *7))) (-5 *2 (-587 *3)) - (-5 *1 (-554 *5 *6 *7 *8 *3)) (-4 *3 (-344 *6 *7 *8))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-644 (-943 *4))) (-4 *1 (-1133 *4)) (-4 *4 (-1049)) - (-5 *2 (-771))))) + (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-359 *4)) + (-4 *4 (-351))))) (((*1 *2 *3) - (-12 (-5 *2 (-420 (-1171 *1))) (-5 *1 (-317 *4)) (-5 *3 (-1171 *1)) - (-4 *4 (-454)) (-4 *4 (-558)) (-4 *4 (-1099)))) - ((*1 *2 *3) - (-12 (-4 *1 (-909)) (-5 *2 (-420 (-1171 *1))) (-5 *3 (-1171 *1))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23)) - (-14 *4 *3))) - ((*1 *1 *2 *3 *1) - (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23)) - (-14 *4 *3))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-675 *2)) (-4 *2 (-1049)) (-4 *2 (-1099))))) -(((*1 *1 *1) (-4 *1 (-547)))) -(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) -(((*1 *1 *1 *1 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *1 (-596 *3)) (-4 *3 (-1049))))) -(((*1 *1 *1 *1) (-4 *1 (-967)))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-889 *4 *5)) (-5 *3 (-889 *4 *6)) (-4 *4 (-1099)) - (-4 *5 (-1099)) (-4 *6 (-666 *5)) (-5 *1 (-885 *4 *5 *6))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) - (-4 *4 (-850)) (-4 *2 (-558))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) - (-4 *3 (-369 *4)))) - ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1103)) (-5 *1 (-281))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-128))))) -(((*1 *1 *1 *1 *1 *1) - (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) - (-4 *4 (-850)) (-4 *2 (-558))))) -(((*1 *1 *1 *1) (-4 *1 (-143))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-158 *3 *2)) (-4 *2 (-432 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-547)))) - ((*1 *1 *1 *1) (-5 *1 (-862))) - ((*1 *2 *3 *4) - (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-566))) (-5 *1 (-1047)) - (-5 *3 (-566))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) - (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) - (-5 *1 (-1277 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-644 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-558)) - (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-1277 *5 *6 *7 *8))))) + (-12 (-4 *4 (-13 (-365) (-1038 (-409 *2)))) (-5 *2 (-566)) + (-5 *1 (-115 *4 *3)) (-4 *3 (-1240 *4))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-771)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2)) + (-4 *2 (-1240 *4)))) + ((*1 *2 *2 *3 *2 *3) + (-12 (-5 *3 (-566)) (-5 *1 (-696 *2)) (-4 *2 (-1240 *3))))) (((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566)))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *2 (-1035)) - (-5 *1 (-755))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3)) - (-4 *3 (-13 (-365) (-1199) (-1002)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1186 (-644 *4))) (-4 *4 (-850)) - (-5 *2 (-644 (-644 *4))) (-5 *1 (-1185 *4))))) -(((*1 *1) (-5 *1 (-1062)))) -(((*1 *2 *3) - (-12 (-5 *3 (-317 (-225))) (-5 *2 (-317 (-409 (-566)))) - (-5 *1 (-306))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1761 (-644 (-225))))) - (-5 *2 (-381)) (-5 *1 (-268)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1264 (-317 (-225)))) (-5 *2 (-381)) (-5 *1 (-306))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-295 *2)) (-4 *2 (-726)) (-4 *2 (-1214))))) (((*1 *2 *1) - (-12 (-5 *2 (-644 (-1180))) (-5 *1 (-183 *3)) (-4 *3 (-185))))) -(((*1 *2 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1192))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-365)) (-5 *1 (-659 *4 *2)) - (-4 *2 (-656 *4))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) - (-5 *1 (-747))))) -(((*1 *2 *1) (-12 (-5 *2 (-958 (-183 (-139)))) (-5 *1 (-334)))) - ((*1 *2 *1) (-12 (-5 *2 (-644 (-1213))) (-5 *1 (-606))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1264 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) - (-4 *1 (-724 *5 *6)) (-4 *5 (-172)) (-4 *6 (-1240 *5)) - (-5 *2 (-689 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-331))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1139 *3 *2)) (-4 *3 (-13 (-1099) (-34))) - (-4 *2 (-13 (-1099) (-34)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-821)) (-5 *4 (-52)) (-5 *2 (-1269)) (-5 *1 (-831))))) -(((*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1157)) (-5 *1 (-710))))) -(((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-420 *3)) (-4 *3 (-558)))) - ((*1 *2 *3) - (-12 (-5 *3 (-644 (-2 (|:| -3719 *4) (|:| -3636 (-566))))) - (-4 *4 (-1240 (-566))) (-5 *2 (-771)) (-5 *1 (-444 *4))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-1175)) (-5 *6 (-112)) - (-4 *7 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) - (-4 *3 (-13 (-1199) (-959) (-29 *7))) - (-5 *2 - (-3 (|:| |f1| (-843 *3)) (|:| |f2| (-644 (-843 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-219 *7 *3)) (-5 *5 (-843 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-644 (-381))) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-644 (-381))) (-5 *1 (-470)))) - ((*1 *2 *1) (-12 (-5 *2 (-644 (-381))) (-5 *1 (-470)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-921)) (-5 *4 (-874)) (-5 *2 (-1269)) (-5 *1 (-1265)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-921)) (-5 *4 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1265))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1157)) (-5 *2 (-381)) (-5 *1 (-786))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3)) - (-4 *3 (-13 (-365) (-1199) (-1002))))) - ((*1 *2) - (|partial| -12 (-4 *4 (-1218)) (-4 *5 (-1240 (-409 *2))) - (-4 *2 (-1240 *4)) (-5 *1 (-343 *3 *4 *2 *5)) - (-4 *3 (-344 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-344 *3 *2 *4)) (-4 *3 (-1218)) - (-4 *4 (-1240 (-409 *2))) (-4 *2 (-1240 *3))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-860)) (-5 *2 (-691 (-1222))) (-5 *3 (-1222))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-1175)) (-5 *1 (-612 *3)) (-4 *3 (-1099))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-644 *5) *6)) - (-4 *5 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *6 (-1240 *5)) - (-5 *2 (-644 (-2 (|:| -3704 *5) (|:| -2470 *3)))) - (-5 *1 (-809 *5 *6 *3 *7)) (-4 *3 (-656 *6)) - (-4 *7 (-656 (-409 *6)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) -(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-112)) (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) - (-4 *3 (-13 (-27) (-1199) (-432 *6) (-10 -8 (-15 -3783 ($ *7))))) - (-4 *7 (-848)) - (-4 *8 - (-13 (-1242 *3 *7) (-365) (-1199) - (-10 -8 (-15 -3561 ($ $)) (-15 -1941 ($ $))))) - (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157)))))) - (-5 *1 (-424 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1157)) (-4 *9 (-983 *8)) - (-14 *10 (-1175))))) -(((*1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1184))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-644 (-612 *2))) (-5 *4 (-644 (-1175))) - (-4 *2 (-13 (-432 (-169 *5)) (-1002) (-1199))) (-4 *5 (-558)) - (-5 *1 (-600 *5 *6 *2)) (-4 *6 (-13 (-432 *5) (-1002) (-1199)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1199)))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-556 *3)) (-4 *3 (-13 (-406) (-1199))) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *4 (-365)) (-5 *2 (-771)) (-5 *1 (-329 *3 *4)) - (-4 *3 (-330 *4)))) - ((*1 *2) (-12 (-4 *1 (-1283 *3)) (-4 *3 (-365)) (-5 *2 (-771))))) -(((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-469)))) - ((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-469)))) - ((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-927))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1214)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1157)) (-5 *1 (-989)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1175)) (-5 *3 (-1093 *4)) (-4 *4 (-1214)) - (-5 *1 (-1091 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-644 (-644 (-943 (-225))))) (-5 *3 (-644 (-874))) - (-5 *1 (-470))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1200 *3)) (-4 *3 (-1099))))) -(((*1 *2 *3) - (-12 (-4 *4 (-308)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) - (-5 *2 - (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) - (-5 *1 (-1123 *4 *5 *6 *3)) (-4 *3 (-687 *4 *5 *6))))) -(((*1 *1 *1) (-5 *1 (-225))) ((*1 *1 *1) (-5 *1 (-381))) - ((*1 *1) (-5 *1 (-381)))) + (-12 (-4 *1 (-1122 *3 *4 *2 *5)) (-4 *4 (-1049)) (-4 *5 (-238 *3 *4)) + (-4 *2 (-238 *3 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-771)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) - (-4 *4 (-1049))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) -(((*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-560 *3)) (-4 *3 (-547)))) - ((*1 *2 *3) - (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-308)) (-5 *2 (-420 *3)) - (-5 *1 (-742 *4 *5 *6 *3)) (-4 *3 (-949 *6 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-308)) - (-4 *7 (-949 *6 *4 *5)) (-5 *2 (-420 (-1171 *7))) - (-5 *1 (-742 *4 *5 *6 *7)) (-5 *3 (-1171 *7)))) - ((*1 *2 *1) - (-12 (-4 *3 (-454)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) - (-5 *2 (-420 *1)) (-4 *1 (-949 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-850)) (-4 *5 (-793)) (-4 *6 (-454)) (-5 *2 (-420 *3)) - (-5 *1 (-979 *4 *5 *6 *3)) (-4 *3 (-949 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-454)) - (-4 *7 (-949 *6 *4 *5)) (-5 *2 (-420 (-1171 (-409 *7)))) - (-5 *1 (-1170 *4 *5 *6 *7)) (-5 *3 (-1171 (-409 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-420 *1)) (-4 *1 (-1218)))) - ((*1 *2 *3) - (-12 (-4 *4 (-558)) (-5 *2 (-420 *3)) (-5 *1 (-1243 *4 *3)) - (-4 *3 (-13 (-1240 *4) (-558) (-10 -8 (-15 -2214 ($ $ $))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1046 *4 *5)) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) - (-14 *5 (-644 (-1175))) - (-5 *2 - (-644 (-1145 *4 (-533 (-864 *6)) (-864 *6) (-780 *4 (-864 *6))))) - (-5 *1 (-1290 *4 *5 *6)) (-14 *6 (-644 (-1175)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-295 (-843 *3))) (-4 *3 (-13 (-27) (-1199) (-432 *5))) - (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) - (-5 *2 - (-3 (-843 *3) - (-2 (|:| |leftHandLimit| (-3 (-843 *3) "failed")) - (|:| |rightHandLimit| (-3 (-843 *3) "failed"))) - "failed")) - (-5 *1 (-636 *5 *3)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-295 *3)) (-5 *5 (-1157)) - (-4 *3 (-13 (-27) (-1199) (-432 *6))) - (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) - (-5 *2 (-843 *3)) (-5 *1 (-636 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-295 (-843 (-952 *5)))) (-4 *5 (-454)) - (-5 *2 - (-3 (-843 (-409 (-952 *5))) - (-2 (|:| |leftHandLimit| (-3 (-843 (-409 (-952 *5))) "failed")) - (|:| |rightHandLimit| (-3 (-843 (-409 (-952 *5))) "failed"))) - "failed")) - (-5 *1 (-637 *5)) (-5 *3 (-409 (-952 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-295 (-409 (-952 *5)))) (-5 *3 (-409 (-952 *5))) - (-4 *5 (-454)) - (-5 *2 - (-3 (-843 *3) - (-2 (|:| |leftHandLimit| (-3 (-843 *3) "failed")) - (|:| |rightHandLimit| (-3 (-843 *3) "failed"))) - "failed")) - (-5 *1 (-637 *5)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-295 (-409 (-952 *6)))) (-5 *5 (-1157)) - (-5 *3 (-409 (-952 *6))) (-4 *6 (-454)) (-5 *2 (-843 *3)) - (-5 *1 (-637 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-328 *3)) (-4 *3 (-1214)))) - ((*1 *2 *1) - (-12 (-5 *2 (-771)) (-5 *1 (-518 *3 *4)) (-4 *3 (-1214)) - (-14 *4 (-566))))) -(((*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1214))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1138)))) -(((*1 *2 *3) - (-12 (-5 *3 (-644 (-2 (|:| |deg| (-771)) (|:| -1300 *5)))) - (-4 *5 (-1240 *4)) (-4 *4 (-351)) (-5 *2 (-644 *5)) - (-5 *1 (-216 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-644 (-2 (|:| -3719 *5) (|:| -3636 (-566))))) - (-5 *4 (-566)) (-4 *5 (-1240 *4)) (-5 *2 (-644 *5)) - (-5 *1 (-696 *5))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4415)) (-4 *1 (-1252 *2)) (-4 *2 (-1214))))) + (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) + (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) + (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-644 (-264))) (-5 *4 (-1175)) (-5 *2 (-112)) - (-5 *1 (-264))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) - (|:| |xpnt| (-566)))) - (-4 *4 (-13 (-1240 *3) (-558) (-10 -8 (-15 -2214 ($ $ $))))) - (-4 *3 (-558)) (-5 *1 (-1243 *3 *4))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) - (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *5 (-225)) - (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-61 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-87 BDYVAL)))) - (-5 *2 (-1035)) (-5 *1 (-749)))) - ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) - (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *5 (-225)) - (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-61 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-87 BDYVAL)))) - (-5 *8 (-390)) (-5 *2 (-1035)) (-5 *1 (-749))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-508)) (-5 *2 (-691 (-774))) (-5 *1 (-114)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1157)) (-5 *2 (-774)) (-5 *1 (-114)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-508)) (-5 *3 (-1103)) (-5 *1 (-965))))) -(((*1 *1) (-5 *1 (-803)))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) - (-5 *1 (-747))))) -(((*1 *1 *1 *1) (-4 *1 (-475))) ((*1 *1 *1 *1) (-4 *1 (-761)))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) - (-4 *3 (-369 *4)))) - ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-949 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) - (-4 *2 (-850)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-793)) (-4 *5 (-1049)) (-4 *6 (-949 *5 *4 *2)) - (-4 *2 (-850)) (-5 *1 (-950 *4 *2 *5 *6 *3)) - (-4 *3 - (-13 (-365) - (-10 -8 (-15 -3783 ($ *6)) (-15 -4326 (*6 $)) - (-15 -4339 (*6 $))))))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-558)) - (-5 *2 (-1175)) (-5 *1 (-1043 *4))))) -(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-331)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-331))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-921)) (-5 *2 (-470)) (-5 *1 (-1265))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-644 (-566))) (-5 *2 (-689 (-566))) (-5 *1 (-1109))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) - (-4 *4 (-850)) (-4 *2 (-454))))) -(((*1 *2) - (-12 (-14 *4 (-771)) (-4 *5 (-1214)) (-5 *2 (-134)) - (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) - ((*1 *2) - (-12 (-4 *4 (-365)) (-5 *2 (-134)) (-5 *1 (-329 *3 *4)) - (-4 *3 (-330 *4)))) - ((*1 *2) - (-12 (-5 *2 (-771)) (-5 *1 (-392 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-172)))) - ((*1 *2 *1) - (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-566)) - (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-644 *6)) (-4 *6 (-850)) (-4 *4 (-365)) (-4 *5 (-793)) - (-5 *2 (-566)) (-5 *1 (-506 *4 *5 *6 *7)) (-4 *7 (-949 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-980 *3)) (-4 *3 (-1049)) (-5 *2 (-921)))) - ((*1 *2) (-12 (-4 *1 (-1271 *3)) (-4 *3 (-365)) (-5 *2 (-134))))) -(((*1 *1 *2) - (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1049)) (-4 *1 (-687 *3 *4 *5)) - (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-644 (-644 (-862)))) (-5 *1 (-862)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1141 *3 *4)) (-5 *1 (-993 *3 *4)) (-14 *3 (-921)) - (-4 *4 (-365)))) - ((*1 *1 *2) - (-12 (-5 *2 (-644 (-644 *5))) (-4 *5 (-1049)) - (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *6 (-238 *4 *5)) - (-4 *7 (-238 *3 *5))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-547)) (-5 *2 (-112))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-644 *1)) (-4 *1 (-920))))) + (-12 (-5 *3 (-1171 (-952 *6))) (-4 *6 (-558)) + (-4 *2 (-949 (-409 (-952 *6)) *5 *4)) (-5 *1 (-732 *5 *4 *6 *2)) + (-4 *5 (-793)) + (-4 *4 (-13 (-850) (-10 -8 (-15 -2376 ((-1175) $)))))))) +(((*1 *1) (-5 *1 (-157)))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-771)) (-4 *5 (-1049)) (-5 *2 (-566)) - (-5 *1 (-445 *5 *3 *6)) (-4 *3 (-1240 *5)) - (-4 *6 (-13 (-406) (-1038 *5) (-365) (-1199) (-285))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1049)) (-5 *2 (-566)) (-5 *1 (-445 *4 *3 *5)) - (-4 *3 (-1240 *4)) - (-4 *5 (-13 (-406) (-1038 *4) (-365) (-1199) (-285)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1046 *4 *5)) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) - (-14 *5 (-644 (-1175))) (-5 *2 (-644 (-644 (-1024 (-409 *4))))) - (-5 *1 (-1290 *4 *5 *6)) (-14 *6 (-644 (-1175))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-848) (-308) (-147) (-1022))) - (-5 *2 (-644 (-644 (-1024 (-409 *5))))) (-5 *1 (-1290 *5 *6 *7)) - (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-848) (-308) (-147) (-1022))) - (-5 *2 (-644 (-644 (-1024 (-409 *5))))) (-5 *1 (-1290 *5 *6 *7)) - (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) - ((*1 *2 *3) - (-12 (-5 *3 (-644 (-952 *4))) - (-4 *4 (-13 (-848) (-308) (-147) (-1022))) - (-5 *2 (-644 (-644 (-1024 (-409 *4))))) (-5 *1 (-1290 *4 *5 *6)) - (-14 *5 (-644 (-1175))) (-14 *6 (-644 (-1175)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1171 *3)) (-4 *3 (-370)) (-4 *1 (-330 *3)) - (-4 *3 (-365))))) -(((*1 *2 *3) - (-12 (-5 *3 (-689 (-409 (-952 *4)))) (-4 *4 (-454)) - (-5 *2 (-644 (-3 (-409 (-952 *4)) (-1164 (-1175) (-952 *4))))) - (-5 *1 (-293 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-420 *2)) (-4 *2 (-558))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1 (-943 (-225)) (-225) (-225))) - (-5 *3 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-256))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1209 *3)) (-4 *3 (-974))))) -(((*1 *2 *3) - (|partial| -12 (-4 *5 (-1038 (-48))) - (-4 *4 (-13 (-558) (-1038 (-566)))) (-4 *5 (-432 *4)) - (-5 *2 (-420 (-1171 (-48)))) (-5 *1 (-437 *4 *5 *3)) - (-4 *3 (-1240 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-820)) (-14 *5 (-1175)) (-5 *2 (-644 (-1237 *5 *4))) - (-5 *1 (-1113 *4 *5)) (-5 *3 (-1237 *5 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-644 *2)) (-4 *2 (-949 *4 *5 *6)) (-4 *4 (-308)) - (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-449 *4 *5 *6 *2))))) -(((*1 *2) - (-12 (-4 *3 (-1049)) (-5 *2 (-958 (-712 *3 *4))) (-5 *1 (-712 *3 *4)) - (-4 *4 (-1240 *3))))) -(((*1 *2 *1 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-308)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3441 *1))) - (-4 *1 (-308))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1218)) (-4 *5 (-1240 *4)) - (-5 *2 (-2 (|:| -1364 (-409 *5)) (|:| |poly| *3))) - (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1240 (-409 *5)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-566)) (-5 *2 (-644 (-644 (-225)))) (-5 *1 (-1210))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) - (-5 *2 (-644 (-644 (-644 (-943 *3)))))))) -(((*1 *1 *1) (|partial| -4 *1 (-145))) ((*1 *1 *1) (-4 *1 (-351))) - ((*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-909))))) -(((*1 *2 *3 *4 *5 *4 *4 *4) - (-12 (-4 *6 (-850)) (-5 *3 (-644 *6)) (-5 *5 (-644 *3)) - (-5 *2 - (-2 (|:| |f1| *3) (|:| |f2| (-644 *5)) (|:| |f3| *5) - (|:| |f4| (-644 *5)))) - (-5 *1 (-1185 *6)) (-5 *4 (-644 *5))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1049))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-420 *2)) (-4 *2 (-558))))) -(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-926)))) - ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-927)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-927)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266))))) -(((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) - (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) - (-5 *2 (-644 (-1027 *5 *6 *7 *8))) (-5 *1 (-1027 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) - (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) - (-5 *2 (-644 (-1145 *5 *6 *7 *8))) (-5 *1 (-1145 *5 *6 *7 *8))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1285 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) - (-5 *2 (-819 *3)))) - ((*1 *2 *1) - (-12 (-4 *2 (-846)) (-5 *1 (-1287 *3 *2)) (-4 *3 (-1049))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-381)))) - ((*1 *1 *1 *1) (-4 *1 (-547))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365)))) - ((*1 *1 *2) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-771))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) - (-12 (-5 *4 (-566)) (-5 *5 (-1157)) (-5 *6 (-689 (-225))) - (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G)))) - (-5 *8 (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN)))) - (-5 *9 (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT)))) - (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-749))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-1049))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-612 *1)) (-4 *1 (-303))))) -(((*1 *2 *3 *2) - (|partial| -12 (-5 *2 (-1264 *4)) (-5 *3 (-689 *4)) (-4 *4 (-365)) - (-5 *1 (-667 *4)))) - ((*1 *2 *3 *2) - (|partial| -12 (-4 *4 (-365)) - (-4 *5 (-13 (-375 *4) (-10 -7 (-6 -4415)))) - (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4415)))) - (-5 *1 (-668 *4 *5 *2 *3)) (-4 *3 (-687 *4 *5 *2)))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *4 (-644 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-365)) - (-5 *1 (-814 *2 *3)) (-4 *3 (-656 *2)))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) - (-5 *1 (-1127 *3 *2)) (-4 *3 (-1240 *2))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) - (-5 *2 (-689 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-689 *3))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) - (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) - (-5 *1 (-988 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) - (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) - (-5 *1 (-1106 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7))))) -(((*1 *2) - (-12 (-4 *4 (-365)) (-5 *2 (-921)) (-5 *1 (-329 *3 *4)) - (-4 *3 (-330 *4)))) - ((*1 *2) - (-12 (-4 *4 (-365)) (-5 *2 (-833 (-921))) (-5 *1 (-329 *3 *4)) - (-4 *3 (-330 *4)))) - ((*1 *2) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-921)))) - ((*1 *2) - (-12 (-4 *1 (-1283 *3)) (-4 *3 (-365)) (-5 *2 (-833 (-921)))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-454)) - (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) - (-5 *1 (-977 *3 *4 *5 *6))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-644 (-644 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-644 (-3 (|:| |array| (-644 *3)) (|:| |scalar| (-1175))))) - (-5 *6 (-644 (-1175))) (-5 *3 (-1175)) (-5 *2 (-1103)) - (-5 *1 (-399)))) - ((*1 *2 *3 *4 *5 *6 *3) - (-12 (-5 *5 (-644 (-644 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-644 (-3 (|:| |array| (-644 *3)) (|:| |scalar| (-1175))))) - (-5 *6 (-644 (-1175))) (-5 *3 (-1175)) (-5 *2 (-1103)) - (-5 *1 (-399)))) - ((*1 *2 *3 *4 *5 *4) - (-12 (-5 *4 (-644 (-1175))) (-5 *5 (-1178)) (-5 *3 (-1175)) - (-5 *2 (-1103)) (-5 *1 (-399))))) -(((*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1269)) (-5 *1 (-381))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) - (-4 *3 (-1240 *4)) (-5 *1 (-809 *4 *3 *2 *5)) (-4 *2 (-656 *3)) - (-4 *5 (-656 (-409 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-409 *5)) - (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *5 (-1240 *4)) - (-5 *1 (-809 *4 *5 *2 *6)) (-4 *2 (-656 *5)) (-4 *6 (-656 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-1157))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) - (-5 *1 (-756))))) -(((*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1267)))) - ((*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1267))))) -(((*1 *2 *1) (-12 (-5 *2 (-644 (-109))) (-5 *1 (-175))))) -(((*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-365)) (-4 *3 (-1049)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3441 *1))) - (-4 *1 (-852 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-312)))) + (-12 (-5 *3 (-1171 *5)) (-4 *5 (-365)) (-5 *2 (-644 *6)) + (-5 *1 (-534 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-848)))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-317 (-225))) (-5 *1 (-306)))) ((*1 *2 *1) - (-12 (-5 *2 (-771)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) - (-4 *4 (-1049))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1099)) (-5 *2 (-112))))) -(((*1 *2 *3 *1 *4) - (-12 (-5 *3 (-1139 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) - (-4 *5 (-13 (-1099) (-34))) (-4 *6 (-13 (-1099) (-34))) - (-5 *2 (-112)) (-5 *1 (-1140 *5 *6))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1269)) (-5 *1 (-822))))) + (|partial| -12 + (-5 *2 (-2 (|:| |num| (-892 *3)) (|:| |den| (-892 *3)))) + (-5 *1 (-892 *3)) (-4 *3 (-1099))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) + (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174)))) (-5 *1 (-1174))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-558) (-147))) (-5 *1 (-539 *3 *2)) - (-4 *2 (-1255 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-365) (-370) (-614 (-566)))) (-4 *4 (-1240 *3)) - (-4 *5 (-724 *3 *4)) (-5 *1 (-543 *3 *4 *5 *2)) (-4 *2 (-1255 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-365) (-370) (-614 (-566)))) (-5 *1 (-544 *3 *2)) - (-4 *2 (-1255 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1155 *3)) (-4 *3 (-13 (-558) (-147))) - (-5 *1 (-1151 *3))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-976 *4 *5 *6 *3)) (-4 *4 (-1049)) (-4 *5 (-793)) - (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-4 *4 (-558)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-566)) (-5 *1 (-447 *3)) (-4 *3 (-406)) (-4 *3 (-1049))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1157)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) - (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-1269)) - (-5 *1 (-988 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1157)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) - (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-1269)) - (-5 *1 (-1106 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7))))) + (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) + (-4 *6 (-1064 *3 *4 *5)) (-5 *1 (-624 *3 *4 *5 *6 *7 *2)) + (-4 *7 (-1070 *3 *4 *5 *6)) (-4 *2 (-1108 *3 *4 *5 *6))))) +(((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-112)) (-5 *1 (-892 *4)) + (-4 *4 (-1099))))) (((*1 *2 *3) - (-12 (-4 *3 (-1240 *2)) (-4 *2 (-1240 *4)) (-5 *1 (-985 *4 *2 *3 *5)) - (-4 *4 (-351)) (-4 *5 (-724 *2 *3))))) + (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3)) + (-4 *3 (-13 (-365) (-1199) (-1002)))))) +(((*1 *1 *1 *1) (-4 *1 (-661)))) +(((*1 *2 *1) + (-12 (-4 *1 (-375 *3)) (-4 *3 (-1214)) (-4 *3 (-850)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-375 *4)) (-4 *4 (-1214)) + (-5 *2 (-112))))) (((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566)))))) -(((*1 *2 *1) (-12 (-5 *2 (-822)) (-5 *1 (-821))))) + (-12 (-4 *3 (-558)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-419 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-644 *4)) (-4 *4 (-850)) (-5 *2 (-644 (-664 *4 *5))) - (-5 *1 (-627 *4 *5 *6)) (-4 *5 (-13 (-172) (-717 (-409 (-566))))) - (-14 *6 (-921))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225)) - (-5 *2 (-1035)) (-5 *1 (-752))))) -(((*1 *1 *1) - (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) + (-12 (-5 *3 (-644 (-566))) (-5 *2 (-644 (-689 (-566)))) + (-5 *1 (-1109))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-755))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-508)) (-5 *1 (-114)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-114))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) + (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174)))) (-5 *1 (-1174))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-771)) (-5 *1 (-783 *2)) (-4 *2 (-38 (-409 (-566)))) - (-4 *2 (-172))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-644 *6)) (-5 *4 (-644 (-1175))) (-4 *6 (-365)) - (-5 *2 (-644 (-295 (-952 *6)))) (-5 *1 (-540 *5 *6 *7)) - (-4 *5 (-454)) (-4 *7 (-13 (-365) (-848)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-921)) - (-5 *2 - (-3 (-1171 *4) - (-1264 (-644 (-2 (|:| -2233 *4) (|:| -2178 (-1119))))))) - (-5 *1 (-348 *4)) (-4 *4 (-351))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-365)) (-5 *1 (-1025 *3 *2)) (-4 *2 (-656 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-365)) (-5 *2 (-2 (|:| -2470 *3) (|:| -1684 (-644 *5)))) - (-5 *1 (-1025 *5 *3)) (-5 *4 (-644 *5)) (-4 *3 (-656 *5))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *4 (-1 (-3 (-566) "failed") *5)) (-4 *5 (-1049)) + (-5 *2 (-566)) (-5 *1 (-545 *5 *3)) (-4 *3 (-1240 *5)))) + ((*1 *2 *3 *4 *2 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-566) "failed") *4)) (-4 *4 (-1049)) + (-5 *2 (-566)) (-5 *1 (-545 *4 *3)) (-4 *3 (-1240 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-566) "failed") *4)) (-4 *4 (-1049)) + (-5 *2 (-566)) (-5 *1 (-545 *4 *3)) (-4 *3 (-1240 *4))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-771)) (-4 *4 (-13 (-1049) (-717 (-409 (-566))))) + (-4 *5 (-850)) (-5 *1 (-1280 *4 *5 *2)) (-4 *2 (-1285 *5 *4))))) +(((*1 *1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1049)))) + ((*1 *2 *3) + (-12 (-4 *4 (-558)) (-4 *4 (-172)) (-4 *5 (-375 *4)) + (-4 *6 (-375 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) + (-5 *1 (-688 *4 *5 *6 *3)) (-4 *3 (-687 *4 *5 *6)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-172)) (-4 *2 (-1049)) (-5 *1 (-714 *2 *3)) + (-4 *3 (-648 *2)))) + ((*1 *1 *1) + (-12 (-4 *2 (-172)) (-4 *2 (-1049)) (-5 *1 (-714 *2 *3)) + (-4 *3 (-648 *2)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-172)) (-4 *2 (-1049)))) + ((*1 *1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-172)) (-4 *2 (-1049))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1099)) (-5 *2 (-112))))) +(((*1 *1 *1 *1) (-4 *1 (-661)))) +(((*1 *1) (-5 *1 (-130)))) +(((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1240 *5)) + (-4 *5 (-13 (-365) (-147) (-1038 (-566)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-409 *6)) (|:| |h| *6) + (|:| |c1| (-409 *6)) (|:| |c2| (-409 *6)) (|:| -1462 *6))) + (-5 *1 (-1016 *5 *6)) (-5 *3 (-409 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-531)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-579)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861))))) (((*1 *2 *1) - (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-5 *3 (-566)) (-5 *2 (-112)) (-5 *1 (-482))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1157)) (-5 *3 (-823)) (-5 *1 (-822))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-771)) (-5 *2 (-644 (-1175))) (-5 *1 (-210)) - (-5 *3 (-1175)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-317 (-225))) (-5 *4 (-771)) (-5 *2 (-644 (-1175))) - (-5 *1 (-268)))) - ((*1 *2 *1) - (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)) - (-5 *2 (-644 *3)))) + (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)) + (-5 *2 (-771)))) ((*1 *2 *1) - (-12 (-5 *2 (-644 *3)) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-850)) - (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-14 *5 (-921)))) - ((*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-672 *3)) (-4 *3 (-850)))) - ((*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-677 *3)) (-4 *3 (-850)))) - ((*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-819 *3)) (-4 *3 (-850)))) - ((*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-893 *3)) (-4 *3 (-850)))) + (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1099)) + (-5 *2 (-771)))) ((*1 *2 *1) - (-12 (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) - (-5 *2 (-644 *3))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-508)) (-5 *3 (-644 (-965))) (-5 *1 (-292))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-396)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1194))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) - (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) - (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3)))))) + (-12 (-5 *2 (-771)) (-5 *1 (-735 *3 *4)) (-4 *3 (-1049)) + (-4 *4 (-726))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1240 (-409 (-566)))) (-5 *1 (-913 *3 *2)) + (-4 *2 (-1240 (-409 *3)))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) + (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174)))) (-5 *1 (-1174))))) -(((*1 *2 *1 *2 *3) - (|partial| -12 (-5 *2 (-1157)) (-5 *3 (-566)) (-5 *1 (-1062))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-644 *1)) (-5 *3 (-644 *7)) (-4 *1 (-1070 *4 *5 *6 *7)) - (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) - (-4 *7 (-1064 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) - (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 *1)) - (-4 *1 (-1070 *4 *5 *6 *7)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-644 *1)) (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) - (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) - (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-644 *1)) - (-4 *1 (-1070 *4 *5 *6 *3))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-1091 (-952 (-566)))) (-5 *3 (-952 (-566))) - (-5 *1 (-331)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1091 (-952 (-566)))) (-5 *1 (-331))))) -(((*1 *2 *3 *2) - (-12 - (-5 *2 - (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -1389 (-225)) - (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) - (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) - (-5 *3 (-644 (-264))) (-5 *1 (-262)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -1389 (-225)) - (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) - (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) - (-5 *1 (-264)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266)))) - ((*1 *2 *1 *3 *3 *4 *4 *4) - (-12 (-5 *3 (-566)) (-5 *4 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266)))) - ((*1 *2 *1 *3) - (-12 - (-5 *3 - (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -1389 (-225)) - (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) - (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) - (-5 *2 (-1269)) (-5 *1 (-1266)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -1389 (-225)) - (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) - (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) - (-5 *1 (-1266)))) - ((*1 *2 *1 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *2 (-409 (-566))) - (-5 *1 (-435 *4 *3)) (-4 *3 (-432 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-612 *3)) (-4 *3 (-432 *5)) - (-4 *5 (-13 (-558) (-1038 (-566)))) (-5 *2 (-1171 (-409 (-566)))) - (-5 *1 (-435 *5 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) + (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-1178)))) + ((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1269)) (-5 *1 (-1178)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-1175)) (-5 *2 (-1269)) (-5 *1 (-1178))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-921)) - (-5 *2 (-1264 (-644 (-2 (|:| -2233 *4) (|:| -2178 (-1119)))))) - (-5 *1 (-348 *4)) (-4 *4 (-351))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) - (-5 *1 (-755))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-644 (-409 *7))) - (-4 *7 (-1240 *6)) (-5 *3 (-409 *7)) (-4 *6 (-365)) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-576 *6 *7))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-771)) (-5 *2 (-1264 (-644 (-566)))) (-5 *1 (-482)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1214)) (-5 *1 (-601 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1214)) (-5 *1 (-1155 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1214)) (-5 *1 (-1155 *3))))) -(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) - (-12 (-5 *3 (-921)) (-5 *4 (-225)) (-5 *5 (-566)) (-5 *6 (-874)) - (-5 *2 (-1269)) (-5 *1 (-1265))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-976 *3 *4 *2 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) - (-4 *2 (-850)) (-4 *5 (-1064 *3 *4 *2))))) + (-12 (-5 *3 (-483 *4 *5)) (-14 *4 (-644 (-1175))) (-4 *5 (-1049)) + (-5 *2 (-952 *5)) (-5 *1 (-944 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-689 (-409 (-566)))) (-5 *2 (-644 *4)) (-5 *1 (-779 *4)) + (-4 *4 (-13 (-365) (-848)))))) +(((*1 *2) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) + (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-1171 (-952 *4))) (-5 *1 (-418 *3 *4)) + (-4 *3 (-419 *4)))) + ((*1 *2) + (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-4 *3 (-365)) + (-5 *2 (-1171 (-952 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1171 (-409 (-952 *3)))) (-5 *1 (-455 *3 *4 *5 *6)) + (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) + (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) + (-5 *2 (-644 (-644 (-644 (-771)))))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-1099)) (-4 *2 (-900 *4)) (-5 *1 (-692 *4 *2 *5 *3)) + (-4 *5 (-375 *2)) (-4 *3 (-13 (-375 *4) (-10 -7 (-6 -4414))))))) +(((*1 *1) (-5 *1 (-470)))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) + (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174)))) (-5 *1 (-1174))))) -(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-927))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) - (-5 *1 (-747))))) -(((*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1214))))) -(((*1 *1 *1 *1) (-4 *1 (-661)))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1083 *2)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-566) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1083 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-420 *3)) (-5 *1 (-914 *3)) (-4 *3 (-308))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-365) (-848))) - (-5 *2 (-644 (-2 (|:| -4138 (-644 *3)) (|:| -1465 *5)))) - (-5 *1 (-181 *5 *3)) (-4 *3 (-1240 (-169 *5))))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-365) (-848))) - (-5 *2 (-644 (-2 (|:| -4138 (-644 *3)) (|:| -1465 *4)))) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1240 (-169 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-822))))) -(((*1 *1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1049)) (-4 *2 (-365))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-943 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-644 (-943 *3))) (-4 *3 (-1049)) (-4 *1 (-1133 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-644 (-644 *3))) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-644 (-943 *3))) (-4 *1 (-1133 *3)) (-4 *3 (-1049))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1237 *5 *4)) (-4 *4 (-454)) (-4 *4 (-820)) - (-14 *5 (-1175)) (-5 *2 (-566)) (-5 *1 (-1113 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1199)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-558)) (-5 *2 (-644 *3)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-419 *4))))) +(((*1 *2 *3 *4 *4 *5 *6 *7) + (-12 (-5 *5 (-1175)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-644 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-644 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -1641 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1199) (-27) (-432 *8))) + (-4 *8 (-13 (-454) (-147) (-1038 *3) (-639 *3))) (-5 *3 (-566)) + (-5 *2 (-2 (|:| |ans| *4) (|:| -1966 *4) (|:| |sol?| (-112)))) + (-5 *1 (-1013 *8 *4))))) (((*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-792)) (-4 *2 (-365)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-225)))) ((*1 *1 *1 *1) - (-2809 (-12 (-5 *1 (-295 *2)) (-4 *2 (-365)) (-4 *2 (-1214))) + (-2768 (-12 (-5 *1 (-295 *2)) (-4 *2 (-365)) (-4 *2 (-1214))) (-12 (-5 *1 (-295 *2)) (-4 *2 (-475)) (-4 *2 (-1214))))) ((*1 *1 *1 *1) (-4 *1 (-365))) ((*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-381)))) @@ -7578,55 +7460,55 @@ ((*1 *1 *1 *2) (-12 (-5 *1 (-1287 *2 *3)) (-4 *2 (-365)) (-4 *2 (-1049)) (-4 *3 (-846))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) -(((*1 *1 *1 *1) (-4 *1 (-661)))) -(((*1 *1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-264)))) - ((*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1257 *3 *2)) - (-4 *2 (-1255 *3))))) -(((*1 *1 *2 *3 *1) - (-12 (-14 *4 (-644 (-1175))) (-4 *2 (-172)) - (-4 *3 (-238 (-3018 *4) (-771))) - (-14 *6 - (-1 (-112) (-2 (|:| -2178 *5) (|:| -2852 *3)) - (-2 (|:| -2178 *5) (|:| -2852 *3)))) - (-5 *1 (-463 *4 *2 *5 *3 *6 *7)) (-4 *5 (-850)) - (-4 *7 (-949 *2 *3 (-864 *4)))))) +(((*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-759))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1237 *5 *4)) (-4 *4 (-820)) (-14 *5 (-1175)) - (-5 *2 (-644 *4)) (-5 *1 (-1113 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) - (-5 *2 (-689 *4)))) - ((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-689 *4)) (-5 *1 (-418 *3 *4)) - (-4 *3 (-419 *4)))) - ((*1 *2) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-689 *3))))) -(((*1 *2) - (-12 (-5 *2 (-1269)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-1099)) - (-4 *4 (-1099))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1175)) - (-4 *4 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) - (-5 *2 (-1 *5 *5)) (-5 *1 (-804 *4 *5)) - (-4 *5 (-13 (-29 *4) (-1199) (-959)))))) + (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)) + (-5 *3 (-644 (-566))))) + ((*1 *2 *3) + (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)) + (-5 *3 (-644 (-566)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-644 (-952 *6))) (-5 *4 (-644 (-1175))) - (-4 *6 (-13 (-558) (-1038 *5))) (-4 *5 (-558)) - (-5 *2 (-644 (-644 (-295 (-409 (-952 *6)))))) (-5 *1 (-1039 *5 *6))))) + (|partial| -12 (-5 *3 (-1264 *4)) (-4 *4 (-639 *5)) (-4 *5 (-365)) + (-4 *5 (-558)) (-5 *2 (-1264 *5)) (-5 *1 (-638 *5 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1264 *4)) (-4 *4 (-639 *5)) + (-2404 (-4 *5 (-365))) (-4 *5 (-558)) (-5 *2 (-1264 (-409 *5))) + (-5 *1 (-638 *5 *4))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-327 *3 *4)) (-4 *3 (-1049)) + (-4 *4 (-792))))) (((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1002)))))) + (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1199)))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1264 *4)) (-4 *4 (-639 (-566))) + (-5 *2 (-1264 (-566))) (-5 *1 (-1291 *4))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1099)))) + ((*1 *1 *2) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1099))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-856 *2)) (-4 *2 (-172)))) + ((*1 *2 *3 *3 *2) + (-12 (-5 *3 (-771)) (-5 *1 (-856 *2)) (-4 *2 (-172))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-921)) + (-5 *2 (-1264 (-644 (-2 (|:| -2876 *4) (|:| -2835 (-1119)))))) + (-5 *1 (-348 *4)) (-4 *4 (-351))))) +(((*1 *2 *3 *4 *3 *5 *3) + (-12 (-5 *4 (-689 (-225))) (-5 *5 (-689 (-566))) (-5 *3 (-566)) + (-5 *2 (-1035)) (-5 *1 (-754))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-558)) (-5 *2 (-112))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-921)) (-5 *4 (-874)) (-5 *2 (-1269)) (-5 *1 (-1265)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-921)) (-5 *4 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1265)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266))))) (((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1 *1) (|partial| -5 *1 (-134))) ((*1 *1 *1 *1) (-12 (-5 *1 (-214 *2)) (-4 *2 (-13 (-850) - (-10 -8 (-15 -4390 ((-1157) $ (-1175))) (-15 -1675 ((-1269) $)) - (-15 -3997 ((-1269) $))))))) + (-10 -8 (-15 -1309 ((-1157) $ (-1175))) (-15 -1710 ((-1269) $)) + (-15 -1597 ((-1269) $))))))) ((*1 *1 *1 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1214)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1214)))) ((*1 *1 *1 *1) @@ -7646,48 +7528,163 @@ ((*1 *2 *2 *2) (-12 (-5 *2 (-943 (-225))) (-5 *1 (-1210)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1214)) (-4 *2 (-21)))) ((*1 *1 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1214)) (-4 *2 (-21))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-921)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) - ((*1 *1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-264))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1099))))) -(((*1 *1 *2 *3) - (-12 - (-5 *3 +(((*1 *2 *3) + (-12 (-5 *2 (-420 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1240 (-48))))) + ((*1 *2 *3 *1) + (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) + (-5 *1 (-121 *3)) (-4 *3 (-850)))) + ((*1 *2 *2) + (-12 (-5 *2 (-587 *4)) (-4 *4 (-13 (-29 *3) (-1199))) + (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) + (-5 *1 (-585 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-587 (-409 (-952 *3)))) + (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-590 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1240 *5)) (-4 *5 (-365)) + (-5 *2 (-2 (|:| -2548 *3) (|:| |special| *3))) (-5 *1 (-727 *5 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1264 *5)) (-4 *5 (-365)) (-4 *5 (-1049)) + (-5 *2 (-644 (-644 (-689 *5)))) (-5 *1 (-1029 *5)) + (-5 *3 (-644 (-689 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1264 (-1264 *5))) (-4 *5 (-365)) (-4 *5 (-1049)) + (-5 *2 (-644 (-644 (-689 *5)))) (-5 *1 (-1029 *5)) + (-5 *3 (-644 (-689 *5))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-644 *1)) (-4 *1 (-1143)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-644 *1)) (-4 *1 (-1143))))) +(((*1 *1 *1) (-4 *1 (-661)))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *2 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-331))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 *4)) (-4 *4 (-1049)) (-5 *2 (-1264 *4)) + (-5 *1 (-1176 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-921)) (-5 *2 (-1264 *3)) (-5 *1 (-1176 *3)) + (-4 *3 (-1049))))) +(((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-3 *3 (-644 *1))) + (-4 *1 (-1070 *4 *5 *6 *3))))) +(((*1 *2 *1 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-308)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3302 *1))) + (-4 *1 (-308))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-771)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) + (-4 *4 (-1049))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-689 *8)) (-4 *8 (-949 *5 *7 *6)) + (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-850) (-614 (-1175)))) + (-4 *7 (-793)) + (-5 *2 (-644 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) - (|:| |xpnt| (-566))))) - (-4 *2 (-558)) (-5 *1 (-420 *2)))) + (-2 (|:| |eqzro| (-644 *8)) (|:| |neqzro| (-644 *8)) + (|:| |wcond| (-644 (-952 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1264 (-409 (-952 *5)))) + (|:| -2875 (-644 (-1264 (-409 (-952 *5)))))))))) + (-5 *1 (-924 *5 *6 *7 *8)) (-5 *4 (-644 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-689 *8)) (-5 *4 (-644 (-1175))) (-4 *8 (-949 *5 *7 *6)) + (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-850) (-614 (-1175)))) + (-4 *7 (-793)) + (-5 *2 + (-644 + (-2 (|:| |eqzro| (-644 *8)) (|:| |neqzro| (-644 *8)) + (|:| |wcond| (-644 (-952 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1264 (-409 (-952 *5)))) + (|:| -2875 (-644 (-1264 (-409 (-952 *5)))))))))) + (-5 *1 (-924 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |contp| (-566)) - (|:| -4138 (-644 (-2 (|:| |irr| *4) (|:| -3149 (-566))))))) - (-4 *4 (-1240 (-566))) (-5 *2 (-420 *4)) (-5 *1 (-444 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049))))) -(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-558)) + (-12 (-5 *3 (-689 *7)) (-4 *7 (-949 *4 *6 *5)) + (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) + (-4 *6 (-793)) (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1099)) (-5 *2 (-889 *3 *4)) (-5 *1 (-885 *3 *4 *5)) - (-4 *3 (-1099)) (-4 *5 (-666 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-644 (-943 (-225)))) (-5 *1 (-1265))))) -(((*1 *1 *1 *1) (-4 *1 (-967)))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1155 *4)) (-5 *3 (-1 *4 (-566))) (-4 *4 (-1049)) - (-5 *1 (-1159 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-644 (-689 *4))) (-5 *2 (-689 *4)) (-4 *4 (-1049)) - (-5 *1 (-1029 *4))))) + (-644 + (-2 (|:| |eqzro| (-644 *7)) (|:| |neqzro| (-644 *7)) + (|:| |wcond| (-644 (-952 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1264 (-409 (-952 *4)))) + (|:| -2875 (-644 (-1264 (-409 (-952 *4)))))))))) + (-5 *1 (-924 *4 *5 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-689 *9)) (-5 *5 (-921)) (-4 *9 (-949 *6 *8 *7)) + (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-850) (-614 (-1175)))) + (-4 *8 (-793)) + (-5 *2 + (-644 + (-2 (|:| |eqzro| (-644 *9)) (|:| |neqzro| (-644 *9)) + (|:| |wcond| (-644 (-952 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1264 (-409 (-952 *6)))) + (|:| -2875 (-644 (-1264 (-409 (-952 *6)))))))))) + (-5 *1 (-924 *6 *7 *8 *9)) (-5 *4 (-644 *9)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-689 *9)) (-5 *4 (-644 (-1175))) (-5 *5 (-921)) + (-4 *9 (-949 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) + (-4 *7 (-13 (-850) (-614 (-1175)))) (-4 *8 (-793)) + (-5 *2 + (-644 + (-2 (|:| |eqzro| (-644 *9)) (|:| |neqzro| (-644 *9)) + (|:| |wcond| (-644 (-952 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1264 (-409 (-952 *6)))) + (|:| -2875 (-644 (-1264 (-409 (-952 *6)))))))))) + (-5 *1 (-924 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-689 *8)) (-5 *4 (-921)) (-4 *8 (-949 *5 *7 *6)) + (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-850) (-614 (-1175)))) + (-4 *7 (-793)) + (-5 *2 + (-644 + (-2 (|:| |eqzro| (-644 *8)) (|:| |neqzro| (-644 *8)) + (|:| |wcond| (-644 (-952 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1264 (-409 (-952 *5)))) + (|:| -2875 (-644 (-1264 (-409 (-952 *5)))))))))) + (-5 *1 (-924 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-689 *9)) (-5 *4 (-644 *9)) (-5 *5 (-1157)) + (-4 *9 (-949 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) + (-4 *7 (-13 (-850) (-614 (-1175)))) (-4 *8 (-793)) (-5 *2 (-566)) + (-5 *1 (-924 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-689 *9)) (-5 *4 (-644 (-1175))) (-5 *5 (-1157)) + (-4 *9 (-949 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) + (-4 *7 (-13 (-850) (-614 (-1175)))) (-4 *8 (-793)) (-5 *2 (-566)) + (-5 *1 (-924 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-689 *8)) (-5 *4 (-1157)) (-4 *8 (-949 *5 *7 *6)) + (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-850) (-614 (-1175)))) + (-4 *7 (-793)) (-5 *2 (-566)) (-5 *1 (-924 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-689 *10)) (-5 *4 (-644 *10)) (-5 *5 (-921)) + (-5 *6 (-1157)) (-4 *10 (-949 *7 *9 *8)) (-4 *7 (-13 (-308) (-147))) + (-4 *8 (-13 (-850) (-614 (-1175)))) (-4 *9 (-793)) (-5 *2 (-566)) + (-5 *1 (-924 *7 *8 *9 *10)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-689 *10)) (-5 *4 (-644 (-1175))) (-5 *5 (-921)) + (-5 *6 (-1157)) (-4 *10 (-949 *7 *9 *8)) (-4 *7 (-13 (-308) (-147))) + (-4 *8 (-13 (-850) (-614 (-1175)))) (-4 *9 (-793)) (-5 *2 (-566)) + (-5 *1 (-924 *7 *8 *9 *10)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-689 *9)) (-5 *4 (-921)) (-5 *5 (-1157)) + (-4 *9 (-949 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) + (-4 *7 (-13 (-850) (-614 (-1175)))) (-4 *8 (-793)) (-5 *2 (-566)) + (-5 *1 (-924 *6 *7 *8 *9))))) (((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-157))) ((*1 *1 *1 *1) (-12 (-5 *1 (-214 *2)) (-4 *2 (-13 (-850) - (-10 -8 (-15 -4390 ((-1157) $ (-1175))) (-15 -1675 ((-1269) $)) - (-15 -3997 ((-1269) $))))))) + (-10 -8 (-15 -1309 ((-1157) $ (-1175))) (-15 -1710 ((-1269) $)) + (-15 -1597 ((-1269) $))))))) ((*1 *1 *1 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-25)) (-4 *2 (-1214)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-25)) (-4 *2 (-1214)))) ((*1 *1 *2 *1) @@ -7710,109 +7707,8 @@ (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-943 (-225))) (-5 *1 (-1210)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1214)) (-4 *2 (-25))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) - (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) - (-5 *1 (-988 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) - (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) - (-5 *1 (-1106 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-4 *1 (-308)) (-5 *2 (-771))))) -(((*1 *1 *1) - (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-644 *6)) (-4 *6 (-850)) (-4 *4 (-365)) (-4 *5 (-793)) - (-5 *2 - (-2 (|:| |mval| (-689 *4)) (|:| |invmval| (-689 *4)) - (|:| |genIdeal| (-506 *4 *5 *6 *7)))) - (-5 *1 (-506 *4 *5 *6 *7)) (-4 *7 (-949 *4 *5 *6))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) - (-4 *3 (-369 *4)))) - ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-921)) (-4 *5 (-558)) (-5 *2 (-689 *5)) - (-5 *1 (-956 *5 *3)) (-4 *3 (-656 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-926))))) -(((*1 *2 *3) - (-12 (-5 *3 (-644 *4)) (-4 *4 (-1099)) (-5 *2 (-1269)) - (-5 *1 (-1215 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-644 *4)) (-4 *4 (-1099)) (-5 *2 (-1269)) - (-5 *1 (-1215 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1049)) - (-14 *4 (-644 (-1175))))) - ((*1 *2 *3) - (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1214)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1049) (-850))) - (-14 *4 (-644 (-1175))))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-672 *3)) (-4 *3 (-850)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-677 *3)) (-4 *3 (-850)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-850))))) -(((*1 *2 *3) - (-12 (-5 *3 (-644 (-921))) (-5 *2 (-904 (-566))) (-5 *1 (-917))))) -(((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-218)))) - ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-441)))) - ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-838)))) - ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1114)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-644 (-1180))) (-5 *3 (-1180)) (-5 *1 (-1117))))) -(((*1 *1 *1) (-4 *1 (-661)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) -(((*1 *1 *1 *1) (-4 *1 (-761)))) -(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-566)) (-5 *4 (-689 (-169 (-225)))) (-5 *2 (-1035)) - (-5 *1 (-756))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-566)) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) - (-4 *4 (-375 *3)) (-4 *5 (-375 *3))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-114)) (-5 *4 (-644 *2)) (-5 *1 (-113 *2)) - (-4 *2 (-1099)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-644 *4))) (-4 *4 (-1099)) - (-5 *1 (-113 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1099)) - (-5 *1 (-113 *4)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-644 *4))) - (-5 *1 (-113 *4)) (-4 *4 (-1099)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-648 *3)) (-4 *3 (-1049)) - (-5 *1 (-714 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1049)) (-5 *1 (-836 *3))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-644 (-1264 *4))) (-5 *1 (-368 *3 *4)) - (-4 *3 (-369 *4)))) - ((*1 *2) - (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-558)) - (-5 *2 (-644 (-1264 *3)))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-169 (-225))) (-5 *5 (-566)) (-5 *6 (-1157)) - (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-758))))) -(((*1 *1) (-5 *1 (-331)))) -(((*1 *2 *3 *4 *5 *6 *7 *7 *8) - (-12 - (-5 *3 - (-2 (|:| |det| *12) (|:| |rows| (-644 (-566))) - (|:| |cols| (-644 (-566))))) - (-5 *4 (-689 *12)) (-5 *5 (-644 (-409 (-952 *9)))) - (-5 *6 (-644 (-644 *12))) (-5 *7 (-771)) (-5 *8 (-566)) - (-4 *9 (-13 (-308) (-147))) (-4 *12 (-949 *9 *11 *10)) - (-4 *10 (-13 (-850) (-614 (-1175)))) (-4 *11 (-793)) - (-5 *2 - (-2 (|:| |eqzro| (-644 *12)) (|:| |neqzro| (-644 *12)) - (|:| |wcond| (-644 (-952 *9))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1264 (-409 (-952 *9)))) - (|:| -2365 (-644 (-1264 (-409 (-952 *9))))))))) - (-5 *1 (-924 *9 *10 *11 *12))))) -(((*1 *2 *1) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-276))))) + (-12 (-4 *2 (-708 *3)) (-5 *1 (-827 *2 *3)) (-4 *3 (-1049))))) (((*1 *2 *1) (-12 (|has| *1 (-6 -4414)) (-4 *1 (-34)) (-5 *2 (-771)))) ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-250)))) ((*1 *2 *1) @@ -7821,94 +7717,89 @@ ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-1287 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-846))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1175)) - (-4 *5 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) - (-5 *2 (-587 *3)) (-5 *1 (-428 *5 *3)) - (-4 *3 (-13 (-1199) (-29 *5)))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1171 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-644 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) - (-14 *3 (-566)) (-14 *4 (-771))))) -(((*1 *2 *1) - (-12 (-4 *1 (-695 *3)) (-4 *3 (-1099)) - (-5 *2 (-644 (-2 (|:| -3867 *3) (|:| -4045 (-771)))))))) -(((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-644 (-1157))) (-5 *2 (-1157)) (-5 *1 (-1265)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1265)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1265)))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-644 (-1157))) (-5 *2 (-1157)) (-5 *1 (-1266)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1266)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1266))))) -(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) - ((*1 *1) (-5 *1 (-129))) - ((*1 *1) - (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-566)) (-14 *3 (-771)) - (-4 *4 (-172)))) - ((*1 *1) (-5 *1 (-548))) ((*1 *1) (-5 *1 (-549))) - ((*1 *1) (-5 *1 (-550))) ((*1 *1) (-5 *1 (-551))) - ((*1 *1) (-4 *1 (-726))) ((*1 *1) (-5 *1 (-1175))) - ((*1 *1) (-12 (-5 *1 (-1181 *2)) (-14 *2 (-921)))) - ((*1 *1) (-12 (-5 *1 (-1182 *2)) (-14 *2 (-921)))) - ((*1 *1) (-5 *1 (-1219))) ((*1 *1) (-5 *1 (-1220))) - ((*1 *1) (-5 *1 (-1221))) ((*1 *1) (-5 *1 (-1222)))) (((*1 *2 *3) - (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) - (-4 *7 (-1064 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-644 *7)) (|:| |badPols| (-644 *7)))) - (-5 *1 (-977 *4 *5 *6 *7)) (-5 *3 (-644 *7))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1255 *4)) (-5 *1 (-1257 *4 *2)) - (-4 *4 (-38 (-409 (-566))))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-850)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-862)))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-648 *3)) (-4 *3 (-1049)) - (-5 *1 (-714 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1049)) (-5 *1 (-836 *3))))) + (-12 (-5 *2 (-1171 (-566))) (-5 *1 (-942)) (-5 *3 (-566)))) + ((*1 *2 *2) + (-12 (-4 *3 (-308)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) + (-5 *1 (-1123 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5))))) +(((*1 *1 *2 *3) + (-12 + (-5 *3 + (-644 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) + (|:| |xpnt| (-566))))) + (-4 *2 (-558)) (-5 *1 (-420 *2)))) + ((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |contp| (-566)) + (|:| -1616 (-644 (-2 (|:| |irr| *4) (|:| -4125 (-566))))))) + (-4 *4 (-1240 (-566))) (-5 *2 (-420 *4)) (-5 *1 (-444 *4))))) +(((*1 *2 *1) + (-12 (-4 *2 (-13 (-848) (-365))) (-5 *1 (-1060 *2 *3)) + (-4 *3 (-1240 *2))))) +(((*1 *2 *2) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-308)) + (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-449 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-644 *7)) (-5 *3 (-1157)) (-4 *7 (-949 *4 *5 *6)) + (-4 *4 (-308)) (-4 *5 (-793)) (-4 *6 (-850)) + (-5 *1 (-449 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-644 *7)) (-5 *3 (-1157)) (-4 *7 (-949 *4 *5 *6)) + (-4 *4 (-308)) (-4 *5 (-793)) (-4 *6 (-850)) + (-5 *1 (-449 *4 *5 *6 *7))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4414)) (-4 *1 (-235 *3)) + (-4 *3 (-1099)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-283 *3)) (-4 *3 (-1214))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-921)) (-5 *1 (-1032 *2)) + (-4 *2 (-13 (-1099) (-10 -8 (-15 * ($ $ $)))))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-905 *4)) (-4 *4 (-1099)) (-5 *2 (-644 (-771))) + (-5 *1 (-904 *4))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-547)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-538))))) +(((*1 *2 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *2)) (-4 *2 (-172)))) + ((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-418 *3 *2)) (-4 *3 (-419 *2)))) + ((*1 *2) (-12 (-4 *1 (-419 *2)) (-4 *2 (-172))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1060 (-1024 *4) (-1171 (-1024 *4)))) (-5 *3 (-862)) + (-5 *1 (-1024 *4)) (-4 *4 (-13 (-848) (-365) (-1022)))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) ((*1 *1 *1 *1) (-5 *1 (-862)))) -(((*1 *2 *3) - (-12 (-5 *3 (-612 *5)) (-4 *5 (-432 *4)) (-4 *4 (-1038 (-566))) - (-4 *4 (-558)) (-5 *2 (-1171 *5)) (-5 *1 (-32 *4 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-612 *1)) (-4 *1 (-1049)) (-4 *1 (-303)) - (-5 *2 (-1171 *1))))) -(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) - (-12 (-5 *3 (-566)) (-5 *5 (-112)) (-5 *6 (-689 (-225))) - (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-77 OBJFUN)))) - (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-753))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-1049))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-566)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1214)) + (-4 *5 (-375 *4)) (-4 *2 (-375 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-566)) (-4 *1 (-1053 *4 *5 *6 *7 *2)) (-4 *6 (-1049)) + (-4 *7 (-238 *5 *6)) (-4 *2 (-238 *4 *6))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) + (-5 *2 + (-2 (|:| -2876 *4) (|:| -1425 *4) (|:| |totalpts| (-566)) + (|:| |success| (-112)))) + (-5 *1 (-789)) (-5 *5 (-566))))) (((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-755))))) -(((*1 *1 *2) (-12 (-5 *2 (-644 (-381))) (-5 *1 (-264)))) - ((*1 *1) - (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-558)) (-4 *2 (-172)))) - ((*1 *2 *1) (-12 (-5 *1 (-420 *2)) (-4 *2 (-558))))) -(((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-281))))) -(((*1 *1 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-850)) (-4 *3 (-172)))) - ((*1 *1 *1) - (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-850)) - (-4 *3 (-13 (-172) (-717 (-409 (-566))))) (-14 *4 (-921)))) - ((*1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-850)))) - ((*1 *1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1281 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) -(((*1 *1 *1 *1) (-5 *1 (-862)))) -(((*1 *1 *2) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-108)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-538))) (-5 *1 (-538))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-644 (-771))) (-5 *3 (-171)) (-5 *1 (-1163 *4 *5)) - (-14 *4 (-921)) (-4 *5 (-1049))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-850)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-862))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-1099))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) + (-5 *2 (-112))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-566)) (-5 *2 (-112)) (-5 *1 (-555))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-644 *7)) (-4 *7 (-850)) (-4 *5 (-909)) (-4 *6 (-793)) + (-4 *8 (-949 *5 *6 *7)) (-5 *2 (-420 (-1171 *8))) + (-5 *1 (-906 *5 *6 *7 *8)) (-5 *4 (-1171 *8)))) + ((*1 *2 *3) + (-12 (-4 *4 (-909)) (-4 *5 (-1240 *4)) (-5 *2 (-420 (-1171 *5))) + (-5 *1 (-907 *4 *5)) (-5 *3 (-1171 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) +(((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1269)) (-5 *1 (-1178))))) (((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-558)))) ((*1 *1 *1 *2) @@ -7930,373 +7821,363 @@ (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-558)))) ((*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3))))) -(((*1 *2 *1) - (-12 +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1262 *3)) (-4 *3 (-1214)) (-4 *3 (-1049)) + (-5 *2 (-689 *3))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-1157)) (-5 *5 (-689 (-225))) + (-5 *2 (-1035)) (-5 *1 (-747))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1139 *3 *4)) (-4 *3 (-13 (-1099) (-34))) + (-4 *4 (-13 (-1099) (-34)))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) + (-4 *3 (-369 *4)))) + ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-874))))) +(((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-281))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 - (-644 - (-2 - (|:| -2004 - (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) - (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (|:| -3867 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1155 (-225))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2446 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-561)))) - ((*1 *2 *1) - (-12 (-4 *1 (-604 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1214)) - (-5 *2 (-644 *4))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-225)) (-5 *4 (-566)) - (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2371)))) - (-5 *2 (-1035)) (-5 *1 (-748))))) -(((*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1214))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436))))) -(((*1 *2 *3) (-12 (-5 *3 (-493)) (-5 *2 (-691 (-581))) (-5 *1 (-581))))) -(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-1265)))) - ((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-1266))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 *9)) (-4 *8 (-1064 *5 *6 *7)) - (-4 *9 (-1070 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) - (-4 *7 (-850)) (-5 *2 (-771)) (-5 *1 (-1068 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 *9)) (-4 *8 (-1064 *5 *6 *7)) - (-4 *9 (-1108 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) - (-4 *7 (-850)) (-5 *2 (-771)) (-5 *1 (-1144 *5 *6 *7 *8 *9))))) -(((*1 *2 *3 *4 *5 *6 *5 *3 *7) - (-12 (-5 *4 (-566)) - (-5 *6 - (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3859 (-381)))) - (-5 *7 (-1 (-1269) (-1264 *5) (-1264 *5) (-381))) - (-5 *3 (-1264 (-381))) (-5 *5 (-381)) (-5 *2 (-1269)) - (-5 *1 (-788)))) - ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) - (-12 (-5 *4 (-566)) - (-5 *6 - (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3859 (-381)))) - (-5 *7 (-1 (-1269) (-1264 *5) (-1264 *5) (-381))) - (-5 *3 (-1264 (-381))) (-5 *5 (-381)) (-5 *2 (-1269)) - (-5 *1 (-788))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-566)) (-5 *3 (-921)) (-4 *1 (-406)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-566)) (-4 *1 (-406)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1102 *3 *4 *5 *2 *6)) (-4 *3 (-1099)) (-4 *4 (-1099)) - (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *2 (-1099))))) + (-2 (|:| -2876 *4) (|:| -1425 *4) (|:| |totalpts| (-566)) + (|:| |success| (-112)))) + (-5 *1 (-789)) (-5 *5 (-566))))) +(((*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-1099)))) + ((*1 *1 *1) (-5 *1 (-632)))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) (-4 *5 (-793)) + (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-850)) (-5 *2 (-112)))) ((*1 *1 *1 *1) (-5 *1 (-862)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) (((*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-819 *3)) (|:| |rm| (-819 *3)))) (-5 *1 (-819 *3)) (-4 *3 (-850)))) ((*1 *1 *1 *1) (-5 *1 (-862)))) -(((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-538))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *2 (-1035)) + (-5 *1 (-755))))) +(((*1 *2 *2) + (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))) + (-5 *1 (-176 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-409 (-566))) (-5 *1 (-596 *3)) (-4 *3 (-38 *2)) + (-4 *3 (-1049))))) +(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-331)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-331))))) +(((*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1099)) (-4 *4 (-1099)) + (-4 *6 (-1099)) (-5 *2 (-1 *6 *5)) (-5 *1 (-684 *5 *4 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-752))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566)))))) (((*1 *2 *3) - (-12 (-5 *3 (-644 (-1175))) (-5 *2 (-1269)) (-5 *1 (-1216)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-644 (-1175))) (-5 *2 (-1269)) (-5 *1 (-1216))))) + (-12 (-4 *2 (-365)) (-4 *2 (-848)) (-5 *1 (-945 *2 *3)) + (-4 *3 (-1240 *2))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-850)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-862))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-1099))))) +(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-927))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-689 *2)) (-5 *4 (-771)) + (-4 *2 (-13 (-308) (-10 -8 (-15 -1364 ((-420 $) $))))) + (-4 *5 (-1240 *2)) (-5 *1 (-501 *2 *5 *6)) (-4 *6 (-411 *2 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1171 *4)) (-4 *4 (-351)) (-5 *2 (-112)) + (-5 *1 (-359 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1264 *4)) (-4 *4 (-351)) (-5 *2 (-112)) + (-5 *1 (-530 *4))))) (((*1 *2 *3) - (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1218)) (-4 *3 (-1240 *4)) - (-4 *5 (-1240 (-409 *3))) (-5 *2 (-112)))) + (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-644 (-1175))) (-4 *5 (-1049)) + (-5 *2 (-952 *5)) (-5 *1 (-944 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *2 (-169 *4)) (-5 *1 (-181 *4 *3)) + (-4 *4 (-13 (-365) (-848))) (-4 *3 (-1240 *2))))) +(((*1 *2 *3) + (-12 (|has| *6 (-6 -4415)) (-4 *4 (-365)) (-4 *5 (-375 *4)) + (-4 *6 (-375 *4)) (-5 *2 (-644 *6)) (-5 *1 (-523 *4 *5 *6 *3)) + (-4 *3 (-687 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) - (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112))))) + (-12 (|has| *9 (-6 -4415)) (-4 *4 (-558)) (-4 *5 (-375 *4)) + (-4 *6 (-375 *4)) (-4 *7 (-992 *4)) (-4 *8 (-375 *7)) + (-4 *9 (-375 *7)) (-5 *2 (-644 *6)) + (-5 *1 (-524 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-687 *4 *5 *6)) + (-4 *10 (-687 *7 *8 *9)))) + ((*1 *2 *1) + (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-4 *3 (-558)) (-5 *2 (-644 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-558)) (-4 *4 (-172)) (-4 *5 (-375 *4)) + (-4 *6 (-375 *4)) (-5 *2 (-644 *6)) (-5 *1 (-688 *4 *5 *6 *3)) + (-4 *3 (-687 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-558)) + (-5 *2 (-644 *7))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-558) (-1038 (-566)))) (-5 *1 (-188 *3 *2)) - (-4 *2 (-13 (-27) (-1199) (-432 (-169 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-558) (-1038 (-566)))) - (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1199) (-432 (-169 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) - (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1175)) - (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) - (-5 *1 (-1203 *4 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *4)))))) -(((*1 *1 *2 *2) - (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1004 *3)) (-14 *3 (-566))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1002))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) - (-5 *1 (-1160 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) - (-5 *1 (-1161 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) -(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-862)))) - ((*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1269)) (-5 *1 (-962))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-644 (-566))) (-5 *1 (-247 *3 *4)) - (-14 *3 (-644 (-1175))) (-4 *4 (-1049)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-644 (-566))) (-14 *3 (-644 (-1175))) - (-5 *1 (-456 *3 *4 *5)) (-4 *4 (-1049)) - (-4 *5 (-238 (-3018 *3) (-771))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-644 (-566))) (-5 *1 (-483 *3 *4)) - (-14 *3 (-644 (-1175))) (-4 *4 (-1049))))) + (|partial| -12 (-5 *2 (-1171 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1214)) (-4 *1 (-107 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-366 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1099))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-112)) (-5 *1 (-821))))) -(((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |mval| (-689 *3)) (|:| |invmval| (-689 *3)) - (|:| |genIdeal| (-506 *3 *4 *5 *6)))) - (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) - (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5))))) + (-12 (-4 *3 (-1049)) (-5 *2 (-644 *1)) (-4 *1 (-1133 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-850)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-862)))) +(((*1 *1 *1 *1) (-4 *1 (-308))) ((*1 *1 *1 *1) (-5 *1 (-771))) + ((*1 *1 *1 *1) (-5 *1 (-862)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 (-225))) (-5 *2 (-1264 (-699))) (-5 *1 (-306))))) +(((*1 *2) + (-12 (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) + (-5 *2 (-1264 *1)) (-4 *1 (-344 *3 *4 *5))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1138)))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-821))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-1269)) (-5 *1 (-831))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-566)) (-5 *3 (-921)) (-4 *1 (-406)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-566)) (-4 *1 (-406)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1102 *3 *4 *5 *2 *6)) (-4 *3 (-1099)) (-4 *4 (-1099)) + (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *2 (-1099))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1026 (-843 (-566)))) + (-5 *3 (-1155 (-2 (|:| |k| (-566)) (|:| |c| *4)))) (-4 *4 (-1049)) + (-5 *1 (-596 *4))))) +(((*1 *2) + (-12 (-5 *2 (-1269)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-1099)) + (-4 *4 (-1099))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-850)) (-5 *2 (-112)))) ((*1 *1 *1 *1) (-5 *1 (-862))) ((*1 *2 *1 *1) (-12 (-4 *1 (-903 *3)) (-4 *3 (-1099)) (-5 *2 (-112)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-1099))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-682 *2)) (-4 *2 (-1099)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-644 *5) (-644 *5))) (-5 *4 (-566)) - (-5 *2 (-644 *5)) (-5 *1 (-682 *5)) (-4 *5 (-1099))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-566)) (-5 *3 (-771)) (-5 *1 (-563))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-644 *3)) (-4 *3 (-949 *4 *6 *5)) (-4 *4 (-454)) - (-4 *5 (-850)) (-4 *6 (-793)) (-5 *1 (-987 *4 *5 *6 *3))))) -(((*1 *1 *1 *1) (-5 *1 (-862)))) -(((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1002)))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1109)) (-5 *3 (-566))))) -(((*1 *2 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-759))))) -(((*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1178))))) -(((*1 *2 *1) - (-12 (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -3570 *4)))) - (-5 *1 (-1140 *3 *4)) (-4 *3 (-13 (-1099) (-34))) - (-4 *4 (-13 (-1099) (-34)))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 - (-5 *3 - (-1 (-3 (-2 (|:| -2346 *4) (|:| |coeff| *4)) "failed") *4)) - (-4 *4 (-365)) (-5 *1 (-576 *4 *2)) (-4 *2 (-1240 *4))))) -(((*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-97))))) +(((*1 *2 *3 *1 *4) + (-12 (-5 *3 (-1139 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) + (-4 *5 (-13 (-1099) (-34))) (-4 *6 (-13 (-1099) (-34))) + (-5 *2 (-112)) (-5 *1 (-1140 *5 *6))))) (((*1 *1 *1 *1) (-4 *1 (-308))) ((*1 *1 *1 *1) (-5 *1 (-771))) ((*1 *1 *1 *1) (-5 *1 (-862)))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4414)) (-4 *1 (-235 *3)) - (-4 *3 (-1099)))) - ((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4414)) (-4 *1 (-235 *2)) (-4 *2 (-1099)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-283 *2)) (-4 *2 (-1214)) (-4 *2 (-1099)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-365)) (-4 *5 (-558)) + (-5 *2 + (-2 (|:| |minor| (-644 (-921))) (|:| -3434 *3) + (|:| |minors| (-644 (-644 (-921)))) (|:| |ops| (-644 *3)))) + (-5 *1 (-90 *5 *3)) (-5 *4 (-921)) (-4 *3 (-656 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-644 (-644 (-771)))) (-5 *1 (-904 *3)) (-4 *3 (-1099))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1049)) (-5 *2 (-566)) (-5 *1 (-445 *4 *3 *5)) + (-4 *3 (-1240 *4)) + (-4 *5 (-13 (-406) (-1038 *4) (-365) (-1199) (-285)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1157) (-774))) (-5 *1 (-114))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-889 *5 *3)) (-5 *4 (-892 *5)) (-4 *5 (-1099)) + (-4 *3 (-166 *6)) (-4 (-952 *6) (-886 *5)) + (-4 *6 (-13 (-886 *5) (-172))) (-5 *1 (-178 *5 *6 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-889 *4 *1)) (-5 *3 (-892 *4)) (-4 *1 (-886 *4)) + (-4 *4 (-1099)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-889 *5 *6)) (-5 *4 (-892 *5)) (-4 *5 (-1099)) + (-4 *6 (-13 (-1099) (-1038 *3))) (-4 *3 (-886 *5)) + (-5 *1 (-931 *5 *3 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-889 *5 *3)) (-4 *5 (-1099)) + (-4 *3 (-13 (-432 *6) (-614 *4) (-886 *5) (-1038 (-612 $)))) + (-5 *4 (-892 *5)) (-4 *6 (-13 (-558) (-886 *5))) + (-5 *1 (-932 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-889 (-566) *3)) (-5 *4 (-892 (-566))) (-4 *3 (-547)) + (-5 *1 (-933 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-889 *5 *6)) (-5 *3 (-612 *6)) (-4 *5 (-1099)) + (-4 *6 (-13 (-1099) (-1038 (-612 $)) (-614 *4) (-886 *5))) + (-5 *4 (-892 *5)) (-5 *1 (-934 *5 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-885 *5 *6 *3)) (-5 *4 (-892 *5)) (-4 *5 (-1099)) + (-4 *6 (-886 *5)) (-4 *3 (-666 *6)) (-5 *1 (-935 *5 *6 *3)))) + ((*1 *2 *3 *4 *2 *5) + (-12 (-5 *5 (-1 (-889 *6 *3) *8 (-892 *6) (-889 *6 *3))) + (-4 *8 (-850)) (-5 *2 (-889 *6 *3)) (-5 *4 (-892 *6)) + (-4 *6 (-1099)) (-4 *3 (-13 (-949 *9 *7 *8) (-614 *4))) + (-4 *7 (-793)) (-4 *9 (-13 (-1049) (-886 *6))) + (-5 *1 (-936 *6 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-889 *5 *3)) (-4 *5 (-1099)) + (-4 *3 (-13 (-949 *8 *6 *7) (-614 *4))) (-5 *4 (-892 *5)) + (-4 *7 (-886 *5)) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *8 (-13 (-1049) (-886 *5))) (-5 *1 (-936 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-889 *5 *3)) (-4 *5 (-1099)) (-4 *3 (-992 *6)) + (-4 *6 (-13 (-558) (-886 *5) (-614 *4))) (-5 *4 (-892 *5)) + (-5 *1 (-939 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-889 *5 (-1175))) (-5 *3 (-1175)) (-5 *4 (-892 *5)) + (-4 *5 (-1099)) (-5 *1 (-940 *5)))) + ((*1 *2 *3 *4 *5 *2 *6) + (-12 (-5 *4 (-644 (-892 *7))) (-5 *5 (-1 *9 (-644 *9))) + (-5 *6 (-1 (-889 *7 *9) *9 (-892 *7) (-889 *7 *9))) (-4 *7 (-1099)) + (-4 *9 (-13 (-1049) (-614 (-892 *7)) (-1038 *8))) + (-5 *2 (-889 *7 *9)) (-5 *3 (-644 *9)) (-4 *8 (-1049)) + (-5 *1 (-941 *7 *8 *9))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-112)) (-5 *1 (-829))))) +(((*1 *2 *2 *3 *3 *4) + (-12 (-5 *4 (-771)) (-4 *3 (-558)) (-5 *1 (-969 *3 *2)) + (-4 *2 (-1240 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-332 *3)) (-4 *3 (-850))))) +(((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-5 *2 (-644 (-1027 *5 *6 *7 *3))) (-5 *1 (-1027 *5 *6 *7 *3)) + (-4 *3 (-1064 *5 *6 *7)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-283 *3)) (-4 *3 (-1214)))) - ((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-610 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1099)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-566)) (-4 *4 (-1099)) - (-5 *1 (-737 *4)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-566)) (-5 *1 (-737 *2)) (-4 *2 (-1099)))) + (-12 (-5 *2 (-644 *6)) (-4 *1 (-1070 *3 *4 *5 *6)) (-4 *3 (-454)) + (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1139 *3 *4)) (-4 *3 (-13 (-1099) (-34))) - (-4 *4 (-13 (-1099) (-34))) (-5 *1 (-1140 *3 *4))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-771)) (-4 *1 (-1240 *3)) (-4 *3 (-1049)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-921)) (-4 *1 (-1242 *3 *4)) (-4 *3 (-1049)) - (-4 *4 (-792)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-409 (-566))) (-4 *1 (-1245 *3)) (-4 *3 (-1049))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-225)) (-5 *4 (-566)) - (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G)))) (-5 *2 (-1035)) - (-5 *1 (-748))))) -(((*1 *2 *3) - (-12 (-5 *3 (-771)) (-5 *2 (-1 (-1155 (-952 *4)) (-1155 (-952 *4)))) - (-5 *1 (-1272 *4)) (-4 *4 (-365))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-819 *3)) (-4 *3 (-850)) (-5 *1 (-672 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-771)) (-5 *1 (-59 *3)) (-4 *3 (-1214)))) - ((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1214)) (-5 *1 (-59 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) - (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-689 *3)) (-4 *3 (-308)) (-5 *1 (-700 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558)) (-4 *2 (-547)))) - ((*1 *1 *1) (-4 *1 (-1059)))) + (-12 (-4 *1 (-1070 *3 *4 *5 *2)) (-4 *3 (-454)) (-4 *4 (-793)) + (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5)))) + ((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-5 *2 (-644 (-1145 *5 *6 *7 *3))) (-5 *1 (-1145 *5 *6 *7 *3)) + (-4 *3 (-1064 *5 *6 *7))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2610 *4))) + (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4))))) +(((*1 *2) (-12 (-5 *2 (-843 (-566))) (-5 *1 (-536)))) + ((*1 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-1099))))) +(((*1 *2 *3) (-12 (-5 *3 (-841)) (-5 *2 (-1035)) (-5 *1 (-840)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-317 (-381)))) (-5 *4 (-644 (-381))) + (-5 *2 (-1035)) (-5 *1 (-840))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264))))) +(((*1 *2 *1) (-12 (-4 *1 (-1252 *3)) (-4 *3 (-1214)) (-5 *2 (-771))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-644 *1)) (-4 *1 (-920))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) ((*1 *1 *2 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1214)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436)))) ((*1 *1 *1 *1) (-5 *1 (-862))) ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1026 *3)) (-4 *3 (-1214))))) -(((*1 *1 *1 *1) (-4 *1 (-308))) ((*1 *1 *1 *1) (-5 *1 (-771))) - ((*1 *1 *1 *1) (-5 *1 (-862)))) -(((*1 *2 *1) - (-12 (-4 *3 (-1049)) (-5 *2 (-1264 *3)) (-5 *1 (-712 *3 *4)) - (-4 *4 (-1240 *3))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-689 *11)) (-5 *4 (-644 (-409 (-952 *8)))) - (-5 *5 (-771)) (-5 *6 (-1157)) (-4 *8 (-13 (-308) (-147))) - (-4 *11 (-949 *8 *10 *9)) (-4 *9 (-13 (-850) (-614 (-1175)))) - (-4 *10 (-793)) - (-5 *2 - (-2 - (|:| |rgl| - (-644 - (-2 (|:| |eqzro| (-644 *11)) (|:| |neqzro| (-644 *11)) - (|:| |wcond| (-644 (-952 *8))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1264 (-409 (-952 *8)))) - (|:| -2365 (-644 (-1264 (-409 (-952 *8)))))))))) - (|:| |rgsz| (-566)))) - (-5 *1 (-924 *8 *9 *10 *11)) (-5 *7 (-566))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-131)) - (-4 *3 (-792))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1171 *2)) (-4 *2 (-949 (-409 (-952 *6)) *5 *4)) + (-5 *1 (-732 *5 *4 *6 *2)) (-4 *5 (-793)) + (-4 *4 (-13 (-850) (-10 -8 (-15 -2376 ((-1175) $))))) + (-4 *6 (-558))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1109)) (-5 *3 (-566))))) +(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-519))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-556 *3)) (-4 *3 (-13 (-406) (-1199))) (-5 *2 (-112))))) (((*1 *2) (-12 (-5 *2 (-843 (-566))) (-5 *1 (-536)))) ((*1 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-1099))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-755))))) +(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-588 *3)) (-4 *3 (-547))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1218)) (-4 *5 (-1240 *4)) + (-5 *2 (-2 (|:| -2397 (-409 *5)) (|:| |poly| *3))) + (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1240 (-409 *5)))))) (((*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1064 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) - (-4 *2 (-850)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) - (-4 *4 (-850))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-114)) (-5 *4 (-771)) - (-4 *5 (-13 (-454) (-1038 (-566)))) (-4 *5 (-558)) - (-5 *1 (-41 *5 *2)) (-4 *2 (-432 *5)) - (-4 *2 - (-13 (-365) (-303) - (-10 -8 (-15 -4326 ((-1124 *5 (-612 $)) $)) - (-15 -4339 ((-1124 *5 (-612 $)) $)) - (-15 -3783 ($ (-1124 *5 (-612 $)))))))))) -(((*1 *2 *1) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-108)))) - ((*1 *2 *1) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-217)))) - ((*1 *2 *1) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-489)))) - ((*1 *1 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558)) (-4 *2 (-308)))) - ((*1 *2 *1) - (-12 (-5 *2 (-409 (-566))) (-5 *1 (-1004 *3)) (-14 *3 (-566)))) - ((*1 *1 *1) (-4 *1 (-1059)))) -(((*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-447 *3)) (-4 *3 (-1049))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-644 (-612 *5))) (-5 *3 (-1175)) (-4 *5 (-432 *4)) + (-4 *4 (-1099)) (-5 *1 (-575 *4 *5))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-1099)) + (-4 *4 (-1099))))) (((*1 *2 *3) - (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-644 (-1175))) (-4 *5 (-454)) - (-5 *2 (-483 *4 *5)) (-5 *1 (-631 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1099)) - (-5 *2 (-644 (-2 (|:| |k| *4) (|:| |c| *3)))))) - ((*1 *2 *1) - (-12 (-5 *2 (-644 (-2 (|:| |k| (-893 *3)) (|:| |c| *4)))) - (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-850)) - (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-14 *5 (-921)))) - ((*1 *2 *1) - (-12 (-5 *2 (-644 (-672 *3))) (-5 *1 (-893 *3)) (-4 *3 (-850))))) -(((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1240 *5)) - (-4 *5 (-13 (-365) (-147) (-1038 (-566)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-409 *6)) (|:| |c| (-409 *6)) - (|:| -1460 *6))) - (-5 *1 (-1015 *5 *6)) (-5 *3 (-409 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-848)) (-5 *1 (-304 *3))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-771)) (-4 *5 (-558)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-969 *5 *3)) (-4 *3 (-1240 *5))))) -(((*1 *2) (-12 (-5 *2 (-843 (-566))) (-5 *1 (-536)))) - ((*1 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-1099))))) -(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-241)))) - ((*1 *2 *3) - (-12 (-5 *3 (-644 (-1157))) (-5 *2 (-1269)) (-5 *1 (-241))))) + (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-558)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) + (-5 *1 (-977 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-1155 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-508)) (-5 *3 (-1117)) (-5 *1 (-1114))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-759))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1240 *6)) + (-4 *6 (-13 (-365) (-147) (-1038 *4))) (-5 *4 (-566)) + (-5 *2 + (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) + (|:| -3434 + (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) + (|:| |beta| *3))))) + (-5 *1 (-1015 *6 *3))))) +(((*1 *1 *1 *2 *2 *2 *2) + (-12 (-5 *2 (-566)) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) + (-4 *4 (-375 *3)) (-4 *5 (-375 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 (-381))) (-5 *1 (-264)))) + ((*1 *1) + (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-558)) (-4 *2 (-172)))) + ((*1 *2 *1) (-12 (-5 *1 (-420 *2)) (-4 *2 (-558))))) (((*1 *2 *3) - (-12 (-5 *3 (-644 *4)) (-4 *4 (-1049)) (-5 *2 (-1264 *4)) - (-5 *1 (-1176 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-921)) (-5 *2 (-1264 *3)) (-5 *1 (-1176 *3)) - (-4 *3 (-1049))))) -(((*1 *1 *1) (-12 (-5 *1 (-420 *2)) (-4 *2 (-558))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-313)) (-5 *1 (-829))))) + (-12 (-5 *3 (-1157)) (-5 *2 (-214 (-504))) (-5 *1 (-837))))) (((*1 *2 *3) - (-12 (-5 *3 (-644 *4)) (-4 *4 (-365)) (-5 *2 (-689 *4)) - (-5 *1 (-814 *4 *5)) (-4 *5 (-656 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-644 *5)) (-5 *4 (-771)) (-4 *5 (-365)) - (-5 *2 (-689 *5)) (-5 *1 (-814 *5 *6)) (-4 *6 (-656 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-771)) (-5 *5 (-644 *3)) (-4 *3 (-308)) (-4 *6 (-850)) - (-4 *7 (-793)) (-5 *2 (-112)) (-5 *1 (-625 *6 *7 *3 *8)) - (-4 *8 (-949 *3 *7 *6))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1264 *5)) (-4 *5 (-792)) (-5 *2 (-112)) - (-5 *1 (-845 *4 *5)) (-14 *4 (-771))))) + (-12 (-4 *1 (-351)) (-5 *3 (-566)) (-5 *2 (-1187 (-921) (-771)))))) +(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) + ((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) + ((*1 *1 *1) (-4 *1 (-1138)))) +(((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1040))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1049))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-793)) + (-4 *3 (-13 (-850) (-10 -8 (-15 -2376 ((-1175) $))))) (-4 *5 (-558)) + (-5 *1 (-732 *4 *3 *5 *2)) (-4 *2 (-949 (-409 (-952 *5)) *4 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *4 (-1049)) (-4 *5 (-793)) + (-4 *3 + (-13 (-850) + (-10 -8 (-15 -2376 ((-1175) $)) + (-15 -4347 ((-3 $ "failed") (-1175)))))) + (-5 *1 (-984 *4 *5 *3 *2)) (-4 *2 (-949 (-952 *4) *5 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-644 *6)) + (-4 *6 + (-13 (-850) + (-10 -8 (-15 -2376 ((-1175) $)) + (-15 -4347 ((-3 $ "failed") (-1175)))))) + (-4 *4 (-1049)) (-4 *5 (-793)) (-5 *1 (-984 *4 *5 *6 *2)) + (-4 *2 (-949 (-952 *4) *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1157)) (-4 *4 (-13 (-308) (-147))) - (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) - (-5 *2 - (-644 - (-2 (|:| |eqzro| (-644 *7)) (|:| |neqzro| (-644 *7)) - (|:| |wcond| (-644 (-952 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1264 (-409 (-952 *4)))) - (|:| -2365 (-644 (-1264 (-409 (-952 *4)))))))))) - (-5 *1 (-924 *4 *5 *6 *7)) (-4 *7 (-949 *4 *6 *5))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) - (-5 *1 (-752))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-454)) (-4 *3 (-793)) (-4 *5 (-850)) (-5 *2 (-112)) - (-5 *1 (-451 *4 *3 *5 *6)) (-4 *6 (-949 *4 *3 *5))))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-566)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1214)) - (-4 *4 (-375 *2)) (-4 *5 (-375 *2)))) - ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4415)) (-4 *1 (-289 *3 *2)) (-4 *3 (-1099)) - (-4 *2 (-1214))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-644 *5)) (-5 *4 (-921)) (-4 *5 (-850)) - (-5 *2 (-644 (-672 *5))) (-5 *1 (-672 *5))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1264 *3)) (-4 *3 (-1240 *4)) (-4 *4 (-1218)) - (-4 *1 (-344 *4 *3 *5)) (-4 *5 (-1240 (-409 *3)))))) + (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-644 (-1175))) (-4 *5 (-1049)) + (-5 *2 (-483 *4 *5)) (-5 *1 (-944 *4 *5))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1157)) (-5 *3 (-566)) (-5 *1 (-241))))) (((*1 *2 *3) - (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) - ((*1 *2) (-12 (-5 *2 (-904 (-566))) (-5 *1 (-917))))) -(((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-144)))) - ((*1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-144))))) -(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1199)))))) -(((*1 *2 *1) (-12 (-5 *2 (-644 (-838))) (-5 *1 (-140))))) + (-12 (-5 *3 (-1093 (-843 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1093 (-843 (-225)))) (-5 *2 (-225)) (-5 *1 (-301)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1093 (-843 (-225)))) (-5 *2 (-225)) (-5 *1 (-306))))) +(((*1 *1) (-5 *1 (-331)))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) + (-12 (-5 *3 (-566)) (-5 *5 (-112)) (-5 *6 (-689 (-225))) + (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-755))))) +(((*1 *1 *1) (-4 *1 (-629))) + ((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-630 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002) (-1199)))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-558) (-147))) + (-5 *2 (-2 (|:| -1953 *3) (|:| -1966 *3))) (-5 *1 (-1234 *4 *3)) + (-4 *3 (-1240 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049))))) (((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-771)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-921)))) ((*1 *1 *1 *1) @@ -8327,10 +8208,10 @@ ((*1 *1 *2 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-1099)))) ((*1 *1 *2 *1) (-12 (-14 *3 (-644 (-1175))) (-4 *4 (-172)) - (-4 *6 (-238 (-3018 *3) (-771))) + (-4 *6 (-238 (-3000 *3) (-771))) (-14 *7 - (-1 (-112) (-2 (|:| -2178 *5) (|:| -2852 *6)) - (-2 (|:| -2178 *5) (|:| -2852 *6)))) + (-1 (-112) (-2 (|:| -2835 *5) (|:| -2201 *6)) + (-2 (|:| -2835 *5) (|:| -2201 *6)))) (-5 *1 (-463 *3 *4 *5 *6 *7 *2)) (-4 *5 (-850)) (-4 *2 (-949 *4 *6 (-864 *3))))) ((*1 *1 *1 *2) @@ -8410,2647 +8291,583 @@ ((*1 *1 *1 *2) (-12 (-5 *1 (-1287 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-846))))) (((*1 *2 *2) - (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1199)))))) -(((*1 *1 *2) (-12 (-5 *1 (-691 *2)) (-4 *2 (-613 (-862)))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-690 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-5 *2 (-644 (-644 *3))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-644 (-644 *5))))) - ((*1 *2 *1) - (-12 (-5 *2 (-644 (-644 *3))) (-5 *1 (-1186 *3)) (-4 *3 (-1099))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) - (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4415)) (-4 *1 (-491 *3)) - (-4 *3 (-1214))))) -(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 - *4 *6 *4) - (-12 (-5 *4 (-566)) (-5 *5 (-689 (-225))) (-5 *6 (-675 (-225))) - (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-750))))) -(((*1 *2) - (|partial| -12 (-4 *3 (-558)) (-4 *3 (-172)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -2365 (-644 *1)))) - (-4 *1 (-369 *3)))) - ((*1 *2) - (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-455 *3 *4 *5 *6)) - (|:| -2365 (-644 (-455 *3 *4 *5 *6))))) - (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-921)) - (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3)))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4415)) (-4 *1 (-1252 *2)) (-4 *2 (-1214))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1097 *3)) (-4 *3 (-1099)) (-5 *2 (-112))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266))))) -(((*1 *2 *2 *2 *3 *3) - (-12 (-5 *3 (-771)) (-4 *4 (-1049)) (-5 *1 (-1236 *4 *2)) - (-4 *2 (-1240 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-381)) (-5 *1 (-1040))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) - (-4 *3 (-1064 *5 *6 *7)) - (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -3570 *4)))) - (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-1093 (-225)))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) - (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) - (-5 *1 (-988 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) - (-4 *5 (-850)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) - (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) - (-5 *1 (-1106 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) - (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-689 *2)) (-5 *4 (-771)) - (-4 *2 (-13 (-308) (-10 -8 (-15 -3184 ((-420 $) $))))) - (-4 *5 (-1240 *2)) (-5 *1 (-501 *2 *5 *6)) (-4 *6 (-411 *2 *5))))) -(((*1 *1) (-5 *1 (-1269)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-905 (-566))) (-5 *4 (-566)) (-5 *2 (-689 *4)) - (-5 *1 (-1028 *5)) (-4 *5 (-1049)))) - ((*1 *2 *3) - (-12 (-5 *3 (-644 (-566))) (-5 *2 (-689 (-566))) (-5 *1 (-1028 *4)) - (-4 *4 (-1049)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-644 (-905 (-566)))) (-5 *4 (-566)) - (-5 *2 (-644 (-689 *4))) (-5 *1 (-1028 *5)) (-4 *5 (-1049)))) - ((*1 *2 *3) - (-12 (-5 *3 (-644 (-644 (-566)))) (-5 *2 (-644 (-689 (-566)))) - (-5 *1 (-1028 *4)) (-4 *4 (-1049))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1049)) (-5 *2 (-644 *1)) (-4 *1 (-1133 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-317 (-169 (-381)))) (-5 *1 (-331)))) - ((*1 *1 *2) (-12 (-5 *2 (-317 (-566))) (-5 *1 (-331)))) - ((*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-5 *1 (-331)))) - ((*1 *1 *2) (-12 (-5 *2 (-317 (-694))) (-5 *1 (-331)))) - ((*1 *1 *2) (-12 (-5 *2 (-317 (-701))) (-5 *1 (-331)))) - ((*1 *1 *2) (-12 (-5 *2 (-317 (-699))) (-5 *1 (-331)))) - ((*1 *1) (-5 *1 (-331)))) -(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-926))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-566)) (-5 *4 (-1157)) (-5 *5 (-689 (-225))) - (-5 *2 (-1035)) (-5 *1 (-747))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-1214)) (-5 *1 (-182 *3 *2)) - (-4 *2 (-674 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-955)) (-5 *2 (-1093 (-225))))) - ((*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-1093 (-225)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1264 *5)) (-4 *5 (-639 *4)) (-4 *4 (-558)) - (-5 *2 (-112)) (-5 *1 (-638 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-254 *3 *4 *2 *5)) (-4 *3 (-1049)) (-4 *4 (-850)) - (-4 *5 (-793)) (-4 *2 (-267 *4))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-3 (-2 (|:| -2346 *7) (|:| |coeff| *7)) "failed") *7)) - (-5 *6 (-644 (-409 *8))) (-4 *7 (-365)) (-4 *8 (-1240 *7)) - (-5 *3 (-409 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-576 *7 *8))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1171 (-566))) (-5 *1 (-942)) (-5 *3 (-566))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-771)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-793)) (-4 *7 (-949 *4 *5 *6)) (-4 *4 (-454)) (-4 *6 (-850)) - (-5 *2 (-112)) (-5 *1 (-451 *4 *5 *6 *7))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1141 *3 *4)) (-14 *3 (-921)) (-4 *4 (-365)) - (-5 *1 (-993 *3 *4))))) -(((*1 *1 *1 *1) (-5 *1 (-225))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) + (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3))))) +(((*1 *1 *1) (-5 *1 (-225))) + ((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) + ((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-771)) (-5 *2 (-1 (-381))) (-5 *1 (-1040)))) - ((*1 *1 *1 *1) (-4 *1 (-1138)))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-771)) (-5 *2 (-1269)) (-5 *1 (-1265)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-771)) (-5 *2 (-1269)) (-5 *1 (-1266))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) -(((*1 *2 *1) (-12 (-4 *1 (-955)) (-5 *2 (-1093 (-225))))) - ((*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-1093 (-225)))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-610 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)) - (-5 *2 (-112))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-771)) (-4 *1 (-231 *4)) - (-4 *4 (-1049)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1049)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-771)))) - ((*1 *1 *1) (-4 *1 (-233))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-771)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-401 *3 *4)) - (-4 *4 (-1240 *3)))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-365) (-147))) (-5 *1 (-401 *2 *3)) - (-4 *3 (-1240 *2)))) - ((*1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1049)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-644 *4)) (-5 *3 (-644 (-771))) (-4 *1 (-900 *4)) - (-4 *4 (-1099)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-771)) (-4 *1 (-900 *2)) (-4 *2 (-1099)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-644 *3)) (-4 *1 (-900 *3)) (-4 *3 (-1099)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-900 *2)) (-4 *2 (-1099))))) -(((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-771)) (-5 *4 (-921)) (-5 *2 (-1269)) (-5 *1 (-1265)))) - ((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-771)) (-5 *4 (-921)) (-5 *2 (-1269)) (-5 *1 (-1266))))) -(((*1 *2 *3) - (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1218)) (-4 *3 (-1240 *4)) - (-4 *5 (-1240 (-409 *3))) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) - (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-771)) (-5 *1 (-782 *3)) (-4 *3 (-1049)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *1 (-963 *3 *2)) (-4 *2 (-131)) (-4 *3 (-558)) - (-4 *3 (-1049)) (-4 *2 (-792)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-771)) (-5 *1 (-1171 *3)) (-4 *3 (-1049)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-971)) (-4 *2 (-131)) (-5 *1 (-1177 *3)) (-4 *3 (-558)) - (-4 *3 (-1049)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-771)) (-5 *1 (-1237 *4 *3)) (-14 *4 (-1175)) - (-4 *3 (-1049))))) -(((*1 *2 *3 *3) - (-12 (-4 *2 (-558)) (-4 *2 (-454)) (-5 *1 (-969 *2 *3)) - (-4 *3 (-1240 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-250)) (-5 *1 (-334))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281))))) -(((*1 *2 *2) (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1175)) (-5 *6 (-644 (-612 *3))) - (-5 *5 (-612 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *7))) - (-4 *7 (-13 (-454) (-147) (-1038 (-566)) (-639 (-566)))) - (-5 *2 (-2 (|:| -2346 *3) (|:| |coeff| *3))) - (-5 *1 (-559 *7 *3))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-432 *3) (-1002))) (-5 *1 (-277 *3 *2)) - (-4 *3 (-558))))) -(((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-771)) (-5 *1 (-213 *4 *2)) (-14 *4 (-921)) - (-4 *2 (-1099))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-927))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) - (-5 *1 (-754))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4415)) (-4 *1 (-119 *2)) (-4 *2 (-1214))))) -(((*1 *2 *3) - (-12 (-5 *3 (-483 *4 *5)) (-14 *4 (-644 (-1175))) (-4 *5 (-1049)) - (-5 *2 (-247 *4 *5)) (-5 *1 (-944 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-647 *3)) (-4 *3 (-1099))))) -(((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1040))))) -(((*1 *1) (-12 (-4 *1 (-1045 *2)) (-4 *2 (-23))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) - (-4 *5 (-850)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) - (-5 *1 (-422 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1199) (-432 *3))) - (-14 *4 (-1175)) (-14 *5 *2))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) - (-4 *2 (-13 (-27) (-1199) (-432 *3) (-10 -8 (-15 -3783 ($ *4))))) - (-4 *4 (-848)) - (-4 *5 - (-13 (-1242 *2 *4) (-365) (-1199) - (-10 -8 (-15 -3561 ($ $)) (-15 -1941 ($ $))))) - (-5 *1 (-424 *3 *2 *4 *5 *6 *7)) (-4 *6 (-983 *5)) (-14 *7 (-1175))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-566)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-375 *2)) - (-4 *5 (-375 *2)) (-4 *2 (-1214)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-771)) (-4 *2 (-1099)) (-5 *1 (-213 *4 *2)) - (-14 *4 (-921)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1214)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-566)) (-4 *1 (-1053 *4 *5 *2 *6 *7)) - (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1049))))) -(((*1 *2 *3) - (-12 (-5 *3 (-644 *2)) (-4 *2 (-432 *4)) (-5 *1 (-158 *4 *2)) - (-4 *4 (-558))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-558) (-1038 (-566)))) (-5 *1 (-188 *3 *2)) - (-4 *2 (-13 (-27) (-1199) (-432 (-169 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-558) (-1038 (-566)))) - (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1199) (-432 (-169 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) - (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1175)) - (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) - (-5 *1 (-1203 *4 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *4)))))) + ((*1 *1 *1) (-4 *1 (-1138))) ((*1 *1 *1 *1) (-4 *1 (-1138)))) +(((*1 *1 *1) (-5 *1 (-538)))) (((*1 *2 *1) - (-12 (-5 *2 (-1249 *3 *4 *5)) (-5 *1 (-320 *3 *4 *5)) (-4 *3 (-365)) - (-14 *4 (-1175)) (-14 *5 *3))) - ((*1 *2 *1) (-12 (-4 *1 (-406)) (-5 *2 (-566)))) - ((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-420 *3)) (-4 *3 (-558)))) - ((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-699)))) + (-12 (-4 *1 (-1247 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-1224 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-858)))) + ((*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-965)))) + ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-989)))) + ((*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1214)))) ((*1 *2 *1) - (-12 (-4 *2 (-1099)) (-5 *1 (-713 *3 *2 *4)) (-4 *3 (-850)) - (-14 *4 - (-1 (-112) (-2 (|:| -2178 *3) (|:| -2852 *2)) - (-2 (|:| -2178 *3) (|:| -2852 *2))))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) - (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-644 *6))))) -(((*1 *2) - (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) - (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-1269)) - (-5 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *7 (-1070 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) - (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-1269)) - (-5 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *7 (-1070 *3 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-5 *2 (-862)) (-5 *1 (-392 *3 *4 *5)) (-14 *3 (-771)) - (-14 *4 (-771)) (-4 *5 (-172))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1139 *2 *3)) (-4 *2 (-13 (-1099) (-34))) + (-12 (-4 *2 (-13 (-1099) (-34))) (-5 *1 (-1139 *2 *3)) (-4 *3 (-13 (-1099) (-34)))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-566)) (-5 *4 (-689 (-169 (-225)))) (-5 *2 (-1035)) - (-5 *1 (-754))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -2346 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-365)) (-4 *7 (-1240 *6)) - (-5 *2 (-2 (|:| |answer| (-587 (-409 *7))) (|:| |a0| *6))) - (-5 *1 (-576 *6 *7)) (-5 *3 (-409 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-644 (-317 (-225)))) (-5 *2 (-112)) (-5 *1 (-268)))) - ((*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-112)) (-5 *1 (-268)))) - ((*1 *2 *3) - (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) - (-5 *1 (-977 *4 *5 *6 *3)) (-4 *3 (-1064 *4 *5 *6))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) - (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) - (-5 *1 (-1277 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-644 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-558)) - (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-1277 *5 *6 *7 *8))))) -(((*1 *2 *2) - (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1199)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-558)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1171 (-566))) (-5 *2 (-566)) (-5 *1 (-942))))) -(((*1 *2 *1) (|partial| -12 (-5 *1 (-367 *2)) (-4 *2 (-1099)))) - ((*1 *2 *1) (|partial| -12 (-5 *2 (-1157)) (-5 *1 (-1195))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1038 (-566)) (-639 (-566)) (-454))) - (-5 *2 (-843 *4)) (-5 *1 (-314 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1199) (-432 *3))) (-14 *5 (-1175)) - (-14 *6 *4))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1038 (-566)) (-639 (-566)) (-454))) - (-5 *2 (-843 *4)) (-5 *1 (-1250 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1199) (-432 *3))) (-14 *5 (-1175)) - (-14 *6 *4)))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-771)) (-4 *1 (-1240 *3)) (-4 *3 (-1049))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-308)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) - (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-79 LSFUN1)))) - (-5 *2 (-1035)) (-5 *1 (-753))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) - (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) - (-4 *3 (-1064 *5 *6 *7)) - (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -3570 *4)))) - (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *4 *5 *6 *7) - (-12 (-5 *5 (-1175)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-644 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-644 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -2346 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1199) (-27) (-432 *8))) - (-4 *8 (-13 (-454) (-147) (-1038 *3) (-639 *3))) (-5 *3 (-566)) - (-5 *2 (-2 (|:| |ans| *4) (|:| -4392 *4) (|:| |sol?| (-112)))) - (-5 *1 (-1013 *8 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1252 *3)) (-4 *3 (-1214)) (-5 *2 (-771))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1231 *3)) (-4 *3 (-1214))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1255 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-644 *2)) (-4 *2 (-432 *4)) (-5 *1 (-158 *4 *2)) - (-4 *4 (-558))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) - (-4 *3 (-369 *4)))) - ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-644 (-1175))) (-4 *4 (-1099)) - (-4 *5 (-13 (-1049) (-886 *4) (-614 (-892 *4)))) - (-5 *1 (-1075 *4 *5 *2)) - (-4 *2 (-13 (-432 *5) (-886 *4) (-614 (-892 *4)))))) - ((*1 *1 *2 *2) - (-12 (-4 *3 (-1099)) (-4 *4 (-13 (-1049) (-886 *3) (-614 (-892 *3)))) - (-5 *1 (-1075 *3 *4 *2)) - (-4 *2 (-13 (-432 *4) (-886 *3) (-614 (-892 *3))))))) -(((*1 *2 *3) - (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3652 *4))) - (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1199)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *4 (-558)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) - (-4 *5 (-432 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *4 (-558)) (-5 *2 (-112)) - (-5 *1 (-158 *4 *5)) (-4 *5 (-432 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *4 (-558)) (-5 *2 (-112)) - (-5 *1 (-277 *4 *5)) (-4 *5 (-13 (-432 *4) (-1002))))) - ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-302 *4)) (-4 *4 (-303)))) - ((*1 *2 *3) (-12 (-4 *1 (-303)) (-5 *3 (-114)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *5 (-1099)) (-5 *2 (-112)) - (-5 *1 (-431 *4 *5)) (-4 *4 (-432 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *4 (-558)) (-5 *2 (-112)) - (-5 *1 (-433 *4 *5)) (-4 *5 (-432 *4)))) + (-12 (-5 *2 (-1264 *4)) (-4 *4 (-419 *3)) (-4 *3 (-308)) + (-4 *3 (-558)) (-5 *1 (-43 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *4 (-558)) (-5 *2 (-112)) - (-5 *1 (-630 *4 *5)) (-4 *5 (-13 (-432 *4) (-1002) (-1199)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1038 (-566))) (-4 *1 (-303)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-547)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1099))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-905 *4)) (-4 *4 (-1099)) (-5 *2 (-644 (-771))) - (-5 *1 (-904 *4))))) -(((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-644 *11)) - (|:| |todo| (-644 (-2 (|:| |val| *3) (|:| -3570 *11)))))) - (-5 *6 (-771)) - (-5 *2 (-644 (-2 (|:| |val| (-644 *10)) (|:| -3570 *11)))) - (-5 *3 (-644 *10)) (-5 *4 (-644 *11)) (-4 *10 (-1064 *7 *8 *9)) - (-4 *11 (-1070 *7 *8 *9 *10)) (-4 *7 (-454)) (-4 *8 (-793)) - (-4 *9 (-850)) (-5 *1 (-1068 *7 *8 *9 *10 *11)))) - ((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-644 *11)) - (|:| |todo| (-644 (-2 (|:| |val| *3) (|:| -3570 *11)))))) - (-5 *6 (-771)) - (-5 *2 (-644 (-2 (|:| |val| (-644 *10)) (|:| -3570 *11)))) - (-5 *3 (-644 *10)) (-5 *4 (-644 *11)) (-4 *10 (-1064 *7 *8 *9)) - (-4 *11 (-1108 *7 *8 *9 *10)) (-4 *7 (-454)) (-4 *8 (-793)) - (-4 *9 (-850)) (-5 *1 (-1144 *7 *8 *9 *10 *11))))) -(((*1 *2 *1) - (-12 (-4 *3 (-13 (-365) (-147))) - (-5 *2 (-644 (-2 (|:| -2852 (-771)) (|:| -1320 *4) (|:| |num| *4)))) - (-5 *1 (-401 *3 *4)) (-4 *4 (-1240 *3))))) -(((*1 *1 *1) (-5 *1 (-862)))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) - (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174)))) - (-5 *1 (-1174))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-1188 *2)) (-4 *2 (-365))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) - (-5 *1 (-752))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1049)) (-5 *2 (-566)) (-5 *1 (-445 *4 *3 *5)) - (-4 *3 (-1240 *4)) - (-4 *5 (-13 (-406) (-1038 *4) (-365) (-1199) (-285)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-952 *5)) (-4 *5 (-1049)) (-5 *2 (-483 *4 *5)) - (-5 *1 (-944 *4 *5)) (-14 *4 (-644 (-1175)))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) - (-12 (-5 *3 (-225)) (-5 *4 (-566)) - (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G)))) (-5 *2 (-1035)) - (-5 *1 (-748))))) -(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-438))))) -(((*1 *2 *3) - (-12 (-5 *3 (-689 *2)) (-4 *4 (-1240 *2)) - (-4 *2 (-13 (-308) (-10 -8 (-15 -3184 ((-420 $) $))))) - (-5 *1 (-501 *2 *4 *5)) (-4 *5 (-411 *2 *4)))) + (-12 (-5 *3 (-921)) (-4 *4 (-365)) (-5 *2 (-1264 *1)) + (-4 *1 (-330 *4)))) + ((*1 *2) (-12 (-4 *3 (-365)) (-5 *2 (-1264 *1)) (-4 *1 (-330 *3)))) + ((*1 *2) + (-12 (-4 *3 (-172)) (-4 *4 (-1240 *3)) (-5 *2 (-1264 *1)) + (-4 *1 (-411 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1122 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) - (-4 *5 (-238 *3 *2)) (-4 *2 (-1049))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) -(((*1 *2 *3) - (-12 (-5 *3 (-644 (-2 (|:| -3719 (-1171 *6)) (|:| -2852 (-566))))) - (-4 *6 (-308)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-566)) - (-5 *1 (-742 *4 *5 *6 *7)) (-4 *7 (-949 *6 *4 *5))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) - (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174)))) - (-5 *1 (-1174))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-558)) (-5 *2 (-644 *3)) (-5 *1 (-969 *4 *3)) - (-4 *3 (-1240 *4))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-566)) (|has| *1 (-6 -4415)) (-4 *1 (-1252 *3)) - (-4 *3 (-1214))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) - (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225)) - (-5 *2 (-1035)) (-5 *1 (-750))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-225) (-225) (-225))) - (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) - (-5 *5 (-1093 (-225))) (-5 *6 (-644 (-264))) (-5 *2 (-1132 (-225))) - (-5 *1 (-697)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-943 (-225)) (-225) (-225))) (-5 *4 (-1093 (-225))) - (-5 *5 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-697)))) - ((*1 *2 *2 *3 *4 *4 *5) - (-12 (-5 *2 (-1132 (-225))) (-5 *3 (-1 (-943 (-225)) (-225) (-225))) - (-5 *4 (-1093 (-225))) (-5 *5 (-644 (-264))) (-5 *1 (-697))))) -(((*1 *1 *2) - (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1099)) (-4 *1 (-903 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-644 (-1075 *4 *5 *2))) (-4 *4 (-1099)) - (-4 *5 (-13 (-1049) (-886 *4) (-614 (-892 *4)))) - (-4 *2 (-13 (-432 *5) (-886 *4) (-614 (-892 *4)))) - (-5 *1 (-54 *4 *5 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-644 (-1075 *5 *6 *2))) (-5 *4 (-921)) (-4 *5 (-1099)) - (-4 *6 (-13 (-1049) (-886 *5) (-614 (-892 *5)))) - (-4 *2 (-13 (-432 *6) (-886 *5) (-614 (-892 *5)))) - (-5 *1 (-54 *5 *6 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-921)) (-5 *1 (-786))))) -(((*1 *2 *3) (-12 (-5 *3 (-508)) (-5 *2 (-691 (-187))) (-5 *1 (-187))))) -(((*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1269)) (-5 *1 (-1137)))) + (-12 (-4 *3 (-308)) (-4 *4 (-992 *3)) (-4 *5 (-1240 *4)) + (-5 *2 (-1264 *6)) (-5 *1 (-415 *3 *4 *5 *6)) + (-4 *6 (-13 (-411 *4 *5) (-1038 *4))))) + ((*1 *2 *1) + (-12 (-4 *3 (-308)) (-4 *4 (-992 *3)) (-4 *5 (-1240 *4)) + (-5 *2 (-1264 *6)) (-5 *1 (-416 *3 *4 *5 *6 *7)) + (-4 *6 (-411 *4 *5)) (-14 *7 *2))) + ((*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1264 *1)) (-4 *1 (-419 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-644 (-862))) (-5 *2 (-1269)) (-5 *1 (-1137))))) -(((*1 *1 *1) (-5 *1 (-1174))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) - (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174)))) - (-5 *1 (-1174))))) -(((*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1214))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-980 *2)) (-4 *2 (-1049)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-943 (-225))) (-5 *1 (-1210)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1214)) (-4 *2 (-1049))))) -(((*1 *1 *1) - (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) -(((*1 *2 *1) - (-12 (-5 *2 (-644 (-295 *3))) (-5 *1 (-295 *3)) (-4 *3 (-558)) - (-4 *3 (-1214))))) -(((*1 *1 *2) - (-12 (-5 *2 (-689 *4)) (-4 *4 (-1049)) (-5 *1 (-1141 *3 *4)) - (-14 *3 (-771))))) -(((*1 *2 *3) - (-12 (-4 *4 (-558)) (-5 *2 (-771)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-419 *4))))) -(((*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1184))))) -(((*1 *2 *3) (-12 (-5 *3 (-822)) (-5 *2 (-52)) (-5 *1 (-829))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-531)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-579)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861))))) -(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-821))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1157)) (-5 *4 (-566)) (-5 *5 (-689 (-169 (-225)))) - (-5 *2 (-1035)) (-5 *1 (-754))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1049)) (-5 *1 (-1236 *3 *2)) (-4 *2 (-1240 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-943 *3)))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-644 (-566))) (-5 *3 (-112)) (-5 *1 (-1109))))) -(((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) - (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-1226 *3 *2)) (-4 *3 (-1049)) - (-4 *2 (-1255 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1099)) (-4 *6 (-886 *5)) (-5 *2 (-885 *5 *6 (-644 *6))) - (-5 *1 (-887 *5 *6 *4)) (-5 *3 (-644 *6)) (-4 *4 (-614 (-892 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1099)) (-5 *2 (-644 (-295 *3))) (-5 *1 (-887 *5 *3 *4)) - (-4 *3 (-1038 (-1175))) (-4 *3 (-886 *5)) (-4 *4 (-614 (-892 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1099)) (-5 *2 (-644 (-295 (-952 *3)))) - (-5 *1 (-887 *5 *3 *4)) (-4 *3 (-1049)) - (-2418 (-4 *3 (-1038 (-1175)))) (-4 *3 (-886 *5)) - (-4 *4 (-614 (-892 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1099)) (-5 *2 (-889 *5 *3)) (-5 *1 (-887 *5 *3 *4)) - (-2418 (-4 *3 (-1038 (-1175)))) (-2418 (-4 *3 (-1049))) - (-4 *3 (-886 *5)) (-4 *4 (-614 (-892 *5)))))) -(((*1 *1) (-4 *1 (-351))) + (-12 (-5 *3 (-921)) (-5 *2 (-1264 (-1264 *4))) (-5 *1 (-530 *4)) + (-4 *4 (-351))))) +(((*1 *1 *1) (-12 (-5 *1 (-420 *2)) (-4 *2 (-558))))) +(((*1 *1 *1) (-5 *1 (-48))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1214)) + (-4 *2 (-1214)) (-5 *1 (-58 *5 *2)))) + ((*1 *2 *3 *1 *2 *2) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1099)) (|has| *1 (-6 -4414)) + (-4 *1 (-151 *2)) (-4 *2 (-1214)))) + ((*1 *2 *3 *1 *2) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4414)) (-4 *1 (-151 *2)) + (-4 *2 (-1214)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4414)) (-4 *1 (-151 *2)) + (-4 *2 (-1214)))) ((*1 *2 *3) - (-12 (-5 *3 (-644 *5)) (-4 *5 (-432 *4)) (-4 *4 (-13 (-558) (-147))) - (-5 *2 - (-2 (|:| |primelt| *5) (|:| |poly| (-644 (-1171 *5))) - (|:| |prim| (-1171 *5)))) - (-5 *1 (-434 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-558) (-147))) - (-5 *2 - (-2 (|:| |primelt| *3) (|:| |pol1| (-1171 *3)) - (|:| |pol2| (-1171 *3)) (|:| |prim| (-1171 *3)))) - (-5 *1 (-434 *4 *3)) (-4 *3 (-27)) (-4 *3 (-432 *4)))) - ((*1 *2 *3 *4 *3 *4) - (-12 (-5 *3 (-952 *5)) (-5 *4 (-1175)) (-4 *5 (-13 (-365) (-147))) - (-5 *2 - (-2 (|:| |coef1| (-566)) (|:| |coef2| (-566)) - (|:| |prim| (-1171 *5)))) - (-5 *1 (-960 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-644 (-1175))) - (-4 *5 (-13 (-365) (-147))) - (-5 *2 - (-2 (|:| -1364 (-644 (-566))) (|:| |poly| (-644 (-1171 *5))) - (|:| |prim| (-1171 *5)))) - (-5 *1 (-960 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-644 (-952 *6))) (-5 *4 (-644 (-1175))) (-5 *5 (-1175)) - (-4 *6 (-13 (-365) (-147))) - (-5 *2 - (-2 (|:| -1364 (-644 (-566))) (|:| |poly| (-644 (-1171 *6))) - (|:| |prim| (-1171 *6)))) - (-5 *1 (-960 *6))))) -(((*1 *1 *1) - (-12 (-4 *1 (-254 *2 *3 *4 *5)) (-4 *2 (-1049)) (-4 *3 (-850)) - (-4 *4 (-267 *3)) (-4 *5 (-793))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-644 - (-644 - (-3 (|:| -2640 (-1175)) - (|:| -3385 (-644 (-3 (|:| S (-1175)) (|:| P (-952 (-566)))))))))) - (-5 *1 (-1179))))) -(((*1 *1) (-5 *1 (-439)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190))))) -(((*1 *2 *3) - (-12 (-4 *1 (-895)) - (-5 *3 - (-2 (|:| |pde| (-644 (-317 (-225)))) - (|:| |constraints| - (-644 - (-2 (|:| |start| (-225)) (|:| |finish| (-225)) - (|:| |grid| (-771)) (|:| |boundaryType| (-566)) - (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) - (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) - (|:| |tol| (-225)))) - (-5 *2 (-1035))))) -(((*1 *2 *1) - (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-131)) - (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -2561 *4)))))) + (-12 (-4 *4 (-1049)) + (-5 *2 (-2 (|:| -3877 (-1171 *4)) (|:| |deg| (-921)))) + (-5 *1 (-221 *4 *5)) (-5 *3 (-1171 *4)) (-4 *5 (-558)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-240 *5 *6)) (-14 *5 (-771)) + (-4 *6 (-1214)) (-4 *2 (-1214)) (-5 *1 (-239 *5 *6 *2)))) + ((*1 *1 *2 *3) + (-12 (-4 *4 (-172)) (-5 *1 (-290 *4 *2 *3 *5 *6 *7)) + (-4 *2 (-1240 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3)) + (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-317 *2)) (-4 *2 (-558)) (-4 *2 (-1099)))) + ((*1 *1 *1) + (-12 (-4 *1 (-337 *2 *3 *4 *5)) (-4 *2 (-365)) (-4 *3 (-1240 *2)) + (-4 *4 (-1240 (-409 *3))) (-4 *5 (-344 *2 *3 *4)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1214)) (-4 *2 (-1214)) + (-5 *1 (-373 *5 *4 *2 *6)) (-4 *4 (-375 *5)) (-4 *6 (-375 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1099)) (-4 *2 (-1099)) + (-5 *1 (-425 *5 *4 *2 *6)) (-4 *4 (-427 *5)) (-4 *6 (-427 *2)))) + ((*1 *1 *1) (-5 *1 (-497))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-644 *5)) (-4 *5 (-1214)) + (-4 *2 (-1214)) (-5 *1 (-642 *5 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1049)) (-4 *2 (-1049)) + (-4 *6 (-375 *5)) (-4 *7 (-375 *5)) (-4 *8 (-375 *2)) + (-4 *9 (-375 *2)) (-5 *1 (-685 *5 *6 *7 *4 *2 *8 *9 *10)) + (-4 *4 (-687 *5 *6 *7)) (-4 *10 (-687 *2 *8 *9)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1049)) (-5 *1 (-712 *3 *2)) (-4 *2 (-1240 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-715 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-409 *4)) (-4 *4 (-1240 *3)) (-4 *3 (-365)) + (-4 *3 (-172)) (-4 *1 (-724 *3 *4)))) + ((*1 *1 *2) + (-12 (-4 *3 (-172)) (-4 *1 (-724 *3 *2)) (-4 *2 (-1240 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-958 *5)) (-4 *5 (-1214)) + (-4 *2 (-1214)) (-5 *1 (-957 *5 *2)))) + ((*1 *1 *2) + (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) + (-5 *1 (-1034 *3 *4 *5 *2 *6)) (-4 *2 (-949 *3 *4 *5)) + (-14 *6 (-644 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1049)) (-4 *2 (-1049)) + (-14 *5 (-771)) (-14 *6 (-771)) (-4 *8 (-238 *6 *7)) + (-4 *9 (-238 *5 *7)) (-4 *10 (-238 *6 *2)) (-4 *11 (-238 *5 *2)) + (-5 *1 (-1055 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) + (-4 *4 (-1053 *5 *6 *7 *8 *9)) (-4 *12 (-1053 *5 *6 *2 *10 *11)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1155 *5)) (-4 *5 (-1214)) + (-4 *2 (-1214)) (-5 *1 (-1153 *5 *2)))) + ((*1 *2 *2 *1 *3 *4) + (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) + (-4 *1 (-1207 *5 *6 *7 *2)) (-4 *5 (-558)) (-4 *6 (-793)) + (-4 *7 (-850)) (-4 *2 (-1064 *5 *6 *7)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1264 *5)) (-4 *5 (-1214)) + (-4 *2 (-1214)) (-5 *1 (-1263 *5 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-5 *2 (-644 (-2 (|:| -1364 *3) (|:| -3319 *4)))) - (-5 *1 (-735 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-726)))) + (-12 (-4 *3 (-454)) (-4 *4 (-850)) (-4 *5 (-793)) (-5 *2 (-112)) + (-5 *1 (-987 *3 *4 *5 *6)) (-4 *6 (-949 *3 *5 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1242 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)) - (-5 *2 (-1155 (-2 (|:| |k| *4) (|:| |c| *3))))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -4227 (-689 (-409 (-952 *4)))) - (|:| |vec| (-644 (-409 (-952 *4)))) (|:| -4313 (-771)) - (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566))))) - (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) - (-4 *6 (-793)) - (-5 *2 - (-2 (|:| |partsol| (-1264 (-409 (-952 *4)))) - (|:| -2365 (-644 (-1264 (-409 (-952 *4))))))) - (-5 *1 (-924 *4 *5 *6 *7)) (-4 *7 (-949 *4 *6 *5))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-566)) (-5 *4 (-112)) (-5 *5 (-689 (-169 (-225)))) - (-5 *2 (-1035)) (-5 *1 (-755))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171))))) -(((*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-691 (-1222)))))) -(((*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)) (-5 *3 (-566)))) - ((*1 *1 *1) (-12 (-4 *1 (-674 *2)) (-4 *2 (-1214)))) - ((*1 *1 *1) (-4 *1 (-869 *2))) - ((*1 *1 *1) - (-12 (-4 *1 (-973 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-792)) - (-4 *4 (-850))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5) - (-12 (-5 *3 (-1157)) (-5 *4 (-566)) (-5 *5 (-689 (-225))) - (-5 *2 (-1035)) (-5 *1 (-757))))) -(((*1 *1 *1) (-12 (-4 *1 (-674 *2)) (-4 *2 (-1214))))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-850)) - (-5 *2 (-2 (|:| -1364 *1) (|:| |gap| (-771)) (|:| -2513 *1))) - (-4 *1 (-1064 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) - (-5 *2 (-2 (|:| -1364 *1) (|:| |gap| (-771)) (|:| -2513 *1))) - (-4 *1 (-1064 *3 *4 *5))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -4392 *6) (|:| |sol?| (-112))) (-566) - *6)) - (-4 *6 (-365)) (-4 *7 (-1240 *6)) - (-5 *2 - (-3 (-2 (|:| |answer| (-409 *7)) (|:| |a0| *6)) - (-2 (|:| -2346 (-409 *7)) (|:| |coeff| (-409 *7))) "failed")) - (-5 *1 (-576 *6 *7)) (-5 *3 (-409 *7))))) -(((*1 *1 *1) - (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1049) (-850))) - (-14 *3 (-644 (-1175)))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-771)) (-4 *4 (-1049)) - (-5 *2 (-2 (|:| -2275 *1) (|:| -2513 *1))) (-4 *1 (-1240 *4))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) - (-4 *3 (-369 *4)))) - ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-409 (-952 (-169 (-566))))) (-5 *2 (-644 (-169 *4))) - (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-848))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-644 (-409 (-952 (-169 (-566)))))) - (-5 *4 (-644 (-1175))) (-5 *2 (-644 (-644 (-169 *5)))) - (-5 *1 (-380 *5)) (-4 *5 (-13 (-365) (-848)))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) - (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *5 (-225)) - (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1035)) - (-5 *1 (-749))))) -(((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-538))))) -(((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1040))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1139 *3 *4)) (-4 *3 (-13 (-1099) (-34))) + (-4 *4 (-13 (-1099) (-34)))))) +(((*1 *1 *1 *1) (-4 *1 (-547)))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-873 *2 *3)) (-4 *2 (-1214)) (-4 *3 (-1214))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *3 (-644 (-264))) + (-5 *1 (-262)))) + ((*1 *1 *2) (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *1 (-264)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *1 (-470)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *1 (-470))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-612 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *4))) + (-4 *4 (-13 (-558) (-1038 (-566)) (-639 (-566)))) + (-5 *1 (-278 *4 *2))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3)) + (-4 *3 (-13 (-365) (-1199) (-1002)))))) +(((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-144)))) + ((*1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-144))))) +(((*1 *1 *1) (-12 (-5 *1 (-502 *2)) (-14 *2 (-566)))) + ((*1 *1 *1) (-5 *1 (-1119)))) (((*1 *2 *3 *4) - (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) - (-5 *1 (-705 *3 *4)) (-4 *3 (-1214)) (-4 *4 (-1214))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1231 (-566)))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) - (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 (-112)) (-5 *1 (-301))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-771)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) - (-4 *3 (-1064 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-644 *4)) - (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -3570 *4)))))) - (-5 *1 (-1068 *6 *7 *8 *3 *4)) (-4 *4 (-1070 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) - (-4 *3 (-1064 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-644 *4)) - (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -3570 *4)))))) - (-5 *1 (-1068 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-771)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) - (-4 *3 (-1064 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-644 *4)) - (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -3570 *4)))))) - (-5 *1 (-1144 *6 *7 *8 *3 *4)) (-4 *4 (-1108 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) - (-4 *3 (-1064 *5 *6 *7)) + (-12 (-5 *4 (-112)) (-4 *5 (-351)) (-5 *2 - (-2 (|:| |done| (-644 *4)) - (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -3570 *4)))))) - (-5 *1 (-1144 *5 *6 *7 *3 *4)) (-4 *4 (-1108 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1269)) (-5 *1 (-822))))) -(((*1 *2 *2 *3 *3) - (|partial| -12 (-5 *3 (-1175)) - (-4 *4 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) - (-5 *1 (-577 *4 *2)) - (-4 *2 (-13 (-1199) (-959) (-1138) (-29 *4)))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1064 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) - (-4 *2 (-850)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) - (-4 *4 (-850))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1101 (-1101 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1099))))) + (-2 (|:| |cont| *5) + (|:| -1616 (-644 (-2 (|:| |irr| *3) (|:| -4125 (-566))))))) + (-5 *1 (-216 *5 *3)) (-4 *3 (-1240 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-1269)) - (-5 *1 (-451 *4 *5 *6 *3)) (-4 *3 (-949 *4 *5 *6))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1062))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-1175)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1214))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1093 *3)) (-4 *3 (-949 *7 *6 *4)) (-4 *6 (-793)) - (-4 *4 (-850)) (-4 *7 (-558)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-566)))) - (-5 *1 (-595 *6 *4 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-793)) (-4 *4 (-850)) (-4 *6 (-558)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-566)))) - (-5 *1 (-595 *5 *4 *6 *3)) (-4 *3 (-949 *6 *5 *4)))) - ((*1 *1 *1 *1 *1) (-5 *1 (-862))) ((*1 *1 *1 *1) (-5 *1 (-862))) - ((*1 *1 *1) (-5 *1 (-862))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1175)) - (-4 *4 (-13 (-558) (-1038 (-566)) (-639 (-566)))) - (-5 *1 (-1167 *4 *2)) (-4 *2 (-13 (-432 *4) (-160) (-27) (-1199))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1091 *2)) (-4 *2 (-13 (-432 *4) (-160) (-27) (-1199))) - (-4 *4 (-13 (-558) (-1038 (-566)) (-639 (-566)))) - (-5 *1 (-1167 *4 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1175)) (-4 *5 (-13 (-558) (-1038 (-566)))) - (-5 *2 (-409 (-952 *5))) (-5 *1 (-1168 *5)) (-5 *3 (-952 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1175)) (-4 *5 (-13 (-558) (-1038 (-566)))) - (-5 *2 (-3 (-409 (-952 *5)) (-317 *5))) (-5 *1 (-1168 *5)) - (-5 *3 (-409 (-952 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1091 (-952 *5))) (-5 *3 (-952 *5)) - (-4 *5 (-13 (-558) (-1038 (-566)))) (-5 *2 (-409 *3)) - (-5 *1 (-1168 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1091 (-409 (-952 *5)))) (-5 *3 (-409 (-952 *5))) - (-4 *5 (-13 (-558) (-1038 (-566)))) (-5 *2 (-3 *3 (-317 *5))) - (-5 *1 (-1168 *5))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-112)) - (-5 *2 (-1035)) (-5 *1 (-753))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) + (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-1064 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-644 *7)) (|:| |badPols| (-644 *7)))) + (-5 *1 (-977 *4 *5 *6 *7)) (-5 *3 (-644 *7))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1157)) (-5 *4 (-169 (-225))) (-5 *5 (-566)) + (-5 *2 (-1035)) (-5 *1 (-758))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-793)) (-4 *6 (-850)) - (-4 *7 (-949 *4 *5 *6)) (-5 *2 (-644 (-644 *7))) - (-5 *1 (-450 *4 *5 *6 *7)) (-5 *3 (-644 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-793)) - (-4 *7 (-850)) (-4 *8 (-949 *5 *6 *7)) (-5 *2 (-644 (-644 *8))) - (-5 *1 (-450 *5 *6 *7 *8)) (-5 *3 (-644 *8))))) -(((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-822))))) -(((*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1267)))) - ((*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1267))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-949 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) - (-4 *2 (-850)) (-4 *3 (-172)))) - ((*1 *2 *3 *3) - (-12 (-4 *2 (-558)) (-5 *1 (-969 *2 *3)) (-4 *3 (-1240 *2)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) - (-4 *4 (-850)) (-4 *2 (-558)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1240 *2)) (-4 *2 (-1049)) (-4 *2 (-172))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-566)) (-4 *1 (-1092 *3)) (-4 *3 (-1214))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-409 (-566))) (-5 *4 (-566)) (-5 *2 (-52)) - (-5 *1 (-1005))))) -(((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-926))))) -(((*1 *2 *1) - (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) - (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) - (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1155 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308))))) -(((*1 *2 *1) (-12 (-5 *2 (-644 (-183 (-139)))) (-5 *1 (-140))))) -(((*1 *1 *1) - (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) -(((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1002)))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-436)) - (-5 *2 - (-644 - (-3 (|:| -2640 (-1175)) - (|:| -3385 (-644 (-3 (|:| S (-1175)) (|:| P (-952 (-566))))))))) - (-5 *1 (-1179))))) -(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-738))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-1171 (-952 *4))) (-5 *1 (-418 *3 *4)) + (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) + (-5 *2 (-644 (-952 *4))))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-644 (-952 *4))) (-5 *1 (-418 *3 *4)) (-4 *3 (-419 *4)))) ((*1 *2) - (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-4 *3 (-365)) - (-5 *2 (-1171 (-952 *3))))) + (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-644 (-952 *3))))) ((*1 *2) - (-12 (-5 *2 (-1171 (-409 (-952 *3)))) (-5 *1 (-455 *3 *4 *5 *6)) - (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) - (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-365)) (-4 *5 (-558)) - (-5 *2 - (-2 (|:| |minor| (-644 (-921))) (|:| -2470 *3) - (|:| |minors| (-644 (-644 (-921)))) (|:| |ops| (-644 *3)))) - (-5 *1 (-90 *5 *3)) (-5 *4 (-921)) (-4 *3 (-656 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 *3)) - (-5 *1 (-977 *4 *5 *6 *3)) (-4 *3 (-1064 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-644 *2)) (-4 *2 (-432 *4)) (-5 *1 (-158 *4 *2)) - (-4 *4 (-558))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-1175))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-508)) (-5 *3 (-644 (-965))) (-5 *1 (-109))))) -(((*1 *1) (-5 *1 (-439)))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-921)) (-5 *4 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1265))))) -(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-31)))) - ((*1 *2) (-12 (-4 *1 (-406)) (-5 *2 (-921)))) ((*1 *1) (-4 *1 (-547))) - ((*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-699)))) - ((*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-904 *3)) (-4 *3 (-1099))))) -(((*1 *2 *1) (-12 (-5 *2 (-958 (-771))) (-5 *1 (-334))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-824))))) -(((*1 *2 *3) - (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-308)) (-5 *2 (-420 *3)) - (-5 *1 (-742 *4 *5 *6 *3)) (-4 *3 (-949 *6 *4 *5))))) -(((*1 *1 *1) - (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-558)))) - ((*1 *1 *1) (|partial| -4 *1 (-722)))) -(((*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-359 *3)) (-4 *3 (-351))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1099)) (-4 *5 (-1099)) - (-5 *2 (-1 *5)) (-5 *1 (-683 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-604 *2 *3)) (-4 *3 (-1214)) (-4 *2 (-1099)) - (-4 *2 (-850))))) -(((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1006)))) - ((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1006))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) - (-5 *2 - (-2 (|:| -2556 (-771)) (|:| |curves| (-771)) - (|:| |polygons| (-771)) (|:| |constructs| (-771))))))) -(((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-927))))) -(((*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-691 (-551)))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-612 *4)) (-4 *4 (-1099)) (-4 *2 (-1099)) - (-5 *1 (-611 *2 *4))))) -(((*1 *2) - (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) + (-12 (-5 *2 (-644 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) - (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3)))))) -(((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-225)) (-5 *1 (-1267)))) - ((*1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-1267))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-952 (-409 (-566)))) (-5 *4 (-1175)) - (-5 *5 (-1093 (-843 (-225)))) (-5 *2 (-644 (-225))) (-5 *1 (-301))))) -(((*1 *2 *1) (-12 (-4 *1 (-511 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-850))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1157)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) - ((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-264))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4414)) (-4 *1 (-151 *3)) - (-4 *3 (-1214)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1214)) (-5 *1 (-601 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-674 *3)) (-4 *3 (-1214)))) - ((*1 *2 *1 *3) - (|partial| -12 (-4 *1 (-1207 *4 *5 *3 *2)) (-4 *4 (-558)) - (-4 *5 (-793)) (-4 *3 (-850)) (-4 *2 (-1064 *4 *5 *3)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-771)) (-5 *1 (-1211 *2)) (-4 *2 (-1214))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-644 (-409 (-952 (-566))))) (-5 *4 (-644 (-1175))) - (-5 *2 (-644 (-644 *5))) (-5 *1 (-382 *5)) - (-4 *5 (-13 (-848) (-365))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-409 (-952 (-566)))) (-5 *2 (-644 *4)) (-5 *1 (-382 *4)) - (-4 *4 (-13 (-848) (-365)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-351)) (-4 *4 (-330 *3)) (-4 *5 (-1240 *4)) - (-5 *1 (-777 *3 *4 *5 *2 *6)) (-4 *2 (-1240 *5)) (-14 *6 (-921)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-771)) (-4 *1 (-1283 *3)) (-4 *3 (-365)) (-4 *3 (-370)))) - ((*1 *1 *1) (-12 (-4 *1 (-1283 *2)) (-4 *2 (-365)) (-4 *2 (-370))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) - (-5 *1 (-755))))) -(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-112)) (-5 *1 (-829))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) - (-5 *1 (-751))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-558)) (-5 *2 (-112))))) -(((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)) - (-5 *2 (-2 (|:| -2004 *3) (|:| -3867 *4)))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1026 (-843 (-566)))) - (-5 *3 (-1155 (-2 (|:| |k| (-566)) (|:| |c| *4)))) (-4 *4 (-1049)) - (-5 *1 (-596 *4))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4414)) (-4 *1 (-491 *4)) - (-4 *4 (-1214)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-183 (-249))) (-5 *1 (-248))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1175)) (-5 *2 (-439)) (-5 *1 (-1179))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1214)) (-5 *1 (-601 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1214)) (-5 *1 (-1155 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) -(((*1 *2 *3) - (-12 (-4 *4 (-558)) (-5 *2 (-771)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-419 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1214)))) - ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1095)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1207 *3 *4 *5 *2)) (-4 *3 (-558)) - (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-771)) (-4 *1 (-1252 *3)) (-4 *3 (-1214)))) - ((*1 *2 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-644 (-566))) (-5 *2 (-689 (-566))) (-5 *1 (-1109))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |cd| (-1157)) (|:| -2640 (-1157)))) - (-5 *1 (-822))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-892 *4)) (-4 *4 (-1099)) (-5 *1 (-890 *4 *3)) - (-4 *3 (-1214)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-892 *3)) (-4 *3 (-1099))))) -(((*1 *2 *3 *2 *4 *5) - (-12 (-5 *2 (-644 *3)) (-5 *5 (-921)) (-4 *3 (-1240 *4)) - (-4 *4 (-308)) (-5 *1 (-462 *4 *3))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1214)) (-5 *1 (-601 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1214)) (-5 *1 (-1155 *3))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-225)) (-5 *3 (-771)) (-5 *1 (-226)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-169 (-225))) (-5 *3 (-771)) (-5 *1 (-226)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1138)))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) - (-4 *3 (-1064 *5 *6 *7)) - (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -3570 *4)))) - (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-365) (-147) (-1038 (-566)))) (-4 *5 (-1240 *4)) - (-5 *2 (-2 (|:| |ans| (-409 *5)) (|:| |nosol| (-112)))) - (-5 *1 (-1015 *4 *5)) (-5 *3 (-409 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1240 (-409 (-566)))) (-5 *1 (-913 *3 *2)) - (-4 *2 (-1240 (-409 *3)))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-1269)) (-5 *1 (-831))))) -(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-222 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1214)) (-4 *1 (-255 *3)))) - ((*1 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1214))))) -(((*1 *2 *2) - (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))) - (-5 *1 (-176 *3))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-381)) (-5 *1 (-1062))))) -(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-874))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-921)) (-4 *6 (-558)) (-5 *2 (-644 (-317 *6))) - (-5 *1 (-221 *5 *6)) (-5 *3 (-317 *6)) (-4 *5 (-1049)))) - ((*1 *2 *1) (-12 (-5 *1 (-420 *2)) (-4 *2 (-558)))) - ((*1 *2 *3) - (-12 (-5 *3 (-587 *5)) (-4 *5 (-13 (-29 *4) (-1199))) - (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-644 *5)) - (-5 *1 (-585 *4 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-587 (-409 (-952 *4)))) - (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) - (-5 *2 (-644 (-317 *4))) (-5 *1 (-590 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1094 *3 *2)) (-4 *3 (-848)) (-4 *2 (-1148 *3)))) + (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3))))) ((*1 *2 *3) - (-12 (-5 *3 (-644 *1)) (-4 *1 (-1094 *4 *2)) (-4 *4 (-848)) - (-4 *2 (-1148 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1199))))) - ((*1 *2 *1) - (-12 (-5 *2 (-1279 (-1175) *3)) (-5 *1 (-1286 *3)) (-4 *3 (-1049)))) + (-12 (-5 *3 (-1264 (-455 *4 *5 *6 *7))) (-5 *2 (-644 (-952 *4))) + (-5 *1 (-455 *4 *5 *6 *7)) (-4 *4 (-558)) (-4 *4 (-172)) + (-14 *5 (-921)) (-14 *6 (-644 (-1175))) (-14 *7 (-1264 (-689 *4)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-612 *6)) (-4 *6 (-13 (-432 *5) (-27) (-1199))) + (-4 *5 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) + (-5 *2 (-1171 (-409 (-1171 *6)))) (-5 *1 (-562 *5 *6 *7)) + (-5 *3 (-1171 *6)) (-4 *7 (-1099)))) ((*1 *2 *1) - (-12 (-5 *2 (-1279 *3 *4)) (-5 *1 (-1288 *3 *4)) (-4 *3 (-850)) - (-4 *4 (-1049))))) -(((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-971))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-793)) (-4 *4 (-850)) (-4 *5 (-308)) - (-5 *1 (-916 *3 *4 *5 *2)) (-4 *2 (-949 *5 *3 *4)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1171 *6)) (-4 *6 (-949 *5 *3 *4)) (-4 *3 (-793)) - (-4 *4 (-850)) (-4 *5 (-308)) (-5 *1 (-916 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-644 *2)) (-4 *2 (-949 *6 *4 *5)) - (-5 *1 (-916 *4 *5 *6 *2)) (-4 *4 (-793)) (-4 *5 (-850)) - (-4 *6 (-308))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1264 *5)) (-4 *5 (-792)) (-5 *2 (-112)) - (-5 *1 (-845 *4 *5)) (-14 *4 (-771))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 (-644 *5))) (-4 *5 (-1255 *4)) - (-4 *4 (-38 (-409 (-566)))) - (-5 *2 (-1 (-1155 *4) (-644 (-1155 *4)))) (-5 *1 (-1257 *4 *5))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1264 (-1175))) (-5 *3 (-1264 (-455 *4 *5 *6 *7))) - (-5 *1 (-455 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-921)) - (-14 *6 (-644 (-1175))) (-14 *7 (-1264 (-689 *4))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-455 *4 *5 *6 *7))) - (-5 *1 (-455 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-921)) - (-14 *6 (-644 *2)) (-14 *7 (-1264 (-689 *4))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1264 (-455 *3 *4 *5 *6))) (-5 *1 (-455 *3 *4 *5 *6)) - (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) - (-14 *6 (-1264 (-689 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1264 (-1175))) (-5 *1 (-455 *3 *4 *5 *6)) - (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) - (-14 *6 (-1264 (-689 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1175)) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-172)) - (-14 *4 (-921)) (-14 *5 (-644 *2)) (-14 *6 (-1264 (-689 *3))))) - ((*1 *1) - (-12 (-5 *1 (-455 *2 *3 *4 *5)) (-4 *2 (-172)) (-14 *3 (-921)) - (-14 *4 (-644 (-1175))) (-14 *5 (-1264 (-689 *2)))))) -(((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4414)) (-4 *1 (-151 *2)) (-4 *2 (-1214)) - (-4 *2 (-1099)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4414)) (-4 *1 (-151 *3)) - (-4 *3 (-1214)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-674 *3)) (-4 *3 (-1214)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-566)) (-4 *4 (-1099)) - (-5 *1 (-737 *4)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-566)) (-5 *1 (-737 *2)) (-4 *2 (-1099)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1139 *3 *4)) (-4 *3 (-13 (-1099) (-34))) - (-4 *4 (-13 (-1099) (-34))) (-5 *1 (-1140 *3 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-171)))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-558)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) - (-5 *1 (-1204 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) - (-5 *1 (-751))))) -(((*1 *2 *1) (-12 (-4 *1 (-556 *2)) (-4 *2 (-13 (-406) (-1199))))) - ((*1 *1 *1 *1) (-4 *1 (-793)))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-532 *3)) (-4 *3 (-13 (-726) (-25)))))) -(((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *3 (-365)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) - (-5 *2 (-1264 *6)) (-5 *1 (-338 *3 *4 *5 *6)) - (-4 *6 (-344 *3 *4 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266)))) - ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266))))) -(((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1002)))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") - (|:| |Conditional| "conditional") (|:| |Return| "return") - (|:| |Block| "block") (|:| |Comment| "comment") - (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") - (|:| |Repeat| "repeat") (|:| |Goto| "goto") - (|:| |Continue| "continue") - (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") - (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) - (-5 *1 (-331))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) - (-4 *3 (-369 *4)))) - ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-5 *2 (-112)))) + (-12 (-4 *2 (-1240 *3)) (-5 *1 (-712 *3 *2)) (-4 *3 (-1049)))) ((*1 *2 *1) - (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-147)) - (-4 *3 (-308)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) - (-5 *1 (-977 *3 *4 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-850)) (-5 *1 (-121 *3))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-792)) (-4 *2 (-1049)))) - ((*1 *2 *1 *1) - (-12 (-4 *2 (-1049)) (-5 *1 (-50 *2 *3)) (-14 *3 (-644 (-1175))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-644 (-921))) (-4 *2 (-365)) (-5 *1 (-152 *4 *2 *5)) - (-14 *4 (-921)) (-14 *5 (-993 *4 *2)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-317 *3)) (-5 *1 (-223 *3 *4)) - (-4 *3 (-13 (-1049) (-850))) (-14 *4 (-644 (-1175))))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-324 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-131)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-384 *2 *3)) (-4 *3 (-1099)) (-4 *2 (-1049)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-566)) (-4 *2 (-558)) (-5 *1 (-623 *2 *4)) - (-4 *4 (-1240 *2)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-4 *1 (-708 *2)) (-4 *2 (-1049)))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-1049)) (-5 *1 (-735 *2 *3)) (-4 *3 (-726)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-644 *5)) (-5 *3 (-644 (-771))) (-4 *1 (-740 *4 *5)) - (-4 *4 (-1049)) (-4 *5 (-850)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-771)) (-4 *1 (-740 *4 *2)) (-4 *4 (-1049)) - (-4 *2 (-850)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-4 *1 (-852 *2)) (-4 *2 (-1049)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-644 *6)) (-5 *3 (-644 (-771))) (-4 *1 (-949 *4 *5 *6)) - (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *6 (-850)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-771)) (-4 *1 (-949 *4 *5 *2)) (-4 *4 (-1049)) - (-4 *5 (-793)) (-4 *2 (-850)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-771)) (-4 *2 (-949 *4 (-533 *5) *5)) - (-5 *1 (-1125 *4 *5 *2)) (-4 *4 (-1049)) (-4 *5 (-850)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-771)) (-5 *2 (-952 *4)) (-5 *1 (-1208 *4)) - (-4 *4 (-1049))))) -(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-644 *10)) (-5 *5 (-112)) (-4 *10 (-1070 *6 *7 *8 *9)) - (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) - (-4 *9 (-1064 *6 *7 *8)) - (-5 *2 - (-644 - (-2 (|:| -2470 (-644 *9)) (|:| -3570 *10) (|:| |ineq| (-644 *9))))) - (-5 *1 (-988 *6 *7 *8 *9 *10)) (-5 *3 (-644 *9)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-644 *10)) (-5 *5 (-112)) (-4 *10 (-1070 *6 *7 *8 *9)) - (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) - (-4 *9 (-1064 *6 *7 *8)) - (-5 *2 - (-644 - (-2 (|:| -2470 (-644 *9)) (|:| -3570 *10) (|:| |ineq| (-644 *9))))) - (-5 *1 (-1106 *6 *7 *8 *9 *10)) (-5 *3 (-644 *9))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-771)) (|:| |poli| *2) - (|:| |polj| *2))) - (-4 *5 (-793)) (-4 *2 (-949 *4 *5 *6)) (-5 *1 (-451 *4 *5 *6 *2)) - (-4 *4 (-454)) (-4 *6 (-850))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-303)) (-4 *2 (-1214)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-644 (-612 *1))) (-5 *3 (-644 *1)) (-4 *1 (-303)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-295 *1))) (-4 *1 (-303)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-295 *1)) (-4 *1 (-303))))) -(((*1 *2 *1) - (-12 (-4 *1 (-375 *3)) (-4 *3 (-1214)) (-4 *3 (-850)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-375 *4)) (-4 *4 (-1214)) - (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) -(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-926))))) -(((*1 *1 *1 *1) (-5 *1 (-162))) - ((*1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-162))))) -(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-96)))) - ((*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-109)))) + (-12 (-4 *1 (-724 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1240 *3)))) + ((*1 *2 *3 *4 *4 *5 *6 *7 *8) + (|partial| -12 (-5 *4 (-1171 *11)) (-5 *6 (-644 *10)) + (-5 *7 (-644 (-771))) (-5 *8 (-644 *11)) (-4 *10 (-850)) + (-4 *11 (-308)) (-4 *9 (-793)) (-4 *5 (-949 *11 *9 *10)) + (-5 *2 (-644 (-1171 *5))) (-5 *1 (-742 *9 *10 *11 *5)) + (-5 *3 (-1171 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-366 *2 *3)) (-4 *3 (-1099)) (-4 *2 (-1099)))) - ((*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-1157)))) - ((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-440 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-485)))) - ((*1 *2 *1) (-12 (-4 *1 (-835 *2)) (-4 *2 (-1099)))) - ((*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-865)))) - ((*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-965)))) - ((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1074 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-1114)))) - ((*1 *1 *1) (-5 *1 (-1175)))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) - (-4 *6 (-793)) (-5 *2 (-644 *3)) (-5 *1 (-924 *4 *5 *6 *3)) - (-4 *3 (-949 *4 *6 *5))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) - (-4 *3 (-369 *4)))) - ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-1049)) (-5 *1 (-446 *3 *2)) (-4 *2 (-1240 *3))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4415)) (-4 *1 (-119 *2)) (-4 *2 (-1214))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-644 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-771)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-793)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-454)) (-4 *5 (-850)) - (-5 *1 (-451 *3 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-4 *4 (-558)) (-5 *2 (-1264 (-689 *4))) (-5 *1 (-90 *4 *5)) - (-5 *3 (-689 *4)) (-4 *5 (-656 *4))))) -(((*1 *2 *3 *4) - (-12 (-4 *4 (-365)) (-5 *2 (-644 (-1155 *4))) (-5 *1 (-286 *4 *5)) - (-5 *3 (-1155 *4)) (-4 *5 (-1255 *4))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) - (|:| |expense| (-381)) (|:| |accuracy| (-381)) - (|:| |intermediateResults| (-381)))) - (-5 *2 (-1035)) (-5 *1 (-306))))) -(((*1 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) - (-5 *1 (-1127 *3 *2)) (-4 *3 (-1240 *2))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-771)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2)) - (-4 *2 (-1240 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-644 (-2 (|:| |val| (-644 *8)) (|:| -3570 *9)))) - (-5 *4 (-771)) (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1070 *5 *6 *7 *8)) - (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-1269)) - (-5 *1 (-1068 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-644 (-2 (|:| |val| (-644 *8)) (|:| -3570 *9)))) - (-5 *4 (-771)) (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1108 *5 *6 *7 *8)) - (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-1269)) - (-5 *1 (-1144 *5 *6 *7 *8 *9))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) - (-4 *4 (-850)) (-4 *2 (-558))))) -(((*1 *2 *3) - (-12 (-5 *3 (-644 (-483 *4 *5))) (-14 *4 (-644 (-1175))) - (-4 *5 (-454)) - (-5 *2 - (-2 (|:| |gblist| (-644 (-247 *4 *5))) - (|:| |gvlist| (-644 (-566))))) - (-5 *1 (-631 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-771)) (-5 *2 (-112)) (-5 *1 (-588 *3)) (-4 *3 (-547))))) -(((*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-527))))) + (-12 (-4 *2 (-949 *3 *4 *5)) (-5 *1 (-1034 *3 *4 *5 *2 *6)) + (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-14 *6 (-644 *2))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-921)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) - ((*1 *1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-264))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-1163 3 *3)))) - ((*1 *1) (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1049)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1132 (-225))) (-5 *1 (-1266)))) - ((*1 *2 *1) (-12 (-5 *2 (-1132 (-225))) (-5 *1 (-1266))))) -(((*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1214))))) -(((*1 *2 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) - (-5 *1 (-1127 *3 *2)) (-4 *3 (-1240 *2))))) -(((*1 *2 *3) - (-12 (-5 *3 (-644 *4)) (-4 *4 (-848)) (-4 *4 (-365)) (-5 *2 (-771)) - (-5 *1 (-945 *4 *5)) (-4 *5 (-1240 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) - (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1035)) - (-5 *1 (-746))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 (-4 *4 (-13 (-365) (-147) (-1038 (-566)))) - (-4 *5 (-1240 *4)) (-5 *2 (-644 (-409 *5))) (-5 *1 (-1016 *4 *5)) - (-5 *3 (-409 *5))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-926))))) -(((*1 *2 *1) (-12 (-5 *2 (-644 - (-2 (|:| |scalar| (-409 (-566))) (|:| |coeff| (-1171 *3)) - (|:| |logand| (-1171 *3))))) - (-5 *1 (-587 *3)) (-4 *3 (-365))))) -(((*1 *2 *1) - (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)) - (-5 *2 (-771)))) - ((*1 *2 *1) - (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1099)) - (-5 *2 (-771)))) - ((*1 *2 *1) - (-12 (-5 *2 (-771)) (-5 *1 (-735 *3 *4)) (-4 *3 (-1049)) - (-4 *4 (-726))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) - (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1155 (-225))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2446 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-561))))) -(((*1 *2) (-12 (-5 *2 (-644 *3)) (-5 *1 (-1083 *3)) (-4 *3 (-132))))) -(((*1 *2 *1) - (-12 (-5 *2 (-644 (-644 (-771)))) (-5 *1 (-904 *3)) (-4 *3 (-1099))))) -(((*1 *2 *2) (-12 (-5 *2 (-1093 (-843 (-225)))) (-5 *1 (-306))))) -(((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1002)))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-771)) (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) - (-4 *4 (-793)) (-4 *5 (-850)) (-4 *3 (-558))))) -(((*1 *2 *1) (-12 (-5 *1 (-1026 *2)) (-4 *2 (-1214))))) -(((*1 *2 *3 *2) - (|partial| -12 (-5 *3 (-921)) (-5 *1 (-444 *2)) - (-4 *2 (-1240 (-566))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-921)) (-5 *4 (-771)) (-5 *1 (-444 *2)) - (-4 *2 (-1240 (-566))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-921)) (-5 *4 (-644 (-771))) (-5 *1 (-444 *2)) - (-4 *2 (-1240 (-566))))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *3 (-921)) (-5 *4 (-644 (-771))) (-5 *5 (-771)) - (-5 *1 (-444 *2)) (-4 *2 (-1240 (-566))))) - ((*1 *2 *3 *2 *4 *5 *6) - (|partial| -12 (-5 *3 (-921)) (-5 *4 (-644 (-771))) (-5 *5 (-771)) - (-5 *6 (-112)) (-5 *1 (-444 *2)) (-4 *2 (-1240 (-566))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-921)) (-5 *4 (-420 *2)) (-4 *2 (-1240 *5)) - (-5 *1 (-446 *5 *2)) (-4 *5 (-1049))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-771)) (-5 *6 (-112)) (-4 *7 (-454)) (-4 *8 (-793)) - (-4 *9 (-850)) (-4 *3 (-1064 *7 *8 *9)) - (-5 *2 - (-2 (|:| |done| (-644 *4)) - (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -3570 *4)))))) - (-5 *1 (-1068 *7 *8 *9 *3 *4)) (-4 *4 (-1070 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-771)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) - (-4 *3 (-1064 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-644 *4)) - (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -3570 *4)))))) - (-5 *1 (-1068 *6 *7 *8 *3 *4)) (-4 *4 (-1070 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) - (-4 *3 (-1064 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-644 *4)) - (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -3570 *4)))))) - (-5 *1 (-1068 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-771)) (-5 *6 (-112)) (-4 *7 (-454)) (-4 *8 (-793)) - (-4 *9 (-850)) (-4 *3 (-1064 *7 *8 *9)) - (-5 *2 - (-2 (|:| |done| (-644 *4)) - (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -3570 *4)))))) - (-5 *1 (-1144 *7 *8 *9 *3 *4)) (-4 *4 (-1108 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-771)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) - (-4 *3 (-1064 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-644 *4)) - (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -3570 *4)))))) - (-5 *1 (-1144 *6 *7 *8 *3 *4)) (-4 *4 (-1108 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) - (-4 *3 (-1064 *5 *6 *7)) + (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-771)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *3 (-793)) (-4 *6 (-949 *4 *3 *5)) (-4 *4 (-454)) (-4 *5 (-850)) + (-5 *1 (-451 *4 *3 *5 *6))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1218)) (-4 *5 (-1240 *4)) (-5 *2 - (-2 (|:| |done| (-644 *4)) - (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -3570 *4)))))) - (-5 *1 (-1144 *5 *6 *7 *3 *4)) (-4 *4 (-1108 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) - (-12 (-5 *3 (-1157)) (-5 *4 (-566)) (-5 *5 (-689 (-225))) - (-5 *6 (-225)) (-5 *2 (-1035)) (-5 *1 (-752))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-771)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1215 *3)) (-4 *3 (-1099)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1099)) (-5 *2 (-112)) - (-5 *1 (-1215 *3))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1157)) (-5 *4 (-169 (-225))) (-5 *5 (-566)) - (-5 *2 (-1035)) (-5 *1 (-758))))) + (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-409 *5)) + (|:| |c2| (-409 *5)) (|:| |deg| (-771)))) + (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1240 (-409 *5)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-644 (-409 (-952 *5)))) (-5 *4 (-644 (-1175))) - (-4 *5 (-558)) (-5 *2 (-644 (-644 (-952 *5)))) (-5 *1 (-1183 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) - (-4 *5 (-1240 *4)) (-5 *2 (-644 (-2 (|:| -1320 *5) (|:| -3191 *5)))) - (-5 *1 (-807 *4 *5 *3 *6)) (-4 *3 (-656 *5)) - (-4 *6 (-656 (-409 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-365) (-147) (-1038 (-409 (-566))))) - (-4 *4 (-1240 *5)) (-5 *2 (-644 (-2 (|:| -1320 *4) (|:| -3191 *4)))) - (-5 *1 (-807 *5 *4 *3 *6)) (-4 *3 (-656 *4)) - (-4 *6 (-656 (-409 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) - (-4 *5 (-1240 *4)) (-5 *2 (-644 (-2 (|:| -1320 *5) (|:| -3191 *5)))) - (-5 *1 (-807 *4 *5 *6 *3)) (-4 *6 (-656 *5)) - (-4 *3 (-656 (-409 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-365) (-147) (-1038 (-409 (-566))))) - (-4 *4 (-1240 *5)) (-5 *2 (-644 (-2 (|:| -1320 *4) (|:| -3191 *4)))) - (-5 *1 (-807 *5 *4 *6 *3)) (-4 *6 (-656 *4)) - (-4 *3 (-656 (-409 *4)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1002)))))) -(((*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-52))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-13 (-848) (-365))) (-5 *2 (-112)) (-5 *1 (-1060 *4 *3)) - (-4 *3 (-1240 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-409 *5)) (-4 *5 (-1240 *4)) (-4 *4 (-558)) - (-4 *4 (-1049)) (-4 *2 (-1255 *4)) (-5 *1 (-1258 *4 *5 *6 *2)) - (-4 *6 (-656 *5))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-558)) - (-5 *2 (-2 (|:| -2275 *3) (|:| -2513 *3))) (-5 *1 (-1235 *4 *3)) - (-4 *3 (-1240 *4))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1012)) (-5 *2 (-862))))) -(((*1 *2 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-506 (-409 (-566)) (-240 *5 (-771)) (-864 *4) - (-247 *4 (-409 (-566))))) - (-14 *4 (-644 (-1175))) (-14 *5 (-771)) (-5 *2 (-112)) - (-5 *1 (-507 *4 *5))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-566)) (-4 *4 (-172)) (-4 *5 (-375 *4)) - (-4 *6 (-375 *4)) (-5 *1 (-688 *4 *5 *6 *2)) - (-4 *2 (-687 *4 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-331))))) -(((*1 *1 *1) (-5 *1 (-1062)))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-1049))))) -(((*1 *1 *1) (-4 *1 (-1059))) - ((*1 *1 *1 *2 *2) - (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-792)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-792))))) -(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-248))))) -(((*1 *2 *3) - (-12 (-4 *4 (-351)) (-5 *2 (-420 *3)) (-5 *1 (-216 *4 *3)) - (-4 *3 (-1240 *4)))) + (-12 (-5 *3 (-905 (-566))) (-5 *4 (-566)) (-5 *2 (-689 *4)) + (-5 *1 (-1028 *5)) (-4 *5 (-1049)))) ((*1 *2 *3) - (-12 (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-771)) (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) - (-4 *3 (-1240 (-566))))) + (-12 (-5 *3 (-644 (-566))) (-5 *2 (-689 (-566))) (-5 *1 (-1028 *4)) + (-4 *4 (-1049)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-644 (-771))) (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) - (-4 *3 (-1240 (-566))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-644 (-771))) (-5 *5 (-771)) (-5 *2 (-420 *3)) - (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-771)) (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) - (-4 *3 (-1240 (-566))))) - ((*1 *2 *3) - (-12 (-5 *2 (-420 *3)) (-5 *1 (-1007 *3)) - (-4 *3 (-1240 (-409 (-566)))))) + (-12 (-5 *3 (-644 (-905 (-566)))) (-5 *4 (-566)) + (-5 *2 (-644 (-689 *4))) (-5 *1 (-1028 *5)) (-4 *5 (-1049)))) ((*1 *2 *3) - (-12 (-5 *2 (-420 *3)) (-5 *1 (-1229 *3)) (-4 *3 (-1240 (-566)))))) + (-12 (-5 *3 (-644 (-644 (-566)))) (-5 *2 (-644 (-689 (-566)))) + (-5 *1 (-1028 *4)) (-4 *4 (-1049))))) +(((*1 *2) (-12 (-5 *2 (-904 (-566))) (-5 *1 (-917))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1175)) (-4 *5 (-614 (-892 (-566)))) + (-4 *5 (-886 (-566))) + (-4 *5 (-13 (-1038 (-566)) (-454) (-639 (-566)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-569 *5 *3)) (-4 *3 (-629)) + (-4 *3 (-13 (-27) (-1199) (-432 *5))))) + ((*1 *2 *2 *3 *4 *4) + (|partial| -12 (-5 *3 (-1175)) (-5 *4 (-843 *2)) (-4 *2 (-1138)) + (-4 *2 (-13 (-27) (-1199) (-432 *5))) + (-4 *5 (-614 (-892 (-566)))) (-4 *5 (-886 (-566))) + (-4 *5 (-13 (-1038 (-566)) (-454) (-639 (-566)))) + (-5 *1 (-569 *5 *2))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-502 *2)) (-14 *2 (-566)))) + ((*1 *1 *1 *1) (-5 *1 (-1119)))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-771)) (-4 *5 (-558)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-969 *5 *3)) (-4 *3 (-1240 *5))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266))))) +(((*1 *1 *1) + (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-558)))) + ((*1 *1 *1) (|partial| -4 *1 (-722)))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365))))) +(((*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1214))))) (((*1 *2 *3) - (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) - (-4 *7 (-1064 *4 *5 *6)) - (-5 *2 (-644 (-2 (|:| -1651 *1) (|:| -3501 (-644 *7))))) - (-5 *3 (-644 *7)) (-4 *1 (-1207 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *5 (-612 *4)) (-5 *6 (-1171 *4)) - (-4 *4 (-13 (-432 *7) (-27) (-1199))) - (-4 *7 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) + (-12 (-5 *3 (-689 (-317 (-225)))) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2365 (-644 *4)))) - (-5 *1 (-562 *7 *4 *3)) (-4 *3 (-656 *4)) (-4 *3 (-1099)))) - ((*1 *2 *3 *4 *5 *5 *5 *4 *6) - (-12 (-5 *5 (-612 *4)) (-5 *6 (-409 (-1171 *4))) - (-4 *4 (-13 (-432 *7) (-27) (-1199))) - (-4 *7 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) + (-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381)))) + (-5 *1 (-205))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4414)) (-4 *1 (-604 *4 *3)) (-4 *4 (-1099)) + (-4 *3 (-1214)) (-4 *3 (-1099)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-644 (-864 *5))) (-14 *5 (-644 (-1175))) (-4 *6 (-454)) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2365 (-644 *4)))) - (-5 *1 (-562 *7 *4 *3)) (-4 *3 (-656 *4)) (-4 *3 (-1099))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1214)) (-5 *1 (-873 *3 *2)) (-4 *3 (-1214)))) - ((*1 *2 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214))))) -(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) - (-12 (-5 *4 (-689 (-225))) (-5 *5 (-689 (-566))) (-5 *3 (-566)) - (-5 *2 (-1035)) (-5 *1 (-756))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) -(((*1 *2 *3) - (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-558)) - (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) - (-5 *1 (-977 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-4 *4 (-558)) (-4 *2 (-13 (-432 (-169 *4)) (-1002) (-1199))) - (-5 *1 (-600 *4 *3 *2)) (-4 *3 (-13 (-432 *4) (-1002) (-1199)))))) -(((*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-672 *3)) (-4 *3 (-850)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-677 *3)) (-4 *3 (-850)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-819 *3)) (-4 *3 (-850))))) -(((*1 *2 *3) (-12 (-5 *3 (-952 (-225))) (-5 *2 (-225)) (-5 *1 (-306))))) -(((*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049))))) -(((*1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1184))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-1175)) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-114)) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1175)) (-5 *2 (-112)) (-5 *1 (-612 *4)) - (-4 *4 (-1099)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-612 *4)) (-4 *4 (-1099)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-835 *3)) (-4 *3 (-1099)) (-5 *2 (-112)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1099)) (-5 *2 (-112)) (-5 *1 (-887 *5 *3 *4)) - (-4 *3 (-886 *5)) (-4 *4 (-614 (-892 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-644 *6)) (-4 *6 (-886 *5)) (-4 *5 (-1099)) - (-5 *2 (-112)) (-5 *1 (-887 *5 *6 *4)) (-4 *4 (-614 (-892 *5)))))) -(((*1 *2) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) - (-4 *5 (-1240 (-409 *4))) (-5 *2 (-689 (-409 *4)))))) -(((*1 *2 *2) (-12 (-5 *2 (-644 (-317 (-225)))) (-5 *1 (-268))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1180))))) -(((*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-691 (-548)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-644 (-247 *4 *5))) (-5 *2 (-247 *4 *5)) - (-14 *4 (-644 (-1175))) (-4 *5 (-454)) (-5 *1 (-631 *4 *5))))) -(((*1 *1 *1) - (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) -(((*1 *2 *2) - (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1199)))))) + (-2 (|:| |dpolys| (-644 (-247 *5 *6))) + (|:| |coords| (-644 (-566))))) + (-5 *1 (-473 *5 *6 *7)) (-5 *3 (-644 (-247 *5 *6))) (-4 *7 (-454))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-558)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2610 *4))) + (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-502 *2)) (-14 *2 (-566)))) + ((*1 *1 *1 *1) (-5 *1 (-1119)))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 *3)) + (-5 *1 (-977 *4 *5 *6 *3)) (-4 *3 (-1064 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-218)))) + ((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1214)))) + ((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-676)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850))))) (((*1 *2 *3) - (-12 (-5 *3 (-771)) (-5 *2 (-689 (-952 *4))) (-5 *1 (-1028 *4)) - (-4 *4 (-1049))))) + (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1240 (-566))))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1240 (-566)))))) +(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144))) + ((*1 *1 *1) (-4 *1 (-1143)))) (((*1 *2 *2) - (-12 (-4 *2 (-172)) (-4 *2 (-1049)) (-5 *1 (-714 *2 *3)) - (-4 *3 (-648 *2)))) - ((*1 *2 *2) (-12 (-5 *1 (-836 *2)) (-4 *2 (-172)) (-4 *2 (-1049))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1157)) (-5 *3 (-823)) (-5 *1 (-822))))) -(((*1 *1 *2) - (-12 (-5 *2 (-644 (-566))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1049)) - (-14 *4 (-644 (-1175))))) - ((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1002))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) - ((*1 *1 *1) (-4 *1 (-285))) - ((*1 *1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) - (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) - ((*1 *1 *2) - (-12 (-5 *2 (-664 *3 *4)) (-4 *3 (-850)) - (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-5 *1 (-627 *3 *4 *5)) - (-14 *5 (-921)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) - (-5 *1 (-1160 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) - (-5 *1 (-1161 *3)))) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-454)) + (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) + (-5 *1 (-977 *3 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-771)) (-4 *4 (-13 (-1049) (-717 (-409 (-566))))) - (-4 *5 (-850)) (-5 *1 (-1280 *4 *5 *2)) (-4 *2 (-1285 *5 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-771)) (-5 *1 (-1284 *3 *4)) - (-4 *4 (-717 (-409 (-566)))) (-4 *3 (-850)) (-4 *4 (-172))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-644 *4)) (-4 *4 (-365)) (-4 *2 (-1240 *4)) - (-5 *1 (-922 *4 *2))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1093 (-225))) - (-5 *5 (-112)) (-5 *2 (-1266)) (-5 *1 (-258))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) - (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) (-12 (-5 *2 (-644 *7)) (-5 *3 (-112)) (-4 *7 (-1064 *4 *5 *6)) - (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *4 (-454)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-977 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-689 *5)) (-5 *4 (-1264 *5)) (-4 *5 (-365)) - (-5 *2 (-112)) (-5 *1 (-667 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4415)))) - (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4415)))) (-5 *2 (-112)) - (-5 *1 (-668 *5 *6 *4 *3)) (-4 *3 (-687 *5 *6 *4))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-921)) (-5 *4 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1265))))) -(((*1 *2 *1 *3) - (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1062)) (-5 *3 (-1157))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-771)) (-4 *1 (-656 *3)) (-4 *3 (-1049)) (-4 *3 (-365)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-771)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) - (-5 *1 (-659 *5 *2)) (-4 *2 (-656 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-644 (-864 *5))) (-14 *5 (-644 (-1175))) (-4 *6 (-454)) - (-5 *2 (-644 (-644 (-247 *5 *6)))) (-5 *1 (-473 *5 *6 *7)) - (-5 *3 (-644 (-247 *5 *6))) (-4 *7 (-454))))) -(((*1 *2 *3) - (-12 (-4 *4 (-38 (-409 (-566)))) - (-5 *2 (-2 (|:| -2085 (-1155 *4)) (|:| -2098 (-1155 *4)))) - (-5 *1 (-1161 *4)) (-5 *3 (-1155 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1264 *3)) (-4 *3 (-1049)) (-5 *1 (-712 *3 *4)) - (-4 *4 (-1240 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-644 *5) *6)) - (-4 *5 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *6 (-1240 *5)) - (-5 *2 (-644 (-2 (|:| |poly| *6) (|:| -2470 *3)))) - (-5 *1 (-809 *5 *6 *3 *7)) (-4 *3 (-656 *6)) - (-4 *7 (-656 (-409 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-644 *5) *6)) - (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) - (-4 *6 (-1240 *5)) - (-5 *2 (-644 (-2 (|:| |poly| *6) (|:| -2470 (-654 *6 (-409 *6)))))) - (-5 *1 (-812 *5 *6)) (-5 *3 (-654 *6 (-409 *6)))))) -(((*1 *1 *1 *1) (-4 *1 (-547)))) -(((*1 *2 *3) - (-12 (-5 *3 (-644 (-644 (-644 *4)))) (-5 *2 (-644 (-644 *4))) - (-5 *1 (-1185 *4)) (-4 *4 (-850))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) -(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *2 (-1269)) (-5 *1 (-822))))) -(((*1 *2) - (-12 (-5 *2 (-921)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) - ((*1 *2 *2) - (-12 (-5 *2 (-921)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566)))))) -(((*1 *2 *1) (-12 (-4 *1 (-869 *3)) (-5 *2 (-566))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1049)) (-4 *4 (-1240 *3)) (-5 *1 (-164 *3 *4 *2)) - (-4 *2 (-1240 *4)))) - ((*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1214))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) - (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) - (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1214))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-689 *3)) - (-4 *3 (-13 (-308) (-10 -8 (-15 -3184 ((-420 $) $))))) - (-4 *4 (-1240 *3)) (-5 *1 (-501 *3 *4 *5)) (-4 *5 (-411 *3 *4))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-1171 (-952 *4))) (-5 *1 (-418 *3 *4)) - (-4 *3 (-419 *4)))) - ((*1 *2) - (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-4 *3 (-365)) - (-5 *2 (-1171 (-952 *3))))) - ((*1 *2) - (-12 (-5 *2 (-1171 (-409 (-952 *3)))) (-5 *1 (-455 *3 *4 *5 *6)) - (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) - (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3)))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-759))))) -(((*1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-644 (-114)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1002)))))) -(((*1 *1) (-5 *1 (-580))) - ((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-863)))) - ((*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1269)) (-5 *1 (-863)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1157)) (-5 *4 (-862)) (-5 *2 (-1269)) (-5 *1 (-863)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-566)) (-5 *2 (-1269)) (-5 *1 (-1155 *4)) - (-4 *4 (-1099)) (-4 *4 (-1214))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-1049)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) - (-4 *4 (-850))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2738 *3) (|:| |coef1| (-782 *3)))) - (-5 *1 (-782 *3)) (-4 *3 (-558)) (-4 *3 (-1049))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-644 (-317 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) - (-5 *1 (-210))))) -(((*1 *1 *1 *1) (-4 *1 (-143))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-158 *3 *2)) (-4 *2 (-432 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-547))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-644 (-483 *5 *6))) (-5 *4 (-864 *5)) - (-14 *5 (-644 (-1175))) (-5 *2 (-483 *5 *6)) (-5 *1 (-631 *5 *6)) - (-4 *6 (-454)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-644 (-483 *5 *6))) (-5 *4 (-864 *5)) - (-14 *5 (-644 (-1175))) (-5 *2 (-483 *5 *6)) (-5 *1 (-631 *5 *6)) - (-4 *6 (-454))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1171 *6)) (-4 *6 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) - (-5 *2 (-1171 *7)) (-5 *1 (-322 *4 *5 *6 *7)) - (-4 *7 (-949 *6 *4 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-351)) (-5 *2 (-420 (-1171 (-1171 *4)))) - (-5 *1 (-1212 *4)) (-5 *3 (-1171 (-1171 *4)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-566)) (-5 *1 (-241)))) - ((*1 *2 *3) - (-12 (-5 *3 (-644 (-1157))) (-5 *2 (-566)) (-5 *1 (-241))))) -(((*1 *2 *3 *4 *2 *5) - (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 (-892 *6))) - (-5 *5 (-1 (-889 *6 *8) *8 (-892 *6) (-889 *6 *8))) (-4 *6 (-1099)) - (-4 *8 (-13 (-1049) (-614 (-892 *6)) (-1038 *7))) - (-5 *2 (-889 *6 *8)) (-4 *7 (-1049)) (-5 *1 (-941 *6 *7 *8))))) -(((*1 *2) - (-12 (-4 *3 (-558)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-419 *3))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) - (-5 *1 (-752))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-1175)) + (-4 *4 (-13 (-454) (-147) (-1038 (-566)) (-639 (-566)))) + (-5 *1 (-559 *4 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *4)))))) (((*1 *1 *1 *2 *3) (-12 (-5 *2 (-566)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1214)) (-4 *5 (-375 *4)) (-4 *3 (-375 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-614 (-892 *3))) (-4 *3 (-886 *3)) (-4 *3 (-454)) + (-5 *1 (-1205 *3 *2)) (-4 *2 (-614 (-892 *3))) (-4 *2 (-886 *3)) + (-4 *2 (-13 (-432 *3) (-1199)))))) +(((*1 *1 *2) (-12 (-5 *2 (-921)) (-4 *1 (-370)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-921)) (-5 *2 (-1264 *4)) (-5 *1 (-530 *4)) + (-4 *4 (-351)))) + ((*1 *2 *1) + (-12 (-4 *2 (-850)) (-5 *1 (-713 *2 *3 *4)) (-4 *3 (-1099)) + (-14 *4 + (-1 (-112) (-2 (|:| -2835 *2) (|:| -2201 *3)) + (-2 (|:| -2835 *2) (|:| -2201 *3))))))) +(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-926))))) (((*1 *2 *1) - (-12 (-4 *3 (-454)) (-4 *4 (-850)) (-4 *5 (-793)) (-5 *2 (-644 *6)) - (-5 *1 (-987 *3 *4 *5 *6)) (-4 *6 (-949 *3 *5 *4))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1171 (-409 (-566)))) (-5 *1 (-942)) (-5 *3 (-566))))) -(((*1 *2 *3 *2) - (-12 (-4 *2 (-13 (-365) (-848))) (-5 *1 (-181 *2 *3)) - (-4 *3 (-1240 (-169 *2))))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-365) (-848))) (-5 *1 (-181 *2 *3)) - (-4 *3 (-1240 (-169 *2)))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1157)) (-5 *1 (-1195))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1157)) (-5 *4 (-566)) (-5 *5 (-689 (-225))) - (-5 *2 (-1035)) (-5 *1 (-754))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1237 *5 *4)) (-4 *4 (-454)) (-4 *4 (-820)) - (-14 *5 (-1175)) (-5 *2 (-566)) (-5 *1 (-1113 *4 *5))))) -(((*1 *1 *1) (-4 *1 (-1059)))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-976 *4 *5 *6 *3)) (-4 *4 (-1049)) (-4 *5 (-793)) - (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-4 *4 (-558)) - (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3)) - (-4 *3 (-13 (-365) (-1199) (-1002)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-644 *2))) (-5 *4 (-644 *5)) - (-4 *5 (-38 (-409 (-566)))) (-4 *2 (-1255 *5)) - (-5 *1 (-1257 *5 *2))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-943 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-644 (-943 *3))) (-4 *3 (-1049)) (-4 *1 (-1133 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-644 (-644 *3))) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-644 (-943 *3))) (-4 *1 (-1133 *3)) (-4 *3 (-1049))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 (-1155 *4) (-1155 *4))) (-5 *2 (-1155 *4)) - (-5 *1 (-1289 *4)) (-4 *4 (-1214)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-644 (-1155 *5)) (-644 (-1155 *5)))) (-5 *4 (-566)) - (-5 *2 (-644 (-1155 *5))) (-5 *1 (-1289 *5)) (-4 *5 (-1214))))) + (-12 (-4 *4 (-1099)) (-5 *2 (-889 *3 *5)) (-5 *1 (-885 *3 *4 *5)) + (-4 *3 (-1099)) (-4 *5 (-666 *4))))) +(((*1 *1 *1) + (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) +(((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-218)))) + ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-441)))) + ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-838)))) + ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1114)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-644 (-1180))) (-5 *3 (-1180)) (-5 *1 (-1117))))) (((*1 *2 *3) - (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) - ((*1 *2 *3) (-12 (-5 *3 (-971)) (-5 *2 (-904 (-566))) (-5 *1 (-917))))) -(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-555))))) -(((*1 *2 *2 *1 *3 *4) - (-12 (-5 *2 (-644 *8)) (-5 *3 (-1 *8 *8 *8)) - (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1207 *5 *6 *7 *8)) (-4 *5 (-558)) - (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-1064 *5 *6 *7))))) -(((*1 *2) - (-12 - (-5 *2 (-2 (|:| -1863 (-644 (-1175))) (|:| -2177 (-644 (-1175))))) - (-5 *1 (-1216))))) + (-12 (-5 *3 (-644 (-566))) (-5 *2 (-1177 (-409 (-566)))) + (-5 *1 (-190))))) +(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-566)) (-5 *5 (-689 (-225))) + (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G)))) + (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN)))) (-5 *3 (-225)) + (-5 *2 (-1035)) (-5 *1 (-749))))) +(((*1 *2 *2) + (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))) + (-5 *1 (-176 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-222 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1214)) (-4 *1 (-255 *3)))) + ((*1 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1214))))) (((*1 *2 *1) - (-12 (-5 *2 (-1155 (-2 (|:| |k| (-566)) (|:| |c| *3)))) - (-5 *1 (-596 *3)) (-4 *3 (-1049))))) -(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1274))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-921)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) - ((*1 *1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-264))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1264 (-644 (-2 (|:| -2233 *4) (|:| -2178 (-1119)))))) - (-4 *4 (-351)) (-5 *2 (-771)) (-5 *1 (-348 *4)))) - ((*1 *2) - (-12 (-5 *2 (-771)) (-5 *1 (-353 *3 *4)) (-14 *3 (-921)) - (-14 *4 (-921)))) - ((*1 *2) - (-12 (-5 *2 (-771)) (-5 *1 (-354 *3 *4)) (-4 *3 (-351)) - (-14 *4 - (-3 (-1171 *3) - (-1264 (-644 (-2 (|:| -2233 *3) (|:| -2178 (-1119))))))))) - ((*1 *2) - (-12 (-5 *2 (-771)) (-5 *1 (-355 *3 *4)) (-4 *3 (-351)) - (-14 *4 (-921))))) -(((*1 *1 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1214))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) - (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 (-644 (-225))) (-5 *1 (-204))))) + (-12 (-4 *3 (-1099)) (-4 *4 (-13 (-1049) (-886 *3) (-614 (-892 *3)))) + (-5 *2 (-644 (-1075 *3 *4 *5))) (-5 *1 (-1076 *3 *4 *5)) + (-4 *5 (-13 (-432 *4) (-886 *3) (-614 (-892 *3))))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1240 *5)) (-4 *5 (-365)) - (-4 *7 (-1240 (-409 *6))) - (-5 *2 (-2 (|:| |answer| *3) (|:| -2615 *3))) - (-5 *1 (-564 *5 *6 *7 *3)) (-4 *3 (-344 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1240 *5)) (-4 *5 (-365)) - (-5 *2 - (-2 (|:| |answer| (-409 *6)) (|:| -2615 (-409 *6)) - (|:| |specpart| (-409 *6)) (|:| |polypart| *6))) - (-5 *1 (-565 *5 *6)) (-5 *3 (-409 *6))))) -(((*1 *2) - (-12 (-4 *3 (-13 (-558) (-1038 (-566)))) (-5 *2 (-1269)) - (-5 *1 (-435 *3 *4)) (-4 *4 (-432 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1264 *4)) (-4 *4 (-351)) (-5 *2 (-1171 *4)) - (-5 *1 (-530 *4))))) + (-12 (-5 *3 (-409 *6)) (-4 *5 (-1218)) (-4 *6 (-1240 *5)) + (-5 *2 (-2 (|:| -2201 (-771)) (|:| -2397 *3) (|:| |radicand| *6))) + (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-771)) (-4 *7 (-1240 *3))))) +(((*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-547)))) + ((*1 *1 *2) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-971))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-508)) (-5 *2 (-644 (-965))) (-5 *1 (-292))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1264 *5)) (-4 *5 (-639 *4)) (-4 *4 (-558)) - (-5 *2 (-1264 *4)) (-5 *1 (-638 *4 *5))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-874)) (-5 *3 (-644 (-264))) (-5 *1 (-262))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-771)) (-4 *4 (-308)) (-4 *6 (-1240 *4)) - (-5 *2 (-1264 (-644 *6))) (-5 *1 (-457 *4 *6)) (-5 *5 (-644 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1175)) (-5 *4 (-952 (-566))) (-5 *2 (-331)) - (-5 *1 (-333))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-644 (-1 (-112) *8))) (-4 *8 (-1064 *5 *6 *7)) - (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850)) - (-5 *2 (-2 (|:| |goodPols| (-644 *8)) (|:| |badPols| (-644 *8)))) - (-5 *1 (-977 *5 *6 *7 *8)) (-5 *4 (-644 *8))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) - (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) - (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-70 APROD)))) (-5 *4 (-225)) - (-5 *2 (-1035)) (-5 *1 (-756))))) -(((*1 *1) (-5 *1 (-561)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862))))) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4414)) (-4 *1 (-491 *4)) + (-4 *4 (-1214)) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1264 (-1264 *4))) (-4 *4 (-1049)) (-5 *2 (-689 *4)) - (-5 *1 (-1029 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-327 *2 *3)) (-4 *3 (-792)) (-4 *2 (-1049)) - (-4 *2 (-454)))) - ((*1 *2 *3) - (-12 (-5 *3 (-644 *4)) (-4 *4 (-1240 (-566))) (-5 *2 (-644 (-566))) - (-5 *1 (-488 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-454)))) + (-12 (-5 *3 (-409 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1240 *5)) + (-5 *1 (-727 *5 *2)) (-4 *5 (-365))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 (-1093 (-409 (-566))))) (-5 *1 (-264)))) + ((*1 *1 *2) (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *1 (-264))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 (-771)) (-4 *3 (-1049)) (-4 *1 (-687 *3 *4 *5)) + (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-771)) (-4 *1 (-1262 *3)) (-4 *3 (-23)) (-4 *3 (-1214))))) +(((*1 *2) + (-12 (-4 *4 (-365)) (-5 *2 (-771)) (-5 *1 (-329 *3 *4)) + (-4 *3 (-330 *4)))) + ((*1 *2) (-12 (-4 *1 (-1283 *3)) (-4 *3 (-365)) (-5 *2 (-771))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-952 (-566)))) (-5 *1 (-439)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1175)) (-5 *4 (-689 (-225))) (-5 *2 (-1103)) + (-5 *1 (-759)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1175)) (-5 *4 (-689 (-566))) (-5 *2 (-1103)) + (-5 *1 (-759))))) +(((*1 *2 *2) (-12 (-5 *2 (-1093 (-843 (-225)))) (-5 *1 (-306))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-850)) + (-5 *2 (-2 (|:| -2631 *1) (|:| -3264 *1))) (-4 *1 (-949 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1049)) (-5 *2 (-2 (|:| -2631 *1) (|:| -3264 *1))) + (-4 *1 (-1240 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-792)))) + ((*1 *1 *1) + (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1049)) (-14 *3 (-644 (-1175))))) + ((*1 *1 *1) + (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1049) (-850))) + (-14 *3 (-644 (-1175))))) + ((*1 *1 *1) + (-12 (-4 *1 (-384 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-1099)))) + ((*1 *1 *1) + (-12 (-14 *2 (-644 (-1175))) (-4 *3 (-172)) + (-4 *5 (-238 (-3000 *2) (-771))) + (-14 *6 + (-1 (-112) (-2 (|:| -2835 *4) (|:| -2201 *5)) + (-2 (|:| -2835 *4) (|:| -2201 *5)))) + (-5 *1 (-463 *2 *3 *4 *5 *6 *7)) (-4 *4 (-850)) + (-4 *7 (-949 *3 *5 (-864 *2))))) + ((*1 *1 *1) (-12 (-4 *1 (-511 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-850)))) + ((*1 *1 *1) + (-12 (-4 *2 (-558)) (-5 *1 (-623 *2 *3)) (-4 *3 (-1240 *2)))) + ((*1 *1 *1) (-12 (-4 *1 (-708 *2)) (-4 *2 (-1049)))) + ((*1 *1 *1) + (-12 (-5 *1 (-735 *2 *3)) (-4 *3 (-850)) (-4 *2 (-1049)) + (-4 *3 (-726)))) + ((*1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-949 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) - (-4 *2 (-850)) (-4 *3 (-454))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-566)) (-5 *1 (-696 *2)) (-4 *2 (-1240 *3))))) + (-12 (-4 *1 (-1064 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *2 (-850)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1287 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-846))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1231 *3)) (-4 *3 (-1214))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1099)) (-4 *4 (-1099)) - (-4 *6 (-1099)) (-5 *2 (-1 *6 *5)) (-5 *1 (-684 *5 *4 *6))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-771)) (-4 *2 (-1099)) - (-5 *1 (-678 *2))))) -(((*1 *1) (-4 *1 (-23))) - ((*1 *1) (-12 (-4 *1 (-472 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-538))) - ((*1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1057)))) - ((*1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099)))) - ((*1 *1) (-12 (-4 *1 (-1051 *2)) (-4 *2 (-1057))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *4 (-566))) (-5 *5 (-1 (-1155 *4))) (-4 *4 (-365)) - (-4 *4 (-1049)) (-5 *2 (-1155 *4)) (-5 *1 (-1159 *4))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1109))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1049)) (-5 *1 (-712 *3 *2)) (-4 *2 (-1240 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1269)) (-5 *1 (-1178)))) - ((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-1179))))) -(((*1 *1 *2) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-489))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *2 (-112)) - (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 (-169 *4)))))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436)))) + (-12 (-5 *4 (-771)) (-4 *5 (-1049)) (-5 *2 (-566)) + (-5 *1 (-445 *5 *3 *6)) (-4 *3 (-1240 *5)) + (-4 *6 (-13 (-406) (-1038 *5) (-365) (-1199) (-285))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-112)) - (-5 *1 (-1203 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *4)))))) -(((*1 *2 *3) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-563)) (-5 *3 (-566))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1073)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) - (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2214 (-782 *3)) (|:| |coef1| (-782 *3)))) - (-5 *1 (-782 *3)) (-4 *3 (-558)) (-4 *3 (-1049)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-558)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) - (-5 *2 (-2 (|:| -2214 *1) (|:| |coef1| *1))) - (-4 *1 (-1064 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -3389)) (-5 *2 (-112)) (-5 *1 (-617)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -1529)) (-5 *2 (-112)) (-5 *1 (-617)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -2229)) (-5 *2 (-112)) (-5 *1 (-617)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -3422)) (-5 *2 (-112)) (-5 *1 (-691 *4)) - (-4 *4 (-613 (-862))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-613 (-862))) (-5 *2 (-112)) - (-5 *1 (-691 *4)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-566))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1157))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-508))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-593))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-480))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1165))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-626))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1095))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1089))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1072))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-970))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-180))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1036))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-312))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-671))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-527))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1275))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1065))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-519))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-681))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1114))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-133))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1274))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-676))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-218))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-526))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1157))) (-5 *2 (-112)) (-5 *1 (-1180)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-508))) (-5 *2 (-112)) (-5 *1 (-1180)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-225))) (-5 *2 (-112)) (-5 *1 (-1180)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-566))) (-5 *2 (-112)) (-5 *1 (-1180))))) + (-12 (-4 *4 (-1049)) (-5 *2 (-566)) (-5 *1 (-445 *4 *3 *5)) + (-4 *3 (-1240 *4)) + (-4 *5 (-13 (-406) (-1038 *4) (-365) (-1199) (-285)))))) (((*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-432 *3) (-1199)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-683 *4 *3)) (-4 *4 (-1099)) - (-4 *3 (-1099))))) -(((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1195))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-793)) (-4 *4 (-850)) (-4 *6 (-308)) (-5 *2 (-420 *3)) - (-5 *1 (-742 *5 *4 *6 *3)) (-4 *3 (-949 *6 *5 *4))))) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) (((*1 *2 *1) - (-12 (-4 *3 (-1214)) (-5 *2 (-644 *1)) (-4 *1 (-1010 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-644 (-1163 *3 *4))) (-5 *1 (-1163 *3 *4)) - (-14 *3 (-921)) (-4 *4 (-1049))))) + (-12 (-5 *2 (-112)) (-5 *1 (-317 *3)) (-4 *3 (-558)) (-4 *3 (-1099))))) +(((*1 *2 *3 *4 *5 *6 *7 *6) + (|partial| -12 + (-5 *5 + (-2 (|:| |contp| *3) + (|:| -1616 (-644 (-2 (|:| |irr| *10) (|:| -4125 (-566))))))) + (-5 *6 (-644 *3)) (-5 *7 (-644 *8)) (-4 *8 (-850)) (-4 *3 (-308)) + (-4 *10 (-949 *3 *9 *8)) (-4 *9 (-793)) + (-5 *2 + (-2 (|:| |polfac| (-644 *10)) (|:| |correct| *3) + (|:| |corrfact| (-644 (-1171 *3))))) + (-5 *1 (-625 *8 *9 *3 *10)) (-5 *4 (-644 (-1171 *3)))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1157)) (-5 *4 (-566)) (-5 *5 (-689 (-169 (-225)))) + (-5 *2 (-1035)) (-5 *1 (-754))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-644 *2)) (-4 *2 (-547)) (-5 *1 (-159 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-351)) (-5 *2 (-958 (-1171 *4))) (-5 *1 (-359 *4)) - (-5 *3 (-1171 *4))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-644 (-566))) (-5 *3 (-689 (-566))) (-5 *1 (-1109))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) - (-4 *5 (-850)) (-5 *2 (-112))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-644 (-1139 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) - (-4 *4 (-13 (-1099) (-34))) (-4 *5 (-13 (-1099) (-34))) - (-5 *1 (-1140 *4 *5)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-644 (-1139 *3 *4))) (-4 *3 (-13 (-1099) (-34))) - (-4 *4 (-13 (-1099) (-34))) (-5 *1 (-1140 *3 *4))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))) - ((*1 *1 *1 *1) (-5 *1 (-1119)))) + (-12 (-5 *3 (-566)) (-5 *2 (-644 (-644 (-225)))) (-5 *1 (-1210))))) (((*1 *2 *1) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) - (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1155 (-566))) (-5 *1 (-1159 *4)) (-4 *4 (-1049)) - (-5 *3 (-566))))) -(((*1 *2 *3) - (-12 (-5 *3 (-317 *4)) (-4 *4 (-13 (-828) (-1049))) (-5 *2 (-1157)) - (-5 *1 (-826 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-317 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-828) (-1049))) - (-5 *2 (-1157)) (-5 *1 (-826 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-822)) (-5 *4 (-317 *5)) (-4 *5 (-13 (-828) (-1049))) - (-5 *2 (-1269)) (-5 *1 (-826 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-822)) (-5 *4 (-317 *6)) (-5 *5 (-112)) - (-4 *6 (-13 (-828) (-1049))) (-5 *2 (-1269)) (-5 *1 (-826 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-828)) (-5 *2 (-1157)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-828)) (-5 *3 (-112)) (-5 *2 (-1157)))) - ((*1 *2 *3 *1) (-12 (-4 *1 (-828)) (-5 *3 (-822)) (-5 *2 (-1269)))) - ((*1 *2 *3 *1 *4) - (-12 (-4 *1 (-828)) (-5 *3 (-822)) (-5 *4 (-112)) (-5 *2 (-1269))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1155 *4)) (-5 *3 (-566)) (-4 *4 (-1049)) - (-5 *1 (-1159 *4)))) - ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-566)) (-5 *1 (-1256 *3 *4 *5)) (-4 *3 (-1049)) - (-14 *4 (-1175)) (-14 *5 *3)))) -(((*1 *2 *3 *3) - (-12 (-4 *2 (-558)) (-5 *1 (-969 *2 *3)) (-4 *3 (-1240 *2))))) -(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) - (-12 (-5 *4 (-566)) (-5 *5 (-689 (-225))) - (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2371)))) (-5 *3 (-225)) - (-5 *2 (-1035)) (-5 *1 (-748))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1264 *4)) (-4 *4 (-639 *5)) (-4 *5 (-365)) - (-4 *5 (-558)) (-5 *2 (-1264 *5)) (-5 *1 (-638 *5 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1264 *4)) (-4 *4 (-639 *5)) - (-2418 (-4 *5 (-365))) (-4 *5 (-558)) (-5 *2 (-1264 (-409 *5))) - (-5 *1 (-638 *5 *4))))) -(((*1 *2) - (-12 (-5 *2 (-1269)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-1099)) - (-4 *4 (-1099))))) -(((*1 *1 *2) (-12 (-5 *2 (-644 (-1093 (-409 (-566))))) (-5 *1 (-264)))) - ((*1 *1 *2) (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *1 (-264))))) -(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-862))) - ((*1 *1 *1 *1) (-4 *1 (-967)))) -(((*1 *2) - (-12 (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) - (-5 *2 (-1264 *1)) (-4 *1 (-344 *3 *4 *5)))) - ((*1 *2) - (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 -3184 ((-420 $) $))))) - (-4 *4 (-1240 *3)) - (-5 *2 - (-2 (|:| -2365 (-689 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-689 *3)))) - (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-411 *3 *4)))) - ((*1 *2) - (-12 (-4 *3 (-1240 (-566))) - (-5 *2 - (-2 (|:| -2365 (-689 (-566))) (|:| |basisDen| (-566)) - (|:| |basisInv| (-689 (-566))))) - (-5 *1 (-768 *3 *4)) (-4 *4 (-411 (-566) *3)))) - ((*1 *2) - (-12 (-4 *3 (-351)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 *4)) - (-5 *2 - (-2 (|:| -2365 (-689 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-689 *4)))) - (-5 *1 (-985 *3 *4 *5 *6)) (-4 *6 (-724 *4 *5)))) - ((*1 *2) - (-12 (-4 *3 (-351)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 *4)) - (-5 *2 - (-2 (|:| -2365 (-689 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-689 *4)))) - (-5 *1 (-1273 *3 *4 *5 *6)) (-4 *6 (-411 *4 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-558)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2738 *4))) - (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-943 *5)) (-5 *3 (-771)) (-4 *5 (-1049)) - (-5 *1 (-1163 *4 *5)) (-14 *4 (-921))))) + (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *1)) + (-4 *1 (-949 *3 *4 *5))))) (((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-644 (-1175))) - (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) - ((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-644 (-1175))) - (-14 *4 (-644 (-1175))) (-4 *5 (-389))))) -(((*1 *2 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-862))))) -(((*1 *2 *3) - (-12 (-5 *3 (-689 (-409 (-952 (-566))))) - (-5 *2 - (-644 - (-2 (|:| |radval| (-317 (-566))) (|:| |radmult| (-566)) - (|:| |radvect| (-644 (-689 (-317 (-566)))))))) - (-5 *1 (-1031))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)) (-5 *3 (-566)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)) (-5 *3 (-566)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)) (-5 *3 (-566))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-720)) (-5 *2 (-921)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-722)) (-5 *2 (-771))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-141)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-144))))) -(((*1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-393))))) -(((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-610 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1099))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1255 *3))))) -(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-862))) - ((*1 *1 *1 *1) (-4 *1 (-967)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-1180))) (-5 *1 (-1180)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-508)) (-5 *3 (-644 (-1180))) (-5 *1 (-1180))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1049)) (-4 *3 (-850)) - (-4 *5 (-267 *3)) (-4 *6 (-793)) (-5 *2 (-644 (-771))))) - ((*1 *2 *1) - (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-850)) - (-4 *5 (-267 *4)) (-4 *6 (-793)) (-5 *2 (-644 (-771)))))) -(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) - (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) - (-5 *2 (-1035)) (-5 *1 (-751))))) -(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1199)))) - ((*1 *2 *1) (-12 (-5 *1 (-332 *2)) (-4 *2 (-850)))) - ((*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-612 *3)) (-4 *3 (-1099))))) + (-12 (-5 *2 (-1264 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) + (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4)))))) (((*1 *2 *1) - (-12 (-5 *2 (-1093 *3)) (-5 *1 (-1091 *3)) (-4 *3 (-1214)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1214)))) - ((*1 *1 *2) (-12 (-5 *1 (-1231 *2)) (-4 *2 (-1214))))) -(((*1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-128))))) -(((*1 *1 *1) (-5 *1 (-112)))) -(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) -(((*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-561))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-420 *3)) (-4 *3 (-558))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-943 *4)) (-4 *4 (-1049)) (-5 *1 (-1163 *3 *4)) - (-14 *3 (-921))))) -(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-874))))) -(((*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-112))))) -(((*1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1) (-5 *1 (-862))) - ((*1 *1 *1) (-4 *1 (-967))) ((*1 *1 *1) (-5 *1 (-1119)))) -(((*1 *1 *2) - (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1004 *3)) (-14 *3 (-566))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1264 (-1264 (-566)))) (-5 *3 (-921)) (-5 *1 (-468))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *5 *5)) - (-4 *5 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) - (-5 *2 - (-2 (|:| |solns| (-644 *5)) - (|:| |maps| (-644 (-2 (|:| |arg| *5) (|:| |res| *5)))))) - (-5 *1 (-1127 *3 *5)) (-4 *3 (-1240 *5))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1175)) (-4 *4 (-454)) (-4 *4 (-1099)) - (-5 *1 (-575 *4 *2)) (-4 *2 (-285)) (-4 *2 (-432 *4))))) -(((*1 *2 *2 *3 *4 *5) - (-12 (-5 *2 (-644 *9)) (-5 *3 (-1 (-112) *9)) - (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) - (-4 *9 (-1064 *6 *7 *8)) (-4 *6 (-558)) (-4 *7 (-793)) - (-4 *8 (-850)) (-5 *1 (-977 *6 *7 *8 *9))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *3) - (-12 (-5 *3 (-566)) (-5 *4 (-1157)) (-5 *5 (-689 (-225))) - (-5 *2 (-1035)) (-5 *1 (-747))))) -(((*1 *1 *1) (-5 *1 (-225))) - ((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) + (-4 *5 (-1240 (-409 *4))) + (-5 *2 (-2 (|:| |num| (-1264 *4)) (|:| |den| *4)))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1231 (-566)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) + (-5 *2 (-689 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-689 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-759))))) +(((*1 *2 *2) + (-12 (-5 *2 (-644 (-2 (|:| |val| (-644 *6)) (|:| -1470 *7)))) + (-4 *6 (-1064 *3 *4 *5)) (-4 *7 (-1070 *3 *4 *5 *6)) (-4 *3 (-454)) + (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-988 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) - ((*1 *1 *1) (-4 *1 (-1138))) ((*1 *1 *1 *1) (-4 *1 (-1138)))) -(((*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-1171 *3))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-365)) (-5 *1 (-896 *2 *3)) - (-4 *2 (-1240 *3))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-531))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-644 *3)) (-4 *3 (-1214))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-644 *2)) (-4 *2 (-949 *4 *5 *6)) (-4 *4 (-454)) - (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-451 *4 *5 *6 *2))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-771)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-1215 *3)) (-4 *3 (-850)) - (-4 *3 (-1099))))) -(((*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-331))))) + (-12 (-5 *2 (-644 (-2 (|:| |val| (-644 *6)) (|:| -1470 *7)))) + (-4 *6 (-1064 *3 *4 *5)) (-4 *7 (-1070 *3 *4 *5 *6)) (-4 *3 (-454)) + (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-1106 *3 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-365)) (-5 *2 (-644 *3)) (-5 *1 (-945 *4 *3)) - (-4 *3 (-1240 *4))))) -(((*1 *2 *3 *4 *4 *5 *3 *6) - (|partial| -12 (-5 *4 (-612 *3)) (-5 *5 (-644 *3)) (-5 *6 (-1171 *3)) - (-4 *3 (-13 (-432 *7) (-27) (-1199))) - (-4 *7 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-562 *7 *3 *8)) (-4 *8 (-1099)))) - ((*1 *2 *3 *4 *4 *5 *4 *3 *6) - (|partial| -12 (-5 *4 (-612 *3)) (-5 *5 (-644 *3)) - (-5 *6 (-409 (-1171 *3))) (-4 *3 (-13 (-432 *7) (-27) (-1199))) - (-4 *7 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) + (-12 (-5 *3 (-771)) (-5 *2 (-1 (-1155 (-952 *4)) (-1155 (-952 *4)))) + (-5 *1 (-1272 *4)) (-4 *4 (-365))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-644 (-409 *7))) + (-4 *7 (-1240 *6)) (-5 *3 (-409 *7)) (-4 *6 (-365)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-562 *7 *3 *8)) (-4 *8 (-1099))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264)))) - ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-469)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-469))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1093 (-843 (-381)))) (-5 *2 (-1093 (-843 (-225)))) - (-5 *1 (-306))))) -(((*1 *2 *3 *3 *3 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) -(((*1 *1) (-5 *1 (-580)))) -(((*1 *1 *1) - (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1171 (-409 (-952 *3)))) (-5 *1 (-455 *3 *4 *5 *6)) - (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) - (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3)))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-964 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099))))) -(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1199)))))) -(((*1 *1 *2) (-12 (-5 *2 (-1264 *3)) (-4 *3 (-365)) (-4 *1 (-330 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1264 *3)) (-4 *3 (-1240 *4)) (-4 *4 (-1218)) - (-4 *1 (-344 *4 *3 *5)) (-4 *5 (-1240 (-409 *3))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1264 *4)) (-5 *3 (-1264 *1)) (-4 *4 (-172)) - (-4 *1 (-369 *4)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1264 *4)) (-5 *3 (-1264 *1)) (-4 *4 (-172)) - (-4 *1 (-372 *4 *5)) (-4 *5 (-1240 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1264 *3)) (-4 *3 (-172)) (-4 *1 (-411 *3 *4)) - (-4 *4 (-1240 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1264 *3)) (-4 *3 (-172)) (-4 *1 (-419 *3))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -1338 (-381)) (|:| -2640 (-1157)) - (|:| |explanations| (-644 (-1157))))) - (-5 *2 (-1035)) (-5 *1 (-306)))) - ((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -1338 (-381)) (|:| -2640 (-1157)) - (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035)))) - (-5 *2 (-1035)) (-5 *1 (-306))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1237 *4 *5)) (-5 *3 (-644 *5)) (-14 *4 (-1175)) - (-4 *5 (-365)) (-5 *1 (-923 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-644 *5)) (-4 *5 (-365)) (-5 *2 (-1171 *5)) - (-5 *1 (-923 *4 *5)) (-14 *4 (-1175)))) - ((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-644 *6)) (-5 *4 (-771)) (-4 *6 (-365)) - (-5 *2 (-409 (-952 *6))) (-5 *1 (-1050 *5 *6)) (-14 *5 (-1175))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-771)) (-5 *2 (-409 (-566))) (-5 *1 (-225)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-771)) (-5 *2 (-409 (-566))) (-5 *1 (-225)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-771)) (-5 *2 (-409 (-566))) (-5 *1 (-381)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-771)) (-5 *2 (-409 (-566))) (-5 *1 (-381))))) -(((*1 *2 *1) (-12 (-4 *1 (-558)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1002)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1209 *3)) (-4 *3 (-974))))) -(((*1 *1 *2) (-12 (-5 *2 (-644 (-331))) (-5 *1 (-331))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1084))))) -(((*1 *1) (-5 *1 (-130)))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1218)) (-4 *5 (-1240 *4)) - (-5 *2 - (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-409 *5)) - (|:| |c2| (-409 *5)) (|:| |deg| (-771)))) - (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1240 (-409 *5)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-225)) (-5 *5 (-566)) (-5 *2 (-1209 *3)) - (-5 *1 (-790 *3)) (-4 *3 (-974)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *4 (-112)) - (-5 *1 (-1209 *2)) (-4 *2 (-974))))) -(((*1 *2) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) - (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1269)) (-5 *1 (-1137)))) - ((*1 *2 *3) - (-12 (-5 *3 (-644 (-862))) (-5 *2 (-1269)) (-5 *1 (-1137))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1049)) (-4 *2 (-687 *4 *5 *6)) - (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1240 *4)) (-4 *5 (-375 *4)) - (-4 *6 (-375 *4))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1097 *3)) (-4 *3 (-1099)) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) - ((*1 *2 *3) - (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1288 *3 *4)) (-4 *1 (-376 *3 *4)) (-4 *3 (-850)) - (-4 *4 (-172)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-388 *2)) (-4 *2 (-1099)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1281 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-819 *3)) (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) - (-4 *4 (-1049)))) - ((*1 *1 *1 *2) + (-5 *1 (-576 *6 *7))))) +(((*1 *1 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-850)) (-4 *3 (-172)))) + ((*1 *1 *1) + (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-850)) + (-4 *3 (-13 (-172) (-717 (-409 (-566))))) (-14 *4 (-921)))) + ((*1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-850)))) + ((*1 *1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) + ((*1 *1 *1) (-12 (-4 *1 (-1281 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049))))) -(((*1 *2 *1) (-12 (-4 *1 (-1148 *3)) (-4 *3 (-1214)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) - (-5 *2 (-1171 *3))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-771)) (-5 *2 (-1 (-381))) (-5 *1 (-1040))))) -(((*1 *2 *3) - (-12 (-4 *4 (-909)) (-4 *5 (-793)) (-4 *6 (-850)) - (-4 *7 (-949 *4 *5 *6)) (-5 *2 (-420 (-1171 *7))) - (-5 *1 (-906 *4 *5 *6 *7)) (-5 *3 (-1171 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-909)) (-4 *5 (-1240 *4)) (-5 *2 (-420 (-1171 *5))) - (-5 *1 (-907 *4 *5)) (-5 *3 (-1171 *5))))) -(((*1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214))))) -(((*1 *2 *1) - (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) - (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *1 *1 *1) (-5 *1 (-129))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1182 *2)) (-14 *2 (-921)))) - ((*1 *1 *1 *1) (-5 *1 (-1219))) ((*1 *1 *1 *1) (-5 *1 (-1220))) - ((*1 *1 *1 *1) (-5 *1 (-1221))) ((*1 *1 *1 *1) (-5 *1 (-1222)))) -(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-874))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1264 *4)) (-4 *4 (-419 *3)) (-4 *3 (-308)) - (-4 *3 (-558)) (-5 *1 (-43 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-921)) (-4 *4 (-365)) (-5 *2 (-1264 *1)) - (-4 *1 (-330 *4)))) - ((*1 *2) (-12 (-4 *3 (-365)) (-5 *2 (-1264 *1)) (-4 *1 (-330 *3)))) - ((*1 *2) - (-12 (-4 *3 (-172)) (-4 *4 (-1240 *3)) (-5 *2 (-1264 *1)) - (-4 *1 (-411 *3 *4)))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-792)) (-4 *2 (-1049)))) ((*1 *2 *1) - (-12 (-4 *3 (-308)) (-4 *4 (-992 *3)) (-4 *5 (-1240 *4)) - (-5 *2 (-1264 *6)) (-5 *1 (-415 *3 *4 *5 *6)) - (-4 *6 (-13 (-411 *4 *5) (-1038 *4))))) + (-12 (-4 *2 (-1049)) (-5 *1 (-50 *2 *3)) (-14 *3 (-644 (-1175))))) ((*1 *2 *1) - (-12 (-4 *3 (-308)) (-4 *4 (-992 *3)) (-4 *5 (-1240 *4)) - (-5 *2 (-1264 *6)) (-5 *1 (-416 *3 *4 *5 *6 *7)) - (-4 *6 (-411 *4 *5)) (-14 *7 *2))) - ((*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1264 *1)) (-4 *1 (-419 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-921)) (-5 *2 (-1264 (-1264 *4))) (-5 *1 (-530 *4)) - (-4 *4 (-351))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1214))))) -(((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *2 (-1035)) - (-5 *1 (-748))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-689 *8)) (-5 *4 (-771)) (-4 *8 (-949 *5 *7 *6)) - (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-850) (-614 (-1175)))) - (-4 *7 (-793)) - (-5 *2 - (-644 - (-2 (|:| |det| *8) (|:| |rows| (-644 (-566))) - (|:| |cols| (-644 (-566)))))) - (-5 *1 (-924 *5 *6 *7 *8))))) + (-12 (-5 *2 (-317 *3)) (-5 *1 (-223 *3 *4)) + (-4 *3 (-13 (-1049) (-850))) (-14 *4 (-644 (-1175))))) + ((*1 *2 *1) + (-12 (-4 *1 (-384 *2 *3)) (-4 *3 (-1099)) (-4 *2 (-1049)))) + ((*1 *2 *1) + (-12 (-14 *3 (-644 (-1175))) (-4 *5 (-238 (-3000 *3) (-771))) + (-14 *6 + (-1 (-112) (-2 (|:| -2835 *4) (|:| -2201 *5)) + (-2 (|:| -2835 *4) (|:| -2201 *5)))) + (-4 *2 (-172)) (-5 *1 (-463 *3 *2 *4 *5 *6 *7)) (-4 *4 (-850)) + (-4 *7 (-949 *2 *5 (-864 *3))))) + ((*1 *2 *1) (-12 (-4 *1 (-511 *2 *3)) (-4 *3 (-850)) (-4 *2 (-1099)))) + ((*1 *2 *1) + (-12 (-4 *2 (-558)) (-5 *1 (-623 *2 *3)) (-4 *3 (-1240 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-708 *2)) (-4 *2 (-1049)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1049)) (-5 *1 (-735 *2 *3)) (-4 *3 (-850)) + (-4 *3 (-726)))) + ((*1 *2 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)))) + ((*1 *2 *1) + (-12 (-4 *1 (-973 *2 *3 *4)) (-4 *3 (-792)) (-4 *4 (-850)) + (-4 *2 (-1049)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1064 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *2 (-850))))) +(((*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-225)) (-5 *1 (-306))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-508)) (-5 *1 (-281))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-420 *2)) (-4 *2 (-308)) (-5 *1 (-914 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-1175)) - (-4 *5 (-13 (-308) (-147))) (-5 *2 (-52)) (-5 *1 (-915 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-420 (-952 *6))) (-5 *5 (-1175)) (-5 *3 (-952 *6)) - (-4 *6 (-13 (-308) (-147))) (-5 *2 (-52)) (-5 *1 (-915 *6))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1256 *2 *3 *4)) (-4 *2 (-1049)) (-14 *3 (-1175)) - (-14 *4 *2)))) -(((*1 *2 *3) - (-12 (-5 *3 (-644 *5)) (-4 *5 (-432 *4)) (-4 *4 (-558)) - (-5 *2 (-862)) (-5 *1 (-32 *4 *5))))) -(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) - ((*1 *1 *1 *1) (-4 *1 (-475))) - ((*1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) - ((*1 *2 *2) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-883)))) - ((*1 *1 *1) (-5 *1 (-971))) - ((*1 *1 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172))))) -(((*1 *2 *3) - (-12 (-4 *1 (-920)) (-5 *2 (-2 (|:| -1364 (-644 *1)) (|:| -3441 *1))) - (-5 *3 (-644 *1))))) -(((*1 *1 *1 *1) (-5 *1 (-129))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1182 *2)) (-14 *2 (-921)))) - ((*1 *1 *1 *1) (-5 *1 (-1219))) ((*1 *1 *1 *1) (-5 *1 (-1220))) - ((*1 *1 *1 *1) (-5 *1 (-1221))) ((*1 *1 *1 *1) (-5 *1 (-1222)))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2214 *3))) - (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1175)) (-5 *2 (-1 (-225) (-225))) (-5 *1 (-703 *3)) - (-4 *3 (-614 (-538))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1175)) (-5 *2 (-1 (-225) (-225) (-225))) - (-5 *1 (-703 *3)) (-4 *3 (-614 (-538)))))) + (-12 (-5 *2 (-470)) (-5 *3 (-644 (-264))) (-5 *1 (-1265)))) + ((*1 *1 *1) (-5 *1 (-1265)))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1099)) (-5 *2 (-644 *1)) - (-4 *1 (-432 *3)))) + (-12 (-14 *3 (-644 (-1175))) (-4 *4 (-172)) + (-4 *5 (-238 (-3000 *3) (-771))) + (-14 *6 + (-1 (-112) (-2 (|:| -2835 *2) (|:| -2201 *5)) + (-2 (|:| -2835 *2) (|:| -2201 *5)))) + (-4 *2 (-850)) (-5 *1 (-463 *3 *4 *2 *5 *6 *7)) + (-4 *7 (-949 *4 *5 (-864 *3)))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-508)) (-5 *3 (-774)) (-5 *1 (-114)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1157)) (-5 *3 (-774)) (-5 *1 (-114))))) +(((*1 *2 *3) (-12 (-5 *3 (-566)) (-5 *2 (-1269)) (-5 *1 (-1006))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *3 (-771)) (-4 *4 (-13 (-558) (-147))) + (-5 *1 (-1234 *4 *2)) (-4 *2 (-1240 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1175)) (-4 *4 (-558)) (-5 *1 (-158 *4 *2)) + (-4 *2 (-432 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1091 *2)) (-4 *2 (-432 *4)) (-4 *4 (-558)) + (-5 *1 (-158 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1091 *1)) (-4 *1 (-160)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1175))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-771)) (-5 *2 (-1269))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-792)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-644 (-892 *3))) (-5 *1 (-892 *3)) - (-4 *3 (-1099)))) + (-12 (-4 *1 (-384 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-1099)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) - (-5 *2 (-644 *1)) (-4 *1 (-949 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1049)) - (-4 *7 (-949 *6 *4 *5)) (-5 *2 (-644 *3)) - (-5 *1 (-950 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-365) - (-10 -8 (-15 -3783 ($ *7)) (-15 -4326 (*7 $)) - (-15 -4339 (*7 $)))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-689 (-409 (-566)))) - (-5 *2 - (-644 - (-2 (|:| |outval| *4) (|:| |outmult| (-566)) - (|:| |outvect| (-644 (-689 *4)))))) - (-5 *1 (-779 *4)) (-4 *4 (-13 (-365) (-848)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099))))) -(((*1 *1 *1 *1) (-5 *1 (-862)))) -(((*1 *2 *3 *2 *3) - (-12 (-5 *2 (-439)) (-5 *3 (-1175)) (-5 *1 (-1178)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-439)) (-5 *3 (-1175)) (-5 *1 (-1178)))) - ((*1 *2 *3 *2 *4 *1) - (-12 (-5 *2 (-439)) (-5 *3 (-644 (-1175))) (-5 *4 (-1175)) - (-5 *1 (-1178)))) - ((*1 *2 *3 *2 *3 *1) - (-12 (-5 *2 (-439)) (-5 *3 (-1175)) (-5 *1 (-1178)))) - ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-439)) (-5 *3 (-1175)) (-5 *1 (-1179)))) - ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-439)) (-5 *3 (-644 (-1175))) (-5 *1 (-1179))))) -(((*1 *2 *1) (-12 (-5 *2 (-1155 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308))))) -(((*1 *2 *1) (-12 (-4 *1 (-835 *3)) (-4 *3 (-1099)) (-5 *2 (-55))))) -(((*1 *2 *1) (-12 (-5 *1 (-587 *2)) (-4 *2 (-365))))) -(((*1 *2 *1) - (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)) - (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-644 *6)) (-4 *6 (-850)) (-4 *4 (-365)) (-4 *5 (-793)) - (-5 *2 (-112)) (-5 *1 (-506 *4 *5 *6 *7)) (-4 *7 (-949 *4 *5 *6))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1194))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) - (-5 *2 (-644 (-644 (-943 *3)))))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-644 (-644 (-943 *4)))) (-5 *3 (-112)) (-4 *4 (-1049)) - (-4 *1 (-1133 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-644 (-644 (-943 *3)))) (-4 *3 (-1049)) - (-4 *1 (-1133 *3)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-644 (-644 (-644 *4)))) (-5 *3 (-112)) - (-4 *1 (-1133 *4)) (-4 *4 (-1049)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-644 (-644 (-943 *4)))) (-5 *3 (-112)) - (-4 *1 (-1133 *4)) (-4 *4 (-1049)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-644 (-644 (-644 *5)))) (-5 *3 (-644 (-171))) - (-5 *4 (-171)) (-4 *1 (-1133 *5)) (-4 *5 (-1049)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-644 (-644 (-943 *5)))) (-5 *3 (-644 (-171))) - (-5 *4 (-171)) (-4 *1 (-1133 *5)) (-4 *5 (-1049))))) -(((*1 *1 *1) (-5 *1 (-225))) + (-12 (-14 *3 (-644 (-1175))) (-4 *4 (-172)) + (-4 *6 (-238 (-3000 *3) (-771))) + (-14 *7 + (-1 (-112) (-2 (|:| -2835 *5) (|:| -2201 *6)) + (-2 (|:| -2835 *5) (|:| -2201 *6)))) + (-5 *2 (-713 *5 *6 *7)) (-5 *1 (-463 *3 *4 *5 *6 *7 *8)) + (-4 *5 (-850)) (-4 *8 (-949 *4 *6 (-864 *3))))) + ((*1 *2 *1) + (-12 (-4 *2 (-726)) (-4 *2 (-850)) (-5 *1 (-735 *3 *2)) + (-4 *3 (-1049)))) ((*1 *1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) - (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) - ((*1 *1 *1) (-5 *1 (-381))) ((*1 *1) (-5 *1 (-381)))) -(((*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1267)))) - ((*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1267))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1175)) - (-4 *5 (-13 (-454) (-147) (-1038 (-566)) (-639 (-566)))) - (-5 *2 (-587 *3)) (-5 *1 (-559 *5 *3)) - (-4 *3 (-13 (-27) (-1199) (-432 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-824))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-365)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) - (-5 *1 (-506 *4 *5 *6 *3)) (-4 *3 (-949 *4 *5 *6))))) -(((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1040))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-921)) (-5 *2 (-1269)) (-5 *1 (-1265)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-921)) (-5 *2 (-1269)) (-5 *1 (-1266))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1060 (-1024 *4) (-1171 (-1024 *4)))) (-5 *3 (-862)) - (-5 *1 (-1024 *4)) (-4 *4 (-13 (-848) (-365) (-1022)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3))))) + (-12 (-4 *1 (-973 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-792)) + (-4 *4 (-850))))) +(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) + (-12 (-5 *3 (-1157)) (-5 *5 (-689 (-225))) (-5 *6 (-689 (-566))) + (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-757))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) + (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-5 *2 (-381)) (-5 *1 (-205))))) +(((*1 *2 *1) (-12 (-5 *1 (-1209 *2)) (-4 *2 (-974))))) +(((*1 *2 *3) + (-12 (-4 *4 (-558)) (-4 *2 (-13 (-432 (-169 *4)) (-1002) (-1199))) + (-5 *1 (-600 *4 *3 *2)) (-4 *3 (-13 (-432 *4) (-1002) (-1199)))))) (((*1 *2 *3 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-644 *10)) @@ -11094,173 +8911,456 @@ (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 *1)) (-4 *1 (-1207 *4 *5 *6 *7))))) -(((*1 *2 *2 *3) +(((*1 *1 *2 *2) (-12 (-5 *2 - (-2 (|:| |partsol| (-1264 (-409 (-952 *4)))) - (|:| -2365 (-644 (-1264 (-409 (-952 *4))))))) - (-5 *3 (-644 *7)) (-4 *4 (-13 (-308) (-147))) - (-4 *7 (-949 *4 *6 *5)) (-4 *5 (-13 (-850) (-614 (-1175)))) - (-4 *6 (-793)) (-5 *1 (-924 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) + (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174)))) + (-5 *1 (-1174))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-1 (-112) *8))) (-4 *8 (-1064 *5 *6 *7)) + (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850)) + (-5 *2 (-2 (|:| |goodPols| (-644 *8)) (|:| |badPols| (-644 *8)))) + (-5 *1 (-977 *5 *6 *7 *8)) (-5 *4 (-644 *8))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1157)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-1269)) + (-5 *1 (-1071 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1157)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-1269)) + (-5 *1 (-1107 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1070 *3 *4 *5 *6)) (-4 *3 (-454)) (-4 *4 (-793)) + (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) (-4 *5 (-793)) + (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1214))))) +(((*1 *2 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *3 (-792)) (-4 *2 (-1049)))) + ((*1 *2 *1) (-12 (-4 *1 (-432 *2)) (-4 *2 (-1099))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-225)) (-5 *5 (-566)) (-5 *2 (-1209 *3)) + (-5 *1 (-790 *3)) (-4 *3 (-974)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *4 (-112)) + (-5 *1 (-1209 *2)) (-4 *2 (-974))))) +(((*1 *1) (-5 *1 (-508)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1186 (-644 *4))) (-4 *4 (-850)) + (-5 *2 (-644 (-644 *4))) (-5 *1 (-1185 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-308)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) + (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) + (-5 *1 (-1123 *4 *5 *6 *3)) (-4 *3 (-687 *4 *5 *6))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) + (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174)))) + (-5 *1 (-1174))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566)))))) +(((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) + ((*1 *2 *1) (-12 (-4 *1 (-1120 *3)) (-4 *3 (-1214)) (-5 *2 (-771))))) +(((*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-1171 *3))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-313)) (-5 *1 (-829))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-429 *3 *2)) (-4 *3 (-13 (-172) (-38 (-409 (-566))))) + (-4 *2 (-13 (-850) (-21)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) +(((*1 *2 *1) + (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)) + (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-432 *3)) (-4 *3 (-1099)) (-5 *2 (-112))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-690 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 *3 *3 (-566))) (-4 *3 (-1049)) (-5 *1 (-99 *3)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1049)) (-5 *1 (-99 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1049)) (-5 *1 (-99 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1264 (-317 (-225)))) (-5 *4 (-644 (-1175))) + (-5 *2 (-689 (-317 (-225)))) (-5 *1 (-205)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1099)) (-4 *6 (-900 *5)) (-5 *2 (-689 *6)) + (-5 *1 (-692 *5 *6 *3 *4)) (-4 *3 (-375 *6)) + (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4414))))))) +(((*1 *1 *1) (-5 *1 (-1174))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) + (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174)))) + (-5 *1 (-1174))))) +(((*1 *2 *1) + (-12 (-5 *2 (-771)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-566)) + (-14 *4 *2) (-4 *5 (-172)))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-921)) (-5 *1 (-165 *3 *4)) + (-4 *3 (-166 *4)))) + ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-921)))) + ((*1 *2) + (-12 (-4 *1 (-372 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1240 *3)) + (-5 *2 (-921)))) + ((*1 *2 *3) + (-12 (-4 *4 (-365)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) + (-5 *2 (-771)) (-5 *1 (-523 *4 *5 *6 *3)) (-4 *3 (-687 *4 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-689 *5)) (-5 *4 (-1264 *5)) (-4 *5 (-365)) + (-5 *2 (-771)) (-5 *1 (-667 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4415)))) + (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4415)))) (-5 *2 (-771)) + (-5 *1 (-668 *5 *6 *4 *3)) (-4 *3 (-687 *5 *6 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-4 *3 (-558)) (-5 *2 (-771)))) + ((*1 *2 *3) + (-12 (-4 *4 (-558)) (-4 *4 (-172)) (-4 *5 (-375 *4)) + (-4 *6 (-375 *4)) (-5 *2 (-771)) (-5 *1 (-688 *4 *5 *6 *3)) + (-4 *3 (-687 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-558)) + (-5 *2 (-771))))) +(((*1 *1 *1) + (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) + (-4 *4 (-375 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1214))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 - (-2 (|:| -2233 *4) (|:| -1465 *4) (|:| |totalpts| (-566)) + (-2 (|:| -2876 *4) (|:| -1425 *4) (|:| |totalpts| (-566)) (|:| |success| (-112)))) (-5 *1 (-789)) (-5 *5 (-566))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *1 (-877 *2)) (-4 *2 (-1214)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *1 (-879 *2)) (-4 *2 (-1214)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *1 (-882 *2)) (-4 *2 (-1214))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 + *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 + *9) + (-12 (-5 *4 (-689 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) + (-5 *7 (-689 (-566))) + (-5 *8 (-3 (|:| |fn| (-390)) (|:| |fp| (-80 CONFUN)))) + (-5 *9 (-3 (|:| |fn| (-390)) (|:| |fp| (-77 OBJFUN)))) + (-5 *3 (-566)) (-5 *2 (-1035)) (-5 *1 (-753))))) +(((*1 *2 *1) (-12 (-4 *1 (-327 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-792)))) + ((*1 *2 *1) (-12 (-4 *1 (-708 *3)) (-4 *3 (-1049)) (-5 *2 (-771)))) + ((*1 *2 *1) (-12 (-4 *1 (-852 *3)) (-4 *3 (-1049)) (-5 *2 (-771)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-644 *6)) (-4 *1 (-949 *4 *5 *6)) (-4 *4 (-1049)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 (-771))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-949 *4 *5 *3)) (-4 *4 (-1049)) (-4 *5 (-793)) + (-4 *3 (-850)) (-5 *2 (-771))))) +(((*1 *1 *1) (-4 *1 (-243))) + ((*1 *1 *1) + (-12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1240 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1) + (-2768 (-12 (-5 *1 (-295 *2)) (-4 *2 (-365)) (-4 *2 (-1214))) + (-12 (-5 *1 (-295 *2)) (-4 *2 (-475)) (-4 *2 (-1214))))) + ((*1 *1 *1) (-4 *1 (-475))) + ((*1 *2 *2) (-12 (-5 *2 (-1264 *3)) (-4 *3 (-351)) (-5 *1 (-530 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-715 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)) (-4 *2 (-365))))) +(((*1 *2 *2) + (-12 (-4 *3 (-308)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) + (-5 *1 (-1123 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 *4)) + (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-644 *3)) (-4 *3 (-1214)) (-5 *1 (-1155 *3))))) +(((*1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-759))))) +(((*1 *2 *1) (-12 (-4 *1 (-848)) (-5 *2 (-566)))) + ((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-905 *3)) (-4 *3 (-1099)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1067 *4 *3)) (-4 *4 (-13 (-848) (-365))) + (-4 *3 (-1240 *4)) (-5 *2 (-566)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-558) (-1038 *2) (-639 *2) (-454))) + (-5 *2 (-566)) (-5 *1 (-1115 *4 *3)) + (-4 *3 (-13 (-27) (-1199) (-432 *4))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1175)) (-5 *5 (-843 *3)) + (-4 *3 (-13 (-27) (-1199) (-432 *6))) + (-4 *6 (-13 (-558) (-1038 *2) (-639 *2) (-454))) (-5 *2 (-566)) + (-5 *1 (-1115 *6 *3)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-1175)) (-5 *5 (-1157)) + (-4 *6 (-13 (-558) (-1038 *2) (-639 *2) (-454))) (-5 *2 (-566)) + (-5 *1 (-1115 *6 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *6))))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-454)) (-5 *2 (-566)) + (-5 *1 (-1116 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1175)) (-5 *5 (-843 (-409 (-952 *6)))) + (-5 *3 (-409 (-952 *6))) (-4 *6 (-454)) (-5 *2 (-566)) + (-5 *1 (-1116 *6)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *3 (-409 (-952 *6))) (-5 *4 (-1175)) + (-5 *5 (-1157)) (-4 *6 (-454)) (-5 *2 (-566)) (-5 *1 (-1116 *6)))) + ((*1 *2 *3) + (|partial| -12 (-5 *2 (-566)) (-5 *1 (-1196 *3)) (-4 *3 (-1049))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) + (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G)))) (-5 *2 (-1035)) + (-5 *1 (-748))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-644 (-1171 *4))) (-5 *3 (-1171 *4)) + (-4 *4 (-909)) (-5 *1 (-663 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-672 *3)) (-4 *3 (-850)) (-4 *1 (-376 *3 *4)) + (-4 *4 (-172))))) +(((*1 *2 *2) + (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))) + (-5 *1 (-176 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1214)) (-4 *2 (-1002)) - (-4 *2 (-1049))))) + (-12 (-4 *3 (-454)) (-4 *4 (-850)) (-4 *5 (-793)) (-5 *2 (-644 *6)) + (-5 *1 (-987 *3 *4 *5 *6)) (-4 *6 (-949 *3 *5 *4))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1171 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3))))) +(((*1 *2) + (-12 (-4 *3 (-1218)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) + (-5 *2 (-1264 *1)) (-4 *1 (-344 *3 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 -1364 ((-420 $) $))))) + (-4 *4 (-1240 *3)) + (-5 *2 + (-2 (|:| -2875 (-689 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-689 *3)))) + (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-411 *3 *4)))) + ((*1 *2) + (-12 (-4 *3 (-1240 (-566))) + (-5 *2 + (-2 (|:| -2875 (-689 (-566))) (|:| |basisDen| (-566)) + (|:| |basisInv| (-689 (-566))))) + (-5 *1 (-768 *3 *4)) (-4 *4 (-411 (-566) *3)))) + ((*1 *2) + (-12 (-4 *3 (-351)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 *4)) + (-5 *2 + (-2 (|:| -2875 (-689 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-689 *4)))) + (-5 *1 (-985 *3 *4 *5 *6)) (-4 *6 (-724 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-351)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 *4)) + (-5 *2 + (-2 (|:| -2875 (-689 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-689 *4)))) + (-5 *1 (-1273 *3 *4 *5 *6)) (-4 *6 (-411 *4 *5))))) (((*1 *2 *1) - (-12 (|has| *1 (-6 -4414)) (-4 *1 (-491 *3)) (-4 *3 (-1214)) - (-5 *2 (-644 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-737 *3)) (-4 *3 (-1099)))) - ((*1 *2 *1) (-12 (-5 *2 (-644 (-441))) (-5 *1 (-865))))) -(((*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1267)))) - ((*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1267))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) - (-4 *4 (-850)) (-4 *2 (-454))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) - (-4 *6 (-793)) (-5 *2 (-644 (-644 (-566)))) - (-5 *1 (-924 *4 *5 *6 *7)) (-5 *3 (-566)) (-4 *7 (-949 *4 *6 *5))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-976 *3 *4 *2 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) - (-4 *2 (-850)) (-4 *5 (-1064 *3 *4 *2))))) -(((*1 *1 *1) (-4 *1 (-629))) - ((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-630 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1002) (-1199)))))) -(((*1 *2 *3 *4 *4) + (-12 (-4 *3 (-1049)) (-5 *2 (-644 *1)) (-4 *1 (-1133 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) + (-5 *2 (-689 *4)))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-689 *4)) (-5 *1 (-418 *3 *4)) + (-4 *3 (-419 *4)))) + ((*1 *2) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-689 *3))))) +(((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-469)))) + ((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-469)))) + ((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-927))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1155 *4)) (-5 *3 (-566)) (-4 *4 (-1049)) + (-5 *1 (-1159 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-566)) (-5 *1 (-1256 *3 *4 *5)) (-4 *3 (-1049)) + (-14 *4 (-1175)) (-14 *5 *3)))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-420 *3)) (-4 *3 (-558)) (-5 *1 (-421 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) + (-5 *2 (-644 (-644 (-644 (-943 *3)))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1175)) + (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1199) (-432 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-409 (-566))) + (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5))) + (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-316 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-295 *3)) (-5 *5 (-409 (-566))) + (-4 *3 (-13 (-27) (-1199) (-432 *6))) + (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-316 *6 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-1 *8 (-409 (-566)))) (-5 *4 (-295 *8)) + (-5 *5 (-1231 (-409 (-566)))) (-5 *6 (-409 (-566))) + (-4 *8 (-13 (-27) (-1199) (-432 *7))) + (-4 *7 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-461 *7 *8)))) + ((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *4 (-1175)) (-5 *5 (-295 *3)) (-5 *6 (-1231 (-409 (-566)))) + (-5 *7 (-409 (-566))) (-4 *3 (-13 (-27) (-1199) (-432 *8))) + (-4 *8 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-461 *8 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-409 (-566))) (-4 *4 (-1049)) (-4 *1 (-1247 *4 *3)) + (-4 *3 (-1224 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1046 *4 *5)) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) + (-14 *5 (-644 (-1175))) (-5 *2 (-644 (-644 (-1024 (-409 *4))))) + (-5 *1 (-1290 *4 *5 *6)) (-14 *6 (-644 (-1175))))) + ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-848) (-308) (-147) (-1022))) - (-5 *2 (-644 (-1046 *5 *6))) (-5 *1 (-1290 *5 *6 *7)) + (-5 *2 (-644 (-644 (-1024 (-409 *5))))) (-5 *1 (-1290 *5 *6 *7)) (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-848) (-308) (-147) (-1022))) - (-5 *2 (-644 (-1046 *5 *6))) (-5 *1 (-1290 *5 *6 *7)) + (-5 *2 (-644 (-644 (-1024 (-409 *5))))) (-5 *1 (-1290 *5 *6 *7)) (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) ((*1 *2 *3) (-12 (-5 *3 (-644 (-952 *4))) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) - (-5 *2 (-644 (-1046 *4 *5))) (-5 *1 (-1290 *4 *5 *6)) + (-5 *2 (-644 (-644 (-1024 (-409 *4))))) (-5 *1 (-1290 *4 *5 *6)) (-14 *5 (-644 (-1175))) (-14 *6 (-644 (-1175)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-921)) (-4 *1 (-744 *3)) (-4 *3 (-172))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2214 *3))) - (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-761)))) -(((*1 *2 *3) - (-12 (-5 *3 (-927)) - (-5 *2 - (-2 (|:| |brans| (-644 (-644 (-943 (-225))))) - (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225))))) - (-5 *1 (-153)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-927)) (-5 *4 (-409 (-566))) - (-5 *2 - (-2 (|:| |brans| (-644 (-644 (-943 (-225))))) - (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225))))) - (-5 *1 (-153))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-114)) (-4 *4 (-1049)) (-5 *1 (-714 *4 *2)) - (-4 *2 (-648 *4)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-836 *2)) (-4 *2 (-1049))))) -(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-566)) (-5 *2 (-1269)) (-5 *1 (-904 *4)) - (-4 *4 (-1099)))) - ((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-904 *3)) (-4 *3 (-1099))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1125 *4 *3 *5))) (-4 *4 (-38 (-409 (-566)))) - (-4 *4 (-1049)) (-4 *3 (-850)) (-5 *1 (-1125 *4 *3 *5)) - (-4 *5 (-949 *4 (-533 *3) *3)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1208 *4))) (-5 *3 (-1175)) (-5 *1 (-1208 *4)) - (-4 *4 (-38 (-409 (-566)))) (-4 *4 (-1049))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-771)) (-5 *1 (-103 *3)) (-4 *3 (-1099))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-409 *6)) (-4 *5 (-1218)) (-4 *6 (-1240 *5)) - (-5 *2 (-2 (|:| -2852 (-771)) (|:| -1364 *3) (|:| |radicand| *6))) - (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-771)) (-4 *7 (-1240 *3))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1175)) - (-4 *5 (-13 (-558) (-1038 (-566)) (-147))) - (-5 *2 - (-2 (|:| -2346 (-409 (-952 *5))) (|:| |coeff| (-409 (-952 *5))))) - (-5 *1 (-572 *5)) (-5 *3 (-409 (-952 *5)))))) -(((*1 *2 *3 *4 *2 *2 *5) - (|partial| -12 (-5 *2 (-843 *4)) (-5 *3 (-612 *4)) (-5 *5 (-112)) - (-4 *4 (-13 (-1199) (-29 *6))) + (-12 (-5 *3 (-566)) (-5 *4 (-420 *2)) (-4 *2 (-949 *7 *5 *6)) + (-5 *1 (-742 *5 *6 *7 *2)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-308))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-689 (-566))) (-5 *3 (-644 (-566))) (-5 *1 (-1109))))) +(((*1 *2 *3 *4 *5 *5 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *3 (-952 *6)) (-5 *4 (-1175)) + (-5 *5 (-843 *7)) (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) - (-5 *1 (-224 *6 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1099)))) - ((*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1099))))) -(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) - (-12 (-5 *4 (-566)) (-5 *5 (-1157)) (-5 *6 (-689 (-225))) - (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G)))) - (-5 *8 (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN)))) - (-5 *9 (-3 (|:| |fn| (-390)) (|:| |fp| (-71 PEDERV)))) - (-5 *10 (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT)))) - (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-749))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-771)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2)) - (-4 *2 (-1240 *4))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-566)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1214)) - (-4 *5 (-375 *4)) (-4 *2 (-375 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-566)) (-4 *1 (-1053 *4 *5 *6 *7 *2)) (-4 *6 (-1049)) - (-4 *7 (-238 *5 *6)) (-4 *2 (-238 *4 *6))))) -(((*1 *1 *1) - (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-558)))) - ((*1 *1 *1) (|partial| -4 *1 (-722)))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *1 (-877 *2)) (-4 *2 (-1214)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *1 (-879 *2)) (-4 *2 (-1214)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *1 (-882 *2)) (-4 *2 (-1214))))) -(((*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1214))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1140 *2 *3)) (-4 *2 (-13 (-1099) (-34))) - (-4 *3 (-13 (-1099) (-34)))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-1099)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-850))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1099)) (-5 *2 (-112)) (-5 *1 (-885 *3 *4 *5)) - (-4 *3 (-1099)) (-4 *5 (-666 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-889 *3 *4)) (-4 *3 (-1099)) - (-4 *4 (-1099))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-690 *3))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1099)) (-5 *1 (-964 *2 *3)) (-4 *3 (-1099))))) + (-4 *7 (-13 (-1199) (-29 *6))) (-5 *1 (-224 *6 *7)))) + ((*1 *2 *3 *4 *4 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1171 *6)) (-5 *4 (-843 *6)) + (-4 *6 (-13 (-1199) (-29 *5))) + (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) + (-5 *1 (-224 *5 *6))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-644 *6) "failed") (-566) *6 *6)) (-4 *6 (-365)) - (-4 *7 (-1240 *6)) - (-5 *2 (-2 (|:| |answer| (-587 (-409 *7))) (|:| |a0| *6))) - (-5 *1 (-576 *6 *7)) (-5 *3 (-409 *7))))) + (-12 (-5 *3 (-1 *4 (-566))) (-5 *5 (-1 (-1155 *4))) (-4 *4 (-365)) + (-4 *4 (-1049)) (-5 *2 (-1155 *4)) (-5 *1 (-1159 *4))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-644 (-1175))) (-5 *3 (-52)) (-5 *1 (-892 *4)) + (-4 *4 (-1099))))) +(((*1 *2 *3) + (-12 (-5 *2 (-644 (-1171 (-566)))) (-5 *1 (-191)) (-5 *3 (-566))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1175)) + (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1199) (-432 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-566)) (-4 *5 (-13 (-454) (-1038 *4) (-639 *4))) + (-5 *2 (-52)) (-5 *1 (-316 *5 *3)) + (-4 *3 (-13 (-27) (-1199) (-432 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5))) + (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-316 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *6))) + (-4 *6 (-13 (-454) (-1038 *5) (-639 *5))) (-5 *5 (-566)) + (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-566))) (-5 *4 (-295 *7)) (-5 *5 (-1231 (-566))) + (-4 *7 (-13 (-27) (-1199) (-432 *6))) + (-4 *6 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-461 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1175)) (-5 *5 (-295 *3)) (-5 *6 (-1231 (-566))) + (-4 *3 (-13 (-27) (-1199) (-432 *7))) + (-4 *7 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-461 *7 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-566)) (-4 *4 (-1049)) (-4 *1 (-1226 *4 *3)) + (-4 *3 (-1255 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1247 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-1224 *3))))) +(((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-1207 *3 *4 *5 *2)) (-4 *3 (-558)) + (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 *2)) (-4 *2 (-1240 *4)) (-5 *1 (-541 *4 *2 *5 *6)) + (-4 *4 (-308)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-771)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1157)) (-5 *2 (-644 (-1180))) (-5 *1 (-1135))))) +(((*1 *2 *3) + (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-359 *4)) + (-4 *4 (-351)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-359 *4)) + (-4 *4 (-351)))) + ((*1 *1) (-4 *1 (-370))) + ((*1 *2 *3) + (-12 (-5 *3 (-921)) (-5 *2 (-1264 *4)) (-5 *1 (-530 *4)) + (-4 *4 (-351)))) + ((*1 *1 *1) (-4 *1 (-547))) ((*1 *1) (-4 *1 (-547))) + ((*1 *1 *1) (-5 *1 (-566))) ((*1 *1 *1) (-5 *1 (-771))) + ((*1 *2 *1) (-12 (-5 *2 (-905 *3)) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-566)) (-5 *2 (-905 *4)) (-5 *1 (-904 *4)) + (-4 *4 (-1099)))) + ((*1 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-547)) (-4 *2 (-558))))) +(((*1 *2) + (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) + (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) + (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) - (-4 *4 (-1049))))) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) + (-4 *5 (-1240 (-409 *4))) + (-5 *2 (-2 (|:| |num| (-1264 *4)) (|:| |den| *4)))))) +(((*1 *1 *1 *1) (-5 *1 (-162))) + ((*1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-162))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266))))) +(((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-862))))) (((*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1171 *9)) (-5 *4 (-644 *7)) (-5 *5 (-644 *8)) - (-4 *7 (-850)) (-4 *8 (-1049)) (-4 *9 (-949 *8 *6 *7)) - (-4 *6 (-793)) (-5 *2 (-1171 *8)) (-5 *1 (-322 *6 *7 *8 *9))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-771)) (-4 *1 (-1240 *4)) (-4 *4 (-1049)) - (-5 *2 (-1264 *4))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-566)) (-5 *2 (-1269)) (-5 *1 (-1266)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-363 *3)) (-4 *3 (-1099)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-566)) (-5 *2 (-771)) (-5 *1 (-388 *4)) (-4 *4 (-1099)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-566)) (-4 *2 (-23)) (-5 *1 (-649 *4 *2 *5)) + (-4 *4 (-1099)) (-14 *5 *2))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-566)) (-5 *2 (-771)) (-5 *1 (-819 *4)) (-4 *4 (-850))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-644 *3)) (-4 *3 (-850)) (-5 *1 (-739 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 *2)) (-4 *2 (-432 *4)) (-5 *1 (-158 *4 *2)) + (-4 *4 (-558))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-4 *5 (-432 *4)) + (-5 *2 (-420 (-1171 (-409 (-566))))) (-5 *1 (-437 *4 *5 *3)) + (-4 *3 (-1240 *5))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) + (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 (-112)) (-5 *1 (-301))))) (((*1 *2 *2) (-12 (-4 *3 (-13 (-558) (-147))) (-5 *1 (-539 *3 *2)) (-4 *2 (-1255 *3)))) @@ -11273,42 +9373,418 @@ ((*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-13 (-558) (-147))) (-5 *1 (-1151 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1247 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1224 *3)) - (-5 *2 (-409 (-566)))))) (((*1 *2 *3) - (-12 (-5 *3 (-644 *7)) (-4 *7 (-949 *4 *5 *6)) (-4 *4 (-454)) - (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-1269)) - (-5 *1 (-451 *4 *5 *6 *7))))) + (-12 (-5 *3 (-644 *2)) (-4 *2 (-432 *4)) (-5 *1 (-158 *4 *2)) + (-4 *4 (-558))))) +(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) + (-12 (-5 *3 (-921)) (-5 *4 (-225)) (-5 *5 (-566)) (-5 *6 (-874)) + (-5 *2 (-1269)) (-5 *1 (-1265))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1049)) (-5 *1 (-1236 *3 *2)) (-4 *2 (-1240 *3))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3)) + (-4 *3 (-13 (-365) (-1199) (-1002)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-921)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) + ((*1 *1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-264))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1214)) (-4 *2 (-850)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-375 *3)) (-4 *3 (-1214)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-850)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1133 *2)) (-4 *2 (-1049)))) + ((*1 *1 *2) + (-12 (-5 *2 (-644 *1)) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) + ((*1 *1 *2) + (-12 (-5 *2 (-644 (-1163 *3 *4))) (-5 *1 (-1163 *3 *4)) + (-14 *3 (-921)) (-4 *4 (-1049)))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1049))))) +(((*1 *1 *2) (-12 (-5 *2 (-183 (-249))) (-5 *1 (-248))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-1279 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)) + (-5 *1 (-664 *3 *4)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-664 *3 *4)) (-5 *1 (-1284 *3 *4)) + (-4 *3 (-850)) (-4 *4 (-172))))) +(((*1 *2 *3) + (-12 (-4 *4 (-992 *2)) (-4 *2 (-558)) (-5 *1 (-142 *2 *4 *3)) + (-4 *3 (-375 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-992 *2)) (-4 *2 (-558)) (-5 *1 (-505 *2 *4 *5 *3)) + (-4 *5 (-375 *2)) (-4 *3 (-375 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-689 *4)) (-4 *4 (-992 *2)) (-4 *2 (-558)) + (-5 *1 (-693 *2 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-992 *2)) (-4 *2 (-558)) (-5 *1 (-1233 *2 *4 *3)) + (-4 *3 (-1240 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1214))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1157)) (-4 *1 (-391))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1207 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793)) + (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1099)) (-5 *1 (-1186 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 *2)) (-4 *2 (-432 *4)) (-5 *1 (-158 *4 *2)) + (-4 *4 (-558))))) +(((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *2 (-1035)) + (-5 *1 (-748))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-566)) (-4 *1 (-1092 *3)) (-4 *3 (-1214))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-793)) + (-4 *3 (-13 (-850) (-10 -8 (-15 -2376 ((-1175) $))))) (-4 *5 (-558)) + (-5 *1 (-732 *4 *3 *5 *2)) (-4 *2 (-949 (-409 (-952 *5)) *4 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *4 (-1049)) (-4 *5 (-793)) + (-4 *3 + (-13 (-850) + (-10 -8 (-15 -2376 ((-1175) $)) + (-15 -4347 ((-3 $ "failed") (-1175)))))) + (-5 *1 (-984 *4 *5 *3 *2)) (-4 *2 (-949 (-952 *4) *5 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-644 *6)) + (-4 *6 + (-13 (-850) + (-10 -8 (-15 -2376 ((-1175) $)) + (-15 -4347 ((-3 $ "failed") (-1175)))))) + (-4 *4 (-1049)) (-4 *5 (-793)) (-5 *1 (-984 *4 *5 *6 *2)) + (-4 *2 (-949 (-952 *4) *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-674 *3)) (-4 *3 (-1214)) (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-1062)))) +(((*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862))))) +(((*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1178))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) (((*1 *2 *1) - (-12 (-4 *3 (-1049)) (-4 *4 (-1099)) (-5 *2 (-644 *1)) - (-4 *1 (-384 *3 *4)))) + (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-850)) + (-4 *5 (-267 *4)) (-4 *6 (-793)) (-5 *2 (-771)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1049)) (-4 *3 (-850)) + (-4 *5 (-267 *3)) (-4 *6 (-793)) (-5 *2 (-771)))) + ((*1 *2 *1) (-12 (-4 *1 (-267 *3)) (-4 *3 (-850)) (-5 *2 (-771)))) + ((*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-921)))) + ((*1 *2 *3) + (-12 (-5 *3 (-338 *4 *5 *6 *7)) (-4 *4 (-13 (-370) (-365))) + (-4 *5 (-1240 *4)) (-4 *6 (-1240 (-409 *5))) (-4 *7 (-344 *4 *5 *6)) + (-5 *2 (-771)) (-5 *1 (-394 *4 *5 *6 *7)))) + ((*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-833 (-921))))) + ((*1 *2 *1) (-12 (-4 *1 (-406)) (-5 *2 (-566)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-597 *3)) (-4 *3 (-1049)))) + ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-597 *3)) (-4 *3 (-1049)))) ((*1 *2 *1) - (-12 (-5 *2 (-644 (-735 *3 *4))) (-5 *1 (-735 *3 *4)) (-4 *3 (-1049)) - (-4 *4 (-726)))) + (-12 (-4 *3 (-558)) (-5 *2 (-566)) (-5 *1 (-623 *3 *4)) + (-4 *4 (-1240 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-771)) (-4 *1 (-740 *4 *3)) (-4 *4 (-1049)) + (-4 *3 (-850)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-740 *4 *3)) (-4 *4 (-1049)) (-4 *3 (-850)) + (-5 *2 (-771)))) + ((*1 *2 *1) (-12 (-4 *1 (-869 *3)) (-5 *2 (-771)))) + ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) + ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-905 *3)) (-4 *3 (-1099)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-432 *4)) + (-4 *6 (-1240 *5)) (-4 *7 (-1240 (-409 *6))) + (-4 *8 (-344 *5 *6 *7)) (-4 *4 (-13 (-558) (-1038 (-566)))) + (-5 *2 (-771)) (-5 *1 (-911 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-338 (-409 (-566)) *4 *5 *6)) + (-4 *4 (-1240 (-409 (-566)))) (-4 *5 (-1240 (-409 *4))) + (-4 *6 (-344 (-409 (-566)) *4 *5)) (-5 *2 (-771)) + (-5 *1 (-912 *4 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-338 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-365)) + (-4 *7 (-1240 *6)) (-4 *4 (-1240 (-409 *7))) (-4 *8 (-344 *6 *7 *4)) + (-4 *9 (-13 (-370) (-365))) (-5 *2 (-771)) + (-5 *1 (-1018 *6 *7 *4 *8 *9)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1240 *3)) (-4 *3 (-1049)) (-4 *3 (-558)) + (-5 *2 (-771)))) + ((*1 *2 *1 *2) + (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-792)))) ((*1 *2 *1) - (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *1)) - (-4 *1 (-949 *3 *4 *5))))) -(((*1 *2 *3 *4) + (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-792))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 *4)) (-4 *4 (-365)) (-5 *2 (-689 *4)) + (-5 *1 (-814 *4 *5)) (-4 *5 (-656 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 *5)) (-5 *4 (-771)) (-4 *5 (-365)) + (-5 *2 (-689 *5)) (-5 *1 (-814 *5 *6)) (-4 *6 (-656 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) + (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) + (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3)))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) (-4 *5 (-793)) + (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) + (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-470)))) + ((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-1265)))) + ((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-1266))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-558)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850)) (-4 *2 (-558)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850)) (-4 *2 (-558))))) +(((*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1214)) (-4 *2 (-850)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-375 *3)) (-4 *3 (-1214)))) + ((*1 *2 *2) + (-12 (-5 *2 (-644 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1099)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-850)) + (-4 *6 (-1064 *4 *5 *3)) + (-5 *2 (-2 (|:| |under| *1) (|:| -3143 *1) (|:| |upper| *1))) + (-4 *1 (-976 *4 *5 *3 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-737 *3)))) + ((*1 *1 *2) (-12 (-5 *1 (-737 *2)) (-4 *2 (-1099)))) + ((*1 *1) (-12 (-5 *1 (-737 *2)) (-4 *2 (-1099))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1035))))) +(((*1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-276))))) +(((*1 *1) (-5 *1 (-292)))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) +(((*1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-157)))) + ((*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1038 (-566))) (-4 *1 (-303)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-547)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1099))))) +(((*1 *2 *1) + (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-850)) + (-4 *5 (-267 *4)) (-4 *6 (-793)) (-5 *2 (-112))))) +(((*1 *2 *2 *3) (-12 - (-5 *3 - (-644 - (-2 (|:| |eqzro| (-644 *8)) (|:| |neqzro| (-644 *8)) - (|:| |wcond| (-644 (-952 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1264 (-409 (-952 *5)))) - (|:| -2365 (-644 (-1264 (-409 (-952 *5)))))))))) - (-5 *4 (-1157)) (-4 *5 (-13 (-308) (-147))) (-4 *8 (-949 *5 *7 *6)) - (-4 *6 (-13 (-850) (-614 (-1175)))) (-4 *7 (-793)) (-5 *2 (-566)) - (-5 *1 (-924 *5 *6 *7 *8))))) + (-5 *2 + (-2 (|:| |partsol| (-1264 (-409 (-952 *4)))) + (|:| -2875 (-644 (-1264 (-409 (-952 *4))))))) + (-5 *3 (-644 *7)) (-4 *4 (-13 (-308) (-147))) + (-4 *7 (-949 *4 *6 *5)) (-4 *5 (-13 (-850) (-614 (-1175)))) + (-4 *6 (-793)) (-5 *1 (-924 *4 *5 *6 *7))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-566)) (|has| *1 (-6 -4415)) (-4 *1 (-375 *3)) + (-4 *3 (-1214))))) +(((*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1214))))) +(((*1 *2 *3) + (-12 (-5 *3 (-769)) + (-5 *2 + (-2 (|:| -2659 (-381)) (|:| -1368 (-1157)) + (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035)))) + (-5 *1 (-567)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-769)) (-5 *4 (-1062)) + (-5 *2 + (-2 (|:| -2659 (-381)) (|:| -1368 (-1157)) + (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035)))) + (-5 *1 (-567)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-787)) (-5 *3 (-1062)) + (-5 *4 + (-2 (|:| |fn| (-317 (-225))) + (|:| -2821 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 + (-2 (|:| -2659 (-381)) (|:| |explanations| (-1157)) + (|:| |extra| (-1035)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-787)) (-5 *3 (-1062)) + (-5 *4 + (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) + (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 + (-2 (|:| -2659 (-381)) (|:| |explanations| (-1157)) + (|:| |extra| (-1035)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-800)) (-5 *3 (-1062)) + (-5 *4 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) + (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-5 *2 (-2 (|:| -2659 (-381)) (|:| |explanations| (-1157)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-808)) + (-5 *2 + (-2 (|:| -2659 (-381)) (|:| -1368 (-1157)) + (|:| |explanations| (-644 (-1157))))) + (-5 *1 (-805)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-808)) (-5 *4 (-1062)) + (-5 *2 + (-2 (|:| -2659 (-381)) (|:| -1368 (-1157)) + (|:| |explanations| (-644 (-1157))))) + (-5 *1 (-805)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-839)) (-5 *3 (-1062)) + (-5 *4 + (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3289 (-644 (-225))))) + (-5 *2 (-2 (|:| -2659 (-381)) (|:| |explanations| (-1157)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-839)) (-5 *3 (-1062)) + (-5 *4 + (-2 (|:| |fn| (-317 (-225))) (|:| -3289 (-644 (-225))) + (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) + (|:| |ub| (-644 (-843 (-225)))))) + (-5 *2 (-2 (|:| -2659 (-381)) (|:| |explanations| (-1157)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-841)) + (-5 *2 + (-2 (|:| -2659 (-381)) (|:| -1368 (-1157)) + (|:| |explanations| (-644 (-1157))))) + (-5 *1 (-840)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-841)) (-5 *4 (-1062)) + (-5 *2 + (-2 (|:| -2659 (-381)) (|:| -1368 (-1157)) + (|:| |explanations| (-644 (-1157))))) + (-5 *1 (-840)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-895)) (-5 *3 (-1062)) + (-5 *4 + (-2 (|:| |pde| (-644 (-317 (-225)))) + (|:| |constraints| + (-644 + (-2 (|:| |start| (-225)) (|:| |finish| (-225)) + (|:| |grid| (-771)) (|:| |boundaryType| (-566)) + (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) + (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) + (|:| |tol| (-225)))) + (-5 *2 (-2 (|:| -2659 (-381)) (|:| |explanations| (-1157)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-898)) + (-5 *2 + (-2 (|:| -2659 (-381)) (|:| -1368 (-1157)) + (|:| |explanations| (-644 (-1157))))) + (-5 *1 (-897)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-898)) (-5 *4 (-1062)) + (-5 *2 + (-2 (|:| -2659 (-381)) (|:| -1368 (-1157)) + (|:| |explanations| (-644 (-1157))))) + (-5 *1 (-897))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-381)) (-5 *1 (-1062))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") + (|:| |Conditional| "conditional") (|:| |Return| "return") + (|:| |Block| "block") (|:| |Comment| "comment") + (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") + (|:| |Repeat| "repeat") (|:| |Goto| "goto") + (|:| |Continue| "continue") + (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") + (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) + (-5 *1 (-331))))) +(((*1 *1) (-5 *1 (-292)))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1255 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1171 (-409 (-566)))) (-5 *1 (-942)) (-5 *3 (-566))))) +(((*1 *1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099))))) (((*1 *2 *3 *3) (-12 (-4 *4 (-558)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2214 *3))) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2610 *4))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-850))))) +(((*1 *2) + (-12 (-4 *3 (-558)) (-5 *2 (-644 (-689 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-419 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-821)) (-5 *2 (-52)) (-5 *1 (-831))))) +(((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)) + (-5 *2 (-2 (|:| -2674 *3) (|:| -2636 *4)))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-644 (-612 *2))) (-5 *4 (-1175)) + (-4 *2 (-13 (-27) (-1199) (-432 *5))) + (-4 *5 (-13 (-558) (-1038 (-566)) (-639 (-566)))) + (-5 *1 (-278 *5 *2))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-1175)) + (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) + (-4 *4 (-13 (-29 *6) (-1199) (-959))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -2875 (-644 *4)))) + (-5 *1 (-801 *6 *4 *3)) (-4 *3 (-656 *4))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-612 *3)) (-4 *3 (-13 (-432 *5) (-27) (-1199))) + (-4 *5 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) + (-5 *2 (-587 *3)) (-5 *1 (-568 *5 *3 *6)) (-4 *6 (-1099))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-644 *6)) (-5 *4 (-644 (-247 *5 *6))) (-4 *6 (-454)) + (-5 *2 (-247 *5 *6)) (-14 *5 (-644 (-1175))) (-5 *1 (-631 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-508))) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 (-508))) (-5 *1 (-485))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1175)) (-5 *2 (-439)) (-5 *1 (-1179))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-927))))) +(((*1 *2 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1214)))) + ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1095)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1207 *3 *4 *5 *2)) (-4 *3 (-558)) + (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-771)) (-4 *1 (-1252 *3)) (-4 *3 (-1214)))) + ((*1 *2 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-856 *2)) (-4 *2 (-172)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1171 (-566))) (-5 *1 (-942)) (-5 *3 (-566))))) +(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) + (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-999 *3)) (-4 *3 (-172)) (-5 *1 (-799 *3))))) +(((*1 *1 *2) + (-12 + (-5 *2 + (-644 + (-2 + (|:| -2674 + (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) + (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (|:| -2636 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1155 (-225))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -2821 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated")))))))) + (-5 *1 (-561))))) +(((*1 *2 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-747))))) (((*1 *2 *3) (-12 (-5 *3 + (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) + (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") @@ -11324,994 +9800,209 @@ (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -2446 + (|:| -2821 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *2 (-1035)) (-5 *1 (-306))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-454)) - (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) - (-5 *1 (-977 *3 *4 *5 *6))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266))))) -(((*1 *2 *2) - (-12 (-5 *2 (-644 *7)) (-4 *7 (-1070 *3 *4 *5 *6)) (-4 *3 (-454)) - (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) - (-5 *1 (-988 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-644 *7)) (-4 *7 (-1070 *3 *4 *5 *6)) (-4 *3 (-454)) - (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) - (-5 *1 (-1106 *3 *4 *5 *6 *7))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-856 *2)) (-4 *2 (-172))))) -(((*1 *1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1049)))) - ((*1 *2 *3) - (-12 (-4 *4 (-558)) (-4 *4 (-172)) (-4 *5 (-375 *4)) - (-4 *6 (-375 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) - (-5 *1 (-688 *4 *5 *6 *3)) (-4 *3 (-687 *4 *5 *6)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-172)) (-4 *2 (-1049)) (-5 *1 (-714 *2 *3)) - (-4 *3 (-648 *2)))) - ((*1 *1 *1) - (-12 (-4 *2 (-172)) (-4 *2 (-1049)) (-5 *1 (-714 *2 *3)) - (-4 *3 (-648 *2)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-172)) (-4 *2 (-1049)))) - ((*1 *1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-172)) (-4 *2 (-1049))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1049)) (-5 *2 (-644 *1)) (-4 *1 (-1133 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-409 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1240 *5)) - (-5 *1 (-727 *5 *2)) (-4 *5 (-365))))) + (-5 *1 (-561))))) +(((*1 *1 *2) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-365)) + (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-506 *3 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3))))) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *1 *1) (|partial| -4 *1 (-145))) ((*1 *1 *1) (-4 *1 (-351))) + ((*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-909))))) +(((*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049))))) (((*1 *1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-506 *3 *4 *5 *2)) (-4 *2 (-949 *3 *4 *5)))) ((*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-793)) (-4 *4 (-850)) (-5 *1 (-506 *2 *3 *4 *5)) (-4 *5 (-949 *2 *3 *4))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1288 *3 *4)) (-4 *1 (-376 *3 *4)) (-4 *3 (-850)) - (-4 *4 (-172)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-388 *2)) (-4 *2 (-1099)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1281 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-819 *3)) (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) - (-4 *4 (-1049)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1281 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-921)) (-5 *1 (-1030 *2)) - (-4 *2 (-13 (-1099) (-10 -8 (-15 -3041 ($ $ $)))))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1099)) (-4 *3 (-900 *5)) (-5 *2 (-1264 *3)) - (-5 *1 (-692 *5 *3 *6 *4)) (-4 *6 (-375 *3)) - (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4414))))))) -(((*1 *1 *1) (-5 *1 (-1062)))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-644 (-952 *6))) (-5 *4 (-644 (-1175))) (-4 *6 (-454)) - (-5 *2 (-644 (-644 *7))) (-5 *1 (-540 *6 *7 *5)) (-4 *7 (-365)) - (-4 *5 (-13 (-365) (-848)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1214))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1226 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-1255 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-674 *3)) (-4 *3 (-1214)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) - ((*1 *2 *1) (-12 (-4 *1 (-1120 *3)) (-4 *3 (-1214)) (-5 *2 (-771))))) -(((*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 (-771) *2)) (-5 *4 (-771)) (-4 *2 (-1099)) - (-5 *1 (-678 *2)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1 *3 (-771) *3)) (-4 *3 (-1099)) (-5 *1 (-682 *3))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-566)) (-5 *4 (-112)) (-5 *5 (-689 (-225))) - (-5 *2 (-1035)) (-5 *1 (-755))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-409 *4)) (-4 *4 (-1240 *3)) - (-4 *3 (-13 (-365) (-147) (-1038 (-566)))) (-5 *1 (-570 *3 *4))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1214))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1175)) - (-5 *2 - (-2 (|:| |zeros| (-1155 (-225))) (|:| |ones| (-1155 (-225))) - (|:| |singularities| (-1155 (-225))))) - (-5 *1 (-105))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-169 (-225))) (-5 *5 (-566)) (-5 *6 (-1157)) - (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-758))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1264 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) - (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-644 *7)) (-5 *5 (-644 (-644 *8))) (-4 *7 (-850)) - (-4 *8 (-308)) (-4 *6 (-793)) (-4 *9 (-949 *8 *6 *7)) - (-5 *2 - (-2 (|:| |unitPart| *9) - (|:| |suPart| - (-644 (-2 (|:| -3719 (-1171 *9)) (|:| -2852 (-566))))))) - (-5 *1 (-742 *6 *7 *8 *9)) (-5 *3 (-1171 *9))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-771)) (-5 *2 (-112))))) -(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266)))) - ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *5 (-771)) (-4 *6 (-1099)) (-4 *7 (-900 *6)) - (-5 *2 (-689 *7)) (-5 *1 (-692 *6 *7 *3 *4)) (-4 *3 (-375 *7)) - (-4 *4 (-13 (-375 *6) (-10 -7 (-6 -4414))))))) -(((*1 *1) (-5 *1 (-439)))) -(((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1157)) (-5 *1 (-306))))) -(((*1 *2 *2) - (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1199)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-644 (-2 (|:| -3719 *4) (|:| -3636 (-566))))) - (-4 *4 (-1240 (-566))) (-5 *2 (-737 (-771))) (-5 *1 (-444 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-420 *5)) (-4 *5 (-1240 *4)) (-4 *4 (-1049)) - (-5 *2 (-737 (-771))) (-5 *1 (-446 *4 *5))))) -(((*1 *2 *2 *2) - (-12 - (-5 *2 - (-644 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-771)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-793)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-454)) (-4 *5 (-850)) - (-5 *1 (-451 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) -(((*1 *2 *1) (-12 (-4 *1 (-1092 *3)) (-4 *3 (-1214)) (-5 *2 (-566))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1265)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266))))) -(((*1 *2 *1) - (-12 (-5 *2 (-691 (-873 (-966 *3) (-966 *3)))) (-5 *1 (-966 *3)) - (-4 *3 (-1099))))) -(((*1 *2 *2) - (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1199)))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-1099)) - (-4 *4 (-1099))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-409 (-1171 (-317 *3)))) (-4 *3 (-558)) - (-5 *1 (-1129 *3))))) -(((*1 *2 *3) - (-12 (-4 *3 (-1240 (-409 (-566)))) - (-5 *2 (-2 (|:| |den| (-566)) (|:| |gcdnum| (-566)))) - (-5 *1 (-913 *3 *4)) (-4 *4 (-1240 (-409 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) ((*1 *2 *3) - (-12 (-4 *4 (-1240 (-409 *2))) (-5 *2 (-566)) (-5 *1 (-913 *4 *3)) - (-4 *3 (-1240 (-409 *4)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1002))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) - (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) - ((*1 *1 *1) (-4 *1 (-495))) - ((*1 *2 *2) - (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) - (-5 *1 (-1160 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) - (-5 *1 (-1161 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-691 *3)) (-5 *1 (-966 *3)) (-4 *3 (-1099))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) - (-4 *2 (-1064 *4 *5 *6)) (-5 *1 (-776 *4 *5 *6 *2 *3)) - (-4 *3 (-1070 *4 *5 *6 *2))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-927))))) -(((*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-112)) (-5 *1 (-268))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-566)) (-14 *3 (-771)) - (-4 *4 (-172)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1175)) (-4 *4 (-558)) (-5 *1 (-158 *4 *2)) - (-4 *2 (-432 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1091 *2)) (-4 *2 (-432 *4)) (-4 *4 (-558)) - (-5 *1 (-158 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1091 *1)) (-4 *1 (-160)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1175)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-467 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-771)) (-5 *1 (-1284 *3 *4)) (-4 *3 (-850)) - (-4 *4 (-172))))) -(((*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862))))) -(((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-858)))) - ((*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-965)))) - ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-989)))) - ((*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1214)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1099) (-34))) (-5 *1 (-1139 *2 *3)) - (-4 *3 (-13 (-1099) (-34)))))) -(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) - (-12 (-5 *3 (-1157)) (-5 *5 (-689 (-225))) (-5 *6 (-225)) - (-5 *7 (-689 (-566))) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-752))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) - (-4 *3 (-1064 *5 *6 *7)) - (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -3570 *4)))) - (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) - ((*1 *1 *1 *1) (-5 *1 (-862)))) -(((*1 *1) (-4 *1 (-967)))) -(((*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-303)))) - ((*1 *1 *1) (-4 *1 (-303))) - ((*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) - ((*1 *1 *1) (-5 *1 (-862)))) -(((*1 *1 *1) (-4 *1 (-95))) - ((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1002))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) - (-5 *1 (-1160 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) - (-5 *1 (-1161 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-873 *2 *3)) (-4 *2 (-1214)) (-4 *3 (-1214))))) -(((*1 *2 *3 *3 *1) - (-12 (-5 *3 (-508)) (-5 *2 (-691 (-1103))) (-5 *1 (-292))))) -(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1214)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) - (-4 *4 (-850)))) - ((*1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) - (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *2 - (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) - (|:| |expense| (-381)) (|:| |accuracy| (-381)) - (|:| |intermediateResults| (-381)))) - (-5 *1 (-803))))) -(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-566)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-771)) (-4 *5 (-172)))) - ((*1 *1 *1 *2 *1 *2) - (-12 (-5 *2 (-566)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-771)) (-4 *5 (-172)))) - ((*1 *2 *2 *3) - (-12 - (-5 *2 - (-506 (-409 (-566)) (-240 *5 (-771)) (-864 *4) - (-247 *4 (-409 (-566))))) - (-5 *3 (-644 (-864 *4))) (-14 *4 (-644 (-1175))) (-14 *5 (-771)) - (-5 *1 (-507 *4 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1175)) (-5 *5 (-1093 (-225))) (-5 *2 (-927)) - (-5 *1 (-925 *3)) (-4 *3 (-614 (-538))))) - ((*1 *2 *3 *3 *4 *5) - (-12 (-5 *4 (-1175)) (-5 *5 (-1093 (-225))) (-5 *2 (-927)) - (-5 *1 (-925 *3)) (-4 *3 (-614 (-538))))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-926)))) - ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1093 (-225))) - (-5 *1 (-926)))) - ((*1 *1 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1093 (-225))) - (-5 *1 (-926)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-927)))) - ((*1 *1 *2 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1093 (-225))) - (-5 *1 (-927)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1093 (-225))) - (-5 *1 (-927)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-644 (-1 (-225) (-225)))) (-5 *3 (-1093 (-225))) - (-5 *1 (-927)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-644 (-1 (-225) (-225)))) (-5 *3 (-1093 (-225))) - (-5 *1 (-927)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1093 (-225))) - (-5 *1 (-927)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1093 (-225))) - (-5 *1 (-927))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-644 (-644 *8))) (-5 *3 (-644 *8)) - (-4 *8 (-949 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) - (-4 *6 (-13 (-850) (-614 (-1175)))) (-4 *7 (-793)) (-5 *2 (-112)) - (-5 *1 (-924 *5 *6 *7 *8))))) + (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917))))) +(((*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-561))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) (((*1 *2 *3) - (-12 (-5 *3 (-952 (-225))) (-5 *2 (-317 (-381))) (-5 *1 (-306))))) -(((*1 *2 *1 *1) (-12 - (-5 *2 - (-2 (|:| -2214 (-782 *3)) (|:| |coef1| (-782 *3)) - (|:| |coef2| (-782 *3)))) - (-5 *1 (-782 *3)) (-4 *3 (-558)) (-4 *3 (-1049)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-558)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) - (-5 *2 (-2 (|:| -2214 *1) (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-1064 *3 *4 *5))))) + (-5 *3 + (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) + (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 (-1155 (-225))) (-5 *1 (-192)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-317 (-225))) (-5 *4 (-644 (-1175))) + (-5 *5 (-1093 (-843 (-225)))) (-5 *2 (-1155 (-225))) (-5 *1 (-301)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1264 (-317 (-225)))) (-5 *4 (-644 (-1175))) + (-5 *5 (-1093 (-843 (-225)))) (-5 *2 (-1155 (-225))) (-5 *1 (-301))))) (((*1 *1 *1) - (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1049)) (-14 *3 (-644 (-1175))))) - ((*1 *1 *1) - (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1049) (-850))) - (-14 *3 (-644 (-1175)))))) -(((*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-454)))) - ((*1 *1 *1 *1) (-4 *1 (-454))) - ((*1 *2 *3) - (-12 (-5 *3 (-644 *2)) (-5 *1 (-488 *2)) (-4 *2 (-1240 (-566))))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-566)) (-5 *1 (-696 *2)) (-4 *2 (-1240 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-771))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-793)) (-4 *4 (-850)) (-4 *5 (-308)) - (-5 *1 (-916 *3 *4 *5 *2)) (-4 *2 (-949 *5 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-644 *2)) (-4 *2 (-949 *6 *4 *5)) - (-5 *1 (-916 *4 *5 *6 *2)) (-4 *4 (-793)) (-4 *5 (-850)) - (-4 *6 (-308)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1171 *6)) (-4 *6 (-949 *5 *3 *4)) (-4 *3 (-793)) - (-4 *4 (-850)) (-4 *5 (-308)) (-5 *1 (-916 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-644 (-1171 *7))) (-4 *4 (-793)) (-4 *5 (-850)) - (-4 *6 (-308)) (-5 *2 (-1171 *7)) (-5 *1 (-916 *4 *5 *6 *7)) - (-4 *7 (-949 *6 *4 *5)))) - ((*1 *1 *1 *1) (-5 *1 (-921))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-454)) (-4 *3 (-558)) (-5 *1 (-969 *3 *2)) - (-4 *2 (-1240 *3)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) - (-4 *4 (-850)) (-4 *2 (-454))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-689 *8)) (-4 *8 (-949 *5 *7 *6)) - (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-850) (-614 (-1175)))) - (-4 *7 (-793)) + (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2610 *3) (|:| |coef1| (-782 *3)))) + (-5 *1 (-782 *3)) (-4 *3 (-558)) (-4 *3 (-1049))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-747))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-771)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) + (-4 *3 (-1064 *6 *7 *8)) (-5 *2 - (-644 - (-2 (|:| |eqzro| (-644 *8)) (|:| |neqzro| (-644 *8)) - (|:| |wcond| (-644 (-952 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1264 (-409 (-952 *5)))) - (|:| -2365 (-644 (-1264 (-409 (-952 *5)))))))))) - (-5 *1 (-924 *5 *6 *7 *8)) (-5 *4 (-644 *8)))) + (-2 (|:| |done| (-644 *4)) + (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -1470 *4)))))) + (-5 *1 (-1068 *6 *7 *8 *3 *4)) (-4 *4 (-1070 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-689 *8)) (-5 *4 (-644 (-1175))) (-4 *8 (-949 *5 *7 *6)) - (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-850) (-614 (-1175)))) - (-4 *7 (-793)) - (-5 *2 - (-644 - (-2 (|:| |eqzro| (-644 *8)) (|:| |neqzro| (-644 *8)) - (|:| |wcond| (-644 (-952 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1264 (-409 (-952 *5)))) - (|:| -2365 (-644 (-1264 (-409 (-952 *5)))))))))) - (-5 *1 (-924 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-689 *7)) (-4 *7 (-949 *4 *6 *5)) - (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) - (-4 *6 (-793)) - (-5 *2 - (-644 - (-2 (|:| |eqzro| (-644 *7)) (|:| |neqzro| (-644 *7)) - (|:| |wcond| (-644 (-952 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1264 (-409 (-952 *4)))) - (|:| -2365 (-644 (-1264 (-409 (-952 *4)))))))))) - (-5 *1 (-924 *4 *5 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-689 *9)) (-5 *5 (-921)) (-4 *9 (-949 *6 *8 *7)) - (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-850) (-614 (-1175)))) - (-4 *8 (-793)) + (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *3 (-1064 *5 *6 *7)) (-5 *2 - (-644 - (-2 (|:| |eqzro| (-644 *9)) (|:| |neqzro| (-644 *9)) - (|:| |wcond| (-644 (-952 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1264 (-409 (-952 *6)))) - (|:| -2365 (-644 (-1264 (-409 (-952 *6)))))))))) - (-5 *1 (-924 *6 *7 *8 *9)) (-5 *4 (-644 *9)))) + (-2 (|:| |done| (-644 *4)) + (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -1470 *4)))))) + (-5 *1 (-1068 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-689 *9)) (-5 *4 (-644 (-1175))) (-5 *5 (-921)) - (-4 *9 (-949 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) - (-4 *7 (-13 (-850) (-614 (-1175)))) (-4 *8 (-793)) + (-12 (-5 *5 (-771)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) + (-4 *3 (-1064 *6 *7 *8)) (-5 *2 - (-644 - (-2 (|:| |eqzro| (-644 *9)) (|:| |neqzro| (-644 *9)) - (|:| |wcond| (-644 (-952 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1264 (-409 (-952 *6)))) - (|:| -2365 (-644 (-1264 (-409 (-952 *6)))))))))) - (-5 *1 (-924 *6 *7 *8 *9)))) + (-2 (|:| |done| (-644 *4)) + (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -1470 *4)))))) + (-5 *1 (-1144 *6 *7 *8 *3 *4)) (-4 *4 (-1108 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-689 *8)) (-5 *4 (-921)) (-4 *8 (-949 *5 *7 *6)) - (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-850) (-614 (-1175)))) - (-4 *7 (-793)) + (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *3 (-1064 *5 *6 *7)) (-5 *2 - (-644 - (-2 (|:| |eqzro| (-644 *8)) (|:| |neqzro| (-644 *8)) - (|:| |wcond| (-644 (-952 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1264 (-409 (-952 *5)))) - (|:| -2365 (-644 (-1264 (-409 (-952 *5)))))))))) - (-5 *1 (-924 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-689 *9)) (-5 *4 (-644 *9)) (-5 *5 (-1157)) - (-4 *9 (-949 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) - (-4 *7 (-13 (-850) (-614 (-1175)))) (-4 *8 (-793)) (-5 *2 (-566)) - (-5 *1 (-924 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-689 *9)) (-5 *4 (-644 (-1175))) (-5 *5 (-1157)) - (-4 *9 (-949 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) - (-4 *7 (-13 (-850) (-614 (-1175)))) (-4 *8 (-793)) (-5 *2 (-566)) - (-5 *1 (-924 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-689 *8)) (-5 *4 (-1157)) (-4 *8 (-949 *5 *7 *6)) - (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-850) (-614 (-1175)))) - (-4 *7 (-793)) (-5 *2 (-566)) (-5 *1 (-924 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-689 *10)) (-5 *4 (-644 *10)) (-5 *5 (-921)) - (-5 *6 (-1157)) (-4 *10 (-949 *7 *9 *8)) (-4 *7 (-13 (-308) (-147))) - (-4 *8 (-13 (-850) (-614 (-1175)))) (-4 *9 (-793)) (-5 *2 (-566)) - (-5 *1 (-924 *7 *8 *9 *10)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-689 *10)) (-5 *4 (-644 (-1175))) (-5 *5 (-921)) - (-5 *6 (-1157)) (-4 *10 (-949 *7 *9 *8)) (-4 *7 (-13 (-308) (-147))) - (-4 *8 (-13 (-850) (-614 (-1175)))) (-4 *9 (-793)) (-5 *2 (-566)) - (-5 *1 (-924 *7 *8 *9 *10)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-689 *9)) (-5 *4 (-921)) (-5 *5 (-1157)) - (-4 *9 (-949 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) - (-4 *7 (-13 (-850) (-614 (-1175)))) (-4 *8 (-793)) (-5 *2 (-566)) - (-5 *1 (-924 *6 *7 *8 *9))))) -(((*1 *1 *1) (-4 *1 (-95))) - ((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1002))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) - (-5 *1 (-1160 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) - (-5 *1 (-1161 *3))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) - (-12 (-5 *3 (-566)) (-5 *5 (-112)) (-5 *6 (-689 (-225))) - (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-755))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-508)) (-5 *1 (-281))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-793)) - (-4 *3 (-13 (-850) (-10 -8 (-15 -1348 ((-1175) $))))) (-4 *5 (-558)) - (-5 *1 (-732 *4 *3 *5 *2)) (-4 *2 (-949 (-409 (-952 *5)) *4 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *4 (-1049)) (-4 *5 (-793)) - (-4 *3 - (-13 (-850) - (-10 -8 (-15 -1348 ((-1175) $)) - (-15 -1385 ((-3 $ "failed") (-1175)))))) - (-5 *1 (-984 *4 *5 *3 *2)) (-4 *2 (-949 (-952 *4) *5 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-644 *6)) - (-4 *6 - (-13 (-850) - (-10 -8 (-15 -1348 ((-1175) $)) - (-15 -1385 ((-3 $ "failed") (-1175)))))) - (-4 *4 (-1049)) (-4 *5 (-793)) (-5 *1 (-984 *4 *5 *6 *2)) - (-4 *2 (-949 (-952 *4) *5 *6))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) - (-4 *4 (-1049))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1214)) (-5 *2 (-771)) (-5 *1 (-182 *4 *3)) - (-4 *3 (-674 *4))))) -(((*1 *1 *1) (-12 (-5 *1 (-502 *2)) (-14 *2 (-566)))) - ((*1 *1 *1) (-5 *1 (-1119)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099))))) + (-2 (|:| |done| (-644 *4)) + (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -1470 *4)))))) + (-5 *1 (-1144 *5 *6 *7 *3 *4)) (-4 *4 (-1108 *5 *6 *7 *3))))) +(((*1 *1 *2 *1) + (-12 (|has| *1 (-6 -4414)) (-4 *1 (-151 *2)) (-4 *2 (-1214)) + (-4 *2 (-1099)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4414)) (-4 *1 (-151 *3)) + (-4 *3 (-1214)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-674 *3)) (-4 *3 (-1214)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-566)) (-4 *4 (-1099)) + (-5 *1 (-737 *4)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-566)) (-5 *1 (-737 *2)) (-4 *2 (-1099)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1139 *3 *4)) (-4 *3 (-13 (-1099) (-34))) + (-4 *4 (-13 (-1099) (-34))) (-5 *1 (-1140 *3 *4))))) +(((*1 *1 *1) (|partial| -4 *1 (-1150)))) +(((*1 *1 *2) (-12 (-5 *2 (-317 (-169 (-381)))) (-5 *1 (-331)))) + ((*1 *1 *2) (-12 (-5 *2 (-317 (-566))) (-5 *1 (-331)))) + ((*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-5 *1 (-331)))) + ((*1 *1 *2) (-12 (-5 *2 (-317 (-694))) (-5 *1 (-331)))) + ((*1 *1 *2) (-12 (-5 *2 (-317 (-701))) (-5 *1 (-331)))) + ((*1 *1 *2) (-12 (-5 *2 (-317 (-699))) (-5 *1 (-331)))) + ((*1 *1) (-5 *1 (-331)))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-365)) (-4 *3 (-1049)) + (-5 *2 (-2 (|:| -2631 *1) (|:| -3264 *1))) (-4 *1 (-852 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-365)) (-4 *5 (-1049)) + (-5 *2 (-2 (|:| -2631 *3) (|:| -3264 *3))) (-5 *1 (-853 *5 *3)) + (-4 *3 (-852 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-396)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1194))))) +(((*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-112))))) (((*1 *1 *1) - (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) -(((*1 *2 *3) - (-12 (-5 *3 (-644 (-538))) (-5 *2 (-1175)) (-5 *1 (-538))))) -(((*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-447 *3)) (-4 *3 (-1049))))) -(((*1 *2 *3) - (-12 (-5 *3 (-644 (-2 (|:| -2233 *4) (|:| -1617 (-566))))) - (-4 *4 (-1099)) (-5 *2 (-1 *4)) (-5 *1 (-1017 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-317 (-225))) (-5 *2 (-317 (-381))) (-5 *1 (-306))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) + (-12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-792)) + (-4 *2 (-454)))) ((*1 *1 *1) - (-12 (-5 *1 (-1256 *2 *3 *4)) (-4 *2 (-1049)) (-14 *3 (-1175)) - (-14 *4 *2)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1171 *1)) (-4 *1 (-454)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1171 *6)) (-4 *6 (-949 *5 *3 *4)) (-4 *3 (-793)) - (-4 *4 (-850)) (-4 *5 (-909)) (-5 *1 (-459 *3 *4 *5 *6)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1171 *1)) (-4 *1 (-909))))) -(((*1 *1 *1) (-4 *1 (-95))) - ((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1002))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) - (-5 *1 (-1160 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) - (-5 *1 (-1161 *3))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-903 *3)) (-4 *3 (-1099)) (-5 *2 (-1101 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1099)) (-5 *2 (-1101 (-644 *4))) (-5 *1 (-904 *4)) - (-5 *3 (-644 *4)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1099)) (-5 *2 (-1101 (-1101 *4))) (-5 *1 (-904 *4)) - (-5 *3 (-1101 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *2 (-1101 *3)) (-5 *1 (-904 *3)) (-4 *3 (-1099))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-644 *2)) (-4 *2 (-1214))))) -(((*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1141 *4 *2)) (-14 *4 (-921)) - (-4 *2 (-13 (-1049) (-10 -7 (-6 (-4416 "*"))))) - (-5 *1 (-902 *4 *2))))) -(((*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-560 *3)) (-4 *3 (-547))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-502 *2)) (-14 *2 (-566)))) - ((*1 *1 *1 *1) (-5 *1 (-1119)))) -(((*1 *2 *1) - (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) - (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-644 *5))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-644 (-52))) (-5 *1 (-892 *3)) (-4 *3 (-1099))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1231 (-566))) (-4 *1 (-651 *3)) (-4 *3 (-1214)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-651 *3)) (-4 *3 (-1214))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1240 *5)) (-4 *5 (-365)) - (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) - (-5 *1 (-576 *5 *3))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1264 (-644 *3))) (-4 *4 (-308)) - (-5 *2 (-644 *3)) (-5 *1 (-457 *4 *3)) (-4 *3 (-1240 *4))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1171 (-566))) (-5 *1 (-191)) (-5 *3 (-566)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-783 *2)) (-4 *2 (-172)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1171 (-566))) (-5 *1 (-942)) (-5 *3 (-566))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-644 *3)) (-4 *3 (-308)) (-5 *1 (-179 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1199)))))) -(((*1 *2 *1) - (-12 (-4 *2 (-558)) (-5 *1 (-623 *2 *3)) (-4 *3 (-1240 *2))))) -(((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-225))) - ((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1002))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) + (-12 (-4 *1 (-344 *2 *3 *4)) (-4 *2 (-1218)) (-4 *3 (-1240 *2)) + (-4 *4 (-1240 (-409 *3))))) + ((*1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-454)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-949 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *2 (-850)) (-4 *3 (-454)))) ((*1 *1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) - (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) - ((*1 *1 *1 *1) (-5 *1 (-381))) - ((*1 *2 *2) - (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) - (-5 *1 (-1160 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) - (-5 *1 (-1161 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) -(((*1 *1 *2) (-12 (-5 *2 (-921)) (-4 *1 (-370)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-921)) (-5 *2 (-1264 *4)) (-5 *1 (-530 *4)) - (-4 *4 (-351)))) - ((*1 *2 *1) - (-12 (-4 *2 (-850)) (-5 *1 (-713 *2 *3 *4)) (-4 *3 (-1099)) - (-14 *4 - (-1 (-112) (-2 (|:| -2178 *2) (|:| -2852 *3)) - (-2 (|:| -2178 *2) (|:| -2852 *3))))))) -(((*1 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1214))))) -(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-317 (-381))) (-5 *1 (-306))))) -(((*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-1099))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-502 *2)) (-14 *2 (-566)))) - ((*1 *1 *1 *1) (-5 *1 (-1119)))) + (-12 (-4 *1 (-949 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850)) (-4 *2 (-454)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-308)) (-4 *3 (-558)) (-5 *1 (-1162 *3 *2)) + (-4 *2 (-1240 *3))))) (((*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-560 *2)) (-4 *2 (-547))))) -(((*1 *2 *2) (-12 (-5 *2 (-644 (-317 (-225)))) (-5 *1 (-268))))) -(((*1 *1 *2 *1) - (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *3) - (-12 (-5 *3 (-317 (-225))) (-5 *2 (-409 (-566))) (-5 *1 (-306))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1269)) (-5 *1 (-822))))) -(((*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-454)))) - ((*1 *1 *1 *1) (-4 *1 (-454)))) -(((*1 *1 *1) (-4 *1 (-95))) - ((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1002))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) - (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) - (-5 *1 (-1160 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) - (-5 *1 (-1161 *3))))) (((*1 *2) - (-12 (-4 *3 (-1049)) (-5 *2 (-958 (-712 *3 *4))) (-5 *1 (-712 *3 *4)) - (-4 *4 (-1240 *3))))) -(((*1 *2) (-12 (-5 *2 (-1146 (-1157))) (-5 *1 (-393))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1264 *4)) (-4 *4 (-639 (-566))) - (-5 *2 (-1264 (-566))) (-5 *1 (-1291 *4))))) -(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-588 *3)) (-4 *3 (-547))))) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-532 *3)) (-4 *3 (-13 (-726) (-25)))))) (((*1 *2 *3) - (-12 (-5 *3 (-771)) (-5 *2 (-1 (-1155 (-952 *4)) (-1155 (-952 *4)))) - (-5 *1 (-1272 *4)) (-4 *4 (-365))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1035))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-1049)))) - ((*1 *2 *1) - (-12 (-4 *1 (-973 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-792)) - (-4 *5 (-850)) (-5 *2 (-112))))) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-566))) (-5 *1 (-1047))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-1084))) (-5 *1 (-292))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-644 - (-2 (|:| -4313 (-771)) - (|:| |eqns| - (-644 - (-2 (|:| |det| *7) (|:| |rows| (-644 (-566))) - (|:| |cols| (-644 (-566)))))) - (|:| |fgb| (-644 *7))))) - (-4 *7 (-949 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) - (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-771)) - (-5 *1 (-924 *4 *5 *6 *7))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4415)) (-4 *1 (-244 *2)) (-4 *2 (-1214))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-943 (-225)) (-943 (-225)))) (-5 *1 (-264)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1264 *1)) (-4 *1 (-330 *4)) (-4 *4 (-365)) - (-5 *2 (-689 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1264 *3)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) - (-5 *2 (-689 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) - (-5 *2 (-1264 *4)))) + (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) + (-4 *6 (-793)) (-5 *2 (-644 *3)) (-5 *1 (-924 *4 *5 *6 *3)) + (-4 *3 (-949 *4 *6 *5))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-949 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *2 (-850)) (-4 *3 (-172)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-1264 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) - (-4 *5 (-1240 *4)) (-5 *2 (-689 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1264 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) - (-4 *5 (-1240 *4)) (-5 *2 (-1264 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1264 *1)) (-4 *1 (-411 *4 *5)) (-4 *4 (-172)) - (-4 *5 (-1240 *4)) (-5 *2 (-689 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-411 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1240 *3)) - (-5 *2 (-1264 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1264 *1)) (-4 *1 (-419 *4)) (-4 *4 (-172)) - (-5 *2 (-689 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-1264 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-644 (-689 *5))) (-5 *3 (-689 *5)) (-4 *5 (-365)) - (-5 *2 (-1264 *5)) (-5 *1 (-1085 *5))))) -(((*1 *1 *1) (-4 *1 (-95))) - ((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1002))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) - (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) - (-5 *1 (-1160 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) - (-5 *1 (-1161 *3))))) + (-12 (-4 *2 (-558)) (-5 *1 (-969 *2 *3)) (-4 *3 (-1240 *2)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850)) (-4 *2 (-558)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1240 *2)) (-4 *2 (-1049)) (-4 *2 (-172))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1109))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-771)) (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) + (-4 *4 (-793)) (-4 *5 (-850)) (-4 *3 (-558))))) +(((*1 *1 *1 *1) (-5 *1 (-862)))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) + (-12 (-5 *4 (-566)) (-5 *6 (-1 (-1269) (-1264 *5) (-1264 *5) (-381))) + (-5 *3 (-1264 (-381))) (-5 *5 (-381)) (-5 *2 (-1269)) + (-5 *1 (-788))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-558)) (-4 *3 (-172)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *1 (-688 *3 *4 *5 *2)) + (-4 *2 (-687 *3 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-454) (-147))) (-5 *2 (-420 *3)) - (-5 *1 (-100 *4 *3)) (-4 *3 (-1240 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-644 *3)) (-4 *3 (-1240 *5)) (-4 *5 (-13 (-454) (-147))) - (-5 *2 (-420 *3)) (-5 *1 (-100 *5 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-644 (-1264 *5))) (-5 *4 (-566)) (-5 *2 (-1264 *5)) - (-5 *1 (-1029 *5)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1049))))) -(((*1 *1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-943 (-225)) (-225))) (-5 *3 (-1093 (-225))) - (-5 *1 (-926)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-943 (-225)) (-225))) (-5 *3 (-1093 (-225))) - (-5 *1 (-926)))) - ((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-943 (-225)) (-225))) (-5 *3 (-1093 (-225))) - (-5 *1 (-927)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-943 (-225)) (-225))) (-5 *3 (-1093 (-225))) - (-5 *1 (-927))))) -(((*1 *1 *2 *2) - (-12 (-5 *2 (-771)) (-4 *3 (-1049)) (-4 *1 (-687 *3 *4 *5)) - (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-771)) (-4 *1 (-1262 *3)) (-4 *3 (-23)) (-4 *3 (-1214))))) -(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) -(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563))))) + (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1191 *4 *5)) + (-4 *4 (-1099)) (-4 *5 (-1099))))) (((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1240 (-48)))))) + (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)) (-5 *3 (-566))))) (((*1 *2 *3) - (-12 (-5 *2 (-566)) (-5 *1 (-447 *3)) (-4 *3 (-406)) (-4 *3 (-1049))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *4 (-13 (-365) (-848))) (-5 *2 (-420 *3)) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1240 (-169 *4))))) - ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-365) (-848))) (-5 *2 (-420 *3)) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1240 (-169 *4)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-558) (-1038 (-566)) (-639 (-566)))) - (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1175)) - (-4 *4 (-13 (-558) (-1038 (-566)) (-639 (-566)))) - (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *4)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1002))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) - (-5 *1 (-1160 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) - (-5 *1 (-1161 *3)))) - ((*1 *1 *1) (-4 *1 (-1202)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-420 *5)) (-4 *5 (-558)) + (-12 (-14 *4 (-644 (-1175))) (-4 *5 (-454)) (-5 *2 - (-2 (|:| -2852 (-771)) (|:| -1364 *5) (|:| |radicand| (-644 *5)))) - (-5 *1 (-321 *5)) (-5 *4 (-771)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1002)) (-5 *2 (-566))))) -(((*1 *2 *2 *3) - (-12 (-5 *1 (-679 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1175)) (-5 *2 (-538)) (-5 *1 (-537 *4)) - (-4 *4 (-1214))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-506 (-409 (-566)) (-240 *5 (-771)) (-864 *4) - (-247 *4 (-409 (-566))))) - (-14 *4 (-644 (-1175))) (-14 *5 (-771)) (-5 *2 (-112)) - (-5 *1 (-507 *4 *5))))) -(((*1 *2 *1) - (-12 (-5 *2 (-771)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) - (-4 *4 (-1049))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1157)) (-5 *4 (-566)) (-5 *5 (-689 (-225))) - (-5 *2 (-1035)) (-5 *1 (-754))))) -(((*1 *2 *1) - (-12 (-5 *2 (-644 (-905 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1099))))) -(((*1 *2 *3 *3) - (-12 (|has| *2 (-6 (-4416 "*"))) (-4 *5 (-375 *2)) (-4 *6 (-375 *2)) - (-4 *2 (-1049)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1240 *2)) - (-4 *4 (-687 *2 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-1283 *3)) (-4 *3 (-365)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-1099)) - (-4 *4 (-1099))))) -(((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1002))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) - (-5 *1 (-1160 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) - (-5 *1 (-1161 *3)))) - ((*1 *1 *1) (-4 *1 (-1202)))) + (-2 (|:| |glbase| (-644 (-247 *4 *5))) (|:| |glval| (-644 (-566))))) + (-5 *1 (-631 *4 *5)) (-5 *3 (-644 (-247 *4 *5)))))) +(((*1 *1) (-5 *1 (-1084)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-644 *7)) (-4 *7 (-850)) (-4 *5 (-909)) (-4 *6 (-793)) - (-4 *8 (-949 *5 *6 *7)) (-5 *2 (-420 (-1171 *8))) - (-5 *1 (-906 *5 *6 *7 *8)) (-5 *4 (-1171 *8)))) - ((*1 *2 *3) - (-12 (-4 *4 (-909)) (-4 *5 (-1240 *4)) (-5 *2 (-420 (-1171 *5))) - (-5 *1 (-907 *4 *5)) (-5 *3 (-1171 *5))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-558) (-147))) - (-5 *2 (-2 (|:| -4380 *3) (|:| -4392 *3))) (-5 *1 (-1234 *4 *3)) - (-4 *3 (-1240 *4))))) -(((*1 *2 *1) (-12 (-5 *1 (-1209 *2)) (-4 *2 (-974))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-1279 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)) - (-5 *1 (-664 *3 *4)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-664 *3 *4)) (-5 *1 (-1284 *3 *4)) - (-4 *3 (-850)) (-4 *4 (-172))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1191 *4 *5)) - (-4 *4 (-1099)) (-4 *5 (-1099))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1171 (-409 (-952 *3)))) (-5 *1 (-455 *3 *4 *5 *6)) - (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) - (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-843 *3)) (-4 *3 (-1099))))) -(((*1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-829))))) -(((*1 *2 *1) - (-12 (-5 *2 (-644 (-52))) (-5 *1 (-892 *3)) (-4 *3 (-1099))))) + (-12 (-5 *3 (-689 *8)) (-5 *4 (-771)) (-4 *8 (-949 *5 *7 *6)) + (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-850) (-614 (-1175)))) + (-4 *7 (-793)) + (-5 *2 + (-644 + (-2 (|:| |det| *8) (|:| |rows| (-644 (-566))) + (|:| |cols| (-644 (-566)))))) + (-5 *1 (-924 *5 *6 *7 *8))))) +(((*1 *1) + (-12 (-4 *1 (-406)) (-2404 (|has| *1 (-6 -4405))) + (-2404 (|has| *1 (-6 -4397))))) + ((*1 *2 *1) (-12 (-4 *1 (-427 *2)) (-4 *2 (-1099)) (-4 *2 (-850)))) + ((*1 *1) (-4 *1 (-844))) ((*1 *1 *1 *1) (-4 *1 (-850))) + ((*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-850))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)) - (-5 *3 (-644 (-566)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1002))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) - (-5 *1 (-1160 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) - (-5 *1 (-1161 *3)))) - ((*1 *1 *1) (-4 *1 (-1202)))) -(((*1 *2 *1) - (-12 (-4 *1 (-556 *3)) (-4 *3 (-13 (-406) (-1199))) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-848)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1067 *4 *3)) (-4 *4 (-13 (-848) (-365))) - (-4 *3 (-1240 *4)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-295 (-409 (-952 *5)))) (-5 *4 (-1175)) - (-4 *5 (-13 (-308) (-147))) - (-5 *2 (-1164 (-644 (-317 *5)) (-644 (-295 (-317 *5))))) - (-5 *1 (-1128 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-1175)) - (-4 *5 (-13 (-308) (-147))) - (-5 *2 (-1164 (-644 (-317 *5)) (-644 (-295 (-317 *5))))) - (-5 *1 (-1128 *5))))) -(((*1 *2 *3) (-12 (-4 *4 (-558)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3652 *4))) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-1049)) (-4 *3 (-1099)) - (-5 *2 (-2 (|:| |val| *1) (|:| -2852 (-566)))) (-4 *1 (-432 *3)))) - ((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| |val| (-892 *3)) (|:| -2852 (-892 *3)))) - (-5 *1 (-892 *3)) (-4 *3 (-1099)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1049)) - (-4 *7 (-949 *6 *4 *5)) - (-5 *2 (-2 (|:| |val| *3) (|:| -2852 (-566)))) - (-5 *1 (-950 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-365) - (-10 -8 (-15 -3783 ($ *7)) (-15 -4326 (*7 $)) - (-15 -4339 (*7 $)))))))) -(((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-699)))) - ((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-699))))) -(((*1 *2 *3 *2) - (-12 - (-5 *2 - (-644 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-771)) (|:| |poli| *3) - (|:| |polj| *3)))) - (-4 *5 (-793)) (-4 *3 (-949 *4 *5 *6)) (-4 *4 (-454)) (-4 *6 (-850)) - (-5 *1 (-451 *4 *5 *6 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-644 *1)) (-4 *1 (-1064 *4 *5 *6)) (-4 *4 (-1049)) - (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) - (-4 *5 (-850)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) - (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1207 *4 *5 *6 *3)) (-4 *4 (-558)) (-4 *5 (-793)) - (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-644 (-644 (-644 *4)))) (-5 *2 (-644 (-644 *4))) - (-4 *4 (-850)) (-5 *1 (-1185 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1002))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) - (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) - (-5 *1 (-1160 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) - (-5 *1 (-1161 *3)))) - ((*1 *1 *1) (-4 *1 (-1202)))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) +(((*1 *2 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *2)) (-4 *2 (-172)))) + ((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-418 *3 *2)) (-4 *3 (-419 *2)))) + ((*1 *2) (-12 (-4 *1 (-419 *2)) (-4 *2 (-172))))) +(((*1 *2 *3) + (-12 (-5 *3 (-317 (-225))) (-5 *2 (-317 (-409 (-566)))) + (-5 *1 (-306))))) +(((*1 *2 *3) + (-12 (-5 *2 (-420 (-1171 (-566)))) (-5 *1 (-191)) (-5 *3 (-566))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-976 *4 *5 *6 *3)) (-4 *4 (-1049)) (-4 *5 (-793)) + (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-4 *4 (-558)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) (((*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-771)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) @@ -12335,904 +10026,752 @@ ((*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-1011 *3)) (-4 *3 (-1012)))) ((*1 *2) (-12 (-4 *1 (-1049)) (-5 *2 (-771)))) ((*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-1058 *3)) (-4 *3 (-1059))))) -(((*1 *1) (-5 *1 (-439)))) +(((*1 *2 *1 *2) (-12 (-5 *1 (-1026 *2)) (-4 *2 (-1214))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) + (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))) + (-5 *1 (-192))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1175)) + (-4 *4 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) + (-5 *1 (-804 *4 *2)) (-4 *2 (-13 (-29 *4) (-1199) (-959))))) + ((*1 *1 *1 *1 *1) (-5 *1 (-862))) ((*1 *1 *1 *1) (-5 *1 (-862))) + ((*1 *1 *1) (-5 *1 (-862))) + ((*1 *2 *3) + (-12 (-5 *2 (-1155 *3)) (-5 *1 (-1159 *3)) (-4 *3 (-1049))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) - (-4 *3 (-1064 *5 *6 *7)) - (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -3570 *4)))) - (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))) + (-12 (-5 *3 (-689 (-169 (-409 (-566))))) + (-5 *2 + (-644 + (-2 (|:| |outval| (-169 *4)) (|:| |outmult| (-566)) + (|:| |outvect| (-644 (-689 (-169 *4))))))) + (-5 *1 (-764 *4)) (-4 *4 (-13 (-365) (-848)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-943 *3)))))) +(((*1 *2) + (-12 (-5 *2 (-958 (-1119))) (-5 *1 (-345 *3 *4)) (-14 *3 (-921)) + (-14 *4 (-921)))) + ((*1 *2) + (-12 (-5 *2 (-958 (-1119))) (-5 *1 (-346 *3 *4)) (-4 *3 (-351)) + (-14 *4 (-1171 *3)))) + ((*1 *2) + (-12 (-5 *2 (-958 (-1119))) (-5 *1 (-347 *3 *4)) (-4 *3 (-351)) + (-14 *4 (-921))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-952 (-409 (-566)))) (-5 *4 (-1175)) + (-5 *5 (-1093 (-843 (-225)))) (-5 *2 (-644 (-225))) (-5 *1 (-301))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-672 *3)) (-4 *3 (-850)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-677 *3)) (-4 *3 (-850)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-819 *3)) (-4 *3 (-850))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))) +(((*1 *1) (-5 *1 (-617)))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1175)) + (-4 *5 (-13 (-454) (-147) (-1038 (-566)) (-639 (-566)))) + (-5 *2 (-2 (|:| -1641 *3) (|:| |coeff| *3))) (-5 *1 (-559 *5 *3)) + (-4 *3 (-13 (-27) (-1199) (-432 *5)))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-860)) (-5 *2 (-691 (-1222))) (-5 *3 (-1222))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *1)) + (-4 *1 (-1064 *3 *4 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1214)) (-5 *1 (-377 *4 *2)) + (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4415))))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-365)) (-5 *2 (-2 (|:| -2631 *3) (|:| -3264 *3))) + (-5 *1 (-766 *3 *4)) (-4 *3 (-708 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-365)) (-4 *3 (-1049)) + (-5 *2 (-2 (|:| -2631 *1) (|:| -3264 *1))) (-4 *1 (-852 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-365)) (-4 *5 (-1049)) + (-5 *2 (-2 (|:| -2631 *3) (|:| -3264 *3))) (-5 *1 (-853 *5 *3)) + (-4 *3 (-852 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-943 *4)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) + (-4 *4 (-1049))))) +(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-31)))) + ((*1 *2) (-12 (-4 *1 (-406)) (-5 *2 (-921)))) ((*1 *1) (-4 *1 (-547))) + ((*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-699)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-904 *3)) (-4 *3 (-1099))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-365)) (-4 *7 (-1240 *5)) (-4 *4 (-724 *5 *7)) + (-5 *2 (-2 (|:| -3361 (-689 *6)) (|:| |vec| (-1264 *5)))) + (-5 *1 (-811 *5 *6 *7 *4 *3)) (-4 *6 (-656 *5)) (-4 *3 (-656 *4))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) + (-5 *2 (-1035)) (-5 *1 (-751))))) +(((*1 *1 *1) + (-12 (-4 *2 (-365)) (-4 *3 (-793)) (-4 *4 (-850)) + (-5 *1 (-506 *2 *3 *4 *5)) (-4 *5 (-949 *2 *3 *4))))) +(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) + (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2352)))) + (-5 *2 (-1035)) (-5 *1 (-748))))) +(((*1 *1 *1) + (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) (((*1 *2 *3) - (-12 (|has| *2 (-6 (-4416 "*"))) (-4 *5 (-375 *2)) (-4 *6 (-375 *2)) - (-4 *2 (-1049)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1240 *2)) - (-4 *4 (-687 *2 *5 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-41 *3 *2)) + (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3)) + (-4 *3 (-13 (-365) (-1199) (-1002)))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-114)) (-5 *4 (-771)) + (-4 *5 (-13 (-454) (-1038 (-566)))) (-4 *5 (-558)) + (-5 *1 (-41 *5 *2)) (-4 *2 (-432 *5)) (-4 *2 (-13 (-365) (-303) - (-10 -8 (-15 -4326 ((-1124 *3 (-612 $)) $)) - (-15 -4339 ((-1124 *3 (-612 $)) $)) - (-15 -3783 ($ (-1124 *3 (-612 $)))))))))) -(((*1 *2 *2) - (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1199)))))) + (-10 -8 (-15 -2248 ((-1124 *5 (-612 $)) $)) + (-15 -2260 ((-1124 *5 (-612 $)) $)) + (-15 -3152 ($ (-1124 *5 (-612 $)))))))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-644 *1)) + (-4 *1 (-1070 *4 *5 *6 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) + (-5 *2 + (-2 (|:| -4187 (-771)) (|:| |curves| (-771)) + (|:| |polygons| (-771)) (|:| |constructs| (-771))))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1237 *4 *5)) (-5 *3 (-644 *5)) (-14 *4 (-1175)) + (-4 *5 (-365)) (-5 *1 (-923 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-644 *5)) (-4 *5 (-365)) (-5 *2 (-1171 *5)) + (-5 *1 (-923 *4 *5)) (-14 *4 (-1175)))) + ((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-644 *6)) (-5 *4 (-771)) (-4 *6 (-365)) + (-5 *2 (-409 (-952 *6))) (-5 *1 (-1050 *5 *6)) (-14 *5 (-1175))))) (((*1 *2 *3) - (-12 (-5 *3 (-644 *2)) (-4 *2 (-432 *4)) (-5 *1 (-158 *4 *2)) - (-4 *4 (-558))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1207 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793)) - (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-331))))) -(((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1002))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-332 *2)) (-4 *2 (-850)))) - ((*1 *1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) - (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) - (-5 *1 (-1160 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) - (-5 *1 (-1161 *3)))) - ((*1 *1 *1) (-4 *1 (-1202)))) -(((*1 *1) - (-12 (-4 *1 (-406)) (-2418 (|has| *1 (-6 -4405))) - (-2418 (|has| *1 (-6 -4397))))) - ((*1 *2 *1) (-12 (-4 *1 (-427 *2)) (-4 *2 (-1099)) (-4 *2 (-850)))) - ((*1 *2 *1) (-12 (-4 *1 (-830 *2)) (-4 *2 (-850)))) - ((*1 *1) (-4 *1 (-844))) ((*1 *1 *1 *1) (-4 *1 (-850)))) -(((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) - (-5 *2 (-644 (-1027 *5 *6 *7 *3))) (-5 *1 (-1027 *5 *6 *7 *3)) - (-4 *3 (-1064 *5 *6 *7)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-644 *6)) (-4 *1 (-1070 *3 *4 *5 *6)) (-4 *3 (-454)) - (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-1070 *3 *4 *5 *2)) (-4 *3 (-454)) (-4 *4 (-793)) - (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5)))) - ((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) - (-5 *2 (-644 (-1145 *5 *6 *7 *3))) (-5 *1 (-1145 *5 *6 *7 *3)) - (-4 *3 (-1064 *5 *6 *7))))) -(((*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 - (-5 *5 - (-2 (|:| |contp| *3) - (|:| -4138 (-644 (-2 (|:| |irr| *10) (|:| -3149 (-566))))))) - (-5 *6 (-644 *3)) (-5 *7 (-644 *8)) (-4 *8 (-850)) (-4 *3 (-308)) - (-4 *10 (-949 *3 *9 *8)) (-4 *9 (-793)) + (-5 *3 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) + (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 - (-2 (|:| |polfac| (-644 *10)) (|:| |correct| *3) - (|:| |corrfact| (-644 (-1171 *3))))) - (-5 *1 (-625 *8 *9 *3 *10)) (-5 *4 (-644 (-1171 *3)))))) -(((*1 *2 *3 *4 *5 *5 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *3 (-952 *6)) (-5 *4 (-1175)) - (-5 *5 (-843 *7)) - (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) - (-4 *7 (-13 (-1199) (-29 *6))) (-5 *1 (-224 *6 *7)))) - ((*1 *2 *3 *4 *4 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1171 *6)) (-5 *4 (-843 *6)) - (-4 *6 (-13 (-1199) (-29 *5))) - (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) - (-5 *1 (-224 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-1099)) (-5 *2 (-771))))) -(((*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1264 *1)) (-4 *1 (-369 *3))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)) (-5 *3 (-566))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1103)) (-5 *3 (-774)) (-5 *1 (-52))))) -(((*1 *2 *1) - (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1004 *3)) (-14 *3 (-566))))) -(((*1 *2 *3 *4 *3 *3) - (-12 (-5 *3 (-295 *6)) (-5 *4 (-114)) (-4 *6 (-432 *5)) - (-4 *5 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) - (-5 *1 (-318 *5 *6)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-295 *7)) (-5 *4 (-114)) (-5 *5 (-644 *7)) - (-4 *7 (-432 *6)) (-4 *6 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) - (-5 *1 (-318 *6 *7)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-644 (-295 *7))) (-5 *4 (-644 (-114))) (-5 *5 (-295 *7)) - (-4 *7 (-432 *6)) (-4 *6 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) - (-5 *1 (-318 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-644 (-295 *8))) (-5 *4 (-644 (-114))) (-5 *5 (-295 *8)) - (-5 *6 (-644 *8)) (-4 *8 (-432 *7)) - (-4 *7 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) - (-5 *1 (-318 *7 *8)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-644 *7)) (-5 *4 (-644 (-114))) (-5 *5 (-295 *7)) - (-4 *7 (-432 *6)) (-4 *6 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) - (-5 *1 (-318 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 (-114))) (-5 *6 (-644 (-295 *8))) - (-4 *8 (-432 *7)) (-5 *5 (-295 *8)) - (-4 *7 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) - (-5 *1 (-318 *7 *8)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-295 *5)) (-5 *4 (-114)) (-4 *5 (-432 *6)) - (-4 *6 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) - (-5 *1 (-318 *6 *5)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-4 *3 (-432 *6)) - (-4 *6 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) - (-5 *1 (-318 *6 *3)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-4 *3 (-432 *6)) - (-4 *6 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) - (-5 *1 (-318 *6 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-5 *6 (-644 *3)) - (-4 *3 (-432 *7)) (-4 *7 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) - (-5 *1 (-318 *7 *3))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-1247 *3 *2)) (-4 *3 (-1049)) - (-4 *2 (-1224 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1059)))) - ((*1 *1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) - (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) - ((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)) (-4 *2 (-1059)))) - ((*1 *1 *1) (-4 *1 (-848))) - ((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)) (-4 *2 (-1059)))) - ((*1 *1 *1) (-4 *1 (-1059))) ((*1 *1 *1) (-4 *1 (-1138)))) -(((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1002))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1255 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1226 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1224 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1247 *3 *4)) (-4 *5 (-983 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-332 *2)) (-4 *2 (-850)))) - ((*1 *1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) - (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) - (-5 *1 (-1160 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) - (-5 *1 (-1161 *3)))) - ((*1 *1 *1) (-4 *1 (-1202)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436))))) -(((*1 *2 *3) - (-12 (-4 *1 (-800)) - (-5 *3 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) - (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *2 (-1035))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)) (-5 *3 (-566))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1155 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1049)) - (-5 *3 (-409 (-566))) (-5 *1 (-1159 *4))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) - (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) - (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) - (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-76 G JACOBG JACGEP)))) - (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-749))))) -(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-409 (-566))) (-5 *1 (-306))))) -(((*1 *2 *3) - (-12 (-5 *3 (-644 *7)) (-4 *7 (-949 *4 *6 *5)) - (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) - (-4 *6 (-793)) (-5 *2 (-112)) (-5 *1 (-924 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-644 (-952 *4))) (-4 *4 (-13 (-308) (-147))) - (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-112)) - (-5 *1 (-924 *4 *5 *6 *7)) (-4 *7 (-949 *4 *6 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1049)) - (-4 *2 (-13 (-406) (-1038 *4) (-365) (-1199) (-285))) - (-5 *1 (-445 *4 *3 *2)) (-4 *3 (-1240 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-255 *3)) (-4 *3 (-1214)) (-5 *2 (-771)))) - ((*1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-771)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1049)) - (-4 *2 (-13 (-406) (-1038 *4) (-365) (-1199) (-285))) - (-5 *1 (-445 *4 *3 *2)) (-4 *3 (-1240 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-612 *3)) (-4 *3 (-1099)))) - ((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) - ((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-862))))) -(((*1 *1 *1) (-5 *1 (-1062)))) + (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) + (|:| |expense| (-381)) (|:| |accuracy| (-381)) + (|:| |intermediateResults| (-381)))) + (-5 *1 (-803))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 + (-5 *3 + (-1 (-3 (-2 (|:| -1641 *4) (|:| |coeff| *4)) "failed") *4)) + (-4 *4 (-365)) (-5 *1 (-576 *4 *2)) (-4 *2 (-1240 *4))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-420 *3)) (-4 *3 (-558))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-644 (-689 *5))) (-4 *5 (-308)) (-4 *5 (-1049)) - (-5 *2 (-1264 (-1264 *5))) (-5 *1 (-1029 *5)) (-5 *4 (-1264 *5))))) -(((*1 *1 *1) (-4 *1 (-629))) - ((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-630 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1002) (-1199)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *2)) (-4 *2 (-172)))) - ((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-418 *3 *2)) (-4 *3 (-419 *2)))) - ((*1 *2) (-12 (-4 *1 (-419 *2)) (-4 *2 (-172))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-317 (-566))) (|:| -2371 (-317 (-381))) - (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174)))) - (-5 *1 (-1174))))) + (-12 (-5 *3 (-644 (-1 (-112) *8))) (-4 *8 (-1064 *5 *6 *7)) + (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850)) + (-5 *2 (-2 (|:| |goodPols| (-644 *8)) (|:| |badPols| (-644 *8)))) + (-5 *1 (-977 *5 *6 *7 *8)) (-5 *4 (-644 *8))))) +(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-874))))) +(((*1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-129))))) (((*1 *2 *3) - (-12 (-5 *3 (-819 *4)) (-4 *4 (-850)) (-5 *2 (-112)) - (-5 *1 (-672 *4))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-644 *6)) (-4 *6 (-850)) (-4 *4 (-365)) (-4 *5 (-793)) - (-5 *1 (-506 *4 *5 *6 *2)) (-4 *2 (-949 *4 *5 *6)))) - ((*1 *1 *1 *2) - (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) - (-5 *1 (-506 *3 *4 *5 *2)) (-4 *2 (-949 *3 *4 *5))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1171 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1175)) - (-4 *5 (-13 (-558) (-1038 (-566)) (-639 (-566)))) - (-5 *2 - (-2 (|:| |func| *3) (|:| |kers| (-644 (-612 *3))) - (|:| |vals| (-644 *3)))) - (-5 *1 (-278 *5 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1002)))))) -(((*1 *1 *2 *3 *3 *4 *5) - (-12 (-5 *2 (-644 (-644 (-943 (-225))))) (-5 *3 (-644 (-874))) - (-5 *4 (-644 (-921))) (-5 *5 (-644 (-264))) (-5 *1 (-470)))) - ((*1 *1 *2 *3 *3 *4) - (-12 (-5 *2 (-644 (-644 (-943 (-225))))) (-5 *3 (-644 (-874))) - (-5 *4 (-644 (-921))) (-5 *1 (-470)))) - ((*1 *1 *2) (-12 (-5 *2 (-644 (-644 (-943 (-225))))) (-5 *1 (-470)))) - ((*1 *1 *1) (-5 *1 (-470)))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-644 *5)) (-4 *5 (-1240 *3)) (-4 *3 (-308)) - (-5 *2 (-112)) (-5 *1 (-457 *3 *5))))) -(((*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-759))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-889 *5 *3)) (-5 *4 (-892 *5)) (-4 *5 (-1099)) - (-4 *3 (-166 *6)) (-4 (-952 *6) (-886 *5)) - (-4 *6 (-13 (-886 *5) (-172))) (-5 *1 (-178 *5 *6 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-889 *4 *1)) (-5 *3 (-892 *4)) (-4 *1 (-886 *4)) - (-4 *4 (-1099)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-889 *5 *6)) (-5 *4 (-892 *5)) (-4 *5 (-1099)) - (-4 *6 (-13 (-1099) (-1038 *3))) (-4 *3 (-886 *5)) - (-5 *1 (-931 *5 *3 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-889 *5 *3)) (-4 *5 (-1099)) - (-4 *3 (-13 (-432 *6) (-614 *4) (-886 *5) (-1038 (-612 $)))) - (-5 *4 (-892 *5)) (-4 *6 (-13 (-558) (-886 *5))) - (-5 *1 (-932 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-889 (-566) *3)) (-5 *4 (-892 (-566))) (-4 *3 (-547)) - (-5 *1 (-933 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-889 *5 *6)) (-5 *3 (-612 *6)) (-4 *5 (-1099)) - (-4 *6 (-13 (-1099) (-1038 (-612 $)) (-614 *4) (-886 *5))) - (-5 *4 (-892 *5)) (-5 *1 (-934 *5 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-885 *5 *6 *3)) (-5 *4 (-892 *5)) (-4 *5 (-1099)) - (-4 *6 (-886 *5)) (-4 *3 (-666 *6)) (-5 *1 (-935 *5 *6 *3)))) - ((*1 *2 *3 *4 *2 *5) - (-12 (-5 *5 (-1 (-889 *6 *3) *8 (-892 *6) (-889 *6 *3))) - (-4 *8 (-850)) (-5 *2 (-889 *6 *3)) (-5 *4 (-892 *6)) - (-4 *6 (-1099)) (-4 *3 (-13 (-949 *9 *7 *8) (-614 *4))) - (-4 *7 (-793)) (-4 *9 (-13 (-1049) (-886 *6))) - (-5 *1 (-936 *6 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-889 *5 *3)) (-4 *5 (-1099)) - (-4 *3 (-13 (-949 *8 *6 *7) (-614 *4))) (-5 *4 (-892 *5)) - (-4 *7 (-886 *5)) (-4 *6 (-793)) (-4 *7 (-850)) - (-4 *8 (-13 (-1049) (-886 *5))) (-5 *1 (-936 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-889 *5 *3)) (-4 *5 (-1099)) (-4 *3 (-992 *6)) - (-4 *6 (-13 (-558) (-886 *5) (-614 *4))) (-5 *4 (-892 *5)) - (-5 *1 (-939 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-889 *5 (-1175))) (-5 *3 (-1175)) (-5 *4 (-892 *5)) - (-4 *5 (-1099)) (-5 *1 (-940 *5)))) - ((*1 *2 *3 *4 *5 *2 *6) - (-12 (-5 *4 (-644 (-892 *7))) (-5 *5 (-1 *9 (-644 *9))) - (-5 *6 (-1 (-889 *7 *9) *9 (-892 *7) (-889 *7 *9))) (-4 *7 (-1099)) - (-4 *9 (-13 (-1049) (-614 (-892 *7)) (-1038 *8))) - (-5 *2 (-889 *7 *9)) (-5 *3 (-644 *9)) (-4 *8 (-1049)) - (-5 *1 (-941 *7 *8 *9))))) -(((*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-225)) (-5 *1 (-306))))) -(((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1207 *3 *4 *5 *2)) (-4 *3 (-558)) - (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-892 *4)) (-4 *4 (-1099)) (-5 *2 (-1 (-112) *5)) + (-5 *1 (-890 *4 *5)) (-4 *5 (-1214)))) + ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1165))))) +(((*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1157)) (-5 *1 (-786))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850)) (-4 *2 (-454))))) +(((*1 *1 *1) (-5 *1 (-1062)))) +(((*1 *2 *3 *3) + (-12 (-4 *3 (-308)) (-4 *3 (-172)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *2 (-2 (|:| -2631 *3) (|:| -3264 *3))) + (-5 *1 (-688 *3 *4 *5 *6)) (-4 *6 (-687 *3 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-2 (|:| -2631 *3) (|:| -3264 *3))) (-5 *1 (-700 *3)) + (-4 *3 (-308))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 - (-2 (|:| -2233 *4) (|:| -1465 *4) (|:| |totalpts| (-566)) + (-2 (|:| -2876 *4) (|:| -1425 *4) (|:| |totalpts| (-566)) (|:| |success| (-112)))) (-5 *1 (-789)) (-5 *5 (-566))))) -(((*1 *2 *3 *3 *2) - (|partial| -12 (-5 *2 (-771)) - (-4 *3 (-13 (-726) (-370) (-10 -7 (-15 ** (*3 *3 (-566)))))) - (-5 *1 (-246 *3))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1175)) - (-5 *2 (-3 (|:| |fst| (-436)) (|:| -2895 "void"))) (-5 *1 (-1178))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-365)) (-4 *6 (-1240 (-409 *2))) - (-4 *2 (-1240 *5)) (-5 *1 (-215 *5 *2 *6 *3)) - (-4 *3 (-344 *5 *2 *6))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-409 *5)) (-4 *4 (-1218)) (-4 *5 (-1240 *4)) - (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1240 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1177 (-409 (-566)))) (-5 *2 (-409 (-566))) - (-5 *1 (-190)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-689 (-317 (-225)))) (-5 *3 (-644 (-1175))) - (-5 *4 (-1264 (-317 (-225)))) (-5 *1 (-205)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-644 (-295 *3))) (-4 *3 (-310 *3)) (-4 *3 (-1099)) - (-4 *3 (-1214)) (-5 *1 (-295 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-310 *2)) (-4 *2 (-1099)) (-4 *2 (-1214)) - (-5 *1 (-295 *2)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-303)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-644 *1))) (-4 *1 (-303)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-644 (-114))) (-5 *3 (-644 (-1 *1 (-644 *1)))) - (-4 *1 (-303)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-644 (-114))) (-5 *3 (-644 (-1 *1 *1))) (-4 *1 (-303)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1175)) (-5 *3 (-1 *1 *1)) (-4 *1 (-303)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1175)) (-5 *3 (-1 *1 (-644 *1))) (-4 *1 (-303)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-644 (-1175))) (-5 *3 (-644 (-1 *1 (-644 *1)))) - (-4 *1 (-303)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-644 (-1175))) (-5 *3 (-644 (-1 *1 *1))) (-4 *1 (-303)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-644 (-295 *3))) (-4 *1 (-310 *3)) (-4 *3 (-1099)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-295 *3)) (-4 *1 (-310 *3)) (-4 *3 (-1099)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-566))) (-5 *4 (-1177 (-409 (-566)))) - (-5 *1 (-311 *2)) (-4 *2 (-38 (-409 (-566)))))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-644 *4)) (-5 *3 (-644 *1)) (-4 *1 (-376 *4 *5)) - (-4 *4 (-850)) (-4 *5 (-172)))) - ((*1 *1 *1 *2 *1) - (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-850)) (-4 *3 (-172)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1175)) (-5 *3 (-771)) (-5 *4 (-1 *1 *1)) - (-4 *1 (-432 *5)) (-4 *5 (-1099)) (-4 *5 (-1049)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1175)) (-5 *3 (-771)) (-5 *4 (-1 *1 (-644 *1))) - (-4 *1 (-432 *5)) (-4 *5 (-1099)) (-4 *5 (-1049)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-644 (-1175))) (-5 *3 (-644 (-771))) - (-5 *4 (-644 (-1 *1 (-644 *1)))) (-4 *1 (-432 *5)) (-4 *5 (-1099)) - (-4 *5 (-1049)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-644 (-1175))) (-5 *3 (-644 (-771))) - (-5 *4 (-644 (-1 *1 *1))) (-4 *1 (-432 *5)) (-4 *5 (-1099)) - (-4 *5 (-1049)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-644 (-114))) (-5 *3 (-644 *1)) (-5 *4 (-1175)) - (-4 *1 (-432 *5)) (-4 *5 (-1099)) (-4 *5 (-614 (-538))))) - ((*1 *1 *1 *2 *1 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1175)) (-4 *1 (-432 *4)) (-4 *4 (-1099)) - (-4 *4 (-614 (-538))))) - ((*1 *1 *1) - (-12 (-4 *1 (-432 *2)) (-4 *2 (-1099)) (-4 *2 (-614 (-538))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-644 (-1175))) (-4 *1 (-432 *3)) (-4 *3 (-1099)) - (-4 *3 (-614 (-538))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1175)) (-4 *1 (-432 *3)) (-4 *3 (-1099)) - (-4 *3 (-614 (-538))))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-516 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1214)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-644 *4)) (-5 *3 (-644 *5)) (-4 *1 (-516 *4 *5)) - (-4 *4 (-1099)) (-4 *5 (-1214)))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-833 *3)) (-4 *3 (-365)) (-5 *1 (-718 *3)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-903 *2)) (-4 *2 (-1099)))) - ((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-409 (-952 *4))) (-5 *3 (-1175)) (-4 *4 (-558)) - (-5 *1 (-1043 *4)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-644 (-1175))) (-5 *4 (-644 (-409 (-952 *5)))) - (-5 *2 (-409 (-952 *5))) (-4 *5 (-558)) (-5 *1 (-1043 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-295 (-409 (-952 *4)))) (-5 *2 (-409 (-952 *4))) - (-4 *4 (-558)) (-5 *1 (-1043 *4)))) +(((*1 *1) (-5 *1 (-292)))) +(((*1 *1 *1) (-12 (-4 *1 (-674 *2)) (-4 *2 (-1214))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-644 *3)) (-4 *3 (-308)) (-5 *1 (-179 *3))))) +(((*1 *2 *3 *4 *5 *4 *4 *4) + (-12 (-4 *6 (-850)) (-5 *3 (-644 *6)) (-5 *5 (-644 *3)) + (-5 *2 + (-2 (|:| |f1| *3) (|:| |f2| (-644 *5)) (|:| |f3| *5) + (|:| |f4| (-644 *5)))) + (-5 *1 (-1185 *6)) (-5 *4 (-644 *5))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1040)) (-5 *3 (-381))))) +(((*1 *2 *2) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) + (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 *3)) + (-5 *1 (-977 *4 *5 *6 *3)) (-4 *3 (-1064 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-644 (-295 (-409 (-952 *4))))) (-5 *2 (-409 (-952 *4))) - (-4 *4 (-558)) (-5 *1 (-1043 *4)))) + (-12 (-5 *2 (-644 *3)) (-4 *3 (-1064 *4 *5 *6)) (-4 *4 (-558)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-977 *4 *5 *6 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) + (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 (-644 *7) (-644 *7))) (-5 *2 (-644 *7)) + (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-558)) (-4 *5 (-793)) + (-4 *6 (-850)) (-5 *1 (-977 *4 *5 *6 *7))))) +(((*1 *1) (-5 *1 (-141)))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1157)) (-4 *1 (-366 *3 *4)) (-4 *3 (-1099)) + (-4 *4 (-1099))))) +(((*1 *2 *2) (-12 (-5 *2 (-1171 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-644 *1)) (-4 *1 (-1064 *4 *5 *6)) (-4 *4 (-1049)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *5 (-850)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) + (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1207 *4 *5 *6 *3)) (-4 *4 (-558)) (-4 *5 (-793)) + (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-5 *2 (-644 (-952 *3))) (-4 *3 (-454)) (-5 *1 (-362 *3 *4)) + (-14 *4 (-644 (-1175))))) + ((*1 *2 *2) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-454)) + (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-452 *3 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1242 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)) - (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1155 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) - (-4 *4 (-1049))))) -(((*1 *2 *1) - (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1004 *3)) (-14 *3 (-566))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1175)) - (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) - (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1199) (-432 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) - (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-409 (-566))) - (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) - (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5))) - (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) - (-5 *1 (-316 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-295 *3)) (-5 *5 (-409 (-566))) - (-4 *3 (-13 (-27) (-1199) (-432 *6))) - (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) - (-5 *1 (-316 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-566))) (-5 *4 (-295 *6)) - (-4 *6 (-13 (-27) (-1199) (-432 *5))) - (-4 *5 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) - (-5 *1 (-461 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1175)) (-5 *5 (-295 *3)) - (-4 *3 (-13 (-27) (-1199) (-432 *6))) - (-4 *6 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) - (-5 *1 (-461 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-566))) (-5 *4 (-295 *7)) (-5 *5 (-1231 (-566))) - (-4 *7 (-13 (-27) (-1199) (-432 *6))) - (-4 *6 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) - (-5 *1 (-461 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1175)) (-5 *5 (-295 *3)) (-5 *6 (-1231 (-566))) - (-4 *3 (-13 (-27) (-1199) (-432 *7))) - (-4 *7 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) - (-5 *1 (-461 *7 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-409 (-566)))) (-5 *4 (-295 *8)) - (-5 *5 (-1231 (-409 (-566)))) (-5 *6 (-409 (-566))) - (-4 *8 (-13 (-27) (-1199) (-432 *7))) - (-4 *7 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) - (-5 *1 (-461 *7 *8)))) - ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1175)) (-5 *5 (-295 *3)) (-5 *6 (-1231 (-409 (-566)))) - (-5 *7 (-409 (-566))) (-4 *3 (-13 (-27) (-1199) (-432 *8))) - (-4 *8 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) - (-5 *1 (-461 *8 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1155 (-2 (|:| |k| (-566)) (|:| |c| *3)))) - (-4 *3 (-1049)) (-5 *1 (-596 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-597 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1155 (-2 (|:| |k| (-566)) (|:| |c| *3)))) - (-4 *3 (-1049)) (-4 *1 (-1224 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-771)) - (-5 *3 (-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| *4)))) - (-4 *4 (-1049)) (-4 *1 (-1245 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-4 *1 (-1255 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1155 (-2 (|:| |k| (-771)) (|:| |c| *3)))) - (-4 *3 (-1049)) (-4 *1 (-1255 *3))))) + (-12 (-5 *2 (-644 *7)) (-5 *3 (-1157)) (-4 *7 (-949 *4 *5 *6)) + (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-5 *1 (-452 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-644 *7)) (-5 *3 (-1157)) (-4 *7 (-949 *4 *5 *6)) + (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-5 *1 (-452 *4 *5 *6 *7)))) + ((*1 *1 *1) + (-12 (-4 *2 (-365)) (-4 *3 (-793)) (-4 *4 (-850)) + (-5 *1 (-506 *2 *3 *4 *5)) (-4 *5 (-949 *2 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-644 (-780 *3 (-864 *4)))) (-4 *3 (-454)) + (-14 *4 (-644 (-1175))) (-5 *1 (-628 *3 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1157)) (-5 *2 (-644 (-1180))) (-5 *1 (-1135))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-644 (-508))) (-5 *2 (-508)) (-5 *1 (-485))))) + (-12 (-5 *3 (-952 *5)) (-4 *5 (-1049)) (-5 *2 (-247 *4 *5)) + (-5 *1 (-944 *4 *5)) (-14 *4 (-644 (-1175)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-689 *6)) (-5 *5 (-1 (-420 (-1171 *6)) (-1171 *6))) + (-4 *6 (-365)) + (-5 *2 + (-644 + (-2 (|:| |outval| *7) (|:| |outmult| (-566)) + (|:| |outvect| (-644 (-689 *7)))))) + (-5 *1 (-534 *6 *7 *4)) (-4 *7 (-365)) (-4 *4 (-13 (-365) (-848)))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-396)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1194))))) (((*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *2 *1) (-12 (-4 *1 (-511 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-850))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1049)) (-4 *2 (-687 *4 *5 *6)) - (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1240 *4)) (-4 *5 (-375 *4)) - (-4 *6 (-375 *4))))) + (-12 (-5 *3 (-1237 *5 *4)) (-4 *4 (-820)) (-14 *5 (-1175)) + (-5 *2 (-644 *4)) (-5 *1 (-1113 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) + (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1093 (-843 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1093 (-843 (-225)))) (-5 *2 (-225)) (-5 *1 (-301)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1093 (-843 (-225)))) (-5 *2 (-225)) (-5 *1 (-306))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1264 *4)) (-4 *4 (-639 (-566))) - (-5 *2 (-1264 (-409 (-566)))) (-5 *1 (-1291 *4))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-856 *2)) (-4 *2 (-172)))) - ((*1 *2 *3 *3 *2) - (-12 (-5 *3 (-771)) (-5 *1 (-856 *2)) (-4 *2 (-172))))) -(((*1 *2 *3) (-12 (-5 *3 (-841)) (-5 *2 (-1035)) (-5 *1 (-840)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-644 (-317 (-381)))) (-5 *4 (-644 (-381))) - (-5 *2 (-1035)) (-5 *1 (-840))))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-850)) - (-5 *2 (-2 (|:| -2275 *1) (|:| -2513 *1))) (-4 *1 (-949 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1049)) (-5 *2 (-2 (|:| -2275 *1) (|:| -2513 *1))) - (-4 *1 (-1240 *3))))) + (-12 (-5 *3 (-409 (-566))) (-5 *4 (-566)) (-5 *2 (-52)) + (-5 *1 (-1005))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *2 (-566)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-566))))) (((*1 *2 *3) - (-12 (-5 *2 (-644 (-1171 (-566)))) (-5 *1 (-191)) (-5 *3 (-566))))) -(((*1 *1 *1) - (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) -(((*1 *1 *1) - (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) -(((*1 *1 *1) (-4 *1 (-629))) - ((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-630 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1002) (-1199)))))) -(((*1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-134))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1049))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) -(((*1 *1) (-5 *1 (-823)))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-4 *4 (-454)) (-4 *3 (-793)) (-4 *5 (-850)) (-5 *2 (-112)) - (-5 *1 (-451 *4 *3 *5 *6)) (-4 *6 (-949 *4 *3 *5))))) + (-12 + (-5 *3 + (-644 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566)))))) + (-5 *2 (-644 (-225))) (-5 *1 (-306))))) (((*1 *1 *2) - (-12 (-5 *2 (-317 *3)) (-4 *3 (-13 (-1049) (-850))) - (-5 *1 (-223 *3 *4)) (-14 *4 (-644 (-1175)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-1175))))) -(((*1 *1 *1) - (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4414)) (-4 *1 (-151 *2)) (-4 *2 (-1214)) - (-4 *2 (-1099))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-566)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-308)) - (-4 *9 (-949 *8 *6 *7)) - (-5 *2 (-2 (|:| -2495 (-1171 *9)) (|:| |polval| (-1171 *8)))) - (-5 *1 (-742 *6 *7 *8 *9)) (-5 *3 (-1171 *9)) (-5 *4 (-1171 *8))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1157)) (-4 *1 (-391))))) + (-12 (-5 *2 (-644 *1)) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) + ((*1 *2 *2 *1) + (|partial| -12 (-5 *2 (-409 *1)) (-4 *1 (-1240 *3)) (-4 *3 (-1049)) + (-4 *3 (-558)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-1240 *2)) (-4 *2 (-1049)) (-4 *2 (-558))))) (((*1 *2 *1) - (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) - (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-4 *5 (-370)) - (-5 *2 (-771))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-824)) (-5 *3 (-644 (-1175))) (-5 *1 (-825))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-644 *6)) (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) - (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) - (-4 *3 (-558))))) -(((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-905 *3)) (-4 *3 (-1099))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-13 (-365) (-147) (-1038 (-566)))) - (-4 *5 (-1240 *4)) - (-5 *2 (-2 (|:| -2346 (-409 *5)) (|:| |coeff| (-409 *5)))) - (-5 *1 (-570 *4 *5)) (-5 *3 (-409 *5))))) -(((*1 *1 *1) (-12 (-4 *1 (-432 *2)) (-4 *2 (-1099)) (-4 *2 (-558)))) - ((*1 *1 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558))))) -(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-647 *2)) (-4 *2 (-1099))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-317 (-225))) (-5 *1 (-306)))) - ((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| |num| (-892 *3)) (|:| |den| (-892 *3)))) - (-5 *1 (-892 *3)) (-4 *3 (-1099))))) -(((*1 *1 *1) - (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-612 *3)) (-5 *5 (-1 (-1171 *3) (-1171 *3))) - (-4 *3 (-13 (-27) (-432 *6))) (-4 *6 (-558)) (-5 *2 (-587 *3)) - (-5 *1 (-553 *6 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-399))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-943 (-225))) (-5 *4 (-874)) (-5 *2 (-1269)) - (-5 *1 (-470)))) - ((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1049)) (-4 *1 (-980 *3)))) + (-12 (-4 *1 (-556 *3)) (-4 *3 (-13 (-406) (-1199))) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-848)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1067 *4 *3)) (-4 *4 (-13 (-848) (-365))) + (-4 *3 (-1240 *4)) (-5 *2 (-112))))) +(((*1 *1 *1 *1) (-4 *1 (-475))) ((*1 *1 *1 *1) (-4 *1 (-761)))) +(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) + (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) + (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-67 DOT)))) + (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-225)) + (-5 *2 (-1035)) (-5 *1 (-755)))) + ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) + (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) + (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-67 DOT)))) + (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-390)) + (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-755))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-644 *3)) (-4 *3 (-308)) (-5 *1 (-179 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *2 (-169 (-317 *4))) + (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 (-169 *4)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) + (-5 *2 (-169 *3)) (-5 *1 (-1203 *4 *3)) + (-4 *3 (-13 (-27) (-1199) (-432 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1175))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-771)) (-4 *6 (-1099)) (-4 *3 (-900 *6)) + (-5 *2 (-689 *3)) (-5 *1 (-692 *6 *3 *7 *4)) (-4 *7 (-375 *3)) + (-4 *4 (-13 (-375 *6) (-10 -7 (-6 -4414))))))) +(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266)))) + ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1049)) (-5 *2 (-112)) (-5 *1 (-446 *4 *3)) + (-4 *3 (-1240 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-943 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-943 *3)) (-4 *3 (-1049)) (-4 *1 (-1133 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-771)) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-644 *3)) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-943 *3)) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) - ((*1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-943 (-225))) (-5 *1 (-1210)) (-5 *3 (-225))))) + (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *5 (-850)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-344 *4 *5 *6)) (-4 *4 (-1218)) - (-4 *5 (-1240 *4)) (-4 *6 (-1240 (-409 *5))) - (-5 *2 (-2 (|:| |num| (-689 *5)) (|:| |den| *5)))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-690 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1240 *4)) (-4 *4 (-1218)) - (-4 *6 (-1240 (-409 *5))) - (-5 *2 - (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) - (|:| |gd| *5))) - (-4 *1 (-344 *4 *5 *6))))) + (-12 (-4 *3 (-1240 (-409 (-566)))) + (-5 *2 (-2 (|:| |den| (-566)) (|:| |gcdnum| (-566)))) + (-5 *1 (-913 *3 *4)) (-4 *4 (-1240 (-409 *3))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1240 (-409 *2))) (-5 *2 (-566)) (-5 *1 (-913 *4 *3)) + (-4 *3 (-1240 (-409 *4)))))) +(((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-943 (-225))) (-5 *4 (-874)) (-5 *5 (-921)) + (-5 *2 (-1269)) (-5 *1 (-470)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-943 (-225))) (-5 *2 (-1269)) (-5 *1 (-470)))) + ((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-644 (-943 (-225)))) (-5 *4 (-874)) (-5 *5 (-921)) + (-5 *2 (-1269)) (-5 *1 (-470))))) +(((*1 *2 *3) + (-12 (-5 *3 (-819 *4)) (-4 *4 (-850)) (-5 *2 (-112)) + (-5 *1 (-672 *4))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-644 (-317 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) + (-5 *1 (-210))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1097 *3)) (-4 *3 (-1099)) (-5 *2 (-112))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-558)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) + (-5 *2 (-644 *1)) (-4 *1 (-1064 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |var| (-644 (-1175))) (|:| |pred| (-52)))) - (-5 *1 (-892 *3)) (-4 *3 (-1099))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-689 (-409 (-566)))) (-5 *2 (-644 *4)) (-5 *1 (-779 *4)) - (-4 *4 (-13 (-365) (-848)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-332 *3)) (-4 *3 (-850))))) -(((*1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-850)))) - ((*1 *1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) - ((*1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-850)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1207 *2 *3 *4 *5)) (-4 *2 (-558)) - (-4 *3 (-793)) (-4 *4 (-850)) (-4 *5 (-1064 *2 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-771)) (-4 *1 (-1252 *3)) (-4 *3 (-1214)))) - ((*1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214))))) + (-12 (-4 *1 (-1240 *3)) (-4 *3 (-1049)) (-5 *2 (-1171 *3))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) + (-4 *3 (-369 *4)))) + ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-317 *3)) (-4 *3 (-558)) (-4 *3 (-1099))))) -(((*1 *2 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1214))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1175)) - (-4 *5 (-13 (-454) (-147) (-1038 (-566)) (-639 (-566)))) - (-5 *2 (-2 (|:| -2346 *3) (|:| |coeff| *3))) (-5 *1 (-559 *5 *3)) - (-4 *3 (-13 (-27) (-1199) (-432 *5)))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2)) - (-4 *2 (-1214))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1175)) - (-4 *5 (-13 (-1038 (-566)) (-454) (-639 (-566)))) - (-5 *2 (-2 (|:| -2465 *3) (|:| |nconst| *3))) (-5 *1 (-569 *5 *3)) - (-4 *3 (-13 (-27) (-1199) (-432 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-470)))) - ((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-1265)))) - ((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-1266))))) -(((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-225)) (-5 *1 (-306))))) -(((*1 *2 *3) - (-12 (-5 *3 (-644 *2)) (-4 *2 (-432 *4)) (-5 *1 (-158 *4 *2)) - (-4 *4 (-558))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1171 *9)) (-5 *4 (-644 *7)) (-4 *7 (-850)) - (-4 *9 (-949 *8 *6 *7)) (-4 *6 (-793)) (-4 *8 (-308)) - (-5 *2 (-644 (-771))) (-5 *1 (-742 *6 *7 *8 *9)) (-5 *5 (-771))))) + (|partial| -12 (-5 *2 (-1175)) (-5 *1 (-612 *3)) (-4 *3 (-1099))))) +(((*1 *2 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) + (-5 *1 (-1127 *3 *2)) (-4 *3 (-1240 *2))))) (((*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-644 *2)) (-4 *2 (-1214)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-1155 *2)) (-4 *2 (-1214))))) (((*1 *2 *1) - (-12 (-4 *1 (-604 *3 *2)) (-4 *3 (-1099)) (-4 *3 (-850)) - (-4 *2 (-1214)))) - ((*1 *2 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-850)))) - ((*1 *2 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1214)) (-5 *1 (-873 *2 *3)) (-4 *3 (-1214)))) - ((*1 *2 *1) (-12 (-5 *2 (-672 *3)) (-5 *1 (-893 *3)) (-4 *3 (-850)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1207 *3 *4 *5 *2)) (-4 *3 (-558)) - (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-771)) (-4 *1 (-1252 *3)) (-4 *3 (-1214)))) - ((*1 *2 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-833 *3)) (-4 *3 (-1099)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-1099))))) -(((*1 *2) - (-12 (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-909)) - (-5 *1 (-459 *3 *4 *2 *5)) (-4 *5 (-949 *2 *3 *4)))) - ((*1 *2) - (-12 (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-909)) - (-5 *1 (-906 *2 *3 *4 *5)) (-4 *5 (-949 *2 *3 *4)))) - ((*1 *2) (-12 (-4 *2 (-909)) (-5 *1 (-907 *2 *3)) (-4 *3 (-1240 *2))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1175)) (-5 *5 (-644 *3)) - (-4 *3 (-13 (-27) (-1199) (-432 *6))) - (-4 *6 (-13 (-454) (-147) (-1038 (-566)) (-639 (-566)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-559 *6 *3))))) -(((*1 *1) (-5 *1 (-55)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-454) (-1038 (-566)))) (-4 *3 (-558)) - (-5 *1 (-41 *3 *2)) (-4 *2 (-432 *3)) - (-4 *2 - (-13 (-365) (-303) - (-10 -8 (-15 -4326 ((-1124 *3 (-612 $)) $)) - (-15 -4339 ((-1124 *3 (-612 $)) $)) - (-15 -3783 ($ (-1124 *3 (-612 $)))))))))) -(((*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-691 (-129)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1264 (-644 (-2 (|:| -2233 *4) (|:| -2178 (-1119)))))) - (-4 *4 (-351)) (-5 *2 (-689 *4)) (-5 *1 (-348 *4))))) + (-12 (-4 *2 (-949 *3 *5 *4)) (-5 *1 (-987 *3 *4 *5 *2)) + (-4 *3 (-454)) (-4 *4 (-850)) (-4 *5 (-793))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1194))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-547)))) +(((*1 *1 *1) (-5 *1 (-1062)))) (((*1 *2 *3) - (-12 (-5 *3 (-952 (-566))) (-5 *2 (-644 *1)) (-4 *1 (-1012)))) - ((*1 *2 *3) - (-12 (-5 *3 (-952 (-409 (-566)))) (-5 *2 (-644 *1)) (-4 *1 (-1012)))) - ((*1 *2 *3) (-12 (-5 *3 (-952 *1)) (-4 *1 (-1012)) (-5 *2 (-644 *1)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1171 (-566))) (-5 *2 (-644 *1)) (-4 *1 (-1012)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1171 (-409 (-566)))) (-5 *2 (-644 *1)) (-4 *1 (-1012)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1171 *1)) (-4 *1 (-1012)) (-5 *2 (-644 *1)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-848) (-365))) (-4 *3 (-1240 *4)) (-5 *2 (-644 *1)) - (-4 *1 (-1067 *4 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-144))))) + (-12 (-5 *3 (-1171 (-566))) (-5 *2 (-566)) (-5 *1 (-942))))) (((*1 *2 *1) - (-12 (-4 *1 (-1240 *3)) (-4 *3 (-1049)) (-5 *2 (-1171 *3))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-771)) (-5 *3 (-943 *5)) (-4 *5 (-1049)) - (-5 *1 (-1163 *4 *5)) (-14 *4 (-921)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-644 (-771))) (-5 *3 (-771)) (-5 *1 (-1163 *4 *5)) - (-14 *4 (-921)) (-4 *5 (-1049)))) + (-12 (-5 *2 (-771)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) + (-4 *4 (-1049))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-547)))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-303)) (-4 *2 (-1214)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-644 (-771))) (-5 *3 (-943 *5)) (-4 *5 (-1049)) - (-5 *1 (-1163 *4 *5)) (-14 *4 (-921))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) - (-5 *1 (-747))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-921)) (-5 *2 (-1171 *3)) (-5 *1 (-1188 *3)) - (-4 *3 (-365))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-558) (-147))) (-5 *1 (-539 *3 *2)) - (-4 *2 (-1255 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-365) (-370) (-614 (-566)))) (-4 *4 (-1240 *3)) - (-4 *5 (-724 *3 *4)) (-5 *1 (-543 *3 *4 *5 *2)) (-4 *2 (-1255 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-365) (-370) (-614 (-566)))) (-5 *1 (-544 *3 *2)) - (-4 *2 (-1255 *3)))) + (-12 (-5 *2 (-644 (-612 *1))) (-5 *3 (-644 *1)) (-4 *1 (-303)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-295 *1))) (-4 *1 (-303)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-295 *1)) (-4 *1 (-303))))) +(((*1 *1 *1) (-4 *1 (-143))) ((*1 *2 *2) - (-12 (-5 *2 (-1155 *3)) (-4 *3 (-13 (-558) (-147))) - (-5 *1 (-1151 *3))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) - (-4 *7 (-1064 *4 *5 *6)) - (-5 *2 (-2 (|:| |bas| (-478 *4 *5 *6 *7)) (|:| -1825 (-644 *7)))) - (-5 *1 (-977 *4 *5 *6 *7)) (-5 *3 (-644 *7))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1099)))) - ((*1 *1 *2) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1099))))) + (-12 (-4 *3 (-558)) (-5 *1 (-158 *3 *2)) (-4 *2 (-432 *3)))) + ((*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-547))))) +(((*1 *1) (-5 *1 (-439)))) +(((*1 *2 *1) + (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)) + (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1099)) + (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-596 *3)) (-4 *3 (-1049)))) + ((*1 *2 *1) + (-12 (-4 *3 (-558)) (-5 *2 (-112)) (-5 *1 (-623 *3 *4)) + (-4 *4 (-1240 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-735 *3 *4)) (-4 *3 (-1049)) + (-4 *4 (-726)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) + (-5 *2 (-112))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-1099)) (-4 *2 (-900 *4)) (-5 *1 (-692 *4 *2 *5 *3)) - (-4 *5 (-375 *2)) (-4 *3 (-13 (-375 *4) (-10 -7 (-6 -4414))))))) -(((*1 *1 *1 *2 *2 *2 *2) + (|partial| -12 (-5 *2 (-644 (-1171 *7))) (-5 *3 (-1171 *7)) + (-4 *7 (-949 *4 *5 *6)) (-4 *4 (-909)) (-4 *5 (-793)) + (-4 *6 (-850)) (-5 *1 (-906 *4 *5 *6 *7)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-644 (-1171 *5))) (-5 *3 (-1171 *5)) + (-4 *5 (-1240 *4)) (-4 *4 (-909)) (-5 *1 (-907 *4 *5))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1157)) (-5 *1 (-710))))) +(((*1 *2 *3) + (-12 (-4 *4 (-850)) + (-5 *2 + (-2 (|:| |f1| (-644 *4)) (|:| |f2| (-644 (-644 (-644 *4)))) + (|:| |f3| (-644 (-644 *4))) (|:| |f4| (-644 (-644 (-644 *4)))))) + (-5 *1 (-1185 *4)) (-5 *3 (-644 (-644 (-644 *4))))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563))))) +(((*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1269)) (-5 *1 (-381)))) + ((*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-381))))) +(((*1 *2 *1) + (-12 (-5 *2 (-644 (-644 (-943 (-225))))) (-5 *1 (-1209 *3)) + (-4 *3 (-974))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -1966 *6) (|:| |sol?| (-112))) (-566) + *6)) + (-4 *6 (-365)) (-4 *7 (-1240 *6)) + (-5 *2 + (-3 (-2 (|:| |answer| (-409 *7)) (|:| |a0| *6)) + (-2 (|:| -1641 (-409 *7)) (|:| |coeff| (-409 *7))) "failed")) + (-5 *1 (-576 *6 *7)) (-5 *3 (-409 *7))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-365)) (-5 *1 (-766 *2 *3)) (-4 *2 (-708 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365))))) +(((*1 *2 *1) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-108)))) + ((*1 *2 *1) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-217)))) + ((*1 *2 *1) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-489)))) + ((*1 *1 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558)) (-4 *2 (-308)))) + ((*1 *2 *1) + (-12 (-5 *2 (-409 (-566))) (-5 *1 (-1004 *3)) (-14 *3 (-566)))) + ((*1 *1 *1) (-4 *1 (-1059)))) +(((*1 *1 *2 *1) + (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-566)) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-644 *3)) (-4 *3 (-1240 *5)) (-4 *5 (-308)) + (-5 *2 (-771)) (-5 *1 (-457 *5 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *2 *3) + (-12 (-4 *4 (-558)) (-5 *2 (-644 *3)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-419 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 (-1155 *4) (-1155 *4))) (-5 *2 (-1155 *4)) + (-5 *1 (-1289 *4)) (-4 *4 (-1214)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-644 (-1155 *5)) (-644 (-1155 *5)))) (-5 *4 (-566)) + (-5 *2 (-644 (-1155 *5))) (-5 *1 (-1289 *5)) (-4 *5 (-1214))))) +(((*1 *2) + (-12 (-5 *2 (-1269)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-1099)) + (-4 *4 (-1099))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1175)) (-4 *4 (-558)) (-5 *1 (-158 *4 *2)) - (-4 *2 (-432 *4)))) + (-12 (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) + (-4 *3 (-1240 *4)) (-5 *1 (-809 *4 *3 *2 *5)) (-4 *2 (-656 *3)) + (-4 *5 (-656 (-409 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1091 *2)) (-4 *2 (-432 *4)) (-4 *4 (-558)) - (-5 *1 (-158 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1091 *1)) (-4 *1 (-160)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1175))))) + (-12 (-5 *3 (-409 *5)) + (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *5 (-1240 *4)) + (-5 *1 (-809 *4 *5 *2 *6)) (-4 *2 (-656 *5)) (-4 *6 (-656 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-850))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-943 *4)) (-4 *4 (-1049)) (-5 *1 (-1163 *3 *4)) + (-14 *3 (-921))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) + (-12 (-5 *4 (-689 (-566))) (-5 *5 (-112)) (-5 *7 (-689 (-225))) + (-5 *3 (-566)) (-5 *6 (-225)) (-5 *2 (-1035)) (-5 *1 (-754))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-566)) (-5 *2 (-644 (-2 (|:| -1624 *3) (|:| -3902 *4)))) + (-5 *1 (-696 *3)) (-4 *3 (-1240 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| -4237 (-644 (-862))) (|:| -3920 (-644 (-862))) + (|:| |presup| (-644 (-862))) (|:| -4168 (-644 (-862))) + (|:| |args| (-644 (-862))))) + (-5 *1 (-1175)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-644 (-862)))) (-5 *1 (-1175))))) (((*1 *2 *3) - (-12 (-5 *3 (-644 *2)) (-4 *2 (-432 *4)) (-5 *1 (-158 *4 *2)) - (-4 *4 (-558))))) + (-12 (-5 *3 (-1264 (-317 (-225)))) + (-5 *2 + (-2 (|:| |additions| (-566)) (|:| |multiplications| (-566)) + (|:| |exponentiations| (-566)) (|:| |functionCalls| (-566)))) + (-5 *1 (-306))))) +(((*1 *2 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-751))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-1157)) (-5 *5 (-689 (-225))) + (-5 *2 (-1035)) (-5 *1 (-747))))) +(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) + ((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) + ((*1 *1 *1) (-4 *1 (-1138)))) (((*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-644 (-409 (-952 (-169 (-566)))))) - (-5 *2 (-644 (-644 (-295 (-952 (-169 *4)))))) (-5 *1 (-380 *4)) - (-4 *4 (-13 (-365) (-848))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-644 (-295 (-409 (-952 (-169 (-566))))))) - (-5 *2 (-644 (-644 (-295 (-952 (-169 *4)))))) (-5 *1 (-380 *4)) - (-4 *4 (-13 (-365) (-848))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-612 *3)) (-5 *5 (-1 (-1171 *3) (-1171 *3))) + (-4 *3 (-13 (-27) (-432 *6))) (-4 *6 (-558)) (-5 *2 (-587 *3)) + (-5 *1 (-553 *6 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1171 *4)) (-4 *4 (-351)) (-5 *2 (-112)) + (-5 *1 (-359 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1199)))))) +(((*1 *1) (-5 *1 (-439)))) +(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) + ((*1 *1) (-5 *1 (-129))) + ((*1 *1) + (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-566)) (-14 *3 (-771)) + (-4 *4 (-172)))) + ((*1 *1) (-5 *1 (-548))) ((*1 *1) (-5 *1 (-549))) + ((*1 *1) (-5 *1 (-550))) ((*1 *1) (-5 *1 (-551))) + ((*1 *1) (-4 *1 (-726))) ((*1 *1) (-5 *1 (-1175))) + ((*1 *1) (-12 (-5 *1 (-1181 *2)) (-14 *2 (-921)))) + ((*1 *1) (-12 (-5 *1 (-1182 *2)) (-14 *2 (-921)))) + ((*1 *1) (-5 *1 (-1219))) ((*1 *1) (-5 *1 (-1220))) + ((*1 *1) (-5 *1 (-1221))) ((*1 *1) (-5 *1 (-1222)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281))))) +(((*1 *2 *1) + (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1240 *3)) + (-4 *5 (-1240 (-409 *4))) (-4 *6 (-344 *3 *4 *5)) + (-5 *2 + (-2 (|:| -1828 (-415 *4 (-409 *4) *5 *6)) (|:| |principalPart| *6))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-409 (-952 (-169 (-566))))) - (-5 *2 (-644 (-295 (-952 (-169 *4))))) (-5 *1 (-380 *4)) - (-4 *4 (-13 (-365) (-848))))) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1240 *5)) (-4 *5 (-365)) + (-5 *2 + (-2 (|:| |poly| *6) (|:| -2548 (-409 *6)) + (|:| |special| (-409 *6)))) + (-5 *1 (-727 *5 *6)) (-5 *3 (-409 *6)))) + ((*1 *2 *3) + (-12 (-4 *4 (-365)) (-5 *2 (-644 *3)) (-5 *1 (-896 *3 *4)) + (-4 *3 (-1240 *4)))) + ((*1 *2 *3 *4 *4) + (|partial| -12 (-5 *4 (-771)) (-4 *5 (-365)) + (-5 *2 (-2 (|:| -1953 *3) (|:| -1966 *3))) (-5 *1 (-896 *3 *5)) + (-4 *3 (-1240 *5)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-644 *9)) (-5 *3 (-644 *8)) (-5 *4 (-112)) + (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1070 *5 *6 *7 *8)) (-4 *5 (-454)) + (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-1068 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-644 *9)) (-5 *3 (-644 *8)) (-5 *4 (-112)) + (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1070 *5 *6 *7 *8)) (-4 *5 (-454)) + (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-1068 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-644 *9)) (-5 *3 (-644 *8)) (-5 *4 (-112)) + (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1108 *5 *6 *7 *8)) (-4 *5 (-454)) + (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-1144 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-644 *9)) (-5 *3 (-644 *8)) (-5 *4 (-112)) + (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1108 *5 *6 *7 *8)) (-4 *5 (-454)) + (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-1144 *5 *6 *7 *8 *9))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1171 *7)) (-4 *5 (-1049)) + (-4 *7 (-1049)) (-4 *2 (-1240 *5)) (-5 *1 (-503 *5 *2 *6 *7)) + (-4 *6 (-1240 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-295 (-409 (-952 (-169 (-566)))))) - (-5 *2 (-644 (-295 (-952 (-169 *4))))) (-5 *1 (-380 *4)) - (-4 *4 (-13 (-365) (-848)))))) -(((*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-1171 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-671)))) - ((*1 *2 *1) - (-12 (-5 *2 (-644 (-921))) (-5 *1 (-1100 *3 *4)) (-14 *3 (-921)) - (-14 *4 (-921))))) -(((*1 *2 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1049)) (-4 *7 (-1049)) + (-4 *4 (-1240 *5)) (-5 *2 (-1171 *7)) (-5 *1 (-503 *5 *4 *6 *7)) + (-4 *6 (-1240 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1199)))))) +(((*1 *2 *1 *3 *3 *3 *2) + (-12 (-5 *3 (-771)) (-5 *1 (-675 *2)) (-4 *2 (-1099))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-112)) (-5 *1 (-821))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-396)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1194))))) +(((*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-755))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-2 (|:| |ans| *7) (|:| -4392 *7) (|:| |sol?| (-112))) - (-566) *7)) - (-5 *6 (-644 (-409 *8))) (-4 *7 (-365)) (-4 *8 (-1240 *7)) - (-5 *3 (-409 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-576 *7 *8))))) -(((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1214)) (-5 *2 (-771)) - (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-131)) - (-5 *2 (-771)))) - ((*1 *2) - (-12 (-4 *4 (-365)) (-5 *2 (-771)) (-5 *1 (-329 *3 *4)) - (-4 *3 (-330 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-363 *3)) (-4 *3 (-1099)))) - ((*1 *2) (-12 (-4 *1 (-370)) (-5 *2 (-771)))) - ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-388 *3)) (-4 *3 (-1099)))) - ((*1 *2) - (-12 (-4 *4 (-1099)) (-5 *2 (-771)) (-5 *1 (-426 *3 *4)) - (-4 *3 (-427 *4)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) ((*1 *2 *1) - (-12 (-5 *2 (-771)) (-5 *1 (-649 *3 *4 *5)) (-4 *3 (-1099)) - (-4 *4 (-23)) (-14 *5 *4))) - ((*1 *2) - (-12 (-4 *4 (-172)) (-4 *5 (-1240 *4)) (-5 *2 (-771)) - (-5 *1 (-723 *3 *4 *5)) (-4 *3 (-724 *4 *5)))) + (-12 + (-5 *2 + (-2 (|:| -4237 (-644 (-862))) (|:| -3920 (-644 (-862))) + (|:| |presup| (-644 (-862))) (|:| -4168 (-644 (-862))) + (|:| |args| (-644 (-862))))) + (-5 *1 (-1175))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) + (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225)) + (-5 *2 (-1035)) (-5 *1 (-753))))) +(((*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1157)) (-5 *1 (-710))))) +(((*1 *1) (-5 *1 (-144))) ((*1 *1 *1) (-5 *1 (-862)))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-771)) (-5 *2 (-409 (-566))) (-5 *1 (-225)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-771)) (-5 *2 (-409 (-566))) (-5 *1 (-225)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-771)) (-5 *2 (-409 (-566))) (-5 *1 (-381)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-771)) (-5 *2 (-409 (-566))) (-5 *1 (-381))))) +(((*1 *1 *1) (-12 (-5 *1 (-1200 *2)) (-4 *2 (-1099))))) +(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) + (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *2 (-1035)) + (-5 *1 (-755))))) +(((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-862))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-653 (-409 *6))) (-5 *4 (-409 *6)) (-4 *6 (-1240 *5)) + (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2875 (-644 *4)))) + (-5 *1 (-810 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-653 (-409 *6))) (-4 *6 (-1240 *5)) + (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) + (-5 *2 (-2 (|:| -2875 (-644 (-409 *6))) (|:| -3361 (-689 *5)))) + (-5 *1 (-810 *5 *6)) (-5 *4 (-644 (-409 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-654 *6 (-409 *6))) (-5 *4 (-409 *6)) (-4 *6 (-1240 *5)) + (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2875 (-644 *4)))) + (-5 *1 (-810 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-654 *6 (-409 *6))) (-4 *6 (-1240 *5)) + (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) + (-5 *2 (-2 (|:| -2875 (-644 (-409 *6))) (|:| -3361 (-689 *5)))) + (-5 *1 (-810 *5 *6)) (-5 *4 (-644 (-409 *6)))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1099)) (-5 *1 (-964 *3 *2)) (-4 *3 (-1099))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) + (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) + (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-70 APROD)))) (-5 *4 (-225)) + (-5 *2 (-1035)) (-5 *1 (-756))))) +(((*1 *2) + (-12 (-4 *1 (-351)) + (-5 *2 (-644 (-2 (|:| -1624 (-566)) (|:| -2201 (-566)))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-1175)) + (-4 *5 (-13 (-308) (-147))) (-5 *2 (-644 (-295 (-317 *5)))) + (-5 *1 (-1128 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-13 (-308) (-147))) + (-5 *2 (-644 (-295 (-317 *4)))) (-5 *1 (-1128 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-295 (-409 (-952 *5)))) (-5 *4 (-1175)) + (-4 *5 (-13 (-308) (-147))) (-5 *2 (-644 (-295 (-317 *5)))) + (-5 *1 (-1128 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-295 (-409 (-952 *4)))) (-4 *4 (-13 (-308) (-147))) + (-5 *2 (-644 (-295 (-317 *4)))) (-5 *1 (-1128 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-409 (-952 *5)))) (-5 *4 (-644 (-1175))) + (-4 *5 (-13 (-308) (-147))) (-5 *2 (-644 (-644 (-295 (-317 *5))))) + (-5 *1 (-1128 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 (-409 (-952 *4)))) (-4 *4 (-13 (-308) (-147))) + (-5 *2 (-644 (-644 (-295 (-317 *4))))) (-5 *1 (-1128 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-295 (-409 (-952 *5))))) (-5 *4 (-644 (-1175))) + (-4 *5 (-13 (-308) (-147))) (-5 *2 (-644 (-644 (-295 (-317 *5))))) + (-5 *1 (-1128 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 (-295 (-409 (-952 *4))))) + (-4 *4 (-13 (-308) (-147))) (-5 *2 (-644 (-644 (-295 (-317 *4))))) + (-5 *1 (-1128 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1049)) + (-4 *2 (-13 (-406) (-1038 *4) (-365) (-1199) (-285))) + (-5 *1 (-445 *4 *3 *2)) (-4 *3 (-1240 *4)))) + ((*1 *1 *1) (-4 *1 (-547))) + ((*1 *2 *1) (-12 (-5 *2 (-921)) (-5 *1 (-672 *3)) (-4 *3 (-850)))) + ((*1 *2 *1) (-12 (-5 *2 (-921)) (-5 *1 (-677 *3)) (-4 *3 (-850)))) ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-819 *3)) (-4 *3 (-850)))) - ((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1006)))) + ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-893 *3)) (-4 *3 (-850)))) + ((*1 *2 *1) (-12 (-4 *1 (-995 *3)) (-4 *3 (-1214)) (-5 *2 (-771)))) + ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-1211 *3)) (-4 *3 (-1214)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-848) (-365))) (-5 *1 (-1060 *2 *3)) - (-4 *3 (-1240 *2))))) -(((*1 *2 *2) - (-12 (-5 *2 (-644 (-644 *6))) (-4 *6 (-949 *3 *5 *4)) - (-4 *3 (-13 (-308) (-147))) (-4 *4 (-13 (-850) (-614 (-1175)))) - (-4 *5 (-793)) (-5 *1 (-924 *3 *4 *5 *6))))) -(((*1 *1 *1) (-12 (-5 *1 (-914 *2)) (-4 *2 (-308))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-892 *4)) (-4 *4 (-1099)) (-4 *2 (-1099)) - (-5 *1 (-889 *4 *2))))) -(((*1 *2 *2) - (-12 (-5 *2 (-644 *6)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-454)) - (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-451 *3 *4 *5 *6))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-295 *2)) (-4 *2 (-726)) (-4 *2 (-1214))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1171 *9)) (-5 *4 (-644 *7)) (-5 *5 (-644 (-644 *8))) - (-4 *7 (-850)) (-4 *8 (-308)) (-4 *9 (-949 *8 *6 *7)) (-4 *6 (-793)) - (-5 *2 - (-2 (|:| |upol| (-1171 *8)) (|:| |Lval| (-644 *8)) - (|:| |Lfact| - (-644 (-2 (|:| -3719 (-1171 *8)) (|:| -2852 (-566))))) - (|:| |ctpol| *8))) - (-5 *1 (-742 *6 *7 *8 *9))))) + (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1214)) (-4 *2 (-1002)) + (-4 *2 (-1049))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))) + ((*1 *1 *1 *1) (-5 *1 (-1119)))) +(((*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-691 (-1220)))))) +(((*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365)))) + ((*1 *2 *3) + (-12 (-5 *3 (-921)) (-5 *2 (-1264 *4)) (-5 *1 (-530 *4)) + (-4 *4 (-351))))) (((*1 *2 *3) - (-12 (-5 *3 (-1157)) - (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-112)) - (-5 *1 (-224 *4 *5)) (-4 *5 (-13 (-1199) (-29 *4)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1199)))))) -(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-258))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-558)) - (-5 *2 (-2 (|:| -1364 *4) (|:| -2275 *3) (|:| -2513 *3))) - (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) - (-5 *2 (-2 (|:| -2275 *1) (|:| -2513 *1))) (-4 *1 (-1064 *3 *4 *5)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-558)) (-4 *3 (-1049)) - (-5 *2 (-2 (|:| -1364 *3) (|:| -2275 *1) (|:| -2513 *1))) - (-4 *1 (-1240 *3))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-644 *3)) (-4 *3 (-308)) (-5 *1 (-179 *3))))) + (-12 (-5 *3 (-1171 *7)) (-4 *7 (-949 *6 *4 *5)) (-4 *4 (-793)) + (-4 *5 (-850)) (-4 *6 (-1049)) (-5 *2 (-1171 *6)) + (-5 *1 (-322 *4 *5 *6 *7))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-1049))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) +(((*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1267)))) + ((*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1267))))) +(((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-926))))) +(((*1 *2 *1) (-12 (-4 *1 (-406)) (-5 *2 (-566)))) + ((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-699))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1240 *6)) + (-4 *6 (-13 (-27) (-432 *5))) (-4 *5 (-13 (-558) (-1038 (-566)))) + (-4 *8 (-1240 (-409 *7))) (-5 *2 (-587 *3)) + (-5 *1 (-554 *5 *6 *7 *8 *3)) (-4 *3 (-344 *6 *7 *8))))) +(((*1 *2 *1) (-12 (-5 *2 (-691 *3)) (-5 *1 (-966 *3)) (-4 *3 (-1099))))) +(((*1 *1) (-5 *1 (-439)))) +(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-862))) + ((*1 *1 *1 *1) (-4 *1 (-967)))) +(((*1 *2 *1) + (-12 (-4 *2 (-1240 *3)) (-5 *1 (-401 *3 *2)) + (-4 *3 (-13 (-365) (-147)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 (-952 *4))) (-4 *4 (-454)) (-5 *2 (-112)) + (-5 *1 (-362 *4 *5)) (-14 *5 (-644 (-1175))))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 (-780 *4 (-864 *5)))) (-4 *4 (-454)) + (-14 *5 (-644 (-1175))) (-5 *2 (-112)) (-5 *1 (-628 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1240 *3)) + (-4 *5 (-1240 (-409 *4))) (-4 *6 (-344 *3 *4 *5)) + (-5 *2 (-415 *4 (-409 *4) *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1264 *6)) (-4 *6 (-13 (-411 *4 *5) (-1038 *4))) + (-4 *4 (-992 *3)) (-4 *5 (-1240 *4)) (-4 *3 (-308)) + (-5 *1 (-415 *3 *4 *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-365)) + (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-506 *3 *4 *5 *6))))) (((*1 *2 *3 *4) (-12 (-5 *3 (-644 (-409 (-952 (-566))))) (-5 *2 (-644 (-644 (-295 (-952 *4))))) (-5 *1 (-382 *4)) @@ -13252,7 +10791,7 @@ (|partial| -12 (-5 *5 (-1175)) (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-4 *4 (-13 (-29 *6) (-1199) (-959))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -2365 (-644 *4)))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -2875 (-644 *4)))) (-5 *1 (-652 *6 *4 *3)) (-4 *3 (-656 *4)))) ((*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1175)) (-5 *5 (-644 *2)) @@ -13263,40 +10802,40 @@ (-12 (-5 *3 (-689 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |particular| (-3 (-1264 *5) "failed")) - (|:| -2365 (-644 (-1264 *5))))) + (|:| -2875 (-644 (-1264 *5))))) (-5 *1 (-667 *5)) (-5 *4 (-1264 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-644 (-644 *5))) (-4 *5 (-365)) (-5 *2 (-2 (|:| |particular| (-3 (-1264 *5) "failed")) - (|:| -2365 (-644 (-1264 *5))))) + (|:| -2875 (-644 (-1264 *5))))) (-5 *1 (-667 *5)) (-5 *4 (-1264 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-689 *5)) (-4 *5 (-365)) (-5 *2 (-644 (-2 (|:| |particular| (-3 (-1264 *5) "failed")) - (|:| -2365 (-644 (-1264 *5)))))) + (|:| -2875 (-644 (-1264 *5)))))) (-5 *1 (-667 *5)) (-5 *4 (-644 (-1264 *5))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-644 (-644 *5))) (-4 *5 (-365)) (-5 *2 (-644 (-2 (|:| |particular| (-3 (-1264 *5) "failed")) - (|:| -2365 (-644 (-1264 *5)))))) + (|:| -2875 (-644 (-1264 *5)))))) (-5 *1 (-667 *5)) (-5 *4 (-644 (-1264 *5))))) ((*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4415)))) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4415)))) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2365 (-644 *4)))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2875 (-644 *4)))) (-5 *1 (-668 *5 *6 *4 *3)) (-4 *3 (-687 *5 *6 *4)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4415)))) (-4 *7 (-13 (-375 *5) (-10 -7 (-6 -4415)))) (-5 *2 (-644 - (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2365 (-644 *7))))) + (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2875 (-644 *7))))) (-5 *1 (-668 *5 *6 *7 *3)) (-5 *4 (-644 *7)) (-4 *3 (-687 *5 *6 *7)))) ((*1 *2 *3 *4) @@ -13314,7 +10853,7 @@ (-4 *7 (-13 (-29 *6) (-1199) (-959))) (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *2 - (-2 (|:| |particular| (-1264 *7)) (|:| -2365 (-644 (-1264 *7))))) + (-2 (|:| |particular| (-1264 *7)) (|:| -2875 (-644 (-1264 *7))))) (-5 *1 (-802 *6 *7)) (-5 *4 (-1264 *7)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-689 *6)) (-5 *4 (-1175)) @@ -13326,27 +10865,27 @@ (-5 *5 (-1175)) (-4 *7 (-13 (-29 *6) (-1199) (-959))) (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *2 - (-2 (|:| |particular| (-1264 *7)) (|:| -2365 (-644 (-1264 *7))))) + (-2 (|:| |particular| (-1264 *7)) (|:| -2875 (-644 (-1264 *7))))) (-5 *1 (-802 *6 *7)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-644 *7)) (-5 *4 (-644 (-114))) (-5 *5 (-1175)) (-4 *7 (-13 (-29 *6) (-1199) (-959))) (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *2 - (-2 (|:| |particular| (-1264 *7)) (|:| -2365 (-644 (-1264 *7))))) + (-2 (|:| |particular| (-1264 *7)) (|:| -2875 (-644 (-1264 *7))))) (-5 *1 (-802 *6 *7)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-295 *7)) (-5 *4 (-114)) (-5 *5 (-1175)) (-4 *7 (-13 (-29 *6) (-1199) (-959))) (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *2 - (-3 (-2 (|:| |particular| *7) (|:| -2365 (-644 *7))) *7 "failed")) + (-3 (-2 (|:| |particular| *7) (|:| -2875 (-644 *7))) *7 "failed")) (-5 *1 (-802 *6 *7)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-5 *5 (-1175)) (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *2 - (-3 (-2 (|:| |particular| *3) (|:| -2365 (-644 *3))) *3 "failed")) + (-3 (-2 (|:| |particular| *3) (|:| -2875 (-644 *3))) *3 "failed")) (-5 *1 (-802 *6 *3)) (-4 *3 (-13 (-29 *6) (-1199) (-959))))) ((*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-295 *2)) (-5 *4 (-114)) (-5 *5 (-644 *2)) @@ -13382,10 +10921,10 @@ (|partial| -12 (-5 *5 (-1 - (-3 (-2 (|:| |particular| *6) (|:| -2365 (-644 *6))) "failed") + (-3 (-2 (|:| |particular| *6) (|:| -2875 (-644 *6))) "failed") *7 *6)) (-4 *6 (-365)) (-4 *7 (-656 *6)) - (-5 *2 (-2 (|:| |particular| (-1264 *6)) (|:| -2365 (-689 *6)))) + (-5 *2 (-2 (|:| |particular| (-1264 *6)) (|:| -2875 (-689 *6)))) (-5 *1 (-813 *6 *7)) (-5 *3 (-689 *6)) (-5 *4 (-1264 *6)))) ((*1 *2 *3) (-12 (-5 *3 (-898)) (-5 *2 (-1035)) (-5 *1 (-897)))) ((*1 *2 *3 *4) @@ -13458,3122 +10997,109 @@ ((*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-644 (-295 (-409 (-952 *4))))) (-5 *1 (-1183 *4)) (-5 *3 (-295 (-409 (-952 *4))))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-328 *3)) (-4 *3 (-1214)))) - ((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-518 *3 *4)) (-4 *3 (-1214)) - (-14 *4 (-566))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-420 *2)) (-4 *2 (-558))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1175)) (-5 *4 (-952 (-566))) (-5 *2 (-331)) - (-5 *1 (-333))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| -1364 *3) (|:| |gap| (-771)) (|:| -2275 (-782 *3)) - (|:| -2513 (-782 *3)))) - (-5 *1 (-782 *3)) (-4 *3 (-1049)))) - ((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-850)) - (-5 *2 - (-2 (|:| -1364 *1) (|:| |gap| (-771)) (|:| -2275 *1) - (|:| -2513 *1))) - (-4 *1 (-1064 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) - (-5 *2 - (-2 (|:| -1364 *1) (|:| |gap| (-771)) (|:| -2275 *1) - (|:| -2513 *1))) - (-4 *1 (-1064 *3 *4 *5))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-558)) (-4 *3 (-1049)) - (-5 *2 (-2 (|:| -2275 *1) (|:| -2513 *1))) (-4 *1 (-852 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-558)) (-4 *5 (-1049)) - (-5 *2 (-2 (|:| -2275 *3) (|:| -2513 *3))) (-5 *1 (-853 *5 *3)) - (-4 *3 (-852 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-921)) (|has| *1 (-6 -4405)) (-4 *1 (-406)))) - ((*1 *2) (-12 (-4 *1 (-406)) (-5 *2 (-921)))) - ((*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-699)))) - ((*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-699))))) -(((*1 *2 *3) (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *2)) (-4 *2 (-172)))) - ((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-418 *3 *2)) (-4 *3 (-419 *2)))) - ((*1 *2) (-12 (-4 *1 (-419 *2)) (-4 *2 (-172))))) -(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) - ((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) - ((*1 *1 *1) (-4 *1 (-1138)))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-648 *5)) (-4 *5 (-1049)) - (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-852 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-689 *3)) (-4 *1 (-419 *3)) (-4 *3 (-172)))) - ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)))) - ((*1 *2 *3 *2 *2 *4 *5) - (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1049)) - (-5 *1 (-853 *2 *3)) (-4 *3 (-852 *2))))) -(((*1 *2 *3) - (-12 (-4 *4 (-308)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) - (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) - (-5 *1 (-1123 *4 *5 *6 *3)) (-4 *3 (-687 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1038 (-566))) (-4 *1 (-303)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-547)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1099))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-771)) (-5 *4 (-566)) (-5 *1 (-447 *2)) (-4 *2 (-1049))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4415)) (-4 *1 (-375 *2)) (-4 *2 (-1214)) - (-4 *2 (-850)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4415)) - (-4 *1 (-375 *3)) (-4 *3 (-1214))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) - (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-547)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-420 *3)) (-4 *3 (-547)) (-4 *3 (-558)))) - ((*1 *2 *1) (-12 (-4 *1 (-547)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-797 *3)) (-4 *3 (-172)) (-4 *3 (-547)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-833 *3)) (-4 *3 (-547)) (-4 *3 (-1099)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-547)) (-4 *3 (-1099)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *2 (-566)))) ((*1 *2 *1) - (-12 (-4 *1 (-997 *3)) (-4 *3 (-172)) (-4 *3 (-547)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-1008 *3)) (-4 *3 (-1038 (-409 (-566))))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1091 (-843 *3))) (-4 *3 (-13 (-1199) (-959) (-29 *5))) - (-4 *5 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) - (-5 *2 - (-3 (|:| |f1| (-843 *3)) (|:| |f2| (-644 (-843 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-219 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1091 (-843 *3))) (-5 *5 (-1157)) - (-4 *3 (-13 (-1199) (-959) (-29 *6))) - (-4 *6 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) - (-5 *2 - (-3 (|:| |f1| (-843 *3)) (|:| |f2| (-644 (-843 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-219 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-1091 (-843 (-317 *5)))) - (-4 *5 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) - (-5 *2 - (-3 (|:| |f1| (-843 (-317 *5))) (|:| |f2| (-644 (-843 (-317 *5)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-220 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-409 (-952 *6))) (-5 *4 (-1091 (-843 (-317 *6)))) - (-5 *5 (-1157)) - (-4 *6 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) - (-5 *2 - (-3 (|:| |f1| (-843 (-317 *6))) (|:| |f2| (-644 (-843 (-317 *6)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-220 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1091 (-843 (-409 (-952 *5))))) (-5 *3 (-409 (-952 *5))) - (-4 *5 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) - (-5 *2 - (-3 (|:| |f1| (-843 (-317 *5))) (|:| |f2| (-644 (-843 (-317 *5)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-220 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1091 (-843 (-409 (-952 *6))))) (-5 *5 (-1157)) - (-5 *3 (-409 (-952 *6))) - (-4 *6 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) - (-5 *2 - (-3 (|:| |f1| (-843 (-317 *6))) (|:| |f2| (-644 (-843 (-317 *6)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-220 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1175)) - (-4 *5 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) - (-5 *2 (-3 *3 (-644 *3))) (-5 *1 (-430 *5 *3)) - (-4 *3 (-13 (-1199) (-959) (-29 *5))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-476 *3 *4 *5)) - (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-14 *5 *3))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1093 (-843 (-381)))) - (-5 *5 (-381)) (-5 *6 (-1062)) (-5 *2 (-1035)) (-5 *1 (-567)))) - ((*1 *2 *3) (-12 (-5 *3 (-769)) (-5 *2 (-1035)) (-5 *1 (-567)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1093 (-843 (-381)))) - (-5 *5 (-381)) (-5 *2 (-1035)) (-5 *1 (-567)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1093 (-843 (-381)))) - (-5 *5 (-381)) (-5 *2 (-1035)) (-5 *1 (-567)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1093 (-843 (-381)))) - (-5 *2 (-1035)) (-5 *1 (-567)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-317 (-381))) (-5 *4 (-644 (-1093 (-843 (-381))))) - (-5 *2 (-1035)) (-5 *1 (-567)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-317 (-381))) (-5 *4 (-644 (-1093 (-843 (-381))))) - (-5 *5 (-381)) (-5 *2 (-1035)) (-5 *1 (-567)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-317 (-381))) (-5 *4 (-644 (-1093 (-843 (-381))))) - (-5 *5 (-381)) (-5 *2 (-1035)) (-5 *1 (-567)))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-317 (-381))) (-5 *4 (-644 (-1093 (-843 (-381))))) - (-5 *5 (-381)) (-5 *6 (-1062)) (-5 *2 (-1035)) (-5 *1 (-567)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-317 (-381))) (-5 *4 (-1091 (-843 (-381)))) - (-5 *5 (-1157)) (-5 *2 (-1035)) (-5 *1 (-567)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-317 (-381))) (-5 *4 (-1091 (-843 (-381)))) - (-5 *5 (-1175)) (-5 *2 (-1035)) (-5 *1 (-567)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-365) (-147) (-1038 (-566)))) (-4 *5 (-1240 *4)) - (-5 *2 (-587 (-409 *5))) (-5 *1 (-570 *4 *5)) (-5 *3 (-409 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-1175)) (-4 *5 (-147)) - (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) - (-5 *2 (-3 (-317 *5) (-644 (-317 *5)))) (-5 *1 (-590 *5)))) - ((*1 *1 *1) - (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-740 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-850)) - (-4 *3 (-38 (-409 (-566)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1175)) (-5 *1 (-952 *3)) (-4 *3 (-38 (-409 (-566)))) - (-4 *3 (-1049)))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-4 *2 (-850)) - (-5 *1 (-1125 *3 *2 *4)) (-4 *4 (-949 *3 (-533 *2) *2)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) - (-5 *1 (-1159 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1166 *3 *4 *5)) - (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1172 *3 *4 *5)) - (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1173 *3 *4 *5)) - (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-14 *5 *3))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1175)) (-5 *1 (-1208 *3)) (-4 *3 (-38 (-409 (-566)))) - (-4 *3 (-1049)))) - ((*1 *1 *1 *2) - (-2809 - (-12 (-5 *2 (-1175)) (-4 *1 (-1224 *3)) (-4 *3 (-1049)) - (-12 (-4 *3 (-29 (-566))) (-4 *3 (-959)) (-4 *3 (-1199)) - (-4 *3 (-38 (-409 (-566)))))) - (-12 (-5 *2 (-1175)) (-4 *1 (-1224 *3)) (-4 *3 (-1049)) - (-12 (|has| *3 (-15 -3863 ((-644 *2) *3))) - (|has| *3 (-15 -1941 (*3 *3 *2))) (-4 *3 (-38 (-409 (-566)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1224 *2)) (-4 *2 (-1049)) (-4 *2 (-38 (-409 (-566)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1228 *3 *4 *5)) - (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-14 *5 *3))) - ((*1 *1 *1) - (-12 (-4 *1 (-1240 *2)) (-4 *2 (-1049)) (-4 *2 (-38 (-409 (-566)))))) - ((*1 *1 *1 *2) - (-2809 - (-12 (-5 *2 (-1175)) (-4 *1 (-1245 *3)) (-4 *3 (-1049)) - (-12 (-4 *3 (-29 (-566))) (-4 *3 (-959)) (-4 *3 (-1199)) - (-4 *3 (-38 (-409 (-566)))))) - (-12 (-5 *2 (-1175)) (-4 *1 (-1245 *3)) (-4 *3 (-1049)) - (-12 (|has| *3 (-15 -3863 ((-644 *2) *3))) - (|has| *3 (-15 -1941 (*3 *3 *2))) (-4 *3 (-38 (-409 (-566)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1049)) (-4 *2 (-38 (-409 (-566)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1249 *3 *4 *5)) - (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-2809 - (-12 (-5 *2 (-1175)) (-4 *1 (-1255 *3)) (-4 *3 (-1049)) - (-12 (-4 *3 (-29 (-566))) (-4 *3 (-959)) (-4 *3 (-1199)) - (-4 *3 (-38 (-409 (-566)))))) - (-12 (-5 *2 (-1175)) (-4 *1 (-1255 *3)) (-4 *3 (-1049)) - (-12 (|has| *3 (-15 -3863 ((-644 *2) *3))) - (|has| *3 (-15 -1941 (*3 *3 *2))) (-4 *3 (-38 (-409 (-566)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1049)) (-4 *2 (-38 (-409 (-566)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1260 *4)) (-14 *4 (-1175)) (-5 *1 (-1256 *3 *4 *5)) - (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-14 *5 *3)))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) - (-5 *2 - (-2 (|:| -2233 *4) (|:| -1465 *4) (|:| |totalpts| (-566)) - (|:| |success| (-112)))) - (-5 *1 (-789)) (-5 *5 (-566))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1262 *3)) (-4 *3 (-1214)) (-4 *3 (-1049)) - (-5 *2 (-689 *3))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) - (-4 *3 (-369 *4)))) - ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-5 *2 (-644 (-943 *4))) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) - (-4 *4 (-1049))))) -(((*1 *2 *3 *2) - (-12 (-4 *1 (-787)) (-5 *2 (-1035)) - (-5 *3 - (-2 (|:| |fn| (-317 (-225))) - (|:| -2446 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))))) - ((*1 *2 *3 *2) - (-12 (-4 *1 (-787)) (-5 *2 (-1035)) - (-5 *3 - (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) - (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225))))))) -(((*1 *2 *1) (-12 (-4 *1 (-955)) (-5 *2 (-644 (-644 (-943 (-225))))))) - ((*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-644 (-644 (-943 (-225)))))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-169 (-225))) (-5 *5 (-566)) (-5 *6 (-1157)) - (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-758))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-644 *2)) (-4 *2 (-1099)) (-4 *2 (-1214))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1264 *4)) (-4 *4 (-639 (-566))) (-5 *2 (-112)) - (-5 *1 (-1291 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-644 (-689 (-317 (-566))))) (-5 *1 (-1031))))) -(((*1 *2 *1) (-12 (-4 *1 (-674 *3)) (-4 *3 (-1214)) (-5 *2 (-112))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1171 *6)) (-5 *3 (-566)) (-4 *6 (-308)) (-4 *4 (-793)) - (-4 *5 (-850)) (-5 *1 (-742 *4 *5 *6 *7)) (-4 *7 (-949 *6 *4 *5))))) + (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-566))))) (((*1 *2 *3) - (-12 (-5 *3 (-566)) (|has| *1 (-6 -4405)) (-4 *1 (-406)) - (-5 *2 (-921))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1214)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-879 *2)) (-4 *2 (-1214)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-943 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-644 (-943 *3))) (-4 *3 (-1049)) (-4 *1 (-1133 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-644 (-644 *3))) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-644 (-943 *3))) (-4 *1 (-1133 *3)) (-4 *3 (-1049))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-644 *2)) (-4 *2 (-1099)) (-4 *2 (-1214))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) -(((*1 *2) (-12 (-5 *2 (-1146 (-1157))) (-5 *1 (-393))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-892 *4)) (-4 *4 (-1099)) (-5 *1 (-889 *4 *3)) - (-4 *3 (-1099))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1035)) (-5 *3 (-1175)) (-5 *1 (-268))))) + (-12 (-4 *4 (-850)) (-5 *2 (-1186 (-644 *4))) (-5 *1 (-1185 *4)) + (-5 *3 (-644 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1049)) (-4 *7 (-1049)) - (-4 *6 (-1240 *5)) (-5 *2 (-1171 (-1171 *7))) - (-5 *1 (-503 *5 *6 *4 *7)) (-4 *4 (-1240 *6))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1049)) (-5 *1 (-894 *2 *3)) (-4 *2 (-1240 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1171 *4)) (-4 *4 (-351)) - (-5 *2 (-1264 (-644 (-2 (|:| -2233 *4) (|:| -2178 (-1119)))))) - (-5 *1 (-348 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1155 (-1155 *4))) (-5 *2 (-1155 *4)) (-5 *1 (-1159 *4)) - (-4 *4 (-1049))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4414)) (-4 *1 (-491 *3)) (-4 *3 (-1214)) - (-4 *3 (-1099)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-905 *4)) (-4 *4 (-1099)) (-5 *2 (-112)) - (-5 *1 (-904 *4)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-921)) (-5 *2 (-112)) (-5 *1 (-1100 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) + (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *3 (-1064 *5 *6 *7)) + (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -1470 *4)))) + (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))) (((*1 *2 *3 *3) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-988 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-644 *3)) (-4 *3 (-1070 *5 *6 *7 *8)) (-4 *5 (-454)) + (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-1064 *5 *6 *7)) + (-5 *2 (-112)) (-5 *1 (-988 *5 *6 *7 *8 *3)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1106 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) - (-4 *6 (-793)) (-5 *2 (-409 (-952 *4))) (-5 *1 (-924 *4 *5 *6 *3)) - (-4 *3 (-949 *4 *6 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-689 *7)) (-4 *7 (-949 *4 *6 *5)) - (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) - (-4 *6 (-793)) (-5 *2 (-689 (-409 (-952 *4)))) - (-5 *1 (-924 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-644 *7)) (-4 *7 (-949 *4 *6 *5)) - (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) - (-4 *6 (-793)) (-5 *2 (-644 (-409 (-952 *4)))) - (-5 *1 (-924 *4 *5 *6 *7))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-644 *2)) (-4 *2 (-1099)) (-4 *2 (-1214))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-644 *3)) (-4 *3 (-1108 *5 *6 *7 *8)) - (-4 *5 (-13 (-308) (-147))) (-4 *6 (-793)) (-4 *7 (-850)) - (-4 *8 (-1064 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-592 *5 *6 *7 *8 *3))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) - (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225)) - (-5 *2 (-1035)) (-5 *1 (-753))))) -(((*1 *2) - (-12 (-4 *1 (-351)) - (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-927))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1264 (-771))) (-5 *1 (-675 *3)) (-4 *3 (-1099))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) - (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 (-566)) (-5 *1 (-204))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) (-4 *5 (-793)) - (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1102 *2 *3 *4 *5 *6)) (-4 *2 (-1099)) (-4 *3 (-1099)) - (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099))))) -(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-381)) (-5 *1 (-786))))) -(((*1 *2 *1) (-12 (-4 *1 (-1148 *3)) (-4 *3 (-1214)) (-5 *2 (-112))))) -(((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-644 (-483 *4 *5))) (-5 *3 (-864 *4)) - (-14 *4 (-644 (-1175))) (-4 *5 (-454)) (-5 *1 (-631 *4 *5))))) -(((*1 *2 *2) - (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) - (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 (-644 *2) *2 *2 *2)) (-4 *2 (-1099)) - (-5 *1 (-103 *2)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1099)) (-5 *1 (-103 *2))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) - (-12 (-5 *4 (-566)) (-5 *6 (-1 (-1269) (-1264 *5) (-1264 *5) (-381))) - (-5 *3 (-1264 (-381))) (-5 *5 (-381)) (-5 *2 (-1269)) - (-5 *1 (-788))))) -(((*1 *2 *1) - (-12 (-4 *1 (-556 *3)) (-4 *3 (-13 (-406) (-1199))) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-848)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1067 *4 *3)) (-4 *4 (-13 (-848) (-365))) - (-4 *3 (-1240 *4)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-644 (-952 *4))) (-4 *4 (-454)) (-5 *2 (-112)) - (-5 *1 (-362 *4 *5)) (-14 *5 (-644 (-1175))))) - ((*1 *2 *3) - (-12 (-5 *3 (-644 (-780 *4 (-864 *5)))) (-4 *4 (-454)) - (-14 *5 (-644 (-1175))) (-5 *2 (-112)) (-5 *1 (-628 *4 *5))))) -(((*1 *1 *1) - (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4414)) (-4 *1 (-491 *4)) - (-4 *4 (-1214)) (-5 *2 (-112))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1102 *2 *3 *4 *5 *6)) (-4 *2 (-1099)) (-4 *3 (-1099)) - (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-644 (-52))) (-5 *1 (-892 *3)) (-4 *3 (-1099))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1035))))) -(((*1 *2 *1) (-12 (-4 *1 (-767 *3)) (-4 *3 (-1099)) (-5 *2 (-112))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *4 (-1 (-3 (-566) "failed") *5)) (-4 *5 (-1049)) - (-5 *2 (-566)) (-5 *1 (-545 *5 *3)) (-4 *3 (-1240 *5)))) - ((*1 *2 *3 *4 *2 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-566) "failed") *4)) (-4 *4 (-1049)) - (-5 *2 (-566)) (-5 *1 (-545 *4 *3)) (-4 *3 (-1240 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-566) "failed") *4)) (-4 *4 (-1049)) - (-5 *2 (-566)) (-5 *1 (-545 *4 *3)) (-4 *3 (-1240 *4))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566)))))) -(((*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-547)))) - ((*1 *1 *2) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-971))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-771)) (-5 *1 (-103 *3)) (-4 *3 (-1099))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-103 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-689 *4)) (-5 *3 (-921)) (|has| *4 (-6 (-4416 "*"))) - (-4 *4 (-1049)) (-5 *1 (-1028 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-644 (-689 *4))) (-5 *3 (-921)) - (|has| *4 (-6 (-4416 "*"))) (-4 *4 (-1049)) (-5 *1 (-1028 *4))))) -(((*1 *1 *2) - (-12 - (-5 *2 - (-644 - (-2 - (|:| -2004 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1264 (-317 (-225)))) - (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) - (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (|:| -3867 - (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) - (|:| |expense| (-381)) (|:| |accuracy| (-381)) - (|:| |intermediateResults| (-381))))))) - (-5 *1 (-803))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)) (-5 *3 (-566)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1264 (-3 (-470) "undefined"))) (-5 *1 (-1265))))) -(((*1 *1 *2) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1214)))) - ((*1 *2 *1) (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-1175))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1175)) (-5 *1 (-587 *2)) (-4 *2 (-1038 *3)) - (-4 *2 (-365)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-587 *2)) (-4 *2 (-365)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1175)) (-4 *4 (-558)) (-5 *1 (-630 *4 *2)) - (-4 *2 (-13 (-432 *4) (-1002) (-1199))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1091 *2)) (-4 *2 (-13 (-432 *4) (-1002) (-1199))) - (-4 *4 (-558)) (-5 *1 (-630 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-959)) (-5 *2 (-1175)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1091 *1)) (-4 *1 (-959))))) -(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-905 *3))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-921)) (-4 *3 (-365)) - (-14 *4 (-993 *2 *3)))) - ((*1 *1 *1) - (|partial| -12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1240 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-558)))) - ((*1 *1 *1) - (|partial| -12 (-5 *1 (-715 *2 *3 *4 *5 *6)) (-4 *2 (-172)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365)))) - ((*1 *1) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365)))) - ((*1 *1 *1) (|partial| -4 *1 (-722))) - ((*1 *1 *1) (|partial| -4 *1 (-726))) + (-5 *1 (-1106 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) - (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) - (-5 *1 (-776 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) - ((*1 *2 *2 *1) - (|partial| -12 (-4 *1 (-1067 *3 *2)) (-4 *3 (-13 (-848) (-365))) - (-4 *2 (-1240 *3)))) - ((*1 *2 *2) - (|partial| -12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) - (-5 *1 (-755))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-1155 (-2 (|:| |k| (-566)) (|:| |c| *6)))) - (-5 *4 (-1026 (-843 (-566)))) (-5 *5 (-1175)) (-5 *7 (-409 (-566))) - (-4 *6 (-1049)) (-5 *2 (-862)) (-5 *1 (-596 *6))))) -(((*1 *2 *1) - (-12 (-5 *2 (-644 (-1200 *3))) (-5 *1 (-1200 *3)) (-4 *3 (-1099))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1171 *7)) (-5 *3 (-566)) (-4 *7 (-949 *6 *4 *5)) - (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1049)) - (-5 *1 (-322 *4 *5 *6 *7))))) -(((*1 *2 *2) - (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1199)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1264 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) - (-4 *5 (-1240 *4)) (-5 *2 (-689 *4)))) - ((*1 *2) - (-12 (-4 *4 (-172)) (-4 *5 (-1240 *4)) (-5 *2 (-689 *4)) - (-5 *1 (-410 *3 *4 *5)) (-4 *3 (-411 *4 *5)))) - ((*1 *2) - (-12 (-4 *1 (-411 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1240 *3)) - (-5 *2 (-689 *3))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) - (-4 *4 (-850)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1207 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793)) - (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5))))) -(((*1 *2 *3) - (|partial| -12 (-5 *2 (-566)) (-5 *1 (-1196 *3)) (-4 *3 (-1049))))) -(((*1 *2 *3 *4 *5) - (-12 (-4 *6 (-1240 *9)) (-4 *7 (-793)) (-4 *8 (-850)) (-4 *9 (-308)) - (-4 *10 (-949 *9 *7 *8)) - (-5 *2 - (-2 (|:| |deter| (-644 (-1171 *10))) - (|:| |dterm| - (-644 (-644 (-2 (|:| -4079 (-771)) (|:| |pcoef| *10))))) - (|:| |nfacts| (-644 *6)) (|:| |nlead| (-644 *10)))) - (-5 *1 (-778 *6 *7 *8 *9 *10)) (-5 *3 (-1171 *10)) (-5 *4 (-644 *6)) - (-5 *5 (-644 *10))))) -(((*1 *2 *3) - (-12 (-5 *3 (-843 (-381))) (-5 *2 (-843 (-225))) (-5 *1 (-306))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-644 *6)) (-5 *4 (-644 (-1155 *7))) (-4 *6 (-850)) - (-4 *7 (-949 *5 (-533 *6) *6)) (-4 *5 (-1049)) - (-5 *2 (-1 (-1155 *7) *7)) (-5 *1 (-1125 *5 *6 *7))))) -(((*1 *2 *1) - (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)) - (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5))))) -(((*1 *2 *1 *2) (-12 (-5 *1 (-1026 *2)) (-4 *2 (-1214))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-644 (-1171 *7))) (-5 *3 (-1171 *7)) - (-4 *7 (-949 *4 *5 *6)) (-4 *4 (-909)) (-4 *5 (-793)) - (-4 *6 (-850)) (-5 *1 (-906 *4 *5 *6 *7)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-644 (-1171 *5))) (-5 *3 (-1171 *5)) - (-4 *5 (-1240 *4)) (-4 *4 (-909)) (-5 *1 (-907 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1214))))) -(((*1 *1 *2) - (-12 (-5 *2 (-415 *3 *4 *5 *6)) (-4 *6 (-1038 *4)) (-4 *3 (-308)) - (-4 *4 (-992 *3)) (-4 *5 (-1240 *4)) (-4 *6 (-411 *4 *5)) - (-14 *7 (-1264 *6)) (-5 *1 (-416 *3 *4 *5 *6 *7)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1264 *6)) (-4 *6 (-411 *4 *5)) (-4 *4 (-992 *3)) - (-4 *5 (-1240 *4)) (-4 *3 (-308)) (-5 *1 (-416 *3 *4 *5 *6 *7)) - (-14 *7 *2)))) -(((*1 *2 *3) - (-12 (-4 *4 (-793)) - (-4 *5 (-13 (-850) (-10 -8 (-15 -1348 ((-1175) $))))) (-4 *6 (-558)) - (-5 *2 (-2 (|:| -2660 (-952 *6)) (|:| -1544 (-952 *6)))) - (-5 *1 (-732 *4 *5 *6 *3)) (-4 *3 (-949 (-409 (-952 *6)) *4 *5))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -3002 *1) (|:| -4401 *1) (|:| |associate| *1))) - (-4 *1 (-558))))) -(((*1 *2 *3) - (-12 (-5 *3 (-644 (-2 (|:| |den| (-566)) (|:| |gcdnum| (-566))))) - (-4 *4 (-1240 (-409 *2))) (-5 *2 (-566)) (-5 *1 (-913 *4 *5)) - (-4 *5 (-1240 (-409 *4)))))) -(((*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-331))))) -(((*1 *2 *3) - (-12 (-5 *3 (-689 *4)) (-4 *4 (-365)) (-5 *2 (-1171 *4)) - (-5 *1 (-534 *4 *5 *6)) (-4 *5 (-365)) (-4 *6 (-13 (-365) (-848)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-644 (-317 (-225)))) (-5 *4 (-771)) - (-5 *2 (-689 (-225))) (-5 *1 (-268))))) -(((*1 *1 *1) (-5 *1 (-1062)))) -(((*1 *2 *3) - (-12 (-5 *3 (-952 *5)) (-4 *5 (-1049)) (-5 *2 (-247 *4 *5)) - (-5 *1 (-944 *4 *5)) (-14 *4 (-644 (-1175)))))) + (-12 (-5 *4 (-644 *3)) (-4 *3 (-1070 *5 *6 *7 *8)) (-4 *5 (-454)) + (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-1064 *5 *6 *7)) + (-5 *2 (-112)) (-5 *1 (-1106 *5 *6 *7 *8 *3))))) (((*1 *2 *2 *3 *4) (-12 (-5 *3 (-644 (-612 *6))) (-5 *4 (-1175)) (-5 *2 (-612 *6)) (-4 *6 (-432 *5)) (-4 *5 (-1099)) (-5 *1 (-575 *5 *6))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1281 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1287 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-846))))) -(((*1 *2 *2) - (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1199)))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-365)) (-5 *1 (-766 *2 *3)) (-4 *2 (-708 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1049)) - (-14 *4 (-644 (-1175))))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1049) (-850))) - (-14 *4 (-644 (-1175)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1171 (-952 *6))) (-4 *6 (-558)) - (-4 *2 (-949 (-409 (-952 *6)) *5 *4)) (-5 *1 (-732 *5 *4 *6 *2)) - (-4 *5 (-793)) - (-4 *4 (-13 (-850) (-10 -8 (-15 -1348 ((-1175) $)))))))) -(((*1 *2 *3) - (-12 (-5 *2 (-169 *4)) (-5 *1 (-181 *4 *3)) - (-4 *4 (-13 (-365) (-848))) (-4 *3 (-1240 *2))))) -(((*1 *2 *2) - (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))) - (-5 *1 (-176 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-862))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4415)) (-4 *1 (-1252 *2)) (-4 *2 (-1214))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) - (-4 *3 (-369 *4)))) - ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1264 *4)) (-4 *4 (-1049)) (-4 *2 (-1240 *4)) - (-5 *1 (-446 *4 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-409 (-1171 (-317 *5)))) (-5 *3 (-1264 (-317 *5))) - (-5 *4 (-566)) (-4 *5 (-558)) (-5 *1 (-1129 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-1175)) - (-4 *5 (-13 (-308) (-147))) (-5 *2 (-644 (-317 *5))) - (-5 *1 (-1128 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-644 (-409 (-952 *5)))) (-5 *4 (-644 (-1175))) - (-4 *5 (-13 (-308) (-147))) (-5 *2 (-644 (-644 (-317 *5)))) - (-5 *1 (-1128 *5))))) -(((*1 *1 *1) (-5 *1 (-538)))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-644 (-295 *4))) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-850)) - (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-14 *5 (-921))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-2 (|:| |fn| (-317 (-225))) (|:| -1761 (-644 (-225))) - (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) - (|:| |ub| (-644 (-843 (-225)))))) - (-5 *1 (-268))))) -(((*1 *1 *2) (-12 (-5 *2 (-644 (-144))) (-5 *1 (-141)))) - ((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-141))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-771)) (-4 *5 (-558)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-969 *5 *3)) (-4 *3 (-1240 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) -(((*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) - ((*1 *2 *3) - (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917))))) -(((*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172))))) -(((*1 *2 *1) - (-12 (-5 *2 (-409 (-566))) (-5 *1 (-320 *3 *4 *5)) (-4 *3 (-365)) - (-14 *4 (-1175)) (-14 *5 *3)))) -(((*1 *1) (-5 *1 (-823)))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1099)) - (-4 *6 (-1099)) (-4 *2 (-1099)) (-5 *1 (-680 *5 *6 *2))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) - (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *2 (-381)) (-5 *1 (-205))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-644 *2)) (-4 *2 (-1214)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-1155 *2)) (-4 *2 (-1214))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-644 (-566))) (-5 *4 (-905 (-566))) - (-5 *2 (-689 (-566))) (-5 *1 (-591)))) - ((*1 *2 *3) - (-12 (-5 *3 (-644 (-566))) (-5 *2 (-644 (-689 (-566)))) - (-5 *1 (-591)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-644 (-566))) (-5 *4 (-644 (-905 (-566)))) - (-5 *2 (-644 (-689 (-566)))) (-5 *1 (-591))))) -(((*1 *2 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1214))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-409 *6))) (-5 *4 (-1 (-644 *5) *6)) - (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) - (-4 *6 (-1240 *5)) (-5 *2 (-644 (-409 *6))) (-5 *1 (-812 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-653 (-409 *7))) (-5 *4 (-1 (-644 *6) *7)) - (-5 *5 (-1 (-420 *7) *7)) - (-4 *6 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) - (-4 *7 (-1240 *6)) (-5 *2 (-644 (-409 *7))) (-5 *1 (-812 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 *6 (-409 *6))) (-5 *4 (-1 (-644 *5) *6)) - (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) - (-4 *6 (-1240 *5)) (-5 *2 (-644 (-409 *6))) (-5 *1 (-812 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-654 *7 (-409 *7))) (-5 *4 (-1 (-644 *6) *7)) - (-5 *5 (-1 (-420 *7) *7)) - (-4 *6 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) - (-4 *7 (-1240 *6)) (-5 *2 (-644 (-409 *7))) (-5 *1 (-812 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-653 (-409 *5))) (-4 *5 (-1240 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) - (-5 *2 (-644 (-409 *5))) (-5 *1 (-812 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-653 (-409 *6))) (-5 *4 (-1 (-420 *6) *6)) - (-4 *6 (-1240 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) - (-5 *2 (-644 (-409 *6))) (-5 *1 (-812 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 *5 (-409 *5))) (-4 *5 (-1240 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) - (-5 *2 (-644 (-409 *5))) (-5 *1 (-812 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 *6 (-409 *6))) (-5 *4 (-1 (-420 *6) *6)) - (-4 *6 (-1240 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) - (-5 *2 (-644 (-409 *6))) (-5 *1 (-812 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) -(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) - (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) - (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-67 DOT)))) - (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-225)) - (-5 *2 (-1035)) (-5 *1 (-755)))) - ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) - (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) - (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-67 DOT)))) - (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-390)) - (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-755))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-5 *2 (-566)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-566))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-689 *2)) (-4 *2 (-172)) (-5 *1 (-146 *2)))) - ((*1 *2 *3) - (-12 (-4 *4 (-172)) (-4 *2 (-1240 *4)) (-5 *1 (-177 *4 *2 *3)) - (-4 *3 (-724 *4 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-689 (-409 (-952 *5)))) (-5 *4 (-1175)) - (-5 *2 (-952 *5)) (-5 *1 (-293 *5)) (-4 *5 (-454)))) - ((*1 *2 *3) - (-12 (-5 *3 (-689 (-409 (-952 *4)))) (-5 *2 (-952 *4)) - (-5 *1 (-293 *4)) (-4 *4 (-454)))) - ((*1 *2 *1) - (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1240 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-689 (-169 (-409 (-566))))) - (-5 *2 (-952 (-169 (-409 (-566))))) (-5 *1 (-764 *4)) - (-4 *4 (-13 (-365) (-848))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-689 (-169 (-409 (-566))))) (-5 *4 (-1175)) - (-5 *2 (-952 (-169 (-409 (-566))))) (-5 *1 (-764 *5)) - (-4 *5 (-13 (-365) (-848))))) - ((*1 *2 *3) - (-12 (-5 *3 (-689 (-409 (-566)))) (-5 *2 (-952 (-409 (-566)))) - (-5 *1 (-779 *4)) (-4 *4 (-13 (-365) (-848))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-689 (-409 (-566)))) (-5 *4 (-1175)) - (-5 *2 (-952 (-409 (-566)))) (-5 *1 (-779 *5)) - (-4 *5 (-13 (-365) (-848)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-771)) (-5 *4 (-1264 *2)) (-4 *5 (-308)) - (-4 *6 (-992 *5)) (-4 *2 (-13 (-411 *6 *7) (-1038 *6))) - (-5 *1 (-415 *5 *6 *7 *2)) (-4 *7 (-1240 *6))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-1060 (-1024 *3) (-1171 (-1024 *3)))) - (-5 *1 (-1024 *3)) (-4 *3 (-13 (-848) (-365) (-1022)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-644 (-1157))) (-5 *2 (-1157)) (-5 *1 (-192)))) - ((*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862))))) -(((*1 *2 *3) - (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-566)) - (-5 *1 (-451 *4 *5 *6 *3)) (-4 *3 (-949 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *2 (-420 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1240 (-48))))) - ((*1 *2 *3 *1) - (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) - (-5 *1 (-121 *3)) (-4 *3 (-850)))) - ((*1 *2 *2) - (-12 (-5 *2 (-587 *4)) (-4 *4 (-13 (-29 *3) (-1199))) - (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) - (-5 *1 (-585 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-587 (-409 (-952 *3)))) - (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-590 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1240 *5)) (-4 *5 (-365)) - (-5 *2 (-2 (|:| -1486 *3) (|:| |special| *3))) (-5 *1 (-727 *5 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1264 *5)) (-4 *5 (-365)) (-4 *5 (-1049)) - (-5 *2 (-644 (-644 (-689 *5)))) (-5 *1 (-1029 *5)) - (-5 *3 (-644 (-689 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1264 (-1264 *5))) (-4 *5 (-365)) (-4 *5 (-1049)) - (-5 *2 (-644 (-644 (-689 *5)))) (-5 *1 (-1029 *5)) - (-5 *3 (-644 (-689 *5))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-644 *1)) (-4 *1 (-1143)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-644 *1)) (-4 *1 (-1143))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1171 *2)) (-4 *2 (-949 (-409 (-952 *6)) *5 *4)) - (-5 *1 (-732 *5 *4 *6 *2)) (-4 *5 (-793)) - (-4 *4 (-13 (-850) (-10 -8 (-15 -1348 ((-1175) $))))) - (-4 *6 (-558))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) -(((*1 *2 *1) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) - (-4 *5 (-1240 (-409 *4))) - (-5 *2 (-2 (|:| |num| (-1264 *4)) (|:| |den| *4)))))) -(((*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-1099)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-850))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-5 *2 (-566)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-566))))) -(((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-914 *3)) (-4 *3 (-308))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-689 (-409 (-952 (-566))))) - (-5 *2 (-644 (-689 (-317 (-566))))) (-5 *1 (-1031)) - (-5 *3 (-317 (-566)))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| -2738 *3) (|:| |coef1| (-782 *3)) (|:| |coef2| (-782 *3)))) - (-5 *1 (-782 *3)) (-4 *3 (-558)) (-4 *3 (-1049))))) -(((*1 *1 *1) - (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) - (-4 *3 (-1064 *5 *6 *7)) - (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -3570 *4)))) - (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) - (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 (-381)) (-5 *1 (-192))))) -(((*1 *2 *3 *4 *3) +(((*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) - (-5 *1 (-747))))) -(((*1 *2 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-689 *4)) (-5 *3 (-771)) (-4 *4 (-1049)) - (-5 *1 (-690 *4))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1099)) (-4 *4 (-13 (-1049) (-886 *3) (-614 (-892 *3)))) - (-5 *2 (-644 (-1075 *3 *4 *5))) (-5 *1 (-1076 *3 *4 *5)) - (-4 *5 (-13 (-432 *4) (-886 *3) (-614 (-892 *3))))))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-892 *4)) (-4 *4 (-1099)) (-5 *2 (-112)) - (-5 *1 (-889 *4 *5)) (-4 *5 (-1099)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-892 *5)) (-4 *5 (-1099)) (-5 *2 (-112)) - (-5 *1 (-890 *5 *3)) (-4 *3 (-1214)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-644 *6)) (-5 *4 (-892 *5)) (-4 *5 (-1099)) - (-4 *6 (-1214)) (-5 *2 (-112)) (-5 *1 (-890 *5 *6))))) -(((*1 *2 *3) - (-12 (-4 *4 (-850)) - (-5 *2 - (-2 (|:| |f1| (-644 *4)) (|:| |f2| (-644 (-644 (-644 *4)))) - (|:| |f3| (-644 (-644 *4))) (|:| |f4| (-644 (-644 (-644 *4)))))) - (-5 *1 (-1185 *4)) (-5 *3 (-644 (-644 (-644 *4))))))) -(((*1 *2 *2) - (-12 (-5 *2 (-644 *3)) (-4 *3 (-1240 (-566))) (-5 *1 (-488 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-334))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-175))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-365)) (-4 *3 (-1049)) - (-5 *2 (-2 (|:| -2275 *1) (|:| -2513 *1))) (-4 *1 (-852 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-365)) (-4 *5 (-1049)) - (-5 *2 (-2 (|:| -2275 *3) (|:| -2513 *3))) (-5 *1 (-853 *5 *3)) - (-4 *3 (-852 *5))))) -(((*1 *2 *2) - (-12 (-5 *2 (-644 (-952 *3))) (-4 *3 (-454)) (-5 *1 (-362 *3 *4)) - (-14 *4 (-644 (-1175))))) - ((*1 *2 *2) - (-12 (-5 *2 (-644 *6)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-454)) - (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-452 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-644 *7)) (-5 *3 (-1157)) (-4 *7 (-949 *4 *5 *6)) - (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) - (-5 *1 (-452 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-644 *7)) (-5 *3 (-1157)) (-4 *7 (-949 *4 *5 *6)) - (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) - (-5 *1 (-452 *4 *5 *6 *7)))) - ((*1 *1 *1) - (-12 (-4 *2 (-365)) (-4 *3 (-793)) (-4 *4 (-850)) - (-5 *1 (-506 *2 *3 *4 *5)) (-4 *5 (-949 *2 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-644 (-780 *3 (-864 *4)))) (-4 *3 (-454)) - (-14 *4 (-644 (-1175))) (-5 *1 (-628 *3 *4))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-396)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1194))))) -(((*1 *2 *1) - (-12 (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -2561 *4)))) - (-5 *1 (-649 *3 *4 *5)) (-4 *3 (-1099)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *1) (-12 (-5 *2 (-213 4 (-129))) (-5 *1 (-581))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-497))))) -(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) - ((*1 *2 *1) - (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)) - (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-646 *3)) (-4 *3 (-1057)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-1057)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1067 *4 *3)) (-4 *4 (-13 (-848) (-365))) - (-4 *3 (-1240 *4)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) - (-12 (-5 *4 (-566)) (-5 *5 (-689 (-225))) - (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-84 FCNF)))) - (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-225)) - (-5 *2 (-1035)) (-5 *1 (-749))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-792)))) - ((*1 *1 *1) - (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1049)) (-14 *3 (-644 (-1175))))) - ((*1 *1 *1) - (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1049) (-850))) - (-14 *3 (-644 (-1175))))) - ((*1 *1 *1) - (-12 (-4 *1 (-384 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-1099)))) - ((*1 *1 *1) - (-12 (-14 *2 (-644 (-1175))) (-4 *3 (-172)) - (-4 *5 (-238 (-3018 *2) (-771))) - (-14 *6 - (-1 (-112) (-2 (|:| -2178 *4) (|:| -2852 *5)) - (-2 (|:| -2178 *4) (|:| -2852 *5)))) - (-5 *1 (-463 *2 *3 *4 *5 *6 *7)) (-4 *4 (-850)) - (-4 *7 (-949 *3 *5 (-864 *2))))) - ((*1 *1 *1) (-12 (-4 *1 (-511 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-850)))) - ((*1 *1 *1) - (-12 (-4 *2 (-558)) (-5 *1 (-623 *2 *3)) (-4 *3 (-1240 *2)))) - ((*1 *1 *1) (-12 (-4 *1 (-708 *2)) (-4 *2 (-1049)))) - ((*1 *1 *1) - (-12 (-5 *1 (-735 *2 *3)) (-4 *3 (-850)) (-4 *2 (-1049)) - (-4 *3 (-726)))) - ((*1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1064 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) - (-4 *2 (-850)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1287 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-846))))) -(((*1 *2 *3) - (-12 (-5 *3 (-644 (-566))) (-5 *2 (-644 (-689 (-566)))) - (-5 *1 (-1109))))) -(((*1 *2 *1) - (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1171 *4)) (-4 *4 (-351)) (-5 *2 (-112)) - (-5 *1 (-359 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1264 *4)) (-4 *4 (-351)) (-5 *2 (-112)) - (-5 *1 (-530 *4))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-771)) (-4 *5 (-558)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-969 *5 *3)) (-4 *3 (-1240 *5))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) - (-5 *2 - (-2 (|:| -2233 *4) (|:| -1465 *4) (|:| |totalpts| (-566)) - (|:| |success| (-112)))) - (-5 *1 (-789)) (-5 *5 (-566))))) -(((*1 *2 *1) (-12 (-5 *2 (-644 (-644 (-225)))) (-5 *1 (-926))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-921)) (-5 *4 (-420 *6)) (-4 *6 (-1240 *5)) - (-4 *5 (-1049)) (-5 *2 (-644 *6)) (-5 *1 (-446 *5 *6))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-538))))) -(((*1 *2 *1) (-12 (-4 *1 (-1283 *3)) (-4 *3 (-365)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-1059)) (-4 *3 (-1199)) - (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) -(((*1 *2 *3 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-748))))) -(((*1 *2 *3 *4 *5 *6 *7 *8 *9) - (|partial| -12 (-5 *4 (-644 *11)) (-5 *5 (-644 (-1171 *9))) - (-5 *6 (-644 *9)) (-5 *7 (-644 *12)) (-5 *8 (-644 (-771))) - (-4 *11 (-850)) (-4 *9 (-308)) (-4 *12 (-949 *9 *10 *11)) - (-4 *10 (-793)) (-5 *2 (-644 (-1171 *12))) - (-5 *1 (-707 *10 *11 *9 *12)) (-5 *3 (-1171 *12))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *1)) - (-4 *1 (-949 *3 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-438))))) + (-5 *1 (-751))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1231 (-566))) (-4 *1 (-283 *3)) (-4 *3 (-1214)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-283 *3)) (-4 *3 (-1214))))) -(((*1 *2 *3) - (-12 (-5 *3 (-771)) (-5 *2 (-1171 *4)) (-5 *1 (-530 *4)) - (-4 *4 (-351))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-365)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) - (-5 *1 (-506 *4 *5 *6 *3)) (-4 *3 (-949 *4 *5 *6))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1240 *5)) - (-4 *5 (-13 (-27) (-432 *4))) (-4 *4 (-13 (-558) (-1038 (-566)))) - (-4 *7 (-1240 (-409 *6))) (-5 *1 (-554 *4 *5 *6 *7 *2)) - (-4 *2 (-344 *5 *6 *7))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-454) (-1038 (-566)))) (-4 *3 (-558)) - (-5 *1 (-41 *3 *2)) (-4 *2 (-432 *3)) - (-4 *2 - (-13 (-365) (-303) - (-10 -8 (-15 -4326 ((-1124 *3 (-612 $)) $)) - (-15 -4339 ((-1124 *3 (-612 $)) $)) - (-15 -3783 ($ (-1124 *3 (-612 $)))))))))) -(((*1 *2 *2) - (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1199)))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-952 (-169 *4))) (-4 *4 (-172)) - (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-952 (-169 *5))) (-5 *4 (-921)) (-4 *5 (-172)) - (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-952 *4)) (-4 *4 (-1049)) - (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-952 *5)) (-5 *4 (-921)) (-4 *5 (-1049)) - (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-558)) - (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-921)) (-4 *5 (-558)) - (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-409 (-952 (-169 *4)))) (-4 *4 (-558)) - (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-409 (-952 (-169 *5)))) (-5 *4 (-921)) - (-4 *5 (-558)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) - (-5 *1 (-785 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-317 *4)) (-4 *4 (-558)) (-4 *4 (-850)) - (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-317 *5)) (-5 *4 (-921)) (-4 *5 (-558)) - (-4 *5 (-850)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) - (-5 *1 (-785 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-317 (-169 *4))) (-4 *4 (-558)) (-4 *4 (-850)) - (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-317 (-169 *5))) (-5 *4 (-921)) (-4 *5 (-558)) - (-4 *5 (-850)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) - (-5 *1 (-785 *5))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-470)) (-5 *4 (-921)) (-5 *2 (-1269)) (-5 *1 (-1265))))) -(((*1 *2) (-12 (-5 *2 (-1132 (-225))) (-5 *1 (-1197))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-792)) (-4 *2 (-1049)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1049)) (-5 *1 (-50 *2 *3)) (-14 *3 (-644 (-1175))))) - ((*1 *2 *1) - (-12 (-5 *2 (-317 *3)) (-5 *1 (-223 *3 *4)) - (-4 *3 (-13 (-1049) (-850))) (-14 *4 (-644 (-1175))))) - ((*1 *2 *1) - (-12 (-4 *1 (-384 *2 *3)) (-4 *3 (-1099)) (-4 *2 (-1049)))) - ((*1 *2 *1) - (-12 (-14 *3 (-644 (-1175))) (-4 *5 (-238 (-3018 *3) (-771))) - (-14 *6 - (-1 (-112) (-2 (|:| -2178 *4) (|:| -2852 *5)) - (-2 (|:| -2178 *4) (|:| -2852 *5)))) - (-4 *2 (-172)) (-5 *1 (-463 *3 *2 *4 *5 *6 *7)) (-4 *4 (-850)) - (-4 *7 (-949 *2 *5 (-864 *3))))) - ((*1 *2 *1) (-12 (-4 *1 (-511 *2 *3)) (-4 *3 (-850)) (-4 *2 (-1099)))) - ((*1 *2 *1) - (-12 (-4 *2 (-558)) (-5 *1 (-623 *2 *3)) (-4 *3 (-1240 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-708 *2)) (-4 *2 (-1049)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1049)) (-5 *1 (-735 *2 *3)) (-4 *3 (-850)) - (-4 *3 (-726)))) - ((*1 *2 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)))) - ((*1 *2 *1) - (-12 (-4 *1 (-973 *2 *3 *4)) (-4 *3 (-792)) (-4 *4 (-850)) - (-4 *2 (-1049)))) + (-12 (-5 *2 (-566)) (-5 *1 (-317 *3)) (-4 *3 (-558)) (-4 *3 (-1099))))) +(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-862))) + ((*1 *1 *1 *1) (-4 *1 (-967)))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-644 *6)) (-4 *6 (-850)) (-4 *4 (-365)) (-4 *5 (-793)) + (-5 *1 (-506 *4 *5 *6 *2)) (-4 *2 (-949 *4 *5 *6)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1064 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) - (-4 *2 (-850))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-1175)) - (-4 *4 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) - (-5 *1 (-622 *4 *2)) (-4 *2 (-13 (-1199) (-959) (-29 *4)))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) - (-4 *4 (-850)))) - ((*1 *1) (-4 *1 (-1150)))) -(((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-862))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-365) (-848))) - (-5 *2 (-2 (|:| |start| *3) (|:| -4138 (-420 *3)))) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1240 (-169 *4)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) - (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 *3)) - (-5 *1 (-977 *4 *5 *6 *3)) (-4 *3 (-1064 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-644 *3)) (-4 *3 (-1064 *4 *5 *6)) (-4 *4 (-558)) - (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-977 *4 *5 *6 *3)))) + (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) + (-5 *1 (-506 *3 *4 *5 *2)) (-4 *2 (-949 *3 *4 *5))))) +(((*1 *1 *1 *1) (-4 *1 (-143))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) - (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 (-644 *7) (-644 *7))) (-5 *2 (-644 *7)) - (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-558)) (-4 *5 (-793)) - (-4 *6 (-850)) (-5 *1 (-977 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1171 *7)) (-4 *7 (-949 *6 *4 *5)) (-4 *4 (-793)) - (-4 *5 (-850)) (-4 *6 (-1049)) (-5 *2 (-1171 *6)) - (-5 *1 (-322 *4 *5 *6 *7))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-644 (-612 *4))) (-4 *4 (-432 *3)) (-4 *3 (-1099)) - (-5 *1 (-575 *3 *4)))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-889 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099))))) -(((*1 *2 *3 *4 *4 *4 *5 *6 *7) - (|partial| -12 (-5 *5 (-1175)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-644 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-644 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -2346 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1199) (-27) (-432 *8))) - (-4 *8 (-13 (-454) (-147) (-1038 *3) (-639 *3))) (-5 *3 (-566)) - (-5 *2 (-644 *4)) (-5 *1 (-1014 *8 *4))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-1157)) (-5 *1 (-97)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-1157)) (-5 *1 (-97))))) -(((*1 *2 *3 *4) - (-12 (-4 *2 (-1240 *4)) (-5 *1 (-807 *4 *2 *3 *5)) - (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *3 (-656 *2)) - (-4 *5 (-656 (-409 *2))))) - ((*1 *2 *3 *4) - (-12 (-4 *2 (-1240 *4)) (-5 *1 (-807 *4 *2 *5 *3)) - (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *5 (-656 *2)) - (-4 *3 (-656 (-409 *2)))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-205)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-644 (-381))) (-5 *2 (-381)) (-5 *1 (-205))))) -(((*1 *1 *1 *1) (-5 *1 (-862))) ((*1 *1 *1) (-5 *1 (-862))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1171 (-566))) (-5 *3 (-566)) (-4 *1 (-869 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) - (-4 *6 (-1064 *3 *4 *5)) (-5 *1 (-624 *3 *4 *5 *6 *7 *2)) - (-4 *7 (-1070 *3 *4 *5 *6)) (-4 *2 (-1108 *3 *4 *5 *6))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-792)))) - ((*1 *2 *1) - (-12 (-4 *1 (-384 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-1099)))) - ((*1 *2 *1) - (-12 (-14 *3 (-644 (-1175))) (-4 *4 (-172)) - (-4 *6 (-238 (-3018 *3) (-771))) - (-14 *7 - (-1 (-112) (-2 (|:| -2178 *5) (|:| -2852 *6)) - (-2 (|:| -2178 *5) (|:| -2852 *6)))) - (-5 *2 (-713 *5 *6 *7)) (-5 *1 (-463 *3 *4 *5 *6 *7 *8)) - (-4 *5 (-850)) (-4 *8 (-949 *4 *6 (-864 *3))))) - ((*1 *2 *1) - (-12 (-4 *2 (-726)) (-4 *2 (-850)) (-5 *1 (-735 *3 *2)) - (-4 *3 (-1049)))) - ((*1 *1 *1) - (-12 (-4 *1 (-973 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-792)) - (-4 *4 (-850))))) -(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1214)) (-4 *1 (-107 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1214))))) -(((*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-632))))) -(((*1 *2 *2) - (-12 (-4 *3 (-308)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) - (-5 *1 (-1123 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-157)))) - ((*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049))))) -(((*1 *2 *1) - (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1099)) (-4 *5 (-1099)) - (-4 *6 (-1099)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-684 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |preimage| (-644 *3)) (|:| |image| (-644 *3)))) - (-5 *1 (-905 *3)) (-4 *3 (-1099))))) -(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-862))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-644 (-689 *5))) (-5 *4 (-1264 *5)) (-4 *5 (-308)) - (-4 *5 (-1049)) (-5 *2 (-689 *5)) (-5 *1 (-1029 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) + (-12 (-4 *3 (-558)) (-5 *1 (-158 *3 *2)) (-4 *2 (-432 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-547))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) + (-12 (-5 *4 (-689 (-225))) (-5 *5 (-689 (-566))) (-5 *6 (-225)) + (-5 *3 (-566)) (-5 *2 (-1035)) (-5 *1 (-751))))) (((*1 *2 *3) - (-12 (-5 *3 (-644 (-1175))) (-5 *2 (-1269)) (-5 *1 (-1178)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-644 (-1175))) (-5 *3 (-1175)) (-5 *2 (-1269)) - (-5 *1 (-1178)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *4 (-644 (-1175))) (-5 *3 (-1175)) (-5 *2 (-1269)) - (-5 *1 (-1178))))) -(((*1 *2 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *3 (-792)) (-4 *2 (-1049)))) - ((*1 *2 *1) (-12 (-4 *1 (-432 *2)) (-4 *2 (-1099))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) - (-5 *2 (-1035)) (-5 *1 (-752))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-1 (-538) (-644 (-538)))) (-5 *1 (-114)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-538) (-644 (-538)))) (-5 *1 (-114)))) - ((*1 *1) (-5 *1 (-580)))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-169 (-225))) (-5 *5 (-566)) (-5 *6 (-1157)) - (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-758))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) -(((*1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-759))))) -(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-97))))) -(((*1 *2 *1) (-12 (-4 *1 (-406)) (-5 *2 (-566)))) - ((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-699))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-644 *4)) (-4 *4 (-1099)) (-4 *4 (-1214)) (-5 *2 (-112)) - (-5 *1 (-1155 *4))))) -(((*1 *1) (-5 *1 (-292)))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-365)) (-5 *2 (-2 (|:| -2275 *3) (|:| -2513 *3))) - (-5 *1 (-766 *3 *4)) (-4 *3 (-708 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-365)) (-4 *3 (-1049)) - (-5 *2 (-2 (|:| -2275 *1) (|:| -2513 *1))) (-4 *1 (-852 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-365)) (-4 *5 (-1049)) - (-5 *2 (-2 (|:| -2275 *3) (|:| -2513 *3))) (-5 *1 (-853 *5 *3)) - (-4 *3 (-852 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 *7)) (-4 *7 (-850)) - (-4 *8 (-949 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-793)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1264 (-409 *8)) "failed")) - (|:| -2365 (-644 (-1264 (-409 *8)))))) - (-5 *1 (-669 *5 *6 *7 *8))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-112)) (-5 *5 (-1101 (-771))) (-5 *6 (-771)) - (-5 *2 - (-2 (|:| |contp| (-566)) - (|:| -4138 (-644 (-2 (|:| |irr| *3) (|:| -3149 (-566))))))) - (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)) - (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-432 *3)) (-4 *3 (-1099)) (-5 *2 (-112))))) -(((*1 *1 *1) - (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) - (-4 *3 (-1064 *6 *7 *8)) - (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -3570 *4)))) - (-5 *1 (-1071 *6 *7 *8 *3 *4)) (-4 *4 (-1070 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-644 (-2 (|:| |val| (-644 *8)) (|:| -3570 *9)))) - (-5 *5 (-112)) (-4 *8 (-1064 *6 *7 *4)) (-4 *9 (-1070 *6 *7 *4 *8)) - (-4 *6 (-454)) (-4 *7 (-793)) (-4 *4 (-850)) - (-5 *2 (-644 (-2 (|:| |val| *8) (|:| -3570 *9)))) - (-5 *1 (-1071 *6 *7 *4 *8 *9))))) -(((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1002)))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-1264 *5)) (-5 *3 (-771)) (-5 *4 (-1119)) (-4 *5 (-351)) - (-5 *1 (-530 *5))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114))))) -(((*1 *2 *1) - (-12 (-5 *2 (-644 (-2 (|:| |k| (-1175)) (|:| |c| (-1286 *3))))) - (-5 *1 (-1286 *3)) (-4 *3 (-1049)))) - ((*1 *2 *1) - (-12 (-5 *2 (-644 (-2 (|:| |k| *3) (|:| |c| (-1288 *3 *4))))) - (-5 *1 (-1288 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049))))) -(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) -(((*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-1267))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) (-4 *5 (-793)) - (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) - (-4 *3 (-1064 *4 *5 *6)) - (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -3570 *1)))) - (-4 *1 (-1070 *4 *5 *6 *3))))) -(((*1 *1 *1) (-4 *1 (-243))) - ((*1 *1 *1) - (-12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1240 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) - (-2809 (-12 (-5 *1 (-295 *2)) (-4 *2 (-365)) (-4 *2 (-1214))) - (-12 (-5 *1 (-295 *2)) (-4 *2 (-475)) (-4 *2 (-1214))))) - ((*1 *1 *1) (-4 *1 (-475))) - ((*1 *2 *2) (-12 (-5 *2 (-1264 *3)) (-4 *3 (-351)) (-5 *1 (-530 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-715 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)) (-4 *2 (-365))))) -(((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1002)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1099)) (-4 *4 (-13 (-1049) (-886 *3) (-614 *2))) - (-5 *2 (-892 *3)) (-5 *1 (-1075 *3 *4 *5)) - (-4 *5 (-13 (-432 *4) (-886 *3) (-614 *2)))))) -(((*1 *1) - (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-558)) (-4 *2 (-172))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-566)) (-4 *3 (-172)) (-4 *5 (-375 *3)) - (-4 *6 (-375 *3)) (-5 *1 (-688 *3 *5 *6 *2)) - (-4 *2 (-687 *3 *5 *6))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-566)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1214)) - (-4 *3 (-375 *4)) (-4 *5 (-375 *4))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-644 (-281))) (-5 *1 (-281)))) - ((*1 *2 *1) (-12 (-5 *2 (-644 (-1180))) (-5 *1 (-1180))))) -(((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1157)) (-5 *1 (-306))))) + (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) + (-5 *2 (-689 *4)))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-689 *4)) (-5 *1 (-418 *3 *4)) + (-4 *3 (-419 *4)))) + ((*1 *2) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-689 *3))))) (((*1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-454))))) -(((*1 *2 *2) - (-12 (-5 *2 (-644 *3)) (-4 *3 (-1240 (-566))) (-5 *1 (-488 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1049))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1171 *1)) (-5 *4 (-1175)) (-4 *1 (-27)) - (-5 *2 (-644 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1171 *1)) (-4 *1 (-27)) (-5 *2 (-644 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-952 *1)) (-4 *1 (-27)) (-5 *2 (-644 *1)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1175)) (-4 *4 (-558)) (-5 *2 (-644 *1)) - (-4 *1 (-29 *4)))) - ((*1 *2 *1) (-12 (-4 *3 (-558)) (-5 *2 (-644 *1)) (-4 *1 (-29 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-317 (-225))) (-5 *4 (-644 (-1175))) - (-5 *5 (-1093 (-843 (-225)))) (-5 *2 (-1155 (-225))) (-5 *1 (-301))))) -(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-1155 *3))) (-5 *2 (-1155 *3)) (-5 *1 (-1159 *3)) - (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049))))) -(((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1269)) (-5 *1 (-1178))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-612 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *4))) - (-4 *4 (-13 (-558) (-1038 (-566)) (-639 (-566)))) - (-5 *1 (-278 *4 *2))))) -(((*1 *1 *1) - (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) - (-4 *4 (-375 *2))))) -(((*1 *1 *2) - (-12 - (-5 *2 - (-644 - (-2 - (|:| -2004 - (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) - (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (|:| -3867 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1155 (-225))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2446 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-561))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-921)) (-5 *2 (-771)) (-5 *1 (-1100 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-644 *1)) (-4 *1 (-1064 *4 *5 *6)) (-4 *4 (-1049)) - (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) - (-4 *5 (-850)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) - (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1207 *4 *5 *6 *3)) (-4 *4 (-558)) (-4 *5 (-793)) - (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1099)) (-4 *2 (-900 *5)) (-5 *1 (-692 *5 *2 *3 *4)) - (-4 *3 (-375 *2)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4414))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) - ((*1 *2) (-12 (-5 *2 (-904 (-566))) (-5 *1 (-917))))) -(((*1 *2 *3) - (-12 (-4 *4 (-351)) (-4 *5 (-330 *4)) (-4 *6 (-1240 *5)) - (-5 *2 (-644 *3)) (-5 *1 (-777 *4 *5 *6 *3 *7)) (-4 *3 (-1240 *6)) - (-14 *7 (-921))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1175)) - (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) - (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1199) (-432 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) - (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-409 (-566))) - (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) - (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5))) - (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) - (-5 *1 (-316 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-295 *3)) (-5 *5 (-409 (-566))) - (-4 *3 (-13 (-27) (-1199) (-432 *6))) - (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) - (-5 *1 (-316 *6 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-409 (-566)))) (-5 *4 (-295 *8)) - (-5 *5 (-1231 (-409 (-566)))) (-5 *6 (-409 (-566))) - (-4 *8 (-13 (-27) (-1199) (-432 *7))) - (-4 *7 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) - (-5 *1 (-461 *7 *8)))) - ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1175)) (-5 *5 (-295 *3)) (-5 *6 (-1231 (-409 (-566)))) - (-5 *7 (-409 (-566))) (-4 *3 (-13 (-27) (-1199) (-432 *8))) - (-4 *8 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) - (-5 *1 (-461 *8 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-409 (-566))) (-4 *4 (-1049)) (-4 *1 (-1247 *4 *3)) - (-4 *3 (-1224 *4))))) -(((*1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1267)))) - ((*1 *2 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1267))))) -(((*1 *2 *3 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-771)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-793)) (-4 *7 (-949 *4 *5 *6)) (-4 *4 (-454)) (-4 *6 (-850)) - (-5 *2 (-112)) (-5 *1 (-451 *4 *5 *6 *7))))) -(((*1 *2 *1 *1 *3 *4) - (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) - (-4 *5 (-13 (-1099) (-34))) (-4 *6 (-13 (-1099) (-34))) - (-5 *2 (-112)) (-5 *1 (-1139 *5 *6))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-147)) - (-4 *3 (-308)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) - (-5 *1 (-977 *3 *4 *5 *6))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2275 *1) (|:| -2513 *1))) (-4 *1 (-308)))) - ((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-388 *3)) (|:| |rm| (-388 *3)))) - (-5 *1 (-388 *3)) (-4 *3 (-1099)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2275 (-771)) (|:| -2513 (-771)))) - (-5 *1 (-771)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| -2275 *3) (|:| -2513 *3))) - (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4))))) -(((*1 *1 *2) - (-12 (-4 *3 (-1049)) (-5 *1 (-827 *2 *3)) (-4 *2 (-708 *3))))) -(((*1 *2 *3) - (-12 (-14 *4 (-644 (-1175))) (-14 *5 (-771)) - (-5 *2 - (-644 - (-506 (-409 (-566)) (-240 *5 (-771)) (-864 *4) - (-247 *4 (-409 (-566)))))) - (-5 *1 (-507 *4 *5)) - (-5 *3 - (-506 (-409 (-566)) (-240 *5 (-771)) (-864 *4) - (-247 *4 (-409 (-566)))))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-644 *7)) (|:| -3570 *8))) - (-4 *7 (-1064 *4 *5 *6)) (-4 *8 (-1070 *4 *5 *6 *7)) (-4 *4 (-454)) - (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) - (-5 *1 (-988 *4 *5 *6 *7 *8)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-644 *7)) (|:| -3570 *8))) - (-4 *7 (-1064 *4 *5 *6)) (-4 *8 (-1070 *4 *5 *6 *7)) (-4 *4 (-454)) - (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) - (-5 *1 (-1106 *4 *5 *6 *7 *8))))) -(((*1 *1 *1 *2 *2) - (|partial| -12 (-5 *2 (-921)) (-5 *1 (-1100 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) -(((*1 *1 *2) - (-12 (-5 *2 (-644 (-921))) (-5 *1 (-1100 *3 *4)) (-14 *3 (-921)) - (-14 *4 (-921))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-649 *3 *4 *5)) (-4 *3 (-1099)) - (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1175)) - (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) - (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1199) (-432 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) - (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-566)) (-4 *5 (-13 (-454) (-1038 *4) (-639 *4))) - (-5 *2 (-52)) (-5 *1 (-316 *5 *3)) - (-4 *3 (-13 (-27) (-1199) (-432 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5))) - (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) - (-5 *1 (-316 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *6))) - (-4 *6 (-13 (-454) (-1038 *5) (-639 *5))) (-5 *5 (-566)) - (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-566))) (-5 *4 (-295 *7)) (-5 *5 (-1231 (-566))) - (-4 *7 (-13 (-27) (-1199) (-432 *6))) - (-4 *6 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) - (-5 *1 (-461 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1175)) (-5 *5 (-295 *3)) (-5 *6 (-1231 (-566))) - (-4 *3 (-13 (-27) (-1199) (-432 *7))) - (-4 *7 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) - (-5 *1 (-461 *7 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-566)) (-4 *4 (-1049)) (-4 *1 (-1226 *4 *3)) - (-4 *3 (-1255 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1247 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-1224 *3))))) -(((*1 *2 *2) (-12 (-5 *1 (-588 *2)) (-4 *2 (-547))))) -(((*1 *1 *1) (-5 *1 (-48))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1214)) - (-4 *2 (-1214)) (-5 *1 (-58 *5 *2)))) - ((*1 *2 *3 *1 *2 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1099)) (|has| *1 (-6 -4414)) - (-4 *1 (-151 *2)) (-4 *2 (-1214)))) - ((*1 *2 *3 *1 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4414)) (-4 *1 (-151 *2)) - (-4 *2 (-1214)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4414)) (-4 *1 (-151 *2)) - (-4 *2 (-1214)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1049)) - (-5 *2 (-2 (|:| -2495 (-1171 *4)) (|:| |deg| (-921)))) - (-5 *1 (-221 *4 *5)) (-5 *3 (-1171 *4)) (-4 *5 (-558)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-240 *5 *6)) (-14 *5 (-771)) - (-4 *6 (-1214)) (-4 *2 (-1214)) (-5 *1 (-239 *5 *6 *2)))) - ((*1 *1 *2 *3) - (-12 (-4 *4 (-172)) (-5 *1 (-290 *4 *2 *3 *5 *6 *7)) - (-4 *2 (-1240 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3)) - (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-317 *2)) (-4 *2 (-558)) (-4 *2 (-1099)))) - ((*1 *1 *1) - (-12 (-4 *1 (-337 *2 *3 *4 *5)) (-4 *2 (-365)) (-4 *3 (-1240 *2)) - (-4 *4 (-1240 (-409 *3))) (-4 *5 (-344 *2 *3 *4)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1214)) (-4 *2 (-1214)) - (-5 *1 (-373 *5 *4 *2 *6)) (-4 *4 (-375 *5)) (-4 *6 (-375 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1099)) (-4 *2 (-1099)) - (-5 *1 (-425 *5 *4 *2 *6)) (-4 *4 (-427 *5)) (-4 *6 (-427 *2)))) - ((*1 *1 *1) (-5 *1 (-497))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-644 *5)) (-4 *5 (-1214)) - (-4 *2 (-1214)) (-5 *1 (-642 *5 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1049)) (-4 *2 (-1049)) - (-4 *6 (-375 *5)) (-4 *7 (-375 *5)) (-4 *8 (-375 *2)) - (-4 *9 (-375 *2)) (-5 *1 (-685 *5 *6 *7 *4 *2 *8 *9 *10)) - (-4 *4 (-687 *5 *6 *7)) (-4 *10 (-687 *2 *8 *9)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1049)) (-5 *1 (-712 *3 *2)) (-4 *2 (-1240 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-715 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-409 *4)) (-4 *4 (-1240 *3)) (-4 *3 (-365)) - (-4 *3 (-172)) (-4 *1 (-724 *3 *4)))) - ((*1 *1 *2) - (-12 (-4 *3 (-172)) (-4 *1 (-724 *3 *2)) (-4 *2 (-1240 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-958 *5)) (-4 *5 (-1214)) - (-4 *2 (-1214)) (-5 *1 (-957 *5 *2)))) - ((*1 *1 *2) - (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) - (-5 *1 (-1034 *3 *4 *5 *2 *6)) (-4 *2 (-949 *3 *4 *5)) - (-14 *6 (-644 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1049)) (-4 *2 (-1049)) - (-14 *5 (-771)) (-14 *6 (-771)) (-4 *8 (-238 *6 *7)) - (-4 *9 (-238 *5 *7)) (-4 *10 (-238 *6 *2)) (-4 *11 (-238 *5 *2)) - (-5 *1 (-1055 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) - (-4 *4 (-1053 *5 *6 *7 *8 *9)) (-4 *12 (-1053 *5 *6 *2 *10 *11)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1155 *5)) (-4 *5 (-1214)) - (-4 *2 (-1214)) (-5 *1 (-1153 *5 *2)))) - ((*1 *2 *2 *1 *3 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) - (-4 *1 (-1207 *5 *6 *7 *2)) (-4 *5 (-558)) (-4 *6 (-793)) - (-4 *7 (-850)) (-4 *2 (-1064 *5 *6 *7)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1264 *5)) (-4 *5 (-1214)) - (-4 *2 (-1214)) (-5 *1 (-1263 *5 *2))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-862) (-862))) (-5 *1 (-114)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-862) (-644 (-862)))) (-5 *1 (-114)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-1 (-862) (-644 (-862)))) (-5 *1 (-114)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1269)) (-5 *1 (-214 *3)) - (-4 *3 - (-13 (-850) - (-10 -8 (-15 -4390 ((-1157) $ (-1175))) (-15 -1675 (*2 $)) - (-15 -3997 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-396)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *2 (-1269)) (-5 *1 (-396)))) - ((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-504)))) - ((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-710)))) - ((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-1194)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *2 (-1269)) (-5 *1 (-1194))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1256 *2 *3 *4)) (-4 *2 (-1049)) (-14 *3 (-1175)) - (-14 *4 *2)))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *2 (-169 (-317 *4))) - (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 (-169 *4)))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) - (-5 *2 (-169 *3)) (-5 *1 (-1203 *4 *3)) - (-4 *3 (-13 (-27) (-1199) (-432 *4)))))) -(((*1 *1) (-5 *1 (-1266)))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-644 *3)) (-4 *3 (-949 *5 *6 *7)) (-4 *5 (-454)) - (-4 *6 (-793)) (-4 *7 (-850)) - (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) - (-5 *1 (-451 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172))))) -(((*1 *2 *1) (-12 (-5 *2 (-186)) (-5 *1 (-138)))) - ((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-186))))) -(((*1 *2 *2) - (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1199)))))) -(((*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1175)) - (-4 *4 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) - (-5 *1 (-428 *4 *2)) (-4 *2 (-13 (-1199) (-29 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-1175)) (-4 *5 (-147)) - (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-317 *5)) - (-5 *1 (-590 *5))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-588 *2)) (-4 *2 (-547))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) - (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) - (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-66 FUNCT1)))) - (-5 *2 (-1035)) (-5 *1 (-753))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1101 *4)) (-4 *4 (-1099)) (-5 *2 (-1 *4)) - (-5 *1 (-1017 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1040)) (-5 *3 (-381)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1093 (-566))) (-5 *2 (-1 (-566))) (-5 *1 (-1047))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-612 *6)) (-4 *6 (-13 (-432 *5) (-27) (-1199))) - (-4 *5 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) - (-5 *2 (-1171 (-409 (-1171 *6)))) (-5 *1 (-562 *5 *6 *7)) - (-5 *3 (-1171 *6)) (-4 *7 (-1099)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1240 *3)) (-5 *1 (-712 *3 *2)) (-4 *3 (-1049)))) - ((*1 *2 *1) - (-12 (-4 *1 (-724 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1240 *3)))) - ((*1 *2 *3 *4 *4 *5 *6 *7 *8) - (|partial| -12 (-5 *4 (-1171 *11)) (-5 *6 (-644 *10)) - (-5 *7 (-644 (-771))) (-5 *8 (-644 *11)) (-4 *10 (-850)) - (-4 *11 (-308)) (-4 *9 (-793)) (-4 *5 (-949 *11 *9 *10)) - (-5 *2 (-644 (-1171 *5))) (-5 *1 (-742 *9 *10 *11 *5)) - (-5 *3 (-1171 *5)))) - ((*1 *2 *1) - (-12 (-4 *2 (-949 *3 *4 *5)) (-5 *1 (-1034 *3 *4 *5 *2 *6)) - (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-14 *6 (-644 *2))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-558)) - (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) - (-5 *1 (-977 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1175)) - (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) - (-4 *4 (-13 (-29 *6) (-1199) (-959))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -2365 (-644 *4)))) - (-5 *1 (-801 *6 *4 *3)) (-4 *3 (-656 *4))))) -(((*1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1267))))) -(((*1 *2 *1) - (-12 (-5 *2 (-691 (-966 *3))) (-5 *1 (-966 *3)) (-4 *3 (-1099))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-324 *3 *4)) (-4 *3 (-1099)) - (-4 *4 (-131)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1099)) (-5 *1 (-363 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1099)) (-5 *1 (-388 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1099)) (-5 *1 (-649 *3 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-689 *1)) (-4 *1 (-351)) (-5 *2 (-1264 *1)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-689 *1)) (-4 *1 (-145)) (-4 *1 (-909)) - (-5 *2 (-1264 *1))))) -(((*1 *2 *1) (-12 (-5 *2 (-822)) (-5 *1 (-821))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) - (-4 *3 (-1064 *5 *6 *7)) - (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -3570 *4)))) - (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-334)) (-5 *1 (-249))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) - (-4 *3 (-369 *4)))) - ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) - ((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-1265)))) - ((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-1266))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-566)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-420 *2)) (-4 *2 (-558))))) -(((*1 *2 *2) - (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1199)))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-508)) (-5 *1 (-281)))) - ((*1 *2 *1) - (-12 (-5 *2 (-3 (-566) (-225) (-508) (-1157) (-1180))) - (-5 *1 (-1180))))) -(((*1 *1 *1) - (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) - (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) - (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) - (-5 *1 (-977 *4 *5 *6 *3)) (-4 *3 (-1064 *4 *5 *6))))) -(((*1 *1 *1) - (-12 (-4 *1 (-254 *2 *3 *4 *5)) (-4 *2 (-1049)) (-4 *3 (-850)) - (-4 *4 (-267 *3)) (-4 *5 (-793))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1264 (-644 (-2 (|:| -2233 *4) (|:| -2178 (-1119)))))) - (-4 *4 (-351)) (-5 *2 (-1269)) (-5 *1 (-530 *4))))) -(((*1 *2) - (-12 (-4 *3 (-558)) (-5 *2 (-644 (-689 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-419 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) - ((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) - ((*1 *1 *1) (-4 *1 (-1138)))) -(((*1 *2 *3) - (-12 (-4 *4 (-558)) (-5 *2 (-169 *5)) (-5 *1 (-600 *4 *5 *3)) - (-4 *5 (-13 (-432 *4) (-1002) (-1199))) - (-4 *3 (-13 (-432 (-169 *4)) (-1002) (-1199)))))) -(((*1 *2) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) - (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112))))) + (-12 (-5 *4 (-1 (-644 *5) *6)) + (-4 *5 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *6 (-1240 *5)) + (-5 *2 (-644 (-2 (|:| -1623 *5) (|:| -3434 *3)))) + (-5 *1 (-809 *5 *6 *3 *7)) (-4 *3 (-656 *6)) + (-4 *7 (-656 (-409 *6)))))) (((*1 *2 *3) - (-12 (-5 *3 (-317 (-381))) (-5 *2 (-317 (-225))) (-5 *1 (-306))))) -(((*1 *2 *2) (-12 (-5 *2 (-771)) (-5 *1 (-447 *3)) (-4 *3 (-1049)))) - ((*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-447 *3)) (-4 *3 (-1049))))) -(((*1 *1) (-12 (-4 *1 (-427 *2)) (-4 *2 (-370)) (-4 *2 (-1099))))) -(((*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-1178)))) - ((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1269)) (-5 *1 (-1178)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-1175)) (-5 *2 (-1269)) (-5 *1 (-1178))))) + (-12 (-5 *3 (-644 *4)) (-4 *4 (-848)) (-4 *4 (-365)) (-5 *2 (-771)) + (-5 *1 (-945 *4 *5)) (-4 *5 (-1240 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) -(((*1 *2 *2) - (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1199)))))) -(((*1 *2) - (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) - (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) - (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-644 (-1084))) (-5 *1 (-292))))) -(((*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-303)))) - ((*1 *1 *1) (-4 *1 (-303))) ((*1 *1 *1) (-5 *1 (-862)))) -(((*1 *2 *3 *3 *3 *3 *4 *5) - (-12 (-5 *3 (-225)) (-5 *4 (-566)) - (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2371)))) - (-5 *2 (-1035)) (-5 *1 (-746))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-558)) (-4 *3 (-1049)) - (-5 *2 (-2 (|:| -2275 *1) (|:| -2513 *1))) (-4 *1 (-852 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-558)) (-4 *5 (-1049)) - (-5 *2 (-2 (|:| -2275 *3) (|:| -2513 *3))) (-5 *1 (-853 *5 *3)) - (-4 *3 (-852 *5))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-921)) (-4 *4 (-370)) (-4 *4 (-365)) (-5 *2 (-1171 *1)) - (-4 *1 (-330 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1171 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-172)) (-4 *3 (-365)) - (-4 *2 (-1240 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1264 *4)) (-4 *4 (-351)) (-5 *2 (-1171 *4)) - (-5 *1 (-530 *4))))) -(((*1 *2 *3) - (|partial| -12 (-5 *2 (-566)) (-5 *1 (-571 *3)) (-4 *3 (-1038 *2))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *6 (-921)) (-4 *5 (-308)) (-4 *3 (-1240 *5)) - (-5 *2 (-2 (|:| |plist| (-644 *3)) (|:| |modulo| *5))) - (-5 *1 (-462 *5 *3)) (-5 *4 (-644 *3))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1012)) (-5 *2 (-862))))) -(((*1 *2 *1) (-12 (-5 *1 (-914 *2)) (-4 *2 (-308))))) -(((*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-5 *1 (-1188 *2)) (-4 *2 (-365))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2214 (-782 *3)) (|:| |coef2| (-782 *3)))) - (-5 *1 (-782 *3)) (-4 *3 (-558)) (-4 *3 (-1049)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-558)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) - (-5 *2 (-2 (|:| -2214 *1) (|:| |coef2| *1))) - (-4 *1 (-1064 *3 *4 *5))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) - (-4 *4 (-850))))) -(((*1 *2 *2 *2 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-612 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1175))) - (-4 *2 (-13 (-432 *5) (-27) (-1199))) - (-4 *5 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) - (-5 *1 (-568 *5 *2 *6)) (-4 *6 (-1099))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-432 *3) (-1002))) (-5 *1 (-277 *3 *2)) - (-4 *3 (-558))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-114)))) - ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-114)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1049)) (-4 *3 (-850)) - (-4 *5 (-267 *3)) (-4 *6 (-793)) (-5 *2 (-771)))) - ((*1 *2 *1) - (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-850)) - (-4 *5 (-267 *4)) (-4 *6 (-793)) (-5 *2 (-771)))) - ((*1 *2 *1) (-12 (-4 *1 (-267 *3)) (-4 *3 (-850)) (-5 *2 (-771))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1038 (-566))) (-4 *3 (-558)) (-5 *1 (-32 *3 *2)) - (-4 *2 (-432 *3)))) - ((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-1171 *4)) (-5 *1 (-165 *3 *4)) - (-4 *3 (-166 *4)))) - ((*1 *1 *1) (-12 (-4 *1 (-1049)) (-4 *1 (-303)))) - ((*1 *2) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1171 *3)))) - ((*1 *2) (-12 (-4 *1 (-724 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1240 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1067 *3 *2)) (-4 *3 (-13 (-848) (-365))) - (-4 *2 (-1240 *3))))) -(((*1 *2 *3 *4 *4 *5 *3) - (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) - (-5 *2 (-1035)) (-5 *1 (-752))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-141)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-144))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) - (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-3 (-112) (-644 *1))) - (-4 *1 (-1070 *4 *5 *6 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-409 (-566))) (-4 *1 (-556 *3)) - (-4 *3 (-13 (-406) (-1199))))) - ((*1 *1 *2) (-12 (-4 *1 (-556 *2)) (-4 *2 (-13 (-406) (-1199))))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-556 *2)) (-4 *2 (-13 (-406) (-1199)))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) - (-5 *1 (-747))))) -(((*1 *1) (-5 *1 (-292)))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-566)) (-5 *1 (-317 *3)) (-4 *3 (-558)) (-4 *3 (-1099))))) -(((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1002)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1002)))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-771)) (-4 *1 (-983 *2)) (-4 *2 (-1199))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-454)) (-4 *4 (-558)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| -2871 *4))) (-5 *1 (-969 *4 *3)) - (-4 *3 (-1240 *4))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-644 (-2 (|:| |totdeg| (-771)) (|:| -2495 *3)))) - (-5 *4 (-771)) (-4 *3 (-949 *5 *6 *7)) (-4 *5 (-454)) (-4 *6 (-793)) - (-4 *7 (-850)) (-5 *1 (-451 *5 *6 *7 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-508)) (-5 *1 (-114)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-114))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-141)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-144))))) -(((*1 *2 *3) - (-12 (|has| *6 (-6 -4415)) (-4 *4 (-365)) (-4 *5 (-375 *4)) - (-4 *6 (-375 *4)) (-5 *2 (-644 *6)) (-5 *1 (-523 *4 *5 *6 *3)) - (-4 *3 (-687 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (|has| *9 (-6 -4415)) (-4 *4 (-558)) (-4 *5 (-375 *4)) - (-4 *6 (-375 *4)) (-4 *7 (-992 *4)) (-4 *8 (-375 *7)) - (-4 *9 (-375 *7)) (-5 *2 (-644 *6)) - (-5 *1 (-524 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-687 *4 *5 *6)) - (-4 *10 (-687 *7 *8 *9)))) - ((*1 *2 *1) - (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-4 *3 (-558)) (-5 *2 (-644 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-558)) (-4 *4 (-172)) (-4 *5 (-375 *4)) - (-4 *6 (-375 *4)) (-5 *2 (-644 *6)) (-5 *1 (-688 *4 *5 *6 *3)) - (-4 *3 (-687 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-558)) - (-5 *2 (-644 *7))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365))))) -(((*1 *2 *3) - (-12 (-5 *3 (-927)) - (-5 *2 - (-2 (|:| |brans| (-644 (-644 (-943 (-225))))) - (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225))))) - (-5 *1 (-153)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-927)) (-5 *4 (-409 (-566))) - (-5 *2 - (-2 (|:| |brans| (-644 (-644 (-943 (-225))))) - (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225))))) - (-5 *1 (-153)))) - ((*1 *2 *3) - (-12 - (-5 *2 - (-2 (|:| |brans| (-644 (-644 (-943 (-225))))) - (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225))))) - (-5 *1 (-153)) (-5 *3 (-644 (-943 (-225)))))) - ((*1 *2 *3) - (-12 - (-5 *2 - (-2 (|:| |brans| (-644 (-644 (-943 (-225))))) - (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225))))) - (-5 *1 (-153)) (-5 *3 (-644 (-644 (-943 (-225))))))) - ((*1 *1 *2) (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *1 (-264)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264))))) -(((*1 *1 *2) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-217))))) -(((*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1157)) (-5 *1 (-710))))) + (-12 (-5 *4 (-566)) (-4 *2 (-432 *3)) (-5 *1 (-32 *3 *2)) + (-4 *3 (-1038 *4)) (-4 *3 (-558))))) +(((*1 *1 *2 *2 *2) + (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1199))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365)))) + ((*1 *1 *2) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365)))) + ((*1 *2 *1 *3 *4 *4) + (-12 (-5 *3 (-921)) (-5 *4 (-381)) (-5 *2 (-1269)) (-5 *1 (-1265))))) (((*1 *1 *1) (-4 *1 (-173))) ((*1 *1 *1) (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099))))) -(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1214))))) -(((*1 *2 *3 *3 *3 *4 *5 *6) - (-12 (-5 *3 (-317 (-566))) (-5 *4 (-1 (-225) (-225))) - (-5 *5 (-1093 (-225))) (-5 *6 (-644 (-264))) (-5 *2 (-1132 (-225))) - (-5 *1 (-697))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))) -(((*1 *2 *3) - (-12 (-5 *3 (-771)) (-5 *2 (-1269)) (-5 *1 (-866 *4 *5 *6 *7)) - (-4 *4 (-1049)) (-14 *5 (-644 (-1175))) (-14 *6 (-644 *3)) - (-14 *7 *3))) - ((*1 *2 *3) - (-12 (-5 *3 (-771)) (-4 *4 (-1049)) (-4 *5 (-850)) (-4 *6 (-793)) - (-14 *8 (-644 *5)) (-5 *2 (-1269)) - (-5 *1 (-1276 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-949 *4 *6 *5)) - (-14 *9 (-644 *3)) (-14 *10 *3)))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-429 *3 *2)) (-4 *3 (-13 (-172) (-38 (-409 (-566))))) - (-4 *2 (-13 (-850) (-21)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) -(((*1 *1 *1 *1) (-5 *1 (-862)))) -(((*1 *2 *3) (-12 (-5 *3 (-644 (-52))) (-5 *2 (-1269)) (-5 *1 (-863))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-771)) (-5 *1 (-588 *2)) (-4 *2 (-547))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1255 *4)) - (-4 *4 (-38 (-409 (-566)))) - (-5 *2 (-1 (-1155 *4) (-1155 *4) (-1155 *4))) (-5 *1 (-1257 *4 *5))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1175)) (-5 *5 (-644 (-409 (-952 *6)))) - (-5 *3 (-409 (-952 *6))) - (-4 *6 (-13 (-558) (-1038 (-566)) (-147))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-572 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-822))))) -(((*1 *2) - (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) - (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-1269)) - (-5 *1 (-988 *3 *4 *5 *6 *7)) (-4 *7 (-1070 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) - (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-1269)) - (-5 *1 (-1106 *3 *4 *5 *6 *7)) (-4 *7 (-1070 *3 *4 *5 *6))))) -(((*1 *2 *3 *3) - (-12 (-4 *3 (-308)) (-4 *3 (-172)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-5 *2 (-2 (|:| -2275 *3) (|:| -2513 *3))) - (-5 *1 (-688 *3 *4 *5 *6)) (-4 *6 (-687 *3 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-2 (|:| -2275 *3) (|:| -2513 *3))) (-5 *1 (-700 *3)) - (-4 *3 (-308))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) - (-12 (-5 *3 (-566)) (-5 *4 (-1157)) (-5 *5 (-689 (-225))) - (-5 *2 (-1035)) (-5 *1 (-747))))) -(((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1002)))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-1264 - (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) - (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -2556 (-566)) - (|:| -2720 (-566)) (|:| |spline| (-566)) (|:| -3668 (-566)) - (|:| |axesColor| (-874)) (|:| -3206 (-566)) - (|:| |unitsColor| (-874)) (|:| |showing| (-566))))) - (-5 *1 (-1265))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-381)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) - ((*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-612 (-48)))) (-5 *1 (-48)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-612 (-48))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1171 (-48))) (-5 *3 (-644 (-612 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1171 (-48))) (-5 *3 (-612 (-48))) (-5 *1 (-48)))) - ((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-365) (-848))) (-5 *1 (-181 *2 *3)) - (-4 *3 (-1240 (-169 *2))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-921)) (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)))) - ((*1 *2 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-365)))) - ((*1 *2 *1) - (-12 (-4 *1 (-372 *2 *3)) (-4 *3 (-1240 *2)) (-4 *2 (-172)))) - ((*1 *2 *1) - (-12 (-4 *4 (-1240 *2)) (-4 *2 (-992 *3)) (-5 *1 (-415 *3 *2 *4 *5)) - (-4 *3 (-308)) (-4 *5 (-13 (-411 *2 *4) (-1038 *2))))) - ((*1 *2 *1) - (-12 (-4 *4 (-1240 *2)) (-4 *2 (-992 *3)) - (-5 *1 (-416 *3 *2 *4 *5 *6)) (-4 *3 (-308)) (-4 *5 (-411 *2 *4)) - (-14 *6 (-1264 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-921)) (-4 *5 (-1049)) - (-4 *2 (-13 (-406) (-1038 *5) (-365) (-1199) (-285))) - (-5 *1 (-445 *5 *3 *2)) (-4 *3 (-1240 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-612 (-497)))) (-5 *1 (-497)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-612 (-497))) (-5 *1 (-497)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1171 (-497))) (-5 *3 (-644 (-612 (-497)))) - (-5 *1 (-497)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1171 (-497))) (-5 *3 (-612 (-497))) (-5 *1 (-497)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1264 *4)) (-5 *3 (-921)) (-4 *4 (-351)) - (-5 *1 (-530 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-454)) (-4 *5 (-724 *4 *2)) (-4 *2 (-1240 *4)) - (-5 *1 (-775 *4 *2 *5 *3)) (-4 *3 (-1240 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) - ((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)))) - ((*1 *1 *1) (-4 *1 (-1059)))) -(((*1 *2 *1) (|partial| -12 (-4 *1 (-1012)) (-5 *2 (-862))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1215 *3)) (-4 *3 (-1099))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-566)) (-5 *2 (-112)) (-5 *1 (-555))))) -(((*1 *1 *1 *1) (-4 *1 (-547)))) -(((*1 *1) (-5 *1 (-508)))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) (-4 *5 (-793)) - (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *3 (-558)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-419 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *3) - (-12 (-4 *4 (-558)) (-4 *2 (-13 (-432 *4) (-1002) (-1199))) - (-5 *1 (-600 *4 *2 *3)) - (-4 *3 (-13 (-432 (-169 *4)) (-1002) (-1199)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) - (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 *4)) - (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))) -(((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1240 (-566)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-824))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-644 (-171))))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-644 (-264))) (-5 *4 (-1175)) - (-5 *1 (-263 *2)) (-4 *2 (-1214)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-644 (-264))) (-5 *4 (-1175)) (-5 *2 (-52)) - (-5 *1 (-264))))) -(((*1 *2 *3) - (-12 (-5 *3 (-689 (-409 (-952 (-566))))) (-5 *2 (-644 (-317 (-566)))) - (-5 *1 (-1031))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-409 *2)) (-4 *2 (-1240 *5)) - (-5 *1 (-807 *5 *2 *3 *6)) - (-4 *5 (-13 (-365) (-147) (-1038 (-409 (-566))))) - (-4 *3 (-656 *2)) (-4 *6 (-656 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-644 (-409 *2))) (-4 *2 (-1240 *5)) - (-5 *1 (-807 *5 *2 *3 *6)) - (-4 *5 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *3 (-656 *2)) - (-4 *6 (-656 (-409 *2)))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-566)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-771)) (-4 *5 (-172)))) - ((*1 *1 *1) - (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-566)) (-14 *3 (-771)) - (-4 *4 (-172)))) - ((*1 *1 *1) - (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) - (-4 *4 (-375 *2)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1049)) (-4 *1 (-687 *3 *2 *4)) (-4 *2 (-375 *3)) - (-4 *4 (-375 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1141 *2 *3)) (-14 *2 (-771)) (-4 *3 (-1049))))) -(((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-926))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-558)) (-4 *2 (-1049)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-969 *3 *2)) (-4 *2 (-1240 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) - (-4 *4 (-850)) (-4 *2 (-558)))) - ((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) - (-4 *3 (-1064 *4 *5 *6)) - (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -3570 *1)))) - (-4 *1 (-1070 *4 *5 *6 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1175)) (-5 *4 (-952 (-566))) (-5 *2 (-331)) - (-5 *1 (-333)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1175)) (-5 *4 (-1091 (-952 (-566)))) (-5 *2 (-331)) - (-5 *1 (-333)))) - ((*1 *1 *2 *2 *2) - (-12 (-5 *2 (-771)) (-5 *1 (-675 *3)) (-4 *3 (-1049)) - (-4 *3 (-1099))))) -(((*1 *2 *3) - (-12 (-5 *2 (-612 *4)) (-5 *1 (-611 *3 *4)) (-4 *3 (-1099)) - (-4 *4 (-1099))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) - (-4 *5 (-1240 *4)) - (-5 *2 (-644 (-2 (|:| |deg| (-771)) (|:| -2470 *5)))) - (-5 *1 (-809 *4 *5 *3 *6)) (-4 *3 (-656 *5)) - (-4 *6 (-656 (-409 *5)))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1171 *3)) (-5 *1 (-914 *3)) (-4 *3 (-308))))) -(((*1 *2 *3) - (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-359 *4)) - (-4 *4 (-351)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-359 *4)) - (-4 *4 (-351)))) - ((*1 *1) (-4 *1 (-370))) - ((*1 *2 *3) - (-12 (-5 *3 (-921)) (-5 *2 (-1264 *4)) (-5 *1 (-530 *4)) - (-4 *4 (-351)))) - ((*1 *1 *1) (-4 *1 (-547))) ((*1 *1) (-4 *1 (-547))) - ((*1 *1 *1) (-5 *1 (-566))) ((*1 *1 *1) (-5 *1 (-771))) - ((*1 *2 *1) (-12 (-5 *2 (-905 *3)) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-566)) (-5 *2 (-905 *4)) (-5 *1 (-904 *4)) - (-4 *4 (-1099)))) - ((*1 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-547)) (-4 *2 (-558))))) -(((*1 *2 *3) - (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) - (-5 *1 (-977 *4 *5 *6 *3)) (-4 *3 (-1064 *4 *5 *6))))) -(((*1 *1 *1) - (-12 (-4 *1 (-949 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) - (-4 *4 (-850)) (-4 *2 (-454)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) - (-4 *3 (-1064 *4 *5 *6)) - (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -3570 *1)))) - (-4 *1 (-1070 *4 *5 *6 *3)))) - ((*1 *1 *1) (-4 *1 (-1218))) - ((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-1243 *3 *2)) - (-4 *2 (-13 (-1240 *3) (-558) (-10 -8 (-15 -2214 ($ $ $)))))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-689 *6)) (-5 *5 (-1 (-420 (-1171 *6)) (-1171 *6))) - (-4 *6 (-365)) - (-5 *2 - (-644 - (-2 (|:| |outval| *7) (|:| |outmult| (-566)) - (|:| |outvect| (-644 (-689 *7)))))) - (-5 *1 (-534 *6 *7 *4)) (-4 *7 (-365)) (-4 *4 (-13 (-365) (-848)))))) -(((*1 *2) - (-12 (-4 *1 (-351)) - (-5 *2 (-644 (-2 (|:| -3719 (-566)) (|:| -2852 (-566)))))))) -(((*1 *2 *1) (-12 (-5 *2 (-139)) (-5 *1 (-140)))) - ((*1 *2 *1) (-12 (-5 *1 (-183 *2)) (-4 *2 (-185)))) - ((*1 *2 *1) (-12 (-5 *2 (-249)) (-5 *1 (-248))))) -(((*1 *2 *1) (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-825))))) -(((*1 *1 *2) - (-12 (-5 *2 (-409 *4)) (-4 *4 (-1240 *3)) (-4 *3 (-13 (-365) (-147))) - (-5 *1 (-401 *3 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-556 *2)) (-4 *2 (-13 (-406) (-1199)))))) +(((*1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1) (-5 *1 (-862))) + ((*1 *1 *1) (-4 *1 (-967))) ((*1 *1 *1) (-5 *1 (-1119)))) +(((*1 *2 *1) (|partial| -12 (-5 *1 (-367 *2)) (-4 *2 (-1099)))) + ((*1 *2 *1) (|partial| -12 (-5 *2 (-1157)) (-5 *1 (-1195))))) (((*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-169 *5)) (-4 *5 (-13 (-432 *4) (-1002) (-1199))) - (-4 *4 (-558)) (-4 *2 (-13 (-432 (-169 *4)) (-1002) (-1199))) - (-5 *1 (-600 *4 *5 *2))))) -(((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-699)))) - ((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-699))))) -(((*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1240 (-566))))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1240 (-566)))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) - (-12 (-5 *4 (-689 (-566))) (-5 *5 (-112)) (-5 *7 (-689 (-225))) - (-5 *3 (-566)) (-5 *6 (-225)) (-5 *2 (-1035)) (-5 *1 (-754))))) -(((*1 *2 *2) - (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) - (-5 *1 (-451 *3 *4 *5 *2)) (-4 *2 (-949 *3 *4 *5))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1049)) - (-4 *2 (-13 (-406) (-1038 *4) (-365) (-1199) (-285))) - (-5 *1 (-445 *4 *3 *2)) (-4 *3 (-1240 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-921)) (-4 *5 (-1049)) - (-4 *2 (-13 (-406) (-1038 *5) (-365) (-1199) (-285))) - (-5 *1 (-445 *5 *3 *2)) (-4 *3 (-1240 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -4392 *6) (|:| |sol?| (-112))) (-566) - *6)) - (-4 *6 (-365)) (-4 *7 (-1240 *6)) - (-5 *2 (-2 (|:| |answer| (-587 (-409 *7))) (|:| |a0| *6))) - (-5 *1 (-576 *6 *7)) (-5 *3 (-409 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-359 *4)) - (-4 *4 (-351))))) -(((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) - (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-3 *3 (-644 *1))) - (-4 *1 (-1070 *4 *5 *6 *3))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1240 *6)) - (-4 *6 (-13 (-365) (-147) (-1038 *4))) (-5 *4 (-566)) - (-5 *2 - (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) - (|:| -2470 - (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) - (|:| |beta| *3))))) - (-5 *1 (-1015 *6 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1070 *3 *4 *5 *6)) (-4 *3 (-454)) (-4 *4 (-793)) - (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) (-4 *5 (-793)) - (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *1) (-5 *1 (-617)))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-612 *3)) (-4 *3 (-13 (-432 *5) (-27) (-1199))) - (-4 *5 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) - (-5 *2 (-587 *3)) (-5 *1 (-568 *5 *3 *6)) (-4 *6 (-1099))))) -(((*1 *2 *1) - (-12 (-14 *3 (-644 (-1175))) (-4 *4 (-172)) - (-14 *6 - (-1 (-112) (-2 (|:| -2178 *5) (|:| -2852 *2)) - (-2 (|:| -2178 *5) (|:| -2852 *2)))) - (-4 *2 (-238 (-3018 *3) (-771))) (-5 *1 (-463 *3 *4 *5 *2 *6 *7)) - (-4 *5 (-850)) (-4 *7 (-949 *4 *2 (-864 *3)))))) -(((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) - (-5 *2 (-1171 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) - (-5 *2 (-1171 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-644 (-483 *4 *5))) (-14 *4 (-644 (-1175))) - (-4 *5 (-454)) (-5 *2 (-644 (-247 *4 *5))) (-5 *1 (-631 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1002)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1175)) - (-4 *5 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) - (-5 *2 (-587 *3)) (-5 *1 (-428 *5 *3)) - (-4 *3 (-13 (-1199) (-29 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1175)) (-4 *5 (-13 (-558) (-1038 (-566)) (-147))) - (-5 *2 (-587 (-409 (-952 *5)))) (-5 *1 (-572 *5)) - (-5 *3 (-409 (-952 *5)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-508)) (-5 *2 (-112)) (-5 *1 (-114))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-547)) - (-5 *2 (-409 (-566))))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-409 (-566))) (-5 *1 (-420 *3)) (-4 *3 (-547)) - (-4 *3 (-558)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-547)) (-5 *2 (-409 (-566))))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-797 *3)) (-4 *3 (-172)) (-4 *3 (-547)) - (-5 *2 (-409 (-566))))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-409 (-566))) (-5 *1 (-833 *3)) (-4 *3 (-547)) - (-4 *3 (-1099)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-409 (-566))) (-5 *1 (-843 *3)) (-4 *3 (-547)) - (-4 *3 (-1099)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-997 *3)) (-4 *3 (-172)) (-4 *3 (-547)) - (-5 *2 (-409 (-566))))) - ((*1 *2 *3) - (|partial| -12 (-5 *2 (-409 (-566))) (-5 *1 (-1008 *3)) - (-4 *3 (-1038 *2))))) -(((*1 *1 *1 *1) (-5 *1 (-862)))) -(((*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) - ((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172))))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1175)) (-4 *4 (-1049)) (-4 *4 (-1099)) - (-5 *2 (-2 (|:| |var| (-612 *1)) (|:| -2852 (-566)))) - (-4 *1 (-432 *4)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1049)) (-4 *4 (-1099)) - (-5 *2 (-2 (|:| |var| (-612 *1)) (|:| -2852 (-566)))) - (-4 *1 (-432 *4)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1111)) (-4 *3 (-1099)) - (-5 *2 (-2 (|:| |var| (-612 *1)) (|:| -2852 (-566)))) - (-4 *1 (-432 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-892 *3)) (|:| -2852 (-771)))) - (-5 *1 (-892 *3)) (-4 *3 (-1099)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-949 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) - (-4 *5 (-850)) (-5 *2 (-2 (|:| |var| *5) (|:| -2852 (-771)))))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1049)) - (-4 *7 (-949 *6 *4 *5)) - (-5 *2 (-2 (|:| |var| *5) (|:| -2852 (-566)))) - (-5 *1 (-950 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-365) - (-10 -8 (-15 -3783 ($ *7)) (-15 -4326 (*7 $)) - (-15 -4339 (*7 $)))))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1175)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-702 *3 *5 *6 *7)) - (-4 *3 (-614 (-538))) (-4 *5 (-1214)) (-4 *6 (-1214)) - (-4 *7 (-1214)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1175)) (-5 *2 (-1 *6 *5)) (-5 *1 (-706 *3 *5 *6)) - (-4 *3 (-614 (-538))) (-4 *5 (-1214)) (-4 *6 (-1214))))) -(((*1 *1) - (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308)))) - ((*1 *2 *1) (-12 (-5 *1 (-914 *2)) (-4 *2 (-308)))) - ((*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558)) (-4 *2 (-308)))) - ((*1 *2 *1) (-12 (-4 *1 (-1059)) (-5 *2 (-566))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-689 *7)) (-5 *3 (-644 *7)) (-4 *7 (-949 *4 *6 *5)) - (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) - (-4 *6 (-793)) (-5 *1 (-924 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) - ((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172))))) -(((*1 *2 *2 *2 *2 *3) - (-12 (-4 *3 (-558)) (-5 *1 (-969 *3 *2)) (-4 *2 (-1240 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049))))) -(((*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1214)) (-4 *2 (-850)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-375 *3)) (-4 *3 (-1214)))) - ((*1 *2 *2) - (-12 (-5 *2 (-644 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1099)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-850)) - (-4 *6 (-1064 *4 *5 *3)) - (-5 *2 (-2 (|:| |under| *1) (|:| -3470 *1) (|:| |upper| *1))) - (-4 *1 (-976 *4 *5 *3 *6))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-856 *2)) (-4 *2 (-172)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1171 (-566))) (-5 *1 (-942)) (-5 *3 (-566))))) -(((*1 *2) - (-12 (-5 *2 (-1269)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-1099)) - (-4 *4 (-1099))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-771)) (-4 *5 (-365)) (-5 *2 (-409 *6)) - (-5 *1 (-867 *5 *4 *6)) (-4 *4 (-1255 *5)) (-4 *6 (-1240 *5)))) - ((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-771)) (-5 *4 (-1256 *5 *6 *7)) (-4 *5 (-365)) - (-14 *6 (-1175)) (-14 *7 *5) (-5 *2 (-409 (-1237 *6 *5))) - (-5 *1 (-868 *5 *6 *7)))) - ((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-771)) (-5 *4 (-1256 *5 *6 *7)) (-4 *5 (-365)) - (-14 *6 (-1175)) (-14 *7 *5) (-5 *2 (-409 (-1237 *6 *5))) - (-5 *1 (-868 *5 *6 *7))))) -(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) - (-5 *1 (-752))))) -(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) - (-12 (-5 *5 (-689 (-225))) (-5 *6 (-689 (-566))) (-5 *3 (-566)) - (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-752))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-319)) (-5 *3 (-225))))) -(((*1 *2 *1) (-12 (-5 *2 (-971)) (-5 *1 (-905 *3)) (-4 *3 (-1099))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3)) - (-4 *3 (-13 (-365) (-1199) (-1002)))))) -(((*1 *2 *3) - (-12 (-4 *2 (-365)) (-4 *2 (-848)) (-5 *1 (-945 *2 *3)) - (-4 *3 (-1240 *2))))) -(((*1 *2) (-12 (-5 *2 (-904 (-566))) (-5 *1 (-917))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1264 (-317 (-225)))) (-5 *4 (-644 (-1175))) - (-5 *2 (-689 (-317 (-225)))) (-5 *1 (-205)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1099)) (-4 *6 (-900 *5)) (-5 *2 (-689 *6)) - (-5 *1 (-692 *5 *6 *3 *4)) (-4 *3 (-375 *6)) - (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4414))))))) -(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-737 *3)))) - ((*1 *1 *2) (-12 (-5 *1 (-737 *2)) (-4 *2 (-1099)))) - ((*1 *1) (-12 (-5 *1 (-737 *2)) (-4 *2 (-1099))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))) -(((*1 *2 *3) - (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) - (-4 *7 (-1064 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-644 *7)) (|:| |badPols| (-644 *7)))) - (-5 *1 (-977 *4 *5 *6 *7)) (-5 *3 (-644 *7))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-4 *5 (-432 *4)) - (-5 *2 - (-3 (|:| |overq| (-1171 (-409 (-566)))) - (|:| |overan| (-1171 (-48))) (|:| -3273 (-112)))) - (-5 *1 (-437 *4 *5 *3)) (-4 *3 (-1240 *5))))) -(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-292))) - ((*1 *1) (-5 *1 (-862))) - ((*1 *1) - (-12 (-4 *2 (-454)) (-4 *3 (-850)) (-4 *4 (-793)) - (-5 *1 (-987 *2 *3 *4 *5)) (-4 *5 (-949 *2 *4 *3)))) - ((*1 *1) (-5 *1 (-1084))) - ((*1 *1) - (-12 (-5 *1 (-1139 *2 *3)) (-4 *2 (-13 (-1099) (-34))) - (-4 *3 (-13 (-1099) (-34))))) - ((*1 *1) (-5 *1 (-1178))) ((*1 *1) (-5 *1 (-1179)))) -(((*1 *1 *1) (-12 (-4 *1 (-432 *2)) (-4 *2 (-1099)) (-4 *2 (-1049)))) - ((*1 *1 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558))))) -(((*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-691 (-1219)))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1264 *4)) (-5 *3 (-771)) (-4 *4 (-351)) - (-5 *1 (-530 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-771)) (-4 *4 (-365)) (-4 *5 (-1240 *4)) (-5 *2 (-1269)) - (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1240 (-409 *5))) (-14 *7 *6)))) -(((*1 *2 *1) - (-12 (-4 *1 (-976 *3 *4 *2 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) - (-4 *5 (-1064 *3 *4 *2)) (-4 *2 (-850)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1064 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) - (-4 *2 (-850))))) -(((*1 *2 *3) - (-12 (-5 *3 (-644 (-644 (-943 (-225))))) - (-5 *2 (-644 (-1093 (-225)))) (-5 *1 (-928))))) -(((*1 *2 *2) - (-12 (-5 *2 (-644 *7)) (-4 *7 (-1070 *3 *4 *5 *6)) (-4 *3 (-454)) - (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) - (-5 *1 (-988 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-644 *7)) (-4 *7 (-1070 *3 *4 *5 *6)) (-4 *3 (-454)) - (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) - (-5 *1 (-1106 *3 *4 *5 *6 *7))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1040)) (-5 *3 (-381))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-644 (-771))) (-5 *3 (-112)) (-5 *1 (-1163 *4 *5)) - (-14 *4 (-921)) (-4 *5 (-1049))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-644 (-1213))) (-5 *3 (-1213)) (-5 *1 (-681))))) -(((*1 *2 *2) - (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1199)))))) -(((*1 *2 *1) (-12 (-5 *2 (-183 (-249))) (-5 *1 (-248))))) -(((*1 *1 *1 *1) (-5 *1 (-862)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) -(((*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-359 *3)) (-4 *3 (-351))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-365)) - (-5 *2 (-644 (-2 (|:| C (-689 *5)) (|:| |g| (-1264 *5))))) - (-5 *1 (-978 *5)) (-5 *3 (-689 *5)) (-5 *4 (-1264 *5))))) -(((*1 *2 *3) - (-12 (-5 *2 (-420 (-1171 *1))) (-5 *1 (-317 *4)) (-5 *3 (-1171 *1)) - (-4 *4 (-454)) (-4 *4 (-558)) (-4 *4 (-1099)))) - ((*1 *2 *3) - (-12 (-4 *1 (-909)) (-5 *2 (-420 (-1171 *1))) (-5 *3 (-1171 *1))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-454)) - (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) - (-5 *1 (-977 *3 *4 *5 *6))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-508)) (-5 *1 (-114)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-508)) (-4 *4 (-1099)) (-5 *1 (-929 *4 *2)) - (-4 *2 (-432 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1175)) (-5 *4 (-508)) (-5 *2 (-317 (-566))) - (-5 *1 (-930))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-558)) (-5 *2 (-644 (-771))) (-5 *1 (-969 *4 *3)) - (-4 *3 (-1240 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1157)) (-5 *1 (-786))))) -(((*1 *2 *2) - (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1199)))))) -(((*1 *2 *1) - (-12 (-4 *2 (-13 (-848) (-365))) (-5 *1 (-1060 *2 *3)) - (-4 *3 (-1240 *2))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-508)) (-5 *3 (-1117)) (-5 *1 (-1114))))) -(((*1 *2 *2) - (-12 (-5 *2 (-644 (-2 (|:| |val| (-644 *6)) (|:| -3570 *7)))) - (-4 *6 (-1064 *3 *4 *5)) (-4 *7 (-1070 *3 *4 *5 *6)) (-4 *3 (-454)) - (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-988 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-644 (-2 (|:| |val| (-644 *6)) (|:| -3570 *7)))) - (-4 *6 (-1064 *3 *4 *5)) (-4 *7 (-1070 *3 *4 *5 *6)) (-4 *3 (-454)) - (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-1106 *3 *4 *5 *6 *7))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1049)) (-4 *3 (-1240 *4)) (-4 *2 (-1255 *4)) - (-5 *1 (-1258 *4 *3 *5 *2)) (-4 *5 (-656 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1287 *3 *4)) (-4 *3 (-1049)) - (-4 *4 (-846))))) -(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-313)) (-5 *1 (-297)))) - ((*1 *2 *3) - (-12 (-5 *3 (-644 (-1157))) (-5 *2 (-313)) (-5 *1 (-297)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-313)) (-5 *1 (-297)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-644 (-1157))) (-5 *3 (-1157)) (-5 *2 (-313)) - (-5 *1 (-297))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-644 *1)) (-4 *1 (-1064 *4 *5 *6)) (-4 *4 (-1049)) - (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) - (-4 *5 (-850)) (-5 *2 (-112)))) - ((*1 *2 *3 *1 *4) - (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1207 *5 *6 *7 *3)) - (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850)) - (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-112))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1214))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-850)) (-4 *5 (-793)) - (-4 *6 (-558)) (-4 *7 (-949 *6 *5 *3)) - (-5 *1 (-464 *5 *3 *6 *7 *2)) - (-4 *2 - (-13 (-1038 (-409 (-566))) (-365) - (-10 -8 (-15 -3783 ($ *7)) (-15 -4326 (*7 $)) - (-15 -4339 (*7 $)))))))) -(((*1 *2 *3 *4 *4 *2 *2 *2 *2) - (-12 (-5 *2 (-566)) - (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-771)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-793)) (-4 *4 (-949 *5 *6 *7)) (-4 *5 (-454)) (-4 *7 (-850)) - (-5 *1 (-451 *5 *6 *7 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1 (-381))) (-5 *1 (-1040))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) - (-4 *4 (-375 *2))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1214)) (-5 *1 (-377 *4 *2)) - (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4415))))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-432 *4)) - (-4 *6 (-1240 *5)) (-4 *7 (-1240 (-409 *6))) - (-4 *8 (-344 *5 *6 *7)) (-4 *4 (-13 (-558) (-1038 (-566)))) - (-5 *2 (-2 (|:| -3254 (-771)) (|:| -3289 *8))) - (-5 *1 (-911 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-338 (-409 (-566)) *4 *5 *6)) - (-4 *4 (-1240 (-409 (-566)))) (-4 *5 (-1240 (-409 *4))) - (-4 *6 (-344 (-409 (-566)) *4 *5)) - (-5 *2 (-2 (|:| -3254 (-771)) (|:| -3289 *6))) - (-5 *1 (-912 *4 *5 *6))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *4 (-874)) - (-5 *5 (-921)) (-5 *6 (-644 (-264))) (-5 *2 (-470)) (-5 *1 (-1268)))) - ((*1 *2 *3) - (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *2 (-470)) - (-5 *1 (-1268)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *4 (-644 (-264))) - (-5 *2 (-470)) (-5 *1 (-1268))))) -(((*1 *2 *3) - (-12 (-4 *4 (-365)) (-4 *4 (-558)) (-4 *5 (-1240 *4)) - (-5 *2 (-2 (|:| -4199 (-623 *4 *5)) (|:| -2821 (-409 *5)))) - (-5 *1 (-623 *4 *5)) (-5 *3 (-409 *5)))) - ((*1 *2 *1) - (-12 (-5 *2 (-644 (-1163 *3 *4))) (-5 *1 (-1163 *3 *4)) - (-14 *3 (-921)) (-4 *4 (-1049)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-454)) (-4 *3 (-1049)) - (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) - (-4 *1 (-1240 *3))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -2346 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-365)) (-4 *7 (-1240 *6)) - (-5 *2 - (-3 (-2 (|:| |answer| (-409 *7)) (|:| |a0| *6)) - (-2 (|:| -2346 (-409 *7)) (|:| |coeff| (-409 *7))) "failed")) - (-5 *1 (-576 *6 *7)) (-5 *3 (-409 *7))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-506 (-409 (-566)) (-240 *4 (-771)) (-864 *3) - (-247 *3 (-409 (-566))))) - (-14 *3 (-644 (-1175))) (-14 *4 (-771)) (-5 *1 (-507 *3 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-644 (-508))) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-644 (-508))) (-5 *1 (-485))))) -(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) -(((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1002)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1214))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-1157)) (-5 *4 (-1119)) (-5 *2 (-112)) (-5 *1 (-821))))) -(((*1 *1) - (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-558)) (-4 *2 (-172))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-558)) (-4 *3 (-172)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-5 *1 (-688 *3 *4 *5 *2)) - (-4 *2 (-687 *3 *4 *5))))) -(((*1 *1 *1) (-5 *1 (-1062)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) -(((*1 *2 *3) (-12 (-5 *2 (-381)) (-5 *1 (-785 *3)) (-4 *3 (-614 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-921)) (-5 *2 (-381)) (-5 *1 (-785 *3)) - (-4 *3 (-614 *2)))) - ((*1 *2 *3) - (-12 (-5 *3 (-952 *4)) (-4 *4 (-1049)) (-4 *4 (-614 *2)) - (-5 *2 (-381)) (-5 *1 (-785 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-952 *5)) (-5 *4 (-921)) (-4 *5 (-1049)) - (-4 *5 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-558)) (-4 *4 (-614 *2)) - (-5 *2 (-381)) (-5 *1 (-785 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-921)) (-4 *5 (-558)) - (-4 *5 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-317 *4)) (-4 *4 (-558)) (-4 *4 (-850)) - (-4 *4 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-317 *5)) (-5 *4 (-921)) (-4 *5 (-558)) (-4 *5 (-850)) - (-4 *5 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-531))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2738 *4))) - (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-691 (-873 (-966 *3) (-966 *3)))) (-5 *1 (-966 *3)) - (-4 *3 (-1099))))) -(((*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-954))))) -(((*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-771)))) - ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-404)) (-5 *2 (-771))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-157)) (-5 *2 (-1269)) (-5 *1 (-1266))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-771)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) - (-4 *4 (-1049))))) -(((*1 *1 *1) - (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1264 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) - (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4)))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-644 *3)) (-4 *3 (-850)) (-5 *1 (-739 *3))))) -(((*1 *2) - (-12 (-4 *4 (-1218)) (-4 *5 (-1240 *4)) (-4 *6 (-1240 (-409 *5))) - (-5 *2 (-644 (-644 *4))) (-5 *1 (-343 *3 *4 *5 *6)) - (-4 *3 (-344 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) - (-4 *5 (-1240 (-409 *4))) (-4 *3 (-370)) (-5 *2 (-644 (-644 *3)))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) - (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-63 LSFUN2)))) - (-5 *2 (-1035)) (-5 *1 (-753))))) -(((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-644 (-112)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-558)) - (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 (-1277 *4 *5 *6 *7))) - (-5 *1 (-1277 *4 *5 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-644 *9)) (-5 *4 (-1 (-112) *9 *9)) - (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1064 *6 *7 *8)) (-4 *6 (-558)) - (-4 *7 (-793)) (-4 *8 (-850)) (-5 *2 (-644 (-1277 *6 *7 *8 *9))) - (-5 *1 (-1277 *6 *7 *8 *9))))) -(((*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-771)) (-5 *1 (-591))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-644 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) - (|:| |xpnt| (-566))))) - (-5 *1 (-420 *3)) (-4 *3 (-558)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-771)) (-4 *3 (-351)) (-4 *5 (-1240 *3)) - (-5 *2 (-644 (-1171 *3))) (-5 *1 (-500 *3 *5 *6)) - (-4 *6 (-1240 *5))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1214))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1035)) (-5 *3 (-1175)) (-5 *1 (-192))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1207 *4 *5 *3 *6)) (-4 *4 (-558)) (-4 *5 (-793)) - (-4 *3 (-850)) (-4 *6 (-1064 *4 *5 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-1283 *3)) (-4 *3 (-365)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1171 *1)) (-5 *4 (-1175)) (-4 *1 (-27)) - (-5 *2 (-644 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1171 *1)) (-4 *1 (-27)) (-5 *2 (-644 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-952 *1)) (-4 *1 (-27)) (-5 *2 (-644 *1)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1175)) (-4 *4 (-558)) (-5 *2 (-644 *1)) - (-4 *1 (-29 *4)))) - ((*1 *2 *1) (-12 (-4 *3 (-558)) (-5 *2 (-644 *1)) (-4 *1 (-29 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-169 (-225))) (-5 *4 (-566)) (-5 *2 (-1035)) - (-5 *1 (-758))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-556 *2)) (-4 *2 (-13 (-406) (-1199)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-409 (-566))) (-4 *4 (-1038 (-566))) (-4 *4 (-558)) - (-5 *1 (-32 *4 *2)) (-4 *2 (-432 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-134))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-158 *3 *2)) (-4 *2 (-432 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-225))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-243)) (-5 *2 (-566)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-409 (-566))) (-4 *4 (-365)) (-4 *4 (-38 *3)) - (-4 *5 (-1255 *4)) (-5 *1 (-279 *4 *5 *2)) (-4 *2 (-1226 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-409 (-566))) (-4 *4 (-365)) (-4 *4 (-38 *3)) - (-4 *5 (-1224 *4)) (-5 *1 (-280 *4 *5 *2 *6)) (-4 *2 (-1247 *4 *5)) - (-4 *6 (-983 *5)))) - ((*1 *1 *1 *1) (-4 *1 (-285))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-363 *2)) (-4 *2 (-1099)))) - ((*1 *1 *1 *1) (-5 *1 (-381))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-771)) (-5 *1 (-388 *2)) (-4 *2 (-1099)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-771)) (-4 *1 (-432 *3)) (-4 *3 (-1099)) - (-4 *3 (-1111)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-475)) (-5 *2 (-566)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-771)) (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) - (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1264 *4)) (-5 *3 (-566)) (-4 *4 (-351)) - (-5 *1 (-530 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-538)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-538)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-771)) (-4 *4 (-1099)) - (-5 *1 (-682 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-566)) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) - (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-365)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-771)) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) - (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-689 *4)) (-5 *3 (-771)) (-4 *4 (-1049)) - (-5 *1 (-690 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-566)) (-4 *3 (-1049)) (-5 *1 (-714 *3 *4)) - (-4 *4 (-648 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-566)) (-4 *4 (-1049)) - (-5 *1 (-714 *4 *5)) (-4 *5 (-648 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-720)) (-5 *2 (-921)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-722)) (-5 *2 (-771)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-726)) (-5 *2 (-771)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-771)) (-5 *1 (-819 *2)) (-4 *2 (-850)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-836 *3)) (-4 *3 (-1049)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-566)) (-5 *1 (-836 *4)) (-4 *4 (-1049)))) - ((*1 *1 *1 *1) (-5 *1 (-862))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1002)) (-5 *2 (-409 (-566))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1111)) (-5 *2 (-921)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-566)) (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *4 (-1049)) - (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)) (-4 *4 (-365)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) - (-5 *1 (-1160 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) - (-5 *1 (-1161 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1049)) (-4 *2 (-365))))) -(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1249 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-1175)) - (-14 *5 *3) (-5 *1 (-320 *3 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1040)) (-5 *3 (-381))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1214)) (-5 *2 (-566))))) -(((*1 *2 *3) - (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) - ((*1 *2) (-12 (-5 *2 (-904 (-566))) (-5 *1 (-917))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1255 *4)) - (-4 *4 (-38 (-409 (-566)))) (-5 *2 (-1 (-1155 *4) (-1155 *4))) - (-5 *1 (-1257 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1267)))) + ((*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1267))))) (((*1 *1 *1) - (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) -(((*1 *2 *2) - (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1199)))))) -(((*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *2 (-566)) (-5 *1 (-571 *3)) (-4 *3 (-1038 *2)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1102 *3 *4 *2 *5 *6)) (-4 *3 (-1099)) (-4 *4 (-1099)) - (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *2 (-1099))))) -(((*1 *2 *1) - (-12 (-5 *2 (-3 (|:| |fst| (-436)) (|:| -2895 "void"))) - (-5 *1 (-439))))) -(((*1 *2 *1) (-12 (-5 *2 (-1155 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-558)) (-5 *2 (-958 *3)) (-5 *1 (-1162 *4 *3)) - (-4 *3 (-1240 *4))))) -(((*1 *2 *1) - (-12 (-4 *2 (-949 *3 *5 *4)) (-5 *1 (-987 *3 *4 *5 *2)) - (-4 *3 (-454)) (-4 *4 (-850)) (-4 *5 (-793))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) - (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112))))) -(((*1 *1) (-5 *1 (-141)))) -(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-180)))) - ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-312)))) - ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-970)))) - ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-994)))) - ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1036)))) - ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1072))))) -(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1207 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793)) - (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-822))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| |lm| (-388 *3)) (|:| |mm| (-388 *3)) (|:| |rm| (-388 *3)))) - (-5 *1 (-388 *3)) (-4 *3 (-1099)))) - ((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| |lm| (-819 *3)) (|:| |mm| (-819 *3)) (|:| |rm| (-819 *3)))) - (-5 *1 (-819 *3)) (-4 *3 (-850))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-771)) (-4 *4 (-13 (-558) (-147))) - (-5 *1 (-1234 *4 *2)) (-4 *2 (-1240 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-154)))) - ((*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-1065))))) -(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-454)) (-4 *4 (-850)) (-4 *5 (-793)) - (-5 *2 (-112)) (-5 *1 (-987 *3 *4 *5 *6)) - (-4 *6 (-949 *3 *5 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1139 *3 *4)) (-4 *3 (-13 (-1099) (-34))) - (-4 *4 (-13 (-1099) (-34)))))) -(((*1 *2 *3) - (-12 - (-5 *2 - (-644 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566)))))) - (-5 *1 (-1020 *3)) (-4 *3 (-1240 (-566))))) - ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-644 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566)))))) - (-5 *1 (-1020 *3)) (-4 *3 (-1240 (-566))) - (-5 *4 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566))))))) - ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-644 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566)))))) - (-5 *1 (-1020 *3)) (-4 *3 (-1240 (-566))) (-5 *4 (-409 (-566))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-409 (-566))) - (-5 *2 (-644 (-2 (|:| -4380 *5) (|:| -4392 *5)))) (-5 *1 (-1020 *3)) - (-4 *3 (-1240 (-566))) (-5 *4 (-2 (|:| -4380 *5) (|:| -4392 *5))))) - ((*1 *2 *3) - (-12 - (-5 *2 - (-644 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566)))))) - (-5 *1 (-1021 *3)) (-4 *3 (-1240 (-409 (-566)))))) - ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-644 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566)))))) - (-5 *1 (-1021 *3)) (-4 *3 (-1240 (-409 (-566)))) - (-5 *4 (-2 (|:| -4380 (-409 (-566))) (|:| -4392 (-409 (-566))))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-409 (-566))) - (-5 *2 (-644 (-2 (|:| -4380 *4) (|:| -4392 *4)))) (-5 *1 (-1021 *3)) - (-4 *3 (-1240 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-409 (-566))) - (-5 *2 (-644 (-2 (|:| -4380 *5) (|:| -4392 *5)))) (-5 *1 (-1021 *3)) - (-4 *3 (-1240 *5)) (-5 *4 (-2 (|:| -4380 *5) (|:| -4392 *5)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-653 (-409 *2))) (-4 *2 (-1240 *4)) (-5 *1 (-810 *4 *2)) - (-4 *4 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 *2 (-409 *2))) (-4 *2 (-1240 *4)) - (-5 *1 (-810 *4 *2)) - (-4 *4 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566)))))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1102 *3 *2 *4 *5 *6)) (-4 *3 (-1099)) (-4 *4 (-1099)) - (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *2 (-1099))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-5 *2 (-771)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-771))))) -(((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-943 (-225))) (-5 *4 (-874)) (-5 *5 (-921)) - (-5 *2 (-1269)) (-5 *1 (-470)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-943 (-225))) (-5 *2 (-1269)) (-5 *1 (-470)))) - ((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-644 (-943 (-225)))) (-5 *4 (-874)) (-5 *5 (-921)) - (-5 *2 (-1269)) (-5 *1 (-470))))) -(((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1199))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365)))) - ((*1 *1 *2) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365)))) - ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-921)) (-5 *4 (-381)) (-5 *2 (-1269)) (-5 *1 (-1265))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-644 (-771))) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) - (-4 *4 (-1049))))) -(((*1 *1) (-5 *1 (-1265)))) -(((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-331))))) -(((*1 *2 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-850)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1175)) (-5 *1 (-864 *3)) (-14 *3 (-644 *2)))) - ((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-989)))) - ((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1091 *3)) (-4 *3 (-1214)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1242 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)) - (-5 *2 (-1175)))) - ((*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1260 *3)) (-14 *3 *2)))) -(((*1 *2 *3) - (-12 (-5 *3 (-644 *2)) (-4 *2 (-1240 *4)) (-5 *1 (-541 *4 *2 *5 *6)) - (-4 *4 (-308)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-771)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-566)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1049)) - (-5 *1 (-322 *4 *5 *2 *6)) (-4 *6 (-949 *2 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-31)))) - ((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-133)))) - ((*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-138)))) - ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-154)))) - ((*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-161)))) - ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-218)))) - ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-676)))) - ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1019)))) - ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1065)))) - ((*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-1095))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-5 *2 (-771)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-771))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-225)) (-5 *4 (-566)) - (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2371)))) - (-5 *2 (-1035)) (-5 *1 (-748))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1247 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-1224 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1214)))) - ((*1 *2 *2) - (-12 (-4 *3 (-1049)) (-5 *1 (-446 *3 *2)) (-4 *2 (-1240 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 - *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 - *9) - (-12 (-5 *4 (-689 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) - (-5 *7 (-689 (-566))) - (-5 *8 (-3 (|:| |fn| (-390)) (|:| |fp| (-80 CONFUN)))) - (-5 *9 (-3 (|:| |fn| (-390)) (|:| |fp| (-77 OBJFUN)))) - (-5 *3 (-566)) (-5 *2 (-1035)) (-5 *1 (-753))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-644 (-566))) (-5 *2 (-1177 (-409 (-566)))) - (-5 *1 (-190))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1207 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793)) - (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-558)) (-4 *3 (-172)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-5 *1 (-688 *3 *4 *5 *2)) - (-4 *2 (-687 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1264 (-317 (-225)))) - (-5 *2 - (-2 (|:| |additions| (-566)) (|:| |multiplications| (-566)) - (|:| |exponentiations| (-566)) (|:| |functionCalls| (-566)))) - (-5 *1 (-306))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) - (-5 *2 (-689 *4)))) - ((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-689 *4)) (-5 *1 (-418 *3 *4)) - (-4 *3 (-419 *4)))) - ((*1 *2) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-689 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) - ((*1 *2 *3) - (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1049)) (-5 *2 (-1264 *3)) (-5 *1 (-712 *3 *4)) - (-4 *4 (-1240 *3))))) + (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1049) (-850))) + (-14 *3 (-644 (-1175)))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-5 *2 (-566)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-566))))) -(((*1 *2 *3) - (-12 (-5 *3 (-892 *4)) (-4 *4 (-1099)) (-5 *2 (-1 (-112) *5)) - (-5 *1 (-890 *4 *5)) (-4 *5 (-1214)))) - ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1165))))) -(((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1006))))) -(((*1 *2 *3) - (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-644 (-1175))) (-4 *5 (-1049)) - (-5 *2 (-952 *5)) (-5 *1 (-944 *4 *5))))) + (-12 (-4 *3 (-1099)) (-4 *4 (-13 (-1049) (-886 *3) (-614 *2))) + (-5 *2 (-892 *3)) (-5 *1 (-1075 *3 *4 *5)) + (-4 *5 (-13 (-432 *4) (-886 *3) (-614 *2)))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1214)) (-5 *1 (-182 *3 *2)) (-4 *2 (-674 *3))))) (((*1 *2 *3 *1) (-12 (-5 *3 (-1288 *4 *2)) (-4 *1 (-376 *4 *2)) (-4 *4 (-850)) (-4 *2 (-172)))) @@ -16584,47 +11110,46 @@ (-4 *2 (-1049)))) ((*1 *2 *1 *3) (-12 (-4 *2 (-1049)) (-5 *1 (-1287 *2 *3)) (-4 *3 (-846))))) -(((*1 *1 *2 *3 *4) - (-12 (-14 *5 (-644 (-1175))) (-4 *2 (-172)) - (-4 *4 (-238 (-3018 *5) (-771))) - (-14 *6 - (-1 (-112) (-2 (|:| -2178 *3) (|:| -2852 *4)) - (-2 (|:| -2178 *3) (|:| -2852 *4)))) - (-5 *1 (-463 *5 *2 *3 *4 *6 *7)) (-4 *3 (-850)) - (-4 *7 (-949 *2 *4 (-864 *5)))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-420 *2)) (-4 *2 (-558))))) -(((*1 *2) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) - (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-112)) (-5 *1 (-829))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-365)) + (-5 *2 (-644 (-2 (|:| C (-689 *5)) (|:| |g| (-1264 *5))))) + (-5 *1 (-978 *5)) (-5 *3 (-689 *5)) (-5 *4 (-1264 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1214))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1175)) + (-4 *4 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) + (-5 *1 (-804 *4 *2)) (-4 *2 (-13 (-29 *4) (-1199) (-959)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)) (-5 *3 (-566))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1138)))) + (-12 (-5 *3 (-566)) (-4 *4 (-1240 (-409 *3))) (-5 *2 (-921)) + (-5 *1 (-913 *4 *5)) (-4 *5 (-1240 (-409 *4)))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-3 - (|:| |noa| - (-2 (|:| |fn| (-317 (-225))) (|:| -1761 (-644 (-225))) - (|:| |lb| (-644 (-843 (-225)))) - (|:| |cf| (-644 (-317 (-225)))) - (|:| |ub| (-644 (-843 (-225)))))) - (|:| |lsa| - (-2 (|:| |lfn| (-644 (-317 (-225)))) - (|:| -1761 (-644 (-225))))))) - (-5 *2 (-644 (-1157))) (-5 *1 (-268))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-566)) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) - (-4 *4 (-375 *3)) (-4 *5 (-375 *3))))) -(((*1 *2) - (-12 (-5 *2 (-921)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) + (-12 (-5 *3 (-644 *2)) (-4 *2 (-432 *4)) (-5 *1 (-158 *4 *2)) + (-4 *4 (-558))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-644 *3)) (-4 *3 (-1214))))) +(((*1 *1 *1 *1) (-5 *1 (-862)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) + ((*1 *2 *1) + (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)) + (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-722)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-726)) (-5 *2 (-112))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-4 *4 (-992 *3)) (-5 *1 (-142 *3 *4 *2)) + (-4 *2 (-375 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-558)) (-4 *5 (-992 *4)) (-4 *2 (-375 *4)) + (-5 *1 (-505 *4 *5 *2 *3)) (-4 *3 (-375 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-689 *5)) (-4 *5 (-992 *4)) (-4 *4 (-558)) + (-5 *2 (-689 *4)) (-5 *1 (-693 *4 *5)))) ((*1 *2 *2) - (-12 (-5 *2 (-921)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566)))))) + (-12 (-4 *3 (-558)) (-4 *4 (-992 *3)) (-5 *1 (-1233 *3 *4 *2)) + (-4 *2 (-1240 *4))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1157)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) + ((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-264))))) (((*1 *2 *3 *4 *5) (-12 (-5 *3 (-879 (-1 (-225) (-225)))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-256)))) @@ -16678,21 +11203,34 @@ (-12 (-5 *3 (-882 *5)) (-5 *4 (-1091 (-381))) (-4 *5 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1132 (-225))) (-5 *1 (-260 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-258))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-644 (-892 *3))) (-5 *1 (-892 *3)) - (-4 *3 (-1099))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) - (-5 *1 (-751))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *5 (-1157)) + (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-82 PDEF)))) + (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1035)) + (-5 *1 (-750))))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-771)) (-4 *1 (-1240 *3)) (-4 *3 (-1049))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-409 (-566))) (-4 *5 (-793)) (-4 *6 (-850)) - (-4 *7 (-558)) (-4 *8 (-949 *7 *5 *6)) - (-5 *2 (-2 (|:| -2852 (-771)) (|:| -1364 *9) (|:| |radicand| *9))) - (-5 *1 (-953 *5 *6 *7 *8 *9)) (-5 *4 (-771)) - (-4 *9 - (-13 (-365) - (-10 -8 (-15 -3783 ($ *8)) (-15 -4326 (*8 $)) (-15 -4339 (*8 $)))))))) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1099)) (-4 *5 (-1099)) + (-4 *6 (-1099)) (-5 *2 (-1 *6 *5)) (-5 *1 (-684 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |cd| (-1157)) (|:| -1368 (-1157)))) + (-5 *1 (-822))))) +(((*1 *2 *3) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-563)) (-5 *3 (-566))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-566)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-771)) (-4 *5 (-172)))) + ((*1 *1 *1 *2 *1 *2) + (-12 (-5 *2 (-566)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-771)) (-4 *5 (-172)))) + ((*1 *2 *2 *3) + (-12 + (-5 *2 + (-506 (-409 (-566)) (-240 *5 (-771)) (-864 *4) + (-247 *4 (-409 (-566))))) + (-5 *3 (-644 (-864 *4))) (-14 *4 (-644 (-1175))) (-14 *5 (-771)) + (-5 *1 (-507 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) (((*1 *2 *3) (-12 (-4 *5 (-13 (-614 *2) (-172))) (-5 *2 (-892 *4)) (-5 *1 (-170 *4 *5 *3)) (-4 *4 (-1099)) (-4 *3 (-166 *5)))) @@ -16725,9 +11263,9 @@ (-12 (-5 *2 (-952 *3)) (-4 *3 (-1049)) (-4 *1 (-1064 *3 *4 *5)) (-4 *5 (-614 (-1175))) (-4 *4 (-793)) (-4 *5 (-850)))) ((*1 *1 *2) - (-2809 + (-2768 (-12 (-5 *2 (-952 (-566))) (-4 *1 (-1064 *3 *4 *5)) - (-12 (-2418 (-4 *3 (-38 (-409 (-566))))) (-4 *3 (-38 (-566))) + (-12 (-2404 (-4 *3 (-38 (-409 (-566))))) (-4 *3 (-38 (-566))) (-4 *5 (-614 (-1175)))) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850))) (-12 (-5 *2 (-952 (-566))) (-4 *1 (-1064 *3 *4 *5)) @@ -16738,12 +11276,12 @@ (-4 *3 (-38 (-409 (-566)))) (-4 *5 (-614 (-1175))) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)))) ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-644 *7)) (|:| -3570 *8))) + (-12 (-5 *3 (-2 (|:| |val| (-644 *7)) (|:| -1470 *8))) (-4 *7 (-1064 *4 *5 *6)) (-4 *8 (-1070 *4 *5 *6 *7)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-1157)) (-5 *1 (-1068 *4 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-644 *7)) (|:| -3570 *8))) + (-12 (-5 *3 (-2 (|:| |val| (-644 *7)) (|:| -1470 *8))) (-4 *7 (-1064 *4 *5 *6)) (-4 *8 (-1108 *4 *5 *6 *7)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-1157)) (-5 *1 (-1144 *4 *5 *6 *7 *8)))) @@ -16775,278 +11313,151 @@ (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-14 *6 (-644 (-1175))) (-5 *2 (-644 (-780 *4 (-864 *6)))) (-5 *1 (-1290 *4 *5 *6)) (-14 *5 (-644 (-1175)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1155 (-1155 *4))) (-5 *2 (-1155 *4)) (-5 *1 (-1159 *4)) - (-4 *4 (-38 (-409 (-566)))) (-4 *4 (-1049))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-644 (-644 *8))) (-5 *3 (-644 *8)) + (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-793)) + (-4 *7 (-850)) (-5 *2 (-112)) (-5 *1 (-977 *5 *6 *7 *8))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1103)) (-5 *1 (-281))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-850)) (-5 *1 (-121 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-771)) (-4 *5 (-1049)) (-4 *2 (-1240 *5)) + (-5 *1 (-1258 *5 *2 *6 *3)) (-4 *6 (-656 *2)) (-4 *3 (-1255 *5))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *3 (-1064 *5 *6 *7)) + (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -1470 *4)))) + (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))) +(((*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-447 *3)) (-4 *3 (-1049))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1109)) (-5 *3 (-566))))) (((*1 *2 *1) - (-12 (-4 *1 (-1102 *3 *4 *5 *6 *2)) (-4 *3 (-1099)) (-4 *4 (-1099)) - (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *2 (-1099))))) -(((*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-1179))))) -(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-52)) (-5 *1 (-829))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1175)) (-5 *3 (-644 (-952 (-566)))) - (-5 *4 (-317 (-169 (-381)))) (-5 *1 (-331)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1175)) (-5 *3 (-644 (-952 (-566)))) - (-5 *4 (-317 (-381))) (-5 *1 (-331)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1175)) (-5 *3 (-644 (-952 (-566)))) - (-5 *4 (-317 (-566))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-317 (-169 (-381))))) - (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-317 (-381)))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-317 (-566)))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-317 (-169 (-381))))) - (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-317 (-381)))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-317 (-566)))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1175)) (-5 *3 (-317 (-169 (-381)))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1175)) (-5 *3 (-317 (-381))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1175)) (-5 *3 (-317 (-566))) (-5 *1 (-331)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1175)) (-5 *3 (-644 (-952 (-566)))) - (-5 *4 (-317 (-694))) (-5 *1 (-331)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1175)) (-5 *3 (-644 (-952 (-566)))) - (-5 *4 (-317 (-699))) (-5 *1 (-331)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1175)) (-5 *3 (-644 (-952 (-566)))) - (-5 *4 (-317 (-701))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-317 (-694)))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-317 (-699)))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-317 (-701)))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-317 (-694)))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-317 (-699)))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-317 (-701)))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-694))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-699))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-701))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-694))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-699))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-701))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1175)) (-5 *3 (-317 (-694))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1175)) (-5 *3 (-317 (-699))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1175)) (-5 *3 (-317 (-701))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1157)) (-5 *1 (-331)))) - ((*1 *1 *1 *1) (-5 *1 (-862)))) -(((*1 *2 *1) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-396))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *5 (-112)) - (-5 *2 (-1035)) (-5 *1 (-745))))) -(((*1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-532 *3)) (-4 *3 (-13 (-726) (-25)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-558)) (-5 *2 (-644 *3)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-419 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-769)) - (-5 *2 - (-2 (|:| -1338 (-381)) (|:| -2640 (-1157)) - (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035)))) - (-5 *1 (-567)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-769)) (-5 *4 (-1062)) - (-5 *2 - (-2 (|:| -1338 (-381)) (|:| -2640 (-1157)) - (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035)))) - (-5 *1 (-567)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-787)) (-5 *3 (-1062)) - (-5 *4 - (-2 (|:| |fn| (-317 (-225))) - (|:| -2446 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 - (-2 (|:| -1338 (-381)) (|:| |explanations| (-1157)) - (|:| |extra| (-1035)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-787)) (-5 *3 (-1062)) - (-5 *4 - (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) - (|:| -2446 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 - (-2 (|:| -1338 (-381)) (|:| |explanations| (-1157)) - (|:| |extra| (-1035)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-800)) (-5 *3 (-1062)) - (-5 *4 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) - (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *2 (-2 (|:| -1338 (-381)) (|:| |explanations| (-1157)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-808)) - (-5 *2 - (-2 (|:| -1338 (-381)) (|:| -2640 (-1157)) - (|:| |explanations| (-644 (-1157))))) - (-5 *1 (-805)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-808)) (-5 *4 (-1062)) - (-5 *2 - (-2 (|:| -1338 (-381)) (|:| -2640 (-1157)) - (|:| |explanations| (-644 (-1157))))) - (-5 *1 (-805)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-839)) (-5 *3 (-1062)) - (-5 *4 - (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1761 (-644 (-225))))) - (-5 *2 (-2 (|:| -1338 (-381)) (|:| |explanations| (-1157)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-839)) (-5 *3 (-1062)) - (-5 *4 - (-2 (|:| |fn| (-317 (-225))) (|:| -1761 (-644 (-225))) - (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) - (|:| |ub| (-644 (-843 (-225)))))) - (-5 *2 (-2 (|:| -1338 (-381)) (|:| |explanations| (-1157)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-841)) - (-5 *2 - (-2 (|:| -1338 (-381)) (|:| -2640 (-1157)) - (|:| |explanations| (-644 (-1157))))) - (-5 *1 (-840)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-841)) (-5 *4 (-1062)) - (-5 *2 - (-2 (|:| -1338 (-381)) (|:| -2640 (-1157)) - (|:| |explanations| (-644 (-1157))))) - (-5 *1 (-840)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-895)) (-5 *3 (-1062)) - (-5 *4 - (-2 (|:| |pde| (-644 (-317 (-225)))) - (|:| |constraints| - (-644 - (-2 (|:| |start| (-225)) (|:| |finish| (-225)) - (|:| |grid| (-771)) (|:| |boundaryType| (-566)) - (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) - (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) - (|:| |tol| (-225)))) - (-5 *2 (-2 (|:| -1338 (-381)) (|:| |explanations| (-1157)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-898)) - (-5 *2 - (-2 (|:| -1338 (-381)) (|:| -2640 (-1157)) - (|:| |explanations| (-644 (-1157))))) - (-5 *1 (-897)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-898)) (-5 *4 (-1062)) - (-5 *2 - (-2 (|:| -1338 (-381)) (|:| -2640 (-1157)) - (|:| |explanations| (-644 (-1157))))) - (-5 *1 (-897))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1175)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-702 *4 *5 *6 *7)) - (-4 *4 (-614 (-538))) (-4 *5 (-1214)) (-4 *6 (-1214)) - (-4 *7 (-1214))))) -(((*1 *2 *3) - (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) - ((*1 *2) (-12 (-5 *2 (-904 (-566))) (-5 *1 (-917))))) + (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) + (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-771)) (-5 *3 (-112)) (-5 *1 (-110)))) + ((*1 *2 *2) (-12 (-5 *2 (-921)) (|has| *1 (-6 -4405)) (-4 *1 (-406)))) + ((*1 *2) (-12 (-4 *1 (-406)) (-5 *2 (-921))))) +(((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-771)) (-4 *5 (-365)) (-5 *2 (-409 *6)) + (-5 *1 (-867 *5 *4 *6)) (-4 *4 (-1255 *5)) (-4 *6 (-1240 *5)))) + ((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-771)) (-5 *4 (-1256 *5 *6 *7)) (-4 *5 (-365)) + (-14 *6 (-1175)) (-14 *7 *5) (-5 *2 (-409 (-1237 *6 *5))) + (-5 *1 (-868 *5 *6 *7)))) + ((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-771)) (-5 *4 (-1256 *5 *6 *7)) (-4 *5 (-365)) + (-14 *6 (-1175)) (-14 *7 *5) (-5 *2 (-409 (-1237 *6 *5))) + (-5 *1 (-868 *5 *6 *7))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |pde| (-644 (-317 (-225)))) - (|:| |constraints| - (-644 - (-2 (|:| |start| (-225)) (|:| |finish| (-225)) - (|:| |grid| (-771)) (|:| |boundaryType| (-566)) - (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) - (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) - (|:| |tol| (-225)))) - (-5 *2 (-112)) (-5 *1 (-210))))) -(((*1 *1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099))))) -(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266)))) - ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1237 *5 *4)) (-4 *4 (-820)) (-14 *5 (-1175)) - (-5 *2 (-566)) (-5 *1 (-1113 *4 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1264 *6)) (-5 *4 (-1264 (-566))) (-5 *5 (-566)) - (-4 *6 (-1099)) (-5 *2 (-1 *6)) (-5 *1 (-1017 *6))))) -(((*1 *2 *3 *4 *4 *3) + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1155 (-225))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -2821 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))) + (-5 *2 (-1035)) (-5 *1 (-306))))) +(((*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) - (-5 *1 (-752))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) - (-12 (-5 *4 (-689 (-225))) (-5 *5 (-689 (-566))) (-5 *6 (-225)) - (-5 *3 (-566)) (-5 *2 (-1035)) (-5 *1 (-752))))) + (-5 *1 (-756))))) +(((*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-112))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-566)) (-4 *4 (-13 (-558) (-147))) (-5 *1 (-539 *4 *2)) + (-4 *2 (-1255 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-566)) (-4 *4 (-13 (-365) (-370) (-614 *3))) + (-4 *5 (-1240 *4)) (-4 *6 (-724 *4 *5)) (-5 *1 (-543 *4 *5 *6 *2)) + (-4 *2 (-1255 *6)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-566)) (-4 *4 (-13 (-365) (-370) (-614 *3))) + (-5 *1 (-544 *4 *2)) (-4 *2 (-1255 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1155 *4)) (-5 *3 (-566)) (-4 *4 (-13 (-558) (-147))) + (-5 *1 (-1151 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1171 *4)) (-4 *4 (-351)) - (-4 *2 - (-13 (-404) - (-10 -7 (-15 -3783 (*2 *4)) (-15 -3681 ((-921) *2)) - (-15 -2365 ((-1264 *2) (-921))) (-15 -2699 (*2 *2))))) - (-5 *1 (-358 *2 *4))))) + (-12 (-5 *3 (-317 (-225))) (-5 *2 (-409 (-566))) (-5 *1 (-306))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-644 *5)) (-5 *4 (-644 (-1 *6 (-644 *6)))) - (-4 *5 (-38 (-409 (-566)))) (-4 *6 (-1255 *5)) (-5 *2 (-644 *6)) - (-5 *1 (-1257 *5 *6))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) - (-5 *2 - (-2 (|:| -2233 *4) (|:| -1465 *4) (|:| |totalpts| (-566)) - (|:| |success| (-112)))) - (-5 *1 (-789)) (-5 *5 (-566))))) -(((*1 *1 *1 *1) (-5 *1 (-862)))) + (|partial| -12 (-5 *3 (-114)) (-5 *4 (-644 *2)) (-5 *1 (-113 *2)) + (-4 *2 (-1099)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-644 *4))) (-4 *4 (-1099)) + (-5 *1 (-113 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1099)) + (-5 *1 (-113 *4)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-644 *4))) + (-5 *1 (-113 *4)) (-4 *4 (-1099)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-648 *3)) (-4 *3 (-1049)) + (-5 *1 (-714 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1049)) (-5 *1 (-836 *3))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *1) (-5 *1 (-823)))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002)))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-1240 *2)) (-4 *2 (-1049)) (-4 *2 (-558))))) + (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850)) (-4 *2 (-558)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850)) (-4 *2 (-558))))) +(((*1 *2 *3) + (-12 (-4 *4 (-558)) (-5 *2 (-169 *5)) (-5 *1 (-600 *4 *5 *3)) + (-4 *5 (-13 (-432 *4) (-1002) (-1199))) + (-4 *3 (-13 (-432 (-169 *4)) (-1002) (-1199)))))) +(((*1 *2 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-399))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-454)) (-4 *4 (-558)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2871 *4))) - (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *3 (-644 (-566))) - (-5 *1 (-883))))) + (-12 (-5 *3 (-771)) (-5 *2 (-1 (-381))) (-5 *1 (-1040))))) +(((*1 *2 *1) + (-12 (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -3521 *4)))) + (-5 *1 (-649 *3 *4 *5)) (-4 *3 (-1099)) (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *1) + (-12 (-4 *2 (-558)) (-5 *1 (-623 *2 *3)) (-4 *3 (-1240 *2))))) +(((*1 *2 *2) + (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) + (-5 *1 (-451 *3 *4 *5 *2)) (-4 *2 (-949 *3 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-1146 (-1157))) (-5 *1 (-393))))) +(((*1 *2) + (-12 (-4 *1 (-351)) + (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) (((*1 *2 *3) - (-12 (-4 *4 (-454)) - (-5 *2 - (-644 - (-2 (|:| |eigval| (-3 (-409 (-952 *4)) (-1164 (-1175) (-952 *4)))) - (|:| |eigmult| (-771)) - (|:| |eigvec| (-644 (-689 (-409 (-952 *4)))))))) - (-5 *1 (-293 *4)) (-5 *3 (-689 (-409 (-952 *4))))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1157)) (-5 *3 (-566)) (-5 *1 (-241)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-644 (-1157))) (-5 *3 (-566)) (-5 *4 (-1157)) - (-5 *1 (-241)))) - ((*1 *1 *1) (-5 *1 (-862))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) + (-12 (-4 *4 (-850)) (-5 *2 (-644 (-644 *4))) (-5 *1 (-1185 *4)) + (-5 *3 (-644 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-558)) (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-644 (-771))) (-5 *1 (-1267)))) + ((*1 *2 *2) (-12 (-5 *2 (-644 (-771))) (-5 *1 (-1267))))) +(((*1 *2 *1) + (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *6)) + (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-1242 *2 *3)) (-4 *3 (-792)) (-4 *2 (-1049))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1157)) (-5 *4 (-566)) (-5 *5 (-689 (-169 (-225)))) - (-5 *2 (-1035)) (-5 *1 (-754))))) -(((*1 *2) - (-12 (-5 *2 (-1264 (-1100 *3 *4))) (-5 *1 (-1100 *3 *4)) - (-14 *3 (-921)) (-14 *4 (-921))))) -(((*1 *2 *2) (-12 (-5 *1 (-961 *2)) (-4 *2 (-547))))) -(((*1 *2 *2) - (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-432 *3) (-1002)))))) + (-12 (-5 *2 (-644 (-905 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1099))))) +(((*1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| |mval| (-689 *3)) (|:| |invmval| (-689 *3)) + (|:| |genIdeal| (-506 *3 *4 *5 *6)))) + (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) + (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5))))) (((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1265)) (-5 *1 (-256)))) @@ -17144,49 +11555,119 @@ ((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-644 (-225))) (-5 *4 (-644 (-264))) (-5 *2 (-1266)) (-5 *1 (-261))))) +(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-566)) (-5 *5 (-689 (-225))) + (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN)))) + (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-749))))) +(((*1 *1 *1 *1) (-5 *1 (-129))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1182 *2)) (-14 *2 (-921)))) + ((*1 *1 *1 *1) (-5 *1 (-1219))) ((*1 *1 *1 *1) (-5 *1 (-1220))) + ((*1 *1 *1 *1) (-5 *1 (-1221))) ((*1 *1 *1 *1) (-5 *1 (-1222)))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-825))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-558) (-1038 (-566)))) (-5 *1 (-188 *3 *2)) + (-4 *2 (-13 (-27) (-1199) (-432 (-169 *3)))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-558) (-1038 (-566)))) + (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1199) (-432 (-169 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) + (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1175)) + (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) + (-5 *1 (-1203 *4 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *4)))))) (((*1 *2 *3) - (-12 (-4 *4 (-1049)) (-5 *2 (-112)) (-5 *1 (-446 *4 *3)) - (-4 *3 (-1240 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) - (-4 *5 (-850)) (-5 *2 (-112))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-771)) (-4 *1 (-1240 *3)) (-4 *3 (-1049))))) -(((*1 *2 *3) - (-12 (-5 *3 (-644 (-225))) (-5 *2 (-644 (-1157))) (-5 *1 (-192)))) - ((*1 *2 *3) - (-12 (-5 *3 (-644 (-225))) (-5 *2 (-644 (-1157))) (-5 *1 (-301)))) + (-12 (-5 *3 (-1264 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) + (-5 *2 (-1264 (-689 *4))))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-1264 (-689 *4))) (-5 *1 (-418 *3 *4)) + (-4 *3 (-419 *4)))) + ((*1 *2) + (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-1264 (-689 *3))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-1175))) (-4 *5 (-365)) + (-5 *2 (-1264 (-689 (-409 (-952 *5))))) (-5 *1 (-1085 *5)) + (-5 *4 (-689 (-409 (-952 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-1175))) (-4 *5 (-365)) + (-5 *2 (-1264 (-689 (-952 *5)))) (-5 *1 (-1085 *5)) + (-5 *4 (-689 (-952 *5))))) ((*1 *2 *3) - (-12 (-5 *3 (-644 (-225))) (-5 *2 (-644 (-1157))) (-5 *1 (-306))))) -(((*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1 (-381))) (-5 *1 (-1040))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-644 *2)) (-4 *2 (-1064 *4 *5 *6)) (-4 *4 (-558)) - (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-977 *4 *5 *6 *2))))) -(((*1 *2 *3) - (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-359 *4)) - (-4 *4 (-351))))) + (-12 (-5 *3 (-644 (-689 *4))) (-4 *4 (-365)) + (-5 *2 (-1264 (-689 *4))) (-5 *1 (-1085 *4))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1175)) (-5 *3 (-436)) (-4 *5 (-1099)) + (-5 *1 (-1105 *5 *4)) (-4 *4 (-432 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) - (-5 *2 (-644 (-644 (-644 (-771)))))))) + (-12 (-5 *2 (-644 (-295 *3))) (-5 *1 (-295 *3)) (-4 *3 (-558)) + (-4 *3 (-1214))))) +(((*1 *1 *1) (-5 *1 (-1062)))) +(((*1 *2 *3 *4 *4 *4 *5 *6 *7) + (|partial| -12 (-5 *5 (-1175)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-644 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-644 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -1641 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1199) (-27) (-432 *8))) + (-4 *8 (-13 (-454) (-147) (-1038 *3) (-639 *3))) (-5 *3 (-566)) + (-5 *2 (-644 *4)) (-5 *1 (-1014 *8 *4))))) +(((*1 *1 *1) (-4 *1 (-1059))) + ((*1 *1 *1 *2 *2) + (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-792)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-792))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1155 (-566))) (-5 *1 (-1159 *4)) (-4 *4 (-1049)) + (-5 *3 (-566))))) +(((*1 *2) + (-12 (-5 *2 (-771)) (-5 *1 (-120 *3)) (-4 *3 (-1240 (-566))))) + ((*1 *2 *2) + (-12 (-5 *2 (-771)) (-5 *1 (-120 *3)) (-4 *3 (-1240 (-566)))))) (((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-644 *1)) (-4 *1 (-303)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) ((*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-612 *3)) (-4 *3 (-1099)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-114)) (-5 *3 (-644 *5)) (-5 *4 (-771)) (-4 *5 (-1099)) (-5 *1 (-612 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) + (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) + (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3)))))) +(((*1 *1 *1 *1) (-5 *1 (-129))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1182 *2)) (-14 *2 (-921)))) + ((*1 *1 *1 *1) (-5 *1 (-1219))) ((*1 *1 *1 *1) (-5 *1 (-1220))) + ((*1 *1 *1 *1) (-5 *1 (-1221))) ((*1 *1 *1 *1) (-5 *1 (-1222)))) (((*1 *2 *3) - (-12 (-4 *4 (-1049)) (-5 *2 (-566)) (-5 *1 (-445 *4 *3 *5)) - (-4 *3 (-1240 *4)) - (-4 *5 (-13 (-406) (-1038 *4) (-365) (-1199) (-285)))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-429 *3 *2)) (-4 *3 (-13 (-172) (-38 (-409 (-566))))) - (-4 *2 (-13 (-850) (-21)))))) + (-12 (-4 *4 (-351)) (-5 *2 (-420 (-1171 (-1171 *4)))) + (-5 *1 (-1212 *4)) (-5 *3 (-1171 (-1171 *4)))))) (((*1 *1 *2) - (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1099)) (-5 *1 (-1186 *3))))) + (-12 (-5 *2 (-689 *5)) (-4 *5 (-1049)) (-5 *1 (-1054 *3 *4 *5)) + (-14 *3 (-771)) (-14 *4 (-771))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3)) - (-4 *3 (-13 (-365) (-1199) (-1002)))))) -(((*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172))))) + (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-1064 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-644 *7)) (|:| |badPols| (-644 *7)))) + (-5 *1 (-977 *4 *5 *6 *7)) (-5 *3 (-644 *7))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) + ((*1 *2) (-12 (-5 *2 (-904 (-566))) (-5 *1 (-917))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-644 (-483 *5 *6))) (-5 *4 (-864 *5)) + (-14 *5 (-644 (-1175))) (-5 *2 (-483 *5 *6)) (-5 *1 (-631 *5 *6)) + (-4 *6 (-454)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-483 *5 *6))) (-5 *4 (-864 *5)) + (-14 *5 (-644 (-1175))) (-5 *2 (-483 *5 *6)) (-5 *1 (-631 *5 *6)) + (-4 *6 (-454))))) (((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)))) @@ -17293,9 +11774,9 @@ (-4 *6 (-365)) (-5 *2 (-587 *6)) (-5 *1 (-586 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 (-3 (-2 (|:| -2346 *5) (|:| |coeff| *5)) "failed")) + (-5 *4 (-3 (-2 (|:| -1641 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-365)) (-4 *6 (-365)) - (-5 *2 (-2 (|:| -2346 *6) (|:| |coeff| *6))) + (-5 *2 (-2 (|:| -1641 *6) (|:| |coeff| *6))) (-5 *1 (-586 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) @@ -17414,7 +11895,7 @@ (-4 *8 (-1049)) (-4 *6 (-793)) (-4 *2 (-13 (-1099) - (-10 -8 (-15 -3041 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-771)))))) + (-10 -8 (-15 -3002 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-771)))))) (-5 *1 (-951 *6 *7 *8 *5 *2)) (-4 *5 (-949 *8 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-958 *5)) (-4 *5 (-1214)) @@ -17427,8 +11908,8 @@ (-4 *2 (-949 (-952 *4) *5 *6)) (-4 *5 (-793)) (-4 *6 (-13 (-850) - (-10 -8 (-15 -1348 ((-1175) $)) - (-15 -1385 ((-3 $ "failed") (-1175)))))) + (-10 -8 (-15 -2376 ((-1175) $)) + (-15 -4347 ((-3 $ "failed") (-1175)))))) (-5 *1 (-984 *4 *5 *6 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-558)) (-4 *6 (-558)) @@ -17515,9 +11996,4032 @@ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1049)) (-5 *1 (-1287 *3 *4)) (-4 *4 (-846))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-862))) ((*1 *1 *1 *1) (-5 *1 (-862))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-689 *2)) (-4 *2 (-172)) (-5 *1 (-146 *2)))) + ((*1 *2 *3) + (-12 (-4 *4 (-172)) (-4 *2 (-1240 *4)) (-5 *1 (-177 *4 *2 *3)) + (-4 *3 (-724 *4 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-689 (-409 (-952 *5)))) (-5 *4 (-1175)) + (-5 *2 (-952 *5)) (-5 *1 (-293 *5)) (-4 *5 (-454)))) + ((*1 *2 *3) + (-12 (-5 *3 (-689 (-409 (-952 *4)))) (-5 *2 (-952 *4)) + (-5 *1 (-293 *4)) (-4 *4 (-454)))) + ((*1 *2 *1) + (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1240 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-689 (-169 (-409 (-566))))) + (-5 *2 (-952 (-169 (-409 (-566))))) (-5 *1 (-764 *4)) + (-4 *4 (-13 (-365) (-848))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-689 (-169 (-409 (-566))))) (-5 *4 (-1175)) + (-5 *2 (-952 (-169 (-409 (-566))))) (-5 *1 (-764 *5)) + (-4 *5 (-13 (-365) (-848))))) + ((*1 *2 *3) + (-12 (-5 *3 (-689 (-409 (-566)))) (-5 *2 (-952 (-409 (-566)))) + (-5 *1 (-779 *4)) (-4 *4 (-13 (-365) (-848))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-689 (-409 (-566)))) (-5 *4 (-1175)) + (-5 *2 (-952 (-409 (-566)))) (-5 *1 (-779 *5)) + (-4 *5 (-13 (-365) (-848)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1175)) + (-4 *5 (-13 (-454) (-147) (-1038 (-566)) (-639 (-566)))) + (-5 *2 (-587 *3)) (-5 *1 (-559 *5 *3)) + (-4 *3 (-13 (-27) (-1199) (-432 *5)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1064 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *2 (-850)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850))))) +(((*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-771)) (-5 *2 (-1237 *5 *4)) (-5 *1 (-1173 *4 *5 *6)) + (-4 *4 (-1049)) (-14 *5 (-1175)) (-14 *6 *4))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-771)) (-5 *2 (-1237 *5 *4)) (-5 *1 (-1256 *4 *5 *6)) + (-4 *4 (-1049)) (-14 *5 (-1175)) (-14 *6 *4)))) +(((*1 *1) (-5 *1 (-1084)))) +(((*1 *1 *1) (-5 *1 (-225))) + ((*1 *1 *1) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) + (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) + ((*1 *1 *1) (-5 *1 (-381))) ((*1 *1) (-5 *1 (-381)))) +(((*1 *1 *1) + (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-644 (-409 (-952 (-566))))) (-5 *4 (-644 (-1175))) + (-5 *2 (-644 (-644 *5))) (-5 *1 (-382 *5)) + (-4 *5 (-13 (-848) (-365))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-409 (-952 (-566)))) (-5 *2 (-644 *4)) (-5 *1 (-382 *4)) + (-4 *4 (-13 (-848) (-365)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-771)) (-4 *4 (-1049)) + (-5 *2 (-2 (|:| -2631 *1) (|:| -3264 *1))) (-4 *1 (-1240 *4))))) +(((*1 *2) + (-12 (-5 *2 (-1269)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-1099)) + (-4 *4 (-1099))))) +(((*1 *2 *3) + (-12 (-5 *3 (-566)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-5 *2 (-1269)) (-5 *1 (-451 *4 *5 *6 *7)) (-4 *7 (-949 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-141)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-144))))) +(((*1 *1) (-5 *1 (-561)))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *2 (-1064 *4 *5 *6)) (-5 *1 (-776 *4 *5 *6 *2 *3)) + (-4 *3 (-1070 *4 *5 *6 *2))))) +(((*1 *2) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) + (-4 *5 (-1240 (-409 *4))) (-5 *2 (-689 (-409 *4)))))) +(((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1157)) (-5 *1 (-306))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-13 (-1038 (-566)) (-639 (-566)) (-454))) + (-5 *2 (-843 *4)) (-5 *1 (-314 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1199) (-432 *3))) (-14 *5 (-1175)) + (-14 *6 *4))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-13 (-1038 (-566)) (-639 (-566)) (-454))) + (-5 *2 (-843 *4)) (-5 *1 (-1250 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1199) (-432 *3))) (-14 *5 (-1175)) + (-14 *6 *4)))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-949 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *2 (-850)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-793)) (-4 *5 (-1049)) (-4 *6 (-949 *5 *4 *2)) + (-4 *2 (-850)) (-5 *1 (-950 *4 *2 *5 *6 *3)) + (-4 *3 + (-13 (-365) + (-10 -8 (-15 -3152 ($ *6)) (-15 -2248 (*6 $)) + (-15 -2260 (*6 $))))))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-558)) + (-5 *2 (-1175)) (-5 *1 (-1043 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-604 *2 *3)) (-4 *3 (-1214)) (-4 *2 (-1099)) + (-4 *2 (-850))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-328 *3)) (-4 *3 (-1214)))) + ((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-518 *3 *4)) (-4 *3 (-1214)) + (-14 *4 (-566))))) +(((*1 *2 *2) + (-12 (-5 *2 (-644 *3)) (-4 *3 (-1240 (-566))) (-5 *1 (-488 *3))))) +(((*1 *2) (-12 (-5 *2 (-833 (-566))) (-5 *1 (-536)))) + ((*1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-1099))))) +(((*1 *2 *3) + (-12 (-5 *2 (-420 (-1171 *1))) (-5 *1 (-317 *4)) (-5 *3 (-1171 *1)) + (-4 *4 (-454)) (-4 *4 (-558)) (-4 *4 (-1099)))) + ((*1 *2 *3) + (-12 (-4 *1 (-909)) (-5 *2 (-420 (-1171 *1))) (-5 *3 (-1171 *1))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1281 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1287 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-846))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-141)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-144))))) +(((*1 *2 *3 *3 *3 *4 *5 *6) + (-12 (-5 *3 (-317 (-566))) (-5 *4 (-1 (-225) (-225))) + (-5 *5 (-1093 (-225))) (-5 *6 (-644 (-264))) (-5 *2 (-1132 (-225))) + (-5 *1 (-697))))) +(((*1 *1 *2) + (-12 (-5 *2 (-415 *3 *4 *5 *6)) (-4 *6 (-1038 *4)) (-4 *3 (-308)) + (-4 *4 (-992 *3)) (-4 *5 (-1240 *4)) (-4 *6 (-411 *4 *5)) + (-14 *7 (-1264 *6)) (-5 *1 (-416 *3 *4 *5 *6 *7)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1264 *6)) (-4 *6 (-411 *4 *5)) (-4 *4 (-992 *3)) + (-4 *5 (-1240 *4)) (-4 *3 (-308)) (-5 *1 (-416 *3 *4 *5 *6 *7)) + (-14 *7 *2)))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *2) (-12 (-4 *1 (-1044 *2)) (-4 *2 (-23))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1171 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3))))) +(((*1 *2 *2 *2 *3 *3) + (-12 (-5 *3 (-771)) (-4 *4 (-1049)) (-5 *1 (-1236 *4 *2)) + (-4 *2 (-1240 *4))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1157)) (-5 *4 (-566)) (-5 *5 (-689 (-225))) + (-5 *2 (-1035)) (-5 *1 (-754))))) +(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-112)) + (-5 *6 (-225)) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-68 APROD)))) + (-5 *8 (-3 (|:| |fn| (-390)) (|:| |fp| (-73 MSOLVE)))) + (-5 *2 (-1035)) (-5 *1 (-756))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-432 *3) (-1002))) (-5 *1 (-277 *3 *2)) + (-4 *3 (-558)))) + ((*1 *1) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) + (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) + ((*1 *1) (-5 *1 (-479))) ((*1 *1) (-4 *1 (-1199)))) +(((*1 *2 *3) + (-12 (|has| *2 (-6 (-4416 "*"))) (-4 *5 (-375 *2)) (-4 *6 (-375 *2)) + (-4 *2 (-1049)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1240 *2)) + (-4 *4 (-687 *2 *5 *6))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-30)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-420 *4) *4)) (-4 *4 (-558)) (-5 *2 (-420 *4)) + (-5 *1 (-421 *4)))) + ((*1 *1 *1) (-5 *1 (-926))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-926)))) + ((*1 *1 *1) (-5 *1 (-927))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-927)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566))))) + (-5 *4 (-409 (-566))) (-5 *1 (-1020 *3)) (-4 *3 (-1240 (-566))))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566))))) + (-5 *1 (-1020 *3)) (-4 *3 (-1240 (-566))))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566))))) + (-5 *4 (-409 (-566))) (-5 *1 (-1021 *3)) (-4 *3 (-1240 *4)))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566))))) + (-5 *1 (-1021 *3)) (-4 *3 (-1240 (-409 (-566)))))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-848) (-365))) (-5 *1 (-1060 *2 *3)) + (-4 *3 (-1240 *2))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-644 (-483 *4 *5))) (-5 *3 (-644 (-864 *4))) + (-14 *4 (-644 (-1175))) (-4 *5 (-454)) (-5 *1 (-473 *4 *5 *6)) + (-4 *6 (-454))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-892 *4)) (-4 *4 (-1099)) (-5 *1 (-890 *4 *3)) + (-4 *3 (-1214)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-892 *3)) (-4 *3 (-1099))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1171 *5)) (-4 *5 (-454)) (-5 *2 (-644 *6)) + (-5 *1 (-540 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-848))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-952 *5)) (-4 *5 (-454)) (-5 *2 (-644 *6)) + (-5 *1 (-540 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-848)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1175)) (-5 *5 (-1093 (-225))) (-5 *2 (-927)) + (-5 *1 (-925 *3)) (-4 *3 (-614 (-538))))) + ((*1 *2 *3 *3 *4 *5) + (-12 (-5 *4 (-1175)) (-5 *5 (-1093 (-225))) (-5 *2 (-927)) + (-5 *1 (-925 *3)) (-4 *3 (-614 (-538))))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-926)))) + ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1093 (-225))) + (-5 *1 (-926)))) + ((*1 *1 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1093 (-225))) + (-5 *1 (-926)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-927)))) + ((*1 *1 *2 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1093 (-225))) + (-5 *1 (-927)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1093 (-225))) + (-5 *1 (-927)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-644 (-1 (-225) (-225)))) (-5 *3 (-1093 (-225))) + (-5 *1 (-927)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-644 (-1 (-225) (-225)))) (-5 *3 (-1093 (-225))) + (-5 *1 (-927)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1093 (-225))) + (-5 *1 (-927)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1093 (-225))) + (-5 *1 (-927))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-531))))) +(((*1 *2 *3 *1) + (-12 + (-5 *2 + (-2 (|:| |cycle?| (-112)) (|:| -3449 (-771)) (|:| |period| (-771)))) + (-5 *1 (-1155 *4)) (-4 *4 (-1214)) (-5 *3 (-771))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-128))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-792)) (-4 *2 (-1049)))) + ((*1 *2 *1 *1) + (-12 (-4 *2 (-1049)) (-5 *1 (-50 *2 *3)) (-14 *3 (-644 (-1175))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-644 (-921))) (-4 *2 (-365)) (-5 *1 (-152 *4 *2 *5)) + (-14 *4 (-921)) (-14 *5 (-993 *4 *2)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-317 *3)) (-5 *1 (-223 *3 *4)) + (-4 *3 (-13 (-1049) (-850))) (-14 *4 (-644 (-1175))))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-324 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-131)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-384 *2 *3)) (-4 *3 (-1099)) (-4 *2 (-1049)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-566)) (-4 *2 (-558)) (-5 *1 (-623 *2 *4)) + (-4 *4 (-1240 *2)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-4 *1 (-708 *2)) (-4 *2 (-1049)))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-1049)) (-5 *1 (-735 *2 *3)) (-4 *3 (-726)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-644 *5)) (-5 *3 (-644 (-771))) (-4 *1 (-740 *4 *5)) + (-4 *4 (-1049)) (-4 *5 (-850)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-771)) (-4 *1 (-740 *4 *2)) (-4 *4 (-1049)) + (-4 *2 (-850)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-4 *1 (-852 *2)) (-4 *2 (-1049)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-644 *6)) (-5 *3 (-644 (-771))) (-4 *1 (-949 *4 *5 *6)) + (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *6 (-850)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-771)) (-4 *1 (-949 *4 *5 *2)) (-4 *4 (-1049)) + (-4 *5 (-793)) (-4 *2 (-850)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-771)) (-4 *2 (-949 *4 (-533 *5) *5)) + (-5 *1 (-1125 *4 *5 *2)) (-4 *4 (-1049)) (-4 *5 (-850)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-771)) (-5 *2 (-952 *4)) (-5 *1 (-1208 *4)) + (-4 *4 (-1049))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) + (-5 *2 (-2 (|:| |k| (-819 *3)) (|:| |c| *4)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-689 *4)) (-4 *4 (-1049)) (-5 *1 (-1141 *3 *4)) + (-14 *3 (-771))))) +(((*1 *2 *3) + (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-644 (-1175))) (-4 *5 (-454)) + (-5 *2 (-483 *4 *5)) (-5 *1 (-631 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) + (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1207 *4 *5 *6 *3)) (-4 *4 (-558)) (-4 *5 (-793)) + (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-566)) (-4 *3 (-172)) (-4 *5 (-375 *3)) + (-4 *6 (-375 *3)) (-5 *1 (-688 *3 *5 *6 *2)) + (-4 *2 (-687 *3 *5 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1093 (-225))) + (-5 *2 (-1266)) (-5 *1 (-258))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1175)) (-5 *2 (-1 (-1171 (-952 *4)) (-952 *4))) + (-5 *1 (-1272 *4)) (-4 *4 (-365))))) +(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-752))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850))))) +(((*1 *2 *1) (-12 (-5 *2 (-1124 (-566) (-612 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *1) + (-12 (-4 *3 (-992 *2)) (-4 *4 (-1240 *3)) (-4 *2 (-308)) + (-5 *1 (-415 *2 *3 *4 *5)) (-4 *5 (-13 (-411 *3 *4) (-1038 *3))))) + ((*1 *2 *1) + (-12 (-4 *3 (-558)) (-4 *3 (-1099)) (-5 *2 (-1124 *3 (-612 *1))) + (-4 *1 (-432 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1124 (-566) (-612 (-497)))) (-5 *1 (-497)))) + ((*1 *2 *1) + (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-726) *4)) + (-5 *1 (-621 *3 *4 *2)) (-4 *3 (-38 *4)))) + ((*1 *2 *1) + (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-726) *4)) + (-5 *1 (-662 *3 *4 *2)) (-4 *3 (-717 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-1175))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *1 *2) + (-12 (-5 *2 (-409 *4)) (-4 *4 (-1240 *3)) (-4 *3 (-13 (-365) (-147))) + (-5 *1 (-401 *3 *4))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-892 *4)) (-4 *4 (-1099)) (-5 *1 (-889 *4 *3)) + (-4 *3 (-1099))))) +(((*1 *2) + (-12 (-5 *2 (-921)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) + ((*1 *2 *2) + (-12 (-5 *2 (-921)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566)))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-1264 + (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) + (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -4187 (-566)) + (|:| -3530 (-566)) (|:| |spline| (-566)) (|:| -3013 (-566)) + (|:| |axesColor| (-874)) (|:| -3851 (-566)) + (|:| |unitsColor| (-874)) (|:| |showing| (-566))))) + (-5 *1 (-1265))))) +(((*1 *1 *2) + (-12 (-5 *2 (-644 *1)) (-4 *3 (-1049)) (-4 *1 (-687 *3 *4 *5)) + (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-644 *3)) (-4 *3 (-1049)) (-4 *1 (-687 *3 *4 *5)) + (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1264 *3)) (-4 *3 (-1049)) (-5 *1 (-689 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-644 *4)) (-4 *4 (-1049)) (-4 *1 (-1122 *3 *4 *5 *6)) + (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-454)) + (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) + (-5 *1 (-977 *3 *4 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-405 *3)) (-4 *3 (-406)))) + ((*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-405 *3)) (-4 *3 (-406)))) + ((*1 *2 *2) (-12 (-5 *2 (-921)) (|has| *1 (-6 -4405)) (-4 *1 (-406)))) + ((*1 *2) (-12 (-4 *1 (-406)) (-5 *2 (-921)))) + ((*1 *2 *1) (-12 (-4 *1 (-869 *3)) (-5 *2 (-1155 (-566)))))) +(((*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1267)))) + ((*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1267))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-644 (-264))) (-5 *4 (-1175)) + (-5 *1 (-263 *2)) (-4 *2 (-1214)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-644 (-264))) (-5 *4 (-1175)) (-5 *2 (-52)) + (-5 *1 (-264))))) +(((*1 *2 *1) (-12 (-5 *2 (-1124 (-566) (-612 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *1) + (-12 (-4 *3 (-308)) (-4 *4 (-992 *3)) (-4 *5 (-1240 *4)) + (-5 *2 (-1264 *6)) (-5 *1 (-415 *3 *4 *5 *6)) + (-4 *6 (-13 (-411 *4 *5) (-1038 *4))))) + ((*1 *2 *1) + (-12 (-4 *3 (-1049)) (-4 *3 (-1099)) (-5 *2 (-1124 *3 (-612 *1))) + (-4 *1 (-432 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1124 (-566) (-612 (-497)))) (-5 *1 (-497)))) + ((*1 *2 *1) + (-12 (-4 *3 (-172)) (-4 *2 (-38 *3)) (-5 *1 (-621 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-726) *3)))) + ((*1 *2 *1) + (-12 (-4 *3 (-172)) (-4 *2 (-717 *3)) (-5 *1 (-662 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-726) *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558))))) +(((*1 *1 *2) + (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1004 *3)) (-14 *3 (-566))))) +(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266)))) + ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-927))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-644 (-1264 *4))) (-5 *1 (-368 *3 *4)) + (-4 *3 (-369 *4)))) + ((*1 *2) + (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-558)) + (-5 *2 (-644 (-1264 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-862))))) +(((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172))))) +(((*1 *2) + (-12 (-5 *2 (-2 (|:| -1923 (-644 *3)) (|:| -2395 (-644 *3)))) + (-5 *1 (-1215 *3)) (-4 *3 (-1099))))) +(((*1 *2) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) + (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-344 *4 *5 *6)) (-4 *4 (-1218)) + (-4 *5 (-1240 *4)) (-4 *6 (-1240 (-409 *5))) + (-5 *2 (-2 (|:| |num| (-689 *5)) (|:| |den| *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-213 4 (-129))) (-5 *1 (-581))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) + (-4 *9 (-1064 *6 *7 *8)) (-4 *6 (-558)) (-4 *7 (-793)) + (-4 *8 (-850)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3712 (-644 *9)))) + (-5 *3 (-644 *9)) (-4 *1 (-1207 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1064 *5 *6 *7)) + (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -3712 (-644 *8)))) + (-5 *3 (-644 *8)) (-4 *1 (-1207 *5 *6 *7 *8))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 (-225))) (-5 *2 (-644 (-1157))) (-5 *1 (-192)))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 (-225))) (-5 *2 (-644 (-1157))) (-5 *1 (-301)))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 (-225))) (-5 *2 (-644 (-1157))) (-5 *1 (-306))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 *9)) (-4 *8 (-1064 *5 *6 *7)) + (-4 *9 (-1070 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) + (-4 *7 (-850)) (-5 *2 (-771)) (-5 *1 (-1068 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 *9)) (-4 *8 (-1064 *5 *6 *7)) + (-4 *9 (-1108 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) + (-4 *7 (-850)) (-5 *2 (-771)) (-5 *1 (-1144 *5 *6 *7 *8 *9))))) +(((*1 *2 *1) (-12 (-5 *2 (-139)) (-5 *1 (-140)))) + ((*1 *2 *1) (-12 (-5 *1 (-183 *2)) (-4 *2 (-185)))) + ((*1 *2 *1) (-12 (-5 *2 (-249)) (-5 *1 (-248))))) +(((*1 *1) (-5 *1 (-141)))) +(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-921)) (-5 *1 (-786))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1214)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-952 (-381))) (-5 *1 (-341 *3 *4 *5)) + (-4 *5 (-1038 (-381))) (-14 *3 (-644 (-1175))) + (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-409 (-952 (-381)))) (-5 *1 (-341 *3 *4 *5)) + (-4 *5 (-1038 (-381))) (-14 *3 (-644 (-1175))) + (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-317 (-381))) (-5 *1 (-341 *3 *4 *5)) + (-4 *5 (-1038 (-381))) (-14 *3 (-644 (-1175))) + (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-952 (-566))) (-5 *1 (-341 *3 *4 *5)) + (-4 *5 (-1038 (-566))) (-14 *3 (-644 (-1175))) + (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-409 (-952 (-566)))) (-5 *1 (-341 *3 *4 *5)) + (-4 *5 (-1038 (-566))) (-14 *3 (-644 (-1175))) + (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-317 (-566))) (-5 *1 (-341 *3 *4 *5)) + (-4 *5 (-1038 (-566))) (-14 *3 (-644 (-1175))) + (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1175)) (-5 *1 (-341 *3 *4 *5)) + (-14 *3 (-644 *2)) (-14 *4 (-644 *2)) (-4 *5 (-389)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-317 *5)) (-4 *5 (-389)) + (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-644 (-1175))) + (-14 *4 (-644 (-1175))))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-689 (-409 (-952 (-566))))) (-4 *1 (-386)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-689 (-409 (-952 (-381))))) (-4 *1 (-386)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-689 (-952 (-566)))) (-4 *1 (-386)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-689 (-952 (-381)))) (-4 *1 (-386)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-689 (-317 (-566)))) (-4 *1 (-386)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-689 (-317 (-381)))) (-4 *1 (-386)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-409 (-952 (-566)))) (-4 *1 (-398)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-409 (-952 (-381)))) (-4 *1 (-398)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-952 (-566))) (-4 *1 (-398)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-952 (-381))) (-4 *1 (-398)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-566))) (-4 *1 (-398)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-381))) (-4 *1 (-398)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1264 (-409 (-952 (-566))))) (-4 *1 (-443)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1264 (-409 (-952 (-381))))) (-4 *1 (-443)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1264 (-952 (-566)))) (-4 *1 (-443)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1264 (-952 (-381)))) (-4 *1 (-443)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1264 (-317 (-566)))) (-4 *1 (-443)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1264 (-317 (-381)))) (-4 *1 (-443)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-351)) (-4 *5 (-330 *4)) (-4 *6 (-1240 *5)) + (-5 *2 (-1171 (-1171 *4))) (-5 *1 (-777 *4 *5 *6 *3 *7)) + (-4 *3 (-1240 *6)) (-14 *7 (-921)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) + (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) + (-4 *1 (-976 *3 *4 *5 *6)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-1038 *2)) (-4 *2 (-1214)))) + ((*1 *1 *2) + (|partial| -2768 + (-12 (-5 *2 (-952 *3)) + (-12 (-2404 (-4 *3 (-38 (-409 (-566))))) + (-2404 (-4 *3 (-38 (-566)))) (-4 *5 (-614 (-1175)))) + (-4 *3 (-1049)) (-4 *1 (-1064 *3 *4 *5)) (-4 *4 (-793)) + (-4 *5 (-850))) + (-12 (-5 *2 (-952 *3)) + (-12 (-2404 (-4 *3 (-547))) (-2404 (-4 *3 (-38 (-409 (-566))))) + (-4 *3 (-38 (-566))) (-4 *5 (-614 (-1175)))) + (-4 *3 (-1049)) (-4 *1 (-1064 *3 *4 *5)) (-4 *4 (-793)) + (-4 *5 (-850))) + (-12 (-5 *2 (-952 *3)) + (-12 (-2404 (-4 *3 (-992 (-566)))) (-4 *3 (-38 (-409 (-566)))) + (-4 *5 (-614 (-1175)))) + (-4 *3 (-1049)) (-4 *1 (-1064 *3 *4 *5)) (-4 *4 (-793)) + (-4 *5 (-850))))) + ((*1 *1 *2) + (|partial| -2768 + (-12 (-5 *2 (-952 (-566))) (-4 *1 (-1064 *3 *4 *5)) + (-12 (-2404 (-4 *3 (-38 (-409 (-566))))) (-4 *3 (-38 (-566))) + (-4 *5 (-614 (-1175)))) + (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850))) + (-12 (-5 *2 (-952 (-566))) (-4 *1 (-1064 *3 *4 *5)) + (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *5 (-614 (-1175)))) + (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850))))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-952 (-409 (-566)))) (-4 *1 (-1064 *3 *4 *5)) + (-4 *3 (-38 (-409 (-566)))) (-4 *5 (-614 (-1175))) + (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-644 *6)) (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) + (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) + (-4 *3 (-558))))) +(((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1195)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1195))))) +(((*1 *2 *3) + (-12 (-5 *3 (-317 *4)) (-4 *4 (-13 (-828) (-1049))) (-5 *2 (-1157)) + (-5 *1 (-826 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-317 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-828) (-1049))) + (-5 *2 (-1157)) (-5 *1 (-826 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-822)) (-5 *4 (-317 *5)) (-4 *5 (-13 (-828) (-1049))) + (-5 *2 (-1269)) (-5 *1 (-826 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-822)) (-5 *4 (-317 *6)) (-5 *5 (-112)) + (-4 *6 (-13 (-828) (-1049))) (-5 *2 (-1269)) (-5 *1 (-826 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-828)) (-5 *2 (-1157)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-828)) (-5 *3 (-112)) (-5 *2 (-1157)))) + ((*1 *2 *3 *1) (-12 (-4 *1 (-828)) (-5 *3 (-822)) (-5 *2 (-1269)))) + ((*1 *2 *3 *1 *4) + (-12 (-4 *1 (-828)) (-5 *3 (-822)) (-5 *4 (-112)) (-5 *2 (-1269))))) +(((*1 *2 *3) + (-12 (-5 *2 (-644 (-644 (-566)))) (-5 *1 (-971)) + (-5 *3 (-644 (-566)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) + (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1035)) + (-5 *1 (-746))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-921)) (-5 *4 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1265))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-927))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1171 *6)) (-4 *6 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) + (-5 *2 (-1171 *7)) (-5 *1 (-322 *4 *5 *6 *7)) + (-4 *7 (-949 *6 *4 *5))))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-1157)) (-5 *1 (-97)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-1157)) (-5 *1 (-97))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1240 *2)) (-4 *2 (-1049))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-771)) (-5 *4 (-1264 *2)) (-4 *5 (-308)) + (-4 *6 (-992 *5)) (-4 *2 (-13 (-411 *6 *7) (-1038 *6))) + (-5 *1 (-415 *5 *6 *7 *2)) (-4 *7 (-1240 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-682 *2)) (-4 *2 (-1099)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-644 *5) (-644 *5))) (-5 *4 (-566)) + (-5 *2 (-644 *5)) (-5 *1 (-682 *5)) (-4 *5 (-1099))))) +(((*1 *2 *1) (-12 (-5 *2 (-1155 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308))))) +(((*1 *2 *3) + (-12 (-4 *4 (-793)) + (-4 *5 (-13 (-850) (-10 -8 (-15 -2376 ((-1175) $))))) (-4 *6 (-558)) + (-5 *2 (-2 (|:| -3920 (-952 *6)) (|:| -2156 (-952 *6)))) + (-5 *1 (-732 *4 *5 *6 *3)) (-4 *3 (-949 (-409 (-952 *6)) *4 *5))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-3 (-409 (-952 *6)) (-1164 (-1175) (-952 *6)))) + (-5 *5 (-771)) (-4 *6 (-454)) (-5 *2 (-644 (-689 (-409 (-952 *6))))) + (-5 *1 (-293 *6)) (-5 *4 (-689 (-409 (-952 *6)))))) + ((*1 *2 *3 *4) + (-12 + (-5 *3 + (-2 (|:| |eigval| (-3 (-409 (-952 *5)) (-1164 (-1175) (-952 *5)))) + (|:| |eigmult| (-771)) (|:| |eigvec| (-644 *4)))) + (-4 *5 (-454)) (-5 *2 (-644 (-689 (-409 (-952 *5))))) + (-5 *1 (-293 *5)) (-5 *4 (-689 (-409 (-952 *5))))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1255 *4)) (-5 *1 (-1257 *4 *2)) + (-4 *4 (-38 (-409 (-566))))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1240 *5)) (-4 *5 (-365)) + (-5 *2 (-2 (|:| -2548 (-420 *3)) (|:| |special| (-420 *3)))) + (-5 *1 (-727 *5 *3))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4414)) (-4 *1 (-491 *4)) + (-4 *4 (-1214)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |pde| (-644 (-317 (-225)))) + (|:| |constraints| + (-644 + (-2 (|:| |start| (-225)) (|:| |finish| (-225)) + (|:| |grid| (-771)) (|:| |boundaryType| (-566)) + (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) + (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) + (|:| |tol| (-225)))) + (-5 *2 (-112)) (-5 *1 (-210))))) +(((*1 *2 *3) + (-12 (-4 *4 (-351)) (-5 *2 (-420 *3)) (-5 *1 (-216 *4 *3)) + (-4 *3 (-1240 *4)))) + ((*1 *2 *3) + (-12 (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-771)) (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) + (-4 *3 (-1240 (-566))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-644 (-771))) (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) + (-4 *3 (-1240 (-566))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-644 (-771))) (-5 *5 (-771)) (-5 *2 (-420 *3)) + (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-771)) (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) + (-4 *3 (-1240 (-566))))) + ((*1 *2 *3) + (-12 (-5 *2 (-420 *3)) (-5 *1 (-1007 *3)) + (-4 *3 (-1240 (-409 (-566)))))) + ((*1 *2 *3) + (-12 (-5 *2 (-420 *3)) (-5 *1 (-1229 *3)) (-4 *3 (-1240 (-566)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-38 (-409 (-566)))) + (-5 *2 (-2 (|:| -3941 (-1155 *4)) (|:| -3952 (-1155 *4)))) + (-5 *1 (-1161 *4)) (-5 *3 (-1155 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-824))))) +(((*1 *2 *3) (-12 (-5 *3 (-538)) (-5 *1 (-537 *2)) (-4 *2 (-1214)))) + ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-538))))) +(((*1 *2 *3) + (-12 + (-5 *2 + (-644 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566)))))) + (-5 *1 (-1020 *3)) (-4 *3 (-1240 (-566))))) + ((*1 *2 *3 *4) + (-12 + (-5 *2 + (-644 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566)))))) + (-5 *1 (-1020 *3)) (-4 *3 (-1240 (-566))) + (-5 *4 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566))))))) + ((*1 *2 *3 *4) + (-12 + (-5 *2 + (-644 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566)))))) + (-5 *1 (-1020 *3)) (-4 *3 (-1240 (-566))) (-5 *4 (-409 (-566))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-409 (-566))) + (-5 *2 (-644 (-2 (|:| -1953 *5) (|:| -1966 *5)))) (-5 *1 (-1020 *3)) + (-4 *3 (-1240 (-566))) (-5 *4 (-2 (|:| -1953 *5) (|:| -1966 *5))))) + ((*1 *2 *3) + (-12 + (-5 *2 + (-644 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566)))))) + (-5 *1 (-1021 *3)) (-4 *3 (-1240 (-409 (-566)))))) + ((*1 *2 *3 *4) + (-12 + (-5 *2 + (-644 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566)))))) + (-5 *1 (-1021 *3)) (-4 *3 (-1240 (-409 (-566)))) + (-5 *4 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566))))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-409 (-566))) + (-5 *2 (-644 (-2 (|:| -1953 *4) (|:| -1966 *4)))) (-5 *1 (-1021 *3)) + (-4 *3 (-1240 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-409 (-566))) + (-5 *2 (-644 (-2 (|:| -1953 *5) (|:| -1966 *5)))) (-5 *1 (-1021 *3)) + (-4 *3 (-1240 *5)) (-5 *4 (-2 (|:| -1953 *5) (|:| -1966 *5)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1099)) + (-5 *2 (-644 (-2 (|:| |k| *4) (|:| |c| *3)))))) + ((*1 *2 *1) + (-12 (-5 *2 (-644 (-2 (|:| |k| (-893 *3)) (|:| |c| *4)))) + (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-850)) + (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-14 *5 (-921)))) + ((*1 *2 *1) + (-12 (-5 *2 (-644 (-672 *3))) (-5 *1 (-893 *3)) (-4 *3 (-850))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) + (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -2352)))) + (-5 *2 (-1035)) (-5 *1 (-748))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1249 *3 *4 *5)) (-5 *1 (-320 *3 *4 *5)) (-4 *3 (-365)) + (-14 *4 (-1175)) (-14 *5 *3))) + ((*1 *2 *1) (-12 (-4 *1 (-406)) (-5 *2 (-566)))) + ((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-420 *3)) (-4 *3 (-558)))) + ((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-699)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1099)) (-5 *1 (-713 *3 *2 *4)) (-4 *3 (-850)) + (-14 *4 + (-1 (-112) (-2 (|:| -2835 *3) (|:| -2201 *2)) + (-2 (|:| -2835 *3) (|:| -2201 *2))))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-506 (-409 (-566)) (-240 *4 (-771)) (-864 *3) + (-247 *3 (-409 (-566))))) + (-14 *3 (-644 (-1175))) (-14 *4 (-771)) (-5 *1 (-507 *3 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-351)) (-4 *4 (-330 *3)) (-4 *5 (-1240 *4)) + (-5 *1 (-777 *3 *4 *5 *2 *6)) (-4 *2 (-1240 *5)) (-14 *6 (-921)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-771)) (-4 *1 (-1283 *3)) (-4 *3 (-365)) (-4 *3 (-370)))) + ((*1 *1 *1) (-12 (-4 *1 (-1283 *2)) (-4 *2 (-365)) (-4 *2 (-370))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-771)) (-4 *1 (-1240 *3)) (-4 *3 (-1049))))) +(((*1 *1 *1 *1 *1 *1) + (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850)) (-4 *2 (-558))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1175)) + (-4 *4 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) + (-5 *2 (-1 *5 *5)) (-5 *1 (-804 *4 *5)) + (-4 *5 (-13 (-29 *4) (-1199) (-959)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 *4)) + (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *1 *1) + (-12 (-4 *2 (-147)) (-4 *2 (-308)) (-4 *2 (-454)) (-4 *3 (-850)) + (-4 *4 (-793)) (-5 *1 (-987 *2 *3 *4 *5)) (-4 *5 (-949 *2 *4 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-317 (-566))) (-5 *1 (-1118)))) + ((*1 *2 *2) + (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1199)))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4415)) (-4 *1 (-1010 *2)) (-4 *2 (-1214))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-365)) (-4 *3 (-1049)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3302 *1))) + (-4 *1 (-852 *3))))) +(((*1 *2 *3) (-12 (-5 *2 (-381)) (-5 *1 (-785 *3)) (-4 *3 (-614 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-921)) (-5 *2 (-381)) (-5 *1 (-785 *3)) + (-4 *3 (-614 *2)))) + ((*1 *2 *3) + (-12 (-5 *3 (-952 *4)) (-4 *4 (-1049)) (-4 *4 (-614 *2)) + (-5 *2 (-381)) (-5 *1 (-785 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-952 *5)) (-5 *4 (-921)) (-4 *5 (-1049)) + (-4 *5 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-558)) (-4 *4 (-614 *2)) + (-5 *2 (-381)) (-5 *1 (-785 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-921)) (-4 *5 (-558)) + (-4 *5 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-317 *4)) (-4 *4 (-558)) (-4 *4 (-850)) + (-4 *4 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-317 *5)) (-5 *4 (-921)) (-4 *5 (-558)) (-4 *5 (-850)) + (-4 *5 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *5))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-921)) (-5 *2 (-470)) (-5 *1 (-1265))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1099)) (-4 *6 (-1099)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-684 *4 *5 *6)) (-4 *5 (-1099))))) +(((*1 *2 *1) + (-12 (-5 *2 (-644 (-905 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1099))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-420 *2)) (-4 *2 (-558))))) +(((*1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1049))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-454)) + (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) + (-5 *1 (-977 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *2 *2) (-12 (-5 *2 (-689 *3)) (-4 *3 (-308)) (-5 *1 (-700 *3))))) +(((*1 *2 *3 *2 *4 *5) + (-12 (-5 *2 (-644 *3)) (-5 *5 (-921)) (-4 *3 (-1240 *4)) + (-4 *4 (-308)) (-5 *1 (-462 *4 *3))))) +(((*1 *1) (-4 *1 (-967)))) +(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-927))))) +(((*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-381)) (-5 *1 (-1040))))) +(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) + (-12 (-5 *5 (-689 (-225))) (-5 *6 (-689 (-566))) (-5 *3 (-566)) + (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-752))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-689 (-409 (-952 (-566))))) + (-5 *2 (-689 (-317 (-566)))) (-5 *1 (-1031))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1175)) + (-4 *5 (-13 (-558) (-1038 (-566)) (-639 (-566)))) + (-5 *2 + (-2 (|:| |func| *3) (|:| |kers| (-644 (-612 *3))) + (|:| |vals| (-644 *3)))) + (-5 *1 (-278 *5 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-365) (-303) + (-10 -8 (-15 -2248 ((-1124 *3 (-612 $)) $)) + (-15 -2260 ((-1124 *3 (-612 $)) $)) + (-15 -3152 ($ (-1124 *3 (-612 $)))))))))) +(((*1 *2 *2) + (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1199)))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) ((*1 *1 *1) (-5 *1 (-862)))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-317 (-225))) (-5 *1 (-268))))) +(((*1 *2 *1) (-12 (-4 *1 (-869 *3)) (-5 *2 (-566))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1231 (-566))) (-4 *1 (-651 *3)) (-4 *3 (-1214)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-651 *3)) (-4 *3 (-1214))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1093 *3)) (-5 *1 (-1091 *3)) (-4 *3 (-1214)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1214)))) + ((*1 *1 *2) (-12 (-5 *1 (-1231 *2)) (-4 *2 (-1214))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-454)))) + ((*1 *1 *1 *1) (-4 *1 (-454))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 *2)) (-5 *1 (-488 *2)) (-4 *2 (-1240 (-566))))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-566)) (-5 *1 (-696 *2)) (-4 *2 (-1240 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-771))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-793)) (-4 *4 (-850)) (-4 *5 (-308)) + (-5 *1 (-916 *3 *4 *5 *2)) (-4 *2 (-949 *5 *3 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 *2)) (-4 *2 (-949 *6 *4 *5)) + (-5 *1 (-916 *4 *5 *6 *2)) (-4 *4 (-793)) (-4 *5 (-850)) + (-4 *6 (-308)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1171 *6)) (-4 *6 (-949 *5 *3 *4)) (-4 *3 (-793)) + (-4 *4 (-850)) (-4 *5 (-308)) (-5 *1 (-916 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 (-1171 *7))) (-4 *4 (-793)) (-4 *5 (-850)) + (-4 *6 (-308)) (-5 *2 (-1171 *7)) (-5 *1 (-916 *4 *5 *6 *7)) + (-4 *7 (-949 *6 *4 *5)))) + ((*1 *1 *1 *1) (-5 *1 (-921))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-454)) (-4 *3 (-558)) (-5 *1 (-969 *3 *2)) + (-4 *2 (-1240 *3)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850)) (-4 *2 (-454))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2610 *4))) + (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-644 (-644 *8))) (-5 *3 (-644 *8)) + (-4 *8 (-949 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) + (-4 *6 (-13 (-850) (-614 (-1175)))) (-4 *7 (-793)) (-5 *2 (-112)) + (-5 *1 (-924 *5 *6 *7 *8))))) +(((*1 *1 *1) (-4 *1 (-558)))) +(((*1 *1 *1 *1) (-5 *1 (-862)))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) + (-4 *3 (-369 *4)))) + ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1191 *4 *5)) + (-4 *4 (-1099)) (-4 *5 (-1099))))) +(((*1 *2 *1) (-12 (-4 *1 (-556 *2)) (-4 *2 (-13 (-406) (-1199)))))) +(((*1 *1 *1) + (-12 (-4 *2 (-308)) (-4 *3 (-992 *2)) (-4 *4 (-1240 *3)) + (-5 *1 (-415 *2 *3 *4 *5)) (-4 *5 (-13 (-411 *3 *4) (-1038 *3)))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-169 (-225))) (-5 *5 (-566)) (-5 *6 (-1157)) + (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *2 *2) (-12 (-5 *2 (-317 (-225))) (-5 *1 (-268))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-644 *2)) (-4 *2 (-1214))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-381)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) + ((*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-751))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-689 *3)) (-4 *3 (-308)) (-5 *1 (-700 *3))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1099)) (-5 *1 (-103 *3)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1099))))) +(((*1 *2 *1) + (-12 (-5 *2 (-174 (-409 (-566)))) (-5 *1 (-117 *3)) (-14 *3 (-566)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *3 (-1155 *2)) (-4 *2 (-308)) (-5 *1 (-174 *2)))) + ((*1 *1 *2) (-12 (-5 *2 (-409 *3)) (-4 *3 (-308)) (-5 *1 (-174 *3)))) + ((*1 *2 *3) + (-12 (-5 *2 (-174 (-566))) (-5 *1 (-765 *3)) (-4 *3 (-406)))) + ((*1 *2 *1) + (-12 (-5 *2 (-174 (-409 (-566)))) (-5 *1 (-871 *3)) (-14 *3 (-566)))) + ((*1 *2 *1) + (-12 (-14 *3 (-566)) (-5 *2 (-174 (-409 (-566)))) + (-5 *1 (-872 *3 *4)) (-4 *4 (-869 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 (-1175))) (-4 *4 (-13 (-308) (-147))) + (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) + (-5 *2 (-644 (-409 (-952 *4)))) (-5 *1 (-924 *4 *5 *6 *7)) + (-4 *7 (-949 *4 *6 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1264 (-771))) (-5 *1 (-675 *3)) (-4 *3 (-1099))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1035)) (-5 *3 (-1175)) (-5 *1 (-268))))) +(((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-531)))) + ((*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-531))))) +(((*1 *2 *3) + (-12 (-5 *3 (-921)) (-5 *2 (-1264 (-1264 (-566)))) (-5 *1 (-468))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1155 *4)) (-5 *3 (-566)) (-4 *4 (-1049)) + (-5 *1 (-1159 *4)))) + ((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-566)) (-5 *1 (-1256 *3 *4 *5)) (-4 *3 (-1049)) + (-14 *4 (-1175)) (-14 *5 *3)))) +(((*1 *2 *1) + (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1240 *3)) + (-4 *5 (-1240 (-409 *4))) (-4 *6 (-344 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-690 *3))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-497))))) +(((*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1 (-381))) (-5 *1 (-1040))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 (-4 *4 (-13 (-365) (-147) (-1038 (-566)))) + (-4 *5 (-1240 *4)) (-5 *2 (-644 (-409 *5))) (-5 *1 (-1016 *4 *5)) + (-5 *3 (-409 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) + (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-644 *6))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-882 *2)) (-4 *2 (-1214))))) +(((*1 *2 *3) + (-12 (-4 *4 (-351)) (-5 *2 (-420 (-1171 (-1171 *4)))) + (-5 *1 (-1212 *4)) (-5 *3 (-1171 (-1171 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1209 *3)) (-4 *3 (-974))))) +(((*1 *1 *1) (-4 *1 (-1143)))) +(((*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-454)))) + ((*1 *1 *1 *1) (-4 *1 (-454)))) +(((*1 *2 *3) + (-12 (-5 *3 (-317 (-381))) (-5 *2 (-317 (-225))) (-5 *1 (-306))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-109))) (-5 *1 (-175))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1264 (-1264 (-566)))) (-5 *3 (-921)) (-5 *1 (-468))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-644 (-2 (|:| -1624 (-1171 *6)) (|:| -2201 (-566))))) + (-4 *6 (-308)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)) + (-5 *1 (-742 *4 *5 *6 *7)) (-4 *7 (-949 *6 *4 *5)))) + ((*1 *1 *1) (-12 (-4 *1 (-1133 *2)) (-4 *2 (-1049))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-365)) (-5 *1 (-766 *2 *3)) (-4 *2 (-708 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-648 *3)) (-4 *3 (-1049)) + (-5 *1 (-714 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1049)) (-5 *1 (-836 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-566)) (-4 *1 (-324 *2 *4)) (-4 *4 (-131)) + (-4 *2 (-1099)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *1 (-363 *2)) (-4 *2 (-1099)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *1 (-388 *2)) (-4 *2 (-1099)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *1 (-420 *2)) (-4 *2 (-558)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-566)) (-4 *2 (-1099)) (-5 *1 (-649 *2 *4 *5)) + (-4 *4 (-23)) (-14 *5 *4))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *1 (-819 *2)) (-4 *2 (-850))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1157)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-1269)) + (-5 *1 (-1071 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1157)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-1269)) + (-5 *1 (-1107 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-644 (-52))) (-5 *1 (-892 *3)) (-4 *3 (-1099))))) +(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-52)) (-5 *1 (-1192))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-1060 (-1024 *3) (-1171 (-1024 *3)))) + (-5 *1 (-1024 *3)) (-4 *3 (-13 (-848) (-365) (-1022)))))) +(((*1 *1 *2 *2 *2) + (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1199))))) + ((*1 *2 *1 *3 *4 *4) + (-12 (-5 *3 (-921)) (-5 *4 (-381)) (-5 *2 (-1269)) (-5 *1 (-1265)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-381)) (-5 *2 (-1269)) (-5 *1 (-1266))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-566)) (-5 *3 (-771)) (-5 *1 (-563))))) +(((*1 *1 *1) + (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) +(((*1 *2) + (-12 (-4 *3 (-1049)) (-5 *2 (-958 (-712 *3 *4))) (-5 *1 (-712 *3 *4)) + (-4 *4 (-1240 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| -2896 *1) (|:| -4401 *1) (|:| |associate| *1))) + (-4 *1 (-558))))) +(((*1 *2 *3) + (-12 (-5 *3 (-771)) (-5 *2 (-1269)) (-5 *1 (-866 *4 *5 *6 *7)) + (-4 *4 (-1049)) (-14 *5 (-644 (-1175))) (-14 *6 (-644 *3)) + (-14 *7 *3))) + ((*1 *2 *3) + (-12 (-5 *3 (-771)) (-4 *4 (-1049)) (-4 *5 (-850)) (-4 *6 (-793)) + (-14 *8 (-644 *5)) (-5 *2 (-1269)) + (-5 *1 (-1276 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-949 *4 *6 *5)) + (-14 *9 (-644 *3)) (-14 *10 *3)))) +(((*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365))))) +(((*1 *2 *3 *4) + (-12 (-4 *2 (-1240 *4)) (-5 *1 (-807 *4 *2 *3 *5)) + (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *3 (-656 *2)) + (-4 *5 (-656 (-409 *2))))) + ((*1 *2 *3 *4) + (-12 (-4 *2 (-1240 *4)) (-5 *1 (-807 *4 *2 *5 *3)) + (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *5 (-656 *2)) + (-4 *3 (-656 (-409 *2)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1264 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) + (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-1064 *4 *5 *6)) + (-5 *2 (-644 (-2 (|:| -1685 *1) (|:| -3292 (-644 *7))))) + (-5 *3 (-644 *7)) (-4 *1 (-1207 *4 *5 *6 *7))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-566)) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) + (-4 *4 (-375 *3)) (-4 *5 (-375 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-432 *4)) (-4 *6 (-1240 *5)) + (-4 *7 (-1240 (-409 *6))) (-4 *8 (-344 *5 *6 *7)) + (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *2 (-112)) + (-5 *1 (-911 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-338 (-409 (-566)) *4 *5 *6)) + (-4 *4 (-1240 (-409 (-566)))) (-4 *5 (-1240 (-409 *4))) + (-4 *6 (-344 (-409 (-566)) *4 *5)) (-5 *2 (-112)) + (-5 *1 (-912 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-965))) (-5 *1 (-109)))) + ((*1 *2 *1) (-12 (-5 *2 (-45 (-1157) (-774))) (-5 *1 (-114))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) + (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| "There are singularities at both end points") + (|:| |notEvaluated| "End point continuity not yet evaluated"))) + (-5 *1 (-192))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-13 (-558) (-147))) (-5 *1 (-1234 *3 *2)) + (-4 *2 (-1240 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1049)) + (-4 *2 (-13 (-406) (-1038 *4) (-365) (-1199) (-285))) + (-5 *1 (-445 *4 *3 *2)) (-4 *3 (-1240 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-921)) (-4 *5 (-1049)) + (-4 *2 (-13 (-406) (-1038 *5) (-365) (-1199) (-285))) + (-5 *1 (-445 *5 *3 *2)) (-4 *3 (-1240 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-438)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-438))))) +(((*1 *2 *1) + (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) + (-5 *2 (-1171 *3))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-409 (-566))) (-5 *1 (-1024 *3)) + (-4 *3 (-13 (-848) (-365) (-1022))))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *2 (-13 (-848) (-365))) (-5 *1 (-1060 *2 *3)) + (-4 *3 (-1240 *2)))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *1 (-1067 *2 *3)) (-4 *2 (-13 (-848) (-365))) + (-4 *3 (-1240 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) + ((*1 *2) (-12 (-5 *2 (-904 (-566))) (-5 *1 (-917))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099))))) +(((*1 *1) (-5 *1 (-141)))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-365)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) + (-5 *1 (-506 *4 *5 *6 *3)) (-4 *3 (-949 *4 *5 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1199)))))) +(((*1 *2 *3) (-12 (-5 *2 (-566)) (-5 *1 (-571 *3)) (-4 *3 (-1038 *2)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1102 *3 *4 *2 *5 *6)) (-4 *3 (-1099)) (-4 *4 (-1099)) + (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *2 (-1099))))) +(((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1240 *5)) + (-4 *5 (-13 (-365) (-147) (-1038 (-566)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-409 *6)) (|:| |c| (-409 *6)) + (|:| -1462 *6))) + (-5 *1 (-1015 *5 *6)) (-5 *3 (-409 *6))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-771)) (-4 *1 (-983 *2)) (-4 *2 (-1199))))) +(((*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-112)) (-5 *1 (-268))))) +(((*1 *2 *3) + (-12 (-4 *4 (-558)) (-5 *2 (-771)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-419 *4))))) +(((*1 *2 *3 *2 *3) + (-12 (-5 *2 (-439)) (-5 *3 (-1175)) (-5 *1 (-1178)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-439)) (-5 *3 (-1175)) (-5 *1 (-1178)))) + ((*1 *2 *3 *2 *4 *1) + (-12 (-5 *2 (-439)) (-5 *3 (-644 (-1175))) (-5 *4 (-1175)) + (-5 *1 (-1178)))) + ((*1 *2 *3 *2 *3 *1) + (-12 (-5 *2 (-439)) (-5 *3 (-1175)) (-5 *1 (-1178)))) + ((*1 *2 *3 *2 *1) + (-12 (-5 *2 (-439)) (-5 *3 (-1175)) (-5 *1 (-1179)))) + ((*1 *2 *3 *2 *1) + (-12 (-5 *2 (-439)) (-5 *3 (-644 (-1175))) (-5 *1 (-1179))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-644 (-566))) (-5 *2 (-689 (-566))) (-5 *1 (-1109))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-308)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-952 *6))) (-5 *4 (-644 (-1175))) + (-4 *6 (-13 (-558) (-1038 *5))) (-4 *5 (-558)) + (-5 *2 (-644 (-644 (-295 (-409 (-952 *6)))))) (-5 *1 (-1039 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1171 *1)) (-5 *4 (-1175)) (-4 *1 (-27)) + (-5 *2 (-644 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1171 *1)) (-4 *1 (-27)) (-5 *2 (-644 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-952 *1)) (-4 *1 (-27)) (-5 *2 (-644 *1)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1175)) (-4 *4 (-558)) (-5 *2 (-644 *1)) + (-4 *1 (-29 *4)))) + ((*1 *2 *1) (-12 (-4 *3 (-558)) (-5 *2 (-644 *1)) (-4 *1 (-29 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-317 (-225))) (-5 *4 (-644 (-1175))) + (-5 *5 (-1093 (-843 (-225)))) (-5 *2 (-1155 (-225))) (-5 *1 (-301))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-112)) (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) + (-4 *3 (-13 (-27) (-1199) (-432 *6) (-10 -8 (-15 -3152 ($ *7))))) + (-4 *7 (-848)) + (-4 *8 + (-13 (-1242 *3 *7) (-365) (-1199) + (-10 -8 (-15 -3629 ($ $)) (-15 -3313 ($ $))))) + (-5 *2 + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157)))))) + (-5 *1 (-424 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1157)) (-4 *9 (-983 *8)) + (-14 *10 (-1175))))) +(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-180)))) + ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-312)))) + ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-970)))) + ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-994)))) + ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1036)))) + ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1072))))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-921)) (-5 *1 (-1100 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-225)) (-5 *3 (-771)) (-5 *1 (-226)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-169 (-225))) (-5 *3 (-771)) (-5 *1 (-226)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1138)))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1264 *5)) (-4 *5 (-792)) (-5 *2 (-112)) + (-5 *1 (-845 *4 *5)) (-14 *4 (-771))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1171 *4)) (-4 *4 (-351)) (-5 *2 (-958 (-1119))) + (-5 *1 (-348 *4))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-755))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-1213))) (-5 *1 (-526))))) +(((*1 *1 *1 *1) (-4 *1 (-143))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-158 *3 *2)) (-4 *2 (-432 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-547)))) + ((*1 *1 *1 *1) (-5 *1 (-862))) + ((*1 *2 *3 *4) + (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-566))) (-5 *1 (-1047)) + (-5 *3 (-566))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1175)) (-5 *4 (-952 (-566))) (-5 *2 (-331)) + (-5 *1 (-333))))) +(((*1 *2 *3) + (-12 (-4 *4 (-454)) + (-5 *2 + (-644 + (-2 (|:| |eigval| (-3 (-409 (-952 *4)) (-1164 (-1175) (-952 *4)))) + (|:| |geneigvec| (-644 (-689 (-409 (-952 *4)))))))) + (-5 *1 (-293 *4)) (-5 *3 (-689 (-409 (-952 *4))))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-558)) (-5 *2 (-644 (-771))) (-5 *1 (-969 *4 *3)) + (-4 *3 (-1240 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1102 *3 *2 *4 *5 *6)) (-4 *3 (-1099)) (-4 *4 (-1099)) + (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *2 (-1099))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1264 (-1264 *4))) (-4 *4 (-1049)) (-5 *2 (-689 *4)) + (-5 *1 (-1029 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-674 *3)) (-4 *3 (-1214)) (-5 *2 (-771))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1049)) (-4 *4 (-1240 *3)) (-5 *1 (-164 *3 *4 *2)) + (-4 *2 (-1240 *4)))) + ((*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1214))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1099)))) + ((*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1099))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-612 (-48)))) (-5 *1 (-48)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-612 (-48))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1171 (-48))) (-5 *3 (-644 (-612 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1171 (-48))) (-5 *3 (-612 (-48))) (-5 *1 (-48)))) + ((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-365) (-848))) (-5 *1 (-181 *2 *3)) + (-4 *3 (-1240 (-169 *2))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-921)) (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)))) + ((*1 *2 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-365)))) + ((*1 *2 *1) + (-12 (-4 *1 (-372 *2 *3)) (-4 *3 (-1240 *2)) (-4 *2 (-172)))) + ((*1 *2 *1) + (-12 (-4 *4 (-1240 *2)) (-4 *2 (-992 *3)) (-5 *1 (-415 *3 *2 *4 *5)) + (-4 *3 (-308)) (-4 *5 (-13 (-411 *2 *4) (-1038 *2))))) + ((*1 *2 *1) + (-12 (-4 *4 (-1240 *2)) (-4 *2 (-992 *3)) + (-5 *1 (-416 *3 *2 *4 *5 *6)) (-4 *3 (-308)) (-4 *5 (-411 *2 *4)) + (-14 *6 (-1264 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-921)) (-4 *5 (-1049)) + (-4 *2 (-13 (-406) (-1038 *5) (-365) (-1199) (-285))) + (-5 *1 (-445 *5 *3 *2)) (-4 *3 (-1240 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-612 (-497)))) (-5 *1 (-497)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-612 (-497))) (-5 *1 (-497)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1171 (-497))) (-5 *3 (-644 (-612 (-497)))) + (-5 *1 (-497)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1171 (-497))) (-5 *3 (-612 (-497))) (-5 *1 (-497)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1264 *4)) (-5 *3 (-921)) (-4 *4 (-351)) + (-5 *1 (-530 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-454)) (-4 *5 (-724 *4 *2)) (-4 *2 (-1240 *4)) + (-5 *1 (-775 *4 *2 *5 *3)) (-4 *3 (-1240 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) + ((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)))) + ((*1 *1 *1) (-4 *1 (-1059)))) +(((*1 *2 *1) + (-12 (-5 *2 (-691 (-873 (-966 *3) (-966 *3)))) (-5 *1 (-966 *3)) + (-4 *3 (-1099))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *2 *3 *3) + (-12 (|has| *2 (-6 (-4416 "*"))) (-4 *5 (-375 *2)) (-4 *6 (-375 *2)) + (-4 *2 (-1049)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1240 *2)) + (-4 *4 (-687 *2 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-579)))) + ((*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-579))))) +(((*1 *2 *3) + (-12 (-4 *4 (-558)) (-5 *2 (-771)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-419 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-914 *3)) (-4 *3 (-308))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) + (-4 *3 (-369 *4)))) + ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *5 *6 *7 *7 *8) + (-12 + (-5 *3 + (-2 (|:| |det| *12) (|:| |rows| (-644 (-566))) + (|:| |cols| (-644 (-566))))) + (-5 *4 (-689 *12)) (-5 *5 (-644 (-409 (-952 *9)))) + (-5 *6 (-644 (-644 *12))) (-5 *7 (-771)) (-5 *8 (-566)) + (-4 *9 (-13 (-308) (-147))) (-4 *12 (-949 *9 *11 *10)) + (-4 *10 (-13 (-850) (-614 (-1175)))) (-4 *11 (-793)) + (-5 *2 + (-2 (|:| |eqzro| (-644 *12)) (|:| |neqzro| (-644 *12)) + (|:| |wcond| (-644 (-952 *9))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1264 (-409 (-952 *9)))) + (|:| -2875 (-644 (-1264 (-409 (-952 *9))))))))) + (-5 *1 (-924 *9 *10 *11 *12))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) + (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 (-566)) (-5 *1 (-204))))) +(((*1 *2 *3) + (-12 (-5 *3 (-952 (-225))) (-5 *2 (-317 (-381))) (-5 *1 (-306))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-566)) (-4 *1 (-324 *4 *2)) (-4 *4 (-1099)) + (-4 *2 (-131))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-319)) (-5 *3 (-225))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-317 (-566))) (|:| -2352 (-317 (-381))) + (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174)))) + (-5 *1 (-1174))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-644 *10)) (-5 *5 (-112)) (-4 *10 (-1070 *6 *7 *8 *9)) + (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) + (-4 *9 (-1064 *6 *7 *8)) + (-5 *2 + (-644 + (-2 (|:| -3434 (-644 *9)) (|:| -1470 *10) (|:| |ineq| (-644 *9))))) + (-5 *1 (-988 *6 *7 *8 *9 *10)) (-5 *3 (-644 *9)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-644 *10)) (-5 *5 (-112)) (-4 *10 (-1070 *6 *7 *8 *9)) + (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) + (-4 *9 (-1064 *6 *7 *8)) + (-5 *2 + (-644 + (-2 (|:| -3434 (-644 *9)) (|:| -1470 *10) (|:| |ineq| (-644 *9))))) + (-5 *1 (-1106 *6 *7 *8 *9 *10)) (-5 *3 (-644 *9))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-365)) (-5 *1 (-766 *2 *3)) (-4 *2 (-708 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1049)) (-4 *7 (-1049)) + (-4 *6 (-1240 *5)) (-5 *2 (-1171 (-1171 *7))) + (-5 *1 (-503 *5 *6 *4 *7)) (-4 *4 (-1240 *6))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1240 *2)) (-4 *2 (-1218)) (-5 *1 (-148 *2 *4 *3)) + (-4 *3 (-1240 (-409 *4)))))) +(((*1 *1 *1 *1) (-5 *1 (-862)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-365) (-848))) (-5 *1 (-181 *3 *2)) + (-4 *2 (-1240 (-169 *3)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-644 *7)) (-4 *7 (-1070 *3 *4 *5 *6)) (-4 *3 (-454)) + (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) + (-5 *1 (-988 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-644 *7)) (-4 *7 (-1070 *3 *4 *5 *6)) (-4 *3 (-454)) + (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) + (-5 *1 (-1106 *3 *4 *5 *6 *7))))) +(((*1 *2 *2 *2 *3 *3 *4 *2 *5) + (|partial| -12 (-5 *3 (-612 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1175))) (-5 *5 (-1171 *2)) + (-4 *2 (-13 (-432 *6) (-27) (-1199))) + (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) + (-5 *1 (-562 *6 *2 *7)) (-4 *7 (-1099)))) + ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) + (|partial| -12 (-5 *3 (-612 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1175))) + (-5 *5 (-409 (-1171 *2))) (-4 *2 (-13 (-432 *6) (-27) (-1199))) + (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) + (-5 *1 (-562 *6 *2 *7)) (-4 *7 (-1099))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) + ((*1 *1 *1 *1) (-5 *1 (-862)))) +(((*1 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) + (|:| -2821 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1155 (-225))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -2821 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))) + (-5 *1 (-561))))) +(((*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1184))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-926))))) +(((*1 *2) + (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) + (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-1269)) + (-5 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *7 (-1070 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) + (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-1269)) + (-5 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *7 (-1070 *3 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-4 *1 (-839)) + (-5 *3 + (-2 (|:| |fn| (-317 (-225))) (|:| -3289 (-644 (-225))) + (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) + (|:| |ub| (-644 (-843 (-225)))))) + (-5 *2 (-1035)))) + ((*1 *2 *3) + (-12 (-4 *1 (-839)) + (-5 *3 + (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3289 (-644 (-225))))) + (-5 *2 (-1035))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *2 *3 *3) + (-12 (-4 *2 (-558)) (-5 *1 (-969 *2 *3)) (-4 *3 (-1240 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-771)) (-5 *1 (-447 *3)) (-4 *3 (-1049)))) + ((*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-447 *3)) (-4 *3 (-1049))))) +(((*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) +(((*1 *1 *1) (-4 *1 (-547)))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-644 (-952 *4))) (-5 *3 (-644 (-1175))) (-4 *4 (-454)) + (-5 *1 (-918 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-52)) (-5 *1 (-829))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-1 (-225) (-225) (-225))) + (-5 *4 (-1 (-225) (-225) (-225) (-225))) + (-5 *2 (-1 (-943 (-225)) (-225) (-225))) (-5 *1 (-697))))) +(((*1 *2 *3) + (-12 (-5 *3 (-612 *5)) (-4 *5 (-432 *4)) (-4 *4 (-1038 (-566))) + (-4 *4 (-558)) (-5 *2 (-1171 *5)) (-5 *1 (-32 *4 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-612 *1)) (-4 *1 (-1049)) (-4 *1 (-303)) + (-5 *2 (-1171 *1))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-409 *5)) (-4 *4 (-1218)) (-4 *5 (-1240 *4)) + (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1240 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1177 (-409 (-566)))) (-5 *2 (-409 (-566))) + (-5 *1 (-190)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-689 (-317 (-225)))) (-5 *3 (-644 (-1175))) + (-5 *4 (-1264 (-317 (-225)))) (-5 *1 (-205)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-644 (-295 *3))) (-4 *3 (-310 *3)) (-4 *3 (-1099)) + (-4 *3 (-1214)) (-5 *1 (-295 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-310 *2)) (-4 *2 (-1099)) (-4 *2 (-1214)) + (-5 *1 (-295 *2)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-303)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-644 *1))) (-4 *1 (-303)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-644 (-114))) (-5 *3 (-644 (-1 *1 (-644 *1)))) + (-4 *1 (-303)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-644 (-114))) (-5 *3 (-644 (-1 *1 *1))) (-4 *1 (-303)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-1 *1 *1)) (-4 *1 (-303)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-1 *1 (-644 *1))) (-4 *1 (-303)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-644 (-1175))) (-5 *3 (-644 (-1 *1 (-644 *1)))) + (-4 *1 (-303)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-644 (-1175))) (-5 *3 (-644 (-1 *1 *1))) (-4 *1 (-303)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-644 (-295 *3))) (-4 *1 (-310 *3)) (-4 *3 (-1099)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-295 *3)) (-4 *1 (-310 *3)) (-4 *3 (-1099)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *2 (-566))) (-5 *4 (-1177 (-409 (-566)))) + (-5 *1 (-311 *2)) (-4 *2 (-38 (-409 (-566)))))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-644 *4)) (-5 *3 (-644 *1)) (-4 *1 (-376 *4 *5)) + (-4 *4 (-850)) (-4 *5 (-172)))) + ((*1 *1 *1 *2 *1) + (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-850)) (-4 *3 (-172)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-1175)) (-5 *3 (-771)) (-5 *4 (-1 *1 *1)) + (-4 *1 (-432 *5)) (-4 *5 (-1099)) (-4 *5 (-1049)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-1175)) (-5 *3 (-771)) (-5 *4 (-1 *1 (-644 *1))) + (-4 *1 (-432 *5)) (-4 *5 (-1099)) (-4 *5 (-1049)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-644 (-1175))) (-5 *3 (-644 (-771))) + (-5 *4 (-644 (-1 *1 (-644 *1)))) (-4 *1 (-432 *5)) (-4 *5 (-1099)) + (-4 *5 (-1049)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-644 (-1175))) (-5 *3 (-644 (-771))) + (-5 *4 (-644 (-1 *1 *1))) (-4 *1 (-432 *5)) (-4 *5 (-1099)) + (-4 *5 (-1049)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-644 (-114))) (-5 *3 (-644 *1)) (-5 *4 (-1175)) + (-4 *1 (-432 *5)) (-4 *5 (-1099)) (-4 *5 (-614 (-538))))) + ((*1 *1 *1 *2 *1 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-1175)) (-4 *1 (-432 *4)) (-4 *4 (-1099)) + (-4 *4 (-614 (-538))))) + ((*1 *1 *1) + (-12 (-4 *1 (-432 *2)) (-4 *2 (-1099)) (-4 *2 (-614 (-538))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-644 (-1175))) (-4 *1 (-432 *3)) (-4 *3 (-1099)) + (-4 *3 (-614 (-538))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1175)) (-4 *1 (-432 *3)) (-4 *3 (-1099)) + (-4 *3 (-614 (-538))))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *1 (-516 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1214)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-644 *4)) (-5 *3 (-644 *5)) (-4 *1 (-516 *4 *5)) + (-4 *4 (-1099)) (-4 *5 (-1214)))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-833 *3)) (-4 *3 (-365)) (-5 *1 (-718 *3)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-903 *2)) (-4 *2 (-1099)))) + ((*1 *2 *2 *3 *2) + (-12 (-5 *2 (-409 (-952 *4))) (-5 *3 (-1175)) (-4 *4 (-558)) + (-5 *1 (-1043 *4)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-644 (-1175))) (-5 *4 (-644 (-409 (-952 *5)))) + (-5 *2 (-409 (-952 *5))) (-4 *5 (-558)) (-5 *1 (-1043 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-295 (-409 (-952 *4)))) (-5 *2 (-409 (-952 *4))) + (-4 *4 (-558)) (-5 *1 (-1043 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-644 (-295 (-409 (-952 *4))))) (-5 *2 (-409 (-952 *4))) + (-4 *4 (-558)) (-5 *1 (-1043 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1242 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)) + (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1155 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 (-331))) (-5 *1 (-331))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-771)) (-4 *1 (-327 *3 *4)) (-4 *3 (-1049)) + (-4 *4 (-792)) (-4 *3 (-172))))) +(((*1 *1 *1 *1) (-4 *1 (-303))) ((*1 *1 *1) (-4 *1 (-303)))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1240 *4)) (-4 *4 (-1218)) + (-4 *6 (-1240 (-409 *5))) + (-5 *2 + (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) + (|:| |gd| *5))) + (-4 *1 (-344 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-248))))) +(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-566)) (-5 *1 (-241)))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 (-1157))) (-5 *2 (-566)) (-5 *1 (-241))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-771)) (-4 *1 (-740 *4 *5)) (-4 *4 (-1049)) + (-4 *5 (-850)) (-5 *2 (-952 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-771)) (-4 *1 (-740 *4 *5)) (-4 *4 (-1049)) + (-4 *5 (-850)) (-5 *2 (-952 *4)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-771)) (-4 *1 (-1255 *4)) (-4 *4 (-1049)) + (-5 *2 (-952 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-771)) (-4 *1 (-1255 *4)) (-4 *4 (-1049)) + (-5 *2 (-952 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-644 *2)) (-4 *2 (-1064 *4 *5 *6)) (-4 *4 (-558)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-977 *4 *5 *6 *2))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-566)) (-14 *3 (-771)) + (-4 *4 (-172)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1175)) (-4 *4 (-558)) (-5 *1 (-158 *4 *2)) + (-4 *2 (-432 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1091 *2)) (-4 *2 (-432 *4)) (-4 *4 (-558)) + (-5 *1 (-158 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1091 *1)) (-4 *1 (-160)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1175)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-467 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-771)) (-5 *1 (-1284 *3 *4)) (-4 *3 (-850)) + (-4 *4 (-172))))) +(((*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1178))))) +(((*1 *1 *2 *3 *4) + (-12 (-14 *5 (-644 (-1175))) (-4 *2 (-172)) + (-4 *4 (-238 (-3000 *5) (-771))) + (-14 *6 + (-1 (-112) (-2 (|:| -2835 *3) (|:| -2201 *4)) + (-2 (|:| -2835 *3) (|:| -2201 *4)))) + (-5 *1 (-463 *5 *2 *3 *4 *6 *7)) (-4 *3 (-850)) + (-4 *7 (-949 *2 *4 (-864 *5)))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-921)) (-5 *1 (-1030 *2)) + (-4 *2 (-13 (-1099) (-10 -8 (-15 -3002 ($ $ $)))))))) +(((*1 *2 *3) + (-12 (-4 *1 (-909)) (-5 *2 (-420 (-1171 *1))) (-5 *3 (-1171 *1))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 (-1157))) (-5 *2 (-1157)) (-5 *1 (-192)))) + ((*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-558)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) + (-5 *1 (-1204 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) + (-5 *1 (-988 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) + (-5 *1 (-1106 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 (-2 (|:| |den| (-566)) (|:| |gcdnum| (-566))))) + (-4 *4 (-1240 (-409 *2))) (-5 *2 (-566)) (-5 *1 (-913 *4 *5)) + (-4 *5 (-1240 (-409 *4)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-909)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-949 *4 *5 *6)) (-5 *2 (-420 (-1171 *7))) + (-5 *1 (-906 *4 *5 *6 *7)) (-5 *3 (-1171 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-909)) (-4 *5 (-1240 *4)) (-5 *2 (-420 (-1171 *5))) + (-5 *1 (-907 *4 *5)) (-5 *3 (-1171 *5))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-756))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) + (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225)) + (-5 *2 (-1035)) (-5 *1 (-752))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-644 *6)) (-5 *4 (-1175)) (-4 *6 (-432 *5)) + (-4 *5 (-1099)) (-5 *2 (-644 (-612 *6))) (-5 *1 (-575 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *2) + (-12 (-5 *2 (-921)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) + ((*1 *2 *2) + (-12 (-5 *2 (-921)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566)))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-644 *3)) (-4 *3 (-949 *4 *6 *5)) (-4 *4 (-454)) + (-4 *5 (-850)) (-4 *6 (-793)) (-5 *1 (-987 *4 *5 *6 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) + (-5 *2 (-644 *4)) (-5 *1 (-1127 *3 *4)) (-4 *3 (-1240 *4)))) + ((*1 *2 *3 *3) + (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) + (-5 *2 (-644 *3)) (-5 *1 (-1127 *4 *3)) (-4 *4 (-1240 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-644 (-506 *3 *4 *5 *6))) (-4 *3 (-365)) (-4 *4 (-793)) + (-4 *5 (-850)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-365)) (-4 *3 (-793)) (-4 *4 (-850)) + (-5 *1 (-506 *2 *3 *4 *5)) (-4 *5 (-949 *2 *3 *4)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-644 *1)) (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) + (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-644 *1)) (-5 *3 (-644 *7)) (-4 *1 (-1070 *4 *5 *6 *7)) + (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-1064 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 *1)) + (-4 *1 (-1070 *4 *5 *6 *7)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-644 *1)) + (-4 *1 (-1070 *4 *5 *6 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-454)) (-4 *4 (-558)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| -3177 *4))) (-5 *1 (-969 *4 *3)) + (-4 *3 (-1240 *4))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -1966 *6) (|:| |sol?| (-112))) (-566) + *6)) + (-4 *6 (-365)) (-4 *7 (-1240 *6)) + (-5 *2 (-2 (|:| |answer| (-587 (-409 *7))) (|:| |a0| *6))) + (-5 *1 (-576 *6 *7)) (-5 *3 (-409 *7))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-429 *3 *2)) (-4 *3 (-13 (-172) (-38 (-409 (-566))))) + (-4 *2 (-13 (-850) (-21)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1199)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *1)) + (-4 *1 (-1064 *3 *4 *5))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-644 (-771))) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) + (-4 *4 (-1049))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *5 (-612 *4)) (-5 *6 (-1171 *4)) + (-4 *4 (-13 (-432 *7) (-27) (-1199))) + (-4 *7 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2875 (-644 *4)))) + (-5 *1 (-562 *7 *4 *3)) (-4 *3 (-656 *4)) (-4 *3 (-1099)))) + ((*1 *2 *3 *4 *5 *5 *5 *4 *6) + (-12 (-5 *5 (-612 *4)) (-5 *6 (-409 (-1171 *4))) + (-4 *4 (-13 (-432 *7) (-27) (-1199))) + (-4 *7 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2875 (-644 *4)))) + (-5 *1 (-562 *7 *4 *3)) (-4 *3 (-656 *4)) (-4 *3 (-1099))))) +(((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1040))))) +(((*1 *2 *3) + (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-241)) (-5 *3 (-1157)))) + ((*1 *2 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-241)))) + ((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-874))))) +(((*1 *2) (-12 (-5 *2 (-1146 (-1157))) (-5 *1 (-393))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *3 (-1064 *5 *6 *7)) + (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -1470 *4)))) + (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-363 (-114))) (-4 *2 (-1049)) (-5 *1 (-714 *2 *4)) + (-4 *4 (-648 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-363 (-114))) (-5 *1 (-836 *2)) (-4 *2 (-1049))))) +(((*1 *2 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-848)) (-5 *1 (-304 *3))))) +(((*1 *1 *1) + (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-529)) (-5 *3 (-128)) (-5 *2 (-771))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-644 *5)) (-5 *4 (-644 *6)) (-4 *5 (-1099)) + (-4 *6 (-1214)) (-5 *2 (-1 *6 *5)) (-5 *1 (-641 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-644 *5)) (-5 *4 (-644 *2)) (-4 *5 (-1099)) + (-4 *2 (-1214)) (-5 *1 (-641 *5 *2)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-644 *6)) (-5 *4 (-644 *5)) (-4 *6 (-1099)) + (-4 *5 (-1214)) (-5 *2 (-1 *5 *6)) (-5 *1 (-641 *6 *5)))) + ((*1 *2 *3 *4 *5 *2) + (-12 (-5 *3 (-644 *5)) (-5 *4 (-644 *2)) (-4 *5 (-1099)) + (-4 *2 (-1214)) (-5 *1 (-641 *5 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-644 *5)) (-5 *4 (-644 *6)) + (-4 *5 (-1099)) (-4 *6 (-1214)) (-5 *1 (-641 *5 *6)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-644 *5)) (-5 *4 (-644 *2)) (-5 *6 (-1 *2 *5)) + (-4 *5 (-1099)) (-4 *2 (-1214)) (-5 *1 (-641 *5 *2)))) + ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (-144)) (-5 *2 (-771))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| -2397 *3) (|:| |gap| (-771)) (|:| -2631 (-782 *3)) + (|:| -3264 (-782 *3)))) + (-5 *1 (-782 *3)) (-4 *3 (-1049)))) + ((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-850)) + (-5 *2 + (-2 (|:| -2397 *1) (|:| |gap| (-771)) (|:| -2631 *1) + (|:| -3264 *1))) + (-4 *1 (-1064 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) + (-5 *2 + (-2 (|:| -2397 *1) (|:| |gap| (-771)) (|:| -2631 *1) + (|:| -3264 *1))) + (-4 *1 (-1064 *3 *4 *5))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-566)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-420 *4)) (-4 *4 (-558))))) +(((*1 *2 *1) + (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1099)) + (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-508)) (-5 *3 (-644 (-965))) (-5 *1 (-292))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-644 (-952 (-566)))) (-5 *4 (-644 (-1175))) + (-5 *2 (-644 (-644 (-381)))) (-5 *1 (-1023)) (-5 *5 (-381)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1046 *4 *5)) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) + (-14 *5 (-644 (-1175))) (-5 *2 (-644 (-644 (-1024 (-409 *4))))) + (-5 *1 (-1290 *4 *5 *6)) (-14 *6 (-644 (-1175))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-848) (-308) (-147) (-1022))) + (-5 *2 (-644 (-644 (-1024 (-409 *5))))) (-5 *1 (-1290 *5 *6 *7)) + (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-848) (-308) (-147) (-1022))) + (-5 *2 (-644 (-644 (-1024 (-409 *5))))) (-5 *1 (-1290 *5 *6 *7)) + (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-848) (-308) (-147) (-1022))) + (-5 *2 (-644 (-644 (-1024 (-409 *5))))) (-5 *1 (-1290 *5 *6 *7)) + (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 (-952 *4))) + (-4 *4 (-13 (-848) (-308) (-147) (-1022))) + (-5 *2 (-644 (-644 (-1024 (-409 *4))))) (-5 *1 (-1290 *4 *5 *6)) + (-14 *5 (-644 (-1175))) (-14 *6 (-644 (-1175)))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *3 (-1064 *5 *6 *7)) + (-5 *2 (-644 (-2 (|:| |val| (-644 *3)) (|:| -1470 *4)))) + (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1155 (-1155 *4))) (-5 *2 (-1155 *4)) (-5 *1 (-1159 *4)) + (-4 *4 (-38 (-409 (-566)))) (-4 *4 (-1049))))) +(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1214))))) +(((*1 *2 *1) (-12 (-4 *1 (-1283 *3)) (-4 *3 (-365)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-5 *2 (-644 *4)) (-5 *1 (-1140 *3 *4)) + (-4 *3 (-13 (-1099) (-34))) (-4 *4 (-13 (-1099) (-34)))))) +(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1256 *2 *3 *4)) (-4 *2 (-1049)) (-14 *3 (-1175)) + (-14 *4 *2)))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1214)) (-5 *1 (-1131 *4 *2)) + (-4 *2 (-13 (-604 (-566) *4) (-10 -7 (-6 -4414) (-6 -4415)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-850)) (-4 *3 (-1214)) (-5 *1 (-1131 *3 *2)) + (-4 *2 (-13 (-604 (-566) *3) (-10 -7 (-6 -4414) (-6 -4415))))))) +(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1214)))) + ((*1 *1 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-850)))) + ((*1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-850)))) + ((*1 *1 *1) (-5 *1 (-862))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-848) (-365))) (-5 *1 (-1060 *2 *3)) + (-4 *3 (-1240 *2))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-4 *5 (-432 *4)) + (-5 *2 (-420 *3)) (-5 *1 (-437 *4 *5 *3)) (-4 *3 (-1240 *5))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1049)) (-5 *1 (-894 *2 *3)) (-4 *2 (-1240 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) + (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-527))))) +(((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-144))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1214)) + (-4 *5 (-1214)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-240 *6 *7)) (-14 *6 (-771)) + (-4 *7 (-1214)) (-4 *5 (-1214)) (-5 *2 (-240 *6 *5)) + (-5 *1 (-239 *6 *7 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1214)) (-4 *5 (-1214)) + (-4 *2 (-375 *5)) (-5 *1 (-373 *6 *4 *5 *2)) (-4 *4 (-375 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1099)) (-4 *5 (-1099)) + (-4 *2 (-427 *5)) (-5 *1 (-425 *6 *4 *5 *2)) (-4 *4 (-427 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-644 *6)) (-4 *6 (-1214)) + (-4 *5 (-1214)) (-5 *2 (-644 *5)) (-5 *1 (-642 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-958 *6)) (-4 *6 (-1214)) + (-4 *5 (-1214)) (-5 *2 (-958 *5)) (-5 *1 (-957 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1155 *6)) (-4 *6 (-1214)) + (-4 *3 (-1214)) (-5 *2 (-1155 *3)) (-5 *1 (-1153 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1264 *6)) (-4 *6 (-1214)) + (-4 *5 (-1214)) (-5 *2 (-1264 *5)) (-5 *1 (-1263 *6 *5))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) + (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) + (-5 *1 (-1277 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-644 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-558)) + (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-1277 *5 *6 *7 *8))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *3 (-1064 *5 *6 *7)) + (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -1470 *4)))) + (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-365)) (-4 *3 (-1049)) + (-5 *1 (-1159 *3))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-566)) (-5 *2 (-1269)) (-5 *1 (-904 *4)) + (-4 *4 (-1099)))) + ((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-904 *3)) (-4 *3 (-1099))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1141 *4 *2)) (-14 *4 (-921)) + (-4 *2 (-13 (-1049) (-10 -7 (-6 (-4416 "*"))))) + (-5 *1 (-902 *4 *2))))) +(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1214)))) + ((*1 *1 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-850)))) + ((*1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-850)))) + ((*1 *1 *1) (-5 *1 (-862))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-848) (-365))) (-5 *1 (-1060 *2 *3)) + (-4 *3 (-1240 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-97))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) (-4 *5 (-793)) + (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-276))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4415)) (-4 *1 (-1252 *2)) (-4 *2 (-1214))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1139 *2 *3)) (-4 *2 (-13 (-1099) (-34))) + (-4 *3 (-13 (-1099) (-34)))))) +(((*1 *2 *1) (-12 (-5 *2 (-971)) (-5 *1 (-905 *3)) (-4 *3 (-1099))))) +(((*1 *2 *3 *2) + (-12 (-5 *1 (-679 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1099))))) +(((*1 *2 *1 *3 *3) + (-12 (|has| *1 (-6 -4415)) (-4 *1 (-604 *3 *4)) (-4 *3 (-1099)) + (-4 *4 (-1214)) (-5 *2 (-1269))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-365) (-848))) (-5 *1 (-181 *3 *2)) + (-4 *2 (-1240 (-169 *3)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *3 (-644 (-566))) + (-5 *1 (-883))))) +(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-824))))) +(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) + (-12 (-5 *3 (-566)) (-5 *5 (-112)) (-5 *6 (-689 (-225))) + (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-77 OBJFUN)))) + (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-753))))) +(((*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-691 (-129)))))) +(((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-927))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-644 (-952 *4))) (-5 *3 (-644 (-1175))) (-4 *4 (-454)) + (-5 *1 (-918 *4))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-771)) (|:| |poli| *2) + (|:| |polj| *2))) + (-4 *5 (-793)) (-4 *2 (-949 *4 *5 *6)) (-5 *1 (-451 *4 *5 *6 *2)) + (-4 *4 (-454)) (-4 *6 (-850))))) +(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-699)) (-5 *1 (-306))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-644 (-1 *4 (-644 *4)))) (-4 *4 (-1099)) + (-5 *1 (-113 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1099)) + (-5 *1 (-113 *4)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-114)) (-5 *2 (-644 (-1 *4 (-644 *4)))) + (-5 *1 (-113 *4)) (-4 *4 (-1099))))) +(((*1 *2 *1) + (-12 (-5 *2 (-862)) (-5 *1 (-392 *3 *4 *5)) (-14 *3 (-771)) + (-14 *4 (-771)) (-4 *5 (-172))))) +(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-558)) + (-5 *2 (-2 (|:| -3361 (-689 *5)) (|:| |vec| (-1264 (-644 (-921)))))) + (-5 *1 (-90 *5 *3)) (-5 *4 (-921)) (-4 *3 (-656 *5))))) +(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) + (-12 (-5 *3 (-1157)) (-5 *5 (-689 (-225))) (-5 *6 (-225)) + (-5 *7 (-689 (-566))) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-752))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -1641 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-365)) (-4 *7 (-1240 *6)) + (-5 *2 + (-3 (-2 (|:| |answer| (-409 *7)) (|:| |a0| *6)) + (-2 (|:| -1641 (-409 *7)) (|:| |coeff| (-409 *7))) "failed")) + (-5 *1 (-576 *6 *7)) (-5 *3 (-409 *7))))) +(((*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1267)))) + ((*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1267))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1214)) (-5 *2 (-644 *1)) (-4 *1 (-1010 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-644 (-1163 *3 *4))) (-5 *1 (-1163 *3 *4)) + (-14 *3 (-921)) (-4 *4 (-1049))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |var| (-644 (-1175))) (|:| |pred| (-52)))) + (-5 *1 (-892 *3)) (-4 *3 (-1099))))) +(((*1 *2) + (-12 + (-5 *2 (-2 (|:| -2395 (-644 (-1175))) (|:| -1923 (-644 (-1175))))) + (-5 *1 (-1216))))) +(((*1 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1214))))) +(((*1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1214))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862))))) +(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-409 (-566))) (-5 *1 (-306))))) +(((*1 *1 *2 *3 *3 *4 *4) + (-12 (-5 *2 (-952 (-566))) (-5 *3 (-1175)) + (-5 *4 (-1093 (-409 (-566)))) (-5 *1 (-30))))) +(((*1 *1 *2) (-12 (-5 *1 (-691 *2)) (-4 *2 (-613 (-862)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-409 (-566))) (-5 *1 (-320 *3 *4 *5)) (-4 *3 (-365)) + (-14 *4 (-1175)) (-14 *5 *3)))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-365)) (-4 *3 (-1049)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3302 *1))) + (-4 *1 (-852 *3))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-114)) (-5 *1 (-113 *2)) (-4 *2 (-1099))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-555))))) +(((*1 *1 *1 *1) (-5 *1 (-862)))) +(((*1 *2 *1) + (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-558)) + (-5 *2 (-1171 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-558) (-147))) (-5 *1 (-539 *3 *2)) + (-4 *2 (-1255 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-365) (-370) (-614 (-566)))) (-4 *4 (-1240 *3)) + (-4 *5 (-724 *3 *4)) (-5 *1 (-543 *3 *4 *5 *2)) (-4 *2 (-1255 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-365) (-370) (-614 (-566)))) (-5 *1 (-544 *3 *2)) + (-4 *2 (-1255 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-13 (-558) (-147))) + (-5 *1 (-1151 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-365)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) + (-5 *2 (-771)) (-5 *1 (-523 *4 *5 *6 *3)) (-4 *3 (-687 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-4 *3 (-558)) (-5 *2 (-771)))) + ((*1 *2 *3) + (-12 (-4 *4 (-558)) (-4 *4 (-172)) (-4 *5 (-375 *4)) + (-4 *6 (-375 *4)) (-5 *2 (-771)) (-5 *1 (-688 *4 *5 *6 *3)) + (-4 *3 (-687 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-558)) + (-5 *2 (-771))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-558)) + (-4 *7 (-949 *3 *5 *6)) + (-5 *2 (-2 (|:| -2201 (-771)) (|:| -2397 *8) (|:| |radicand| *8))) + (-5 *1 (-953 *5 *6 *3 *7 *8)) (-5 *4 (-771)) + (-4 *8 + (-13 (-365) + (-10 -8 (-15 -3152 ($ *7)) (-15 -2248 (*7 $)) (-15 -2260 (*7 $)))))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1207 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793)) + (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-644 (-1075 *4 *5 *2))) (-4 *4 (-1099)) + (-4 *5 (-13 (-1049) (-886 *4) (-614 (-892 *4)))) + (-4 *2 (-13 (-432 *5) (-886 *4) (-614 (-892 *4)))) + (-5 *1 (-54 *4 *5 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-644 (-1075 *5 *6 *2))) (-5 *4 (-921)) (-4 *5 (-1099)) + (-4 *6 (-13 (-1049) (-886 *5) (-614 (-892 *5)))) + (-4 *2 (-13 (-432 *6) (-886 *5) (-614 (-892 *5)))) + (-5 *1 (-54 *5 *6 *2))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *5 (-850)) (-5 *2 (-771))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| |polnum| (-782 *3)) (|:| |polden| *3) (|:| -1956 (-771)))) + (-5 *1 (-782 *3)) (-4 *3 (-1049)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) + (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -1956 (-771)))) + (-4 *1 (-1064 *3 *4 *5))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1157)) (-5 *4 (-566)) (-5 *5 (-689 (-225))) + (-5 *2 (-1035)) (-5 *1 (-757))))) +(((*1 *2 *1) (-12 (-5 *2 (-1155 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308))))) +(((*1 *1 *1 *1) (-5 *1 (-862)))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) + (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G)))) (-5 *2 (-1035)) + (-5 *1 (-748))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-409 (-952 *4))) (-5 *3 (-1175)) + (-4 *4 (-13 (-558) (-1038 (-566)) (-147))) (-5 *1 (-572 *4))))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-792))))) +(((*1 *2 *3) + (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-308)) + (-5 *2 (-644 (-771))) (-5 *1 (-778 *3 *4 *5 *6 *7)) + (-4 *3 (-1240 *6)) (-4 *7 (-949 *6 *4 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1171 (-409 (-952 *3)))) (-5 *1 (-455 *3 *4 *5 *6)) + (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) + (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-420 (-1171 *1))) (-5 *1 (-317 *4)) (-5 *3 (-1171 *1)) + (-4 *4 (-454)) (-4 *4 (-558)) (-4 *4 (-1099)))) + ((*1 *2 *3) + (-12 (-4 *1 (-909)) (-5 *2 (-420 (-1171 *1))) (-5 *3 (-1171 *1))))) +(((*1 *1 *1) + (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-921)) (-5 *2 (-1269)) (-5 *1 (-1265)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-921)) (-5 *2 (-1269)) (-5 *1 (-1266))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-969 *3 *2)) (-4 *2 (-1240 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850)) (-4 *2 (-558)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1240 *2)) (-4 *2 (-1049)) (-4 *2 (-558))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-1218)) (-4 *5 (-1240 *4)) + (-5 *2 (-2 (|:| |radicand| (-409 *5)) (|:| |deg| (-771)))) + (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1240 (-409 *5)))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-432 *3) (-1002))) (-5 *1 (-277 *3 *2)) + (-4 *3 (-558))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1264 (-689 *4))) (-4 *4 (-172)) + (-5 *2 (-1264 (-689 (-952 *4)))) (-5 *1 (-189 *4))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-952 (-169 *4))) (-4 *4 (-172)) + (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-952 (-169 *5))) (-5 *4 (-921)) (-4 *5 (-172)) + (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-952 *4)) (-4 *4 (-1049)) + (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-952 *5)) (-5 *4 (-921)) (-4 *5 (-1049)) + (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-558)) + (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-921)) (-4 *5 (-558)) + (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-409 (-952 (-169 *4)))) (-4 *4 (-558)) + (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-409 (-952 (-169 *5)))) (-5 *4 (-921)) + (-4 *5 (-558)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) + (-5 *1 (-785 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-317 *4)) (-4 *4 (-558)) (-4 *4 (-850)) + (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-317 *5)) (-5 *4 (-921)) (-4 *5 (-558)) + (-4 *5 (-850)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) + (-5 *1 (-785 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-317 (-169 *4))) (-4 *4 (-558)) (-4 *4 (-850)) + (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-317 (-169 *5))) (-5 *4 (-921)) (-4 *5 (-558)) + (-4 *5 (-850)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) + (-5 *1 (-785 *5))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-689 *3)) + (-4 *3 (-13 (-308) (-10 -8 (-15 -1364 ((-420 $) $))))) + (-4 *4 (-1240 *3)) (-5 *1 (-501 *3 *4 *5)) (-4 *5 (-411 *3 *4))))) +(((*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-1083 *3)) (-4 *3 (-132))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *5 (-112)) + (-5 *2 (-1035)) (-5 *1 (-745))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-112)) (-4 *4 (-13 (-365) (-848))) (-5 *2 (-420 *3)) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1240 (-169 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-365) (-848))) (-5 *2 (-420 *3)) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1240 (-169 *4)))))) +(((*1 *2 *2) + (-12 (-4 *2 (-13 (-365) (-848))) (-5 *1 (-181 *2 *3)) + (-4 *3 (-1240 (-169 *2)))))) +(((*1 *2 *3) + (|partial| -12 (-4 *2 (-1099)) (-5 *1 (-1191 *3 *2)) (-4 *3 (-1099))))) +(((*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-560 *3)) (-4 *3 (-547))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4415)) (-4 *1 (-119 *2)) (-4 *2 (-1214))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1175)) + (-5 *2 + (-2 (|:| |zeros| (-1155 (-225))) (|:| |ones| (-1155 (-225))) + (|:| |singularities| (-1155 (-225))))) + (-5 *1 (-105))))) +(((*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-1179))))) +(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-381)) (-5 *1 (-786))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-558)) + (-5 *2 (-2 (|:| -2631 *3) (|:| -3264 *3))) (-5 *1 (-1235 *4 *3)) + (-4 *3 (-1240 *4))))) +(((*1 *2 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308)))) + ((*1 *2 *1) (-12 (-5 *1 (-914 *2)) (-4 *2 (-308)))) + ((*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558)) (-4 *2 (-308)))) + ((*1 *2 *1) (-12 (-4 *1 (-1059)) (-5 *2 (-566))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-508)) (-5 *2 (-644 (-965))) (-5 *1 (-292))))) +(((*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1214))))) +(((*1 *2 *3) + (-12 (-5 *3 (-771)) (-5 *2 (-689 (-952 *4))) (-5 *1 (-1028 *4)) + (-4 *4 (-1049))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-169 (-225)))) (-5 *2 (-1035)) + (-5 *1 (-754))))) +(((*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-921)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1264 *4)) (-4 *4 (-351)) (-5 *2 (-921)) + (-5 *1 (-530 *4))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171))))) +(((*1 *1) (-5 *1 (-157))) + ((*1 *2 *1) (-12 (-4 *1 (-1044 *2)) (-4 *2 (-23))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-644 *4)) (-4 *4 (-1099)) (-4 *4 (-1214)) (-5 *2 (-112)) + (-5 *1 (-1155 *4))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1175)) (-5 *4 (-952 (-566))) (-5 *2 (-331)) + (-5 *1 (-333)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1175)) (-5 *4 (-1091 (-952 (-566)))) (-5 *2 (-331)) + (-5 *1 (-333)))) + ((*1 *1 *2 *2 *2) + (-12 (-5 *2 (-771)) (-5 *1 (-675 *3)) (-4 *3 (-1049)) + (-4 *3 (-1099))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) +(((*1 *1 *2 *2 *3) + (-12 (-5 *2 (-771)) (-4 *3 (-1214)) (-4 *1 (-57 *3 *4 *5)) + (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) + ((*1 *1) (-5 *1 (-171))) + ((*1 *1) (-12 (-5 *1 (-213 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1099)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1157)) (-4 *1 (-391)))) + ((*1 *1) (-5 *1 (-396))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-771)) (-4 *1 (-651 *3)) (-4 *3 (-1214)))) + ((*1 *1) + (-12 (-4 *3 (-1099)) (-5 *1 (-885 *2 *3 *4)) (-4 *2 (-1099)) + (-4 *4 (-666 *3)))) + ((*1 *1) (-12 (-5 *1 (-889 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099)))) + ((*1 *1 *2) + (-12 (-5 *1 (-1141 *3 *2)) (-14 *3 (-771)) (-4 *2 (-1049)))) + ((*1 *1) (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1049)))) + ((*1 *1 *1) (-5 *1 (-1175))) ((*1 *1) (-5 *1 (-1175))) + ((*1 *1) (-5 *1 (-1194)))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-566)) (-4 *1 (-651 *3)) (-4 *3 (-1214)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-566)) (-4 *1 (-651 *2)) (-4 *2 (-1214))))) +(((*1 *2 *3) + (-12 (-4 *4 (-558)) (-5 *2 (-771)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-419 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 *7)) (-4 *7 (-949 *4 *6 *5)) + (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) + (-4 *6 (-793)) (-5 *2 (-112)) (-5 *1 (-924 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 (-952 *4))) (-4 *4 (-13 (-308) (-147))) + (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-112)) + (-5 *1 (-924 *4 *5 *6 *7)) (-4 *7 (-949 *4 *6 *5))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-720)) (-5 *2 (-921)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-722)) (-5 *2 (-771))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1157)) + (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-112)) + (-5 *1 (-224 *4 *5)) (-4 *5 (-13 (-1199) (-29 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1155 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308))))) +(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144))) + ((*1 *1 *1) (-4 *1 (-1143)))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-469)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-469))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1264 *4)) (-4 *4 (-639 (-566))) (-5 *2 (-112)) + (-5 *1 (-1291 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-644 (-2 (|:| -2674 *3) (|:| -2636 *4)))) + (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *1 (-1190 *3 *4)))) + ((*1 *1) (-12 (-4 *1 (-1190 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099))))) +(((*1 *2 *1) (-12 (-5 *2 (-183 (-249))) (-5 *1 (-248))))) +(((*1 *1 *1) (-4 *1 (-547)))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-365)) (-4 *3 (-1049)) + (-5 *1 (-1159 *3))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-454)) (-4 *4 (-850)) (-4 *5 (-793)) + (-5 *2 (-112)) (-5 *1 (-987 *3 *4 *5 *6)) + (-4 *6 (-949 *3 *5 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1139 *3 *4)) (-4 *3 (-13 (-1099) (-34))) + (-4 *4 (-13 (-1099) (-34)))))) +(((*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-691 (-551)))))) +(((*1 *2 *2 *2) + (-12 + (-5 *2 + (-2 (|:| -2875 (-689 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-689 *3)))) + (-4 *3 (-13 (-308) (-10 -8 (-15 -1364 ((-420 $) $))))) + (-4 *4 (-1240 *3)) (-5 *1 (-501 *3 *4 *5)) (-4 *5 (-411 *3 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-558)) (-5 *2 (-644 *3)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-419 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-921)) (-5 *1 (-786))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1155 (-2 (|:| |k| (-566)) (|:| |c| *3)))) + (-5 *1 (-596 *3)) (-4 *3 (-1049))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 *4)) (-4 *4 (-1099)) (-5 *2 (-1269)) + (-5 *1 (-1215 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-644 *4)) (-4 *4 (-1099)) (-5 *2 (-1269)) + (-5 *1 (-1215 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) + (-5 *2 (-644 *4)) (-5 *1 (-1127 *3 *4)) (-4 *3 (-1240 *4)))) + ((*1 *2 *3 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) + (-5 *2 (-644 *3)) (-5 *1 (-1127 *4 *3)) (-4 *4 (-1240 *3))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *3 (-1064 *5 *6 *7)) + (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -1470 *4)))) + (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-365)) + (-5 *2 + (-2 (|:| A (-689 *5)) + (|:| |eqs| + (-644 + (-2 (|:| C (-689 *5)) (|:| |g| (-1264 *5)) (|:| -3434 *6) + (|:| |rh| *5)))))) + (-5 *1 (-813 *5 *6)) (-5 *3 (-689 *5)) (-5 *4 (-1264 *5)) + (-4 *6 (-656 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-365)) (-4 *6 (-656 *5)) + (-5 *2 (-2 (|:| -3361 (-689 *6)) (|:| |vec| (-1264 *5)))) + (-5 *1 (-813 *5 *6)) (-5 *3 (-689 *6)) (-5 *4 (-1264 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-351)) (-5 *2 (-958 (-1171 *4))) (-5 *1 (-359 *4)) + (-5 *3 (-1171 *4))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) + (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-5 *2 (-381)) (-5 *1 (-205))))) +(((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -3209 (-566)) (|:| -1616 (-644 *3)))) + (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566)))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-566)) (-5 *1 (-381))))) +(((*1 *2 *3) + (-12 (-4 *4 (-38 (-409 (-566)))) + (-5 *2 (-2 (|:| -3602 (-1155 *4)) (|:| -3618 (-1155 *4)))) + (-5 *1 (-1161 *4)) (-5 *3 (-1155 *4))))) +(((*1 *2 *2) (-12 (-5 *1 (-682 *2)) (-4 *2 (-1099))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1175)) + (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1199) (-432 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-771)) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) + (-5 *2 (-52)) (-5 *1 (-316 *5 *3)) + (-4 *3 (-13 (-27) (-1199) (-432 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5))) + (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-316 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-295 *3)) (-5 *5 (-771)) + (-4 *3 (-13 (-27) (-1199) (-432 *6))) + (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-316 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-566))) (-5 *4 (-295 *6)) + (-4 *6 (-13 (-27) (-1199) (-432 *5))) + (-4 *5 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-461 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1175)) (-5 *5 (-295 *3)) + (-4 *3 (-13 (-27) (-1199) (-432 *6))) + (-4 *6 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-461 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-566))) (-5 *4 (-295 *7)) (-5 *5 (-1231 (-771))) + (-4 *7 (-13 (-27) (-1199) (-432 *6))) + (-4 *6 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-461 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1175)) (-5 *5 (-295 *3)) (-5 *6 (-1231 (-771))) + (-4 *3 (-13 (-27) (-1199) (-432 *7))) + (-4 *7 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-461 *7 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1226 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-1255 *3))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-610 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)) + (-5 *2 (-112))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1049)) (-4 *3 (-850)) + (-4 *5 (-267 *3)) (-4 *6 (-793)) (-5 *2 (-644 (-771))))) + ((*1 *2 *1) + (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-850)) + (-4 *5 (-267 *4)) (-4 *6 (-793)) (-5 *2 (-644 (-771)))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-771)) (-5 *1 (-588 *2)) (-4 *2 (-547))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-264))) (-5 *4 (-1175)) (-5 *2 (-112)) + (-5 *1 (-264))))) +(((*1 *1) (-5 *1 (-823)))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-690 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-157)))) + ((*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-874)))) + ((*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049))))) +(((*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1157)) (-5 *1 (-710))))) +(((*1 *2 *3) + (|partial| -12 (-5 *2 (-566)) (-5 *1 (-1196 *3)) (-4 *3 (-1049))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) + (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-66 FUNCT1)))) + (-5 *2 (-1035)) (-5 *1 (-753))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-169 (-225))) (-5 *5 (-566)) (-5 *6 (-1157)) + (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *2 *3) + (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-359 *4)) + (-4 *4 (-351))))) +(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-317 (-381))) (-5 *1 (-306))))) +(((*1 *1 *1 *2 *1) + (-12 (-5 *2 (-566)) (-5 *1 (-1155 *3)) (-4 *3 (-1214)))) + ((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4415)) (-4 *1 (-1252 *2)) (-4 *2 (-1214))))) +(((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-926))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1247 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1224 *3)) + (-5 *2 (-409 (-566)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *2 *1) + (-12 (-4 *3 (-365)) (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4))) + (-5 *2 (-1264 *6)) (-5 *1 (-338 *3 *4 *5 *6)) + (-4 *6 (-344 *3 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-699)))) + ((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-699))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-454)) (-4 *4 (-850)) + (-4 *5 (-793)) (-5 *1 (-987 *3 *4 *5 *6)) (-4 *6 (-949 *3 *5 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-454)) + (-5 *2 + (-644 + (-2 (|:| |eigval| (-3 (-409 (-952 *4)) (-1164 (-1175) (-952 *4)))) + (|:| |eigmult| (-771)) + (|:| |eigvec| (-644 (-689 (-409 (-952 *4)))))))) + (-5 *1 (-293 *4)) (-5 *3 (-689 (-409 (-952 *4))))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-328 *3)) (-4 *3 (-1214)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-566)) (-5 *1 (-518 *3 *4)) (-4 *3 (-1214)) (-14 *4 *2)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1171 *4)) (-4 *4 (-351)) + (-5 *2 (-1264 (-644 (-2 (|:| -2876 *4) (|:| -2835 (-1119)))))) + (-5 *1 (-348 *4))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-964 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099))))) +(((*1 *1 *1) (-4 *1 (-629))) + ((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-630 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002) (-1199)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-558)) (-5 *2 (-958 *3)) (-5 *1 (-1162 *4 *3)) + (-4 *3 (-1240 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1026 (-843 (-566)))) (-5 *1 (-596 *3)) (-4 *3 (-1049))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) + (-5 *1 (-988 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) + (-5 *1 (-1106 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) + (-4 *4 (-375 *2))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1249 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-1175)) + (-14 *5 *3) (-5 *1 (-320 *3 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1040)) (-5 *3 (-381))))) +(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-438))))) +(((*1 *2 *3) + (-12 (-5 *3 (-483 *4 *5)) (-14 *4 (-644 (-1175))) (-4 *5 (-1049)) + (-5 *2 (-247 *4 *5)) (-5 *1 (-944 *4 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-409 (-566))) + (-4 *4 (-13 (-558) (-1038 (-566)) (-639 (-566)))) + (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *4)))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-1171 (-952 *4))) (-5 *1 (-418 *3 *4)) + (-4 *3 (-419 *4)))) + ((*1 *2) + (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-4 *3 (-365)) + (-5 *2 (-1171 (-952 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1171 (-409 (-952 *3)))) (-5 *1 (-455 *3 *4 *5 *6)) + (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) + (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3)))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-4 *1 (-235 *3)))) + ((*1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1099))))) +(((*1 *2 *1) + (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) + (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) + (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3)))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-644 *6)) (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) + (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) + (-4 *3 (-558))))) +(((*1 *1 *2) + (-12 (-5 *2 (-644 *3)) (-4 *3 (-1214)) (-5 *1 (-1146 *3))))) +(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) + (-5 *2 (-1035)) (-5 *1 (-751))))) +(((*1 *2 *1) + (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-547)) + (-5 *2 (-409 (-566))))) + ((*1 *2 *1) + (-12 (-5 *2 (-409 (-566))) (-5 *1 (-420 *3)) (-4 *3 (-547)) + (-4 *3 (-558)))) + ((*1 *2 *1) (-12 (-4 *1 (-547)) (-5 *2 (-409 (-566))))) + ((*1 *2 *1) + (-12 (-4 *1 (-797 *3)) (-4 *3 (-172)) (-4 *3 (-547)) + (-5 *2 (-409 (-566))))) + ((*1 *2 *1) + (-12 (-5 *2 (-409 (-566))) (-5 *1 (-833 *3)) (-4 *3 (-547)) + (-4 *3 (-1099)))) + ((*1 *2 *1) + (-12 (-5 *2 (-409 (-566))) (-5 *1 (-843 *3)) (-4 *3 (-547)) + (-4 *3 (-1099)))) + ((*1 *2 *1) + (-12 (-4 *1 (-997 *3)) (-4 *3 (-172)) (-4 *3 (-547)) + (-5 *2 (-409 (-566))))) + ((*1 *2 *3) + (-12 (-5 *2 (-409 (-566))) (-5 *1 (-1008 *3)) (-4 *3 (-1038 *2))))) +(((*1 *2 *1) + (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-644 *5))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-114)))) + ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-114)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1049)) (-4 *3 (-850)) + (-4 *5 (-267 *3)) (-4 *6 (-793)) (-5 *2 (-771)))) + ((*1 *2 *1) + (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-850)) + (-4 *5 (-267 *4)) (-4 *6 (-793)) (-5 *2 (-771)))) + ((*1 *2 *1) (-12 (-4 *1 (-267 *3)) (-4 *3 (-850)) (-5 *2 (-771))))) +(((*1 *2 *2) + (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1199) (-1002))) + (-5 *1 (-176 *3))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-470)) (-5 *4 (-921)) (-5 *2 (-1269)) (-5 *1 (-1265))))) +(((*1 *2 *1) (-12 (-4 *1 (-1148 *3)) (-4 *3 (-1214)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-771)) (-4 *6 (-365)) (-5 *4 (-1208 *6)) + (-5 *2 (-1 (-1155 *4) (-1155 *4))) (-5 *1 (-1272 *6)) + (-5 *5 (-1155 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-558) (-1038 (-566)))) (-5 *1 (-188 *3 *2)) + (-4 *2 (-13 (-27) (-1199) (-432 (-169 *3)))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-558) (-1038 (-566)))) + (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1199) (-432 (-169 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) + (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1175)) + (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) + (-5 *1 (-1203 *4 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *4)))))) +(((*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-632))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1264 *4)) (-5 *3 (-1119)) (-4 *4 (-351)) + (-5 *1 (-530 *4))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-644 (-612 *4))) (-4 *4 (-432 *3)) (-4 *3 (-1099)) + (-5 *1 (-575 *3 *4)))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-889 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1265)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266))))) +(((*1 *2 *2) + (-12 (-4 *2 (-172)) (-4 *2 (-1049)) (-5 *1 (-714 *2 *3)) + (-4 *3 (-648 *2)))) + ((*1 *2 *2) (-12 (-5 *1 (-836 *2)) (-4 *2 (-172)) (-4 *2 (-1049))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -3289 (-644 (-225))))) + (-5 *2 (-644 (-1175))) (-5 *1 (-268)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1171 *7)) (-4 *7 (-949 *6 *4 *5)) (-4 *4 (-793)) + (-4 *5 (-850)) (-4 *6 (-1049)) (-5 *2 (-644 *5)) + (-5 *1 (-322 *4 *5 *6 *7)))) + ((*1 *2 *1) + (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-341 *3 *4 *5)) (-14 *3 *2) + (-14 *4 *2) (-4 *5 (-389)))) + ((*1 *2 *1) + (-12 (-4 *1 (-432 *3)) (-4 *3 (-1099)) (-5 *2 (-644 (-1175))))) + ((*1 *2 *1) + (-12 (-5 *2 (-644 (-892 *3))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) + ((*1 *2 *1) + (-12 (-4 *1 (-949 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *5 (-850)) (-5 *2 (-644 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1049)) + (-4 *7 (-949 *6 *4 *5)) (-5 *2 (-644 *5)) + (-5 *1 (-950 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-365) + (-10 -8 (-15 -3152 ($ *7)) (-15 -2248 (*7 $)) (-15 -2260 (*7 $))))))) + ((*1 *2 *1) + (-12 (-4 *1 (-973 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-792)) + (-4 *5 (-850)) (-5 *2 (-644 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-644 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-558)) (-5 *2 (-644 (-1175))) + (-5 *1 (-1043 *4))))) +(((*1 *2 *3) + (-12 (-5 *2 (-612 *4)) (-5 *1 (-611 *3 *4)) (-4 *3 (-1099)) + (-4 *4 (-1099))))) +(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-52)) (-5 *1 (-829))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -1641 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-365)) (-4 *7 (-1240 *6)) + (-5 *2 (-2 (|:| |answer| (-587 (-409 *7))) (|:| |a0| *6))) + (-5 *1 (-576 *6 *7)) (-5 *3 (-409 *7))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1012)) (-5 *2 (-862))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-689 *7)) (-5 *3 (-644 *7)) (-4 *7 (-949 *4 *6 *5)) + (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) + (-4 *6 (-793)) (-5 *1 (-924 *4 *5 *6 *7))))) +(((*1 *2 *1) + (-12 (-5 *2 (-691 (-873 (-966 *3) (-966 *3)))) (-5 *1 (-966 *3)) + (-4 *3 (-1099))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-644 (-538))) (-5 *1 (-538))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-1 (-538) (-644 (-538)))) (-5 *1 (-114)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-538) (-644 (-538)))) (-5 *1 (-114)))) + ((*1 *1) (-5 *1 (-580)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1101 *4)) (-4 *4 (-1099)) (-5 *2 (-1 *4)) + (-5 *1 (-1017 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1040)) (-5 *3 (-381)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1093 (-566))) (-5 *2 (-1 (-566))) (-5 *1 (-1047))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1264 *5)) (-4 *5 (-639 *4)) (-4 *4 (-558)) + (-5 *2 (-1264 *4)) (-5 *1 (-638 *4 *5))))) +(((*1 *2 *3 *4 *4 *3 *5) + (-12 (-5 *4 (-612 *3)) (-5 *5 (-1171 *3)) + (-4 *3 (-13 (-432 *6) (-27) (-1199))) + (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) + (-5 *2 (-587 *3)) (-5 *1 (-562 *6 *3 *7)) (-4 *7 (-1099)))) + ((*1 *2 *3 *4 *4 *4 *3 *5) + (-12 (-5 *4 (-612 *3)) (-5 *5 (-409 (-1171 *3))) + (-4 *3 (-13 (-432 *6) (-27) (-1199))) + (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) + (-5 *2 (-587 *3)) (-5 *1 (-562 *6 *3 *7)) (-4 *7 (-1099))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-644 (-644 (-644 *5)))) (-5 *3 (-1 (-112) *5 *5)) + (-5 *4 (-644 *5)) (-4 *5 (-850)) (-5 *1 (-1185 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-644 (-689 (-317 (-566))))) (-5 *1 (-1031))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1171 (-409 (-1171 *2)))) (-5 *4 (-612 *2)) + (-4 *2 (-13 (-432 *5) (-27) (-1199))) + (-4 *5 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) + (-5 *1 (-562 *5 *2 *6)) (-4 *6 (-1099)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1171 *1)) (-4 *1 (-949 *4 *5 *3)) (-4 *4 (-1049)) + (-4 *5 (-793)) (-4 *3 (-850)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1171 *4)) (-4 *4 (-1049)) (-4 *1 (-949 *4 *5 *3)) + (-4 *5 (-793)) (-4 *3 (-850)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-409 (-1171 *2))) (-4 *5 (-793)) (-4 *4 (-850)) + (-4 *6 (-1049)) + (-4 *2 + (-13 (-365) + (-10 -8 (-15 -3152 ($ *7)) (-15 -2248 (*7 $)) (-15 -2260 (*7 $))))) + (-5 *1 (-950 *5 *4 *6 *7 *2)) (-4 *7 (-949 *6 *5 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-409 (-1171 (-409 (-952 *5))))) (-5 *4 (-1175)) + (-5 *2 (-409 (-952 *5))) (-5 *1 (-1043 *5)) (-4 *5 (-558))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) + (|:| |xpnt| (-566)))) + (-4 *4 (-13 (-1240 *3) (-558) (-10 -8 (-15 -2164 ($ $ $))))) + (-4 *3 (-558)) (-5 *1 (-1243 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-128))))) +(((*1 *2 *2) + (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1199)))))) +(((*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-691 (-1222)))))) +(((*1 *2 *1) (-12 (-4 *1 (-835 *3)) (-4 *3 (-1099)) (-5 *2 (-55))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) + (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1269)) (-5 *1 (-381)))) + ((*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-381))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1049)) + (-14 *4 (-644 (-1175))))) + ((*1 *2 *3) + (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1214)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1049) (-850))) + (-14 *4 (-644 (-1175))))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-672 *3)) (-4 *3 (-850)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-677 *3)) (-4 *3 (-850)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-850))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *1 *2 *3) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-792)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-644 (-921))) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-921)) + (-4 *2 (-365)) (-14 *5 (-993 *4 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-713 *5 *6 *7)) (-4 *5 (-850)) + (-4 *6 (-238 (-3000 *4) (-771))) + (-14 *7 + (-1 (-112) (-2 (|:| -2835 *5) (|:| -2201 *6)) + (-2 (|:| -2835 *5) (|:| -2201 *6)))) + (-14 *4 (-644 (-1175))) (-4 *2 (-172)) + (-5 *1 (-463 *4 *2 *5 *6 *7 *8)) (-4 *8 (-949 *2 *6 (-864 *4))))) + ((*1 *1 *2 *3) + (-12 (-4 *1 (-511 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-850)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-566)) (-4 *2 (-558)) (-5 *1 (-623 *2 *4)) + (-4 *4 (-1240 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-771)) (-4 *1 (-708 *2)) (-4 *2 (-1049)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-735 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-726)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-644 *5)) (-5 *3 (-644 (-771))) (-4 *1 (-740 *4 *5)) + (-4 *4 (-1049)) (-4 *5 (-850)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-771)) (-4 *1 (-740 *4 *2)) (-4 *4 (-1049)) + (-4 *2 (-850)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-771)) (-4 *1 (-852 *2)) (-4 *2 (-1049)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-644 *6)) (-5 *3 (-644 (-771))) (-4 *1 (-949 *4 *5 *6)) + (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *6 (-850)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-771)) (-4 *1 (-949 *4 *5 *2)) (-4 *4 (-1049)) + (-4 *5 (-793)) (-4 *2 (-850)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-644 *6)) (-5 *3 (-644 *5)) (-4 *1 (-973 *4 *5 *6)) + (-4 *4 (-1049)) (-4 *5 (-792)) (-4 *6 (-850)))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *1 (-973 *4 *3 *2)) (-4 *4 (-1049)) (-4 *3 (-792)) + (-4 *2 (-850))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) + ((*1 *1 *1 *1) (-5 *1 (-862)))) +(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-682 *3)) (-4 *3 (-1099))))) +(((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-861)))) + ((*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-861))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-1157)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) + (-4 *4 (-1064 *6 *7 *8)) (-5 *2 (-1269)) + (-5 *1 (-776 *6 *7 *8 *4 *5)) (-4 *5 (-1070 *6 *7 *8 *4))))) +(((*1 *2) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) + (-4 *5 (-1240 (-409 *4))) (-5 *2 (-689 (-409 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1274))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1157)) (-5 *4 (-566)) (-5 *5 (-689 (-169 (-225)))) + (-5 *2 (-1035)) (-5 *1 (-754))))) +(((*1 *1 *1) (-5 *1 (-1062)))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-308)) (-5 *1 (-457 *3 *2)) (-4 *2 (-1240 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-308)) (-5 *1 (-462 *3 *2)) (-4 *2 (-1240 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-308)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-771))) + (-5 *1 (-541 *3 *2 *4 *5)) (-4 *2 (-1240 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1255 *4)) + (-4 *4 (-38 (-409 (-566)))) + (-5 *2 (-1 (-1155 *4) (-1155 *4) (-1155 *4))) (-5 *1 (-1257 *4 *5))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-612 *4)) (-4 *4 (-1099)) (-4 *2 (-1099)) + (-5 *1 (-611 *2 *4))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1155 *4)) (-5 *3 (-566)) (-4 *4 (-1049)) + (-5 *1 (-1159 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-566)) (-5 *1 (-1256 *3 *4 *5)) (-4 *3 (-1049)) + (-14 *4 (-1175)) (-14 *5 *3)))) +(((*1 *1 *1 *1) (-4 *1 (-547)))) +(((*1 *1) + (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-558)) (-4 *2 (-172))))) +(((*1 *2 *3 *2) + (-12 + (-5 *2 + (-644 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-771)) (|:| |poli| *3) + (|:| |polj| *3)))) + (-4 *5 (-793)) (-4 *3 (-949 *4 *5 *6)) (-4 *4 (-454)) (-4 *6 (-850)) + (-5 *1 (-451 *4 *5 *6 *3))))) +(((*1 *1 *1) (-5 *1 (-1062)))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-324 *3 *4)) (-4 *3 (-1099)) + (-4 *4 (-131))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-644 (-892 *3))) (-5 *1 (-892 *3)) + (-4 *3 (-1099))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1264 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) + (-4 *4 (-1240 *3)) (-4 *5 (-1240 (-409 *4)))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-547)))) +(((*1 *2 *3) + (-12 (-4 *4 (-1049)) + (-4 *2 (-13 (-406) (-1038 *4) (-365) (-1199) (-285))) + (-5 *1 (-445 *4 *3 *2)) (-4 *3 (-1240 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *2 (-644 (-644 *3))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-644 (-644 *5))))) + ((*1 *2 *1) + (-12 (-5 *2 (-644 (-644 *3))) (-5 *1 (-1186 *3)) (-4 *3 (-1099))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-644 (-566))) (-5 *3 (-689 (-566))) (-5 *1 (-1109))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-566)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1214)) + (-4 *5 (-375 *4)) (-4 *2 (-375 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-566)) (-4 *1 (-1053 *4 *5 *6 *2 *7)) (-4 *6 (-1049)) + (-4 *7 (-238 *4 *6)) (-4 *2 (-238 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-420 *3)) (-4 *3 (-558)))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 (-2 (|:| -1624 *4) (|:| -3902 (-566))))) + (-4 *4 (-1240 (-566))) (-5 *2 (-771)) (-5 *1 (-444 *4))))) +(((*1 *2 *3 *4 *5) + (-12 (-4 *6 (-1240 *9)) (-4 *7 (-793)) (-4 *8 (-850)) (-4 *9 (-308)) + (-4 *10 (-949 *9 *7 *8)) + (-5 *2 + (-2 (|:| |deter| (-644 (-1171 *10))) + (|:| |dterm| + (-644 (-644 (-2 (|:| -2994 (-771)) (|:| |pcoef| *10))))) + (|:| |nfacts| (-644 *6)) (|:| |nlead| (-644 *10)))) + (-5 *1 (-778 *6 *7 *8 *9 *10)) (-5 *3 (-1171 *10)) (-5 *4 (-644 *6)) + (-5 *5 (-644 *10))))) +(((*1 *2 *3) (-12 (-5 *3 (-508)) (-5 *2 (-691 (-187))) (-5 *1 (-187))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1264 *3)) (-4 *3 (-1049)) (-5 *1 (-712 *3 *4)) + (-4 *4 (-1240 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1171 *2)) (-4 *2 (-432 *4)) (-4 *4 (-558)) + (-5 *1 (-32 *4 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-409 (-566))) (-5 *2 (-225)) (-5 *1 (-306))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-926))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) + (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-5 *2 (-381)) (-5 *1 (-205))))) +(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266)))) + ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-862) (-862))) (-5 *1 (-114)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-862) (-644 (-862)))) (-5 *1 (-114)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-1 (-862) (-644 (-862)))) (-5 *1 (-114)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1269)) (-5 *1 (-214 *3)) + (-4 *3 + (-13 (-850) + (-10 -8 (-15 -1309 ((-1157) $ (-1175))) (-15 -1710 (*2 $)) + (-15 -1597 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-396)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *2 (-1269)) (-5 *1 (-396)))) + ((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-504)))) + ((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-710)))) + ((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-1194)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *2 (-1269)) (-5 *1 (-1194))))) +(((*1 *1) (-5 *1 (-1081)))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-820)) (-14 *5 (-1175)) (-5 *2 (-644 (-1237 *5 *4))) + (-5 *1 (-1113 *4 *5)) (-5 *3 (-1237 *5 *4))))) +(((*1 *1 *2) + (-12 (-4 *3 (-1049)) (-5 *1 (-827 *2 *3)) (-4 *2 (-708 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1155 (-1155 *4))) (-5 *2 (-1155 *4)) (-5 *1 (-1159 *4)) + (-4 *4 (-1049))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1038 (-566))) (-4 *3 (-558)) (-5 *1 (-32 *3 *2)) + (-4 *2 (-432 *3)))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-1171 *4)) (-5 *1 (-165 *3 *4)) + (-4 *3 (-166 *4)))) + ((*1 *1 *1) (-12 (-4 *1 (-1049)) (-4 *1 (-303)))) + ((*1 *2) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1171 *3)))) + ((*1 *2) (-12 (-4 *1 (-724 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1240 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1067 *3 *2)) (-4 *3 (-13 (-848) (-365))) + (-4 *2 (-1240 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-644 (-2 (|:| -2674 (-1175)) (|:| -2636 *4)))) + (-5 *1 (-889 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) + (-4 *7 (-1099)) (-5 *2 (-644 *1)) (-4 *1 (-1102 *3 *4 *5 *6 *7))))) +(((*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-1099))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-976 *3 *4 *2 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *2 (-850)) (-4 *5 (-1064 *3 *4 *2))))) +(((*1 *1) (-5 *1 (-823)))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1049)) (-5 *1 (-1236 *3 *2)) (-4 *2 (-1240 *3))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-566)) (-5 *3 (-921)) (-5 *1 (-699)))) + ((*1 *2 *2 *2 *3 *4) + (-12 (-5 *2 (-689 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) + (-4 *5 (-365)) (-5 *1 (-978 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) + (-5 *2 (-644 *4)) (-5 *1 (-1127 *3 *4)) (-4 *3 (-1240 *4)))) + ((*1 *2 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) + (-5 *2 (-644 *3)) (-5 *1 (-1127 *4 *3)) (-4 *4 (-1240 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| -1953 (-409 (-566))) (|:| -1966 (-409 (-566))))) + (-5 *2 (-409 (-566))) (-5 *1 (-1020 *4)) (-4 *4 (-1240 (-566)))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1214)) (-5 *2 (-566))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-644 (-52))) (-5 *1 (-892 *3)) (-4 *3 (-1099))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1157)) (-5 *3 (-823)) (-5 *1 (-822))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-644 *4)) (-4 *4 (-365)) (-5 *2 (-1264 *4)) + (-5 *1 (-814 *4 *3)) (-4 *3 (-656 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) + ((*1 *1 *1) (-5 *1 (-862))) + ((*1 *1 *2) + (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-4 *1 (-1097 *3)))) + ((*1 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099))))) +(((*1 *2 *1) (-12 (-5 *2 (-186)) (-5 *1 (-138)))) + ((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-186))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4415)) (-4 *1 (-244 *2)) (-4 *2 (-1214)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1214)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1214)))) + ((*1 *1 *1 *2) + (-12 (|has| *1 (-6 -4415)) (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) + ((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4415)) (-4 *1 (-1252 *2)) (-4 *2 (-1214))))) +(((*1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-644 (-114)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) + (-5 *1 (-977 *4 *5 *6 *3)) (-4 *3 (-1064 *4 *5 *6))))) +(((*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)) (-5 *3 (-566)))) + ((*1 *1 *1) (-12 (-4 *1 (-674 *2)) (-4 *2 (-1214)))) + ((*1 *1 *1) (-4 *1 (-869 *2))) + ((*1 *1 *1) + (-12 (-4 *1 (-973 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-792)) + (-4 *4 (-850))))) +(((*1 *2) + (-12 (-4 *4 (-365)) (-5 *2 (-921)) (-5 *1 (-329 *3 *4)) + (-4 *3 (-330 *4)))) + ((*1 *2) + (-12 (-4 *4 (-365)) (-5 *2 (-833 (-921))) (-5 *1 (-329 *3 *4)) + (-4 *3 (-330 *4)))) + ((*1 *2) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-921)))) + ((*1 *2) + (-12 (-4 *1 (-1283 *3)) (-4 *3 (-365)) (-5 *2 (-833 (-921)))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) + ((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-1265)))) + ((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-1266))))) +(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1199)))) + ((*1 *2 *1) (-12 (-5 *1 (-332 *2)) (-4 *2 (-850)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-612 *3)) (-4 *3 (-1099))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1214)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *2 (-644 *3)))) + ((*1 *2 *1) + (-12 (|has| *1 (-6 -4414)) (-4 *1 (-491 *3)) (-4 *3 (-1214)) + (-5 *2 (-644 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1101 *3)) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1101 *3)) (-5 *1 (-905 *3)) (-4 *3 (-1099))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) + (-4 *5 (-1240 *4)) + (-5 *2 (-644 (-2 (|:| |deg| (-771)) (|:| -3434 *5)))) + (-5 *1 (-809 *4 *5 *3 *6)) (-4 *3 (-656 *5)) + (-4 *6 (-656 (-409 *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-647 *3)) (-4 *3 (-1099))))) +(((*1 *2) + (-12 (-4 *3 (-558)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-419 *3))))) +(((*1 *2 *3 *2 *2) + (-12 (-5 *2 (-644 (-483 *4 *5))) (-5 *3 (-864 *4)) + (-14 *4 (-644 (-1175))) (-4 *5 (-454)) (-5 *1 (-631 *4 *5))))) +(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1199)))))) +(((*1 *1 *1 *1 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *1 (-596 *3)) (-4 *3 (-1049))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 *7)) (-4 *7 (-949 *4 *5 *6)) (-4 *4 (-454)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-1269)) + (-5 *1 (-451 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-905 *3)) (-4 *3 (-1099))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-558)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) + (-5 *1 (-977 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)) (-5 *3 (-566))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-691 (-873 (-966 *3) (-966 *3)))) (-5 *1 (-966 *3)) + (-4 *3 (-1099))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 (-921))) (-5 *2 (-904 (-566))) (-5 *1 (-917))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1264 *4)) (-4 *4 (-1214)) (-4 *1 (-238 *3 *4))))) +(((*1 *2) (-12 (-5 *2 (-1132 (-225))) (-5 *1 (-1197))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) +(((*1 *2 *2) + (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1199)))))) +(((*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) + ((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172))))) +(((*1 *2 *3) + (-12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-308)) + (-5 *2 (-409 (-420 (-952 *4)))) (-5 *1 (-1042 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-921)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) + ((*1 *1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-264))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-874)) (-5 *3 (-644 (-264))) (-5 *1 (-262))))) +(((*1 *2 *1) (-12 (-4 *1 (-674 *3)) (-4 *3 (-1214)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *2 (-317 *4)) + (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 (-169 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) + (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *3)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 (-317 (-225)))) (-5 *2 (-112)) (-5 *1 (-268)))) + ((*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-112)) (-5 *1 (-268)))) + ((*1 *2 *3) + (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) + (-5 *1 (-977 *4 *5 *6 *3)) (-4 *3 (-1064 *4 *5 *6))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1175)) (-5 *3 (-644 (-952 (-566)))) + (-5 *4 (-317 (-169 (-381)))) (-5 *1 (-331)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1175)) (-5 *3 (-644 (-952 (-566)))) + (-5 *4 (-317 (-381))) (-5 *1 (-331)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1175)) (-5 *3 (-644 (-952 (-566)))) + (-5 *4 (-317 (-566))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-317 (-169 (-381))))) + (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-317 (-381)))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-317 (-566)))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-317 (-169 (-381))))) + (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-317 (-381)))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-317 (-566)))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-317 (-169 (-381)))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-317 (-381))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-317 (-566))) (-5 *1 (-331)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1175)) (-5 *3 (-644 (-952 (-566)))) + (-5 *4 (-317 (-694))) (-5 *1 (-331)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1175)) (-5 *3 (-644 (-952 (-566)))) + (-5 *4 (-317 (-699))) (-5 *1 (-331)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1175)) (-5 *3 (-644 (-952 (-566)))) + (-5 *4 (-317 (-701))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-317 (-694)))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-317 (-699)))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-317 (-701)))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-317 (-694)))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-317 (-699)))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-317 (-701)))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-694))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-699))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-1264 (-701))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-694))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-699))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-701))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-317 (-694))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-317 (-699))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-317 (-701))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1157)) (-5 *1 (-331)))) + ((*1 *1 *1 *1) (-5 *1 (-862)))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-558) (-1038 (-566)) (-639 (-566)))) + (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1175)) + (-4 *4 (-13 (-558) (-1038 (-566)) (-639 (-566)))) + (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *4)))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1004 *3)) (-14 *3 (-566))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-949 *4 *5 *6)) (-5 *2 (-644 (-644 *7))) + (-5 *1 (-450 *4 *5 *6 *7)) (-5 *3 (-644 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-793)) + (-4 *7 (-850)) (-4 *8 (-949 *5 *6 *7)) (-5 *2 (-644 (-644 *8))) + (-5 *1 (-450 *5 *6 *7 *8)) (-5 *3 (-644 *8))))) +(((*1 *2 *3) + (-12 (-5 *3 (-689 *4)) (-4 *4 (-365)) (-5 *2 (-1171 *4)) + (-5 *1 (-534 *4 *5 *6)) (-4 *5 (-365)) (-4 *6 (-13 (-365) (-848)))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4415)) (-4 *1 (-244 *2)) (-4 *2 (-1214))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1175)) + (-4 *5 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) + (-5 *2 (-587 *3)) (-5 *1 (-428 *5 *3)) + (-4 *3 (-13 (-1199) (-29 *5)))))) +(((*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-359 *3)) (-4 *3 (-351))))) +(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *2 (-317 *4)) + (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 (-169 *4)))))) + ((*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) + ((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) + (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *3)))))) +(((*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-1175))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-604 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1214)) + (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)) + (-5 *2 (-644 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1099)) + (-5 *2 (-644 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1155 *3)) (-5 *1 (-597 *3)) (-4 *3 (-1049)))) + ((*1 *2 *1) + (-12 (-5 *2 (-644 *3)) (-5 *1 (-735 *3 *4)) (-4 *3 (-1049)) + (-4 *4 (-726)))) + ((*1 *2 *1) (-12 (-4 *1 (-852 *3)) (-4 *3 (-1049)) (-5 *2 (-644 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1255 *3)) (-4 *3 (-1049)) (-5 *2 (-1155 *3))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-506 (-409 (-566)) (-240 *5 (-771)) (-864 *4) + (-247 *4 (-409 (-566))))) + (-14 *4 (-644 (-1175))) (-14 *5 (-771)) (-5 *2 (-112)) + (-5 *1 (-507 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *1 (-587 *2)) (-4 *2 (-365))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-644 *1)) (-4 *1 (-1064 *4 *5 *6)) (-4 *4 (-1049)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *5 (-850)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1207 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) + (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1207 *4 *5 *6 *3)) (-4 *4 (-558)) (-4 *5 (-793)) + (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-5 *2 (-1264 (-1100 *3 *4))) (-5 *1 (-1100 *3 *4)) + (-14 *3 (-921)) (-14 *4 (-921))))) +(((*1 *2 *3) + (-12 (-5 *3 (-843 (-381))) (-5 *2 (-843 (-225))) (-5 *1 (-306))))) +(((*1 *2 *3) + (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 -1364 ((-420 $) $))))) + (-4 *4 (-1240 *3)) + (-5 *2 + (-2 (|:| -2875 (-689 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-689 *3)))) + (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-411 *3 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-566)) (-4 *4 (-1240 *3)) + (-5 *2 + (-2 (|:| -2875 (-689 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-689 *3)))) + (-5 *1 (-768 *4 *5)) (-4 *5 (-411 *3 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-351)) (-4 *3 (-1240 *4)) (-4 *5 (-1240 *3)) + (-5 *2 + (-2 (|:| -2875 (-689 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-689 *3)))) + (-5 *1 (-985 *4 *3 *5 *6)) (-4 *6 (-724 *3 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-351)) (-4 *3 (-1240 *4)) (-4 *5 (-1240 *3)) + (-5 *2 + (-2 (|:| -2875 (-689 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-689 *3)))) + (-5 *1 (-1273 *4 *3 *5 *6)) (-4 *6 (-411 *3 *5))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1264 (-317 (-225)))) (|:| |yinit| (-644 (-225))) + (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-5 *2 + (-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381)))) + (-5 *1 (-205))))) +(((*1 *1 *1) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) + (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-869 *3)) (-5 *2 (-566)))) + ((*1 *1 *1) (-4 *1 (-1002))) + ((*1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-1012)))) + ((*1 *1 *2) (-12 (-5 *2 (-409 (-566))) (-4 *1 (-1012)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1012)) (-5 *2 (-921)))) + ((*1 *1 *1) (-4 *1 (-1012)))) +(((*1 *1 *1) (-5 *1 (-1062)))) +(((*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-303)))) + ((*1 *1 *1) (-4 *1 (-303))) + ((*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) + ((*1 *1 *1) (-5 *1 (-862)))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *5 (-850)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-264)))) + ((*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-644 *2)) (-5 *1 (-179 *2)) (-4 *2 (-308)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-644 (-644 *4))) (-5 *2 (-644 *4)) (-4 *4 (-308)) + (-5 *1 (-179 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-644 *8)) + (-5 *4 + (-644 + (-2 (|:| -2875 (-689 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-689 *7))))) + (-5 *5 (-771)) (-4 *8 (-1240 *7)) (-4 *7 (-1240 *6)) (-4 *6 (-351)) + (-5 *2 + (-2 (|:| -2875 (-689 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-689 *7)))) + (-5 *1 (-500 *6 *7 *8)))) + ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-1175)) (-5 *6 (-112)) + (-4 *7 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) + (-4 *3 (-13 (-1199) (-959) (-29 *7))) + (-5 *2 + (-3 (|:| |f1| (-843 *3)) (|:| |f2| (-644 (-843 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-219 *7 *3)) (-5 *5 (-843 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) + (-4 *3 (-1064 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-644 *4)) + (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -1470 *4)))))) + (-5 *1 (-1068 *6 *7 *8 *3 *4)) (-4 *4 (-1070 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *3 (-1064 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-644 *4)) + (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -1470 *4)))))) + (-5 *1 (-1144 *5 *6 *7 *3 *4)) (-4 *4 (-1108 *5 *6 *7 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1269)) (-5 *1 (-1137)))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 (-862))) (-5 *2 (-1269)) (-5 *1 (-1137))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-644 *5) *6)) + (-4 *5 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *6 (-1240 *5)) + (-5 *2 (-644 (-2 (|:| |poly| *6) (|:| -3434 *3)))) + (-5 *1 (-809 *5 *6 *3 *7)) (-4 *3 (-656 *6)) + (-4 *7 (-656 (-409 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-644 *5) *6)) + (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) + (-4 *6 (-1240 *5)) + (-5 *2 (-644 (-2 (|:| |poly| *6) (|:| -3434 (-654 *6 (-409 *6)))))) + (-5 *1 (-812 *5 *6)) (-5 *3 (-654 *6 (-409 *6)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-644 *7)) (-5 *5 (-644 (-644 *8))) (-4 *7 (-850)) + (-4 *8 (-308)) (-4 *6 (-793)) (-4 *9 (-949 *8 *6 *7)) + (-5 *2 + (-2 (|:| |unitPart| *9) + (|:| |suPart| + (-644 (-2 (|:| -1624 (-1171 *9)) (|:| -2201 (-566))))))) + (-5 *1 (-742 *6 *7 *8 *9)) (-5 *3 (-1171 *9))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-644 (-48))) (-5 *2 (-420 *3)) (-5 *1 (-39 *3)) + (-4 *3 (-1240 (-48))))) + ((*1 *2 *3) + (-12 (-5 *2 (-420 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1240 (-48))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-644 (-48))) (-4 *5 (-850)) (-4 *6 (-793)) + (-5 *2 (-420 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-949 (-48) *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-644 (-48))) (-4 *5 (-850)) (-4 *6 (-793)) + (-4 *7 (-949 (-48) *6 *5)) (-5 *2 (-420 (-1171 *7))) + (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1171 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-308)) (-5 *2 (-420 *3)) (-5 *1 (-167 *4 *3)) + (-4 *3 (-1240 (-169 *4))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-112)) (-4 *4 (-13 (-365) (-848))) (-5 *2 (-420 *3)) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1240 (-169 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-365) (-848))) (-5 *2 (-420 *3)) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1240 (-169 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-365) (-848))) (-5 *2 (-420 *3)) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1240 (-169 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-351)) (-5 *2 (-420 *3)) (-5 *1 (-216 *4 *3)) + (-4 *3 (-1240 *4)))) + ((*1 *2 *3) + (-12 (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-771)) (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) + (-4 *3 (-1240 (-566))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-644 (-771))) (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) + (-4 *3 (-1240 (-566))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-644 (-771))) (-5 *5 (-771)) (-5 *2 (-420 *3)) + (-5 *1 (-444 *3)) (-4 *3 (-1240 (-566))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-771)) (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) + (-4 *3 (-1240 (-566))))) + ((*1 *2 *3) + (-12 (-5 *2 (-420 (-169 (-566)))) (-5 *1 (-448)) + (-5 *3 (-169 (-566))))) + ((*1 *2 *3) + (-12 + (-4 *4 + (-13 (-850) + (-10 -8 (-15 -2376 ((-1175) $)) + (-15 -4347 ((-3 $ "failed") (-1175)))))) + (-4 *5 (-793)) (-4 *7 (-558)) (-5 *2 (-420 *3)) + (-5 *1 (-458 *4 *5 *6 *7 *3)) (-4 *6 (-558)) + (-4 *3 (-949 *7 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-308)) (-5 *2 (-420 (-1171 *4))) (-5 *1 (-460 *4)) + (-5 *3 (-1171 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-420 *6) *6)) (-4 *6 (-1240 *5)) (-4 *5 (-365)) + (-4 *7 (-13 (-365) (-147) (-724 *5 *6))) (-5 *2 (-420 *3)) + (-5 *1 (-496 *5 *6 *7 *3)) (-4 *3 (-1240 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-420 (-1171 *7)) (-1171 *7))) + (-4 *7 (-13 (-308) (-147))) (-4 *5 (-850)) (-4 *6 (-793)) + (-5 *2 (-420 *3)) (-5 *1 (-542 *5 *6 *7 *3)) + (-4 *3 (-949 *7 *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-420 (-1171 *7)) (-1171 *7))) + (-4 *7 (-13 (-308) (-147))) (-4 *5 (-850)) (-4 *6 (-793)) + (-4 *8 (-949 *7 *6 *5)) (-5 *2 (-420 (-1171 *8))) + (-5 *1 (-542 *5 *6 *7 *8)) (-5 *3 (-1171 *8)))) + ((*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-560 *3)) (-4 *3 (-547)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-644 *5) *6)) + (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) + (-4 *6 (-1240 *5)) (-5 *2 (-644 (-653 (-409 *6)))) + (-5 *1 (-657 *5 *6)) (-5 *3 (-653 (-409 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-27)) + (-4 *4 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) + (-4 *5 (-1240 *4)) (-5 *2 (-644 (-653 (-409 *5)))) + (-5 *1 (-657 *4 *5)) (-5 *3 (-653 (-409 *5))))) + ((*1 *2 *3) + (-12 (-5 *3 (-819 *4)) (-4 *4 (-850)) (-5 *2 (-644 (-672 *4))) + (-5 *1 (-672 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-566)) (-5 *2 (-644 *3)) (-5 *1 (-696 *3)) + (-4 *3 (-1240 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-850)) (-4 *5 (-793)) (-4 *6 (-351)) (-5 *2 (-420 *3)) + (-5 *1 (-698 *4 *5 *6 *3)) (-4 *3 (-949 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-850)) (-4 *5 (-793)) (-4 *6 (-351)) + (-4 *7 (-949 *6 *5 *4)) (-5 *2 (-420 (-1171 *7))) + (-5 *1 (-698 *4 *5 *6 *7)) (-5 *3 (-1171 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-793)) + (-4 *5 + (-13 (-850) + (-10 -8 (-15 -2376 ((-1175) $)) + (-15 -4347 ((-3 $ "failed") (-1175)))))) + (-4 *6 (-308)) (-5 *2 (-420 *3)) (-5 *1 (-730 *4 *5 *6 *3)) + (-4 *3 (-949 (-952 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-793)) + (-4 *5 (-13 (-850) (-10 -8 (-15 -2376 ((-1175) $))))) (-4 *6 (-558)) + (-5 *2 (-420 *3)) (-5 *1 (-732 *4 *5 *6 *3)) + (-4 *3 (-949 (-409 (-952 *6)) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-13 (-308) (-147))) + (-5 *2 (-420 *3)) (-5 *1 (-733 *4 *5 *6 *3)) + (-4 *3 (-949 (-409 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-850)) (-4 *5 (-793)) (-4 *6 (-13 (-308) (-147))) + (-5 *2 (-420 *3)) (-5 *1 (-741 *4 *5 *6 *3)) + (-4 *3 (-949 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-850)) (-4 *5 (-793)) (-4 *6 (-13 (-308) (-147))) + (-4 *7 (-949 *6 *5 *4)) (-5 *2 (-420 (-1171 *7))) + (-5 *1 (-741 *4 *5 *6 *7)) (-5 *3 (-1171 *7)))) + ((*1 *2 *3) + (-12 (-5 *2 (-420 *3)) (-5 *1 (-1007 *3)) + (-4 *3 (-1240 (-409 (-566)))))) + ((*1 *2 *3) + (-12 (-5 *2 (-420 *3)) (-5 *1 (-1041 *3)) + (-4 *3 (-1240 (-409 (-952 (-566))))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1240 (-409 (-566)))) + (-4 *5 (-13 (-365) (-147) (-724 (-409 (-566)) *4))) + (-5 *2 (-420 *3)) (-5 *1 (-1078 *4 *5 *3)) (-4 *3 (-1240 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1240 (-409 (-952 (-566))))) + (-4 *5 (-13 (-365) (-147) (-724 (-409 (-952 (-566))) *4))) + (-5 *2 (-420 *3)) (-5 *1 (-1080 *4 *5 *3)) (-4 *3 (-1240 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-454)) + (-4 *7 (-949 *6 *4 *5)) (-5 *2 (-420 (-1171 (-409 *7)))) + (-5 *1 (-1170 *4 *5 *6 *7)) (-5 *3 (-1171 (-409 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-420 *1)) (-4 *1 (-1218)))) + ((*1 *2 *3) + (-12 (-5 *2 (-420 *3)) (-5 *1 (-1229 *3)) (-4 *3 (-1240 (-566)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5)) (-4 *5 (-1099)) (-5 *2 (-1 *5 *4)) + (-5 *1 (-683 *4 *5)) (-4 *4 (-1099)))) + ((*1 *2 *2) + (-12 (-4 *3 (-1099)) (-5 *1 (-929 *3 *2)) (-4 *2 (-432 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1175)) (-5 *2 (-317 (-566))) (-5 *1 (-930)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1281 *3 *2)) (-4 *3 (-850)) (-4 *2 (-1049)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1049)) (-5 *1 (-1287 *2 *3)) (-4 *3 (-846))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) + (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *5 (-225)) + (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-61 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-87 BDYVAL)))) + (-5 *2 (-1035)) (-5 *1 (-749)))) + ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) + (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *5 (-225)) + (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-61 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-87 BDYVAL)))) + (-5 *8 (-390)) (-5 *2 (-1035)) (-5 *1 (-749))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-623 *4 *5)) + (-5 *3 + (-1 (-2 (|:| |ans| *4) (|:| -1966 *4) (|:| |sol?| (-112))) + (-566) *4)) + (-4 *4 (-365)) (-4 *5 (-1240 *4)) (-5 *1 (-576 *4 *5))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1175)) (-5 *5 (-644 (-409 (-952 *6)))) + (-5 *3 (-409 (-952 *6))) + (-4 *6 (-13 (-558) (-1038 (-566)) (-147))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-572 *6))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-566)) (-4 *3 (-172)) (-4 *5 (-375 *3)) + (-4 *6 (-375 *3)) (-5 *1 (-688 *3 *5 *6 *2)) + (-4 *2 (-687 *3 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-1157))))) +(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-258))))) +(((*1 *2 *1) + (-12 (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -3521 (-566))))) + (-5 *1 (-363 *3)) (-4 *3 (-1099)))) + ((*1 *2 *1) + (-12 (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -3521 (-771))))) + (-5 *1 (-388 *3)) (-4 *3 (-1099)))) + ((*1 *2 *1) + (-12 (-5 *2 (-644 (-2 (|:| -1624 *3) (|:| -2201 (-566))))) + (-5 *1 (-420 *3)) (-4 *3 (-558)))) + ((*1 *2 *1) + (-12 (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -3521 (-771))))) + (-5 *1 (-819 *3)) (-4 *3 (-850))))) +(((*1 *2 *3) (-12 (-5 *3 (-169 (-566))) (-5 *2 (-112)) (-5 *1 (-448)))) + ((*1 *2 *3) + (-12 + (-5 *3 + (-506 (-409 (-566)) (-240 *5 (-771)) (-864 *4) + (-247 *4 (-409 (-566))))) + (-14 *4 (-644 (-1175))) (-14 *5 (-771)) (-5 *2 (-112)) + (-5 *1 (-507 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-961 *3)) (-4 *3 (-547)))) + ((*1 *2 *1) (-12 (-4 *1 (-1218)) (-5 *2 (-112))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-131)) + (-4 *3 (-792))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1264 *4)) (-5 *3 (-566)) (-4 *4 (-351)) + (-5 *1 (-530 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 *2)) (-5 *1 (-488 *2)) (-4 *2 (-1240 (-566)))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-1157)) (-5 *4 (-1119)) (-5 *2 (-112)) (-5 *1 (-821))))) +(((*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-157))))) +(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 + *4 *6 *4) + (-12 (-5 *4 (-566)) (-5 *5 (-689 (-225))) (-5 *6 (-675 (-225))) + (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-750))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-566))) (-5 *4 (-905 (-566))) + (-5 *2 (-689 (-566))) (-5 *1 (-591)))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 (-566))) (-5 *2 (-644 (-689 (-566)))) + (-5 *1 (-591)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-566))) (-5 *4 (-644 (-905 (-566)))) + (-5 *2 (-644 (-689 (-566)))) (-5 *1 (-591))))) +(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-519)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-1099) (-34))) (-5 *1 (-1139 *3 *2)) + (-4 *3 (-13 (-1099) (-34))))) + ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1275))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-860)) (-5 *2 (-691 (-129))) (-5 *3 (-129))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1049)) (-4 *5 (-1240 *4)) (-5 *2 (-1 *6 (-644 *6))) + (-5 *1 (-1258 *4 *5 *3 *6)) (-4 *3 (-656 *5)) (-4 *6 (-1255 *4))))) +(((*1 *1 *1) + (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1240 *5)) (-4 *5 (-365)) + (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) + (-5 *1 (-576 *5 *3))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4414)) (-4 *1 (-491 *3)) (-4 *3 (-1214)) + (-4 *3 (-1099)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-905 *4)) (-4 *4 (-1099)) (-5 *2 (-112)) + (-5 *1 (-904 *4)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-921)) (-5 *2 (-112)) (-5 *1 (-1100 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) +(((*1 *2 *3 *4 *4 *5 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) + (-5 *2 (-1035)) (-5 *1 (-752))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-987 (-409 (-566)) (-864 *3) (-240 *4 (-771)) + (-247 *3 (-409 (-566))))) + (-14 *3 (-644 (-1175))) (-14 *4 (-771)) (-5 *1 (-986 *3 *4))))) +(((*1 *2) + (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) + (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) + (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3)))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5) + (-12 (-5 *3 (-1157)) (-5 *4 (-566)) (-5 *5 (-689 (-225))) + (-5 *2 (-1035)) (-5 *1 (-757))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-921)) (-5 *2 (-1269)) (-5 *1 (-214 *4)) + (-4 *4 + (-13 (-850) + (-10 -8 (-15 -1309 ((-1157) $ (-1175))) (-15 -1710 (*2 $)) + (-15 -1597 (*2 $))))))) + ((*1 *2 *1) + (-12 (-5 *2 (-1269)) (-5 *1 (-214 *3)) + (-4 *3 + (-13 (-850) + (-10 -8 (-15 -1309 ((-1157) $ (-1175))) (-15 -1710 (*2 $)) + (-15 -1597 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-504))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) + (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-78 FUNCTN)))) + (-5 *2 (-1035)) (-5 *1 (-748))))) +(((*1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-128))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1171 *3)) (-5 *1 (-914 *3)) (-4 *3 (-308))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1040))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-612 *1)) (-4 *1 (-432 *4)) (-4 *4 (-1099)) + (-4 *4 (-558)) (-5 *2 (-409 (-1171 *1))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-612 *3)) (-4 *3 (-13 (-432 *6) (-27) (-1199))) + (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) + (-5 *2 (-1171 (-409 (-1171 *3)))) (-5 *1 (-562 *6 *3 *7)) + (-5 *5 (-1171 *3)) (-4 *7 (-1099)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1260 *5)) (-14 *5 (-1175)) (-4 *6 (-1049)) + (-5 *2 (-1237 *5 (-952 *6))) (-5 *1 (-947 *5 *6)) (-5 *3 (-952 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-949 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *5 (-850)) (-5 *2 (-1171 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-850)) (-5 *2 (-1171 *1)) + (-4 *1 (-949 *4 *5 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-793)) (-4 *4 (-850)) (-4 *6 (-1049)) + (-4 *7 (-949 *6 *5 *4)) (-5 *2 (-409 (-1171 *3))) + (-5 *1 (-950 *5 *4 *6 *7 *3)) + (-4 *3 + (-13 (-365) + (-10 -8 (-15 -3152 ($ *7)) (-15 -2248 (*7 $)) (-15 -2260 (*7 $))))))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-1171 *3)) + (-4 *3 + (-13 (-365) + (-10 -8 (-15 -3152 ($ *7)) (-15 -2248 (*7 $)) (-15 -2260 (*7 $))))) + (-4 *7 (-949 *6 *5 *4)) (-4 *5 (-793)) (-4 *4 (-850)) + (-4 *6 (-1049)) (-5 *1 (-950 *5 *4 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1175)) (-4 *5 (-558)) + (-5 *2 (-409 (-1171 (-409 (-952 *5))))) (-5 *1 (-1043 *5)) + (-5 *3 (-409 (-952 *5)))))) +(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-874))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1049)) (-4 *4 (-1099)) (-5 *2 (-644 *1)) + (-4 *1 (-384 *3 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-644 (-735 *3 *4))) (-5 *1 (-735 *3 *4)) (-4 *3 (-1049)) + (-4 *4 (-726)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *1)) + (-4 *1 (-949 *3 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-62 *3)) (-14 *3 (-1175)))) + ((*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-69 *3)) (-14 *3 (-1175)))) + ((*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-72 *3)) (-14 *3 (-1175)))) + ((*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-1269)))) + ((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1269)) (-5 *1 (-399)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1157)) (-5 *4 (-862)) (-5 *2 (-1269)) (-5 *1 (-1137)))) + ((*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1269)) (-5 *1 (-1137)))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 (-862))) (-5 *2 (-1269)) (-5 *1 (-1137))))) +(((*1 *1 *2 *3 *4) + (-12 + (-5 *3 + (-644 + (-2 (|:| |scalar| (-409 (-566))) (|:| |coeff| (-1171 *2)) + (|:| |logand| (-1171 *2))))) + (-5 *4 (-644 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) + (-4 *2 (-365)) (-5 *1 (-587 *2))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-771)) (-4 *1 (-1240 *3)) (-4 *3 (-1049))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) + ((*1 *2) (-12 (-5 *2 (-904 (-566))) (-5 *1 (-917))))) +(((*1 *1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-264)))) + ((*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (-144)) (-5 *2 (-112))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-976 *4 *5 *3 *6)) (-4 *4 (-1049)) (-4 *5 (-793)) + (-4 *3 (-850)) (-4 *6 (-1064 *4 *5 *3)) (-5 *2 (-112))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-644 *4)) (-4 *4 (-365)) (-4 *2 (-1240 *4)) + (-5 *1 (-922 *4 *2))))) +(((*1 *2 *2) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) + (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-689 *3)) + (-4 *3 (-13 (-308) (-10 -8 (-15 -1364 ((-420 $) $))))) + (-4 *4 (-1240 *3)) (-5 *1 (-501 *3 *4 *5)) (-4 *5 (-411 *3 *4)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-689 *3)) + (-4 *3 (-13 (-308) (-10 -8 (-15 -1364 ((-420 $) $))))) + (-4 *4 (-1240 *3)) (-5 *1 (-501 *3 *4 *5)) (-4 *5 (-411 *3 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-420 *5)) (-4 *5 (-558)) + (-5 *2 + (-2 (|:| -2201 (-771)) (|:| -2397 *5) (|:| |radicand| (-644 *5)))) + (-5 *1 (-321 *5)) (-5 *4 (-771)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1002)) (-5 *2 (-566))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-771)))) + ((*1 *1 *1) (-4 *1 (-404)))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-454)) + (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) + (-5 *1 (-977 *3 *4 *5 *6))))) +(((*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-393))))) +(((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-822))))) +(((*1 *1 *2) + (-12 (-5 *2 (-921)) (-4 *1 (-238 *3 *4)) (-4 *4 (-1049)) + (-4 *4 (-1214)))) + ((*1 *1 *2) + (-12 (-14 *3 (-644 (-1175))) (-4 *4 (-172)) + (-4 *5 (-238 (-3000 *3) (-771))) + (-14 *6 + (-1 (-112) (-2 (|:| -2835 *2) (|:| -2201 *5)) + (-2 (|:| -2835 *2) (|:| -2201 *5)))) + (-5 *1 (-463 *3 *4 *2 *5 *6 *7)) (-4 *2 (-850)) + (-4 *7 (-949 *4 *5 (-864 *3))))) + ((*1 *2 *2) (-12 (-5 *2 (-943 (-225))) (-5 *1 (-1210))))) +(((*1 *2 *1) (-12 (-4 *1 (-132)) (-5 *2 (-771)))) + ((*1 *2 *3 *1 *2) + (-12 (-5 *2 (-566)) (-4 *1 (-375 *3)) (-4 *3 (-1214)) + (-4 *3 (-1099)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-375 *3)) (-4 *3 (-1214)) (-4 *3 (-1099)) + (-5 *2 (-566)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-375 *4)) (-4 *4 (-1214)) + (-5 *2 (-566)))) + ((*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-531)))) + ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-566)) (-5 *3 (-141)))) + ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-566))))) +(((*1 *2 *2) + (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1199)))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1171 *6)) (-5 *3 (-566)) (-4 *6 (-308)) (-4 *4 (-793)) + (-4 *5 (-850)) (-5 *1 (-742 *4 *5 *6 *7)) (-4 *7 (-949 *6 *4 *5))))) +(((*1 *2 *2) + (-12 (-5 *2 (-114)) (-4 *3 (-558)) (-5 *1 (-32 *3 *4)) + (-4 *4 (-432 *3)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-55)) (-5 *1 (-114)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-771)) (-5 *1 (-114)))) + ((*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-114)))) + ((*1 *2 *2) + (-12 (-5 *2 (-114)) (-4 *3 (-558)) (-5 *1 (-158 *3 *4)) + (-4 *4 (-432 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-114)) (-5 *1 (-163)))) + ((*1 *2 *2) + (-12 (-5 *2 (-114)) (-4 *3 (-558)) (-5 *1 (-277 *3 *4)) + (-4 *4 (-13 (-432 *3) (-1002))))) + ((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-302 *3)) (-4 *3 (-303)))) + ((*1 *2 *2) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) + ((*1 *2 *2) + (-12 (-5 *2 (-114)) (-4 *4 (-1099)) (-5 *1 (-431 *3 *4)) + (-4 *3 (-432 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-114)) (-4 *3 (-558)) (-5 *1 (-433 *3 *4)) + (-4 *4 (-432 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-612 *3)) (-4 *3 (-1099)))) + ((*1 *2 *2) + (-12 (-5 *2 (-114)) (-4 *3 (-558)) (-5 *1 (-630 *3 *4)) + (-4 *4 (-13 (-432 *3) (-1002) (-1199))))) + ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1019))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) + (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) + (-5 *1 (-1277 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-644 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-558)) + (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-1277 *5 *6 *7 *8))))) +(((*1 *1 *2) (-12 (-5 *2 (-1264 *3)) (-4 *3 (-365)) (-4 *1 (-330 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1264 *3)) (-4 *3 (-1240 *4)) (-4 *4 (-1218)) + (-4 *1 (-344 *4 *3 *5)) (-4 *5 (-1240 (-409 *3))))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1264 *4)) (-5 *3 (-1264 *1)) (-4 *4 (-172)) + (-4 *1 (-369 *4)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1264 *4)) (-5 *3 (-1264 *1)) (-4 *4 (-172)) + (-4 *1 (-372 *4 *5)) (-4 *5 (-1240 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1264 *3)) (-4 *3 (-172)) (-4 *1 (-411 *3 *4)) + (-4 *4 (-1240 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1264 *3)) (-4 *3 (-172)) (-4 *1 (-419 *3))))) +(((*1 *1 *1 *1) (-4 *1 (-967)))) +(((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1269)) (-5 *1 (-393)))) + ((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-393))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-13 (-365) (-147) (-1038 (-566)))) + (-4 *5 (-1240 *4)) + (-5 *2 (-2 (|:| -1641 (-409 *5)) (|:| |coeff| (-409 *5)))) + (-5 *1 (-570 *4 *5)) (-5 *3 (-409 *5))))) +(((*1 *1 *1) + (-12 (-4 *1 (-254 *2 *3 *4 *5)) (-4 *2 (-1049)) (-4 *3 (-850)) + (-4 *4 (-267 *3)) (-4 *5 (-793))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-644 (-644 (-644 *4)))) (-5 *2 (-644 (-644 *4))) + (-4 *4 (-850)) (-5 *1 (-1185 *4))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1171 *1)) (-5 *3 (-1175)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1171 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-952 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1175)) (-4 *1 (-29 *3)) (-4 *3 (-558)))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-558))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-117 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-566)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-871 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-871 *2)) (-14 *2 (-566)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-566)) (-14 *3 *2) (-5 *1 (-872 *3 *4)) + (-4 *4 (-869 *3)))) + ((*1 *1 *1) + (-12 (-14 *2 (-566)) (-5 *1 (-872 *2 *3)) (-4 *3 (-869 *2)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-566)) (-4 *1 (-1226 *3 *4)) (-4 *3 (-1049)) + (-4 *4 (-1255 *3)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1226 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-1255 *2))))) +(((*1 *2 *2) + (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1199)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-584))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-612 *1))) (-4 *1 (-303))))) +(((*1 *1 *2) + (-12 (-5 *2 (-644 (-905 *3))) (-4 *3 (-1099)) (-5 *1 (-904 *3))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-1175)) + (-4 *4 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) + (-5 *1 (-622 *4 *2)) (-4 *2 (-13 (-1199) (-959) (-29 *4)))))) +(((*1 *2 *2 *2 *2 *3) + (-12 (-4 *3 (-558)) (-5 *1 (-969 *3 *2)) (-4 *2 (-1240 *3))))) +(((*1 *2 *3 *4 *5 *3 *6 *3) + (-12 (-5 *3 (-566)) (-5 *5 (-169 (-225))) (-5 *6 (-1157)) + (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1 (-943 (-225)) (-943 (-225)))) (-5 *3 (-644 (-264))) + (-5 *1 (-262)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1 (-943 (-225)) (-943 (-225)))) (-5 *1 (-264)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-644 (-483 *5 *6))) (-5 *3 (-483 *5 *6)) + (-14 *5 (-644 (-1175))) (-4 *6 (-454)) (-5 *2 (-1264 *6)) + (-5 *1 (-631 *5 *6))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1157)) (-5 *2 (-381)) (-5 *1 (-786))))) +(((*1 *2 *1) + (-12 (-4 *3 (-233)) (-4 *3 (-1049)) (-4 *4 (-850)) (-4 *5 (-267 *4)) + (-4 *6 (-793)) (-5 *2 (-1 *1 (-771))) (-4 *1 (-254 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1049)) (-4 *3 (-850)) (-4 *5 (-267 *3)) (-4 *6 (-793)) + (-5 *2 (-1 *1 (-771))) (-4 *1 (-254 *4 *3 *5 *6)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-771)) (-4 *1 (-267 *2)) (-4 *2 (-850))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-771)) (-4 *4 (-308)) (-4 *6 (-1240 *4)) + (-5 *2 (-1264 (-644 *6))) (-5 *1 (-457 *4 *6)) (-5 *5 (-644 *6))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) + (-5 *1 (-523 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-558)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) + (-4 *7 (-992 *4)) (-4 *2 (-687 *7 *8 *9)) + (-5 *1 (-524 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-687 *4 *5 *6)) + (-4 *8 (-375 *7)) (-4 *9 (-375 *7)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) + (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-365)))) + ((*1 *2 *2) + (|partial| -12 (-4 *3 (-365)) (-4 *3 (-172)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *1 (-688 *3 *4 *5 *2)) + (-4 *2 (-687 *3 *4 *5)))) + ((*1 *1 *1) + (|partial| -12 (-5 *1 (-689 *2)) (-4 *2 (-365)) (-4 *2 (-1049)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-1122 *2 *3 *4 *5)) (-4 *3 (-1049)) + (-4 *4 (-238 *2 *3)) (-4 *5 (-238 *2 *3)) (-4 *3 (-365)))) + ((*1 *2 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-850)) (-5 *1 (-1185 *3))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *2 (-644 (-1171 *7))) (-5 *3 (-1171 *7)) + (-4 *7 (-949 *5 *6 *4)) (-4 *5 (-909)) (-4 *6 (-793)) + (-4 *4 (-850)) (-5 *1 (-906 *5 *6 *4 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-644 (-566))) (-5 *2 (-1177 (-409 (-566)))) + (-5 *1 (-190))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) + (-4 *6 (-793)) (-4 *7 (-949 *4 *6 *5)) + (-5 *2 + (-2 (|:| |sysok| (-112)) (|:| |z0| (-644 *7)) (|:| |n0| (-644 *7)))) + (-5 *1 (-924 *4 *5 *6 *7)) (-5 *3 (-644 *7))))) +(((*1 *1 *2) + (-12 (-5 *2 (-644 (-2 (|:| -2674 (-1175)) (|:| -2636 (-439))))) + (-5 *1 (-1179))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-566)) (-4 *4 (-172)) (-4 *5 (-375 *4)) + (-4 *6 (-375 *4)) (-5 *1 (-688 *4 *5 *6 *2)) + (-4 *2 (-687 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) (((*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1038 (-566)) (-639 (-566)) (-454))) (-5 *2 @@ -17530,781 +16034,2277 @@ (|:| |%type| (-1157)))) (-5 *1 (-1250 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1199) (-432 *3))) (-14 *5 (-1175)) (-14 *6 *4)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-644 *6)) (-5 *4 (-644 (-1155 *7))) (-4 *6 (-850)) + (-4 *7 (-949 *5 (-533 *6) *6)) (-4 *5 (-1049)) + (-5 *2 (-1 (-1155 *7) *7)) (-5 *1 (-1125 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-317 (-225)))) (-5 *4 (-771)) + (-5 *2 (-689 (-225))) (-5 *1 (-268))))) +(((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1269)) (-5 *1 (-1178)))) + ((*1 *2) (-12 (-5 *2 (-1269)) (-5 *1 (-1178))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1171 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3))))) +(((*1 *2 *3) + (-12 (-5 *2 (-169 (-381))) (-5 *1 (-785 *3)) (-4 *3 (-614 (-381))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-921)) (-5 *2 (-169 (-381))) (-5 *1 (-785 *3)) + (-4 *3 (-614 (-381))))) + ((*1 *2 *3) + (-12 (-5 *3 (-169 *4)) (-4 *4 (-172)) (-4 *4 (-614 (-381))) + (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-169 *5)) (-5 *4 (-921)) (-4 *5 (-172)) + (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-952 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-614 (-381))) + (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-952 (-169 *5))) (-5 *4 (-921)) (-4 *5 (-172)) + (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-952 *4)) (-4 *4 (-1049)) (-4 *4 (-614 (-381))) + (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-952 *5)) (-5 *4 (-921)) (-4 *5 (-1049)) + (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-558)) (-4 *4 (-614 (-381))) + (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-921)) (-4 *5 (-558)) + (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-409 (-952 (-169 *4)))) (-4 *4 (-558)) + (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-409 (-952 (-169 *5)))) (-5 *4 (-921)) (-4 *5 (-558)) + (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-317 *4)) (-4 *4 (-558)) (-4 *4 (-850)) + (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-317 *5)) (-5 *4 (-921)) (-4 *5 (-558)) (-4 *5 (-850)) + (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-317 (-169 *4))) (-4 *4 (-558)) (-4 *4 (-850)) + (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-317 (-169 *5))) (-5 *4 (-921)) (-4 *5 (-558)) + (-4 *5 (-850)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) + (-5 *1 (-785 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-254 *3 *4 *2 *5)) (-4 *3 (-1049)) (-4 *4 (-850)) + (-4 *5 (-793)) (-4 *2 (-267 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-225)) (-5 *1 (-1267)))) + ((*1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-1267))))) +(((*1 *2 *3) + (-12 (-5 *3 (-952 (-566))) (-5 *2 (-644 *1)) (-4 *1 (-1012)))) + ((*1 *2 *3) + (-12 (-5 *3 (-952 (-409 (-566)))) (-5 *2 (-644 *1)) (-4 *1 (-1012)))) + ((*1 *2 *3) (-12 (-5 *3 (-952 *1)) (-4 *1 (-1012)) (-5 *2 (-644 *1)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1171 (-566))) (-5 *2 (-644 *1)) (-4 *1 (-1012)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1171 (-409 (-566)))) (-5 *2 (-644 *1)) (-4 *1 (-1012)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1171 *1)) (-4 *1 (-1012)) (-5 *2 (-644 *1)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-848) (-365))) (-4 *3 (-1240 *4)) (-5 *2 (-644 *1)) + (-4 *1 (-1067 *4 *3))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-1266))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1257 *3 *2)) + (-4 *2 (-1255 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-822))))) +(((*1 *2 *1) + (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)) + (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-644 *6)) (-4 *6 (-850)) (-4 *4 (-365)) (-4 *5 (-793)) + (-5 *2 (-112)) (-5 *1 (-506 *4 *5 *6 *7)) (-4 *7 (-949 *4 *5 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) + (-5 *1 (-523 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-558)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) + (-4 *7 (-992 *4)) (-4 *2 (-687 *7 *8 *9)) + (-5 *1 (-524 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-687 *4 *5 *6)) + (-4 *8 (-375 *7)) (-4 *9 (-375 *7)))) + ((*1 *1 *1) + (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) + (-4 *4 (-375 *2)) (-4 *2 (-308)))) + ((*1 *2 *2) + (-12 (-4 *3 (-308)) (-4 *3 (-172)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *1 (-688 *3 *4 *5 *2)) + (-4 *2 (-687 *3 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-689 *3)) (-4 *3 (-308)) (-5 *1 (-700 *3)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1053 *2 *3 *4 *5 *6)) (-4 *4 (-1049)) + (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *2 *4)) (-4 *4 (-308))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-689 *5))) (-5 *4 (-566)) (-4 *5 (-365)) + (-4 *5 (-1049)) (-5 *2 (-112)) (-5 *1 (-1029 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 (-689 *4))) (-4 *4 (-365)) (-4 *4 (-1049)) + (-5 *2 (-112)) (-5 *1 (-1029 *4))))) +(((*1 *2 *2) (-12 (-5 *1 (-961 *2)) (-4 *2 (-547))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1175)) (-4 *5 (-614 (-892 (-566)))) + (-4 *5 (-886 (-566))) + (-4 *5 (-13 (-1038 (-566)) (-454) (-639 (-566)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-569 *5 *3)) (-4 *3 (-629)) + (-4 *3 (-13 (-27) (-1199) (-432 *5)))))) +(((*1 *1 *1 *1) (-4 *1 (-547)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-644 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1215 *2)) + (-4 *2 (-1099)))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 *2)) (-4 *2 (-1099)) (-4 *2 (-850)) + (-5 *1 (-1215 *2))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1157)) (-5 *3 (-823)) (-5 *1 (-822))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-558)) + (-5 *2 (-2 (|:| -2397 *4) (|:| -2631 *3) (|:| -3264 *3))) + (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) + (-5 *2 (-2 (|:| -2631 *1) (|:| -3264 *1))) (-4 *1 (-1064 *3 *4 *5)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-558)) (-4 *3 (-1049)) + (-5 *2 (-2 (|:| -2397 *3) (|:| -2631 *1) (|:| -3264 *1))) + (-4 *1 (-1240 *3))))) +(((*1 *2 *1) (-12 (-5 *1 (-691 *2)) (-4 *2 (-613 (-862))))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-566)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1157)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-508)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-593)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-480)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-137)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-156)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1165)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-626)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1095)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1089)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1072)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-970)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-180)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1036)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-312)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-671)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-154)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-527)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1275)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1065)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-519)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-681)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-96)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1114)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-133)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-138)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1274)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-676)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-218)))) + ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-526)))) + ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1180)))) + ((*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-1180)))) + ((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1180)))) + ((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-1180))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436))))) +(((*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-470)) (-5 *4 (-921)) (-5 *2 (-1269)) (-5 *1 (-1265))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1214)) (-4 *3 (-1099)) + (-5 *2 (-112))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-988 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1106 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7))))) +(((*1 *1 *1) + (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-771)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-689 *5))) (-4 *5 (-308)) (-4 *5 (-1049)) + (-5 *2 (-1264 (-1264 *5))) (-5 *1 (-1029 *5)) (-5 *4 (-1264 *5))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-649 *3 *4 *5)) (-4 *3 (-1099)) + (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-653 (-409 *6))) (-5 *4 (-1 (-644 *5) *6)) + (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) + (-4 *6 (-1240 *5)) (-5 *2 (-644 (-409 *6))) (-5 *1 (-812 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-653 (-409 *7))) (-5 *4 (-1 (-644 *6) *7)) + (-5 *5 (-1 (-420 *7) *7)) + (-4 *6 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) + (-4 *7 (-1240 *6)) (-5 *2 (-644 (-409 *7))) (-5 *1 (-812 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-654 *6 (-409 *6))) (-5 *4 (-1 (-644 *5) *6)) + (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) + (-4 *6 (-1240 *5)) (-5 *2 (-644 (-409 *6))) (-5 *1 (-812 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-654 *7 (-409 *7))) (-5 *4 (-1 (-644 *6) *7)) + (-5 *5 (-1 (-420 *7) *7)) + (-4 *6 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) + (-4 *7 (-1240 *6)) (-5 *2 (-644 (-409 *7))) (-5 *1 (-812 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-653 (-409 *5))) (-4 *5 (-1240 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) + (-5 *2 (-644 (-409 *5))) (-5 *1 (-812 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-653 (-409 *6))) (-5 *4 (-1 (-420 *6) *6)) + (-4 *6 (-1240 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) + (-5 *2 (-644 (-409 *6))) (-5 *1 (-812 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-654 *5 (-409 *5))) (-4 *5 (-1240 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) + (-5 *2 (-644 (-409 *5))) (-5 *1 (-812 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-654 *6 (-409 *6))) (-5 *4 (-1 (-420 *6) *6)) + (-4 *6 (-1240 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) + (-5 *2 (-644 (-409 *6))) (-5 *1 (-812 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-91 *3))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-566)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1214)) + (-4 *3 (-375 *4)) (-4 *5 (-375 *4))))) +(((*1 *2) + (-12 (-4 *3 (-558)) (-5 *2 (-644 (-689 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-419 *3))))) +(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) + (|partial| -12 (-5 *2 (-644 (-1171 *13))) (-5 *3 (-1171 *13)) + (-5 *4 (-644 *12)) (-5 *5 (-644 *10)) (-5 *6 (-644 *13)) + (-5 *7 (-644 (-644 (-2 (|:| -2994 (-771)) (|:| |pcoef| *13))))) + (-5 *8 (-644 (-771))) (-5 *9 (-1264 (-644 (-1171 *10)))) + (-4 *12 (-850)) (-4 *10 (-308)) (-4 *13 (-949 *10 *11 *12)) + (-4 *11 (-793)) (-5 *1 (-707 *11 *12 *10 *13))))) +(((*1 *2 *3 *4 *4 *5 *3 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) + (-5 *2 (-1035)) (-5 *1 (-752))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-560 *2)) (-4 *2 (-547))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-1140 *2 *3)) (-4 *2 (-13 (-1099) (-34))) + (-4 *3 (-13 (-1099) (-34)))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-3 (-112) (-644 *1))) + (-4 *1 (-1070 *4 *5 *6 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-1049)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850))))) +(((*1 *1) (-5 *1 (-803)))) +(((*1 *1 *1) (-4 *1 (-1143)))) +(((*1 *2 *2) (-12 (-5 *2 (-689 (-317 (-566)))) (-5 *1 (-1031))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-644 *7)) (-5 *3 (-566)) (-4 *7 (-949 *4 *5 *6)) + (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-5 *1 (-451 *4 *5 *6 *7))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-175))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1264 (-644 *3))) (-4 *4 (-308)) + (-5 *2 (-644 *3)) (-5 *1 (-457 *4 *3)) (-4 *3 (-1240 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-566)) (|has| *1 (-6 -4405)) (-4 *1 (-406)) + (-5 *2 (-921))))) +(((*1 *1) (-12 (-4 *1 (-1045 *2)) (-4 *2 (-23))))) +(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) + (-12 (-5 *4 (-689 (-225))) (-5 *5 (-689 (-566))) (-5 *3 (-566)) + (-5 *2 (-1035)) (-5 *1 (-756))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *5 (-112)) + (-5 *2 (-1035)) (-5 *1 (-745))))) +(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-114))) + ((*1 *1 *1) (-5 *1 (-171))) ((*1 *1 *1) (-4 *1 (-547))) + ((*1 *1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099)))) + ((*1 *1 *1) (-12 (-4 *1 (-1133 *2)) (-4 *2 (-1049)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1139 *2 *3)) (-4 *2 (-13 (-1099) (-34))) + (-4 *3 (-13 (-1099) (-34)))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-889 *4 *5)) (-5 *3 (-889 *4 *6)) (-4 *4 (-1099)) + (-4 *5 (-1099)) (-4 *6 (-666 *5)) (-5 *1 (-885 *4 *5 *6))))) +(((*1 *1) + (-12 (-4 *1 (-406)) (-2404 (|has| *1 (-6 -4405))) + (-2404 (|has| *1 (-6 -4397))))) + ((*1 *2 *1) (-12 (-4 *1 (-427 *2)) (-4 *2 (-1099)) (-4 *2 (-850)))) + ((*1 *2 *1) (-12 (-4 *1 (-830 *2)) (-4 *2 (-850)))) + ((*1 *1) (-4 *1 (-844))) ((*1 *1 *1 *1) (-4 *1 (-850)))) +(((*1 *2 *1) + (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) + (-5 *2 (-112))))) +(((*1 *2) + (|partial| -12 (-4 *3 (-558)) (-4 *3 (-172)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -2875 (-644 *1)))) + (-4 *1 (-369 *3)))) + ((*1 *2) + (|partial| -12 + (-5 *2 + (-2 (|:| |particular| (-455 *3 *4 *5 *6)) + (|:| -2875 (-644 (-455 *3 *4 *5 *6))))) + (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-921)) + (-14 *5 (-644 (-1175))) (-14 *6 (-1264 (-689 *3)))))) +(((*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1267)))) + ((*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1267))))) +(((*1 *2 *3) + (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) + (-5 *1 (-977 *4 *5 *6 *3)) (-4 *3 (-1064 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1214))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-1099)) + (-4 *4 (-1099))))) +(((*1 *1 *1 *1) (-4 *1 (-761)))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-612 *1))) (-4 *1 (-303))))) +(((*1 *1) + (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-558)) (-4 *2 (-172))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 (-644 *2) *2 *2 *2)) (-4 *2 (-1099)) + (-5 *1 (-103 *2)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1099)) (-5 *1 (-103 *2))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-112)) (-5 *5 (-566)) (-4 *6 (-365)) (-4 *6 (-370)) + (-4 *6 (-1049)) (-5 *2 (-644 (-644 (-689 *6)))) (-5 *1 (-1029 *6)) + (-5 *3 (-644 (-689 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-365)) (-4 *4 (-370)) (-4 *4 (-1049)) + (-5 *2 (-644 (-644 (-689 *4)))) (-5 *1 (-1029 *4)) + (-5 *3 (-644 (-689 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1049)) + (-5 *2 (-644 (-644 (-689 *5)))) (-5 *1 (-1029 *5)) + (-5 *3 (-644 (-689 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-921)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1049)) + (-5 *2 (-644 (-644 (-689 *5)))) (-5 *1 (-1029 *5)) + (-5 *3 (-644 (-689 *5)))))) +(((*1 *1 *1) (-12 (-4 *1 (-674 *2)) (-4 *2 (-1214))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) + (-4 *3 (-369 *4)))) + ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-158 *3 *2)) (-4 *2 (-432 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1175)) (-4 *4 (-558)) (-5 *1 (-158 *4 *2)) + (-4 *2 (-432 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1175)))) + ((*1 *1 *1) (-4 *1 (-160)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1255 *4)) + (-4 *4 (-38 (-409 (-566)))) (-5 *2 (-1 (-1155 *4) (-1155 *4))) + (-5 *1 (-1257 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1 (-381))) (-5 *1 (-1040))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1099)) (-4 *6 (-1099)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-684 *4 *5 *6)) (-4 *4 (-1099))))) +(((*1 *2 *3) + (-12 (-5 *3 (-566)) (|has| *1 (-6 -4405)) (-4 *1 (-406)) + (-5 *2 (-921))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) + (-4 *3 (-369 *4)))) + ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1214)) (-5 *2 (-644 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1175)) (-4 *5 (-365)) (-5 *2 (-1155 (-1155 (-952 *5)))) + (-5 *1 (-1272 *5)) (-5 *4 (-1155 (-952 *5)))))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-566)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1214)) + (-4 *4 (-375 *2)) (-4 *5 (-375 *2)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 "right") (|has| *1 (-6 -4415)) (-4 *1 (-119 *3)) + (-4 *3 (-1214)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 "left") (|has| *1 (-6 -4415)) (-4 *1 (-119 *3)) + (-4 *3 (-1214)))) + ((*1 *2 *1 *3 *2) + (-12 (|has| *1 (-6 -4415)) (-4 *1 (-289 *3 *2)) (-4 *3 (-1099)) + (-4 *2 (-1214)))) + ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1175)) (-5 *1 (-632)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 (-1231 (-566))) (|has| *1 (-6 -4415)) (-4 *1 (-651 *2)) + (-4 *2 (-1214)))) + ((*1 *1 *1 *2 *2 *1) + (-12 (-5 *2 (-644 (-566))) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) + (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 "value") (|has| *1 (-6 -4415)) (-4 *1 (-1010 *2)) + (-4 *2 (-1214)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-1026 *2)) (-4 *2 (-1214)))) + ((*1 *2 *1 *3 *2) + (-12 (-4 *1 (-1190 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1099)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 "last") (|has| *1 (-6 -4415)) (-4 *1 (-1252 *2)) + (-4 *2 (-1214)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 "rest") (|has| *1 (-6 -4415)) (-4 *1 (-1252 *3)) + (-4 *3 (-1214)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 "first") (|has| *1 (-6 -4415)) (-4 *1 (-1252 *2)) + (-4 *2 (-1214))))) +(((*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049))))) +(((*1 *2 *3 *4) + (-12 + (-5 *3 + (-644 + (-2 (|:| |eqzro| (-644 *8)) (|:| |neqzro| (-644 *8)) + (|:| |wcond| (-644 (-952 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1264 (-409 (-952 *5)))) + (|:| -2875 (-644 (-1264 (-409 (-952 *5)))))))))) + (-5 *4 (-1157)) (-4 *5 (-13 (-308) (-147))) (-4 *8 (-949 *5 *7 *6)) + (-4 *6 (-13 (-850) (-614 (-1175)))) (-4 *7 (-793)) (-5 *2 (-566)) + (-5 *1 (-924 *5 *6 *7 *8))))) +(((*1 *2 *2) + (-12 (-4 *3 (-454)) (-5 *1 (-1205 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1199)))))) +(((*1 *1 *1) (-12 (-4 *1 (-432 *2)) (-4 *2 (-1099)) (-4 *2 (-558)))) + ((*1 *1 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558))))) +(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1214))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-558) (-1038 (-566)))) (-5 *1 (-188 *3 *2)) + (-4 *2 (-13 (-27) (-1199) (-432 (-169 *3)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) + (-5 *1 (-1203 *3 *2)) (-4 *2 (-13 (-27) (-1199) (-432 *3)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-644 *8)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-566)) + (-14 *6 (-771)) (-4 *7 (-172)) (-4 *8 (-172)) + (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-644 *9)) (-4 *9 (-1049)) (-4 *5 (-850)) (-4 *6 (-793)) + (-4 *8 (-1049)) (-4 *2 (-949 *9 *7 *5)) + (-5 *1 (-728 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-793)) + (-4 *4 (-949 *8 *6 *5))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-771)) + (-4 *3 (-13 (-308) (-10 -8 (-15 -1364 ((-420 $) $))))) + (-4 *4 (-1240 *3)) (-5 *1 (-501 *3 *4 *5)) (-4 *5 (-411 *3 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-927)) + (-5 *2 + (-2 (|:| |brans| (-644 (-644 (-943 (-225))))) + (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225))))) + (-5 *1 (-153)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-927)) (-5 *4 (-409 (-566))) + (-5 *2 + (-2 (|:| |brans| (-644 (-644 (-943 (-225))))) + (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225))))) + (-5 *1 (-153)))) + ((*1 *2 *3) + (-12 + (-5 *2 + (-2 (|:| |brans| (-644 (-644 (-943 (-225))))) + (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225))))) + (-5 *1 (-153)) (-5 *3 (-644 (-943 (-225)))))) + ((*1 *2 *3) + (-12 + (-5 *2 + (-2 (|:| |brans| (-644 (-644 (-943 (-225))))) + (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225))))) + (-5 *1 (-153)) (-5 *3 (-644 (-644 (-943 (-225))))))) + ((*1 *1 *2) (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *1 (-264)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1093 (-225))) + (-5 *5 (-112)) (-5 *2 (-1266)) (-5 *1 (-258))))) +(((*1 *2 *1) + (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) + (|has| *2 (-6 (-4416 "*"))) (-4 *2 (-1049)))) + ((*1 *2 *3) + (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-172)) + (-5 *1 (-688 *2 *4 *5 *3)) (-4 *3 (-687 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1122 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) + (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4416 "*"))) (-4 *2 (-1049))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1171 *1)) (-4 *1 (-1012))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-508)) (-5 *1 (-114)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-508)) (-4 *4 (-1099)) (-5 *1 (-929 *4 *2)) + (-4 *2 (-432 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1175)) (-5 *4 (-508)) (-5 *2 (-317 (-566))) + (-5 *1 (-930))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1175)) (-5 *2 (-538)) (-5 *1 (-537 *4)) + (-4 *4 (-1214))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1264 (-644 (-2 (|:| -2876 *4) (|:| -2835 (-1119)))))) + (-4 *4 (-351)) (-5 *2 (-1269)) (-5 *1 (-530 *4))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-644 (-644 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-644 (-3 (|:| |array| (-644 *3)) (|:| |scalar| (-1175))))) + (-5 *6 (-644 (-1175))) (-5 *3 (-1175)) (-5 *2 (-1103)) + (-5 *1 (-399)))) + ((*1 *2 *3 *4 *5 *6 *3) + (-12 (-5 *5 (-644 (-644 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-644 (-3 (|:| |array| (-644 *3)) (|:| |scalar| (-1175))))) + (-5 *6 (-644 (-1175))) (-5 *3 (-1175)) (-5 *2 (-1103)) + (-5 *1 (-399)))) + ((*1 *2 *3 *4 *5 *4) + (-12 (-5 *4 (-644 (-1175))) (-5 *5 (-1178)) (-5 *3 (-1175)) + (-5 *2 (-1103)) (-5 *1 (-399))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3)) + (-4 *3 (-13 (-365) (-1199) (-1002))))) + ((*1 *2) + (|partial| -12 (-4 *4 (-1218)) (-4 *5 (-1240 (-409 *2))) + (-4 *2 (-1240 *4)) (-5 *1 (-343 *3 *4 *2 *5)) + (-4 *3 (-344 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-344 *3 *2 *4)) (-4 *3 (-1218)) + (-4 *4 (-1240 (-409 *2))) (-4 *2 (-1240 *3))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850))))) +(((*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-954))))) +(((*1 *2 *3) + (-12 (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-300 *4 *5)) (-14 *4 *3) + (-14 *5 *3))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1093 (-843 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) + (-5 *1 (-306)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)) + (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-469)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-469))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1264 (-644 (-2 (|:| -2876 *4) (|:| -2835 (-1119)))))) + (-4 *4 (-351)) (-5 *2 (-771)) (-5 *1 (-348 *4)))) + ((*1 *2) + (-12 (-5 *2 (-771)) (-5 *1 (-353 *3 *4)) (-14 *3 (-921)) + (-14 *4 (-921)))) + ((*1 *2) + (-12 (-5 *2 (-771)) (-5 *1 (-354 *3 *4)) (-4 *3 (-351)) + (-14 *4 + (-3 (-1171 *3) + (-1264 (-644 (-2 (|:| -2876 *3) (|:| -2835 (-1119))))))))) + ((*1 *2) + (-12 (-5 *2 (-771)) (-5 *1 (-355 *3 *4)) (-4 *3 (-351)) + (-14 *4 (-921))))) +(((*1 *2 *1) + (-12 (-5 *2 (-644 *5)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-566)) + (-14 *4 (-771)) (-4 *5 (-172))))) +(((*1 *2) + (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) + (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-1269)) + (-5 *1 (-988 *3 *4 *5 *6 *7)) (-4 *7 (-1070 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) + (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-1269)) + (-5 *1 (-1106 *3 *4 *5 *6 *7)) (-4 *7 (-1070 *3 *4 *5 *6))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| -2659 (-381)) (|:| -1368 (-1157)) + (|:| |explanations| (-644 (-1157))))) + (-5 *2 (-1035)) (-5 *1 (-306)))) + ((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| -2659 (-381)) (|:| -1368 (-1157)) + (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035)))) + (-5 *2 (-1035)) (-5 *1 (-306))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1138)))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-752))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1175)) + (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1199) (-432 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-409 (-566))) + (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1199) (-432 *5))) + (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-316 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-295 *3)) (-5 *5 (-409 (-566))) + (-4 *3 (-13 (-27) (-1199) (-432 *6))) + (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-316 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-566))) (-5 *4 (-295 *6)) + (-4 *6 (-13 (-27) (-1199) (-432 *5))) + (-4 *5 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-461 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1175)) (-5 *5 (-295 *3)) + (-4 *3 (-13 (-27) (-1199) (-432 *6))) + (-4 *6 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-461 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-566))) (-5 *4 (-295 *7)) (-5 *5 (-1231 (-566))) + (-4 *7 (-13 (-27) (-1199) (-432 *6))) + (-4 *6 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-461 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1175)) (-5 *5 (-295 *3)) (-5 *6 (-1231 (-566))) + (-4 *3 (-13 (-27) (-1199) (-432 *7))) + (-4 *7 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-461 *7 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-1 *8 (-409 (-566)))) (-5 *4 (-295 *8)) + (-5 *5 (-1231 (-409 (-566)))) (-5 *6 (-409 (-566))) + (-4 *8 (-13 (-27) (-1199) (-432 *7))) + (-4 *7 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-461 *7 *8)))) + ((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *4 (-1175)) (-5 *5 (-295 *3)) (-5 *6 (-1231 (-409 (-566)))) + (-5 *7 (-409 (-566))) (-4 *3 (-13 (-27) (-1199) (-432 *8))) + (-4 *8 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) + (-5 *1 (-461 *8 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1155 (-2 (|:| |k| (-566)) (|:| |c| *3)))) + (-4 *3 (-1049)) (-5 *1 (-596 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-597 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1155 (-2 (|:| |k| (-566)) (|:| |c| *3)))) + (-4 *3 (-1049)) (-4 *1 (-1224 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-771)) + (-5 *3 (-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| *4)))) + (-4 *4 (-1049)) (-4 *1 (-1245 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-4 *1 (-1255 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1155 (-2 (|:| |k| (-771)) (|:| |c| *3)))) + (-4 *3 (-1049)) (-4 *1 (-1255 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-691 (-549)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-313)) (-5 *1 (-297)))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 (-1157))) (-5 *2 (-313)) (-5 *1 (-297)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-313)) (-5 *1 (-297)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-644 (-1157))) (-5 *3 (-1157)) (-5 *2 (-313)) + (-5 *1 (-297))))) +(((*1 *2 *1) + (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)) + (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1175)) (-5 *4 (-952 (-566))) (-5 *2 (-331)) + (-5 *1 (-333))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 (-644 (-644 *4)))) (-5 *2 (-644 (-644 *4))) + (-5 *1 (-1185 *4)) (-4 *4 (-850))))) +(((*1 *1 *2) + (-12 (-5 *2 (-644 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) + (-14 *3 (-566)) (-14 *4 (-771))))) +(((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1175)) (-5 *1 (-675 *3)) (-4 *3 (-1099))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-365) (-848))) + (-5 *2 (-2 (|:| |start| *3) (|:| -1616 (-420 *3)))) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1240 (-169 *4)))))) +(((*1 *1 *1 *2 *2 *1) + (-12 (-5 *2 (-566)) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) + (-4 *4 (-375 *3)) (-4 *5 (-375 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1099)) (-4 *5 (-1099)) + (-5 *2 (-1 *5 *4)) (-5 *1 (-683 *4 *5))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-644 (-566))) (-5 *1 (-247 *3 *4)) + (-14 *3 (-644 (-1175))) (-4 *4 (-1049)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-644 (-566))) (-14 *3 (-644 (-1175))) + (-5 *1 (-456 *3 *4 *5)) (-4 *4 (-1049)) + (-4 *5 (-238 (-3000 *3) (-771))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-644 (-566))) (-5 *1 (-483 *3 *4)) + (-14 *3 (-644 (-1175))) (-4 *4 (-1049))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-566)) (|has| *1 (-6 -4415)) (-4 *1 (-375 *3)) + (-12 (-4 *1 (-1064 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *2 (-850)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850))))) +(((*1 *1 *1) (-5 *1 (-1062)))) +(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266)))) + ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1266))))) +(((*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1207 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793)) + (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5))))) +(((*1 *2 *3 *3 *1) + (-12 (-5 *3 (-508)) (-5 *2 (-691 (-1103))) (-5 *1 (-292))))) +(((*1 *2 *1) + (-12 (-5 *2 (-862)) (-5 *1 (-1155 *3)) (-4 *3 (-1099)) (-4 *3 (-1214))))) -((-1297 . 732175) (-1298 . 731712) (-1299 . 731643) (-1300 . 731546) - (-1301 . 717459) (-1302 . 717404) (-1303 . 717289) (-1304 . 717205) - (-1305 . 717086) (-1306 . 716928) (-1307 . 716619) (-1308 . 716521) - (-1309 . 716427) (-1310 . 716282) (-1311 . 716209) (-1312 . 715961) - (-1313 . 715874) (-1314 . 715665) (-1315 . 711602) (-1316 . 711507) - (-1317 . 711452) (-1318 . 711344) (-1319 . 711196) (-1320 . 710865) - (-1321 . 710597) (-1322 . 710500) (-1323 . 710335) (-1324 . 710258) - (-1325 . 710224) (-1326 . 710005) (-1327 . 709834) (-1328 . 709608) - (-1329 . 709434) (-1330 . 709330) (-1331 . 709189) (-1332 . 709071) - (-1333 . 708970) (-1334 . 708914) (-1335 . 708486) (-1336 . 708349) - (-1337 . 708184) (-1338 . 704885) (-1339 . 704787) (-1340 . 704702) - (-1341 . 704583) (-1342 . 704523) (-1343 . 701742) (-1344 . 701675) - (-1345 . 701621) (-1346 . 701483) (-1347 . 701347) (-1348 . 697680) - (-1349 . 697342) (-1350 . 697229) (-1351 . 697130) (-1352 . 697078) - (-1353 . 694733) (-1354 . 694578) (-1355 . 694454) (-1356 . 694055) - (-1357 . 693828) (-1358 . 693762) (-1359 . 693678) (-1360 . 693607) - (-1361 . 693483) (-1362 . 693410) (-1363 . 693117) (-1364 . 692759) - (-1365 . 692632) (-1366 . 692582) (-1367 . 692409) (-1368 . 692163) - (-1369 . 692061) (-1370 . 691906) (-1371 . 691647) (-1372 . 691434) - (-1373 . 691287) (-1374 . 691159) (-1375 . 691062) (-1376 . 690658) - (-1377 . 690433) (-1378 . 690352) (-1379 . 690186) (-1380 . 689940) - (-1381 . 689874) (-1382 . 689282) (-1383 . 689143) (-1384 . 688998) - (-1385 . 688578) (-1386 . 688525) (-1387 . 688496) (-1388 . 688390) - (-1389 . 688111) (-1390 . 687784) (-1391 . 687538) (-1392 . 687400) - (-1393 . 687082) (-1394 . 685650) (-1395 . 685375) (-1396 . 685322) - (-1397 . 685203) (-1398 . 685076) (-1399 . 684785) (-1400 . 684732) - (-1401 . 684604) (-1402 . 684551) (-1403 . 684241) (-1404 . 684213) - (-1405 . 684060) (-1406 . 683937) (-1407 . 683833) (-1408 . 683759) - (-1409 . 683666) (-1410 . 683456) (-1411 . 683404) (-1412 . 683308) - (-1413 . 683222) (-1414 . 683069) (-1415 . 682932) (-1416 . 682855) - (-1417 . 682664) (-1418 . 682611) (** . 679546) (-1420 . 679474) - (-1421 . 679376) (-1422 . 678974) (-1423 . 678762) (-1424 . 678685) - (-1425 . 678626) (-1426 . 678291) (-1427 . 678217) (-1428 . 677800) - (-1429 . 677741) (-1430 . 677570) (-1431 . 677259) (-1432 . 677181) - (-1433 . 677050) (-1434 . 676964) (-1435 . 676865) (-1436 . 676788) - (-1437 . 676673) (-1438 . 676620) (-1439 . 676517) (-1440 . 676387) - (-1441 . 676335) (-1442 . 675414) (-1443 . 675362) (-1444 . 675330) - (-1445 . 675167) (-1446 . 675088) (-1447 . 674996) (-1448 . 674939) - (-1449 . 674844) (-1450 . 674791) (-1451 . 674676) (-1452 . 674496) - (-1453 . 674166) (-1454 . 673743) (-1455 . 673376) (-1456 . 672835) - (-1457 . 672698) (-1458 . 672592) (-1459 . 672504) (-1460 . 672431) - (-1461 . 672175) (-1462 . 671869) (-1463 . 671810) (-1464 . 671389) - (-1465 . 671080) (-1466 . 670773) (-1467 . 670646) (-1468 . 670574) - (-1469 . 670145) (-1470 . 670073) (-1471 . 669977) (-1472 . 669881) - (-1473 . 669813) (-1474 . 669706) (-1475 . 669457) (-1476 . 669294) - (-1477 . 669076) (-1478 . 668914) (-1479 . 668844) (-1480 . 668756) - (-1481 . 668722) (-1482 . 668663) (-1483 . 668567) (-1484 . 668486) - (-1485 . 668362) (-1486 . 668284) (-1487 . 667933) (-1488 . 667825) - (-1489 . 667604) (-1490 . 667448) (-1491 . 667351) (-1492 . 667291) - (-1493 . 667166) (-1494 . 666790) (-1495 . 666557) (-1496 . 666343) - (-1497 . 666278) (-1498 . 666099) (-1499 . 665800) (-1500 . 665744) - (-1501 . 665647) (-1502 . 665532) (-1503 . 665461) (-1504 . 665380) - (-1505 . 665203) (-1506 . 665081) (-1507 . 664545) (-1508 . 664451) - (-1509 . 664303) (-1510 . 663872) (-1511 . 663798) (-1512 . 663710) - (-1513 . 663602) (-1514 . 663403) (-1515 . 663176) (-1516 . 663086) - (-1517 . 662774) (-1518 . 661696) (-1519 . 661588) (-1520 . 661554) - (-1521 . 660737) (-1522 . 660667) (-1523 . 660323) (-1524 . 660228) - (-1525 . 660085) (-1526 . 659883) (-1527 . 659599) (-1528 . 659392) - (-1529 . 659364) (-1530 . 659083) (-1531 . 658739) (-1532 . 658579) - (-1533 . 658485) (-1534 . 658205) (-1535 . 657903) (-1536 . 657837) - (-1537 . 657714) (-1538 . 657531) (-1539 . 657370) (-1540 . 657298) - (-1541 . 657199) (-1542 . 657025) (-1543 . 656867) (-1544 . 656798) - (-1545 . 656685) (-1546 . 656625) (-1547 . 656470) (-1548 . 656373) - (-1549 . 656083) (-1550 . 655636) (-1551 . 655497) (-1552 . 654847) - (-1553 . 654768) (-1554 . 654539) (-1555 . 654441) (-1556 . 654137) - (-1557 . 654085) (-1558 . 653632) (-1559 . 653583) (-1560 . 653094) - (-1561 . 652691) (-1562 . 652583) (-1563 . 652360) (-1564 . 652272) - (-1565 . 652220) (-1566 . 652140) (-1567 . 651960) (-1568 . 651804) - (-1569 . 651708) (-1570 . 651613) (-1571 . 651470) (-1572 . 651442) - (-1573 . 651408) (-1574 . 651338) (-1575 . 651269) (-1576 . 651206) - (-1577 . 649423) (-1578 . 649294) (-1579 . 648934) (-1580 . 648839) - (-1581 . 648707) (-1582 . 648410) (-1583 . 648069) (-1584 . 648017) - (-1585 . 647691) (-1586 . 647524) (-1587 . 647451) (-1588 . 647377) - (-1589 . 647343) (-1590 . 647277) (-1591 . 647158) (-1592 . 646778) - (-1593 . 646663) (-1594 . 646486) (-1595 . 646430) (-1596 . 646324) - (-1597 . 646256) (-1598 . 646197) (-1599 . 645281) (-1600 . 645207) - (-1601 . 644320) (-1602 . 644210) (-1603 . 644101) (-1604 . 643897) - (-1605 . 643749) (-1606 . 643663) (-1607 . 643568) (-1608 . 643473) - (-1609 . 643382) (-1610 . 643354) (-1611 . 643253) (-1612 . 643020) - (-1613 . 642859) (-1614 . 642749) (-1615 . 642627) (-1616 . 642143) - (-1617 . 641705) (-1618 . 641613) (-1619 . 641343) (-1620 . 641245) - (-1621 . 640945) (-1622 . 640871) (-1623 . 640816) (-1624 . 640760) - (-1625 . 640578) (-1626 . 640492) (-1627 . 640117) (-1628 . 639831) - (-1629 . 639671) (-1630 . 639559) (-1631 . 639499) (-1632 . 639323) - (-1633 . 639227) (-1634 . 639139) (-1635 . 638949) (-1636 . 638881) - (-1637 . 638744) (-1638 . 638661) (-1639 . 638537) (-1640 . 638363) - (-1641 . 638148) (-1642 . 638046) (-1643 . 637904) (-1644 . 637786) - (-1645 . 637647) (-1646 . 637465) (-1647 . 637379) (-1648 . 637226) - (-1649 . 637130) (-1650 . 637007) (-1651 . 636848) (-1652 . 636690) - (-1653 . 636638) (-1654 . 636420) (-1655 . 636368) (-1656 . 636177) - (-1657 . 635807) (-1658 . 635724) (-1659 . 635666) (-1660 . 635414) - (-1661 . 635251) (-1662 . 634409) (-1663 . 634155) (-1664 . 633978) - (-1665 . 633913) (-1666 . 633582) (-1667 . 633527) (-1668 . 633431) - (-1669 . 633329) (-1670 . 633274) (-1671 . 633079) (-1672 . 633050) - (-1673 . 632740) (-1674 . 632567) (-1675 . 631813) (-1676 . 628204) - (-1677 . 628149) (-1678 . 626694) (-1679 . 626583) (-1680 . 626480) - (-1681 . 626373) (-1682 . 625916) (-1683 . 625631) (-1684 . 625552) - (-1685 . 625117) (-1686 . 624939) (-1687 . 624755) (-1688 . 624514) - (-1689 . 624397) (-1690 . 622907) (-1691 . 622742) (-1692 . 622605) - (-1693 . 622452) (-1694 . 621925) (-1695 . 621816) (-1696 . 620370) - (-1697 . 620267) (-1698 . 620107) (-1699 . 620037) (-1700 . 619901) - (-1701 . 619849) (-1702 . 619303) (-1703 . 619246) (-1704 . 619163) - (-1705 . 619050) (-1706 . 618982) (-1707 . 618854) (-1708 . 618731) - (-1709 . 618575) (-1710 . 618496) (-1711 . 618321) (-1712 . 618226) - (-1713 . 617490) (-1714 . 617161) (-1715 . 617110) (-1716 . 617057) - (-1717 . 616801) (-1718 . 616727) (-1719 . 616611) (-1720 . 616516) - (-1721 . 615986) (-1722 . 615900) (-1723 . 615737) (-1724 . 615503) - (-1725 . 615225) (-1726 . 614814) (-1727 . 614786) (-1728 . 614672) - (-1729 . 614570) (-1730 . 614519) (-1731 . 614469) (-1732 . 614381) - (-1733 . 614243) (-1734 . 614062) (-1735 . 613943) (-1736 . 613815) - (-1737 . 613535) (-1738 . 613483) (-1739 . 613341) (-1740 . 613272) - (-1741 . 613147) (-1742 . 613004) (-1743 . 612757) (-1744 . 612633) - (-1745 . 612503) (-1746 . 612451) (-1747 . 612395) (-1748 . 612321) - (-1749 . 611677) (-1750 . 611488) (-1751 . 611345) (-1752 . 611213) - (-1753 . 610871) (-1754 . 610730) (-1755 . 610215) (-1756 . 609853) - (-1757 . 609688) (-1758 . 608935) (-1759 . 608778) (-1760 . 608725) - (-1761 . 608600) (-1762 . 608432) (-1763 . 607260) (-1764 . 607202) - (-1765 . 607110) (-1766 . 605254) (-1767 . 605158) (-1768 . 604873) - (-1769 . 604634) (-1770 . 604493) (-1771 . 604399) (-1772 . 604243) - (-1773 . 604174) (-1774 . 604059) (-1775 . 603728) (-1776 . 603628) - (-1777 . 603495) (-1778 . 603424) (-1779 . 603361) (-1780 . 603224) - (-1781 . 603158) (-1782 . 602939) (-1783 . 602779) (-1784 . 602508) - (-1785 . 602414) (-1786 . 601277) (-1787 . 601013) (-1788 . 600526) - (-1789 . 600471) (-1790 . 600410) (-1791 . 600267) (-1792 . 600142) - (-1793 . 599325) (-1794 . 599039) (-1795 . 598984) (-1796 . 598932) - (-1797 . 598849) (-1798 . 598612) (-1799 . 598237) (-1800 . 598034) - (-1801 . 597928) (-1802 . 597827) (-1803 . 597617) (-1804 . 597402) - (-1805 . 597316) (-1806 . 597154) (-1807 . 597011) (-1808 . 596941) - (-1809 . 596695) (-1810 . 596580) (-1811 . 596506) (-1812 . 596340) - (-1813 . 596252) (-1814 . 596048) (-1815 . 594956) (-1816 . 594818) - (-1817 . 594683) (-1818 . 594542) (-1819 . 594358) (-1820 . 593273) - (-1821 . 593027) (-1822 . 592489) (-1823 . 592401) (-1824 . 590623) - (-1825 . 590566) (-1826 . 590241) (-1827 . 590124) (-1828 . 589832) - (-1829 . 589689) (-1830 . 589661) (-1831 . 589544) (-1832 . 589489) - (-1833 . 589334) (-1834 . 589246) (-1835 . 589193) (-1836 . 589012) - (-1837 . 588902) (-1838 . 588683) (-1839 . 588531) (-1840 . 588500) - (-1841 . 588189) (-1842 . 587948) (-1843 . 587790) (-1844 . 587709) - (-1845 . 587657) (-1846 . 587557) (-1847 . 587444) (-1848 . 587233) - (-1849 . 587017) (-1850 . 586864) (-1851 . 586768) (-1852 . 586616) - (-1853 . 586469) (-1854 . 586342) (-1855 . 586310) (-1856 . 586199) - (-1857 . 586053) (-1858 . 586000) (-1859 . 585821) (-1860 . 585715) - (-1861 . 585476) (-1862 . 585115) (-1863 . 585058) (-1864 . 584727) - (-1865 . 584667) (-1866 . 584529) (-1867 . 584338) (-1868 . 584255) - (-1869 . 583846) (-1870 . 583762) (-1871 . 583535) (-1872 . 583202) - (-1873 . 583106) (-1874 . 582942) (-1875 . 582857) (-1876 . 582647) - (-1877 . 582543) (-1878 . 581327) (-1879 . 581253) (-1880 . 580745) - (-1881 . 580630) (-1882 . 580468) (-1883 . 579922) (-1884 . 579665) - (-1885 . 579586) (-1886 . 579512) (-1887 . 579400) (-1888 . 579320) - (-1889 . 578859) (-1890 . 578788) (-1891 . 578735) (-1892 . 578653) - (-1893 . 578515) (-1894 . 578391) (-1895 . 578305) (-1896 . 578043) - (-1897 . 577795) (-1898 . 577610) (-1899 . 577427) (-1900 . 577285) - (-1901 . 577146) (-1902 . 577074) (-1903 . 577006) (-1904 . 576868) - (-1905 . 576802) (-1906 . 576659) (-1907 . 576449) (-1908 . 576368) - (-1909 . 576316) (-1910 . 576225) (-1911 . 576094) (-1912 . 575884) - (-1913 . 575807) (-1914 . 575200) (-1915 . 574849) (-1916 . 574533) - (-1917 . 574425) (-1918 . 574280) (-1919 . 574118) (-1920 . 573942) - (-1921 . 573870) (-1922 . 573766) (-1923 . 573708) (-1924 . 573614) - (-1925 . 573537) (-1926 . 573084) (-1927 . 572990) (-1928 . 572830) - (-1929 . 572759) (-1930 . 572685) (-1931 . 572583) (-1932 . 572529) - (-1933 . 572452) (-1934 . 572314) (-1935 . 572170) (-1936 . 571763) - (-1937 . 571657) (-1938 . 571499) (-1939 . 571400) (-1940 . 571181) - (-1941 . 564238) (-1942 . 563588) (-1943 . 563435) (-1944 . 563227) - (-1945 . 563136) (-1946 . 562940) (-1947 . 562758) (-1948 . 562367) - (-1949 . 562152) (-1950 . 561957) (-1951 . 561739) (-1952 . 561453) - (-1953 . 560907) (-1954 . 560809) (-1955 . 560736) (-1956 . 560572) - (-1957 . 551122) (-1958 . 551044) (-1959 . 550980) (-1960 . 550553) - (-1961 . 550501) (-1962 . 550405) (-1963 . 550242) (-1964 . 549876) - (-1965 . 549793) (-1966 . 549652) (-1967 . 549538) (-1968 . 549483) - (-1969 . 549298) (-1970 . 548294) (-1971 . 547808) (-1972 . 547698) - (-1973 . 547537) (-1974 . 547463) (-1975 . 546811) (-1976 . 546653) - (-1977 . 546554) (-1978 . 546242) (-1979 . 546112) (-1980 . 545959) - (-1981 . 545846) (-1982 . 545613) (-1983 . 545167) (-1984 . 545101) - (-1985 . 545003) (-1986 . 544899) (-1987 . 544532) (-1988 . 544454) - (-1989 . 544402) (-1990 . 543813) (-1991 . 543672) (-1992 . 543613) - (-1993 . 543328) (-1994 . 543301) (-1995 . 542959) (-1996 . 542649) - (-1997 . 542459) (-1998 . 541846) (-1999 . 541760) (-2000 . 541554) - (-2001 . 541466) (-2002 . 541367) (-2003 . 541300) (-2004 . 541146) - (-2005 . 540939) (-2006 . 540839) (-2007 . 540604) (-2008 . 540547) - (-2009 . 540459) (-2010 . 540032) (-2011 . 539962) (-2012 . 539839) - (-2013 . 539719) (-2014 . 539493) (-2015 . 539411) (-2016 . 539227) - (-2017 . 538589) (-2018 . 538529) (-2019 . 538353) (-2020 . 538267) - (-2021 . 538063) (-2022 . 538001) (-2023 . 537877) (-2024 . 537662) - (-2025 . 537591) (-2026 . 537427) (-2027 . 537347) (-2028 . 537189) - (-2029 . 537130) (-2030 . 536880) (-2031 . 536781) (-2032 . 536695) - (-2033 . 536632) (-2034 . 536513) (-2035 . 536366) (-2036 . 536338) - (-2037 . 536272) (-2038 . 536194) (-2039 . 536142) (-2040 . 536010) - (-2041 . 535924) (-2042 . 535838) (-2043 . 535754) (-2044 . 535502) - (-2045 . 535324) (-2046 . 535175) (-2047 . 535042) (-2048 . 534884) - (-2049 . 534798) (-2050 . 534719) (-2051 . 534640) (-2052 . 531799) - (-2053 . 531718) (-2054 . 531622) (-2055 . 527615) (-2056 . 527452) - (-2057 . 527339) (-2058 . 527193) (-2059 . 526974) (-2060 . 526833) - (-2061 . 526759) (-2062 . 524532) (-2063 . 524482) (-2064 . 524364) - (-2065 . 523979) (-2066 . 523884) (-2067 . 523632) (-2068 . 523546) - (-2069 . 523275) (-2070 . 523182) (-2071 . 523010) (-2072 . 522815) - (-2073 . 522683) (-2074 . 522532) (-2075 . 522500) (-2076 . 522072) - (-2077 . 521929) (-2078 . 521538) (-2079 . 521464) (-2080 . 521170) - (-2081 . 521047) (-2082 . 520963) (-2083 . 520670) (-2084 . 520618) - (-2085 . 519889) (-2086 . 519404) (-2087 . 519307) (-2088 . 517526) - (-2089 . 517445) (-2090 . 517375) (-2091 . 517291) (-2092 . 517220) - (-2093 . 517149) (-2094 . 516703) (-2095 . 516252) (-2096 . 515592) - (-2097 . 515314) (-2098 . 514585) (-2099 . 514532) (-2100 . 514404) - (-2101 . 514305) (-2102 . 514209) (-2103 . 513981) (-2104 . 513798) - (-2105 . 513583) (-2106 . 513555) (-2107 . 512693) (-2108 . 512627) - (-2109 . 511951) (-2110 . 511830) (-2111 . 511303) (-2112 . 511064) - (-2113 . 510965) (-2114 . 510379) (-2115 . 510232) (-2116 . 509865) - (-2117 . 509617) (-2118 . 509053) (-2119 . 508956) (-2120 . 508877) - (-2121 . 508820) (-2122 . 508748) (-2123 . 508561) (-2124 . 508445) - (-2125 . 508221) (-2126 . 508165) (-2127 . 508007) (-2128 . 507690) - (-2129 . 507126) (-2130 . 507033) (-2131 . 506962) (-2132 . 506776) - (-2133 . 506693) (-2134 . 506552) (-2135 . 506478) (-2136 . 506382) - (-2137 . 506184) (-2138 . 506092) (-2139 . 506012) (-2140 . 505781) - (-2141 . 505217) (-2142 . 504925) (-2143 . 504678) (-2144 . 504416) - (-2145 . 504328) (-2146 . 504250) (-2147 . 504198) (-2148 . 504145) - (-2149 . 503938) (-2150 . 503521) (-2151 . 503366) (-2152 . 503118) - (-2153 . 502444) (-2154 . 501252) (-2155 . 501179) (-2156 . 501096) - (-2157 . 500703) (-2158 . 500522) (-2159 . 500469) (-2160 . 500344) - (-2161 . 500274) (-2162 . 500151) (-2163 . 500078) (-2164 . 500020) - (-2165 . 499912) (-2166 . 499238) (-2167 . 499151) (-2168 . 499080) - (-2169 . 498997) (-2170 . 498901) (-2171 . 498835) (-2172 . 498770) - (-2173 . 498684) (-2174 . 498592) (-2175 . 498521) (-2176 . 498447) - (-2177 . 498390) (-2178 . 498063) (-2179 . 498010) (-2180 . 497273) - (-2181 . 497194) (-2182 . 497098) (-2183 . 497020) (-2184 . 496797) - (-2185 . 496652) (-2186 . 496494) (-2187 . 496338) (-2188 . 496256) - (-2189 . 496113) (-2190 . 496021) (-2191 . 495948) (-2192 . 495811) - (-2193 . 495752) (-2194 . 495693) (-2195 . 495321) (-2196 . 494759) - (-2197 . 494500) (-2198 . 494327) (-2199 . 494244) (-2200 . 494112) - (-2201 . 494043) (-2202 . 493966) (-2203 . 493880) (-2204 . 493820) - (-2205 . 493749) (-2206 . 493663) (-2207 . 493566) (-2208 . 493470) - (-2209 . 492813) (-2210 . 492751) (-2211 . 492602) (-2212 . 492040) - (-2213 . 487880) (-2214 . 486778) (-2215 . 486595) (-2216 . 486242) - (-2217 . 486159) (-2218 . 485935) (-2219 . 484755) (-2220 . 484315) - (-2221 . 484262) (-2222 . 483783) (-2223 . 483576) (-2224 . 483493) - (-2225 . 483413) (-2226 . 483360) (-2227 . 482798) (-2228 . 482628) - (-2229 . 482600) (-2230 . 482509) (-2231 . 482291) (-2232 . 482092) - (-2233 . 481780) (-2234 . 481721) (-2235 . 481137) (-2236 . 481063) - (-2237 . 481011) (-2238 . 480850) (-2239 . 480776) (-2240 . 480101) - (-2241 . 479827) (-2242 . 479727) (-2243 . 479634) (-2244 . 479538) - (-2245 . 479435) (-2246 . 479291) (-2247 . 479219) (-2248 . 479167) - (-2249 . 478928) (-2250 . 478663) (-2251 . 478567) (-2252 . 478499) - (-2253 . 478471) (-2254 . 478276) (-2255 . 478175) (-2256 . 478106) - (-2257 . 477788) (-2258 . 477657) (-2259 . 477519) (-2260 . 477342) - (-2261 . 477282) (-2262 . 477141) (-2263 . 476998) (-2264 . 476808) - (-2265 . 476736) (-2266 . 476595) (-2267 . 476524) (-2268 . 476443) - (-2269 . 476386) (-2270 . 476192) (-2271 . 476160) (-2272 . 475985) - (-2273 . 475870) (-2274 . 475313) (-2275 . 475063) (-2276 . 474985) - (-2277 . 474863) (-2278 . 474786) (-2279 . 474202) (-2280 . 474129) - (-2281 . 473778) (-2282 . 473705) (-2283 . 473542) (-2284 . 472477) - (-2285 . 472419) (-2286 . 472269) (-2287 . 471821) (-2288 . 471505) - (-2289 . 471345) (-2290 . 471239) (-2291 . 470793) (-2292 . 470641) - (-2293 . 470542) (-2294 . 470335) (-2295 . 470240) (-2296 . 470144) - (-2297 . 469901) (-2298 . 469824) (-2299 . 469742) (-2300 . 469533) - (-2301 . 469418) (-2302 . 469313) (-2303 . 469257) (-2304 . 469039) - (-2305 . 468918) (-2306 . 468666) (-2307 . 468563) (-2308 . 468175) - (-2309 . 468059) (-2310 . 468006) (-2311 . 467789) (-2312 . 467549) - (-2313 . 467338) (-2314 . 467023) (-2315 . 466971) (-2316 . 466803) - (-2317 . 466694) (-2318 . 466522) (-2319 . 466124) (-2320 . 466087) - (-2321 . 465957) (-2322 . 465884) (-2323 . 465240) (-2324 . 465108) - (-2325 . 464980) (-2326 . 464773) (-2327 . 464660) (-2328 . 464559) - (-2329 . 464329) (-2330 . 464235) (-2331 . 464013) (-2332 . 463719) - (-2333 . 461751) (-2334 . 461673) (-2335 . 461527) (-2336 . 461375) - (-2337 . 461325) (-2338 . 461184) (-2339 . 461132) (-2340 . 460946) - (-2341 . 460845) (-2342 . 460648) (-2343 . 459841) (-2344 . 459777) - (-2345 . 459482) (-2346 . 459427) (-2347 . 459357) (-2348 . 459283) - (-2349 . 458797) (-2350 . 458763) (-2351 . 458692) (-2352 . 458475) - (-2353 . 457867) (-2354 . 457633) (-2355 . 457503) (-2356 . 457281) - (-2357 . 457171) (-2358 . 456892) (-2359 . 456779) (-2360 . 456606) - (-2361 . 456249) (-2362 . 455943) (-2363 . 455839) (-2364 . 455780) - (-2365 . 454914) (-2366 . 454862) (-2367 . 454640) (-2368 . 454500) - (-2369 . 454443) (-2370 . 454147) (-2371 . 454069) (-2372 . 453975) - (-2373 . 453903) (-2374 . 453346) (-2375 . 453191) (-2376 . 453114) - (-2377 . 452956) (-2378 . 452811) (-2379 . 452687) (-2380 . 452456) - (-2381 . 452223) (-2382 . 452143) (-2383 . 452115) (-2384 . 452059) - (-2385 . 452000) (-2386 . 451929) (-2387 . 451834) (-2388 . 451782) - (-2389 . 451466) (-2390 . 451076) (-2391 . 450740) (-2392 . 450143) - (-2393 . 450074) (-2394 . 449994) (-2395 . 449807) (-2396 . 449721) - (-2397 . 449693) (-2398 . 449596) (-2399 . 449494) (-2400 . 449268) - (-2401 . 448478) (-2402 . 448378) (-2403 . 448325) (-2404 . 448163) - (-2405 . 448019) (-2406 . 447953) (-2407 . 447882) (-2408 . 447826) - (-2409 . 447728) (-2410 . 447654) (-2411 . 447299) (-2412 . 447170) - (-2413 . 446942) (-2414 . 446811) (-2415 . 446555) (-2416 . 446467) - (-2417 . 446386) (-2418 . 446269) (-2419 . 446217) (-2420 . 446165) - (-2421 . 446063) (-2422 . 445990) (-2423 . 445940) (-2424 . 445887) - (-2425 . 445856) (-2426 . 445804) (-2427 . 445613) (-2428 . 445417) - (-2429 . 445283) (-2430 . 445002) (-2431 . 444859) (-2432 . 444762) - (-2433 . 444680) (-2434 . 444590) (-2435 . 444540) (-2436 . 444430) - (-2437 . 444322) (-2438 . 444065) (-2439 . 443852) (-2440 . 443799) - (-2441 . 443546) (-2442 . 443423) (-2443 . 443273) (-2444 . 442275) - (-2445 . 442178) (-2446 . 442039) (-2447 . 441945) (-2448 . 441626) - (-2449 . 441432) (-2450 . 441350) (-2451 . 441132) (-2452 . 440356) - (-2453 . 440256) (-2454 . 440204) (-2455 . 440077) (-2456 . 439979) - (-2457 . 439669) (-2458 . 439596) (-2459 . 439480) (-2460 . 439390) - (-2461 . 439285) (-2462 . 439100) (-2463 . 438956) (-2464 . 438902) - (-2465 . 438803) (-2466 . 438707) (-2467 . 435372) (-2468 . 435317) - (-2469 . 435017) (-2470 . 434807) (-2471 . 434733) (-2472 . 434389) - (-2473 . 434330) (-2474 . 434208) (-2475 . 434128) (-2476 . 434072) - (-2477 . 433923) (-2478 . 433850) (-2479 . 433576) (-2480 . 433475) - (-2481 . 433332) (-2482 . 433253) (-2483 . 432871) (-2484 . 432764) - (-2485 . 432676) (-2486 . 432614) (-2487 . 432586) (-2488 . 432383) - (-2489 . 432136) (-2490 . 432038) (-2491 . 431878) (-2492 . 431799) - (-2493 . 431667) (-2494 . 431588) (-2495 . 431490) (-2496 . 431375) - (-2497 . 430924) (-2498 . 430682) (-2499 . 430626) (-2500 . 430147) - (-2501 . 430059) (-2502 . 429930) (-2503 . 429876) (-2504 . 429764) - (-2505 . 429654) (-2506 . 429451) (-2507 . 429399) (-2508 . 429244) - (-2509 . 428975) (-2510 . 428639) (-2511 . 428493) (-2512 . 428378) - (-2513 . 428170) (-2514 . 428138) (-2515 . 428002) (-2516 . 427870) - (-2517 . 427806) (-2518 . 427601) (-2519 . 427464) (-2520 . 427323) - (-2521 . 427200) (-2522 . 427072) (-2523 . 426977) (-2524 . 426713) - (-2525 . 426570) (-2526 . 426448) (-2527 . 426283) (-2528 . 425962) - (-2529 . 425793) (-2530 . 425686) (-2531 . 425555) (-2532 . 425397) - (-2533 . 425039) (-2534 . 424944) (-2535 . 424885) (-2536 . 424836) - (-2537 . 424454) (-2538 . 424284) (-2539 . 424228) (-2540 . 424067) - (-2541 . 423908) (-2542 . 423853) (-2543 . 423698) (-2544 . 423627) - (-2545 . 423574) (-2546 . 423508) (-2547 . 423390) (-2548 . 423356) - (-2549 . 422837) (-2550 . 422735) (-2551 . 422580) (-2552 . 422381) - (-2553 . 422171) (-2554 . 422100) (-2555 . 422018) (-2556 . 421925) - (-2557 . 421610) (-2558 . 421301) (-2559 . 421155) (-2560 . 421052) - (-2561 . 419852) (-2562 . 419778) (-2563 . 419612) (-2564 . 419510) - (-2565 . 419414) (-2566 . 419328) (-2567 . 419189) (-2568 . 419130) - (-2569 . 419077) (-2570 . 419011) (-2571 . 418877) (-2572 . 418214) - (-2573 . 418163) (-2574 . 418089) (-2575 . 418015) (-2576 . 417800) - (-2577 . 417741) (-2578 . 417588) (-2579 . 417428) (-2580 . 417376) - (-2581 . 417220) (-2582 . 417088) (-2583 . 416448) (-2584 . 416242) - (-2585 . 415444) (-2586 . 415391) (-2587 . 415200) (-2588 . 415141) - (-2589 . 415109) (-2590 . 415050) (-2591 . 414897) (-2592 . 414699) - (-2593 . 414642) (-2594 . 414586) (-2595 . 414438) (-2596 . 414275) - (-2597 . 414161) (-2598 . 414110) (-2599 . 414015) (-2600 . 413127) - (-2601 . 412976) (-2602 . 412856) (-2603 . 412595) (-2604 . 412421) - (-2605 . 410691) (-2606 . 409940) (-2607 . 409883) (-2608 . 409749) - (-2609 . 409654) (-2610 . 409587) (-2611 . 409500) (-2612 . 409429) - (-2613 . 408133) (-2614 . 407854) (-2615 . 407676) (-2616 . 407627) - (-2617 . 407448) (-2618 . 407265) (-2619 . 407210) (-2620 . 407080) - (-2621 . 406941) (-2622 . 406871) (-2623 . 406599) (-2624 . 406470) - (-2625 . 406418) (-2626 . 406328) (-2627 . 406121) (-2628 . 406008) - (-2629 . 405504) (-2630 . 405401) (-2631 . 405265) (-2632 . 405045) - (-2633 . 404915) (-2634 . 404791) (-2635 . 404555) (-2636 . 404472) - (-2637 . 404389) (-2638 . 404231) (-2639 . 404053) (-2640 . 403407) - (-2641 . 403323) (-2642 . 403271) (-2643 . 403183) (-2644 . 402992) - (-2645 . 402713) (-2646 . 402490) (-2647 . 401857) (-2648 . 401804) - (-2649 . 400216) (-2650 . 400143) (-2651 . 399968) (-2652 . 399721) - (-2653 . 399563) (-2654 . 399048) (-2655 . 398953) (-2656 . 398852) - (-2657 . 398692) (-2658 . 398625) (-2659 . 398537) (-2660 . 398436) - (-2661 . 398326) (-2662 . 398260) (-2663 . 398127) (-2664 . 398046) - (-2665 . 397447) (-2666 . 396451) (-2667 . 396284) (-2668 . 396168) - (-2669 . 395757) (-2670 . 395705) (-2671 . 394738) (-2672 . 394686) - (-2673 . 394614) (-2674 . 394514) (-2675 . 394317) (-2676 . 394245) - (-2677 . 394141) (-2678 . 393950) (-2679 . 393732) (-2680 . 393473) - (-2681 . 393306) (-2682 . 393182) (-2683 . 393010) (-2684 . 392916) - (-2685 . 392826) (-2686 . 392452) (-2687 . 392357) (-2688 . 392304) - (-2689 . 392137) (-2690 . 392065) (-2691 . 392006) (-2692 . 391882) - (-2693 . 391734) (-2694 . 391596) (-2695 . 391541) (-2696 . 391428) - (-2697 . 391360) (-2698 . 391250) (-2699 . 390948) (-2700 . 390661) - (-2701 . 390174) (-2702 . 390043) (-2703 . 389969) (-2704 . 389824) - (-2705 . 389708) (-2706 . 389532) (-2707 . 389421) (-2708 . 389362) - (-2709 . 389313) (-2710 . 389138) (-2711 . 389037) (-2712 . 388942) - (-2713 . 388824) (-2714 . 388754) (-2715 . 388633) (-2716 . 388492) - (-2717 . 388440) (-2718 . 388381) (-2719 . 388135) (-2720 . 388042) - (-2721 . 388014) (-2722 . 387935) (-2723 . 387872) (-2724 . 387773) - (-2725 . 387628) (-2726 . 387389) (-2727 . 387007) (-2728 . 386938) - (-2729 . 386757) (-2730 . 386662) (-2731 . 386576) (-2732 . 386510) - (-2733 . 386436) (-2734 . 386257) (-2735 . 386208) (-2736 . 386111) - (-2737 . 386034) (-2738 . 385647) (-2739 . 385546) (-2740 . 385493) - (-2741 . 385113) (-2742 . 385047) (-2743 . 384895) (-2744 . 383467) - (-2745 . 383411) (-2746 . 383287) (-2747 . 383230) (-2748 . 383091) - (-2749 . 383006) (-2750 . 382803) (-2751 . 382605) (-2752 . 382533) - (-2753 . 382462) (-2754 . 381344) (-2755 . 381134) (-2756 . 381067) - (-2757 . 380937) (-2758 . 380887) (-2759 . 380834) (-2760 . 380633) - (-2761 . 380318) (-2762 . 380247) (-2763 . 380089) (-2764 . 379966) - (-2765 . 379865) (-2766 . 379515) (-2767 . 379182) (-2768 . 379126) - (-2769 . 378997) (-2770 . 378679) (-2771 . 378619) (-2772 . 378564) - (-2773 . 378414) (-2774 . 377966) (-2775 . 377585) (-2776 . 377156) - (-2777 . 377086) (-2778 . 377058) (-2779 . 376881) (-2780 . 376763) - (-2781 . 375615) (-2782 . 374905) (-2783 . 374808) (-2784 . 374679) - (-2785 . 374596) (-2786 . 374512) (-2787 . 374428) (-2788 . 374289) - (-2789 . 374236) (-2790 . 374084) (-2791 . 374018) (-2792 . 373968) - (-2793 . 373873) (-2794 . 373774) (-2795 . 373673) (-2796 . 373587) - (-2797 . 373391) (-2798 . 373335) (-2799 . 373136) (-2800 . 372991) - (-2801 . 372917) (-2802 . 372849) (-2803 . 372419) (-2804 . 372336) - (-2805 . 371791) (-2806 . 371654) (-2807 . 371552) (-2808 . 371449) - (-2809 . 371277) (-2810 . 371074) (-2811 . 371008) (-2812 . 370730) - (-2813 . 370661) (-2814 . 370496) (-2815 . 370369) (-2816 . 370211) - (-2817 . 370092) (-2818 . 370018) (-12 . 369846) (-2820 . 369815) - (-2821 . 369648) (-2822 . 368846) (-2823 . 368742) (-2824 . 368546) - (-2825 . 367704) (-2826 . 367608) (-2827 . 367481) (-2828 . 367106) - (-2829 . 366948) (-2830 . 366849) (-2831 . 366767) (-2832 . 366695) - (-2833 . 366623) (-2834 . 366112) (-2835 . 365718) (-2836 . 365547) - (-2837 . 365492) (-2838 . 365415) (-2839 . 364988) (-2840 . 364860) - (-2841 . 364783) (-2842 . 364641) (-2843 . 364545) (-2844 . 364169) - (-2845 . 363877) (-2846 . 363617) (-2847 . 363503) (-2848 . 363395) - (-2849 . 363282) (-2850 . 362940) (-2851 . 362797) (-2852 . 362329) - (-2853 . 361762) (-2854 . 361663) (-2855 . 361231) (-2856 . 360727) - (-2857 . 360614) (-2858 . 360562) (-2859 . 360512) (-2860 . 360441) - (-2861 . 360311) (-2862 . 360228) (-2863 . 360121) (-2864 . 360069) - (-2865 . 359968) (-2866 . 359876) (-2867 . 359589) (-2868 . 359522) - (-2869 . 359470) (-2870 . 359418) (-2871 . 359318) (-2872 . 358821) - (-2873 . 358569) (-2874 . 358375) (-2875 . 357543) (-2876 . 357445) - (-2877 . 357327) (-2878 . 357239) (-2879 . 357087) (-2880 . 356752) - (-2881 . 356651) (-2882 . 356413) (-2883 . 356336) (-2884 . 356284) - (-2885 . 355817) (-2886 . 355699) (-2887 . 355584) (-2888 . 355466) - (-2889 . 355371) (-2890 . 355245) (-2891 . 355193) (-2892 . 354816) - (-2893 . 354739) (-2894 . 354265) (-2895 . 354236) (-2896 . 354048) - (-2897 . 353406) (-2898 . 353346) (-2899 . 353127) (-2900 . 353039) - (-2901 . 352971) (-2902 . 352863) (-2903 . 352790) (-2904 . 352713) - (-2905 . 352629) (-2906 . 352221) (-2907 . 352014) (-2908 . 351787) - (-2909 . 351438) (-2910 . 351359) (-2911 . 351297) (-2912 . 351201) - (* . 346707) (-2914 . 346648) (-2915 . 346579) (-2916 . 346476) - (-2917 . 346339) (-2918 . 346205) (-2919 . 346084) (-2920 . 345852) - (-2921 . 345711) (-2922 . 345598) (-2923 . 345171) (-2924 . 345055) - (-2925 . 344875) (-2926 . 344625) (-2927 . 344554) (-2928 . 344499) - (-2929 . 344303) (-2930 . 344158) (-2931 . 344051) (-2932 . 343891) - (-2933 . 343818) (-2934 . 343543) (-2935 . 343159) (-2936 . 343030) - (-2937 . 342962) (-2938 . 342612) (-2939 . 342288) (-2940 . 342085) - (-2941 . 341999) (-2942 . 341892) (-2943 . 341795) (-2944 . 341175) - (-2945 . 341073) (-2946 . 340976) (-2947 . 340704) (-2948 . 340604) - (-2949 . 340523) (-2950 . 340301) (-2951 . 340157) (-2952 . 340072) - (-2953 . 339947) (-2954 . 339776) (-2955 . 339521) (-2956 . 338778) - (-2957 . 338681) (-2958 . 338632) (-2959 . 338451) (-2960 . 338293) - (-2961 . 338242) (-2962 . 338189) (-2963 . 338106) (-2964 . 338011) - (-2965 . 337977) (-2966 . 337833) (-2967 . 337763) (-2968 . 337558) - (-2969 . 337327) (-2970 . 337091) (-2971 . 337020) (-2972 . 336943) - (-2973 . 336569) (-2974 . 336450) (-2975 . 336398) (-2976 . 335836) - (-2977 . 335752) (-2978 . 335185) (-2979 . 334933) (-2980 . 334774) - (-2981 . 334721) (-2982 . 334558) (-2983 . 334470) (-2984 . 334383) - (-2985 . 334121) (-2986 . 333578) (-2987 . 333154) (-2988 . 333048) - (-2989 . 332974) (-2990 . 332922) (-2991 . 332866) (-2992 . 332700) - (-2993 . 331158) (-2994 . 330297) (-2995 . 330138) (-2996 . 330014) - (-2997 . 329895) (-2998 . 329861) (-2999 . 329772) (-3000 . 329396) - (-3001 . 329343) (-3002 . 329154) (-3003 . 329023) (-3004 . 328964) - (-3005 . 328739) (-3006 . 328506) (-3007 . 328419) (-3008 . 328237) - (-3009 . 328150) (-3010 . 328026) (-3011 . 327812) (-3012 . 327278) - (-3013 . 326884) (-3014 . 326769) (-3015 . 326653) (-3016 . 326567) - (-3017 . 326388) (-3018 . 326021) (-3019 . 325962) (-3020 . 325328) - (-3021 . 325300) (-3022 . 325162) (-3023 . 324962) (-3024 . 324360) - (-3025 . 324236) (-3026 . 324113) (-3027 . 324079) (-3028 . 324027) - (-3029 . 323996) (-3030 . 323709) (-3031 . 323626) (-3032 . 323122) - (-3033 . 322929) (-3034 . 322877) (-3035 . 322747) (-3036 . 322589) - (-3037 . 322335) (-3038 . 322249) (-3039 . 322197) (-3040 . 321810) - (-3041 . 320624) (-3042 . 320516) (-3043 . 320409) (-3044 . 320375) - (-3045 . 320308) (-3046 . 320186) (-3047 . 320023) (-3048 . 319970) - (-3049 . 319896) (-3050 . 319525) (-3051 . 319463) (-3052 . 319334) - (-3053 . 318152) (-3054 . 318057) (-3055 . 317861) (-3056 . 317677) - (-3057 . 317583) (-3058 . 317324) (-3059 . 317200) (-3060 . 316907) - (-3061 . 316808) (-3062 . 316706) (-3063 . 316672) (-3064 . 316584) - (-3065 . 314377) (-3066 . 314279) (-3067 . 314183) (-3068 . 314050) - (-3069 . 313714) (-3070 . 313643) (-3071 . 313590) (-3072 . 313244) - (-3073 . 313171) (-3074 . 313002) (-3075 . 312968) (-3076 . 312898) - (-3077 . 312794) (-3078 . 312742) (-3079 . 312570) (-3080 . 312442) - (-3081 . 312284) (-3082 . 311969) (-3083 . 311666) (-3084 . 311553) - (-3085 . 311396) (-3086 . 311118) (-3087 . 309778) (-3088 . 309610) - (-3089 . 308987) (-3090 . 308900) (-3091 . 308728) (-3092 . 308546) - (-3093 . 308421) (-3094 . 308339) (-3095 . 307523) (-3096 . 307452) - (-3097 . 307374) (-3098 . 307127) (-3099 . 306894) (-3100 . 306728) - (-3101 . 306540) (-3102 . 306434) (-3103 . 306262) (-3104 . 306176) - (-3105 . 306042) (-3106 . 305869) (-3107 . 305817) (-3108 . 305740) - (-3109 . 305612) (-3110 . 305221) (-3111 . 305133) (-3112 . 304944) - (-3113 . 304498) (-3114 . 304326) (-3115 . 304255) (-3116 . 304078) - (-3117 . 304022) (-3118 . 303876) (-3119 . 303732) (-3120 . 303658) - (-3121 . 303599) (-3122 . 303498) (-3123 . 303391) (-3124 . 303338) - (-3125 . 302985) (-3126 . 302917) (-3127 . 302314) (-3128 . 302151) - (-3129 . 301820) (-3130 . 301433) (-3131 . 301262) (-3132 . 300679) - (-3133 . 300614) (-3134 . 300555) (-3135 . 300233) (-3136 . 299984) - (-3137 . 299811) (-3138 . 299403) (-3139 . 299061) (-3140 . 298988) - (-3141 . 298915) (-3142 . 298837) (-3143 . 298612) (-3144 . 298483) - (-3145 . 298382) (-3146 . 298298) (-3147 . 298132) (-3148 . 297919) - (-3149 . 297811) (-3150 . 297667) (-3151 . 297532) (-3152 . 297332) - (-3153 . 297211) (-3154 . 297084) (-3155 . 297011) (-3156 . 296959) - (-3157 . 296801) (-3158 . 296704) (-3159 . 295821) (-3160 . 295489) - (-3161 . 295421) (-3162 . 295366) (-3163 . 294933) (-3164 . 294198) - (-3165 . 294085) (-3166 . 293998) (-3167 . 293927) (-3168 . 293814) - (-3169 . 293336) (-3170 . 293178) (-3171 . 293113) (-3172 . 293012) - (-3173 . 292984) (-3174 . 292755) (-3175 . 292212) (-3176 . 291977) - (-3177 . 291879) (-3178 . 291795) (-3179 . 291483) (-3180 . 291256) - (-3181 . 291200) (-3182 . 291036) (-3183 . 289738) (-3184 . 288465) - (-3185 . 288399) (-3186 . 288303) (-3187 . 288218) (-3188 . 288008) - (-3189 . 287931) (-3190 . 287828) (-3191 . 287601) (-3192 . 287455) - (-3193 . 287296) (-3194 . 287207) (-3195 . 287111) (-3196 . 286901) - (-3197 . 286850) (-3198 . 286368) (-3199 . 286315) (-3200 . 286249) - (-3201 . 285995) (-3202 . 285911) (-3203 . 285830) (-3204 . 285442) - (-3205 . 285362) (-3206 . 284978) (-3207 . 284643) (-3208 . 284438) - (-3209 . 284370) (-3210 . 284283) (-3211 . 284175) (-3212 . 284122) - (-3213 . 283963) (-3214 . 283839) (-3215 . 283738) (-3216 . 283560) - (-3217 . 283506) (-3218 . 283426) (-3219 . 283343) (-3220 . 283125) - (-3221 . 283032) (-3222 . 283003) (-3223 . 282891) (-3224 . 282773) - (-3225 . 282666) (-3226 . 282589) (-3227 . 282213) (-3228 . 281908) - (-3229 . 281786) (-3230 . 281731) (-3231 . 281668) (-3232 . 281510) - (-3233 . 281397) (-3234 . 281251) (-3235 . 281217) (-3236 . 281128) - (-3237 . 281075) (-3238 . 281044) (-3239 . 280776) (-3240 . 280558) - (-3241 . 280453) (-3242 . 280215) (-3243 . 280144) (-3244 . 280067) - (-3245 . 279979) (-3246 . 279864) (-3247 . 279812) (-3248 . 279709) - (-3249 . 279490) (-3250 . 279383) (-3251 . 279197) (-3252 . 279051) - (-3253 . 278804) (-3254 . 276548) (-3255 . 276418) (-3256 . 276288) - (-3257 . 275822) (-3258 . 275685) (-3259 . 275298) (-3260 . 275037) - (-3261 . 273856) (-3262 . 273371) (-3263 . 273153) (-3264 . 272618) - (-3265 . 272127) (-3266 . 272007) (-3267 . 271913) (-3268 . 271524) - (-3269 . 271423) (-3270 . 271301) (-3271 . 271218) (-3272 . 271165) - (-3273 . 270997) (-3274 . 270472) (-3275 . 270356) (-3276 . 270258) - (-3277 . 270188) (-3278 . 270063) (-3279 . 269961) (-3280 . 269826) - (-3281 . 269348) (-3282 . 269221) (-3283 . 269165) (-3284 . 268992) - (-3285 . 268649) (-3286 . 268426) (-3287 . 268326) (-3288 . 268051) - (-3289 . 267605) (-3290 . 267295) (-3291 . 267242) (-3292 . 267172) - (-3293 . 267074) (-3294 . 266899) (-3295 . 266607) (-3296 . 266503) - (-3297 . 266139) (-3298 . 265601) (-3299 . 265309) (-3300 . 265232) - (-3301 . 265128) (-3302 . 264929) (-3303 . 264825) (-3304 . 264765) - (-3305 . 264713) (-3306 . 264585) (-3307 . 264530) (-3308 . 264196) - (-3309 . 263984) (-3310 . 263587) (-3311 . 263535) (-3312 . 263484) - (-3313 . 263447) (-3314 . 263348) (-3315 . 263227) (-3316 . 263083) - (-3317 . 263031) (-3318 . 262921) (-3319 . 262645) (-3320 . 262540) - (-3321 . 262372) (-3322 . 262343) (-3323 . 262233) (-3324 . 262196) - (-3325 . 262077) (-3326 . 261919) (-3327 . 261850) (-3328 . 261755) - (-3329 . 261612) (-3330 . 261517) (-3331 . 261464) (-3332 . 261122) - (-3333 . 261007) (-3334 . 260735) (-3335 . 260675) (-3336 . 260580) - (-3337 . 260461) (-3338 . 260150) (-3339 . 260067) (-3340 . 259965) - (-3341 . 259802) (-3342 . 259657) (-3343 . 259489) (-3344 . 259408) - (-3345 . 259331) (-3346 . 259218) (-3347 . 259165) (-3348 . 259084) - (-3349 . 259004) (-3350 . 258909) (-3351 . 258382) (-3352 . 258095) - (-3353 . 257964) (-3354 . 257683) (-3355 . 257599) (-3356 . 257419) - (-3357 . 257234) (-3358 . 257146) (-3359 . 257045) (-3360 . 256994) - (-3361 . 256721) (-3362 . 256606) (-3363 . 256453) (-3364 . 256335) - (-3365 . 256147) (-3366 . 256050) (-3367 . 255807) (-3368 . 255130) - (-3369 . 255046) (-3370 . 254962) (-3371 . 254874) (-3372 . 254754) - (-3373 . 254335) (-3374 . 254156) (-3375 . 253860) (-3376 . 253808) - (-3377 . 253530) (-3378 . 252666) (-3379 . 252448) (-3380 . 252364) - (-3381 . 252256) (-3382 . 252004) (-3383 . 251976) (-3384 . 251873) - (-3385 . 251812) (-3386 . 251717) (-3387 . 251621) (-3388 . 251501) - (-3389 . 251473) (-3390 . 251315) (-3391 . 250901) (-3392 . 250786) - (-3393 . 250679) (-3394 . 250577) (-3395 . 250461) (-3396 . 250377) - (-3397 . 250308) (-3398 . 250086) (-3399 . 249750) (-3400 . 249613) - (-3401 . 249495) (-3402 . 249199) (-3403 . 249001) (-3404 . 248948) - (-3405 . 248856) (-3406 . 246441) (-3407 . 246380) (-3408 . 246200) - (-3409 . 245670) (-3410 . 245617) (-3411 . 245426) (-3412 . 245291) - (-3413 . 245066) (-3414 . 244988) (-3415 . 244883) (-3416 . 244319) - (-3417 . 244139) (-3418 . 243891) (-3419 . 243825) (-3420 . 243748) - (-3421 . 243670) (-3422 . 243611) (-3423 . 243561) (-3424 . 243356) - (-3425 . 243254) (-3426 . 243134) (-3427 . 242707) (-3428 . 242527) - (-3429 . 242373) (-3430 . 242268) (-3431 . 242216) (-3432 . 242086) - (-3433 . 242012) (-3434 . 241426) (-3435 . 240875) (-3436 . 240676) - (-3437 . 240595) (-3438 . 240429) (-3439 . 240334) (-3440 . 240205) - (-3441 . 239594) (-3442 . 238754) (-3443 . 238683) (-3444 . 238649) - (-3445 . 238523) (-3446 . 238435) (-3447 . 238218) (-3448 . 238080) - (-3449 . 237976) (-3450 . 237738) (-3451 . 237559) (-3452 . 237493) - (-3453 . 236825) (-3454 . 236773) (-3455 . 236624) (-3456 . 236569) - (-3457 . 236518) (-3458 . 236451) (-3459 . 236142) (-3460 . 236042) - (-3461 . 235959) (-3462 . 235885) (-3463 . 235667) (-3464 . 235595) - (-3465 . 235524) (-3466 . 235442) (-3467 . 235137) (-3468 . 235052) - (-3469 . 234958) (-3470 . 234858) (-3471 . 234792) (-3472 . 234400) - (-3473 . 234345) (-3474 . 234317) (-3475 . 232740) (-3476 . 232672) - (-3477 . 232506) (-3478 . 232439) (-3479 . 232098) (-3480 . 231737) - (-3481 . 231612) (-3482 . 231499) (-3483 . 231362) (-3484 . 231211) - (-3485 . 231079) (-3486 . 230639) (-3487 . 230586) (-3488 . 230491) - (-3489 . 230413) (-3490 . 230298) (-3491 . 230247) (-3492 . 229918) - (-3493 . 229795) (-3494 . 229653) (-3495 . 229272) (-3496 . 229025) - (-3497 . 228826) (-3498 . 228723) (-3499 . 228544) (-3500 . 228449) - (-3501 . 228275) (-3502 . 228175) (-3503 . 227666) (-3504 . 227603) - (-3505 . 227458) (-3506 . 227314) (-3507 . 227286) (-3508 . 227179) - (-3509 . 226758) (-3510 . 226605) (-3511 . 226449) (-3512 . 226348) - (-3513 . 226150) (-3514 . 225945) (-3515 . 225805) (-3516 . 225755) - (-3517 . 225683) (-3518 . 224919) (-3519 . 224866) (-3520 . 224752) - (-3521 . 224652) (-3522 . 224559) (-3523 . 224411) (-3524 . 224249) - (-3525 . 224163) (-3526 . 224057) (-3527 . 223930) (-3528 . 223744) - (-3529 . 223682) (-3530 . 223650) (-3531 . 223534) (-3532 . 223419) - (-3533 . 223303) (-3534 . 223204) (-3535 . 223111) (-3536 . 223059) - (-3537 . 222841) (-3538 . 222782) (-3539 . 222564) (-3540 . 222318) - (-3541 . 222193) (-3542 . 222045) (-3543 . 221891) (-3544 . 221664) - (-3545 . 221312) (-3546 . 221239) (-3547 . 221155) (-3548 . 220881) - (-3549 . 220721) (-3550 . 220644) (-3551 . 220444) (-3552 . 220093) - (-3553 . 219936) (-3554 . 219862) (-3555 . 219759) (-3556 . 219687) - (-3557 . 219469) (-3558 . 219217) (-3559 . 219094) (-3560 . 219020) - (-3561 . 216858) (-3562 . 216756) (-3563 . 216683) (-3564 . 216364) - (-3565 . 216161) (-3566 . 216044) (-3567 . 215988) (-3568 . 215890) - (-3569 . 215294) (-3570 . 215232) (-3571 . 215148) (-3572 . 215086) - (-3573 . 214998) (-3574 . 214856) (-3575 . 214800) (-3576 . 214747) - (-3577 . 214490) (-3578 . 214279) (-3579 . 213960) (-3580 . 213793) - (-3581 . 213697) (-3582 . 213614) (-3583 . 213582) (-3584 . 213527) - (-3585 . 213463) (-3586 . 213397) (-3587 . 213345) (-3588 . 213317) - (-3589 . 213023) (-3590 . 212928) (-3591 . 212851) (-3592 . 212684) - (-3593 . 212531) (-3594 . 212478) (-3595 . 212422) (-3596 . 212323) - (-3597 . 212207) (-3598 . 211848) (-3599 . 211366) (-3600 . 211317) - (-3601 . 211137) (-3602 . 210984) (-3603 . 210898) (-3604 . 210777) - (-3605 . 210098) (-3606 . 209945) (-3607 . 209850) (-3608 . 209719) - (-3609 . 209651) (-3610 . 209619) (-3611 . 209460) (-3612 . 209372) - (-3613 . 209286) (-3614 . 209233) (-3615 . 209053) (-3616 . 209025) - (-3617 . 208893) (-3618 . 208723) (-3619 . 208653) (-3620 . 207391) - (-3621 . 207276) (-3622 . 207101) (-3623 . 207042) (-3624 . 206761) - (-3625 . 204629) (-3626 . 204546) (-3627 . 204494) (-3628 . 203818) - (-3629 . 203715) (-3630 . 203560) (-3631 . 203441) (-3632 . 203344) - (-3633 . 203245) (-3634 . 203151) (-3635 . 203066) (-3636 . 200952) - (-3637 . 200882) (-3638 . 200824) (-3639 . 200772) (-3640 . 200720) - (-3641 . 200547) (-3642 . 200114) (-3643 . 199967) (-3644 . 199901) - (-3645 . 199806) (-3646 . 199516) (-3647 . 199454) (-3648 . 199388) - (-3649 . 199317) (-3650 . 199222) (-3651 . 197996) (-3652 . 197293) - (-3653 . 197105) (-3654 . 196849) (-3655 . 196569) (-3656 . 196351) - (-3657 . 196225) (-3658 . 196159) (-3659 . 195064) (-3660 . 194943) - (-3661 . 194849) (-3662 . 194797) (-3663 . 194724) (-3664 . 194590) - (-3665 . 194488) (-3666 . 194378) (-3667 . 194083) (-3668 . 193829) - (-3669 . 193685) (-3670 . 193632) (-3671 . 193604) (-3672 . 193544) - (-3673 . 193464) (-3674 . 193433) (-3675 . 193376) (-3676 . 193302) - (-3677 . 193181) (-3678 . 193079) (-3679 . 193007) (-3680 . 192973) - (-3681 . 192829) (-3682 . 192615) (-3683 . 191213) (-3684 . 191021) - (-3685 . 190889) (-3686 . 190616) (-3687 . 190485) (-3688 . 190306) - (-3689 . 190147) (-3690 . 189922) (-3691 . 189714) (-3692 . 189529) - (-3693 . 189476) (-3694 . 189393) (-3695 . 189274) (-3696 . 189170) - (-3697 . 189092) (-3698 . 188963) (-3699 . 188853) (-3700 . 188724) - (-3701 . 188647) (-3702 . 188540) (-3703 . 188429) (-3704 . 188012) - (-3705 . 187859) (-3706 . 187341) (-3707 . 187207) (-3708 . 186471) - (-3709 . 186370) (-3710 . 186068) (-3711 . 185865) (-3712 . 185505) - (-3713 . 185112) (-3714 . 184502) (-3715 . 184398) (-3716 . 184304) - (-3717 . 183816) (-3718 . 183761) (-3719 . 178247) (-3720 . 178218) - (-3721 . 177588) (-3722 . 177500) (-3723 . 177405) (-3724 . 177227) - (-3725 . 177177) (-3726 . 177071) (-3727 . 176911) (-3728 . 176713) - (-3729 . 176623) (-3730 . 176473) (-3731 . 176080) (-3732 . 176028) - (-3733 . 175915) (-3734 . 175791) (-3735 . 175700) (-3736 . 175622) - (-3737 . 175524) (-3738 . 175084) (-3739 . 175011) (-3740 . 174738) - (-3741 . 174580) (-3742 . 174139) (-3743 . 173944) (-3744 . 173647) - (-3745 . 173473) (-3746 . 173272) (-3747 . 172698) (-3748 . 172638) - (-3749 . 172566) (-3750 . 172348) (-3751 . 172202) (-3752 . 171949) - (-3753 . 171614) (-3754 . 171422) (-3755 . 171394) (-3756 . 171279) - (-3757 . 171185) (-3758 . 171036) (-3759 . 170876) (-3760 . 170413) - (-3761 . 170327) (-3762 . 170258) (-3763 . 170230) (-3764 . 170150) - (-3765 . 170054) (-3766 . 169829) (-3767 . 169758) (-3768 . 169614) - (-3769 . 169458) (-3770 . 169328) (-3771 . 169258) (-3772 . 169079) - (-9 . 169051) (-3774 . 168950) (-3775 . 168882) (-3776 . 168796) - (-3777 . 168615) (-3778 . 168531) (-3779 . 168373) (-3780 . 168221) - (-3781 . 168001) (-3782 . 167694) (-3783 . 149119) (-3784 . 148946) - (-8 . 148918) (-3786 . 148823) (-3787 . 148345) (-3788 . 148130) - (-3789 . 148014) (-3790 . 147910) (-3791 . 147708) (-3792 . 147610) - (-3793 . 147538) (-3794 . 147447) (-3795 . 146266) (-3796 . 143445) - (-7 . 143417) (-3798 . 143188) (-3799 . 143046) (-3800 . 142941) - (-3801 . 142652) (-3802 . 142533) (-3803 . 142417) (-3804 . 142362) - (-3805 . 142219) (-3806 . 142046) (-3807 . 141750) (-3808 . 141518) - (-3809 . 141407) (-3810 . 141024) (-3811 . 140739) (-3812 . 140656) - (-3813 . 140491) (-3814 . 140397) (-3815 . 140269) (-3816 . 139956) - (-3817 . 139863) (-3818 . 139644) (-3819 . 139566) (-3820 . 138993) - (-3821 . 138900) (-3822 . 138650) (-3823 . 138573) (-3824 . 138381) - (-3825 . 138352) (-3826 . 138093) (-3827 . 138016) (-3828 . 137928) - (-3829 . 137794) (-3830 . 136924) (-3831 . 136639) (-3832 . 136393) - (-3833 . 136293) (-3834 . 136123) (-3835 . 136042) (-3836 . 135986) - (-3837 . 135560) (-3838 . 135442) (-3839 . 135345) (-3840 . 133716) - (-3841 . 133638) (-3842 . 133553) (-3843 . 133420) (-3844 . 133133) - (-3845 . 133053) (-3846 . 132960) (-3847 . 132881) (-3848 . 132666) - (-3849 . 132547) (-3850 . 132495) (-3851 . 131636) (-3852 . 131377) - (-3853 . 131222) (-3854 . 131127) (-3855 . 130971) (-3856 . 130837) - (-3857 . 130177) (-3858 . 130145) (-3859 . 130089) (-3860 . 129843) - (-3861 . 129649) (-3862 . 129596) (-3863 . 128300) (-3864 . 127718) - (-3865 . 127583) (-3866 . 127424) (-3867 . 126222) (-3868 . 126143) - (-3869 . 126082) (-3870 . 126027) (-3871 . 125818) (-3872 . 125766) - (-3873 . 125587) (-3874 . 124389) (-3875 . 124246) (-3876 . 124056) - (-3877 . 123955) (-3878 . 123872) (-3879 . 123731) (-3880 . 123471) - (-3881 . 123394) (-3882 . 123323) (-3883 . 123257) (-3884 . 123198) - (-3885 . 123131) (-3886 . 122913) (-3887 . 122860) (-3888 . 122695) - (-3889 . 122667) (-3890 . 122527) (-3891 . 122431) (-3892 . 122400) - (-3893 . 122305) (-3894 . 122152) (-3895 . 122066) (-3896 . 121738) - (-3897 . 121622) (-3898 . 121594) (-3899 . 121414) (-3900 . 121364) - (-3901 . 121285) (-3902 . 121227) (-3903 . 120891) (-3904 . 120854) - (-3905 . 120558) (-3906 . 120336) (-3907 . 119935) (-3908 . 119780) - (-3909 . 119590) (-3910 . 119231) (-3911 . 119145) (-3912 . 118408) - (-3913 . 118199) (-3914 . 118105) (-3915 . 117732) (-3916 . 115966) - (-3917 . 115604) (-3918 . 115543) (-3919 . 115433) (-3920 . 115381) - (-3921 . 115325) (-3922 . 115251) (-3923 . 113947) (-3924 . 113560) - (-3925 . 113415) (-3926 . 113249) (-3927 . 113123) (-3928 . 112994) - (-3929 . 112390) (-3930 . 111677) (-3931 . 111540) (-3932 . 111400) - (-3933 . 111348) (-3934 . 111061) (-3935 . 111006) (-3936 . 110708) - (-3937 . 110628) (-3938 . 110545) (-3939 . 110479) (-3940 . 110152) - (-3941 . 110100) (-3942 . 109992) (-3943 . 109881) (-3944 . 109829) - (-3945 . 109659) (-3946 . 109167) (-3947 . 108743) (-3948 . 108625) - (-3949 . 107402) (-3950 . 106814) (-3951 . 106716) (-3952 . 106598) - (-3953 . 106455) (-3954 . 106318) (-3955 . 106226) (-3956 . 106126) - (-3957 . 106007) (-3958 . 105869) (-3959 . 105774) (-3960 . 105599) - (-3961 . 105459) (-3962 . 105181) (-3963 . 105067) (-3964 . 105014) - (-3965 . 104934) (-3966 . 104881) (-3967 . 104791) (-3968 . 102934) - (-3969 . 102694) (-3970 . 102530) (-3971 . 101891) (-3972 . 101813) - (-3973 . 101688) (-3974 . 101660) (-3975 . 101632) (-3976 . 101516) - (-3977 . 101275) (-3978 . 101064) (-3979 . 100845) (-3980 . 100817) - (-3981 . 100434) (-3982 . 100360) (-3983 . 100067) (-3984 . 99913) - (-3985 . 99836) (-3986 . 99586) (-3987 . 99443) (-3988 . 99257) - (-3989 . 99155) (-3990 . 99058) (-3991 . 99027) (-3992 . 98864) - (-3993 . 98763) (-3994 . 98726) (-3995 . 98375) (-3996 . 98308) - (-3997 . 97886) (-3998 . 97837) (-3999 . 97365) (-4000 . 96844) - (-4001 . 96743) (-4002 . 96685) (-4003 . 96611) (-4004 . 96538) - (-4005 . 96432) (-4006 . 96053) (-4007 . 95965) (-4008 . 95835) - (-4009 . 95758) (-4010 . 95602) (-4011 . 95428) (-4012 . 95236) - (-4013 . 95184) (-4014 . 94792) (-4015 . 94662) (-4016 . 94471) - (-4017 . 93938) (-4018 . 92978) (-4019 . 92904) (-4020 . 92792) - (-4021 . 92704) (-4022 . 91634) (-4023 . 91491) (-4024 . 91359) - (-4025 . 91243) (-4026 . 91209) (-4027 . 90959) (-4028 . 90399) - (-4029 . 90311) (-4030 . 90103) (-4031 . 90037) (-4032 . 89895) - (-4033 . 89790) (-4034 . 89710) (-4035 . 89591) (-4036 . 89456) - (-4037 . 89370) (-4038 . 89317) (-4039 . 89261) (-4040 . 88939) - (-4041 . 88857) (-4042 . 88607) (-4043 . 88441) (-4044 . 88211) - (-4045 . 87972) (-4046 . 87827) (-4047 . 87775) (-4048 . 87701) - (-4049 . 87512) (-4050 . 87196) (-4051 . 87063) (-4052 . 86821) - (-4053 . 86712) (-4054 . 86557) (-4055 . 85529) (-4056 . 85406) - (-4057 . 85327) (-4058 . 85268) (-4059 . 84923) (-4060 . 84805) - (-4061 . 84702) (-4062 . 84623) (-4063 . 84570) (-4064 . 84488) - (-4065 . 84410) (-4066 . 83537) (-4067 . 82235) (-4068 . 81955) - (-4069 . 81873) (-4070 . 81715) (-4071 . 81637) (-4072 . 81565) - (-4073 . 81511) (-4074 . 81413) (-4075 . 80818) (-4076 . 80703) - (-4077 . 80632) (-4078 . 80384) (-4079 . 80273) (-4080 . 80220) - (-4081 . 80050) (-4082 . 79680) (-4083 . 79618) (-4084 . 79525) - (-4085 . 78824) (-4086 . 78756) (-4087 . 78641) (-4088 . 78542) - (-4089 . 78349) (-4090 . 77990) (-4091 . 77836) (-4092 . 77704) - (-4093 . 77543) (-4094 . 77473) (-4095 . 77215) (-4096 . 77181) - (-4097 . 77096) (-4098 . 76652) (-4099 . 76463) (-4100 . 76356) - (-4101 . 76257) (-4102 . 76117) (-4103 . 75522) (-4104 . 74847) - (-4105 . 74795) (-4106 . 74667) (-4107 . 74505) (-4108 . 74411) - (-4109 . 74328) (-4110 . 74192) (-4111 . 74135) (-4112 . 74052) - (-4113 . 74000) (-4114 . 73325) (-4115 . 73268) (-4116 . 72304) - (-4117 . 72250) (-4118 . 72132) (-4119 . 71724) (-4120 . 71537) - (-4121 . 71400) (-4122 . 71334) (-4123 . 71265) (-4124 . 70702) - (-4125 . 70045) (-4126 . 69992) (-4127 . 69794) (-4128 . 69679) - (-4129 . 69584) (-4130 . 69471) (-4131 . 69345) (-4132 . 69099) - (-4133 . 68946) (-4134 . 68383) (-4135 . 68297) (-4136 . 68089) - (-4137 . 67271) (-4138 . 66819) (-4139 . 66790) (-4140 . 66684) - (-4141 . 66612) (-4142 . 66431) (-4143 . 66350) (-4144 . 65787) - (-4145 . 65594) (-4146 . 65511) (-4147 . 65184) (-4148 . 65128) - (-4149 . 64453) (-4150 . 64182) (-4151 . 63816) (-4152 . 63679) - (-4153 . 63551) (-4154 . 63501) (-4155 . 62939) (-4156 . 62803) - (-4157 . 62719) (-4158 . 62566) (-4159 . 62472) (-4160 . 62205) - (-4161 . 61613) (-4162 . 61509) (-4163 . 61194) (-4164 . 60964) - (-4165 . 60868) (-4166 . 60306) (-4167 . 60193) (-4168 . 60066) - (-4169 . 59802) (-4170 . 59291) (-4171 . 59168) (-4172 . 59065) - (-4173 . 59012) (-4174 . 58927) (-4175 . 58883) (-4176 . 58787) - (-4177 . 58225) (-4178 . 58143) (-4179 . 57972) (-4180 . 57829) - (-4181 . 57732) (-4182 . 56978) (-4183 . 56895) (-4184 . 56779) - (-4185 . 56385) (-4186 . 56308) (-4187 . 56063) (-4188 . 55501) - (-4189 . 55435) (-4190 . 55314) (-4191 . 55100) (-4192 . 54881) - (-4193 . 54690) (-4194 . 54605) (-4195 . 54501) (-4196 . 54357) - (-4197 . 54177) (-4198 . 53615) (-4199 . 53520) (-4200 . 53383) - (-4201 . 53119) (-4202 . 53024) (-4203 . 52872) (-4204 . 52159) - (-4205 . 46821) (-4206 . 46550) (-4207 . 46378) (-4208 . 46209) - (-4209 . 46113) (-4210 . 45929) (-4211 . 45828) (-4212 . 45601) - (-4213 . 45498) (-4214 . 45373) (-4215 . 44995) (-4216 . 44943) - (-4217 . 44809) (-4218 . 44655) (-4219 . 44590) (-4220 . 44541) - (-4221 . 44462) (-4222 . 44428) (-4223 . 44358) (-4224 . 44190) - (-4225 . 44128) (-4226 . 43901) (-4227 . 43797) (-4228 . 43742) - (-4229 . 43326) (-4230 . 43271) (-4231 . 43091) (-4232 . 42963) - (-4233 . 42897) (-4234 . 42841) (-4235 . 42609) (-4236 . 42370) - (-4237 . 42342) (-4238 . 42120) (-4239 . 41869) (-4240 . 41716) - (-4241 . 41614) (-4242 . 41511) (-4243 . 41459) (-4244 . 41355) - (-4245 . 41299) (-4246 . 41271) (-4247 . 41204) (-4248 . 41131) - (-4249 . 41082) (-4250 . 41008) (-4251 . 40959) (-4252 . 40643) - (-4253 . 40527) (-4254 . 40325) (-4255 . 40137) (-4256 . 40035) - (-4257 . 39962) (-4258 . 39667) (-4259 . 39593) (-4260 . 39387) - (-4261 . 39269) (-4262 . 38979) (-4263 . 38635) (-4264 . 37669) - (-4265 . 36899) (-4266 . 36020) (-4267 . 35988) (-4268 . 35688) - (-4269 . 35605) (-4270 . 35524) (-4271 . 35404) (-4272 . 35347) - (-4273 . 35154) (-4274 . 35102) (-4275 . 35016) (-4276 . 34860) - (-4277 . 34772) (-4278 . 34645) (-4279 . 34522) (-4280 . 34206) - (-4281 . 33696) (-4282 . 33622) (-4283 . 33353) (-4284 . 33230) - (-4285 . 33036) (-4286 . 32879) (-4287 . 32779) (-4288 . 32683) - (-4289 . 32620) (-4290 . 32546) (-4291 . 32473) (-4292 . 32142) - (-4293 . 30990) (-4294 . 30921) (-4295 . 30841) (-4296 . 30757) - (-4297 . 30335) (-4298 . 30164) (-4299 . 29924) (-4300 . 29871) - (-4301 . 29770) (-4302 . 29625) (-4303 . 29541) (-4304 . 29473) - (-4305 . 29439) (-4306 . 29275) (-4307 . 24733) (-4308 . 24511) - (-4309 . 24426) (-4310 . 24302) (-4311 . 24189) (-4312 . 24048) - (-4313 . 22798) (-4314 . 22702) (-4315 . 22544) (-4316 . 22425) - (-4317 . 22292) (-4318 . 21733) (-4319 . 21704) (-4320 . 21544) - (-4321 . 21434) (-4322 . 21169) (-4323 . 21117) (-4324 . 21038) - (-4325 . 20899) (-4326 . 20197) (-4327 . 20100) (-4328 . 20026) - (-4329 . 19828) (-4330 . 19269) (-4331 . 18755) (-4332 . 18677) - (-4333 . 18432) (-4334 . 18185) (-4335 . 17958) (-4336 . 17688) - (-4337 . 17660) (-4338 . 17574) (-4339 . 16895) (-4340 . 16777) - (-4341 . 16725) (-4342 . 16624) (-4343 . 16502) (-4344 . 16264) - (-4345 . 16121) (-4346 . 15979) (-4347 . 15839) (-4348 . 15401) - (-4349 . 15321) (-4350 . 15205) (-4351 . 15106) (-4352 . 15039) - (-4353 . 14966) (-4354 . 14883) (-4355 . 14517) (-4356 . 14364) - (-4357 . 13606) (-4358 . 13550) (-4359 . 13416) (-4360 . 13196) - (-4361 . 12943) (-4362 . 12890) (-4363 . 12848) (-4364 . 11505) - (-4365 . 11214) (-4366 . 10628) (-4367 . 10528) (-4368 . 10350) - (-4369 . 10251) (-4370 . 10148) (-4371 . 10027) (-4372 . 9754) - (-4373 . 9647) (-4374 . 9565) (-4375 . 9220) (-4376 . 9125) - (-4377 . 8960) (-4378 . 8881) (-4379 . 8629) (-4380 . 8291) - (-4381 . 7999) (-4382 . 7503) (-4383 . 6979) (-4384 . 6913) - (-4385 . 6782) (-4386 . 6356) (-4387 . 6268) (-4388 . 6065) - (-4389 . 5864) (-4390 . 696) (-4391 . 600) (-4392 . 262) (-4393 . 152) +(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1194))))) +(((*1 *1 *1) (-4 *1 (-869 *2)))) +(((*1 *2 *1) + (-12 (-4 *3 (-1049)) (-5 *2 (-1264 *3)) (-5 *1 (-712 *3 *4)) + (-4 *4 (-1240 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-396)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1194))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) + (-4 *6 (-793)) (-5 *2 (-409 (-952 *4))) (-5 *1 (-924 *4 *5 *6 *3)) + (-4 *3 (-949 *4 *6 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-689 *7)) (-4 *7 (-949 *4 *6 *5)) + (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) + (-4 *6 (-793)) (-5 *2 (-689 (-409 (-952 *4)))) + (-5 *1 (-924 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 *7)) (-4 *7 (-949 *4 *6 *5)) + (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) + (-4 *6 (-793)) (-5 *2 (-644 (-409 (-952 *4)))) + (-5 *1 (-924 *4 *5 *6 *7))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-409 (-566))) (-4 *4 (-1038 (-566))) (-4 *4 (-558)) + (-5 *1 (-32 *4 *2)) (-4 *2 (-432 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-134))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-158 *3 *2)) (-4 *2 (-432 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-225))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-243)) (-5 *2 (-566)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-409 (-566))) (-4 *4 (-365)) (-4 *4 (-38 *3)) + (-4 *5 (-1255 *4)) (-5 *1 (-279 *4 *5 *2)) (-4 *2 (-1226 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-409 (-566))) (-4 *4 (-365)) (-4 *4 (-38 *3)) + (-4 *5 (-1224 *4)) (-5 *1 (-280 *4 *5 *2 *6)) (-4 *2 (-1247 *4 *5)) + (-4 *6 (-983 *5)))) + ((*1 *1 *1 *1) (-4 *1 (-285))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-363 *2)) (-4 *2 (-1099)))) + ((*1 *1 *1 *1) (-5 *1 (-381))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-771)) (-5 *1 (-388 *2)) (-4 *2 (-1099)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-771)) (-4 *1 (-432 *3)) (-4 *3 (-1099)) + (-4 *3 (-1111)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-475)) (-5 *2 (-566)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-771)) (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) + (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1264 *4)) (-5 *3 (-566)) (-4 *4 (-351)) + (-5 *1 (-530 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-538)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-538)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-771)) (-4 *4 (-1099)) + (-5 *1 (-682 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-566)) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) + (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-365)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-771)) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) + (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-689 *4)) (-5 *3 (-771)) (-4 *4 (-1049)) + (-5 *1 (-690 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-566)) (-4 *3 (-1049)) (-5 *1 (-714 *3 *4)) + (-4 *4 (-648 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-566)) (-4 *4 (-1049)) + (-5 *1 (-714 *4 *5)) (-4 *5 (-648 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-720)) (-5 *2 (-921)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-722)) (-5 *2 (-771)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-726)) (-5 *2 (-771)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-771)) (-5 *1 (-819 *2)) (-4 *2 (-850)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-836 *3)) (-4 *3 (-1049)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-566)) (-5 *1 (-836 *4)) (-4 *4 (-1049)))) + ((*1 *1 *1 *1) (-5 *1 (-862))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1002)) (-5 *2 (-409 (-566))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1111)) (-5 *2 (-921)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-566)) (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *4 (-1049)) + (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)) (-4 *4 (-365)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1160 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) + (-5 *1 (-1161 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1049)) (-4 *2 (-365))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1171 *1)) (-4 *1 (-1012))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-644 (-782 *3))) (-5 *1 (-782 *3)) (-4 *3 (-558)) + (-4 *3 (-1049))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-644 (-1139 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) + (-4 *4 (-13 (-1099) (-34))) (-4 *5 (-13 (-1099) (-34))) + (-5 *1 (-1140 *4 *5)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-644 (-1139 *3 *4))) (-4 *3 (-13 (-1099) (-34))) + (-4 *4 (-13 (-1099) (-34))) (-5 *1 (-1140 *3 *4))))) +(((*1 *1 *2 *3 *1) + (-12 (-14 *4 (-644 (-1175))) (-4 *2 (-172)) + (-4 *3 (-238 (-3000 *4) (-771))) + (-14 *6 + (-1 (-112) (-2 (|:| -2835 *5) (|:| -2201 *3)) + (-2 (|:| -2835 *5) (|:| -2201 *3)))) + (-5 *1 (-463 *4 *2 *5 *3 *6 *7)) (-4 *5 (-850)) + (-4 *7 (-949 *2 *3 (-864 *4)))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-943 (-225))) (-5 *4 (-874)) (-5 *2 (-1269)) + (-5 *1 (-470)))) + ((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1049)) (-4 *1 (-980 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-943 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-943 *3)) (-4 *3 (-1049)) (-4 *1 (-1133 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-771)) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-644 *3)) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-943 *3)) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) + ((*1 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-943 (-225))) (-5 *1 (-1210)) (-5 *3 (-225))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2610 *4))) + (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-980 *2)) (-4 *2 (-1049)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-943 (-225))) (-5 *1 (-1210)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1214)) (-4 *2 (-1049))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1171 (-566))) (-5 *1 (-191)) (-5 *3 (-566)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-783 *2)) (-4 *2 (-172)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1171 (-566))) (-5 *1 (-942)) (-5 *3 (-566))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *5 (-850)) (-5 *2 (-112))))) +(((*1 *1 *2) + (-12 (-5 *2 (-409 (-566))) (-4 *1 (-556 *3)) + (-4 *3 (-13 (-406) (-1199))))) + ((*1 *1 *2) (-12 (-4 *1 (-556 *2)) (-4 *2 (-13 (-406) (-1199))))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-556 *2)) (-4 *2 (-13 (-406) (-1199)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-331))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-644 (-281))) (-5 *1 (-281)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 (-1180))) (-5 *1 (-1180))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-850)) (-5 *1 (-245 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-566)) (-4 *5 (-351)) (-5 *2 (-420 (-1171 (-1171 *5)))) + (-5 *1 (-1212 *5)) (-5 *3 (-1171 (-1171 *5)))))) +(((*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-359 *3)) (-4 *3 (-351))))) +(((*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-180)))) + ((*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-681)))) + ((*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-970)))) + ((*1 *2 *1) (-12 (-5 *2 (-1213)) (-5 *1 (-1072)))) + ((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1117))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-4 *3 (-172)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *1 (-688 *3 *4 *5 *2)) + (-4 *2 (-687 *3 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1175)) (-5 *4 (-952 (-566))) (-5 *2 (-331)) + (-5 *1 (-333))))) +(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-438))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4415)) (-4 *1 (-1252 *2)) (-4 *2 (-1214))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-850)) + (-5 *2 (-2 (|:| -2397 *1) (|:| |gap| (-771)) (|:| -3264 *1))) + (-4 *1 (-1064 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) + (-5 *2 (-2 (|:| -2397 *1) (|:| |gap| (-771)) (|:| -3264 *1))) + (-4 *1 (-1064 *3 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *1 *1) + (-12 (-4 *1 (-949 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850)) (-4 *2 (-454)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *3 (-1064 *4 *5 *6)) + (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -1470 *1)))) + (-4 *1 (-1070 *4 *5 *6 *3)))) + ((*1 *1 *1) (-4 *1 (-1218))) + ((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-1243 *3 *2)) + (-4 *2 (-13 (-1240 *3) (-558) (-10 -8 (-15 -2164 ($ $ $)))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-31)))) + ((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-133)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-138)))) + ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-154)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-161)))) + ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-218)))) + ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-676)))) + ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1019)))) + ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1065)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-1095))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1214)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-879 *2)) (-4 *2 (-1214)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-943 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-644 (-943 *3))) (-4 *3 (-1049)) (-4 *1 (-1133 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-644 (-644 *3))) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-644 (-943 *3))) (-4 *1 (-1133 *3)) (-4 *3 (-1049))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-409 (-1171 (-317 *3)))) (-4 *3 (-558)) + (-5 *1 (-1129 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) + (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-308)) (-5 *2 (-420 *3)) + (-5 *1 (-742 *4 *5 *6 *3)) (-4 *3 (-949 *6 *4 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-988 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) + (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1106 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1240 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-715 *2 *3 *4 *5 *6)) (-4 *2 (-172)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) + (-4 *5 (-375 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-644 (-644 (-225)))) (-5 *4 (-225)) + (-5 *2 (-644 (-943 *4))) (-5 *1 (-1210)) (-5 *3 (-943 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-96)))) + ((*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-109)))) + ((*1 *2 *1) + (-12 (-4 *1 (-366 *2 *3)) (-4 *3 (-1099)) (-4 *2 (-1099)))) + ((*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-1157)))) + ((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-440 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-485)))) + ((*1 *2 *1) (-12 (-4 *1 (-835 *2)) (-4 *2 (-1099)))) + ((*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-865)))) + ((*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-965)))) + ((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1074 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-1114)))) + ((*1 *1 *1) (-5 *1 (-1175)))) +(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-169 (-225)))) (-5 *2 (-1035)) + (-5 *1 (-756))))) +(((*1 *2 *1) + (-12 (-5 *2 (-644 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) + (-5 *1 (-587 *3)) (-4 *3 (-365))))) +(((*1 *2 *2) (-12 (-5 *2 (-644 (-317 (-225)))) (-5 *1 (-268))))) +(((*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-560 *3)) (-4 *3 (-547)))) + ((*1 *2 *3) + (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-308)) (-5 *2 (-420 *3)) + (-5 *1 (-742 *4 *5 *6 *3)) (-4 *3 (-949 *6 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-308)) + (-4 *7 (-949 *6 *4 *5)) (-5 *2 (-420 (-1171 *7))) + (-5 *1 (-742 *4 *5 *6 *7)) (-5 *3 (-1171 *7)))) + ((*1 *2 *1) + (-12 (-4 *3 (-454)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) + (-5 *2 (-420 *1)) (-4 *1 (-949 *3 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-850)) (-4 *5 (-793)) (-4 *6 (-454)) (-5 *2 (-420 *3)) + (-5 *1 (-979 *4 *5 *6 *3)) (-4 *3 (-949 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-454)) + (-4 *7 (-949 *6 *4 *5)) (-5 *2 (-420 (-1171 (-409 *7)))) + (-5 *1 (-1170 *4 *5 *6 *7)) (-5 *3 (-1171 (-409 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-420 *1)) (-4 *1 (-1218)))) + ((*1 *2 *3) + (-12 (-4 *4 (-558)) (-5 *2 (-420 *3)) (-5 *1 (-1243 *4 *3)) + (-4 *3 (-13 (-1240 *4) (-558) (-10 -8 (-15 -2164 ($ $ $))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1046 *4 *5)) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) + (-14 *5 (-644 (-1175))) + (-5 *2 + (-644 (-1145 *4 (-533 (-864 *6)) (-864 *6) (-780 *4 (-864 *6))))) + (-5 *1 (-1290 *4 *5 *6)) (-14 *6 (-644 (-1175)))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) + (-4 *4 (-850)) (-4 *2 (-558))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-558)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2164 *3))) + (-5 *1 (-969 *4 *3)) (-4 *3 (-1240 *4))))) +(((*1 *2) + (-12 (-4 *4 (-1218)) (-4 *5 (-1240 *4)) (-4 *6 (-1240 (-409 *5))) + (-5 *2 (-112)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1218)) (-4 *4 (-1240 *3)) + (-4 *5 (-1240 (-409 *4))) (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-644 (-921))) (-5 *1 (-1267)))) + ((*1 *2 *2) (-12 (-5 *2 (-644 (-921))) (-5 *1 (-1267))))) +(((*1 *1 *2) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-217))))) +(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1059)))) + ((*1 *1 *1) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) + (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) + ((*1 *2 *2) + (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)) (-4 *2 (-1059)))) + ((*1 *1 *1) (-4 *1 (-848))) + ((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)) (-4 *2 (-1059)))) + ((*1 *1 *1) (-4 *1 (-1059))) ((*1 *1 *1) (-4 *1 (-1138)))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-644 *6)) (-4 *1 (-949 *4 *5 *6)) (-4 *4 (-1049)) + (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-771)))) + ((*1 *2 *1) + (-12 (-4 *1 (-949 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) + (-4 *5 (-850)) (-5 *2 (-771))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-506 (-409 (-566)) (-240 *5 (-771)) (-864 *4) + (-247 *4 (-409 (-566))))) + (-14 *4 (-644 (-1175))) (-14 *5 (-771)) (-5 *2 (-112)) + (-5 *1 (-507 *4 *5))))) +(((*1 *1 *1) + (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-566)) (-5 *6 (-1 (-1269) (-1264 *5) (-1264 *5) (-381))) + (-5 *3 (-1264 (-381))) (-5 *5 (-381)) (-5 *2 (-1269)) + (-5 *1 (-788)))) + ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) + (-12 (-5 *4 (-566)) (-5 *6 (-1 (-1269) (-1264 *5) (-1264 *5) (-381))) + (-5 *3 (-1264 (-381))) (-5 *5 (-381)) (-5 *2 (-1269)) + (-5 *1 (-788))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 (-2 (|:| -1624 (-1171 *6)) (|:| -2201 (-566))))) + (-4 *6 (-308)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-566)) + (-5 *1 (-742 *4 *5 *6 *7)) (-4 *7 (-949 *6 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-695 *3)) (-4 *3 (-1099)) + (-5 *2 (-644 (-2 (|:| -2636 *3) (|:| -4083 (-771)))))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-2 (|:| |totdeg| (-771)) (|:| -3877 *4))) (-5 *5 (-771)) + (-4 *4 (-949 *6 *7 *8)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) + (-5 *2 + (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) + (|:| |polj| *4))) + (-5 *1 (-451 *6 *7 *8 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-856 *2)) (-4 *2 (-172)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1171 (-566))) (-5 *1 (-942)) (-5 *3 (-566))))) +(((*1 *2) + (-12 (-4 *3 (-558)) (-5 *2 (-644 (-689 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-419 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1269)) (-5 *1 (-381))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 (-2 (|:| -2876 *4) (|:| -1784 (-566))))) + (-4 *4 (-1099)) (-5 *2 (-1 *4)) (-5 *1 (-1017 *4))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-547)))) +(((*1 *2 *1) (-12 (-5 *2 (-644 (-1213))) (-5 *1 (-681)))) + ((*1 *2 *1) (-12 (-5 *2 (-644 (-1180))) (-5 *1 (-1117))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1199))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *5 (-771)) (-4 *6 (-1099)) (-4 *7 (-900 *6)) + (-5 *2 (-689 *7)) (-5 *1 (-692 *6 *7 *3 *4)) (-4 *3 (-375 *7)) + (-4 *4 (-13 (-375 *6) (-10 -7 (-6 -4414))))))) +(((*1 *1 *2) + (-12 (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -3521 *4)))) + (-4 *3 (-1099)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-649 *3 *4 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1214)) (-4 *1 (-151 *3)))) + ((*1 *1 *2) + (-12 + (-5 *2 (-644 (-2 (|:| -2201 (-771)) (|:| -4290 *4) (|:| |num| *4)))) + (-4 *4 (-1240 *3)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-401 *3 *4)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-3 (|:| |fst| (-436)) (|:| -3907 "void"))) + (-5 *3 (-644 (-952 (-566)))) (-5 *4 (-112)) (-5 *1 (-439)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-3 (|:| |fst| (-436)) (|:| -3907 "void"))) + (-5 *3 (-644 (-1175))) (-5 *4 (-112)) (-5 *1 (-439)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1155 *3)) (-5 *1 (-601 *3)) (-4 *3 (-1214)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-172)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-672 *3)) (-4 *3 (-850)) (-5 *1 (-664 *3 *4)) + (-4 *4 (-172)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-672 *3)) (-4 *3 (-850)) (-5 *1 (-664 *3 *4)) + (-4 *4 (-172)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-672 *3)) (-4 *3 (-850)) (-5 *1 (-664 *3 *4)) + (-4 *4 (-172)))) + ((*1 *1 *2) + (-12 (-5 *2 (-644 (-644 (-644 *3)))) (-4 *3 (-1099)) + (-5 *1 (-675 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-713 *2 *3 *4)) (-4 *2 (-850)) (-4 *3 (-1099)) + (-14 *4 + (-1 (-112) (-2 (|:| -2835 *2) (|:| -2201 *3)) + (-2 (|:| -2835 *2) (|:| -2201 *3)))))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-508)) (-5 *3 (-1117)) (-5 *1 (-838)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-873 *2 *3)) (-4 *2 (-1214)) (-4 *3 (-1214)))) + ((*1 *1 *2) + (-12 (-5 *2 (-644 (-2 (|:| -2674 (-1175)) (|:| -2636 *4)))) + (-4 *4 (-1099)) (-5 *1 (-889 *3 *4)) (-4 *3 (-1099)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-644 *5)) (-4 *5 (-13 (-1099) (-34))) + (-5 *2 (-644 (-1139 *3 *5))) (-5 *1 (-1139 *3 *5)) + (-4 *3 (-13 (-1099) (-34))))) + ((*1 *2 *3) + (-12 (-5 *3 (-644 (-2 (|:| |val| *4) (|:| -1470 *5)))) + (-4 *4 (-13 (-1099) (-34))) (-4 *5 (-13 (-1099) (-34))) + (-5 *2 (-644 (-1139 *4 *5))) (-5 *1 (-1139 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1470 *4))) + (-4 *3 (-13 (-1099) (-34))) (-4 *4 (-13 (-1099) (-34))) + (-5 *1 (-1139 *3 *4)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-1139 *2 *3)) (-4 *2 (-13 (-1099) (-34))) + (-4 *3 (-13 (-1099) (-34))))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-5 *1 (-1139 *2 *3)) (-4 *2 (-13 (-1099) (-34))) + (-4 *3 (-13 (-1099) (-34))))) + ((*1 *1 *2 *3 *2 *4) + (-12 (-5 *4 (-644 *3)) (-4 *3 (-13 (-1099) (-34))) + (-5 *1 (-1140 *2 *3)) (-4 *2 (-13 (-1099) (-34))))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *4 (-644 (-1139 *2 *3))) (-4 *2 (-13 (-1099) (-34))) + (-4 *3 (-13 (-1099) (-34))) (-5 *1 (-1140 *2 *3)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *4 (-644 (-1140 *2 *3))) (-5 *1 (-1140 *2 *3)) + (-4 *2 (-13 (-1099) (-34))) (-4 *3 (-13 (-1099) (-34))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1139 *3 *4)) (-4 *3 (-13 (-1099) (-34))) + (-4 *4 (-13 (-1099) (-34))) (-5 *1 (-1140 *3 *4)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-1164 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099))))) +(((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-874)))) + ((*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049))))) +(((*1 *2 *1) + (-12 (-4 *1 (-366 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1099))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-3 + (|:| |noa| + (-2 (|:| |fn| (-317 (-225))) (|:| -3289 (-644 (-225))) + (|:| |lb| (-644 (-843 (-225)))) + (|:| |cf| (-644 (-317 (-225)))) + (|:| |ub| (-644 (-843 (-225)))))) + (|:| |lsa| + (-2 (|:| |lfn| (-644 (-317 (-225)))) + (|:| -3289 (-644 (-225))))))) + (-5 *2 (-644 (-1157))) (-5 *1 (-268))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1214)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1157)) (-5 *1 (-989)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1175)) (-5 *3 (-1093 *4)) (-4 *4 (-1214)) + (-5 *1 (-1091 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1171 *4)) (-4 *4 (-351)) + (-4 *2 + (-13 (-404) + (-10 -7 (-15 -3152 (*2 *4)) (-15 -1866 ((-921) *2)) + (-15 -2875 ((-1264 *2) (-921))) (-15 -2198 (*2 *2))))) + (-5 *1 (-358 *2 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-691 (-873 (-966 *3) (-966 *3)))) (-5 *1 (-966 *3)) + (-4 *3 (-1099))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-747))))) +(((*1 *2) (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-105))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1155 *2)) (-4 *2 (-308)) (-5 *1 (-174 *2))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-644 (-171))))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-644 (-508))) (-5 *2 (-508)) (-5 *1 (-485))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-644 *3)) (-4 *3 (-1108 *5 *6 *7 *8)) + (-4 *5 (-13 (-308) (-147))) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *8 (-1064 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-592 *5 *6 *7 *8 *3))))) +(((*1 *2) + (-12 (-4 *3 (-558)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-419 *3))))) +(((*1 *2 *3 *4 *4 *5 *3 *6) + (|partial| -12 (-5 *4 (-612 *3)) (-5 *5 (-644 *3)) (-5 *6 (-1171 *3)) + (-4 *3 (-13 (-432 *7) (-27) (-1199))) + (-4 *7 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-562 *7 *3 *8)) (-4 *8 (-1099)))) + ((*1 *2 *3 *4 *4 *5 *4 *3 *6) + (|partial| -12 (-5 *4 (-612 *3)) (-5 *5 (-644 *3)) + (-5 *6 (-409 (-1171 *3))) (-4 *3 (-13 (-432 *7) (-27) (-1199))) + (-4 *7 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-562 *7 *3 *8)) (-4 *8 (-1099))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-771)) (-4 *1 (-1281 *3 *4)) (-4 *3 (-850)) + (-4 *4 (-1049)) (-4 *4 (-172)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1281 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049)) + (-4 *3 (-172))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) + (-4 *3 (-1064 *5 *6 *7)) + (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -1470 *4)))) + (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) + (-5 *2 (-644 (-644 (-943 *3)))))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-644 (-644 (-943 *4)))) (-5 *3 (-112)) (-4 *4 (-1049)) + (-4 *1 (-1133 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-644 (-644 (-943 *3)))) (-4 *3 (-1049)) + (-4 *1 (-1133 *3)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-644 (-644 (-644 *4)))) (-5 *3 (-112)) + (-4 *1 (-1133 *4)) (-4 *4 (-1049)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-644 (-644 (-943 *4)))) (-5 *3 (-112)) + (-4 *1 (-1133 *4)) (-4 *4 (-1049)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-644 (-644 (-644 *5)))) (-5 *3 (-644 (-171))) + (-5 *4 (-171)) (-4 *1 (-1133 *5)) (-4 *5 (-1049)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-644 (-644 (-943 *5)))) (-5 *3 (-644 (-171))) + (-5 *4 (-171)) (-4 *1 (-1133 *5)) (-4 *5 (-1049))))) +(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1047))))) +(((*1 *2 *3) + (|partial| -12 (-4 *5 (-1038 (-48))) + (-4 *4 (-13 (-558) (-1038 (-566)))) (-4 *5 (-432 *4)) + (-5 *2 (-420 (-1171 (-48)))) (-5 *1 (-437 *4 *5 *3)) + (-4 *3 (-1240 *5))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-644 (-566))) (-5 *2 (-689 (-566))) (-5 *1 (-1109))))) +(((*1 *2 *3 *4 *4 *3 *3 *5) + (|partial| -12 (-5 *4 (-612 *3)) (-5 *5 (-1171 *3)) + (-4 *3 (-13 (-432 *6) (-27) (-1199))) + (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) + (-5 *2 (-2 (|:| -1641 *3) (|:| |coeff| *3))) + (-5 *1 (-562 *6 *3 *7)) (-4 *7 (-1099)))) + ((*1 *2 *3 *4 *4 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-612 *3)) (-5 *5 (-409 (-1171 *3))) + (-4 *3 (-13 (-432 *6) (-27) (-1199))) + (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) + (-5 *2 (-2 (|:| -1641 *3) (|:| |coeff| *3))) + (-5 *1 (-562 *6 *3 *7)) (-4 *7 (-1099))))) +(((*1 *2) + (-12 (-4 *3 (-558)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-419 *3))))) +(((*1 *1) (-5 *1 (-439)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) +(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-258))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-1157)) (-5 *2 (-1269)) (-5 *1 (-822))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1214))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-860)) (-5 *3 (-128)) (-5 *2 (-771))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) + (-5 *1 (-422 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1199) (-432 *3))) + (-14 *4 (-1175)) (-14 *5 *2))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) + (-4 *2 (-13 (-27) (-1199) (-432 *3) (-10 -8 (-15 -3152 ($ *4))))) + (-4 *4 (-848)) + (-4 *5 + (-13 (-1242 *2 *4) (-365) (-1199) + (-10 -8 (-15 -3629 ($ $)) (-15 -3313 ($ $))))) + (-5 *1 (-424 *3 *2 *4 *5 *6 *7)) (-4 *6 (-983 *5)) (-14 *7 (-1175))))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-566)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1214)) + (-4 *4 (-375 *2)) (-4 *5 (-375 *2)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-566)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-375 *2)) + (-4 *5 (-375 *2)) (-4 *2 (-1214)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1214)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1214)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-644 (-566))) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) + (-14 *4 (-566)) (-14 *5 (-771)))) + ((*1 *2 *1 *3 *3 *3 *3) + (-12 (-5 *3 (-566)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-771)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-566)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-771)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-566)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-771)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-566)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-771)))) + ((*1 *2 *1) + (-12 (-4 *2 (-172)) (-5 *1 (-136 *3 *4 *2)) (-14 *3 (-566)) + (-14 *4 (-771)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1175)) (-5 *2 (-245 (-1157))) (-5 *1 (-214 *4)) + (-4 *4 + (-13 (-850) + (-10 -8 (-15 -1309 ((-1157) $ *3)) (-15 -1710 ((-1269) $)) + (-15 -1597 ((-1269) $))))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-989)) (-5 *1 (-214 *3)) + (-4 *3 + (-13 (-850) + (-10 -8 (-15 -1309 ((-1157) $ (-1175))) (-15 -1710 ((-1269) $)) + (-15 -1597 ((-1269) $))))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 "count") (-5 *2 (-771)) (-5 *1 (-245 *4)) (-4 *4 (-850)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-245 *3)) (-4 *3 (-850)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 "unique") (-5 *1 (-245 *3)) (-4 *3 (-850)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1180)) (-5 *1 (-250)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-287 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1214)))) + ((*1 *2 *1 *3 *2) + (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1214)))) + ((*1 *2 *1 *2) + (-12 (-4 *3 (-172)) (-5 *1 (-290 *3 *2 *4 *5 *6 *7)) + (-4 *2 (-1240 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-644 *1)) (-4 *1 (-303)))) + ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) + ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) + ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) + ((*1 *2 *1 *2 *2) + (-12 (-4 *1 (-344 *2 *3 *4)) (-4 *2 (-1218)) (-4 *3 (-1240 *2)) + (-4 *4 (-1240 (-409 *3))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *1 (-419 *2)) (-4 *2 (-172)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1157)) (-5 *1 (-504)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-52)) (-5 *1 (-632)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1231 (-566))) (-4 *1 (-651 *3)) (-4 *3 (-1214)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-771)) (-5 *1 (-675 *2)) (-4 *2 (-1099)))) + ((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-644 (-566))) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) + (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-644 (-892 *4))) (-5 *1 (-892 *4)) + (-4 *4 (-1099)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-903 *2)) (-4 *2 (-1099)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-771)) (-5 *2 (-905 *4)) (-5 *1 (-904 *4)) + (-4 *4 (-1099)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-240 *4 *2)) (-14 *4 (-921)) (-4 *2 (-365)) + (-5 *1 (-993 *4 *2)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 "value") (-4 *1 (-1010 *2)) (-4 *2 (-1214)))) + ((*1 *2 *1) (-12 (-5 *1 (-1026 *2)) (-4 *2 (-1214)))) + ((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-566)) (-4 *1 (-1053 *4 *5 *2 *6 *7)) (-4 *2 (-1049)) + (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-566)) (-4 *1 (-1053 *4 *5 *2 *6 *7)) + (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1049)))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-921)) (-4 *4 (-1099)) + (-4 *5 (-13 (-1049) (-886 *4) (-614 (-892 *4)))) + (-5 *1 (-1075 *4 *5 *2)) + (-4 *2 (-13 (-432 *5) (-886 *4) (-614 (-892 *4)))))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-921)) (-4 *4 (-1099)) + (-4 *5 (-13 (-1049) (-886 *4) (-614 (-892 *4)))) + (-5 *1 (-1076 *4 *5 *2)) + (-4 *2 (-13 (-432 *5) (-886 *4) (-614 (-892 *4)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-644 (-566))) (-4 *1 (-1102 *3 *4 *5 *6 *7)) + (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) + (-4 *7 (-1099)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-566)) (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) + (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)))) + ((*1 *1 *1 *1) (-4 *1 (-1143))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-1175)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-409 *1)) (-4 *1 (-1240 *2)) (-4 *2 (-1049)) + (-4 *2 (-365)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-409 *1)) (-4 *1 (-1240 *3)) (-4 *3 (-1049)) + (-4 *3 (-558)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1242 *2 *3)) (-4 *3 (-792)) (-4 *2 (-1049)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 "last") (-4 *1 (-1252 *2)) (-4 *2 (-1214)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 "rest") (-4 *1 (-1252 *3)) (-4 *3 (-1214)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 "first") (-4 *1 (-1252 *2)) (-4 *2 (-1214))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1231 (-566))) (-4 *1 (-283 *3)) (-4 *3 (-1214)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-283 *3)) (-4 *3 (-1214))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-644 (-1264 *5))) (-5 *4 (-566)) (-5 *2 (-1264 *5)) + (-5 *1 (-1029 *5)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1049))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *4 (-566)) (-5 *6 (-1 (-1269) (-1264 *5) (-1264 *5) (-381))) + (-5 *3 (-1264 (-381))) (-5 *5 (-381)) (-5 *2 (-1269)) + (-5 *1 (-788))))) +(((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1157)) (-5 *1 (-306))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 *7)) (-4 *7 (-949 *4 *5 *6)) (-4 *6 (-614 (-1175))) + (-4 *4 (-365)) (-4 *5 (-793)) (-4 *6 (-850)) + (-5 *2 (-1164 (-644 (-952 *4)) (-644 (-295 (-952 *4))))) + (-5 *1 (-506 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3)) + (-4 *3 (-13 (-365) (-1199) (-1002)))))) +(((*1 *1 *1) (-12 (-5 *1 (-914 *2)) (-4 *2 (-308))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1157)) (-5 *4 (-169 (-225))) (-5 *5 (-566)) + (-5 *2 (-1035)) (-5 *1 (-758))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3)) + (-4 *3 (-13 (-365) (-1199) (-1002)))))) +(((*1 *2 *3 *4 *5 *6 *2 *7 *8) + (|partial| -12 (-5 *2 (-644 (-1171 *11))) (-5 *3 (-1171 *11)) + (-5 *4 (-644 *10)) (-5 *5 (-644 *8)) (-5 *6 (-644 (-771))) + (-5 *7 (-1264 (-644 (-1171 *8)))) (-4 *10 (-850)) + (-4 *8 (-308)) (-4 *11 (-949 *8 *9 *10)) (-4 *9 (-793)) + (-5 *1 (-707 *9 *10 *8 *11))))) +(((*1 *2 *3) + (-12 (-5 *3 (-644 (-1175))) (-5 *2 (-1269)) (-5 *1 (-1178)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-644 (-1175))) (-5 *3 (-1175)) (-5 *2 (-1269)) + (-5 *1 (-1178)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *4 (-644 (-1175))) (-5 *3 (-1175)) (-5 *2 (-1269)) + (-5 *1 (-1178))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) + (-5 *1 (-755))))) +((-1297 . 732175) (-1298 . 731895) (-1299 . 731550) (-1300 . 731435) + (-1301 . 731315) (-1302 . 731260) (-1303 . 731145) (-1304 . 730918) + (-1305 . 730850) (-1306 . 730671) (-1307 . 730516) (-1308 . 730360) + (-1309 . 725192) (-1310 . 724688) (-1311 . 724618) (-1312 . 724559) + (-1313 . 724482) (-1314 . 724430) (-1315 . 724378) (-1316 . 724350) + (-1317 . 724255) (-1318 . 723667) (-1319 . 723577) (-1320 . 723377) + (-1321 . 723315) (-1322 . 722508) (-1323 . 722290) (-1324 . 722081) + (-1325 . 721291) (-1326 . 721196) (-1327 . 720986) (-1328 . 720907) + (-1329 . 720819) (-1330 . 720740) (-1331 . 720683) (-1332 . 720582) + (-1333 . 720479) (-1334 . 720253) (-1335 . 720026) (-1336 . 719973) + (-1337 . 719574) (-1338 . 719497) (-1339 . 719373) (-1340 . 716552) + (-1341 . 716409) (-1342 . 716214) (-1343 . 716148) (-1344 . 716029) + (-1345 . 715992) (-1346 . 715860) (-1347 . 715792) (-1348 . 715690) + (-1349 . 715542) (-1350 . 715454) (-1351 . 715164) (-1352 . 715049) + (-1353 . 714846) (-1354 . 714484) (-1355 . 714398) (-1356 . 714200) + (-1357 . 713957) (-1358 . 713472) (-1359 . 713413) (-1360 . 713298) + (-1361 . 713025) (-1362 . 712875) (-1363 . 712762) (-1364 . 711489) + (-1365 . 711423) (-1366 . 711304) (-1367 . 711181) (-1368 . 710535) + (-1369 . 710393) (-1370 . 710146) (-1371 . 709486) (-1372 . 709135) + (-1373 . 708994) (-1374 . 708899) (-1375 . 708799) (-1376 . 708346) + (-1377 . 707754) (-1378 . 707307) (-1379 . 707212) (-1380 . 706879) + (-1381 . 706795) (-1382 . 706726) (-1383 . 706628) (-1384 . 706481) + (-1385 . 706222) (-1386 . 706152) (-1387 . 706012) (-1388 . 705939) + (-1389 . 705811) (-1390 . 705752) (-1391 . 705664) (-1392 . 705431) + (-1393 . 705318) (-1394 . 705095) (-1395 . 704899) (-1396 . 704769) + (-1397 . 704131) (-1398 . 703838) (-1399 . 703528) (-1400 . 703424) + (-1401 . 703357) (** . 700292) (-1403 . 699685) (-1404 . 699566) + (-1405 . 699464) (-1406 . 699430) (-1407 . 699366) (-1408 . 699302) + (-1409 . 699209) (-1410 . 699126) (-1411 . 698998) (-1412 . 698843) + (-1413 . 698742) (-1414 . 698710) (-1415 . 698507) (-1416 . 698133) + (-1417 . 698012) (-1418 . 697885) (-1419 . 697728) (-1420 . 697648) + (-1421 . 697532) (-1422 . 697414) (-1423 . 697316) (-1424 . 697178) + (-1425 . 696869) (-1426 . 696810) (-1427 . 693969) (-1428 . 693856) + (-1429 . 693629) (-1430 . 693293) (-1431 . 692952) (-1432 . 692836) + (-1433 . 692357) (-1434 . 692258) (-1435 . 691914) (-1436 . 691861) + (-1437 . 691763) (-1438 . 691375) (-1439 . 690772) (-1440 . 690630) + (-1441 . 690538) (-1442 . 690289) (-1443 . 690222) (-1444 . 689825) + (-1445 . 689679) (-1446 . 688763) (-1447 . 688596) (-1448 . 688195) + (-1449 . 687931) (-1450 . 687865) (-1451 . 687809) (-1452 . 687685) + (-1453 . 687589) (-1454 . 687141) (-1455 . 687067) (-1456 . 685763) + (-1457 . 685623) (-1458 . 685546) (-1459 . 685388) (-1460 . 685294) + (-1461 . 685154) (-1462 . 685081) (-1463 . 684928) (-1464 . 684669) + (-1465 . 684511) (-1466 . 684455) (-1467 . 683778) (-1468 . 683595) + (-1469 . 683516) (-1470 . 683454) (-1471 . 683420) (-1472 . 683327) + (-1473 . 683271) (-1474 . 683132) (-1475 . 683031) (-1476 . 682623) + (-1477 . 682465) (-1478 . 682187) (-1479 . 682041) (-1480 . 681714) + (-1481 . 681595) (-1482 . 681542) (-1483 . 681395) (-1484 . 681343) + (-1485 . 681249) (-1486 . 681104) (-1487 . 681049) (-1488 . 680884) + (-1489 . 680817) (-1490 . 680785) (-1491 . 680757) (-1492 . 680599) + (-1493 . 680438) (-1494 . 680320) (-1495 . 680255) (-1496 . 680130) + (-1497 . 679709) (-1498 . 679607) (-1499 . 679484) (-1500 . 679411) + (-1501 . 677633) (-1502 . 677522) (-1503 . 677371) (-1504 . 677302) + (-1505 . 677216) (-1506 . 676865) (-1507 . 676769) (-1508 . 676677) + (-1509 . 676624) (-1510 . 676550) (-1511 . 676498) (-1512 . 676446) + (-1513 . 674589) (-1514 . 674162) (-1515 . 674091) (-1516 . 673889) + (-1517 . 673855) (-1518 . 673544) (-1519 . 673489) (-1520 . 673239) + (-1521 . 672421) (-1522 . 672126) (-1523 . 672074) (-1524 . 671975) + (-1525 . 671902) (-1526 . 671313) (-1527 . 671197) (-1528 . 671079) + (-1529 . 668947) (-1530 . 668861) (-1531 . 668742) (-1532 . 668631) + (-1533 . 668440) (-1534 . 667977) (-1535 . 667925) (-1536 . 667772) + (-1537 . 667670) (-1538 . 667406) (-1539 . 667309) (-1540 . 667256) + (-1541 . 667063) (-1542 . 666097) (-1543 . 665937) (-1544 . 665849) + (-1545 . 665483) (-1546 . 665403) (-1547 . 665058) (-1548 . 664917) + (-1549 . 664829) (-1550 . 664661) (-1551 . 664578) (-1552 . 664516) + (-1553 . 664464) (-1554 . 664395) (-1555 . 664299) (-1556 . 663703) + (-1557 . 663401) (-1558 . 663280) (-1559 . 663162) (-1560 . 662947) + (-1561 . 662812) (-1562 . 662778) (-1563 . 662181) (-1564 . 661805) + (-1565 . 661710) (-1566 . 660615) (-1567 . 660455) (-1568 . 660359) + (-1569 . 659838) (-1570 . 659400) (-1571 . 659347) (-1572 . 659297) + (-1573 . 659134) (-1574 . 659050) (-1575 . 658819) (-1576 . 658478) + (-1577 . 658336) (-1578 . 658233) (-1579 . 658090) (-1580 . 658016) + (-1581 . 657914) (-1582 . 657777) (-1583 . 657700) (-1584 . 657605) + (-1585 . 657359) (-1586 . 656808) (-1587 . 656492) (-1588 . 656397) + (-1589 . 656345) (-1590 . 654943) (-1591 . 654877) (-1592 . 654827) + (-1593 . 654732) (-1594 . 654653) (-1595 . 654601) (-1596 . 654406) + (-1597 . 653984) (-1598 . 653855) (-1599 . 653679) (-1600 . 653499) + (-1601 . 653377) (-1602 . 653061) (-1603 . 652903) (-1604 . 652817) + (-1605 . 652664) (-1606 . 652585) (-1607 . 652377) (-1608 . 652052) + (-1609 . 651845) (-1610 . 651796) (-1611 . 651704) (-1612 . 651621) + (-1613 . 651524) (-1614 . 651427) (-1615 . 651038) (-1616 . 650586) + (-1617 . 650534) (-1618 . 650481) (-1619 . 650325) (-1620 . 649999) + (-1621 . 649781) (-1622 . 649238) (-1623 . 648821) (-1624 . 643307) + (-1625 . 642989) (-1626 . 642470) (-1627 . 642325) (-1628 . 641765) + (-1629 . 641430) (-1630 . 640844) (-1631 . 640742) (-1632 . 640626) + (-1633 . 640456) (-1634 . 640424) (-1635 . 640031) (-1636 . 639672) + (-1637 . 638793) (-1638 . 638710) (-1639 . 638602) (-1640 . 638075) + (-1641 . 638020) (-1642 . 637822) (-1643 . 637311) (-1644 . 637213) + (-1645 . 637162) (-1646 . 636721) (-1647 . 636651) (-1648 . 636472) + (-1649 . 636389) (-1650 . 636243) (-1651 . 635863) (-1652 . 635779) + (-1653 . 635487) (-1654 . 635415) (-1655 . 632634) (-1656 . 632342) + (-1657 . 632007) (-1658 . 631912) (-1659 . 631841) (-1660 . 631762) + (-1661 . 631633) (-1662 . 631545) (-1663 . 631427) (-1664 . 631319) + (-1665 . 631223) (-1666 . 631157) (-1667 . 631099) (-1668 . 631019) + (-1669 . 630936) (-1670 . 630833) (-1671 . 630753) (-1672 . 630669) + (-1673 . 630506) (-1674 . 630435) (-1675 . 630275) (-1676 . 630186) + (-1677 . 630117) (-1678 . 629978) (-1679 . 629883) (-1680 . 629812) + (-1681 . 629583) (-1682 . 629431) (-1683 . 629212) (-1684 . 629016) + (-1685 . 628857) (-1686 . 628526) (-1687 . 628208) (-1688 . 628069) + (-1689 . 628010) (-1690 . 627649) (-1691 . 627547) (-1692 . 627332) + (-1693 . 627195) (-1694 . 627121) (-1695 . 627039) (-1696 . 626962) + (-1697 . 626806) (-1698 . 626509) (-1699 . 626315) (-1700 . 626231) + (-1701 . 626203) (-1702 . 626075) (-1703 . 626004) (-1704 . 625715) + (-1705 . 625231) (-1706 . 625123) (-1707 . 625044) (-1708 . 624909) + (-1709 . 624880) (-1710 . 624126) (-1711 . 624025) (-1712 . 623733) + (-1713 . 623684) (-1714 . 623589) (-1715 . 623515) (-1716 . 623413) + (-1717 . 623311) (-1718 . 623237) (-1719 . 622828) (-1720 . 622623) + (-1721 . 622371) (-1722 . 622281) (-1723 . 621932) (-1724 . 621789) + (-1725 . 621752) (-1726 . 621621) (-1727 . 621522) (-1728 . 621421) + (-1729 . 621389) (-1730 . 621150) (-1731 . 621071) (-1732 . 621037) + (-1733 . 620819) (-1734 . 620708) (-1735 . 620541) (-1736 . 620251) + (-1737 . 620219) (-1738 . 620071) (-1739 . 620017) (-1740 . 619883) + (-1741 . 619684) (-1742 . 619596) (-1743 . 619493) (-1744 . 619421) + (-1745 . 619330) (-1746 . 617701) (-1747 . 617613) (-1748 . 617109) + (-1749 . 616993) (-1750 . 616840) (-1751 . 616774) (-1752 . 616704) + (-1753 . 616644) (-1754 . 616548) (-1755 . 616496) (-1756 . 616261) + (-1757 . 615402) (-1758 . 615328) (-1759 . 615185) (-1760 . 614707) + (-1761 . 614575) (-1762 . 614321) (-1763 . 614140) (-1764 . 614060) + (-1765 . 613957) (-1766 . 613758) (-1767 . 613702) (-1768 . 613442) + (-1769 . 613375) (-1770 . 613277) (-1771 . 611981) (-1772 . 611815) + (-1773 . 611671) (-1774 . 611609) (-1775 . 611247) (-1776 . 611146) + (-1777 . 611094) (-1778 . 610527) (-1779 . 610474) (-1780 . 610316) + (-1781 . 610244) (-1782 . 610152) (-1783 . 610052) (-1784 . 609614) + (-1785 . 609471) (-1786 . 608758) (-1787 . 608624) (-1788 . 608547) + (-1789 . 608383) (-1790 . 608201) (-1791 . 607954) (-1792 . 607829) + (-1793 . 607447) (-1794 . 607283) (-1795 . 607153) (-1796 . 607084) + (-1797 . 606893) (-1798 . 606787) (-1799 . 606400) (-1800 . 606312) + (-1801 . 606208) (-1802 . 606076) (-1803 . 605996) (-1804 . 605851) + (-1805 . 605688) (-1806 . 605420) (-1807 . 605265) (-1808 . 605166) + (-1809 . 605006) (-1810 . 604953) (-1811 . 604847) (-1812 . 604798) + (-1813 . 604636) (-1814 . 604562) (-1815 . 604468) (-1816 . 604330) + (-1817 . 604153) (-1818 . 604069) (-1819 . 604001) (-1820 . 603827) + (-1821 . 603748) (-1822 . 603720) (-1823 . 603622) (-1824 . 603549) + (-1825 . 603268) (-1826 . 603170) (-1827 . 601404) (-1828 . 601348) + (-1829 . 601193) (-1830 . 601138) (-1831 . 601016) (-1832 . 600724) + (-1833 . 600619) (-1834 . 600147) (-1835 . 600094) (-1836 . 599876) + (-1837 . 599576) (-1838 . 599383) (-1839 . 599271) (-1840 . 599203) + (-1841 . 599105) (-1842 . 599010) (-1843 . 598764) (-1844 . 598705) + (-1845 . 598430) (-1846 . 598331) (-1847 . 598300) (-1848 . 598241) + (-1849 . 598039) (-1850 . 597937) (-1851 . 597838) (-1852 . 597752) + (-1853 . 597678) (-1854 . 597515) (-1855 . 597462) (-1856 . 597354) + (-1857 . 596963) (-1858 . 596868) (-1859 . 596712) (-1860 . 595942) + (-1861 . 595876) (-1862 . 595572) (-1863 . 595458) (-1864 . 595377) + (-1865 . 595322) (-1866 . 595178) (-1867 . 595064) (-1868 . 594973) + (-1869 . 594921) (-1870 . 594819) (-1871 . 594763) (-1872 . 594684) + (-1873 . 594457) (-1874 . 594309) (-1875 . 594241) (-1876 . 594187) + (-1877 . 594010) (-1878 . 593927) (-1879 . 593854) (-1880 . 593766) + (-1881 . 593664) (-1882 . 593402) (-1883 . 593283) (-1884 . 593214) + (-1885 . 593044) (-1886 . 591188) (-1887 . 591069) (-1888 . 590977) + (-1889 . 590787) (-1890 . 590516) (-1891 . 590364) (-1892 . 590278) + (-1893 . 590060) (-1894 . 589873) (-1895 . 589703) (-1896 . 589618) + (-1897 . 589473) (-1898 . 589308) (-1899 . 589255) (-1900 . 589221) + (-1901 . 589147) (-1902 . 589027) (-1903 . 588711) (-1904 . 588598) + (-1905 . 588168) (-1906 . 587941) (-1907 . 587625) (-1908 . 587043) + (-1909 . 586597) (-1910 . 586503) (-1911 . 586469) (-1912 . 586414) + (-1913 . 586348) (-1914 . 586265) (-1915 . 586201) (-1916 . 586057) + (-1917 . 585940) (-1918 . 585878) (-1919 . 585757) (-1920 . 585683) + (-1921 . 585624) (-1922 . 585567) (-1923 . 585510) (-1924 . 585400) + (-1925 . 585280) (-1926 . 585095) (-1927 . 584994) (-1928 . 584664) + (-1929 . 584465) (-1930 . 584295) (-1931 . 584186) (-1932 . 584073) + (-1933 . 583745) (-1934 . 583678) (-1935 . 583455) (-1936 . 583344) + (-1937 . 583295) (-1938 . 583236) (-1939 . 583011) (-1940 . 582959) + (-1941 . 582907) (-1942 . 582810) (-1943 . 582708) (-1944 . 582584) + (-1945 . 582504) (-1946 . 582433) (-1947 . 582325) (-1948 . 582241) + (-1949 . 582182) (-1950 . 581935) (-1951 . 581792) (-1952 . 581741) + (-1953 . 581403) (-1954 . 581266) (-1955 . 581098) (-1956 . 580999) + (-1957 . 580780) (-1958 . 580404) (-1959 . 580338) (-1960 . 579157) + (-1961 . 579105) (-1962 . 579053) (-1963 . 578892) (-1964 . 578730) + (-1965 . 578588) (-1966 . 578250) (-1967 . 577954) (-1968 . 577781) + (-1969 . 577686) (-1970 . 577634) (-1971 . 577511) (-1972 . 577440) + (-1973 . 577384) (-1974 . 577248) (-1975 . 577023) (-1976 . 575761) + (-1977 . 575679) (-1978 . 575560) (-1979 . 575440) (-1980 . 574894) + (-1981 . 574021) (-1982 . 573951) (-1983 . 573865) (-1984 . 573792) + (-1985 . 573604) (-1986 . 573386) (-1987 . 573328) (-1988 . 573142) + (-1989 . 573092) (-1990 . 572452) (-1991 . 572346) (-1992 . 572230) + (-1993 . 572134) (-1994 . 572015) (-1995 . 571735) (-1996 . 571587) + (-1997 . 570627) (-1998 . 570336) (-1999 . 570192) (-2000 . 570037) + (-2001 . 569984) (-2002 . 569840) (-2003 . 569703) (-2004 . 569593) + (-2005 . 569297) (-2006 . 569118) (-2007 . 568731) (-2008 . 568598) + (-2009 . 568463) (-2010 . 568379) (-2011 . 568264) (-2012 . 567971) + (-2013 . 567920) (-2014 . 567336) (-2015 . 567191) (-2016 . 566765) + (-2017 . 566622) (-2018 . 566569) (-2019 . 566343) (-2020 . 566281) + (-2021 . 566166) (-2022 . 566107) (-2023 . 562100) (-2024 . 561867) + (-2025 . 561697) (-2026 . 561630) (-2027 . 561519) (-2028 . 561488) + (-2029 . 561436) (-2030 . 561362) (-2031 . 561225) (-2032 . 561143) + (-2033 . 561048) (-2034 . 560982) (-2035 . 560612) (-2036 . 560270) + (-2037 . 560221) (-2038 . 560171) (-2039 . 558875) (-2040 . 558784) + (-2041 . 558192) (-2042 . 557841) (-2043 . 557739) (-2044 . 557705) + (-2045 . 557590) (-2046 . 557414) (-2047 . 557261) (-2048 . 557143) + (-2049 . 556510) (-2050 . 556338) (-2051 . 556257) (-2052 . 556160) + (-2053 . 556065) (-2054 . 555982) (-2055 . 555772) (-2056 . 555138) + (-2057 . 554980) (-2058 . 554907) (-2059 . 554812) (-2060 . 554709) + (-2061 . 554523) (-2062 . 554435) (-2063 . 554332) (-2064 . 552549) + (-2065 . 552433) (-2066 . 552274) (-2067 . 552203) (-2068 . 552096) + (-2069 . 551958) (-2070 . 551851) (-2071 . 551609) (-2072 . 551511) + (-2073 . 551206) (-2074 . 551146) (-2075 . 551036) (-2076 . 550934) + (-2077 . 550818) (-2078 . 550559) (-2079 . 550455) (-2080 . 550145) + (-2081 . 549663) (-2082 . 549117) (-2083 . 549065) (-2084 . 548869) + (-2085 . 548814) (-2086 . 548727) (-2087 . 548241) (-2088 . 548146) + (-2089 . 548072) (-2090 . 547986) (-2091 . 547711) (-2092 . 547501) + (-2093 . 547405) (-2094 . 547264) (-2095 . 547236) (-2096 . 547165) + (-2097 . 547028) (-2098 . 546721) (-2099 . 546627) (-2100 . 546522) + (-2101 . 546220) (-2102 . 546108) (-2103 . 545535) (-2104 . 545412) + (-2105 . 544985) (-2106 . 544861) (-2107 . 544655) (-2108 . 544524) + (-2109 . 544182) (-2110 . 544115) (-2111 . 543735) (-2112 . 543629) + (-2113 . 543521) (-2114 . 543435) (-2115 . 543365) (-2116 . 543120) + (-2117 . 542979) (-2118 . 542911) (-2119 . 542829) (-2120 . 542437) + (-2121 . 541945) (-2122 . 541763) (-2123 . 541610) (-2124 . 541349) + (-2125 . 541261) (-2126 . 541202) (-2127 . 541119) (-2128 . 541032) + (-2129 . 541000) (-2130 . 540929) (-2131 . 540807) (-2132 . 540745) + (-2133 . 540602) (-2134 . 540423) (-2135 . 540350) (-2136 . 540295) + (-2137 . 540213) (-2138 . 540060) (-2139 . 539842) (-2140 . 539757) + (-2141 . 539654) (-2142 . 539582) (-2143 . 539501) (-2144 . 539449) + (-2145 . 539231) (-2146 . 538722) (-2147 . 538549) (-2148 . 538471) + (-2149 . 538367) (-2150 . 538294) (-2151 . 538165) (-2152 . 538106) + (-2153 . 538047) (-2154 . 537909) (-2155 . 537765) (-2156 . 537696) + (-2157 . 537583) (-2158 . 537425) (-2159 . 537372) (-2160 . 537338) + (-2161 . 537307) (-2162 . 537083) (-2163 . 536953) (-2164 . 535851) + (-2165 . 535660) (-2166 . 535504) (-2167 . 535451) (-2168 . 535396) + (-2169 . 535308) (-2170 . 535212) (-2171 . 534984) (-2172 . 534732) + (-2173 . 534611) (-2174 . 534434) (-2175 . 534366) (-2176 . 534314) + (-2177 . 534286) (-2178 . 534162) (-2179 . 534089) (-2180 . 534001) + (-2181 . 533948) (-2182 . 533785) (-2183 . 533728) (-2184 . 533655) + (-2185 . 533572) (-2186 . 533432) (-2187 . 533361) (-2188 . 533246) + (-2189 . 532325) (-2190 . 532181) (-2191 . 532097) (-2192 . 531778) + (-2193 . 531725) (-2194 . 531545) (-2195 . 531361) (-2196 . 531239) + (-2197 . 531162) (-2198 . 530860) (-2199 . 530765) (-2200 . 530585) + (-2201 . 530117) (-2202 . 529951) (-2203 . 529567) (-2204 . 528135) + (-2205 . 528015) (-2206 . 527963) (-2207 . 527808) (-2208 . 527010) + (-2209 . 526582) (-2210 . 526458) (-2211 . 526290) (-2212 . 526166) + (-2213 . 525681) (-2214 . 525442) (-2215 . 525368) (-2216 . 525163) + (-2217 . 524979) (-2218 . 524919) (-2219 . 524778) (-2220 . 524613) + (-2221 . 524561) (-2222 . 524468) (-2223 . 524285) (-2224 . 524219) + (-2225 . 524126) (-2226 . 523350) (-2227 . 523241) (-2228 . 523077) + (-2229 . 518535) (-2230 . 518440) (-2231 . 518372) (-2232 . 518344) + (-2233 . 518189) (-2234 . 517765) (-2235 . 517517) (-2236 . 516999) + (-2237 . 516938) (-2238 . 516754) (-2239 . 516630) (-2240 . 516514) + (-2241 . 516459) (-2242 . 516407) (-2243 . 516207) (-2244 . 516155) + (-2245 . 516084) (-2246 . 515983) (-2247 . 515902) (-2248 . 515200) + (-2249 . 514977) (-2250 . 514876) (-2251 . 514561) (-2252 . 514398) + (-2253 . 513954) (-2254 . 513594) (-2255 . 513439) (-2256 . 513335) + (-2257 . 513222) (-2258 . 513169) (-2259 . 513106) (-2260 . 512427) + (-2261 . 512329) (-2262 . 512207) (-2263 . 512089) (-2264 . 511961) + (-2265 . 511866) (-2266 . 511710) (-2267 . 511429) (-2268 . 511300) + (-2269 . 511201) (-2270 . 511075) (-2271 . 509487) (-2272 . 509432) + (-2273 . 509269) (-2274 . 509217) (-2275 . 508037) (-2276 . 507742) + (-2277 . 507570) (-2278 . 507390) (-2279 . 506320) (-2280 . 506137) + (-2281 . 505884) (-2282 . 505611) (-2283 . 505470) (-2284 . 505362) + (-2285 . 505276) (-2286 . 505224) (-2287 . 505129) (-2288 . 504768) + (-2289 . 504591) (-2290 . 504481) (-2291 . 504329) (-2292 . 504111) + (-2293 . 504004) (-2294 . 503921) (-2295 . 503757) (-2296 . 503662) + (-2297 . 503184) (-2298 . 502757) (-2299 . 502689) (-2300 . 502555) + (-2301 . 502394) (-2302 . 502366) (-2303 . 502256) (-2304 . 502203) + (-2305 . 502049) (-2306 . 501955) (-2307 . 501832) (-2308 . 501545) + (-2309 . 501459) (-2310 . 501262) (-2311 . 501233) (-2312 . 500961) + (-2313 . 500906) (-2314 . 500703) (-2315 . 500637) (-2316 . 500557) + (-2317 . 500371) (-2318 . 499286) (-2319 . 485199) (-2320 . 484878) + (-2321 . 484741) (-2322 . 484675) (-2323 . 484461) (-2324 . 484343) + (-2325 . 484221) (-2326 . 483999) (-2327 . 483820) (-2328 . 483511) + (-2329 . 483356) (-2330 . 483256) (-2331 . 483065) (-2332 . 482550) + (-2333 . 482518) (-2334 . 482417) (-2335 . 482297) (-2336 . 481596) + (-2337 . 481029) (-2338 . 480969) (-2339 . 480747) (-2340 . 480497) + (-2341 . 476434) (-2342 . 476198) (-2343 . 475976) (-2344 . 475861) + (-2345 . 475809) (-2346 . 475705) (-2347 . 475614) (-2348 . 475556) + (-2349 . 475433) (-2350 . 475354) (-2351 . 475211) (-2352 . 475133) + (-2353 . 475073) (-2354 . 474899) (-2355 . 474669) (-2356 . 474574) + (-2357 . 474546) (-2358 . 474475) (-2359 . 473873) (-2360 . 473790) + (-2361 . 473265) (-2362 . 473213) (-2363 . 473106) (-2364 . 472041) + (-2365 . 471505) (-2366 . 471450) (-2367 . 471261) (-2368 . 471108) + (-2369 . 471025) (-2370 . 470957) (-2371 . 470739) (-2372 . 470594) + (-2373 . 470521) (-2374 . 470458) (-2375 . 470270) (-2376 . 466603) + (-2377 . 466551) (-2378 . 466111) (-2379 . 466037) (-2380 . 465943) + (-2381 . 465800) (-2382 . 465713) (-2383 . 465467) (-2384 . 463122) + (-2385 . 462991) (-2386 . 462551) (-2387 . 462477) (-2388 . 462404) + (-2389 . 462117) (-2390 . 462083) (-2391 . 462012) (-2392 . 461913) + (-2393 . 461783) (-2394 . 461618) (-2395 . 461561) (-2396 . 461399) + (-2397 . 461041) (-2398 . 460959) (-2399 . 460784) (-2400 . 460683) + (-2401 . 460582) (-2402 . 460424) (-2403 . 460296) (-2404 . 460179) + (-2405 . 460073) (-2406 . 459794) (-2407 . 459677) (-2408 . 459547) + (-2409 . 459293) (-2410 . 459180) (-2411 . 458921) (-2412 . 458765) + (-2413 . 458596) (-2414 . 458325) (-2415 . 458228) (-2416 . 458137) + (-2417 . 458027) (-2418 . 457880) (-2419 . 457144) (-2420 . 456929) + (-2421 . 456824) (-2422 . 456578) (-2423 . 447128) (-2424 . 446650) + (-2425 . 446388) (-2426 . 446293) (-2427 . 446196) (-2428 . 446168) + (-2429 . 446094) (-2430 . 445856) (-2431 . 445754) (-2432 . 445705) + (-2433 . 445604) (-2434 . 445552) (-2435 . 445493) (-2436 . 445328) + (-2437 . 445169) (-2438 . 445109) (-2439 . 445011) (-2440 . 444336) + (-2441 . 443113) (-2442 . 443016) (-2443 . 442813) (-2444 . 442736) + (-2445 . 441708) (-2446 . 441655) (-2447 . 441539) (-2448 . 441482) + (-2449 . 441166) (-2450 . 441110) (-2451 . 441042) (-2452 . 440911) + (-2453 . 440644) (-2454 . 440528) (-2455 . 440473) (-2456 . 440348) + (-2457 . 440277) (-2458 . 440192) (-2459 . 440096) (-2460 . 439762) + (-2461 . 438185) (-2462 . 438133) (-2463 . 437599) (-2464 . 437571) + (-2465 . 437475) (-2466 . 437331) (-2467 . 437155) (-2468 . 436997) + (-2469 . 436782) (-2470 . 436650) (-2471 . 436543) (-2472 . 436330) + (-2473 . 436052) (-2474 . 435999) (-2475 . 435867) (-2476 . 435684) + (-2477 . 435582) (-2478 . 435524) (-2479 . 435171) (-2480 . 435077) + (-2481 . 434808) (-2482 . 434710) (-2483 . 434657) (-2484 . 434539) + (-2485 . 434415) (-2486 . 434319) (-2487 . 433969) (-2488 . 433816) + (-2489 . 433466) (-2490 . 433369) (-2491 . 433253) (-2492 . 433198) + (-2493 . 432961) (-2494 . 432893) (-2495 . 432799) (-2496 . 432468) + (-2497 . 431933) (-2498 . 431905) (-2499 . 431745) (-2500 . 431466) + (-2501 . 431429) (-2502 . 431333) (-2503 . 431256) (-2504 . 431224) + (-2505 . 431187) (-2506 . 431126) (-2507 . 431003) (-2508 . 430886) + (-2509 . 430800) (-2510 . 430661) (-2511 . 430577) (-2512 . 430419) + (-2513 . 430341) (-2514 . 430207) (-2515 . 430130) (-2516 . 430023) + (-2517 . 429930) (-2518 . 429603) (-2519 . 429329) (-2520 . 429120) + (-2521 . 429019) (-2522 . 428827) (-2523 . 428774) (-2524 . 428464) + (-2525 . 428386) (-2526 . 427848) (-2527 . 427783) (-2528 . 427535) + (-2529 . 427264) (-2530 . 427121) (-2531 . 426875) (-2532 . 426778) + (-2533 . 426530) (-2534 . 426403) (-2535 . 426279) (-2536 . 426205) + (-2537 . 426117) (-2538 . 426031) (-2539 . 425906) (-2540 . 425616) + (-2541 . 425489) (-2542 . 424672) (-2543 . 424145) (-2544 . 424071) + (-2545 . 423972) (-2546 . 423944) (-2547 . 423191) (-2548 . 423113) + (-2549 . 422888) (-2550 . 422810) (-2551 . 422754) (-2552 . 422726) + (-2553 . 422504) (-2554 . 422207) (-2555 . 422175) (-2556 . 422062) + (-2557 . 421994) (-2558 . 421821) (-2559 . 421769) (-2560 . 421717) + (-2561 . 421470) (-2562 . 421372) (-2563 . 421299) (-2564 . 421118) + (-2565 . 420639) (-2566 . 420249) (-2567 . 420074) (-2568 . 419925) + (-2569 . 419601) (-2570 . 419486) (-2571 . 419400) (-2572 . 419234) + (-2573 . 419111) (-2574 . 418977) (-2575 . 418765) (-2576 . 418519) + (-2577 . 418420) (-2578 . 418009) (-2579 . 417872) (-2580 . 417756) + (-2581 . 417675) (-2582 . 417440) (-2583 . 417412) (-2584 . 417347) + (-2585 . 417132) (-2586 . 416987) (-2587 . 416689) (-2588 . 416605) + (-2589 . 416367) (-2590 . 416031) (-2591 . 415540) (-2592 . 415480) + (-2593 . 414618) (-2594 . 414429) (-2595 . 414345) (-2596 . 414252) + (-2597 . 414057) (-2598 . 413915) (-2599 . 413637) (-2600 . 413331) + (-2601 . 413302) (-2602 . 413104) (-2603 . 413020) (-2604 . 412904) + (-2605 . 412741) (-2606 . 412556) (-2607 . 412522) (-2608 . 412388) + (-2609 . 412332) (-2610 . 411945) (-2611 . 411767) (-2612 . 411707) + (-2613 . 411622) (-2614 . 411537) (-2615 . 411451) (-2616 . 410856) + (-2617 . 410784) (-2618 . 410665) (-2619 . 410379) (-2620 . 410002) + (-2621 . 409960) (-2622 . 409361) (-2623 . 408243) (-2624 . 408142) + (-2625 . 408011) (-2626 . 407925) (-2627 . 407411) (-2628 . 407345) + (-2629 . 407295) (-2630 . 407140) (-2631 . 406890) (-2632 . 406816) + (-2633 . 406687) (-2634 . 406592) (-2635 . 406451) (-2636 . 405249) + (-2637 . 405142) (-2638 . 403696) (-2639 . 403542) (-2640 . 403394) + (-2641 . 403020) (-2642 . 402971) (-2643 . 402899) (-2644 . 402784) + (-2645 . 402624) (-2646 . 402417) (-2647 . 402165) (-2648 . 401957) + (-2649 . 401819) (-2650 . 401753) (-2651 . 401651) (-2652 . 401501) + (-2653 . 401445) (-2654 . 401308) (-2655 . 401226) (-2656 . 401198) + (-2657 . 400683) (-2658 . 400611) (-2659 . 397312) (-2660 . 397256) + (-2661 . 397152) (-2662 . 396858) (-2663 . 396725) (-2664 . 396529) + (-2665 . 396405) (-2666 . 396339) (-2667 . 396311) (-2668 . 396259) + (-2669 . 396206) (-2670 . 396027) (-2671 . 395596) (-2672 . 395366) + (-2673 . 395203) (-2674 . 395049) (-2675 . 394925) (-2676 . 394782) + (-2677 . 394603) (-2678 . 394353) (-2679 . 392097) (-2680 . 392031) + (-2681 . 391980) (-2682 . 391921) (-2683 . 391892) (-2684 . 391821) + (-2685 . 391164) (-2686 . 391087) (-2687 . 390983) (-2688 . 390884) + (-2689 . 390800) (-2690 . 390672) (-2691 . 390613) (-2692 . 390556) + (-2693 . 390134) (-2694 . 389910) (-2695 . 389851) (-2696 . 389313) + (-2697 . 389184) (-2698 . 389069) (-2699 . 388985) (-2700 . 388827) + (-2701 . 388728) (-2702 . 388282) (-2703 . 388072) (-2704 . 387892) + (-2705 . 387793) (-2706 . 387715) (-2707 . 387355) (-2708 . 387266) + (-2709 . 387171) (-2710 . 387119) (-2711 . 387047) (-2712 . 386963) + (-2713 . 386797) (-2714 . 386621) (-2715 . 385971) (-2716 . 385892) + (-2717 . 385747) (-2718 . 385606) (-2719 . 384151) (-2720 . 384067) + (-2721 . 383963) (-2722 . 383814) (-2723 . 383368) (-2724 . 383278) + (-2725 . 383116) (-2726 . 383038) (-2727 . 382964) (-2728 . 382081) + (-2729 . 380591) (-2730 . 380490) (-2731 . 380412) (-2732 . 380194) + (-2733 . 380048) (-2734 . 379789) (-2735 . 379712) (-2736 . 378714) + (-2737 . 378628) (-2738 . 378487) (-2739 . 378387) (-2740 . 378291) + (-2741 . 378170) (-2742 . 378005) (-2743 . 376662) (-2744 . 376612) + (-2745 . 376535) (-2746 . 376355) (-2747 . 376225) (-2748 . 375489) + (-2749 . 375026) (-2750 . 374622) (-2751 . 374404) (-2752 . 374185) + (-2753 . 374128) (-2754 . 374025) (-2755 . 372775) (-2756 . 372576) + (-2757 . 372277) (-2758 . 372224) (-2759 . 371992) (-2760 . 371910) + (-2761 . 371747) (-2762 . 371681) (-2763 . 371562) (-2764 . 371491) + (-2765 . 371417) (-2766 . 371276) (-2767 . 371199) (-2768 . 371027) + (-2769 . 370845) (-2770 . 370733) (-2771 . 370705) (-2772 . 370474) + (-2773 . 370346) (-2774 . 370287) (-2775 . 370006) (-2776 . 369614) + (-2777 . 369367) (-12 . 369195) (-2779 . 367227) (-2780 . 367074) + (-2781 . 367018) (-2782 . 366726) (-2783 . 366572) (-2784 . 365928) + (-2785 . 365857) (-2786 . 365545) (-2787 . 365415) (-2788 . 365346) + (-2789 . 365201) (-2790 . 364914) (-2791 . 364804) (-2792 . 364742) + (-2793 . 364668) (-2794 . 363496) (-2795 . 363120) (-2796 . 362817) + (-2797 . 362692) (-2798 . 362263) (-2799 . 362210) (-2800 . 362039) + (-2801 . 361972) (-2802 . 361806) (-2803 . 361675) (-2804 . 361560) + (-2805 . 361476) (-2806 . 361398) (-2807 . 361259) (-2808 . 360808) + (-2809 . 360720) (-2810 . 360632) (-2811 . 360536) (-2812 . 360204) + (-2813 . 360132) (-2814 . 358995) (-2815 . 358743) (-2816 . 358676) + (-2817 . 358416) (-2818 . 358257) (-2819 . 358050) (-2820 . 357979) + (-2821 . 357840) (-2822 . 357718) (-2823 . 357594) (-2824 . 357482) + (-2825 . 357271) (-2826 . 357068) (-2827 . 356871) (-2828 . 356771) + (-2829 . 356526) (-2830 . 356432) (-2831 . 356145) (-2832 . 356059) + (-2833 . 355937) (-2834 . 355885) (-2835 . 355558) (-2836 . 355373) + (-2837 . 355250) (-2838 . 355069) (-2839 . 354733) (-2840 . 354647) + (-2841 . 354486) (-2842 . 354234) (-2843 . 354089) (-2844 . 353997) + (-2845 . 353847) (-2846 . 353597) (-2847 . 353461) (-2848 . 353308) + (-2849 . 353252) (-2850 . 353178) (-2851 . 353057) (-2852 . 352984) + (-2853 . 352824) (-2854 . 352732) (-2855 . 352146) (-2856 . 352090) + (-2857 . 351616) (-2858 . 351383) (-2859 . 351144) (-2860 . 350302) + (-2861 . 349634) (-2862 . 349514) (-2863 . 349300) (-2864 . 349101) + (-2865 . 349015) (-2866 . 348912) (-2867 . 348794) (-2868 . 348634) + (-2869 . 348339) (-2870 . 348259) (-2871 . 348225) (-2872 . 347920) + (-2873 . 344311) (-2874 . 344256) (-2875 . 343390) (-2876 . 343078) + (-2877 . 342997) (-2878 . 342966) (-2879 . 342611) (-2880 . 342533) + (* . 338039) (-2882 . 337965) (-2883 . 337807) (-2884 . 337675) + (-2885 . 337526) (-2886 . 337498) (-2887 . 337250) (-2888 . 337179) + (-2889 . 337049) (-2890 . 336392) (-2891 . 336314) (-2892 . 336264) + (-2893 . 336049) (-2894 . 335965) (-2895 . 335888) (-2896 . 335699) + (-2897 . 335569) (-2898 . 335225) (-2899 . 335176) (-2900 . 335104) + (-2901 . 335030) (-2902 . 334870) (-2903 . 334777) (-2904 . 334651) + (-2905 . 334565) (-2906 . 334399) (-2907 . 334329) (-2908 . 334216) + (-2909 . 334109) (-2910 . 334020) (-2911 . 333967) (-2912 . 333884) + (-2913 . 333680) (-2914 . 333408) (-2915 . 333340) (-2916 . 333268) + (-2917 . 333139) (-2918 . 332961) (-2919 . 332854) (-2920 . 332724) + (-2921 . 332064) (-2922 . 331994) (-2923 . 331906) (-2924 . 331800) + (-2925 . 331729) (-2926 . 329502) (-2927 . 329433) (-2928 . 329275) + (-2929 . 329188) (-2930 . 328949) (-2931 . 328869) (-2932 . 328781) + (-2933 . 328684) (-2934 . 328507) (-2935 . 328276) (-2936 . 328182) + (-2937 . 328034) (-2938 . 327772) (-2939 . 327700) (-2940 . 327647) + (-2941 . 327420) (-2942 . 327292) (-2943 . 327208) (-2944 . 327120) + (-2945 . 327023) (-2946 . 326936) (-2947 . 326859) (-2948 . 326785) + (-2949 . 326699) (-2950 . 325812) (-2951 . 325699) (-2952 . 325572) + (-2953 . 325301) (-2954 . 325113) (-2955 . 325061) (-2956 . 324902) + (-2957 . 324805) (-2958 . 324725) (-2959 . 324597) (-2960 . 324545) + (-2961 . 324402) (-2962 . 324330) (-2963 . 324217) (-2964 . 324114) + (-2965 . 324014) (-2966 . 323907) (-2967 . 323744) (-2968 . 323657) + (-2969 . 323514) (-2970 . 323429) (-2971 . 323207) (-2972 . 323154) + (-2973 . 323102) (-2974 . 322944) (-2975 . 322821) (-2976 . 322692) + (-2977 . 322593) (-2978 . 321732) (-2979 . 321662) (-2980 . 321610) + (-2981 . 321293) (-2982 . 321223) (-2983 . 321062) (-2984 . 320931) + (-2985 . 320712) (-2986 . 320460) (-2987 . 320407) (-2988 . 320320) + (-2989 . 320174) (-2990 . 319979) (-2991 . 319926) (-2992 . 319871) + (-2993 . 319767) (-2994 . 319656) (-2995 . 319465) (-2996 . 318999) + (-2997 . 318903) (-2998 . 318532) (-2999 . 318327) (-3000 . 317960) + (-3001 . 317881) (-3002 . 316695) (-3003 . 312535) (-3004 . 312436) + (-3005 . 312223) (-3006 . 312063) (-3007 . 311867) (-3008 . 311814) + (-3009 . 311719) (-3010 . 311688) (-3011 . 310596) (-3012 . 309414) + (-3013 . 309160) (-3014 . 309105) (-3015 . 308976) (-3016 . 308819) + (-3017 . 308670) (-3018 . 308557) (-3019 . 308434) (-3020 . 308338) + (-3021 . 308237) (-3022 . 307918) (-3023 . 307729) (-3024 . 307679) + (-3025 . 305472) (-3026 . 304961) (-3027 . 304789) (-3028 . 304761) + (-3029 . 304608) (-3030 . 304510) (-3031 . 304128) (-3032 . 304004) + (-3033 . 303881) (-3034 . 303754) (-3035 . 303564) (-3036 . 303406) + (-3037 . 303234) (-3038 . 303130) (-3039 . 302851) (-3040 . 302699) + (-3041 . 302386) (-3042 . 302358) (-3043 . 302324) (-3044 . 302268) + (-3045 . 301684) (-3046 . 301531) (-3047 . 301070) (-3048 . 300898) + (-3049 . 300789) (-3050 . 300679) (-3051 . 300613) (-3052 . 300519) + (-3053 . 300424) (-3054 . 300233) (-3055 . 300199) (-3056 . 300084) + (-3057 . 299983) (-3058 . 299794) (-3059 . 299622) (-3060 . 299418) + (-3061 . 299269) (-3062 . 299241) (-3063 . 299030) (-3064 . 298851) + (-3065 . 298738) (-3066 . 298661) (-3067 . 298475) (-3068 . 298354) + (-3069 . 298260) (-3070 . 298170) (-3071 . 298030) (-3072 . 297951) + (-3073 . 297852) (-3074 . 297624) (-3075 . 297446) (-3076 . 297245) + (-3077 . 296603) (-3078 . 296352) (-3079 . 296282) (-3080 . 296223) + (-3081 . 296149) (-3082 . 296099) (-3083 . 295901) (-3084 . 295765) + (-3085 . 295636) (-3086 . 295543) (-3087 . 295425) (-3088 . 295356) + (-3089 . 295303) (-3090 . 295244) (-3091 . 295141) (-3092 . 295045) + (-3093 . 294759) (-3094 . 294544) (-3095 . 294361) (-3096 . 294248) + (-3097 . 294152) (-3098 . 293961) (-3099 . 293547) (-3100 . 293337) + (-3101 . 293252) (-3102 . 293108) (-3103 . 293079) (-3104 . 292880) + (-3105 . 292803) (-3106 . 292375) (-3107 . 292184) (-3108 . 292090) + (-3109 . 291557) (-3110 . 291429) (-3111 . 291256) (-3112 . 291118) + (-3113 . 290962) (-3114 . 290403) (-3115 . 289799) (-3116 . 289647) + (-3117 . 289443) (-3118 . 289306) (-3119 . 289146) (-3120 . 288927) + (-3121 . 288721) (-3122 . 288527) (-3123 . 288382) (-3124 . 287823) + (-3125 . 287429) (-3126 . 286694) (-3127 . 286621) (-3128 . 286548) + (-3129 . 286367) (-3130 . 286237) (-3131 . 286169) (-3132 . 285983) + (-3133 . 285912) (-3134 . 285769) (-3135 . 285566) (-3136 . 285472) + (-3137 . 285294) (-3138 . 285030) (-3139 . 284942) (-3140 . 284848) + (-3141 . 284775) (-3142 . 284511) (-3143 . 284411) (-3144 . 284295) + (-3145 . 284229) (-3146 . 284122) (-3147 . 283991) (-3148 . 283838) + (-3149 . 283523) (-3150 . 283443) (-3151 . 283392) (-3152 . 264817) + (-3153 . 264761) (-3154 . 264608) (-3155 . 264574) (-3156 . 264358) + (-3157 . 264272) (-3158 . 264177) (-3159 . 263936) (-3160 . 263678) + (-3161 . 263525) (-3162 . 263395) (-3163 . 263293) (-3164 . 263119) + (-3165 . 263004) (-3166 . 262779) (-3167 . 262699) (-3168 . 262332) + (-3169 . 262217) (-3170 . 262154) (-3171 . 262102) (-3172 . 261714) + (-3173 . 261332) (-3174 . 261233) (-3175 . 261026) (-3176 . 260955) + (-3177 . 260855) (-3178 . 260470) (-3179 . 260366) (-3180 . 260284) + (-3181 . 260177) (-3182 . 260092) (-3183 . 260024) (-3184 . 259971) + (-3185 . 259919) (-3186 . 259839) (-3187 . 259619) (-3188 . 259266) + (-3189 . 259119) (-3190 . 258801) (-3191 . 258676) (-3192 . 258461) + (-3193 . 258220) (-3194 . 258049) (-3195 . 257936) (-3196 . 257528) + (-3197 . 257418) (-3198 . 257175) (-3199 . 257098) (-3200 . 257047) + (-3201 . 256959) (-3202 . 256832) (-3203 . 256613) (-3204 . 256167) + (-3205 . 256099) (-3206 . 255386) (-3207 . 255133) (-3208 . 254859) + (-3209 . 254775) (-3210 . 254680) (-3211 . 254583) (-3212 . 254531) + (-3213 . 254144) (-3214 . 253937) (-3215 . 253805) (-3216 . 253752) + (-3217 . 253701) (-3218 . 252705) (-3219 . 252584) (-3220 . 252284) + (-3221 . 252116) (-3222 . 252038) (-3223 . 251914) (-3224 . 251780) + (-3225 . 251621) (-3226 . 251550) (-3227 . 251349) (-3228 . 251252) + (-3229 . 251164) (-3230 . 250677) (-3231 . 250582) (-3232 . 250364) + (-3233 . 250116) (-3234 . 250064) (-3235 . 249262) (-3236 . 249167) + (-3237 . 249097) (-3238 . 248611) (-3239 . 248511) (-3240 . 247753) + (-3241 . 247690) (-3242 . 247637) (-3243 . 247419) (-3244 . 247110) + (-3245 . 245894) (-3246 . 245768) (-3247 . 245520) (-3248 . 245447) + (-3249 . 245191) (-3250 . 245074) (-3251 . 244892) (-3252 . 244395) + (-3253 . 244228) (-3254 . 244156) (-3255 . 244046) (-3256 . 243994) + (-3257 . 243835) (-3258 . 243740) (-3259 . 243687) (-3260 . 243609) + (-3261 . 243523) (-3262 . 243305) (-3263 . 243202) (-3264 . 242994) + (-3265 . 242938) (-3266 . 242759) (-3267 . 242498) (-3268 . 242420) + (-3269 . 242307) (-3270 . 242199) (-3271 . 242118) (-3272 . 241783) + (-3273 . 241556) (-3274 . 241398) (-3275 . 241319) (-3276 . 241142) + (-3277 . 241042) (-3278 . 240986) (-3279 . 240775) (-3280 . 240703) + (-3281 . 240651) (-3282 . 240570) (-3283 . 240542) (-3284 . 240323) + (-3285 . 240271) (-3286 . 239307) (-3287 . 239237) (-3288 . 239066) + (-3289 . 238941) (-3290 . 238818) (-3291 . 238351) (-3292 . 238177) + (-3293 . 238056) (-3294 . 237714) (-3295 . 237640) (-3296 . 237563) + (-3297 . 237307) (-3298 . 237208) (-3299 . 237139) (-3300 . 237079) + (-3301 . 236947) (-3302 . 236336) (-3303 . 236228) (-3304 . 236054) + (-3305 . 235782) (-3306 . 235590) (-3307 . 235430) (-3308 . 235322) + (-3309 . 235256) (-3310 . 235179) (-3311 . 235124) (-3312 . 235023) + (-3313 . 228080) (-3314 . 227976) (-3315 . 227680) (-3316 . 227624) + (-3317 . 227457) (-3318 . 226703) (-3319 . 226562) (-3320 . 226465) + (-3321 . 226229) (-3322 . 226103) (-3323 . 226006) (-3324 . 225940) + (-3325 . 225879) (-3326 . 225813) (-3327 . 225631) (-3328 . 225535) + (-3329 . 225191) (-3330 . 225061) (-3331 . 225009) (-3332 . 224950) + (-3333 . 224698) (-3334 . 224520) (-3335 . 223857) (-3336 . 223757) + (-3337 . 223683) (-3338 . 223655) (-3339 . 223125) (-3340 . 223015) + (-3341 . 222912) (-3342 . 222739) (-3343 . 222683) (-3344 . 222609) + (-3345 . 222519) (-3346 . 222377) (-3347 . 222345) (-3348 . 222257) + (-3349 . 222088) (-3350 . 220896) (-3351 . 220565) (-3352 . 220400) + (-3353 . 220314) (-3354 . 220152) (-3355 . 219999) (-3356 . 219442) + (-3357 . 219163) (-3358 . 218989) (-3359 . 217841) (-3360 . 217788) + (-3361 . 217684) (-3362 . 217362) (-3363 . 216598) (-3364 . 216404) + (-3365 . 216279) (-3366 . 216205) (-3367 . 216039) (-3368 . 215814) + (-3369 . 214616) (-3370 . 214501) (-3371 . 214134) (-3372 . 214029) + (-3373 . 213772) (-3374 . 213245) (-3375 . 213165) (-3376 . 213091) + (-3377 . 213013) (-3378 . 212874) (-3379 . 212722) (-3380 . 212668) + (-3381 . 212470) (-3382 . 212418) (-3383 . 212390) (-3384 . 212289) + (-3385 . 212162) (-3386 . 211846) (-3387 . 211760) (-3388 . 211704) + (-3389 . 211635) (-3390 . 211435) (-3391 . 211244) (-3392 . 210938) + (-3393 . 210868) (-3394 . 210613) (-3395 . 210498) (-3396 . 210320) + (-3397 . 210222) (-3398 . 210126) (-3399 . 210095) (-3400 . 210022) + (-3401 . 209770) (-3402 . 209426) (-3403 . 207645) (-3404 . 207535) + (-3405 . 207482) (-3406 . 207357) (-3407 . 206707) (-3408 . 206485) + (-3409 . 206429) (-3410 . 206363) (-3411 . 206281) (-3412 . 206198) + (-3413 . 206102) (-3414 . 206019) (-3415 . 205915) (-3416 . 205836) + (-3417 . 205729) (-3418 . 205336) (-3419 . 205140) (-3420 . 205112) + (-3421 . 205017) (-3422 . 204904) (-3423 . 204845) (-3424 . 204778) + (-3425 . 204675) (-3426 . 204435) (-3427 . 204369) (-3428 . 203861) + (-3429 . 203583) (-3430 . 203467) (-3431 . 203390) (-3432 . 203171) + (-3433 . 202875) (-3434 . 202665) (-3435 . 202566) (-3436 . 202438) + (-3437 . 202387) (-3438 . 202193) (-3439 . 202140) (-3440 . 202071) + (-3441 . 201961) (-3442 . 201891) (-3443 . 201818) (-3444 . 201718) + (-3445 . 201668) (-3446 . 201567) (-3447 . 201494) (-3448 . 201322) + (-3449 . 201260) (-3450 . 201117) (-3451 . 201034) (-3452 . 200898) + (-3453 . 200812) (-3454 . 200669) (-3455 . 200508) (-3456 . 200346) + (-3457 . 200251) (-3458 . 200117) (-3459 . 200062) (-3460 . 199849) + (-3461 . 199761) (-3462 . 199606) (-3463 . 199493) (-3464 . 198783) + (-3465 . 197053) (-3466 . 197002) (-3467 . 196863) (-3468 . 196488) + (-3469 . 196110) (-3470 . 195490) (-3471 . 195437) (-3472 . 195385) + (-3473 . 195205) (-3474 . 194988) (-3475 . 194677) (-3476 . 194492) + (-3477 . 194374) (-3478 . 194302) (-3479 . 194271) (-3480 . 193984) + (-3481 . 193847) (-3482 . 193337) (-3483 . 193162) (-3484 . 192658) + (-3485 . 192241) (-3486 . 190699) (-3487 . 190647) (-3488 . 190550) + (-3489 . 190491) (-3490 . 190432) (-3491 . 190202) (-3492 . 190170) + (-3493 . 189794) (-3494 . 189631) (-3495 . 189571) (-3496 . 189213) + (-3497 . 188381) (-3498 . 188309) (-3499 . 187939) (-3500 . 187588) + (-3501 . 187503) (-3502 . 187446) (-3503 . 186882) (-3504 . 186825) + (-3505 . 186442) (-3506 . 186369) (-3507 . 186317) (-3508 . 186239) + (-3509 . 186211) (-3510 . 186095) (-3511 . 186014) (-3512 . 185271) + (-3513 . 185237) (-3514 . 185183) (-3515 . 184341) (-3516 . 184200) + (-3517 . 184127) (-3518 . 183984) (-3519 . 183775) (-3520 . 183543) + (-3521 . 182343) (-3522 . 182261) (-3523 . 182191) (-3524 . 182038) + (-3525 . 181913) (-3526 . 181751) (-3527 . 181654) (-3528 . 181571) + (-3529 . 181144) (-3530 . 181051) (-3531 . 180919) (-3532 . 180712) + (-3533 . 180659) (-3534 . 180585) (-3535 . 180511) (-3536 . 180379) + (-3537 . 180264) (-3538 . 180157) (-3539 . 180001) (-3540 . 179868) + (-3541 . 179811) (-3542 . 179420) (-3543 . 179299) (-3544 . 179185) + (-3545 . 179069) (-3546 . 178992) (-3547 . 178581) (-3548 . 178507) + (-3549 . 178317) (-3550 . 178173) (-3551 . 178090) (-3552 . 177958) + (-3553 . 177873) (-3554 . 177542) (-3555 . 177468) (-3556 . 177373) + (-3557 . 177318) (-3558 . 177084) (-3559 . 176980) (-3560 . 176883) + (-3561 . 176554) (-3562 . 176269) (-3563 . 176036) (-3564 . 175983) + (-3565 . 175877) (-3566 . 175796) (-3567 . 175510) (-3568 . 175354) + (-3569 . 175302) (-3570 . 175164) (-3571 . 174413) (-3572 . 174172) + (-3573 . 174120) (-3574 . 173712) (-3575 . 173660) (-3576 . 172981) + (-3577 . 172689) (-3578 . 172469) (-3579 . 172386) (-3580 . 172211) + (-3581 . 172100) (-3582 . 172044) (-3583 . 171871) (-3584 . 171818) + (-3585 . 171661) (-3586 . 171577) (-3587 . 171459) (-3588 . 171410) + (-3589 . 171351) (-3590 . 171219) (-3591 . 171088) (-3592 . 171016) + (-3593 . 170951) (-3594 . 170880) (-3595 . 170761) (-3596 . 170637) + (-3597 . 170563) (-3598 . 170441) (-3599 . 170020) (-3600 . 169964) + (-3601 . 169811) (-3602 . 169082) (-3603 . 168406) (-3604 . 168280) + (-3605 . 168208) (-3606 . 168003) (-3607 . 167890) (-3608 . 167832) + (-3609 . 167758) (-3610 . 167704) (-3611 . 167621) (-3612 . 167227) + (-3613 . 167150) (-3614 . 166940) (-3615 . 166866) (-3616 . 166769) + (-3617 . 166589) (-3618 . 165860) (-3619 . 164634) (-3620 . 164491) + (-3621 . 164395) (-3622 . 164216) (-3623 . 164164) (-3624 . 163962) + (-3625 . 163847) (-3626 . 163464) (-3627 . 163376) (-3628 . 163168) + (-3629 . 161006) (-3630 . 160330) (-3631 . 160236) (-3632 . 159990) + (-3633 . 159809) (-3634 . 159263) (-3635 . 159145) (-3636 . 159067) + (-3637 . 158674) (-3638 . 158571) (-3639 . 158543) (-3640 . 157576) + (-3641 . 157323) (-3642 . 157178) (-3643 . 156614) (-3644 . 156336) + (-3645 . 156269) (-3646 . 156126) (-3647 . 155767) (-3648 . 155673) + (-3649 . 155499) (-3650 . 155362) (-3651 . 155216) (-3652 . 155049) + (-3653 . 154978) (-3654 . 154820) (-3655 . 154764) (-3656 . 154200) + (-3657 . 153950) (-3658 . 153876) (-3659 . 153776) (-3660 . 153543) + (-3661 . 153479) (-3662 . 153378) (-3663 . 153326) (-3664 . 153123) + (-3665 . 153007) (-3666 . 152840) (-3667 . 152774) (-3668 . 152674) + (-3669 . 152405) (-3670 . 151841) (-3671 . 151717) (-3672 . 151623) + (-3673 . 151443) (-3674 . 151225) (-3675 . 150573) (-3676 . 150454) + (-3677 . 150325) (-3678 . 149838) (-3679 . 149640) (-3680 . 149517) + (-3681 . 149371) (-3682 . 149283) (-3683 . 149058) (-3684 . 148384) + (-3685 . 148166) (-3686 . 148086) (-3687 . 147990) (-3688 . 147744) + (-3689 . 147607) (-3690 . 147478) (-3691 . 147200) (-3692 . 147042) + (-3693 . 146990) (-3694 . 146803) (-3695 . 146731) (-3696 . 146634) + (-3697 . 146474) (-3698 . 146260) (-3699 . 145929) (-3700 . 145795) + (-3701 . 145480) (-3702 . 145376) (-3703 . 145293) (-3704 . 145213) + (-3705 . 144906) (-3706 . 144621) (-3707 . 144463) (-3708 . 144276) + (-3709 . 143995) (-3710 . 143945) (-3711 . 143841) (-3712 . 143784) + (-3713 . 143715) (-3714 . 143358) (-3715 . 143255) (-3716 . 143198) + (-3717 . 143127) (-3718 . 142984) (-3719 . 142751) (-3720 . 142611) + (-3721 . 142540) (-3722 . 141983) (-3723 . 141812) (-3724 . 141685) + (-3725 . 141587) (-3726 . 141389) (-3727 . 141312) (-3728 . 141235) + (-3729 . 141145) (-3730 . 141092) (-3731 . 140799) (-3732 . 140721) + (-3733 . 140647) (-3734 . 140566) (-3735 . 140319) (-3736 . 140261) + (-3737 . 140182) (-3738 . 139572) (-3739 . 139315) (-3740 . 139200) + (-3741 . 139148) (-3742 . 139047) (-3743 . 138601) (-3744 . 138522) + (-3745 . 138469) (-3746 . 138185) (-3747 . 138124) (-3748 . 137839) + (-3749 . 137709) (-3750 . 137602) (-3751 . 137397) (-3752 . 137306) + (-3753 . 137183) (-3754 . 137082) (-3755 . 135742) (-3756 . 135490) + (-9 . 135462) (-3758 . 135297) (-3759 . 135192) (-3760 . 135132) + (-3761 . 134995) (-3762 . 134597) (-3763 . 134497) (-3764 . 134248) + (-3765 . 134126) (-3766 . 134033) (-3767 . 133551) (-3768 . 133304) + (-3769 . 133133) (-3770 . 133018) (-3771 . 132838) (-3772 . 132657) + (-8 . 132629) (-3774 . 132573) (-3775 . 132481) (-3776 . 132353) + (-3777 . 132281) (-3778 . 132224) (-3779 . 132106) (-3780 . 131968) + (-3781 . 131888) (-3782 . 131648) (-3783 . 131565) (-3784 . 131373) + (-7 . 131345) (-3786 . 131203) (-3787 . 130995) (-3788 . 130796) + (-3789 . 130708) (-3790 . 130613) (-3791 . 130468) (-3792 . 130413) + (-3793 . 130346) (-3794 . 130208) (-3795 . 130050) (-3796 . 129967) + (-3797 . 129830) (-3798 . 129728) (-3799 . 129645) (-3800 . 129006) + (-3801 . 128941) (-3802 . 128891) (-3803 . 128795) (-3804 . 128677) + (-3805 . 128584) (-3806 . 128507) (-3807 . 128306) (-3808 . 128077) + (-3809 . 127949) (-3810 . 127868) (-3811 . 127622) (-3812 . 127495) + (-3813 . 127468) (-3814 . 127414) (-3815 . 127318) (-3816 . 127250) + (-3817 . 126886) (-3818 . 126776) (-3819 . 126747) (-3820 . 126251) + (-3821 . 126174) (-3822 . 125904) (-3823 . 125833) (-3824 . 125587) + (-3825 . 125421) (-3826 . 125182) (-3827 . 125130) (-3828 . 124743) + (-3829 . 124311) (-3830 . 124118) (-3831 . 123807) (-3832 . 123698) + (-3833 . 123272) (-3834 . 123195) (-3835 . 122866) (-3836 . 122500) + (-3837 . 122375) (-3838 . 122272) (-3839 . 122065) (-3840 . 121690) + (-3841 . 121637) (-3842 . 121566) (-3843 . 121465) (-3844 . 121368) + (-3845 . 121200) (-3846 . 121042) (-3847 . 120651) (-3848 . 120566) + (-3849 . 120532) (-3850 . 120436) (-3851 . 120052) (-3852 . 119969) + (-3853 . 119865) (-3854 . 119758) (-3855 . 119662) (-3856 . 119583) + (-3857 . 119465) (-3858 . 119246) (-3859 . 119180) (-3860 . 119014) + (-3861 . 118879) (-3862 . 118665) (-3863 . 118602) (-3864 . 118145) + (-3865 . 117875) (-3866 . 117737) (-3867 . 117619) (-3868 . 117480) + (-3869 . 117427) (-3870 . 116423) (-3871 . 116333) (-3872 . 116170) + (-3873 . 116118) (-3874 . 116052) (-3875 . 115693) (-3876 . 115656) + (-3877 . 115558) (-3878 . 115390) (-3879 . 114716) (-3880 . 114656) + (-3881 . 114486) (-3882 . 114327) (-3883 . 114239) (-3884 . 114106) + (-3885 . 113879) (-3886 . 113781) (-3887 . 113609) (-3888 . 111194) + (-3889 . 110984) (-3890 . 110924) (-3891 . 110797) (-3892 . 110060) + (-3893 . 109964) (-3894 . 109381) (-3895 . 109276) (-3896 . 109123) + (-3897 . 108891) (-3898 . 108510) (-3899 . 108177) (-3900 . 108111) + (-3901 . 108033) (-3902 . 105919) (-3903 . 105847) (-3904 . 105285) + (-3905 . 105202) (-3906 . 104021) (-3907 . 103992) (-3908 . 103379) + (-3909 . 103221) (-3910 . 103128) (-3911 . 102709) (-3912 . 102681) + (-3913 . 102581) (-3914 . 102500) (-3915 . 102348) (-3916 . 102282) + (-3917 . 101720) (-3918 . 101657) (-3919 . 101230) (-3920 . 101129) + (-3921 . 100979) (-3922 . 100827) (-3923 . 100744) (-3924 . 100691) + (-3925 . 100503) (-3926 . 100422) (-3927 . 100284) (-3928 . 100172) + (-3929 . 99610) (-3930 . 99407) (-3931 . 99345) (-3932 . 98771) + (-3933 . 98713) (-3934 . 98658) (-3935 . 98429) (-3936 . 98164) + (-3937 . 97822) (-3938 . 97769) (-3939 . 97639) (-3940 . 97186) + (-3941 . 96511) (-3942 . 96412) (-3943 . 95888) (-3944 . 95740) + (-3945 . 95644) (-3946 . 95221) (-3947 . 95126) (-3948 . 95032) + (-3949 . 94973) (-3950 . 94631) (-3951 . 94548) (-3952 . 93873) + (-3953 . 93728) (-3954 . 93677) (-3955 . 93594) (-3956 . 93450) + (-3957 . 93138) (-3958 . 93043) (-3959 . 92957) (-3960 . 92844) + (-3961 . 92679) (-3962 . 92336) (-3963 . 91661) (-3964 . 91099) + (-3965 . 91047) (-3966 . 90952) (-3967 . 90908) (-3968 . 90775) + (-3969 . 90481) (-3970 . 90389) (-3971 . 90104) (-3972 . 90030) + (-3973 . 89872) (-3974 . 89774) (-3975 . 89724) (-3976 . 89161) + (-3977 . 89090) (-3978 . 89012) (-3979 . 88898) (-3980 . 88797) + (-3981 . 88682) (-3982 . 88502) (-3983 . 88419) (-3984 . 88278) + (-3985 . 88192) (-3986 . 87629) (-3987 . 87471) (-3988 . 87389) + (-3989 . 87337) (-3990 . 87145) (-3991 . 86807) (-3992 . 86737) + (-3993 . 86607) (-3994 . 86554) (-3995 . 86477) (-3996 . 85914) + (-3997 . 85818) (-3998 . 85195) (-3999 . 85142) (-4000 . 84830) + (-4001 . 84801) (-4002 . 84516) (-4003 . 84464) (-4004 . 84383) + (-4005 . 84312) (-4006 . 83977) (-4007 . 83808) (-4008 . 83246) + (-4009 . 83148) (-4010 . 83083) (-4011 . 82977) (-4012 . 82739) + (-4013 . 82643) (-4014 . 82615) (-4015 . 82517) (-4016 . 82375) + (-4017 . 82250) (-4018 . 82193) (-4019 . 82141) (-4020 . 81579) + (-4021 . 81400) (-4022 . 81150) (-4023 . 80991) (-4024 . 80718) + (-4025 . 80567) (-4026 . 80518) (-4027 . 80415) (-4028 . 80198) + (-4029 . 80040) (-4030 . 79916) (-4031 . 79371) (-4032 . 78809) + (-4033 . 78699) (-4034 . 78305) (-4035 . 77857) (-4036 . 77758) + (-4037 . 77622) (-4038 . 77507) (-4039 . 77452) (-4040 . 77346) + (-4041 . 77297) (-4042 . 77153) (-4043 . 76973) (-4044 . 76411) + (-4045 . 76341) (-4046 . 76313) (-4047 . 76253) (-4048 . 76194) + (-4049 . 76039) (-4050 . 75944) (-4051 . 75875) (-4052 . 75280) + (-4053 . 75057) (-4054 . 74747) (-4055 . 74608) (-4056 . 74512) + (-4057 . 73950) (-4058 . 73873) (-4059 . 73700) (-4060 . 73634) + (-4061 . 73519) (-4062 . 73445) (-4063 . 73391) (-4064 . 73278) + (-4065 . 72991) (-4066 . 72503) (-4067 . 72415) (-4068 . 71712) + (-4069 . 71340) (-4070 . 71013) (-4071 . 70960) (-4072 . 70841) + (-4073 . 70700) (-4074 . 70473) (-4075 . 70106) (-4076 . 70033) + (-4077 . 69582) (-4078 . 69478) (-4079 . 69303) (-4080 . 69109) + (-4081 . 68990) (-4082 . 68836) (-4083 . 68597) (-4084 . 68468) + (-4085 . 68372) (-4086 . 68036) (-4087 . 67809) (-4088 . 67393) + (-4089 . 67136) (-4090 . 67063) (-4091 . 66688) (-4092 . 66388) + (-4093 . 65651) (-4094 . 65564) (-4095 . 65347) (-4096 . 65252) + (-4097 . 65200) (-4098 . 65077) (-4099 . 64913) (-4100 . 64478) + (-4101 . 64365) (-4102 . 64313) (-4103 . 64257) (-4104 . 64161) + (-4105 . 64083) (-4106 . 63951) (-4107 . 63892) (-4108 . 62814) + (-4109 . 62499) (-4110 . 62357) (-4111 . 61541) (-4112 . 61139) + (-4113 . 60609) (-4114 . 60466) (-4115 . 60384) (-4116 . 60356) + (-4117 . 60153) (-4118 . 60065) (-4119 . 59905) (-4120 . 59809) + (-4121 . 59570) (-4122 . 59542) (-4123 . 59347) (-4124 . 59125) + (-4125 . 59017) (-4126 . 58824) (-4127 . 58669) (-4128 . 58463) + (-4129 . 58377) (-4130 . 58170) (-4131 . 58099) (-4132 . 58002) + (-4133 . 57923) (-4134 . 57818) (-4135 . 57717) (-4136 . 57366) + (-4137 . 57126) (-4138 . 56993) (-4139 . 56934) (-4140 . 56811) + (-4141 . 56732) (-4142 . 56600) (-4143 . 56454) (-4144 . 56354) + (-4145 . 56268) (-4146 . 56014) (-4147 . 55874) (-4148 . 55737) + (-4149 . 55515) (-4150 . 55449) (-4151 . 55153) (-4152 . 54772) + (-4153 . 54715) (-4154 . 54656) (-4155 . 54606) (-4156 . 54416) + (-4157 . 54349) (-4158 . 49011) (-4159 . 47859) (-4160 . 47370) + (-4161 . 47298) (-4162 . 47229) (-4163 . 47141) (-4164 . 47057) + (-4165 . 46951) (-4166 . 46896) (-4167 . 46489) (-4168 . 46455) + (-4169 . 46289) (-4170 . 46030) (-4171 . 45899) (-4172 . 45547) + (-4173 . 45474) (-4174 . 44933) (-4175 . 44797) (-4176 . 44745) + (-4177 . 44557) (-4178 . 44348) (-4179 . 44210) (-4180 . 43954) + (-4181 . 43883) (-4182 . 43784) (-4183 . 43728) (-4184 . 43295) + (-4185 . 43212) (-4186 . 43055) (-4187 . 42962) (-4188 . 42720) + (-4189 . 42646) (-4190 . 41806) (-4191 . 41724) (-4192 . 41610) + (-4193 . 41492) (-4194 . 41348) (-4195 . 41296) (-4196 . 41222) + (-4197 . 41011) (-4198 . 40884) (-4199 . 40276) (-4200 . 40003) + (-4201 . 39917) (-4202 . 39812) (-4203 . 39677) (-4204 . 39595) + (-4205 . 39542) (-4206 . 39434) (-4207 . 39250) (-4208 . 39165) + (-4209 . 38622) (-4210 . 37734) (-4211 . 37681) (-4212 . 37582) + (-4213 . 37529) (-4214 . 37339) (-4215 . 37252) (-4216 . 36958) + (-4217 . 36746) (-4218 . 35444) (-4219 . 35334) (-4220 . 35226) + (-4221 . 35085) (-4222 . 34907) (-4223 . 34879) (-4224 . 34293) + (-4225 . 34135) (-4226 . 33799) (-4227 . 33675) (-4228 . 33457) + (-4229 . 33362) (-4230 . 33285) (-4231 . 33087) (-4232 . 32985) + (-4233 . 32933) (-4234 . 32289) (-4235 . 32145) (-4236 . 31907) + (-4237 . 31873) (-4238 . 31719) (-4239 . 31397) (-4240 . 31239) + (-4241 . 30810) (-4242 . 30370) (-4243 . 30102) (-4244 . 29882) + (-4245 . 29796) (-4246 . 29682) (-4247 . 29279) (-4248 . 29200) + (-4249 . 29137) (-4250 . 29085) (-4251 . 29024) (-4252 . 28941) + (-4253 . 28871) (-4254 . 28785) (-4255 . 28684) (-4256 . 28428) + (-4257 . 28153) (-4258 . 28051) (-4259 . 27918) (-4260 . 27812) + (-4261 . 27759) (-4262 . 27707) (-4263 . 27573) (-4264 . 27258) + (-4265 . 27152) (-4266 . 26933) (-4267 . 26760) (-4268 . 26672) + (-4269 . 26535) (-4270 . 26462) (-4271 . 26325) (-4272 . 24897) + (-4273 . 24868) (-4274 . 24815) (-4275 . 24642) (-4276 . 24548) + (-4277 . 24482) (-4278 . 24408) (-4279 . 24355) (-4280 . 24259) + (-4281 . 24095) (-4282 . 23968) (-4283 . 23602) (-4284 . 23516) + (-4285 . 23388) (-4286 . 23288) (-4287 . 23169) (-4288 . 23138) + (-4289 . 23067) (-4290 . 22736) (-4291 . 22565) (-4292 . 22510) + (-4293 . 22217) (-4294 . 22033) (-4295 . 21978) (-4296 . 21757) + (-4297 . 21438) (-4298 . 21147) (-4299 . 21077) (-4300 . 20843) + (-4301 . 20712) (-4302 . 20537) (-4303 . 20467) (-4304 . 20326) + (-4305 . 20198) (-4306 . 20051) (-4307 . 19970) (-4308 . 19832) + (-4309 . 19622) (-4310 . 19566) (-4311 . 19286) (-4312 . 19252) + (-4313 . 19101) (-4314 . 18985) (-4315 . 18907) (-4316 . 18716) + (-4317 . 18644) (-4318 . 18536) (-4319 . 18441) (-4320 . 18340) + (-4321 . 17916) (-4322 . 17651) (-4323 . 17563) (-4324 . 17469) + (-4325 . 17193) (-4326 . 17131) (-4327 . 17045) (-4328 . 16993) + (-4329 . 16877) (-4330 . 16800) (-4331 . 16654) (-4332 . 16535) + (-4333 . 16483) (-4334 . 16066) (-4335 . 15840) (-4336 . 15763) + (-4337 . 15710) (-4338 . 15542) (-4339 . 15456) (-4340 . 15283) + (-4341 . 15228) (-4342 . 14364) (-4343 . 14311) (-4344 . 10976) + (-4345 . 10766) (-4346 . 10700) (-4347 . 10280) (-4348 . 10197) + (-4349 . 10062) (-4350 . 9916) (-4351 . 9735) (-4352 . 9639) + (-4353 . 9558) (-4354 . 9506) (-4355 . 9354) (-4356 . 9080) + (-4357 . 9028) (-4358 . 8595) (-4359 . 8476) (-4360 . 8418) + (-4361 . 8108) (-4362 . 8027) (-4363 . 7943) (-4364 . 7809) + (-4365 . 7757) (-4366 . 7510) (-4367 . 6640) (-4368 . 6560) + (-4369 . 6402) (-4370 . 6093) (-4371 . 5990) (-4372 . 5882) + (-4373 . 5827) (-4374 . 5448) (-4375 . 4150) (-4376 . 4062) + (-4377 . 3782) (-4378 . 3615) (-4379 . 3444) (-4380 . 3371) + (-4381 . 3025) (-4382 . 2882) (-4383 . 2776) (-4384 . 2620) + (-4385 . 2524) (-4386 . 1894) (-4387 . 1810) (-4388 . 1437) + (-4389 . 1262) (-4390 . 1077) (-4391 . 260) (-4392 . 139) (-4393 . 86) (-4394 . 30))
\ No newline at end of file |